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Stellingen 

1 Bij het ontwerpen van een experiment ten behoeve van inverse modellering dient over 
de identificeerbaarheid van de model-structuur grondig vóórgedacht te worden. 

2 Met behulp van Kalman filtering kan de bijdrage van de verschillende foutenbronnen 
aan de voorspellingsfout beter worden geschat. Hierdoor kan voorkomen worden dat 
bij de verbetering van weervoorspellingen onnodig veel geld wordt geïnvesteerd om 
een kleine bijdrage nog verder te verkleinen. 

3 De bepaling van de massa-balans, ter controle van de nauwkeurigheid van numerieke 
oplossingschema's, zoals voorgesteld door Celia and Bouloutas, is slechts van be­
perkte waarde omdat de berekening van deze maat ook aan onnauwkeurigheden 
onderhevig is. 

Celia, M.A. and E.T. Bouloutas, A general mass-conservative numerical solution for the 
unsaturated flow equation, Water Resour. Res., 1990. 

4 Omdat numerieke wiskunde een steeds belangrijkere rol speelt bij het modelleren van 
veel bodemfysische processen, verdient het aanbeveling om mathematische en statisti­
sche software libraries een inherent onderdeel te laten uitmaken van het standaard 
gereedschap van de modelbouwer. 

5 Het optimaliseren van een experiment vraagt een goede communicatie tussen experi­
mentele onderzoekers, modelbouwers en statistici, omdat het theoretisch optimale 
ontwerp van het experiment praktisch niet uitvoerbaar kan zijn. 

6 De positieve effecten van zowel resonantie-therapie en transcendente meditatie zijn 
gebaseerd op "wishfull thinking" en zijn wetenschappelijk niet te onderbouwen. 

7 Om tegen wateroverlast verzekerd te zijn moet men een drijvend huis bouwen. 

8 Het invoeren van een ISO-9000 certificaat ter beoordeling van de kwaliteit van een 
opleiding kan de huidige prioriteitsstelling bij veel onderwijsinstituten, te weten 
kwantiteit boven kwaliteit, weer omdraaien. 

9 De huidige spelregel bij zaalvoetbal, waarbij een terugspeelbal op de keeper leidt tot 
een directe vrije trap vanaf de zes-meterlijn, leidt tot prijsschieten en draagt daarom 
niet bij aan de primaire doelstelling van sport, namelijk verbroedering. 

10 Het zou de samenleving ten goede komen als notabelen hun plaats weer zouden 
innemen aan de stamtafel van de lokale kroeg. 

S.L.J Mous 
On identification of nonlinear systems 
Wageningen, 11 april 1994 
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Chapter 1 

INTRODUCTION 

1.1 BACKGROUND 

Models of physical, chemical or biological processes are probably more 

important than non-specialists may realize. One can use models for various 

purposes, e.g., simulation, prediction, control. With simulation models one 

can analyze the effect of different inputs, moreover, different scenarios of 

control policies for a process can be evaluated. Prediction models on the 

other hand may provide very useful information for making decisions. For 

example, the weather forecast can be very important for the decisions a 

farmer has to make. In control problems a model of a process is essential for 

the design of a control system: to maintain a constant temperature in a stirred 

tank, it is necessary to know the transfer function between feed flow rate and 

stirred tank temperature in order for the control system to compensate for 

disturbances in the feed flow rate or feed temperature. 
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System identification deals with the problem of building accurate 

models of processes. Since many processes are nonlinear, complex numerical 

models may be necessary to describe them. An introduction into nonlinear 

regression techniques for estimating parameters in nonlinear dynamical 

models can be found in e.g., Bates and Watts (1988). Nonlinear regression 

methods are suitable for the identification of simulation models, since these 

models aim to predict the output of the process based on input data. For the 

identification of prediction models, nonlinear filtering techniques may be 

more appropriate. Nonlinear filtering techniques are used to estimate the 

future state of the process based on input and output data of the past. A 

criterion based on the difference between the predicted state and the obser­

vation of this state is then a natural choice. An introduction into nonlinear 

filtering theory can be found in e.g., Jazwinski (1970) and Anderson and 

Moore (1979). 

In this thesis we will focus on models that are used to describe 

nonlinear processes in hydrology and meteorology. The first process that will 

be analyzed deals with the movement of water in unsaturated soils. The 

knowledge of the displacement of water in unsaturated soils is important for 

the development of water management systems: water from precipitation, 

from irrigation or from an influent river, infiltrates through the ground 

surface and percolates downward through the unsaturated zone into a phreatic 

aquifer. Information about the displacement of water in the unsaturated zone 

is needed in order to determine the replenishment of a phreatic aquifer as part 

of the groundwater system. A description of the flow of water in the unsatu­

rated zone is also needed to predict the spread and accumulation of dissolved 

pollutants in the unsaturated zone and the rate and concentration at which 

these pollutants reach the water table (Bear and Vermijt, 1987). 

In meteorology models are used in the prediction of the weather for a 

number of days ahead. Models of the atmospheric circulation are analyzed in 

the second part of this thesis. Due to sensitive dependence on the initial state 
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it is not possible to produce accurate forecasts beyond a range of about five 

days. Although the accuracy of weather models has been improved substan­

tially in the last decades, it is very difficult to compare the quality of diffe­

rent weather models, because the predictability range may depend on the 

initial state. In the evaluation of the model it may be meaningful to distin­

guish here between the mathematical model and the numerical integration 

scheme. Numerical errors add up to errors due to neglecting certain physical 

processes in the mathematical model. It is known how numerical errors 

should be estimated. However, there does not exist yet a systematic approach 

to evaluate the error that is caused by not incorporating certain physical 

processes or by incorrect parameterization of such processes. In the second 

part of this thesis we will address to this problem. 

1.2 SYSTEM IDENTIFICATION 

In some literature system identification is sometimes denoted by 

'inverse modeling' or 'inverse problem' (e.g., Kool and Parker, 1988). It 

refers to the determination of (differential) equations that describe the 

physical process, given the input and output signals. Zadeh (1962) gives a 

more precise definition of system identification. It is the determination given 

input and output data of a system within a specified class of systems to 

which the system under test is equivalent. In this formulation 'the system 

under test' is the process and the elements of 'the class of systems' are the 

models. Due to the systems complexity, as well as the incomplete availability 

of observations and the limited a priori knowledge, it is generally impossible 

to try to obtain an exact mathematical description of the physical process. 

Therefore, mathematical models only can describe the system approximately. 

In this light it is more natural to consider system identification as approxi­

mate modeling on the basis of observed data and a priori knowledge 
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(Janssen, 1988). 

In general, one can say that the identification process contains three 

essential ingredients: 

selection of the class of systems 

definition of a criterion of best fit 

experimental design 

The problem of selecting the class of systems is highly influenced by the a 

priori knowledge of the process. If one has sufficient insight into the process, 

one may give a detailed "physical" model structure. However, often one has 

to use some type of empirical relations or even a "black box" model structu­

re. A model structure is a description of a process, expressed in terms of 

mathematical equations. Sometimes one has to decide between two or more 

model structures. The choice of a specific model structure may be based on 

statistical selection criteria. In Rasch et al. (1992) some of these statistical 

selection criteria are discussed. Besides these statistical selection criteria other 

criteria can play a role also. For example, in predicting the future behavior of 

a process, it may be more suitable to use a simple model than a detailed 

description of the process, since the calculation of the prediction with the 

detailed model may cost so much time that the prediction becomes worthless. 

After the choice of the model structure, the identification problem is 

reduced to a parameter estimation problem. Parameter estimation may be 

defined as the experimental determination of values of parameters that govern 

the dynamic behavior assuming that the structure of the model is known. 

Eykhoff (1974) pointed out that the distinction between knowledge of the 

model structure and parameters is not as straightforward as it may appear on 

first sight. The change from a non-zero to zero value of a parameter may 

represent a simplification in the structure, as that 'branch' of the model may 

be deleted. Thus, the result of the parameter estimation problem can be that 
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one has to reconsider the structure of the model. 

To determine the best approximating model, we have to define a 

criterion of best fit. For the identification of simulation models a reasonable 

choice would be to use the sum of squares of the differences between 

observations and model values as object function. If the purpose is not 

simulation but prediction it may be more useful to define an object function 

based on prediction errors. In the literature of system analysis the first 

method is called an output-error method whereas the second method is called 

a (one-step ahead) prediction error method (e.g., Ljung, 1987). 

Some statistical methods, such as the Maximum Likelihood method, 

require a priori knowledge of the probability distribution of the error terms. 

Often it is assumed that the observations are contaminated by white Gaussian 

noise and that the differential equation is perturbed by a white Gaussian noise 

process. For linear systems the Maximum Likelihood estimates can then 

easily be obtained using the Kalman-Bucy filter (cf., Harvey, 1981), For 

nonlinear systems we may linearize near some solution and make an approxi­

mation in this way. 

An important aspect of identification is experimental design. Experi­

mental design means the specification of the input signals, the sampling rate 

and the number of observations to be taken (Rasch, 1990). In this thesis only 

the specification of the input signals is considered. The advantage in con­

triving a well-designed experiment is that we may obtain richer and more 

informative output signals. Of course we cannot manipulate the input signals 

freely, because the experimental conditions may not deviate too much from 

the conditions in the final application. Sometimes there are no controllable 

input signals, for example with the weather system. For the identification of 

such systems the determination can only be based on (passive) observations 

of the process. 
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1.3 OBJECTIVES OF THIS STUDY 

Not every meaningful looking combination of model structure, criterion 

of best fit and experimental design will lead to a unique estimate of the 

unknown parameters. The problem of not finding a unique solution of the 

identification problem was already noticed by Bellman and Astrom (1970). 

To analyze this non-uniqueness problem, they have introduced the concept of 

structural identifiability. A model is called (globally) identifiable if the model 

structure with different parameters values and identical input signals yields 

different output signals. However, an identifiable model structure is not suffi­

cient to ensure a unique parameter estimate because uniqueness may also 

depend on the chosen criterion, non-linearities, the dynamic behavior of the 

system, and the design of the experiment (e.g., Walter, 1982, Ljung, 1987). 

One can distinguish several cases in which problems occur in the unique 

estimation of the parameters. In this study, we first have considered the case 

where the object function is insensitive to certain parameters or linear combi­

nations of parameters. It is clear that then the optimization problem will not 

have a unique solution, because many parameter combinations will give an 

(almost) equal value of the object function. As a second case, we have 

considered a combination of criterion and model structure which makes the 

problem ill-posed. This type of optimization problems cannot be solved by 

ordinary optimization algorithms. An example of such a problem is the 

identification of a chaotic system (Baake et al., 1992). 

Possible causes of an insensitive object function are overparameteri-

zation of the model structure, non-informative input signals and non-linearity 

(Ljung, 1987). Noise in the system may mask the insensitivity to parameters 

because the optimization problem may have many local minima. One can 

easily be misled when an optimization algorithm converges to such a local 

minimum. In many practical situations it can be very difficult to prove that 

the model structure is not identifiable. In practice we have to restrict our-
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selves to a specific combination of model structure, criterion and experi­

mental design and analyze the existence of a unique solutions for this 

combination. 

An example of such a combination is studied in the first part of this 

thesis. There we analyze the identifiability of the model used in the ONE-

STEP method, describing the movement of water in unsaturated soils (Kool 

et al., 1985,1988). The water movement in the unsaturated zone is described 

by the Richards equation in conjunction with the Mualem-van Genuchten 

relations (Mualem, 1976, van Genuchten, 1980). The study of this problem 

was motivated from the statement made by several authors that not all 

parameters could be obtained uniquely (e.g., Hornung, 1983, Kool et al., 

1985 and van Dam et al., 1990). The object was to find the cause of this 

non-uniqueness problem and to suggest designs for new experiments. In a 

recent paper, Toorman et al. (1992) describe a new experimental setup, in 

which pressure head measurements have been included. The improved 

sensitivity of the object function with respect to the parameters, which was 

reported in their paper, could also be predicted as a result of this study. 

In the second part of this thesis the identification of chaotic systems is 

studied. As mentioned above the identification of these systems may lead to 

an ill-posed optimization problem (Breeden and Hübler, 1990, Farmer and 

Sidorowich, 1991, Baake et al., 1992). The optimization method with an 

output-error criterion for this class of problems is ill-posed, because the 

model's solution depends sensitively on its initial states. The observed values 

and the model values will then diverge due to the limited accuracy of the 

initial state. Consequently, the optimization problem with this criterion will 

also have many local optima. Therefore, one may be tempted to say that the 

model is also not-identifiable. In the previous case, an other experimental 

setup that gives more informative output signals may solve the problem of 

non-identifiability. Here, this approach is not necesarily to solve the non-

identifiability problem since in essence the output signals contains enough 
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information (Baake et al., 1992). An approach to solve the problem of non-

identifiability may be to use a different criterion of best fit. We have ana­

lyzed the performance of criteria that are less sensitive to disturbances in the 

initial state. 

In meteorology this is a highly actual problem because the atmospheric 

circulation behaves chaotic. Parameters in models for the atmospheric 

circulation are often known with a limited accuracy. The effect of a small 

perturbation of a parameter may be significant (de Swart, 1988, Grasman and 

Houtekamer, 1992). An example of a small perturbation is a possible devi­

ation in the equator-pole temperature gradient. The equator-pole temperature 

gradient can be seen as the driving force of our atmosphere. Therefore, 

detecting a systematic change in this driving force may give more insight into 

the greenhouse effect. 

1.4 OUTLINE OF THE THESIS 

This thesis contains four self-contained chapters. In chapter 2 and 3 the 

main topic is the identification of displacement of water in the unsaturated 

zone. The accuracy of some numerical schemes is analyzed in chapter 2. 

Special attention is given to the size of truncation errors due to spatial 

discretization. These errors may be large because of the presence of a steep 

"drying front". This makes it difficult to approximate the fluxes accurately. 

One may obtain accurate approximations of the fluxes by using a variable 

step-size scheme. This scheme is made more efficient by choosing optimal 

locations of the nodes. 

In chapter 3 the connection between the numerical accuracy of the 

model output and the identifiability of the model is studied. Identifiability 

analysis shows that not all parameters of the Mualem-van Genuchten relati­

ons can be estimated using the ONE-STEP method. Furthermore, the question 
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has been raised whether other experimental designs may result in richer and 

more informative output signals. This chapter has been presented as a paper 

at the XVI General Assembly of the European Geophysical Society and has 

been published in the Journal of Hydrology. 

In chapter 4 and 5 applications in meteorology are treated. In chapter 4 

two methods for assessing the size of an external perturbation in a chaotic 

model are investigated. The first method is based on Lions' sentinel functions 

(Lions, 1988, 1990). This method is originally developed for analyzing 

processes that are described with partial differential equations. In this chapter 

a modified sentinel method is presented that can be used to detect perturbati­

ons in processes that are described by systems of ordinary differential equati­

ons. The second method is an adaptive extended Kalman filter. In this 

method the unknown parameters are regarded as random variables and the 

state vector is augmented with these variables. Since the extended Kalman 

filter yields estimates of the state vector, it provides an estimate of the 

unknown parameters as well. This chapter has been published in Mathemati­

cal Models and Methods in Applied Sciences, with J. Grasman as co-author. 

Since the use of the adaptive extended Kalman filter was rather 

successful for these meteorological problems, this method has been developed 

further in chapter 5. The advantage of the adaptive extended Kalman filter 

over the sentinel method is that it provides more accurate estimates in a 

shorter time. An additional advantage is that it is an on-line method. This 

gives the possibility to estimate also a parameter that slowly changes with 

time (Mous, 1993). There are also some disadvantages: reduction in perfor­

mance because the filter uses initially the wrong parameter values, filter 

divergence due to the chaotic behavior of the process and finally the compu­

tational costs in case of high dimensional systems. 

The first problem may be overcome by repeating the process using the 

estimated parameter values from the first run as initial estimates for the 

parameters in the second run. Although this approach may have a better 

9 
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performance, the advantage of an on-line method disappears. The second 

problem, the divergence of the extended Kalman filter, can be solved by 

adding an artificial noise term to the state equations. With this noise term we 

can control the memory of the extended Kalman filter (Jazwinski, 1970). 

However, for an optimally working extended Kalman filter the noise parame­

ters that describe the artificial noise term have to be estimated as well. In 

chapter 5 an approximated maximum likelihood method is used to estimate 

the unknown model parameters and the noise parameters. The last problem of 

high computational costs has not been solved yet. A solution may be found in 

using fast sub-optimal filters, such as the simplified Kalman filter of Dee 

(1991) or in using other criteria, which can make the function and gradient 

evaluation much faster. 
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Chapter 2 

NUMERICAL SOLUTIONS FOR 

THE ONE-STEP EXPERIMENT 

Abstract 

The ONE-STEP experiment (Kool et al., 1985) describes an experi­

mental procedure for determining the hydraulic properties of a soil sample. It 

involves measurement of cumulative outflow with time from a soil core 

placed in a pressure cell. The water flow in this soil core is one-dimensional 

and can be described by the Richards equation. 

In this paper some numerical solutions of this equation are compared. 

The effort that is required to obtain accurate solutions, for both the finite 

element and the finite difference approach, strongly depends on the experi­

mental conditions. In case the pneumatic head applied to the pressure cell is 

low, e.g., 250 cm, both approaches are sufficiently accurate. However, if the 

pneumatic head is high, say 1000 cm, a small spatial discretization step size 

13 
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is required to obtain accurate solutions. Since such a small step size is only 

needed in a small part of the solution space, a variable step size scheme will 

improve the efficiency. The optimal positions of the nodes are determined 

using estimates of the truncation errors. It turns out that this variable step-size 

scheme yields the same order of accuracy using only 1/4 of the number of 

nodes. 

2.1 INTRODUCTION 

Recently, a considerable effort has been put in the determination of soil 

hydraulic properties from transient flow data. Knowledge of these hydraulic 

properties is important for the calculation of groundwater movement in 

unsaturated soils. In most models it is assumed that the movement of water in 

unsaturated soils satisfies the classical Richards equation. The main subject of 

this paper is the analysis of the discretization errors that are made by the 

numerical approximation of the solution of this equation. This topic plays an 

important role in identification methods such as the ONE-STEP method (e.g., 

Kool et al., 1985, 1988). It is therefore that in this paper we study the 

problem of approximating numerically the solution of the Richards equation 

as a separate problem. 

