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STELLINGEN 

1. "Validatie" en "calibratie" van voedingsinname-metingen moeten per definitie 
worden beschouwd als vormen van statistische modellering, berustend op de 
aanname dat verschillende methoden eenzelfde verschijnsel meten, maar 
onafhankelijke fouten hebben. 
(dit proefschrift) 

2. Validiteit en precisie kunnen het best worden gezien als kenmerken van een 
verzameling metingen, en niet van de gebruikte meetmethode. 
(dit proefschrift) 

3. Bland & Airman's categorische verwerping (Lancet,1986;i:307-10) van de 
correlatie-coëfficiënt als maat voor validiteit of reproduceerbaarheid (of een 
combinatie van beide) is onterecht. 

4. Het onderzoeken van epidemiologische verbanden tussen innameniveaus van 
individuele nutriënten of voedingsmiddelen en chronische ziekten leidt 
gemakkelijk tot overinterpretaties die zouden kunnen worden vermeden als de 
voedings-' blootstelling" meer integraal werd beschreven als een 
multi-dimensionaal consumptiepatroon. 

5. De recente uitkomsten van de finse kanker-preventie trial met ß -caroteen en 
a-tocopherol (New England Journal of Medicine, 1994;330:1029-35) suggereren 
dat men voor chemopreventie beter wat vaker naar de groenteboer kan gaan dan 
naar de apotheek. 

6. De recent ingevoerde registratie van epidemiologen in Nederland suggereert een 
gebrek aan vertrouwen dat (collega) werkgevers van epidemiologisch 
onderzoekers zelf een curriculum vitae kunnen beoordelen. 

7. De sociale rechtvaardigheid van een wettelijk gegarandeerd minimum inkomen is 
aangetast als men werkzoekenden niet op afzienbare termijn een baan kan bieden. 

8. De sterke toename van aantal skiliften in franse Alpen doet vermoeden dat, onder 
het motto "vooruitgang is alleen vooruitgang als die wordt gedeeld door iedereen", 
de wereld langzaam wordt omgetoverd in een gigantisch gemechaniseerd 
pretpark. 

9. Des chercheurs qui cherchent, on en trouve; des chercheurs qui trouvent, on en 
cherche, (generaal de Gaulle) 

10. Te beoordelen naar hun gedrag in het stadsverkeer hebben de fransen met de haan 
als nationaal symbool geen slechte keus gemaakt. 

11. De aankondiging van een verhoging van het budget voor de vroege opsporing van 
mammacarcinoom (Volkskrant, 1-9-94) valt op aardige wijze samen met de 
recente benoeming van mevrouw Borst als minister voor Volksgezondheid, 
Welzijn en Sport. 

Stellingen behorend bij het proefschrift 'Efficiency aspects of design and analysis of 
prospective studies on diet, nutrition and cancer', van Rudolf Kaaks. Wageningen, 7 oktober 
1994. 



Abstract 

This thesis presents and analyzes methodological approaches to improve the 

design and analysis of prospective cohort studies on the relations between 

diet, nutritional status and cancer. The first chapters discuss methods to 

optimize the measurement of the individuals' habitual dietary intakes, 

focussing on the use and design of sub-studies for the "validation" or 

"calibration" of baseline dietary questionnaire assessments. The power of 

prospective studies can be improved by maximizing the variation in true 

dietary intake levels actually distinguished - or "predicted" - by 

questionnaire assessments. This can be achieved by designing an optimal 

questionnaire method, using a preliminary validity study to evaluate its 

performance. An additional possibility is to broaden the range of dietary 

exposures by conducting multiple cohort studies in populations with 

different dietary habits. A main objective is to precisely estimate the 

magnitude of the predicted variation of intake levels, to account for the 

effect of measurement error as well as of the real variation in exposure, in 

the evaluation of the power or sample size requirements of a cohort study, 

and in the estimation of relative risks describing diet-disease relations. 

The predicted variation is estimated most efficiently by means of a 

"calibration" sub-study, which differs from validity studies in that it 

requires only a single (unbiased) reference measurement per person (e.g., 

based on a 24-hour recall), in a representative sub-sample of cohort 

members. In multi-cohort projects, calibration studies are essential to 

improve the between-cohort comparability of relative risk estimates, and to 

increase the power of a statistical test for the presence of a diet-disease 

association based on a pooled summary estimate. A simplified method is 

proposed for the estimation of sample size requirements of dietary 

calibration studies. When the exposure assessments are based on a 

biochemical marker, a most efficient design is to store biological specimens 

in a biobank, and to postpone laboratory analyses until cases with disease 

have been identified. Nevertheless, the number of scientific hypotheses 

potentially of interest is usually much larger than can be tested with 

limited amounts of biological specimens available. The last chapter of this 

thesis discusses the use of a sequential study design, to allow the 

evaluation of a maximum number of different hypotheses at the expense of as 

little biological material as possible. 
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Scope of this thesis 

i. "Validation" and "calibration" of dietary intake assessments 

ii. Design aspects when exposure measurements are based on biochemical 

markers 
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Background 

Over the past 20 or 30 years, important developments have been made in 

epidemiological research on the relation between diet and cancer. Following 

international correlation studies (1-3), and studies on migrants (4,5), 

which indicated that diet and nutrition-related life style may be important 

determinants of cancer risk, epidemiological research shifted towards 

studies where the basic units of observation were individuals rather than 

entire populations. During the 1970s, most of these were of a case-control 

design, focusing mainly on cancers of the stomach, colorectum, and breast. 

During the 1980s, the number of case-control studies increased, and were 

gradually oriented to a larger variety of cancer sites, including the upper 

aerodigestive tract (larynx, oesophagus), endometrium, ovary, prostate and 

lung (6). This period was also characterized by the development of more 

modern concepts and methods for "nutritional epidemiology", as evidenced by 

the (still relatively recent) publication of two standard textbooks in this 

field (7,8). Particular attention was given to the development of 

appropriate methods for the assessment of individuals' habitual diet, 

especially food frequency questionnaires (7,9), and to the use of 

methodological sub-studies to evaluate the validity and reproducibility of 

the dietary questionnaire assessments (10,11). Finally, a number of large, 

well-designed prospective cohort studies were started, in which diet was 

measured by means of carefully selected and "validated", questionnaire 

instruments (12-14). Then, at the end of the 80s, the idea of developing 

multi-cohort projects was conceived. The first of these was the European 

Prospective Investigation on Cancer and Nutrition (EPIC), a multi-centre 

cohort study currently being conducted in collaboration with 17 research 

centres in seven European countries, and which is coordinated by the 

International Agency for Research on Cancer at Lyon (15). Following a 

similar rationale, another multi-centre (and multi-ethnic) project is being 

planned in areas around Pacific basin, including Hawaii, Califoria, 

Singapore and possibly Japan (16). 

The main reasons for conducting prospective cohort studies, rather than 

using a case-control design, are that in the latter the estimated 

association between diet and disease risk may be prone to bias. Selection 

biases may occur if controls and cases do not originate from the same 

population base (17). Another type of bias is due to differences between 
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cases and controls in the recall of their previous dietary habits (18). In 

prospective studies, the diet-disease relationship is investigated following 

the natural time sequence between the exposure, assessed at baseline when 

the subjects enrol in the study, and the subsequent occurrence of disease 

during a period of follow up. It is unlikely that assessments of habitual 

dietary intake will be differently biased among participants who eventually 

develop a given disease, as compared to those who remain in good health. 

Moreover, prospective cohort studies provide a well described population 

base for making comparisons between the measured exposures of cases, and of 

disease-free control subjects. Thus, selection bias is also unlikely to form 

a serious problem in this type of study, unless for some reason losses in 

follow up are associated with the level of dietary intake assessments. 

An important remaining problem, also in prospective cohort studies, is 

that there should be sufficient statistical power to test for the presence 

(or absence) of specific diet-disease associations. In conjunction, it is 

desirable to obtain relative risk estimates with a sufficient level of 

precision, as measured by the width of their confidence intervals. Within a 

limited geographical (or cultural) area, there may be relatively little 

between-individual variation in habitual dietary intake, as compared to the 

variation that exists between mean intake levels in different countries. For 

example, the mean fat intake at a population level varies from as little as 

11 percent of daily energy intake for some developing countries, to more 

than 43 percent in the United States, whereas within the United States as a 

single country the between-individual variation in fat intake was estimated 

to be between 30 and 45 percent of total energy (19). Due to this relative 

homogeneity of dietary habits within a single country, true relative risks 

between subjects with either "high" or "low" intake levels of a given food 

or nutrient will tend to be much weaker. In addition, there is the problem 

that relative risks tend to be under-estimated due to the attenuating 

effects of random errors in the dietary exposure measurements, so that the 

statistical power to test for the presence of a diet-disease association is 

even further decreased (20). Therefore, relatively large numbers of cases 

with the disease of interest will be required for a cohort study to reach a 

reasonable level of power and precision. 

Although the total cancer burden is high in economically more developed 

countries, there are many different forms of cancer, and incidence rates of 

each of these separately are usually relatively low. Therefore, prospective 
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cohort studies must in general be very large, including several tens of 

thousands of individuals, for a sufficient number of cases with a specific 

form of disease to develop during a follow up period of no more than 10 to 

15 years. Consequently, the costs of such prospective studies can be very 

high. It is thus fundamental to use an efficient study design which, for a 

given investment of time and resources, makes the study as informative as 

possible. The main criteria to judge the amount of information obtained in a 

study are: 

a. the power of statistical tests for the presence of specific diet-

disease associations; 

b. the validity and precision with which the magnitude of such 

associations can be estimated (e.g., in the form of relative risks); 

and 

c. the number of different scientific hypotheses that can be evaluated. 

Major aspects of the design of a prospective study are related to the choice 

of the study population, as characterized by the expected cumulative 

incidence of disease (within a given follow-up period), the presence of a 

reliable mechanism for follow-up (e.g., a cancer registry), or factors which 

may facilitate contacting the study subjects (e.g., participation in a local 

screening programme). Once a choice has been made for the type of study 

population, the efficiency of the design of a prospective cohort study can 

be optimized by maximizing the accuracy of the exposure measurements, and by 

determining the sample size at which the cohort will have sufficient 

statistical power. The estimated sample size requirements, as well as 

financial resources available, are then key elements for deciding how many 

different types of exposure information can be collected from each 

participant (e.g., apart from the main questionnaire(s) on dietary habits, 

additional questionnaires can be included, for instance on physical 

activity, or biological samples can be collected for the assessment of 

various biochemical markers). 
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Scope of this thesis 

This thesis addresses a number of methodological issues related to the 

efficiency of the design and conduct of prospective cohort studies. The 

first chapters (chapters 2 to 5) discuss methods for optimizing the 

assessment of the habitual, long-term dietary intake of individuals 

participating in a prospective cohort study. More specifically, these 

chapters focus on the use and design of sub-studies with additional 

reference measurements, for "validation" or "calibration" of baseline 

questionnaire assessments of dietary intake level. Chapter 6, on the other 

hand, addresses the aspect of optimizing the number of specific study 

hypotheses that can be evaluated when exposure assessments are based on a 

biochemical marker measured in blood, or other tissue samples. 

i. "Validation" and "calibration" of dietary intake assessments 

As mentioned above, the power and precision of a cohort study on diet 

depend, among other things, on the heterogeneity in dietary intake levels 

within a given study population, as well as on the accuracy with which this 

variation in intake level is measured at baseline. Therefore, before 

starting the main epidemiological study, it is important to verify whether 

the baseline dietary intake assessments - usually obtained by means of a 

structured food frequency, or dietary history type of questionnaire (9,10) -

make sufficient distinctions between the high or low intake levels of 

different individuals. For this purpose, it is usually proposed to conduct a 

smaller sub-study, in which the accuracy of questionnaire assessments is 

evaluated by comparison with 'reference' measurements that are assumed to 

provide a more accurate measure of the individuals' true habitual intake 

levels (7). In the first instance, such sub-studies can be used during the 

development (21) or selection (22-24) of an optimal dietary questionnaire 

instrument, even before the main cohort study is started. Chapter 2 of this 

thesis presents a mathematical model for the definition of different types 

of error in dietary exposure measurements. This chapter then reviews, in 

terms of latent variable models, the essential requirements for the design 

and analysis of dietary validity studies, aimed at estimating the 

correlation between questionnaire assessments and the true, habitual dietary 

intake levels of individuals. 
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Apart from selecting an optimal questionnaire instrument, further reasons 

for collecting additional reference measurements are that: 

1. at the start of a prospective cohort study, this allows a more precise 

estimation of the expected statistical power, or sample size 

requirements of the cohort, taking account of the inaccuracy of certain 

dietary intake assessments; and 

2. at the analysis stage, this will allow the estimation of relative risk 

estimates with a correction for biases due to errors in the baseline 

dietary exposure assessments. Indeed, we are interested in disease risk 

as a function of true dietary intake levels rather than of measured 

levels of intake. With only a single, baseline measurement of dietary 

exposure (usually obtained by means of a questionnaire), the 

quantitative relation between true intake level and disease risk cannot 

be estimated. 

In previous epidemiological studies, the additional reference measurements 

needed to meet these two objectives have been usually collected within a 

preliminary validity study. Prospective cohort studies, however, also offer 

the possibility of collecting reference measurements as an integral part of 

the overall dietary exposure assessment at baseline, on at least a 

representative sample of study participants. This possibility is discussed 

in Chapter 3, which proposes an efficient alternative to dietary validity 

studies, based on the concept of "calibration" of the baseline dietary 

questionnaire assessments. 

Another possible approach to improve the correlation between measured and 

true dietary exposure values, and to increase the power and precision of a 

prospective cohort study while keeping its sample size constant, is to 

broaden the range of true dietary exposure levels covered. This may be 

achieved by conducting studies in different geographical areas (as in the 

EPIC project (15)), or by including different ethnic sub-groups which are 

known to have different food consumption habits (this is the rationale for 

the Pacific Area Multi-Ethnic project (16)). Advantages of the multi-cohort 

study design, as compared to "ecological" studies based on aggregate (i.e., 

group level) information about exposure and disease incidence, are discussed 

in Chapter 4. A complication in the multi-cohort design, however, is that, 

within different cohorts, questionnaire assessments of dietary exposure may 

not have the same degree of accuracy for classification of individuals by 
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their habitual dietary intake levels, whereas mean intake levels may also be 

over- or underestimated by unequal amounts. A solution to this problem is 

presented in Chapter 4, proposing the "calibration" approach to combine the 

findings of different cohorts in a manner that reflects the accuracy of the 

questionnaire assessments, and to adjust for differences in systematic over-

or underestimation of mean intakes at a level. 

Within this context, it is important that calibration sub-studies should 

themselves be large enough to reach a minimum level of precision, without on 

the other hand overinvesting in this component of exposure assessment. The 

issue of optimal sample size requirements for dietary calibration studies is 

addressed in Chapter 5. 

ii. Design aspects when exposure measurements are based on biochemical 

markers 

Another important advantage of prospective cohort studies is the possibility 

to use exposure assessments based on biochemical markers, measured in urine 

or blood, or in tissue specimens such as nails and fat tissue biopsies. 

Since in prospective studies the biological specimen can be collected before 

the clinical manifestation of disease, it is unlikely that the presence of a 

tumour, or related metabolic effects such as cancer cachexia, will have 

influenced the levels of biochemical marker. Observed associations between 

biochemical markers and disease risk can thus be interpreted more reliably 

as reflecting a causal relation, between the level of a given type of 

exposure and the development of a disease (and not vice versa). It should 

not be forgotten, in the current development of "biochemical" epidemiology, 

that the time sequence between exposure and disease is one of the 

fundamental conditions for interpretation of an epidemiological association 

as a potentially causal one (25). Markers which of may be of interest in 

studies on diet and cancer include: 

- markers of dietary intake and nutritional status (e.g. plasma levels of 

vitamins, triglycerides, or lipoproteins; fatty acid composition of fat 

tissue biopsies, selenium levels in toenails) (26-28), 

- markers of hormonal status and metabolism (e.g., plasma levels of 

specific steroid hormones, or sex-hormone binding globulin) (29), 

- markers of susceptibility (e.g., genetic or phenotypic polymorphisms of 

enzymes which may play a role in the activation or inactivation of 

(pre-) carcinogens (30)), 
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- markers of DNA damage (e.g., oxidative damage of DNA (31,32). 

Efficient approaches to exposure measurements by means of biochemical 

markers differ from those where exposure assessments are obtained by means 

of a questionnaire, because: 

1. it would be too expensive to measure all biochemical markers 

potentially of interest at baseline for all individuals; and 

2. the types of marker of interest will vary according to the prevailing 

biological hypotheses for the type of cancer under investigation. 

It is therefore usually more efficient to store biological specimens in a 

biological bank, and to delay the second step of the exposure assessment 

(the laboratory analysis) until a later date, when it will be known which 

individuals have developed a given type of disease, and which will be 

selected as suitable control subjects. Nevertheless, there remains the 

problem that the number of biological hypotheses potentially of interest 

will generally exceed the number of biochemical parameters that can actually 

be assessed with the limited volume of biological specimens for cases and 

suitable controls. For instance, in the EPIC project (15), a total of only 

14 millilitres of blood fractions (plasma, serum, buffy coat and red blood 

cells) are kept for each individual, in the form of 28 smaller (0.5 ml.) 

aliquots. Therefore, after the creation of a biological bank, an additional 

aspect related to increasing the efficiency of exposure assessment is how to 

optimize the number of different hypotheses that can be evaluated with a 

limited biological material. This aspect is addressed in Chapter 6, which 

proposes the use of a sequential test procedure to distinguish between 

promising new hypotheses, which may be worth further investigation, and less 

promising ones. 
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Abstract 

The validity and precision of questionnaire assessments of the habitual 

intake of individuals are usually evaluated by comparison with reference 

measurements that are supposed to provide a best possible substitute for the 

individuals' true intake values. In the present paper, a measurement error 

model is presented, defining different types of error - random or 

systematic, and within or between individuals - that may occur in dietary 

intake measurements. It is then discussed how simple latent variable models 

(structural equation models) can be used to estimate the average magnitude 

of these various types of error. So far, approaches described for the 

analysis of dietary validity studies were all based on the assumption that 

the random errors of repeat reference measurements, taken by the same method 

on different occasions, are uncorrelated, so that the average of a 

sufficiently large number of repeat reference measurements will provide an 

accurate ranking of individuals by true intake level. In the present paper 

it is described how, by additional comparison with a third type of 

measurement such as a biochemical marker, the validity of dietary 

questionnaire measurements can be evaluated even in situations where the 

random errors of repeat reference measurements cannot be assumed to be 

independent. 
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Introduction 

The validity and precision of measurements of diet obtained with dietary 

questionnaires are usually studied by evaluating their concordance with 

"reference" measurements, which are supposed to provide the best possible 

substitute for the true habitual intake value of every single subject 

participating in a dietary validity study (1-3). The two classic measures of 

concordance most commonly used in such validity studies are the correlation 

coefficient, and the difference between group means. The first measure is 

seen as an index of the accuracy with which questionnaire assessments can 

rank individuals by dietary intake level, while the second is used to 

express the average tendency of individuals to over- or under-estimate their 

dietary intake. 

In most studies on the validity of dietary questionnaire assessments, the 

reference measurements have been based on weighed food records (2), but 

24-hour recalls have also been used (2,4). Usually, such measurements of 

daily intake are repeated for multiple days, with the objective of obtaining 

a precise estimate of the individual level of the usual daily nutrient 

intake value. In early validity studies it was often assumed that the 

average of one or two weeks of daily intake recording provided accurate 

measurement of long-term nutrient intake. On this assumption, the 

correlation between questionnaire assessments and reference measurements 

should precisely reflect the accuracy of the questionnaire assessments for 

ranking individuals by habitual intake level. More recently it was shown 

that a larger number of recording days may be required, and that the 

correlation of questionnaire with reference measurements might underestimate 

the correlation with true intake levels if the reference measurements are 

subject to random error (e.g., if the reference measurements are based on 

only one week of food records) (5-8). Methods were proposed to correct for 

the underestimation of correlation and regresssion coefficients 

("attenuation" bias) due to within-subject random errors in the reference 

measurements (6,9). Freedman and colleagues (10) extended these methods by 

also incorporating an adjustment for the over- or under-estimation of 

correlation and regression coefficients that may result from a covariance 

between random errors of questionnaire and reference measurements taken too 

close in time. 

So far, the various approaches described for the analysis of dietary 

validity studies were all based on the assumption that the average of repeat 



24 Chapter 2 

reference measurements will provide an accurate ranking by true intake level 

provided that the number of repeat measurements is large enough. In 

practice, however, this may not be the case. For instance, by comparing 

weighed food records with precise measurements of energy expenditure 

obtained by the "doubly labeled water" method (11,12), it has been shown 

that individuals can differ in their tendency to systematically under-report 

energy intake. One may expect that 24-hour recalls would result in an even 

greater systematic under-reporting, since a major source of error will be 

the subjects' tendency to forget which foods they actually consumed during 

the previous day. In addition, one would expect that greater systematic 

errors will be made in the description of portion sizes (2). Individuals 

might therefore systematically differ in their over- or under-reporting of 

intake. If this is the case, the random errors of repeat reference 

measurements, taken by the same method on different occasions, will be 

correlated, and repetition of daily intake estimates will fail to provide a 

fully accurate classification of individuals by true intake level. 

In the present paper, we shall present a measurement error model, 

defining different types of error - random and systematic, within or between 

individuals (13) - that may occur in dietary intake measurements. Ve shall 

then review, in terms of structural equation models, various procedures for 

the estimation of the average magnitude of the different types of error, and 

show how simple SAS programmes (using the procedure "CALIS") can be used for 

computations. Basic assumptions underlying the analysis of dietary validity 

studies will be discussed. It will be shown that, by additional comparison 

with a third type of measurement such as a biochemical marker, unbiased 

estimates of the average magnitude of the different errors can be obtained 

even when the random errors of repeat reference measurements are correlated. 

A measurement error model 

Suppose that for different individuals within a dietary study one seeks to 

measure the usual intake of a given nutrient. If, for a given individual i, 

a measurement X is made of his or her true intake T, one can write : 

X. = T. + y. 
l l 'l 

E(Yi) = B. 

Var(y.) = „J(1 

where y. is the "error", B. is the bias, and o . is the variance of the 

within-subject random error (13), which is the random error for repeat 
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measurements taken by the same method on the same individual. B. has 

previously been called the within-subject systematic error (13), or subject-

specific bias (2,3), and differs from zero if, on repeat occasions, the 

individual tends consistently to over- or underestimate intake. 

Within a population of I individuals, the magnitude of the bias B. and 
2 

of the variance o . may vary from one subject to another. On average, 
Y» i 2 

however, the variance of within-subject random error will be equal to o , 
2 

the expected individual variance in the population. The average variance o 

will be assumed to be the same at all values of true intake, T. 

The bias may, to a certain extent, be functionally related to T. We shall 

assume that this functional relation is linear: 

B = a + bT + 6 

where E(S) = 0, Var(6) = o^ , and Cov(6,T) = 0. 

According to this linear model, the expected over- or underestimation for 

each individual can be decomposed into a multiplicative component bT, which 

depends on the individual's true dietary intake, and a constant additive 

component a. The term 6 represents the residual part of the subject-specific 

bias, which cannot be accurately predicted from the linear relation with T. 
2 

We shall therefore refer to 6 as "random" bias. Also the variance o. will be 

assumed to be equal for all values of T. 

We can now write the following model to measure the intake for an 

individual i belonging to the given study population : 

J.± = T± + (a + bTt) + 6± + Yt = a + ßT± + E± , 

Here, the measurement X. is the sum of the expected measurement, conditional 

on the individual's true intake, 

E(X|T.) = T. + (a + bT.) = a + ßT. , 

plus a total random error £.. The total random error is itself the sum of 

Y-, the within-subject random error, and of 6., the unpredictable part of 

the individual's bias. The distinction between the total random error 

components Y and 5 is of importance since, when X measurements are repeated 

on the same individuals, the random biases 6. will be reproduced. As a 

consequence, the total random errors £ of the repeat measurements will be 

correlated unless all 6. = 0. The average variance of the total random error 

is given by 

Var(£) = Var(X|T) = o* + o2
y = a2

£ . 

The coefficient a indicates the average tendency to over- or under-estimate 

intake by a constant amount, and ß indicates the tendency to over- or under-
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estimate intake by an amount which is proportional to the level of the true 

intake. 

"Validity" is commonly defined as the absence of bias, whereas 

"precision" is usually defined to be equivalent to a high reproducibility of 

measurements (2). Thus, if the objective is to measure the intake of 

individuals, validity corresponds in model terms with the absence not only 

of constant and proportional biases (i.e., oc=0, ß=1.0), but also of random 
2 

biases (i.e., o.=0). A high reproducibility then corresponds to a small 

variance of within-subject random errors. It should be kept in mind that the 
2 2 parameters in the estimated measurement model (a, ß, a,, and o ) may not 

only depend on the type of measuring instrument but also on the population 

being investigated, and therefore should not be taken as universal 

parameters specific for the measuring instrument used. 

If the values of the parameters a and ß were known, one could correct the 

X-measurements for "systematic" biases by: 1) substracting an amount a to 

correct for the average additive bias, and 2) subsequent division by ß to 

correct for the average multiplicative bias. The relation between the 

corrected measurements and true intake then becomes: 

X i * = (^-«J/ß = Ti + £i* ' w h e r e ei* = £ i / ß ' 
This correction can be seen as a scale adjustment, re-expressing the 

X-measurements in the measurement units of the true intake. The coefficients 

a and ß can therefore also be referred to as scaling factors. Also the 

random errors e. undergo rescaling, to yield standardized random errors £. . 

The correlation between the measurements X and true intake T depends on the 

variance of the standardized random errors relative to the variance of the 
9 9 9 

true intake being measured, as : p ™ =!/>/( 1 + a /(ß o„) ). 

Estimation of the error parameters 

Suppose one seeks to measure habitual, long-term dietary intake of 

individuals, using a dietary questionnaire, which is related to true intake 

as : 

Q = a Q + ß Q T + £ Q [ 1 ] . 

An evaluation of the accuracy (i.e., validity plus precision) of the 

questionnaire measurements implies that the magnitude of the unknown error 
2 

parameters a-, ß„ and a _ should be estimated. Ideally such estimates would 

be obtained by comparing the individuals' questionnaire assessments with the 



Validation of questionnaire assessments 27 

corresponding true intake values. However, the true intake values will never 

be known, but must rather be seen as values of a latent variable (14). It is 

thus only possible to compare the questionaire assessments with "reference" 

measurements R, which are related to the same latent variable but which may 

also contain some error : 

R = Og + ßR T + £R [2]. 

Throughout this paper, we shall assume that the latent, true intake variable 
2 

T has a normal distribution, with mean uT and variance o™, and that also all 

random measurement errors (e) are normally distributed (with mean 0 and 
2 

variance o„, as defined earlier in the section on the measurement error 
£ 

model). It follows that also the observed measurements Q and R will have a 

normal distribution. Since the expected measurements E(Q|T) and E(R|T) are 

both assumed be linearly related to the same latent variable T, under the 

assumption of joint multi-variate normality of the R,Q,T distribution there 

must also be a linear relation between the two types of expected 

measurement: 

E(Q|T) = cc£ + ß£ E(R|T) [3], 

where oci = a_ - ß-o^/ßj. , and ßi. = ßn/ßR- For the remainder of this paper it 

will be assumed that reference measurements can be found without any 

constant or proportional bias (i.e., ou=0, and ß_=1.0), so that a» = a_, and 

The combination of equations [1], [2] and [3] describes the so called 

"structural" relation (15,16) that one theoretically expects to observe 

between the measurements of Q and R. The equations are therefore said to 

define a structural equations model. In the following sections we shall 

discuss the possibility of estimating the unknown parameter values in the 

structural equations model, depending on the number and type of additional 

measurements available. The parameter estimates can in principle be computed 

by finding optimal correspondence between the theoretical, multivariate 

normal distribution of Q,R,X as predicted by the structural equations model 

(where X stands for any additional measurement involved in the comparison) 

and the distribution of measurements actually observed. Given our assumption 

that true and measured intake values are normally distributed, the 

theoretical and observed multivariate distributions are fully characterized 

by their first and second moments, that is, by their (theoretical or 

observed) means, variances and covariances. The parameter values can thus be 

estimated by fitting the theoretical moments predicted by the structural 
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equations model to the observed moments estimated from actual measurements 

in a population sample (14-16). Version 6 of the SÂS package for statistical 

analysis (17) provides a programme for the analysis of structural equations 

models, the "CALIS" procedure, to obtain maximum likelihood estimates of the 

parameter values and their confidence intervals. In the Appendix, CALIS 

programmes are given that were used for the computations of the numerical 

examples 2 and 3 in this text. In this paper we shall focus on situations 

where, with additional assumptions, the number of error parameters to be 

estimated is equal to the number of sample moments. For these situations, 

explicit forms of the maximum likelihood estimators can be obtained, by 

simply equating the sample means, variances and covariances to their values 

predicted by the model. These estimators have been more extensively 

discussed by Barnett (18), by Jaech (19), and by Dunn (20). 

Method 1. Comparison with a single reference measurement 

The simplest possible comparison is that between the questionnaire 

assessment and a single reference measurement. As an example of a reference 

measurement - often used in dietary validity studies - one may think of a 

mean intake estimate calculated from a series of weighed food records. We 

shall assume that random errors of the questionnaire assessments and of the 

reference measurements are uncorrelated. Given this assumption, and given 

the structural equations model defined by equations [l]-[3], the pairs of R-

and Q-measurements can be considered as a sample of observations from a bi-

variate normal distribution, of which the means, variances and covariance 

can be expressed in the various error parameters of interest (see Table 

l.A). As the minimal set of sufficient statistics we have the sample moments 

of the observed R,Q-distribution. Equating the sample moments to the 

predicted moments of the theoretical, bivariate normal distribution yields 

five estimating equations, which however are expressed in six unknown 

parameters : 

(4.a) uT = R 

"2 2 2 
(4.b) oT = SR - o£R 

(4-C> Pq = SQ,R ' <SR - <4> 

(4.d) ; Q = Q - S [ S Q R / (SR - o2
£R) ] 
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(*'e) °sQ = SQ - SQ,R 1SQ,R I (SR " «4>1 
2 2 Here, R, Q , S„ and S« represent the observed sample means and variances 

of the R- and Q-measurements, respectively, while S- D is their sample 

covariance. 

