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Stellingen behorende bij het proefschrift "Simulation of subsurface biotransformation", 
Tom N.P. Bosma, Wageningen, 14 maart 1994. 

1. Een vereenvoudiging van het stelsel van sociale zekerheid door invoering van een basisinkomen 
voor iedereen in kombinatie met afschaffing van o.a. het wettelijk minimumloon, de bijstand en 
het studiefinancieringsstelsel, zal leiden tot een vergroting van de werkgelegenheid en voorkomt 
tegelijkertijd het ontstaan van een armoedige onderklasse. 

2. De in de ekotoxikologie gangbare gedachte dat ekosystemen kunnen worden gerepresenteerd 
door één soort, berust op een conceptuele misvatting over struktuur en funktioneren van 
ekosystemen. 

3. De herwaardering van reeds in gebruik zijnde Chemikalien kan beter worden gebaseerd op 
veldgegevens over persistentie en toxiciteit dan op gegevens verkregen met laboratoriumtoetsen. 

4. Als beleidsmakers aan ekonomische modellen dezelfde eisen zouden stellen als aan milieu-
modellen, zouden de voorspellingen van het Centraal Planbureau niet meer worden gebruikt bij 
het opstellen van een nieuwe begroting. 

5. In het bakteriënrijk heeft het onderscheiden van soorten weinig betekenis omdat bakteriën voor 
de voortplanting niet afhankelijk zijn van de uitwisseling van genetische informatie en omdat 
uitwisseling ook tussen verschillende "soorten" plaatsvindt. 

6. Preciezie en bekrompenheid zijn uitingen van dezelfde karaktertrek, evenals tolerantie en 
onverschilligheid. 

7. Aan stellingen behorende bij een proefschrift behoort, evenals aan wetenschappelijke hypothesen, 
niet als eis te worden gesteld dat zij verdedigbaar zijn, maar juist dat zij aanvechtbaar zijn. 

8. Als S5 "geestelijk of mentaal niet in staat tot het vervullen van aktieve dienst" betekent, moeten 
alle erkend gewetensbezwaarden worden afgekeurd en worden vrijgesteld van het vervullen van 
vervangende dienst. 

9. Aangezien het nivo van universitaire opleidingen dat van hogere beroepsopleidingen niet 
ontstijgt, behoren beide te worden afgesloten met een "bachelors" diploma en moet er met spoed 
een wetenschappelijke tweede fase opleiding worden gekreëerd waarmee een titel op het nivo van 
"Master of Science" kan worden verworven. 

10. Het feit dat emancipatoire stellingen vooral zijn te vinden bij proefschriften van promovendae is 
veelzeggend. 

11. Het vervangen van ten minste één op de tien academici door twee leden van het ondersteunend 
personeel zou de produktiviteit van het wetenschappelijk werk aanzienlijk vergroten. 

12. De gewoonte om slavinnenhandel aan te duiden als vrouwenhandel heeft uitsluitend tot doel de 
illusie in stand te houden dat de moderne westerse kuituur boven slavendrijverij verheven is. 

13. Een volwaardige ontwikkeling van systeemwetenschappen als de ekologie en de ekotoxikologie 
is alleen mogelijk als de beoefenaars aan het credo "uitzonderingen bevestigen de regel" meer 
dan alleen een stochastische betekenis toekennen. 

14. Europa is één in haar versplinterdheid. 

15. Al is de mensheid nog zo snel, Gaia achterhaalt haar wel. 
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CHAPTER 1 

INTRODUCTION 

ABSTRACT 

Hydrophobic organic contaminants tend to accumulate in the atmosphere and the subsurface 

as a result of their physical and chemical properties. Their reactivities in these sinks mainly 

determine their persistence in the global environment. The research described in this thesis is 

intended to assess the potential of subsurface micro-organisms to transform organic 

contaminants and to assess the impact of the interaction between physical-chemical and 

microbial processes on their reactivities in the subsurface. 
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The extensive production and use of synthetic organic compounds in almost all human 

activities has led to a wide distribution of these compounds throughout the environment 

(Bouwer 1991). Synthetic organic compounds can be subdivided into several classes based on 

structural characteristics, like presence or absence of aromatic rings and their numbers, and the 

occurrence of halogen substituents. Table 1 lists some classes of organic contaminants with 

examples. 

Table 1: Some classes of organic contaminants 

Compound 
category 

Halogenated alkyl 
compounds 

Monocyclic 
aromatic 
hydrocarbons 

Polycyclic 
aromatic 
hydrocarbons 
(PAH's) 

Halogenated 
aromatic 
hydrocarbons 

Heterocyclic 
hydrocarbons 

Description 

non-aromatic compounds with 
halogen substituents 

non-halogenated compounds 
containing one ring with 
conjugated double bonds (the 
benzene ring) 

non-halogenated aromatic 
compounds containing more than 
one ring 

compounds containing at least one 
aromatic ring plus halogenated 
substituents (npt necessarily on the 
ring itself) 

mono- and polycyclic hydrocarbon 
atoms in one of the nuclei 

Examples 

chlorofluorocarbons (CFC's), 
bromoform, lindane, 
tetrachloroethene 

benzene, toluene, phenol, benzoate 

naphthalene, fluorene, 
benz(a)pyrene 

Alachlor, DDT, DDD, 
chlorobenzenes, chlorophenols, 
Polychlorinated biphenyls (PCB's) 

atrazin, bromacil, dibenzofuran, 
dioxins 

Organic contaminants enter the environment via waste disposal, accidental spills, application 

as pesticide, and via losses during transport, storage, and use. It has been recognized already 

since the early sixties that environmental pollution with low concentrations of organic 

chemicals is world-wide. In the last decade, the danger of heavily polluted sites to nature and 

mankind has received increased attention. 

Global exchange of organic chemicals mainly occurs via trade, the atmosphere , the 

oceans, and biota (Tanabe et al 1983, Krämer et al 1984, Eltzer and Hites 1989, BaUschmiter 

1991, Kjeller et al 1991, Hoff et al 1992, Menzie et al 1992). The world-wide character of 

pollution is illustrated by the presence of man-made organics in Arctic snow and in the air of 

the Northern and Southern hemispheres (Tanâbe et al 1983, Gregor and Gummer 1989). The 

spreading of these chemicals is caused by high production and release rates combined with 

their stability against biotic and abiotic transformation and their relative mobilities in air, 

water, soil, and biota (Ballschmiter 1991). 

Contaminants like PCB's, dioxins and PAH's are released directly to the atmosphere in 

combustion processes and can exist there both unbound and bound to particles (Eltzer and 

Hites 1989, Kjeller et al 1991, Menzie et al 1992). Wet and dry deposition then lead to soil 
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and water pollution (Eltzer and Hites 1989, Kjeller et al 1991, Menzie et al 1992). Subsurface 

contamination results from infiltration of contaminated surface water into river borders, from 

deposition with settling particles onto the sediment in sedimentation areas of rivers and large 

water bodies and from seepage from the top-soil to deeper layers (Oliver and Nicol 1982, 

Schwarzenbach et al 1983, Carter and Hites 1992, Beurskens et al 1993). Thus, the 

atmosphere and subsurface are two major sinks where hydrophobic organic contaminants 

accumulate (Fig. 1.1). Volatile compounds accumulate more in the atmosphere while less 

volatile compounds accumulate more in the subsurface. Mineralization of these otherwise 

recalcitrant Compounds in one of these sinks is the.only pathway removing these compounds 

from our environment. 

southern hemisphere northern hemisphere 

voiatalization deposition deposition 

upper soil upper soil 

Figure 1.1: Global exchange of hydrophobic contaminants. They tend to volatilize or to bind to soil due to 
their physical-chemical properties. As a consequence, the subsurface and the atmosphere are major sinks 
where these contaminants accumulate. Exchange between the northern and southern hemispheres is minor 
and occurs via human intervention (transport by air and sea) and biota (animals traveling over the equator). 

Transformation reactions in the atmbsphere are almost exclusively (photochemical 

and may interfere with other atmospheric compounds. Volatile CFC's (chlorofluorocarbons) 

for instance, can survive unchanged for more than 100 years in the atmosphere due to their 

physical and chemical inertness. They diffuse eventually upward into the stratosphere where 

Cl-radicals are released by short-wavelength UV-radiation (Rowland 1991). This reaction 

initiates the well-known breakdown of the stratospheric ozone-layer and is the only removal 

mechanism of CFC's known to occur in the atmosphere (Rowland 1991). 

Photochemical reactions are not possible in the subsurface, where microbially mediated 

transformations constitute the dominant removal mechanism of persistent organic compounds. 

The potential of micro-organisms to biotransform organic contaminants and the role of 

environmental parameters like redox potential and presence of a soil matrix is discussed in the 

following. 
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BIOTRANSFORMATION POTENTIAL 
The biological and chemical reactivity of organic contaminants determine their level of 

persistence in soil and ground water. Microbial transformation is often required for eventual 

mineralization (Mackay and Cherry 1989, Bouwer 1991). However, transformation may also 

lead to the formation of (intermediary) products which can also be hazardous to the 

environment (Bouwer 1991). It was already recognized early in this century that bacteria are 

able to rapidly oxidize complex, chemically stable organic structures originating from 

petroleum, paraffin, and benzine (Söhngen 1913). Halogenated organic structures produced by 

marine algae, invertebrates, and terrestrial plants, are also rapidly transformed by micro

organisms (Faulkner 1980, Meyer et al 1990, Mohn and Tiedje 1992). The potential of micro

organisms from aquatic and subsurface habitats to metabolize and mineralize man-made 

halogenated and non-halogenated organic contaminants is well documented these days. 

Environmental redox conditions play a major role in determining the kind of reactions 

that contaminants will undergo. Complete aerobic mineralization of non-halogenated mono-

and poly-aromatic compounds like benzene, toluene, and naphthalene can proceed within 

hours or a few weeks, under optimal conditions (Atlas 1981, Bauer and Capone 1988, 

Mihelcic and Luthy 1988). Mineralization of such compounds is also possible under anoxic, 

denitrifying conditions (Berry et al 1987, Evans and Fuchs 1988, Kuhn et al 1988, Mihelcic 

and Luthy 1988, Grbic-Galic 1991). Biotransformation of mono-aromatics has even been 

demonstrated in sulfate reducing and methanogenic enrichments and in an anaerobic aquifer 

amended with sulfate (Wilson et al 1986, Evans and Fuchs 1988, Acton and Barker 1992, 

Edwards and Grbic-Galic 1992, Edwards et al 1992). Transformation rates of non-

halogenated aromatic compounds generally become slower with increasing ring numbers in the 

molecule (Leahy and Col well 1990). 

Biodegradation of halogenated organic contaminants can occur under both aerobic and 

anaerobic conditions. Chlorinated compounds are readily mineralized by aerobic bacteria, 

provided that unsubstituted carbon atoms are available to bind with molecular oxygen 

(Abramowicz 1990, Commandeur and Parsons 1990, Leahy and Colwell 1990, Chaudhry and 

Chapalamadugu 1991). Chloro-, dichloro-, 1,2,3-trichloro-, l;2,4-trichloro-, and 1,2,4,5-

tetrachlorobenzenes for example can be mineralized by aerobic bacteria while aerobic 

conversion of penta- and hexachlorobenzene has never been demonstrated (Schraa et al 1986, 

Van der Meer et al 1987, Sander et al 1991). Highly chlorinated contaminants seem to resist 

aerobic transformation but they are susceptible to biological reductive dechlorination 

occurring under reducing conditions (Abramowicz 1990, Commandeur and Parsons 1990, 

Bosma et al 1991, Mohn and Tiedje 1992). Reductive dechlorination of hexa- arid 

pentachlorobenzene can proceed at high rates'in methanogenic samples from river sediment or 

activated sludge (Fathepure et al 1988, Holliger et al 1992). A similar pattern was found for 

aerobic and anaerobic metabolism of chlorinated biphenyls and chlorinated ethenes (Bedard et 
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al 1987a, Bedard et al 1987b, Barton and Crawford 1988, Bosma et al 1988, Fathepure et al 

1988, Davis and Carpenter 1990, De Bruin et al 1992). Removal of all chloride substituents by 

reductive dechlorination appears to be necessary before the aromatic ring can be mineralized 

to methane and carbon dioxide in reduced environments. (Suflita et al 1982, Dolfing and 

Tiedje 1986, Mikeseil and Boyd 1986). 

Acclimation of microbial populations to organic contaminants 

Biodegradation studies are normally done in the laboratory with enrichments obtained from 

various sources. Sometimes, acclimation periods of varying length are observed before 

transformation takes place (Spain and Van Veld 1983, Wilson et al 1986, Van der Meer et al 

1987, Wiggins et al 1987, Swindoll et al 1988). Causes for the existence of such acclimation 

periods may be (i) the need to induce enzymes involved in contaminant breakdown, (ii) the 

multiplication of an initially small microbial population until levels are reached that allow 

observable removal, and (iii) the occurrence of genetic adaptation via mutation and gene 

transfer which results in the evolution of a microbial strain that is able to transform the 

contaminant (Spain and Van Veld 1983, Hutchins et al 1984, Wiggins et al 1987, Van der 

Meeretal 1992). 

The length of the acclimation period depends not only on the underlying mechanism 

(genetic adaptation presumably requires more time than enzyme induction), but also on 

physical-chemical factors. Limited availability of organic and inorganic nutrients may lead to 

an increase in the acclimation time by slowing down the growth rate of the microbial 

population (Lewis et al 1986, Aelion et al 1987, Swindoll et al 1988). Prior (in situ) exposure 

to the contaminant decreases acclimation times while low temperature and prédation by 

protozoa may increase acclimation times (Atlas and Bartha 1972, Spain et al 1980, Herbes 

1981, Wiggins et al 1987). Finally, acclimation to complicated molecular structures requires 

more time than acclimation to simple ones (Spain et al 1980, Hutchins et al 1984, Leahy and 

Colwell 1990). 

One may ask whether a contaminant which is broken down in the laboratory only after 

a long acclimation time, will also be transformed in situ, especially if genetic adaptation is the 

reason for the long lag-time. Long acclimation times are evidence for the absence of adapted 

micro-organisms on one hand but, on the other hand, they illustrate the potential of the 

microbial community to evolve adapted strains that are able to transform the contaminant. 

The role of contaminant concentration 

Biotransformation rates of contaminants are often described with a Michaelis-Menten equation 

assuming that the biomass is more or less constant in time: 

V = v — - — (1) 
nmKm+C 
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where.y is the biotransformation rate, C the contaminant concentration, Vj^ the maximum 

biotransformation rate, and Km the half saturation constant (contaminant concentration where 

V = ViV^J. Biotransformation is first order in contaminant concentration when C « Km. 

Michaelis-Menten kinetics predict decreasing first order rate constants with increasing 

contaminant concentration until biotransformation is zero order at high contaminant 

concentration with V = V^. Concentrations of organic contaminants in the subsurface are 

often below the u,g/l level and first order kinetics are therefore often used to describe 

biotransformation rates. 

Mineralization rates of 4-chlorobenzoate and chloroacetate were proportional to 

concentration in surface water samples incubated with 50 hg/1 and 50 mg/1 of each compound, 

which fits With first order kinetics (Boethling and Alexander 1979). However, the kinetics of 

methyl parathion degradation by Flavobacterium species appeared to be multiphasic (Lewis et 

al 1985). Biotransformation involved a low-affinity, high capacity system (high Km, high Vj^) 

at concentrations about 4 mg/1 and less, and a high-affinity, low capacity (low Km, low V^) 

system at concentrations about 20 |0.g/l and less. Simple first order kinetics did not apply in the 

concentration range studied. The ratios of V^ and Km however, were of the same order of 

magnitude for both systems, which resulted in similar predictions of biotransformation rates at 

extremely low concentrations ( « 20 jxg/1). 

Lowered concentrations may slow down the acclimation of microbial populations to 

contaminants, because they cause decreased microbial growth rates (Hutchins et al 1984). 

Acclimation times may also increase due to increased induction times at lower concentrations 

' (Koch and Coffman 1970). However, increased concentrations of toxic compounds may also 

increase acclimation times or even prevent acclimation due to inhibitory effects. High 

quinoline concentrations (155-775 |iM) inhibited induction of starved Pseudomonas cepacia 

cells inoculated to a soil column (Truex et al 1992). Similarly, no biotransformation of 100 

|ig/l 1,2-dichlorobenzene occurred in a column packed with Rhine River sediment during 2 

years of operation while biotransformation of 10 n.g/11,2-dichlorobenzene in a parallel column 

experiment was preceded by an acclimation time of 3 months (Van der Meer et al 1987, Van 

der Meer and Bosma, unpublished results). Once biotransformation had started, effluent 

concentrations declined rapidly until a level close tö the detection limit of 0.1 ng/1. The long 

acclimation time was ascribed to genetic adaptation. 

BIOTRANSFORMATION AS AFFECTED BY TRANSPORT AND SORPTION 
A picture of a versatile microbial community that is able to transform and mineralize a Variety 

of complex organic structures, both of natural and anthropogenic sources, arises from the 

previous overview. However, many of these compounds can persist for decades or longer in 
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the subsurface environment. The reason for this may lie in the presence of a soil matrix in the 

subsurface environment. 

Transport and sorption 

The flow of water is responsible for migration of contaminants through aquifers. Dispersion 

and diffusion spread the contaminant both longitudinally and transversely while sorption onto 

the soil retards their movement. Sorption of hydrophobic contaminants in soil can be 

considered as a partitioning process between the water phase and the organic matter 

(Karickhoff et al 1979, Schwarzenbach and Westall 1981). Equilibrium partition coefficients 

of individual contaminants can be estimated from octanol-water partition coefficients using 

linear, free energy relationships (Karickhoff et al 1979, Schwarzenbach and Westall 1981). 

These relationships also hold in aquifer materials with organic carbon contents as low as 0.1% 

and for simultaneous sorption of several dilute non-polar compounds (Schwarzenbach and 

Westall 1981, Barber et al 1992). However, the presence of several non-polar compounds 

together can have a synergistic effect on sorption in aquifer material with extremely low 

carbon contents (<0.1%), resulting in stronger sorption than predicted from linear, free energy 

relationships (Brusseau 1991). Partitioning of hydrophobic organic contaminants between 

organic matter and water is a physical process reaching site equilibrium within milliseconds or, 

at most, seconds. Therefore, diffusion normally is the rate controlling process in sorption 

(Weber et al 1991). Intra-particle diffusion controlled sorption rates of tetrachloroethene and 

1,2,4,5-tetrachlorobenzene on sandy aquifer material in batch experiments (Ball and Roberts 

1991a). Effective pore diffusion coefficients of these compounds were 2 to 3 orders of 

magnitude lower than bulk aqueous diffusion coefficients (Ball and Roberts 1991b). 

Many transport models assume sorption equilibrium to describe contaminant transport. 