Several authors have given numerical approximation schemes for the 

Richards equation. Hanks et al. (1969) presented a finite difference approach 

to solve the Richards equation, while van Genuchten (1982) presented a finite 

element approach. The integration method originally used in the ONE-STEP 

method was adopted from van Genuchten. More recently, several papers have 

appeared on so-called mass-conservative schemes (Milly, 1985, Ceila et al., 

1990). These schemes have smaller errors due to time discretization compa­

red with schemes where the implicit Euler method is used for time stepping. 

Another approach to make the time discretization errors small is to use a 

14 



NUMERICAL SOLUTIONS 

high-order integration scheme, for example a linear multistep method or a 

Runge-Kutta method. For these high-order schemes a larger time step can be 

taken than the one for the Euler scheme without losing accuracy in the 

approximations. 

As mentioned above, the discretization errors are not only caused by 

time discretization, spatial discretization may also play a role. The main 

question is: what is the most important cause of the errors, the time discreti­

zation or the spatial discretization? We know from Milly (1985) and Ceila et 

al. (1990) that the errors due to time discretization can be significant and that 

to this point special attention has to be given. Ceila et al. (1990) have shown 

that their mass-conservative scheme, based on the mixed-formulation of the 

Richards equation, yields smaller errors due to time discretization. However, 

they also mention that a numerical scheme that conserves mass is not suffi­

cient to guarantee accurate solutions of the mass-balance differential equation. 

In this paper the attention is focused on numerical errors due to spatial 

discretization. The importance of the spatial discretization can be evaluated 

by estimating the magnitude of the spatial discretization errors; this can be 

done by making the time discretization errors comparatively small, so that the 

errors only depend on the spatial discretization. 

The paper begins with an outline of the outflow experiment. Special 

attention is given to the movement of water in the porous plate, since the 

movement of water in this plate is described by a degenerated Richards 

equation. The movement of water in the soil has to be solved numerically 

whereas the movement of water in the porous plate can be simply solved 

analytically. Numerical solutions using either a finite difference, a finite 

element or a finite element with variable step-size method are compared for 

two experimental setups of the outflow experiment. These experimental 

setups differ in the pneumatic head that is applied to a soil core. With a high 

pneumatic head the solution is characterized by a "steep drying front", which 

makes the solution sensitive to numerical errors. Finally in the last section we 
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make some concluding remarks. 

2.2 PROBLEM FORMULATION 

The ONE-STEP method (Kool et al., 1985) is developed for identifica­

tion of one-dimensional transient water-flow in porous media in a simple and 

fast way. In this section an improved mathematical description of this 

experiment is presented. 

CROSS. SECTION OF TEMPE PRESSURE CELL 

Figure 2.1. The measurement system. 

Figure 2.1. shows schematically the measurement system. It consists of 

a soil sample and a porous plate placed in a pressure cell. Initially the soil 
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sample is almost saturated. As a result of the pneumatic head that is applied 

to the cell water seeps out. Comparing the measured cumulative outflow Q(f) 

with the outflow that is calculated by a model, one may obtain the unknown 

parameters in the model using an inverse modeling procedure. The mathema­

tical model that is used to calculate the outflow is based on the Richards 

equation: 

a/o— = 4-
dt ox 

f (zu W 
K(h) 

dx 
0 < x < I, t> tn, (2-1) 

*o 
JJ 

h(x,t0) = h0(x), (2.2) 

WM = U (2.3) 
dx 

h{l,t) = -hc = -*£-, (2-4) 
PS 

where 

x = the vertical coordinate, with x = 0 at the top of the core and 

x = I at the bottom of the porous plate, 

h(x,t) = pressure head at time t at point x in the medium, 

C(h) = the differential water capacity of the soil at a pressure head 

h, 

K(h) = hydraulic conductivity of the soil at a pressure head h, 

Ap = gauge gas pressure applied to the cell, 

p = density of water, 

g = gravitation acceleration. 

In the above formulation it is assumed that the initial conditions (2.2) are 
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known. Furthermore it is assumed that the pressure at the bottom of the plate 

is atmospheric and that no water infiltrates into the soil sample. 

The mathematical functions for the hydraulic properties of the soil, 

C(h) and K(h) are modeled by Mualem (1976), van Genuchten (1980) and 

Wösten and van Genuchten (1988): 

CQi) =M= am(es-9r)5e
1/m(l -S]lmT(l -m)-1 , (2.5) 

dh 

K{h) = KSy
e(l - (1 -SxJmY)2, (2-6) 

e = er+s(ev-er) (2.7) 

with 

S = (1+ \ah\nym, 

m = l-l/n 

and where 9 is the volumetric water content. The unknown model parameters 

are a, n, Qr, Qs, Ks, y. In the numerical examples presented later we use 

numerical values for these parameters according to table 2.1. 

The volumetric water content 0 is used to calculate the cumulative 

outflow Q(t) according to 

ß(0 = AJ{Q(h(x,t0))-Q(h(x,t))}dx (2-8) 
0 

where A is the core area in a horizontal cross-section. Since the porous plate 

is saturated in the beginning of the experiment and remains saturated during 

the experiment, one may assume that the differential water capacity C(h) and 
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Table 2 .1 . Parameter values used in the Mualem-van Genuchten model. 

Parameter Value(unit) 

a 0.01 (cm 1 ) 

n 2.0 (-) 

6r 0.17 (-) 

0S 0.47 (-) 

K, 3.0 (cm/h) 

Y 2.0 (-) 

the hydraulic conductivity K(h) in the porous plate satisfy 

C(h) = 0, 

W) = K. 
p 

Consequently, the Richards equation degenerates to a simple ordinary 

differential equation in the fully saturated porous plate: 

?!i = 0 , b < x < I, t > ta, (2.9) 
dx2 

where x = b is the top and x = I is the bottom of the porous plate. So, the 

pressure head in the porous plate is given by: 

h(x,t) = h(b,t) + 'x-0 
Vd J 

(h,-h(b,t)) (2.10) 

with hi = h{l,t) the pressure head at the bottom of the porous plate and d = 

l-b the thickness of the porous plate. In the numerical examples we will use 
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as thickness of the porous plate, d = 0.57 cm and as length of the soil 

column, b = 4.00 cm. 

At the interface between soil and porous plate the pressure head and 

the flux are continuous functions of x. So at x = b: 

h(b',t) = h(b+,t) = h(b,t), (2.11) 

K(h(b,t)) 
dh(b~,t) 

v 
dx 

= K 
(h,-h(b,t)) (2.12) 

Equation (2.12) can be used as a boundary condition for the unsaturated flow 

equation describing the movement of water in the soil sample. This leads to 

the new problem formulation: 

C(h)— = — 
dt dx 

(K(h{dh \\ 
- 1 

ydx ;J 

0 < x < b, (2.13) 

h(x,t0) = h0(x), (2.14) 

dh(0,t) 
dx 

= 1, (2.15) 

/ 

dh(b,i) 

dx 

\ 
(h,-h(b,t)) 

K
P-2—d -Kp + K(h(b,t)) 

K(h(b,t)) 

(2.16) 

Because the differential equation and one of its boundary conditions are 

nonlinear, the solution of this equation is approximated numerically. In the 

next sections some numerical solutions of this equation are given and the 

results are compared. 
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2.3 NUMERICAL APPROXIMATIONS 

The numerical solutions of eqs. (2.13-2.16) are based on either a finite 

element or a finite difference approach for the space discretization. This 

semi-discretization of the Richards equation leads to a system of ordinary 

differential equations (ODE's) which is then solved by an ODE-solver. In 

previous work the Euler method is often used as ODE-solver (e.g., van 

Genuchten, 1982). A way to improve the efficiency and reliability of the 

numerical integration is to use a higher order ODE-solver, for example a 

linear multistep method or a Runge-Kutta method. Many software libraries 

supply routines in which these methods are implemented. These routines also 

include algorithms to optimize the order of the method and the step size 

(IMSL, 1987). Since our problem is likely to be stiff, we have chosen the 

implicit Gear method (backward differences up to order five). 

In the finite element (FE) approach the solution h{x,t) of eqs. (2.13-

2.16) is approximated by 

M 

h(x,f) = Eh.(t)v.(x) (2-17) 
j = o ' ' 

where Vj(x) are the selected basic functions. As basic functions the simple 

chapeau functions are used. The nonlinear coefficients C(h) and K(h) are also 

expanded in terms of the chapeau functions. Furthermore the mass matrix is 

lumped to guarantee non-oscillatory solutions (Ceila et al., 1990). Evaluation 

of the integrals that occur in this formulation leads to the following system of 

nonlinear ODE's: 

u = A(u)u + Diu) (2-18) 

with 
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Mu)--

*2\n (nr j . r ^Av*/^ ((2C0+C,)Axi)/3 ((2C0+C,)Ax73 

2 i ,Ai 

Ar0+jfuAr,+A:2| 

2fc,Ai 2btAx 

K,+K2 

2ijAi ~| 

(K,+K^K2+K,' 

IbAx IbAx 

K2+K3 

2b2Ax 

K-A- , _ 
2iM_,Ax 

X «-2+* ; «- l + * > - l + K M ^ m - i * * * 

KU-I+KM 

((C„.1+2C,,)Ai2)/3 ((C„.1+2C;„)Ax2)/3 

D(u) = 

-0.5(y/g 
((2C0+f,)Ax)/6 

O.5(X-0-A:2) 

o.syr,-*,) 

— 5 ; — 

OW„-2-K„) 

o 5(^„_,+/i:M)+/fp 

((CV,+2C'„)Ax)/6 

( \ 
K 

where 

Ax = b/M 

bj = {{Chl + 2Cj)Ax +(2Cj + Cj+1)Ax)/6, 

Kj = K(hj), 

Cj = C(hj), 

j=l,...,M-l, 

j = 0, ..., M, 

j = 0, ..., M. 

The second scheme that will be used is based on the finite difference 

approach. Using central finite differences for the spatial discretization of eqs. 

(2.13-2.16) one obtains: 
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d_ 
dx 

K(h) 
V 

1 
Ax 

dh. 

dx 

\\ 

: - i 
j ) 

v 

h.-h. 

Ax ~KJ-i 
h.-h. , 

Y\ 

Ax 
fO(Ajc2), j=0,...,M 

JJ 

(2.21) 

d\ 

dx 

\-h_ 

2Ax 
. + 0(Ax2), (2.22) 

3Ä 
M 

3x 2Äx 
+ 0(AJC 2) . (2.23) 

Neglecting the higher order terms and eliminating the pressure heads /z_, and 

hM+l with the boundary condition, gives the following system of ODE's: 

u' = A(u)u + D(u) (2.24) 

with 

Mu)= 

K-m+Km 

C.A*2 

^1 -1 /2 

C,Ai ! 

*"-'»«„ 

CA*2 

K\-m+K\tm 

C.Ax1 

Kitm 

C,Ax2 

_ K2-U2+K2tm 

C,Ax2 

2+1/2 

CA?' 

M-.V2 _ M -3 /2^"M- l /2 " « - I ß KM-1I2+KM 

CU_M2 

' vW-l/2 ,YM+[/2 , vM-1/2 M+l/2 

C„-,Ax; 

C„A*2 ~C^?~ 
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D(") = 

C,Ax 

(Ku.in+Ku.m)+2> 
—3-

C Ax 

( \ 
h, 

Generally, one approximates the conductivity between two nodes Kj+m using 

a linear interpolation of the pressure head, Kj+m = K((hj + hj+l)/2), or using a 

linear interpolation of the conductivity, Kj+in = ((K(hj) + K(hJ+1))/2). We will 

use FD1 and FD2 to refer to the finite difference approaches with the 

interpolation based on h and K respectively. It is noted that the finite element 

method uses the i^-based interpolation of the conductivity between nodes as 

can be easily seen by comparing the matrices A in eq. (2.18) and eq. (2.22). 

The errors due to space discretization can be analyzed more easily 

when the errors due to time discretization are negligible. The discretization 

errors in the finite element scheme as well as in the finite difference scheme 

are then of the order, 

error = 0(Ax2). (2.23) 

One can estimate the spatial discretization errors by calculating the difference 

between several approximations of the pressure head, each consecutive 

approximation uses half the step size (in space direction) of the previous one. 

These differences are proportional to the spatial truncation errors, according 

to 

24 



NUMERICAL SOLUTIONS 

ejx,t) » l/3(hjx,t) - h2Jx,t)), (2.24) 

in case the asymptotic expression (2.23) is valid in sufficient extent. 

Equations (2.13-2.16) are first solved for the case that a relatively low 

pneumatic head, hc = 250 cm, is applied to the soil sample. The pressure 

head in the soil is then almost in equilibrium state after 2 hours. Therefore, 

the experiment is simulated from time t - 0 h up to t = 2 h. In a second 

experiment a relatively high pneumatic head, hc = 1000 cm, is used. Here, the 

experiment is simulated from t = 0 h up to t = 4 h. 

Tables 2.2, 2.3 and 2.4 give the approximations of the pressure head, 

for a series of step sizes Ax,- with AxI+1 = Ax/2; Moreover, the differences of 

consecutive approximations are given, so that the validity of the asymptotic 

expression (2.23) can be verified. Table 2.2 gives the results of the first 

experiment and table 2.3 and 2.4 the results of the second experiment. In the 

first case the largest and smallest errors are found at x = 0.0 cm and x = 4.0 

cm respectively. Therefore, the approximations in table 2.2 are given at these 

nodes. For the second case the situation is more complicated. The smallest 

error is for all approaches found at x = 0.0 cm. The largest error is found at x 

= 4.0 cm for the FD1 approach; for the FD2 and the FE approach the largest 

error is found at the last but one node Af-1. Therefore, the approximations of 

the pressure head are given at x = 0.0 cm and x = 4.0 cm for the first 

approach and at x = 0.0 cm and x = 3.8 cm for the two other approaches. 
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Table 2.2. Pressure head, h{x,t), at x = 0.0 cm, r=2.0 h and x=4.0 cm, f=2.0 h for several 

approximations, with h =250 cm. Each consecutive approximation uses half the step size 

(in space direction) of the previous one. FE stands for the finite element approach, FD1 

for the finite difference approach with a /i-based interpolation of Kj+m and FD2 for the 

finite difference approach with a K-based interpolation. 

FE 

FE 

FE 

FE 

FD1 

FD1 

FD1 

FD1 

FD2 

FD2 

FD2 

FD2 

Ax 

0.2 

0.1 

0.05 

0.025 

0.2 

0.1 

0.05 

0.025 

0.2 

0.1 

0.05 

0.025 

yo.o,2.o) 

-228.1091 

-228.0937 

-228.0898 

-228.0889 

-227.8942 

-228.0403 

-228.0765 

-228.0855 

-227.9863 

-228.0623 

-228.0819 

-228.0868 

" A T " 2 A * 

0.0154 

0.0039 

0.0009 

-0.1461 

-0.0362 

-0.0090 

-0.0760 

-0.0196 

-0.0049 

M4.0.2.0) 

-247.3963 

-247.3917 

-247.3905 

-247.3902 

-247.3578 

-247.3822 

-247.3882 

-247.3897 

-247.3738 

-247.3860 

-247.3890 

-247.3898 

" A X " " 2 A * 

0.0046 

0.0012 

0.0003 

-0.0244 

-0.0060 

-0.0015 

-0.0122 

-0.0030 

-0.0008 
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Table 2.3. Pressure head, h(x,t), at x = 0.0 cm, J=4.0 h and x=4.0 cm, £=4.0 h for several 

approximations, with /ÎC=1000 cm. Each consecutive approximation uses half the step size 

(in space direction) of the previous one. FD1 stands for finite difference approach with a 

/z-based interpolation of Kj+m. 

FD1 

FD1 

FD1 

FD1 

FD1 

FD1 

FD1 

FD1 

FD1 

FD1 

Ax 

0.2 

0.1 

0.05 

0.025 

0.0125 

0.00625 

0.003125 

0.0015625 

0.00078125 

0.000390625 

MO.0,4.0) 

-244.513 

-272.561 

-293.025 

-305.368 

-311.897 

-315.110 

-316.634 

-317.356 

-317.654 

-317.665 

"AT"2A t 

-28.048 

-20.464 

-12.343 

-6.529 

-3.213 

-1.524 

-0.722 

-0.298 

-0.011 

W4.0,4.0) 

-249.957 

-291.806 

-339.898 

-396.684 

-465.039 

-549.294 

-658.944 

-888.145 

-998.400 

-998.408 

" A T " 2 A J 

-41.849 

-48.092 

-56.786 

-68.355 

-84.255 

-109.650 

-224.201 

-110.255 

-0.009 
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Table 2.4. Pressure head, h(x,t), at x = 0.0 cm, f=4.0 h and JC=3.8 cm, £=4.0 h for several 

approximations, with Zzc=1000 cm. Each consecutive approximation uses half the step size 

(in space direction) of the previous one. FE stands for the finite element approach, FD2 

for the finite difference approach with a K-bascd interpolation of KJ+ia. 

FE 

FE 

FE 

FE 

FE 

FE 

FE 

FE 

FD2 

FD2 

FD2 

FD2 

FD2 

FD2 

FD2 

FD2 

Ax 

0.2 

0.1 

0.05 

0.025 

0.0125 

0.00625 

0.003125 

0.0015625 

0.2 

0.1 

0.05 

0.025 

0.0125 

0.00625 

0.003125 

0.0015625 

A^O.0,4.0) 

-324.491 

-320.710 

-318.987 

-318.205 

-317.875 

-317.741 

-317.691 

-317.674 

-324.376 

-320.673 

-318.964 

-318.200 

-317.872 

-317.739 

-317.690 

-317.673 

'W""2/Yr 

3.781 

1.732 

0.773 

0.330 

0.134 

0.050 

0.017 

3.703 

1.709 

0.764 

0.328 

0.133 

0.049 

0.017 

M3-8.4.0) 

-590.942 

-546.202 

-526.837 

-519.071 

-516.141 

-515.135 

-514.823 

-514.734 

-590.639 

-546.084 

-526.791 

-519.048 

-516.126 

-515.126 

-514.820 

-514.733 

"A*""2Ax 

44.740 

19.364 

7.766 

2.930 

1.006 

0.312 

0.089 

44.555 

19.293 

7.743 

2.922 

1.000 

0.306 

0.087 
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In the first experiment the difference between consecutive approximati­

ons reduces each time with a factor 4. This implies that the asymptotic 

expression (2.23) is valid in sufficient extent to have an accurate error 

estimate. For this situation the results are very well for all approaches and 

they are comparable in precision. In the second experiment the difference 

between consecutive approximations does not reduce with a factor 4. There­

fore, an accurate estimate of the errors cannot be given. However, it is 

obvious that the errors are very large, especially near the lower boundary. 

