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ABSTRACT 

Zwietering, M.H. (1993) Modeling of the Microbial Quality of Food. Ph.D. thesis, 

Agricultural University Wageningen (152 pp., English and Dutch summaries) 

Keywords: Modeling, microbial growth, temperature, growth curves, model validation, 

temperature shifts, decision support systems (DSS). 

In this thesis it is shown that predictive modeling is a promising tool in food research, 

to be used to optimize food chains. Various models are developed and validated to be used to 

describe microbial growth in foods. 

A tool is developed to discriminate between different models and to restrict the number 

of parameters in models. Models to describe a growth curve and to describe the effect of 

temperature, and the effect of shifts in temperatures, are developed and validated with a large 

amount of experimental data. 

Furthermore, a procedure is developed to couple quantitative and qualitative 

information in a structured manner. Simple procedures to make (preliminary) shelf-life 

predictions are given, as are procedures to extend these (simple) models. 

The most important advantage of modeling is that insight is gained in the progression 

of microbial growth within a product chain. Furthermore, these models are shown to be 

essential to calculate quality changes with the use of decision support systems (DSS). 
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STELLINGEN 

1. Smith (1985) doet ten onrechte uitspraken over temperatuurdentlijnen in slachthuizen, 

omdat hij warmte-indringing in het vlees niet in beschouwing neemt. 

Smith M.G. (1985). The generation time, lag time, and minimum temperature of growth of coliform 

organisms on meat, and the implications for codes of practice in abattoirs. J. Hyg. Camb. 94: 289-300. 

2. Barreto et al. (1991) verklaren hun resultaten met een 'apparent lag time', veroorzaakt 

door een levensvatbaarheid lager dan 100%. Dezelfde resultaten kunnen ook verklaard 

worden met een normale lag-fase en 100% levensvatbaarheid. 

Barreto M.T.O., E.P. Melo, J.S. Almeida, A.M.R.B. Xavier, and MJ .T . Carrondo (1991). A kinetic 

method for calculating the viability of lactic starter cultures. Appl. Microbiol. Biotechnol. 34:648-652. 

3. De modellen gepresenteerd door Beal en Corrieu (1991) voorspellen onder andere een 

rechtlijnig verband tussen pH en de maximale specifieke groeisnelheid van 

Lactobacillus bulgaricus. Het desalniettemin vermelden van een optimale pH voor deze 

groeisnelheid wijst erop dat de auteurs een computerprogramma gebruiken dat 

extrapolaties niet toestaat. 

Beal C , and G. Corrieu (1991). Influence of pH, temperature, and inoculum composition on mixed 

cultures of Streptococcus thermophilics 404 and Lactobacillus bulgaricus 398. Biotechnol. Bioeng. 

38:90-98. 

4. Het gebruik van vijfendertig parameters om het effect van vier variabelen te beschrijven 

in een derde-ordepolynoom resulteert niet in een vergroot inzicht en kan bovendien in 

gevaarlijke voorspellingen resulteren. 

Palumbo S.A., A.C. Williams, R.L. Buchanan, and J.G. Phillips (1991). Model for the aerobic growth 

of Aeromonas hydrophila K144. J. Food Protection 54:429-435. 

5. Een neuraal netwerk is vaak een eufemisme voor fitten met teveel parameters. 

bijvoorbeeld: LinkoP., K. Uemura, Y.H. Zhu, andT. Eerikäinen (1992). Application of neural network 

models in fuzzy extrusion control. Food and Bioproducts Processing 70:131-137 

6. Modellering is essentieel voor het gestructureerd verzamelen van voldoende gegevens. 

7. De krant is een van de meest bederfelijke produkten. 



8. Combinatie van Just In Time (JIT) met Murphy's Law resulteert in Just Too Late (JTL) 

en ontevreden klanten. 

9. Bij het berekenen van kengetallen voor kwaliteit van onderzoek door auteurschappen 

van wetenschappelijke publikaties op te tellen, wordt vaak vergeten te delen door het 

aantal auteurs. 

10. Bij het gebruik van het begrip % dient de noemer duidelijk gedefinieerd te zijn. 

11. Door het gebruik van spellingscontroleprogrammatuur worden steeds meer woorden, 

die in het Nederlands aan elkaar geschreven moeten worden, niet meer aan elkaar 

geschreven. 

12. Drieduizend j aar voor onze j aartelling ondervonden de oude Egyptenaren dat een zuiver 

beeldschrift tekort schiet om alles op te tekenen. Nu, 5000 jaar later, blijkt opnieuw dat 

pictogrammen minder begrijpelijk zijn dan hun ontwerpers zich voorstelden. 

K. Th. Zauzich (1980). Hieroglyphen ohne Geheimnis. P. von Zabern, Mainz am Rhein. 

Microsoft Windows version 3.1® 1985-1992 Microsoft Corp. 

13. Als een regering haar volk probeert te overtuigen van de veiligheid van kernenergie 

dient zij de toekomstige centrales in de buurt van de regeringsgebouwen te plannen. 

14. Het aan de buitenkant aanbranden van vlees bij het barbecuen heeft als voordeel dat de 

(actieve) kool al gelijk met de, aan de binnenkant overlevende pathogenen, 

geconsumeerd wordt. 

Stellingen behorende bij het proefschrift "Modeling of the Microbial Quality of Food" 

M.H. Zwietering 

Wageningen, 29 September 1993 
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CHAPTER 1 

INTRODUCTION: 

MODELING MICROBIAL QUALITY OF FOOD 

FOOD QUALITY 

Definition. Food quality can be defined as the sum of the characteristics of a food that 

determine the satisfaction of the consumer and compliance to legal standards. Thus, food 

quality is a combination of numerous factors, such as organoleptic properties (e.g., texture, 

taste, flavour, smell, colour), nutritional value (e.g., caloric content, fatty acid composition), 

shelf life (e.g., microbial number), and safety conditions (e.g., presence of pathogens, toxins, 

hormones). Some of these (e.g., microbial numbers) can be relatively easily quantified, while 

others are very difficult to assess (e.g., taste). Food quality thus cannot be quantified in every 

detail, and overall quantification depends strongly on the priority among quality determining 

aspects. To determine total food quality, quality indicators are needed and must be weighted, 

since their relative importance depends on product, trends, producer, and market. 

Significance. Food quality attracts ever more attention and prediction of the rate of 

quality loss is important for the following reasons: 

The food market is subject to saturation in most cases, therefore, quality becomes more 

important than quantity. 

There are new quality attributes which are highly appreciated by the modern consumer 

(in contrast to traditional quality demands). Consumers show an increasing interest in 

convenience foods with the appearance and taste of fresh products and in food quality 

Part of this chapter was used for the publication: 

Some Aspects of Modelling Microbial Quality of Food 

M.H. Zwietering, F.M. Rombouts, K. van 't Riet (1993) 

Food Control 4:89-96 
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aspects such as flavour and (assumed) health aspects (e.g., nutritional value, fatty acid 

quantity and composition, energy content, salt concentration, presence of additives such 

as preservatives). 

Consumers are willing to pay a higher price for quality. 

Manufacturers want to deliver constant quality products at the lowest costs. 

Many products have a limited shelf life. Production and storage conditions affect quality 

very strongly; therefore, production and distribution are often critical. From the past 

there are many dried, salted, frozen, and sterilised products, while nowadays chilled 

and intermediate-moisture foods are becoming more important. 

The shelf life of a product determines the distribution regime: daily delivery for 

perishable products such as fresh milk, bread, fresh vegetables, and fresh meat, or less 

frequently as for salads, margarine, etc. 

Due to more open borders in the European Community (EC), the distribution routes 

have become longer, and therefore, there is a need for an increased shelf life. 

In some areas there is a rather rapid product development (changes in product 

formulation). Consequently, it will be useful to make an estimation of the shelf life 

during product development. 

Formulation of products may be different in different countries or regions, because of 

legal requirements or regional food preferences. Therefore, it would be useful to know 

the effect of different compositions on the shelf life, to avoid each formulation requiring 

a laborious shelf-life test. 

New procedures are being developed to meet these quality demands, such as new 

technologies (e.g., microwave heating, ultrahigh temperature (UHT) processes, modified 

atmosphere packaging, supercooling, irradiation), and new strategies (e.g., logistics and 

modeling). 

Quality loss along a chain. Quality loss can result from microbial, chemical, 

enzymatic, or physical reactions. Various factors influence quality loss, such as the 

composition of the product. A product without lipids, for example, cannot show lipid 

oxidation; iron (Fe3+) acts as catalysing agent for vitamin C degradation (2). Other factors 

influencing quality loss are processing and storage conditions (temperature, time, packaging 

material, gas atmosphere, machinery). 
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Thus, product quality is determined by the composition and quality of the raw materials, 

and by the process and storage conditions. Quality is often measured during production and 

distribution by taking samples of a product somewhere along the chain (Fig. 1). This can give 

valuable information about long-term quality changes and bottlenecks in the line. This, 

however, gives little information about the separate effect of particular process steps in the 

production and distribution chain on the total quality. It is important to get insight in the 

progression of the deterioration reactions, '\.f. the kinetics of spoilage in each step in the 

process. Quality loss can be determined by a single processing step, but can also result from 

partial losses at several stages of the production or distribution. Without insight it is 

impossible to optimize the process, and to evaluate changes in costs in relation to changes in 

quality. It is therefore useful to examine the whole chain of food products from raw materials 

to consumption (Fig. 1). 

raw materials 

production 

pasteurisation 

storage 

distribution 

storage 

consumption 

sample 

sample 

sample 

FIG. 1. Example for a pathway of a food product from raw materials to consumer. 

Modeling can be a useful tool to get insights into the importance of factors in any part 

of the production and distribution chain, and is based on quantitative predictions of the rate 

of spoilage. Such modeling allows prediction of the quality or shelf life of products, detection 

of critical points in the production and distribution process, and optimization of production 
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and distribution chains by combining cost models with the spoilage models. Moreover, by 

making the models and by evaluating the predictions, insight in the relevant processes can be 

obtained. 

PREDICTIVE MODELING 

Significance. Predictive modeling is a promising methodology in food research, to be 

used to optimize food chains. Models are used to describe deterioration under different 

physical or chemical conditions such as temperature (7), pH, and water activity (av). First, 

deterioration reactions have to be modeled and the models must be validated with quantitative 

data. The model parameters can then be estimated. These models and model parameters will 

only be valid for the product and the conditions for which the data are collected. However, 

in some cases the model parameters and/or the model will also hold for similar products and 

conditions. 

In some cases, certain deterioration reactions can be excluded. For example, if the aw 

of a product is lower than 0.6, microbial growth can be excluded and if the aw is lower than 

0.2, Maillard browning activity can be excluded (2). If the physical and chemical conditions 

of the product allow a specific deterioration reaction, an estimate can be made of the kinetics 

of the reaction. For example Escherichia coli can grow between pH 4.4 and 9.0 (4). If the 

pH of a product is 4.6, Escherichia coli can still grow in that product, but not very fast (and 

slower than at pH=5). To predict the kinetics of the various deterioration processes more 

quantitatively, models describing the effects of different conditions are essential. Several 

models are known to predict deterioration reactions. Examples are given by Ratkowsky et al. 

(3) and Zwietering et al. (5) to describe the effect of temperature on microbial growth. For 

the effect of pH a parabolic behaviour can be assumed, for instance. The Arrhenius model (1) 

can be used for the temperature effect on chemical and physical processes. The resulting 

quantitative estimation can be used to predict the shelf life. 

For the validation of the models numerous measurements are needed. However, once 

the model is validated, predictions can be made with none, or only very few, experiments, 

and insight into the process is gained. 

It is often useful to search for literature models and literature parameters for comparable 

products and microorganisms (Fig. 2). With such models and parameters preliminary 

predictions can be made and insight can be gained. This can also be very useful for 
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experimental design. From the discrepancy between these predictions and actual data, 

strategies for improvement may be derived, such as better models and/or better parameter 

estimates. 

Especially microbial risks have increased due to the trends mentioned before. From the 

past there were many dried, salted, frozen, sterilised products. So in the past growth limits 

(aw, salt, T) and inactivation kinetics (during sterilization) were of importance. Growth was 

not possible, since the organisms were absent (sterilisation) or the conditions were changed 

so that growth was not possible (dried, salted, frozen). Nowadays chilled and 

intermediate-moisture foods are becoming more important. Then, growth kinetics and the 

effect of shelf life increasing factors (e.g., T, aw, pH) on the kinetics are of larger importance. 

Moreover, the modern consumer often wants a lower salt concentration, and absence of 

additives such as preservatives. This emphasises the need to determine the effect of 

combinations of factors that are of importance for the growth of micro-organisms. 

literature 
models 

order of magnitude 
insight 

model knowledge 
statistics ^ 

experiments 

FIG. 2 . Schematic representation of a procedure to make kinetic predictions 
of food deterioration processes. 
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Values and needs in predictive modeling. The most important needs in predictive 

modeling are: 

A good procedure to describe growth curves of microorganisms. 

Tools to discriminate between different models. 

Models that are validated with a large amount of experimental data. 

Models for shifts in variables (these are scarce). 

Protocols to extend quantitative models with qualitative knowledge. 

Models to describe the effect of additional variables (only a few variables have been 

investigated, such as T, a„, pH). 

Integrated models for the combined effect of multiple factors, and determination of 

interaction terms. 

Objectives of modeling. The value of a model is strongly dependent on the objective 

for which the model is used. For instance the control of a certain variable (y) by a control 

variable (u), (e.g., pH control of a fermentor) often only requires a simple model (on-line 

feedback). Only a global description of the dynamic behaviour of y as function of u is 

sufficient, to obtain the right value for the control signal. Subsequently, y is measured again 

and if the value is not correct the control procedure will continue, resulting finally in the 

desired value. On the other hand, if one wants to predict the death rate of Clostridium 

botulinum spores in a sterilisation procedure, the global dynamic behaviour will often not be 

sufficient, and a much more accurate model is necessary, since there is no feed back (or only 

off-line). In other cases, the aim can be to understand more mechanistically what happens 

during sterilisation. A more mechanistic model is then necessary, which must be validated 

with experimental data. In some cases this model is only used to test a hypothesis and it does 

not need to be very accurate in predicting. 

Warning note. Modeling techniques can be very useful. However, with models and 

also with computer programs nonsense can be generated. It is, therefore, of great importance 

that modelers combine knowledge in food science, informatics, and mathematics, and use the 

expertise of all these disciplines to detect possible errors. Computer programs and 

mathematical equations may yield predictions which deviate enormously from reality. 

Therefore, a food scientist must be sceptical about predictions. An example of this can be 

shown with the gravity acceleration (g=9.81 m/s2 in The Netherlands) and Newtons laws. 

With only the gravity acceleration, the position and velocity of a falling stone and of a falling 

ashtray can be predicted. A falling leaf however gives totally different results, since the air 
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resistance and air flow phenomena are of large influence, so the gravitational acceleration, 

the air resistance, and the direction of the air flow are of importance, which makes the 

problem more complex. So the acceleration will be equal to the gravity acceleration in some 

cases, but will markedly deviate in other cases. Also the model will be valid in certain ranges 

only, since Newtons laws are not valid if velocities approach light velocity. 

CONCLUSIONS 

Modelling can be an important tool to predict the shelf life of products, to optimize 

production and distribution chains, and to gain insight about important variables that 

determine product deterioration. Predictive models, kinetic data, expertise, logistics, and 

simulation and optimization routines can be combined to support decisions in production and 

distribution, and product development. This can help to determine possible spoilage 

organisms, and changes in growth rates of organisms can be estimated when the physical 

properties are changed. 

OBJECTIVE OF THIS THESIS 

In this work a procedure to compare different models will be examined. With this 

procedure a model will be selected to describe a bacterial growth curve and to estimate the 

specific growth rate, lag time and asymptote from growth data by examining a large amount 

of growth curves. Furthermore, models for the effect of temperature on the growth rate will 

be compared, with a large amount of growth rates at different temperatures. Models for the 

effect of temperature on the lag time and the asymptote will be selected. Furthermore, the 

effects of shifts in temperature will be examined. A larger system to collect modeling results, 

parameter values and expertise will be built in order to combine quantitative and qualitative 

information. This will be developed as a decision support system. 

OUTLINE OF THIS THESIS 

In Chapter 2 of this thesis a comparison is made between different models that describe 

bacterial numbers as a function of time. The models are reparameterized so that they contain 

biologically meaningful parameters. A procedure to estimate growth parameters from a set of 

data is given. In Chapter 3 the method as described in Chapter 2 is compared with other 

methods, as described in literature. In Chapter 4 different growth/temperature models are 
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compared. In Chapter 5 the correct variance-stabilising transformations are determined with 

a large amount of data and the models of Chapter 4 are validated and updated. In Chapter 6 

the effect of temperature steps on bacterial growth is evaluated. In Chapter 7 the first steps 

are taken to build a knowledge-based system, which can help to detect possible spoilage 

organisms and which can estimate growth parameters. In Chapter 8 (general discussion) the 

models are discussed and some examples are given. Possibilities to combine the models with 

models for heat transfer and logistics are given. These combined models can be used in 

simulation programs, that predict the outgrowth of bacteria as function of time and location 

inside the product, in food chains, with different storage temperatures. The result of this work 

is evaluated, and future expansions are proposed. 
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CHAPTER 2 

MODELING OF THE BACTERIAL GROWTH CURVE 

ABSTRACT 

Several sigmoidal functions (logistic, Gompertz, Richards, Schnute, and Stannard) 

were compared to describe a bacterial growth curve. They were compared statistically by 

using the model of Schnute, which is a comprehensive model, encompassing all other models. 

The t test and the F test were used. With the t test, confidence intervals for parameters can 

be calculated and can be used to distinguish between models. In the F test, the lack of fit of 

the models is compared with the measuring error. Moreover, the models were compared with 

respect to their ease of use. All sigmoidal functions were modified so that they contained 

biologically relevant parameters. The models of Richards, Schnute, and Stannard appeared to 

be basically the same equation. In the cases tested, the modified Gompertz equation was 

statistically sufficient to describe the growth data of Lactobacillus plantarum and was easy to 

use. 

INTRODUCTION 

Predictive modeling is a promising field of food microbiology. Models are used to 

describe the behavior of microorganisms under different physical or chemical conditions such 

as temperature, pH, and water activity. These models allow the prediction of microbial safety 

or shelf life of products, the detection of critical parts of the production and distribution 

process, and the optimization of production and distribution chains. In order to build these 

models, growth has to be measured and modeled. Bacterial growth often shows a phase in 

which the specific growth rate starts at a value of zero and then accelerates to a maximal value 

O m ) in a certain period of time, resulting in a lag time (X.). In addition, growth curves 

contain a final phase in which the rate decreases and finally reaches zero, so that an asymptote 

This chapter has been published as: 

Modeling of the Bacterial Growth Curve 

M.H. Zwietering, I. Jongenburger, F.M. Rombouts, and K. van 't Riet (1990) 

Appl. Environ. Microb. 56:1875-1881 



10 BACTERIAL GROWTH CURVE MODELING 

(A) is reached. When the growth curve is defined as the logarithm of the number of organisms 

plotted against time, these growth rate changes result in a sigmoidal curve (Fig. 1), with a lag 

phase just after t — 0 followed by an exponential phase and then by a stationary phase. 

Growth curves are found in a wide range of disciplines, such as fishery research, crop 

science, and biology. Most living matter grows with successive lag, growth, and asymptotic 

phases; examples of quantities that follow such growth curves are the length or mass of a 

human, a potato, or a fish and the extent of a population of fish or microorganisms. In 

addition, these sigmoidal curves are used in medical science for dose-mortality relations. 

ln(A//A/o) 

À time 
FIG. 1. A growth curve {A = Asymptotic level, \im = maximum specific growth rate, 

X = lag time, N = number of organisms, N0 = number at time 0). 

To describe such a curve and to reduce measured data to a limited number of interesting 

parameters, investigators need adequate models. A number of growth models are found in the 

literature, such as the models of Gompertz (7), Richards (14), Stannard et al. (17), Schnute 

(16), and the logistic model and others (15). These models describe only the number of 

organisms and do not include the consumption of substrate as a model based on the Monod 

equation would do. The substrate level is not of interest in our application, as we assume that 

there is sufficient substrate to reach intolerable numbers of organisms. 
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Besides the lag period and the asymptotic value, another valuable parameter of the 

growth curve is the maximum specific growth rate ( n m ) . Since the logarithm of the number 

is used, \imis given by the slope of the line when the organisms grow exponentially. Usually 

this parameter is estimated by deciding subjectively which part of the curve is approximately 

linear and then determining the slope of this curve section, eventually by linear regression 

(Table 1). A better method is to describe the entire set of data with a growth model and then 

estimate 11 m, \ , and A from the model. Some authors indeed use growth models to describe 

their data (Table 1). These models describe the number of organisms ( N ) or the logarithm 

of the number of organisms [log( N )] as a function of time. 

TABLE 1. Some growth models used in the literature 

Author(s) 

Adair et al. (1) 
Bratchellet al. (2) 
Broughall et al. (3) 
Einarsson and Eriksson (4) 
Gibson et al. (5) 
Gibson et al. (6) 
Griffiths and Phillips (8) 
Jason (9) 
Mackey and Kerridge (10) 
Phillips and Griffiths (12) 
Stannard et al. (17) 

Modeling 

log(A0 
logW) 
log(A0 
log(A0 
log(JV) 
log(N) 
log(A0? 

N 
N 

logWJ? 
log(N)? 

Model(s) 

Linear regression 
Gompertz 
Linear regression 
Logistic, polynomial 
Logistic, Gompertz 
Gompertz 
Stannard 
Logistic 
Gompertz 
Stannard 
Stannard 

The motivation for the decision to use a given model is usually not stated. Only Gibson 

et al. (5) found better results by a fitting procedure with the Gompertz model when they 

compared that model with the logistic model. A large number of models as given in Table 1 

are used, all more or less complicated and with different numbers of parameters. It can be 

expected that a difference in the results of the models exists for our application. Besides, the 

models are not written in terms of growth rate, lag time, and asymptotic value, which makes 

interpretation of the parameter values difficult. 

The objective of this work is to evaluate similarities and differences between the models 

and to deal with the question of which model(s) can be used, on the basis of statistical 

reasoning. The models are rewritten in such a way that they contain parameters that are 

microbiologically relevant. 
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THEORY 

Description of the bacterial growth curve. Since bacteria grow exponentially, it is 

often useful to plot the logarithm of the relative population size [ y = ln(N /N „)] against 

time (Fig. 1). The three phases of the growth curve can be described by three parameters: the 

maximum specific growth rate, [i m, is defined as the tangent in the inflection point; the lag 

time, X., is defined as the x-axis intercept of this tangent; and the asymptote [ A = 

l n (A/ . /N 0 ) ] is the maximal value reached. Curves may show a decline. This kind of 

behavior is called the death phase and is not considered in this chapter. 

TABLE 2. Models used an their modified forms 

Equation (y=) 

Logistic: 
a 

[1 + exp(b - ex)] 

Gompertz: 

a e x p [ - e x p ( b - e x ) ] A 

Modified equation* (y=) 

A 

( l + e x p [ ^ ( \ - 0 + 2]} 

e x p < - e x p ^V-o+i 
> 

Richards: 

a { l + uexp[ /c (T-x) ]}" A\ 1+ uexp(1+ u)exp —( i + vy " ( \ - o 

Stannard: 

al1+exp 
(Z+fcx) 

A{ 1 + uexp( 1 +i;)exp ^ ( i + ü ) l , * : J ( \ - 0 

Schnute: 
. , . . , l - e x p [ - a ( t - T , ) ] ^ w t 

1-Ö l - 6 e x p ( a \ + l-b-at) 

' e=exp(l); v = shape parameter. 

Reparameterization of the growth models. Most of the equations describing a 

sigmoidal growth curve contain mathematical parameters ( a , ö , c,...) rather than parameters 

with a biological meaning (A,\in, and \ ) . It is difficult to estimate start values for the 

parameters if they have no biological meaning. Moreover, it is difficult to calculate the 95% 

confidence intervals for the biological parameters if they are not estimated directly in the 

equation but have to be calculated from the mathematical parameters. Therefore, all the 

growth models were rewritten to substitute the mathematical parameters with A, [im, and 
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X. This was done by deriving an expression of the biological parameters as a function of the 

parameters of the basic function and then substituting them in the formula. As an example, 

we show here the modification of the Gompertz equation, which is written as: 

y = a • e xp [ - exp (b -ct)] (1) 

To obtain the inflection point of the curve, the second derivative of the function with respect 

to t is calculated: 

d y 

dzy 

dt 

, 2 . 

= ac- e x p [ - e x p ( b - c O ] - e x p ( b - c t ) (2) 

_ ac e x p [ - exp (b -ct)]- exp(b -ct)- [ exp(b -ct)- 1] (3) 
d r 

At the inflection point, where t = t-,, the second derivative is equal to zero: 

- 0 -» t{ = b/c (4) 
d2y 

dt' 

Now an expression for the maximum specific growth rate can be derived by calculating the 

first derivative at the inflection point. 

(dy\ ac 

The parameter c in the Gompertz equation can be substituted for by c = \ime/a. 

The description of the tangent line through the inflection point is: 

y = Um-<+ f -Hm'i (6) 

The lag time is defined as the f-axis intercept of the tangent through the inflection point: 

0 = \im-X + --\imti (7) 
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Using equations 4, 5, and 7 yields: 

, ( b - 1 ) 
x = —— (8) 

The parameter b in the Gompertz equation can be substituted for by: 

Ö - — \+\ (9) 

The asymptotic value is reached for t approaching infinity: 

£->«>: y ->a =» y4 = a (10) 

The parameter a in the Gompertz equation can be substituted for by A, yielding the 

modified Gompertz equation: 

y = Aexpi-exp — ( \ - 0 + 1 (11) 

The models with four parameters also contain a shape parameter ( v ) . Table 2 shows the 

results for all equations used in this chapter. 

TABLE 3. Selection of models based on Schnute (16) 

Values of a and b 

a > 0, b = 0 

a > 0, b < 0 

a > 0, b = -1 

a = 0, Z> = 1 

a = 0, * = 0.5 

a = 0, b = 0 

a < 0, b = 1 

Model 

Gompertz 

Richards 

Logistic 

Linear 

Quadratic 

rth power 

Exponential 

No. of parameters 

3 

4 

3 

2 

2 

2 

3 
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The modified Stannard equation appears to be the same as the modified Richards 

equation. The parameters a and b in the Schnute equation are retained in the modified Schnute 

equation because they may be used for model selection (Table 3). However, substitution of a 

and b in the Schnute equation would result in the modified Richards equation. 

Broughall et al. (3) used the Verhuist differential equation (resulting in a logistic curve) 

at times greater than the lag time and used N = N 0 if the time was smaller than the lag time. 

This relation has no smooth transition from a lag phase to a growth phase. Since all our 

growth data show such a smooth transition this model was not considered. 

100 120 140 160 180 
time (h) 

FIG. 2. Growth curve of L. plantarum at 18.2°C fitted with 
the Gompertz ( ) and Richards ( ) models. 

Fitting of the data. The nonlinear equations were fitted to growth data by nonlinear 

regression with a Marquardt algorithm (11,13). This is a search method to minimize the sum 

of the squares of the differences between the predicted and measured values. The program 

automatically calculates starting values by searching for the steepest ascent of the curve 

between four datum points (estimation of n m ) , by intersecting this line with the x axis 

(estimation of A.), and by taking the final datum point as estimation for the asymptote (A). 

The algorithm then calculates the set of parameters with the lowest residual sum of squares 

(RSS) and their 95 % confidence intervals. 
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Model comparison. One way to discriminate among models is to compare them 

statistically. In that case, the RSS alone does not give enough information because different 

models can have a different number of parameters. Models with a greater number of 

parameters usually give a lower RSS. A better method is to determine whether it is 

worthwhile to use more parameters to lower the RSS. Therefore, data fits obtained by using 

the various models were compared statistically by the use of the t test and the F ratio test. 

t test. First, the data were fitted by the Schnute model and parameters a and b were 

evaluated. The Schnute model is a comprehensive model; it encompasses all of the other 

simpler models. This is shown in Table 3, in which values of the Schnute parameters a and 

b are given, leading to one of the other models. The 95 % confidence intervals of the different 

parameters were calculated with the value given by the Student t test. If, for instance, a value 

of zero is in the 95% confidence interval of b (and a > 0), the Gompertz model is suitable 

(Table 3). 

\n{N/No) 

24 28 
time (h) 

FIG. 3. Growth curve of L. plantarum at 35.0°C fitted with 
the Gompertz ( ) and Richards ( ) models. 

F test. The logistic, Gompertz, Richards, and Schnute models were used to fit the data, 

and the RSS was calculated. Under the assumption that the four-parameter Schnute model 

exactly predicts the number of organisms, the RSS of the Schnute model was taken as an 

estimate of the measuring error. Whether a three-parameter model would be sufficient to 
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describe the data could then be validated with an F test. In this test, the difference between 

the RSS values for the three- and four-parameter models was compared to the RSS of the 

four-parameter model. The difference in RSS of the three- and the four-parameter models is 

the profit we get from adding one parameter. If this profit is much smaller than the measuring 

error, as determined from the four-parameter model, adding the extra parameter is not 

worthwhile, as it would not be observable. If, however, this profit is much greater than the 

measuring error, it is worthwhile to add the extra parameter. The following is then calculated: 

ƒ = R S S / D F t es ted aga ins t FDFi (12) 

where RSS! is the RSS from the Schnute model, RSS2 is the RSS from the three-parameter 

model, DFj is the number of degrees of freedom from the Schnute model and equals the 

number of datum points (npoints) - 4, and DF2 is the number of degrees of freedom from the 

three-parameter model and equals npoints - 3. Note that DF2 - DF, = 1, so the F test becomes: 

RSS 2 -RSS! . 
ƒ = tested aga ins t Fnr (13) J RSS^DF! u DF' K3) 

If the models were linear in their parameters, this ƒ value would be F-distributed under 

the assumption that the four-parameter model is correct. Even for nonlinear models, the 

variance ratio shown above is approximately F-distributed when the sample size is large (16). 

