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STELLINGEN 

(1) 

Het is naïef te denken dat statistische selectiemethoden het 'kwekersoog' kunnen vervangen. 
Wel kunnen ze dit oog openen voor de onzekerheden waaronder de veredelaar werkt en aldus 
een waardevolle aanvulling zijn op de huidige praktijk. 

(dit proefschrift) 

(2) 

Bij het vergelijken van een lokaal ras, dat slechts op één locatie beproefd wordt, met andere 
rassen heeft het vaak zin informatie over de prestaties van laatstgenoemde rassen op andere 
locaties hierbij te betrekken. 

(dit proefschrift) 

(3) 

In rassenonderzoek is een gecombineerde reeks proeven veel belangrijker dan één individuele 
proef. Het is daarom niet terecht dat de theorie over het ontwerpen en analyseren van 
rassenproeven zich grotendeels richt op laatstgenoemd type proef. 

(4) 

Bij toepassingsgericht onderzoek neemt de onderzoeker te snel de rol van Procrustes op zich. 
Hij overschat daarbij de flexibiliteit van de randvoorwaarden zoals gesteld door de praktijk. 

(5) 

Voor statistische computerprogrammatuur, aangeboden op de commerciële markt, zou een 
keurmerk in het leven moeten worden geroepen. Dit keurmerk zou verleend kunnen worden als 
de programmatuur technisch correct is en de vooronderstellingen bij en de beperkingen van de 
gebruikte achterliggende theorie duidelijk vermeld zijn. 



(6) 

Daar computersimulatie succesvol gebruikt kan worden bij de praktische toepassing van 
statistiek en in de exploratieve fase in statistisch onderzoek en onderwijs, moet deze techniek 
deel uitmaken van de denkwereld van iedere statisticus. 

(7) 

Vakkenevaluatie met behulp van een standaard vragenlijst is éénzijdig en vertekenend. Beter 
kan het welslagen van een vak bewerkstelligd worden door open overleg tussen docent en 
studenten gedurende de onderwijsperiode. 

(8) 

Het houden van referenda om de Bestuurlijke Vernieuwing gestalte te geven leidt niet tot het 
beoogde doel. Om tot een vernieuwing van de houding van bestuurders te komen, is een 
communicatieve benadering essentieel. 

(9) 

Het is wenselijk positieve discriminatie van vrouwen bij sollicitatieprocedures te modelleren 
en met behulp van simulatiemethoden de kans op correcte selectie te schatten. 

(10) 

Als een promovendus zijn proefschrift ziet als zijn levenswerk verdient het aanbeveling dat hij 
ter gelegenheid van zijn pensionering promoveert 

CJ. Dourleijn 
On Statistical selection inplant breeding 
Wageningen, 22 maart 1993 



Voor mijn ouders 

Aan Miranda 
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CHAPTER 1 

Introduction 

Theory and practice are often two different worlds. This is also largely true 

for the theory of statistical selection and the plant breeding practice. However, in 

this thesis we will try to combine both fields. In 1.1 a brief introduction to the 

theory of statistical selection is given. Introductory remarks about selection in the 

plant breeding practice are made in 1.2. Next, the objective of this doctoral research 

is described in 1.3. Finally, the outline of this thesis can be found in 1.4. 

1.1 Statistical selection 
In everyday life we frequently come across stochastic variables of which we 

do not know the expected or true value but only observe their realisations. To make 
a good guess about the expectation of such variables a statistical model is 
constructed for the observations and the model parameters are estimated. In the 
agricultural sciences often several treatments are being compared. These 
treatments can be different (amounts of) fertilisers, different feeding regimes, 
different plant varieties, etcetera. To compare the various treatments, the 
experimenter performs an experiment in which the treatments are applied and 
observes the outcomes for each treatment. Reality is simplified into a model for 
the observations that contains parameters corresponding to the treatments. These 
treatment parameters are estimated, and the treatments are compared through these 
estimates. 

Now assume that the objective of the experimenter is to decide which 
treatment is the best (with 'best' defined appropriately) and to select this best 
treatment. This goal cannot be reached with the traditional statistical inference 
procedures such as testing the assumption that the parameters of all treatments are 
equal (see e.g. Lehmann, 1986) or multiple comparisons procedures (see e.g. 
Hochberg & Tamhane, 1987). Therefore, statistical theory was developed to deal 
with selection problems. The inference corresponding to statistical selection is a 
statement about the probability of correct selection. A selection is called 'correct' 
if the best treatment is selected. The founders of this theory were Robert E. 
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Bechhofer and Shanti S. Gupta. The former started the statistical selection theory 
with Indifference Zone selection (Bechhofer, 1954), where only one treatment is 
selected and the probability of correct selection is guaranteed if the distance 
between the parameter of the best treatment and the parameter of the second-best 
treatment is at least equal to some prespecified value. Gupta (1965) developed the 
theory of subset selection, where a random sized subset is selected (with the use 
of a selection rule) and the inference is made that the probability of correct selection 
is at least equal to some prespecified value. Thanks to many researchers, the theory 
of statistical selection has extended enormously, as appears from the hundreds of 
articles on this topic. 

1.2 Selection and plant breeding 
The main goal of the experimenters in the plant breeding practice is to develop 

new varieties that are better than the existing ones, which are currently on the 
market (see also Kempten & Talbot, 1988). New genotypes are created by 
traditional crossing or biotechnological methods. These genotypes have to be 
compared mutually and with control varieties in order to make a selection. 
'Selection' in the plant breeding context is often understood as the cycle of 
choosing a certain percentage of a population of plants and allowing these plants 
to cross mutually, choosing plants in the next generation and allowing them to 
cross mutually, and so on. This way a selection programme is obtained that leads 
to better genotypes, hi this thesis however, we mean by 'selection' the process of 
choosing genotypes because we hope that these particular genotypes can be 
marketed. The selected genotypes are submitted to the official variety testing 
authorities and further tested and selected. Consequently, it must be possible to 
reproduce the selected genotypes. 

To compare different varieties, they are grown in various experiments at 
different sites and sometimes in several years. The results of just one experiment 
at a certain site in a particular year are not sufficient to base the ultimate selection 
on. Therefore, series of variety trials are very important in the plant breeding 
practice. 

The statistical selection procedures introduced in 1.1 are rarely used in the 
plant breeding practice. In text books about plant breeding the type of selection 
introduced in 1.1 is almost never mentioned. An exception is Mayo (1987). 
However, the attention he pays to the subject is restricted to a (rather curious) 
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reference to a correction note of Bechhofer, corresponding to one of his articles 

about Indifference Zone selection. To analyse the experiments statistical 

(estimation) theory is greatly used, but the decision how many varieties to select 

is seldomly founded on statistical theory. 

1.3 Objective of this study 
Since 1954 the theory of statistical selection has grown rapidly. However, 

the practical application of statistical selection procedures has been an 
underdeveloped area. This has also been recognised by the statistical selection 
researchers of the first hour (e.g. Bechhofer, 1985). 

The objective of this study is to explore the possibilities to use statistical 
selection in the plant breeding practice. The plant breeding practice seems a suitable 
application field because selection is the essence of plant breeding. However, 
problems have to be expected because the experimental designs used are often not 
the relatively simple ones such as the completely randomised designs or 
randomised complete block designs. Also, the selection has to be based on 'mean 
performance' results from a series of trials. 

Before the selection rules can be executed, parameters corresponding to the 
varieties have to be estimated as good as possible. The specific designs and the 
series of experiments used in the plant breeding practice can hamper the estimation 
of the variety parameters. Before applying selection rules these difficulties have 
to be dealt with. 

Besides translating existing statistical selection procedures into variety testing 
terminology, new selection procedures have to be developed if necessary. It must 
be made possible to execute the selection rules corresponding to the various 
selection procedures for every experimental design used in the breeding practice, 
including designs associated with series of trials. This means that it must be possible 
to calculate the so-called selection constants of the selection rules for every design. 

The practical application of statistical selection procedures in plant breeding 
might ask the development of computer software. With large numbers of varieties 
to work with, the use of the computer to calculate the selection constants and to 
execute the selection rules is a must. 

Briefly said, the objective of this study is to bridge the gap between statistical 
selection theory and the plant breeding practice. 
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1.4 Outline of this thesis 
Since this thesis deals with the application of statistical selection procedures, 

the application field has to be studied first. Therefore, chapter 2 is concerned with 
the course of the sugar beet breeding practice. The author spend some time at the 
research unit of the Royal Vanderhave Group at Rilland, The Netherlands, to study 
this branch of plant breeding. In chapter 2 the breeding programme of sugar beets, 
the types of experiments performed during the breeding process and the current 
selection methods are described. This chapter reveals several difficulties that have 
to be overcome before statistical selection procedures can be used successfully in 
the breeding practice. 

In our view statistical selection comes in two parts. The first part is to estimate 
the parameters on which the selection has to be based as good as possible. The 
second part is the performance of statistical selection procedures. Chapter 3 deals 
with the estimation of contrasts between variety values, using linear models for 
the observations of the varieties. These contrasts are sufficient for selection 
purposes. Much of chapter 3 was written in close co-operation with dr. A.C. van 
Eijnsbergen. 

First, the estimation procedure for a single trial is described, using the fixed 
additive model or the mixed additive model. However, in the plant breeding 
practice series of experiments are often more important than a single trial. 

In the second part of chapter 3 the best linear unbiased estimators (BLUEs) 
corresponding to a series of experiments are obtained by combining the BLUEs 
from the separate trials. How this must be done depends also on the model chosen. 
It appears that the series of experiments can be designed in such a way that the 
separate estimates can be combined relatively easy. An article based on this part 
of chapter 3 is submitted to the Journal of Statistical Planning and Inference, and 
is entitled : Combining estimators from a series of variety trials, by C.J. Dourleijn 
& A.C. van Eijnsbergen. This article appeared as prepublication as Technical Note 
92-08 of the Department of Mathematics, Agricultural University Wageningen. 

The third part of chapter 3 deals with another type of design typical for the 
plant breeding practice : the concatenated trial. This trial can be divided into a 
number of subtrials that are only connected with each other through a small number 
of control varieties. Here the BLUEs corresponding to the concatenated trial can 
be obtained by combining local BLUEs corresponding to the subtrials. The theory 
of this part is also elaborated in an article entitled : Combining estimators from 
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variety trials that are connected by control varieties only, by C J. Dourleijn. This 
article is submitted to Communications in Statistics - Theory and Methods, but is 
already available as prepublication as Technical Note 92-09 of the Department of 
Mathematics, Agricultural University Wageningen. 

In chapter 4 the second part of statistical selection is studied. First, the most 
important available selection procedures are described. The distinction is made 
between Model I selection and Model II selection. In this thesis we mainly pay 
attention to subset selection procedures, which correspond to Model I, because 
they are associated with the analysis of a trial. The Indifference Zone selection 
procedures are more interesting from the design point of view. 

In the second part of chapter 4 new subset selection rules for randomised 
experiments are given. Some of these rules are very convenient to use in the 
breeding practice. My research partner in this study and co-author of 4.2.1-4.2.4 

was dr. S.G.A.J. Driessen. An article covering 4.2.1-4.2.4 is accepted for 
publication in the Biometrical Journal (to appear about April 1993). The title of 
the article is : Subset selection procedures for randomized designs, by C.J. 
Dourleijn & S.G.A.J. Driessen. It is also available as Technical Note 91-02 of the 
Department of Mathematics, Agricultural University Wageningen. 

The third part of this chapter deals with the use of computer simulation to 
calculate the selection constants (which are necessary to execute a selection rule), 
the probability of correct selection and the expected subset size. Especially for the 
typical plant breeding trials we have to use simulation methods to calculate the 
important statistics. This part of chapter 4 is based on Technical Note 91-03 of the 
Department of Mathematics, Agricultural University Wageningen, entitled : The 
use of simulation in statistical selection, by C.J. Dourleijn. 

With the new selection rules and the possibility to approximate the selection 
constants included in these rules, subset selection can be applied to plant breeding 
selection problems. This is elaborated in the fourth part of chapter 4. The results 
are also written in an article, entitled : Subset selection in the plant breeding 
practice, by C.J. Dourleijn. This article will be submitted to Euphytica. Some 
results can also be found in Dourleijn, CJ. (1991) : Subset selection in the plant 
breeding practice; Proceedings of the 8th meeting of the Eucarpia section 

Biometrics in Plant Breeding, held July 1-6 1991 at Brno, Czechoslovakia, 
287-296. 

In the fifth and last part of this chapter we propose some modifications of 
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subset selection procedures. With these modifications we hope that the subset 
selection procedures gain in value for the practice. 

Chapter 5 deals with the execution of the subset selection rules. In the plant 
breeding practice, where often tens to hundreds of varieties are tested, computer 
software to actually make the selection is indispensible. Such software, written by 
the author, is described in the first part of chapter 5. 

In the second part of this chapter we consider a case study. The data were 
generously supplied by the research unit of the Royal Vanderhave Group at Rilland, 
The Netherlands. Most of the aspects described in chapters 2 to 4 are incorporated 
in this case study. 

Finally, chapter 6 gives a discussion and conclusions. 
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CHAPTER 2 

Sugar beet breeding 

The application field that runs through this thesis like a continuous thread is 
the plant breeding practice. As we will see, design and analysis of experiments 
and selection problems are very important there. In this chapter we will concentrate 
on the breeding of sugar beets {Beta vulgaris L.), although the theory in the 
following chapters is not restricted to a particular crop. In 2.1 we will briefly 
describe the breeding programme of sugar beet varieties at the research centre of 
the Royal Vanderhave Group in Rilland, The Netherlands. Of special statistical 
interest are the types of experiments and designs used. These are described in 2.2. 
Finally, in 2.3, we will make an inventory of the selection problems typical of 
sugar beet breeding. 

2.1 The breeding programme 
When we consult the Dutch descriptive list of agricultural crop varieties of 

1991, we notice that most of the modern sugar beet varieties carry three sets of 
chromosomes : they are triploid, denoted by 3N. These varieties are hybrids, often 
produced by a cross between a diploid (2N) mother and a tetraploid (4N) father. 
To produce this cross on a routine basis, the mother plants have to be male sterile. 
This can be achieved by using cytoplasmic male sterility, which was discovered 
for sugar beet by Owen (1945). A plant is male sterile if it has sterile cytoplasm 
and two pairs of recessive fertility restoring genes in the nucleus. Plants with two 
pairs of recessive fertility restoring genes but with normal cytoplasm (and therefore 
male-fertile) are called 0(wen)-types. If a male-sterile plant is crossed with an 
O-type, the offspring (which has the maternal cytoplasm) is male sterile. The 
female parent of a triploid sugar beet variety is a single cross (SC) hybrid, the 
result of a cross between a male-sterile inbred line and an inbred O-type. Although 
sugar beet, which is a cross-pollinator, has a self-incompatibility mechanism to 
prevent self-pollination, it is not completely self-sterile. This makes it possible to 
produce inbred lines by repeated seifing (Ellerton & Arnold, 1982). 

The varieties in the Dutch descriptive list are all monogerm. This means that 

CHAPTER 2 7 



the fruits (often called 'seeds' for the sake of simplicity) contain only one embryo, 
so one seed gives one seedling. Monogermy is a character of the female parent 
rather than a character of the offspring : if the female parent produces single flowers 
instead of clusters of flowers the seeds are monogerm. Therefore the plant breeder 
selects female parents that are, besides male sterile, also monogerm. Because the 
females have to be monogerm and wale sterile, they are qualified as being 'moms'. 
The moms female parents and the male parents (or pollinators) of the commercial 
varieties are developed in separate breeding procedures. 

The development of moms SC hybrids starts with the selection of individual 
plants from a population of diploid plants. The selected plants are monogerm and 
have recessive fertility restoring genes but normal cytoplasm. Repeated selfing of 
these O-types results in inbred O-types. With each O-type an isogenic moms inbred 
line is developed by repeated back crossing. Ideally, the only difference between 
such a moms inbred and its associated O-type is the male sterility of the former. 
An inbred O-type and its associated moms inbred line are called a 'couple'. The 
production of new moms inbred lines and their associated inbred O-types can be 
seen as a separate selection programme (Sneep & Hendriksen, 1979). We will only 
describe the selection procedure that follows. In the first year the new moms inbreds 
are crossed with four standard, unrelated inbred O-types. A cross of a moms inbred 
line with an unrelated inbred O-type gives a moms SC hybrid. The produced seed 
is sown the second year on experimental fields with conditions favourable for 
bolting. A bolter is a plant that enters the generative phase already in the first year 
after sowing. The moms SC hybrids that show too many bolters are discarded. The 
hybrids are also screened for male sterility and monogermy. Seed is being reserved 
for crossing of the selected moms SC hybrids with four different standard 4N 
pollinators in the third year. The 3N experimental hybrids that are produced this 
way are grown on the experimental fields in the fourth year. The composition of 
the experimental hybrids is as follows (mother x father) : 

moms inbred line (2N) x unrelated inbred O-type (2N) 
i 

moms SC hybrid (2N) x pollinator (4N) 
I 

experimental hybrid (3N) 
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The experimental 3N hybrids are produced to estimate the general combining 
ability of the new moms inbred lines. The breeder searches for moms inbreds that 
will be good parents in the future. However, a moms inbred line determines only 
1/6 of the genetic content of an experimental hybrid. The question may arise 
whether the genetical variation is not too small to make a meaningful selection. 
In practice about 20% of the new moms inbred lines are selected. In the fifth year 
the selected moms inbreds are crossed with new, unrelated inbred O-types 
according to a (partial) diallel scheme. This way the seed of various new moms 
SC hybrids is produced. These new moms SC hybrids are checked in the sixth year 
on monogermy, male sterility and bolting resistance. After that, in year seven, the 
remaining moms SC hybrids are crossed with ten different, standard 4N pollinators. 
The 3N experimental hybrids which are thereby produced, appear in year eight on 
the experimental fields. Besides estimation of the general combining ability of the 
new moms inbred lines and the new O-types, the estimation of the general 
combining ability of the moms SC hybrids is of paramount importance in this 
selection phase. The moms SC hybrids that are expected to be good female parents 
of a triploid hybrid variety are selected. However, a moms SC hybrid determines 
only 1/3 of the genetic content of the 3N experimental hybrids. Again the question 
may arise whether efforts bear proportion to the selection results. The breeding 
procedure after the forming of couples is recapitulated in Table 2.1. 

Table 2.1. Breeding procedure of new moms single cross (SC) hybrids. Abbreviations : 
moms = monogerm + male sterile, TO = 2N inbred O-types, Poll. - 4N pollinators. 

Year 
... Formation of couples. 
1 New 2N moms inbreds x 4 standard, unrelated TO —> 2N moms SC hybrids. 
2 Testing moms SC hybrids for monogermy, male sterility and bolting resistance. 
3 Remaining moms SC hybrids x 4 standard Poll. —» 3N experimental hybrids. 
4 Testing experimental hybrids. 
5 Selected 2N moms inbreds x new, unrelated TO's —» 2N moms SC hybrids. 
6 Testing moms SC hybrids for monogermy, male sterility and bolting resistance. 
7 Remaining moms SC hybrids x 10 standard Poll. —» 3N experimental hybrids. 
8 Testing experimental hybrids. 

The selection of pollinators starts with the formation of a population of 
tetraploid plants. The chromosome number of diploid plants can be doubled by a 
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colchicine treatment of germinating seeds (Sneep & Hendriksen, 1979). From a 
(F2) population of tetraploids individual plants (ip's) are selected. Consider this 
as preparation for the following breeding procedure. In the first year of this breeding 
procedure a standard moms SC hybrid is crossed with the various ip's. At the same 
time the ip's are maintained in vitro. The produced experimental hybrids are grown 
on the experimental fields in the second year. The genetic variation among these 
experimental hybrids is due to 2/3 of the genetic content. If we compare this with 
the experimental hybrids in the moms hybrids breeding procedure, we can expect 
the selection of superior pollinators to be more successful. A number of ip's is 
selected and multiplied in vitro, thereby creating ip clones (ipc's). The selected 
experimental hybrids are reproduced in the third year by crossing a standard moms 
SC hybrid with the selected ipc's. In year four the resulting experimental hybrids 
are grown on the experimental fields and a selection is made. The selected ipc's 
are further multiplied in vitro. However, the ipc's cannot be used as male parents 
of commercial sugar beet hybrids, because the in vitro propagation would be too 
labour intensive. In practice the F2 of a (poly)cross between ipc's is used as male 
parent. In the fifth year the ipc's are crossed mutually, resulting inpo/vcross Fl 's 
(polyFl 's). A standard moms SC hybrid is crossed with these polyFl 's in the sixth 
year. The resulting experimental hybrids are tested on the experimental fields in 
year seven. After selection, the ipc's that correspond with the selected polyFl's 
are further multiplied in vitro. With this plant material the polyFl's can be 
reproduced in year eight, followed in year nine by the reproduction of experimental 
hybrids. These hybrids can be tested a year later. In Table 2.2 the breeding 
procedure of pollinators is summarized. 

In both breeding procedures there are several years where experimental 
hybrids are tested and a selection is made. In the breeding procedure of new moms 
SC hybrids this is the case in years 4 and 8. The main objective of this procedure 
is to select good female parents of future 3N hybrid varieties. In the breeding 
procedure of new pollinators the selections are made in years 2,4,7 and 10. There, 
promising male parents of future varieties are selected. In the final years the 
individual breeding procedures become opaque, because the moms hybrid 
procedure and the pollinator procedure are combined in these years. Potential 
varieties are produced by crossing good moms SC hybrids with the F2's of good 
crosses between ipc's. These potential varieties are tested several years at various 
sites. Finally, the apparently best potential varieties are selected. 
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Table 2.2. Breeding procedure of new pollinators, ip = 4N individual plant, ipc = ip clone, 
moms = monogerm + male sterile, polyFl = 4N polycross Fl. 

Year 
Formation of 4N population; selection of ip's. 

1 Standard 2N moms SC hybrid x ip's —> 3N experimental hybrids; 
in vitro maintenance of ip's. 

2 Testing experimental hybrids; multiplication of ip's to ipc's. 
3 Standard 2N moms SC hybrid x selected ipc's —> 3N experimental hybrids. 
4 Testing experimental hybrids; multiplication of ipc's. 
5 New ipc's x new ipc's —> polyFl's. 
6 Standard moms SC hybrid x polyFl's —» experimental hybrids. 
7 Testing experimental hybrids; multiplication of ipc's. 
8 Reproduction of polyF l's. 
9 Reproduction of experimental hybrids. 
10 Testing experimental hybrids. 

In general, we can consider the situation where a number of experimental 
hybrids is tested with the use of field experiments. We can distinguish two goals: 
(1 ) The selection of good parents of future varieties; (2) The selection of potential 
varieties themselves. In both situations the produced genotypes, which can be 
reproduced, are of primary interest to the breeder and not the (theoretical) 
population of all possible genotypes. Although the goal in the pollinator breeding 
procedure is (1), it is effectively the same as (2), because only one standard moms 
SC hybrid is used to produce the experimental 3N hybrids. We will mainly pay 
attention to trials, set up for goal (2). Although the experimental hybrids are not 
varieties (yet), this situation is in general denoted by 'variety testing'. We will 
adopt this notation for reasons of generality and simplicity. Thus instead of 
'experimental hybrid' we will write 'variety'. Although different breeders may 
use different breeding procedures, they always will perform variety trials. 

2.2 Types of experiments performed 
Numerous experiments are performed every year. Some of them are designed 

to test moms SC hybrids formonogermy and male sterility (see Table 2.1). These 
experiments are performed in the open air and in greenhouses. Other experiments 
are specifically set up to test bolting resistance of the varieties. The bolter trials 
are located on sites with relatively low temperatures in spring. Also early sowing 
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stimulates the occurrence of bolting. Although the above experiments are very 
important, we will concentrate on the most performed type of trials, in general 
denoted by 'variety trials'. 

Depending on the selection phase, tens to hundreds of varieties are included 
in those performance trials. For example, in the second year of the pollinator 
breeding procedure about 600 varieties are tested and in the fourth year 
approximately 150. The varieties are grown at a number of different sites. Varieties 
in an advanced selection phase are grown at more sites than varieties in earlier 
phases. For example, the number of sites increases from 4 in the second year of 
the pollinator breeding procedure to 10 in the fourth year. The final selection of 
commercial hybrids is based on the results of more than 20 sites. For varieties 
intended for the North-West European market these sites include mainly locations 
in The Netherlands, Germany, France and the United Kingdom. First consider the 
field experiments at one site. 

To take account of differences within the trial environment almost always an 
experiment with an incomplete block design is used to test the varieties. The 
number of varieties is much too large to use complete blocks. When the number 
of varieties is very large it is often not feasible to include all varieties in one large 
experiment with a suitable incomplete block design. There are a number of reasons 
why this it not feasible. First, up to the very last moment varieties can be added 
to the cohort which has to be tested. Thus the experimental design to be used can 
only be selected shortly before sowing, which is very inconvenient. Second, it is 
desirable that varieties which share a common genetical background are not grown 
too far apart. Grouping of the plant material makes the experimental field more 
surveyable for the plant breeder. Third, for organizing the various experimental 
field activities it is very convenient if standard designs can be used every year. 
Use of standard designs also reduces the number of mistakes made. 

Because of the aforesaid reasons it is often easier for the plant breeder to 
organize several small trials at one site instead of one large experiment. The 
varieties are then divided into disjunct sets and each set is laid out in an experiment 
with an incomplete block design. The varieties in one set are often more or less 
genetically related to each other. However, all varieties have to be compared with 
one another and a selection has to be made. Therefore, control varieties are used 
to connect the trials (see also section 3.3). The varieties can then be compared via 
these control varieties. The incomplete block designs used are nearly always 
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unbalanced, because there is only a limited amount of seed available. A realistic 
example is the following : If there are 154 varieties, 7 disjunct sets of 22 varieties 
are made. Together with 3 control varieties, 22 varieties can be included in a 5x5 
lattice design. Often a 5x5 lattice design with 3 or 4 replications is used. Within 
each replication a 5x5 lattice design has 5 incomplete blocks containing 5 varieties 
each. The lattice design can be found in textbooks on experimental design, e.g. 
Cochran & Cox (1957). 

Each set of varieties is grown at a number of sites. However, due to the large 
number of varieties, the limited area of experimental fields and the limited amount 
of seed, not all sets are grown at the same sites. Therefore, if we would make a 
variety x site table, it would be incomplete. As an example, part of the variety x 
site table corresponding to the second year of the pollinator breeding procedure at 
the research centre of the Royal Vanderhave Group (see Table 2.2) in 1986 will 
be given. In that year and selection phase 26 disjunct sets, each containing 22 new 
experimental hybrids and 3 control varieties, were distributed over 11 sites in 
North-West Europe. In Table 2.3 the incidence of 12 sets at the various (coded) 
sites is given. Notice that the scheme in Table 2.3 has a lot of empty cells. This is 
typical for the experimental situation in this selection phase. 

Table 2.3. Incidence scheme of 12 of the 26 sets of varieties tested in the second year of 
the pollinator breeding procedure of the Royal Vanderhave Group in 1986, at 11 sites. 
Each set of varieties contains 22 new experimental hybrids and 3 control varieties. The 
actual site names are coded (SI,..., SI 1) to maintain trade secrecy. 

SI S2 S3 S4 S5 S6 S7 S8 S9 S10 Sil 
Set no. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

• • 

• • 
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2.3 Selection 
There are a number of characters on which the selection decisions are based. 

The root yield is often corrected for missing plants (gaps) in the plots, and is 
therefore denoted by corrected root yield (CRY). The correction method has been 
determined empirically. The CRY is usually given in ton/ha. The sugar content 
(SC) in % is determined with a Polarimeter, as well as the cc-amino N content 
(N%). Also the potassium content (K%) and the sodium content (Na%) are 
determined. A sugar beet is composed of approximately 75% water and 25% dry 
matter. The 25% dry matter can be divided into about 20% soluble matter and 5% 
insoluble matter. The soluble part can in its turn be divided into approximately 
16% sucrose, 1.8% N-containing organic matter, 1.4% N-free organic matter and 
0.8% minerals (Johnson et ai, 1969). The tare (T), in kilogram per ton clean beets, 
is calculated as the difference between gross root yield (in ton/ha) and net root 
yield (in ton/ha), divided by the net root yield and multiplied by 1000. There are 
a number of characters that are calculated from the above mentioned characters. 
The corrected sugar yield (CSY) is calculated as CRYxSC/100. The white sugar 
content (WSC) is calculated as WSC = SC - {0.343 (Na% + K%) + 0.094 (N%) 
+ 0.29}, an empirical formula by N.J. van Geijn. The white sugar yield (WSY) is 
calculated as CRYxWSC/100. Other characters are sugar /oss (SL), defined as 
SC-WSC, the extraction index (EI), calculated as 100xWSC/SC and the sum of 
the potassium- and sodium content (KNa%), calculated as K% + Na%. 

In special bolter trials the number of bolting plants (BOL) is counted for each 
variety. This number reflects the bolting resistance of a variety. Varieties with a 
large number of bolters have little resistance to bolting. In breeding for disease 
resistance attention is paid to rhizomania resistance, yellows resistance and 
resistance to beet cyst-nematodes {Heterodera schachtii). Qualitative characters 
like beet shape are of minor importance and therefore we will restrict ourselves to 
the quantitative characters. 

After the analyses of the trials at the various sites, the results of the different 
sites are combined into a so-called mean performance for each variety. The 
selection decisions are mainly based on the mean performance of the varieties, 
and secondly the question arises whether the performance of the varieties is 
relatively stable over the various sites. This is especially the case if the number of 
varieties is very large, and inspection of all varieties at the individual site level 
would be too time consuming. If the number of varieties is relatively small, which 
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is the case in advanced selection phases, the individual site results are also 
important. The main interest of a sugar beet breeder lies in varieties that are stable 
over a wide range of sites. However, due to variety x site interactions the region 
in which a variety is more or less superior is limited. Therefore, the plant breeder 
develops different varieties for different regions. 

Yield has always been a very important character for selection, but in the last 
decade the internal quality of the beets has become increasingly important. The 
internal quality is made up by the sugar content and the extraction index. The 
internal quality is high if both the SC and the EI are high. A large EI is achieved 
if the juice purity is high. This is the case if the percentage oc-amino N, K and Na 
is small. A large sugar yield can be the result of a large root yield or a high sugar 
content. There is a negative correlation between CRY and SC. The selection is 
based primarily on CRY, CSY, WS Y, SC, WSC and BOL. The decisions are made 
with three control varieties as reference. Plant breeders like to express the values 
of new varieties relatively w.r.t. the average value of the control varieties. The 
various characters can partially compensate each other, so the selected varieties 
do not necessarily have to be better than the control varieties for all characters. 
However, lack of bolter resistance cannot be compensated by any other character; 
all varieties with BOL greater than a certain threshold value are discarded. The 
selection decisions are made in a rather subjective way. The number of varieties 
to be selected is restricted by the capacity of the experimental fields. When the 
total number of selected varieties is too large, the selection limits are adjusted. 
Also from the logistics point of view it is inconvenient to have much fluctuation 
over the years in the number of retained varieties. Whereas statistics plays an 
important role in the estimation of variety parameters, it does not (at present) in 
making selection decisions. Much time and money is spend to estimate the variety 
parameters properly, followed by selection based on a rule of thumb and the 
subjective breeder's eye. Although selection of the really best variety would of 
course be welcomed by the plant breeder, he is satisfied if in the end a few varieties 
are selected that are better than the control varieties. 

The ultimate aim of commercial sugar beet breeding is to produce varieties 
that are preferred by the farmer to varieties of rival plant breeding companies. The 
choice of the farmer mainly depends on the/mancial yield (FIN) of the varieties. 
The financial yield is the amount of money a farmer receives from the sugar factory 
for the yield of one hectare of the variety. The financial yield of a variety is 
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determined by the characters CRY, SC and juice purity, and of course by the type 
of formula used. The appearance of the variety in the field is of minor importance 
to the farmer, except frequent occurrence of bolters. Because the financial yield 
primarily determines the choice of the farmer, this linear combination of various 
characters could be used as a selection index. Let V be the threshold value of tare 
in kilogram per ton beets beneath which no penalty for tare is given by sugar 
factories. Let the penalty per ton tare above V be denoted by M. The price of one 
ton beets is denoted by P. The sugar factories give a bonus or penalty S, say, per 
ton beets per % sugar content higher or lower, respectively, than 16%. Then the 
financial yield (in Dfl.) is calculated in The Netherlands as : 

M(T-V)+" 
FIN = CRY P + S{(SC-16) + 0.08(EI-85)} 

1000 

with (T - V)+ = max(T - V, 0). Consider the following small example. A farmer 
has 10 ha sugar beets with a net yield of CRY=50 ton/ha. Let SC = 17%, EI = 
80%, T = 100 kg/ton beets, P = Dfl. 105, S = Dfl. 9, M = Dfl. 20, V = 75 kg/ton 
beets. Then FIN = 50 [105 + 9 {1 + 0.08(-5)} - 0.5] = Dfl. 5495 /ha. We have to 
bear in mind that the FIN formula differs for different countries and/or sugar 
factories. At this moment, little use is made of the financial yield for selection 
purposes. The benefit of using a selection index is that the various characters are 
combined into one new character. The amount of information is reduced and the 
selection will be easier. However, the problem is to find a satisfactory selection 
index. Characters like WS Y and WSC are also indices, but do not represent all the 
aspects a breeder wants to base the selection on. 
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CHAPTER 3 

The estimation of contrasts between variety values 

The ultimate goal of the plant breeder is to select new varieties that are better 
than the varieties currently available. In order to get a good assessment of the 
agricultural value of a new variety, this variety is included in experiments 
performed at various sites and sometimes in several years. The observations are 
described by a model, and specific linear combinations of the parameters of this 
model are used for the evaluation of the new varieties. It is therefore of the utmost 
importance to the plant breeder that these linear combinations of parameters are 
estimated as good as possible. However, different models can be used, often 
resulting in different estimates and, even more important, a different ranking of 
these estimates. In this chapter we will discuss (generalised) least squares 
estimation of contrasts between variety values for various models. First, in 3.1, 
estimation at a single site in a particular year is described. Next, the estimates from 
the various sites and years can be combined. This is described in 3.2. Finally, in 
3.3, we will study estimation in case trials at one site are subdivided into subtrials, 
a situation frequently occurring in the sugar beet breeding practice. 

3.1 Estimation at the individual sites 
We will now focus on the estimation of model parameters for a single site 

and year. Suppose t varieties are grown in an experiment. In all the subsequent 
models the variety contributions are taken fixed, because we are specifically 
interested in the varieties actually used and not in an underlying population of 
varieties. Assume that the experiment performed has a randomised (in)complete 
block design with b blocks, and that there are n^ observations of variety / 
(i = l,...,t) in block j (j: = 1,...,b). The total number of observations will be 
denoted by n. It is common practice to use an additive model for the observations 
of a variety trial with a block design at a certain site and year. This additive model 
can also be the result of a logarithm transformation of a multiplicative model. In 
an additive model an observation of variety / in block j is modelled as the sum of 
a parameter related to variety i, a term related to block j and a quantity depending 
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on the particular experimental unit on which the observation was made. The latter 
quantities are called errors and are assumed to be uncorrelated random variables 
with zero expectation and common variance. Using an additive model it is assumed 
that there is no interaction between varieties and blocks. Which type of additive 
model has to be used depends on the way the blocks were chosen. If the blocks 
represent a random sample from a large population of blocks, the block terms can 
be considered random and a mixed additive model can be used. This model is 
described in 3.7.2. If the blocks were purposively chosen to reduce intra-block 
variation, the block terms can be considered fixed and a fixed additive model is 
more appropriate. In 5.7 J this model is treated. 

We assume that the design of the experiment is connected. Loosely stated, a 
design is connected if it is possible to follow a path through all non-empty cells 
in the variety x block table, with the restriction that this path only links cells 
corresponding to the same variety or the same block. Because much of the theory 
in the sequel of this chapter is valid for connected designs only, we additionally 
will explain connectedness by means of three small examples. Consider the 
following three variety x block tables, with VI = variety 1, Bl = block 1, and so 
on. The varieties included in a block are indicated by a dot (•). 

(I) 

VI 
V2 
V3 
V4 

Bl B2 B3 B4 

• • 

• • 

• • 

• • 

(ID 

VI 
V2 
V3 
V4 

Bl B2 B3 B4 

• • • 

• • 

• • 

• • 

(III) 

VI 
V2 
V3 
V4 

Bl B2 B3 B4 

• • 

• • 

• • 

• • 

Design (I) is disconnected; it has to be apprehended as two separate designs : 
varieties 1 and 3 in blocks 1 and 3, and varieties 2 and 4 in blocks 2 and 4. If we 
assume a fixed additive model, then in design (I) only the differences between 
varieties 1 and 3 and varieties 2 and 4 can be estimated free from block 
contributions. For the other variety differences this is not possible. By adding 
variety 1 in block 4, resulting in Design (II), the design becomes connected and 
all differences can be estimated free from block contributions. Also connected is 
Design (IE), which has the same number of observations as Design (I) but a 
different allocation of the varieties to the blocks. 

18 3.1 



3.1.1 The fixed additive model 

After the experiment has been performed, characters as mentioned in chapter 
2 are observed. For each character least squares estimates of linear combinations 
of model parameters, reflecting the values of the varieties for that character, have 
to be calculated. The character observed at the kth plot with variety / in block j is 
denoted by Yijk. The model we will use for the observations is : 

y^ = ̂ +T, + pV+£^, i = l,...,t,j = l,...,b,k = l,...,nu, (3.1) 

with X a general level parameter, xt the parameter corresponding to variety i, ßv 

the parameter corresponding to block j and EiJk the plot error. The Eijk are assumed 
to be uncorrected random variables with zero expectation and common variance 

G2 . 

Before using this model, it should be checked whether the model assumptions 
are not seriously violated. Sometimes special experimental techniques, such as the 
use of guard rows or discard rows, are necessary to achieve uncorrelatedness of 
the errors. In addition to that randomisation is beneficial to reduce the correlation 
among neighbouring plots. The randomisation procedure should effect that the 
probability of assignment to variety i (i - 1,..., t) is the same for each plot. This 
probability is equal to 27 riy/n for variety i. In order to get a randomisationprocedure 
that satisfies this probability requirement, the blocks are first randomised. For trials 
with blocks of equal size (so-called proper designs), this randomisation can also 
be accomplished by assigning a set of varieties (varieties which should remain 
together in a block) randomly to a block (Mead, 1988). The second stage of the 
randomisation procedure consists of randomly assigning the plots to the varieties 
included in that block, according to the design (see also 4.2). Whatever the 
complexity of the design, in the end we have n plots over which the varieties are 
randomly distributed. 

For an experiment with blocks it is difficult to test the assumption of a common 
variance. Visual inspection of estimated errors (called residuals) plotted against 
estimated expectation values of YiJk can reveal heterogeneity of variances. If this 
scatter plot shows a certain pattern, this is a warning that the variances are not 
equal. For completely randomised designs, which have no blocks, the homogeneity 
assumption can, for Normally distributed errors, be tested by Bartlett's test 

3.1.1 19 



(Bartlett, 1937). However, this test relies heavily on the Normality assumption. If 
the Normality assumption is violated, the equal variances hypothesis may be 
rejected even if the variances are indeed equal. Although we will use the Normality 
assumption in chapter 4, it is not needed for estimation. A test for homogeneity of 
variances that is much more robust against deviations from a Normal distribution 
of observations, is the test of Levene (Levene, 1960). This test can also be used 
for experiments with blocks. The test of Levene is based on an analysis of variance 
of the absolute values of the residuals. 

The value of variety i (i = \,...,t) can be defined as a weighted average of 
the expectation of Yijk over all j and k. So, with the fixed additive model a variety 
value is defined as a weighted average of E[Yijk\ - X+x, + ß, over all j . If equal 
weights are chosen, the value of variety i is defined in terms of the parameters as 

A,+x,. + ß. , withß. = | z ß , . 
bj=\ 

Because a variety value is an average of cell expectations in the variety x block 
scheme, it is estimable. Because of the overparameterisation in the model the 
variety parameter x, itself is not estimable. However, in order to compare the 
varieties it is sufficient to estimate differences between variety parameters. These 
differences are equal to those between the variety values. Hence, we are especially 
interested in the estimation of contrasts between variety parameters. These 
contrasts are denoted in the sequel by p'x, with x the column vector of variety 
parameters and p a column vector with p'l, = 0. Using model (3.1), all contrasts 
between variety parameters are estimable if the design is connected (Dey, 1986). 

Remark 

Consider the following reparameterisation of model (3.1) : E[Yijk] = 

X# + x* + ßj, where X* = X+x. + ß. (with x. = XltT.x, and ß. = 1/6 £ ß,), x* = x, - x . 
and ß* = ß, - ß.. Consequently, x! = 0 and ß? = 0. Now x* is called the variety effect 
or variety deviation, and ß* is called the block effect. With the above 
reparameterisation the value of variety i is equal to À,#+x*. The above 
reparameterisation can be generalised by replacing x. by the weighted average 
Z w,x,, with Ew, = l, and ß. by the weighted average £ Vyß,-, with Z v}• = 1. For 
instance, the Kuiper-Corsten iterative method of finding a solution of the normal 
equations (see also 3.3.1 ) gives estimates which correspond to a reparameterisation 
with w, = £,• riijln and v, = £, n^ln. 
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Let X be the design matrix of the variety parameters and let Z be the design 

matrix of the block parameters. These two matrices show for each observation to 

which variety and block, respectively, it belongs. The incidence matrix N shows 

how often variety i (i = 1,..., t) occurs in block) (J = 1,..., b ) and can be calculated 

as X'Z. The rank of X is equal to t and the rank of Z is equal to b. In the Euclidean 

space HC the expectation subspace is spanned by the columns of X and Z. If a 

design is connected, then the intersection of the subspace spanned by the columns 

of X and the subspace spanned by the columns of Z is the subspace spanned by 

the unit vector 1„ (Corsten, 1976). The vector of block parameters is denoted by 

ß. Then, given model (3.1), the expectation of the observations at a certain site 

can be written in matrix notation as 

£[Y] = 1„A+Xx + Zß 

= RzXx + PzXx + Zß + lnX, with P z = Z(Z'Z)-1Z' and Rz = I„ - P z , 

= RzXx + Z ß \ withß* = (Z'Z)_1Z'Xx + ß + l ^ , (3.2) 

because 1„ = Zl6. The matrix P z denotes the orthogonal projection on the subspace 

spanned by the columns of Z. Because of the orthogonalisation in (3.2) the normal 

equations have the following simple form : 

fX'R^X 0 V x l 

0 Z'Z 

fX'R^Y vzJ 

Z'Y 
(The sub-matrix 0 denotes a null submatrix of the appropriate size.) 

Hence a solution of the least squares estimates of ß*, denoted by ß \ is (Z'Z)-1 Z'Y. 

Further a solution of the least squares estimates of x, denoted by x, can be calculated 

as 

x = (X'RzX)"X'RzY, (3.3) 

where A" denotes a pseudo-inverse of A, which has the property that AA~A = A. 
For later use we choose a pseudo-inverse that satisfies the additional conditions 
A" = (A-)' and A" A = (A"A)'. A different choice of A~ gives a different solution of 
x, but contrasts between the estimates which correspond to contrasts between the 
variety parameters are unique (Dey, 1986). We now define the pseudo-
variance/covariance matrix (also called pseudo-dispersion matrix) of x, say D[x], 
as the matrix which can be interpreted as the variance/covariance matrix of x if it 
is used for the calculation of variances and covariances of estimators corresponding 
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to estimable functions of variety parameters, e.g. contrasts p'x. Here 
D[x] = (X'RzX^G2, and the variance of p'x is equal to var(p'x) = p'iX'R^ypd1. 

Solution (3.3) is identical with the solution of the well known so-called 
reduced normal equations for treatment parameters, often written as Cx = Q. The 
matrix C is calculated as C = R-NK~!N' =X'RZX and the vector Q as Q = 
T-NK_1B =X'RZY, where R = X'X denotes the diagonal replication matrix, 
K = Z'Z is the diagonal block size matrix, N = X'Z is the incidence matrix, T = X'Y 
is the vector with treatment totals and B = Z'Y is the vector with block totals. A 
solution of the reduced normal equations for treatment parameters can now be 
written as x = C"Q, hence the contrast p'x can be estimated as p'x = p'CTQ. This 
is the best linear unbiased estimator (BLUE), or Gauss-Markov estimator, of p'x 
(John, 1971). In reduced normal equation notation, the pseudo-variance/ 
covariance matrix of x is equal to D[x] = Co*. 

The error variance can be estimated by the Sum of Squares for Error (SSE) 

divided by the degrees of freedom for error (dfe). The SSE can be calculated as the 
sum of squares of the residuals. The residuals are the estimated errors (Éijk) and 
the vector of residuals is denoted by Ë. It is calculated by subtracting the estimated 
expectation of Y from Y itself : 

E = Y-R zXx-Zß* 

= Y-RzXx-Z(Z'Z)"'Z'Y 

= RZ(Y-XÏ) . 

The value of Ë does not depend on the specific choice of the pseudo-inverse of 
X'RZX, as does the value of x. Notice that it is not necessary to estimate the block 
parameters in order to calculate the residuals. Now SSE = É'Ë. For a connected 
design, the degrees of freedom for error can be calculated as dfe = n-t-b + l, 

which is the dimension of the observation space minus the dimension of the 
expectation subspace. The latter dimension is equal to t + b — l, because the 
intersection of the subspace spanned by the columns of X and the subspace spanned 
by the columns of Z has dimension 1, if the design is connected. The estimate of 
the error variance, denoted by s2, is equal to É'É/(n -t-b + Y). 
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3.1.2 The mixed additive model 

If we use a mixed additive model with fixed variety contributions we assume 

that the blocks represent a random sample from all possible blocks in the 

experimental field. We then can write the model for the observations as 

Yijk = X+xi+Bj + Eijk, i = \,...,t, j = l,...,b , k = l,...,nu. (3.4) 

Besides the error terms, now also the block terms are uncorrelated random 
variables. The latter have zero expectation and common variance 6%. Furthermore 
we assume that cov(Bj,Eijk) = 0 for all j and i,j,k. The expectation of Yijk is equal 
to A.+T,, and therefore the value of variety i is defined as À,+x;. The vector of 
observations Y contains random variables with the variance/covariance matrix : 

D[Y] = ZZ'(4 + I„G2 

^Vo 2 , withV = Z Z ' 3 + I„. 
cr 

In matrix notation, the expectation of Y can be written as 

E[Y] = lnX+Xx 

= RlXx+P1Xx + lnX, withPt = ! „ ( ! ' „ \ r \ ) l ' ^ " 1 and/ft = I „ - P l , 

- i „ 
= Ä1Xt + l„X, , with I = (l'nV%) l ^V'Xx + A,. (3.5) 

Pt denotes a projection on the subspace spanned by the unit vector. The normal 

equations are now equal to : 

0 1'V"1! 
"J 

r~x^ xy-'^Y 

l ' .V 'Y 

A (generalised least squares) solution of the normal equations for x can be 

calculated as 

x = (X'V-'/^X^X'V-'fljY, (3.6) 

with pseudo-variance/covariance matrix ï)[x] = (X'V"1/Î1X)"CT2. The matrix V is a 

nxn matrix. The dimension of this matrix often causes difficulties in the 

calculation of its inverse. However, the inverse of V can be written as 

V-1 = I„ - Z((o2/o|)Ifc + Z'Z)_1Z'. Now the matrix that has to be inverted is only of 
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dimension bxb. 

If we subtract the estimated expectation of Y from Y itself we obtain the 

vector of residuals, denoted here by F : 

F = Ä!(Y-Xx). 

