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STELLINGEN 

1 In onderzoek naar nitrificatie met vlokkig actief slib van Hanaki et al. (1990), wordt ten 
onrechte geen rekening gehouden met de diffusiesnelheid van zuurstof in deze vlokken. 

K. Hanaki et al. in Water Research 24, 289-2%, 1990 

2 De problemen van de intensieve veehouderij worden het best geïllustreerd door een 
massabalans van stikstof en fosfaat over Nederland. 

3 Naast de door Coleman & Montgomery (1993) genoemde redenen voor het mislukken 
van onderzoeksprojecten in produktiebedrijven, moet het gemis aan onderzoekservaring 
in de bedrijfsleiding worden toegevoegd. 

D.E. Coleman & D.C. Montgomery in Technometrics 35, 1-12, 1993 

4 Het koppelen van een natte zomer aan voorspellingen over klimaatsveranderingen als 
gevolg van menselijk handelen mist elke grond. 

5 Het opzetten van stekels door egels en het op een congres presenteren van grote 
hoeveelheden wiskundige vergelijkingen leiden beide tot een communicatie-stoornis. 

6 Het niveau waarop kennis tijdens congressen wordt uitgewisseld verbetert aanmerkelijk, 
indien wetenschappers een cursus volgen in het gebruik van audio-visuele hulpmiddelen. 

7 Bovenstaande stelling wordt slechts ter harte genomen door wetenschappers die reeds in 
staat zijn een goede presentatie te geven. 

8 De voortvarendheid waarmee gemeentes voetbalwedstrijden afgelasten is niet 
representatief voor de aanpak van andere gemeentelijke aangelegenheden. 

9 Het wijdverbreid gebruik om bij koninklijk bezoek het interieur een verfbeurt te geven, 
leidt tot een voor hen ongewenste verhoogde blootstelling aan oplosmiddelen. 

10 Een auto is niets anders dan een consumptie-artikel. 

11 Zonder de vrolijke oogopslag kan het rennend zwijn in het Veluwelooplogo ten onrechte 
worden gezien als op de vlucht. 

Stellingen behorende bij het proefschrift " Engineering aspects of nitrification with immobilized 
cells" 

Jan H. Hunik 

Wageningen, 3 december 1993 
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VOORWOORD 

T T et gereed komen van dit proefschrift is ook de gelegenheid om iedereen die hier 

een bijdrage aan heeft geleverd te bedanken. Allereerst mijn vader en moeder 

die een belangrijke stimulerende invloed hebben gehad op mijn schoolloopbaan. 

Uiteraard de sectie Proceskunde waar een prettige en stimulerende werksfeer 

heerste. Vanaf het eerste (natte) fietstochtje in de Ardennen tot de laatste werk

bespreking voelde ik mij hier thuis. Het half 6 Loburg zal dan ook node gemist 

worden. 

Hans Tramper, die naast waardevolle discussies over het onderzoek ook steun 

en toeverlaat was tijdens de minder wetenschappelijk perikelen rondom het onder

zoek. Dankzij zijn onvoorwaardelijke steun was het mogelijk het proefschrift af te 

ronden. Bedankt coach! 

Mijn kamergenoten en mede nitrificeerders René Wijffels, Imke Leenen, Vitor 

Santos en Ida Günther. 

De studenten in volgorde van opkomst: David Vertegaal, Harold Meijer, 

Gerrit-Jan Runia, Annemarie Rooden, Kees Bos, Joris van Rooij, Vitor Santos, 

Marijke van den Hoogen, Wiebe Jonsma, Ronald Kostanje, Peter van der Weij. 

Zonder jullie inbreng was dit proefschrift aanzienlijk dunner geweest. 

Kees de Gooijer voor zijn modelmatige ondersteuning, Gerrit Meerdink voor 

de gezamelijke inspanning om de resonantie nozzel te doorgronden en Hedy Wessels 

die nu eenmaal de spil van de sectie is en waarmee naast de printer ook veel 

levenswijsheden werden gedeeld. 

Het zwemploegje met Hans Tramper, Nettie Buitelaar, Anja Jansen, Albert 

van der Padt, Henk van Sonsbeek, René Wijffels, Joyce Kraus, Vitor Santos en Gerrit 

Heida. Zij zorgden voor de nodige ontspanning en zagen mijn gekrabbel uitgroeien 

tot een redelijke borstcrawl. 

De medewerkers van de werkplaats, fotolocatie, tekenkamer en chemicaliën-

magazijn. 

Tot slot mijn huisgenootjes van de Hoogstraat 71a die altijd hun willig oor 

leenden voor de (niet-)wetenschappelijke beslommeringen en deze in het juiste 

perspectief wisten te plaatsen tijdens de vele gezamelijken maaltijden. 
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INTRODUCTION 

n p he oxidation of ammonia via nitrite to nitrate by microorganisms of the 

Nitrobacteracaea family is generally known as nitrification (Watson, 1974): 

NHl + 1.5 02 =* N02' + 2 H+ + H20 

NO~2 + 0.5 o 2 =* NO; 

The microorganisms of this family are strictly autotrophs with the exception of a few 

Nitrobacter winogradskyi strains under anaerobic conditions (Bock et al., 1988). 

Autotrophic growth, i.e. with C02 as the only carbon source, results in a low biomass 

yield compared to heterotrophic microorganisms. Therefore, the nitrification process is 

characterized by a low growth rate of the nitrifying bacteria. 

An increasing interest for the biological removal of ammonia from various waste 

streams has been the driving force to solve the problem of washout due to the low 

growth rate of these microorganisms. A characteristic value for the doubling time of 

nitrifying microorganisms at maximum growth rate is 15-30 h, which is long compared 

to a doubling time of 1.5-3 h for heterotrophic microorganisms isolated from wastewater 

treatment plants (Sharma & Ahler, 1977). The growth rate of nitrifying microorganisms 

decreases rapidly at more extreme conditions, i.e. high product and substrate 

concentrations. The biomass retention becomes increasingly important for nitrification 

processes at such unfavourable conditions. Several methods for biomass retention are 

applied, for example, attached growth and artificial immobilization. 

Part of this chapter will be submitted as a review on: Application of artificially immobilized cells for 

nitrification at extreme conditions. Jan H. Hunik; Johannes Tramper 
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Generally, attached growth of cells is achieved on a wide variety of support 

materials. An overview of the different support materials (silica, wood shavings, ceramic, 

porous brick, glass fibre, ion exchanger, PVC chips and porous glass) used for attached 

growth is given by Klein & Ziehr (1990). Artificial immobilization techniques include: 

flocculation, covalent bonding, cell to cell crosslinking, microencapsulation and 

entrapment in polymer matrices (Klein & Vorlop, 1985; Philips & Poon, 1988; 

Woodward, 1988; Klein & Kressdorf, 1989). The entrapment in polymer matrices with 

a high water content is by far the most frequently used technique. With this technique 

the cells are immobilized in the network of a polymer matrix. Substrates and products, 

on the other hand, are generally small enough to diffuse through this network. 

The advantage of the attached growth is the spontaneous attachment of the cells 

to the support without the use of an additional apparatus. The advantages of artificial 

biofilms above attached growth biofilms is the fixed boundary between solid and liquid 

phase and the absence of biofilm detachment. The cell retention of entrapped cells will 

be better compared to cells growing in an attached growth biofilm (Klein & Ziehr, 1990). 

Here we will focus on the application of artificially immobilized nitrifying 

microorganisms. An overview of the available methods and the pros and cons are 

presented. Large-scale processes with immobilized cells require an immobilization 

procedure with sufficient capacity. Artificial immobilization methods for nitrifying 

microorganisms are evaluated and the scale up of a specific immobilization technique 

is discussed. 

The theory and engineering tools for the cultivation of cells in two-phase systems 

consisting of a liquid and a gas phase is comprehensive. The theory for processes having 

a third phase with growing microorganisms is mainly derived from the theory for 

heterogeneous reactions used in chemical engineering; main reference is Levenspiel 

(1972). Applications of this theory for processes with immobilized cells are given by 

Venkatasubramanian et al. (1983), Moser (1988) and Riet & Tramper (1991). However, 
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the application of this theory to nitrification processes is scarce. Literature where a link 

is made between the different aspects - nitrification, immobilization, modelling and scale-

up - is lacking. Models, methods for model validation, immobilization techniques, scale-

up and some preliminary experiments with artificially immobilized pure cultures of 

Nitrosomonas europaea and Nitrobacter agilis are discussed here. 

IMMOBILIZED-CELL PROCESSES 

rr\ he third phase with immobilized cells introduces an additional step for substrate 

transport. Compared to suspended-cell reactors a mass-transfer step between liquid 

phase and immobilized cells is introduced, see Figure 1. 

stagnant region 

ion 

microcolony 

gas-liquid liquid-solid 
interface interface 

Figure 1 Transport of substrate from gas phase to immobilized cells. 
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Transport from the liquid to the solid-phase surface is described by a liquid-solid 

mass-transfer coefficient. In the solid phase both transport and consumption of substrate 

will take place. For an immobilized-cell process the growth rate of the cells is no longer 

the rate-limiting step, because of the high biomass retention. Introduction of a third 

phase is only then beneficial when mass transfer is a faster process than growth. A 

comparison between the time-scale of cell growth and mass transfer presented by Roels 

(1982) shows a 1000 fold faster rate for mass transfer compared to growth. Changing the 

rate-limiting step from growth to mass transfer can therefore be an advantage. 

Models. The nitrification process with immobilized cells is complicated due to the 

relation between the microorganisms and the substrates involved. Oxygen is used by both 

microorganisms and ammonia is converted to nitrate via nitrite as intermediate. The 

nitrite-consuming microorganisms are strictly dependent on the nitrite production in the 

first step. This commensalistic relation together with the competition for oxygen, the 

development of gradients of biomass, oxygen, ammonia, nitrite and nitrate in the solid 

phase are hampering a better understanding of the immobilized-cell nitrification process. 

Modelling can be a helpful tool then. Models for immobilized-cell processes can be 

divided in steady-state and dynamic models. Steady-state models describe the nitrifying 

capacity and reactor concentrations at constant input values, such as substrate 

concentration and dilution rate. Examples of steady-state biofilm models with nitrifying 

and heterotrophic microorganisms are given by: Chen et al. (1989), Gujer & Boller 

(1989), Tanaka & Dunn (1982), Tanaka et al. (1981), Rittman & Manem (1992) and 

Wanner & Gujer (1984). In practice it is very unlikely that all input values are constant. 

The influent concentrations as well as the dilution rate of a nitrifying reactor will vary 

in time. This changes in input values can be described when dynamic models are used. 

Differences between dynamic and steady-state models and several methods for solving 

the mass balances of such a biological reactor are discussed by Billing & Dold (1988ab,c). 

The advantage of a dynamic model is its capability to describe the nitrifying capacity and 
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reactor concentrations in transient state, which is of particular interest during the start-up 

phase. Also the influence of influent concentration or temperature changes on the 

process can be predicted. Dynamic biofilm models with nitrifying and heterotrophic 

microorganisms are presented by: Bryers (1988), Denac et al. (1983), Kissel et al. (1983) 

and Wanner & Gujer (1986). An example of a dynamic model for an artificially 

immobilized Nitrobacter agilis is presented by Gooijer et al. (1991) and Wijffels et al. 

(1991). 

Model validation. Model validations can be divided into methods in which the 

overall reactor concentrations or conditions are measured as function of time and 

methods which follow the biofilm processes in the solid phase. Examples of the first 

methods, where the coarse of reactor concentrations as function of time is monitored, 

can be found in: Tanaka & Dunn (1982), Tanaka et al. (1981), Bryers (1988), Cour 

Jansen & Harremoës (1984), Williamson & McCarty (1976). Other examples are the 

measurement of overall fluorescence (Müller et al., 1988; Reardon et al, 1986) and 

NMR spectra (Lohmeijer-Vogel et al., 1990) in the reactor with immobilized cells. 

The second methods are based on the determination of the concentration profiles 

in the biofilm as function of time. Examples: Lewandowski et al. (1991, 1993), Beer & 

Heuvel (1988), Beer et al. (1993), Hooijmans et al (1990a), and Hooijmans et al. (1990b), 

who all use microelectrodes to measure oxygen concentration profiles in different types 

of biofilms. The location of the solid-phase surface and the copying of reactor conditions 

in the measurement set-up are very important for the accuracy of the measurement with 

these microelectrodes. Another example is determination of biomass profiles in the 

biofilm. A detailed investigation of the biomass composition and distribution in such 

biofilms is an important aspect in biofilm research (Christensen et al., 1989). Artificially 

immobilized pure cultures of cells offer the possibility to determine such a biomass 

distribution in biofilms. Several methods for the determination of such biomass profiles 

are used. Examples of techniques based on the fixation of gel beads and cross-sectioning 
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of these beads are: a scanning microfluorimetry technique used by Monbouquette et al. 

(1990) for immobilized Zymomonas mobilis cells; a toluidine-blue staining method for 

artificially immobilized Nitrobacter agilis by Wijffels et al. (1991). Examination of biofilm 

growth on a solid support is done with a radiolabelling technique of thin biofilm slices 

by Bryers & Banks (1990). 

The second method is advantageous for the study of biofilm processes, because 

the processes inside the biofilm can be investigated. Microelectrodes provide a fast and 

accurate substrate profile when the reactor situation is copied correctly. The latter is 

however the difficult part. The measurement of biomass profiles does not have such 

problems and can be very accurate, but has the disadvantage to be very laborious. 

ARTIFICIAL IMMOBILIZATION OF NITRIFYING BACTERIA 

JL n overview of artificial-immobilization techniques available for a wide variety of 

cells is given by Scott (1987) and Klein & Vorlop (1985). So far nitrifying 

microorganisms are only artificially immobilized by entrapment in various matrices; no 

examples of cell cross-linking and encapsulation in membrane-surrounded microcapsules 

can be found. Table I gives an overview of entrapped nitrifying microorganisms. Three 

methods are used for entrapment: thermo-gelation, ionotropic gelation and 

polymerization. 

Thermo-gelation. The thermo-gelation with a temperature-controlled phase 

transition requires low ion concentrations. This low ion concentration makes thermo-

gelation with for instance agar a suitable method for experiments with microelectrodes 

in nitrifying biofilms (Beer & Heuvel 1988, Beer et al. 1990). High ion concentrations 

would interfere with the microelectrodes. The immobilization in an agar gel however 

yields a mechanical weak gel. The disadvantage of such a weak gel is not relevant for 
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laboratory studies, but large-scale applications in reactors with much turbulence, i.e. 

shear, are for that reason unlikely. 

Ionotropic gelation. Table I shows that immobilization of nitrifyers with an 

ionotropic-gelation technique is applied most often. Two types of gels are mainly used: 

alginate stabilized with Ca2+ and K-carrageenan stabilized by K+. These types of gelling 

material offer sufficient mechanical stability and a mild immobilization procedure. 

Ionotropic gels offer the possibility to produce small spheres of a uniform diameter with 

the resonance nozzle (Hulst et al., 1985; Hunik & Tramper, 1993). 

The characterization of cell viability, growth, substrate-consumption rate and 

influence of diffusion is extensively done for both immobilized Nitrosomonas europaea 

and Nitrobacter agilis cells (Ginkel & Tramper, 1983; Tramper et al., 1985; Tramper & 

Man, 1986; Tramper & Grootjen, 1986; Wijffels & Tramper, 1989; Wijffels et al., 1990). 

An illustrative example of the growth of microcolonies and subsequent development of 

a biofilm in the outer layer of the gel beads is shown by Neerven et al.(1990). It is valid 

to assume that the immobilized cells have the same intrinsic kinetics as free cells, which 

is shown with the substrate affinity at different cell concentrations in the gel beads and 

various gel-bead diameters (Ginkel & Tramper, 1983; Tramper et al., 1985; Tramper & 

Man, 1986). Diffusion-limited transport of substrate is apparently masking the intrinsic 

kinetics. 

Polymerization. The advantage of polymerization as immobilization technique is 

the independence of the Ca2+ or K+ concentration in the wastewater. The disadvantage 

of the polymerization with PEG , acrylamide or epoxy is the rather hostile environment 

for the bacteria during immobilization. Sumino et al.(1992) report a loss in activity of 

more than 90 %. Also Tanaka et al.(1991) describe activity losses of more than 95% for 

acrylamide and epoxy-immobilized cells. 
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Table 1 Immobilization methods used for (de)nitrifying bacteria 

method organism(s) reference 

thermo-gelation 

agar Nilrobacter agilis Wijffels et al. (1991) 

ionotropic gelation 

alginate 

alginate 

alginate 

carrageenan 

carrageenan 

carrageenan 

Nilrosomonas europaea 

(de) nitrifyers 

N'iirobacler agilis 

Nilrosomonas europaea 

Nilrobacter agilis 

(de)nitrifyers 

Ginkel et al. (1983) 

Tramper (1984), Lewandowski et al. (1987), 
Tramper et al. (1985) 

Tramper & Man (1986), Tsai et al. (1986) 

Wijffels et al. (1989), Neerven et al. (1990) 

Tramper & Grootjen (1986), Wijffels et al. 
(1990), Gooijer et al. (1990), Gooijer et al. 
(1991), Gooijer et al. (1992) 

Santos et al. (1992) 

polymerization 

polyvinylalcohol (PVA) 

PVA 

PVA, chitosan 

polyethyleenglycol 
(PEG), acrylamide, 
epoxy 

PEG, acrylamide 

urethane 

silicone, alginate, epoxy 

silica 

active sludge 

(de)nitrifyers 

Nilrosomonas europaea 

(de)nitrifyers 

nitrifyers 

nitrifyers 

nitrifyers 

nitrifyers 

Hashimoto & Furukawa (1986) 

Myoga et al. (1991), Asano et al. (1992), 
Asano et al. (1992), Hitachi (1988), 
Wildenauer et al.(1992) 

Kokufuta et al. (1982), Kokufuta et al. 
(1987), Kokufuta et al. (1988) 

Tanaka et al. (1991) 

Sumino et al. (1992) 

Sumino et al. (1992) 

Wilke & Vorlop (1990) 

Petersen et al. (1991) 

Immobilization in PEG also shows a low cell survival; Tanaka et al.(1991) report an 

activity loss of 85-95% for PEG-immobilized cells after immobilization but nevertheless 

a stable nitrification process for 60 days. 
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Several procedures are developed to overcome the high activity losses and some 

promising techniques are presented. Sumino et al.(1992) present an immobilization by 

urethane polymerization using a macromolecular coagulant. The activity losses are 

limited to 60-90%. Long-term (120 d) experiments are carried out with these urethane 

immobilized nitrifying bacteria. An alternative immobilization method is presented by 

Kokufuta et al. (1982), Kokufuta et al. (1987), Kokufuta et al. (1988). They use tri-

methyl-ammonium chitosan iodide for the aggregation of the cells in the culture broth 

and subsequently added PVA-sulphate to form a stable complex with the aggregates. 

Only short-term (800 h) experiments are presented, which show growing Nitrosomonas 

europaea cells. Myoga et al.(1991), Asano et al.(1992a. 1992b) describe an immobilization 

method with PVA in which the cells are mixed with 20% polymer solution and 

subsequently frozen at -20 to -80 °C. They present no results about the cell survival after 

immobilization, but stable nitrification was carried out for 70 days. Myoga et al. (1991) 

show that immobilization of active sludge, instead of pure cultures, in PVA was 

beneficial for steady-state nitrifying capacity. Another method is given by Wildenauer et 

al. (1992) who added 20 % w/v sugar or glycerol to the PVA solution before 

immobilization. A possible explanation could be that both sugar and glycerol solutions 

as well as the active sludge do not enhance the nitrifying capacity itself but create more 

space in the PVA-matrix for nitrifying bacteria. This additional space for the cells in the 

matrix is then responsible for the increased nitrifying capacity. 

Prospects of artificially immobilized cells. The potential applications of artificially 

immobilized nitrifying microorganisms for wastewater treatment are based on the 

separation of biomass retention and liquid retention, resulting in higher ammonia 

removal rates (Tramper, 1984; Tramper, 1987; Lewandowski et al., 1987; Wijffels et 

al., 1990). It is also shown that Nitrobacter agilis cells immobilized in alginate are less 

affected by inhibitory compounds (Tsai et al., 1986). An interesting example of artificial 

immobilization is the possibility to create an inner and outer layer with different species 
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of microorganisms in them. This method with Nitrosomonas europaea at the outside and 

Pseudomonas denitrificans inside is presented by Santos et al. (1992) for the integration 

of the nitrification and denitrification process. 

Immobilization in ionotropic gels is most suitable for biofilm studies. The 

stabilization of ionotropic gels by either Ca2+ or K+ ions is a disadvantage for application 

in wastewater. Polymerization offers stable gels, but scale up of the polymerization 

technique is not yet fully developed. Therefore, ionotropic gelation seems to be the most 

convenient method currently available. 

Riser 

A i r ^ t 

gel bead with 
immobilized nitrifying bacteria 

Influent 

Figure 2 Air-lift loop reactor. 
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BIOREACTORS 

~\/t echanically stirred-tank reactors are not suitable for immobilized-cell processes due 

to the high local shear forces at the impeller. Small-scale experiments (170 cm3) 

with epoxy-carrier beads with immobilized E. coli cells show increased abrasion with 

increased stirrer speed (Klein & Eng, 1979). The breakage of nylon microcapsules in a 

turbine reactor (318 cm3) was proportional to the stirrer speed (Poncelet & Neufeld, 

1989). The local shear forces around the stirrer and the tip speed of the impeller will 

increase drastically with increased reactor scale. An alternative for mechanically stirred 

reactors is the air-lift loop reactor. (Figure 2) 

Gas sparging at the bottom of the riser and gas liquid separation at the top of the 

reactor is the origin of a density difference between riser and downcomer. This density 

difference is the driving force for liquid circulation in the reactor. In this way sufficient 

mixing and mass transfer without stirring can be achieved. The principles and theoretical 

aspects of air-lift loop reactors are described by Chisti (1989) and Verlaan (1987). 

SCALE UP 

A pplication of immobilized cells for nitrification implies scale-up of the process. 

Translation of bench-scale experiments to production scale of more than 100 m3 

requires design rules and extension of immobilization methods. Scale-up of bioprocesses 

aims at a constant physical and chemical environment for the microorganisms 

independent of the volume of the reactor. It is obvious that it is not possible to derive 

scale-up rules, which keep all these chemical and physical parameters constant. Small-

scale experiments and careful evaluation of the large-scale design should reveal those 

physical and chemical parameters, which are important at large scale. 

11 
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The currently used techniques for immobilization are sufficient for the bench-scale 

experiments, but not amenable for large-scale applications. High-capacity immobilization 

methods are therefore necessary for pilot and production-scale nitrification processes 

with immobilized cells. Besides high production capacity also spherical shape and 

uniform size of the gel beads are required. 

Scale up of immobilization methods. Dripping of the aqueous K-carrageenan gel 

solution in a stirred potassium chloride solution is the easiest procedure for cell 

immobilization. A productivity of 0.2 dm3.h"' (Hulst et al., 1985) and 0.43 dirrlh"1 

(Schmidt, 1990) can be realized. Scale up is done by multiplication of the dripping 

equipment, i.e. more syringes. Higher production rates of immobilized cells are also 

achieved with two other methods: dispersion in air or liquid and extrusion of the gel 

solution. With the dispersion-in-air method the K-carrageenan gel is dispersed in air by 

a rotating-disk atomizer and collected in a hardening solution (Ogbonna et al. 1989, 

1991). A production rate of 1.05 dm3.h_1 is reported for this method. For the dispersion 

in liquid the gel is dispersed by stirring in an non-aqueous continuous phase. Hardening 

is achieved by changing the temperature of this continuous phase (Castillo et al., 1992; 

Audet and Lacroix, 1989). The procedure is shown to work batch-wise in a 1.5-dm3 

vessel. With the extrusion technique the gel solution is pressed through a small orifice 

at such a flow rate that a jet is formed (Hulst et al., 1985). An improvement of the 

extrusion technique resulted in a production of 27.6 dm3.h"' (Hunik & Tramper, 1993). 

The dispersion and extrusion technique are both amenable to further scale up. However, 

Audet and Lacroix (1989) and Ogbonna et al. (1991), who themselves use the dispersion 

technique, mention that gel beads made with the extrusion technique of Hulst et al. 

(1985) are more uniform and reproducible. 

Scale-up strategy. Large-scale applications of bioprocesses need the reproduction 

of laboratory-scale experiments at pilot or production scale. Trial and error together with 

the extrapolation of reactor volume are among the most straight-forward methods for 

12 
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scale up. Several rules-of-thumb methods are also used and are based on maintaining a 

constant value for a specific parameter, for example: power to volume ratio, gas-liquid 

oxygen transfer, tip speed of the impeller, 02- tension, and gas-flow rate per reactor 

volume (Sweere et al. 1987, Hubbard 1987). This constant-parameter method implicitly 

assumes that the parameter is related to the rate-limiting step of the process. The 

constant-parameter method is widely used in the fermentation industry, which is primarily 

dealing with bioprocesses having two phases, i.e. a gas phase and a liquid phase with 

suspended cells. A more mechanistic approach, based on characteristic times, to 

determine the rate-limiting step of such two-phase bioprocesses is proposed by Sweere 

et al. (1987), Roels (1983) and Moser (1988). This regime analysis is based on a careful 

evaluation of all transport and conversion processes that take place. 

Establishing the rate-limiting step in immobilized-cell processes is more difficult, 

due to the introduction of the a solid third phase. Regime analysis is used by Schouten 

et al. (1986) to compare the reactor design of immobilized Clostridium cells in a 

fluidized-bed and a gas-lift reactor. The effect of immobilization on the cells was 

neglected and the regime analysis was limited to the processes in the gas and liquid 

phase. The theory for the regime analysis needs an extension, which is described by 

Hunik et al. (1993) for dealing with cells immobilized in a third phase, for which the 

effects of immobilization can not be neglected. 

