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STELLINGEN

1.

Laat F(x) de verdelingsfunktie zijn van een stochastische varisbele X;
laat het interval (-, ) de drager zijn van F{x). Lsat voorts de rela-
tie

FOO{ - F(x = 8))/[F(x - 8)(1 - F(x))] = ¢{0)

geldig zijn voor alle reéle x en 8, waarbij ¢(8) een niet-coqétante
funktie is van & die niet van x afhangt.

Dan is

F(x) = [1 + exp(-b{x - a})]-}

voor teéle a en b > 0, zodat de kansverdeling van X de logistische ver-

deling is.

Engel, J. (1585}, Some characterizations of distributions by regres-

sion models for ordinal response data, Metrika 32, 65-72.

. De keuze van de link function in toepassingen van gegeneraliseerde 1li-

neaire modellen wordt veelal vitsluitend gemaakt op grond van argumenten
van wiskundige aard, hierbij gemakshalve voorbijgaand aan de interpre-

teerbaarheid van het resultaat.

De resultaten die zijn verkregen door Brier tenm manzien van de kansver-
deling van de GZ-toets in het geval van een groot aantal onafhankeli jke
trekkingen uit de Dirichlet multinomiale verdeling volgen direct uit de
theorie van quasi-likelihood toetsen zoals die is afgeleid door McCul-
lagh.

Brier, S.S5. (1980), Anslysis aof contingency tables under cluster
sampling, Biometriks 67, 591-5%6.

McCullagh, P. (1983), Quasi-likelihood functions, Ann., Statist. 11,
59-67.

De in de regressieanalyse gangbare bensming "verklarende varisbelen” ter
aanduiding van de regressoren dient niet de suggestie te wekken dat het
hier een "wetenschappelijk verklaren" betreft. In dit verband is de aard
van de statistiek niet verklarend doch beschrijvend en derhalve dient

een verklaring dan ook anderszins te worden gegeven.
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5.

Beschouw een homogeen Poisson proces met intensiteitsparameter A = 1 en
lsat N{Y) het aantal punten zijn in het tijdsinterval {0, Y), waarbij ¥
een niet-negatieve stochastische variabele is. Dan wardt de kansverde-
ling van Y een-eenduidig bepaald door de kansverdeling van N(Y}. Zo
geldt dat de kansverdeling van N(Y) de negatief binamiale verdeling is
met parameters a en 8(1 + g)~! dan en slechts dan als Y gamma verdeeld

is met parameters ¢ en B.

Engel, J. and Zijlstra, M. (1980), A characterizstion of the gamma
distribution by the negative binomial distribution, J. Appl. Prob.
17, 113B-1144.

Het optreden van extra-Poisson variatie in een produktieproces kan wij-

zen op statistische onbeheerstheid van dat proces.

. Bij de statistische modelbouw kan men soms met vrucht gebruik maken van

de resultaten die zijn verkregen ten aanzien van de karakterisering van

kansverdelingen.

. Indien met behulp van de methode van kwantielanalyse de parameters van

de logistische verdelingsfunktie diemen te worden geschat en indien
daarbij een kleine kans op succes wordt verwacht bij een zekere toege-
diende stimulus, kan het zinvol zijn niet van te voren het aantal trisls
te fixeren, doch het aantal successen.

Engel, J. (1984), Kwantielanalyse en de negatief binomiale verdeling,
Kwantitatieve Methoden 13, 42-62.

Gezien het belang van experimentele resultaten voor de ontwikkeling van
de natuurwetenschappen dient de door de statistiek verworven kennis ten
aanzien van het opzetten van experimenten in ruime mate te worden uitge-

dragen bij het opleiden van natuurwetenschappers.




10. Ce informatie in de bijéluiter van een geneesmiddel omtrent de bijwer-
kingen van dat geneesmiddel is vaak onvoldoende om zich een oordeel te
kunnen vormen omtrent het risico dat de patiént loopt bij gebruik van
het middel. Dit hangt samen met het feit dat veelal gegevens ontbreken
over risicoverhogende factoren en over de frequentie waarmee bijwerkin-

gen optreden.

11. Het creéren van samenwerkingsverbanden tussen afdelingen vaor statis-

tische consulatie en afdelingen voor statistisch onderzoek is stimule-
rend voor de ontwikkeling van de toegepaste statistiek.
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CHAPTER 1

INTRODUCT ION

1.1. INTRODUCTORY REMARKS

In this thesis we shall study the analysis of count data and dicho(poly)-

tomous data classified by some fixed or random factors; the data may result
from a sampling procedure or from a designed experiment. Some of the stan-
dard and well-known results on this subject will be extended, to cover more

general situations.

The known results mainly concern the fixed factor case; results far random
factor degigns are quite sparse. It is this very important random factor

case for which new results will be presented.

In this introduction, three important concepts from discrete data analysis
will be discussed. Firstly, in sectioen 1.1.1. some standard results on log-
linear models for count data analysis will be reported. This class of
models forms a subclass of the class of Generalized Linear Models (GLM's,
see gsection 1.1.2.) for the analysis of data having a distribution which
belongs to an exponential family of distributions of a specific type. A
third rather new and promising concept is the concept of quasi-likelihood
{see section 1.1.3.), which is closely related to GLM. Now, distributional
assumptions are abandoned snd the Iterative Weighted Least Squates (IWLS)
aglgorithm for estimating the parameters of the GLM is borrowed from GLM
theory to obtain maximum quasi-likelihood estimators of these model

parameters.

Section 1.2. of this introduction deals with some practical examples from
various fields for a further motivation of this study. It will be shown
that the well-known technigues for count data analysis do not cover all
such problems from practice. This fact is known more generally, and some
guotations from the literature confirm our opinion that there is a need for

a more general approach.
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Section 1.3. sumarizes some new results from the literature on this sub-
ject. Results beyond those that are already established are sparse; some of
them will be used in this thesis to form a basis for building further work

on.

Finally, section t.4. reports new results which form the main part of this
thesis. In a nutshell: problems on independent date from fixed factor clas-
sifications will be treated in cases of extreme variation observed in the
data. Also, praoblems with dependent count data will be considered. It con-

cerns those types of experimental designs where in the corresponding model
random model components are to be introduced at several levels. Examples
are the split-plot design and the random factor design. Some models with
random components will be proposed and the analysis of data by these models
will be treated.

1.1.1 Loglinear models

A class of models well-suited for the analysis of cross-classified count
data is the class of loglinear models. On a general level, these models can

be farmulated as follaws.

L I, ... 1

Let { xil’iz’ "’iJ }11:1 12=1...ij:1 be a vectar of independent random

variables being classified by J nominal fixed factors with levels i,, i,,
eeay iJ, where ij: 1, 2, ciay Ij for j= 1, 2, ..., J.

Furthermore, let

i)y igyeees iJ have a Poisson distribution with mean value

Mils igsenny i3

- log m = U+ u1(11)+ u2(12)+ se + U + e F

19 1250evy lJ 12(i1i9)
* Y2, (i) dgeniy)

which is a (saturated) linear model on log-scale.




For polytomous data having the multinomial distribution with parameters n

and p. . . the model holds as well with m, - . =np. .
11, 12’..’13 1], 12,.-,1J .11,12,-.,1J.

Estimation and testing the model-parameters of the loglinear madel and
testing goodness-of-fit of reduced models are some aspects of statistical
inference on count data with the loglinear model. The theory is consoli-
dated in the books by Plackett (1974) and Everitt {%977), and somewhat more
recently by Bishop c.s. (1975), Fienberg (1977) and Haberman (1974},

Bishop c.s. (197%) in particular give an extensive treatment of the theory
and practice, and bring together many results which could be found in the

literature only at scattered places.

The estimation and testing of model paramelers is carcied out using the
likelihood principle, and the distributional assumptions are Poisson and
multinomial. Not many results are known about the consequences of violating
these assumptions. The coherent log-likelihood ratio test statistic G2 is
usually preferred to Pearson's X? far testing goodness-of-fit and model
reductions; however, Pearson's X2 seems to be more robust against violation
of the distributional assumptions, and has a better small sample behav-
iour. Both statistics will be shown to be of more general use, also for
non-Poisson distributed data. Asymptotic distributional results will be

derived under nonstandard conditions.

1.1.2. Generalized Linear Models

The class of loglinear models for independent Poisson data is a sub-class
of the class of Generalized Linear Models (GLM's) for independent data. The
basic distribution of the data then belongs to a more general exponential

family of distributions with probability density function
fix; 0, ¢) = exp [aflo) { xo-g{e) + h(x)} + gls, x)1, con (1)
where E(X} = g'(8), al¢)var(X) = g''(8) and ¢ is a nuissance parameter.

The class of GLM's was introduced by MNelder and Wedderburn (1972). Three
basic assumptions were made by these authors:



- Let X be a vector of independent random variables, each having distri-
bution (1);

- Let y = Z8 be a linear model, where 7 is a (design) matrix of fixed
qualitative and guantitsative covariates, and g is a parameter vector;

- Let ¢ be a function such that & = ¢{y). This function ¢ is called a link

funct ion.

for the loglinear model (see 1.1.1.) and the Poisson distribution with mean
m it is seen after doing some algebra that & = log m for this distribution,
so that the loglinear model fits in the GLM framework with the link func-
tion being the identical function.

By the GLM theory, the classical linear modeling of normal response vari-
ables is extended to the linear modeling of a much wider class of response
variables, having a distribution from the family (1). Examples are the

Poisgon distribution, and the gamma and binomial distribution.

Estimation and testing procedures are based on likelihood. Partial de-
rivatives of the loglikelihood function are equated to zero and parameters
are estimated by the Newton-Raphson algorithm modified by using the Fisher-
score approximation, taking the expectation of the Hessian matrix. It was
shown by Nelder and Wedderburn (1972) that this technique is equivalent to
Iteratively Weighted Least Squares (IWLS) see also McCullagh and Nelder
{1984). This latter procedure is implemented in the GLIM (Generalized
Linear Interactive Modelling )} computer program of Baker and Nelder (1978}
for interactive data modeling. Later, Green (1984) showed IWLS to be of

much wider use, also for problems where distributions are not of type (1).

With GLM, there is no need to transform non-normal, non-homoscedastic data
to homoscedastic (and, preferably, normal) data, imposing the classical
linear madeling framework in an unnatural way. It is widely known that

daing so is wrong. Nevertheless, this transformation is widely applied.

Recent literature on GLM's is summarized by McCullagh and Nelder {1984) and

a review is given by Pregibon (1984},




1.1.3. Quasi-likelihood

Essentially, to obtain linear model parameter estimators by IWLS, no dis-
tribution needs to be specified. It is sufficient to express the variance
of the respanse variable X as a function of the mean E(X) in the farm of
the so-called variance function var{X) = c ¢(E(X}), where ¢ is some known
positive function and ¢ is some unknown positive constant; in IWLS,
VBT'I{X) is used as a weight function. This is the idea behind the concept
af quasi-likelihood, introduced by Wedderburn (1976); see also McCullagh
(1983) and McCullagh and Nelder (1984).

Originally, the idea of Wedderburn seemed to be only toc estimate model
parameters; it was shown by McCullagh (1983} that quasi-likelihood also
provides for testing procedures. A more extensive introduction to the
method can be found in chapter B of this thesis. Now, we shall mention two

important aspects of the use of quasi-likelihood.

- Sometimes {often?), no distributional assumptions can teasonably be made,
but a variance function of type var{X) = ¢ &(E(X)) can be based on
{sparse) experimental results. Quasi-likelihood may then do the esti-
mation job.

- Distributional assumptions are made, boldly, but they lead to a campli-
cated analysis. This is often the case in count date analysis when sev-
eral random components are introduced in the model: likelihood procedures
are very unattractive., If varisnce functions can be obtained, quasi-
likelihood can lead to interesting results as described in chapter B of

this thesis.

In spite of some fine techniques being available for discrete data analy-
sis, there are problems that remain to be solved.
Some of these problems will be mentioned in section 1.2.




1.2. PROBLEMS THAT REMAIN AND THEIR ORIGIN

1.2.1. Problems that remain

The analysis of count data and polytomous data has proved to be of major
theoretical interest, and the results cobtained are of great practical
value. However, for many practical problems the theory as it stands fails
to give a proper solution, and there is a clear need for extensions. Two
examples will illustrate this.

Example 1.

Univariate responses. Over{under)dispersion of independent data, e.g. count
data showing "extra-Poisson variation", and dichotomous data showing "ex-
tra-hinomial variation™; some generalization of the classical Anova theory
is needed to accommodate an extra dispersion parameter. Another problem is
the analysis of dependent count data from a random factor experiment,

modeled in some way by several random components.

Example 2.
Multivariate responses. Cluster sampling and multiple categorical responses

are examples of a dependent classification of data.

To illustrate example 1: consider the experimentael design with two nested,

tandam factors and some replicates per cell; see Scheffé (1959},
For normal cesponses Xijk’ the Anova model is xijk Th+a bj(i}+ Bk(ij)
where a., b,, ., and e . ., are independent random model components. Cer-

1 jii) k(ij}

tainly a model of this type is needed for count data analysis.

Example 2 may be illustrated by cluster sampling, where objects are classi-
fied not independently into one of K classes. Clearly, the multinomial
model based on independent classification is of little use in this case:
what we need is some alternative model, in which the dependence of the

classification of objects is included.




1.2.2. Their origin

The problems that remain have their origin in various fields of human ac-
tivity and the solutions to these problems have therefore a wide applica-
bility.

Some of those fields of application are summarized under industrial manu-

facturing, marketing research and biomedical sciences.

Industrial manufacturing

Many industrial experiments have count response data or dichotomous (bi-
nary) response data instead of measured data, Count response data is often
met as the number of (unwanted) perticles (defects) on products. Dichot-
omous data arise as the number of good products out of a fixed number of n
products included in the experiment.

We shall mention two disciplines of technology where count response data is
encountered.

When soldering chip components on printed circuit boards, the number of
soldering failures on the circuit board and the number of properly soldered
chip components are measures of the quality of the soldering process. The
question of the technologists to be answered is: what is the influence of

the process factors in the experiment on the quality of the soldering pro-
cess? A related question is: what is the influence of the process factors

on the failure rate of the soldering process and what is the setting of

these factors to give maximum process yield?

In the manufacture of Integrated Circuits (IC's) one of the major problems
is the presence of small particles (dust) that can cause defects in
IC-components. It is of vital importance to find settings for the process
factors that will minimize the occurence of such defects. One question in
this context 1is: what are the major sources of variation in the
manufacturing process that influence the number of these particles?

Both the soldering problem and the IC manufacturing problem involve over-
dispersion and dependence of count data and there are no general statisti-

cal methods to analyse the data.




Marketing research

The number of units of a certain product, e.g. margarine, bought during a
fixed time interval by an individual consumer can be modeled by the Paisson
distribution. However, different consumers have different Paisson par-
ameters and overdispersion of the number of units is observed.

Given the total number of units bought by an individual consumer, the
result of classifying these units by branches can be modeled by the multi-
nomial distribution. However, the probebility vector of the multinomial is
different for different consumers and an extension of the multinomial model

is wanted.

Biomedical sciences

An example of an experiment with random nested factors and count responses
is the following.

Suppose that some trees are sampled from a forest. Suppose that for each
tree in the sample, branches are sampled from the branches of that tree.
The number of insects is counted on each of the sampled branches, This
gxperiment may serve to answer questions like: what is the influence of the
variation of trees and branches on the number of insects? With count re-
sponse data we would like to test and estimate variance components, and
this problem cannot be solved by standard techniques.

An example from medicine relates to the frequent need for a dependent clas-
sification of results {cluster sampling).

Consider the following experiment: let each of J treatments be carried out
K times on each of I patients and let the response variable be polytomous
and ordered having L levels, such as health improvement at the levels no
improvement, some improvement and substantial improvement. Usually, the I
patients are considered as a random sample from a large population of
patients and then the classification of treatment results is dependent. To
answer questions like: is there any difference between the treatments, we

need a model for dependently classified data.




Finally, if more motivation is needed, some literature will be refered to.

Theee quotations can speak for themselves.

... however, we have not considered the analysis of data using loglinear

models in situations corresponding to nesting and random effects ANOVA

models. Several research problems related to this topic require solution.
Bishop c.s. (1975), 371.

Problem 20. Give a general discussion for analysing interactions in log
linear models for Poisson and binomial data in the presence:
(a) of overdispersion, (b) of underdispersion.

Cox (1984), 23.

... the important and difficult extension of the theory of generalized
linear models to random effects models.
Pregibon (1984}, 1592.

1.3. SOLUTIONS THAT HAVE BEEN GIVEN

Results available on the extensions of the standard theory of count data
analysis can be classified into four categories:

1. Over{under)dispersed independent count data;

2. Over(under)dispersed independent dichotomous data;

3. Over{under)dispersed independent polytamous data;

4. Dependent count data, dependent dicho(poly)tomaus data.

For each category, we shall summarize the results known from the litera-

ture.

1.3.1. Over(under)dispersed independent count data

The problem of overdispersed count data was studied by Paul and Plackett
(1978), with respect to the behaviour of test statistics for testing the
equality of Poisson parameters. A gamma compounded Poisson (or negative bi-
nomial) distribution is assumed and for this distribution the conclusion
is: when using standard tests, the probability of rejecting the null hy-
pathesis increases because of the increased variation in the data which is
not accommodated in the standard Poisson model.
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There is a paper by Breslow (1984) which treats the modeling of extra-Pois-
son variation in count data. An extra medel parameter for overdispersion is
estimated by two, somewhat heuristic, approaches: an approach assuming nor-
mality of the logarithm of large count data, and a quasi-likelihood
appreoach for small counts. In both cases, the extra parameter and Lhe
linear model parameters are estimated iteratively.

A recent paper by Ross and Preece (1985) discusses the fitting of Lhe nega-
tive binomial distribution to a set of data from a single population, esti-
mating the model parameters by maximum likelihood. They give examples of
and references to the application of this distribution in a biological con-
text. Other applications in this context have been given by Manton c.s.
{1981) and by Nedelman {1983).

Applications in the modeling of consumer purchasing behaviour are from
Chatfield and Goodhardt (1970, 1973) and Dunn ¢.s. (1983}.

Cox (1983) studies the efficiency of maximum likelihood estimation in the

presence of modest amounts of overdispersion.

1.3.2. Over{under)dispersed independent dichotomous data

D.%. Finney observed overdispersion when fitting a linear model to 'the
probit &—1(;)‘ af ; = X/n where X is the number of successes out of n
trials and & is the standard normal distribution function. He constructed
the heuristic "heterogeneity correction" ¥2/df for (co)variances of esti-
mated model parameters, where X2 is the Pearson goodness-of-fit statistic
wilth df degrees of freedom.

Generalizations of the binomial distribution for overdispersion were
studied by Skellam (1948), and later by Altham (197B) and Tarone {1979).

An application of such a genecalization was described by Segreti and Munson
{1981).

The problem of averdispersion was treated by Erowder (1978) in a more pro-
found way. He assumes a beta-binomial distribution for the overdispersed
dichotomous data. A likelihood procedure for the estimation and testing of
model parameters is presented for a general (fixed factor} design matrix,
The extra model parameter for overdispersion can be estimated if some re-

plicates "per cell" are available.
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A treatment by the quasi-likelihood method is presented by Williams (1982)
who does not make any distributional assumptions. Only the variance func-
tion is needed; it is assumed to be of the "beta-binomial type"

var(X) = {1 + ¢(n-1)] op (1-p). Estimation of Lhe linear model parameters
and the parameter 4 for extra-binomial variation is carried out by IWLS
and, respectively, by equating Pearson's X2 for a full model to its ex-
pected value. The computer program GLIM can be used to do this, avoiding
awkward calculations based on likelihood; see Crowder {1978). William's
paper formed the basis for Breslow's treatment on extra-Poisson variation,

see 1.3.1.

Also Broaks (1984} contributed to the likelihood approach of overdispersed
dichotomous data. He proposes heuristic and approximate likelihood ratio
tests based on the beta-binomial distribution that can be carried out by
the standard program GLIM, contrary to Crowder's likelihood ratioc pro-
cedure for which a special computer progcam is needed. Fitting linear
models to correlated binary data by Gaussian estimation is discussed by
Crowder {1985). Finally, Prentice (1986) has extended the beta-binomial
distribution to allow for underdispersion and for dependence of the par-

ameter & on covariate measurements.

1.3.3. Over(under)dispersed independent polytomous data

Overdispersed polytomous data shows up at cluster sampling and survey sam-

pling; it has received some attention in the literature.

Some early results are those of Mosimann {1962, 1963), Cohen (1976) and
Altham (1976), mostly considering single populations. More general are
those of Brier (1980}, who derives asymptotic testing results for a vector

X = | Xi} ;_1 of numbers of classified objects, assumed to have the

Dirichlet multinomial distribution. This distribution is obtained by giving
the vector (p;, Doy -1, Pr) of the multinomial (n, p;, Ppy ++s pr) distri-
bution a Dirichlet distribution with parameter vector (B;, By, .., Br)'

If classified data is available for N independent clusters it is shown that
G? and X2 statistics from standard loglinear model theory have a C 42 type
of limiting distribution for N + «, C being some constant depending on n

and the amount of heterogeneity between clusters.




- 12 -

Other tesults on cluster sampling that deserve mentioning are those of
Plackett and Paul (1978) for testing symmetry in a squared contingency
table, again under the assumption of a Dirichlet multinomial distribution,
and those of Gleser and Moore (1983, 1985), who present some general re-
sults on the asymptotic distvibutions of goodness-of-fit tests under posi-
tive dependence of observations, showing that the asymptotic distributions
of these test statistics are large-tailed as compared with the chi-squared
distribution.

A survey of the use of chi-squared statisties is given by Fienberg (1979),

who also mentions cluster sampling.

Problems from survey sampling are discussed, among others, by Bedrick
(1983), Fellegi {1980) and Rao and Scott (1984). In this case, distri-
butions cannot be established properly. Therefore, only assumptions of
large sample normality are made by these authors to derive limiting distri-

butions of test statistics,

1.3.4. Dependent count data, dependent dicho{poly)tomous data

For dependent count data, not many results can be found.

An extensive treatment of Lhe negative multinomial distribution was given
by Sibuya c.s. (1964); it is the multivariate analogue of the negative bi-
nomial distribution, see section 1.,3.1. It can be of use for modeling de-
pendent count data if the dependence structure is simple. The extension of

Nelsan {19B5) allows for a more camplicated dependence structure.

Forcina (1984) in an unpublished communication proposes a model for count
data from 8 restricted version of the nested design with two random fac-
tors. McCullagh and Nelder (1984), p. 255, treat a simple nested struc-

ture.

On dependent dichotomous data, three papers appeared recently. In the con-
text of questionnaires a paper by Anderson and Aitkin (1985) discusses
models for dependent binary data with associated fixed covariates; the data
is classified in groups by random nested factors. The EM-algorithm is used

for maximum likelihood estimation of the model parameters.
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A mixed model for categorial data is presented by Beitler and landis
(1985), which is similar to the corresponding two-way Anova model for quan-
titative data. Gilmour, Anderson and Rae (1985) deal with dependent dicho-
tomous data formed by classifying samples from underlying normal distri-
butions and it is their aim to estimate location and scale parameters of

these underlying normal distributions.

These results on dependent count data analysis have only very recently
become available. Possibly rendom fartors have not always been recognized
as such in count data problems and random factors were taken for fixed fac-

tors. On the other hand, the problem is quite hard to tackle.

In this thesis we shall present new results on this subject. A survey of

these results can be found in section 1.4. of this introduction,

1.4. NEW RESULTS

In this section we shall summarize new results that were obtained recently,
forming the basic contents of this thesis. We shall first mention briefly
the types of experimental designs for which the new analysis methods for
count response data have become available. These types of experimental de-

signs are the fellowing.

I. Fixed factor designs

1. Completely randomized fixed factor design with nominal factors,

where count data show overdispersion (chapters 2, 3 and 4); in the

model an additional random component is introduced for overdisper-

sion,

2. Split-plot design ({chapter 5) with Fixed Ffactors and with ad-
ditional random components for whole plot error and for the inter-

action between whole plot error and sub-plot factors.
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3. Paired comparisons design with two treatments and ordered response
categories for treatment difference (chapter 6); additional random
caomponents are introduced for the interaction between blocks and

treatments.

I1. Random factor designs

4. Random factor design with crossed factors (chapter 7) and with

nested factors (chapters 7 and 8) using a different approach in
chapter B; random components are introduced for main effects, for

interactions and for errar.

For each of these experimental designs the approach to data analysis will

now briefly be discussed. An extensive discussion can be found in the

relevant chapters of this thesis.

1.4.1. Fixed factor design

For the fixed factor design, there are new results for the following two

situations:

- Count data restricted to a maximum of say n (dichotomous data, see chap-
ter 2) in the case of overdispersion with respect to the binomial distri-
bution; n does not depend on the levels of the design factors. Approxi-
mate x’-tests and F-tests are presented for testing linear models for the
logit of the probability parsmeter x. This approximation holds for large
n and for small overdispersion. For designed experiments a constant par-
ameter n is often realizable and then the method is useful. It has some

advant ages over other relatively new methods published in the literature.

Count data not restricted to a maximum (chapters 3 and 4}, in the case of
overdispersion with respect to the Poisson distribution. Approximate xz—
tests and F-tests are presented where we assume homogeneity with respect
to the extra parameter for overdispersion {compare this with the assump-
tion of equal varisnces for the normal case). The results were chtained

for large numbers of replicates and for large counts. In both cases two
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models will be discussed, which differ in the way extra-Poisson variation
is introduced.

The case of large counts deserves some gpecial attention, because the
analysis is then particularly simple and elegant. The analysis is based
on the Poisson deviance (for the model with a linear variance function)
or the gamma deviance (for a quadratic variance function). As in the
Anava theaory, approximate F-tests are constructed to eliminate the extra
parameter for overdispersion. For practical applications it is important
to know that both deviances are available in a statistical packege like
GLIM.

1.4.2. Split-plot design

For the split-plot design a medel is constructed {in chapter 5} allowing
for dependent count data within the whole plot, and for the interaction
between whole plat error and sub-plot factors. Again, approximate y?-tests
and F-tests are used for the analysis of whole plot and sub-plot factorial
effects; the approximate distribution holds for large counts and for a

large number of replicates as in section 1.4.1.

1.4.3. Paired comparisons design

Let two treatments be applied pairwise, n times at each of N random blocks
and let the observed differences of treatment responses be classified in K
ordered response categories (see chapter 6).

