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Stellingen 

1. Om een overtuigend bewijs te leveren dat verlaging van hydrophobiciteit van het 
signaalpeptide in een vermindering van secretie-efficiëntie resulteert, hadden in de 
studies van Borchert en Nagarajan ten minste signaalpeptiden van dezelfde lengte 
moeten worden vergeleken. 

Borchert, T. V. and V. Nagarajan. 1991. Effect of signal sequence alterations on export of 
levansucrase in Bacillus subtilis. J. Bacteriol. 173: 276-282. 

2. Sibakov en coauteurs wekken ten onrechte de schijn het eerste lipo-protein 
signaalpeptide in Lactococcus geïdentificeerd te hebben. 

Sibakov, M., T. Kotvula, A. Von Wright, and I. Palva. 1991. Secretion of TEM (̂ lactamase with 
signal sequences isolated from the chromosome of Lactococcus lactis subsp. lactis. Appl. 
Environ. Microbiol. 57: 341-348. 
Vos, P., M. Van Asseldonk, F. Van Jeveren, R. Siezen, G. Simons and W.M. De Vos. 1989. A 
maturation protein is essential for production of active forms of Lactococcus lactis SK11 
serine proteinase located in or secreted from the cell envelope. J. Bacteriol. 171: 2795-2802. 
Haandrikman, A. J., J. Kok, H. Laan, S. Soemitro, A. Ledeboer, W. N. Konings and G. Venema. 
1989. Identification of a gene required for maturation of an extracellular lactococcal serine 
proteinase. J. Bacteriol. 171: 2789-2794. 

3. Het gegeven dat in het humane genoomprojekt elke nucleotide gemiddeld negen 
maal bepaald wordt, geeft aan dat de grote hoeveelheid financiële middelen voor dit 
project meer de inspanning dan de creativiteit van de onderzoekers stimuleren. 

4. Het grote aantal publikaties over verbetering van een bepaalde methode, voor 
bijvoorbeeld sequencing van ds-DNA of PCR-produkten, geeft aan dat de kwaliteit van 
de meeste van deze methoden vaak te wensen over laat. 

5. Politieke partijen die een ongenuanceerd terughoudende of afwijzende opstelling 
innemen ten opzichte van de biotechnologie laten zich ten onrechte progressief 
noemen. 

6. Indien soortskruisingen in de plantenveredeling voor het eerst in deze tijd toegepast 
zouden worden, zouden verschillende groeperingen, waaronder de in stelling 5 
genoemde politieke partijen, hier zeer waarschijnlijk tegen ageren. 

7. Indien het gebruik van walkmans op de fiets verboden zou worden vanwege het 
gevaar voor ongelukken, zou met dezelfde reden ook een verbod op "car-audio" 
moeten worden ingesteld. 

8. Rokers beginnen als doorzetters. 
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9. Het gebruik van de auto om kroost naar school te vervoeren wijst in veel gevallen op 
weinig interesse in het toekomstig leefmilieu van eigen, en de veiligheid van andere 
kinderen. 

10. Genetisch inzicht in de effecten van beten van vampiers en weerwolven zou kunnen 
leiden tot toepassing van deze beten in gentherapie. 

King, S. 1982. Bezeten stad. 

11. Observatie van concertbezoekers zou de indruk kunnen wekken dat het humane 
heavy metal resistentie gen op het Y-chromosoom ligt. 

Stellingen behorende bij het proefschrift "Production and secretion of heterologous 

proteins by Lactococcus lactis" van Martien van Asseldonk 
Wageningen, 18 februari 1994 



VOORWOORD 

Dit proefschrift vormt het besluit van een roerige periode uit mijn leven. Naast het 

opzetten en uitvoeren van een stuk wetenschappelijk onderzoek en dit daarna als een 

goedlopend verhaal in een boekvorm te brengen, werd ik tot twee maal toe vader, 

leerde ik alles over voedselallergieën, en ondervond ik dat het menselijk lichaam 

flexibeler is dan een auto. Gelukkig stond ik er in deze periode niet alleen voor. Ik wil 

op deze pagina dan ook iedereen die op wat voor manier een steun voor me is 

geweest bedanken. 

Guus, na een aftastende periode, waarin we allebei even eigenwijs waren, kwamen 

we in de laatste periode tot zeer vruchtbare discussies, die dan ook tot de leukste 

hoofdstukken hebben geleid. Gelukkig is aan onze samenwerking met de afsluiting 

van deze periode geen einde gekomen en ik verheug me dan ook op nog vele 

toekomstige discussies op Keygene. 

Willem, niet alle extra invalshoeken van het onderzoek die jij aandroeg zijn uiteindelijk 

onderzocht, deels door een vooringenomen mening van Guus en mij, deels door een 

gebrek aan tijd. Toch heb je door altijd op het juiste moment een kritische noot te 

plaatsen of een compliment te geven, een belangrijke invloed op het onderzoek 

gehad. 

Iedereen van de moleculaire genetica groep: Ger, Ingrid, Miranda, Monique, Marke, 

Paul2, Renee Jan-Roelof, alle mede-denktank-bemanningsleden: Silke, Rutger, Pauli, 

John, Christ, Oscar, Nicollette en George, en natuurlijk mijn stagiaires: Marco, Henk, 

Annet en Hans, bedankt voor de praktische assistentie en tips, zinvolle discussies 

gezellige koffiepauzes, en vooral mentale steun. Dit laatste geldt zeker ook voor Ita, 

Hielke en Monique van de Berg. 

Het proefschrift zou nooit zijn uiteindelijke vorm hebben gekregen zonder hulp van 

Harrie Rollema, die een antwoord had op elk computerprobleem, en Joop Mondria, 

Henk van Brakel en Simon van de Laan, die de vele gels en blotjes tot foto's wisten 

te bewerken. 

Ik wil vooral mijn paranimfen niet vergeten: Peter, mijn wapenbroeder in deze periode. 

Het was leuk om samen te delen in successen, en steun aan elkaar te verlenen als 

het wat minder ging. Pieter, ook na mijn stageperiode kon ik bij je terecht voor de fijne 

kneepjes van de moleculaire biologie. Het vertrouwen dat je altijd in me hebt gehad 

heeft me meer dan eens door een pessimistische periode heengeholpen. 

Karin, bedankt, omdat je er altijd was als ik het weer eens niet zag zitten, het zat was, 

ermee ging stoppen, of nog liever bij Kok-Ede ging werken. 



Am I stepping into the twilight zone, 

This is a madhouse 

Feels like being cloned. 

Golden Earring 



CONTENTS 

Chapter 1 General Introduction 

Chapter 2 Cloning, expression in Escherichia coli and 

characterization of usp45, a gene encoding a highly 

secreted protein from Lactococcus lactis MG1363. 31 

Chapter 3 Functional analysis of the Lactococcus lactis usp45 

secretion signal in the secretion of a homologous 

proteinase and a heterologous or-amylase. 49 

Chapter 4 The role of sequences upstream of the -35 region of the 

usp45 gene in expression of heterologous a-amylase in 

Lactococcus lactis. 65 

Chapter 5 Mutational analysis of the translation initiation region of 

the usp45 gene of Lactococcus lactis using an usp45-

amyS gene fusion. 85 

Chapter 6 Cloning nucleotide sequence and regulatory analysis cf 

the Lactococcus lactis dnaJ gene. 97 

Chapter 7 Summary and concluding remarks 

Chapter 8 Samenvatting 

Curriculum vitae 

117 

125 

133 

The studies described in this thesis have been performed at the Netherlands Institute 

for Dairy Research (NIZO) and have been supported by the Mesdag foundation 

(Leeuwarden, The Netherlands), the Cooperative Rennet and Dye Factory (CSKF) 

(Leeuwarden, The Netherlands) and Dutch the Programme Committee on Industrial 

Biotechnology. 



CHAPTER I 

GENERAL INTRODUCTION 

Before the Storm (Queensrijche) 



1. General Introduction. 

Lactococcus lactis is a member of the lactic acid bacteria, which are known to 

play a major role in the production of fermented foods. Lactococci are utilized in the 

fermentation of vegetables (Daeschel et al., 1987), but are primarily employed in the 

dairy industry for the production of products such as cheese, butter, and buttermilk. 

The main role of lactococci during the manufacture of these dairy products is the 

conversion of the milk sugar lactose into the food-preserving lactic acid. Additionally, 

lactococci accomplish the degradation of the milk protein casein, resulting in the 

specific texture and flavour of the product. The conversion of citrate by L lactis subsp. 

lactis biovar. diacetylactis species results in the production of diacetyl, which is an 

important butter aroma component. 

Apart from these traditional applications, lactococci are attractive organisms for 

the production of commercially valuable products. The increasing knowledge of the 

physiology, and the profound experience in fermentation technology of L lactis, make 

these bacteria promising candidates for the production of (a) metabolites such as lactic 

acid or diacetyl, (b) homologous proteins, such as proteinases, peptidases or 

bacteriocins, and (c) heterologous proteins of interest for the food industry, such as 

prochymosin or lysozyme. During the last ten years intensive research on the genetics 

of L. lactis has led to an increased understanding of the important characteristics of 

these strains, such as lactose and sucrose fermentation (De Vos et al., 1990; Van 

Rooijen et al., 1991 ; Rauch and De Vos, 1992) casein degradation (Kok, 1990), citrate 

utilization (David et al., 1990), bacteriophage resistance (Klaenhammer, 1987; Hill, 

1993) and bacteriocin production (Klaenhammer, 1988; Klaenhammer, 1993). These 

investigations also provided insight into the more fundamental aspects of lactococcal 

gene expression, such as transcription and translation signals (de Vos, 1987; De Vos 

and Simons, 1993; Van de Guchte et al., 1992a). Furthermore, L. lactis, being a gram

positive organism with low extracellular proteolytic activity, is able to secrete proteins 

into the growth medium (Simons et al., 1990a). L. lactis is considered to be a "GRAS" 

(generally regarded as safe) organism, and its use in the manufacturing of food 

products could facilitate the acceptance of heterologous or engineered proteins, 

produced by these bacteria. 



2. Gene expression in bacteria. 

As in all living organisms, the production of proteins in bacteria is depending on 

gene expression. Production of a protein by cells is controlled by transcription of the 

gene encoding the protein, and translation of its mRNA. Several features are important 

in these two processes. The stability of the mRNA molecules, the secondary structure 

of the mRNA and codon usage can influence the rate of translation. Moreover, 

initiation of transcription and translation plays a major role. The latter two aspects will 

be briefly reviewed. 

2.1 Transcriptional initiation signals. 

Most bacterial transcriptional initiation signals consist of two well-conserved 

regions at position -35 and the -10 of the transcriptional start. In Escherichia coli the 

sigma factor o70 is involved in the transcription of the majority of genes, recognizing 

the -35 consensus (TTGACA) and the -10 consensus (TATAAT) sequences (Hoopes 

and McClure, 1987). In the transcription of some specific regulated sets of genes, like 

heat shock genes and genes involved in fixation and assimilation of nitrogen, other 

sigma factors (a32 and a60, respectively) are involved, recognizing other consensus 

sequences (Hoopes and McClure, 1987). 

In Bacillus subtilis 9 different sigma factors are known to be involved in 

expression of genes during the different growth phases of this organism (Moran, 

1989). Nevertheless, a43 is involved in transcription of most of the characterized genes. 

This sigma factor exhibits considerable sequence similarity with a70 of E. coli (Gitt, 

1985) and recognizes vegetative promoter sequences with the same features as the 

E coliu70 promoters (Stephens, 1984). Besides the -35 and -10 promoter region, the 

region upstream of these specific promoter sequences is also involved in transcription 

initiation. An AT-rich region upstream of the -35 hexamer contributes significantly to 

promoter strength as has been shown for gram-negative organisms such as E coli 

(Lamond and Travers, 1983), and gram-positive organisms such as B. subtilis 

(Weickert, 1989) and Staphylococcus aureus (Mahmood and Khan, 1990). 

Recently, the rpoD gene, encoding the principal a factor of L. lactis has been 

cloned and characterised (Araya et al., 1993). It showed a significant homology with 

a70 of E. coli and o43 of B. subtilis. Several lactococcal promoters originating from 

plasmid-located genes, chromosomal genes or lactococcal phages have been 

characterized. Analysis of the promoter sequences thus far revealed a consensus 



which also consists of the -35 (TTGACA) and -10 (TATAAT) region, resembling the 

consensus of vegetative E. coli and B. subtilis promoters (De Vos, 1987; De Vos and 

Simons, 1993; Koivula et al., 1991; Lakshmidevi et al., 1990; Van de Guchte et al., 

1992a; Van Der Vossen et al., 1987). In addition, in more than 40% of the lactococcal 

promoters, the -10 sequence is immediately preceded by TGN (De Vos and Simons, 

1993; Van der Vossen et al., 1987). As in other bacteria, the region upstream of the -

35 sequence also contributes to efficient gene expression in L. lactis (Van Rooijen et 

al., 1992). 

Despite the conservation of promoters between the mentioned species, there 

exists a significant difference in efficiency of transcription of heterologous promoters 

in different hosts. Most B. subtilis and L. lactis promoters are functioning in E. coli, but 

in contrast, E. coli promoters are poorly transcribed in gram-positive organisms 

(Goebel et al., 1979; Kreft et al., 1983). 

2.2 Translational initiation signals. 

The bacterial translational initiation signal, designated the ribosome binding site 

(RBS), constitutes the translational start codon and the Shine Dalgarno (SD) sequence 

which is complementary to the 3'-end of 16S rRNA (Shine and Dalgarno, 1974). In E. 

coli and B. subtilis, this sequence is usually located within 15 nucleotides upstream of 

the start codon (Gold et al., 1981; Hager and Rabinowitz, 1985). More than 90% of 

the sequenced bacterial genes contain AUG as initiation codon. In E. coli, 8% of the 

genes start with GUG and 1% with UUG (Gren, 1984). In contrast, in B. subtilis the 

UUG start codon is more common than the GUG codon (Hager and Rabinowitz, 

1985). The SD sequence only diverges slightly among different bacterial species. The 

extent of complementarity of the SD sequence with the 16S rRNA sequence 

contributes to the efficiency of translation (Hartz et al., 1991; Ringquist et al., 1992). 

Furthermore, the translation rate is influenced by the spacing between the SD 

sequence and the start codon, the sequence of the start codon and the secondary 

structure in the translational initiation site (Hartz et al., 1991). In E. coli, the 

complementarity to 16S rRNA is of crucial importance when translation initiates from 

a weak start codon such as UUG. (Weyens et al., 1988). The SD region of B. subtilis 

genes usually displays a higher degree of complementarity to the 16S rRNA sequence 

than gram-negative SD sequences (Hager and Rabinowitz, 1985). It is assumed that 

this difference contributes to the very low expression of genes from gram-negative 



organisms in gram-positives (Gold et al., 1981; McLaughlin et al., 1981). 

Statistical and genetic analysis of RBSs revealed that the optimal spacing 

between the SD sequence and the initiation codon is 7-9 bp in E. coli (Hager and 

Rabinowitz, 1985; Munson et al., 1984; Ringquist et al., 1992; Vellanoweth and 

Rabinowitz, 1992) and in B. subtilis (Vellanoweth and Rabinowitz, 1992). Analysis of 

the effect of extending the spacing in the RBS on translation efficiency have 

demonstrated that the range in allowed spacing is much broader than that observed 

for naturally occuring RBSs, both in E coli (Ringquist et al., 1992; Vellanoweth and 

Rabinowitz, 1992), and in B. subtilis (Vellanoweth and Rabinowitz, 1992). Moreover, 

B. subtilis is relatively more efficient than E. coli in recognizing translational initiation 

sites with a larger than optimal spacing between SD sequence and start codon 

(Vellanoweth and Rabinowitz, 1992). 

L. lactis translational start signals are similar to those of B. subtilis and E. coli 

(Van de Guchte et al., 1992a). For L. lactis [he 3' terminal sequence of the 16S rRNA 

is 3'-UUUCCUCCA-5', (Chiaruttini and Milet, 1993). In contrast to RBSs of other gram-

positives (Hager and Rabinowitz, 1985), the degree of complementarity of the SD 

region with the 16S rRNA sequence is on the average only slightly higher than in E. 

coli (De Vos and Simons, 1993, Van de Guchte et al., 1992a). Predicted free energy 

values for L. lactis RBSs vary between -36 kJ/mol for the repA gene of pSH71 (De 

Vos, 1987) to -75 kJ/mol for the n/sZgene (Mulders et al., 1991), with a mean value 

of -48.2 kJ/mol. The variability in spacing between the SD sequence and start codon 

in L. lactis seems higher than in E. coli and B. subtilis. Spacing between SD 

sequences and putative start codons as long as 15 (for a putative translocase of 

IS904; Rauch et al., 1990) or 16 (for the dnaJ gene; Van Asseldonk et al., 1993) 

nucleotides have been postulated in lactococcal translational initiation sites. 

3. Protein secretion. 

Many proteins synthesized by bacteria are secreted across the cytoplasmic 

membrane to perform their function. In gram-negative organisms these proteins are 

transported into the periplasm, to the outer membrane, or to the extracellular medium, 

whereas in gram-positive organisms proteins are exported into the medium external 

from the cells. (Freudl, 1992; Pugsley, 1993). The exported proteins are of many 

classes, like hydrolytic enzymes (e.g. amylases, nucleases, proteinases, esterases and 

cellulases), antimicrobial proteins (e. g. bacteriocins), structural proteins (e. g. flagellar 



proteins) or protective proteins (e.g. penicillase or ß-lactamase). 

The secretion of proteins in bacteria has been the subject of many fundamental 

studies. E. coli mutants, disturbed in secretion, have played a major role in the 

discovery of different genes involved in the transport of proteins (Schatz and Beckwith, 

1990). In the last 5 years, the cloning of these genes and the biochemical 

characterization of their gene products, has provided considerable insight into the 

molecular mechanism of secretion in E. coli (Hartl et al. 1990; Pugsley, 1993; Wickner 

et al., 1991). Recently, studies have been initiated on the mechanism of secretion of 

proteins in other prokaryotes (Freudl, 1992; Simonen and Palva, 1993). These studies 

revealed similarities as well as differences between the secretion of proteins in 

different species. Besides scientific curiosity in the mechanism of export of proteins, 

there exists great interest in the employment of protein secretion in the production of 

heterologous proteins. 

3.1 Features of exported proteins. 

Most exported proteins are synthesized as a precursor polypeptide, consisting 

of a signal peptide, a mature part, and in some cases a propeptide. 

The amino-terminal extension, called the signal peptide is a very well-conserved 

feature of exported proteins (Pugsley and Schwartz, 1985; Von Heijne, 1985). The 

properties of the signal peptide are universal in prokaryotes and eukaryotes. It consists 

of 15-35 amino acid residues, which can be arranged into three characteristic regions 

(Fig. 1A): (i) The N-region: the amino-terminal 2-8 amino acids of signal peptides 

containing at least one positive charged residue; (ii) The H-region: a region of 8-15 

amino acids forming a hydrophobic core; (iii) The C-region: this carboxy terminal 

region, consisting of 4-6 uncharged amino acids, contains the target site for the signal 

peptidase. (Dalbey, 1991; Von Heijne 1985). The consensus sequence of this target 

site, follows the so called - 1 , -3 rule as proposed by Von Heijne (1986). However, a 

considerable variation between the different sites in the various bacterial and 

eukaryotic species has been observed (Von Heyne and Abrahmsén, 1989); While 

residue -2 can be any amino acid, residue -3 is preferentially a small neutral (alanine, 

glycine, serine, threonine, cysteine) or larger aliphatic (isoleucine, leucine, valine) 

residue. The small neutral amino acid residues (alanine, glycine, serine, threonine, 

cysteine), glutamine or proline residues are often found at site -1 (Von Heyne, 1986). 

During secretion the signal peptide is cleaved off at the C-terminal side of residue - 1 . 



A) 
M 
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2-8 residues 
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8-15 residues 
Hydrophobic 

C-region 
4-6 residues 
-1 ,-3 site 

B) 
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C) 

PrtM M K K M R L K V L L A S T A T A L 

NJSl M R R Y I L I L V A L I G I 

+1 

L L S G f C 

TGLSG f> C 

Fig 1 A: Schematic presentation of the N-, H-, and C-, region of a signal peptide. The first box, marked with 
an M, represents the first methionine residue. +1 represents the first amino acid of the propeptide, or mature 
protein. B) and C) Representation of the arrangement of the amino acids in the N-, H-, and C- region of the 
characterized lactococcal signal peptides of secreted proteins (B) and lipoproteins (C). PrtP: SK11 proteinase; NisP: 
nisine leader proteinase; Usp45: unidentified secreted protein. PrtM: SK11 proteinase maturation protein; Nisi: Nisin 
immunity protein; The cleavage site is indicated with scissors. The lipoprotein signal peptide cleavage site is 
shaded. 

A specific signal peptide cleavage site is present in exported lipoproteins. This 

cleavage site is a more conserved sequence in bacteria and consists of a leucine at 

position -3, a serine, valine or alanine residue at -2 and an alanine or glycine residue 

at - 1 . At position +1 a cysteine residue is always present (Pugsley and Schwartz, 

1985). Before cleavage this residue is modified into a glyceride-fatty-acid-modified 

cysteine and is required for the interaction of the protein with the cellular membrane. 

A pro-peptide is present between the signal (pre-)peptide and the mature 

protein of many secreted proteins from bacteria and eukaryotes. This pro-peptide has 

no explicit function in secretion, but mainly functions as an intermolecular chaperone 

in the folding of the mature protein (Ikemura et al., 1987; Ikemura and Inouye, 1988). 

The length of the pro-peptide can vary from less than 10 amino acids as in the 

precursor of the B. subtilis oc-amylase (Sasamoto et al., 1989), to more than 200 as 

for the neutral protease of B. stearothermophilus (Vasantha et al., 1984). Cleavage of 



propeptides can occur autocatalytically (e.g. chymosin; Barkholt Pedersen et al., 1979; 

or subtilisin; Ikemura and Inouye, 1988) or catalyzed by extracellular proteases (e.g. 

B. subtilis cc-amylase; Takase et al., 1988). Processing of the L lactis proteinase-

precursor requires PrtM, a lipoprotein that functions as an extracellular chaperone 

(Haandrikman et al., 1989; Vos et al., 1989b). 

The properties of the mature protein play a important role in the export of 

proteins. This has been well established, for instance by studies with hybrid precursors 

consisting of the cytoplasmic protein ß-galactosidase fused to various signal peptides 

(Moreno et al. 1980; Silhavy et al., 1985). In E. coli as well as in B, subtilis these 

fusions did not result in export of the ß-galactosidase, while no particular part of this 

protein could be assigned as export-blocking sequence (Lee et al., 1989). In addition, 

mutations in the mature maltose binding protein resulted in a loss of export (Duplay 

and Hofnung, 1988). No correlation has been found yet between the amino acid 

composition or distribution, or secondary structure of mature secreted proteins and the 

export competency of a polypeptide chain. 

The combination of signal peptide and mature protein affects the secretion 

efficiency. Exchange of signal peptides between different extracellular proteins resulted 

in notable differences in export efficiency, both in E. coli and in B. subtilis (Schein et 

al., 1986; Smith et al., 1988). In E. coli, exchange of the H- and C- region of the E. 

coli alkaline phosphatase signal peptide with corresponding regions of M13 major coat 

protein failed to direct secretion of alkaline phosphatase, whereas exchange of the H-

and C- regions of the maltose binding protein and OmpA resulted in secretion of this 

enzyme (Laforet et al., 1989). B. subtilis failed to secrete the E. coli outer membrane 

proteins OmpA and OmpF when fused to the B. amyloliquefaciens a-amylase signal 

peptide (Puohiniemi et al., 1992). Moreover, in B. subtilis, this a-amylase signal was 

functional in secreting B. licheniformis penicillinase, but the use of the penicillinase 

signal peptide fused to mature a-amylase, resulted in a very inefficient secretion of oc-

amylase. (Himeno et al., 1986). 

3.2 Protein secretion in E. coli. 

The export of proteins in E. coli has been extensively studied by means of 

genetic and biochemical approaches. These studies resulted in the following model of 

signal-peptide dependent secretion. The nascent polypeptide chain, containing the 

signal sequence is rendered in an unfolded, secretion-competent state by various 

8 



molecular chaperones. Besides these chaperones, a membrane-bound protein 

complex, forming the translocase (Wickner et al., 1991) is involved in translocation of 

the pre-proteins across the inner cell membrane. During this translocation the signal 

peptide is cleaved off. 

Analysis of E. coli mutants, disturbed in secretion, revealed a set of genes, 

which are of crucial importance in the secretion of most proteins. In this set of genes, 

several sec genes and some genes encoding molecular chaperones are necessary for 

the stabilization of the unfolded conformation of the precursor (Lecker et al., 1989). 

These molecular chaperones in E. coli are identified as the GroEL and the GroES 

(Kusukawa et al., 1989; Lecker et al., 1989) proteins, the trigger factor (Crooke and 

Wickner, 1987; Lecker et al., 1989) and SecB (Küsters et al., 1989; Lecker et al., 

1989). Besides its role in maintaining the unfolded state of several precursors, SecB 

is also believed to prevent the pre-protein from association with non-productive 

membrane sites (Hartl et al., 1990). Furthermore, SecB is known to target the pre-

protein prePhoE to the SecA protein for translocation (Hartl et al., 1990; Tomassen et 

al., 1992). The SecA protein, which is located on the interior surface of the cytoplasmic 

membrane can associate with the integral proteins SecE and SecY. This association 

enhances its affinity for the SecB/preprotein complex. After release of SecB from the 

complex, SecA renders the precursor in its export-competent state (Hartl et al., 1990). 

Translocation of the precursor is associated with ATP hydrolysis, which is probably 

used to release the precursor from the SecA protein. The function of SecE/Y in export 

is still under investigation. These membrane associated compounds of the secretion 

machinery may act as receptor for precursors of secreted proteins or they may be 

involved in the formation of transport channels (Driessen, 1992). Protein conducting 

channels have been reported for E. coli. However, it remains unclear whether these 

channels consist of proteins (Simon and Blobel, 1992). No function had been assigned 

yet to the membrane proteins SecD and SecF. They possess large periplasmic 

domains (Gardel et al., 1990) and apparently function in a late step of translocation 

(Tai et al., 1992). Recently it has been postulatyed that SecD is involved in the release 

of the translocated mature protein from the cytoplasmic membrane (Matsuyama et al., 

1993). After translocation of the secreted protein across the membrane, signal 

peptidases (Dalbey, 1991) are responsible for the removal of the signal peptide, after 

which the mature protein can fold into its soluble native conformation. Two signal 

peptidases, Spasel and Spasell, specific for the two described types of signal 



5 ^ 

Cytoplasm 

. . . . . . . . . . . . . . . . 

Periplasmatic space 

Ml 
SPas 
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Fig 2: Schematic representation of the several Sec-proteins and signal peptidase I and their role in the 
translocation of a pre-protein, derived from the model as proposed by (Hartl et al., 1990). D: SecD, F: SecF. 
1 represents a polypeptide of unknown fuction that co-purifies with SecE and SecY subunits. 

peptides, have been characterized from E. coli. SPasel is necessary for the release 

of the protein into the periplasm (Dalbey and Wickner, 1985; Wolfe et al., 1982). 

SPasel I is involved in the processing of the signal peptide of exported lipoproteins 

(Tokonuga et al., 1982; Yamada et al., 1984), and results in inner-membrane bound 

proteins. The described signal-peptide-dependent pathway is schematically 

represented in Fig. 2. 

Besides the described pathway, used for the transport of proteins into the 

periplasm or to the outer membrane of gram-negative bacteria, alternative routes are 

used for the secretion of proteins, such as hemolysin (Koronakis et al., 1991), colicin 

V (Gilson et al., 1990), pullanase (d'Enfert et al., 1989), and several proteinases 

(Létoffé et al., 1990; Létoffé et al., 1991), into the extracellular medium (for a review 

see: Pugsley et al., 1990). 