With the variance ratio cr^/c2 assumed known, hence V known, the degrees of 
freedom for error in model (3.4) are equal to dff = n - 1 . Then o2 can be estimated 
by Y'tldff. 

Remark 

With model (3.4) the vector with variety value estimators has a very 
convenient form : x + l(X = (X'V"1X)~X/V"1Y. Therefore in practice these 
estimators are often used. Of course contrasts between variety values are identical 
with contrasts between variety parameters. The approach above this remark has 
been chosen for later use. 

The estimation procedure assumes that we a priori know the ratio o^/o2 in 
the matrix V. The plant breeding practice usually has a long history of similar 
experiments performed in the past years, hence the breeder often has a fairly good 
idea about the variance ratio. For estimation of variance components from prior 
experiments the reader is referred to Verdooren ( 1988). It would be wise to estimate 
a lower bound and an upper bound for the variance ratio cr^/c2, and to calculate 
the best estimates of contrasts between variety parameters for several values of 
the ratio within the range between these bounds. If the ranking of the estimates 
changes for different ratios, we have to be very cautious in making decisions. If 
there is no long history of similar experiments to get a good guess of cl/c1, then 
the plant breeder might decide to estimate the variance ratio not from prior 
experiments but from the current experiment. If the estimates of the variance 
components are obtained by the ANOVA procedure and the estimate of o^/o2 is 
used in V, the estimators of contrasts between variety parameters are equal to the 
combined intra- and inter-block estimators introduced by Yates (1940). The use 
of inter-block estimates is called recovery of inter-block information. Using other 
estimators for the variance components and inserting these estimates in c^/a2 in 
V gives other methods of recovery of inter-block information (see Verdooren, 
1989). However, it is questionable whether procedures which use an estimator for 
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dl/o1 lead towards a combined estimator that is better than the ordinary least 
squares estimator described in 5.7 J , for the very reason that an estimator for the 
variance ratio is used. 

If the ratio c^/a2 approaches infinity, then V"1 = I„ - Z(Z'Z)_1Z' = Rz. Then 
(X'VwlÄ1X)""X,V,Ä1Y = (X'RZX)X'RZY because Y'R^R^^ Rz(ln-Pl) = 

Rz. Then the estimators of x and the pseudo-variance/covariance matrix of these 
estimators are the same for the fixed and the mixed model. In practice the ratio 
c^/o2 is often large, resulting in estimates and a pseudo-variance/covariance matrix 
with the mixed model which are approximately equal to those obtained with the 
fixed model. Added to that the extra work and the uncertainty corresponding to 
the estimation of variance components, the choice is often made to use the fixed 
model. The large ratio of ö^/o2 found in practice is likely to be caused by the fact 
that the blocks are often not selected at random, but are specifically chosen in such 
a way that the variation among the blocks is as large as possible, and the variation 
within a block as small as possible (Mead, 1988). There are situations for which 
the estimators of the variety parameters are identical for both the fixed and the 
mixed model, irrespective of the ratio d^la2. It has been proven (e.g. Baksalary & 
Kala, 1983) that this is the case if the subspace spanned by the columns of VX is 
included in the subspace spanned by the columns of X. This is e.g. the case if a 
complete block design is used. 

In so-called resolvable designs the blocks can be grouped into r replications 
or 'super blocks', a group of blocks forming one complete replication of the 
varieties. In replication j (j = 1, . ..,r) there are bj blocks, with 'Lbj = b. The 
position of the replications in the experimental field is chosen in such a way that 
the variation between replications is as large as possible. Therefore the replications 
have to be considered fixed. The blocks within the replications can then be 
considered random. Examples of resolvable designs are lattice designs and alpha 
designs. A mixed model for the observations from an experiment with a resolvable 
block design can be written as 

Yy^X+Xi + Pj+B^+Eyt, i = l,...,t, j = l,...,r, k = l,...,bj. (3.7) 

The replication terms (py-) are fixed and the contributions of the blocks within the 
replications (Bk(j)) are uncorrelated random variables with zero expectation and 
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common variance G .̂ Furthermore it is assumed that cov(Bk(j),Eijk) = 0. We now 
introduce M, the design matrix of the replication parameters with rank r. The 
variance/covariance matrix of the observations remains equal to Vo2, the 
variance/covariance matrix for the mixed model without fixed replication 
parameters. Using the reparameterisation technique described above for a mixed 
model, similar expressions for x and D[x] can be found as for the situation without 
fixed replication parameters. These expressions can be obtained from the latter by 
replacing 1„ by M and \ by p, with p the column vector of replication parameters. 
We then find x = (Xy-'RMxyX'\-lRMY and D[x] = ÇX.'V1RMX)~G1, with RM = 

1 —1 1 

I„ - M(M'V M ) M'V~ . Because of the frequent occurrence of resolvable designs 

in the plant breeding practice, model (3.7) can often be used in that field. Also if 

a super block contains more than one complete replication, hence if some varieties 

appear more than once in a super block, the above is valid. In model (3.7) Yijk and 

Eijk are then replaced by Yijkl and Eijkl, respectively, with l-l,...,ny and n^ the 

number of observations of variety / in super block j . 

3.2 Combining estimators from a series of experiments 
The selection of superior new varieties for just one site and one year is already 

a difficult task. The plant breeder has to study numerous characters, most of them 
masked by micro-environmental noise. All these characters have to be combined 
into an index, written in black and white or determined intuitively by the breeder 
looking at the performance of the varieties in the field and combining his 
impressions; the last index being often referred to as the 'breeder's eye'. The task 
of selecting the best new variety becomes even more difficult when the results of 
various sites or years or both have to be combined. The calculation of a 'mean 
performance' of a variety is very important for the breeder, because the results of 
just one trial are not sufficient to base the ultimate selection on. Besides the question 
which index to choose, now other questions become urgent. The plant breeder has 
to decide which sites to combine, together forming a region of interest for which 
a separate variety has to be developed. Another important question is whether the 
model for the observations has to contain fixed or random site contributions, and 
whether variety x site interaction terms have to be included in this model. Because 
the various models result in different estimates and ranking of these estimates, the 
model has to be chosen very carefully. More about model choice is written m 3.2.1. 

For the time being assume that there is only one year, so only the results of various 
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sites are combined. The calculation of combined estimates is elaborated in 3.2.2, 

3.2.3, 3.2.4 and 3.2.5. In each section a different model is used. In 3.2.6 the 
traditional analysis of a series of experiments is described and compared with the 
proposed procedures. 

3.2.1 Choosing the type of model 

Suppose a plant breeder wants to select a variety for use in the region which 
is characterised by the chosen sites. Assume there are m sites, and that the trials 
at these sites have been analysed separately, either by using a fixed additive model 
or a mixed additive model. If the breeder does not have much experience with the 
crop, it is sensible to first compare the m error variances through their estimates. 
If the error variances cannot be considered equal for all sites, combining the results 
from the various sites is hazardous. The interpretation of the set of trials should 
then be based on the individual analyses of the data from the separate experiments 
(Mead, 1988). The hypothesis that the m error variances are equal can be tested 
with the test of Bartlett (1937), if the errors are Normally distributed, or Levene 
(1960). If the error variances can be considered equal for all sites, the observations 
from all the trials together can be described by a single linear model of the usual 
form. An additive model includes terms for varieties, blocks within sites, sites and 
errors. In addition to that an interaction model contains terms for the variety x site 
interactions. An important question is whether the site terms and the interaction 
terms should be considered random or fixed. This question is inevitably connected 
with the purpose of the series of experiments and the way the sampling of the sites 
has been done. 

Assume that the region of interest for which a breeder wants to develop a 
variety is more or less known. Then a number of sites within this region has to be 
chosen. One option is to specifically select sites that represent the different 
environmental conditions of the region. If, for instance, there are three soil types 
in the region, we may on purpose select a site with soil type 1, a site with soil type 
2 and a site with soil type 3. If we choose the sites in such a way, and assume that 
the other sources of variation which are present at the site level (e.g. farmer's skill, 
rainfall, sunshine) are neglectable with respect to soil type, we have to see the site 
terms as being fixed. The results of the analysis apply to this group of particular 
sites only. If the goal of the breeder is to select varieties which are the best, averaged 
over the sites actually used, a model with fixed site terms is appropriate. The variety 
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x site interactions are also fixed terms in this situation. Mead (1988) strongly 
advocates the method of selecting sites in a non-random way. He is of the opinion 
that a breeder should try to characterise the major differences within the region 
and select sites that span these characteristics. 

The other option is to choose the sites fully at random, hence creating a random 
sample from the population of sites. The situation of truly random sampling of the 
sites will never occur in the plant breeding practice. However, usually the sample 
is considered effectively random. The inferences made after the analysis of the 
data apply to the whole population of sites, which represents the region. This type 
of inference is of great importance to the plant breeder, because he wants to develop 
varieties that are superior in the region, and not specifically at the sites actually 
used. It is much more difficult to make inferences about a variety value for the 
population of sites, compared with the situation of fixed sites. If an interaction 
model is used, the variance of the estimator of the difference between two variety 
values increases because the interaction component of variance is added. Because 
the variance increases, it is more difficult to select the best variety. This is not 
surprising, because the question to which we want an answer is more difficult. 

Consider again the above mentioned example of a region with three soil types. 
Often, not only one site but a number of sites with the same soil type are chosen. 
The differences between sites with different soil types are large because of the 
purposeful choice of the sites. Hence we have to classify the groups of sites with 
the same soil type as fixed. The soil types can be introduced as a new fixed factor. 
The sites within each group with a particular soil type can be seen as a random 
sample of sites. Thus a third option is to extend the basic model with random site 
terms by introducing fixed group terms. Because situations similar to the soil type 
example frequently occur in the plant breeding practice, a model with both fixed 
and random site terms is of paramount importance there. 

The comparison of the individual analyses of the separate trials often reveals 
whether interaction is present. Then there are two possibilities. First, the plant 
breeder can decide that the region has to be redefined. By subdividing the region 
into smaller regions with sites that are more alike, the additive model within each 
subregion may be used. But the development of separate varieties for each 
subregion is often not desirable because of economical drawbacks. The second 
possibility is to use an interaction model. 

We will use fixed interaction terms if the site terms have been chosen fixed, 
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and random interaction terms if the sites are random. In the mixed interaction 

models we will use, random interaction terms have a common variance. Although 

common interaction variances may not be very realistic, models which allow 

unequal interaction variances are not at all convenient to work with in practice 

(Patterson & Silvey, 1980). 

3.2.2 The fixed additive model 

It is often not feasible to analyse the trials at the various sites as one large 
experiment. In practice, (contrasts between) variety values are estimated first for 
each individual trial. Next the estimates from the various sites are combined. This 
has to be done in such a way that the ultimate estimates are identical with the 
outcomes of the best linear unbiased estimators (BLUEs), had these been calculated 
using a model for the joint observations of the various sites, thus analysing the 
large experiment as a whole. Again we assume that the design is connected. First 
suppose that all varieties are present at all sites. Assume that the t varieties are 
grown at site k (£ = l , . . . ,m)inan experiment with an (in)complete block design 
with bk blocks, and that variety i (i = l,...,t) has nm) observations in block j at 
site k. Let n denote the total number of observations. The additive model for the 
joint observations can be written as 

Yw = V+*> + $m + 'K+Euu> (3-8) 

i = l , . . . , f , j = l,...,bk, k = l,...,m , l = l,...,nij{k), 

where \i is the general level parameter, x, the variety parameter for variety i, ßJ(t) 

the block parameter for the / h block at site k, Xk the site parameter for site k and 
Eijkl the plot error. The errors are assumed to be uncorrected random variables 
with expectation zero and common variance G2. We define a variety value in terms 
of the parameters as 

m _ _ I bk 

[i+X. + I w t(ß.w + \), with ß .w = - X ß .w , 
k=1 Uk j = \ 

where it is assumed that all blocks at a certain site have equal weight \lbk and that 
site k has weight wk, with £ wk = 1. The weights have to be chosen by the plant 
breeder. If all sites are of the same importance, it is logical to use equal weights 
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wk = Mm. With the fixed model, a variety value can be seen as a weighted average 
of the separate variety values from the sites actually used. A contrast between 
variety values is equal to that contrast between variety parameters and does not 
depend on the weights chosen. The parameters \i, $m, Xk can be replaced by a 
single parameter. In fact, [i + ßvW + Xk is equivalent to X,+ ß; of the fixed model at 
the kth site level. 

We will now change over to matrix notation. If we look back at the separate 
analyses at the individual sites, we notice that the vector of variety parameters x 
is equal for each site and is not associated with a particular site. The vectors of 
block parameters are different for all sites, and will be denoted by ß* (k = 1,..., m). 
Because all the varieties are present at a certain site, all X* have the same number 
of columns. Using the results of 3.1, the expectation of Yijkl in model (3.8) can be 
replaced by 

(v \ R z , X i 

R Z X 2 

R z x , 

x + 

-0-

ß; (3.9) 

with ß t = (Z'kZkrZ'kXkx + ßt + \b i \ + |i) 

(The symbol -0- means that all the empty positions in the matrix are filled with 
zeros) 
The normal equations then become : 

£ X tR7 Xt 

-0-

Z'1Z1 

-0-

Z mZmy \PmJ 

or in reduced normal equation notation 

I C , 
k = \ 

* i 

-0-

K„ 

ft 

»ß* , 

/ A 

k = \ 

B 

X X 'R 7 Y 
* = i £"z. 

Z m Y m 

m J 
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In the sequel E Ck will be denoted by C. for simplicity. A solution of the normal 

equations for x can now be calculated as 
m m 

x = C; Z Q, = Z C ;C t qQ t , because C ^ Q , = Q , , 
jfc = 1 * = 1 

m 

= E W t ï t , with W, = C7C t. (3.10) 

The pseudo-variance/covariance matrix of x can easily be calculated as 
D[x] = CTG2. 

From (3.10) we see that the BLUE of p'x is equal to p'x = p'Z W^x*. Notice 
that in general this is not a univariately weighted average of the BLUEs p \ at the 
individual sites, but that a multivariately weighted average is required. By 
'univariately weighted' it is meant that p'x can be calculated as a weighted average 
of the estimators of p'x at the individual sites. By 'multivariately weighted' it is 
meant that for the calculation of p'x also estimators of other contrasts than p'x (at 
the individual sites) are used for the weighted average. It is well known that 
univariate weights, say wk, should be chosen inversely proportional to the variances 
of the p'x*, with Sw t = l. The multivariate weights in the weight matrices Wk 

satisfy similar conditions : 

W,=C:Q , 

and 
m 1 f m 

zw, = c;c. = i(--i,i', , sop' zw, p = p%p. 
k=\ t \k=\ J 
The second condition is developed as follows : Because the individual experiments 
at the various sites have connected designs, the only dependence between the rows 
of Ck is reflected by Q l , = 0, hence C7C.1, = 0. Matrix C7C., which is chosen 
symmetric (see the characteristics of the pseudo-inverses chosen in 3.1.1), is a 
projection matrix since (C7C.) (C7C.) = C7C., and all idempotent symmetric 
matrices are projection matrices. Because C7C. is orthogonal to 1„ it must be equal 
toI,-(l/0MV 

The multivariate weights reduce to the univariate weights wk if and only if 

P'W* = wkP' > so W',p = wkp, 
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hence if p is a common eigenvector of all W' t matrices with corresponding 

eigenvalue wk. Notice that the above condition can be satisfied for contrast p'x 

with eigenvalues wpk and for a different contrast q'x with eigenvalues w^. However, 

if the best estimates for linear combinations of p'x and q'x have to be equal to the 

linear combinations of X wpkp'xk and £ wq / tq\, then wpk has to be equal to w^. for 

each k (k = l,...,m). This is for instance the case if the Ck matrices are identical. 

The common eigenvalue of the W'k must then be Mm in order to sum up to unity. 

If the Ck matrices are proportional to each other, they can be written as 

Ck = dkC, with Z dk = 1. Then 

t 1 ^ 
wk = c:ck=dkc;c.=dk 1,-TM', 

hence p'x = p'E W ^ = E dkp%, since p ' ( I t - ( l /0M' r ) = p'. So dk = wk, the 

univariate weight and eigenvalue of W'k = Wk with eigenvector p. Because dk is 

a value independent of p, the Wk must have an eigenvalue wk with multiplicity 

t - 1 and one zero eigenvalue. This is the case if all the experiments have 

variance-balanced designs. In a variance-balanced design the least squares 

estimators of all pairwise contrasts between two variety parameters have the same 

variance. If all the experiments have variance-balanced designs, then all the 

non-zero eigenvalues of Ck are equal, say 9̂ ., and Ck can be written as 

C* = et(I, - (l/OM'i) (Dey, 1986). In that case W t = (6*/E Qk) (I, - (1/f )M',) and 

wk = 9 /̂E 6*. Examples of variance-balanced designs are an equireplicated 

completely randomised design (E-CRD), a randomised complete block design 

(RCBD) and a balanced incomplete block design (BIBD). The C matrices of these 

designs are proportional to each other since they can be written as 

E-CRD 

RCBD 

BIBD:C = Ö (* 
( f - 1 ) 

with r the number of replications, t the number of varieties, b the number of blocks, 
k the block size and X the parameter that indicates how often each pair of treatments 
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appears in the same block (and for a BIBD X = r(k- \)l{t -1)) . So, if the trials at 

the various sites all have an E-CRD, a RCBD or a BIBD, then we can use univariate 

weights. 

When the sites do not contain exactly the same set of varieties, the variety x 
site table becomes incomplete. However, this gives no problem in the analysis. To 
calculate the weight matrices, rows and columns with zeros have to be included 
in the Ck matrices at the positions that correspond to the varieties which are not 
present at site k; thereby creating Ck matrices of the same size. In order to calculate 
the outcomes of the BLUEs of p'x as X p' Wkxk, null elements have to be included 
also in the xk vectors at the appropriate places. 

To estimate the error variance we first have to determine the residuals. 
Analogous to the vector of observations, the vector of residuals Ê can be subdivided 
into vectors Êk (k = l,...,m), with Ê' = (Ê/ Ê2' ... Êm'). For every k 

(k = l,...,m)Êk can be calculated as 

Êk = Yk-RzXkî-Zk& 

= Y * _ R Z t
X * X _ Z * ( Z 'A ) Z'*Y* 

= RZk(Yk-Xkx). 

Notice that these residuals are not equal to the residuals calculated at the separate 
trials, because in general x * xk. The SSE can now be calculated as SSE = E Ê/Ê*. 
The degrees of freedom for error can be calculated as dfe = n - 1 - £ bk +1. Then 
o2 can be estimated as SSE/dfe. 

Examples 

We wil demonstrate the estimation of p'x in three small examples. For each example 
the incidence scheme is given. Notation : SI = site 1, Bl = block 1, VI = variety 
1, and so on. For the calculation of the weight matrices a Moore-Penrose 
pseudo-inverse is used. In addition to the characteristics of the pseudo-inverses 
chosen in 3.1.1, the Moore-Penrose pseudo-inverse A+ of matrix A also satisfies 
A+AA+ = A+ and AA+ = (AA+)'. The Moore-Penrose inverse A+ of A is unique. 
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Example 1. 

VI 
V2 
V3 
V4 

SI 

BI B2 

1 1 
0 0 
1 1 
1 1 

B3 

1 
1 
1 
0 

S2 

B4 

1 
1 
1 
0 

B5 

1 
1 
1 
0 

B6 

1 
1 
0 
0 

S3 

B7 B8 

0 1 
0 0 
1 1 
1 0 

B9 

0 
1 
0 
1 

C l 3 

C,= 

f 4 

0 

- 2 

v - 2 

2 

- 1 

- 1 

0 

c,=-

2 
- 1 
- 1 

0 

0 
0 
0 
0 

- 1 

2 

- 1 

0 

- 1 
2 
0 

- 1 

- 1 

- 2 
0 
4 

- 2 

- 1 

- 1 

2 

0 

- 2 ^ 

0 

- 2 

0^ 
0 

0 

W1 = 

w 2 = 

w3 = 

Let p ' = (1 

p'W, = (0.1923 

- 1 0Ï 
0 - 1 
2 - 1 

- 1 2j 

0 0). Then 

0.0000 -0.0769 

f 0.2538 

0.0615 

-0.0769 

x -0.2385 

0.3308 

-0.2077 

-0.1154 

-0.0077 

0.1654 
-0.1038 
-0.0577 
-0.0038 

0 -0 .0615 

0 0.0154 

0 0.2308 

0 -0.1846 

-0.1923 

-0.0769 

-0.1538 

0.4231 

-0.1885 

0.4846 

-0.2308 

-0.0654 

-0.0615 
0.2654 

-0.0192 
-0.1846 

-0.1423 

-0.2769 

0.3462 

0.0731 

0^ 

0 

0 

Oy 

-0.0462 -0.0577 
0.0115 -0.1731 
0.1731 -0.0962 

-0.1385 0.3269 

•0.1154), 

p'W2 = (0.5385 -0.6731 0.1346 0.0000), 

p'W3 = (0.2692 -0.3269 -0.0577 0.1154). 

Notice that p 'W tx at site k represents a contrast completely different than p'x. So 

in this example multivariate weights are necessary. 

Example 2. 

VI 
V2 
V3 
V4 

SI 

BI B2 

1 1 
1 1 
1 1 
1 1 

S2 

B3 B4 

1 1 
1 1 
1 1 
1 1 

B5 

1 
1 
0 
0 

B6 

0 
0 
1 
1 

S3 

B7 B8 B9 

1 0 1 
0 1 0 
1 0 0 
0 1 1 

BIO 

0 
1 
1 
0 
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C -C -C =-
v . , v^2 V̂ 3 

V' 

' 3 - 1 - 1 - O 
1 - 1 3 - 1 - 1 

- 1 - 1 3 - 1 
1 - 1 - 1 3x 

If we calculate Wk, we find 
{ 0.25 -0.0833 -0.0833 -0.0833 

-0.0833 0.25 -0.0833 -0.0833 
-0.0833 -0.0833 0.25 -0.0833 
-0.0833 -0.0833 -0.0833 0.25 

Withp' = (l - 1 0 0), 

p*Wx = (0.3333 -0.3333 0.0000 0.0000) = - p ' , 

w1 = w2=w3 = 

V' 

*4 A 'M* 4 

p'W2 = (0.3333 -0.3333 0.0000 0.0000) = - p ' , 

p'W3 = (0.3333 -0.3333 0.0000 0.0000) = ^ p ' . 

Notice that for this design, where all the C matrices are identical, univariate weights 

can be used, with equal weight Mm for every site. 

Example 3. 

VI 
V2 
V3 

SI 

BI B2 

1 1 
1 1 
1 1 

B3 

1 
1 
1 

S2 

B4 

1 
1 
1 

B5 

1 
1 
1 

B6 

1 
1 
0 

S3 

B7 

1 
0 
1 

B8 

0 
1 
1 

-A 
c2= 

V 

< 2 - 1 - 0 
- 1 2 - 1 
- 1 - 1 2 

( 2 - 1 - O 
- 1 2 - 1 

v - l - 1 2 

( 0.2051 -0.1026 -0.1026 
W,= -0.1026 0.2051 -0.1026 

0.1026 -0.1026 0.2051 

' 0.3077 -0.1538 -0.1538A 

W,= -0.1538 0.3077 -0.1538 
-0.1538 -0.1538 0.3077 
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c - I 
^ 2 

f 2 _1 _11 
- 1 2 - 1 , w 3 = 

l - l - 1 2J 

' 0.1538 
-0.0769 

,-0.0769 

Letp' = (l - 1 0).Then 

p'Wj = (0.3077 - 0.3077 0.0000) = — p ' , 

p'W2 = : (0.4615 -0.4615 0.0000) = - ^ p ' , 

-0.0769 
0.1538 

-0.0769 

-0.0769' 
-0.0769 

0.1538, 

p'W3 = (0.2308 - 0.2308 0.0000) = — p ' . 

Notice that for this example p'W^x represents a contrast of the same form as p'x. 
The weights are here univariate. We could have known this beforehand because 
the C matrices are a multiple of each other, hence a multiple of C . The univariate 
weights can directly be calculated as (4/6)/(13/6)=4/13, (6/6)/(13/6)=6/13 and 
(3/6)/(13/6)=3/13. 

3.2.3 The fixed interaction model 

First assume that all t varieties are present at the m sites. Suppose we are of 

the opinion that variety x site interaction parameters should be included in the 

fixed model. Then the fixed additive model (3.8) can be extended to a fixed 

interaction model as 

Ym = H+x,- + K)+K + (&>)*+Em> (3.11) 

with (TÀ,),* the variety x site interaction parameters. With this model, the value of 

variety i is defined in terms of the parameters as 
m m 

H + T.-+ Zw t ( d ) t t + Z wk($.a) + h), 
k = \ k = \ 

with I w t = l . Now a contrast between variety values is not equal to the same 
contrast between variety parameters, but to this contrast between x; + 2 wk(xK)ik 

= 2 wk(Xi + (xk)ik). With the fixed interaction model this contrast depends on the 
given weights wk (read : the definition of a variety value). A contrast between 
variety parameters x, is not estimable with this model because of the 
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overparameterisation, but a contrast between variety values, as defined above, is. 
A variety value is a linear combination of E(Yijki) and therefore estimable. Hence 
a contrast between variety values is also estimable. Note that a contrast between 
variety values in a fixed additive model is defined differently from the same contrast 
between variety values in a fixed interaction model. 

In the analysis of the individual trial at site k, with model (3.1), the variety 
parameter corresponding to variety i is equivalent to x,• +(xX)(yt in model (3.11). 
So, the contrast estimates from the separate trials have to be averaged with weights 
given in the definition of a variety value in presence of interaction, in order to 
estimate contrasts between variety values. If the sites are of the same importance, 
equal weights Mm are used. Sometimes it will be reasonable to give unequal 
weights to the various sites. If a site represents a part of the region which is very 
important, e.g. because of economical reasons, this site may be given a larger 
weight than the other sites. However, the choice of the weights should not be based 
on the results of the experiments. 

Let us now return to matrix notation. Let the vector of variety values in 
presence of interaction be denoted by Ç. Then the least squares estimator of p% 

can be written as p't, = Z wkp'xk, with p'xk the estimator of a contrast between 
variety parameters at site k (k = 1,..., m) and the wk (with J.wk-\) following from 
the definition of a variety value in the interaction model. The pseudo-
variance/covariance matrix of t, can be calculated as D[£] = (Z vv^C^o2. 

The vectors with the parameters corresponding to site k{k-\,...,m) can be 
denoted by l|i, x, (xX)k, ß̂  and \Xk. In the separate analysis of the trial at site k 

with the fixed model (3.1), the vector with variety parameters is equivalent with 
x + (xX)k and the vector 1^+ß is equivalent with l |i + ß̂  + lXk in the current model. 
Therefore the part of the vector of residuals Ê corresponding to site k is equal to 
the vector of residuals from the separate analysis ofthat site. Hence we can calculate 
the estimate of the error variance by summation of the error sums of squares of 
the m sites and division by the degrees of freedom for error. With the fixed 
interaction model the degrees of freedom for error are equal to 
dfe = n - 2 bk- m(t - 1 ), this is the sum of the dfe from the separate analyses of the 
m trials. 

When will the estimate of a contrast between variety values, using a fixed 
additive model, be equal to the estimate of the same contrast between variety values 
using a fixed interaction model ? This will only be the case if the weights used 
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with the additive model are univariate and equal to the weights following from the 
definition of a variety value in presence of interaction. If the latter weights are 
chosen to be 1/m, the estimates from the fixed additive model are equal to the 
estimates from the fixed interaction model if and only if the C matrices at the 
various sites are equal to each other. This is e.g. the case if all the experiments at 
the different sites have the same design. 

Now suppose that not all varieties are grown at all sites. So the variety x site 
table is incomplete. Then the estimate of a contrast between two variety values 
can only be calculated if the two varieties are present at all sites. Consequently, 
for incomplete variety x site tables some variety value contrasts cannot be 
estimated. Therefore, if we want to use a fixed interaction model, we must aim at 
a complete variety x site table. Since the variety x site tables in the plant breeding 
practice are mostly incomplete, the fixed interaction model appears to be not very 
useful in that field. 

3.2.4 The mixed additive model 

In the mixed additive model the terms for blocks within sites, or the site terms, 
or both are assumed to be random variables. If the terms for blocks within sites 
are assumed to be random variables, it is sometimes reasonable to extend the model 
by including fixed terms for groups of blocks. For instance, if resolvable designs 
are used at the various sites, fixed replication terms can be included in the model. 
Similarly, if the site terms are considered random but can be classified into a 
number of distinct groups (e.g. soil types), then the model can be extended by 
including fixed terms for groups of sites. We will elaborate estimation using the 
basic models and additionally mention the changes to be made when an extended 
model is used. Analogous to section 3.1.2, we assume that variance ratios are 
known. For all models the variance/covariance matrix of the observations can be 

written as 
r'Y^ 

D 

Y 
LV mJ 

V, -0 •\ 

a2. 

'm) 
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so observations from different sites are uncorrelated. 

First consider the situation where the terms for blocks within sites are random, 

and the site terms fixed. The model for the observations can then be written as 

Ym - H + T; + Bm + Xk+Em . (3.12) 

The Bm are uncorrelated random variables with expectation zero and those 

corresponding to site k (k = 1, ..,m) have a common variance a (̂yt). Furthermore 

we assume that cov(Bm,Eijkl) - 0 for all i,j,k, I. The expectation of Yijkl is equal 

to E [Yijkl] = (i+x,- + \ . The value of variety / is now defined as 
m m 

\± + X; + £ wkXk, with Z wk = 1 , 
k=\ k=\ 

so a contrast between variety values is equal to that contrast between variety 
parameters. If we change over to matrix notation, we can write the expectation of 
Y as 

E 

W 

Y 

(\ \ 

v "»y 

\i + 

VXmy 

X + 

-0-

-0- n-J yKj 

where nk denotes the number of observations at site k (k = l,...,m). The 

variance/covariance submatrix (divided by a2) of the observations of site k 

(k = l,...,m) is equal to 

We can rewrite the expectation equations corresponding to site k as 

E[Yk] = lnkii+Xkx + lnXk 

= R1Xkx+PlXkx + lnk(Xk + [i), 

withP, = 1„ fl'„ V^l,, T V VT1 and /?. =1 - P , , 

=Ä x,x+iX, with A;=frnyt i„J_1i'Vx,x+\+H . 
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Rlk denotes a projection on the subspace spanned by the unit vector. The normal 

equations can now be written as 

m 
2 X ' * V * Rlk

Xk 
k = \ " 

-0-

1' VT1! 

-0- i' v:1! 
n„ m n 

v 
m J 

m 

1' V"!Y 

A (generalised least squares) solution for x is 
f m \~ m 

.* = ! k = \ 

(3.13) = E W tx t , with W t = I X ' ^ Ä X t X'XR, Xk. 
k=\ \k=l ) 

In (3.13) xk is the vector of least squares estimators of variety terms calculated at 
site A: (k = 1,..., m ), when the mixed model (3.4) is used at this site. Analogous to 
section 3.2.2 we notice that the BLUE of p'x is in general not a univariately 
weighted average of the p'xk, but a multivariately weighted average. The 
pseudo-variance/covariance matrix of x is equal to 

D[x] = 
( m ^ 

2 X'tV* RikXk 
o2. 

To estimate the error variance, we first calculate the vector with residuals, 

denoted by F. For observations corresponding to site k (k = 1,..., m) the vector of 

residuals is equal to 

Fk = Yk-RhXkî-lnrk 

= Rh(Yk-Xkx). 

The degrees of freedom for error are equal to dff = n-t-m + l and the estimate 
of o2 can be calculated as s2 = ( I t\tk)ldff. 

The model can be extended by including fixed replication terms within sites. 
In that case the same formulae for x, D[x] and Fk as given above can be used, only 
lk has to be replaced by Mk(k = l, ...,m), with M* the design matrix corresponding 
with the replications at site k. 

Now assume that the block terms are fixed. We then use the following basic 
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model for the observations : 

Yw = V + xi + Pm+Lk+Eüi "ijkl (3.14) 

We assume that the Lk are uncorrelated random variables with expectation zero 
and common variance o£. Furthermore we assume that cov(Lk,Eijkl)=0 for all 
i,j,k,l. The expectation of Yijkl is now equal to E[Yijkl] = |i+x, + $m, and the value 
of variety i is defined as 

m m 

H+T..+ X WjtP.çt), with Z wt = l . 
* = i t = i 

Now a variety value has to be interpreted as an average over the population of 
sites. A contrast between variety values is equal to that contrast between variety 
parameters, and does not depend on the weights chosen. 

First suppose the same varieties are present at every site. In matrix notation, 
we can write the expectation of the observations as 

<V 

Y 

f* \ 

\l»mJ 

'V 
^+ 

V 
V mJ 

x + 

Zi 

-0-

f a \ -o-Vft 
ß 2 

m) ft \ymj 

with nk the number of observations at site k (k = l,...,m). Let the total number 
of observations be denoted by n. The variance/covariance submatrix (divided by 
o2) of the observations at site k (k - 1,..., m ) is equal to 

We can rewrite the expectation equations corresponding to site k as 

E[Yk] = lnu+Xkx + Z£k 

with PZt = Z.iZ'Xzfz'X and R^ = ln-PZk, 

= RzXkx + ZtßJ, with ßl = (Z'Xzfz'tfXfi + ß4 + 1 ^ . 
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Ru denotes a projection on the subspace spanned by the columns of Zk. Notice 

that Ru is different from RZk, used in 3.2.2. Now the normal equations have a 

convenient form : 
f 

£ XkVk RzXk 
k = \ ' 

•0-

z\wX 

-0-

Z' v^z 
mm m 

V K m 7 

E XkVk
xRzYk 

<t = i 

Z ' ^ ' Y , 

Z'V"1Ym , 
m m m J 

A (generalised least squares) solution of these equations for x can be calculated as 

(3.15) ^"'^L^V*-
We will now show that the solution given above is identical to the solution 
presented with the fixed additive model. The inverse of \k can be calculated as 

This expression can be rewritten as 

V=pZt+RZt-Y,pZti„r„t 

= pz t V + RZt, with PZt = Zk{Z\ZkT
lZ\ and RZt = \k - PZ j . 

So, 

V^zt = PztVXt
 + RA 

= ¥zR'Yk
A + Rz 

Lk ^k K A t 

= RZ . 
Lk 

Hence (3.15) reduces to (3.10). Consequently, if a mixed additive model is used 
with fixed block terms, the BLUEs of estimable functions of the variety parameters 
are equal to the corresponding estimators in the fixed additive model. Also the 
pseudo-variance/covariance matrix of the estimators of the variety parameters is 
equal in both models. 

In order to estimate o2 we can calculate the residuals. The residuals 
corresponding to the observations at site k can be calculated as 
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= Y, -Rzxkî - zk(Z'k\rk
lzfz'Xvk 

= RZt(Yk-Xkî). 

But if VfR? = Ry then 

^ = V,R; 

= (L +(<#o*)l r )R; 

= R z t ' 

and alsoFz^ = P K . Hence we canuse the same sum of squares for error as calculated 

for a fixed additive model, namely SSE. The degrees of freedom for error are equal 

to dff-n-t- T,bk +1 , and finally o2 can be estimated as s2 = SSE/dff. 

Analogous to section 3.2.2, the theory also applies if the variety x site table 

is incomplete. In that case columns with zeros enter the Xk matrices, but the Zk 

matrices remain the same. In the proof that the estimators of variety parameters 

in the mixed additive model with fixed block terms are identical to the estimators 

of variety parameters in the fixed additive model Xk is not used. 
Now assume that the model is extended by introducing fixed terms for groups 

of sites, with the sites within these groups considered a random sample. The 
variance/covariance matrix of the observations does not change because of this 
extension. Furthermore, the introduction of extra fixed group terms is merely an 
overparameterisation of the model. Therefore, they just as well can be removed 
from the model and the estimates obtained are identical to the ones described above. 

Finally consider the situation where both block terms and site terms are 

assumed to be random variables. Then the model for the observations reads : 

y mi = H+t, +Bm+Lk+EijU • (3.16) 

Bj(k), Lk and Eijkl are uncorrelated random variables with zero expectation. For a 
certain site k (k = 1,..., m ) all Bm have a common variance o ^ . The Lk and the 
EiJkl have common variance c£ and o2, respectively. Furthermore it is assumed that 
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co\(Bm,Lk) = O, cov(Bm,Eijkl) = O and cov(Lk,Eijkl) = O for all ij, k, I. A variety 
value is defined as (i.+x,, because E [Yijkl] - [i+x>;. Hence a contrast between variety 
values is equal to that contrast between variety parameters. In matrix notation, the 
variance/covariance submatrix (divided by c2) of the observations at site k 
{k = 1, ...,m) can be written as 

hence V? = L - Z t z 'z +i ^ ^ ^ i r Z\ 

Analogous to the situation of model (3.12) we find as (generalised least squares) 
solution for x : 

[ m 1 m 

*=1 * J k=\ k 

It is known (Rao, 1973) that in the expression for the xk at site k with a mixed 
model with random block terms the variance/covariance matrix 
(Z^a^ /G 2+1„ Jo2 can be replaced by ( z ^ a ^ / c 2 + 1 „ Jo2+XkAkX'k(f, with 
A* any matrix. If Ak is chosen to be l^cf/a2 , then we obtain the Vt of the current 
model. Hence with model (3.16) the estimator of x can be calculated as a 
multivariately weighted average of the xk from the separate sites, the latter 
calculated using a mixed model with random block terms. So, 

m f m y m 
x = S WÄ , with Wt = ï X^YfoX» S X ' ^ Ä Y , . (3.17) 

* = 1 V^Ar = 1 K J k = \ " 

For the weight matrices it is important to use the correct \k. The pseudo-
variance/covariance matrix of x is equal to D[x] = (EX'^V^/^X^c2. If the 
variance ratios ol^/c2 approach infinity, the inverse of \k becomes equal to R^.. 
Hence in that case the same results are obtained as if we would have used the fixed 
additive model. 

Remark 
With this model it might be easier to calculate the estimates of the variety 

values instead of the variety parameters. The vector of variety values can be 
"calculated as 
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m f m \ 1 

x+ifp.= z w ^ + i ^ ) , withwt= sx;Vx t 
k=\ \k=\ ) 

X *V* X* • 

The vector of residuals corresponding to the observations at site k 

(k = 1,..., m ) is calculated as Fk = Rlk(Yk ~ X*x). The degrees of freedom for error 
are equal to dff = n-t. Then the estimate of a2 is equal to s2 = (Z F'kFk)/dff. 

Sometimes it is reasonable to extend the model with fixed replication terms 
within sites. The model can be further extended by including fixed terms for groups 
of sites, but this is merely an overparameterisation. In this situation the formulae 
are equal to those for the situation of fixed site terms, fixed replication terms within 
sites and random block terms within each replication, only the variance/covariance 
matrix of the observations has to be equal to the one described above. 

3.2.5 The mixed interaction model 

With the mixed interaction model we can distinguish three basic situations : 

1) the block terms are random and the site terms and the variety x site interaction 

terms are fixed, 2) the block terms are fixed and the site and interaction terms are 

random, 3) all terms except variety terms and general level are random. Extended 

models for trials with resolvable designs at the various sites assume fixed 

replication terms with random terms for blocks within these replications. If site 

terms and variety x site interaction terms are considered random, extended models 

can include fixed terms for groups of sites and fixed variety x group interaction 

terms. Within these groups the sites are considered random. We will study the 

three basic situations and make some comments about the extended model after 

each case. 

First consider the situation where the terms for blocks within sites are assumed 
to be random variables, and site terms are assumed to be fixed. The corresponding 
model for the observations can be written as 

Yijkl = ̂  + ̂ +Bm + \ + ̂ X)ik+Eijkl. (3.18) 

Bm mdEijkl are uncorrelated random variables with expectation zero and variances 

o£(t) and G2, respectively. Furthermore it is assumed that cov(Bm,Eijkl) = 0 for all 
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i,j,k,l. The expectation of Yija is equal to [i + xi + Xlc + (x'k)ik, and therefore the 

variety value of variety i is defined as 
m m 

H + x,.+ Zwt(xX)it+ E wk\, 
* = i * = i 

with I w t = l .A contrast between variety values is equal to that contrast between 

T, + Z wt(xA,)it and not between x,. As explained in section 3.2.3, we have to average 

the estimators from the separate trials in order to obtain the BLUEs of contrasts 
between variety values in presence of interaction : p't, = Zwtp'xt. Here the 

estimators from the separate trials correspond to the mixed additive model (3.4). 

Then Û[£] = Iw*2D[xJ = liw^ÇK.,kyk
ARuXk)~al. The SSF can be calculated as the 

sum of the squared residuals from the separate trials. The degrees of freedom for 

error are equal to dff - n - tm, this is the sum of the dff from the separate analyses 

of the m trials. 
The model can be extended by introducing fixed replication terms within 

sites. In that case the BLUEs are still equal to average estimators from the separate 
trials, but now the latter estimators correspond to a model with fixed replication 
terms and random block terms within the replications. 

If the block terms are considered fixed, the model for the observations can 
be written as 

Yijki = V + *i + Pm+Lk + (.TL)ik + Eijkl. (3.19) 

Lk, (TL)ik and Eijkl are assumed to be uncorrelated random variables with 
expectation zero. The variables Lk have a common variance o£, the variables (TL )ik 

have a common variance o£L and the Eijkl have common variance a2. Furthermore 
we assume that cov(Lt, (TL )ik) = 0,co\(Lk,Eijkl) = Omdcov((TL)ilc,Eijkl) = 0forall 
i,j,k,l. The expectation of Yijkl is equal to \i+x, + ßy ((fc), and a variety value is defined 
as 

m 

with E wk - 1. A contrast between variety values is equal to that contrast between 

variety parameters. Written in matrix notation, the variance/covariance submatrix 

(divided by o2) of the observations at site k (k = 1,..., m ) is equal to 
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V* = X*X t — + 1 ^ 1 "*3 + I" 

hence V = I „ - X , 
' o2 o2 o2, V> 

V ' Y + T _ _ _ 1 1 ' K 
In this case we can use solution (3.15), only the \k matrices are different. \k can 

be written as ln(k) + XkA.kX'k, with Ak = lto$L/a
1 + l ^ l ' ^ /G 2 . At site k the solution 

(X\V?RuXk)-X\V-k'RuYk is then equal to (X'kRuXkyX'kRuYk, which is xk from 

the fixed additive model at site k. Hence, 
m f m y m 

x = S W tx4, with W t = S X ; \ r \ X t Z X ' t V X Y * . (3.20) 

Here, î t is the estimator of x at site /:, using a fixed additive model. Furthermore, 
D[x] = (ZX'^V^/^X^o2 . If the variance ratio a^Ja2 approaches infinity, the 
inverse of \k becomes equal to RXk = lnm-Xk(X'kXky

1X'k. But then 
X'* V*1 = X'̂ Rxt = 0. This is to be expected, because for o^/c2 approaching infinity, 
model (3.19) becomes equal to a model with fixed interaction terms, and in that 
situation p'x is not estimable. 

Remark 

In the Scheffé type of mixed models the random variables (TL)ik are not 

assumed uncorrelated. They are defined such that Sj = i (TL )ik = 0 for all k and equal 

co\((TL)ik, (TL)n) for all k and i * i'. In this case the variance/covariance matrix 

of these variables is not a diagonal matrix. Assume that this variance/covariance 

matrix is equal to H ^ c ^ . Then \k is equal to 

&TL GL ( Grr 
V ^ X A X ' ^ + l . l ' ^ + I ^ I . + X , X', 

Suppose that model (3.19) is extended by including fixed terms for groups 
of sites and fixed variety x group interaction terms. The groups can for instance 
represent different soil types. Let (xy)^ denote the fixed interaction contribution 
of variety i and group g. As with the fixed interaction model in 3.2.3, the value of 
variety i (i = 1,...,0 must now be defined as [i+xi + 'Lwg(v{)ig + T.wk$.(k), with 
wg the weight of group g. This weight is equal to the sum of the weights of the 
sites within group g. In the separate analyses of the trials at the individual sites 
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within a single group g the contribution of variety / is equivalent with x, + (xy)ig. 

Then within a group of sites the best estimators for the variety parameters can be 
obtained as described above. Next the estimates from the different groups have to 
be averaged with weights wg. This is only possible if a variety occurs in every 
group. 

If the model contains random block terms, site terms and interaction terms, 

the model can be written as 

Yijkl = \i + ̂ +Bm+Lk + (TL)ik+Em. (3.21) 

Bm, Lk, (TL)ik and Eijkl are (mutually) uncorrelated random variables with 
expectation zero and variances a (̂yt), o£, o£L, G

2, respectively. The expectation of 
Yijk, is equal to |i.+x,, and the value of variety i is defined as (i+x,. Written in 
matrix notation, the variance/covariance submatrix (divided by a2) of the 
observations at site k is equal to 

a2 rr2 rr2 

We now can proceed as described in the last part of section 3.2.4, with \k defined 
as above. Notice that V* can be written as ZtZ''^o^^/o2 + ln(k) + XkAkX''k, with 
Ak = I,a$-L/G

1+ltVtGL/G1- Consequently, x can be calculated as a multivariately 
weighted average of xk, with xk the estimator at site k, using a mixed additive model 
with random block terms. 

Sometimes it is reasonable to extend the model with fixed replication terms 

within each site, fixed terms of groups of sites and fixed variety x group interaction 

terms. Then first estimation of H + x; takes place for each separate group, using a 

model with fixed replication terms. Next these estimates are averaged with weights 

following from the definition of a variety value. 

If there are two or more years of investigation, the breeder often wants to 

combine the results of these years also. The years are almost always considered 

to be random terms; the sampled years being a random set representing the climate 

of the region. In this case the models discussed can be extended by introducing 

random variables representing the year contribution and the variety x year 
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interaction contributions. The introduction of extra random variables in the model 
causes the variance/covariance matrix to change. However, it is still possible to 
write this variance/covariance matrix as Vo2. Thus we can use the methods of 
analysis described above, of course using the correct \k matrices. 

Analogous to the discussion whether to use random or fixed site terms, we 
could classify certain groups of years as fixed, for instance dry , normal and wet 
years. These groups can then be included in the model as fixed terms. The years 
within each group can be seen as a random sample of years, and thus be included 
as random terms in the model. 

3.2.6 Traditional analyses 

In literature, most of the difficulties with respect to the combination of several 
experiments relate to the appropriateness of tests of significance for variety 
parameters and variety x site interactions (see e.g. Yates & Cochran, 1938; Cochran 
& Cox, 1957). However, in the plant breeding context these tests are of little 
importance. We know that the varieties differ from each other and we can hardly 
imagine that every variety reacts the same way to the different environments of 
the various sites. Less attentionhas been paid to the determination of best estimators 
of contrasts between variety parameters. The usual procedure is to first calculate 
least squares estimates of the variety values at each site. These variety value 
estimates are the entries of a variety x site table, which is often incomplete. The 
results of the separate sites have to be compared before they are combined. Cochran 
& Cox (1957) advise to check whether the differences among variety parameters 
are the same in each trial and whether there is a consistent superiority of certain 
varieties. If there are sites where the results are completely different from the other 
sites, then the constitution of the region should be reconsidered. 