The results of the FD2 and the FE approach (table 2.4), which both use a K-

based interpolation of Kj+m are almost identical. On the other hand the results 

of the FD1 and FD2 apprach (tables 2.3 and 2.4), using the h- and Ä'-based 

interpolation of Kj+m respectively, are quit different, especially near the lower 

boundary. This suggests that the accuracy of the solution strongly depends on 

the definition of the conductivity between nodes. From figure 2.2 it is seen 

that near the lower boundary the pressure head has a steep gradient (drying 

front) and that in this region the pressure head lies between approximately 

-300 cm and -1000 cm. For these /i-values the conductivity is a strongly 

nonlinear function of h (e.g. Van Dam, 1990). So, to increase the accuracy of 

the solution one has to approximate the fluxes near and at the boundary more 

precisely. This may be done by using a smaller step size in this region, that 

is, by using a non-uniform grid. The advantage of a non-uniform grid is that 

the accuracy thus obtained is comparable to the accuracy obtained with the 

finest grid. 
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-200 

Figure 2.2. Approximated pressure head h(x,t) for (=1.0h (solid line), f=2.0 h (dashed 

line), t=3.0 h (dotted line) and f=4.0 h (dotted-dashed line), with h=\000 cm, 

Ax=0.025 cm and using the FE approach. 

We have implemented a scheme with a non-uniform grid using the 

finite element approach; the same result will be probably obtained using the 

finite difference approach. Between the lower boundary and a distance dx 

from the lower boundary, we use a step-size Ax2; in the other region a 

step-size Ax,. As a first choice we take dx = 0.1 cm. The results of these runs 

are given in figures 2.3 and 2.4 and table 2.5. 
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Figure 2.3. Approximated pressure head h{x,f) for £=1.0 h (solid line), £=2.0 h (dashed 

line), £=3.0 h (dotted line) and £=4.0 h (dotted-dashed line), with fcc=1000 cm, 

Ax,=0.195 cm, Ax2=0.005 cm and using the FE approach with a nonuniform grid. 
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Figure 2.4. Difference between several approximations of the pressure head at t=4.0 h, 

each consecutive approximation uses half the step sizes Ax, and Ax2 of the previous one. 
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Table 2.5. Pressure head, h(x,t), at x = 0.0 cm, f=4.0 h and x=3.99 cm, t=4.0 h for several 

approximations, with fy=1000 cm. Each consecutive approximation uses half the step sizes 

A*! and Ax2 (in space direction) of the previous one. FEN stands for the finite elements 

approach with a nonuniform grid. 

Ax, Ax-, hJ.O.OA.0) hM-hz ^(3.99,4.0) h^-K 

FEN 

FEN 

FEN 

FEN 

FEN 

0.39 0.01 

0.195 0.005 

0.0975 0.0025 

-321.933 

-319.058 2.875 

-318.070 0.988 

0.04875 0.00012 -318.774 0.296 

0.024375 0.0000625 -317.694 0.080 

-855.425 

-848.844 6.581 

-846.725 2.119 

-846.129 0.596 

-845.972 0.157 

The performance of this scheme is very well because the differences reduce 

again with a factor 4. Also the estimated errors are very small, although we 

only used 1/4 of the number of nodes compared with the other approaches. 

From figure 4 it can also be seen that the errors in the area, where a larger 

step size is used, are comparable with the errors in the area where the 

step-size is small. This suggests that the choice of the ratio AJCJ /AX2 and that 

of d] is good. If dt is larger the number of nodes in the small region increa­

ses, because the same Ax2 is needed to obtain the same accuracy. However, if 

dx is smaller the number of nodes in the small region decreases, but the 

number of nodes in the large region must increase to obtain the same 

accuracy. 
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2.4 CONCLUSIONS 

In this paper it is shown that numerical approximations may be very 

poor in regions where the spatial derivatives of the pressure head are large. In 

outflow experiments this occurs if the pneumatic head imposed on the 

pressure cell is high, hc = 1000 cm. To analyze the errors due to the spatial 

discretization one first has to make the errors due to time discretization 

comparatively small. For this purpose a high order ODE-solver, adopted from 

a standard software library, is used. The advantages of a standard ODE-solver 

are a higher efficiency and reliability and a facility for error control. 

Three approximation schemes have been used for the spatial discretiza­

tion of Richards equation. One approximation scheme was based on a finite 

element approach and the other two schemes were based on finite differences. 

All three schemes have a second order spatial discretization error. The 

difference between the two finite difference schemes is the approximation of 

the conductivity between nodes. One scheme uses an approximation of Kj+m 

based on a linear interpolation of h; the other uses an approximation based on 

a linear interpolation of K. The fact that the results of the two finite differen­

ce schemes are quite distinct in regions where the solution has a steep front, 

suggests that the solution strongly depends on the non-linear hydraulic 

conductivity relation. If the pressure head has a steep front, the approximati­

ons of the nodal fluxes may be very poor and result in large discretization 

errors. In the finite element approach the same approximation of the nodal 

fluxes is used as in the finite difference approach with the interpolation based 

on K. This explains why the results of these two schemes are almost identi­

cal. It also confirms our point of concern that the spatial discretization of the 

flux may be the cause of large errors at and near the lower boundary. 

Because steep fronts of the pressure head occur also in related pro­

blems, for example infiltration into dry soils (Ceila et al., 1990), the numerical 

approximation of the fluxes at and near the wetting front will be very poor in 
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case a uniform grid is used and Ax is not sufficiently small. It is then almost 

necessary to use non-uniform adaptive grid methods. Although an adaptive 

grid is very accurate it is not very fast and therefore it is not suitable to be 

used in inverse modeling problems. It is shown that a simple non-uniform 

'fixed' grid is sufficient to obtain very accurate numerical simulations of the 

ONE-STEP experiment. The reason that this simple grid is sufficient is that 

the position of the steep front is known beforehand as opposed to the moving 

wetting front in the infiltration problem. The advantage of a non-uniform grid 

with respect to a uniform grid is that only 1/4 of the number of nodes is 

needed to yield the same accuracy. 
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Chapter 3 

IDENTIFICATION OF THE MOVEMENT OF 

WATER IN UNSATURATED SOILS; THE 

PROBLEM OF IDENTIFIABILITY 

OF THE MODEL 

Abstract 

The estimation of model parameters using nonlinear regression techni­

ques is one of the aspects of inverse modeling and is known as the identifi­

cation problem, the solution of which may be non-unique. The main causes 

of this non-uniqueness are the structure of the model and the design of the 

input signal. It will be shown that the parameters can be estimated only if a 

model with different parameter values yields different output signals. A 

model that has this feature is called identifiable. As an example, the identifi­

cation of a model for the movement of water in unsaturated soils is used. 
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This model appears to be non-identifiable, which results in non-unique 

solutions. 

3.1 INTRODUCTION 

Computers have made it possible to build complex models of physical 

dynamical processes. To use such a model, for example for prediction or 

simulation of a process, the model has to be identified first. A model that can 

often be used to describe a dynamical process is a partial differential equation 

of the form 

du(x,t) 
= /(Vx«(x,0,V u(x,t),u(x,t),v(x,t),a), (3.1) 

where the state variable u(x,t) is a function of space and time. The state 

variable often has physical significance, for example temperature or pressure. 

The input of the dynamical process is denoted by v(x,t) and is also a function 

of space and time, for example a source of heat. The model parameters 

(coefficients) are denoted by the vector a. In most practical cases the partial 

differential eq. (3.1) cannot be solved analytically. The solution of eq. (3.1) is 

then often approximated using a semi-discrete finite element or a finite 

difference method. This semi-discretisation appproach leads to a system of 

ordinary differential equations for the discretised state vector 

u(t)=(u(xl,t),u(x2,t), - ,u(x„,t)), 

^=fl(u(t),v(t),a). (3-2) 
dt 

The observations y(kT) of the states are often restricted to be sampled 

at discrete and equidistant instants of time kT, k=l,...,N, where T is the 

sampling time. It is assumed that the output is disturbed by random measure-
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ment errors e(kT). The model for the observations is then given by 

y(kT) =f2(u(kT),a)+e(kT). (3.3) 

In the remainder of this paper a model is called deterministic if the disturb­

ances are equal to 0 and stochastic otherwise. 

Before the parameter vector a can be estimated in the case of a 

stochastic model the input signals v{t) have to be designed and the initial 

values of the states have to be known. The set of the input signals is called 

the experimental design. 

In the last decade, studies of the movement of water in unsaturated 

soils have encountered problems with the uniqueness of the parameter 

estimates (Hornung, 1983, Kool et al., 1985 and van Dam et al., 1990). The 

experiment mostly used to identify this process is known as the ONE-STEP 

experiment of Kool et al. (1985). In this experiment outflow measurements 

are taken from a soil core. In conjunction with an inverse modeling procedure 

these outflow data are used to identify the unknown model parameters. In this 

paper it will be shown that the non-uniqueness of the parameter estimates is 

not due to a bad choice of the optimization algorithm; it is merely a conse­

quence of the structure of the model and the design of the experiment. 

Because the latter can be avoided, it is worthwile to analyze the cause of this 

non-uniqueness. 

In some other papers, where rainfall-runoff models are discussed, 

non-uniqueness of the parameter estimates is also said to be one of the main 

problems (e.g. Kleissen et al., 1990, Sorooshian and Gupta, 1985). Sorooshi-

an and Gupta (1985) suggested using the sensitivity ratio to analyze the 

influence of the structure of the model on the non-uniqueness of the parame­

ter estimates, but this ratio does not take into account the influence of 

significant numerical errors in the sensitivity matrix. For this purpose the 

concept of identifiability may be more suitable (Walter, 1992). In section 3.3 

this concept is further developed so as to take also numerical errors into 
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account. 

3.2 ONE-DIMENSIONAL TRANSIENT WATER FLOW 

The ONE-STEP experiment was developed to identify one-dimensional 

transient water-flow in porous media in a simple and fast way. The usual way 

to model the movement of water in unsaturated soil is to use the Richards 

equation with the pressure head as state variable, 

dt dx 
K(h) 

dx J} 

(3.4) 

where x is the vertical coordinate taking positive downward (cm), h{x,i) is the 

pressure head at time t at point x in the medium (cm), C(h) is the differential 

water capacity of the soil at a pressure head h (cm) and K(h) is the hydraulic 

conductivity of the soil at a pressure head h (cm h"1). 

The differential water capacity and the hydraulic conductivity in 

unsaturated soils depend on the pressure head in the soil. The expressions 

proposed by Mualem (1976) and van Genuchten (van Genuchten, 1980) are 

often used to model these relationships and are given by 

C{h) = am(0 j - 9r)5e
1/m(l -Se

1/ra)md -m) ' 1 , (3-5) 

K(h) = KSy
e(l-(l-Sl"nrf <3-6) 

with 

S = ( l + l aA lT 

m = 1 - lin. 
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The model parameters oc, n, 0r, 0S, Ks, y are the parameters to be estimated. 

The parameter Bs (-) is the saturated water content (9 at h = 0 cm), Ks (cm/h) 

is the saturated hydraulic conductivity. The parameters a (cm1), n (-), 6r (-) 

and y (-) have no clear physical significance. 

The initial values of the pressure head and the boundary conditions 

belonging to eq. (3.4) can be derived from the experimental setup. The 

experiment consists of a soil sample and a porous plate placed in a pressure 

cell (Kool et al., 1985). Initially, the water in the soil core is in a state of 

equilibrium and the volumetric water content in the soil is high (almost 

saturated). The porous plate is saturated. Then an additional pressure hc(t) is 

applied to the pressure cell and water seeps out. Since no water infiltrates in 

the sample, there is a zero flux condition, 

<7(0,0 = -K(h) 
dh__x 

dx U = 0' 

at the top of the soil core, which gives boundary condition (3.8). Assuming 

that the pressure at the bottom of the plate is atmospheric, the pressure hc(t) 

leads to the boundary condition (3.9) at the bottom of the porous plate: 

h(x,t0) = h0(x), (3.7) 

M = l , (3.8) 
dx 

h(L,t) = -hp). (3.9) 

Because the porous plate is saturated in the beginning of the experiment and 

remains saturated during the experiment the capacity C(h) and the conductivi­

ty K(h) in the porous plate are assumed to satisfy 
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C(h) = 0, 

K(h) = Kp. 

The output signal, the cumulative outflow Q(t), can be calculated by integra­

ting the volumetric water content over the soil sample, according to 

L 

Q(t) = AJ{ Q(h0(x)) - Q(h(x,t)) }dx (3.10) 

e = e + s (e - e ) 

where A is the core area perpendicular to the flow and 9 is the volumetric 

watercontent and. The cumulative outflow is sampled with a constant sam­

pling time from time /„ up to te. The sampling time is then equal to 

T- te~l° (3.11) 
N 

where ./V is equal to the number of samples. 

By discretizing the space variable in the mathematical description of 

the process given above, the problem can be reformulated into the general 

form of the state-space model given by eq. (3.2) (Mous, 1990). It is then 

clear that the pressure hc(f) imposed on the soil sample is the input signal of 

the model. 

3.3 IDENTIFIABILITY 

After a model structure is specified, the unknown parameters can be 
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estimated using a nonlinear regression program. However, it is worthwhile to 

analyze the identifiability of the model first. The purpose of this analysis is to 

study whether the parameters can be estimated uniquely given the input and 

output signals. 

To study identifiability in a more mathematical sense, some definitions 

have to be given. In this paper only the continuous-time state-space model, 

given by eqs. (3.2-3.3), is considered. If the structures of the functions ƒ, and 

f2 are specified, but the numerical values of the parameter vector a are un­

known, the models with different parameter vector form a class. More 

precisely, the model class M is the range of the model, specified by the 

functions fx and f2, where the parameter vector a varies over the parameter 

space A. 

Alternatively, If the input signal v(0 of the process and the initial 

values of the state vector are known, the output signal of the deterministic 

model (e(kT) = 0) is a function of the parameter vector a. In this way eqs. 

(3.2-3.3) define a mapping of the parameter space to the response space. 

Definition 1 

Let a model structure be specified by the functions ƒ, and f2 and let the 

initial values of the state vector u(tQ) and the input signal v(f) be 

known. The deterministic model is said to be globally identifiable if 

different a values yield different response vectors. 

This definition of global identifiability is similar to the definition given 

by several other authors (e.g., Nguyen and Wood, 1982, Distefano and 

Cobelli, 1980). The importance for a model to be globally identifiable is 

clear, because it is a requirement to obtain a unique solution of the parameter 

estimating problem (Walter, 1985). However, it may be very difficult to 

prove that a model is globally identifiable, because the functions ƒ, and f2 in 
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physical problems are often nonlinear. 

In most practical situations, it may be easy to show that a model is 

locally identifiable at a specified a e A (Bellman and Äström, 1970). 

Definition 2 

Let a model structure be specified by the functions ƒ, and f2 and let the 

initial values of the state vector u(tQ) and the input signal v(t) be 

known. For any a e A the deterministic model is said to be locally 

identifiable at a if the function 

V(a) = ^(y(kT;a*)-y(kT;a))2 , a&A, (3-12) 
k= 1 

has a local minimum, equal to 0, in a. 

In literature this definition of local identifiability has become known as 

least-squares identifiability (Distefano and Cobelli, 1980). Usually one checks 

only if the model structure is locally identifiable at an initial guess, a=a0, or 

at an estimated value, a=â, produced by the regression program. Of coarse, it 

is clear that in case the function Via) has a global minimum in a for every 

a e A, the model is also globally identifiable in the sense of the first 

definition. 

Several reasons can make a model non-identifiable. The two important 

reasons are a bad design of the input signal and overparameterization of the 

functions ƒ, and f2 (Bellman and Aström, 1970, Ljung, 1987). This latter 

reason causes the model also to be not globally identifiable. In this case it is 

impossible to estimate all parameters, and other output signals have to be 

measured or the model structure has to be reparameterized. If the first reason 

causes a non-identifiable model, another design of the input signal (experi­

mental design) may be sufficient. However, it may be better to measure other 
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output signals as well. 

Assuming that the first and second order derivatives of the output 

vector with respect to the parameter vector exist, conditions for these deriva­

tives can be formulated for the nonlinear function V(a) to have a local 

minimum at a (e.g., Scales, 1985). The first necessary condition is that the 

gradient g(a) is equal to 0 at a. The second condition is that the Hessian 

matrix H(a) is positive definite at a. These two conditions are sufficient for 

a minimum at a. The gradient and Hessian matrix of V(a) are given by 

g fa) = Z-2(y(kT;a*)-y(kT;a)) 

f \ 
dy(kT;a) 

da. 
(3.13) 

J 

hid) = H{-2{y{kT;a*)-y(kT;a)) 
d2y(kT;a) 

tel dada. 
V ' > J 

+ 2 
dy(kT;a) 

da. 
dy(kT;a) 

da. 

(3.14) 

From eq. (3.13) it follows that g(a*) = 0, so the first condition is always 

fulfilled. The second condition remains but it can be simplified, because the 

first term of the right-hand side, 

-2{y(kT;a')-y{kT;a)) 
( \ 
d2y(kT;a) 

V 
dada. 

• j J 

is equal to 0 at a = a*. The Hessian matrix at a* is thus equal to 

H(a') = 2X(a*)'X{a*). (3.15) 

Here, the N x p matrix X(a) denote the partial derivatives of y(kT;a), k=l,..,N, 
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with respect to the parameters ait i=l,..,p. This matrix is often called the 

sensitivity matrix. In statistical literature this matrix is also called the design 

matrix. The condition that the Hessian matrix H(a) is positive definite is 

equivalent to the condition that the sensitivity matrix X(a) is of full rank. 

The determination of the rank of a matrix is numerically difficult since the 

matrix X{a) can only be calculated with finite precision. Especially in highly 

nonlinear models, such as the model for the movement of water in unsatu­

rated soil, the truncation and roundoff errors in the numerical approximations 

of the solutions of these models are often significant (Mous, 1990). The best 

way to analyze the rank of a noisy matrix is to use the concept of £-rank 

(Dongarra et al., 1979). 

Definition 3 

Let X be a m x n matrix and Zk be a set of m x n matrices of at least 

rank k. The distance dk between X and Zk is defined as 

d- = min||X - Z||, 
ZeZ„ 

where 11.11 is the quadratic-norm. The e-rank of X is then defined as the 

smallest value of k so that ^ < e l l X I I , e > 0 

Owing to the numerical errors, the matrix X(a) will in general be of 

full rank. Let AX(a) be the error in X(a) and let E be an N x p matrix with 

II E II < II AX II . The question then is not whether X(a) is of full rank but 

whether the matrix X(a) + E is rank deficient (rank(X(a*) + E) < p-l), 

because X(a) + E could be the "error-free" sensitivity matrix. 