Now the question is how to test for difference between treatments if an in
teraction between rendom blocks and treatments is present. For this situ-
ation no solution is given in the literature. We propose the use of a rank
test of Wilcoxon as the instrument for testing the hypothesis of no treat-
ment effect. In this case of ordered polylomous response data in random
blocks where an interaction is present between treatments and blocks, the
limiting distribution of e.g. Wilcoxon's signed rank test for symmetry is
not the standard notrmal distribution,

Under a Dirichlet-multinomial model assumption the limiting distribution of

this test of Wilcoxon is obtained in chapter 6.
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1.4.3. Paired comparisons design

Let two treatments be applied pairwise, n times at each of N random blocks
and let the observed differences of treatment responses be classified in K
ordered response categories (see chapter 6).

Now the question is how to test for difference between treatments if an in-
teraction between random blocks and treatments is present. For this situ-
ation no solution is given in the literature. We propose the use of a rank
test of Wilcoxon as the instrument for testing the hypothesis of no treat-
ment effect. In this case of ordered polytomous response data in random
blocks where an interaction is present between treatments and blocks, the
limiting distribution of e.g. Wilcoxon's signed rank test for symmetry is
not the standacd normal distributien.

Under a Dirichlet-multinomial model assumption the limiting distribution of
this test of Wilcoxon is abtained in chapter 6.

1.4.4. Rendom factor design

The random factor design is the subject of chapters 7 and 8.

In chapter 7 we shall huild a model by essuming lognormality for the random
model compenents for main effects and interactions, The product of these
components farms the random intensity of the Poisson process modeling the
data generating process. For large counts we ace now able to analyse the
data for any factorial design with nested and crossed random factors.
Effectively, this analysis amounts to performing a standard Anova on the

log-transform of the data.

Much less restrictive are the assumptions made in chapter 8. There we shall
follow the quasi-likelihood approach to analyse the data from nested
designs with random factors.

For this type of random factar design, a new approach to the analysis of
data is proposed which is not even restricted to the analysis of count
data. In the literature the quasi-likelihood methaod is only applied to in-
dependent dataj; we shall use it for dependent data.

The difference between the model building for nested designs in chapter 7

and in chapter B can be sketched as follows.
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In chapter 8 we only assume that we know the variance function for each
factor (and for error) in the nested design which expresses the variance of
the random level of this factor as a function of its mean value given the
level of the factor which is st one stage higher in the design.

For example, for two random factors the variance functions to be gpecified

can be the following.
First,

M) = o2
var{ i) LA

where Mi is the random level of the first factor;
p is the general mean;
a% is a positive parameter.

Secondly, given Hi =M,

2
var(Mij) = oom,

vhere M, . is the random level of the second factor;
oy is a positive parameter,

Thirdly, given Mij = mij’

- 2
var(xijk} = 63mij’

where xijk is the kth observation at the levels i and j of the two factors;
c% is a positive parameter.

For large sample sizes, spproximate yZ-tests and F-tests will be obtained
for testing the main effects., On a set of data, this method was compared
with the method of chepter 7; no essential differences in the conclusions

were observed.

Chapter B8 is concluded by suggesting some further research which has to be
done. Specifically, it is the guasi-likelihood approach based only on very
simple assumptions with respect to the mean and variance of the data that
should be explored further to provide us with solutions to problems which

have not yet been solved.
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CHAPTER 2

ON THE ANALYSIS OF VARIANCE FOR BETA-BINOMIAL RESPONSES

Abstract

The bete-binomial distribution is reported in literature as a wuseful
generalization of the binomial in case of heterogeneous binomial sampling.
An extra model parameter is introduced to accommodate for extra-binomial
variation. Some additions ta results already available will be given by
presenting approximate F-tests for factorial designs, where the response
variable is of 0-1 type and sampling is heterogeneous binomial. These tests
can be used when sample sizes are large and equal and some degrees of
freedom are left from replicates or negligible interactions to estimate the

extra model parameter.

(Published in Statistica Neerlandica 39 (1985), 27-34).

1. Intreduction

The analysis of binomial and multinomial response data, classified by
several fixed factors, is surveyed in the books of Bishop c.s. (1975} and
Fienberg (1977). The log-linear model has proved to be a flexible tool for
the analysis of Lhis data.

However, somet imes it is observed that variation in 0-1 responses cannot be
explained by the full leg-linear model and binomial error. A distribution
accommodating for this heterogeneous binomial sampling or extra-binomial
variation is the beta-binomial distribution {BBD). Recently it was dis-
cussed by Paul and Plackett (1978), Brier {1980} and Crowder {1978) re-
verting to earlier results of Mosimann (1962}.

Some contributions to the discussion will be made by presenting approximate
F-tests for the analysis of beta-binomial responses or in general, Dirich-
let multinomial responses. The approximate tests can be used for i) large
and equal sample sizes, 1i} small extra-binomial variation and iii) fac-
torial designs, where replicates or negligible interactions deliver re-

mainder degrees of freedom to estimate an extra parameter.
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Further, these tests are based on standard statisties, known from log-
linear model analysis, which makes them attractive in a computational way.
The analysis of a 2% complete factorial design, with D-1 classified re-

sponses is presented as an application at the end of the paper.

2. Approximate test statistics

Z2.1. Dirichlet multinomials

The Dirichlet compounded multinomial distribution (DMD, see Mosimann {1962)

and Brier (19B0)}), and the bivariate special case, the beta-binomial dis-

tribution (BBD, see Crowder {1978)) will be basic to the models considered.

The OMD is obtained in the follewing way. Suppose that random vector

X = {Xi}i_1 has a multinomial {n, p) distribution, conditionally on pro-

bability vector p. If p is a random vector having a Dirichlet distribution
with parameter vector (31, Bos +ers BI), then the marginal distribution

of X is OM.

Frequently, a more useful parameterization is by vector g = (u1, ceny nI),
where n, = Bi/(ﬂ1 T ﬂI) and sum B = B, + ... + By. Note that

Ep; ==, and var p, = ni(1 - n)/{1 +8). If B » = and n is fixed, the

i
multinomial (n, =) is obtained.

From Paul and Plackett (1978) we shall recall a limit property of the DMD.
Later, this property will be needed to derive a limit theorem for test

statistics.

A limit property of Dirichlet multinomials

l}{=1 has a DMD with parameters n, {ni {=1 and B, where f = ny

for some fixed v and n + =, then the asymptotic distribution of {Xi} after

If vector {X

standardisation is normal. Approximately, for large n,

EX, = nm., Var Xi = Anni(1 - ni), cov (Xi, Xi') = -Anmom,

for i # i', where A = {1 + y)/v.




2.2. The model

I
Xijitiz1s
being classified by J levels of a fixed factor A, K replicates being

We shall now consider independent, I variate response vectors {

availgble for each level j. It is assumed that {xijk}{-1 has the DMD with
parameters n, {“ij}£=1 and B not depending on k. A further homogeneity

assumption is ﬂj = B, not depending on j. Then the DMD is parametrized by n
and {B nij}§=1‘

A motivation for the DM model may be found in the following considerations.
From veplicates of the experiment at level j of design-factor A, large
variation in the data may show that the multinomial distribution with fixed
probability vector p is not an acceptable distribution. Sometimes a decent
technical explanation can be given for this phenomenon. Then the extension
of the multinomial model can be useful, which is obtained by letting the
probability vector p vary between replicates according to the Dirichlet
distribution, accammodating for extra-multinomial variation. The result is
the DM distribution.

Referring to the limik property of 2.1., we shall derive a limit theorem
for test stalistics under the following assumption.

Assumpt ion

n->oand B+ =, where y = 8/n is fixed,

If pijk is the crlass i multinomial probability, then the assumption implies

1 1
var p, ., = . {t-m. )z — ., {1 -m, )
lek 14+8 ij ij 1+ yn ij ij

This alsoc shows that large n implies small var pijk' Also note that

1
H1 # e (n - 1)} s0 that

var X, =nm, {1 -mx,
i t) : 1+ yn

Jk ij

1/2X

- -1
var {n ijk) > (1«4 ") T (1 - “ij) for n + o,

where the limit variance was nij(1 - nij) for {xijk} having the multinomial
(n, {nij}) distribution.

Throughout the paper, we shall use the notation A for 1 + y‘l.
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2.3. Test statistics

We shall derive approximate F-statistics for testing the main effect of
factor A or, to be more general, main effects and interactions of M crossed

factors A1, A . For this purpose, the log-linear model is fitted

2t eer Ay

to the expected probability vector | }i=1, where jm = 1,2,...,Jm;

M s = .
Hydg-+dy

m=1,2,...,M, treating vector { as a cesponse vector by

xij1...ij}i:1
conditioning on proper marginal sums. For I = Z this reduces Lo the logit
model, see Fienberg (1977), p. 77.

" To composa the F-statistics, recall from Bishop c.s. (1975}, Pearson's X?

and the multinomial log likelihood-ratio 62:

X2 -3 X, 5 =N z. 0%/ nx,.

ijk b ij ij
6222% X.. log (X.../n 7).
ijk ijk %9 ¢ le/ nlJ)

Here i is the MLE of 75 5 under the multinomial distribution and the hypo-

thesized log-linear model for T

Under the assumption of 2.2 we shall prove that X2 and G? are distributed
as A times chi-square under the hypothesis, asymptotically for n » =.

Impartant results are summarized in the following proposition.

Define nested log~linear models by indices p, q .. and the ordering
p<p+1<qg<qg+1in the following sense: if i < j, then model j is a
reduction of model i by deletion of one or more model parameters.

Proposition

Under the assumption of 2.2., and if the tested hypotheses are true, the

following statements hold
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1. GE and X; have the same asymptotic distribution, where

G; and X; correspond with a model p.

D
2. Gg + Axs asymptotically, where » denotes convergence in distribution
p
and xi is a chi-square random variable with Vp degrees of freedom for
p
medel p.
Also
Gé+1 - Gé > Axi oy asymptotically.

p+1 p

3, G:+1 - Gg and G$+1 - G; are independent, asymptotically.

D
4, (G2 - G2)d /{62, -G2)d »F asymptotically, where
q+1 qg p p+l p

d_,d
q’p

d = v - v_and F is an F random variable with d_ and d
p p+1 p dq, dp q p

degrees of freedom.
We shall give an outline of proof.

Proof 1. Recall Thearem 14.9-2 from Bishop c.s. {1975):

let p be a vector of cobserved fractions having an I-dimensional multinomial
distribution with parameters (n, n), while n is any estimate of n such,

that p and n have a joint limiting normal distribution, i.e.

. - D
/“((Pj ny - (1"-: n)) + N(D,Z) o (1)

for some covatriance matrix I. Then G2 and X2 have the same limiting distri-

bution.

As (1) holds for the multinomial distribution and the log-linear model, it

can be proved that

“ o D
/n((p, n) - (n, w)) > N(B, AR}
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for the DM, and analogous results hold for the product of independent DMD's
with equal scale factor A. So for each true log-linear model, G2 and X2

have the same asymptotic distribution.

2. As to the asymptotic distribution of X2, we revert to corollary
14,9-3 from Bishop c.s. (1975). Following the proof of this corollary, it
can be shown that

X2 5 Ax3 where v is the number of degrees of freedom.

D
Then by 1., G2 » Ay2.
v

D

it i 2z 2 2
Analogously, it is proved that Gp+1 - Gp +> Axvp+1 _ Vp

following the proof of theorem 14.9-8 from Bishop c.s.

3, For the multinomial distribution this result is stated by Haber-
man {1974), p. 117; for the DMD it holds as well,

4, This follows from results 2. and 3. with the Mann-Wald thearem,
see Billingsley (1968), p. 31.

We sghall pay some more attention to part 4. of the proposition, which

enables us to construct spproximate F tests for large n. The denominator of
this F-test consists of a remainder G2 statistic, corresponding with a full

log-linear model, where all relevant effects are included. The numerator is
a statistic of type G2 1 G2 for testing some hypothesized reduction of
q+

the log-linear model.

62, -G v
a+1 q
Then under the hypothesis, F = 5 has an approximate
G Vq+1 - vq
F distribution, with vq+1 - vq and v degrees of freedom.




Comparing this tesult with Crowder (1978} and Brier (1980), we can draw
some conclusions.

A passible draw back of the method is the required equality of sample sizes
say n_, which may be no prablem in case of a designed experiment, but which
can be a fatal requirement for sampled data.

When sample sizes ng do not differ widely, in practice we are tempted to
use the same procedure as for equal n_. from results of Rao and Scott
(1984) it can be shown that X2 and GZ for testing a hypothesized model re-

duction are approximately distributed as K * y2, where A is a weighted mean

A=Zwh, =31 ws(1 +n /) =1+ wn /g, Tw =1,
S s 8 s

weights L depending un the hypothesized reduction. Using the testing pro-
cedure somewhat heuristically as if sample sizes n, were equal comes to

neglecting the dependonce of weights on the hypothesis. Obviously, some

further research on the accuracy of this approach may be useful.

Of special interest is the case K = 1, only one replicate being available
per cell. In factorial experiments, high-order interactions can often be
neglected on technical grounds, and a denominator G’ is then obtained by
fitting a log-linear model, from which these interactions are excluded.
Also fractional replication and confounding can be treated according to
these principles. In fact, Crowder and Brier do wnot give a solution for

these cases.

We may conclude that the approximate analysis can be of use where nominal
response data are obtained from factorial experiments, where equal sample
sizes nS can he realized without much difficulty, and where some inter-
actions can be neglected to obtain remainder degrees of freedom for the
F-tests.
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3, Application

To investigate the dependence of the yield of a resistor manufacturing pro-
cess on process factors, an experiment was carvied out. Four factors were
included in the experimental design, say factor A, B, C and D, each having
two levels.

At each combination of factorial levels, 500 resistors were manufactured
and classified as i = 0 (rejected) or i = 1 (accepted} according to some
quality measure. The experimental design is then a complete 2*-factorial
with 0 - 1 response. (bservations are presented in table 1.

Factor A ag a,
o B| by by | &g | by
d, 172 | 4Ds6 180 440
o dy | 438 | 441 § 363 | 461
d, | 196 | 418 | 190 | 450
|

d, 406 { 431 349 | 495

Table 1. Numbers of resistors being classified as i = 1 (accepted},

out of 500 resistors.

We may start the data analysis by fitting the logit model, assuming bi-
nomial responses, omitting the interaction ABCD. The G2-result is G2 =
8.49, with 1 degree of freedom (df). As the interaction ABCD can be
neglected on technical grounds, we are on the alert for extra-binomial

variation. As it seems, the random part of the model is not of binomial

type.

Introducing the BBD, a primary estimate A = B.49 is obtained for parameter
A. Next, for testing three-factor interactions we use A to correct stat-

P f 2
istics of type Gq+1
Brown (1976), who introduced the concepts of partial snd marginal associ-

- Ga. We adhere to the testing procedure proposed by

ation. The association, corrected by A, is presented in table 2.
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tactorial effect] df |Partial association|Marginal association

ABC 1 0.76 0.69
ABD 1 4.12 3.38
ACD 1 1.53 0.76
BCD 1 1.35 0.55

Table 2. Pactial and marginal association for three factors, corrected by

A.

Comparing these values with 1 df chi-square fractiles, only ABD tends to be
significant at 5%. We shall incorporate the other three-factor interactions
into the remainder G2 to obtain a new and final estimate K = G2/4 = 8.12,
based on 4 degrees of freedom.
As v = (A - 1)°} can be estimated by ; z (& -1t 0.14,
8 = ny leads to the estimate é = 70, which may give some justification
to the use of a testing procedure for large B.

A final testing of main effects and two-factor interactions by means of
approximate f-tests shows, that B and D main effects and BD interaction are
significant. Approximate F-tests, obtained by deviding partial and warginal

Aassaciation G?% - Ga by the remainder Gz, correcting for df, are given in

1+1
table 3.
Factorial effect| df [Partial F Marginal F
B (t,4)] 137.76 127.47 (P < 0.005)
D (1,4)| 79.77 69.50 (P < 0.005)
8D (1,4) 12.26 11.30 (P < 0.0%)

Table 3. Approximate F-tests with 1 and 4 degrees of freedom.
Under the logit model

"1 jklm

— Y + U

179 Skim

log -

20k} ¥ Ya(m) * Y240km)

n-parameters can simply be written as n = LI




-3 -

-

Moment estimates T 41em for Tqjn € presented in table 4.

B| b by

dy | 0.369 | 0.857

d; | 0.778 | 0.914

Table 4. Moment estimates T1km for expected probabilities.

- x1+k+m
Since T1km = ———Z;——— ’ x1jk1m being approximately narmal for large n, with
. _ imat _
mean value n LI and variance An LI {1 ﬂ1km), an approximate {1 - g)

confidence interval

A mgy (-mn)

~

1
Tam € “km F Yegs2 7 1 ’

4n
for Eyem ™8Y give some additional information on the accuracy of the esti-
mate.
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CHAPTER 3

MODELS FOR RESPONSE DATA SHOWING EXTRA-POISSON VARIATION

Abstract

When count data show extra-Poisson variation, standard log-linear tech-
niques to analyse the data may fail. In this paper a generalization of the
log-linear modelling technique is praposed for the negative hinomial model,
as an extension of the Poisson model. An illustration is given by the
analysis of a two-way classification of soldering failure data; extensions

to morve general classifications are possible.

(published in Statistica Neerlandica 38 (1984), 159-167).

1. Introduction

To analyse count rcesponse data, linear models are usually fitted to the
logarithm of the vector of expected values. Well-established techniques of
log~-linear modelling are given by e.g. Fienberg (1977) and Bishop c.s.
{1975). In this litersture it is assumed that the r=sponse variable has a
Poisson distribution.

From practice however, it was noted before that sometimes the Poisson model
is not a suitable model, as the data may show too much variation. A survey
of literature is presented by Paul & Plackett (1978) in which the phenom- -

enon of what may be called extia-Poisson variation is discussed.

Recently a problem was met in consultation practice for which no sclution
was found in literature. Counts of soldering failures on print panels were
classified by two factors, and it was asked to test their main effects and
interaction, while a clear extra-Poisson variation showed from the data. A
solution was found by introducing the negative binomial distribution
generalizing the Poisson, accommodating in this way for extra-Poisson vari-
ation. Two negative binomial models were fitted to the soldering data,
which is a relatively straightforward operation if the GLIM computer pro-

gram is available as a tool for doing the computing work.
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2. Medels for extra-Poisson variation

In the following we shall concentrate on a two-way crossed classification
of a vector of counts {x.l.}, i=1,2,...,1, j=1,2,...,], where i and j in-
dicate the levels of two fixed factors.

One set of standard assumptions for {Xij] is as follows:

{1) {Xij} has independent components X; j
(ii) Xij has a Poisson {mij) distribution

(iii) log mjj is linear in some unknown parameters.

Sometimes, the random variable Xi; shows more variation than is explained
by the Poisson distribution and the log-linear model centaining all ex-
planatory variables. To accommodate for extra-Poisson variation, assumption

(ii) may be replaced by two new assumptions, {ii)' and {ii)":

(i)' given Mjj = m;;, X;; hes a Poisson (mij) distribution, where
Mj j is a positive random variable
(ig)" MiJ = G(aij’ eij)’ where G{aij, eij) are independent gamma random

variables, with shape parameter @ij and scale parameter eij’

The new distribution of Xi. is the negative binomial with parameters

(aij’ pij = eij/(1+eij)) and with probability functiaon

X+, -1

a. .
( - - L] % . ij -
PX., = x) = [ « ) Pij (1 p.u.) » x=0,1,2,...

{see Johnson & Kotz (1969), p. 122).

The Poisson distribution can bes seen as a special case of the negative

binomial just presented: for @is >, 8..+ 0 and g..0 it converges

L
ij ij7ij i

J
to the Poisson {mjj) distribution.
We shall specialize the general negative binomial model to the following

special models:
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Model I, with parameters (ajj, 6).

R . . . )
Then xij is negative binomial (aij’ p = T:ﬁ) and
EX,.=za,0=m.
1] 1] 1)
var X, . = o, 8(148) = m__(1+8)
ij ij ij
gsubstituting parameter mij =E xij for 5 6.

Note that only shape parameter «;j of the gamma distribution depends on

factorial effects.

Model 11, with parameters (a, 6jj).

9, .
1]
Then X,. is negative binomial (g, p.. = -) and
R 1J T+6, .
1]
E xij =« eij = mij
-1
var xij =g eij(1+eij) = mij(1+“ mij).

Note that only scale parameter j j of the gamma distribution depends on

factorial effects.

In literature, the phenomenon of extra-Poisson variation and the relation-
ship between var xij and E xij were studied before; a survey is given
by Paul and Plackett (1978). In practice, a relationship of Lhe type

var xij = ¢E Xi.)b, where 1 < b < 2 seems to cover most cases of extra-
Poisson variation. If the ratio var Xjj/E X;; is about constant, Model
I will sufficiently explain the extra-Poisson variation. If the ratio in-
creases with £ Kij’ Model 11 may be useful, being somewhat extreme in the

light of the results of Paul and Plackett.

It is advised to start the analysis by testing the hypothesis of Poisson
disgtributions, fitting the full factorial model based on the Paisson dis-
tribution for Xije If the hypothesis is rejected, a choice between Model

I and Model II can be based on a plot of (xijk - mij)/f éij against Lhe
estimates éij = iij+ of mij under the full Poisson model. If the variance
of these residuals is more or less constant, Model I can be chasen; if it
increases with ;ij’ Model I1 may be more suitable. Of course, it is not

impossible that neither Model I nor Model Il is a satisfactory model in
cagse of extra-Poisson variation.
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3. Model I

3.1. Discussion

We shall now study Model I in some detail, showing its relationship with
the standard Poisson model as regards its asymptotic behaviour. Here and
further we suppose that for each lzvel 1 and j of the two factors, K in-
dependent replicates Xjjk, being distributed as Xij» are available from
a properly designed experiment.

For Model 1, two types of asymptotic behaviour are relevant and lead to
interesting results, namely:

- mij + =, where & and K are fixed

- K -+ o, where 6 and mij are fixed.

Firstly, we cansider the asymptotic situation for mij » where g and K
are fixed. Then by the Central Limit Theorem, the standardized Xjj has a
normal limiting distribution. Hence, limit properties of Xi. are those of a
Poisson (mij) random variable, when the variance of the latter is multi-
plied by a fixed constant (149). The consequence is, that when the Ffull
parameter log-linear model is fitted, the standard Pearson X2 and log-
likelihoad ratio G2 statistics, defined as:

x2 iﬁk(xijk - misz/miJ and

GZ

Z iﬁk xijk log(xijk/mij)

(see Bishop c.s. (1975}, section 4.2),

will be distributed asymptotically as (1+8) times chi-square, with v =
1J{K-1) degrees of freedom. Analogous results hold for restricted models.
To test for interaction and main-effects we may proceed as follows:

tet G2 be Lhe log-likelihood ratio statistic for the full log-linear model,
while G% - G2 is a difference of G? statistics, where G% cocrespands with a
hypothesized restriction on a model with log-likelihood ratio statistic Gﬁ.

Then G2 and G% - % are asymptotically independent and both (1+8) y2

distributed under the hypothesis.
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An approximate F-test is based on
6?2 - 62
2 1 v
F = -
G2 Vo - V)

having an asymptotic F-distribution with v, - v; and v degrees of freedom
for mjj + = under the hypothesis. Elimination of nuisance parameter {1+8)
is then on the lines of the analysis of variance.

The above statements can be proved following arguments from Engel {1983},

where analogous results for Dirichlet multinomial responses are given.

Secondly, we consider the case K + «, where 6 and mi; are fixed. A con-
sistent estimate for 1 + ¢ is the estimate 1 + o* = Xz/v, where X2 corre-
sponds with the full model, and v = IJ(K-1). 1f preferred, & can be
estimated by é, obtained by maximizing the log-likelihaood

-1
X..o +8  m,. =1 9 -1 1
£ {log [Migk Ty Tij T + X; ji leg (250 + 0 ™ 109(1:6)}
ijk ijk
as a function of 8, substituting the moment estimate mij = iij+ for mij'

Models are tested by statistics G% - c%, again being distributed as

(1+e)x2. To see this, note that these statistics only depend on xijk via
xij+’ being distributed as a negative binomial (B'leij;P) random
variahle. Therefore K + « and mij > = agsymptotics are equivalent, the
latter being considered just before. To close this section, we propose to

test model parameters by statistics (G% - Gi)/(1+§), for K + = asymp-

totically distributed as x2 with Vomvy degrees of freedom, where 9 is a

consistent estimate of e, like 8* or 6.

3.2. Application

By an industrial soldering-team an experiment was carried out lo study the
saldering quality of print panels. Two factors were varied in the exper-
iment :

- factor L: soldering location, with levels L,, L, and Lg

- factor M: soldering method, with levels M; and M,.

For each combination of facterial levels, 5 penels were soldered, so 5
replicates per cell were obtained. The experiment was carried out by com-
plete randomization over the 5 x 6 = 30 experimental units. Afterwards, the

number of soldering failures was counted for each print panel. The results
are displayed in table 1.
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Soldering
Locat ion
by Ly Ly
Soldering
Method
B 10 15 11 2 " 4 13 10 29
My
11 16 14 25 16 25
22 12 5 12 3% N 12 27 25
My
a 1n 12 17 15 15

Table 1; numbecs of soidering failures on print panels.

Obvious from the data is a within-cell heterogeneity, suggesting extra-

Poisson variation. We shall analyse the data by Model I.

3.3. The analysis

The full Jlog-1inear model
log mij TU AU R Uy Uy

was fitted to the data, as well as reduced models, containing parameters
for main effects only. The value of X2 and G? test statistics for each (re-

duced) model is presented in table 2.

Factorial effect
included in df X2 G2
mode 1 v
L *M 24 93,63 90.28
L, M 26 26.67 95.65
L 27 38.66 97.26
M 28 111.71 110. 44
3 29 113.41 112.06

Table 2; X° and G2 test stetistics for fitted log-linear models.

Evidently, the full model L * M gives a bad fit, showing extra-Poisson
variation in the data.
Firstly we shall consider results of approximate tests for large mjj- We

shall follow the first testing procedure from 3.1.
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Results of testing model terms by approximate F-tests are given in the Ano-
va table 3.

Source deqrees of freedom G%-G$ F
v
L #* M interaction 2 5.37 } 0.71
L given M 2 14,79 | 1.96
M given L 1 1.61 } 0.42
Error 24 50.28

Table 3; F-statistics for model terms.

2 _p2
25
a dominant error factor. From the correct approximate F-tests no effects

As is seen from table 3, values of G can be very misleading, because of

are shown to be significant.

Secondly, results of approximate tests for large K are cbtained by test
statistics (G%-Gﬁ)/(1+§), with the estimate (1+6*) = 3.90 or (1+8) = 3.02.
Here also no significant effects show up.

