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STELLINGEN 

1. Laat F(x) de verdelingsfunktie zijn van een stochastische variabele X; 

laat het interval (-<=, «) de drager zijn van F(x). Laat voorts de rela

tie 

F(x)(1 - F(x - 6))/[F(x - e)(1 - F(x))] = 0,(9) 

geldig zijn voor alle reële x en 9, waarbij d>(9) een niet-conjstante 

funktie is van 9 die niet van x afhangt. 

Dan is 

F(x) = [1 + exp(-b(x - a))]-1 

voor reële a en b > 0, zodat de kansverdeling van X de logistische ver

deling is. 

Engel, J. (1985), Some characterizations of distributions by regres

sion models for ordinal response data, Metrika 32, 65-72. 

2. De keuze van de link function in toepassingen van gegeneraliseerde li

neaire modellen wordt veelal uitsluitend gemaakt op grond van argumenten 

van wiskundige aard, hierbij gemakshalve voorbijgaand aan de interpre

teerbaarheid van het resultaat. 

3. De resultaten die zijn verkregen door Brier ten aanzien van de kansver

deling van de G -toets in het geval van een groot aantal onafhankelijke 

trekkingen uit de Dirichlet multinomiale verdeling volgen direct uit de 

theorie van quasi-likelihood toetsen zoals die is afgeleid door McCul-

lagh. 

Brier, S.S. (1980), Analysis of contingency tables under cluster 

sampling, Biometrika 67, 591-596. 

McCullagh, P. (1983), Quasi-likelihood functions, Ann. Statist. 11, 

59-67. 

4. De in de regressieanalyse gangbare benaming "verklarende variabelen" ter 

aanduiding van de regressoren dient niet de suggestie te wekken dat het 

hier een "wetenschappelijk verklaren" betreft. In dit verband is de aard 

van de statistiek niet verklarend doch beschrijvend en derhalve dient 

een verklaring dan ook anderszins te worden gegeven. 
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5. Beschouw een homogeen Poisson proces met intensiteitsparameter \ - 1 en 

laat N(Y) het aantal punten zijn in het tijdsinterval [0, Y ) , waarbij Y 

een niet-negatieve stochastische variabele is. Dan wordt de kansverde

ling van Y een-eenduidig bepaald door de kansverdeling van N(Y). Zo 

geldt dat de kansverdeling van N(Y) de negatief binomiale verdeling is 

met parameters a en 6(1 + 6 ) " 1 dan en slechts dan als Y gamma verdeeld 

is met parameters a en 9. 

Engel, J. and Zijlstra, M. (1980), A characterization of the gamma 

distribution by the negative binomial distribution, J. Appl. Prob. 

17, 1138-1144. 

6. Het optreden van extra-Poisson variatie in een produktieproces kan wij

zen op statistische onbeheerstheid van dat proces. 

7. Bij de statistische modelbouw kan men soms met vrucht gebruik maken van 

de resultaten die zijn verkregen ten aanzien van de karakterisering van 

kansverdelingen. 

8. Indien met behulp van de methode van kwantielanalyse de parameters van 

de logistische verdelingsfunktie dienen te worden geschat en indien 

daarbij een kleine kans op succes wordt verwacht bij een zekere toege

diende stimulus, kan het zinvol zijn niet van te voren het aantal trials 

te fixeren, doch het aantal successen. 

Engel, J. (1984), Kwantielanalyse en de negatief binomiale verdeling, 

Kwantitatieve Methoden 13, 42-62. 

9. Gezien het belang van experimentele resultaten voor de ontwikkeling van 

de natuurwetenschappen dient de door de statistiek verworven kennis ten 

aanzien van het opzetten van experimenten in ruime mate te worden uitge

dragen bij het opleiden van natuurwetenschappers. 



10. De informatie in de bijsluiter van een geneesmiddel omtrent de bijwer

kingen van dat geneesmiddel is vaak onvoldoende om zich een oordeel te 

kunnen vormen omtrent het risico dat de patiënt loopt bij gebruik van 

het middel. Dit hangt samen met het feit dat veelal gegevens ontbreken 

over risicoverhogende factoren en over de frequentie waarmee bijwerkin

gen optreden. 

11. Het creëren van samenwerkingsverbanden tussen afdelingen voor statis

tische consulatie en afdelingen voor statistisch onderzoek is stimule

rend voor de ontwikkeling van de toegepaste statistiek. 
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CHAPTER 1 

INTRODUCTION 

1.1. INTRODUCTORY REMARKS 

In this thesis we shall study the analysis of count data and dicho(poly)-

tomous data classified by some fixed or random factors; the data may result 

from a sampling procedure or from a designed experiment. Some of the stan

dard and well-known results on this subject will be extended, to cover more 

general situations. 

The known results mainly concern the fixed factor case; results for random 

factor designs are quite sparse. It is this very important random factor 

case for which new results will be presented. 

In this introduction, three important concepts from discrete data analysis 

will be discussed. Firstly, in section 1.1.1. some standard results on log-

linear models for count data analysis will be reported. This class of 

models forms a subclass of the class of Generalized Linear Models (GLM's, 

see section 1.1.2.) for the analysis of data having a distribution which 

belongs to an exponential family of distributions of a specific type. A 

third rather new and promising concept is the concept of quasi-likelihood 

(see section 1.1.3.), which is closely related to GLM. Now, distributional 

assumptions are abandoned and the Iterative Weighted Least Squares (IWLS) 

algorithm for estimating the parameters of the GLM is borrowed from GLM 

theory to obtain maximum quasi-likelihood estimators of these model 

parameters. 

Section 1.2. of this introduction deals with some practical examples from 

various fields for a further motivation of this study. It will be shown 

that the well-known techniques for count data analysis do not cover all 

such problems from practice. This fact is known more generally, and some 

quotations from the literature confirm our opinion that there is a need for 

a more general approach. 
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Section 1.3. summarizes some new results from the literature on this sub

ject. Results beyond those that are already established are sparse; some of 

them will be used in this thesis to form a basis for building further work 

on. 

Finally, section 1.4. reports new results which form the main part of this 

thesis. In a nutshell: problems on independent data from fixed factor clas

sifications will be treated in cases of extreme variation observed in the 

data. Also, problems with dependent count data will be considered. It con

cerns those types of experimental designs where in the corresponding model 

random model components are to be introduced at several levels. Examples 

are the split-plot design and the random factor design. Some models with 

random components will be proposed and the analysis of data by these models 

will be treated. 

1.1.1 Loglinear models 

A class of models well-suited for the analysis of cross-classified count 

data is the class of loglinear models. On a general level, these models can 

be formulated as follows. 

h h ••• Ij 
Let f X; ; i }; 1 i 1 ; 1 be a vector of independent random 

1 ' 2 ' " ' ' 1 1 2 " " " " -i" 

variables being classified by J nominal fixed factors with levels ij, i2, 

..., i,, where i .= 1, 2, ..., I. for j= 1, 2, ..., J. 
J J J 

Furthermore, let 

- X. . have a Poisson distribution with mean value 

M , l2>-'-> l j 

mi i i • 

- log m. . = u + u„,. ,+ u„,. .+ .. + u„„,. . ,+ ... + 
y i1 ( i2,..., ij K i i ) 2(i2) 12(.ili2) 

+ U12..J (i1i2..iJ) 

which is a (saturated) linear model on log-scale. 



For polytomous data having the multinomial distribution with parameters n 

and p. the model holds as well with m. . =np. 
lj , l2,..,Lj li, l 2 f , l j .li ,l2,..,lj. 

Estimation and testing the model-parameters of the loglinear model and 

testing goodness-of-fit of reduced models are some aspects of statistical 

inference on count data with the loglinear model. The theory is consoli

dated in the books by Plackett (1974) and Everitt (1977), and somewhat more 

recently by Bishop c.s. (1975), Fienberg (1977) and Haberman (1974). 

Bishop c.s. (1975) in particular give an extensive treatment of the theory 

and practice, and bring together many results which could be found in the 

literature only at scattered places. 

The estimation and testing of model parameters is carried out using the 

likelihood principle, and the distributional assumptions are Poisson and 

multinomial. Not many results are known about the consequences of violating 

these assumptions. The coherent log-likelihood ratio test statistic G2 is 

usually preferred to Pearson's X2 for testing goodness-of-fit and model 

reductions; however, Pearson's X seems to be more robust against violation 

of the distributional assumptions, and has a better small sample behav

iour. Both statistics will be shown to be of more general use, also for 

non-Poisson distributed data. Asymptotic distributional results will be 

derived under nonstandard conditions. 

1.1.2. Generalized Linear Models 

The class of loglinear models for independent Poisson data is a sub-class 

of the class of Generalized Linear Models (GLM's) for independent data. The 

basic distribution of the data then belongs to a more general exponential 

family of distributions with probability density function 

f (x; 9, $) = exp U U ) { x9-g(e) + h(x)| + ß U , x)l, ... (1) 

where E(X) = g'(9), a(<|>)var(X) = g''(e) and * is a naissance parameter. 

The class of GLM's was introduced by Neider and Wedderburn (1972). Three 

basic assumptions were made by these authors: 



- Let X be a vector of independent random variables, each having distri

bution (1); 

- Let y = Zß be a linear model, where Z is a (design) matrix of fixed 

qualitative and quantitative covariates, and ß is a parameter vector; 

- Let ii be a function such that 6 = <j,(y). This function ty is called a link 

function. 

For the loglinear model (see 1.1.1.) and the Poisson distribution with mean 

m it is seen after doing some algebra that 9 = log m for this distribution, 

so that the loglinear model fits in the GLM framework with the link func

tion being the identical function. 

By the GLM theory, the classical linear modeling of normal response vari

ables is extended to the linear modeling of a much wider class of response 

variables, having a distribution from the family (1). Examples are the 

Poisson distribution, and the gamma and binomial distribution. 

Estimation and testing procedures are based on likelihood. Partial de

rivatives of the loglikelihood function are equated to zero and parameters 

are estimated by the Newton-Raphson algorithm modified by using the Fisher-

score approximation, taking the expectation of the Hessian matrix. It was 

shown by Neider and Wedderburn (1972) that this technique is equivalent to 

Iteratively Weighted Least Squares (IWLS) see also McCullagh and Neider 

(1984). This latter procedure is implemented in the GLIM (Generalized 

Linear Interactive Modelling ) computer program of Baker and Neider (1978) 

for interactive data modeling. Later, Green (1984) showed IWLS to be of 

much wider use, also for problems where distributions are not of type (1). 

With GLM, there is no need to transform non-normal, non-homoscedastic data 

to homoscedastic (and, preferably, normal) data, imposing the classical 

linear modeling framework in an unnatural way. It is widely known that 

doing so is wrong. Nevertheless, this transformation is widely applied. 

Recent literature on GLM's is summarized by McCullagh and Neider (1984) and 

a review is given by Pregibon (1984). 
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1.1.3. Quasi-likelihood 

Essentially, to obtain linear model parameter estimators by IWLS, no dis

tribution needs to be specified. It is sufficient to express the variance 

of the response variable X as a function of the mean E(X) in the form of 

the so-called variance function var(X) = c <|>(E(X)), where $ is some known 

positive function and c is some unknown positive constant; in IWLS, 

var" (X) is used as a weight function. This is the idea behind the concept 

of quasi-likelihood, introduced by Wedderburn (1976); see also McCullagh 

(1983) and McCullagh and Neider (1984). 

Originally, the idea of Wedderburn seemed to be only to estimate model 

parameters; it was shown by McCullagh (1983) that quasi-likelihood also 

provides for testing procedures. A more extensive introduction to the 

method can be found in chapter 8 of this thesis. Now, we shall mention two 

important aspects of the use of quasi-likelihood. 

- Sometimes (often?), no distributional assumptions can reasonably be made, 

but a variance function of type var(X) = c *(E(X)) can be based on 

(sparse) experimental results. Quasi-likelihood may then do the esti

mation job. 

- Distributional assumptions are made, boldly, but they lead to a compli

cated analysis. This is often the case in count data analysis when sev

eral random components are introduced in the model: likelihood procedures 

are very unattractive. If variance functions can be obtained, quasi-

likelihood can lead to interesting results as described in chapter 8 of 

this thesis. 

In spite of some fine techniques being available for discrete data analy

sis, there are problems that remain to be solved. 

Some of these problems will be mentioned in section 1.2. 
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1.2. PROBLEMS THAT REHAIN AND THEIR ORIGIN 

1.2.1. Problems that remain 

The analysis of count data and polytomous data has proved to be of major 

theoretical interest, and the results obtained are of great practical 

value. However, for many practical problems the theory as it stands fails 

to give a proper solution, and there is a clear need for extensions. Two 

examples will illustrate this. 

Example 1. 

Univariate responses. Qver(under)dispersion of Independent data, e.g. count 

data showing "extra-Poisson variation", and dichotomous data showing "ex

tra-binomial variation"; some generalization of the classical Anova theory 

is needed to accommodate an extra dispersion parameter. Another problem is 

the analysis of dependent count data from a random factor experiment, 

modeled in some way by several random components. 

Example 2. 

Multivariate responses. Cluster sampling and multiple categorical responses 

are examples of a dependent classification of data. 

To illustrate example 1: consider the experimental design with two nested, 

random factors and some replicates per cell; see Scheffé (1959). 

For normal responses X. ., , the Anova model is X. ., = LI + a. + b.,..+ e, ,. .. 
ijk' ijk ^ l j(i) k(ij) 

where a., b.... and e, .. .. are independent random model components. Cer-
i J U ) k(ij) 

tainly a model of this type is needed for count data analysis. 

Example 2 may be illustrated by cluster sampling, where objects are classi

fied not independently into one of K classes. Clearly, the multinomial 

model based on independent classification is of little use in this case: 

what we need is some alternative model, in which the dependence of the 

classification of objects is included. 
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1.2.2. Their origin 

The problems that remain have their origin in various fields of human ac

tivity and the solutions to these problems have therefore a wide applica

bility. 

Some of those fields of application are summarized under industrial manu

facturing, marketing research and biomedical sciences. 

Industrial manufacturing 

Many industrial experiments have count response data or dichotomous (bi

nary) response data instead of measured data. Count response data is often 

met as the number of (unwanted) particles (defects) on products. Dichot

omous data arise as the number of good products out of a fixed number of n 

products included in the experiment. 

We shall mention two disciplines of technology where count response data is 

encountered. 

When soldering chip components on printed circuit boards, the number of 

soldering failures on the circuit board and the number of properly soldered 

chip components are measures of the quality of the soldering process. The 

question of the technologists to be answered is: what is the influence of 

the process factors in the experiment on the quality of the soldering pro

cess? A related question is: what is the influence of the process factors 

on the failure rate of the soldering process and what is the setting of 

these factors to give maximum process yield? 

In the manufacture of Integrated Circuits (IC's) one of the major problems 

is the presence of small particles (dust) that can cause defects in 

IC-components. It is of vital importance to find settings for the process 

factors that will minimize the occurence of such defects. One question in 

this context is: what are the major sources of variation in the 

manufacturing process that influence the number of these particles? 

Both the soldering problem and the IC manufacturing problem involve over-

dispersion and dependence of count data and there are no general statisti

cal methods to analyse the data. 



Marketing research 

The number of units of a certain product, e.g. margarine, bought during a 

fixed time interval by an individual consumer can be modeled by the Poisson 

distribution. However, different consumers have different Poisson par

ameters and overdispersion of the number of units is observed. 

Given the total number of units bought by an individual consumer, the 

result of classifying these units by branches can be modeled by the multi

nomial distribution. However, the probability vector of the multinomial is 

different for different consumers and an extension of the multinomial model 

is wanted. 

Biomedical sciences 

An example of an experiment with random nested factors and count responses 

is the following. 

Suppose that some trees are sampled from a forest. Suppose that for each 

tree in the sample, branches are sampled from the branches of that tree. 

The number of insects is counted on each of the sampled branches. This 

experiment may serve to answer questions like: what is the influence of the 

variation of trees and branches on the number of insects? With count re

sponse data we would like to test and estimate variance components, and 

this problem cannot be solved by standard techniques. 

An example from medicine relates to the frequent need for a dependent clas

sification of results (cluster sampling). 

Consider the following experiment: let each of J treatments be carried out 

K times on each of I patients and let the response variable be polytomous 

and ordered having L levels, such as health improvement at the levels no 

improvement, some improvement and substantial improvement. Usually, the I 

patients are considered as a random sample from a large population of 

patients and then the classification of treatment results is dependent. To 

answer questions like: is there any difference between the treatments, we 

need a model for dependently classified data. 
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Finally, if more motivation is needed, some literature will be refered to. 

Three quotations can speak for themselves. 

... however, we have not considered the analysis of data using loglinear 

models in situations corresponding to nesting and random effects ANOVA 

models. Several research problems related to this topic require solution. 

Bishop c.s. (1975), 371. 

Problem 20. Give a general discussion for analysing interactions in log 

linear models for Poisson and binomial data in the presence: 

(a) of overdispersion, (b) of underdispersion. 

Cox (1984), 23. 

... the important and difficult extension of the theory of generalized 

linear models to random effects models. 

Pregibon (1984), 1592. 

1.3. SOLUTIONS THAT HAVE BEEN GIVEN 

Results available on the extensions of the standard theory of count data 

analysis can be classified into four categories: 

1. Over(under)dispersed independent count data; 

2. Over(under)dispersed independent dichotomous data; 

3. Over(under)dispersed independent polytomous data; 

4. Dependent count data, dependent dicho(poly)tomous data. 

For each category, we shall summarize the results known from the litera

ture. 

1.3.1. Over(under)dispersed independent count data 

The problem of overdispersed count data was studied by Paul and Plackett 

(1978), with respect to the behaviour of test statistics for testing the 

equality of Poisson parameters. A gamma compounded Poisson (or negative bi

nomial) distribution is assumed and for this distribution the conclusion 

is: when using standard tests, the probability of rejecting the null hy

pothesis increases because of the increased variation in the data which is 

not accommodated in the standard Poisson model. 
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There is a paper by Breslow (1984) which treats the modeling of extra-Pois-

son variation in count data. An extra model parameter for overdispersion is 

estimated by two, somewhat heuristic, approaches: an approach assuming nor

mality of the logarithm of large count data, and a quasi-likelihood 

approach for small counts. In both cases, the extra parameter and the 

linear model parameters are estimated itérâtively. 

A recent paper by Ross and Preece (1985) discusses the fitting of the nega

tive binomial distribution to a set of data from a single population, esti

mating the model parameters by maximum likelihood. They give examples of 

and references to the application of this distribution in a biological con

text. Other applications in this context have been given by Manton c.s. 

(1981) and by Nedelman (1983). 

Applications in the modeling of consumer purchasing behaviour are from 

Chatfield and Goodhardt (1970, 1973) and Dunn c.s. (1983). 

Cox (1983) studies the efficiency of maximum likelihood estimation in the 

presence of modest amounts of overdispersion. 

1.3.2. Over(under)dispersed independent dichotomous data 

D.W. Finney observed overdispersion when fitting a linear model to 'the 
-1 " 

prob it S> (p)' of p = X/n where X is the number of successes out of n 

trials and rç is the standard normal distribution function. He constructed 

the heuristic "heterogeneity correction" X /df for (co)variances of esti

mated model parameters, where X2 is the Pearson goodness-of-fit statistic 

with df degrees of freedom. 

Generalizations of the binomial distribution for overdispersion were 

studied by Skellam (1948), and later by Altham (1978) and Tarone (1979). 

An application of such a generalization was described by Segreti and Munson 

(1981). 

The problem of overdispersion was treated by Crowder (1978) in a more pro

found way. He assumes a beta-binomial distribution for the overdispersed 

dichotomous data. A likelihood procedure for the estimation and testing of 

model parameters is presented for a general (fixed factor) design matrix. 

The extra model parameter for overdispersion can be estimated if some re

plicates "per cell" are available. 
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A treatment by the quasi-likelihood method is presented by Williams (1982) 

who does not make any distributional assumptions. Only the variance func

tion is needed; it is assumed to be of the "beta-binomial type" 

var(X) = {1 + <)>(n-1)} np (1-p). Estimation of the linear model parameters 

and the parameter <j> for extra-binomial variation is carried out by IWLS 

and, respectively, by equating Pearson's X2 for a full model to its ex

pected value. The computer program GLIM can be used to do this, avoiding 

awkward calculations based on likelihood; see Crowder (1978). William's 

paper formed the basis for Breslow's treatment on extra-Poisson variation, 

see 1.3.1. 

Also Brooks (1984) contributed to the likelihood approach of overdispersed 

dichotomous data. He proposes heuristic and approximate likelihood ratio 

tests based on the beta-binomial distribution that can be carried out by 

the standard program GLIM, contrary to Crowder's likelihood ratio pro

cedure for which a special computer program is needed. Fitting linear 

models to correlated binary data by Gaussian estimation is discussed by 

Crowder (1985). Finally, Prentice (1986) has extended the beta-binomial 

distribution to allow for underdispersion and for dependence of the par

ameter è on covariate measurements. 

1.3.3. OverCunderjdispersed independent polytomous data 

Overdispersed polytomous data shows up at cluster sampling and survey sam

pling; it has received some attention in the literature. 

Some early results are those of Mosimann (1962, 1963), Cohen (1976) and 

Altham (1976), mostly considering single populations. More general are 

those of Brier (1980), who derives asymptotic testing results for a vector 

X = { X-} •_. of numbers of classified objects, assumed to have the 

Dirichlet multinomial distribution. This distribution is obtained by giving 

the vector (pj, p2, ..., p ) of the multinomial (n, pj, p 2 , .., p ) distri

bution a Dirichlet distribution with parameter vector (ßlf ß2> ••> P )• 

If classified data is available for N independent clusters it is shown that 

G and X2 statistics from standard loglinear model theory have a C x2 type 

of limiting distribution for N ->•<», C being some constant depending on n 

and the amount of heterogeneity between clusters. 
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Other results on cluster sampling that deserve mentioning are those of 

Plackett and Paul (1978) for testing symmetry in a squared contingency 

table, again under the assumption of a Dirichlet multinomial distribution, 

and those of Gleser and Moore (1983, 1985), who present some general re

sults on the asymptotic distributions of goodness-of-fit tests under posi

tive dependence of observations, showing that the asymptotic distributions 

of these test statistics are large-tailed as compared with the chi-squared 

distribution. 

A survey of the use of chi-squared statistics is given by Fienberg (1979), 

who also mentions cluster sampling. 

Problems from survey sampling are discussed, among others, by Bedrick 

(1983), Fellegi (1980) and Rao and Scott (1984). In this case, distri

butions cannot be established properly. Therefore, only assumptions of 

large sample normality are made by these authors to derive limiting distri

butions of test statistics. 

1.3.A. Dependent count data, dependent dicho(poly)towous data 

For dependent count data, not many results can be found. 

An extensive treatment of the negative multinomial distribution was given 

by Sibuya c.s. (1964); it is the multivariate analogue of the negative bi

nomial distribution, see section 1.3.1. It can be of use for modeling de

pendent count data if the dependence structure is simple. The extension of 

Nelson (1985) allows for a more complicated dependence structure. 

Forcina (1984) in an unpublished communication proposes a model for count 

data from a restricted version of the nested design with two random fac

tors. McCullagh and Neider (1984), p. 255, treat a simple nested struc

ture. 

On dependent dichotomous data, three papers appeared recently. In the con

text of questionnaires a paper by Anderson and Aitkin (1985) discusses 

models for dependent binary data with associated fixed covariates; the data 

is classified in groups by random nested factors. The EM-algorithm is used 

for maximum likelihood estimation of the model parameters. 
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A mixed model for categorial data is presented by Beitler and Landis 

(1985), which is similar to the corresponding two-way Anova model for quan

titative data. Gilmour, Anderson and Rae (1985) deal with dependent dicho-

tomous data formed by classifying samples from underlying normal distri

butions and it is their aim to estimate location and scale parameters of 

these underlying normal distributions. 

These results on dependent count data analysis have only very recently 

become available. Possibly random factors have not always been recognized 

as such in count data problems and random factors were taken for fixed fac

tors. On the other hand, the problem is quite hard to tackle. 

In this thesis we shall present new results on this subject. A survey of 

these results can be found in section 1.4. of this introduction. 

1.4. NEW RESULTS 

In this section we shall summarize new results that were obtained recently, 

forming the basic contents of this thesis. We shall first mention briefly 

the types of experimental designs for which the new analysis methods for 

count response data have become available. These types of experimental de

signs are the following. 

I. Fixed factor designs 

1. Completely randomized fixed factor design with nominal factors, 

where count data show overdispersion (chapters 2, 3 and 4 ) ; in the 

model an additional random component is Introduced for overdisper

sion. 

2. Split-plot design (chapter 5) with fixed factors and with ad

ditional random components for whole plot error and for the inter

action between whole plot error and sub-plot factors. 
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3. Paired comparisons design with two treatments and ordered response 

categories for treatment difference (chapter 6 ) ; additional random 

components are introduced for the interaction between blocks and 

treatments. 

II. Random factor designs 

4. Random factor design with crossed factors (chapter 7) and with 

nested factors (chapters 7 and 8) using a different approach in 

chapter 8; random components are introduced for main effects, for 

interactions and for error. 

For each of these experimental designs the approach to data analysis will 

now briefly be discussed. An extensive discussion can be found in the 

relevant chapters of this thesis. 

1.4.1. Fixed factor design 

For the fixed factor design, there are new results for the following two 

situations: 

- Count data restricted to a maximum of say n (dichotomous data, see chap

ter 2) in the case of overdispersion with respect to the binomial distri

bution; n does not depend on the levels of the design factors. Approxi

mate x2-tests and F-tests are presented for testing linear models for the 

logit of the probability parameter %. This approximation holds for large 

n and for small overdispersion. For designed experiments a constant par

ameter n is often realizable and then the method is useful. It has some 

advantages over other relatively new methods published in the literature. 

- Count data not restricted to a maximum (chapters 3 and 4 ) , in the case of 

overdispersion with respect to the Poisson distribution. Approximate y2-

tests and F-tests are presented where we assume homogeneity with respect 

to the extra parameter for overdispersion (compare this with the assump

tion of equal variances for the normal case). The results were obtained 

for large numbers of replicates and for large counts. In both cases two 
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models will be discussed, which differ in the way extra-Poisson variation 

is introduced. 

The case of large counts deserves some special attention, because the 

analysis is then particularly simple and elegant. The analysis is based 

on the Poisson deviance (for the model with a linear variance function) 

or the gamma deviance (for a quadratic variance function). As in the 

Anova theory, approximate F-tests are constructed to eliminate the extra 

parameter for overdispersion. For practical applications it is important 

to know that both déviances are available in a statistical package like 

GLIM. 

1.4.2. Split-plot design 

For the split-plot design a model is constructed (in chapter 5) allowing 

for dependent count data within the whole plot, and for the interaction 

between whole plot error and sub-plot factors. Again, approximate x -tests 

and F-tests are used for the analysis of whole plot and sub-plot factorial 

effects; the approximate distribution holds for large counts and for a 

large number of replicates as in section 1.4.1. 

1.4.3. Paired comparisons design 

Let two treatments be applied pairwise, n times at each of N random blocks 

and let the observed differences of treatment responses be classified in K 

ordered response categories (see chapter 6 ) . 

Now the question is how to test for difference between treatments if an in 

teraction between random blocks and treatments is present. For this situ

ation no solution is given in the literature. We propose the use of a rank 

test of Wilcoxon as the instrument for testing the hypothesis of no treat

ment effect. In this case of ordered polytomous response data in random 

blocks where an interaction is present between treatments and blocks, the 

limiting distribution of e.g. Wilcoxon's signed rank test for symmetry is 

not the standard normal distribution. 

Under a Dirichlet-multinomial model assumption the limiting distribution of 

this test of Wilcoxon is obtained in chapter 6. 
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1.4.3. Paired comparisons design 

Let two treatments be applied pairwise, n times at each of N random blocks 

and let the observed differences of treatment responses be classified in K 

ordered response categories (see chapter 6 ) . 

Now the question is how to test for difference between treatments if an in

teraction between random blocks and treatments is present. For this situ

ation no solution is given in the literature. We propose the use of a rank 

test of Wilcoxon as the instrument for testing the hypothesis of no treat

ment effect. In this case of ordered polytomous response data in random 

blocks where an interaction is present between treatments and blocks, the 

limiting distribution of e.g. Wilcoxon's signed rank test for symmetry is 

not the standard normal distribution. 

Under a Dirichlet-multinomial model assumption the limiting distribution of 

this test of Wilcoxon is obtained in chapter 6. 

1.4.4. Randow factor design 

The random factor design is the subject of chapters 7 and 8. 

In chapter 7 we shall build a model by assuming lognormality for the random 

model components for main effects and interactions. The product of these 

components forms the random intensity of the Poisson process modeling the 

data generating process. For large counts we are now able to analyse the 

data for any factorial design with nested and crossed random factors. 

Effectively, this analysis amounts to performing a standard Anova on the 

log-transform of the data. 