By choosing e = II AX(a) 11/11 X(a) II , the £-rank rt of X(a) can be 

used as a rank test for X(a). If re is smaller than the number of unknown 

parameters of the model then there is a matrix E with II E II < II AX II such 
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that X(a) + E is rank deficient. In that case the model is said to be numeri­

cally not identifiable at the parameter vector a*. 

The e-rank re may be calculated using a singular value decomposition 

(S.V.D.) of the matrix X(a). 

X(a') = ITLV', (3-17) 

where U is an N x N orthonormal matrix and V is a p x p orthogonal matrix. 

The diagonal matrix £ contains the singular values av o~2, ..., ap, with 0! > o~2 

... > Gp. The e-rank of X(a) is the number of a, which are larger than r\ = 

ellZ(a*)ll, i.e. larger than EG,. 

3.4 EXPERIMENTAL DESIGN 

If the calculations, as described in the previous section, are done for 

different input signals, not only identifiability can be studied; these experi­

mental designs can also be compared with each other with respect to some 

optimality criteria. For example, a criterion may be used for designing an 

experiment that gives richer and more informative output signals. 

In this study it is assumed that the disturbances e(kT) are idependently 

and identically distributed. By definition the least squares estimât â is 

obtained by minimizing the sum of squares 

S(a) = Y(z{kT)-y(kT;a)f. (3-18) 
k = 1 

Here, the observed responses are denoted by z(kT) and the model outcome by 

y(kT;a). The gradient gs(a) and Hessian matrix Hs(a) of S(a) are given by 
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gs.(a) = T-2{z(kT)~y{kT;a)) 
dy(kT;a) 

k=\ da. 
(3.19) 

hM = E{-2(z(kT)-y(kT;a)) d2y{kT;a) 
S,IJ 

+ 2 
dy(kT;a) 

Y 

V 
da. 

A 

dy(kT; a) 
da. 

\ 
dada. 

' ' J 

}• 
J 

(3.20) 

It is assumed that the data set is large and that the i.i.d. assumption of 

the disturbances is valid. The contribution of the first terms on the right-hand 

side of eq. (3.20) to the Hessian matrix are then negligible, because success­

ive terms 

-2(z(kT)-y(kT;a)) 
( \ 
d2y(kT;a) 

V 
dada. 

cancel through sign differences. Asymptotically as ^ -> « and T = (te-t0)/N 

—» 0 the contribution in N'lH of the first terms on the right-hand side will 

tend to zero and the second to a constant. The contribution of the first terms 

is also negligible if the output y(kT;a) depends almost linearly on the parame­

ter vector a so that the second order derivatives are almost equal to 0. 

Therefore, the model must be at least locally identifiable at â to obtain 

unique parameter estimates. However, because â is not known beforehand, 

the best one can do is to test whether the model, given the input design v(0, 

is locally identifiable at an initial guess a0. This condition is used as a first 

criterion. Since this criterion does not select the "best" input design, a second 

criterion is needed. The D-optimal criterion is often used to select an input 

design and is attained by the design that minimizes the determinant 

48 



IDENTIFIABILITY 

KX(a)'X(a))-l\ (e.g. Box and Lucas, 1950). 

If the Hessian matrix can be approximated by eq. (3.15), with a = â, 

the asymptotical covariance matrix may be estimated by (Bates & Watts, 

1988) 

C = ^-{X{â)'X{â))-\ (3.21) 
N-p 

The determinant used to find the D-optimal design is proportional to 

the determinant of this estimated asymptotical covariance matrix, with a = â, 

so it can be seen as a measure of the uncertainty in the parameter values. Alt­

hough the objective is to evaluate the D-optimal criterion at the "true" 

parameter vector, again an initial quess a0 has to be used instead. 

3.5 RESULTS 

To decide whether it is meaningful to carry out the ONE-STEP experi­

ment, we will use the tools presented in the previous section. To do this 

analysis, some prior information albeit hypothetical about the parameters in 

the Mualem-van Genuchten model is needed (table 3.1). 

In the experiments the soil core is almost saturated soil. Therefore, in 

this numerical experiment the initial state is set to h(x,t0) = - 50 cm. As input 

signal hc{t) a step function is used. We will compare several experiments with 

the level of the step function between 100 cm and 1000 cm. In addition, a 

multiple step function is also used as input signal (Van Dam et al., 1990). 

The levels of this step function are set to 75 cm, 150 cm, 250 cm and 1000 

cm at times 0.0 h, 2.0 h, 5.5 h and 7.0 h respectively. A sampling time T 

equal to tJlOO is used, with te is equal to the duration of the experiment. The 

time te is chosen in such a way that the water content in the soil sample at 

time te is almost in a state of equilibrium. 
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Table 3.1. Parameter values used in the Mualem-van Genuchten model 

Parameter Value(unit) 

a 

n 

er 

e s 

y 

O.Ol (cm1) 

2.0 (-) 

0.17 (-) 

0.47 (-) 

3.0 (cm/h) 

2.0 (-) 

The sensitivity matrix X(aQ) is approximated simultaneously with the 

cumulative outflow Q(kT;a0) (Caracotsios and Stewart, 1985), using a finite 

element method, with variable step size, for the spatial discretization (Mous, 

1990) and the Crank-Nicolson method for the time integration. 

To estimate the error matrix &X(a0), the errors due to time discretiza­

tion are made small in comparison with the errors due to space discretization, 

by using a very small time-step. The errors due to space discretization are 

estimated by calculating the difference of several approximations, each 

consecutive approximation uses half the step-size (in space direction) of the 

previous one. Because the errors in the columns of the sensitivity matrix are 

not of the same order of magnitude, the columns are scaled (Dongarra et al., 

1979). The scaling matrix M is given by 

m . = < 

1 N 

— £ |Ax .1 

0 

* = J 

i*j 

(3.22) 
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Level hc 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

MS 

Table 3.2. Rank 

U 

4.0 

4.5 

5.0 

5.5 

6.0 

6.5 

7.0 

7.5 

8.0 

8.5 

10.0 

analysis of the 

II AX(a) 

6.34 

10.66 

21.37 

47.33 

50.72 

43.64 

34.89 

27.16 

22.38 

19.61 

10.31 

sensitivity matrix X(a0) 

II II AX(a) II 

0.024 

0.150 

0.214 

0.206 

0.207 

0.184 

0.148 

0.116 

0.098 

0.088 

0.111 

e-rank 

4 

4 

3 

3 

3 

3 

3 

3 

3 

3 

5 

The levels of the multiple step function, MS, were set to 75 cm, 150 cm, 250 cm and 

1000 cm at times 0.0 h, 2.0 h, 5.5 h and 7.0 h respectively. 

The scaled sensitivity matrix X(a0) = X(a0)M is used to analyze the rank of 

the sensitivity matrix. 

Table 3.2 shows that the e-rank for all the input designs is smaller than 

the number of parameters and it may be concluded that the model is numeri­

cally not identifiable at a0. In figures 3.1(a)-(f) the columns of the sensitivity 

matrix of the experiment with hc = 200 cm are plotted. The shape of figures 

3.1(b), (c) and (d) are almost equal or are mirror images. This indicates a 

linear dependence between two columns of the sensitivity matrix and conse­

quently a rank deficient sensitivity matrix. Linear dependency is also found 

between the fifth and sixth column of the sensitivity matrix (see figures 
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•a 
-o 

a 

Figure 3.1 Sensitivity analysis of the ONE-STEP experiment with the level of the input 

signal hc = 200 cm: (a) dQ/da;(b) 3ß/3n;(c) dQ/dQr;(d) 9ß/dÖs;(e) dQ/dK;,(f) dQ/dl. 

52 



IDENTIFIABILITY 

Figure 3.1 Continued. 
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Figure 3.1 Continued. 
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3.1(e) and (f)). Because of these 2 groups, the sensitivity matrix will have at 

least two large singular values. 

This non-identifiability is caused partly by the structure of the model. 

Equations (3.4-3.6) and (3.10) show that the output Q{kT) depends on the 

difference of 0, and 0r only. Therefore, at least one singular value will be 

equal to 0. This does not explain, however, why the e-rank is equal to 3 or 4 

for most designs, which mean that only 3 or 4 parameters can be estimated. 

Because the e-rank with the multiple step function as input signal is equal to 

5, non-identifiability of the model is caused here also by the design of the 

experiment. Suppose that the difference of 0, and 0r is of interest, then the 

parameter vector can be reduced by one parameter. The model, given the 

multiple step function as input signal, is then numerically identifiable at the 

reduced parameter vector a0. 

To analyze the linear dependency between the columns of the sensitiv­

ity matrix using the multiple step function as input signal, the inner products 

of the column-vectors of the sensitivity matrix, which are first normalized to 

length 1, are calculated. Table 3.3 shows that there are almost linear depend­

encies between these columns, because some inner products are almost equal 

to +/- 1. This means that, for example, the variation in the output due to a 

variation in Ks can be almost completely compensated by a variation in (0S -

0r) or by /. For this example the singular values analysis shows that only 

three singular values (a, = 27.18, o2 = 12.66, 03 = 2.34) are substantial larger 

than IIAX(a0)ll. The other two singular values (a4 = 0.95, ö5 = 0.30) are only 

one order of magnitude larger than IIAZ(a0)ll. This means that for some 

parameters the marginal confidence intervals are very large. These large 

confidence intervals emphasize the importance of checking the approximation 

of the Hessian matrix by H(â) = 2X(â)'X(â). If, in the validation phase, it 

turns out that the approximation of the Hessian matrix is not valid, one has to 

repeat the experiment with a smaller sampling time so that more samples are 

obtained. The approximation of the Hessian matrix will then probably be 
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Table 3.3. Inner products between the column vectors, scaled to length 1, of the sensitivity 

matrix. 

a 

n 

e,-e, 

K, 

i 

a 

1.00 

0.18 

0.16 

-0.20 

0.53 

n 

0.18 

1.00 

-0.93 

0.89 

0.70 

er-e, 

0.16 

-0.93 

1.00 

-0.99 

0.91 

K 

-0.20 

0.89 

-0.99 

1.00 

-0.93 

/ 

0.53 

0.70 

0.91 

-0.93 

1.00 

better, because the first terms on the right-hand side of eq. (3.20) are more 

likely to be negligible. Another way to overcome this problem is to use 

higher order approximations of the confidence region, as shown in Bates and 

Watts (1988). Although the calculation of higher approximations is cumber­

some, it might be helpful to find an accurate approximation of the confidence 

region. To estimate all six model parameters additional measurements such as 

the pressure head in the soil sample are necessary, because with only outflow 

measurements the model is globally not identifiable, regardless of the design 

of the input signal. 

3.6 SUMMARY AND DISCUSSION 

It is reported by other authors (e.g., Kool et al., 1985) that the identifi­

cation of transient one-dimensional water flow in unsaturated soils, using 

outflow measurements on a soil core, will give parameter estimates that are 

not unique. A model that is often used to describe this process is based on 

the Richards equation and the Mualem-van Genuchten relations. We have 

analyzed this model and have compared several input designs. Because the 
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e-rank of the sensitivity matrix is smaller than the number of parameters to 

be estimated, we conclude that this model is numerically not identifiable. The 

sufficient conditions for a unique minimum in the parameter estimation 

problem are not fulfilled. Numerical errors can dominate the sum of squares 

and there may well be many local minima. One may be misled because the 

Hessian matrix in this minimum can be positive definite. In such a situation 

the location of the minimum that is found by an optimization program, such 

as the Levenberg-Marquard algorithm, strongly depends on the initial guess. 

The location of such a minimum is, however, meaningless. 

The multiple step function, proposed by van Dam et al. (1990), is the 

most promising input signal because the parameters a, n, (Qs - 9r), Ks and / 

are numerically identifiable at an initial quess. Since some singular values of 

the sensitivity matrix are rather small, the assumption that the Hessian matrix 

may be approximated by H(â) = 2X(â)'X(â) has to be validated. However, to 

estimate all model parameters it is clear that other output signals are neces­

sary. 
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Chapter 4 

TWO METHODS FOR ASSESSING THE SIZE 

OF EXTERNAL PERTURBATIONS IN 

CHAOTIC PROCESSES 

Abstract 

This paper deals with the assessment of an external perturbation in 

nonlinear chaotic dynamical processes using either a modified sentinel 

function or an extended Kalman filter treatment. We consider processes that 

can be modeled by a system of nonlinear ordinary differential equations. The 

sentinel function is used to detect an external perturbation that is not included 

in the model of the process. In cases where the time dependency of the 

external perturbation is known but the size of the perturbation is unknown, 

the sentinel function is also used to estimate the size of this perturbation. We 
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have compared the sentinel method with an extended Kalman filter treatment. 

As an example to illustrate these two approaches we have analyzed a low-

order spectral model of the atmospheric circulation with a perturbed equator-

pole temperature gradient. 

4.1 INTRODUCTION 

The irregular behavior of many dynamical processes can be modeled 

by systems of nonlinear differential equations that manifest a chaotic beha­

vior. In this paper we analyze the difference between the dynamical process 

as it is observed and the solution of a differential equation for this process. 

Because this type of dynamical model has a sensitive dependence on the 

initial state, the observed values and the model values will diverge due to the 

limited accuracy of the estimated initial values. This divergence may get 

worse in case the physical process is not correctly modeled or certain 

external perturbations are neglected. The purpose of this study is to analyze 

methods to detect external perturbations as well as methods to estimate the 

size of such a perturbation. 

The classical least squares method cannot be applied to estimate the 

size of an external perturbation. The reason for this is the exponential growth 

of an error in the initial values, making accurate predictions of the output of 

the model impossible. Therefore, we have to use other methods to analyze 

the perturbed chaotic dynamical process. Such methods must account for the 

propagation of the error in the initial state (Baake et. al., 1992). In this paper 

we compare two approaches. The first approach uses the sentinel function, 

introduced by Lions (1988, 1990), and the second approach uses the extended 

Kalman filter (e.g., Jazwinski, 1970, Brammer and Siffling, 1975). 

We will first use the sentinel function to detect an external perturbation 

(Grasman and Houtekamer, 1992). The sentinel function is a weighted 
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average of the state vector of the process with the weighting chosen in such a 

way that the effect of an initial error upon the sentinel function is reduced. 

The external perturbation is then detected by comparing the sentinel as 

function of the observation with the sentinel as function of the model values. 

The method of Lions (1988) for constructing sentinel functions was introdu­

ced to analyze models of distributed processes. These models are based on a 

system of partial differential equations. In this study we analyze models that 

are based on a system of ordinary differential equations and therefore we 

have modified Lions method in order to make it applicable to this type of 

systems. In the next section a description of this modified sentinel method is 

given. We will elaborate as an example the Rössler attractor to illustrate the 

method. 

In section 3 we consider the case where we have more information 

about the external perturbation and we assume that the time dependency of 

the perturbation is known. The sentinel function is then used to estimate the 

size of the perturbation. We have applied this method to a low-order spectral 

model of the atmospheric circulation with a perturbed equator-pole tempera­

ture gradient. The idea is that one detects a change in the heat flux (e.g., 

greenhouse effect) from the observation of systematic deviations in the 

circulation. 

As an alternative method to estimate the size of an external pertur­

bation we describe in section 4 the extended Kalman filter. This method is 

frequently used to estimate states and/or parameters of a stochastic dynamical 

system, so we have to reinterpret our chaotic dynamical system as a stochas­

tic process. To estimate the size of the external perturbation we have re­

garded the size of the perturbation as a random variable and we have aug­

mented the state vector with this variable as described in Jazwinski (1970). 

In the final section we compare the results of these two approaches and 

make some final remarks. 
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4.2 SENTINELS FOR DETECTING PERTURBATIONS 

We consider an n-dimensional system of nonlinear ordinary differential 

equations of the form: 

^=f(x) (4.1) 
dt 

with initial values 

x(t0) = x0. (4.2) 

In this study this system constitutes an approximating model of a physical 

process with a strange attractor. Inaccurate knowledge of parameters or an 

external perturbation is modeled in the equations by an additive perturbation 

term. Although this perturbation term is often small, it can still be relevant 

for the dynamics of the chaotic process. Including the external perturbation 

and the inaccuracy in the initial state, we have in reality for the state vector a 

perturbed dynamical system of the form: 

^ = Äz) + A*(0, t0<t<tv (4.3) 
at 

z(t0) = x0 * T^0 (4.4) 

in which we normalize the vector function g(t) and the vector ^0 according to 

l—hg(t),g(t))dt= i, a0AQ) = i. 
*1 *0 t, 
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with ( , ) the inner product in W. In case g(t) or ^0 is a stochastic variable 

another normalization is chosen. In eqs. (4.3-4.4) the parameter X, represents 

the size of the (unknown) perturbation and the parameter x the inaccuracy in 

the initial state. We assume that all states can be observed and that the 

observation errors can be neglected. The observations of the system are then 

given by the solution of eqs.(4.3-4.4). 

Due to sensitive dependence on the initial state the solution of eqs. 

(4.3-4.4) without external perturbation (k=0) and the one of the model system 

(4.1-4.2) will diverge. Thus, at forehand it is not clear that the discrepancy 

between the observations z{i) and the prediction x(t) stems from shortcomings 

of the model or from the inaccuracy in the initial values being amplified by 

sensitive dependence. The aim of the sentinel method is to reduce the latter 

error so that an assessment of the quality of the model can be made. 

In order to keep the notations simple we will write the solution of eqs. 

(4.3-4.4) as z(t) = x(t;X,%). To compare the solution of the model eqs. (4.1-

4.2), given now by x(t;0,0), with the observations we introduce the average 

', 
A(X,x) = j(h(t)XtXi))dt, (4-5) 

where the vector function h(t), satisfying 

' i 

Jkoi dt = 1, 

is a weight function. It is noted that for X and % small the difference between 

the observation average and the model average is approximated by 
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A(k,x) - A(0,0) - Ax(0,0)X + At(0,0)T. (4.6) 

Due to sensitive dependence on the initial state the coefficient AT(0,0) may be 

large. In that case the second term dominates the difference. Therefore, the 

average cannot be used to detect a perturbation. A reduction of the contribu­

tion coming from the initial error can be achieved by taking the generalized 

average or sentinel function, introduced first by Lions (1988), 

', 
5(X,x) = f(h(t)+w(t)XfXt))dt (4-7) 

with w(t) a vector function such that 

', 
Sjfcz) = j(h(t)+w(t),xx(t;0,0))dt = 0. (4.8) 

'o 

Moreover, w{i) should be as small as possible so that the weight function h{t) 

is the least affected. Thus, w(t) must be such that 

'• 

/(w) = - ((w(t),w(t))dt is minimal. (4-9) 

Before we analyze this optimal control problem, we first study for the system 

(4.1-4.2) the initial value problem for the first variation xx(t;0,0): 

at 

with 
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f(t) = 
dx. 