3.3 Protein secretion in gram-positive bacteria. 

The knowledge of the mechanism of secretion in gram-positive bacteria is less 
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detailed than that of E coli. 

3.3.1 Protein secretion in B. subtilis 

The cloning of B. subtilis genes, that are homologous to secA (Overhoff et al., 

1991; Sadaie et al., 1991) and secY (Nakamura et al., 1990a; Suh et al., 1990) of E. 

coli, indicates that a Sec-dependent pathway exists in B. subtilis. Both genes are 

shown to be functionally involved in protein export (Nakamura et al., 1990b; Sadaie 

et al., 1991). However, the cloning of the B. subtilis Spase I gene, (Van Dijl et al., 

1992) revealed significant differences, both in protein sequence and in affinity for 

different signal peptides, between the E. coli and the B. subtilis SPasel. Furthermore, 

signal peptides of gram-positive and gram-negative organisms display a significant 

difference in length and composition (Von Heyne and Abrahmsén, 1989). In general, 

gram-positive organisms require longer signal peptides, with more N-terminal charge, 

a larger hydrophobic core and an extended C-region. These observations suggest that 

the secretion apparatus in gram-positive organisms has other requirements for certain 

structural features of the signal peptide than that in gram-negative bacteria. 

Mutants of B. subtilis and S. aureus displaying reduced or increased levels of 

secreted proteins have been isolated. Several genes of B. subtilis involved in 

regulating the production of extracellular enzymes have been cloned (e.g. senN (Wong 

et al., 1988), degQ (Kunst et al., 1974), fen/and tenA, (Pang et al., 1991), as well as 

genes from S. aureus, (e.g. exp (Morfeldt et al., 1988). Besides these regulatory 

genes, another gene, prsA, involved in protein export from B. subtilis, has been 

isolated. It is proposed to encode an extracellular molecular chaperone, involved in a 

late stage of protein export (Kontinen et al., 1991). The product of this gene is a 

membrane-associated lipoprotein and shows homology to the lactococcal PrtM protein. 

The PrsA protein is indispensable for viability and essential for proteins secretion in 

B. subtilis. Overproduction of PrsA resulted in an enhanced secretion of a-amylase 

and protease in strains that produced high levels of these exoenzymes, suggesting 

that the PrsA protein could be a rate-limiting component in the export machinery of B. 

subtilis (Kontinen and Sarvas, 1993). 

In B. subtilis, signal-peptide-independent export has also been demonstrated, 

as is the case of the bacteriocin subtilin. The subtilin operon contains the spaTgene, 

encoding a protein homologous to HlyB, the E. coli hemolysin transport protein. It has 

been suggested that this gene encodes a translocator, necessary for subtilin secretion 
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(Chung étal., 1992). 

3.3.2 Protein secretion in L. lactis. 

Several extracellular proteins have been characterized in L. lactis (Table 1; 

Simons et al., 1990a). The gene encoding the lactococcal extracellular proteinase, 

PrtP, a key enzyme in casein degradation, has been characterized (Kok et al., 1988; 

Vos et al., 1989a). The signal peptide cleavage site of this protein is proposed to be 

located after Ala33. The precursor contains a 150-residue propeptide and the mature 

protein is attached to the cell envelope by a C-terminal membrane anchor. 

A second protease, NisP, involved in processing of the nisin precursor is also 

attached to the cell envelope with a C-terminal membrane anchor. The signal peptide 

cleavage site is predicted to be located after Gly22 (Van de Meer et al., 1993). 

Furthermore, the usp45 gene encoding the most abundant extracellular protein 

of L. lactis, has been cloned and characterized (Van Asseldonk et al., 1990). The 

deduced amino acid sequence of the protein revealed no significant homology with 

any protein of known function. Moreover, the protein displayed no enzymatic activity 

as tested so far. The signal peptide of this protein consists of 27 amino acids (Van 

Asseldonk et al., 1993). 

The prtMgene, encodes a maturation protein, necessary for the processing of 

the proteinase into an active conformation. PrtM is a membrane-associated lipoprotein 

with a 23-residue lipoprotein signal peptide (Haandrikman et al., 1989; Haandrikman 

et al., 1991; Vos et al., 1989b). 

Recently the nisi from the nis operon has been characterized (Kuipers et al., 

1993). It is predicted to encode an extracellular protein involved in nisin immunity, with 

a lipoprotein signal peptide of 19 residues. 

The sequence charactersistics of the signal peptides of the described proteins 

are shown in Fig 1B. 

Several bacteriocins of L. lactis, such as nisin and several lactococcins, are also 

secreted to the extracellular medium. Although the lantibiotic nisinA and nisinZ are 

synthesized as a precursor, their leader peptides cannot be considered as signal 

peptides (Buchman et al., 1988; Mulders et al., 1991). The sequence of these leader 

peptides is not in accordance with the Von Heyne rules. Furthermore, the precursor 

of nisin is translocated without removal of its leader peptide (Van de Meer et al., 

1993). The genes of three other extracellular lactococcal bacteriocins, lactococcin A 
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TABLE 1 : Secreted proteins of L lactis. 

Protein 

PrtP 

NisP 

Usp45 

PrtM 

Nisi 

NisA 

NisZ 

LcnA 

LcnB 

LcnMa 

Function 

Proteinase 

Proteinase 

Unknown 

Maturation 

Immunity 

Bacteriocin 

Bacteriocin 

Bacteriocin 

Bacteriocin 

Bacteriocin 

Leader length (a) 

33(-) 

23(-) 

27(+) 

23(+) 

19(-) 

23(+) 

23(+) 

21 (+) 

21 (-) 

21 (-) 

Signal peptide 
normal lipo 

+ 

+ 

+ 

+ 

+ 

-
-
-
-
-

ref 

Vos et al., 1989a 

Van de Meer et al., 1993 

Van Asseldonk et al., 1990 

Vos et al., 1989b 

Kuipers et al., 1993 

Buchman et al., 1988 

Mulders et al., 1991 

Van Belkumetal., 1991 

Van Belkumetal., 1992 

Van Belkumetal., 1991 

(a):Postulated (-) or determined (+) 

(Holo et al., 1991; Stoddard et al., 1992; Van Belkum et al., 1991) lactococcin B (Van 

Belkum et al., 1992) and lactococcin M (Van Belkum et al., 1991) have also been 

characterized. Lactococcin A is produced as a precursor, but its 21 residue leader 

does not resemble signal peptides (Holo et al., 1992). The primary sequence of 

lactococcin B and M, indicates that they are also secreted in a signal-peptide-

independent manner (Van Belkum et al., 1991; Van Belkum et al., 1992). 

The secretion mechanism of proteins by L. lactis is unidentified yet, but the 

cloning of a secY homologue from this organism is suggestive for a signal peptide-

dependent pathway (Koivula et al., 1991). The transport mechanism of the above-

mentioned bacteriocins is still unclarified, but the nisT and IcnC genes are very likely 

responsible for the transport of nisin and lactococcin A, respectively (Engelke et al., 

1992; Kuipers et al.,1993; Stoddard et al., 1992). Homology of their gene products with 

ATP-dependent translocators as SpaT and HlyB, which are involved in subtilin and 

hemolysin transport, suggests a conservation between gram-positive and gram-

negative organisms in signal-peptide-independent protein export (Engelke et al., 1992; 

Kuipers et al.,1993; Stoddard et al., 1992). 

4. Heterologous gene expression in L. lactis. 

The extensive research on the genetics of L. lactis in the last decade has led 

to the development of several cloning vector systems and efficient transformation 

systems (De Vos, 1987; De Vos and Simons, 1993; Kok, 1991). Furthermore, various 
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expression and secretion signals are available now (De Vos and Simons, 1993). 

These genetic tools are of crucial importance for the investigation of heterologous 

gene expression in L. lactis. Various heterologous genes have been expressed in L 

lactis and the secretion of heterologous proteins has been accomplished as 

summarized in section 4.1 and 4.2 and in Table 2. 

4.1 Intracellular proteins 

4.1.1 Antibiotic resistance markers. 

Dominant selection markers are essential in the development of a reliable gene 

cloning system. Several genes conferring resistance against chloramphenicol, 

erythromycin, kanamycin and tetracyclin, derived from B. pumilus, S. aureus, and 

Streptococcus faecalis, are used in various lactococcal cloning vectors (De Vos, 1987; 

De Vos and Simons, 1993; Kok, 1991; Platteeuw et al., 1993a). All these markers 

have been expressed under control of their own regulatory sequences. Furthermore, 

several promoter-probe-vectors have been constructed based on the promoter-less 

chloramphenicol resistance conferring genes cat86 or cat194 (Bojovic et al., 1991; 

Koivula et al., 1991; Lakshmidevi et al., 1990; Van der Vossen et al., 1987). 

4.1.2 E. coli ß-galactosidase 

Initial studies on heterologous gene expression in L. lactis have been performed 

using the E. coli lacZ gene, encoding ß-galactosidase. The expression signals of the 

L. lactis SK11 prtP gene, and the DNA encoding the first 9 amino acids of the 

proteinase, were used in an in frame fusion with the E. coli lacZ gene. High levels of 

ß-galactosidase activity were detected in L. lactis containing this gene fusion. The 

expression of this heterologous lactose-degrading enzyme by L. lactis resulted in 

lactose fermentation by these bacteria (De Vos and Simons, 1988). 

Furthermore, fusions of the lacZ gene to the P32 promoter and translational 

initiation signals have been used in studies on the efficiency of translational coupling 

in L. lactis (Van de Guchte et al., 1991). These studies revealed that translational 

coupling could result in up to 3-fold higher heterologous gene expression in L. lactis. 

4.1.3 Lysozyme 

The antimicrobial activity of hen egg lysozyme is of commercial interest as a 
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food preservative. One of the randomly isolated lactococcal chromosomal promoters, 

P32, has been used in expression vectors for the production of hen egg lysozyme 

(Van de Guchte et al., 1989). A low level of expression could be observed, but no 

activity was detected. In contrast, expression of the phage T4 lysozyme and phage 

lambda lysozyme in L lactis, using the same P32 expression signals, resulted in the 

detection of lysozyme activity in cell lysates (Van de Guchte et al., 1992b). 

4.1.4 C. acetobutylicum ß-galactosidase. 

The ß-galactosidase gene of C. acetobutylicum has been cloned, and 

transformed to L lactis. This resulted in expression of the gene under control of its 

own regulatory sequences, ß-galactosidase activity was obtained in L. lactis. However, 

no metabolization of lactose was reported. (Pillidge and Pearce, 1991). 

4.1.5 E. coli ß-glucuronidase 

The E. coli gusA gene has been used as a reporter gene for promoter 

screening in L. lactis. Furthermore the gusA gene has been used to quantitate the 

activity of several characterized lactococcal promoters in L lactis. All tested promoters 

were functional in producing ß-glucuronidase in L lactis. The usp45 promoter resulted 

in the highest levels of ß-glucuronidase activity (Platteeuw et al., 1993b). 

4.1.6 Vibrio fischen' luciferase 

Several Lactobacillus casei chromosomal promoter elements have been used 

to express the lux gene from V. fischeri in several lactic acid bacteria. These studies 

showed that the expression signals from Lb. casei were functional in the expression 

of the lux gene in L. lactis (Ahmad and Stewart, 1992). 

Furthermore, the luxAB genes were used as reporter genes to investigate the 

regulation of expression of the lacABCDFEGX, and the lacR promoter (Eaton et al., 

1993). 

4.2 Extracellular proteins 

The homologous signal peptides from Usp45 and PrtP have proven to be functional 

in directing secretion of heterologous proteins in L. lactis. Furthermore, random 

isolated export elements from L. lactis and some heterologous signal peptides can be 

used to accomplish secretion in L. lactis. 
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TABLE 2: Heterologous proteins produced by L. lactis. 

Protein 

Intracellular 

ß-galactosidase 

ß-galactosidase 

egg white lysozyme 

T4 lysozyme 

X lysozyme 

ß-glucoronidase 

ß-galactosidase 

Luciferase 

Prochymosin 

Secreted 

Prochymosin 

Neutral protease 

ß-lactamase 

a-amylase 

a-amylase 

a-amylase 

a-amylase 

a-galactosidase 

Streptodornase 

gene Source activity expression signals reference 

lacZ E. coli + 

lacZ E. coli + 

HEL Hen 

T4 e E. coli phage T4 + 

X R E. coli phage X + 

gusA E. coli + 

lac C. acetobutylicum + 

lux V. tischen + 

PC Bovine 

PC Bovine 

nprE B. subtilis + 

ß-lam E. coli + 

amyL B. licheniformis + 

amyS B. stearothermophilus + 

amyS B. stearothermophilus + 

amyS B. stearothermophilus + 

a-gal C. tetragonoloba + 

sdc S. equisimilis + 

prtP 

P32 

P32 

P32 

P32 

e.g. usp45, lac 

lac 

random Lb. casei 

prtP 

Expression/secretion signal 

prtP 

P32JnprE 

random 

random 

prtP 

usp45 

dnaJ/usp45 

P59, prtP,prtM/amyL 

sdc 

De Vos and Simons, 1988 

Van de Guchte et al., 1991 

Van de Guchte et al., 1989 

Van de Guchte et al., 1992b 

Van de Guchte et al., 1992b 

Platteeuw et al., 1993b 

Pillidge and Pearce, 1991 

Ahmad and Stewart, 1992 

Simons etal . , 1992 

Simons etal . , 1992 

Van de Guchte et al., 1990 

Sibakov et al., 1991 

Pérez-Martinez et al., 1992 

Simons etal . , 1990b 

Van Asseldonk et al., 1993b 

Van Asseldonk et al., 1993a 

Haandrikman et al., 1990 

Wolinowska et a l „ 1991 

4.2.1 Bovine prochymosin 

Chymosin establishes the initial cleavage of k-casein and hence is an important 

enzyme in the process of cheesemaking. Various expression and secretion cassettes 

have been constructed for the production of prochymosin in L lactis (Simons et al., 

1988; Simons et al., 1992). These cassettes contained the prtP promoter sequence, 

ribosome binding site and various parts of the coding sequence of the SK11 

proteinase fused to prochymosin. A fusion with the coding sequence for the first 7 

amino acids of PrtP, resulted in intracellular accumulation of prochymosin (Simons et 

al., 1992). This intracellular fraction could not be activated at low pH. Fusion of the 

coding sequences of prochymosin and the first 33 or the first 62 amino terminal 

residues of PrtP directed the synthesis and secretion of prochymosin. Although the 

putative signal peptide of PrtP consists of the first 33 amino acids, the secretion 

efficiency could be increased when the first 62 amino acids were used. This may be 

due to positively charged residues present at the amino-terminal end of prochymosin. 

The presence of this charged region immediately after the signal peptide cleavage site 
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is most likely to obstruct efficient secretion of the protein. 

4.2.2 B. subtilis neutral protease. 

The B. subtilis neutral protease is known to degrade casein and hence can be 

used to accellerate the cheese ripening. The nprE gene encoding this protein, has 

been introduced into L. lactis on the lactococcal cloning vector pGKV210. No protease 

expression could be detected in cellular or supernatant fractions of L lactis strains 

harboring this gene. However, when the nprE transcription signals were replaced by 

the lactococcal promoter P32, a significant amount of neutral protease was secreted 

by L. lactis. Determination of intracellular accumulation of the precursor of the protein 

was not reported. These data show that the nprE promoter is not functional in L. lactis, 

but that the heterologous signal peptide of the protease is recognized by the secretion 

machinery of L lactis (Van de Guchte et al., 1990). 

4.2.3 E. coli TEM ß-lactamase. 

Signal-peptide-probe vectors have been constructed for L. lactis employing the 

E. coli TEM bla gene as a reporter gene. Random cloning of lactococcal chromosomal 

DNA fragments resulted in the isolation of several DNA sequences which directed the 

secretion of ß-lactamase in L lactis. (Sibakov et al., 1991; Pérez-Martinez et al., 

1992). The production of this enzyme was increased when a strong promoter was 

used for expression (Sibakov et al., 1991). Furthermore, an additional increase in ß-

lactamase production could be obtained using the lysozyme-sensitive L lactis strain, 

V207. Unfortunately, efficiency of secretion was not reported. 

4.2.4 B. licheniformis a-amylase 

Besides the ß-lactamase gene, the B. licheniformis amyL gene has been used 

for the selection of export functions from lactococcal DNA. Several isolated export 

signals resulted in production and secretion of active a-amylase in L. lactis. Up to 

ninety percent of the activity was located in the extracellular medium. These studies 

showed that lactococci are able to secrete this enzyme when the proper expression 

and secretion signals were used (Pérez-Martinez et al., 1992). 

4.2.5 B. stearothermophilus a-amylase 

The amyS gene of B. stearothermophilus has been used to test the applicability 
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of the expression and secretion signals of the prtP and the usp45 gene for 

heterologous gene expression. Several fusions have been constructed encoding the 

PrtP or Usp45 putative signal peptides fused to the mature a-amylase. In L lactis 

these fusions resulted in secretion of active a-amylase into the culture supernatant 

(Simons et al., 1990b; Van Asseldonk et al., 1993a; Van Asseldonk et al., 1993b). 

4.2.6 Cyamopsis tetragonoloba ot-galactosidase 

A fusion between the B. subtilis a-amylase signal sequence and the mature a-

galactosidase gene from C. tetragonoloba has been used as a reporter gene in a 

vector developed for the analysis for divergent expression signals (Haandrikman et al., 

1990). A translational fusion of the expression signals of prtP, prtM or the 

chromosomal promoter P59 and the a-amylase-a-gal fusion resulted in significant a-

galactosidase activity in the culture supernatant. These results show that the B. subtilis 

a-amylase signal peptide is sufficient to direct the secretion of the eukaryotic a-

galactosidase in L lactis. 

4.2.7 Streptococcus equisimilis streptodornase 

Introduction of the sdc gene, encoding the nuclease streptodornase of S. 

equisimilis, on a lactococcal cloning vector, resulted in extracellular DNase activity, 

suggesting that the sdc expression and secretion signals are functional in L lactis. 

However, the secretion of streptodornase is not efficient since a considerable amount 

of DNase activity remained intracellular (Wolinowska et al., 1991) . 

5. Outline of this thesis 

To investigate whether L lactis is an attractive organism for the production of 

heterologous proteins, a model system for heterologous gene expression has been 

developed based on the B. stearothermophilus amyS as a reporter gene. This system 

has been used to analyze various features of expression and secretion signals of L. 

lactis, and their capacity to direct heterologous protein production. 

In Chapter two the identification of extracellular proteins in the culture 

supernatant of L. lactis is described. Furthermore, the cloning in E. coli of the usp45 

gene, encoding the major secreted lactococcal protein, Usp45, and the sequence and 

transcriptional analysis of this gene is reported. 
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Chapter three describes the construction of vectors based on the expression 

and secretion signals of the usp45 gene for the secretion of the homologous PrtP and 

the heterologous AmyS. This chapter provides insight in the secretion capacity of L 

lactis. In addition, the role of the signal peptide length in secretion in L. lactis and E. 

coli is investigated. 

In Chapter four attempts to improve the developed expression system based 

on the expression and secretion signals of usp45 and the B. stearothermophilus amyS, 

are described. The influence of the region upstream of the promoter region, the gene 

dose, and gene location on heterologous expression in L. lactis are investigated. 

Chapter five represents a pilot study on the ribosome binding site of the usp45 

gene. The role of the two putative SD sequences in gene expression is investigated 

by site-directed mutagenisis using the a-amylase expression vector. 

In Chapter six the cloning, sequence and transcriptional analysis of the 

lactococcal dnaJ gene is described. The expression signals of this gene are used to 

construct an inducible a-amylase secretion system in L lactis. 
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SUMMARY 

We have cloned usp45, a gene encoding an extracellular protein of Lactococcus 

lactis subsp. lactis strain MG1363. Usp45 is secreted by every mesophilic lactococcal 

strain we tested so far and is chromosomally encoded. The nucleotide sequence of 

the usp45 gene revealed an open reading frame of 1384 bp encoding a protein of 461 

amino acids. The mature protein initiates at Asp 28 resulting in a signal peptide of 27 

amino acids. The gene contains a consensus promoter sequence, but a weak 

ribosome binding site could be identified which is rather uncommon for gram-positive 

bacteria. Expression studies in E. coli showed efficient synthesis and secretion of the 

protein. 

Usp45 has an unusual amino acid composition and distribution and is predicted 

to be structurally homologous with P54 of Enterococcus feacium. Up to now, no 

biological activity could be postulated for this highly secreted protein. 

INTRODUCTION 

Lactococci (Lactococcus lactis subsp. lactis and L lactis subsp. cremoris) are 

used on a large scale as starter cultures in the manufacturing of dairy products such 

as cheese, butter, yoghurt and buttermilk. 

Recently, the complete nucleotide sequence of the genes for two extracellular 

proteins e.g. proteinase prtP (Vos et al., 1989b, Kok et al., 1985, De Vos et al., 1989) 

and the bacteriocin nisin (Buchman et al, 1988) have been determined. The proteinase 

is synthesized as a preproprotein with a consensus ala/ala signal peptidase I cleavage 

site between residue 33 and 34. It has been demonstrated that this signal peptide 

directs the secretion of heterologous proteins in lactic acid bacteria (Simons et al, 

1988). The proteinase shows significant sequence homology to a number of serine 

proteinases of the subtilisin family and also contains a C-terminal membrane anchor 

(Vos et al, 1989b). The gene for the bacteriocin nisin encodes a precursor polypeptide 

of 57 amino acids with a molecular weight of 7,500. A signal peptide of 23 amino acids 

has been deduced which deviates from the consensus signal peptide rules as 

postulated by Von Heijne (1985). A series of post-translational modifications involving 

dehydration of serine and threonine residues and crosslinking with cysteine residues 

are required to obtain biologically active nisin. 
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To gain more insight in the properties and structure of lactococcal extracellular 

proteins, we screened lactococcal strains for extracellular proteins. In this paper, we 

report the cloning of a gene encoding a 45 kDa protein which is secreted into the 

extracellular medium as an apparent 60 kDa protein and is produced by every 

lactococcal strain we tested so far. 

MATERIALS AND METHODS 

(a) Bacterial strains, phages and plasmids Bacterial strains used are listed in Table 

1. As cloning vector for the construction of a genomic library, lambda phage 47.1 

(Loenen & Brammar, 1980) was used. Further subcloning was performed in pUC19 

(Vierra and Messing, 1982) and in M13mp18/mp19 (Norranderet al, 1983). 

(b) Media, enzymes and chemicals Lactococci were cultured on a whey based 

medium: 5% whey permeate, 0,5% casiton (Difco), 1,9% ß-glycerophosphate and 0.5 

% glucose. For culturing of Lactobacillus, Leuconostoc and Streptococcus strains the 

casiton was replaced by 1.5% yeast extract (Difco). Media used for E.coliwere L-broth 

(Miller, 1972) and trypticase peptone (Baltimore Biological Laboratories), as broth or 

solidified by 1.5% agar. Supplements were added at the following concentrations: 

Carbenicillin (Beecham Pharmaceuticals) 100 ug/ml, X-Gal (Boehringer) 40 u.g/ml, 

IPTG (Bethesda Research Laboratories, BRL) 25|ig/ml. Restriction endonucleases 

and reverse transcriptase were purchased from BRL. T4 DNA ligase, polynucleotide 

kinase were from New England Biolabs and sequenase from United States 

Biochemical Corporation. [oc32P]dATP and [ 32P]dATP (3000Ci/mmol.) were obtained 

from Amersham. Oligonucleotides were synthesized on a Biosearch Cyclone DNA 

synthesizer (New Brunswick Scientific Corp.). 

(c) Construction and screening of a genomic library of L.lactis MG1363 

Chromosomal DNA was extracted as follows: L.lactis cells were grown until E600 = 1.0 

and protoplasted in THMS-buffer (25% sucrose, 30 mM Tris-HCI pH 8.0, 3 mM MgCI2) 

containing 2 mg/ml lysozyme (Sigma) for 1 hour at 37°C. After centrifugation (6000g). 

Protoplasts were resuspended in 1/20 volume TE (10 mM Tris-HCI, pH 8.0, 1 mM 

EDTA) and extracted 3-4 times with phenol. Subsequently, the DNA was dialyzed 

against TE. A genomic library was constructed as described by Maniatis (1982) in 
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Table 1 

Strain 

E. coll 
JM83 
JM103 
MB406 

L. lactis 
subsp. lactis 
MG1363 
IL1403 
NIZO R1 
NZ22186 
NCD0176 

Bacterial Strains 

Characteristics 

ara rpsL *(lac-proAB) 
supE thi "(lac-proAB) 
supE recBZZ recC21 sbcB\5 

plasmid-free 
plasmid-free 

Nis+ Suc* 
var. diacetylactis 

subsp. cremoris 
SK110 
NCDO1200 
WG2 

Prt* Lac* 
Prt* Lac* 
Prt+ Lac* 

Source or Reference 

Messing (1983) 
Messing (1983) 
W. Dove, University 
of Wisconsin 

Gasson (1983) 
Chopin et al. (1984) 
NIZO 
NIZO 
Natl. Collection of 
Dairy Organisms (NCDO) 

De Vos & Davies, 1984 
NCDO 
NIZO 

phage lambda 47.1 using packaging mixtures from Promega. The library was plated 

on E.colistrain MB406 and replicas were made on nitrocellulose filters (Schleicher and 

Schuell). Filters were blocked for 1 hr in PBS-buffer (10 mM NaPi pH 7.0, 0.85% 

NaCI) containing 1 % BSA and incubated for at least 4 h with antibodies against the 

60 kDa protein in PBS-buffer containing 0.1% BSA. The blots were subsequently 

incubated with Swine anti rabbit peroxidase conjugate (Swarpo) (Dakopatts). The 

proteins were visualized by incubation in substrate solution (40 u.g 4-chloro-1-naphthol 

in 100 ml of 50 mM Tris-HCI pH 7.5 containing 30 uJ H202). 

(d) RNA extraction Llactis MG1363 cells were grown at 30°C until E600 = 0.4-0.6. 

Cells were protoplasted in THMS-buffer containing 10 mg/ml lysozyme for 10 min on 

ice and centrifuged. RNA was extracted from the protoplasts by the hot-phenol method 

(Markham et al. 1984). 

(e) Protein purification Extracellular proteins of Llactis MG1363 were separated on 

SDS/PAGE (Laemmli,1970).The 60 kDa protein was excised from the gel and 

recovered by isotachophoresis (Öfverstedt et al, 1983). 
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RESULTS AND DISCUSSION 

(a) Characterization of secreted proteins of lactococci. 

Llactis subsp. lactis and L.lactis subsp. cremoris strains as listed in Table 1 

were screened for secreted proteins by analyzing culture supernatant fractions on 

SDS/PAGE (Laemmli, 1970). As shown in Fig. 1A, all screened strains secrete 

proteins, of which the most abundant one had an apparent molecular weight of 50-60 

kDa. The amount of this secreted protein was estimated to be 2-4 uo/ml/E600. 

To investigate whether these 50-60 kDa proteins were related to each other, 

antibodies against the 60 kDa protein, isolated from the plasmid-free L.lactis strain 

MG1363, were raised in rabbits. Immunoblot analysis (Towbin et al, 1979) of the 

culture supernatant fractions showed a strong reaction between the 50-60 kDa 

proteins of all tested strains and the isolated antibodies (Fig. 1B) indicating an 

immunological relationship between these proteins. No 50-60 kDa proteins could be 

detected in cell extracts of the tested strains, indicating that these proteins are 

transported efficiently into the extracellular medium and are not associated with the 

cell envelope as is the case for components of the proteolytic system of lactococci 

(Vos et al, 1989b., Kok et al., 1985). 