Much less restrictive are the assumptions made in chapter 8. There we shall 

follow the quasi-likelihood approach to analyse the data from nested 

designs with random factors. 

For this type of random factor design, a new approach to the analysis of 

data is proposed which is not even restricted to the analysis of count 

data. In the literature the quasi-likelihood method is only applied to in

dependent data; we shall use it for dependent data. 

The difference between the model building for nested designs in chapter 7 

and in chapter 8 can be sketched as follows. 
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In chapter 8 we only assume that we know the variance function for each 

factor (and for error) in the nested design which expresses the variance of 

the random level of this factor as a function of its mean value given the 

level of the factor which is at one stage higher in the design. 

For example, for two random factors the variance functions to be specified 

can be the following. 

First, 

var(M.) = aïjii, 

where M. is the random level of the first factor; 

\L is the general mean; 

a. is a positive parameter. 

Secondly, given M. = m. , 

var(M. .) = aim., 
ij 2 1' 

where M. . is the random level of the second factor; 

ai. is a positive parameter. 

Thirdly, given M. . = m. ., 

var(X. ) = aim. ., 
ijk 3 ij 

where X. .. is the k observation at the levels i and i of the two factors; 
ijk J 

CT^ is a positive parameter. 

For large sample sizes, approximate ^2-tests and F-tests will be obtained 

for testing the main effects. On a set of data, this method was compared 

with the method of chapter 7; no essential differences in the conclusions 

were observed. 

Chapter 8 is concluded by suggesting some further research which has to be 

done. Specifically, it is the quasi-likelihood approach based only on very 

simple assumptions with respect to the mean and variance of the data that 

should be explored further to provide us with solutions to problems which 

have not yet been solved. 
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CHAPTER 2 

ON THE ANALYSIS OF VARIANCE FOR BETA-BINOMIAL RESPONSES 

Abstract 

The beta-binomial distribution is reported in literature as a useful 

generalization of the binomial in case of heterogeneous binomial sampling. 

An extra model parameter is introduced to accommodate for extra-binomial 

variation. Some additions to results already available will be given by 

presenting approximate F-tests for factorial designs, where the response 

variable is of 0-1 type and sampling is heterogeneous binomial. These tests 

can be used when sample sizes are large and equal and some degrees of 

freedom are left from replicates or negligible interactions to estimate the 

extra model parameter. 

(Published in Stat istica Neerlandica 39 (1985), 27-34). 

1. Introduction 

The analysis of binomial and multinomial response data, classified by 

several fixed factors, is surveyed in the books of Bishop c.s. (1975) and 

Fienberg (1977). The log-linear model has proved to be a flexible tool for 

the analysis of this data. 

However, sometimes it is observed that variation in 0-1 responses cannot be 

explained by the full log-linear model and binomial error. A distribution 

accommodating for this heterogeneous binomial sampling or extra-binomial 

variation is the beta-binomial distribution (BBD). Recently it was dis

cussed by Paul and Plackett (1978), Brier (1980) and Crowder (1978) re

verting to earlier results of Mosimann (1962). 

Some contributions to the discussion will be made by presenting approximate 

F-tests for the analysis of beta-binomial responses or in general, Oirich-

let multinomial responses. The approximate tests can be used for i) large 

and equal sample sizes, ii) small extra-binomial variation and iii) fac

torial designs, where replicates or negligible interactions deliver re

mainder degrees of freedom to estimate an extra parameter. 



- 23 

Further, these tests are based on standard statistics, known from log-

linear model analysis, which makes them attractive in a computational way. 

The analysis of a 2k complete factorial design, with 0-1 classified re

sponses is presented as an application at the end of the paper. 

2. Approximate test statistics 

2.1. Dirichlet multinomials 

The Dirichlet compounded multinomial distribution (DMD, see Mosimann (1962) 

and Brier (1980)), and the bivariate special case, the beta-binomial dis

tribution (BBD, see Crowder (1978)) will be basic to the models considered. 

The DMD is obtained in the following way. Suppose that random vector 

X = {X.}._. has a multinomial (n, p) distribution, conditionally on pro

bability vector p. If p is a random vector having a Dirichlet distribution 

with parameter vector (ß., ß„, ..., ß . ) , then the marginal distribution 

of X is DM. 

Frequently, a more useful parameterization is by vector it = (it , ..., % , ) , 

where it. = ß./(ß1 + ••• + ß,) and sum ß = ß + ... + ß . Note that 

E p. = it., and var p, = it. ( 1 - n.)/(1 + ß ) . If ß ->• <= and n is fixed, the 

multinomial (n, it) is obtained. 

From Paul and Plackett (1978) we shall recall a limit property of the DMD. 

Later, this property will be needed to derive a limit theorem for test 

statistics. 

A limit property of Dirichlet multinomials 

If vector {X.}._1 has a DMD with parameters n, (u.}. , and ß, where ß = n-y 

for some fixed y and n ->• », then the asymptotic distribution of {X.} after 

standardisation is normal. Approximately, for large n, 

E X. = nu., var X. = Arot.O -it.), cov (X., X.,) = -Anit.n., 

for i * i', where A = (1 + y)/y. 
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2.2. The model 

We shall now consider independent, I variate response vectors {X...}._.., 

being classified by J levels of a fixed factor A, K replicates being 

available for each level j. It is assumed that {X- •(.}:_< has the DMD with 

parameters n, {it^} J_« and p., not depending on k. A further homogeneity 

assumption is ß . = ß, not depending on j. Then the DMD is parametrized by n 

and {ß iiij}i_1. 

A motivation for the DM model may be found in the following considerations. 

From replicates of the experiment at level j of design-factor A, large 

variation in the data may show that the multinomial distribution with fixed 

probability vector p is not an acceptable distribution. Sometimes a decent 

technical explanation can be given for this phenomenon. Then the extension 

of the multinomial model can be useful, which is obtained by letting the 

probability vector p vary between replicates according to the Dirichlet 

distribution, accommodating for extra-multinomial variation. The result is 

the DM distribution. 

Referring to the limit property of 2.1., we shall derive a limit theorem 

for test statistics under the following assumption. 

Assumption 

n •* °° and ß •* », where y = ß/n is fixed. 

If p. is the class i multinomial probability, then the assumption implies 

1 1 
var p. ., = it. .(1 - it. .) = it. .(1 - it. . ) . 

ijk 1 + p iJ LJ 1 + Y n lJ XJ 

This also shows that larqe n implies small var p. .. . Also note that 
ijk 

1 
var X. ., = n it. .(1 - it. .){1 + (n - 1)} so that 

•lJk lJ lJ 1 + Y n 

var (n"1/2X. ..)•»• (1 + v"1) it. . (1 - it. .) for n + », ijk' T ij iy 
where the limit variance was n. .(1 - it. .) for fX. ., } having the multinomial 

ij ij l ijkJ y 

(n, {it..}) distribution. 
Throughout the paper, we shall use the notation A for 1 + y . 
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2.3. Test statistics 

We shall derive approximate F-statistics for testing the main effect of 

factor A or, to be more general, main effects and interactions of M crossed 

factors A , A , ..., A . For this purpose, the log-linear model is fitted 

to the expected probability vector {it. . . • h_-|> where j = 1,2,...,.] ; 

m = 1,2,...,M, treating vector {X. . . , ) . . as a response vector by 
1J-|*-"JM 1 = I 

conditioning on proper marginal sums. For 1 = 2 this reduces to the logit 

model, see Fienberg (1977), p. 77. 

To compose the F-statistics, recall from Bishop c.s. (1975), Pearson's X2 

and the multinomial log likelihood-ratio G2: 

X2 = £ (X. ., - n n. . ) 2 / n n. . 
ijk x J k ^ ^ 

G2 = 2 Z X. ., log (X. .. /n it. . ) . 
i j k ijk y ijk 1J 

Here it. . is the MLE of it. . under the multinomial distribution and the hypo

thesized log-linear model for it. .. 

Under the assumption of 2.2 we shall prove that X2 and G2 are distributed 

as A times chi-square under the hypothesis, asymptotically for n -»• <=. 

Important results are summarized in the following proposition. 

Define nested log-linear models by indices p, q .. and the ordering 

p < p + 1 < q < q + 1 in the following sense: if 1 < j , then model j is a 

reduction of model i by deletion of one or more model parameters. 

Proposition 

Under the assumption of 2.2., and if the tested hypotheses are true, the 

following statements hold 
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1. G and X have the same asymptotic distribution, where 
P P 

G2 and X2 correspond with a model p. 

D D 

2. G2 -*• Ax2 asymptotically, where •* denotes convergence in distribution 
P VP 

and x2 ls a chi-square random variable with v degrees of freedom for 

model p. 

Also 
D 

G2 - G2 •*• A Y 2 , asymptotically. 
P+1 P vp+1 - VP 

3. G2 - G2 and G2 - G2 are independent, asymptotically. 
q+1 q p+1 p 

D 
4. (G2 - G2) d /(G2 - G2) d -»• F , asymptotically, where 

q+1 q p p+1 p q dq,dp 

d = v „ - v and F , , is an F random variable with d and d 
p p+1 p d , dp q p 

degrees of freedom. 

We shall give an outline of proof. 

Proof 1. Recall Theorem 14.9-2 from Bishop c.s. (1975): 

Let p be a vector of observed fractions having an I-dimensional multinomial 

distribution with parameters (n, it), while it is any estimate of it such, 

that p and it have a joint limiting normal distribution, i.e. 

. - D 
/n((p, it) - (it, it)) + N(0,E) ... (1) 

for some covariance matrix E. Then G and X have the same limiting distri-

but ion. 

As (1) holds for the multinomial distribution and the log-linear model, it 

can be proved that 
„ » D 

/n((p, it) - (it, it)) + N(0, Ar) 
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for the DM, and analogous results hold for the product of independent DMD's 

with equal scale factor A« So for each true log-linear model, G2 and X2 

have the same asymptotic distribution. 

2. As to the asymptotic distribution of X2, we revert to corollary 

14.9-3 from Bishop c.s. (1975). Following the proof of this corollary, it 

can be shown that 

D 
X2 •* Ax2 where v is the number of degrees of freedom. 

D 
Then by 1., G2 + Ax2 • 

D 
Analogously, it is proved that G2 . - G2 •* Ax2 

P* P Vp+1 " Vp 

following the proof of theorem 14.9-8 from Bishop c.s. 

3. For the multinomial distribution this result is stated by Haber-

man (1974), p. 117; for the DMD it holds as well. 

4. This follows from results 2. and 3. with the Mann-Wald theorem, 

see Billingsley (1968), p. 31. 

We shall pay some more attention to part 4. of the proposition, which 

enables us to construct approximate F tests for large n. The denominator of 

this F-test consists of a remainder G2 statistic, corresponding with a full 

log-linear model, where all relevant effects are included. The numerator is 

a statistic of type G2 - G for testing some hypothesized reduction of 
q+1 q 

the log-linear model. 
G2 „ - G2 

q+1 q 
Then under the hypothesis, F = has an approximate 

G2 y - v 
q+1 q 

F distribution, with v _ - v and v deqrees of freedom. 
' q + 1 q 



Comparing this result with Crowder (1978) and Brier (1980), we can draw 

some conclusions. 

A possible draw back of the method is the required equality of sample sizes 

say n , which may be no problem in case of a designed experiment, but which 

can be a fatal requirement for sampled data. 

When sample sizes n do not differ widely, in practice we are tempted to 

use the same procedure as for equal n . From results of Rao and Scott 

(1984) it can be shown that X2 and G2 for testing a hypothesized model re

duction are approximately distributed as Â * x2 , where Â is a weighted mean 

A = £ wsAg = £ wg(1 + ng/6) = 1 + £ wgng/ß, £ wg = 1, 
S S S S 

weights w depending on the hypothesized reduction. Using the testing pro

cedure somewhat heui iatically as if sample sizes n were equal comes to 

neglecting the dependence of weights on the hypothesis. Obviously, some 

further research on the accuracy of this approach may be useful. 

Of special interest is the cast? K = 1, only one replicate being available 

per cell. In factorial experiments, high-order interactions can often be 

neglected on technical grounds, and a denominator G is then obtained by 

fitting a log-linear model, from which these interactions are excluded. 

Also fractional replication and confounding can be treated according to 

these principles. In fact, Crowder and Brier do not give a solution for 

these cases. 

We may conclude that the approximate analysis can be of use where nominal 

response data are obtained from factorial experiments, where equal sample 

sizes n can be realized without much difficulty, and where some inter-
s 

actions can be neglected to obtain remainder degrees of freedom for the 

F-tests. 
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3. Application 

To investigate the dependence of the yield of a resistor manufacturing pro

cess on process factors, an experiment was carried out. Four factors were 

included in the experimental design, say factor A, B, C and D, each having 

two levels. 

At each combination of factorial levels, 500 resistors were manufactured 

and classified as i = 0 (rejected) or i = 1 (accepted) according to some 

quality measure. The experimental design is then a complete 21*-factorial 

with 0 - 1 response. Observations are presented in table 1. 

Factor A 

C 

c0 

cl 

B 
D 

d0 

di 

do 

di 

ao 

bo 

172 

438 

196 

406 

"l 

406 

441 

418 

431 

al 

bo 

180 

363 

190 

349 

°1 

440 

461 

450 

495 

Table 1. Numbers of resistors being classified as i = 1 (accepted), 

out of 500 resistors. 

We may start the data analysis by fitting the logit model, assuming bi

nomial responses, omitting the interaction ABCD. The G -result is G = 

8.49, with 1 degree of freedom (df). As the interaction ABCD can be 

neglected on technical grounds, we are on the alert for extra-binomial 

variation. As it seems, the random part of the model is not of binomial 

type. 

Introducing the BBD, a primary estimate A = 8.49 is obtained for parameter 

A. Next, for testing three-factor interactions we use A to correct stat

istics of type G - G . We adhere to the testing procedure proposed by 

Brown (1976), who introduced the concepts of partial and marginal associ

ation. The association, corrected by A, is presented in table 2. 
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Factorial effect 

ABC 
ABD 
ACD 
BCD 

df Partial association 

0.76 
4.12 
1.53 
1.35 

Marginal association 

0.69 
3.38 
0.76 
0.55 

Table 2. Partial and marginal association for three factors, corrected by 

A. 

Comparing these values with 1 df chi-square fractiles, only ABD tends to be 

significant at b%. We shall incorporate the other three-factor interactions 

into the remainder G to obtain a new and final estimate A = G2/4 = 8.12, 

based on 4 degrees of freedom. 

As y - (A - 1 ) - 1 can be estimated by y = (A - 1 ) " 1 = 0.14, 

P : n y leads to the estimate ß = 70, which may give some justification 

to the use of a testing procedure for large ß. 

A final testing of main effects and two-factor interactions by means of 

approximate F-tests shows, that B and D main effects and BD interaction are 

significant. Approximate F-tests, obtained by deviding partial and marginal 

association G „ - G by the remainder G2, correcting for df, are given in 

table 3. 
•Ï-1 q 

Factorial effect 

B 
0 
BD 

df 

(1,4) 
(1,4) 
(1,4) 

Partial F 

137.76 
79.77 
12.26 

Marginal F 

127.47 (P < 0.005) 
69.50 (P < 0.005) 
11.30 (P < 0.05) 

Table 3. Approximate F-tests with 1 and 4 degrees of freedom. 

Under the logit model 

^Ijklm 
log = u + un/, N + u, / > + u_.,. . 

. 2(k) 4(m) 24(km) 
1 jklm 

%-parameters can simply be written as % = % 
1km 



Moment estimates it.|_ for it-. are presented in table 4. 

\ B 

D \ 

do 

di 

bo 

0.369 

0.778 

°1 

0.857 

0.914 

Table 4. Moment estimates it1km for expected probabilities. 

Since n 1km 

1+k+m 

4n 
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' *1iklm being approximately normal for large n, with 

mean value n n„, and variance An it„, (1 - it... ) , an approximate (1 - o) 
1km 1km 1km 

confidence interval 

"ikm e "ikm * U1-a/2 / ^ 

A "ikm (l-7t1km) 

4n 

for %. may give some additional information on the accuracy of the esti

mate. 
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CHAPTER 3 

MODELS FOR RESPONSE DATA SHOWING EXTRA-POISSON VARIATION 

Abstract 

When count data show extra-Poisson variation, standard log-linear tech

niques to analyse the data may fail. In this paper a generalization of the 

log-linear modelling technique is proposed for the negative binomial model, 

as an extension of the Poisson model. An illustration is given by the 

analysis of a two-way classification of soldering failure data; extensions 

to more general classifications are possible. 

(published in Statistica Neerlandica 38 (1984), 159-167). 

1. Introduction 

To analyse count response data, linear models are usually fitted to the 

logarithm of the vector of expected values. Well-established techniques of 

log-linear modelling are given by e.g. Fienberg (1977) and Bishop c.s. 

(1975). In this literature it is assumed that the response variable has a 

Poisson distribution. 

From practice however, it was noted before that sometimes the Poisson model 

is not a suitable model, as the data may show too much variation. A survey 

of literature is presented by Paul h. Plackett (1978) in which the phenom

enon of what may be called extia-Poisson variation is discussed. 

Recently a problem was met in consultation practice for which no solution 

was found in literature. Counts of soldering failures on print panels were 

classified by two factors, and it was asked to test their main effects and 

interaction, while a clear extra-Poisson variation showed from the data. A 

solution was found by introducing the negative binomial distribution 

generalizing the Poisson, accommodating in this way for extra-Poisson vari

ation. Two negative binomial models were fitted to the soldering data, 

which is a relatively straightforward operation if the GLIM computer pro

gram is available as a tool for doing the computing work. 
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2. Models for extra-Poisson variation 

In the following we shall concentrate on a two-way crossed classification 

of a vector of counts {X..}, i=1,2,...,I, j=1,2, — ,J, where i and j in

dicate the levels of two fixed factors. 

One set of standard assumptions for ( X H ) I S as follows: 

(i) { X M } has independent components Xj •; 

(iL) Xj ; has a Poisson (nijs) distribution 

(i Li) log mij is linear in some unknown parameters. 

Sometimes, the random variable Xjj shows more variation than is explained 

by the Poisson distribution and the log-linear model containing all ex

planatory variables. To accommodate for extra-Poisson variation, assumption 

(ii) may be replaced by two new assumptions, (ii)1 and (ii)": 

(ii)' given Mi 4 = m ^ , X ^ has a Poisson ( m ^ ) distribution, where 

Mi -j is a positive random variable 

(ii)" M. . = G(a• ., 9, . ) , where G(a, ., 8. ) are independent gamma random 

variables, with shape parameter a H and scale parameter 0ij• 

The new distribution of X. . is the negative binomial with parameters 

(a. ., p. . = 9. ./(1+9. .)) and with probability function 
ij *ij ij rj 

x+a . .-1 a. . 
P(X.. = x) = f 'J 1 p* (1-p..) 1J , x=0,1,2,... 

(see Johnson & Kotz (1969), p. 122). 

The Poisson distribution can be seen as a special case of the negative 

binomial just presented: for a ••-*•*>, 9. . •*• 0 and a- 6. . •* m. . it converges 

to the Poisson (mij) distribution. 

We shall specialize the general negative binomial model to the following 

special models: 
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Model I, with parameters ( a n , 9 ) . 

Then X. . is negative binomial (a- ., p = -3—5-) and 
IJ lj 1+9 

E X . . = < x . . e = m.. 
lJ iJ iJ 

var X. . = a. .9(1+9) = m. .(1+9) 

substituting parameter m.. = E X.. for a. . 9. 
iJ iJ iJ 

Note that only shape parameter ctij of the gamma distribution depends on 

factorial effects. 

Model II, with parameters (a, O n ) . 
9.. 

iJ 
Then X.. is negative binomial (a, p. . = ) and 

lJ lJ 1+0.. 
IJ 

E X. . = a 9.. = m. . 
iJ iJ iJ 

_1 
var X.. = a 9. .(1+9..) = m..(1+a m . . ) . 

Note that only scale parameter 9ji of the gamma distribution depends on 

factorial effects. 

In literature, the phenomenon of extra-Poisson variation and the relation

ship between var Xji and E X ^ were studied before; a survey is given 

by Paul and Plackett (1978). In practice, a relationship of the type 

var X.. = c(E X..) , where 1 < b < 2 seems to cover most cases of extra-
ij iJ 

Poisson variation. If the ratio var Xjj/E XJJ is about constant, Model 

I will sufficiently explain the extra-Poisson variation. If the ratio in

creases with E Xji> Model II may be useful, being somewhat extreme in the 

light of the results of Paul and Plackett. 

It is advised to start the analysis by testing the hypothesis of Poisson 

distributions, fitting the full factorial model based on the Poisson dis

tribution for Xji- If the hypothesis is rejected, a choice between Model 

I and Model II can be based on a plot of (X. .. - m. . ) / / m. . against the 
1 J K !J lJ 

estimates m. . = X. . of m. . under the full Poisson model. If the variance 
ij 1J+ iJ 

of these residuals is more or less constant, Model I can be chosen; if it 
increases with ntji» Model II may be more suitable. Of course, it is not 

impossible that neither Model I nor Model II is a satisfactory model in 

case of extra-Poisson variation. 
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3. Model I 

3.1. Discussion 

We shall now study Model I in some detail, showing its relationship with 

the standard Poisson model as regards its asymptotic behaviour. Here and 

further we suppose that for each level i and j of the two factors, K in

dependent replicates X M | < , being distributed as Xji, are available from 

a properly designed experiment. 

For Model I, two types of asymptotic behaviour are relevant and lead to 

interesting results, namely: 

- m. . + °°, where 9 and K are fixed 

- K + °°, where 8 and m. . are fixed. 
'J 

Firstly, we consider the asymptotic situation for mjj •> », where e and K 

are fixed. Then by the Central Limit Theorem, the standardized Xij has a 

normal limiting distribution. Hence, limit properties of X. . are those of a 

Poisson (itiii) random variable, when the variance of the latter is multi

plied by a fixed constant (1+9). The consequence is, that when the full 

parameter log-linear model is fitted, the standard Pearson X2 and log-

likelihood ratio G2 statistics, defined as: 

X2 = T, (X. ., - m. .)2/m. . and 
ijk J J J 

G2 = 2
1

S
j k

X L j k l 0 ^ X i j k / - i j > 

(see Bishop c.s. (1975), section 4.2), 

will be distributed asymptotically as (1+9) times chi-square, with v = 

IJ(K-1) degrees of freedom. Analogous results hold for restricted models. 

To test for interaction and main-effects we may proceed as follows: 

Let G2 be the log-likelihood ratio statistic for the full log-linear model, 

while G2 - G2 is a difference of G2 statistics, where G2 corresponds with a 
2 1 2 v 

hypothesized restriction on a model with log-likelihood ratio statistic G2. 

Then G2 and G2 - G2 are asymptotically independent and both (1+9) x2 

distributed under the hypothesis. 
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An approximate F-test is based on 

2 1 v 

G v2 - Vj 

having an asymptotic F-distribution with v2 - Vj and v degrees of freedom 

for IÏIH •* <= under the hypothesis. Elimination of nuisance parameter (1+9) 

is then on the lines of the analysis of variance. 

The above statements can be proved following arguments from Engel (1983), 

where analogous results for Dirichlet multinomial responses are given. 

Secondly, we consider the case K -> », where 6 and mjj are fixed. A con

sistent estimate for 1 + e is the estimate 1 + 9* = X2/v, where X2 corre

sponds with the full model, and v = IJ(K-1). If preferred, 9 can be 

estimated by 9, obtained by maximizing the log-likelihood 

\ {log (Xijk + J"'' "ij -1) + X log (l|y) + 9-1 m log(^)} 
ijk ijk 

as a function of 9, substituting the moment estimate m. . = X. . for m. .. 

Models are tested by statistics G2 - G2, again being distributed as 

(1+e)x
2. To see this, note that these statistics only depend on Xj4k via 

Xji+, being distributed as a negative binomial (9_1Kmii»p) random 

variable. Therefore K -> <» and m u ->• » asymptotics are equivalent, the 

latter being considered just before. To close this section, we propose to 

test model parameters by statistics (G2 - G2)/(1+9), for K ->• » asymp-

totically distributed as % with v^-v- degrees of freedom, where 9 is a 

consistent estimate of 9, like 9* or 9. 

3.2. Application 

By an industrial soldering-team an experiment was carried out to study the 

soldering quality of print panels. Two factors were varied in the exper

iment: 

- factor L: soldering location, with levels Lj, L2 and L3 

- factor M: soldering method, with levels Mj and M2. 

For each combination of factorial levels, 5 panels were soldered, so 5 

replicates per cell were obtained. The experiment was carried out by com

plete randomization over the 5 x 6 = 30 experimental units. Afterwards, the 

number of soldering failures was counted for each print panel. The results 

are displayed in table 1. 
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\* Soldering 
\ . Location 

Soldering^v 
Method ^ \ 

Mi 

M2 

10 

11 

22 

8 

Li 

15 

16 

12 

11 

11 

5 

2 

14 

12 

12 

L2 

11 

25 

35 

17 

4 

11 

13 

16 

12 

15 

L3 

10 

25 

27 

15 

29 

25 

Table 1 ; numbers of soldering failures on print panels. 

Obvious from the data is a wlthin-cell heterogeneity, suggesting extra-

Poisson variation. We shall analyse the data by Model I. 

3.3. The analysis 

The full Jog-linear model 

loq m. . = u + u, . + u„ . + u-„ . . y ij 1;i 2;j 12 ; 1 j 

was fitted to the data, as well as reduced models, containing parameters 

for main effects only. The value of X2 and G2 test statistics for each (re

duced) model is presented in table 2. 

Factorial effect 
included in 
model 

L * M 
L , M 

L 
M 
0 

df 
V 

24 
26 
27 
28 
29 

X2 

93.63 
96.67 
98.66 

111.71 
113.41 

G2 

90.28 
95.65 
97.26 

110.44 
112.06 

Table 2; X2 and G2 test statistics for fitted log-linear models. 

Evidently, the full model L * M gives a bad fit, showing extra-Poisson 

variation in the data. 

Firstly we shall consider results of approximate tests for large mjj- We 

shall follow the first testing procedure from 3.1. 
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Results of testing model terms by approximate F-tests are given in the Ano-

va table 3. 

Source 

L * M interaction 
L given M 
M given L 
Error 

degrees of freedom 
V 

2 
2 
1 

24 

C|-G; 

5.37 
14.79 
1.61 

90.28 

F 

0.71 
1.96 
0.42 

Table 3; F-statistics for model terms. 

As is seen from table 3, values of Ĝ -Ĝ r can be very misleading, because of 

a dominant error factor. From the correct approximate F-tests no effects 

are shown to be significant. 

Secondly, results of approximate tests for large K are obtained by test 

statistics (G^-Gip/d+e), with the estima 

Here also no significant effects show up. 

statistics (G|-G2)/(1+6), with the estimate (1+9*) r 3.90 or (1+e) = 3.02. 

4. Model II 

4.1. Discussion 

Under Model II, X. . has a negative binomial (a, p. . 

with E X. • = m. . and var X.. = m..(1 + a m. . ) • 
ij i J iJ iJ ij 

ij 
— ) distribution, 

a+m. . 

For Model II we shall consider K -» » asymptotics, where a and m y are 

fixed; because of a non-addit ivity in parameter m. ., the case m. . •*• <° does 

not lead to equivalent results, which is contrary to Model I. 
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If a were known, the family of negative binomial distributions is par

ameterized by pij only: 

P(X = x) = exp {a(x/a log p.. + log (1-p. )) + log (X+"~ )}. 
•LJ J-J L J * 

This is an exponential family and therefore of the type being studied by 

Neider and Wedderburn (1972). In their paper they show how to fit a (gen

eralized) linear model for log m^j by an iterative procedure, and how to 

test factorial effects by an analysis of deviance, based on likelihood 

ratio tests. We shall follow their approach and first pay some attention to 

the likelihood function. 

The log-likelihood function has the form: 
m. . X. ..+a-1 

Lm"> = \ {*ljk l 0 ^ ^ > + « ̂  < S ï m - > + ̂  < T >} 
ijk ij ij ijk 

where index m indicates a specific linear model for log ntij-

for the saturated model the log-likelihood is 
X... X...+a-1 

ijk a ijk L s a ) = * fXijk l 09 ( ÏZCT } + a log ( Ï T x — ) + log ( X. ., >}• 
ijk J ijk ijk ijk 

The deviance, defined by Neider and Wedderburn as d(a) = 2(L(a) - L(a)) 

results in 

X. a+m. . a+m. . 

dLn) -- 2 A {x i jk l o g < 5 T T - • -irr- > + « lQg i^zrr » • 
ijk J ijk ij ijk 

We shall estimate a by maximum likelihood, maximizing L(a) as a function of 

a, when we have substituted m. . = X- • for m. ., the m.l.e. under the full 

log-linear model. If needed, the moment estimate may serve as a starting 

value for a. We shall discuss it briefly. 