However, the flow rate dependency of pseudo-equilibrium sorption constants observed in 

column experiments cannot be explained with equilibrium sorption. Limitation of effective 

sorption rates by microscopic mass transfer, the-existence of immobile pore water in addition 

to mobile pore water, and binding of contaminants to colloidal particles in the water phase are 

possible causes for the observed anomalies in column experiments (Van Genuchten and 

Wierenga 1976, Bibby 1981, Schwarzenbach and Westall 1981, Valocchi 1985, Crittenden et 

al 1986, McCarthy and Zachara 1989, Brusseau 1992, Dunnivant et al 1992). 

Biotransformation of contaminants present in infiltrating water 

The biotransformation of organic contaminants can be studied by the use of columns packed 

with subsurface material and operated under saturated conditions (Kuhn et al 1985, Van der 

Meer et al 1987). Residual steady state concentrations are often detected in the effluents of 

such columns (Van der Meer et al 1987). These concentrations are generally too high to be 
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explained by uptake and growth kinetics of indigenous bacteria alone (Schmidt et al 1985a). 

The distribution of indigenous bacteria in natural soil (Fig. 1.2A) could provide an explanation 

for observed residual concentrations. Soil aggregates may serve as micro-habitats for micro

organisms, where they form micro-colonies which are protected from adverse environmental 

influences such as prédation by protozoa and nematodes (Stotzky 1972, Hattori and Hattori 

1976). The result is a patchy distribution of indigenous bacteria in natural soils. Subsurface 

bacteria are indeed mainly associated with the solid phase (Harvey et al 1984). Furthermore, 

bacteria occur in small colonies and are more susceptible to prédation in the outer regions of 

soil aggregates and in relatively large pores (Bone and Balkwill 1986, Vargas and Hattori 

1986, Postma et al 1990, Postma and Van Veen 1990). Thus, indigenous micro-organisms will 

only come in contact with contaminants present in infiltrating water after diffusion into soil 

particles (Fig. 1.2A) and a limitation of biotransformation rates by intra-particle diffusion may 

be expected. Unfortunately, data on the interaction between sorption and biotransformation; of 

infiltrating, sorbing organic chemicals are scarce. 

Biotransformation of contaminants present inside soil aggregates 

Sorbed biodegradable contaminants in soil are often metabolized slower than in aqueous 

culture. Increasing attention is being given to the effects of sorption kinetics on 

biotransformation rates in contaminated soil. Sorbed substrates appear to be less available and 

biotransformation rates are limited by diffusion of the chemical from the inside of soil 

aggregates to the bulk liquid (Ogram et al 1985, Rijnaarts et al 1990). Biotransformation of 

non-sorbing organics present in synthetic aggregates is also limited by diffusion out of the 

aggregates (Scow and Alexander 1992). 

The effects of entrapment of contaminants in intra-particle micropores is even evident 

for biodegradable, weakly sorbing, volatile contaminants in top-soil. 1,2-Dibromoethane was 

present in agricultural top-soils up to 19 years after its last known application (Steinberg et al 

1987). An effective intra-particle radial diffusion coefficient of about 12 orders of magnitude 

lower than aqueous diffusivities was found in batch experiments. A similar value was found in 

a Dutch clayey soil for the radial diffusion coefficient of entrapped a-hexachlorocyclohexane 

(Rijnaarts et al 1990). These values strongly deviate from estimates for the adsorption of 

tetrachloroethene and 1,2,4,5-tetrachlorobenzene which were only 2 to 3 orders of magnitude 

smaller than aqueous diffusion coefficients (Ball and Roberts 1991b). The extremely small 

diffusivities of 1,2-dibromoethane and a-hexachlorocyclohexane can only be explained by 

assuming that the contaminants have entered particle regions with an extreme tortuosity and 

steric restriction. 

At old waste sites, contaminants are often present inside soil aggregates, e.g. due to 

slow diffusion that has taken place during years or decades. Microbial activity is often 

stimulated by addition of nutrients during bioremediation. Sometimes, specialized bacteria 
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capable of degrading certain contaminants are also introduced.These bacteria are deposited 

from the flowing water onto the surface of soil particles (McDowell-Boyer et al 1986, 

Elimelech and O'Melia 1990, Harvey and Garabedian 1991, Martin et al 1992). Added 

nutrients will mainly stimulate microbial activity in the outer regions of soil aggregates 

(Priesack 1991). As a result, the active microbial mass will primarily accumulate on the surface 

and in the outer regions of soil aggregates, in contrast to indigenous bacteria in undisturbed 

soils (fig. 1.2). Therefore, overall biotransformation rates during bioremediation are 

presumably controlled by sorption retarded diffusion rates of contaminants and not by the 

activity of degrading micro-organisms. 

microorganisms 

contaminant 

soil aggregates 

B 

Figure 1.2: View of contaminants and bacteria in natural untreated soil (A) and in polluted soil (B). 

OUTLINE OF THIS THESIS 
The research described in this thesis has two objectives. First, the biotransformation of organic 

contaminant» under saturated flow conditions in two sandy sediments is simulated 

experimentally (Chapter 2-4). Chapter 2 describes results of column experiments performed 

under various redox conditions and temperature regimes. These experiments assess the 

potential of indigenous bacteria to biotransform a-series of organic contaminants in sediment 

from the Rhine near Wageningen, The Netherlands, and from a dune infiltration area near 

Zandvoort, The Netherlands. The buffering capacity of the dune infiltration area with respect 

to temporal increases of contaminants in the infiltrating water is demonstrated by calculations 

with a simple transport model. Chapters 3 and 4 present pathways of reductive dechlorination 

of trichlorobenzenes and hexachloro-l,3-butadiene in Rhine River sediment columns operated 

under anaerobic conditions. 
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Then, experiments and computer simulations were carried out to investigate the 

interaction between physical-chemical and microbial processes which determine 

biotransformation rates under saturated flow conditions (Chapters 5-8). Chapter 5 

demonstrates how Chemotaxis may influence biotransformation. Chapter 6 shows how the 

interaction between the behavior of introduced bacteria and contaminant transport may affect 

biotransformation kinetics in saturated columns. A sensitivity analysis of a model of radial 

diffusion limited biotransformation of organic compounds in saturated columns is presented in 

chapter 7. Finally, chapter 8 discusses physical-chemical limitations of biotransformation (. 

kinetics which are imposed by the presence of a soil matrix. 

10 



CHAPTER2 

BIOTRANSFORMATION OF ORGANIC CONTAMINANTS IN SEDIMENT 

COLUMNS AND A DUNE INFILTRATION AREA 

TomN.P. Bosma, Marlies E.M.W. Ballemans, Nanne K. Hoekstra, 

Ruud AG. te Welscher, Johannes G.M.M. Smeenk, Gosse Schraa, and 

Alexander J.B. Zehnder 

i 

to be submitted to Groundwater 

ABSTRACT 
Laboratory column experiments were performed to evaluate the fate of a series of chlorinated 

and non-chlorinated organic contaminants in Rhine sediment and sediment from the infiltration 

area of the Municipal Water Works of Amsterdam, near Zandvoort, The Netherlands. 

Columns were operated under aerobic, denitrifying and methanogenic conditions. All non-

chlorinated and few chlorinated compounds were aerobically transformed. Of the compounds 

tested under denitrifying conditions, only l,2-dichloro-4-nitrobenzene was partially 

transformed. Methanogenic conditions favored the transformation of chlorinated substances by 

reductive dechlorination. Toluene was the only non-halogenated compound that was 

transformed under methanogenic conditions. Residual concentrations after biotransformation 

were at least 10 times lower than the drinking water limit of 1 ug/1, except in the case of 1,2,4-

trichlorobenzene which had a residual concentration of 2.6 ug/1. Residual concentrations did 

not depend on the influent concentration applied Most transformations also proceeded at a 

temperature of 4°C, although the process of reductive dechlorination was slower than at 20°C. 

Hydrological calculations revealed that dispersion in the infiltration system can buffer 2 week 

pulses of contaminants resulting in concentration decreases in the water collected in the 

drainage system of at least 80 and 95% of polar and non-polar compounds respectively. There 

was a good qualitative agreement between removals observed in column experiments and the 

dune infiltration area. 
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INTRODUCTION 
Chlorinated and non-chlorinated organic contaminants are present in many surface waters. 

Their concentrations are typically low, approximately 1 ug/1 or less. However, temporarily 

increases resulting from accidental releases into surface water occur. Ground water quality can 

be affected by these contaminants via bank infiltration (Schwarzenbach et al 1983). Natural 

degradation processes may help to improve water quality during infiltration and are thus of 

importance for the protection of ground- and drinking water quality. These degradation 

processes may be biotic or abiotic, and the nature and rate of the reaction that can take place, 

are determined by the physical and chemical conditions at the infiltration site. 

The present study was set up to investigate the fate of a range of organic contaminants 

in sandy sediments of the Rhine river and a dune infiltration site of the Municipal Water Works 

of Amsterdam. Rhine water is infiltrated in the latter to replenish the ground water resources 

for drinking water. Among the compounds studied were chlorinated and non-chlorinated 

benzenes and chlorinated aliphatic compounds, which have all been detected as contaminants 

in Rhine water. The behavior of these compounds in laboratory sediment columns was 

investigated under different environmental conditions. The role of redox potential and 

temperature were evaluated. Steady state effluent concentrations after biotransformation were 

determined and are discussed in view of drinking water quality requirements. Results are 

compared to field data to judge their relevance for prediction of the behavior of contaminants 

in the dune infiltration site.' Finally, the buffering capacity of the dune infiltration area with 

respect to temporary increases of contaminants in the infiltrating water is demonstrated by 

calculations with a hydrological model. 

MATERIALS AND METHODS 

Description of the dune infiltration area 

The dune infiltration area of the Municipal Water Works of Amsterdam is located near 

Zandvoort, The Netherlands. Rhine water is collected near Wijk bij Duurstede, The 

Netherlands, and pretreated to eliminate the high amount of particulate organic material 

present in Rhine water. Then, it is transported to the dune infiltration area via long distance 

tubing. The area harbors a system of infiltration ponds and drainage channels and tubes. A 

schematic drawing of one infiltration pond and its connection to the drainage system is 

presented in Fig. 2.1. The average residence time of the infiltrating water in the area is about 

10 weeks. The water collected in the drainage system is subject to additional treatments in 

slow sand filters and an activated carbon installation before it is delivered to the drinking water 

system. 
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Figure 2.1: Schematic drawing of the water flow between an infiltration pond and a drainage channel and 
tube in the dune infiltration area near Zandvoort, The Netherlands. The average distance between infiltration 
pond to drainage channel or tube is 80 m, and the average travel time is 10 weeks. 

A slime layer is deposited on the bottom of each infiltration pond. As a result, an anoxic zone 

develops just below the sediment surface where sulfate reduction and methânogenesis occurs. 

However, the lower part of the infiltration track becomes oxic due to air diffusion and input of 

oxygenated rain water from above. The extent of the anoxic zone in the area varies depending 

on the local organic carbon content of the dünè sand which varies from less than 0.1% to 3-

4%. 

The pretreated infiltrating water and the drainage channels and tubes were sampled 

every two weeks and analyzed for organic contaminants in 1988. Techniques of sampling and 

analyses were described elsewhere (Smeenk et al 1993). 

Experimental set-up 

The column experiments were conducted in two different laboratories and each laboratory had 

its own set-up. Small PVC columns were used at the Department of Microbiology in 

Wageningen while large glass columns were used at the Municipal Water Works of 

Amsterdam in Heemstede. We refer to the experiments from the two laboratories as "small 

column experiments" and "large column experiments", respectively. 

Small columns 

Small columns were constructed of hard PVC (25 cm length, 5.5 cm i.d.) and were wet 

packed with sediment from the Rhine river near Wageningen, The Netherlands, or from the 

dune infiltration site of the Municipal Water Works of Amsterdam. The columns were 

percolated continuously at a flow rate of 1 cm/h in an up-flow mode, with a mineral medium 

prepared with highly purified milli-Q water (Millipore, USA) closely resembling the mineral 

composition of Rhine water (Van der Meer et al 1987). It contained NH4Cl (27 mg/1), 

MgCl26H20 (102 mg/1), K2HP04 (12 mg/1), CaCl2 (222 mg/1), NaHCOj (215 mg/1), 

Na2S04 (7 mg/1) and 0.15 ml/1 of a trace element solution (Van der Meer et al 1987). In all 

experiments, the synthetic medium was continuously aerated in the presence of an excess of 
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granulated marble which served as carbonate buffer in combination with COi in the air. In the 

anoxic columns, the originally aerated medium was depleted from oxygen by its continuous 

replacement with nitrogen gas amended with 0.5% C02 in a gas exchange chamber (Zeyer et 

al 1986). Reducing conditions were maintained by the addition of 'Na^S (10 mg/1 final 

concentration) via the solution of chlorinated hydrocarbons (Chapter 3). One anoxic column 

was operated without sulfide as reducing agent but with sodium nitrate (final concentration 47 

mg/1) added as electron acceptor (Chapter 3). The columns were operated aseptically up to the 

influent port where a bacterial filter (cellulose-nitrate, 0.2 um, Sartorius GmbH, Germany) 

prevented back-growth of micro-organisms from the sediment into thé feeding lines. The 

medium was pumped into the columns by a peristaltic pump (Watson Marlow Ltd., U.K.) at a 

flow rate of 12.0 ml/h. Mixtures of chlorinated hydrocarbons were added continuously with a 

syringe pump (Perfusor VI, B. Braun Medical B.V., Germany) at a flow rate of 0.6 ml/h. 

These mixtures were prepared from water saturated stock-solutions, such that final 

concentrations in the influent were approximately 10 ug/1. The appropriate dilutions were 

autoclaved before use. Mixing of the chlorinated hydrocarbons with the mineral medium took 

place in a mixing chamber just before entering the sediment columns. The columns were 

operated in a climate room. 

Large columns 

Large columns were constructed of glass (60 cm length, 11 cm i.d.) and were wet packed with 

sediment from the dune infiltration site of the Municipal Water Works of Amsterdam. The 

columns were continuously percolated at a. flow rate of 2.5 cm/h with infiltration water 

obtained from taps nearby the laboratory. On an average basis, the infiltration water contained 

(mg/1) HC03' (154), CV (163), 7>043"(O.O35), S04
2' (69), N03' (5), Na+ (84), K+ (5.9), 

Ca2* (75), and Mg2+ (10.4) and had a pH of 7.7. The infiltration water was used without any 

further treatment. In the large column experiments 1 ml of a stock solution of the mixture of 

organic hydrocarbons in acetone, was directly dissolved in the influent vessel (which contained 

10 L medium), which was kept under a constant air pressure. Influent vessels were never used 

for a period longer then two days. Concentrations of organic substances decreased less than 

10% in this period. To investigate anoxic transformations, the influent medium was kept under 

nitrogen pressure and amended with ethanol (48 mg/1). Redox conditions were characterized 

by measurement of nitrate and sulfate reduction and methane production in the columns. The 

columns were kept at a constant temperature with a water mantle coupled to a water bath. 

Sampling and analysis 

Columns were sampled with glass syringes as previously described (Van der Meer et al 1987). 

Sample volumes varied from 1 to 50 ml, depending on the expected contaminant 

concentration. Samples were analyzed by hexane extraction followed by on-column injection 
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into a gas Chromatograph (GC436, United Technologies, Delft, The Netherlands) equipped 

with an electron capture detector and a 25 m capillary column (Sil 5CB, 12 um, Chrompack, 

Middelburg, The Netherlands) or by purge and trap injection (Chrompack, Middelburg, The 

Netherlands) • into a gas Chromatograph (GC438, United Technologies, Delft, The 

Netherlands) equipped with an FID-detector and a 25 m capillary column (Sil 5CB, 12 um, 

Chrompack, Middelburg, The Netherlands). 

Chemicals 

All organic compounds (analytical grade) were purchased from E. Merck (Darmstadt, 

Germany) and were used without further purification. 

RESULTS AND DISCUSSION 

Transformations under different redox conditions 

Experiments were performed under aerobic, denitrifying, and methànogenic conditions to 

examine the potential of different microbial communities to transform organic contaminants. 

Aerobic, denitrifying and methanpgenic conditions were created by the addition of molecular 

oxygen or nitrate or none of both in the influents of small columns, as the only major electron 

acceptor. The development of methanogenesis in the small columns was aided by the addition 

of sodium sulfide. The actual occurrence of aerobiosis, denitrification and methanogenesis in 

the large columns was tested by measuring oxygen and nitrate consumption and methane 

production. All columns were continuously operated for periods of 3 months to 4 years. 

Observed transformations of chlorinated compounds 'm large and small columns 

packed with either Rhine or dune sediment, and operated at 20°C, are summarized in Table 

2,1. Aerobic conditions turned out to be relatively unfavorable for transformation of the 

chlorinated compounds. In Rhine sediment, only chlorobenzene and 1,2-dichlorobenzene were 

transformed. In dune sediment, chlorobenzene and 1,2- and 1,4-dichlorobenzene were reduced 

by more than 90% while only a partial degradation of 1,3-dichlorobenzene (30%) and 1,2,4-

trichlorobenzene (40%) was observed. Transformations in Rhine sediment were preceded by a 

lag-time of around 3 months after start-up of the column. Lag-times observed in dune 

sediment were 1-2 weeks for chlorobenzene and dichlorobenzenes and 2 years for 1,2,4-

trichlorobenzene. The occurrence of lag-times before transformation took place, was taken as 

evidence that micro-organisms were involved. Different explanations can be given for these 

lag-times. They can be caused by the need to induce enzymes involved in contaminant 

breakdown (Spain and Van Veld 1983), or by growth of the microbial population until a level 

where transformation becomes measurable (Hutchins et al 1984, Wiggins et al 1987). Lag

times in the order of months or even years may be an indication that recombination of genetic 
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information takes place, leading to the appearance of microbes capable to metabolize 

chlorinated compounds (Van der Meer et al 1992). Thus the short lag-times observed with 

chlorobenzene and dichlorobenzenes in dune sediment indicate the existence of genetically 

adapted micro-organisms in the dune sediment while the longer lag-times for 1,2,4-

trichlorobenzene in dune sediment and for chloro- and 1,2-dichlorobenzene in Rhine sediment 

may indicate their absence (Van der Meer et al 1987). 

All chlorinated compounds tested except chlorobenzene, were transformed under 

methanogenic conditions, in both Rhine and dune sediments (Table 2.1). However, none of the 

observed reactions resulted in a complete detoxification of the parent compounds. 

Tetrachloroethene was dechlorinated to (2)-l,2-dichloroethene and traces of chloroethene (< 

5%) via trichloroethene as intermediary product in Rhine sediment. Hexachloro-l,3-butadiene 

was reductively dechlorinated via (£)-l,l,2,3,4-pentachloro-l,3-butadiene to (E,E)-

tetrachloro-l,3-butadiene (Ghapter 4). Tijchlorobenzenes were reductively dechlorinated to 

chlorobenzene via 1,3-dichlorobenzene, while the 1,2,4-isomer was dechlorinated via 1,4-

dichlorobenzene (Chapter 3). 