4. Model 11

4.1. Discussion

m, .
1]
Under Model II, X,, has a negative binomial (g, p,., = - ) distribution,
J I
1)
. -1
with £ xij = mij and var xij = mij(1 + mij)'

for Model II we shall consider K s « sasymptotics, where & and mjj are
fixed; because of a non-additivity in parameter LR the case mo.o> e does

not lead to equivalent results, which is cantrary to Model I.
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If « were known, the family of negative binomial distributions is par-
ameterized by pj j only:

X+=1
P()(.IJ = x} = exp {a{x/a log Pij log (1—pij)) + log { +i 1.

This is an exponential family and therefore of the type being studied by
Nelder and Wedderburn {1972). In their paper they show how to fit a (gen-
eralized) linear model for log mj § by an iterative procedure, and how to
test factorial effects by an analysis of deviance, based on 1likelihood
ratio tests. We shall follow their approach and first pay some attention to

the likelihood function.

The log-likelihood function has the form:

e = o (rige e (b g €t e teg (T
ijk ij ij ijk
where index m indicates a specific linear model for log mj;.
For the saturated model the log-likelihood is
Xijk o Xj jrere?
Lie) = i?k {xijk log { E:?;E; )+ log ¢ E:XIE; ) + log { xijk -

The deviance, defined by Nelder and Wedderburn as d&a) = Z(Lga} - Léa))
results in

Xige @My g }
—_— ) + a log (—— 1}}.
X T M oK 5 5k

dfe) = 2% {X]

.. log (
ik K

We shall estimate a by maximum likelihood, maximizing L&a} as a function of

@, when we have substituted mij = iij+ for mij’ the m.l.e. under the full

log-linear model. If needed, the moment estimate may serve as a starting

value for g. We shall discuss it briefly.

following Jobnson and Kotz {1969}, p. 134, for factorial levels i and j we

obtain the "truncated” moment estimate
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x2
a . = ij+ ifFs2 >x.
1] 52 . T 1 13+
ij ij+
. = ifs? <X,
ij ij ij+

where xij+ and Sij are sample mean and variance from K replicates per cell.

Note that o« = « (with Ffinite mij) corresponds to the Poisson case.

. 20{a+1) ]
The approximate variance of o5 being ——— s it is suggested to use
K
pij
weights
* *
=pd, = to obtain the estimate o* = ___
ST ey R
1) ij 1]
ij+
where wt. is the estimate [—;——-—-—Jz af wij; in the sum, terms for which
@iy * xij+

*
wij equals zero are omitted.

By GLIM, dm(a) ig minimized, and therefore Lm is maximized under some re-
strictions on the full linear model for log m e If a linear model m, is
a hypothesized restriction of a model m;, the corresponding set of model

parameters is tested by the difference dm(m} - dmfa) which is, for known o
2

and K + = asymptotically chi-square if the hypothesis is true. If e¢; and @,

are the m.l.e.’'s of g under madel my and model m, respectively,

2
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dm (;2) - dm (&1) has an asymptotic chi-square distribution under the
2 1
hypothesis. Finally, this is true for dmz(“) - dml(a), where o is the

m.l.e. under the full model, as it has the same asymptotic properties
as ay and @y, if the hypothesized restrictions on the full model are true.

It is this estimate of a we shall use in the testing procedure of section
4.2,

4.2. The analysis

We shall reanalyse by Model II the data from table 1, using the computer
program GLIM from Baker and Nelder (1978). Within GLIM, our model is
defined by specifying four model properties:

1. the link function, which is the natural logarithm

2. its derivative

3. the variance function var Xij = mij(1+ﬂ—1mij)

4, the deviance d&q).

In a first step, the "moment” estimate «*= 5.14 was obtained for a. It
was used as a starting value to estimate ¢ by maximum likelihood, resulting

into a value ¢ = 7.32.

The second step in the testing procedure is the formation of an analysis of

deviance table 4,

Model | Degrees of freedom { Deviance

L*M 24 31.43
L +M 26 33.28
L 27 33.82
M 28 38.10
a 29 36.63

Table 4; Analysis of deviance table for the crossed-classification of

soldering failures table 1.

Log-likelihood ratio test statistics for factorial effects are obtained by
subtraction of deviances. No significant effects show up, which confirms

our earlier conclusions.
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2. Discussion

Two negative binomial models for the analysis of the structure of counts
showing extra-Poisson variation have been discussed. An application was
given on a two dimensional classification of counts, with some replicateg

per cell.

A generalization of most of the results exists for i) more dimensional
classifications and for ii} unequal nunbers of replicates per cell. Note
that for Model I when assuming large mjj, only one replicate per cell is

needed to estimate 6 if some more-factor interactions are negligible.

Finally, it was observed by Paul & Plackett (1978) that the negative

binomial (¢,p= £ ) distribution is the limiting distribution of the
1

beta-binomial {n,z,3) where 8 = ne~! and n + =. The beta-binomial distri-
bution applies when the response variable is the number of successes out of
n Bernoulli trials, the prabability of success not being constant between
replicates of the experiment (see {rowder (1978}). Then the negative bi-
nomial distribution seems a good approximstion of the beta-binomial for a
large number of trials when the response is small. The log-linear analyais

can be performed by the methods presented in this paper.
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CHAPTER &

A LIMITING PROPERTY OF MODELS fOR DVERDISPERSED COUNT RESPONSE DATA

1. INTRODUCTION

In chapter 3 we presented models for extra-Poisson variation in independent
count data which was accounted for by introducing the gamma distribution in
the parameter of the Poisson distribution as an extra component of wvari-
ation. Two models were thus obtained;in which either the shape patametec of
the gamma distribution depends on the levels of the design factors (this is
Model I) or the scale parameter of the gamma distribution depends on the
levels of these factors [this is Model II). In chepter 3, Model I and iModel
Il were studied for a large number of replicates and Model I was studied
for a large value of the shape parameter, which implies large mesn valuses
of the count data. In this chepter we shall study Model II for a large
valuz of the scale parameter, which also implies large mean values of the
data.

A limit theorem will be presented in sectiom 2 which is a generalization of
a theoren of Pessin (1961). By this limit theorem a simplification of the
gamma-Poisson model for large velues of the scale parameter of the gamma
distribution is obtained.

More concretely, the limit theorem has the following implication.

Let Mi, i=1,2, «¢e;, I, be a set of I random variables, Given Mi = mi let

independent random variables Xi have Poisson (mi) distributions. Suppose

that Hi can be written as Mi = BHi’ i=1,2, ...,I, where @ is a positive

parameter and {Hi}I is a vector of jointly distributed, positive and non-
izt

degenerate random variables. Then for large 9 the limit theorem implies

that the vector {Xi}§=1 is approximately distributed as the vector

I
{Mi}‘iz‘f *
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The consequence of the limit theorem for the gamma-Poisson model {Model II)
for independent random variables Xi is that the approximate distribution of
Xi for large values of the scale parameter of the gamma distribution is the
gamma distribution itself. We shall discuss the analysis of count data by
this approximate gamma model in section 3.

For a single classification of count data having the gamma-Poisson model,
simulation results are obtained for the true significance level of six test
statistics for testing the hypothesis of no main effect of the classifying
factor, where these test statistics are based on the approximate gamma dis-
tribution.

An important conclusion from these simulation results is that an approxi-
mate F-test which is based on the relatively simple gamma deviance and
which eliminates the shape parameter of the gamma distribution, is quite
reascnable for testing the hypothesis of no main effect of the factor if
some replicates are available per cell and if the scale paremeter of the
gemma distribution is not too small. For the nominal level of significance

of 5%, the true level of significance is no more than 8%.
Finally, an application is given in section &4, revisiting the data of the
soldering experiment from chapter 3. These data will be reanalysed by the

use of test statistics based on the approximate gamma distribution.

2. A LIMIT THEOREM

Let random variables Xi and Mi' i=1,2, ..., I, be given. Given Mi = mi,
let X, have a Poisson (mi) distribution for & = 1,2, ..., I. If Mi =8 Hi’
then Xi is approximately distributed as Mi for large 6. This result reduces
much of the complexity of e.g. the gamma-Poisson model. In a multivariate

version it is formally stated in the following limit thearem.-
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Theorem 1

I
Let X = {X;}j, and M = {Mi}L,| be 1 variate random vectors, where random
vector X given Mz m, m = {mi}i-1’ ig distributed as a vector of 1 indepen-

dent Poisson (mi) random variables.

Let M = 6 H, where H = {Hi};-1 is a vector of jointly distributed, positive

and non-degenerate random variables, having finite second moments.

Then X* + M* in distribution for 6 » « where X* and M* are vectors of

standardized components X; and M;, respectively, where
Xt = (Xi - E(Xi))//var(xi) and Mt = (Mi - E(Mi))//var(Mi).

For an outline of proof, see appendix.

Corollary

iet H be a vector of independent gamma (e, Wi) distributed random vari-
ables, i=1,2,...,I, so that X is a vector of independent random variables
having negative binomiel {(a, p; =8 wi/(1 + 6 wj)) distributions. Then for
large & the components of vector X have, approximately, independent

gamma (e, ewi) distributions for i = 1,2,...,I.

This is the practical interpretation of Theorem 1: for a large value of the
general level @, vector X is approximately distributed as vector M.
Note that E{X) = o E(H}, so the condition in Theorem 1 implies large expec-

tations.

It is important to realize that the components of vector H may be dependent
but should all be non-degenerate. If all components are degenerate, the
components of vector X are independent, having the normal limiting distri-

bution, as is known from standard results.

We shall use Theorem 1 for deriving simplified models for fixed (in section

3) and random (in chapter 7) factor designs with count response data.
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3. ANALYSIS OF DATA BY MODEL II

3.1. The Madel

By the corollary of Theovem 1, we are able to present the analysis of count
data by Model II (see Engel (1984}) for large 9.+ This Model II was defined
as follows.

Let Mi’ i=112, ..., T, be a set of random variables.

Given M =, i=1,2,...,1, a randam vector X has I independent com-
ponents X haying Peisson \m ) distributions., Further i = Gla, 6. ),

where G(a, 8, ) are 1ndependent gamma random variables for i = 1 2,...,1,
with shape parameter a¢ and scale parameter 91‘

Under Model 11, the distribution of Xi is gamma-Poisson; the variable Mi
can be written in the form Ml =B Hi’ where Hi = Gi(a, Wi) is a

I
gamma {a, wi) random variable, LI 9i/e and 8 = ¥ 11 I
‘ i
For large 8 the variable Xi has, approximately, the same distribution as

= Gi(a, Hi) =m Gi(q, a-1), where m.:

it = E(Xi) = af;; further

- -1 2
var(Xi) =g m

and the coefficient of variation of Xi is cvia) = a"1/2-
In section 3.2 we shall let i = 1,2,...,n, where n is the number of
independent counts Xi'

The analysis of data by Model 1I for large el and so for large m

i=1,2,...,n, will be as follows.

Introducing Gl(“):z Gi(a, a'1), the variable Xi is distributed, approxi-

mately, as

Xl ~ o Gi(a) for i=1,2,...,n,

and the analysis of responses X fits into the framework of Nelder and
Wedderbutn (1972) for the analy51s of generalized linear models, the gamma
distribution being optional in the GLIM-system (Baker & Nelder (1978)). A

a is an unknown form parameter to he estimated, the analysis falls apart
into two stages:

- estimate ¢, e.g. by fitting a "full' model;

- fit reduced models, and choose the best model.

Both stages of the analysis will be discussed in section 3.2,




- 49 -

3.2. Estimation and testing

3.2.1. fstimation of ¢ by (modified) maximum likelihood

Three methods for the estimation of parameter « will be presented:
1) maximum likelihood {ml);

2) modified ml;

3) the 'naive' method from GLIM.

Firstly, parameter ¢ can be estimated by fitting a full linear model to m
with log link functiom and gamma error. Such a full linear model, which
contains all parameters of relevance to the problem, is fitted to log mj,
thus taking the logarithm as & link function between mj and the linear
model, For more details here and further, see Nelder and Neddfrburn (1972).

If m; is estimated by the maximum likelihood estimator (mle} m,, the mle

for a« is obtained as the solution ¢ of the equation (see also Dunn c.s.

(1983} for the one-sample case)

n (log « - ¥{a)) = £ log m - % logX; += (Xi/mi - 1) e {1
i T i :
using tables of log ¢ - ¥(x} from Chapman (1956).

Here, ¥{a) = I''{a)/T(a), the digamma functien, whereas £ (X,/m.,-1)
1
vanishes for the log lipk function, see Nelder and Wedderburn (1972).

Then (1) results in

n(log ¢ - ¥(e)) = © log m; - £ log X,. eae (2)
i i

The approximate varience of a for large n equals {n(¥'(a) - 1/a)}-1, the
number of estimated parameters m being small.

Secondly, there are some reasons to consider a modified mle for o.

The modified mle ¢* is obtained by equating the deviance D to its expec-

tation E{D) under a full model, which is

E(D} = 2nae {log a - ¥(a)} - k + U(n-1); see Cordeiro {(1983).

Here D = -2 T log xi/;i is the deviance for the gamma distribution and k
i

is the number of estimated model parameters. The deviance D is defined as
the log likelihood ratio statistic for testing goodness-of-fit of a linear
model for log mi against the saturated model having a parameter mi for

each observation X;.
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Setting D equal to £{D)} we obtain

n(log a - ¥(a)) = Z log r;i - I lag X; + k/2a + 0((¢zn)-1). e (D)
1 1

The solution ¢* of (3} may also be considered as a kind of a moment esti-
mator, setting deviance D equal to its first moment E(D). The estimator

a* has the same asymptotic (n + =) properties as «, e.g9. consistency.

The difference belween the equations (2) and (3) is the correcting term
k/2¢ in (3), which is important if it does not hold that 2q >> k. As

log @ - ¥{a) is a decreasing function of «, see Abramowitz and Stegun
(1965), p. 259, 6.3.21, one always has q* < & (with probability one),

hence cv(;) < ev{a*). The term k/2a can be seen as a correction for a loss
of k degrees of freedom (df) by estimating k model parameters. This pro-
cedure is familiar from the estimation of normal variances, To estimate

2 2

g for normal responses, the mle o equals SSE/n, where SSE is the sum of

squares for ecror. The mle o° is hiased, whereas o* = SSE/(n-k) is a

p

is a modified version of 5° to obtain the unbiased estimator o?* with the

2

property a%* > g , compensating for the loss of k df for estimating model

parameters.

As a third method, the GLIM method for estimating « should be mentioned,
which is related to the modified ml method. It is based on naively equating
the deviance D to its remainder degrees of freedom n-k, which is a correct
procedure for the normal error case. However, note that E(D) = n-k only
approximately for large a. A third g-estimator o** is then obtained within
GLIM, simply by solving D = n-k for «, so that a** = (n-k)/S, defining

S :12(D/a), and no iteration is needed. However, it can be shown that

2a(log a - ¥(a)) > 1, the inequality being substantial for small w; then

always a** < a*, so that ¢** inflates the estimate of cv(a).

To conclude, we summarize that a** < g* < ¢ with probability one, pre-
ferring the modified mle a* as an estimator for «, having the same approxi-
mate variance for large n as the mle ¢. The estimator o** is second best

for a not too small, having the advantage of a simple computation.
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The mle ¢ seems not to be too attractive, unless n is large: for n + =,
x being fixed, the methods one and two are equivalent. For o + =, n being

fixed, the methods two and three are equivalent, as 22 (log « - ¥(x)) =
1 + 0(e=1) for a + =»; see Abramowitz and Stegun (1965), p. 259, 6.3.18,

3.2.2. Testing by (modified) deviances

The testing of reduced models can be based on the deviance D for Lhe gamma
distribution,

it is Cordeiro's advice to use modified deviances D* = (n-k)D/E(D) instead
of deviances D for model testing: for o known they are distributed as

xﬁ_k reasonably well, even for small n. Differences D; - D? for hierarchic
loglinear models are then approximately xﬁ kot For large n, the approxi-
mate xi " distribution of D2 - D1 is supported by well-known large

sample results on log-likelihood ratio tests. For small n, e.g. singly
replicated factorial designs, the testing procedure with D2 - 01 should be
considered in a more informal way. The modification D§ - DT should behave
more like a xil-kz statistic than D, - D does.

In section 3.3 some relevant test statistics based on D and D* are defined

and studied by simulation.

3.2.3. Estimation and testing by generalized Pearson's X2

A statistic which is not based on the llkellhOOd ratio is the generalized
Pearson's X2 = Z(Xi— m, ) /{a m ), where m. is the mle of m, and

i
var(Xi) =z a_1m€; see also McCullagh and Nelder (1984}, p. 26.
For large n, the distribution of X2 can be approximated by the y?-distri-
bution with n-k degrees of freedom, where k is the number of estimated
model parameters. Also, %2 can be used {in GLIM) to estimate the parameter

a. An a**-type estimator o** is defined as o** = (n-k)/T2(x.- m.)zfmg].
x2 X2 i oyt

Generallzed Pearson's X2 correspondlng to the NBD is glven by

X2 = E(X —m )2f(m {1 +a” m, )) which is, for large m ;+ near to the X2
i
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for the gamma distribution. For normally distributed random variables Xi,
Pearson's X2 and the deviance {loglikelihood ratio statistiec} are equi-

valent and are both equal to X2 = Z(Xi - mi)zfdz, where o® = var(Xi).
i ]

This result will be used in section 3.3.

3.3, Simulation results for test statistics

3.3.1. Analysis of NB data by gamma distribution

To investigate the quality of the approximate analysis discussed in section
3.2, approximating the negative binomial or gamma-Poisson distribution by
the gamma distribution, we carried out a simulation study. We used the NAG
library to obtain negative binomial data, simulated by the Monte Carlo
method. In the simulation study we consider the problem of testing the
hypothesis of zerc main effect in a one-way classification of data, with a
total number of n = 12 observations (counts), classified by one faector
having

-1
-1

2 levels, leaving J = 6 replicates per cell;

6 levels, leaving J = 2 replicates per cell.

Further, the parameters o and 9 (note that under the hypothesis, & does not
depend on the index i, iz1,2,...,I} were each set at three levels, that is
-a=2,5, 103

-8 =5, 10, 15,

so that simulation results were obtained for 9 combinations of parameter
values. Results concerning the estimated tail praobability of the x%_1-
fractile at a nominal significance level of 5% were obtained under the
hypothesis of no main effect, for the following test statistircs.

T, ¢+ D, - D1, where D, is the residual deviance for the gamma distribution:

1

D1 = -2a4% lag Xij/gi+ and D2 is the deviance under the hypothesis:
ij
Dy=-ZaL log xij/i++’ so that D, - Dy = -2a% log ¥i+/i++.

ij ij
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T, : D; - D:, where Dq and D; are Cordeiro modifications of D1 and DZ’

respectively, see section 3.2.Z.

T. : X2 = X2, where X2 =31 (X., - X, )2/{a”! X2 ) and
2 1 1 ij ij i+ i+
X2 =2 (X, - % )2/(e”? X2 ) are generalized Pearson statistics.
2 ij ij ++ ++

Parameter ¢ was estimated by a** when testing by D_ - D, and D* - D‘}]", and
by a*; in the case of X% - X%. Remember that o** = I(J—1)/S1, where
X

- % - _ 2

S1 = 01/a and axz = I(3 1)/(X1/a).

Results concerning the estimated tail probability of the FI 1.1(3 1)-frac-
-1,I(3-

tile, at a nominal level of significance of 5%, were obtained for the test

statistics

Tq 2 Fy = (02 - D1)/D1 * T{3-1)/(1-1};
T ¢ Fpy = (0*2* - D;)/D; * 1(3-1)/{1-1);
Te s Fyxa = (G - xIAF * 1Q-1)/(1-1),

4 15 and T6 are the "F-test modifications" of
2 and T3, respectively.

where it is seen that T

the test ﬁaUschTV T

For the approximate F-distribution of Fp there is some support from
results of Jargensen {1983), It is suggested that a reasonable approximate
distribution of Fp for large J is the F-distribution with I-1 and 1(J-1)
degrees of freedom. A limit theorem (see Jergensen (1984)) establishes the
asymptotic F-distribution of Fp for ¢ + =, J being fixed. So the results

coencerning Fp are expected to improve for increasing J and 4.

The simulation results are based on 1000 MC-trials; they are summarized in
tables 13D for I = 2, and in tables 2890 for I = 6 factorial levels.
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17 12 117 13 | 19 14
5 16 11|17 13119 14
166 M 10 7110 7

10 71 1 gl n 7
10 9 7110 7110 7
15 10 | 411 81|10 7
10 6 9 7110 7
15 9 6 9 6 9 7
15 1M N 7|10 7

Teble 1°¢ Simulation results (1000 trials; independence between cells) of

the analysis with the gamma distribution of negative bi-
nomial data for T = 2. In cells: estimated teil probabilities (%

for T1, Tz and T3 {calumn 1), T and T6 (column 2) at the 5%

41 T5
level.

2 5 10

27 1%l 28 11|24 M
5 26 141t 23 11|23 N
32 12} 23 3| 24 9

20 91 19 8| 19 ]
10 18 8| 19 819 8
28 Bl 21 6 | 20 6
18 7118 7|19 8
15 17 7118 7|19 B
26 712 6 | 20 6

Table Za: Simulation results (1000 trials; independence between cells) of

the analysis with the gamma distribution of negative bi-
nomial data for I = 6. In cells: estimated tail probabilities (%)
for T1, T2 T. and T6 {column 2) at the 5%

and T3 {column 1), 14, 5
level.




Table 1b:

Table 27

Simulation results (1000 trisls; dependence between cells) of
the analysis with the gamma distribution of negative bi-

nomial data for I = 2. In cells: estimated tail probabilities (%)
for T,, T and T, {column 2) at the 5%
level.

and T} {column 1), T&’ T

2 5

2 5 10

27 14124 1M [ 25 M
5 25 14 {24 10|28 M
30 10 | 23 8 22 7

20 8 22 8| 20 7

10 18 821 8120 7
: 28 81 22 6 | 20 6
18 61 19 & { 20 (3

15 17 6 { 19 6120 6
27 7121 51132 5

Simulation results (1000 trials; dependence between cells) of
the analysis with the gamma distribution of negative bi-

nomial data for I = é. In cells: estimated tail probabilities (%)
for T1, T and T6 (column 2) at the 5%

level.

and T3 {column 1), Ta, T

2 5
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3.3.2. Analysis of NB data by NB distribution

For reasons aof comparison, simulation results were also obtained, for some
values of 1, « and 8, for the analysis of NB data by the negative binomial
distribution (NBD). Results were obtained concerning the estimated tail
probability of the x§_1-fractile at a nominal significance level of

5%, under the hypothesis, for the following two test statistics:

- D2 - 01, where D is the deviance of the NBD,
i

D=zt [X;5 Log{ (X;5/(x + X; ) ((a + m; 5)/mi )] +
+ a logf (a + mij)/fa + Xij)]];

see a}so Engel {1984). Here Mg o= X;, for D;, and mij = X,, for D,.

- X% - X%, where X2 is the generalized Pearson X2
X2 =5 (X -m 02m, (Teatm )
ij ij ij ij ij
for the NBD, and ﬁ., = X, for XZ, ﬁ,, =X for xz; see also section
ij iv 17 7ij ++ 2
3.2.3.

Parameter o was estimated by solving « from the equality

Dy =25 [X; log[(X;3/(a + X ){a + &; )/K; )] +
ij
+a log{a + X, )/ (a + Xij)]] = 1(3-1)

obtained by equating the deviance D; to its degrees of freedom, iterat-
ively at each MC-trial in the case of the test D2 - D1, taking g5 = 5 as
a starting value; this is an g**-type of estimator.

In the case of the X% - Xﬁ -test, ¢ was estimated by solving ¢ from

2 _ - 2 -1 5 - _

X = zij(xij Si_'_) /[Ri+(1 +a xi+)] = I(J-1)

obtained by equating Pearson's X2 to its degrees of freedom, iteratively

1
at each MC-trial starting with a; = 5, and an u*;— type of estimator is
X

obtained (see alsoc Breslow (1984)).

The simulation results are summarized in tables 33’b for I = 2 and in
tables 48:b for I = 6.
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@
2 10
e
5 W7 7
16 9
15 6 7
14 9

Table }a: Simulation results (1000 trials; independence between cells)
for I = 2, NB-a&nalysis of NB-data. In cells: estimated tail
- D1 and for X% - X: (z is estimated

2 2
by a** and a*;, respectively) at the 5% level.
X

probabilities (%) for D

o
2 10
9
5 17 7
32 19
15 16 17
29 19

Table aaz Simulation results {1000 trials; independence between cells)
for I = 6, NB~analysis of NB-data. In cells: estimated tail

probabilities (%) for D_ - D1 and for X; - X? (« is estimated

2
by a** and a*;, respectively) at the 5% level.
X
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a
2 10
8
5 7
17 10
15 6 |
15 10

Table 3b: Simulation results (1000 trials; dependence between cells) for
I = 2, NB-analysis of NB-data. In cells: estimated tail prob-

abilities (%) for D, - D, and for xg - xf {a estimated by g**

and a*;, respectively) at the 5% level.

a
2 10
9
5 17 17
3t 20
15 16 18
29 20

Table hb: Simulation results (1000 trials; dependence between cells) for
I = 6, NB-anslysis of NB-data. In cells: estimatgd tail prob-
abilities (%) for D2 - D1 and for X; - X? (x estimated by g**

and u*;, respectively) at the 5% level.
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3.3.3. Analysis of lognormal-Poisson data by lognormal distribution

Anticipating later needs (see chapter 7), some simulation results were also
obtained for the analysis of data having the lognormal-Poisson distribution
(this distribution is very similar to the gamma-Poisson distribution},
using the lognormal approximation. The lognormal-Poisson distribution ig

obtained as follows.

Let Xi,, i=1,2,...,I, j=1,2,...,J, be independent random variables. Given
Mij = mi_, the random variables Xi. have Poisson (mi.) distributions.
Further, random variables Mi" i=1,2,...,I, j=1,2,...,3, are independent,
having the lognormal distribution with mean o ei and variance q Gi; temem-
ber that these are the moments of the gamma distribution with parameters
{a, ei); see sections 3.2, and 3.3.1. For large 0, i=1,2, +0v, I, the
independent Xi_, i=1,2,...,1, j=1,2,...,2, have, approximately, lognormal
distributions because of Theorem 1, so that Yij = log xij has the normal
distribution with

mean W, = log[ @ 8./01 + a_1)1/2] and variance o° = log(1 + a_1).