Extracellular proteins of Leuconostoc paramesenteroides, Streptococcus 

thermophilus, Lactobacillus casei, Lb.acidophilus and Lb.bulgaricus strains showed no 

reaction with the antibodies (data not shown) suggesting that this protein is specific 

for lactococcal subspecies and does not have a counterpart in other lactic acid 

bacteria. 

Since every lactococcal strain we tested produces this 50-60 kDa protein and 

no strains defective in synthesis of this protein were available, it was not possible to 

postulate a function for this protein. Lactococci are known to produce extracellular 

proteins such as proteinases, peptidases and bacteriocines (Vos et al, 1989b, Kok et 

al, 1985, De Vos et al 1989, Buchman et al, 1988). However, no proteolytic activity of 

the 60 kDa protein of MG1363 on casein, its degradation products or on synthetic 

substrates could be detected, indicating that the protein has presumably no function 

in the proteolytic system of L.lactis. In addition, no antimicrobial activity against other 

gram- positive bacteria, assayed by the method of Fowler (1975), could be assigned 

to the protein. 
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B 

Fig. 1: Gel analysis of extracellular proteins of Llactis strains. Supernatants of logarithmic growing cultures 

were dialyzed against water and concentrated by lyophilisation. Samples were analyzed by 10% SDS/PAGE 

(Leammli, 1970) and immunoblotting. (Panel A) Coomassie brilliant blue staining of 1,0 ml of supernatant; (Panel 

B) Immunoblot of 0.2 ml supernatant. 1, MG1363; 2, IL1403; 3. FM; 4, NZ22186; 5, NCD0176; 6, SK1128; 7, 

NCDO1200; 8, WG2. The position of the 50-60 kDa proteins is indicated by arrowheads. The lanes are flanked 

on the left side by molecular weight markers, indicated in kDa. 

(b) Cloning and expression of the gene for the 60 kDa protein in E.coli. 

Since the plasmid-free strain MG1363 is able to produce the 60 kDa protein, 

chromosomal DNA of this strain was used as starting material for the cloning of the 

gene of the 60 kDa protein. A genomic library of Llactis MG1363 was constructed and 

screened with the isolated antibodies. A restriction enzyme digestion mao from the 

DNA insert of one of the phages which reacted with the antibodies is shown in Fig. 2. 

To verify that the gene for the 60 kDa protein was located on the insert, 

Southern blot analysis of the insert DNA was performed. For this purpose we 

determined the 10 amino-terminal amino acids of the mature protein with a gasphase 

sequenator (Applied Biosystems). The sequence found was Asp-Thr-Asn-Ser-Asp-lle-

Ala-Lys-Gln-Asp. Mixed oligonucleotide probes were derived against the last cix 

determined the 10 amino-terminal amino acids of the mature protein which had the 

least degenerate codon usage. Hybridization studies of the digested phage DNA with 

these probes showed that the gene for the 60 kDa protein was found to be located on 

a Kpnl/EcoRI fragment of ± 3 kb (Fig. 2A). 

To show that this fragment contained the complete gene for the 60 kDa protein, 

it was cloned in pUC19 generating pNZ1011. Immunoblot analysis of cellextracts of 

E.coli JM83, containing pNZ1011, showed synthesis of the protein (Fig. 3, lane 2). 
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Fig 2: Restriction map and sequence strategy of the gene encoding the 60 kDa protein from MG1363. (A) 

Restriction map of the inserted DNA of a positive phage clone. Hybridisation with the mixed set oligonucleotides 

5'-GA[Crr]-AT[A/C/T]-GCN-AA[A/G]-CA[A/G]-3'as probe, is indicated with a black bar. (B) Restriction map and 

sequence strategy of the Kpn\/Cla\ fragment of pNZ1011. The map shows the coding region of the gene (hatched 

bar). The arrows indicate the length and direction of the individual stretches sequenced. M13 primers and synthetic 

oligoprimers (marked with *) were used. Sequencing was performed using the dideoxy termination method (Sanger, 

1977} following the sequenase protocol (Tabor & Richardson, 1987). 

Moreover, a substantial amount of the 60 kDa protein could be detected in the 

periplasmatic fraction of the cells (lane 3). To test whether the small amount of 60 kDa 

protein which was still present in the stripped cells (lane 4) was due to incomplete 

isolation of the periplasmatic fraction, ß-lactamase assays (Miller, 1972) were 

performed (data not shown). The ratio of ß-lactamase activity in the periplasmatic 

fraction compared to stripped cells (4:1) was in complete agreement with the amounts 

of 60 kDa protein detected within these two fractions. Hence, we conclude that the 60 

kDa protein is transported into the periplasmatic space of E.coli cells. 

It has been demonstrated that regulatory sequences of gram-positive organisms 

such as Bacilli and Staphylococci can function efficiently in E.coli (Makaroff et all, 

1983, McLaughlin et al, 1981, Graves & Rabinowitz, 1986). Our data show that the 

regulatory sequences of this lactococcal gene and the signal sequence of its gene 

product are also recognized in E.coli. 
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(c) Nucleotide sequence of the gene 

for the 60 kDA protein. 

The nucleotide sequence of the 

Kpn\/Cla\ fragment from pNZ1011 was 

determined (Fig 4) following the 

•^1 sequencing strategy outlined in fig 2B. 

The DNA sequence encoding the 

first 10 N-terminal amino acids of the 

mature protein was found at nucleotide 

position 125-154 and followed by an 

open reading frame encoding a mature 

Fig. 3: Analysis of proteins encoded by E.coli JM83 cells protein of 434 amino acids. This protein 
harbouring pNZ1011. Cells were fractionated by osmotic , ,. . . , , , 
. , . . . - „ , . „ . . ... . . . ,. has a predicted molecular mass of 

shock (Neu & Heppel, 1965) resulting in a penplasmatic r 

fraction and a stripped cells fraction. The immunoblot was 44628 Da and it was designated Usp45 probed with the antibody against the 60 kDa protein from 
MG1363. Lanes: (1) JM83 harbouring pUC19, 
unfractionated cells. (2), (3) & (4) JM83 harbouring 
pNZ1011. (2) unfractionated cells, (3) stripped cells, (4) 
periplasmatic fraction. (5) MG1363, culture supernatant. 
The position of the 60 kDa protein is indicated. 

(Unidentified Secreted Protein-45). 

Upstream of the mature N-

terminus, three in frame initiation codons 

are located. The most likely initiation 

codon is ATG at positon 44, since it 

precedes a precursor-region which has the characteristics of a signal peptide: several 

basic residues followed by a hydrophobic core of 15-20 residues and a shorter 

uncharged region ending with an amino acid carrying a small side chain (Von Heijne, 

1985). Although the highest cleavage probability by signal peptidase I is C-terminal of 

Ala-19 according to the von Heijne (1986) rules, the observed cleavage after Ala-27 

in the sequence Val-X-Ala is also commonly found in prokaryotes, and particularly in 

gram-positives (Von Heijne and Abrahmsén, 1989). 

The ATG start codon at position 44 is preceded by two potential Shine and 

Dalgarno sequences (Shine and Dalgarno, 1974) e.g. the sequence GGAGG at 

position 19 to 23 and AAAG at 34 to 37. The calculated free energy of the 

complementarity between the 3' of the 23S rRNA of L lactis and the latter Shine and 

Dalgarno sequence is only -4.6 kcal/mol (Tinoco et al, 1973). Free energy values of 

complementarity between the 3' end of 16S-rRNA and Shine and Dalgarno sequences 

of ribosome binding sites from lactococci (De Vos, 1987) and other gram-positive 

organisms like Bacilli (McLaughlin et al, 1981) usually range between -10 and -15 

38 



- 4 6 1 
ATCATAAAGAAATATTAAQGTGGGGTAGGAATAGTATAATATGTTTATTCAACCSAACTTAATGGGAGGAAAAATTAAAAAAGAACAGTT 

- 3 5 - 1 0 î 
41 
ATGAJUUÜ^AJU^OATTATCTCAGCTATTTTAATGTCTACAGTOATACTTTCTGCWKAGCCCCGTTOTCÄGGTGTTTACGCTGACACAAAC 

M K K K I I S A I L M S T V I L S A A A P L S G V Y A P T N 
134 
TCAGATATTaCTAAACAAGATtKOACAATTTCAAGCGCGCAATCTGCTAAAGCACAAGCACAAGCACAAGTTGATAGCTTaCAATCAAAA 

S D I A K Q D A T I S S A Q S A K A Q A Q A Q V D S L Q S K 
224 
GTTGACAGCTTACAACAAAAGCAAACAAGTACTAAAGCACAAATCGCTAAAATCGAAAGCGAACTGAAAGCACTTAATGCTCAAATTGCT 

V D S L Q Q K Q T S T K A Q I A K I E S E A K A L N A Q I A 
314 
ACTTTGAACGAAAGTATCAAAGAACGTACAAAGACATTGGAAGCTCAAGCACGTAGTGCTCAAGTTAACAGCTCAGCAACAAATTATATG 

T L N E S I K E R T K T L E A Q A R S A Q V N S S A T N Y H 
404 
GATGCTOTTGTTAATTCAAAATCTTTGACAQATGTTATTCAAAAAGTAACÄaCTATTGCTACTGTTTCTAGTGCCAACAAACAAATCTTG 

D A V V N S K S L T D V I Q K V T A I A T V S S A H K Q I L 
494 
GAACAACAAGAAAAAGAGCAAAAAGAGCTTAGCCAAAAGTCAGAAACTGTTAAAAAGAACTACAACCAGTTCGTTTCTCTTTCACAAAGT 

E Q Q E K E Q K E L S Q K S E T V K K N Y N Q F V S L S Q S 
584 
TTGGATTCTCAAGCTOUiGÄATTGACTTCACAACAAGCTOAACTCAAAGTTGCGACTTT^ 

L D S Q A Q E L T S Q Q A E L K V A T L N Y Q A T I A T A Q 
674 
GATAAAAAACAAGCTTTATTAGATGAAAAAGCAGCTGCAGAAAAAGCAGCTCAAGAAGCAGCTAAAAAACAAGCGGCTTATGAAGCTCAA 

D K K Q A L L D E K A A A E K A A Q E A A K K Q A A Y E A Q 
764 
CAAAAAGAAGCAGCACAAGCACAAGCAGCTTCAACAGCAGCAACTGCTAAAGCTGTAGAAGCAGCAACTTCATCAGCTTCTGCTTCATCT 

Q K E A A Q A Q A A S T A A T A K A V E A A T S S A S A S S 
854 
AATCAAGCTCCACAAGTAAGTACAAGCACTGATAATACAACATCAAATGCTAGTGCCTCAAACAGTTCTAATAGTTCATCAAACTCAAGT 

S Q A P Q V S T S T D N T T S N A S A S N S S N S S S N S S 
944 
TCAAGTTCTAGCAGTT<1ATCAAGCTCAAGCTCAAGCTCAAGTAATTCTAATGCTGGTGGGAATACAAATTCAGGCACTAGTACTGGAAAT 

S S S S S S S S S S S S S S N S N A G G N T N S G T S T G N 
1034 
ACTGGAGGAACAACTACTGGTGGTAGCGGTATAAATAGTTCACCAATTGGAAATCCTTATGCTGGTGGTGGATGTACTGACTATGTATGG 

T G G T T T G G S G I N S S P I G N P Y A G G G C T D Y V W 
1124 
CAATACTTTGCTGCACAAGGAATTTATATCAGAAATATCATGCCTGGTAATGGTGGACAATGGGCTTCTAATGGACCTGCCCAAGGCGTG 

Q Y F A A Q Q I Y I R N I M P G N G G Q W A S N G P A Q G V 
1214 
CTCCATGTTGTAGGAGCTGCTCCTGGTGTTATCGCATCAAGCTTCTCAGKITGATTTTGTTGGATATGCAAACTCÄCCTTACGGTCACGTA 

L H V V G A A P G V I A S S F S A D F V G Y A N S P Y G H V 
1304 
GCTATTGTAAAATCAGTTAATTCAGATGGTACAATTACTATCAAAGAAGGCGGATATGGTACAACTTGGTGGGGACATGAACGTACTGTA 

A I V K S V N S D G T I T I K E G G Y G T T W W G H E R T V 
1394 
AGTGCGTCTGGTGTTACTTTCTTGATGCCAAACTAGAAAAAAGTCTTAATAAATAAAAAATAGTGGTTTGATAGTGGGGAATAATTTTCC 

S A S G V T F L H P N > < — 
1484 
TTCTGTCAAATCATTTTTTATTATTGTGGTATAATAATAAGGAAAAATGATA 

Fig 4: Nucleotide sequence of the usp45 gene and the deduced amino acid sequence. The sequences 
represent the -35 and -10 promoter boxes. The start of transcription is indicated with an arrow. The two putative 
ribosome binding sites are also underlined.The determined N-terminal amino acids (Asp 28 - Asp 37) of the mature 
protein are underlined. Downstream of the gene an inverted repeat is marked whith dotted arrows representing a 
rho-independent terminator of transcription. 

kcal/mol. For the other possibility a free energy of -14.4 kcal/mol could be calculated. 

However, the spacing to the ATG codon is 21 bp. This length does not fit with the 

Shine and Dalgarno hypothesis. Site directed mutagenesis experiments have to be 

39 



Fig. 5: RNA analysis and Northern blotting. A) 

Autoradiogram of the sequence gel used to analyze 

the primer extension products of RNA of MG1363. 

cDNA was generated by reverse transcriptase 

e l o n g a t i o n w i t h t h e o l i g o p r i m e r 

5'CAGCAGAAAGTATCACTG 3' (nucleotide position 

98 to 80). The sequence ladder obtained by using the 

same primer was used as a marker. The position of 

the transcription initiation site and the -10 and -35 

boxes are indicated.The primer extension product is 

indicated (arrowhead). B) Autoradiogram of a Northern 

blot of total RNA of MG1363 hybridized with a M13-

generated probe complementary to the usp45 gene. 

The 1.5 kb messenger is indicated (arrow). To the left, 

the size of RNA markers (Bethesda Research 

Laboratories) are shown in kb. 

+ 1i 

-35 

- 10 

B 

7.5-
4.4-

2.4-

1.4-

1 2 

performed to determine whether the weak Shine and Dalgarno sequence is used and 

what the contribution is of the GGAGG sequence to the initiation of translation of the 

usp45 gene. 

Primer extension experiments (Débarbouille and Raibaud, 1983) were 

performed (Fig. 5A) and showed that transcription of the usp45 gene was initiated with 

an adenine residue at nucleotide position 1. A consensus -10 hexanucleotide 

sequence (TATAAT) was found at position -12 to -7. The most probable corresponding 

-35 sequence is TTAAGG (-32 to -27), although the spacing between the two is 

smaller (14bp) than that usually found in promoters in E.coli (Hawley & Mclure, 1987) 

and Llactis (de Vos, 1987, van der Vossen et al., 1987). 

Inspection of the DNA sequence showed the presence of several repetitive 

sequences the hexanucleotide sequence GC[A/C/G/T]CAA occurs 19 times in the 

gene, of which 16 times in the open reading frame, whereas the more degenerated 

sequence TC[A/T]AG[C/T] appears 16 times. Translation of this sequence would result 

in 12 serine doublets of which 7 are in tandem in one part of Usp45, resulting in an 

unusual amino acid sequence in the protein as discussed in (d). 

Downstream of the TAG stop codon of the usp45 gene an inverted repeat was 

found at nucleotide position 1457 to 1495, which could form a hairpin-like structure 

with a free energy of -8.2 kcal/mol (Tinoco et al, 1973). The formed hairpin is flanked 

on both sides by A or T stretches and hence could function as a rho-independent, bi

directional terminator of transcription. Northern blot analysis revealed a messenger 
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A) Segment A 

USP MKKKIISAILMSTVILSAA-APLSGVYADTNSDIAKQDATISSAQSAKAQAQAQVDSLQS 59 

|||...||...|.. |.|. -I I .|.|..|| -|.. |...| l | . | . . . | . . 
P54 MKKSLLSAVMLS3IALTAVGSPIAAAADDFDSQIQQQDKKIADLQNQQASAQSQIEALEG 60 

KVDSLQQKQTSTKAQIAKIESEAKALNAQIATLNESIKERTKTLEAQARSAQVKSSATNY 119 

!•••• I I- - I - . . I - I . | . | . . | - I - . I I I - - I I II 
QVSAINTKAQDLLTKQDTLRJŒSAQLKQEIKDLQERIEKREATIQKQARETQVKNTSSNY 120 

MDAWMSKSLTDVIQKVTAIATVSSANKQMLEQQEKEQKELSQKSETVKKNYNQrVSLSQ 179 

.|||.|..||.|.. •• |..|. -II II | 
IDAVLNADSLADAVGRIQAMSTIVKANQDLVQQQKEDKQAVEAKKAENEAKQKELADNQA 180 

SLDSQAQELTSQQAELKVATLNYQATIATAQDKKQALLDEKAAAEKAAQEAAKKQAAYEA 239 

•I II -I . - l l - l - l • - I - I - I I I - I I I - - I - l l - l l l - l - - - 1 1 •• 
ALESQKQDLLAKQADLHVLKTSLAAEQATAEDKKADLNRKKAEAE-AEQARIREQARLAE 210 

QQKEAAQAQAASTAATAKAVEAATSSASASSSQAPQVSTSTD 281 

J . . . . | . . . |. .| . |...|. ... ||. .. |.|.. 
QARQQAAQEKAEKEAREQAAAQAAQTQALSSASTTTESSSAA 281 

B) Segment C 

USP NTTSNASASHSSNSSSNSSSSSSSSSSSSSSSSNSNAGGNTNSGTSTGNTGGTTTGGSG 340 

I - I - I I I - . I |...|...|..|.|...|| ....| 
P54 TPANTESSSSSSNTNVHNNTNNSTNNSTNNSTTNNNNNNNTVTPAPTPTPTPAPAPAPN 39S 

Fig 6: Homology between Usp45 and P54 determined following Devereux et al, 

(1984). Depicted is our interpretation of the published DNA sequence of P54 (Fürst 

et al., 1989), which leads to an additional 9 amino acid residues at the N-terminus 

compared to the published amino acid sequence. Identical residues are connected 

by lines, conserved substitutions are indicated by points. (A) segment A, (B) segment 

C. 

RNA of 1500 nucleotides (Fig. 5B). This is in agreement with the deduced transcription 

termination. 

(d) Amino acid sequence, homology analysis and structural predictions of Usp45 

The amino acid sequence of Usp45 as shown in Fig. 4 reveals a high content 

of serine and alanine residues, together more than 32%. In one region of the protein, 

from residues 264-316, serine residues constitute 33 out of 53 residues, including a 

continuous stretch of 16 residues. 

Data base searches for homology were performed with the SWISSPROT 

(release 12.0) and the NBRF (release 22.0) protein sequence libraries. The N-terminal 

two-thirds of the Usp45 amino acid sequence shows weak homology with myosins, 

keratins and streptococcal M proteins, which presumably reflects a common type of 

a-helical secondary structure (Cohen & Parry, 1986). 
Significant homology was detected with the recently published sequence of P54 
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Table 2. 

Characteristics of the Usp45 and P54 domains.1 

Domains 

Residues 

Main aa 

Secondary 
structure 

Charge 

Hydropathy 

Flexibility 

Signal peptide 
Usp45 P54 

1-27 1-28 

A,S,I A,S,I 

oc-helix 

low; positive 

hydrophobic 

low 

SegmentA 
Usp45 P54 

28-281 29-281 

A,Q,S,K A,Q,K,E 

a-helix 

high; neutral 

amphipathic 

low 

282-336 282-340 337-395 341-461 396-516 

S,T,F S,N,T,G N,T,S,P G,A,V,S G,V,A,S 

turn/coil turn/coil B-sheet 

high; negative none low; neutral 

hydrophilic hydrophilic hydrophobic 

high high low 

' Secondary structure, hydropathy and flexibility predictions are determinated using the PCgene (version 5.01 ) nucleic-
acid and protein sequence analysis software system (Genofit). 

protein of Enterococcus faecium (Fürst et al., 1989), as shown in Fig 6. This protein 

of unknown function is attached to the cell wall, and is generated from a 516 amino 

acid precursor. In the N-terminal 281 amino acids, including the signal peptide, 31% 

of the residues are identical and another 53% are conservative substitutions (Fig. 6A). 

Besides the homology on primary amino acid sequence level, there appears to be an 

overall resemblance of the two proteins on the secondary and tertiary structure level. 

On the basis of structural predictions and amino acid compositions, the two mature 

proteins can be divided into four segments with similar characteristics, as outlined in 

Table 1. 

Segment A, immediately after the signal peptide, is predicted to be almost exclusively 

oc-helical by the method of Gamier (Gamier et al, 1978). 

Segment B is unique for P54 and is highly negatively charged due to a large 

excess of glutamic acid residues. It is predicted to be highly hydrophilic and flexible. 

A corresponding segment is absent in Usp45. 

Segment C consists mainly of the residues Ser, Asn, Gly and Thr (Pro instead 

of Gly in P54) which are typical helix-breakers and more commonly found in turns and 

random coil secondary structure (Deleage and Roux, 1987). Characteristic is the long 

stretch of Ser and Asn residues in both proteins at the N-terminal end of this segment, 

as shown in Fig 6, while Gly and Pro residues are concentrated at the C-terminal end. 
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Segment C is also extremely hydrophilic: 80% of the residues in Usp45 contain either 

a hydroxyl or carboxyl group, but there are no charges in this segment. 

Segment D is predicted to have largely ß-sheet secondary structure in short 

stretches, alternating with turns or bends. The amino acid compositions of segment 

D are very similar in Usp45 and P54, and contain much higher contents of aromatic 

and other hydrophobic residues than segments A, B and C. 

(f) Conclusions 

(1 ) Screening of various L.lactis strains for the production of extracellular proteins 

revealed a protein, designated Usp45, which is secreted in large amounts by every 

lactococcal strain we tested. 

(2) The gene for Usp45 was located on the bacterial chromosome and was cloned 

into E.coli. It was expressed in E.coli under control of its own regulatory sequences 

and the gene product was secreted into the periplasmatic space of this organism. 

(3) The nucleotide sequence of the usp45 gene was determined and the deduced 

amino acid sequence showed an unusual amino acid composition and distribution of 

the protein. 

(4) Usp45 shows homology with P54, an extracellular protein of Enterococcus 

faecium. Besides homology on the amino acid level the two have the same structural 

characteristics, but until now the function remains unclear. 

(5) The cloning of the usp45 gene may be an introduction for further investigation 

of the secretory pathway of L.lactis and could lead to the construction of expression 

and secretion vectors in these food-grade dairy micro-organisms for the production of 

homologous and heterologous proteins. 
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SUMMARY 

The usp45 gene encodes the major extracellular protein from Lactococcus 

lactis. The deduced 27-residue leader peptide revealed the tripartite characteristics of 

a signal peptide. This leader peptide directed the efficient secretion of the homologous 

proteinase (PrtP) in L lactis, indicating that the putative signal peptide of PrtP can be 

replaced by the 27-residue Usp45 leader peptide. In addition, the 27-residue leader 

peptide could be used to secrete the Bacillus stearothermophilus a-amylase, encoded 

by the amyS gene. Fusion of the usp45 promoter region and various parts of the 

leader sequence to the amyS gene, devoid of its signal sequence, showed that in E. 

coli the first 19, 20, and 27 residues of the Usp45 leader are able to direct a-amylase 

secretion. In L lactis the shorter signal peptides did not result in secretion of cc-

amylase, providing experimental evidence for the hypothesis that Gram-positjve 

bacteria require a longer signal peptide for secretion than Gram-negative organisms. 

INTRODUCTION 

The structural characteristics of signal peptides of procaryotic origin are highly 

conserved (Von Heijne and Abrahmsén 1989). The most common type of signal 

peptide consists of a positively charged N-terminus, a central hydrophobic core and 

a C-terminal cleavage region (for a review see Pugsley 1989). While the structural 

features are conserved between bacterial signal peptides, their sequences and lengths 

may vary. Examination of the variation in length of known signal peptides has led to 

the observation that signal peptides from Gram-positive organisms tend to be longer 

(mean length 29-31 residues) than signal peptides from Gram-negative bacteria (mean 

length 24 residues) (Von Heijne and Abrahmsén 1989). However, there exists no 

experimental evidence that shorter signal peptides are incapable of directing secretion 

in Gram-positive organisms. 

Lactococci are Gram-positive microorganisms capable of secreting proteins 

across the cell-envelope into the culture medium (Simons et al. 1990). Until now, no 

detailed investigations on lactococcal signal peptides have been reported. A few 

extracellular proteins from lactococci have been characterized such as the cell-

envelope-located proteinase (PrtP; Vos et al. 1989a) with a putative signal peptide of 
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tfaell 
CCAACTTCaGTTTATCAAATTTGTTOTTTACCAGTTAGCOCCTaCACTTTTGCTCÄATA 

TTATCTTAGCTGTAGCCTTACAATTCCCTTTAGAAATCTTTTACAGATTAAAGAAAAGTC 

-76 Sspl 
ATQTAAGATACAATTAGAAAGTGTTTTGTAATCATAAAGAAATATiaAGGTGGGGTAGGA 

- 3 5 
- 1 6 +1 
ATAGTATAATATGTTTATTCAACCGAACTTAATGGGAGGAAAAATTAAAAAAGAACAGTT 

- 1 0 Î 
46 
ATGAAAAAAAAGATTATCTCAGCTATTTTAATGTCTACAGTGATACTTTCTGCTGCAGCC 

1 5 10 15 20 
M K K K I I S A I L M S T V I L S A A A 

106 
CCGTTGTCAGGTGTTTACGCTGACACAAACTCAGATATTGCTAAACAAGATGCGACAAAT 

25 30 35 40 
P L S O V Y A D T H S D I A K Q D A T I 

Fig. 1: The nucleotide 

sequence encoding the N-

terminal part of Usp45, its 

translation and upstream 

sequences. The start of tran

scription is indicated by a 

vertical arrow. The -10 and -35 

promoter sequences are un

derlined. Relevant restriction 

sites are indicated. Predicted 

signal peptidase I cleavage 

sites are indicated by vertical 

arrows. The determined N-

terminus of the mature protein 

is underlined (Van Asseldonk 

etal., 1990). 

33 residues and the maturation protein (PrtM; Haandrikman et al. 1991) with a 23-

residue lipoprotein signal sequence. Other functional signal sequences have been 

isolated from Lactococcus lactis by using a signal peptide probe vector, which was 

based on the Escherichia coli TEM-ß-lactamase gene devoid of its signal peptide 

coding sequence (Sibakov et al. 1991). However, processing sites of the putative 

signal peptides were not determined. 

Recently, we have cloned the usp45 gene of L. lactis encoding the major 

extracellular protein of lactococci (Van Asseldonk et al. 1990). Amino-terminal analysis 

revealed that the mature Usp45 protein starts at the position of residue 28 in the 

primary sequence (Fig. 1). In the precursor three putative signal peptidase I cleavage 

sites were postulated after residues Ala19, Ala20 and Ala27 (Fig. 1; Van Asseldonk et 

al. 1990). 

In this paper we used the Usp45 leader peptide for the secretion of the 

homologous PrtP of L lactis and the heterologous a-amylase of B. 

stearothermophilus. In addition, we determined the size limits of the signal peptide 

coding sequence in the secretion of the heterologous a-amylase. 
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Table 1. Plasmids used in this study. 