Reductive dechlorination of hexachlorobenzene in dune sediment proceeded via 

1,2,3,5-tetrachlorobenzene and 1,3,5-trichlorobenzenê to yield 1,3-dichlorobenzene (90%) 

and via 1,2,4,5-tetrachlorobenzene and 1,2,4-trichlorobenzene to yield 1,4-dichlorobenzene 

(10%). This pathway is similar to pathways previously reported for hexachlorobenzene in 

microbial enrichments (Fathepure et al 1988, Holliger et al 1992), but it differs from the 

pathway reported for trichlorobenzene in Rhine sediment (Chapter 3). 

Lag-times before reductive dechlorination took place, lasted longer than 2 months for 

all compounds in the small columns packed with Rhine sediment. In contrast, lag-times in the 

large dune sediment columns were 2 weeks or shorter. Like in the case of the aerobic 

transformations, this could be caused by the existence of an adapted population of bacteria in 

the dune sediment and its absence in the Rhine sediment. Alternative explanations are that the 

ethanol (48 mg/1) added to the influent medium of the dune sediment columns caused either a 

fast growth of the microbial population responsible for the reductive dechlorination or 

provided extra reducing equivalents needed for the reaction. No easily degradable carbon 

source was fed to the Rhine sediment column. Therefore, electrons for reductive 

dechlorination had to come from the organic matter (< 0.1%) present in the sediment already. 

l,2-Dichloro-4-nitrobenzene was completely removed in all methanogenic columns 

without lag-phase. It was also partially degraded (50%) in the denitrifying column packed with 

Rhine sediment. The absence of a lag-time might be evidence that the reaction was purely 

chemical, but no attempt was made to prove the abiotic nature of the reaction. It has been 

demonstrated elsewhere that nitro-aromatic compounds can be reduced to corresponding 

anilines in presence of small concentrations of sulfides and mediators like quinone and iron 

porphyrin with half lives in the order of hours (Schwarzenbach et al 1990). 
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Table 2.1: Observed transformations (%) and products of chlorinated organic contaminants in columns 
with Rhine and dune sediment operated at 20°C with different electron acceptors. 

contaminant condition 

>99 
90 
90 
90 

40 

_ _ aerobic denitrifying methanogenic methanogenic products 

tetrachloroethene 

trichioroethene 

hexachloro-1,3-butadiene 

chlorobenzene 
1,2-dichlorobenzene 
1,3-dichlorobenzene 
1,4-dichlorobenzene 
1,2,3-trichlorobenzene 

1,2,4-trichlorobenzene 

1,3.5-trichlorobenzene 

3 
1,2,3,4-tetrachlorobenzene 

3 
1,2,4,5-tetrachlorobenzene 

3 
pentachlorobenzene 

3 
hexachlorobenzene 

1,2-dichloro-4-nitrobenzene 

-: no removal observed 

NT not tested 

ND not determined 

only tested with Rhine sediment 
2 

only found in Rhine sediment 

3 only tested in dune sediment 
4 

end product observed in dune sediment. In dune sediment hexachlorobenzene was reductively dechlorinated to 1,3-

-

-

-

NT 
-
- -
-
-

-

-

NT 

NT 

NT 

NT 

50 

>99 

>99 

>99 

• -

>99 
90 
90 
>99 

>99 

>99 

>99 

>99 

>99 

>99 

>99 

(Z)-1,2-dichloroethene, 

chloroethene (< 5%) 
(Z)-1,2-dichloroethene, 

1 chloroethene (< 5%) 

(£,£H,2,3,4-
tetrachlorobutadiene 

-
chlorobenzene 
chlorobenzene 
chlorobenzene 
chlorobenzene 

4 
1,3-dichlorobenzene 
chlorobenzene 

4 
1,4-dichlorobenzene 
chlorobenzene 

4 
. 1,3-dichlorobenzene 

1,3-and 
4 

1,4-dichlorobenzene 
1,3-and 

4 
1,4-dichlorobenzene 
1,3- and 

4 
1,4-dichlorobenzene 
1,3- and 
1,4-dichlorobenzene 
ND 

dichlorobenzene via 1,2,3,5-tetrachlorobenzene and 1,3,5-trichlorobenzene (90%) and to 1,3- and 1,4-dichlorobenzene via 

1,2,4,5-tetrachlorobenzene and 1,2,4-trichlorobenzene (10%). 

Transformations of non-halogenated aromatics were studied in large columns packed 

with dune sediment and operated under both aerobic and methanogenic conditions and in the 

small Rhine sediment columns under aerobic conditions. All non-halogenated aromatics tested 

were aerobically transformed in both Rhine and dune sediment (Table 2.2). Under 

methanogenic conditions, only removal of methylbenzène (toluene) was observed (Table 2.2). 

These observations confirm existing data on the biotransformation of non-ionizable benzene 
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Table 2.2: Removal (%) of non-halogenated amniotics 
in columns packed with dune and Rhine sediment 

benzene 
methylbenzene 
1,2-dimethylbenzene 
1,4-dimethylbenzene 
1,3,5-trimethylbenzene 
ethylbenzene 
naphthalene 

aerobic 

>95, 
>95 
>95 
>95 
>95 
>95 
>95 

methanogenic 
-

>95 
-
.-
-
-
-

-: no removal 

only tested with dune sediment 
2 

not tested in Rhine sediment 

Table 23: Residual concentrations (fjg/l) observed in dune and Rhine sediment columns 
operated under aerobic conditions fed with low (0.5,pgA) and high (20/jg/l) concentrations 
of each compound. 

Dune sediment Rhine sediment 

benzene 
methylbenzene 
ethylbenzene 
1,2-dimethylbenzene 
1,4-dimethylbenzene 
1,3,5-trimethylbenzene 
chlorobenzene 
1,2-dichlorobenzene 
1,3-dichlorobenzene 
1,4-dichlorobenzene 
1,2,4-trichlorobenzene 
DL: Detection limit = 0.01 mg/1 
ND: no degradation 
NT: not tested 

low 
<DL 
<DL 
<DL 
<DL 
<DL 
<DL 
<DL 
0.06 
0.36 
0.04 
NT 

high 
<DL 
<DL 
<DL 
0.03 
<DL 
0.02 
0.03 
0.05 
0.4 
0.05 
2.6 

high 
0.04 
0.03 
0.01 
0.04 
0.02 
0.01 
0.41 
1.0 
ND 
ND 
ND 

derivatives which show that they are readily biodegradable under aerobic conditions and tend 

to persist in anaerobic environments, except for toluene, which is also degradable under 

anaerobic conditions (Zeyer et al 1986, Grbic-Galic and Vogel 1987, Schoener et al 1991, 

Edwards et al 1992). 

Residual concentrations 

From the point of view of drinking water quality it is not only necessary to know whether a 

contaminant is degraded during infiltration, but also to which extent. There is uncertainty 

however, whether degradation by micro-organisms is still possible at very low concentrations 

or if threshold concentrations exist below which no transformation occurs. Residual 

concentrations can be the result of such threshold concentrations. Biotransformation will not 
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occur when the supply rate of a compound is lower than the rate needed for enzyme induction 

(Koch and Coffman 1970) or when the concentration of a substance that is used as carbon or 

energy source is too low to satisfy the maintenance requirements of a bacterial cell (Chapter 

8). We determined residual concentrations of compounds that were degraded in oxic columns. 

Table 2.3 summarizes steady state residual concentrations in effluents of large dune sediment 

columns operated at low (0.5 ug/1) and high (20 ug/1) influent concentrations of the 

hydrocarbons. Residual concentrations observed in a small Rhine sediment column operated 

with high influent concentrations are also included in the table. Residual concentrations of 

non-halogenated aromatics in dune sediment are generally lower than those observed in Rhine 

sediment. Exceptions are 1,2-dimethylbenzene and 1,3,5-trimethylbenzene which have similar 

residual concentrations in both sediments. The residual concentrations of chloro- and 1,2-

dichlorobenzene in the Rhine sediment column are more than 10 times higher than in dune 

sediment columns. The measured residual concentrations increase with increasing non-polarity 

of the compound. This suggests that sorption occurs before biotransformation takes place and 

therefore that mass transfer from the bulk solution via a sorbed phase to the transforming 

micro-organisms limits the biotransformation rates (Chapter 8). ' 

No relation between residual concentrations and the influent concentration was found 

in a comparison of the results from dune sediment columns operated with high and low 

influent concentrations (Table 2.3). This confirms earlier results (Van der Meer et al 1987). 

10°C 
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o 
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too 120 

Figure 2.2: Behavior of dichlorobenzenes in a small dune sediment column at 20°C as the result of omitting 
dichlorobenzenes from day 23 to 28, and of a temperature decrease to 10°C at day 95. Effluent 
concentrations (C) are plotted as their ratio to the influent concentration (CJ. Only 1,2-dichlorobenzene was 
transformed, while 1,3-dichlorobenzene was not. 
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Figure 2.3: Behavior af benzene, tetrachloroethene (TCE), dibromochloromethane (DBCM), 
trichloromethane (TCM), and toluene in a large methanogenic dune sediment column at 20°C and the effect 
of a temperature decrease to 4°C. Effluent concentrations (C) are plotted as their ratio to the influent 
concentration (C ). 

Effect of temperature change and of omitting organic contaminants temporarily 

After the initial experiments, the columns were percolated with medium without organic 

contaminants to prepare them for use in further experimentation. When a new experiment was 

started, we always observed an initial breakthrough of chlorinated hydrocarbons before 

biotransformation resumed. This is illustrated in Fig. 2.2 for the aerobic conversion of 1,2-

dichlorobenzene at 20°C in a small column packed with dune sediment. It shows that 1,2-

dichlorobenzene was completely removed after a breakthrough period which lasted for about 8 

days. From day 23 to 28, no dichlorobenzenes were present in the influent. A 6 day 

breakthrough period of 1,2-dichlorobenzene w,as observed, followed by its complete 

disappearance when dichlorobenzene addition was resumed after this period. No removal of 

1,3-dichlorobenzene was observed in this experiment. 

At day 95, the temperature was decreased from 20 to 10°C. This resulted in a partial 

breakthrough of 1,2-dichlorobenzene followed by renewed removal to the same concentration 

as before (Fig. 2.2). No breakthrough of 1,2-dichlorobenzene in the column effluent was 

observed after an additional temperature decrease to 4°C at day 130 and a temperature 

increase to 20°C at day 150 (not shown). Profile measurements showed that steady state 

biotransformation rates were similar at all temperatures tested. Similar results were obtained 

with a small column packed with Rhine sediment (data not shown). 
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Table 2.4: Comparison of organic contaminant removal in the dune infiltration area and in columns 
packed with dune sediment and operated under aerobic and methanogenic conditions. 

contaminant removal (%) 

benzene 
methylbenzene 
1,2-dimethylbenzene 
1,4-dimethylbenzene 
ethylbenzene 
1,2-dichIorobenzene 
1,3-dichlorobenzene 
1,4-dichlorobenzene 
1,2-dichloro-4-nitrobenzehe 
trichloromethane 
tribromomethane 
atrazin 
bentazon 
tetrachloro-o-phthalic acid 

aerobic columns 

>90 
>90 
>90 
>90 
>90 
25-90 

25 
90 
-
-

>90 
25-50 
25-50 

-

methanogenic 
columns 

-
>90 

-
-
-
-
-
-

>90 
>90 
>90 

-
-

>90 

infiltration area 

75-100 
75-100 
60-80 
60-80 
40-60 
75-100 
75-100 
75-100 
75-100 
75-100 
75-100 
25-50 

-
40-60 

ND: not determined 

-: no removal observed 
data represent overall removal during infiltration of compounds which are always present in the infiltrated water and were 
taken from (Smeenk et al 1993) 

The effect of a temperature decrease from 20°C to 4°C was also studied in large 

aerobic and methanogenic columns packed with düne sediment. Aerobic degradation was not 

affected by the temperature decrease (not shown). The decrease of temperature resulted in 

increased effluent concentrations of tetrachloroethene (0.5±0.1 ug/1) and trichloromethane 

under methanogenic conditions (0.25±0.05 ug/1, Fig. 2.3). In addition, breakthrough of 

trichloroethene - a degradation product of tetrachloroethene not present in the influent - to a 

concentration of 0.5 ug/1 was observed (not shown). Toluene removal was not affected by the 

temperature decrease (Fig. 2.3). 

Comparison of column and infiltration area data 

An important question to ask is whether removals observed in column experiments also occur 

under field conditions, especially when these removals are preceded by long lag-times. 

Concentrations of a series of compounds in the infiltrating water and water collected from the 

drainage system were measured every two weeks in 1988. The water passed both oxic 

(residence time 1-7 weeks) and anoxic (residence time 3 weeks) zones during infiltration. 

Results for atrazin, bentazon and tetrachloro-o-phthalic acid were also included because they 

appeared to be present in Rhine water at 0.1-0.5 mg/1 which is above the limit for drinking 

water (0.1 ug/1). The other compounds were present at concentrations below 0.05 mg/1. A 

good qualitative agreement exists between results from columns packed with dune sediment 

and overall removals observed in the dune infiltration area when both oxic and anoxic column 

experiments are included in the comparison (Table 2.4). Similarly, results from columns 

21 



. Chapter 2 

packed with material from the Glatt River in Switzerland were in qualitative agreement with 

field data (Schwarzenbach et al 1983, Kuhn et al 1985). However, results are not always 

comparable on a quantitative basis. Removals of 1,2- and 1,4-dimethylbenzene, ethylbenzene, 

and tetrachloro-o-phthalic acid for example, are less in the infiltration area than in the column 

experiments. The contributions of anaerobic and aerobic processes to the overall 

transformation in the field are not known quantitatively, which complicates a quantitative 

comparison of column and field results. Removals of dichlorobenzenes in the columns are 

variable and generally smaller than in the infiltration area, maybe due to volatilization from the 

infiltration ponds. 

Buffering of pulses of contaminants in the infiltration area 

It is common practice to stop the intake of water from the Rhine when levels of halogenated 

and non-halogenated contaminants in the Rhine exceed 5 and 10 ug/1 respectively, to prevent 

contamination of drinking water. These occurrences of high levels of contaminants normally 

result from upstream accidental spills and do not last longer than one or two weeks. However, 

longer lasting peaks do occur and sometimes pose problems in the management of the 

infiltration area. Intake is also halted in case of longer lasting pulses of biodegradable 

contaminants. These compounds could be allowed to enter the system when no temporary 

breakthrough resulting in a temporal appearance of a certain portion in the collected water, 
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Figure 2.4: Effect of dispersion on the breakthrough of a pulse of a contaminant in infiltrating water (A). 
Concentrations are plotted as their ratio to the concentration in the infiltrating water (CIC0). The curves 
shifting to the right represent contaminants with increasing retardation factors. Total areas under the curves 
are equal and represent the total amount of contaminant added. The maximum concentration breaking 
through decreases with increasing retardation coefficient. The plot in B represents maximum concentrations 
breaking through from a temporary pulse of contaminant in infiltrating water as a function of the retardation 
factor. Concentrations are plotted as their ratio to the concentration in the infiltrating water (CIC0). 
Increasing retardation factors represent compounds with decreasing polarity. The figure shows that the 
infiltration area buffers temporal contamination lasting for up to 2 weeks, efficiently. Longer lasting pulses of 
non-polar compounds are also buffered well, but in the case of polar compounds, breakthrough may be 
significant. 
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would occur before biotransformation starts. There is a possibility however, that a greater 

dispersion in the field compared to the laboratory columns, will serve as a buffer for such 

temporary peaks. Dispersion causes a pulse of a chemical that is fed into a system, to spread in 

time. As a result, the maximum concentration in the water flowing out of the system is lower 

than the incoming concentration. The effect of dispersion increases with the residence time of 

the chemical in the system, so that non-polar compounds that are strongly sorbed, will be 

spread more in time and will reach lower maximum levels in the outflowing water than polar 

compounds which hajdly sorb, as illustrated in Fig. 2.4A. The residence time in our columns 

was about 1 day, while the average residence time in the dune infiltration area is about 10 

weeks. This difference alone, means that dispersion can have a greater impact in the field than 

in the laboratory columns. Calculations with a hydrological model (Olsthoorn 1991) were 

done to quantify the impact of dispersion on the behavior of organic contaminants in a part of 

the infiltration area with a relatively short residence time (7 weeks). Non-polar compounds 

will have longer residence times in the system due to sorption to the sediment. This can be 

expressed in a retardation factor that quantifies the attenuation compared to water. Typical 

values are 1-2 for polar compounds like bentazon and atrazin, 5-10 for dichlorobenzenes, and 

>15 for higher chlorinated benzenes or polycyclic aromatic compounds like pyrene or 

tetracene. Calculations were therefore made for compounds with retardation factors varying 

from 1 to 22, and for pulse times varying from 1 to 8 weeks. Typically, it takes 1 or 2 weeks 

for a contamination in the Rhine resulting from an accident, to pass at the location where 

infiltration water is taken in. The long-term appearance in infiltrating water of a new 

biodegradable contaminant to which the microbial population has to adapt can also be viewed, 

as a short term pulse in the infiltrating water. If it takes 6 weeks for example, to attain a 

complete steady state biotransformation, only the contaminant which was present in this 

period, Will eventually reach the collected water. Therefore, calculations for longer pulse times 

were also included. Pulses with a duration of up to 2 weeks are very well buffered by the 

system, resulting in a decrease by 80% or more of the concentration in the water collected in 

the drainage system (Fig. 2.4B). The buffering effect of the system is even more pronounced 

for strongly sorbing species which are predicted to breakthrough at levels equal to 10% of the 

incoming concentration at most, even when the pulse lasts as long as 8 weeks. As a matter of 

fact, these are conservative estimates of the actual impact of dispersion in the area as a whole, 

since calculations were only made for a region with a low residence time (7 weeks). 

CONCLUDING REMARKS 
Many streamlines in the dune infiltration area show a sequence from oxic to anoxic and then 

oxic again (Chapter 3), which allows the complete mineralization of heavily chlorinated 

compounds via reductive dechlorination as the initial step, followed by aerobic mineralization 
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(Zitomer and Speece 1993). However, an accumulation of more toxic and more mobile lower 

chlorinated compounds may occur when reductive dechlorination is not followed by aerobic 

mineralization, This is a real risk in the case of the formation of (Z)-l,2-dichloroethene from 

tetra- and trichloroethene and of (£,£)-l,2,3,4-tetrachloro-l,3-butadiene from hexachloro-

1,3-butadiene. Aerobic transformation of these products has not been observed yet. 

The residual concentrations in our columns are well below standards for drinking 

water quality, except for 1,2,4-trichlorobenzene, which showed a residual concentration of 2.6 

ug/1. One would expect that biotransformation of this compound will not occur in the field, 

since concentrations in the infiltrating water do not exceed this value normally. Moreover, we 

observed a lag-time of 2 years, indicating that no adapted bacteria were present in the dune 

sediment. 