This analysis is an approximation at best, and this procedure should be considered an informal 

process, rather than a rigorous statistical analysis, because of the use of nonlinear models 

(16). In some boundary cases, the Student t test and the F test can therefore give contradictory 

results. 

MATERIALS AND METHODS 

In 40 experiments, Lactobacillus plantarum (American Type Culture Collection 

[ATCC]-identified; no ATCC number) was cultivated in MRS medium (Difco Laboratories) 

at different temperatures. Growth was measured with plate counts on pour plates (MRS 

medium with 12 g of agar [Agar technical; Oxoid Ltd.] per liter). The inoculation level was 

0.01% (about 5 10s organisms). 
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Growth data of Candidaparapsilosis, Pseudomonas putida, Enterobacter agglomérons, 

a Nocardia sp., Salmonella Heidelberg, Staphylococcus aureus, and Listeria monocytogenes 

were kindly provided by J.P.P.M. Smelt, C.J.M. Winkelmolen, P. Breeuwer, and F.G.C.T. 

Sommerdijk. 

60 
time (h) 

FIG. 4. Growth curve of L. plantarum at 18.0°C fitted with 
the Gompertz ( ) and Richards ( ) models. 

RESULTS 

All the models visually gave reasonably good fits of the data (Fig. 2 and 3, for 

example). In some cases, the Schnute and Richards models gave some problems with the 

fitting because the parameter estimates came in an area where the function predicted such a 

large value that an overflow error resulted. The Gompertz and logistic models never gave 

problems with fitting. In all cases, the RSS values for the Richards and Schnute models were 

the same, which was expected because the models are basically the same. 

Plate count data for L. plantarum. In Table 4, the results of the parameter estimation 

for 40 sets of data are reported. In this table, the temperature at which the experiment was 

conducted is given. With the use of the Student t test value, the 95 % confidence intervals for 

the parameters a and b were calculated. The lower 95% confidence limit of the parameter a 

is given in Table 4 to determine whether a = 0 is within the confidence interval. Furthermore, 
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TABLE 4. Statistical-analytical data for 40 growth curves of L. plantarum 

reo 

6.0 
6.1 
8.3 
8.6 

12.0 
12.2 
15.1 
15.2 
18.0 
18.2 
18.2 
18.2 
18.6 
21.5 
21.5 
25.0 
25.0 
28.4 
28.6 
32.0 
32.0 
32.4 
34.9 
35.0 
35.3 
36.6 
37.9 
38.4 
40.0 
41.4 
41.5 
41.5 
41.8 
41.9 
42.1 
42.2 
42.6 
42.8 
42.8 
42.8 

a • ' b 

min 

0.003 
-0.0006 
0.011 
0.008 
0.024 
0.023 
0.049 
0.049 
0.065 
0.059 
0.076 
0.068 

-0.607 
-0.322 
0.092 
0.116 
0.082 
0.259 
0.252 
0.257 
0.260 
0.272 
0.301 
0.255 
0.257 
0.262 
0.245 
0.264 
0.247 
0.151 
0.043 
0.070 

-0.278 
-1.01 
0.156 
0.014 

-0.101 
-7.82 
0.315 

-0.061 

b • abc 

-0.988 
-1.18 
-0.113 
-0.748 
-0.247 
-0.337 
-0.786 
-0.096 
-0.086 
-4.23 
-0.058 
-0.192 
-4.72 
-2.04 
-0.167 
-0.317 
-0.147 
-0.676 
-0.352 
-1.06 
-0.933 
-0.276 
-0.544 
-0.314 
-0.320 
-0.207 
-0.299 
-0.870 
-1.73 
-1.26 
-0.220 
-0.403 
-0.641 
-4.50 
-0.152 
-0.355 
-0.443 

-52.1 
-1.09 
-2.20 

b "b 

''max 

0.994 
1.98 
0.435 
0.470 
0.548 
0.672 
0.289 
0.501 
0.540 
0.275 
0.471 
0.350 
6.39 
2.89 
0.614 
0.786 
0.970 
0.201 
0.183 
0.432 
0.367 
0.328 
0.421 
0.623 
0.455 
0.635 
0.676 
0.487 
0.391 
0.713 
0.855 
1.26 
1.69 
5.40 
0.726 
1.46 
2.44 

46.0 
0.824 
1.61 

ƒ" 

Gom 

0.001 
0.194 
1.91 
0.204 
0.577 
4.10 
0.875 
1.80 
7.84 
1.45 
3.78 
0.301 
1.99 
0.277 
1.05 
3.10 
2.44 
1.69 
0.481 
1.06 
1.33 
0.035 
0.099 
0.510 
0.136 
1.08 
0.604 
0.469 
2.65 
0.416 
5.18 
1.06 
0.899 
0.464 
3.31 
1.93 
3.20 
1.79 
0.083 
0.084 

Log 

0.078 
1.49 

53.6 
4.21 

18.4 
40.6 
5.03 

46.2 
49.9 
0.485 

60.4 
30.0 
6.35 
2.50 

19.2 
23.8 
16.8 
10.0 
34.5 
2.71 
4.85 

32.4 
13.3 
17.0 
21.1 
22.2 
15.4 
5.11 
0.382 
1.65 

29.1 
6.45 
4.76 
1.49 

26.8 
6.15 
6.11 
0.395 
2.63 
0.527 

F 

table 

4.13 
4.75 
4.21 
4.33 
4.36 
4.97 
4.45 
4.84 
4.60 
4.75 
4.84 
4.31 
6.60 
5.99 
4.75 
4.97 
4.84 
4.84 
4.84 
4.97 
5.59 
4.84 
5.59 
4.97 
4.75 
4.67 
4.60 
5.99 
4.84 
5.12 
4.75 
4.75 
6.60 
7.72 
4.67 
4.67 
6.60 
5.12 
4.75 
5.12 

Gom 

1.70 
0.282 
0.707 
1.09 
1.13 
0.424 
1.06 
0.375 
0.611 
1.39 
0.233 
0.516 
0.155 
0.486 
0.648 
0.800 
1.07 
0.430 
0.210 
0.883 
0.334 
0.241 
0.200 
0.482 
0.471 
0.722 
0.880 
0.229 
1.17 
0.668 
0.331 
1.57 
0.209 
0.844 
0.400 
1.47 
0.633 
0.633 
0.141 
0.105 

RSS 

Logf 

1.70 
0.312 
1.97 
1.30 
2.11 
1.56 
1.30 
1.67 
2.02 
1.29 
1.12 
1.20 
0.252 
0.658 
1.55 
2.07 
2.21 
0.714 
0.833 
1.01 
0.475 
0.948 
0.571 
1.24 
1.28 
1.81 
1.77 
0.394 
0.974 
0.756 
0.792 
2.22 
0.346 
1.04 
0.975 
1.89 
0.858 
0.551 
0.171 
0.110 

Richards 

1.70 
0.277 
0.660 
1.08 
1.10 
0.300 
1.00 
0.322 
0.391 
1.24 
0.173 
0.509 
0.111 
0.464 
0.596 
0.611 
0.876 
0.373 
0.201 
0.798 
0.281 
0.240 
0.197 
0.459 
0.466 
0.667 
0.844 
0.213 
0.941 
0.638 
0.231 
1.44 
0.178 
0.757 
0.319 
1.28 
0.386 
0.528 
0.140 
0.104 

a a and b are Schnute parameters;b min and max are 95% confidence limits;c Boldface data indicate 
acceptance of logistic model with f test;d Boldface data indicate acceptance of given model with F test; 
f Boldface data indicate that RSS with Gompertz model is greater than RSS with logistic model. 

the 95% confidence limits for b are given. Comparing the confidence intervals in Table 4 for 

b with Table 3 results in Table 5. In Table 3, we can see that if b = 0, the Schnute model 

changes into the Gompertz model, so we accepted the Gompertz model if the value of zero 
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was within the 95% confidence interval of b. This was true in all cases (Table 4), so the 

Gompertz model, although a three-parameter model, was accepted in all cases by the t test. 

Furthermore, the/-testing values for the Gompertz and the logistic models and the F table 

values are given in Table 4. With the use of the F test, the difference between the RSS values 

for the three- and four-parameter models was compared to the RSS of the four-parameter 

model. For the Gompertz model, the/-testing value was lower than the F table value in all 

but two cases (Table 4). 

TABLE 5. Determination of models for L. plantarum based on the method of Schnute (16) 

Values of a and b 

a > 0, b = 0 
a > 0, * < 0 
a > 0, * = -1 
a = 0, b = 1 
a = 0, b = 0.5 
a = 0,b = 0 
a < 0, b = 1 

Model 

Gompertz 
Richards 
Logistic 
Linear 

Quadratic 
fth power 

Exponential 

No. (% of total)' of results accepted with: 

f test 

40(100) 
40(100) 
11 (28) 
8(20) 
8(20) 
8(20) 
8 (20) 

F test 

38(95) 

17(43) 

* Total number of experiments = 40. 

In the cases in which the F test favored the Richards model over the Gompertz model 

(Fig. 4 and 5), the differences between the two models were still very small. The logistic 

model, however, was accepted by the t test only 11 times (out of 40) and by the F test 17 

times (Table 4). 

In addition, the RSS values of the Gompertz, logistic, and Richards models are given 

in Table 4. The RSS values for the four-parameter models were always lower than the RSS 

values for the three-parameter models. In only three cases, the logistic model gave a lower 

RSS value than the Gompertz model (Table 4; Fig. 6), but in these cases the Gompertz model 

still fitted the data acceptably. 

In Fig. 7, the confidence intervals for the parameter b (Schnute model with the t test) 

are shown. In this graph, it can be seen that the value of zero (Table 3, Gompertz model) was 

always within the confidence interval; however, the value of-1 (Table 3, logistic model) was 

much less frequently within the confidence interval (only 11 times). 

In Fig. 8, the results from the F test for the Gompertz model are shown. The squares 

represent the /-testing values, and the pluses represent the critical F table values (95 % 
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8 10 12 
time (h) 

FIG. 5. Growth curve of L. plantarum at 41.5°C fitted with 

the Gompertz ( ) and Richards ( ) models. 

ln(A//A/o) 8 

8 12 16 20 24 
time (h) 

FIG. 6. Growth curve of L. plantarum at 40.0°C fitted with 

the Gompertz ( ) and logistic ( ) models. 
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confidence). If the /-testing value was smaller than the F table value, the three-parameter 

model was accepted. In this graph, it can be seen that the Gompertz model was rejected only 

2 times out of 40 (5%). This 5% rejection level may be expected with a 95% confidence level. 

TABLE 6. 

Orgai 

Statistical-

lism 

analytical data for 27 growth curves 

n ab h abc h ab fi 
min min max J 

Gom 

of organisms 

Log 

F 

table 

other than L. plantarum 

Gom 

RSS 

Logf Rich 

Candida parapsilosis 0.038 -1.60 0.761 1.71 1.11 10.1 0.114 0.100 0.073 
C. parapsilosis 0.136 -1.12 0.154 6.67 4.86 10.1 0.086 0.070 0.027 
C. parapsilosis 0.039 -1.60 1.16 0.071 1.07 10.1 0.102 0.135 0.100 
C. parapsilosis 0.117 -0.673 0.751 0.557 21.1 10.1 0.030 0.205 0.025 
C. parapsilosis -0.071 -3.68 1.70 3.22 0.000 10.1 0.362 0.175 0.175 
Pseudomonas putida 0.050 -2.42 -0.513 18.7 1.08 4.17 4.47 2.86 2.76 
P.putida 0.027 0.114 1.12 3.84 15.3 4.17 6.42 8.60 5.70 
P. putida 0.059 -0.169 0.701 1.25 16.2 4.13 3.98 5.66 3.83 
P.putida 0.037 -0.174 1.54 6.31 17.5 4.16 11.9 15.4 9.85 
Enterobacter agglomérons 0.002 0.141 1.10 15.2 41.5 4.14 13.4 20.7 9.19 
E. agglomerans 0.015 0.412 0.802 26.7 111 4.17 4.87 12.1 2.58 
E. agglomerans 0.020 0.240 0.793 9.26 48.8 4.13 5.07 9.70 3.98 
E. agglomerans 0.025 0.432 1.01 17.7 59.9 4.15 7.80 14.4 5.03 
Nocardia sp. 0.072 -2.08 1.29 0.540 1.21 5.12 0.176 0.188 0.166 
Salmonella Heidelberg -3.18 -10.9 12.9 0.720 1.43 161 1.23 1.74 0.717 
Staphylococcus aureus 0.178 -0.759 1.82 0.843 3.86 6.61 0.526 0.798 0.450 
S. aureus 0.009 -3.73 5.39 15.2 42.5 6.61 0.543 1.28 0.134 
S. aureus -2.13 -3.39 5.39 1.25 1.73 6.61 1.87 2.01 1.49 
S. aureus -3.60 -5.07 7.07 1.28 1.56 6.61 0.886 0.926 0.706 
S. aureus -0.529 -2.11 4.09 2.86 4.66 6.61 4.54 5.58 2.89 
S. aureus -0.315 -4.67 6.44 1.51 3.31 6.61 0.807 1.03 0.620 
S. aureus 0.062 0.235 1.77 10.8 21.6 10.1 1.12 1.99 0.243 
S. aureus 0.094 -0.056 2.06 14.4 29.6 10.1 0.873 1.63 0.151 
S. aureus 0.452 0.747 1.25 3.44 5.31 10.1 0.273 0.353 0.127 
S. aureus 0.066 -0.512 1.87 2.62 8.59 10.1 0.628 1.29 0.335 
S. aureus -0.060 -1.66 1.81 0.094 3.20 18.5 0.031 0.078 0.030 
Listeria monocytogenes -16.5 -171 172 0.000 0.136 18.5 0.007 0.007 0.007 

* a and b are Schnute parameters;b min and max are 95% confidence limits;c Boldface data indicate 
acceptance of logistic model with t test;d Boldface data indicate acceptance of given model with F test; 
'Boldface data indicate that RSS with Gompertz model is greater than RSS with logistic model. 

Plate count data for other organisms. While it could be that only L. plantarum growth 

data are described well by the Gompertz model, the same comparison of models was carried 

out with growth data from other microorganisms (Tables 6 and 7). With these data, the 

Gompertz model was accepted in 70% of the cases by the t test (b=0 within the confidence 
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FIG. 7. è confidence intervals of L. plantarum growth data fitted with the Schnute model (16). 
Exp. No., Experiment number. 

F and f values 8 

7 

6 

5 

4 

3 

2 

1 

K + + + + + + L. + + + + + + + n 

10 20 30 40 
Exp. No. 

FIG. 8. Results of an F test of L. plantarum growth data. 

The Gompertz and Richards models are compared, •ƒ value, *F value. 
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interval) and in 67% of the cases by the F test. The logistic model was accepted in 52% of 

the cases by the t test (b = -1 within the confidence interval) and in 59% of the cases by the 

F test. 

TABLE 7. Determination of models for organisms other than L. plantarum 
based on the method of Schnute (16) 

Values of a and b 

a > 0, b = 0 
a > 0, b < 0 
a > 0, b = -1 
a = 0, b = 1 
a = 0, * = 0.5 
a = 0, b = 0 
a< 0,b= 1 

Model 

Gompertz 
* Richards 
Logistic 
Linear 
Quadratic 
fth power 
Exponential 

No. (% of total)" of results 

ftest 

19(70) 
20(74) 
14(52) 
8(30) 
8(30) 
8(30) 
8(30) 

accepted with: 

Ftest 

18(67) 

16(59) 

* Total number of experiments = 27. 

DISCUSSION 

In order to build models to describe the growth of microorganisms in food, it is 

necessary to measure growth curves. To reduce the measured data to interesting parameters 

such as the growth rate, it is recommended that the data be described with a model instead of 

by using linear regression over a subset of the data. Sigmoidal models to describe the growth 

data can be constructed with three or four parameters. 

We compared several models statistically and found that, for L. plantarum, the 

Gompertz model was accepted in all cases by the t test and was accepted in 95% of the cases 

by the F ratio test; therefore, the Gompertz model can be regarded as sufficient to describe 

the growth curves of L. plantarum. The logistic model, however, seems not to be sufficient 

to describe the data. It was accepted in 28% of the cases by the / test and in 43% of the cases 

by the F test with L. plantarum. 

With the data of other microorganisms, the Gompertz model was accepted in 70% of 

the cases. With the data of the other organisms, the logistic model was accepted in 52% of 

the cases with the t test and in 59% of the cases with the Ftest. Linear, quadratic, rth-power, 

and exponential models were accepted in very few cases. Therefore, we can conclude that all 

growth curves are better fitted with the Gompertz model than with logistic, linear, quadratic, 

rth-power, and exponential models. 
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In some cases, the confidence interval of the Schnute parameter b (bmia- b^) was very 

large. In these cases, there were not enough data to describe all three growth phases. 

Therefore, the confidence level of the resulting parameters is not very high. These sets of data 

are not very suitable for the estimation of parameters. 

In a number of cases, the four-parameter Schnute model was statistically better than the 

Gompertz model (P. putida and E. agglomerans). These growth curves contained a very large 

number of datum points (34 to 38) and with such a large number of datum points the 

difference in degrees of freedom between three- or four-parameter models is not important 

(with 34 datum points: 31 degrees of freedom for Gompertz or 30 degrees of freedom for 

Richards). For the other organisms (C. parapsilosis and S. aureus), the Gompertz model was 

accepted in most cases. For the growth curves of the Nocardia sp., Salmonella Heidelberg, 

and L. monocytogenes, the Gompertz model was accepted in all the cases, but only one curve 

for these organisms was used. 

The three-parameter models gave no difficulties in finding the least-square parameters. 

In almost all the cases, the Gompertz model can be regarded as the best model to describe the 

growth data. If a three-parameter model is sufficient to describe the data, it is recommended 

over a four-parameter model because the three-parameter model is simpler and therefore 

easier to use and because the three-parameter solution is more stable since the parameters are 

less correlated. Moreover, when a three-parameter model is used, the estimates have more 

degrees of freedom, which can be important when a growth curve with a small number of 

measured points is used. Furthermore, it is very important that all three parameters can be 

given a biological meaning. The fourth parameter in the four-parameter models is a shape 

parameter and is difficult to explain biologically. 

In a number of cases (especially when a large number of datum points are collected), a 

four-parameter model can be significantly better; therefore, it is recommended that the 

procedure given in this chapter be carried out with a number of sets of data in order to find 

out the best model to describe the specific sets of data. 

ACKNOWLEDGMENTS 

This work was partly supported by Unilever Research Laboratorium Vlaardingen. We thank 
P.M. Klapwijk, J.P.P.M. Smelt, and H.G.A.M. Cuppers for valuable discussions and H.H. Beeftink 
for reading the manuscript. 



26 BACTERIAL GROWTH CURVE MODELING 

REFERENCES 

1. Adair, C , D.C. Kilsby, and P.T. Whittall. 1989. Comparison of the Schoolfield (non-linear 

Arrhenius) model and the square root model for predicting bacterial growth in foods. Food 

Microbiol. 6:7-18. 

2. Bratchell, N., A.M. Gibson, M. Truman, T.M. Kelly, and T.A. Roberts. 1989. Predicting 

microbial growth: the consequences of quantity of data. Int. J. Food Microbiol. 8:47-58. 

3. Broughall, J.M., P.A. Anslow, and D.C. Kilsby. 1983. Hazard analysis applied to microbial 

growth in foods: development of mathematical models describing the effect of water activity. 

J. Appl. Bacteriol. 55:101-110. 
4. Einarsson, H., and S.G. Eriksson. 1986. Microbial growth models for prediction of shelf life 

of chilled meat, p. 397-402. In Recent advances and developments in the refrigeration of meat 

by chilling. Institut International du Froid-International Institute of Refrigeration, Paris. 

5. Gibson, A.M., N. Bratchell, and T.A. Roberts. 1987. The effect of sodium chloride and 

temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized 

pork slurry. J. Appl. Bacteriol. 62:479-490. 

6. Gibson, A.M., N. Bratchell, and T.A. Roberts. 1988. Predicting microbial growth: growth 

responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage 

temperature. Int. J. Food Microbiol. 6:155-178. 

7. Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, 

and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. 

London 115:513-585. 

8. Griffiths, M.W., and J.D. Phillips. 1988. Prediction of the shelf-life of pasteurized milk at 

different storage temperatures. J. Appl. Bacteriol. 65:269-278. 

9. Jason, A.C. 1983. A deterministic model for monophasic growth of batch cultures of bacteria. 

Antonie van Leeuwenhoek J. Microbiol. Serol. 49:513-536. 

10. Mackey, B.M., and A.L. Kerridge. 1988. The effect of incubation temperature and inoculum 

size on growth of salmonellae in minced beef. Int. J. Food Microbiol. 6:57-65. 

11. Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters. I. 

Soc. Ind. Appl. Math. 11:431-441. 

12. Phillips, J.D., and M.W. Griffiths. 1987. The relation between temperature and growth of 

bacteria in dairy products. Food Microbiol. 4:173-185. 

13. Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. 1988. MRQMIN , p. 

772-776. In Numerical recipes. Cambridge University Press, Cambridge. 

14. Richards, F.J. 1959. A flexible growth function for empirical use. J. Exp. Bot. 10:290-300. 

15. Ricker, W.E. 1979. Growth rates and models. Fish Physiol. 8:677-743. 

16. Schnute, J. 1981. A versatile growth model with statistically stable parameters. Can. J. Fish. 

Aquat. Sei. 38:1128-1140. 

17. Stannard, C.J., A.P. Williams, and P.A. Gibbs. 1985. Temperature/growth relationship for 

psychrotrophic food-spoilage bacteria. Food Microbiol. 2:115-122. 



CHAPTER 3 

COMPARISON OF DEFINITIONS OF THE LAG PHASE AND THE 
EXPONENTIAL PHASE IN BACTERIAL GROWTH 

ABSTRACT 

Different definitions of the lag time and of the duration of the exponential phase can be 

used to calculate these quantities from growth models. The conventional definitions were 

compared with newly proposed definitions. It appeared to be possible to derive values for the 

lag time and the duration of the exponential phase from the growth models, and differences 

between the various definitions could be quantified. All the different values can be calculated 

from the growth parameters n m , X., and A. Therefore, it appeared to be unnecessary to use 

complicated mathematical equations: simple equations were adequate. For the Gompertz 

model the conventional definition of the lag time did not differ appreciably from the newly 

proposed definition. The end-point of the exponential phase and thus the duration of the 

exponential phase differed considerably for the two definitions. For the logistic model the two 

definitions lead to considerable differences for all quantities. It is recommended that the 

conventional definition is used for calculating the lag time. For the duration of the exponential 

phase it is recommended that the new definition is used. The value can be calculated, 

however, directly from the conventional growth parameters. 

INTRODUCTION 

In predictive microbiology, models are used to describe the growth of micro-organisms 

under different environmental conditions. In order to build these models growth has to be 

measured and modelled. Bacterial growth often shows a phase in which the growth starts from 

a zero rate and then accelerates to a maximal value ( p. m) in a certain period of time, resulting 

in a lag time ( X. ). In addition, growth curves contain a final phase in which the rate decreases 

This chapter has been published as: 

Comparison of Definitions of the Lag Phase and the Exponential Phase in Bacterial Growth 

M.H. Zwietering, F.M. Rombouts, K. van 't Riet (1992) 

J. Appl. Bacteriol. 72:139-145 
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and finally reaches zero, so that an asymptotic level (A) is reached. The bacterial growth 

curve can be described with, e.g. the Gompertz and logistic growth models. Using these 

models the parameters \x.m, X, and A can be estimated from growth data (2, 4). The most 

common way of calculating the duration of the lag time ( X. ) is extrapolation of the tangent at 

the inflection point of the growth curve, back to the inoculation level (Fig. 1). After this lag 

phase the exponential phase sets in. The end of this exponential phase ( a ) can be defined as 

the time at which the extrapolation of the tangent in the inflection point reaches the final level 

(Fig. 1). Buchanan and Cygnarowisz (1) proposed a new definition for calculating the lag time 

in bacterial growth by deriving the time at which the change of the growth rate is maximal 

(maximum acceleration of the growth rate). This is given as the time at which the third 

derivative of the logarithm of the number of organisms with respect to time is zero (Fig. 2). 

This is an interesting new way of defining the lag time. Moreover, the duration of the 

exponential phase can be calculated with the same definition, as the difference between the 

times of maximum acceleration and maximum deceleration, i.e. the time between two zero 

values of the third derivative. 

In(WAfo) 

time 
FIG. 1. A growth curve with the parameters nm (specific growth rate), ks (lag time), ag (end of 
exponential phase), and A (asymptote). ^„ is determined as the time where the tangent crosses the 

starting level, a, is determined as the time where the tangent crosses the final level. 
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The determination of the lag phase will be of most interest in the modelling of the 

growth of food-borne pathogens. Duration of the exponential growth will be more relevant 

for the modelling of the growth of spoilage organisms, and for defining the growth state of 

the organisms. 

The object of this work was to evaluate differences between different definitions of the 

lag time, and the duration and the end of the exponential phase. 

THEORY 

Different definitions of the lag phase. Using a description of the growth curve like the 

Gompertz or logistics equations, the third derivative can be derived from these equations. 

Like Buchanan and Cygnarowisz (1) we adopted the form of the Gompertz equation, as used 

by Gibson et al. (2): 

y ( 0 = ß + C e x p { - e x p [ - ß ( t - M ) ] } (1) 

where: y(t) = log10 count at time t,D = log number at t= - ° ° , C = final log increase in 

bacterial numbers, M = time at which culture achieves its maximum growth rate (h), 

B = relative growth rate at time M (l/h), t = time (h). 

If we use: $ = exp[-B(t-M)] (2) 

we get for the Gompertz equation: 

y ( t ) = Z? + C e x p ( - * ) (3) 

Using: ~dt=~ W 

the subsequent derivatives may be calculated as: 

dy 
— = 5C*exp(-<t>) (5) 

y = S2C*(*-l)exp(-*) (6) 
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log(W) 
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time (h) 

-) with 0=2 . 3 , fl=0.095, C=8.1, and M= 20.8; the third FIG. 2. The Gompertz function (-

derivative (1000*, ), the newly proposed lag time (X. 6 ) and end of the exponential phase 

(a6 ). Kb is determined as the time where the third derivative is zero, a t is determined as the time 

where the third derivative is zero for the second time, a , is determined as the time where the 

tangent ( ) crosses the final level. 

\og(N) 6 

-
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time (h) 

FIG. 3. Beginning of the Gompertz function ( ) with £>=2.3, 5=0.095, C=8.1, and 

Af=20.8. \g is determined as the time where the tangent ( ) crosses the starting level, xb is 

determined as the time where the third derivative (1000*, ) is zero. 
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dt 
^f = B3C<i>(<i>2-3<i> + l ) e x p ( - * ) (7) 

The Gompertz equation and its third derivative are shown in Fig. 2. In Fig. 3 the beginning 

of the Gompertz function is given. 

The lag time ( X b ) is now defined as the smallest r-value for which this third derivative 

is equal to zero (1). The factors 4> and exp ( - * ) on the right hand side of equation 7 cannot 

equal zero. This results in: 

e x p [ - 2 ß ( t - M ) ] - 3 e x p [ - ß ( t - M ) ] + 1 =0 (8) 

This can be rewritten as: 

e x p [ - B ( J - M ) ] - e x p -f(*-Af) ]-}{ exp[- /?(«- M)] + exp - - ( f - M ) 1 = 0 (9) 

Buchanan and Cygnarowisz (1) used this equation to calculate the two zero values of 

the third derivative of the Gompertz function. They used a root-finding procedure to calculate 

where one of the two parts of equation 9 is zero. However, equation 8 is a simple quadratic 

equation, and can thus be solved analytically: 

$'-3<t> + 1 =0 (10) 

The two solutions are obtained from: 

<exp[ -Ä( t -M)]> I > 2 -
3 ± V 9 - 4 

, . 1. f 3 ± v 5 t i . 2 - M - - l n ' 

(11) 

(12) 

Since the lag time is the root with the smallest time the definition of Buchanan and 

Cygnarowisz (1) gives the lag time ( X „ ) as: 

. . . 1, f 3 + ^ .. 0.96 
^ h = M - — I n = M — 

* B [ 2 J B 
(13) 
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The conventional way of defining the lag time ( \ ) results in the following equation (2): 

K-M-B (14) 

Equations 13 and 14 show that there is little numerical difference between the two definitions 

of the lag time. 

RESULTS 

Comparison of different definitions of the lag phase. The various definitions of the 

lag time are compared quantitatively in Table 1, by using the parameter values (D, B, C, M) 

of Buchanan and Cygnarowisz (1) and calculating the values of the different lag times. Each 

parameter is also doubled and halved to describe the effects in a wider range of parameters. 

TABLE 1. Comparison of lag time estimates 

Gompertz parameters 

D 

2.30 

1.15 

4.60 

2.30 

2.30 

2.30 

2.30 

2.30 

2.30 

2.30 

B 

0.095 

0.095 

0.095 

0.0475 

0.190 

0.095 

0.095 

0.095 

0.095 

0.095 

C 

8.10 

8.10 

8.10 

8.10 

8.10 

4.05 

16.2 

8.10 

8.10 

8.10 

M 

20.8 

20.8 

20.8 

20.8 

20.8 

20.8 

20.8 

41.6 

10.4 

10.0 

Calculated values 

nm 

0.283 

0.283 

0.283 

0.142 

0.566 

0.142 

0.566 

0.283 

0.283 

0.283 

G.T. 