Plasmid 

pNZ511 

pNZ511-mut3 

pNZ516 

pNZ582 

PNZ1011 

pNZ123 

pNZ1024 

PNZ1025 

pNZ1050 

PNZ1052 

PNZ1054 

pNZalS 

pNZ10a5 

pNZ10a6 

pNZ10a7 

Relevant genetic characteristics* Source/Reference 

pNZ121 carrying the prtP and prtM genes; Cm" Vos et al. 1989b 

pNZS11 containing a G to C mutation at position 100 of the prtP, 

generating a Atari site at the end of the coding region for the putative PrtP P. Vos 

(unpublished results) 

Vos et al. 1989b 

Van Asseldonk et al. 1990 

This study 

This study 

signal peptide; Cm" 

pNZ121 carrying the prtP gene; Cm" 

plL153 carrying the prtM gene; Em" Vos et al. 1989b 

pUC19 containing a Kpnl-EcoRI fragment carrying the usp45 gene 

pSH71 replicon; Cm" ; polylinker. 

pNZ123 carrying a Sspi-Cläl fragment from pNZ1011 carrying the usp45 

gene; Cm" 

pNZ123 carrying a Hae\\-Cla\ fragment from pNZ1011 containing the usp45 

gene; Cm" This study 

pNZ123 carrying nt -33 to 127 of the usp45 gene containing the promoter, 

ribosome binding site and leader peptide coding region; Cm" This study 

pNZ123 carrying the prtP gene under control of the usp45 expression and 

secretion signals; Cm" This study 

pNZ123 carrying nt -158 to 127 of the usp45 gene containing the 

promoter, ribosome binding site and leader peptide coding region; Cm" This study 

pNZ121 carrying the amyS gene of B. stearothermophilus (Nakajima et al. 

1985), under controlof the prtP expression and secretion signals; Cm" Simons etat in preparation. 

pNZ123 carrying the amyS gene fused to nt -158 to 127 of the usp45 

gene; Cm" 

pNZ123 carrying the amyS gene fused to nt -158 to 105 of the usp45 

gene; Cm" 

pNZ123 carrying the amyS gene fused to nt -158 to 102 of the usp45 

gene; Cm" This study 

This study 

This study 

a. Abbreviations: Cm, Chloramphenicol; Em, Erythromycin 

MATERIALS AND METHODS. 

Bacterial strains, plasmids and media. E. coli strain MC1061 (Casadaban et al. 

1980) and L. lactis strain MG1363 (Gasson 1983) were used as hosts. The plasmids 

used are listed in Table 1. E. coli was grown in TY broth (Rottlander and Trautner 

1970) or on TY solidified with 1.5% agar. L. lactis was grown in glucose M17 medium 

(Terzaghi and Sandine 1975) or in whey-permeate culture broth (De Vos et al. 1989). 

To screen for oc-amylase-producing transformants, whey-permeate agar plates 

containing 0.5% starch were used. The antibiotics used for selection in L lactis were 

chloramphenicol (10 |ig/ml) and erythromycin (5 |ig/ml). In £. coli 10 \ig/m\ of 
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Fig. 2: Schematic representation of pNZ123 (2A) and of the various expression and secretion cassettes (2B) 

used in this study. The usp45 promoter is displayed by an arrow and the usp45 ribosome binding site by an 

ellipse. The number of encoded residues of the Usp45 leader peptide is shown in the white box. The amino acid 

sequence of the Usp45 leader peptide and the first 4 amino acids of PrtP or a-amylase is indicated. The DNA 

encoding the pro-proteinase is drawn as a hatched box and the mature a-amylase as a dotted box. Relevant 

restriction sites are indicated. The nucleotide sequence at the junctions was verified by DNA sequence analysis. 

chloramphenicol was used for selection. 

DNA manipulations. Plasmid DNA was isolated as described by Birnboim and Doly 

(1979). For L. lactis cells TSM buffer (30 mM Tris-HCI pH 8, 25% sucrose, 3 mM 

MgCI2) containing 2% of lysozyme was used for 30 min. at 37°C to prepare 

protoplasts. Enzymes were purchased from Bethesda Research Laboratories 

(Gaithersburg, Md.) or New England Biolabs (Beverly, Mass.) and were used as 

recommended by the suppliers. General procedures for DNA manipulations were 

essentially as described (Sambrook et al. 1989). For electroporation of L lactis, cells 

were cultured, washed and recovered as described by Holo and Nes (1989) and 

plated on glucose M17 agar plates. 

Secretion vector constructions. The lactococcal vector pNZ123 (Fig. 2A), based on 
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the L. lactis pSH71 replicon (De Vos 1987), the chloramphenicol resistance gene of 

pC194 and a useful polylinker sequence, was used as cloning vector for our secretion 

cassettes. pNZ123 is able to replicate in E coli as well as in various Gram-positive 

organisms such as Bacillus subtilis, lactobacilli species and lactococci (De Vos 1987 

and Chassy 1987). Subsequently, the usp45 gene including regulatory regions were 

cloned into pNZ123. Plasmids pNZ1024 and pNZ1025, respectively, were constructed 

by inserting a 1.6 kb Sspl-C/al and a 1.85 kb Hae\\-Cla\ usp45fragment, isolated from 

pNZ1011, into the unique Seal site of pNZ123. To this end the C/al sites and Haell 

site were made blunt by incubation with the Klenow fragment of DNA polymerase I. 

To construct the proteinase secretion vector pNZ1052, pNZ1024 was cut with 

PsÜ and H/ndlll and a synthetic linker was inserted to generate a PvuW site 

downstream of the Ala27 codon, generating pNZ1050. Subsequently, pNZ1050 was 

digested with Pvull and Xho\ and ligated to a 4.6 kb prtP fragment. The 4.6 kb prtP 

fragment, containing the pro-proteinase sequence, was isolated from plasmid pNZ511-

mut3, a derivative of the pNZ511 (Vos et al. 1989b). Plasmid pNZ511-mut3 was 

partially digested with Nar\, the recessed ends filled-in with the Klenow fragment of 

DNA polymerase I and followed by digestion with Sa/I. 

To construct the a-amylase secretion vector pNZ10oc5, plasmid pNZ1025 was 

cut with PsÜ and H/ndlll and a synthetic linker was inserted to generate a PvuW site 

downstream of the Ala27 codon, resulting in pNZ1054. Plasmid pNZa15 was digested 

with Eagl and the recessed ends were partially filled in with dGTP using the Klenow 

fragment of DNA polymerase, followed by digestion with mung bean nuclease. 

Subsequently, it was cut with H/ndlll and the 2255 bp fragment was isolated and 

ligated into pNZ1054 which was cut with H/ndlll and Pvull, generating pNZ10a5. A 

schematic drawing of pNZ123 and the various expression secretion cassettes is 

outlined in Fig 2. 

Deletions by PCR-mutagenesis. Plasmids pNZ1 Oot6 and pNZ1 Oot7 were constructed 

by deletion mutagenesis of pNZ10a5 using the PCR-mutagenesis protocol as 

described by Tomic et al. (1990). The following oligonucleotides 

5 ' G G A A C C T G C A A C G C A G - C T G C A G C A G A A A G - 3 ' [ o l i g o 1 ] , 

5 'GGAACCTGCAACGCAGCTGCAGAAAGTATC-3' [ol igo 2] and 

5'GGAACCTGCAAAGGCTGCCGCACCGT-3' [oligo 3] were used. Oligonucleotides 

were synthesized on a Cyclone DNA synthesizer (Biosearch; San Rafael, Calif.). 
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Oligo's 1 and 3 were used for the construction of pNZ10a6 and oligo's 2 and 3 for the 

construction of pNZ1 Ooc7. 

Preparation of cellular- and supernatant fractions of L lactis and E. coli. L lactis 

and E. coli cells were grown to an OD600 of 1.0 and harvested by centrifugation. Cell 

lysates were obtained by disrupting the cells 3 times for 3 min in a bead beater 

(Biospec Products; Bartlesville, Okla.) using zirconium beads (diameter 0.1 mm). A 

100-fold concentrated supernatant fraction was obtained by centrifugating the culture 

medium in 30 K microsep tubes (Filtron; Northborough, MA). 

PAGE and immunoblotting. SDS-PAGE and immunoblotting were performed as 

described previously (Laemmli 1970, Towbin et al. 1979). Antibodies against B. 

stearothermophilus a-amylase, purchased from Cerestar (Vilvoorde, Belgium), were 

raised in rabbits. Goat anti-rabbit peroxidase was used as a second antibody. 

a-Amylase activity assay. Culture supernatant and cell lysates were incubated with 

20 mg of amylose azure (Sigma Chemical Co; St. Louis, MO) for 1 h at 60 °C in 1 ml 

of a-amylase buffer (50 mM Tris-HCI pH 7.5, 50 mM NaCI, 5 mM CaCI2). After 

centrifugation, absorption at 595 nm of the supernatant was measured. a-Amylase 

(4800 U/ml) was used as a reference. L-Lactate Dehydrogenase (LDH) activity was 

measured by the method as described by Hillier and Jago (1982). 

RESULTS 

Expression of the lactococcal proteinase under control of the usp45 signals in 

L. lactis. 

To examine whether the expression and secretion signals of the usp45 gene 

were capable of directing the expression of other lactococcal genes and secretion of 

their products, these signals were fused to the prtP gene, encoding the extracellular 

proteinase of L lactis SK11, devoid of its putative signal peptide and C-terminal 

membrane anchor, resulting in plasmid pNZ1052 (Fig. 2). PrtP plays an essential role 

in the degradation of casein in milk by lactococci (De Vos et al. 1989a). PrtP is 

secreted as a pro-proteinase and for the processing of this precursor into an active 

enzyme, the maturation protein PrtM is needed (Vos et al. 1989b). 
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Fig. 3: SDS-PAGE of 2 ml of supernatant of L. 

lactis strains stained with Coomassie Brilliant 

200 - ̂ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 - < P Blue. Lane 1, Molecular weight marker; lane 2, 

MG1363[pNZ123]; lane 3, MG1363[pNZ516]; lane 4, 

MG1363[pNZ1052]; lane 5, MG1363[pNZ511]; lane 6, 

MG1363[pNZ1052][pNZ582]. The Mw of the marker 

proteins are shown in kDa. Usp45 and the mature (m) 

and precursor (p) forms of the proteinase are 

indicated with arrowheads. Usp45 

Protein analysis showed that L lactis harbouring pNZ1052 (denoted as 

MG1363[pNZ1052]) produced a protein, which was efficiently secreted into the culture 

medium, with an identical size to the unprocessed form of the proteinase produced by 

MG1363[pNZ516] (Fig. 3, lanes 3 & 4). No PrtP could be detected in the cell pellet of 

MG1363[pNZ1052] (results not shown). Subsequently, strain MG1363[pNZ1052] was 

tested for growth in milk. L. lactis strain MG1363 which has a Prt" phenotype (Gasson 

1983) is unable to grow in milk. Production of an active proteinase is required for 

growth. Strain MG1363 harbouring only pNZ1052 did not grow in milk, indicating that 

the secreted proteinase was inactive. However, when pNZ1052 was introduced into 

MG1363 harbouring the compatible plasmid pNZ582 carrying the prtM gene, the 

resulting strain displayed growth in milk, indicating production of active extracellular 

proteinase. The growth rate of this strain was lower than that of strain L lactis SK11 

(results not shown), indicating that less than wild-type amounts of active 

proteinase were produced (Bruinenberg et al. 1992). Analysis of culture supernatant 

of MG1363[pNZ582][pNZ1052] confirmed this and showed efficient secretion and 

complete maturation of the proteinase into the processed form (Fig. 3, lane 6). In 

addition, Western blot analysis have demonstrated that the precursor and mature form 

of the proteinase produced by MG1363[pNZ1052] and MG1363[pNZ1052][pNZ582] 

respectively, reacted with polyclonal antibodies against PrtP (data not shown). 

Expression of B. stearothermophilus a-amylase under control of the usp45 

signals in L. lactis. 

The usp45 expression and secretion signals were fused to the B. 

stearothermophilus amyS gene, devoid of its signal peptide coding sequence. The 

resulting plasmid, designated pNZ10a5 (Fig. 2), encoded the first 27 amino acids of 
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Table 2. oc-Amylase activities in supernatant and cell lysates of L lactis and E. coli 

harbouring the various plasmids. 

Activity in U/ml 

STRAIN L lactis E. coli 

SUPERNATANT CELL LYSATE CELL LYSATE 

pNZ10a5 

pNZ10a6 

pNZ10oe7 

0.6 

<0.001 

<0.001 

0.01 

<0.001 

<0.001 

5.4 

5.7 

5.9 

One a-amylase unit is defined as the amount of enzyme which will hydrolyze 10 mg of starch 

in 10 min. at 60 °C. 

Usp45 followed by the mature a-amylase. When L lactis MG1363 cells carrying this 

plasmid were plated on whey-based agar supplemented with starch, they displayed 

large halo's around their colonies after staining with iodine as illustrated in Fig. 4, 

indicative of a-amylase production and secretion. Culture supernatant of the described 

strain was tested for a-amylase activity (Table 2). Indeed, the supernatant fraction of 

MG1363[pNZ10a5] contained 0.6 units/ml of a-amylase activity. About 5% of the a-

amylase activity was found in the intracellular fractions (Table 2; cell lysates of L 

lactis). In addition, LDH activities were determined of the supernatant fraction and cell 

lysate of MG1363[pNZ10a5]. A very low LDH activity (less than 1% of the activity of 

a cell lysate) could be detected in the supernatant indicating that a-amylase was 

actively secreted and that no cell lysis or leakage had occured. Subsequently, the 

culture supernatant of MG1363[pNZ10a5] was analyzed on sodium dodecyl 

sulphate/poly-acrylamide (SDS/Paa) gels and showed production and secretion of wild 

type amounts of Usp45. However, no band with a molecular size of a-amylase could 

be identified in these coomassie brilliant blue stained gels (results not shown). On 

immunoblots, a band with the same migration as mature B. stearothermophilus 

a-amylase could be detected in the supernatant of MG1363[pNZ10a5] (Fig. 5, lane 

3). The higher molecular weight proteins detected in lane 3 most probably represent 

the unprocessed form of the a-amylase and are due to the very small amount of lysis 

(about 1% of the total cells as determined by measuring the LDH activity). 
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Fig. 4: Iodine staining of whey-permeate agar starch plates containing £. C0//MCIO6I and L. lactis MG1363 

strains. 1, MC1061[pNZ123]; 2, MC1061[pNZ10a5]; 3, MC1061[pNZ10a6]; 4, MC1061[pNZ10a7]; 5, 

MG1363[pNZ123]; 6, MG1363[pNZ10a5]; 7, MG1363[pNZ10a6]; 8, MG1363[pNZ10a7]. 

Functional analysis of the Usp45 signal peptide. 

The leader peptide preceding the amino-terminus of mature Usp45 contains 3 

putative signal peptidase cleavage sites after Ala19, Ala20 and Ala27 (Fig. 1). To test 

whether a shorter Usp45 leader peptide, such as residue 1-19 or 1-20 would also be 

functional in L. lactis as well as in E. coli in directing translocation of proteins, fusions 

with the amyS gene devoid of its signal peptide coding sequence were constructed, 

generating pNZ10oc6 and pNZ10oc7, respectively (Fig. 2B). The homologous proteinase 

gene is not suitable for these studies since proteinase plasmids, such as pNZ1052, 

are not stably maintained in E. coli De Vos et al. 1989). In addition, a-amylase activity 

can be easily assayed on plates as well as in liquid media. E. coli cells harbouring 

pNZ10a6 or pNZ10a7 formed large halo's on starch plates (Fig. 4). Activity 

measurements showed that active a-amylase was indeed produced by these 

transformants (Table 2). About equal amounts of a-amylase activities were measured 

in E. coli cell lysates of pNZ10a5, pNZ10a6 and pNZ10a7. In contrast, no halos could 

be detected on starch plates containing MGl363[pNZ10a6] or MG1363[pNZ10a7] (Fig. 

4) and when supernatant fractions of L lactis MG1363 cells harbouring either 

pNZ10a6 or pNZ10a7 were assayed, they showed almost no detectable extracellular 
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Fig. 5: Immunoblot of 1 ml of supernatant (sup) and 0.2 

^ ^ J j ^ ^ ' l ^ ^ ^ ^ ^ ^ ^ ^ ^ ' ml of cell lysate (cl) of L. lactis strains incubated with 

a-amylase activity (Table 2). The a-amylase activity was about 100-fold lower than the 

activity displayed by MG1363[pNZ10a5] (Table 2) suggesting that the 19 or the 20 

amino-terminal residues of the Usp45 leader peptide are not capable of translocating 

a-amylase into the extracellular medium in L lactis. As expected, no a-amylase band 

could be detected on immunoblots of supernatant fractions of MG1363[pNZ10a6] and 

MG1363[pNZ10a7] (Fig. 5, lanes 4 & 5). 

Unprocessed a-amylase remains intracellularly. 

In addition to the supernatant fractions, equal amounts of cell lysates of 

MG1363[pNZ10a5], MG1363[pNZ10a6], MG1363[pNZ10a7] and MG1363[pNZ123] 

were analysed on immunoblots as shown in Fig. 5, lanes 6, 7, 8 and 9. As 

expected.no immunoreactive band could be detected in cell lysates of 

MG1363[pNZl23] (lane 9). Surprisingly, in cell lysates of MG1363[pNZ10a5] (lane 6), 

a protein reacting with a-amylase antibodies displaying a lower mobility than mature 

a-amylase could be detected, suggesting that this a-amylase was not processed. The 

level of intracellular unprocessed a-amylase was estimated to be approximately 80% 

of the total a-amylase production. In cell lysates of MG1363[pNZ10a6] and 

MG1363[pNZ10a7] (lanes 7 and 8) also an immunoreactive band with a significantly 

larger molecular weight than mature a-amylase could be detected, suggesting an 

unprocessed and inactive form of a-amylase. The expected lower mobility, however, 

of the intracellular form produced by MG1363[pNZ10a5] (Fig. 5, lane 6) in comparison 

with those produced by MG1363[pNZ10a6] (Fig. 5, lane 7) and MG1363[pNZ10a7] 

(Fig. 5, lane 8), as a result of the reduced size in leader peptide, is hardly visible. In 

addition, denaturation/renaturation studies on SDS-PAA gels (Lacks and Springhom 

1980) were performed on cell lysates of MG1363 cells carrying the various plasmids 

and showed that the unprocessed form did not display activity. 
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To investigate whether the unprocessed oc-amylase remains iritracellularly, cells 

of MG1363[pNZ10a5], MG1363[pNZ10a6] and MG1363[pNZ10a7] were incubated 

with lysozyme followed by a trypsin treatment. After pelleting, the protoplasts were 

analysed on immunoblots. No digestion of unprocessed oc-amylase after trypsin 

treatment of protoplasts was detected (data not shown), indicating that the 

unprocessed a-amylase is not translocated but remains iritracellularly. 

DISCUSSION 

The mature part of the lactococcal Usp45 starts at Asp28, suggesting a signal 

peptide of 27 residues (Van Asseldonk et al. 1990). We have used the coding 

sequence of this Usp45 signal peptide to study its effectivity in secretion of the L. lactis 

proteinase PrtP, which lacked its own putative signal peptide (residue 1-33). 

Furthermore, the region encoding the C-terminal anchor (Vos et al. 1989a) by which 

PrtP remains attached to the cell-envelope was removed. Our results with both L. 

lactis MG1363[pNZ1052] and MG1363[pNZ516] showed that the proteinase was 

secreted efficiently into the culture supernatant, indicating that the putative signal 

peptide of PrtP can be replaced by the 27-residue Usp45 leader peptide. 

L lactis strains harbouring a plasmid encoding the first 27 residues of Usp45 

fused to the mature S. stearothermophilus amyS gene, produced a-amylase which 

could be detected both in the supernatant and iritracellularly. The intracellular oc-

amylase had a significant higher apparent molecular weight than the secreted form, 

indicating that this product still contained the leader peptide. This unprocessed form 

showed no detectable activity. Accumulation of an inactive intracellular form suggests 

that the Usp45 leader peptide is not sufficient for efficient a-amylase secretion. The 

accumulation of precursor could be due to the obstruction of the secretory pathway 

by the precursor as is suggested by Schein et al. (1986) for the secretion of interferon-

a2 by B. subtilis. In this case both a secreted form of IFN-a2 and an intracellular 

precursor form were detected. As a result the overall secretion of other extracellular 

proteins would also be inhibited. However, since we found a normal secretion of 

Usp45 by MG1363[pNZ10a5], this explanation seems unlikely in lactococci. 

Alternatively, the combination of Usp45 signal peptide and mature a-amylase could 

result in premature folding of the protein into a form that cannot be recognized by 

molecular chaperones necessary for secretion (Lecker et al. 1990). This phenomenon 
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was found in B. subtilis when a penicillinase signal peptide was used to secrete a-

amylase. In that case only 3% of the a-amylase was secreted (Himeno et al. 1986). 

The lack of activity of the intracellular fraction of MG1363[pNZ10a5] confirms an 

aberrant folding of the intracellular form found a-amylase. In addition, the ratio 

between the amount of active a-amylase secreted into the supernatant to the amount 

of inactive intracellular a-amylase remained the same using a less strong promoter 

sequence in front of the 27-residue Usp45 leader peptide fused to the a-amylase (data 

not shown). 

We have shown that the 27-residue leader peptide of Usp45 could be used to 

secrete the a-amylase of B. stearothermophilus. However, the Usp45 leader contains 

two other sequences which could function as a site for signal peptidase I according 

to the rules proposed (Von Heijne 1986). The most probable sites are located after 

Ala19 and Ala20. If one of these cleavage sites is used by lactococci, Usp45 would be 

produced as a preproprotein, such as the preproproteinase encoded by the prtP gene 

from L. lactis SK11 (Vos et al. 1989b). Such a pro-region could consist of only a few 

residues as is the case in the a-amylase of B. subtilis (Sasamoto et al. 1989). To test 

this hypothesis, pNZ10a6 and pNZ10a7 were constructed encoding the mature a-

amylase preceded by a leader composed of the first 20 or 19 amino-terminal residues 

of Usp45, respectively. E. coli cells harbouring these plasmids were able to secrete 

the mature active a-amylase. In contrast, L. lactis cells harbouring pNZ10a6 and 

pNZ10a7 were unable to secrete the a-amylase into the culture supernatant. Hence, 

the 19 or 20 first residues of the Usp45 leader are not sufficient for the secretion of 

a-amylase in L. lactis. Furthermore, it suggests that the signal peptidase I cleavage 

site for Usp45 itself is located after Ala27 in L. lactis. Although cleavage sites for signal 

peptidase I of known signal peptides are well conserved, the length of signal peptides 

may differ significantly. It has been shown (Suominen et al. 1987) that besides the 

normal 35-residue signal peptide of B. stearothermophilus, also the first 31 residues 

are used in E. coli. However, the S. aureus protein A signal peptide (of 36 residues) 

is functional in E. coli and the staphylococcal signal peptidase cleavage site is used 

(Abrahmsen 1985). Our data with the 19-, 20- and 27- residue Usp45 leader peptide 

a-amylase fusions show that secretion in E. coli can also be accomplished with shorter 

leader peptides of Usp45. In L. lactis, however, the shorter signal peptides did not 

result in secretion of a-amylase, providing experimental evidence for the hypothesis 

(Von Heijne and Abrahmsen 1989) that Gram-positive bacteria require a longer signal 
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peptide for secretion than Gram-negative organisms. 
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ABSTRACT 

The role of upstream sequences, gene dose and chromosomal location on 

heterologous gene expression in Lactococcus lactis was studied. For this purpose a 

series of gene fusions was constructed based on the expression and secretion signals 

of the L lactis usp45 gene, encoding the major lactococcal extracellular protein and 

part of the Bacillus stearothermophilus amyS gene encoding mature a-amylase. These 

fusions were introduced into L lactis on plasmid vectors or integrated into the 

chromosome. The smallest amounts of a-amylase were produced by L. lactis 

containing only the -35 and -10 promoter sequences and DNA downstream of the 

usp45 promoter. A sixfold increase in expression was obtained when the promoter 

region of the fusion was extended with an AT-rich region of 121 bp region upstream 

of the -35 sequence. Further extension of the region upstream of the promoter 

resulted in instable plasmids in L. lactis. Therefore, integration of several usp45-amyS 

fusions was accomplished in the usp45 and the lac locus of L. lactis. Further extension 

of the usp45 promoter upstream of the fusion resulted in an important additional 

increase of expression. These expression studies showed that the AT-rich region 

immediately upstream of the usp45 -35 sequence contributes significantly to the level 

of a-amylase production. Moreover, DNA more than 120 bp upstream of the -35 

sequence is of major importance for expression. Furthermore, the introduction of the 

usp45-amyS gene fusions in L lactis resulted in amylolytic lactococci, which were able 

to use starch as a sole energy source. 

INTRODUCTION 

There is considerable interest in the development of microorganisms capable 

of secreting heterologous proteins to be used in the food industry. Lactic acid bacteria, 

in particularly strains of Lactococcus lactis, are known to secrete proteins into the 

extracellular environment and could be suitable for this purpose (18). To realize this 

goal, genetic tools have been developed for the expression and secretion of 

homologous and heterologous proteins by L. lactis (5, 25). 

Recently, we have characterized the usp45 gene of L. lactis MG1363 (23) 

encoding the major extracellular protein of lactococci. An expression and secretion 
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Fig. 1 (A) The nucleotide 

sequence encoding the N-terminai 

part of the Usp45-a-amylase 

fusion and upstream sequences. 

The start of transcription is indicated 

by a vertical arrow. The -35 and -10 

promoter sequences are underlined. 

Relevant restriction sites are shown 

in italics. The a-amylase protein 

sequence is shaded. The startpoints 

of the gene fusion in the different 

Plasmids are indicated. (B) 

Schematic representation of 

pNZ10a5. Relevant restriction sites 

and (parts of) genes are indicated. 

The usp45 gene is shown by an 

hatched box and the amyS gene as 

a dotted box. The usp45 -10 and -35 

sequences are reperesented by 

arrowheads and the ribosome 

binding site by an ellipse. 

system was developed using the promoter, ribosome binding site and signal- peptide-

coding sequence of this gene (24). As a reporter gene we used the Bacillus 

stearothermophilus amyS gene devoid of sequences encoding the signal peptide. This 

system directed the production and secretion of a-amylase in L. lactis. 

The transcription start of the usp45 gene (23) is preceded by a consensus -10 

promoter sequence and an abberrant -35 sequence spaced by 14 nucleotides (Fig. 

1). Immediately upstream of the usp45 -35 sequence an AT-rich region is present, 

which appeared to be a common feature in lactococcal promoter regions (5, 25). In 

E. coli, regions upstream of the -35 sequence are known to contribute to promoter 

strength (12). The same phenomenon is observed in Bacillus subtilis (28), and in 

Staphylococcus aureus (15). In most of the investigated cases AT-rich sequences are 
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involved. 

For an extended evaluation of the expression system, the role of the region 

upstream of the -35 sequence was investigated by studying the expression of usp45-

amyS fusions. Various expression and secretion gene fusions were constructed and 

inserted in plasmid vectors or integrated in the chromosome to investigate the role of 

this region, gene dose and gene location in heterologous gene expression in L. lactis. 

MATERIALS AND METHODS 

Bacterial strains, plasmids and media. Strains, bacteriophages and plasmids used 

are listed in Table 1. Escherichia coli was grown at 37°C in TY broth (16) or on TY 

solidified with 1.5 % agar. L. lactis was grown at 30 °C in M17 medium (20) or in whey 

permeate medium (6), containing either 0.5 % glucose or 0.5 % starch. To screen for 

oc-amylase-producing transformants, whey permeate agar plates containing 0.5 % 

starch were used as described previously (24). Chloramphenicol (10 u.g/ml) or 

erythromycin (5 ug/ml) were used for selection. To increase the number of integrated 

plasmids, clindamycin (50 ng/ml) was used as described previously (4). 