WO) 

The solution of this local tangent linear equation, being a system of linear 

differential equations, is given by 

xT = R(t,t0)^0, (4.11) 

where R(t,t0) is the state transition matrix. It is remarked that the initial error 

^0 is unknown. Therefore, 5T cannot be computed directly using eq. (4.8). The 

minimization problem (4.9), with constraint (4.8), can be solved by switching 

to the nonhomogeneous adjoint local tangent linear equation 

dq 
dt 

= U'{t)Vq + h(t) + w(t), q(tx) = 0. (4.12) 

The solution of this initial value problem is given by 

q(t) = (P(t,s)(h(s) + w(s))ds, (4.13) 

where the state transition matrix P(t,s) of the adjoint local tangent linear 

equation is the formal adjoint of R(s,t). The following relation holds: P(t,s) = 

R\s,t) (Talagrand and Courtier, 1987). We then have 

5,(0,0) = J((h(t)+w(t))Mt,t0)^0)dt = j(R*(t,t0)(h(t)+w(tM0)dt = 

', 

= $(P(t0,t)(Kt)+w(tMQ)dt = (<?(r0),g. 
'„ 

Thus in order to reduce the effect of the initial error in the generalized 
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average S(K,T), we must choose w(t) such that q(tQ) = 0. This optimal control 
problem for w(t) satisfying the minimization problem (4.9) with constraint 
q(tQ) = 0 is solved as follows. We introduce the Lagrange multipliers 
u^U!,..,^,,)' and minimize 

J(w) = l j (w(0,w(0)* + (u,<?(?0)). 

Using eq. (4.13) we have 

(4.15) 

' T 

J(w) = Jl(w(0,w(0) + (ix,P(t0,t)(h(t)+w(t)))dt = 

', 

= jl(w(t),w(t)) + (P*(t0,t)ii,(h(t)+w(t)))dt, 

(4.16) 

so that dJ/dw = 0 for 

w(t) = -P*^,^ = -R(t,tQ)n. 

Rewriting the constraint (4.6) gives the condition 

q(t0) = §P(t0Mh{i)-W,tQ)\y)dt = 0. 

Consequently, the Lagrange multipliers satisfy 

(4.17) 

(4.18) 

u = jp(tQ,t)R(t,t0)dt jp(t0,t)h(t)dt. (4.19) 
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Assuming that Sx(0,0) *• 0, the difference between S(k,%) and 5(0,0) 

yields an order estimate of the average error in x(t) on the interval (/0,?i) 

caused by the external perturbation: 

S(k,%) - 5(0,0) - ISX(0,0) (4.20) 

with 

5^(0,0) = j((h(t)+w(t))jcx(t;0,0))dt (4-21) 
'o 

and 

xx(t;0,0) = JR(t,s)g(s)ds. (4.22) 

The estimate of the perturbation strongly depends on the type of forcing 

function g(t). An oscillating function tends to produce a vanishing contri­

bution to the integral. These are "stealthy" perturbations (Lions, 1990). 

Therefore the estimate gives a lower bound for the average error in x{i) on 

the interval (t0,tx) due to the perturbation Xg(t). 

4.2.1 THE RÖSSLER ATTRACTOR 

We apply the sentinel method to a third order system of ordinary 

differential equations, first formulated by Rössler (1976): 
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*1 

X2 

x3 

= 

-(Xj+x3) 

xl+ax2 

b+x^x3 -cx3 

±x. = x,+ax, (4.23) 
dt 

We take the model values a=0.2, b=0.2 and c=5.7, so that the system has a 

strange attractor as solution. We assume that for the "true" process the 

parameter b is perturbed by some external force, 

br = b+Xg3(t). 

To analyze the potential use of the sentinel function for detecting an external 

perturbation, we test the method by simulating the "true" process with several 

types of test functions g(t) and with the initial conditions of the state vector 

contaminated with white noise with variance T2=10"4. We use three test-

functions: a fixed perturbation: g(/)=(0,0,l)', a standard white Gaussian 

process with zero mean: g(t)= (0,0,^(0) and a white Gaussian process with 

mean equal to one: g(0=(0,0,0.5(Ç(f)+l))'- We have taken the size of these 

perturbations as ?i=0.01 and X^0.05. The processes were simulated over a 

time period T=trt0=l and T=5. For the sentinel function we have taken a 

uniform weighing h(t). The results of these tests are shown in tables 4.1 and 

4.2. Here, the average error in the state vector is compared with the sentinel 

function. It is seen that for the white Gaussian processes the sentinel function 

is smaller than for the constant perturbation. Because the sentinel function for 

these oscillating processes is an order of magnitude larger than 5(0,x) these 

processes are not completely "stealthy", however, they are hard to detect. It is 

also seen that the result does not always improve by calculating the sentinel 

with observations taken over a longer time period. The reason for this is that 

the error in the state vector caused by the perturbation xx(t) oscillates, causing 

a cancellation in the sentinel function. 

The average error in the state vector caused by Xg(t) is shown in the 
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last columns of tables 4.1 and 4.2. In most cases this error is of the same 

order as the difference S(k,%) - 5(0,0), so we indeed can use this difference to 

estimate the average error in the state vector from external perturbations. 

Table 4.1. Detection of external perturbations using the sentinel method. The white 

Gaussian process is represented by L,{t). In the last column we have 

i 

D(kg(t)) = f(h(t),\x(tX0)-x(t;0,0)\)dt, 

denoting the average error in x(t) during the time period T. We have taken a time period 

r=i.o. 

X 

0.0 

0.01 

0.05 

0.01 

0.05 

0.01 

0.05 

git) 

1 

1 

5(0 
m 
0.5(1+5(0) 
0.5(1-^(0) 

S(X,x) - 5(0,0) 

2.76 10"6 

1.12 10'3 

5.59 10"3 

4.17 10"5 

1.98 10"4 

5.02 10"4 

2.90 10"3 

D(X*g(t)) 

0 

2.66 103 

1.33 102 

1.37 10-4 

6.85 10"4 

1.38 103 

6.92 103 
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Table 4.2. See table 4.1 for the explanation. Now for the time period is taken T=5.0. 

X 

0.0 

0.01 

0.05 

0.01 

0.05 

0.01 

0.05 

g(t) 

1 

1 

m 
m 
0.5(1+^(0) 

0.5(1+1;«) 

S(X,i) - 5(0,0) 

9.32 10"7 

4.32 10"4 

2.15 10"3 

1.37 10"5 

6.48 10"5 

2.29 10"4 

1.14 10"3 

D(\*g(t)) 

0 

6.17 10"3 

3.08 10"2 

1.01 10"4 

5.05 10"4 

3.11 10"3 

1.56 10"2 

4.3 SENTINELS FOR ESTIMATING UNCERTAIN PARAMETERS 

In the foregoing it was assumed that the size X and the time depen­

dency g(t) of the perturbation were unknown. The sentinel method can then 

be used to estimate the average error in the state vector, caused by this 

perturbation. Now we suppose that g(t) is a known function. This extra infor­

mation is used to estimate the size X of the perturbation. Anew we consider a 

process that is described by a system of ordinary differential equations given 

by eqs. (4.1-4.2). The formal analysis of the preceding section again applies. 

The only difference is that 5,(0,0) can be computed by using eqs. (4.21) and 

(4.22). Assuming that Sx(0,0) ^ 0, we can estimate the size X of the pertur­

bation using the Taylor expansion (4.20). We then arrive at the estimator: 

£ = S(X,x)- 5(0,0) ( 4 2 4 ) 

5,(0,0) 

For most time intervals this estimate is sufficiently accurate, however, for 

certain time intervals 5,(0,0) can be small. Then higher order terms in the 
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Taylor expansion are not always negligible with respect to 5^(0,0) and 

produce inaccurate and biased estimates. 

In section 4.2 we neglected the errors in the observations. We will now 

include them in our analysis. These observation errors appear not to be 

negligible in cases where the difference S(k,x) - 5(0,0) is small, because then 

the contribution of the observation errors to S(K,x) will be of the same order 

as the difference S(k,x) - S(0,0). This also yields inaccurate estimates. 

4.3.1 A LOW-ORDER SPECTRAL MODEL OF THE ATMOSPHE­

RIC CIRCULATION WITH A PERTURBED EQUATOR-POLE 

TEMPERATURE GRADIENT 

We study the use of the sentinel function for a 10-component spectral 

model of the atmospheric circulation that has been analyzed by De Swart 

(1988a, 1988b). For barotropic flow the atmospheric circulation is described 

by a streamfunction. This streamfunction, V|/(x,v,0, satisfies the so-called 

quasi-geostrophic barotropic potential vorticity equation: 

- i v > + 7(\|f,V>+/) + yJ(\\f,m) + CV2(\|/-\|T) = 0, (4.25) 
dt 

where J is the Jacobian operator given by 

J(fl,b) = ap^apv a=(ava2y, b=(bvb2y. (4.26) 

The Coriolis parameter ƒ is taken to be fixed, meaning that the flow is 

restricted to a channel in the tangent plane at a given latitude. The term 

m{x,y) describes the topography (mountains) of the domain and the coeffi­

cient y accounts for the effect of this topography. The coefficient C is a 
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measure for frictional effects and finally the term xy*(x,y,i) models the driving 

force of the atmospheric flow: the equator-pole temperature gradient. 

The solution \\i(x,y,t) of eq. (4.25) is approximated by expanding V|/, \|i* 

and m in a series of eigenfunctions {fy} of the Laplace operator for the 

channel being a domain in the x,v-plane, periodic in x and bounded by lower 

and upper values of y: 

V(xy,t) = j^xfttyixy). (4.27) 

In De Swart (1988a) the system of nonlinear differential equations for the 

coefficients Xj(t)J=l,...,lO of the truncated series \y{x,y,t) is derived. It is of 

the form 

— =f{x) + Cx', (4.28) 
dt 

(see appendix A). This spectral model has a vacillating solution and is a 

system of the lowest possible order that still exhibits this behavior (De Swart, 

1988a). Vacillation means that the solution visits in an irregular manner 

domains in state space where it remains for some time. These domains cor­

respond to so-called preferent weather regimes. 

The effect of the equator-pole temperature gradient is represented in eq. 

(4.28) by the term Cx*, with x*=(x1*,0,0,x4*,0,...,0). We want to study the 

influence of a perturbation in this temperature gradient on the evolution of 

this spectral model. Since this system has a sensitive dependence on the 

initial state, the sentinel method is used. 

As in most situations in practise the observations are taken at discrete 

times tk, k=\,...,N. Therefore we use the discrete analogon of the sentinel 

function and we define the discrete sentinel function as 
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S(X,%) = £ (hk + wk,x{tk)) (4.29) 

with hk,wkB^° representing the weighing. Following the same computations 

as in the previous section we derive for the weighing wk 

wk = -RM (4.30) 

with 

(„ 
u = 

\k=i j 

N 

J X V Rk = R(tk,t0).
 ( 4 3 1 ) 

In this test example the "true" process is simulated by integrating eq. (4.28), 

with the initial conditions contaminated with white noise with variance x2 = 

10"6 and with the vector x* perturbed with Xg(t). We have taken A^0.05 and 

g(t)=(l,0,...,0)\ The observations are sampled with a sampling period Ts = 

0.25. We have also contaminated the observations with white observation 

noise, with variance T2 = 10"6. 

The sentinel function S(k,x) is calculated using a batch of Af=12 

consecutive observations from the data collection of the "true" process, and 

with a uniform weighing hk. The model data for a batch are obtained by 

integrating eq. (4.28) with the initial conditions equal to the first observations 

of the batch of the "true" process and with A^O. These data are then used to 

calculate 5(0,0). We also calculate Sx(0,0) for this batch and estimate X 

according to eq. (4.24). Because the data set is much larger than a single 

batch, we can monitor X in a "moving sentinel" approach. By this we mean 

that the first batch of Af samples is used to calculate Â,(l). Shifting one place 

through the data set we get a second batch of data, from which X(2) is 
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obtained, and so on. 

In figure 4.1(a) we show X as function of the counting index k of the 

batches. The large outliers that appear in this picture are caused by small 

values of Sx, as we see from figure 4.1(b); the outliers occur when the cor­

responding value of ISx(k)l gets small. This makes these estimates unreliable 

for reasons discussed before. To improve the result we take the mean of all 

estimates X(k), except those estimates X(k) for which the absolute value of the 

accessory Sx is smaller than a threshold value. As threshold value we choose 

the mean of the absolute values of Sx. The results of this procedure for 

various values of X and 1 are presented in table 4.3. It is seen that the size of 

X with respect to T determines the quality of the estimates. This procedure 

yields less accurate estimates only for small values of X. In all other cases the 

estimate X is sufficiently accurate. 

Table 4.3. Estimates of X using the sentinel method, as function of the "true" parameters À. 

and T that are used to simulate the "true" process. 

1 

X 

0.0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.0 

6.9* 10"7 

0.0099 

0.020 

0.030 

0.039 

0.054 

0.005 

-0.0039 

0.0076 

0.018 

0.029 

0.037 

0.051 

0.001 

-0.0037 

0.0034 

0.019 

0.027 

0.036 

0.046 

0.0015 

-0.0059 

-2.9* 10"4 

0.013 

0.025 

0.046 

0.047 

0.002 

-0.0166 

0.0058 

0.030 

0.046 

0.046 

0.050 
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<sr o.i 

10 20 30 40 50 60 70 80 90 100 

Batch index k (a) 

10 20 30 40 50 60 70 

Batch index k 

90 100 

(b) 

Figure 4.1. The sentinel method for the atmospheric circulation problem. The "true" 

process was simulated with A^0.05 and T2=10"6. Each batch consists of 12 consecutive 

observations; batch k starts with observation k. (a) Estimated parameters X.(k) and (b) first 

derivatives Sx(k) as function of the counting index k of the batches; cases where ISJ is 

below the threshold value are indicated by "o". 
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4.4 EXTENDED KALMAN FILTERING FOR ESTIMATING UN­

CERTAIN PARAMETERS 

A more traditional method to estimate parameters and states of a 

dynamical system is the Kalman filtering technique. This filter is developed 

in the early sixties by Kalman and Bucy. It gives, for linear dynamical 

systems, the optimal estimator for the state of the dynamical system, in the 

sense of minimum variance. For nonlinear dynamical systems there are many 

approximated optimal filters developed (e.g., Jazwinski, 1970, Sorenson, 

1988). In this study we will use the extended Kalman filter and we adapt a 

procedure described in Jazwinski (1970, pp. 281-282) to estimate an uncer­

tain parameter. First we will give a description of the extended Kalman filter. 

Consider a nonlinear dynamical system of the form 

El = fä+^f), x(0) = x0+^0, t>0, (4.32) 
at 

y{tk) = Mx{tk)^2{tk), (4.33) 

where x{t) is the state vector and y(tk) are the observations taken at time tk. 

We assume that the noise term 2̂(
ffc)> caused by observations errors, can be 

modeled by a white Gaussian process in discrete time. Errors in the state 

equation are modeled by a continuous white Gaussian process %x(t). The 

autocovariance functions of these processes are of the form 

E(%x{t%W) = Ô,(0ôD(T) and E£2(tkK2(t)<) = R^S^-t,), 

where 80(.) denotes the Dirac delta-function and o^(.) denotes the Kronecker 

delta. Furthermore we assume that the error in the initial state ^0 and these 

noise processes, ^,(0 and Ç2(/*)>
 a r e mutually uncorrected. 
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Starting from estimates of the mean x(tk\tk) and the error covariance 

matrix P(tk\tk) of the state vector at time tk, given the observations v^),..., 

y(tk), we predict the state x(tk+1\tk) and the error covariance matrix P(tk+l\tk) at 

time tk+1 with the first two equations of the extended Kalman filter 

X(tkJtk) = x(tk\tk) + jfimjdt, (4.34) 

KM = *(h^mmM®%^mk))+Q^ <4-34> 

where ^(tk+l,tkJc(tk+1\tk)) is the state transition matrix of the linearized state 

equation 

* 1 = fXmtMx 
dt jyK^j' 

(4.36) 

with 

ZOW) = 
df(x(tk\tk)) 

and where 

Q(tk+l) = ^{tk^tk)Qx{t)^{tM,tkYdt. 

At time tk+l a new observation comes available. This observation is used with 

the remaining three equations of the Kalman filter to update the estimates of 

the mean and the error covariance matrix of the state vector, 
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*w*-i) = %w+«(gwj-^M <4-37) 

% i U = ( /-^+1)M)P(r,+1 l^), (4.38) 

*('*••) = p^\tk)M
T{MP{tM\tk)M

T+R(tk)y\ (4.39) 

The filter is initialized with estimates x(t0\t0) and P(t0\tQ). These estimates of 

the initial state are assumed to be known. 

We will use this filter to estimate the state and the size of the external 

perturbation of a dynamical system given by eqs. (4.3-4.4). As in the pre­

vious section we assume that the shape g(t) of the external perturbation is 

known and that the size X is unknown. The size of the external perturbation 

can be seen as an uncertain parameter in this model. Therefore, we augment 

the model (4.3-4.4) with an additional state variable by regarding this 

parameter as a random variable with mean and variance 

E(X) = \ , var(X) = 0, 

meaning that this variable is a constant and thus its variance is equal to zero. 

It satisfies 

— = 0 (4.40) 
dt 

with an initial mean X(?0lf0) and initial variance Px(t0\t0). We now combine eq. 

(4.3) and eq. (4.40) into the augmented model 
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dX= d 
dt dt 

X 

X 
Ax) 

0 
+ Xg(t) 

0 
(4.41) 

with state vector X(t) = (x(t),X(t)) ' • Since the state equation of the original 

model (4.3) and the state equation (4.40) are noise free, the state equation of 

the augmented model (4.41) is also noise free. Therefore, the autocovariance 

function Q(t) can be set equal to 0 in the extended Kalman filter for this 

augmented model. 

We will now apply the extended Kalman filter to the spectral model of 

the atmospheric circulation, so that we can estimate the size X of the pertur­

bation in the equator-pole temperature gradient. We then can make a compa­

rison between the extended Kalman filter approach and the sentinel method. 