Following Johnson and Kotz (1969), p. 134, for factorial levels i and j we 

obtain the "truncated" moment estimate 
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*2-
,* = ^+ if S2 > X 
*J S2 - X 2J ij* 

ij 1J+ 

o. . = » if Sz . < X. . 
ij ij ij+ 

where X and S are sample mean and variance from K replicates per cell. 
ij+ 1J 

Note that a = °° (with finite m. .) corresponds to the Poisson case. 
ij 

» 2a(a+1) 
The approximate variance of o.. being , it is suggested to use 

*J K p2 

ij 
weights 

* * 
m.. 2 . S . W i j a i j 

!J 1 J J J 

w. . = p? . = ( ) to obtain the estimate a* = . 
il il 

a+mij . r . W ij 
J i j J 

X. . 
f 1 J + >? where w* . is the estimate I—; of w..; in the sum, terms for which lJ a * . + X \ . lJ 

IJ 1J+ 
* 

w. . equals zero are omitted. 

By GLIM, d (a) is minimized, and therefore L is maximized under some re-
' ' m ' m 

strictions on the full linear model for loq m. .. If a linear model m, is 
ij Z 

a hypothesized restriction of a model mj, the corresponding set of model 
parameters is tested by the difference d (a) - d (a) which is, for known a 

m2 mi 

and K •* <» asymptotically chi-square if the hypothesis is true. If ctj and a2 

are the m.l.e.'s of a under model m, and model m, respectively, 
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d (.ao) - d (o, ) has an asymptotic chi-square distribution under the 
n)2 mi 1 

hypothesis. Finally, this is true for d (a) - d (a), where a is the 

m.l.e. under the full model, as it has the same asymptotic properties 

as ctj and a2, if the hypothesized restrictions on the full model are true. 

It is this estimate of a we shall use in the testing procedure of section 

4.2. 

4.2. The analysis 

We shall reanalyse by Model II the data from table 1, using the computer 

program GLIM from Baker and Neider (1978). Within GLIM, our model is 

defined by specifying four model properties: 

1. the link function, which is the natural logarithm 

2. its derivative 

3. the variance function var X H = mi iO+a~ 'm^ i) 

4. the deviance d(a). 

In a first step, the "moment" estimate a = 5.14 was obtained for a. It 

was used as a starting value to estimate a by maximum likelihood, resulting 

into a value a = 7.32. 

The second step in the testing procedure is the formation of an analysis of 

deviance table 4. 

Model 

L * M 
L + M 

L 
M 
0 

Degrees of freedom 

24 
26 
27 
28 
29 

Deviance 

31.43 
33.28 
33.82 
38.10 
38.63 

Table 4; Analysis of deviance table for the crossed-classification of 

soldering failures table 1. 

Log-likelihood ratio test statistics for factorial effects are obtained by 

subtraction of déviances. No significant effects show up, which confirms 

our earlier conclusions. 
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5. Discussion 

Two negative binomial models for the analysis of the structure of counts 

showing extra-Poisson variation have been discussed. An application was 

given on a two dimensional classification of counts, with some replicates 

per cell. 

A generalization of most of the results exists for i) more dimensional 

classifications and for ii) unequal numbers of replicates per cell. Note 

that for Model I when assuming large m y , only one replicate per cell is 

needed to estimate 6 if some more-factor interactions are negligible. 

Finally, it was observed by Paul & Plackett (1978) that the negative 
a 

binomial (a,p= ) distribution is the limiting distribution of the 

1+e 

beta-binomial (n,a,6) where ß = r\Q~' and n •* ». The beta-binomial distri

bution applies when the response variable is the number of successes out of 

n Bernoulli trials, the probability of success not being constant between 

replicates of the experiment (see Crowder (1978)). Then the negative bi

nomial distribution seems a good approximation of the beta-binomial for a 

large number of trials when the response is small. The log-linear analysis 

can be performed by the methods presented in this paper. 
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CHAPTER 4 

A LIMITING PROPERTY OF MODELS FDR OVERDISPERSEP COUNT RESPONSE DATA 

1. INTRODUCTION 

In chapter 3 we presented models for extra-Poisson variation in independent 

count data which was accounted for by introducing the gamma distribution in 

the parameter of the Poisson distribution as an extra component of vari

ation. Two models were thus obtained in which either the shape parameter of 

the gamma distribution depends on the levels of the design factors (this is 

Model I) or the scale parameter of the gamma distribution depends on the 

levels of these factors £this is Model II). In chapter 3, Model I and Model 

II were studied for a large number of replicates and Model I was studied 

for a large value of the shape parameter, which implies large mean values 

of the count data. In this chapter we shall study Model II for a large 

value of the scale parameter, which also implies large mean values of the 

data. 

A limit theorem will be presented in section 2 which is a generalization of 

a theorem of Pessin (1961). By this limit theorem a simplification of the 

gamma-Poisson model for large values of the scale parameter of the gamma 

distribution is obtained. 

More concretely, the limit theorem has the following implication. 

Let M. , i = 1,2, ..., I, be a set of I random variables. Given M. = m. let 
l i l 

independent random variables X. have Poisson (in.) distributions. Suppose 

that M. can be written as M. = 9H., i=1,2, ...,I, where 9 is a positive 

parameter and {H.} is a vector of jointly distributed, positive and non-
1 i=1 

degenerate random variables. Then for large 6 the limit theorem implies 

that the vector {X*}- .. is approximately distributed as the vector 
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The consequence of the limit theorem for the gamma-Poisson model (Model II) 

for independent random variables X. is that the approximate distribution of 

X. for large values of the scale parameter of the gamma distribution is the 

gamma distribution itself. We shall discuss the analysis of count data by 

this approximate gamma model in section 3. 

For a single classification of count data having the gamma-Poisson model, 

simulation results are obtained for the true significance level of six test 

statistics for testing the hypothesis of no main effect of the classifying 

factor, where these test statistics are based on the approximate gamma dis

tribution. 

An important conclusion from these simulation results is that an approxi

mate F-test which is based on the relatively simple gamma deviance and 

which eliminates the shape parameter of the gamma distribution, is quite 

reasonable for testing the hypothesis of no main effect of the factor if 

some replicates are available per cell and if the scale parameter of the 

gamma distribution is not too small. For the nominal level of significance 

of 5%, the true level of significance is no more than 8%. 

Finally, an application is given in section 4, revisiting the data of the 

soldering experiment from chapter 3. These data will be reanalysed by the 

use of test statistics based on the approximate gamma distribution. 

2. A LIMIT THEOREM 

Let random variables X. and M., i = 1,2, , I, be given. Given M. = m., 
l i' ' ' ' y l I' 

let X. have a Poisson (m.) distribution for i = 1,2, ..., I. If M. = 9 H. , 

then X. is approximately distributed as M. for large 6. This result reduces 

much of the complexity of e.g. the gamma-Poisson model. In a multivariate 

version it is formally stated in the following limit theorem.' 
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Theorem 1 

Let X = {X.}. - and M = {M-}i_1 be I variate random vectors, where random 

I 

vector X given M = m, m = {m.}. , is distributed as a vector of I indepen

dent Poisson (m.) random variables. 

Let M = 8 H, where H = {H.}._1 is a vector of jointly distributed, positive 

and non-degenerate random variables, having finite second moments. 

Then X* + M* in distribution for 9 -*• <*> where X* and M* are vectors of 

standardized components Xf and M*, respectively, where 

X* = (X. - E(X.))//var(X.) and M* = (M. - E(M.))//var(M.). 

For an outline of proof, see appendix. 

Corollary 

Let H be a vector of independent gamma (a, Y.) distributed random vari

ables, i=1,2,...,I, so that X is a vector of independent random variables 

having negative binomial (a, p. = 8 ¥./(1 + 9!.)) distributions. Then for 

large 9 the components of vector X have, approximately, independent 

gamma (a, 9ïf. ) distributions for i = 1,2,...,I. 

This is the practical interpretation of Theorem 1: for a large value of the 

general level 8, vector X is approximately distributed as vector M. 

Note that E(X) = 8 E(H), so the condition in Theorem 1 implies large expec

tations. 

It is important to realize that the components of vector H may be dependent 

but should all be non-degenerate. If all components are degenerate, the 

components of vector X are Independent, having the normal limiting distri

bution, as is known from standard results. 

We shall use Theorem 1 for deriving simplified models for fixed (in section 

3) and random (in chapter 7) factor designs with count response data. 
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3. ANALYSIS OF DATA BY MODEL II 

3.1. The Model 

By the corollary of Theorem 1, we are able to present the analysis of count 

data by Model II (see Engel (1984)) for large 9.. This Model II was defined 

as follows. 

Let M., i = 1,2, ..., I, be a set of random variables. 
Given M. = m., i = 1,2,...,I, a random vector X has I independent com
ponents X. having Poisson (m.) distributions. Further M. = G(a, G . ) , 
f x x .i ' l ' 

where G(a, 6.) are independent gamma random variables for i = 1,2,...,I, 

with shape parameter a and scale parameter 9.. 

Under Model II, the distribution of X. is gamma-Poisson: the variable M. 
l l 

can be written in the form M. = 9 H., where H. = G.(a, ¥.) is a 
i i x i i 

I 
gamma (a, ¥•) random variable, ¥. = 9-/9 and 9 = / n 9.. 

i 
For large 9 the variable X. has, approximately, the same distribution as 

Mi- GL(a, 9t) = mt G ^ a , a ) , where n^: = EtX^) = a9i; further 

var(X.) = a m2 and the coefficient of variation of X. is cv(a) = a' •1/2 

In section 3.2 we shall let i = 1,2,...,n, where n is the number of 

independent counts X.. 

The analysis of data by Model II for large 9. and so for large m., 

L=1,2,...,n, will be as follows. 

Introducing G.(a):= G.(a, a" ), the variable X. is distributed, approxi

mately, as 

X ~ in. G.(a) for i=1,2,...,n, 
i l i 

and the analysis of responses X. fits into the framework of Neider and 

Wedderburn (1972) for the analysis of generalized linear models, the gamma 

distribution being optional in the GLIM-system (Baker & Neider (1978)). As 

a is an unknown form parameter to be estimated, the analysis falls apart 

into two stages: 

- estimate a, e.g. by fitting a 'full' model; 

- fit reduced models, and choose the best model. 

Both stages of the analysis will be discussed in section 3.2. 
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3.2. Estimation and testing 

3.2.1. Estimation of g by (modified) maximum likelihood 

Three methods for the estimation of parameter a will be presented: 

1) maximum likelihood (ml); 

2) modified ml; 

3) the 'naive' method from GLIM. 

Firstly, parameter a can be estimated by fitting a full linear model to m., 

with log link function and gamma error. Such a full linear model, which 

contains all parameters of relevance to the problem, is fitted to log m^, 

thus taking the logarithm as a link function between mj and the linear 

model. For more details here and further, see Neider and Wedderburn (1972). 

If m. is estimated by the maximum likelihood estimator (mle) m., the mle 

for a is obtained as the solution a of the equation (see also Dunn c.s. 

(1983) for the one-sample case) 

n (log a - ?(a)) = E log mL - E log Xi + E (X^ITK - 1) ... (1) 

i i i 

using tables of log a - ¥(a) from Chapman (1956). 

Here, f(a) = T'(a)/r(a), the digamma function, whereas E (X./m.-1) 
i 

vanishes for the log link function, see Neider and Wedderburn (1972). 

Then (1) results in 

n(log a - ?(a)) = E log n^ - E log X... ... (2) 
i i 

-1 
The approximate variance of a for large n equals {n(1?'(a) - 1/a)} , the 

number of estimated parameters m. being small. 

Secondly, there are some reasons to consider a modified mle for a. 

The modified mle a* is obtained by equating the deviance D to its expec

tation E(D) under a full model, which is 

E(D) = 2na {log a - f (.a)} - k + 0(n ); see Cordeiro (1983). 

Here D = -2a E log X./m. is the deviance for the gamma distribution and k 
i 

is the number of estimated model parameters. The deviance D is defined as 

the log likelihood ratio statistic for testing goodness-of-fit of a linear 

model for log mi against the saturated model having a parameter mi for 

each observation X|. 
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Setting D equal to E(D) we obtain 

-1 
n(log a - v(a)) = T. log ITK - T, log X1 + k/2a + 0((an) ). ... (3) 

i i 

The solution a* of (3) may also be considered as a kind of a moment esti

mator, setting deviance D equal to its first moment E(D). The estimator 

a* has the same asymptotic (n •+ ») properties as a, e.g. consistency. 

The difference between the equations (2) and (3) is the correcting term 

k/2a in (3), which is important if it does not hold that 2a » k. As 

log a - ̂ (a) is a decreasing function of a, see Abramowitz and Stegun 

(1965), p. 259, 6.3.21, one always has a* < a (with probability one), 

hence cv(ct) < cv(a*). The term k/2a can be seen as a correction for a loss 

of k degrees of freedom (df) by estimating k model parameters. This pro

cedure is familiar from the estimation of normal variances. To estimate 

o for normal responses, the mle a equals SSE/n, where SSE is the sum of 

squares for error. The mle a is biased, whereas a * - SSE/(n-k) is a 
2 2 

is a modified version of o to obtain the unbiased estimator a * with the 
2 " 1 

property a * > a , compensating for the loss of k df for estimating model 

parameters. 

As a third method, the GLIM method for estimating a should be mentioned, 

which is related to the modified ml method. It is based on naively equating 

the deviance 0 to its remainder degrees of freedom n-k, which is a correct 

procedure for the normal error case. However, note that E(D) = n-k only 

approximately for large a. A third a-estimator a** is then obtained within 

GLIM, simply by solving D = n-k for a, so that a** = (n-k)/S, defining 

S :=(D/a), and no iteration is needed. However, it can be shown that 

2a(log a - Y(a)) > 1, the inequality being substantial for small a; then 

always a** < a*, so that a** inflates the estimate of cv(a). 

To conclude, we summarize that a** < a* < a with probability one, pre

ferring the modified mle a* as an estimator for a, having the same approxi

mate variance for large n as the mle a. The estimator a** is second best 

for a not too small, having the advantage of a simple computation. 
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The mie a seems not to be too attractive, unless n is large: for n + <=, 

a being fixed, the methods one and two are equivalent. For a •* =>, n being 

fixed, the methods two and three are equivalent, as 2ot (log a - ^(a)) = 

1 + 0(a-1) for a •* »; see Abramowitz and Stegun (1965), p. 259, 6.3.18. 

3.2.2. Testing by (modified) déviances 

The testing of reduced models can be based on the deviance D for the gamma 

distribution. 

It is Cordeiro's advice to use modified déviances D* = (n-k)D/E(D) instead 

of déviances Ü for model testing: for a known they are distributed as 

Y 2 , reasonably well, even for small n. Differences D* - D* for hierarchic 
*n-k ' ' 2 1 
loglinear models are then approximately %l _i< • For large n, the approxi

mate x2. i. distribution of D„ - D. is supported by well-known large 

sample results on log-likelihood ratio tests. For small n, e.g. singly 

replicated factorial designs, the testing procedure with D„ - D. should be 

considered in a more informal way. The modification D* - D* should behave 
more like a Y

2 , statistic than D - D does. 
xkj-k2 2 1 

In section 3.3 some relevant test statistics based on D and D* are defined 

and studied by simulation. 

3.2.3. Estimation and testing by generalized Pearson's X2 

A statistic which is not based on the likelihood ratio is the generalized 

Pearson's X = £ ( X - m.) /(a m. ) , where m. is the mle of m. and 
i 

var(X.) = a m 2 ; see also McCullagh and Neider (1984), p. 26. 

For large n, the distribution of X2 can be approximated by the x2_distri-

bution with n-k degrees of freedom, where k is the number of estimated 

model parameters. Also, X2 can be used (in GtIM) to estimate the parameter 

a. An a**-type estimator a** is defined as a.** = (n-k)/[£(X.- m.) 2 /m 2 ]. 
X2 X2 i 1 1 1 

Generalized Pearson's X2 corresponding to the NBD is given by 

X = £(X.-m.)2/(m.(1 + a" m.)) which is, for large m., near to the X 
i l l l l 

l 
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for the gamma distribution. For normally distributed random variables X., 

Pearson's X and the deviance (loglikelihood ratio statistic) are equi

valent and are both equal to X = I(X- - m-) /a , where a = var(X-). 
i 

This result will be used in section 3.3. 

3.3. Simulation results for test statistics 

3.3.1. Analysis of NB data by gamma distribution 

To investigate the quality of the approximate analysis discussed in section 

3.2, approximating the negative binomial or gamma-Poisson distribution by 

the gamma distribution, we carried out a simulation study. We used the NAG 

library to obtain negative binomial data, simulated by the Monte Carlo 

method. In the simulation study we consider the problem of testing the 

hypothesis of zero main effect in a one-way classification of data, with a 

total number of n = 12 observations (counts), classified by one factor 

having 

- 1 = 2 levels, leaving J = 6 replicates per cell; 

- 1 = 6 levels, leaving J = 2 replicates per cell. 

Further, the parameters a and 8 (note that under the hypothesis, 9 does not 

depend on the index i, i=1,2,...,I) were each set at three levels, that is 

- a = 2, 5, 10; 

- e = 5, 10, 15, 

so that simulation results were obtained for 9 combinations of parameter 

values. Results concerning the estimated tail probability of the yz 1-

fractile at a nominal significance level of 5% were obtained under the 

hypothesis of no main effect, for the following test statistics. 

T : D - D , where D is the residual deviance for the qamma distribution: 
1 2 1 1 

D. = -2 a Z log X. ./X\ and D„ is the deviance under the hypothesis: 

D, = -2 a Z log X. ./X" . so that D, - D. = -2aT. log X. /X . 
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T„ : D* - D*. where Dj? and D* are Cordeiro modifications of D„ and D„, 
2 2 1' 1 2 1 2 ' 

respectively, see section 3.2.2. 

T, : Xo - X^, where X2 = j; (X. - X )2/(a"1 X2 ) and 
3 2 1 1 Aj ij i+ i+ 

X2 = E (X - X )2/(a X2 ) are generalized Pearson statistics. 
2 y ij ++ ++ 

Parameter a was estimated by a** when testing by D - D and D* - D*, and 

by a** in the case of X2 - X2. Remember that a** = I(J-1)/S , where 
x2 2 1 1 

S. = D./a and a** = I(J-1 )/(X2/a). 
1 1 X2 1 

Results concerning the estimated tail probability of the F . ,-frac-

tile, at a nominal level of significance of b%, were obtained for the test 

statistics 

\ : FD = (D2 " V / D 1 * ̂ J-D/d-1); 

T5 : FD, = (D* - D*)/D* * I(J-1)/(1-1); 

T6 : FX2 = (X2 - X2)/X2 * I(J-1)/(I-1), 

where it is seen that T, , Tc and T, are the "F-test modifications" of 
4' 5 6 

the test statistics T., T„ and T,, respectively. 

For the approximate F-distribution of Fp there is some support from 

results of Jargensen (1983). It is suggested that a reasonable approximate 

distribution of FQ for large J is the F-distribution with 1-1 and I(J-1) 

degrees of freedom. A limit theorem (see Jargensen (1984)) establishes the 

asymptotic F-distribution of Fn for a -> »> J being fixed. So the results 

concerning Fn, are expected to improve for increasing J and a. 

The simulation results are based on 1000 MC-trials; they are summarized in 

tables 1a'b for 1 = 2 , and in tables 2 a ' b for I = 6 factorial levels. 
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\ a 

e\ 

5 

10 

15 

2 

17 
16 
16 

10 
9 

15 

10 
9 

15 

12 
11 
11 

7 
7 

10 

6 
6 

10 

5 

17 
17 
10 

11 
10 
11 

9 
9 

11 

13 
13 
7 

8 
7 
8 

7 
6 
7 

10 

19 14 
19 14 
10 7 

11 7 
10 7 
10 7 

10 7 
9 7 

10 7 

Table 1 : Simulation results (1000 trials; independence between cells) of 

the analysis with the gamma distribution of negative bi

nomial data for I = 2. In cells: estimated tail probabilities (£) 

for T., T and T, (column 1), T., T and T (column 2) at the 5% 
\ L j 4 j 6 

level. 

\ a 

e \ 

5 

10 

15 

2 

27 
26 
32 

20 
18 
28 

18 
17 
26 

14 
14 
12 

9 
8 
8 

7 
7 
7 

5 

24 
23 
23 

19 
19 
21 

18 
18 
21 

11 
11 
9 

8 
8 
6 

7 
7 
6 

10 

24 11 
23 11 
24 9 

19 8 
19 8 
20 6 

19 8 
19 8 
20 6 

Table 2 : Simulation results (1000 trials; independence between cells) of 

the analysis with the gamma distribution of negative bi

nomial data for I = 6. In cells: estimated tail probabilities (%) 

for T., T„ and T, (column 1), T., T and T (column 2) at the 5X 
1 2 3 4 5 6 

level. 
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V \ 
9 \ 

5 

10 

15 

2 

17 
15 
16 

11 
9 

14 

8 
7 

15 

12 
11 
10 

6 
6 

10 

5 
4 

10 

5 

16 
15 
11 

11 
11 
11 

9 
9 

11 

10 
10 
7 

7 
7 
7 

6 
6 
7 

10 

17 12 
17 12 
10 6 

11 7 
11 7 
10 5 

9 6 
9 6 

10 6 

Table 1 : Simulation results (1000 trials; dependence between cells) of 

the analysis with the gamma distribution of negative bi

nomial data for 1 = 2 . In cells: estimated tail probabilities (%) 

for T., T_ and T, (column 1), T., T. and T, (column 2) at the 5% 

level. 

V \ 
e \ 

5 

10 

15 

2 

27 
25 
30 

20 
18 
28 

18 
17 
27 

14 
14 
10 

8 
8 
8 

6 
6 
7 

5 

24 
24 
23 

22 
21 
22 

19 
19 
21 

11 
10 
8 

8 
8 
6 

6 
6 
5 

10 

25 11 
24 11 
22 7 

20 7 
20 7 
20 6 

20 6 
20 6 
19 5 

Table 2 : Simulation results (1000 trials; dependence between cells) of 

the analysis with the gamma distribution of negative bi

nomial data for 1 = 6 . In cells: estimated tail probabilities (S) 

for T , T, and T, (column 1), T , T and T, (column 2) at the 5% 

level. 
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3.3.2. Analysis of NB data by MB distribution 

For reasons of comparison, simulation results were also obtained, for some 

values of I, a and 6, for the analysis of NB data by the negative binomial 

distribution (NBD). Results were obtained concerning the estimated tail 

probability of the x% ,,-fractile at a nominal significance level of 

5K, under the hypothesis, for the following two test statistics: 

- D„ - D„, where D is the deviance of the NBD, 
2 A 

D = 2 Z [Xjj log[(Xi:j/(a + Xij))((a + i»^)/«^)] + 

+ a log[(a + m^.)/{a + X.j.)]]; 

see also Engel (1984). Here m., = X. for Ù., and m. . = X for D9. 

- X2 - X2, where X2 is the generalized Pearson X2 

X2 = S (X. . - m. .)2/(m. .(1 + of1 m. .)) 

for the NBD, and m. . = X. for XT, m.. = X for X„; see also section 
ij i+ 1 ij ++ 2' 

3.2.3. 

Parameter a was estimated by solving a from the equality 

DX = 2 I [X^ logfCX^/Ca + X ^ D ü a + X i +) /X i +)] + 
i j 

+ a log[(a + X i+)/(a + X±J)]] = 1(3-1) 

obtained by equating the deviance Dj to its degrees of freedom, itérât-

ively at each MC-trial in the case of the test D - D , taking aQ = 5 as 

a starting value; this is an a**-type of estimator. 

In the case of the X2 - X? -test, a was estimated by solving o from 

X2 = z (X. . - X. )2/[X. (1 + a-1 X. )] = KJ-1) 
1 ij i+ L i+ i+ J 

ij J 

obtained by equating Pearson's X2 to its degrees of freedom, iteratively 

at each MC-trial starting with a0 = 5, and an a**- type of estimator is 

obtained (see also Breslow (1984)). 

The simulation results are summarized in tables 3a' for 1 = 2 and in 

tables 4a>b for I = 6. 
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\ a 

e \ 

5 

15 

2 

n 
16 

6 

14 

10 

7 
9 

7 

9 

Table 3 : Simulation results (1000 trials; independence between cells) 

for 1 = 2 , NB-analysis of N3-data. In cells: estimated tail 

probabilities (.%) for D„ - D and for X2 - X? (a is estimated 
2 1 2 1 

by a** and a**, respectively) at the 5% level. 

\ a 

e \ 

5 

15 

2 

17 

32 

16 

29 

10 

17 
19 

17 

19 

Table 4 : Simulation results (1000 trials; independence between cells) 

for 1 = 6 , NB-analysis of NB-data. In cells: estimated tail 

probabilities (S) for 0( D and for X2 

2 1 2 
by a** and a**, respectively) at the 525 level 

X2 (o is estimated 
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\ a 

e \ 

5 

15 

2 

7 

17 

6 

15 

10 

8 

10 

8 

10 

Table 3 : Simulation results (1000 trials; dependence between cells) for 

1 = 2 , NB-analysis of NB-data. In cells: estimated tail prob

abilities (.%) for D0 D and for X2 

1 2 
X2 (a estimated by a** 

1 
and a**, respectively) at the 5% level. 

X2 

\ a 

9 \ 

5 

15 

2 

17 

31 

16 

29 

10 

17 

20 

18 

20 

Table 4 : Simulation results (1000 trials; dependence between cells) for 

1 = 6 , NB-analysis of NB-data. In cells: estimated tail prob

abilities (%) for D - D and for X2 - X2 (a estimated by a** 

and a**, respectively) at the 5% level. 
X2 
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3.3.5. Analysis of lognoraal-Poisson data by lognormal distribution 

Anticipating later needs (see chapter 7 ) , some simulation results were also 

obtained for the analysis of data having the lognormal-Poisson distribution 

(this distribution is very similar to the gamma-Poisson distribution), 

using the lognormal approximation. The lognormal-Poisson distribution is 

obtained as follows. 

Let X.., i=1,2,...,i, j=1,2,...,J, be independent random variables. Given 

M. . = m. ., the random variables X. . have Poisson (m. .) distributions. 

Further, random variables M.., i=1,2,...,I, j=1,2,...,J, are independent, 

having the lognormal distribution with mean a 9. and variance o 9?; remem

ber that these are the moments of the gamma distribution with parameters 

(a, 9.); see sections 3.2. and 3.3.1. For large 9., i = 1,2, ..., I, the 

independent X.., i=1,2,...,l, j=1,2,...,J, have, approximately, lognormal 

distributions because of Theorem 1, so that Y.. = loq X.. has the normal 
ij ij 

distribution with 

mean |i. = log[<x 9./(1 + a" ) ] and variance cr = log(1 + a' ) . 

On simulated data, the hypothesis HQ : 9 = 9 = ... = 9 of no main effect 

in a one-way classification was tested by the well-known F-test 

F0 = (D2 " V / D 1 * I(J " 1)/(I " 1)' 

where Dj is the deviance Dj= E (Y. . - Y. ) /a for the normal distribution 
ij 

and D, = E (Y. . - V ) /a . The hypothesis Hn was also tested by the sta-

tistic D2 - Oi having a chi-squared distribution, estimating a2 by 

a2** = E (Y.. - V. )2/I(J-1). The simulation results are summarized in 
ij JJ l+ 

tables 5a'b and tables 6a»b. 
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\ a 

e \ 
5 

15 

2 

9 6 

7 4 

10 

8 4 

6 4 

Table 5 : Simulation resul ts (1000 t r i a l s ; independence between ce l l s ) for 

1 = 2 , lognormal analysis of lognormal-Poisson data. In c e l l s : 

estimated t a i l p robab i l i t i es (%) for D - D (ff
2 estimated by 

02**) and F , respect ively, at the 5% l e ve l . 

X 
5 

15 

2 

19 6 

19 7 

10 

22 6 

19 6 

Table 6 a Simulation results (1000 trials; independence between cells) for 

1 = 6 , lognormal analysis of lognormal-Poisson data. In cells: 

estimated tail probabilities (%) for D 

a2**) and F , respectively, at the 5% level. 

D (a2 estimated by 
1 
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X 
5 

15 

2 

8 3 

9 4 

10 

7 4 

9 4 

Table 5 : Simulation results (1000 trials; dependence between cells) for 

1 = 2 , lognormal analysis of lognormal-Poisson data. In cells: 

estimated tail probabilities (%) for D - D (a
2 estimated by 

a2**) and F , respectively, at the 5% level. 

X 
5 

15 

2 

12 3 

16 3 

10 

16 3 

16 2 

Table 6 : Simulation results (1000 trials; dependence between cells) for 

1 = 6 , lognormal analysis of lognormal-Poisson data. In cells: 

estimated tail probabilities (%) for D - D (a
2 estimated by 

a2**) and F , respectively, at the 5% level. 