APPLICATION OF CO-IMMOBILIZED PURE CULTURES 

T mmobilization of pure cultures of Nitrosomonas europaea and Nitrobacter agilis is 

mainly restricted to immobilization in alginate and K-carrageenan gels (Table 1). 

In a series of well controlled experiments (Ginkel et al. 1983, Tramper & Man 1986, Tsai 

et al. 1986, Wijffels et al. 1989, Tramper & Grootjen 1986, Wijffels et al. 1991) the 

effects of immobilization on Nitrosomonas europaea and Nitrobacter agilis are presented 

13 
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with respect to growth, pH effects, substrate affinity, inhibitory effects and storage 

stability. A next and logical step to achieve overall conversion of ammonia to nitrate is 

the co-immobilization of Nitrosomonas europaea and Nitrobacter agilis (Wijffels et al. 

1990, Hunik & Tramper 1990). An alternative for the immobilization of pure cultures 

is the immobilization of active sludge, a mixture of heterotrophic microorganisms, 

nitrifying microorganisms and inert organic material from wastewater-treatment plants 

(Tramper et al. 1985, Tramper 1987). The advantages of the immobilization of pure 

cultures compared to the immobilization of active sludge, however, are numerous: no 

incorporation of heterotrophs in the gel beads, the possibility to concentrate the pure 

cultures before immobilization, reduction of the amount of gel beads needed for 

nitrification. 

concentration [mM] 

120 

80 

•Mliiinw 

60 80 
time [days] 

Figure 3 Influent NH/ ( - • - ) and effluent NH4
+ ( -O-), NO; ( -Ü - ) , NO; ( - A - ) 

concentrations in an 3.3 dm3 air-lift loop reactor with co-immobilized N 

europaea and N. agilis. The liquid dilution rate is 1.2 * 10's s'1. 

14 
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Two examples of small-scale experiments with co-immobilized N. europaea and N. agilis 

cells are shown in Figure 3 and 4. In the experiment shown in Figure 3 the ammonium 

concentration was step-wise increased. At day 52 it can be observed that the ammonium 

was not completely converted to nitrate and nitrite accumulation occurred. The 

maximum nitrification capacity was thus reached, but the limiting factor could not be 

derived from this experiment. Reactor concentrations or maximum biomass concentration 

could be both responsible for this. 
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40 
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40 80 120 
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Figure 4 Influent NH/ ( - • - ) and effluent NH/ ( -CH, N02 ( -D - ) , N03 ( - A - ) 

concentrations in an 3.3 dm3 air-lift loop reactor with co-immobilized M 

europaea and N. agilis. Liquid dilution rate is 3.7 * 1Ü5 changing to 1.9* 1(X5 

s' and the influent concentration was doubled at day 54. 
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A second experiment shown in Figure 4 was done. After 50 days a steady state 

ammonia conversion was reached. At that moment the influent concentration is doubled 

and the dilution rate reduced to half the steady-state value, so that the total amount of 

ammonium offered per unit of time is the same. After this change in reactor conditions 

accumulation of nitrite occurred. The substrate and product concentrations seem thus to 

be important for a nitrification process with immobilized cells. The influence of high 

substrate and product concentrations on N. europaea and N. agilis is therefore important 

for the application of immobilized nitrifying cells in concentrated wastestreams. 

Furthermore the balance between the ammonia and nitrite oxidizing cells seems to be 

very delicate and nitrite accumulation can easily occur. 

OUTLINE OF THE THESIS 

/"^ hapters 1 to 7 in this thesis can be read as independent articles. The coherence of 

the chapters 2 to 7 is demonstrated in this Introduction. In chapter 2 and 3 the 

kinetics of, respectively, N. europaea and N. agilis are described with emphasis on 

extreme conditions. An improved method for immobilization with ionotropic gels, 

including the theoretical background, is presented in chapter 4. In chapter 5 a method 

for the determination of biomass profiles for co-immobilized N. europaea and N. agilis 

in one gel bead is given. Chapter 6 presents a dynamic model for nitrification with 

immobilized cells of N. europaea and N. agilis, with experimental validation. A strategy 

for the scale-up of this process is presented in chapter 7. The last chapter contains a 

short general discussion of this thesis. 
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KINETICS OF NITROSOMONAS EUROPAEA 

SUMMARY 

Tyj itrification of ammonia in concentrated waste streams is gaining a lot of attention 

nowadays. Nitrosomonas europaea is the predominant ammonia-oxidizing species in 

these environments. Prediction of the behaviour of a pure culture of Nitrosomonas 

europaea (ATCC 19718) under conditions prevailing in concentrated waste streams was 

the aim of this study. The initial oxygen consumption rate of a concentrated cell 

suspension was used as a rapid assay to measure the effects on Nitrosomonas europaea 

at various conditions. Several relations, based on Michaelis-Menten kinetics, were 

derived. They describe the behaviour of Nitrosomonas europaea at substrate (NH4
+), 

product (N02") and K+, Na+, S04
2\ N03", CI" concentrations up to 500 M and a pHs 

ranging from 6.5 to 8.5. High concentrations of ions inhibited Nitrosomonas europaea but 

specific substrate inhibition was not observed. Product inhibition was strongly pH-

dependent and severe inhibition at pH 6.5 was found. 

Published as: Kinetics of Nitrosomonas europaea at extreme substrate, product and salt concentrations. Jan 

H. Hunik; Johannes Tramper and Harold J.G. Meijer (1992) Appl. Microbiol. Biotechnol. 37:802-807. 



CHAPTER 2 

INTRODUCTION 

TWT itrogen removal by biological nitrification and denitrification is commonly used in 

sewage treatment plants, where ammonia concentrations are relatively low with 

maxima of 3.33 and 14.3 mM NH4
 + reported by Wild et al. (1971) and Shieh & LaMotta 

(1979), respectively. Nitrification of waste streams, with high concentrations of ammonia, 

is gaining more attention due to problems in the treatment of manure (St-Arnaud et al. 

1991; Loynachan et al. 1976; Bortone & Piccinini 1991; Osada et al. 1991), leachate of 

landfills (Knox 1985) and industrial waste waters. Concentrations up to 500 mM NH4
+, 

together with high concentrations of other ions, can occur in these waste streams. 

So far, kinetic studies with nitrifying bacteria have mainly been focused on the 

more-dilute waste streams. For example the total nitrogen concentrations in the kinetic 

experiments of Anthonisen et al. (1976), Laudelout et al. (1976) and Voets et al. (1975) 

are 71, 110, 94 mM, respectively. More recently Gee et al. (1990) estimated kinetic 

parameters for substrate inhibition in a mixed population of nitrifying bacteria, but the 

ammonia concentrations did not exceed 71 mM. 

From the scarce literature available it became clear that there is a lack of kinetic 

studies with pure cultures of nitrifying bacteria under the conditions prevailing in the 

treatment of manure waste streams, leachate of landfills and industrial waste water. Only 

Loehr et al. (1973) reported nitrification of animal wastes with ammonia concentrations 

up to 500 mM NH4
+, they qualitatively observed inhibition with increasing ammonia 

concentrations. In a study on the influence of copper on Nitrosomonas europaea by Sato 

et al. (1988), where ammonia concentrations up to 264 mM NH4
+ are used as a control, 

substrate inhibition was only observed at the highest concentration of 264 mM NH4
+. 

Gaining a better understanding of the nitrification process is complicated due to 

the different behaviour of the two major bacterial genera, i.e. Nitrosomonas and 

Nitrobacter, under extreme conditions. An improved knowledge of the pertinent bacteria 
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is necessary for the design of treatment plants for concentrated waste streams. The 

oxidation of ammonium to nitrite is the first step in nitrification, and the predominant 

ammonium-oxidizing species isolated by Soriano & Walker(1973) in soil with a high 

ammonia concentration is Nitrosomonas europaea. Recently (St-Arnaud et al. 1991), Af. 

europaea was successfully used as inoculum to enhance nitrification in swine manure. 

Therefore, we determined the behaviour of this species at ammonium, nitrite and nitrate 

concentrations ranging from 0 to 500 mM. In addition the influence of pH and high salt 

concentrations (up to 500 mM) was investigated. 

Gradients of pH, substrate and product are observed (Szwerinski et al. 1986; Beer 

1990) in nitrifying biofilms. Equations describing conversion of NH4
+ and N02" as a 

function of pH, substrate, product and salt concentration are thus useful for modelling 

the nitrification process in biofilms. Parameters for substrate affinity, product inhibition 

and salt inhibition at a wide range of concentrations were derived based on Michaelis-

Menten kinetics for enzymes. The effects of pH, ranging from 6.5 to 8.5, on these 

parameters were also investigated. Substrate inhibition was not observed in contrast to 

product inhibition which strongly depends on the pH of the medium. 

MATERIALS AND METHODS 

A M edia. All media and solutions ware made up in demineralized water. The chemicals 

used were Analytical Grade and were obtained from Merck. 

Chemostat. The N. europaea (ATCC 19718) cells were maintained in a 2.5 dm3 

sterile chemostat with a dilution rate of 0.0125 h"1. The culture was kept at 30°C. The 

medium contained per dm3 of demineralized water: 2.51 g (NH4)2S04; 0.25 g 

MgS04.7H20; 0.78 g NaH,P04.2H20; 0.89 g Na2HP04.2H,0; 0.74 mg CaCl2.2H20; 

2.5 mg FeS04.7H20; 0.08 mg CuS04. The pH was kept at 7.4 with a NaHC03 
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(80 g.dm"3) solution. Cells were withdrawn from the chemostat by collecting the effluent 

for 32 h in a sterile vessel, which was kept at 4 °C. 

Cell harvesting and concentration. The cells collected from the chemostat were 

washed and concentrated before they were used in the activity assay. Approximately 1 

dm3 effluent of the chemostat was collected and first centrifuged at 16300 g for 30 min 

at a temperature of 4 °C. The pellet was resuspended in 0.1 dm3 of a 1 mM phosphate 

buffer (pH 7.5) and centrifuged for the second time. The cells were resuspended in 25 

cm3 of a 1 mM phosphate buffer and stored on ice until they were used in the activity 

assay. The concentration and harvesting procedure was repeated for each measuring day. 

Buffer. Phosphate and Tris/HCl have been used to determine the optimal pH of 

N. europaea. In the present study the activity was assayed in the pH range of 6.5 to 8.0 

with phosphate buffer and 7.5 to 8.5 with Tris/HCl buffer. Also a combination of both 

buffers was tested over this pH range. This was done to avoid the fall in activity at the 

change of buffer at a pH of 7.5 such as observed by Ginkel et al. (1983). The pertinent 

pKa for the pH range of the phosphate buffer is 7.2 and of Tris/HCl 8.1 at 30°C. 

Trace elements and C02. With the concentration procedure the growth medium 

of the cells is replaced by a 1 mM phosphate buffer solution. For the activity assay, 

buffer and substrate were added, but for experimental convenience no trace elements nor 

bicarbonate were added. To study if experimental errors due to the absence of trace 

elements and bicarbonate could be introduced, Mg2+, Ca2+, Fe2+ and Cu2+ 

concentrations were tested in a range from 0 to 5 times the growth medium concen

tration and a concentration range of 0 to 10 mM for HC0 3 . An additional washing step, 

similar to the second step in the concentration procedure with the concentrated cells 

suspension, was made to be sure that all trace elements from the medium were removed. 

Standard conditions (pH 7.5 and 25 mM NH4
+) were used in these activity assays. 

Activity assay. The oxygen consumption rate of a concentrated cell suspension was 

used as a rapid assay to screen and quantify the effects of the extreme conditions in 

26 



CHAPTER 2 

concentrated waste streams. The oxygen consumption rate was measured with a 

Biological Oxygen Monitor (Yellow Springs Instrument, Ohio, USA). In an 8 cm3 vessel, 

0.5 cm3 of the concentrated cell suspension was added together with buffer and an 

appropriate concentrated solution of ions or product (as specified in the Results and 

Discussion section). Demineralized water was added to make up to 4 cm3 and the 

suspension was aerated for 5 min. Then the vessel was sealed with the 0 2 electrode 

(model 5331, Yellow Springs Instrument, Ohio, USA) such that no air bubbles remained 

in the liquid. Ammonia was added through the seal with an analytical syringe (0.1 cm3) 

to make up to the desired substrate concentration. For that a concentrated NH4
+ 

solution (2 M) was used such that the liquid volume did not change significantly. The 

decrease in oxygen concentration (between 100-80 % air saturation) was then recorded 

as a function of time. All activity assays were done at 30°C. A different procedure was 

followed in the experiments with a substrate concentration above 100 mM NH+
4; the 

desired substrate concentration was then made up directly in the at the beginning of the 

experiment in the volume of 4 dm3. 

The activity (V ) was defined as the initial oxygen consumption rate of the N. 

europaea cell suspension under the conditions applied in the vessel. This activity was 

expressed as /LimolO, consumed.s"'.m"3 bacterial suspension or expressed as a percentage 

of a standard assay. This standard was defined as the activity at pH 7.5 with 50 mM 

Tris/HCl and 50 mM phosphate buffer and a substrate concentration of 25 mM N H / . 

The activity of the standard (100%) is given in the text or legend of the figures. 

Fitting of data. Parameters of Michaelis-Menten based equations were fitted to 

the experimental data with the non-linear regression program of Zwietering et al. (1990) 

using a Marquardt algorithm. 
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RESULTS AND DISCUSSION 

"|> uffer. A phosphate concentration of 40-50 mM is optimal for activity assays with N. 

europaea according to Droogenbroeck & Laudelout (1967). From the different 

buffer combinations tested the combined buffer with a concentration of 50 mM of both 

phosphate and Tris/HCl did not show the fall in activity observed by Ginkel et al. 

(1983), and was therefore used in the activity assays. 

Trace elements and C02. No influence of the trace elements nor bicarbonate 

concentration on the activity of N. europaea cell suspension was observed in the ranges 

measured. Therefore, the absence of trace elements or HC03" in the activity assays could 

be neglected. 

Activity assay. The initial 0 2 consumption rate was used as activity assay to 

analyse the influence of different environmental conditions. In these assays NH4
+ was the 

rate limiting substrate. The NH4
+ concentration was assumed to be constant during the 

assay, which is justified as the change due to conversion by the cells was relatively small 

(less than 0.1%). The decrease in oxygen concentration as result of the conversion, was 

measured between air saturation and 80% air saturation. The 0 2 concentration was 

never rate limiting, as the affinity constant (Ks) measured for O, is 0.005 mM, which is 

very small compared to 0.190 mM (80 % air saturation). 

Also the biomass was assumed to be constant during the activity assay. It can be 

calculated from the maximum specific growth rate of Nitrosomonas europaea - in 

continuous culture between 0.039-0.064 h"1, reported by Prosser (1989) - that the 

maximum change in biomass concentration during the activity assay will be less than 0.4 

%. The assumption of a constant biomass during the 5 minutes of an activity assay is 

therefore valid. 

Influence of pH and substrate on the activity. At five pH values, ranging from 6.5 

to 8.5, the activity was measured at substrate concentrations between 0 and 100 mM 
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NH4
+; higher substrate concentration were also studied but are discussed in combination 

with the influence of extreme ion concentrations. Figure 1 shows some of the results of 

these activity assays. For every pH the substrate affinity constant Ks and the maximum 

activity V„, from the Michaelis-Menten equation were estimated with the non-linear 

regression method. For each pH two or three identical runs were made and the 

estimated Ks and V„, are presented in Table I. The second column in Table I gives the 

estimated Ks values expressed as the total ammonia concentration (Nt), i.e. no distinction 

is made between NH3 and NH4
+. 

activity (%) 
120 r—* 

— — * 'JÈTL ^T** * * * * * * - l l * . -

«fi 

A- - B -

/ 
-er' 

50 75 100 
ammonium concentration (mM) 

Figure 1 The activity of N. europaea at different pH values as a function of the 

substrate concentration. The 100% corresponds with 2780 (pH 6.5 (D), 7.5 

(O)), 2520 (pH 7.0 (A), 8.0 {*)) and 1820 (pH 8.5 ( •)) 

ßtnolO-, consumed.s''.m'3 bacterial suspension. 

Suzuki (1974) showed that the substrate for Nitrosomonas europaea is NH3 and 
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the acid-base dissociation constant Ka with a value of 10"9093 mol.dm"3 was used to 

calculate the NH3 concentration from Nt. In the third column Ks is expressed as the NH3 

concentration. In the last column the estimated V„, values are presented. In Table I some 

trends in the relation between pH and Ks and the maximum activity can be observed. 

First of all, a decrease in the Ks values, expressed as Nt, clearly occurs with an increase 

in pH. This is in contrast with the increase of Ks, expressed as NH3, with increasing pH 

up to 8.0. The maximum activity also shows an increasing tendency when the pH goes 

from 6.5 to 8.5. 

Table I The influence of pH on the maximum activity (Vm ) and substrate affinity 

(Ks) of Nitrosomonas europaea. 

PH 

6.5 

7.0 

7.5 

8.0 

8.5 

Ks 

N, (mM) 

4.4 

2.9 

2.0 

2.4 

2.9 

1.3 

1.5 

0.79 

0.46 

0.39 

0.17 

0.17 

0.19 

NH, (mM) 

0.011 

0.007 

0.005 

0.019 

0.023 

0.032 

0.037 

0.056 

0.034 

0.029 

0.034 

0.035 

0.037 

y„, 

(% of standard) 

72 

69 

57 

73 

84 

108 

107 

111 

122 

87 

108 

118 

100 
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Laudelout et al. (1976) and Boon & Laudelout (1962) showed that relations 

between pH, Ks and Vm can be modelled using Michaelis-Menten kinetics for enzymes 

(Dixon & Webb 1979). This approach is used to analyze the relations between pH, Ks 

and V„, from the data of Table I. 

Relation between pH and Ks. The estimated Ks values of Table I were used to fit 

the acid-base equilibrium of the microorganism (Kmo) and a true substrate affinity 

constant (Ks°) in eq (1). Where Ks° is the pH independent substrate affinity constant for 

NH3 and Kmo a pure theoretical parameter 

K.c — Kr 1 

1+ [HI 
( i ) 

In eq (1) Ks is expressed as mol.dm"3 NH3. Eq (1) was fitted to the data oiKs and 

pH from Table I with the non-linear regression method. A value of 10"6% mol.dm"3 for 

Km0 and 4* 10"5 mol.dm"3 for Ks° was obtained from this fit. In Figure 2 the fitted line with 

a 95% reliability interval (grey shaded area) is given with the measured data. In eq (1) 

the concentration of Ks is in itiM NH3, but usually Ks is expressed as the total ammonia 

(NH4
+ + NH3) concentration in mM Nt. Using eq (1) and the Ka value of the ammonia 

equilibrium with the fitted values gives 

KS = 4*i(r5 

1 + 

1 
[HI 

10 6.96 

[HI 

10 9.093 (2) 
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0.06 
Ks [mM NH3] 

0.04-

0.02 

Figure 2 The fitted value of Ks (line) with 95% reliability interval (grey area) as a 

function of pH. Measured values (Table I, 3rd column) are represented by 

dots. 

In Figure 3 literature values are compared with eq (2). The results of Knowles et 

al. (1965) and Gee et al. (1990) have been obtained with mixed cultures from waste

water treatment plants. They estimated a significant lower value of Ks. Keen & Prosser 

(1987) and Helder & de Vries (1983) determined a lower Ks also with pure cultures of 

N. europaea. The Ks values of Laudelout et al. (1976) and Suzuki et al. (1974) are in 

tetter agreement with our results. 

Relation between pH and maximum activity. In enzyme kinetics the pH 

dependence of the maximum activity is explained with an acid-base equilibrium of a 

protonated group in the substrate-enzyme complex. 
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8 
Ks (mM Nt) 

0 

Figure 3 Comparison of literature values of Ks with measured values. The solid line 

represents eq (2), Keen & Prosser(1987) (•), Laudelout et al. (1976) (O), 

Knowles et al.(1965) (D), Gee et al.(1990) (A), Suzuki et al.(1974) (A), 

Helder & de Vries(1983) ( • ) . 

For N. europaea we assumed an analogous relation between pH and maximum 

activity (Vm) with Kms as dissociation constant of the substrate-enzyme complex and Vm° 

the 'true' maximum activity 

V_ 

1 + 
[H+] 

(3) 
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Eq (3) was fitted to the data of Table I using the non-linear regression method. In Figure 

4 the result is presented with the 95% reliability interval of the measured data. A value 

of 109.3% ± 9% for the Vm°. and a Kms of 10"637 raM, with 10"671 and 10"618 as upper and 

lower value for the reliability interval for Kms were estimated. 

Vm [% of standard] 

120 

Figure 4 The fitted values of Vm (line) with 95% reliability interval (grey area) as a 

function of pH. Measured values from Table I, 2"d column, are represented 

by dots. 

The relation between Vm and pH can thus be described by 

1 + 
10-6.37 

(4) 
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The value of V„,° is more than 100% and this means that the optimal pH is not 7.5, 

which we used as standard, but above this pH. The parameter Kms is a valuable tool to 

describe the relation between pH and maximum activity, but it is somewhat premature 

to draw any conclusions from this result about mechanisms of substrate conversion by 

these bacteria. 

High concentrations of substrate, product and ions. The inhibitory effect of high 

substrate concentrations was, to a limited extent, reported by Laudelout et al. (1976), 

Anthonisen et al. (1976) and Prakasam & Loehr (1972). In Figure 5 the inhibitory effect 

of substrate (in duplo), and the influence of NaCl; KCl; NaN03 and NaN02 on the 

activity of N. europaea at pH 7.5 are presented. A severe inhibition of the activity was 

observed at increased concentrations. However no significant distinction between the 

different salts, substrate (NH4
 + ) or product (NO,") could be observed, thus an osmotic 

pressure effect due to the very high salt concentrations is more likely to explain the 

substrate inhibition. A linear regression analysis of all the data of Figure 5 results in eq 

(5) 

— = 0.994 - 0.00187 * [ salt concentration 1 (5) 

V 
m 

For practical convenience the salt concentration is expressed in: [mmol/dm3 (salt)]. The 

proportionality constant in eq (5) is estimated to be -1.87 * 10"3 dm3/mmol with and a 

95% reliability interval of -1.58 * 10"3 to -2.16 * 103. It is not possible to avoid this type 

of inhibition of N. europaea under conditions prevailing in the treatment of concentrated 

waste streams and in practice this severe inhibition has to be taken into account. 

High product concentration and pH. Together with high substrate concentrations 

also high product concentrations will also be reached. The product (NCV) is a weak base 

and the unionized form is highly toxic to Nitrobacter agilis according to Boon & 

Laudelout (1962). 
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activity (%) 
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Figure 5 The influence of the salt and substrate concentration (NH4Cl (A,D)), KCl ( • ) , 

NaCl (O), NaN02 (•), NaN03 (*)) on the activity ofN. europaea. 100% is 

3250 ßmolO-, consumed.s'.m'1 bacterial suspension. 

This effect can also be important for Nitrosomonas europaea and the influence of 

the product concentration at three pH values (6.5, 7.5, 8.5) on N. europaea has been 

determined. The product concentration varied between 0 - 500 mM N02" and to 

compensate for the osmotic effect at these extreme concentrations, NaCl at the same 

concentration as NaN02 was used as a reference. The results of these activity assays are 

shown in Figure 6: NO," is clearly inhibitory for N. europaea, particularly at a lower pH. 

This supports the suggestion that the unionized form (HNO,) is responsible for this toxic 

effect. This product inhibition effect can thus be avoided in practise by raising the pH. 
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120 
activity (%) 

0 200 400 600 0 200 400 600 0 200 400 600 
concentration (mM) 

Figure 6 The influence of high product concentration and pH on N. europaea. 100% 

is 3412 ßinol02 consumed.s'.m3 bacterial suspension. With dotted lines (—) 

for NaN02 and solid lines ( ) for NaCl. 

CONCLUSIONS 

n p he influence of several extreme conditions prevailing in concentrated waste streams, 

on N. europaea was quantified. By using a combined phosphate and Tris/HCl buffer 

it was possible to estimate kinetic parameters over a wide pH range. The influence of 

pH ot\Ks and Vm is quantified and eqs (2) and (5) can be used for modelling nitrification 

processes. Particularly in biofilm models with non-steady-state conditions these equations 

can be a useful tool. Optimal conditions for ammonia conversion at wastewater 

treatment plants with nitrification problems can be determined. Adjustment of pH is a 

possibility to improve the ammonia conversion. 
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Substrate inhibition does not play an important role for N. europaea, but osmotic 

pressure in concentrated waste streams can severely inhibit this bacterium. Product 

inhibition is only observed at low pH and must not be confused with the influence of the 

osmotic pressure. 
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SUMMARY 

Ty M easurement and description of the effects of extreme conditions on biological 

nitrite oxidation was the aim of this study, using Nitrobacter agilis (ATCC 14123) 

as model nitrifying bacterium. The initial oxygen consumption rate of a concentrated cell 

suspension was used as a rapid assay to measure the effects. Several relations, based on 

Michaelis-Menten kinetics, were derived. These relations describe the behaviour of N. 

agilis with respect to substrate inhibition, product inhibition and various salt 

concentrations up to 500 mM with the pH ranging from 6.5 to 8.5. Substrate and product 

inhibition were pH dependent and the subtrate inhibition could be related to the 

undissociated nitrite. In contrast with previous reports on nitrite oxidizing 

microorganisms, we did not observe severe inhibition by NH4
+. 