We will regard A, as a random variable with mean Xr and variance equal to 0, 

so that the spectral model (4.28) changes into 

dX 
dt 

d 
dt 

X 

X 
Ax) 
0 + C(x*+X 

0 
(4.42) 

y«k) = [/ o] 
x(tk) 

+w> 
4.43) 

where y(tk) are the observations of the state vector at time tk. For the observa­

tions of the "true" process we will use the data sets that also have been used 

by the sentinel method. We take as the initial estimate for x(t0\t0) the first 

observation of the data set. As the initial estimate for P(t0\t0) we take 

Wo> = X2 i f *V'. 
= 0 if ifij, 
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because the observations are contaminated with white noise with variance x2. 

Accordingly the error covariance function of ^2(^) 1S therefore also equal to 

R5(tk-t,) with 

R = x2 if i=j, 
l,J J 

= 0 if tej. 

We set X(tQ\t0)=0 and Px(t0\t0)=\00 as the initial statistics for X. This large 

variance /\(?0l?o) stands for the initial uncertainty in the parameter X. 

We will filter two data sets, where we take as "true" parameter values 

X=0.01, x2=10"6 and A^O.05, x2=10"6 respectively. We saw in the previous 

section that the result of the sentinel method was only sufficiently accurate 

for the second data set, where we found X^O.046. The filtering results are 

shown in figures 4.2(a) and (b). In these figures we plotted the estimated 

values X(tk\tk). The dotted line represents the error standard deviation, 

X±^lPx(tk\tk) (root mean square error curve). We have found as final estimates 

X(tm\tm)=0.0\0 for the first data set and Ä,(̂ ioo''ioo)=0-051 for the second data 

set. 

Figures 4.2(a) and 4.2(b) show that the error standard deviation 

decreases fast, which means that the data contain much information on X. 

Especially for the data set with ^=0.01 we see that the standard deviation 

decreases very fast for samples taken at the interval (t30,t40). Apparently, the 

process is very sensitive to this parameter on this part of the attractor. 

It is noted that for the data set with X=0.05, the estimates X\tk\tk), for 

large k fall somewhat outside the rms-error curve. This may be due to the 

particular realizations of the observation errors and the choice of the initial 

estimate Â,(f0lï0). Since the filter is an approximated optimal filter, it may also 

be that the higher order moments of the probability density functions and 

numerical errors are not negligible for this perturbation. Sometimes the result 

can be improved by including a small fictitious error term in the state 
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equation (Jazwinski, 1970, pp. 301-307). 

10 20 30 40 50 60 70 80 90 1O0 

time index k (a) 

10 20 30 40 50 60 

time index k 

90 

(b) 

Figure 4.2. The extended Kalman filter for the atmospheric circulation problem. The solid 

line denotes the estimated X(ftlft) ^
 t n e dotted line denotes the root mean square error 

curve, X±^IPx(tk\tk). (a) The "real" process was simulated with À=0.01 and T2=10"6, (b) the 

"real" process was simulated with À^0.05 and T^IO"6. 
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4.5 CONCLUSIONS 

In this paper we have modified Lions' sentinel function so that it can 

be applied to systems that are described by ordinary differential equations. 

We also have presented an analog of the modified sentinel function for 

situations where the observations of the system are discrete. This modified 

sentinel function is applied to systems that are perturbed by some external 

force. Two situations can be distinguished: the external perturbation is 

completely unknown, and the case that the time dependency of the perturba­

tion is known, but the size of the perturbation is unknown. 

For the first situation, we have shown that the sentinel can be inter­

preted as the averaged error in the state vector caused by the unknown 

perturbation. It can be used to detect an external perturbation by comparing 

the sentinel as function of the observations with the sentinel as function of 

the model values. Because the sentinel is a weighted average of the state 

vector over a time interval (t^t^), oscillating perturbations are hard to detect. 

Such so-called "stealthy" perturbations can be made visible by an appropriate 

choice of the time interval and the weighing h(t) (Lions, 1990). 

For the second situation, we regarded the size of the external perturba­

tion as an uncertain parameter in the model. We have constructed an estima­

tor for this uncertain parameter based on the sentinel function. As an alterna­

tive we also have constructed an estimator based on the external Kalman 

filter. These two estimators have been compared in a case study, where we 

have analyzed a spectral model of the atmospheric circulation with a pertur­

bed equator-pole temperature gradient. In this case study we compared 

simulations of the perturbed model, representing the "true" process, with 

simulations of the model. For large values of the uncertain parameter X, 

compared with the accuracies in the initial state and the observations, the 

error in the estimator based on the sentinel function e=X-X is of the order of 

5-10%. For smaller values of X the inaccuracy even increases. In the exten-
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ded Kalman filter treatment the error in the estimator of the uncertain 

parameter is considerably smaller, e<2%, in the two cases that we have 

analyzed. 

The less accurate results of the sentinel method are caused by the 

relatively low sampling frequency. The derivative S^(0,0) can then be small 

for certain time intervals, so that the effect of neglecting higher order terms 

of the Taylor expansion is felt. Moreover, the influence of observation errors 

becomes significant. 

From figure 4.2 it is seen that the root mean square error curve calcu­

lated by the extended Kalman filter drops considerably after a few observa­

tions are taken. This implies that the data contains much information about 

the size of the perturbation. This observation is also reported in a paper of 

Baake et al. (1992), where they concluded that an observed trajectory of a 

chaotic process may be expected to contain a large amount of information 

about uncertain parameters. 

The extended Kalman filter that we have used for estimating an 

uncertain parameter, is less suitable for the first situation. We then have to 

augment the state vector with more variables, because it is not known if the 

system is affected by one or more perturbations and which elements of the 

state vector are affected by these perturbations. For the special situation 

where the extended perturbation can be modeled by an additional noise term, 

we refer to Mehra (1970) and Iglehart and Leondes (1974). They present 

some methods to estimate the covariance matrix of such a noise term using 

methods that are based on the Kalman filter. 
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Maarten de Gee and Albert Otten for their advices during the preparation of 

the manuscript. 
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APPENDIX A. 

In De Swart (1988) a 10-component spectral model for the barotropic 

flow (4.25) in a rectangular channel is derived. The channel has length 2n in 

the zonal direction and width nb in the meridional direction. The 10-compo­

nent model is given by 

d 
dt 

r -j 
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x2 
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X4 

X5 
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Xl 

X% 
x9 
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+Pl2(-
X2Xt-X3Xl) 

-p12(x,x,+x3*8) 

-p2l(X2x6+x3x5) 

+p2l(x2x5-xyx6) 

+ Y ! ^ 8 

"112*7 

" ^21*6 

"121*5 

where 

advection topo- forcing/ advection wave topo­
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_ sjïn m1 n2b2+m2-\ ß _ ßnfr2 

ft 4m - 1 nb^+m1 nb+m1 

g _ 64\/2n n2fc2-(mM) . _ 4m ,/2n&y 
"" ~ l5n n2b2+m2 'y"m 4 m 2 - l 7t 

16v/2n _ 4m 3 \/2«fry 

5TC ™ 4 m 2 - 1 Ji(«2fc2+m2) 

= 9 (n-2)2-(m-2)2 , = 3fry 
Pnm 2 n2b2+m2 ' 4(n2fc2+m2) 

The ßnm-contributions represent planetary vorticity advection, the ynm*, ynm 

and y„m'-terms the various couplings between flow and topography and Cx* 

the equator pole-temperature gradient. We have taken &=1.6, ß=1.25 y=l, 

C=0.1, V=4andx4*=8. 
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ESTIMATING UNCERTAIN MODEL 

AND NOISE PARAMETERS IN 

CHAOTIC MODELS WITH 

APPLICATIONS IN 

METEOROLOGY 

Abstract 

For a well operating extended Kalman filter it is necessary to have an 

accurate description of the physical process and knowledge of the noise 

statistics. In this paper, adaptive extended Kalman filter techniques are 

analyzed for nonlinear chaotic models that involve unknown parameters of 

two different types. First, there are parameters describing unknown systematic 

perturbations. Second, the error covariance matrix of the model is unknown; 

this matrix is assumed to be described in terms of a few (unknown) parame-
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ters. The values of both sets of parameters are estimated using an approxima­

ted Maximum Likelihood method. To this end, the probability distributions of 

the forecast errors are approximated by Gaussian distributions. The value of 

the log-likelihood function is then easily obtained using the extended Kalman 

filter. However, in case of divergence of the extended Kalman filter, the 

approximate log-likelihood function may have many local maxima and 

consequently, commonly used optimization algorithms cannot locate the 

optimal solution. Here, we mean with divergence of the extended Kalman 

filter that the actual forecast errors are larger than expected from the compu­

ted error statistics. In our approach to this problem we add an artificial noise 

term to the state equations of the model. This artificial noise term is used to 

control the accuracy of the estimates, so that the filter does not learn the 

wrong state too well. The values of the unknown model and noise parameters 

are approximated by an optimization procedure that is designed in such a 

way that it does not tend to settle in a local optimum caused by divergence 

of the filter. The above mentioned problems arise in particular in chaotic sys­

tems. To illustrate how these problems can be overcome a spectral model of 

the atmospheric circulation is chosen as an example of the application of the 

method. 

5.1 INTRODUCTION 

During the last decades the quality of forecasts of numerical weather 

models has been substantially improved. In general, this quality depends on 

at least three separate factors. First, there is the accuracy with which the 

mathematical model describes the true atmospheric circulation. Second, there 

is the accuracy with which the numerical model approximates the mathemati­

cal model. Third, there is the problem of estimating the initial state of the 

model sufficiently accurate. For weather models this last problem is promi-
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nently present, because in these models there is sensitive dependence on the 

initial state. Starting from almost identical initial conditions, model solutions 

may diverge from each other so that integrating only a few days, little 

resemblance between the final states remains (Lorenz, 1963). 

The rapid development of computer technology creates the possibility 

of improving both the mathematical and the numerical modeling: we can 

handle more complex models with a larger number of variables. The know­

ledge of the initial state has improved using more dense observation networks 

and more sophisticated data assimilation methods. Yet, in spite of all these 

improvements we are not able to give accurate forecasts beyond a range of 

about five days. 

In this study we assume that observations are contaminated by discrete 

white Gaussian noise and that the model state equations are perturbed by a 

continuous white Gaussian noise process. In case the true process is descri­

bed by this system and the statistics of these noise processes are known, there 

exists an optimal filter solution for the estimator of the state vector in the 

sense of minimum variance (Jazwinski, 1970). In case the system is linear 

and the initial state is Gaussian distributed, the probability distribution of the 

state vector remains Gaussian. Therefore, for an optimal filter for linear 

systems it is sufficient to predict and update the first and second moment of 

the probability distribution of the state vector; the resulting filter is the well-

known Kalman-Bucy filter. On the other hand, for nonlinear systems the 

probability distribution of the state vector does not remain Gaussian. There­

fore, this probability distribution is not described completely by its first and 

second moment, and consequently, an optimal filter cannot depend on these 

first two moments only. However, in many cases we may approximate the 

probability distributions of the state vector by a Gaussian distribution. A 

nonlinear filter that predicts and updates these first two moments generally 

works quite well (Anderson and Moore, 1979, Sorenson, 1988). 

For linear models, a variety of adaptive filters has been developed that 
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deal with the uncertainty in the model. For meteorological practice, Dee et al. 

(1985) developed an efficient method to estimate the statistics of the model 

errors of a linearized weather model. Dee's method is based on a result of 

Bélanger (1974) for linear models: if the error covariance matrix of the 

model is a linear combination of a set of parameters, then the forecast error 

covariance matrix is also a linear combination of these parameters. Using this 

result it is possible to estimate these unknown parameters in a secondary 

filter. 

Mous and Grasman (1993) described two methods to estimate uncertain 

model parameters. The first method is based on Lions' sentinel function 

(Lions, 1990). It compares a weighted average of the state vector, the so-

called sentinel function, with a weighted average of the observations. The 

weights are chosen such that the sentinel function is, to first order, insensitive 

to errors in the initial state and can be easily calculated using the adjoint 

equations. A disadvantage of the method is that the sentinel function may be 

less sensitive to certain perturbations. These perturbations are called "steal­

thy" (Lions, 1988). The second method they described is based on an 

adaptive extended Kalman filter. In this method the uncertain parameters are 

regarded as random variables and the state vector is augmented with these 

variables. Since the extended Kalman filter yields estimates of the state 

vector, it also provides an estimate of the uncertain parameters. A disadvan­

tage of this on-line estimating procedure is that initially the filter uses the 

wrong parameters, which lowers the performance of the filter. This disad­

vantage may be overcome by repeating the whole process using the estimated 

values for the parameters from the first run as initial estimates for the 

parameters for a second run. This off-line approach may have a better 

performance. 

In this study an approximated Maximum Likelihood method is used to 

estimate the uncertain model parameters and the noise statistics. To this end, 

it is assumed that nonsystematic perturbations, numerical errors, the effect of 
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deleting higher order moments in filtering the data, etc., may be described by 

an additive white Gaussian noise process. In our method the data are filtered 

with the extended Kalman filter, because then we can easily obtain an 

approximation of the value of the log-likelihood function. We are aware of 

the computational costs of the extended Kalman filter. However, because the 

unknown parameters are estimated off-line, this is not our major concern. 

In section 2 we show how the extended Kalman filter can be used in 

conjunction with an optimization algorithm to estimate the uncertain para­

meters. A complication in using the extended Kalman filter is that it may 

diverge, that is to say, the forecast errors may become inconsistent with their 

computed error statistics. To study this divergence we will analyze as an 

example the Lorenz attractor in section 3. We will show that divergence of 

the extended Kalman filter may lead to many local optima. A way to control 

this divergence is to add an artificial noise term to the state equations 

(Jazwinski, 1970). The statistics of this artificial noise term then have to be 

estimated. In section 4 we propose an optimization procedure for estimating 

the unknown model parameters and the noise statistics. This optimization 

procedure is designed in such a way that it does not tend to settle in a local 

optimum caused by divergence of the filter. We believe that this method may 

work well to estimate the uncertain parameters in nonlinear weather models, 

having a vacillating solution (de Swart, 1988). Vacillation means that the 

solution irregularly visits domains in state space where it remains for some 

time. These domains correspond to so-called preferent weather regimes. This 

behavior is very similar to that of the Lorenz equation. The Lorenz equation 

has a strange attractor, which consists of two "sheets" that are pinched 

together into a cantor book near the origin (Sparrow, 1982); the state vector 

switches irregularly between these two sheets. This kind of chaotic behavior 

is also characteristic for weather systems. The switching between the prefe­

rent domains of the system forms a problem for the extended Kalman filter; 

it easily leads to filter divergence. In section 5 the results of some numerical 
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experiments with the barotropic vorticity equation are presented. Here, the 

extended Kalman filter together with the proposed optimization procedure is 

used to estimate the parameters that describe a small systematic perturbation 

and the statistics of an artificial noise term. 

5.2 EXTENDED KALMAN FILTERING 

Starting point of our analysis is a system of (Ito) stochastic nonlinear 

differential equations, which describes the time evolution of a state-vector 

x(t)=(Xl(t),...,xn(t)y, 

É1 = f(x,t)+g(x,t;X) + ̂ (t), t>t0. (5.1) 
dt 

We assume that this system describes the true evolution of the physical 

process under study. The first term on the right-hand side of this system, the 

vector function f(x,t), denotes the model of the physical processes. The 

second term on the right-hand side, the vector function g(x,t;K) with unknown 

parameter vector X, stands for small systematic perturbations that are neglec­

ted in the model. The last term stands for processes that inherently cannot be 

modeled, because they cannot be idealized. We think of nonsystematic 

perturbations, numerical errors, deletion of higher order moments of the 

probability distribution of the state vector, etc. As we will show later, it may 

also be seen as an artificial noise term that is used to solve the problem of 

filter divergence. We assume that these unknown noise processes are descri­

bed by a white Gaussian noise process with autocovariance function 

Ei^m^Y) = (52W(t)bD(t-x) (5.2) 

with 8D(f-T) the Dirac delta function. We further assume that the state vector 

is observed at discrete times tk and that these observations 
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y(tk)=(yi(tk),...,ym(tk))' satisfy the so-called observation equation, 

y(tk) = m(x(tk))+%2{tk\ k=l,...,N. (5.3) 

Here, ^2(4) is the observation error. We assume that it can be described by a 

discrete white Gaussian noise process with autocovariance function 

E(Utk)?,2(tf) = tfR(tk)5K(tk-t) (5.4) 

with ô^-?,) the Kronecker delta. We also assume that the noise processes 

2^(0 and ^(h) a r e independent. For more complicated systems, e.g., with cor­

relation between the noise processes, we refer to Jazwinski (1970). In this 

reference a thorough description of nonlinear filtering theory is presented. We 

will use the extended Kalman filter to calculate the forecast and the filtering 

solution and for completeness we will give a brief description of this filter. 

Starting from the filtering solution x(tk\tk), given the observations 

y(t]),...,y(tk), the forecast x(tk+x\tk) is simply given by integrating eq. (5.1), with 

£,(*) set to its mean value £'(^1(?))=0 and with an initial guess for the parame­

ter vector X. In meteorology the filtering solution is often called the analysis. 

For the calculation of the error covariance matrix P(tk+1\tk) at time tk+] the 

state transition matrix or resolvent of the linearized system is needed. This 

calculation is very laborious and is often considered as the major weakness of 

the extended Kalman filter. Dee (1991) presented a simplified Kalman filter, 

which is based on a simple model for the propagation of the model error. He 

showed that this filter may work quite well for weather forecasting. However, 

we believe that a good approximation of this error covariance matrix is 

necessary to make a good judgement of the quality of the model. Therefore, 

we will not use a simplyfied form of the state transition matrix to calculate 

the propagation of the model error, but we will use the complete state 

transition matrix of the linearized model equations. The propagation of the 

forecast x(tk+x\tk) and error covariance matrix P(tk+l\tk) are then calculated by 
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x(tk+l\tk) = x(tk\tk)+^f(x{t\tk))+g{x{t\tk)-X)dt, (5.5) 

p(tk+l\tk) = ^ w ^ w ^ w ^ j + Ä g , (5-6) 

where <&(tk+i,tk;x(tk+1\tk)) is the state transition matrix of the linearized state 

equation 

^ M = (fXx(tk\tk))+g\x{tk\tkyX))?>x 
at 

(5.7) 

with 

f(x(tk\tk)) = 
df(x(tk\tk)) 

dx 
gxmtj-x) 

dg{x{t\tk);X) 

dx 
(5.8) 

The matrix Q(tk+l) in eq. (5.6) is related to the autocovariance function of the 

white Gaussian process of the model, ^ ( 0 . by 

Q(tkJ = fo(tM,X)W(T)<t>T(tM,T)dT. (5.9) 

Observation y(^+1) are used to update the forecast and the error covariance 

matrix, 

Wk+iKJ = x(tk+l\tk)+K(tkJ(y(tk^-m(x(t^\tk))), (5.10) 

(5.11) 
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with 

K(tk+l) = P(Utk)M(tkJ^M(tkJP(tJtk)M(tk+iy+R(tk+l))-\ (5.12) 

M(^+1;x(^+1ig) = 
dm(x(tkJtk) 

dx 
(5.13) 

The new analysis x(tk+l\tk+l) and error covariance matrix P(tk+l\tk+l) are used to 

calculate a new forecast. Of course it is unlikely that the initial state x0 

belonging to the state eq. (5.1), which is needed to initialyze the filter, is 

known exactly. Therefore, we assume that the initial state is a random vector 

with mean x0 and with covariance matrix P0. Furthermore, we assume that the 

initial state is independent of the noise processes ^(f) and ^2(4)- The recursi­

ve extended Kalman filter is then started with mean x(tQ\tQ)=x0 and covariance 

matrix P(t0\t0)=P0. 