To combine the results of the various sites, the variety x site table is then 
analysed as an experiment with two factors : varieties and sites. Thus this table is 
analysed as if it reflects a trial with varieties and blocks, where the sites are 
equivalent with the blocks. The entries in the table are the observations, and it is 
assumed that the variance/covariance matrix of these observations is diagonal. So 
it is assumed that the observations are uncorrelated. For observations from different 
sites this is true, but for observations (read : variety value estimates) from the same 
site this is only true for orthogonal designs. With orthogonal designs the variety 
contrasts expectation subspace is orthogonal to the block contrasts expectation 

3.2.6 49 



subspace. In the plant breeding practice the designs are almost never orthogonal, 
because of the chosen design itself or because of missing observations. The two 
stage procedure is convenient to work with because the joint observations from 
all sites do not have to be analysed as a whole. If also various years are involved, 
the statistical analysis of the data could be based on a model which includes both 
site and year terms and the interactions of both with variety. However, for 
convenience sake often the variety x site table for each year is analysed and a new 
variety x year table is produced and analysed (Silvey, 1978). 

In the plant breeding practice the sites are often chosen in a strictly 
non-random way in order to reflect differences in soil type, climate conditions, 
etc.. As a result, the variability between sites is large. Therefore it is often assumed 
that the ratio C^/G2 approaches infinity. The variance/covariance matrix of the 
observations in case of random site terms and interaction terms is equal to 

D[Y] = ZZ'G£ + I„<& + i y = Vo2, 

withV = ZZ'-f+I„ 
er or 

Z is the design matrix of the "blocks", here equivalent with the sites. Now the 
inverse of the matrix V can be written as 

( . i f _2 _2 V I A 

vl = 
c2 

ÖTT. + C2 I 
a2 

V OTL + G1 

Z'Z 
a2 o2 

OTX + O2 Ö£ * 
Z' 

If a 2 /^ is neglectable with respect to (^/(o^ + a2), then V x simplifies to 

( ( - 2 V i ^ 

V' = 
a2 

OTT. + 0 2 
I -

a2 

V 
a^ + a2 Z'Z 

a2 

OjT + O2 
Z' 

Grr. + G1 

But then (X'V'xyX'V1 Y is equal to (X'RZX)_X'RZY. Thus then the variety x site 
table also could have been analysed with the fixed additive model. Notice that this 
is the case if the ratio (o2-̂  + G2)/^ approaches zero. Then both ratios d^/cl and 
c 2 / ^ have to approach zero. So it is not sufficient if the site variance is much 
larger than the interaction variance, as stated in Patterson & Silvey (1980). In the 
plant breeding practice the differences between the sites often provide little 
information on contrasts between variety values, and therefore the fixed model is 
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mostly used. The least squares procedure on incomplete data sets was first applied 
by Yates (1933), using his fitting constants technique. An (at first sight) attractive 
option is to calculate weighted least squares estimates. The weights can then be 
chosen inversely proportional to the estimated error variance of the trial. Then 
experiments which are precise have a greater weight than experiments with a 
relatively large error variance. However, it is advised (Dyke, 1988) not to use 
weighted estimates with estimated weights, because (1) the weights themselves 
are estimates and therefore subject to sampling error, (2) there may be a correlation 
between the intrinsic variability of a site and its responsiveness to one of the 
varieties. This may lead to biased estimates of the variety values (Patterson & 
Silvey, 1980). 

In the previous sections of this chapter we have shown that it is possible to 
obtain the best estimators of contrasts between variety values without analysing 
the joint observations of all sites as a whole. The analysis can be done in stages. 
But unlike the traditional analyses, we use the correct variance/covariance matrix 
of the observations. In the plant breeding practice, where the differences between 
varieties are only small, use of the best estimator is very important. We will give 
a short review of the results obtained in the preceding sections. 

The first stage is to analyse the individual trials at the various sites, using a 
fixed additive model or a mixed additive model. For each site best estimators for 
contrasts between variety parameters can be determined. The second stage depends 
on the type of model used for the joint observations of the experiments. In case of 
an interaction model with fixed site terms, the BLUE of a contrast between variety 
values appears to be a univariately weighted average of the estimators from the 
separate sites, the weights given by the definition of a variety value in the presence 
of interaction. This definition has to be given by the breeder. If the sites are of 
equal importance to the plant breeder, equal weights \lm will be chosen. However, 
if the variety x site table is incomplete, not all contrasts between variety values 
can be estimated. Since incomplete variety x site tables are almost inevitable in 
the plant breeding practice, we often cannot use an interaction model with fixed 
site terms. 

For all other models the BLUE of a contrast between variety parameters (or 
variety values) in general appears to be a multivariately weighted average of 
estimators from the separate sites. Depending on the model used the latter 
estimators correspond to a fixed additive model or a mixed additive model with 
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random block terms for the observations at the separate sites. The weight matrices 
Wk(k = l,...,m) can be calculated with information from the individual trials at 
the various sites. Hence it is not necessary to analyse the experiment including 
varieties, blocks within sites and sites as a whole. There are situations when the 
multivariate weights reduce to univariate weights. In that case the BLUE of a 
contrast between variety parameters is a univariate weighted average of the 
estimators from the separate sites, the weights determined by the variance of the 
latter estimators. Univariate weights wk (k = 1,...,m) can be used for the BLUE 
of a specific contrast p'x if and only if p is a common eigenvector of all W'*, with 
corresponding eigenvalue wk. 

For the fixed additive model we have shown that if the BLUEs of all contrasts 
between variety parameters have to be a univariately weighted average of the 
estimators from the separate sites, then the Ck matrices have to be proportional to 
each other. If all the trials at the various sites are variance-balanced, this is the 
case. The Ck matrices are also proportional (read : identical) if the trials at the 
various sites have identical designs. Then the univariate weights are equal to Mm. 

If we compare the BLUE of a contrast between variety values in the interaction 
model with fixed site terms and all other models, we notice that in the latter models 
an estimator at a certain site with a small variance (e.g. caused by a large number 
of replications at a certain site) receives a larger weight than such an estimator 
with a large variance. This is not the case in the interaction model with fixed site 
terms, where the weights are determined by the definition of a variety value in the 
presence of interaction. This definition should not be based on variances of 
estimators at the individual sites. 

3.3 Combining subtrials that are connected by control varieties 
only 

In this section we return to the estimation of contrasts between variety 
parameters from the observations at a single site and year. As described in chapter 
2, the trials in the sugar beet breeding practice often have a specific structure at 
one site. The set of new varieties is subdivided into disjunct subsets and the varieties 
belonging to a certain subset are tested in a separate trial. To connect all trials with 
each other, a small number of control varieties is included in each trial. We will 
further describe the design of the experiment in 3.3.1, together with the standard 
analyses, using a fixed additive model. Because often the number of varieties to 
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be tested is very large, it would be convenient if the BLUEs of contrasts between 

variety parameters could be determined from the analyses of the separate trials. 

That this is possible is described in 3.3.2. There are situations where the estimators 

of specific contrasts between variety parameters, calculated at a separate trial, are 

identical to the estimators from the whole experiment. In 3.3.3 it is described for 

which designs of the trials this is the case. Examples illustrating the presented 

theory are given in 3.3.4. In 3.3.5 we will briefly discuss the situation where the 

chosen model is not completely fixed, but where block terms are subdivided into 

fixed replication terms and random blocks terms within each replication. This 

situation can e.g. occur when the separate trials have resolvable designs. 

3.3.1 Design of a concatenated trial and its traditional analysis 

Suppose t new varieties have to be tested. These varieties are divided over 
m <t trials, where tk (k = l,...,m) new varieties are included in trial k (with 
£ tk = t). Additionally, the same c control varieties are included in each trial. By 
including these control varieties the trials become connected, so it is possible to 
analyse the m trials as one large incomplete block experiment. This large trial is 
a concatenation of trials and therefore this type of trial will be denoted by 
'concatenated trial'. To distinguish the separate trials from the concatenated trial 
we will denote these by 'subtrials'. The subtrials, with tk + c varieties, may have 
any design. In practice we often encounter the following easy going method of 
analysis : the subtrials are analysed separately and the least squares estimates of 
the variety values are ranked. The estimates of the values of the new varieties are 
expressed relatively to the estimate of the average value of the control varieties 
(in the separate subtrial), in order to take account of the different fertility levels 
of the subtrials. 

It would be better to analyse the m subtrials as one large incomplete blocks 
experiment. Of course the variances of the estimators of contrasts between variety 
parameters will differ notably, but all comparisons between varieties can be made. 
This is important if we want to use statistical selection methods to make a selection. 
As mentioned before the variety parameters themselves are not uniquely estimable, 
but for ranking and selection purposes the estimation of contrasts between the 
variety parameters is sufficient. We will concentrate on the estimation of the 
contrast between the parameter of a new variety and the average of the parameters 
corresponding to the control varieties. This contrast is specifically informative 
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because a plant breeder also wants to know whether a new variety is better than 
the average of the control varieties. 

The concatenated trials found in the plant breeding practice are far too large 
to be used as an example. We will describe an introductory example of a 
concatenated trial. Assume a concatenated trial with m = 3 subtrials and c = 2 

control varieties. Subtrial 1 has a randomised complete block design with 2 
complete blocks and 4 varieties (^ + c = 2 + 2 = 4) per block. The second subtrial 
has 4 varieties (t2+c - 2 + 2 = 4) in a balanced 2x2 lattice design, so this design 
has 6 incomplete blocks each containing 2 varieties. There are 3 replications per 
variety. The third subtrial has 9 varieties (t3 + c = 1 + 2 = 9) in a partially balanced 
3x3 lattice design with 2 replications. Consequently, there are 6 incomplete blocks 
each containing 3 varieties. In all three subtrials varieties 1 and 2 are the control 
varieties, and the three subtrials are connected by these 2 control varieties only. 
The schematical presentation of this concatenated trial is : 

subtrial 1 subtrial 2 subtrial 3 

variety block : 3 4 5 6 7 8 9 10 11 12 13 14 
control 1 
control 2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

If we want to analyse the subtrials as one large experiment with incomplete blocks, 

we can use a model for the observations that is analogous to model (3.1) : 

YUk = X+xi + ̂ J+Eijk, i = l,...,t + c, j = l,..,b, k = l,...,nu. 

Now we have t + c varieties, with variety parameters x(. The X, ß7 and the Eijk are 
defined as in (3.1). To calculate estimates of contrasts between variety parameters 
we could make use of the reduced normal equations as described in 3.1. In matrix 
notation, the contrast between the parameter of a new variety and the average of 
the parameters of the control varieties will in the sequel be denoted by b'x. Thus 
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the BLUE of b'x is equal to b'CTQ. Often hundreds of varieties are included in a 
concatenated trial. This means that the calculation of a pseudo-inverse of C can 
become troublesome, especially when the calculation is done on a personal 
computer. To avoid these problems, we could estimate the contrast b'x only from 
the subtrial in which the new variety is included. This method results in an estimator 
of this contrast that is unbiased, but in general does not have minimum variance. 
We will denote this type of estimator by 'local estimator' and its outcome by 'local 
estimate'. 

A different approach used to analyse large incomplete block trials is to 
calculate the estimates of the parameters by an iterative method described by 
Kuiper (1952,1983) and later elaborated by Corsten (1967,1976). These estimates 
have the restriction that 2 n, .x, = 0, with nt. = X, n,-,- (see also the Remark in 3.1.1). 

In practice the method is very simple; one subtraction and repeated weighted 
averaging are the only operations to be carried out. Let R = R1/2R1/2, with R the 
replication matrix of the reduced normal equations. Then the solution of the 
reduced normal equations can also be written as 

x = R'1/2(I(+c - R~Iy2NK~1N/R"1/2)"R"1/2(T - NK_1B) 

= R-1/2(I,+C-S)TT1/2Q. 

The pseudo-inverse of (I t +C-S) can be calculated as the sum of an infinite 
geometric progression : (I,+C-S)~ = I(+C + S + S2+... , with the terms of the 
progression converging to zero. For connected designs it can be shown that S has 
one eigenvalue equal to 1 and that all other eigenvalues are less than 1, in absolute 
value. The convergence speed depends on the second largest eigenvalue, which is 
the largest eigenvalue less than one, of S. If this eigenvalue is close to one, the 
convergence speed will be slow. An eigenvalue close to one indicates that the 
design is very inorthogonal. The concatenated designs in the plant breeding 
practice are indeed very inorthogonal, because they are connected by control 
varieties only. Consider an experimental design that is a concatenation of two triple 
and two quadruple 5x5 lattices. The lattices are connected with each other by c 

control varieties. For c = 1,2 and 3 the eigenvalues of S were calculated. The three 
largest eigenvalues, less than one, are 
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c = 1 : 0.9681, 0.9333, 0.8950. 
c = 2 : 0.9677, 0.9328, 0.8942. 
c = 3 : 0.9673, 0.9320, 0.8933. 
A concatenated design with only one control variety is more inorthogonal than a 

concatenated design with two or three control varieties, which results in larger 

eigenvalues. The largest eigenvalues (less than one) lie close to one, so the iterative 

calculation of the parameter estimates for concatenated trials is not very 

satisfactory. The size of the experiment does not cause any trouble here, but because 

of the inorthogonality of the design a large number of iterations would be necessary 

to calculate the estimates. 

3.3.2 Combining the estimators from the separate subtrials 

In practice the analysis of the joint observations of all the subtrials in one step 

is not convenient. Therefore we will describe a two stage procedure to obtain the 

BLUEs of b'x. The first step in this two stage procedure is to calculate a solution 

of the normal equations at each individual subtrial. In the second stage these results 

are combined to calculate the best estimates. 

First we will focus on a single subtrial, hence for the time being we will not 

use the subscript k to denote the subtrial. The calculation of a solution of the normal 

equations has already been explained in 3.1. For later use we will now give a 

different way of calculating a solution. The vector x with variety parameters at a 

single subtrial is subdivided into two vectors, namely vector a with c control 

variety parameters and vector y with t new variety parameters. Let G be the design 

matrix associated with the control varieties, which appear at every subtrial. The 

rank of G is equal to c. Let L be the design matrix associated with the local new 

varieties, which only appear at the subtrial we focus on. The rank of L is equal to 

t. As in 3.1, let Z be the design matrix of the blocks and let ß be the vector of block 

parameters. The additive model for the n, say, observations at a single subtrial can 

now be written as 

£[Y] = 1„Ä,+Ga+LY+Zß 

= RzGoc+PzGoc+RzLy+ PzLy+ Z(ß + lbX), 

with P z = Z(Z'Z)_1Z' ; Rz = I„ - P 
z ' 
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E [Y] = RzGa + RzLy+ Z{(Z'Z)"1Z'Ga+(Z'ZyïZ'Ly+ ß + lbX} 

= RzGa + RzLy+Zß* 

= PL/zRzGa+RL/zRzGa + RZLY+ Zß*, 

with L/Z = RZL , PL/Z = RZL(L'RZL)1L'RZ and RL/Z = I„ - PL/Z , 

= RL/zRzGa + RzL{y+ (LRzL)1L'RzGa} + Zß* 

= R^RxGa+RZLY* + Zß*. (3.22) 

Because of the orthogonalisation in (3.22), the normal equations are very simple: 

o V a ) TG'R^R, ,^ G'RZRL/ZRZG 

0 

0 

0 

LRZL 

0 

0 
Z'Z 

Y 

vß'y 

*Z"L/Z J 

L'RZY 

Z'Y 
With these normal equations a solution of ä and y can be calculated as 

à = (G'RZRL/ZRZG)G'RZRL/ZY , (3.23) 

Y=(L'RZL)L'RZY, 

Y = (L'RzLf'L'RzY - (VRILf'l'L'RzGà . 

The desired contrast b'x, denoted here by p'ot + q'Y, can now be estimated as 
p 'â + qY Notice that p 'a and q'Y themselves are not contrasts of parameters. 

The C matrix of the subtrial (corresponding to the reduced normal equations) 
can be written as 

C = 
G R7G G R7L ] f Cjj Cj2 

Li R Z G LI R Z L / C 
^ 2 1 

"22 J 

So G'RZRL/ZRZG can be calculated as 

G RzR|j/zRzG = G RZG •— G RZL(L/ RZL) iu RZG 

- i - i / = C -C c c 
M l ^12^22^21 • 

The inverse of L'RZL = C22 exists, because C22 is non-singular. This can be seen 
as follows. If C22 was singular, there would exist a vector d, other than the null 
vector, for which C22d = 0 is true. But then, since C22 - (0 I,)C(0 I,)' and C is 
non-negative definite, C(0 Ir)'d = 0 must also be true. Because we are dealing 
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with connected designs, (0 I,)'d must then be a multiple of the unity vector, which 

is clearly not possible for d ^ 0. We will now show that CRzR^RzG is a singular, 

doubly-centred matrix analogous to C. If singularities exist there is a vector d, 

other than the null vector, for which (Cn - C12C22C21)d = 0 is true. Then 

V^21 

C ^ 
M2 
'22J ' ^22^21 G J 

C„d 

vC 2 1d • 

A design with incomplete blocks is connected if and only if the rank of C is i + c - 1 
(Dey, 1986). This means that, because Cl,+C = 0, there exists no other vector d 
( d*a l ( + e , a e 10 for which Cd = 0 is true. Hence, because the C matrix 
corresponds to a connected design, 

.' d ^ 

^ _ ^ 2 2*^21 " y 

must be a multiple of the unity vector. Hence d itself is also a multiple of lc. If d 

is a multiple of lc, say dlc, then 

(C l l - CUC22C2\)dlc = d ( C „ l c + C1 2 l () = 0 , 

because with a connected design C21lc + C221, = 0 and therefore 1, = -C22C211C. 
Hence the matrix G'RZRL/ZRZG has rank c - 1 and the only singularity is 
G'RZRL/ZRZG1C = 0. 

We now will describe the estimation of b'x from the joint observations of the 
m subtrials, without analysing the concatenated trial as a whole. We use the 
subscript k to indicate the subtrial. The vector of control variety parameters is 
identical for all subtrials. The vectors of parameters for new varieties are different 
at all subtrials, just as the vectors of block parameters. We can write the usual 
linear model for the joint observations of the m subtrials (thus for the concatenated 
trial as a whole) as 

(M \ 

Y 

R L , / Z , R Z , G I 

R L J / Z 2
R Z 2

G 2 

R L„ /Z R Z m
G » , , 

m m m J 

0C + 

R7L. 
£,, 1 

-0-

-0-

R Z 2
L 2 

Yi 
* 

Ï2 

K-7 L(M 
L_ m 

. im 

Z, -0-

z 2 

-o- zm 

(3.24) 

v&j 

The normal equations then read 
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ZG'tRz.Kivx.HzG* 

L'iRzLi 

v&> ' 
Yi 

V*RZ.JJm 

Z'iZi 

-0- Z' z .K.J Z'_Y_ 

A solution of the normal equations for a and yk (k = 1,..., m ) can be calculated as 

f m v 

2 G ' * R Z RL4/Z
 R Z G * ^ G * R 7 R i n * k 

k = \ k k k 

^ î j ^ V W ^ J G',Rz Rvz Rz G,«, =^W,â, , 

y;=(LALtrL'tRzYt,i 

i = {VkRzLkyVkRzYk - {VkRzLkyVkRzGkà 

= Yk + {V*RzSYK*zGk(àk-à). 

(3.25) 

So a solution for the least squares estimates of the control variety parameters can 

be calculated as a multivariately weighted average of the hk from the separate 

subtrials. The weight matrices 

W * = A G * R Z RLt/Z
 RZ G * G * R Z RLt/Z

 RZ G * 
. Jt = 1 "k ^kl£jk "k ^k ^kltJk "k 

can be calculated with the use of the ordinary C matrices from the separate subtrials, 

because 

G *RZ t
RL t /Z t

RZ t
G* = *^ll t

 _ ^12,^22t^21t • 

Analogous to the weight matrices in 3.2.2, the weights matrices in this section also 
have the property that Z Wt = I c - ( l /c) l c l ' c . Because G ' ^ R ^ R L ^ R ^ G ^ is a 
doubly-centred matrix, W t l c = 0. The estimate of the contrast between the 
parameter of a new variety in subtrial k (k = l,...,m) and the average of the 
parameters of the control varieties can be calculated as p'â+q'%. 

The pseudo-variance/covariance matrix of (â yk)' can be calculated as 

3.3.2 59 



D 
f A V i 

IA'*/J 

Because 

' a * 

E G tRT R. ;7 R7 G, 
>t = i 

* z* L*/z* z* * O 

L tR7 L t '* z* * ; y 

a2 . 

Y* V ' V 

oV^ 

V 
L '*RzL*îlAR.G, I, ' t " - z t

V J * */ VV 

the pseudo-variance/covariance matrix of (a yk)' can be calculated as 

a rYAYi fD D ̂  
D 

with 

V, 21 " 2 2 , / 

A 
Dn - Z G' tRz RL „ Rz G 

k = \ 'k ^k'^k "k 

m ( -1 
Z C n — V-i2.*-'22t̂ '21 

k = \ 

( 

•k " t A 1 * 

D12 = 2 G ' * R Z t
R i yZ< R Z t

G * 
\k = \ 

k = 1 
— ~ Z *̂ 1K ^12^22.^21 t "'t " t 

G ^ L J L ' ^ L ^ 1 

^-21^22^ ' 

D =D' 
" 2 1 " 12 ' 

D22 = (L^R zL t)- t ;R z G / 2 G ; R Z R v z Rz G,TG;RzL t(L' tRzL,)-1
 + (L;RzL,)-1 

= c_1 c 
m ( -1 
E I *"llt

 —^12^22^21, ^ 2 1 ^ 2 2 ^ * ^ 2 2 1 -

Analogous to the situation in 3.2.2, the multivariate weights will reduce to 

univariate weights if all G ' ^ R ^ R L ^ R ^ G J . matrices are proportional to each other. 

In that case the weights can be calculated very easily in the same way as described 

in section 3.2.2. Matrix G'^R^R^^R^G^ is a symmetric matrix for which 

G'icRzjtRu/zjiRziçG/çlç = 0 must be true. Therefore, in case of two control varieties 

this matrix must be of the following form : 
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Consequently, when there are two control varieties the weights are univariate and 

can be calculated as 

wk 

k = \ 

or, using the well known variance criterion, as 

[varÇc^)]-1 , 
wk=- , w i thc=( l - 1 ) . 

S [varCc'â,)]"1 

k = \ 

Besides estimation of b't also the estimation of the error variance o2 is 
important. In general the SSE of the concatenated trial is not equal to the sum of 
the error sums of squares from the individual subtrials. Similarly the degrees of 
freedom for error corresponding to the concatenated trial cannot be calculated in 
general by summation of the separate degrees of freedom for error from the 
subtrials. If we have m subtrials with c control varieties then (m - 1 ) (c - 1 ) degrees 
of freedom corresponding to the between control varieties sum of squares in the 
separate subtrials correspond to the SSE of the concatenated trial. So dfe in the 
concatenated trial is equal to dfe = n - T*tk - c - Ybk + 1. When there is only one 
control variety, there is no between control varieties sum of squares and the dfe 

for the concatenated trial can be calculated by summation of the df/s from the 
subtrials. The vector of residuals corresponding to subtrial k(k = l,...,m) can be 
calculated by subtracting the fitted values of Yk from Yk itself : 

K = Y* - R v z Rz GtÄ - Rz Lkjk - ZtK 

= Yt - RLklz R z G t o - Rz L,(L'*Rz L ^ L ' ^ Yk - Z t (Z '^ fZ ' \Y \ 

= RL4/Z,RZt(
Yi - G *°0 • 

Now the error sum of squares can be calculated as SSE = S Ê'kÊk. The error variance 
can then be estimated by SSE/dfe. The above steps can be carried out per subtrial, 
so the error variance can be estimated by analysis of the subtrials only. 

The type of experiment studied in this section can be compared with the 
situation of variety trials at different sites, when some varieties are only grown at 
one site, because of their local importance. Then the local estimate can be improved 
by using information about the other variety parameters at other sites. 
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= (p '-q'C22C21 

3.3.3 When is the local estimator equal to the BLUE ? 

The contrast between the parameter of a new variety at subtrial k and the 

average of the parameters of the control varieties was denoted by p'ot+q'y. This 

contrast can be estimated from the observations of subtrial k as p'ä* + q'yj.. From 

the concatenated trial as a whole the desired contrast can be estimated as p'â+q'y*. 

The difference between these two estimates can be calculated as 

p ' fo - â) + q'(Yt - yk) = p '(â t - â) - q'(L'*Rz L*)-,L'tRz Qk{hk - 6c) 

= (p' - q'(L ' .Rz L .^L ' .R, G4) (Ó* - à) 

[lc-Wk]àk- l Wjà). 

Thus the outcome of the BLUE of p'a+q'y* can be calculated as 
p'ä* + q'y* - (p' - q'(L'tRZtLit)"

1L^RZtGitJ (ôĉ  - â). We know that the expectation 
of the difference between the local estimator and the best estimator is zero, because 
both estimators are unbiased. We also know that E Wk = Ic - ( l /c)lcl 'e . Hence 

(p' -q'C£ C2 1J^ - £ Wyy = I(p' -q'C"l C21 J lcl 'ca = 0 , 

p' l e-q 'C-2C2 l 4 l c = 0 . 

Hence (p' - q'C22,C21()a represents a contrast between control variety parameters. 

Because W,lc = 0, (p' - q'C22 C21 J w ; (/ * j) and (p' - q'C22 C21J (Ic - Wt) also 

denote a contrast. Further we notice that (1/c) ( p ' - q 'C^C^ J l c l ' c = 0'. So we can 

conclude that the difference between the local estimator and the best estimator 

represents a contrast of contrasts between control variety parameters estimated at 

each subtrial. 

If the difference between the local estimator and the best estimator is zero, 

then the local estimator is already the BLUE. We will show that the condition for 

equality of the two estimates is : 

cov(c'â„p'â, + q,yfc) = 0 , 

for all pairwise contrasts c'ocA. It is known that if an estimator T is BLU, then 
cov(7\z) = 0 for all z, where z is a function with expectation equal to zero (Rao, 
1973). Hence if the local estimator is the BLUE, 
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cov(p'ô\ + q'Y„ d'(ô\ - â)) = 0 , 

covCp'à, + q% d'(Ic - Wt)ôfc) = 0 , 

for all d with d'lc = 0. Now d'(Ic - Wk) is a contrast, and may be denoted by c'. 

Hence cov(p'ät + q'yj., c'äk) = 0 for each c for which there exists a d such that 

c = (Ic - W'jt)d. Such a d exists for every c, namely d = (L - Wky
lc. Because the 

eigenvalues of W t are less than 1, all the eigenvalues of (Ic - W'k) are larger than 

zero. So ( I c -W' t ) is non-singular and the inverse exists. Now suppose that 

cov(p'ó\ + q'%, c'a*) = 0 for all c with c'lc = 0. Then the variance of the BLUE 

reduces to : 

var(p'o\ + q'y,) + var(d'(o\ - â ) ) , 

with d'lc = 0. The minimum of this variance is reached when d = 0, and in that 

case the BLUE is equal to the local estimator. 

In practice the number of control varieties is rarely larger than 3. Using a 
different approach than described above, we will again study the necessary 
conditions for which the local estimator is equal to the BLUE, with c = 1, 2 or 3. 
If we want to analyse the concatenated trial, we could use the reduced normal 
equations : Cx = Q. For a connected design we know that l'vQ = l'vCx = 0, with 
v the number of varieties. Q can be written as Q = MY, hence l'vMY = 0 V Y; 
hence M'lv = 0, so the rank of M has to be smaller than or equal to v - 1. But if 
the rank of M is smaller than v - 1 , then there would exist a vector d 
( d*a l v , a e 3Q that satisfies M'd = 0. Then d'MY = 0 VY,d'Cx = 0 Vx, hence 
Cd = 0. This is in contradiction with the fact that the rank of C is v - 1. So the rank 
of M has to be v - 1 also. Hence d'Q = 0 only for d = a 1 (a e ^). In other words, 
the only relationship between the elements of Q is that they sum up to zero. 

The estimate of b'x can be calculated from the reduced normal equations as 
b'CTQ. But because l 'Q = 0, the (say) last v - 1 normal equations also generate 
the first equation, hence the v equations are equivalent to the last v - 1 equations. 
Hence all estimable contrasts from the v equations are also estimable and have the 
same solution from the last v - 1 equations. We know that all contrasts are estimable 
from the v equations, so all contrasts are also estimable from the last v - 1 equations. 

The number of reduced normal equations for the concatenated trial is v = c +1, 

the total number of varieties. Let the first c normal equations correspond to the 
control varieties, the next tx equations correspond to the new varieties in the first 
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subtrial, and so on. If we compare equations c + 1 up to and including c+tx with 
the last tx reduced normal equations for the first subtrial alone, we notice that these 
equations are identical. So if we only have one control variety, then the local and 
the best estimates of b'x are equal for any design, because the first normal equation 
can be generated by the last tx. In general we can state that the difference between 
the local estimate and the best estimate of b'x will be zero if the normal equations 
corresponding to the control varieties are not necessary for the estimation of this 
contrast. Because l'vQ = 0 is the only relationship among the elements of Q, this 
is only possible if the first c elements of the b'C" vector are equal to each other. 

Consider a subtrial with two control varieties. Only designs for which the 
first two elements of b'C" are equal result in the equality of the local and the best 
estimate of b'x. Let e, be a null vector with a one in the /th position. Then 
b'C~e1 = b'C~e2 must be true. Let new variety i (i > 2) be the variety of interest, so 
b '= l /2(2e , -e , -e 2 ) .Now 

2b'C"(e1-e2) = 0, 

(e,. - ^ + e. - e2)'C"(e, - e. + e. - e2) = 0 , 

(e,. - e^'Cle, - e,) + (e- - e^'Cle,. - e2) + (e,. - e^'Cle, - e,.) + (e; - e2)'Cle,. - e2) = 0 , 

-(e,. - ei)'C-(e,. - e,) + (ef. - e2)'C"(e, - e2) = 0 , 

-var(x(- - x,) + var(x, - x2) = 0 . 

Here x,, x\ and x2 denote single variety parameters instead of vectors. Hence 
b'C'e! = b'C~e2 if and only if 

var(x, - Xj) = var(x, - x2). (3.26) 

This is the case for randomised complete block designs and balanced incomplete 
block designs. For partially balanced incomplete block designs this is only the case 
if the new variety is both/11 associate with control variety 1 and 7th associate with 
control variety 2. For instance, if the subtrial has a partially balanced incomplete 
block design with 2 association classes 0 and 1, variety / has to appear never with 
a control variety in one block or once with control variety 1 and once with control 
variety 2 for the local estimate and the best estimate to be equal. Notice that the 
other subtrials may have any other design. 
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In case of three control varieties the local estimate is equal to the best estimate 

if and only if the first three elements of b'C" are equal, so 

b'Ce, = b'C e2, b ' C ^ = b'C"e3 and b'C e2 = b'Ce3. 

If we elaborate the above equations (not given here), we arrive at the condition 

that has to be met if the first three elements of b 'C - are to be identical : 

3 var(x, - Xj) + var(x2 - x3) = 

3 var(x, - x2) + var(Xj - x3) = 

3 var(x, - x3) + var(Xj - i j ) . (i > 3) (3.27) 

For subtrials with designs that are variance-balanced, this condition is always met. 
Hence for subtrials with a randomised complete block design or a balanced 
incomplete block design the local estimate of b'x is identical to the best estimate. 
In a partially balanced incomplete block design with h association classes, there 
are h different variances of pairwise contrast estimators. If there are two association 
classes (for instance, a square lattice design), condition (3.27) can only be fulfilled 
when var(X; - Xj) = var(x, - x2) = var(X; - x3) and var(Xj - x2) = varXXj - x3) = 
var(x2 - x3). So the new variety has to be in the same association class with all three 
control varieties, and the control varieties mutually also have to be in the same 
association class. The first and the latter association class do not have to be the 
same. When there are more than two association classes, there theoretically are 
more possibilities to satisfy (3.27). 

For a variance-balanced subtrial k it is known that the pseudo-inverse of the 
C matrix can be written as C~ = 9_1(I - (tk + c)-1H')> with 6 the unique non-zero 
eigenvalue of C (Dey, 1986). From this we see that for any number c of control 
varieties the first c elements of b'C" are equal to each other. So if the variety is 
included in a subtrial with a variance-balanced design, the local estimate of b'x is 
identical to the best estimate, regardless of the number of control varieties. 

3.3.4 Examples 

We will discuss three examples. For each example the incidence scheme is 

given. Notation : CV1 = control variety 1, NV1 = new variety 1, Bl = block 1, 

ST1 = subtrial 1, and so on. For the pseudo-inverses we take Moore-Penrose 

inverses. 
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Example 1. 

ST1 

Bl B2 B3 

ST2 

B4 B5 
CV1 
CV2 
NV1 
NV2 
NV3 
NV4 

1 0 0 
0 1 0 
1 0 1 
0 1 1 

C - 2 

1 
0 

- 1 

0 - 1 0^ 
1 0 - 1 
0 2 - 1 

V 0 - 1 - 1 V 

c2=~ 
2 2 

3 - 1 - 1 - 1 
- 1 3 - 1 - 1 
- 1 - 1 3 - 1 
- 1 - 1 - 1 3 

Suppose we want to estimate the contrast between the parameter of new variety 
NV1 and the average of the parameters of the two control varieties CV1 and CV2. 
Then this contrast is first estimated at subtrial 1, because NV1 is included in that 
subtrial. The contrast is estimated with use of the reduced normal equations : 

(-1/2 -1/2 1 0)(6Y T / ) '= (-1/2 -1/2 1 0)C7Q!. 

This estimate can be improved by subtracting from this local estimate : 

P'-q'C^CaJfà-â), 

where â = X Wkäk, 
k = \ 

with W t = 
m ( - l 
£ Ml.. ~ M2,.M2,.Mu, 

k = \ 
c - c c_1 c 
M l t M2 tM2 tMl 

/ 

c - c c c =-
Ml , M2,M2,Ml, /-

c - c c_1 c = 
M i , M2,M2,Mi, 

1 - 1 

V 

i 2 ü j i i 2 

-.-1 

v - l 

' 1 

V 

W'=l4 

1 1 w =— 
™2 14 

- 1 

6 - 6 
- 6 

p ' -q /C2 1C 2 1J (â 1 -a ) = (l/7 -1 /7)^-(1/7 -1/7)5^. 

Notice that in subtrial 2 only a contrast between the control varieties has to be 
estimated, and that the improvement is a contrast of two contrasts between control 
variety parameters. 
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Example 2. 

ST1 ST2 ST3 
Bl 

CVl 1 
CV2 0 
CV3 1 
NVl 1 
NV2 1 
NV3 
NV4 
NV5 
NV6 

( 9 

C l 6 

V 

c s=i 
3 12 

0 

- 3 

- 3 -

- 3 -

f 8 
- 4 

0 

- 4 

k o 

B2 

0 
1 
0 
1 
1 

0 

4 

0 

-2 

-2 

- 4 

17 

- 3 

- 7 

- 3 

B3 

1 
0 
1 
1 
1 

- 3 

0 

9 

- 3 

- 3 

0 

- 3 

9 

- 3 

- 3 

B4 

0 
1 
0 

1 
1 

- 3 -

- 2 -

- 3 -

13 -

- 5 

- 4 

- 7 

- 3 

17 

- 3 

B5 B6 

"31 
-2 

-3 

-5 

C 

- 3 

- 3 

- 3 

9 

1 0 
0 1 
1 0 

1 1 
1 1 

c = 

> 

1 

12 

B7 

1 
1 
0 

1 
0 

f 9 
0 

- 3 

- 3 

1 - 3 

B8 

0 
1 
1 

1 
1 

0 

16 

0 

- 8 

- 8 

- 3 

0 

9 

- 3 

- 3 

- 3 

- 8 

- 3 

25 
- 1 1 

- 3 

- 8 

- 3 

- 1 1 

25 

Suppose we want to estimate the contrast between the parameter of new variety 

NVl and the average of the parameters of the three control varieties CVl, CV2 

and CV3. First, this contrast is locally estimated in subtrial 1. Next this local 

estimate can be improved. 

C - C C"1 c = -
f 9 - 2 - 7 Ï 

r _ r r~l C - — 
14 

- 2 

f 9 
•4 

•5 

4 
- 2 

-2 

9y 

- 4 
9 

W r 
1 

1914 

f 599 -154 -445^1 
-154 308 -154 

599 

W = 
™2 1914 

-445 -154 
( 349 -176 -\li\ 

-176 352 -176 

( 

c - c c c =— 
M l 3

 v-123
v^223

,-'2l3 J 2 

- 6 
- 1 - 6 

-6 - 1 
12 - 6 

-173 -176 349 

W = 
™3 1914 

V 

328 
-308 
- 20 

•308 -20^ 
616 -308 
308 328 
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[p'-q'C~2iC21J(â1-â) = 0.0316(l -2 1)0,-0.0115(1 -2 1)6^-0.0201(1 -2 1)0,. 

Again the improvement represents a contrast of contrasts between control variety 

parameters estimated at the three subtrials. The contrasts at the various subtrials 

do not have to be of the same type, which is shown by the improvement of the 

local estimator of the contrast between the parameter of new variety NV6 and the 

average of the parameters of the control varieties : 

( p ' - q ' C ^ C a J f o - â ) =(-0.1389 0.1264 0.0125)â,-(-0.0684 0.0459 0.0225)0,-

(-0.0705 0.0804 -0.0099)03. 

Example 3. 

This is the example introduced in 3.3.1. Consider the following observations: 

ST1 
BI B2 

CV1 13.20 14.11 
CV2 15.68 10.53 
NV1 11.00 11.31 
NV2 11.96 12.58 

ST2 

B3 B4 B5 B6 B7 B8 
CV1 10.66 12.85 15.83 
CV2 10.85 14.21 13.10 
NV3 11.41 13.58 13.63 
NV4 11.91 15.56 16.41 

ST3 
B9 BIO B l l B12 B13 B14 

CV1 14.51 14.66 
CV2 15.38 15.50 
NV5 16.10 14.40 
NV6 16.73 14.46 
NV7 10.58 14.28 
NV8 11.28 14.04 
NV9 11.91 15.66 
NV10 12.65 13.93 
NV11 14.06 14.40 

With this small example we are able to calculate the outcome of the BLUE of b'x 

in one step, using the fixed additive model for the joint observations of the three 

subtrials. This can e.g. be done with the SAS package. We will give these outcomes, 

together with the outcomes of the local estimators and the difference between the 

local estimator and the BLUE. 
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variety 
NV1 
NV2 
NV3 
NV4 
NV5 
NV6 
NV7 
NV8 
NV9 

NV10 
NV11 

best estimate 
-2.23 
-1.11 
0.59 
1.01 
0.57 
1.86 

-1.99 
-1.09 
0.25 

-0.93 
0.68 

local estimate 
-2.23 
-1.11 
0.59 
1.01 
0.57 
1.81 

-1.94 
-1.09 
0.20 

-0.88 
0.68 

difference 
0 
0 
0 
0 
0 

-0.05 
0.05 

0 
-0.05 
0.05 

0 

Varieties NV1 and NV2 are present in a subtrial with a randomised complete block 
design, so the local estimate of b'x is also the best estimate. This is also true for 
varieties NV3 and NV4, because they are present in a subtrial with a balanced 
incomplete block design. Varieties NV5 up to and including NV11 are present in 
a subtrial with a partially balanced incomplete block design. Since varieties NV5, 
NV8 and NV11 are in the same association class with both control varieties (they 
occur once with control 1 and once with control 2 in the same block or they occur 
never with control 1 and never with control 2 in the same block), we know that 
for these varieties the local estimate of b'x is equal to the best estimate. For the 
remaining varieties the local estimate is not equal to the best estimate. The 
difference between these two estimates can be calculated from the separate 
analyses of the subtrials, as described in this section. The W* matrices are : 

1 " M W = ^ -
1 1 ' 3 22 

f 1 

v - 1 \) 

For variety NV6, for example, the difference can be calculated as 

P' - q 'C^cJ (03 - à) = (p' - q'C"! C21J ([Ic - wjà, - w ^ - wA) 

= (1/11 -1/11)03-(1/22 -1/22)0,-(1/22 -1/22)0^ 

= -0.05. 

This difference can be used to improve the local estimate to the BLUE. 

3.3.5 Using a mixed model 

In the previous sections all the block terms in the model were considered 
fixed. Now consider the situation where the subtrials have resolvable designs, for 
instance lattice designs. Then one could introduce fixed terms for the replications, 
but further assume that the blocks within each replication form a random sample. 
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The corresponding model is (3.7). If we use this model, similar results as in 3.3.2 

are obtained. Let M* be the design matrix corresponding to the replications at 
subtrial k and let p* denote the vector of replication parameters at subtrial k. With 
the current mixed model the variance/covariance matrix of the observations at 
subtrial k is equal to D[YJ = (ZkZ'ka

2
B/a1 + l)a1= V^o2. Using the well known 

Aitken transformation, the formulae given in 3.3.2 to calculate solutions of the 
parameter estimators and pseudo-variance/covariance matrix can be made valid 
for the current model. Let matrix Uk be defined by l^U* = V^1. This is possible 
because \k is a positive definite matrix. Then in the given formulae G* has to be 
replaced by l^G*, Lk has to be replaced by U*Lt, Zk has to be replaced by \]kMk, 

ß,(. has to be replaced by p* and Yk has to be replaced by U^Y*. So also with a model 
with fixed replication terms and random blocks within replication terms, the best 
estimator of the desired contrasts between variety parameters can be determined 
in steps. 
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CHAPTER 4 

Selection of varieties 

The main reason why variety trials are performed is to evaluate the varieties 
and to make a selection. For the time being we assume that there is a single 
quantitative character on the basis of which the selection is made. We assume that 
varieties with a high variety value are desired. Thence, after the analysis of the 
experiment the plant breeder selects varieties which have a high estimated value. 
Although the variety value is estimable in an experiment with a connected design, 
it is often more easy to make the selection on the basis of contrasts between variety 
parameters. Except for the case of a model including fixed interaction terms, this 
is possible because contrasts between variety parameters are equal to the 
corresponding contrasts between variety values. To rank the varieties we could 
estimate the pairwise contrasts between the variety parameter of variety i 

(i -l,...,t-l) and variety t. These estimates are equal to the solution of the 
reduced normal equations under the restriction that the parameter corresponding 
to variety t is equal to zero. However, contrasts between variety parameters can 
only be estimated, hence we are never absolutely sure what the true values are. 
This means that the variety with the largest estimated variety value is not 
necessarily also the variety with the largest true variety value. Plant breeders have 
perceived this and therefore select more than one variety, which are then often 
tested further in other years and/or at other sites. However, the number of selected 
varieties is often not determined on the basis of statistical motives, but by the 
prespecified selection programme itself. 

Statistics richly provides the plant breeder with theory to analyse field trials. 
It gives techniques to determine the best estimators of contrasts between variety 
parameters and the distribution of these estimators. However, the classical 
approach to test the null-hypothesis that all variety parameters are equal (the 
so-called homogeneity test) is of no use in the plant breeding practice. The breeder 
takes the line that the varieties differ from each other, and if the null-hypothesis 
cannot be rejected this only indicates that the experimental error was too large for 
the differences to be detected. The multiple comparisons techniques give more 
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information than the homogeneity test, but they are not designed for selection 
purposes. The plant breeder is not really interested in all possible comparisons, 
but more specifically in comparisons between the variety of interest and the other 
varieties. Statistical selection procedures are restricted to this kind of comparisons 
and are therefore better suited for selection problems. Statistical selection 
procedures are developed to aid the experimenter in making selection decisions. 
The procedures advice the plant breeder which varieties to select, when a certain 
criterium has to be satisfied. These selection procedures should not be used in 
order to replace the subjective opinion of the plant breeder, but as a supplement 
to this opinion. 

The most important methods for plant breeding are described in section 4.1. 
However, many selection procedures were not developed for large field trials with 
(unbalanced) incomplete block designs. Because the experiments in the plant 
breeding practice are often of this type, some selection procedures are not directly 
applicable in practice. In section 4.2 new selection procedures are described of 
which some are highly convenient in practical use. A selection procedure consists 
of a selection rule. This rule contains parameters, called selection constants, which 
have to be calculated in advance. When incomplete block designs with many 
varieties are used, the calculation of these selection constants may become very 
troublesome. Therefore we have to use simulation methods to approximate the 
selection constants. This is described in section 4.3, together with the 
approximation of other important statistics by simulation. With computers 
becoming faster and faster, computer simulation becomes an attractive method to 
determine the selection constants in practice. With workable selection rules 
available and the selection constants approximated by simulation, statistical 
selection procedures can now be used in the plant breeding practice. This is further 
described in 4.4. Finally, section 4.5 deals with modifications of the selection 
procedures that are made in order to make statistical selection procedures even 
more useful for the plant breeder. 

4.1 Statistical selection procedures 

We can distinguish two main streams in selection, called Model I selection 
and Model II selection. The difference lies in the assumptions about the variety 
terms in the models. In Model I selection we consider the variety terms fixed. The 
breeder is interested in these varieties included in the experiment. The variety 
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values or contrasts between variety parameters are estimated using one of the 
models described in chapter 3. In these models the variety parameters, denoted by 
x, (/ = 1,..., t), are fixed terms. After the estimation of contrasts between variety 
parameters, a limited number of the tested varieties is selected. To do this in a 
statistical sensible way, statistical selection procedures can be used. 

In Model II selection the variety terms are assumed to be Normally distributed, 
independent random variables with common expectation (0,, say, and common 
variance c£. The varieties included in the experiment are considered a random 
sample from an infinite Normal population with mean \i and standard deviation 
cT. Now the breeder is not interested in these sampled varieties themselves, but in 
the population which they represent. The selection aim is to increase the value of 
the population mean \x by means of selection and recombination. The top-ranking 
varieties are selected and allowed to mate at random. Then the offspring of the 
parents form a random sample from a new population, with expectation \\! > [X. 
The difference between \i' and fj. is called 'Response to Selection' and depends on 
the selection percentage and the heritability in narrow sense, which is the 
proportion of the total variance that is attributable to the selectable effects of genes. 
However, since this situation is totally different from the one studied in this thesis, 
we will not pay attention to it. The interested reader is referred to Falconer (1986) 
or Buhner (1985). 

Nevertheless Model II selection is mentioned because of a different selection 
theory that we categorize as Model II selection, although we also could name it 
Model I selection. In this approach the interest of the plant breeder lies in the 
varieties actually used in the trial. So this corresponds to Model I selection. 
However, now we assume that the variety terms are a random sample from an 
infinite Normal population with mean î and standard deviation cT, as we do in 
Model n selection. The mathematical theory used strongly resembles that of Model 
II selection, and so we classify this approach as such. It must be emphasized that 
no mating takes place in this situation, although we call it Model II selection. 

4.1.1 Model 1 selection 

The literature about statistical selection procedures is very extensive. The 
reader is referred to Gibbons, Olkin & Sobel (1977) [applied] and Gupta & 
Panchapakesan (1979) [theoretical]. For an overview of these selection procedures 
see Van Der Laan & Verdooren (1989). We will concentrate on some procedures 
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which may be of interest in the plant breeding practice. In doing so we will use 
notation that corresponds to the notation used in chapter 3, and present the selection 
procedures in the context of variety selection. The expensive and laborious creation 
of new varieties demands a thoroughly designed selection procedure in the 
selection phase of the breeding process. Inferior varieties should be discarded as 
soon as possible but on the other hand superior varieties should be retained. It is 
very important that the plant breeder knows how well he is selecting. Unfortunately 
this is often not the case since many breeders simply select a prespecified number 
(or percentage) of varieties that gave the best results in the experiment. This 
procedure has led to the following phrase often heard from plant breeders : 'The 
best variety I've made I've probably thrown away'. The Model I statistical selection 
procedures connect a statistical inference to the selection procedure. The two basic 
approaches of statistical selection are the Indifference Zone approach (Bechhofer, 
1954) and the Subset approach (Gupta, 1956, 1965). These two approaches were 
combined in the Multiple Comparisons with the Best approach (Hsu, 1984). 