3.3.4. Conclusions drawn from simulation results 

From the simulation results of sections 3.3.1, 3.3.2 and 3.3.3, the fol

lowing conclusions can be drawn. 
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Ad 3.3.1. Analysis of NB data by gamma distribution 

From tables 1a>D and tables 2 a ' D we conclude: 

A. x -approximation of test statistics T,, T2 and T, where a is estimated 

by the estimator a** for T, and T7 and by the estimator a** for test T,. 
X2 

- Only for 1=2 are the oc-estimators a** and a** s u f f i c i en t l y accurate 
X2 

so that, when they are substituted for a in test statistics T, , T- and 

T3, these statistics have tail probabilities good enough for further 

study (no results for 1 = 6 are useful). 

- In the case of 1=2, tests Tĵ  and T2 behave not too badly for large 9 

(which is supported by Theorem 1 ) . It is known that likelihood ratio 

tests like Tj are sensitive to wrong distributional assumptions which 

are made when assuming a gamma distribution for the data for small 9. 

- In the case of 1=2, test T3 is not too bad for all values of 9 (the 

quality of this test does not depend too much on distributional as

sumptions) if at least a is not too small: increasing a seems to im

prove the performance of this test. 

B. F-approximation of test statistics T4 , T5 and T6. 

- The results are now acceptable for 1=2 and for 1=6. The variability 

of the estimator a** (or a**) of a, being large for 1=6, is accom-
X2 

rnodated by the F-test as in fact a is eliminated. The approximate 

F-distribution of the test statistic T^ for large J and a is supported 

by Jorgensen (1983, 1984). 

- The tests T^ and T5 are reasonable for large 9. 

- The test T6 appears to be reasonable for all 9, parameter a not being 

too small. 
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Ad 3.3.2. Analysis of NB data by NB distribution 

From tables 3a»D and tables 4a'° we come to the following conclusions: 

A. x2-aPPr°ximation of tests D2 - Dx and XJ: - X^ (a is estimated by 

a**-type estimator). 

- Only for 1=2 is parameter a estimated sufficiently accurate, so that 

these tests deserve further consideration (for 1 = 6 these tests are 

of no use). 

- For the case 1 = 2 , the test based on D is reasonable for all values 

of a and g; the test based on X2 is reasonable for all 9 and for 

large values of a. 

B. No F-approximation of F-modifications of the above tests was studied. 

The reason is that, contrary to the gamma distribution, no F-test can 

be constructed to eliminate the parameter a in order to avoid the esti

mation of parameter a. 

Ad 3.3.3. Analysis of lognormal-Poisson data by lognormal distribution 

From tables 5a»" and tables 6 a , b we conclude: 

2 

A. x -approximation based on the statistic D2 - 0\. 

- Only for the case 1=2 do the estimated tail probabilities have reason

able values. However, in the Anova this y -approximation is never 

used. 

B. F-approximation of the test statistic F . 

- For both cases 1=2 and 1=6 the test F_ has good tail probabilities 

for all values of G and a. 

From the (of course, restricted!) simulation results it is tempting to con

clude that not many replicates per cell and no large values of 9 and a are 

needed for the F~-test of section 3.3.3 to have the approximate F-distri-

bution. 
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Summarizing two 'important conclusions from the simulation results 

1. For the case of two or so replicates per cell the analysis of NB data 

by the gamma distribution becomes attractive. An approximate F-test is 

available, having reasonable properties when 9 is not too small. By 

constructing this F-test the parameter a is eliminated so that there is 

no need to compute an estimate for this parameter a. For the "exact" 

NB analysis there is no such F-test. 

2. Assuming the lognormal-Poisson distribution (instead of the gamma-Pois-

son distribution) for the data, the analysis based on the approximate 

lognormal distribution is advised. The corresponding F-test has good 

properties for all values of a and A in the study, even when only a few 

replicates are available per cell. 

4. APPLICATION 

As an application, we first calculate estimates of a for the soldering 

failure problem from Engel (1984), using the gamma approximation for the 

gamma-Poisson model, based on Theorem 1. The results are a** = 3.34 

(GLIM estimate), a* = 3.53 (estimate based on Cordeiro's results), a = 4.34 

(mle). 

A H a-estimatfis are obtained from D/a = 7.19 for the full model L * M fit

ted to the data. Note the difference between this estimate a and the mle 

a = 7.32 based on the gamma-Poisson model. This difference is explained by 

the approximation used where the Poisson-variation is ignored. Then the 
-1 9 

gamma variance a m., i = 1,2, ..., 30, explains all the variation in the 

data, so that the estimate « is smaller for the gamma model than for the 

gamma-Poisson model. 

Secondly, we shall consider the analysis of deviance of soldering failures 

by the gamma distribution, modifying déviances as proposed by Cordeiro 

(1983). Déviances D are presented in table 7, as well as expected déviances 

E(D), and modified déviances D*. 
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Model 

L*M 
L,M 
L 
M 
0 

df 

24 
26 
27 
2B 
29 

Deviance D 

25.38 
26.75 
27.14 
30.21 
30.59 

Expected 
deviance E(D) 

25.35 
27.35 
28.35 
29.35 
30.35 

Modified 
deviance D* 

24.03 
25.43 
25.85 
28.82 
29.23 

Table 7. Déviances, expected déviances and modified déviances for soldering 

failure data, where a is estimated by a*. 

Model component 

LM-interaction 
L given M 
M given L 

df 

2 
2 
1 

D 2 - D 1 

1.37 
3.46 
0.39 

D* - D* 

1.40 
3.39 
0.42 

FD 

0.65 
1.64 
0.37 

FD* 

0.70 
1.69 
0.42 

Table 8. Tests D_ - D. (D* - D*) and F_ (En#) for testing model components. 

In table 8, the results of the tests 

FD = (D2 - D ^ / D ^ * 24/df 

and 

FD* = (D2 - DÏ)/DL*M * 2 V d f 

are displayed, where D is the deviance for the model L*M. Assuminq ¥ ' ' L*M y 

approximate F-distributions for F and F with degrees of freedom (df, 24) 

it is seen that no interaction and no main effects are significant at the 

5% level. At the values at hand of, roughly, a - 4 and 8 = 5 the F-tests 

are liberal, see the simulation results of section 3.3. 
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5. DISCUSSION 

In this chapter a limit theorem was presented to simplify compounded Pois

son models in the case of large scale parameters. This theorem was applied 

to simplify Model II of chapter 3, a gamma-Poisson model, to obtain the 

gamma distribution as an approximate distribution for count data, if the 

scale parameter is large. To some extent, test statistics based on this 

gamma distribution were studied. 

Applications of the method are found in industrial practice (see section 4) 

and also in consumer purchasing behaviour (see Chat field and Goodhardt 

(1970, 1973), Dunn c.s. (1983)) and in medical statistics (see Manton c.s. 

(1981)). Another remark is that the results of section 3 are of direct use 

for responses having gamma distributions. Applications can be found in the 

field of reliability and survival analysis, where the gamma distribution is 

used for modeling lifetime data. 

Finally some special attention will be given to the simulation results for 

count data having the lognormal-Poisson distribution. The analysis of this 

data is based on the approximate lognormal distribution and is performed by 

carrying out a standard Anova on the log-transform of the data. The simu

lation results show that the F-test from the Anova for a one-way classifi

cation behaves well enough in this unorthodox situation. 

We shall return to this subject in chapter 7. There we shall study log

normal-Poisson distributions having a more complex structure than the one 

considered here; the random mean of the Poisson distribution is then a 

product of independent lognormal components. 
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Outline of proof of Theorem 1 

Denote by $ (t) = £ exp(it.x)P(X = x) the characteristic function (cf) of 
X x 

random vector X (see Feller (1971), chapter 15), where t.x denotes the 

inner product of vectors x and t, each having J components. 

Given vector M = m, vector X has the Poisson distribution and 

i t . 
J -m. (1 - e J) 

<t>(t) = n e J , t. being the j component of vector t, 
X|M=m j=1 J 

-m . x . 
because P(X = x|M = m) = n e Jm.J which represents the Poisson dis-

J IT! 
J 

tribution of the independent components of vector X given vector M = m. 

Since 

P(X = x) = ƒ P(X = x|M = m) dP(M < m ) , the cf of X results in 

i t . 
J -m.(1 - e J ) 

d>Y(t) = ƒ n e J dP(M < m ) , 
X j=1 

where we applied Fubini's theorem when interchanging sum and integral. 

For j = 1,2, ..., J, let a := E(H.), b.:= var(H.); further, 
J J J J 

P(M < m) = P(6 H < m) = G U ) , where G(h) := P(H < h) and (|, := m/e. 

Then E(X.)= a e, var(X.) = a 9 + b.G2 so that the standardized of com-
J J J J , J 

ponent X. is X* = (X. - a.o)//{e(a. + b.e)}, j = 1,2, ..., J. 
J J J J l J J 

The c f o f v ec to r X* = fX*} i s 
J J 

(fi ( t ) = e x p ( - i St . a . 6 / / { e ( a . + b . e ) | )ƒ nexp(-e(J; (1-exp( l t . / / { f l ( a .+b .0)} ) ) ) d G U ) 
X j J J J J 0 4 i J J J 
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Letting 6 + <° and applying Lebesque's theorem, 

l im * ( t ) = exp ( - i y. t . a . / / b . ) ƒ n exp( i t . < K M > .)dGU) 
e-x» x j J J J o j J J J 

ƒ n {exp( i t .(c|,.-a.)//b.)}dG((|,). . . . (1) 
Q i J J J J 

Further, the c f of M is 

<t>(t) = ƒ exp(iE t .m.) dP(M < m) = ƒ exp(iE t . 94». ) dG(d,). 
M o j o j 

As M.* = (0 / b . ) " 1 M. - a.//b., j = 1,2, ..., J, the cf of vector 

M* = {M.*} . is 
J J 

CO 

t W ^ ) = exp(-i Z t.a.//b.) ƒ exp(i j; t . 9 4,7(6 /b.))dGU) = 
M* j J J J o j J J J 

CO 

= ƒ n {exp(i t .(<!,. - a.)//b.)}dG((J,). ... (2) 
Q 1 Ü J *J J 

This cf is a continuous function of t at t=0 so that, see Feller (1971), 

chapter xv.3, theorem 2, (1) and (2) being identical cf's, the random 

vector X* tends in distribution to the random vector M* for 9 •* °°, which 

was to be proved. 
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CHAPTER 5 

SPLIT-PLOT DESIGN: MODEL AND ANALYSIS FOR COUNT DATA 

Abstract 

The analysis of count response data from designed experiments is well-known 

for independent response variables having the Poisson distribution. For 

experimental designs where responses are dependent, no general results seem 

to be available. An example of this type of design is the split-plot 

design, where sub-plot responses are essentially dependent within whole 

plots. 

In this paper, a model will be proposed for split-plot count data and a 

separate analysis for whole plot and sub-plot data will be presented. It is 

interesting to note, that the same model is used in the quite different 

context of consumer buying behaviour. It was derived by Goodhardt, Ehren-

berg and Chat field and it was called the 'Dirichlet model', as the Dirich-

let multinomial distribution, together with the negative binomial distri

bution, build up the model. 

(Published in Statistica Neerlandica 40 (1986), 21-33). 

1. INTRODUCTION 

An extension of the Poisson model for classified, count response data 

showing more variation than could be explained by the Poisson model was 

given by Engel (1984). In this paper, the gamma distribution was introduced 

into the Poisson model to accommodate for extra-Poisson variation, and the 

analysis of variance was carried out by means of the resulting negative 

binomial model. 

Closely related are problems of the following type. Suppose that experimen

tal units (e.u.), which are classified by fixed and crossed factors, are 

split up into smaller units by other factors; also, suppose that count data 

is available for the smaller experimental units. A typical result of this 

experimental design is that counts are dependent by their nature, so that 

any of the models for independent counts is not suitable, see e.g. De Roos 

and Schaafsma (1981) for an example. 
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As another example, consider large print panels for electrical components, 

which are split up into smaller sub-panels. On each sub-panel, a certain 

type of copper pattern was mounted. Types of copper pattern have to be com

pared with respect to their quality, by means of observed numbers of sol

dering failures, resulting from a soldering experiment. The large print 

panel can be regarded as a whole plot, and the sub-panels as sub-plots. The 

experimental design considered above is usually called a split-plot 

design. The effect of sub-plot factors, which is here the factor 'type of 

copper-pattern', is analysed apart from whole plot factors. It will be the 

subject of this paper to analyse count data from a split-plot design. 

A model based on the loglinear model is proposed for count data from the 

split-plot design (see section 2). The analysis of data (in section 3) is 

rather straightforward for a simplified version of the model, which is 

often adequate in practice. Also for the more comprehensive model, some 

approximations are almost inevitable to meet with requirements of manage

ability. 

Finally, an application of the split-plot design will be given. 

The analysis for whole plots was worked out by Engel (1984). What is left 

is the analysis of sub-plot factorial effects, which is carried out in 

sect ion 4. 

2. THE MODEL 

To fix our minds, we shall build up a model for the split-plot design in 

case of two whole plot factors, say factor A (index i) and factor B (index 
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j) and one sub-plot factor C (index k ) . Of course, any number of fixed and 

crossed factors can be treated in a similar way. We shall consider equal 

numbers of replicates per cell, which will be indicated by index X. Table 1 

shows the experimental design. 

B: 

°1 

• 

• 

bJ 

C: 

c l 

CK 

• 

• 

c l 

• 

CK 

A: 

a1 

X 

X 

• 

X 

X 

. . . a I 

Table 1. A split-plot experimental design with whole plots and sub 

plots. 

The count response variable for replicate SL of sub-plot k of whole 

plot (i,j) will be denoted by X...,^, where i=1,2,...,I, j=1,2,...,J, 

k=1,2,...,K and A=1,2,...,L. 
ijkl' 
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Some components, which should be included in the model for X ^ k ^ are the 

following; see Montgomery (1976), p.292: 

- whole plot error; then X^-j^.^ and X J J ^ ^ are dependent random vari

ables, for any kj and k2 

- interaction between sub-plot factor C and whole plot error 

- sub-plot error. 

The Poisson distribution will be the basis for this model, and model com

ponents of random type are introduced into the Poisson parameter. 

Taking into consideration the above requirements, the following model for 

*iik? ^s proposed: 

(i) Let M. be a positive random variable, then given 
ijkl 

M = m , X ~ Poisson (m. ; 
ijkl ijkA ijkl ljkJl 

(ii) M. ., = G. . (a. ., e) . H. ., (R . ., ) 
ijk* '-J* ij ijk* lJk 

where 

WV = Sjk̂ ijk' ̂  W i j k ' ">' 

All G(a,b)'s are independent random variables having the gamma 

distribution with form parameter a and scale parameter b. 

It is assumed that B. ., can be written as R. ., p ijk Hijk 

Hit. 
JJk 

1, p not depending on i and j. 

Bit. .. , where 
p ijk' 

(1) 

In model (1), the effect of whole plot and sub-plot factors is modelled 

separately. Therefore, the random Poisson mean M is the product of two 

factors G. and H. ., Because of the normation E H. 
ijkA 1, 

.. . equals G. . . This factor describes the 

'ij* "'•" ' ijk*' 

the whole plot level M. 

effect of whole plot factors A and 3 (via ay)» and the whole plot error 

is included (random G ^ ; } ) . The second factor describes the effect of 

sub-plot factor C (via ßijk) anc' the random interaction between factor C 

and whole plot error (random H ^ - k 5 ) . 
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A further motivation for taking the product of Gj ̂  and H j i ^ is 

that these factors can be considered as whole plot and sub-plot random 

intensities of a Poisson failure process. If the whole plot intensity 

G^ •:« tends to zero, then so does H j i u , as it should be. 

Omitting indices i, j and SL just for a moment, the resulting 

distribution of vector (Xi , X2, ..., X,,)', denoted by {x
k}k-i> given 

H = h , k=1,2,...,K, is the negative multinomial distribution 

(see Sibuya c.s. (1964)), with probability distribution function: 

1/ 1/ x + a-1 x. 

« { y k = {xk}
K

te1> = < + ) PS " Pk • 
*1 » x 2 , . . . , x K , a -1 k 

Here p = eh, / (1+e E h, ) = eh, / ( 1 + e ) , p „ = 1/(1+6 E h, ) = 
k k . k k 0 k k 

= 1 / ( 1+9 ) , as E h = 1 . 
k K 

Unconditionally, Pk = (e/(1+e)) Hk, where random vector {H^}^.^ has 

the Dirichlet distribution, pn = 1/(1+6) being fixed. 
1/ 

It can be shown that the distribution of {X. }. _. is given by 

PUXk}
K

k=1 = K l J = 1 > 
x + + a -1 ! a e * + 1 w, p k / k 

1( ) ( ) 

n r(x, +B, ) 

x. ,x . . . . . x ^ . a - i 1+6 1+e r ( x +E B. ) n r (p . ) 
1 2 K + k k k 

n r (x +B > 
_ ,x + a - 1w 1 ,- /_6_\"+ » r x . ' ' " "k' k 
" ' + x+

 , l i + e ; 1+e ' x 1 , x 2 , . . . , x K ' r(x++E ß^J n r ( ß k ) 
-x + a - 1 w 1 ^ , 9 A . , x , r ( K M k k k 

k 

= P(X+ = x + ) * P ( {X k } K
k = 1 = { x k } K

k = 1 | X + = x + ) 

a l l sums E be ing over k = 1 , 2 , . . . , K , where 
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- the distribution of the marginal sum X is the negative binomial distri

bution (NBD) with parameters a and p = 9/(1+9), see Engel (1984); 

- the distribution of the vector { X k } k - 1 given X is the Dirichlet multi-

nomial distribution (DMD) with parameter vector {ßi,}L<_-i » s e e Mosimann 

(1962), Brier (1980), Engel (1985). Note that the DMD has dependent com

ponents. 

This model for vector {X k } k _ 1 was called the 'Dirichlet' by Goodhardt c.s. 

(1984). The authors apply the model to the field of consumer purchase 

behaviour, and it was derived in a different way. Interesting is also a 

characterization, which was given by the authors for the gamma distribution 

(for random variable G) and the Dirichlet distribution (for random vector 
i/ 

{H.}. _1) and which is also relevant in our case. This characterization may 

give a justification for the model used. 

A simplification of model (1) is obtained by letting ß. •*• », n •* o 

Ln Gijk! ( Pijk'^' W h i l e *> Pijk = Gijk i s f i x e d- T h e n Gijk! * 9ijk in 

probability, hence H..,„(8...)-»-9..,/E9--i = it. ., in probability, 
ijk«, ijk ijk k ijk ijk 

The simplified model Ls: 

(i) Let M. ... be a positive random variable, then qiven 
ijk! M ' y 

M = m , X ~ Poisson (m ) 
ijk! ijk! ijk! ijk! 

(2) 
(ii) M. .. „ = G. .„(ot. ., f)) . n. ., , where F it. ., = 1. 

ijk! ij! ij' ijk k ijk 

All G(a,b)'s are independent random variables having the gamma 

distribution with form parameter a and scale parameter b. 

Note that model (2) differs from model (1) only by the absence of the in

teraction between factor C and whole plot error. It may be interesting to 

compare model (1) with the classical Anova split-plot model for a normal 

response variable Yi-i^m, see Montgomery (1976), p. 292. 
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The usual model for Y is, in a shorthand notation, 

Y = (i + (aß). . + e ,. .. + Ußy). ., + e, ,. .. + e . . . . . 
ïjkdm r ij M i j ) ' ijk kJlUj) m(ijkA) 

For a comparison of both models, see table 2. It is seen that there is a 

one to one correspondence, of model parameters and error components, for 

the two models. 

Sometimes, e ,. .. is set equal to zero beforehand, which may be 

justified on 'technical grounds', or by the result of a testing procedure. 

The corresponding effect on the models for discrete X is that model (2) is 

reduced to model (1). 

Model component 
for X 

e 

aij 

G. . 
1JA 

ßijk 

H. .. 

X. ., given M. .. 
•ijk* y ijk* 

Model component 
for Y 

H 

C a P ) ij 

e*(ij) 

(aßY)i j k 

eMij) 

em(ijk£) 

Description 

general level 

whole plot parameter 

whole plot error 

sub-plot parameter 

random interaction between 

factor C and whole plot error 

sub-plot error 

Table 2. Comparison of model components of discrete X and continuous 

Y split-plot model. 

3. ANALYSIS 

3.1. Some introductory remarks 

Intuitively, it is not unreasonable that the analysis of the split-plot 

data is performed as a separate analysis on whole plot data, via plot total 

X. . ., and on sub-plot data, via X. ., „ qiven X. . 
lj+A K ijM. y ij+Jl 
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A separate analysis is further motivated by noting that the conditional 
1/ 

distribution of fX...„) |X.. „= x. . „, which is the Dirichlet multi-

nom.ial, does not depend on (a. .,9). Then X. . is a sufficient statistic 

for (a- -,9) and an ancillary statistic for ß. .. (see Cox & Hinkley (1974), 

p.31). Inference on a. . will be based on X. . , inference on 8. ., will 

K i 
be based on {X. ., „}. _ X. . . 

The analysis of model (2) and ,Tiodei (1) will be discussed in the following 

sections. We shall start with the simpler mudel (2) in section 3.2. 

3.2. Analysis of model (2) 

The analysis of model (2) needs a short discussion only. 

To summarize model concepts, 

(i) X . . + A ~ N B O ( a i j ) e ) 

(11) {xiW"=1i v * = v * ~muitinofl,iai (xij+*>
 {%w]lj-

A whole plot analysis on X.. was discussed by Engel (1984). For the sub-
lj+J!. 

plot analysis, the literature on the analysis of multinomials is extensive, 
see Bishop c.s. (1975) and Fienberg (1979). For I. > 1, we may simply add 

i/ . 

over replicates to obtain fx. ., } X. . = x. . , which is a sufficient 
L J k + k=1 l J + + 1 J + + 

K K 
«latistic for {it. ., } , having the multinomial (x. . , fit- .. } ) distri-

'Jk k=1 1 J + + J k=1 

but ion. Asymptotic results for test statistics hold for x. . tending to 

infinity. 
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For L > 1, the hypothesis H: model (2) is a suitable model, can be tested 

against the wide alternative hypothesis A: model (2) is not a suitable 

model, by testing the hypothesis of the equality of the L multinomial pro-

bability vectors within each cell (i,j) of the design. Pearson's X T . ' S , 

having (K-1)(L-1) degrees of freedom (df) may be addeil to an overall X = 

£ X^ . with IJ(K-1)(L-1) df, having the approximate ^-distribution for 
ij 1J 

large marginal sums. If H is rejected, the consequence should bs that model 

(2) is rejected and then model (1) is a possible alternative. 

The analysis of count data by this model is more complicated; it will be 

discussed in the following section. 

3.3. Analysis of model (1) 

Summarizing the concepts of model (1), 

(i) X. . ~ NBD (a. .,9) 
LJ+A ij 

(ii) fX. ., }K I X. . = x. . - D M (x.. , {p. ., }K ). 
ljk* k=1 1 J + A lJ+* l j + X l j k k=1 

Then TtHk ^s the parainnti.u' for main effect and interactions of factor C, 

an p parameterizes the random interaction between factor C and whole plot 

error. The whole plot analysis on Xji+o is just as for model (2), so we 

may concentrate on the sub-plot analysis. 

Two cases will be distinguised, namely, 

case 1: L = 1 (one replicate) 

case 2: I. ->• °° (many replicates, practically spoken). 

Again, the sub-plot analysis in carried out on 

(X. ., } I X. . = x. . , obtained by addition over replicates. 
1 ijk+J

 k = 1 ' ij++ ijn-
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Tor case 1 as well as case 2 it will be proved that the statistics X2 = 

£(X-m)2/m and G2 = 2 E X log X/m have an approximate C * x2 distribution 

under certain conditions, where constant C is to be specified later. The 

results, which are based on those of Brier (1980), Rao and Scott (1984) and 

Fellegi (1980) are stated in theorem 1, but first two lemma's will be 

presented, which are needed to prove the theorem. 

We shall introduce the vectorial notation X» = {X, } 
k=1 

L emma 1 (case 1: L = 1) 

Let x. . „ •* °>, ß •*• <*>, where v. . = ß/x. . „ is fixed. 
Lj+1 p riJ iJ+1 

Then, conditionally on X. . „ = x. . „, the distribution of 1 iJ+1 iJ+1 

/x. . . (X. ... / x. . , - %. .„) tends to the 
ij+1 ij*1 ij+1 ij* 

K-variate normal distribution with mean 0 and covariance matrix 
_1 

V . . = r - . n . . ; r . . = 1 + 7 - - ; n . . = D - it. .- it! ... : D is a 
ij IJ IJ 1J riJ IJ itLj iJ* iJ* n ^ 

diaqonal -natrix with entries -K. ... ...,%. .,.. 
ij1 ijK 

For a proof, see Paul and Plackett (1978). 

Lemma 2 (case 2: I. is large) 
let 1 < n < x < N for certain numbers n and N , 1=1,2,...,L 

'J 'J+A iJ iJ ij 
and let 

limits x. = lim (z x. /L) and y. = lim (z x2 . ft x. . ) exist. 

Foi I -+ », conditionally on X. = x. , the distribution of 
lj+X I J + A ' 

/{x. . Ll(X. . / x. . -it. .J tends to 

the K-variate normal distribution with mean 0 and covarlance matrix 

V. . = B. . IT. .; B- • = (y- • + ß) / (1 + ß) and TI. • is as in lemma 1. 

For a proof, see Appendix 1. 
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The results of lemma 1 and lemma 2 are used to prove the following Theorem 

1. 

Theorem 1 (case 1 and case 2) 

The approximate distribution of the statistic X2 as well as G2 is 
w o wo 

r * x under the conditions of lemma 1 and P * % under the con

ditions of lemma 2, where 
r = Z :

 wji rii and P = ** wii "ii> s wii = '̂ are w e i9nted averages 
ij ij J ij 

of T-. = 1 + y.. and p. . = (y. .+ß)/(1+ß), respectively, weights de

pending on the hypothesis and on parameters it. ... 

Proof 

The Theorem can be proved by a straightforward extension of results of Rao 

& Scott (1984) on a single distribution of classified numbers, to a set of 

independent distributions, all having the multivariate normal limiting dis

tribution. The asymptotic covariance matrix has a block structure where 

blocks are r. . n. . or p.. n. ., respectively, i=1,2,. ..,1; j=1,2,...,J. 
ij ij i-j ij 

Using Theorem 1 from Rao & Scott on the set of independent distributions 

the result is obtained that X2 and G2 are rw * %2 or PW * X2> approxi

mately. Weights depend on the hypothesized model reduction and on the true 

value of parameter vectors nij*-

w 
For practical purposes, we have no better solution than to replace P by 

the unweighted mean p - E p.. / IJ following suggestions of Fellegi 
ij 1J 

w 
(1980), treating r in a similar way. As it seems, a conservative test is 

then obtained (Rao & Scott (1984)), but the advantage for practice is 

evident. 

A final problem is the estimation of the extra parameter r and p. We 

suggest an estimation procedure in the following. 
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For case 1 (L=1), r can be estimated by fitting a full log-linear model, 

including all relevant effects of split-plot factor C. If o>0 df are left, 

T is estimated by r = G2/u, where G2 is for the full model. Finally, r is 

used to correct G -statistics for testing model reductions, which are 

obtained in the usual way. 

For case 2 (L is large) we can use replicates to estimate B. Following 

Brier (1980), X2. is calculated as in section (3.2). If, for certain 

n. ., N. .: 1 < n. . < x. . . < N. ., £=1,2,..., L and if 
ij ij ij 1J+A ij 

x.. = lim (£ x. . ,/L) exists, then X. ./(K-1)(L-1) is a consistent 

estimator of (x.. + ß)/(1 + ß), which can be proved by a simple exten-
XJ ; 

sion of Brier's results. 

Combining IJ estimators, X2 = Z X2 . / IJ(K-1)(L-1) is an estimator 

of (x_ + ß) / (1 + ß), then ß = (X2 - x^J/ (1 - X2) is a consistent 

estimator of ß. 

Substituting ß for ß in B to obtain B> corrected G2-statistics have 

the form G2/ß. 

3.4. Some discussion 

In the previous sections we have seen that sub-plot factorial effects can 

be tested by statistics G A" and G /B for L=1 and for large L, respect

ively. 

Here, r is an estimate of r = E r=- / IJ and B = £ B. . / IJ, 

where p. . = (y. . + ß) / (1 + ß) so that P = (y + ß) / (1 + ß). 
J J « 

For X < 1, it seems reasonable to set B = 1. If whole plot totals 

X.. , for £=1,2,...,L do not differ widely, then x.. a y. . and X 
J-J+X ij ij 

can be used directly as an estimator for ß. This may decrease conser-

vativity of tests, as always x < y, hence, in distribution for L + <» 

X2 > ( x ^ + ß) / (1 + ß) < (y^ + ß) / (1 + ß) = B. 
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4. APPLICATION 

As an application, we shall consider the split-plot design for a soldering 

experiment of print panels, see Engel (1984). 

Whole plot factors are: factor A, soldering location and factor B, sol

dering method. Sub-plot factor is: factor C, type of copper pattern, with 

levels Cj and c2. 

Five replicates per cell are available and all factors may have some in

fluence on the response data, which is the number of soldering failures; 

see table 3 for the data. 