On simulated data, the hypothesis H; : 91 = 62 = ... 0= GI of no main effect

in a one-way classification was tested by the well-known F-test

Fy = (oz - 01)/01 * I{1 - 1)/{1 - 1),

where D; is the deviance D= E (Yij - 7i+)2/02 for the normal distribution

1]
and D, =2 (Y. . -¥ ¥2/5%. The hypothesis H; was alsc tested by the sta-
iy i ++
tistic Dy - D} bhaving a chi-squared distribution, estimating o by
go** = I (Yij - Yi+)2/1(3-1). The simulation results are summarized in

ij :
tables 53+D and tables &850,
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15 ) 7 416 4

Table $%: Simulation results (1000 trials; independence between cells) for
I = 2, lognormal analysis of lognormal-Poisson data. In cells:
estimated tail probabilities (%) for D2 - D1 (42 estimated by

Gi**) and FD, respectively, at the 5% level.

15 4 19 7119 6

Table £%: Simulation results (1000 trials; independence between cells) for
I = 6, lognormal analysis of lognormal-Poisson data. In cells:
estimated tail probabilities (%) for D2 - D,| (4% estimated by

g2**) and F , respectively, at the 5% level.

)]
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15| 9 4199 /)

Table Sb: Simulation results (1000 trials; dependence between cells) for
I = 2, lognormal analysis of lognormal-Poisson data. In cells:
estimated tail probabilities (%) for 02 - D1 (42 estimated by
o2**) and FD, respectively, at the 5% level.

15 | 16 3116 2

Table 6b= Simulation results (1000 trials; dependence between cells} for
I = 6, lognormal analysis of lognormal-Poisson data. In cells:
estimated tail probabilities (%) for D2 - D1 (¢? estimated by

o2**) and F_, respectively, at the 5% level.

D

3.3.8. Conclusions drawn from simulation results

From the simulation results of sections 3.3.1, 3.,3.2 and 3.3.3, the fol-

lowing conclusions can be drawn.
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Ad 3.3.1. Analysis of NB data by gamma distribution

From tables 13:D and tables 23»Y we conclude:

A,

y2-approximation of test statistics Ty, T, and T, where a is estimated

by the estimator ¢** for T; and T, and by the estimator m*z for test T;.
X

- Only for Iz2 are the g-estimators q** and u*; sufficiently accurate
X

so that, when they are substituted for ¢ in test statistics T,, T, and

T3, these statistics have tail probabilities good enough for Further
study (no results for [ = 6 are useful).

- In the case of Is2, tests T; and T, behave not too badly for large ©

(which is supported by Theorem 1), It is known that likelihood ratio
tests like T, are sensitive to wrong distributional assumptions which

are made when assuming a gamma distribution for the data for small 8.

- In the case of I=2, test T; is not too bad for all values of & (the
quality of this test does not depend teo much on distributional as-
sumptions) if at least « is not too small: increasing o seems to im-

prove the performance of this test.

F-approximation of test statisties 1,, T5 and T4,

- The results are now acceptable far 1=2 and for I=6. The variability

of the estimator o«** (or a*;) of «, being large for I=6, is accom-
X

modated by the F-test as in fact & is eliminated. The approximate

F-distribution of the test statistic T, for large J and ¢ is supported

by Jergensen (1983, 1984).
- The tests T, and Ty are reasonable for large 6.

- The test T, appears to be reasonable for all 0, parameter a not being

too small.
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Ad 3.3.2. Analysis of NB data by NB distribution

From tables 38D and tables 4%+ we come to the following conclusions:

A. y?-approximation of tests D, - D; and X% - Xﬁ (¢ is estimated by

a**-type estimator).

- Only for I=2 is parameter « estimated sufficiently accurate, so that
these tests deserve further consideration (for I = 6 these tests are

of no use).

- For the case [ = 2, the test based on D is reasonable for all values

of 4 and g; the test based on XZ is reasonable for all o and for

large values of a.

B. No F-approximation of F-modifications of the above tests was studied.
The reason is that, contrary to the gamma distribution, no F-test can
be constructed to eliminate the parameter « in order to avoid the esti-

mation of parameter «.

Ad 3.3.3. Analysis of lognormal-Poisson data by lognormal distribution

From tables 58P and tables 62:® we conclude:
A. x’-epproximation based on the statistic D - D;.

- Only for the case I=2 do the estimated tail probabilities have reason-
able values. However, in the Anova this xz-approximation is never

used.

B. F-approximation of the test statistic FD.

- For both cases [=2 and I=6 the test F
for all values of 8 and «o.

p has goad tail probabilities

From the (of course, restricted!) simulation results it is tempting to con-
clude that not many replicates per cell and no large values of 6 and o are
needed for the F_-test of section 3.3.3 to have the approximate f-distri-

D
bution.
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Summarizing two important conclusions from the simulation results

1. For the case of two or so replicates per cell the analysis of NB data
by the gamma distribution becomes attractive. An approximate F-test is
available, having reasonable properties when 8 is not too small. By
constructing this F-test the parameter o is elimirated so that there is
no need to compute an estimate for this parameter g. For the “exact"

NB analysis there is no such f-test.

2. Assuming the lognormal-Poisson distribution (instead of the gamma-Pois-
son distributian) for the data, the analysis based on the approximate
lognormal distribution is advised. The corresponding F-test has good
properties for all values of ¢ and A in the study, even when only a few

replicates are available per cell.
4. APPLICATION

As an application, we first calculate estimates of o for the soldering
failure problem from Engel (1984), using the gamma approximation for the
gamma-Poisson model, based on Theorem 1. The results are aq** = 3.34

(GLIM estimate), o* = 3.53 (estimate based on Cordeiro's results), ; = 4.34
{mle}.

All g-eglimates are obtained from Dfy = 7.19 for the full model L * M fit-
ted to the data. Note the difference between this estimate ; and the mle

; = 7.32 based on the gamma-Poisson model. This difference is explained by
the approximat ion used where the Poisson-varistion is ignored. Then the

2

gamma variance a—1mi, i = 1,2, ..., 30, explains all the variation in the

data, so that Lhe estimate ¢ is smaller for the gamma model than for the

gamma-Poisson model.

Secondly, we shall consider the analysis of deviance of soldering failures
by the gamma distribution, modifying deviances as proposed by Cordeiro
(1983). Deviances D are presented in table 7, as well as expected deviances
E(D), and madified deviances D*.




Model | df | Deviance D | Expected Modified
deviance E(D)| deviance D*

L*M 24 25.38 25.35 24.03
L,M 26 26.75 27.35 25.43
L 27 27.14 28.35 25.85
M 28 30.21 29.35 28.82
il 29 30.59 30.35 29.23

Table 7. Deviances, expected deviances and modified deviances for soldering

failure data, where ¢ is estimated by a*.

Model component| df D2 - D, DE - by o FD*
LM-interaction | 2 1.37 1.40 0.65 6.70
L given M 2 3.46 3.39 1.64 1.69
M given L 1 0.39 0.42 0.37 0.42

Table B. Tests D, - D, {DE - D?) and F {FD*} for testing model components.

In table 8, the results of the tests

Fp = (D, = D)/D g * 24/df

and
= [(D* = D*)/De =
FD* (D2 01)/DL*M 24/df
are displayed, where DL*M is the deviance for the model L*M., Assuming
approximate F-distributions for F_ and F__ with degrees of freedom (df, 24}

D D
it is seen that no interaction and no main effects are significant at the

5% level. At the values at hand of, roughly, « = 4 and 8 = 5 the F-tests

are liberal, see the simulation results of section 3.3.
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5. DISCUSSION

In this chapter a limit theorem was presented to simplify compounded Pois-
son models in the case of large scale parameters. This theorem was applied
to simplify Model 11 of chapter 3, a gamma-Poisson model, to obtain the
gamma distribution as an approximate distribution for count data, if the
gcale parameter is large. To some extent, test statistics based on this

gamma distribution were studied.

Applications of the method are found in industrial practice {see section 4)
and also in consumer purchasing behaviour (see Chatfield and Goodhardt
{1970, 1973}, Dunn c.s. (1983)) and in medical statistics (see Manton c.s.
(1981))., Another remark is that the results of section 3 are of direct use
for responses having gamma distributions, Applications can be found in the
field of reliability and survival analysis, where the gamma distribution is

used for modeling lifetime data.

Finally some special attention will be given to the simulation results for
count data having the lognormal-Poisson distribution. The analysis of this
data is based on the approximate lognormal distribution and is performed by
carrying out a standard Anova on the log-transform of the data. The simu-
lation results show that the F-test from the Anova for a one-way classifi-
cation behaves well enough in this unorthodox situation.

We shall return to this subject in chapter 7. There we shall study log-
normal-Poisson distributions having a more complex structure than the one
considered nere; the random mean of the Paoisson distribution is then a

product of independent lognormal components.
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Outline of proof of Theorem 1

Denote by ¢X(t) = % exp{it.x)P{X = x) Lhe characteristic function (cf) of
X
random vector X (see Feller (1971), chapter 15), where t.x denotes the

inrner product of vectors x and t, each having J components,

Given vector M = m, vector X has the Poisson distribution snd

it,
J -m,. {1 -e &) th
ot) =1 e y L. being the j ' component of vector t,
XlM:m Jj=1 J
-m. X,
because P(X = le =m) =T e ijJ which represents the Paisson dis-
J X!
J

tribution of the independent components of vector X given vector M = m.
Since

P(X = x) = [ P(X = x|M =m) dF(M < m), the ¢f of X results in

it,
J -m(1-e B
¢x(t) = f e 9
J=1

dP(M < m),

where we applied Fubini's theorem when interchanging sum and integral.

For j = 1,2, «vuy 3, let a ;= E(H ), b iz var(H )}; further,

P(M<m) =P(d Hg m) =G(e), where G{h) := P{H < h) and ¢ := m/8.
Then E(X )= a8, var(X.,} = a6 + b.62 so that Lhe standardized of com-
onent X  is X* = (X, - a9)/v{e(a, + b.9) i 2 1,2, veuy Jo

P J J i i {J J}’J T ’

The cf of vector X* = {Xg}j is

(t)=exp(-i ;tjaje//{e(aj+bje)1)f Hexp(~ﬂ@(1-exp(itj//{9(aj+bj9)})))dG(¢)

byu
X 3 o] J
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Letting 8 » « and applying Lebesque's theorem,

lim ¢ (t) = exp (-i ¥ t.,a /b)) [ I exp{it ¢ /vb }dG{¢} =
fos ¥ i Joa £ j NN I

J

1]
c— 18

3 - . |
n {exp{i tj(¢j aj)//bj)}d6(¢) (1

Further, the cf of M is

o(t) = [ exp(iz t m ) dP(M < m) = [ exp(iz t 0¢,) dG(¢).
-1 ;
As Mj* = (8 JbJ) Mj - ajflbj, ji=12, ..., J, the cf of vector

M* = (M *} is

J ]
by (1) = expl-i 5; tjaj//bj) {) exp(i }; tj 9 ¢j/(e JbJ.))dG(¢) =
= , i - , G{d)- ve. 12
£ 2 {exp{i tjtwj aj)/JbJ)}d (o) {2)

This ¢f is a continuous function of t at t=0 so that, see Feller (1971),
chapter xv.3, theorem 2, (1) and (2) being identical cf's, the random
vector X* tends in distribution to the random vector M* for & » «, which

was to be provad.
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CHAPTER 5

SPLIT-PLOT DESIGN: MODEL AND ANALYSIS FOR COUNT DATA

Abstract

The analysis of count response data from designed experiments is well-known
for independent response variables having the Poisson distribution. Far
experimental designs where responses are dependent, no general results seem
to be available. An example of this type of design is the split-plot
design, where sub-plot responses are essentially dependent within whole
plots.

In this paper, a model will be proposed for split-plot count data and a
separate analysis for whole plot and sub-plot data will be presented. It is
interesting to note, that the same model is used in the guite different
context of consumer buying behaviour. It was derived by Goodhardt, Ebren-
berg and Chatfield and it was called the 'Dirichlet model’, as the Dirich-
let multinomial distribution, together with the negative binomial distri-

bution, build up the model.
(Published in Statistica Neerlandica 40 (1986), 21-33).

1. INTRODUCTION

An extension of the Poisson model for classified, count respanse data
showing more variation than could be explained by the Poisson model was
given by Engel (1984}. In this paper, the gamma distribution was introduced
into the Poisson model to accommodate for extra-Poisson variation, and the
analysis of variance was carried out by means of the resulting negative

binomial model.

Ciosely related are problems of the following type. Suppose that experimen-
tal units (e.u.), which are classified by fixed and crossed factors, ate
split up into smaller units by other factors; alsc, suppose that count data
is available for the smaller experimental units. A typical result of this
experimental design is that counts are dependent by their nature, so that
any of the models for indeﬁehdent counts is not suitable, see e.g. De Roos
and Schaafsma (1981) for an example.
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As another example, consider large print panels for electrical components,
which are split up into smaller sub-panels. On each sub-panel, a certain
type of copper pattern was mounted. Types of copper pattern have to be com-
pared with respect te their quality, by means of observed numbers of sol-
dering failures, resulting from a soldering experiment. The large print
panel can be regarded as a whole plot, and the sub-panels as sub-plots. The
experimental design considered above is usually called a split-plot
design. The effect of sub-plot factors, which is here the factor 'type of
copper-pattern', is analysed apart from whole plot factors. It will be the

subject of this paper to analyse count data from a split-plot design.

A madel based on the loglinear model is proposed for count data from the
split-plot design (see section 2). The analysis of data (in section 3) is
rather straightforward for a simplified version of the model, which is
often adequate in practice. Also for the more comprehensive model, some

approximations are almost inevitable to meet with requirements of manage-

ability.

Finally, an applicetion of the split-plot design will be given.
The analysis for whole plots was worked out by Engel (198B4}. What is left
is the analysis of sub-plot factorial effects, which is carried out in

section 4.

2. THE MODEL

Ta fix our minds, we shall build up a2 model for the split-plot design in

case of two whole plot factors, say factor A {index i) and factar B (index
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j) and one sub-plot factor C {index k), Of course, any number of Fixed and
crogsed factors can be treated in a similar way. We shall consider equal
numbers of replicates per cell, which will be indicated by index %. Table 1

shows the experimental design.

A:
B C: a, . 3

Cl X X

bl L] . -
CK X x
c

by |
Cx

Table 1. A split-plot experimental design with whole plots and sub
plots.

The count response variable for replicate £ of sub-plot k of whole
plot (i,j) will be denoted by xijki’ where iz1,2,...,1, j=1,2,...,J,
k=1,2,...,K and 221,2,...,L.
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Some components, which should be included in the model for xijkl are the

following; see Montgomery (1976), p.292:

- whole plot error; then xijkll and xijkzl are dependent random vari-
ables, for any k; and ks

- interaction between sub-plot factor C and whole plot error

~ sub-plot error.

The Poisson distribution will be the basis for this model, and model com-
ponents of random type are introduced into the Poisson parameter.
Taking into consideration the above reguirements, the following model for

xijkk is proposed:

(i) Let Mi'kk be a positive random variable, then given 7
Mijkk = mijkx , Xijkl ~ Poisson (mijkk}

)M g = B (g @) M B!

where (1)

Hiaka Bigic? = Bigie B ji? "}/Ek G ke Bijur ™

All G{a,b)'s are independent random variables having the gamma }
disbribution with form parameter a and scale parameter b. |

It is assuned that Bi'k can be written as B = B“ijk’ where

ijk
on. ., =1, B not depending on i and j.
PRRNL

In model (1), the effect of whole plot and sub-plot factors is modelled
separately. Therefore, the random Poisson mean M is the product of two
factors Gijl and Hljkﬂ' Because of the normat.ion E Hijki =1,

the whole plot level Mij+£ equals Gijl' This factor desceribes the

effect of whole plot factors A and B {(via aij), and the whole plot error
is included (random G;
sub-plot factor C (via ﬁijk) and the random interaction between factor C

jl)‘ The second factor describes the effect of

and whole plot error (random Hijkx)‘
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A further motivation for taking the product of Gj, end Hijkl is
that these factors can be considered as whole plot and sub-plot random
intensities of a Poisson failure process. If the whole plot intensity

Gjjy tends to zero, then so does Mjjiy, as it should be.

Omitting indices i, j and & just for a moment, the resulting

e K )
distribution of vector (X;, Xz, ..., X;)', denoted by {xk}k=1’ given

Hk = hk’ k=1,2,+..,K, is the negative multinomial distribution
(see Sibuye c.s. {1964)), with probability distribution function:

X, * a-1 « xk
) P TP+

K K
Xl, X2, seay XK’ o 1 k

k=1

Here p, = ehk/(1+e h )= ehk/(1+e), Py = 1/{1+0 & hk) =

k k

T ]
—

= 1/{1+8), as 3 h
K k

K
Unconditionally, P, = (6/(1+8)) H,, where random vector {Hk}k=1 has

the Dirichlet distribution, = 1/(1+8) being fixed.

Pg

It can be shown that the distribution of {X is given by

K
k} k=1

K K
PUhear = [xdiey) =

x, + a1 1 ¢ g % Tz 8

= ! V) () -

x1,x2,...,xK,a-1 146 144 F(x++x Bk) E F(Bk)

E F(xk+ak)

M Iix, +8, }
(x+ + a-1]( 1 Y ( 9 )x+ " X r(z Bk) k kk -

T+ Xq1XgyteesXy' TOGIE B) T T(R)
k

P(X+ = x+) * P({Xk}E=1 = {xk}t=1|x+ * x+)

all sums © being aver k=1,2,...,K, where




- 76 -

- the gistribution of the marginal sum X+ is the negative binomial distri-
bution {NBD) with parameters a and p = 6/(1+8), see Engel (1984);

- the distribution of the vector {Xk}i—1 given X+ is the Dirichlet multi-
nomial distribution (DMD) with parameter vector {Bk}ﬁ—1’ see Mosimann

(1962), Brier (1980}, Engel {1985). Note that the DMD has dependent com-

ponents.

This model for vector {Xk}i=1 was called the 'Dirichlet' by Goodhardt c.s.

£1984). The authors apply the model to the field of consumer purchase
behaviour, and it was derived in a different way. Interesting is also a
characterization, which was given by the authors for the gamma distribution
(for random variable G} and the Dirichlet distribution (for random vector

{Hk}E_1) and which is also relevant in our case. This characterization may

give a justification for the model used.

A simplification of model (1) is obtained by letting Bijk > @, N> 0

in Gijkx (Bijk,n}, while n ﬁijk = eijk is fixed. Then Gijkx *.eijk in
probability, hence Hijkl(sijk) > eijk/i eijk = “ijk in probability,
The simplified model is:
(i) Let Mijk} be a positive random variable, then given
=m, . s X .~ Paissan {m__ }
1 jka ijka ijke ijke
— (2)
(ii) MiJki = ijk(aij’ 8) . ik where E L = 1.

All G(a,b)'s are independent random variables having the gamma |

distribution with form parameter a and scale parameter b. -

Note that model (2) differs from model (1) only by the absence of the in-
teraction between factor C and whole plot error. It may be interesting to

compare model (1) with the classical Anova split-plot model for a normal
response variable Yijkxmi see Montgomery (1976}, p. 292.
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The usual model for Y is, in a shorthand notation,

Vigeam =B ¥ (aB)i v ey * Rt o) * Saigke)”

For a comparison of both models, see table 2. It is seen that there is a
one to one correspondence, of model parsmeters and error components, for
the two models.

Sometimes, is set equal to zero beforehand, which may be

e ..

ke (ij)
Justified on 'technical grounds', or by the result of a testing procedure.
The corresponding effect on the models for discrete X is that model (2) is

reduced to model (1}.

Model component | Madel component Description
for X for Y
] i general level
@55 (“B)ij whole plot parameter
Gij1 el(ij) whole plot error
Bijk (aﬂy)ijk sub-plot parameter
H. . e ‘s random interaction bektween
ijky ke {ij)

factor C and whole plot error

xijkx given Mijkl em(ijkg) sub-plot error

Table Z. Comparison of model components of discrete X and caontinuous

¥ split-plot model.
3. ANALYSIS

3.1. Some introductory remarks

Intuitively, it is not unreasonable that the analysis of the split-plot
data is performed as a separate analysis on whole plot data, via plot total

Xij+x’ and on sub-plot data, via xijkx given ij+l.
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A separate analysis is further motivated by noting that the conditional
distribution of {X.. }K IX.. = x.. o, which is the Dirichlet multi-
ijke k=1 1j+2 1j+4

nomial, does not depend on (aij,e). Then xij+l is a sufficient statistic
for (aij’e) and an ancillary statistic for Bijk (see Cox & Hinkley (1974),

p.31). Inference on %5 will be based on xij , inference on Bijk will

+£
K

be based on {xijkl}k=1lxij+1'

The analysis of model {2) and madel (1) will be discussed in the following

sections. We shall start with the simpler wodel {2) in section 3.2.

3.2. Analysis of wmodel (2)

The analysis of model (2) needs a short discussion only.

To summarize model concepts,

(1) xlj+2 ~ NBD(aij,e}
Koy,

. K ) N ) )
(ii) {xljkk} | X = xij+l multinomial (x. o

. . . .
k=1 ¥t Lj+, { le}
A whole plot analysis on Xij+£ was discussed by Engel (1984), For the sub-
plot analysis, the literatuv» on the analysis of multinomials is extensive,

see Bishop c.s. (1975) and Fienberg {1979). far I. > 1, we may simply add

. K . . ,
i = sufficie
over teplicates to obtain {lek+}k"1|xij++ xij++’ which is a sufficient
L K . . . K . .
slatistic for {nijk}k_1’ having the multinamial (xiJ . {ﬂijk}k-T) distri-

but ion. Asymptotic results for test statistics hold for xij++ tending to
infinity.
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For L > 1, the hypothesis H: madel (2) is a suitable model, can be tested
against the wide alternative hypothesis A: modsl (2) is not a suitable
model, by testing the hypothesis of the equslity of the L multinomial pro-
bability vectors within each cell {i,j) of the design. Pearson's ng‘s,
having (K-1)(L-1) degrees of freedom (df} may be added fo an overall X2 -

T Xﬁj with 1J{K-1)(L-1) df, having the approximate y2-distribution for

ij

large marginal sums. If H is rejected, the consequence should bz that model
{2) is rejected and then model (1) is a possible alternative.

The analysis of count data by this model is maore complicated; it will be

discussed in the following section.

3.3. Analysis of model (1)

Summarizing the concepts of model (1),

(i) xij+£ ~ NBD {aij,e}

K ).
k=1

i = DM (

G X - | Xijug =

*igen ” *ijen’ {Bijk}
Then i jk is the pacameter for main effect and interactions of factor C,
an g parameterizes the candom intzraction between factor C and whole plot
error. The whole plot analysis on Xij+1 is just as for model {2), so we

may concentrate on the sub-plot analysis,

Two cases will be distinguised, namely,
case 1: L = 1 (one replicate)

cAase 2: L+ o (many replicates, practically spoken).

Again, the sub-plot analysis is <¢uarried out on

{xijk+}k=1 l xij++ = x13+»’ obtained by addition aver ceplicates,




- 80 -

Fur case 1 as well as case 2 it will be proved that the statistics X2 =

TiX-m)2/m and G2 = 2 £ X log X/m have an apptoximate C * 42 distribution
under certain conditions, where constant C is to be specified later. The
results, which are hased an those of Brier (1980), Rac and Scott (1984) and
Fellegi (1980) are stated in theerem 1, but first two lemma's will be

presented, which are necded to prove the theorem.

We shall introduce the vectorial notation X, = {Xk}K .

k=1
Lemma 1 (case 1: L = 1)

Let x.. , > = B> =, where Vi © B/xij is fixed.

+1
1 the distribution of

j+1
Then, conditionally on X. . = X..
ij# ij+

[
inj+1\xij*1 / xij+1 - nij*} tends ta the

K-variate normal distribution with mean 0 and covariance mabrix
-1 ~ T .

Vig ® Mg Mgd g ® Mgt Tag % P 7 Mg Miged P 18 @

diagonal wabrix with entries “ij1’ veny “in'

For a proaf, see Paul and Plackett (1978).

Lemma 2 (case 2: L is large)

let T« n. < x . £
ij i j+2
and let

limits x., = ¥im {£ x,, /L) and y_ = lim (r x2, /¢ x., ) exist.
b low 1 1j+8 i} Lso £ 1j+2 I 13+2

N. . for certain numbers n_, and N_ , 2=1,2,...,L
ij ij ij

Foi | + =, conditionally on X , the distribution of

Pjen gL

/{xij LI, /% ) tends to

i j*+ ij++ - nij*

the K-variate normal distribution with mean 0 and covariance matrix
vij = Bij Hij; Ble = (yij +pg)/ (1 +B) and nij is as in lemma 1.

Far a proof, see Appendix 1.
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The results of lemma 1 and lemma 2 are used to prove the following Theorem
1.

Theorem 1 {(case 1 and case 2)

The approximate distribution of the statistic X? as well as G2 is
r" * xz under the conditions of lemma 1 and Bw * x2 under the con-
ditiona of lemma 2, where

Pw = ?i "ij rij and B" = ;. "ij aij’ ;_ "ij = 1, are weighted averages
ij 13 1]
-1 . .
of Fij =1 + Yij and Bij = (yij+3)/(1+5}, respectively, weights de-

pending on the hypothesis and on parameters ﬂijk'

Proof

The Theorem can be proved by a straightforward extension of results of Rao
& Scott (1984) on a single distribution of classified numbers, to a set of
independent distributions, all having the multivariste normal limiting dis-
tribution. The asymptotic covariance matrix has a block structure where
ij or Bij nij’ respectively, i=1,2,...,I; j=1,2,...,J.
Using Theorem 1 from Rao & Scott on the set of independent distributions
the result is obtained that X% end G? are T * 42 or B¥ * 42, approxi-
mately. Weights depend on the hypothasized model reduction and on the true

blocks are Pi. I

value of parameter vectors R

For practical purposes, we have no better solution than to replace Bw by
the unweighted mean B = ¢ Bij / 13 following suggestions of Fellegi

ij
(1980), treating ™ in a similar way. As it seems, a conservative test is
then obtained (Rao & Scott (1984)), but the advantage for practice is

evident.

A final problem is the estimation of the extra parameter I' and P. We

suggest an eatimation procedure in the follewing.
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For case 1 (L=1), I' can be estimated by fitting a full log-linear model,
including all relevant effects of split-plot factor C. If >0 df are left,
I' is estimated by r = G2/u, where G? is for the full madel. Fipally, F is
used to correct szstatistics for testing model reductions, which are
obtained in the usual way.

For case 2 (L is large) we can use replicates to estimete B. Following
Brier (1980), Xij is calculated as in section (3.2)}. If, for certain
s N..i 1< n,, ¢ xij+1 < Ni » 221,2,..., L and if

1J ij 1)
= 1im (¥ x,. /L) exista, then X2 ./(K-1)(L-1) is a consistent
Ly & ijer 1]

estimator of (xi. + 8)/(1 + 8), which can be proved by a simple exten-
}
sion of Brier's results.