1.063 

1.063 

1.063 

2.127 

0.532 

2.127 

0.532 

1.063 

1.063 

1.063 

K 

10.27 

10.27 

10.27 

-0.253 

15.54 

10.27 

10.27 

31.07 

-0.126 

-0.526 

x.„ 

10.67 

10.67 

10.67 

0.538 

15.74 

10.67 

10.67 

31.47 

0.269 

-0.131 

D, B, C, M, Gompertz parameters; \im, specific growth rate (log count/h), equals BC/e; parameter 
values of Buchanan and Cygnarowisz (1) are used. Each parameter is also varied to describe the 
effects in a wider range of parameters; G.T. Generation time (h), equals log(2)e/ßC; \ s , 
conventional lag time (h), equals M - 1 /B ; \„ newly proposed lag time (h), equals M - 0.96/B . 
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As can be seen in Table 1 there are no large numerical differences between the lag times 

\ g and Kb. This can also be seen in Fig. 3, where the Kg and \ b are closely together. 

Since the two definitions show no large differences, it is recommended that the conventional 

definition (X„) is used, as this enables comparison to be made between values from the 

literature. Moreover, equation 14 is easier to use and to incorporate into the Gompertz model 

(4), although this could also be done for the newly proposed lag time. Table 1 shows more 

parameter values resulting in negative values for the lag time, when using the conventional 

definition (X-g). This could be an argument in favour of the newly proposed definition. 

However, in these cases the differences between the two definitions also show small 

deviations, which will be smaller than the measuring error of determining the lag time. 

Therefore, in these cases it can be concluded that the lag time will be around zero with both 

definitions. Equations 13 and 14 show that Kb and \ g can be easily recalculated. In 

conclusion, it is not necessary to use the complicated third derivative numerical procedure if 

A. is the only quantity of interest. 

Buchanan and Cygnarowisz (1) also proposed that the end of the exponential growth 

phase can be calculated as the point where the third derivative of the growth model becomes 

zero for the second time (see Fig. 2). We call this the time a 6 : 

• ( * ! ) 
a,-M U L J . H . ^ (15) L i, 

" B B 

Alternatively, the end of the exponential phase may be defined as the intersection 

between the tangent in the inflection point of the growth curve and the final level (D+C, see 

Fig. 2). This time a g can then be calculated with the description of this tangent (tangent 

method, comparable to conventional definition of Kg): 

BC C 
y = — - ( t - M ) + £> + - (16) 

RC C 
D + C = — - ( a B - M ) + D + - (17) 

.« 1 - 7 2 
a 9 = M + — ( 1 8 ) 



(19) 
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Equations 15 and 18 show a significant numerical difference between the two a s . The 

Gompertz curve is not symmetrical around the inflection point; the curvature at the beginning 

of the curve is more pronounced than at the end, towards the stationary phase. Therefore, the 

estimation of a g gives a higher value than the estimation using the definition of Buchanan 

and Cygnarowisz (1). This can also be seen in Fig. 2. 

e b , the duration of the exponential phase, can be calculated from equations 15 and 13 

as: 

l n ( ^ ) l n ( ^ ) 1 - 9 2 

E L — Ott A, », — + 

b b b B B B 

and e g can be calculated from equation 18, and 14 as: 

2 72 
a a - ^ = — (20) 

It can be seen that there is a large numerical difference between the two definitions of 

the end of the exponential phase and, with that, also in the duration of the exponential phase. 

However, e6 = 0.71 eg and therefore the e values always have the same ratio. Even so, the 

end-points of the exponential phase a b and a g can be calculated if the growth parameters 

are known. This makes the use of any of the two methods arbitrary. In Fig. 2 it can be seen 

that for the tangent method, the growth behaviour at the predicted end of the asymptotic phase 

already differs largely from exponential behaviour. 

Comparison of different modifications of the Gompertz equation. Zwietering et al. 

(4) modified the Gompertz equation, so that the growth parameters [im, X, and A are used 

instead of mathematical parameters. Since they define a growth curve as \n(N / N .„) 

versus time, the starting value of the logarithmic growth curve is equal to zero. Table 2 gives 

a conversion table for the various definitions of the Gompertz model, used by Gompertz (3), 

Gibson et al. (2), and Zwietering et al. (4). 

For the modified Gompertz the third derivative can also be calculated (Table 3). With 

this equation the newly defined lag time and end of the exponential phase can be calculated 

and compared with the conventional definitions (Table 4). As the equation is written only in 

a modified form, with the modified Gompertz model of Zwietering et al. (4) we get results 

comparable with the Gompertz model used by Gibson et al. (2). 
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TABLE 2. Conversion table of different Gompertz functions 

Zwietenng et al. (4) nme nme Gompertz (3) 
b » X+ 1 ;c = ; a = A 

A A 

y = j4exp< - e x p ^ - 0 * 1 
y - a e x p [ - e x p ( b - c ( ) ] 

b - 1 Ac 

Zwietering et al. (4) A vme Gibson et al. (2) 
M - \ + ;B - ——;D - 0 ;C= A 

>l"i e 
y = / l e x p \ - e x p | — — ( K - f ) + l 

y = D + C e x p { - e x p [ - B ( ( - M ) ] > 

1 Pß 

Gibson et al. (2) b = BM;c = B-,a = C Gompertz (3) 

y - D + C e x p { - e x p [ - B ( f - M)]} < y - a e x p [ - e x p ( b - c l ) ] 

b 
fi-c;M--;D-0;C-a 

c 

Buchanan and Cygnarowisz (1) proposed that their definition can also be used for other 

growth models, such as logistic. For the modified logistic equation proposed by Zwietering 

et al. (4) the third derivative is calculated (Table 3). 

For the modified logistic model it can be seen in Table 4 and Fig. 4 that both the lag 

time and the end of the exponential phase differ using the two different definitions. However, 

with this equation the value of the lag time proposed by Buchanan and Cygnarowisz (1) can 

also be calculated analytically from the values found with the modified logistic equation. 

The various definitions of the lag time are compared quantitatively in Table 5 for the 

Gompertz model, by using the parameter values (A, \s.m, and Kg ) and calculating the values 

of the different lag times. Some of our own growth data of Lactobacillus plantation at 

different temperatures are given by Zwietering et al. (5). 

Some extreme cases are also used in which yl = l n ( 10 ' 0 ) = 23 as a maximum value 

and A = 1 as a minimum value. A maximum value of the growth rate is calculated as a growth 

rate with a generation time of 20 minutes: \im = 31n (2) (1/h). A minimum growth rate is 

calculated as growth from 1 to 1010organisms during one year: \im = 24,365 = 0.0026 (1/h). 
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TABLE 3. Calculation of the third derivative of the modified Gompertz 

and the modified logistic models 

Gompertz equation Logistic equation: 

y = /lexp< -exp Hme 
( \ - < ) + l 

* = exp 
H*.e 

( x - O + 1 

y - A( 1 + exp 

4> = exp 

4u„ 
• ( X . - 0 + 2 

4u„ 
( X - O + 2 

—f- exp(-*) • — * ( * - 3 * + 1) 
dt3 A2 

* ' - 3 * + 1 = 0 

^-Ür = 6 4 ^ ) ( l +4>)_4<1>(*2-4<1>+ 1) 
dt3 A* 

* ' - 4 * + 1 =0 

Um« 

A 
^me 

1 - I n 

1 - I n 

2 J. 

3 - / 5 

^„ = ^„ + 2—[2 - l n (2 + / 3 ) ] 

a„ = \,, + — [ 2 - l n ( 2 - / 3 ) ] 

v = ln(Af/iV_„); A = ln(W./iV_.); n m = maximum specific growth rate (1/h); 

\ = lag time (h); f = time (h). 

TABLE 4. Comparison of X., a, and e using the modified Gompertz and modified logistic model 

Conventional (4) New definition (1) 

Modified Gompertz 
K 

<*t 

K 

<*. 

-* . 

- \ 

£ Ö = 

- \ 

- \ 

E„ = 

+ 0 . 0 1 4 — 

+ 0 . 7 2 — 

o.ziA 

, + o . i / A 
' Urn 

+ 0 . 8 3 — 

0 . 6 6 — 

Modified Logistic 

a'-K' + ^ 
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For the lag time a value of zero is chosen as minimum extreme value;-this would be found if 

totally adapted organisms are used. Furthermore, a value of 10 h is arbitrarily chosen for 

fast-growing organisms, and a value of 1500 h is chosen for slow growth, as maximum 

extreme values. 

\n(N/No) 

100 

time (h) 

-) with A=5, nm = 0.125 , \ = 10; the tangent FIG. 4. The modified logistic function (-
( ) and the third derivative (1000*, ). 

Table 5 shows, for the measured growth data, only small differences between the two 

definitions of the lag time. Between the a s and also between the e s there are significant 

differences. However, the values of )vb, ab, and eb can all be derived from the growth 

parameters n m , Kg, and A. For the extreme cases there is also little numerical difference 

between the two definitions of the lag time, except in the cases of slow growth and zero lag 

time. The difference between the two definitions, however, is negligible on the time scale of 

that hypothetical experiment. 

DISCUSSION 

The newly proposed definition of Buchanan and Cygnarowisz (1) for calculating the 

duration of the lag time and the exponential phase gives interesting results. For the Gompertz 

model the duration of the lag phase is almost identical when calculated with the new or the 

conventional definition, over a large range of parameter values. Therefore, it is recommended 
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TABLE 5. Comparison \ , a, and e definitions 

r(°c) 

Data 

6 

15 

22 

35 

40 

43 

A nm *>. 

given by Zwietering et al. (5): 

7.62 

9.38 

9.48 

8.81 

7.57 

4.11 

0.016 

0.223 

0.538 

1.223 

0.992 

0.145 

Hypothetical data: 

23.0 

23.0 

23.0 

23.0 

1.00 

1.00 

1.00 

1.00 

2.00 

2.00 

0.002 

0.002 

2.00 

2.00 

0.002 

0.002 

809.5 

12.88 

5.27 

2.06 

2.44 

2.34 

0.00 

10.00 

0.00 

1500 

0.00 

10.00 

0.00 

1500 

^ 6 

816.0 

13.47 

5.51 

2.16 

2.54 

2.74 

0.16 

10.16 

161.0 

1661 

0.007 

10.01 

7.00 

1507 

a„ <*6 
e» 

Calculated values 

1275 

54.91 

22.88 

9.26 

10.07 

30.79 

1146 

43.23 

17.98 

7.26 

7.94 

22.88 

465.5 

42.03 

17.62 

7.20 

7.63 

28.45 

Calculated values 

11.50 

21.50 

11500 

13000 

0.500 

10.50 

500.0 

2000 

8.30 

18.30 

8303 

9803 

0.361 

10.36 

361.0 

1861 

11.50 

11.50 

11500 

11500 

0.500 

0.500 

500.0 

500.0 

E b 

329.6 

29.75 

12.47 

5.10 

5.40 

20.14 

8.14 

8.14 

8142 

8142 

0.35 

0.35 

354.0 

354.0 

that the conventional definition is used for the lag time, since this is the method used until 

now and because this method is much simpler. The duration of the exponential phase 

according to Buchanan and Cygnarowisz (1) differs from the tangent method value. The 

newly defined length of the exponential phase better covers the part of the growth curve with 

exponential behaviour (Fig. 2 and 4), and, therefore, seems to give a more realistic value than 

the tangent definition. Therefore, it is recommended that the end-point and the duration of the 

exponential phase are calculated with the definition of Buchanan and Cygnarowisz (1). These 

values can be calculated from the parameters of the modified Gompertz equation. The 

calculation method used should, therefore, be the simple analytical equations given in this 

chapter. 
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CHAPTER 4 

MODELING OF BACTERIAL GROWTH AS A FUNCTION OF 
TEMPERATURE 

ABSTRACT 

The temperature of chilled foods is a very important variable for microbial safety in a 

production and distribution chain. To predict the number of organisms as a function of 

temperature and time, it is essential to model the lag time, specific growth rate, and asymptote 

(growth yield) as a function of temperature. The objective of this research was to determine 

the suitability and usefulness of different models, either available from the literature or newly 

developed. The models were compared by using an F test, by which the lack of fit of the 

models was compared with the measuring error. From the results, a hyperbolic model was 

selected for the description of the lag time as a function of temperature. Modified forms of 

the Ratkowsky model were selected as the most suitable model for both the growth rate and 

the asymptote as a function of temperature. The selected models could be used to predict 

experimentally determined numbers of organisms as a function of temperature and time. 

INTRODUCTION 

Predictive modeling is a promising field in food microbiology. Models are used to 

describe the behavior of microorganisms at different physical and chemical conditions, such 

as temperature, pH, and water activity. They can be used to predict microbial safety or shelf 

life of products, to find critical points in the process, and to optimize production and 

distribution chains. A major factor determining the specific growth rate of microorganisms in 

chilled foods is temperature. Various models have been proposed to describe this relationship. 

Spencer and Baines (16) proposed a linear dependency of the rate of microbial spoilage of fish 

on temperature. This relationship was shown to be valid only at temperatures below 6CC (8). 

This chapter has been published as: 

Modeling of Bacterial Growth as a Function of Temperature 

M.H. Zwietering, J.T. de Koos, B.E. Hasenack, J.C. de Wit, K. van 't Riet (1991) 

Appl. Environ. Microb. 57:1094-1101 
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Therefore, Olley and Ratkowsky (8) proposed an Arrhenius-type (2) equation. This equation 

could predict results up to 15°C. However during cooling, freezing, heating, or thawing, 

regions in the product can have a temperature far above 15°C, and therefore a wider 

growth-temperature range is important. Schoolfield et al. (13) proposed a nonlinear 

Arrhenius type of model on a biological basis, describing the specific growth rate as a 

function of temperature over the whole biokinetic temperature range. Further empirical 

models were proposed by Ratkowsky et al. (10,11), i.e., the square root model, describing 

the specific growth rate up to 15°C, and the expanded square root model, describing the 

growth rate over the whole biokinetic temperature range. A model which is only seldom used 

is the model of Hinshelwood (7), although it is a simple model with a biological basis. Adair 

et al. (1) modeled the growth rate and the inverse of the lag time using the Ratkowsky and 

Schoolfield models and concluded that the Schoolfield model gives the best predictions. 

The literature provides us with a number of models. However, a systematic approach 

to determine the most suitable model is lacking. The objective of this research was to 

determine the suitability and usefulness of the different models by systematic and statistical 

analysis of a large amount of experimental data. 

THEORY 

Description of experimental bacterial growth data. The growth curve is defined as 

the logarithm of the relative population size [y = ln(/V/iV„)]asa function of time (t). For 

bacteria, the growth rate shows a lag phase that is followed by an exponential phase, and 

finally it shows a decreasing growth rate down to zero resulting in a maximum value of the 

number of organisms. A growth model with three parameters can describe this growth curve 

(18): the maximum specific growth rate n m , which is defined as the tangent in the inflection 

point; the lag time A., which is defined as the f-axis intercept of this tangent, and the 

asymptote A, which is the maximal value reached. The three parameters are determined from 

growth data by describing them by the Gompertz model (6). Therefore, the Gompertz model 

(6), with parameters a, b, and c, was rewritten (18) to include A , \im and X. fe=exp(l)]. 

Modified Gompertz: y = Aexp < - exp Hn - ( \ - 0 + 1 (1) 

Growth-temperature relations. A number of growth-temperature relations are 

compared. Included are models from the literature as well as modified forms. The models are 

all written with the growth rate as a function of temperature (7). Transformation of the growth 
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rate (square root, logarithm) was not executed, as others tend to do (1,4,9,17), to fit all data 

in the same way. Using transformations on data results in a different weighting of different 

numerical values. Using the minimum residual sum of squares (RSS) criterion, one has to take 

into account that a transformation changes the distribution of errors at different numerical 

values. If regression without weighting is used, the measuring error must be normally 

distributed with the same standard deviation at all different rvalues. 

The growth rate used is the |i m found with the modified Gompertz model. 

i) Square root model of Ratkowsky et al. (11). This model does not have a biological 

basis. It is based on the observation that at lower temperatures the square root of the specific 

growth rate is linear with temperature (11): 

Hm = [ ö , ( T - T m i n J ) ] 2 (Ratkowsky 1) (2) 

where b is a Ratkowsky parameter ("C'h-05), and Tmin is the minimum temperature at which 

growth is observed (°C). The subscript 1 relates to Ratkowsky 1. 

ii) Expanded square root model of Ratkowsky et al. (10). To describe the growth rate 

around the optimum and the maximum temperatures, Ratkowsky et al. (10) expanded their 

equation: 

Hm = ( ö 2 ( T - 7 m i n 2 ) - { l - e x p [ c 2 ( 7 - 7 m a x 2 ) ] } J (Ratkowsky 2) (3) 

where c is a Ratkowsky parameter (°C->), and 7max is the maximum temperature at which 

growth is observed (°C). The subscript 2 relates to Ratkowsky 2. 

iii) Modified Ratkowsky model (Ratkowsky 3). At temperatures above Tttm, equation 

3 predicts positive values of the growth rate; therefore, this model cannot be used above 7 ^ . 

We modified the Ratkowsky model so that the decline of nm toward 7 ^ is described by an 

exponential function and not by the square of an exponential function, so that extrapolation 

above the maximum growth temperature Ttiax predicts no positive values of the growth rate: 

Hm = [ ö 3 ( 7 - 7 m i „ 3 ) ] 2 - { l - e x p [ c 3 ( 7 - T m a ; C 3 ) ] } (Ratkowsky 3) (4) 

The subscript 3 relates to Ratkowsky 3. 
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/2(h"n) 

Temperature ( C) 

FIG. 1. Growth rates modeled with the Hinshelwood model 

(• : estimated growth rate values; : model prediction). 

Temperature ( C) 

FIG. 2. Growth rates modeled with the Ratkowsky 3 model 

(• : estimated growth rate values; : model prediction). 
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10 20 30 40 50 

Temperature ( C) 

FIG. 3. Growth rates modeled with the Ratkowsky 2 model 

(• : estimated growth rate values; : model prediction). 

//(h"1) 

Temperature ( C) 

FIG. 4. Growth rates modeled with the Schoolfield model 

(• : estimated growth rate values; : model prediction). 
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iv) Model of Schoolfield et al. (13). The Schoolfield model is based on the model of 
Sharpe et al. (14,15), which has the following assumptions, i) The total amount of all 
compounds in the cell is constant (balanced growth), and only one enzyme reaction is rate 
controlling. The rate-controlling enzyme is reversibly denatured at very low and at very high 
temperatures, ii) The total amount of rate-controlling enzyme per cell is constant, iii) The 
reaction rate of the rate-controlling enzyme reaction is zero order, iv) The enzyme reaction 
and both the high- and low-temperature inactivation show an Arrhenius type of temperature 
dependency. This results in the following equation: 

/c„exp( —-] 

l+fc,exp( — J + / c exp ( — J 

where the subscript a relates to the controlling enzyme reaction, the subscript h relates to 
high-temperature inactivation, and the subscript / relates to low-temperature inactivation. kt 

(h1)» *i (-), and k^ (-) are frequency factors, E is the activation energy (J mol1), R is the gas 
constant (JK l mol1), and Tis the temperature (K). 

In equation 5, the parameters are strongly correlated. Schoolfield et al. (13) modified 
the equation to diminish the correlation: 

Hm = -
^WS™V{T{WS-\)] 

1 + «pfttHJWïtH)] 
(6) 

where pi2S is the growth rate at 25°C (h1), Tx is the temperature (K) at which the enzyme is 

50 % inactivated due to low temperature , H is the enthalpy of activation (J mol1), and Th is 

the temperature (K) at which the enzyme is 50 % inactivated due to high temperature. 

v) Hinshelwood model (7). The Hinshelwood model is based on the following 

assumptions, i) The total amount of all compounds in the cell is constant (balanced growth), 

and only one enzyme reaction is rate controlling, ii) The product of this enzyme reaction is a 

heat-sensitive essential biomolecule which is irreversibly denatured at high temperatures. 

Both the enzyme reaction and the high-temperature denaturation show an Arrhenius type of 

temperature dependency and are zero order. This results in the following equation: 
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^ • f c » " e x p ^ Ä f J " * * ' e x p ( " Ä f J (7) 

where kv and ̂  are frequency factors (h1) and £, and E2 are the activation energies (J mol1) 

of the enzyme reaction and the high-temperature denaturation, respectively. 

vi) General model. There is also a model (general model) that uses the mean values of 

the measured data. At every temperature, this model gives the mean value of the data at that 

temperature. This model is of the type "at temperature q the growth rate is z" and is therefore 

not useful for interpolation. 

At one temperature T{ (with i = l to 1 = 18), m growth rates are measured (duplicates, 

triplicates...). In our case, m is not the same value at different temperatures. Then the model 

for the best prediction of a growth rate at a certain temperature can be proposed, that is, 

defined as the mean value n m ( 0 of the measured growth rates at that temperature. This 

model is called the general model: 

n » ( o - L — — — (8) 
y-i m 

with \im(i, j) being theƒ•> growth rate at T{, and \im(i) being the mean growth rate at 7j. 

Asymptote-temperature relations. For the asymptote data, no extensive literature 

exists as it did for the growth rate. For the asymptote data, a number of models were tested, 

including the Hinshelwood (equation 7), Ratkowsky 2 (equation 3), Ratkowsky 3 (equation 

4), and Schoolfield (equation 6) models. These equations can be regarded as empirical fit 

models only. Since the asymptote did not show a strong dependency on temperature at the 

lower temperature range, a second modified Ratkowsky model is proposed (Ratkowsky 4): 

^ = b 4 { l - e x p [ c 4 ( 7 - 7 m a ; c 4 ) ] } (9) 

where bA is the final level reached at low temperatures and r^ , , is the maximum temperature 
at which growth is observed (°C). 

Lag time-temperature relations. Adair et al. (1) modeled the inverse of the lag time 

data with growth models (Ratkowsky, Schoolfield). By taking the inverse of the data, 
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numerical values of the lag time that are » ] will approach zero after the transformation and 

are therefore weighted less. Transforming the model predictions back to lag times then results 

in large prediction errors ( 0 = 1/8000 * 1/800 but °° * 8000 * 800). For this reason, 

we did not use the inverse of the data, but the inverse of the growth rate equations are used 

as empirical models, to fit the data. 

TABLE 1. Comparison of the models describing the growth rate 

Model" 

H m = 0 

H„ = a 

kU = a7" 

Vm=aT+b 

Hinshelwood 

Ratkowsky 3 

Ratkowsky 2 

Schoolfield 

general 

t»m = ( i m ( i . » 

No. of 

parameters 

0 

1 

1 

2 

4 

4 

4 

6 

18 

38 

DF 

38 

37 

37 

36 

34 

34 

34 

32 

20(DF,) 

0 

RSS2 

20.793 

5.994 

3.744 

3.738 

0.248 

0.211 

0.220 

0.215 

0.164(RSS,) 

0.000 

ƒ 

139.5 

41.74 

25.63 

27.19 

0.729 

0.409 

0.483 
0.516 

F 

2.1 

2.2 

2.2 

2.2 

2.2 

2.2 

2.2 

2.3 

" \im is the growth rate to be modeled; um(i.y) is they* growth rate at 7]; a and b are regression 

coefficients; T is the temperature. Bold indicates successive selection of the models. 

In this study, the lag time data showed a large measuring error at high numerical values 

(the standard deviation was proportional to the mean value). To limit this influence, a 

logarithmic transformation is used on the experimental data and on the model equations. In 

conclusion, the transformed lag time data are then modeled by using the logarithm of the 

inverse of the growth rate models. For instance, for the Ratkowsky 2 model (equation 3), we 

fitted: 

ln(X.) = ln ö s ( 7 - - 7 m i n S ) - { l - e x p [ c s ( 7 - T m a x S ) ] } (10) 

which is the same equation as equation 3, except for that the model is inverted and the natural 

logarithm of the model is taken. 

The results of Adair et al. (1) and Gill et al. (5) show a hyperbolic behavior of the lag 

time and the temperature; therefore, a hyperbolic equation is also used: 
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l n ( \ ) = 
(T-q) (ID 

The parameter q is the temperature at which the lag time is infinite (no growth). The 

parameter p is a measure for the decrease of the lag time when the temperature is increased. 

TABLE 2. Results of the Hinshelwood parameter estimation 

Parameter Estimate 95% Confidence interval 

*, (h"1) 
£,(kJ): 

*2(h-') 
£, (Id): 

1.249E+21 

107.2 

1.319E+21 

107.4 

-1.903E+24 

0.7415 

-1.903E+24 

0.6361 

1.906E+24 

213.7 

1.906E+24 

214.1 

TABLE 3. Correlation matrix for Table 2 parameters 

Parameter ki * i 

*1 

£i 

*2 

£2 

1.000 

0.998 

0.99999 

-0.998 

0.998 

1.000 

0.998 

-0.993 

0.99999 

0.998 

1.000 

-0.998 

-0.998 

-0.993 

-0.998 

1.000 

Comparison of the models. The models are compared statistically with the use of an 

F ratio test. With the general model (equation 8), the measuring error is estimated by 

determining the deviation of the measured values from the mean value at one temperature. 

The sum of squares of the deviations between the data and the general model is calculated 

(RSS,): 

RSS,= £ £ [ | i m ( i , y ) - n m ( 0 ] 2 

i-1 i-\ 

(general model) (12) 

with \im(i, j) being they"1 growth rate at T{ and n m ( 0 being the mean growth rate at T{. 
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The sum of squares of the deviations between the data and a given growth temperature 

model is calculated (RSS^ as: 

k m 

RSS2 = 2̂ . 2] [ n m ( i , ; ) - | î m ( ï ) ] 2 ( g r owth - t empe ra tu r e model) (13) 

with | i m ( 0 being the model prediction at temperature Tt. 

RSS2 will always be larger than or equal to RSS,. The RSS2 of the growth-temperature 

model used is built up from both the measuring error and the lack of fit; therefore, the 

difference between the RSS2 of the model and RSS, (the measuring error) is calculated as an 

estimation of the lack of fit. If the lack of fit (RSS2-RSS,) is much smaller than the measuring 

error (RSS,), the model is adequate. If the lack of fit is much larger than the measuring error, 

the model is not adequate. This comparison between the laek of fit and the measuring error 

can be quantified statistically by the/testing value: 

(RSS 2 -RSS , ) / (DF 2 -DF , ) 
f = R S S l / D F , t 6 S t e d a g a m S t F*t ( 1 4 ) 

where DF, is the number of degrees of freedom from the general model, that equals the total 

number of datum points minus the number of different temperatures measured (38-18=20). 

DF2 is the number of the degrees of freedom from the growth-temperature model that equals 

the number of datum points minus the number of parameters. 

These statistics are not valid for nonlinear models but at least give an indication about 

the suitability of the models, since even for nonlinear models, the variance ratio shown above 

is approximately F distributed when the sample size is large (12). This analysis is an 

approximation at best, and this procedure should be considered as an informal process, rather 

than a rigorous statistical analysis, because of the use of nonlinear models (12). 

MATERIALS AND METHODS 

Microbial experiments. In 38 experiments at 18 different temperatures, Lactobacillus 

plantarum (American Type Culture Collection determined; no ATCC number) was cultivated 

in MRS medium (Difco Laboratories). The culture was stored frozen (-16°C). The bacteria 

were cultivated twice at 30°C, first for 24 h and second for 16 h. Growth was monitored by 

using 20-ml tubes, each containing 10 ml of medium and inoculated with the test organism to 
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reach a target initial titer of 5 105 CFU/ml. The test tubes were incubated statically at different 

temperatures from 6°C up to 43°C as follows (temperatures in °C and number of experiments 

in parentheses): 6.0 (1); 8.5 (2); 12.1 (2); 15.2 (2); 18.2 (5); 21.5 (2); 25.0 (2); 28.5 (2); 

32.1 (3); 35.1 (3); 36.6 (1); 37.9 (1); 38.4 (1); 40.0 (1); 41.5 (3); 41.9 (2); 42.2 (2); 42.8 

(3). At appropriate time intervals (depending on temperature), the inoculated cultures were 

vortexed and samples of 0.1 ml were removed for serial dilution in peptone saline solution 

(1 g of Bacto-Peptone [Difco], 8.5 g of NaCl [Merck p.a.] per liter). Bacterial numbers were 

determined with a pour plate (MRS medium with 12 g of agar [Agar Technical Oxoid Ltd.] 

per liter). The pour plates were incubated for 48 h at 30°C before counting. 

TABLE 4. Results of the Schoolfield parameter estimation 

Parameter 

n2s (h
1) 

tf.(kJ) 

tf.(kJ) 
T,(K) 

Hh(kJ) 

7i(K) 

Estimate 

1.42 

-5.43 

-141.1 

297.7 

687.9 

314.7 

95% Confidence interval 

-0.0576 

-59.8 

-182.2 

286.0 

402.1 

314.0 

2.91 

49.0 

100.1 

309.3 

973.7 

315.3 

TABLE 5. Correlation matrix for Table 4 parameters 

Parameter 

H25 

H, 

" . 
T{ 

Hh 

Tb 

H25 

1.000 

-0.990 

0.610 

0.997 

0.436 

0.711 

H. 

-0.990 

1.000 

-0.512 

-0.981 

-0.506 

-0.791 

//, r, 

0.610 0.997 

-0.512 -0.981 

1.000 0.642 

0.642 1.000 

-0.011 0.417 

0.051 0.682 

«„ 

0.436 

-0.506 

-0.011 

0.417 

1.000 

0.721 

Tb 

0.711 

-0.791 

0.051 

0.682 

0.721 

1.000 

Fitting of the data. The modified Gompertz equation (equation 1) was fitted to the data 

of the 38 growth curves by nonlinear regression with a Marquardt algorithm (18). This 

resulted in estimates for the specific growth rate, lag time, and asymptote of these 38 different 

growth curves. The model equations were also fitted to these data by nonlinear regression. 

Confidence intervals are based on the variance-covariance matrix of the parameters, 

calculated with the Jacobian matrix. 
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Selection of the models. First the models were compared statistically by using the F 

test. This gave all the models that are statistically accepted, and then other criteria could be 

used to choose the best model. First the models with the fewest number of parameters were 

selected. From this subset of models, the model with the lowest RSS2 was selected. 

If one of the statistically accepted models is based on biological principles and the 

parameter estimates are confident and have an acceptable value, the biological relevance of 

this model is discussed. 