The extended Kalman filter works well if the probability distribution of 

the state vector x(t) can be approximated by a Gaussian distribution. This 

approximation is valid in case the linearized state equation describes the 

process between tk and tk+l adequately. In practice this means that the obser­

vations are made with a high sampling frequency, and that the model is an 

accurate description of the true system. To check whether the extended 

Kalman filter is doing well, we calculate the forecast errors, 
ei(tk+i)=yi(tk+i)-m(^i(tk+^tk))- F ° r a n optimal filter these forecast errors have to 

be white. Therefore, the more white they are the better the filter works 

(Anderson and Moore, 1977). A simple test for the whiteness of the forecast 

errors is based on the autocorrelation functions. First the forecast error time 

series are normalized, so that the forecast errors are approximately identically 

distributed. The autocovariance functions are then estimated by 

Ci,ß) = ̂ J2ei(t)ei(tlJ, (5.14) 
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and the autocorrelation by 

C (k) 
t.ß)=-LLL. (5.15) 

The variances of the estimated autocorrelation of a time series with indepen­

dent, identically distributed normal errors may be approximated by the 

formula of Moran (1947), 

var(t.(k)) = N~k . (5.16) 
N(N+2) 

The 95% critical values for Pu(k) are then ±(1.96 var(fJ((A:))1/2). In case less 

than 5% of Tu(k) lies outside this band, we say that the sequence is white. In 

this approach, the forecast errors are tested by component. An alternative 

may be found in testing them simultaneously, as indicated by Mehra (1970). 

In many cases the model contains a number of unknowns, such as the 

model parameters X and the matrices Q(tk) and R(tk). The importance of 

having a good approximation of the matrix Q(tk) can be understood from eq. 

(5.6); a large matrix Q{tk) may dominate the error covariance matrix P(tk+1\tk) 

and the Kalman gain K(tk+l) making the new analysis x(tk+l\tk+l) unreliable. 

Therefore one needs a good approximation of this matrix. It should be 

estimated from the data. However, it is impossible to estimate all elements of 

this matrix, even if we assume that this matrix is time-invariant. Instead of 

estimating all elements of Q(tk) we rather estimate certain linear combination 

of the elements, by approximating Q(tk) by a linear combination of a fixed set 

of time independent matrices (Cohn and Parrish, 1991): 

ß(g = ß = Ehßr (5'17) 

The matrices Qi are chosen a priori. The parameters u„ which in the follo­

wing are called noise parameters, are yet to be determined. The other matrix 

R(tk) is a measure for the accuracy of the observations. It is important for the 
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update equations of the filter. However, because in practice one often knowns 

the accuracy of the observations quite accurately, we assume that this matrix 

is known. 

Using the extended Kalman filter an approximation of the log-likeli­

hood function can be obtained. To do so the log-likelihood function is written 

as 
L(yN>yN-v->yi>G2M = L(ywlvA,_1,...,y1;o

2,V)+L(vA,_1,...,v1;0
2,A,,|i) (5-18) 

(cf., e.g., Harvey, 1981). As mentioned above the probability distributions of 

the forecast errors are approximated by Gaussian distributions. The mean and 

covariance matrices of these distributions are given by 

E(e(tk+l)) = E(y(tk+l)-m(x(tk+l\tk)))=0, (5.19) 

E(e(tk+l)e(tktf) = c2(R(tk+])+M(tk+l)P(tk+l\tk)M(tk^n ( 5 2Q) 

= G2H(U-

The second term on the right-hand side of eq. (5.18) is then equal to 

L0'iv l)Vi'- ') 'rG2 '^u) = 

- -^ ln(27:) - | - ln(o 2 ) - i ln(IH(gi) - i .G- 2
e

r (g/ / (g g (g . 
(5.21) 

Substitution of eq. (5.21) into eq. (5.18) shows that the approximate log-

likelihood differs by no more than an additive constant from 

KyN,...,yl;o
iX\i) = 

. 1 N i w (5-22) 
-±Nmlno2 - ± £ ln(\H(tk)\) - i - < r 2 £ e T{tk)H{tye{tk). 

2 2 k,i 2 t=i 

We can simply reduce the dimension of the optimization problem by one, 

since ö2=SS/Nm, with 

ss = Y,eT(tk)mk)Mtk), (5-23> 

optimizes L(G2,A.,ulyw,...,y,) for all X and u. The object function for the 
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optimization of X and u is therefore equal to 

Lt(yN,...,y1;X,li) = -—A/mln 
£=i 

Nm 

1 " (5.24) 

Since the system is nonlinear, one cannot give an explicit expression for the 

approximated Maximum Likelihood estimates of X and u. We may obtain 

these estimates using the extended Kalman filter in conjunction with an 

optimization algorithm, e.g., the Quasi-Newton algorithm or the Conjugated 

Gradients algorithm. However, after getting some practical experience with a 

chaotic system, we concluded that these algorithms rarely converge. The 

reason is that the log-likelihood as function of X and u has many local 

optima. These local optima occur due to divergence of the extended Kalman 

filter. It is important to have a good understanding of this phenomenon, 

because the cause of this phenomenon is important for constructing a robust 

optimization procedure and for finding good initial guesses. Therefore, we 

will study a simple chaotic system as an example. 

5.3 NUMERICAL EXPERIMENTS WITH THE LORENZ 

ATTRACTOR 

The purpose of these experiments is twofold. First, we will study the 

use of the extended Kalman filter for chaotic models. In particular we will 

study divergence of the filter. Second, we will analyze the sensitivity of the 

log-likelihood function as function of the unknown parameters. Due to filter 

divergence the log-likelihood function will have many local optima. The 

hierarchical optimization procedure, that is presented in the next section, is 

designed to deal with this problem. We have chosen the Lorenz attractor as 

example because the small dimension of the state vector reduces the compu-
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tational cost of the filter. The state equations of the Lorenz attractor are given 

by 

dx 
—- = c(x -x)+t, 
dt 
dx 
—L = -x^rxrx1+^v (5-25) 

_ = Xlx2-bx3+^l3 

(Lorenz,1963). We take c=10, A^48 and b=S/3. It is remarked that we have 

added small stochastic perturbation terms to the equations. Usually these 

stochastic terms are not present in this system. Here, these stochastic terms 

are used as an artificial method to account for deleting higher order moments, 

numerical errors, etcetera. 

For the numerical experiments we have generated a dataset of the 

deterministic system by integrating the state equation using a high-order 

Runge-Kutta method with variable time-step. All state variables are observed 

with a sampling period 7=ft-ft.,=0.1. We have contaminated the observations 

with generated pseudo-random numbers from a normal distribution Af(0,l). 

In the first experiment we take 

P0 = ofr ß('t) = 0. *('*) = vi1 

with I the identity matrix and with aP
2=l and OR

2=1. Figure 5.1(a) shows the 

forecast errors, £(^+i)=v,(^+i)--x,(^+A)- After some time the forecast errors 

suddenly increase, which indicates filter divergence. The reason for this 

sudden increase of the forecast errors is that the filter "assumes" that the state 

is winding around one side of the attractor, while the true system is winding 

around the other side. The filter is not able to track a sudden change in the 

trajectory, because the increased accuracy of the estimate of the state vector 

causes the Kalman gain to become small and consequently the next consecu­

tive observations have almost no effect. Therefore, for vacillating systems we 
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have to modify the state equations by adding a small artificial noise term to 

them, so that the extended Kalman filter is able to follow the observations. 

In the second experiment we study the effect of such an artificial noise 

term. We have chosen for a simple parameterization of the matrices Q(tk), 

Q(tk) = Q = [iI 

and we take u=0.001. The forecast errors in figure 5.1(b), indicate no filter 

divergence. Apparently, the filter does not learn the wrong state too well. An 

other way to analyze the working of the filter is to calculate the autocorrela­

tion function of the normalized forecast errors. In figure 5.2(b) the straight 

lines denote the critical values for the autocorrelation function. Since the 

autocorrelation function lies for more than 95% between these lines, we 

conclude that the filter works well. 

Filter divergence affects the calculation of the approximated log-

likelihood: the approximated log-likelihood will have many local optima as 

function of "k and u. Therefore, the usefulness of the approximated log-

likelihood as object function seems questionable. The previous two experi­

ments showed that the filter is not divergent in case we add an artificial noise 

term to the state equations. The response surface of the log-likelihood 

function will be smooth in the region of the parameter space where u and 

thus Q is large. In many cases the log-likelihood function will have an 

optimum in this region that locates the true value of X. To illustrate this, we 

have perturbed the state equation by adding a small external force 

g(x,t;X) = (g1(x,nX,),g2(x,/;X,),g3(x,f;A,)) = (^,0,0) 

to the state equations, with an actual value X^5.0. This external force does 

not cause a dramatic change in the qualitative behavior of the Lorenz 

attractor. We have studied the sensitivity of the approximated log-likelihood 

function as a tool to estimate the value of À,, for various values of N and of 
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u. The results of the sensitivity analysis are summarized in figure 5.3. For 

short datasets, N=20, the approximated log-likelihood has a well-defined 

minimum. However, the accuracy of X is low and the log-likelihood is not 

very sensitive to X. Comparison of figures 5.3(a),(b),(c),(d) shows that the 

log-likelihood is not very sensitive to u either. For larger datasets, the log-

likelihood has many local minima. The reason that larger datasets give rise to 

many local minima is that the filter starts to diverge after the processing of 

some data. The accuracies of estimates obtained with larger datasets is, 

however, substantially higher. In figure 5.3 this trend is seen: a steeper 

minimum corresponds to a more accurate estimate (note the different scaling). 

Accurate estimates of X are obtained even with initially overestimated noise 

parameters u. Accurate estimates of u are harder to obtain, because with an 

underestimation of u the filter easily diverges (see figures 5.3(k) and 5.3(1)). 

Although accurate estimates of X can be obtained with an overestimation of 

u, these noise parameters are important because they identify the optimal 

extended Kalman filter. 
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Figure 5.1 Estimated forecast errors, (a) with model error covariance matrix g=0, (b) with 

model error covariance matrix Q= 0.001 /. 

Figure 5.2 Autocorrelation functions of the forecast errors. 
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Figure 5.3 Sensitivity of the log-likelihood. 

5.4 HIERARCHICAL OPTIMIZATION 

The problems and experiments discussed in the previous section lead to 

the following requirements for the optimization procedure: 

a partial decoupling of the optimization of the object function with 

respect to the model parameters À, and the noise parameters u, 

a simple method for checking filter divergence. 

The idea of a partial decoupling is based on the experience that X is estima-

105 



CHAPTER 5 

ted rather well when we initially overestimate the noise parameters u. A 

second argument for partial decoupling is that filter divergence is strongly 

related to the estimate of u. This divergence makes it difficult to estimate the 

parameters u. For chaotic models, filter divergence can easily be checked 

with a visual inspection of the time series of the forecast error, because a 

sudden increase of this time series indicates filter divergence. 

The procedure for hierarchical optimization is schematically presented 

in figure 5.4. Initially we take u large and we use some initial guess for X. 

The forecast errors are calculated using the extended Kalman filter and are 

visually checked on divergence. If necessary we adjust the parameters u. The 

matrices K(tk) and H'\tk) that are computed at each moment tk during this run 

are stored. 

The model parameters X are estimated, with the noise parameters u 

fixed, using a Quasi-Newton algorithm. This is called the inner optimization. 

We remark that initially the large matrix Q dominates the error covariance 

matrix P(tk+1\tk) and therefore also the Kalman gain. Since the matrix Q does 

not change within the inner optimization, we may use the stored matrices 

K{tk) and H'\tk) to approximate the actual matrices. This reduces the compu­

tational costs of the inner optimization considerably. 

In the other optimization the parameters u are estimated, with the 

parameters X fixed. This is called the outer optimization. As mentioned 

before, filter divergence occurs in case the matrix Q is too small. Therefore, 

we adjust the estimate of u with small steps. In the outer optimization only 

one step is made in the steepest descent direction. The new matrices K(tk) and 

H'\tk) are again stored so that they can be used in the inner optimization. We 

also check whether the filter diverges and if necessary we adjust the update 

for the parameters p. 

In the inner optimization the dominance of the matrix Q decreases after 

a few iterations. Our experience is that it is not necessary to calculate the 

matrices K(tk) and H'l(tk) every time the extended Kalman filter algorithm is 
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called, because the forecast errors are more sensitive to a small change in X 

than the matrix H'l(tk). 

Initialize A and |i 

Calculate L* and 
store K(tk) and m y 1 

Check on fitter divergence 

Calculate ̂ L * , . 
use stored K(t^ and H(tk)"

1 

Minimum ? 

Calculate V„L* 

Minimum ? 

Finish. 

I 
Adjust it 

T 

I 
Determine search direction 

and do line search 

T 
inner 

optimization 

Do one step tn steepest 
descend direction 

t 

Figure 5.4 Optimization procedure 
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5.5 NUMERICAL EXPERIMENTS WITH THE BAROTROPIC 

VORTICITY EQUATION 

The barotropic vorticity equation describes the dynamics of a two-

dimensional non-divergent and inviscid flow at the surface of a rotating 

sphere. It can be used as an approximating model of the atmospheric circula­

tion at 500 mbar. The forecast of the flow field is not very accurate, because 

of the intrinsic growth of errors in the initial state and because several 

physical processes are neglected in the model. Some of these processes, for 

example the effect of large mountains, can be modeled by small systematic 

perturbation terms (de Swart, 1988). On the other hand there are also proces­

ses that cannot be modeled easily by systematic perturbation terms, like the 

effect of cultivation of the land. Assuming that we may describe these 

processes by adding noise to the state-equation, the method described in the 

previous sections can be used to assess the different sources of model defi­

ciencies. 

The barotropic vorticity equation we consider in this section is given 

by 

^ = J(Ç+/,V), (5-26) 
dt 

where C(oc,ß,0 is the relative vorticity, \|/(oc,ß,0 is the streamfunction, ƒ is the 

Coriolis parameter and J is the Jacobi operator. This operator is defined by 

J(g,h) = j t e i * _ . f c j t o i (5.27) 
s da 3ß 3ß3oc 

where a is the geographic longitude and ß is the sine of the geographic 

latitude. The radius of the earth and the inverse of the angular speed of 

rotation of the earth are used as unit of length and time respectively. The 

relative vorticity is related to the streamfunction by Ç=A\|f. As state variable 
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we may choose either C(oc,ß,0 or \|/(a,ß,0. In this study, we have chosen for 

the streamfunction \|/(cc,ß,?). 

We approximate the solution \\f(a$,t) of eq. (5.26) by expanding it in 

spherical harmonics and using a triangular truncation at T i l , 

m = l l « = 11 

V(a,ß,o = E E *Jfi U«.ß) (5-28) 

m = - l l n=\m\ 

with 

7mn(a,ß) = Pm„(ß)exp(ima). 

The functions Pm„($) denote the associated Legendre functions of the first 

kind and of order m and degree n. Since the spherical harmonics are eigen-

functions of the Laplace operator, substitution of eq. (5.28) into eq. (5.26) 

leads to system of ordinary differential equations for x(t) which is of the form 

of eq. (5.1) (Machenhauer, 1979). 

The state transition matrix of the linearized system can be obtained by 

linearizing the barotropic vorticity equation around V|/(a,ß,0- We then obtain 

the so-called tangent equation: 

— = A-7(A£,\i/)+A-7(A\iH-/,e) (5.29) 
dt 

(Barkmeyer, 1992). Expanding the solution e(oc,ß,0 of this equation also in 

spherical harmonics using a T i l truncation we obtain the state transition 

matrix by integrating this equation one row at a time. 

Numerical experiments have been carried out to test the performance of 

the extended Kalman filter and the hierarchical optimization procedure for 

this application. In the same way as in the example of the Lorenz equation, 

we perturbed some of the state equations with a small constant perturbation. 

Here we have perturbed the state equations for JC0 -, i=l,..,4 with 
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g01(x,t;X) = Xl = l.OxlO"5, g02(x,fX) = ^2 = 2.0xl0"5, 

g03(x,t;X) = X3 = 3.0X10-5, g0A(x,m = \ = 4.0xl(T5, 

The reference trajectory is then calculated by integrating the state equations, 

starting from an arbitrary initial state, with the stochastic noise term set to 

zero. All the state variables are observed with a sampling period of 7=12 h. 

and we have contaminated the observations with generated pseudo-random 

numbers from a normal distribution N(0,GR
2). 

In the first experiment we take G / = l.OxlO"10. Since the magnitude of 

the state variables lies in the order of l.OxlO"3, this agrees with an accuracy 

of the observations of 0.1-1%. We set the covariance matrices in the exten­

ded Kalman filter to 

P0 = l.OxlO10/, Q(tk) = u/ , R(tk) = l .OxlO10/ 

and we start the optimization procedure with u= l.OxlO"3 and X=0, i=l,.A. 

The optimum of L*(A,,ulvA,,...,v1) is then found at 

&! = 0.972xl0"5, t2 = 1.987xl0"5, 

£3 = 3.007xl0~5, 1A = 3.867xl0"5, 

A = 0.0. 

Since £=0.0, the likelihood criterion indicates that the state equations are 

deterministic. Therefore the covariance matrix of A,,, Â , A,3 and X4 is approxi­

mated by the inverse of the Hessian matrix of L*(A,,0lyJV,...,v1)x=x- This matrix 

is given in table 5.1. It shows that the accuracy of the estimates strongly 

varies, with Ä,, is the most accurate and X4 is the less accurate one. 