Combining 1J estimators, %2 =% xZ. / 1J(K-1)(L-1) is an estimator
ij
of (X +B8)/ {1 +8), thenB = (X2 - x }/ {1 - X2) is a consistent
— — i
estimator of g

Substituting p for B in B to obtain B, corrected G2-statistics have
the form G2/B

3.4. Some discussion

In the previous sections we have seen that sub-plot factorial effects can

be tested by statistics GZ/P and 52/B fer Lz1 and for large L, respect-
ively.

Here, I' is an estimate of I' = i /1)Jand B =% B /13,
1J J ij

where By = (y;; +8) / (1+5) so that B = (‘+++B)/(1+§).

For X2 ¢ 1, it seems reasonable to set B = 1. If whole plot totals

X1J+1, for R=1 2,...,L do not differ widely, then Xi:i 7Yy ij and X2

can be used directly as an estimator for B. This may decrease conser-
vativity of tests, as always x < ;, hence, in distribution for L + »

X2 > (X, +8) /(14 < (5, +B)/ (1+p)=B.
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4. APPLICATIDN

As an application, we shall consider the split-plot design for a soldering
experiment of print panels, see Engel {1984).

Whole plot factors are: factor A, soldering location and factor B, sopl-
dering method. Sub-plot factor is: Factor T, bype of copper pattern, with

levels ¢; and c,.

Five replicates per cell are available and all factors may have some in-
fluence on the response data, which is the number of soldering failures;
gsee table 3 for the data.

— e e [
A: soldering location
B: sol- |C:copper
dering| pattern a) a, ay
method
5 37 3 6 711 8 3 6 718 712 914
c; 788 5 911 31 815 317 TN
b ———e
1
print 101511 1116 | 211 414 25 113 10 29 16 25
total
¢y 12 9 3 4 741313 5 % 6414151611 8
Co 10 3 2 4 41922 6 711|812 9 4 7
b2 ) —————— e
print
total 2212 5 811 112 3511 12 17 12 27 25 15 15

Table 3. Numbers of soldering failures, counted un print panels.

The analysis of whole plot effects has alveady been discussed and we can

restrict ourselves to sub-plot effects.

Following the procedure from section 3, we shall first test For inter-
action between factor C and whole plot errvor.
A Pearson Xi, statistic for homogeneity was calculated for the 2x5 table

at each cell (i,j) of the design. The results are shown in table 4.
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Level i
of factor A 1 2 3

Level j
of factor B 1 2 1 2 1 2

Psarsun

Xij = 2.434 | 1.794 | 7.846 | 1.213 § 3.256 | 4.9B5

Table 4. X?-statistics for interaction between factar C and

whole plot error.

Using the xz—approximation with df = 4, no X?j-statistic is signifi-
cant at the 5% level. The sum value of Xij's, devided by total df = 24

equals X2 = 0.897, which is even less than 1.
The conclusion is that the interaction between factor C and whole plot
error may be ignored, so that the sgimpler model (2) is suitable for our

purposes.

The addition of data over replicates leads to the result of Table 5.

A: soldering location
B: sol- |C:copper
dering| pattern a ay a3
method
b, cy 26 25 50
Co 37 3 43
by c 35 (61) 32 (57} 54 (104)
€y 23 (60) 55 (B6) a0 (83)

Table 5. Data added over replicates {between brackets: data added

over levels of facter B).

On this data, a conditional analysis was carried out by the standard log-
linear model, including the interaction AB in each model that was fitted to
the data. In table 6, loglikelihood ratio G2-statistics and their corre-

sponding df's are presented.
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model df G2 P

term
ABC 0 0 1.000
AB, AC, BC 2 4.7 0.095
AB, AC 3 5.5 | D.135
AB, BC 4 13.34 0.010
AB, C 5 13.74 | 0.017
AB 6 13.85 0.031

Table 6. Loglikelihood ratio GZ-statistics, df and tail probability P.

From the methods available far wodel searching, we tried backward elimin-
ation, leading toc the model AB, AC where P = 0.135, which does not give an
excellent fit to the daka, but which is the best we have. The interaction
between factor A, soldering location and factor [, Lype of copper pattern
seems to be important, whirh is somewhat surprising from a technical point
of view. Addition of the data over levels of factor B was carried out, see
table 5. Neither type ¢, or c, of copper pattern seems to be uniformly best

over locations.
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APPENDIX 1

Proof of Lemma 2

The expression

- 88 -

“ijar TP 1/2
i (le*l - xij+2ﬂij*) / {i [_"_T:F~——] xij+£} ves (3)
can be written as
xij+1 + R 1/2
X -
e Xigt! i ™ Xigea™ige @
. R
2 “ije TP 172 “ijag T F 1/2
] 1+8 ] Xij-rJ!.]r il 1+8 1 x.i.‘j+1]r

b S

For L + », this result tends to the K-variate normal distribution with

mean 0 and covariance matrix 7,

former factor

version of a Theorem of Hajek and Sidak {(1967), p. 153. As zai

in the expression (4).

T a?
2
. if + w, where a; is the
max ai

This follows from a multivariate
1,

the condition is equivalent with

2 - .. max {x. . X, . P
i (x13+£ + B x13+£ / kx ¢ 1j+L + B 1j+2 >
which is satisfied under the condition of boundedness for xij+£'
Finally, {(3) is equal to
Xijog * 8

Xijee = XijagTije =) Xijee. L 12

V(NS ) B R B S
X 2 ij+e 2 i ij+2 i ij+&




As the denominator has the limit v"[lfl.l‘j x;}]

that

/L xij}(x.

ighe / Xiges T Tige? > NGB T

which is the required result.

for L + =, it follows

)
J
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CHAPTER &

RANK TESTS AND RANDOM BLOCKING OF CLASSIFIED DATA

1. INTRODUCTION

Random blocking of classified, categorical data may have some consequences
for the distribution of rank tests in testing for symmetry (Wilcoxon) and
for treatment effect (Friedman). Essentially, the presence of a random
interaction between blocks and treatments increases the variance of the
asymptotic distribution of these rank tests, This influence of a random in-
teraction on testing main-effects of fixed factore is familiar from the
Anova mixed model, e.g. with a fixed factor A and a random factor B. By an
approximate F-test, the A main effect is tested 'against' AB interaction,

which has the status of a model teem for error.

There are saome relationships with Brier {1980), who studies the

classification of objects by nominal categoricsl variables under cluster
sampling, obtaining asymptotical results for the distribution of X’-tests
for loglinear models. In our case, one of the classifying variables is an
ordered response variable, and rank tests instead of xZ.tests are preferred
for testing effects. It will be shown that, under the Dirichlet multinomial
model used by Brier, similar results are obtained: the asymptotic distri-

bution of the square of Wilcoxon's rank test is of type B ¥ x2

, where B is
a constant {see section 2 for Lhe details).

The examples {see sections 3 and 5) consider experiments in which the
quality of two manufacturing processes for a certain equipment is compared
by the judgement of critical judges. The block factor 'judges' may have an
interpretation as a fixed factor; however, the interpretation as a random
factor seems to be much more to the point. Then, the levels of the factor
'judges' are considered as a random sample from some large population of
judges, e.g. all potential buyers of the equipment. This has some con-
sequences for modeling and hypotheses testing and for the interpretstion of

the test results. This paper presents some results on this subject.




Yy

- 91 -

2. TESTING FOR SYMMETRY

2.1. Model assumptions

We shall consider problems of the following type. Suppose Lhat for each of
N levels of a factor "blocks", n objects ace classified into 2J+1 classes,
which are ordered by nuwbers -J, ..., 0, 1, ..., J. The hypothesis is that
the classification of the objects into the 2J+1 classes is symmetcical with
respect to class 0. As to the type of block factor, two cases can be dis-

tinguished.
Case 1
The block factor is considered as a factor with N fixed levels.

Our interest then lies in these N levels only, and each block level forms

a population by itself. The vector of numbers Xi = {xij}j=-3’ i=1,2,..., N,

of classified objects for block level i has a multinmomial (n, {nij}j__J)
distribution, where EJ LI 1 for each i.

j==a'
Case 2

Now we are interested in one large population of block levels, and the N
block levels represent a random sample from this population. The factor
blocks is a random factor (non-specific factor, see Cox (1984}), and it has
a different interpretation. As was noticed by Brier (1980), there is a
dependence in the classification of objects, and we assume that a reason-

ij}§=-J is the Dirichlet multinomial distri-
bution (DMD), see Mosimann (1962), Brier (1980), and Engel (1985), with

parameters (n,{g “j}j=—J)’ where Ejz—J”j = 1. Parameters g and n = {nj}j:—J

do not depend on the index i of blocks, as they are parameters of the

nable model for vector X; = {X

entire population.
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The DMD is generated by giving the probability vector P = {Pj}jz—

the multinomial distribution a Dirichlet distribution, with parameter

3 of

vector {an}j-—J' In the case of random blocks, for each block sampled

from the population of blocks a random P-vector is sampled from this Di-
richlet distribution, representing a reandom probability vector for the
classification of the n objects.

The vector g has the interpretation of an average probability vector over
the population of vectors, in the sense that E(P) = .

Furthermore, parameter p measures the variability of the random vector P.
For p » », this variability reduces to zero, the DMD reduces to the multi-

nomial distribution of case 1 with probability vector =.
Hypotheses for symmetry can be formulated and tested for both cases.

Case 1 H;: nij =7 - J=1,2, «4ydy 11,2, ..,N:

Case 2 Hy: n, = o , for j=1,2,...,J.
J ~J

The random probability vector P of the DMD will deviate with probability
one from its mean value n, for every finite value of the parameter g. This
deviation of P from n can be interpreted qualitatively as “random inter-
action" between random blocks and the factor "difference between treat-
ments" or treatment effect. The oversll treatment effect is expressed by
the probability vector g (for which the hypothesis H2 is formulated), but
the treatment effect may show local variations from block to block, which
is expressed by the random probability vector P with mean n and parameter B
for dispersion, which is interpreted as a parameter for interaction. The
distribution of e.g. Wilcoxon's rank test for symmetry will be shown to
depend on this interaction parameter B.




The presence of this random interaction does not meke testing for treat-

ment effect useless, as the treatment effect is defined as an average ef-
fect, represented by vector n, over the entire population of blocks, of
which only a few are sampled in the experiment.

2.2. Test Statistic

For this type of prablem, a typical test statistic for hypothesis H, of

case 1 is a rank test, e.g. Wilcoxon's test for symmetry with correction
for ties (see Lehmann (1975), p. 123; Conover {1971), p. 206).

It is spplied straight to the sum vector of data X = {x+,j}j=—J’
where X . = I Xi. for all j.

’ i
Let Dj’ j=1,24...,J, be defined as Dj = X+,-j + X+,j and DU = X+ 0’

Hd
Given D, = dj for all j, midranks Ty = dcl + d1 + 4.+ dj-1 + (dj + 1)/2
are introduced, because ties occur by the nature of the problem.

Then Wilcoxon's test statistic is defined as

J
W= ¢ X .r, el (1)
j=1 *edd
with conditional moments, under the hypothesis H,,
EM(W) = (Nn (Nn+1) - do(d0+1))/a3
varM(W) = [Nn (Nn+1)(2Nn+1) - do(d0+1}(2d0+1)]/24
- [EJ d.(d,-1)(d.+1)]/48; vee (2)
it J !

3=

gee Lehmann (1975}, p. 130, where the index M denotes that these moments

are computed under the multinomial distribution of case 1.

Under the hypothesis H,, the distribution of the standardized statistic
W = (W - EM(W))//varM{N) tends to the standard normal distribution for
Nn - dU + =, which has the following practical interpretation: for large
N or large n, dD not being dominant, the distribution of W can be

approximated by the normal distribution.
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We shall now turn to the hypothesis H, of case 2.

We propose W as a test statistic for testing the hypothesis H,. Under the
basic DMD and the hypothesis H,, £DMD(N) = EM(N) and varDMD{W) =

=B * varM(N), where B = (n+8)/{(14B). Under the hypothesis H,, the
limiting distribution for N + « of W¥ = (W—EM(W))//VarM{W) is the N(O,vB)
distribution.

This result is formulated more precisely in the following theorem 1.
Theorem 1

Let X = {xj}§=-3 be a randam vector having the 2J+1 variate DMD with
parameters n and {ﬁn.}Q_ y T }q
J J'_J j:-.] J=

be a set of N independent random vectors, having the distribution of X.

"j=1' Let X, = {x -3 i=1,2,..44N,

1j

Let W be Wilcoxon's test for symmetry (1) with moments (2).

Then under hypothesis H, and given b, = d. for j=1,2,...,J), the distri-
bution of W¢ = (W—EM(W))/JvarM(W) tends to the N{0,vB) distribution for
N+ w, where B = (n+p)/{148).

Proof For multinomial random vectors Y;, perameterized by n and

fr .}

J'j=-J
vectar Y+, sum vector X+ has a multivariate normal limiting distri-

s the result is true with B = 1, see Lehmann (1975). Like sum

bution for N + = when standardized by

J.)*B;

) r

- - £t . - _ -
E(X+,j)- Nn ny o= E\Y+,J), var[X+ j) = Nn nj(1 ﬂj) * P = var(Y+

) * B.

cov(x+,j,x+,k) =~Nn LI * B = cov(Y+,j,Y+,k
As W is a linear function of the components of vector X+ y the l1i-

miting distribution of W* based on X+ for N + = is that of W* based

an Y+ for N+ =, both given Dj = dj for j=1, 2, ..., J, and under H,,
except for the factor B in the covariance matrix of X+.

So the distribution of W* tends to the N{0,/B) distribution for N » =,
given Dj = dj’ j=1, 2, «.., 3, and under the hypothesis H,.

Under the DMD the W-test is in fact a parametric test, as its distribution
depends on the unknown parameter g {only) even under H,.
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Following Brier (1980), the constant B is estimated consistently by
B = X2/2J(N—1), where X2 = % (X..-X% ./N)Z/(X ./N) is Pearson's
ij L +)] +yl
statistic, If B turns out to be less than one, setting P = 1 seems to
be a reasonable truncation. For large N the distribution of the corrected

* * -~
W , which is W //B, is approximately the standard normal distribution.

2.3. Earlier results for J=1

A more direct relationship with earlier results of Brier exists for ob-
jects classified into three classes, hence Jz1. Then Wilcoxon's W is equi-
valent to the sign test (Lehmann (1975), p. 120), with test statistic S =
Xp1e Under multinomial sampling, given D; = dy, moments are

EM(S) = dymy /{my +n_;) snd varM(S) = dymyn_y/Hm + n_l)z.

Further, it holds that the distribution of S* = (S-EM(S))//varM(S) tends to
the N(D,/B) distribution for N + « under DM sampling, which is essentially

implied by Theorem 1.

Then, under the hypothesis Hy: my =7y,

*.2 2 ® 2
(5)° = (x+ 1-1/2 d1) /{174 d1) + B *x

]

+*
in distribution for N » =. On the other hand, (5 }? is equivalent to
Bowker's Xg test for symmetry {Bishop c.s. (1975}, p. 283)

xg =X, , - x+’_1)2/01, given D, = d

| 1 1°

We can formulate the problem for J:z1 in terms of the loglinear model

log mij =u+ u1(i) + u2(j) + U12(ij)

for a 2x2 table, where u under the

108) 7 Y20i)7 M20i3) T (i
hypothesis of symmetry. It is also implied by Brier's results that

Xg + B * x? in distribution for N + =, and we have a link with these

earlier results. Contrary to the sign test, Wilcoxon's test for symmetry

cannot be formulated in terms of the standard loglinear model.
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3. EXAMPLE 1

In the development of Video Long Play (VLP) discs, the quality of two pro-
cesses P1 and P2 for manufacturing VLP discs is to be compared by visual

meansg, Each of 10 critical judges is asked to compare the quality of 32
types of images recorded on VLP dises from process Pq, with the quality
of the same 32 types of images on VLP discs from process Pp. We shall
consider these 32 types of images not as a sample but as a fixed and estab-
lished population of representative images, so that no dependence is intro-
duced between judges of the classification results. In the experiment
carried out, the images are presented pairwise on two identical monitors
and judges are asked to classify each of the 32 observed differences of

image quality into one of the following classes:

number -3 -2 -1 0] 1 2 3
class P1 worse P1 less P1 slightly |no dif- P2 slightly P2 less P2 worse
than P2 than P2 less than P2 ferencejless than P1 than P1 than P1

For each judge, the result of his classification of images is a vector of

numbers X = {Xj}?__3, where £ Xj = 32 is fixed by design. Results for 10
Jjudges are presented in table 1.
Judge P,| worse P1 less P,I sl. less|no F‘2 sl. less P2 less P2 worse|Tot.
than P2 than P2 than P2 diff.{than F1 than P1 than P1
1 1 3 & 16 3 3 0 32
2 0 1 4 19 4 4 0 32
3 0 1 6 19 1 4 1 32
4 1 4 6 8 9 3 0 32
5 0 1] 6 22 4 0 0 32
[ 0 3 a8 17 2 2 0 32
7 0 3 9 18 2 D 0 32
| 0 3 5 19 5 0 o 32
9 1 4 6 15 1 5 0 32
10 0 0 9 18 5 0 0 32

Table 1. Results from a VLP comparison experiment with 10 judges.

fFrom the data, some heterogeneity between judges is observed, as well as
some slight asymmetry to the left. Formal testing by Pearson's X2 of the
hypothesis of homogeneity, resulting in the value X2 = 68.54 with 2J(N-1} =
54 degrees of freedom {df), does lead to a rejection of this hypothesis at
the 10% level, so that there is an indication for a random interaction

between judges and treatments.
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If the factor judges is interpreted as a fixed factor, Wilcoxon's statistic
cen be used for testing hypothesis H; of symmetry. The value is W =
14789.50 where EM(W) = 18327.00, /varM(W) = 1516.54, hence W* = .2.33. By
the standard normal approximation of the distribution of W* the conclusion
is that W is significant at the 5% level, so that H, is rejected. Some pre-

ference seems to exist among the 10 judges for process P,.

interpreting judges as a rendom block factor and allowing for randem inter-
action, a correction YB is needed for W*, where B is estimated

by B = X2/54 = 1.27. Then W' //B = - 2.07, which is still significant

at 5%. Averaged over the large number of judges in the population, i.e. all
potential buyers of VLP equipment, an asymmetry between the manufacturing
processes P, and P, appears to exist. However, note that many 'no differ-
ence' classifications were given by judges, so that formal testing results

should be interpreted with some care.

The results of table 1 can be condensed to those of table 2, which could
have been obtained if only three categories had been available for a clas-

sification.

Judge | P, less | no dif- P2 less

than Pz ference | than P1
1 10 16 6
2 5 19 8
3 7 19 &
[ 11 8 13
5 6 22 4
6 11 17 4
7 12 18 2
8 8 19 5
9 11 15 6
10 9 18 5

Table 2. Condensed results from the VLP comparison experiment with 10

Jjudges.

The sign test for the rondensed data results in 5 = 59, where EM(S} =
74.50, lvarM(S) = 6.10 and S* = -2.54, which is significant at the 5%

level. From X2 = 26.46 with df = 18, we obtain P = 26.46/18 = 1.47 as

an estimate of B. The corrected S5* is S*//B, which results in
S*/¥g = -2.10, and this leads to a rejection of the hypothesis of symmetry,

confirming our earlier results.
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4. TESTING FOR TREATMENT EFFECT

4.1. Model assumptions

Closely related to the comparison problem for two treatments by testing for
symmetry is the following problem. Suppose that a factor blocks has N
levels. At each level, let J treatments be applied to n x J objects by com-
plete randomisation, n objects being available for each treatment j. The
result of the sapplication of the jth treatment on an object is classified
in one of K ordered classes. The question is, how can we test the hypoth-
esis of no treatment effect? Friedman's test seems to be a gqood candidate.

Again we shall make a distinction between fixed and random blocks.
Case 1

If blocks are considered as fixed, a standard model for the data is the

product multinomial distribution for each of the N independent matrices

K
X; = {x k=1"

1K }) distributions,

ijk}j,k of observations, i=1,2,...,N. Then vectors {xijk}
j=1,2,...,J, have independent multinomial (n’{“ijk

where ZK T 1.

k=1
The hypothesis of no treatment effect is formulated as

ijk =

Hy s = fi 11 i,j j d k.
1 nij1k oar a 1,31, Jz an

ik
Case 2

For random blocks the vtandom component for block effect shouid be in-
cluded in the model. Also a random interaction between blocks and treat-
ments can be present, which may have its influence on the distribution of

friedman's test for tceatment effect.

In general, for each block the J probability vectors of the multinomial
distributions of case 1 will be dependent random vectors in case 2, with a
vector of mean values {n.k}k for probability vector j, j=1,2,...,J.

The hypothesis of no treatment effect is now formulated as

Hyt nj1k = ujzk for all Jgr dg and k.




We shall first consider Friedman's test for case 1, and then we shall see

how to use it in an example with random blocks.

4.2. Test statistic

A rank test for testing hypothesis H, is obviously friedman's test {Lenh-
mann (1975}, p. 262, Conover (1971}, p. 273) for n objects per treatment
and with correction for ties. Given

D.. = dik’ where Dik

the numbers £r., = d., + d., + .es +
ik i

= ﬁ Xijk k=% Y %2

* dik + (dik+1)/2 are midranks for i=1, 2, ..., N, k=1,2,.., K.

1

Asymptotically for N+ = the Friedman statistic
J N K

— 12 s (% =

N nZ3{n J#1) j=1 i=1 k=t
Q =

X 2 - 3N(n J+1)

ijk Tik
e (B

3 2
1 - ? i (df, - dik)/{N n 3{(n3}? - 11}

has the xi distribution with v=3-1 degrees of freedom under the

hypothesis Hy, given Dik = dik for i=1, 2, ..., N, k=1, 2, ...,K.

For n = 1 the proof of this limiting result cam be found e.g. in Lehmann
(1975).

We shall see by an example how to use [ for fixed and for random blocks.
5. EXAMPLE 2

As a variant of example 1 we shall consider the following experiment with
judges, which is different from the former one. In this new experiment each
of 10 judges is asked to give his judgement on the process quality of each
manufacturing process P1 and P2 separately.

The quality of each process is judged on 32 types of images recorded on VLP

discg from the process and the judges are asked to classify each of their
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32 judgements in ane of four ordered classes (very good, good, not good,
less good). As in example 1, the 32 types of images are considered to be
the entire population of images.

The experiment is carried out as a randomized blocks experiment and the

results are found in table 3.

Block differences appear from the data, but an interaction between blocks
and Lreatments seems not to be present. Applying Friedman's Q (see section
4.2} to the data for testing the effect of the factar process, correcting

for ties, gives us the result Q = 2.64.

In the case aof fixed blacks {case 1), the distribution of 0 is approxi-
mately x2 with df = 1 under hypothesis H, and for large N, sa that H; is

not rejected at the 5% level.

In the case of randon blocks {case 2} we proceed as follows.
The hypothesis to be tested is

Hys Tie = Tk for all k;

see section 4.1. Remember that we have to do with dependent random pro-

bability vectors, say vectors

Pij = {Pijk}k’ j = 1,2, for each block i with
E(P@j? =75 where % 1= {njk}k’ j = 1,2, are vectors of mean pro-
babilities.

If we condition on the levels of the random (block) factor judges we are
back in the situation which was called case 1 in section 4.1. In fact we

and Fi for all i so that

condition on the random probability vectors P.l 2

1
we obtain fixed probability vectors pi1 and Pig®

As in the case 1 we can test the hypothesis

ﬁz: pi1k =P for all i and k

by applying Friedman's test Q to this conditioned problem. This hypothesis

H2 is of course different from the hypothesis
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Hy: T = Ty for all k

of no overall process effect.

Generally speaking, there can be

1. differences between the blocks as regards to their response levels
(under ﬂz as well as under H,};

2. an influence of the Ffactor manufacturing process on these differences

(only under H,).

We tested hypothesis FE before in the case 1, and it was not rejected. We

shall not formally test the hypothesis H;. However, as the former hypo-

thesis was not rejected, there does not seem to be any reason to reject the

latter, much less restrictive, hypothesis.

Of course, some more faotmal procedure for testing the hypothesis H, is

needed; it is an interesting subject for further research.




Response class
Judge |Man.
process| 1 very | 2 good | 3 less | 4 not
good good good
P 6 10 8 B
1
1
P B 9 7 B
y
P1 0 22 10 0
2
P 0 24 8 0
2
P1 0] 25 5 2z
3
P D 22 7 3
2
P1 2 19 1 0
4
P 3 21 8 ]
2
P1 13 19 1] D
5
P 16 16 D 0
2
P1 5 18 9 0
6
P 7 16 9 1]
2
P1 D 17 15 0
7
P 0 19 12 1
2
P1 21 11 0 0
B
P 24 [ 2 0
2
P1 0 24 B 0
9
P 0 28 4 ]
2
P1 2 22 8 0
10
P 3 24 5 0
2
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Table 3. Results from a VLP comparison experiment with 10 judges;

all row totals are equal to 32.
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6. SOME DISCUSSION

for ordered categorical data in random blocks where & random interaction
between blocks and treatments may be present a simple correction to the
limiting distribution of the sign test and the rank test of Wilcoxon was
given in the previous sections. The Friedman test too was applied to a pro-

blem with random blocks.

The asymptotic aepproximation to the distribution of these rank tests is
valid for a large number N of blocks. For small N, exact permutation tests
are popular in nonparametrics, and large computers are helpful for doing
calculative work. Unfortunately, under the DM-model the null distribution
of e.g. the sign test depends on the unknown interaction parameter g.
Another handicsp is that the class of DMD's is not closed under addition:
if vectors Xi, i= 1,2, ..., Ny are as in Theorem 1, the sum vector X+ has
no DMD.

Estimating g by f; is a way out, doing calculations on independent DMD's
where E is substituted for g and conditioning on relevant marginal sums.

However, much of the elegance of nonparametric permutation tests is lost.
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CHAPTER 7

RANDOM MODELS FOR COUNT RESPONSE DATA

1. INTRODUCTION

In chapters 2 to 6 we considered the analysis of count data for experimen-
tal designs where all primary factors were fixed, and where random factors,
modeled by random components, were only of secondary importance. However,
in many situations the primary factors are rendom factors and we need

models for random factor designs.

In this chapter and in chapter B, models for count response data from
random factor designs will be proposed. Models for random factor designs
with continuous (normal) response data are very well known and the analysis
of such data {(the snalysis of variance) can be found in standard books like
that by Scheffé {1959), chapter 7. No results have been published, however,
on such models for count data; for some remarks in thig direction see Cox
(1984), 21.

Fixed factors and random factors have different interpretations. The levels
of a fixed factor by themselves are considered as a population and the
levels of a random vector are considered as a random sample from a popu-
lation, In bath ceses we are interested in the population that should be
characterized and this characterization is the basis for statistical in-
ference. It is typical for random factors that it is still relevant to test
for main effects in the case of random interaction, which is not true in
the fixed factor case. For the random factor design the estimated values of
the varisnce components enable us to assign the total variation observed in

the data to the various sources of variation.