Accepted for publication in Appl Microbiol Biotechnol as: Kinetics of Nitrosomonas agilis at extreme 

substrate, product and salt concentrations. Jan H. Hunik; Harold J.G. Meijer and Johannes Tramper (1993). 
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INTRODUCTION 

T^T itrification of waste streams, with high concentrations of ammonia, from industry, 

agriculture or landfills, is gaining more attention (St-Arnaud et al. 1991, 

Loynachan et al. 1976, Bortone & Piccinini 1991, Osada et al. 1991, Knox 1985). 

Concentrations up to 500 mM ammonia can occur in these waste streams. Kinetic studies 

about the nitrification process are mainly focused on mixed cultures at a relatively low 

nitrogen concentration (Knowles et al. 1965, Anthonisen et al. 1976). An improved 

knowledge of nitrifying bacteria under extreme environmental conditions is necessary for 

a better understanding of the nitrification process in concentrated waste streams. 

Gradients of substrate, product and pH are playing an important role in nitrifying 

biofilms (Swerinski et al. 1986). Therefore, the influence of pH on the kinetics of the 

microorganisms involved has also to be taken into account. 

The predominant nitrifying bacteria in soil and water are Nitrosomonas spp. and 

Nitrobacter spp.. The effect of extreme conditions on the ammonia-oxidizing species 

Nitrosomonas europaea is described by Hunik et al. (1992). The situation with respect to 

the predominant nitrite-oxidizing species is somewhat complicated. In the 8th edition of 

Bergey's Manual (Watson, 1974) the previously known Nitrobacter agilis and Nitrobacter 

winogradskyi species were combined as two strains of the species Nitrobacter winogradskyi. 

This combination was supported by Pan (1971) who found no morphological or 

physiological differences between the two strains. Fliermans et al. (1974) however, clearly 

showed a difference in serotype using a fluorescent-antibody technique. They isolated a 

N. agilis strain from a freshwater environment with increased nitrate levels (for example: 

oxidation ditch), but only isolated N. winogradskyi from different types of soil with a 

relatively low concentration of nitrate. Furthermore, Fliermans & Schmidt (1975) 

described a difference in growth behaviour and activity between the two strains in a 

mixed culture. Based on these results we expected N. agilis to be the predominant strain 
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in nitrite oxidation of concentrated waste streams and have chosen this strain as a model. 

The kinetics of M. winogradskyi at moderate conditions have been determined by 

Boon & Laudelout (1962) and their results are compared with ours, obtained with N. 

agilis (ATCC 14123) at more extreme conditions. Another important aspect of 

nitrification under extreme conditions is the presence of ammonia. Severe inhibition by 

ammonium of the N02" conversion in waste-water treatment plants is reported by 

Anthonisen et al. (1976), Aleem & Alexander (1960), Alleman (1984), Gee et al.(1990), 

Prakasam & Loehr (1972) and Stojanovic & Alexander (1958). Determination of the 

kinetics of N. agilis at extreme concentrations of substrate (N02~), product (N0 3 ) and 

salts at various pH values were the aim of the present study. 

Parameters for substrate affinity, product inhibition and salt inhibition combined 

with pH effects are derived based on Michaelis-Menten kinetics for enzymes. A pH-

dependent substrate(N02~) and product (N03) inhibition was observed. In contrast to 

previous reports, N.agilis was not severely inhibited by ammonium. Compared to 

Nitrosomonas europaea (Hunik et al. 1992), N. agilis is less senstive to osmotic pressure 

at high salt concentrations. The derived kinetic parameters are useful for modelling 

biofilm processes. 

MATERIAL & METHODS 

~\/ï edia. All media and solutions ware made up in demineralized water. The 

chemicals used were Analytical Grade and obtained from Merck. 

Chemostat . The Nitrobacter agilis (ATCC 14123) cells were maintained in a 2.5 

dm3 sterile chemostat with a dilution rate of 3.5 * 10"6 s"1. The culture was kept at 30°C. 

The medium contained per dm3 of demineralized water: 1.0 g NaN02; 0.17 g NaHC03; 

0.052 g MgS04; 0.16 g NaH2P04.2H20; 1.6 g Na2HP04.2H20; 0.74 mg CaCl2.2H20; 0.036 

mg FeS04.7H20; 0.026 mg CuS04; 0.24 mg Na2Mo04.2H20; 4.3 mg ZnS04.7H20. 
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Cell harvesting and concentration. To obtain a sample of cells, effluent from the 

chemostat was collected for 48 hours in a sterile vessel at room temperature. The 

collected cells were washed and concentrated as follows before they were used in the 

activity assay. The approximately 1 dm3 collected effluent was first centrifuged at 16300 

g for 30 min at a temperature of 10 °C. The pellet was resuspended in 0.1 dm3 of a 1 

mM phosphate buffer (pH 7.5) and centrifuged for the second time. The cells were 

resuspended in 25 cm3 of a 1 mM phosphate buffer and stored on ice until they were 

used in the activity assay. The concentration and harvesting procedure was repeated for 

each measuring day. 

Trace elements and C02. For the activity assay, buffer and substrate were added, 

but for experimental convenience no trace elements nor bicarbonate was added. To study 

if experimental errors due to the absence of trace elements and bicarbonate could be 

introduced, Mo04
2~, Zn2 + , Ca2+, Fe2+ and Cu2+ concentrations were tested in a range 

from 0 to 5 times the growth medium concentration and a concentration range of 0 to 

10 mM for HC0 3 . An additional washing step, similar to the second step in the 

concentration procedure with the concentrated cells suspension, was made to be sure that 

all trace elements from the medium were removed. Standard conditions (pH 7.5 and 10 

mM N02") were used in these activity assays. 

Activity assay. The oxygen consumption rate of a concentrated cell suspension was 

used as a rapid assay to screen and quantify the effects of the extreme conditions in 

concentrated waste streams. The oxygen consumption rate was measured with a 

Biological Oxygen Monitor (Yellow Springs Instrument, Ohio, USA). In an 8 cm3 vessel, 

0.5 cm3 of the concentrated cell suspension was added together with buffer and an 

appropriate concentrated solution of ions or product (as specified in the Results and 

Discussion section). Demineralized water was added to make up to 4 cm3 and the 

suspension was aerated for 5 min. Then the vessel was sealed with the oxygen electrode 

(model 5331, Yellow Springs Instrument, Ohio,.USA) such that no air bubbles remained 
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in the liquid. Nitrite was added through the seal with an analytical syringe (0.02 cm3) to 

make up to the desired substrate concentration. For that a concentrated NO," solution 

(2 M) was used such that the liquid volume did not significantly change. The decrease 

in oxygen concentration (between 100-80 % air saturation) was then recorded as a 

function of time. All activity assays were done at 30°C. A phosphate concentration of 50 

mM is optimal for Nitrobacter according to Droogenbroeck & Laudelout (1967). To avoid 

a lack of phosphate at a pH above 7.5, where commonly Tris/HCl is used, and a change 

in activity when the buffer composition is changed, we used combined buffer of 50 mM 

of both Tris/HCl and phosphate over the whole pH range tested. 

The activity was defined as the initial oxygen consumption rate of the Nitrobacter 

agilis cell suspension under the conditions applied in the vessel. This activity was 

expressed as /umolO, consumed.s'.m3 bacterial suspension or expressed as a percentage 

of a standard assay. This internal standard for each experimental series was defined as 

the activity at pH 7.5 with 50 mM Tris/HCl and 50 mM phosphate buffer and a substrate 

concentration of 10 mM N02 '. The activity of the standard (100%) is given in the text 

or legend of the figures. 

Parameters of Michaelis-Menten based equations were fitted to the experimental 

data with the non-linear regression method using a Marquardt algorithm (Zwietering et 

al. 1990). 

RESULTS AND DISCUSSION 

rwi race elements and C02. No influence of the trace elements nor bicarbonate 

concentration on the activity of Nitrobacter agilis cell suspension was observed in 

the ranges measured. Therefore, the absence of trace elements and HC03" in the activity 

assays could be neglected. This behaviour is similar to the results obtained with TV. 

europaea (Hunik et al., 1992). 
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Activity assay. The initial oxygen consumption rate was used as activity assay to 

analyze the influence of different environmental conditions. In these assays N02" was the 

rate limiting substrate. The NO," concentration was assumed to be constant during the 

assay, which is justified as the change due to conversion by the cells was relatively small 

(less than 0.05%). The decrease in oxygen concentration as result of the conversion, was 

measured between air saturation and 80% air saturation. The 0 2 concentration was 

never rate limiting, as the affinity constant (Ks) measured for 0 2 is 0.02 mM, which is 

small compared to 0.190 mM (80 % air saturation). 
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Figure 1 The activity of N. agilis at different pH values as a function of the substrate 

concentrations. The 100% value corresponds with 845 (Q pH 6.5), 1026 

(&,pH 7.0), 1029 (O, pH 7.5), 609 (*, pH 8.0), 679 (M, pH 8.5) pmol 02 

consumed.s'.m'3 bacterial suspension. 

Also the biomass was assumed to be constant during the activity assay. It can be 

calculated from the maximum specific growth rate of N. agilis - in continuous culture 
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between 0.018-0.043 h"1, reported by Prosser (1989) - that the maximum change in 

biomass concentration during the activity assay will be less than 0.3 %. The assumption 

of a constant biomass during the 5 minutes of an activity assay is therefore valid. 

Influence of pH and substrate concentration. The relation between substrate 

concentration, pH and activity was measured with 13 separate experiments at substrate 

concentrations between 0 and 100 mM N02". For five different pH values, two or three 

identical activity versus substrate concentration series were made. Figure 1 shows a 

representative example of five of these activity assays. The decrease in activity at lower 

pH and increased substrate concentrations, shown in Figure 1, was due to substrate 

inhibition. Two forms of nitrite can be distinguished in the pH range used: non-

dissociated HNO, and the NO," ion, which is the actual substrate (Cobley 1976, Kumar 

& Nicholas 1981). 

To describe this, a similar approach, using Michaelis-Menten kinetics, was 

followed as in our previous kinetic study of N. europaea (Hunik et al., 1992). The effect 

of substrate inhibition is due to the non-competitive inhibition by HN02 (Boon & 

Laudelout 1962) and a non-competitive inhibition term was added to the Michaelis-

Menten equation to obtain eq (1) 

V = v_ s 
Ks + S 

• 

1 

1 + A (1) 

The substrate affinity constant (Ks), maximum activity (Km), and substrate inhibition 

constant (A-,) were estimated from a fit of the activity (V) versus substrate concentration 

(5) to eq (1). From the 13 data sets we estimated the Ks, Vm and Kt values with the non

linear regression method (Table I). The Ks is expressed as mM N02" in Table I. 

Substrate inhibition is due to the non-competitive inhibition of HNO, and the inhibition 

constant Kt is thus expressed as ßM HNO, in Table I. An acid-base dissociation constant 
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of 3.98 * 10"4 mol.dm"3 was used to calculate the HN02 concentration from the total 

nitrite concentration. 

Table I The influence of pH on the maximum activity (Vm), the substrate affinity 

constant (Ks) and the substrate inhibition constant (KJ of N. agilis 

pH V,„ K, K, 

6.5 

7.0 

7.5 

8 

8.5 

% activity 

111 

129 

103 

129 

117 

105 

118 

97 

99 

121 

114 

102 

114 

mM N0 2 

0.17 

0.217 

0.226 

0.536 

0.482 

0.22 

0.429 

0.541 

0.375 

0.50 

0.379 

0.729 

1.38 

M HN0 2 

17.9 

12.8 

21.1 

9.96 

13.5 

15.1 

6.6 

15.2 

-

-

-

-

_ 

In Figure 1 we can see that the effect of substrate inhibition was absent above pH 

8.0. From the value of the HNO, dissociation constant it is clear that the HN02 

concentrations are very low at higher pH's and the estimated values for Kt above pH 7.5 

are unreliable and omitted for that reason. 

From Table I some trends in the relationship between pH and Vm, Ks and Kt 

values can be observed. First of all the estimated V„, values are rather constant over the 
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pH range used in our experiments. Second, the estimated Kt values, expressed as ßM 

HNO,, in Table I, are also roughly constant at the lower pH range. This observation 

supports the non-competitive inhibition by HNO, of N.agilis and an average Kt value of 

14.0 ßM HN02 with a 95% reliability interval of 10.0 to 18.0 was obtained. This is about 

twice the value of 8.2 ^M HNO, found by Boon & Laudelout (1962) for N. winogradskyi. 

The third observation is that the substrate affinity values (Kt) in Table I slightly increase 

when the pH changes from 6.5 to 8.5. 

Ks [mM nitrite] 

Figure 2 The fitted value of the .substrate affinity constant (K^ line) with a 95% 

reliability interval (grey area) as function of pH. Measured values are 

represented by dots. 

Relationships between pH and Ks can be modelled using Michaelis-Menten kinetics for 

enzymes (Dixon & Webb 1979, Boon & Laudelout 1962). This approach was used to 

analyze the relationship between pH and Ks from the data of Table I. 

With the estimated Ks values of Table I the acid-base equilibrium of the microorganism 
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(Kmo) and the "true" substrate affinity constant Ks° of eq (2) were estimated. The Ks° 

value is the pH-independent substrate affinity constant for N02" and Kmo a pure 

theoretical parameter. 

/L 0 = K.C 1 
K„ 

[HI 
(2) 

Eq (2) was fitted to the data of Ks and pH from Table I with the non-linear regression 

method. For the pH-independent substrate affinity constant Ks° a value of 0.287 mM 

N02" was obtained and a value of 8.04 * 10"9 mol/dm3 for Kmo. In Figure 2 the fitted line 

with a 95% reliability interval (grey shaded area) for the measured data is shown. 

The combined effect of pH and substrate concentration is expressed in eq (3). All 

concentrations in eq (3) are in mol/dm3. 

2.78 *KT4 * 1 + 
8.04*10 -9 

* s 
(3) 

1 

S * [H+] 

( 3.98 * 10"4 ) * ( 14.0 * 10"6 ) 

In Table II literature values are compared with values obtained with the kinetic 

parameters of eq (3). Only Boon & Laudelout (1962) present Ks values over a broad pH 

range, but their values are considerable higher than ours. From these results a significant 

difference in Ks values between N.agilis and N.winogradskyi seems a valid conclusion. 

This is not supported by the Ks values reported by Tsai & Tuovinen (1985), who found 

a higher Ks value for N.agilis compared to the Ks value for N.winogradskyi. The Ks values 

of Tsai & Tuovinen (1985) are both comparable with the values we found for N.agilis. 
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Very low values for Ks are reported by Gee et al. (1990) and Yosioka et al. (1982), but 

both Nitrobacter strains were not further characterized and the values they found can not 

easily be compared to the other Ks values of Table H. 

Table E Literature values of Ks 

author(s) 

Boon & Laudelout (1962) 

Keen & Prosser (1987) 

Gay & Corman (1984) 

Gee et al. (1990) 

Tsai & Tuovinen (1985) 

Helder & Vries (1983) 

Yoshioka el al.(1982) 

Knowles el ai. (1965) 

equation 2 

Remade & De Levai 

Nitrobacter sp. 

winogi 

sp. 

sp. 

sp. 

sp. 

agilis 

winogi 

sp. 

sp. 

spp. 

agilis 

sp. 

adskyi 

adskyi 

pH 

6.5 

7.0 

7.5 

8.0 

8.5 

8.0 

7.8 

7.8 

8 

7.5 

7.5 

7.8 

7.7 

1.1 

6.5 

7.0 

7.5 

8.0 

8.5 

7.5 

Ks 
mM N02-

1.62 

1.68 

1.85 

2.4 

4.14 

0.2 

0.11 

0.54 

0.07 

0.66 

0.31 

0.27 

0.03 

0.12 

0.29 

0.31 

0.36 

0.54 

1.11 

0.23 

origin 

soil 

soil 

soil 

unknown 

unknown 

unknown 

seawater 

freshwater 

waste water 

unknown 

fresh water 
(1978) 

51 



KINETICS OF N.agilis 

Also the results of Keen & Prosser (1987), Gay & Corman (1984), Helder & Vries 

(1983) and Knowles et al. (1965) were obtained with non-identified strains of Nitrobacter 

and although they are in the same range as our values for Ks it is difficult to compare 

these with the results from the well specified Nitrobacter strains. Very low Ks values for 

N.agilis are reported by Gould & Lees (1960) but there is no pH given. 

High concentrations of ions. The effect of high concentrations of NH4
+, Na+, K+, 

NOy, CI", S04
2" and acetate on the activity of N.agilis is demonstrated in Figure 3. There 

is a clear distinction between the activity with N03" ions present and the activity with the 

other ions. The influence of Na+, K+, CI", S04
2" and acetate is most likely the result of 

an osmotic-pressure effect. A linear regression analysis of the latter data results in eq (4) 

V 
— = 1.04 - 0.00088 . [ salt concentration] (4) 

m 

For practical convenience the salt concentration is expressed in: [mmol salt.dm"3]. The 

proportionality constant, estimated from a linear regression analysis of the data in Figure 

3, is 8.8 * lO-4 drrrlmmol"1 with a reliability interval of 0.00132 to 0.00043. This osmotic 

effect is considerable less compared to the salt effect on Nitrosomonas europaea with a 

proportionality constant of 1.87 * 10° dmlmmol"1 reported by Hunik et al. 1992. The 

influence of product and ammonium concentration together with the pH effect is treated 

below. 

Effect of pH and high concentrations of ammonium and nitrate. The influence 

of ammonium and the difference between NH3 and NH4
+ inhibition can be made clear 

by measuring the effect of ammonium at various pH values. Nitrate will be present as 

dissociated ion at all pH values examined. To distinguish the effects of NH3, NH4
+ and 

N03" from the osmotic effect shown in Figure 3 and described by eq (4), we used NaCl 

as a blank for these experiments. 
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80 

40 

n 

activity [%] 

1 1 1 1 1 

0 200 400 
concentration (mM) 

Figure 3 The influence of the salt and substrate concentration on the activity of N. 

agilis; 100% is 600 ßmol02 consumers'.m'3 bacterial suspension. KCl (&), 

NaAc (O), NaCl (*), Naß04(0), KN03 (•), NaN03 (M), NHJ^03 (A). 

Figure 4abc present the results of the activity assays at pH 6.5, 7.5 and 8.5. The 

effect of increasing concentrations of N03", NaCl and ammonium in Figure 4b is 

comparable with the results of Figure 3. In Figure 4a at pH 6.5 both ammonium and 

nitrate show an increased inhibition of N. agilis. For pH 8.5, in Figure 4C, the effects of 

the different salts on the activity is very small and negligible. The results with ammonium 

show considerably less inhibition compared to the results of other authors, who found 

a severe inhibition by ammonium at very low concentrations: 12 mM (50% inhibtion at 

pH 8.0, Gee et al. 1990), 17 mM (treshold value for inhibtion of nitrite oxidation at pH 

7.7 in soil samples, Stojanovic & Alexander 1958), 0.01 mM (30% inhibition at pH 8.0, 

Alleem & Alexander 1960), 0.072 mM (50% inhibition at pH 7.4, Prakasam 1972). The 

presence of ammonia at pH 7.5 and 8.5 has little effect on the activity of M agilis (Figure 

4bc). Only at pH 6.5 (Figure 4a) the inhibition of ammonium can be clearly distinguished 
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activity [%] 

200 400 
concentration [mM] 

activity [%] 

200 400 
concentration [mM] 

Figftre #^b,c The activity of N. agilis as 

a function of the NaCl (O), NH4Cl (*) 

and NaN03 (O) concentration. The 

100% value corresponds with 451 ßmol 

02 consumed, s'.m'3 bacterial 

suspension. 200 400 
concentration [mM] 

from the inhibition by NaCl. At this pH the NH3 concentration is a 100 times smaller 

than at pH 8.5 and inhibition of N. agilis by NH3 is thus very unlikely. A relatively small 

effect of ammonium on Nitrobacter is also found by Cobley (1976) with cell-free extracts, 

who found no inhibition of the isolated electron-transport particles from N. winogradskyi 

by ammonium concentrations up to 12 mM. 

The product (N03") inhibition at pH 6.5 was more severe than at pH 7.5 (Fig.4a,b). 

This increased effect of N03" at decreasing pH is somewhat surprising because the nitrate 
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ion will be completely dissociated at all pH values tested. For a more quantitative 

determination of the inhibiting effect of N03" on N.agilis a the experiment of Figure 4b 

was duplicated, but with much smaller intervals between the concentrations. Boon & 

Laudelout (1962) have shown that N. agilis is non-competitive inhibited by N03" at pH 

7.6. The data of the N03~ inhibition were therefore fitted to the following non

competitive inhibition equation 

V_ 

K,, 
1 

[ivo3] (5) 

From the duplicate experiment a value of 188 mM N03" for Kp in eq (5) was obtained. 

Comparing Nitrobacter agilis with Nitrosomonas europaea. A comparison of the 

effects of substrate, product and intermediates on the nitrification process should 

incorporate N. agilis as well as N. europaea. The kinetics of N.agilis are therefore 

evaluated together with the results obtained with N. europaea (Hunik et al. 1992). 

Nitrification starts with the ammonia oxidation by N. europaea. The ammonia oxidation 

is more sensitive to high salt concentrations than the nitrite oxidation. The oxidation of 

nitrite is inhibited by the non-dissociated substrate (HN02). An effect of nitrite on N. 

europaea is also observed, where an increased inhibition by nitrite occurs at decreasing 

pH, which indicates that the non-dissociated HNO, inhibits the ammonia oxidation. The 

ammonia oxidation is not affected by the presence of nitrate. N.agilis, on the contrary, 

shows a severe product inhibition. This product inhibition is also pH dependent, even 

though nitrate is dissociated at the pH range from 6.5 to 8.5 used. 

Consequences. The severe inhibition of N. agilis by N03 ' will be a major drawback 

for the nitrification of concentrated waste streams. There is no way to avoid the high 

product concentrations in the nitrification of concentrated waste streams. Only a 
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combination with simultaneous denitrification seems a promising alternative. Such a 

method is proposed by Santos et al. (1992). Cells are immobilized in a double-layer bead 

with nitrifying microorganisms at the outside and denitrifying microorganisms on the 

inside. 

Our results with the effect of ammonium on N. agilis show a minor inhibitory 

effect. Severe inhibition of N. agilis in the start-up phase due to high concentrations of 

NH4
+ is thus not likely to happen. The osmotic pressure effect of high salt concentrations 

did also not severely inhibit N. agilis. Both N. agilis and N. europaea show a decrease in 

activity at pH 6.5. This effect is enhanced in the presence of NO,", which is inhibitory for 

both microorganisms. In contrast to reports on the inhibition of Nitrobacter spp. by NH4
+, 

we did not observe such effects. The derived equations for N. agilis offer the possibility 

to model growth of this microorganism at varying conditions and is a helpful tool for 

modelling nitrification in biofilm processes. 
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IMMOBILIZATION 

SUMMARY 

mmobilization of biocatalysts in K-carrageenan gel beads is a widely used technique 

nowadays. Several methods are used to produce the gel beads. The gel-bead 

production rate is usually sufficient to make the relatively small quantities needed for 

bench-scale experiments. The droplet diameter can, within limits, be adjusted to the 

desired size, but is difficult to predict because of the non-Newtonian fluid behaviour of 

the K-carrageenan solution. Here we present the further scale-up of the extrusion 

technique with the theory to predict the droplet diameters for non-Newtonian fluids. The 

emphasis is on the droplet formation, which is the rate limiting step in this extrusion 

technique. Uniform droplets were formed by breaking up a capillary jet with a sinusoid 

signal of a vibration exciter. At the maximum production rate of 27.6 dm3.h_1 uniform 

droplets with a diameter of 2.1 ± 0.12 *10"3 m were obtained. This maximum flow rate 

was limited by the power transfer of the vibration exciter to the liquid flow. It was 

possible to get a good prediction of the droplet diameter by estimating the local viscosity 

from shear-rate calculations and an experimental relation between the shear rate and 

viscosity. In this way the theory of Newtonian fluids could be used for the non-Newtonian 

K-carrageenan solution. The calculated optimal break-up frequencies and droplet sizes 

were in good agreement with those found in the experiments. 

Published as: Large-scale production of K-carrageenan droplets for gel bead production: theoretical and 

practical limitations of size and production rate. Jan H. Hunik, Johannes Tramper (1993) Biotech. Progress 

9:186-192. 



IMMOBILIZATION 

INTRODUCTION 

T mmobilization of living cells is a common procedure in bioprocesses to increase 

biomass concentration or cell retention in bioreactors. Scott (1987) presented an 

extensive overview of immobilization methods and materials, and immobilized-cell 

bioreactors. Entrapment of cells in gel-forming materials such as alginate and K-

carrageenan, is the most commonly used immobilization method. In our nitrification 

studies we use, for example, viable nitrifying bacteria immobilized by entrapment in K-

carrageenan gel beads of 1-3 * 103 m (Tramper & Grootjen (1986) and Wijffels & 

Tramper (1989)). The entrapped cells are produced by first mixing a cell suspension with 

an aqueous K-carrageenan solution. The suspension is extruded such that droplets are 

formed which are collected in a stirred potassium chloride solution for hardening. Then 

the produced beads are transferred to the medium with a usually lower potassium 

concentration and cell growth in the beads can start. 

The dripping method is the easiest procedures for drop formation and still applied 

very often. The aqueous gel solution is pressed through a syringe with a low flow rate 

and droplets are formed at the tip of the needle. Droplets of a more uniform size will 

be obtained when an air flow arond the needle is applied. Liquid flows of 0.2 dm3.h_1 

(Hulst et al. ,1985) and 0.43 dm3.h~' (Schmidt, 1990) can be realized and scale up is done 

by using more syringes. Nevertheless, it takes 2-5 hours to produce enough gel beads for 

experiments in a bench-scale reactor of 4 dm3 with a gel load of 25%(v/v). Experiments 

at a larger scale are hardly feasible with this method, and several procedures have been 

proposed to improve the gel-bead production rate. The rate limiting step of this method 

is the droplet formation. 