In Model I selection procedures the variety terms are taken fixed. The theory 
was first developed for experiments with equi-replicated completely randomised 
designs. The model for the observations from such an experiment can be written 
as 

Yij = 'k+xi+Eij, i = \,...,t ; j = l,...,n . 

Here the number of plots (n) with variety / is equal for all varieties. The value of 

variety i is now defined as X+xt. Let the true variety values corresponding to the 

t varieties be ranked (in notation) from the smallest to the largest : 

X+T(1)<X+Tra<...<A.+T(0. 

With the assumption that the Eu are uncorrected random variables with 
expectation zero and common variance a2, the variety value estimates are the 
solution of the normal equations. In an experiment with a completely randomised 
design the best linear unbiased estimator (BLUE) of the value of variety / is the 
unweighted average of the observations corresponding to this variety, denoted by 
Yi. These estimated variety values can now be ranked as 

Y <Y < <Y 
xm-1 m- •••-Im-
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If there are ties between estimated variety values the varieties concerned have to 

be 'ranked' at random. The estimated variety value corresponding to the variety 

with X+x(() is denoted by Y(i). Suppose a breeder is interested in selecting the variety 

with the largest true variety value ^+x(0, called the best variety. 

If only one variety is selected, it is logical to choose the variety with the largest 

estimated variety value, Y[t]. This selection is called correct if the selected variety 

is indeed the best variety. Then a quantitative measure for the correctness of the 

selection is the probability of correct selection, in the sequel denoted by P(CS). 

This probability is equal to 

P(CS) = P^m = Y(f) 

= P(F(0<F(0, i = i,...,t-i) 

_p Y (') ~ ^ ~ X(Q Y(t) - ^ - \t) \t) - T(Q 
I !— <. ,— -f- i— j i i , . . . , r i 

\̂  G/yn o/yn a/yjn J 

Because we do not know the differences x(0 - x(i), it is impossible to calculate the 
probability of correct selection. However, we can give the infimum of this 
probability, but then we have to make some extra assumptions. We now assume 
that the errors Etj are independent random variables with a Normal distribution. 
Furthermore it is first assumed that the variance is known. The estimators 7, are 
independent, hence the P(CS) can now be calculated as 

P(CS) 
f x - x A 

<W« 
MX) dX , (4.1) 

where 0(.) is the Standard Normal cumulative distribution function and (|)(.) is the 
Standard Normal probability density function. The P(CS) lies between lit and 1. 
The value lit is attained if all xw - x(0 are set to zero in (4.1 ). This is the probability 
of correct selection when a variety is randomly selected from the total number tof 

varieties. 

A more useful minimum P(CS) gives the Indifference Zone approach of 
Bechhofer ( 1954). The breeder has to specify a distance measure 5*, which indicates 
the minimum difference between the true value of the best variety and the true 
value of the second best variety that he finds important. Now the parameter space 
is divided into an Indifference Zone, with configurations of parameters where 
x(() - x(( _ 1} < 8', and a Preference Zone, with configurations where x(f) - x(( _,} > 8*. 
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The plant breeder is only interested in making a correct selection if the actual 
configuration of parameters is included in the Preference Zone. Bechhofer (1954) 
showed that the infimum of the P(CS), with the configuration of parameters 
included in the Preference Zone, is reached when all differences x(0 - x(() (/ * t) are 
equal to 8*. This configuration of the parameters is called the Least Favourable 
Configuration (LFC). Then 

P(CS)> fo'_1 'x+^ 
a 

ty(X) dX 

= fo'-1(X+y)(|)(X) dX , withy= 

This minimum value of the probability of correct selection over all configurations 
in the Preference Zone is denoted by P^dCS). 

The aim of the Indifference Zone approach is to calculate the minimal number 
of observations for each variety, necessary to make the statement that the 
probability that the selected variety really is the best one is at least P*, if the 
difference between the best variety parameter and the second best variety parameter 
is larger than 8*. Thus this approach looks at selection from the design point of 
view. The breeder has to specify the desired P * and the critical difference 8*. Then 
the value of y is determined as the solution of P^dCS) = P*. This can easily be 
done by numerical integration. The value of y is tabulated for various values of t 
and P*, e.g. by Gibbons, Olkin & Sobel (1977) and most extensively by Butler & 
Butler (1987). The latter have tabulated the values of y for t = 1(1)400, 410 (10) 
2000 and P* = 0.50, 0.80, 0.90, 0.95, 0.975, 0.99, 0.995, 0.999. The common 
number of observations per variety must then be chosen as (at least) the smallest 
integer satisfying : 

n> 

When the requirements are met, we can state with probability of at least P* that 
the variety parameter of the selected variety lies between x(r) - 8* and x(r). However, 
with a large number t of varieties to be tested the required number of observations 
is often too large. The number of observations in practice is often limited by 
shortage of seed, experimental fields, money, and so on. Therefore the Indifference 
Zone approach can only be useful in a selection phase where only a small number 
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of varieties is tested. 

Consider the following example. Assume there are t = 100 varieties, which 
we want to test in an experiment with a completely randomised design. With 
P* = 0.90, y can be found in Butler & Butler (1987) as y= 3.902021. If we now 
choose 5* = 1G , then n > (3.902021)2 = 15.23, so n = 16. This means that we have 
n.t - 1600 plots in a completely randomised design, which is not feasible. If we 
have only t - 4 varieties, y = 2.451569. If we choose 5* = 1 a, this would lead to a 
minimum number of observations n = 7. With only 4 varieties, 7 observations per 
variety, so a total number of 28 plots, is feasible. 

In the above theory the assumption was first made that the variance is known. 
In the plant breeding practice the variance can only be considered known if the 
number of degrees of freedom for error is very large. If the variance is unknown, 
it is not possible to determine the required number of observations in one step, 
except when the distance 5* is given as a multiple of a. For the situation of unknown 
variance two-stage procedures have been proposed (Bechhofer, Dunnett & Sobel 
1954; Dunnett & Sobel, 1954). However, two-stage procedures are very 
inconvenient to use in the plant breeding practice, because the selection procedure 
may not take too much time. 

The Indifference Zone approach can also be used when the aim is to select 
the k (k > 2) best varieties. Then Ô* corresponds with the difference between x(1 _k+1} 

and X(, _t). The formula of the probability of correct selection differs from the one 
given previously but is not stated here. 

With the Indifference Zone approach a fixed number of varieties is selected. 
A different approach was suggested by Gupta (1956, 1965). Using his approach 
the breeder selects a non-empty subset of random size. Which varieties have to be 
included in the subset is prescribed by a selection rule. This selection rule is 
designed in such a way that the probability that the variety of interest is included 
in the subset is at least P*. Because the number of selected varieties is not 
determined beforehand but is random, it is always possible to find a subset that 
satisfies the P *-requirement. However, the subset size has to be as small as possible. 
Unlike the Indifference Zone approach, it is not necessary to specify a critical 
distance 5*. The Subset approach looks at selection from the analysis point of view. 
Which varieties are of interesthas to be indicated by the plant breeder, by specifying 
the aim of selection. Does he want to select a subset that includes the best variety, 

4.1.1 79 



or a subset that includes at least one good variety (where 'good' has to be further 
specified), or a subset that comprises only good varieties, or perhaps a subset that 
includes all varieties better than a control variety ? The aim of selection indicates 
which type of selection rule we should use. Selection of the best variety enjoys 
most of the attention in literature till now. 

Suppose the interest of the breeder lies in the smallest subset that includes 
the best variety with a certain confidence. The theory was first developed for an 
experiment with a completely randomised design with n observations per variety. 
We assume that the observations are independently Normally distributed with 
common variance a2. First assume that o"2 is known. Gupta (1956,1965) proposed 
the following selection rule : 

Select variety i (i = 1,..., t) if and only if 

Y^YU]—j=a, (4.2) 

with ythe so-called selection constant. Thus on the basis of the experimental results 

the subset is determined. The probability of correct selection can be written as 

P(CS) = P 
(- - Y Ï 
r ( 0 >r [ ( ] - - ^G 

= P y,rt>y(0--£=<*, i = i,...,t-i 
in 

^ 

(0! 

Y(0 ^ X(0 < £(0 ^ T(0 _ T(0 X(0 

X+ r- +Y 
y/V« 

a/V« 

<KX) dX . 

+ y, i = l,...,t-l 

(4.3) 
J) 

Gupta showed that, since x(/) - x(;) > 0, the infimum of this probability is reached 
when all pairwise contrasts x(() - x(0 are taken equal to zero. The configuration 
where all x, are equal to each other is the Least Favourable Configuration for subset 
selection. Hence an absolute minimum of the probability of correct selection over 
all configurations possible is equal to 
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P(CS)> (&-\X+y)§(X)dX 

= Pwc(CS). 

If the breeder wants P * to be e.g. 0.90, then yean be found by solving P^dCS ) = P*. 

These selection constants can e.g. be found in Butler & Butler (1987). 

For the equi-replicated completely randomised design the expected subset 

size can easily be calculated. Consider the random variable Z,, with Z, = 1 if variety 

ƒ is selected and Z, = 0 if variety / is not selected. Then the expected subset size, 

denoted by E{\ S\ ), can be written as 

£(|5|)=i£(Zj) 

X /'(variety i selected) 
< = i 

= 1P 
; = i 

= 1P 
i = i 

Y.>Y{t]--L<5 

i = i J 

( 
no 

7 = 1 

x+- ' 
V Wn +Y $(X) dX . (4.4) 

Notice that we only can calculate the expected subset size for a given configuration 
of the x,. Gupta (1965) proved that the maximum subset size over all possible 
configurations is reached if we calculate E(\S\) for the Least Favourable 
Configuration. So 

E(\S\)<i (&-\X+i)WC)dX 
( = 1 J 

!PU!C(CS) = tPLFC(CS). 
1 = 1 
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If we cannot assume that a2 is known, we replace G in the selection rule by 

s, the root of the mean squared error. For the equi-replicated completely 

randomised design, the number of degrees of freedom for error is equal to t(n - 1). 

Then the infimum of the probability of correct selection can be calculated as 

P(CS) > ƒ ƒ <D'_1(X +yZ)ty(X)qv(Z) dXdZ 

with qv(.) the density of "VXv/v with v degrees of freedom, where %l is a Chi-square 
distributed random variable independent of %, the standard Normal distributed 
variable. It must be understood that although we denote the selection constant in 
both the situation of known variance and unknown variance by y, the values of y 
are different. Some y values have been tabulated in table A.4 of Gibbons, Olkin 
& Sobel (1977). The table entries have to be multiplied by \Z, because the authors 
explicitly include \2 in the selection rule. More y values are tabulated in Bechhofer 
&Dunnett(1988). 

We have assumed that the observations are independent, Normally distributed 
variables with common variance a2. The common variance assumption was also 
used for the estimation techniques described in chapter 3. However, Driessen, Van 
Der Laan & Van Putten (1988) showed, for known variance, that the robustness 
of the selection procedures against heterogeneity of variances is not good, for both 
the Indifference Zone procedure of Bechhofer and the Subset procedure of Gupta. 
If the variances are not equal, the P^dCS) can become smaller than the desired 
P*, especially when many varieties are compared. Nevertheless, in practice we 
have strong reasons to believe that the real configuration of variety parameters is 
not equal to the Least Favourable Configuration. For configurations unequal to 
the Least Favourable Configuration, the probability of correct selection is 
predominantly determined by the distances between the variety parameters, and 
not by the variances. Therefore, in practical situations the robustness of the 
selection procedures will probably be good enough to allow unequal variances. 
This will probably also be the case if the variance is unknown. However, more 
research on this topic seems necessary. The robustness of the selection procedures 
against departures from the Normality assumption is satisfactory (Van Der Laan 
& Van Putten, 1988). 

Unfortunately, the completely randomised design is seldomly used in the 
plant breeding practice. As mentioned in the previous chapters, often used designs 
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are (in)complete block designs. Driessen (1991) extended the theory to this type 

of designs. He used the fixed additive model for the observations from an 

experiment with blocks, given in section 3.1.1 : 

Yp^+ti + fy+Ep, i = l,...,t; j = l,...,b; k = \,...,nij. 

In section 3.1.1 the analysis of an experiment with a connected block design was 

described. The variety parameters x, are not uniquely estimable, but contrasts 

between variety parameters are. We denote the variance of the BLUE of the 

difference between x, and x7 by var(x, -x,) = v^c2. Driessen (1991) proposed the 

following selection rule : 

Select variety i (i = !,...,t) if and only if 

T|.>T7.-8|.viyj, V / * i . (4.5) 

Here 8, is the selection constant for variety i, calculated for a particular P * and the 

experimental design used. Notice that every variety has its own selection constant. 

Although x, is not a unique value, it can still be used in the selection rule. This 

because only differences between variety parameters are important to make the 

selection. So it is not necessary to estimate and use the variety values for selection 

purposes. With the proposed selection rule the probability of correct selection can 

be written as 

P(CS)=P(x(f)>x(i)-%)vmii , V /*f) 

(r....—r..—(r....—r....\ T... — T... \ 
= P 

X(J) X(0 (T(/) T(')) ^ X(0 T0) + b(t), Vj*t . (4.6) 

For the Least Favourable Configuration, i.e. xt = x2 = ... = x„ all x(() - x0) = 0 and 
the P (CS ) is minimal. Because it is not known which variety is the best, the separate 
selection constants 8, are calculated as if variety / (i = 1,..., t) is the best, hence 
8; = 8(r). Thus selection constant 8„ corresponding to a specific minimum 
probability of correct selection P*, is calculated by solving this equation : 

I Xj-Xi-iXj-Xi) \ 

V>jS 
<ô(., \/j*i =p 
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In case of variance-balanced designs, the separate selection constants ô, are equal 
to each other. For the completely randomised design with a common number of 
observations n per variety v,-,- = \ll\n, so 8, = y/"v2. Driessen (1992) proved that 
for an experiment with a partially balanced incomplete block design with two 
association classes, based on the group divisible association scheme or the 
triangular scheme or the L2 Latin square scheme, the selection constants are also 
equal to each other. 

In case the variance is known, s is replaced by G in the above equations and 
selection rule (4.5). Of course the selection constants will differ for both situations. 

Lam (1989) constructed upper as well as lower confidence bounds for x(0 - x(() 

(i ^ t), for the situation of an equi-replicated completely randomised design. The 
lower confidence bounds are of special interest, because with these bounds it is 
possible to calculate a lower bound of the achieved probability of correct selection, 
using the Bechhofer procedure or the Gupta procedure. Consider the constant Ac, 
in the sequel denoted by 'confidence constant', which is the solution of the 
following equation : 

I {0(X + Ac) -<D(X - Ac)} " <j>(X) dX=P 

Lam (1989) proved that in case of known variance o2, simultaneous P* x 100% 
confidence lower bounds of x(r) - x(l) (i ^ t), denoted by L,, are 

( - - A'cA 

L. = max 0, min Yt-Ym —j= 

with S the selected Gupta subset with y=Ac. Now a P* x 100% lower bound of 
the P(CS), denoted by P(CS)L, for the Indifference Zone approach is obtained by 
substituting the x(/) - x(l) in (4.1) by the L,. So with confidence P* x 100% 

P(CS\ -M o 
\] 

x + 
G/V« 

•<|>(X) dX . (4.7) 

For the Subset approach a P* x 100% confidence lower bound of the probability 

of correct selection is analogously obtained as 

p(cs)L = ƒ n o x + +y mx) dx. (4.8) 
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Simultaneous confidence lower bounds of x(() - x(i) were also obtained for the 

situation of unknown variance. Now the confidence constant is the solution of 

ƒƒ {<D(X + AeZ) - 0 (X - AcZ)}'~\(X)qv(Z) dXdZ = P* 
0 -oo 

and o is replaced by s to calculate Lr 

For the Subset approach, Driessen (1991) extended the theory of Lam to 

(in)complete block designs. Consider separate confidence constants A- for each 

variety, for the situation of a common unknown variance. These confidence 

constants are defined by the following equations : 

PiTj-Tj-fyyS <X,-X ; <T7.-X7. + A;v,yS , Vj*i)=P* . 

Driessen ( 1991 ) proved that simultaneous P * x 100% confidence lower bounds of 

\t) ~ x(o 0' * 0 c a n be calculated as 

( ^ 
L, = max 0, min{x - UL} , 

\ JeS J 

with UJ
m the Zth ordered statistic of U{,..., UJ

t, where U{ = x, + A^vßs , I = 1,..., t. 
S is the subset selected with selection rule (4.5) and Ô, = A-. In case of variance-
balanced designs, v,-,- is a common value for all i,j (i ^j), say v, and 
Aj = ... = Â  = Ae, so the calculation of L, simplifies to 

Li = max 0, min x - x,(] - A
ev s . 

\ jeS J 

The probability of correct selection is given by (4.6). We now can replace x(/) - xw 

in this equation by Ly to construct a confidence lower bound of P (CS). However, 
v(00) is in general not a common value for all j * t. It depends on the position of 
the ranked varieties (t) and (J) in the design. Furthermore, 8W has to be known. 
Since we do not know the ranks of the true variety parameters, it is impossible to 
calculate the probability of correct selection. A way out is randomisation, which 
will be described in 4.2. For an experiment with a variance-balanced design all vtj 

and all 5, are equal to each other (v,-,- = v and 5, = ô). In that case the P(CS) can be 
calculated. If the variance is unknown, a Q x 100% confidence upper bound of a 
can be calculated as s/yxl,i _g/v. (Notice the difference between the Roman letter 
v and the Greek letter v.) Then the (P* + Q - 1) x 100% confidence lower bound 
of P (CS) can be calculated as 
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p(cs)L = j j n o X + - ^ ' 1 - 6 / V + 8Z [<|)(X)̂ V(Z) dXdZ . (4.9) 
V 5 ) 

In case of known variance equation (4.8) can be used, with 1/Vn replaced by v 
and the L, as used in (4.9) (Driessen, 1991). 

The above theory is related to selection of the best variety. The subset selection 
rules can however be modified in order to be used for other selection goals. We 
will mention two alternative selection goals : 1) selection of at least one good 
variety, and 2) selection of all varieties sufficiently better than the average of 
control varieties. Although a plant breeder prefers to select the best variety, he is 
often already satisfied if at least one good variety is selected. This selection goal 
is probably more realistic than selection of the best variety, because the latter goal 
is rather exacting and often results in a disappointingly large subset size. First it 
has to be defined what is meant by a good variety. We will classify variety i as 
good if the variety parameter T, is not smaller than x(I) - 5 \ so at most 5* smaller 
than the parameter of the best variety. 

First, suppose that the design is completely randomised and equi-replicated, 
and that the variance is known. To select the smallest subset that includes at least 
one good variety with probability at least P*, the following selection rule can be 
used (Butler & Butler, 1987) : 

Select variety i (i = 1,..., t) if and only if 

— — Y * Y 
v ^v - p o + 5 when-p 
Yt>Y[t]—j=o+5* w h e n - ^ - 5 * ^ 0 , 

Y, = Y,n otherwise , (4.10) 

with the same selection constant y as in (4.2). In case the variance is unknown, a 
in (4.10) is replaced by s, and the same selection constant as in (4.2), associated 
with unknown variance, is used. The distance measure 5* indicates which 
difference is of importance to the plant breeder. It is a matter of indifference to 
the breeder whether the best variety or a good variety is selected. Following that 
line of reasoning selection of at least one good variety can be put in the Indifference 
Zone framework. It can be interpreted as selection of the best variety, with a 
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Preference Zone taken into account. As in the Bechhofer approach, the Preference 

Zone is defined as the part of the parameter space with configurations where 
x(o -To-i)-S*- Then the infimum of the P(CS), with the configuration of 

parameters included in the Preference Zone, is obtained when all differences 

x(0 - x(i) (/ •*• i) are taken equal to 5* in (4.3). Consequently, 

( %* \ 
P(CS)> ƒ*'"' X+J+ 

c/^n 
Q>(X)dX 

8* 
&-\X+A)$(X)dX , withA = Y+—j= 

—o© 

Then selection rule (4.2) can be written as 

= Y[t]—^a+S*, - _A_ 

and thus becomes equal to rule (4.10) with y substituted by A. 

If 4=^-5* <0, then 
in 

n > 

which satisfies the requirements for the number of observations for Indifference 
Zone selection. Hence when only the variety with the largest variety value estimate 
is selected the P "-requirement is met. 

For the situation of an experiment with an (in)complete block design, and 
variance unknown, selection rule (4.5) can be modified to : 

Select variety / (i = 1,..., 0 if and only if 

T,. > x , . - 0 , ^ + 8 * , V / * / . (4.11) 

Only for variance-balanced designs this selection rule is equal to rule (4.5) with 
the Preference Zone taken into account (like selection rules (4.10) and (4.2)), 
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because then v,-,- is a common value. Using selection rule (4.11) and the Preference 

Zone, the probability of correct selection can be written as 

P(CS)=P 

>P 

'v Ho' • ( t ( / ) \l)) 

v(')(j)s * 8 « + -
HO H/)_ 

v(00')'s 

5* 

"coor 
, V j ^ 

T(/)_X(0" 
v(0(/)5 

(T(/)~T(o)^.g , 5' 
<5 ( ( )+— 

8* A 

v(0(/')5 
HO or 

, V ; > f 

„C '(/) HO T(0 (X0) x(o) 

v(Oü)5 
<8fn , V j ^ 

so the selection constants of rule (4.5) can be used in rule (4.11). If the subset is 
empty, we can select the variety that we would have selected if 8* was such that 
the subset size was equal to 1. Usually this will be the variety with the largest 
variety parameter estimate, but this is not self-evident. 

Often potential varieties are compared with varieties that are currently on the 
market. This is often done in an advanced selection stage. The currently used 
varieties are included in the experiment together with the new varieties and are 
called control varieties. The parameters of the control varieties are not known but 
are estimated from the data of the experiment. The aim of the breeder can be to 
select all varieties that are sufficiently better than the average of the control 
varieties. Let the estimated average variety parameter of the control varieties be 
denoted by x0 and let a variety be considered 'sufficiently better' if the variety 
parameter of that variety is at least 8* larger than the average control parameter. 
Gupta & Sobel (1958) assumed a design comparable with the equi-replicated 
completely randomised design, and a single control variety. Assume that the 
variance is known. Then the selection rule analogous to selection rule (4.2) reads: 

Select variety / (i = 1,..., t) if and only if 

o /—l y,^yn-4=o+s' (4.12) 

It is not known how many varieties are sufficiently better than the control variety. 
To calculate the minimum probability of correct selection we then have to assume 
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that all the new varieties are sufficiently better than the control variety and so all 

have to be selected. Then the minimum probability of correct selection is equal to 

P(CS)>P 
rY0-x0 y.-x,. . ^ 

< =r+y, 1 = 1,...,f 
G, •l^n G/V« 

= (&(X+y)ty(X)dX . 

So the selection constant y is equal to the selection constant for the 
selection-of-the-best rule (4.2), calculated for t +1 varieties. Analogous results 
can be obtained for the situation of unknown variance by replacing G by s. 

For (in)complete block designs, and the variance unknown, the selection rule 
analogous to (4.5) reads : 

Select variety i (i = 1,..., t) if and only if 

x,>x0-ôov iOs+Ô\ (4.13) 

In the selection-of-the-best situation we do not know which variety is the really 
best, therefore we have to calculate a selection constant for each variety. In case 
we make a selection with respect to control varieties, the variety numbers of these 
controls are known beforehand, so we only have to calculate a single selection 
constant 80. If a single control variety is used, this selection constant is identical 
to the selection constant associated with this control variety, corresponding to the 
selection-of-the-best rule with separate selection constants for each variety; 
calculated for the complete design with t + 1 varieties. This is not the case with 
several control varieties (see also 4.3). Using selection rule (4.13) we can make 
the inference that the probability that all varieties sufficiently better than the 
average of the control varieties are included in the subset is at least P*, with the 
subset size as small as possible. 

All the above mentioned selection procedures make no inferences about the 
ranking of the varieties. For the situation of an equi-replicated completely 
randomised design Hsu (1981) introduced simultaneous P*x 100% confidence 
lower bounds for t, - x(0 (i = 1,..., t), with which it is possible to rank the varieties. 
Lower bounds for x,-x(r) are also lower bounds for x,-max7>1 x,. Hsu (1984) 
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showed that it is possible to add simultaneous confidence upper bounds (say £/,-) 

for I, -maxy^, T, to the lower bounds (say L,) without decreasing the confidence 

level. These bounds are equal to : 

( - - Ï 
L. = min 0, Yi - max 7], - y , 

f - - } 
Ui = max 0, Yi - max Y, + y , 

V ;*'' y 
with y the Gupta-rule selection constant for known or unknown variance, 

depending on the knowledge about o2. 

Driessen (1991) extended the theory of Hsu (1984), which is known as the 

(constrained) Multiple Comparisons with the Best approach, to experiments with 

blocks. The lower limits and the upper limits can be calculated as 
TO i f S = { i } 

L,= min{x; - Xj - SjVyS } else, 
7 e S 

I J * ' 

( - ^ 
Ui = max 0, min{x, - x; + 5,Vy5 } , (4.14) 

with S the subset selected by selection rule (4.5) and 8,• (/ = 1, ...,t) the selection 
constants associated with this rule (Driessen, 1991). Both Hsu and Driessen stress 
the fact that the construction of the confidence intervals and the selection of the 
subset including the best variety can be performed with a simultaneous confidence 
level P*. 

The Multiple Comparisons with the Best approach offers the plant breeder 
the possibility to achieve yet another selection goal : the selection of a subset that 
consists of good varieties only. Now the subset size is chosen as large as possible, 
given the P"-requirement. Remember that a variety is called 'good' if 
x,- - max, ̂ , Xj > - 8* . The selection rule then reads : 

Select variety / (/ = 1,..., t) if and only if 

L , .> -8 \ (4.15) 

The probability that all selected varieties are good is then at least P*, with the 

subset size as large as possible. 
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4.1.2 Model II selection 
As already mentioned, original Model II selection aims at the improvement 

of genetic populations as a whole by means of selection and random mating of the 
selected varieties. So the population is of primary interest and not the varieties, 
which differ in every generation and are considered to be a random sample from 
the population of all varieties possible. However, we will describe a selection 
approach that uses theory corresponding to Model II selection, but in which the 
varieties themselves are of primary interest. Assume t varieties, included in variety 
trials at one or more sites in a particular year. After the performance of the trials 
the variety values can be estimated. Suppose the experimental design used is 
completely randomised, so that the estimator of the value of variety i (/ = 1,..., t) 
is equal to F,, the average of the observations of variety i. While estimating, the 
variety terms in the model are taken fixed. We now assume that all 7, have equal 
variance a2/« (or that the differences are so small that they can be considered 
equal). 

Although the variety terms were taken fixed for estimation purposes, it is 
assumed that they are a random sample from a near-infinite Normal population 
with mean 0 and variance o£. If we intend to improve the group of varieties with 
respect to the mean variety value, we can select a predetermined number, say tk, 
of varieties. The varieties corresponding to the largest estimates are selected. Hence 
the ultimate selection percentage is equal to n = tklt. The reduction from t to tk 

varieties is sometimes made in a single selection stage (k = 1), but often two (k = 2) 
or three (k = 3) selection stages are used, with each selection stage a different year 
of experimentation. If more than one selection stage is used, the number of varieties 
is gradually reduced to tk after the final stage. If only one selection stage is used, 
it could be worthwile to test only a fraction p0 of the total number of varieties 
available, using more replications per variety. The selection percentages in the Zth 

selection stage are denoted by p, (/ =0,1, ...,k), with Yl p,=K- If k stages of 
selection are used, then in a particular year k cohorts of varieties are tested, each 
of which entered the selection process k-l, k-2,..., 0 years ago. Assume that 
all these varieties must be grown at a fixed area of land, denoted by A. Then the 
area assigned to the /th selection stage is denoted by Ah with £A t -A. Finney 
(1958) and Curnow (1961) devised selection schemes (values of pt and A-JA) for 
programmes to select varieties for further development. The selection goal they 
used can be defined as follows : maximise the difference between the expected 
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variety value in the selected group of varieties and the expected variety value in 
the original group. This difference is called the expected gain of selection, and is 
often presented in standardised form (hence divided by oT). 

First consider the situation of a single stage of selection. The estimators Yt 

can be written as 

in 

with T, (i = 1,..., t) the random variety value and % the standard Normal variable. 

Now the variance of the estimators is equal to var(y,) = o£ + a2/«. Curnow (1961) 

assumed that G2/« is proportional to the area of land available : 

a2 ct , 

with c the constant of proportionality. Without loss of generality we can assume 

that E(T) = 0 V i. The expected value of F, for the selected varieties can then be 

approximated by : 

^(selected F,) = V ^ + o2/«——, 
P\ 

with z (pj) the ordinate of the standard Normal distribution at the point above which 
lies a proportion px of the distribution. It can be shown that z (pi)/pi is the expected 
value of the top px of the standard Normal distribution (Cochran, 1951). The given 
formula of the expected value of 7, for the selected varieties gives a slight 
over-estimation, because in practice we are selecting a number of varieties from 
a finite population and not a fraction of an infinite population. The regression 
coefficient associated with regression of the true variety values on the estimated 
variety values is equal to : 

cov(y,.,r,.)_ o | 

var(r,) c^ + o2/«' 

so we can calculate the expectation of the variety value of the selected varieties 

as 
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£(selected T) = , , V<^ + o2/« 
' ( .̂ + a2/n Pi 

Or z (P i ) 

-x/c2- + o2/« Pi 

With £(r,) = 0, this is also the expected gain of selection. Finney (1958) studied 

the effect of an initial random discard of a fraction ( 1 - p0) on the gain of selection. 

Since only p0t varieties are tested, we write : 

G2 Cp0t , 

Because fewer varieties are tested on the fixed area A, they can be tested with 

increased replication. Furthermore px now becomes px - iz/p0, because tk is a 

predetermined value. Then the standardised gain can be written as 

E (selected Tt) - \i l z (n/p0) 

Or ^l+(cp0t)/A K/po 

For known ctIA and TC, the p0 that maximises the standardised gain can be 
calculated. Finney (1958) found that initial discarding often increases the gain of 
selection, especially when the heritability is small. However, we will not make 
further use of this approach, because it is not likely that a plant breeder will discard 
varieties a priori. 

Also for the situation of k > 1 stages, Finney (1958) evaluated the standardised 
gain, now with the aim to find optimum values of /?, and AJA. He assumed that 
in every stage new estimates are calculated from the results of that year, and that 
the selection is based on these estimates only. Furthermore he assumed p0 = 1. To 
evaluate the gain of selection for two-stage selection, Finney used formulae for 
the cumulants after one selection from a Normal distribution and a series expansion 
for the mean after selection from a general distribution. For £-stage selection in 
general, he gave a very useful practical recommendation to use the following 
scheme : 

_ i * 

Pl=P2=---=Pk=K » 

/ i i —•/!<)— . . . — / i £ — i\lK . 
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So when the number of tested varieties decreases, the number of replications 
increases. Because all p% and A, are equal, this scheme is called a symmetric scheme. 
Young (1972) found that more than three stages of selection is not worth wile. If 
there is much variety x year interaction, each selection stage should be based on 
the results of several years (Curnow, 1961). 

4.1.3 Model I selection versus Model II selection 

In this section we will compare the Subset selection approach described in 
4.1.1 and the approach of selecting a predefined number of varieties, described in 
4.1.2. First we will make some general remarks. 

The approach of Finney takes into consideration that a breeding programme 
often contains several stages of selection. If we look at the breeding procedure of 
new pollinators of sugar beets (Table 2.2), we see that in year 2 experimental 
hybrids are selected, which are tested again in year 4 and further selected. This is 
an example of two-stage selection. The recommendation that Finney gives is clear 
and easy to use in practice. A plant breeder is able to plan his selection programme 
in advance, which is highly convenient. He is free to choose the final number of 
selected varieties, and probably he will choose this number rather small. However, 
in this freedom there might be some danger. For how large should he choose tk ? 
Often used is a selection percentage of about 10 %, depending also on the total 
number of varieties tested. A weakness in this approach is that we have no idea 
about the probability of correct selection. No quantitative measure for this is given. 

This weakness of the Finney approach is the strength of the Subset approach. 
With probability at least P* the best variety is included in the subset. However, 
this probability statement is valid for one stage of selection. Also, a difference 
between the two approaches is that the subset approach makes no use of an 
assumption about the distribution of the variety terms. The />LfC(C5) is the 
probability of correct selection calculated for a configuration where all variety 
parameters are equal to each other. This is a very unfavourable configuration 
indeed, which will not be found in practice. The Normality assumption seems more 
realistic. In section 4.5 we will make use of this assumption for subset selection. 
As for the Finney approach, the symmetric scheme is also nearly optimal for 
distributions other than the Normal one. Because the Subset selection rule is 
designed so that it guarantees a probability of correct selection of at least P* for 
all configurations of variety parameters, the real probability of correct selection 
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will be much higher if a Normal distribution of the variety terms is assumed. To 

decrease the subset sizes, selection of at least one good variety could be a useful 

selection goal. In addition to the often unpleasant value of the subset size, it is also 

random. Hence the plant breeder cannot plan the selection programme in advance. 

In the comparison, different selection schemes will be used. In each situation 

we assume that the varieties are tested in a completely randomised design. Then 

selection takes place in one, two or three stages. This is done using the approach 

of predefined tk and equal selection percentages in each stage, and by Subset 

selection in every stage. For the latter approach, G2 is assumed known and P * = 0.80. 

Using simulation, the expected final number of selected varieties, the expected 

standardised gain, the expected standardised difference between the variety 

parameter of the best variety and the variety parameter of the best selected variety 

and the expected probability of correct selection was approximated, based on 10000 

iterations. 'Standardised' means that it is expressed in units of cT. These statistics 

are calculated for 4 values of the heritability h2 in the starting population : h2 = 0, 

0.1, 0.3 and 0.5. The heritability h2 is here defined as 

h -
c^ + o2 ' 

and should not be confused with the 'effective' heritability h2 = (^/(o2- + o2/«). 

1) Assume 100 varieties are grown in an experiment with a completely 
randomised design with 2 observations per variety (case (i)), or 4 observations per 
variety (case (ii)). The selection programme consists only of one stage. Using the 
Finney approach, 10 varieties are selected, hence TC = 0.10. We assume that the 
variety terms are a random sample from a Normal distribution. The results of the 
simulation are presented in Table 4.1. 

From Table 4.1 it becomes clear that with Subset selection we have to select 
more than 10 varieties; much more if the heritability is small. The fact that more 
varieties have to be selected, implicates that also some less good varieties are 
selected with the Subset approach. This results in a low expected gain of selection, 
compared with the 10 % rule. The less good varieties decrease the average of the 
selected group. However, if we look at the expected difference between the best 
variety and the selected best variety, we notice that with Subset selection this 
expected difference is much smaller than with the 10 % selection. With the latter 
type of selection we seem to loose the very good varieties more often than with 
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Subset selection. This also results in a lower probability of correct selection, 

especially if the heritability is small. The minimum probability of correct selection 

is 0.80 for the Subset approach and only 0.10 for the 10 % rule. 

Table 4.1. Estimates of : expected number of selected varieties (E(\S\)), expected 
standardised gain (£(G/o>)), expected standardised difference between the variety 
parameter of the best variety and the variety parameter of the best selected variety 
(Ê(D/GT)) and expected probability of correct selection (Ê(PCS)); approximated by 
simulation (10000 runs) for Subset selection (P* = 0.80, c2 known) and 10% selection 
in one stage, starting with 100 varieties. Assumption : Variety terms are a random sample 
from a Normal distribution, and heritability (h2) is given. Design : CRD with (i) 2 and 
(ii) 4 replications. 

Ê(\S\) 

Ê(GlaT) 

Ê(D/aT) 

Ê(PCS) 

h2 

0 
0.1 
0.3 
0.5 

0 
0.1 
0.3 
0.5 

0 
0.1 
0.3 
0.5 

0 
0.1 
0.3 
0.5 

(i 

Subset selection 

80.0 
70.8 
50.5 
31.4 

0 
0.211 
0.562 
0.983 

0 
0.015 
0.005 
0.002 

0.80 
0.95 
0.98 
0.99 

) 

10 % selection 

10 
10 
10 
10 

0 
0.739 
1.176 
1.413 

0 
0.345 
0.108 
0.029 

0.10 
0.41 
0.71 
0.88 

(ii) 

Subset selection 

80.0 
62.6 
34.9 
18.5 

0 
0.347 
0.896 
1.396 

0 
0.009 
0.003 
0.001 

0.80 
0.97 
0.99 
0.99 

10 % selection 

10 
10 
10 
10 

0 
0.962 
1.375 
1.548 

0 
0.210 
0.039 
0.007 

0.10 
0.56 
0.85 
0.96 

In plant breeding the difference between the best varieties currently on the 
market and the better variety to be found is very small. But if a better variety is 
found and commercialized, this gives large financial revenues. Therefore, a plant 
breeder is anxious to select the few varieties at the top. It is obvious that a measure 
like the probability of correct selection is of great value to him, and he is probably 
willing to test the varieties more intensively if this probability appears to be small. 
Selection with predefined tk and maximisation of the expected gain of selection is 
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associated with true Model II selection, where the plant breeder is not interested 
in the varieties themselves. If the interest lies in the actual varieties tested, then 
the selection should be aimed at selection of the best variety, or at least one good 
variety, or all varieties better than a control, so a selection procedure must be used 
that guarantees the probability of correct selection. Table 4.1 shows that if we can 
assume that the variety terms are a random sample from a Normal distribution, 
then the expected probability of correct selection is much larger than the guaranteed 
P*. So if we use a selection rule that satisfies the P "-requirement, more varieties 
then strictly necessary are selected. 

The probability of correct selection also depends on the effective heritability. 
The higher the effective heritability, the easier it is to select the best variety. For 
2 replications, the effective heritability corresponding with h2 = 0,0.1,0.3,0.5 is 
P = 0,0.18,0.46,0.67, respectively. With 4 replications, the effective heritability 
increases to h2 = 0,0.31,0.63,0.80, respectively. If we can assume that the variety 
terms are a random sample from a Normal distribution and if the heritability is 
known, we can use results as in Table 4.1 to design the experiment. For instance, 
if it is known that h2 = 0.1, then two replications are sufficient to reach an expected 
P(CS) of 0.95. 

2) We will now study a situation where the selection programme consists of 
two stages. Assume 400 varieties are grown in an experiment with a completely 
randomised design with 2 observations per variety in the first stage. Following 
Finney's advice, we can choose the number of observations per variety in the 
second stage so that the areas used in both selection stages are approximately equal 
(case (i)). If the selection fractions in both stages are chosen equal to V0.025, the 
ultimate selection percentage is equal to 2.5 %, which corresponds with tk = 10. 
For case (i) and this Finney approach the number of observations in the second 
stage will then be 13. For the Subset approach the number of selected varieties is 
random, so the number of observations in the second stage is also random. A 
slightly different situation is created if the number of observations per variety in 
the second stage is fixed to 4 (case (ii)), for both selection procedures. We assume 
that the variety terms are a random sample from a Normal distribution. The results 
of the simulation are presented in Table 4.2. 

From Table 4.2 we get the same impression as from Table 4.1. Especially for 
small heritabilities, selection of a predefined number of varieties can result in a 
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low expected probability of correct selection and a large expected difference 
between the best variety and the selected best variety. Because there are two stages, 
the minimum probability of correct selection guaranteed with the Subset rule is 
now 0.8 x 0.8 = 0.64. It is however remarkable that the expected probability of 
correct selection lies already above 0.9 for h2 - 0.1. 

Table 4.2. Estimates of : expected number of selected varieties (£(|S|)), expected 
standardised gain (Ê{GloT)), expected standardised difference between the variety 
parameter of the best variety and the variety parameter of the best selected variety 
(Ê(D/GT)) and expected probability of correct selection (Ê(PCS)); approximated by 
simulation (10000 runs) for Subset selection (P* = 0.80, a2 known) and V0.025xl00% 
selection in two stages, starting with 400 varieties. Assumption : Variety terms are a 
random sample from a Normal distribution, and heritability (h2) is given. Design : CRD 
with 2 replications in the first stage and (i) approximately equal area per stage, (ii) 4 
replications in the second stage. 

Ê(\S\) 

Ê(G/aT) 

Ê(D/aT) 

Ê(PCS) 

h2 

0 
0.1 
0.3 
0.5 

0 
0.1 
0.3 
0.5 

0 
0.1 
0.3 
0.5 

0 
0.1 
0.3 
0.5 

(i) 

Subset selection 

256.0 
183.3 
67.6 
17.0 

0 
0.482 
1.342 
2.226 

0 
0.016 
0.003 
0.001 

0.64 
0.93 
0.98 
0.99 

V0.025xl00% 
selection 

10 
10 
10 
10 

0 
1.684 
2.102 
2.229 

0 
0.195 
0.028 
0.003 

0.025 
0.53 
0.88 
0.98 

(ii) 

Subset selection 

256.0 
170.3 
69.1 
27.4 

0 
0.543 
1.263 
1.865 

0 
0.014 
0.004 
0.002 

0.64 
0.94 
0.98 
0.99 

V0.025xl00% 
selection 

10 
10 
10 
10 

0 
1.380 
1.909 
2.106 

0 
0.322 
0.068 
0.014 

0.025 
0.39 
0.75 
0.92 

3) Finally, we will study a situation where the selection programme consists 

of three stages. Assume 400 varieties are grown in an experiment with a completely 

randomised design with 2 observations per variety in the first stage, 4 observations 
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per variety in the second stage and 6 observations per variety in the third stage. In 

case (i) it is assumed that the variety terms are a random sample from a Normal 

distribution. In case (ii) it is assumed that the variety terms are a random sample 

from a Uniform distribution. For the Finney type of selection the selection fractions 

in all stages are chosen equal to (0.025)1/3, hence the ultimate selection percentage 

is equal to 2.5 %, corresponding with tk = 10. The results of the simulation are 

presented in Table 4.3. 

Table 4.3. Estimates of : expected number of selected varieties (£(|S|)), expected 
standardised gain (£(G/o>)), expected standardised difference between the variety 
parameter of the best variety and the variety parameter of the best selected variety 
(Ê(D/aT)) and expected probability of correct selection (Ê(PCS)); approximated by 
simulation (10000 runs) for Subset selection (P* = 0.80, a2 known) and (0.025)"3 x 100% 
selection in three stages, starting with 400 varieties. Assumption : Variety terms are a 
random sample from a (i) Normal distribution and (ii) Uniform distribution, and 
heritability (h2) is given. Design : CRD with 2 replications in the first stage, 4 replications 
in the second stage and 6 replications in the third stage. 

(i) (Ü) 
1/3, 

Subset selection (0.025)'" x 100% Subset selection (0.025)1'3 x 100% 
selection selection 

ÊQS\) 

Ê(G/aT) 

E{DlaT) 

Ê(PCS) 

0 
0.1 
0.3 
0.5 

0 
0.1 
0.3 
0.5 

0 
0.1 
0.3 
0.5 

0 
0.1 
0.3 
0.5 

204.8 
98.7 
28.5 
10.5 

0 
0.895 
1.778 
2.347 

0 
0.019 
0.007 
0.005 

0.51 
0.92 
0.97 
0.97 

10 
10 
10 
10 

0 
1.617 
2.049 
2.184 

0 
0.196 
0.027 
0.005 

0.025 
0.54 
0.87 
0.97 

204.8 
117.1 
68.4 
47.5 

0 
0.834 
1.243 
1.403 

0 
0.003 
0.003 
0.002 

0.51 
0.75 
0.80 
0.81 

10 
10 
10 
10 

0 
1.265 
1.464 
1.539 

0 
0.046 
0.024 
0.015 

0.025 
0.15 
0.26 
0.36 
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With three selection stages, the minimum probability of correct selection 
reduces to (0.80)3 = 0.51 for the Subset selection rule, but if the heritability in the 
starting population is 0.1 the expected P(CS) is already 0.92 for case (i); see Table 
4.3. The minimum probability of correct selection for the Finney type of rule is 
0.025 and the expected P(CS) remains low for small heritabilities. For case (ii), 
where the variety terms are a random sample from a Uniform distribution, the 
conclusions made before remain valid. Because a Uniform distribution has no long 
tails, it is more difficult to select the best variety. Therefore the expected 
probabilities of correct selection are not as high as with the Normal distribution 
assumption. The expected probabilities of correct selection for the Finney type of 
rule are very low. 

Recapitulating, if the plant breeder wants to select varieties in a way which 
guarantees a minimum probability of correct selection, he has to use Subset 
selection instead of selecting a predetermined number of varieties. Then he has to 
take it for granted that the number of selected varieties is random. The subset size 
depends on the chosen P*, the experimental design used, the experimental error 
and the actual configuration of the variety parameters. If one (or more) of these 
factors is (are) such that it is simply not possible to select a small subset, the plant 
breeder has to face this. If he does not, and still selects a small number of varieties, 
the probability that he has selected the desired varieties is low. The Finney approach 
does not advice us how many varieties to select. In the studied cases we just as 
well could have used a different selection percentage. Furthermore, the goal of 
maximising the expected gain of selection is closely connected with maximising 
the Response to Selection, which is the goal in real Model II selection. This goal 
is more suited in case the breeder is not interested in the actual varieties tested, 
but in the selected group of varieties as a whole. 
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4.2 Subset selection procedures for randomised experiments 1 

Suppose we have t (t > 1) varieties and we are mainly interested in selecting 

the best variety, which is defined here as the variety with the largest variety 

parameter. Thence, we conduct an experiment in which the t varieties are tested 

and make a selection on the basis of the data resulting from the experiment. For 

this purpose subset selection can be used, as described in 4.1. In this section, we 

introduce selection rules for randomised experiments. First, in 4.2.1, we will 

explain what is meant by 'randomised experiment'. Second, in 4.2.2, two types of 

subset selection procedures (for selection of the best variety) that satisfy the 

P*-requirement, if the experiment is randomised, will be given. The first type 

consists of rules that need a separate selection constant for each individual variety. 

Rules of the second type need only one selection constant for all varieties. We will 

illustrate selection rules from both types by application to a variety trial in 4.2.3 

and compare them in 4.2.4. The developed ideas can also be applied to selection 

procedures which aim at selecting at least one good variety. This is described in 

4.2.5. 

4.2.1 Randomised experiments 

If we want to test t (e.g. sugar beet) varieties in an experiment and draw 

conclusions from the results obtained, we have to decide on the experimental design 

and the (statistical) model to be used. For this purpose we make use of t imaginary 

varieties, which at this moment have nothing to do with the varieties we want to 

test. To avoid confusion we will call the imaginary varieties 'design varieties' 

(because they are associated with the experimental design) and the really existing 

varieties 'actual varieties'. The actual (sugar beet) varieties have promising names 

like 'Univers', 'Regina' or 'Herald', or in an earlier stage they have a code name. 

For notational convenience we are forced to give the actual varieties the 

in-expressive names VI, V2,..., Vt. The design varieties are denoted by numbers 

1,2, ...,t. Until now we have tacitly used the notation associated with the design 

varieties, using variety numbers 1,2, ...,t. For (in)complete blocks experiments 

we have described a fixed additive model on the basis of design varieties in 3.1.1. 

In this section we will introduce a randomisation procedure that 'assigns ' the actual 

1 Co-author : Stefan Driessen 
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varieties to the design varieties. The model for observations of design varieties 

combined with this assignment procedure then gives a model for the observations 

of the actual varieties. We will restrict ourselves to completely randomised and 

connected randomised block designs (with equal block sizes). The combination 

of a randomised design and randomisation procedure that assigns actual varieties 

to design varieties leads towards a randomised experiment. 