Only u_ can be uniquely determined from these estimating equations, as 

the mean of the reference measurements (equation 4.a). By contrast, the 
2 2 

estimates of o™ , oc0 , ßn , and o _ (equations 4.b-4.e) depend on the value 

of o„, , and can thus only be determined if this value is known. However, 

the variance of the reference measurement, o „, cannot be estimated from the 

equations 4.a-4.e unless the value of at least one of the parameters o_ , 
2 

oc0 , ß 0 , and o _ can be assumed to be known a priori. Since there are more 

unknown parameters than estimating equations, more than one set of parameter 

estimates can be found for which the predicted moments are equal to the 

sample moments actually observed. Thus, all model parameters cannot be 

estimated with the given study design, unless additional (external) 

information is available on the value of at least one parameter. The model 

is then unidentifiable. Some traditional approaches ignore this 

identifiability problem, by assuming that the R-measurements equal the 
2 2 

individuals' true intake values, that is, o _ = 0. Substituting 0 for a _ in 
equations 4.b-4.e, the usual formulas for linear regression analysis follow. 

2 
For instance ß_ would be estimated as S0 R /S R , which is the slope of Q 

regressed on R. The estimates of oc0 and o _ are in this case equal to the 

intercept of the regression line, and the variance of the residual errors of 

the regression analysis. 

Example 1 

In a Swedish dietary validity study (21), the usual daily intake of vitamin 

C was assessed by a dietary questionnaire in a population sample of 107 

subjects (men and women combined). The questionnaire assessments were 

compared with reference measurements, based on the average of two three-day 

weighed food records. Table 1 shows the estimated sample moments for the Q-, 

and R-measurements (which had been transformed to improve normality of their 

distributions (22,23)). The second part of Table 1 shows the error parameter 

estimates obtained from the equations 4.a-4.e, assuming that the reference 

measurements had a (close to) perfect correlation with true intake values 
2 

(i.e., assuming that o _ = 0). 
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Table 1. Predicted and observed moments, and error parameter estimates for 

Q-, and R-measurements of vitamin C intake. 

Predicted Moments 

Covariance Matrix Means 

R 

Q 

2 2 
' o 

2 

°T + °£R 

ßQ oT 
a2 2 _,_ 2 
ßQ °T + °£Q aQ + ßQ UT 

Observed Moments 

Covariance Matrix Means 

R 

Q 

Sg =2.00 

SQ,R » X-42 SQ = 3.32 

R = 6.29 

Q = 9.68 

Measurements were transformed to improve normality, using "Box-Cox" (23) 

power transformations (i.e., using X = (X -1)/A, where A_=0.3, and 

XR=0.2) 

Parameter Estimates 

UT = 6.29 (6.02,6.56) o£ = 2.00 (0.81,2.11) 

°£R = ° 

aQ - 5.20 (3.88,6.52) ß = 0.71 (0.51,0.91) ô2^ = 2.31(1.69,2.93) 

(between parentheses are 95 percent confidence intervals) 
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The estimated scaling factors for the questionnaire indicated the 

presence of a constant bias (a„ = 5.20), as well as some proportional bias 

(ß. = 0.71). The estimated correlation between questionnaire assessments and 

the "latent" true intake could be computed as pQ T = 1 / 7(1 + oQ/(ß0 o_)) = 

1 / 7(1 + 2.31/(0.71 2.00) = 0.55 . Note, however, that in this particular 

case the correlation could also have been estimated directly as that between 
2 

the Q and the R-measurements, p0R, since it was assumed that a _ = 0. 

The assumption of a perfect correlation between the reference 

measurements and the underlying true intake is rather a strong one, and the 
2 

validity of this assumption may be quite doubtful. If in reality o,_ * 0, 
CK 

the failure to take account of random error in the R-measurements had biased 
our estimates of each of the error parameters. For instance, the estimate of 

2 2 2 
ßQ was then biased by a factor o_,/(oT+o R ) , which is known as the 

"attenuation" bias (6,9). Likewise, <xn and on were then over-estimated. 

Therefore, rather than relying on assumptions about the magnitude of the 
2 

variance o _, further analyses were performed in order to try to estimate 

this error variance from additional information. 

Method 2. Comparison with repeat reference measurements. 

In dietary validity studies it has become common practice to use as a 

reference measurement an average intake estimate computed from a series of 

repeat recordings of daily intake (i.e., repeated weighed food records or 
2 

24-hour recalls). Therefore, rather than simply assuming that o _ = 0, one 

might also try to solve the identifiability problem by considering repeat 

daily recordings as separate measurements. In the validity study on vitamin 

C intake, for instance, the reference measurement could be considered as an 

average of two measurements, R, and R2, each based on a three-day food 

record. Predicted moments of the Q,Rj,R2 distribution are given in Table 

2. A, still assuming that for both R-measurements random errors are 

independent of those of Q. By equating these to the observed sample moments, 

six equations expressed in seven unknown parameters are obtained: 
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(5.a) uT = % (Rl+R2) 

<5.b) oT = S ^ ^ - o6R 

(5.C) pQ - 1b(SQfRi+ SQ>Ri) / (S R i i R 2 -<4) 

(5.d) ;Q = Q - [ *(SQ f R i + SQ>Ri) / ( S R i > R r 4 ) ] %(R1+R2) 

(5.e) ;2
£Q = S2 - [ *(SQ f R i + S Q R 2 ) ] 2 / ( S R I J R 2 - o2

R) 

( 5 . f ) Ô2
£R = M S 2

i + s R 2 ) - s R i > R 2 + o 2
R 

Rather than by assuming that the reference measurements do not have any 
2 

random error at all (i.e., o _ =0), one may now estimate all error 

parameters on the more relaxed assumption that the random errors of repeat 
2 

reference measurements are independent (i.e., Oj.D = 0). Given this 
2 2 2 2 

additional assumption, we can write : o „ = o-R + o _ = o R. The total 

random error variance o R can thus be estimated from the repeat measurements 

R. and R,, as the variance of the within-subject random error (equation 
2 "2 

5.f). The coefficient ß 0 can now be determined as ß_ = S0 H/(S0 - o R ) . This 

is identical to the slope of Q regressed on R, with correction for the 
2 2 2 

attenuation bias, S„/(SR-o R ) , due to within-subject random error. Estimates 

of <xn and o _ are then identical to the intercept and to the variance of 

residual errors of this corrected regression line. 

One could argue that, in spite of the different nature of the Q- and the 

Rj-measurements, their random errors might not be entirely independent if 

both measurements are taken very close in time. Freedman et al refined the 

estimation procedure with repeat reference measurements described above, to 

take into account a possible covariance between the random errors of the Q-

and R,-measurements (10). The errors of R2- and Q-measurements were still 

assumed to be independent, however, as these measurements were taken at a 

greater distance in time. The predicted moments are given in Table 2.B. 

Equating these to the observed sample moments yields the following 

estimating equations: 
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Table 2.A. Predicted and observed moments, and error parameter estimates, 

for Q-, and R-measurements (R,, and R2) of vitamin C intake. 

Predicted Moments 

Covariance Matrix Means 

2 2 
°T + °£R 

2 
ßQ oT 

°T + °£R 

ßQ oT 
a2 2 2 
ßQ °T + °£Q otQ+ßQUT 

Observed Moments 

Covariance Matrix 

» 1 

s2 

R, ,R2 

SQ,R, 

= 2.53 

= 1.47 

= 1.36 

R2 

S2 

SQ,R2 

2.55 

1.50 SQ = 3.32 

Means 

R! = 6.15 

R2 = 6.25 

Q = 9.68 

Measurements were transformed to improve normality, using "Box-Cox" (23) 

power transformations (i.e., using X = (X -1)A, where X_ = 0.3, 

and X_ = X, 0.2). 

Parameter Estimates 

UT = 6.20 (5.93,6.46) 

°ER = 1*0 7 (O-79-1-37) 

âQ = 3.64 (1.70,5.58) 

Ô2 = 1.47 (0.91,2.03) 

ßQ = 0.97 (0.66,1.28) Ô2
Q 1.93 (1.26,2.60) 

(between parentheses are 95 percent confidence intervals) 
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(6.a) pT = % (R,+R2) 

(6.b) 4 = S ^ ^ - o*R 

<6'c> P Q = S Q , R 2
 7 (SR1>R2-°6R) 

(6.d) ; Q = Q - [ SQ > R 2 / (SRi>R2-o2R) ] %(R1+R2) 

< 6 - e ) ;2
£Q = S Q - I SQ,R2 ? ' Ih^R, - 'Il 

<6-f> 4-^4, + SR2> - S R l f R 2
+ 0 M 

<6-S) °£R1)£Q = SQ,Rl -
 SQ,R2 

Again, these equations can be solved under the additional assumption that 
2 

36R= 
2 

the random errors of repeat reference measurements are uncorrelated (o._=0). 

Example 2 

The sample moments of the observed Q,Rj,R2 distribution in the vitamin C 

data are given in Table 2.A. The second part of Table 2.A shows the 

estimates for each of the error parameter estimates, according to first 

model where o _. _ was assumed to be equal to 0. Comparison of these 

estimates with those of example 1 shows that in the first analysis 

parameters were biased by attenuation, due to within-subject random error in 

the reference measurements. Correction for such bias in this second analysis 

resulted in lower estimates of the constant scaling bias (e.g., ocn = 3.64) 
2 

and of the random error variance (o _ = 1.93). Proportional scaling bias no 

longer appeared to be present (ßQ = 0.98). The correlation between the 

questionnaire measurements and the latent variable was estimated to be equal 

to p Q T = 1 / -/(l + 1.92/(0.972 1.47) ) = 0.65. 

Parameter estimates according to the model of Freedman et al are given in 

Table 2.B. The covariance between the random errors of R, and Q appeared to 

be very small, and was even slightly negative (° £ R 1 £n = " 0.13). 

Consequently, estimated parameter values were almost identical to those in 

Table 2.A. 
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Table 2.B. Predicted moments , and error parameter estimates for Q-, and 

R-measurements (R,, and R2) of vitamin C intake, following 

Freedman's model. 

Predicted Moments 

Covariance 

»i 

2 2 

2 . 2 , 
°T {+ "6R) 

2 
ßQ °T + °£R1 ,£Q 

Matrix 

R2 

2 2 
°T + °£R2 

ßQ oT 

Q 

Q2 2 2 
ßQ °T + °£Q 

Means 

<xQ + ßQpT 

Parameter Estimates 

UT = 6.20 (5.93,6.46) 

'2 

o£ = 1.47 (0.91,2.02) 

o£R = 1.08 (0.79,1.37) o£R £ Q = -0.13 (-0.55,0.29) 

a = 3.35 (1.15,5.55) ßQ = 1.02 (0.66,1.37) o£ Q = 1.79 (0.95,2.63) 

(between parentheses are 95 percent confidence intervals) 

Observed moments were the same as in Table 2.A. 
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2 
The assumption that o,R = 0 means that the full set of error parameters 

can be estimated without bias, but only if the reference measurement is 

repeated at least once. This is a more relaxed assumption than that in 
2 

Example 1, where it was necessary to assume that o R=0; that is, the 

correlation between measured and true intake values was assumed to be 

perfect even for a single R-measurement. However, there may also be doubts 

about the validity of this more relaxed assumption. If in reality o._ * 0, 

all parameter estimates except that of u-, would be biased. For instance, ß_ 

is estimated as %(SQ _, + S_ R2)/s
Ri R2 (equation 5.c). Filling in the 

predicted moments from Table 2. A, it can be easily seen that the expected 
2 2 2 

value of this ßn-estimate would be equal to ß_o_,/(o_+oclJ), where the factor 
2 2 2 i f i i o K 

oT/(o_,+OoH) expresses a residual attenuation bias. 

Method 3. Comparison with a reference measurement plus a third type of 

measurement 

Barnett (18) showed that the problem of identifiability of error parameters 

can also be solved by comparing the questionnaire assessments with at least 

two different types of measurement. Instead of taking duplicate reference 

measurements by a similar method, for instance based on weighed food records 

or 24-hour recalls, one may also obtain a third measurement using a very 

different method such as a biochemical marker (M). The assumption that the 

random errors c are independent for each pair of measurements is then more 

likely to be valid. Predicted moments of the Q,R,M -distribution are given 

in Table 3. Equating these to the observed sample moments yields nine 

estimating equations, expressed in an equal number of unknown parameters. 

The parameters can therefore all be estimated without additional 

assumptions: 

(7.a) ÛT = R 

(7.b) <4 = ( S Q R S M R ) / S Q M 

( 7 . c ) <xQ = Q - ( S Q M R) / S M R 

( 7 . d ) ^ = M - ( S Q ) M 6 ) / S Q R 

( 7 . e ) ßQ • S Q f „ / S M j R 

< 7 - f > K = S Q , M / S R , Q 
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(7.g) oJR - sj - ( S Q R S„fR) / S Q M 

(7.h) ;2
£Q - sj - ( SQ f M S Q R ) / S M R 

(7.1) < 4 - sj - ( S M R SQf„ ) / S Q R 

It is worth noting that we can now estimate the variance of the total 
2 

random error of the R-measurements, o _, which includes the variance of 

random biases o._. This underlines that it is not essential that the 

reference measurements provide a fully accurate estimate of the individuals' 
2 

ranking by true intake level. Even when the total random error variance o _ 

is relatively large, all error parameters are expected to be estimated 

without bias. It should be kept in mind, however, that the estimates will 

then also have relatively wide confidence intervals unless the dietary 

validity study is based on a very large number of individuals. 

The biomarker assessment, M, can be seen as merely an "instrumental" 

variable (15,16), which makes it possible to estimate the "true" regression 

of the Q- on the R-measurements with adjustment for all attenuation bias due 

to the total random error in the reference measurements. In other words, the 

biomarker assessment allows to estimate the relation between the 

Q-assessments and the latent variable, expressed in the measurement units of 

R. It should be noted that it is not necessary to know the quantitative, 

functional relation between the M-measurements and true intake T. In fact, 

any third H can be used as an instrumental variable as long as it has a 

linear relationship with the underlying latent variable, and random errors 

that are independent of those of R and Q. For many biomarkers of dietary 

intake, such as the blood concentration of a particular vitamin, or the 

fatty acid composition of a tissue biopsy, the quantitative relation to 

absolute intakes is quite unclear. Still, such markers can provide ideal 

instrumental measurements since they can have good correlations with true 

intake levels (24-26). Theoretically, one could even envisage the use of 

body mass index or total energy expenditure as potential instrumental 

measurements if their relation with the underlying true intake factor is 

strong enough. However, one would expect a low correlation between the 

instrumental measurement and the latent variable to result in relatively 

large confidence intervals, even though parameter estimates would still be 

expected to be unbiased. 
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Table 3. Predicted and observed moments, and error parameter estimates for 

Q-, R-, and M-measurements of vitamin C intake. 

Predicted Moments 

R 

Q 

M 

R 

Q 

M 

R 

2 o_ + o 

ßQ oT 

l*M ° T 

R 

s2 

bR 

SQ,R 

SM,R 

Covariance Matrix 

Q M 

2 
£R 

02 2 2 
ßQ °T + °£Q 

ß Q ßM ° T ßM ° T + ° £ M 

Observed Moments 

Covariance Matrix 

Q M 

= 2.00 

= 1.42 S2 = 3.32 

= 5.63 S_ „ = 5.48 S2 = 39.87 Q,M M 

Means 

PT 

aQ +
 VT 

"M + ßMUT 

Means 

R = 6.29 

Q = 9.68 

M = 17.70 

All measurements were transformed to improve normality, using "Box-Cox" 

(23) power transformations (i.e., using X = (X -1)/X, where XQ=0.3, 

XR=0.2, and XM=0.7). 

Parameter Estimates 

UT = 6.29 (6.02,6.56) o2, = 1.46 (0.81,2.11) 

°£R = °'54 (°-12>0-96) 

aQ = 3.57 (1.44,5.68) 

ctjj = -6.57 (-14.49,1.35) 

ßQ = 0.97 (0.63,1.31) o^Q = 1.92 (1.30,2.58) 

ßM = 3.86 (2.61,5.11) ô2 = 18.2 (10.5,25.8) KM £M 

(between parentheses are 95 percent confidence intervals) 
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Example 3 

In the validity study on vitamin C intake, a third estimate of the validity 

of the questionnaire assessment of vitamin C intake was obtained by 

comparison with the overall average of R-measurements, and a biochemical 

marker, M, which was an average of six different measurements of vitamin C 

concentration in blood serum. The moments of the observed Q,R,M distribution 

and estimates of the error parameters are given in Table 3. 

Interestingly, the estimates from the third analysis were virtually 

identical to those in Tables 2. A and 2.B, indicating that in fact there was 

already no residual attenuation bias left using method 2. In this final 

analysis, the total random error variance for a reference measurement based 
2 

on a six-day food record was estimated to be equal to o _ = 0.54. This is 

exactly half of the variance of the within-subject random error for a 
2 

three-day record, estimated in the previous analysis (o R = 1.08; see Table 

2.A). We therefore concluded that indeed a„,=0. This particular data example 

thus seems to confirm the common assumption that day-to-day variations in 

the individuals' true intake are virtually the only source of random error, 

when repeat weighed records are used for the assessment of usual, long-term 

intake. 

Precision of the parameter estimates 

Although parameter estimates were almost identical in Tables 2.A and 3 
2 

(since apparently oSn
=u)> and in spite of the fact that in Example 3 the 

overall information per subject had been increased by adding the M-

measurements, confidence intervals were larger for the estimates obtained by 

method 3. This can be explained by the fact that using method 3 a larger 

number of parameters has to be estimated. 

According to the estimates of Table 3, the correlation between M and T 

equalled 1/7(1+18.2/(3.86 *1.46) = 0.74. The question arose whether, if this 

correlation had been even stronger, method 3 could have given more efficient 

estimates than method 2. This was investigated by a simple simulation, 

modifying the value of the sample variance of M-measurements into 22.73 

instead of the value of 39.87 that was truly observed. This modification 

left all parameter estimates of Table 3 unaffected, except that o „ was now 

estimated to be equal to zero, indicating a perfect correlation between M 

and T. In addition, confidence intervals of various parameter estimates had 

become narrower, and were also slightly narrower than for the estimates 
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obtained by method 2. For instance, ßn was estimated to be equal to 

0.97+0.25, against 0.97±0.31 in Table 2. 

In all examples shown, the confidence intervals were rather large, 

indicating that validation studies should be based on a larger number of 

observations. For the parameter estimates obtained from equations 7.a-7.i, 

closed form formulas for the estimation of confidence intervals have been 

given by Barnett (18). Such formulas indicate how random errors in each of 

the measurements affect the precision of the parameter estimates, and may 

thus be helpful in determining sample size requirements for dietary validity 

studies, in terms of the total number of individuals to be included, or of 

numbers of repeat assessments to be taken on each individual. Discussion of 

such design options is, however, beyond the scope of this paper. 

Discussion 

We have discussed the estimation of the magnitude of measurement error in 

assessments of the habitual dietary intake of individuals in terms of 

structural equation models, which belong to the more general class of latent 

variable models (14,20). We have shown that, to estimate accurately the 

scale of error in dietary questionnaire assessments, these must be compared 

with at least two additional measurements. The first - which we constantly 

refer to as the "reference" measurement - is by definition unbiased at a 

group level, conditional on the true intake value (i.e., OCT.=0 and ß_=1.0). 

The second additional measurement should at least provide another 

independent estimate of the individuals' ranking by intake level, and can 

either be based on a repeated reference measurement (assuming that the 

errors of repeat reference measurements are uncorrelated) or on a third 

method such as a biochemical marker. 

A major requirement for validity studies is that a comparison be made 

between measurements that do not tend to have similar errors for the same 

individuals (i.e., the errors are independent). Any correlation between 

these measurements will then be due only to the fact that they relate to the 

same latent variable. If errors cannot be assumed to be independent, it will 

no longer be clear whether a correlation between measurements exists because 

they each really measure the same thing, or merely because the errors are 

correlated. Mathematically, this will be expressed as a problem of 

identifiability: if it is suspected that errors are correlated, the 
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structural equations model should also incorporate parameters for the 

covariances between errors. As a consequence, there will then be more 

parameters to be estimated than there are sample moments. Even if it is 

possible to test for the independence of the errors of some measurements, 

such a test will always have to rely on the assumption of independent errors 

for other measurements that were taken for the same individuals. For 

instance, parameters in the model of Freedman et al. would become 

unidentifiable if one does not assume that the errors of the Q-measurements 

are independent of those of at least one of the two R-measurements. A 

validity study must therefore always rely on the assumption that, for at 

least a certain number of measurements, errors are uncorrelated. The 

decision on which methods can be considered different enough to have 

independent errors will depend on the researcher's understanding of the 

nature of each method used, and their potential sources of error. In this 

paper we assumed that there may be three main categories of methods for 

which random errors will be independent, namely: 1) dietary questionnaires 

to obtain an immediate estimate of usual food consumption, 2) methods based 

on the recording of actual food consumption on one or more randomly selected 

days, and 3) biochemical markers of dietary intake. 

The procedures discussed in this paper to estimate error parameters and 

their confidence intervals are valid on the assumption that the 

distributions of true, as well as measured, intake are normal, and that 

associations between different measurements are linear. In practice, 

distributions of dietary intake measurements are often positively skewed, 

approaching log-normality (23,27). Scatterplots often show a widening 

pattern with increasing values of intake measurements, suggesting that such 

log-normality may be due to a larger variance of random error in the larger 

values of each type of measurement. We used "Box-Cox" power transformations 

to correct for the positive skewness of dietary intake measurements (22,23). 

It is believed that, while the overall distributions of measurements will be 

normalized as a result of such transformations, at the same time the random 

errors will become more homoscedastic. It may remain unclear however, how 

transformations separately influence the distributions of the latent 

variable and of the random errors, and how they might affect the assumption 

of linearity of relations between different types of measurement. Since 

random error is generally a predominant source of variation, scatterplots 
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can provide only limited information about the shape of the structural 

relation between measurements. 

The various parameter estimates given in this paper can be useful during 

the planning phase of epidemiological studies on diet in relation to 

disease. Validity studies will allow the evaluation and selection of an 

optimal dietary questionnaire for the assessment of dietary exposures of 

interest, before it is applied in a large-scale study. The questionnaire's 

capacity to rank individuals by true intake level is described by the ratio 
2 2 

o 0/o_, while estimates of ou and ßn will indicate whether the questionnaire 

measurements contain constant or proportional scaling bias. In addition, 
2 

knowledge of the variance of the true intake distribution, o_, may be an 

essential element in the determination of sample size requirements for 

cohort studies (28). 

At the stage of analysis of the epidemiological study results, the 

estimated error model parameters could in principle also be used to adjust 

point and interval estimates of relative risk for biases due to error in 

dietary questionnaire assessments of exposure (29,30). A correction factor 
2 2 2 

(o„+o 0)/oT would be needed to adjust a logistic regression coefficient for 

attenuation bias, while a multiplication by ßn would adjust for over- or 

under-estimation of relative risk due to the proportional scaling bias in 

the questionnaire measurements. However, in order to make these adjustments 
2 2 it is not really necessary to first obtain estimates of ß_, o _, and o» 

separately. Rosner et al (30) have described how the overall correction 
2 2 2 

factor ß0(o_+o 0)/o_ can also be estimated as the reciprocal of the slope of 

a linear regression of a single reference measurement R on the dietary 

exposure assessments (assuming that E(R|T) = T). A validity study, based on 

more than one additional intake measurement, is not needed therefore for the 

sole purpose of adjusting relative risk estimates. In fact, it is then the 

measurement of disease status which plays the role of a third measurement 

related to the latent intake variable. 

We conclude that, even in the absence of truly valid reference 

measurements, it is possible to evaluate the validity of dietary intake 

assessments using latent variable models. However, for sufficient precision, 

validity studies should be based on larger numbers of observations than has 

been usually the case, while the robustness of the estimation procedures 
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relying on assumptions of normality may also need further evaluation. 

APPENDIX; SAS Calis programs used. 

/* Data input from Table 1 
data vite(type = 

input 
cards; 

n . 107 
mean . 6 
cov Rl 2 
cov R2 1 
cov Q 1. 

type $ 

107 107 
.15 6.25 
.53 . . 
.47 2.55 
36 1.50 : 

cov); 
name $ 

9.68 

. 
!.32 ; 

..a 

Rl 

*/ 

R2 Q; 

/* Computations for Table 2.a */ 
proc calis ucov aug stderr data = cite; 

lineqs Rl = meanR intercep + fT + eRl, 
R2 = meanR intercep + fT + eR2, 
Q = meanR intercep + betaQ fT + eQ; 

parameters alphaQ; 
meanQ = alphaQ + betaQ*meanR; 

std eRl = veR, 
eR2 = veR, 
eQ = veQ, 
fT = vT; 

run; 

/* Computations for Table 2.b */ 
proc calis ucov aug stderr data = cite; 

lineqs Rl = meanR intercep + fT + eRl, 
R2 = meanR intercep + fT + eR2, 
Q = meanR intercep + betaQ fT + eQ; 

parameters alphaQ; 
meanQ = alphaQ + betaQ*meanR; 

std eRl = veRl, 
eR2 = veR2, 
eQ = veQ, 
fT = vT; 

cov eRl eQ = cov:; 
run; 

/* Data input from Table 3 */ 
data vitc(type = cov); 

input _type_ $ _name_ $ R Q M; 
cards; 

n . 107 107 107 
mean . 6.29 9.68 17.70 
cov Rl 2.00 . . 
cov R2 1.42 3.32 . 
cov Q 5.63 5.48 39.87 
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/* Computations for Table 3 */ 
proc calis ucov aug stderr data = cite; 

lineqs R = meanR intercep + fT + eR, 
Q = meanQ intercep + betaQ fT + eQ, 
M = meanM intercep + betaM fT + eM; 

parameters alphaQ alphaM; 
meanQ = alphaQ + betaQ*meanR; 
meanM = alphaM + betaM*meanR; 

std eR = veR, 
eQ = veQ, 
eM = veM, 
fT = vT; 

run; 
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Abstract 

To evaluate the accuracy of dietary intake measurements in prospective 

cohort studies on diet, it has been proposed that sub-studies be conducted 

in order to: 1) correct relative risk estimates for biases due measurement 

error, and 2) account for statistical power losses when estimating the 

sample size requirements of the cohort. Usually, the sub-study takes the 

form of a "validity" study, based on a small group of volunteers, using 

multiple days of food intake records per subject as reference measurements. 

In this paper it is shown that, when relative risks are estimated for 

scaled, absolute intake differences rather than for quantile categories, a 

"calibration" study based on only a single day's food intake record (but on 

a larger number of subjects), can provide sufficient information as a 

reference measurement. A major advantage of calibration studies is that they 

can be conducted more easily on a representative sample of cohort 

participants. In addition, it is shown that, for a given number of daily 

intake records collected, a calibration study is statistically most 

efficient when it includes a maximum number of subjects, with only a single 

intake record each. 
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Introduction 

A major limitation of epidemiologic research on diet in relation to chronic 

diseases such as cancer is the difficulty of obtaining accurate measurements 

of individuals' habitual, long-term intake levels of foods and nutrients. 

Correlations between dietary questionnaire measurements and true, long-term 

intake values are generally estimated to be lower than 0.7 (1,2), which 

implies that at least half of the variation in intake measurements is due to 

random errors. As a result of these relatively low correlations, relative 

risks indicating a relation between dietary intake patterns and the 

occurrence of disease tend to be underestimated, and the probability of 

observing a real, statistically significant relation is reduced (3,4). To 

estimate the magnitude of these effects, it has been recommended that 

epidemiologic investigations, and in particular prospective cohort studies, 

should incorporate sub-studies to evaluate the accuracy of dietary 

questionnaire measurements (5). 

In the past, sub-studies on the accuracy of dietary questionnaire 

measurements have mostly taken the form of validity studies, based on a 

small group of 100 to 200 volunteers, using daily food intake records as 

reference measurements (1,2). Repeated records are taken for each subject to 

improve the precision of the validity study, and to estimate the correlation 

between the questionnaire measurements and the individuals' true habitual 

intake values (with adjustment for attenuation biases due to random errors 

in the reference measurements) (6,7). This correlation coefficient is then 

taken as the main criterion to evaluate, before starting the main 

epidemiologic study, whether a newly developed questionnaire instrument 

measures habitual diet sufficiently accurately or whether sections of it 

should be improved for specific food groups or nutrients. If more than one 

type of questionnaire is tested, a validity study can be used to select the 

version which yields the most accurate measurements (2,3). The estimated 

correlation coefficient is often used also for the subsequent planning and 

analysis of the main cohort study in order to: 

a) account for inaccuracy of dietary intake measurements when estimating 

the statistical power or sample size requirements for the main 

epidemiologic study (3,8); and 

b) adjust for attenuation biases in relative risk estimates, which are 

usually expressed for quantiles (mostly quartiles, or quintiles) of 

the intake distribution (3,4). 
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A problem with dietary validity studies is that keeping dietary intake 

records for many days is a considerable burden. Probably only subjects who 

are particularly interested in diet and who are motivated to respond 

accurately to the questionnaires will agree to take part. It therefore seems 

likely that the correlation between questionnaire measurements and true 

intake values in the validity study is stronger than in the overall study 

population. There is consequently a risk of overestimating the statistical 

power of the main epidemiologic study and underestimating the attenuation 

biases in relative risk estimates. This hypothesis is supported by recent 

results from the New York University Women's Health Study (9) where the 

reproducibility of dietary questionnaire measurements was better among 

participants who later agreed to fill out the questionnaire for a third 

time, than among those who did not (10). 

In the present paper we review the requirements for sub-studies on the 

accuracy of dietary questionnaire measurements, focusing on the use of such 

studies for objectives a) and b) above. It will be shown that, if relative 

risks are estimated for scaled, quantitative differences in intake level 

rather than for quantiles of the population distribution of intake levels, 

both objectives can be met by a calibration study, based on the "linear 

approximation" method described by Rosner et al. (11). The advantage of this 

approach is that such calibration studies require only a single day's intake 

record per subject as a reference measurement, and may therefore be 

conducted more easily on a representative sub-sample of the study 

population. A theoretical example is given to illustrate that a calibration 

sub-study can be conducted ideally during the initial ("pilot") phase of a 

prospective cohort study. 

Effects of dietary measurement errors: bias and statistical power 

Bias: Suppose that within a given study cohort the relation between the 

incidence rate of a given disease (e.g., a specific form of cancer), and the 

habitual intake T of a dietary factor (e.g. a particular nutrient) is given 

by: 

log(disease rate at intake level T) = constant + 6T [1]. 

In this exponential risk model, commonly adopted in the analysis of 

individual-based epidemiologic studies, the slope parameter 9 is the 

logarithm of the relative risk of disease for a unit difference in intake T. 