Two main procedures for the production of gel beads are used to scale up the cell 

immobilization, i.e. extrusion techniques and dispersion of the gel solution in liquid or 

air. In the extrusion technique of Hulst et al. (1985) the aqueous gel solution is pressed 
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at such a high flow rate through a small orifice that a jet is formed. With a membrane, 

a sinusoidal vibration of a certain frequency is transferred to the liquid. This signal will 

cause the break-up of the jet in uniform droplets. A 100-fold increase in flow rate 

compared to the dripping method can thus be realized. The extrusion technique is also 

used for the production of ceramics and glasses with sol gel beads by Haas (1989). In 

the dispersion-in-air method of Ogbonna et al. (1991,1989a) a rotating-disk atomizer 

disperses an aqueous sodium-alginate solution in air. The droplets are collected in 

calcium-chloride solution for hardening. A production rate of 1.05 dm3.h_1 is reported for 

this method. The dispersion of an aqueous K-carrageenan solution in a liquid is described 

by Audet & Lacroix (1989). The solution is dispersed in soy-bean oil and is hardened by 

lowering the temperature and by subsequently soaking the beads in potassium chloride. 

The procedure is shown to work batch wise in a 1.5 dm3 vessel, and is amenable to scale 

up. 

Immobilization methods for living cells require a high cell viability after 

immobilization. Hulst et al. (1985) do not observe a loss in cell viability after extrusion 

of the yeast Saccharomyces cerevisieae and plant cells of Haplopappus gracilis. Also 

Ogbonna et al. (1989b) and Lacroix et al. (1990) do not report a decrease in cell viability 

in their procedures for respectively Coiynebacterium glutamicum and Lactobacillus casei. 

The dispersion methods are easy to scale up but the reproducibility of the droplet 

formation and the uniformity in size are considerable less than the extrusion technique 

of Hulst et al. (1985), according to Audet & Lacroix (1989) and Ogbonna et al. (1991), 

who use the dispersion method. 

Compared to the conventional dripping method the extrusion technique of Hulst 

et al. (1985), with the advantage of the uniform droplets, inherently produces much 

larger quantities of immobilized cells. Also for this improved extrusion technique the 

formation of droplets is the rate-limiting step, and in this paper we will focus on this 

aspect. Problems with coalescence of the droplets at the surface of the gelling liquid can 
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be prevented by the use of a organic solvent layer on the gelling liquid (Buitelaar et al., 

1988). The organic solvent will also retain the spherical shape of the gel beads. A 

theoretical background on the jet formation and break-up in uniform droplets is 

necessary for a further increase in capacity of the extrusion technique. Based on the 

theory, dimensions of the apparatus, and properties of the gel solution, the diameter of 

the droplets was predicted and compared with the experimental results. Theoretical 

relations for the minimum and maximum flow velocity were obtained on the basis on the 

diameter of the orifice and the liquid properties. The problem of a non-Newtonian fluid 

such as a K-carrageenan solution was solved by estimating the local shear rate and the 

corresponding viscosity. The minimal flow for jet formation, droplet diameters and 

optimal frequencies thus predicted, were in good agreement with the experimental 

values. The maximum production was not limited by a theoretical maximum but by the 

maximum power transfer of the vibration exciter to the liquid. 

THEORY 

HP he droplets formation in the extrusion technique begins with the formation of a 

capillary jet having a laminar-flow profile. Due to a disturbance of a certain 

frequency this capillary jet will break-up in droplets. Theoretical limits and optimal 

conditions for this process are evaluated here. The theory for the break-up of capillary 

jets is based on liquids with a Newtonian viscous behaviour. The K-carrageenan solution, 

however, is a non-Newtonian fluid and the problem is approached with an estimation of 

the local viscosity. This viscosity depends on the local shear rate, which must thus be 

estimated first. 

Jet formation. Different regimes of liquid flow emerging from a small outlet can 

be distinguished. Drops are formed at the orifice at very low flow rates. A capillary jet 
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with a laminar-flow profile will be formed at increasing flow rates. With a additional 

increase in flow rate a capillary jet with a turbulent- flow profile is formed. Eventually 

the liquid at the orifice will be atomized. We are interested in a jet with a laminar-flow 

regime. This flow regime is limited by a minimum flow rate at which the capillary jet 

with a laminar-flow profile changes to dripping and by a maximum flow rate where the 

jet becomes turbulent. 

Greenwald (1980) derived a minimum-flow velocity (u}) for a capillary jet from 

an energy balance, i.e. the kinetic energy of the liquid flow before the orifice is equal to 

the kinetic energy of the emerging jet and the energy of the new surface of the jet 

formed 

Uj z 6 

N 
^1_ (1) 

Pl.dj 

The theoretical relation between dj and d, is given by Harmon (1955) 

d, - & . dt (2) 

This relation is experimentally verified by Lindblad & Schneider(1965). Substitution of 

eq (2) in eq (1) provides the minimum flow velocity for a capillary jet from the liquid 

properties a, and p, and the tube diameter d, 

Uj ï 6.45 
ol (3) 

\ P l d t 
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The transition of a laminar-flow to a turbulent-flow profile in the jet occurs (Grant & 

Middleman, 1966) at a liqud velocity of 

Uj > 325 . 
0.72 

0.86 

0.14 

»0.86 
(4) 

The boundaries for the flow rate of a laminar capillary jet can thus be calculated with 

eqs (3,4). 

In addition to this, a laminar-flow regime in the tube before the orifice is a 

prerequisite to obtain a laminar-flow profile in the capillary jet. This can be verified with 

the calculation of the Re number for the liquid flow in the tube, which must be below 

2300 (Lefebvre, 1989) for laminiar flow or 

Uj < 2300 . V-i (5) 

Break-up of viscous-liquid capillary jets in air. Lefebvre (1989) distinguished 

three situations for the influence of air viscosity on jet break-up: (A) The influence of 

the air viscosity on the break-up mechanism is negligible at low liquid flow rates, and 

break-up is entirely controlled by surface-tension forces. Disturbances in the liquid flow 

cause constrictions of the jet and eventually the break-up in uniform droplets. (B) At an 

increasing liquid flow rate aerodynamic forces become important in addition to the 

surface tension forces. The result of both forces is that a sinusoidal disturbance occurs, 

breaking up the jet in nonuniform droplets. (C) At very high liquid flow rates, merely 

aerodynamic forces control the break-up and atomization of the jet takes place 

immediately after emerging from the orifice. 

For the formation of uniform droplets, the first break-up regime (A) is important. 
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According to Lefebvre (1989) the transition between the first (A) and second (B) regime 

occurs at 

22 
0.28 

0.64 

0.36 

r0.64 

(6) 

Eqs (3-6) give the boundary conditions for a certain liquid and apparatus to form 

uniform droplets. For the maximum flow rate, the free-falling velocity of the droplets due 

to gravitation has also to be taken into account. This velocity must be faster than the 

flow rate of the jet to avoid the merging of the droplets in the jet after break-up. 

Practical limitations will be discussed in the Results and Discussion section. 

Relation between droplet size and break-up frequency. The droplet size as a 

function of the applied frequency and flow rate can be predicted with a mass balance. 

When we assume that from each sinus wave one droplet originates, the following mass 

balance can be set up 

Q = ƒ . - n d3 

6 p 
(7) 

Rearranging eq (7) gives 

Q . 6 
., l 

[ƒ• «J 
(8) 

Eq (8) can be applied for a wide range of experimental conditions 

Optimal wavelength. The frequencies and corresponding wavelengths for breaking 

up the capillary jet must be within a certain interval. For wavelengths considerable 

shorter or longer than the jet diameter it is less probable that break-up of the jet will 

occur. 
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The optimal wavelength for breaking up the capillary jet (Weber 1931) is given by 

0.5 

KPt = 4 . 4 4 . dj 1 + 
3 | i , 

]/Pi- ai • dj_ 

The frequency and wavelength are related by the jet velocity according to 

(9) 

ƒ (10) 

With eqs (9) and (10), both the optimal wavelength and optimal frequency can be 

calculated. 

Viscosity estimation. The value for the viscosity (/u,) is an important parameter in 

eqs (1), (3-6) and (10). For fluids with a Newtonian behaviour there is a shear-rate 

independent viscosity, but for non-Newtonian fluids the viscosity depends on the shear 

rate. Thus to estimate the appropriate viscosity of the K-carrageenan solution local shear-

rate values must be calculated. A viscosity versus shear-rate graph can be used to 

determine the local viscosity. There are two distinct places in the nozzle apparatus where 

the viscosity of the liquid jet is important. The first situation is in the tube where the 

average shear rate can be estimated using the Hagen-Poiseuille relation for a Newtonian 

fluid. From the Hagen-Poiseuille relation the average shear rate at half the distance 

between the wall and the centre of the tube can be calculated 

Y = 

« • <\*f 
(11) 
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The other situation is treated with the determination of the optimal wavelength (see 

further in this section), where in eq (9) the dynamic viscosity of the liquid in the free-

falling capillary jet is important. Weber (1931) pointed out that the velocity differences 

parallel to the jet direction are negligible. As a consequence the shear rate in the 

constricting jet is very small. The consequences for the non-Newtonian behaviour of the 

K-carrageenan solution are discussed in the Result and Discussion section. 

MATERIAL AND METHODS 

f^i hemicals and preparation of the carrageen solution. The K-carrageenan (Genugel 

0909) powder was obtained from the Copenhagen Pectin Factory. The aqueous K-

carrageenan solution was prepared with tap water of 35 °C. K-Carrageenan (2.6 % w/w) 

was dissolved with a Silverson Homogenizer and stored in a temperature-controlled 

vessel before using it in the vibration nozzle apparatus. All experiments were done at a 

temperature of 35 °C, at which temperature most cells will survive. 

Vibration-nozzle apparatus. In Figure V the principle of the vibration nozzle 

apparatus is shown. The sinusoidal pulse for the vibration is generated by a Tandar TG 

102 function generator. This signal is amplified by a Bruel & Kjaer, type 2706, amplifier 

with a maximum power consumption of 75 W. The amplified signal is transferred to a 

Bruel & Kjaer vibration exciter, type 4809, in which the signal is transferred to a 

vibration of the membrane in the six vibration chambers of the nozzle (Figure lb,c). In 

the experiments orifices with a diameter of 0.6 mm or 0.8 mm were used. The frequency 

was varied between 50 and 600 s"1. The produced droplets were visualized with a Griffin 

Xenon Stroboscope type 60. 
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Figure 1 a. Vibration nozzle setup. 

b,c. Vibration nozzle with connection to the vibration exciter (1) and 

membrane (4), the central chamber (2) where the liquid is divided over the 

six nozzle chambers (3), and the orifice (5) where the liquid is extruded. 
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Droplets-diameter measurement. Droplets were photographed at a flash time of 

1/8000 s with a Nikon F3 camera equipped with a macro-lens, focus 100 mm, diaphragm 

f5.6 . A ruler at the same distance from the camera as the droplets was also included in 

every picture. Pictures were recorded on an Ilford PanF negative film and after 

developing projected on a large screen. The diameter of the droplets was directly 

measured from the projected negative exposures on the screen. The accuracy was 1%. 

Shrinkage of droplets in the gelling solution. The density of the K-carrageenan 

solution was determined with a conventional method. Approximately 200 K-carrageenan 

gel beads were produced with the dripping method (Hulst et al. 1985). These droplets 

were collected in a 0.75 M KCl (Merck p.a.) solution for hardening. Volume of the 

collected droplets was determined by the increase in weight of the potassium chloride 

solution. The number and diameter of the gel beads was measured and the shrinkage 

could be calculated from these data. 

Flow rate. The flow rate of the jet was measured by collecting droplets for 60 s. 

Viscosity measurements. The viscosity of the K-carrageenan solutions was 

measured with an Ostwald viscosity meter and a Haake Rotovisco RV 20 rotation 

viscosity meter at 35°C. 

RESULTS AND DISCUSSION 

\ r iscosity. Figure 2 shows the viscosity of the K-carrageenan solution as a function of 

the shear rate. The K-carrageenan solution shows the behaviour of a non-Newtonian 

fluid without a yield point for the range of shear rates tested. 

Theoretical limitations of the extrusion technique. The maximum liquid flow 

velocity of a capillary jet breaking up in uniform droplets can be calculated with eqs (4-

6). And the minimum velocity can be calculated with eq (3). The relative importance of 

eqs (4-6) is shown in Figure 3. The grey area shows the possible combinations between 
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dynamic viscosity [N.s.rrr2] 

0.01 0.1 10 100 1,000 
shear rate [s-1] 

Figure 2 Dynamic viscosity of 2.6 % (v/v) K-carrageenan solution as a function of 
the shear rate. 

jet velocity and the dynamic viscosity, which will give uniform droplets. A measured value 

of 1008 kg.m"3 for p, and estimated value of 0.072 N.m"1 for a, has been used in the 

calculations. This assumption is not only valid for the K-carrageenan solution but also 

representative for other gel solutions, e.g., alginate, without surface active components. 

A dynamic viscosity ranging from 0.001 (water of 20°C) to 1 Pa.s (very viscous solution) 

has been taken for four different orifice diameters. The limit of the maximum jet velocity 

in all situations can be calculated with eq (6) and for the minimum jet velocity with eq 

(3). The eqs (4) and (5) are thus not important and the jet velocity for an extrusion 

technique is therefore limited on the low side by the capillary jet formation and on th 

high side by the transition between the uniform break-up regime (A) and the second (B) 

break-up regime for all the situations in Figure 3, which cover most of the gel-bead 

formation conditions. 
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jet velocity [m.s-1] 
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Figure 3 The minimum (equation 3 -—) and maximum (equation 4... ,5 -••-, 6 ) 

jet velocity (Uj) as a function of the dynamic viscosity (density of 1008 kg.m'3 

and suiface tension of 0.072 N.m'). The grey area indicates the conditions for 

uniform droplet formation. Parameter: orifice diameter (0) . 

The theoretical minimum liquid velocity at least necessary to produce a capillary 

jet can thus be calculated from eq (3). For that the surface tension of water (0.072 N.m"1) 

was taken as K-carrageenan has no surface active properties. When the diameter of 0.8 

mm and 0.6 mm of the orifice are used in eq (3) for dp a minimum liquid velocity of 1.92 
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and 2.22 m.s"1, respectively, is calculated to obtain a capillary jet. In the experiments a 

stable capillary jet was formed above a flow rate of 1.89 and 2.42 m.s"1 for, respectively, 

the 0.8- and 0.6-mm nozzle. The flow rate at which a capillary jet was observed agree 

very well with the value calculated with eq (3). 

The theoretical jet velocity for the transition between the first (A) and second (B) 

break-up regime is given by eq (6). For an almost negligible (Weber 1931) shear stress, 

a dynamic viscosity of 0.73 N.s.m"2 is measured (see Figure 2). Substituting this value in 

eq (6), we found a theoretical maximum velocity of the jet allowing uniform break-up of 

8.97 and 10.7 m.s"1 for, respectively, the 0.8- and 0.6-mm orifices. The maximum velocity 

in our experiments was 2.97 and 4.11 m.s"1 for, respectively, the 0.8- and 0.6-mm orifices. 

At the maximum flow rates in our experiments this transition is thus not reached. At 

higher flow rates a sinusoidal disturbance (break-up regime B) will be formed and was 

indeed observed in experiments not described here, where a more diluted K-carrageenan 

solution was used and higher velocities could be applied. 

The maximum flow rate can also be limited by the free-falling velocity of the 

droplets. If the jet velocity exceeds the free-falling velocity, the droplets will merge and 

no break-up is visible. For droplets of 2 mm a free-falling velocity of 7.2 m.s"1 is 

calculated. This is above the maximum flow rate in all of our experiments. Merging of 

successive droplets was thus not likely to happen and indeed not observed. 

The maximum flow rate in the experiments did not exceed the limits described 

above, but was in our experiments limited by the power transfer of the vibration exciter 

to the liquid. The power output of the apparatus at the highest flow rates was the 

maximum for the amplifier used. However, the other limiting factors must also be taken 

into account when other combinations of liquid, orifice and vibration exciter are used. 

Droplet-formation experiments. For the two different orifice diameters several 

runs with various flow rates and vibration frequencies were performed. In Figure 4 a 

picture of the negative film is shown as an example how the droplet size was measured. 
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Visual observations of all 

experiments together with the 

average droplet diameter, 

standard deviation, and 

theoretical droplet diameter, 

based on eq (9), of the 

uniform droplets are shown in 

Table Iab. During hardening in 

the 0.75 M KCl the K-

carrageenan solution shrank 

6.9 vol %. The droplet sizes in 

Table l ab range between 1.3 

and 2.75 mm which will be 

reduced to 1.27 and 2.68 mm, 

respectively, for gel beads 

obtained after hardening. The 

shrinkage of the gel beads will 

be influenced by the type of 

gelling solution and also the Figure 4 

concentration of the gelling 

agent used. 

A picture of up jet after break-up at a flow 
rate of 23.8 dm3.h~' with the 0.8 mm nozzle 
and a frequency of 151 s'. 
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Table I" Visual observations of the liquid-jet break-up with the 0.8 mm orifice: 

- = no break-up; - = no break-up and chain formation; + = break-up in 

droplets of irregular shape; + + = break-up with satellite droplets. 

Numerical values: Top, average diameter (mm); Middle, standard deviation 

(mm); Bottom, theoretical diameter (eq.8)(mm). 

f 
flow rate opl frequency [s ' 

eq (9,10) 

dm3.h' m.s'1 s"1 100 150 200 250 300 400 

20.5 1.89 187 

23.8 2.19 217 

27.6 2.54 252 

32.2 2.97 294 

2.25 

0.07 

2.07 

2.56 

0.29 

2.19 

2.43 

0.23 

2.29 

+ 

-

2.47 

0.36 

2.02 

2.13 

0.12 

2.13 

2.94 

0.56 

2.24 

-

2.36 

0.38 
1.92 

-
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Table fi Visual observations of the liquid-jet break-up with the 0.6 mm orifice. Legend 

at Table I". 

flow rate op' frequency [s1] 

d m ' . r m.s1 s-' 50 100 150 200 300 400 600 

14.8 2.42 300 

17.0 2.78 344 

19.5 3.19 395 

25.1 4.11 508 

2.47 

0.17 

2.07 

2.30 

0.18 

2.17 

2.75 

0.38 

2.26 

+ 

2.39 

0.29 

1.86 

1.97 

0.11 

1.96 

2.34 

0.19 

2.04 

2.38 

0.32 

2.23 

1.92 

0.31 

1.64 

1.71 

0.12 

1.71 

1.77 

0.16 

1.79 

2.02 

0.37 

1.95 

-

1.30 

0.53 

1.55 

-

1.75 

0.25 

1.77 

The diameter range of gel beads obtained from the droplets in Table Ia,b is 

suitable for application in different bioprocesses: among other, Schmidt (1990) uses 1.3-

mm gel beads for denitrification; Tramper & Grootjen (1986) 3.2-mm gel beads for 

nitrification and Arnaud et al. (1992) 1.0-2.0-mm gel beads for the production of 

fermented diary products. 

The visual observations showed that not all the jets were nicely broken up in 

uniform droplets. In Figure 5, for example, the formation of a chain of droplets 
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connected by thin threads m ^ ^ ^ F ^ ' &ffi 

of the liquid is shown. 

Tables Iab show that 

formation of chains only 

occurs at relatively high 

frequencies. The formation 

of droplet chains is also 

observed by Goldin et al. 

(1969), who studied the 

stability of capillary jets for 

several viscuelastic fluids. 

They have no explanation 

for the stability of the thin 

threads formed between the 

droplets. These thin threads 

seem to be more stable 

than the jet itself. Besides 

chain formation also 

satellites are formed. Figure 5 A picture of a jet where a chain of droplets is 
formed connected by a thin thread. The flow 

According to Rutland & rate was 25.1 dm\h'with the 0.6 mm nozzle 

Jameson (1970), satellites and a frequency of 52 s1. 

are always formed when a 

capillary jet breaks up in droplets. A minimum of satellites should be formed around the 

optimum frequency (jopl), which agrees well with our results. The theoretical droplet 

diameters in Tables Iah agree well or are slightly smaller compared to the measured 

droplet size, and the assumption of one droplet for each wavelength seems valid over a 

broad range of flow rates and frequencies (see-numerical values for the diameter in 
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Table Iab). This is in contrast with the results of Hulst et al.(1985) where, on the basis 

on eq (9), we calculated that one droplet is formed for two wavelengths. We have no 

explanation of this deviation from the theory. 

The optimal break-up frequency (fopl) can be calculated with the assumed dynamic 

viscosity of the jet, 0.73 N.s.m"2. The results are also presented in Table P'b. This optimal 

frequency agrees very well with the experimental results. The standard deviation of the 

bead diameter is the lowest around the optimal frequencies. The maximum production 

rate of 27.6 dm3.h"' was reached, which is only slightly more compared to Hulst et 

al.(1985). The size of the beads produced by Hulst et al. (1985) at the maximum rate was 

4-5 mm (personal communication). This is not a very practical gel bead size. 

The uniformity of the beads in our experiments is considerable better compared 

to the two previously described dispersion techniques. Audet & Lacroix (1989) obtained 

beads with a diameter ranging from 0.09 to 6.0 mm and a median at 2.5 mm. The 

standard deviation is not given but 5 % (v/v) of the beads has a diameter below 0.4 mm; 

this percentage will be considerable more when based on the number of beads with a 

diameter below 0.4 mm. The experiments of Ogbonna et al. (1989) show a large 

difference in diameter. The median volumetric diameter is around 0.6 mm, but based on 

numbers, 50% of the beads has a diameter below 0.2 mm. 

CONCLUSIONS 

A considerable increase in production rate of uniform K-carrageenan beads was 

obtained with the six-point vibration nozzle apparatus. The main aim of this study 

was the application of the available theory on the break-up of a capillary jet of a non-

Newtonian fluid such as a K-carrageenan solution. When this non-Newtonian behaviour 

is taken into account good predictions of droplet size and optimal break-up frequencies 
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were possible. This will provide the tools for a further scale-up of this technique. The 

maximum flow rate where uniform droplets were produced with the six-point vibration 

nozzle apparatus was 27.6 dm3.h-1 with a bead diameter of 2.13 mm and a standard 

deviation of 0.12 mm. After hardening and shrinkage, gel beads with a diameter of 2.08 

mm will be obtained. The flow rate in our experiments was limited by the power transfer 

of the vibration to the liquid and a new design for this technique must be optimized in 

this respect. 

Acknowledgements. We thank Jan Theunissen and André van Wijk for their 
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valuable discussions about the break-up of capillary jets. 
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A novel technique, combining labelling and stereological methods, for the 

determination of spatial distribution of two microorganisms in a biofilm is 

presented. Cells of Nitrosomonas europaea (ATCC 19718) and Nitrobacter agilis (ATCC 

14123) were homogeneously distributed in a K-carrageenan gel during immobilization 

and allowed to grow out to colonies. The gel beads were sliced in thin cross sections 

after fixation and embedding. A two-step labelling resulted in green fluorescent colonies 

of either N.europaea or N.agilis in the respective cross sections. The positions and surface 

areas of the colonies of each species were determined and from that a biomass volume 

distribution for N.europaea and N.agilis in K-carrageenan gel beads was estimated. This 

technique will be useful for the validation of biofilm models, which predict such biomass 

distributions. 

Published as: Quantitative determination of the spatial distribution of Nitrosomonas europaea and 

Nitrobacter agilis cells immobilized in K-carrageenan gel beads by a specific fluorescent-antibody labelling 

technique, Jan H.Hunik, Marijke P. van den Hoogen, Wielse de Boer, Marieke Smit, Johannes Tramper 

(1993) Appl Environ Microbiol 9:1951-1954. 
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INTRODUCTION 

T n natural environments submerged solid surfaces are readily colonized by 

microorganisms and as a result a biofilm will develop. The biofilm contains a wide 

variety of cells of different species, macromolecules and particulate material. The spatial 

distribution of the various microorganisms is an important aspect in understanding the 

development of such a biofilm. Modelling of biofilm processes is a helpful tool in gaining 

a better understanding of the structure and development of biofilms (Bryers & Banks, 

1990; Wanner & Gujer, 1984). Cells artificially immobilized in K-carrageenan gel beads 

of a fixed diameter provide a suitable model system for biofilm studies: For example, for 

the validation of a dynamic model for substrate conversion by growing Nitrobacter agilis 

cells can be grown immobilized in such gel beads (Gooijer et al. 1991; Wijffels et al. 

1991). For measuring the spatial biomass distribution thin cross sections of the resin-

embedded gel beads, aspecifically stained with toluidine blue are used. 

In the field of biofilm research there is a need for accurate methods to determine 

biomass distributions in multispecies biofilms (Fruehn et al. 1991). Labour-intensive 

methods like radiolabelling are used (Bryers & Banks, 1990), but a discernment of only 

about 100 /im, which is not sufficient for aerobic biofilms since most of the cells are 

located in the outer 100-jum layer, has been achieved. Specific labelling by fluorescent-

antibody (FA) techniques is a promising method for determining those biomass 

distributions. 

The FA technique is widely used for counting specific microorganisms in waste 

water and soil (Fliermans & Schmidt, 1975; Hoff, 1988; Muyzer et al. 1987; Rennie & 

Schmidt, 1977; Völsch, 1990). For this method suspended cells are fixed on glass plates 

and stained by an FA-labelling technique. It was not possible to use the FA-labelling 

technique directly on activated sludge floes obtained from waste water (Swerinski et 

al.1985). A qualitative spatial distribution of one artificial immobilized species has been 
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determined with an FA labelling technique (Al-Rubeai et al. 1990; Burrill et al. 1983; 

Kuhn et al. 1991; Monbouquette & Ollis, 1988; Monbouquette et al. 1990; Worden & 

Berry, 1992). 