TABLE 6. Results of the Ratkowsky 2 parameter estimation 

Parameter 

b2 : 
T 

min2' 
c2 : 

T 
nux2* 

Estimate 

0.0377 

2.82 

0.250 

44.9 

95 % Confidence interval 

0.0321 

-0.223 

0.173 

44.2 

0.0433 

5.86 

0.326 

45.5 

TABLE 7. Correlation matrix of Table 6 parameters 

Parameter 

b2 

T • 
min2 
c2 

^max2 

b2 

1.000 

0.963 

-0.824 

0.628 

T 
-*min2 

0.963 

1.000 

-0.687 

0.499 

c2 

-0.824 

-0.687 

1.000 

-0.922 

T 

0.628 

0.499 

-0.922 

1.000 

RESULTS AND DISCUSSION 

Growth-temperature relations. The specific growth rates as function of temperature 

(38 measurements) are described by using different models . The RSS2 values and the/testing 

values of the different growth temperature relations are shown in Table 1. Additionally some 

simpler models are given such as "the growth rate is zero at all temperatures" ( [i = O ) ; "the 

growth rate is constant at all temperatures" (\i = a) ; "the growth rate is linearly dependent 

on temperature" (n = aT + ö). It is clear from Table 1 that the RSS2 value decreases with an 

increasing number of parameters. The general model with 18 parameters exactly predicts the 

mean values of the measured data. This model is of the type "at temperature q the growth rate 

is z", and is therefore not useful for interpolation. This comparison clearly shows what can 
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be achieved with modeling: reduction of data to a limited number of parameters, more 

specifically to a model that is accepted statistically with as few parameters as possible. Some 

investigators (1) only compare the RSS2 of models and decide which model is the best by 

determining which model gives the lowest RSS2. From Table 1 it can be seen that there are 

always models with a lower RSS2, even one with RSS2=RSS,. But these models have so many 

parameters that the aim of modeling, reducing the data to a statistically accepted model with 

a limited number of parameters, is not achieved. The lack of fit is probably a more stringent 

test of model adequacy. 

From the curvature of the datum points in Fig. 1, it can be easily seen that the data are 

not well described by a constant value or a straight line. Indeed, for the first four models the 

ƒ testing value is much larger than the F table value, and therefore these models are rejected. 

From Table 1 it can be concluded that the Hinshelwood (four parameters), Ratkowsky 2 (four 

parameters), Ratkowsky 3 (four parameters), and Schoolfield (six parameters) models are 

accepted statistically, because the ƒ testing value is lower than the F value. In Fig. 1 to 4, 

where for these four models the predicted and measured values are shown, it can be seen that 

these models describe the curvature of the growth rate-temperature relation. As these four 

models are all accepted statistically, other criteria can be used to choose the best model. 

Among the four-parameter models, the Hinshelwood model is based on a fundamental 

model (Arrhenius). In the Hinshelwood model, the parameters are strongly correlated (Table 

3). A value of 1 for two parameters in the correlation matrix means that these two parameters 

are totally correlated with each other. Parameters that are strongly correlated (> 0.999) are 

difficult to estimate, because a change in one parameter will be compensated for by a change 

in a correlated parameter, and numerous iterations are necessary. Moreover, the confidence 

intervals of such parameters are very large (Table 2). A second problem with the 

Hinshelwood model is that the estimates for the activation energies El and E2 are almost the 

same value (107.2 and 107.4 kJ). This results in a subtraction of two large values to calculate 

the growth rate. Reparameterization of the model, however, can possibly reduce these 

problems. Normally, the activation energy for an enzyme-catalyzed reaction is 10 to 80 kJ, 

and for a denaturation reaction it is 400 to 1200 kJ (3). Neither estimated activation energy 

is within these intervals. This means that the fitting of the Hinshelwood relation to the data 

results in an estimation of unrealistic activation energy values. This makes the biological 

background of the model discussable. A third problem with the Hinshelwood model is that 

the predictions of the growth rate at low temperatures are too high. Growth rates at low 

temperatures are especially important during chilled food storage. Concluding all these 

aspects, this model can be regarded as not appropriate. 
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Temperature ( C) 

FIG. 5. Asymptote data modeled with the Ratkowsky 4 model 

( • : estimated asymptote values; : model prediction). 

Ln(A) 8 

10 20 30 40 50 

Temperature ( C) 

FIG. 6. Lag time data modeled with a hyperbola model 

( • : estimated lag time values; : model prediction). 
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Schoolfield et al. (13) reparameterized their model to overcome the correlation problem 

and, as can be seen in Table 5, they were successful. The parameter Ht should be the enthalpy 

of activation of the reaction that is catalyzed by the rate-controlling enzyme. A negative value, 

however, was found. However, part of the confidence interval covers realistic values (Table 

4). The other parameters also show realistic values. Therefore, the biological background of 

the Schoolfield model can exist. However, often the six parameters of the Schoolfield model 

are used as fitting parameters instead of estimates of biologically relevant parameters. Only 

with a very large data set can this model be used to estimate the biological parameters. Even 

with 38 datum points, the confidence intervals of the parameters are too large (Table 4). 

As can be seen in Tables 7 and 9, the correlation matrices of the Ratkowsky 2 and 

Ratkowsky 3 models show no nondiagonal values of > 0.999, so in these models the 

parameters can be estimated easily. 

TABLE 8. Results of the Ratkowsky 3 parameter estimation 

Parameter 

ft, : 
T 

min3* 
c3 : 
T 

max3* 

Estimate 

0.0410 

3.99 

0.161 

43.7 

95% Confidence interval 

0.0335 

0.881 

0.0940 

43.4 

0.0485 

7.11 

0.228 

44.1 

TABLE 9. Correlation matrix for Table 8 parameters 

Parameter 

*3 

T 
min3 
c3 

T 
max3 

b3 

1.000 

0.960 

-0.910 

0.591 

T 
'mm3 

0.960 

1.000 

-0.783 

0.466 

C3 

-0.910 

-0.783 

1.000 

-0.804 

T 
'max3 

0.591 

0.466 

-0.804 

1.000 

Statistical evaluation of the models shows that the Hinshelwood, Ratkowsky 2, 

Ratkowsky 3, and Schoolfield models all describe the growth rate data sufficiently. 

Therefore, an appropriate model can be chosen on the basis of other grounds. The models 

with the lowest number of parameters (the four-parameter models) were chosen. The 

Ratkowsky 3 equation has the lowest RSS2 of all four-parameter models. Therefore, the 
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Ratkowsky 3 model appeared to be the most suitable to describe the specific growth rate as 

function of temperature. The RSS2 of the Ratkowsky 3 model is even smaller than the RSS2 

of the Schoolfield model, although the Schoolfield model has two more parameters. 

The Ratkowsky 3 equation shows an exponential drop of the growth rate at high 

temperatures and it shows no positive values of the growth rate at temperatures above the 

maximum growth temperature. 

TABLE 10. Comparison of the models describing the asymptote 

Model' 

.4 = 0 

A = a 

A = aT 

A-aT+b 

Hinshelwood 

Ratkowsky 2 

Ratkowsky 3 

Ratkowsky 4 

Schoolfield 

General 

A-A{i.n 

No. of 

parameters 

0 

1 

1 

2 

4 

4 

4 

3 

6 

18 

38 

DF 

38 

37 

37 

36 

34 

34 

34 

35 

32 

20(DF,) 

0 

RSS2 

2378 

128 

587 

111 

178 

28.7 

28.3 

31.3 

20.4 

14.3(RSS,) 

0.0 

ƒ 

183 

9.37 

47.1 

8.41 

16.4 

1.43 

1.39 

1.58 
0.711 

F 

2.1 

2.2 

2.2 

2.2 

2.2 

2.2 

2.2 

2.2 

2.3 

* A is the asymptote to be modeled; A(i,j~) is they* asymptote at 7V a and b are regression 
coefficients; Tis the temperature. Bold indicates successive selection of the models. 

Asymptote-temperature relations. The asymptote value as a function of temperature 

was analyzed with various models (Table 10). The asymptote data did not differ much in the 

lower temperature range, and therefore a model with a constant asymptote in the lower 

temperature range was also taken into account (Ratkowsky 4). The first four models can be 

rejected on basis of the F test. In this case, the Hinshelwood model is rejected also. None of 

the other models can be rejected on the basis of statistics. While the Ratkowsky 4 model is 

not rejected, there is no statistical evidence that there is an effect of temperature on the 

asymptote in the lower temperature range. Although it seems that the asymptote value 

increases with increasing temperature (Fig. 5), the measuring error is too large to 

discriminate statistically. It is possible that with more datum points or data with a smaller 

standard deviation the effect of temperature on the asymptote in the lower temperature range 

can be shown. Yet, since for the measured datum points the Ratkowsky 4 model was accepted 
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statistically and had the lowest number of parameters (from the models which are accepted), 

this model was selected (Fig. 5). The parameter estimates of this model are shown in Table 

11. 

In these experiments, the same inoculation level (5 105 organisms per ml) was always 

used. If it is assumed that the final absolute number of organisms JV_ is constant (and 

therefore not dependent on the inoculum level), the asymptote is dependent on the inoculum 

level as: 

b 4 = / l = l n ( N . / W 0 ) (15) 

ln(A/.) = b 4 + l nN 0 = 8.46 + ln(5£'5) = 8.46+ 13.12 = 21.58 (16) 

The parameter bA (the final level reached at lower temperatures) must be used 

[b 4+ln(5£"5)- ln( /V„) = 2 1 . 5 8 - ln(/V„)] if another inoculation level is used. 

TABLE 11. Results of the Ratkowsky 4 parameter estimation 

Parameter Estimate 95 % Confidence interval 

K 
Q 

T 
max4 

8.46 

1.25 

43.1 

8.09 

0.709 

42.9 

8.82 

1.78 

43.4 

Lagtime-temperature relation. To fit the lag time, a logarithmic transformation was 

used, because the data showed a larger measuring error at high numerical values (the standard 

deviation was proportional to the mean value). After the transformation, the distribution of 

measuring errors at different temperatures was almost the same. Adair et al. (1) fitted the 

logarithm of the inverse lag time data with the Schoolfield model and the square root of the 

inverse of the lag time data with the Ratkowsky model. After transforming the model 

predictions back to lag times, they calculated the RSS2 between their measured data and the 

model predictions and they found, for instance, RSSRat= 16186 and RSS^^, = 683. If they 

would have fitted the logarithm of the lag time data with the logarithm of the inverse of the 

Ratkowsky model (as it is proposed in this report; equation 10) and transformed back to lag 

time, they would have found RSSRat= 632. Note that the fitting to the models is done with 

different models but that the calculation of the RSS values is done comparing lag time data 

(without transformation) with model data. This is a striking example to show the importance 

of the choice of the transformation before fitting. 
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The logarithm of the lag time as a function of temperature was described with different 

models (Table 12). In this case, the first four models were rejected again. All other models 

were accepted. The models with the lowest number of parameters had to be selected. These 

were the models with two parameters that are accepted statistically (Ratkowsky 1 and a 

hyperbola). Between these latter two models, the hyperbola model had the lowest RSS2, and 

therefore this model was selected (Fig. 6). The parameter estimates are given in Table 13. 

TABLE 12. Comparison of the models describing the lag time 

Model' 

l n (K) -0 

l n ( \ ) = a 
lnO) = a r 

l n (X) -aT + b 

Hyperbola 
(Ratkowsky 1) ' 

(Ratkowsky 2)-> 

(Ratkowsky 3)1 

General 

l n ( M - l n [ X . ( i . ; ) ] 

No. of 

parameters 

0 

1 

1 

2 

2 

2 

4 

4 

18 

38 

DF 

38 

37 

37 

36 

36 

36 

34 

34 

20(DF,) 

0 

RSS2 

127 

58.6 

95.6 

29.1 

9.70 

18.3 

9.14 

9.21 

7.70(RSS!) 

0.0 

ƒ 

17.2 

7.79 

13.4 

3.47 

0.325 
1.71 

0.267 

0.282 

F 

2.1 

2.2 

2.2 

2.2 

2.2 

2.2 

2.2 

2.2 

" \ is the lag time to be modeled; \(<. J) is they* lag time at 7]; a and b are regression coefficients; 
Tis the temperature. Bold indicates successive selection of the models. 

TABLE 13. 

Parameter 

P • 

q • 

Results hyperbolic 

Estimate 

23.9 

2.28 

parameter estimation 

95% Confidence interval 

19.1 28.7 

1.19 3.37 
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Growth curve-temperature relation. The different models can now be integrated. 

Using equation 4, equation 9, and equation 11 and the estimated parameters for these models 

(Table 14), the growth rate, asymptote, and lag time at every desired temperature can be 

calculated, and using equation 1, a growth curve at that temperature can be described. 

If the measured growth data are compared with the model predictions, the resulting 

model can be evaluated (Fig. 7 to 10). The model describes the data adequately. The growth 

rate at 6°C and the asymptote at 8.5°C are not very well estimated. The measured growth 

rate at 6°C is a very small value (0.0164 h1) and is estimated by the model as 0.00675 h1. 

The lag time at 6°C is estimated well, which results in a reasonable prediction of the dynamic 

behavior over a long period (almost 3 months). The asymptote at 8.5°C is not very well 

estimated. The reason can be found in the fact that the model prediction at 8.5°C in Fig. 5 is 

greater than the datum points. All the other predictions (also at the temperatures not presented 

here) agreed very well with the measured values. The model prediction is usually in between 

the duplicate or triplicate observations. 

TABLE 14. Parameters for models (equation 4), (equation 9) and (equation 11)" 

Growth rate (M 

[b3(T-Tmln3)f 

Parameter 

*3 

T 
mio3 

c3 

T 
max3 

m) (equation 4) 

( l - e x p [ c 3 ( 7 - T , 

Estimate 

0.0410 

3.99 

0.161 

43.7 

nax3)\} 

Asymptote 
b 4 { l - e x p [ 

Parameter 

*4 

C* 
T 

max4 

(A) (equation 9) 
c,(T-Tmax4)]} 

Estimate 

8.46 

1.25 

43.1 

Lag time (K) (equation 11) 

l n ( K ) ' ( T - q ) 

Parameter Estimate 

p : 23.9 

q : 2.28 

y = Aexpi-exp 
Vn- e 

( \ - 0 + l (1) 

For the parameter bt, 21.58-ln(/v„) must be used if another inoculation level is used. 
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FIG. 7. Growth data and total model at 6.0 (solid symbols) and 8.5°C (open symbols). 

Different symbols indicate different duplicates. 
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FIG. 8. Growth data and total model at 15.1 (solid symbols) and 25.0°C (open symbols). 
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FIG. 9. Growth data and total model at 18.2 (solid symbols) and 35.1°C (open symbols). 

Different symbols indicate different duplicates. 
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Conclusions. We now have a model describing the growth curve of L. plantarwn in 

MRS medium including lag time, growth rate, and asymptotic value. In these studies, a 

simple medium was chosen to collect a large number of datum points as it was the objective 

of this study to distinguish between models. With the model proposed here, growth over the 

whole relevant temperature range can be predicted. In practical situations other media will be 

used and the parameter values will have to be determined for that situation. Often a much 

smaller number of datum points will be collected. This indicates again the importance of a 

small number of parameters, because the solutions are more stable and the estimates of the 

parameters have a larger number of degrees of freedom using a model with a smaller number 

of parameters. In our case (38 experiments, 18 temperatures), models with a small number 

of parameters are selected. But normally growth rates are measured at far less different 

temperatures, so models with more parameters will not be relevant. Since the models are not 

rejected with a large amount of data (38 growth curves at 18 different temperatures), it is not 

advisable to use models with a larger number of parameters with many fewer datum points. 
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CHAPTERS 

EVALUATION OF DATA TRANSFORMATIONS AND VALIDATION 
OF MODELS FOR THE EFFECT OF TEMPERATURE ON 

BACTERIAL GROWTH 

ABSTRACT 

The temperature of chilled foods is an important variable for controlling microbial 

growth in a production and distribution chain. Therefore, it is essential to model growth as a 

function of temperature in order to predict the number of organisms as a function of 

temperature and time. This paper deals with the correct variance-stabilising transformation of 

the growth parameters A,\i, and X. This is of eminent importance for the regression 

analysis of the data. A previously gathered data set is extended with new data. With the total 

data set (original and new data), an analysis of variance is carried out to determine which 

transformation should precede fitting. For the asymptote data no, for the growth rate a square 

root, and for the lag time a logarithmic transformation was found to be appropriate. Model 

corrections were made and model parameters were estimated using the original data. The 

models were validated with the new data. The predictions of the models for \i and A, were 

adequate. The model for A showed a significant deviation, therefore a new model for A is 

proposed. Finally, the model parameters were updated using the total data set. 

INTRODUCTION 

Temperature is a major factor determining the progress of many food deterioration 

reactions. For microbial spoilage the effect of temperature on the specific growth rate and the 

lag phase is important. Various models to describe the effect of temperature are used (7). 

Models often are compared only to the data on which the model is fitted (measured versus 

This chapter is submitted as: 

Evaluation of Data Transformations and Validation of Models for the Effect of Temperature on 

Bacterial Growth 

M.H. Zwietering, H.G.A.M. Cuppers, J.C. de Wit, K. van 't Riet 
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fitted) and are only rarely validated with new data (measured versus predicted). Yet, such 

validation can provide useful information about the accuracy and predicting value of the 

models. 

The effect of temperature on growth rate is modeled often after a transformation (square 

root or logarithm). This transformation, however, changes the distribution of errors. 

Unweighted regression may only be performed if the variance is equally distributed with 

temperature. Therefore, it is of great importance to determine which type of transformation 

gives a temperature-independent variance. Ratkowsky (3) used multiple measurements at each 

temperature to calculate the variance. He advises to use a square-root transformation to 

stabilize variance for the growth rate [or (generation time)05] and a logarithm for the lag 

phase duration. Alber and Schaffner (1) used the in-experiment error (no replicates) to 

calculate the variance and recommended to use a logarithmic transformation to stabilize the 

variance of the growth rate. In our former paper (7) the growth rate and the asymptote were 

modeled without transformation since the variance seemed to be equally distributed in that 

particular data set. The lag time was fitted after a logarithmic transformation, since this 

transformation smoothed the variance. 

It will be clear that different opinions do exist up till now. This is largely due to the 

rather small data sets that were used. In order to estimate the variance at least duplicate 

measurements at each temperature are needed. With an extensive data set it can be examined 

with which transformation the variance is stable over a large temperature interval. 

THEORY 

Description of the experimental bacterial growth rate data. Growth curves are 

defined as the logarithm of the relative population size [ ln(jV/A/„)]asa function of time. 

A sigmoidal growth model (modified Gompertz) with three parameters can describe the 

growth curve (6), at a given temperature. 

ln(A///V„) = y4exp< - e x p - ( \ - 0 + 1 (1) 

with A = Asymptotic level ln(A/„/A/0), n m = maximum specific growth rate (h1), 

X = lag phase duration (h), and e = exp(l). 
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Analysis of Variance. The variances of A,\im, and A. are calculated at different 

temperatures using the mean values of the measured data. At one temperature Tit mi replicate 

curves are measured. In our case, m, does not have the same value at different temperatures. 

Then the model for the best prediction of the y-value ( A, \i, or X. ) at a certain temperature 

can be proposed, that is defined as the mean value y(Q of the measured y-values at that 

temperature. This model is called the general model: 

with y = A,[i, or X; y ( i, ;' ) being they*y-valueat Tt, and y ( i ) being the mean y-value 

atr. 
The variance at temperature T, is calculated at those temperatures for which more than 

one observation is obtained with: 

R s s ( = £ [ y ( i . y ) - y ( 0 ] 2 

2 RSS; (3) 
s, = DF< 

with RSSj the Residual Sum of Squares at 7]; DF; the Degrees of Freedom at 7j (equals m-\); 

and s f the residual variance at Tt. 

According to Ratkowsky (3) the variance can be plotted against the mean value, as well 

as the variance divided by the mean, the square of the mean, and the cube of the mean, in 

order to determine the appropriate transformation. If the variance is dependent on the mean, 

models should be fitted after transforming the data or by using non-normal error assumptions. 

If the variance divided by the mean shows no correlation a square root transformation is 

suitable [ v a r (yy j ) = v a r ( y j ) / 4 y ( ] . If the variance divided by the square of the mean 

shows no correlation a logarithmic transformation is suitable to correct for heterogeneity of 

variance [ v a r ( l n [y , ] ) = v a r ( y ( ) / y f ] . 

As an alternative procedure the variance is calculated after carrying out the 

transformation (the variance of the transformed data). Then the variance of the untransformed 

data, the square root and the logarithm of the data are plotted against the mean. 
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To quantify correlation (for both above mentioned methods) linear regression is carried 

out and the correlation coefficient is calculated. With a t test it can be examined if there is a 

correlation 

-'M 
with t =Mesting value; r = correlation coefficient; n = number of observations. 

It should be noted that linear regression is used, although the relations will not be linear. 

This gives a global indication of the correlation and not an exact value. Visual inspection of 

the variance data is also crucial. 

Growth/temperature relations. The previously proposed models for the effect of 

temperature on the asymptote (A), specific growth rate (M-m), and lag time (A.) with 

parameter values are given in Table 1. 

TABLE 1. Parameter values and models for the effect of temperature on the asymptote (A), 
growth rate (tim) and lag time (\) for Lactobacillusplantarum in MRS-medium 

[from Zwietering et al. (7)] 

Asymptote, Ratkowsky 4 bA 8.46" 
^ = b 4 { i - e x p [ c 4 ( r - r m o x < ) ] > 

Specific growth rate, Ratkowsky 3 

Hm = [b3(7--7"m ,„ 3 ) ] z<l-exp[c 3 (7 ' -7- 1 ) u , x 3 ) ]} 

Lag time, hyperbola 

P ln(M = 

c4 

T 
max4 

b3 

T 
mtn3 

c3 

T 
max3 

P 

a 

1.25 

43.1 

0.0410 

3.99 

0.161 

43.7 

23.9 

2.28 
(T-q) 

' Parameter bA depends on the inoculation level according to the equation ft4=21.58-ln(A/0). 

The hyperbolic model for the lag time has the complication that the lag time at higher 

temperature approaches asymptotically to one (the logarithm of the lag time approaches zero). 

This is of course an arbitrary value, and it is independent of the unit in which the lag time is 

expressed. This is an undesirable imperfection of the hyperbolic model. Furthermore, it can 
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be assumed that the lag phase increases at temperatures higher than optimum, which can also 

be seen in the data. The hyperbolic model, however, does not show such behaviour. 

Therefore, the previously proposed reciprocal of the Ratkowsky model (equation 5) is 

reconsidered, since this model overcomes these two problems. However, this model contains 

four parameters. This can be overcome by assuming Tmja and Tnax values, and eventually also 

the c value to be equal to the parameters of the equation describing the growth rate. 

l n ( \ ) = ln 
2 

b s (T -T m l „ 5 ) - { l - e x p [ c 5 ( T - T m Q x 5 ) ] } ' (5) 

Comparison of the models. The models are validated statistically with the use of the F 

ratio test. With the general model (equation 2), the measuring error is estimated by 

determining the deviation of the measured values from the mean value at one temperature. 

The sum of squares of the deviations between the data and the general model is calculated for 

all temperatures (RSSg): 

k k 

RSS5= ^ RSS ;= ^ ^ [ y ( i , y ) - y ( 0 ] 2 (general model) (6) 
i - l i - l / - l 

with y ( i, j ) being the7th y-value at T-t and y ( O being the mean v-value at T{. 

The sum of squares of the deviations between the data and the given growth temperature 

model (RSSJ is calculated as: 

* mi 

RSSm= Y. X [ y ( ' - - / ) ~ y ( 0 ] 2 ( g rowth - t empe ra tu r e model) (7) 
i - l y ' - l 

with y ( O being the model prediction at temperature Tr 

RSSm will always be larger than RSSg. The RSSm of the growth-temperature model 

consists of both the measuring error and the lack of fit; therefore, the difference between the 

RSSm of the model and the RSSg (the SS due to the measuring error) is calculated as an 

estimate of the lack of fit. If the mean square of the lack of fit [(RSSm-RSSg)/(DFm-DFg)] is 

of the same order of magnitude as the mean square of the measuring error (MScrror), the model 

is adequate. This comparison between the lack of fit and the measuring error can be quantified 

statistically by the ƒ testing value: 
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(RSS m -RSS g ) / (DF m -DF g ) . - " . - D F , 

ƒ * TT^ tested aga ins t FDF" r i r ' (8) 

where DFg is the number of degrees of freedom due to the residual variance, that equals the 

total number of observations minus the number of different temperatures at which is 

measured; DFm is the number of the degrees of freedom from the growth-temperature model 

that equals the number of observations minus the number of parameters. MSerror= the mean 

square of the measuring error with DFcrror degrees of freedom. 

MATERIALS AND METHODS 

Microbial experiments. In 60 experiments at 17 different temperatures, Lactobacillus 

plantarum (American Type Culture Collection determined; no ATCC number) was cultivated 

in MRS medium (Difco Laboratories). The culture was stored frozen (-16°C). The bacteria 

were cultivated twice at 30°C, for 24 h and for 16 h. Growth was monitored in 20 ml tubes, 

each containing 10 ml of medium and inoculated with the test organism to reach a target initial 

titer of 5 105 CFU/ml. The test tubes were incubated statically at different temperatures from 

6°C up to 40°C as follows (temperatures in °C and number of experiments in parentheses): 

6.0 (1); 8.9 (1); 9.8 (7); 10.0 (5); 11.9 (1); 14.0 (1); 14.9 (6); 15.2 (5); 16.7 (3); 18.2 (1); 

19.8 (6); 20.2 (7); 24.8 (7); 25.0 (6); 30.0 (1); 34.9 (1); 40.8 (1). At appropriate time 

intervals (depending on temperature), the inoculated cultures were vortexed and samples of 

0.1 ml were removed for serial dilution in peptone saline solution (1 g of Bacto-Peptone 

[Difco], 8.5 g of NaCl [Merckp.a.] per liter). Bacterial numbers were determined with apour 

plate (MRS medium with 12 g of agar [Agar Technical Oxoid Ltd.] per liter). The pour plates 

were incubated for 48 h at 30°C before counting. 

Fitting of the data. The model equations were fitted to the data by nonlinear regression. 

RESULTS AND DISCUSSION 

Analysis of variance. The previously measured data set [38 growth curves, from 

Zwietering et al. (7)] was extended with new data (60 growth curves). From this total data 

set (98 growth curves) only the sub-set of growth parameters up to 35 °C (80 growth curves, 

at 17 different temperatures) was used to determine the variance at different temperatures. 

This sub-set is used since above the optimum temperature (35°C) the variances are much 
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larger than below the optimum, since the growth decreases rapidly, resulting in large errors. 

With this sub-set the variance is analysed to find which transformation: none, a square root 

one, or a logarithmic one (In), is necessary. The variance at different temperatures as function 

of the mean value of the variable is given in Fig. 1,2, and 3. Furthermore, the variance 

divided by the mean, divided by the square of the mean, and divided by the cube of the mean 

are given. For these data the correlation coefficient was determined by performing a linear 

regression of the variance data. With the t test it was determined if correlation was significant. 

The results are given in Table 2. 

Additionally, the data are transformed (with a square-root, a logarithmic, and a 

reciprocal root transformation) and the variances of the transformed data are calculated. Also 

with these data a linear regression is performed. These regression data with t testing value as 

well are given in Table 2. 

TABLE 2. Results of determination of the correlation coefficient by performing a linear regression 
of the variance data as function of the mean of the data 

A 

var 

var/mean 

var/mean2 

var/mean3 

H 

var 

var/mean 

var/mean2 

var/mean3 

\ 

var 

var/mean 

var/mean2 

var/mean3 

r' 

0.0305 

-0.00440 

-0.0442 

-0.0900 

r* 

0.671 

0.0375 

-0.357 

-0.299 

r' 

0.998 

0.978 

0.146 

-0.238 

t value b 

0.118 
-0.0171 

-0.171 

-0.350 

t value b 

3.51 

0.145 

-1.48 
-1.22 

t value b 

60.9 

18.1 

0.573 

-0.949 

Transformation 

A 

u 
l n ( / l ) 

\/(A 

Transformation 

P-

4Ï>-
In(n) 

1/V^i 

Transformation 

X 

fr 
ln(M 

1 / ^ 

r' 

0.0305 

-0.0178 

-0.0686 

0.123 

r" 

0.672 

0.0176 

-0.671 

0.848 

r' 

0.998 

0.975 

0.331 

0.321 

t valueb 

0.118 

-0.0689 
-0.266 

0.478 

t valueb 

3.51 

0.0681 

-3.51 

6.19 

t value b 

60.9 

17.0 

1.36 
1.31 

" correlation coefficient. b The 95% critical t value for 15 degrees of freedom is 2.13. Bold values 
indicate no significant correlation. 
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var(>A) 

3-

2-

1 : 

n-
D 

D D 

a 

D 

a 
a 

— i — i — 1 — 1 — F ™ " ! — i -

a 

var(>A)/(mean/\) 0.4 

var(A)/(meanA)' 

meanA 

FIG. 1. Variance of A, variance divided by the mean and divided by the square 

of the mean, plotted against the mean of A. 
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var(/i) 0.006 

0.004-

0.002 

var(jH)/(mean^i) 
0.006 

var(^)/(meanjU)' 

i 0.2 0.4 0.6 0.8 1 1.2 
mean jl 

FIG. 2. Variance of n , variance divided by the mean and divided by the square 

of the mean, plotted against the mean of \i. 
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0.2 

0 
O D 

° n " , " 0_ 

varQ)/(mean \) 
0.06 

0.04- D 

0.02 

_n ,-Q B_ 

In (mean ) ) 
FIG. 3. Variance of X. divided by the mean and divided by the square and 

the cube of the mean, plotted against logarithm of the mean of \ . 
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Fig. 1 shows that the variance of the asymptote gives no clear correlation with the mean. 