Many of the hydrocarbons studied can potentially be biodegraded at a temperature as 

low as 4°C, at rates which are comparable to those observed at 20°C. The process of 

reductive dechlorination however, appears to proceed slower at 4°C. As a consequence, the 

infiltration area will behave differently in summer and in winter. First of all, the oxic zone 

below the upper sediment layer in the infiltration ponds penetrates deeper in winter compared 

to the situation in summer, resulting in a decrease in the fraction of anoxic zones. In 

combination with the slower rates of the anaerobic reactions, the contribution of anaerobic 

processes to the overall performance of the area with respect to biodégradation of 

contaminants, is expected to be smaller in winter than in summer. 

Temporal increases of levels of polar compounds that are not degradable, were shown 

to have a greater impact on the quality of the water collected in the drainage system than 

temporal increases of levels of non-polar compounds, due to the buffering capacity of the area 

caused by dispersion. 
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CHAPTER3 

REDUCTIVE DECHLORINATION OF ALL 
TRICHLORO- AND DICHLOROBENZENE ISOMERS 

Tom N.P. Bosma, Jan Roelof van der Meer, Gosse Schraa, Marijke E. Tros and 

Alexander J.B. Zehnder. 

FEMS Microbiology Ecology 53(1988):223-229 

ABSTRACT 
AU three isomers of trichlorobenzene were reductively dechlorinated to monochlorobenzene 

via dichlorobenzenes in anaerobic sediment columns. The dechlorination was specific: 1,2,3-

and 1,3,5-trichlorobenzene were solely transformed to 1,3-dichlorobenzene, while 

1,4-dichlorobenzene was the only product of 1,2,4-trichlorobenzene transformation. Micro

organisms were responsible for the observed transformations. Since monochlorobenzene and 

dichlorobenzene are mineralized by bacteria in the presence of oxygen, the process of 

* reductive dechlorination may be an important initial step to obtain complete mineralization of 

otherwise recalcitrant trichlorobenzenes. This is especially true for the 1,3,5-isomer, which 

seems to resist biodégradation in oxic environments. 
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INTRODUCTION 
Trichlorobenzenes are widely applied as intermediates and solvents in industry and agriculture 

(Verschueren 1983). As a result of their universal use, they are nearly ubiquitous pollutants in 

air, water, sediments, and soils (Pearson 1982). They are chemically stable in both aerobic and 

anaerobic environments. Therefore, it is of interest to know whether they might be subject to 

biotransformation. Information on the aerobic mineralization of trichlorobenzenes - especially 

the l.S.S^isomer - is scarce. Ballschmiter and Scholz (1980) isolated a Pseudomonas sp. able 

to hydroxylate all isomers of trichlorobenzene through the action of a mono-oxygenase. 

Chlorinated phenols were the only detected transformation products. Marinucci and Bartha 

(1979) have demonstrated aerobic mineralization of 1,2,3- and 1,2,4-trichlorobenzene in soil 

samples, using C-labelled substrate. However, the measured mineralization rates of 0.3-1.0 

nmol/day per 20 g of sou sample are extremely low and only 10% of the initial amount of 

trichlorobenzene was recovered!as C02. Van der Meer et al. (1987) isolated Pseudomonas 

sp. strain P51, which is able to mineralize 1,2,4-trichlorobenzene, from river Rhine sediment. 

In contrast, li2,4-trichlorobenzene was not removed in river Rhine sediment packed in 

columns which were continuously operated aerobically for two years. 

Tiedje et al. (1987) reported the anaerobic reductive dechlorination of 

hexachlorobenzene to 1,3,5-trichlorobenzene as the sole end product. Anaerobic 

transformation of 1,2,4-trichlorobenzene to dichlorobenzenes has been shown in bacteria 

isolated from the intestinal content of rats (Tsuchiya and Yamaha 1984). A consortium able to 

mineralize 3-chlorobenzoate anaerobically has been isolated by Shelton and Tiedje (1984). It 

appeared that 3-chlorobenzoate degradation was initiated by its dechlorination to benzoate* 

(Shelton and Tiedje 1984, Dolfing and Tiedje 1986). In this paper it is shown that biologically 

catalyzed reductive dechlorination in the absence of oxygen can serve as an initial step leading 

to the eventual mineralization of trichlorobenzenes. Anaerobic transformation was studied in 

columns packed with river Rhine sediment. 

MATERIALS AND METHODS 

Experimental set-up. 

Details of the experimental set-up are given in van der Meer et al. (1987) and Zeyer et A. 

(1986). Columns, constructed of hard PVC (25 cm length, 5.5 cm i.d.), were wet-packed with 

anaerobic sediment from the river Rhine near Wageningen, Netherlands (Van der Meer et al 

1987). The columns were percolated continuously at a flow rate of 1 cm/h in an up-flow 

mode, with an anaerobic mineral medium prepared with highly purified milli-Q water 

(Milliporé, USA) closely resembling the mineral composition of Rhine water (Van der Meer et 

al 1987). The medium was depleted from oxygen by its continuous replacement with nitrogen 
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in a gas exchange chamber as described in Zeyer et al. (1986) and reducing conditions were 

maintained by the addition of Naß (10 mg/1 final concentration). Chlorinated hydrocarbons 

were present as only source of carbon and energy and were constandy added with a syringe 

pump together with the Naß. Stock solutions were prepared as described in van der Meer et 

al. (1987). One column was operated without sulfide as reducing agent but with nitrate (final 

concentration 35 mg/1) added as electron acceptor. 

Analytical methods. 

Methods of sampling, extraction and GC/ECD analysis have been described in van der Meer et 

al. (1987). Analysis of the samples was done by hexane extraction followed by on-column 

injection into a gas Chromatograph (United Technologies, Delft, Netherlands) equipped with 

an ECD detector and a 25 m capillary column (Sil 5ÇB, 12 um, Chrompack, Netherlands). 

Since monochlorobenzene could not be detected with the GC technique, samples were also 

analyzed by HPLC (LKB 2150 pump and 2152 controller; 250 by 4 mm Ultra Pac column 

filled with Lichrosorb RP-8 and RP-18 with a diameter of 10 um, preceded by a universal 75 

by 2.1 mm Chrompack RP column, Schraa et al 1986). The mobile phase was 

acetonitrile-water (ratio by volume 55:45). The dechlorination products were identified by 

their mass spectrum and their retention times in the GC and HPLC analyses. The GC/MS 

(Finnigan 1050) was operated under the same conditions as the GC/ECD. 

Chemicals. 

1,2- 1,3- and 1,4-dichlorobenzene and 1,2,4-trichlorobenzene, hexachlorobutadiene and 

l,2-dichloro-4-nitrobenzene were purchased from E. Merck, Darmstadt, Germany. 1,2,3- and 

1,3,5-trichlorobenzene were kind gifts from the Organic Chemistry Department, Agricultural 

University, Wageningen, Netherlands. AU chemicals were of analytical grade and used without 

further purification. 

RESULTS AND DISCUSSION 
In an initial experiment, a sediment column was continuously fed with a medium containing 

tetra- and trichloroethene, 1,2,3-, 1,2,4- and 1,3,5-trichlorobenzene, 1,2-, 1,3- and 

1,4-dichlorobenzene, hexachlorobutadiene, and l,2-dichloro-4-nitrobenzene. The 

concentration of each xenobiotic ranged from 30-50 nmol/1. 

After an initial lag-phase of 2-6 months (depending on the compound), tetra- and 

trichloroethene, 1,2,3-, 1,2,4- and 1,3,5-trichlorobenzene and hexachlorobutadiene were 

removed from the column. l,2-Dichloro-4-nitrobehzene could never be detected in the column 

effluent. Both the breakthrough curves (Fig. 3.1 A) and the concentration profiles (Fig. 3.IB) 

of the trichlorobenzenes show that the 1,2,3-isomer was first removed, followed by the 1,2,4-
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and the 1,3,5-isomer. It has been concluded that the observed removal of the 

trichlorobenzenes was a biological process because (i) a long lag-phase preceded the 

disappearance of trichlorobenzenes, (ii) no elimination in anaerobic batch experiments with 

autoclaved sediment was observed, and (iii) a reduction potential of -1.962 to -2.440 V is 

necessary for their abiotic electrochemical reduction (Farwell et al 1975). Beland et al. (1976) 

have stated that reactions with a redox potential lower than -1.76 V will not proceed purely 

chemically in anaerobic environments. 

To detect possible intermediary products of the anaerobic transformation óf 

trichlorobenzenes, the concentration of each of these chemicals was raised to 300-500 nmol/1 

in the influent at day 250, while the other xenobiotics were omitted. Even at this tenfold higher 
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Figure 3.1: Breakthrough curves (A) and concentration profiles determined after 225 days of continuous 
operation (B) of 1,2,3- ( • ) , 1,2,4- (O) and 1,3,5-trichlorobenzene (A) in anaerobic sediment columns. 
Concentrations are expressed as the measured concentration (C) divided by the influent concentration (CJ. 
The influent concentration of each compound was 30-50 nmol/l; the flow rate was 1 cm/h. 
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concentration, all trichlorobenzene isomers disappeared within the first 5 cm of the sediment 

column. The concentration profiles in Fig. 3.2, measured at day 300, show that they were 

converted mainly to 1,3- and 1,4-dichlorobenzene with traces of 1,2-dichlorobenzene. In 

experiments with the individual trichlorobenzene isomers, 1,3-dichlorobenzene was formed 

from 1,2,3- and 1,3,5-trichlorobenzene and 1,4-dichlorobenzene from 1,2,4-trichlorobenzene. 

1,2-Dichlorobenzene was not detected during these experiments. The dichlorobenzenes were 

identified by their mass spectrum and retention times in the GC and HPLC analyses. At the 

start of trichlorobenzene dechlorination its rate was so slow that 20 cm flow through the 

column was required for complete removal of all three isomers. In course of the experiments 

the flow distance needed for complete conversion of trichloro-benzenes to dichlorobenzenes 

decreased: from 20 cm at day 225 to 5 cm at day 300 and 2.5 cm at day 400. At the end of the 

experiments with the single isomers (450 days after start-up of the column with the complete 

mixture of chlorinated compounds) 1,2,4-trichlorobenzene was already removed entirely at 0.5 

cm from the inlet. 

In all experiments with individual trichlorobenzene isomers a slight decrease of the 

dichlorobenzene concentration in the last 10 cm of the column was observed, accompanied by 

monochlorobenzene formation. When after 450 days of continuous operation of the column 

the trichlorobenzenes were replaced by dichlorobenzenes in the influent, the dichlorobenzene 

isomers were dechlorinated after a lag of 7 days yielding monochlorobenzene (Fig. 3.3), which 
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Figure 3.2: Concentration profile determined after 300 days of continuous operation, showing the anaerobic 
conversion of trichlorobenzenes to dichlorobenzenes. Concentrations (C) of both di- and trichlorobenzenes 
have been divided by the influent concentration (CJ of trichlorobenzene (total) which was 1.0 fjmol/l. The 
concentration of each trichlorobenzene isomer was 0.3-0.5 fjmol/l: the flow rate was 1 cm/h. 

29 



Chapter 3 

__ — -o 

5 10 15 20 

column length (cm) 

Figure 3.3: Concentration profile determined after 520 days of continuous operation, showing the anaerobic 
conversion of dichlorobenzene to monochlorobenzene. Concentrations are expressed as in Fig. 3.2. The 
influent concentration of each of the three dichlorobenzene isomers was 3-5 pmol/l; the flow rate was I cm/h. 

was confirmed with GC/MS analysis. The dichlorobenzenes were fed to the column at high 

concentrations (3-5 umol/1), and their transformation rates increased steadily reaching a 

maximum of 0.4 uM/h after eight weeks. 1,3- and 1,4-dichlorobenzene were transformed only 

after almost complete removal of 1,2-dichlorobenzene. The increase of the removal rate might 

be the result of (i) Chemotaxis (Chapter 5), (ii) growth because of the increased influent 

concentrations, or (iii) a combination of both. Based on thermodynamic calculations, Vogel et 

al. (1987) showed that microbial reduction of chlorinated aliphatic compounds is favourable 

under methanogenic conditions and that energy can be obtained from the reductive 

dechlorination reaction. For the reductive dechlorination of 1,2-dichlorobenzene to 

monochlorobenzene a DGf'(aq) of -140.8 kJ/(mol CT liberated) was calculated. Similar 

values can be obtained for the other di- and trichlorobenzene isomers. The free energies were 

calculated using the data given in Lange's Handbook of Chemistry (Lange 1973). Therefore, 

from a thermodynamical point of view it is possible that chlorinated aromatic compounds may 

act as terminal electron acceptors. The energy liberated during such a reduction process might 

then become useful for cell synthesis. Strong evidence for the occurrence of such a "halide 

respiration" mechanism was obtained by Dotting and Tiedje (1987). They showed that an 

energy starved consortium accumulated twice as much ATP after the addition of 

3-chlorobenzoate as after addition of benzoate. In addition, they observed a growth yield 

increase coupled to reductive dechlorination which could be fully accounted for by the 

increase in the numbers of the dechlorinating bacterium DCB-1, 

The column results indicate that dechlorination of dichlorobenzene was inhibited in the 

presence of trichlorobenzene. Similar results were obtained by Suflita et al. (1983) who found 
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that 3-chlorobenzoate was reduced to benzoate only upon the complete dechlorination of 

3,5-dichlorobenzoate. The dechlorination reactions observed in the anaerobic sediment 

columns appear to be determined by the electron withdrawing effect of the chlorine 

substituents on the aromatic ring, which supports the occurrence of a nucleophilic aromatic 

substitution mechanism: dechlorination proceeds via addition of an electron followed by the 

chemical binding of a proton to the resulting negatively charged intermediate followed by a 

second addition of an electron and release of a chlorine ion (Farwell et al 1975). Since the 

negative charges are balanced by neighbouring electronegative substituents, the occurrence of 

such a mechanism would predict that (i) dechlorination of trichlorpbenzenes is more feasible 

than dechlorination of di- and monochlorobenzenes, (ii) dechlorination is easier when the 

chlorine substituents are closer to each other, and (iii) the chlorine substituents at the 

2-position in 1,2,3- and 1,2,4-trichlorobenzene are preferably removed during dechlorination. 

These predictions are in agreement with the data presented here and also with results of 

electrochemical experiments (Farwell et al 1975), where the products of dechlorination at the 

2-position are formed in relatively larger amounts than would be expected if dechlorination 

had occurred randomly at all possible positions. The fact that in the sediment column 1,2,3-

and 1,2,4-trichlorobenzene are exclusively transformed to 1,3- and 1,4-dichlorobenzene 

respectively, indicates that specific enzymes and/or micro-organisms are responsible for the 

observed transformations. 

Tsuchiya and Yamaha (1984) have found anaerobic dechlorination of 

1,2,4-trichlorobenzene by bacteria isolated from the intestinal contents of rats. However, this 

transformation yielded all dichlorobenzene isomers as products and is probably not related to 

specific metabolic activities because only 6 nmol 1,2,4-trichlorobenzene per mg of dry cells 

(0.1-0.6% of the initial amount) was transformed during 24 hours of incubation. In addition, 

dechlorination mainly occurred during the stationary growth phase of the isolated bacteria. 

Parke and Williams (1960) investigated the detoxification of chlorinated benzenes in living rats 

and rat tissues and observed that 1-10% of the administered chlorinated benzenes were 

transformed to lower chlorinated benzenes. 

So far, there is little evidence that chlorinated benzenes are transformed in anaerobic 

sediments. Tiedje et al. (1987) have found that hexachlorobenzene was transformed to 

1,3,5-trichlorobenzene in anaerobic sludge from Jackson, Michigan. Analyses of sediment 

cores taken from the Great Lakes, Canada, revealed that in the top layers highly chlorinated 

benzenes are more dominant than in the lower and older layers, where lower chlorinated 

benzenes prevail (Oliver and Nicol 1982). It has been suggested that dechlorination of certain 

chlorinated benzenes has occurred in the course of time (Bailey 1983). Trie results presented 

in this paper support that such a mechanism may be responsible for the measured distribution 

of chlorinated benzenes in the Great Lakes sediment. 

31 



Chapter 3 

2[H] HCl 

\ / 

r i 2[H] HCl 

2[H] HCl 

v > 

Figure 3.4: Summary of the dechlorination reactions observed in the anaerobic sediment column under 
reduced conditions. During each dechlorination step 2 electrons and two protons ([H]) are consumed 
yielding a lower chlorinated benzene and HCl. It is proposed that micro-organisms might use the energy 
liberated during reductive dechlorination for cell synthesis. 

Based on the data presented here it is concluded that in reduced environments (sulfate 

up to 20 mmol/l did not inhibit the reaction; no dechlorination has been observed in the 

denitrifying column) all trichlorobenzene isomers can be dechlorinated, yielding 

dichlorobenzenes as intermediates and monochlorobenzene and chloride as sole end products 

(Fig. 3.4). Both dichlorobenzenes and monochlorobenzene are known to be mineralized 

aerobically by bacteria (De Bont et al 1986, Schraa et al 1986, Spain and Nishino 1987, Van 

der Meer et al 1987). Provided that after the initial passage of trichlorobenzenes through 

anaerobic sediment the monochlorobenzene formed has the possibility to enter an aerobic 

environment, mineralization of all trichlorobenzenes including the very recalcitrant 

1,3,5-isomer could eventually occur. In a similar manner, Bedard et al. (1987) have shown 

that the degradation of chlorinated biphenyls is highly improved when they are first 

dechlorinated anaerobically. These authors isolated Alcatigenes eutrophus strain H850 which 

is able to oxidize aerobically 39 to 49 of the 60 congeners identified in the commercial mixture 

of Aroclor 2142. When Aroclor 2142 was pretreated anaerobicallly before incubating it with 

strain H850, nearly all of the congeners were degraded. Only two components resisted 

complete degradation in such an anoxic-oxic sequence. It appeared that the removal of 

chlorines from meta and para positions under anaerobic conditions made most of the otherwise 
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recalcitrant congeners biodegradable for strain H850. A place whkh allows a sequential 

anoxic-oxic mineralization in situ, exists at the dune infiltration site of the Amsterdam Water 

Works, Netherlands, where drinking water is produced from river Rhine water. At this site, 

pretreated river water is brought into small basins on the top of the dunes. The water then 

infiltrates into the dunes first through the sediments of these ponds and thereafter through 

about 60 meters of sand before it reaches lower situated collecting channels. The sediments 

are anoxic in summer because of the steady input of organic material from the river water. 

Due to air diffusion and input of oxygenated rain water, the lower part of the infiltration track 

becomes oxic. Studies with sand from the aerobic zone of the dunes revealed that in the 

presence of oxygen, monochlorobenzene and 1,2- and 1,4-dichlorobenzene are readily 

degraded (Chapter 2). By using columns which were filled with anaerobic sediments from the 

infiltration ponds and continuously fed with a mixture of 30-50 ,nmol/l of each of the 

trichlorobenzene isomers the same results were obtained as with the river Rhine sediment (Fig. 