B: sol
dering 
method 

bi 

b2 

C:copper 
pattern 

cl 
c2 

print 
total 

cl 
c2 

print 
total 

A: 

al 

3 
7 

10 

12 
10 

22 

7 
8 

15 

9 
3 

12 

3 
8 

11 

3 
2 

5 

6 
5 

11 

4 
4 

8 

7 
9 

10 

7 
4 

11 

solder ing locat 

a2 

1 8 
1 3 

2 11 

3 13 
9 22 

12 35 

3 6 7 
1 8 18 

4 14 25 

5 \> 6 
6 7 11 

11 12 17 

ion 

a3 

8 7 12 
5 3 17 

13 10 29 

4 15 16 
8 12 9 

12 27 25 

9 14 
7 11 

16 25 

11 8 
4 7 

15 15 

Table 3. Numbers of soldering failures, counted on print panels. 

The analysis of whole plot effects has already been discussed and we can 

restrict ourselves to sub-plot effects. 

Following the procedure from section 3, we shall first test for inter

action between factor C and whole plot error. 

A Pearson X statistic for homogeneity was calculated for the 2x5 table 
ij 

at each cell (i,j) of the design. The results are shown in table 4. 
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Level i 
of factor A 

Level j 
of factor B 

Pearson 

1 

2.434 

2 

1.794 

2 

1 

7.846 

2 

1.213 

3 

1 

3.256 

2 

4.985 

Table 4. X2-statistics for interaction between factor C and 

whole plot error. 

Using the y2-approximation with df = 4, no X?.-statistic is signifi

cant at the 5% level. The sum value of X2.'s, devided by total df = 24 

equals X2 = 0.897, which is even less than 1. 

The conclusion is that the interaction between factor C and whole plot 

error may be ignored, so that the simpler model (2) is suitable for our 

purposes. 

The addition of data over replicates leads to the result of Table 5. 

B: sol
dering 
method 

°1 

°2 

C:copper 
pattern 

cl 
c2 

c2 

A: soldering location 

al 

26 
37 

35 (61) 
23 (60) 

a2 

25 
31 

32 (57) 
55 (86) 

a3 

50 
43 

54 (104) 
40 (83) 

Table 5. Data added over replicates (between brackets: data added 

over levels of factor B). 

On this data, a conditional analysis was carried out by the standard log-

linear model, including the interaction AB in each model that was fitted to 

the data. In table 6, loglikelihood ratio G -statistics and their corre

sponding df's are presented. 
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model 
term 

ABC 
AB, AC, BC 
AB, AC 
AB, BC 
AB, C 
AB 

df 

0 
2 
3 
4 
5 
6 

G2 

0 
4.71 
5.56 

13.34 
13.74 
13.85 

P 

1.000 
0.095 
0.135 
0.010 
0.017 
0.031 

Table 6. Loglikelihood ratio G2-statLstics, df and tail probability P. 

From the methods available for ;IKK1<>1 searching, we tried backward elimin

ation, leading to the model AB, AC where P = 0.135, which does not give an 

excellent fit to the data, but which is the best we have. The interaction 

between factor A, soldering location and factor C, !ype of copper pattern 

seems to be important, which is somewhat surprising from a technical point 

of view. Addition of the data over levels of factor B wis carried out, see 

table 5. Neither type Cj or c2 of copper pattern seems to be uniformly best 

over locations. 
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APPENDIX 1 

Proof of Lemma 2 

The expression 

x. . + ß 1/2 
7 (X. . . . - x. . ,». .,) / {7 [ - i J *L ] x. . 1 . . . (3) 

±.j*A lj+Jl i j * L L T + ß J ij+AJ 

can be written as 

x. . „ + p 1/2 

{\ , 1 x. . } (X. . - x it ) 
u Tïfi ' ij+*f ij*A ij+x i j * ' 

x. . „ + ß 1/2 x. . + R 1/2 
. . (4) 

For L -> », this result tends to the K-variate normal distribution with 
7 a2 

I 
mean 0 and covariance matrix n. i f + », where a0 is the 

1 1 o 
J max a^ 

1 

former factor in the expression (4). This follows from a multivariate 

version of a Theorem of Hâjek and 

the condition is equivalent with 

version of a Theorem of Hâjek and Sidâk (1967), p. 153. As ja2 = 1, 

7 (x. . „ + ß) x. . / max (x. . + ß) x. . -• <= 

which is satisfied under the condition of boundedness for x. . 

Finally, (3) is equal to 

x.. „ + 8 

Xij*l " "ij+J^ij* ( TTp ) x i j + * L 1 / 2 

•L £ f — ] / {7, \ — ÏÏ-
A I XiJ+A I I Xij+A 'J Xij+A 
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_1 
As the denominator has the limit / [ P ^ x-.] for L •*• », it follows 

that 

/{t x. .}(X. .. / x. . - %. .„) -• N(0,f3. . n. .) 1 ij' ij*+ 1J++ ij* ij ij 

which is the required result. 
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CHAPTER 6 

RANK TESTS AND RANDOM BLOCKING OF CLASSIFIED DATA 

1. INTRODUCTION 

Random blocking of classified, categorical data may have some consequences 

for the distribution of rank tests in testing for symmetry (Wilcoxon) and 

for treatment effect (Friedman). Essentially, the presence of a random 

interaction between blocks and treatments increases the variance of the 

asymptotic distribution of these rank tests. This influence of a random in

teraction on testing main-effects of fixed factors is familiar from the 

Anova mixed model, e.g. with a fixed factor A and a random factor B. By an 

approximate F-test, the A main effect is tested 'against' AB interaction, 

which has the status of a model term for error. 

There are some relationships with Brier (1980), who studies the 

classification of objects by nominal categorical variables under cluster 

sampling, obtaining asymptotical results for the distribution of X2-tests 

for loglinear models. In our case, one of the classifying variables is an 

ordered response variable, and rank tests instead of X2-tests are preferred 

for testing effects. It will be shown that, under the Dirichlet multinomial 

model used by Brier, similar results are obtained: the asymptotic distri

bution of the square of Wilcoxon's rank test is of type ß * y2, where ß is 

a constant (see section 2 for the details). 

The examples (see sections 3 and 5) consider experiments in which the 

quality of two manufacturing processes for a certain equipment is compared 

by the judgement of critical judges. The block factor 'judges' may have an 

interpretation as a fixed factor; however, the interpretation as a random 

factor seems to be much more to the point. Then, the levels of the factor 

'judges' are considered as a random sample from some large population of 

judges, e.g. all potential buyers of the equipment. This has some con

sequences for modeling and hypotheses testing and for the interpretation of 

the test results. This paper presents some results on this subject. 
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2. TESTING FOR SYMMETRY 

2.1. Model assumptions 

We shall consider problems of the following type. Suppose that for each of 

N levels of a factor "blocks", n objects are classified into 2J+1 classes, 

which are ordered by numbers -J, ..., 0, 1, ..., J. The hypothesis is that 

the classification of the objects into the 2J+1 classes is symmetrical with 

respect to class 0. As to the type of block factor, two cases can be dis

tinguished. 

Case 1 

The block factor is considered as a factor with N fixed levels. 

Our interest then lies in these N levels only, and each block level forms 

a population by itself. The vector of numbers X. = {X- .} . ,, i=1,2,..., N, 
1 lJ J=-J 

of classified objects for block level i has a multinomial (n, {it. .} . ,) 

distribution, where T, it. . = 1 for each i. 
j=-JlJ 

Case 2 

Now we are interested in one large population of block levels, and the N 

block levels represent a random sample from this population. The factor 

blocks is a random factor (non-specific factor, see Cox (1984)), and it has 

a different interpretation. As was noticed by Brier (1980), there is a 

dependence in the classification of objects, and we assume that a reason-

nable model for vector X. = {X. .} ._ -, is the Dirichlet multinomial distri-

bution (DMD), see Mosimann (1962), Brier (1980), and Engel (1985), with 

parameters (n,{ß it J . - • ) , where £• ,it. = 1. Parameters ß and it - {it-}- -• 

do not depend on the index i of blocks, as they are parameters of the 

entire population. 
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The DMD is generated by giving the probability vector P = {P.} . , of 

the multinomial distribution a Dirichlet distribution, with parameter 

vector {ßn.}._ -,. In the case of random blocks, for each block sampled 

from the population of blocks a random P-vector is sampled from this Di

richlet distribution, representing a random probability vector for the 

classification of the n objects. 

The vector % has the interpretation of an average probability vector over 

the population of vectors, in the sense that E(P) = %. 

Furthermore, parameter ß measures the variability of the random vector P. 

For p ->• <», this variability reduces to zero, the DMD reduces to the multi

nomial distribution of case 1 with probability vector %. 

Hypotheses for symmetry can be formulated and tested for both cases. 

Case 1 Hx: it. . = it. ., j=1,2, ..,J, i=1,2, ..,N; 

Case 2 H, : % = it for j=1,2,...,J. 
j -J 

The random probability vector P of the DMD will deviate with probability 

one from its mean value it, for every finite value of the parameter p. This 

deviation of P from % can be interpreted qualitatively as "random inter

action" between random blocks and the factor "difference between treat

ments" or treatment effect. The overall treatment effect is expressed by 

the probability vector n (for which the hypothesis H, is formulated), but 

the treatment effect may show local variations from block to block, which 

is expressed by the random probability vector P with mean it and parameter ß 

for dispersion, which is interpreted as a parameter for interaction. The 

distribution of e.g. Wilcoxon's rank test for symmetry will be shown to 

depend on this interaction parameter ß. 
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The presence of this random interaction does not make testing for treat

ment effect useless, as the treatment effect is defined as an average ef

fect, represented by vector it, over the entire population of blocks, of 

which only a few are sampled in the experiment. 

2.2. Test Statistic 

For this type of problem, a typical test statistic for hypothesis Hj of 

case 1 is a rank test, e.g. Wilcoxon's test for symmetry with correction 

for ties (see Lehmann (1975), p. 123; Conover (1971), p. 206). 
f i J It is applied straight to the sum vector of data X = {X .}• -,, 

where X . = E X.. for all i. 

Let D., i=1,2,...,J, be defined as 0. = X . + X . and Dn = X n. 
J J +,-J +,J 0 +,0 

Given D. = d. for all j, midranks r. = df1 + d1 + . . + d . . + (d. + 1)/2 

are introduced, because ties occur by the nature of the problem. 

Then Wilcoxon's test statistic is defined as 

J 
W = E X . r. ... (1) 

j=1 +'J J 

with conditional moments, under the hypothesis Hj, 

EU(W) = (Nn (Nn+1) - dn(d+1))/4; 
M 0 0 

var (W) = [Nn (Nn+1)(2Nn+1) - d (d +1)(2d +1)]/24 

- [EJ d.(d.-1)(d.+1)]/48; ... (2) 
•j—-l J J J 

see Lehmann (1975), p. 130, where the index M denotes that these moments 

are computed under the multinomial distribution of case 1. 

Under the hypothesis Hj , the distribution of the standardized statistic 

W* = (W - E..(W))//var..(W) tends to the standard normal distribution for 
M M 

Nn - dn ->• », which has the following practical interpretation: for large 

N or large n, d not being dominant, the distribution of W can be 

approximated by the normal distribution. 
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We shall now turn to the hypothesis H2 of case 2. 

We propose W as a test statistic for testing the hypothesis H2 . Under the 

basic DMD and the hypothesis H2, E^-nCW) = E M ^ a n d v a r D M D ^ = 

= P * var (W), where ß = (n+ß)/(1+ß). Under the hypothesis H2, the 

limiting distribution for N * - of W* = (W-E..(W))//varu(W) is the N(0,/p) 
M M 

distribution. 

This result Ls formulated more precisely in the following theorem 1. 

Theorem 1 

Let X = {X .} •_ -, be a random vector having the 2J+1 variate DMD with 

parameters n and {ßTi,}- -., E u4=1. Let X. = {X..}. ,, i=1,2,...,N, 
J J-~J i-_j J J J-~J 

be a set of N independent random vectors, having the distribution of X. 

Let W be Wilcoxon's test for symmetry (1) with moments (2). 

Then under hypothesis H2 and given D. = d. for j=1,2,...,J, the distri

bution of W* = (W-E,.(W))//var..(W) tends to the N(0,/p) distribution for 

M M 
N -s- », where P = (n+ß)/(1+ß). 

Proof For multinomial random vectors Yj, parameterized by n and 

{•ji.} ._ ,, the result is true with {J = 1, see Lehmann (1975). Like sum 

vector Y , sum vector X has a multivariate normal limitinq distri-

bution for N -> °= when standardized by 

E(X .)= N n 7c. = E(Y . ) ; var(X .) = N n Tt.(1-n.) * p = var(Y .)*P; 
+ ,J J +»J +»J J J +»J 

cov(X .,X , ) = - N n n. %, * p = cov(Y .,Y , ) * P. 
+,J +»k J k +.J +ik 

As W is a linear function of the components of vector X , the li

miting distribution of W* based on X for N •* °o is that of W* based 

on Y for N •+• °>, both given D. = d. for j=1, 2, ..., J, and under H2, 

except for the factor p in the covariance matrix of X . 

So the distribution of W* tends to the N(0,/p) distribution for N -• <=, 

given D. = d., j=1, 2, ..., J, and under the hypothesis H2. 

Under the DMD the W-test is in fact a parametric test, as its distribution 

depends on the unknown parameter ß (only) even under H_. 
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Following Brier (1980), the constant ß is estimated consistently by 

P = X2/2J(N-1), where X2 = Z (X. . - X ./N)2/(X ./N) is Pearson's 
jj lJ +>J +»J 

statistic. If B turns out to be less than one, setting B = 1 seems to 

be a reasonable truncation. For large N the distribution of the corrected 
* * 

W , which is W //ß, is approximately the standard normal distribution. 

2.3. Earlier results for J=1 

A more direct relationship with earlier results of Brier exists for ob

jects classified into three classes, hence J=1. Then Wilcoxon's W is equi

valent to the sign test (Lehmann (1975), p. 120), with test statistic S = 

X + .j. Under multinomial sampling, given Dj = dj, moments are 

E (S) = djitj/dtj + it_j ) and var (S) = d1it1it_1/(it1 + n_j ) . 

Further, it holds that the distribution of S* = (S-E„(S))//var ,(S) tends to 
M M 

the N(0,/B) distribution for N •* °° under DM sampling, which is essentially 

implied by Theorem 1. 

Then, under the hypothesis H, : n, = n_, , 

(S*)2 = (X+;1-1/2 d1)2/(1/4 d.,) * ß * x2 

in distribution for N -• <=. On the other hand, (S ) * is equivalent to 

Bowker's Xj* test for symmetry (Bishop c.s. (1975), p. 283) 

X B = (X
+,1 - X

+ , - 1 ) 2 / D 1 ' 9ivenD1 = d,. 

We can formulate the problem for J=1 in terms of the logllnear model 

log m. . = u + u„ ... + u„. .. + u „.. .. y ij K O 2(j) 12(ij) 

for a 2x2 table, where ^ . = ^2(i)' U12(ii) = U12(ii) U n d e r t h e 

hypothesis of symmetry. It is also implied by Brier's results that 

XD •* P * ~k, in distribution for N •*• °°, and we have a link with these 
B 1 

earlier results. Contrary to the sign test, Wilcoxon's test for symmetry 

cannot be formulated in terms of the standard loglinear model. 
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3. EXAMPLE 1 

In the development of Video Long Play (VLP) discs, the quality of two pro

cesses P- and P„ for manufacturing VLP discs is to be compared by visual 

means. Each of 10 critical judges is asked to compare the quality of 32 

types of images recorded on VLP discs from process P^, with the quality 

of the same 32 types of Images on VLP discs from process ?2' We shall 

consider these 32 types of images not as a sample but as a fixed and estab

lished population of representative Images, so that no dependence is intro

duced between judges of the classification results. In the experiment 

carried out, the images are presented paiiwise on two identical monitors 

and judges are asked to classify each of the 32 observed differences of 

image quality into one of the following classes: 

number 

class 

-3 

P1 worse 

than P„ 

-2 

P. less 

than P 

-1 

P. slightly 

less than P„ 

D 

no dif

ference 

1 

P2 slightly 

less than P. 

2 

P„ less 

than P. 

3 

?7 worse 

than P 

For each judge, the result of his classification of images is a vector of 

numbers X = {X.} . _,, where E X. = 32 is fixed by design. Results for 10 
J J= j J 

judges are presented in table 1. 

Judge 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

P1 worse 

than P 

1 
0 
0 
1 
0 
0 
0 
0 
1 
0 

P. less 

than P„ 

3 
1 
1 
4 
0 
3 
3 
3 
4 
0 

P1 si. less 

than P2 

6 
4 
6 
6 
6 
8 
9 
5 
6 
9 

no 

diff. 

16 
19 
19 
8 

22 
17 
18 
19 
15 
18 

P? si. less 

than P. 

3 
4 
1 
9 
4 
2 
2 
5 
1 
5 

P„ less 

than P. 

3 
4 
4 
4 
0 
2 
0 
0 
5 
0 

P„ worse 

than P. 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

Tot. 

32 
32 
32 
32 
32 
32 
32 
32 
32 
32 

Table 1. Results from a VLP comparison experiment with 10 judges. 

From the data, some heterogeneity between judges is observed, as well as 

some slight asymmetry to the left. Formal testing by Pearson's X2 of the 

hypothesis of homogeneity, resulting in the value X2 = 68.54 with 2J(N-1) = 

54 degrees of freedom (df), does lead to a rejection of this hypothesis at 

the 10SÓ level, so that there is an indication for a random Interaction 

between judges and treatments. 
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If the factor judges is interpreted as a fixed factor, Wilcoxon's statistic 

can be used for testing hypothesis H± of symmetry. The value is W = 

14789.50 where EM(W) = 18327.00, /var (W) = 1516.54, hence W* = -2.33. By 

the standard normal approximation of the distribution of W* the conclusion 

is that W is significant at the b% level, so that Hj is rejected. Some pre

ference seems to exist among the 10 judges for process P2• 

Interpreting judges as a random block factor and allowing for random inter

action, a correction /p is needed for W*, where ß is estimated 

by ß = X2/54 = 1.27. Then W //ß = - 2.07, which is still significant 

at 5%. Averaged over the large number of judges in the population, i.e. all 

potential buyers of VLP equipment, an asymmetry between the manufacturing 

processes Pj and P2 appears to exist. However, note that many 'no differ

ence' classifications were given by judges, so that formal testing results 

should be interpreted with some care. 

The results of table 1 can be condensed to those of table 2, which could 

have been obtained if only three categories had been available for a clas

sification. 

Judge 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

P. less 

than P„ 

10 
5 
7 

11 
6 

11 
12 
8 

11 
9 

no dif

ference 

16 
19 
19 
8 

22 
17 
18 
19 
15 
18 

P„ less 

than P1 

6 
8 
6 

13 
4 
4 
2 
5 
6 
5 

Table 2. Condensed results from the VLP comparison experiment with 10 

judges. 

The sign test for the condensed data results in S = 59, where E (S) = 
M 

74.50, /varM(S) = 6.10 and S* = -2.54, which is significant at the 5% 
level. From X2 = 26.46 with df = 18, we obtain ß = 26.46/18 = 1.47 as 

an estimate of p. The corrected S* is 5*//ß, which results in 

S*//ß = -2.10, and this leads to a rejection of the hypothesis of symmetry, 

confirming our earlier results. 
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4. TESTING FOR TREATMENT EFFECT 

4.1. Model assumptions 

Closely related to the comparison problem for two treatments by testing for 

symmetry is the following problem. Suppose that a factor blocks has N 

levels. At each level, let J treatments be applied to n x J objects by com

plete randomisation, n objects being available for each treatment j. The 

result of the application of the j t n treatment on an object is classified 

in one of K ordered classes. The question is, how can we test the hypoth

esis of no treatment effect? Friedman's test seems to be a good candidate. 

Again we shall make a distinction between fixed and random blocks. 

Case 1 

If blocks are considered as fixed, a standard model for the data is the 

product multinomial distribution for each of the N independent matrices 

X. = {X...}. , of observations, i=1,2,...,N. Then vectors {X- ••.}•._.•, 

j=1,2,...,J, have independent multinomial (n,{it. .. }. _. ) distributions, 

where T. it. .. = 1. 
k=1 lJK 

The hypothesis of no treatment effect is formulated as 

Hj : it. = it. . for all i,j , j and k. 
ij-k ij7k 1 2 

Case 2 

For random blocks the random component for block effect should be in

cluded in the model. Also a random interaction between blocks and treat

ments can be present, which may have its influence on the distribution of 

Friedman's test for treatment effect. 

In general, for each block the J probability vectors of the multinomial 

distributions of case 1 will be dependent random vectors in case 2, with a 

vector of mean values {tt..}. for probability vector j , j=1,2,... ,J. 
jk k 

The hypothesis of no treatment effect is now formulated as 

H2: itj k = % for all j ^ J2 and k. 
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We shall first consider Friedman's test for case 1, and then we shall see 

how to use it in an example with random blocks. 

4.2. Test statistic 

A rank test for testing hypothesis H, is obviously Friedman's test (Leh

mann (1975), p. 262, Conover (1971), p. 273) for n objects per treatment 

and with correction for ties. Given 

D.. = d.. , where D.. = T, X. ., , the numbers r., = d.„ + d.„ + ... + 
ik ik ik iik ik i1 i2 

J J 

+ d + (d +0/2 are midranks for i=1, 2, ..., N, k=1,2,.., K. 

Asymptotically for N •* <» the Friedman statistic 
J N K 

1 2 Z ( Z T, X. ., r,. ) 2 - 3N(n J+1 ) 
N n2J(n J+1) j=1 i=1 k=1 1Jk lk 

Q = ...(3) 
1 - n (d?„ - d )/{N n J{(nj)2 - 1}} 

i k 1 K 1 K 

has the y distribution with v=J-1 deqrees of freedom under the 
v 

hypothesis Hj, given D.. = d., for i=1, 2, ..., N, k=1, 2, ...,K. 

For n = 1 the proof of this limiting result can be found e.g. in Lehmann 

(1975). 

We shall see by an example how to use Q for fixed and for random blocks. 

5. EXAMPLE 2 

As a variant of example 1 we shall consider the following experiment with 

judges, which is different from the former one. In this new experiment each 

of 10 judges is asked to give his judgement on the process quality of each 

manufacturing process P. and P„ separately. 

The quality of each process is judged on 32 types of images recorded on VLP 

discs from the process and the judges are asked to classify each of their 
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32 judgements in one of four ordered classes (very good, good, not good, 

less good). As in example 1, the 32 types of images are considered to be 

the entire population of images. 

The experiment is carried out as a randomized blocks experiment and the 

results are found in table 3. 

Block differences appear from the data, but an interaction between blocks 

and treatments seems not to be present. Applying Friedman's Q (see section 

4.2) to the data for testing the effect of the factor process, correcting 

for ties, gives us the result Q = 2.64. 

In the case of fixed blocks (case 1 ) , the distribution of Q is approxi-

mately ^ with df = 1 under hypothesis Hj and for large N, so that Hj is 

not rejected at the 5% level. 

In the case of random blocks (case 2) we proceed as follows. 

The hypothesis to be tested is 

H2: it1k = n 2 k for all k; 

see section 4.1. Remember that we have to do with dependent random pro

bability vectors, say vectors 

P. . = fP. }, , j = 1,2, for each block i with 
ij ijk k 

E(P. .) = it., where it. := {it.,},, j = 1,2, are vectors of mean pro-
•ij J J Jkjk 

babilities. 

If we condition on the levels of the random (block) factor judges we are 

back in the situation which was called case 1 in section 4.1. In fact we 

condition on the random probability vectors P._ and P.„ for all i so that 
v i1 i2 

we obtain fixed probability vectors p., and p.„. 
i1 i2 

As in the case 1 we can test the hypothesis 

TU : p = p for all i and k 2 ilk x2k 

by applying Friedman's test Q to this conditioned problem. This hypothesis 

H2 is of course different from the hypothesis 
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H? J it«, = it,,, for all k 
* 1k 2k 

of no overall process effect. 

Generally speaking, there can be 

1. differences between the blocks as regards to their response levels 

(under îi2 as well as under H 2 ) ; 

2. an influence of the factor manufacturing process on these differences 

(only under H 2 ) . 

We tested hypothesis H2 before in the case 1, and it was not rejected. We 

shall not formally test the hypothesis H2. However, as the former hypo

thesis was not rejected, there does not seem to be any reason to reject the 

latter, much less restrictive, hypothesis. 

Of course, some more formal procedure for testing the hypothesis H2 is 

needed; it is an interesting subject for further research. 
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Judge 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Man. 
process 

P 
1 

P 
2 

P 
1 

P 
2 

P 
1 

P 
2 

P 
1 

P 
2 

P 
1 

P 
2 

P 
1 

P 
2 

P 
1 

P 
2 

P 
1 

P 
2 

P 
1 

P 
2 

P 
1 

P 
2 

Response class 

1 very 
good 

6 

8 

0 

0 

0 

0 

2 

3 

13 

16 

5 

7 

0 

0 

21 

24 

0 

0 

2 

3 

2 good 

10 

9 

22 

24 

25 

22 

19 

21 

19 

16 

18 

16 

17 

19 

11 

6 

24 

28 

22 

24 

3 less 
good 

8 

7 

10 

8 

5 

7 

11 

8 

0 

0 

9 

9 

15 

12 

0 

2 

8 

4 

8 

5 

4 not 
good 

8 

8 

0 

0 

2 

3 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

Table 3. Results from a VLP comparison experiment with 10 judges; 

all row totals are equal to 32. 
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6. SOME DISCUSSION 

For ordered categorical data in random blocks where a random interaction 

between blocks and treatments may be present a simple correction to the 

limiting distribution of the sign test and the rank test of Wilcoxon was 

given in the previous sections. The Friedman test too was applied to a pro

blem with random blocks. 

The asymptotic approximation to the distribution of these rank tests is 

valid for a large number N of blocks. For small N, exact permutation tests 

are popular in nonparametrics, and large computers are helpful for doing 

calculative work. Unfortunately, under the DM-model the null distribution 

of e.g. the sign test depends on the unknown interaction parameter ß. 

Another handicap is that the class of DMD's is not closed under addition: 

if vectors X., i = 1,2, ..., N, are as in Theorem 1, the sum vector X has 

no DMD. 

Estimating ß by ß is a way out, doing calculations on independent DMD's 

where ß is substituted for ß and conditioning on relevant marginal sums. 

However, much of the elegance of nonparametric permutation tests is lost. 
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CHAPTER 7 

RANDOM MODELS FOR COUNT RESPONSE DATA 

1. INTRODUCTION 

In chapters 2 to 6 we considered the analysis of count data for experimen

tal designs where all primary factors were fixed, and where random factors, 

modeled by random components, were only of secondary importance. However, 

in many situations the primary factors are random factors and we need 

models for random factor designs. 

In this chapter and in chapter 8, models for count response data from 

random factor designs will be proposed. Models for random factor designs 

with continuous (normal) response data are very well known and the analysis 

of such data (the analysis of variance) can be found in standard books like 

that by Scheffé (1959), chapter 7. No results have been published, however, 

on such models for count data; for some remarks in this direction see Cox 

(1984), 21. 

Fixed factors and random factors have different interpretations. The levels 

of a fixed factor by themselves are considered as a population and the 

levels of a random vector are considered as a random sample from a popu

lation. In both cases we are interested in the population that should be 

characterized and this characterization is the basis for statistical in

ference. It is typical for random factors that it is still relevant to test 

for main effects in the case of random interaction, which is not true in 

the fixed factor case. For the random factor design the estimated values of 

the variance components enable us to assign the total variation observed in 

the data to the various sources of variation. 

The models proposed in this chapter for the random factor design are of a 

multiplicative type. By conditioning on the levels of the random factors we 

obtain fixed factors and the loglinear model, extended to allow for over-

dispersion as in the chapters 3 and 4. In fact, Model II from chapter 3 is 

reobtained if overdispersion is modeled by the gamma distribution. 
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The limit theorem stated in chapter 4 is used here too for model simplifi

cation. The following result is obtained: in the case of large counts and 

with a lognormal assumption for the random model components the analysis of 

the data can be carried out by performing a standard Anova on the log-

transform of the data. This establishes one of the heuristic practical ap

proaches to count data analysis. 

An application of the theory is given by the analysis of data from a man-

machine experiment in two random blocks where the response data concerns 

the number of defect products manufactured by each man on each machine. We 

assumed the lognormal-Poisson model and the application is worked out in 

section 3. Some discussion in section 4 concludes this chapter. 

2. MODELS FOR RANDOM FACTOR DESIGNS 

We shall propose a model for the analysis of count data from random factor 

designs, and we shall use the result of Theorem 1 of chapter 4 for model 

simplification. Actually, no results seem to have been published on the 

subject of random factor designs for count data. It seems unlikely however, 

that the problem has not been met before in a practical situation. 