If we want to use a completely randomised design for the experiment, we 

have to choose and randomly select a number of experimental units nt 

(i = l,2,...,t) for each individual design variety. For this design we assume the 

following model: 

Y^k+Xi+Ey, i = l,2,...,f ; y = l ,2,. . . ,«,. (4.16) 

We assume that the £,-,-'s are uncorrelated, Normally distributed variables with zero 

expectation and common variance a2. 

For a randomised block design, we have to decide on the number (b ) and size 

of the blocks, and the allocation of the design varieties to the blocks. We first 

randomise the blocks and next randomly assign the units of a block to the design 

varieties of that block. As already described in 3.1.1, for a randomised block design 

the model can be written as 

y(jft = Ä.+xi + ß>+£Sft, i = l,2,...,f, 7 = 1,2,. ..,b; k = l,2,-,niJ, (4.17) 

where the number of experimental units for each individual design variety i in 
block y is denoted by ni}. Notice that both models (4.16) and (4.17) have additive 
parameters, so we assume that there are no interactions between design varieties 
and units (or blocks). To estimate the variety parameters of design varieties 1, 2, 
. ..,/we will use the least squares estimators and denote the latter by x1? x2,..., xt. 

The choice of the experimental design determines the variances of the 
estimators of the contrasts between design variety parameters. The estimated 
variance of the estimator of the difference between the parameters of design 
varieties i and j was denoted by vfjS2 (i,j = 1,2,..., t), with s2 the usual unbiased 
estimate of the error variance. For a given design matrix, we can calculate vfj for 
each pair of design varieties. In case of a balanced design, vfj is a common value 
for all pairs (i,j) ,i,j = 1,2,..., t (i *j). Unbalanced designs give unequal values 
for vfj', some pairwise contrasts will be estimated more precisely than others. 
Sometimes we want to estimate particular contrasts of variety parameters more 
precisely than others, and in that case we deliberately select an unbalanced design 
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with which some contrasts of design variety parameters are estimated more 

precisely. This is often done in case a control variety is involved in the experiment, 

and this control is replicated more often than the other varieties. When the set of 

varieties does not have a special structure, we usually prefer a design which is as 

near as possible (under the restrictions of block size and number of replications) 

to a completely balanced design. Often we use an already developed design, which 

sometimes asks adjustment of the number of varieties. For example, a square lattice 

design needs a square number of varieties. 

We may use the information about the variances and the structure of the set 
of varieties when we assign the t actual varieties to the t design varieties, which 
is the next important step in designing the experiment. When we deliberately want 
to estimate particular contrasts of actual variety parameters more precisely than 
others, we assign the relevant actual varieties to the design varieties of which the 
parameter contrasts are estimated more precisely. When all contrasts are of the 
same importance, the approach is to randomly assign the actual varieties to the 
design varieties. Whichever method is used, there always must be a one-to-one 
correspondence between the actual varieties and the design varieties. Let H be the 
set of one-to-one 'functions' from the set of actual varieties to the set of design 
varieties. For sake of convenience we call these 'functions ' assignments, of which 
there are r!. Let r\(Vl ) = 2 mean that variety VI is assigned to design variety 2 by 
the assignment T|, T| € H. So T\(Vj) represents the name of the design variety to 
which the actual variety Vj is assigned by assignment r|. Let for any assignment 
T| G H, Pr[f\] be the probability that varieties Vj are assigned to design varieties 
^(K/)»./' = 1 >2,...,f, by assignment rj. Of course I^eHPr[T\] = l. We will call an 
experiment randomised if the design of this experiment is randomised and the 
actual varieties are assigned to the design varieties by means of a defined 
randomisation process, i.e. the probabilities Pr[r[] are given for all r\ <= H. 

Remark. 

The procedure described above has already been summarized by Cochran and Cox 
(1957, pp. 442/443) in three steps: 

1. Rearrange the blocks at random. (If the design is arranged in complete 
replications, the blocks are randomised only within each replication and the 

replications are kept separate). 
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2. Randomise the position of the variety numbers separately and independently 

within each block. 

3. Assign the varieties at random to the variety numbers in the plan. 
Here of course variety number is a synonym for design variety. 

Given assignment TJ, (4.16) can be rewritten for the completely randomised 
design as 

Yr\(Vi)j - ^+\(Vi) + Er\(Vi)j ' 

and (4.17) for the randomised block design as 

^r\(Vi)jk = ^ + \(Vi) + Py + ^r\(Vi)jk • 

We have to keep in mind that these are models for a given assignment. The variance 
of the estimator of xVi - xVJ (a contrast between parameters of actual varieties) will 
be denoted by v^^^ö 2 and is equal to v ^ - ^ ^ o 2 given the assignment T| of the 
actual varieties to the design varieties. 

A different way of giving names to varieties (irrespective of the names 
'design' and 'actual' varieties) is to describe the value of this variety with respect 
to the other varieties. This notation has already been used in 4.1.1 and concerns 
the subscripts (/) and [i] (i - \,2,...,t). Let (1) denote the worst variety, ..., (t) 
denote the best variety. Hence the (unknown) variety with rank number i is denoted 
by (i). The ranking of the varieties is based on the variety parameters, such that 
x(1) < X(2) < ... < \ty Analogous to the notation of the design variety to which variety 
Vi is assigned (T|(V7)), the design variety to which variety (i) is assigned by the 
same assignment r\ is denoted by r\((i)). From the above mentioned notation it 
follows that correct selection occurs when variety (t) is included in the selected 
subset. Of course we do not know which variety is really the best, which variety 
is really the best but one, and so on. This leads to a third way of naming the varieties, 
based on the ranking as given by the results of the experiment. Let [1] denote the, 
according to the data, worst variety,..., [t] denote the, according to the data, best 
variety. This ranking is based on the estimated variety parameters, such that 
xm - xm - - XUY 

104 4.2.1 



4.2.2 Selection rules for selection of the best variety 

We want to construct selection rules in such a way that the probability of 
correct selection using a randomised design (PR(CS)), calculated for the Least 
Favourable Configuration (LFC) of the parameters, is equal to aprespecified value 
P*. For the studied designs, the assignment of the actual varieties to the design 
varieties with use of assignment T| e H has an influence on the probability of 
correct selection, because this probability depends on the position of the best 
variety, the position of the best but one variety,..., the position of the worst variety 
in the experimental design. In general, we cannot calculate the probability of correct 
selection without knowing these positions (Driessen, 1991), but in case of a 
randomised experiment we can. The probability of correct selection for a 
randomised experiment is equal to 

PR(CS)= XP(CS\T])Pr(T\)- (4.18) 
r i sH 

Thus we calculate the probability of correct selection by conditioning on the 

assignment of the actual varieties to the design varieties. As we will see, this implies 

that two types of selection rules that meet the /^-requirement exist. 

For the first type of selection rules we use a separate selection constant for 
each individual design variety /. Of this type we present two rules, denoted by Rl 

and R2, which will now be specified in detail. Intuitively it seems wise to take 
account of variance differences in case of unbalanced designs. Therefore in rule 
Rl Vjj is included. 

Rule Rl is defined as follows : 

Randomly select an assignment T| e H and select the actual variety assigned to 
design variety / (/ = 1,2,..., t) if and only if 

To execute the above selection rule all the contrast variances have to be 
calculated. It is, however, also possible to define a rule that satisfies the 
P "-requirement but does not contain vtj. This rule, rule R2, is attractive because it 
is relatively simple. Later we will study the effect of the omission of v,-,- on the 
expected subset size. 
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Rule R2 is given by : 

Randomly select an assignment T| € H and select the actual variety assigned to 

design variety / (i = 1,2,..., t) if and only if 

x , .>xM-A^. 

The values 8„ A,- (i = 1,2,..., t) are the selection constants for the rules Rl and R2, 

respectively, and will be defined later. Rule Rl is an extension to randomised 

experiments of selection rule (4.5). 

We only have a correct selection when variety (t) is selected. So, using Rl, 

we can work out (4.18) as follows : 

PR(CS)= Z P(CS |Tl)PrCn) 

r|e H 

= S P(X(0 > Xj - Ô(0V(()/ , V / * (f) | Tl)Pr(Tl) 

T| € H 

T| G H 

Tl e H 
= ^J3 ^i«/'» ~~ %((')) ~ (%((/)) ~ Tn((0)) - "ti((0)vii((0)n(ü))J + T(0 ~ X0) ' VZ * O^-Ol) • 

T| e H 

(4.19) 

Without loss of generality, let the set of assignments H be subdivided into the 

following subsets H„ H2,..., H( : the T| € H, are assignments with which the best 

variety (0 is assigned to design variety 1,1 = 1,2,...,t. Because x(() - x0) > 0 V/', 

it is clear that the PR(CS) is minimal when x(1) = x{2) = ... = x(0 , as such forming 

the LFC. Therefore the minimum probability of correct selection is the PR(CS) for 

the LFC, denoted by PRLFC(CS), and we have 

PR,LFC(CS) = Z P (x ((/)) - x ((0) - (x ((/)) - xn((0)) < \mvmmms , V/ * t)Pr(f\) 
T| e H 

= s(/>(xj-x;-(x7.-x/) < 8 / V , Vy */) E PrCn)} . (4.20) 
; = 1 [ il e H, J 

Let the t selection constants 8„ 82,..., 8, be such that 

P ( T ; - T / - ( T ; - T / ) < Ô / V > Vj*l) = p\ / = 1,2 r . (4.21) 
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Then, by substituting (4.21 ) in (4.20), the minimum probability of correct selection 
becomes 

l = \ T\ e H, 

= P* Z Pr(r\) 

= P\ 

which was our probability requirement. Notice that no extra assumptions are 
necessary for the randomisation process that assigns the actual varieties to the 
design varieties. The calculation of the selection constants is described in Driessen 
(1991), resulting in the evaluation of a multivariate t probability, for which no 
simple numerical procedures are available. In case of unbalanced designs with 
more than a few varieties a numerical integration procedure is not feasible, but we 
can use computer simulation to calculate the selection constants. This is described 
in 4.3. 

For rule R2 we get the same type of results. The selection constants 
A1; A2,..., A,, corresponding to this rule, are defined by the equations 

7 > ( x ; - î / - ( x > - x / ) < V , Vj*l)=p\ 7 = 1,2 f. (4.22) 

This leads, in the same way as selection rule Rl, to a prespecified minimum 

probability of correct selection P* (=PRiLFc(CS)), without any extra assumption 

about the randomisation process. 

The second type of selection rules uses a single selection constant for all 
varieties. This is of course very convenient for practical use. Two rules will be 
presented, denoted by R3 and R4. 

Rule R3 is defined as follows : 
Randomly select an assignment T) e H and select the actual variety assigned to 
design variety / (/ - 1,2,..., t) if and only if 

x^îj-SVijS , V / * i . 

Notice that R3 uses only a single selection constant 8 and that this selection rule 

is the same as Rl if ôj = Ô2 = ... = ô, = ô. 
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Rule R4 is given by : 

Randomly select an assignment T) e H and select the actual variety assigned to the 

design variety i {i = 1,2,..., t) if and only if 

xt>xlt]-As . 

This rule corresponds with the second rule R2 of the first type and is identical to 
it if Ä! = A2 = ... = A, = A. 

Following the same reasoning as with Rl we find that the LFC for R3 again 
is the set {x : x(1) = x(2) = ... = x(()} with the corresponding probability of correct 
selection : 

PRLFC(CS) = É JP(T;-T,-(Xj-x,) <bvljS , Vy * / ) E Pr(rÀ . (4.23) 

Let the selection constant ô be such that 

É{ / J (X 7 . -X ; - (X 7 . -X / )<ÔV ; / , Vy*/) I Pr(M=P*, (4.24) 

then clearly R3 meets the P*-requirement. The left-hand function is monotonically 

increasing in ô and so for lit < P* < 1 there always exists a solution of (4.24). 

For R4 we have to solve the following equation in A : 

Z W - T j - C C ; - ! , ) ^ , Vy*/) I />r(Tl)}=/>*, (4.25) 
/ = i [ n e H, J 

to satisfy the /^-requirement. For the same reasons as for selection rule R3 a 

solution for A exists. 

If selection of the best variety is our purpose, a randomisation procedure for 

which each assignment T| has the same probability, i.e. 

^Cn)=^. Vr,eH, 

seems appropriate. 

4.2.3 Example 
We will demonstrate the four selection rules, using the results of a trial 

conducted by the plant breeding company The Royal Vanderhave Group (The 

Netherlands). The experimental design of the trial is a 5x5 lattice design with four 

replications. This design can be found in Cochran and Cox (1957). The aim of the 
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experiment was to compare 25 new sugar beet hybrids with respect to their white 
sugar yield and to select a subset that includes the best hybrid with a certain 
minimum probability. The best sugar beet hybrid is defined here as the hybrid with 
the largest white sugar yield. The design varieties were randomised as described 
in section 4.2.1 and the hybrids were assigned completely at random to the design 
varieties. Unfortunately, the plants in the last three blocks of the fourth replication 
were killed during the growing season. So, if we use the design mentioned in 
Cochran and Cox (1957), then the hybrids that were assigned to design varieties 
3,4, 5, 6,7, 8, 11, 14,15,17,18,19, 21, 22 and 25 only have 3 replications. Due 
to this accident the experimental design became more unbalanced. We assume the 
randomised block design model described in section 4.2.1. With the design of the 
trial given, we can calculate the selection constants of rules Rl and R2. These 
selection constants have been approximated by means of simulation (see section 
4.3), for P* = 0.80 and P* = 0.90. They read : 

8, for Rl A, for R2 

design variety 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

P* = 0.80 

2.13 
2.14 
2.04 
2.05 
2.07 
2.04 
2.04 
2.05 
2.14 
2.12 
2.03 
2.13 
2.11 
2.04 
2.04 
2.12 
2.05 
2.04 
2.03 
2.15 
2.04 
2.04 
2.13 
2.12 
2.04 

P* = 0.90 

2.50 
2.49 
2.42 
2.45 
2.45 
2.44 
2.42 
2.42 
2.51 
2.49 
2.42 
2.52 
2.51 
2.44 
2.45 
2.50 
2.44 
2.42 
2.41 
2.54 
2.42 
2.43 
2.50 
2.50 
2.43 

P* = 0.W 

1.77 
1.77 
1.81 
1.82 
1.84 
1.82 
1.81 
1.83 
1.77 
1.75 
1.81 
1.76 
1.75 
1.82 
1.82 
1.76 
1.83 
1.81 
1.81 
1.77 
1.82 
1.82 
1.76 
1.76 
1.82 

P* = 0.90 

2.07 
2.07 
2.17 
2.18 
2.19 
2.18 
2.16 
2.18 
2.08 
2.07 
2.16 
2.08 
2.08 
2.17 
2.18 
2.06 
2.18 
2.16 
2.15 
2.10 
2.16 
2.17 
2.07 
2.07 
2.17 

4.2.3 109 



For the calculation of the selection constant of rule R3 and R4 we must assume 

that the randomisation process is known. We assume that the sugar beet hybrids 

have been assigned to the design varieties completely at random. The selection 

constants of rules R3 and R4 are approximately equal to : 

Ô for R3 A for R4 

P* = 0.80 P* = 0.90 P* = 0m P* = 0.90 

2.08 2.46 1.80 2.12 
After the assignment of the sugar beet hybrids to the design varieties, the 
experiment can be performed. The estimated standard deviation was 0.358 ton/ha. 
The least squares estimates of the variety values were : 

design actual white sugar design actual white sugar 
variety varietyl) yield variety variety1} yield 

(ton/ha) (ton/ha) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

VDH05 
VDH12 
VDH23 
VDH11 
VDH18 
VDH01 
VDH20 
VDH14 
VDH17 
VDH07 
VDH25 
VDH10 

13.44 
12.00 
13.16 
12.64 
12.22 
12.14 
12.50 
12.04 
12.45 
11.73 
12.44 
12.83 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

VDH21 
VDH16 
VDH04 
VDH13 
VDH22 
VDH09 
VDH02 
VDH24 
VDH15 
VDH19 
VDH03 
VDH08 
VDH06 

12.61 
12.97 
12.39 
9.77 

12.07 
11.44 
12.22 
12.48 
12.00 
12.90 
12.08 
12.51 
12.14 

l) The actual hybrid names are coded to maintain trade secrecy. 

The, according to the trial, ordered sugar beet hybrids are VDH05 > VDH23 > 
VDH16 > VDH19 > VDH10 > VDH11 > VDH21 > VDH08 > VDH20 > VDH17 

> VDH24 > VDH25 > VDH04 > VDH18 = VDH02 > VDH01 = VDH06 > VDH03 

> VDH22 > VDH14 > VDH12 = VDH15 > VDH07 > VDH09 > VDH13. The 
selected subsets corresponding to the above mentioned experiment can now be 
calculated. To demonstrate the selection procedures, we will work out the selection 
rules for sugar beet hybrid VDH10, with P* = 0.80. Hybrid VDH10 was assigned 
to design variety 12. The values of vn h ..., v12 n, v1213,..., v1225 are equal to 0.7771, 
0.7766, 0.8647, 0.8647, 0.8373, 0.8367, 0.8373, 0.8647, 0.7766, 0.7973,0.8367, 
0.7766, 0.8380, 0.8367, 0.7973,0.8367, 0.8373, 0.8647, 0.7766, 0.8647, 0.8373, 
0.7771,0.7766,0.8647. 
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- For selection rule Rl the selection constant associated with hybrid VDH10 is 

equal to Ô12 = 2.13 for P* = 0.80. Now 

12.83 < max(x.. -2.13 xv12|.x0.358) = 13.44-2.13x0.7771x0.358 = 12.85. 
i*n J ' 

Hence VDH10 is not selected at P* = 0.80. The same way it is checked whether 
the other varieties have to be selected or not. The result is that selection rule Rl 

selects the hybrids that were assigned to design varieties 1,3,14 and 22 (the hybrids 
VDH05, VDH23, VDH16 and VDH19) with P* = 0.80 and to design varieties 1, 
3, 12, 14 and 22 (the hybrids VDH05, VDH23, VDH10, VDH16 and VDH19) 
with P* = 0.90. 
- For selection rule R2 the selection constant associated with hybrid VDH10 is 
equal to A12 = 1.76 for P* = 0.80. Now 

12.83 > 13.44-1.76x0.358 = 12.81 . 

Hence VDH10 is selected at P* = 0.80. After the rule is executed for every hybrid, 
selection with rule R2 results in a subset that includes the hybrids that were assigned 
to design varieties 1,3,12,14 and 22 (these are VDH05, VDH23,VDH10, VDH16 
and VDH19) for both P* = 0.80 and P* = 0.90. 

- For selection rule R3 the selection constant for hybrid VDH10, as for all other 
hybrids, is equal to 5 = 2.08 for P* = 0.80. Now 

12.83 < max (x,-2.08 xv12 ,x 0.358) = 13.44-2.08x0.7771 x0.358 = 12.86 . 
7*12 ' ' 

Hence VDH10 is not selected at P * = 0.80. Making the selection decision for every 
hybrid, it turns out that selection rule R3 selects exactly the same subset as selection 
rule/?7. 

- For selection rule R4 the selection constant for hybrid VDH 10, as for all other 
hybrids, is equal to A = 1.80 for P* = 0.80. Now 

12.83 > 13.44-1.80x0.358 = 12.80 . 

Hence VDH 10 is selected at /°* = 0.80. The ultimate subset corresponding to 
selection rule R4 is exactly the same as the subset obtained with selection rule R2. 

So the two rules that make use of the variances of the estimators of the contrasts 
between variety parameters are better in this example. Because it is much easier 
to work with a common selection constant for all design varieties, we prefer 
selection rule R3. A further advantage of selection rule R3 is that the selection 
constant for this rule can be calculated much faster than the selection constants of 
selection rule Rl (See 4.3). 
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4.2.4 Comparison of the selection rules 

In this section we will compare the four selection rules that have been described 
in 4.2.2. All the rules are designed in such a way that the infimum (over all 
configurations of the variety parameters) of the probability of correct selection is 
equal to P*. hi other aspects, however, they most probably will differ from each 
other. 

For prespecified values of P* the selection rules Rl ,R2, R3 and R4 will be 
defined such that they meet the P*-requirement. Next, the rules will be compared 
with respect to the expected subset size (ER(\ S\ )). (In hypothesis testing, tests are 
often compared with respect to their powers provided they have the same 
significance level.) ER(\ S\ ) depends on the true values of the variety parameters 
and the experimental design used. The ranking of the selection rules needs not be 
the same for different configurations of variety parameter values and/or different 
designs, and therefore an integral comparison is not feasible. We will therefore 
confine ourselves to the discussion of two experimental designs and a limited 
number of configurations of variety parameter values. 

The selection constants are determined (by simulation, see 4.3) so that the 
corresponding rules satisfy the P "-requirement approximately. In order to calculate 
the selection constant of rule R3 and R4, the randomisation process must be known. 
We assume a completely random assignment of the actual varieties to the design 
varieties (Pr(r\) = \lt\). This also holds for the calculation of the expected subset 
size. The expected subset sizes are approximated by simulation (see 4.3). 

The different types of configurations of variety parameters, which we will use 
throughout this section, are the following : 

- A so-called slippage configuration, with distance parameter q. This is the set of 
configurations that satisfy t(1) = x(2) = ... = x^.^ = xw -qo, with a the root of the 
error variance. We denote this configuration by SL(q). 

- An equidistant configuration, with distance parameter q. This is the set of 
configurations that satisfy x(1) = x(2) - q o = x(3) - Iq a = ... = x(0 - (t - 1 )q o. We 
denote this configuration by EQ(q). 

- A configuration of variety parameters which are drawn from a Normal distribution 
with zero mean and standard deviation qcs. We denote this configuration by NO(<7). 

Most of the configurations used are rather artificial. In plant breeding, it is 
sometimes assumed that the variety terms are a random sample from a Normal 
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distribution with variance o£. The ratio between o£ and o2 is expressed in the 

heritability (in broad sense) : 

h -

With the q parameter corresponding to the NO-configurations, the heritability can 

be written as 

q2+\' 

Now we can give the following translation table 

h2 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

q(NO) 0.10 0.23 0.33 0.50 0.65 0.82 1.00 1.22 1.52 2.00 3.00 

All entries of the tables presented in this section are calculated by simulation, 
based on 100,000 iterations per entry. Two designs will be considered. 

The first design for which we have calculated the comparison criterium for all 
selection rules is a completely randomised design with 5 varieties and 
nx = 100, n2 - ... = n5 = 2. The results, for P* = 0.90, are presented in Table 4.4. 
The expected subset sizes of the selection rules indicate that the rules which make 
use of Vy (Rl and R3 ) are slightly better than the other two rules, although rule R4 

is the best one in case of a slippage configuration with a very large distance 
parameter. Selection rule Rl seems to be the best rule for the other configurations, 
but the differences between the results of rule Rl and rule R3 are very small. 

The second experimental design that we will discuss is a 7x7 triple lattice of 
which three blocks (belonging to one replication) are missing. We studied the 
comparison criterium for rules R3 and R4 only and for P* = 0.75,0.80,0.90. The 
results are presented in Table 4.5. This table shows that for the 7x7 triple lattice 
design with missing values the expected subset size for selection rule R3 is smaller 
than for rule R4, except for slippage configurations with a very large difference 
parameter. 
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Table 4.4. Expected subset size, estimated by simulation ( 100000 iterations), for selection 
rules Rl, R2, R3 and R4, satisfying the probability requirement at level F* = 0.90. 
Completely randomised design ; t = 5, n^ = 100 and n2 - ... = n5 = 2. 

Rl R2 R3 R4 

SL(0.1) 
SL(1.0) 
SL(2.0) 
SL(3.0) 
SL(4.0) 
SL(5.0) 

EQ(O.IO) 
EQ(0.25) 
EQ(0.50) 
EQ(0.75) 
EQ(l.OO) 

NO(O.l) 
NO(0.23) 
NO(0.33) 
NO(0.50) 
NO(0.65) 
NO(0.82) 
NO(l.O) 
NO(1.5) 
NO(2.0) 

4.496 
3.860 
2.276 
1.296 
1.035 
1.002 

4.439 
4.114 
3.249 
2.536 
2.089 

4.465 
4.302 
4.102 
3.665 
3.267 
2.867 
2.525 
1.924 
1.594 

4.496 
3.957 
2.383 
1.297 
1.031 
1.002 

4.449 
4.171 
3.370 
2.635 
2.158 

4.470 
4.331 
4.159 
3.766 
3.385 
2.981 
2.623 
1.981 
1.633 

4.498 
3.861 
2.296 
1.313 
1.039 
1.002 

4.439 
4.116 
3.263 
2.550 
2.100 

4.466 
4.302 
4.103 
3.672 
3.279 
2.880 
2.538 
1.933 
1.602 

4.497 
3.988 
2.391 
1.275 
1.026 
1.001 

4.453 
4.193 
3.383 
2.632 
2.157 

4.473 
4.347 
4.182 
3.791 
3.396 
2.983 
2.621 
1.977 
1.633 

Other results have shown, as to be expected, that it is impossible to draw 
general conclusions and to point out one selection rule as being the best one. The 
ranking of the selection rules according to expected subset size depends on the 
configuration of the variety parameters, the minimum probability of correct 
selection (read : P*) and the experimental design. However, a conclusion may be 
that the selection rules which make use of the root of the variances of estimators 
of contrasts between variety parameters (i.e. Rl and R3 ) are on the average better 
than the other selection rules, but the differences are small. This was also found 
in the example in 4.2.3. For the NO-configuration, meaningful distance parameters 
for the plant breeding practice are given by the heritability. For a heritability 
between 0.01 and 0.80 we see in the tables that the best selection rules for Normal 
configurations are those that use vtj. In practice the heritability is almost always 
within this range. In Table 4.4 for the completely randomised design with five 
varieties we see that rule Rl is the best one. However, the difference with rule R3 

is very small. It should also be noticed that for variance-balanced designs and some 
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partially balanced designs selection rules Rl and R3 are identical. For unbalanced 

designs with many varieties, for example the triple 7x7 lattice with missing values, 

the calculation of the selection constants and the expected subset sizes for selection 

rule Rl becomes very laborious, and the rule is not convenient to work with in 

such a situation. Therefore a general practical conclusion could be to use selection 

rule R3. Since the differences between the expected subset sizes for the various 

selection rules are small, one could also decide to use selection rule R4, because 

this rule is very convenient to work with. 

Table 4.5. Expected subset size, estimated by simulation ( 100000 iterations), for selection 
rules R3 and R4, satisfying the probability requirement at levels P* = 0.75,0.80,0.90. 
Randomised triple 7x7 lattice design {t = 49), of which three blocks belonging to one 
replication are missing. 

SL(0.5) 

SL(1.0) 

SL(2.0) 

SL(4.0) 

EQ(0.01) 

EQ(0.1) 

EQ(1.0) 

EQ(2.0) 

P' 

0.75 
0.80 
0.90 
0.75 
0.80 
0.90 
0.75 
0.80 
0.90 
0.75 
0.80 
0.90 

0.75 
0.80 
0.90 
0.75 
0.80 
0.90 
0.75 
0.80 
0.90 
0.75 
0.80 
0.90 

R3 

36.449 
38.876 
43.851 
34.856 
37.402 
42.790 
24.313 
27.083 
34.071 
2.583 
3.107 
5.241 

35.932 
38.392 
43.496 
14.332 
15.588 
19.073 
2.532 
2.657 
3.006 
1.563 
1.625 
1.800 

R4 

36.484 
38.947 
43.880 
35.021 
37.606 
42.952 
24.898 
27.804 
34.951 
2.491 
3.027 
5.254 

35.989 
38.480 
43.552 
14.551 
15.861 
19.479 
2.561 
2.692 
3.053 
1.577 
1.642 
1.820 

NO(0.01) 

NO(0.1) 

NO(1.0) 

NO(5.0) 

P* 

0.75 
0.80 
0.90 
0.75 
0.80 
0.90 
0.75 
0.80 
0.90 
0.75 
0.80 
0.90 

R3 

36.763 
39.167 
44.055 
36.364 
38.800 
43.792 
16.491 
18.265 
23.355 
2.814 
2.902 
3.182 

R4 

36.769 
39.204 
44.056 
36.397 
38.860 
43.821 
16.807 
18.678 
24.012 
2.826 
2.916 
3.204 
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4.2.5 Selection of at least one good variety 

The approach that uses knowledge about the randomisation process that 

assigns actual varieties to design varieties to create a selection rule with a single 

selection constant can also be applied to selection rules that do not aim at selection 

of the best variety. Also rules for selection of at least one good variety can be 

defined such that they only need a single selection constant. In 4.1.1 it was 

explained that selection of at least one good variety can be seen as selection of the 

best variety with an Indifference Zone taken into account. There, the 

selection-of-the-best rule was redefined into a selection-of-at-least-one-good rule. 

Consequently, the selection-of-the-best rules in 4.2.2 with a single selection 

constant can be redefined into selection-of-at-least-one-good rules. 

Variety i (i = 1,2,..., t) is classified as 'good' if the variety parameter x, is 

not less than x(() - 8*, with ô* a distance measure defined by the plant breeder. Then 

rule R3 can be redefined into a selection rule for selection of at least one good 

variety as : 

Randomly select an assignment T| e H and select the actual variety assigned to 
design variety i (i - 1,2,..., t) if and only if 

If the subset is empty, we can select the actual variety assigned to the design variety 
that we would have selected if 5* was such that the subset size was equal to 1. 

Analogous to the above situation rule R4 can be redefined as : 

Randomly select an assignment r| e H and select the actual variety assigned to 
design variety i (i = 1,2,..., t) if and only if 

x, > x[r] - As + 8* when As - 8* > 0 , 

x, = x[t] otherwise . 
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4.3 The use of simulation in statistical selection 
To execute statistical selection rules the selection constants first have to be 

determined. In 4.3.1 it is described how to determine the selection constants by 
means of simulation. In 4.3.2 we compare the results with those obtained by 
numerical integration. In order to compare different selection rules, we would like 
to determine the expected subset size. In 4.3.3 it is shown how this can be done 
by simulation. Also the probability of correct selection can be determined that 
way. We will compare simulation results with computations by numerical 
integration. 

4.3.1 Approximation of selection constants 

Suppose we have t varieties which are tested in a randomised experiment. 

Let the model for the observations be equal to (4.17). To select the best variety 

we can use subset selection rules Rl ,R2,R3 and R4, given in 4.2.2. In 4.2 we have 

given the equations that have to be solved to determine the selection constants 

corresponding to the four selection rules. We now will rewrite them in vector 

notation. We define T; (/ = 1,2,..., t) as 

* i v _ » • • • > 

v.-i+iö vita 

Given the experimental design, we can calculate each selection constant ô, 
(/ = 1,2,..., t) for selection rule Rl with c2 unknown as the solution of 

f T ^ 
' " (Driessen, 1991). (4.26) 

J . . . , 

V/ i 

-% 

-i<y 

- ( x , -

? 

- , ) V 

p =p ^ 0,1. , 
sla ' '~l 

From the model it follows that T;/(s/o) has a standard multivariate t-distribution 
with a particular correlation matrix. Note that if a2 is known, then s = a and we 
have a multivariate Normal distribution. For selection rule R2 the selection 
constants A, are the solutions of 

( 4 A; A,- A , .^ 
P =P 

s la 
j . . . 5 -, ? • • • Î 

V; 1 Vi ,._i V; / + 1 V; 'J 
(4.27) 
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Assume that the actual varieties are assigned at random to the design varieties. 

Then for selection rule R3 the selection constant 8 is the solution of 

f 1=1 

'T,-

s/a ' - 1 

For selection rule R4 the selection constant A can be found by solving 

* 1 < 
= - Z P 

t i=\ 
ï Ti ( 

— < 
s/o \ 

9 • • * » 

V: , V, 

A _A_ 
Î J • • • , 

i i - l Vi i + \ Vi 1 

(4.28) 

(4.29) 

If we want to select all varieties sufficiently better than the average of the 
control varieties, we can use selection rule (4.13), which in the sequel will be 
denoted by R5. We now define selection rule R6, which resembles R5 and can be 
used for the same purpose : 

Select variety i (/ = 1,.., t) if and only if 

where x, is the estimate of the parameter corresponding to new variety i, î0 is the 
average of the estimates of the parameters corresponding to the control varieties, 
AQ is the selection constant and 8* is used to define when a variety is considered 
'sufficiently better' than the control varieties (see also 4.1.1). For known variance 
the s in the rule is substituted by o. 

Using the same notation as in 4.2, the minimum probability of correct selection 
for rule R5 is equal to : 

PR,ISC(CS) > S / ( \o)-X n ( i ) - ( t n (o rT n ( ; ) ) < à0vWMi)s, V/ *0)Pr(l\). 
X\ € H 

Suppose we have two control varieties a and b. If we equate PR,LFC(CS) to P*, we 
can calculate the selection constant 80 by solving the equations : 

P=P 2 

s IG SSbl, 
(4.30) 

Here Tm+n{b) is defined as 

L riM+TltfO ' 

Wl(l) " • - X, ln(i) " 

Vi\W+i\(b) 
n(i) 

W') " • - X 
\(a) + \(b) \ » 

ln(0 " 

V * 2 Ä ( 0
G 
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If there is more than one control variety, we cannot use the selection constants 

calculated for the selection-of-the-best rule for t +1 varieties. For selection rule 

R6 the equations that we have to solve in order to calculate the selection constant 

Aoare 

( A0 A, VI 
< P =P 

S 1(5 
, . . . , 

v iW+nft) m
 vii(°>nM ,,,, 

(4.31) 

Note that again we cannot use the selection constants calculated for 
selection-of-the-best rules. This can only be done in case we have one control 
variety. 

As shown above the calculation of the selection constant boils down to the 
evaluation of a multivariate t-distribution. For an equi-replicated completely 
randomised design the parameter v,-,- is equal to ̂ 2/n for all i*j. Then the vectors 
T, are identically distributed, hence the selection constants of selection rules Rl 

and R2 are equal to the selection constant of rules R3 and R4, respectively. This 
is in general true for variance-balanced designs. In that case it is possible to 
calculate the selection constant by numerical integration (see also 4.1.1). The 
selection constants of rule Rl are also equal to each other in case of a partially 
balanced incomplete block design with two association classes, based on the group 
divisible association scheme or the triangular scheme or the Latin square scheme 
(Driessen, 1991). See for tables of PB IB designs with 2 association classes Bose, 
Clatworthy & Shrikhande (1954). An example of such a design is the partially 
balanced lattice design. (Finney, 1960) 

As contrasted with variance-balanced designs, it is in general too troublesome 
to calculate selection constants for partially balanced and unbalanced experimental 
designs by numerical integration. Only for a very small number of varieties 
numerical integration will work. However, a lot of the experimental designs used 
in practice are unbalanced or become unbalanced during the testing period because 
of accidents. For practical use the research worker is willing to accept approximate 
selection constants, as long as the approximation is accurate enough. We will 
describe a computer program that makes it possible to approximate the selection 
constants for all kinds of designs, using simulation methods. 
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A computer program, named SELCON, was written by the author in Fortran 
77, with additional use of subroutines from IMSL (International Mathematical & 
Statistical Libraries, version 1.0). We will describe the program SELCON, at the 
same time explaining the simulation method. The computer program makes it 
possible to calculate the selection constants for the selection rules mentioned 
above. Thus we can use four rules for selection of the best variety and two rules 
for selection of all varieties sufficiently better than the control variety (or average 
of the control varieties). We have to choose which selection rule we want to use. 
Next we have to give the design of the experiment or the pseudo-
variance/covariance matrix (divided by o2) of the variety parameter estimators and 
information whether the variance must be assumed known or unknown. The 
program approximates the minimum probability of correct selection (P*) for a 
series of selection constants, which have to be given. Afterwards, we can find the 
selection constant for a given P* by interpolation. 

The experimental design is reflected by the incidence matrix N. This matrix 
is read from an input file. We will restrict ourselves to connected designs. As in 
chapter 3 let p'x denote a contrast between design variety parameters. Then we 
have the reduced normal equations Cx = Q, and we may use any pseudo-inverse 
CT as if it were the covariance matrix (divided by o2) of x to calculate the variance 
of the estimator of an estimable contrast p'x. Therefore the variance of the estimator 
of p'x can be calculated as p'CTpG2 (John, 1971). This estimator p'x, which is a 
linear combination of Normally distributed observations, has a normal distribution 
with expectation p'x and variance p'CTpG2. Consider the (t - l)*(t) matrix A : 

A = 

( ~\ 1 - 0 -
- 1 1 

- 1 - 0 - 1 

Then Ax gives a vector with all pairwise variety parameter contrasts with respect 
to design variety 1. The estimator Ax of these contrasts is distributed as a random 
variable with a (t - 1 ) dimensional multivariate normal distribution with 
expectation Ax and covariance matrix AC~A'o2. 

In the computer program SELCON a pseudo-inverse of C is calculated as the 
inverse of (C + l r l / ) , because the null space of C has basis l r With this 
pseudo-inverse of C the v,7 are calculated in case selection rule RJ, R3 or R5 has 
been chosen. For instance, vï 2 is calculated as (-1,1,0, ...,0)C~(-1,1,0, ...,0)'. 
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Next the covariance matrix of Ax is calculated. For selection of the best variety, 

A has the form as described above. In case of selection with respect to c (c > 1) 

control varieties, we substitute matrix A by the t x (t + c) matrix B : 

' -lie ... -lie 1 - 0 - ^ 
-lie . . . -lie 1 

B = 

V -lie ... -lie - 0 - 1 

So Bx is a vector with t variety parameter contrasts, which are all estimable. 
Because we want to calculate the minimum probability of correct selection, we 
are working with the Least Favourable Configuration. So Ax = 0,_! and Bx = 0,. 
For the calculation of the selection constants we may, without loss of generality, 
assume that the common known variance a2 is equal to 1, because the selection 
constant has no dimension. 

The next part of the simulation program is repeated very often (e.g. 10000 
times). In the situation of selection of the best variety, a realisation of the t - 1 
variety contrasts from the t - 1 dimensional multivariate normal distribution with 
zero expectation and covariance matrix AC"A' is generated. Then we have a 
solution of the reduced normal equations with the assumption that x, = 0. In case 
of selection with respect to a control variety (or an average of control varieties), 
the t contrasts are generated from the t dimensional multivariate normal 
distribution with zero expectation and covariance matrix BC~B'. If the error 
variance a2 is unknown, we estimate this variance by s 2 with v degrees of freedom. 
From the model it follows that s2 is distributed as ĉ Xv/v* with %l the Chi-square 
distributed random variable with v degrees of freedom. Hence s is distributed as 
s ~ cryXv/v. If we calculate selection constants for the situation of unknown 
variance, we generate a realisation of s from the 'VXv/v distribution, because a is 
assumed to be 1. This realisation is independent from the contrast realisations. 
After generating the realisations of the variety contrasts and s we can actually 
execute the chosen selection rule. 

Selection rule Rl. This selection rule needs a selection constant 8, for each 
individual design variety i (i = 1,2, ...,t). Therefore we have to calculate P* 

corresponding to 8, for every /, assuming that the best variety (t) is assigned to 
design variety L To calculate P* corresponding to bu we assume that the best 
variety (t) is assigned to design variety 1. Next we execute selection rule Rl with 
the realisations of the estimated variety parameters and s (if the variance is 

4.3.1 121 



unknown). If Xi > maXj{Xj - b1v1 jS }, then the best variety is selected and we have 
a correct selection. This is checked for a series of values of the selection constant. 
For the situation of known variance s is substituted by a, which is assumed equal 
to 1. For design variety 1 the information whether we have a correct selection or 
not, is stored. The same procedure is repeated for all varieties, thus asssuming that 
the best variety is assigned to design variety / {i = \,2, ...,t). 

Selection rule R2. The same procedure as for selection rule Rl is used in 
order to calculate P* for each design variety. The selection rule is easier : we have 
a correct selection if x, is greater than or equal to the maximum of the other estimated 
variety parameters minus A,s, when / is assumed to represent the best variety. 

Selection rule R3 or R4. Here we assume that the original varieties are 
assigned to the design varieties completely at random. Therefore at random one 
of the design varieties is tagged as being the design variety to which the best variety 
is assigned. Then we check whether this design variety is selected or not, using 
selection rule R3 or R4 and a series of values of the selection constant. 

Selection rule R5 or R6. In the situation of selection with respect to one or 
more control varieties, we know which design varieties represent the control 
varieties. This as contrasted with the situation of selection of the best variety, where 
we do not know which variety is the best one. As mentioned earlier, a correct 
selection occurs when all the non-control varieties are selected. Here this is checked 
using selection rule R5 or R6. 

After one simulation round, a new realisation of the variety contrasts is 
generated and, in case of unknown variance, a new realisation of s is generated. 
Then again we execute the chosen selection rule and check whether there is a 
correct selection or not. For selection rules R3 and R4 a new design variety is 
tagged as being the best one. This simulation is repeated m (say) times, and we 
store the number of correct selections out of the m simulation rounds. This is done 
for each individual selection constant. Then the minimum probability of correct 
selection can be estimated by 

£* _ number of correct selections 
number of simulations 

The number of correct selections out of m selections has a binomial distribution 

with parameters n-m and p =P*. So we can approximate a 95% confidence 

interval of P * by 
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\P*-\.9&\P\\-P*)lm , P* +\.96^P\\-P*)lm\, (4.32) 

with 1.96 the 0.975 point of the standard normal distribution. For practical use an 

approximate lower limit of P* will be important, because we are not interested in 

upper limits of/5*. The 95% lower limit will be larger than the lower bound of the 

95% confidence interval and therefore better to work with in practice. The 

approximate 95% confidence lower limit of P* is calculated as 

''L.O.QS = P* - l.645^P*(l-Pym. (4.33) 

Consider an experimental design of which we know that bl = ... =6, for 
selection rule Rl and Aj = ... = A, for selection rule R2. It is already mentioned 
that in this situation we can use the selection constant of selection rule R3 and R4, 
respectively. However, if we do not want to use the simulation method used for 
selection rules R3 or R4, which assumed a completely random assignment of the 
original varieties to the design varieties, we can use the following method. In 
section 4.1.1 we have seen that the expected subset size (E(\S\)) can be written 
as 

t 

E(\ S\ ) = ZP( variety i selected), 

with S the random number of selected varieties. But for the LFC situation and 

selection rules Rl and R2, the minimum probability of correct selection, given 

that the best variety is assigned to design variety i, is also calculated as the 

probability that this design variety is selected. For the specific experimental designs 

under consideration these probabilities are all equal. Hence we can estimate the 

minimum probability of correct selection as 

r_Ê(\S\) 
t 

The simulation program SELCON offers the possibility to use this method. During 
the simulation, a frequency table of the subset size is created. In this frequency 
table fi indicates the number of times that the subset contained i varieties, with 
i = 1,2,..., t. Then the expected subset size is estimated by Ê{\ S | ) = £ ifjm. The 
variance of S is estimated by vârfl S\ ) = [Z i2^ - (E if,)2/m]/(m - 1 ) . Hence, the 
minimum probability of correct selection and the corresponding variance can, for 
the specific designs under consideration, be estimated by 
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/ 1 .= ig£n=! l ! , (4.34) 
t t 

var(/> ) = — . (4.35) 
t m 

A 95% confidence interval for P* is approximated by 

[P*- 1.96V vâr(P*) , F*+1.96Vvâr(F*)], 

and an approximate 95% lower limit off* is PLfi.95 = P* - 1.645A/ vâr(F*). 
The run-time of the simulation program depends on the type of computer 

used, the experimental design and the chosen selection rule. Using an Olivetti 
M380/XP4 personal computer, the selection constants for a simple 5x5 lattice 
design are calculated in 54 minutes for selection rule/?./, in 10 minutes for selection 
rule R2, in 5 minutes for selection rule R3 and in 3 minutes for selection rule R4. 

However , using a VAX-8700 (Digital) mainframe computer, it only takes 34 
seconds CPU-time to calculate the selection constant for selection rule R4. The 
differences in run-time for the various selection rules indicate to avoid selection 
rule Rl when the design is rather extensive. 

We want to use the program to find the selection constants for a given P*. 

Therefore, the minimum probability of correct selection is estimated for a range 
of selection constants, which must be given by the user. The relevant information 
is the estimated P* and the 95% lower limit of P*, for each selection constant. 
Consider a simple 5x5 lattice design. This design is partially balanced with two 
association classes and therefore the selection constants 5, corresponding to 
selection rule Rl are identical (Driessen, 1992). The simulation program was 
executed with a range of selection constants (8, = 5) starting from zero and 
increasing with steps of 0.1. Then the output of the program SELCON, using 
selection rule Rl with unknown variance, for the simple 5x5 lattice design 
becomes: 

S P' PL.0.95 

0.0 0.0400 0.0400 
0.1 0.0524 0.0520 
0.2 0.0676 0.0670 

2.1 0.7881 0.7849 
2.2 0.8168 0.8137 
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If the research worker wants the selection constant corresponding with 

P* = 0.80, then this value is calculated by log-linear interpolation. In our example 

the selection constant is calculated as 

s -f. ~ ^ • [ln(2.2)-ln(2.1)][ln(0.8)-ln(0.7849)]l 
ô = expjln(2.1)+ [ l n ( 0 . 8 1 3 7 )_ l n (o. 7 849)] } = 2 " 1 5 2 3 ' 

using the 95% lower limits of P*. The table of selection constants and estimated 

minimum probabilities of correct selection, as shown above, needs to be created 

only once for a particular experimental design. Thus the research worker can make 

a library of tables corresponding to the experimental designs that he often uses. 

4.3.2 Simulation versus numerical integration 

We will compare the results of simulation with the results of numerical 
integration for three experimental designs. Of course only designs can be used for 
which it is feasible to calculate the minimum probability of correct selection by 
numerical integration. The first experimental design is a completely randomised 
design with 5 varieties and three observations per variety. For such a design the 
four selection (of the best) rules are identical. We will use selection rule Rl with 
8, = 8 and selection rule R3. The selection constants, calculated by numerical 
integration for the situation of known variance, can be found in Bechhofer & 
Dunnett (1988) for P* = 0.80,0.90,0.95 and 0.99 and, multiplied by ^2, in Butler 
& Butler (1987) for P * = 0.50,0.80,0.90,0.95,0.975,0.99,0.995 and 0.999. The 
research worker has to specify P*. With the selected selection constant as input 
for 8, or 8 in the simulation program SELCON, the minimum probability of correct 
selection was estimated. For selection rule Rl we used the method that makes use 
of the estimated expected subset size, because for this design all the selection 
constants 8, are equal. The estimated probability has to be approximately equal to 
the exact P*. The results are presented in Table 4.6 (a). The real goal of the 
simulation program SELCON is to calculate the selection constants corresponding 
to a particular P*. In Table 4.6 (b) the approximate selection constants, obtained 
by interpolation from the simulation results, are given. 
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Table 4.6. Minimum probability of correct selection (ƒ**), selection constant (5), (a) 
estimated P* (/**), 95% confidence interval of P' (95%C7) and 95% lower limit of P* 
(95%LL), (b) estimated selection constant (8), estimated upper limit of the selection 
constant (8„); calculated for selection rules Rl and R3 for a completely randomised 
design with 5 varieties and 3 observations per variety, in case of known variance. Number 
of simulation rounds : 10000. 