3.1). These findings indicate that a sequential degradation of trichlorobenzenes, i.e. anaerobic 

reductive dechlorination followed ljy aerobic mineralization, might be operative in such dune 

infiltration sites. 

In conclusion, the biological process of anaerobic reductive dechlorination transforms 

otherwise very persistent trichlorobenzenes (especially the 1,3,5-isomer) and also higher 

chlorinated benzenes to intermediates which can easily be mineralized aerobically. It is 

therefore proposed to pretreat waste water, ground water or soil contaminated with highly 

chlorinated benzenes ânaerobically before aerobic clean-up processes are applied. 
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ABSTRACT 

Transformations of hexachloro-l,3-butadiene were studied in columns packed with Rhine 

River sediment and in batch incubations containing Ti(III) citrate and hydroxocobalamin. 

Columns were operated under various redox conditions. Transformation of hexachloro-

1,3-butadiene was observed in a methanogenic column but not in columns where oxygen or 

nitrate were fed as terminal electron acceptors. It was reductively dechlorinated to (E,E)-

1,2,3,4-tetrachlorobutadiene (>90%) and traces of a trichloro-l,3-butadiene isomer (<5%). 

(i?)-l,l,2,3,4-pentachloro-l,3-butadiene was detected as intermediary product. The reductive 

dechlorination in the column was ascribed to the activity of anaerobic micro-organisms. In the 

batch experiments with Ti(IH) citrate and hydroxocobalamin, hexachloro-l,3-butadiene was 

transformed to an isomer of pentachloro-l,3-butadiene and two compounds with molar 

masses of 154 and 52, tentatively identified as trichloro-l-buten-3-yn and l-buten-3-yn, 

respectively. 
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INTRODUCTION 
Several reports exist in which hexachloro-l,3-butadiene, which has been shown to be toxic to 

rats and humans (Yang 1988), is described as a pollutant present in sediment samples in 

Western Europe and North America (Li et al 1976, Durham and Oliver 1983, Rostad and 

Pereira 1989). HeXachloro-l,3-butadiene has been used as a heat transfer fluid in 

transformators, as an intermediate to produce lubricants, and as an intermediate in the 

manufacture of rubber compounds (Verschueren 1983, Yang 1988), while it is also formed as 

a by-product during the production of vinylchloride, trichloroethene, and tetrachloroethene. 

The latter may be the cause for the detection of high concentrations in soil near 

tetrachloroethene producing facilities (Li et al 1976, Milchert et al 1988). In the former Soviet 

Union hexachloro-l,3-butadiene has been applied as fungicide (Asriev 1970, Malama et al 

1984). 

No information has been reported thus far about transformations of hexachloro-1,3-

butadiene in soil or ground water. The saturation of the molecule with chlorines may limit 

aerobic transformations but may be suitable for anaerobic reductive dechlorination reactions. 

In this study, we investigated the transformation of hexachloro-1,3-butadiene in columns 

packed with Rhine River sediment and operated under various redox conditions. Column 

experiments have been shown useful to assess the potential of sediments to transform organic 

contaminants (Kuhn et al 1985, Zeyer et al 1986, Van der Meer et al 1987, Van der Meer et al 

1992, Chapter 2,3). Transition metal coenzymes are known tó catalyze reductive 

dechlorination reactions and may provide a reference for comparison of dechlorination jn 

environmental samples (Schanke and Wackett 1992). Therefore, we also studied the possible 

reduction of hexachloro-1,3-butadiene by Ti(m) citrate and hydroxocobalamin (vitamin B12a). 

MATERIALS AND METHODS 

Chemicals 

Hexachloro-1,3-butadiene (98% pure) was purchased from E. Merck (Amsterdam, The 

Netherlands). l,l,4,4-Tetrachloro-l,3-butadiene (96% pure) was obtained from V.l. Potkin 

and R.V. Kaberdin of the "Institute of Physical Organic Chemistry" of the "Byelorussian 

Academy of Sciences", deuterated chloroform (99.8% D) from Janssen Chimica (Belgium), 

hydroxocobalamin from Fluka (Oud-Beijerland, The Netherlands). 

Ti(ni) citrate was prepared from TiClß and sodium citrate (Zehnder and Wuhrmann 

1976, Holliger et al 1992). In an anaerobic glove box (Coy Laboratories Products, U.S.A.), an 

ampoule of TiClß (7,5 ml) was added to 25 ml of 0.6 M anaerobically prepared sodium citrate. 

The pH was adjusted to about 8 with solid Na2CO3.10H2O, and subsequently to 9 with a 
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concentrated Na2CC>3 solution. The volume was brought to 75 ml with anaerobic 

demineralized water resulting in a final concentration of 100 mM Ti(IQ) citrate. 

Column experiments 

Columns were constructed of hard PVC (25 cm length, 5.5 cm i.d.) and were equipped with 

stainless steel capillaries (2.0 mm in diameter) extending into the center of the column at 

various heights (Van der Meer et al 1987). They served as sampling ports for concentration 

profile measurements. Columns were wet packed with sediment from the Rhine River near 

Wageningen, The Netherlands and were percolated continuously at a flow rate of 1 cm/h in an 

upflow mode, with a mineral medium prepared with highly purified milli-Q water (Millipore, 

USA) closely resembling the mineral composition of Rhine water (Van der Meer et al 1087). 

It contained NH4CI (27 mg/l), MgCl26H20 (102 mg/1), K2HP04 (12 mg/l), CaCl2 (222 

mg/1), NaHCC>3 (215 mg/1), Na2SC>4 (7 mg/1) and 0.15 ml/1 of a trace element solution 

(Zehnder et al 1980). The synthetic medium was continuously aerated with an excess of 

granulated marble which served as carbonate buffer in combination with C0 2 in the air (pH = 

8.3±0.1). In the anaerobic experiments, the originally aerated medium was depleted from 

oxygen by its continuous replacement with nitrogen gas amended with 0.5% C0 2 in a gas 

exchange chamber (Zeyer et al 1986). Reducing conditions were maintained by the addition of 

Na2S (10 mg/1 final concentration) via the solution of chlorinated hydrocarbons (Chapter 3). 

One column was operated without sulfide as reducing agent but with nitrate (final 

concentration 35 mg/1) added as electron acceptor. The columns were operated aseptically up 

to the influent port where a bacterial filter (cellulose-nitrate, 0.2 um, Sartorius GmbH, 

Germany) prevented back growth of micro-organisms from the sediment into the feeding lines. 

The medium was pumped into the columns by a peristaltic pump (Watson Marlow Ltd., U.K.) 

at a flow rate of 12.0 ml/h. A solution of hexachloro-l,3-butadiene was added continuously 

with a syringe pump (Perfusor VI, B. Braun Medical B;V., Germany) at a «flow rate of 0.6 

ml/h. This solution was prepared by adding 100 ul of a stock solution in methanol to 70 ml of 

milli-Q water. Final concentrations in the influent were 4 or 400 nmol/1, depending on the 

experiment. The solutions were autoclaved before use. Mixing of the hexachloro-

1,3-butadiene with the mineral medium took place in a mixing chamber just before entering the 

sediment columns. The columns were operated in a climate room at a temperature of 20°C. 

Column sampling and analyses 

Columns were sampled with glass syringes as previously described (Van der Meer et al 1987, 

Chapter.3). Sample volumes varied from 1 to 50 ml. They were analyzed routinely by tiexane 

extraction followed by on-column injection into a gas Chromatograph (United Technologies, 

The Netherlands) equipped with an Electron Capture Detector (ECD) and a 25 m capillary 

column (Sil 5CB, 1.2 um, Chrompack, The Netherlands). 
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To identify,the various transformation products, samples of 50 ml were purged with 

nitrogen gas at a flow rate of 10 ml/min. during 30 minutes at a temperature of 90°C by means 

of a purge and trap system (Chrompack, The Netherlands). Components present in the 

outflowing gas were trapped in a glass tube packed with 90 mg Tenax TA. The components 

were released from the Tenax in a Thermodesorption Cold Trap (TCT) unit (Chrompack, The 

Netherlands) at 250°C for 10 minutes with a Helium flow of 10 ml/min. The desorbed 

compounds were cryofocused in a cold trap at -100°C. Fast heating of this cold trap gave a 

sharp injection of the compounds onto the analytical column (Supelcowax-10, 60m length, 

0.25um film thickness). After an initial oven temperature of 60°C during 4 minutes, the 

temperature was raised to 270°C at a rate of 4 °C/min. The GC was connected to a VG 

MM7070F mass spectrometer operating in the 70 eV EI ionization mode. 

Samples for proton-NMR were prepared as follows. An aqueous sample (50 ml) was 

taken from the methanogenic column as described above. The sample was injected directly 

into a 2 ml aliquot of deuterated chloroform in a 60 ml extraction tube and shaken for five 

minutes. After settling, the aqueous phase was removed by syringe. Four additional samples 

were treated in a similar manner with the same aliquot of deuterated chloroform. Thus, 5 

samples of 50 ml were extracted resulting in an increase in concentration by a factor of 125 at 

maximum. After extraction, 1 ml of deuterated chloroform could be separated from the 

aqueous sample and was measured directly in the NMR-apparatus (Bruker AC-E 200). 

Reduction ofhexachloro-l,3-biitadiene by Ti(III) citrate 

The assay was adapted from Holliger et al. (Holliger et al 1992) and carried out in a series of 

13 ml serum bottles. The bottles were filled inside the anaerobic glovebox and sealed with 

viton stoppers (Maag Technic, Switzerland) and aluminium crimp caps. The reaction mixture 

contained 8.58 ml 100 mM TRIS/HCL (pH 9), 2.2 ml Ti(m) citrate (100 oiM), and 220 ul 

hydroxocobalamin (5 mM). In addition, three control series were prepared, one without 

Ti(in) citrate, one without hydroxocobalamin, and one without both. Bottles were stored at 

0°C before use. After the gas phase was changed with 100% N2, 11 ul hexachloro-1,3-

butadiene in ethanol (5 mM) was added by syringe. It was assured that ethanol was not 

transformed to ethene by GC/MSD-analysis (see below). The reaction was carried out at room 

temperature (22±1°C). After different time intervals, the reaction was stopped by the injection 

of 2 ml hexane into one bottle of each series. The bottles were stored at 4°C after extraction 

and analyzed within 48 hours by means of a Hewlett-Packard Mass Spectrometric Detector 

5970B connected to an HP 5890 Gas Chromatograph (GC/MSD). The GC/MSD was 

equipped with a 25 m capillary column (Sil 5CB, 1.2 um, Chrompack, The Netherlands! After 

an initial oven temperature of 40°C (5 min.) the oven temperature was raised to its final value 

of200°Catarateof 10°C/min. 1 . • . 
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A second assay was performed to determine transformation products. The reaction 

mixture contained 7.0 ml 100 mM TRIS/HCL (pH 9), 1.8 ml Ti(m) citrate (100 mM), 180 ul 

hydroxocobalamin (5 mM), and 350 ul 500 mM hexachloro-l,3-butadiene in ethanol. After 

one day of incubation, three bottles were analyzed via hexane extraction to determine non

gaseous transformation products. In addition, the head space of three other bottles was 

analyzed for possible gaseous dechlorination products by injection into the GC/MSD equipped 

with a 25 m capillary column (Sil 5CB, 1.2 um, Chrompack, The Netherlands). 

30 60 90 120 

time (days) 

150 180 1000 

Figure 4.1: Breakthrough of hexachloro-l,3-butddiene (HCBD) in aerobic and methanogenic columns. 
Removal took place under methanogenic conditions only. Influent concentrations were 4 nmol/l. 

RESULTS 

Column experiments 

In an initial experiment, an aerobic column, a column fed with nitrate as terminal electron 

acceptor and a methanogenic column were continuously fed with a medium containing getra

and trichloroethene, 1,2,3-, 1,2,4- and 1,3,5-trichlorobenzene, 1,2-, 1,3- and 

1,4-dicblorobenzene, hexachloro-l,3-butadiene, and 1,2-dicbloro^-nitrobenzene. The 

concentration of each compound ranged from 4-50 nmol/l (1-10 ug/1). Results of previous 

experiments with these columns were reported in detail in earlier papers (Van der Meer et al 

1987, Chapter 2,3). In the aerobic column only 1,2-dichlorobenzene was transformed after an 

acclimation period of 3 months (Van der Meer et al 1987). When nitrate was present as 

terminal electron acceptor, only l,2-dichloro-4-nitrobenzene was partially removed (Chapter 

2,3). In the methanogenic column, tetra- and trichloro-ethene, and 1,2,3-, 1,2,4- and 
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1,3,5-trichlorobenzene were transformed after initial acclimation'times varying from 2-6 

months (Chapter 2,3)- Removal of hexachloro-4,3-butadiene under methanogenic conditions 

was observed after an acclimation time of approximately 4 months (Fig. 4.1). In the presence 

of nitrate and under aerobic conditions, no disappearance of hexachloro-1,3-butadiene could 

be detected within the experimental period of three years. The aerobic breakthrough curve of 

hexachloro-1,3-butadiene shows much more dispersion than the methanogenic curve. The 

reason for this is not known. A possible explanation would be the occurrence of channelling in 

the aerobic column in combination with slow sorption kinetics of hexachloro-l,3-butadiene. 
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Figure 4.2: Disappearance of hexachloro-1,3-butadiene (HCBD) in a methanogenic column and the 
appearance ofpenta- (PCBD), tetra- (TeCBD) and trichloro-l,3-butadiene (TCBD). The influent 
concentration of hexachloro-l,3-butadiene was 400 nmol/l. 

The methanogenic column was first used to assess the transformation pathway of 

trichloro- and dichlorobenzenes in detail (Chapter 3). No hexachloro-1,3-butadiene was fed to 

the column during the time of this study. After its completion, the chlorinated benzenes in the 

influent were replaced by hexachloro-1,3-butadiene as sole organic contaminant. To detect 

possible intermediary products of the anaerobic transformation, its influent concentration was 

raised to 400 nmol/l (=100 ug/1). Hexachloro-1,3-butadiene was never detected in the effluent, 

despite its absence in the influent over a period of 1.5 year, in which the experiments with 

chlorinated benzenes were done. Profile measurements revealed that it disappeared within the 

first 5 cm of the column. A pseudo first order rate constant of 0.36 h"1 was calculated from the 

measurements at 0, 0.5, 1.0, and 2.5 cm from the inlet. Some unknown peaks appeared in the 

column (Fig. 4.2). 
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Hexachlorobutadiene dechlorination 

The mass spectra of these products (Fig. 4.3) show the characteristic pattern caused by 

the natural abundance of the chlorine isotopes. The molecular ions in the spectra a,b, and c of 

Fig. 4.3 indicate the presence of 5, 4, and 3 chlorine atoms respectively, in the corresponding 

compounds. They were identified as penta-, tetra-, and trichloro-l,3-butadiene, respectively. 

Judged from peak responses in the GC/MS-analyses, and taking into account the mass loss 

resulting from dechlorination, hexachloro-l,3-butadiene was completely converted to tetra-

(>90%) and trichloro-l,3-bùtadiehe (<5%). 

There are 9 possible isomers of tetrachloro-l,3-butadiene (Kaberdin and Potkin 1991). 

Since mass spectrometry only yields information on the gross formulas of compounds, further 

identification was done by means of proton-NMR. A sample taken from the methanogenic 

column at a height of 20 cm, where tetrachloro-l,3-butadiene was the dominant 

transformation product (at least 90%, confirmed by GC/MS), gave a spectrum with a singlet 

at d=6.47 ppm (Table 4.1). This means that the tetrachloro-l,3-butadiene is symmetric, since a 

singlet can only result from the presence of two identical protons in one molecule. This 

Figure 4.3: Mass spectra of penta- (a), tetra- (b), and trichloro-l,3-butadiéhe (c) obtained with 
column samples taken at different distances from the influent port. 
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restricted the number of possible structures to three symmetric isomers, which are listed in 

Table 4.1. By comparison of the measured chemical shift of 6.47 ppm to the values of the 

symmetric tetrachloro-l,3-butadienes (Table 4.1), we conclude that hexachloro-l,3-butadiene 

was reductively dechlorinated to (£,£)-l,2,3,4-tetrachloro-l,3-butadiene. The concentration 

of trichloro-l,3-butadiene in the extract was below the detection limit of the NMR-apparatus. 

Reduction ofhexachloro^l,3-butadiene by hydroxocobalamin andTi(III) citrate 

In the incubations with hydroxocobalamin and Ti(III) citrate, 5 mM hexachloro-l,3-butadiene 

was completely reduced within 2 hours (Fig. 4.4), with a first order rate constant of 2.5±0.5 h" 

*. The low concentration prevented the detection of degradation products in this experiment. 

No reduction was observed ki controls lacking hydroxocobalamin, Ti(ÜI) citrate, or both. To 

detect and identify transformation products, a second experiment was done with an initial 

hexachloro-l,3-butadiene concentration of 0.5 mM. The GC/MSD-analysis revealed the 

Table 4.1: NMR-data of symmetric tetrachlorobutadienes. 

chemical shift (ppm) reference 
1,1,4,4-tetrachlorobutadiene 

(Z,Z)-l,2,3,4-tetrachlorobutadiene 

(E,E)-l,2,3,4-tetrachlorobutadiene 

6.60 
6.59 
6.93 
7.12 
7.05 
6.47 
6.47 
6.47 

Prillwitz and Louw (1971) 
this study 
Misra(1978) 
Otaka (1972) 
Avagyan et al (1984) 
Köbrich and Buttner (1969b) 
Köbrich and Buttner (1969a) 
this study 

60 

time (min) 

Figure 4.4: Reduction of hexachloro-1,3-butadiene (HCBD) in batch systems with Ti(ltl) citrate and 
hydroxocobalamin. The initial concentration was 5 mM. 
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appearance of two dechlorination products in the hexane extracts and a third in the head 

space. One product was identified as pentachloro-1,3-butadiene from its mass spectrum, which 

was similar to the spectrum in Fig. 4.3a. The second product in the hexane extract showed the 

characteristic pattern caused by the natural abundance of the chlorine isotopes (Fig. 4.5a). The 

molecular ions in spectrum "a" of Fig. 4.5 indicate the presence of 3 chlorine atoms in the 

compound. Furthermore, the molecular ion with a mass of 49, results from the presence of 4 

carbons and 1 hydrogen in the molécule, and not from 1 carbon, 2 hydrogens, and 1 chloride, 

because a molecular ion with a mass of 51 is lacking. Thus, the compound was tentatively 

identified as trichloro-l-buten-3-yn. The product detected in the head space had a molar mass 

of 52 and showed the typical mass spectrum of l-buten-3-yn (Fig. 4.5b), which was confirmed 

by comparison with a published reference spectrum (McLafferty and Stauffer 1989). 
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Figure 4.5: Mass spectra oftrichloro-l-buten-3-yn (a) and l-buten-3-yn (b) obtained with samples from batch 
incubations of hexachloro-1,3-butadiene with Ti(III) citrate and hydroxocobalamin. * 

DISCUSSION 

Results from the column experiments show that hexacblqro-l,3-butadiene was only removed 

under methanogenic conditions, and not when oxygen or nitrate were present. It was 

concluded that the observed removal of hexachloro- 1,3-butadiene under methanogenic 

conditions was a biological process because (i) a long acclimation time preceded its 

disappearance and (ii) elimination was also observed in anaerobic batch experiments 
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Figure 4.6: Tentative pathways of the reductive dechlorination of hexachloro-1,3-butadiene (HCBD) in a 
methanogenic sediment column and in batch systems with Ti(lll) citrate and hydroxocobalamin (BI2a). 
(PCBD = pentachlorobutadiene, TeCBD = tetrachlorobutadiene, TCBD = trichlorobutadiene, TCBy = 
trichloro-l-buten-3-yn, By = l-buten-3-yn). The steric interactions between 1- and 3- (2- and 4-) chlorines in 
hexachloro-1,3-butadiene are indicated by dashed lines. 

inoculated with column material, but not in controls with autoclaved column material (not 

shown). 