This holds also for the variance divided by the mean, divided by the square of the mean, and 

divided by the cube of the mean. In Table 2 it can be seen that with both methods for all cases 

no significant correlation is found. Therefore, it can be concluded that transformations do not 

stabilize the variance and no transformation should be used for the asymptote data. 

In Fig. 2 it can be seen that the variance of the growth rate shows a positive correlation 

with the mean. The variance divided by the mean shows no clear correlation, and the variance 

divided by the square of the mean shows a negative correlation. In Table 2 it can be seen that 

the variance of the growth rate gives a significant correlation with the mean. The variance 

divided by the mean, the variance divided by the square of the mean, and divided by the cube 

of the mean, show no significant correlation. If the growth rate data are transformed all cases 

give a significant correlation, except for the square root transformation. Therefore, the square 

root transformation is chosen to stabilize the variance of the growth rate data. 

In Fig. 3 it can be seen that the variance of the lag time divided by the mean shows a 

positive correlation with the logarithm of the mean (because of the large range of lag-time 

values a logarithmic transformation is used in these graphs). The variance divided by the 

square of the mean shows no, and the variance divided by cube of the mean, shows a negative 

correlation. In Table 2 it can be seen that the variance, and the variance divided by the mean 

show a significant correlation. If the lag time data are transformed, no transformation and a 

square root transformation give a significant correlation. The logarithm and reciprocal root 

transformation give no significant correlation. Concluding, the logarithmic transformation is 

chosen to stabilize the variance of the lag time data. 

TABLE 3. Results of the Ratkowsky parameter estimation for the 4\i data 

Parameter Estimate 95% Confidence interval 

7* 
min2 

0.0385 
3.37 
0.256 
44.7 

0.0343 to 0.0427 

1.60 to 5.13 
0.175 to 0.336 
44.1 to 45.4 

• / M ^ - b 2 (T -T m , „ 2 ) ( 1 - e x p [ c 2 ( T - T„ 2 ) ] > 

No. of parameters DF RSS MS ƒ 

Ratkowsky 
LOF 

General 18 

34 
14 
20 

0.125 
0.023 
0.102 

0.00367 
0.00162 
0.00511 

0.317 2.2 

LOF= Lack of Fit; DF= Degrees of Freedom; RSS= Residual Sum of Squares; MS= Mean 
Square; ƒ= MSLOF/MSgeneral; F= F table value (95% confidence). 
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Model update. Now that with the analysis of variance the correct transformations are 

found, the previously proposed models (7) can be updated. For the asymptote no 

transformation was used in our former model development and the analysis of variance shows' 

that transformation is not necessary, therefore the model and model parameters determined 

from the original data set remain unchanged. As shown by the analysis of variance the square 

root transformation is the best transformation to stabilize the variance of the growth rate data. 

Therefore, the model should be fitted to the square root of the data. The results of fitting the 

previously measured data (7) to the square root relation are given in Table 3. The lack of fit 

of the model is compared to the measuring error and the square root relation is accepted on 

basis of the F test. 

(-) 

10 

, * c a J" ° ° in»0 

D w X| 

8 O OD° 

0.2 0.4 0.6 0.8 1 

FIG. 4. Product of n*X against n . 

1.2 

// (h ) 

For the lag time data the logarithmic transformation is stabilizing the variance, and was 

already used (7). However, the previously proposed reciprocal of the Ratkowsky model 

(equation 5) is also tested. If it is assumed that the Tmin and 7max value are equal to the Tmin and 

Tma value of the equation describing the growth rate, this model also contains two parameters. 

If also the c-value is fixed, the model contains only one parameter. The results of fitting the 

previously measured lag time data to the hyperbolic model and reciprocal square root relation 

are given in Table 4. The reciprocal Ratkowsky model with all parameters fixed, except for 

b is accepted by the F test. This result indicates that the lag time is reciprocally proportional 
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TABLE 4. Results of the reciprocal Ratkowsky parameter 

Parameter 

P 

q 

Estimate 

23.9 

2.28 

95% Confidence 

interval 

19.1 to 28.7 

1.19 to 3.37 
ln(M-

P 
(T-

estimation for the in(k) data 

<7) model 1 

0.0274 0.0240 to 0.0308 
3.37 fixed 
0.373 0.228 to 0.518 
44.7 fixed 

ln(\) = -21n| «>s (7--3.37X1 -exp[c s(r-44.7)]} I 

model 2 

h 
T 

min5 

C5 T 
max5 

Model 1 

LOF 1 

Model 2 

LOF 2 

Model 3 

LOF 3 

General 

0.0299 

3.37 

0.256 

44.7 

0.0268 to 0.0329 

fixed 

fixed 

fixed 

No. of parameters 

2 

2 

1 

18 

ln(M = 

DF 

36 

16 

36 

16 

37 

17 

20 

-21nfb s (T 

RSS 

9.70 

2.00 

12.65 

4.95 

14.03 

6.33 

7.70 

-3.37){1 -exp[0.256(7-

model 3 

MS 

0.269 

0.125 

0.351 

0.309 

0.379 

0.372 

0.385 

ƒ 

0.325 

0.803 

0.967 

-44.7)]}) 

F 

2.2 

2.2 

2.2 

LOF= Lack of Fit; DF= Degrees of Freedom; RSS= Residual Sum of Squares; MS= Mean 
Square; ƒ= MSL0F/MSgen<:ral; F= F table value (95% confidence). 

to the growth rate. This was already suggested by Simpson et al. (4). Similar results for the 

7"min value for the growth rate and lag time are also given by Chandler and McMeekin (2) and 

Smith (5). The multiplication of the growth rate and lag time are given in Fig. 4. This graph 

shows that the growth rate and the lag time are reciprocally proportional (except for one point) 

over a large range of growth rate values. This model now contains only one parameter and 

predicts a lag time increase at higher temperature. 

The updated models and parameter values, based on the previously measured data (7) 

are given in Table 5. 
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TABLE 5. Parameter values and modeis for the effect of temperature on the asymptote (A ), 

specific growth rate (nm) and lag time ( \ ) for Lactobacillusplantarwn in MRS-medium 

Asymptote, Ratkowsky 4 

j l - 6 , { l - e x p [ c , ( T - r m o r t ) ] ) 
\ 8.46 

1.25 

43.1 

Specific growth rate, Ratkowsky 

7 ( ^ = b 2 (7 ' -7 'm ,„ 2 ){l -exp[c 2 ( r - rm G x 2 ) ]} 

0.0385 

3.37 

0.256 

44.7 

Lag time, reciprocal Ratkowsky 

ln (*0--21n b5(7"-7"mM) < 1 - exp[c5(7- - T ma„m 

0.0299 

3.37 

0.256 

44.7 

n°c) 
FIG. 5. New asymptote data and model ( ) based on previously measured data. 
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FIG. 6. New growth rate data and model ( ) based on previously measured data. 
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^ | o J 

-4c--
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9 

a / 

0 10 20 30 40 

n°c) 
FIG. 7. New lag time data and reciprocal Ratkowsky model ( ) and hyperbolic model (-

based on previously measured data. 
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Model Validation. Now the updated model can be used to predict the newly measured 

data (60 growth curves, measured at 17 different temperatures). The newly measured growth 

parameters are plotted with the predictions in Fig. 5, 6, and 7. The growth rate is transformed 

with a square root, and the lag time is transformed with a logarithmic (In) transformation. 

From these graphs it can be concluded that the data are reasonably well predicted by the 

earlier developed models. For the growth rate data the residuals show no trend. However, the 

lag-time data and the asymptote data show some discrepancies (the residuals are not equally 

well distributed around zero). It should be noted that the new data are all at temperatures 

below 40°C. Therefore, the models are only validated within the range 6-40°C. Furthermore, 

it should be noted that the new data are compared with predictions using parameter values 

determined with other data. 

TABLE 6. Result of the F-test, comparing new data and model 

Rsse i ror 

DF 
error 

MSOT0, 

RSSg (DFg= 

RSS n (DFm= 

LOF (DF^p 

MSL O F 

ƒ 

43) 

=60) 

= 17) 

A 

31.3 

35 

0.895 

Ratkowsky 4 

9.79 

59.0 

49.2 

2.90 

3.24 

•JÏÜ 

0.125 

34 

0.00367 

Ratkowsky 

0.0269 

0.0425 

0.0157 

0.000921 

0.251 

l n ( M 

14.0 

37 

0.379 

Hyperbole 

2.39 

13.1 

10.8 

0.633 

1.67 

(Ratk)i 

2.39 

10.4 

8.00 

0.470 

1.24 F£~2.00 

RSS= Residual Sum of Squares; DF= Degrees of Freedom; MS= Mean Square; error= error 
previous data; RSSg= RSS of general model (mean of replicates); RSSm= RSS of model prediction; 
(Ratk)-^ reciprocal Ratkowsky model (equation 5); LOF= Lack Of Fit (RSSm-RSSg); 
ƒ= MSLOF/MSerror; F= F table value (95% confidence). 

The lack of fit of the models is compared with the measuring error by the F-test (Table 

6). The mean square of the lack of fit must be tested against the mean square of the measuring 

error. The measuring error is estimated by calculating the deviation of the first set of data 

with the growth model. The lack of fit is calculated by subtracting the RSS of the growth 
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temperature model (RSSm with D F m = 6 0 - 0 = 6 0 ; the number of observations minus the 

number of parameters) and the RSS due to the residual variance (RSSg with D F g = 6 0 - 1 7 = 4 3 ; 

total number of observations minus the number of different temperatures measured). 

F rom this statistical test we can conclude that for the growth rate data and the lag t ime 

data the deviation between the model prediction and the data is of the same order as the 

measuring error. The reciprocal Ratkowsky model had a better predicting ability (in this case) 

than the hyperbola model . 

Fo r the asymptote data, however, there is a significant deviation between the model and 

the data (this can also be seen globally in F ig. 5) . 

Parameter update . Now that the model is validated the parameters can b e updated 

using all data together. So finally, the model parameters a re updated using all 98 growth 

curves. The final model parameters are given in Table 7 . By comparing the parameters in 

Table 7 (parameters based on 98 growth curves) and Table 5 (parameters based on 38 growth 

curves) it can be seen that the update resulted in small changes only. The results a re shown 

graphically in F ig . 8 to 10. 

TABLE 7. Parameter values and models for the effect of temperature on the 

asymptote (A), specific growth rate ( i im) and lag time (K) for 

Lactobacillus plantarum in MRS-medium, final parameter values 

Estimate 95% Confidence 

interval 

Asymptote, Ratkowsky 4 

/ l - b 4 < l - e x p [ c 4 ( r - 7 - „ , „ „ ) ] } 

8.83 

1.05 

43.2 

8.63 to 9.02 

0.679 to 1.43 

42.9 to 43.4 

Specific growth rate, Ratkowsky 

/ iü-bz(7"-rm l t ó ){ l -exp[c3(T-7-m l I , 2 ) ]> T 
min2 

0.0385 

3.29 

0.247 

44.8 

0.0368 to 0.0402 

2.63 to 3.95 

0.207 to 0.288 

44.4 to 45.2 

Lag time, reciprocal Ratkowsky 

l n ( \ ) - - 2 1 n b 5 ( r - r m , „ 5 ) { l - e x p [ C 5 ( r - 7 m a x 5 ) ] > 

b5 0.0276 

Tmini 3.29 
c5 0.247 

7L.« 44.8 

0.0263 to 0.0289 
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FIG. 8. All asymptote data and updated model ( ). Solid blocks are outlayers. 

v* 

FIG. 9. All growth rate data and updated model ( ). 
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Inrt) 

FIG. 10. All lag time data and updated model ( ). 

Asymptote model. It is shown that there is a significant deviation between the .nodel 

and the asymptote data (Fig. 5, 8 and Table 6). Therefore, another model is attempted. The 

following model is proposed: 

A = a 
( ' ' min6 ) ( ' ' max6 J 

( T - b 6 ) ( r - c 6 ) 
(9) 

In this model parameter b6 must be somewhat lower than rmin6 and c6 must be a little 

higher than Tmx6 (b6 and c6 being the temperatures at which the asymptote will reach minus 

infinity). The results of fitting this equation are given in Table 8. The datum points indicated 

with a solid box in Fig. 8 are not taken into account, since these data deviate largely. The 

rejection of three points out of 98 seems justified. 

It can be seen in Table 8 that the Ratkowsky 4 model is rejected on basis of the F test 

and the newly proposed model is accepted. The confidence interval of 7 ^ includes the 7"min 

value of the growth rate data (Tables 7 and 8), so this value can be fixed. The confidence 

interval of 7 ^ does not include the Tnax value of the growth rate data. With a fixed 7 ^ value 

the model is also accepted by the F test and this model is shown graphically in Fig. 11. It 

shows a decrease of the asymptote values (number of cells ultimately produced) at extremes 

of temperatures. These effects may result from the relative increase of the maintenance 

energy at low growth rates. If more energy is consumed for maintenance, a lower cell number 
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FIG. 11. All asymptote data and new model (- -). 

will be reached. The decline at low temperatures was mentioned in our previous paper (7), 

but could not be proven statistically with 38 observations. With the current 95 observations 

this effect is shown to be statistically significant. 

CONCLUSIONS 

It has been shown with 80 growth curves at 17 different temperatures, that the 

asymptote can best be modeled without transformation, the growth rate with a square root 

transformation, and the lag time with a logarithmic transformation. The choice of the 

transformation is of eminent importance for the regression analysis of the data. 

The previously proposed lag time model has the complication that the lag time at higher 

temperatures approaches an arbitrary value of one, while at higher temperatures it can be 

assumed that the lag phase increases. Therefore, the previously proposed reciprocal of the 

Ratkowsky model (equation 5) seems better. For this reason, the hyperbolic model is replaced 

by the reciprocal Ratkowsky model. 
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TABLE 8. Results of the additional asymptote model 

Parameter Estimate 95% Confidence 
interval 

K 
c* 

T 
nux4 

a 

T 
mm6 

T 
max6 
h 
c„ 
a 

T 
min6 T 

max6 
b6 

Ce, 

8.80 

1.06 

43.2 

10.8 

2.20 

43.1 

-0.352 

43.7 

10.5 

3.29 

43.1 

1.29 

43.7 

8.62 to 8.99 

0.711 to 1.41 

42.9 to 43.4 

9.83 to 11.7 

-1.51 to 5.92 

42.9 to 43.2 

-6.11 to 5.41 

43.4 to 44.1 

10.1 to 11.0 

fixed 

42.9 to 43.2 

0.770 to 1.82 

43.4 to 44.0 

b 4{l-exp[c , (7-- : r „„ , ) ]} 

model 1, Ratkowsky 4 

(T - Tmin6^(.T ~ Tnax() 
a ( r - b 6 ) ( r - c 6 ) 

model 2 

( r - 3 . 2 9 ) ( T - r m o » 5 ) 
a ( r - b 6 ) ( r - c 6 ) 

model 3 

No. of 
parameters 

DF RSS MS ƒ 

Model 1 

LOF 1 

Model 2 

LOF 2 

Model 3 

LOF 3 

3 

5 

4 

92 

26 

90 

24 

91 

25 

65.4 

46.1 

32.3 

13.0 

32.6 

13.4 

0.711 

1.77 

0.359 

0.543 

0.359 

0.536 

6.08 

1.86 

1.84 

2.0 

General 29 66 19.2 0.292 

LOF= Lack of Fit; DF= Degrees of Freedom; RSS= Residual Sum of Squares; MS= Mean 
Square; ƒ= MSLOF/MSgcnerI1; F= F table value (95% confidence). 

The models are validated with new data (60 growth curves at 17 different temperatures). 

The growth rate data are very well predicted. The reciprocal Ratkowsky model appears to be 

somewhat better than the hyperbolic model for prediction of the lag phase duration, and has 

the desired ability to increase at higher temperatures. The asymptote data are reasonably well 

predicted by the Ratkowsky 4 model, however, at low temperatures there is a significant 

deviation. Therefore another model (equation 9) is proposed which showed to describe the 
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behaviour at low temperatures much better. The decline at low temperatures could now be 

proven statistically with the current 95 observations. For kinetic predictions the lag time and 

the growth rate are the most important parameters. 
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CHAPTER 6 

MODELING OF BACTERIAL GROWTH WITH SHIFTS IN 
TEMPERATURE 

ABSTRACT 

The temperature of chilled foods is an important variable for the shelf life of a product 

in a production and distribution chain. To predict the number of organisms as a function of 

temperature and time, it is essential to model the growth as a function of temperature. The 

temperature is often not constant in various stages of distribution. The objective of this 

research was to determine the effect of shifts in temperature. The suitability and usefulness 

of several models to describe the growth associated with fluctuating temperatures was 

evaluated. An assumption can be that temperature shifts within the lag phase can be handled 

by adding relative parts of the lag time to be completed and that temperature shifts within the 

exponential phase result in no additional lag phase. With these assumptions the kinetic 

behaviour of temperature shift experiments was reasonably well predicted. Only shifts of 

temperature around the minimum temperature of growth showed very large deviations 

compared to the model prediction. Even better results were obtained with the assumption that 

a temperature shift (within the lag phase as well as within the exponential phase) results in an 

additional lag phase of one-fourth of the lag time normally found at the temperature after the 

shift. 

INTRODUCTION 

Temperature is a major factor determining the kinetics of food deterioration reactions. 

As microbial spoilage is of major concern the effect of temperature on the specific growth 

rate of microorganisms is important. Various models to describe the effect of a constant 

temperature are given by Zwietering et al. (6, 8). However, the temperature is often not 

This chapter is submitted as: 

Modeling of Bacterial Growth with Shifts in Temperature 

M.H. Zwietering, H.G.A.M. Cuppers, J.C. de Wit, K. van 't Riet 
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constant during distribution. It can be assumed for instance, that the microorganisms respond 

instantaneously to changes in temperature. Another possibility is that the organisms need to 

adapt to the new temperature, so that they run through a lag phase due to the stress of the 

temperature shift. 

Simpson et al. (5) propose to calculate the lag time during changing temperature 

conditions, by adding the relative parts of the lag phase. So, if a culture has completed half 

of the lag time at the first temperature of incubation, and then is transferred to a new 

temperature, it still has to complete half of the lag time at the new temperature. Langeveld 

and Cuperus (2) found that bacteria respond immediately to a change in temperature within 

the exponential phase. Ng et al. (3) and Shaw (4) also carried out experiments with 

temperature shifts within the exponential phase, and they found that shifts in the moderate 

temperature region resulted in immediate exponential growth at the growth rate of the new 

temperature. However, they found that steps to or from low temperatures resulted in an 

adaptation period. Fu et al. (1) found a significant effect of a temperature step, both for the 

exponential and the lag phase. Biologically this can be expected, since the cells are 'out of 

balance' and need to adjust, for instance, their enzyme pool to a new equilibrium. 

It can be concluded that the literature gives no consistent procedure to handle 

temperature shifts. The objective of this research was to determine the effect of shifts in 

temperature for bacteria that are still within their lag phase and for bacteria that are growing 

exponentially. With a large data set and a statistical analysis, it will be determined, what 

procedure can be used to handle temperature changes. Several models are proposed and 

compared to make kinetic predictions of the bacterial growth taking into account a change in 

temperature. The suitability and usefulness of these models will be discussed. 

THEORY 

Description of the experimental bacterial growth data. Growth curves are defined as 

the logarithm of the relative population size [y = ln(/V/yvo)] as a function of time. A 

growth model with three parameters can describe the growth curve (7). One method to 

describe a growth curve is to assume no growth within the lag phase as well as within the 

asymptotic phase, and to assume exponential growth within the exponential phase: 

y = 0 t<\ 

y = M. - ( t - \ ) \<t<A/^ + \ (1) 

y = A t>A/\i+\ 
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Since bacterial growth curves often show a sigmoidal shape a second method is to 

describe the data by a sigmoidal function, for example the modified Gompertz equation. The 

specific growth rate ( [im), the lag time ( \ ) , and the asymptote (A), can be determined from 

growth data by fitting them with this modified Gompertz model (7): 

y = Aexpi-exp —-— ( \ - t )+ 1 (2) 

Growth/temperature relations. Models to describe the effect of a constant temperature 

on the asymptote (A), specific growth rate ( \i ) and lag time ( K ), with parameter values are 

given in Table 1 (6). 

TABLE 1. Parameter values and models for the effect of temperature on the asymptote (/I), specific 
growth rate (n) and lag time (x.) for Lactobacillusplantarum in MRS-medium (6) 

Asymptote 

(T- TmM)(T- Tmax6) 
A = a 

( r - b 6 ) ( 7 - - c 6 ) 

a 

T 
min6 

T max6 

K 
C6 

b2 

T 
min2 

c2 

T 
max2 

b5 

T 
minS 
C5 

T 
max5 

10.5 

3.29 

43.1 

1.29 

43.7 

0.0385 

3.29 

0.247 

44.8 

0.0276 

3.29 

0.247 

44.8 

Specific growth rate, Ratkowsky 

^ = b 2 ( T - r m i „ 2 ) { l - e X p [ c 2 ( r - T m „ 2 ) ] > 

Lag time, reciprocal Ratkowsky 

l n ( \ ) - - 2 1 n f b s ( 7 " - 7 " m i . S ) < l - e x p [ c 5 ( T - 7 m a j ( 5 ) ] } 

For the parameter a, 23.62-in(W0) must be used if another inoculation level is used. 

Growth with temperature changes. Cultures are shifted at time ts from temperature Tx 

to T2. Growth parameters (at constant temperature, determined from Table 1) before the 

temperature shift have index 1 and after the shift index 2 [ / l ( T 1 ) = / l 1 ; A(T2)= A 2 ; 

(J. ( 7" ! ) = (j. ! ; M.(7"2) = ^ 2 ; \ ( T i ) = \ 1 ; X ( T z ) = \ 2 ] . The dimensionless time of shift 

(fs*) is defined as ts divided by \ , . From the growth data after the shift, a lag time A. shift 

can be estimated. In order to predict this Xshift several hypotheses can be proposed. 
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Temperature shift within the lag phase (tl<Kl, t* < 1). If bacteria are subjected to a 

temperature shift from 7j to T2 during their lag phase, they will not have completed their lag 

period and will still show a lag phase at the new temperature. Three hypotheses are being 

tested: 

i) The effect of the temperature shift results in a new lag phase that is equal to the lag 

phase normally found at Tv 

^ shift = ^2 ( 3 ) 

In this case it is assumed that the preincubation at 7", had no effect, and that the shift disturbs 

the cells in such a manner, that they start over again their full lag period. 

ii) The effect of the temperature shift results in a new lag phase that is equal to the 

relative part of the lag phase that still has to be completed. So, if for instance one-third of the 

lag phase is completed during incubation at the first temperature ( t ^ j A - ^ t ' ^ j ) still 

two-third of the lag time has to be completed at the temperature after the shift ( A. shift = \ A. 2 ). 

For a general case this can be written as: 

A., a..«,«- h - r - - k 2 = ( i -0 :*.2 w 

iii) It can also be expected that a temperature shift results in an additional lag phase since 

the cells are stressed by the temperature shift. Therefore, it is assumed that the effect of a 

temperature shift results in a new lag phase that is equal to the relative part of the lag phase 

that still has to be completed plus an additional lag due to the shift in temperature: 

*-,«/.= ( 1 - 0 ) - k 2
+ * -x ( 5 ) 

with A. x the additional lag due to the shift in temperature. 

If we now assume that the additional lag due to the shift in temperature is proportional 

to the lag phase at T2 ( \ x = a • K2 ) we get: 

*-.*/. = ( l - a - O 1 ^ <6) 

with a the proportionality constant. 
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Temperature shift within the exponential phase (f,>X.i, f,*>l). Again three 

hypotheses are being tested: 

i) The effect of the temperature shift gives such a disturbance that it results in a new lag 

phase that is equal to the lag phase normally found at T2. 

^ shift = ^2 (') 

ii) If it is assumed that the bacteria show no surplus lag phase due to a change in 

temperature during the exponential phase, the growth continues immediately with the specific 

growth rate of T7. 

^ „ = 0 (8) 

iii) It can also be assumed that a temperature shift results in an additional lag phase 

(analogous to equation 5 and 6) since the cells are stressed by the temperature shift: 

with Kx the additional lag due to the shift in temperature and a the proportionality constant. 

Summary of the hypotheses. In all the above mentioned hypothesis, the lag time after 

the shift ( X shift ) is proportional to X 2 • Therefore, a relative lag time can be defined as : 

X'-hoil (10) 
X2 

A summary of the effect of shifts within the lag and exponential phase for the three 

hypotheses on this X. * value is given in Table 2. Note that hypothesis 3 is equal to hypothesis 

2 with a = 0 . 

TABLE 2. Relative lag time ~K' resulting from the three hypotheses 

Hypothesis Shift within lag phase Shift within exponential phase 

(t;<i) (C>i) 

1 1 1 
2 i - , ; o 

3 1 + a-f, a 
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MATERIALS AND METHODS 

Microbial experiments. The culture of Lactobacillus plantarum (American Type 

Culture Collection [ATCC]-determined; no ATCC-number) was stored frozen (-16°C). The 

bacteria were cultivated twice at 30°C, first for 24 hours, and secondly for 16 hours. The 

inoculation level from this last preculture into the test-tube was 0.01% (about 5 105 

organisms) and in some cases was 0.0001% (about 5 103 organisms). All incubations were 

performed in MRS medium (Difco Laboratories) in a temperature gradient incubator (8). 

Growth was measured with plate counts on pour plates (MRS medium with 12 g of agar [Agar 

Technical Oxoid Ltd.] per liter). 

At each of the temperatures 10, 15, 20, and 25°C, 10 independent growth curves were 

measured. The combined datum points for each temperature were compared with model 

predictions, and the resulting residual sum of squares (RSS) was used to estimate the 

experimental measuring error. 

Temperature shifts within the lag phase were carried out in 71 experiments. 

Temperature shifts within the exponential phase were carried out in 53 experiments. 

Temperature shifts. Temperature shifts were carried out by moving tubes from one 

temperature to another temperature in the gradient incubator. Tubes had an inner diameter of 

1.35 cm and were filled with 10 ml medium, resulting in a liquid height of 7 cm. Temperature 

responses were measured with different temperature steps. After 8 minutes the temperature 

difference between the tube and the incubator was less than 10% of the step value, after 16 

minutes this value was less than 1 %. 

Comparison of the models. The lag time predicted by the various models was 

compared to the measured lag time with the use of a t test. 

The variance of the measuring error at different temperatures was determined by 

calculating the residual sum of squares of the data at these temperatures (10, 15, 20, and 

25°C, 10 independent growth curves) compared to the model prediction (modified Gompertz 

function with parameter values from Table 1). The pooled variance (varmc) was calculated by 

dividing the pooled RSS by the total number of datum points (no parameters used). 

The growth after the temperature shift was examined by fitting v-data to the modified 

Gompertz equation (equation 2). For the lag time experiments the y value was used as such, 

since this represents the growth after the temperature shift as there is no significant change in 

bacterial numbers during the incubation at temperature 7, (still within the lag phase). For the 
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experiments in the exponential phase the growth after the temperature shift is given by 

y _ y s, where y s was taken as the y value at the time of shift. The time after the shift was 

used as the time value. 

The 95% confidence interval of the lag time was calculated with: 

^mln.max = ^ ± ^ l / ^ - v a r m B (11) 

with X the estimated lag time value, t the student t value, VXK the diagonal value 

corresponding to X in the Jacobian matrix (results from the Marquardt fitting procedure), 

and varm(. the variance of the measuring error. 

RESULTS AND DISCUSSION 

Constant temperature experiments. At the temperatures 10, 15, 20, and 25°C, 10 

independent growth curves were measured and the combined datum points for each 

temperature were compared with model predictions from formerly built and validated models 

(Fig. 1 and 2, Table 1). Fig. 1 and 2 show that the dynamic behaviour of bacterial growth 

can be predicted very well. However exact predictions can not be made due to experimental 

errors. The resulting residual sum of squares (RSS) was used to estimate the experimental 

error (Table 3). 

TABLE 3. RSS of the combined datum points for different temperatures described with model 
predictions from previously validated models (6) 

Temperature 

10 

15 

20 

25 

Pooled 

RSS 

71.3 

25.4 

22.6 

28.1 

147.5 

n points 

191 

151 

170 

134 

646 

var 

0.374 

0.168 

0.133 

0.210 

0.2283 (=varme) 

RSS= Residual Sum of Squares; n points= number of datum points; var= variance (RSS/« points). 

The variances differ at different temperatures, nevertheless they are pooled to calculate 

the variance of the measuring error (varme). 
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FIG. 1. Growth curves of L. plantarum at 10 (4) and 15°C (x) 

compared with model prediction ( ). 
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FIG. 2. Growth curves of L. plantarum at 20 (4) and 25°C (x) 

compared with model prediction ( ). 
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Temperature shift experiments. From the growth curves after the temperature shift 

(r-f,), the lag time (A.5W/I) was estimated. This A.sW/, value was divided by the lag time 

normally found at T2 to get the relative lag time ( \ * ). The three hypotheses can be tested by 

plotting this relative lag time (X.*) versus r,* (Fig. 3, Table 2). Fig. 3 shows that the relative 

lag time decreases if tt' goes from zero to one, and remains constant at higher t,' values. 

Hypothesis 1 assumes that the relative lag time is equal to one in all cases. Fig. 3 shows that 

the data do not support this assumption. Therefore, hypothesis 1 can be rejected. 

Furthermore, it can be seen that most of the data are above the line predicted by hypothesis 

2 ( a = 0) . This indicates that a temperature shift results in an additional lag phase. It was 

already mentioned that this could be expected, since the cells will be stressed by the 

temperature shift. 

The a value was estimated by optimising the statistical acceptance of hypothesis 3 and 

was found to be 0.2S, indicating that a temperature shift results in a new extra lag time ( \ x ) 

equal to one-fourth of the lag time normally found at the temperature after the shift (7"2). 