The slope parameter can be estimated for instance by logistic regression, 
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using a case-control study nested within the cohort (12), or by a Poisson 

type of regression if the analysis is based on the total number of person 

years observed in the cohort (13). We shall assume that the relation between 

questionnaire measurements of the intake level of a given nutrient and the 

individuals' true habitual intake levels is correctly described by a linear 

measurement error model: 

Q=CC Q + P Q T + £ Q [2]. 

In this model, which is discussed in more detail elsewhere (7), the 

coefficients ot_ and ßn represent constant and proportional scaling biases, 

which occur, respectively, if individuals tend to over- or underestimate 

intake by some constant amount, or by an amount proportional to the true 

intake value itself. The term e0 indicates a random error which, at a group 

level, and conditional on the true intake level T being measured, has zero 
2 

mean and variance o n- Using questionnaire measurements Q instead of true 

intake values T, the expected log relative risk estimate will be equal to 

E[ê*] = X6 , where X = PQT/ßQ [3]. 

This estimate will thus be biased by a factor X, which is the inverse of the 
2 

proportional scaling factor ß0, multiplied by an attenuation factor pn_, 

which is the square of the correlation between measured and true intake 

values. 

Statistical pover: In conjunction with the attenuation of relative risk 

estimates, an imperfect correlation p0_ leads to a loss of statistical power 

for a test of association between the dietary intake factor and disease 

risk. If we assume that the population distribution of the true intake 
2 

values is Normal - with mean n_ and variance o~ - and that the rate of 

disease incidence is low (as is the case for most specific types of cancer), 

the power of a test of the null hypothesis IL.:9=0 is approximately equal to 

that of a t-test on a mean intake difference between cases and controls 

(14,15). Thus, for a case-control study nested within the cohort, in which 

dietary questionnaire measurements of an expected number of D cases are 

compared to those of j times as many controls, the statistical power can be 

derived as 
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power 
eV°T yD . 

I V(j+i)/j 
Za/2 [*]• 

Here Z ._ denotes the 100(l-a/2) centile of the standard normal 

distribution, and $(U) is the probability that a standard normal variate is 

smaller than U (16). Likewise, the number of cases required to reach a 

minimal statistical power 1-ß (where ß here denotes the probability of a 

type II error) can be derived as: 

2 

(j+l)/j 
Zg/2+Zß 

epQT°T 

Note that in a full cohort analysis there will be many more controls than 

cases, so that the factor (j+l)/j approaches 1.0. 

In reality, the size of a newly planned cohort study can be determined 

to a large degree by pragmatic considerations. For example, it may be 

possible to conduct the cohort study within an existing programme originally 

designed for a different purpose, such as breast cancer screening or blood 

donation (17), but which provides an economical infrastructure for data 

collection and follow-up. In this type of situation, where the expected 

number of cases is determined beforehand by the given cohort size and the 

planned duration of follow-up, equation 4 can be used to evaluate whether 

the power to detect a diet-disease association will be high enough to make 

the study worthwhile. Alternatively, there may be situations where the size 

of the cohort can be extended to increase the study power. Equation 5 can 

then be used to calculate the number of cases required to reach a minimum 

study power. In either case, we must specify a realistic value for the 

product 9p_TaT, which is composed of three unknown parameters: 9, the 

logarithm of the relative risk for one unit difference in intake level; o-, 

the standard deviation of the true intake distribution; and p0 T, the 

correlation between questionnaire measurements and true intake levels. This 

product measures the strength of the association between disease risk and 

the questionnaire measurements of intake, as is illustrated by the fact that 

it relates to an expected odds ratio of disease between given quantiles of 

the measured intake distribution (see appendix in Kaaks et al. (18)). 

Given our primary interest in obtaining an unbiased estimate of the log 
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relative risk 8, a natural approach to specifying the product 6pQToT is to 

define first a minimum value for the log relative risk, 8_, that would be 

considered of etiologic or public health relevance. This 8_-value can be 

defined, for instance, for a given absolute intake difference that is known 

to exist between subgroups of a given population (15). Alternatively, the 

8_-value may be based on an a priori estimate, obtained for instance from 

international correlation studies, as has been illustrated for studies on 

fat intake in relation to cancers of the colon or breast (15,19). Having 

defined the 9_-value, we need an estimate of the magnitude of the remaining 

product PnT°T- This smaller product represents the amount of between-person 

variation in true intake levels that is accurately distinguished - or 
2 

"predicted" - by the dietary questionnaire measurements; that is, (POT°T) 

Var(E[T|Q]). 

In the following paragraphs we shall discuss how to estimate not only the 
2 

bias factor X but also the predicted intake variance (p0_o_) using the 

information from additional, unbiased reference measurements, obtained in a 

sub-sample of cohort participants. 

CALIBRATION STUDIES; estimating the bias factor, and the predicted 

variation in true intake level 

Intuitively it can be easily seen that the bias factor X in equation 3 

should be similar to the slope of true intake values T regressed on the 

questionnaire measurements Q. This led Rosner et al. (11) to describe the 

following method, known as "linear approximation", to adjust for this bias 

in log relative risk estimates. In a representative sub-sample of cohort 

participants, additional "reference" measurements are taken which, at a 

group level, can be assumed to be free of scaling bias (i.e., a_=0, and 

ß_=1.0), and whose errors can be assumed to be independent of those of the 

baseline questionnaire measurements. The linear approximation method then 

consists of: 1) estimation of a crude log relative risk estimate 8 , for 

instance by logistic regression; 2) estimation of the bias factor X as the 

slope of a normal linear regression of reference measurements R on 

questionnaire measurements Q; and 3) estimation of a corrected log relative 

risk estimate as 9=6 /A. This approach can also be seen as a linear 

rescaling of the questionnaire measurements by a factor X (that is, using 

transformed measurements Q'=XQ), so that an unbiased estimate of the log 
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relative risk is obtained by regression of disease status (as a binary 

outcome variable) on the rescaled measurements. We shall therefore refer to 

this approach as a "calibration" procedure, and the bias factor X as a 

"calibration factor". 

The variance of the "calibrated" questionnaire measurements will be equal 
2 2 

to Var(Q') = X Var(Q) = (p0_oT) (Appendix A), and thus provides an estimate 

of the amount of between-subject variation in true intake level that is 

predicted by the baseline questionnaire measurements (i.e., Var(Q') is an 

estimate of Var(E[T|Q]) ). On the basis of this predicted variation, an 

estimate can be obtained of the log relative risk e, and the null hypothesis 

of "no diet-disease association" (Hn:9=0) can be tested. Thus, if the 

calibration study is conducted early in the recruitment phase of a 

prospective cohort study (e.g., as part of an overall feasibility study), 

the estimate of the predicted intake variance can be used to calculate the 

sample size requirements of the cohort. 

The reference measurements may be obtained for instance by means of 

weighed food records, or 24-hour recalls. It is important to note that 

random errors in the reference measurements (£„) are not expected to cause 

bias in the X-estimate (attenuation bias depends only on random error in the 

predictor variable, that is, in the questionnaire measurements). Reference 

measurements can therefore be based on only a single day's intake record per 

subject, even though this may be relatively unreliable as a measurement of 

an individual's long-term, habitual intake level. For the calibration to be 

precise, however, a sufficient total number of daily intake records should 

be obtained in the entire sub-study, either by increasing the number of 

study participants, or by taking repeat records for each participant. In 

dietary validity studies it is common practice to obtain multiple daily 

intake records per individual. For a calibration study conducted on a sub-

sample of participants in a cohort study, however, it can be shown that, for 

a given total number of intake records collected, estimates of X and of the 

predicted variance Var(E[T|Q]) will be most precise when the calibration 

study is based on a maximum number of individuals, with only a single intake 

record each (Appendix B). For example, instead of collecting 14 days of 

weighed food records from 100 subjects, a calibration study will be 

statistically more efficient if it includes 1400 subjects with only a single 

record each. 
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VALIDITY STUDIES: estimating the correlation between questionnaire 

measurements and true intake values 

Although a single reference measurement per individual (e.g., based on a 

single food record, or a single 24-hour recall) can provide sufficient 

information to estimate the calibration factor X as well as the predicted 

intake variance Var(E[T|Q]), this information will not be sufficient for 
2 2 

separate estimation of the parameters pn_, ß_, and o_. It will thus be 

impossible to determine whether bias in relative risk estimates is mainly 

the result of random dietary measurement errors (i.e., a low correlation 

Pn_), or of proportional scaling bias as well. Likewise, it will not be 

possible to evaluate whether a small predicted intake variance is mainly the 

result of a low correlation between questionnaire measurements and true 

intake values, or whether it reflects a small between-subject variation in 

true intake level. In other words, the loss of statistical power due to 

random measurement error cannot be estimated. 
2 

Studies that do allow a separate estimation of the parameters pnT, ßn, 

and o™ can be referred to as "validity" studies, as they permit a 

distinction between variation in the questionnaire measurements that 

reflects true intake differences, and variation which is due to random 

errors. As discussed in detail elsewhere (7), a major requirement for 

validity studies is that the questionnaire measurements must be compared 

with a minimum of two additional intake measurements, at least one of which 

should be a reference measurement (R) without scaling bias (i.e., R=T+e_), 

whereas the other can be either a repeat reference measurement (R?), or a 

biochemical marker of intake. It is also vital that all three measurements 

have mutually independent random errors. In the past, dietary validity 

studies have most often been based on a comparison with k repeat reference 

measurements, R. (i=l, ,k), each obtained by means of a weighed food 

record or a 24-hour diet recall. Then, assuming a zero covariance between 

the errors of repeat reference measurements, we can obtain the following 

estimates: 

oT
2 = Cov(Ri,Rj) [6.a], 

p Q T = Cov(Q,R)/Vr[Var(Q)Cov(Ri,Rj)] [6.b], 
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ßQ = Cov(Q,R)/Cov(R.,Rj) [6.c], 

k 
where R = ER. is the average of the k repeat reference measurements of 

i=l 1 

each given individual, and Cov(R.,R.) is the mean covariance between 

repeat reference measurements. 

2 
The estimate of the true intake variance o~ (equation 6.a) is equivalent to 

the estimated between-subject variance of reference measurements as usually 

obtained in an analysis of variance using individuals as a grouping factor. 

Likewise, the estimates of the correlation p0_ (equation 6.b), and of the 

proportional scaling bias ßn (equation 6.c), are equivalent to those which 

can be obtained by linear correlation and regression analysis with 

adjustment for attenuation biases due to random error in the reference 

measurements (2). 

Once separate estimates of the correlation p0„ and of the proportional 

scaling bias ßn are obtained from a validity study, they can be used to 

adjust crude log relative risk estimates for, respectively, attenuation bias 

and scaling bias. However, the combination of these two corrections is 

equivalent to a "calibration" adjustment, where the calibration factor is 

estimated as the slope of the individuals' mean reference measurements (R) 

regressed on questionnaire measurements. This can be easily seen from 

equations [6.b] and [6.c], since: 

p^T x l/ßQ = Cov(Q,R)/Var(Q) = X. 

Likewise, it can be seen that using separate estimates of the true intake 
2 2 

variance o_ and of the correlation p0_ for power calculations (based on 

equation 4) is equivalent to using an estimate of the variance of the 

predicted intake distribution, Var(E[T|Q]) = (p o_) , which can also be 

obtained directly by the same calibration approach. Thus, when relative 

risks are expressed for scaled, absolute intake differences, there seems to 

be no advantage in obtaining separate estimates of ßn and pn T to adjust for 

bias, nor is there any advantage in separately estimating p_T and o_ for 

power calculations. 
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An example 

Suppose we wish to investigate whether fat intake as a percent of total 

energy is associated with breast cancer risk, to confirm observations made 

in international correlation studies. For this purpose, we plan a 

prospective cohort study, to be nested within a population-based breast 

cancer screening programme. Each year, about 12,000 women aged between 50 

and 65 visit the screening centre. Every four years, the women are invited 

for another visit. Thus, within four years, we could recruit a maximum of 

about 48,000 women in the cohort study. Suppose also that, in this 

hypothetical population, the expected cumulative incidence of breast cancer 

is about 200 cases per 10,000 women, after 10 years of follow-up. 

For the measurement of dietary intake levels, a self-administered food 

frequency questionnaire is adopted, which had been previously validated for 

another on diabetes and cardiovascular disease. Since it is not clear how 

well the questionnaire will perform in the breast cancer screening 

population, and to evaluate whether enough variation in fat intake can be 

measured for the cohort study to reach the required statistical power, it is 

decided to conduct a one-year pilot study with about 1500 women. Additional 

objectives of the pilot study are to develop the logistics of the cohort 

study, and to determine whether the study would not seriously interfere with 

the normal running of the screening programme. From each study subject, a 

single reference measurement of dietary intake is obtained using a 24-hour 

recall interview. Using these pilot study data, the bias factor X is 

estimated to be equal to 0.38. The estimated standard deviation of the 

predicted fat intake distribution is estimated to be 4.2 percent of energy 

intake (see Table 1). 

International correlation studies have reported that, in countries where 

the diet contains 44 percent calories from fat, breast cancer rates are 

about 1.5 times higher than in countries where the average fat intake equals 

32 percent of energy (20). Assuming that this reflects the true increase in 

disease risk per percent increase in energy from fat and that, at the level 

of individuals, the true dose-response relation is exponential, an a priori 

estimate of the log relative risk can be obtained as 9_ = log(1.5)/(44-32) = 

0.034. Thus, using equation 5, the number of cases required for a full 

cohort analysis (with many more controls than cases) with 0.90 power and 

0.05 significance level will be equal to (1.960+1.282)2/(0.034x4.2)2 = 515. 

This number of cases can be reached after following up a cohort of about 
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Table 1. Measured and predicted distributions of fat intake as a percent of 
total energy, as estimated in a (pilot) calibration study. 

À. Questionnaire measurements: 

mean = y = 37.2 

standard deviation = on = 11.0 

B. Reference measurements: 

mean = uR = 38.5 

standard deviation = o„ = 19.0 

Correlation between questionnaire, and reference measurements: 

PQR = °-22 

Slope of reference measurements regressed on questionnaire measurements 

X = 0.38 

C. Predicted intake distribution: 

estimated mean = u_ =38.5 

estimated standard deviation = Xon = 4.2 

26.000 women for an average of 10 years. Suppose that during the pilot phase 

about 80 percent of participants in the screening programme agreed to take 

part in the cohort study. Then, assuming a similar participation rate during 

the remaining recruitment phase, a sufficiently large cohort could be formed 

in less than three years. 

Discussion 

For the efficient planning of prospective cohort studies where diet is the 

principle exposure factor of interest, it is essential to estimate which is 

the minimum study size needed to reach a sufficient level of statistical 

power. The estimated sample size requirements, together with the financial 

resources available, are the key elements to evaluate which detail of 

exposure information can be obtained from each study participant (e.g., 
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including the collection of biologic specimens, or not). Given the true 

magnitude of increase in disease risk for a standard unit difference in 

intake level, the power of a cohort study depends on the amount of variation 

in true intake level that is predicted by the dietary questionnaire 

measurements collected at baseline. In this paper we have discussed how this 

predicted variation in intake level can be estimated by a simple calibration 

approach, using additional reference measurements collected in a sub-sample 

of cohort participants. The same approach can be used to correct for biases 

in relative risk estimates. The bias factor (X) is then equal to the ratio 

of the predicted variance of the true intake level, divided by the variance 

of the baseline questionnaire measurements. 

As compared to the traditional design of dietary validity studies, a 

major advantage of the calibration approach is that it requires only a 

single day's intake record per individual as a reference measurement. 

Calibration studies can therefore be conducted more easily on a truly 

representative sub-sample of the study population. Preliminary experience in 

the European Prospective Investigation into Cancer and Nutrition (EPIC) (17) 

indicates that almost all study participants will cooperate in 24-hour 

recall, if this is taken immediately when they present themselves for 

recruitment in the cohort study. 

The proposed calibration approach requires several assumptions: 

1) a well defined form of dose-response relation between intake level 

and incidence rates of disease, 

2) normality of the true, as well as of the measured intake 

distributions, and 

3) absence of scaling bias in the reference measurements. 

In this paper, we have assumed an exponential type of dose-response. This 

is a standard model for the analysis of case-control or cohort studies 

(12,13), which justifies its a priori assumption for statistical power 

calculations (15,21). Nevertheless, some investigators have based their 

power calculations on a somewhat different type of risk model. For example, 

Walker and Blettner (3) and Freudenheim et al. (23) assumed a linear 

increase in the relative risk (not of its logarithm ! ) over a series of 

ordered intake categories, defined by quantiles of the measured intake 

distribution. Freedman et al. (8) used a similar model, but defined intake 

categories by quantitative cut-points, on a known (reference) scale, rather 
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than quantiles. The assumption of a linear trend in relative risk is 

incompatible with the combination of a normal exposure distribution and a 

linear logistic model, but differences between these models may be small as 

long as relative risks are low (as is the case in most studies on diet). 

When the cohort study has reached the analysis stage, it can of course be 

investigated whether a form of dose response provides a better fit of the 

statistical model to the data observed. Alternatively, a less parametric 

approach, which is often followed in nutritional epidemiology, is to 

estimate relative risks for discrete, ordered intake categories, without a 

priori specification of the form of dose-response. Data from a calibration 

study can then still be used to estimate the corresponding true mean intake 

levels within each category. The latter approach is well illustrated by a 

study on blood pressure in relation to stroke and coronary heart disease 

(24). 

The second assumption implies that not only the individuals' true 

habitual intake values but also random measurement errors are normally 

distributed, and that the variance of errors is independent of the level of 

intake measurements. In practice, this requirement may not always be met. 

Dietary intake measurements often follow an approximately log-normal 

distribution, because of larger error variance at higher intake levels. 

Mathematical transformations can be used to normalize the distribution, and 

to obtain more constant error variances (25,26). Such transformations, 

however, also modify the form of dose-response between intake measurements 

and disease risk, and this should be accounted for in power calculations, or 

in the estimation of biases in relative risk estimates. This issue requires 

further investigation. In the meanwhile, it should be realized that 

normality of the exposure measurements is not only a necessary assumption 

for the proposed calibration approach, but also for previous methods where 

the probabilities of misclassification between intake categories are 

computed from the estimated correlation between measured and true intake 

values (3,8,23). 

The third assumption - absence of scaling biases in the reference 

measurements - is more specifically required for a valid application of the 

calibration approach, and puts heavier constraints on the choice of a 

reference method. For most nutrients, and for food groups, weighed food 

records or 24-hour recalls (if well conducted) are generally taken to be the 

optimal methods for measuring mean intake levels of a study population, or 
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sub-groups (27,28), although the validity of these measurements may be 

difficult to demonstrate in the absence of objective measures of true intake 

suitable for use among free-living individuals. Only for a few nutrients, 

such as protein, is it possible to use a biochemical marker with a well 

known quantitative relation to absolute daily intake levels (29,30). An 

apparent advantage of relative risks estimated for quantile categories of 

intake distribution is that such estimates are independent of the scale on 

which intake levels are measured. Depending on the variation in intake level 

within the population, however, a given true increase in disease risk for a 

standard unit difference in intake level may correspond to different levels 

of diet-disease association as expressed in relative risks between 

quantiles. As indicated also by Freedman et al. (8), methods for power 

calculations based on the a priori assumption of a given relative risk 

between quantiles (3,23) ignore the amount of variation in intake level 

present in the study population, and therefore whether the starting 

assumptions themselves are reasonable. This, in our view, is a greater 

potential disadvantage than possible under- or overestimation of the 

predicted intake variance (and thus of statistical power and sample size 

requirements) which may occur if there is some scaling bias in the reference 

measurements. 
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Appendix A: Variance of the predicted intake distribution. 

If X is the slope of the linear regression of reference measurements on 
2 

questionnaire measurements, with an expected value of X=p0_/ß_, and var(Q) 

is the variance of baseline questionnaire measurements, then the variance of 

the predicted intake distribution will have an expected value of 

Var(E[T|Q]) = X2 Var(Q) 

= [PQT/ßQ]2 Var(Q) 

4 
2 ^0°T' 2 2 

= 1/PQ — ^ — KVi» + °CQ1 
(ßQoT) + 0£ Q 

ft2 „ 4 

PQ °T _ 2 2 
" ,. ,2 2 " PQT °T 

(ßQoT) + o£Q 

Appendix B: The relative precision of X-estiraates. 

The variance of the calibration factor estimated in a calibration study of 

Nxk participants with a single reference measurement each, is given by 

Var(X)1 = [(l-p2
T)o2 + o2

R]/NkVar(Q) 

2 2 2 
= [(1-PQT) + o>]/Nk , where a> = °£R/°T-

Likewise, the variance of the calibration factor estimated in a calibration 

study of N individuals, with a k reference measurements each, is given by 

Var(X)k = [(l-p2
T) + (o/k]/NVar(Q) 
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The ratio of the two variances equals: 

Var(X)k k [ (1-PQT) + »/k ] 

Var(\)1 (1-PJX) + <" 
2 

It can be seen from this equation that, for all (l-pnT)>0, the variance 

ratio Var(X), /Var(X). will be greater than or equal to 1.0. Thus, for a 

given total number of reference measurements N, the optimal design of a 

calibration study nested within a cohort is that with a maximum number of N 

participants, with only one reference measurement each. 
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Adjustments f or bias due to errors in exposure assessments 
in multi-centre cohort studies on diet and cancer: 

a calibration approach. 

This chapter has been published by the authors R. Kaaks, M. Plummer, E. Riboli, J. Estève, 

and WA. van Staveren, in the American Journal of Clinical Nutrition (special supplement) 

1994;S9:245S-50S. The text has been slightly adapted, however, for a more uniform notation 

of statistical eqations across the chapters of this thesis. 
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Abstract 

An advantage of multi-centre cohort studies on diet and cancer is that these 

may include populations over a wide range of dietary exposure. With some 

simplifying assumptions, the information from such multi-centre studies may 

be divided into: 

1. Estimated relationships within each of the separate cohorts, between 

individual-level measurements of dietary exposure and disease 

outcome, and 

2. An estimated between-cohort relationship, between the mean intake 

measurements and mean incidence rates. 

Errors in the dietary exposure measurements may lead to different amounts of 

bias in each of these estimated relationships, in particular when dietary 

questionnaire methods cannot easily be standardized. A calibration approach 

can be used to adjust for such differences in bias. If sufficiently precise, 

such calibration will improve the relative weighting of within- , as well as 

between-cohort components of evidence for a diet-disease association. 
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Introduction 

International correlation studies have shown strong associations between 

cancer incidence and the per capita intake of specific dietary factors (1). 

A well known example is the correlation between fat intake and breast cancer 

incidence. However, because of the possibility of serious uncontrolled 

confounding, international correlation studies are usually regarded as 

providing only limited evidence for a causal exposure-disease relationship 

(2-3). Efforts and resources were therefore focused on studies in which 

individuals are the units of observation, in the attempt to investigate 

specific diet-disease relations within populations that are more homogeneous 

with respect to potential confounding factors (but also with respect to the 

dietary exposure of interest). An additional methodological advantage of 

such individual-based studies is that confounding could be adjusted for at 

the subject level. So far, however, the overall evidence derived from case-

control and cohort studies remains inconclusive for many dietary intake 

factors, some studies showing a significant association while others do not 

(4) (e.g., total fat intake and breast cancer risk). Inconsistencies between 

study results could of course be explained by a real absence of relationship 

between, the dietary factor and disease risk, within some of the populations 

studied. An alternative interpretation would be that, on average, studies at 

the subject level lack the statistical power to detect specific diet-disease 

associations consistently. 

A lack of power in case-control or cohort studies on diet and cancer, 

mostly conducted within limited geographical areas, might be explained to a 

large extent by the relatively small variations in dietary exposure levels 

(5). It is reasonable to suppose that true associations between dietary 

intake factors and cancer risk (if any) are usually relatively weak, with 

relative risks probably not higher than 4 or 5 for the highest versus the 

lowest quintile level of intake. Since estimated relative risks are mostly 

attenuated due to random errors in measurements of exposure, observed diet-

disease associations will be even weaker (6,7). 

The increase in statistical power that may be obtained within a single 

study, either by increasing the total sample size, or by improving the 

precision of the dietary exposure assessments, is often limited for 

practical or logistical reasons. An additional possibility for improving the 

statistical power, however, is to increase the overall heterogeneity of the 

dietary exposure studied, combining the data of multiple studies conducted 
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in populations with different dietary habits. This was a major underlying 

rationale for the planning of the European Prospective Investigation into 

Cancer and Nutrition (EPIC) (8), a collaborative project of multiple cohort 

studies coordinated by the International Agency for Research on Cancer. In 

this project, data will be collected on diet and potential confounding or 

interacting factors such as smoking, physical activity, reproductive 

history, or drug use. In addition, blood samples will be collected and 

stored in a biological bank. The study will include about 400,000 middle 

aged men and women in seven European countries (United Kingdom, Netherlands, 

Germany, France, Italy, Spain and Greece). 

A complicating factor in multi-centre studies such as the EPIC project, 

is that it may be impossible to use identical dietary assessment methods in 

each centre. Between countries, food consumption patterns may be as 

different as the various languages spoken. Since dietary questionnaires 

should always be adapted to local food habits, they may differ in the number 

and detail of questions concerning specific foods consumed. Also logistic 

reasons may preclude the use of identical assessment methodologies. In the 

EPIC project for instance, it was decided for reasons of compliance to use 

an interview-administered dietary history questionnaire in southern Italy 

and Spain. In France, however, most contacts with the subjects will be by 

mail, necessitating the use of a self-administered (and self-explanatory) 

food frequency questionnaire. 

In this paper we shall describe how, with some simplifying assumptions, 

the information from multi-centre cohort studies may be considered in two 

parts: 

1. A within-cohort relationship, between intake measurements and 

disease outcome at the level of individuals, and 

2. A between-cohort relationship, between the mean intake measurements 

and overall incidence rates in the various cohorts. 

The estimations of both types of relationship, within and between cohorts, 

may be biased to different extents as a result of errors in the dietary 

exposure measurement. This paper discusses the possibility of adjusting for 

such biases, following a calibration approach. The calibration will improve 

the relative weighting of the various components of evidence for a diet-

disease association, coming from between-subject comparisons within 

different cohorts, as well as from between-cohort comparisons. 
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I. Combining cohort-specific relative risk estimates 

A model 

Consider a collaborative multi-centre investigation of j different 

cohorts, studying the relation between a given dietary intake factor (e.g., 

daily fat intake) and the subsequent probability of developing a given 

disease. Baseline dietary exposure measurements Q are obtained by means of a 

structured questionnaire. After follow up, in each cohort i (i=l, ,j) a 

number of disease cases will be detected, whose dietary intake assessments 

can then be compared with those of a subset of disease-free individuals. It 

is then usually assumed that within each cohort there is a linear relation 

between the logarithm of the disease incidence rate, <|f, and a true 

underlying exposure T (which may for instance be defined as the average 

daily fat intake during a given period): 

• 4 = log(rate) in cohort i - ^ + e. (T - T ^ 

(ignoring, for the sake of simplicity, the effects of confounding or 

interaction factors). The slopes of these log-linear relations, 9., are 

equal to the logarithm of the relative risk of disease for one unit 

difference in intake, within a given cohort. The values of 6. can be 

estimated for instance by a Poisson type of regression. Alternatively, if 

the disease incidences are low, but reasonably stable during the period of 

follow-up, a nested case-control design may be used, and logistic regression 

may be used to estimate each of these cohort-specific slope parameters (9). 

Whatever statistical method is used, a crude estimate of log-relative risk, 

0 , will be obtained, where the asterisk indicates that the estimate may be 

biased because it is based on a comparison of questionnaire assessments 

instead of the true exposure values. Under the mild condition that the 

exposure distribution is close to normal, and especially under circumstances 

that the cases are compared to a much larger number of controls, the 

variance of the e.*~estimate will be approximately equal to (10): 

Var(êt*) — JIJ 
d± Var^Q) 

where dj is the number of cases, and Var.(Q) is the variance of the 

questionnaire measurements of exposure. 
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Increasing the sample size by combining relative risk estimates across 

cohorts 

Following a meta-analytic approach, the 6. 'estimates from different cohorts 

can be combined into an average value 8„ , summarizing the relations 

observed within cohorts between exposure measurements and the log incidence 

rate. Weighting each estimate by the inverse of its variance, this pooled 

estimate is computed as: 

j 
E d. Var (Q) e * 

i=l x x x 

e w* - : t 2 i ' 
D vârw(Q) 

where D is the total number of cases of all cohorts combined, and 

1 j 
Var (Q) = E d Var (Q), 

w D i=l x x 

is the average within-cohort variance of the questionnaire measurements of 

exposure (weighted by the numbers of cases in each cohort). The pooled 

estimate 9„ is equivalent to that obtained by, for instance, logistic 

regression on the data of all cohorts combined, with stratification by 

cohort. Its variance equals: 

1 
Var(6w*) [3]. 

D vâry(Q) 

Clearly, due to an increase in the number of cases ( D > d. ), this variance 

will be smaller than that for any of the cohort-specific 6 'estimates. 

Thus, if the 8 .estimates are approximately equal, indicating a similar 

trend of dose-response in all cohorts, the efficiency of testing for the 

presence or absence of a diet-disease association will be improved. This is 

an obvious advantage of multi-centre studies, whether of a case-control or 

of a cohort design. 
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Comparability of cohort-specific relative risk estimates 

When combining relative risk estimates into an average summary value, the 

underlying assumption is that each study provides an estimate of a unique 

underlying dose-response relationship, which is similar in each of the study 

populations. Between cohorts, results will then corroborate one another. In 

practice, however, the study populations of the various cohorts may be quite 

heterogeneous with regard to the prevalence of additional risk factors. This 

may cause some between-cohort variation in relative risk estimates, because: 

1. to varying degrees, relative risks may be biased due to confounding, 

and 

2. to a different extent, interacting factors may modify the 

susceptibility to the exposure factor studied (effect modification). 

As far as possible, adjustment should be made for confounding by 

measuring confounders on all individuals in the study, and stratifying the 

analysis. When in all cohorts individuals are classified into similar strata 

of age, sex or other potential confounding factors, populations are within 

such strata more likely to be homogeneous across cohorts. This decreases the 

likelihood that within similar strata of confounding factors relative risk 

estimates are differently biased. Classification of individuals into similar 

strata of confounding factors obviously requires that in each study 

identical information should be available, not only for the exposure, but 

also for potential confounding factors. This is a major argument in favour 

of carefully designed, collaborative multi-centre studies. 