A quantitative determination of the spatial distribution of two microorganisms in 

a gel bead is the aim of this work. The cells of Nitrosomonas europaea and Nitrobacter 

agilis were homogeneously distributed in the K-carrageenan gel during immobilization and 

allowed to grow out to colonies and then samples from the gel beads were used for 

immunolabelling. After fixation and embedding, semi-thin sections (2 ßm) were used for 

specific labelling. Two adjacent cross sections of a gel bead were labelled, one with 

rabbit-anti-Mfrosoraonas europaea, the other with rabbit-anü-Nitrobacter agilis antibodies, 

and then both with goat-anti-rabbit-FITC (fluorescein isothiocyanate) conjugate. This 

procedure results in green fluorescent colonies of either N.europaea or N.agilis in a cross 

section. 

This method provides the tools for determining the biomass distribution of two 

microorganisms in one gel bead as a function of time. Validation of a dynamic two-

microorganism biofilm model is thus feasible and also intrabiofilm relations between 

microorganisms can be studied in more detail. 

MATERIALS AND METHODS 

f~*i ells. Cells of Nitrosomonas europaea (ATCC 19718) and Nitrobacter agilis (ATCC 

14123) were cultivated according to the method previously described (Hunik et al. 

1992; Wijffels et al. 1991). 

Immobilization and Cultivation. After immobilization (Hulst et al. 1985; Wijffels 

et al. 1991), gel beads with an average diameter of 2.1 _+ 0.1 mm were obtained. The 

immobilized cells in the gel beads were cultivated for 49 days in a continuously operated 
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air-lift loop reactor of 3.3 dm3 at a temperature of 30°C. The liquid-phase dilution rate 

was 2.3 * 10"5 s'1 for a medium composed of the two chemostat media, in which sodium 

salts were replaced by potassium salts. The gel beads were kept in the reactor with a 

sieve screen. The pH was maintained at 7.4 with a K2C03 solution (200 g.dm"3) and a pH 

controller. Cell growth was monitored indirectly by measuring the NH4
+, N02" and N03" 

concentrations in the effluent daily. 

Sample preparation. Gel beads were harvested and stored in a 0.1 M KCl solution 

for one hour and then washed twice with a potassium phosphate buffer (PPB, 8.7 g of 

K2HP04, 6.8 g of KH,P04, 7.45 g of KCl per dm3 and a pH of 7.4) for 10 minutes. The 

gel beads were fixed in paraformaldehyde (3% w/v in PPB) for two hours. The 

paraformaldehyde was removed by washing with PBB three times for 10 minutes 

followed by washing twice with 0.1 M KCl for 10 minutes. Gel beads were dehydrated 

in ethanol-KCl solutions (Van Neerven et al. 1990) starting with 10% ethanol- 0.09 M 

KCl and successively followed by 20% ethanol- 0.08 M KCl, 30% ethanol- 0.07 M KCl, 

50% ethanol- 0.05 M KCl, 70% ethanol- 0.03 M KCl, 90% ethanol, 100% ethanol and 

finally ending with an additional 100% ethanol step. The gel beads were kept 20 minutes 

in each solution. 

After dehydration, the 100% ethanol was replaced by Poly Ethylene Glycol (PEG) 

with an infiltration range at 55 °C. PEG was a 1:2 mixture of PEG 4000 (Merck 807490) 

and PEG 1500 (Merck 807489). The PEG/ethanol ratio changed successively from 1:10 

to 1:4, 1:1, 4:1 and 10:1. The gel beads were kept for 30 minutes in each solution. 

Finally, the gel beads were kept in 100% PEG for 60 minutes. The PEG infiltrated gel 

beads were polymerized in a mould by cooling to room temperature. These PEG 

embedded gel beads could be used to slice 2 y,m sections. 

Fluorescent-antibody labelling. Sections 2 ßm thick were obtained from the 

embedded beads with a Leitz rotary microtome equipped with a Kulzer knife (Figure 1). 
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LABELLING 

2/L/m section Ns 

Nb 
raNs 

Ns gar-FITC N s gar-FITC 

H I raNs 
Nb 

H ! raNs 
Nb 

N.europaea 

Ns Ns Ns 
raNb 

^um section Nb 

raNb 

Nb 

N. agi I is 

'—® 
gar-FITC 

raNb 

• + Nb 
M-o 

gar-FITC 

Figure 1 Slicing and labelling of the gel beads. 

The sections were collected in a droplet of (40% w/v) PEG 6000 (Merck 807491) 

solution in phosphate buffered saline (PBS, pH 7.4) and attached to a poly-L-lysine 

coated glass slide. After the PEG was removed by rinsing with PBS the sections were 

ready for specific labelling according to the following protocol: washing with PBS, 10 

min; aldehyde blocking with NH4C1 (0.1M), 5 min; aldehyde blocking with NaBH4 (0.5 

Mg/dm3), 5 min; washing with PBS, 10 min; background blocking with 1% (w/v) bovine 

serum albumin (BSA) fraction V (Merck 12018)in PBS, 60 min; washing with 0.1 % 

(w/v) BSA in PBS, twice for 30 min each; labelling with vabbk-anü-N.europaea or rabbit-

anti-N.flgf/«(diluted 1:300 in PBS), 45 min; washing with 0.1% (w/v) BSA in PBS, four 

times 5 min each; labelling with goat-anti-rabbit FITC conjugate (Sigma F6005, diluted 

1:40 in PBS), 45 min; washing with PBS, 7 times for 6 min each. 

Rabbit-anti-N.europaea (Verhagen & Laanbroek, 1991) and rabbit-anti-N.ag/7« 

(Laanbroek & Gerards, 1991) were generously provided by the Netherlands Institute for 
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Ecology - Centre for Terrestial Ecology, Heteren, The Netherlands. All steps were done 

at room temperature and high air humidity (above 60%). When FITC-conjugates were 

used, all steps were done in the dark. Finally the labelled sections were mounted in a 

Citifluor in glycerol solution (AF2, van Loenen Instruments, The Netherlands). 

Autofluorescence of the colonies was tested with a control in which the labelling with the 

goat-anti-rabbit FITC conjugate was omitted from the staining protocol. Also the non

specific binding of the goat-anti-rabbit-FITC was tested. For this the labelling with 

rabbit-anti-iV.europaea or rabbit-anti-/V.ag;7/5 was omitted from the protocol. Both rabbit-

anti-Nitrosomonas europaea and räbbit-anü-Nitrobacter agilis antibodies were tested with 

cells from the pure cultures. They specifically stained the respective microorganisms and 

showed no cross reaction. 

Microscopy. The FA-labelled samples were examined with a Microphot Nikon 

FXA microscope. A fluor pan Nikon objective (1 Ox/0.5 NA) was used. The FITC 

fluorescence was observed with a DM500 dichroic mirror, B470-490 excitation filter and 

BA 520-560 emission filter. Photomicrographs were recorded on Kodak Ektachrome 

P800/1600 film (5020 EES at 800 ASA). The colony distribution was determined with 

a Hitachi camera unit attached to the microscope. 

Quantitative analyses of spatial biomass distribution. The volumetric biomass 

fraction as function of the gel bead radius can be derived from the positions and surface 

areas of the colonies in the labelled sections. According to the principle of Delesse 

(Weibel, 1979) the volumetric density of the biomass in a gel bead is equal to the areal 

density of the cross-sectioned colonies in a section of that gel bead. Thus, the colony 

surface distribution in a thin section of a gel bead is directly related to the volumetric 

biomass density distribution in the gel beads. The colony surface distribution can be 

obtained from the microscopy data with the principle of Rosiwal (Weibel, 1979). For that 

determination, test lines are drawn (Figure 2) in the cross sections of the gel beads. The 

colony surface distribution in the cross section is equal to the fractional length of the test 
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line which intersects the colonies. Colonies were assumed to be spherical. The colony 

density in the core of the gel bead was very low, and an average colony density was 

therefore determined for that area between the centre and half the radius of the gel 

beads. For each distribution profile of one species two sections and two different areas 

in each cross section were examined. 

— test circle 
• colony 

Figure 2 Principle of the test circle for the determination of the volumetric colony 

distribution as function of the relative distance from the edge of the gel bead. 

RESULTS AND DISCUSSION 

f^ ell cultivation. After 49 days of cultivation, the experiment was ended, since more 

than 98% of the influent ammonia was converted to nitrate, and therefore, colonies 

of both N. europaea and N. agilis cells were expected in the gel beads. For the 

determination of a biomass distribution, gel beads from day 49 are used as an example. 
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Figure 3 Microphotograptis N. europaea (top) and N. agilis (bottom) of a part of a 

labelled cross section. Gel beads after shrinking were 1.4 mm. 
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Sample preparation. During dehydration the gel beads shrank 35% in diameter. 

The fixation with paraformaldehyde seemed to work very well, because no artifacts were 

observed in the gel itself or the microorganism colonies. 

Fluorescent-antibody labelling. When the protocol for the FA labelling was 

developed, autofluorescence of the aging colonies was a serious problem. For the 

suppression of this autofluorescence, blocking with NH4C1, NaBH4 and BSA was 

introduced into the labelling protocol. In Figure 3, photomicrographs with labelled 

colonies of N. europaea and N. agilis in a cross section of a gel bead after 49 days of 

cultivation are shown. A random distribution of colonies, in contrast with a profile in 

biomass distribution can be seen. Colonies which are closer to the edge are larger than 

the colonies more at the centre of the gel bead. Besides the labelled and bright 

fluorescent colonies in the samples, there are some colonies which are faintly visible due 

to autofluorescence of the nonlabelled microorganisms. 

Spatial biomass distribution . The volumetric biomass distribution shown in 

Figure 4 was based on data from gel beads at the end of the experiment. In Figure 4 a 

region with an increased biomass volume fraction in the outer region of the gel bead is 

indicated. This effect originates from the substrate concentration profile developed in the 

gel bead, which results in a relatively high biomass concentration in the outer region and 

a low concentration in the centre of the gel bead (Gooijer et al. 1991). The sharp drop 

in volume fraction at the edge of the gel bead described in Figure 4 originates from the 

assumption of spherical colonies (Fig.2). This assumption does not allow for colony 

centres at the edges of the gel beads. 

Infinitely thin sections are assumed, which means that only the surface of the 

cross-sectioned colony is labelled. This seems a valid assumption because diffusion of 

antibodies in K-carrageenan gel 3% w/v is negligible (Chevalier et al. 1987). Diffusion 

of the antibody in a shrunk and fixed gel is even more unlikely. 
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Figure 4 Biomass distribution of Nitrosomonaseuropaea{—•—)andNitrobacteragilis 

(—••••) after 49 days of cultivation. Volume fraction of biomass as 

function of the gelbead radius (0 = edge of the bead). 

The effect of shrinkage on colony radius and position is minimized by using distances 

relative to the size of the observed section of the gel bead. 

In conclusion, the labelling technique described in this paper made it possible to 

measure a biomass volume distribution of two immobilized species. This novel method, 

a combination of labelling technique and stereological methods, provides a quantitative 

spatial distribution measure of the biomass in the gel bead. The quantitative results are 

a useful tool for the comparison with model predictions for the biomass concentration. 

Experiments in which this labelling technique is used to validate a dynamic model for 

the growth of Nitrosomonas europaea and Nitrobacter agilis are at present being carried 

out in our laboratory. 
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SUMMARY 

A dynamic model for two microbial species immobilized in a gel matrix is presented 

and validated with experiments. It characterizes the nitrification of ammonia with 

cells of Nitrosomonas europaea and Nitrobacter agilis co-immobilized in K-carrageenan gel 

beads. The model consists of kinetic parameters for the microorganisms and mass 

transfer equations for the substrates and products in and outside the gel beads. The 

model predicts reactor bulk concentrations together with the substrate consumption rate, 

product formation, and biomass growth inside the gel beads as a function of time. A 50 

day experiment with immobilized cells in a 3.3 dm3 air-lift loop reactor was carried out 

to validate the model. The parameters values for the model were obtained from 

literature and separate experiments. The experimentally determined reactor bulk 

concentrations and the biomass distribution of the two microorganisms in the gel beads 

were well predicted by the model. A sensitivity analysis of the model for the given initial 

values indicated the most relevant parameters to be the maximum specific growth rate 

of the microorganisms, the diffusion coefficient of oxygen and the radius of the beads. 

The dynamic model provides a useful tool for further study and possible control of the 

nitrification process. 

Submitted as: Co-immobilized Nitrosomonas europaea and Nitrobacter agilis cells: Validation of a 

dynamic model for simultaneous substrate conversion and growth in K-carrageenan gel beads. Jan H.Hunik, 

Cees G. Bos, Marijke P. van den Hoogen, Cornelius D. de Gooijer, Johannes Tramper. 
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INTRODUCTION 

\\T ash-out of nitrifying microorganisms from wastewater treatment plants can be 

overcome by biomass retention as applied in biofilm reactors. The heterogeneous 

and complex nature of biofilms makes description and control of the process difficult. 

This has been the driving force to develop various models aiming at a better description 

and understanding of biofilm processes, ultimately resulting in a better control. Steady-

state biofilm models are used to describe fluidized bed reactors (Rittman & Manem, 

1992), rotating biological contactors (Chen et al., 1990) and trickling filters (Siegrist & 

Gujer, 1987). For transient states, such as the start-up phase of the biofilm and a change 

in influent concentration, the steady-state model is not suitable. Therefore, dynamic 

models are developed to describe the transient behaviour of biofilms. 

Several dynamic biofilm models with a heterogeneous population of 

microorganisms including nitrifying bacteria are developed. For example, Denac et al. 

(1983) developed a dynamic model for a nitrifying trickling filter, but without taking into 

account external diffusion limitation. Also Bryers (1988) and Sayles & Ollis (1989) 

neglect external diffusion resistance in their dynamic model. Kissel et al. (1984), on the 

contrary, present a dynamic model for a completely mixed fixed-film reactor with 

external diffusion limitation. Similarly, Wanner & Gujer (1986) have developed a multi-

species biofilm model including external mass-transfer limitation. The above-mentioned 

models are not validated with experiments, only simulations are presented. An important 

problem with validation of these models is the structure and biomass distribution in the 

biofilm. 

Only a few dynamic models for biofilms are validated experimentally, but they all 

deal with a single-species biofilm. For example, the dynamic model of Monbouquette et 

al. (1990) for Zymomonas mobilis is qualitatively validated with experiments. Their 

model includes external mass transfer resistance and a diffusion coefficient dependent 
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on the biomass density. Also the model developed in our laboratory (Wijffels et al. 1991, 

Gooijer et al. 1991) includes external mass transfer and a biomass-dependent diffusion 

coefficient. A large decrease in computation time is achieved in the latter model by 

separation of biomass growth and substrate conversion. The model is validated with 

biomass concentration profiles in the gel beads and oxygen fluxes to the gel beads, under 

the condition of one limiting substrate, oxygen, with a constant value in the bulk phase. 

The model presented in this paper is a dynamic model for a two-species biofilm 

including external mass-transfer limitation. The two species are strictly autotrophic 

microorganisms, i.e. CO, is the sole carbon source, and ammonia is converted according 

to the following reaction equations 

Nitrosomonas europaea: 
NHl + 1.5 02 - N02 + 2 H+ + H20 

Nitrobacter agilis: 
NO2' + 0.5 o2 - NO; 

Every substrate, i.e. NH4
+, N02" and 02, can be growth limiting and influent 

concentrations of the reactor can be varied. The model is validated with respect to the 

biomass concentration profiles in the beads and the reactor bulk concentrations. Input 

parameters are intrinsic kinetic parameters of the microorganisms, internal diffusion 

coefficients and mass transfer coefficients obtained from literature or separate 

experiments. The value of such a mechanistic model is the possibility to use it, with care, 

for predictions beyond the experimental boundaries where it is validated (Beck 1991). 

To identify the most important parameters of the model a sensitivity analysis is done, in 

which the influence of all input parameters on the model output is tested. 

Three identical reactors were operated and weekly samples of gel beads analyzed 

for the spatial distribution of the individual microorganisms as described by Hunik et al. 
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(1993). The biomass distributions in the gel beads were predicted rather well. Reactor 

bulk concentrations of the nitrogenous compounds were analyzed daily. Predicted and 

measured bulk concentrations were in good agreement with each other. The dynamic 

model with the intrinsic biological and transport parameters obtained from literature was 

thus validated experimentally. 

MODEL DEVELOPMENT 

f^l eneral considerations. In the model the gel bead is divided in 250 equally spaced 

spherical shells and uniform conditions within each shell are assumed. In the 

absence of a tangential gradient in biomass and substrate concentration, the problem is 

one-dimensional normal to the surface of the gel bead. The effective diffusion coefficient 

in the gel bead is assumed to be constant, which is in contrast to the model of Gooijer 

et al. (1991). The influence of the biomass on the effective diffusion coefficient in their 

model is 1% and therefore, we omitted this biomass-dependent diffusion coefficient. This 

negligible effect of biomass on the diffusion coefficient is also found by Westrin (1991). 

The limiting substrate for Nitrosomonas europaea is NH4
+ or O,. For Nitrobacter agilis 

N02" or O, can be limiting. Within each shell in the gel bead the most limiting substrate 

for each microorganism is determined according to the criteria and equations given in 

Table I. It is assumed that kinetics of the immobilized cells are similar to those for 

suspended cells. The maintenance or decay rate of biomass is taken into account with 

the method proposed by Beeftink et al. (1990) and used by Gooijer et al. (1991) in their 

model. The biomass is assumed to be homogeneously distributed at the start of the 

experiment and there is no transport of biomass within the gel bead. The biomass 

concentration is limited by a maximum derived from the experimentally determined 

biomass concentration in the gel beads. Sayles & Ollis (1989), Gooijer et al. (1991) and 

Monbouquette et al.(1990) use a maximum biomass concentration derived from 
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literature. When in the model the maximum biomass concentration in a shell is reached 

the excess biomass produced is assumed to disappear from the reactor immediately. The 

actual situation in the experiments is obviously different and the consequences are 

discussed in the Results & Discussion section. 

Table I The rate-limiting substrate (i) for the microorganism (m) determines the 

consumption rate equations qi,m (right-side Table) in eq (1). The selection 

criterium for the "most-limiting" substrate is given at the bottom. 

Nitrosomonas europaea Nitrobacler ag 'lis rate controling equations q'm 

limiting substrate 

NH4
+ 

NH4* 

o2 

o2 

N02 

o2 

N0 2 

O; 

q NH4 + .Ns a n d qN02,Nb 

qNH4,,Nsandq02.Nb 

q° 2 N s and qN°2-Nb 

02.Ns , 02,Nb 

criteria for limiting substrate 

minimum of minimum of 

O"" • s""; , NO:MI> 

and 

* ? * • S° KT + 5°> 
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The model uses a constant oxygen concentration in the bulk liquid, but all other 

parameters such as substrate concentration in the influent, dilution rate or mass transfer 

parameters can be varied as function of time within the model. 

Equations. The biological part of the model is described by equations for 

substrate consumption and biomass production. When the "most" limiting substrate (i) 

for a microorganism (m) is determined, the consumption rate (qi,m) for that substrate is 

given by 

, i ,m ^ m . X' 
m. . X' 

S' 

(K. S S ' ) . K. 
( i ) 

The four different situations of limiting substrate are presented in the Table I. 

The criteria in Table I implicitly contain the assumption of a non-interactive model for 

substrate utilization. When oxygen is the limiting substrate for both microorganisms the 

oxygen consumption rate is a summation of q°2,Ns and q°2,Nb. Conversion of the non-

limiting substrate is derived by the stoichiometry of the reaction equations. This seems 

a valid approach because the yield coefficients for both nitrogen and oxygen of these 

microorganisms are very low. 

For Nitrosomonas europaea the inhibition constant (K,) is assumed to be 1 (Hunik 

et al. 1992). The K, for Citrobacter agilis is determined by by the inhibition concstants 

for N02" and N03" as follows 

K, -
SN02 

xWO, 

SN03 

'NO, 

(2) 
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The biomass production rate for microorganism (m) is defined as 

dXm 

dt 

ms . Y 

' Y-

1 -

X' 

(Kf + 5 ' ) . Kj 

(3) 

where the specific growth rate (ßm) of microorganism (m) is given by 

5' 
H - V* 

(Kf + Sl ) . K, 
(4) 

At very low substrate concentrations a net decrease in biomass, or biomass decay, 

is possible according to eq (3). At more elevated substrate concentrations, maintenance 

requirements are fulfilled with an additional substrate consumption as can be seen in eq 

(1) (Beeftink et al. 1991). For Nitrobacter agilis this situation is more complicated due to 

the substrate and product inhibition, K, becomes smaller as 1. Nevertheless the 

maintenance requirements of N. agilis are treated in a similar fashion as for N. europaea 

up to moderate (50mM NO,") substrate concentrations. At high substrate concentration, 

where substrate inhibition of N02" becomes important, the substrate consumption rate 

will decrease and a net decrease in biomass will occur according to eq (3). 

The transport phenomena are described with equations for the diffusion in the gel 

bead, external mass transfer resistance between bulk and gel bead and the reactor 

configuration. 
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The subtrate concentration in the gel bead as function of time and radial position is 

given by 

a s' 
dt 

with boundary conditions: 

ID gel 
d2 S' 2 dSl 

+ 
dr' r dr 

dS 

- q' 

for r = 0 -ID . — - 0 
dr 

for r - R -/D . — - 4>' 
dr 

(5) 

The flow of substrate ($') from bulk to gel bead is 

* ' - * / . A . {Sl
bulk - Sl

sur) (6) 

where k,' is estimated according to the method described by Wijffels et al. (1991). 

The model is based on a completely mixed reactor and the mass balance of the 

substrate is given by 

^ S bulk 

d t D . ( s;n - s u ) - 4>' (7) 

Solutions. The ordinary differential eq (3) for the biomass growth in the gel 

beads was solved numerically with a second-order Runge-Kutta algorithm. The substrate 

concentrations (eqs 6,7) in the bulk phase could be solved adequately with an algorithm 

based on the trapezoidal rule, which required less computation time compared with the 

Runge-Kutta algorithm. The substrate concentration profiles in the gel beads could be 

solved when eq (1) was substituted in eq (5). The resulting equation was solved with a 
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Backwards in Time and Centred in Space algorithm (BTCS)(Press et al. 1988) for partial 

differential equations. This finite difference method was used for several reasons. First 

it allowed changes in limiting substrate at any place in the gel bead. This means that in 

each shell a choice based on the selection criteria for the appropriate rate controlling 

equations q',m from Table I can be made. Second, the BTCS method uses a fully implicit 

differential scheme, which is in general unconditional stable34. The accuracy of the 

method strongly depends on the time-step size34. This time-step size was therefore varied 

over a wide range to derive the longest time step possible. Time steps of maximally 50 

s give a sufficiently accurate solution. The last argumentation for using a finite 

differences method is the simple implementation in the algorithm of the non-linear term 

from the substitution of eq (1) in eq (5). Eq (1) is such a non-linear equation with 

respect to S and the BTCS algorithm has to be adapted to handle this term. For this the 

"Monod"-like part (e.g. kinetic relation in eq (1) for K, = 1) of the eq (1) is split in a 

zero or first-order equivalent depending on the substrate concentrations in that particular 

shell. The criterium for this was the substrate concentration: first order for S < 2 * Ks 

and zero order for S > 2 * Ks. The model runs on a IBM-compatible computer with 

80486 processor. A run of the model for 50 days takes about 5 hours CPU time. 

For the model input the NH4
+-influent concentration, dilution rate, bulk oxygen 

concentration, gel bead loading and initial biomass concentration are necessary. The 

model parameters are given in Table D with their actual values (see input parameter 

section). The model output consists of the bulk concentrations, biomass and respective 

nitrogen and oxygen concentration profiles in the gel beads. 

INPUT PARAMETERS 

"TV iffusion coefficients. Diffusion coefficients of O,, NH4
 + , NO," and N03" in the bulk 

liquid and in the gel beads are input parameters for the model. Wise & Houghton 
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(1966) determined the diffusion coefficients of several gases in water at different 

temperatures. From these data we calculated a value of 2.83 * 10"9 mis"1 for 1DW
02. For 

the lDgel
02 several values exist in the literature. Hulst et al. (1989) give a value of 1.58 

* 10"9 mis"1 for the diffusion coefficient of 0 2 in K-carrageenan-gel beads. Kurosawa et 

al.(1989) determined a K>gel°
2 of 2.3 * 10"9 mis"1 in Ca-alginate beads at different cell 

densities and did not observe a decrease in the diffusion coefficient with an increase in 

cell concentrations. The reported values were not measured under similar conditions and 

they differ too much to take an average diffusion coefficient. From the results of 

Furusaki (1989) a decrease in diffusion coefficient to 70 % compared with the diffusion 

coefficient in water can be expected. In particular since the value of Hulst et al. (1989) 

is considerably lower than the value of Kurosawa et al. (1989) we determined the 

diffusion coefficient of O, in 2.6% (w/w) K-carrageenan gel beads at 30°C in our 

laboratory. A value of 2.05 * 10"9 mis"1 for E)gef
2 was found by Wijffels et al. (1993), 

which is 72% of the value for 0 2 in water from Wise & Houghton (1966). This value was 

used as input in the present model. 

For the diffusion coefficients of the ions NH4
 + , NO," and N03" a first approach 

is the diffusion coefficient at infinite dilution based on the molar ionic conductivity (A.') 

and Nernst-Einstein relation given by Newman (1973) 

E>1 = 2.663 xlO"7 . V (8) 

In this form, eq (8) is only valid for mono-charged ions. Values for A.' (molar ionic 

conductivity) of the different ions are given by Newman (1973) and Vanysek (1992). 