In agreement with the usual models for fixed factor designs, a multiplicat

ive model will be proposed for the random Poisson mean Mjj for cell (i,j) 

in, say, a two-way classification of crossed and random factors, with 

levels i = 1,2,...,1, j=1,2.,...,J, and where k=1,2,...,K, replicates per 

cell are available. The model will have the following structure. 

(i) Given M. = m. , i=1,2,...,I, j=1,2,...,J, k=1,2,...,K, random 
i J * i J k 

variables X. are independent, having the Poisson 
i jk 

(m. ., ) distribution; 
ijk 
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(ii) M. ., = M. . F, .. ... where M. . is the positive random mean for cell 
ijk ij k(ij) ij 

(i,j), i=1,2,...,I, j=1,2,—,J, and F ^ ^ is the 

positive error factor for the Ur replicate, 

k=1,2,...,K, at this cell. It is assumed that the 
random variables F. /. .N, i = 1,2, ..., I, 

k(ij)' 

j = 1,2, ..., J, k = 1,2, ..., K, are independent 

and independent of the random variables M. .. 

Applying the results of Scheffé (1959), section 7.4, where the decompo

sition of classified continuous response variables into model components 

is considered onto the variables log M. ., i=1,2, ,1, j=1,2, ,J, as if 

these variables were response variables, the result is that these random 

variables are decomposed into a sum of model components as follows: 

log M.. = u + A. + B. + (AB). ., 
ij i J 1J 

where E(Ai) = 0, var(Ai) = log (1+0^ ); 

E(Bj) = 0, var(Bj) = log (1+a~1); 

E((AB).j) = 0, var((AB).j) = log (1+a"J). 

Here A. and B. are the model components for main effects and (AB).. is the 

model component for interaction; the variances are expressed as they are 

for reasons that will become clear later. It was shown by Scheffé that 

the covariance matrix of the vector {A , B ,(AB) }, where e.g. 

A = {A-}-_i anc' A is the transposed of A, is diagonal. Further, M. ., 

i=1,2,...,I, j=1,2,...,J, can be written as 

M = exp(n + A. + B + (AB). J = TF.U,,) F ^ ) F . ^ a ^ ) , 

where f := e ; 

^(a.,) := eAi ; 
F4(«„) := eBJ ; 

r°l j (!1 2, .. . < » > U 
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Note that these product terms are not necessarily uncorrelated. 

Incidentally, by conditioning on the levels of both random factors we 

obtain 

(ii)' M. = v f. f. f.. F, ... 
ijk ï j ij k(ij) 

Combining (i) and (ii)' we obtain a multiplicative model for the fixed 

factor design; see also chapters 3 and 4 where this model was discussed for 

F"k(.ii) having the gamma distribution. 

The model (i), (ii) is specified by assigning a distribution to the random 

variables Fi, F , F and F
k(1j)» 1 = 1 , 2 , — , 1 , j=1,2,...,J, k=1,2,...,K. 

Possible choices of a distribution are the following: 

(iil)' the gamma distribution; 

(iiL)'' the lognormal distribution. 

It would be consistent to study model (i), (ii), (iii)' as a natural exten

sion of previous results: model (i), (ii)', (iii)' was studied in chapter 

4. Unfortunately, even in the two-factor case the analysis is complicated, 

as products of gamma distributed random variables no longer have a gamma 

distribution. 

If the random variables F have lognormal distributions instead of gamma 

distributions, it will be shown that the analysis is greatly simplified. 

Some support for the similarity of the two types of distributions for a 

large shape parameter is given by Johnson & Kotz (1970), p. 196. 

We shall make the assumption of joint normality for the uncorrelated com

ponents of vector {A , B , (AB) }, which implies that these components are 

independent random variables having normal distributions. 

The consequence is that the components of vector {F (a*),F (a 7 ), F (a1?)} 

are independent random variables, having lognormal distributions with mean 

values /(1 + a-1) and variances (a-1 + a - 2 ) , where <* = «i , «2 > al2> 

respectively; see e.g. Aitchison and Brown (1957) for some properties of 

the lognormal distribution. Assuming the error factor F[<(±j) t° have a 

lognormal distribution with parameter a,, so that 
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E ( F k ( i j ) ) = / ( 1 + o^1) and v a r ( F k ( l j ) ) = « ^ + a ' 2 , 

the resul t i s that the variables 

% a * W FJ(«2) V " ^ Fk( i j )S ) f ° r - 1 ' 2 ' " - ' 1 ' J=1.2.-.J. 
k=1,2 , . . . ,K 

have lognormal distributions in the following sense: the vector log M where 

M = (M. ..}.., has a multivariate normal distribution. Further, 

E(X. ., ) = E(M. ., ) is a constant, 
ijk ijk 

Also, vector M has the form M = Y H, where H is a vector of jointly dis

tributed positive and non-degenerate random components, so that the assump

tions of Theorem 1 of chapter 4 are satisfied. Then for large W, vector X 

is distributed as vector M, approximately, and we shall write 

X i j k = " F i ( B 1 ) F j ( " 2 ) F i J ( « 1 2 > F k ( i j ) ( a 3 > -

The equivalent form 

log X. ., = u + A. + B. + (AB). . + E, ,. .., ... (1) 
ijk ^ l J ij k(ij) 

where E .... = loq F .. .., is the Anova model for the crossed design with 
k(ij) " k(ij) 

two random factors. 

The analysis of variance on the data by this model is presented by e.g. 

Scheffé (1959), chapter 7. To simplify further calculations as regards to 

the estimation of var(X. ., ) and its components, we shall make the fol-
Ljk 

lowing transformation: 

_1 
Li(a1) := F. /(«.,(«., + 1) ); 

_1 
Lj(a2) := F. S(a2(«2 + 1) ) ; 

_1 
Lij^a12^ := Fii ^(ai2^a12 + 1^ '̂ 

Lk(ij)( a3) := Fk(ij) '/(«3(a3 + 1)" ); 

_1 _1 _1 _1 
e := ̂ /[(a1+1)(a2+1)(ot12+1)(a3+1) a1 a2 a 1 2 «3 ]• 
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Then we obtain 

X. .. = e L.(aJ L.(o.) L. .(a.,) L. ,. .»(a,), ... (2) 
ijk l 1 j 2 ij 12 k(.ij) 3 

where 

_1 
ECL^a^) = 1, varCL^a.,)) = a1 ; 

_1 
E(L.(a2)) = 1, var(L.(a2)) = <*2 » 

_-] 
E(Li-(a12)) = 1. var(Li-(a12)) = a 1 2 ; 

E(Lk(ij)(a3)) = 1, var(Lk(lj)(a3)) = a"! 

Between the model components of the models (1) and (2), relationships exist 
-1 -1 -2 -2 

of type varCAp = log(1 + a^ ) = a1 + 0(a1 ) = vard^Ca-j)) + 0(a-, ) for 

large «j. Furthermore, as 

E(L.(Bl)) = E(L (o2)) = E(L (o12)) = E(Lk(. }(o3)) = 1 , 

ib holds that 

var(X, .. ) = 6 {a* + a« + a1 2
 + a3 + (̂ot ^ 

-2 -1 -1 
for large a-i , a2, a*-, and oc-j, where 0(a ) stands for 0(a.) a2 ) + 

-1 -1 -1 -1 -1 -1 
+ 0(a1 a2 ) + ... + 0(a1 a2 a12 a5 ). We shall use the approximation 

var(X ) = e2{«î + «2 + a i 2
 + a3 ̂ ' 

0 -1 

so that estimators of the variance components 9 a , for 
a = a. , a„, a.„, a,, can be added to obtain an estimator of var(X. ., ). 

I Z I Z P -̂J * 
Estimators of var(A.), var(B.), var((AB)..) and var(E. , . .>. ) follow 

1- J IJ * V 1J / 

directly from the results of Anova applied to log X. ... Ignoring terms 
1JK 
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-2 -1 -1 -1 
0(a ) , for a = a-,, ant « i?» a3> these a re e s t ima to r s of cu > ao i « IO a r |d 

-1 9 1 

and a, > respectively. To estimate the variance components of type e a , 

it remains to estimate the parameter 9 for the general level. 

This parameter 9 will be estimated by the geometric mean 9 of, say, the 

N := UK observations; in a short notation 

Ä 
e ~ 

N 
/ 

N 
n 

n=1 
X 

n 

This choice is motivated by the fact that a reasonable estimator for 
-1 -1 -1 -1 -1 

\x - log 9 + 0(a ), where 0(<x ) stands for OCa^ ) + 0(a2 ) + 0(a12) + 
_1 

0(a, ) for a. , a«, a1 7 and a-, being large, is the arithmetic mean 

- N . 1 

H = log X = log / n X . As 9 = e^ it holds that E(e) = 9(1+0(a )), so that 
n 

n 

for large a's, the estimator 9 is approximately unbiased. 

This final result follows from the Taylor series approximation 

9 = e^ = e^ + (̂ -n) e^ + 1 C^)2 e» 
2 

from which we obtain, using that E(u.) = \i, 

A .. A A A 

E(9) = e^ + — e^ var(n) with var(|i) = 0(a~ ). 

Then 

-1 
E (6) = ê (1 + OC«"1)) = 9 e0 ( a >(1 + OCa-1)) = 9(1 + 0(cf1))2 

= 9(1 + 0(a"1)), 

and this is the result that was to be obtained. 



^ 
112 

3. APPLICATION 

The classical man-machine experiment was carried out in a factory hall. Let 

three machines be randomly sampled from a large population of machines, 

i.e. all machines in a factory hall. Four men (say: workers) are randomly 

sampled from a population of workers, i.e. all potential operators of the 

machines. All workers are supposed to manufacture large and equal numbers 

of products on each machine, and the number of defects is counted. See 

table 1 for the data from this experiment in two randomized blocks. 

block 

^^worker 
^V. 

machine ̂ s . 

1 
2 
3 

1 

1 

13 
16 
5 

2 

17 
18 
6 

3 

11 
19 
8 

4 

8 
12 
8 

2 

1 

15 
20 
7 

2 

19 
17 
9 

3 

9 
18 
10 

4 

10 
15 
7 

Table 1. Numbers of defects from the worker-machine experiment in two 

blocks. 

All three factors in the design are typically random factors, and we shall 

analyse the data by the methods presented before. Labeling the factor 

machines with M, the factor workers with W and blocks with B, the random 

and linear model for log X. .. is 
1 JKJc 

log X. ., = n + M.(a, ) + W.(a,) + B, (a,) + MW. .(a,,) + ... 

... + MWB. (a,23) + E Aa.), 
ijk l z i A(ijk) * 

_1 
where E(M.) = 0, var(M.) = log (1 + a1 ) , etc., see section 2. 

Some important aspects of the analysis of this data by the random model are 
-1 

testing hypotheses of type H: a' 0, a ai » •> a 23 • 
for main 

effects and interactions, identifying important sources of variation. 
2 -1 estimating variance components of type 9 a , assigning the variation 

observed in the data to important sources of variation identified before. 
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The Anova results for the data of table 1 are as follows, see table 2. 

Model term 

M 
W 
B 

MW 
MB 
WB 

MWB+E 

SS 

2.7484 
0.3057 
0.0868 
0.6091 
0.0232 
0.0472 
0.0216 

df 

2 
3 
1 
6 
2 
3 
6 

MS 

1.3742 
0.1019 
0.0868 
0.1015 
0.0116 
0.0157 
0.0216 

F(vj ,v2) 

15.07 (2,4) 
1.07 (3,5) 
4.00*)(1,6) 
4.69 (6,6) 
0.54 (2,6) 
0.73 (3,6) 

P 

< 0.05 
> 0.10 
> 0.05 
< 0.05 
> 0.10 
> 0.10 

Table 2. Anova results for the worker-machine experiment. *) No reasonable 

denominator degrees of freedom are obtained for the F-test for the 

B-effect. As the interactions MB and WB are not significant, the fi

ef feet is tested against MWB+E. 

A synthesis of variances is needed to test main effects via approximate F-

tests; see Scheffé (1959) and Cox (1984). Remember that the approximation 

we made amounts to ignoring the Poisson part (i) of the model of section 2. 

The within-cell variation in the data is then fully explained by the model 

component for error E /. .. .. with parameter ock. 

From the Anova table 2 it is seen that the main effect of the factor ma

chines is significant. Also the interaction between machines and workers is 

important. There seem to be differences between machines in the factory 

hall, and the variance component p>2a7 is non-vanishing. Differences between 

machines depend on workers and certain machines seem to be favourite only 

for some workers, as is seen from the data. 

Estimates of the variance components that contribute to the variance in the 

data are shown in table 3. 

Model term 

M 
MW 

MWB+E 

_1 
Estimate of a 

0.160 
0.040 
0.022 

9 -1 
Estimate of e a 

20.95 
5.24 
2.88 

Table 3. Estimates of variance components. 



^ 
- 114 -

An estimate of var(X. ) = e2 (aj" + a[2 + «Ï23 + a^ ) is 

var(Xi i k Ä) = (11.444)2 * 0.222 = 29.07, estimating e by the geometric mean 

S. The major part of the variation in the data should be assigned to ma

chines and, to a much smaller extent, to the interaction between machines 

and workers. 

4. DISCUSSION 

A class of lognormal-Poisson models was proposed for modeling count data 

from random factor designs. For large counts the analysis of the data is 

carried out simply by performing standard Anova on the log-transform of the 

data. 

It is recalled that some simulation results were obtained in chapter 4 for 

the experimental design with one fixed factor and the lognormal-Poisson 

model for the data. From these results we know that the approximate F-sta-

tistic for testing the main effect of the single factor behaves quite 

reasonably under the null hypothesis. For the random factors design, the 

analysis method is not essentially different from the method used in the 

fixed factor case. In both cases the lognormal-Poisson model is approxi

mated by the lognormal model, and ratios of sums of squares form F-tests 

for testing the hypotheses. Thus the quality of the F-tests used in this 

chapter is not expected to be less than that of the F-test used in the 

fixed factor case. 

Generalizations of the results of section 2 to the case of three and more 

crossed and random factors are straightforward. Also nested designs with 

random factors can be treated by this method. An example will be presented 

in chapter 8, where the results of the analysis of data by this method are 

compared with those obtained by a quasi-likelihood approach. Important too 

are extensions to the "mixed model" case where fixed and random crossed 

factors are present in the design. These may be performed without involving 

too many difficulties; it is a potential subject for further research. 
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CHAPTER 8 

RANDOM MODELS FOR COUNT RESPONSE DATA, 

A QUASI-LIKELIHOOO APPROACH FOR NESTED DESIGNS 

1 

1. INTRODUCTION 

Breslow (1984) and Engel (1984) presented some methods for the analysis of 

independent count data from fixed-factor designs, showing non-Poisson dis

tributional behaviour (extra-Poisson variation). A class of models for 

count data from random-factor designs was presented in chapter 7. The 

analysis of this data appeared to be rather straightforward for i) an ap

proximate version of the model for large expections and ii) a lognormal 

assumption made for model components. The result is that the random vari

able X of counts has a lognormal distribution, approximately, so that an 

analysis of variance can be carried out on log X, having a constant vari

ance. 

We shall now try to tackle one of the problems from the analysis of count 

data for random factor designs by the quasi-likelihood approach, which was 

formally introduced by Wedderburn (1974), although some aspects of it had 

been used before. The essential part of this method is that assumptions are 

made for the random variable X only regarding its mean and variance; that 

is, a known mean-variance relationship is assumed, expressing the variance 

of X as a known function of the mean. This mean-variance relationship is 

used in the estimation procedure by Iteratively Weighted Least Squares for 

the parameters of a linear model assumed for some function of the mean 

value of X. 

From the mean-variance relationship a quasi-likelihood function too can 

often be made explicit. It plays the role of the likelihood function and it 

is a basis for deriving test statistics for hypotheses on the parameters of 

the linear modal. Note that no distributional assumptions have to be made. 

This can be seen as an advantage of quasi-likelihood: the formulation of a 

complicated model, leading to a complicated analysis, is now avoided. 
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In the following sections, the use of quasi-likelihood will be proposed for 

the analysis of count data from nested designs with several random factors. 

Variance components will be estimated and hypotheses will be tested by 

statistics based on quasi-likelihood functions, having asymptotic distri

butions (for many replicates) of chi-squared type. 

To justify the use of the quasi-likelihood method, the assumed mean-vari

ance relationships should be verified by the data, if possible. On the 

other hand, it is shown that one set of quasi-likelihood assumptions (out 

of two that will be made) is approximately satisfied for the class of 

models proposed in chapter 7 for the case of a nested design. 

In section 4 the results are compared of the analyses of one set of data 

under the two sets of quasi-likelihood assumptions made in section 2, and 

also under the approximate lognormal model from chapter 7 for the data. Not 

much difference is observed between these three methods with respect to the 

estimates of variance components, and the testing procedures lead to the 

same conclusions. Of course, not everything is said from only one set of 

data. It was, however, also mentioned by McCullagh and Neider (1984), 

p. 132, that in general the results do not heavily depend on the specific 

quasi-likelihood assumptions made. 

Some discussion and suggestions for further research make up the concluding 

section 5 of this chapter. 

2. THE QUASI-LIKELIHOOD APPROACH FOR NESTED DESIGNS 

2.1. Sone introductory remarks 

The quasi-likelihood method was formally defined by Wedderburn (1974), and 

a more theoretical foundation was laid by McCullagh (1983). 

With the usually sophisticated models for count data there is certainly a 

problem in analysing data by a formal likelihood approach. It was the idea 

of Wedderburn not to make any distributional assumptions, but only to make 
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assumptions of finite expectation and variance, and of a so-called mean-

-variance relationship, expressing the variance as a known function (times 

an unknown scale parameter) of the mean value. This function is called the 

variance function; it is denoted by V(|j.), where \L = E(X). 

Parameters of a linear model assumed for some (link) function of the mean 

value can then be estimated by Iteratively Weighted Least Squares; see 

Neider and Wedderburn (1972) and McCullagh (1984). 

Some aspects of the quasi-likelihood method have been known for some time. 

It was Finney who used the method in an informal way in probit analysis. On 

the other hand, no results appeared on the asymptotic distribution and 

optimality of estimators for the linear model parameters until 1983; see 

McCullagh (1983). 

An example of a mean-variance relationship for random variable X is simply 

var(X) = \i, which is true for e.g. the Poisson random variable. Slightly 

more general is var(X) = a2(i, where <j2>0 is an unknown parameter. In the 

case of 'overdispersion , a >1, and the analysis of overdispersed count 

data by quasi-likelihood may be compared with the analysis of this data by 

one of the models for overdispersed count data (extra-Poisson variation) 

from Engel (1984). Note that 'underdispersion', where a
2 < 1 , can be studied 

as well. Another example of a mean variance relationship is var(X) = o \x , 

corresponding to a constant coefficient of variation of X. 

Often it is possible to define a log quasi-likelihood function as a substi

tute for a log likelihood function. For univariate data this function 
<U(|i,x) 

t(|j.,x) is defined by = (\-\x)/y(\i), where V(n) is the variance 

c^ 

function. For certain V(u.), explicit solutions of Ä(p.,x) can be found from 

this differential equation. Some examples can be found in McCullagh (1983). 

From the log quasi-likelihood function $X\i,x) obtained explicitly, test 

statistics can be derived for testing hypotheses concerning generalized 

linear models for the mean value \i. Then often an estimator is needed for 

the dispersion parameter a
2 , which can be obtained e.g. from replicated 

data. 
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We shall follow the quasi-likelihood approach to analyse count data from 

nested designs with random factors. It gives us the opportunity to analyse 

this data without making any distributional assumptions. In the following 

section, mean-variance relationships will be assumed which are reasonable 

for count data from well-designed experiments. This data will be analysed 

by quasi-likelihood and variance components will be estimated and tested. 

For the nested design, two types of mean-variance relationships will be 

studied, namely var(X) = a2\i and var(X) = a2^2. Two log quasi-likelihood 

functions can be derived corresponding to these two relationships, having 

the form of the Poisson log likelihood i(\x,\) - x log \i-\i for the first 

relationship and the gamma log likelihood i{\i,x) - -x/^-log \i for the 

second; see Wedderburn (1974) and McCullagh (1983) for further details. 

From these log quasi-likelihood functions déviances are obtained in the 

usual way, following Neider and Wedderburn (1972), as D = 2 E x log (x/u.) 

and D = -2 E log (x/^i), respectively. By taking differences of these 

déviances test statistics are obtained for testing variance components. 

These test statistics will be called log quasi-likelihood ratio test 

statistics. Finally, a generalized Pearson's X useful for estimating 

variance components is defined as X = E(X - n) /V ( p.), where V( u.) is the 

variance function (see McCullagh and Neider (1984)). 

2.2. Quasi-likelihood for nested designs with random factors 

As an example we shall study a nested design with two random factors A and 

B, with levels i=1,2,...,I and j=1 ,2,...,J, respectively, where factor B is 

nested within factor A and where K replicates are available 'per cell', 

with levels k=1,2,...,K. As an orientation, consider the design from table 

2, section 4. 

tet Xji^ be the k replicate belonging to cell (i,j); let E(X--^) equal [L, 

the overall mean value. We shall make the following set of quasi-likelihood 

assumptions considering variance functions and independence of random 

variables. These latter assumptions are directly related to the properties 

of the nested experimental design; see Scheffé (1959), chapter 7. 

file:///i-/i
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Quasi-likelihood assumptions 

1. Let M. be independent random variables for i=1,2,... ,1, where 

E(M.) = |i; 

var(M.) : o: |i , r > 0 is some constant. 

2. Given M. = m., i=1,2..... I, let M. . be independent random variables for 
i i lj 

j=1,2,...,J, where 

E(M..|M.=m.)= m.; 
ijl l i i' 

var(M. .|M.=ID. )= <pL m. , r > 0 is some constant, 
ijl l i 2 l 

3. Given M. .=m. ., i=1,2,...,I, j=1,2,... ,J, let X. be independent (re-
ij ij ijk 

sponse) random variables for k=1,2,...,K, where 

E(X. .. IM. .=m. .) = m. .; 
ijk' ij iJ ij 

var(X. ., IM. .=m. .) = a\ mr ., r > 0. 
ljkl ij ij 3 ij' 

Note that these quasi-likelihood assumptions are not necessarily restricted 

to the case of count data Xij|<; they do also make sense for other types 

of data, like continuous data. 

It is seen from the assumptions that mjj is the mean value of Xji^, 

given Mj \ - "ij i > that is given level j and given level i of the random 

factors B and A, respectively. Also, m^ is the mean value of X ^ ^ , 

given level i of factor A. 

It can be proved that, given M. = m., i=1,2,...,I, the sample means X. . 

are independent random variables, for j=1,2,... ,J. It can also be proved 

that sample means X- are independent random variables for i=1,2,...,I. 

Three parameters, a , c?- and o\ were introduced to describe the variation 

in the data at three levels: 

replicates level (a?), with index k; 

factor B level (o^), with index j; 

factor A level (0^), with index i. 
1 
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At each level, the variation in the data is described by means of a vari

ance function type of relationship as described in section 2.1. 

Note that for r=1 the assumptions are those of Poisson overdlspersion 

(cr2>1) or underdispersion (a^<1). For r=2, the parameters a2, a2 and 

a2 represent constant squared coefficients of variation. We shall estimate 

these parameters from the data for certain values of r, and test hypotheses 

of type H2 : a2 = 0 (no effect of random factor B) and Hj : a2 - 0 (no ef

fect of random factor A) in section 2.4. 

To obtain the estimators of a2, a2 and a^. and test statistics of the 

hypotheses Hj and H2 with their asymptotic distributions, firstly some 

implications of the quasi-likelihood assumptions will be derived in section 

2.3. These implications give expressions for: 

11. Mean value and variance function of X.. , given M.= m.; 

ij+' a l i' 

12. Mean va lue and va r iance f u n c t i o n o f X. : 

13. The va r iance o f X. .. . 
ijk 

The implications 11 and 12 are useful for the estimation and testing of the 
2 2 

parameters a. and a„, respectively. The implication 13 is needed for 
estimating the variance of X. ., . y ijk 

2.3. Iiplications of the quasi-likelihood assumptions 

2.3.1. Two Lenwas 

Firstly, we shall mention a general and familiar lemma for calculating 

variances from conditional variances and expectations in the form of lemma 

1. 

Lemma 1. Let X and Y be random variables having a joint distribution. Let 

f(x,y) be a real-valued function of (x,y) e R2« Then 

var[f(X,Y)] = EyVar^f(X,Y)|Y] + varyEx[f(X,Y)|Y]. 

A slightly more general version of lemma 1 is lemma 2. 
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Lemma 2. Let X, Y and Z be random variables having a joint distribution. 

Let f(x,y) be a real-valued function of (x,y) E R2. Then 

var[f(X,Y)|Z=z] = Ey. varx, [f(X,Y)|Y] + var^zExi[f(X,Y)|Y]. 

Lemmas 1 and 2 will be used once or more in sections 2.3.2, 2.3.3 and 2.3.4 

when deriving some implications of the quasi-likelihood assumptions. 

2.3.2. Restricting values of parameter r 

From var(X. . |M. .=m. .) = K"1
 a\ mr. and lemma 2, with Z = M., Y = M. ., 

f(X,Y) = X i i + , it follows that 

var(X. . |M.=m.) = EM , var(X. . IM. .) + varM i E(X. . IM. .) = v xj+l ï i Mijjroi ij+1 ij' Mij|mi iJ"1-' !J 

= K"1
 a\ E(Mr.|M.=m.) + al mr. 

3 ij I ï ï 2 ï 

The statistical inference with respect to parameter a\ will be performed 

on the statistic X\ . given M.=m.: then the variance function of X\ . 
1J+ y i l ij+ 

given M.=m. has to be a known function, so that E(M. . M.=m.) has to be a 
y l l ' ijl l l 

known expectation. 

Because of the limited amount of information we have concerning the 
moments of M. . given M.=m., the expectation is known for only three values 

ij 3 l i' r ' 
of r : 

r=0, E(M° .|M.=m.) = 1; 
ijl l i 

r=1, E(M. .|M.=m.) = m.; 
ijl l i l 

r=2, E(M2 .|M.=m.) = a2 m2 + m2. 
ij 1 1 1 2 l i 

The case r=0 corresponds to the Anova-like situation of constant variances: 
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var(M.) = o!j; 

Given M. =m. , var(M. .) = <j„; 
1 1 ' ij 2 

Given M. .=m. ., var(X. ., ) -al. 
ij ij ijk 3 

In this case the quasi-likelihood analysis is based on the usual sums of 

squares known from Anova, not making the assumption of normality of distri

butions so common in Anova. It is possible to derive some interesting ap

proximate results on x2-tests and F-tests under these non-normal con

ditions, shedding some new light on the Anova tests. However, we shall not 

explore the r=0 case any further because, for count data, our primary 

interest lies in the cases r=1 and r=2. For the case r=1 we denote the 

quasi-likelihood assumptions by Assumptions I, and for the case r=2 by 

Assumptions II. 

2.3.3. Assumptions I, three implications 

11. From 2.3.2. (for r=1) we obtain the result 

var(X. . |M.=m.) = K"1^ E(M. .|M.=m.) + aim. - K"1' {al + Kal)m.. 
lj+l i i 3 ijl l l 2 i 3 2 l 

I f we d e f i n e al-.
: = a\ + Ka2,, then ai can be expressed as 

«4= (<43- ap/K. 

I t follows t h a t var(X\ . |M.=m.) = K~ CT
2 m., and because 

ij+1 i i 23 l 

E(X. . |M. .=m. .) = m. . , we o b t a i n E(X. . |M.=m.) = m.. 

Now we have expressed the variance of X. . , given M.=m., as a linear 

variance function of the conditional mean value m . 
l 

12. F i r s t l y , var(X\ |M.=m.) = (JK)"1 (al + Kal) m. = (JK)~1a2 m., 
i++ ' i i y c. î LJ i 

which is the variance of the average of X.. for j=1,2,...,J, and given 

M.=m. these random variables are independent. Then it follows by 

lemma 1 that 

var(X. ) = Eu var(X. IM.) + varu E(X. IM.) = (JK)"1^. (i + a? |i = 
1++ M- i++l l M- i++l l 23 1 

= (JK)"1 (a|3 + JK a\) ». 
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Defining a2 '• - a2 + JK a2 (= a2+ Ka2+ JK ojj), we can express a2 as 

*1 = (°123- °223)/JK' 

-1 2 Further, var(X. ) = (JK) 0?„, u, and from E(X. |M.=m.) = m. we 
1++ 123 1++1 i l l 

obtain the result E(X. ) = p.. 

We have now obtained the variance function of X. as a linear function 

of the mean value |j.. 

13. Finally, from var(X. ., |M. .=m. .) = ai m. . it follows by lemma 2 
i i k I i l i l 3 i l 

that 

var(X. ., |M.=m.) = (a2 + a2)m. and by lemma 1 we obtain 
i i k I i l 3 2 l 

var(X ) = (a2 + o* + a2 ) p. 

It is seen that the variance of X. ., is split up into three variance 
iik 

2 2 ? 
components GAL, a-\i and a%y. for the three levels of random variation. 