The presence of effect modification merely reflects the fact that the 

relative risk associated with a given type of exposure depends on additional 

individual characteristics which are unevenly distributed over the various 

study populations. The assumption that each study provides an estimate of a 

unique underlying dose response relationship is then violated to at least 

some degree, and it may not be possible to compute a meaningful summary 

estimate of relative risk (11); that is, between cohorts study results may 

not be "combinable" (12). This problem of "combinability" may at least 

partly be solved if biologically plausible effect modifiers (e.g. smoking, 

menopausal status, other dietary factors) can be identified at the subject 

level. If, for example, smoking appears to be a strong effect modifier, 

betveen-cohort heterogeneity of results may be explained by differences in 

smoking prevalence. Results can then be combined across cohorts, but within 

categories of tobacco consumption. This would require that also information 
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about potential modifiers be collected in a standard manner in all 

collaborating centres. 

Biases due to errors in the exposure measurements 

Biases due to errors in the dietary exposure measurements may form an 

additional source of between-cohort variation in relative risk estimates. 

This may be particularly true if it is impossible to use identical dietary 

assessment methods. 

He shall assume that for each cohort the relation between measured and 

true intakes can be approximately described by a linear measurement error 

model, which is discussed in more detail elsewhere (13): 

Q - Qt = ß Q 1 (T - Tt + eQ) . 

According to this model, bias in the mean intake measurement, at the group 

level, is given by the difference QJ-TI- The ß-coefficient expresses a 

proportional scaling bias, which occurs if measurement errors are correlated 

with the true intake values being measured (i.e., when the tendency to over-

or under-estimate is different for subjects with a high intake than for 

subjects with a low intake). The term tn represents an independent, 
2 standardized random error, with mean zero and variance a n. The ratio of the 

2 error variance to the variance of the true exposure (o„) determines the 

correlation between measured and true intakes within a given cohort: 

'QT,i 
y 1 + o2Q/02 

hi­

lf the measurement error model correctly describes the relation between 

measured and true intake values, crude estimates of log relative risk (8 ) 

will be biased by a factor X which, within a given cohort i, will have an 

expected value of: 

1 2 
Xi = ~1 pQT,i [51> 

ßQi 

Thus, the bias in the log relative risk estimate will be equal to the 

inverse of the scaling factor ß_, multiplied by an attenuation factor which 

is equal to the square of the correlation between measured and true intakes, 
2 PQ». It can easily be shown that X is equal also to the slope of a linear 

regression of true on measured intake values. 
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Comparisons between dietary validity studies suggest that the correlation 

between measured and true intake values can for the same nutrient be as 

different as 0.4 or 0.7, depending on the questionnaire method used and on 

the study population (14,15). Therefore, X-values may vary and, even if true 

relative risks are approximately equal in all cohorts, their estimates may 

appear to be different. Between-cohort differences in the scaling factor ßQ 

may add further variability to the estimated relative risk values. 

Adjustment for differences in bias due to errors in the exposure 

measurements; a calibration approach 

In order to improve their between-cohort comparability, crude relative risks 

should be corrected for biases due to measurement error. A convenient 

approach for making such corrections has been described by Rosner et al, and 

is referred to as the "linear approximation method" (16). This approach 

requires that for at least a representative subsample of individuals, there 

should be an unbiased reference measurement, R = T + eR, in addition to the 

baseline questionnaire assessments (Q). The random errors of the R- and Q-

measurements (e_ and £Q, respectively) should be independent. In practice, 

the reference measurements might for instance be obtained by means of a 

weighed food record, or using a quantitative biomarker of nutrient intake 

(if the marker can be reliably translated into an absolute, daily intake 

value). The bias factor X can then be estimated in the subsample by normal 

least squares regression of R- on Q-measurements. Corrected estimates of 
** " 

(log) relative risk are then computed as 6 - 6 A . The correction method can 

also be seen as a regression of disease outcome on "calibrated" dietary 

questionnaire measurements, which have first been rescaled so that the 

resulting 8-estimate will be unbiased. Ve shall therefore also refer to this 

type of correction as a "calibration". 

The variance of the corrected estimates is given as (16): 

i . 'e* 

VarfBj) - — 2 Var(et*) + -T^- VarfX^ [6]. 
Xi Xi 

This equation shows that the variance of each corrected 8-estimate will also 

depend on the precision with which the bias factor X is estimated. Here, we 

shall for simplicity assume that the calibration subsample is large enough 

to obtain Xestimates with negligible imprecision (i.e., Var(X.) « 0). The 

variance of the corrected eestimate then approximately reduces to: 
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Var(8i) = VartSj) = ; [7], 

X.2 d. Var.(E[T|Q]) 

, where 

Var(E[T|Q]) = p 2
T a

2 [8] 

is equal to the variance of intake predicted by the Q-measurements (i.e., 

the part of the variance of true intake values T, which is explained in a 

regression of true intake values on questionaire measurements Q; see Chapter 

3, Appendix A). 

In this ideal case of perfect calibration, relative risk estimates in 

each cohort can be accurately adjusted for biases due to errors in exposure 

measurements. It will thus be possible to to evaluate more accurately 

whether between-cohort relative risk estimates are in agreement (and 

"combinable"). Accurate calibration will also result in a more efficient 

weighting of cohort-specific evidence, when computing an average summary 

estimate of relative risk. This can be easily seen, since substitution of 

Var^EITlQ]) for Var^Q) in equation [2] yields: 

j 
£ d. Var.(E[T|Q]) 8. 

i=l x x x 

8 W _ ; 19]. 
D vârw(E[T|Q]) 

Thus, lower relative weights will be given to cohorts where there is 

relatively little between-subject variation in true intake values (i.e., 
2 

when the true intake variance o„ is small), or where the dietary exposure is 

relatively poorly measured (i.e., when p__ is low). The improved relative 

weighting of evidence will help optimize the efficiency of a statistical 

test on the presence of a diet-disease association. 
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II. Estimates of relative risk based on between-cohort variation of 

exposure and disease incidence 

The corrected summary estimate 6„ is entirely based on comparisons between 

individuals who belong to the same cohort. An additional estimate of (log) 

relative risk, 9R> can be obtained on the basis of between-cohort 

comparisons of disease incidence and exposure levels. Since for both the 

exposure and incidence the within- and between-cohort components of variance 

are independent, the estimate of 6_ will be complementary to that of &„. 

As for the within-cohort analysis it was assumed that at the subject 

level there was a log-linear dose-response between exposure and disease 

rate, the between-cohort estimate of relative risk should theoretically be 

obtained by linear regression of estimates of the mean log incidence rate in 

each cohort , (iL), on measurements of the mean exposure levels, T.. A 

complication, however, is that the mean log incidence rates ij», are not 

estimable from aggregate level data. (In the literature concerning 

ecological studies, this has received some attention as a problem of model 

specification (17,18)). Nevertheless, at least approximate estimates of 8_ 

can be obtained by linear regression of the logarithm of the average 

incidence rates, Y.=log(d./n.), on measurements of the mean exposures 

(19,20). This estimate will be most precise if each data point is weighted 

proportionally to the precision with which it is estimated. 

The between-cohort estimate 9_ may be biased if mean exposure 

measurements Q. are over- or under-estimated to varying degrees. This may be 

a problem, in particular when the dietary questionnaire methods cannot 

easily be standardized. One may then choose to obtain an alternative 

estimate of the mean exposure in only a subsample of each cohort, using an 

additional dietary assessment method for which standardization poses fewer 

problems. Again, measurements may for instance be based on a weighed food 

record or on a biochemical marker. One can thus use the same sub-sample and 

the same reference measurements (R) as for the within-cohort calibration of 

relative risk estimates. It should be noted that the reference measurements 

only need to provide an accurate estimate of the mean exposure at the group 

level; the measurements may be too imprecise to also provide an accurate 

classification of individuals by exposure level. 

As before, we shall assume that the reference measurements are perfectly 

standardized, and that calibration sub-samples are sufficiently large to 

obtain highly accurate estimates of the mean exposure in each cohort. The 
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precision of each data-point (R.,Y.) is then mainly determined by the 

variance of Y., which is equal to 1/dj. Thus, each point will be optimally 

weighted by the number of cases, d., which leads to the following estimate 

for 9_ (see also Rothman (21), pp. 336-9) : 

E d l R i Y l - ( E d.R. ) ( E dl Y i ) / D C O V B ( T > Y ) 

E diRi
2 - f E d ^ ] / D VarB(T) 

Here, Cov_(T,Y) = Cov(E(T|cohort),E(Y|cohort)) is the estimated between-

cohort covariance between the (mean) exposures T. and estimated average 

incidence rates Y. (weighted by the numbers of cases), and Var_(T) = 

Var(E(T|cohort)) is the between-cohort variance of exposure. 

The variance of the 8„ estimate is equal to: 

1 
Var(6B) = [11] 

D VarB(T) 

Combining within- and between-cohort estimates of relative risk. 

If the within- and between-cohort estimates of relative risk are reasonably 

similar, both estimates can in principle also be combined, into anoverall 

summary value 8-. Again, both estimates should be weighted by the inverse of 

their variances. If both estimates were fully corrected for biases due to 

error in the exposure measurements (i.e., after perfect calibration), 8_ 

would be computed as: 

vârw(E[T|Q]) _ VarB(T) 

ê 0 ; ; ê y + ê B [12]. 

vâry(E[T|Q]) + vârB(T) vârw(E[T|Q]) + Varß(T) 

Again, the relative weights are proportional to the relative variances, 

within and between cohorts, of accurately predicted exposure differences. 

If, on average, exposure differences are poorly distinguished within cohorts 

(i.e. when the correlation pQ_, is low), the value of Var„(E[T|Q]) decreases, 

and relatively greater weight will be given to the between-cohort estimate. 

This illustrates that accurate calibration also improves the weighting of 

the vithin-cohort evidence relative to the between-cohort evidence for a 
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diet-disease association. The variance of the overall 6_-estimate is then 

equal to : 

Var(90) = 113]. 

D (vârB(T) + vârw(E[T|Q]) 

This formula shows that, compared to the pooled vithin-cohort estimate 8y, 

the precision of the relative risk estimate can be further increased by also 

taking the betveen-cohort variations in exposure and disease rate into 

account. Thus, if the estimates 6„ and 6R are similar enough to be combined, 

the overall power for testing a single, average dose-response relationship 

will be improved. This is a major potential advantage specifically for 

multi-centre cohort studies. 

Discussion 

A single cohort or case-control study may be unable to detect small 

increases in relative risk, as it can be the case if the heterogeneity of 

exposure within a population is small, or when the association between 

exposure and disease is attenuated by measurement error (or both). This 

potential limitation of case-control or cohort studies has been used as an 

argument in favour of ecological studies (19,22-24), since these include a 

wider range of exposures. However, the disadvantages of ecological studies 

have also received considerable attention in the epidemiological literature 

(2,3,18,25). In principle, a collaborative multi-centre cohort study has the 

ideal design for studying the relationship between dietary intake and 

disease risk, offering all the potential advantages of studies based on 

individual subjects (in particular, the possibility to adjust for 

confounding), while at the same time increasing heterogeneity of the 

exposure. 

With some simplifying assumptions (approximate normality of the exposure 

distributions, as well as the assumption that the logarithm of the average 

incidence rate Y.=log(d./n, ) is a good approximation of the mean log-rate 

iL), the information concerning the exposure-disease relationship can be 

divided into two parts: 

1. A within-cohort relationship, between intake measurements and 

disease outcome at the level of individuals. 
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2. Â between-cohort relationship, between the mean intake measurements 

and overall incidence rates within each of the various cohorts. 

The increased heterogeneity of exposure deriving from a multi-centre design 

is captured by the data at a cohort level, while within cohorts the evidence 

is strengthened by an increased number of cases. A similar partitioning of 

information has been given by Fiantadosi et al. (3), as well as by Elliott 

(26) for the situation where the outcome variable is normally distributed. 

The between-cohort part of the study bears a superficial resemblance to 

an "ecological" study, but is in fact considerably stronger. In true 

ecological studies, there can be basically two causes of bias (18,25): 

a. The population from which exposure data are collected is not 

representative of the population for which incidence data are 

available. 

b. Adjustment cannot be made for known confounders (and effect modifiers) 

before aggregation of the data. Attempts to adjust for confounding 

after aggregation may not be successful. 

A multi-cohort study may also suffer from the first of these problems, if 

there is selection bias in the subsample chosen for standardized exposure 

measurements. In order to avoid selection bias, one should ensure a very 

high compliance with the type of dietary method used to obtain the 

standardized measurements. In the EPIC-project, this was a reason to decide 

that 24-hour recall interviews will be used as a standard method, rather 

than weighed food records. The second problem can be overcome in a similar 

manner as in the analysis of within-cohort relationships, by measuring 

confounders on all individuals in the study and stratifying the analysis. 

Ideally the two forms of evidence - within and between cohorts - should 

corroborate one another and, following a meta-analytical approach, can 

ultimately be combined to yield an overall estimate with greater statistical 

power. The validity of this planned meta-analysis may be increased by 

careful standardization of measurements of exposure and potential 

confounding or interacting factors. Correction for biases due to errors in 

the exposure measurements can be made by a calibration approach, based on 

the linear approximation method previously described by Rosner et al (16). 

This will also improve the weighting of component estimates of relative risk 

(estimated either within cohorts, or from the "ecological", between-cohort 

relation), the weights being proportional to the variances of the predicted 
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intake distributions. Likewise, calibration also leads to a reweighting of 

the overall evidence from within cohorts relative to that from a between-

cohort analysis. For the sake of discussion, we made the simplifying 

assumption that the estimation of calibration parameters (X) were basically 

error-free. Sample size requirements for calibration substudies and 

underlying assumptions regarding the reference measurements will be further 

discussed elsewhere (20). 

Although in principle a collaborative multi-centre cohort study has the 

ideal design for studying the relationship between dietary intake and 

disease risk, some caution is necessary. Residual (or unmeasured) 

confounding may have a different effect on within-cohort relative risk 

estimates than on estimates based on between-cohort comparisons (25). 

Another potential problem, which has not been discussed in this paper, is 

the difficulty of standardizing measurements of the outcome variable. 

Differences in the completeness of registration of cancer cases, or errors 

in the evaluation of the time of follow-up may lead to bias in the between-

cohort analysis. The interpretation of the study may therefore not be clear 

whenever there is a strong divergence between the two forms of evidence. 
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Abstract 

Advantages of multi-centre cohort studies on diet and cancer is that these 

allow the cross-validation of relative risk estimates between different 

study populations. Moreover, more powerful summary estimates of relative 

risk can be obtained by combining cohort-specific results. A complication, 

however, is that in different cohorts relative risk estimates may be biased 

to a different degree as a result of errors in the baseline assessments of 

habitual dietary intake levels. Such divergent biases can be adjusted for by 

means of "calibration" studies, using standardized reference measurements 

obtained in a sub-group of each cohort. These adjustments entail a cost, 

however, in terms of an increase in the confidence interval the relative 

risk estimates. In this paper, we evaluate the possible magnitude of such 

losses in precision, and discuss the approximate sample size requirements of 

dietary calibration studies for adjustments for bias to have a sufficient 

level of accuracy. 
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Introduction 

Single case-control or cohort studies may lack the statistical power to 

detect specific relationships between dietary intake factors and cancer. An 

advantage of conducting parallel studies in multiple populations is that 

this allows a cross-evaluation of the consistency of observed diet-disease 

associations (1). This was one of the reasons for planning the European 

Prospective Investigation on Cancer and Nutrition (EPIC), a project of 

multiple cohort studies on diet and cancer in seven European countries (2). 

An additional advantage of multi-centre cohort studies such as EPIC is that, 

by combining the data of the different cohorts, the overall study power and 

precision of relative risk estimates can be improved. A complication, 

however, is that questionnaire assessments of the individuals' habitual 

dietary intake levels may not have the same level of accuracy in each of the 

cohorts. This may be particularly true if it is impossible to use an 

identical questionnaire in all countries, because of major differences 

between food consumption patterns or language. Thus, in different cohorts 

(countries) relative risk estimates may be biased to a varying degree as a 

result of errors in the dietary exposure assessments, and may not be 

strictly comparable. 

More specifically, suppose that in each study cohort there is a log-

linear relation between the incidence rate of disease and the true intake 

level T of particular nutrient; that is, log (rate) = constant + 6T. In this 

simple model, commonly adopted in the analysis epidemiological data, the 

parameter 6 denotes the logarithm of the relative risk for one unit 

difference in true intake level. In addition, let us assume that within each 

cohort the relation between dietary questionnaire assessments and true 

intake values is well described by a linear measurement error model (3): Q = 

cc_ + ß_T + £Q. Here, the coefficients aQ and ßQ denote constant and 

proportional scaling biases, respectively, and the term en represents a 
2 

random error with mean zero and variance o _. It can then be shown that 
£Q 

estimates of the slope parameter 6, obtained by regression of a (binary) 

disease outcome variable on questionnaire assessments of exposure, will be 

biased by a factor X (4,5), with an expected value of 

x
 1 2 

X - — PQT-
ßQ 
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Here, p n T is the correlation between questionnaire assessments and true 

intake values. Differences in the proportional scaling bias ßQ, or in the 

correlation p-., between questionnaire assessments and true intake values, 

will induce different degrees of bias in estimates of the log-relative risk 

parameter 9, as obtained in each of the various cohorts. 

The between-cohort differences in bias can in principle be adjusted for 

if well standardized reference measurements are available for at least a 

sub-sample of participants in each cohort. If this adjustment is accurate, 

it will result in a more optimal weighting of cohort-specific relative risk 

estimates when these are combined into a summary value, the weighting 

factors reflecting the level of accuracy of the dietary intake assessments 

in each cohort (6). The reference measurements may be obtained by a more 

detailed method, such as daily intake records, using a weighing method or 

24-hour diet recalls (7,8). Then, using the method of "linear approximation" 

described by Rosner et al. (4), the bias factor X can in each cohort be 

estimated by normal linear regression of reference measurements on 

questionnaire assessments, and corrected estimates of the log-relative risk 

can be obtained as 8=6 /X (where 6 is the unadjusted estimate). This method 

can also be seen as a rescaling of the baseline questionnaire assessments so 

that, by regression of disease outcome on the rescaled assessments, a 

consistent estimate of the log-relative risk will be obtained (6). Ve shall 

therefore refer to this approach as a "calibration" procedure, and to the 

factor X as the "calibration factor". 

Adjustments of relative risk estimates by calibration will only be 

adequate if, in each cohort, the calibration factor X is estimated with a 

sufficient level of precision. In this paper, we present some mathematical 

simulations to illustrate the possible losses in precision which may result 

from calibration. In the subsequent sections we shall discuss the 

approximate sample size requirements of dietary calibration studies, in 

prospective cohort studies on diet and chronic disease risk. 

Loss of precision due to calibration 

Rosner et al. (4) derived a closed-form expression for the variance for the 

calibrated estimate of the log-relative risk (6=6*/X), taking account of the 

imprecision in the estimation of the calibration factor X. Ve shall assume 

that the exposure distribution is close to normal, with mean u™ and variance 
2 

o _, and that the cases are compared to a much larger number of disease-free 
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control subjects as in the case of a full cohort analysis. The variance 

formula by Rosner et al. can then be re-expressed in terms of an "effective" 

number of cases, D, and of the amount of variation in true intake level 
2 2 

actually predicted by the questionnaire assessments, Var(E[T|Q]) = p_T<j T: 

1 1 
Var(9) = — [1] 

D Var(E(T|Q]) 

(Appendix A ) . Here, the effective number of cases D is given by 

+ C [2] 

i 1 2 

1 1 - P Q R 

where C = A2 , and A2 = e2Var(E[T|Q]). 

N PQR 

In this equation, N denotes the number of participants in the calibration 

sub-study; and p ™ is the correlation between questionnaire and reference 

measurements. The quantity A indicates the strength of the association 

between questionnaire measurements and disease risk, and can be directly 

related to an expected relative risk between quantile levels of the 

distribution of questionnaire assessments. For instance, the relative risk 

for the upper versus the lower quintile of the questionnaire assessments 
9 on A 

approximately equals e * (9), which corresponds to a relative risk of 

about 1.5 when the association A equals 0.15, or a relative risk of 4.0 when 

the association equals 0.50. 

The quantity C in equation [2] will be called the statistical "cost" of 

the calibration (not to be confounded with the financial cost of the 

calibration study). A cost equal to zero corresponds to estimation of the 

calibration factor X without error and, therefore, to no increase in the 

variance of the calibrated estimate of the log-relative risk. In this 

hypothetical situation, the effective number of cases is equal to the number 

actually observed in the study (i.e., D=D). In practical situations, 

however, the calibration factor will be estimated with some level of 
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imprecision. In this case, the ratio D/D expresses the relative efficiency 

of the calibration study, as compared to the situation where the calibration 

is perfect. The loss of efficiency can be defined as D-D. 

To illustrate the potential magnitude of such efficiency losses, Table 1 

shows the effective numbers of cases at selected values of the association 

between questionnaire assessments and disease risk (A), and of the observed 

number of cases (D). The relative efficiency improves with an increasing 

number of subjects in the calibration study, or with increasing values for 

the correlation between questionnaire and reference measurements. The latter 

two parameters determine the precision with which the calibration factor X 

is estimated. On the other hand, the relative efficiency decreases with 

increasing values of the association A, or of the observed number of cases 

D, which both determine the precision of the crude log-relative risk 

estimate before calibration. 

An additional parameter of interest (shown between parentheses in Table 

1) is the expected value of the calibrated estimate of log-relative risk 

divided by its standard error - that is, the expected t-value. This expected 

t-value is determined by the association between questionnaire assessments 

and disease risk, as well as by the effective number of cases, and can be 

computed as E(t)=AVD (see Appendix B). If the 95 percent confidence interval 

of the calibrated log-relative risk estimate is expressed as a fraction f of 

the estimate itself, it can be shown that f=1.96/E(t) (Appendix B)). Thus, 

an expected t-value of 3.92 (=4.0) corresponds to a confidence interval of 

[1±0.50]9. 

Efficient design of calibration studies; number of repeat reference 

measurements 

In practice, the statistical cost of calibration, C, can be reduced in two 

ways: increasing the number of subjects in the calibration study, or taking 

the average of multiple reference measurements per subject (e.g., multiple 

food records, or 24-hour recalls) to strengthen their correlation (prtl>) with 

the questionnaire measurements. The question is which of these two 

approaches will reduce the cost of calibration most efficiently. 

The statistical cost for a calibration study of N=n study participants 

with reference measurements repeated over k days (Cuvi)» relative to that 

for a study of N=nxk participants with only a single reference measurement 

(Cj.), can be computed as: 
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Table 1. Effective numbers of cases, and (between parentheses) expected t-
values after calibration. 

a) The expected odds ratio for the upper versus the lower quintile of the 
measured exposure distribution equals 1.50 (i.e., A=0.15). 

Number of participants in calibration study, N 

1000 2000 3000 4000 5000 

Nr. observed cases, 
D = 100 

P Q R = 0 . 1 

PQR = 0.2 

PQR = °-3 

PQR = 0.4 

PQR = 0.5 

Nr. observed cases, 
D = 500 

P Q R = 0 . 1 

PQR = 0.2 

PQR = 0.3 

PQR = 0.4 

PQR = °-5 

81.8 
(1.36) 

94.9 
(1.46) 

97.8 
(1.48) 

98.8 
(1.49) 

99.3 
(1.49) 

237 
(2.31) 

394 
(2.98) 

449 
(3.18) 

472 
(3.25) 

484 
(3.30) 

90.0 
(1.42) 

97.4 
(1.48) 

98.9 
(1.49) 

99.4 
(1.50) 

99.7 
(1.50) 

321 
(2.69) 

441 
(3.15) 

473 
(3.26) 

486 
(3.31) 

492 
(3.33) 

93.1 
(1.45) 

98.2 
(1.49) 

99.2 
(1.49) 

99.6 
(1.50) 

99.8 
(1.50) 

365 
(2.87) 

459 
(3.21) 

482 
(3.29) 

490 
(3.32) 

494 
(3.33) 

94.7 
(1.46) 

98.7 
(1.49) 

99.4 
(1.50) 

99.7 
(1.50) 

99.8 
(1.50) 

391 
(2.97) 

468 
(3.24) 

486 
(3.31) 

492 
(3.33) 

496 
(3.34) 

95.7 
(1.47) 

98.9 
(1.49) 

99.5 
(1.50) 

99.8 
(1.50) 

99.9 
(1.50) 

409 
(3.03) 

474 
(3.27) 

489 
(3.32) 

494 
(3.33) 

497 
(3.34) 

100 
(1.50) 

100 
(1.50) 

100 
(1.50) 

100 
(1.50) 

100 
(1.50) 

500 
(3.35) 

500 
(3.35) 

500 
(3.35) 

500 
(3.35) 

500 
(3.35) 
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Table 1 (continued) 

b) The expected odds ratio for the upper versus the lower quintile of 
questionnaire measurements equals 4.00 (i.e., A=0.50). 

Number of participants in calibration study, N 

1000 2000 3000 4000 5000 

Nr. observed cases, 
D = 100 

" Q R - 0 - 1 

PQR = 0.2 

»OR • °-3 

PQR = 0.4 

PQR = 0.5 

Nr. observed cases, 
D = 500 

P Q R = 0 . 1 

PQR = 0.2 

PQR = 0.3 

PQR = 0.4 

PQR = 0.5 

28.8 
(2.68) 

62.5 
(3.95) 

79.8 
(4.47) 

88.4 
(4.70) 

93.0 
(4.82) 

37.4 
(3.06) 

125 
(5.59) 

221 
(7.43) 

302 
(8.69) 

364 
(9.54) 

44.7 
(3.34) 

76.9 
(4.38) 

88.8 
(4.71) 

93.8 
(4.84) 

96.4 
(4.91) 

69.6 
(4.17) 

200 
(7.07) 

306 
(8.75) 

376 
(9.69) 

421 
(10.3) 

54.8 
(3.70) 

83.3 
(4.56) 

92.2 
(4.80) 

95.8 
(4.89) 

97.6 
(4.93) 

97.6 
(4.94) 

250 
(7.91) 

352 
(9.38) 

410 
(10.1) 

444 
(10.5) 

61.8 
(3.93) 

87.0 
(4.66) 

94.06 
(4.85) 

96.8 
(4.92) 

98.2 
(4.95) 

122 
(5.52) 

286 
(8.46) 

380 
(9.75) 

430 
(10.4) 

457 
(10.7) 

66.9 
(4.09) 

89.3 
(4.72) 

95.2 
(4.88) 

97.4 
(4.93) 

98.5 
(4.96) 

144 
(6.00) 

313 
(8.85) 

399 
(9.99) 

442 
(10.5) 

465 
(10.8) 

100 
(5.00) 

100 
(5.00) 

100 
(5.00) 

100 
(5.00) 

100 
(5.00) 

500 
(11.2) 

500 
(11.2) 

500 
(11.2) 

500 
(11.2) 

500 
(11.2) 
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ck>i k
 K^PJT^

 + (̂ r)«̂ ] 
"Relative Cost" = = [3] 

Ck=l (̂ QT* + u 

where o> = [l-p__]/p__, and where y is the correlation between random errors 

of repeat reference measurements taken on the same individual (Appendix C ) . 

It can be immediately seen from this equation that, unless there is a 

perfect correlation between questionnaire assessments and true intake values 
2 

(i.e., unless (l-pnT)=0), the "relative cost" of calibration is always 

greater than 1.0. Thus, for a given total number of reference measurements, 

the calibration study will be most efficient if it includes a maximum number 

of subjects with only a single measurement each (i.e, k=l). 

Table 2.a shows the relative cost of calibration for different numbers of 

repeat reference measurements per subject, at selected values of the 

correlations pQ_, and p R T , assuming that errors of repeat reference 

measurements are uncorrelated. Likewise, table 2.b shows the relative cost 

when there is a 0.10 correlation between the random errors of repeat 

reference measurements. From the two tables it can be seen that, with 14 or 

more repeats (which is a common number in dietary validity studies (10,11)), 

the relative cost can be higher than 2.0, in particular when random errors 

of repeat reference measurements are not fully independent. A relative cost 

of 2.0 means that a similar precision of calibration can be attained with 

half the total number of reference measurements if, instead of taking 

replicate measurements, more subjects are included in the study. 

Precision of calibration studies; sample size requirements 

Given our conclusion that the cost for calibration C is more efficiently 

reduced by increasing the total sample size N, rather than by taking 

replicate reference measurements, the main question to be answered is which 

sample size will be needed for the calibration study to reach a desired 

level of precision. 

Ideally, the calibration study should be as large as to maintain a 

minimum level of relative efficiency D/D of, say, 80 percent. From equation 

[2] we can derive, 
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TABLE 2. "Relative Cost" for calibration with k repeat reference 
measurements, or only a one reference measurement per participant, assuming 
a 0.50 correlation between questionnaire assessments and true intake values 
(i.e., pQT=0.50). 

a) Zero correlation between errors of replicate reference measurements. 

correlation between reference measurements and 
true intake level, p, 

0.10 0.20 

"RT 

0.30 0.40 0.50 

Nr of repeat 
measurements, k 

2 

7 

14 

1.01 

1.05 

1.10 

1.03 

1.18 

1.39 

1.07 

1.41 

1.90 

1.13 

1.75 

2.62 

1.20 

2.20 

3.60 

b) Correlation (y) between errors of replicate reference measurements 
equals 0.10. 

correlation between reference measurements and 
true intake level, p. 

0.10 0.20 

JRT 

0.30 0.40 0.50 

Nr of repeat 
measurements, k 

2 

7 

14 

1.10 1.13 1.16 

1.64 1.76 1.97 

2.39 2.65 3.11 

1.21 1.28 

2.28 2.68 

3.76 4.64 
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D l - PQR D 

= 1 + A2 [4] 

5 <>QR N 

2 
Thus, at any given value of the association A and of the correlation p-._ 

between questionnaire assessments and reference measurements, there is a 

positive relation between the relative efficiency D/D and the ratio N/D 

which is the size of the calibration study relative to the observed number 

of cases. For example, assume that the correlation between questionnaire and 

reference measurements equals p__=0.20. (This was the level of correlation 

between intake assessments obtained by a questionnaire, and reference 

measurements obtained by a single 24-hour recall, as observed for most 

nutrients during the pilot phase of the EPIC study (personal 

communication).) In addition, assume that the relative risk between the 

extreme quintiles of questionnaire assessments equals 1.50 (i.e., A=0.15). 

It then follows that the calibration study should be about 2.2 times as 

large as the number of cases observed. 

Unfortunately, using the relative efficiency D/D as the main criterion, 

sample size requirements for the calibration study may become excessively 

large when the association between questionnaire assessments and disease 

risk is comparatively strong. For example, if the relative risk between the 

extreme quintiles equals 4.0 (i.e., A=0.50), the calibration study should be 

24 times larger than the number of cases observed. Thus, if 500 cases with 

disease are expected within the cohort, the calibration study should include 

12,000 participants! One may argue however that, when the unadjusted log-

relative risk estimate has very narrow confidence limits, the confidence 

interval can still have an acceptable width even in situations where the 

relative efficiency of calibration is less than 80 percent. Thus, when there 

is a strong association between questionnaire assessments and disease risk, 

an alternative may be to use the expected t-value for the calibrated log-

relative risk estimate as a criterion for sample size calculations . 