Using these values for k' we obtained 1.95* 10"9, 1.91 * 10"9 and 1.90 * 10"9 mis"1 for 

respectively Dw
m\ £>w

Nœ and DH
Nai at 25°C. At more realistic values for the 

concentration of the ions the influence of the counter ion becomes important (Robinson 

& Stokes, 1970). The main positively charged counter ion for N02" and N03"will be K+ 

and the negatively charged counter ion for NH4
+ will be CI". Robinson & Stokes (1970) 
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give the overall diffusion coefficients for "concentrated" aqueous solutions up to 1 M for 

NH4C1 and 0.01 M KN03. The diffusion coefficients at these concentrations deviate less 

than 5% from the infinite dilution diffusion coefficients. 

Values for diffusion coefficients of ions in gel beads E)gJ are very rare. Some 

have been obtained by fitting from experiments where substrate fluxes in biofilms were 

measured (Arvin & Kristensen 1982 and La Cour Jansen & Harremoës 1984). These are 

not reliable because of the large number of fitted parameters. Only three sets of 

experiments which were really set-up to measure diffusion coefficients - in agar and 

biofilm - are reported. Onuma & Omura (1982) report a E>gel
NH4 of 1.3 * 10'9 m V 1 at 

20°C in inactivated biofilm. Lemoine et al.(1991) report a tt)gel
N02 value of 1.42 * 10"9 

mis"1 and a value of 1.19 * 10"'; mis"' for Dgf°
3 in agar at 25°C. Williamson & 

McCarthy (1976) report values of 1.49 * 10"9, 1.45 * 10"9 and 1.56 * 10"9 mis"1 for 

respectively K>gel
NH4, E>g/°

2 and Dgf
03 at 20°C. We used the average values of these 

data, because values for the diffusion coefficients with the appropriate counter ion were 

not available. All above mentioned diffusion coefficients were corrected for the 

temperature with an equation derived from the Nernst-Einstein relation (Newman ,1973) 

- constant <9> 
T 

A value of 1.002 and 0.9 mPa.s for the dynamic viscosity (r;) at respectively 30° 

and 25°C was used in eq (9). The temperature corrected diffusion coefficients of the bulk 

liquid and gel beads used as model input are listed in Table II. 

Mass transfer coefficients. A single value of 2.65 * 10"5 m.s"1 for the liquid-solid 

mass-transfer coefficients of both kt
N"4, kjW2 and kfm was calculated as described by 

Wijffels et al. (1991). For oxygen a value of 3.13 * 10"5 m.s"' for k°2 was obtained. For 

the density of water and gel bead we used 996 kg.m"3 and 1008 kg.m"3, respectively. 

Maximum specific growth rate. For the maximum specific growth rate (ßmax
Nb) of 

Nitrobacter agilis we used 1 * 10"5 s"1 (Wijffels et al. 1991). Literature data for the 
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maximum specific growth rate of Nitrosomonas europaea differ widely: 6.13 * 10"6 s"1 

(Belser 1984), 1.55 * 10"5 s"1 (Belser & Schmidt 1980), 1.75 * 10"5 s"1 (Engel & Alexander 

1958), 2.0 * 10"5 s"1 (Loveless & Painter 1968), 1.75 * 10"5 s"1 (Skinner & Walker 1961), 

1.44 * 10"5 s4 (Powell & Presser 1985), 2.33 * 10"5 s'1 (Powell & Presser 1986a) and 1.25 

* 10"5 s"1 (Powell & Prosser 1986b). An average value of 1.59 * 10"5 s"1 for (pnua
Ns) is used 

as input for the model. 

Tablett Model parameters. 

parameter 

^J», ßmJ" 

m,Nb, m,N' 

-yNb yAfr 

ts NH4,Ns 

is 02,Ns 

is N02,Nb 

is 02,Nb 

i Nb j Nb 
lN02 • 'N03 

maximum Xm, XNs 

R 

p W VN02 KN03 

k,0! 

ID™4, IDW
N°2, 

n)w
m\ m J"", 

wr\ N02 i r» N03 
'"gel • '"gel 

IDW°\ /De

value 

1.0 *10'5; 1.59 *10'5 

2.2 *10'3; 9.4 »lO"1 

0.58 *10-3; 1.66 *10'3 

1.25 no-' 

5.05 no-" 

0.36 n o J 

17.0 no 6 

0.159; 0.188 

6.5;13 

1.08 no-' 

2.65 no5 ; 
3.13 no 5 

2.2 *10"; 2.2 *10"; 
2.2 no"; 1.9 no"; 
1.9 *10g; 1.9 no" 

2.83 *10"; 2.05 *10" 

dimension 

s'1 

molN.(kg b iomass) 1^ ' 1 

(kg biomass). molN'1 

mol .dm 3 

mol .dm 3 

mol.dm'3 

mol.dm'3 

mol.dm'3 

kg.(m gel)'3 

m 

m.s'1 

2 ,.-1 

m .s 

m2.s"1 

Kinetic parameters for substrate affinity of O,, N02" and NH4
+ . The substrate 

affinity constant (Ks
OZNb) of 17A*M O, for N. agilis is obtained from Wijffels et al.(1991). 
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For the substrate affinity constant of 0 2 (K°2iNs) for N. europaea two literature data were 

found: 9.3 ßM (Loveless & Painter,1968) and 7.7 ßM (Peeters et al.,1969). The value of 

9.3 ßM is measured at 20°C and for the value of 7.7 no temperature nor other conditions 

are given. Therefore we determined the Ks°
2,Ns in a series of batch experiments in which 

the oxygen depletion of a cell suspension in a small volume was followed. We obtained 

and used in our model a value of 5.05 ßM 0 2 with a 95% reliability interval of 3.94-6.15 

MM 02 . For the substrate affinity constant (Ks
NH4>Ns) of N. europaea we used 1.25 mM 

NH4
+ (Hunik et al., 1992). The substrate affinity constant (Ks

N°2Nb) of N. agilis is 0.36 

mM NO," (Hunik et al., 1993). In addition to this, a substrate inhibition constant (IN02) 

for N. agilis of 159 mM NO," and a product inhibition constant (IN03) of 188 mM N03" 

were used (Hunik et al., 1993). 

Yield and maintenance coefficients. The yield and maintenance coefficients for 

N. agilis given by Wijffels et al. (1991) were converted from an 0 2 to an N-based value 

with the stoichiometry of the reaction. A yield YNb and maintenance ms
Nb of 0.58 * 10"3 

(kg biomass). molN"1 and 2.2 * 10"3 molN.(kg biomass)"1^"1 respectively were derived. 

Literature yield coefficients for N. europaea are expressed as number of cells per mol 

ammonia consumed. To convert number of cells to kg biomass an average cell weight 

is needed. We found several cell weight values: 3.8 * 10"16 kg.cell"1 (Engel & Alexander, 

1958); 1.2 * 1016 kg.cell"' (Skinner & Walker, 1961) and 3 * 10"16 kg.cell"1 (Keen & 

Prosser, 1987). An average of 2.7 * 10"16 kg.cell"1 was used to convert number of cells to 

biomass. With this conversion factor we calculated a YNs of: 1.41 *10"3 kg.molN"1 (Belser 

& Schmidt, 1980); 1.68 *10"3 kg.molN"1 (Laudelout et al., 1974); 1.78 *10"3 kg.molN"1 

(Skinner & Walker, 1961); 0.62 *10"3 kg.molN"1 (Engel & Alexander, 1958). A value of 

2.33 * 10"3 kg.molN"1 is given by Keen & Prosser (1987). From a C0 2 uptake experiment 

of Belser (1984) and an average biomass composition (Roels, 1983) a yield of 2.12 * 10"3 

kg.molN"1 was calculated. From these values an average YNs of 1.66 * 10"3 kg.molN"1 was 

used as input parameter for the model. It must be emphasized that this yield value is 

105 



MODEL VALIDATION 

very much dependent of the mass of one N. europaea cell, which is a difficult parameter 

to measure and may change with nutrient conditions. In the literature several 

maintenance coefficients (ms
Ns) for N. europaea can be found. After recalculating the 

results of Laudelout et al. (1968) a value of 8.07 * 10"4 molN.(kg biomass)"1^"1 is found 

under aerobic conditions 9.17 * 10"4 molN.(kg biomass)"1^"1 and under anaerobic 

conditions, both without ammonia. From the data presented by Keen & Prosser (1987) 

an ms
Ns of 1.11 * 10'3 molN.(kg biomass)"1^"1 was calculated. An average value of 9.4 * 

10̂ * molN.(kg biomass)"'.s"' was taken as input for the model. 

EXPERIMENTAL METHODS 

A 11 solutions are made with demineralized water and Merck analytical grade 

chemicals. 

Strains and media. Cells of N. europaea ATCC 19718 and N. agilis ATCC 14123 

were used for the experiments. The cells were cultivated at 30°C in separate chemostats, 

each with a dilution rate of 3.5 * 10"6 s ' under sterile conditions. Media contained per 

dm3: 2.5 g (NH4)2S04; 0.052 g MgS04; 0.78 g NaH2P04.2H20; 0.89 g Na2HP04.2H20; 

0.74 mg CaCl2.2H20; 2.5 mg FeS04.7H,0; 0.08 mg CuS04 for N. europaea and 1.0 g 

NaNO,; 0.052 g MgS04; 0.16 g NaH,P04.2H20; 1.6 g Na2HP04.2H20; 0.17 g NaHC03 

(C-source); 0.74 mg CaCl2.2H20; 0.036 mg FeS04.7H20; 0.026 mg CuS04; 0.24 mg 

Na2Mo04.2H20; 4.3 mg ZnS04.7H20 for N. agilis. The pH of the N. europaea culture 

was maintained at pH 7.4 with a NaHC03 solution (80 g.dm"3)(C-source) using a pH 

controller (LH Fermentation 500 series III). 

Immobilization . The effluent of the two chemostats was collected and centrifuged 

at 16300 g for 30 min at 4°C. The pellets were resuspended in ImM phosphate buffer 

(pH 7.5). These concentrated cell suspensions of N. europaea and N. agilis were co-
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immobilized in a 2.6 % (w/w) K-carrageenan solution (Genugel, X0828, A/s 

Kobenhavens Pektinfabrik, DK LilleSkenved) according to the method described by 

Hulst et al.(1985). After immobilization, beads with an average diameter of 2.1 +. 0.1 

mm were obtained. The specific oxygen consumption rate of the two cell suspensions was 

measured before immobilization and from that initial biomass concentrations in the gel 

beads were estimated: A** = 4 * 10"3 kg.m"3 and A™ = 2 * 10"4 kg.m"3. A gel bead hold 

up of 25% (v/v) was used. 

Reactor operation. The beads with the immobilized cells were cultivated for 49 

days in a continuously operated air-lift loop reactor of 3.3 dm3 at 30°C. The liquid-phase 

dilution rate was 2.3 * 10"5 s"1 with the following medium composition: 6.6 g (NH4)2S04 

(50 mM); 0.87 g K2HP04; 0.68 g KH2P04; 0.052 g MgS0.7H,0; 1.86 g KCl; 0.74 mg 

CaCl2.2H20; 2.5 mg FeS04.7H20; 0.125 mg CuS04.5H20; 0.24 mg Na2Mo04.2H20; 4.3 

mg ZnS04.7H20 per dm3. The gel beads were kept in the reactor with a sieve screen. 

The pH was maintained at 7.4 with a 200g K2C03/dm3 solution (also C-source) and a 

pH controller (L.H. Fermentation 500 series III). A controlled air flow was used to 

maintain 80% air saturation in the reactor. 

Analyses. The NH4
 + , NO," and N03 concentration were measured daily with a 

Skalar autoanalyser. The NH4
+ was chlorinated to monochloramine, which reacts with 

salicylate to 5-aminosalicylate. After oxidation and oxidative coupling, a green coloured 

indophenol-blue complex was formed, which was measured spectrophotometricly at 660 

nm. The NO," reacts with a sulphanilamide, forming a diazonium salt, which was coupled 

to N-(l-naphthyl) ethylene diamine dichloride, the reddish-purple coloured complex was 

measured at 540 nm. The N03" was reduced to NO," in a copper coated cadmium column 

and further treated as the NO," ion. Appropriate standards were used to convert the 

extinctions to concentrations. 

Biomass profiles . The biomass-volume distribution was determined according to 

the method described by Hunik et al. (1993). A total biomass volume of a gel bead was 
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obtained from a summation of these experimentally determined biomass volumes at the 

various radial positions. The volume distribution was converted to a biomass-

concentration profile with a specific biomass density. This specific biomass density was 

obtained from a summation of the biomass volume of a gel bead and the maximum 

oxygen consumption rate of the gel beads., These values can be converted to a biomass 

concentration with Y'". 

Initial biomass concentration from colony counts. By assuming that each colony 

originated from one cell it was possible to obtain a value for the cell density at the 

beginning of the experiment. This is an alternative for the method based on the oxygen 

consumption rate described in the immobilization paragraph to estimate an initial 

biomass concentration of viable cells for both microorganisms. From the biomass volume 

distribution (G,,) and the colony counting of gel-bead slices (/VJ, a colony density (Nv) 

in the gel-bead slices can be derived by (Weibel,1979) 

3 

M - (io) 

P * Gv
2 

For circles, like colonies, ß has a value of 1.38 (Weibel,1979). 

RESULTS AND DISCUSSION 

"171 xperiments. Typical experimental results of one of the reactors are shown in 

Figure labc. Operation of the reactor was accidentally disturbed and the influent 

NH4
+ concentration between day 2 and 5 was 38 mM instead of 50 mM. Furthermore, 

the dilution rate was unintentionally raised between day 15 and 21 from 2.3 * 10"5 to 3.89 

* 10"5 s"'. The advantage of a dynamic model is the possibility to account for such 

changes in the operating conditions as shown below. 
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In Figure la the NH4
+ in the bulk is rapidly decreasing between day 0 and 10, 

accompanied by a corresponding increase in NO,". Growth of TV. europaea can be 

assumed there. Between day 23 and 28 the N02" concentration rapidly decreases 

indicating growth of TV. agilis. The biomass concentrations of the two microorganisms in 

the gel beads is shown in Figure lbc as projection of a 3-dimensional graph. In Figure 

lb'c the start of the growth phases are less pronounced compared to the increase in NH4
+ 

and N02" consumption rates in Figure P. From a summation of the biomass volume 

distribution at the end of the experiment we obtained the total biomass volume in a gel 

bead. A biomass density of 28 and 33 (kg dry weight biomass).m"3 biomass in the gel for 

respectively TV. agilis and TV. europaea was calculated and used with the measured volume 

distribution to obtain a biomass-concentration profile of the microorganisms. 
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Figure 1" Experimental results. Reactor bulk concentrations NH4
+ (--•--), 

NO{ ( - - • - ) , NOj (•-•). 
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The average biomass concentration, for both microorganisms at the end of the 

experiment in the outer 50 ßm of the bead, was used as an input parameter for the 

maximum biomass concentration in the model. These maximum biomass concentrations 

were 8.9 and 3.8 kg.m"3 gel respectively for N. europaea and N. agilis. Gujer & Boiler 

(1989) predicted 40 and 14 kg.m"3 biofilm for the respective biomass densities in a 

biofilm. However, their values are based on a arbitrary fixed value of the total ammount 

of biological material in the biofilm of 80 kg.m"3. Wijffels et al. (1991) measured 

11 kg.m"3 gel for N. agilis. 

Figure lb Experimental results: biomass distribution of Nitrosomonas europaea 

The maximum biomass concentration values are similar to those reported by the 

other authors. Our maximum value for X"' is strongly dependent of the value for Y" 
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which is difficult to estimate correctly. Nevertheless, the experimentally determined 

values in Figure lbc and the model simulations in Figure 2b,c are based on the same 

value of Y" which makes comparison possible. The excess biomass in our experiment was 

released into the bulk phase and washed out of the reactor. We tried to measure the 

oxygen consumption rate of this biomass in the bulk phase of the reactor, but the 

concentration was too low. Therefore, the assumption in the model that excess biomass 

disappeared seems valid. 

Figure Ie Experimental results: biomass distribution of Citrobacter agilis. 

Model. In Figure 2 the model output is shown for the bulk concentrations (Fig.2a) 

and the biomass (Fig.2bc) in the gel bead. The changes in concentration observed in 

Figure 2a are caused by the changes in influent concentration and dilution rate as 
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mentioned in the material and method section. The reactor bulk concentrations show a 

rapid consumption of NH4
+ at day 5 and a similar pattern for NO," conversion is seen 

around day 21. This change in bulk concentration corresponds with a rapid growth of N. 

europaea and N. agilis shown in Figure 2bc. The development of a biofilm close to the 

surface of the gel beads is shown in Figure 2bc. This biomass profile gets steeper towards 

the end of the experiment. Biomass in the centre of the beads decays, because of the low 

substrate concentrations. 
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Figure ¥ Model predictions: reactor bulk cone. NH/ {—-), N02' ( ), N03' ( ). 
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Figure 2" Model predictions: biomass profile Nitrosomonas europaea 

Figure T Model predictions: biomass profile Nitrobacter agilis. 
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Validation. For the validation of the model, bulk concentrations and biomass 

profiles predicted by the model are compared with the experimental data. For the 

comparison of the bulk concentrations of Figures la and 2a, we introduce a time at which 

50% of the NH4
+ is consumed ( t / " 4 ) and the time ( t / 0 2 ) at which 50% of the NH4

+ 

is converted to N03". The latter definition is representative for the conversion rate of 

N02" by N. agilis in the reactor. The values for tH
NH4 and t^N°2 correspond with the start 

of the exponential growth phase of both microorganisms. The model predicted lower 

values for tK
NH4 and t^N02 than the experimental values found in from Figure la. From 

the sensitivity analysis we know that this t ;̂
NH4 and t^,N02 values are highly influenced by 

the respective maximum specific growth rates (pmax) of the microorganisms. 

The reactor bulk concentrations in Figure 2a are predicted rather well compared 

with the experimental data in Figure la. The rapid decrease of NO," in the experiment 

around day 25 occurs slightly later than predicted by the model, which could be 

explained by a small delay in growth or a low survival of the cells after the 

immobilization. This survival rate of the cells is estimated from the colony counts at the 

end of the experiment. From the gel-bead slices, a colony number per volume of 2 * 1013 

and 0.6 * 1013 cells.m"3 gel were measured for respectively N. europaea and N. agilis. With 

a cell weight of 2.7 * 10"'6 and 1 * 10"16 kg.cell"1 for respectively N. europaea and N. agilis 

and with eq (10) we obtained an initial A** of 5.4 * 10~3 kg.m"3 gel and 6 * 10"4 kg.m"3 gel 

for the initial A"**. Only the viable cells will grow into colonies and comparing these 

values with the estimated values from the specific oxygen consumption rate of the cell 

suspension before immobilization, 4 * 10'3 and 2 * 10"4 kg.m"3 gel, for the initial A^1 and 

XNb respectively, we can conclude that the cell survival rate is very high. The influence 

of the growth rate is dicussed in the sensitivity analysis. 

The biomass concentration profiles used for the validation allowed a quantitative 

comparison between model and experiment, which is more accurate than the more 

qualitative comparison of Monbouquette et al.(1990). The well-defined species we used 
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are an advantage over the multi-species biofilm models of Wanner & Gujer (1986), 

which make the validation of their model very difficult. Further improvements of the 

model would include the colony-like growth of the biomass, which is assumed to be 

homogeneously distributed in the present model but actually is segregated in colonies. 

This effect can be seen at the edge of the beads when Figure lb'c and 2b'c are compared. 

The model predicts a maximum biomass concentration up to the outer layer of the bead, 

but the experimental results show a sharp decrease. It can easily be seen that the centre 

of a colony can not be at the edge of a bead. Before such a situation can occur the 

colony will be disrupted and the cells are washed out of the reactor. With light 

microscopic photographs (not shown) of aging beads we observed regions in the outer 

layer where such a process had taken place. A drop in biomass concentration in the 

outer layer of the biofilm is also observed by Wijffels et al.(1991). Recently Gooijer et 

al. (1992) presented an extension of their model, which incorporated a set of equations 

to take the colony growth in the beads into account (Salmon, 1989). 

With the explanation for the biomass decrease at the edge of the gel bead taken 

into account, the resemblance between the predicted (Fig. 2bc) and measured biomass 

profile (Fig. lbc) is rather well. The thickness of the profile and the time at which the 

biomass is rapidly increasing are similar for the predicted and measured profiles. The 

influence of colonies in general on the model depends strongly on their distance and size. 

Diffusion limitation within the colonies will be important when the colonies get too large. 

Also the distance between the N. europaea and N. agilis colonies is important. Above 

a certain distance the diffusion between the colonies will be the rate-limiting step in the 

process and the nitrite concentration in the bulk will increase. Such an increase was not 

observed and this inter-colony mass-transfer resistance thus seemed to be no problem. 

Sensitivity analysis. From the output values of the model we selected the criteria 

for the sensitivity analysis. In contrast to Gooijer et al. (1991) it was not possible to use 

merely the maximum attainable oxygen consumption rate. In our experiment this oxygen 
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consumption rate will be limited by the amount of NH4
+ in the influent of the reactor. 

This influent concentration had a constant value and was completely converted to the 

product, so the oxygen consumption rate will be constant too. As an alternative we took 

6 output values of the model for the sensitivity analysis: V,NH4, t1/;
N02, the substrate flux 

(NH4
+, N02") to the gel beads at tK,NlM and t,/;

N°2 and the total biomass concentration of 

both microorganisms at the end of the experiment. 

The sensitivity of the model for step-wise variations in the input parameters was 

tested. For each input parameter the value of Table II was varied in five steps between 

0.6 and 1.4 times its original value. The total number of parameters was 27 and some 

parameters were varied as a block (Table H). 

The tested parameters together with the blocks in which they were changed are 

indicated in Table JR. In Table HI an overview of all the parameters and the effects of the 

step-wise variations on the output data is shown. Those parameters which had an effect 

larger than +5% or -5% on the 6 selected output data of the model are presented as a 

plus ( + ) in Table HI. These parameters are also presented in Figure 3abcdef. 

From the data presented in Figure 3 we can conclude that the t/;
NH4 and t^,N°2 

values in Figure la were mainly influenced by the growth rate of the two microorganisms. 

The effect of the tt)gel°
2 is considerably smaller. The flux of substrate at t / H 4 and t / 0 2 

was determined by the radius (R) of the beads and to a lesser extent by the maximum 

growth rate (pmax). Several parameters (r, m"\ JDgei°
: ) had a minor effect on the total 

biomass concentration at the end of the experiment. This last observation is due to the 

maximum biomass concentration in the gel beads for the model. The total biomass can 

only increase when the biofilm depth increases, which is obviously not the case here. 
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Table BI Overview of the relative sensitivity of the model parameters. A (+) indicates 

more than 5% change of output values compared to the initial value. 

parameter t,/"4 flux tM
N°2 flux XN s XN b 

f NH4 t N02 

XN' at time 0 + . . . . . 

Xs" at time 0 . . . . . . 

ß„J\ß„J' + + + + + + 

ms
m, m?' . . . . + + 

y/*, YN
N' + - + - + + 

TS NH4.NS 

K™1 . . . . . . 

is N02.Nb 

'NO: » 'NO.I ' f - - -

maximum Xs'\ Xs' - + + 

R + + + + + + 

k, - - + - + + 

ß„.V H J , D„.-vo-, . . . . . . 

JD„;V0', DJHJ, 

V,°-\ £>gf
: + + - + + 

When the most influential parameters of the model output are determined with 

the sensitivity analysis, it is useful to estimate the error in those parameter values given 

in Table II. For example, the radius (R) was determined accurately and several times 

during the experiment. The error in this parameter is thus small and influence of errors 

in this parameter on the model output will be small too. For the maximum growth rate 

(ßnmx) and oxygen diffusion coefficient in the gel bead (S)gd°- ) the estimated value was 

less accurate. 
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Figure 3 ** Motf sensitive model parameters for NH4* conversion(Table H). A: tv^
m, B: 

flux at t»™4. With ßaJ* and ßmJb (O), m* and ms
m (D), V* and Y™ (A), 

R ( • ) , kp and k,N (•), D°2 and E>gc°
2 (*). 

The growth rate is an average of several literature values of suspended cells and a 

standard deviation of 0.52 * 10"3 s"' (33%) can be calculated from the literature values 

of N. europaea mentioned before. A similar standard deviation for N. agilis can be 

calculated from the data given by Wijffels et al. (1991). 
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Figure 3 c,d Model parameters for N02' conversion. C: t,,"02, D: flux at t,"02. Legend 
Fig 3"'". 

The effect of a 33% change in ßmax can be seen in Figure 3ac. Especially a lower growth 

rate increases the t,/:
N"4 and t/;

N02. The corresponding error in t,/;
N°2 can explain the 

difference between predicted and experimental data in Figures la and 2a. A standard 

deviation of 10% is given for Dscl°
2 by Wijffels et al. (1993). This is a diffusion 

coefficient for a gel without microorganisms. 
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Figure 3 ^ Most sensitive model parameters for biomass. Cummulative biomass at day 
50. E: N.europaea, F: N.agilis. Legend Fig. 3a,b. 

The effect of D^.,0- on tl/,
Nm and t^,N°2 was less dramatic compared to the 

maximum growth rate. The estimated values of the diffusion coefficients in Table H are, 

according to the sensitivity analysis, accurate enough as input parameter for the model. 

From the sensitivity analysis it can be concluded that the model output data are most 

sensitive with respect to the maximum growth rate of the microorganisms. 
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The outcome of the sensitivity analysis should be used carefully because the 

results are not only dependent on the model equations and parameter values. Also input 

values as, for example, influent concentrations or oxygen concentration in the bulk phase 

of the reactor determine the outcome of the sensitivity analysis. The relative importance 

of the model parameters are therefore limited to the situation with the given input 

values. 

CONCLUSIONS 

ÇJ imilar to previously developed one-species models by for example de Gooijer et al. 