DNA manipulations. For transformation of L. lactis, cells were cultured, washed, 

electroporated and recovered according to the method of Holo and Ness (10) and 

plated on glucose M17 agar plates. Plasmid DNA and chromosomal DNA was isolated 

as described previously (19, 24). Enzymes were purchased from Bethesda Research 

Laboratories (Gaithersburg, Md.) or New England Biolabs (Beverly, Mass.) and were 

used as recommended by the suppliers. General procedures for DNA manipulations 

were essentially as described by Sambrook et al. (17). 

Secretion vector construction. Plasmid pNZ10oc5 contains part of the usp45 gene 

(pos -158 to 127, Fig. 1 ) fused to the amyS gene encoding the mature oc-amylase (24). 

To construct pNZ10a1, plasmid pNZ10a5 was digested with Xba\, and the recessed 

ends were filled-in with the Klenow fragment of DNA polymerase I. Subsequently, it 

was partially digested with Psti. The fragment in which only the Pst\ site at position 

102 of the usp45 gene was cut was isolated. The 253-bp fragment containing the 

usp45 promoter region, ribosome binding site and part of the signal peptide coding 
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Table 1. Strains, phages and Plasmids used in this study. 

Bacteria 

£ coli 

MC1061 

L.lactis 

MG1363 

MG5267 

NZ9551 

NZ9564 

NZ9571 

NZ9572 

NZ9573 

Relevant properties' 

Plasmid free 

Plasmid free lac' 

Plasmid free lac* 

MG5267, harboring 1 copy of pNZ955 in the lac locus; EmR 

MG1363, harboring 4 copies of pNZ956 in the usp45 locus; Em" 

MG1363, harboring 1 copy of pNZ957 in the usp45 locus; EmR 

MG5267, harboring 2 copies of pNZ957 in the usp45 locus; EmR 

MG5267, harboring 3 copies of pNZ957 in the usp45 locus; Em" 

Source/Reference 

(3) 

(9) 

(7) 

This study 

This study 

This study 

This study 

This study 

Phages and Plasmids 

X1001 X 47.1 containing a 10 kb insert, containing the usp45 gene. (23) 

pNZ1011 pUC19 containing a Kpnl-EcoRI fragment carrying the usp45 gene; ApR (23) 

pNZ10a1 pNZ123 carrying the amyS gene fused to nt -33 to 127 of the usp45 gene; Cm" This study 

pNZ10a5 pNZ123 carrying the amyS gene fused to nt -158 to 127 of the usp45 gene; Cm" (24) 

pNZ942 pNZ941, containing the 0.86 kb Cm" marker from pNZ123; Cm", EmR, ApR (19) 

pNZ950 pNZ956, in which the 1.1 kb H/ndlll-Kpnl usp45 fragment has been deleted. This study 

pNZ955 pNZ942, containing the 2.5 Nco\-Nru\ fragment of pNZ10a5 cloned into the 

Sa/I-Wcol sites; CmR, EmR, Ap" This study 

pNZ956 pNZ955, containing a 1.1 kb H/ndlll-Kpnl fragment of M 001, cloned into the 

C/al-H/ndlll sites. Cm", EmR, ApR This study 

pNZ957 pNZ950, containing a 1.5 kb Hind\\\-Pst fragment from X.1001 upstream of the 

usp45-amyS fusion. CmR, EmR, ApR This study 

a. Abbreviations: Cm, Chloramphenicol; Em, Erythromycin; Ap, Ampicilin. 

region was replaced by the 132-bp Ssp\-Pstt fragment from pNZ1011, containing 

thesame elements except for the 121-bp -fragment located upstream of the -35 

sequence. 

Plasmid pNZ955, which was used for the integration of the usp45-amyS fusion 

into the lacGX locus of strain MG5267 (7) was constructed by digesting pNZ942 (19) 

with Sa/I, filling-in with Klenow fragment, and subsequently digesting with Nco\. The 

6.0-kb fragment, consisting of the vector, the Ap and Em antibiotic resistance markers, 

part of the caM94 gene and the Hind\\-Cla\ lacGX fragment, was ligated with a 2.0-kb 

Nco\-Nru\ fragment of pNZ10a5, containing the usp45-amyS fusion and the remainder 

part of the caM 94 gene. For the construction of pNZ956, the lac region of pNZ955 

was replaced by an 1.1 kb Kpn-Hind\\\ fragment containing usp45 upstream 

sequences from X.1001, an EMBL3 derivative, containing the usp45 gene (24). For this 

purpose the Kpn\ site of the À1001 fragment had been made blunt with T4 polymerase 
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fragment. It was ligated to plasmid pNZ955 which had been digested with C/al, filled-in 

with Klenow fragment and subsequently cut with HindlW. For the construction of 

pNZ957, the Hind\\\-Kpn\ usp45 fragment was deleted from pNZ956, generating 

pNZ950. Plasmid pNZ950 was partially cut with Psti and subsequently with EcoRI. The 

411-bp fragment generated by digestion of only the Psti site at position 102 of the 

usp45 gene and the EcoRI site upstream of the usp45-amyS fusion was isolated. The 

EcoRI site was filled-in with Klenow fragment. Phage M 001 was digested with HincftW 

and Psti. The HincRW-Psti fragment containing 1.5-kb upstream of the usp45 gene to 

the Psti site at position 102 was isolated. The Hind\\\ was filled-in with Klenow 

fragment and ligated to the Psfl-blunt fragment of pNZ1050, generating pNZ957. 

Southern blot analysis. DNA was transferred from 0.8 % agarose gels to 

Genesereen Plus membranes (DuPont, Nen Research Products, Boston, Mass.). DNA 

transfer and hybridization was performed as described by the manufacturers. 

Radioactively (32P) end-labelled oligonucleotides or nick-translated DNA fragments 

were used as probes. To determine the copy numbers of the plasmids, total DNA was 

analyzed by Southern blotting. An oligonucleotide probe complementary to nucleotide 

positions 34-61 of the usp45 gene (Fig. 1), hybridizing with both the chromosome and 

the plasmid, was used. The hybridizing fragments were cut out from the filter and the 

radioactivity was determined. The number of integrated copies of the chromosomal 

gene fusions was determined by comparison of the radioactivity in the border 

fragments and the amplified band after Southern blotting. 

Determination of the stability of transformants. L. lactis was grown in glucose M17 

broth without antibiotics. After 100 generations, dilutions were spread on selective or 

non-selective agar plates, containing starch. The ratio between the number of halo-

forming colonies obtained with or without selection determines the percentage of 

stable transformants. 

a-Amylase activity assay. L. lactis cells were cultured in whey permeate medium 

for approximately 4 h until an OD600 of 1.0. Cells were removed by centrifugation. 

Aliquots of 5, 10, 25, and 50 \i\ of culture supernatant were incubated with 20 mg of 

amylose azure (Sigma Chemical Co; St. Louis, MO) for 60 min at 60 °C in 1 ml of oc-

amylase buffer (50 mM Tris-HCI [pH 7.5], 50 mM NaCI, 5 mM CaCI2). After 
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centrifugation, the absorption at 595 nm of the supernatant was measured. a-Amylase 

of B. stearothermophilus (Cerestar, Vilvoorde, Belgium) (4600 u/ml) was used as a 

reference. 

PAGE and immunoblotting A 100-fold concentrated supernatant fraction was 

obtained by centrifugating the culture supernatant in 30 K microsep tubes (Filtron; 

Northborough, MA). Sodium dodecyl sulphate-polyacrylamide gelelectrophoresis (SDS-

PAGE) was performed according to Laemmli (13) and immunoblotting according to 

Towbin et al. (21) using antibodies against B. stearothermophilus a-amylase (24) and 

goat anti-rabbit peroxidase (BRL, Gaithersburg, Md.) as a second antibody. 

RESULTS 

Deletion of the AT-rich region upstream of the usp45 -35 sequence on plasmid 

pNZ10a5 results in a decreased expression of the usp45-amyS gene fusion. 

Plasmid pNZ10a5 encodes the first 27 amino acids of Usp45 followed by the mature 

a-amylase of B. stearothermophilus (Fig. 1, Table 1 )(24). The expression of the fusion 

with the heterologous a-amylase gene is under control of the DNA region downstream 

of the Haell site of the usp45 gene, located at position -158. To analyze the role of the 

AT-rich region immediately upstream of the -35 sequence in the expression of the 

gene fusion, the 121 Haell-Sspl fragment of the usp45 gene was deleted in pNZ10a5 

to generate plasmid pNZ10a1. After transformation of pNZ10a1 to L. lactis MG1363, 

transformants were streaked on whey-agar plates containing starch. The obtained 

colonies displayed smaller halos than colonies of MG1363 harboring pNZ10a5. The 

copy numbers of pNZ10a1 and pNZ10a5 appeared to be identical (12 per 

chromosome). 

Culture supernatant of the MG1363 cells harboring pNZ10a1 or pNZ10a5 was 

tested for a-amylase activity (Table 2). The supernatant fraction of MG1363 harboring 

pNZ10a5 displayed 600 mU/ml of a-amylase activity (Table 2)(24). Deletion of the 121 

nucleotides upstream of the usp45 -35 region in pNZ10a1, resulted in a 6-fold 

decrease in expression of the usp45-amyS fusion, indicating an important role in 

expression of this additional region in pNZ10a5. 
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Fig. 2 Schematic representation of the integration of pNZ957 (A), pNZ956 (B) and pNZ955 (C). The usp45 

structural gene is drawn as a grey box, the part of the lacG gene wich is not present on plasmid pNZ955 as a open 

box, and the amyS gene as a hatched box. Chromosomal DNA is shown as a continuous line, integrated plasmid 

DNA as a broken line. The black box in the recombinants represents the homology region used for recombination. 

The resistance markers are shown by arrows. Relevant restriction sites are marked as follows; C, C/al; E, EcoRV; 

H, H/ndlll; S, Ssfll; K, KprA; N, Ncol; A, Haell. A* represents the position of the usp4S Haell site which has been 

lost in to the construction of pNZ956 and pNZ955. Between brackets the amplificated unit is shown, n = 1, 2 or 3 

for NZ9571, NZ9572 or NZ9573, respectively. 

Chromosomal integration of the usp45-amyS fusion in the usp45 locus results 

in an increased a-amylase production. If the usp45 upstream region in the usp45-

amyS gene fusion in plasmid pNZ10oc5 was further extended, the transformation 

efficiency in L lactis of the generated plasmid decreased more than tenfold. The few 

obtained transformants produced no halos on starch-containing plates and harbored 

Plasmids in which the usp45 region and parts of the amyS gene were deleted. To 

determine the influence of the regions upstream of the Haell site on the a-amylase 

production, several usp45-amyS gene fusions were integrated into the lactococcal 

chromosome. In plasmid pNZ957 the usp45-amyS fusion was preceded by a 1.5 kb-

region upstream of the usp45 promoter. This region provided the homology region 

required for the integrative recombination event with the chromosome. As a result the 

usp45-amyS fusion will be located at the position of the usp45 gene in the parent 

strain (Fig. 2A). Two isogenic plasmid-free L. lactis strains, were chosen for the 

integration of pNZ957 into the chromosome, i. e. MG1363 (lactose-deficient) and 

MG5267 carrying a chromosomal copy of the lac operon. Analysis of the DNA content 

of the transformants, revealed that no plasmid DNA was present. In Fig. 2A, the DNA 

arrangement of the wild-type usp45 locus, and the situation after integration of one or 

more copies of pNZ957 is schematically depicted. Fig. 3A shows the Southern blot 

analysis of the chromosomal DNA of strains MG1363, and two transformants, NZ9571 

and NZ9572 using an usp45-specific oligonucleotide probe. Digestion of chromosomal 

DNA of MG1363 with EcoRV and Ssfll resulted in a 6-kb fragment hybridizing to the 

usp45 probe (Fig. 3A, lane 2). Southern blot analysis of chromosomal DNA of NZ9571 

digested with EcoRV and Ssfll, showed two hybridizing fragments of 4 kb and 8.5 kb 

(Fig. 3A, lane 3). These sizes agree with those of the border fragments generated 

after integration of one copy of pNZ957 (Fig. 2A), and confirmed the site-specific 

integration of the vector in the usp45 locus. In chromosomal DNA of NZ9572 an 

additional band with the size of the linear plasmid (7.5 kb) could be detected (Fig 3A, 

72 



A) 

NZ957n 

H ' K A 

MG1363 

y,w//>//J>> >>>>>>»-

Cm 

usp45-amyS 

ESggjgjpS}-

^ 
usp45-amyS Cm Ap E m /

 n 

K A 
(6kb) 

usp45 

(4kb) (8.5 kb) 

E 
J /A-

B) 

usp45-amyS 0/ x\ Em 
pNZ956 
(7.0 kb) 

Cm \ y Ap 

MG1363 

NZ9564 (6kb) 
A« S H 

Ap Em usp46-amyS Cm 

(6.5 kb) (6.5 kb) 

C) 

NZ9551 

N H 

<r 
lacGX Äfj *&—Q-

(11 kb) 

MG5267 

usp45-amyS gjjr v, E m 

pNZ955 
C m \ (8.0 kb) 

N % ^ A p 

lacGX 

(12.5 kb) 

usp45-amyS 

\ 
lacGX -/h 

(7.4 kb) 



lane 4), indicating that more copies of the pNZ957 were present on the chromosome. 

The number of integrated copies of the gene fusions in the transformants was 

determined and showed that most strains, like NZ9571, carried one copy. Some 

transformants originating from MG5267, like NZ9572, carried two copies. To increase 

the number of copies, NZ9572 was cultured in the presence of clindamycin, an 

analogue of erythromycin. This resulted in NZ9573, carrying 3 copies of the integrated 

gene fusions (Fig. 3A, lane 5). Further amplification was not observed. 

The a-amylase production of NZ9571, NZ9572 and NZ9573 was determined 

and showed that NZ9571, containing a single copy of the usp45-amyS gene fusion, 

produced an a-amylase activity of 800 mU/ml. This is an increase of 200 mU/ml, 

compared to MG1363 harboring 12 copies of pNZ10a5. Furthermore, an increase in 

the copy number of the usp45-amyS fusion, as in NZ9572 and NZ9573, resulted in a 

slight increase in a-amylase production (Table 2). 

Integration of the usp45-amyS gene fusion in the usp45 and lac locus of L. 

lactis. To investigate whether the increase in a-amylase production by NZ9571 was 

due to the additional upstream usp45 sequences preceding the usp45-amyS gene 

fusion or was a consequence of the locus at which the usp45-amyS gene fusion was 

integrated, pNZ956 and pNZ955 were constructed. Plasmid pNZ956 was used for 

integration of the usp45-amyS fusion upstream of the usp45 structural gene and 

Plasmid pNZ955 for integration downstream of the lac operon of strain MG5267 (Fig. 

3). As in pNZ10a5, the expression of these gene fusions was controlled by the DNA 

sequences at position -158 to 127 of the usp45 gene and are preceded by vector 

sequences which are known to function as transcriptional terminators (19). 

Transformation of pNZ956 to MG1363 yielded strain NZ9564, which was difficult to 

obtain, probably due to the small size (1 kb) of the homology region (Fig. 2B). DNA 

from NZ9564 was digested with EcoRV and Ssfll, and Southern blot analysis resulted 

in two overlapping hybridizing border fragments of 6.5 kb each (Fig. 3B). Furthermore, 

a fragment with the size of the plasmid was detected, showing a stronger hybridization 

signal than the two border fragments together, suggesting that more than one copy 

had been integrated in the chromosome. Determination of the number of integrated 

copies showed that NZ9564 contained four copies of the usp45-amyS gene fusion. 

The a-amylase activity secreted by NZ9564 was 300 mU/ml (Table 2). 

Because the lac operon is chromosomally located in strain MG5267, this strain 

was used to transform pNZ955. Chromosomal DNA from MG5267 and transformants 
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Fig 3. Autoradiogram of Southern analysis of chromosomal DNA. (A) MG1363, NZ9571 and NZ9572 and 

NZ9573, digested with EcoRV and Ssfll, hybridized to an oligonucleotide complementary to position 34 to 61 of 

the usp45. Lane 1, pNZ957; lane 2, MG1363, lane 3; NZ9571, lane 4, NZ9572; lane 5 NZ9573. (B) MG1363 and 

NZ9564 digested with EcoRV and Ssfll, hybridized to an oligonucleotide complementary to position 34 to 61 of the 

usp45 gene. Lane 1, pNZ956; lane 2, MG1363, lane 3, NZ9564. (C) Chromosomal DNA of MG5267 and NZ9551, 

digested with Ncol, hybridized to a lacX probe. Sizes of the hybridizing fragments are indicated in kb. 

was digested with A/col. In MG5267this resulted in a 11.5-kb fragment hybridizing to 

a /acX-specific probe (Fig 2C and 3C, lane 1). After integration of pNZ955 in MG5267, 

as in NZ9551, two bands, one sized 11 kb and the other 7.4 kb, could be visualized 

after hybridization with a /acX-specific probe, indicating that site-specific integration 

Table 2. a-Amylase production of L lactis strains. 

Strain usp45-amyS copies cx-amylase production (mU/ml) 

MG1363[pNZ10a1] 

MG1363[pNZ10a5] 

NZ9551 

NZ9564 

NZ9571 

NZ9572 

NZ9573 

12 

12 

1 

4 

1 

2 

3 

100 

600 

70 

300 

800 

900 

1050 

± 10 

±25 

+ 10 

±20 

±45 

±40 

±55 
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Fig 4. Immunoblot of 1 ml of supernatant of L. 

/actis strains incubated with a-amylase antibodies. 

Lane 1, MG1363 harboring pNZ123; lane 2, MG1363 

harboring pNZ10a1; lane 3, MG1363 harboring 

pNZ10a5; lane 4, NZ9551; lane 5, NZ9564; lane 6, 

NZ9571 ; lane 7, NZ9572; lane 8, NZ9573; The size of 

the marker proteins are shown in kDa. The position of 

the mature a-amylase is indicated with an arrow. 

had occurred (Fig 3C, lane 2). No transformants with multiple integrated copies were 

found. Strain NZ9551 secreted 70 mU/ml a-amylase into the culture supernatant 

(Table 2). 

The segregational stability of the integrated DNA in NZ9571, NZ9572, NZ9573, 

NZ9564 and NZ9551 was tested. After 100 generations of growth without Em, cells 

were plated on plates with or without Em. All colonies showed Em resistance. 

Furthermore, a-amylase production remained unaffected, indicating that no loss of the 

integrated plasmids had occurred. 

Immunoblot analysis. The supernatant fractions of the cultured strains were analyzed 

by SDS-PAGE. Wild-type amounts of Usp45 were found but no a-amylase band could 

be detected after staining with coomassie brilliant blue (results not shown). However, 

when the culture supernatant fractions were analyzed on immunoblots, a band with 

the same migration as mature B. stearothermophilus a-amylase could be detected in 

the supernatant of all strains (Fig. 4). The difference in a-amylase production by the 

strains is reflected by the intensity of the band. The ratio of intra- and extracellular a-

amylase was estimated to be the same (4 : 1) in all strains (results not shown) and 

corresponds to that found in previous work (24). 

Amylolytic properties of L. lactis harboring the usp45-amyS gene fusions. To test 

whether a-amylase production was high enough to obtain growth on starch, NZ9564, 

NZ9571 and MG1363 harboring pNZ10a1 or pNZ10a5 were cultured on whey 

permeate medium with starch as the sole usable energy source. Because whey 

permeate contains lactose, strains derived from MG5267 could not been used for this 

purpose. The growth curves of the various strains are depicted in Fig. 4. All strains 

reached an OD600 of 2.2 after growing on starch, when an usp45-amyS fusion was 

present in the cells. When no additional carbon source was available, cell division 

ceased at an OD600 of 0.25. Strains NZ9564, NZ9571 and MG1363 harboring 
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Fig 5. Growth curves on whey permeate with starch as carbon and energy source of MG1363 harboring 

pNZ123, - -, MG1363 harboring pNZ10a1 -D-, MG1363 harboring pNZ10a5 -O-, NZ9564 -A- and NZ9571 -0-. 

Average growth characteristics on whey permeate with glucose are shown as a thin, broken line, and on whey 

permeate without any sugar as a thin continuous line. 

pNZ10a5 displayed growth on starch, with maximal growth rates (nmax) of 0.6S, 0.71 

and 0.76, respectively, indicating an efficient breakdown of the starch. These growth 

rates are still lower on starch than on glucose (u.max = 1.07), but they are comparable 

with the growth rate of MG5267 on whey, using lactose as energy source (u.max = 0.69) 

(19), indicating an efficient use of the starch. The differences in growth rate 

correspond with the differences in a-amylase production by the strains. Strain NZ9571, 

producing the largest amount of a-amylase exhibited the highest growth rate. 

DISCUSSION 

The functionality of the expression and secretion signals of the usp45 gene, for 

the production of a-amylase has been reported previously (24). To investigate the role 

of the DNA region upstream of the -35 sequence of usp45 on expression, various 

usp45-amyS gene fusions were constructed and transformed to L. lactis. Quantification 
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of the produced a-amylase showed significant differences in expression level of the 

strains. The results showed clearly that the AT-rich region immediately upstream of 

the -35 sequence affected the amount of a-amylase production. Moreover, an 

additional extension of the DNA region upstream of the usp45 promoter also plays an 

important role in the efficiency of expression. Furthermore, the copy number of the 

gene fusion plays an additional role in the heterologous gene expression, but no effect 

of chromosomal locus on expression was observed. 

Plasmid pNZ10a5 contains a region of 121 bp upstream of the -35 sequence. 

MG1363 harboring plasmid pNZ1 Ooc1, which is devoid of this extra region, show a six

fold decrease in oc-amylase production, as compared to MG1363 harboring pNZ10oc5. 

Both plasmids have the same copy number (12 per chromosome). The region 

upstream of the -35 sequence is AT-rich (73% for the first 100 nucleotides upstream 

of the -35 sequence) whereas the coding region of the usp45 gene has an AT-content 

of 61% which is representative for L. lactis structural genes found so far (25). It has 

been demonstrated that curving of AT-rich sequences, contributes to an elevated 

expression of the downstream located DNA region (1, 8). Curving of the additional 

DNA region in pNZ10oc5 may be involved in the enhanced expression of a-amylase 

compared to pNZ10a1. 

Chromosomal integration of the usp45-amyS gene fusion under control of 

position -155 to 127, as in NZ9551 and NZ9564, resulted in a lower a-amylase 

production as compared to MG1363 harbouring pNZ10a5, carrying the same gene 

fusion on plasmid. Because readthrough of transcription of DNA upstream of the 

inserted usp45-amyS gene fusion could be excluded in all three cases, this is most 

probably the result of difference in copy number of the usp45-amyS fusions in these 

strains. Increase from one (NZ9551) to four copies (NZ9564) resulted in a 4 times 

increase in a-amylase secretion as was expected. This linear increase suggests that 

the locus used to integrate these gene fusions (lac operon or usp45 gene) does not 

affect the expression of the usp45-amyS gene fusion. Further increase to 12 copies 

as in MG1363 harboring pNZ10a5 resulted in an additional 2times higher expression. 

The importance of copy number in the (over)production of proteins in L lactis has also 

been established for the production of the homologous proteinase PrtP and 

aminopeptidase N (2, 14, 22). 

An additional effect on the expression of the usp45-amyS gene fusion has 

been observed in NZ9571, NZ9572 and NZ9573. Compared to pNZ10a5, pNZ955 and 
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pNZ956, the upstream region in pNZ957 is further extended. Comparison of the 

activities of NZ9551 (70 mU/ml), containing one copy of the usp45-amyS gene fusion 

with the additional 121 nucleotides located on the chromosome, and NZ9571 (800 

mU/ml) permits the conclusion that extension of the promoter with a region more than 

120 bp upstream of the -35 sequence results at least in a 12-fold increase of 

expression. The DNA region upstream of the promoter of the L. lactis lacABCDFEGX 

operon, has also been shown to contribute to its promoter strength (29). In this case 

extension of the region from position -75 to -204 resulted in a 1.5-fold higher 

expression. In addition, further extension to position -388 resulted in an additional 2-

fold increase of transcription. Although no sequence conservation between the lac and 

usp45 upstream region could be observed the results obtained with both promoters 

suggest a similar transcription activating role for DNA sequences more than 100 bp 

upstream of lactococcal promoters. The high expression of the gene fusion with an 

extended promoter region could explain in the instability in L lactis of plasmids 

containing the region upstream of the HaeW site of the usp45 gene. 

The relatively small difference of a-amylase activity between NZ9571 (800 mil), 

harboring one copy of pNZ957 and NZ9572 (900 mil) or NZ9573 (1050 mU), in which 

two- or three-fold amplification of the integrated pNZ957 DNA has occurred, 

respectively, could be explained in several ways. First of all DNA sequences upstream 

of that cloned in pNZ957 could influence expression of the gene fusion. This could be 

caused by readthrough from genes upstream of the usp45 gene. However, 

transcription analysis of the usp45 gene showed only a single mRNA of 1500 

nucleotides, which is initiated at position 1 (23). Furthermore, the amount of produced 

Usp45 should be significantly decreased, since the usp45 structural gene is dislocated 

from its original position in NZ9564 and NZ9571. Wild-type amounts of Usp45 were 

produced by those strains which leaves the explanation very unlikely. Secondly, the 

amount of a-amylase produced by NZ9571 could be near the maximum of the 

secretion capacity of L. lactis. This explanation is also unfavourable, since there is no 

additional intracellular accumulation of precursor. Therefore, the most likely 

explanation for slight difference in expression between strains NZ9571, NZ9572 and 

NZ9573 is a non-linear gene dose effect. Allthough the gene dose correlates almost 

linearly with a-amylase production in NZ9551 and NZ9564, the level of expression is 

not always linearly related to the gene dose as has been demonstrated for the prtP 

gene in L. lactis (2, 14). After integration into the L. lactis chromosome an increase 
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from 2 to 5 copies resulted in an eight-fold increase of proteinase production. A further 

increase to 8 copies only resulted in a 1.5-fold higher proteinase level (14). When the 

gene was introduced on a plasmid with a ten-fold higher copy number than the 

plasmid present in the wild-type strain, a 3-fold increase of PrtP production was 

observed (2). The results obtained with the prtP gene and those obtained with 

NZ9571, NZ9572 and NZ9573, suggest that the role of gene dose diminishes at higher 

expression levels. 

An important aspect of the production of a-amylase by L lactis is the extension 

of its substrate range. L lactis strains grow on several sugars, such as lactose, 

galactose, and in some cases sucrose or maltose. However, L lactis is not able to 

utilize polysacharides, such as starch. By introducing a functional a-amylase gene in 

L lactis, the amylolytic activity results in growth on starch (Fig.5). The results obtained 

with NZ9571 displaying growth rates on starch comparable to those on lactose indicate 

that the a-amylase production is sufficient for efficient growth. 

In conclusion, the present study shows that the metabolic capacity of L. lactis 

can be increased by chromosomal integration of a single copy of the usp45-amyS 

gene fusion. The resulting L lactis strains can ferment starch efficiently and have 

potential to be used as hosts for the production of homologous and heterologous 

proteins, that can grow on a cheap energy source, or as starter cultures for non-dairy 

fermentations. 
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CHAPTER 5 

MUTATIONAL ANALYSIS OF THE TRANSLATION 
INITIATION REGION OF THE USP45 GENE OF 
LACTOCOCCUS LACTIS USING AN USP45-AMYS 
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ABSTRACT 

The usp45 gene encodes the major extracellular protein of Lactococcus lactis 

strain MG1363. The putative AUG start codon of this gene is preceded by two possible 

Shine and Dalgarno (SD) sequences; SD1 (GGAGG) and SD1 (AAAG), which are 

located 21 and 6 nucleotides upstream of the AUG codon, respectively. The vector 

pNZ10cc5 contains an usp45-amyS gene fusion, encoding the Usp45 signal peptide 

fused to the Bacillus stearothermophilus oc-amylase. Site-directed mutagenesis of the 

two usp45 SD-sequences in pNZ10oc5 has been performed to reduce their 

complementarity to the 3' end of 16S rRNA of L lactis. In addition, the spacing 

between the putative translational start codon and SD1 was reduced to 7 nucleotides, 

to generate a consensus-like ribosome binding site. It appeared that none of the SD-

mutations nor the optimization of the spacing between SD1 and the start codon 

resulted in a difference in a-amylase production in L lactis as compared to the wild-

type production found in L. lactis containing pNZ10oe5. 