\ 2.b 

2 

1.5 

1 

0.5-

0 

0.5 

0 

o 

0 

V 
1 A 

v ! • • ° 
"o 1"'"* * Î 

0 

0 

0 0 v 

0 

0 

10 

FIG. 3. Relative lag time (o ) plotted versus the relative time of shift, compared with model 
predictions. ( = hypothesis 1; = hypothesis 2; = hypothesis 3 with a =0.25). 
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The three hypotheses were tested with the t test by calculating the confidence interval 

of the estimated lag time of the growth data after the shift. For the various model predictions 

it was tested whether the predictions are within this confidence interval. The experiments with 

steps within the lag phase are given in Table 4 and the experiments with steps within the 

exponential phase are given in Table 5. 

TABLE 4. Results of temperature shifts within the lag phase 

no" 

LI 
L2 
L3 
14 
L5 
L6 
L7 
L8 
L9 

L10 
L l l 
L12 
L13 
L14 
L15 
L16 
L17 
L18 
L19 
L20 
L21 
L22 
L23 
L24 
L25 
L26 
L27 
L28 
L29 
L30 
L31 
L32 
L33 
L34 
L35 
L36 
L37 
L38 
L39 
L40 
L41 
L42 
L43 
L44 
L45 
L46 
L47 
L48 
L49 
L50 

r. 
14.9 
25.1 
24.8 
25.0 
24.8 
14.9 
25.1 
24.8 
25.0 
24.8 
10.5 
9.9 
9.9 
9.9 
9.6 

25.1 
24.8 
25.0 
24.8 
10.5 
9.9 
9.9 
9.6 
9.6 

25.1 
24.8 
25.0 
24.8 
10.5 
9.9 
9.9 
9.6 
9.6 

14.9 
25.1 
24.8 
25.0 
24.8 
10.5 
9.9 
9.9 
9.6 
9.6 
14.9 
25.1 
24.8 
25.0 
24.8 
10.5 
9.9 

h 
10.1 
10.1 
10.0 
9.9 
9.7 
10.1 
10.1 
10.0 
9.9 
9.7 

15.3 
15.1 
15.1 
15.0 
14.9 
15.2 
15.1 
15.0 
15.0 
15.3 
15.1 
15.1 
15.0 
14.9 
15.2 
15.1 
15.0 
15.0 
20.2 
19.9 
19.9 
20.0 
19.6 
20.3 
20.3 
19.8 
19.8 
19.9 
20.2 
19.9 
19.9 
20.0 
19.6 
20.3 
20.3 
19.8 
19.8 
19.9 
25.0 
24.9 

<s" 
2.50 
1.25 
1.25 
1.25 
1.25 
5.00 
2.50 
2.50 
2.50 
2.50 
10.0 
6.00 
6.00 
6.00 
6.00 
1.25 
1.25 
1.25 
1.25 
15.0 
12.0 
12.0 
12.0 
12.0 
2.50 
2.50 
2.50 
2.50 
10.0 
6.00 
6.00 
6.00 
6.00 
2.50 
1.25 
1.25 
1.25 
1.25 
15.0 
12.0 
12.0 
12.0 
12.0 
5.00 
2.50 
2.50 
2.50 
2.50 
10.0 
6.00 

nc 

17 
15 
18 
18 
21 
17 
15 
18 
18 
21 
13 
12 
14 
16 
17 
12 
14 
17 
18 
12 
11 
14 
15 
16 
12 
12 
16 
17 
15 
14 
14 
16 
16 
13 
14 
14 
13 
14 
12 
12 
11 
13 
13 
13 
13 
13 
13 
15 
13 
11 

\ , 

9.76 
2.81 
2.88 
2.83 
2.88 
9.76 
2.81 
2.88 
2.83 
2.88 

25.30 
30.10 
30.10 
30.10 
33.03 
2.81 
2.88 
2.83 
2.88 

25.30 
30.10 
30.10 
33.03 
33.03 
2.81 
2.88 
2.83 
2.88 

25.30 
30.10 
30.10 
33.03 
33.03 
9.76 
2.81 
2.88 
2.83 
2.88 

25.30 
30.10 
30.10 
33.03 
33.03 
9.76 
2.81 
2.88 
2.83 
2.88 

25.30 
30.10 

^ 

28.36 
28.36 
29.21 
30.10 
32.01 
28.36 
28.36 
29.21 
30.10 
32.01 
9.13 
9.44 
9.44 
9.60 
9.76 
9.28 
9.44 
9.60 
9.60 
9.13 
9.44 
9.44 
9.60 
9.76 
9.28 
9.44 
9.60 
9.60 
4.62 
4.78 
4.78 
4.73 
4.96 
4.56 
4.56 
4.84 
4.84 
4.78 
4.62 
4.78 
4.78 
4.73 
4.96 
4.56 
4.56 
4.84 
4.84 
4.78 
2.83 
2.86 

cf 

0.256 
0.445 
0.434 
0.442 
0.434 
0.512 
0.891 
0.868 
0.883 
0.868 
0.395 
0.199 
0.199 
0.199 
0.182 
0.445 
0.434 
0.442 
0.434 
0.593 
0.399 
0.399 
0.363 
0.363 
0.891 
0.868 
0.883 
0.868 
0.395 
0.199 
0.199 
0.182 
0.182 
0.256 
0.445 
0.434 
0.442 
0.434 
0.593 
0.399 
0.399 
0.363 
0.363 
0.512 
0.891 
0.868 
0.883 
0.868 
0.395 
0.199 

X.S 

15.11 
11.43 
6.90 

11.09 
16.77 
21.52 
6.95 
5.28 
7.79 

12.83 
8.92 

10.80 
11.23 
11.43 
8.45 
8.11 
8.01 
8.22 
6.30 
9.22 
7.43 
9.45 
6.39 
5.50 
4.47 
4.08 
4.47 
3.55 
3.91 
5.06 
6.56 
6.58 
4.28 
4.64 
3.87 
4.23 
4.96 
4.23 
4.64 
2.12 
5.47 
4.63 
3.87 
4.77 
2.54 
1.59 
2.56 
2.11 
3.19 
3.54 

minh 

4.31 
-0.60 
-4.57 
-0.24 
6.85 
9.88 
-2.99 
-5.32 
-2.52 
3.94 
5.00 
6.46 
7.39 
7.65 
4.57 
4.26 
4.23 
4.51 
2.62 
5.18 
3.01 
5.80 
2.55 
1.70 
0.69 
0.50 
0.90 
-0.25 
2.32 
3.25 
4.49 
4.57 
2.46 
2.33 
1.96 
2.33 
2.94 
2.35 
2.57 

-0.28 
2.52 
1.86 
1.21 
2.08 
0.54 

-0.24 
0.71 
0.39 
1.96 
2.17 

raaxh 

25.91 
23.45 
18.37 
22.43 
26.69 
33.15 
16.89 
15.88 
18.11 
21.71 
12.85 
15.15 
15.06 
15.20 
12.34 
11.97 
11.79 
11.93 
9.98 

13.25 
11.85 
13.09 
10.24 
9.30 
8.24 
7.66 
8.04 
7.34 
5.51 
6.86 
8.63 
8.58 
6.09 
6.96 
5.77 
6.14 
6.97 
6.11 
6.72 
4.52 
8.42 
7.41 
6.53 
7.46 
4.54 
3.41 
4.41 
3.84 
4.42 
4.91 

a = 0 j 

21.10 
15.73 
16.54 
16.81 
18.12 
13.84 
3.09 
3.87 
3.52 
4.24 
5.52 
7.56 
7.56 
7.69 
7.99 
5.15 
5.34 
5.36 
5.43 
3.72 
5.68 
5.68 
6.11 
6.22 
1.01 
1.25 
1.12 
1.27 
2.79 
3.83 
3.83 
3.87 
4.06 
3.40 
2.53 
2.74 
2.70 
2.71 
1.88 
2.88 
2.88 
3.01 
3.16 
2.23 
0.50 
0.64 
0.57 
0.63 
1.71 
2.29 

I k 

28.19 
22.82 
23.84 
24.34 
26.13 
20.93 
10.18 
11.17 
11.04 
12.24 
7.80 
9.92 
9.92 

10.09 
10.43 
7.47 
7.70 
7.76 
7.83 
6.00 
8.03 
8.03 
8.51 
8.66 
3.33 
3.61 
3.52 
3.67 
3.95 
5.03 
5.03 
5.05 
5.30 
4.54 
3.67 
3.95 
3.91 
3.91 
3.03 
4.07 
4.07 
4.19 
4.40 
3.37 
1.64 
1.85 
1.78 
1.83 
2.42 
3.00 
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TABLE 4 continued. 

no" 

L51 
L52 
L53 
L54 
L55 
L56 
L57 
L58 
L59 
L60 
L61 
L62 
L63 
L64 
L65 
L66 
L67 
L68 
L69 
L70 
L71 

Ti 

9.9 
9.6 
9.6 

14.9 
20.2 
10.5 
9.9 
9.9 
9.6 
9.6 
14.9 
20.2 
10.2 
10.2 
4.0 
4.0 
14.0 
14.0 
14.7 
14.7 
20.0 

Tl 

24.9 
25.0 
24.7 
25.1 
25.1 
25.0 
24.9 
24.9 
25.0 
24.7 
25.1 
25.1 
30.7 
30.7 
20.0 
35.0 
24.0 
24.0 
20.0 
20.0 
30.0 

's" 
6.00 
6.00 
6.00 
2.50 
1.33 
15.0 
12.0 
12.0 
12.0 
12.0 
5.00 
2.67 
19.5 
24.0 
1873 
1873 
5.25 
2.25 
5.00 
2.50 
2.50 

rf 

14 
12 
15 
12 
15 
13 
10 
11 
12 
12 
10 
13 
11 
10 
22 
18 
16 
17 
16 
16 
8 

*•! 

30.10 
33.03 
33.03 
9.76 
4.62 

25.30 
30.10 
30.10 
33.03 
33.03 
9.76 
4.62 

27.55 
27.55 
2616 
2616 
11.47 
11.47 
10.11 
10.11 
4.73 

\2* 

2.86 
2.83 
2.91 
2.81 
2.81 
2.83 
2.86 
2.86 
2.83 
2.91 
2.81 
2.81 
1.86 
1.86 
4.73 
1.57 
3.10 
3.10 
4.73 
4.73 
1.94 

'." 
0.199 
0.182 
0.182 
0.256 
0.288 
0.593 
0.399 
0.399 
0.363 
0.363 
0.512 
0.578 
0.708 
0.871 
0.716 
0.716 
0.458 
0.196 
0.495 
0.247 
0.529 

\ s 

3.94 
3.98 
3.05 
3.68 
1.95 
1.79 
3.94 
4.34 
6.11 
2.86 
2.18 
2.80 
1.57 
1.13 

22.56 
15.14 
3.64 
5.58 
4.48 
4.95 
1.50 

minh 

2.69 
2.66 
1.84 
2.46 
1.01 
0.43 
1.48 
1.49 
2.14 
0.95 
0.63 
1.65 
0.82 
0.27 

19.83 
14.11 
1.43 
3.55 
2.57 
2.94 
0.29 

maxh 

5.18 
5.29 
4.27 
4.89 
2.88 
3.14 
6.40 
7.18 
10.09 
4.77 
3.73 
3.95 
2.33 
1.99 

25.30 
16.16 
5.85 
7.62 
6.39 
6.95 
2.71 

a = 0 j 

2.29 
2.32 
2.38 
2.09 
2.00 
1.15 
1.72 
1.72 
1.80 
1.85 
1.37 
1.18 
0.54 
0.24 
1.34 
0.45 
1.68 
2.49 
2.39 
3.56 
0.91 

l k 

3.00 
3.02 
3.11 
2.79 
2.70 
1.86 
2.43 
2.43 
2.51 
2.58 
2.07 
1.89 
1.01 
0.70 
2.52 
0.84 
2.46 
3.27 
3.57 
4.74 
1.40 

"Experimental number, bold code = curve plotted in graph (Fig. 4 to 13);bfs= time of shift (h); °n= 
number of datum points in growth curve; d bold value indicates that hypothesis 1 is accepted by t test; 
ffs*=?s/\,; t\= estimated lag time from growth data; hmin, max = minimum and maximum 
95% confidence limit of lag time, 95% confidence intervals are calculated with f =1.96 (at infinite 
degrees of freedom, the variance of the measuring error was calculated with 646 datum points); ' bold 
value indicates that hypothesis 2 is accepted by t test; k bold value indicates that hypothesis 3 is 
accepted by t test. 

Table 4 shows that hypothesis 1 and hypothesis 2 are accepted for most of the 

experiments and hypothesis 3 is accepted for almost all experiments. 

In two cases (curves L65 and L66) there were very large deviations between the 

confidence interval of the measured lag phase duration and the model predictions. In Fig. 4 

the data for these temperature shift experiments are plotted. The kinetic behaviour appears to 

be reasonably well predicted, except for the dying during incubation at 4°C. However, if the 

time axis of the part of the curve after the temperature shift is extended (Fig. 5), it can be 

seen that the predicted lag time is much smaller than the actual lag time. In these experiments 

the first incubation is around the minimal temperature of growth [Tmia value is 3.29°C (Table 

1)]. Incubation at very low temperatures (around or below 7"min) may be damaging to the cells, 

resulting in (slow) dying, and increased lag times, when transferred to higher temperatures. 

More work is needed to quantify these effects. These two experiments will not be taken into 

account for the following. For no other cases a significant effect could be found resulting from 

the time of the shift, the first or second incubation temperature, or the size of the step. 



98 TEMPERATURE STEPS 

ln(/V/Ato) 10 

8 

1500 2000 
time (h) 

FIG. 4. Growth curve with a shift from 4°C to 20 (L65) and 35°C (L66) at 1873 h compared with 
model prediction (• , = 20°C; + , = 35°C). 

\n(N/No) 1 0 
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time (h) 

FIG. 5. Growth curve after a shift from 4°C to 20 (L65) and 35°C (L66) at 1873 h compared with 

model prediction (• , = 20°C; • , = 35°C). 
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FIG. 6. Growth curves with a shift from 25CC to 10°C at 1.25 h compared with model prediction 
( = Gompertz with hypothesis 3; = linear with hypothesis 2;» L2,+ L3,» L4,* L5). 

\n(N/No) 

0 40 80 120 160 200 240 280 320 

time (h) 

FIG. 7. Growth curves with a shift from 25°C to 10°C at 2.5 h compared with model prediction 

( = Gompertz with hypothesis 3; = linear with hypothesis 2; "L7,+ L8, • L9,* L10). 
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TABLE 5. Results of temperature shifts within the exponential phase 

no" 

El 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 

E10 
E l l 
E12 
E13 
E14 
E15 
E16 
E17 
E18 
E19 
E20 
E21 
E22 
E23 
E24 
E25 
E26 
E27 
E28 
E29 
E30 
E31 
E32 
E33 
E34 
E35 
E36 
E37 
E38 
E39 
E40 
E41 
E42 
E43 
E44 
E45 
E46 
E47 
E48 
E49 
E50 
E51 
E52 
E53 

Tl 

8.9 
8.9 
8.9 
8.9 

14.0 
14.0 
14.0 
14.0 
14.0 
14.0 
14.7 
14.7 
14.7 
14.7 
14.7 
14.7 
16.7 
16.7 
16.7 
16.7 
18.0 
18.0 
18.0 
18.0 
40.8 
40.8 
9.0 
8.0 

11.7 
14.2 
14.2 
14.5 
14.5 
14.5 
15.3 
15.0 
16.6 
16.8 
20.2 
25.0 
25.0 
25.0 
25.0 
25.0 
26.0 
30.7 
30.6 
35.0 
35.0 
35.0 
35.0 
35.0 
35.0 

Ti 

14.2 
16.5 
17.8 
20.1 
24.0 
24.0 
24.0 
24.0 
24.0 
24.0 
20.0 
20.0 
20.0 
20.0 
20.0 
20.0 
10.4 
12.5 
14.6 
18.8 
13.9 
22.1 
13.9 
22.1 
25.0 
25.0 
14.0 
20.7 
16.6 
17.3 
20.5 
24.8 
30.3 
34.8 
30.5 
25.0 
11.7 
8.0 
8.0 

14.2 
17.3 
18.9 
9.0 

11.0 
36.8 
10.1 
10.5 
20.0 
20.0 
25.0 
25.0 
30.0 
30.0 

',b 

119 
119 
119 
119 

72.5 
70.0 
43.0 
25.0 
20.0 
17.5 
64.5 
43.0 
24.0 
19.0 
16.0 
13.5 
26.5 
26.5 
26.5 
26.5 
20.0 
20.0 
32.0 
32.0 
18.0 
3.50 
50.5 
70.0 
22.5 
18.5 
18.5 
20.0 
20.0 
20.0 
19.0 
22.0 
22.5 
20.0 
20.0 
4.50 
4.50 
4.50 
6.50 
6.50 
3.00 
2.00 
3.00 
2.00 
6.00 
2.50 
6.00 
2.00 
6.00 

nc 

21 
17 
17 
17 
15 
17 
6 
11 
12 
14 
15 
14 
14 
16 
16 
17 
16 
16 
15 
15 
21 
17 
16 
12 
10 
13 
15 
8 

14 
11 
12 
12 
11 
10 
5 
9 
17 
15 
15 
10 
10 
10 
28 
26 
9 
9 
8 
9 
6 
10 
6 
11 
6 

X, 

41.79 
41.79 
41.79 
41.79 
11.47 
11.47 
11.47 
11.47 
11.47 
11.47 
10.11 
10.11 
10.11 
10.11 
10.11 
10.11 
7.32 
7.32 
7.32 
7.32 
6.09 
6.09 
6.09 
6.09 
2.35 
2.35 

40.34 
59.29 
18.60 
11.06 
11.06 
10.47 
10.47 
10.47 
9.13 
9.60 
7.43 
7.22 
4.62 
2.83 
2.83 
2.83 
2.83 
2.83 
2.60 
1.86 
1.87 
1.57 
1.57 
1.57 
1.57 
1.57 
1.57 

^ d 

11.06 
7.55 
6.26 
4.67 
3.10 
3.10 
3.10 
3.10 
3.10 
3.10 
4.73 
4.73 
4.73 
4.73 
4.73 
4.73 

26.02 
15.51 
10.29 
5.48 
11.69 
3.74 

11.69 
3.74 
2.83 
2.83 
11.47 
4.36 
7.43 
6.71 
4.46 
2.88 
1.91 
1.58 
1.88 
2.83 
18.60 
59.29 
59.29 
11.06 
6.71 
5.41 

40.34 
22.13 
1.57 

28.36 
25.30 
4.73 
4.73 
2.83 
2.83 
1.94 
1.94 

cf 

2.848 
2.848 
2.848 
2.848 
6.320 
6.102 
3.748 
2.179 
1.743 
1.525 
6.380 
4.254 
2.374 
1.879 
1.583 
1.335 
3.618 
3.618 
3.618 
3.618 
3.284 
3.284 
5.254 
5.254 
7.653 
1.488 
1.252 
1.181 
1.210 
1.673 
1.673 
1.910 
1.910 
1.910 
2.082 
2.292 
3.027 
2.772 
4.331 
1.590 
1.590 
1.590 
2.296 
2.296 
1.155 
1.075 
1.603 
1.272 
3.817 
1.590 
3.817 
1.272 
3.817 

As 

4.51 
4.82 
3.00 
2.70 
-0.22 
0.56 
0.49 
0.92 
0.67 
0.35 
1.04 
1.09 
1.77 
1.19 
1.17 
1.27 
7.75 
4.93 
5.29 
3.07 
7.99 
1.71 
2.36 
1.70 
0.47 
2.27 
6.69 
4.04 
4.44 
2.52 
1.75 

-0.01 
-0.13 
0.17 
0.24 
0.67 
0.15 
14.22 
1.69 
4.15 
1.16 
1.22 

24.71 
0.06 
0.31 
10.35 
5.47 
-0.71 
-0.04 
0.24 
0.04 
-0.11 
-0.13 

minh 

1.39 
2.33 
0.94 
1.10 

-1.77 
-0.92 
-1.27 
-0.26 
-0.53 
-0.93 
-1.10 
-0.85 
-0.25 
-0.31 
-0.28 
-0.23 
-0.86 
-0.85 
0.82 
0.28 
4.34 
0.14 

-3.17 
-1.09 
-1.68 
0.74 
-0.07 
1.78 
0.07 
1.13 
0.39 
-1.25 
-1.02 
-0.58 
-1.48 
-0.47 
-9.97 
-9.36 

-34.30 
-0.73 
-2.11 
-1.28 
8.05 

-7.48 
-0.36 
1.04 

-5.36 
-2.21 
-1.68 
-0.90 
-1.06 
-0.74 
-1.12 

max' 

7.63 
7.31 
5.06 
4.30 
1.33 
2.04 
2.25 
2.10 
1.88 
1.62 
3.18 
3.04 
3.80 
2.69 
2.62 
2.78 

16.36 
10.71 
9.76 
5.85 
11.64 
3.27 
7.89 
4.50 
2.63 
3.80 

13.46 
6.30 
8.80 
3.91 
3.11 
1.23 
0.76 
0.92 
1.97 
1.81 

10.26 
37.79 
37.68 
9.02 
4.43 
3.72 

41.37 
7.61 
0.98 
19.65 
16.30 
0.79 
1.60 
1.38 
1.13 
0.52 
0.87 

Ik 

2.76 
1.89 
1.56 
1.17 
0.78 
0.78 
0.78 
0.78 
0.78 
0.78 
1.18 
1.18 
1.18 
1.18 
1.18 
1.18 
6.50 
3.88 
2.57 
1.37 
2.92 
0.94 
2.92 
0.94 
0.71 
0.71 
2.87 
1.09 
1.86 
1.68 
1.11 
0.72 
0.48 
0.39 
0.47 
0.71 
4.65 

14.82 
14.82 
2.76 
1.68 
1.35 

10.08 
5.53 
0.39 
7.09 
6.33 
1.18 
1.18 
0.71 
0.71 
0.49 
0.49 

"Experimental number, bold code = curve plotted in graph (Fig. 10 to 13); bfs= time of shift (h); cn= 
number of datum points in growth curve; d bold value indicates that hypothesis 1 is accepted by t test; 
ftt'=tJ\, ; 6 X- = estimated lag time from growth data; hmin= minimum 95% confidence limit of lag 
time, bold value indicates that a = 0 is within the confidence interval (hypothesis 2); 'max = maximum 
95% confidence limit of lag time, 95% confidence intervals are calculated with f =1.96 (at infinite 
degrees of freedom, the variance of the measuring error was calculated with 646 datum points); k bold 
value indicates that hypothesis 3 is accepted by t test. 
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Table 5 shows that hypothesis 1 is accepted for only a few experiments. Hypothesis 2 

is accepted for most of the experiments and hypothesis 3 is accepted for almost all 

experiments. 

In Table 6 the total number of accepted cases of each hypothesis is given for all curves 

(except for the curves L65 and L66). Table 6 shows that hypothesis 1 is accepted only in 47% 

of the cases and does not appear to be appropriate (see also Fig. 3). Hypothesis 2 is accepted 

in most of the cases (73%) and hypothesis 3 is accepted in almost all cases (93%). Therefore, 

hypothesis 3 appears to be the most appropriate. 

TABLE 6. Acceptance rates of the three hypotheses (% between brackets) 

Hypothesis Lag phase Exp. phase Total 

1 

2 

3 

49 (71) 

51 (74) 

65 (94) 

8(15) 

38 (72) 

48 (91) 

57 (47) 

89 (73) 

113(93) 

Total 69 53 122 

Predictions compared with experiments. Now the measured data can be compared to 

the model predictions. For several temperature shift experiments growth data and model 

predictions (following hypothesis 3 with a = 0 .25) are compared. For shifts within the lag 

phase examples are given in Fig. 6 to 9. The model predictions have been calculated using 

equations 12 and 13 (see Appendix). Curves L3 and L4 are examples for which hypothesis 3 

was rejected. 

In Fig. 10 to 13 results of temperature changes at different times are given. For shifts 

within the exponential phase the model predictions have been calculated with equations 14 and 

15 (see Appendix). It can be seen that the predictions agree very well with the measured data. 

It should be noted that the predictions arise from models based on earlier growth data (6) at 

constant temperature, so no fitting occurred. 

Hypothesis 2 was accepted in many cases (73%) and for simulation purposes this 

assumption is more convenient, especially if there are many temperature changes during the 

shelf life of a product or during dynamically changing temperatures. In Fig. 8 and 9 the 

predictions using this assumption ( a = 0) are also given. It can be seen that this model also 

describes the kinetic behaviour of the data well enough for a number of practical applications. 

Curves L51, L52, and L59 are examples for which hypothesis 2 was rejected, for temperature 

shifts within the lag phase. 
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\r\(N/No) 

time (h) 

FIG. 8. Growth curves with a shift from 10°C to 25°C at 6 h compared with model prediction 

( = Gompertz with hypothesis 3; = Gompertz with hypothesis 2; 

• L50. + L51,» L52,* L53). 

ln(A//A/o) 10 

10 20 

V + 

4 ,</ 

2 // 

0 ^ -

30 40 

time (h) 

FIG. 9. Growth curves with a shift from 10°C to 25°C at 12 h compared with model prediction 

( = Gompertz with hypothesis 3; = Gompertz with hypothesis 2; 

• L57,+ L58,» L59 / L60). 
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FIG. 10. Growth curves with shifts from 14°C to 24°C compared with model prediction 

( = Gompertz with hypothesis 3; = linear with hypothesis 2; 

-E5.+ E7,» E9,»L67). 
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FIG. 11. Growth curves with shifts from 14°C to 24°C compared with model prediction 

( = Gompertz with hypothesis 3; = linear with hypothesis 2; 

•E6,*E8,« E10,* L68). 
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FIG. 12. Growth curves with shifts from 15°C to 20°C compared with model prediction 

( = Gompertz with hypothesis 3; • El 1, + E13, »E15, * L69). 
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FIG. 13. Growth curves with shifts from 15°C to 20°C compared with model prediction 

( = Gompertz with hypothesis 3; • E12, • E14, « E16, *L70). 
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By using both hypotheses 2, and the linear growth model (equation 1) instead of the 

modified Gompertz model, the calculations become easier. The predictions of the linear 

model (with the use of hypothesis 2) are compared with the modified Gompertz model (with 

hypothesis 3), in Fig. 6, 7, 10 and 11. Curve L68 is an example for which hypothesis 3 was 

rejected. The linear model gives comparable results to the modified Gompertz model, only 

where the growth curve bends off towards the asymptote, the linear model fails to describe 

the data. The asymptotic level [ln(JV/A/„)]is dependent strongly on the inoculum level, 

and shows often large experimental error (6, 8). Moreover, the asymptotic level is often of 

no real practical importance, since food products are generally spoiled, before the asymptotic 

level is reached. For a number of applications the global kinetic behaviour will be sufficient 

and the linear model could be chosen, since this model has the advantage of simplicity. 

CONCLUSIONS 

It can be assumed that temperature shifts within the lag phase can be handled by adding 

relative parts of the lag time still to be completed and that temperature shifts within the 

exponential phase result in no additional lag. These two assumptions were accepted 

statistically in more than 70% of the experiments. The kinetic behaviour was well predicted 

using these assumptions. The hypothesis that a temperature shift results in an additional lag 

phase of one-fourth of the lag time normally found at the second temperature is accepted in 

more than 90% of the experiments. This observation shows that the bacteria are exposed to 

stress by a shift in temperature in the lag phase as well as in the exponential phase. 

With this knowledge growth curves can be predicted with the modified Gompertz 

equation. For a number of practical applications the procedure can be simplified by neglecting 

the additional lag time. Also the linear growth equation predicts data within a certain range 

and therefore can be preferred when simplicity of the function is preferred. 

Shifts of temperature around the minimum temperature of growth showed firstly dying 

of the cells and secondly very large deviations compared to the model prediction. This 

observation indicates the need for more experimental work around the minimum temperature 

of growth. 
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APPENDIX: Equations for predicting microbial growth 

Prediction of bacterial growth at constant temperature. If the temperature remains 

constant, the bacterial growth can be predicted by using the modified Gompertz equation 

(equation 2) and using the growth parameters (A, [i and A.) calculated from Table 1. 

Equations for predicting microbial growth with temperature changes. 

1) Using hypothesis 3 ( a = 0 .25) 

Temperature shift within the lag phase (rs < A t , fs* S 1). The lag time to be completed 

after the shift within the lag phase can be calculated with equation 6. With a = 0 .25 this 

results in: 

^ w / ( = ( l + a - U ' ^ 2 = 1-25-
\ , 

(12) 

Subsequently, the modified Gompertz equation can be used to calculate the growth at times 

after the shift in temperature: 

y = /42exp< - e xp 
H2 '

 e 

A, 
( ^ s / , 1 / ( - [ f - ' s ] ) + l (13) 

Temperature shift within the exponential phase (fs> X ! , tt' > 1). Before the time of 

shift, the modified Gompertz equation can be used to describe the bacterial growth and the 

number of organisms at time of shift ty,(0 =yj can be predicted: 

yl(t) = Alexp{ - e xp 
M - x - e 

( \ , - 0 + l 0 < t < ( , (14) 

After the shift in temperature growth continues from ys with an additional lag X shift. This 

results in: 

y 2 ( 0 = y s
 + ( / 4 2 - y s ) exp - e xp 

^ e 
• ( k , W / , - [ t - U ) + i 

A2-ys 

t>ts y s = y i ( ' s ) \sllifl = a-\2 = 0.25-\2 

(15) 
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2) Using hypothesis 2 (a = 0) 

Temperature shift within the lag phase (t, < X,, t,' < 1). The lag time to be completed 

after a shift within the lag phase can be calculated by assuming a = 0 in equation 6: 

^ s M f t - ^ + oi-ts)-X2-^\-—j-X2 (16) 

Subsequently, the modified Gompertz equation (equation 13) can be used to calculate the 

growth at times after the shift in temperature. 

Temperature shift within the exponential phase (ts> Ky , ?s*> 1). The number of 

organisms before the time of shift can be predicted by equation 14. The number of organisms 

after the time of shift can be predicted by: 

y 2 ( 0 = y , + M 2 - y s ) e x p \ - e x p 
i i 2 e 

( - [ t - t . ] ) - l (17) 
A2-y 

t>t, y , = y i ( U 

3) Using linear growth 

It will be even more convenient to use linear growth and hypothesis 2 ( a = 0) . 