(1991) and Monbouquette et al.(1990), a two-species dynamic biofilm model was 

developed and validated. Reactor bulk concentrations and biomass profiles in the gel 

beads were used to validate the model. The developed model was able to predict the 

experimental results very well. A sensitivity analysis was used to distinguish the relative 

importance of the parameters and it can be used for a better tuning of the model. The 

developed and validated model has a mechanistic background and is therefore useful to 

predict the dynamic behaviour of a nitrification process with immobilized cells at various 

conditions. 
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N02 

N03 

A 

D 

Gv *v 
*v' 

r 

k! 

Kj'" 
m? 
Na 

K 
4 
r 
R 
J'bulk 
öin 
Ç ' 
^sur 

5' 
T 
t 
X"' 
ym 

NOMENCLATURE 
specific surface area of the gel beads 
dilution rate 
colony volume fraction 
diffusion coefficient of i in the gel bead 
diffusion coefficient of i in water 
constant of nitrite inhibition 
constant of nitrate inhibition 
combined inhibition constant 
mass transfer coefficient liquid to solid phase 
affinity constant of m for i 
maintenance coefficient for m 
number of colonies per surface unit 
number of colonies per gel bead volume 
consumption rate of i 
position in the bead from the edge 
radius of the gel bead 
concentration of i in bulk phase 
concentration of i in influent 
concentration of i at surface of the gel bead 
local concentration of i in gel bead 
temperature 
time 
biomass concentration of m 
biomass yield for m on nitrogen 

[m"'] 
[s"1] 
[-] 
[mis"1] 
[mis'1] 
[mol.nV3] 
[mol.m-3] 

[-] 
[m.5-1] 
[mol.nV3] 
[molN.(kg biomass)_1.s_1] 
[m"2] 
[m3] 
[mol.nv'.s"1] 
[m] 
[m] 
[mol.m-3] 
[mol.nV3] 
[mol.nV3] 
[mol.nV3] 

[K] 

[s] 
[kg.nv3] 
[kg biomass.(mol N)_1] 

ß geometry parameter 
ßm growth rate of m 
p m a x

m maximum growth rate of m 
A.' molar ionic conductivity 
77 dynamic viscosity of water 
$' substrate flow of i to the gel bead 

(1.38 for spheres) 

[s"1] 
[s"1] 
[nr.S.(mol)-1] 
[Pa.s] 
[mol.nvV] 

supercripts 
m Nb for Nitrobacter agilis, Ns for Nitrosomonas europaea 
i NH4

+, NCV, NO,' and O, 
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SUMMARY 

A scale-up strategy for a nitrification process with immobilized cells is presented. The 

complete description of such a process for a wide range of conditions is time 

consuming or even impossible. For a successful scale up of the process knowledge of the 

rate-limiting step is essential. To estimate the rate-limiting step a regime analysis was 

used. A new element in this regime analysis is a solid third phase in which cells grow 

non-homogeneously. Three different conditions of the nitrification process were 

considered: low temperature (7°C) with a low ammonia concentration (2 mM), and 

optimal temperature (30°C) with an ammonia concentration of 2 and 250 mM. The 

regime analysis proved to be a helpful tool for the understanding of the process and for 

establishing the rate-limiting step. A set of design rules for the different nitrification 

conditions was obtained from the results of this regime analysis. 

The research for this chapter was supported by the European Community in the programme Science and 

Technology for Environmental Protection (réf. STEP-CT91-0123). 

Submitted for publication as: A strategy to scale-up nitrification processes with immobilized nitrifying cells. 

Jan H. Hunik; Johannes Tramper; René H. Wijffels. 
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INTRODUCTION 

"O roblems related to the discharge of nitrogen compounds into the environment are 

topical nowadays. Both diluted wastestreams such as sewage and more concentrated 

wastestreams like manure contribute to nitrogen-related environmental problems. For 

example, discharges of ammonia from various sources have a considerable effect on algal 

blooms in the North Sea (Zevenboom et al. 1990). The removal of ammonia with 

biological nitrification is a widely used process in wastewater treatment. The active-

sludge process with biomass retention gives a considerable ammonia removal in diluted 

waste streams (2-5 mM N H / ) at moderate temperatures (15-25 °C). Nitrification in an 

active-sludge process is, however, limited by a slow growth of the two main bacterial 

species involved: Nitrosomonas spp. and Nitrobacter spp.. This growth-rate limitation is 

most severe at unfavourable conditions like, for example, lower temperatures (Randall 

& Buth 1984, Painter 1986, Laudelout et al. 1974) or concentrated wastestreams where 

inhibition of substrate and product are important (Bortone & Piccinini 1991). 

Immobilization of nitrifying bacteria can be a successful strategy to handle 

biomass-retention problems (Okey & Albertson, 1989). Several immobilization methods 

are applied. For example, at low temperatures rotating biological contactors are used by 

Gullicks & Cleasby (1991) and by Murphy et al. (1977), and immobilization of pure 

cultures in K-carrageenan gels by Leenen et al. (1992) and by Wijffels et al. (1990). Also 

for manure treatment rotating biological contactors are applied (St-Arnaud et al. 1991). 

Most of the research on nitrification focuses on small-scale experiments and 

extensive modelling of immobilized nitrifying bacteria. Several dynamic models for 

immobilized nitrifying bacteria are presented and validated (Wijffels et al. 1991, Gooijer 

et al. 1991, Wanner & Gujer 1985, Gujer & Boller 1989, Hunik et al. 1993). Large-scale 

applications of this immobilized-cell process are limited to a few plants because this 

complicated process is difficult to scale up (Heijnen et al. 1991). A better understanding 
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of the rate-limiting factors, important for scaling up, can be obtained with a regime 

analysis (Sweere et al ,1987). From such a regime analysis a set of design directives for 

the different applications of immobilized nitrifying bacteria can be derived. 

Air-lift loop reactors are most suitable for immobilized-cell processes. They lack 

mechanical stirring and are easy to scale up. Mechanical stirring can cause abrasion of 

the immobilization material and should therefore be avoided. Air-lift loop reactors are 

characterized, among others, by Verlaan (1987) and Chisti (1988) with respect to their 

liquid circulation, mixing properties and mass transfer. 

The regime analysis presented here is based on an air-lift loop reactor design for 

a nitrification process with immobilized cells. The existing theory for regime analysis was 

extended with cells growing non-homogeneously in gel beads. Reactor performance and 

other information necessary for the regime analysis were simulated with a dynamic model 

(Hunik et al. 1993). The regime analysis was used to derive the rate-limiting step and 

design directives for three cases of the nitrification process with immobilized cells: low 

temperature (7°C) with low ammonia concentration (2 mM), and optimal temperature 

(30 °C) with an ammonia concentration of 2 mM and 250 mM. 

THEORY 

"U egime analysis. A system with immobilized cells for nitrification has a complex 

behaviour. A complete description of the process for a wide range of conditions is 

time consuming or even impossible. This argument is valid for most biotechnological 

processes and a consistent approach to simplify these processes is regime analysis (Roels 

1983, Moser 1988). In the regime analysis presented by Schouten et al (1986), with 

immobilized Clostridium spp. for isopropanol/butanol production, the effectiveness factor 

for the immobilized cells was estimated to be 1. They conclude that the 
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isopropanol/butanol production is not diffusion controlled and the immobilized cells 

behave as free cells. New for the regime analysis presented here is the addition of a solid 

third phase with immobilized cells growing in a diffusion-controlled situation. 

REACTOR 
DESIGN 

A 
i 
i 

RATE 
LIMITING 

STEP 

TRANSPORT 
CONVERSION 
PROCESSES 

1 
REGIME 

ANALYSIS 

Figure 1 Regime analysis. 

Regime analysis can either be used for the optimization of the reactor design or 

to reveal the rate-limiting step of a process, see Figure 1 (Sweere et al. 1987). 

Optimization of the reactor design requires several iterations until a previously defined 

optimum is obtained. Here we are interested in the rate-limiting step of the process and 

not in optimization of the reactor design. The regime analysis starts with an inventory 

of all transport and conversion mechanisms of the process. The characteristic time of 

each mechanism is then estimated; relatively slow mechanisms have a high characteristic 

time, while lower characteristic times apply to faster mechanisms. The comparison of 

characteristic times for conversion and transport mechanisms of a particular substrate can 

thus reveal the rate-limiting step. 
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For nitrification with cells non-homogeneously growing in a gel bead several 

transport mechanisms for the substrates (0 2 and NH4
+), intermediate (N02) and product 

(N03") can be distinguished: mass transfer of oxygen from air bubbles to the liquid 

phase; mass transfer of oxygen and ammonia from the bulk phase to the gel beads; mass 

transfer of oxygen, ammonia and nitrite within the beads to the cells, and mass transfer 

of nitrite (intermediate) and nitrate (product) from the beads to the liquid. All these 

transport mechanisms are characterized with either a mass-transfer coefficient or a 

diffusion coefficient. The conversion is characterized by the substrate consumption rate. 

This chain of transport and conversion should be combined with the reactor 

characteristics in the actual regime analysis. Mixing, circulation, gas and liquid retention 

times should be compared with the characteristic times for transport and conversion to 

reveal if gradients in the reactor bulk phase can be expected. 

Characteristic times. Examples of relations for characteristic times are found in 

the literature (Moser 1988, Sweere et al. 1987, Gooijer et al. 1991). In general these 

relations are obtained from the ratio between a capacity and a flow 

T . capacity (1) 

flow 

Capacity is defined as the available substrate for transport or conversion at 

process conditions. The flow is the rate of that particular transport or conversion. The 

characteristic time for mixing and circulation, which have already time as dimension, are 

directly used in the regime analysis. 

When regime analysis is used for a three-phase system one phase must be used 

as a sort of "pivot" for the characteristic-time calculations. Most convenient is the 

continuous (liquid) phase, which is therefore, unless mentioned otherwise, used as "pivot" 

phase for the characteristic- time definitions given below. 
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The characteristic time (r° lg) for the mass transfer of oxygen from the gas phase 

to the liquid phase is given by 

o 1 
Tfe = T (2) 

with klg as the gas-liquid mass-transfer coefficient [m. s"1] and alg as the gas-surface area 

per unit of liquid volume [m2, m~3]. The latter is given by 

a. = a . ^ (3) 

with eg as the gas hold up [m3 gas. m 3 liquid] and a as the specific surface area of the 

gas phase per unit of gas volume [m2, m"3] based on db, the gas bubble diameter [m]: 

6 
ag - - (4) 

ub 

Transport of oxygen from the gas bubble to the liquid phase depletes the gas bubbles of 

oxygen. The characteristic time for the gas-bubble oxygen exhaustion (T°CX) is given by 

<« - ^ ~ 
ig s 

with the H as the Henry coefficient [m3 liquid, m"3 gas]. The r°a in eq (5) is based on 

the gas phase, because the depletion of this phase is considered here. 

The characteristic time (TIS) for the mass transfer from the liquid to the solid 

phase is given by 

T b " ~, <6> 
kls * ats 
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with k,s as the liquid-solid mass transfer coefficient [m. s"1] and au as the solid-surface 

area per unit of liquid volume [m2, m"3]. The latter is given by 

e . 
au - a„ . - (7) 

1 - e * 

with es as the solid hold up [m3 solid, m"3 liquid] and as as the specific surface area of 

the solid phase per unit of solid volume [m2, m'3] based on db the gel bead diameter [m]: 

6 
as = — (8) 

dP 

Characteristic times for liquid circulation, mixing and gas-phase retention time in 

air-lift loop reactors are related to the size of the reactor. The mixing time {rmix) for an 

air-lift loop reactor is calculated from the circulation time (TC„.C) as shown by Verlaan 

(1987): 

^ - ( 4 fo 7) . x d r c 0» 

This value of TC,,.C can be measured easily in an existing reactor or calculated for a given 

reactor design (Verlaan, 1987). 

The maximum gas-phase-retention time (Tm
gas) in an air-lift loop reactor is 

calculated from the ratio of the reactor height and terminal rising velocity (approximately 

0.25 m/s, Heijnen & Riet 1984) of the gas bubbles. The actual value for gas-phase 

retention time (T,.J"S) will be shorter when liquid circulation in the loop reactor is taken 

into account. The liquid-retention time (TJ"1) is the reciprocal value of the dilution rate. 
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The characteristic time TW/) for the substrate conversion by free cells is derived 

from the biomass concentrationX [kg.m"3], the substrate concentration S [mol.m"3], and 

the kinetic parameters Ks [mol.m3], Y [kg.mor^and ßmax [s"1] of the relevant 

microorganism (Roels, 1983): 

llän 
(10) 

When we consider solid gel beads with immobilized cells and if all the cells in these gel 

beads "feel" the substrate concentration at the surface (Ssw.), eq (10) will reduce to 

1 kin 
K * X 

( * , + S„) (11) 

with X expressed as kg.m"3 gel. 

The situation inside the gel beads is more complicated because substrate and 

biomass concentrations vary with the radius of the gel bead. It is not possible to define 

an overall characteristic time for transport or conversion in such a situation. To 

circumvent this problem we introduce the internal effectiveness factor which is defined 

as the ratio between the observed conversion rate (actual flow) and the conversion rate 

which would be observed if all the biomass would "feel" the substrate concentration at 

the surface of the gel beads (flow for S„„.; Riet & Tramper, 1991). In this effectiveness 

factor both transport and conversion are taken into account. For the calculation of the 

effectiveness factor it is important to realize that the observed conversion rate of the 

cells in the gel beads (actual flow) is equal to the flow of substrate from the bulk to the 

gel-bead surface. This liquid to solid mass-transfer rate is substituted in the definition for 
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the actual flow in the internal effectiveness factor (rj), which yields 

K 
KS * Ssur 

(12) 

The value for the effectiveness factor approaches 0 for a strictly transport-

controlled process and 1 for a completely kinetically controlled process. With r? going 

from 1 to 0, the relative conversion rate decreases and the corresponding characteristic 

time increases. Therefore, ikin and the reciprocal value for rj were combined in eq (13) 

to derive a characteristic time for substrate conversion by immobilized cells (Tconv). This 

results in a ratio between capacity (Ssw.) and actual flow of substrate to the gel beads 

(denominator of eq (13)), which is exactly the definition of a characteristic time (eq (1)) 

for the overall substrate conversion by the gel beads (Tcom,): 

K • ab • (s, bulk sxur) 
(13) 

The substrate concentration at the surface of the gel beads (Sslir) is the key value, 

which determines the relative importance of the liquid-solid mass transfer and the 

conversion by the immobilized cells. This can be illustrated by taken the ratio of eq (6) 

and eq (13) yielding a relation between the characteristic time for liquid-solid mass 

transfer and substrate conversion in the gel beads 

(14) 

'bulk 
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The effect of Ssur on the ratio of the characteristic time for substrate conversion 

(TCOW) and solid-liquid mass transfer (T/S) is shown in Figure 2. This figure shows that 

with a surface concentration of half that of the bulk concentration, the characteristic 

times Tton and reonv are equal. Two extreme situations can be distinguished in Figure 2. 

First, when Ssur is 0 the conversion is completely controlled by liquid-solid mass transfer. 

Second, for Ssur is equal to Sbulk, the conversion is copletely kinetically controlled. The 

surface concentration (Ssur) of the biocatalyst is not easy to measure, but can be 

estimated from experimental results or model predictions. 

Ssur/(Sbulk-Ssur) 

Ssur/Sbulk 

Figure 2 Relation between SSIII. and Sbulk with respect to solid/liquid mass transfer and 

conversion rate of the biocatalyst in eqs (6) and (13). 

136 



CHAPTER 7 

PROCESS DESCRIPTION 

nr\ hree different cases for the nitrification process with immobilized cells were 

considered in the regime analysis: Nitrification at low temperature (7°C) with a low 

ammonia concentration of 2 mM (LTLA), nitrification in an extreme environment of 

ammonia (250 mM) and an optimal temperature of 30°C (OTEE), and nitrification at 

optimal temperature (30°C) and low ammonia concentration of 2 mM (OTLA). The 

latter was taken as the reference for the two other cases. A dynamic model (Hunik et 

al. 1993) was used to simulate the nitrification process for these three cases. The original 

model uses parameter values based on a temperature of 30°C, but incorporation of the 

effects of lower temperatures on these model parameters are described here. 

Model. The dynamic model consists of a set of transport and kinetic equations for 

the conversion of ammonia via nitrite to nitrate with immobilized Nitrosomonas europaea 

and Nitrobacter agilis cells in an air-lift loop reactor. The dynamic character of the model 

allows changes in reactor conditions. The growth of cells and the concentration of 

substrate, intermediate and product together with biomass concentrations for N. europaea 

and N. agilis are predicted as a function of the gel-bead radius. The model input consists 

of a set of parameters obtained from independent experiments together with the initial 

values for biomass concentrations, reactor set-up and experimental cases like 

temperature and influent concentrations. For the regime analysis the model was used to 

predict the conversion capacities and the Ssm value for the three nitrification cases 

considered. The parameters used for the model are shown in Table I. A more detailed 

description of the model is given by Hunik et al.(1993). The parameters for gas-liquid 

transport (H^^k^) necessary for the regime analysis are obtained from Heijnen & Riet 

(1984) and also shown in Table I. 
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Table I Model parameters 

parameter value al 30"C 

Hunik et al. (1993) 

value at 7°C 

CONVERSION 

«»J*; n-mJ"' 1-59 *10'5; l.o no 5 

m,m; ms
m 9.4 *10'4; 2.2 *10° 

YNs; Ym 1.66 *10-3; 0.58 n o 3 

KNH4,NS x 25 *i0'3 

KS°*
N' 5.05 no" 

KN02,m 3 6 »10-4 

K/*** 17.0 no* 

W * . W ' 0.159; 0.188 

TRANSPORT 

k,, (o2) 4.4 no J 

H 39 

rf„ 6 no3 

TRANSPORT 

k„ N-comp; 02 2.65 no5 ; 3.13 *10s 

dp 2 no-' 

£, 0.25 

(o 8.4 no-4 

IDW N-comp; 0 2 2.2 *10"; 2.83 *10" 

IDp, N-comp; 0 2 1.9 n o 9 ; 2.05 *10" 

1.9 no0 ; 2.3 no-6 

2.6 no-4; 6.4 »lO"1 

1.66 no3 ; 0.58 *103 

1.16 no-4 

9.3 no-7 

2.5 no-5 

3.1 no" 

gas-liquid 

2.7 no-4 

25 

6 no3 

liquid-solid 

1.41 no5 ; 1.75 no 5 

1.66 no-3 

l.i no"; 1.55 no" 

l.o no9 ; 1.2 n o ' 

dimension 

s'1 

molN.(kg biomass)'.s ' 

(kg biomass). molN' 

mol.dm'3 

mol.dm'3 

mol.dm'3 

mol.dm"3 

mol.dm'3 

m.s'1 

m .m 

m 

m.s'1 

m 

[-] 

N.s.irf2 

m2.s-' 

m2.s-' 

Temperature influence on parameters. The optimal temperature for nitrification 

is around 30°C and parameters used in the model of Hunik et al. (1993) are based on 

this temperature. Knowledge of the temperature influence on the model parameters is 

necessary for the simulations at 7°C. This temperature influence can be expressed with 
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an Arrhenius type of equation 

r - E i 
(15) 

Z ' = z " . <?L* * 7. 

with Z r the parameter value at temperature T, z° as a constant, £ a [J.mol"1] as the 

activation energy and R [J.mor'.K1] as the gas constant. 

Influence of Ton the maximum specific growth rate. For the determination of the 

activation energy (Ea) for the growth rate of Nitrosomonas europaea and Nitrobacter agilis 

experimental data given in several literature sources (Helder & De Vries 1983, Knowles 

et al. 1965, Stratton & McCarty 1967) were used. In Figure 3 a b the \xmm values given in 

these sources for both microorganisms are plotted as function of temperature. In these 

figures the fits of eq (15) for the various sets are also drawn. The Ea values used in this 

study for the two microorganisms are averages of the values obtained from the 3 sets. 

These average Ea values are 65 and 45 kJ.mol"1 for N. europaea and N. agilis, 

respectively. The z° values are obtained from substitution of the average Ea values and 

the values for pmax at 30°C from Table I in eq (15). The resulting equation is used for 

calculating pmax values at 7°C. With this procedure we obtained pmax values of 1.9 * 10"6 

and 2.3 * 10"6 s"1 for N. europaea and N. agilis, respectively, at 7°C. 

Influence of T on the substrate-affinity constants. Little information about the 

effect of temperature on the affinity constants for 02 , NH4
+ and N02" is available in the 

literature. In fact three studies were found (Laudelout & van Tichelen 1960, Boon & 

Laudelout 1962, Knowles et al. 1965). The Ea values found in these three literature 

sources were used with the subsirate affinity values of Table I at 30°C to substitute in 

eq (15) in order to obtain the values for z°. 
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Figure 3a,b The maximum growth rate of (A) Nitrosomonas spp. and (B) Citrobacter spp. 

at different temperature. Symbols are the measured values, lines are based on 

eq (15) fitted to these values. With • (Helder & de Vries, 1983), • 

(Knowles et al. 1965), - — A - — (Stratton & Mc Carry, 1967). 
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Boon and Laudelout (1962) measured an Ea of 52 kJ.mol"' for the affinity constant 

of oxygen (Ks°
2'Nb) with N. winogradskyi (z°°: 1.57 * 107 mol.m"3). Laudelout & van 

Tichelen (1960) obtained an Ea value of 82 kJ.mol"1 for the affinity constant of N02" 

(Ks
N°2'Nb) also for N. winogradskyi (z°: 4.92 * 1013 mol.m"3). From the data of Knowles et 

al. (1965) we obtained an Ea of 73 kJ.mol"' for the N H / affinity constant {KS
NH4-Ns) of 

a mixed culture (z°: 4.82 * 1012 mol.m"3). For the missing Ea value of the affinity constant 

of oxygen for N. europaea (Ks
02'Ns) we used 52 kJ.mol"1 which is the same value as the 

affinity constant of oxygen for N. winogradskyi. This latter value is also used by Laudelout 

et al. (1976) for N. europaea. (za: 4.65 * 106 mol.m"3). The substrate affinity constants at 

7°C are estimated with this z" and Ea values. 

Influence of T on maintenance and yield. The effect of temperature on the 

maintenance (ms) of a large number of aerobic microorganisms is described by Heijnen 

& Roels (1981). They found an activation energy (£„) of 38 kJ.mol"1 for the maintenance 

of all aerobic microorganisms. The ms at 7°C calculated with this Ea and maintenance 

values at 30°C of Table I was 2.6 * 10"4 and 6.4 * 10"4 mol N.kg 'V for N. europaea and 

N. agilis, respectively. Concerning biomass yield, in the literature survey of Heijnen and 

Roels (1981) it can be read that the biomass yield (Y) is independent of T. 

Influence of T on the dynamic viscosity. Eq (15) was fitted to the data of the 

dynamic viscosity (u) of water, given by Weast & Astle (1980). A value of 6.021 * 10"7 

N.s.m"2 and 18.1 kJ.mol"1 was obtained for z° and Ea, respectively. 

Influence of Ton K> of 0 2 and nitrogen compounds. The influence of temperature 

on the diffusion coefficient of oxygen in water is given by Wise & Houghton (1966). A 

value of 4.2 * 10"6 nr.s"1 and 18.4 kJ.mol"' for respectively z° and Ea are given. For the 

diffusion coefficient of oxygen in the gel beads, Wijffels et al. (1993) obtained a value 

of 1.9 * 10"6 m2.s"' for z° and 17.2 kJ.mol"1 for E„. 
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Diffusion coefficients of NH4
+, N02" and N03" in water and biofilms at different 

temperatures are scarcely found. Therefore, it was not possible to estimate the Ea and 

z° values. The diffusion coefficients for these nitrogen compounds in water and biofilms 

at 7°C were therefore estimated using the temperature dependency of the dynamic 

viscosity (w) with the following relation (Newman, 1973) 

a) (r.) o (T2) 
v> W • — F ^ - m VJ • —T~ (16) 

The diffusion coefficients at 7°C thus estimated are 1.1 * 10"9 nr.s"1 and 1.0 * 10"9 m2.s_1 

for water and biofilm, respectively. 

Influence of T on gas-liquid mass transfer. The mass-transfer coefficient for 

oxygen at the gas liquid interphase is a rather empirical parameter. Influence of bubble 

size and media composition are difficult to take into account. A value of 4 * 10"4 m.s"1 

at 20°C with a temperature dependency of 2.5 % increase per °C is used by Heijnen & 

Riet (1984). For the gas liquid mass-transfer coefficient (klg) at 7°C and 30°C a value of 

2.7 * 10"4 m.s"1 and 4.4 * 10^ m.s"1 respectively, were estimated based on this temperature 

relation. The Henry coefficient (H) for oxygen is 39 [m3 gas. m"3 liquid] at 30°C and 25 

[m3 gas .m"3 liquid] at 7°C (Janssen & Warmoeskerken, 1982). 

Influence of T on liquid-solid mass transfer. For the mass-transfer coefficient of 

the liquid-solid interphase an estimation is possible, based on the film-theory. This mass-

transfer coefficient depends on the dynamic viscosity and on the diffusion coefficient, 

which are both temperature dependent. For the mass-transfer coefficient we assume, 

based on the similar values for the diffusion coefficient, one value for the three nitrogen 

compounds. For both temperatures it is possible to calculate the mass-transfer coefficient 

kb (Wijffels et al.,1991). For that, a value of 1000 and 1008 kg/m3 is used for the density 

of water and gel beads, respectively. 
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Design and initial values for the model. A nitrification process at a low 

temperature of 7°C in, for example, Norway should have a capacity of 2 * 104 m3.day_1 

with an ammonia concentration in the waste water of 2 mM (0degaard et al. 1990). This 

implies an ammonia conversion rate of 4 * 104 mol N.day"1. From this capacity and some 

initial trials with the model we derived the reactor volumes and dilution rates for all 

three cases considered here. 