(a) 

P* 

0.20 
0.50 
0.80 
0.90 
0.95 
0.99 

(b) 

P* 

0.50 
0.80 
0.90 
0.95 
0.99 

8 

0.00000 
0.72072 
1.45155 
1.83827 
2.16033 
2.77156 

Ô 

P* 
RI R3 

0.2000 0.2001 
0.4985 0.5004 
0.8000 0.7978 
0.8996 0.8967 
0.9500 0.9488 
0.9912 0.9894 

8 
Rl 

95%C/ 

Rl 
0.2000 
0.4940 
0.7959 
0.8965 
0.9479 
0.9903 

R3 
0.72072 0.7233 0.7213 
1.45155 1.4516 
1.83827 1.8413 

1.4588 
1.8546 

2.16033 2.1593 2.1705 
2.77156 2.7271 2.8043 

, 0.2000 
, 0.5030 
, 0.8041 
, 0.9027 
, 0.9522 
, 0.9921 

Rl 
0.7318 
1.4620 
1.8546 
2.1745 
2.7541 

R3 
0.1923,0.2079 
0.4906,0.5102 
0.7899,0.8057 
0.8907,0.9027 
0.9445,0.9531 
0.9874,0.9914 

§u 
R3 

0.7413 
1.4786 
1.8758 
2.2028 
2.8648 

95%LL 

Rl 
0.2000 
0.4948 
0.7965 
0.8970 
0.9482 
0.9905 

R3 
0.1935 
0.4922 
0.7912 
0.8917 
0.9452 
0.9877 

When ô = 0 is used, the minimum probability of correct selection becomes lit. 

The real P* in Table 4.6 (a) is only once not included in the approximate 95% 
confidence interval. The approximate 95% lower limits of P* lie very close to the 
real values of P* and are accurate enough for practical use. From Table 4.6 (b) we 
see that the approximated selection constants have to be rounded to two decimals. 
To achieve that the estimated selection constants are closer to the true selection 
constants, the number of simulation rounds has to be increased. For instance, with 
100,000 simulations the estimated selection constant corresponding to rule Z?5 and 
P* = 0.99 becomes 8 = 2.7693. 

For the situation of unknown variance, the selection constant 8 can be found 
in Bechhofer & Dunnett (1988) for P* = 0.80,0.90,0.95 and 0.99. The number of 
error degrees of freedom is 10. The results of numerical integration and simulation 
were also compared for this situation. The results are written in Table 4.7. 
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Table 4.7. Minimum probability of correct selection (/>*), selection constant (8), (a) 

estimated P* (P*), 95% confidence interval of P* (95%C/) and 95% lower limit off* 
(95%LL), (b) estimated selection constant (8), estimated upper limit of the selection 
constant (8U); calculated for selection rules Rl and R3 for a completely randomised 
design with 5 varieties and 3 observations per variety, in case of unknown variance. 
Number of simulation rounds : 10000. 

(a) 
P* 

0.20 
0.80 
0.90 
0.95 
0.99 

(b) 
P' 

0.80 
0.90 
0.95 
0.99 

8 

0.00000 
1.54516 
2.02419 
2.46557 
3.45291 

8 

P' 

RI R3 

0.2000 0.2001 
0.8001 0.7994 
0.9009 0.8980 
0.9508 0.9493 
0.9903 0.9912 

S 
Rl 

95%CI 

Rl 

0.2000,0.2000 
0.7957,0.8045 
0.8975,0.9042 
0.9484,0.9533 
0.9892,0.9913 

c 

R3 Rl 

1.54516 1.5455 1.5496 1.5591 
2.02419 2.0175 2.0382 2.0178 
2.46557 2.4537 2.4732 2.4812 
3.45291 3.4298 3.3857 3.4992 

R3 

0.1923,0.2079 
0.7916,0.8073 
0.8921 ,0.9039 
0.9450,0.9536 
0.9894,0.9930 

R3 

1.5752 
2.0758 
2.5152 
3.4687 

95%LL 

Rl 

0.2000 
0.7964 
0.8981 
0.9488 
0.9894 

R3 

0.1935 
0.7928 
0.8930 
0.9457 
0.9897 

Table 4.7 shows that also for unknown variance the approximation by computer 
simulation is satisfactory for practical use. To be on the safe side w.r.t. the minimum 
probability of correct selection, the upper limit 8„ must be used. 

The second design that we will use for the comparison is a completely 
randomised design with 5 varieties with an unequal number of observations of the 
varieties. Varieties 1 and 2 have 2 observations, varieties 3 and 4 have 3 
observations and variety 5 has 4 observations. Here the design is not variance 
balanced, and the four selection (of the best) rules are not equal to each other. We 
will make the comparison with the results of selection rule R2 in case of unknown 
variance. The number of error degrees of freedom is 9. First the selection constants 
were calculated with the use of numerical integration, and the P*'s corresponding 
to these selection constants were estimated by simulation. Also the selection 
constants themselves were estimated by means of simulation. The results are 
presented in Table 4.8. Notice that A, = A2 and A3 = A4. In this situation we cannot 
use the method with estimated expected subset size. 
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Table 4.8. Minimum probability of correct selection (ƒ>*), selection constants (A,), 
estimated P*, given that i is the best (P*), 95% confidence interval off*, given that / is 
the best (95%CY,), 95% lower limit of P*, given that / is the best (95%LL,), estimated 
selection constant (Â,) and estimated upper limit of the selection constant (Â, „); calculated 
for selection rule R2, for an unbalanced completely randomised design with 5 varieties, 
in case of unknown variance. Number of simulation rounds : 10000. 

p* 

0.80 
0.90 
0.95 
0.99 

P' 

0.80 
0.90 
0.95 
0.99 

P* 

0.80 
0.90 
0.95 
0.99 

P' 

0.80 
0.90 
0.95 
0.99 

P* 

0.80 
0.90 
0.95 
0.99 

A, 

1.39422 
1.85738 
2.28929 
3.28609 

A2 

1.39422 
1.85738 
2.28929 
3.28609 

A3 

1.35089 
1.77503 
2.17343 
3.09913 

A4 

1.35089 
1.77503 
2.17343 
3.09913 

A5 

1.32306 
1.72217 
2.09827 
2.97505 

P\ 

0.8011 
0.9016 
0.9519 
0.9899 

K 
0.7921 
0.8991 
0.9525 
0.9909 

Pi 
0.8033 
0.9045 
0.9511 
0.9899 

K 
0.8027 
0.9036 
0.9512 
0.9909 

P\ 
0.8062 
0.9024 
0.9501 
0.9903 

95%C7, 

0.7933 ,0.8089 
0.8958,0.9074 
0.9477,0.9561 
0.9879,0.9919 

95%C/2 

0.7841,0.8001 
0.8932,0.9050 
0.9483,0.9567 
0.9890,0.9928 

95%C/3 

0.7955,0.8111 
0.8987,0.9103 
0.9469,0.9553 
0.9879,0.9919 

95%C/4 

0.7949,0.8105 
0.8978,0.9094 
0.9470,0.9554 
0.9890,0.9930 

95%C/5 

0.7985,0.8139 
0.8966,0.9082 
0.9458,0.9544 
0.9884,0.9922 

95%LLX 

0.7945 
0.8967 
0.9484 
0.9883 

95%LL2 

0.7854 
0.8941 
0.9490 
0.9894 

95%LL3 

0.7968 
0.8997 
0.9476 
0.9883 

95%LL4 

0.7963 
0.8987 
0.9477 
0.9893 

95%LL5 

0.7997 
0.8975 
0.9465 
0.9887 

A, 
1.3883 
1.8468 
2.2737 
3.3000 

h 
1.4207 
1.8630 
2.2544 
3.2500 

A3 

1.3396 
1.7526 
2.1589 
3.1069 

A4 

1.3410 
1.7597 
2.1605 
3.0500 

Â5 

1.3055 
1.7098 
2.0989 
2.9560 

hu 
1.4109 
1.8833 
2.3182 
3.4126 

hu 
1.4438 
1.8931 
2.3064 
3.3376 

hu 
1.3619 
1.7789 
2.1952 
3.2126 

hu 
1.3624 
1.7841 
2.2029 
3.1645 

hu 
1.3241 
1.7360 
2.1298 
3.0447 

The last design that we will use for comparison is a balanced 4x4 lattice 

design. Such a design has 5 replications, 4 incomplete blocks per replication and 

4 varieties per block, with a total of 16 varieties. Because this design is variance 

balanced, the selection (of the best) rules are identical. We will use selection rule 

Rl and/?J for comparison. As mentioned in 4.1.1, for a variance-balanced design 

we can use the selection constants as calculated for the completely randomised 
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design. The selection constants 8; = 5 can be found in Bechhofer & Dunnett ( 1988). 

The comparison was made for the situation of unknown variance. The number of 

degrees of freedom for error is 45. The results are presented in Table 4.9. 

Table 4.9. Minimum probability of correct selection (P*), selection constant (5), (a) 
estimated P* (P*), 95% confidence interval of P* (95%C/) and 95% lower limit of P* 
(95 %LL), (b) estimated selection constant (S) and estimated upper limit of the selection 
constant (S„); calculated for selection rules Rl and R3, for a balanced 4x4 lattice design, 
in case of unknown variance. Number of simulation rounds : 10000. 
_ 

P' 8 P* 95%CI 95%LL 
Rl R3 Rl R3 RI R3 

0.0625 0.00000 0.0625 0.0668 0.0625,0.0625 0.0619,0.0717 0.0625 0.0627 
0.80 1.93524 0.8014 0.8062 0.7979,0.8048 0.7985,0.8139 0.7985 0.7997 
0.90 2.32298 0.9013 0.9029 0.8988,0.9038 0.8971,0.9087 0.8992 0.8980 
0.95 2.65515 0.9503 0.9508 0.9485,0.9520 0.9466,0.9550 0.9488 0.9472 
0.99 3.31401 0.9897 0.9906 0.9890,0.9905 0.9887,0.9925 0.9891 0.9890 

(b) 
P* 

0.80 
0.90 
0.95 
0.99 

S 

1.93524 
2.32298 
2.65515 
3.31401 

Rl 
1.9307 
2.3174 
2.6518 
3.3211 

8 
R3 

1.9147 
2.3078 
2.6486 
3.2859 

K 
Rl 

1.9399 
2.3277 
2.6653 
3.3427 

R3 
1.9383 
2.3338 
2.6805 
3.3922 

The comparisons with the results of numerical integration indicate that the 
method of simulation approximates the minimum probability of correct selection 
accurately enough. The width of the approximate confidence interval of P* varies 
with the number of varieties, P* and the confidence level and also depends on the 
knowledge about the error variance. Normally the width of the confidence interval 
is approximated as 2x l.96^jP\l -P*)lm. The desired width of the confidence 
interval dictates the number of simulation rounds to be used. For P* = 0.90, the 
width of the confidence interval is approximately 0.0118 if m = 10000 simulation 
rounds are used. However, the method that makes use of the estimated expected 
subset size gives a much smaller width of the confidence interval. So, if the 
selection constants are known to be identical, this method should be preferred. 
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In order to make statistical selection a tool that can be actually used in practice, 
it is very important to be able to calculate the selection constants corresponding 
to a selection rule. It is not necessary that the selection constants are accurate to 
the fifth decimal, because often the experimental data are also not that accurate. 
Furthermore, it is most probably irrelevant to a research worker whether P * = 0.800 
or P* = 0.804. Therefore the simulation method gives selection constants which 
are accurate enough to work with in practice. Also we can be somewhat 
conservative by using the selection constants that correspond to the 95% lower 
limit of P*. The availability of selection constants for any experimental design 
makes it possible to really use statistical selection in practice. 

4.3.3 Probability of correct selection and expected subset size 

In the previous section the aim was to calculate selection constants, given a 

particular experimental design and minimum probability of correct selection. With 

these selection constants we are able to execute the selection rules. To compare 

the various selection rules, we could be interested in the real probability of correct 

selection or the expected subset size. In this section we will use simulation methods 

to calculate these statistics, given the experimental design and the selection 

constants. 

To calculate the probability of correct selection and the expected subset size 

we have to assume that we know the randomisation procedure of the (randomised) 

experiment. We assume that the original varieties are assigned completely at 

random to the design varieties. Hence Pr(j]) = \lt\ for all T) e H. Then the 

probability of correct selection (PR(CS)) can be written as 

PR(CS)= £ P(CS \T])Pr(n) 
r |e H 

= -i- EP(C5|T1). 
tl Tie H 

Further we have to know the real values of the differences between the variety 
parameter of the best variety and the other variety parameters. For selection rule 
Rl, in case of known variance, the probability of correct selection can then be 
written as 

PR(CS ) = Tf \P(%((,)) ~ %(«) ~ (%((/)) ~ %(('))) - î((0)Vl((0)Ti((/))a + T(<) ~ T(/)' V/ * 0-
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This formula and the formulae for the other selection (of the best) rules are 

developed further in Dourleijn & Driessen (1991). The same problems that arose 

for calculating P* arise here for the exact calculation of a single P(CS | T|), using 

numerical integration. In addition to that t\ increases rapidly for increasing t. 

Therefore we often have to use simulation to approximate the probability of correct 

selection. 

The expected subset size (ER(\ S\ )) can be written as 

( 
ER(\ S\ ) - £ PR (variety i selected) 

; = i 

1 ' 
= — £ Z P(variety i selected | T|). 

t\ i = l TieH 

To calculate this expectation, we have to know the true values of the differences 

between the parameter of variety / and the parameters of the other varieties. For 

selection rule Rl, in case of known variance, we can write the expected subset 

size as 

ERQS\)=j- i ZPix^-^-lx^-z^Z^v^a + T-Xj, Vy*i). 
II ( =1 T|e H 

In Dourleijn & Driessen (1991) this formula is further developed, together with 
those for the other selection (of the best) rules. The exact calculation (by numerical 
integration) of the expected subset size gives the same problems as calculating the 
probability of correct selection. Therefore we often have to use simulation. 

To approximate the probability of correct selection and the expected subset 
size, a modification of the Fortran 77 computer program SELCON described in 
section 4.3.1 was written. For a given selection rule (rule Rl ,R2, R3 or R4 ) and 
experimental design we are asked to give the selection constants that correspond 
with one or more P* levels. Then we have to give the real values of the differences 
between the parameter of the best variety and the t - 1 other variety parameters. 
Without loss of generality we can assume that x(() = 0, and in that case 
t(,_i)-x(() = x((_0, i = l,2,...,t-l. The true values of the differences are 
expressed relative to c, which (without loss of generality) is assumed to be 1. Of 
the utmost importance is the assignment of the actual varieties to the design 
varieties. Here we assume that this assignment is completely at random. Then the 
assignment of the ranked actual varieties to the design varieties is also completely 
at random. 
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In section 4.3.1 we described how to create a solution of the reduced normal 

equations with the choice that xx = 0, in case of the Least Favourable Configuration 

(LFC). In that situation the variety parameters are assumed to be equal, hence the 

realisations from the t - 1 dimensional multivariate normal distribution can be 

taken as realisations of noise only. But in this section we are not dealing with the 

LFC. Therefore, the expectations of the estimators Ax should be added to the noise 

realisations. However, we do not know these expectations, because x was defined 

as the vector of design variety parameters. But we do know the randomisation 

process. Therefore a solution of the reduced normal equations is created as follows: 

The ranked original varieties (/) are completely at random assigned to the design 

varieties j , with i,j e {1,2, ...,t}. After that we know which design variety 

represents the best variety. Further we assume that x\ = x, = x , ^ , i being 

determined by the randomisation procedure. The realisations of the other x, 

(/ = 2,3, ...,t) are calculated by adding the values of x; to the noise realisations, 

calculated as m.4.3.1. The values of x, are determined by the randomisation process. 

This procedure of creating the t estimates of x, is repeated every simulation round, 

with in each round a new randomisation. 

In each simulation round we create a new set of realisations of the estimated 

variety parameters. In case we have the situation of unknown variance, a realisation 

of s is generated from the A/XV/V distribution, as in section 4.3.1. Then the chosen 

selection rule is executed, and the subset size is determined. Also we check whether 

we have a correct selection or not. This simulation is repeated very often, e.g. 

10000 times. Then the probability of correct selection is estimated as the number 

of successful selections divided by the total number of selections. This is the same 

method as we used for estimating P* in section 4.3.1. Also the 95% confidence 

interval and the 95% lower limit of PR{CS) can be approximated as described in 

that section. The approximation of the expected subset size is also mentioned in 

4.3.1. In that section the estimated variance of the subset size is given. With this 

estimated variance we can approximate the 95% confidence interval of the subset 

size : 

[m-t(m-i);o.975Vw(|S|) , m+t(m_1)>0975Vvar(|lS|)]. 

We will compare the results of simulation with the results of numerical 

integration for only one experimental design. This design is a completely 

randomised one with three varieties. It is very unbalanced because one of the design 
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varieties has 100 observations and the other two only 2. We assume that the variance 

is known, and we will compare the two methods for selection rule Rl. We will 

use the selection constants that correspond to a minimum probability of correct 

selection of 0.90. We used 8 different configurations of the ranked variety 

parameters, namely 4 so-called slippage configurations and 4 equidistant 

configurations. A slippage configuration with distance parameter q satisfies 
x(i) - x(2)= • • • = \t -1) = \t) ~ Q • We will denote such a configuration by SL(<7). An 

equidistant configuration with distance parameter q satisfies x(1) = 

T(2)-q = x(3)- 2<7 = ... = x(0 - (t - \)q. Such a configuration is denoted by EQO7). 

The results of the comparison are presented in Table 4.10. 

Table 4.10. Probability of correct selection (PR(CS)) and expected subset size (ER(\S\ )) 

for selection rule Rl in case of known variance, calculated by numerical integration. 
Approximate probability of correct selection (PR(CS)) and approximate expected subset 
size (ÊRQS\)), the corresponding 95% confidence intervals (95%C7) and the 
corresponding 95% lower limits (95%LL), calculated by simulation. Completely 
randomised design, t - 3, nx = 100 and n2 = n3- 2. Results were obtained for various 
configurations of the ranked variety parameters. P* - 0.90, 10000 simulation rounds. 

PR(CS) PR(CS) 95%C/ 95%LL 

SL(1) 0.9946 0.9949 0.9935,0.9963 0.9937 
SL(2) 0.9999 0.9999 0.9997,1.0000 0.9997 
SL(3) 1.0000 1.0000 1.0000,1.0000 1.0000 
SL(4) 1.0000 1.0000 1.0000,1.0000 1.0000 

EQ(0.25) 0.9599 0.9598 0.9559,0.9637 0.9566 
EQ(0.50) 0.9835 0.9831 0.9806,0.9856 0.9810 
EQ(0.75) 0.9930 0.9937 0.9921 ,0.9953 0.9924 
EQ(1.00) 0.9971 0.9971 0.9960,0.9982 0.9962 

ER(\S\) ÊR(\S\) 95%CI 95%LL 

SL(1) 2.1968 2.1957 2.1500,2.2414 2.1574 
SL(2) 1.3568 1.3471 1.3183,1.3759 1.3229 
SL(3) 1.0529 1.0528 1.0317,1.0739 1.0351 
SL(4) 1.0045 1.0048 1.0000,1.0245 1.0000 

EQ(0.25) 2.6071 2.6078 2.5553,2.6603 2.5637 
EQ(0.50) 2.3579 2.3547 2.3065,2.4029 2.3143 
EQ(0.75) 2.0435 2.0373 1.9950,2.0796 2.0018 
EQ(1.00) 1.7624 1.7595 1.7227,1.7963 1.7286 
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The results calculated by numerical integration are in Table 4.10 always included 

in the 95% confidence interval. If we want more accurate approximations, we have 

to increase the number of simulation rounds. 

4.4 Subset selection in (combined) variety trials 
In the preceding sections of this chapter, it has become clear that statistical 

subset selection can be a useful tool in the plant breeding practice. However, until 
now we have used subset selection in the situation of a single experiment with a 
completely randomised design or an (in)complete block design, and a fixed 
additive model for the observations. In chapter 3 we have seen that also mixed 
models play an important role in plant breeding. In addition to that the plant 
breeder's paramount interest lies in selection on the basis of estimates of variety 
values in which the information of several sites and/or years is assimilated. ]n4.4.1 

we will discuss the use of subset selection for all the situations and models 
mentioned in chapter 3. 

Until now we have assumed that there is only one quantitative character that 
determines the value of a variety. This character can also be composed of a number 
of different characters, and is then called a 'selection index'. Some remarks about 
selection on the basis of multiple characters are given in 4.4.2. 

Finally, 4.4.3 deals with the situation where a number of varieties have to be 
excluded a priori from selection. This can occur when the breeder has decided 
that specific varieties cannot be accepted, on different grounds than the studied 
selection character. 

4.4.1 Selection based on combined estimates 

In the plant breeding practice, variety trials are performed at several sites and 
sometimes also in two or more years. These variety trials are first analysed 
separately. Sometimes a trial is even further subdivided into subtrials, and then 
the subtrials are first analysed, followed by combining the subtrials of one trial. 
As shown in chapter 3, local BLUEs of contrasts between variety values can be 
combined into the BLUEs corresponding to a model for the joint observations of 
all trials. The ultimate selection will be made on the basis of these BLUEs. 
Nevertheless, it can also be worthwile to apply subset selection to the results of 
the separate trials. If the subsets at different sites contain more or less the same 
varieties, there is little variety x site interaction and it will be safe to select the 
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same varieties for the whole region. On the other hand, if the various subsets have 
completely different contents, then it will be hazardous to select varieties for the 
whole region. It then may be reasonable to divide the region into subregions. 

For separate trials with observations that can be described by a fixed additive 
model, subset selection rules have been given in 4.1,4.2 and 4.3. Section 3.3 dealt 
with the situation where these separate trials are subdivided into subtrials that are 
only connected by control varieties. There, it was shown that the BLUEs 
corresponding to a model for the joint observations of the subtrials can be obtained 
by combination of local estimators from the subtrials. Together with the estimates 
of the variety parameters we need the value(s) of the selection constant(s) to be 
able to execute a selection rule. It has been shown in 4.3.1 that with the use of 
computer simulation the selection constants can be approximated accurately 
enough to be used for practical application purposes. To approximate the selection 
constant(s) by simulation, the pseudo-variance/covariance matrix of the estimators 
of the variety parameters has to be available. 

In chapter 3 we discussed several models for the joint observations of a series 
of experiments. For each model it was shown how to calculate the least squares 
estimates of contrasts between variety parameters or variety values (for models 
with fixed interaction terms) with the local BLUEs from the separate trials. 
Furthermore, the (pseudo-)variance/covariance matrices of the estimators were 
given for each model. Using these (pseudo-)variance/covariance matrices (divided 
by o2) in the computer program SELCON that approximates the selection constants 
by simulation, we can determine the correct selection constants. Consequently, we 
can use the described selection rules for all the models mentioned in chapter 3. 
These also include mixed models. However, these are mixed models for which it 
is assumed that all variance ratios (e.g. GI/G2) are known. If the variance ratios are 
in fact estimates, we could determine the subset using a lower limit, an upper limit 
and a few values in between these limits of the variance ratios. If the resulting 
subsets are quite different, we have to be cautious. At this moment there are no 
selection rules available that are specifically designed for the situation of several 
unknown variance components. For that situation it is difficult to determine the 
selection constants analytically. However, using computer simulation this would 
indeed be possible. 

With most models we can select on the basis of BLUEs of (contrasts between) 
the variety parameters, or, if preferred, on the BLUEs of the variety values. With 
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the variance/covariance matrix of those estimators the values of vip which are 
included in certain selection rules, can be calculated. If the joint observations of 
the trials at different sites are described by an interaction model with fixed 
interaction terms, then we have to base the selection on the variety values. 

4.4.2 Selection on the basis of multiple characters 

Until now we have assumed that there is only one character on the basis of 
which the selection is made. However, in the plant breeding practice often 
numerous characters are taken into consideration while selecting varieties. In 
chapter 2 it is described that a sugar beet breeder selects his varieties mainly on 
the observed characters corrected root yield (CRY), sugar content (SC) and the 
number of bolting plants (BOL), and on the derived characters corrected sugar 
yield (CSY), white sugar yield (WSY) and white sugar content (WSC). When two 
or more characters are involved, the definition of the 'best variety' is less 
self-evident. This definition must be given by the plant breeder, but it appears that 
it is often very difficult to express the thoughts behind their breeder's eyes in a 
certain index variable (selection index) that is a function of the observed characters. 
However, if they manage to do so, the various observed characters can be reduced 
to a single selection index, and the theory of the previous sections can be used 
without adjustment. The selection index should be calculated at every plot, after 
which (contrasts between) variety values for this index can be estimated as 
described in chapter 3. The derived characters, like WSY, are also selection indices. 
In chapter 2 we introduced the financial yield (FIN) as a suitable selection index 
to base the selection on. 

The above mentioned procedure is different from a procedure where first the 
variety values are estimated for each observed character, and next the selection 
index is calculated with these estimates. The difference is caused by correlations 
between the observed characters. The correlations can be eliminated and variances 
standardised by calculating the so-called Mahalanobis distance of each variety. 
We will not further describe this or any other multivariate method for selection, 
where it is assumed that the various characters together have a multivariate 
distribution with a particular (known or estimated) dispersion matrix. 

Besides selecting a subset based on a single index, it is likely that breeders 
also will determine the subsets to be selected for other characters like CRY, WSY, 
WSC and so on. Let there be k characters. The question now arises whether it is 
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possible to combine these subsets meaningfully. First suppose we take the 
intersection of the various subsets. This may lead to the problem that this 
intersection is empty. For instance, since there exists a negative correlation between 
root yield and sugar content, the corresponding subsets will probably contain 
different varieties and therefore it is possible that the intersection of these two 
subsets is empty. Furthermore, after having taken the intersection of subsets that 
include the best variety with a certain confidence, it is not possible anymore to 
give a probability statement. This can be seen as follows. With probability of at 
least P*, say, it can be stated that the best variety for character 1 is included in 
subset 1, with probability of at least P*2 the best variety for character 2 is included 
in subset 2,..., and with probability P*k the best variety for character k is included 
in subset A:. If we now take the intersection of all subsets, it is not possible to give 
a statement about the probability that the best variety is included. For what is the 
best variety ? Also, we now cannot state that the best variety for character 1 is 
included in the intersection with probability at least P*. 

Now let subset i be selected in such a way that with probability at least P* 

all varieties included are good with respect to character/ (i = 1, ...,£), with 'good' 
properly defined by a distance measure 8*. The corresponding selection procedure 
is described in 4.1.1. Suppose we take the intersection of these subsets. We will 
calculate the minimum probability that the intersection contains varieties that are 
good with respect to every character. Let the event that all varieties in subset i are 
good be denoted by Et. So P(Et) > P* and P(E-) < 1 -P*, with the superscript c 

denoting the complement. Boole's inequality says that 
( k \ k 

P KJE- < l.P(EÎ), 
\i=i J < = i 

so the following probability statement can be made : 

Fl n £ . = 1 -P | u £ , c 

> 1 - EP(Ê,C) 
i = i 

>l-k+I.P* 
i = i 
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For P*'s close to 1,1 - k + IP* is approximately equal to TIP*, which is the correct 
expression for P{nE) if the various characters act independently. The equality 
of these two probabilities also depends on the number of characters k used. Again 
it is possible that the intersection is empty, but this depends on the definition of 
'good'. If the distance measure 5* is chosen large, so that it would be more 
appropriate to speak about 'not bad varieties' instead of 'good varieties', then the 
intersection probably will not be empty. 

A selection rule that could be useful for the above approach is a rule defined 
by Desu (1970). There, the goal is to select a non-empty random sized subset that 
does not include bad varieties, with probability at least P *. Variety j is called 'bad ' 
if t(t) — tj > 5*, and 8* is given by the experimenter. The selection rule is defined 
for observations from an equi-replicated completely randomised design and known 
variance a2. The rule reads : 
Select variety j (J = 1,..., t) if and only if 

with n the number of observations per variety and y the same selection constant 
as in (4.2). The number n has to be chosen large enough such that (yo)/*{n < 8*. If 
subsets are determined for each character, with minimum probability of correct 
selection P* (i = l,...,k), then the intersection of these subsets contain varieties 
that are not bad for every character, with probability at least 1 - k + IP*. 

If we take the union of the selection-of-the-best subsets corresponding to the 
various characters, we can state that the best variety for character 1, as well as the 
best variety for character 2, ..., as well as the best variety for character k, are 
included in the union with probability at least 1 -k+IP*. But the number of 
varieties present in the union of the subsets is probably very large and it is not 
inconceivable that all varieties are included. Then this method is not useful in 
practice. This method can be used if the sizes of the separate subsets are small, for 
instance if the subsets are selected with the aim to include at least one good variety. 

4.4.3 Excluding varieties from selection 

Consider the situation where the plant breeder wants to select a subset out of 

p < t varieties, so t - p varieties are apriori excluded from selection. For example, 

suppose we have an experiment with p new varieties and t-p control varieties. 
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If we want to select a subset including the best new variety, we do not want a 

control variety to be present in the subset. We cannot simply remove the control 

varieties from the selected subset (if they are selected) and still make the inference 

that the best variety is present in the remaining subset with a certain confidence. 

In this example we want to exclude certain varieties from selection because they 

are control varieties. But it is also possible that we want to exclude certain varieties 

from selection because they have characters for which they will be discarded. 

These characters, different from the character on which we base the subset 

selection, can be observed in the same trial or in other trials. We distinguish two 

situations : 

(a) Varieties are excluded on the basis of characters that do not influence the current 

selection character. We will give an example of this situation. In sugar beet breeding 

bolting resistance is tested in separate trials. These trials are sown very early on a 

relatively cold site. Varieties that have no bolting resistance at all have to be 

discarded. But the results of these trials become available only after the yield trials 

have been sown. To select a subset including the variety with the largest true yield, 

we want to exclude the varieties that are not resistant to bolting. In the yield trials, 

which are sown later, only few plants will bolt. We can asssume that this character 

has no influence on the yield. Hence we can use all observations to estimate the 

variety values and the error variance. A second example is the situation of control 

varieties, described above. 

The selection rule has to be executed with the p not excluded varieties. The 

variety values or parameters and the error variance are estimated using the 

observations of all t varieties, and the standard errors of the contrast estimators 

are calculated using the complete design with t varieties. To calculate the selection 

constant first the pseudo-variance/covariance matrix (divided by o2) of the 

estimators of the variety parameters is calculated using the complete design. Next 

the rows and columns corresponding to the excluded varieties are deleted and the 

remaining pxp matrix is the pseudo-variance/covariance matrix of the remaining 

p estimators. This matrix is then used to calculate the selection constant. The 

possibility to exclude certain varieties is implemented in the selection constant 

simulation program SELCON, described in 4.3.1. 
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(b) Varieties are excluded on the basis of characters that do influence the current 

selection character. Consider the following example. In an experiment t varieties 

are grown in an experiment with a block design. However, during the growing 

season some varieties practically die because of some disease. Because these 

varieties are very susceptible to this disease, their yield observations are very much 

influenced. All these observations will be close to zero. The variances of these 

observations will not be equal to those of the observations of the remaining p 

varieties, which are resistant to the disease. Hence for these observations models 

with equal error variances will be wrong. In an additive model an observation is 

the sum of a general level, a variety term, a block term and an error term. We make 

the assumption that there is no variety x block interaction, meaning that the 

differences between varieties are the same in the various blocks; hence an increase 

in the fertility of a block leads towards larger observations of all the varieties in 

that block. When there is some interaction, this term is confounded with the error 

term if we use an additive model. In the above example the susceptibility of the 

varieties to the disease will give rise to variety x block interaction. This term will 

be added to the error term in an additive model and therefore the residuals will 

become large. At the examination of the residuals these observations will be 

considered to be outliers. 

Outliers are often removed from the data set. However, if we delete the 

observations of the varieties that we want to exclude, the experimental design 

becomes more unbalanced and perhaps disconnected. The standard errors of the 

contrast estimators will increase, which results in a larger selected subset size. 

Therefore, we suggest the following approach. Analyse the complete design with 

t varieties and examine the residuals. If there is no reason to delete certain 

observations from the data set, we can proceed as in (a). However, if some 

observations absolutely disagree with the additive model we have to delete them. 

Then the variety parameters and the error variance are estimated with the use of 

the remaining observations and also the pseudo-variance/covariance matrix of x 

is calculated using the altered experimental design. After deletion (if still 

necessary) of the rows and columns that correspond to the t - p excluded varieties, 

the selection constant(s) for p varieties can be calculated with the use of this 
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variance/covariance matrix. Next the selection rule can be executed using this 

(these) selection constant(s), the estimated variety parameters and standard errors 

of the contrast estimators. 

4.5 Modifications of subset selection procedures 
With the proposed estimation procedures and selection rules statistical subset 

selection can be used in the plant breeding practice. However, the selected subsets 
are often disappointingly large. This is not only due to large standard errors of 
estimators, but is also caused by the stringent probability requirement. The 
probability of correct selection has to be larger than or equal to P*, for every 

configuration of the variety parameters. For that reason the selection constants are 
calculated for the Least Favourable Configuration (LFC) of variety parameters, 
because in that case the probability of correct selection is equal to P*. For subset 
selection, the LFC is a configuration where all variety parameters are equal. This 
configuration is not realistic from the practical point of view. The real configuration 
will be different from the LFC and therefore the probability of correct selection 
will be larger than P*. If a breeder wants to select varieties with the probability of 
correct selection approximately equal to P *, then he will frequently select too many 
varieties. The number of selected varieties can be reduced, however at some 
expenses. In 4.5.1 an approach is proposed where we have to make the extra 
assumption that the variety parameters are a random sample from a Normal 
population. In 4.5.2 an approach is proposed where information about the ranked 
variety parameter contrasts is used to select the ultimate subset. 

4.5.1 Assuming a superpopulation of variety parameters 

The probability of correct selection depends on the selection rule, the selection 

constant, the experimental design, the randomisation procedure and the 

configuration of the variety parameters. The true configuration of the variety 

parameters is of course never known, hence the probability of correct selection 

cannot be calculated. The absolute minimum of this unconditional probability is 

the probability of correct selection calculated for the LFC of the variety parameters. 

This P* is a special case of a conditional probability of correct selection, i.e. the 

probability of correct selection given a particular configuration. The LFC is purely 

theoretical in the plant breeding practice, and therefore P* is not very relevant to 
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the plant breeder. He is more interested in a probability of correct selection that is 

closer to reality. 

In some situations we can make the assumption that the variety parameters 

constitute a random sample from a population. This population of all possible 

variety parameters is denoted by 'superpopulation', because every variety itself 

also represents a population. For example, if two potato varieties are crossed, it is 

generally assumed that the variety parameters for yield of the genotypes in the 

offspring of this cross follow a Normal distribution. This because yield is a 

polygenic character and can be thought of as being the result of many other 

characters. We now assume that the variety parameters are a random sample from 

a Normal distribution with variance o^ (the genetic variance). Without loss of 

generality the expectation can be assumed to be zero. The superpopulation 

assumption is reasonable in the first selection stage, where no previous selection 

has occurred. The plant breeder, who is working for years with the same crop, has 

a fairly good idea about the ratio c^/c^, with o^ the error variance. This ratio 

determines the heritability h2 = 0^/(0^ + o^), which is the proportion of the total 

variance that is attributable to the effects of genes. 

For the analysis of the experiment the variety parameters are considered fixed, 

because we are interested in those specific parameters and not in the population. 

For a given configuration of variety parameters, drawn from a N(0,o^) distribution, 

we can calculate the conditional probability of correct selection, using a particular 

selection rule (see 4.3.3). However, using the superpopulation assumption, we are 

more interested in the unconditional probability of correct selection. The aim can 

be to control the expectation of this probability, denoted by E[P(CS)]. With the 

use of computer simulation we can estimate this E[P(CS)] for a given selection 

rule. The expectation and the variance of the unconditional probability of correct 

selection can be estimated as 

Ê[P(CS)]=Ê[P(CS) I conf.], 

vâr[/> (CS)]=Ê{vâr[P (CS) | conf.]} + vâr[F (CS) | conf.], (4.36) 

where [P(CS) \ conf.] denotes the estimate of the conditional probability of 
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correct selection, given the configuration according to the sample drawn from the 

superpopulation. The variance can be estimated by running a simulation program 

a number of times, each time estimating the conditional probability of correct 

selection for a different configuration (but with all configurations being samples 

from a Normal superpopulation) and estimating the variance of the estimator of 

the conditional probability. The average of the variance estimates gives the first 

right hand term in (4.36) and the estimated variance of the estimated probabilities 

gives the second right hand term in (4.36). In Table 4.11 the values of 

Ê[P(CS)] - 1.645 Vvâr[/> (CS)], which is the approximate 95% confidence lower 

limit of the unconditional probability of correct selection, are given for the situation 

of a completely randomised design with t = 5 or t = 25 varieties. Table 4.11 shows 

that the variance of the unconditional probability of correct selection decreases 

with increasing t and/or Ê[P(CS)] and decreasing h2. If we choose 

Ê[P(CS)] =0.95, the probability of correct selection will only occasionally be 

smaller than 0.90. 

Table 4.11. Approximate 95% confidence lower limits of the unconditional probability 
of correct selection, for various values of the estimated expected unconditional 
probability of correct selection (Ê [P(CS)])> heritability (h2) and number of varieties (t) 
in a completely randomised design. 

h2 

0.001 

0.01 

0.1 

0.2 

0.3 

0.4 

0.5 

t 

5 
25 

5 
25 

5 
25 

5 
25 

5 
25 

5 
25 

5 
25 

Ê[P(CS)] = 0.$0 Ê[P(CS)]=0.90 

0.785 
0.788 

0.757 
0.769 

0.675 
0.721 

0.628 
0.695 

0.591 
0.673 

0.558 
0.653 

0.527 
0.629 

0.891 
0.892 

0.875 
0.881 

0.824 
0.850 

0.797 
0.835 

0.775 
0.822 

0.756 
0.809 

0.740 
0.796 

Ê[P {CS)] =0.95 

0.944 
0.945 

0.934 
0.939 

0.907 
0.924 

0.892 
0.916 

0.880 
0.907 

0.869 
0.899 

0.855 
0.889 

Ê[P (CS)] = 0.99 

0.988 
0.988 

0.987 
0.987 

0.981 
0.984 

0.977 
0.982 

0.976 
0.981 

0.974 
0.980 

0.970 
0.979 
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The present selection rules are not designed to deal with two unknown 

variance components (o^ and o^). In order to calculate the selection constant we 

will therefore assume that the heritability is known. Sometimes the experienced 

plant breeder knows the magnitude of the heritability. Otherwise he can 

approximate a 99% lower bound for the heritability from previous experiments 

and use this lower bound as the known heritability. 

The simulation program to calculate the selection constant(s), as described 

in 4.3.1, was extended to estimate the expectation of the probability of correct 

selection in the case of a superpopulation assumption. In this simulation program 

the error variance is 1, hence the variance of the superpopulation is equal to 

Ĝ  = h 2/( 1 - h2). The variety parameters are drawn from a Normal distribution with 

zero expectation and variance o£. New realisations (a random sample from the 

superpopulation) are generated every simulation round again. Knowing the 

realisations, we also know which variety is the best. After generating realisations 

of x, - Tj (/ = 2,..., t), the selection rule can be executed and we can proceed as in 

the original simulation program. The expectation of the probability of correct 

selection is approximated, for a range of selection constants, as the number of 

correct selections divided by the number of simulation rounds. The selection 

constant corresponding to a particular Ê[P(CS)] can be found by log-linear 

interpolation. Suppose the selection-of-the-best subset rule is used with a selection 

constant corresponding to Ê[P(CS)] = 0.95. Then, given the assumption that we 

have a Normal superpopulation of variety parameters with a particular heritability, 

we can state that the expectation of the probability that the best variety is included 

in the subset is 0.95. 

The Normal superpopulation is often a good assumption if we are dealing 

with varieties in the first selection stage. For later selection stages the Normal 

superpopulation assumption is rather artificial, because selection has flawed the 

Normality of the population. We will demonstrate the aforesaid approach with a 

small example. 

Example 

Consider a completely randomised design with 100 varieties and 2 

observations per variety. Suppose we make use of selection rule R3 (see 4.2). The 
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variety parameters are assumed to be a random sample from a Normal distribution. 

We can approximate the expected probability of correct selection for a range of 

selection constants, using simulation techniques. This can be done for various 

heritability values. In Figure 4.1 the results are presented for h2 = 0,0.01,0.1,0.3 

and 0.5. For h2 = 0 the results are equal to P*, because with h2 - 0 there is no genetic 

variation and all variety parameters will be equal (i.e. the LFC). 

Figure 4.1. The estimated expectation of the probability of correct selection (Ê [P (CS)]} 
in relation to the selection constant (5), calculated for a completely randomised design 
with 100 treatments and 2 observations per treatment. The results are calculated for 
different heritabilities (h2) corresponding to the superpopulation assumption. 

From Figure 4.1 we see that the selection constant can be reduced 

substantially, if we make use of the superpopulation approach. This results in a 

smaller selected subset. Although the probability statements are not as rigid as the 

statements corresponding with the conventional subset rules, the practical 

usefulness of the superpopulation approach is evident. 
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4.5.2 Using simultaneous lower bounds of ranked variety parameter 

contrasts 

If we insert simultaneous confidence lower bounds of the ranked variety 

parameter contrasts x(() - x(() (/ = 1 ,...,t-1 ) in the expression of the probability of 

correct selection, we get a confidence lower bound for this probability (see 4.1.1). 

For randomised experiments this probability can be approximated by simulation, 

as described in 4.3.3. Lam (1989) derived lower confidence bounds for x(0-T((-) 

(i = 1, ...,t-1), for experiments with an equi-replicated completely randomised 

design. Driessen (1991) extended these results for ( incomplete block designs. If 

we want to calculate simultaneous (1 - a ) x 100% confidence lower bounds for 
T(o ~~ T(0' w e ^mi h a v e t 0 calculate separate constants for each variety, which we 

have previously called 'confidence constants' and denoted by A-. The confidence 

constants must be chosen in such a way that the following relation holds : 

P (T, - Xj - fyys < x, - x; < T,. - x,. + A,cv,y5 V/ * i ) = 1 - a 

{ 'a vtja 'a = l - a 

T, ^ 
? l ^ - ' ^ ^ - ' 

= l - a , (4.37) 

with T, = 
^^•-^-(Xi-X,) x ,-x,_1-(x,-x ; .1) x,-x, + 1 - ( x , - x ; + 1) x , -x r - (x , -x , )A 

vua Ho-^a v,(1+1)a v,-,o 

T , / ( 5 /G ) has a standard (t -1) multivariate Student distribution with a particular 

correlation matrix, depending on the experimental design. T,/(j/a) is symmetric 

around 0(( _,). If the experimental design is variance-balanced, then the confidence 

constants are equal to each other (Af = Ac). To calculate the confidence constants 

we can use numerical integration or simulation. However, we also can use the 

results of the calculation of the selection constants for the selection rules, because 

the following relation holds : 
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l-a = P - A ? l 

>P 

t - \ 

T 
< - ^<A< l 

s /o 
' i * « - l 

T 

s/o ' '~l 

( 
=p — ^ A ' L , 

s/o ' '~l 

f T ^ 

+ ƒ> - 1 , 

hence 

- f (4.38) 

The left hand side of (4.38), equated to P*, gives the equations to calculate the 

selection constants for a subset selection rule with separate selection constants for 

each variety, with A- - 8, (see 4.3.1). If we use as confidence constants the selection 

constants calculated for P * = 1 - a/2, then the confidence of the lower bounds will 

at least be (1 - a ) . 

For two completely randomised designs with 4 and 21 varieties, respectively, 

the values of 6 corresponding to P* = 0.90 and 0.95 and those of Ac corresponding 

to 1 -a = 2P*-l =0.80 and0.90 were tabulated in Table 4.12 (a), using the tables 

of Bechhofer & Dunnett (1988). This was done for the situation of 10 and infinite 

degrees of freedom for error. We see that for the higher confidence level the 

difference between the two constants is smaller than for the lower confidence level. 

This difference also gets smaller when the number of degrees of freedom for error 

becomes larger. Furthermore the number of varieties influences the difference 

between the two constants. For 10 degrees of freedom the larger number leads 

towards larger differences, for infinite degrees of freedom the larger number of 

varieties results in smaller differences. In general, however, we can say that the 

differences between the two constants are only small, especially if we are interested 

in a confidence level of 0.90 and higher. This can also be seen in Table 4.12 (b), 

where the true confidence level that would be obtained if we had used the selection 

constant corresponding to P* = 1 - a / 2 as the confidence constant, is calculated. 

This is done for a completely randomised design with 4 varieties and 10 degrees 

of freedom for error. From this table we see that the true confidence level is only 
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notably higher for relatively small values of 1 - a . So in practice we can use the 

selection constant that corresponds to P*=l-aJ2 as confidence constant to 

calculate (1 - a ) x 100% confidence lower bounds of x(0 - x(0 and P(CS). 

Table 4.12. (a) Selection constant (ô) and confidence constant (Ac) for two values of 
minimum probability of correct selection (P*) and confidence level (1-oc), with 
P * = 1 - a/2. The entries are calculated for two completely randomised designs with t - 4 
and 21 varieties, respectively, and two levels for the error degrees of freedom (df). (b) 
True confidence level ( l - a ( A c = 5)) if the selection constant corresponding to 
P* = 1 - a / 2 is used as confidence constant; calculated for a completely randomised 
design with 4 varieties and 10 degrees of freedom for error. 

(a) t =4 t =21 

P',\-a S,Acforl0df 5,Acfor~df 6,Acforl0df 5, Ac f or ~ df 

0.90,0.80 1.89856,1.89367 1.73352,1.73306 2.65124,2.63786 2.34699,2.34689 

0.95,0.90 2.33756,2.33534 2.06208,2.06204 3.11715,3.10965 2.64492,2.64491 

(b) />* 5 i-cc(Ac = 6) 

0.80 1.41977 0.6078 

0.90 1.89856 0.8015 

0.95 2.33756 0.9004 

0.99 3.31424 0.9800 

After the calculation of the confidence constants A-, we can calculate the 

(1 - a ) x 100% confidence lower bounds of x(I) - x(() (i ^ t). How this can be done 

is described in 4.1.1. 

The probability of correct selection is a function of the ranked variety 

parameter contrasts x(()-x((). To calculate the minimum probability of correct 

selection these contrasts were set to zero. But with the lower bounds of these 

contrasts available, we can replace xw - x(l) by their lower bounds. This lower bound 

configuration is closer to reality than the LFC, and therefore the probability of 

correct selection, calculated with this configuration, will be closer to the real 

probability of correct selection. This probability is a (1 - a ) x 100% confidence 

lower bound of the real probability of correct selection, and is denoted by P (CS)L. 

The lower bounds of x(0 - x(0, as such forming the configuration of variety 
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parameters, have to be expressed relatively to o. However, often we assume that 

a is unknown. We then can use a Q x 100% confidence upper bound for a, namely 

•W%v,i-ß/v> with v the number of degrees of freedom for error. Then the total 

confidence level will become 1 - a + Q - 1 = Q - a. Then we can say that with 

confidence (Q - a) the probability of correct selection is at least P(CS)L. 

We now propose the following method of selection. First give a minimum 

probability of correct selection, say P*. Given the experimental design and the 

selection rule used, we can determine the selection constant(s). Then the subset 

can be selected for which we can state that the probability of correct selection is 

at least P*. Also, simultaneous (1 - a) x 100% confidence lower bounds of T(0 -x ( i ) 

(i * t) and a (Q - a) x 100% confidence lower bound of the probability of correct 

selection can be calculated. If F (CS )L is (too) large, then we can select less varieties 

than indicated by the selection rule. This means that the initial value of the minimum 

probability of correct selection was too high. 

Then we choose a different minimum probability of correct selection P*2, with 

P*2 <Pi, calculate the selection constant(s) and determine the subset. The 

probability of correct selection now is at least P*2. Again, the (Q - a ) x 100% 

confidence lower limit of the probability of correct selection can be calculated, 

using the new selection constants. Now the subset size and the lower bound for 

the probability of correct selection are smaller, as we wanted, but the minimum 

probability of correct selection is also smaller. The probability for the confidence 

statement {P(CS)>P(CS)L} is equal to ß - cc , and the probability that 

{/>2 ^ P (CS )<P (CS )L } is equal to 1 - Q + a, because P*2 is a guaranteed minimum. 