From equation [2], we can derive an inverse relation between the expected 

t-value of the calibrated log-relative risk estimate, and the relative 

efficiency of the calibration study: 

E(t) = V{ (1 - D/D) N PQR/II-PJR] } [5]. 



92 Chapter 5 

Using this relationship, and making an assumption only about the correlation 

between questionnaire and reference measurements, a minimum sample size for 

the calibration study can be computed so that either 

A. a minimum level of relative efficiency will be attained (e.g., D/D > 

0.80), in which case the expected t-value would be only marginally 

greater even if the calibration was perfect, or 

B. the expected value of the calibrated log-relative risk estimate divided 

by its standard error (i.e., the expected t-value) reaches a desired 

minimum value. 

For example, assuming that the correlation p__ is greater than or equal to 

0.20, it follows from equation [5] that the calibration study should include 

at least 1920 (=2000) subjects to obtain that either the expected t-value is 

greater than 4.0, or the relative efficiency D/D is greater than 0.80. 

Discussion. 

An advantage of multi-centre cohort studies on diet is that these allow the 

consistency of relative risk estimates across populations to be evaluated. 

Moreover, by combining relative risk estimates across cohorts, a more 

powerful summary estimate can be obtained to test for specific diet-disease 

associations. A complication, however, is that errors in the baseline 

questionnaire assessments of dietary intake levels may lead to different 

degrees of bias in each of the cohort-specific estimates of relative risk. 

Adjustments for such divergent biases can be made by means of dietary 

calibration studies, using well standardized reference measurements 

collected within a sub-sample of each cohort. In this paper we have 

evaluated the potential loss in precision of relative risk estimates, within 

a single cohort study, as a result of such calibration adjustments. 

Vithin a single study population (i.e., within each cohort separately), a 

test for association between a given dietary factor and disease risk (i.e., 

a test for the null hypothesis that 6=0) has been shown to have optimal 

power if it is based on the unadjusted log-relative risk estimate (12). On 

the other hand, when multiple relative risk values are combined into a 

single summary value, calibration can remove error by adjusting for 

heterogeneity caused by dietary assessment errors. In a multi-centre study, 

therefore, calibration can in principle also improve the precision of a 
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combined log-relative risk estimate, provided that this potential gain in 

precision is larger than the intra-cohort losses of efficiency (D/D). Ve 

have shown how minimum sample size requirements for calibration studies can 

be computed so that 

1) the relative loss in efficiency will be small; this will be the case 

mainly if the association between questionnaire assessments and disease 

risk is relatively weak or if the number of cases is small; or 

2) the expected t-value of the calibrated log-relative risk estimate 

reaches a minimum predefined value; this will occur only if the 

unadjusted estimate reaches a certain level of precision - that is, 

when the association between questionnaire assessments and disease risk 

is relatively strong, or when there is a large number of cases. 

It is in particular in the first type of situation, when there are only weak 

associations between questionnaire assessments and disease risk, that the 

benefit of reducing error due to unequal biases in relative risk estimates 

may be relevant, to optimize the statistical power. 

Our calculations were based on Rosner et al.'s variance formula for the 

calibrated log-relative risk estimate (4). Using computer simulations, 

Rosner et al. have shown that the linear approximation method results in a 

satisfactory reduction of bias, as long as true relative risks are 

relatively low (as is the case in most studies on diet and cancer). In 

addition, it was shown that confidence intervals for the corrected log-

relative risk estimate will have a probability of covering the true log-

relative risk value that is very close, although not identical, to the 

nominal (95 percent) level. The variance formula for the calibrated log-

relative risk estimate was derived by Rosner et al. on the assumption that 

the calibration study would be conducted externally from the main 

epidemiological study population. In prospective cohort studies, however, 

calibration studies can be conducted on a random sub-sample of study 

participants. Thus, for a small proportion of the cohort (e.g., in 2000 out 

of 50,000 participants), reference measurements of dietary exposure will be 

available, which provide some additional information on the subjects' 

classification by habitual intake level. Since some cases with disease may 

arise in this sub-sample, the calibration studies may actually provide some 

supplementary information about the exposure-disease relationship. By 

ignoring this supplementary information, efficiency losses and sample size 
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requirements may have been somewhat overestimated. Nevertheless, this 

overestimation will be negligible as long as the expected number of cases in 

the sub-sample is low and, in addition, if the reference measurements (e.g., 

based on only a single 24-hour recall) have a comparatively low reliability 

as assessments of the individuals' long-term, habitual intake levels. 

Mathematically more exact, likelihood-based approaches for the 

calculation of the sample size requirements of dietary calibration studies 

have been developed, which do take account of additional exposure 

information for cases and controls within the calibration sub-sample 

(13,14). These approaches allow a simultaneous evaluation of sample size 

requirements of the main cohort, as well as of the proportion of the cohort 

that to be allocated to a calibration sub-study. The relative efficiencies 

of calibration, and expected t-values as presented in this paper are based 

on simplified formulas. In situations where the size of the main study 

cohort has already been decided, however, these parameters can provide 

simple and practical criteria for the estimation of sample size requirements 

for dietary calibration studies. 
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Appendix A 

It was shown by Rosner, Willet and Spiegelman (4) that the variance of the 

calibrated 9-estimate, Var(9), will be approximately equal to: 

i e*2 

Var(6) = Var(6*) + Var(X) [A.l] 

X2 A4 

Assuming that intake levels are Normally distributed, and that cases are 

compared to a much larger number of controls (as in a full cohort analysis), 

the variance of the unadjusted 9-estimate (9 ) is equal to 

1 
Var(9*) = [A.2] 

D Var(Q) 

Furthermore, 

Var(R) [1-p2 ] 
Var(X) = y^— [A.3] 

N Var(Q) 

E(X) = P^T [A.4] 
ßQ 

Substitution of [A.2], [A.3], and [A.4] into equation [A.l], and 
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reexpressing 

Var(R) = <4/pj[T and Var(Q) = ßj o2/p2
T yields: 

Var(9) 
2 2 

1 

D 

ft2 n 2 

T 2 

N p 
RT 

2 2 
PQT oT 

4.-1- a2 „2 „2 1 - P Q R 
+ — e oT p. 

"T HQT 2 

'QR ' 

2 2 ' 
PQT oT D Var(E[T|Q]) D 

[A.5] 

Appendix B 

The expected t-statistic for a test whether the calibrated 6-estimate 

significantly differs from 0 equals: 

E(t) 
E(6) 

VVar(e) 

E(6) 

1/V(D Var(E[T|Q]) 

e VVar(E[T|Q]) ̂ D 

A VD [B.l], 

Suppose the expected 95% confidence interval for the calibrated 6-estimate 

equals (l±f)6. Then, fe = 1.96 VVar(6), and thus f=1.96 VVar(6)/6 = 

1.96/E(t), where 1.96 is the 0.95 point of the standard Normal distribution. 
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Appendix C. 

The relative cost R . C , for a calibration study of N=n subjects each with k 

repeat reference measurements, relative to that for a study of N=nxk 

subjects with only a single reference measurement each, equals 

R.C. = 

[C.l]. 

1/n A2 [l-PQRtk]/PQR>k 

l/(nk) A2 [1-P2
R]/P2

R 

k ' 1/pRT,k - PQT I 

2 2 
l/pRT - P Q T 

Here, P O R is the correlation between the questionnaire, and (single) 

reference measurements, which can be rewritten as 

PQR = PQTPRT = PQT 1/^{1+(°} [C.2]. 

2 2 where w is the variance ratio <o=o R/o_,. 

Likewise, p n R , is the correlation between questionnaire measurements and 

the average of k repeat reference measurements, and can be rewritten as 

pQR,k = pQTpRT,k = l/fi+YO+ü-YWk) [C.3], 

where y is the correlation between random errors of replicate reference 

measurements. 

Substitution of [C.2] and [C.3] into [C.l] yields 

k [ (1-pL) + Y<o + (l-Y)<o/k ] 
R.C. = *± [C.4]. 

(1 - P Q T ) + «> 
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Efficient use of biological banks for biochemical epidemiology: 
exploratory hypothesis testing by means of a sequential t-test. 

This chapter has been published by the authors R. Kaaks, I. van der Tweel, 

P.A.H. van Noord, and E. Riboli, in Epidemiology 1994;5:429-38. 
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Abstract 

In view of recent advances in molecular and biochemical epidemiology, there 

is growing interest in the creation of biological banks of blood, urine, 

tissue or other biological specimens collected from participants in 

prospective cohort studies. The existence of biological banks may make it 

possible to study a multitude of etiological hypotheses, by comparing 

biochemical parameters measured in the biological specimens of subjects who 

will eventually develop the disease of interest ("cases") and of control 

subjects, using a nested case-control or a case-cohort design. In practice, 

however, the amount of biological material available per subject (in 

particular that of cases) will limit the number of hypotheses that can be 

tested. The present paper discusses the use of a sequential t-test, which, 

compared to an analogous fixed-sample procedure, will on average require 

fewer biological specimens to accept or reject a given study hypothesis. The 

sequential test may thus facilitate an early decision on whether a new 

hypothesis is worth further investigation, while avoiding to use too much 

biological material on testing hypotheses that would eventually prove 

unfruitful. If the test reveals an exposure difference of interest, the 

study may be extended so as to allow more accurate estimation of relevant 

epidemiological effect measures. 
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Introduction 

Following recent developments in "biochemical" and "molecular" epidemiology 

there is growing interest in the creation of banks of biological samples of 

material, such as blood or urine specimens, collected from participants in 

prospective cohort studies (1,2). After detection of a sufficient number of 

cases of a given disease (during a given follow-up period), parameters 

measured in their biological specimens can be compared with those of 

controls in order to study specific etiological hypotheses. Since new 

laboratory techniques are constantly being developed for the assessment of 

specific biochemical or molecular parameters, the number of new hypotheses 

that can be tested is also increasing rapidly. In practice, however, the 

amount of biological material stored (in particular that of cases) will 

limit the number of possible studies (3). It would therefore be useful to 

have a statistical method which, at the expense of as little biological 

material as possible, allows a distinction between promising hypotheses, 

which may be worth further investigation, and less promising ones. Such a 

method may be particularly useful in exploratory investigations, when there 

is only limited prior evidence to justify a study based on a large number of 

biological specimens. 

Using sequential statistical designs (4,5), it is theoretically possible 

to terminate an investigation on a specific hypothesis as soon as sufficient 

evidence has accumulated for it to be accepted or rejected. On average, 

sequential analysis will arrive at a decision after substantially fewer 

observations than equally reliable test procedures based on a fixed sample 

size. The first sequential procedures were developed during the Second World 

War (6), when Wald described the theoretical basis for a sequential 

probability ratio test (SPRT), and it almost immediately became an important 

tool for efficient quality control in wartime factories. Nowadays, 

sequential methods have also been adopted for use in medical research, in 

particular for the design and analysis of clinical trials (7,8). So far, 

however, sequential methods have not been much used in epidemiological 

studies, outside clinical trials. 

The present paper discusses exploratory hypothesis testing by means of a 

sequential t-test, in cohort-nested case-control studies where the exposure 

assessment is based on a biochemical marker, obtained by laboratory analysis 

of stored biological specimens. (To simplify, we shall refer to the 

biological marker as a measurement of an internal or external "exposure", 
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although it is clear that markers can also be a measure of individual 

susceptibility or of intermediate endpoints (9,10) ). The application of the 

sequential t-test will be illustrated using data from a study conducted to 

examine whether selenium is a potentially protective agent against breast 

cancer (11). 

The sequential t-test 

Ve shall assume that the biomarker measurements, H, can be considered as 

values drawn from two normal distributions, for cases and for controls, 

respectively. We also assume that both distributions have an equal variance, 
2 

o , but that their means may be different; that is: 
. 2 

M|case = N(u.,o ), and 

M|control = N(u0,a ). 

The null hypothesis to be tested is that the mean exposures of cases and 

controls are equal; that is, 

H0 : Ul=u0, or uru0=0. 

If o is not known a priori, but must be estimated, the magnitude of the mean 

difference Vi-Un which can be detected with a given power is unknown. 

However, the null hypothesis can be re-defined in terms of a standardized 

difference, 9=(u.-u0)/o, between the mean exposures of cases and of 

controls: 

HQ : 9 = (uru0)/o = 0. 

If the standard deviation a is high, then for a given number of observations 

only very large differences will be detectable with sufficient statistical 

power. Inversely, the power will be higher if o is small. 

A t-test can be used to evaluate the null hypothesis against an 

alternative. In the case of a well defined biological hypothesis, a one­

sided alternative may be reasonable; that is, 

H. : e > 6_. 

Here, 6R is the minimum standardized difference (u..-uft)/o v ' that one would 

find relevant enough to be detected, with a power of at least 1-ß and a 

significance level a. A two-sided alternative can be specified as 

H X : |e| > eR. 
Most epidemiologists are familiar with the traditional, fixed sample t-test, 

* ' Note: If the exposure is expected to be higher for controls than for 
cases, the standardized difference can also be defined as 6 - (p^-u-J/o . 
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based on the comparison of the mean exposures of predetermined numbers 

of cases and controls. The procedure described here, however, uses a 

sequential sampling of cases and controls within the cohort. This sequential 

sampling may follow the detection of cases over time. Alternatively, if a 

large number of cases has already accrued, the sequential sampling can also 

be performed retrospectively. In the latter situation, the order in which 

cases are selected does not need to follow the chronological order in which 

they were detected, but can also be based on a random selection process. For 

each case selected, a random subset of k controls is drawn from the disease-

free subjects in the cohort. If there are many cases, and if the major 

concern is to limit the additional costs for laboratory analyses, 1:1 

matching (k=l) will give optimal statistical power at a given total cost. 

However, when disease incidence rates are low (e.g., for a given type of 

cancer), cohort studies must be very large to observe a sufficient number of 

cases. Additional costs for laboratory assessments - even though 

considerable - may then still be low in comparison to the initial 

investments in the study, and priority may be given to the possibility of 

studying as many hypotheses as possible with the biological material 

available. In this case, a higher matching ratio will be more efficient 

(k>l), as this will increase the power of the test keeping the number of 

specimens from cases constant. A matching ratio greater than 5 will seldom 

be worthwile, however (12). After every new set of one case plus 

corresponding controls is sampled, the biochemical measurements are compared 

for all cases and controls processed up to that point to determine whether 

there is sufficient evidence to either reject or accept the null hypothesis 

H0. 

The earliest theory for sequential test procedures (that of the 

sequential probability ratio test), was initially developed by Wald (6). 

According to this theory, a sequential test was based on the logarithm of 

the following likelihood ratio, L , which can be computed after every new 

case-control set is being sampled: 

the probability of observing the case and control measurements if H. 

is true (i.e., if 6>6R) 

L = . 
n 

the probability of observing the case and control measurements if H» 

is true (i.e., if 9=0) 
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(where n is the number of case-control sets processed so far). A high value 

of the logarithm of the likelihood ratio, 1 , indicates that, given the 

measurements observed, the alternative hypothesis H. is more likely to be 

true than the null hypothesis H-, vhereas a low value of 1 indicates that 

the null hypothesis is more likely to be true. The testing process will 

continue until one of the following arises: 

1. The log-likelihood ratio 1 becomes smaller than a critical minimum 

value A. In this case, the conclusion is that the standardized 

difference 6 is unlikely to be as large as 6R, and the null 

hypothesis H« will not be rejected. 

2. The log-likelihood ratio 1 becomes larger than a critical maximum 

value B. In this case it will be concluded that there is a 

standardized difference between the average exposures of cases and 

controls as large as or larger than 8_, and the null hypothesis is 

rejected in favor of the alternative hypothesis. 

Whitehead (8) developed a more general approach to sequential test 

procedures, which includes procedures that are equivalent to Wald's 

sequential probability ratio tests, and which is based on a log-likelihood 

function (with unknown parameter 8) rather than on a log-likelihood ratio. 

The log-likelihood function can be expressed in terms of the parameter 8 

(for our comparison of two mean exposures still defined as 8=(p.-p0)/o ), as 

well as of two test statistics, Z and V, which are both computed at each 

stage of the sequential test procedure. Formulae for the computation of Z 

and V are given in Appendix I. Z is the so-called "efficient score for 8" 

and, for the comparison between quantitative exposures of cases and controls 

discussed here, is computed as the cumulative difference in exposure divided 

by an estimate of the unknown standard deviation o. V is a measure of the 

amount of information about 8 contained in Z, also referred to as "Fisher's 

information", and increases as the sequential test procedure progresses. 

Whitehead has shown that, when 8 is small and samples are large, then, at 

any stage in the sampling process, Z follows approximately a normal 

distribution with mean 8V and variance V (8; pp. 60). 

In practice, the sequential testing process can be conveniently presented 

in the form of a graph, plotting Z against V. The testing process then 

continues until: 
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1. Z becomes smaller than the critical value A = -a+bV, in which case H. 

cannot be rejected, or 

2. Z becomes larger than the critical value B = a+bV, in which case KL 

will be rejected. 

The critical values A and B are both linear functions of V. The slope (b) 

and intercepts (± a) of these linear functions depend on the values chosen 

for a, ß, and 9„ (see Appendix I). An example of the graphic presentation of 

the sequential t-test is shown in Figure 1 (further discussed in the next 

section). The computations for this example, including those for 

determination of the critical values A and B , were performed using the 

computer program "PEST", developed by Whitehead and Brünier (13). 

An example 

Within a cohort of participants in the "DOM"-project, a population-based 

breast cancer screening programme at Utrecht (the Netherlands), toenail 

clippings were collected and stored in a biological bank. After an average 

follow up of 25.7 months, a total of 61 cases of pre-menopausal breast 

cancer were detected. Results were reanalysed using a sequential t-test. 

The null hypothesis of an equal selenium content in toenails of cases and of 

controls (HQ: (u0-u.)/o=0) was tested against the one-sided alternative of a 

higher selenium content in the control group (H. : (n^-u^/o > 6 R ). The 6_ 

value was chosen equal to 0.25. The significance level and the statistical 

power were fixed at oc=0.05 (one-sided) and l-ß=0.80, respectively. Case-

control subsets consisted of one case and five controls each, and were 

analysed in the chronological order in which the cases had been diagnosed. 

The results of the sequential testing procedure are shown in Figure 1. 

After a total number of 31 case-control sets (i.e., 31 cases and 155 

controls), the sample path of the efficient score Z plotted against V 

crossed the critical boundary corresponding to no rejection of the null 

hypothesis. 

Gain in efficiency: the expected sample size 

The advantage of sequential procedures is that the expected number of 

observations (average sample size) needed to reject a given study 

hypothesis, or not, is smaller than when the test is based on a fixed 

sampling procedure (i.e., with predetermined sample size). Indeed, it has 
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Figure 1. Sample path and critical boundaries for the Selenium and Breast 

Cancer data (one-sided sequential t-test without matching; a=0.05? l-ß=0.8 

and 9R=0.25). 
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A and B are the critical boundaries of the test; Z is the so-called 

"efficient score" for 8, computed as the cumulative standardized difference 

between the exposures of cases and controls; V is a measure of theamount of 

information about 9 contained in Z, also referred to as "Fisher's 

information" statistic. 
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been shown that, when either the null hypothesis Hft or the alternative 

hypothesis H. is true, the sequential probability ratio test is a more 

efficient test (4). 

Table 1 shows, for different values of 6_, the expected sample size for 

the sequential t-test used in the previous example, as compared to that for 

a test with a fixed sample size (these expected sample size values can be 

computed by the PEST program). 

Table 1. Expected number of case-control sets N in a sequential test for a 
standardized exposure difference 9, when in reality 6=0, 9=9_, or 9=0.759... 
Test without matching; <x=0.05, l-ß=0.80. 

one control 
per case 
(k=l) 

five controls 
per case 
(k=5) 

9R 

0.15 
0.25 
0.35 

0.15 
0.25 
0.35 

6=0 

255 
92 
47 

153 
55 
28 

sequential 

e=eR 

361 
130 
67 

216 
78 
40 

test 

9=0.756R 

414 
149 
76 

249 
90 
46 

fixed sample 
test 

550 
198 
101 

330 
119 
61 

It can be seen from this table that, for a sequential t-test with the given 

specifications (one-sided a=0.05, and l-ß=0.80), the expected sample size 

under HQ is approximately 0.46 times the fixed sample size at all values of 

e„. The expected sample size under H. is approximately 0.66 times the fixed 

sample size. For the open sequential test procedure described here, the 

expected sample size of the sequential t-test reaches its maximum in 

situations where the true 9-value is approximately equal to 0.75 9_, but 

even then remains below the sample size for a classical, fixed sample test 

of equal reliability. 
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Choice of the alternative hypothesis 

In sequential test procedures, an explicit definition of the alternative 

hypothesis H. is required, specifying the minimum standardized exposure 

difference 9R high enough to be detected with a given statistical power. 

Specification of the alternative hypothesis, in addition to the null 

hypothesis H«, results in a rule which defines at which stage there is 

sufficient evidence for not rejecting Hn or for rejecting H« in favor of H.. 

If there were no such a rule for stopping a sequential test procedure 

without rejection of H», the sampling of cases and controls could continue 

infinitely in those situations where no difference in exposure between cases 

and controls exists, without ever reaching a conclusion. 

The probability that, at a given stage in the sequential testing process, 

sufficient evidence will have accumulated on whether or not to reject the 

null hypothesis, H«, depends on the specific alternative hypothesis against 

which H0 is tested. For example, imagine a situation in which, at a given 

number of observations, there appears to be little difference between the 

mean exposures of cases and of controls. In such situations, the log-

likelihood ratio 1 would tend to be small if the alternative hypothesis 

were defined by a relatively extreme 9„-value, and H. would appear less 

likely to be true than H0 given the case and control observations. At a 

small value of 9_ specified, however, the same set of case- and control-

observations would have led to a higher log-likelihood ratio. The 

probability of concluding the test procedure with no rejection of the null 

hypothesis would therefore be higher in the first case (high value of 9_) 

than in the second (small value of 9_). Of course, this phenomenon is not 

specific for sequential tests in particular, but occurs also in statistical 

procedures based on a fixed sample size. The example does underline, 

however, that the choice of the alternative hypothesis (i.e., the value for 

9R) should be well motivated, in terms of potential public health impact or 

strength of the biological relation to disease. 

For the sequential t-test discussed here, 9_ is specified as a 

standardized difference between the mean exposures of cases and of controls. 

For epidemiologists, who are more familiar with the definition of study 

hypotheses in terms of measuring disease risk, this specification of the 

alternative hypothesis may be difficult to interpret. However, if the 

disease incidence is low over the entire range of exposures (i.e., the "rare 
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disease" assumption), and assuming that the alternative hypothesis is true, 

it is possible to compute a minimum expected odds ratio value, 0R_, for 

different quantile levels of the distribution of exposure measurements 

within the cohort (from which cases and controls were drawn). For instance, 

the expected odds ratio for the highest versus the lowest quintile of the 

exposure distribution equals: 

01̂ (05-0.1) = e 2-80eR (see Appendix II.A). 

Thus, for an alternative hypothesis defined as 8>0.25, the minimum expected 

odds ratio of disease for the highest versus the lowest quintile of exposure 

measurements approximately equals 2.0. An extended list of expected odds 

ratio estimates, for different values of 6R, is given in Table 2. 

Table 2. Expected odds ratio, 0R_[Q5-Q1], for the highest versus the lowest 
quintile of the exposure distribution in the cohort, under the alternative 
hypothesis 0=6R. Study without matching. 

0RR[Q5-Q1] 

0.15 
0.20 
0.25 
0.30 
0.35 
0.40 

1.5 
1.8 
2 .0 
2 .3 
2.7 
3 .1 

Analysis of matched studies: the pairwise sequential t-test 

The sequential test procedure described so far did not take account of any 

potential confounding factors. In many situations, however, it may be 

necessary to adjust for potential confounding factors such as age, duration 

of follow up, or additional risk factors such as body weight and menopausal 

status. Using the sequential procedure described here, adjustments for 

confounding can be made by matching cases and controls for such additional 

risk factors. In case-control studies nested within a cohort this may not be 

too complicated, since there will be a vast pool of disease-free subjects in 

which to find matched controls (unless there are many matching criteria). 

Whenever a matched study design is used, however, the matching should be 
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reflected in the analysis in order to obtain unbiased results. 

A matched sequential t-test can be based on the pairwise differences 

between the exposure measurement of a case, and the exposure measurement of 

each of k controls belonging to the same matched subset. We shall assume 

that these differences, D. . (where j=l, ,k indicates the j-th control 

subject in the i-th case-control set; i=l,...,n), will be normally 

distributed: 

D = N(6,T2), 
2 where & is the mean, and x the variance of the differences D... As in the 

unmatched situation, the hypotheses H. and H. can then be defined in terms 

of a standardized difference 6 : 

HQ : e = 6/T = 0, 

and, for the one-sided alternative of a higher exposure for cases than for 

controls, 

H X : e = 6/T > eR
 (1). 

The computation of the statistics Z and V is slightly different from that 

for the unmatched situation (see Appendix I.B). However, the formulae for 

the critical boundaries of the test, A and B , remain the same (since these 

depend only on the values chosen for a, ß, and 8 R ). Also, with respect to a 

fixed-sample test, efficiency gains will be made similar to those in the 

unmatched situation, in terms of a decrease in the expected sample size. 

Again, with some additional assumptions it is possible to compute 

expected odds ratio values under the alternative hypothesis, 6=9R> for 

quantile levels of the within-stratum exposure distribution (strata being 

defined by the matching variables). As before, it will be assumed that for 
2 

cases and controls the exposure measurements have an equal variance, o , and 

that the overall incidence of disease is low. In addition, it will be 

assumed that, after matching, exposure measurements are equally correlated 

between controls or between cases and controls. The variance of the exposure 

differences D., between a case and k matched controls, can then be written 

as: 
2 2 2 

T = 2 (</-Y) = 2 o'Z , 

where y is the covariance between the exposure measurements of cases and 
2 

controls (due to the matching), and o' is the average variance of exposure 

v ' Note: If the exposure is expected to be higher for controls, the 
alternative hypothesis may be defined as H, : 6=6/x < - 8R. A two-sided 
alternative may be specified as H1 : |e| > €T. 
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among controls (and thus, approximately, in the full cohort) within strata 

defined by the matching variables. The expected odds ratio for the within-

stratum difference between the upper and the lower quintiles of the exposure 

distribution will be approximately equal to: 

0RR(Q5-Q1) = e 2'8 0 ̂  6 R , 

with 9_=6/T (see Appendix II.B). In Table 3, some expected odds ratio values 

are given for different values of 6 
R" 

Table 3. Expected odds ratios, 0R_[Q5-Q1], for the highest versus the 
lowest quintile of the exposure distribution of the cohort within strata of 
the matching variables, under the alternative hypothesis that 6=8_ (l:k 
matching). 

9R 

0.15 
0.20 
0.25 
0.30 
0.35 
0.40 

0RR[Q5-Q1] 

k=l 

1.8 
2.2 
2.7 
3 .3 
4.0 
4.9 

k=2 

1.7 
2.0 
2 .4 
2.8 
3 .3 
3.9 

k=3 

1.6 
1.9 
2.2 
2.6 
3 .1 
3 .6 

k=4 

1.6 
1.9 
2.2 
2.6 
3 .0 
3.5 

k=5 

1.6 
1.8 
2.2 
2.5 
2.9 
3 .4 

Discussion 

We have shown how a sequential t-test can be applied in case-control studies 

where the exposure measurement is a continuous variable. The use of the 

sequential probability ratio method in epidemiologic studies has been 

suggested before by O'Neill and Anello (14), who described a sequential test 

for analysing (matched pair) case-control studies, with a dichotomous 

exposure variable. So far, however, this has not been put into practice 

widely. An explanation may be that the advantage of a smaller expected 

sample size does not outweigh certain drawbacks in the use of an SPRT 

procedure, particularly in studies where (dichotomous) exposure assessments 

are based on information derived from questionnaires. One such drawback may 

have been the fact that epidemiologists are not familiar enough with 

sequential statistical methods and, until recently, no simple computer 

software for sequential analysis was widely available. Another drawback may 
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be that the sequential probability ratio procedure does not allow flexible, 

multivariate data modelling for the control of varying sets of confounding 

factors. In spite of these various drawbacks, however, a strong argument in 

favor of the use of sequential methods is the desire to make optimal use of 

material from biological banks, reducing the number of biological samples 

needed to test a given hypothesis. 

In a sequential design, the number of case-control sets that will be 

sampled before a conclusion is reached is a random variable, the mean of 

which is smaller than the size of an equivalent fixed-sample test (as 

illustrated in Table 1). Occasionally, however, larger numbers of case-

control sets may be needed for the test to come to a conclusion. This may 

introduce some uncertainty to the process of setting a budget for grant 

requests. However, budgets can be reasonably planned on the basis of the 

90th percentiles, rather than the means, of the possible sample size 

distributions (assuming 6=0, 6=6R, or 8=0.759_). The PEST programme contains 

a sub-routine for the computation of these percentiles, at the planning 

stage of a study. Further details about these computations can be found in 

Whitehead's textbook on sequential medical trials (8). 

The sequential t-tests described in this paper can be useful especially 

in exploratory studies, to decide, at the expense of as little biological 

material as possible, whether a new hypothesis seems worth further 

investigation, or whether it is more likely that it would eventually be 

proven unfruitful. It is generally agreed, however, that the use of 

hypothesis testing is an unsatisfactory way of assessing and presenting 

epidemiological findings, and that results should rather be presented as 

estimates of relevant measures of exposure-disease association, and their 

confidence intervals (15,16). Therefore, after terminating the sequential 

test, and irrespective of whether the null hypothesis is rejected or not, a 

presentation of final results should always include such point and interval 

estimates, describing the association between the marker values and disease 

risk (for instance, in terms of relative risks for different quantiles of 

the marker assessments). Since, on average, a sequential test will terminate 

at a smaller sample size than an equivalent fixed-sample procedure, 

estimates of epidemiological effect measures may be relatively imprecise. 

Once a given hypothesis has been proven of interest, however, (i.e., in case 

of rejection of the null hypothesis of "no difference" in exposure), the 
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investigator may decide to extend the number of laboratory assessments, so 

as to increase the precision of the study. The number of additional 

assessments needed to reach sufficient precision can then be determined from 

the standard error of effect estimates at the end of the sequential test, 

similarly as in a double sampling design (17). 