The prerequisite of the design was an ammonia conversion at steady state of 75% 

for the low ammonia cases (LTLA and OTLA) and 95% for the extreme environment 

case (OTEE). The reactor dimensions, dilution rates, temperatures and influent 

concentrations are shown in Table II. 

Table II Reactor design 

reactor 

low temperature (LTLA) 

optimal temperature (OTLA) 

extreme environment (OTEE) 

volume 

[m'] 

833 

278 

514 

dilution rate 

|s-'l 

2.8 * \tt' 

8.3 * irr5 

3.9 * 10" 

influent 

NH„' [mMj 

2 

2 

250 

temperature 

"C 

7 

30 

30 

The model input value for the initial biomass concentration of N. europaea and 

N. agilis are the same as used by Hunik et al. (1993), i.e. 4 * 10"3 and 2 * 10"4 kg/m3 gel, 

respectively. The maximum biomass concentration in the model was set at 8.9 and 3.8 

kg/m3 gel for N. europaea and N. agilis, respectively. These values are identical to the 

values of Hunik et al.(1993). A 50 day run of the model was sufficient to reach a steady-

state conversion rate of ammonia and nitrite for the three processes.The temperature for 

the LTLA process was taken 30°C for the first ten days of the experiment; for the rest 
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of the experiment the temperature was set at 7°C. The optimal temperature of 30°C 

during the start-up phase was used to accelerate the biomass formation. A steady-state 

conversion of ammonia within a 50 day run could be achieved with such an increased 

start-up temperature. The final concentration of 250 mM NH4
+ in the OTEE process was 

reached by starting with 50 mM and subsequently increasing it to lOOmM at day 6, 150 

mM at day 15, 200 mM at day 25 and finally 250 mM NH4
+ at day 35. This step-wise 

increase was used to avoid the inhibitory effect of N02" in the start-up phase. 

RESULTS & DISCUSSION 

"IT' or the three nitrification process cases considered, model simulations generated the 

bulk-phase concentrations of NH4
+, NO," and N03" and these are shown in Figure 

4a,bc as a function of time. The decrease in NH4
+ concentration and the production of 

N02" during the first 10 days was caused by the growth of N. europaea. The production 

of N03" and the related growth of N. agilis start between day 10 and 20 depending on the 

process cases. The reactor concentrations of the OTLA case are shown in Figure 4b. The 

temperature step at day 10 for the LTLA case is observed in Figure 4a. The step-wise 

increase in influent ammonia concentration in the OTEE case resulted in a step-wise 

increase in nitrate concentration as shown in Figure 4C. The criteria for the nitrification 

capacity, at least 75% ammonia removal for the low ammonia cases (LTLA and OTLA) 

and more then 95% for the high ammonia concentration case (OTEE), were satisfied for 

all three nitrification cases. The presented data of the model simulations were used in 

the regime analysis. 
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Figure 4*"-c Bulk concentrations of NH/ ( ), NO, ( ) and NO/ ( ) as a 

function of time for the nitrification process predicted by the model at the 

three cases: (A) LTLA, (B) OTLA and (C) OTEE. 
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Regime analysis. The values for the gas-phase hold up (eg) and liquid mixing time 

(Tmjx) depend on the reactor configuration and size. Gas hold up (eg) values for air-lift 

loop reactors will be in the range of 0.02-0.05 (Verlaan, 1987; Chisti, 1989). Riet & 

Tramper (1991) present some data about circulation and mixing times in air-lift loop 

reactors based on the model of Verlaan (1987). The mixing (180-600 s) and circulation 

times (45-150 s) they present are for two external air-lift loop reactors with a volume of 

265 and 1227 m3, respectively, a height to riser diameter ratio of 10 : 1 and a ratio 

between the riser to downcomer diameter of 2 : 1. 

Table III Characteristic times of transport and conversion processes for the three 

nitrification processes. The TCOIW values are based on the steady-state values 

at day 50 in Figure 5 a b c 

characteristic time (T) [S] 

transport phenomena 

•gas 

- 02 

•"1 

_ NH-t 

(f. = 0.02-0.05) 

LTLA 

20 

93 

181-70 

57 

3600 

71 

40-150 

(7°C) OTLA 

20 

78 

98-38 

35 

1200 

42 

40-150 

(30°C) OTEE (250 mM) 

20 

78 

98-38 

35 

2.6 * 105 

42 

40-150 

conversion processes 

30 

3.5 

24 

61 

26 

11 

50 

43 

19 
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A difference between mixing and circulation time should be made for loop 

reactors. Mixing times are useful for pulse-wise addition of a substrate to the reactor and 

circulation times are more useful for continuous addition of substrates in loop reactors. 

This latter situation is more applicable and circulation times were therefore used to 

predict gradients in the reactors. 

The characteristic times for all the transport mechanisms in the reactor are 

independent of the substrate concentrations. This is in contrast to the characteristic time 

of substrate conversion (TCO,„.), which depends on the surface concentration of the gel 

bead. This surface concentration decreased during the start up and finally reached a 

steady state. The course of TCO/„. for the three cases is shown in Figure 5ab,c. The regime 

analysis is based on the steady-state values reached after 50 days of model simulation. 

The characteristic times for conversion and transport are presented in Table M and 

discussed below with respect to the substrate involved. 

Oxygen. Oxygen depletion of the gas phase depends on the mass transfer of 

oxygen from gas to liquid phase and amount of oxygen available in the gas phase. With 

the values for r H ° ? and TrJ
as (Table E) we can conclude that complete exhaustion of the 

gas bubble is not likely to happen, but a significant decrease in oxygen concentration in 

the gas bubble will occur. Oxygen exhaustion of gas bubbles in air-lift loop reactors does 

not become important beneath a reactor height of 15 m, but it also depends on the liquid 

velocity in the riser. 

Oxygen is transported from gas phase via the liquid phase to the solid phase. The 

rate of this transport is determined by the characteristic times for gas-liquid mass transfer 

(T,g°2), liquid-solid mass transfer (T/S°
2) and oxygen conversion (TCO„°2). In Table M the 

values for rlg°
2 (at eg = 0.05), TIS°

2 and Tcom°2 are in the same order of magnitude and 

only trends can thus be indicated. The differences in characteristic times are not 

sufficient to indicate one step in the process as the only rate-limiting step. 
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Figure 5a,b,c The characteristic time for substrate conversion (TC.W,J of the three substrates, 

NH/ ( ) and N02' ( ) and 02 ( ) as a function of time for the 

nitrification process at three different cases (A) LTLA, (B) OTLA and (C) 

OTEE. Values are obtained from model simulations. 
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The values for rlg°
2 (at eg = 0.05), T°2 and Tcom

02 are decreasing in this order. 

The fastest process is the oxygen conversion and the higher values for rlg°
2 and T&°2 

indicate that transport of oxygen from the gas phase to the gel beads is likely to be rate 

limiting. With a lower gas hold up (at eg = 0.02) the value for T,°2 increases and mass-

transfer resistance will even be more important. This is particularly the case for the 

OTLA case with the lowest value for Tcom°2. The liquid circulation time (Tcirc) is in the 

same order of magnitude as the characteristic times for gas-liquid mass transfer (T,02) 

and liquid-solid mass transfer (rls
02). Gradients in O, concentration in the liquid phase 

can thus be expected. A gel bead, when circulating through the loop reactor, will 

encounter rapid changes in O, concentrations as a consequence of this gradients. 

Ammonia and nitrite. The situation for NH4
 + is restricted to the liquid and solid 

phase. The liquid phase can be assumed well mixed with respect to NH4
+ because liquid 

retention time (TJ"1) is large compared to the circulation time (Tcirc). The characteristic 

time for NH4
+ conversion by the immobilized Ns. europaea cells (Tcom,NH4) is of the same 

order of magnitude as that for mass transfer {T,S
NH4) between liquid and solid phase. The 

rate of conversion of NH4
+ will thus be controlled by both the liquid-solid mass transfer 

and NH4
 + conversion by the immobilized cells. 

Nitrite is produced within the gel beads by the Ns. europaea cells and mass 

transfer between liquid and solid phase of NO," is thus not important. The value of 

Tcom
N°2 for the LTLA case is an order of magnitude smaller than the value for rconv

NH4. 

This indicates that nitrite conversion is a faster process compared to ammonia conversion 

and accumulation of NO," is not likely to happen for the LTLA case. This is in contrast 

with the OTLA and OTEE case where the value of Tcom
N°2 is close to the value for 

TcomNH4- The NO," and NH4
+ conversion rates are well balanced for the OTLA and 

OTEE case and distortion of this balance can cause accumulation of N02 '. High values 

for the concentration of toxic NO," in the effluent of a nitrification process are obviously 

unacceptable. 
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Nitrification. The regime analysis shows that the nitrification process is mainly 

controlled by mass transfer of the two substrates and to a lesser extent by the conversion 

rates of them. Accumulation of nitrite is possible at optimal temperature and very 

unlikely at low temperature. The characteristic time of the NH4
+ conversion for both the 

OTLA and OTEE case is considerable longer than that for 0 2 conversion. The 

nitrification for both the OTLA and OTEE is controlled by the 0 2 transport and to 

lesser extent by its conversion. 

Design rules. Regime analysis shows that nitrification with immobilized cells is 

mainly controlled by mass transfer of oxygen. This is an improvement compared to the 

active sludge process, which is controlled by the slower process of bacterial growth. The 

design for the OTLA and OTEE case can be further improved with respect to oxygen 

transport, in particular between gas and liquid phase. This oxygen transport is dependent 

of klg, a/g, kls and als. Smaller gas bubbles and gel beads increase these values of klg, alg, 

kts and al5. The relation between als and gel bead diameter (dp) is shown in eqs (7) and 

(8). A decrease in gel bead diameter (dp) would increase the value ah. Nevertheless, the 

minimum gel bead diameter (dp) is limited by the requirement to keep the gel beads in 

the reactor. The gas bubble diameter (db) is determined by the sparger and the 

coalescence behaviour of the medium, which is difficult to manipulate. For this reason, 

it is not useful to produce small bubbles in a coalescent medium because, the advantage 

of the small bubbles disappears short after the sparger. An increase in gas hold up (eg) 

would be beneficial for the oxygen-transfer rate according to eq (3). An increase of solid 

phase hold up (es), i.e. more gel beads in the reactor, is also limited to a maximum of 

35%, and as a consequence klg will be reduced (Verlaan, 1987). For the design of the 

LTLA case the liquid-solid mass transfer of both oxygen and ammonia could be 

improved by smaller gel beads and a slightly higher solid-phase hold up. 

Sufficient liquid mixing, e.g. prevention of oxygen gradients, should be provided 

for in all three nitrification processes with immobilized cells. Oxygen gradients in the 
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reactor can be decreased when the retention time in the non-aerated downcomer is short 

and the overall circulation time is kept as small as possible. Reactors should therefore 

have a relatively high riser to downcomer diameter ratio and small height to diameter 

ratio. The ratio of N. europaea and N. agilis biomass concentrations is particular 

important for the optimal temperature processes and probably be controlled with the 

inoculum of cells during immobilization. This biomass ratio is not important for the 

LTLA process, because the growth rate of N. agilis decreases less with a decrease of 

temperature than the growth rate of N. europaea. 

NOMENCLATURE 

ag = specific surface area of a gas bubble m2.m"3 gas phase 

atg = surface area of liquid/gas inter phase m2.m"3 liquid phase 

als = surface area of solid/liquid inter phase nr.m"3 liquid phase 

as = specific surface area of a gelbead nr.m"3 solid phase 

db = gas bubble diameter m 

dp = biocatalyst particle diameter m 

Ea = activation energy J.mol"1 

g = gravitational acceleration m.s"2 

H = Henry coefficient m3.m"3 

ID = diffusion coefficient nr.s"1 

k,g = gas/liquid mass transfer coefficient m.s"1 

kh = solid/liquid mass transfer coefficient m.s"1 

Ks = substrate affinity constant mol.m3 

ms = maintenance coefficient molN.(kg biomassa)"1^"1 

R = gas constant J.mor'.K"1 

S = substrate concentration mol.m"3 
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S w = 5 at surface of the biocatalyst mol.m'3 

Sbuik = ^ in bulk phase mol.m"3 

Y = yield coefficient kg.mol"1 

X = biomass concentration kg.m"3 

Z = temperature effected parameter [-] 

z° = temperature independent parameter [-] 

e = gas hold up m3 gas. m"3 liquid 

es = solid phase hold up m3 solid, m 3 l iquid 

f)' = effectiveness factor [-] 

X' = molar ionic conductivity m2.S.mol"1 

T = characteristic time s 

T = T for growth s 

Ta° = T for oxygen exhaustion of gas bubbles s 

T,° = T for gas/liquid oxygen transfer s 

Tre!"1 ~ T ^or t n e l iquid re tent ion t ime s 

Treigas ~ T f° r t n e 8 a s r e tention t ime s 

T1S' = T for sol id/ l iquid transfer of substra te s 

Tmjx = T for mixing of liquid phase s 

icirc = T for liquid circulation in reactor s 

Tkin ~ T f ° r substrate conversion s 

7'com' = T f ° r substrate conversion in biocatalyst s 

M„,ar = maximum specific growth ra te s"1 

w = dynamic viscosity N.s.m"2 

p, = density of liquid phase kg.m"3 

p s = density of solid phase kg.m"3 

i = N H 4 \ N 0 2 " , N0 3 " and Ns, Nb for N. europaea, N. agilis, respectively 
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8 GENERAL DISCUSSION 

n p he background of this thesis was a joint research project of the Wageningen 

Agricultural University, Novem and a manure-treatment company. Integrated 

nitrification of ammonium from the anaerobically treated manure and from waste gases 

was the ultimate goal of this project. In chapter 2 and 3 the microbial kinetics at the 

extreme condition prevailing in such a manure-treatment plant are investigated. A 

European Community research project of the Wageningen Agricultural University and 

the Norwegian Institute for Water Research funded the work on the application of 

nitrification at low temperature. The connection between the extreme conditions 

prevailing in a manure-treatment plant and at low temperatures is made in chapter 7. 

Examples of bench-scale experiments presented in chapter 1 show that 

nitrification with immobilized cells is a complex process and it is difficult to predict start

up and steady-state conditions from the situation at the beginning of the experiment. An 

important aspect with respect to this process complexity are the non-uniform conditions 

within the biofilm and the commensalistic relationship between the two microorganisms 

involved. In chapter 6 a dynamic model is developed and validated with a technique 

presented in chapter 5. The dynamic model, based on the microbial kinetics, mass 

transfer of substrates and air-lift loop reactor properties, is primarily developed for the 

better understanding of such two-species biofilm processes. For example the occasional 

substrate and product accumulation in the bench-scale experiments presented in figure 

3 and 4 in chapter 1 could be predicted with this dynamic model. 

Large volume, low-cost processes like nitrification satisfy the criteria given by 

Kossen (1992) for processes suitable for optimization studies. The regime analysis 

presented in chapter 7 provide the tools to optimize the design of large-scale installations 

at various conditions. The scale-up of the immobilization method, necessary for large-

scale applications is presented in chapter 4. 



General discussion 

Some questions which arose during the process of writing this thesis and not 

described in the previous chapters are briefly discussed below. 

Microbial kinetics and immobilization. The effects of extreme conditions and low 

temperature on the kinetic parameters of immobilized cells of Nitrosomonas europaea 

and Nitrobacter agilis are assumed to be the same as for suspended cells. The effect of 

immobilization of these cells on the parameter values is shown by Ginkel et al. (1983) 

and Tramper & Man (1986). Extrapolation of their results, obtained with various gel 

bead diameters and cell densities, suggests that the immobilized cells behave as free 

cells. This observation is confirmed with Mycobacterium cells immobilized in alginate 

(Smith et al. 1993), which where only affected by the calcium ions present in the gel 

bead but not by the immobilization itself. 

Two-substrate limitation. Kinetic parameters for substrate affinity are generally 

determined with all substrates available in excess except the one for which the substrate 

affinity is measured. This is not the actual situation for a nitrification process, where in 

steady-state both substrates are present in very low and therefore limiting amounts. Two-

substrate limitation is poorly understood, because it is not easy to measure the 

conversion rates of the substrates at such low values. The measurement of the oxygen 

conversion rate requires a highly sensitive oxygen electrode with a short response time. 

The substrate affinity values for oxygen of Nitrosomonas europaea and Nitrobacter agilis 

are within the detection limit of oxygen electrodes. It is therefore possible to measure 

the oxygen conversion rate in a suspended-cell experiment at substrate concentrations 

around the substrate affinity values of both substrates. Several methods to describe these 

two-substrate limitation phenomena are based on: mathematical combinations of two 

"Monod-like" terms or "most-limiting" substrate (Bader, 1978; Bader, 1982; Mankad & 

Bungay, 1988; Mankad & Nauman, 1992). The preliminary data (not shown) point in 

the direction of a "most-limiting" substrate model for the best description of the oxygen 

conversion rate. 
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General discussion 

Ion-exchange properties of K-carrageenan gel. The K-carrageenan molecule has 

a negative charge due to the presence of a sulphone group. The gel beads contain 3% 

w/w K-carrageenan which means 78 equivalents of negative charge per m3 of gel 

(Snoeren, 1976). The negative charge is responsible for ion-exchange properties of the 

gel, and has a considerable effect on the partition of positive and negative charged ions. 

The effects on availability of the charged substrates for the immobilized cells and the 

formation of complexes in the gel beads, sometimes insoluble, are therefore difficult to 

predict. 
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Figure 1 The diameter of K-carrageenan gel beads as function of residence time in the 

reactor. Air-lift loop reactor of 4 dm3 ( --D ---) and 165 dm3 (- - A- - ) . 

Abrasion. The life-time of the gel beads is important for the economical feasibility 

of the process. The diameter of the K-carrageenan gel beads, with growing Nitrosomonas 

159 



General discussion 

europaea and Nitrobacter agilis cells, in a 4 and 165 dm3 air-lift loop reactor is shown in 

Figure 1 as a function of time. The abrasion of the gel beads in the 165 dm3 reactor is 

faster than in the 4 dm3 reactor. It was not possible to explain the mechanism for this 

abrasion from the results (not shown) of experiments with gel beads without growing 

cells in different types of air-lift loop reactors and bubble columns. It was only possible 

to exclude collision of gel beads as an abrasion mechanism. Obstacles and sharp edges 

in a reactor can also cause the rapid abrasion of gel beads. This could be responsible for 

the faster abrasion in the 165 dm3 reactor, which had several obstacles and was not 

carefully checked for sharp edges. 

Applications. Large-scale applications of the nitrification process in air-lift loop 

reactors are scarce. An air-lift loop reactor for the nitrification of the effluent of 

anaerobically treated industrial wastewater is presented by Heijnen et al. (1991). They 

use a solid support with a high density for the attachment of cells. The liquid velocity in 

the riser should therefore be sufficiently high to keep these cell-covered particles in 

suspension. As a consequence, their reactor design differs from the design rules given in 

chapter 7. 

CONCLUSIONS 

rpi his thesis provides a set of experimental results and valuable tools for the large-

scale application of artificially immobilized nitrifying cells for nitrification of various 

wastestreams. The next logical step would be application of such an immobilized-cell 

process under practical conditions. 
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Summary 

0 everal aspects of a nitrification process with artificially immobilized cells in an air

lift loop reactor have been investigated and are described in this thesis. In chapter 

1 an overview of immobilization methods, suitable reactors, modelling, small-scale 

applications and scale-up strategy is given. The subjects of chapter 1 provide the starting 

point of the following chapters. Application of immobilized cells is beneficial for the 

nitrification process at high product and substrate concentrations and with a process 

temperature far below the optimal temperature of 30-35°C. In chapter 2 and 3 the 

kinetics of, respectively, Nitrosomonas europaea and Nitrobacter agilis cells at high product 

and substrate concentrations is presented. The results show a severe product inhibition 

of Nitrobacter agilis by nitrite, while Nitrosomonas europaea seems to be more sensitive 

for a high osmotic pressure. In chapter 4 a theoretical background of the immobilization 

method and further scale-up is presented. For the immobilization method the theory for 

the break-up of liquid jets, with Newtonian behaviour, is evaluated and a method to 

apply this theory for non-Newtonian liquids like a K-carrageenan solution is presented. 

In chapter 6 a dynamic model for the nitrification with immobilized Nitrosomonas 

europaea and Nitrobacter agilis cells is presented. The model includes mass-transfer rates, 

kinetic behaviour of the microorganisms, and reactor and gel bead properties. Predictions 

of reactor bulk concentrations of NH4
 + , N02" and N03" (N-compounds) are given by the 

model together with concentration profiles of N-compounds, oxygen and biomass in the 

gel beads. A sensitivity analysis of the model parameters shows that the diffusion 

coefficient of oxygen in the gel beads and the radius of the gel beads are the most 

important parameters influencing the model output. The model is experimentally 

validated by means of reactor bulk concentrations and biomass profiles of Nitrosomonas 

europaea and Nitrobacter agilis in the gel beads. Predicted and measured values agree 

very well and the assumptions and equations used in the model seem to be valid. The 
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biomass profiles of the two microorganisms co-immobilized in the gel beads are 

determined with immunofluorescence and a stereological method (chapter 5). The 

immunofluorescence technique was used to separate the Nitrosomonas europaea and 

Nitrobacter agilis colonies in the beads. From the position and diameter of the colonies 

it is possible to determine the spatial distribution of the two microorganisms in the gel 

beads. In chapter 7 the model is used as a tool to develop a strategy to scale-up the 

nitrification process with immobilized cells. A design for a large-scale application should 

be optimized with respect to the transport of oxygen to the immobilized cells in the gel 

beads. This is an advantage over the nitrification process with suspended cells, which is 

limited by the growth rate of the nitrifying bacteria. The growth of nitrifying bacteria is 

a slower process than the transport of oxygen to the cells. Some interesting aspects, 

which were not treated elsewhere in this thesis, are discussed in the general discussion 

in chapter 8. 
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Samenvatting 

TT n dit proefschrift worden de verschillende aspecten van het onderzoek naar het 

nitrificatie proces met geïmmobiliseerde cellen in een air-lift loop reactor 

beschreven. Hoofdstuk 1 bevat een overzicht van immobilisatiemethoden, geschikte 

reactoren, modellering, kleinschalige toepassingen en de aanpak voor schaalvergroting 

van het proces. De onderwerpen uit hoofdstuk 1 vormen het startpunt voor de volgende 

hoofdstukken. Het gebruik van geïmmobiliseerde cellen is een voordeel bij hoge 

substraat- en produktconcentraties en bij een procestemperatuur ver onder de optimale 

temperatuur van 30-35°C. In hoofdstuk 2 en 3 wordt het onderzoek naar de relevante 

kinetische parameters van, respectievelijk, Nitrosomonas europaea en Nitrobacter agilis 

beschreven. De resultaten laten zien dat N. agilis sterk geremd wordt door het produkt, 

nitraat, terwijl N.europaea meer gevoelig is voor een hoge osmotische druk. De 

theoretische achtergrond van de immobilisatie methode en verdere schaalvergroting 

hiervan worden beschreven in hoofdstuk 4. De theorie voor het opbreken van een 

vloeistofstraal met Newtonse eigenschappen wordt hierin besproken, evenals een 

methode om deze theorie toe te passen op niet-Newtonse vloeistoffen. In hoofdstuk 6 

wordt een dynamisch model voor de nitrificatie met geïmmobiliseerde cellen van M 

europaea en N. agilis gepresenteerd. Het model omvat stofoverdrachtssnelheden, kinetiek 

van de micro-organismen en reactor- en eigenschappen van de gelbolletjes. In dit 

hoofdstuk worden ook modelvoorspellingen gepresenteerd van de concentraties stikstof

verbindingen in de reactorbuik en de concentratieprofielen van de stikstofverbindingen, 

zuurstof en biomassa in de gelbolletjes. Een gevoeligheidsanalyse van de 

modelparameters laat zien dat de diffusiecoëfficiënt van zuurstof in de gel en de straal 

van de bolletjes de parameters zijn die de modelvoorspellingen het sterkst beïnvloeden. 

Het model is experimenteel gevalideerd met behulp van reactor buikconcentraties en 

biomassaprofielen in de bolletjes. De voorspelde en gemeten waarden komen goed 
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overeen en de veronderstellingen die gemaakt zijn bij het opstellen van het model lijken 

dus juist te zijn. De biomassaprofielen van de twee samen geïmmobiliseerde micro

organismen in de gelbolletjes zijn gemaakt met behulp van immunofluorescentie en een 

stereologische methode (hoofdstuk 5). De immunofluorescentietechniek wordt gebruikt 

voor het onderscheidt tussen de N. europaea en de N. agilis kolonies in de gelbolletjes. 

Met de bepaling van de positie en de diameter van de kolonies is het mogelijk om de 

ruimtelijke verdeling van de beide micro-organismen in de bolletjes te beschrijven. In 

hoofdstuk 7 wordt het model gebruikt bij het ontwikkelen van een strategie voor de 

schaalvergroting van nitrificatieprocessen met geïmmobiliseerde cellen. Er blijkt dat een 

ontwerp voor een dergelijke grootschalige toepassing geoptimaliseerd moet worden voor 

het zuurstoftransport naar de geïmmobiliseerde cellen in de gelbolletjes. Dit is in 

tegenstelling tot een nitrificatieproces met gesuspendeerde cellen, waar de nitrificatie-

snelheid wordt beperkt door de groeisnelheid van de micro-organismen. Deze 

groeisnelheid is een aanzienlijk trager proces dan het transport van zuurstof. 

Enkele interessante onderwerpen die in de voorafgaande hoofdstukken zijn blijven liggen 

worden in hoofdstuk 8 kort bediscussieerd. 
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