The above cycle is continued until a satisfactory combination of P* and 

P(CS)L is found. 

Example 

Twenty-one sugar beet hybrids were grown in an experiment with a complete 

block design with 4 replications. The white sugar yield (WSY) is one of the 

observed characters. The least squares WSY variety values for variety 1,..., variety 

21 are 10.43, 11.88, 12.31, 11.94, 10.16, 12.70,10.72, 12.85, 9.42, 10.23, 11.88, 

10.54, 11.93, 12.13, 9.60, 10.39, 12.49, 11.98, 11.90, 11.86, 9.87 ton/ha, 

respectively. The estimated error variance, based on 60 degrees of freedom, is 
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s2- 0.27 (ton/ha)2, hence s = 0.52 ton/ha. From the 21 varieties a subset is selected. 

We want the best variety to be included in the selected subset, and we start with 

P*x = 0.95. The selection rule we will use is rule R3. The selection constant for the 

complete block design with 4 replications and 21 varieties is equal to 8 = 2.72. 

With P^O.95 , 12 varieties (varieties 8,6,17,3,14,18,4,13,19,11,2 and 20) have 

to be selected. 

Additionally, simultaneous 90% confidence lower bounds of x(0 - x(() can be 

calculated. As confidence constant the selection constant that corresponds to 

Pi = 0.95 was used. So Ae = 2.72. Then the lower bounds are : L, = 1.44, L2 = 1.26, 

L3 = 0.70, L4 = 0.63, L5 = 0.47, L6 = 0.43, L7 = 0.32, L8 = 0.14 and L9 = ... =L20 = 0. 

With these lower bounds also a confidence lower bound for the P(CS) can be 

determined. Because a is not known but is estimated, we first determine a 99% 

upper bound for it. The number of degrees of freedom is 60 and XÔO.O.OI
 = 37.485, 

hence an upper bound for c is a„ = 0.52/^37.485/60 = 0.66. So the simultaneous 

lower bounds of x(0 - x(/) can be written as : Lx = 2.18 a„, L2 = 1.91 o„, L3 = 1.06 o„, 

L4 = 0.95a„, L5 = 0.71a„, L6 = 0.65ou, L7 = 0.48o„, L8 = 0.21o„ and 

L9 = ... = L20 = 0. Now a 99-10=89% confidence lower bound of P(CS) can be 

determined by simulation (see 4.3.3), assuming that the variance is known and 

using the standardised L,. This lower bound was equal to P(CS)L = 0.97. 

This lower bound of the probability of correct selection is rather large, so we 

could also try another, smaller, P*. With P*2 =0.90 only 6 varieties have to be 

selected (varieties 8,6,17,3,14,18). The 90 % confidence lower bounds of x(()-x(() 

remain unchanged, but the 89% confidence lower bound of P(CS) does change, 

because the selection constant now has dropped to 8 = 2.39. With simulation we 

found that P (CS )L = 0.93. This combination of P * and P (CS )L may be satisfactory 

to the breeder, also in view of the corresponding subset size. 

The success of this approach depends heavily on the real configuration of the 

variety parameters and the magnitude of the error variance. If the lower bounds 

for x(()-x(l) are only small and most of them zero, then the lower bound P(CS)L 

will be close to P*. Then the extra effort does not pay off. However, lower bounds 

for x(()-x(() and P(CS) are always informative. 
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CHAPTER 5 

Executing subset selection rules 

In this chapter we will describe a case study of the use of subset selection in 

the plant breeding practice. In the previous chapters various obstacles on the way 

to practical application of statistical selection procedures have been removed. The 

case study, which is described in section 5.2, concerns selection of sugar beet 

varieties that have been grown in trials at several sites. However, it is not feasible 

to execute the selection rules manually. Therefore, in section 5.1 computer software 

that shoulders this task is described first. 

5.1 Computer software 
If we want to use subset selection in the plant breeding practice, a computer 

program which executes the selection rule of our choice is indispensable. This 
computer program should also be able to deal with unbalanced incomplete block 
designs, because most of the plant breeding trials have this type of design. For the 
t independent samples situation (completely randomised designs) the computer 
package RANKSEL (Edwards, 1985) and the RSMCB procedure of SAS 
(Statistical Analysis System, version 5.*) (Aubuchon, Gupta & Hsu, 1985) can be 
used. The author has written a computer program in Fortran 77, called SUBSET, 
that uses the output of the selection constant simulation program SELCON 
(described in 4.3). With the simulation program SELCON and the selection 
program SUBSET four types of selection-of-the-best subset selection rules (Rl -

R4, as described in 4.2) can be executed for all possible designs. Also, the two 
rules corresponding to selection w.r.t. the average of control varieties (R5 and R6, 
see 4.3) can be executed. We will describe this selection program and demonstrate 
it with a small example. 

Running the program we first have to indicate whether we want to select the 
best variety or select with respect to the average of control varieties. If we have 
chosen the first option, then we are asked whether we are interested in selecting 
good varieties too. If the answer is 'yes' then we have to give the distance parameter 
Ô*, in units of the estimated standard deviation. Next we have to choose the selection 
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rule we want to use. If we have chosen one of the selection rules that uses standard 
errors of the contrast estimators, we have to supply the program with an input file 
which contains either the incidence scheme of the experimental design or the 
pseudo-variance/covariance matrix (divided by o2) of the parameter estimators. 
With the use of this information the standard errors of the contrast estimators are 
calculated. For selection with respect to control varieties, the number of controls 
has to be given. Furthermore, we have to supply the program with two input files: 
one containing a table with a range of selection constants and the corresponding 
95% confidence lower limits of P* (this is the output of the selection constant 
simulation program SELCON), and the other with the estimates of the standard 
deviation and the (contrasts between) variety parameters. 

If the selection goal is to select the smallest subset that contains the best 
variety, or to select the smallest subset that contains at least one good variety, or 
to select the smallest subset that includes all varieties sufficiently better than the 
average of the control varieties, then the program calculates for each variety the 
smallest P * leading to selection ofthat variety. The results are written to an output 
file. From the output we can easily read which subset size | S | corresponds with 
which P* and which varieties have to be selected. If the selection goal is to select 
the largest subset containing only good varieties, then the program calculates for 
each variety the largest P * leading to selection ofthat variety. The P * corresponding 
to a particular selection constant is approximated using log-linear interpolation. 
The output of the selection program can be best explained by an example. 

Example 

We will use a small example, also described by Driessen (1991). The 
experiment has a simple 2x2 lattice design. The estimates of the four treatment 
parameters are -1.875, -0.125, -0.625 and 2.625. We will assume that the treatments 
are different varieties. The error variance is assumed to be known and equal to 1. 
When ö is assumed to be known we replace s by o in the selection rules and 
calculate the selection constant for the situation of known variance. A table of 
selection constants and corresponding 95% confidence lower limits of P* for rule 
R3 was created with the selection constant simulation program SELCON. For the 
simple 2x2 lattice design the selection constant ô, calculated for rule R3, is identical 
to the selection constants 8, corresponding to rule Rl. Suppose we are interested 
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in selection of the best and selection of good varieties. The distance parameter 8* 
is taken to be equal to 1. Using selection rule R3, we get the following output of 
the selection program: 

Design : 2x2 simple lattice 
Number of varieties : 4 
Selection of the best 
Selection rule : (3) 

Explanation : 
A subset size |S| is obtained for P* in the interval [P*l, P*u>. 
Hence a variety R, with estimate EST, is selected for a P* 
larger 
than or equal to P*min. 

Selection of the smallest subset including the best variety. 

I SI [P*l, P*u> R EST P*min 

4 
2 
3 
1 

2 
-0 
-0 
-1 

6250 
1250 
6250 
8750 

0 
0 
0 
0 

0000 
9664 
9885 
9977 

1 [ 0.0000 , 0.9664> 
2 [ 0.9664 , 0.9885> 
3 [ 0.9885 , 0.9977> 
4 [ 0.9977 , 1.0000> 

Selection of the smallest subset including a good variety. A 
good variety is at most 1.0000 units worse than the best variety. 
This is 1.00 times the estimated standard deviation. 

ISI [P*l, P*u> R EST P*min 

1 
2 
3 
4 

[ o 
[ o 
[ o 
[ + 0 

0000 , 
9966 , 
9992 , 
9977 , 

0 
0 

+ 0 
1 

9966> 
9992> 
9997> 
0000> 

4 
2 
3 
1 

2 
-0 
-0 
-1 

6250 
1250 
6250 
8750 

0 
0 
0 
+ 

0000 
9966 
9992 
9997 

Selection of the largest subset containing good varieties only. 
A good variety is at most 1.0000 units worse than the best 
variety. This is 1.00 times the estimated standard deviation. 

Explanation : 
A subset size IS I is obtained for P* in the interval [P*l, P*u>. 
Here variety R, with corresponding character, is selected if 
P* is smaller than or equal to P*max. 

ISI [P*l, P*u> R EST P*max 

1 -1.8750 0.0000 
3 -0.6250 0.0000 
2 -0.1250 0.0000 

0.0000 , 0.9966> 4 2.6250 0.9966 
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The notation +0.9997 denotes a value between 0.9997 and 1.0000. The table 
with selection constants and corresponding 95 % lower limits of P* stopped at a 
P* value of 0.9997. Suppose we would like to select with P* = 0.99. For obtaining 
the smallest subset including the best variety with confidence 0.99, we would have 
to select variety 4 (with parameter estimate 2.6250), variety 2 (with parameter 
estimate -0.1250) and variety 3 (with parameter estimate -0.6250). Thus the subset 
size would be 3. For obtaining the smallest subset including a good variety we 
only would have to select variety 4. However, notice that the definition of 'good' 
is very wide. To select the largest subset containing good varieties only, we would 
have to select variety 4. In this example, 1 is the largest subset size possible. Notice 
that with P * > 0.9966 the subset comprising good varieties only is empty; even the 
variety with the largest estimated variety parameter cannot be selected as being 
'good'. 

The use of the above described selection program facilitates the use of subset 
selection and gives better insight in the consequences of selecting a prespecified 
number of varieties. For example, if one decides to select only one variety (variety 
4 with parameter estimate 2.6250), then the statement that the best variety is 
included in this subset (with size 1) can be made with confidence P* = 0.9664. 

5.2 A case study 
In this section we will apply statistical selection procedures, more specifically 

subset selection procedures, to a dataset generously supplied by the research 
division of The Royal Vanderhave Group, situated in Rilland, the Netherlands. In 
doing so, we will come across several topics discussed in the previous chapters. 
It is not feasible to study all treated topics in this case study, because then it would 
become too extensive. In 5.2.1 the experiment is described, as are the selection 
aim and the observed characters. In 5.2.2 contrasts between variety values are 
estimated, paying attention to estimation in concatenated trials and combined 
estimators. Section 5.2.3 deals with subset selection of the best variety, both at 
separate sites and using 'mean performance' estimates. Other selection goals are 
discussed in 5.2.4 and 5.2.5, namely selection of at least one good variety and 
selection with respect to the control varieties, respectively. In 5.2.6 the extra 
assumption of the existance of a superpopulation of variety parameters is made, 
and the varieties selected with a rule that satisfies the Ê[P(CS)]-condition (see 
4.5). Finally, the case study is evaluated in 5.2.7. 
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5.2.1 Description of the experiment 

We consider variety trials of sugar beet varieties. There are 110 new varieties, 
of which only a limited amount of seed is available. There are 6 experimental 
fields, namely fields situated near Rilland (The Netherlands), in the Flevopolder 
(The Netherlands), near Ingeleben (Germany), near Hevesen (Germany), near 
Rosière (France) and near Avelin (France). However, because of shortage of seed 
or lack of space at the individual sites, the varieties cannot be grown at all sites. 
To be able to compare the results of the various sites, the same three control varieties 
are added to the group of varieties at each site. These control varieties have variety 
numbers 1, 2 and 3. 

At the individual sites the trials are of the, in 3.3 defined, concatenated type. 
The trial at a site can be broken down into smaller subtrials with different new 
varieties, and these subtrials are only connected by the three control varieties. So 
varieties 1,2 and 3 are grown in all subtrials. The subtrials have either a 5x5 lattice 
design with 3 replications (denoted by L3), or a 5x5 lattice design with 4 
replications (L4), or a randomised complete block design with 4 blocks containing 
25 varieties (C4). Consequently, a subtrial contains 22 new varieties and 3 control 
varieties. The group of new varieties in one subtrial is called a series, and this 
series is grown at three or four sites. The dataset contains 5 series (5x22=110 new 
varieties), spread over 6 sites. The experimental scheme can be summarised as 

The Netherlands Germany France 
Site : Rilland Flevopolder Ingeleben Hevesen Rosière Avelin 

— 

L3 L3 
L3 

We assume that the aim is to select varieties that on the average are superior 
at the chosen sites. For that reason several characters have been observed. We 
restrict ourselves to 3 characters. Two basic characters are corrected root yield 
(CRY) and sugar content (SC). A derived character is white sugar yield (WSY). 
We assume that these characters can be considered Normally distributed. The latter 
character can be seen as a selection index. WSY is defined in chapter 2. To achieve 
the selection aim we will use statistical selection. 
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Series : 1 

2 
3 
4 
5 

C4 
L3 

L3 

L4 
L4 
L3 
L3 
L3 

L4 
L4 
L3 
L3 

L4 
L4 
L3 



5.2.2 Estimation of contrasts between variety values 

The first part of statistical selection is the estimation of (contrasts between) 
variety values. Also the determination of the pseudo-variance/covariance matrix 
(divided by a2) of the variety parameter estimators and the estimation of the error 
variance are important to later approximate the selection constant(s) and to execute 
the selection rules, respectively. We will give the BLUEs of the contrasts between 
the new variety parameters and the average of the control variety parameters, 
calculated at the individual sites. Furthermore we will give the combined estimates, 
also called the 'mean performance' contrast estimates of the varieties. 

At a single site we will use the fixed additive model (3.1) to describe the 
observations. One could also decide to use the mixed additive model (3.7) with 
fixed replication terms and random blocks within replication terms. We decided 
to use the fixed model because we have no knowledge about the ratio o^/ö2, with 
G2) the variance component between blocks within replications and o2 the error 
variance component. Assume c^ » G2. If one still wants to use the mixed model, 
then there is nothing for it but to estimate this ratio from the current experiment, 
e.g. using the REML procedure. Because in this case study the number of varieties, 
subtrials and blocks is not very large, it is feasible to analyse these subtrials as one 
trial in one step, e.g. with the SAS computer package. However, we can also use 
the theory developed in 3.3 and perform the estimation procedure in two steps. 
Then, first the variety parameters are estimated as good as possible at the separate 
subtrials and next these subtrial estimates are combined into the best variety 
parameter estimates at the trial level. In 5.5.5 it has been proven that the local 
estimator of a contrast between a new variety parameter and the average of the 
control variety parameters is already the BLUE if the new variety is included in 
the subtrial with the C4 design. The estimates w.r.t. CRY, SC and WSY are 
presented in Tables 5.1,5.2 and 5.3, respectively. If we look at Table 5.1, we notice 
that most of the CRY contrast estimates are negative. The three control varieties 
are varieties that are currently on the market and therefore are very good. However, 
they do not have a very high sugar content, because in Table 5.2 we see that most 
SC contrast estimates have a positive sign. But the average control variety value 
estimates for WSY are larger than most of the variety value estimates of the new 
varieties, as seen in Table 5.3. 
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The results at the separate sites can be extended by the coefficient of variation 
(c.v.), the root of the error mean square (s) and the degrees of freedom for error 
(dfe). They are equal to : 

Rill. Flev. Inge. Heve. Rosi. Avel. 

CRY 

SC 

WSY 

c.v. 
s 

dfe 

c.v. 
s 

dfe 

c.v. 
s 

dfe 

0.05 
31.12 

148 

0.02 
40.51 

148 

0.05 
46.17 

148 

0.03 
21.33 

228 

0.01 
24.90 

228 

0.03 
36.97 

228 

0.04 
23.48 

190 

0.02 
27.58 

190 

0.04 
35.87 

190 

0.04 
19.03 

152 

0.02 
28.61 

152 

0.04 
33.34 

152 

0.04 
22.36 

94 

0.02 
28.78 

94 

0.04 
31.95 

94 

0.06 
34.22 

74 

0.01 
20.57 

74 

0.06 
51.17 

74 

where Rill, means Rilland, Rev. means the Flevopolder, Inge, means Ingeleben, 
Heve. means Hevesen, Rosi, means Rosière and Avel. means Avelin. 

After the analyses at the individual sites, a model for the joint observations 
of the various sites is considered. We will use the fixed additive model (3.8). In 
the current case study the analysis can be done in one step, e.g. with the SAS 
package. If experimenters cannot make use of powerful statistical packages, or if 
the number of sites is very large, the BLUEs of contrasts between variety values 
can be calculated in two steps. Then the local BLUEs are combined into the 'mean 
performance' BLUEs. The corresponding theory is already elaborated in 3.2.2, 

where also examples are given. This two step method will be useful in practice if 
software is developed that makes the two step method easy to perform. The local 
BLUEs and the pseudo-variance/covariance matrix of the variety parameter 
estimators become available in the first step, because breeders also want to study 
the local estimates and execute a selection rule with these estimates (the 
variance/covariance matrix is necessary to calculate the selection constants). 
Therefore all ingredients are there to calculate the combined estimators (which are 
BLUEs), and it is not necessary to calculate these estimators with the use of all 
observations in one step. 

The outcomes of the 'mean performance' BLUEs of the contrasts between 
the new variety parameters and the average of the control variety parameters are 
given in Table 5.4. Not given here is a pseudo-variance/covariance matrix of the 
variety parameter estimators. However, this matrix was determined for later use 
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Table 5.1. Outcomes of the BLUEs of the contrasts between new variety (NV) parameters 
and the average of the control variety parameters, for the character CRY (100 kg/ha) at 
Rilland (Rill.), the Flevopolder (Flev.), Ingeleben (Inge.), Hevesen (Heve.), Rosière 
(Rosi.) and Avelin (Avel.). 

NV 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

Rill. 

-18.9 
-4.2 

-42.4 
-18.9 
-14.9 
-41.9 
-34.4 
-27.4 
-37.4 
-54.7 
-44.4 
-83.7 

-105.4 
-97.2 
-70.9 
-98.7 
-53.9 

-109.4 
-51.7 
-82.2 
-83.4 
-53.7 
-54.4 
-79.1 
-12.4 
-58.5 

1.2 
-23.1 
15.3 
-5.4 

-51.5 
-61.3 
-30.4 

Flev. 
-49.5 
-21.5 
-63.5 
-41.2 
-21.3 
10.2 
-2.4 
30.8 

-14.2 
-49.7 
-55.5 
-40.2 

7.4 
-61.1 
-20.9 
-45.0 
-22.4 
-55.8 
-66.2 
-22.1 

-9.9 
-67.0 

-8.9 
-43.1 
-62.8 
-52.1 
-63.9 
-30.6 
-72.7 
-65.0 
-49.0 
-11.3 
-30.1 
-84.7 

-180.7 
-92.4 

-100.8 
-60.3 
-47.2 
-72.8 
-35.8 
-70.0 
-47.0 
-59.2 

-0.7 
-60.5 

-4.5 
-33.2 
-33.1 
-66.4 
-28.4 
-75.9 
-30.2 
-90.3 
-88.0 

Inge. 
-76.5 
-40.0 
-90.4 
-48.4 
-22.4 

9.6 
-50.1 

7.0 
-64.3 
-74.0 
-53.3 
-49.7 
-58.5 
-30.3 
-36.8 
-62.9 
-53.3 
-52.8 
-79.5 
-64.1 
-17.3 
-74.0 
-29.4 
-33.4 
-62.8 
-73.9 
-44.4 
-34.7 
-87.0 
-28.3 
-82.2 
-29.6 
-56.8 
-70.9 
-79.2 
-69.5 
-94.5 
-67.7 
-49.8 
-73.4 
-25.0 
-74.5 
-36.7 
-79.5 

-4.7 
-28.3 

5.7 
-4.1 

-11.7 
-62.1 
-29.3 
-58.3 
-44.4 
-55.4 
-84.6 

Heve. 
-45.1 
-19.0 
-65.2 
-59.6 

0.4 
5.0 

-14.4 
3.3 

-34.5 
-55.7 
-46.7 
-48.2 
-30.7 

-7.2 
-18.7 
-33.4 
-10.5 
-14.3 
-50.2 
-19.4 

-2.9 
-67.7 

-0.1 
-26.4 
-40.2 
-34.8 
-38.7 
-20.3 
-18.2 
-27.4 
-17.6 

-4.6 
-46.9 

-3.2 
-65.4 
-44.7 
-50.5 
-26.1 
-31.8 

-4.8 
5.5 

-28.0 
-36.5 
-32.6 
-40.0 
-57.0 

1.5 
-5.4 

-21.9 
-45.2 
-29.1 
-71.9 
-33.0 
-49.2 
-55.9 

Rosi. Avel. N V 
-50.2 
-33.1 
-51.0 
-52.4 
-29.5 

-6.2 
-40.3 

1.8 
-47.2 
-42.0 
-58.5 

-6.4 
-46.6 
-28.2 
-27.1 
-52.4 
-34.1 
-51.1 
-32.4 
-43.7 
-29.3 
-66.7 

59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 

Rill. 
-54.9 
-66.1 
-48.5 
-43.7 
-30.1 
-57.0 
-32.9 
-14.6 
-63.1 
-53.4 
-27.5 

-147.2 
-47.8 
-68.0 
-87.9 
-28.7 

-108.1 
-47.6 
-74.3 
-27.6 
-25.3 
-56.1 
-89.4 

-103.8 
-56.1 
-61.2 
-76.1 
-73.8 
-28.4 
-43.7 
-35.7 
-76.4 
-42.8 

Flev. 
-65.2 
-58.5 
-34.9 
-26.4 
-25.9 
-23.9 
-70.3 
-33.6 
-59.9 
-76.3 
-47.9 
29.4 
16.1 
37.5 
82.2 
-7.7 
2.2 

-20.3 
72.8 
50.3 
49.1 

-35.5 
40.6 
44.9 
44.1 

112.1 
38.4 
49.9 
16.3 
28.9 
20.8 
6.9 

75.2 
-163.5 

-72.9 
-77.5 
-82.7 
-85.8 

-115.6 
-39.6 

-106.2 
-59.4 
-40.5 
-59.7 
-75.6 
-84.4 
-34.8 
-45.5 
-78.7 

-103.0 
-44.1 
-10.1 

-6.3 
-28.8 
-17.7 

Inge. 
-29.0 
-49.2 
-73.8 
-12.1 
-64.0 
-41.9 

-3.7 
-54.2 
-85.2 
-75.5 
-36.3 
-59.7 
-46.8 
-57.2 

-108.8 
-86.8 
-75.3 
-13.4 

-123.0 
-22.7 
-43.4 
-87.1 
-63.2 
-64.1 
-14.0 
-22.2 
28.5 

-73.4 
-54.4 
-56.6 
-84.4 
-30.3 

-4.1 

Heve. 
-73.7 
-60.0 
-18.5 

-1.1 
-21.9 
-21.9 
-30.7 
-35.1 
-42.9 
-61.0 
-57.7 

Rosi. 

-1.4 
7.2 

31.7 
76.8 
22.1 
43.9 
47.6 
21.6 

-10.9 
96.5 
10.2 
22.8 
21.3 
24.6 
92.2 
47.5 
28.9 
47.9 
-4.1 
21.1 
46.9 
67.0 

Avel. 

108.3 
50.2 
49.1 
58.2 
-2.8 
42.2 
93.6 
48.4 
5.7 

75.9 
-11.3 
20.2 
12.4 
57.8 
63.8 
45.4 
87.5 
31.1 
32.1 
10.7 
59.0 
72.7 

-100.2 
-42.1 
-63.7 
-57.3 
-59.6 
-73.3 
-16.7 
-90.8 
-28.8 
-38.6 
-20.4 
-24.1 
-58.0 
-39.4 
-40.1 
-68.9 
-62.9 
-28.9 
-10.2 
13.8 
-7.3 
-3.9 
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Table 5.2. Outcomes of the BLUEs of the contrasts between new variety (NV) parameters 
and the average of the control variety parameters, for the character SC (1/100 %) at 
Rilland (Rill.), the Flevopolder (Flev.), Ingeleben (Inge.), Hevesen (Heve.), Rosière 
(Rosi.) and Avelin (Avel.). 

NV 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

Rill. 

25.3 
-12.0 
65.5 
34.8 
35.0 
-1.5 
8.8 

44.5 
73.0 
4.3 

68.0 
91.0 
71.5 

119.8 
43.3 
76.0 
54.5 
73.5 
62.3 
73.8 
44.3 
5.0 

89.0 
-3.3 
29.8 
37.6 
53.8 

128.2 
73.9 
64.6 

101.4 
89.3 
30.2 

Flev. 
69.5 
20.3 
25.5 
65.7 
-10.8 

7.9 
-10.5 
-4.5 
25.9 
28.9 
83.6 
24.4 
26.4 
26.9 
18.5 
30.7 
56.8 
74.9 
8.6 

24.9 
23.1 
25.7 
-8.9 
6.7 

36.0 
45.6 
27.3 
22.2 
7.0 

82.9 
83.0 
-3.0 
59.2 

128.5 
-5.7 
93.9 
40.4 
42.0 
51.5 
35.7 
76.0 
41.2 
46.0 
29.3 
35.7 
39.2 
30.4 
24.7 
38.5 
26.5 
4.1 

32.6 
83.1 
12.0 
27.6 

Inge. 
42.9 
28.6 
55.4 
71.6 
15.4 
43.7 
40.7 
43.1 
61.9 
61.4 

152.0 
48.8 
65.2 
29.8 
61.2 
49.3 
51.5 
97.1 
54.9 
48.2 
64.8 
67.8 
23.3 
41.7 
92.5 
95.2 
76.5 
54.4 
46.1 
78.6 

142.1 
26.4 

111.8 
152.5 
107.2 
91.5 
98.2 
86.4 
92.9 
97.0 
82.6 

109.9 
79.7 
93.3 
50.0 
23.5 
4.5 

11.6 
12.4 
81.1 
2.0 

43.2 
34.9 
46.6 
54.7 

Heve. 
46.6 
31.1 
42.4 
28.7 
-7.3 
-6.5 

-24.3 
11.0 

-21.2 
30.2 
22.7 
17.2 
9.3 

-13.2 
44.6 
-14.4 
-7.7 
5.4 

-12.2 
39.3 
51.5 

-19.1 
26.9 
-11.8 
28.1 
20.1 
10.7 
24.7 
32.0 
33.0 
86.5 

-57.4 
7.7 

51.0 
-0.1 
39.2 
60.9 
13.2 
65.5 
31.3 
22.9 
47.4 
19.5 
45.4 
16.7 

-19.8 
15.3 
32.7 
-1.9 
33.3 
49.5 
19.3 
20.5 
0.8 

34.9 

Rosi. Avel. NV 
43.3 
-26.5 
40.7 

109.7 
21.3 
-7.4 
23.8 
10.7 
34.4 
56.7 
51.7 
38.3 
59.1 

-15.1 
29.5 
-21.4 
51.7 
67.6 
15.9 
60.3 
41.7 
26.4 

59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 

Rill. 
49.9 

113.2 
143.6 
51.5 
68.6 

118.8 
107.6 
73.9 

146.9 
143.6 
96.4 

151.5 
95.7 
85.1 

124.8 
56.2 
62.1 
62.4 
82.3 

159.2 
89.6 
61.5 

136.6 
78.7 

148.8 
131.6 
103.5 
34.9 
20.7 
61.1 
32.2 
79.1 
71.3 

Flev. 
34.7 
59.3 
98.6 
39.9 
51.6 
79.2 
76.0 
59.2 
81.2 

123.9 
80.7 
5.2 

18.2 
42.7 
-29.0 
-47.0 
18.7 
43.6 
-22.5 
21.5 
-0.6 
56.1 
22.0 
67.4 
11.8 
-7.4 
29.5 
47.0 
-2.7 
25.8 
21.0 
17.0 
23.3 
99.9 
55.1 
55.3 

129.5 
65.6 
51.8 
26.4 
93.4 

104.7 
52.5 
74.0 

108.4 
43.1 

120.8 
97.3 
87.0 
50.4 
33.0 
55.5 
27.8 
72.9 
82.4 

Inge. 
21.4 
57.3 

110.3 
93.1 
59.3 
59.5 
59.6 
78.7 
47.7 
76.6 

104.3 
37.4 

-24.9 
-34.1 
-81.1 

-107.1 
38.7 
-2.2 

-65.6 
2.9 

-22.1 
19.7 
-7.5 
35.5 

-46.9 
-64.6 
-35.5 

8.3 
-44.8 
-6.7 

-11.9 
-11.5 
-70.3 

Heve. 
-7.2 
41.3 
74.9 
8.5 

50.0 
40.6 
9.2 

83.7 
88.6 
36.0 
30.2 

Rosi. 

11.2 
10.1 
24.9 

-18.3 
-59.0 
58.8 
50.2 
-8.7 
68.4 
6.3 

44.8 
48.3 
85.1 
12.0 

-25.2 
24.1 
10.6 
4.7 

11.7 
23.0 
0.5 

-20.2 

Avel. 

14.0 
13.5 
19.0 
19.2 

-33.3 
21.0 
70.2 
-3.3 
22.1 
20.3 
36.6 
32.8 
78.7 
-6.8 
-6.5 
43.4 
39.3 
25.5 
25.2 
17.2 
26.1 
-8.5 
97.3 
66.9 
20.9 
94.3 
-1.1 
27.8 
-33.7 
89.9 
93.5 
84.3 
56.8 
66.0 
-0.2 

104.1 
97.3 
74.1 

-34.1 
-19.2 
26.4 
14.0 
65.6 
77.4 
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Table 5.3. Outcomes of the BLUEs of the contrasts between new variety (NV) parameters 
and the average of the control variety parameters, for the character WS Y (10 kg/ha) at 
Rilland (Rill.), the Flevopolder (Flev.), Ingeleben (Inge.), Hevesen (Heve.), Rosière 
(Rosi.) and Avelin (Avel.). 

NV 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

Ml . 

-20.2 
-15.9 
-14.9 

2.3 
-6.4 

-77.2 
-52.9 
-18.9 

6.6 
-95.4 
-11.2 
-70.2 

-125.7 
-75.7 
-92.2 

-106.7 
-42.7 

-129.2 
-43.9 
-78.9 
-99.2 
-83.4 
-24.8 

-121.9 
14.9 

-64.5 
30.2 
57.0 
75.9 
33.0 
-9.8 

-28.1 
-18.8 

Flev. 
-31.2 
-7.2 

-84.2 
-23.7 
-35.6 
14.7 
-9.6 
57.9 
-0.2 

-58.0 
-25.1 
-43.7 
45.5 
-78.4 
-8.3 

-49.3 
13.7 

-35.7 
-102.7 
-23.9 

7.1 
-99.6 
-22.9 
-64.2 
-72.8 
-36.9 
-82.1 
-40.2 

-115.1 
-42.4 
-1.8 

-27.2 
10.5 

-47.5 
-310.7 
-79.6 

-142.3 
-64.8 
-37.1 
-86.8 

3.5 
-77.2 
-37.4 
-72.9 
29.8 

-67.0 
20.9 

-32.7 
-28.2 
-79.8 
-44.5 
-93.2 
17.5 

-127.7 
-121.9 

Inge. 
-73.1 
-23.2 
-85.7 
-23.2 
-11.3 
42.1 
-33.8 
48.1 
-44.6 
-63.6 
22.6 
-36.5 
-26.0 
-15.8 
-2.4 

-51.1 
-31.5 
-14.5 
-74.1 
-68.5 
23.6 

-66.8 
-30.0 
-18.0 
-29.4 
-33.2 
-10.1 
-23.4 
-96.3 

9.7 
-19.0 
-35.4 

0.9 
-3.3 

-47.0 
-31.3 
-81.4 
-41.1 
-15.7 
-40.9 
25.3 

-36.7 
6.5 

-50.9 
29.0 
-22.4 
16.3 
1.0 

-9.3 
-37.7 
-42.4 
-60.9 
-42.4 
-48.0 
-90.1 

Heve. 
-49.4 
-8.9 

-82.4 
-80.5 
-1.2 
-3.0 

-33.0 
15.6 

-64.9 
-78.0 
-63.6 
-66.3 
-38.5 
-10.4 
-1.8 

-58.6 
-12.3 
-21.4 
-89.6 
-12.6 
27.7 

-116.3 
9.8 

-43.6 
-46.3 
-39.8 
-53.3 
-21.0 
-14.7 
-27.3 
22.9 

-50.3 
-60.8 
23.0 

-100.2 
-48.6 
-50.5 
-32.8 
-20.9 
14.7 
20.5 
-21.4 
-41.4 
-25.7 
-55.7 

-100.4 
14.0 
5.4 

-34.8 
-55.5 
-20.6 

-105.6 
-41.4 
-75.6 
-72.1 

Rosi. Avel. NV 
-46.7 
-55.1 
-39.9 
-7.8 

-24.1 
-20.8 
-40.0 
14.0 

-42.0 
-22.7 
-48.4 
10.5 

-21.8 
-46.4 
-8.1 

-82.1 
-9.9 

-30.2 
-36.6 
-25.5 
-12.8 
-76.1 

59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 

Rill. 
-56.0 
-17.1 
25.2 

-20.6 
8.8 

-12.1 
9.8 

28.8 
12.6 
18.1 
36.6 

-149.6 
-5.9 

-50.2 
-59.1 
-2.8 

-117.8 
-30.2 
-58.0 
53.5 
14.6 

-48.1 
-62.9 

-119.9 
3.0 

-23.8 
-53.2 
-92.2 
-30.3 
-41.1 
-47.5 
-60.9 
-6.4 

Flev. 
-87.9 
-47.5 
20.1 
-3.6 
0.9 

21.7 
-67.8 
-7.1 

-28.8 
-33.6 
-8.9 
46.1 
36.6 
96.6 

101.1 
-63.4 
27.6 
4.9 

78.3 
107.6 
76.8 
-20.9 
89.0 

135.2 
91.4 

174.2 
98.4 

108.9 
18.0 
71.1 
47.1 
24.3 

133.6 
-180.1 
-56.7 
-65.5 
-23.1 
-68.4 

-134.1 
-32.4 
-85.8 
-11.2 
-15.3 
-31.6 
-32.1 
-99.8 
54.9 
6.6 

-48.5 
-118.7 
-31.8 
26.2 
10.7 
35.0 
69.5 

Inge. 
-27.4 
-27.8 
-46.4 
54.2 

-54.6 
-20.1 
26.4 

-30.6 
-94.0 
-69.1 
18.7 

-64.1 
-75.2 
-98.7 

-209.3 
-208.0 
-86.4 
-22.9 

-227.9 
-10.8 
-78.2 

-115.8 
-91.2 
-68.9 
-40.5 
-67.7 
25.6 

-106.7 
-112.1 
-75.9 

-138.4 
-46.9 
-57.0 

Heve. 
-120.8 
-75.0 
11.4 
5.2 

-8.8 
-13.9 
-51.6 
-15.5 
-25.6 
-79.8 
-74.7 

Rosi. 

6.3 
14.9 
53.4 
72.9 

-23.4 
90.8 
87.4 
17.0 
33.1 

126.0 
31.3 
61.6 
80.1 
44.0 
99.5 
77.3 
41.7 
49.8 
0.7 

32.8 
61.6 
66.9 

Avel. 

160.9 
77.6 
73.3 
80.6 

-33.6 
71.9 

172.6 
57.5 
31.1 

116.9 
-1.1 
45.4 
61.7 
79.1 
85.5 
93.4 

145.2 
52.3 
59.2 
18.6 

101.7 
89.4 

-87.9 
-12.5 
-69.8 
-24.2 
-79.1 
-74.4 
-33.0 
-73.2 

5.9 
-8.3 
1.3 

-1.1 
-83.5 

3.3 
-1.6 

-54.2 
-111.1 
-47.9 
-6.2 
22.7 
33.5 
61.5 
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Table 5.4. Outcomes of the 'mean performance' BLUEs of the contrasts between new 
variety (NV) parameters and the average of the control variety parameters, for the 
characters CRY (100 kg/ha), SC (1/100 %) and WSY (10 kg/ha). 

NV 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

CRY 
-53.9 
-28.4 
-66.2 
-50.8 
-17.2 

4.2 
-26.9 
10.7 

-40.2 
-54.4 
-53.2 
-36.1 
-32.8 
-31.0 
-25.6 
-49.0 
-28.4 
-43.3 
-56.4 
-37.3 
-14.3 
-69.7 
-15.2 
-26.0 
-52.0 
-44.4 
-39.6 
-33.2 
-53.3 
-36.4 
-44.6 
-27.5 
-43.8 
-61.5 

-107.6 
-75.8 
-78.0 
-65.5 
-44.9 
-66.8 
-27.3 
-62.9 
-51.7 
-54.0 
-22.8 
-56.0 

-3.0 
-24.7 
-14.8 
-47.0 
-19.3 
-53.3 
-38.2 
-62.8 
-64.5 

SC 
51.2 
14.5 
42.2 
69.1 
4.7 
9.2 
7.9 

14.8 
26.3 
44.6 
77.7 
32.6 
40.6 
7.5 

38.8 
11.2 
38.4 
61.4 
17.5 
43.7 
46.2 
24.6 
16.8 
5.9 

56.7 
48.7 
37.4 
24.5 
23.0 
60.9 
95.1 
-6.9 
63.1 

103.7 
44.4 
86.7 
59.3 
56.4 
63.7 
61.0 
61.7 
68.9 
45.7 
41.7 
47.2 
11.0 
19.9 
26.3 
25.4 
67.6 
33.3 
39.7 
60.2 
38.0 
37.5 

WSY 
-47.4 
-23.0 
-70.3 
-34.2 
-16.8 

7.7 
-28.8 
34.5 

-37.6 
-53.9 
-27.9 
-33.9 
-10.7 
-36.5 

-4.6 
-61.0 

-7.2 
-25.1 
-74.1 
-32.0 
12.6 

-90.2 
-17.4 
-34.5 
-39.8 
-26.2 
-36.6 
-43.0 
-71.0 
-18.2 

4.9 
-56.5 
-13.0 
-27.0 

-145.3 
-58.3 
-90.8 
-64.0 
-28.9 
-62.7 

0.5 
-51.3 
-45.3 
-55.7 

-2.5 
-77.1 
15.6 

-22.1 
-8.4 

-25.5 
-9.4 

-57.7 
-16.4 
-67.4 
-74.9 

NV 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 

CRY 
-55.9 
-57.7 
-42.6 
-21.1 
-34.4 
-36.6 
-34.3 
-34.3 
-62.1 
-65.2 
-42.0 
21.7 
6.4 

16.3 
30.6 

-16.3 
4.9 

20.4 
4.9 
3.8 

48.8 
-28.7 

2.7 
5.1 

24.8 
62.0 
38.2 
28.4 
8.3 
1.9 

-9.1 
21.9 
54.9 

-135.7 
-55.6 
-68.7 
-77.2 
-59.7 
-98.7 
-33.0 
-90.9 
-36.5 
-33.6 
-47.6 
-63.6 
-80.7 
-42.5 
-50.5 
-73.9 
-81.3 
-34.1 
-21.3 
-10.8 
-37.5 
-19.8 

SC 
23.6 
67.9 

108.3 
48.8 
56.3 
73.9 
65.0 
74.9 
90.0 
93.7 
77.8 
17.9 
2.3 

12.0 
-27.1 
-62.8 
35.8 
40.1 

-24.6 
28.8 
-1.5 
40.2 
24.0 
67.9 
-7.5 

-27.0 
15.0 
25.7 
-5.6 
16.2 
12.3 
9.8 

-22.5 
116.8 
72.4 
53.9 

116.2 
41.3 
47.6 
17.1 
86.0 

119.1 
77.7 
64.5 

103.9 
39.7 

124.8 
106.7 
90.3 
18.0 
13.0 
48.7 
24.9 
69.5 
77.6 

WSY 
-74.2 
-40.7 

5.6 
9.0 

-12.4 
-7.7 

-19.6 
-5.2 

-33.6 
-40.2 

-6.7 
41.7 
12.1 
32.2 
16.5 

-79.5 
29.5 
51.1 

-18.2 
38.5 
64.4 

-22.8 
22.3 
54.9 
39.1 
72.8 
70.9 
54.5 
-0.7 
17.7 

-11.7 
37.7 
59.1 

-136.4 
-26.9 
-59.4 
-36.8 
-52.5 

-108.6 
-29.8 
-74.0 
18.9 
-0.6 

-29.0 
-31.9 
-99.7 
22.8 
-9.3 

-49.3 
-109.9 

-35.5 
-6.4 
-6.8 
0.6 

44.7 
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when the selection constant has to be approximated. The coefficient of variation, 
the root of the error mean square and the degrees of freedom for error are equal 
to: 

CRY SC WSY 

C.V. 

s 
dfe 

0.05 
28.22 

1204 

0.02 

31.39 

1204 

0.05 

45.30 
1204 

5.2.3 Selection of the best variety 

Now that the first part of statistical selection, i.e. the estimation of (contrasts 
between) variety values, is accomplished, we can continue with the second part. 
This part consists of the execution of selection rules. In this section we will 
concentrate on the selection of a minimum sized subset containing the best variety. 
This can be done for each of the three characters, bearing in mind that WSY is a 
selection index derived from (among other characters) CRY and SC. The control 
varieties should be excluded from selection, so that they cannot enter the selected 
subset. 

We will make use of selection rule R3 (see 4.2.2). This selection rule contains 
a single selection constant 8 that has to be approximated by simulation, as described 
in 4.3.1. We need the incidence matrix of the trial or a pseudo-variance/covariance 
matrix (with G2 = 1 ) of the variety parameter estimators. If the trial is extensive (in 
the number of blocks), then the latter option is easier to work with. In chapter 3 it 
is shown how to calculate the pseudo-variance/covariance matrix of combined 
experiments. The matrix rows and columns corresponding to the control varieties 
were deleted, in order to calculate a selection constant for the situation where the 
control varieties are excluded from selection. With the selection constant 
simulation program SELCON described in 4.3.1 the selection constants were 
approximated (using 10000 iterations). We will give the values corresponding to 
P* = 0.70, P* = 0.80 and P* = 0.90 for the separate sites and the combined trial 
(denoted by 'Overall'). 

Rill. Flev. Inge. Heve. Rosi. Avel. Overall 
5(P* = o.70) 2.10 2.21 2.14 2.10 1.96 1.96 2.22 
5(/>* = 0.80) 2.34 2.46 2.39 2.34 2.22 2.23 2.47 
5CP' = O.90) 2.72 2.82 2.75 2.71 2.60 2.61 2.82 
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The execution of the selection rule took place with the selection computer 
program SUBSET described in 5.1. The output from this program is translated 
(reduced) into Tables 5.5 and 5.6. In Table 5.5 the selection results are presented 
for the separate sites and characters. We notice that the percentage selected varieties 
can differ enormously from site to site. This is probably mainly due to the fact that 
different sites have (partly) different varieties. In Table 5.6 the selection results 
on the basis of the 'mean performance' estimates are presented for each character. 
There are a few varieties with a very good CRY, and therefore we only have to 
select 4 % of the total number of new varieties to make the statement that with 
probability at least 0.80 the best variety w.r.t. CRY is included in the selected 
subset. For SC and WS Y more varieties have to be selected to make the analogous 
probability statements. 

Many of the varieties selected on the basis of 'mean performance' estimates 
are either also selected on all individual sites at which they were grown (CRY 84, 
91; SC 34, 37, 61, 92, 95, 99, 100, 103, 105, 106, 107; WSY 85,113; P* = 0.80) 
or selected at most of the relevant individual sites (CRY 85; SC 39,67,68; WSY 
50,72,76,82,83,84,91; P* = 0.80). On the other hand, it is possible that a variety 
is not selected at any of the individual sites but still is selected on the basis of 
'mean performance' estimates (WSY 70). The fact that varieties are selected at all 
or most sites means that the varieties are consistant in their performance. Notice 
that w.r.t. SC the selected varities are very consistent. 

In Figure 5.1a scatter plot is given of the CRY and SC 'mean performance' 
contrast estimates of the 110 new varieties. Varieties that are selected (with 
P* = 0.80) if the selection is focussed on the character CRY are indicated by a ' 1 '. 
Varieties included in the subset if the selection is focussed on SC are indicated by 
a '2 ' . Varieties that are selected if the selection is focussed on WSY are indicated 
by a ' * '. It can be seen in Figure 5.1 that the varieties selected on the basis of their 
CRY are also selected on the basis of their WSY. Only two of the varieties selected 
on the basis of SC are also selected on the basis of WSY. The two subsets 
corresponding to CRY and SC are disjunct. This is to be expected because these 
two characters are negatively correlated, as can be seen in the scatter plot. As 
selection index WSY seems an important criterium to base the selection on. 
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Table 5.5. Selected varieties with the selection-of-the-best rule R3, for P* = 0.70, 
P* = 0.80 and P* = 0.90. The selection is performed at the separate sites and is based on 
CRY, SC and WS Y, successively. Between brackets the subset size is expressed relatively 
to the number of new varieties at the particular site. 

CRY, Rilland. 

P" = 0.70 : 27,28,29,30,31,32,33,34,36,50,52,53,54,55,58,63,65,66,69,93,96,98,100,101,109, 
110,111,113(42%). 

P" = 0.80 : as for P' = 0.70, + 44,61,62,102,105 (50 %). 
P' = 0.90 : as for/»' = 0.80, + 26,35,42,47,48,51,56,59,64,67,68,94,106 (70 %). 

CRY, Flevopolder. 

P* = 0.70: 73,77,84,91(4%). 
P* = 0.80: as for P'= 0.70. 
P" = 0.90: as for P" = 0.70. 

CRY, Ingeleben. 

P* = 0.70: 9,11,24,48,50,51,52,62,65,76,83,85,91 (15 %). 
P' = 0.80 : as for P' = 0.70, + 8,44,49,59,84 (20 %). 
P* = 0.90 : as for P'= 0.80,+ 17,26,27,33,35,54,69,78,90 (31 %). 

CRY, Hevesen. 

P* = 0.70: 8,9,10,11,17,18,20,21,23,24,26,31,32,34,35,37,43,44,50,51,52,54,61,62,63,64,65 (41 %). 
P' = 0.80 : as for P" = 0.70, + 27,33,41,45,56,66 (50 %). 

P* = 0.90 : as for P" = 0.80, + 4,12,16,19,42,47,48,67 (62 %). 

CRY, Rosière. 

P* = 0.70: 73,79,84,91(9%). 
P* = 0.80: as for P* = 0.70. 

P" = 0.90 : as for P' = 0.70, + 76,85,87,90 (18 %). 

CRY, Avelin. 

P' = 0.10 : 71,72,73,76,77,79,83,84,86,90,91 (25 %). 
P" = 0.80 : as for P' = 0.70, + 75,85 (30 %). 

P' = 0.90 : as for P* = 0.80, + 87,88 (34 %). 

SC, Rilland. 

P' = 0.70: 37,39,48,53,54,56,57,60,61,64,65,66,67,68,69,92,93,94,95,99,100,101,103,105,106, 
107 (39 %). 

P* = 0.80 : as for P' = 0.70, + 26,34,38,41,43,45,55,63,104,112,113 (56 %). 
P' = 0.90 : as for P' = 0.80, + 28,36,44,52,59,62,97,98,102,110 (71 %). 

SC, Flevopolder. 

P ' = 0.70: 14,37,39,56,61,64,65,67,68,69,92,95,99,100,103,105,106,107,113 (17 %). 
P' = 0.80 : as for P' = 0.70, + 21,33,34 (20 %). 
P* = 0.90: asforP* = 0.80, + 5,44,82,96,102,112(25%). 