INTRODUCTION 

Usp45 is the major extracellular protein of Lactococcus lactis (21). To examine 

the capacity of L. lactis as a host for the production of heterologous proteins, the 

expression and secretion signals of the usp45 gene were used in the construction of 

a secretion vector, designated pNZ10oc5, employing the Bacillus stearothermophilus 

amyS as a reporter gene (22). Several usp45-amyS gene fusions have been 

constructed to investigate the influence of the upstream region of the usp45 promoter 

on a-amylase production in L. lactis. Furthermore, the effect of gene dose and 

chromosomal location on the expression level was determined (23). 

Besides the efficiency of transcription, also the translation efficiency of the 

mRNA has a significant effect on gene expression (16). The translational start codon 

of the usp45 gene is preceded by 2 putative Shine-Dalgarno (SD) sequences (Fig. 1 ) 

(17). Neither of these SD sequences conform to the consensus SD sequences found 

in L. lactis that have a high complementarity to the 3' end of the lactococcal rRNA (11) 

(AG0 values between -36 and -75 kJ/mol) and are located in between 5 and 16 bp 

upstream from the initiation codon (2,4, 25). SD2 is located 6 bp upstream of the start 

codon, which is a normal spacing for lactococci (4, 25). However, the free energy of 
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P L S G V Y A A A P F N G T M M Q Y F E 

Fig. 1: Architecture of usp45-amyS 

gene fusions. Depicted is the 

nucleotide sequence of the usp45 

expression signals and that of the N-

terminal part of the a-amylase 

preceded by the signal peptide of 

Usp45, present in pNZIOoS. The 

mutations in pNZ10a57, pNZ10a58, 

and pNZ10a59 are indicated. The 

deleted region in pNZ10a59 is shown 

by dashes. The start of transcription is 

indicated by a +1. The -35 and -10 

promoter sequences are underlined. 

Relevant restriction sites are indicated. 

SD1 and SD2 are double underlined. 

The N-terminal residues of the amyS 

are shaded. The start and stop codon 

and the amino acids of the open 

reading frame possibly involved in the 

translational coupling are shown in italics. 

the complementarity of this SD to the 3' end of the L. lactis 16S rRNA is only -19.3 

kJ/mol. The complementarity of the second SD (SD1) sequence to the 3' end of the 

rRNA is high (AG0 is -60.4 kJ/mol, and is more than average in lactococci (4, 25). 

However, the spacing between this SD sequence and the start codon is 21 bp, which 

is exceptional, both in Gram-positive and in Gram-negative bacteria (4, 6, 8, 25). 

This report describes site-directed mutagenesis of these two SD sequences in 

pNZ10oc5 to study their role in expression of the usp45-amyS gene fusion. 

MATERIALS AND METHODS 

Bacterial strains, media and growth conditions. E. coli strain MC1061 (1) and L. 

lactis strain MG1363 (5) were used as hosts. E. coli was grown at 37°C in TY broth 

(14) or on TY solidified with 1.5 % agar. L. lactis was grown at 30 °C in M17 (19) or 

whey-permeate (3) medium containing 0.5 % glucose. For electroporation of L. lactis, 

cells were treated as described previously (22). To screen for oc-amylase-producing 

transformants, whey-permeate agar plates containing 0.5 % starch were used. If 

appropriate, chloramphenicol was used at a concentration of 10 u.g/ml. 
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DNA manipulations. Plasmid DNA was isolated as described previously (22). 

Enzymes were purchased from BRL (Gaithersburg, Md.) or Biolabs (Beverly, Mass.) 

and were used as recommended by the suppliers. General procedures for DNA 

manipulations were essentially as described by Sambrook et al. (15). 

Site directed mutagenesis of the usp45SD regions in pNZ10oc5. Plasmid pNZ10cc5 

contains the usp45-amyS gene fusion with the original usp45 ribosome binding site 

(22). For the construction of mutations in the SD sequences (see Fig. 1) in pNZ10oc5 

the following oligonucleotides 5'CAACCGAACTTAATGCCTCCAAAAATTAAAAAAGAA-

CAG [oligo 1], 5'GGGAGGAAAAATTAAAAAATAACAGTTATGAAAAAAAAG [oligo 2] 

and 5'CAACCGAACTTAATGGGAGGAACAGTTATGAAAAAAAAG [oligo 3] were 

synthesized on a Millipore/Biosearch Cyclone DNA synthesizer (Biosearch, San 

Rafael, Calif.). Following the PCR-mutagenesis protocol of Kuipers et al. (9), oligo 1 

was used for the construction of pNZ10a57, oligo 2 for pNZ10a58 and oligo 3 for 

pNZ10oc59. Oligonucleotides, complementary to ca/86 and amyS (22) were used as 

border primers. The generated PCR products were cut with Xba\ and Ss/t and inserted 

into pNZ10ot5, digested with the same enzymes. The mutations were verified by 

nucleotide sequencing (18). 

ot-Amylase activity assay. L. lactis and E. coli cells were grown to an OD600 of 1.0 

and harvested by centrifugation. E. coli cell lysates were obtained by disrupting the 

cells 3 times for 3 min in a bead beater (Biospec Products; Bartlesville, Okla.) using 

zirconium beads (diameter 0.1 mm). Aliquots of L. lactis culture supernatant were 

incubated with 20 mg of amylose azure (Sigma Chemical Co; St. Louis, MO) for 60 

min at 60 °C in 1 ml of oc-amylase buffer (50 mM Tris-HCI [pH 7.5], 50 mM NaCI, 5 

mM CaCI2). After centrifugation, the absorption at 595 nm of the supernatant was 

measured. a-Amylase of B. stearothermophilus (Cerestar, Vilvoorde, Belgium) (4600 

u/ml) was used as a reference. 

PAGE and immunoblotting. Cellular extracts were obtained by disrupting the cells 

3 times for 3 min in a bead beater (Biospec products) using zirconium beads (diameter 

0.1 mm). A concentrated (100-fold) supernatant fraction was obtained by centrifugating 

the culture medium in 30 K microsep tubes (Filtron). SDS-PAGE was performed 

according to Laemmli (10) and immunoblotting according to Towbin et al. (20). 
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Antibodies against B. stearothermophilus a-amylase, purchased from Cerestar 

(Vilvoorde, Belgium), were raised in rabbits. Goat anti-rabbit peroxidase (Gibco-BRL) 

was used as a second antibody. 

RESULTS AND DISCUSSION 

Site-directed mutagenesis of the two usp45 SD-regions. To locate the SD 

sequence of the usp45 gene in the usp45-amyS gene fusion of pNZ10oc5 (22), we 

constructed pNZ10oc57 and pNZ10a58 (Fig. 1). In plasmid pNZ10a57, the SD1 

sequence, GGAGG at position 19 to 23 was replaced by CCTCC. As a result, there 

is no complementarity of the mutated SD1 to the 3' end of 16S rRNA. In plasmid 

pNZ10a58 the G residue of SD2 at position 37 is mutated into a T residue. The 

complementarity of the mutated SD2, with the sequence AAA, to the 3' end of the 16S 

rRNA is reduced to AAA, which is almost negligible (Fig. 1). To generate a SD site 

with a high complementarity to the 3' end of 16S rRNA and an optimal spacing to the 

AUG initiation codon, the nucleotides at position 24 to 37 were deleted in pNZ10oc59. 

In this way SD1 is positioned 7 nucleotides upstream from the usp45 initiation codon. 

Plasmids pNZ10oc57, pNZ10oc58 and pNZ10oc59 were transformed to L. lactis 

MG1363 and E. coli MC1061. The secreted a-amylase activities produced by the 

generated strains were determined (Table 1). 

SD2 suffices for translational initiation in L. lactis. When SD1 was mutated as in 

pNZ10oc57, expression of the usp45-amyS gene fusion in L. lactis and E. coli was 

hardly affected, suggesting that SD2 is the functional SD sequence of usp45. Recent 

studies performed on translation in E. coli and B. subtilis using the lacZ gene as 

marker gene (13, 27) have shown that a decrease in free energy of complementarity 

of a SD sequence and the 16S-rRNA resulted in a reduced translation efficiency. This 

effect was more drastic in B. subtilis than in E. coli. A decrease of AG0from -99.1 to -

53.8 kJ/mol resulted in an approximately ten-fold decrease of translation efficiency in 

E. coli, but more than 100-fold in B. subtilis (27). Staphylococcus aureus, another 

Gram-positive organism, also requires SD sequences with a higher complementarity 

to the 3' end of 16S rRNA than E. coli (12). The degree of complementarity of SD-

regions from L. lactis with the 3'end of 16S rRNA appears to be intermediate between 
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Table 1. a-Amylase production of L lactis harboring the various plasmids. 

Strain Activity Strain Activity 
(mU/ml) (mU/ml) 

L lactis E. coli 
MG1363[pNZ10o5] 600 MC1061[pNZ10a5] 5500 
MG1363[pNZ10a57] 580 MC1061[pNZ10a57] 5500 
MG1363[pNZ10a58] 600 MC1061[pNZ10a58] 4700 
MG1363[pNZ10a59] 560 MC1061[pNZ10a59] 9900 

those of SD-regions of other Gram-positive organisms and of E. coli (2, 4, 25). Free 

energy of complementarity of identified lactococcal SD-regions have a mean value of 

AG0 -51.9 kJ/Mol (4). The results obtained with L. lactis harboring suggest that even 

a AG0 of -19.3 kJ/Mol suffices for translational initiation. 

Mutation of SD2 does not affect expression in L. lactis. Similar a-amylase 

production levels were observed in L. lactis harboring pNZ10a5 and pNZ10a58 in 

which SD2 was mutated (Table 1). This suggests that also SD1, that is separated by 

21 nucleotides from the usp45 start codon, can be functional in L. lactis. No secondary 

structure could be postulated between SD1 and the start codon, which might reduce 

their physical distance, as is the case in the T4 gene 38 translational initiation region 

(6). Three explanations could be envisaged for the wild-type level of a-amylase activity 

found by MG1363 harboring pNZ10oc58. 

First, translational coupling could be involved. The combination of start and stop 

codon, AUG A, has been shown to be a very efficient combination in the translational 

coupling of different open reading frames in L. lactis (24). The usp45 start codon 

partially overlaps with an UGA stop codon. This stop codon is terminating an open 

reading frame of 6 amino acids using the AUU codon at position 28 as an initiation 

codon (Fig. 1). The spacing between SD1 and this initiation codon resembles the 

optimal spacing as observed in most ribosome binding sites, but so far this codon has 

not been found to initiate translation in bacteria. Nevertheless, it is has been observed 

that other codons, in which one substitution has taken place can serve as start 

codons, both in B. subtilisas in E. co//(6, 7, 8). In pNZ10a57, SD1 is mutated, which 

would eliminate the translation of the 6 aa leader peptide. In pNZ10oc58 a stop codon 

(TAA) is introduced in the leader encoding reading frame. If translational coupling was 

involved, the expression of the usp45-amyS gene fusion in both plasmids would have 
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Fig. 2: Immunoblot of 1 ml of supernatant (sup) and 

0.2 ml of cell pellet (cp) fractions of L lactis strains 

incubated with a-amylase antibodies. Lane 1, 1 2 3 4 5 6 7 8 9 1 0 

molecular weight marker; lane 2, a-amylase; lane 3, 

MG1363[pNZ10a5] sup; lane 4, MG1363[pNZ10a57] 

sup; lane 5, MG1363[pNZ10a58] sup; lane 6, 

MG1363[pNZ10oc59] sup; lane 7, MG1363[pNZ10a5] 

cp; lane 8, MG1363[pNZ10oc57] cp; lane 9, 

MG1363[pNZ10a58]cp; lane 10, MG1363[pNZ10a59] 

cp. The position of the mature a-amylase is indicated 

with an arrowhead. 

been decreased. Since this was not observed (Table 1) this explanation is very 

unlikely. 

The second possible explanation is that a lower translation rate of the gene 

fusion in pNZ1 Ooc58 as compared to pNZ1 Ooc5 could result in a more efficient secretion 

of the a-amylase. Immunoblot analysis of intracellular proteins of the a-amylase 

producing L. lactis strains revealed that a substantial amount of inactive a-amylase 

remains intracellular^ (22). This is probably due to premature folding of the protein 

into an export incompetent form. A presumed lower translation rate of the mRNA 

produced by L lactis strain carrying pNZ10a58, could result in a more efficient 

secretion. However, analysis of the intracellular fractions of MG1363 harboring 

pNZ10a5, pNZ10a57, pNZ10a58 and pNZ10a59, showed no significant difference in 

the amounts of intracellular a-amylase (Fig. 2, lanes 7-10). 

The third possible explanation could be that the allowed spacing between SD 

sequence and start codon in L lactis is higher than in E. coli and B. subtilis. The 

spacing between SD-sequence and start codon has been the subject of investigations 

in E. coli and B. subtilis. Analysis of the effect on translation efficiency resulting from 

changes in the ribosome binding site have demonstrated that the longer spacing than 

observed for naturally observed ribosome binding sites are allowed, both in E. coli (13, 

27), and in B. subtilis (27). Particularly B. subtilis is relatively more efficient than E. coli 

in recognizing ribosome binding sites with a greater than optimal spacing between SD 

and initiation site. Spacing of up to 12 nucleotides led to a 75% loss in translation 

efficiency in E. coli, but resulted in only 50% loss in B. subtilis (27) as compared with 

values obtained with an optimal spacing. Moreover, extension of the region between 

the SD sequence and the start codon to 21 nucleotides still caused, although 

drastically reduced (0.3% of optimal), lacZ expression in E coli (13). Strain MC1061 
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harboring pNZ10a58 also showed a reduced expression of the usp45-amyS gene 

fusion, but the decrease in expression was by far not as dramatically as demonstrated 

with lacZfusions (13). This could be due to the fact that expression of gene fusion in 

pNZ10oc5 is directed by SD2, which is not optimized. The results of MG1363 harboring 

pNZ10a58 presented in this report suggest that L. lactis is able to use a ribosome 

binding site with a spacing of 21 nucleotides between the SD region and the start 

codon, without major loss of translation efficiency. 

An optimization between SD sequence and start codon does not improve 

expression in L. lactis. 

It seemed plausible that a combination of a strong SD sequence with a proper 

spacing in the usp45-amyS gene fusion would result in a higher production of the oc-

amylase. However, decrease of the spacing between SD1 and the AUG start codon, 

as in pNZ10oc59, did not result in an increased expression of the usp45-amyS fusion 

in L. lactis. This could be due to the reduction of the non-translated region of the 

mRNA. Analysis of the lac promoter revealed that sequences downstream the start of 

transcription contribute significantly to promoter activity. A deletion of 54% of the non-

translated 5' region resulted in a 12-fold decrease in expression level (26). In 

pNZ10a59, 32% of the non-translated 5' region is deleted. The possible negative 

effect of this deletion might conceal a conceivable higher rate of translation. This 

possibility should be investigated through RNA analysis. Furthermore, the results 

derived from pNZ10a57 and pNZ10a58 suggest that variations in the translational 

initiation region are not of major importance in the expression of the usp45-amyS gene 

fusion in L. lactis. The optimization of the ribosome binding site in pNZ10oc59 results 

in an increase in a-amylase production in E. coli. However the difference in the 

observed activities is not as high as found with comparable ribosome binding sites 

used in the lacZ fusions. 

Conclusions 

Both SD sequences (SD1 and SD2) of the usp45 gene are functional in translational 

initiation of the usp45-amyS fusion, both in E. coli as in L. lactis. Although differences 

in expression of the usp45-amyS gene fusion in E. coli have been observed no 

increase in production of the a-amylase in L lactis was obtained using the optimized 

spacing between SD1 and the AUG initiation codon. These data suggest that L. lactis 

tolerates SD sequences with a low complementarity to 16S rRNA as well as a 21-
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nucleotide spacing between the SD and the AUG start codon. 

REFERENCES 

1 Casadaban, M. J., J. Chou, and S. N. Cohen. 1980. In vitro fusions that join 

an enzymatically active ß-galactosidase segment to aminoterminal fragments of 

exogenous proteins in Escherichia coir, plasmid vectors for the detection of translation 

signals. J. Bacteriol. 143: 971-980. 

2 De Vos de, W.M. 1987. Gene cloning and expression in lactic streptococci. 

FEMS Microbiol. Rev. 46: 281-295. 

3 De Vos, W.M., P. Vos, H. De Haard and I. Boerrigter. 1989. Cloning and 

expression of the Lactococcus lactis subsp. cremoris SK11 gene encoding an 

extracellular serine proteinase. Gene 85: 169-176. 

4 De Vos, W. M. and Simons G. F. M. 1993. Gene cloning and expression 

systems in lactococci. In: Genetics and Biotechnology of Lactic Acid Bacteria. (M. J. 

Gasson and W. M. De Vos, Eds) pp. 52-105. 

5 Gasson, M.J. 1983. Plasmid complements of Streptococcus lactis NCD0712 

and other lactic streptococci after protoplast induced curing. J. Bacteriol. 154: 1-9 

6 Gold, L, D. Pribnow, T. Schneider, S. Shinedling, B. S. Singer, and G. 

Stormo. 1981. Translational initiation in procaryotes. Annu. Rev. Microbiol. 35: 365-

403. 

7 Gren, E.J. 1984. Recognition of messenger RNA during translational initiation 

in Escherichia coli. Biochimie 57: 1 -29. 

8 Hager, P. W., and J. C. Rabinowitz. 1985. Translational specificity in Bacillus 

subtilis. In: D. A. Dubnau (ed.), The molecular biology of the Bacilli. Vol II. pp 1-31. 

Academic press, Inc., Orlando. 

9 Kuipers, O. P., H. J. Boot and W. M. de Vos. 1991. Improved site-directed 

mutagenesis method using PCR. Nucl. Acids Res. 19: 4558. 

10 Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the 

head of bacteriophage T4. Nature 227: 680-685. 

11 Ludwig, W., E. Seewaldt, R. Kilpper-Balz, K. H. Schleifer, L. Magrum, C. R. 

Woese, G. E. Fox and E. Stackebrandt. 1985. The phylogenetic position of 

Streptococcus and Enterococcus. J. Gen. Microbiol. 131: 543-551. 

12 McLaughlin, J. R., C. L. Murray, and J. C. Rabinowitz. 1981. Unique features 

93 



in the ribosome binding site of the Gram-positive Staphylococcus aureus ß-lactamase 

gene. J. Biol. Chem. 256: 11283-11291. 

13 Ringquist, S., S. Shinedling, D. Barrick, L. Green, J. Binkley, G. D. Stormo 

and L. Gold. 1992. Translational initiation in Escherichia coir, sequences within the 

ribosome-binding site. Molec. Microbiol. 6: 1219-1229. 

14 Rottlander, E. and T.A. Trautner. 1970. Genetic and transfection studies with 

Bacillus subtilis phage SP50. J. Mol. Biol. 108: 47-60. 

15 Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular Cloning. Cold 

Spring Harbor, New York: Cold Spring Harbor Laboratory Press. 

16 Sampson, L. L., R. W. Hendrix, W. M. Huang and S. R. Casjens 1988. 

Translation initiation controls the relative rates of expression of the bacteriophage X 

late genes. Proc. Natl. Acad. Sei. USA 85: 5439-5443. 

17 Shine, J. and L. Dalgarno. 1974. The 3' terminal sequence of E.coli 16S RNA: 

complementary to nonsense triplets and ribosome binding site. Proc. Natl. Acad. 

Sci.USA71: 1342-1346. 

18 Tabor, S. and C. C. Richardson. 1987. DNA sequencing analysis with a 

modified bacteriophage T7 polymerase. Proc.Natl.Acad.Sei.USA 84: 4767-4771. 

19 Terzaghi, B.E. and W.E. Sandine. 1975. Improved medium for lactic 

streptococci and their bacteriophages. Appl. Microbiol. 29: 807-813. 

20 Towbin, H., T. Staehelin and J. Gordon. 1979. Electrophoretic transfer of 

proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some 

applications. Proc. Natl. Acad. Sei. USA 76: 4350-4354. 

21 Van Asseldonk, M., G. Rutten, M. Oteman, R. J. Siezen, W.M. De Vos, W.M. 

and G. Simons. 1990. Cloning of usp45, a gene encoding a secreted protein from 

Lactococcus lactis subsp.lactis. Gene 95: 155-160. 

22 Van Asseldonk, M., W. M. De Vos and G. Simons. 1993. Functional analysis 

of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous 

proteinase and a heterologous a-amylase. Mol. Gen. Genet. 240: 428-434. 

23 Van Asseldonk, M., M. Nijhuis, P. Doesburg, W.M. De Vos, and G. Simons. 

Role of sequences upstream of the -35 region of the usp45 gene in expression of a 

heterologous a-amylase in Lactococcus lactis. Submitted for publication. 

24 Van De Guchte, M., J. Kok and G. Venema. 1991. Distance dependent 

translational coupling and interference in Lactococcus lactis. Mol. Gen. Genet. 227: 

65-71. 

94 



25 Van De Guchte, M., J. Kok and G. Venema. 1992. Gene expression in 

Lactococcus lactis. FEMS Microbiol Rev. 88: 73-92. 

26 Van Rooijen, R. J., M. J. Gasson, and W. M. De Vos. 1992. Characterization 

of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences 

and LacR repressor to its activity. J Bacteriol. 174: 2273-2280. 

27 Vellanoweth, R. L. and J. C. Rabinowitz. The influence of ribosome-binding-

site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. 

Molec. Microbiol. 6: 1105-1114. 

95 



CHAPTER 6 

CLONING, NUCLEOTIDE SEQUENCE AND 
REGULATORY ANALYSIS OF THE LACTOCOCCUS 
LACTIS DNAJ GENE. 

Martien van Asseldonk, Annet Simons, Hans Visser, Willem M. de Vos and Guus 
Simons. 

This Chapter has been published in The Journal of Bacteriology 175 (1993) 1637-1644 

The Heat (Dan Reed Network) 



SUMMARY 

The dnaJ gene of Lactococcus lactis was isolated from a genomic library of L 

lactisstrain NIZO R5 and cloned into pl_IC19. Nucleotide sequencing revealed an open 

reading frame of 1137 bp, encoding a protein of 379 amino acids. The deduced amino 

acid sequence showed homology to the DnaJ proteins of Escherichia coli, 

Mycobacterium tuberculosis, Bacillus subtilis and Clostridium acetobutylicum. The level 

of the dnaJ monocistronic messenger RNA increased approximately three-fold after 

heat shock. The transcription initiation site of the dnaJ gene was determined and 

appeared to be preceded by a typical Gram-positive vegetative promoter sequence 

(TTGCCA-17bp-TAAAAT). Upstream of the promoter region an inverted repeat is 

located, that is identical to those detected upstream of heat shock genes of other 

Gram-positive organisms. A transcriptional fusion between the dnaJ expression signals 

and an usp45-amyS secretion cassette caused a significant increase in a-amylase 

activity after heat shock induction. Deletion mutagenesis showed that the inverted 

repeat is involved in heat shock regulation of the dnaJ gene. The conservation of this 

palindromic sequence in Gram-positive heat shock genes suggests a common 

regulatory pathway, distinct from the system used in Gram-negative bacteria. 

INTRODUCTION 

An abrupt increase in growth temperature usually causes the induction of 

synthesis of a small group of proteins, called the heat shock proteins. This response 

is a common feature in eubacterial, archaebacterial and eukaryotic organisms. Not 

only the reaction to heat shock is similar, but also the structure and function of the 

induced proteins are highly conserved (for a recent review see 1). 

The dnaJ gene of Escherichia coli was originally discovered as an essential 

gene for bacteriophage lambda replication (39). Recently, it has been demonstrated 

that DnaJ is also involved in the replication of phage P1 (47) and oriC plasmids (22). 

One of the major activities of DnaJ is to stimulate the ATPase activity of DnaK, the 

prokaryotic member of the HSP70 family. This enhanced ATPase activity may result 

in an efficient recycling of DnaK (20). Furthermore, DnaJ is also believed to "target" 

other proteins for action by DnaK (48). Due to its cooperation with DnaK, DnaJ also 

plays a role in protein folding (11) and the facilitation of export of homologous and 

98 



hybrid proteins (29, 49). 

Analysis of the heat-shock response of Lactococcus lactis has revealed the 

induction of 13-16 proteins after temperature shift from 30 °C to 37 °C or 42 °C (2,50). 

Immunological screening of these induced proteins showed the presence of GroEL-

and DnaK-like heat shock proteins in L. lactis. (2,50). In addition, the lactococcal 

counterparts of the heat shock proteins GrpE and DnaJ could also be detected (2). 

Recently, the groELS ope ran of L lactishas been cloned and its nucleotide sequence 

has been determined (17). 

In this report we describe the cloning and characterization of the dnaJ gene of 

L. lactis. We show that its expression is regulated at the transcriptional level and is 

critically dependent on the presence of a palindromic structure immediately preceding 

its promoter. 

MATERIAL AND METHODS 

Bacterial strains, plasmids, media and growth conditions. E. coli strain JM83 (45) 

and L. lactis strains MG1363 (12) and NIZO R5 (30) were used. The plasmids used 

are listed in Table 1. E. coli was grown in TY broth (34) or on TY solidified with 1.5% 

agar. L lactis was grown in glucose M17 medium (40) or in whey-permeate broth (9). 

For the induction of heat shock response, L. lactis cells were grown at 30CC to an 

optical density at 600 nm of 0.6. Cells were pelleted by centrifugation and 

resuspended in whey-permeate broth of 30°C, 37°C or 42°C and incubated for 10, 20 

or 30 min at those temperatures. For electroporation of L lactis, cells were cultured, 

washed and recovered as described previously (15) and plated on glucose M17 agar 

plates. The antibiotics used for selection in media were chloramphenicol (10 u.g/ml) 

and ampicillin (50 |ig/ml). 

DNA manipulations. Plasmid DNA was isolated as described previously (4). For L 

lactis cells TMS buffer (44) containing 2% of lysozyme was used for 30 min at 37°C 

to protoplast the cells. Enzymes were purchased from Bethesda Research 

Laboratories (Gaithersburg, Md.) and New England Biolabs Inc. (Beverly, Mass.) and 

were used as recommended by the suppliers. DNA manipulations were essentially as 

described previously (35). 
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Table 1. Plasmids used in this study 

Plasmid Relevant genetic characteristics* Source/Reference 

pUC19 Cloning vector; ApR 45 

M13 mp 18/19 Cloning vector for sequencing purposes 23 

pNZ2015 pUC19 carrying a Sty\-Xho\ fragment containing the dnaJ gene; ApR This study. 

pNZ2016 pUC19 carrying a Sph\-Xho\ fragment containing the dnaJ gene; ApR This study. 

pNZ10a5 pNZ123 carrying the amyS gene fused to position -158 to 127 of the 

usp45 gene; Cm" 44 

pNZ20a1 pNZ123 carrying the usp45-amyS cassette fused to position -217 to 41 

of the dnaJ gene; CmR This study 

pNZ20a3 pNZ123 carrying the usp45-amyS cassette fused to position -40 to 41 

of the dnaJ gene; CmR This study 

a. Abbreviations: Cm, Chloramphenicol; Ap, Ampicilin 

Cloning of the dnaJ gene and immunological methods. A genomic library of L. 

lactis NIZO R5 partial Sau3A fragments was prepared in E. coli MB406 (Promega, 

Madison, Wise.) using the EMBL arms cloning system (Packagene Lambda Packaging 

System; Promega, Madison, Wise.) as described previously (33). Cellular extracts of 

L. lactis strain NIZO R5 were separated on SDS/PAGE (18). A mixture of proteins with 

a molecular weight of approximately 40 kDa, including glyceraldehyde-3-phosphate 

dehydrogenase, was excised from the gel and recovered by isotachophoresis (27). 