The transformation pathway of hexachloro-1,3-butadiene in the methanogenic column 

is depicted in Fig. 4.6. The end products were (E,E)-l,23,4-tetrachloro-l,3-butadiene (>90%) 

and an isomer of trichloro-1,3-butadiene. These products are known as antifungal agents 

(Malama et al 1984) which means that the dechlorination in the column does not lead to a 

complete detoxification. Small amounts of pentachloro-1,3-butadiene were detected as 

intermediary product. Assuming that no chlorine atoms are translocated in the molecule during 
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the dechlorination reaction, it follows that the observed pentachloro-l,3-butadiene was (£)-

l,l,2,3,4-pentachloro-l,3-butadiene (Fig. 4.6). So, hexachloro-l,3-butadiene is reduced by 

consecutive steps in which one chlorine is substituted by one hydrogen (hydrogenolysis). A 

similar mechanism was found to be responsible for reductive dechlorination of other 

chlorinated hydrocarbons in sediment samples, such as tetrachloroethene (Bosma et al 1988, 

Bagley and Gossett 1990, Distefano et al 1991, De Bruin et al 1992), chlorinated benzenes 

(Fathepure et al 1988, Holliger et al 1992) and chlorophenols (Mikeseil and Boyd 1986, 

Chapter 3). Electrochemical and biological reductive dechlorinations of chlorobenzenes 

probably occur via a nucleophilic substitution mechanism (Farwell et al 1975, Chapter 3). In 

hexachloro-l,3-butadiene, the two central carbon atoms have a net positive charge resulting 

from the electron withdrawing effect of the chlorine substituents while the carbons at the 1-

and 4-positions have a net negative charge (Kokorev et al 1989). One would therefore expect 

that a nucleophilic attack would take place at the 2- (or 3-) position. However, dechlorinations 

in the methanogenic column actually occurred at the 1- and 4-positions, resulting in the 

formation of (E,E)-l,2,3,4-tetrachlorö-l,3-butadiene. This may be due to steric interferences 

between the 1- and 3- and 2- and 4- substituents respectively (Fig. 4.6), resulting in a gauche 

configuration of the hexachloro-l,3-butadienè. Indeed, an angle (ç>) of 78.1±1.1° in the single 

C-C bond has been measured by electron diffraction of gaseous hexachloro-l,3-butadiene 

(Gundersen 1975). Calculations with MINDO/3, a program that calculates the molecular 

structure and the enthalpy of formation óf a molecule from a given initial structure by 

minimizing the total energy in the molecule (Dewar and Thiel 1977), predict a similar value 

(ç*=95.8, Kokorev et al 1989). Furthermore, each chlorine substituent is forced out of the 

planar-configuration of each double carbon bond, because their Van der Waals radii overlap. 

As a consequence, the positively charged carbons in the middle of the molecule are completely 

surrounded by electron dense chlorines which prevents nucleophilic attack. 

Reductive dechlorination of hexachloro-l,3-butadiene in the batch incubations with 

Ti(in) citrate and hydroxocobalamin, yielded pentachloro-l,3-butadiene, trichloro-l-buten-3-

yn and l-buten-3-yn as products. The proposed reductive pathway is depicted in Fig. 4.6. The 

presence of pentachlóro-l,3-butadiene implies that the first step in the reductive dechlorination 

of hexachloro-l,3-butadiene was a hydrogenolysis, like in the column experiment. Moreover, 

the retention time in the analytical column differed from the retention time of the intermediate 

(£)-l,2,3,4,4-pentachloro-l,3-butadiene in the methanogenic column. Assuming that 

dechlorination in this experiment also took place at the 1-position, because of steric protection 

of the 2-position, we propose (Z)-l,l,2,3,4-pentachloro-l,3-butadiene to be the first 

intermediate of reductive dechlorination of hexachloro-l,3-butadiene by Ti(ffl) citrate and 

hydroxocobalamin. Reductions of chlorinated hydrocarbons with cobalamines as catalyst most 

probably proceed via nucleophilic substitution (Schrauzer and Deutsch 1969, Holliger et al 

1992), like the biological and electrochemical reductions. The presence of trichloro-l-buten-3-
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yn suggests that pentachloro-l,3-bütadiene was dechlorinated via a dihalo-elimination (Fig. 

4.6). During reductive dihalo-elimination of an alkane, two vicinal halogens are released from 

the molecule, giving the respective alkene (Schanke and Wackett 1992). Similarly, reductive 

dihalo-elimination of an alkene would result in the corresponding alkyn. Finally, trichloro-1-

buten-3-yn was dechlorinated by the replacement of two chlorines by two hydrogens (Fig. 

4.6). Dihalo-elimination by vitamin Bl2 has also been demonstrated with chlorinated alkanes 

(Gantzer and Wackett 1991, Holliger et al 1992, Schanke and Wackett 1992). Also, 

hydrogenolysis of tetrachloro-ethene and chlorinated benzenes (Gantzer and Wackett 1991) by 

vitamin B12 has been demonstrated before. 

From our experiments with hydroxocobalamin, one may conclude that methanogenic 

bacteria and acetogenic bacteria, which contain considerable amounts of this kind of cofactors 

(50-800 nmol/g dry weight, Dangel et al 1987), should have the potential to reduce-

hexachloro-i,3-butadiene, by analogy to observations with chlorinated ethanes (Holliger et al 

1990, Holliger et al 1992) and tetrachloro-ethene (Fathepure et al 1987, Gantzer and Wackett 

1991). However, the column results show that dechlorination under environmental conditions 

may involve other catalysts, which was also found for the reductive dechlorination of 1,2-

dichloroethane by a pure culture of Methanobacterium thermoautotrophicum (Holliger et al 

1992). While all chlorines can potentially be removed by hydroxocobalamin via a mechanism 

involving dihalo-elimination and hydrogenolysis, dechlorination in the column followed a 

different pathway and lead to the formation of (£,£)-l,2,3,4-tetrachloro-i,3-butadiene and an 

isomer of trichloro-l,3-butadiene as dead-end products. These products are known as 

antifungal agents (Malama et al 1984) which means that the dechlorination in the column does 

not lead to a complete detoxification. However, the dechlorinated products may be susceptible 

to aerobic degradation, an option that has to be tested in future experimentation. 
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SIMULATION MODEL FOR BIOTRANSFORMATION OF XENOBIOTICS AND 
CHEMOTAXIS IN SOBL COLUMNS 

Tom N.P. Bosma, Jerald L. Schnoor, Gosse Schraa and Alexander J.B. Zehnder 

Journal of Contaminant Hydrology 2 (1988):225-236 

ABSTRACT 
In this paper a model is presented which can be used to simulate the behaviour of xenobiotic 

chemicals in soil columns with respect to their physical and chemical properties. Terms 

describing biological transformation of xenobiotics are also included in the model. It 

incorporates microbial growth following Monod kinetics and a chemotactic response of the 

transforming bacteria towards the xenobiotic substrate. The model appeared to yield good 

simulations of an experiment by van der Meer et al. (1987) who investigated the degradation 

of 1,2-dichlorobenzene in soil columns inoculated with Pseudomonas sp. strain.PS 1. The 

behaviour and the fate of 1,4-dichlorobenzene as found by Kuhn et al. (1985) can also be 

simulated using this model, but their results were also adequately simulated using a simple 

second order model. The results generated by the model correspond to kinetic parameters 

obtained in other studies. It is concluded that the model is a useful tool for the investigation of 

the activity of bacteria degrading xenobiotics in soil columns, provided that the microbial 

parameters can be determined in independent experiments, and that the active microbial mass 

in the soil can be measured. 
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INTRODUCTION 
In recent years microbiologists have become interested in transformations of xenobiotic 

chemicals by micro-organisms in the environment. In most studies the transformation by pure 

cultures was investigated. In some cases degradative pathways (Williams and Worsey 1976, 

Reineke et al 1982, Schraa et al 1986a) were elucidated. In other cases the main objectives 

were the kinetics of biotransformation (Simkins and Alexander 1984, Lewis et al 1985, 

Schmidt et al 1985b). The latter type of studies were recently reviewed by Button (1985). 

Examples of the modelling aspects of biotransformation in aquatic systems are studies 

by Larson (1984), Paris et al. (1981) and Imboden (1986) and in biofilm reactors by McCarty 

et al. (1984). In general, the fitting of these models to experimental data has been done with 

non-linear regression techniques (Robinson 1985). 

A bottleneck in predicting the behaviour of xenobiotic chemicals in natural systems 

with a model, is the lack of reliable data about the in situ metabolic activity of micro

organisms involved in transformation reactions of these compounds. By using information 

from field, laboratory and pure culture studies, we have developed a model which can be used 

to simulate the behaviour of biodégradable xenobiotic chemicals in laboratory soil columns. 

The model contains physical, chemical and microbiological terms and it is assumed that 

bacteria in the soil transform the xenobiotic substrate following Monod kinetics just as pure 

cultures do. Since van der Meer et al. (1987) and Schraa et al. (1986b) have demonstrated a 

chemotactic response of bacteria in soil percolation columns to some of these chemicals, a 

mathematical expression for Chemotaxis has been derived and is included in the model. 

Chemotaxis is defined as the movement of organisms in response to a chemical 

stimulus (Berg 1975). It can be compared to phototaxis observed with algae and plants. When 

bacteria show a positive chemotactic response to a chemical compound, they move against the 

concentration gradient of this compound. Therefore, it is assumed that the chemotactic 

response of bacteria is governed by (i) the concentration gradient of the chemical compound 

and (ii) the number of micro-organisms which is available to move against this gradient (Keller 

and Segel 1971). The model has been calibrated with results of the experiment by van der 

Meer et al. (1987) and with data of 1,4-dichlorobenzene obtained from a study by Kuhn et al. 

(1985). 

THEORY 
To describe the physical and chemical behaviour of organic chemicals in porous media, a 

model was developed by Lapidus and Amundson (1952). This model is given in equation (1) 

where C is the concentration of the compound (ugL ), t is time (h), D is the dispersion 
9 1 1 

coefficient (cm h" ), z is the space co-ordinate (cm), V is the flow rate of the water (cm'h ), 
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Kp is the partition coefficient (L.g"1), p is the particle density of the soil (g-cm"3), and f is the 

porosity of the soil ( L 'L ) . 

• = D^-V^-Kp^p(l-e),e (1) 
dC d2C dC dC 

Schwarzenbach and Westall (1981) showed that this model is applicable to the transport of 

various non-polar compounds in soil columns, continuously operated under saturated flow 

conditions. The above model describes the effects of dispersion, transport due to the flow of 

water, and adsorption. Transformation of the xenobiotic compounds by micro-organisms 

which use these compounds as their source of carbon and energy is not included. 

Assuming Monod kinetics (Monod 1949) the uptake rate of a xenobiotic chemical is 

described by equation (2) where pnax is the apparent maximum specific growth rate (h~ ) 

which will be discussed later, X is the bacterial density (ugl/1) , Y is the yield coefficient 

(ug'ug ) and Ks is the half saturation constant (ugL ). 

d£=_p^CX 'max (2) 
dt Y{KS+C) 

Equation (2) assumes that degradation only occurs in the liquid phase of the column. It is 

possible that this assumption is not valid and that degradation also takes place on the solid 

phase. However, the site of biotransformation is irrelevant in the model because equation (1) 

assumes local sorption equilibrium for the substrate. 

Combining and rearranging of equations (1) and (2) yields equations (3) and (4) where 

Rd is the retardation factor (dimensionless). 

dC _ Dd2C ydC p^ CX 
dt dz2 dt Y{KS + C) *'3r = z^kr-V^r-ST. ^ (3) 

Rd = \+Kpp(\-è)le • (4) 

The value of the retardation factor (Rd) for a known compound can be predicted from its 

octanol/water partition coefficient (Schwarzenbach and Westall 1981, Schwarzenbach 1986), 

or estimated from a breakthrough curve by dividing its retention time by that of water. 

When a substrate is degraded according to the kinetics of equation (2), microbial 

growth is described by equation (5), where b is the decay coefficient (h"1). It is assumed that b 

is proportional to the bacterial density (Sinclair and Topiwala 1970). 

M = pnmcx_bji 

dt Ks + C w 

During the calibration of the model with the data of Kuhn et al. (1985), it appeared that p,^ 

and b were highly correlated: an increase of pI!m could be completely compensated for by an 

increase of b. In addition, we have not been able yet to determine values of b in independent 
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pure culture experiments. Therefore, the second term of equation (5) was eliminated from the 

model. This implies that fi,^ represents only the apparent maximum specific growth rate since 

it is the resultant of both the growth and decay of bacteria. 

Results presented by van der Meer et al. (1987) and Schraa et al. (1986b) give 

evidence that Chemotaxis may play a role in the biotransformation of xenobiotic chemicals in 

soil percolation columns. The effect of Chemotaxis is therefore incorporated in the model. As 

mentioned in the introduction, the chemotactic response of bacteria is proportional to the 

microbial density and the concentration gradient of the substrate. This is expressed in equation 
9 1 1 

(6) where Kc is the çhemotactic coefficient (cm Lug h ). 

f=-*#f) 
When growth and movement due to Chemotaxis are considered simultaneously, and 

eliminating the second term of equation (5), the change of bacterial density in an infinitesimal 

segment of a soil column is obtained from equation (7) where u ^ is the apparent maximum 

specific growth rate (h ). 

dK_tiTmcx d(xdc\ 
dt Ks + C cdzK di) 

(7) 

The simulation model for Chemotaxis and biotransformation of xenobiotics is defined by 

equations (3) and (7). Its parameters are listed in Table 5.1. The simulations were carried out 

using CSMP III (IBM 1975). Both equations are partial differential equations because they 

contain more than one independent variable (namely z and f). The equations were converted to 

two sets of ordinary differential equations by eliminating the space co-ordinate with the 

method of lines. These two sets of differential equations were implemented in CSMP HI - a 

simulation language that is designed to solve ordinary differential equations numerically. 

Several integration methods are available in CSMP HI of which the Runge-Kutta-Simpson 

method (IBM 1975) was used. 

The values of the unknown parameters were calculated by non-linear regression 

analysis with the PODS-module developed by Birta (1977). The module is especially fitted to 

perform non-linear regression with models written in computer languages like CSMP lu. The 

least squares function J (equation 8) in which n is the number of data, C^ is the measured 

concentration at data point i and Cci is the calculated concentration at the same data point, was 

minimized during the regression analysis. 

•/ = X(Cra-Cj2 (8) 

Initial guesses of the parameters were obtained from data which are available from pure 

culture experiments (Table 5.4). 
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Table 5.1: Names and dimensions of the symbols used in the model 

Symbol Definition Dimension 

c 
X 
t 

z 
D 
V 

"max 

x. 
Y 

Rä 

«r 

Concentration of substrate 
Bacterial density 
Time 
Space co-ordinate 
Dispersion coefficient 
Flow rate of water 
Apparent maximum specific growth rate 

Half saturation constant 
Yield coefficient 
Retardation factor 
Çhemotactic coefficient 

mg-I/1 

mg-I/1 

h 
cm 
„m21,-1 cm -n 
cm-h" 
h"1 

mg-I/1 

mg-mg" 
-
cm -L-mg" -h" 

MODEL PERFORMANCE 
The performance of the model was tested with data of column experiments by Kuhn et al. 

(1985) and van der Meer et al. (1987). These investigators used small columns (length ca. 20 , 

cm) which were wet-packed with sand from a river/ground water infiltration site. The columns 

were percolated with a mineral salts medium containing a mixture of xenobiotics. Kuhn et al. 

(1985) showed that their results were qualitatively comparable with field data (Schwarzenbach 

et al 1983). 

The Chemotaxis term of the model was calibrated with the experiment by van der Meer 

et al. (Van der Meer et al 1987). In this study, a soil column showing no transformation of 

1,2-dichlorobenzene was inoculated with Pseudomonas sp. strain P51 which was able to use 

1,2-, 1,3-, and 1,4-dichlorobenzene and 1,2,4-trichlorobenzene as sole carbon and energy 

source (Van der Meer et al 1987). The inoculum was added 10 cm beyond the influent port of 

the column and for the simulation of this experiment, it has been assumed that the cells had 

subsequently colonized the rest of the column beyond this point homogeneously. Initially, 

1,2-dichlorobenzene was only transformed at and beyond the point of inoculation. In time, the 

transformation also occurred before this point. After 42 days, 1,2-dichlorobenzene 

transformation took place already at the beginning of the column (Fig. 5.1). The model was 

calibrated with this experiment using Kc as fitting parameter. The values of the other 

parameters were determined independently. The dispersivity of the column material was 

measured with a pulse of tritiated water, Rd was determined by dividing the residence time of 

1,2-dichlorobenzene in the column by that of the tritiated water and the Monod parameters of 

Pseudomonas sp. strain P51 were determined with pure culture experiments. The parameter 

values are listed in Table 5.2. The concentration profiles yielding the best fit with the data of 

van der Meer et al. (1987) are shown in Fig. 5.1. The resulting value of Kc was 4-10 ± 

O^ lO^cm^Lng^h 1 . 
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Figure 5.1: Calculated concentration profiles of J,2-dichlorobenzene at 0,9, and 42 days after inoculation of 
a soil column with Pseudomonas sp. strain P51. the experimental data are indicated with squares (0 days), 
circles (9 days) and triangles (42 days). 
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Figure 5.2: Calculated breakthrough curves of 1,4-dichlorobenzene assuming Monad kinetics and second 
order kinetics. The experimental data of1,4-dichlorobenzene are indicated with triangles. 
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The model was also calibrated with the data of 1,4-dichlorobenzene by Kuhn et al. 

(1985). In this case, independent measurements of the Monod parameters were not available. 