Temperature shift within the lag phase (rs < K,, t,' < 1). The lag time to be completed 

after a shift within the lag phase can be calculated by equation 16. After the lag time is 

completed exponential growth will occur until the asymptote is reached: 

y = o t-ts<\shift 

y = H 2 - ( ' - t s - k s h i / i ) Xstull<t-ts<A2/Vi2 + KshLn (18) 

y = ^ 2 t-ts>A2/\i2 + \s>l,f, 
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Temperature shift within the exponential phase (ta> K-i, f„*>l). The number of 

organisms before the time of shift can be predicted by: 

(19) 

(20) 

y = 0 t<\t 

y - u , - ( t - \ , ) \x<t<t, 

and the growth after the time of shift (ta) results in: 

y - m - C t . - k ^ + u ^ C t - t . ) ts<t<Az l i l ' i t s Kl) + ts 

t A2-Vi- ( t s - ^ i ) t y = A2 t> + ts 
1*2 

This equation can be expanded very easily to more temperature shifts. 

Various temperature shifts. If many temperature shifts occur or during dynamically 

changing temperature conditions it will be better and easier to use hypothesis 2 ( a = 0) and 

linear growth. The modified Gompertz equation is far to complex to be used with many shifts. 

Temperature shift within the lag phase. The lag time to be completed after many 

shifts within the lag phase can be calculated by assuming a = 0 in equation 6 and adding all 

relative parts of the lag time that are completed until one is reached: 

4> = ) —- until * = 1 (21) 

or for dynamically changing temperatures: 

4>= f ^ until *= 1 (22) 
J A. 
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Temperature shift within the exponential phase. As soon as * = 1 the exponential 

phase sets in. The time at which <i> = 1 is defined as £+. 

y = M-iC«s i - f • ) + M ' s z ~ t s l ) + \i3(t-1s2) 

, , , A-V-i(tsl-tt)-[i2(ts2-tsl) 
t*2 

(23) 
y = 0 t<tt 

y - u , - ( t - t # ) «*<«<«,/ 

and the growth after the first time of shift (f9l) in the exponential phase results in: 

y = Vi(ts]-t*) + ii2(t-ts]) tsl<t<tsZ (24) 

and the growth after the second time of shift (fs2) in the exponential phase results in: 

(25) 

until the asymptote is reached: 

y = A t> + ts2 (26) 
M-3 



CHAPTER 7 

A DECISION SUPPORT SYSTEM FOR PREDICTION OF THE 
MICROBIAL SPOILAGE IN FOODS 

ABSTRACT 

A method was developed to combine qualitative and quantitative information to predict 

possible growth of microorganisms in foods. The pH, water activity, temperature, and 

oxygen availability of foods are coupled to the growth characteristics of microorganisms. 

Therefore, a database with characteristics of foods and a database of kinetic parameters of 

microorganisms were built. In the first database, a tree structure based on physical similarity 

was built, for the case that information about the characteristics of a particular food is 

unknown. The product information can be estimated by comparing with similar products at 

the same level of the tree or the level above. A method is developed to make an estimation of 

the microbial growth kinetics on the basis of models. This is done by introducing a growth 

factor, which can be calculated on the basis of readily available data from literature. Since all 

the information can be altered, the system can give better predictions when more and more 

accurate information is added. 

INTRODUCTION 

Food Quality. Food quality can be defined as the sum of the characteristics of a food 

that determines the satisfaction of the consumer and compliance to legal standards. Thus, 

food quality is a combination of numerous factors, such as organoleptic properties (e.g., 

texture, flavor, color), nutritional value (e.g., caloric content, fatty acid composition), and 

safety conditions (e.g., microbial number, toxins, hormones). Some of these factors (e.g., 

microbial numbers) can be quantified relatively easily, others (e.g., flavor) are very difficult 

to assess quantitatively. Food quality thus cannot be quantified in every detail, and overall 

This chapter has been published as: 

A Decision Support System for Prediction of the Microbial Spoilage in Foods 

M.H. Zwietering, T. Wijtzes, J.C. de Wit, and K. van 't Riet (1992) 

J. Food Prot. 55:973-979 
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quantification depends strongly on the priority of the different aspects determining the quality. 

To determine the total food quality, quality indicators are needed and must be weighted, 

depending on the product, trends, producer, and market. 

Food quality is gaining more and more interest for a number of reasons. The food 

market deals in most cases with satiation; therefore, quality becomes more important than 

quantity. There are new quality attributes which are highly appreciated by the modern 

consumer (in contrast to traditional quality demands). Consumers show an increasing interest 

in convenience foods with the appearance and taste of fresh products and food quality aspects 

such as flavor and (assumed) health aspects (e.g., nutrition, fatty acid quantity and 

composition, energy content, salt concentration, additives, such as preservatives). 

Prediction of the kinetics of possible quality loss is important for the following reasons. 

Consumers are willing to pay a higher price for quality. The manufacturer wants to produce 

constant quality products at the lowest costs. Many products have a limited shelf life. 

Production and storage conditions affect quality very strongly; therefore, production and 

distribution are often critical. From the past there are many dried, salted, frozen, and 

sterilized products, while nowadays chilled and intermediate-moisture foods are becoming 

more important. The shelf life of a product should match the distribution regime: daily 

delivery for perishable products such as fresh milk, bread, fresh vegetables, and fresh meat, 

or less frequently as for salads, margarine, etc. Distribution routes have become longer, and 

therefore, there is a need for an increase in shelf life. In some areas there is a rather rapid 

product development (changes in product formulation). Consequently, it will be very useful 

to make an estimation of the shelf life during product development. Formulation of products 

may be different in different countries or regions, because of legal requirements or regional 

food preferences. Therefore, it would be useful to know the effects of different compositions 

on the shelf life, so that each formulation does not require a laborious shelf-life test. 

New techniques are being developed to meet these quality demands, such as new 

technologies (e.g., microwave, ultrahigh temperature processes, modified atmosphere 

packaging, irradiation), and new strategies (e.g., logistics, and modeling). 

Quality loss. Quality loss can be a result of microbial, chemical, enzymatic, or physical 

reactions. Different factors influence quality loss, such as the composition of the product, and 

the processing and storage conditions. Deterioration reactions may occur when the physical 

variables of the product are within the range of the specific reaction. For quantification of the 

reaction rate, the kinetics of the reaction should be known. This can be done by models that 

include the range in which spoilage can occur and the physical variables of the product. As 
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soon as good models are available and values for the physical variables are estimated, the rate 

of spoilage processes can be predicted. The resulting quantitative estimation can be compared 

with quality parameters. 

A considerable amount of research has been conducted on the deterioration of food 

(e.g., 2, 10). This research yielded a large amount of quantitative data. Also, much qualitative 

information is available. Yet, for a quantitative prediction of the quality of a given food 

product, there are often not enough data, or the data show too large a measuring error to be 

used. It is difficult to combine a broad range of information, from qualitative to quantitative. 

However, it will be very useful to combine all this information in a structured manner, to 

predict product quality in the best possible way. 

The objective of this work is to develop a system in which quantitative data can be 

combined in a structured manner with qualitative data, quantitative information, and models. 

Such a system would be a useful tool in product development, predicting possible spoilage 

and estimating the kinetics of possible deterioration. As soon as more data, knowledge, or 

new models are gathered, this can be added, resulting in more valuable predictions. 

SYSTEM STRUCTURE 

The system. A system was developed that determines the possible growth of 

microorganisms on a certain food product. Numerous factors can influence growth. From the 

most important factors, pH, water activity (aw), temperature (7), and oxygen availability are 

taken into account. These physical properties of the product are compared with the properties 

of the microorganisms (Fig. 1). The physical variables of various foods are collected in a 

database (database 1) as are the growth data of microbes (database 2). The data for each 

microorganism are matched with the physical variables of the food product, by simply 

determining if the physical variables of the product are within the growth limits of that 

microorganism ("pattern matching"). For these organisms, an estimate of the growth rate is 

calculated on the basis of the value of the physical variables. The estimation of growth is 

carried out by using models that describe growth over the range of physical variables. 

The list of organisms that may spoil the product is sorted by growth rate. This list can 

be altered by applying rules to diminish the number of organisms in the list or to improve the 

value of the predictions. Some of these rules are dependent on the product, some on the 

properties of organisms, and some are of general application. In this way the final list of 

organisms is obtained, which is now based on physical variables of the product, growth 

parameters of microorganisms, models, and qualitative reasoning. 
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database 1 database 2 

physical parameters 

Foods 
(components) 

pH,aw , T, O, 

kinetics: 
m.o. 

" 

matching — i ^ knowledge — * • 
estimate of 
growth rate 

FIG. 1. Structure of the system. 

TABLE 1. An example of the information stored in the product database 

Name 
Identification code 
Temperature (7) 
PH 

Oxygen availability 

yogurt 
S.A.B.A.C 
5 
4.2 
0.990 
no oxygen 

It should be noted that spoilage of a product will only occur if an organism is present 

and able to grow in that product. Until now it is assumed that all organisms can be present 

everywhere. This can result in predictions of growth of organisms that are unlikely to be 

present in such a product. Therefore, knowledge of the presence of organisms on certain 

products can be included in the information database. Another possibility is that the usual 

microflora of products is included in the food database. However, organisms that up to now 

have not caused problems in a product are often not known to be present in a product. If the 

composition or processing of such a product is changed, these organisms may start to cause 

problems. Therefore, it is assumed that all organisms can be present everywhere. 
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Food database. Database 1 (Fig. 1) contains the physical variables of different foods, 

as shown in Table 1. The physical variables are known only for a limited number of products. 

The remainder contains name and identification code (I.D.). The I.D. of a product determines 

the position of the product in the classification tree (Fig. 2). The first letter (S) stands for 

food, addition of the second for the first subdivision of food [dairy (S.A), bakery (S.D), 

vegetables (S.F), meat (S.H), etc.]. These groups of products are divided by addition of the 

third letter of the I.D., etc. 

fresh milk skim milk 
(S.A.A.A) (S.A.A.C) 

cheese (S.A.B.C) 

buttermilk (S.A.B.A.A) yoghurt (S.A.B.A.C) 

FIG. 2. Structure of database 1, in which foods are sorted by their physical characteristics. 

The number of food products is more or less infinite and, as may be expected, not all 

the physical variables of all different foods are known. Therefore, the database is structured 

in such a way that the products are sorted with respect to their physical properties so that foods 

that are grouped together are closely related (Fig. 2). The classification system proposed by 

Jowitt (4) based on the physical properties of foods is therefore used. In such a way, missing 

information, even when a product is absent, can be substituted with knowledge from 

comparable products. 

Moreover, the physical variables can always be altered. If comparable products are not 

found, estimated variables can be entered. 
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Organism database. A database is built for microorganisms, to contain the information 

as given in Table 2. The database contains the name of the organism and the growth ranges 

of the physical variables: oxygen requirement, the minimum and maximum pH, aw, and 

temperature. Additionally, the optimum growth rate and the optimum values of pH and 

temperature are stored to be used in kinetic models. Furthermore, the Gram staining, type, 

and spore-forming abilities are stored to be used for further selection procedures (qualitative 

reasoning) or future use. The possibility exists to alter all information. 

TABLE 2. An example of the information stored in the organism database 

Genus Pseudomonas 

Species putida 

Oxygen necessity aerobic 

Type (bacterium, yeast, mould) bacterium 

Gram stain (only for bacteria) negative 

Spore forming no 

T: min max opt -8 43 30 

pH: min max opt 4.7 8.5 7.8 

aw: min max opt* max 0.96 1.000 

optimum growth rate (jar1) 1 

Selection of organisms that can grow on a particular product. As soon as the 

physical variables of a product are known, a matching is carried out with the organisms 

database. All the organisms that can grow on that product on the basis of the physical 

variables are found by "pattern matching". First, the total list of organisms is reduced to those 

organisms that can grow at the pH of the product, then at the temperature of the product, and 

then at the aw of the product. Lastly, the effect of the availability of oxygen is included. The 

procedure results in a list of organisms which can grow in a certain product with particular 

physical variables. 

Kinetic models. To estimate the growth rate of organisms at suboptimum conditions for 

T, aw, and pH, models have to be used. The growth rate can be estimated using models 

relating growth at the actual value of a variable to the optimum value and the limits. Each 

variable that is not at the optimum value can reduce the growth rate. Therefore, a method to 

combine these effects must be established. This is done by introducing a growth factor: 



CHAPTER 7 117 

y1 opt 

with n the actual growth rate (h1), M-oPi the growth rate (h1) at optimum conditions, and y 

the actual growth factor. 

This growth factor is equal to 1 at optimum conditions and between 0 and 1 for all other 

conditions. Others have shown that the inhibitory effect of temperature and aw and the effect 

of temperature and pH can be multiplied (1, 6). It is assumed therefore that the growth factor 

can be calculated by multiplying all Y ( x ) values, with y ( x ) defined for each of the 

variables separately, independent of the value of the other variables: 

Y = Y (7 - ) -Y(pH) -Y(aJ -Y(0 2 ) (2) 

If all variables are at optimum conditions, the growth rate is equal to [iopt. If one of 

the variables is below the minimum or above the maximum value, this results in one of the 

Y ' s to be zero, resulting in a growth rate of zero. 

Each Y ( x ) factor can be determined from the database data, in combination with a 

model for that variable. In the microorganism database, the minimum, optimum, and 

maximum temperatures for growth of different organisms can be found. If these data are 

known, the parameter c of the Ratkowsky equation (9) can be calculated: 

H = [ ö ( 7 - 7 m i n ) { l - e x p [ c ( 7 - 7 m a x ) ] } ) (3) 

7 < 7 < 7 
1 min ' — 1 max 

with b, c, 7min, T^: Ratkowsky parameters, and T the actual temperature (°C) 

If c is known, the growth factor Y(7") for each temperature value can be evaluated with: 

, ^ \i f ( 7 " - 7 - m i „ ) { ] - e x p [ c ( 7 - 7 m a x ) ] } V 
Y ( 7 ) = = (4) 

M-opi \(.Topt-Tmin){\ - e x p [ c ( 7 0 p ( - 7 m a x ) ] } ; 

The value of c can be calculated from the known 7min, 7max, and T as follows. The derivative 

of equation 3 can be calculated as: 
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^ = 2 ' b ( T - 7 m i n ) { l - e x p [ c ( 7 - 7 m a x ) ] } -
(5) 

b{ 1 - exp [c(T-Tmax)]-c-(T-Tmin)-exp[c(T-Tmax)]
] 

At T= 7" this derivative is zero. Since b cannot equal zero and T^ cannot equal Tmia or rm i , 

the first part of the equation cannot equal zero. Therefore, the second part of the equation 

must be zero: 

1 -exp [ c ( T o p l - T m a x ) ] - c - ( T o p l - r m i n ) - e x p [ c ( T o p ( - T m a x ) ] = 0 (6) 

This can be rewritten as: 

l - ( c 7 o p ( - c T m i n + l ) . e x p [ c ( r o p ( - T m a x ) ] = 0 (7) 

c can be calculated iteratively from this equation, to be used in equation 4. 

The same procedure is carried out for the pH. The same formula from Ratkowsky (9) 

is used, only Tis substituted for pH: 

p = [ / ( p H - p H m i n ) { l - e x p [ g ( p H - p H m a x ) ] } V 

PHm i n<pH<pHm a x 

with/, g, pH^ , p H ^ : Ratkowsky parameters, and pH the actual pH. 

(8) 

2 , „ . M- f ( pH-pH m i n ) { l - exp [g (pH-pH m a x ) ] } 
Y(pH)= = (9) 

V-oPt V(pH„p (-pHm i n){l - e xp [g ( pH o p ( - pH m a x ) ]> / 

with g to be calculated from: 

l - ( g p H 0 p ( - g p H m i n + l ) - e x p [ g ( p H o p , - p H m a x ) ] = 0 (10) 

McMeekin et al. (6) show that the growth rate is linear with aw at suboptimum water 

activity levels. For the water activity therefore, a linear relation is assumed: 



CHAPTER 7 119 

Y(aJ = aw-a. 
1 - a » , n , i n 

a.>a„ 
(11) 

" w, mm 

with ÜW „^ minimum water activity, aw actual water activity. 

Oxygen availability is used as a selection parameter (y (O 2 ) = 0 o r 1, Table 3). For 

oxygen availability, this segmentation model is used, since for most microorganisms the 

growth kinetics as a function of the oxygen availability are not known. The same is true for 

the oxygen concentration in products. If models and model parameters are known, this can 

be altered, since the segmentation model as shown in Table 3 is a very rigorous one. 

The combination model selected and used here is not yet thoroughly validated. 

However, it can be used to make kinetic predictions, although the numerical value is indeed 

a prediction only. Yet, a good estimate is made about the growth rate. Whenever more 

knowledge is present for models describing the effect of the variables used here, these models 

can be incorporated. It should be noted that there are no correlation effects assumed between 

T, aw, pH, and 02 . 

TABLE 3. The effect of the availability of oxygen on y(Oz) 

Aerobic 

Organism 

Facultative 
anaerobic 

Anaerobic 

Product with oxygen 
Product with very little oxygen 
Product with no oxygen 

There are many more variables determining the growth rate of microorganisms, such 

as preservatives (sorbic and benzoic acid, alcohol, nitrite). These compounds will often be 

present in specific products, such as alcohol in alcoholic beverages and nitrite in meat 

products. The effect of these compounds can be incorporated by applying knowledge rules. 

This method is better than the use of kinetic models, since at present models and model 

parameters are not well established for these compounds. 

Only if all information is present can exact predictions be made. This is an impossible 

situation; therefore, every result will always be an approximation. 
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Addition of qualitative reasoning. Information can be added to the system to decrease 

the number of possible organisms that can cause problems. Four types of rules are 

implemented in the system (Table 4); i) relationship between microorganisms and product 

characteristics (example: In high moisture food and low acid products molds and yeasts will 

be overgrown by bacteria if the temperature is below 35 °C); ii) interaction among 

microorganisms (example: Antagonists of Salmonella spp. are lactic acid bacteria); iii) 

interaction among microorganisms in combination with the product [example: On meat if 

either Pseudomonas spp., Moraxella spp., or Acinetobacter spp. is present, all three are 

likely to be present (7)]; iv) general rules (example: If pasteurization is carried out, only 

thermoduric organisms will survive). 

Before these rules are applied, the user is asked if this rule is applicable, since they can 

be too stringent sometimes. 

TABLE 4. Knowledge rules used in the system 

On raw meat, yeasts and molds will be overgrown by bacteria. 
On raw fish, yeasts and molds will be overgrown by bacteria. 
On products that are comparable to bread, only molds will grow. 
On meat, the Achromobacter-combination will be present: if Pseudomonas spp., or Moraxella spp. or 
Acinetobacter spp. is present, all three are likely to be present (7). 
On vegetables, only yeasts and molds will grow. 
On fruits, only yeasts and molds will grow. 
On products with a low water activity, spore-forming microorganisms can be present (no growth). 
If bacteria are present, they will overgrow molds in low acid and high moisture products. 
If bacteria are present, they will overgrow yeasts in low acid and high moisture products. 
If the growth rate of an organism is less than 10% of that of the fastest growing organism on that 
product, this organism will be overgrown. 
If the growth rate of an organism is zero, this organism will be overgrown. 
Antagonists of Clostridium perfringens : Lactic acid bacteria. 
Antagonists of Salmonella spp. : Lactic acid bacteria. 
Antagonists of Staphylococcus aureus : Lactic acid bacteria. 

RESULTS AND DISCUSSION 

The program was developed using TURBO-Pascal 5.0 (Borland). No expert system 

shells are used, because a shell that exactly fulfils our needs could not be found. Furthermore, 



CHAPTER 7 121 

programming in a second generation language has the advantage that all necessary procedures 

can be programmed. Then the problem does not need to be fitted into the possibilities of a 

shell. 

The system is started entering the name of a food. The program then searches database 

1 for the name of that food, or foods, with a very similar name. Within this list of names, a 

final selection can be made for the food of interest. The physical variables of this product are 

displayed when present in the database. If the physical variables of the product are not known, 

comparable products (if any) are given (Fig. 2). An estimation of the physical variables can 

be obtained by a selection from this list. 

With the physical variables of the food, a matching is carried out with the organisms 

database. The organisms that can grow on that product considering the physical variables 

(pH, T, am, and oxygen availability) are determined on basis of the growth ranges of the 

organisms by "pattern matching". This results in a list of microorganisms that can cause 

spoilage together with the growth factor (equation 2). Now rules can be applied to diminish 

the number of organisms in the list or to improve the value of the predictions. The knowledge 

rules that are implemented are given in Table 4. 

In total, 845 products are collected in database 1 at present. For 153 of these products, 

this database contains information as given in Table 1. In total, 20 gram-negative bacteria, 19 

gram-positive bacteria, 10 yeast species, and 9 molds are incorporated in database 2 at 

present. If the optimum growth rate of organisms is not known, for bacteria 1 h1, for yeasts 

0.5 h1, and for molds 0.1 h1 is assumed. 

Open structure. The parameters of the organisms, the physical variables of the 

products, and the qualitative rules can be altered and expanded. It should be noted, however, 

that the value of the system is dependent mainly on the quality of the data that are stored. 

Therefore, changes in the databases can only be made by authorized users. 

Output. Two lists of possible spoilage organisms are generated. The first list contains 

the possible spoilage organisms, based on physical variables. The second list contains the 

knowledge rules that are applied and the list of spoilage organisms that are likely to spoil the 

product, after the knowledge rules are applied. As output, not only the final list should be 

considered, the first list also contains valuable information. (For example, if pasteurization is 

carried out, the final list will give no thermosensitive organisms. However, if the product is 

contaminated after pasteurization, the thermosensitive organisms can be of interest). 
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The possibility exists to remove certain groups of organisms (gram positive, gram 

negative, all nonspore-forming organisms, molds, and yeasts). This can be valuable for 

instance if a product is pasteurized (e.g., remove all nonspore-forming organisms). 

Example for milk. In the following part, an example for milk stored at refrigeration 

temperature is given. 

Selection of organisms. During storage of milk, a temperature of 5°C can be achieved. 

The atmosphere is aerobic. In the components database, the following data can be found for 

milk: pH= 6.6; av= 0.993. In the organism database, the data of all organisms are examined. 

For instance, for Pseudomonas the data are given in Table 2. Combining this information 

results in the deduction that Pseudomonas can grow in milk stored at 5°C. If this is carried 

out for all organisms, the system comes up with 11 bacteria, 6 molds, and 6 yeast species 

(Table 5). All bacteria are reported to grow in milk at 5°C by Gilmour and Rowe (3). 

If this exercise was done for skim milk, it may have appeared that the database did not 

have the physical variables for skim milk. The system would then have searched for a product 

that is physically comparable to skim milk, which would have been milk (Fig. 2). 

Kinetic estimation. For all organisms that can grow on milk, the growth factor will be 

calculated (equation 2). This will be done as an example for Pseudomonas. 

For the temperature, equation 7 can be used, using the kinetic data of Pseudomonas 

(Table 2), resulting in: 

l - ( 3 8 c + l ) - e x p ( - 1 3 c ) = 0 (12) 

This equation can be solved iteratively and results in c=0.143. With equation 4, the y(T~) 

can be calculated at every temperature. 

m f ( r + 8 ) < 1 - e x P [ ° - 1 4 3 ( r - 4 3 ) ] > V f ( r + 8 ) ( l -exp[0 .143(7- -43)] )y 
Yl ' \ 38{l-exp[0.143(-13)]} ) \ 32.08 J (13) 

For the pH, equation 10 can be used resulting in: 

l - ( 3 . 1 g + l ) - e x p [ g ( - 0 . 7 ) ] = 0 (14) 
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This equation can be solved iteratively and results in g=3.55. With equation 9, the v ( pH ) 

can be calculated. 

TABLE 5. Prediction of the microorganisms 

that can grow in milk stored at 5°C (alphabetized) 

Lit. Bacteria 

* Acinetobacter 
* Aeromonas 
* Bacillus subtilis 
* Brochotrix spp. (thermosphacta) 
* Enterobacter spp. + Enterobacter aerogenes (aerobacter) 
* Lactobacillus plantarum 
* Listeria spp.(monocytogenes) 
* Moraxella spp. 
* Proteus spp. 
* Pseudomonas fluorescens + Pseudomonas putida/fragi 
* Yersinia enterocolitica 

Yeasts 

Rodotorula spp. 
* Candida spp. (macedoniensis) 
* Debaryomyces spp. (hansenii) 

Hansenula spp. (anomala) 
Pichia spp.fmembranaefaciens) 

* Torulopsis spp.(psychrophilica) + Torulopsis Candida 

Molds 

Aspergillus spp. 
Botrytis spp. 
Cladosporium spp. 
Geotrichum candidum (o.lactis) 
Mucor spp. 

* Pénicillium spp. 

* = microorganisms able to grow in milk at 5°C given by (3). 
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f f ( p H - 4 . 7 ) < l - e x p [ 3 . 5 5 ( P H - 8 . 5 ) m 
Y("P ' \ 3 . 1 { l - e x p [ 3 . 5 5 ( - 0 . 7 ) ] } J 

J { l - e x p [ 3 . 5 5 ( p H - 8 . 5 ) ] } V 
V ' 2.842 J 

For the aw, equation 11 can be used resulting in: 

(15) 

aw-0.96 
V ( a J ° 0.04 ( 1 6 ) 

For milk, the following growth factors are calculated: 

f o r r=5 , Y(7") = 0 .163; 

forpH=6.6, v(pH)=0.446;and 

foröw=0.993, y(aa)- 0 . 83 . 

Y = Y(7- ) -Y(pH)-Y(aJ = 0.060 (17) 

M-oP1=l h"1 

Now the growth rate can be estimated with equation 1. 

H = Y-H„P, = 0.060 (18) 

Addition of qualitative reasoning. In the reasoning, the knowledge about the heat 

treatment of the milk can be added to the system. If no pasteurization is used, we have to deal 

with the natural contamination of milk. The bacteria will grow much faster than the yeasts 

and the molds (because milk has a very high water activity and a neutral pH). An estimation 

of the growth rate can be made on the basis of models, describing the effect of the physical 

variables on the growth rate. In the example given above, the conditions in milk are not 

optimum for Pseudomonas; therefore, the growth rate will be smaller than the optimum 

growth rate. It is assumed that the fastest growing organisms will cause problems (10% rule). 

If this knowledge is used, the system comes up with four species (Table 6), including 

Pseudomonas and Enterobacter which are reported to be main spoilers of milk (3,5, 8). The 

kinetic predictions are not yet very precise. 



0.322 

0.134 

0.060 

0.057 

0.075 (5) 

-

0.18(8) 
-
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If a pasteurization is carried out, only the thermoduric organisms will survive. This 

results in 1 bacterium (Bacillus), 6 yeasts, and 6 molds. As the spores of yeasts and molds 

are less likely to grow out very fast, it can be concluded that the bacterium Bacillus will be 

the main spoiler. Of course, the product may be contaminated after the heat treatment; 

therefore, the information that is produced before the effects of the heat treatment is of 

importance. It must be stressed that all the information, from the beginning to the end, must 

be studied, as it is always a result of a number of models, i.e., simplification. 

TABLE 6. Microorganisms that are predicted to cause spoilage in milk stored at 5°C 

Species Growth rate (h1) Literature value 

Enterobacter 
Proteus 
Pseudomonas 
Brochotrix 

Possible expansion of the system. A great deal of information is present on quality loss 

processes in foods, depending on composition, process variables, and kinetics. It could be 

useful to develop a system in which this information is combined. The system can be 

expanded by including chemical, enzymatic, and physical spoilage in the same manner as 

described. In this way, effects of a large number of changes in the product or process can be 

evaluated. This can be done for instance for the addition of onions to a salad dressing 

(microbial, enzymatic, physical). The effect of chemical and microbial spoilage when a heat 

treatment is carried out at a higher temperature can be evaluated, as can the effect of storage 

in a modified atmosphere (if the effects of gases are known). For new product development, 

the possible spoilage reactions, the order of magnitude of these reactions, the approximate 

shelf life, and distribution temperature can be evaluated. By using more or less complicated 

models and kinetic parameters, predictions can be made of these deterioration reactions. 

CONCLUSIONS 

A system was developed which shows a promising potential for product development 

and shelf-life prediction. Quantitative and qualitative information and predictive models can 

be combined to predict possible spoilage reactions, with an estimate of their kinetics, on the 

basis of models. To that purpose, a database was built and filled with physical variables of 

foods, as was a database with organisms with their growth limits for the same physical 
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variables. A combined model was built to be able to make a kinetic estimation, on basis of 

the data in the databases. Furthermore, an information base is built which can be used to add 

qualitative information concerning products and microorganisms. The system combines all 

this information. Since it is impossible to collect quantitative data for all possible deterioration 

reactions on different products, a prediction is made on the basis of the data and knowledge 

collected in the system until now. 

The program can help to determine possible spoilage organisms. It can estimate the 

change in growth rates of organisms, when the physical properties are changed. It should be 

noted that the program does not give an exact, complete list of all possible spoilage 

organisms, since it is based on limited information. The more information that is combined 

and added to the program, the better the predictions will be. 
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CHAPTER 8 

CONCLUDING REMARKS: 

EXTENDED USE OF PREDICTIVE MODELING 

ABSTRACT 

The kinetics of food deterioration reactions are important for the optimization of food 

chains. Different types of models for prediction of deterioration kinetics are briefly discussed. 

Examples of the use of models are given. Some possibilities for expanding modeling 

techniques into decision support systems are given. Predictive models, kinetic data, expertise, 

logistics, and simulation and optimization routines can be combined to support decisions in 

production, distribution, and product development. 

PREDICTIVE MODELING 

Values and needs in predictive modeling. In Chapter 1 the most important needs in 

predictive modeling were mentioned. Some of these needs have been given attention in this 

thesis: 

A procedure was developed to estimate the maximum specific growth rate, lag time and 

asymptote out of growth data (see Chapters 2 and 3). 