Antibodies were raised against this partially purified protein fraction and were used to 

screen the genomic library. Immunoblotting was performed as described previously 

(42). Screening of the library, preparation of liquid lysates and DNA isolation of 

positive recombinant phages was performed as described previously (43). 

DNA sequence analysis and data evaluation. Restriction fragments of pNZ2015 

(Table 1) were inserted into the appropriate sites of M13 mp18 or mp19 (23). DNA 

sequencing by the dideoxy chain method (36) was performed using Sequenase (U. 

S. Biochemical Corp., Cleveland, Ohio) and the universal M13 primer or 

oligonucleotides synthesized on a Cyclone DNA synthesizer (Biosearch, San Rafael, 

Calif.). The DNA sequence was analyzed with the PC/GENE software system 

(IntelliGenetics Inc., Geneva, Switzerland). The database search was performed with 

the CaosCamm facilities in Nijmegen, The Netherlands (10). 

RNA analysis. Following 10 min of induction at 30°C, 37°C or 42°C, 25 ml of cells 

were pelleted by centrifugation and immediately frozen in liquid nitrogen. After 
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resuspension in 0.5 ml of TE buffer (10 mM Tris-HCI [pH 8.0], 1mM EDTA) total RNA 

was isolated using macaloid clay (32). After addition of 0.6 g Zirconium beads (0.1-

mm, Biospec Products, Bartlesville, Okla.), 0.17 ml 4% macaloid clay suspension, 0.5 

ml phenol and 50 uJ 10% sodium dodecyl sulphate, cells were disrupted in a bead 

beater (Biospec Products, Bartlesville, Okla.). After centrifugation, a phenol/chloroform 

extraction was performed. The RNA was precipitated and stored at -80 °C. Northern 

blot analysis was performed as described previously (31). 

Primer extension analysis. A synthetic oligonucleotide complementary to position 3 

to -27 of the dnaJ gene was used in a primer extension experiment. 1 picomol primer 

was annealed to 30 u.g of RNA, followed by cDNA synthesis as previously described 

(8). The product was analyzed on a 6% polyacrylamide-urea sequencing gel together 

with a dideoxy sequencing reaction using the same primer. 

Construction of a dnaJ-amyS transcriptional fusion. A transcriptional fusion 

between the dnaJ expression signals and a usp45-amyS gene fusion (44) was 

constructed. For this fusion a recombinant PCR protocol (16) was adjusted (Fig. 1). 

Three primers were used: (i) A fusion primer with the sequence 5'-

GGAAGTGAGTAATTTAGAAATGAAAAAAAAGATTATCTCAGC-3', of which the 5' end 

was complementary to position 23 to 44 of dnaJ and the 3' end to the first 23 

nucleotides of the usp45 signal sequence, (ii) an oligonucleotide with the sequence 

5'-CGACTTCGGGATGATCC-3', complementary to the amyS gene, and (iii) the 

reverse sequencing primer (New England Biolabs Inc. Beverly, Mass.). Plasmids 

pNZ10oc5 (Table 1)(44), containing the usp45-amySfusion encoding the Usp45 signal 

peptide fused to the mature a-amylase of Bacillus stearothermophilus, and plasmid 

pNZ2016 (Table 1 ) were used as templates. The 3 primers and 2 templates were used 

simultaneously in one PCR reaction with annealing at 46 °C. In the first 2 cycles a 

product will be generated from the fusion primer, the a-amylase primer and pNZ10a5 

(Fig. 1 A and B). The 3' end of this product will be complementary to the fusion primer, 

and serves as a primer on pNZ2016 (Fig. 1 C). The generated product can be further 

amplified with the reverse primer (Fig. 1 D) and the a-amylase primer. After 30 cycles 

of PCR the two expected products were found. One is the product of the fusion primer 

and the a-amylase primer using pNZ10a5 as template, the other is a fragment 

containing the dnaJ expression signals fused to the usp45-amyS fusion (Fig. 1 E). 

101 



C) 

D) 

E) 

pUC19 

dnaJ 

usp45 

.amyS 

A) 

B) 

pNZ2016 
5' 

Reverse Primer 
5' 

3' 
. w 3' 
^ 

Xba\ 
5' 
3' 1 

5'_ 

3' _ 

5 '_ 

3' ^ 
^ 

Fusion Primer 

\ 'W 3' 
^ 

pNZ10a5 

3' 
/ 

5' 

3' 
3' ^ 5' 

amyS Primer 

5' 

5' 

Ssfll 

/ . 5' 
/ 

FIG. 1. Schematic drawing of the recombinant PCR method for the construction of a transcriptional fusion 
of the dnaJ expression signals with the usp45-amyS fusion as described in the Materials and Methods 
section. Only steps involved in the production of the fusion and their products are displayed. A) annealing first 
cycle. B) annealing second cycle. C) annealing third cycle. D) annealing fourth cycle. E) end product. 

Subsequently, the fusion product was cut with Xba\ and Ssfll and ligated into 

pNZ10oc5, digested with the same enzymes, resulting in pNZ20oc1. For the 

construction of pNZ20ot3, DNA of pNZ20oc1 served as a template in a PCR reaction 

with the a-amylase primer and a primer complementary to position -40 to -14 of the 

dnaJ gene, preceded by a Xbal site (5'-GGGTCTAGA I I I I I I IGCCAAAAAT-

GAAAAAACGTG-3'). The product was cut with Xba\ and Ssfll and ligated into 

pNZ10oc5, digested with the same enzymes. 

a-Amylase activity assay. Culture supernatant was incubated with 20 mg of amylose 

azure (Sigma Chemical Co; St. Louis, MO) for 60 min at 60 °C in 1 ml of a-amylase 

buffer (50 mM Tris-HCI [pH 7.5], 50 mM NaCI, 5 mM CaCI2). After centrifugation, 

absorption at 595 nm of the supernatant was measured. 

Nucleotide sequence accession number. The DNA sequence shown in Fig. 2 has 

been assigned GenBank data base accession no. M99413 
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RESULTS 

Isolation of the dnaJ gene from L. lactis NIZO R5. A genomic library of strain 

R5 was screened with antibodies raised against intracellular proteins of L. lactis with 

a size of approximately 40 kDa. This screening resulted in the isolation of four 

recombinant phages. As expected, analysis of phage lysates of these recombinant 

phages by immunoblotting revealed that they all directed the synthesis of proteins with 

a size of approximately 40 kDa. Analysis of the DNA of the phages showed that they 

contained inserts of 12-19 kb. Restriction endonuclease mapping revealed a 8-kb 

Xho\-Kpn\ fragment present in all inserts. This fragment was used for further analysis. 

Different overlapping fragments were inserted into pUC19. Immunoblot analysis of E. 

coli JM83 harboring these plasmids showed that a 2-kb Sty\-Xho\ DNA fragment 

directed the synthesis of the 40 kDa protein. The plasmid containing this fragment was 

designated pNZ2015. 

Nucleotide and encoded aa sequences. The nucleotide sequence of the Sty\-

Xho\ fragment of pNZ2015 was determined (Fig. 2). The largest open reading frame 

present on this fragment was ORF1 with a size of 1173 bp. ORF1 could encode a 

protein of 379 residues, with a calculated molecular mass of 40786 Da. This molecular 

mass is in agreement with the size of the protein reacting with the antibodies used. 

The deduced amino acid sequence of the protein shows a high glycine content (16%), 

and contains four repeats of a motif consisting of CxxCxGxG (residues 154-161; 171-

178; 197-204; 211-218). Furthermore, the sequence GGFGG is repeated 3 times in 

the N-terminal part (residues 75-79; 80-84; 96-100). ORF1 is preceded by a Shine-

Dalgarno sequence (38) at position 20 for which a free energy of -11.8 kcal/mol could 

be calculated (41). A second ORF (ORF2) of at least 200 bp terminates at position -

257; only the 3' terminal part of ORF2 is present on the Sty\-Xhoi fragment. 

Downstream of ORF1, no ORFs larger than 133 bp are present. 

An inverted repeat (IR), extending from positon -69 to position -39 is located 

between ORF1 and ORF2. Downstream ORF1, no sequences with significant 

secondary structures were found. 

Relationship of the determined ORFs to other amino acid sequences. The 

deduced amino acid sequence of ORF1 was compared to sequences in the NBRF-Pir 
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- 4 5 7 
CCTTGaACaTCTQATQAAGACATCCCGGATGGTGGTTTTCCAACaATT 

- 4 0 9 
TOOCCCÄCAGCTTT<»T<3AQTTTT«:TCAAGAAAATAATATCaUU3TT^ 
- 3 1 9 
GTTTTATCAQAACATTTAGTTQAAATQTGGGT<^CGATT<ÄTTTT<3AT<3AACCTAATATCACTTAGCATaATTATTACQ<3TTATAAGOTT 
- 2 2 9 
GTAGCTAATACGGCATGCTGTTATTTTAGATQGGTATAACGAAAAOAAAAATGAGTTTCATGTTACTGATCCAATAAAAGGAAAATATTG 

Sphl 
- 1 3 9 
GTTGGCTGAATCTACAGTTGATTCGGTTTATAGTGGAACAAATCAATTTGCGATAGAATTTTTATAGTGTAATTAGCACTCTTATAAAAA 

>>>>>>>>»>>> << 
-49 1 
GAGTGCTAATTTTTTTGCCAAAAATQAAAAAACGTGGTAAAATAGTGCTATTGAAAAATTGATTTAGTAAAGQAAGTGAGTAATTTAGAA 
<<<<<<<<<<< -35 -10 T 
42 
ATGAATAATACTGAATATTATGAACGACTAGGTGTCGATAAAAATGCCAGTCAAGATGAAATAAAAAAAGCTTATCGTAAAATGTCCAAA 

M N N T E Y Y E R L G V D K N A S Q D E I K K A Y R K M S K 30 
132 
AAATATCACCCCGATTTAAATAAAGAAGAGGGTGCTGAAGAAAAATATAAAGAAGTTCAAGAAGCATACGAAACGCTTTCGGATGAACAA 

K Y H P D L N K E E G A E E K Y K E V Q E A Y E T L S D E Q 60 
222 

K R A A Y D Q Y G E A G A N G G F G G G G F G G A S G F S G 9 0 
3 1 2 
TTCGGCGGTAGCTCAQOTQ<KTTTGGT<MTTTTCU^a\TATATTCTCAAGTTTCTTTCK»QQAOOTQOTGCACAAOTTAACCCTAATGCA 

F G G S S G G F G G F E D I F E S F F G G G G A Q V N P N A 1 2 0 
4 0 2 
CCCCGTCAAGGAGATGACTTACAGTATCGGATAAACTTAAAATTTGAAGAAGCTATTTTTGGCGTGGAAAAACAAGTCAAATATAATCGT 

P R Q G D D L Q Y R I N L K F E E A I F G V E K Q V K Y N R 1 5 0 
4 9 2 
GAAGAACTCTGTCACACTTGTGGAGGTTCTGGAGCQAAACGTGGCACACATCCAGAAACTTGTCATAAATGTGGTGGTCGTGGACAAATT 

E E L C H T C G G S G A K R G T H P E T C H K C G G R G Q I 1 8 0 
5 8 2 
AATGTTGTTCGTGATACACCGCTTGGACGGATGCAAACACAAGTAACATGTGATGTTTGTAACGGAACAGGTAAAGAAATCAAAGAGAAA 

N V V R D T P L G R M Q T Q V T C D V C N G T G K E I K E K 2 1 0 
6 7 2 
TGTGAAACTTGTCATGGTTCAGGTCATGAAAAAGTGGCACATACTGTTAAGGTTACTGTACCTGCTGGTGTTGAAACTGGACAAAAAATG 

C E T C H G S Q H E K V A H T V K V T V P A G V E T G Q K M 2 4 0 
7 6 2 
CGTTTGCAAGGACAAGGTGATGCTGGTGTAAATGGTGGACCTTATGGTGATTTGTATGTTGTTTTCCAAGTGGAAGCTTCAGACAAATTT 

R L Q G Q G D A G V N G G P Y G D L Y V V F Q V E A S D K F 2 7 0 
8 5 2 
GAGCGTGATGGTGCAGAAATTTACTACAAGATGCCAATGGACTTTGTTCAAGCTGCTTTAGGTGATGAAATTGAAGTTCCGACTGTTCAT 

E R D G A E I Y Y K M P M D F V Q A A L G D E I E V P T V H 3 0 0 
9 4 2 
GGAAATGTGAAGTTGAAAATTCCTGCTGGAACACAAACAGGGGCTAATTTCCGTCTAAAAGGTAAAGGTGCGCCAAAACTCCGTGQTTCT 

G N V K L K I P A G T Q T G A N F R L K G K G A P K L R G S 3 3 0 
1 0 3 2 
GGTAATGGTGACCAATATGTTATTATCAATATTGTCACTCCTAAGAATTTGAATCAAGCTCAAAAAGAAGCGCTCCAAGCTTTTGCTAAA 

G N G D Q Y V I I N I V T P K N L N Q A Q K E A L Q A F A K 3 6 0 
1 1 2 2 
GCAAGTGGTGTTGAAGTCTCTGGTT<^GGTAAAAAAGGTTTCTTTGATAAGTTTAAATAAAAATAAAAGTAAAAGTCGCTTTTGGCGGCT 

A S G V E V S G S G K K G F F D K F K -
1 2 1 2 

1 3 0 2 
TTTTGATATAATAGGGGCATGAAAATTGATAATTATAGCCTGATTATTTGTGAGCGCTATCACTAGACCTACGCGTCAGTCGATGTCGGC 
1 3 9 2 
GATCTCATO 

FIG. 2. Nucleotide and deduced amino acid sequence of the dnaJ gene of L. lactis. Indicated are the putative 
Shine-Dalgarno sequence (double underlined) , the -10 and -35 sequences (underlined) and the IR (arrowheads 
below the sequence). The 5' end of the mRNA as identified by primer extension is marked (arrow). The repeated 
CXXCXGXG motif in the protein sequence is shaded and the repeated GGFGG sequences are shown in italics. 

(Version 32.0) and SWISS-PROT (Version 21.0) data bases and published protein 

sequences. This analysis revealed a high similarity of the encoded protein with several 

bacterial DnaJ heat shock proteins; DnaJ from E. coli (3, 28) (45.2% identity), from 

Mycobacterium tuberculosis (19) (37.5% identity), and from Bacillus subtilis (46) (57% 

identity) (Fig. 3). In addition, similarity with the published N-terminal sequence of DnaJ 

of Clostridium acetobutylicum (51 % identity)(25) was found. The amino acid sequence 
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LI MOTTE YYERLGVDKNASQDEIKKAYRKHSKKYHPDLNK-EEGAEE 44 
BS MSKRD YYEVLGVSKSASKDEIKKAYRKLSKKYHPDINK-EAGSDE 44 
Ec MAKQD YYEILGVSKTAEEREIRKAYKRLAMKYHPDRNQGDKEAEA 45 
Ht MRQREWVEKDFYQELGVSSnASPEEIKRAYRKIARDLHPnANPQNPAAGE 50 

** ** 
LI KYKEVQEAYETLSDEQKRAAYDQYGEAG-AHGGFGGGGFGGA—SGFSGF 91 
BS KFKEVKEAYETLSDDQKRAHYDQFGHTD-PNQGFGGGGFGGG DFGGF 90 
Ec K FKEIKEAYEVLTDSQKRAAYDQYGHAAFEOGGMGGGGFGGG—ADFSDI 93 
Aft RFKAVSEAHNVLSDPAKRKEYDE-TRRLFAGGOFGGRRFDSGFGGGFGGF 99 

LI GGSSGGFGG FEDIFSSPFOOOOÄQVMPN&PRQGD 125 
BS G FDDIFSSIFGGGTRRRDPKLRARGA 116 
B o FGDVFGDIFGGG RGRQRAARGA 115 
Ht GVGGDGAEFNLNDLFDAASRTGGTTIGDLFGGLFGRGGSAR-PSRPRRGN 148 

LI DLQYRINLKFEEAIFGVEKQVKYNREELCHTCGGSGAKAGTHPETCHKCG 175 
BS DLQYTMTLSFEDAAFQKETTIEIPREETCETCKGSGAKPGTNPETCSHCG 166 
Ec DLRYNMELTLEEAVRGVTKEIRIPTLEECDVCHGSGAKPGTQPQTCPTCH 165 
Ht DLE-TETLDFVEAAKGVAMPLRLTSPAPCTHCHGSOARPGTSPKVCPTCH 197 

** .* .* * * * ****..** *..* * 
LI GRGQINWRDTPLGRMQTQVTCDVCHGTGKEIKEKCETCHGSGHEKVAHT 225 
BS GSGQLNVEQNTPFGKWNRRVCHHCEGTGKIIKNKCADCGGKGKIKKRKK 216 
EC GSGQVQMRQ GFFAVQQTCPHCQGRGTLIKDPCNKCHGHGRVERSKT 211 
«t GSGVIN-RNQGAFGF SEPCTDCRGSGSIIEHPCEECKQTGVTTRTRT 243 

LI VKVTVPAGVETGQKMRLQGOGDAGVNGGPYGDLYWFQVEASDKFERDGA 275 
BS INVTIPAGVDDGQQLRLSGQGEPGINGG-LPDLFWFHVRAHEFFERDGD 265 
Sc LSVKIPAGVDTGDRIRIAGEGEAGEHGAPAGDLYVQVQVKQHPIFEREGH 261 
Mt INVRIPPGVEDGQRIRLAGQGEAGLRGAPSGDLYVTVHVRPDKIFGRDGD 293 

LI EIYYKMPMDFVQAALGDEIEVPTVHGNVKLKIPAGTQTGANFRLKGKGAP 325 
BS DIYCEMPLTFAQAALGDEVEVPTLHG—KVKIPAGTQTGTKFRLRGKGVQ 313 
Ec NLYCEVPINFAHAALGGEIEVPTLDGRVKLKVPGETQTGKLFRMRGKGVK 311 
HC DLTVTVPVSFTELALGSTLSVPTLDGTVGVRVPKGTADGRILRVRGRVCP 343 

LI KLRGSGNGDQYVIINIVTPKHLNQAQKEALQAFAKASGVEVSGSGK K 372 
BS NVRGYGQGDQHIWRWTPTNLTDKQKDIIREFAEVSG-NLPDEQE H 359 
Ec SVRGGAOGDLLCRVWETPVGLNERQKQLLQELQESFGGPTGEHNSPRSK 361 
Ht SAVQVAATYLSP 355 

LI GPFDKFK 379 
BS SFFDKVKRAFKQ—D 372 
Ec SFFDGVKKFFDDLTR 376 

# *** * 
FIG. 3. Alignment of the deduced amino acid sequences of the DnaJ 
proteins of L. lactis {LI), B. subtilis (ßs) (46), E. coli (Ec) (3, 28) and HI. 
tuberculosis (MQ(19). Identical amino acids are indicated by asterisks, 
conserved residues are indicated by points (14). Gaps to obtain maximum fit 
are indicated by dashes. The conserved CXXCXGXG repeats are shaded. 

also shared significant homology with SIS1 (21), YD1 (6) and SCJ1 (5), three 

eukaryotic counterparts of this heat shock protein from yeast. Alignment of the proteins 

revealed the conservation of the CxxCxGxG repeats. From these data, together with 

the heat shock regulation data described below, we conclude that ORF1 encodes the 

lactococcal dnaJ gene. Homology analysis of ORF2 and the small ORFs downstream 

ORF1 revealed no significant homology with known proteins. 
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FIG. 4. Transcriptional analysis of the dnaJgene. A) Autoradiogram of the sequence gel used to analyze the primer 

extension products of RNA of NIZO R5, isolated after 10 min of heat shock induction at the indicated temperatures. 

The primer extension product is indicated (arrow). The sequence ladder obtained with the same primer is also 

shown. B) Autoradiogram of a Northern blot of total RNA, isolated at 30°C, or after heat shock, hybridized with a 

radioactively labeled Hpa\-Xho\ fragment of the dnaJ gene. The 1.8 kb messenger is indicated (arrow). To the left, 

the size of RNA markers (Bethesda Research Laboratories, Gaithersburg, Md.) are shown in kb. 

Transcriptional analysis of the L. lactis dnaJ gene. The start of transcription 

of the dnaJ gene was determined by primer extension analysis of RNA isolated at 

30°C or after heat shock (Fig. 4A). These experiments revealed that the transcription 

initiation starts at an adenine at position 1. This start of transcription is preceded by 

the sequence TTGCCA-17bp-TAAAAT (position -35 to -7), resembling the consensus 

for vegetative Gram-positive promoters (13). The putative -10 sequence is preceded 

by TGN, which is also present in more than 50% of the lactococcal promoters 

determined so far (37). In RNA isolated from a 30°C culture, a small amount of cDNA 

could be observed. In equal amounts of RNA isolates from cultures after heat shock, 

the quantity of primer extension product increased approximately 2-3 fold with respect 

to 30°C, indicating an elevated amount of transcripts after heat shock. Furthermore, 

no additional transcription initiation sites could be detected under these conditions. 

Northern blot analysis was performed by use of a radioactively labeled Hpal-

Xho\ fragment containing the part of the dnaJ gene downstream position 390. Analysis 

of RNA isolated from L. lactis NIZO R5 grown at 30°C, showed that the dnaJ gene 

was transcribed as a 1.8-kb mRNA (Fig. 4B). The amount of mRNA increased 

approximately two-fold after heat shock of 37°C and 3-4-fold after heat shock of 42°C. 
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FIG. 5. Relative amounts of a-amylase activity produced by L. lactis MG1363 carrying a transcriptional 
dnaJ-amyS fusion. pNZ20a1 contains the dnaJ promoter region including the IR, while in pNZ20a3 the IR was 
deleted. Heat shock was induced as described in the Materials and Methods section. Samples were taken after 
indicated times, and newly secreted a-amvlase activity was assayed. 
MG1363[pNZ20cc1] at: 30°C D , 37°C 0 , 42°C • . MG1363[pNZ20cc3] at: 30°C 0 , 37°C S , 42°C ^ . 

A 1.0-kb product also hybridized with the probe. When a probe complementary to the 

5' end of the dnaJ gene was used this product could not be detected, indicating that 

it probably represents a 3' terminal breakdown product of the dnaJ mRNA (results not 

shown). No large products were detected after heat shock. 

A palindromic DNA structure is involved in heat shock regulation of dnaJ. 

The IR found at position -69 shows similarity to palindromic structures that are located 

at corresponding positions upstream of heat shock genes of B. subtilis, C. 

acetobutylicum, Synechocystis sp., Synechococcus sp., Mycobacterium sp. and 

Chlamydia psittaci (46). It has been postulated that this IR could be involved in the 

temperature sensitive regulation of transcription of these heat shock genes. To 

address this hypothesis, a construction was made in which the DnaJ-encoding region 

was exchanged with a usp45-amyS gene fusion encoding the B. stearothermophilus 

mature a-amylase, preceded by the usp45 signal peptide (44). In plasmid pNZ20oc1, 

the usp45-amyS fusion is preceded by a region of dnaJ including position -217 to 44 
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that contains the IR (Fig. 2). In plasmid pNZ20a3, only position -40 to 44 of the dnaJ 

gene is present and hence the IR is deleted. After introduction of pNZ20a1 or 

pNZ20a3 in L lactis MG1363, a-amylase activities were measured 10, 20, or 30 min 

after heat shock at 37 or 42 °C (Fig. 5). The final optical density of the cells after heat 

shock induction at 37 °C or 42 °C was not higher compared to the optical density of 

cells grown at 30 °C at the indicated times. Strain MG1363 harboring pNZ20a1 

resulted in 2-4 times higher a-amylase production after heat shock induction. However, 

strain MG1363 harboring pNZ20oc3 showed a constitutive a-amylase production at 

30°C and at elevated temperatures. The level of a-amylase production of this strain 

was comparable to that of MG1363 harboring pNZ20a1 after heat shock induction. 

DISCUSSION 

In this report the cloning, sequencing and characterization of the dnaJ gene of 

L. lactis is described. Besides homology of the encoded protein with the DnaJ protein 

of E. coli (3, 28) and M. tuberculosis (19), identity was found with the DnaJ proteins 

from B. subtilis (46) and from C. acetobutylicum (25). The Met residue at position 1 

fits perfectly in the alignment of the different DnaJ proteins. Alignment of the reported 

proteins revealed a significant overall homology and the conservation of a motif 

consisting of CxxCxGxG, which is repeated four times (Fig. 3). This motif was also 

found in the eukaryotic homologues of the DnaJ proteins; SCJ1 (5), YD1 (6) and SIS1 

(21). The biological meaning of this motif is not yet clear. The organisation into two 

larger repeats CxxCxGxG(x)8CxxCxGxG as in YDJI (6), was not found in the other 

reported proteins and is unlikely to be characteristic for DnaJ proteins. The 

conservation of the GGFGG sequence is less significant. Only one of the three 

lactococcal copies of this sequence is present in the bacterial DnaJ species of E. coli 

and B. subtilis. 

In prokaryotes, most dnaJ genes characterized so far are preceded by dnaK, 

encoding another heat shock protein that is conserved among prokaryotes and 

eukaryotes (3, 25, 28, 46). Upstream of the L lactis dnaJ gene another ORF, 

designated ORF2, was found, but its deduced amino acid sequence shared no 

homology with known DnaK proteins, suggesting another genomic organization of 

these heat shock genes in L. lactis. The dnaJ gene of M. tuberculosis is located 788 

bp downstream of the dnaK gene (19). This intergenic distance exceeds the DNA 
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region sequenced from dnaJ from L. lactis, hence a conservation in genetic 

organization of the dnaK and dna J genes between M. tuberculosis and L /acf/s cannot 

be totally excluded. The possibility that the dnaK is situated downstream of the dnaJ 

gene or elsewhere on the chromosome is also still conceivable. 

In B. subtilis (46), C. acetobutylicum (25), and E. coli (3, 28) dnaJ is located in 

an operon that also includes dnaK. In L. lactis however, the start of transcription of 

dnaJ is located immediately upstream of the dnaJ gene. In addition, the size of the 

RNA messenger is 1.8 kb. This is too small to contain both genes. From these data, 

it can be concluded that the lactococcal dnaJ and dnaK are not organized in a single 

operon. The same holds for the dnaK/ dnaJ gene organisation of Synechocystis (7). 

Transcriptional analysis of the dnaK gene of this organism revealed that it is 

transcribed as a monocistronic messenger. Hence, a putative dnaJ gene will also be 

on a separate transcriptional unit. 

The induction of expression of the dnaJ gene by heat shock was determined 

by three methods. First, the primer extension carried out with RNA isolated at 30 °C, 

or after heat shock at 37 °C and 42 °C, demonstrated a significant increase of dnaJ 

mRNA. Second, Northern blot analysis showed a 2-fold increase in the amount of 

dnaJ RNA after heat shock at 37 °C. The amount of messenger was even higher after 

heat shock at 42 °C. These results confirm that the heat shock response is controlled 

at the transcriptional level. The same has been found for the heat shock genes of 

other Gram-positive bacteria such as B. subtilis (46) and C. acetobutylicum (24, 25). 