The performance of the extended Kalman filter, using the optimal 

parameters, is analyzed by calculating the autocorrelation functions of the 

forecast errors. For illustration, we show in figure 5.5(a) the autocorrelations 

of the forecast errors e0,i(4+i)=>'o.i(^+i)-^o,i(^+i1^)' ^s .s^iH-s.s^iXs.^t+il '*) 
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Table 5.1 Inverse Hessian matrix of L*(À,OlyN,...,v1)x=i. 

0.0918 0.0140 -0.0360 0.0167 

l.OxlO"14 * 0.0140 1.2537 -0.2226 0.9685 

-0.0360 -0.2226 4.6671 -0.4348 

0.0167 0.9685 -0.4348 22.4646 

Figure 5.5 (a) Autocorrelation functions of the forecast errors; f̂ , is the autocorrelation 

function of the forecast errors time series e0l(tk+l)=y01(tM)-x0l(tk+1\tk), and f7g78 and f m m 

are the autocorrelations of the forecast errors time series _̂s,s(̂ +i)=3'.5.s(̂ +i)--*-5,5(̂ +il̂ ) and 
e5,5(̂ +i)=3,5,5(f*+i)"̂ 5,5(̂ +i'f*) respectively, (b) Accuracy of these forecast errors time series. 

and e55(tk+1)=y55(tk+1)-x5S(tk+]\ti). Since more than 5% lies outside the confi­

dence band, the forecast errors are not white. Figure 5.5(b) shows the 

evolution of the square root of the variances \P(t\tk) or root mean square error 

curve that go with these forecast error time series. From this figure it is clear 
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that the performance of the filter is still dominated by the initial variances. 

The long settling time of the filter and the nonwhite forecast errors indicate 

that in this case more data are required to obtain an accurate estimate of the 

model error covariance matrix. 

In the second experiment we analyze the case with less accurate 

observations. We take Gfi
2=1.0xl0~10 and we set the covariance matrices in 

the extended Kalman filter to 

P0 = 2.5xl0"7/, Q(tk) = u / , R(tk) = 2.5xl(T7/ 

We use the same starting values for u, Xu À,2, A,3 and X,4. The optimization 

procedure then yields an optimum of L*(k,\i\yN,...,yx) at 

Ä, = l,242xl(T5, 12 = 1.505X10"5, 

13 = -9.65X10"5, 14 = 6.566xl0"5, 

A = l.OxlO"9. 

The approximated covariance matrix shows that the estimates for Â , Â , A,3 

and A,4 are far less reliable than in the previous experiment. In this second 

experiment we have increased the observation error causing an increased 

effect of deleting higher order moments. This is reflected by the large 

estimated artificial noise terms in the state equations. The autocorrelations, 

shown in figure 5.6(a), are more white than in the previous experiment. 

However, the filter is still not working optimally. The evolution of the square 

root of the variances of the forecast error time series show that the settling 

time of the filter is much shorter, but it also shows that the accuracies of the 

forecast and analysis are less accurate. 

Although the forecast errors are in both cases not completely white the 

extended Kalman filter did not diverge. The advantage of a non-diverging 

filter is that we use all the available information to produce an forecast. For a 

small artificial noise term the improvement of the quality of the forecast is 

significant as can be seen from the root mean square error curves. 
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Table 5.2 Inverse Hessian matrix of L*(À.,|il)>A„...,;y]),l=£ M=p 

1.0x10'° * 

0.0712 

0.0031 

0.0650 

0.0403 

0.0 

0.0031 

3.8369 

-2.1553 

0.2416 

0.0 

0.0650 

-2.1553 

9.8911 

5.0725 

0.0 

0.0403 

0.2416 

5.0725 

8.6555 

0.0 

0.0 

0.0 

0.0 

0.0 

1.1x10-'° 

£* 

Figure 5.6 (a) Autocorrelation functions of the forecast errors; f,, is the autocorrelation 

function of the forecast errors time series eM(tM)=yül(tM)-x0l{tM\ti), and f7878 and f 103103 

are the autocorrelations of the forecast errors time series c.5,s(^i)=3'-5,5('t+i)"-*-5,5(^+i''t) a°d 
e5,s(f*+i)=3'5,5(f*+i)"-*5.5(̂ +i'f*) respectively, (b) Accuracy of these forecast errors time series. 
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5.6 CONCLUSIONS 

If a non-linear filter is operating over a large range of time (large data-

sets), filter divergence often occurs when determining the state of vacillating 

systems. A sudden increase of the forecast errors shows the beginning of 

divergence. The reason for this sudden increase is that the filter "assumes" 

that the state is in one preferent domain whereas the true state is in an other 

preferent domain. Imperfect knowledge of the forecast model, uncertain noise 

parameters and deletion of higher order moments of the probability distributi­

ons may give rise to filter divergence. A reasonable approach to this problem 

is to add a noise term to the state equation of the model. In this way we can 

control the accuracy of the state estimates and thus prevent divergence. The 

optimal working extended Kalman filter for such a system reduces the error 

in tracking this system and in this sense it is related to the shadowing theory 

of chaotic systems (Farmer and Sidorowich, 1992) 

We have used the Maximum Likelihood method to estimate uncertain 

model parameters and noise parameters. An approximation of the value of the 

log-likelihood function can easily be obtained with the extended Kalman 

filter. However, filter divergence causes this function to have many local 

optima. A disadvantage of standard optimization algorithms is that they may 

converge to such a local optimum. To overcome this problem we have 

developed a new procedure that does not tend to settle in a local optimum 

caused by divergence of the filter. This procedure is based on a partial decou­

pling of the optimization with respect to the model and noise parameters. By 

checking on filter divergence at strategic moments during the optimization 

and by adjusting the noise parameters if necessary, the procedure will not 

converge to an incorrect local optimum. An additional advantage of this 

procedure is that we may approximate the Kalman gain in the inner optimiza­

tion, which reduces the computational costs considerably. 

The procedure was applied to estimate uncertain model and noise 
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parameters of the barotropic vorticity equation. The uncertain model parame­

ters belong to a small perturbation term and the noise parameters are part of 

the parameterization of the model error covariance matrix. This model error 

covariance matrix is used in the extended Kalman filter to account for the 

effect of deleting higher order moments and numerical errors. In the first 

experiment we have used very accurate observations. The Maximum Likeli­

hood method suggests that the noise term in the state equation may be 

neglected since we found the optimum at Q=0. Nevertheless we think that the 

filter works best with a small model error, because the estimated autocorrela­

tion functions of the forecast errors indicate that the forecast errors are not 

completely white. Since we have used a rather short dataset, which causes the 

filter to be dominated by the initial error covariance matrix, we may not 

conclude that the process is best described by a "deterministic" system. A 

comparison with the example of the Lorenz attractor suggests that an analysis 

with more data may give a decisive answer to this question. 

In the second example we have used inaccurate observations. Here we 

found that the performance of the extended Kalman filter is nearly optimal in 

case we add a small artificial noise term to the state equation. The autocorre­

lation functions show that the forecast errors are more white than in the first 

experiment. Although the extended Kalman filter seems to work well, the 

forecasts are not very accurate, because the estimated model error covariance 

matrix Q is large. On the other hand we considerably reduced the divergence 

of the filter. 
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SUMMARY 

The development of accurate models is very important for analyzing 

problems concerning simulation, prediction, control, etc. Therefore it is not 

astonishing that many studies in applied science are about the modeling of 

these processes. In this thesis we will focus on the building of models that 

are used to describe some nonlinear processes in hydrology and meteorology; 

the first process is the movement of water in porous media and the second 

process is the large-scale atmospheric circulations. 

The process of model development can be divided in three essential 

subprocesses: selection of a model structure, determination of a "best fit" 

criterion and experimental design. In literature, their are several examples of 

"case-studies" known, where the specific combination of model structure, 

criterion and experimental design did not lead to unique estimates of the 

unknown parameters of the model. This situation is designated by the term: 

"the model is not identifiable". 

A model may not be identifiable (given a certain choice of the experi­

mental design) because the chosen object function is insensitive to some 

linear combinations of the parameters. In this case the identification problem 

will not have a unique solution. On the other hand, due to noise in the 
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system, the optimization problem may have many local optima. One can then 

easily be misled because an optimization algorithm may converge to such a 

local optimum. It will be studied how such a situation can be recognized. 

Furthermore, it will be studied how the identifiability can be improved by an 

appropriate choise of the experimental design. 

There are also other situations where the chosen combination of model 

structure, "best fit" criterion and experimental design will not lead to a 

unique solution. Such a case occurs when we are dealing with chaotic 

systems. For chaotic systems the optimization problem, using the output-error 

criterion as "best-fit" criterion, is ill-posed, because the model's solution 

depends sensitively on its initial state. The observed values and the model 

values will then diverge due to the limited accuracy of the initial state. 

Several criteria are analyzed on their capability for detecting small perturba­

tions in the system and for estimating unknown parameters in the system. 

In chapter 2 of this thesis the ONE-STEP method is described. This 

method is developed to identify the parameters in a model for the movement 

of water in the unsaturated soils. The motivation to analyze the identifiability 

of this model comes from the statement made by several authors that not all 

model parameters can be estimated uniquely. In this chapter we will analyze 

first some numerical schemes to solve the mathematical model, because the 

efficiency and the accuracy of a numerical scheme are very important for 

applicability of the ONE-STEP method. 

In chapter 3 the concept of "structural identifiability" is further devel-

opted. The term "numerical identifiable" is introduced, so that we can take 

into account the accuracy of the sensitivity matrix. The identifiability analysis 

of the ONE-STEP method shows that not all parameters can be estimated 

uniquely. In the best case, where the pressure in the pressure cell is increased 

during the experiment at certain time instants, only 5 of the 6 model parame­

ters can be estimated uniquely. Analyzing the structure of the model, we can 

derive that the object function depends on 5 independent parameters only, 
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SUMMARY 

which explains the identifiability problem. Only by adding some other 

measurements, for example the pressure head at a certain position in the soil 

core, one may expect better results of this method. 

As already mentioned above, the output-error criterion in combination 

with chaotic systems, leads to ill-posed problems. In chapter 4 it is analyzed 

whether a criterion, based on a modified sentinel function, can be used to 

detect an external perturbation in a chaotic system. We found that fast 

varying perturbations are often "stealthy" for this function. Therefore this 

criterion can only be used to detect slowly varying perturbations. 

The sentinel function can also be used to estimate uncertain parameters 

that are used to describe such a small perturbation term. We have compared 

the performance of the sentinel approach with an adaptive extended Kalman 

filter in a test-case. In the example that is presented, the size of a perturbati­

on in the equator-pole temperature gradient is estimated. The equator-pole 

temperature gradient characterizes the driving force in a low-order spectral 

model of the atmospheric circulation and therefore a change in the equa­

tor-pole temperature gradient may be important in studing the greenhouse 

effect. In this test-case the performance of the adaptive extended Kalman 

filter was better then the performance of the sentinel approach. The less 

accurate results of the sentinel method are caused by the relative slow 

sampling frequency. The effect of neglecting higher order terms in the Taylor 

expansion and the influence of observation errors is then felt. 

A disadvantage of extended Kalman filtering is that the filter easily 

diverges. In chapter 5 this problem is studied for chaotic systems. A reasona­

ble approach to solve the divergence problem is to add an artificial noise 

term to the state equations. This noise term is used to control the accuracy of 

the state estimates and so preventing that the filter learns the wrong state too 

well. With the extended Kalman filter one can easily obtain an approximation 

of the value of the loglikelihood fucntion. For this problem we have develo­

ped an optimization procedure that can be used together with the extended 
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Kalman filter to estimate the unknown parameters in the model description as 

well as the parameters that are used to describe the covariance matrix of the 

artificial noise term. This method is successfully applied to determine the 

optimal extended Kalman filter for a Til-spectral model of the atmospheric 

circulation. 
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SAMENVATTING 

Over identificatie van niet-lineaire systemen 

Het ontwikkelen van nauwkeurige modellen is erg belangrijk voor het 

analyseren van problemen betreffende simulatie, predictie, etc. Het is dus niet 

verwonderlijk dat veel toegepast onderzoek betrekking heeft op het ontwikke­

len van modellen. In dit proefschrift spelen een tweetal onderzoeksgebieden 

een belangrijke rol: stroming van water in poreuze media en grootschalige 

atmosferische circulaties. 

Bij het ontwikkelen van modellen kan men een drietal essentiële 

deelprocessen onderscheiden: selectie van een model structuur, bepalen van 

een "best fit" criterium en experiment-ontwerp. Er zijn echter diverse voor­

beelden van "case-studies" waarbij de gekozen combinatie van model struc­

tuur, "best fit" criterium en experiment-ontwerp niet leidde tot een-eenduidige 

schattingen van de model parameters. Deze situatie wordt veelal aangeduid 

met "het model is niet identificeerbaar". 

Een model is vaak niet-identificeerbaar omdat de "best fit" functie 

ongevoelig is voor bepaalde lineaire combinaties van de model parameters. 

Het identificatie probleem heeft dan geen een-eenduidige oplossing. Door ruis 
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in het systeem heeft het optimaliseringsprobleem wel vele lokale optima. Men 

kan dus eenvoudig misleid worden omdat gangbare optimaliseringsalgo-

rithmes naar een lokaal optimum convergeren. Aan de hand van een voor­

beeld wordt beschreven hoe de identificeerbaarheid van het model geanaly­

seerd kan worden. Tevens wordt onderzocht of de identificeerbaarheid 

verbeterd kan worden door een geschikte keuze van het experiment ontwerp. 

Er zijn ook nog andere situaties waarbij de gekozen combinatie van 

modelstructuur, "best fit" criterium en experiment-ontwerp niet tot een-

eenduidige oplossing leidt. Een dergelijke situatie doet zich voor bij het 

identificeren van chaotische systemen. Het optimaliseringsprobleem voor deze 

systemen, waarbij de kwadraatsom van de output errors als "best fit" functie 

gebruikt wordt, is slecht geconditioneerd omdat chaotische systemen gevoelig 

zijn voor kleine verstoringen in de beginvoorwaarden. Ten gevolge van de 

onnauwkeurigheid in de beginschattingen zullen dan observaties en model 

uitkomsten divergeren, waardoor het optimaliseringsprobleem vele lokale 

optima zal hebben. Verschillende criteria zijn onderzocht op hun geschiktheid 

om een kleine verstoring in het systeem te detecteren en om de onbekende 

parameters in het systeem te schatten. 

In hoofdstuk 2 van dit proefschrift wordt de ONE-STEP methode 

beschreven. Deze methode is ontwikkeld om de parameters in een model 

voor stroming van water in de onverzadigde gronden te schatten. De motiva­

tie om de identificeerbaarheid van dit model te analyseren kwam voort uit 

verschillende onderzoeken waaruit bleek dat de parameters in dit model niet 

uniek te schatten zijn. In dit hoofdstuk worden echter allereerst enkele 

numerieke schema's nader onderzocht omdat de efficiëntie en de nauwkeurig­

heid van deze schema's van groot belang zijn voor de praktische toepasbaar­

heid van de ONE-STEP methode. 

In hoofdstuk 3 wordt het concept van "structural identifiability" verder 

ontwikkeld. De term "numeriek identificeerbaar" wordt ingevoerd, zodat ook 

rekening gehouden kan worden met numerieke onnauwkeurigheden in de 
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gevoeligheidsmatrix. Uit de identificeerbaarheidsanalyse van de ONE-STEP 

methode blijkt dat niet alle parameters uniek te schatten zijn. In het beste 

geval, waarbij de druk in de drukcel gedurende het experiment op gezette 

tijden wordt verhoogd, zijn slechts 5 van de 6 parameters uniek te schatten. 

De oorzaak van het niet-identificeerbaarheid is de structuur van het model. 

Alleen door het toevoegen van andersoortige metingen, bijv. de pressure head 

op een bepaalde plaats in het monster, kunnen we goede resultaten van deze 

methoden verwachten. 

Zoals reeds boven vermeld leidt het "output error" criterium bij chaoti­

sche modellen tot een slecht geconditioneerd optimaliseringsprobleem. In 

hoofdstuk 4 wordt geanalyseerd of een criterium gebaseerd op de sentinel 

functie gebruikt kan worden om een perturbatie in een chaotisch systeem te 

detecteren. Het blijkt dat langzaam variërende perturbaties goed gedetecteerd 

kunnen worden maar dat snel variërende perturbaties vaak "stealthy/onzicht-

baar" zijn voor de sentinel functie. 

De sentinelfunctie kan ook gebruikt worden om onzekere parameters, 

die een perturbatie-term beschrijven, te schatten. In een test-case wordt deze 

methode vergeleken met een adaptief extended Kalman filter. In het gekozen 

voorbeeld wordt de grootte van een verstoring in de equator-pool tempera-

tuur-gradiënt geschat in een lage-orde spectraal model van de atmosferische 

circulatie. De equator-pool temperatuur-gradiënt kan geïnterpreteerd worden 

als de aandrijvende kracht in het systeem. Een nauwkeurige schatting van 

deze temperatuur-gradiënt kan dus van belang zijn voor het onderzoek naar 

het broeikas effect. Uit de analyse blijkt de performance van de sentinel 

methode het af te leggen tegen een adaptive extended Kalman filter. De reden 

hiervoor is een lage sampling frequentie, waardoor de effecten van het 

verwaarlozen van hogere orde termen in de Taylor expansie en van de 

invloed van observatie fouten merkbaar worden. 

Een nadeel van het extended Kalman filter is dat het eenvoudig kan 

gaan divergeren bij chaotische modellen. In hoofdstuk 5 is dit nader onder-
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zocht. Een redelijke aanpak om het probleem van divergentie op te lossen is 

een artificiële ruisterm op te tellen bij de systeem-vergelijking. Deze ruisterm 

kan gebruikt worden om de nauwkeurigheid van de schattingen te regelen, 

waardoor het filter niet meer divergeert. Met behulp van het extended 

Kalman filter kan een benadering van de waarde van de log-likelihood 

berekend worden, zodat met een speciaal ontwikkelt optimaliseringsprocedure 

zowel de onbekende model parameters alsook de onbekende parameters die 

de covariantie matrix van de artificiële ruisterm beschrijven geschat kunnen 

worden. Deze methode is met succes toegepast om het optimale extended 

Kalman filter voor een Tll-spectraal model voor de atmosferische circulatie 

te bepalen. 
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