The models proposed in this chapter for the random factor design are of a
multiplicative type. By conditioning on the levels of the random factors we
obtain fixed factors and the loglinear model, extended Lo allow for over-
dispersion as in the chapters 3 and 4., In fact, Model II from chapter 3 is

reobtained if overdispersion is modeled by the gamma distribution.
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The limit theorem stated in chapter 4 is used here too for model simplifi-
cation. The following result is obtained: in the case of large counts and
with a lognormal assumption for the random model components the analysis of
the data can be carried ocut by performing a standard Anove on the leg-
transform of the data. This establishes one of the heuristic practical ap-

proaches to count data analysis.

An spplication of the theory is given by the analysis of data from a man-
machine experiment in two random blocks where the response data concerns
the numbec of defect products manufactured by each man on each machine. We
assumed the lognormal-Poisson model and the application is worked out in

section 3. Some discussion in section 4 concludes this chapter.

2. MODELS FOR RANDOM FACTOR DESIGNS

We shall propose a model for the analysis of count data from random factor
designs, and we shall use the result of Theorem 1 of chapter 4 for model
simplification. Actually, no results seem to have been published on the
subject of random factor designs for count data. It seems unlikely however,
that the problem has not been met before in a practical situation.

In agreement with the usual models for fixed factor designs, a multiplicat-
ive model will be proposed for the random Poisson mean M;j for cell (i,j)
in, say, a two-way classificetion of crossed and random factors, with
levels i=1,2,...,I, 3=1,Z.,...,J, and where k=1,2,...,K, replicates per

cell are available. The model will have the following structure,

(i} Given Mijk = mijk’ i=1,2,...,1, j=1,2,.+44, k=1,2,...,K, random

variables X .
ijk

, ) e
\mijk) distribution;

are independent, having the Poisson




y
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(ii) M y? where Mi' is the positive random mean for cell

ijk - Mij Fk(ij
is the

(i,j), i=1,2,...,1, j=1,2,.u4,d, and F_,. .
th k(i, )
pesitive error factor for the k*" replicate,
k=1,2,...,K, at this cell. It is assumed that the
random variables Fk(ij)’ i=1,2, .v., I,
=12, ...y 2y k= 1,2, ..., Ky, are independent

and independent of the random variables Mij'

Applying the results of Scheffé (1959}, section 7.4, where the decompo-
gition of classified continuous response variables into model components
is considered onto the variables log Mij’ i=1,2,...,I, j=1,2,...,3, as if
these variables were response variables, the result is that these random
variables are decomposed into a sum of model components as follows:

log Mij Tp+ A+ Bj + (AB)ij’

1):

where E{Ai) o, var(Ai) = log (1+a;

-1
E(BJ) = 0, var(Bj) z log (1+a2 )

1

E((AB)ij) = 0, var((AB)ij) = log (1+a; ).

Here Ai and B, are the model components far main effects and (AB)ij is the
model component for interaction; the variances are expressed as they are
for reasons that will become clear later. It was shown by Scheffé that
T, BT,(AB)T}, where e.g.

A= {Ai}£-1 and AT is the transposed of A, is diagonal. Further, Mij’

the covariance matrix of the vector {A

i=1,2,...,I, j=1,2,...,d, can be written as

Moo= explu + A, + Bj + (AB)ij) = ¥F. (a,) Fj(az) F.j(a12),

ij i
where ¥ 1= e!‘L H
U] S
Fi(aT) i= e H
.- &Bj .
Fj(az) iz e d 3

L (AB)i;
Fij(“u) = e
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Note that these product terms are not necessarily uncorrelated.

Incidentally, by conditicning on the levels of both random factors we
obtain
ii)’ =V .
(1) Mk B3 05 i Ty
Combining (1) and {ii}' we obtain a multiplicative model for the fixed

factor design; see also chapters 3 and 4 where this model was discussed for
Fi(ij) having the gamma distribution.

The model (i}, (ii} is specified by assigning a distribution to the random
variables Fi, Fi, Fiooand £y 21,2500 J21,2,00000) k132,000 0K
Possible choices of a distribution are the following:

{iii)" the gamma distribution;
(iti)"" the lognormal distribution.

It would be consistent to study model (i}, (ii), (iii)' as a natural exten-
sion of previous results: model (i), (ii}', (1ii}' was studied in chapter
4. Unfortunately, even in the two-factor case the analysis is complicated,
as products of gamma distributed random variables no longer have a gamma

distribution.

If the random variables F have lognarmal distributions instead of gamma
distributions, it will be shown that the analysis is greatly simplified.
Some support for the similarity of the two types of distributions for a
large shape parameter is given by Johnson & Kotz (1970}, p. 196.

We shall make the assumption of joint nocrmality for the uncorrelated com-
ponents of vector [AT, BT, (AB)T}, which implies that these components are

independent random variables having normal distributions.

T T
The consequence is that the components aof vector {FT(a1),F (az), F {a12)}

are independent random variables, having lognormal distributions with mean
values /(1 + o'} and variances (a-! &+ d‘z), where & = &), &, @),,
respectively; see e.g. Aitchison and Brown (1957) for some properties of

the lognormal distribution. Assuming the error factor fik(ij) to have a
lognotmal distribution with parameter ays So that




y
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E(Fk(lj)) = /(1 + a;‘l} and var(Fk(ij)) = a;‘ + a;z,

the result is that ihe variables

M., =V Fi(a1) Fj(az} Fij(a12)

ijk (aj) for i=1,2y+.-51, j=1,2,...,3,

k=1,2,...,K

Fue(is)

have lognormal distributions in the following sense: the vector log M where
M= {Mijk}i'k has a multivariate normal distribution. Further,

E(xijk) = E?Mijk) is a constant,

Also, vecter M has the form M = ¥ H, where H is a vector of jointly dis-

tributed positive and non-degenerate random components, so bthat the assump-

tions of Theorem 1 of chapter 4 are satisfied. Then for large ¥, vector X
is distributed as vector M, approximately, and we shall write

xijk = Fi(a1) Fj(az) Fij(a12) Fk(ij)(a})'

The equivalent form
log Xijk TpA Bj + {AB)ij + Ek(ij)’ e (1)

vwhere Ek(ij) = log Fk(ij)’ is the Anova model for the crossed design with
two random factors.

The analysis of variance on the data by this model is presented by e.g.
Scheffé (1959), chapter 7. To simplify further calculations as regards to
the estimation of var{lek) and its components, we shall make the fol-

lowing transformation:

Lileg) 22 Fy vlaglag + 173
Lylay) i= Fy Vlapla, + Ny
Lijlagg) 3= Fyy Mlaglagy + D75
Li(iz)(®3) 3= Frqig) *laslag + n™y;

A1 1 -
8 12 W[ (aqe1) (apt Mgt Hagt) 2y oy ayp o3 1.
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Then we obtain

ik = @ tyleg) Lilayd Lplag ) Ly (agd, e (2)
where

EL ey = 1, var(L,(eg) = o]

Eidey)) = 1, verllley)) = a7 's

E(Lj(egp)) = 1, varQ5lag)) = ojgs

Ellygigy(ag?) = 1o varlly g y(ag)) = o

Setween the model components of the models (1) and (2), relationships exist
- - - -2
of type var(A,) = log(1 + a11) z a11 + 0(a12) = var{lL;{ay)) + 0{e,") for

large @;. Furthermore, as

E(Li(a1)) = E(Lj(az)) = E(Lij(a12)) = E{Lk(ij)(aB)) =1,
it holds that
var(ijk) z Bz{a;1 + a51 + a;; + a;1 + D(u-z)}

- -1 -1
for large ay, ap, aqy, and a3, where O(a 2) stands for O(ay @, ) o+

- - -1 -1 -1 - .
+ 0(a11 a21) Foae. + D(a1 wy %2 a31). We shall use the approximation

_ o271 -1 -1 -1
Var(Xijk) =9 {a1 + az + a12 + a3 },

so that estimators of the variance components 92 a'1, for

& T ey Tyy Tygy Ty can be added to obtain an estimator of var(Xijk).
Estimators of var(Ai), var(Bj), var((AB)ij) and Var(Ek(ij)) follow

directly from the results of Anova applied to log xijk' Ignoring terms




- -

- I -
0(a 2}, for @ = aqy 0y, oq9s gy these are estimators of oy , a21, a1; and
and a;1: respectively. To estimate the variance components of type ga~1,

it remains to estimate the parameter 8 for the general level.

This parameter 8 will be estimated by the geometric mean & of, say, the
N := IJK observations; in a short notation

. NN
6=y I X.
n=1 n

This choice is motivated by the fact that a reasonable estimator for

-1 -1 -1 -1 -1
b= log 6 + 0(e ), where O{a )} stands for O(ay ) + 0y ) + O{xxqy) +

0(¢;1) for aqs agy aq, and oy being large, is the arithmetic mean

. N .o .
p=TogX =1log VT X .Asa=e" it holds that E(8) = 8(140(a” ")), so that
n
n

for large o's, the estimator 6 is approximately unbiased.

This final result follows from the Taylor series approximation

8= et =zet+ (ﬁ—p) et + L (ll-u)2 et
z

from which we obtain, using that E{p) = p,

"

a 1 - ~ -1

E(e) = e* + — & var(p) with var(u) = 0(a” ).
Y4

Then

=1
1+ 0 ) =a 2 Y0 w0 = 601 + 067 =
a(1 + 0( 1)),

E(a)

and this is the result that was to be obtained.
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3. APPLICATION

The classical man-machine experiment was carried out in a factory hall. Let
three machines be randomly sampled from a large population of machines,
i.e. all machines in a factory hall, Four men (say: workers) ere randomly
sampled from a population of workers, i.e. all potential operators of the
machines. All workers are supposed to manufacture large and equal numbers
of products on each machine, and the number of defects is counted. 5ee

table 1 for the data from this experiment in twa randomized blocks.

block 1 2
worker
1 2 3 4 1 2 3 4
machine
1 13 17 1" 8 15 19 9 10
2 16 18 19 12 20 17 18 15
3 5 6 a 8 7 9 10 7

Table 1. Numbers of defects from the worker-machine experiment in two
blocks.

All three factors in the design are typically random factors, and we shall
analyse the data by the methods presented before. Labeling the factor
machines with M, the factor workers with W and blocks with B, the random
and linear model for log xijki is

log Xijkl CRT Mj(al) + Wj(az) + Bk(aa) + Mwij(alz) + e

vee MWBI‘]k(alzs) + Ei( (au),

ijk)
where E(Mi) = 0, var(Mi) = log (1 + HI1), ete., see section 2.

Some important aspects of the analysis of this data by the random model are

~1

- testing hypotheses of type H: 4" = 0, ¢ = a5 @gs ==»y Gpgs for main

effects and interactions, identifying important sources of variation.

- estimating variance components of type a? a_1, assigning the variation

observed in the data to important sources of variation identified before.




y
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The Anova results far the data of table 1 are as follows, see table 2.

Model term 55 df M5 Fvyavy) P
M 2.7484 2| 1.3742 | 15.07 (2,4) { < 0.05
W 0.3057 3 | 0.1019 1.07 (3,5) | > 0.10
B 0.0868 1 | 0.0868 4.00%)(1,6) | > 0.05
MW 0.6091 6 | 0.1015 4,69 (6,6) ] € 0.05
MB 0.0232 2 | o.0116 0.54 (2,6) { > 0.10
WB 0.0472 3 | 0.0157 0.73 (3,6) | > 0.10
MWB-+E 0.0216 6 { 0.0215

Table 2. Anova results for the worker-machine experiment. *) No reasonable
denominator deqrees of freedom are obtained for the F-test for the
B-effect. As the interactions MB and WB are not significant, the B-

effect is tested against MWB+E.

A synthesis of varisnces is needed to test main effects via approximate f-
tests; see Scheffé (1959} and Cox (1984). Remember that the approximation

we made amounts to ignoring the Poisson part {i} of the model of section 2,
The within-cell variation in the data is then fully explained by the model

component for error £

£(1jk) with parameter «,.

From the Anova table 2 it is seen that the main effect of the factor ma-
chines is significant. Also the interaction between machines and workers is
important. There seem to be differences between machines in the factory

hall, and the variance component BzaI1

is non-vanishing. Differences between
machines depend on workers and certain machines seem to be favourite only

for some workers, as is seen from the data.

Estimates of the variance components that contribute to the variance in the

data are shown in table 3.

Model term | Estimate of q—T Estimate of eza_1
M 0.160 20.95
MW 0.040 5.24
MWB-+E 0.022 z2.88

Table 3. Estimates of variance components.
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. _ 2 1 -1 -1 B PN
An estimate af Var(xijkl) = 0°{ay + ajy + ajyy + @, ) is
var(xijkx) = (11.444)% * 0,222 = 29.07, estimating 6 by the geometric mean

6. The major part of the variation in the data should be assigned to ma-
chines and, to a much smaller extent, to the interaction between machines

and workers.
4. DISCUSSION

A class of lognormal-Poisson models was proposed for modeling count data
from random factor designs. For large counts the analysis of the data is
carried out simply by performing standard Anova on the log-transform of the
data,

It is recalled that some simulation results were obtained in chapter 4 for
the experimental design with one fixed factor and the lognormal-Poisson
madel for the data. From these results we know that the approximate F-sta-
tistic for testing the main effect of the single factor behaves quite
reasonably under the null hypothesis. For the random factors design, the
analysis method is not essentially different from the method used in the
fixed factor case. In both cases the lognormal-Poisson mgdel is approxi-
mated by the lognormal model, and ratios of sums of squares form F-tests
for testing the hypotheses. Thus the quality of the F-tests used in Lhis
chapter is not expected to be less than that of the F-test used in the

fixed factor case.

Generalizations of the results of section 2 to the case of three and more
crossed and random factors are straightforward. Also nested designs with
vandom factors can be treated by this method. An example will be presented
in chapter 8, where the results of the analysis of data by this method are
compared with thase obtained by a quasi-likelihood approach. Important Loo
are extensions to the "mixed model" case where fixed and random crosged
factors are present in the design. These may be performed without involving

toc many difficulties; it is a potential subject for further research.
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CHAPTER 8

RANDOM MODELS FOR COUNT RESPONSE DATA,

A QUASI-LIKELIHODOD APPROACH FOR NESTED DESIGNS

1. INTRODUCTION

Breslow (1984) and Engel (1984} presented some methods for the analysis of
independent count data from fixed-factor designs, showing non-Poisson dis-
tributional behaviour {extra-Poisson variation), A class of models for
count data from random-factor designs was presented in chapter 7. The
analysis of this data appeared to be rather straightforward for i) an ap-
proximate version of the model for large expections and ii) a lognormal
assumption made for model components. The result is that the candom vari-
able X of counts has a lognormal distribution, approximately, so that an
analysis of variance can be carried out on log X, having a constant vari-

ance.

We shall now try to tackle one of the problems from the analysis of count
data for random factor designs by the quasi-likelihood approach, which was
formally introduced by Wedderburn (1974}, although some aspects of it had
been used before. The essential part of this method is that assumptions are
made fur the random variable X only regarding its mean and variance; that
is, a known mean-variance relationship is assumed, expressing the variance
of X as a known function of the mean. This mean-variance relatienship is
used in the estimalion procedure by Iteratively Weighted Least Squares for
the parameters of a linear model assumed for some function of the mean

value of X.

From the mean-variance relationship a quasi-likelihood function too can
often be made explicit. It plays the role of the likelihood functieon and it
is a basis for deriving test statistics for hypotheses on the parameters of
the linear model. Note Lthat no distributional assumptions have to be made.
This can be seen as an advantage of quasi-likelihood: the formulation of a

complicated model, leading to a complicated analysis, is now avoided.




In the following sections, the use of quasi-likelihood will be proposed for

the analysis of count data from nested designs with several random factors.
Variance components will be estimated and hypotheses will be tested by
statistics based on quasi-likelihood functions, baving asymptotic distri-

butions (for many replicates) of chi-squared type.

To justify the use of the quasi-likelihood method, the assumed mean-vari-
ance relationships should be verified by the data, if possible. On the
other hand, it is shown that one set of quasi-likelihood assumptions (out
of two that will be made} is approximately satisfied for the class of

models proposed in chapter 7 for the case of a nested design.

In section 4 the results are compared of the analyses of one set of data
under the two sets of quasi-likelihocod assumptions made in section 2, and
also under the approximate lognormal model from chapter 7 for the data. Not
much difference is observed between these three methods with respect to the
estimates of variance components, and the testing procedures lead to the
same conclusions. Of course, not everything is said from only one set of
data, It was, however, also mentioned by McCullagh and Nelder (1984},

p. 132, that in general the resulis do not heavily depend on the specific
quasi-likelihood assumptions made.

Some discussion and suggestions for further research make up the concluding

section 5 of this chapter.

2. THE QUASI-LIKELIHDOD APPRDACH FOR NESTED DESIGNS

2.1. Some introductory remarks

The fuasi~likelihood method was formally defined by Wedderburm (1974}, and
a more theoreticsl foundation was laid by McCullagh {1983).

With the usually sophisticated models for count data there is certainly a
problem in analysing data by a formal likelihead approach. It was the idea

of Wedderburn not to make any distributional assumptions, but only to make
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assumptions of finite expectation and variance, and of a so-called mean-
-variance relationship, expressing the variance as a known function (times
an unknown scale parameter} of the mean value. This function is called the
variance function; it is denoted by V{u), where p = E(X].

Parameters of a linear model assumed for some {link) function of the mean
value can then be estimated by Iteratively Weighted Least Squares; see
Nelder and Wedderburn {1972) and McCullagh (1984).

Some aspects of the quasi-likelihood method have been known for some time.
It was Finney who used the method in an informal way in probit analysis. On
the other hand, no results appesred on the asymptotic distribution and
optimality of estimators for the linear model parameters until 1983; see
McCultagh (1983},

An example of a mean-variance relationship for random variable X is simply
var(X} = p, which is true for e.g. the Poissan random varisble. Slightly
more general is var(X) = o%u, where ¢?»0 is an unknown parameter. In the
case of ‘overdispersiaon', d2>1, and the analysis of overdispersed count
data by quasi-likelihood may be compared with the analysis of this data by
one of the models for overdispersed count data (extra-Poisson variation)
from Engel {1984). Note that ‘'underdispersion', where 4Z<1, can be studied
as well. Anolher example of a mean variance relationship is var(X) = Uzuz,

corresponding to a constant coefficient of variation of X.

Often it is possible to define a log quasi-likelihood function as a substi-

tute for a log likelihood function. For univariate data this function
61{u,>€)

2{p,x) is defined by — = {x-p)/V{u}, where ¥{u) is the variance

dp
function. For certain V(p), explicit solutions of 2£{u,x) can be found from
this differential equation. Some examples can be found in McCullagh {198B3).
From the log quasi-likelihood function 2(u,x) obtained explicitly, test
statistics can be derived for testing hypotheses concerning generalized
linear models for the mean value p. Then often an estimator is needed for

the dispersion parameter 42, which can be obtained e.g. From replicated

data.
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We shall follow the quasi-likelihood approach te analyse count data from
nested designs with random factors. It gives us the opportunity to analyse
this data without making any distributional assumptions. In the following
section, mean-variance relationships will be assumed which are reasonable
for count data from well-designed experiments. This data will be analysed
by quasi-likelihood and variance components will be estimated and tested.
For the nested design, two types of mean-variance relationships will be
studied, namely var(X) = oy and var{X) = o?p?. Two log quasi-likelihoad
functions can be derived corresponding to these two relationships, having
the form of the Poisson log likelihood £{u,x) = x log p-p for the first
relationship and the gamma log likelihood 2{p,x) = -x/p-log p for the
second; see Wedderburn {1974} and McCullagh (1983) for further details.
From these log quasi-likelihood functions deviances are aobtained in the
usual way, following Nelder and Weddecburn (1972), as D = 2 T x lag (x/p)
and D = -2 ¥ log (x/u), respectively. By tsking differences of Lhese
deviances test statistics are obtained for testing variance components.
These test statistics will be called log quasi-likelihood ratio test
statistics. Finally, a generalized Pearson's X2 useful for estimating
variance components is defined as X2 = n(X - w2/ (a), where V() is the
variance function (see McCullagh and Nelder {1984)).

2.2. Quasi-likelihood for nested designs with random factors

As an example we shall study a nested design with two random factors A and
B, with levels i=1,2,...,I and j=1,2,...,J, respectively, where factor B is
nested within factor A and where K replicates are available 'per cell',
with levels k=1,2,...,Kk. As an orientatiaon, consider the design from table

2, section 4.

Let X; . be the kth replicate belonging to cell {i,j); let E(xijk) equal p,

J
the overall mean value. We shall make the following set of quasi-likelihood
assumptions considering variance functions and independence of random

variables. These latter sssumpitions are dicectly related te the properties

of the nested experimental design; see Scheffé (1959}, chapter 7.
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Quasi-}ikelihood assumptions

1. Let Mi be independent random variables for i=t,2,...,I, where

E(Mi) B3

var(Mi) 0% ur, r » 0 is some constant,

2. Given Mi =m, i=1,2,...,1, let Mij be independent random variables for

i=1,2,...,J, where

E(Milei=mi)= m. 3

var(M..'M.:m.): o m?, r » 0 is some constant.
ighi’i i

2
2
be independent (re-

3. Given Mijzmij’ i=1,2,...,I, j=1,2,...,J, let xijk

sponse) random variables for k=1,2,...,K, where

E(xijk‘Mij=mij) z mij;
F., r» 0.
1)

var(X. .

- _ 2
1Jk|Mij_mij) =oay @

Note that these quasi-likelihood assumptions are not necessarily restricted
to the case of count data Xjjk3 they do also make sense for other Lypes

of data, like continuous data.

it is seen from the assumptions that mjj is the mean value of xijki
given Mij = My that is given level j and given level i of the random
factors B and A, respectively. Also, m; is the mean value of xijk!

given level i of factor A.

It can be proved that, given M.l =M, i=1,2,...,I, the sample means iij+
are independent random variables, for j=1,2,...,J. It can also be proved

that sample means ii++ are independent random variables for i=1,2,...,I.

Three parameters, c%, c; and o% were introduced to describe the variation

in the data at three levels:
- replicates level (og), with index k;

- factor B level (dé)’ with index j;

- factor A level (c%}, with index i.
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At each level, the variation in the data is described by means of a vari-

ance function type of relationship as described in section 2.1.

Note that for r=1 the assumptions are those of Poisson overdispersion

(oﬁ>1) or underdispersion (a§<1). For r=2, the parameters o%, a% and

o% represent constant squared coefficients of variation. We shall estimate

these parameters from the data for certain values of r, and test hypotheses
of type H, U% = 0 (no effect of random factor B) and H; : o% = 0 (no ef-
fect of random factor A) in section 2.4.

To obtain the estimators of cﬁ, c% and c% and test statistics of the
hypotheses H, and H, with their asymptotic distributions, firstly some
implications of the quasi-likelihood assumptions will be derived in section

2.3. These implirations give expressions for:

I1. Mean value and variance function of xij+’ given Mi: m;

12, Mean value and variance function of Xi++;

I3. The variance aof xijk'

The implications I1 and 12 are useful for the estimation and testing of the
parameters o and o2

1 2
estimating the variance of xijk'

» respectively. The implication I3 is needed for

2.3. Implications of the quasi-likelihood assumptions

2.3.1. Two Lemmas

Firstly, we shall mention a general and familiar lemma for calculating
variances from conditional variances and expectations in the form of lemma
1.

Lemma 1. Let X and Y be random variables having a joint distribution. Let

f(x,y) be a real-valued function of {x,y) ¢ R2. Then

var[ F(X,Y}] = E varx[f(X,Y)lY] + varYEx[f(X,Y)lY].

Y

A slightly more general version of lemma 1 is lemma 2.




Y
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Lemma 2. Let X, Y and Z be random variables having a joint disktribution.
Let f(x,y) be a real-valued function of (x,y) e R?. Then

varf f(X,Y)|Z=z] = E varxlz[f(X,Y)lY] + varYl R{CAMIIR

YIZ zEX|z

lemmas 1 and 2 will be used aonce or more in sections 2.3.2, 2.3.3 and 2.3.4

when deriving some implications of the quasi-likelihood assumptions.

2.3.2. Restricting values of paraseter r

= - k-1 2 T ; - -
ij"mjj) = K a3 rnij and lemma 2, with Z = Mi’ Y = Mij’

j? it follows that

From vac(X, . IH
ij+

Var(xij+lMi:mi) =By . vOT(Xyg My 4 VarMi.|miE{xij+lMij) :

ig0m
-1 2

= K 2

2 r _ r
3 E(Milei'mi) * oy My

2
2

on the statistic .. given M.zm.; then the variance function of X, .
ij+ i ij+

given Mizmi has te be a known function, so that E(M§j|M1=mi) has to be a

The statistical inference with respect to pavameter ¢z will be performed

known expectation.
Because of the limited amount of information we have concerning the
moments of Mi' given Mizmi, the expectation is known for only three values

of 1:
r=0, E(M9,|M,=m,) = 1;
ijlhi i

r=1, E(Mij‘Mizmi) =m,;

n
Q

- 2 -
r=2, E(Mij|Mi'mi)

The case r=0 corresponds to the Anova-like situation of constant variances:
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var(Mi) = cﬁ;
. - _ 2,
Given Mi =m; var(Mij) = 055

Given M, =m_ , var(X. ) = 42,
ij ij i 3

Jk
In this case the quasi-likelihood analysis is based on the usual sums of
squares known from Anova, not making the assumption of normality of distri-
butions so common in Anova. It is possible to derive some interesting ap-
proximate results on xz-tests and F-tests under these non-normal con-
ditions, shedding some new light on the Anova tests. However, we shall not
explore the r=0 case any further because, for count data, our primary
interest lies in the cases r=? and r=2. for the case r=1 we denote the
quasi-likelihood assumptions by Assumptions I, and for the case r=2 by

Assumptions II.

2.3.3. Assumptions I, three implications

[t. From 2.3.2. (for r=1) we obtain the result

- _ =12 _ 2 _ =t 2 2
var(Xij+|Mi_mi) =K o3 E{Milei_mi) +oom, = K [03 + Kaz)mi.

If we define g2_: = og + Ko2, then o2 can be expressed as

23 2 2

"% ("?zs' ‘%VK‘

3 mi, and because

.. |H._=m__) = m, ., we obtain E(%_ . |M_:m,) =m,.
ij#liij ij ij ijlii i
Now we have expressed the variance of iij+’ given M;=m., as a linear

-1 2
It = =
t follows that var(XiJ_JMi mi) K o5

E¢X
variance function of the conditional mean value mi.