The combination of sequential testing and subsequent estimation of 

epidemiologic effect measures - with or without further extension of the 

study - can be seen as a two-step estimation procedure, which will tend to 

result in effect estimates with a desired precision if there is a clear 

difference in exposure, or in less precise estimates if no exposure 

difference of interest exists. In the latter case, on average more 

biological samples will be saved for the investigation of other hypotheses. 

O'Neill and Anello (14) have described how, for a dichotomous exposure 

variable and for matched case-control pairs, the critical values of a 

sequential test can be interpreted in terms of odds ratio values. He have 

shown that, under the rare disease assumption, and for a matched or an 

unmatched case-control design, similar interpretations can be given to the 

critical 6_-value of a sequential t-test for comparison of cases and 

controls by a continuous exposure variable. However, due care must be taken 

to avoid mis-interpretation. The sequential procedures described in this 

paper essentially provide a test for a difference between the mean exposures 

of cases and of controls, and are not a substitute for a test of statistical 

significance for odds ratios at different quantile levels of exposure. It is 

possible to compute expected odds ratio values for different quantile 

categories of exposure, such as quartiles or quintiles, under the assumption 

that the alternative hypothesis 9=6R is true (i.e., that a certain 

standardized difference in mean exposure actually exists). The relation 

between a 6R-value chosen and expected odds ratio values for different 

quantile levels of exposure is of interest only as far as it may help define 

a reasonable 6R-value for the alternative hypothesis. Within this context, 

the choice of quintile levels of exposure was of course quite arbitrary; 

computation of expected odds ratio values for tertiles or quartiles could be 

equally informative. 

The exact value which should be chosen as a reference odds ratio value 

0R_ (as defined for instance for quintiles) may depend on the specific 

hypothesis to be tested, as well as on the potential relevance of the 
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exposure in terms of attributable risk (i.e., also taking into acount the 

prevalence of exposure within a population). O'Neill and Anello recommend 

specifying that the alternative hypothesis should correspond to an odds 

ratio not greater than about 2.0 for exposed versus non-exposed subjects 

(the exposure in their paper being defined as a dichotomous variable). Ve 

agree that the value of 8R should always correspond to relatively small 

expected odds ratio values, so that a failure to reject the null hypothesis 

can be interpreted as the absence of any relevant association between 

exposure and disease risk. Of course it should also be kept in mind that, 

due to intra-individual variation over time, many biochemical markers will 

provide only an approximate estimate of the true risk factor of interest, 

and that the observed association with disease risk (also in terms of a 

standardized difference between mean exposures) may therefore be attenuated. 

In this paper, it was assumed that the sequential testing process 

proceeds in steps corresponding to case-control sets consisting of only one 

case and its k controls. It will often be more practical, however, to run 

laboratory analyses in batches of more than only one case-control set at a 

time. It is possible to perform the sequential probability ratio test on 

case-control sets each comprising multiple cases. The only disadvantage of 

such larger inspection intervals is that there can be some "over-running" of 

the critical boundary, by the sample path of Z plotted against V. The number 

of observations may thus exceed the number that was actually required to 

reach a conclusion, and part of the advantage of sequential methods, in 

terms of a reduction in expected sample size, will be lost. However, this 

loss of efficiency resulting from over-running can be limited by including 

only a relatively small number of cases in each group of observations. 

We have discussed only so-called "open" or "non-truncated" procedures, in 

which no upper limit has been set to the number of observations needed 

before a conclusion is reached. Therefore, although sequential procedures 

will on average require fewer case-control comparisons than equivalent tests 

based on a fixed sample size, there may be occasions on which the sequential 

procedure terminates after a much larger number of observations than would 

have been required for a classical, fixed sample test. In "closed", or 

"truncated" sequential procedures, an upper limit is fixed for the actual 

number of observations that may be needed in order to reach a conclusion. 
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For instance, it may be decided that the null hypothesis will not be 

rejected if the number of case-control comparisons becomes larger than twice 

the normal sample size for a fixed sample test without reaching the critical 

boundaries, A or B . Such an additional stopping rule will then affect a 

and ß to some extent. If the maximum number of observations chosen is 

sufficiently large, however, the effects on these error probabilities will 

be relatively small. Whitehead's computer programme "PEST" (13) provides an 

option for the analysis of sequential studies with a truncated design. More 

extensive discussions of truncated sequential procedures are given in his 

textbook on sequential clinical trials (8), as well as by Wetherill and 

Glazebrook (5), and Armitage (7). 

Aliquots of biological specimens such as blood serum cannot be thawed and 

refrozen too frequently without potentially causing changes in the 

biochemical parameters of interest. However, the volume of aliquots may 

often be sufficiently large to allow more than one type of biochemical 

analysis within the same laboratory. It would thus be possible to study 

several etiological hypotheses in parallel, based on different biochemical 

markers measured in the same aliquot. The simple sequential tests described 

in this paper are based on the concept of studying only one type of exposure 

measurement in relation to a single type of disease. Further development of 

sequential statistical methods is needed, so that such multiple, parallel 

hypotheses can be evaluated simultaneously with minimal loss of biological 

material. 
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Appendix I. Computation of the statistics Z and V, and formulae for critical 

boundaries A and B . 

I.A Analysis without matching: After the n-th case-control subset, the 

following sample statistics will be available: 

Cases Controls All 

Number of observations n nk n(k+l) 

Sum of observed exposures S. Sn S 

Sum of squares Q. Qn Q 

The statistics Z and V are computed from the cumulative sums, S. and S«, and 

cumulative sums of squares, Q. and Q«, of the exposure measurements of cases 

and controls, respectively (see Whitehead (7) pp. 57-62). The efficient 

score statistic Z is computed as: 
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z = • 

where 

c2 = 

n k S. - n S» 

n (k+1) C 

Q 

n(k+l) 

• 

n(k+l) 

2 2 

It is to be noted that C is a maximum likelihood estimate of o , under the 

null hypothesis 6=0. Thus, Z is equivalent to the cumulative difference 

between the exposure measurements of cases and of controls, divided by a 

maximum likelihood estimate of the standard deviation o. Fisher's 

information statistic V is computed as: 

n nk Z2 

n (k+1) 2 n(k+l) 

Coefficients for critical boundaries A and B are computed as: 

In 
1-ß 

l ß 
a = 

( i i 1-a 
+ In 

and 

2 6„ 

In 
f 1-ß 1 

l ß 

1-a 
+ In 

( 1 A 1-a 
In 

For a=0.05, ß=0.2 and 9R=0.25 this leads to a=8.661 and b=0.17. 

( A continuity correction is calculated as ± 0.583 •/(V. - V. . ) , 

independently of values of a, ß, and 8_; in this paper continuity 

corrections were of negligible magnitude, and have been ignored for the sake 

of simplicity. ) 
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I.B Matched analysis: The following sample statistics can be computed after 

each new case-control subset : 

Number of case-control sets n 

Sum of exposure differences D. S 
2 

Sum of squared differences D. Q 

The efficient score statistic Z is computed as : 

S 
Z = 

C 

where 

Q 

n 
C2 

2 
Again, C corresponds with a maximum likelihood estimate of the variance of 

the exposure differences D., under the null hypothesis (6=0). Fisher's 

information statistic is computed as : 

Z2 

2n 

(See whitehead (8), pp. 67-68.) 

Appendix II. Relation between 6_ and the expected odds ratio for the upper 

versus the lower quintile of exposure. 

II.A Analysis without matching: Suppose that, both among cases and among 

controls, exposure measurements M have normal distributions with different 

means but with an equal variance: 

M|case = N(p.,o ), and 

M|control = N(u0,o ). 

If the probability density functions of both exposure distributions are 

given by <fr,(M) = Pr(M|case) and <t>0(M) = Pr(M | control), respectively, then, 

for a given difference in exposure, A=m.-m0, the odds ratio of disease can 
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be written as : 

0 R ( A ) _ •1C1)/»0C1) _ ^ - ^ ( . ^ / o 2 __ e8A/a _ 

< * > it n , o ) / *o ( m o ) 

Here, the standard deviation o is unknown. If the disease incidence in the 

cohort is low, however, the distribution of exposure measurements of the 

controls will be approximately identical to the exposure distribution in the 

entire cohort. Then, for subjects belonging to different quantile categories 

of this distribution, the expected difference in exposure A can be expressed 

as a number of unknown standard deviations o. The expected exposure 

measurement above a given cutpoint value L can be computed as the mean of a 

truncated normal distribution: 

E(M|M>L) = u0 + a 
•I(L-u0)/o] 

1 - *[(L-u0)/o] J 

where <(>[u] is the probability density function, and $[u] is the cumulative 

distribution function of the standard normal distribution at the point u. If 

L is chosen to be the cutpoint for the highest quintile of exposure, we find 

from the normal distribution table that (L-uft)/o = 0.84. The average 

exposure in the highest quintile is thus expected to be equal to: 

E(M|M>L) = u + o 
<H0.84] 

0.80 
H0 + 1.40 a. 

Likewise, the average exposure in the lowest quintile is expected to be 

equal to E(M|M<-L) = uQ - 1.40 o. Thus, the difference between the average 

exposures in the highest and lowest quintiles will be equal to A = 2.80a. 

The expected odds ratio for the highest versus the lowest quintile of 

exposure can now be written as a function of 6: 

OBjIQS-Ql] = e 6 A / o = e2"809. 

Inversely, this function can be used to compute the value for 8_ that 

corresponds with a minimal expected odds ratio, 0R„[Q5-Q1] for the upper 

versus the lower quintile of exposure. For instance, an expected odds ratio 

of 2.00 corresponds with a standardized difference between the mean 

exposures of cases and controls equal to 6„ = ln(2.00)/2.80 = 0.25. 
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II.B Matched analysis 

Suppose that, in a matched pairs study, D. is the difference between the 

exposure measurement for the i-th case and its matched control, and let the 
2 

distribution of such differences be given by D. = N(&,T, ). Then, as was 

previously derived by Rosner & Hennekens (18), the odds ratio for a 

difference D.=A can be computed as : 

e-fc(A-6)2/tJ 
0R(A) = Pr(D.=A)/Pr(D.=-A) = = e29l A / tl , 

1 2 2 
e-*(-A-8)VTf 

with 61=6/T1. 

Assume, moreover, that for unmatched cases and controls the exposure 

distributions have an equal variance, and that, after matching, the exposure 

measurements are equally correlated between controls (if more than one 

control is matched per case), or between cases and controls. The variance of 

the exposure differences, D., between a case and a single matched control 

will then be equal to 
2 

ll 
where y is the covariance between the exposures of cases and of controls 

2 2 
(due to the matching). In this case, o' = o -y can be interpreted as the 

average variance of exposure measurements among controls (and thus, 

approximately, in the full cohort) within strata defined by the matching 

variables. The expected difference between the top and bottom quintiles of 

the within-stratum exposure distribution can then be written as 

A = 2.80 o' = 2.80 
^2 

The odds ratio corresponding with this difference in exposure equals 

0RR(Q5-Q1) = e26lA/Tl = e2'80 V 2 61 

with 

e1=6/t1. 

If k>l controls are matched per case, the variance of the exposure 

differences D. becomes smaller: 

xk
2 = (k+l)/k o'2 , 
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and we can write 

9X = 6/x1 = 7((k+l)/2k) 6/tk = \/((k+l)/2k) ek. 

Thus, with k controls per case, 

OHRCQS-Q!) - e2"8 0 ̂  ei = e2'8 0 « W * ) ek. 
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Prospective cohort studies provide an ideal epidemiological approach to 

investigating the relation between dietary intake patterns, indicators of 

nutritional status, and the risk of developing chronic diseases such as 

cancer. To obtain sufficient numbers of cases with a specific form of 

disease, however, such studies must be very large (1-3), and thus require 

important investment for the collection of exposure assessments (the costs 

of follow up and statistical data analysis are much lower when passive 

follow-up is possible through routinely collected data). It is therefore 

fundamental to use an efficient study design, to optimize the amount of 

information obtained for a given investment of time and resources. Three 

main arguments can be identified, around which the efficiency aspects 

discussed in this thesis can be grouped: 

1) approaches to maximize the amount of variation in true exposure level 

that is actually distinguished - or "predicted" - by exposure 

measurements collected at baseline; this is a way to increase the power 

of a cohort study (to test for the presence of diet-disease 

associations) while keeping its size constant; 

2) approaches for the precise estimation of the distribution of predicted 

exposure levels; this is essential for accurate estimation of 

statistical power or sample size requirements for the cohort, as well 

as for the adjustement for biases in estimates of the (log) relative 

risk; and 

3) the optimal balance between, on the one hand, a minimum study size to 

allow a minimum power for a statistical test on whether there is an 

association between exposure and disease risk, and, on the other hand, 

the number of different exposures measured. 

Chapters 2 to 5 of this thesis are mainly related to the first two 

arguments, and discuss efficiency aspects related to the assessment of the 

habitual, long-term dietary intake levels of individual participants in a 

prospective cohort study. Chapter 6 is more related to the third argument, 

addressing the aspect of optimizing the number of relevant etiological 

hypotheses that can be evaluated when exposure assessments are based on 

biochemical markers measured in urine, blood, or (other) tissue specimen. 
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I. The assessment of dietary intake levels 

Maximizing the variation in predicted dietary intake level 

Two possible approaches have been discussed to maximize the amount of 

variation in true dietary exposure level predicted by the dietary 

questionnaire assessments collected at baseline. 

First, one may select a dietary questionnaire method by which individuals 

can be ranked as precisely as possible by their true, habitual intake 

levels. This selection can be based on a validity study, conducted even 

before the cohort study is started, in which the correlation between 

questionnaire measurements and true intake level is estimated. In Chapter 2 

it is concluded that this estimation requires a comparison of questionnaire 

assessments with at least two additional intake measurements, based on 

repeat food intake records, or on an intake record plus a biochemical 

marker. A crucial assumption is that the three measurements should have 

mutually independent random errors. As discussed in Chapter 3, it will often 

be difficult to conduct a validity study within a truly representative sub­

group of the (planned) main study population. This may not be a major 

problem, however, as long as the validity study is used only to develop or 

select an optimal dietary questionnaire instrument, assuming that the 

selected method will also be the optimal one for use in the main study 

cohort. 

A second method to increase the amount of predicted variation is to 

broaden the range of true dietary intake levels covered, by combining the 

data from multiple cohort studies conducted in populations with 

heterogeneous life styles and dietary habits. The analysis of such multi-

cohort studies entails some specific problems, however. Stratifying the 

analysis by the factor "cohort" would restrict comparisons of dietary intake 

levels and disease outcome to those between subjects belonging to the same, 

restricted study population. Stratification would therefore defeat the main 

purpose of multi-cohort studies, which is to increase power by augmenting 

the range of dietary exposure levels. An alternative, "naive" approach would 

be to treat the data of all the cohorts combined as if they had been 

collected within a single study population, and to perform an analysis 

without stratification by cohort. This alternative approach would ignore, 

however, whether there is sufficient concordance between the cohort-specific 
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relative risk estimates for these to be combined into a single summary 

estimate. Likewise, no evaluation would be made of the presence of any 

confounding by "cohort", as a potential source of "ecological bias" (4). In 

Chapter 4 it is shown that the overall relative risk estimate obtained in a 

pooled, unstratified analysis is approximately equivalent to a weighted 

average of several component estimates based on 

a) within-cohort variations in exposure level and disease risk of 

individuals, and 

b) the between-cohort variation in the exposure and disease risk as 

measured at an aggregate level. 

Only if there is sufficient concordance between the various component 

estimates is it valid to compute an overall, combined summary estimate of 

relative risk. 

Estimating the predicted amount of variation in true intake level 

Having taken all possible measures to maximize the amount of variation in 

true intake level predicted by questionnaire assessments collected at 

baseline (to optimize the power of tests for a diet-disease association), 

additional reference measurements are needed, at least in a representative 

sub-group to estimate the magnitude of this predicted variation. An 

important conclusion reached in this thesis is that, for a fixed total 

number of daily intake records taken as reference measurements in a 

calibration sub-study, the variance of predicted intake levels will be 

estimated most precisely when a calibration sub-study includes a maximum 

number of participants with only a single record each. A major additional 

advantage of this calibration study design is that it allows such sub-

studies to be conducted more easily on a truly representative sample of 

cohort participants. In contrast to preliminary validity studies for the 

development and selection of a dietary questionnaire instrument, the 

representativeness of calibration studies is strictly required for the valid 

evaluation of study power or biases in relative risk estimates. 

In multi-cohort studies, the calibration approach can be used to adjust 

for heterogeneity in cohort-specific relative risk estimates resulting from 

divergent biases due to dietary assessment errors. If the calibration is 

perfect, this will improve the precision of a pooled summary estimate, by a 

more optimal weighting of cohort-specific estimates (the weights being 
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inversely proportional to the variances of the predicted intake 

distributions, rather than to the variances of baseline dietary intake 

assessments). On the other hand, calibration increases the width of 

confidence intervals of relative risks as estimated within cohorts 

separately, due to imprecision in the estimation of the calibration factor. 

No quantitative evaluation has been made of the potential gains in power 

by a more optimal weighting of cohort-specific evidence, against the losses 

in power that will be incurred within each cohort separately. The outcome of 

such evaluation will, among other things, depend on what we would assume to 

be the sources of heterogeneity between log relative estimates obtained in 

different cohorts (5,6). Assuming that true relative risks are the same in 

cohorts, the most precise summary estimate of (log) relative risk is 

obtained by weighting each cohort-specific estimate by the inverse of its 

variance, as described in Chapter 4. This approach is based on a so-called 

"fixed effect model" (6). When there is important heterogeneity between the 

estimates, however, even after calibration adjustments, it may be difficult 

to justify a single summary estimate for all cohorts combined. In this case 

it may be preferable to use a "random effects" model, in which both a 

between-cohort (extra-logistic, or extra-Poisson) variance and the within-

cohort variances of (log) relative risk estimates are accounted for in 

deriving the weighting of the cohort-specific estimates (7,8). This aspect 

may require further research. 

The pragmatic approach chosen in Chapter 5 for the computation of sample 

size requirements for calibration studies, is that the relative efficiency 

of calibration within cohorts should be high when the observed associations 

between questionnaire assessments and disease risk are relatively weak (such 

as for fat intake and breast cancer), because it is especially in this 

situation that even a modest increase in statistical power may be of 

interest. On the other hand, the relative efficiency may be lower in 

situations where the association is more significant even within a single 

cohort. This motivated the use of two alternative criteria to compute sample 

size requirements for dietary calibration studies: 

a. the relative efficiency of the calibration study (which defines to what 

extent the precision of the adjusted estimate of log-relative risk (6) 

is limited by random error in the estimation of the calibration 

factor), or 

b. the ratio of the expected, calibrated 6-estimate divided by its 
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Standard error (i.e., the expected t-value to test whether the 

calibrated 8-estimate differs from zero). 

Using these criteria, the calculation of sample size requirements needs only 

one assumption, about the minimum level of correlation between questionnaire 

and reference measurements. The expected t-value is above all a criterion of 

statistical power more than of precision. The use of a fixed value of the 

expected t-value as a criterion for minimum precision of the estimated log 

relative risk implies that one accepts a larger margin of error when the 

estimate itself is larger. Preferably, precision should be defined by the 

absolute width of the confidence interval, and for estimates of the relative 

risk itself rather than for its logarithm. However, this definition would 

result in much more complicated calculations of sample size requirements, 

based on the separate specifications of an increased number of key 

parameters, such as the strength of the association between true dietary 

intake levels and disease risk, and of the expected number of cases. 

Stratified sampling of calibration studies, and definition of "cohorts" 

When planning the sampling scheme for a calibration sub-study, nested within 

a prospective study cohort, it must be anticipated that, during the analysis 

of the cohort study, statistical adjustments will be made for potential 

confounding factors such as age and sex. This has two implications for the 

design of calibration studies. First, the variance of a given exposure 

variable of interest will on average be smaller within confounder strata 

than in the non-stratified cohort. Consequently, the correlation between 

questionnaire and reference measurements adjusted for the confounding effect 

will tend to be weaker (9). To account for this effect, the estimation of 

sample size requirements for calibration studies should be based on the 

partial correlation between questionnaire assessments and reference 

measurements, adjusted for age and sex, and possibly also for other 

potential confounding factors. Second, the variation in true intake levels 

can vary across strata of main confounding factors such as age or sex or 

demographic sub-groups (10), whereas the magnitude of random errors may also 

show some variation. Thus, true intake differences may not be predicted in a 

uniform manner by questionnaire assessments, and, between strata, there may 

be different amounts of bias in relative risk estimates in the same way as 

this may happen between "cohorts" (which in fact can also be considered as 

strata, in a multi-cohort study). Perfect calibration can therefore also 
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result in an improved weighting of log relative risk estimates across strata 

defined by age, sex, or other potential confounding factors, the relative 

weights being proportional to the predicted intake variance in each stratum. 

In an optimally designed calibration study, the relative efficiency of 

calibration (as defined by the ratio D/D in Chapter 5) should be of equal 

magnitude across confounder strata. Assuming that the true log relative risk 

does not vary between strata, the relative efficiency will be constant if 

the numbers of subjects sampled for the calibration study are a fixed 

multiple of the expected numbers of cases (Chapter 5, equation 4). This 

underlines that, ideally, sample size requirements for calibration studies 

should be based on a relative efficiency criterion alone. The use of a high 

relative efficiency as the only criterion may however lead to excessively 

high sample size requirements in situations where there is a relatively 

strong association between baseline questionnaire assessments of intake 

level and disease risk (i.e., unadjusted relative risk estimates are 

relatively high), or where the number of cases is large. It was therefore 

proposed that, at the level of "cohorts", the sample size requirements for 

calibration studies would be truncated to a maximum level, using the 

expected t-value for the calibrated log relative risk estimate as an 

alternative criterion. This raises the question: At which sub-group level 

the truncation rule should be applied; that is, at what level do we wish to 

consider certain sub-groups to be separate "cohorts"? A guiding principle is 

that the true relation between diet and disease risk within cohorts is 

expected to be relatively homogeneous across strata of other potential 

confounding factors, whereas between cohorts this assumption remains to be 

verified. On the other hand, there are also practical considerations, such 

as the financial resources available. For the EPIC project, it was decided 

to define cohorts by country. One of the objectives of this project is to 

evaluate the consistency of relative risk estimates between countries, as 

life-style and dietary intake patterns vary considerably in different 

countries. An additional, more pragmatic consideration was that cohorts 

should be relatively independent within each country, and reach a sufficient 

level of power and precision at a national level. It was thus estimated that 

within each participating country in the EPIC project, the calibration 

sample will include about 4000 subjects (assuming a minimum correlation of 

0.2 between questionnaire and reference measurements, this corresponds to a 
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relative efficiency of calibration of at least 0.90 or, alternatively, an 

expected t-value for the calibrated log relative risk greater than 4.0). 

Financial resources would have been insufficient, however, to conduct 

calibration studies of this size (i.e., including up to 4000 individuals) at 

a smaller sub-group level defined for example by regional study centre, 

ethnic group, or sex. 

Further aspects related to validation and calibration, and topics for 

future research 

Relative risks, and attributable fractions 

A condition for using the calibration approach is that relative risks must 

be estimated for scaled quantitative intake differences, rather than for 

quantiles of the measured intake distribution. In the discussion of Chapter 

3, several arguments are given as to why the first type of relative risk 

estimate should be preferred to that for quantiles. Nevertheless, an 

attractive aspect of relative risk estimates for quantiles is that these can 

be easily interpreted in terms of attributable fractions (11) if the 

quantile cutpoints are determined for the full cohort population (or for the 

control population in a nested case-control study). This may also explain 

why, in nutritional epidemiology, it has become customary to estimate 

relative risks for quantile categories. 

For unbiased estimation of the attributable fraction from relative risks 

defined for quantile levels, the relative risk estimates should be adjusted 

for attenuation bias, which, for this form of relative risk estimate, 

requires an estimate of the correlation between questionnaire assessments 

and true intake values (12,13). This remains a valid reason for conducting a 

dietary validity study within a cohort, based on at least two reference 

measurements per person (e.g., daily intake records), or combining one 

reference measurement with a biochemical marker, as described in Chapter 2. 

In this context, it may be of interest to note that a validity study is also 

needed for the unbiased estimation of the attributable fraction for subjects 

with true intake levels above or below a given absolute cutpoint value T». 

Under the model assumptions of Chapters 3 to 5 - i.e., an exponential risk 

model, and a normally distributed intake variable - the attributable 

fraction F can be computed as (14) 

F=l-exp[9(T0-uT- % 9o£)] . 
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A calibration study allows an unbiased estimation of only two of the three 

unknown parameters in this equation: the log relative risk 9, and the mean 

true intake value uT. A validity study will be required, however, to 
2 estimate the variance of the true intake distribution o_, which, together 

with the mean intake value u-, defines the proportions of individuals with 

true intake levels above or below the cutpoint value T... 

Multivariate validation and calibration 

"Validation" is usually defined as the evaluation of whether a given method 

actually measures what it purports to measure (15,16). In practice, one of 

the objectives of conducting a dietary validity study is to estimate the 

amounts of "noise" and "signal" in measured intake levels of foods or 

nutrients; that is, to separate variation due to error, from variation due 

to true between-subject intake differences. Throughout this thesis, 

validation has been considered only in terms of a univariate measurement 

error model, considering the intake level of only one food or nutrient. This 

univariate approach does not address the question whether the "signal" 

represents differences specifically in the type of intake variable that one 

purports to measure. For example, there can be high correlations between 

intake measurements of animal protein and saturated fat, or between vitamin 

C and beta-carotene, even when the two variables are measured by different 

methods. Partly, this correlation may be explained by the fact that, 

depending on body size and physical activity, some individuals consume more 

food than others, and that generally the intake levels of most nutrients are 

positively correlated with total energy intake (17). An additional 

explanation is that specific nutrients tend to be found in similar types of 

food. For example, fruits and vegetables are by far the main sources of 

vitamin C and beta-carotene, while meat or dairy products provide only 

negligible amounts of these compounds. More research is needed on the use of 

validity studies to estimate how much variation exists in the true intake 

level of one nutrient independently from that of another, using a multi­

variate measurement error model similar to that in Chapter 2, but with 

intake levels of different nutrients represented by multiple (correlated) 

latent variables. 

The presence of multiple correlations between the many different chemical 

constituents of foods also form a problem for the calibration approach. For 

example, questionnaire assessments of animal protein intake will not only 
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predict true intake differences for animal protein itself, as a main factor 

of interest, but also for saturated fat or other constituents that may be 

particularly abundant in meat, eggs, or dairy products. To account for the 

multivariate correlations between the intakes of different nutrients as 

potential predictors of disease risk, these variables can be treated as 

mutually confounding factors, by including them simultaneously in a relative 

risk estimating model. A complication, however, is that each intake variable 

will be measured with substantial amounts of random error. When errors are 

independent, inclusion of one variable as a potential confounder of the 

effect of another will result in only a partial adjustment, leaving residual 

confounding (9,18-20). The situation becomes even more complex when one 

considers that errors in questionnaire assessments are likely to be 

correlated for nutrients that tend to be present in the same types of food 

(19-21). As a possible solution to this problem, Rosner et al. (22) have 

extended the linear approximation approach to the situation with multiple, 

correlated exposure factors each measured with error. This multi-variate 

calibration approach estimates the variation in the intake levels of 

multiple nutrients (measured by a reference method) as predicted by a 

similar number of baseline questionnaire assessments, and provides valid, 

mutually adjusted relative risk estimates. The major requirement remains 

that, for each nutrient, errors in the reference measurents must be 

independent of those of the baseline questionnaire assessments. More 

research is needed for the evaluation of sample size requirements for 

calibration studies with multiple covariates. 

Robust statistical methods for validation and calibration 

The approach for validation of dietary questionnaire assessments, as 

described in terms of structural equation models in Chapter 2, depends on 

the assumptions that the relations between different types of measurements 

are linear, and that distributions of the latent, true intake variable as 

well as of measured intake values are approximately normal. These have been 

the underlying assumptions for the analyses of most validity studies 

published so far, although this has not always been made very explicit. 

Similar assumptions are needed for the calibration approach described in 

Chapter 3. 

In practice, the assumptions of normal distributions and of measurements 

having homoscedastic random errors do not always appear to be valid. 



134 Chapter 7 

Distributions of nutrient intake assessments often show a negative skewness, 

reflecting a larger variance of random errors at the higher intake levels. 

In Chapter 2, transformations were used to improve the normality of the 

measured intake distributions. It is unclear, however, whether the 

assumption of linear relations between different types of intake 

measurement, or between intake levels and the logarithm of disease risk, can 

reasonably be made after such transformations. Future work should explore 

the use of more robust statistical methods for validation and calibration of 

dietary intake assessments, which depend less on assumptions of normality 

the intake distribution, and homoscedasticity of measurement errors. 

II. The use of sequential study designs 

An important approach to reducing the cost of a prospective cohort study is 

to bank "raw material" collected at baseline and to complete the exposure 

assessment when it is known which individuals have developed a specific form 

of disease, and who are suitable control subjects. This approach may in 

principle apply to all types of information obtained, whether collected by 

questionnaires or by means of biochemical markers. Coding and entry of 

questionnaire data into the computer may be too expensive to complete for 

all participants in a prospective cohort study. It may therefore be decided 

to complete coding and data entry only for cases with disease, as soon as 

these have been identified, and for a subset of disease-free subjects used 

as controls in a nested case-control, or case-cohort design (3). For similar 

reasons - in particular, the high cost of laboratory analyses - biological 

specimens such as blood or urine may be frozen and stored in a biological 

bank until it is known who has developed a specific form of disease and who 

are suitable control subjects. An additional reason for creating a 

biological bank, however, is that only a limited amount of biological 

specimens (e.g., blood, or urine) can be taken from each individual. To some 

extent, an analogous problem exists when using questionnaires for the 

collection of exposure information (about diet, as well as about many 

potential confounding factors), since including too many questions may 

reduce the quality of response, or may decrease rates of participation in 

the study. Nevertheless, an obvious difference between questionnaires and 

biological specimens is that a choice of questions to be included in a 

questionnaire must be made at the beginning of the study, whereas it can be 

decided later what types of biochemical markers will be assessed, once cases 
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and controls have been identified. Thus, the banking of biological material 

is used not only to reduce the costs of exposure assessment, restricting the 

assessments to cases and a subset of disease-free individuals, but also to 

postpone the decision on which hypothesis will be tested (and which 

corresponding markers of exposure will be assessed) depending on the type of 

disease outcome observed. 