Additionally, the initial bacterial density (X0) was not known. Therefore, the model was 

calibrated with fi'm, Y, K# Ke and X0 as fitting parameters. The values of D and Rd were 

available from Kuhn (1986). The parameter values which yielded the best fit with the 

experimental data are listed in Table 5.2. The resulting breakthrough curves and concentration 

profiles are shown in Fig. 5.2 and 5.3. 

Table 5.2: Model parameters for the experiments with 1,2-dichlorobenzene by van der Meeretal. (1987) 
and 1,4-dichlorobenzene by Kuhn et al. (1985). 

Parameter 
Influent concentration (nig/1) 
Initial bacterial density (mg/1) 
D (cm2!!"1) 
V(cmh_1) 

*,(-) 
Hinging"1) 

/WOT1) 
Ks(mgUl) 

^(cnAL.pg-'.h-1)-

1,2-dichlorobenzene 

1000a 

1500a 

0.4b 

4.0b 

3.6b 

Ö.16b 

0.01b 

32.0b 

4.0xl0"4(0.4xl0"4)f 

1,4-dichlorobenzene 

32.fc 

25.0(2.0)f 

1.0d 

4.0C 

6.7e 

0.10(0.02)f 

0.009 (0.0007)f 

18.0(3.0)f 

0.045 (0.019)f 

Van der Meeretal (1987). 

Determined independently. 

C Kuhn et al. (1985). 

d Kuhn (1986). 

" Calculated with the method of Schwarzenbach and Westall (1981). 

Obtained by fitting (standard errors for the fitted parameters are given in brackets) 

Since the experimental data of Kuhn et al. (1985) had to be calibrated with five fitting 

parameters, it is possible that these data can be simulated using a simpler model without a 

statistically significant decrease of the quality of simulation. Therefore, a sensitivity analysis 

was performed by omitting or changing some of the assumptions of the model. The statistical 

significance of the difference between the quality of fit of two models was tested using an 

F-test (Robinson 1985). The results of the sensitivity analysis are summarized in Table 5.3. 

The first step was to omit the assumption of Chemotaxis and to replace Monod kinetics by 

simple second order kinetics (Paris et al 1981). This model is given in equations (9) and (10), 

where k2 is the second order growth constant (L-h -ug ). 

(9) 

(10) 
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The best fit of this model with the experimental data by Kuhn et al. (1985) did not significantly 

differ from the best fit obtained with the Monod with Chemotaxis model (Table 5.3). The value 

of the second order growth constant obtained after calibration was 2.4-10"4 ± 0.2-10"4 

L-h ng . This value is approximately two orders of magnitude larger than values found by 

Paris et al. (1981) for the butoxy-ethylester of 2,4-dichloro phenoxy acetic acid (2,4-DBE) in 

aquatic systems. Nor the combination Monod without Chemotaxis, nor second order with 

Chemotaxis, yielded a fit of the experimental data that differed significantly from the simple 

second order model (Table 5.3). However, it is interesting to note that the difference between 

the Monod models with and without Chemotaxis are significant (Table 5.3). This difference is 

illustrated in Fig. 5.3. Despite this fact it can be concluded from the sensitivity analysis that the 

data provided by the experiment from Kuhn et al. (1985) can adequately be simulated with 

both the Monod with Chemotaxis or a simple second order model. 
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Figure 5.3: Calculated concentration profiles of 1,4-dichlorobenzene assuming growth with Chemotaxis and 
growth without Chemotaxis after 10 days (A) and after 17 days (B). The experimental data are indicated with 
triangles. 
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Table 5.3: The statistical significance (P=0.1) of the difference between the simulations, of the data by 
Kuhn et al. (1985) according to an F-test (Robinson 1985). 

Monod 

+ Chemotaxis 

Second order 

+ Chemotaxis 

- Chemotaxis 

+ Chemotaxis 

Sa 

NSb 

NS 

Monod 
- Chemotaxis 

-

NS 
NS 

Second order 
+ Chemotaxis 

' 
-

NS 
S = significant 

NS ~ not significant 

DISCUSSION 

From the results of the simulation of the experiment by van der Meer et al. (1987), it can be 

concluded that the model combining Monod with Chemotaxis provides a good description of 

1,2-dichlorobenzene degradation by Pseudomonas sp. strain P51 inoculated in a soil column. 

All parameter values for this experiment were determined independently, except the value of 

Kc. The sensitivity analysis reveals that the degradation of 1,4-dichlorobenzene as found by 

Kuhn et al. (1985), is equally well simulated with the simple second order model (equations 9 

and 10), as with the Monod model with Chemotaxis. However, there are several reasons to use 

the Monod model: 

(i) The Monod equation provides a description of substrate uptake and growth of bacteria 

which is generally accepted among microbiologists; 

(ii) The Monod model converts to the simple second order form when the substrate 

concentration is low in comparison to Ks. During the column experiment of Kuhn et al. 

(1985) 1,4-dichlorobenzene concentrations were almost always below the fitted K, value 

of 18 ug-L" . Thus, it might be that the soil column experiments do not have the proper 

design to discriminate between the two models; 

(iii) The values of the Monod parameters obtained after fitting the model with the 

1,4-dichlorobenzene data from Kuhn et al. (1985) show a good agreement with the pure 

culture data for 1,2-dichlorobenzene obtained with Pseudomonas sp. strain P51 (Table 

5.2). As 1,2- and 1,4-dichlorobenzene are very similar substrates, it is reasonable to 

compare these values; 

(iv) The fitted k2 value of 2.4-10"4•L-hf'-ng"1 obtained with the simple second order model, is 

approximately two orders of magnitude larger than values found by Paris et al. (1981) for 

2,4-DBE, obtained with the same model. 

If for the reasons mentioned above, the Monod model is thought to be more realistic than the 

simple second order model, the significance of the difference between the Monod models with 

and without Chemotaxis (Table 5.3, Fig. 5.3) is important. The results from the experiment by 

van der Meer et al. (1987) indicate that Chemotaxis may be an important process in the soil 
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columns. However, the difference between the values of Kc determined from the two column 

experiments is very large. With the results which are available now, this cannot be explained. 

Literature data to which the Kc values can be compared, were not found. 

From the literature, it is known that Chemotaxis may have a great influence on the 

growth of bacteria in heterogeneous environments. Pilgram and Williams (1976) showed that a 

chemotactic strain of Proteus mirabilis outgrew a non-motile mutant in a semi-solid 

(heterogeneous) medium while the two strains grew equally well in a homogeneous medium. 

Kennedy and Lawless (1985) observed that a chemotactic strain of Pseudomonas fluorescens 

survived significantly better in soil than a non-motile strain of the same species. In an elegant 

experimental set-up, Walsh and Mitchell (1978) showed that bacteria are able to move 

perpendicular to flow rates of up to 2 cmmin"1 in a cylinder with a length of 6 cm. From these 

results it may be concluded that chemotactic bacteria have advantages in environments where 

concentration gradients of substrates occur. With the simulation model, a large bacterial 

density was predicted in a sharp band at the inlet of the column. This is consistent with 

experimental data of Dahlquist et al. (1972) and Holz and Sow-Hsin Chen (1979), who 

observed bands of chemotactic bacteria as a response to a steep increase in substrate 

concentration. , 

Van der Meer et al. (1987) have found thaf in their experiments 1,2-dichlorobenzene 

was not transformed below a threshold concentration of ca. 5 ug-L in inoculated and ca. 0.1 

ug-L"1 in "naturally adapted" soil columns. Such a threshold or Snia value has also been 

demonstrated by Bouwer and McCarty (1984) and Rittmann and McCarty (1980). They have 

shown that its value in biofilm columns can be predicted with equation (11), where b is the 

loss rate of bacteria (h"1). The existence of b can be caused by (i) decay, (ii) maintenance 

requirements, and/or (iii) sheer loss of bacteria. 

**-SrV (11) 
" m a x 

However, as mentioned in the "Theory" section, we did not succeed in incorporating the loss 

rate of bacteria in the model. Predictions of threshold concentrations can only be made using 

our model, if b is included. It is obvious that the absence of a decay term in the model is 

unrealistic because it results in an indefinite growth of bacteria in the simulations. Therefore, it 

is needed that experiments be designed in the future where growth of bacteria in relation to 

degradation of xenobiotics in the soil is followed quantitatively. Such research is in progress in 

our laboratory. 
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Table 5.4: Values of the maximum specific transformation rate (fi maxK " ), the half saturation constant 
(KJand the yield coefficient (Y) obtained from different studies. 

Substrate Organism Culture 

conditions 

Mm«* 

Of«) (mg-I/1) 

1,2-dcb1 

1,4-dcb2 

1,2,4-tcb3 

1,2-drab4 

benzoate 

4-cp3 

Pseudomonas P51 

mixed culture 

mixed culture 

Pseudomonas P51 

Alcaligenes A175 

Pseudomonas P51 

Arthrobacter sp. 125 

Pseudomonas sp. 

Pseudomonas sp. 

Pseudomonas sp. 

Pseudomonas sp. 

pure culture 

soil column 

field study 

pure culture 

pure culture 

pure culture 

pure culture 

pure culture, 
induced cells 

pure culture, 
uninduced cells 

0.06 

0.3 

0.17 

ND 

ND 

pure culture 0.43 

pure culture ND 

32.0 

18.0 

0.4 

ND 

ND 

ND 

ND 

43.2 

33.1 

450 

1295 

0:16 

0.1 

ND 

0.16 

0.18 

0.1 

0.56 

ND 

0.01 

ND 

ND 

-
this study 

Schwarzenbach et al 

(1983) 

unpublished data 

Schraa et al (1986a) 

unpublished data 

unpublished data 

Button (1985) 

Button (1985) 

Simians and Alexander 
(1984) 

Parisetal (1981) 

1,2-dichlorobenzene. 

1,4-dichlorobenzene. 

1,2,4-trichlorobenzene. 

1,2-dimethylbenzene. 

4-chlorophenol. 

ND=not determined. 

Some of the parameter values for 1,4-dichlorobenzene which were calculated with our 

model, may be compared to values obtained in batch culture studies with chemically and 

structurally related compounds (Table 5.4). The maximum specific growth rate is converted to 

a maximum specific transformation rate (ji'^JY) because in some studies only the 

transformation rates were measured. The values of the maximum transformation rate (ca. 0.1 

H.g L"1) and the yield coefficient (0.1 \ig-\x.% ) are of the same order of magnitude as those 

obtained in other studies. However, the value of the half saturation constant of 18 H-g-L is 

lower than values measured by others (Paris et al 1981, Simkins and Alexander 1984, Button 

1985). As the soil columns used by Kuhn et al. (1985) were operated with low input 

concentrations, this low value of Ks may be interpreted as an adaptation of the transforming 

bacterial population to a low concentration of their carbon and energy source (Button 1985). 

In this light, it is interesting to compare the results of this study with the field observations 

made by Schwarzenbach et al. (1983). These authors measured a concentration profile of 

1,4-dichlorobenzene at a river water infiltration site in Switzerland. From this published 

concentration profile, the Ks for 1,4-dichlorobenzene can be estimated with a Lineweaver-

Burk plot. In order to accomplish this, it is assumed that the 1,4-dichlorobenzene 

concentration in the river was the initial concentration for the transformation until the first 

sampling point. The concentration at this point serves as initial concentration for the next 

point, and so on. The resulting estimate for the Kr in the field was 0.4 Jig-L"1. The low 
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1,4-dichlorobenzené concentration in the river (ca. 0.2 |i.g-L" ) seems to induce a lower Ks in 

the field. It should be remembered here that the soil material used by Kuhn et ai. (1985) was 

obtained from the same site where Schwarzenbach et aL (1983) made their observations. 

Therefore, it is reasonable to compare the field data with the laboratory column data. 

It must be stressed that from the results obtained by simulation as presented in this 

paper, no definite conclusions can be drawn about the details of the processes occurring in the 

soil percolation columns. The main problem is that one of the variables of the model, the 

amount of microbial biomass, which is responsible for the transformation of the xenobiotic 

chemicals, was not measured by Kuhn et al. (1985) and is indeed very difficult to measure. 

This complicates the development of models describing biological transformations in the soil 

because they have little predicting value, when they contain variables which cannot be 

measured (Imboden 1986). A first solution to this problem has been provided by the 

inoculation experiment by van der Meer et al, (1987). It has been possible to follow the 

activity of Pseudomonas sp. strain P51 in the column quantitatively. Additionally, Monod 

parameters were determined independently in pure culture experiments, while the amount of 

inoculum was known. Similar experiments to determine the microbiological parameters in the 

soil independently are needed and are in progress in our laboratory. In addition efforts are 

made to develop methods for the determination of active microbial mass in the soil. 
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TRANSPORT OF INTRODUCED BACTERIA AND BIOTRANSFORMATION OF 

ORGANIC COMPOUNDS IN SATURATED SODL COLUMNS 

Tom N.P. Bosnia, R. Kockelkoren, R. Kolkhuis-Tanke, H. de Wilde, Gosse Schraa 

and Alexander J.B. Zehnder 

to be submitted to Environmental Science & Technology 

ABSTRACT 
The biotransformation of organic compounds by introduced bacteria was studied in saturated 

soil columns percolated with aqueous media of varying ionic strength. Pseudomonas sp. strain 

B13 and Rhodococcus sp. strain CI25 growing on 3n:hlorobenzoate and benzoate 

respectively, were used as model organisms. Rhodococcus sp. strain CI25 attached better to 

the column material than did Pseudomonas sp. strain B13. Attachment of both strains 

improved with increasing ionic strength. Biotransformation of benzoate by introduced 

Rhodococcus cells at low ionic strength was best described by a model that allowed growing 

cells to detach from the solid to the aqueous phase. In contrast, biotransformation at high ionic 

strength was best described assuming no detachment. The ionic strength of the water in which 

bacteria are introduced into soil controls the transport and attachment of bacteria during 

bioremediation. The occurrence of a uniform residual concentration at all levels of the ionic 

strength, could not be explained by the model approach. A heterogeneous distribution of the 

bacteria in the soil columns most probably causes the observed residual concentration. 
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INTRODUCTION 

The objective of in situ bioremediation is to stimulate growth of micro-organisms in 

contaminated aquifers and soils, and thus increase biotransformation rates of organic 

contaminants. Sometimes, specific micro-organisms are introduced, especially when 

compounds are present which are not readily degraded by the autochthonous microflora. The 

success of the addition of micro-organisms depends on their ability to reach the contamination, 

to survive, and to carry out the desired reaction. A better understanding and control of the 

transport of bacteria in soil and ground water will help to optimize techniques for 

bioremediation employing introduced bacteria. The transport of bacteria under saturated flow 

conditions is controlled by surface characteristics of bacteria and soil particles and by the ionic 

strength of the flowing water (Elimelech and O'Melia 1990, Martin et al 1992, Rijnaarts et al 

1993a). The adhesion of bacteria to solids can be understood with concepts derived from the 

DLVO-theory which predicts a positive correlation of adhesion of negatively charged cells and 

negatively charged solids with their hydrophobicities and with the ionic strength of the water 

(Van Loosdrecht et al 1989, Rijnaarts et al 1993a, Rijnaarts et al 1993b), 

The objective of the present study was to investigate the transport and 

biotransformation of organic compounds and the transport of bacteria in saturated soil 

columns simultaneously. Pseudomonas sp. strain B13 and Rhodococcus sp, strain CI25 which 

have different surface properties and are able to grow on 3-chlorobenzoate and benzoate .. 

respectively, were selected as model systems. The adhesion of the strains to the column 

material was controlled by using aqueous media of varying ionic strength. Experimental results 

were used to validate a mathematical model incorporating approaches originating from colloid 

filtration theory and classical microbial growth kinetics with parameters obtained from 

independent sources as input. 

MATERIALS AND METHODS 

Cultivation and preparation of bacteria 

Pseudomonas sp. strain B13 (Dorn et al 1974) was a kind gift of Prof. Reineke (University of 

Wuppertal, Germany). Cells are hydrophilic and have a moderate negative charge at pH=7, as 
Q 

demonstrated by contact angle (8W=32°) and electrophoretic mobility ( K= -2 . 9M0 
? 1 i m V s ) measurements (Rijnaarts et al 1993a). Rhodococcus sp. strain C125 was originally 

described as Corynebacterium sp. strain CI25 (Schraa et al 1987) and later renamed to 

Rhodococcus (Bendinger et al ). In contrast to Pseudomonas strain B13, cells are hydrophobic 

(6W=70°) and have a high negative charge (K=-3.3410~8 m^V 'V 1 ) . 

Both strains were grown in a mineral medium (Schraa et al 1986) amended with 5 mM 

3-chlorobenzoate for Pseudomonas sp. strain B13 and 5 mM benzoate for Rhodococcus sp. 
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strain C125. Cells from two 250 ml cultures were harvested in the late exponential phase and 

washed by repeated centrifuging (3x10 min;, 20,000 g) and resuspension of the pellet in 

mineral medium. Finally, cells were resuspended in 10 ml mineral medium and were stored on 

ice until experimentation began (within an hour). In the case of column experiments, cells were 

washed and resuspended in a tenfold dilution of the mineral medium. 

Rifampicin resistant cells of Pseudomonas sp. strain B13 were obtained by striking 100 

|ii of a suspension containing at least 10 cells on nutrient broth (Difco, 8 g/1) agar plates 

amended with 50 mg/1 of the antibiotic. Plates were incubated in the dark at 30°C. After 3 

days of incubation, colonies were picked and inoculated in mineral medium amended with 3-

chlorobenzoate (5 mM) and rifampicin (50 mg/1). The stability of the obtained rifampicin 

resistance was checked by subculturing the obtained resistant cells in medium without the 

antibiotic 3 times. No loss of resistance was observed. Contact angles and electrophoretic 

mobilities of resistant and wild-type cells were the same. 

Column experiments with Pseudomonas sp. strain B13 

Columns constructed of hard PVC (10 cm length, 2.5 cm i.d.) were wet packed with sand 

(organic matter content < 0.1%, grain size 0.25-0.50 mm) from the Rhine River near 

Wageningen, The Netherlands. Columns were operated in an up-flow mode at a flow rate of 4 

ml/h with media of varying ionic strengths (adjusted by addition of NaCl). Columns were 

percolated with the appropriate media* overnight, before suspensions of rifampicin resistant 

Pseudomonas sp. strain B13 (about. 10 CFU/ml), were applied to study the transport of the 

cells. Cell numbers in in- and effluent were determined by means of tenfold Counts on agar 

plates prepared with mineral medium containing 10 mM 3-chlorobenzoate and amended with 

50 mg/1 rifampicin, and expressed as Colony Forming Units per ml (CFU/ml). The detection 

limit of the method was 100 CFU/ml. Plates were always counted within 48 h of incubation. 

Samples of the sand used for the experiments were checked for the presence of indigenous, 3-

chlorobenzoate degrading and rifampicin resistant bacteria by blending 1 g with 10 ml of a 

phosphate buffer (10 mM) during 1 min. and applying 3x100 u.1 on nutrient broth plates 

containing the same amount of rifampicin as used for counting. No colonies appeared on the 

plates during 48 h of incubation. 