Formal criteria were proposed to discriminate between models (Chapters 2, 4, 5 and 6). 

A model for the effect of temperature on bacterial growth was validated with a large 

number of experimental data (Chapters 4 and 5). 

A model was developed to take into account shifts in temperature (Chapter 6); This 

model was validated with a large number of experimental data. 

Part of this chapter was used for the publication: 

Some Aspects of Modelling Microbial Quality of Food 

M.H. Zwietering, F.M. Rombouts, and K. van 't Riet (1993) 

Food Control 4:89-96 
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A procedure was developed to link quantitative and qualitative information in a 

structured manner (Chapter 7). 

The work done in this thesis mainly focuses on the effect of temperature, since 

temperature is a variable that can be easily changed along a chain, without inherent product 

changes. In general, literature focuses on the variables T, av, and pH. To be able to make 

predictions for different formulations of a product, more work is needed on the effect of 

different product characteristics, i.e. on following subjects: 

Models to describe the effect of additional variables, e.g. gas atmosphere, presence of 

organic acids, preservatives. 

Integrated models for the simultaneous effect of different factors, and the determination 

of interaction terms. 

Relevance of modeling. For the validation of the models numerous measurements are 

needed. However, once the model is validated, predictions can be made with none, or only 

very few, experiments, and insight into the process is gained. With the square-root model of 

Ratkowsky et al. (11), microbial product spoilage by Lactobacillus plantation can be 

predicted if temperature, pH, and av are known (Fig. 1). Moreover, an estimate can be made 

of the effect of changes in the process, for example of uncooled transport. The difference in 

product quality (e.g., microbial count), and the difference in the shelf-life can be calculated 

easily (Fig. 1). Furthermore, it can be easily seen (Fig. 1) that quality is mainly lost in this 

case during storage by the consumer. This insight into kinetics is a great advantage of the 

modeling procedure compared to fragmentary sampling for quality control. 

Types of models. In order to build and/or validate models, large amounts of 

experimental data must be gathered. Fig. 2 illustrates the procedure to validate a model for 

the effect of temperature on microbial growth. First, a number of growth curves is measured 

at different temperatures. These growth data are then analysed with a growth model, e.g. 

Gompertz (6). In doing so, the values of the kinetic parameters are estimated. Then these 

parameters of the different growth curves at different temperatures can be used to select a 

model that describes the effect of temperature on these parameters. In Fig. 2, the expanded 

square root model of Ratkowsky (10) is given as an example. This model then can be used to 

predict growth curves at any temperature, and graphs such as Fig. 1 can be calculated. The 

same procedure can also be used for other variables such as pH and aw. In this manner, a total 

model can be developed for microbial spoilage. 
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7(°C) 60 

time (h) 

log/V 

240 
time (h) 

FIG. 1. Temperature history (example) and calculated development of the number of organisms. 

l=production and pasteurisation; 2=storage; 3=distribution (cooled and uncooled); 4=retail; 

5=consumer storage. cooled transport; uncooled transport; spoilage level, 

T= temperature, N= number of organisms (cfu/g). 
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FIG. 2. Pathway of model building for bacterial growth as function of temperature (ji = specific 

growth rate (h1), A = asymptotic level, \ = lag time (h), N = Number of organisms (cfu/ml), 

N0 = number at time zero, e=exp(l), t = time (h), b, c, Tmiri, Tnax are Ratkowsky parameters). 
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To describe the effect of physical and chemical conditions on deterioration, many 

models are already proposed and many new ones can be generated. Selection procedures are 

therefore needed. It is difficult to discriminate between models. Some advantages and 

disadvantages of different modeling techniques will be presented. 

Polynomial models: Polynomial models have the advantage that they are easy to use 

(linear regression can be used), very straightforward and no knowledge is needed of the 

process that is described. The disadvantages are: they do not contribute to knowledge about 

the mechanisms underlying the process, they often have numerous parameters, because of the 

numerous terms they can become unclear, problems can be encountered by fitting data that 

disagree totally with the chosen polynomial function, and they are valid simply and solely 

within the range of variables of the underlying measurements. 

Empirical models: Empirical models (other than polynomials) have the advantage that 

they can describe any curvature, and often need only few parameters. They do not contribute 

much to insight, although often more so than polynomial models. Also these models can be 

used only in a limited interval. 

Mechanistic models: Mechanistic models have the advantage that they may increase the 

insight into the process. They often can be combined more easily with other mechanistic 

models. On the other hand, they often contain a large number of parameters and also are 

applicable within a limited range. Often the model does not exactly describe what is 

happening and discrepancies are tolerated, to keep the advantages of the mechanistic model. 

In an Arrhenius plot, for instance, it is not unusual for the data to deviate from linearity in 

one or more temperature regions [The Arrhenius model (1) was given a fundamental basis by 

Eyring (4, 5)]. 

Use of models. In this thesis it has been shown that several descriptions of the effect of 

temperature can be used to predict the growth of Lactobacillus plantarum. The temperature 

is often one of the main variables that determine deterioration kinetics. To get a first 

quantification of the development of the microbial numbers in a chilled product, several 

growth curves of the main spoiler(s) have to be measured at different temperatures. The 

growth parameters can be estimated from the resulting bacterial numbers using the modified 

Gompertz equation (see Chapter 2). Firstly the effect of temperature (at suboptimum 

temperatures) on the maximum specific growth rate can be described by the square-root 

equation of Ratkowsky (11): 

^ ; = ö ( 7 - 7 m i n ) a ) 
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With linear regression, the parameters b and TmiB can be estimated. At different 

temperatures the maximum specific growth rate can be calculated from these parameters. If 

it is assumed that the bacteria are adapted to the environment (no lag time), that substrate 

levels are sufficient, that metabolic product concentrations are not relevant, and that the initial 

spoilage level ( N 0 ) is known, then exponential growth can be assumed and the number of 

bacteria in time can be calculated from: 

A/(0 = N„exp (n m - t ) (2) 

With the parameters determined from these experiments we can calculate the microbial 

quality at different temperatures, at any time during storage. Also the shelf-life ( 6 ) can be 

calculated at different temperatures, if the maximum allowed spoilage level ( N e ) is known: 

v °' (3) 
b 2 - ( 7 - - T m i n r 

It is shown in Chapter 6 that in most cases the effect of temperature steps can be 

neglected (immediate change of growth rate at a change of temperature) and that the 

exponential growth, preceded by an eventual lag phase gives a reasonable prediction of the 

development of the microorganisms. The above mentioned procedure can already give 

valuable results concerning the progression of deterioration. 

An example. As stated, a large amount of experimental data is essential to build and 

validate models. As soon as a model is assumed to be correct it can be used with a much 

smaller amount of experimental data. If, for instance, a chilled salad is mainly spoiled by 

Lactobacillus, the growth rate of these bacteria is of importance. If the product should remain 

unchanged, i.e. pH, water content, antimicrobial agents etc. are fixed, the temperature is the 

variable left to control the spoilage. If equation 1 is used and the growth rate of Lactobacillus 

at three temperatures (say 15°C, 20°C, and 25°C) is measured, the parameters Tmjn and b can 

be calculated by linear regression, resulting in the following equation for the data given in 

Table 1: 

^ = 0 . 0 3 ( 7 - 5 . 2 5 ) (4) 
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The data and the regression line are given in Fig. 3. If we assume exponential growth 

we get: 

ln[ jj- ) = 0 . 0 0 0 9 ( 7 - 5 . 2 5 ) 2 - 1 
(5) 

TABLE 1. Growth of lactobacilli in a salad (example) 

T nm (h-') 

(°C) (measured) 

15 0.092 

20 0.177 

25 0.364 

Regression 

parameters 

*=0.030 

7^=5.25 

nm (h-1) 

(predicted) 

0.086 

0.196 

0.351 

VF 
(h ) 0.8 

Tit) 

FIG. 3. Ratkowsky plot of the specific growth rate of Lactobacillus in a salad 
(with 90% confidence interval). 

With these three experiments equation 5 gives the microbial load at any desired 

temperature between 15°C and 25°C, at any time during storage, if the initial spoilage level 

is known. There is also some confidence that the model can be extrapolated to cover a larger 
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range, i.e. from 10°C up to 30°C. Also the shelf-life ( e ) can be calculated (equation 3) at 

any desired temperature, if the maximum allowable spoilage level is known (Table 2, Fig. 4). 

In Fig. 4 we see that the extrapolation to 10°C is rather questionable. Although the 

extrapolation to 10 °C seems appropriate for the growth rate (Fig. 3), the use of this growth 

rate to calculate a shelf-life at 10°C (Fig. 4) is statistically seen not acceptable. 

TABLE 2. Shelf-life of a salad (example) 

Initial spoilage level: 
Maximum spoilage level: 

r(°C) 

15 
20 

25 

10 

30 

102 lactobacilli/g 
105 lactobacilli/g 

Shelf-life (h) 

81 
35 
20 

340 (extrapolation !) 

13 

shelf life 
(h) 

300 

200 

100 

FIG. 4. Predicted shelf-life of a salad as function of temperature (with 90% confidence interval). 
Line represents shelf-life calculated with predicted growth rate, datum points represent shelf-life 

calculated with measured growth rate data. 



CHAPTER 8 135 

As shown, we can get preliminary insight from only a few experiments, once we have 

a good model. Effects of temperature and initial spoilage level can be examined. It should be 

noted, however, that more datum points give more accurate parameter values (with smaller 

confidence intervals) and thus more accurate predictions. Furthermore, for every case 

appropriate assumptions must be made. 

The square-root relation (equation 1) is validated on par-fried fries and on chicken. 

Specific growth rates at different temperatures are taken from literature data and from own 

unpublished data. These measurements were all at suboptimum temperatures, therefore the 

square-root relation can be used. The square-root of the specific growth rate is plotted versus 

temperature, and the data are very well described by a straight line (Fig. 5 and 6). The fact 

that the specific growth rates of both Wieringa and Viering (13) and Michener et al. (8) match 

very well is very promising for the use of predictive models, since they were obtained in 

studies using Dutch and American potatoes, in different laboratories (Fig. 5). Furthermore, 

the total aerobic count is used, and the linear behaviour over a considerable range of 

temperatures shows that there is no change resulting in a new flora with a totally different 

kinetic behaviour. Also, the data on chicken (Fig. 6) agree very well. The data of Regez et 

al. (12) were aerobic counts on chicken skin, our own unpublished data are Pseudomonas on 

chicken skin, and the data of Pooni and Mead (9) and Barnes (2, 3) were Pseudomonas in 

Heart Infusion Broth. These data from different laboratories, with different strains, on 

different media all agree. The Ratkowsky parameters of these curves are given in Table 3. 

TABLE 3. Rat 

Fries 

Chicken 

cowsky parameters 

b (°C-'h05) 

0.0215 

0.0301 

on fries and chicken 

T • CC) 
mm >• ' 

-7.36 

-6.04 

The main spoilage organism on both products was Pseudomonas spp, and both 

parameter sets are of comparable order of magnitude. These examples demonstrate that with 

relatively few experiments, or even with literature data only, a simple model can be 

constructed which can be used for (preliminary) shelf-life prediction and optimization. 

If the spoilage level of chicken is 5 107 (c.f.u./g) and the initial contamination after 

production is 103 (c.f.u./g) and the storage temperature is 0°C, the shelf-life can be calculated 

with equation 3 to be 14 days. In the distribution chain, it is difficult to maintain a temperature 

of 0°C. If a producer has control over the distribution during the first 5 days and keeps the 

temperature at 0°C, the number of bacteria can be calculated with equation 2 to increase to 
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W 1 

FIG. 5. Ratkowsky plot for aerobes on fries. 

• Wieringa (13), * Michener(8). 

FIG. 6. Ratkowsky plot for Pseudomonas on chicken. 

Regez (12), A Barnes (2,3),a «Pooni and Mead (9), A unpublished data. 
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5 104. If the product is then kept at 4°C (e.g., during retail display) the remaining shelf-life 

can be calculated to be 3 days. So the total shelf-life is reduced from 14 days to 8 days and 

the shelf-life during retail display is reduced from 9 days to 3 days. This can also be shown 

graphically (Fig. 7). This kind of calculations can be used to show the importance of 

supercooling to all parties participating in the food chain. 

log(W) 12 

15 20 
time (days) 

FIG. 7. Spoilage of chicken at 0°C and 5 days at 0°C and the remainder at 4°C 
( 0°C; 5 days 0°C, then 4°C; spoilage level); N in c.f.u./g). 

EXPANSION OF THE MODELS 

These simple models can be expanded in several ways (resulting in more complex equations): 

Incorporate a lag time and asymptote (See Chapters 4, 5 and 6). 

Use of a sigmoidal growth curve for the predictions (see Chapters 2 and 6). 

Use of the expanded square-root equation (necessary if also temperatures around or 

above the optimum temperature are of importance) (Chapter 4). 

Incorporate the effect of heat transport (see Heat Transport, below). 

Incorporate logistics (operations research) (see Logistics, below). 

Include other quality reactions, for instance chemical or physical (see Other 

Deterioration Reactions, below). 



138 CONCLUSIONS 

Logistics. From the process variables in food production and distribution (e.g., 

temperature), the growth parameters ( A , [im, X.) of the organisms can be predicted (see Fig. 

8). With these growth parameters the number of organisms with time can be predicted, and 

feedback can follow, resulting eventually in adjustments in production or distribution (e.g., 

the temperature during distribution). This cycle of prediction and feedback can be repeated 

many times. 

Logistics Expert system 

Production 
Distribution 

N 

7\pH, aw , r 

\ 

M A a 

FIG. 8. Optimization cycle of bacterial numbers. 

It can also be worthwhile to incorporate logistics into this procedure, so that not only 

the effect of changes in physical parameters of the process (e.g., temperature during 

distribution) can be evaluated, but also the effect of changes in duration of the different stages 

(e.g., duration of processing, holding, transportation, storage, break-down, or switch time). 

Furthermore, the effect of distributions in several variables can be evaluated, such as 

distributions in raw-material contamination, storage time in the retail display, temperature, 

etc. 

A preliminary program is developed to calculate costs of cooling in different stages of 

a cooling chain. The optimum temperatures in a cooling chain can be calculated, combining 

the square-root model and the maximum allowed bacterial number in a product. Three steps 

in the distribution chain of milk are chosen as an example (factory storage, distribution, 

supermarket storage). An overview of the most important contributions to energy costs is 
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made. The most important contributions to energy costs for cooling are found to be the losses 

through wall, floor, and roof; losses by opening of the door; and heat to be removed from the 

product to reach the desired temperature. 

With dynamic programming (backwards dynamic programming with fixed grid-points) 

the optimum temperatures in the three phases are determined, with minimal costs, given a 

certain quality. This procedure can be used for short term decisions. At present research on 

this subject is in progress. 

Management Tool. The quality functions given in this thesis can also be used for 

long-term strategic decisions. For instance, the effect of an extra distribution centre, more 

trucks for transportation, machinery with a lower technical failure chance etc. can be 

evaluated. For these strategic decisions quality models are essential. 

Other deterioration reactions. For other deterioration reactions (chemical, physical) 

the same procedure can be followed. For chemical spoilage reactions, theory and application 

are illustrated by Labuza (7). The progression of chemical and physical spoilage indicators 

can be calculated simultaneously with the bacterial numbers, as a function of the physical 

parameters. In this manner it can be evaluated which quality reaction determines the 

shelf-life. 

Knowledge-based system. As can be expected, all these procedures require a large 

number of parameter values, such as the growth parameters of bacteria in different foods, 

depending on different physical parameters, and the physical parameters of the different 

foods. Therefore a large number of datum points must be collected and a large number of 

experiments must be carried out, which can be collected in a database (Fig. 8). For practical 

purposes it is impossible to have a database with all necessary information; therefore, it could 

be useful to incorporate some knowledge into the database. 

A combination of quantitative and qualitative data is of large importance, since there is 

already a large quantity of these data. A start is made to develop a method to combine 

qualitative and quantitative information. If this is done in a structured manner the method can 

be used to predict product quality in the best possible way, given a limited amount of 

information. This has been shown to result in a powerful tool to predict possible microbial 

growth in different foods (see Chapter 7). 
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Residence Time Distribution. Growth models of microorganisms can be coupled to 

residence time distributions (RTD) and computational fluid dynamics (CFD) programs to 

calculate the effect of fluid flow in, for example, storage tanks or pipes. The effect of 

residence time distribution and stagnant zones can be evaluated. In parts were the product will 

stay long(er), more growth can occur, and due to mixing with the main stream a continuous 

contamination occurs. 

Heat transport. The above-mentioned square-root model for the temperature 

dependency of [i m can be combined with a model for heat conductance in a product. This 

will be explained by some examples. For the case that heat production can be neglected, 

Fourier's second law for an infinite slab with thickness 2L, surrounded by fluid of 

temperature Tf at both sides gives: 

dJ _ d2T (6) 

with a the thermal diffusivity (m2 s1), T the temperature (K), t the time (s), x the 

location (m). 

The boundary conditions are: 

1) Due to the symmetry in the centre: 

>-±) -o (7) 

2) Since the transport through the surface of the slab is equal to the heat transport from the 

fluid to the slab: 

,dT\ (8) 

with a the external heat transfer coefficient (Wm-'K1), and k the thermal conductivity 

(W m1 K1). Equation 6 can be solved numerically by using difference equations. 
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100 120 

time (h) 

log (A/) 

100 120 
time (h) 

FIG. 9. Temperature history and development of the number of Lactobacillus. Simulation 1. 

centre; intermediate position; surface , T= temperature, 

N= number of organisms (cfu/g). 
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7(°C) 18 

20 40 60 80 100 120 

time (h) 

log (A/) 

100 120 

time (h) 

FIG. 10. Temperature history and development of the number of Lactobacillus. Simulation 2. 

centre; intermediate position; surface, T= temperature, 

N= number of organisms (cfu/g). 
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In the program that is developed several successive phases can be entered (e.g., storage 

raw-materials, production, cooling, product storage), with the temperature of the fluid in that 

phase, as can the product characteristics. The set of equations then can be solved for every 

time step and the temperature is calculated as a function of the location inside the product, 

and as a function of time. Subsequently, the bacterial growth can be calculated, with the 

square-root model, at any time at any point in the product. In this manner the effect of heating 

and cooling of the product on the bacterial growth can be evaluated. 

An example of a simulation is given below. A product is stored during 24 hours at 

10°C, and then enters the 20°C production. The product stays there for 2 hours. After 

production the product is stored in a cooling cabin with ventilation at 10°C (Table 4, Fig. 9). 

It is assumed that the organisms are already in their exponential phase (lag time = 0). 

For simulation 2 everything is the same as in simulation 1 except that during cooling 

the product is cooled with 5 product units together, therefore the characteristic radius R is 

increased by a factor 5 (Fig. 10). 

In Fig. 9 and 10 the calculated temperature and the number of microorganisms are given 

at three different locations in the product; the surface, the centre and in between (intermediate 

position). In Fig. 9 it can be seen that the fastest temperature increase occurs at the surface 

of the product, and about 17°C is reached. In the centre of the product and in the intermediate 

position the heat equalisation goes slower. The effect of the higher temperature during 

production on the number of micro-organisms is very small, due to the short time span. 

TABLE 4. Parameters for Simulation 1 

Time(h) Phase ro(°C) T,CC) 

Process 

Product 

0-24 storage 

24-26 production 

26-100 cooling 

infinite slab 

characteristic radius 

thermal diffusivity 

thermal conductivity 

10 10 

10 20 a = 25 (Wm-2K') 

20 10 a = 400 (convection) 

R=0.05 m 

a = 0.143 10-« (m2s>) 

k= 0.60 (W m1 K-i) 

Organism L. plantarum: JV„= 100 fc=0.0385 rmin=3.29 c=0.247 riMX=44.8 

T0= product temperature when product enters phase, Tf= temperature of fluid in phase. 
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If the characteristic radius is increased by a factor 5 during cooling (Fig. 10), by joining 

5 product units together, the cooling-down goes 25 times slower (proportional to the square 

of the radius). The cooling-down of the middle and in the intermediate position of the slab 

goes dramatically slower, which strongly facilitates bacterial growth at these positions. In 

products with surface contamination only, this will be no real problem; in products with an 

interior contamination, however, this can result in a serious problem. 

Also the growth of an additional organism can be calculated, for instance Pseudomonas 

spp, which is more psychrophilic than Lactobacillus. In simulation 3 everything is the same 

as in simulation 1 except that the growth of Pseudomonas spp. (Table 5) is calculated as is 

the growth of L. plantarum. 

TABLE 5. Parameters for Pseudomonas spp 

Pseudomonas spp.: No=10 *=003 rmin=-6.0 0=0.157 7^=36.0 

In Fig. 11 the growth of Lactobacillus (7Vo=100) and Pseudomonas (No=l0) is 

compared. Although the initial contamination is lower, the psychrophilic organisms will be 

the main spoiling organisms. 

log (A/) 

100 120 

time (h) 

FIG. 11. Development of the number of Lactobacillus ( ) and Pseudomonas (-
on the surface. Simulation 3. N= number of organisms (cfu/g). 
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With comparable simulations the effects of numerous changes in production, product, 

etc. can be evaluated. This can be an important tool for process optimization. The growth of 

different organisms can be calculated by changing the growth parameters, as can the effect of 

a change in initial contamination. Furthermore, the effect of different time/temperature 

histories can be examined, as can the effect of different heating and cooling procedures 

(forced convection, steam vs. water or air, different characteristic radii). 

FESTAL CONCLUSION 

Predictive modeling has shown to be a promising tool in food research, to be used to 

optimize food chains. Various models are developed and validated to be used to describe 

deterioration reactions. 

A tool is developed to discriminate between different models and to restrict the number 

of parameters in models. Models to describe a growth curve and to describe the effect of 

temperature, and the effect of shifts in temperatures, are developed and validated with a large 

amount of experimental data. 

Furthermore, a procedure is developed to couple quantitative and qualitative 

information in a structured manner. Simple procedures to make (preliminary) shelf-life 

predictions are given, as are procedures to extend these (simple) models. 

The most important advantage of modeling is that insight is gained in the progression 

of microbial growth within a product chain. Furthermore, these models are shown to be 

essential to calculate quality changes with the use of decision support systems (DSS). 
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SUMMARY 

Growth of spoilage microorganisms in foods receives much attention since there is a 

trend towards minimally processed foods. In these products growth of microorganisms is 

possible. Therefore it is useful to know how fast microorganisms grow and which factors 

determine this growth. 

In this thesis different models are described to predict deterioration reactions. Models 

are simplified descriptions of reality. By making appropriate assumptions, reality can be 

described with mathematical relations. With these mathematical equations predictions can be 

made of the progress of a process. This can give insight in these kinetics. These equations can 

also be used to optimize processes. 

Various factors determine the growth of microorganisms like temperature, pH, water 

activity, gas-atmosphere and the presence of preservatives. Some of these factors not only 

influence the growth rate of microorganisms but also the properties of the product (pH, water 

activity, salt concentration, preservatives). A change in storage temperature or 

gas-atmosphere (within certain limits) only changes the growth rate of the microorganisms. 

With these two factors it is possible to alter the spoilage rate of a product and thus the shelf 

life, without changing the product. In this thesis mainly the effect of temperature is 

investigated. 

A tool to discriminate between different models is proposed, leading to restriction of 

the number of parameters in the models applied. Models are developed to describe a bacterial 

growth curve. Furthermore, models are developed to describe the effect of temperature, and 

the effect of shifts in temperature. These models are validated with a large number of 

experimental data. Simple procedures to make shelf life predictions with these models are 

given, as are procedures to extend these models. 

In order to make shelf-life predictions of products with varying composition, several 

parameters are needed. For some of these, quantitative information is available, for others 

only qualitative. Therefore, a procedure is developed to couple quantitative and qualitative 

information in a structured manner. In this manner an estimate of the shelf life can be made 

on the basis of parameter values combined with qualitative information, in order to get a 

prediction as good as possible, on basis of available knowledge. 
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The most important advantage of modeling is that insight is gained in the kinetics of 

microbial growth within a product chain. Furthermore, these models are essential to calculate 

quality changes in decision support systems (DSS). 
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SAMENVATTING 

Groei van bederfveroorzakende micro-organismen in levensmiddelen staat sterk in de 

belangstelling, aangezien veel produkten momenteel minder conserveringsbewerkingen 

ondergaan dan voorheen. Door het geheel of gedeeltelijk ontbreken van deze bewerkingen 

(zoals bijvoorbeeld sterilisatie, zouten, het gebruik van conserveermiddelen), wordt groei van 

micro-organismen begunstigd. Het is dan nuttig te weten hoe snel de micro-organismen 

groeien en welke factoren die groei beïnvloeden. 

In dit proefschrift worden verschillende modellen beschreven, die microbiologische 

bederfreacties kunnen beschrijven. Modellen zijn vereenvoudigde voorstellingen van de 

werkelijkheid. Door geschikt gekozen veronderstellingen te doen kan de werkelijkheid 

beschreven worden met wiskundige relaties. Met deze wiskundige relaties kunnen dan 

voorspellingen gedaan worden over het verloop van bepaalde processen. Hierdoor kan inzicht 

verkregen worden in de kinetiek van die processen. Deze relaties kunnen ook gebruikt 

worden om processen te optimaliseren. 

Verschillende factoren zijn van invloed op de groei van micro-organismen, zoals de 

temperatuur, de pH, de wateractiviteit, de gasatmosfeer en de aanwezigheid van 

groeiremmende stoffen. Sommige van deze factoren veranderen behalve de groeisnelheid van 

de micro-organismen echter ook de aard van het produkt (pH, wateractiviteit, 

zoutconcentratie, conserveringsmiddelen). Verandering van de bewaartemperatuur of de 

gasatmosfeer (binnen bepaalde grenzen) verandert alleen de groeisnelheid van de 

micro-organismen. Bij een gegeven produktsamenstelling is het dus mogelijk de 

bederfsnelheid en daarmee de houdbaarheid te beïnvloeden, zonder het produkt te 

veranderen. In dit proefschrift is voornamelijk onderzoek verricht naar het effect van de 

temperatuur. 

Er is een methode opgesteld om tussen verschillende modellen te discrimineren om zo 

het aantal parameters in de modellen te minimaliseren. Allereerst zijn er modellen ontwikkeld 

om een groeicurve van micro-organismen te beschrijven. Verder zijn er modellen ontwikkeld 

om het effect van de temperatuur en het effect van temperatuurstappen te voorspellen. Deze 

modellen zijn getoetst met een groot aantal experimentele gegevens. Eenvoudige procedures 

om houdbaarheidsvoorspellingen te doen worden gegeven, evenals procedures om deze 

modellen uit te breiden. 
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Om houdbaarheidsvoorspellingen te kunnen doen van allerlei produkten met 

verschillende samenstelling zijn verschillende parameters nodig. Over enkele hiervan is 

kwantitatieve kennis beschikbaar, over andere slechts kwalitatieve. Daarom is er een 

procedure ontwikkeld om kwantitatieve en kwalitatieve gegevens op een gestructureerde 

manier te koppelen. Op deze manier kan de best haalbare schatting van de houdbaarheid 

gemaakt worden op basis van parameterwaarden gekoppeld aan kwalitatieve kennis. 

Het grootste voordeel van modelleren is dat inzicht kan worden verkregen in de kinetiek 

van de groei van micro-organismen in produktketens. Verder zijn deze modellen essentieel 

om kwaliteitsveranderingen te berekenen in beslissings-ondersteunende systemen (BOS). 
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Het in dit proefschrift beschreven onderzoek is tot stand gekomen dankzij de hulp en 

inzet van een groot aantal personen, waarvan ik er hier enkele wil bedanken. 

In de eerste plaats wil ik Klaas van 't Riet noemen. Klaas, die een goede manager is, 
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de Wit hebben mij op zeer vriendelijke wijze een aantal aspecten van de 

levensmiddelenmicrobiologie bijgebracht. Verder hebben ze mij bijgestaan in raad en daad 

bij het schrijven van publikaties. Rik Beeftink, die een gezellige en stimulerende kamergenoot 

was, heeft hier ook zijn steentje aan bijgedragen. Rhea Rekker wil ik bedanken voor de hulp 

bij het ontwerp van de omslag en het commentaar op de lay-out. Paul Verlaan wil ik bedanken 

voor het aanzwengelen van dit onderzoek en voor zijn begeleiding in de beginfase. 

Binnen het kader van dit onderzoek heeft een tweetal analisten een grote hoeveelheid 

werk verzet, te weten Birgit Hasenack en Ida Günther. Verder heeft een groot aantal 

studenten een bijdrage geleverd aan het onderzoek in de vorm van een afstudeervak bij 

Proceskunde of Levensmiddelenmicrobiologie, te weten: Jolanda de Koos, Ida Jongenburger, 

Monique Mellema, Lucas Ledelay, Jaap Roosma, Jolanda Zondag, Carin Groen, John van 

den Broek, Liesbeth Oosterom, Chusnul Hidayat, Taco Wijtzes, Onno de Waart, Erwin Kaal, 

Liesbeth Elbertsen, Brigitte Campfens, Nanette Koers, Noor van Hapert en Rob Verhagen. 

Het project is mede gefinancierd door het Unilever Research Laboratorium 

Vlaardingen. Piet Klapwijk, Jan Smelt, Henk Cuppers, en Pieter ter Steeg wil ik bedanken 

voor hun nuttige inbreng bij de wederzijdse bezoeken. 

De medewerkers van de werkplaats, fotolocatie, tekenkamer, afdeling automatisering, 

en de magazijnen van de Centrale Dienst Biotechnion wil ik bedanken voor hun verrichte 

diensten. 

Als laatste maar zeker niet als onbelangrijkste wil ik de gehele sectie proceskunde 

bedanken. Het is een prima groep om in te werken, ik denk niet dat er veel plaatsten zijn waar 

je op zo een prettige wijze met je collega's om kunt gaan. 
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