; _ _ =1 2 2 - -1 2
12. Firstly , var(zi++lMi-ml) = {JK) (53 + KUZ) L (JK) 05y M

which is the variance of the average of iij+ for j=1,2,...,Jd, and given

Mizmi these random variables are independent. Then it follows by
lemma 1 that

- - -1 2 -
var(xi++) = E ‘var(xi++|Mi) + varniE(Zi++‘Mi) = (X) o5y B+ uﬁ po=

Ml

= (07T (B + K D) g
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Defining o2 ¢ = o 2 (2 24 Kol 2 2
efining of,, ay3t JK % { ot Koz+ JK 01), we can express o; as

2 _ 2 _ 2
oy = (a123 azj)/JK.

-1 - _ _
Further, var(xj++) z {JK) and from E(Xi++|Mi-mi) = m, we

. -
9923 B
obtain the result E(Xi++) z P

We have now obtained the variance function of ii++ as a linear function

of the mean value .

2

I3. Finally, from var(X |M m..) = o2 m, . it follows by lemma 2 that
JelMijgTij 3 7ij
var(X, |M_=m,) = (52 + o2)m, and by lemma 1 we obtain
ijki i 3 271
X = (o2 + 6 + 62) .
var( ijk) (53 +oy + 01) "
It is seen that the variance of X , is split up into three variance

Ljk
components cﬁp, o%u and U%p for the three levels of random variation.

2
1
2.4 where estimators will be presented for these parameters, These

The expressions faor g5 and ci derived above will be needed in section

estimators are obtained from estimators of c§, a2, and o?

23 123°

Three similar implicatiaons for Assumptions II (r=2) will he derived in

section 2.3.4.

2.3.4. Assumptions II, three implications

I1. From var(21j+‘Mi ) 2 K 3 2. and lemma 2, it follows that
var(iij+|Mi=mi) = EHiJ‘mlvar(XlJ+|Mij) + varMij| :E(X1J+| i) =
= K 162 (c +1) m + G% m2 = I-("1 (c% g + 6 + Ko ) m1

Defining c 5 3 (02 + a3 + K 52), WE CBN express c% as

= (0%3‘ og)/(K + U%).

Further, var(? ‘M =m, ) K mz, and also E{i |M =m, )=

23

Now we have obtained a guadratic variance function of xij+’ given Mi=mj.




- -1
I2. From var(Xi++|Mi-mi) = (JK)

533 mg and lemma 1, it follows that

var(xi++) = EMlvar(X“_+

|Mi) + varMiE(ii++|Mi) =

- -1 2 2 _ -1 2 2y .2
= (JK) 523 (52 +1) 02 + o u° o= (3K) (5%3 c% * opgt JK 01) ne.

Defining 512} z ai 533 + 033 + XK o%, we can express u% as

2 _ 2
g = (0123- 633)/(JK + 033).

Further, var(ii++) (JK) 123 p?, and also E{R ) = u, 50 that a

quadratic variance function is obtained for Xi++

I3. Finally, from var(X i
2

Mg =
+ 05+ cz)

M ) = o§ mg. and lemma 2 it follows that
= N 2 2
var(X kIM =m. ) \53 o

mi and by applying lemma 1 and

ordering terms,

var(X, 3k ) (c +02 +02 + 02 g

2 2 2
2 3 172

2 2 2 2 2 _
+ 0 + 0, 03 + 0] @ 03) pe =

2
1 g

2
3

- 2 2
= loj+ g+l

where the final equality holds approximately for small ci, i=1,2,3. We

now have again expressed the variance of Xi. as the sum of three

variance components which are now cﬁ uz, G% u2 and o% “2‘

Having derived (conditional) variance functions and mean values for the

sample means iij+ and ii++ and an expression for var(Xijk), vWe are now

able to derive estimation and testing procedures for the parameters c%,

2

2
will be presented, and the results for the tests of the hypotheses H,

of and c% in these variance functions. In section 2.4.1. estimators

and Hy, will be discussed in section 2.4.3.. Firstly, some more notation

will be introduced.



2.4, Estimation and testing procedures

Before discussing estimation and testing procedures, some more notation

will be introduced.

Some notation for Assumptions I

Let D be the Foisson deviance, i.e.

D=2z1 X

e log (X, k/E(X k)), where E(X k) is an estimator for E(lek)

1jk

More concretely, E(xi'k) is supposed to be the maximum quasi-likelihood
eatimatar for E{xi‘k and indices will be used for the deviance to express
the conditions under which this maximum quasi-likelihood estimator is
computed. Then,

- for deviance D,g, E(Xijk) ig¢ computed given M, .z m.., so that

1] 1]
E(xljk) 1j= xij+;
- far deviance D E(lek) is computed given M.= m., assuming Mijs Mi’
so that E(X Jk) m, = Xi++;

- for deviance Dy, E(X ) is computed as the grand mean y = X__ , assuming

that M, = M, = .

ijk

The first result is obtained as follows. Given M, =mij’ the variance

function of X, is var(X, ) o= 03 J, gee gection 2.2. The

. M, .=
ijk igkl™ig” lJ
loy guasi-likelihood function associated with this variance function is

% (X.., log m, .-m. .); see McCullagh {1983). Maximizing this function with
K 1jk ij ij

respect to m. gives the required result. In a similar way, the other re-
sults can be obta1ned.
It follows that

Dp-Dpg = 2L Xio log (X, /R, ) -25% X, log (X, L) o=
A TAB ik 1J le ijk ijk IJk 1J+
=2z X..

ivs

log (X.. /X, .} =2Kg x log (X.. /X. )
ijk ij+" Tivs ij ij+ ij+
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and

Dg- Dy = 23K E X, log (X, /X _ ).
These statistics will be used as log guasi-likelihood ratioc test statistics
{see section 2.4.3) under Assumptions I; they form the basic material for
testing hypotheses Hz: g§ = 0 and H1: 0% =z 0, respectively.

Further, For estimating o%, og

2.4.1. which are based on generalized Pearson statistics, defined as fol-

and cg, estimators will be defined in section

lows (see also section 2.1):

2
xAB = Z (Xle x13+) /x13+’

2 - - 2 R
Xasne = K ij Rigem Ko R
2

x0 sA T = XK ? (Xl++. +++) /% +++°

Some notation for Assumptions II

Let D be the gamma deviance, i.e.

D=-25 log (X

/E(x..k)), where E(X ) is an estimator of E(X
ijk H

ijk le)
Again, E(Xi.k) is the maximum quasi-likelihood estimator for E(xijk) and
indices A, AB and 0 are used for the deviance D as in Assumptions I. The log
quasi-likelihood ratio test statistics for testing H, and H, are as follows:
j#) = -2 % log (x WL

a- Oag= -2 % log (X . /X; )+ 2% log (X, /

ik ijk ijk Jk i3k i+
= -2K £ log (XIJ+ X3
ij
Dg- Dp = -2XK r log (X, /X, 0)-

For estimating cﬁ, o2

2 and c% let generalized Pearson statistics be defined

ag
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2 z 2 sg2
X202 L (X..- K. )2/%2.

AB ijk Ijk™ "ij+ ij+

2 _ . 2,92 .
xA;AB =K ij (xij+ xi++) /xi++’
2 T g 22
xD;A = XK ? (Xi++ x+++) /X+++.

2.4.1. Estimators

19
d% in this section. For this purpose we need the generalized Pearson

We shall present consistent estimators for the parameters o and

4R’ XA;AB and XD;A which were introduced at the beginning of

this section. Also, additional assumptions will be made that certain moments

statistics X

of orders 3 and 4 are finite and these assumptions ere assumed to hold
wherever needed throughout this section.

Estimator of a%

As an estimator of c%, we propose

~

023 = xiB/v}, where vy= 13(K-1);

see also McCullagh (1983), p. 63.

Under the additional assumption that the distribution of xi'k given Mijzm s

i]
for i=1,2,...,I, j=1,24...,J, bas finite moments of orders 3 and 4, the

2
3

This will be proved in section 2.4.2.

estimator ¢ is a congistent estimator of a% for 1JK tending to infinity.

Estimator of g;

Firstly, we propose the estimator

"2 . oy2 -
o53* XA;AB/VZ, where v,= I(3-1)

ti 2 .,
as an estimator of 953

Under the additional assumpticon that the distribution of iij+ given Mi= m,

for i=1,2,...,1, has finite moments of orders 3 and 4, the estimator G%B is

8 consistent estimator of g§3

Secondly, the estimator of d% is proposed as follaws.

for 1) tending to infinity; see section 2.4.2.

Under Assumptions I we devived in section 2.3.3 that o% = (c%3—g%)/K.




The estimator

is proposed as an estimator of c% under Assumptions I. It is a consis-

tent estimator of o"é for 1J tending to infinity.

Under Assumptions Il we derived im section 2.3.4. that

02- (d 2)/(l<+cr ).

The est1mator

(c 02)/(K * a3 )

is then proposed as an estimator of o2 under Assumptions II. It is a

2
consistent estimator of c% for 1J tending to infinity.

Estimator of Ui

fFirstly, we propose
22 ST .
193 = XO;A/U1, where vy T I-1

as an estimator of g°__. Under the additional assunption that the distri-

123
bution of R. has Finite moments of orders 3 and 4, the estimator 6%23 is a
consistent estimator of 0123 for I tending to infinity {see section 2.4.2.).

Secondly, the estimator of a% is proposed as follows.
Under Assumptions 1 we derived in section 2.3.3. that gﬁ = (G$23- 553)/3K.
The estimator

~

o? = (c

1 - o5}/ K

123
is then proposed as an estimator of g$ under Assumptions I, It is a con-

sistent estimator of gﬁ for I tending te infinity.

Under Assumptions II we derived in section 2.3.4. that

= (o7, 5= 05/ (IK + oF ).



The estimator

"2 _ 4" - )
oy = (af - dé YK + 023)

23 3

is proposed as an estimator of c% under Assumptions [I. It is a consistent

2

estimator of 5

for I tending to infinily.

Unfortunately, the variances of the estimators Gg, 653 and 6?23 and thus the
%, ég and ;% depend on fourth moments of the

data {see also McCullagh and Nelder {1983), p. 173), which are assumed to

variances of the estimators g

be finite but which are unknown in general, Therefore, there seems to be no
way to construct confidence intervals for the parameters ci, c% and c§ 80
that only point estimators are available,

Tn section 2.4.2. a proof will be given for the results of section 2.4.1. as

regards the consistency of the estimators ;g, 853 and ;%23.

-

2.4.2. Proof of the consistency of the estimators g§, 323 and ;$23'

;% is a consistent estimator of 5% for 1JK + » under

Assumptions I. The consistency under Assumptions II and the consistency of

We shall prove that

and ;2 under Assumptions I and II can be proved in a

. "2
the estimators g3 123

similar way.

2

Under Assumptions I, the estimator oy

equals

o2 X2g/ug = {2 (X - R R

3= 2 Lk Xigs ij+}/u3’ where vy = 1J(K-1).

Firstly, we shall consider the distribution of Xijk given Mij=mij’ for
iz1,2,.00,1, §=1,2,...,3.

i i = = d
The assumptions I imply that E(xijk‘Mij mij) mij an
ar . - 2 . ai - i
le(xijkl”ij'mij) = ay mij’ given Mij'mij’ the random variables Xijk’

%=1,2,...,K are independent (see sectinn 2.2).
We introduce Q (m. ):=x (X.. - m, )2/m . as a useful quadratic form;
AB 1] Lik i3 ij

XfB is obtained from Usp(mij) as Xfg = g.QAB<xij+)'
J




It can be proved that the expected value of QAB(f.. Y=1x (X.j -X

equals (K - 1)c§ so that

E(E QAB )} = 13 (K - 1)6 . cen (1)

From standard results on variances of quadratic forms (see e.g. Seber

(1977}, theorem 1.8) it follows that the varience of QAB(mij) equals

_ R -2 - o= 2K
Var(uAB(mij)) - (“a;ij 3“’2 IJ)mlJK * 2"2 W] IJK (”4 ij u2 13) 13
vhere p, .. and y_ .. are finite fourth and secand moments of X,  about its
431} 2;51] ijk
mean m, . given M. . =m, ..
i ij ij
Further,
var(r QAB( Q13 (K - 1)) = 0(CLIKY) far 13K » =
i
8D this variance tends te zero for 1JK + «.
Also,
var(z QAB(X )/13 (K = 1)) tends to zeco for 1JK + =, vee {2)
ij

Combining the results (1) and (2) it follows that

2 = X2/13 (K- 1) =3 Q,
o 1JB

)/IJ K -1

is a consistent estimator of U% for IJK » o,

Secondly, the estimator g% is a consistent estimator of a§ also uncon-

ditionally (not given Mij = mij for i=1,2,..., I and j=1,2,..., J}, as the

{degenerate} limiting distribution of a% for IJK + = given Mij =My does

not depend on m, e

The proof has now been completed.
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2.4.3. Test statistics

. uﬁ = 0 and
H2: “; = 0. To obtain the asymptotic distribution of these test statistics,

the following three properties of means of counts xijk are very useful.

We shall present test statistics for testing the hypotheses H

Property 1

- Given M;=m., iz1,2,...,T, and under Hy, the distributien of Eij+,
j=1,2,...,1, tends to the normal distribution for K tending to infinity.
This result follows from the Central Limit Theorem applied to the mean
Rij+ of (under H;} independent xijk’ k=1,2,..4,4K.

We recall that, given Mizmi’ X " j=1,2,...,3, are independent random

ij
variables; see section 2.2.

Property 2

- Under both H; and Hy, the distribution of X, . , for i=1,2,...,1,
j=1,2,..+,J, tends to the normal distribution for K tending to infinity.
This follows, again, from the CLT applied to the mean 21. of (under

j+
H; and Hp) independent X.. , k=1,2,...,K.

ijk
Note that under H, the random variables X _, k=1,2,...,K, are dependent

i
if Hy is not true; thus property Z is not grue under H; only,

Property 3

- Under Hy, the distribution of ii++, i=1,2,...,1, tends to the normal
distribution for J tending to infinity.

This follaws from the CLT applied to the mean ii++ of (under H;)} indepen-

dent Rij+, j=142,...,d.

We have derived three basic properties, and now we shall present stat-
istics for testing H; and H, end investigate their approximate distri-
butions. The results will be stated without proof in this section. They will

be proved in section 2.4.4.
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Testing the hypothesis Hy: G; =0

Hypotheses equivalent to H, are

H': 2 = .
2’ %23 °§’
Hy : M,U_ = M, i=1,2,..0,1, j=1,2,...,0.

[+
23
Assumptions I end r=2 undet Assumptions II, we shall prove in section

2.4.4. that under H,

Using the result that var(xij+|M1=ml) ¢ g2 mg, where r=1 under

- 2 = = : H f' @ .
DA DAB + o§ xvz in distribution for K + =, (3)

where vy= I (3-1).

From section 2.4.1. we use the estimator ;i = XiB/u3 with v3 = 1J (K-1),

which is a consistent estimator of g§ for K + =, to obtain the following
test statistic ¥, for H,:

-— ‘2
Ty = (D4~ Dyp)/o%.

Under H,, the asymptotic distribution for K » = of T, is the distribution
of the Xiz” statistic, with v, = I {J-1).

Testing the overall hypothesis H, and H?: of: o2z D

1

A hypothesis which is equivalent to H, and H, is

te o2 - 2 _ 2
(H; and H,}': 03 = 053 T 0oyt

We shall test H; and H, against the alternative X,: c% # 0. An interpret-

ation is: testing hypothesis H;: cﬁ:ﬂ if Hy: 5% = 0 was tested and was not
rejected.
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By the result var(21++) = (JK)'1 ciszr, where r=1 under Assumptions 1 and

r = 2 under Assumplions II, we shall prove in section 2.4.4. thal under H;
and Ha

2 2 i aiabcind
Dg~ Dy > 03 xul in distribution for K » =, e {4)
where vy = I-1.

By combining the results {3) and (4) and by using the asymptotic indepen-
dence for K » = of DU- DA and DA“ DAB{see section 2.4.4.) we shall prove
that under H; and H, the asymptotic distribution for K » = of the test

shatistic T12 defined as

Tp = {DU- 0,)/(D,- D, 0 * uZ/u1

is the distribution of the FU v -statistic, vy = I-1, v, = 1(3-1). ... {5
172

We shall inake some remarks on this testing procedure.

Under H, and H,, the random variables Xijk’ iz1,2400.,0, j3=1,2,...,3,

k=1,2,...,K, are independent, where E(Xi.k) = § and var(xijk} = o% “r’
where r=1 and 1=2 under Assumptions I and II, respectively. An alternative

test stalistic for H; and H, against Lhe alternative hypothesis K; oi # 0

can be proposed as

T ~o
T12 _'\DD DA)/03
where 3% is some consistent estimator of 0% far K + =, such as 0%. However,

712 is quite sensitive to the alternative hypothesis K; : c% # 0, and we may

expect T,’2 to be much less sensitive to this alternative hypothesis se that

T12 is preferred to 712. There is a similarity with the analysis of vari-
ance for nested designs and normal data, where the test statistic corre-
spanding to T, , is only sensitive to the alternative Gﬁ # 0. Note that the

2
1

12
distribution of T12 under the hypothesis Hy : of = § alone is not necess-
arily the FUI,Uz—distribution, ag the distribution aof gij+’ for

i=1,2,.0..,1, j=1,2,...,J i3 not necessarily normal for large K.
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Testing the hypothesis H,: c% =0

Hypotheses which are eguivalent to H;, are

LI - -
H1 ) °223 "%23’

H; H Mi = gy i31,2,...,1.

from the result var(ii++) z (.]K)'1 6%23 uf, where r=1 and r=2 under Assump-
tions I and II, respectively, it will be proved in section 2.4.4 that under

hypothesis H,
Dg - Dy » 653 112,1 in distribution for J + =, voe {6)
where vy = I-1.

. . 2 = 1(3- i
Introducing the estimator 053 = XA;AB/UZ from 2.4.1 where vy = I(J-1), which

is a consistent estimator of 553 for J + =, the fallowing test statistic

Ty for H; is obtained:
T = (0 ~ D,)/a2 .

Under H,, the asymptotic distribution for J > = of T, is the distribution of
the xil—statistic, with y, = I-1.

2.4.4. Proof of the results (3), {(4), (5) and (6) of section 2.4.3

In this section we shall prove:

I. the result (3) concerning the limiting distribution under H, of the

statistic DA - DAB for K + =3

II. the result (5) concerning the limiting distribution under H, and H, of
the test stetistic
T12 = (DD - DA)/(DA - DAB) * Uz/ui for K »> o,
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The proof of the results (4) and (6) is completely similar to the proof of
the result (3} and we shall not give it here.

A reference is made to the proof sketched by McCullagh (1983), p. 62 con-
cerning similar asymptotic results on log quasi-likelihood retio test stat-

istics.

1. Proof of the result (3)

In some steps we shall prove the result (3) under Assumptions I. The proof
of the result (3) under Asgumptions II ie similar to the proof of this

result under Agsumptions 1.

1. Firstly we shall condition on Mi = mi; later this will be relaxed.
Given M =m,, i=1,2,...,I, the random variables gij+’ J=1,2,...,3, are

independent, with E(X, IMi:mi) =m and conditional variance function

ij+
- - -1 2 - 2 . i
var(XiJ+|Mi_mi) = K oy W, 88 a§3 = o3 under H,; see section 2.3.3.

From McCullagh {1983), p. 66 we find that the log quasi-likelihood func-

tion is Xij+log m.-m, for one sample mean Xij+ and

£ [X.. logm -m ]
Ly L i

for the whole set of sample means. If we maximize this function with

respect to m the result is

Ej[xij+lng Ajpa™ xi++]'

2. More generally, the log quasi-likelihood function for one sample mean
X.. is X.

ij+ ij+ y and for the whole set it is

lug mij'mij

ij[xij+lﬂg mij-mij].

Maximizing this function with cespect to mij’ we obtain

 [X;.,log iij+' iij+]'

i ij+
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We take Lhe difference of the two maximized log quasi-likelihoods of 2.
and 1. and we multiply it by 2K, so that we obtain

log X;,,- xi++]} =

K {z [X.. log X;. - X.. ] -5z [X,, =
ij 1+ 1+ 1j+ ij 1j+

- Ej[xij+1°9 X3 Xige

= 2K {¢ [Xij+log Xi - X 1r-

3 -
1]

In steps 4. and 5. it will be proved that under H, and for K + = the

distribution of the difference just obtained tends to the distribution
2 .2 iati -

of the o3 %o, statistic, where v,= I (J-1).

Again, consider the log quasi-likelihood function

Im) = ¢ [X

log m, .-m..].
ij 1j74j

ij+ J

This function is a function of the vector m:=z {mij}ij'
By 1(m) we ghall denote this log quasi-likelihood function with m
substituted for m, vector m being defined by

m = {mij}ij and m; 5= iij+’ i=1,2,...,1, j=1,2,...,J.

We also need the Fisher information matrix. From 1{m) we abtain the
observed information matrix Im:z -821/8m? as fallaws.

The vector of first derivatives of 1{m} is the vector §1/6m with 1J
companentsg iij+/mij' 1.

The matrix of second derivatives is then a diagonal matrix with elements

'iij+/m€j on the diagonal, so that the observed information matrix Im is

diagonal with elements X /mi,. The expected information matrix E{I )
ij+ m
is then a diagunal matrix with elements 1/mij; we shall denote this

matrix by [

Next, we expand l(m) in a Taylor series about m up to tetms of second
order; in vector notation, the vector of first derivatives being zero:

m) - ) = -1/2 (m-m)' I, (m-m).
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Here Im* is the observed diagonal information matrix with diagonal

elements X  /m*2, where m* is on a line segment joining m_ and
i+ i ij ij

~

mij xij+'

Note that Im* is a consistent estimator of im for K » =, because xij+ is
a consistent estimator of mij' Incidentally, in sum notation, the above

equation is written as

z [X;:,dog m, J -7 [X, . logX,. -X..]=
1 ij+ i ™ 1] ij+ ije” "ije
=-1/2% (X,, -m )2 K * 2

/ ij( ije mlj) /m 4

To get further, we multiply both sides of the equation in vector no-

tation by -2K:
- (Um) - 1(m) = /K (-m)' 1 /K (mom).

Under Hy and for K + = the distribution of vector vK {m-m) tends to the
IJ-variate normal distribution with mean vector 0 and diagonal covari-

ance matrix cg 1;1 with diagonal elements a% mij’ 1=21,25004,1,

j=1,2,...,3 (here propecty 1 is relevant). Then the distribution of the

statistic

“2K [1(m) - Um] = /K {m-m)| I /K (mm)

or, in sum notation, the statistic

K (g [X, 4,109 m 4 my]

- - % [X 1J+log X, X
ij ij

= X5t

tends to the distribution of the gg x2 statistic with v=IJ for K » =,
v

because 1 , is a consistent estimator of i for K » «.

By arguments similar te those of McCullagh the result cen be proved that
under H, and for K + = the distribution of the statistic (see 3.)
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i Faa) - fj[xij+l°9 X507 Xigel?

tends to the distribution of the gi xi statistic with v,=1(3-1).
2

Here X, . is substituted for mij because mij = My being the con-

ditional expectation of Xij+ given M, =m., estimating my by Xi T

++f0

i=1,2,...,71.

Further, this result is also true unconditionally (so not given Hi.-.-mi

for i=1,2,...,1) as this limiting distribution does not depend on m .

5. Finally, the statistic DA- DAB which was introduced for testing the

hypothesis H, in section 2.4.3. was defined before as

i)

Dy~ Dpg= 2K %JXij+log R4

and this statistic can also be written as

Dp- Dpg= -2K {ij[x. log X, - X .]- ?J[Xij+log X3 jur xij+]}.

Here we recognize the above difference of log quasi-likelihoods of steps
3 and 4 for which we proved that under H, and for K + «» the distribution

tends to the distribution of the o3 xi statistic with vy = I (3-1).
Now we have proved the result {3).

1I. Proof of the result (5)

To prove the rvresult {53} it is sufficient ta prove the asymptotic

independence undec H; and H, for K + = of the statistics DO- DA and DA- DAB'

Under Assumptions I {the pronf is similar under Assumptions TI) following a
similar reasoning as in the proof of the result (3), a Taylor series
expansion is obtained of DU- DA and of DA- OAB' So

-D = = - 2 *2 -
DO A 2JK E Xi++log (xipp/pr+) JK E (Xi++ X+++) Xi++/ui , (7)




where p* is on a line segment joining X, and @, Note that X, /p?z is
i i+ -t is M

a consistent estimator of p~! for K + «. Further

- 3 - % 32 % 2
= K ?j X § log (le+/ .++) =K ?j (xij+- Xi++) xij+/“§j’ .o {(8)

DA~ Dag

where u*  is on a line segment joining X, . and X_ . Here X, /u*° is a
ij ij+ i+t ij+ Hij

consistent estimatar of p-! far K + .

Under H; and H, the random variables X, i’ i=1,2,...,0, j=1,2,...,1,

k=1,2,...,K, are independent, with E(X ) = p, var{X = g%u. The vector

)

are uncorrelated vectors in orthogonal subspaces of the IJK-dimensional

ijk)
with elements VK (Xi++~ X+++) and the vector with elements vK (xij+' "
turlidean space. Asymptotically far K + = these vectors have a joint multi-
variate normal distribution so that, asymploiically for K » =, these vectors
are independent random vectors. Then the right-hand sides of the equalities
(7) and (B) are independent, asymptotically for K + «» (see below) and so are
the left-hand sides, which was to be proved.

To see the stated asymptotic independence of the right-hand sides of (7} and

{8}, write

Dy~ D= 2 % Rjpntoa (K, /X )= X E (X, - X, 2K /et o=

= JK : (R - R PG A2l v X f R - R, et (9
and
Dy~ Dpg= 2K ij iij+ log (iij+/ii++) = K ij (iij+- X, 0% & s /qu =

2 Kig S X, (?ij+,’u*j -uhy 4 K fJ(x - %, 02wl e

The result to be proved folluows from the asymptotic independence for K + =
of the latter terms on the right-hand sides of (9) and (10) and the con-

vergence to zero in probability for K + » of Lhe former terms.
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3. THE QUASI-LIKELIHDOD METHOD FOR NESTED DESIGNS UNDER THE
ASSUMPTION OF A PROBABILITY MODEL

3.1. Introduction

At the moment, two probability models for nested designs with random fac-
tors for count data are known. The problem of data analysis by these models
is only partly solved. In this section we shall consider the use of a
quasi-likelihood approach when these models can be tegarded as reasonable
for the data. For both models we shall try to verify the quasi-likelihood

assumptions.