SC, Ingeleben. 

P' = 0.70: 14,34,36,37,38,45,61,69 (9 %). 
P* = 0.80 : as for P' = 0.70, + 62 (10 %). 
P' = 0.90 : as for P' = 0.80, + 21,29,40,43,53,66 (17 %). 
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(Table 5.5 continued) 

SC, Hevesen. 

p' = 0.70: 4,5,6,18,23,24,34,37,40,42,45,47,54,58,60,61,63,64,66,67,68 (32 %). 
P* = 0.80: asfor/>* = 0.70, + 7,13,39,51,53,69(41 %). 

P' = 0.90 : as for P' = 0.80, + 14,26,28,32,33,43,48,55,56 (55 %). 

SC, Rosière. 

P" = 0.10: 7,21,75,78,82(11%). 
P' = 0.80 : as for P' = 0.70, + 16,23,76 (18 %). 
P' = 0.90 : as for P' = 0.80, + 13,14,80,81 (27 %). 

SC, Avelin. 

P" = 0.10: 76,82,92,93,95,99,100,101,105,106,107,113 (27 %). 
/>* = 0.80: as for P'= 0.70, + 103,112(32%). 

P* = 0.90: as for P'= 0.80, + 102(34%). 

WSY, Rilland. 

P' = 0.70: 29,30,34,36,50,52,53,54,55,56,61,63,64,65,66,67,68,69,93,96,100,101,105,106,113 (38 < 
P' = 0.80 : as for P" = 0.70, + 27,28,33,48,58,60,62,98,109 (52 %). 
P" = 0.90: as forP" = 0.80, + 57,94,102,107,110,111 (61%). 

WSY,FlevopoIder. 

P' = 0.70 : 78,82,84,85,86,91 (5 %). 
/>" = 0.80 : as for P" = 0.70, + 72,73,83 (8 %). 
P' = 0.90: as for/>* = 0.80,+ 77,81,113 (11%). 

WSY, Ingeleben. 

P' = 0J0: 4,8,9,11,14,18,24,27,30,33,34,36,37,42,44,46,48,50,51,52,62,65,69,76,78,85(30%). 
P' = 0.80 : as for P' = 0.70, + 17,21,31,49,64 (35 %). 
P" = 0.90 : as for P' = 0.80, + 7,16,26,28,29,35,39,45,59,60,66,83 (49 %). 

WSY, Hevesen. 

P' = 0J0: 8,9,11,17,18,20,21,23,24,26,31,32,33,34,37,42,43,44,45,47,50,51,52,54,61,62,63, 
64,66,67 (45 %). 

P" = 0.80 : as for P' = 0.70, + 4,41,56 (50 %). 
P' = 0.90 : as for P' = 0.80, + 10,16,27,28,29,46,48,53,65 (64 %). 

WSY, Rosière. 

P' = 0.70 : 73,75,76,79,82,84,85 (16 %). 
P* = 0.80 : as for P' = 0.70, + 81,91 (20 %). 
P* = 0.90 : as for P' = 0.80, + 72,90 (25 %). 

WSY, Avelin. 

/>* = 0.70: 71,73,76,79,84,85,86,90,91 (20%). 
P' = 0.80 : as for P' = 0.70, + 72,75,83,113 (30 %). 
P* = 0.90 : as for P" = 0.80, + 77,82,87,88,112 (41 %). 
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Table 5.6. Selected varieties with the selection-of-the-best rule R3, for P* = 0.70, 
P* = 0.80 and P* = 0.90. The selection is performed on the basis of the 'mean 
performance' estimates of CRY, SC and WS Y, successively. Between brackets the subset 
size is expressed relatively to the 110 new varieties. 

CRY P* = 0.70: 79,84,85,91(4%). 

/>* = 0.80: as for P' = 0.70. 

P' = 0.90 : as for P' = 0.70, + 73,86 (5 %). 

SC P* = 0.70: 34,37,61,67,68,92,95,100,103,105,106,107(11%). 

P" = 0.80 : as for P' = 0.70, + 39,99 (13 %). 

P* = 0.90: asfor/>* = 0.80, + 69(14%). 

WSY P' = 0.10 : 11,70,72,75,76,78,79,82,83,84,85,86,90,91,100,105,113 (15 %). 

P* = 0.80: as for P' = 0.70, + 50 (16%). 

P" = 0.90 : as for P' = 0.80, + 24,62,73,81,88 (21 %). 
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Figure 5.1. Selected varieties in case of subset selection of the best variety, based on the 
'mean performance' estimates of CRY, SC and WSY separately, with P* = 0.80. The 
scatter points are the 'mean performance' estimates of contrasts between new variety 
parameters and the average of the control variety parameters, for CRY (100 kg/ha) and 
SC (1/100 %). The varieties selected on the basis of CRY are indicated by a ' 1 ' , the 
varieties selected on the basis of SC are indicated by a '2' and the varieties selected on 
the basis of WSY are plotted as a '*'. 
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5.2.4 Selection of at least one good variety 

Selection of the best variety is a very stringent goal. Often the plant breeder 
is willing to relax this aim. He might consider the selection to be successful if at 
least one good variety is selected, with probability at least P*. This less stringent 
selection goal should lead to smaller selected subsets. The definition of 'good' is 
descibed in 4.1.1. The distance measure 5* that gives the maximum distance 
between the parameter value of the best variety and the parameter value of a good 
variety has to be given by the experimenter. With his knowledge about the crop 
he should be able to give a meaningful value of 5*. In this case study we take ô* 
equal to two-tenth of the standard deviation estimates corresponding to a particular 
character. 

We have used the selection rule (4.11) to make the selection. This selection 
rule makes use of the same selection constants as the selection-of-the-best rule R3. 

The selection rule was executed with the computer program SUBSET described 
in 5.1, with control varieties 1,2 and 3 excluded from selection. The selection was 
based on the 'mean performance' estimates of the contrasts bewteen the parameters 
of the new varieties and the average of the parameters of the control varieties. The 
selection results are given in Table 5.7, based on CRY, SC and WSY, successively. 

Table 5.7. Selected varieties with the selection-of-at-least-one-good rule (4.11), for 
P* = 0.70, P* = 0.80 and P* = 0.90. The distance measure 5* is set to 0.2XÏ . The selection 
is performed on the basis of the 'mean performance' estimates of CRY, SC and WSY, 
successively. Between brackets the subset size is expressed relatively to the 110 new 
varieties. 

CRY P' = 0.10: 79,84,91(3%). 
/>* = 0.80: as for P" = 0.70, + 85 (4%). 
P* = 0.90: as for P' = 0.80. 

SC />* = 0.70: 37,61,68,92,95,100,103,105,106(8%). 
/>* = 0.80: as for P'= 0.70, + 34,67,107 (11 %). 
P' = 0.90 : as for P' = 0.80, + 39,99 (13 %). 

WSY P' = 0.10: 11,70,76,78,79,82,83,84,85,86,90,91,113(12%). 
P' = 0.80 : as for P" = 0.70, + 72,105 (14 %). 
P" = 0.90: as for ƒ»* = 0.80, + 75,100 (15%). 

From 5.7 we notice that the subset sizes have decreased by 0-6 %. The larger 

5* is chosen to be, the smaller the subset size will be. 
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5.2.5 Selection of all varieties better than the control varieties 

A different selection goal could be to select a minimum sized subset that 
includes all varieties better than the average of the three control varieties. 'Better' 
is defined m4.1.1, and the distance measure 5* has to be chosen by the experimenter. 
We have set 8* to half the size of the standard deviation estimate s. Selection rule 
R5, which is used here, has been executed with the help of the computer program 
SUBSET described in 5.1. The results, based on the 'mean performance' estimates 
of the contrasts between new varieties and the average of the control varieties, are 
presented in Table 5.8. 

Table 5.8. Selected varieties with the selection-w.r.t.-controls rule R5, for P* = 0.70, 
P* = 0.80 and P* = 0.90. The selection is performed on the basis of the 'mean 
performance' estimates of CRY, SC andWSY, successively. Between brackets the subset 
size is expressed relatively to the 110 new varieties. 

CRY P' = 0.70: 9,11,50,70,71,72,73,75,76,77,78,79,81,82,83,84,85,86,87,88, 
90,91,111,89(22%). 

P " = 0.80 : as for P * = 0.70, + 52 (23 %). 
P' = 0.90 : as for P' = 0.80, + 74,110,113 (25 %). 

SC P* = 0.70: all except 73,74,77,84,91 (95%). 
/>* = 0.80: as for P'= 0.70. 
P ' = 0.90: asforP" = 0.70. 

WSY P' = 0J0: 9,11,16,18,20,24,34,36,44,48,50,51,52,54,56,61,62,63,64,65, 
66,69,70,71,72,73,75,76,77,78,79,81,82,83,84,85,86,87,88,89, 
90,91,93,100,101,105,106,110,111,112,113 (46 %). 

P' = 0.80 : as for P" = 0.70, + 8,26,80,98,102,103 (52 %). 
P' = 0.90 : as for P' = 0.80, + 33,53,109 (55 %). 

The subset sizes are very large, especially for SC and WSY. If we look at 

Figure 5.1 we see that most of the varieties have SC contrast estimates that are 

positive. So, there are many varieties better than the average of the controls and 

the selected subset becomes quite extensive. The smaller 5*, the larger the selected 

subset. 

5.2.6 Assuming a superpopulation of the variety parameters 

Sometimes it is reasonable to assume that the variety parameters are a random 

sample from a population of parameters. We now assume that the variety 

parameters have been drawn from a Normal population. Furthermore, we assume 

that the heritability h2 is equal to 0.2. With these assumptions we can calculate a 

170 5.2.5 



new set of selection constants, with the use of the simulation program SELCON 

described in 4.3.1. Now a particular selection constant is not related to a certain 

P*, but with a certain Ê[P(CS)]. hi 4.5.1 we have seen that we have to use values 

of Ê[P(CS)] of about 0.95. We will give the selection constants, corresponding to 

the combined trial (Overall), for Ê[P(CS)] = 0.90, 0.95 and 0.99. 

Overall 
5 (£[P(CS)]=0.90) 1.54 
8 (£[P (CS)] =0.95) 1.85 
8 (Ê[P(CS)] =0.99) 2.52 

The selection-of-the-best rule R3 was executed with the developed computer 

program SUBSET. The results are given in Table 5.9. For e.g. Ê[P(CS)] = 0.95, 

we can make the statement that, given the assumption that there is a Normal 

superpopulation of variety parameters with heritability 0.2, the expectation of the 

probability that the best variety is included in the selected subset is 0.95. In Table 

5.9 we see that this selection procedure leads to smaller subsets than selection of 

the best without the superpopulation assumption. The subset sizes are reduces by 

0-8 %. 

Table 5.9. Selected varieties with the selection-of-the-best rule R3 and the assumption 
that the variety parameters represent a random sample from a Normal population, with 
heritability equal to 0.2; for Ê[P(CS)] = 0.90, Ê[P(CS)] = 0.95 and Ê[P(CS)] = 0.99. 
The selection is performed on the basis of the 'mean performance' estimates of CRY, 
SC and WSY, successively. Between brackets the subset size is expressed relatively to 
the 110 new varieties. 

CRY Ê[P(CS)] = 0.90: 79,84,91(3%). 
Ê [P (CS)] = 0.95 : as for Ê [P (CS)] = 0.90, + 85 (4%). 
Ê [P (CS)] = 0.99 : as for Ê [P (CS)] = 0.95. 

SC Ê[P(CS)] = 0.90: 37,61,92,95,100,103,105,106 (7 %). 
Ê[P(CS)] = 0.95 : as for Ê[P(CS)] = 0.90, + 34,68 (9 %). 
Ê[P(CS)] = 0.99: as for Ê[P(CS)] = 0.95, + 39,67,99,107 (13 %). 

WSY Ê[P(CS)] = 0.90: 76,79,82,84,85,86,91,113 (7 %). 
Ê[P(CS)] = 0.95 : as for Ê[P(CS)] = 0.90, + 11,70,78,83,90 (12 %). 
Ê[P(CS)] = 0.99 : as for Ê[P(CS)] = 0.95, + 50,72,75,100,105 (16 %). 

5.2.7 Evaluation of the case study 

This case study shows that it is possible to successfully use statistical selection 

procedures in the plant breeding practice. The estimation part gave no difficulties. 
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Estimation in two steps is a clear procedure, but to use it on a routine basis requires 
suitable computer software. The calculation of the (pseudo-)variance/covariance 
matrix (divided by G2) of the variety parameter estimators is necessary to calculate 
the selection constants with the computer program SELCON. Selection rule R3 is 
very convenient, because with this rule we do not have to calculate a separate 
selection constant for each variety. The actual selection can be performed with the 
use of the computer program SUBSET. 

The fact that the sites do not contain the same varieties makes it difficult to 
compare the selected subsets at the various sites. Selection on the basis of the 
'mean performance' estimates results in subsets with an acceptable size. The 
selected sugar beet varieties seem to be reasonable consistent, because they are 
often selected at all sites (where they were grown). The subset sizes can be reduced 
by altering the selection goal (selection of at least one good variety) or by making 
an extra assumption (superpopulation of the variety parameters). Whether the 
superpopulation assumption is acceptable depends on the selection phase. In an 
early phase such an assumption seems plausible. The least favourable configuration 
is of the utmost theoretical importance, but in practice it is very unlikely to occur. 
The superpopulation assumption is an attempt to get closer to reality. However, 
the Ê[P(CS)]-statement is not as sharp as the P"-statement. 

Presentation of the estimates and the selection results in a scatter plot like 
Figure 5.1 is very enlightening. The experimenter can take in everything at a glance. 

Selection of the smallest subset that includeds all varieties better than the 
average of the control varieties is not very successful. The subset sizes are very 
large, only the varieties that are really bad are discarded. 
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CHAPTER 6 

Discussion and conclusions 

In this final chapter we will strike a balance w.r.t. the use of statistical selection 

procedures in the plant breeding practice. In 6.1 we discuss the previous chapters, 

followed by the final conclusions in 6.2. 

6.1 Discussion 
Statistical selection deals with the selection of varieties with the aim that 

eventually (some of) these varieties are marketed. Here, 'varieties' can be 
interpreted liberally and stand for any reproducable genotypes. These can be pure 
lines of a self-pollinated crop, hybrids of such lines or clones of asexually 
propagated crops (Mayo, 1987). This type of selection is different from selection 
within a population of genotypes, with the aim to increase the level of the total 
population. In the latter type of selection also recombination of genes by mating 
is involved. This type of selection is described in many textbooks and articles about 
quantitative genetics (e.g. Falconer, 1986). Statistical selection procedures are 
concerned with selection between populations, and this type of selection is 
performed by plant breeding companies and also by the official variety testing 
authorities. For both, it is of crucial importance that the correct selection decisions 
are made. If a plant breeding company does not come up with varieties that are 
better than the existing ones, then the obvious result is that there is no income. It 
is decided by the official variety testing authorities whether new varieties are 
included in the official recommended list of agricultural crop varieties. The 
decision whether a new variety is or is not included in the official recommended 
variety list has large financial consequences for the owner of this variety. Therefore, 
the decisions taken by the official variety testing authorities should be statistically 
well founded. 

The method of statistical selection is twofold. First, the varieties are grown 
in experiments at a number of sites and sometimes in two or more years. The 
observations from these experiments are described by a model, and the relevant 
model parameters are estimated. The selection is based on these estimates, so in 

CHAPTER 6 173 



order to select as good as possible the best linear unbiased estimators (BLUEs) 
have to be used to estimate the model parameters. Second, the actual selection is 
made with the use of a statistical selection rule. With such a selection rule, the 
probability of correct selection P (CS) is controlled. The probability statement that 
accompanies a selection made with a statistical selection rule, is a quantitative 
measure about the uncertainty associated with that selection. Using statistical 
selection, the plant breeder gets acquainted with the uncertainty under which he 
is working. 

The (contrasts between) variety values are often first estimated at the separate 
sites. Frequently, the fixed additive model is used to describe the observations at 
a single site. Then the estimation procedure is relatively simple. However, with 
today's computer facilities available, there are no reasons not to use the mixed 
additive model when this seems more appropriate. If the variance ratio ö^/ö2 

becomes very large, the estimates obtained with the mixed additive model are 
equal to the estimates obtained with the fixed additive model. For the 'nice' designs, 
such as the complete block designs, both models lead towards the same estimates, 
regardless the variance ratio. However, these 'nice' designs are almost never found 
in practice, because different designs are used or because missing observations 
ruin the 'niceness' of the design. A possible problem of using estimators 
corresponding to the mixed additive model is giving a value for o^/a1. The 
knowledge about this variance ratio should be based on historical data. If one is 
not very sure about the value for this ratio, the estimates could be calculated for a 
series of ratio values. If the ranking of the varieties on the basis of their estimates 
is very different for different values of the variance ratio, one should be very 
cautious. 

For the plant breeding practice, where often resolvable designs like lattice 

designs and alpha designs are used, a mixed additive model with fixed replication 

terms and random block within replication terms seems appropriate to describe 

the observations at a single site. 

In literature, much attention has been given to the design and analysis of 
single experiments. However, in the plant breeding practice these experiments are 
not the most important ones. Of greater importance are the series of experiments. 
Until now, only limited attention has been given to the design and analysis of series 
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of experiments. This is not right, because the ultimate selection is based on 'mean 
performance' estimates of the (contrasts between) variety values. With 'mean 
performance' estimates the BLUEs corresponding to a model for the joint 
observations of all experiments are meant. It is convenient if these estimates can 
be calculated in two steps. First, the estimates are calculated at the separate 
experiments, and next these estimates are combined into the 'mean performance' 
estimates. This estimation procedure is convenient if the estimation results of 
various research groups at different sites (countries) have to be combined. Each 
research group can perform the first estimation stage and thus reduce the amount 
of information before combining. 

In 3.2 the estimation in case of a series of experiments has been elaborated 
for several models of the joint observations. If this model contains fixed interaction 
terms, then different parameters are estimated at the different sites, and the 'mean 
performance' estimates are weighted averages of the separate estimates. In all other 
cases the same parameters are being estimated at the various sites, and the 'mean 
performance' estimates are in general multivariately weighted averages of the local 
estimates. In case the model has additional random terms besides the error terms, 
the corresponding variance ratios of the variance of these random terms w.r.t. the 
error variance has to be given. There have been studies to estimate variance 
components in variety trials, e.g. in the United Kingdom (Talbot, 1984) and in 
Germany (Kienzl, 1975). Plant breeders should learn from their experiments (in 
the past) which variance ratios are appropriate for their situation. If one finds it 
difficult to pinpoint the values of the variance ratios, the 'mean performance' 
estimates can be calculated for a series of variance ratio values. With a fast 
computer this should not take too much time. 

To be able to combine the local estimates in a univariate way, the experiments 
should be designed appropriately. In 3.2.2 we have seen that in case of a fixed 
additive model the C matrices of the individual experiments have to be proportional 
to each other, in order to calculate the 'mean performance' estimates as univariately 
weighted averages of the local estimates. However, missing values in an 
experiment result in an altered C matrix. Therefore, in that case multivariate 
weighting may become necessary to obtain the BLUEs. 
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Although concatenated trials are not very sophisticated from the statistical 
point of view, they are very useful from the practical point of view. For this very 
reason they are also used in sugar beet breeding, described in chapter 2. A subtrial, 
which is the only one to include a certain new variety, can be compared with a site 
at which a local variety is tested. The estimation of the BLUEs can be performed 
with the theory developed for a series of experiments. For certain experimental 
designs the local estimator is already the BLUE. 

The estimation procedures proposed in chapter 3 make the calculation of the 
BLUEs feasible, especially because it are two step procedures. However, to 
perform these estimation procedures on a routine basis, useful computer software 
is necessary. 

From the two basic approaches in statistical selection, subset selection seems 
to be the more useful one for the plant breeding practice. The other approach, 
Indifference Zone selection, will not be feasible when the number of tested varieties 
is large. However, Indifference Zone selection can perhaps successfully be used 
after reduction of the number of varieties by subset selection. More research on 
this topic seems necessary. 

The random subset size is a property of subset selection procedures that is 
not appreciated by the plant breeder. However, this is the price he has to pay for 
not designing the experiments good enough to be able to select a fixed small number 
of varieties. Due to shortage of seed, money or experimental field the number of 
replications can only be limited. The randomness of the subset size reflects the 
idea that the conditions for selection are not always the same, but that in one season 
it is easier to select then in another season. This depends on the actual configuration 
of the variety parameters, but also on the standard errors of the BLUEs of the 
contrasts between variety values. Since these two can vary every season, it seems 
reasonable that the selection percentage is different from season to season. 

At first sight, selection of the best variety seems to be the ideal of the plant 
breeder. However, we can ask the question whether this selection goal is not too 
exacting. It is probably more than the breeder wants. The negative result of such 
a strict selection goal is a large selected subset. Furthermore, it is easy to define 
'best' for a single character, but for several characters simultaneously this becomes 
difficult. An index of characters would make things relatively easy, but the 
formulation of such an index requires much thought. Combining subsets selected 

176 6.1 



on the basis of different characters does not seem a very useful alternative. 

Selection of a minimum sized subset that includes at least one good variety 
seems to be a more realistic selection goal than selection of the best variety. If the 
best variety parameter is only a very small distance apart from the best but-one 
variety parameter, then a breeder does not care whether he selects the best or the 
almost best variety. The distance measure (5*) has to be given by the plant breeder, 
so he has to decide which distance between variety parameters is of practical 
importance. The use of this selection goal results in a smaller subset size than 
selection of the best variety. Therefore, this goal may be more convenient for 
practical use than selection of the best variety. 

In the case study, selection of a subset that includes all varieties better than 
the average of the control varieties was not very useful. Due to the fact that many 
varieties were better than the controls, a very large subset size was obtained. 
Probably, the selection goal is not really suited for the plant breeding practice. A 
more useful selection goal from the practical point of view would be the following: 
select the smallest subset that includes at least one variety that is better than the 
average of the control varieties, with probability at least equal to P*. However, 
this question has not been solved theoretically, and probably is impossible to solve. 

The original subset selection procedures, which assumed the use of a 
completely randomised design or a randomised complete block design, were not 
very useful for the plant breeding practice, for the very reason that nowadays the 
mentioned designs are not often used in that field. A major step towards practical 
use of subset selection rules was made by the extension of the known theory to 
incomplete block designs by Driessen (1991). However, in general the subset 
selection rules he used contained separate selection constants for each variety. 
Although these selection constants are equal to each other for a lot of experimental 
designs, this is in general not convenient in practical use. The subset selection rules 
described in 4.2 that contain a single selection constant remove this barrier to 
practical use. To calculate the selection constant associated with these rules, 
computer simulation is indispensible. Our selection constant simulation program 
SELCON can be used to approximate the selection constants. With modern 
powerful and fast computers the use of simulation methods on a routine basis has 
become feasible. Therefore, this technique can also be used at plant breeding 
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companies. The selection constants can also be calculated for the series of 

experiments and the concatenated trials described in chapter 3. Thus, the subset 

selection rules can be used for experiments that are of practical importance. 

If the additional assumption can be made that the variety parameters are a 
random sample from a superpopulation, we can use a subset selection procedure 
that makes use of this assumption. This selection procedure does not guarantee a 
minimum probability of correct selection, but aims at a subset that is associated 
with a certain estimated expected probability of correct selection. We hope that 
this expected probability of correct selection, using the superpopulation 
assumption, is closer to the real probability of correct selection than the minimum 
probability of correct selection P *. We have seen that the true probability of correct 
selection is often much higher than P *. This is to be expected, because the minimum 
probability of correct selection corresponds to the least favourable configuration, 
which is a configuration that probably is also least likely to occur. An approximate 
probability of correct selection is probably of more value to the plant breeder than 
an exact absolute minimum of this probability. Therefore, using a superpopulation 
assumption seems very useful. 

The other proposed modification of subset selection procedures, namely using 
simultaneous lower bounds of ranked variety parameter contrasts, does not seem 
very useful for application on a routine basis. 

The case study was the acid test for application of subset selection procedures 
in the plant breeding practice. To execute the proposed selection rules computer 
software is indispensible. To execute the rules with data that come from ordinary 
trials with incomplete block designs, series of experiments or concatenated trials, 
our computer program SUBSET can be used successfully. Using subset selection 
procedures, the breeder gets insight in the probability of correct selection and the 
number of varieties that have to be selected if this probability has to be larger than 
a prespecified value. This way the plant breeder knows what he is doing and the 
risks he is taking if he decides to select less varieties than indicated by the selection 
rule. For the final decision is up to the breeder... 
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6.2 Conclusions 
We will first recapitulate the conclusions that were explicitly made in the 

sections of the previous chapters. Next we will give some general conclusions. 

1) Differences between variety values are sufficient for statistical selection. In 

case the model used for the observations of a series of experiments includes fixed 

interaction terms, these differences are not equal to the differences between variety 

parameters. In all other models described in this thesis they are. 

2) Calculation of the best linear unbiased estimates (BLUEs) for contrasts 
between variety values, using a model for the observations of a series of 
experiments, can be done in two steps of reduced size. First, the BLUEs are 
calculated at the individual experiments, next they are combined into the 'mean 
performance' BLUEs. Also the pseudo-variance/covariance matrix D[x] and the 
estimated variance s2 can be calculated in steps. 

3) The BLUEs for contrasts between variety values, calculated for a series of 
experiments, are in general multivariately weighted averages of the BLUEs 
calculated at the individual experiments. An exception is the situation where a 
model with fixed interaction terms is used. Then the 'mean performance' BLUEs 
are univariately weighted averages of the 'local' BLUEs. 

4) The multivariate weight matrices Wk, used to calculate the BLUEs for the 
contrasts p'x in a series of experiments, reduce to univariate weights wk if p is a 
common eigenvector of all W* matrices with corresponding eigenvalue wk. For 
the fixed additive model this is the case if the C matrices of the separate experiments 
are proportional to each other. This is e.g. the case if the experiments have 
variance-balanced designs. 

5) In concatenated trials the interest lies in the estimation of the contrasts 
between the new variety parameters and the average of the control variety 
parameters. The BLUEs of these contrasts can be calculated in two steps. First, 
the desired contrasts are estimated at the separate subtrials. Next, the 'local' BLUEs 
from the substrials are combined into the BLUEs corresponding to the model for 
the joint observations of all subtrials. 
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6) The 'local' BLUEs for the contrasts between new variety parameters and the 
average of the control variety parameters in a concatenated trial are sometimes 
already equal to the BLUEs corresponding to the model for the joint observations 
of all subtrials. The exact conditions are described in 3.3.3. If a subtrial has a 
variance-balanced design, then the above mentioned equality is true for the new 
varieties included in that subtrial. 

7) Subset selection has to be preferred to selecting a fixed number of varieties, 
following the Finney approach (Finney, 1958). The latter approach aims at 
maximising the expected gain of selection. This aim, however, is questionable in 
variety testing. The probability that the best varieties are lost is not controlled in 
the Finney approach. 

8) From the described subset selection rules, the rules that include the standard 
errors of the variety contrast estimators appear to be better than the rules that do 
not. Furthermore, for general use with all kinds of designs, the rules that contain 
a single selection constant are very useful and easy to work with. A practical 
recommendation then could be to use the selection rules that have a single selection 
constant and also make use of the standard errors of the variety contrast estimators. 

9) Approximating selection constants by computer simulation is accurately 
enough for practical use. The accuracy of the results depend of course on the 
number of iterations used. We recommend a minimum of 10000 simulation rounds. 

10) The additional assumption that the variety parameters are a random sample 

from a specified (Normal) superpopulation makes modification of subset rules 

possible. This modification results in a less rigid probability statement that can be 

very useful in practice. 

11) Simulation can also be used to estimate the probability of correct selection, 
if the experiment is randomised. With lower bounds of the ranked variety 
parameters a confidence lower limit of the probability of correct selection can be 
calculated. This lower limit can be useful to the breeder in making his selection 
decisions. 
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12) Good computer software is indispensible to : a) calculate the estimates of the 

contrasts between variety values, the variance/covariance matrix and the variance 

estimate; b) calculate the selection constants; c) execute the selection rules. 

Software for b) and c) are our programmes SELCON and SUBSET, respectively. 

General conclusions are : 

13) Subset selection can play an important role in variety testing, both at the plant 

breeding companies and at the official variety testing authorities. The breeders 

should have more knowledge about the probability of correct selection. 

14) Simulation is indispensible to calculate parameters that are necessary for the 

practical application of statistical selection procedures in experiments with 

incomplete block designs. With fast computers available nowadays, simulation 

methods should become part of the toolbox of the modern plant breeder. 

15) With the proposed estimation procedures, subset selection rules and methods 

to calculate the selection constants, subset selection can successfully be used in 

the plant breeding practice. This answers the original objective of this research. 
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Summary 

The ultimate goal of plant breeding is the development of new varieties. An 
important phase in the development process is testing and selecting potential new 
varieties. The varieties are tested by means of experiments at various sites, (sometimes) 
in several years. The observations from the experiments are usually modelled with a 
linear model. The best linear unbiased estimators (BLUEs) of certain estimable 
combinations of parameters (named variety values) in such a model are used to compare 
varieties mutually and with control varieties, and to make a selection. Selection means 
making decisions whether or not to discard particular varieties. The plant breeder 
certainly knows that these decisions are subject to uncertainty, but until now he did not 
have a quantitative measure for this uncertainty. 

In this thesis we advocate the use of statistical theory in the selection phase of the 
breeding process. Here, statistical selection is split up into two components : 1 ) Estimating 
contrasts between variety values as good as possible, 2) Application of statistical selection 
procedures on these best estimates. 

The results of this thesis are not restricted to a particular crop or breeding 
programme. However, we have studied the sugar beet breeding practice and use data 
from this field to illustrate our findings. In the sugar beet breeding programmes there are 
several stages where "varieties" are tested and selected. The plant breeder is interested 
in the specific varieties included in the variety trials and not in some population of 
varieties. Therefore, the variety terms in the models for the observations are chosen fixed. 

Usually, an experiment at a particular site has incomplete blocks to take account 
of heterogeneity of the soil. With many varieties to be tested, the design of such an 
experiment is almost never balanced. Experiments are laid out at various sites (and 
sometimes in several years), but not every variety is tested at all sites. This results in a 
variety x site scheme that is not completely filled. 

The selection decisions are based on several characters of the crop. This makes 
selection complicated, because all characters can seldomly be reduced into one selection 
index on which the decisions can be based. In case of sugar beets it is proposed to use 
the financial yield as selection index. 

As said, we consider estimation of contrasts between variety values to be the first 
part of statistical selection. The value of a certain variety is defined in this thesis as a 
weighted average of the expectations of the observations corresponding to this variety. 
The corresponding linear combinations of model parameters can be estimated best using 
the least squares method. Although a breeder will base the selection decisions on variety 
values that include information from various sites (so-called mean performance values), 
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he is also interested in the variety values at the separate sites. For the observations at a 
single site, either a fixed additive model or a mixed additive model with random block 
terms is used. 

The definition of the mean performance variety value depends on the model used. 
This model describes the joint observations of the series of experiments performed at 
different sites. The ranking of the varieties based on the estimates of their variety value 
can be different for different models. Therefore, the model has to be chosen with care. 
The model choice concerns questions as to whether model terms have to be considered 
fixed or random, and whether an additive or an interaction model has to be used. 

A procedure to obtain the BLUEs of the mean performance variety values, without 
analysing the joint observations of all experiments, is proposed in this thesis. First, the 
experiments at the various sites are analysed individually and contrasts between variety 
values at these individual sites are estimated. Next, the BLUEs of the mean performance 
variety values can be calculated for models without fixed variety x site interaction terms 
as a multivariately weighted average of BLUEs calculated at the individual sites. For 
models that include fixed interaction terms the BLUEs must be calculated as a 
univariately weighted average of the 'local' BLUEs, with the weights given by the 
breeder. 

For the situation of a fixed additive model for the joint observations of all sites, it 
is shown that for some experimental designs the multivariate weights reduce to univariate 
weights. This is e.g. the case when the C matrices (from the reduced normal equations) 
of the individual sites are proportional to each other. Regardless of the model or design 
used (as far as investigated), we can say that contrasts between (mean performance) 
variety values can be estimated (with BLUEs) in two steps of reduced size. Also the 
variance/covariance matrix of the estimators and the usual estimate of the error variance 
can be calculated in such a way. 

The same principles can be applied to a so-called concatenated trial. Such a trial, 
located at one site, is subdivided into subtrials that include new varieties not grown in 
any other subtrial and control varieties grown in all subtrials. Here, meaningful contrasts 
to estimate are the differences between parameters of a new variety and the average of 
the parameters of the control varieties. The BLUEs of these contrasts can be calculated 
by combining local BLUEs from the subtrials. In certain cases the local BLUEs are 
already the 'overall' BLUEs. 

The use of statistical selection procedures is considered to be the second component 
of statistical selection. In this thesis we pay much attention to subset selection rules. 
Using subset selection, the breeder selects a random sized subset of varieties. The subset 
size is chosen as small as possible, but large enough to guarantee that the probability of 
correct selection (i.e. the probability that the desired variety is included in the selected 
subset) is at least P*, with P* a predefined value. The desired variety can be the best 
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variety (where 'best' must be defined) or a good variety (where 'good' must be defined), 
or maybe the desired varieties are all varieties better than a control variety. The subset 
is selected by means of a specified selection rule, which includes estimates of differences 
between variety values, the estimated variances of the corresponding estimators and 
so-called selection constants. The selection constants are associated with the 
experimental design used. 

Often used in practice is the selection of a predetermined number of varieties. 
However, we have shown that this way the probability of correct selection cannot be 
controlled. This could mean that the desired variety is lost too often. 

For unbalanced incomplete block designs selection constants had to be calculated 
for each variety. For practical use this is very inconvenient, because this type of designs 
is often used. Therefore, we have developed selection rules that only need a single 
selection constant, regardless the experimental design used. Such rules can only be used 
if the experiment is randomised, which means that the design has to be randomised and 
the actual varieties have to be assigned to the design varieties (numbers) by means of a 
defined randomisation process. 

The calculation of the selection constants by numerical integration is only feasible 
for the situation of variance-balanced designs. In the other cases we can use computer 
simulation to approximate the desired selection constants. Our computer program 
SELCON performs this simulation, making it possible to calculate the selection constants 
for every experimental design. It appears that the simulation results are accurately enough 
to be used for practical purposes. Simulation can also successfully be used to calculate 
the probability of correct selection and the expected subset size, given the configuration 
of variety parameters. This can e.g. be used to compare different selection rules. 

Using the variance/covariance matrix of the BLUEs of contrasts between mean 
performance variety values the selection constants can be approximated by simulation. 
So, the subset selection rules can also be used for the combined results of a series of 
experiments. The information that certain varieties are a priori excluded from selection 
affects the value of the selection constants and is therefore taken into account in the 
simulation program. 

Two modifications of the subset selection procedures are proposed in order to make 
these procedures more useful in practice. In the first proposed modification it is assumed 
that the variety parameters represent a sample from a (Normal) superpopulation. This 
extra assumption leads to smaller selection constants and thus smaller subsets. However, 
now the expected probability of correct selection is controlled and not the minimum 
probability of correct selection, as is the case for the ordinary subset procedures. Subset 
selection procedures with the superpopulation assumption seem very useful for the plant 
breeding practice. The second proposed modification, namely the use of simultaneous 
lower bounds of the ranked variety parameter contrasts in order to calculate a confidence 
lower bound of the probability of correct selection, seems less practical. 
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To be able to execute the subset selection rules on a routine basis, software is needed. 
Therefore, we wrote the program SUBSET. This program executes subset selection rules 
using the selection constants as calculated by the program SELCON. In the output of 
SUBSET the breeder is informed about the uncertainties corresponding with certain 
selection decisions, and this enables him to make a well-considered selection. The 
developed theories and computer programs were successfully tested in a case study. 

We finally reach the conclusion that statistical selection procedures, especially 
subset selection procedures, can successfully be used in the plant breeding practice. 
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Samenvatting 

Over statistische selectie in de plantenveredeling 

In de plantenveredeling wordt er uiteindelijk naar gestreefd nieuwe rassen te 
ontwikkelen. Een belangrijke fase in dit ontwikkelingsproces is het beproeven en 
selecteren van potentiële nieuwe rassen. De nieuwe rassen worden beproefd in 
experimenten, uitgevoerd op diverse locaties en (soms) in een aantal jaren. De 
waarnemingen uit deze proeven worden gewoonlijk gemodelleerd met behulp van een 
lineair model. De nauwkeurigste (i.e. beste) lineaire zuivere schatters (BLZSs) van 
bepaalde schatbare combinaties van parameters (raswaarden genoemd) in zo'n model 
worden gebruikt om de rassen onderling en met controle rassen te vergelijken, en om 
een selectie te maken. Selectie betekent het nemen van beslissingen omtrent het wel of 
niet weggooien van bepaalde rassen. De plantenveredelaar weet heel goed dat deze 
beslissingen behept zijn met onzekerheid, maar tot nu toe had hij geen kwantitatieve 
maat voor deze onzekerheid. 

In dit proefschrift wordt een lans gebroken voor het gebruik van statistische theorie 
in de selectiefase van het veredelingsproces. Statistische selectie wordt daarbij 
opgesplitst in twee delen : 1) Het zo goed mogelijk schatten van contrasten tussen 
raswaarden, 2) Het toepassen van statistische selectieprocedures op deze schattingen. 

De resultaten van dit proefschrift zijn niet slechts geldig voor één specifiek gewas 
of kweekprogramma. We hebben echter alleen de praktijk van de suikerbietenveredeling 
bestudeerd en gebruiken gegevens uit die praktijk om onze resultaten te illustreren. In 
het kweekprogramma van suikerbieten zijn verschillende fasen aanwezig waar "rassen" 
beproefd en geselecteerd worden. Daarbij is de veredelaar geïnteresseerd in de beproefde 
rassen zelf, en niet in een zekere achterliggende populatie van rassen. Daarom worden 
de rastermen in de gebruikte modellen als niet-stochastisch beschouwd. 

In het algemeen zijn in een experiment op een bepaalde locatie incomplete blokken 
opgenomen om rekening te houden met de heterogeniteit van de bodem. Het grote aantal 
rassen dat beproefd moet worden zorgt ervoor dat het proefontwerp zelden gebalanceerd 
is. De rassenproeven worden uitgevoerd op verscheidene locaties (en soms in meerdere 
jaren), maar niet elk ras wordt op dezelfde locaties beproefd. Dit leidt tot een ras x locatie 
schema dat niet volledig gevuld is. 

De selectiebeslissingen worden gebaseerd op verscheidene eigenschappen van het 
gewas. Dit maakt selectie gecompliceerd, want zelden kunnen alle eigenschappen 
gereduceerd worden tot één selectie-index op basis waarvan de beslissingen genomen 
kunnen worden. Er wordt voor suikerbieten voorgesteld om de financiële opbrengst als 
selectie-index te gebruiken. 
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De raswaarde van een bepaald ras wordt in dit proefschrift gedefinieerd als een 
gewogen gemiddelde van de verwachtingen van de waarnemingen behorende bij dit ras. 
De corresponderende lineaire combinaties van de modelparameters kunnen het beste 
geschat worden m.b.v. de kleinste kwadraten methode. De veredelaar zal de 
selectiebeslissingen baseren op raswaarden waarin informatie van meerdere locaties 
verwerkt is (zogenaamde gemiddelde raswaarden), maar hij heeft ook interesse in de 
raswaarden op de afzonderlijke locaties. Om de waarnemingen op één locatie te 
beschrijven wordt ofwel een vast additief model ofwel een gemengd additief model met 
stochastische bloktermen gebruikt. 

De definitie van een gemiddelde raswaarde hangt af van het gekozen model, dat 
alle waarnemingen uit de experimenten op de verschillende locaties beschrijft. De 
rangschikking van de rassen, gebaseerd op hun raswaarden, kan verschillend zijn voor 
verschillende modellen. Daarom moet het model zorgvuldig gekozen worden. Daarbij 
moet besloten worden of modeltermen vast of stochastisch zijn en of een additief dan 
wel een interactie model gebruikt wordt. 

In dit proef schrift wordt een procedure voorgesteld om de BLZSs van de gemiddelde 
raswaarden te verkrijgen, zonder dat alle waarnemingen van de experimenten te zamen 
geanalyseerd moeten worden. Eerst worden de experimenten op de diverse locaties 
afzonderlijk geanalyseerd en worden contrasten tussen raswaarden op deze locaties 
geschat. Vervolgens kunnen de BLZSs van de gemiddelde raswaarden voor modellen 
zonder vaste ras x locatie interactietermen berekend worden als een multivariaat gewogen 
gemiddelde van BLZSs die op de afzonderlijke locaties berekend werden. Als het model 
vaste ras x locatie interactietermen bevat, dan moeten de BLZSs berekend worden als 
een univariaat gewogen gemiddelde van de 'plaatselijke' BLZSs, waarbij de gewichten 
gegeven moeten worden door de kweker. 

In geval van een vast additief model voor de gezamenlijke waarnemingen van alle 
locaties is aangetoond dat voor sommige proefschema's de multivariate gewichten 
reduceren tot univariate gewichten. Dit is bijvoorbeeld zo wanneer de C matrices 
(afkomstig van de gereduceerde normaalvergelijkingen) van de afzonderlijke locaties 
proportioneel zijn t.o.v. elkaar. Onafhankelijk van het gebruikte model of proefschema 
(voor zover onderzocht) kunnen we zeggen dat contrasten tussen (gemiddelde) 
raswaarden in twee stappen van beperkte omvang geschat kunnen worden (met BLZSs). 
Ook de variantie/covariantie matrix van de schatters en de gebruikelijke schatting van 
de restvariantie kunnen op zo'n manier berekend worden. 

Dezelfde principes kunnen toegepast worden op een zogenaamde 
aaneengeschakelde proef. Zo'n proef, die uitgevoerd wordt op één locatie, is 
onderverdeeld in deelproeven die nieuwe rassen bevatten welke niet opgenomen zijn in 
enig andere deelproef en controle rassen die in elke deelproef voorkomen. Zinvolle te 
schatten contrasten zijn hier verschillen tussen parameters van nieuwe rassen en het 
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gemiddelde van de parameters behorende bij de controle rassen. De BLZSs van deze 
contrasten kunnen berekend worden door plaatselijke BLZSs uit de deelproeven te 
combineren. 

Als tweede component van statistische selectie werd het gebruik van statistische 
selectieprocedures genoemd. In dit proefschrift schenken we veel aandacht aan 
'subset'-selectieregels. Bij 'subset'-selectie selecteert de veredelaar een 'subset' van 
rassen. De 'subset'-omvang is stochastisch : zo klein mogelijk, maar groot genoeg om 
te garanderen dat de kans op correcte selectie (dit is de kans dat het gewenste ras in de 
'subset' aanwezig is) minstens P* is, met P* vooraf gegeven. Het gewenste ras kan het 
beste ras zijn (waarbij 'beste' gedefinieerd moet worden), of een goed ras (waarbij 'goed' 
gedefinieerd moet worden). Of misschien zijn de gewenste rassen alle rassen die beter 
zijn dan een controle ras. De 'subset' wordt geselecteerd m.b.v. een zekere selectieregel, 
waarin schattingen van verschillen tussen raswaarden, de geschatte varianties van de 
corresponderende schatters en de zogenaamde selectieconstanten verwerkt zijn. De 
waarden van de selectieconstanten worden bepaald door het gebruikte proefontwerp. 

Vaak wordt in de praktijk een vooraf vastgesteld aantal rassen geselecteerd. Er is 
echter aangetoond dat de kans op correcte selectie op deze manier niet onder controle 
gehouden kan worden, hetgeen kan betekenen dat het gewenste ras te vaak verloren gaat. 

Voor ongebalanceerde proef schema's moesten de selectieconstanten voor elk ras 
afzonderlijk berekend worden. Dit is erg onplezierig voor de praktijk, omdat daar veel 
van dit type proef schema's gebruik gemaakt wordt. Daarom hebben we selectieregels 
ontwikkeld die slechts één enkele selectieconstante vragen, ongeacht het proefontwerp. 
Zulke selectieregels kunnen alleen gebruikt worden bij gewarde experimenten. Zo'n 
experiment heeft een gewarde proefopzet en de werkelijke rassen zijn toegewezen aan 
de ontwerprassen (getallen) d.m.v. een gedefinieerde warringsprocedure. 

Het berekenen van de selectieconstanten m.b.v. numerieke integratie is alleen 
haalbaar voor variantie-gebalanceerde proefontwerpen. In de overige gevallen kunnen 
we computersimulatie gebruiken om de selectieconstanten te benaderen. Met ons 
computerprogramma SELCON kunnen de selectieconstanten voor alle mogelijke 
proefontwerpen m.b.v simulatie berekend worden. Het blijkt dat de simulatieresultaten 
nauwkeurig genoeg zijn om in de praktijk gebruikt te kunnen worden. Simulatie is ook 
een bevredigende methode om de kans op correcte selectie en de verwachte 
'subset'grootte te berekenen (bij een gegeven configuratie van rasparameters). Deze 
grootheden kunnen bijvoorbeeld gebruikt worden om verschillende selectieregels 
onderling te vergelijken. 

Gebruikmakend van de variantie/covariantie matrix van de BLZSs van contrasten 
tussen gemiddelde raswaarden kunnen de selectieconstanten benaderd worden m.b.v. 
simulatie. Dus kunnen de 'subset'-selectieregels ook gebruikt worden voor de 
gecombineerde resultaten van een reeks experimenten. A priori informatie dat bepaalde 
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rassen uitgesloten moeten worden van selectie beïnvloedt de grootte van de 
selectieconstante. Daarom wordt daar rekening mee gehouden in het 
simulatieprogramma. 

Om 'subset'-selectieprocedures meer bruikbaar te maken in de veredelingspraktijk 
worden twee aanpassingen van deze procedures voorgesteld. In het eerste voorstel wordt 
ervan uitgegaan dat de rasparameters een steekproef uit een (Normale) superpopulatie 
vormen. Deze extra veronderstelling leidt tot kleinere selectieconstanten en dus tot 
kleinere 'subset'-groottes. Hierbij wordt echter de verwachte kans op correcte selectie 
gecontroleerd en niet de minimum kans op correcte selectie, hetgeen het geval is bij de 
gebruikelijke 'subset'-procedures. 'Subset'-selectieprocedures met een superpopulatie 
veronderstelling lijken erg zinvol voor de veredelingspraktijk. Het tweede voorstel tot 
modificatie van 'subset'-selectie blijkt minder praktisch. Dit voorstel betreft het gebruik 
van simultane ondergrenzen voor de gerangschikte rasparametercontrasten teneinde een 
betrouwbaarheidsondergrens voor de kans op correcte selectie te berekenen. 

Om 'subset'-selectieregels routinematig uit te kunnen voeren is 
computerprogrammatuur nodig. Daartoe werd het programma SUB SET geschreven. Dit 
programma voert 'subset'-selectieregels uit, gebruikmakend van selectieconstanten die 
door het programma SELCON berekend werden. In de uitvoer van SUBSET wordt de 
veredelaar geïnformeerd omtrent de onzekerheden behorende bij bepaalde 
selectiebeslissingen. Dit geeft hem de mogelijkheid om een weloverwogen selectie te 
maken. De ontwikkelde theorieën en computerprogramma's werden met succes beproefd 
in een praktijkstudie. 

Tenslotte kan geconcludeerd worden dat statistische selectieprocedures, in het 
bijzonder 'subset'-selectieprocedures, met succes gebruikt kunnen worden in de praktijk 
van de plantenveredeling. 
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