In the case of a well established biological hypothesis, which has long 

been waiting for a more definite answer (e.g., free estrogens and breast 

cancer risk), a precise estimation of the association between the marker and 

disease risk is of interest not only when this association is clearly 

present, but also when, after careful evaluation, the association appears to 

be very weak or even absent. In the case of a more tentative hypothesis, 

however, related to a new type of marker, one will generally be more 

interested in such precise estimation when a clear association does exist, 

whereas in the absence of a clear association one would rather save the 

biological samples to search for stronger predictors of disease risk. The 

sequential t-test discussed in Chapter 6 presents a simple approach to 

deciding whether a new hypothesis is worth further investigation, while 

avoiding wasting too much biological material in testing a hypothesis which 

is not strongly supported by the emprical data at hand. 

The sequential probability ratio procedure presented in Chapter 6 has the 

advantage that on average it requires fewer observations to test for the 

presence of an association than a traditional, fixed sample test procedure, 

not only in situations where the null hypothesis is to be rejected, but also 

in situations where the null hypothesis is true. The latter is not true of 

all sequential procedures, however. For example, Pasternak and Shore (23) 

have proposed the use of repeat significance tests on the accumulating data 

in prospective studies, with adjustment of the nominal significance (i.e., 

a- ) levels for planned interim tests, to avoid an increase in the overall 

probability of falsely rejecting the null hypothesis (24). The appeal of 

Pasternack and Shore's sequential procedure is that it uses standard 

statistical test methods common in epidemiology. However, although the 

expected numbers of observation required in repeat significance tests are 

smaller than in fixed-sample test procedures when the alternative hypothesis 

is true (and the null hypothesis is to be rejected), the average number of 

observations needed is actually larger when the null hypothesis is true. 
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Chapter 6 is an extension of a previous paper which discusses two 

different versions of a sequential t-test, based on alternative 

approximations of the log likelihood ratio, and using a self-written 

computer programme. A copy of this paper is included in the Annex of this 

thesis. Computer simulations were carried out to evaluate the operating 

characteristics of the two alternative tests, in terms of their true levels 

of statistical significance and power. Similar simulations have been done to 

evaluate the sequential t-test by Whitehead's approach discussed in Chapter 

6 (i.e., using the "PEST" programme), and it was found that generally this 

approach is superior to the methods used in the previous paper (van der 

Tweel, personal communication). An additional aspect, which had not been 

addressed in the previous paper, is to find a reasonable definition of the 

alternative hypothesis expressed as a standardized exposure difference. In 

Chapter 6 it is shown that this standardized difference can be related to an 

expected odds ratio of disease, for quantile categories of the exposure 

distribution. 

As already mentioned in Chapter 6, a potential shortcoming of the 

proposed sequential t-test is that it allows an evaluation of only one type 

of exposure at a time, whereas in practice it is often possible to measure 

several markers in the same aliquot of a biological specimen. More work is 

therefore needed on the use of sequential methods in which the stopping rule 

is based on case-control differences in more than one type of exposure. 

III. Conclusions 

A basic approach to improving the statistical power of a cohort study 

without increasing its size is to maximize the amount of variation in true 

intake level predicted by measurements collected at baseline. Preliminary 

validity studies, based on multiple, additional measurements with 

independent sources of error, can help select an optimal questionnaire 

instrument to measure dietary intake. Additional, unbiased ("reference") 

measurements are also needed to evaluate the statistical power and sample 

size requirements of a cohort study, and to obtain unbiased relative risk 

estimates. For the latter two objectives, however, it is more efficient to 

conduct "calibration" sub-studies based on only a single reference 

measurement per subject (but on a larger number of individuals). Calibration 

studies should always be conducted on a representative sub-sample of cohort 

participants. In multi-cohort studies, calibration of intake assessments can 
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help decrease between-study heterogeneity in relative risk estimates due to 

bias, and can thus improve the precision of a pooled summary estimate. 

Sample size requirements of calibration sub-studies can be determined on the 

basis of a trade-off between relative efficiency criterion or, 

alternatively, a minimum absolute level of statistical power for a test on 

diet-disease association after calibration. For optimal efficiency, the 

number of participants in calibration sub-studies within cohorts should be 

proportional to the numbers of cases expected within strata of main 

confounding factors. 

An important aspect of the planning of prospective studies is to find an 

optimal balance between the cohort size required to attain a minimum level 

of power and precision, and the number of different exposures measured. When 

exposure measurements are based on the chemical analysis of biological 

specimens, stored in a biological bank, a sequential statistical design can 

be used to minimize the average number of specimens required for the 

preliminary evaluation of a scientific hypothesis. Thus, a maximum number of 

scientific hypotheses can be addressed with a given total amount of 

biological material available. A commercially available computer programme, 

"PEST", can be used for the analysis of such sequential studies. 
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Application of a sequential t-test in a cohort-nested case-
control study with multiple controls per case. 
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Abstract—Application of sequential analysis may avoid unnecessary experimentation 
and achieve economical use of available biomaterial stored in biological banks. When, 
as often happens in cohort case-control studies, cases are scarce, it may be possible to 
use multiple control observations per case to increase the power of a test for detecting 
differences between cases and controls. Samples from a biological data bank were 
analysed. We compared results of a non-sequential analysis with results of sequential 
/-tests for 1 to 5 controls matched per case in a cohort nested case-control study. 
Simulations are performed to get an idea of the unreliability and the power of the 
sequential test. In general the sequential /-tests are too conservative with respect to the 
achieved power. Average sample numbers are lower for the sequential tests and decrease 
with multiple controls. More than 3 or 4 controls per case does not give a meaningful 
increase in efficiency. 

Sequential /-test Multiple controls 
Cohort nested studies 

Simulations Efficiency Biobanking 

INTRODUCTION 

Sequential analysis of quantitative data has 
never found wide application in clinical trial 
practice, even though considering its use 
might be worthwhile. For ethical reasons 
alone one may wish to minimize the expected 
number of exposed patients. From an exper­
imental point of view, one may wish to avoid 
unnecessary experimentation. In cohort nested 
case-control studies exposures may be assessed 
in biological samples stored in a biological 
bank. In this situation, economy with material 
from the biological bank may be a reason to 
choose a sequential type of analysis. In a 
prospective study, cases are often detected 
sequentially during follow-up. A sequential 
analysis could then limit the total duration of 
the study. 

In a sequential case-control analysis, the re­
sponse of a case is compared with the response 
of a single control. O'Neill describes in a de­
tailed way a sequential analysis of a matched 
pair case-control study with a dichotomous 
response [1]. 

In a cohort study, usually there is only a 
limited amount of biological material per sub­
ject, and there are far more controls in the bio-
bank for which such material can be analyzed 
than cases. Therefore it may be desirable to com­
pensate for the loss of statistical power by com­
paring each case with more than one control [2], 

Ury [3] showed that, for non-sequential 
case-control studies with continuously dis­
tributed data, the efficiency of multiple {k > \) 
controls relative to matched pairs (k = 1) is 
equal to 2k j(k + 1) for equal case and control 
variability. 
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Gail et al. [4] show that in (non-sequential) 
situations with a limited number of cases, more 
than four controls per case (or vice versa) does 
not give a meaningful power increase. 

We are unaware of literature about the 
efficiency of multiple controls per case in 
sequential analyses. Therefore, we compared the 
effect of more controls per case in a sequential 
design with the results of a non-sequential 
analysis. 

MATERIALS AND PATIENTS 

We performed retrospective analyses on data 
from a cohort nested case-referent (control) 
study on breast cancer and the selenium content 
in ppm of toenails (Van Noord [5]). The aim of 
the study was to determine whether selenium, as 
available in the body, is already decreased be­
fore tumour occurrence. 

Nail clippings had been collected since 1982 
in a cohort of 8760 premenopausal (i.e. without 
menopausal signs) women (42-52 years of age), 
who attended a breast cancer screening pro­
gram. A total number of 64 premenopausal 
breast cancer cases were detected in this cohort. 
Controls were matched to cases for age. For 
57 cases 5 controls per case were available; for 
7 cases 3 or 4 controls could be matched per 
case. 

Selenium content in the nails did not depend 
on age, probably due to the relatively small 
age-range in our data. No seasonal or other time 
trends were found in nail selenium contents 
during 3 years of investigation (unpublished 
results). 

The data were analysed in the order the cases 
became available over time. 

STATISTICAL ANALYSIS 

Non-sequential analysis 
For matched case-control observations the 

minimal sample size n, (i.e. the number of 
case-control pairs necessary) for detecting a 
true difference between case and control obser­
vations of at least fi with a (two-sided) type I 
probability (or unreliability) a and a type II 
probability ß (i.e. power 1 — )S) is [6] 

«I = ('a + h?*o\ln\ 

where 

a] is the variance of the difference be­
tween a case and a control obser­
vation, 

ta and tß are values from the two-tailed t-
table with «, - 1 ^"corresponding to 
probabilities of a and ß respectively. 

The type I probability a is the risk one wants 
to accept that the null hypothesis of no differ­
ence between case and control observations is 
falsely rejected; the type II probability ß is the 
risk of falsely not rejecting the null hypothesis 
when a true difference of at least n exists 
between case and control observations. 

In case of multiple (say k) control obser­
vations per case, assuming equal variances for 
cases and controls and, for the sake of argu­
ment, a negligible correlation between case and 
control observations, the variance of the differ­
ence between a case observation and the mean 
of the k control observations becomes 

a2 = {(* + \)/k}*a2 = {(* + \)l2k}*a\, 

{a] = 2a2, where a2 is the variance of a single 
case or control observation). 

The minimal number of case-control sets for 
detecting the same difference ft then becomes 

»* = ('. + tpvllv1 = «••{(* + 0/2*}. 

N.B. We assumed (near) independence of case 
and control observations. In case of a positive 
correlation between case and control obser­
vations, the result will be a smaller a] and a\ 
and a smaller sample size needed to detect the 
same difference p. 

Sequential analysis 
Wald [7] developed the theory for the 

"sequential probability ratio test" (SPRT). 
Rushton [8] further developed this theory to the 
one-sample, two-sided sequential Mest. This 
test is based on the probability ratio 

_ probability of observed results given H, true 
" probability of observed results given H0 true ' 

for n observations processed so far. For our 
situation with case-control sets, we pose as null 
hypothesis H0: 

<5 =/i/ffk = 0 

and as alternative hypothesis H,: 

l* l>0 

where \i is the minimal mean difference to ! e 
detected and <rk is the theoretical standard devi­
ation of the differences between the case and 
control observations. Because in most practical 
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situations ak will be unknown and needs to be 
estimated from the data, the parameter ô = \i\ov 

is used in the test. The test operates as follows: 

—continue sampling as long as B <1„<A 
—stop sampling and decide for 

H0 as soon as /„ < B 
—stop sampling and decide for 

H, as soon as /„ > A 

To obtain approximately the a priori specified 
error probabilities a (two-sided type I error) and 
ß (type II error), Wald stated the theorem that 
Acz(l-ß)/a and A ~ 0 / ( l - a ) . The logar­
ithm of the probability or likelihood ratio /„ can 
be calculated exactly using the series expansion 
of Kummer's function [9]. 

Rushton [8] obtained a practical approxi­
mation to the logarithm of the likelihood 
ratio. 

See Appendix A for more details on 
Kummer's function, Rushton's approximation 
and our adaptation of the test statistic for k 
control observations per case. 

Simulations 
To examine the effect of multiple controls per 

case in a sequential f-test on its overall type I 
and type II error, simulation studies were per­
formed. A simulation program was written in 
Turbo Pascal Version 5.0 (Borland). Random 

case and control observations were generated 
following a normal distribution with expec­
tation Ho or fit and theoretical standard devi­
ation a. The values chosen for p^, /*,, a and 5 
under H, are based on population values and a 
desirable shift in ppm of the selenium content 
(see Van Noord [10]). Both for case and control 
observations a was chosen equal to 0.15. Under 
H0: Ô = 0, rt, was chosen equal to 0.8. Under H,: 
| c51 = Ô, Hx was equal to 0.8 + Ô*a*yj2. 

Both under H0: Ö = 0 and under H,: |<51 = ô 
(<5 = 0.3, 0.4 and 0.5 respectively), and with 1 to 
5 controls per case, we ran 1000 simulation runs 
(a = 0.05, 1 - ß = 0.80). 

Per run, the resulting decision ("accept H0" or 
"reject H0 in favour of H,") and the number of 
case-control sets necessary to come to that 
decision were recorded. 

Simulations were performed using both 
Rushton's approximation to the logarithm of 
the likelihood ratio and the series expansion of 
Kummer's function. 

RESULTS 

Non-sequential analysis 

The results of a randomized block analysis of 
variance on the "selenium and breast cancer" 
data for n = 57 cases and 5 control observations 
per case are shown in Table 1. 

Table 1. "Selenium and breast cancer" study; descriptive statistics and 
ANOVA table for 57 cases with 5 controls per case 

Cases 
Controls 

Source 

Between matched sets 
Within matched sets 

Case-controls* 
Between controls 

Residual 

mean 
(ppm) 

0.790 
0.772 

SD 
(ppm) 

0.156 
0.207 

ANOVA table 
Sum of 
squares 

2.20 
0.16 
0.02 
0.14 

11.24 

Degrees of 
freedom 

56 
5 
1 
4 

280 

Mean 
squares 

0.04 
0.03 
0.02 
0.03 
0.04 

n 

57 
285 

F p 

<1 NS 

•Due to the difference between cases and the mean of the matched control 
observations. 

Means, standard deviations and a randomized-block analysis of variance 
(ANOVA) table for n = 57 cases with 5 controls per case. Data are the 
selenium content in ppm in toenails from the "selenium and breast 
cancer" study. 

Within matched sets the sum of squares, degrees of freedom and mean 
square are subdivided into two components: one that measures the 
variation because of a difference between cases and the mean of the 
matched control observations, and one that measures variation be­
tween controls. If we assume no differences between control obser­
vations, this last component can be combined with the residual sum 
of squares to give a (slightly) improved estimate of the residual mean 
square or error variance. 



INGEBORG V A N DER T W E E L et al. 

The mean difference between a case and the 
mean of the corresponding 5 control obser­
vations was 0.018 ppm with a SE = 0.029 ppm 
(NS). 

Sequential analysis 

Sequential t -tests were performed on the 
"selenium and breast cancer" data, using the 
available cases and a random sample of k 
(k = 1 , . . . 5) control observations available in 
the matched set. (For each sequential test 
performed, control observations were replaced.) 
Both Kummer's function and Rushton's 
approximation were applied. 

The number of cases (n) at which the decision 
"H0 cannot be rejected" was reached, is tabu­
lated in Table 2 for several alternative hypoth­
eses (|<5| = 0.3, 0.4, 0.5). 

N.B. None of the tests led to rejection of H0; 
in the case of H,:|<5| =0.3, for some tests no 
conclusion could be reached with the available 
number of case-control sets. 

Simulations 

The relative efficiency of more (k) controls 
per case is depicted graphically in Figs 1 and 
2 for Ô = 0.4. (For ,5 = 0.3 and Ô = 0.5 the 
course of the relative efficiency is similar.) 
There the relative sample size nk/w, is plotted 
against k for the median, mean and 95th-
percentile number of cases required to reject 
H0 in favour of H,. The theoretical expected 
efficiency (k + l)/2/c is plotted as a com­
parison. 

Appendix B shows data and calculations of 
one of the simulations as an example. 

Rel. sample size (delta = 0.4) 
(Rushton's approximation) 

Fig. 1. Relative sample size (njn,) for mean (A), median 
( • ) and 95th percentile ( • ) number of cases necessary 
to reject H„ in favour of H,:|51 = 0.4 compared to the 
theoretical expected value (k + 1)/2A (X), using Rushton's 

approximation. 

DISCUSSION 

Biological data banks contain valuable 
material that can be analysed to explore 
new hypotheses with possible important pub­
lic health consequences. But, with most 
chemical analyses, these unique biological 
samples are destroyed and thus economical 
tests are preferable [11]. 

While in case-control studies, cases are 
mostly scarce, but control samples abundant, 
statistical efficiency of non-sequential tests can 
be increased by including multiple controls per 
case. If the power using equal allocation (k = 1) 
is greater than 0.9, this is of no practical import­
ance. If the equal allocation power is less than 
0.9, meaningful power increases may be ob­
tained, but more than 4 controls per case are 
seldom worthwhile [4]. 

Table 2. "Selenium and breast cancer" study; 
results of sequential /-tests for k controls per case 

k 

1 
1 
1 
1 
1 
2 
3 
4 
5 

l<5| 
R 

21 
25 
27 
22 
26 
25 
22 
22 
22 

= 0.3 

K 

— 
— 
62 
48 
50 
50 
— 
— 
— 

1-51 

R 

12 
30 
21 
23 
13 
17 
18 
12 
13 

H, 

= 0.4 

K 

23 
30 
21 
24 
25 
21 
21 
21 
21 

1*1 = 
R 
9 

11 
10 
10 
8 
9 

12 
8 
9 

= 0.5 

K 

13 
15 
13 
14 
18 
14 
16 
13 
13 

Results of the sequential t -tests, given 57-64 cases 
and random samples of, : controls per case, on 
the "selenium and breast cancer" study 
(a = 0.05 and 1 - ß = 0.80); R, Rushton's 
approximation; K. Kummer's function. 

Rel. sample size (delta = 0.4) 
(Kummer's function) 

Fig. 2. Relative sample size (njn,) for mean (A), median 
( • ) and 95th percentile ( • ) number of cases necessary 
to reject H„ in favour of H, : | S | = 0.4 compared to the 
theoretical expected value (k + l)/2k (X), using Kummer's 

function. 
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Retrospective analyses as well as prospective 
studies justify the use of sequential investigation 
to avoid unnecessary destruction of the biologi­
cal material and to limit the total duration of the 
study. In prospective clinical trials ethical as­
pects may play a role. For example when 
chemotherapy is one of the trial arms in a trial 
comparing two cancer therapies, one wishes to 
expose as few patients as necessary in coming to 
a decision. 

From an economical point of view we per­
formed sequential /-tests with multiple control 
observations per case and compared the results 
with those of a non-sequential analysis and of 
simulation studies. 

The expected average sample numbers (ASN) 
for a sequential /-test with one control obser­
vation per case are already smaller than the 
minimal sample size required for a correspond­
ing non-sequential ( = fixed sample size) paired 
/-test (Table 3). (See Appendix C for the calcu­
lation of the ASN according to Cox' approxi­
mation [12].) Notable in Table 3 is the fact that 
both the mean number of case-control pairs 
required to reject H0 using Rushton's approxi­
mation and the median number using Rum­
mer's function almost equal Cox' approximated 
ASN. Only the median number of cases necess­
ary to accept H0 using Rushton's approximation 
resembles the corresponding ASN according to 
Cox. Our simulations indicate that Cox' ap­
proximation probably underestimates the aver­
age sample size, especially the expected ASN 
needed to accept H0. 

Table 3. Comparison of expected and observed sample size 
for one control matched per case (k = 1) 

H, 

IS| =0.3 |<51 = 0.4 |(5| = 0.5 

Fixed 
Paired /-test 88 50 32 

Sequential 
Expected: 

Cox' approximation 57/34 34/20 22/14 
Observed: 

Simulation results 
Rushton 
Mean 57/44 36/27 25/18 
Median 50/33 31/20 21/13 
Kummer 
Mean 64/54 39/31 26/21 
Median 57/43 35/25 23/17 

Sequential sample sizes are expressed as "number of 
case-control pairs neccesary to reject H0/number of 
case-control pairs neccesary to accept H0". 

Expected sample size for a non-sequential paired /-test and 
expected and observed sample sizes for sequential /-tests 
with matched pairs (i.e. 1 control per case). 

Most sequential <-tests of our "selenium and 
breast cancer" data (Table 2) resulted in accep­
tance of H0 at a considerably smaller number of 
case-control sets than necessary for a non­
sequential analysis. 

The simulations confirm these results even 
better. The largest gain in efficiency as com­
pared to matched pairs is reached with 2 con­
trols per case, when H0 is rejected. When H0 

cannot be rejected, the gain in efficiency is 
smaller. The simulated power values are closer 
to each other for different values of <5 using the 
exact Kummer function than they are using 
Rushton's approximation. 

Rushton's approximation, on the other hand, 
is less conservative with respect to the simulated 
power and thus more economical in its use of 
case-control sets. Only with the matched-pairs 
simulations Rushton's approximation yields a 
simulated power significantly less than the 
theoretical power of 0.80. In general, the simu­
lated unreliability using Rushton's approxi­
mation is larger than that using Kummer's 
function and more often even larger than the 
theoretical unreliability of 0.05. 

Skovlund and Wallae [13] already drew atten­
tion to the conservatism of the sequential /-test 
when applied as a two-sample sequential test. 
Their smallest value for <5 studied was 0.5, 
however. Neither did they simulate with more 
than 1 control matched per case. 

In theory it is possible that a sequential test 
continues infinitely. To warrant that a decision 
is reached, albeit "no decision can be made", it 
is recommended to set a restriction (e.g. once or 
twice the fixed sample size) to the total number 
of cases available for the test. 

Our simulations illustrate that there is hardly 
any effect on the simulated power and unreli­
ability when the sequential test procedure is 
truncated at twice the fixed sample size. 

Truncating the procedure at a fixed sample 
size results in a simulated power that is still too 
large, except for the matched-pairs situation 
using Rushton's approximation where it is too 
small. The unreliability resulting from the simu­
lations using Rushton's approximation with 
more than one control per case is often (signifi­
cantly) too large. 

When a sequential test is terminated after a 
small number of observations, point and inter­
val estimates of the case-control difference are 
.ather imprecise. We hold the view that these 
objections play a less important role when, as in 
our experimental set-up, a rather "qualitative" 
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answer ("H0 can/cannot be rejected") suffices to 
distinguish promising new hypotheses from un­
fruitful ones (see for an example Van Noord 
[10]). 

Group sequential procedures (for matched 
case-control sets) [15-18] also have the advan­
tage of a reduction in the average sample size as 
compared to fixed-sample-size plans. There are 
some differences between group sequential pro­
cedures and a one-at-a-time SPRT, however. 
A one-at-a-time sequential approach can be 
stopped after every new case-control set, while 
a group sequential procedure can only be 
stopped after the next planned inspection. Fur­
thermore, a group sequential procedure cannot 
come to a decision to accept the null hypothesis 
until after the last planned inspection. A SPRT 
can be stopped the very moment that evidence 
exists that the null hypothesis cannot be rejected 
anymore. 

Therefore, the authors prefer a one-at-a-time 
SPRT over the group sequential procedure 
when ethical and/or economical motives play a 
role. Promising hypotheses as well as unfruitful 
ones can be distinguished with as little as poss­
ible biological material destroyed or, for that 
matter, time and/or money spent. 

Following Skovlund and Wallae [14], we hold 
the view that a sequential design might be 
considered more often in prospective clinical 
trials as well as in (cohort-nested) case-control 
studies. 

Furthermore, we are of opinion that a 
sequential /-test with 2-4 controls per case is 
appropriate in case-control studies and other 
experimental designs where the case material 
must be used economically, and the response is 
available (almost) immediately. In general the 
investigation can then be stopped at a lower 
average sample size as compared to one control 
per case or a non-sequential test. 

The use of exact calculations (the series 
expansion of Kummer's function) is rec­
ommended, although less conservative pro­
cedures are to be developed. 

Tables and figures summarizing the results 
from the computer simulations are available 
from the authors by written request. 

CONCLUSIONS 

(1) A seq-iential /-test with 2-4 controls 
matched per case in general leads to lower 
average sample sizes than a matched-pairs 
sequential /-test or a non-sequential analy­

sis. The largest gain in efficiency as com­
pared to matched pairs is reached with 2 
controls per case. 

(2) Rushton's approximation to the logarithm 
of the likelihood ratio is rather inaccurate 
and leads to a power that is significantly too 
small in case of a matched-pairs analysis. 

(3) The use of Kummer's function (the exact 
calculation) results in power values which 
are too conservative. 

(4) Cox' approximation to the expected average 
sample number probably underestimates the 
expected sample size needed to accept Hj. 
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APPENDIX A 

The logarithm of the likelihood ratio /„ is a function of S, 
n ands u2 and equal to 

L = ln(/„) = In M(n/2; 1/2; \ • S2 • u2) - j (Al) 

For the nth case-control pair (n = 1, 2, 3 , . . . successively 
and one control observation per case) u2 is equal to 

where 

= (Zd,)2II.d2 = n • t2l(n - 1 + t2), i = l. 

t2 = n • mean(rf)2/var(</), 

d: is the difference between the observation for the case and 
the control observation, and mean(rf) and var(</) stand for 
the mean and variance of these differences. For every n L 
is compared to ln(/?/(l — a)) and ln((l — /J)/a). M(a;b;x) is 
the confluent hypergeometric function, which can be calcu­
lated using Rummer's function [9], a series expansion: 

M(a;b;x) = 1 + ax/b + a(a + \)x2/{b(b + 1)2!} 

+ a(a + l)(a + 2)*3/{6(6 + 1)(* + 2)3!} + . . . 

We involved 30 terms of this expansion. Rushton's approxi­
mation [8] to L is equal to 

/, = \ • S • « 3 / > + V(" à2u2)-Crn-S2 + ln(2)). (A2) 

For k control observations per case the variance of the 
difference between the case observation and the mean of the 
k control observations is estimated using the cumulating 
case-control variance-covariance matrix. This estimate is 
then substituted as s2 in the equations mentioned below. 
(The variance-covariance matrix takes the correlations 
among cases and controls into account. If we assume 
negligible correlations among control observations, equal 
variance for the control observations and equal correlations 
between the case and each of the controls, s2 can be 
approximated by the variance of the differences between the 
case and the mean of the control observations.) Then 
Rushton's approximation to L can be calculated by 

/, = H • V/V" + V(" • &1 • "*2) - (5 ' " • -52 + '"(2)) (A3) 

with 

and 

tk
2 = n- mean(dY/s2. 

N.B. For matched case-control observations (k = 1) 
equation (A3) is equal to equation (A2). 

APPENDIX B 

Data and calculations of one of the simulations with 
a = 0.05, 1 - ß = 0.80, S = 0.5, /i„ = f, = 0.8, a = 0.15 and 
2 controls per case are presented in Table Bl (see Appendix 
A for the notation used). 

After 13 case-control sets are evaluated, M equals 1.002 
and therefore L = — 1.623 becomes smaller than the lower 
boundary, ln(j3/(l - a ) ) = -1.558, and thus H0 cannot be 
rejected. 

When Rushton's approximation to L is applied, the 
sequential analysis can be stopped after the 10th 
case-control set, where /, = —1.719. 

APPENDIX C 

For matched case-control observations, the average sample 
number (ASN) for a sequential (-test with unknown vari­
ance is approxiamtely (1 +S2/2) times the ASN for a test 
with known variance (Cox' approximation, Wetherill and 
Glazebrook [12]). 

Under H0 this ASN (unknown variance) is about 

-2/a2 .{a' • ln((l -/?)/«')+ 0 -<x') • ln((0)/l -a'))}, 

and under H, this ASN is about 

(1 + 2la2)*{ß • ln((/?)/(l - a')) + (1 - ß) • ln((l - /?)/(«'))} 

(with a' = a/2). We recognize that Cox' approximation is an 
asymptotic result and that it is currently unknown how 
accurate it is. 

Table Bl 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Case 

0.911 
0.919 
0.628 
0.781 
0.947 
0.527 
0.814 
0.784 
0.908 
0.745 
0.846 
0.650 
0.898 

Control 

0.912 
1.044 
0.867 
0.759 
0.740 
0.728 
1.053 
0.730 
0.860 
0.637 
0.659 
0.762 
0.896 

Control 

0.891 
0.518 
1.029 
0.861 
0.600 
0.791 
0.771 
0.877 
0.826 
0.580 
0.672 
0.919 
0.778 

s2 

0.008 
0.056 
0.037 
0.049 
0.050 
0.042 
0.036 
0.033 
0.032 
0.032 
0.032 
0.030 

h2 

1.312 
0.180 
0.273 
0.022 
0.084 
0.223 
0.263 
0.151 
0.018 
0.032 
0.019 
0.001 

«i1 

1.135 
0.248 
0.334 
0.028 
0.099 
0.250 
0.290 
0.167 
0.020 
0.035 
0.020 
0.002 

M 

1.312 
1.095 
1.174 
1.018 
1.075 
1.230 
1.308 
1.195 
1.025 
1.048 
1.031 
1.002 

L 

0.022 
-0.284 
-0.340 
-0.608 
-0.677 
-0.668 
-0.731 
-0.947 
-1.226 
-1.328 
-1.470 
-1.623 
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Summary 

Prospective cohort studies provide an ideal epidemiological approach to 

investigating the relation between diet, nutritional status, and cancer. For 

sufficient statistical power, however, which requires the observation of a 

minimum number of "cases" with disease, such prospective studies must 

usually comprise a very large number of individuals. As the costs of this 

type of study can be high, it is fundamental that an efficient design be 

used so that the study will be as informative as possible for a given 

investment of time and resources. 

This thesis includes a series of methodological papers which present and 

analyse approaches that may improve the design and analysis of prospective 

cohort studies on diet, nutrition and chronic disease risk. The first 

chapters (2 to 5) examine methods of optimizing the assessment of the 

habitual, long-term dietary intake of cohort members, focusing on: 

1. methods to maximize the amount of variation in true intake level of 

foods and nutrients that is actually distinguished - or "predicted" -

by dietary questionnaire assessments collected at baseline; this is a 

means to increasing the power of a cohort study without increasing the 

number of study participants; 

2. methods for the precise estimation of the distribution of predicted 

intake levels; this is essential for the accurate estimation of the 

statistical power or sample size requirements of the cohort, as well as 

for the unbiased estimation relative risks describing diet-disease 

associations. 

Chapter 6, on the other hand, discusses the use of a sequential study 

design, to optimize the number of specific study hypotheses that can be 

evaluated when exposure assessments are based on a biochemical marker 

measured in urine, blood, or other tissue samples. 

A first basic approach to maximize the predicted variation in true intake 

level is to select a dietary questionnaire method that allows an optimal 

classification of individuals by their respective intakes of foods and 

nutrients. Traditionally, the method is selected on the basis of the 

estimated correlation between questionnaire assessments and the individuals' 

true dietary intake levels. Chapter 2 reviews, in terms of latent variable 

models, how this correlation can be estimated in a preliminary validity 



152 

study, by comparison with at least two additional intake measurements. A 

vital assumption is that all measurements must have mutually independent 

errors, so that correlations between the measurements are entirely due to 

their relations with the same (latent) true intake variable. In practice, 

the additional measurements are most often obtained by means of repeated 

food intake records, using either a weighing method or 24-hour recalls. An 

alternative design of validity studies is presented, where the correlation 

between questionnaire assessments and true intake levels of nutrients is 

estimated by comparison with food intake records as well as with a 

biochemical marker. The advantage of this alternative approach is that 

measurement errors are more likely to be independent when all three 

measurements are taken with different methods (i.e., questionnaire, records, 

and biochemical marker). 