Third, the fusion between the dnaJ promoter region and an usp45-amyS cassette, 

caused a significant increase of a-amylase production after heat shock. Similar results 

were obtained in a comparable experiment in B. subtilis (46) using a transcriptional 

fusion between the dnaK promoter and the amyL gene. 

Analysis of the transcription initiation site of the dnaJ gene revealed that it was 

preceded by Gram-positive vegetative -10 and -35 sequences (13). The IR, located 

upstream of the -35 sequence was also found upstream of the heat shock genes 

characterized thus far in Gram-positive organisms, like the groELS opérons from L. 

lactis (17) and C. acetobutylicum (24) and the dnaK opérons from B. subtilis (46) and 

C. acetobutylicum (25). Furthermore, an IR with the same sequence is located 

upstream heat shock genes of Synechocystis, Synechococcus and C. psittacci (46). 

However, the IR is, at least partial as for Synechococcus, or entirely as in B. subtilis 

or C. acetobutylicum located on the 5' end of the mRNA in these opérons, whereas 
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in the L. lactis dnaJ gene it is located upstream of the start of transcription. The IR at 

position -69 of the lactococcal dnaJ gene shares complete identity with the consensus 

as proposed by Wetzstein et al. (46). To examine the function of this IR in heat shock 

regulation, pNZ20a1 and pNZ20cc3 were constructed. These plasmids contain a 

usp45-amyS fusion, preceded by the promoter region of the dnaJ gene. In MG1363 

harboring pNZ20a1, containing the IR, the level of a-amylase activity is 2-4 times 

higher after heat shock. MG1363 harboring pNZ20a3, in which the IR has been 

deleted, showed no heat shock induction of a-amylase production. These results 

indicate a major role for the IR in the heat shock regulation of the dnaJ gene of L. 

lactis. 

In transcription of E. coli heat shock genes, a specific sigma factor (a32) is 

involved that recognizes a promoter sequence deviant from the vegetative -35 and -10 

sequences (26). In the heat shock genes from B. subtilis (46) and C. acetobutylicum 

(24, 25), the transcription start sites are preceded by vegetative promoter sequences. 

The function of the IR in the heat shock regulation of the dnaJ gene of L lactis, and 

its conservation in sequence and location in heat shock genes of Gram-positive 

bacteria, strongly suggests a significant difference in heat shock regulation between 

E. coli and Gram-positive organisms. Moreover, in Synechocystis, Synechococcus and 

C. psittacci both an E. coli heat-shock consensus promoter sequence and the IR are 

present in the promoter region suggesting that the IR is not specific for Gram-positive 

heat-shock genes. However, in the L. lactis dnaJ gene the IR is unlikely to protect 

against RNA degradation as suggested for B. subtilis by Wetzstein et al. (46), because 

it is located upstream of the start of transcription. For the same reason it is unlikely 

to cause a pausing of the RNA polymerase as proposed by Narberhaus and Bahl (24). 

The amount of a-amylase produced by MG1363 harboring pNZ20a3 at all tested 

conditions was comparable with the amount produced by MG1363 harboring pNZ20a1 

after heat shock. This constitutive high level of a-amylase production by MG1363 

harboring pNZ20a3, suggests that the repeat is a target for a repressor, the activity 

of which is disturbed after heat shock. However, further analysis of the system is 

required to be conclusive about this hypothesis. 
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CHAPTER 7 

SUMMARY AND CONCLUDING REMARKS 

Don't You Forget About Me. (Simple Minds) 



SUMMARY AND CONCLUDING REMARKS. 

Lactococcus lactis strains have been used for centuries in food fermentation, 

now appreciated as traditional biotechnology. They have been applied in the 

cheesemaking process and for the manufacturing of other dairy products. Years of 

experience with these lactic acid bacteria have led to a profound understanding of the 

microbiological and technological aspects of L lactis. Recent progress in the genetics 

of L. lactis made this organism a suitable candidate for the use in modern 

biotechnology as a host for the production of homologous, heterologous, or engineered 

proteins. The purpose of the research, described in this thesis, was to investigate the 

capacity of L. lactis to produce and, in particular, to secrete heterologous proteins. 

Chapter 1 presents a brief overview of the knowledge about gene expression 

and secretion systems in procaryotes, with specific attention to heterologous gene 

expression in L. lactis. 

In Chapter 2 the characterization of Usp45, the major extracellular protein of 

L. lactis is described. The aim of isolating the usp45 gene was to use its promoter, 

ribosome binding site and export signal for the development of an expression and 

secretion system for L. lactis. Determination of the nucleotide sequence of the gene 

revealed several specific characteristics of the Usp45 protein and its gene, i) The 

primary amino acid sequence of the protein revealed an unusual amino acid 

composition and did not show homology with any protein of known function, ii) The 

mature protein starts at amino acid residue 28. It is preceded by a leader peptide 

which contains 3 possible signal peptidase I cleavage sites, after ala19, ala20 and ala27. 

iii) The open reading frame encoding Usp45 is preceded by two Shine and Dalgarno 

(SD) sequences, both with uncommon properties, iv) The A/T content of the region 

100 nucleotides upstream of the usp45 promoter is significantly (10%) higher than' that 

found in L. lactis coding sequences. All these characteristics have been investigated. 

No function could be postulated for Usp45. Its deduced amino acid sequence 

showed 30% homology with that of P54 of Enterococcus faecium, but the function of 

this protein is also unknown. However, a weak cross reaction has been observed of 

antibodies raised against surface layer (SL) proteins from Lactobacillus helveticus with 

the Usp proteins from several L. lactis strains (15), and of the Usp45 antibodies with 

the surface proteins of Lactobacillus plantarum NCFB 1988 (8). This could indicate 

that L. lactis Usp proteins are related to SL-proteins. 
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Several attempts to inactivate the chromosomal usp45 gene have been 

performed. (15). Various plasmids have been constructed in which the usp45 

homologous region carried deletions or several mutations in the 3' and 5' region of the 

structural gene. Campbell-like integration of these plasmids would result in truncation 

of the usp45 gene. Furthermore, plasmids have been constructed for the inactivation 

of the usp45 gene by replacement recombination. Although various studies have 

shown that homologous recombination can be used for gene inactivation in L. lactis 

(7, 13) none of the tested strategies resulted in the inactivation of the usp45 gene, 

suggesting that usp45 is an essential gene in L. lactis. 

Chapter 3 describes the construction of an expression and secretion system, 

based on the usp45 gene, which was evaluated with the prtP gene of L. lactis SK11 

and the amyS gene of B. stearothermophilus as reporter genes. Fusions in which the 

27 amino acid leader peptide directed the secretion of the homologous proteinase, 

were used to show that the usp45 leader is sufficient for the efficient secretion of PrtP. 

In addition, to examine the functionality of two shorter leader peptides (aa 1-19 and 

aa 1-20) as signal peptides, plasmids encoding the first 19, 20 or 27 residues of 

Usp45 fused to the mature a-amylase were introduced in E. coli and L. lactis. In E. 

coli these plasmids resulted in secretion of active a-amylase into the periplasm and 

even into the external growth medium. However, in L lactis only the 27-residue leader 

peptide functioned as an export signal. These results provide experimental evidence 

for the postulated difference in length between signal peptides from Gram-positive and 

Gram-negative organisms. When the Usp45 signal peptide was used for the secretion 

of the a-amylase, less than 50% of this reporter protein was located in the 

extracellular medium. The remaining fraction was present as an unprocessed, inactive 

precursor in the intracellular fraction. 

Analysis of the usp45 promoter region is described in Chapter 4. Several 

usp45-amyS gene fusions were constructed and introduced on plasmids or in the 

chromosome of L. lactis. These gene fusions were used to demonstrate the role in 

transcription of the A/T-rich region immediately upstream of the usp45 -35 region. The 

highest levels of a-amylase production were obtained when the usp45-amyS fusion 

was located at the position of the usp45 gene in MG1363. These data showed that a 

large DNA region of more than 200 bp upstream of the -35 region was of major 

importance for expression. Similar results have been reported by Van Rooijen et al. 

(20) for the lac promoter. This could indicate a general role in transcription activation 
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for the region upstream of lactococcal promoters. The L lactis strains harboring the 

various usp45-amyS f usions produced sufficient a-amylase activity to allow growth on 

media containing starch as a sole energy source. 

Chapter 5 describes the effect of the translational initiation region on 

expression of the usp45 -amyS gene fusion. Both postulated SD regions SD1, an 

extremely weak ribosome binding site 6 bp upstream of the ATG start codon, and 

SD2, with a higher complementarity to the 3' end of the 16S rRNA, but 21 bp 

upstream of the ATG codon, were altered in the usp45-amyS secretion vector. These 

studies revealed that translation of the usp45-amyS fusion is possible from both SD 

regions. Deletion of either one of the SD regions resulted in normal a-amylase 

expression, suggesting that L. lactis tolerates SD-sequences with low complementarity 

to the 3' end of 23S rRNA, and ribosome binding sites with a 21 bp spacing. A 

reduction of the spacing between SD2 and the AUG start codon, resulted in a 

ribosome binding site which corresponds to the consensus in L. lactis, with respect to 

both spacing and free energy. However, this ribosome binding site did not lead to an 

significant increase in a-amylase production. 

To enhance the level of heterologous gene expression, a search for stronger 

promoters was initiated. Several studies have been performed to isolate strong 

lactococcal promoter sequences, using promoter probe vectors (4, 6, 19). One of the 

isolated promoters resulting from these studies, has already been used in a 

heterologous expression system for the production of hen egg lysozyme and B. subtilis 

neutral protease (16, 17). We have used different approaches to isolate strong 

promoters. 

Based on the N-terminal sequence of an abundant intracellular 30 kDa protein, 

oligonucleotide probes were designed and used to screen a genomic library from L. 

lactis. This resulted in the isolation of the 1-kb HincAU-Pstt fragment containing an 

open reading frame of 612 nucleotides that could encode a polypeptide of 204 aa (Fig. 

1). The determined N-terminus was found at at position 2-11 of the deduced amino 

acid sequence, indicating that the N-terminal methionine had been removed in L. 

lactis. Homology analysis revealed that the amino acid sequence showed considerable 

homology with the aminoterminal part of glyceraldehyde 3-phosphate dehydrogenase 

from B. subtilis, E. coli, yeast, mouse and humans. Based on this homology and on 

the molecular weight of the L. lactis protein it could be calculated that the cloned 

fragment lacked approximately 350 nucleotides of the 3' part of the glyceraldehyde 3-
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-72 1 
ATTTGCTTTTGTAGAGCGCTTTCTAAGGTAGTTTATGTTTGCAAATTTTAAAAAAGTGTTAAAATAAAAGAGTAA 
4 T 
GTTAAATTGTTAACTTAGTCAATTTAAAAGGTTTGCCTTTTATAAAATCTAATCCCTATAAGGAGGAAACTACTA 
79 »>>>> «<<<< 
ATGGTAGTTAAAGTTGGTATTAACGGTTTCGGTCGTATCGGTCGTCTTGCTTTCCGTCGTATTCAAAATGTTGAA 

H V V K V G I N G F G R I O R L A F R R I Q N V E 2 5 
154 
GGTGTTGAAGTTGTTGCAATCAACGACTTGACAGATCCAGCAATGCTTGCTCACTTGCTTAAATACGATACAACT 

G V E V V A I N D L T D P A M L A H L L K Y D T T 5 0 
229 
CAAGGTCGTTTTGATGGTAAAGTTGAAGTTAAAGATGGTGGTTTTGAAGTTAACGGTAAATTCGTTAAAGTTACT 

Q G R F D G K V E V K D G G F E V N G K F V K V T 7 5 
304 
GCTGAATCTAACCCAGCTAACATCAACTGGGCTGAAGTTGGTGCAGAAATCGGTCTTGAAGCAACTGGTTTCTTC 
A E S N P A N I N W A E V G A E I G L E A T G F F 100 

379 
GCAACTAAAGAAAAAGCTGAACAACACTTGCACGCTAATGGTGCTAAGAAAGTTGTTATCACTGCACCTGGTGGA 
A T K E K A E Q H L H A N G A K K V V I T A P G G 125 

454 
TCAGATGTTAAAACAATCGTTTTCAACACTAACCACGAAGTACTTGATGGAACTGAAACAGTAATTTCAGCTGGT 

S D V K T I V F N T N H E V L D G T E T V I S A G 150 
529 
TCATGTACAACCAACTGTCTTGCTCCAATGGCTGATACTTTGAACAAACAATTCGGTATCAAAGTTGGTACAATG 

S C T T N C L A P M A D T L N K Q F G I K V G T M 175 
604 
ACTACAGTTCACGGTTACACTGGTGACCAAATGACTCTTGATGGCCCACACCGTGGTGGAGATTTCCGTCGCGCA 

T T V H G Y T G D Q M T L D G P H R G G D F R R A 200 
679 
CGTGCTGCAG 

R A A 203 

Fig. 1. Nucleotide and deduced amino acid sequence of the L. lactis glyceraldehyde 3-phosphate 
dehydrogenase gene. The 5' end of the mRNA as identified by primer extension is marked with an arrow. The -
10 and -35 promoter sequences are underlined. The putative Shine and Dalgarno sequence is double underlined. 
The short inverted repeat is marked (arrowheads below the sequence. The deduced n-terminal sequence is also 
underlined. 

phosphate dehydrogenase gene. Upstream of the ATG start codon a putative SD 

sequence was located. The complementarity of this SD sequence to the 3' end of the 

L. lactis 16S rRNA was 74.76 kJ/mol, which is the highest value found untill now in L. 

lactis (2,18). The start of transcription was determined and revealed that the promoter 

(TTTGCA-16bp-TAAAAT-7bp-T) differed at 3 positions with the consensus for 

lactococcal promoters (Fig. 1)(2). A small inverted repeat is present in the non-

translated 5' part of the mRNA. It remains unclear whether this repeat plays a role in 

the high expression of the gene. 

Another approach to isolate strong promoters was based on the screening of 
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a L. lactis genomic library with antibodies raised against abundant intracellular 

proteins. Interestingly this resulted in the cloning of the dnaJ gene as described in 

Chapter 6. The dnaJ gene is one of the first heat shock genes characterized in L 

lactis. Investigation of the promoter region showed that heat shock regulation in L. 

lactis, and very likely in other Gram-positive organisms, is not achieved by an 

alternative sigma factor as is the case in E. coli (9). An inverted repeat which is highly 

conserved in the promoter region of heat shock genes from Gram-positive organisms, 

is responsible for the repression of transcription of the dnaJ gene at non-stress 

conditions. The dnaJ promoter was used in the usp45-amyS fusion, and a 2-4 fold 

induction of a-amylase was accomplished after heat shock. However, the dnaJ 

promoter did not result in higher expression of the a-amylase, as compared to the 

usp45 promoter. 

In the last decennium a lot of research has been performed on the exploration 

of several microorganisms, such as yeast, fungi, E. coli and B. subtilis as a potential 

host for heterologous protein production and secretion. Initially, B. subtilis appeared 

to be a good organism for this purpose (3). It is a Gram-positive organism, capable 

of secreting large amounts of proteins into the extracellular medium. In addition, it can 

be cultivated in large amounts, at low costs. One of the main obstacles that limits the 

application of B. subtilisas a production host is its high extracellular proteolytic activity, 

resulting in degradation of the heterologous proteins of interest (11, 21). JL. lactis could 

be a suitable alternative. It is also a Gram-positive organism. However, it has a low 

extracellular proteolytic activity and Pit strains are available. Furthermore, it 

possesses the additional desired features which make this organism a suitable 

candidate for heterologous gene expression. It is a safe, non-pathogenic organism and 

has a widespread use in the food industry. These properties have stimulated 

investigation on the use of L. lactis as a production organism (10,12, 13, 16, 17). The 

overproduction of several homologous proteins has now been accomplished in L. lactis 

(1, 14) and the production of several heterologous proteins has been established 

(Chapter I). However, the secretion of heterologous proteins in L. lactis is inefficient 

(Chapter III). The investigation on the secretion of proteins in L lactis has been 

initiated (5, 10, 12, Chapter II and Chapter III) and the results invite for continuing 

these investigations. 

Besides a view on the several approaches which can be used in these 

investigations, the work presented in this thesis has yielded a set of expression and 
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secretion vectors, which could be employed to express heterologous genes in L. lactis. 

Furthermore they can be used in the further unravelling of the expression and 

secretion mechanism of L. lactis. 
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CHAPTER 8 

SAMENVATTING 

Later is alllang begonnen (Klein Orkest) 



SAMENVATTING 

Melkzuurbacteriën worden al eeuwen gebruikt in de traditionele biotechnologie 

bij de bereiding van verschillende gefermenteerde voedingsmiddelen. Nog steeds 

vormt de melkzuurbacterie Lactococcus lactis de belangrijkste component van starter 

culturen bij de bereiding van Goudse kaas, boter en karnemelk. Jaren ervaring met 

L. lactis hebben geleid tot een uitgebreid inzicht in de microbiologische en proces-

technologische aspecten van deze micro-organismen. De toenemende kennis van de 

genetica van L. lactis maakt dit organisme een geschikte kandidaat voor gebruik in de 

moderne biotechnologie als gastheer voor de productie van homologe (soorteigen) en 

heterologe (soortvreemde) eiwitten. Dit proefschrift beschrijft het onderzoek naar de 

mogelijkheid om L lactisie gebruiken voor de productie en in het bijzonder de secretie 

van heterologe eiwitten. 

Expressie signalen. 

Voor de productie en secretie van eiwitten door organismen zijn verschillende 

onderdelen nodig. Als basis dient natuurlijk het structurele gen: het DNA dat 

uiteindelijk codeert voor het eiwit. Om dit gen te vertalen in eiwit is eerst een 

tussenstap nodig. Van het DNA wordt een kortlevende kopie, een boodschapper RNA 

molecuul gemaakt. Om dit proces, transcriptie genaamd, op gang te brengen is een 

promoter nodig. Dit element ligt op het DNA voorafgaand aan het gen, en bestaat uit 

twee redelijk geconserveerde domeinen van 6 nucleotiden (DNA bouwstenen). Het 

boodschapper RNA moet daarna vertaald worden in eiwit. Het juiste startpunt van 

deze vertaling wordt aangegeven door de ribosoom bindingsplaats. Het ribosoom, een 

belangrijk onderdeel van het RNA vertalend apparaat van de bacteriële cel, bindt aan 

een domein op het RNA, dat 6 tot 12 nucleotiden voorafgaand aan de start van het 

structurele gen ligt. De start van de vertaling wordt aangegeven door een startcodon, 

vaak AUG, dat vertaald wordt in het eerste aminozuur (eiwit bouwsteen) van het eiwit. 

Hoewel er tussen de beschreven expressiesignalen van de verschillende 

bacteriesoorten een zekere mate van conservering waar te nemen is, zijn er toch 

soortspecifieke kenmerken. 

Het RNA molecuul eindigt vaak met sequenties die een secundaire structuur 

(een "hairpin") aan kan nemen. Dit gedeelte, terminator van transcriptie genoemd, 

speelt een rol in de stabiliteit van het boodschappermolecuul en dus ook in de 
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Fig. 1. Schematische weergave van de bacteriële expressie- en secretie route. DNA is weergegeven als 

doorlopende lijn, RNA als onderbroken lijn. De promoter regio is weergegeven als zwarte pijl, de ribosoom 

bindingsplaats als gearceerde ellips en de terminator van transcriptie is met een T aangeduid. De geblokte en 

gestippelde balk stellen respectievelijk het signaalpeptide en het rijpe eiwit voor of het DNA of RNA dat daarvoor 

codeert. Voorts is de celmembraan als dikke stippellijn aangegeven. 

expressie van het gen. 

Secretiesignaal 

Indien eiwitten bestemd zijn om te worden uitgescheiden door bacteriën, 

worden ze aangemaakt als een "precursor". Het eiwit bevat voor het "rijpe" eiwit een 

extra stukje, het signaalpeptide. Van dit signaalpeptide is de opbouw geconserveerd 

in alle levende organismen. Het start met enkele positief geladen aminozuren, daarna 

komt een hydrophoob ("waterafstotend") gedeelte gevolgd door enkele ongeladen 

aminozuren, die de knipplaats voor een enzym, het signaalpeptidase, bevatten. Op 

deze knipplaats wordt het eiwit gesplitst tijdens transport naar buiten de cel, zodat het 

rijpe eiwit vrijkomt. Ook voor signaalpeptiden gelden soortgebonden kenmerken. 

Signaalpeptiden van bacteriën zijn in de regel langer dan die van eukaryoten (zoals 

planten en dieren). 
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De expressie van een gen en de secretie van het eiwit, met de beschreven 

signalen wordt schematisch weergegeven in Fig. 1. 

Usp45 

Om een efficiente productie en secretie van heterologe eiwitten in L. lactis te 

bewerkstelligen, werd onderzoek verricht naar geschikte expressie- en 

secretiesignalen. Daarvoor is het eiwit dat in de grootste hoeveelheid wordt 

gesecreteerd door L lactis als basis genomen. De isolering en karakterisering van het 

gen dat voor dit eiwit, Usp45 genaamd, codeert, wordt beschreven in hoofdstuk 2 van 

dit proefschrift. De afgeleide aminozuurvolgorde van dit eiwit is vergeleken met de 

aminozuurvolgorden die bekend waren van andere eiwitten. Hierbij werd echter alleen 

overeenkomst gevonden met P54 uit Enterococcus faecium, een eiwit met een 

onbekende functie, zodat over de functie van Usp45 in het duister wordt getast. In de 

nucleotiden volgorde van het gen en de daarvan afgeleide aminozuurvolgorde werden 

de verschillende expressie en secretiesignalen aangetroffen. De karakterisering van 

deze elementen wordt beschreven in hoofdstuk 3, 4 en 5. 

De Usp45 expressie- en secretiesignalen 

In hoofdstuk 3 wordt het onderzoek naar het Usp45 signaalpeptide beschreven. 

Het rijpe Usp45 eiwit wordt voorafgegaan door een stukje van 27 aminozuren. Dit 

stukje voldoet aan de regels die voor signaalpeptiden gelden, zoals hierboven 

beschreven. Als het DNA, coderend voor het rijpe eiwit werd vervangen door DNA, 

coderend voor een L lactis proteinase, bleek dat deze 27 aminozuren voldoende 

waren om dit proteinase efficient te secreteren. Naast de knipplaats tussen aminozuur 

27 en 28, vertonen ook twee andere gebieden de structuur van een knipplaats. Deze 

knipplaatsen worden dan voorafgegaan door een signaalpeptide van de eerste 19 of 

van de eerste 20 aminozuren van Usp45. Om uit te zoeken of die peptiden voldoende 

waren voor secretie is in plaats van het proteinasegen, een a-amylase gen (amyS) 

van Bacillus stearothermophilus achter de expressie en secretiesignalen gedoneerd. 

Indien dit a-amylase gesecreteerd wordt is dit gemakkelijk aantoonbaar op 

groeibodems, waarin zetmeel aanwezig is. Het a-amylase breekt het zetmeel af en na 

kleuring met een jodide oplossing, zijn er ophelderingszones rond de a-amylase 

secreterende bacteriekolonies waarneembaar (Dit wordt onder andere geïllustreerd op 

de omslag van dit proefschrift). 
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In de usp45-amyS gen fusies werden of de eerste 19, de eerste 20 of de eerste 

27 aminozuren als secretiesignaal gebruikt. Uit deze proeven bleek het verschil in 

lengte tussen signaalpeptiden van de verschillende bacteriesoorten. In Escherichia 

coli, een gram-negatieve bacterie was met gebruik van de eerste 19 en de eerste 20 

aminozuren a-amylase activiteit in het medium aantoonbaar. Echter, in L. lactis, een 

gram-positieve bacterie, waren alleen de eerste 27 aminozuren in staat tot de secretie 

van het a-amylase. Een gedeelte van het gesynthetiseerde a-amylase bleef ook 

binnen de cel achter. Het signaalpeptide was niet van het a-amylase geknipt en er kon 

ook geen activiteit worden aangetoond. Het proteinase werd wel volledig 

uitgescheiden. Hieruit blijkt dat naast het signaalpeptide ook de combinatie tussen 

signaalpeptide en het te secreteren eiwit zelf invloed heeft op de secretie. 

Hoofdstuk 4 beschrijft de analyse van het promotergebied, door verschillende 

gebieden stroomopwaarts van het usp45 gen als promotergebied te gebruiken voor 

de usp45-amyS gen fusie. Hieruit bleek dat niet alleen de twee hiervoor beschreven 

domeinen van belang zijn voor de transcriptie, maar ook een vrij groot gebied dat voor 

deze promotersequentie is gelegen. Verder werd aangetoond dat als er meerdere 

kopieën van een usp45-amyS fusie in de bacteriecel werden ingebracht, er ook meer 

productie van a-amylase plaatsvond. Als laatste werd aangetoond dat L. lactis ook 

gebruik kan maken van het ingebrachte soortvreemde amyS gen. Er ontstond een L 

lactis stam die kon groeien op een medium met zetmeel als enige energiebron. 

De ribosoom bindingsplaats voor het usp45 gen werd onderzocht in hoofdstuk 

5. Deze bevat namelijk twee sequenties die betrokken kunnen zijn bij de binding van 

het ribosoom. Omdat beide sequenties afwijkend waren in vergelijking met de tot nu 

toe gevonden ribosoom bindingsplaatsen werd in verschillende usp45-amyS telkens 

één van die twee afzonderlijk verwijderd, zodat kon worden uitgezocht wat de rol van 

deze sequenties was. Uit deze experimenten bleek dat beide sequenties afzonderlijk 

voldoende waren voor de translatie van het door de usp45-amyS fusie geproduceerde 

boodschapper RNA. Verder werd een optimale ribosoom bindingsplaats geconstrueerd 

die overeenkomt met de consensus voor L lactis. Dit leverde echter nauwelijks 

verhoging van de expressie op, en er kan dus worden gesteld dat de rol van de 

verandering van ribosoombindingsplaats in dit expressiesysteem te verwaarlozen is. 

DnaJ 

Hoofdstuk 6 beschrijft de klonering en karakterisering van dnaJ, een gen uit L 
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lactis dat codeert voor een intracellulair eiwit dat betrokken is bij de hitte-schok reactie 

van dit organisme. Dit gen heeft een regelbare promoter, waardoor er tijdens normale 

groei een lage hoeveelheid boodschapper RNA wordt geproduceerd. Worden de cellen 

echter aan een plotselinge temperatuurverhoging blootgesteld (hitte-schok), dan vindt 

er een verhoogde transcriptie van dit gen plaats. Door het promoter gebied van dit gen 

in de usp45-amyS fusie te gebruiken en in dit promoter gebied enkele veranderingen 

(mutaties) aan te brengen kon een stuk DNA in het promotergebied worden 

aangewezen dat een belangrijke functie vervult in de regulatie van deze verhoogde 

expressie na hitte-schok. Er werd echter geen hogere a-amylase productie 

bewerkstelligd dan met de usp45 expressie signalen werd bereikt. 

Conclusies 

Samenvattend kan worden gesteld dat het mogelijk is om met behulp van expressie 

en secretie signalen van een L. lactis gen, de productie van een vreemd eiwit (als 

model is a-amylase gekozen) in L. lactis te bewerkstelliggen. Het door L lactis 

gesynthetiseerde a-amylase werd maar gedeeltelijk door de cellen gesecreteerd. Dit 

hoeft echter bij andere commercieel interessante heterologe eiwitten niet het geval te 

zijn. Het productieniveau is echter nog niet zo hoog dat dit organisme zou kunnen 

concurreren met de organismen die al worden gebruikt als gastheer, zoals Bacillus 

subtilis of E. coli. Dit zou mischien kunnen worden verbeterd door sterkere expressie 

signalen te gebruiken, de secretie te verbeteren of te zoeken naar stammen met een 

hogere secretiepotentie. 
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