The expressions for a2 and a2 derived above will be needed in section 

2.4 where estimators will be presented for these parameters. These 
2 2 2 

estimators are obtained from estimators of cc, cc, and o.^-,. 

Three similar implications for Assumptions II (r=2) will be derived in 

section 2.3.4. 

2.3.4. Assumptions II, three implications 

11. From var(X. . IM. .=m. .) = K~ «2 m?. and lemma 2, it follows that 

var(X. . |M.=ra.) = E u i var(X. . IM. . ) + varu i E ( X . . | M . . ) = 
v d l w vij+l i i Mjj h i ij"1"1 !J Mijlmi 1 J + I lJ 

= K~1a2 (a| + 1) m2 + a2 m? = K-1 (a2 a2, + a2 + K a?,) m?. 

Defining a - , : = (a2 a2 + ff2 + ^ J^ w e c a n e x p r e g g a2 a s 

a2 = ( a 23 ' 0 3 ) / ( K + 0 3 } -

Further, var(X\ . |M.=m.)= K~ a
2 m2, and also E(X.. |M.=m ) = m . 

1J+1 i l 23 l 1J+1 i l l 

Now we have obtained a quadratic variance function of X^ j + , given Mi=mi-
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12. from var(X. |M.=m.) = (JK)~ ai-, m2 and lemma 1 , i t fol lows that 
1++I i l 23 l 

var(X. ) = Eu var(X. |M.) + var,. E(X. IM.) = 
1++ M. 1++' l M, 1++I l 

= (JK)" 1
 a

2
23 ( a 2 + 1) (±2 + a2 n2 = (JK)" 1 (<j23 a

2
 + a 2 j + J K a 2 ) ^2 # 

Defining o2 , : = ai a2 + a2 + JK a 2 , we can express a2 as 
123 1 23 23 1 1 

^ = ^ 2 3 - i 3 ) / ( J K + 0 23 ) -

Further, var(5?. ) = (JK)" a?«-, M-2 > ar,d also E(X. ) = |j,, so that a 
1++ I £.J .1++ 

quadratic variance function is obtained for X- . 

13. Finally, from var(X. ., IM. .=m. .) = ai m? . and lemma 2 it follows that 
.ijkI ij ij 3 ij 

var(X. |M.=m.) = '\a\ a2 + a2 + ai) m2 and by applying lemma 1 and 

ordering terms, 

var(X.jk) = (a2 + 0?, + a2 + a2 a2 + a2 a2 + a\ a2 + a2 a2 a2) n2 = 

= (a2 + c* + a2) p2 

where the final equality holds approximately for small ai, i=1,2,3. We 

now have aqain expressed the variance of X. ., as the sum of three 
ijk 

9 9 9 9 9 9 
variance components which are now a \i , a \i and a^ \x . 

Having derived (conditional) variance functions and mean values for the 

sample means X- . and X; j, and an expression for var(X, .. ) , we are now 
1J+ 1++ 1JK 

able to derive estimation and testing procedures for the parameters a2, 

a2 and ai in these variance functions. In section 2.4.1. estimators 

will be presented, and the results for the tests of the hypotheses H, 

and H2 will be discussed in section 2.4.3.. Firstly, some more notation 

will be introduced. 
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2.4. Estimation and testing procedures 

Before discussing estimation and testing procedures, some more notation 

will be introduced. 

Some notation for Assumptions I 

Let D be the Poisson deviance, i.e. 

D = 2 T. Xijklog (Xij)</E(Xij|<)), where E(Xi j k) is an estimator for E(Xl j ( <). 
1JK 

More concretely, E(X- -.) is supposed to be the maximum quasi-likelihood 

estimator for E(X ) and indices will be used for the deviance to express 
ijk 

the conditions under which this maximum quasi-likelihood estimator is 

computed. Then, 

\ i\, J x a i-uiiiputcu yj. v ci i ri • . - in- . - for deviance D.n, E(X. .. ) is computed given M. .= m. ., so that 
AD IJK ij ij 

E(X. ., ) = m. .= X. . ; 
ijk' ij ij+' 

- for deviance D., E(X. .. ) is computed given M.= m,, assuming M. .= M., 

so that E(X. ., ) = m. = X. ; 
ijk i 1++' 

- for deviance Dn, E(X. .. ) is computed as the grand mean \i = X , assuming 
U 1J K +++ 

that M.. = M. = a. 

The first result is obtained as follows. Given M. .=m. ., the variance 

function of X. ., is var(X. ., M. .=m. .) = ai m. .; see section 2.2. The 
ijk ijkl ij ij' 3 ij' 

log quasi-likelihood function associated with this variance function is 

T, (X. .. log m. .-m. . ) ; see McCullagh (1983). Maximizing this function with 
k ijk ij ij 

respect to m. . gives the required result. In a similar way, the other re

sults can be obtained. 

It follows that 

V DAB = \]k Xijk ̂  (Xijk/ !W " ̂  Xijk ̂  <Xijk/*ij+> = 

= 2 \ Xijk l 0 3 ^ i j + / X i + + ) = 2K £ X i j + log (X i j + /X i + + ) 
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and 

D0-DA = 2JKr Xi++log ( X ^ ) . 
ï 

These statistics will be used as log quasi-likelihood ratio test statistics 

(see section 2.4.3) under Assumptions I; they form the basic material for 

testing hypotheses H : a\ - 0 and H : a2 - 0, respectively. 

Further, for estimating a2 , a2 and a2, estimators will be defined in section 

2.4.1. which are based on generalized Pearson statistics, defined as fol

lows (see also section 2.1): 

XAB =.S, (Xijk~ Xij+) /Xij+; 

ijk 

X A AD = K r <*•• - * • ) 2 / x - ; 
A;AB . . ij+ 1++ 1++ 

X* . = JK E (X. - % )2/X 
0;A . 1++ +++ -t 

Some notation for Assumptions II 

Let 0 be the gamma deviance, i.e. 

D = -2 E log (Xi.k/E(Xi.k)), where E(X ) is an estimator of E(Xijk). 

Again, E(X. .. ) is the maximum quasi-likelihood estimator for E(X- .. ) and 
IJK 1JK 

indices A, AB and 0 are used for the deviance D as in Assumptions I. The log 

quasi-likelihood ratio test statistics for testing H2 and Hj are as follows: 

V DAB= - 2 A 1 0 9 (XiJk/Xi++
) + 2\l°q (Xijk/Xij+>

 = -2.Z
(

109 (Sij+/Äi++) = 
ijk J ijk J J l j k J 

= -2K E log (X. . /X. ); 
. . * ij+ 1++ ' 

D0- DA = -2JK E log ( X ^ / X ^ ) . 
i 

For estimating c2, a\ and a2 let generalized Pearson statistics be defined 
1 2 3 
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X A B = 1 ( X L j k " X i i + ) / X i j + ' 

ijk 

X2
fl ä = K J (X.. - X. )2/X2 ; 
A;AB j. ij+ 1++ 1++ 

X0;A = JK S ( W X
+ + + ) 2 / x 2

+ + + -
ï 

2.4.1. Estimators 

We shall present consistent estimators for the parameters a , o~ and 

a2 in this section. For this purpose we need the generalized Pearson 

statistics X2.,,, X2. ._ and X2 . which were introduced at the beqinning of AB' A;AB 0;A y y 
this section. Also, additional assumptions will be made that certain moments 

of orders 3 and 4 are finite and these assumptions are assumed to hold 

wherever needed throughout this section. 

Estimator of a2 

As an estimator of a'.-, we propose 

a 2 = X 2
B / v 3 , where v ? = U ( K - 1 ) ; 

see also McCullagh (1983), p. 63. 

Under the additional assumption that the distribution of X. .. qiven M. .=m. ., 
K ijk y ij lj' 

for i=1,2,...,I, j=1,2, ,J, has finite moments of orders 3 and 4, the 
2 2 

estimator ai, is a consistent estimator of a t for U K tending to infinity. 

This will be proved in section 2.4.2. 
Estimator of a2 

Firstly, we propose the estimator 

° 2 3 = X A ; A B / v 2 ' ^eTe v 2 = I ( : M ) 

as an estimator of a2,-,-

Under the additional assumption that the distribution of X. . given M,= In

for i=1,2,...,I, has finite moments of orders 3 and 4 , the estimator a2 is 

a consistent estimator of a2 for IJ tending to infinity; see section 2.4.2. 

Secondly, the estimator of <j2 is proposed as follows. 

Under Assumptions I we derived in section 2.3.3 that a2, - {ak-i-ak)/¥>. 
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The estimator 

"a\ -- < ^ 3 - ^)/K 

is proposed as an estimator of a2 under Assumptions I. It is a consis

tent estimator of a2 for IJ tending to infinity. 

Under Assumptions II we derived in section 2.3.4. that 

The estimator 

a2, = (â2
23- >3)/(K + a]) 

is then proposed as an estimator of a2 under Assumptions II. It is a 

consistent estimator of a2 for IJ tending to infinity. 

Estimator of a2. 

Firstly, we propose 

ff123 = X 0;A / u 1' where"-| = T " 1 

as an estimator of a2.,- Under the additional assumption that the distri
bution of K. has finite moments of orders 3 and 4, the estimator a2», is a 

i++ 123 

consistent estimator of a2 for I tending to infinity (see section 2.4.2.). 
123 

Secondly, the estimator of a2 is proposed as follows. 

Under Assumptions I we derived in section 2.3.3. that a2 - (a2 - a2 )/JK. 

The estimator 

;i = (;123 - ; 2 23 ) / J K 

is then proposed as an estimator of 0? under Assumptions I. It is a con

sistent estimator of a
2 for I tending to infinity. 

Under Assumptions II we derived in section 2.3.4. that 
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The estimator 

A = U123~ a 2 3 ) / ( J K + °23) 

is proposed as an estimator of a2 under Assumptions TI. It is a consistent 

estimator of a2 for I tending to infinity. 

Unfortunately, the variances of the estimators ai, ai^ and oij-, and thus the 

variances of the estimators ai , ai and ai depend on fourth moments of the 

data (see also McCullagh and Neider (1983), p. 173), which are assumed to 

be finite but which are unknown in general. Therefore, there seems to be no 

way to construct confidence intervals for the parameters a\ > ai and ai. so 

that only point estimators are available. 

Tn section 2.4.2. a proof will be given for the results of section 2.4.1. as 

reqards the consistency of the estimators CT
2, a2 and o ? „ . 

3 23 123 

2.4.2. Proof of the consistency of the estimators gi, o~, and a?.,. 

We shall prove that 0
2 is a consistent estimator of ai for U K •+ <*> under 

Assumptions I. The consistency under Assumptions II and the consistency of 

the estimatoi 

similar way. 

the estimators a
2 and a2 under Assumptions I and II can be proved in a 

o 

Under Assumptions I, the estimator a equals 

a2 = *la/vx = { T, (X. .̂ - X.^)2/X. .J/u,, where u, = IJ(K-1). 
ijk 

J , = Ä , . / U , = 1 i V A . . , - A . . ; / A . . I / u-i , n i i m ^ u-i 
3 AB' 3 n|< l j k 1 J + 1 J 3 3 

Firstly, we shall consider the distribution of X. ., given M. .=in. ., for 
ijk ij rj 

i=1,2 1, J=1,2,...,J. 
The assumptions I imply that E(X. .. |M. .=m. .) = m. . and 

P y 3 ijk' ij ij ij 

var(X. ., IM. .=m. .) = ai m. .; qiven M. .=m. ., the random variables X. ., , 
ljkl ij ij' 3 ij' y ij ij' ljk' 

k=1,2,...,K are independent (see section 2.2). 

We introduce Q (m ):=£ (X - m )2/m. as a useful quadratic form; 
AB ij k ijk ij ij 

X^B is obtained from QAB(mij) as ^ife = ?.^AB^ij+^* 
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It can be proved that the expected value of QAn(X. . ) = E (X. .. -X. . )2/X. . 
AB ij+ k ijk ij+ ij+ 

equals (K - '\)&l so that 

E(ï .QAB(Xij+)) = IJ (K - \)a2
y ... (1) 

From standard results on variances of quadratic forms (see e.g. Seber 

(1977), theorem 1.8) it follows that the variance of QBO(m..) equals 
Ab ij 

var(QAB(m..)) = (,4;. . - 3 ^ . . ^ + 2u| ; i j m ^K = ( % . . - ^ . ^ K 

where LI, . . and i±„ . . are finite fourth and second moments of X. about its p4;ij p2;xj ijk 

mean m. . given M. . = m. .. 

Further, 

var(E QAD(m. .)/U (K - 1)) = O(dJK)"1) for U K ->• » 
. . Hb 11 
IJ J 

so this variance tends to zero for U K •*• ». 

Also, 

var(E QAB(^ii+^/IJ (K " 1 ^ t ends to zero for IJK * œ' ••• ^ 
ij J 

Combining the results (1) and (2) it follows that 

"a\ = Xj /IJ (K - 1) = E Q (X. . )/U (K - 1) 
3 AB i. AB ij+ 

is a consistent estimator of a2 for IJK •* ». 

Secondly, the estimator a
2 is a consistent estimator of a2, also uncon

ditionally (not given M. . = m. . for i=1,2,..., I and j=1,2,..., J), as the 

(degenerate) limiting distribution of ai for U K •* » given M. . = m. . does 

not depend on m. .. 

The proof has now been completed. 
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2.4.3. Test statistics 

We shall present test statistics for testing the hypotheses H : a* = 0 and 

H : ai - 0. To obtain the asymptotic distribution of these test statistics, 

the following three properties of means of counts X. .. are very useful. 
ijk 

Property 1 

- Given M.=m-, i=1,2,...,I, and under H2, the distribution of X- . , 

j=1,2,...,J, tends to the normal distribution for K tending to infinity. 

This result follows from the Central Limit Theorem applied to the mean 

5? of (under Ho) independent X. , k=1 ,2,... ,K. 
ij+ ijk 

We recall that, given M.=m-, X, . , j=1,2,...,J, are independent random 

variables; see section 2.2. 

Property 2 

- Under both Hj and H2 , the distribution of X. . , for i=1,2,...,1, 

j=1,2,...,J, tends to the normal distribution for K tending to infinity. 

This follows, again, from the CLT applied to the mean X.. of (under 

Hj and H2) independent X--^, k=1,2,...,K. 
IJK 

Note that: under H, the random variables X , k=1,2,... ,K, are dependent 
ijk 

if H2 is not true; thus property 2 is not true under Hj only. 

Property 3 

- Under Hj, the distribution of X. , i=1,2,...,I, tends to the normal 

distribution for J tending to infinity. 

This follows from the CLT applied to the mean X. of (under Hj) indepen

dent X. . , j=1,2,...,J. 

We have derived three basic properties, and now we shall present stat

istics for testing Hj and H2 and investigate their approximate distri

butions. The results will be stated without proof in this section. They will 

be proved in section 2.4.4. 



133 

Testing the hypothesis H2: c - 0 

Hypotheses equivalent to H2 are 

H 2 : Mij E M i ' i = 1 ' 2 ' " - ' 1 ' j=1f2,...,J. 

Using the result that var(5?. . |M.=m.) = K~ 0 ? , ™-» where r=1 under 
lj+l .i i 23 i 

Assumptions I and r=2 under Assumptions II, we shall prove in section 

2.4.4. that under H2 

D - D -»• o? y2 in distribution for K •»• », ... (3) 
A AB 3 un 

where v2 = I (J-1). 

From section 2.4.1. we use the estimator a
2 = X2_/u, with u = IJ (K-1), 

which is a consistent estimator of a
2 f°r K -• », to obtain the following 

test statistic T2 for Hj : 

2 
A "AB""3 -T2 = (D4- D»n)/o-

Under H2, the asymptotic distribution for K + » of T, is the distribution 

of the x2 - statistic, with u, = I (J-1). 
V2 

Testing the overall hypothesis H and H : a2= a\~ 0 

A hypothesis which is equivalent to H, and H2 is 

(Hi a"d H2)>: o] = a|3 = a 2 ^ . 

We shall test Hj and H2 against the alternative Kj : ai. # 0. An interpret-
2 o 

ation is: testing hypothesis Hj: a.=0 if H2: a* = 0 was tested and was not 
rejected. 
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By the result var(X\ ) = (JK)~ a^_,^r, where r=1 under Assumptions I and 

r = 2 under Assumptions II, we shall prove in section 2.4.4. that under H, 

and H2 

Dn- 0. •* o\ Y in distribution for K -> «°, ... (4) 
u A ? ui 

where uj = 1-1. 

By combining the results (3) and (4) and by using the asymptotic indepen

dence for K + » of D - D and D - D._(see section 2.4.4.) we shall prove 
U rt M M D 

that under H, and H2 the asymptotic distribution for K •*• <= of the test 

statistic T. defined as 
T12 = ( V °A)/(DA- V * u2/u1 

is the distribution of the F -statistic, u, = 1-1, u, = I(J-1). ... (5) 

We shall make some remarks on this testing procedure. 

Under Hj and H2 , the random variables X ^ ^ , i=1 ,2,..., I, j=1,2,...,J, 

k=1,2,...,K, are independent, where E(X...) = M- and var(X..,,) = oî \i , 
1JK 1J* J 

where r=1 and r=2 under Assumptions I and II, respectively. An alternative 

test statistic for Hj and H2 against the alternative hypothesis Kj : a + 0 

can be proposed as 

T12=(VDA) / ?3 

where en is some consistent estimator of a for K •* °°, such as a_. However, 

T is quite sensitive to the alternative hypothesis K2 : cp- * 0, and we may 

expect T _ to be much less sensitive to this alternative hypothesis so that 

T.- is preferred to l.?. There is a similarity with the analysis of vari

ance for nested designs and normal data, where the test statistic corre

sponding to T is only sensitive to the alternative a^ # 0. Note that the 

distribution of T under the hypothesis Hj : <?• - 0 alone is not necess

arily the F -distribution, as the distribution of !?•,;., for 

vi iu2 J 

i-1,2,...,I, j=1,2,...,J is not necessarily normal for large K. 
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Testing the hypothesis Hj : a2. - 0 

Hypotheses which are equivalent to Hj are 

Hî ! "» = ff123J 

H« : M. = n, i=1,2,...,I. 

From the result var(X. ) = (JK)~ a?,, H i where r=1 and r=2 under Assump-
1++ 1 uJ 

tions I and II, respectively, it will be proved in section 2.4.4 that under 

hypothesis Hj 

Dn - D. •* ok, x2 in distribution for J •* », ... (6) 

where uj = 1-1 • 

"i 2 

Introducing the estimator cr„, = XA.AR/U2 from 2.4.1 where v2 = I(J-1), which 
2 ' 

is a consistent estimator of a', for J -• », the following test statistic 

Tj for Hj is obtained: 

h - O 0 - DA)/>23. 

Under Hj , the asymptotic distribution for J -»• » of Tj is the distribution of 

x2 • the y2 -statistic, with n, = 1-1. 

2.4.4. Proof of the results (3), (4), (5) and (6) of section 2.4.3 

In this section we shall prove: 

I. the result (3) concerning the limiting distribution under H2 of the 

statistic D. - DA R for K ->• »; 

II. the result (5) concerning the limiting distribution under Hj and H2 of 

the test statistic 
T12 = ( D0 " D A ) / ( D A " °m) * U2/r;l for K * "' 
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The proof of the results (4) and (6) is completely similar to the proof of 

the result (3) and we shall not give it here. 

A reference is made to the proof sketched by McCullagh (1983), p. 62 con

cerning similar asymptotic results on log quasi-likelihood ratio test stat

istics. 

I. Proof of the result (3) 

In some steps we shall prove the result (3) under Assumptions I. The proof 

of the result (3) under Assumptions II is similar to the proof of this 

result under Assumptions I. 

1. Firstly we shall condition on M. = m.; later this will be relaxed. 

Given M.=m., i=1,2,...,I, the random variables X.. , j=1,2,...,J, are 

independent, with E(X. . M.=m.) = m. and conditional variance function 

var(X. . |M.=m.) = K a\ m. as criL = ai under H, ; see section 2.3.3. 
lj+l i i 3 l 23 3 l 

From McCullagh (1983), p. 66 we find that the log quasi-likelihood func

tion is X". . log m.-m. for one sample mean X\ . and 
ij+ y l l K 1.1+ 

E [X. . log m.-m.1 

for the whole set of sample means. If we maximize this function with 

respect to m., the result is 

S . ^ i j +
l 0 9 X " i + + - * i + + ] -

2. More generally, the log quasi-likelihood function for one sample mean 

X " is X^-log mi i—mü * a n d f°r t h e w h°le s e t it is 

E [Xij+log mij-mijl. 
ij 

Maximizing this function with respect to m.., we obtain 

\fhi+i°* * i j + - SijJ' 
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3. We take the dif ference of the two maximized log quasi- l ikel ihoods of 2. 

and 1 . and we mul t ip ly i t by 2K, so that we obtain 

2K { I [ X log X - X ] - Z [X- log X \ + + - X i + + ] } = 
i j J J J i j J 

= -2K {S J*ij+
l 0 < 3 *i~ *H-J - E . ^ i j +

1 0 9 * i j + - * i j +
] } ' 

In steps 4. and 5. it will be proved that under H2 and for K •* » the 

distribution of the difference just obtained tends to the distribution 

of the a2 t2 statistic, where u,= I (J-1). 
3 *-v2

 2 

4. Again, consider the log quasi-likelihood function 

K m ) = £ rx. . log m. .-m. .1. 
ij 1 J + 1J 1J 

This function is a function of the vector m:= {m..}. .. 

By l(m) we shall denote this log quasi-likelihood function with m 

substituted for m, vector m being defined by 

m = {,nij>ij a n d mij= X j ^ , 1=1,2,...,I, j=1,2, — ,J. 

We also need the Fisher information matrix. From l(m) we obtain the 

observed information matrix I := -6 1/ôm2 as follows. 
m 

The vector of first derivatives of l(m) is the vector 61/ôm with IJ 

components X. . /m. .- 1. 

The matrix of second derivatives is then a diagonal matrix with elements 
-X.. /m.. on the diaqonal, so that the observed information matrix I is 

ij+ ij m 
diagonal with elements X /m . The expected information matrix E(I ) 

ij+ ij m 
is then a diaqonal matrix with elements 1/m..; we shall denote this 

ij 
matrix by i . 

m 

Next, we expand l(m) in a Taylor series about m up to terms of second 

order; in vector notation, the vector of first derivatives being zero: 

K m ) - K m ) = -1/2 (m-m)T I „(m-m). 
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Here I is the observed diagonal information matrix with diagonal 

elements X /m* , where m* is on a line segment joining m and 
1J+ ij ij ij 

mij = X i j + . 

Note that I . is a consistent estimator of i for K •* <*>, because X. . is 
m* m ' ij+ 

a consistent estimator of m... Incidentally, in sum notation, the above 

equation is written as 

T, I X . log m. .-m. .1 - 5: | X . log X. . - X. . 1 
.ƒ 1 J + y ij xjj i i J + y ij+ 1J+.i 

= -1/2 T, (X. . - m. . ) 2 X- • /m*.2. 
y 1J+ ij 1J+ ij 

To get further, we multiply both sides of the equation in vector no

tation by -2K: 

-2K ( K m ) - Km)) = /K (m-m)T I „ /K (m-m). 
m* 

Under H2 and for K ->• °° the distribution of vector /K (m-m) tends to the 

IJ-variate normal distribution with mean vector Q and diagonal covari-

ance matrix a
2 i with diagonal elements a?, m.., i=1,2,...,I, 

3 m 3 ij 

j=1,2,...,J (here property 1 is relevant). Then the distribution of the 

statistic 

-2K [ K m ) - l(m)] = /K (m-m)T I /K (m-m) 

or, in sum notation, the statistic 

-2K (Ï [Xij+log m i r r^.] - E,[Xij+log X.j+- Xij+]> 

tends to the distribution of the <£ x2 statistic with u=IJ for K ->• «°, 

because I . is a consistent estimator of i for K •* <». 
m* m 

By arguments similar to those of McCullagh the result can be proved that 

under H2 and for K •* » the distribution of the statistic (see 3.) 
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-2K {£ [X. . log X. - X. 1 - E [X. . log X. . - X. . 1} V ' ij+ y 1++ 1++J . L 1 J + y i J + 1 J + J ' 

tends to the distribution of the a t l statistic with u0=I(J-1). 
3 Kv2

 l 

Here X ; _ is substituted for m- • because m - . = m-, being the con-
1++ ij ij l 

ditional expectation of X. . given M.=m., estimating m. by X. for 
V 1J+ y L 1 ' a 1 ' 1++ 

i=1,2,...,I. 

Further, this result is also true unconditionally (so not qiven M.=m. 
i l 

for 1=1,2,...,!) as this limiting distribution does not depend on m.. 

5. Finally, the statistic D - D _ which was introduced for testing the 

hypothesis H2 in section 2.4.3. was defined before as 

D A - D A B = 2 K S . X i j +
l 0 9 <Xij+/Xi++> 

ij J J 

and this statistic can also be written as 

DA- D/ID= - 2 K (S TX- • log X. - X. 1 - £ [X. . log X. . - X- . 1} . 
A AB . .L 11+ y 1++ i++J . .'• ij+ y 11+ ii+J J 

Here we recognize the above difference of log quasi-likelihoods of steps 

3 and 4 for which we proved that under H2 and for K •+ » the distribution 

tends to the distribution of the ai % statistic with u, = I (J-1). 
3 U2 

Now we have proved the result (3). 

II. Proof of the result (5) 

To prove the result (5) it is sufficient to prove the asymptotic 

independence under H, and H, for K •+ <= of the statistics D - D and D - D 
1 2 0 A A AB 

Under Assumptions I (the pmof is similar under Assumptions II) following a 

similar reasoning as in the proof of the result (3), a Taylor series 

expansion is obtained of Dn- D. and of D.- D.R. So 
D - D = 2JK T. *. log (X. /X ) = J K r ( X . - X ) 2 X. /n*2, ...(7) 

0 A J 1++ 11- (• )-1-1- • • • • 
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where u* is on a line seqment joining X. and X . Note that X. /a* is 
*i 1++ +++ 1++ p i 

a consistent estimator of \i~l for K •+• =>. Further 

0»- 0AD= 2K I X. . log (X.. /X. ) = K £ (X. . - X. ) 2 X. . /n*2. , ... (8) 

where n*. is on a line seqment ioininq X. . and X. . Here X. . /u*. is a 
^ij y ij+ 1++ ij+ ^ij 

consistent estimator of ̂ -1 for K •»• «°. 

Under Hj and H2 the random variables X. , .1=1,2,... ,1, j=1 ,2,... ,.1, 

k-=1,2... .,K, are independent, with E(X. ., ) = a, var(X. ., ) = a2u- The vector 
ijk ^ ijk 3 

with elements /K (X- - X ) and the vector with elements /K (X--.- X-, ) 
i-t-+ •*-++• 1J+* 1++ 

are uncorrelated vectors in orthogonal subspaces of the UK-dimensional 

rurlidean space. Asymptotically for K ->• °° these vectors have a joint multi

variate normal distribution so that, asymptotically for K •* <», these vectors 

are independent random vectors. Then the right-hand sides of the equalities 

(7) and (8) are independent, asymptotically for K •* <= (see below) and so are 

the left-hand sides, which was to be proved. 

To see the stated asymptotic independence of the right-hand sides of (7) and 

(8), write 

Dn- D.= 2JK £ X. log (X. /X ) = JK £ (X. - X ) 2 X. /n?2 = 
0 A ; 1++ ^ 1++ +++ - 1 + + 4--1-+ 1 + + 1 

= JK £ (X". - % ) 2 (X. /\i*2 - p."1) + JK E (X. - X ) 2 (x"1 . . . ( 9 ) 
. 1++ +++ 1++ l . 1++ +++ 
L 1 

and 

V DAB= 2K \. * i j + ^ (X i j + /X i + + ) = K ̂  (X i j + - X i + + )2 X. j + / ^ = 

= K.̂  ( X i j + - X i++
)2 ( X i j > ï j - r^ + K 5j«iJ+- h^2 »-1' -<"> 

The result to be proved follows from the asymptotic independence for K -> => 

of the latter terms on the right-hand sides of (9) and (10) and the con

vergence to zero in probability for K •*• » of the former terms. 
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3. THE QUASI-LIKELIHOOP METHOD FOR NESTED DESIGNS UNDER THE 

ASSUMPTION OF A PROBABILITY MODEL 

3.1. Introduction 

At the moment, two probability models for nested designs with random fac

tors for count data are known. The problem of data analysis by these models 

is only partly solved. In this section we shall consider the use of a 

quasi-likelihood approach when these models can be regarded as reasonable 

for the data. For both models we shall try to verify the quasi-likelihood 

assumptions. 

3.2. Two models for the data 

3.2.1. Model 1 

The first model, for two random nested factors and a Poisson distribution 

for errors, was communicated by Forcina (1984). As in section 2.2, the 

model is defined in three stages, as follows, using the notation from 2.2. 

i) Let M.. be positive random variables for i=1,2,...,I, j=1,2,...,J. 