The estimated coefficient of correlation between questionnaire 

assessments and the individuals' true habitual intakes is also seen as 

essential information for the subsequent planning of epidemiological studies 

on diet: 

a) to evaluate the sample size requirements of a cohort study with 

correction for power losses due to random errors in the dietary 

exposure assessments; and 

b) to estimate the magnitude of attenuation bias in relative risks. 

In Chapter 3 it is shown that, if relative risks are estimated for scaled, 

absolute differences in intake level (expressed in standard units), sample 

size requirements for a cohort study can be computed from the variance of 

the distribution of true dietary intake levels predicted by the 

questionnaire assessments collected at baseline. Likewise, bias in relative 

risk estimates can be shown to be equal to the variance of the predicted 

intake distribution divided by the variance of the questionnaire 

assessments. To estimate the variance of the predicted intake distribution, 

it is not necessary to know the correlation between questionnaire 

assessments and true dietary intake values. Thus, a validity study based on 

multiple additional measurements is not essential. Instead, a calibration 

study can be used, based on only a single day's food intake record per 

person as a reference measurement. It is shown that, for a given total 

number of daily intake records taken, the estimation of the variation in 

predicted intake levels is most precise when the calibration is based on a 
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maximum number of participants, with only a single record each. An 

additional major advantage is that a calibration study can be conducted more 

easily on a representative sample of the study population (when nested 

within a prospective cohort study). Representativeness is an important 

condition for accurate estimation of the power of cohort studies, or of 

biases in relative risk estimates. 

A second approach to increase the magnitude of the predicted variation in 

intake values is to broaden the range of true dietary intake levels covered. 

This can be achieved by combining the data from multiple cohort studies, 

conducted in different geographical areas with heterogeneous life styles and 

dietary habits. An example of this multi-cohort approach is the EPIC study 

(European Prospective Investigation on Cancer and Nutrition), which is 

coordinated by the International Agency for Research on Cancer at Lyon 

(France). In Chapter 4 it is shown that in such multi-cohort projects, 

relative risks indicating associations between dietary intake level and 

disease incidence can be estimated from: 

1. within-cohort differences in the measured dietary intake levels and 

disease outcomes of individuals; and 

2. between-cohort ("ecological") variation, between mean intake 

measurements and mean incidence rates of disease at a population level. 

If there is sufficient concordance between the various component estimates, 

these can be combined into an overall, more powerful summary value. A 

complication, however, is that relative risk estimates within different 

cohorts can be biased to various degrees as a result of dietary assessment 

errors, while the between-cohort ("ecological") relation may also be 

distorted by differences in systematic over- or under-estimation of mean 

intake levels. This may be particularly true when it is impossible to use an 

identical method for dietary intake assessment in all cohorts. The second 

part of Chapter 4 proposes the use of sub-studies for the calibration of 

dietary intake assessments to adjust for possible heterogeneity in relative 

risk estimates due to such divergent biases. This reduction in heterogeneity 

may improve the power of a statistical test for diet-disease association 

based on a pooled estimate of relative risk. 

Calibration adjustments for biases in relative risk estimates will only 

be adequate if the calibration factors used for such corrections are 

themselves estimated with sufficient precision. This aspect is discussed in 
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Chapter 5, which presents a simplified approach to the estimation of 

approximate sample size requirements for dietary calibration studies nested 

within a cohort. These sample size estimations are based on two alternative 

criteria, requiring either a minimum relative efficiency of calibration (so 

that there is little loss of precision in the estimation of relative risk), 

or a minimum statistical power of a test for diet-disease association based 

on the corrected relative risk estimate (i.e., after calibration). The 

required size of a calibration study then depends only on the correlation 

between questionnaire assessments and reference measurements. 

In studies where the exposure assessments are based on a biochemical 

marker, measured in blood, urine, or other biological specimens, a simple 

efficiency measure is to store the biological specimens in a "biobank", and 

to postpone the exposure measurement until it is known which individuals 

develop a given type of disease, and which will be suitable control 

subjects. Nevertheless, the number of scientific hypotheses potentially of 

interest is usually much larger than the number of biomarkers that can be 

actually assessed with a limited amount of blood or other biological 

specimens available. It would thus be useful to have a statistical method 

which, at the expense of as little biological material as possible, 

distinguishes between promising or less promising hypotheses. For this 

purpose, Chapter 6 proposes the use of a sequential study design, in which 

laboratory analyses of the biological specimens of cases and controls are 

conducted until sufficient data have accumulated to either reject or not a 

null hypothesis of "no association" between marker and disease risk. On 

average, as compared to an equivalent fixed-sample test procedure, a 

sequential test may require less than half the number of biological 

specimens to reach a conclusion. If the null hypothesis is rejected, 

additional biological specimens may be analyzed to improve the precision of 

relative risk estimates; if not, biological specimens can be spared for the 

evaluation of different hypotheses. 

In conclusion, preliminary validity studies in which the correlation 

between questionnaire assessments and true dietary intake levels is 

estimated, may be used to select an optimal questionnaire instrument to be 

employed in a prospective cohort study. On the other hand, calibration 

studies using only one reference measurement per person are more efficient 
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when the objective is to estimate the power of prospective cohort studies, 

accounting for the effects of random dietary assessment errors, or to 

correct for biases in relative risk estimates. A main advantage of 

calibration studies is that these can be conducted more easily on a 

representative sample of the study population. In multi-cohort projects, 

calibration studies can be used to improve the comparability of cohort-

specific relative risk estimates, and to obtain a more precise estimate of 

the between-cohort, "ecological" relation between dief.Ty intake levels and 

disease incidence. In studies where the exposure assessments are based on a 

biochemical marker, a simple efficiency measure is to store biological 

specimens in a biobank, and to postpone laboratory analyses until cases with 

disease have been identified. Sequential study designs can then be used to 

allow the evaluation of an maximum number of scientific hypotheses with a 

given amount of biological material available. 
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Samenvatting 

Prospectieve cohort studies bieden een ideale epidemiologische benadering om 

relaties tussen voeding, voedingstoestand and kanker te bestuderen. Echter, 

om een voldoende groot statistisch onderscheidingsvermogen te ontwikkelen -

hetgeen vereist dat een minimum aantal ziektegevallen wordt waargenomen -

moeten prospectieve studies over het algemeen een groot aantal individuen 

omvatten. De kosten van dit type studie kunnen daarom hoog oplopen, en het 

is dus van fundamenteel belang de studie efficient op te zetten, zodat 

zoveel mogelijk informatie wordt verkregen voor een gegeven investering in 

tijd en middelen. 

Dit proefschrift bevat een reeks methodologische artikelen waarin een 

aantal benaderingen worden gepresenteerd en besproken om de opzet en analyse 

van prospectieve cohort studies over voeding, voedingstoestand en chronische 

ziekten te verbeteren. In de eerste hoofdstukken (2 tot 5) worden methoden 

onderzocht om een optimale meting te verkrijgen van de gebruikelijke 

voedings inname op langere termijn van individuen in de cohort study. 

Hierbij wordt de nadruk gelegd op: 

1. methoden om de variatie in innameniveau van voedingsmiddelen of 

nutriënten die werkelijk wordt onderscheiden - ofwel "voorspeld" - door 

metingen aan het begin van de studie zo groot mogelijk te maken; dit is 

een manier om het onderscheidingsvermogen van een cohort study te doen 

toenemen zonder het aantal deelnemers in de studie te vergroten; 

2. methoden voor een nauwkeurige schatting van de werkelijk gemeten 

variatie in innameniveaus; dit is essentieel voor een nauwkeurige 

schatting van het onderscheidingsvermogen of de vereiste 

steekproefgrootte van het cohort, zoel als voor de zuivere schatting 

van relatief risiko's die verbanden tussen voeding en ziekte 

beschrijven. 

Hoofdstuk 6 bespreekt de toepassing van een sequentiële studie-opzet om een 

optimaal aantal specifieke hypothesen te kunnen toetsen wanneer potentiële 

risikofactoren worden gemeten in urine, bloed, of biologische 

weefselmonsters. 

Een eerste basisbenadering om de werkelijk gemeten ("voorspelde") 

variatie in innameniveau zo groot mogelijk te maken is het selecteren van 
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een vragenlijst methode die leidt tot een tot een optimale classificatie van 

individuen naar hun gebruikelijke inname van voedingsmiddelen of nutriënten. 

Deze selectie wordt traditioneel gemaakt op basis van de geschatte 

correlatie tussen inname-metingen verkregen via de vragenlijst en werkelijke 

inname-niveaus. Hoofdstuk 2 geeft een overzicht, in termen van "latent 

variable" modellen, van benaderingen om deze correlatie te schatten in een 

voorafgaande validatie-studie. Dit vereist een door vergelijking met 

tenminste twee extra innamemetingen. Daarbij is het een essentiële aanname 

dat fouten in de verschillende metingen wederzijds onafhankelijk zijn, zodat 

correlaties tussen de metingen uitsluitend het gevolg zijn van hun relaties 

met dezelfde (latente) inname variabele. In de praktijk worden de extra 

metingen meestal verkregen met behulp van een meerdaagse gewogen 

opschrijfmethode, of door middel van herhaalde 24-uurs recalls. In hoodstuk 

2 wordt ook een alternatieve opzet van validatie-studies gepresenteerd 

waarin de correlatie tussen vragenlijstmetingen en werkelijke innameniveaus 

van nutriënten wordt geschat door vergelijking met metingen verkregen via 

een opschrijfmethode zowel als met metingen gebaseerd op een biochemische 

parameter. Het voordeel van deze laatste benadering is dat de aanname van 

onafkankelijke meetfouten gemakkelijker kan worden gemaakt als alle drie 

metingen worden verkregen via verschillende methoden (d.w.z., vragenlijst, 

opschrijfmethode of 24-uurs recall, en biochemische parameter). 

De geschatte correlatie tussen vragenlijst-metingen en werkelijke inname­

niveaus wordt ook gezien als essentiële informatie voor de verdere planning 

van epidemiologische studies met betrekking tot de voeding: 

a) om de vereiste steekproefgrootte van een cohort studie te schatten, 

daarbij rekening houdend met het verlies aan onderscheidingsvermogen 

als een gevolg van toevallige (d.w.z., "random") fouten in de 

voedingsinname-metingen; en 

b) om de grootte van attenuatie bias in relatieve risiko's te schatten 

In hoofdstuk 3 wordt getoond dat, als relatieve risiko's worden geschat voor 

absolute verschillen in inname-niveau, uitgedrukt in standaard eenheden, de 

vereiste steekproefgrootte voor een cohort studie kan worden berekend uit de 

variantie van de verdeling van werkelijke innamewaarden zoals die worden 

voorspeld door vragenlijst-metingen verkregen aan het begin van de studie. 

Bovendien blijkt de de bias in relatief risiko-schattingen gelijk te zijn 

aan de variantie van de verdeling van voorspelde innamewaarden gedeeld door 
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de variantie van vragenlijstmetingen. Om de variantie van de voorspelde 

innamewaarden te schatten is het niet noodzakelijk de correlatie tussen 

vragenlijstmetingen en werkelijke innamewaarden te kennen. Een validatie-

studie gebaseerd op meer dan één aanvullende innamemeting is dus niet echt 

vereist. In plaats daarvan kan een calibratiestudie worden opgezet, 

gebaseerd op een slechts eendaagse gewogen opschrijfmethode, of een enkele 

24-uurs recall. Het wordt getoond dat, voor een gegeven totaal aantal 

dagelijkse innamemetingen, de schatting van de voorspelde variatie in 

innameniveaus het meest nauwkeurig is wanneer de calibratiestudie een 

maximum aantal deelnemers omvat, met ieder slechts één enkele innamemeting. 

Een groot voordeel van deze benadering is dat een caliebratie-studie 

gemakkelijker kan worden uitgevoerd in een representatieve steekproef van de 

onderzoekspopulatie (indien genest in een prospectief cohort onderzoek). 

Representativiteit is een belangrijke voorwaarde voor een correcte schatting 

van het onderscheidingsvermogen van een cohort-studie, of van bias in 

schattingen van relatieve risiko's. 

Een tweede benadering om de voorspelde variatie in de innamewaarden van 

individuen te vergroten is het bereik van werkelijke innameniveaus te 

verbreden. Dit kan worden bereikt door het combineren van gegevens verkregen 

in meerdere cohort-onderzoeken, uitgevoerd in geografische gebieden met 

verschillende leefstijlen en voedingsgewoonten. Een voorbeeld van deze 

multi-cohort benadering is de EPIC-studie (European Prospective 

Investigation on Cancer), die wordt gecoördineerd door de International 

Agency for Research on Cancer in Lyon (Frankrijk). Hoodstuk 4 laat zien dat 

in dit type onderzoek relatieve risiko's die het verband aangeven tussen 

voedingsinname-niveaus en de incidentie van ziekte kunnen worden geschat 

uit: 

1. binnen-cohort variatie in gemeten innameniveaus en ziekte-uitkomst van 

afzonderlijke individuen; en 

2. tussen-cohort variatie in de gemiddelde innamemetingen en ziekte-

incidenties op populatie-niveau. 

Als er voldoende overeenkomst is tussen deze verschillende relatief risiko-

schattingen dan kunnen deze worden verenigd in een samenvattende waarde met 

een grotere precisie. Een complicatie hierbij is echter dat fouten in de 

voedingsinname-metingen in ongelijke mate bias kunnen geven aan relatief 

rissiko-schattingen verkregen in verchillende cohorten, terwijl ook de 
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tussen-cohort ("ecologische") relatie tussen voedingsinname en ziekterisiko 

kan worden verstoord door systematische over- en onder-schattingen van 

innameniveaus. Dit kan met name het geval zijn wanneer het niet mogelijk 

eenzelfde methode te gebruiken voor het meten van de voedingsinname in alle 

cohorten. In het tweede deel van hoofdstuk 4 wordt voorgesteld om sub­

studies voor de calibratie van voedingsinname-metingen te gebruiken voor de 

correctie van variatie in relatief risiko-schattingen als gevolg van 

verschillen in bias. De reductie in de bias in de verschillende relatief 

risiko-schattingen kan zo het onderscheidingsvermogen van een statistische 

toets voor een verband tussen voeding en ziekte vergroten, wanneer deze 

toets is gebaseerd op een samenvattende relatief risiko-schatting in een 

multi-cohort onderzoek. 

Calibratie-correcties voor bias in relatief risiko-schattingen zullen 

alleen doeltreffend zijn als de gebruikte calibratie-factoren zelf met 

voldoende precisie worden geschat. Dit aspect wordt besproken in hoofdstuk 

5, waarin een eenvoudige methode wordt gepresenteerd voor het schatten van 

de vereiste steekproefgrootte van calibratie-studies binnen een cohort. Deze 

steekproefgrootte-schattingen zijn gebaseerd op twee alternatieve criteria. 

Deze criteria vereisen een minimale relatieve efficiëntie van calibratie 

(d.w.z., zodat er slechts weinig verlies in precisie in relatief 

risikoschattingen optreedt), ofwel een minimum onderscheidingsvermogen van 

een statistische toets voor een verband tussen voeding en ziekte, als deze 

toets is gebaseerd op de gecorrigeerde (d.w.z. "gecalibreerde") relatief 

risiko-schatting. De benodigde steekproefgrootte van een calibratiestudie 

hangt dan uitsluitend af van de correlatie tussen vragenlijst- en 

referentie-metingen. 

In studies waar een potentiële risiko-factor wordt gemeten in urine, 

bloed, of andere biologische monsters (d.w.z., in de vorm van een 

"biomarker"), kan de efficiëntie van de studie op eenvoudige wijze worden 

verbeterd door de biologische monsters op te slaan in een "biobank", en door 

meting van de risikofactor uit te stellen tot het bekend is welke individuen 

een bepaald type ziekte hebben ontwikkeld, en wie daarbij als controle­

personen kunnen worden geselecteerd. Desondanks is het aantal te toetsen 

hypothesen meestal veel groter dan het aantal biomarkers dat kan worden 

gemeten in de beschikbare hoeveelheid bloed, of andere biologische monsters. 

Het is daarom van belang over een statistische methode te beschikken om, met 
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gebruik van zo weinig mogelijk biologisch materiaal, onderscheid te maken 

tussen veelbelovende en minder interessante hypothesen. Voor dit doel wordt 

in hoofdstuk 6 een sequentiële onderzoeksopzet voorgesteld, waarin 

laboratoriumanalyses van biologische monsters van cases met ziekte en 

controlepersonen net zolang worden uitgevoerd tot er voldoende gegevens zijn 

om de nulhypothese van "geen verband" tussen biomarker en ziekterisiko al of 

niet te verwerpen. Vergeleken met een statistische toets gebaseerd op een 

vaste steekproefomvang, kan via deze sequentiële benadering minder dan de 

helft van het aantal laboratoriumanalyses volstaan om tot een conclusie te 

komen. Als de nulhypothese wordt verworpen kunnen extra biologische monsters 

worden geanalyseerd om de precisie van relatief risiko-schattingen te 

verbeteren; zo niet, dan kunnen biologische monsters worden gespaard voor 

het toetsen van andere hypothesen. 

Tot besluit, validatiestudies waarin de correlatie tussen vragenlijst-

metingen en werkelijke voedingsinname-niveaus worden geschat kunnen worden 

gebruikt om een optimale vragenlijstmethode te selecteren voor toepassing in 

een prospectief cohortonderzoek. Aan de andere kant zijn calibratiestudies 

met slechts één referentiemeting per persoon efficiënter voor het schatten 

van het statistisch onderscheidingsvermogen van een cohortonderzoek -

daarbij rekening houdend met de effecten van toevalsfouten in innamemetingen 

- of voor de correctie van bias in relatief risiko-schattingen. Een 

belangrijk voordeel van calibratiestudies is dat deze gemakkelijker kunnen 

worden uitgevoerd in a representatieve steekproef van de 

onderzoekspopulatie. In multi-cohort projecten kunnen calibratiestudies 

worden gebruikt om de vergelijkbaarheid van relatief risiko-schattingen te 

verbeteren, en om een nauwkeurigere schatting the verkrijgen van de 

"ecologische" relatie tussen gemiddelde voedingsinnamen en ziekterisiko's in 

verschillende cohorten. In studies waar een risikofactor wordt gemeten met 

behulp van een biomarker, kan de efficiëntie eenvoudig worden vergroot door 

biologische monsters op te slaan in een biobank, en laboratorium-analyses 

uit te stellen totdat "cases" met ziekte zijn geïdentificeerd. Gebruik van 

een sequentiële studie-opzet maakt het dan mogelijk een optimaal aantal 

wetenschappelijke hypothesen te evalueren. 
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Résumé 

Les études prospectives de cohorte constituent une approche idéale pour 

étudier les relations entre le régime, le statut nutritionnel et le cancer. 

Toutefois, pour obtenir une puissance statistique suffisante, ce qui exige 

l'observation d'un minimum de "cas" atteints de la maladie, de telles études 

prospectives doivent en général englober un très grand nombre d'individus. 

Le coût d'une telle étude peut donc être élevé. C'est pourquoi il est 

capital de choisir un protocole efficace qui rende l'étude aussi informative 

que possible pour un investissement temps/ argent donné. 

La présente thèse contient une série de conseils méthodologiques qui 

proposent et analysent des démarches qui pourraient améliorer la conception 

et l'analyse des études prospectives de cohorte sur l'alimentation, la 

nutrition et le risque de maladie chronique. Les premiers chapitres (2 à 5) 

passent en revue des méthodes qui pourraient optimiser l'évaluation de la 

consommation alimentaire habituelle à long-terme des membres de la cohorte 

en attirant l'attention sur : 

1. les moyens de maximaliser la quantité de variations dans la consommation 

réelle d'aliments et de nutriments qui est en fait évaluée -ou "prédite"-

par le biais des bilans alimentaires recueillis à la base. Ceci est une 

des méthodes permettant d'augmenter la puissance d'une étude de cohorte 

sans pour autant augmenter le nombre des participants à cette étude ; 

2. les méthodes permettant d'estimer la distribution des niveaux de 

consommation prédits de façon précise ; ceci est indispensable pour 

obtenir une évaluation exacte de la puissance statistique ou de la taille 

nécessaire de l'échantillon de la cohorte ainsi que pour une estimation 

objective des risques relatifs décrivant les associations entre la 

maladie et les habitudes alimentaires. 

Quant au Chapitre 6, il traite de l'utilisation d'un protocole d'étude 

séquentielle dans le but d'optimiser le nombre d'hypothèses d'études 

spécifiques qui peuvent être obtenues lorsque l'on évalue l'exposition à 

partir de marqueurs biochimiques mesurés dans les urines, le sang ou 

d'autres échantillons de tissu. 

Une première approche simple permettant de maximaliser la variation 

prédite en niveau réel de consommation consiste en la selection d'un type 
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de questionnaire alimentaire qui autorise la classification optimale des 

individus en fonction de leur consommation respective d'aliments et de 

nutriments. Traditionnellement, on fait cette sélection en se basant sur les 

corrélations estimées entre les bilans alimentaires et le niveau de 

consommation réel des individus. Le Chapitre 2 examine, en termes de modèles 

de variable latente, comment estimer cette corrélation au cours d'une étude 

préliminaire de validité, en comparaison avec au moins deux mesures de 

consommation. Il est primordial que toutes les mesures comportent des 

erreurs indépendantes les unes des autres afin que la corrélation entre les 

mesures soient uniquement due à leur relation avec la même variable de 

consommation réelle (latente). En pratique, les mesures complémentaires sont 

le plus souvent obtenues au moyen d'enregistrements de consommation répétés 

qui utilisent soit une méthode de pesée, soit un rappel de 24 heures. On 

peut aussi concevoir des études de validité où la corrélation entre le 

questionnaire d'évaluation et les niveaux de consommation réels de 

nutriments seraient estimés en les comparant aux enregistrements de 

consommation alimentaire et aux marqueurs biochimiques. Cette alternative 

présente l'avantage que les erreurs de mesures ont plus de chances d'être 

indépendantes quand les trois mesures sont obtenues par des méthodes 

différentes (c'est à dire, questionnaire, enregistrement, et marqueurs 

biochimiques). 

Les coefficients de corrélation estimés entre les évaluations obtenues 

par questionnaire et la consommation habituelle réelle de l'individu 

constituent aussi une information essentielle pour la plannification 

ultérieure d'études épidémiologiques sur l'alimentation : 

a) pour évaluer la taille nécessaire de l'échantillon d'une étude de cohorte 

avec les corrections pour les pertes de puissance dues aux erreurs 

alléatoires dans l'évaluation de l'exposition alimentaire ; et 

b) pour calculer une estimation de l'amplitude du biais d'atténuation dans 

le risque relatif. 

Dans le Chapitre 3, on démontre que si les risques relatifs sont calculés 

pour des différences échelonnées et absolues dans le niveau de consommation 

alimentaire (exprimées en unités standard), on peut calculer la taille 

requise de l'échantillon à partir de la variance de distribution des niveaux 

de consommation réels prédits par les questionnaires d'évaluation recueillis 
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au départ. De même, on peut démontrer que le biais des risques relatifs 

estimés est égal à la variance de la distribution de la consommation prévue 

divisée par la variance du questionnaire d'évaluation. Il n'est pas 

nécessaire de connaître la corrélation entre les questionnaires d'évaluation 

et les valeurs de consommation réelle pour évaluer la variance de la 

distribution de la consommation prédite. C'est pourquoi une étude de 

validité basée sur de multiples mesures complémentaires n'est pas 

indispensable. On peut utiliser à la place une étude de calibrage qui 

utilise comme mesure de référence la consommation en aliments d'un seul jour 

pour une seule personne. On sait que pour un nombre donné d'enregistrements 

sur la consommation journalière, l'estimation de la variation des niveaux de 

consommation prédits est la plus précise quand le calibrage est basé sur un 

nombre maximum de participants, avec seulement un enregistrement chacun. 

Autre avantage important : l'étude de calibrage peut être mise en place plus 

facilement sur un échantillon représentatif de la population de l'étude 

(quand il est inclus dans une étude prospective de cohorte). La 

représentativité est une condition importante pour une estimation exacte de 

la puissance des études de cohorte, ou des biais d'estimation du risque 

relatif. 

La deuxième démarche permettant d'augmenter l'amplitude des variations 

prédites des valeurs de consommation est d'élargir la gamme de consommation 

alimentaire réelle couverte. On peut obtenir cela en combinant les données 

de différentes études de cohorte, réalisées dans des régions du monde 

différentes et recouvrant des styles de vie et des habitudes alimentaires 

différents. Le programme EPIC (étude prospective de recherche sur le cancer 

en Europe, coordonnée par le Centre International de Recherche sur le Cancer 

(Lyon, France)) est un exemple de cette approche multi-cohortes. Le Chapitre 

4 montre que dans les projets multi-cohortes de ce genre, le risque relatif 

indiquant des associations entre le niveau de consommation alimentaire et 

l'incidence de la maladie peut être estimé à partir : 

1. des différences internes aux cohortes dans les niveaux de consommation 

alimentaires mesurés et les pronostics de la maladie chez les individus ; 

2. des variations ("écologiques") inter-cohortes, entre les mesures de 

consommation moyenne et les taux moyens d'incidence de la maladie au 

niveau de la population. 

Si la cohérence entre les diverses estimations des composés est suffisante, 
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on peut les rassembler dans un résumé des valeurs générales plus puissant. 

Il est toutefois préférable de rester prudent puisque, à l'intérieur des 

différentes cohortes, les estimations des risques relatifs peuvent être 

biaisées à différents degrés à la suite d'erreurs dans les bilans 

alimentaires, de même que les relations inter-cohortes ("écologiques") 

peuvent aussi être faussées par des différences entre les inévitables "sur" 

ou "sous-évaluations" des niveaux de consommation moyens. Ceci est 

particulièrement vrai lorsqu'il est impossible d'utiliser des méthodes 

identiques pour évaluer la consommation alimentaire dans toutes les 

cohortes. La deuxième partie du Chapitre 4 propose d'utiliser des 

mini-études pour le calibrage des bilans alimentaires permettant un 

ajustement pour l'hétérogénéité possible dans les risques relatifs estimés, 

dont les biais de divergeance sont responsables. Cette diminution de 

l'hétérogénéité dans les risques relatifs estimés pourrait augmenter la 

puissance d'un test statistique basé sur les risques relatifs estimés 

groupés et permettant d'établir la relation entre alimentation et maladie. 

Les ajustements de calibrage pour les biais de risques relatifs ne seront 

appropriés que si les facteurs de calibrage utilisés pour ces corrections 

ont eux-mêmes été établis avec suffisamment de précision. Cet aspect du 

problème est abordé dans le Chapitre 5 qui présente une approche simplifiée 

de l'estimation de la taille approximative nécessaire à un échantillon au 

sein d'une cohorte. Ces estimations de la taille d'un échantillon sont 

basées sur deux critères alternatifs, qui exigent soit une capacité de 

rendement relative minimum du calibrage (pour qu'il n'y ait qu'une perte 

minime de précision dans l'estimation du risque relatif), soit un test doté 

d'un minimum de puissance statistique pour établir une relation entre 

l'alimentation et la maladie basée sur les estimations corrigées des risques 

relatifs (c'est à dire, après calibrage). La taille nécessaire d'une étude 

de calibrage ne dépend alors plus que de la corrélation entre les 

évaluations obtenues par questionnaires et les mesures de référence. 

Dans les études où les évaluations de l'exposition sont basées sur des 

marqueurs biochimiques mesurés dans le sang, les urines ou d'autres 

spécimens biologiques, une mesure performante et simple est de stocker les 

échantillons biologiques dans une "biobanque", et de repousser la mesure de 

l'exposition jusqu'à ce qu'on sache quels sont les individus qui ont eu un 
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type donné de maladie et qui fera un contrôle approprié. Il n'en reste pas 

moins que le nombre d'hypothèses scientifiques qui présentent un intérêt 

potentiel est généralement bien plus grand que le nombre de marqueurs 

biologiques que l'on peut effectivement mesurer avec une quantité limitée de 

sang ou d'un autre échantillon biologique disponible. Il serait donc utile 

de disposer d'une méthode statistique qui, avec le moins de matériau 

biologique possible, permette de distinguer les hypothèses les plus 

interessantes des moins intéressantes. C'est dans ce but que le Chapitre 6 

propose d'utiliser un plan d'étude séquentiel dans lequel les analyses des 

laboratoires des échantillons biologiques provenant des cas et des contrôles 

seraient effectuées jusqu'à ce que l'on dispose de suffisamment de données 

pour rejeter ou conserver une hypothèse nulle de "non association" entre 

marqueur et risque de maladie. En moyenne, et en comparaison à une procédure 

équivalente de test sur échantillon fixe, un test séquentiel demande moins 

de la moitié des échantillons biologiques pour aboutir à une conclusion. Si 

l'hypothèse nulle est rejetée, on peut analyser des échantillons biologiques 

suplémentaires pour améliorer la précision des risques relatifs estimés ; 

sinon, on peut garder les échantillons biologiques pour évaluer les 

différentes hypothèses. 

On peut donc conclure que les études préliminaires de validité qui 

évaluent la corrélation entre les bilans et la consommation alimentaire 

réelle, peuvent servir à sélectionner le type de questionnaire optimal qui 

pourra être utilisé dans une étude prospective de cohorte. D'autre part, les 

études de calibrage qui n'utilisent qu'une mesure de référence par personne 

sont plus efficaces quand leur objectif est d'estimer la puissance des 

études prospectives de cohortes en rendant compte des effets causés par les 

erreurs d'évaluation aléatoires ou de corriger des biais dans les risques 

relatifs estimés. Le principal avantage des études de calibrage est qu'elles 

peuvent être effectuées plus facilement sur un échantillon représentatif de 

la population de l'étude. Dans le cadre des projets multi-cohortes, les 

études de calibrage peuvent être utilisées pour améliorer la qualité de 

comparaison entre les risques relatifs estimés de chaque cohorte et pour 

obtenir une estimation plus précise de la relation inter-cohorte, 

"écologique" entre les niveaux de consommation alimentaires et l'incidence 

de la maladie. Dans les études où les évaluations de l'exposition sont 

basées sur les marqueurs biochimiques, une mesure simple et efficace est de 
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stocker les échantillons biologiques dans une "biobanque" et de repousser 

les analyses de laboratoire jusqu'à ce qu'on ait rencontré des cas de 

maladie. On peut ensuite utiliser les plans d'études séquentielles pour 

permettre l'évaluation d'un nombre optimal d'hypothèses scientifiques avec 

une quantité donnée de matériau biologique disponible. 
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