3.2. Two models for the data

3.2.1. Model 1

The first model, for two random nested factors and a Poisson distribution

for errors, was communicated by Forcina (1984). As in section 2.2, the
model is defined in three stages, as follows, using the notation from 2.2.

i) Let Mij be positive random variasbles for i=1,2,...,1, j=1,2,...,J.
Given Mij=m"’ i=1,2,...,I, j=1,2,...,J3, the random variable Xi.

ij J
has the Poisson (mij) distributian.

ii} Let Mi be positive random variables for i=1,2,...,I.
Given Mizmi, i=1,2,...,I, let Mi_z G,., j=1,2,...,d, where

1]
Gij are independent random variables having a gamma distribution with

- _ 12
E(Gij) =m, var(GiJ) e m, o> a.
Then given Mizmithe random variables Xi" j=1,2,...,J, are indepen-

dent, having the negative binomial distribution with parameters

a and P; = mi/(a + mi).

iti) Random variables Fi = Mif(a + Mi)’ i=1,2,...,1, are i.i.d. random

variables having the beta (g,, 8,) distribution.

The {marginal) distribution of Xij» i=1,2,...,I, j=1,2,...,3, is called
the generalized hypergeometric distribution with paremeters 4, g, and B,;




see Sibuya c.s.({1964). Extensions to designs with more than two factors do
not seem to be available. Note that this model is defined for only one

replicate per cell.

3.2.2. Model 2
The second model is defined as follows:

i}  Let Mi'k be positive rendom varisbles for i=1,2,...,I, j=1,2,...,J,
k=1,2,%..,K.

Given M. m , random variables X,
i Jk ijk

are independent, having the
Poisson %mle} distribution.

ii) M =8 F (a Y F {a_.), where the random variables

ijk (i )(o: ) Fk(l,])
F, (a )y F (i)(az) and Fk(lJ)(a ) are positive random varisbles with

parameters @y @y and Ty representing factorial effects of the two
factors and error. This model type was proposed in chapter 7.
Extensions are possible for any number of factors. The lognormal
random variable was proposed as a choice for F; the variables Fi(a1),
Fj(i)(“z) and Fk(ij)(“3) are then independent and Model 2 with this

lognormal assumption will be considered in this section. For large 9,

xijk =0 Fi(al) Fj(i)(az) Fk(ij)(aa) e (11)

approximately.

3.3. An attempt to verify the quasi-likelihood assumptions

We shall try to verify the quasi-likelihood assumptions for Model 1 and
Model 2. fFirstly, some helpful results will be obtained for Model 1.

Model 1

1. From 3.2.1, iii) it is seen that random variables Mi, i=1,2,...,1,

are independent random variables, where
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E{Mi) = p, sayj

1
var(M ) = — o (u3/¢ + 207 + ap), Toughly, see later.
i 1+ﬂ1+52

2. From 3.2.1., ii) it is seen that,

given Mi =MWy i=1,2,...,I, random variables Mij’ j=1524...,3, are

independent random variables, where

E(MiJ|Mi CRERN
-1
\.'al‘(l~4:.ljir‘li =m)=qo  m.

3. Fipally, from 3.2.1., i),
given Mi. LI i=z142,...,1, j=1,2,...,3, the random variables

X k=1,2,...,K are independent random variasbles having the Poisson

ijk’
(mij} distribytion. Here we have extended Model 1 to allaow for K

replicates per cell. further,

n
3

E(xijk|Mij = mij) ij

S
"
.

var(XiJkIMij = mij mij

The expression for var(Mj} 1is obtained to get en impression of this
variance function. Defipe Q; = 1-P;, and use the follawing crude linear

approximation

), where p = E(M;),
2 |
@+ M, @+ (e + )

2
E{Q,}) = —%—; var(Qi)z a - var(Mi), approximately.
o+ b R CEY)




Together with

1
1+51+B2
Pi has the beta (f;,B;) distribution, the result is obtained by eguating

var(Qi) = E(Q}(1 - E(ﬂi)), where we recall the assumption that

the two expressions for var(Qi), resulting in

© var(My) = e (2 (B

(@ + u)" 1+8;+82 a+p a +p

and by performing some simple algebra.
Next, we shall obtain similar results for Model 2.
Model 2

1. Random variables Mi = 0 Fi’ i=1,2,...,1, are independent random

variables, where

n

R’
S

m'\J

E(Mi) = 8; var(Mi)

because

E(Fi) = 1; var(F,) a;1; see chapter 7.

2. Given Fi = fl, i=1,2,...,1, or, equivalently, given Mi=mi’ i=1,2,...,I,

where m, = 4f_, the variables M, := 0 F, F
i i ij

i iy j=1,2,...,] are in-

dependent random variables, where

E(Mij|Fi=fi) =8 f=m, as E(Fj(i)) = 1;
-1 2

= - _ _ -1 2 _
var(Milei-fi) = var{e F.l Fj(i)|ri'ri) =gy (8 Fi) =ap m

-1
because var(F , . ) =z 45
i’ T2

3. Given Mi.zmi., i=1,2,..,8, j=1,2,...,3, the random variables Xijk’
k=1,2,...,K, are independent random variables, where

=z = = = R E(F . = .
B Mgy ) = €0 g M gm m g = myge B8 ECF 500 = 1

-
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Further, by lemma 2, section 2,3.1,

var(X,. [M, =m ) = E var (.. IM, .. ) +
lel i i3 Mijk|mij xijk|mij 13k| ijk

+ var m + g3 M. Ty m; .,

E (X, . M. Y =m, .
Mijk‘mij xijk|mij 1Jki ijk ij
where the final equality holds, approximately, for large mij'

3.4. Verification results

For Madel 1: It is seen that the velationship for var(M;j} is not of the

required type in general, unless e.q. p = g approximately, so that
var(Mi)z ;:E%:E; (w2 + 22 + p?2) = C . p?, assuming B, + B, not to depend
on u. However, mean-variance relationships are of both linear and quadratic

type so that no quasi-likelihood approach can be used here.

For Model 2: Given Mjj = My the mean-variance i1elationship for Xijk
ig quadratic, approximately, for large mjj. The other mean-variance
relationships are quadratic as well. Under the condition of large nij.
the quasi-likelihood apptosch based on Assumptions II can be used for this
model.

For uniform notation, we shall substitute ci far a11 , 1=1,2,3. It was
ghown in chapter 7 that for large 6, random variable lek is approximately
distributed as o Fi Fj(l) Fk(lj)' In this case all mean-variance relation-
ships are of quadratic type, and Assumptions II are satisfied. On the other
hand, in section 3.5 it will be shown that Assumptions Il are equivalent

to a generalization of the above approximate model.

3.5. Assumptions 1I: an eguivalent model

The equivalence of the quasi-likelihood Assumptions II to a model for
xijk which is more genecal than the model {11}, is stated in the following

theorem.




Theorem 1
The following two statements are eguivalent:

1. Random variables xijk’ i=1,2,...,I, 3=1,2,...,J, k=1,2,...,K, satisfy
the quasi-likelihood Assumptions 1I.

Z. Random variables xijk’ is1,2,..4,1, 3=1,2,...,3, k=1,2,...,K, can be ex-

pressed as follows:

X ... (12)

=pfF F, F .
igk PTG kG)?
where

E(F, ) = E(F, )) = E(Fk( J)) =13

var(F ) = oy var(F it )) = o2 2’ Var(Fk(ij)) = c%;
varlables Fi’ i=1 2,...,1, are independent random variables;

given Fi' the random variables Fj(i)’ 3=1,2,...,], are independent
random variables;

given F, FJ(l), the random variables F (i)’ k=1,2,...,K, are independent

random variables.

Nate that it is allowed that F,, F, .. and F , .. are dependent random
i’ i) k(ij)
variables.
Also note that the approximate version {11) for large & of Model 2 (see
section 3.2.2) is a special case of (12). Essentially, there are three

differences between the models {11) and (12):

1) The model (11} bhas independent components, whereas the components of
model (12} can be dependent.

2) The components of model (11) have lognormal distributions, whereas no
distribution is assumed for the components of madel (12).

3) The madel (11) is for count data, the model (12) is for all data.
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Proof of Theorem 1

I. The « part of the equivalence is proved straightforward when defining

Mij HE Fi Fj(i) and Mi I Fi'

Then the proof is as follows.

1} The randam variables Mi= pFi are independent for i=1,2,...,I, where
E(Mi) = pE(Fi) = pj

M) =2 F.) =z 252,
var( i) p? var{ j) wol

2) Given Mi=mi’ i=1,2,...,I, or, equivalently, given Flzfi’ iz1,2,...,1,
where fizmilu’ the random variables Fj{i) are independent random vari-

ables for j=1,2,...,3, or, equivalently, the random variables ["‘I.1

J
j=1,2,...,3, are independent random variables. Alsn,

E(Mij|Mi=mi) =m, E(Fj(i)) =m;

3) Given Mi'=mij or, equivalently, given FiFj(i)
j)? k=1,2,...,K, are independent

k =1,2,..., K, are

= mij/u for i=z1,2,...,1I,
j=1,2,...,3, the random variables Fk{i
random variables, so that the randon variables xijk’
independent as well. Also,

E(x‘ijk|Mij=mij) ™5
- - 2
Var(xijklnij-mij} = m§j°3'

II. The » part of the equivalence will be proved in five steps.
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1) From the quasi-likelihood Assumptions II remember that, given

M =m, .,
1] 1]
- - - - 2 m2
ijklMij- mij) =m and var(Xle|M1J- m )= o3 ™35
= = E(X = = 1.
Then E(Xijk/MiJ|Mij-mij) ( ijk/mileij_mij) 1
So given M, , = m, ., the expected value of X, , /M,, does not depend
ij ij ijk’ ij

on m. iy’ so that E{X /M ) = 1, unconditionally.

In a similar way, var(X, . /M..lM._:m ):var(x /m. | ) =
ijk 13 ij 1{ ij 1J lJ

It appears that, given Mij = 1J’ var le/M g does not depend on
mij’ 50 that var(Xijk/Mij} = 3, uncondltlnnally.

ini He F..)=1; )= 2.
Defining Fijk xijk/Mij’ we found that E{ le) 1 var(Fle) ag
Then
xijk,= Mij Fijk for all i,j and k,
where in general Mij and Fijk are dependent random variables.
However, given Mi' =M, the random variables xi'k’ k21,2,...,K, are

independent random variables, which follows from the guasi-likelihood

assumptions.

2) By quasi-likelihood Assumptions II, in a similar way Mij can be written

as

M. =M F, for all i and j,
ij i ij

with E(Fij) =1, var(Fij) = ag, where in general M, and F . are
dependent random variables. However, given Mi =M, the random variables

Mij’ j=1,2,...,3, are independent,




3}

4)

5)

Finally,
Mi = Fi for all i,

where Fi are independent random variables for all i, E(Fi) =1,

_ 2
var(Fi)- oy

Combining the results of 1}, 2) and 3) it is seen that xijk can be ex—

pressed as

xijk= " Fi Fij Fijk for all i, j and k

or, in a usual notation for nested designs,

X . F

. P
ijec ¥ Fi (1) k(iy)

Finally, it needs to be proved that Fi’ Fj(i) and Fk(ij) satisfy the
statements in Theorem 1.

First, from 1), 2) and 3): E(Fi) = E(Fj(i)) = E(Fk(ij)} = 1 and
var(Fi) = o2 2

10 var{F

2
jeiy) = 9pr verlFLeigy) = o3

Secondly, the variables Fi’ i=1,2,...,1, are independent randon variables

{see 3});
given Fi= fi, or given Mi= ufi, i=1,2,...,I, the random variables Fj(i)’
j=142,...4J, are independent {see 2) and 3));

given F'Fj(i)’ or given Mij’ i=1,2,.04,1, 3=1,2,.+.,3, the random

L

variables ijk,
the candom variables Fk(ij)’ k=1,2,...,K, are independent as well

{see 1)).

Now Lhe proof of Theorem 1 is completed.
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k=1,2,...,K, are independent (see 1), 2) and 3)), so that



4. APPLICATION

for a set of count data (see table 2) classified by two random nested
factors A (with 2 levels) and B (with 3 levels) and with 5 replicates per

cell, parameters ci, i=1,2,3 will be estimated, and hypotheses of type

H: ci = 0, i=1,2, will be tested.

A 1 2

B 1 2 3 1 2 3
8 12 9 17 23 11
8 15 10 13 25 16
4 2 11 15 14 10
9 13 9 11 20 10
5 8 14 18 18 13

Table 2. Count data results from random nested design with factors A and 8.

4.1. Estimates

Estimates of parameters ci were calculated for the set of data from table 2

under the quasi-likelihood Assumptions I and II (see section 2.4.1), and
under Model 2 of section 3.2 with lognormal components, assuming & to be
large. The mean-squares from table 4 were used as input to calculate the

estimates under Model 2. See table 3 for the results.

Source of variation A B Error Total

= D.725| o3 = 0.640

"

Assumptions I g% 1.158{ ¢

2 2
2 3
Variance components|y, c% 14.59 |u c% = 9.14 fp c% = 8.06 [var(X)= 31.79

Assumptions 11 2 - 0.093] o2 = 0.058] o2 = D0.055

Q
-
n

Variance components pzcﬁ 164.76 uzgg = 9.20 u20§ = B.73 [var(X)= 32.69

Model 2 o% = 0.100 c% = D.D&4 U§ = 0.060
Variance components 52c§ = 13.64 ezag = 8.73 926§ = 8.18 |Ver(X)= 30.55

Table 3. Estimates of parameters o?: i=1,2,3, under Assumptions I and II
and under Model 2 (with lognaormal components) for the data from
table 2; p = 12.60 (avithmetic mean); 6 = 11.68 {geometric mean).




The conclusion is that factor 8 and the ervor component contribute about

equally to the variance of X, and that factor A is slightly dominant over
factor B. Note that the estimation results for variance components are
quite similar for all three approaches, although Assumptions I and II sare

quite different with respect to the variance functions. Also note that

~

o§ is less than 1 under Assumptions I, although no underdispersion
appears from the test results of section 4.2,

4.2. Test results

Under Assumptions I and II1 approximate y2-tests and F-tests (see section

2.4.3.) were computed, and approximate F-tests were obtained under Model 2.
The results are presented in table 4.

Assumptions 1

Deviance|Deviance| df | y?-test H, | df | F-test H, [ df
result
DAB 15.58 24 26.62 4 5.07 {1,4)
A 32.04 28
DU 54.28 29

Assumptions 11

Deviance|Deviance| df xz-test H2 df | F-test H1 df
result
DAB 1.397 24 25.34 4 4.99 (1,4)
DA 2.801 28
DU 4.552 29
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Model 2 (with lognormal assumption)

Factors | Mean-square | df | F-test H df F-test H df
2 1
ercor 0.060 24 6.34 (4,24) 4,94 {1,4)
B 0.379 4
A 1.872 1
Table 4. Test results for the data from table 2.

The uniform conclusion from the test results of table 4 is that the effect
of factor B is significant at the 5% level and that the effect of factor A

is significant at the 10% level.

4.3. Some verification of assumptions

From the K replicates available per cell, we can verify part 3 of

Assumpt ions 1:

- given Mi'zmij’ iz1,2,...,1, j=1,2,...,J, the random variables xi'k'
k=1,2,...,K, are independent, with E(Xi' and var(xi_ Y = 62 m,

IR jk 3 Mg

to some extent by plotting standardized residuals (Xijk - iij+)/¢ iij+
versus Xij+; see figure 1. An increasing range (see table 5) of these re-
siduals with increasing iij+
from figure 1 and table S no tendency for increasing ranges appears for the

may indicate that Assumptions I are violated.

data from table 2, so that Assumptions I seem not to be violated.

Factor A 1 2
Factor B 1 2 3 1 2 3
0.46 0.18 -0.49 | 0.8 0.67 -0.29
0.46 1.07 -0.18 {-0.55 1.12 1.15
-1.07  -0.71 0.12 | 0.06 -1.34 -0.58
0.84 0.47 -0.49 |-1.17 0 -0.58
-0.69 -1.01 1.04 | 0.98 -0.45 0.29
Range 1.91 2.08 1.53 | Z2.15 2.46 1.73
Xij+ 6.80 11.40 10.60 {14.80 20,00 12.00

Table 5. Standardized residuals (Xjjk - Rjjs)/¥Rij, and theic ranges.



- 153 -

STANDARDIZED RESIDUALS VENSUS CELL MEANS
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Figure 1. Standardized residuals (xijk_ )—(ij+)/v’)_(ij+ plotted versus cell |
means X. . .
ij+
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5. DISCUSSION

A proposal was made for the analysis of count data from nested designs with
random facktors by the quasi-likelihood method. The quasi-likelihood method
has an advantage over methods based on likelihood, which is that no distri-
butional assumptions have to be made for the data to base the analysis on a
likelihood function, as often such assumptions cannot be justified. We have
derived asymptotic results for estimators and test statistics for large

numbers of replicates.

From the application it appears that there are no large differences between
estimated values of variance components calculated under Assumptions I and
11 and under Model 2 with the additional assumption of lognaormality; the
same conclusions were also drawn from test results of hypotheses. Some
robustness seems te be present against improper choices of assumptions (see
also McCullagh and Nelder {1984), p. 132).

Several extensions of the quasi-likelihood method just presented are still
needed for practice. Really straightforward is the extension of the method
of sgection 2 to random designs with more than two nested factors by ex-
tending the quasi-likelihood assumptions to more than three levels of vari-
ation. Less evident may be a treatment of unequal numbers of factorial
levels and replicates, and a treatment of covariates 'explaining' part of
the variation in the data. Also, a further comparison of Assumptions I and
II by theory and practice is of interest. Certain optimality results could
possibly be derived for the estimators of variance components under the
quasi-likelihood assumptions, possibly within some restricted class of
estimators, Finally, the guasi-likelihood approach for random designs with

crossed factors needs some research.
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SUMMARY

In the literature, methods have been presented for the analysis of count
data classified by fixed and crossed factors under the assumptions that
this data cen be modeled by independent binomial or Poisson distributions.
In general, the mean value of these distributions depends on the levels of
the classifying factors and a linear model is proposed for the logit trans-
form or the log transform of these mean values.

In practice many situations oecur which are different, such as:

- The counts are independent, but the observed variation in the data is

more than can be explained by e.g. the Poisson distribution;
- The counts are dependent: the factors are not fixed but they are random.

For these situations no general analysis methods are available, and there
is a strong need for extensions of the theory. In this thesis extensions of

the theary will be presented to allow for the modeling of this count data.

In chapters 2, 3 and 4 of this thesis the situation is considered of over-
dispersion with respect to the binomial distribution and the Poisson dis-
tribution. In the case of averdispersion we may observe from the data that
var(X) = o®E(X) with ¢ > 1, instead of var{X} = E(X) for the Poisson dis-
tribution. In chapter 2 we propose the beta-binomial distribution for
modeling the overdispersed data, and limiting results for test statistics
will be abtained for a large number of trials at each cell in the design.

A gamma-Poisson or negative binomial model is proposed for modeling over-
dispersed count data in the 3th and 4th chapter of this thesis. Here we ob-
tain approximate distributions of test statistics for a large number of re-
plicates and for large counts as well. In chapters 2, 3 and 4 the limiting
results are obtained for standard test statistics known from the theory of
loglinear and logitlinear models, like Pearson's x? statistic.
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Chapter 5 deals with dependent count data in a split-plot situation. Here a
model is proposed to allow for this dependence of the data from the split-
plot experiment. Two separate analyses will be performed, namely for the
whole plot and for the sub-plot factors, imitating the general Anova
approach. The basic models are the gamma-Poisson model and the Dirichlet-

multinomial model.

Data obtained by a dependent classification of objects in two or more
ordered classes, testing hypotheses concerning the probabilities corre-
sponding to these classes is a problem met e.g. in the context of qﬁestion-
naires. In chapter 6 we study the signed ramk test of Wilcoxon in the
situation of such a dependent classification. It appears that the limiting
distribution of this test statistic, under a Dirichlet-multinomial model
assumption for the data is the normal distribution; there is an extra

parameter for the dependence of classification,

The two final chapters 7 and 8 of this thesis deal with random factor pro-
blems for crossed and for nested designe (chapter 7) and for nested designs
using a different method (chapter 8).

The approach in chapter 7 is as follows. Basically, we assume that the pro-
cess which generates the counts can be modeled by the Poisson process. The
intensity of this Poisson process is a random variable instead of a fixed
parameter, and the random components for main effects and interactions of
the factors are represented by this random intensity. We assume lognor-
mality for the distributions of these random model components and we shall
derive a limit theorem to simplify this complicated model. The result is a

simple model for situations with large counts.

The quasi-likelihood approach for nested designs with random factors is the
subject of chapter 8. The quasi-likelihood approach was proposed by Wedder-
burn in 1976 for the analysis of independent data, to be used if distri-
butional assumptions are hard to make. It is an attractive method to use
far the analysis of dependent count data as well, as the exact distribution

of this data is rather intractable.




We shall use the quasi-likelihood approach to derive estimators and test
statistics for the variance components in the case of a nested design with
random factors, starting with a few very simple assumptions with respect to
mean and variance of the data. -

Interesting is, that the data which can be analysed is not restricted to
count data. At the end of chapter B some topics for further research will
be mentioned, advocating a further study of gquasi-likelihood for the

analysis of dependent (count) data for crossed designs with random factors.
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SAMENVATTING

In de literatuur zijn methoden voorgesteld voor de analyse van tellingen,
geklassificeerd door vaste en gekruiste factoren. Hierbij wordt de veron-
derstelling gemaakt dat de data gemodelleerd kunnen worden door onafhanke-
lijke binomiale of Poisson verdelingen. In het algemeen hangt de gemiddelde
waarde van deze verdelingen af van de niveaus van de klagsificerende facto-
tan; een lineair model wordt voorgesteld voor de logit transformatie of de

log transformatie van deze gemiddelde waarden.

In de praktijk doen zich veel situaties voor die afwijkend zijn, zoals:

- De tellingen zijn onafhankelijk, maar de waargenomen variatie is groter

dan door de Poisson verdeling verklaard wordt;

- De tellingen zijn afhankelijk: de factoren zijn niet vast, mear stochas-

tisch.

Voor deze situaties zijn geen algemene analysemethoden beschikbaar en er is
een sterke behoefte aan uitbreidingen van de theorie. In dit proefschrift
worden uitbreidingen van de theorie gegeven die het modelleren en analyse-

ren van dit soort gegevens mogelijk maken.

In de hoofdstukken 2, 3 en 4 wordt de situatie beschouwd van overdispersie
met betrekking tot de binomiale verdeling en de Poisson verdeling. In het
geval van overdispersie kan uit de waarnemingen blijken dat var(X} = S2E(X)

2 51, in plaats van var{X) = E{X) voor de Paoisson verdeling.

met o
In hoofdstuk 2 wordt de beta-binomiale verdeling gebruikt om overdispersie
te modelleren en limietresultaten voor taetsingsgrootheden worden verkregen
voor een groot aantal trials in iedere cel van het proefschema.

Een gamma-Poisson of negatief binomiaal model wordt voorgesteld voor het
modelleren van overdispersie van tellingen in de hoofdstukken 3 en 4 van
dit proefschrift. Benaderende kansverdelingen van toetsingsgrootheden wor-
den verkregen voor een groot asntal herhalingen en voor grote tellingsuit-
komsten. In de hoofdstukken 2, 3 en 4 warden de limietresultaten verkregen
voor standaard toetsingsgrootheden, bekend uit de theorie van logitlineaire
en loglineaire modellen, zoals de X2-toets van Pearson.




In hoofdstuk 5 komen afhankelijke tellingen aan de orde in een split-plot
situatie. Hier wordt een model voorgesteld dat rekening houdt met deze af-
hankelijkbeid die inherent is aan het split-plot experiment. Twee separate
analyses worden uitgevoerd, namelijk voor de whole plot en voor de subplot
factoren, zoals in de variantieanalyse. De basismodellen zijn het gamma-

Poisson model en het Dirichlet-multinamiale model.

Data die verkregen worden door op afhankelijke wijze objecten te klassifi-
ceren in twee of meer geordende klassen, daarbij hypothesen toetsend be-
treffende de kansen corresponderend met deze klassen is een probleem wat
men b.v. in de context van enquetes ontmoet. In hoofdstuk & bestuderen we
de symmetrietoets van Wilcoxop in de situatie van zo'n afhankelijke klassi-
ficatie. Het blijkt dat de limietverdeling van de correspenderende toet-
singsgroctheid, onder de veronderstelling van een Dirichlet-multinomiaal
model voor de data nog steeds de normale verdeling is, maar er is een extra

parameter die de afhankelijkheid van klassificatie beschrijft.,

De twee afsluitende hoofdstukken 7 en 8 van dit proefschrift behandelen
praoblemen met stochastische factoren in gekruiste en in hiérarchische klas-
sificaties {hoofdstuk 7) en in hi&rarchische klassificaties, hierbij ge-
bruik makend van een andere methode (hoofdstuk B).

De asnpak in hoofdstuk 7 is de volgende. We veronderstellen dat het proces
dat de tellingen genereert door het Poisson proces kan worden beschreven.
De intensiteit van dit Poisson proces is een stochastische variasbele in
plaats van een vaste parameter en de stochastische componenten voor het
hoofdeffect en de interactie van de factoren worden door deze stochastiache
intensiteit voorgesteld. We veronderstellen lognormaliteit voor de kansver-
deling van deze stochastische modelcomponenten en we zullen een limietstel-
ling afleiden om dit gecompliceecde model te vereenvoudigen. Het resultaat
is een model dat eenvoudig hanteerbaar is en bij benadering geldig in het

geval van grote tellingsuitkomsten.
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De quasi-likelihood benadering voor higrarchische klassificaties met sto-
chastische factoren is het onderwerp van hoofdstuk 8. De quasi-likelihood
aanpak werd voorgesteld door Wedderburn in 1976 voor de analyse van onaf-
hankelijke data en is handig als het lastig is redelijk hanteerbare model-
len te vormen. Aangezien dit inderdaad geldt voor het modelleren van afhan-
kelijke tellingen, is het asantrekkelijk deze methode te gebruiken. We zul-
len schatters en toetsingsgrootheden onderzoeken voor de variantiecomponen-
ten van de hiérarchische klassificatie met stochastische factoren; als uit-
gangspunt nemen we enkele eenvoudige veronderstellingen ten aanzien van
verwachting en variantie van de data. Interessant hierbij is dat de data
die geanalyseerd kunnen worden niet beperkt zijn tot tellingen. Aan het
eind van hoofdstuk B worden enkele onderwerpen genoemd die voor verder on-
derzoek in aanmerking komen. Hierbij wordt ondermeer voorgesteld de quasi-
likelihood aanpak te bestuderen voor de analyse van afhankelijke tellingen

bij gekruiste klassificaties met stochastische factoren.
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