Given M. .=m. ., i=1,2,...,I, jr1,2,...,J, the random variable X.. 

has the Poisson (m. .) distribution. 

ii) Let M. be positive random variables for i=1,2,... ,1. 

Given M.=m., i=1,2,...,I, let M..= G. ., j=1,2,...,J, where 
i l ij ij 

G.. are independent random variables having a gamma distribution with 

E(G..) = m., var(G..) = a - 1 m\, a > 0. 

Then given M.=m.the random variables X.., j=1,2,...,J, are indepen-
j. j. j. j 

dent, having the negative binomial distribution with parameters 

a and p. = m./(a + m . ) . r i i l 

iii) Random variables P. = M./(a + M . ) , i=1,2,...,I, are i.i.d. random 

variables having the beta (ß. , ß. ) distribution. 

The (marginal) distribution of X H > i=1,2,...,I, j=1,2,...,J, is called 

the generalized hypergeometric distribution with parameters a , ß, and p2 ; 
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see Sibuya c.s.(1964). Extensions to designs with more than two factors do 

not seem to be available. Note that this model is defined for only one 

replicate per cell. 

3.2.2. Model 2 

The second model is defined as follows: 

i) Let M.. be positive random variables for i=1,2,...,I, j=1,2,...,J, 
ijk 

k=1,2,...,K. 

Given M. .. = m. .. , random variables X. .. are independent, having the 
IJK -*• J* •*• J^ 

Poisson (mijk) distribution. 

ii) M. ., = e F. (a.) F.,..(a„) F, ....(a,), where the random variables 
ijk i 1 j d ) 2 k(ij) 3 

F.(a1), F....(a„) and F./.-^Ca,) are positive random variables with 

parameters a., a ? and a,, representing factorial effects of the two 

factors and error. This model type was proposed in chapter 7. 

Extensions are possible for any number of factors. The lognormal 

random variable was proposed as a choice for F; the variables F.(a.), 

F./.s(a?) and F ,. ••>(<!,) are then independent and Model 2 with this 

lognormal assumption will be considered in this section. For large 6, 

X.., = e F.(a,) F... fa,) F . ..(a,) ... (11) 
ijk l 1 j(i) 2 k(ij) J 

approximately. 

tions 

^ 

Î.3. An attewpt to verify the quasi-likelihood assumptii 

We shall try to verify the quasi-likelihood assumptions for Model 1 and 

Model 2. Firstly, some helpful results will be obtained for Model 1. 

Model 1 

1. From 3.2.1, iii) it is seen that random variables M., i=1,2,...,I, 

are independent random variables, where 
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E(M.) = p., say; 

1 
var(M ) = (\i3/a + 2p2 + an), roughly, see later. 

1 1 + Pi + ß2 

2. From 3.2.1., ii) it is seen that, 

given M. = m., i=1,2,...,I, rando 

independent random variables, where 

given M. = m., i=1,2,...,I, random variables M. ., j=1,2,... ,J, are 

E(M..IM. = m.) = m.; 
ij I l i i' 

var(M. .IM. = m.) = a~1 m2. 
ijl ï ï " ï 

3. Finally, from 3.2.1., i), 

given M.. = m. ., i=1,2 1, j=1,2,...,J, the random variables 
i j J-j 

X. , k=1,2,...,K are independent random variables having the Poisson 
ijk 

(m. .) distribution. Here we have extended Model 1 to allow for K 
replicates per cell. Further, 

E(X. ., IM. . = m. .) = m. .; 
ijk' ij ij ij 

var(X. ., IM. . = m. .) = m. .. 
ijk' ij ij ij 

The expression for var(Mj) is obtained to get an impression of this 

variance function. Define Qj = 1-Pj> and use the following crude linear 

approximation 

Qi = — = -JL-+ {Mi - n)( l 2 — 7 > i where n = E(M L ), 
a + M. a + |j. (a + \i) 

so that 

2 
E(Q-) = — - — ; var(Q,)r - var(M.), approximately. 

a + \i (a + \i) 
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Together with 

var(Q.) = E(Q)(1 - E(Q.)), where we recall the assumption that 
1 1+ßi+ß2

 i x 

P. has the beta (ßi ,p2) distribution, the result is obtained by equating 

the two expressions for var(Q.), resulting in 

*2
 var(M,) = — L _ (_JL_) (_JL_) 

(ot + u ) 4 1+ßj+ß2 a + (J, a + \i 

and by performing some simple algebra. 

Next, we shall obtain similar results for Model 2. 

Model 2 

1. Random variables M. := 9 F., i=1,2,...,1, are independent random 

variables, where 

E(ML) = 9; var(M.) = aj"1 92 

because 

_1 
E(F.) = 1; var(F.) = a1 ; see chapter 7. 

2. Given F. = f., i=1,2,...,I, or, equivalently, given M.=m., i=1,2,...,I, 

where m. = 9f. , the variables M.. := 9 F. F .... , jr1,2,... ,J are in-
i i lj l j(i)' 

dependent random variables, where 

E(M. .|F.=f.) = 9 f.=m., as E(F.,.,) = 1; 
ij1 i i i l j d ) 

varCM.jlF.zf.) = var(e F. Fj(i)|F.=f.) = ^ (9 f.)* = ^ m\ 

because var(F . ,.N) = a^* 
1 

j(i)' " ~" 

3. Given M. .=m. ., i=1,2,..,I, j=1,2,...,J, the random variables X. .. , 
IJ IJ ' ' ' ' J ' ' ' ' ijk 

k=1,2,...,K, are independent random variables, where 

E(X. ., IM. .=m. .) = E(M. ., IM. .= m. .) = m. ., as E(F, ) = 1. 
ijk! ij ij ijk' ij ij ij' k(ij) 
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Further, by lemma 2, section 2.3.1, 

var(X. ., M. .=m. .) = E u . varv , (X... M..,) + 
ijk' ij ij M. ., m. . X. m. . ljkl ijk' J J J ijk' ij ijk' ij 

+ var.. | „ Ev I (X. ., IM. .. ) = m. . + aq m. . = aö in? .. 
M. .. m. . X. .. m. . ljkl ijk lj d ii 3 lj 

ljkl ij ljkl ij J J J J J 

where the final equality holds, approximately, for large m... 

3.4. Verification results 

For Model 1 : It is seen that the relationship for var(M^) is not of the 

required type in general, unless e.g. p. = a approximately, so that 

var(M )» (̂ 2 + 2 \i2 + n2) = C . \i2, assuming ßj + ß2
 n°t to depend 

i 1+ßj+ß2 
on \i. However, mean-variance relationships are of both linear and quadratic 

type so that no quasi-likelihood approach can be used here. 

For Model 2: Given Mij = niĵ  the mean-variance relationship for X ^ ^ 

is quadratic, approximately, for large m^i. The other mean-variance 

relationships are quadratic as well. Under the condition of large ntj» 

the quasi-likelihood approach based on Assumptions II can be used for this 

model. 
2 -1 For uniform notation, we shall substitute a. for a- , i=1,2,3. It was 

shown in chapter 7 that for large 8, random variable X, . is approximately 

distributed as 9 F. F.,.. F, ,.... In this case all mean-variance relation-
i j u ) K U J ) 

ships are of quadratic type, and Assumptions II are satisfied. On the other 
hand, in section 3.5 it will be shown that Assumptions II are equivalent 

to a generalization of the above approximate model. 

3.5. Assumptions II; an equivalent model 

The equivalence of the quasi-likelihood Assumptions II to a model for 

X... which is more general than the model (11), is stated in the following 

theorem. 
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Theorem 1 

The fol lowing two statements are equivalent: 

1 . Random variables X. . , i = 1 , 2 , . . . , I , j = 1 , 2 , . . . , J , k=1 ,2 , . . . ,K , sat is fy 
ijk 

the quasi-likelihood Assumptions II. 

2. Random variables X. , 1=1,2,...,I, j=1,2,...,J, k=1,2,...,K, can be ex-
ijk 

pressed as follows: 

X. ., = n F. F F ... (12) 
ijk r l jU) k(ij) 

where 

E(F.) = E(F...J = E(F... ..) = 1; 
i j(i) k(ij) 

var(F.) = 0*f var(F.(l)) = ̂  v a r ^ . ^ ) = fy 

variables F., 1=1,2,...,1, are independent random variables; 

given P., the random variables F.,..., j=1 ,2,... ,J, are independent 

random variables; 

given F.F.,.,., the random variables F./..<, k=1,2,...,K, are independent 

random variables. 

Note that it is allowed that F., F.... and F,.... are dependent random 
i jd) k(ij) 

variables. 

Also note that the approximate version (11) for large 9 of Model 2 (see 

section 3.2.2) is a special case of (12). Essentially, there are three 

differences between the models (11) and (12): 

1) The model (11) has independent components, whereas the components of 

model (12) can be dependent. 

2) The components of model (11) have lognormal distributions, whereas no 

distribution is assumed for the components of model (12). 

3) The model (11) is for count data, the model (12) is for all data. 
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Proof of Theorem 1 

I. The <- part of the equivalence is proved straightforward when defining 

M.. : = u F. F .,.. and M. : = u F. . 
ij ^ l j(i) i K i 

Then the proof is as follows. 

1) The random variables M.= pF. are independent for i=1,2,...,l, where 

E(M.) = |iE(F.) = n; 
l i 

var(M.) = u2 var(F.) = u2a2. 
l l 1 

2) Given M.=m., i=1,2,...,I, or, equivalently, given F.=f., i=1,2,...,1, 

where f.=m./n, the random variables F.,.. are independent random vari

ables for j=1,2,...,J, or, equivalently, the random variables M, ., 

j=1,2,... ,J, are independent random variables. Also, 

E(M. .|M.=m.) = m. E(F.,.,) = m. ; 

var(M. .|M.=m.) = m2 var(F.,..) = m2.ai. 
ij' i i i j d ) i 2 

3) Given M. ,=m. . or, equivalently, given F.F....= m. ./u for i=1,2,...,I, 
ij ij y l j(.i) ij 

j=1,2,...,J, the random variables E.,...., k=1 ,2,... ,K, are independent 
random variables, so that the ranJoni variables X. ., , k =1,2 K, are 

ijk ' 

independent as well. Also, 

E(X. ., IM. .=m. .) = m. .; 
ijk' ij ij ij 

var(X. ., |M. ,=m. .) = m2. .a2, 
ljkl ij ij ij 3 

II. The •* part of the equivalence will be proved in five steps. 
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1) From the quasi-likelihood Assumptions II remember that, given 

M.. = m. ., 

E(X. ., |M. .= m. .) = m. . and var(X. ., |M. .= m. .) = al m? .. 
ijk! ij ij ij ijk' ij ij 3 ij 

Then E(X. ., /M. .|M. .=m. .) = E(X. ., /m. IM. .=m. .) = 1. 
ijk ijl ij ij ijk ijl ij ij 

So given M. . = m. ., the expected value of X. ., /M. . does not depend 
ij ij ijk ij 

on m. ., so that E(X. ., /M. .) = 1, unconditionally, 
ij ijk ij ' 

In a similar way, var(X. ., /M. . |M. .=m. .)=var(X. ., /m. . |M. .=m. . ) = a?. 
ijk ijl ij ij ijk ijl ij ij 3 

It appears that, given M, . = m.,, var(X-,. /M. .) does not depend on 
IJ IJ 1JK !J 

m... so that var(X. .,/M. .) = ai, unconditionally, 
ij ijk ij 3 

Defining F. ., := X. ., /M. ., we found that E(F. ., )= 1; var(F. ., )= A . 
ijk ijk ij' ijk ijk 3 

Then 

X. ., = M. . F. ., for all i,i and k, 
ijk. ij ijk 

where in general M.. and F. are dependent random variables. 

However, given M. . = m.., the random variables X... , k=1,2,... ,K, are 

independent random variables, which follows from the quasi-likelihood 

assumptions. 

2) By quasi-likelihood Assumptions II, in a similar way M.. can be written 

as 

M = M. F. , for all i and j , 

with E(F. .) = 1, var(F. .) = a1, where in general M. and F.. are 

dependent random variables. However, given M. = m., the random variables 

M.., j=1,2,...,J, are independent. 
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3) Finally, 

M. = u F. for all i, 
1 r 1 

where F. are independent random variables for ail i, F_(F.) = 1, 

var(F.)= a*. 

4) Combining the results of 1 ) , 2) and 3) it is seen that X. ., can be ex-

pressed as 

X. ., = u. F. F. . F. ., for all i, j and k 
ijk i ij ijk 

or, in a usual notation for nested designs, 

Xijk= » Fi Fj(i) Fk(ij)-

Finally, it needs to be proved that F., F.-.. and F, ,. . N satisfy the 7' K i j d ) k(ij) ' 
statements in Theorem 1. 

5) First, from 1 ) , 2) and 3): E(F ) = E(F...J = E(Fk...)) = 1 and 

var(F.) = a], var(Fj(1)) = o\, var(Fk ( i j )) = a*. 

Secondly, the variables F., i=1,2,...,I, are independent random variables 

(see 3)); 

given F.= f., or given M.= u,f., i=1,2,....I, the random variables F.,.., y i i' y 1 * 1 ' » » » > j ( i ) 

j=1,2,...,J, are independent (see 2) and 3)); 

given F.F./.^, or given M. ., i=1,2,...,I, j=1,2,...,J, the random 

variables X..., k=1,2,... ,K, are independent (see 1 ) , 2) and 3)), so that 
j.jk 

the random variables F ...., k=1,2,...,K, are independent as well 
*\ i j ) 

(see 1)). 

Now the proof of Theorem 1 is completed. 
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4. APPLICATION 

For a set of count data (see table 2) classified by two random nested 

factors A (with 2 levels) and B (with 3 levels) and with 5 replicates per 

cell, parameters a., i=1,2,3 will be estimated, and hypotheses of type 

H.: a2. - 0, i=1,2, will be tested, 
i l 

A 

B 

1 

1 

8 
8 
4 
9 
5 

2 

12 
15 
9 

13 
8 

3 

9 
10 
11 
9 

14 

2 

1 

17 
13 
15 
11 
18 

2 

23 
25 
14 
20 
18 

3 

11 
16 
10 
10 
13 

Table 2. Count data results from random nested design with factors A and B. 

4.1. Estiaates 

Estimates of parameters a2 were calculated for the set of data from table 2 
l 

under the quasi-likelihood Assumptions I and II (see section 2.4.1), and 

under Model 2 of section 3.2 with lognormal components, assuming 6 to be 

large. The mean-squares from table 4 were used as input to calculate the 

estimates under Model 2. See table 3 for the results. 

Source of variation 

Assumptions I 

Variance components 

Assumptions II 

Variance components 

Model 2 

Variance components 

A 

*2 
°1 
*2 

A2 
a1 

4 
?a2 

= 1.158 

= 14.59 

= 0.093 

= 14.76 

= 0.100 

= 13.64 

B 

>?-

\s. a2, = 

4 = 
*2*2 
\i a 2 = 

4 = 
êv2 = 

0.725 

9.14 

0.058 

9.20 

0.064 

8.73 

Error 

a2 - 0.640 

\L a\ - 8.06 

Ô2. = 0.055 

V2a\ - 8.73 

Ô2. = 0.060 

62a2 - 8.18 

Total 

Var(X)= 31.79 

Var(X)= 32.69 

Var(X)= 30.55 

Table 3. Estimates of parameters <j. > i=1,2,3, under Assumptions I and II 

and under Model 2 (with lognormal components) for the data from 

table 2; n = 12.60 (arithmetic mean); 0 = 11.68 (geometric mean). 
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The conclusion is that factor B and the error component contribute about 

equally to the variance of X, and that factor A is slightly dominant over 

factor B. Note that the estimation results for variance components are 

quite similar for all three approaches, although Assumptions I and II are 

quite different with respect to the variance functions. Also note that 

"2 
a, is less than 1 under Assumptions I, although no underdispersion 
appears from the test results of section 4.2. 

4.2. Test results 

Under Assumptions I and II approximate x2-tests and F-tests (see section 

2.4.3.) were computed, and approximate F-tests were obtained under Model 2. 

The results are presented in table 4. 

Assumptions I 

Deviance 

DAB 
DA 
D0 

Deviance 

result 

15.58 

32.64 

54.28 

df 

24 

28 

29 

x
2-test H2 

26.62 

df 

4 

F-test H1 

5.07 

df 

(1,4) 

Assumptions II 

Deviance 

DAB 
DA 
Do 

Deviance 

result 

1.397 

2.801 

4.552 

df 

24 

28 

29 

X2-test H2 

25.34 

df 

4 

F-test H1 

4.99 

df 

(1,4) 
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Model 2 (with lognormal assumption) 

Factors 

error 

B 

A 

Mean-square 

0.060 

0.379 

1.872 

df 

24 

4 

1 

F-test H 
2 

6.34 

df 

(4,24) 

F-test H 
1 

4.94 

df 

(1,4) 

Table 4. Test results for the data from table 2. 

The uniform conclusion from the test results of table 4 is that the effect 

of factor B is significant at the 5% level and that the effect of factor A 

is significant at the 10% level. 

4.3. Some verification of assumptions 

From the K replicates available per cell, we can verify part 3 of 

Assumptions I: 

- given M. .=m. ., i=1,2,...,I, j=1,2,... ,J, the random variables X. ., , 
ij ij ijk 

k=1,2,... .K, are independent, with E(X. ., ) = m. . and var(X. . ) = o m. . 
ijk ij ijk 3 lj 

to some extent by plotting standardized residuals (X... - X- • ) / / X- • 
I J K IJ"*" •*-»]"*" 

versus X\ . ; see figure 1. An increasing range (see table 5) of these re

siduals with increasing X.. may Indicate that Assumptions I are violated. 

From figure 1 and Va'jle 5 no tendency for increasing ranges appears for the 

data from table 2, so that Assumptions I seem not to be violated. 

Factor A 

Factor B 

Range 

Xi,i+ 

1 

0.46 
0.46 

-1.07 
0.84 

-0.69 

1.91 

6.80 

1 

2 

0.18 
1.07 

-0.71 
0.47 

-1.01 

2.08 

11.40 

3 

-0.49 
-0.18 

0.12 
-0.49 

1.04 

1.53 

10.60 

2 

1 

0.68 
-0.55 

0.06 
-1.17 

0.98 

2.15 

14.80 

2 

0.67 
1.12 

-1.34 
0 

-0.45 

2.46 

20.00 

3 

-0.29 
1.15 

-0.58 
-0.58 

0.29 

1.73 

12.00 

Table 5. Standardized residuals (Xij|< - Xij+)//Xij+ and their ranges. 
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means X.. . 
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5. DISCUSSION 

A proposal was made for the analysis of count data from nested designs with 

random factors by the quasi-likelihood method. The quasi-likelihood method 

has an advantage over methods based on likelihood, which is that no distri

butional assumptions have to be made for the data to base the analysis on a 

likelihood function, as often such assumptions cannot be justified. We have 

derived asymptotic results for estimators and test statistics for large 

numbers of replicates. 

From the application it appears that there are no large differences between 

estimated values of variance components calculated under Assumptions I and 

II and under Model 2 with the additional assumption of lognormality; the 

same conclusions were also drawn from test results of hypotheses. Some 

robustness seems to be present against improper choices of assumptions (see 

also McCullagh and Neider (1984), p. 132). 

Several extensions of the quasi-likelihood method just presented are still 

needed for practice. Really straightforward is the extension of the method 

of section 2 to random designs with more than two nested factors by ex

tending the quasi-likelihood assumptions to more than three levels of vari

ation. Less evident may be a treatment of unequal numbers of factorial 

levels and replicates, and a treatment of covariates 'explaining' part of 

the variation in the data. Also, a further comparison of Assumptions I and 

II by theory and practice is of interest. Certain optimality results could 

possibly be derived for the estimators of variance components under the 

quasi-likelihood assumptions, possibly within some restricted class of 

estimators. Finally, the quasi-likelihood approach for random designs with 

crossed factors needs some research. 
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SUH4ARY 

In the literature, methods have been presented for the analysis of count 

data classified by fixed and crossed factors under the assumptions that 

this data can be modeled by independent binomial or Poisson distributions. 

In general, the mean value of these distributions depends on the levels of 

the classifying factors and a linear model is proposed for the logit trans

form or the log transform of these mean values. 

In practice many situations occur which are different, such as: 

- The counts are independent, but the observed variation in the data is 

more than can be explained by e.g. the Poisson distribution; 

- The counts are dependent: the factors are not fixed but they are random. 

For these situations no general analysis methods are available, and there 

is a strong need for extensions of the theory. In this thesis extensions of 

the theory will be presented to allow for the modeling of this count data. 

In chapters 2, 3 and 4 of this thesis the situation is considered of over-

dispersion with respect to the binomial distribution and the Poisson dis

tribution. In the case of overdispersion we may observe from the data that 

var(X) = a2E(X) with a2 > 1, instead of var(X) = E(X) for the Poisson dis

tribution. In chapter 2 we propose the beta-binomial distribution for 

modeling the overdispersed data, and limiting results for test statistics 

will be obtained for a large number of trials at each cell in the design. 

A gamma-Poisson or negative binomial model is proposed for modeling over-

dispersed count data in the 3th and 4th chapter of this thesis. Here we ob

tain approximate distributions of test statistics for a large number of re

plicates and for large counts as well. In chapters 2, 3 and 4 the limiting 

results are obtained for standard test statistics known from the theory of 

loglinear and logitlinear models, like Pearson's X2 statistic. 
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Chapter 5 deals with dependent count data in a split-plot situation. Here a 

model is proposed to allow for this dependence of the data from the split-

plot experiment. Two separate analyses will be performed, namely for the 

whole plot and for the sub-plot factors, imitating the general Anova 

approach. The basic models are the gamma-Poisson model and the Dirichlet-

multinomial model. 

Data obtained by a dependent classification of objects in two or more 

ordered classes, testing hypotheses concerning the probabilities corre

sponding to these classes is a problem met e.g. in the context of question

naires. In chapter 6 we study the signed rank test of Wilcoxon in the 

situation of such a dependent classification. It appears that the limiting 

distribution of this test statistic, under a Dirichlet-multinomial model 

assumption for the data is the normal distribution; there is an extra 

parameter for the dependence of classification. 

The two final chapters 7 and 8 of this thesis deal with random factor pro

blems for crossed and for nested designs (chapter 7) and for nested designs 

using a different method (chapter 8 ) . 

The approach in chapter 7 is as follows. Basically, we assume that the pro

cess which generates the counts can be modeled by the Poisson process. The 

intensity of this Poisson process is a random variable instead of a fixed 

parameter, and the random components for main effects and interactions of 

the factors are represented by this random intensity. We assume lognor-

mality for the distributions of these random model components and we shall 

derive a limit theorem to simplify this complicated model. The result is a 

simple model for situations with large counts. 

The quasi-likelihood approach for nested designs with random factors is the 

subject of chapter 8. The quasi-likelihood approach was proposed by Wedder-

burn in 1976 for the analysis of independent data, to be used if distri

butional assumptions are hard to make. It is an attractive method to use 

for the analysis of dependent count data as well, as the exact distribution 

of this data is rather intractable. 
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We shall use the quasi-likelihood approach to derive estimators and test 

statistics for the variance components in the case of a nested design with 

random factors, starting with a few very simple assumptions with respect to 

mean and variance of the data. 

Interesting is, that the data which can be analysed is not restricted to 

count data. At the end of chapter 8 some topics for further research will 

be mentioned, advocating a further study of quasi-likelihood for the 

analysis of dependent (count) data for crossed designs with random factors. 
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SAMENVATTING 

In de literatuur zijn methoden voorgesteld voor de analyse van tellingen, 

geklassificeerd door vaste en gekruiste factoren. Hierbij wordt de veron

derstelling gemaakt dat de data gemodelleerd kunnen worden door onafhanke

lijke binomiale of Poisson verdelingen. In het algemeen hangt de gemiddelde 

waarde van deze verdelingen af van de niveaus van de klassificerende facto

ren; een lineair model wordt voorgesteld voor de logit transformatie of de 

log transformatie van deze gemiddelde waarden. 

In de praktijk doen zich veel situaties voor die afwijkend zijn, zoals: 

- De tellingen zijn onafhankelijk, maar de waargenomen variatie is groter 

dan door de Poisson verdeling verklaard wordt; 

- De tellingen zijn afhankelijk: de factoren zijn niet vast, maar stochas

tisch. 

Voor deze situaties zijn geen algemene analysemethoden beschikbaar en er is 

een sterke behoefte aan uitbreidingen van de theorie. In dit proefschrift 

worden uitbreidingen van de theorie gegeven die het modelleren en analyse

ren van dit soort gegevens mogelijk maken. 

In de hoofdstukken 2, 3 en 4 wordt de situatie beschouwd van overdispersie 

met betrekking tot de binomiale verdeling en de Poisson verdeling. In het 

geval van overdispersie kan uit de waarnemingen blijken dat var(X) = a2E(X) 

met a2 > 1, in plaats van var(X) = E(X) voor de Poisson verdeling. 

In hoofdstuk 2 wordt de beta-binomiale verdeling gebruikt om overdispersie 

te modelleren en limietresultaten voor toetsingsgrootheden worden verkregen 

voor een groot aantal trials in iedere cel van het proefschema. 

Een gamma-Poisson of negatief binomiaal model wordt voorgesteld voor het 

modelleren van overdispersie van tellingen in de hoofdstukken 3 en 4 van 

dit proefschrift. Benaderende kansverdelingen van toetsingsgrootheden wor

den verkregen voor een groot aantal herhalingen en voor grote tellingsuit

komsten. In de hoofdstukken 2, 3 en 4 worden de limietresultaten verkregen 

voor standaard toetsingsgrootheden, bekend uit de theorie van logitlineaire 

en loglineaire modellen, zoals de X2-toets van Pearson. 
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In hoofdstuk 5 komen afhankelijke tellingen aan de orde in een split-plot 

situatie. Hier wordt een model voorgesteld dat rekening houdt met deze af

hankelijkheid die inherent is aan het split-plot experiment. Twee separate 

analyses worden uitgevoerd, namelijk voor de whole plot en voor de subplot 

factoren, zoals in de variantieanalyse. De basismodellen zijn het gamma-

Poisson model en het Dirichlet-multinomiale model. 

Data die verkregen worden door op afhankelijke wijze objecten te klassifi-

ceren in twee of meer geordende klassen, daarbij hypothesen toetsend be

treffende de kansen corresponderend met deze klassen is een probleem wat 

men b.v. in de context van enquêtes ontmoet. In hoofdstuk 6 bestuderen we 

de symmetrietoets van Wilcoxon in de situatie van zo'n afhankelijke klassi-

ficatie. Het blijkt dat de limietverdeling van de corresponderende toet

singsgrootheid, onder de veronderstelling van een Dirichlet-multinomiaal 

model voor de data nog steeds de normale verdeling is, maar er is een extra 

parameter die de afhankelijkheid van klassificatie beschrijft. 

De twee afsluitende hoofdstukken 7 en 8 van dit proefschrift behandelen 

problemen met stochastische factoren in gekruiste en in hiërarchische klas-

sificaties (hoofdstuk 7) en in hiërarchische klassificaties, hierbij ge

bruik makend van een andere methode (hoofdstuk 8 ) . 

De aanpak in hoofdstuk 7 is de volgende. We veronderstellen dat het proces 

dat de tellingen genereert door het Poisson proces kan worden beschreven. 

De intensiteit van dit Poisson proces is een stochastische variabele in 

plaats van een vaste parameter en de stochastische componenten voor het 

hoofdeffect en de interactie van de factoren worden door deze stochastische 

intensiteit voorgesteld. We veronderstellen lognormaliteit voor de kansver

deling van deze stochastische modelcomponenten en we zullen een limietstel

ling afleiden om dit gecompliceerde model te vereenvoudigen. Het resultaat 

is een model dat eenvoudig hanteerbaar is en bij benadering geldig in het 

geval van grote tellingsuitkomsten. 
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De quasi-likelihood benadering voor hiërarchische klassificaties met sto

chastische factoren is het onderwerp van hoofdstuk 8. De quasi-likelihood 

aanpak werd voorgesteld door Wedderburn in 1976 voor de analyse van onaf

hankelijke data en is handig als het lastig is redelijk hanteerbare model

len te vormen. Aangezien dit inderdaad geldt voor het modelleren van afhan

kelijke tellingen, is het aantrekkelijk deze methode te gebruiken. We zul

len schatters en toetsingsgrootheden onderzoeken voor de variantiecomponen

ten van de hiërarchische klassificatie met stochastische factoren; als uit

gangspunt nemen we enkele eenvoudige veronderstellingen ten aanzien van 

verwachting en variantie van de data. Interessant hierbij is dat de data 

die geanalyseerd kunnen worden niet beperkt zijn tot tellingen. Aan het 

eind van hoofdstuk 8 worden enkele onderwerpen genoemd die voor verder on

derzoek in aanmerking komen. Hierbij wordt ondermeer voorgesteld de quasi-

likelihood aanpak te bestuderen voor de analyse van afhankelijke tellingen 

bij gekruiste klassificaties met stochastische factoren. 
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