Biotransformation of 3-chlorobenzoate by Pseudomonas sp. strain B13 was studied 

with the same set-up. Columns were inoculated either by injection of 1.5 ml of a cell 

suspension (107 CFU/ml) just above the influent port, or by wet packing the columns with 

mineral medium of appropriate ionic strength containing rifampicin resistant cells (10 or 10 

CFU/ml). Columns were left overnight without pumping to establish equilibrium between 

suspended and sorbed cells, before medium containing 3-chlorobenzoate (3.2 jiM) was 

applied. The residence time in the columns was determined using chloride (100 mM) as 

conservative tracer. 
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Batch degradation and uptake experiments with Rhodococcus sp. strain C125 

The net yield (mg dry weight/mmol) of Rhodococcus strain C12S during growth on benzoate 

was determined by growing the organism on 1, 2, 3, 4, and 5 mM benzoate. The maximum 

biomass obtained was measured spectrophotometrically as optical density at 660 nm (OD^). 

The relation between OD^, and dry weight was established with a serial dilution of a culture 

of known dry weight, which was measured by putting 3x2.5 ml of culture suspended in 

mineral medium at 105°C overnight. Sterile mineral medium served as control. 

The maximum specific growth rate was determined by following substrate 

consumption in 20 ml cultures with a known initial dry weight, amended with a series of initial 

benzoate concentrations in the range of 5 uM to 1 mM. Cultures were incubated on a rotary 

shaker at 20°C at 400 rpm. 

Benzoate uptake kinetics were quantified in short term experiments by measuring 

benzoate depletion in a series of 1 ml Eppendorf centrifuge tubes containing culture with a 

known dry weight, amended with initial benzoate concentrations of 5, 10, 20, 40, 80, 100, 

200,300,400, and 500 jiM (seven tubes for each concentration). The reaction was carried out 

at 20°C. It was stopped at 5 minute intervals by the addition of 20 uJ of concentrated HjS04 

to 1 tube óf each concentration. The depletion rate for each concentration was calculated by 

only taking into account the initial slope of the curve. For concentrations above 40 nM this 

always comprised at least 3 data points. Lower concentrations were depleted within 10 

minutes, and therefore, only the first 2 data points could be used to calculate the slope of the 

curve. 

The half saturation constant for the uptake of benzoate was also determined by 

measuring the oxygen uptake rate at different benzoate concentrations polarographicaUy with 

an oxygen electrode at 20°C. Uptake rates were corrected for endogenous respiration. 

Column experiments with Rhodococcus sp. strain C125 

Autoclaved glass columns with an internal diameter of 1 cm and a length of 10 cm were wet 

packed with autoclaved sand (organic matter content < 0.1%, grain size 0.09-0.25 mm) 

obtained from the Rhine River near Wageningen, The Netherlands. Columns were operated in 

an down-flow mode at a flow rate of 10 ml/h. The in- and outlets were equipped with glass 

filters to obtain a homogeneous flow through the column. Bacterial suspensions of different 

ionic strength were obtained by diluting samples of the concentrated suspension to a final 

optical density at 280 nm ( O D ^ of 0.6 (Rijnaarts et al 1993a) corresponding to 25 

mg dry weight/1. This value remained constant throughout the experimental time. OD^ was 

related to cell dry weight thé same way as described for the OD«,,. The ionic strength of media 

was adjusted by the addition of different amounts of NaCl, such that the negative logarithm of 

the ionic strength (pi) varied between 1 and 2.5. Columns were equilibrated by percolating 
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medium overnight. Then, cell suspensions were applied to the columns for 60 minutes 

followed by cell-free solutions of the same pi for an additional hour. The OD^ of the effluent 

was monitored in effluent samples throughout the experimental time of 2 hours. Tmally, the 

influent solutions were replaced by cell free solutions of the same pi amended with 50 ^M 

benzoate. The effluent of two columns (one low and one high pi) was sampled for 9 hours by 

means of fraction collectors. Samples were collected in glass tubes containing 30 ul HjSO^ to 

prevent benzoate transformation after sampling. The effluent of all columns was sampled after 

16 and 40 hours of continuous operation to determine steady state residual benzoate 

concentrations. The residence time in the columns was determined using chloride (100 mM) as 

conservative tracer. 

Analyses 

Benzoate and 3-chlorobenzoate were analyzed by HPLC (Schraa et al 1986). Chloride was 

measured with a chlor-o-counter (Marius, Nieuwegein, The Netherlands). 

THEORY 

Transport of bacteria 

The transport of bacteria under saturated flow conditions can be understood with the concepts 

and models from colloid filtration theory (Iwasaki 1937, McDowell-Boyer et al 1986, Harvey 

and Garabedian 1991, Martin et al 1992). Cells are transported with the flowing water. 

Sorption may retard their movement while irreversible attachment, sedimentation and 

interception leads to a removal of cells from the flowing water. These processes were 

originally combined in an equation that stated that the concentration of suspended cells 

declines exponentially with column length (Iwasaki 1937): 

dB«, 

-£—»-< (1) 

where B^ is the aqueous bacterial density, z the axial co-ordinate, and À the filtration 

coefficient. A complete list of symbols, their meaning and dimensions is given in the Notation 

list. Microbial transport in a saturated column can be described in an equation that combines 

terms for dispersion, advection, sorption and filtration respectively (Matthess ef al 1988, 

Harvey and Garabedian 1991, Matthess et al 1991): 

dt dzx dz r e dt v m • 

where D is the dispersion coefficient, V the interstitial pore water velocity, Kp the microbial 
partition coefficient, ç a first order filtration rate constant, p the bulk soil density, 6 soil 
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porosity, and t is time. The use of a first order sink term to account for filtration is equivalent 

to the approach in equation (1) since the travel distance represents a travel time through the 

sand filter (Lindqvist and Bentsson 1991). Equation (2) can be rewritten as: 

with 

A =1+1«, (3b) 

The accumulation of cells at the solid phase as a result of filtration can be described as: 

e dt v aq (4) 

sorbed _ y- "g /c\ 

where Bm is the density of attached bacteria. The accumulation of sorbed bacteria (Bsmhe^ is 

given by the relationship: 

dKrbeä = _K
 dB°'. 

dt " dt 

Equations (3), (4) and (5) are subject to the following initial and boundary conditions: 

Bjt = 0,z) = Ra-
iBi (6a) 

Bjt = 0,z) = 0 (6b) 

VBjt,z=0)-DdB°«{t£ = 0) =VB0(t) (6c) 

dBJt,z = L) 
— ^ - = 0 (6d) 

dz 

where Bi is the initial aqueous bacterial density, B0 the bacterial density in the column influent 

and L column length. The first initial condition (6a) defines the equilibrium between sorbed 

and aqueous bacteria after inoculation via the aqueous phase. The second (6b) assures absence 

of attached, irreversibly bound bacteria at the start of the experiment. The first boundary 

condition (6c) equals the influx of bacteria to the sum of the dispersive and advective flux at 

the boundary, while the second (6d) imposes a constant density of aqueous bacteria over the 

effluent boundary. The latter condition is necessary to make a numerical solution possible. 

Transport and biotransformation of a growth limiting organic compound 

Transport of organic compounds is described using an advective dispersive transport equation, 

similar to the transport equation for bacteria: 
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Rä^7 = D^T-V^-P (7) 
dc^Dd2c jrdC 
dt dz2 dz 

where C is the concentration of the organic compound, Rd its retardation factor, and P a sink 

term describing biotransformation. The initial and boundary conditions for equation (7) are: 

C(t = 0,z) = C,. (8a) 

JC(t = 0,z) 
dz 

VC(t = 0,z)-D°^'--'Z) = VC0(t) (8b) 

* * ' • ƒ • * > - 0 ( 8 c ) 

dz 

where C, is the initial and C0 the influent concentration of the organic compound. The initial 

condition in equation (8a) defines a constant initial concentration of the organic compound in 

the columns. The first boundary condition (8b) equals the influx óf substrate to the sum of the 

dispersive and advective flux at the boundary, while boundary condition (8c) defines a 

constant contaminant concentration over the effluent boundary. 

Bacteria may be reversibly sorbed or irreversibly attached to the solid phase or 

suspended in the aqueous phase. Suspended and bound cells both have to be considered in the 

description of microbial growth and the biotransformation of organic compounds. 

Biotransformation by the total biomass is given by: 
P = ßBMY'x (9) 

where ß is the specific growth rate, Y thé yield coefficient and BM the total bacterial density 

which is calculated as the sum of the aqueous and solid phase densities. Solid phase densities 

are corrected using p and 6 for dimensional consistency: 

*«=*.,+§(*—+*«) (10) 

Combining equations (7) and (9) leads to: 

R,^-=i>~v^fiBjr-1: ( i i ) 

Using classical microbiological approaches and assuming that no detachment of attached cells 

takes place after cell division, growth rates of attached (BJ) and aqueous cells (Baq) are given 

by: 

dt 

and 

= {ß-b)BM (12a) 

- ^ = Cu-*>)£„ (12b) 
dt ^ 
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respectively, where b is the specific maintenance rate of the bacteria. The growth rate of 

sorbed cells is automatically obtained via the relationship in equation (5). The specific growth 

rate is given by the Monod equation: 

»=^j^c (13) 

where //max is the maximum specific growth rate and K, the half saturation constant. 

Equations (1)-(13) provide a full description of the transport of introduced bacteria in 

saturated soil columns and the simultaneous transport and biotransformation of an organic 

compound. A basic assumption in the model derivation is that attachment of cells is 

irreversible and that the daughter cells resulting from cell division remain attached to the solid 

phase. It is also conceivable however, that the daughter cells are released into the aqueous 

phase instead of remaining bound to the solid phase. As a consequence, growth will only lead 

to accumulation of cells in the aqueous phase and equation (12a,b) gets replaced by: 

iM*-+!*-)-M-• (14a) 

and 

^ - = -bBM (14b) 

The daughter cells in the aqueous phase will be transported with the water flow and re

attachment may take place as described in equations (3) and (4). As mentioned above, the 

growth rate of sorbed cells is automatically obtained via the relationship in equation (S). 

Steady state 

The model will reach a steady state when the net accumulation rates of attached and aqueous 

bacteria are equal to zero, i.e. when thé contributions of filtration, growth and decay do not 

result in accumulation of cells anymore. Hence, the staedy states can be calculated from 

when no detachment of attached cells occurs, from 

£ £ ^ = 0B 2 , £ R =0 (16a) 
6 dt. m e " 
and from 

dBm = / / ( ^ + £ i ^ } - ^ - ^ = 0 (16b) 
dt 

when detachment of daughter cells from dividing attached cells is assumed. Solving these 

equations together with equation (13) yields: 

66 



Biotransformation by introduced bacteria 

c~=K>]T7-b
 (17) 

r'max 

where Cm is the steady state residual concentration which is equal to the threshold 

concentration for growth from the extended Monod equation (Bouwer and McCarty 1984, 

Middeldorp et al in prep., Chapter 5). Equation (16b) does not take into account the advective 

transport of bacteria. Hence, equation (17) yields a minimum value for Cm if cell division 

results in detachment of daughter cells. 

Simulation strategy 

Estimates of V and D were obtained by fitting measured breakthrough curves of chloride to 

equation (7) with the computer program CXTFIT (Parker and Van Genuehten 1984), keeping 

values of Rd and P fixed at values of 1 and 0 respectively. Estimates of Rm and <p were 

obtained by fitting the results of the breakthrough and displacement experiments with 

Pseudomonas sp. strain B13 and Rhodococcus sp. strain CI25 respectively, to equation (3a), 

fixing V and D at the values obtained from the chloride breakthrough curves. 

Model equations were solved numerically, using a finite difference method to discretize 

the axial grid (Chapter 7). The resulting set of non-linear differential equations was 

implemented in FORTRAN-77 and solved with the stiff stable Gear method (Gear 1971) 

implemented in IMSL 9.2 (IMSL 1987). The computer program did not make use of/?, 9, and 

Kp. Therefore, (p/&ßmrixd and {plBß^ were treated as variables instead of B^^ and BM and 

equation (5) was implemented as: 

f^r--«--^ <18) 

The cell density during column packing for the high ionic strength experiment with 

Pseudomonas sp. strain B13 was used as value of the initial aqueous bacterial density Bv The 

initial 3-chlorobenzoate concentration (C,) was estimated from the measured effluent 

concentration in the first hours of the experiment in Fig. 6.2. The cells injected just above the 

influent port in the low ionic strength experiment were assumed to be present in the first cm of 

the column initially and the value of 5, was chosen accordingly. It was set at zero in the rest of 

the column. All parameters defining the kinetics of growth of Pseudomonas sp. strain B13 on 

3-chlorobenzoate were taken from chemostat and recycling fermentor studies (M.E. Tros, 

personal communication). Calculations used equation (14a,b) instead of (12a,b) because it was 

evident from the data that cells were always detectable in the effluent. 

In the first stage of simulation of the experiments with Rhodococcus sp. strain CI25, 

the full displacement experiments presented in Fig. 6.4, were simulated using equations (3) 

and (4) with the parameter values obtained by fitting as described above. The value of B, was 

taken at zero while B0 was set at the measured bacterial density in the influent. The value of C0 
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was set at zero during these calculations. Thus, a distribution of attached .bacteria was 

obtained that served as the initial condition for the simulation of the transport and 

biodégradation of benzoate in these columns. The aqueous bacterial density at the end of the 

simulations of the displacement experiments was always close to zero. In the second stage of 

simulation, the value of B0 was reset to zero while the value of C0 (the benzoate concentration 

in the influent) was set at SO uM. Simulations were done both with equation (12a,b) and 

equation (14a,b) to describe microbial growth. The microbial parameters describing the 

kinetics of growth of Rhodococcus on benzoate, were obtained from independent batch 

experiments as described in the "Materials and Methods" section. The value of b was 

estimated to be 5% ofß^^. 

RESULTS 

Experiments with Pseudomonas sp. strain B13 

Biotransformation of 3-chlorobenzoate by rifampicin resistant Pseudomonas sp. strain B13 

introduced to non-sterile Rhine River sediment columns was initially chosen as model system 

to study the transport of bacteria and the transport and biotransformation of organic 

compounds simultaneously. Experiments were carried out with high (pl=1.3) and low (pI-2.3) 

ionic strength-media to vary the extent of adhesion. Numbers of Pseudomonas sp. strain B13 

were detected in the column effluent by colony counts on agar plates amended with 3-

chlorobenzoate and rifampicin. 

The transport of Pseudomonas sp. strain B13 was studied separately without 3-

chlorobenzoate to determine its adhesion behavior independently. The bacterial density in the 

influent was about 10 CFU/ml. Cells adhered stronger to the sand in the columns at high 

ionic strength than at low ionic strength (Fig. 6.1). 

Biotransformation was initially .studied with a high ionic strength medium (pi—1.3). 

Columns were wet packed using mineral medium containing Pseudomonas sp. strain B13 at a 

density of 10 CFU/ml. They were equilibrated overnight without pumping to establish 

equilibrium between suspended and sorbed cells. Then, percolation with mineral medium 

amended with 3-chlorobenzoate (3.2 uM) was started. A low concentration (about 1 uM) of 

3-chlorobenzoate was still present in the cell suspension used for column packing. This was 

detected in the column effluent immediately after the start of the experiment (Fig. 6.2). Then, a 

short and incomplete breakthrough of 3-chlorobenzoate (C/C0=0.6) was observed. After 

breakthrough, the effluent concentration decreased until a stable residual effluent 

concentration of 0.6 u,M (C/C0=0.2) had established after 1 day (Fig. 6.2). This concentration 

remained stable during 10 days of column operation (not shown). 
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Figure 6.1: Breakthrough of Pseudomonas sp. strain B13 at pi = 1.3 (•) and pi = 1.3 (O). Cell numbers are 
plotted as thé ratio of effluent and influent numbers (B/BQ). 

Cell numbers in the effluent were determined during the first 2.5 days of column 

operation. Large quantities of cells (about 109 CFU/ml) were initially detected in the effluent 

(Fig. 6.2), followed by a gradual decrease to a steady state level of about 10 CFU/ml. Model 

calculations were performed using the parameter values from a fit of equation (2) to the 

breakthrough curve of Pseudomonas sp. strain B13 at pl= 1.3 and from kinetic parameters for 

growth of the strain on 3-chlorobenzoate from chemostat and recycling fermentor experiments 

(M.E. Tros, personal communication, Table 6.1). Values of V and D were estimated using 

chloride as conservative tracer (Table 6.1). Equation (14a,b) instead of equation (12a,b) was 

used to calculate the growth rate of the bacteria because it was evident from the data that cells 

were present in the aqueous phase throughout the experiment. The initial 3-chlorobenzoate 

concentration in the column was taken at 1 u,M and the initial aqueous bacterial density at 10 

CFU/ml. The model correctly predicts a rapid wash-out of cells in the first day of the 

experiment. However, predicted values are close to zero afterwards which is a considerable 

deviation from the measured level of about 10 CFU/ml. The model reproduced the 3-

chlorobenzoate data qualitatively, although the actual level of 3-chlorobenzoate breakthrough 

is higher than the level calculated by the model. On the other hand, the model accurately 

predicts the 3-chlorobenzoate concentration of 0.6 (xM reached after day 1. However, the 

residual concentration was expected to be about 5 uM based on data from chemostat and 

recycling fermentor experiments (M.E. Tros, personal communication). Model simulations 

over 100 days predicted a complete disappearance of all biomass from the column and a 
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Figure 6.2: Behavior of 3-chlorobenzoate (O) and Pseudomonas sp. strain B13 ( • ) in a column operated at a 
pi of 1.3. Solid lines represent model simulations using parameter values given in table 6.1. The. 
3-chlorobenzoate concentration is plotted as the ratio of effluent and influent concentration (C/CJ. 

complete breakthrough of 3-chlorobenzoate because the influent concentration was below the 
residual steady state concentration of 8.7 \iM calculated from equation (17). 

Another experiment was done with a low ionic strength solution (pl=2.3) to see if the 

breakthrough pattern of 3-chlorobenzoate and the wash-out of cells would be different due to 

less adhesion. Columns were wet packed using mineral medium with Pseudomonas sp. strain 

B13 at a density of 10 CFU/ml and were equilibrated overnight without pumping to allow 

equilibrium between suspended and sorbed cells to establish. No transformation of 3-

chlorobenzoate was observed during 3 weeks of operation with the low ionic strength medium 

amended with 3.2 \iM 3-chlorobenzoate (not shown). Then, after washing the column with the 

same influent solution without 3-chlorobenzoate, 1.5 ml cell suspension (107 CFU/ml) was 

injected in the column at 2 cm from the inlet and the column was left without pumping 

overnight. An initial breakthrough of 3-chlorobenzoate followed by a short period of 

transformation and breakthrough thereafter, was observed after resumption of percolation 

with 3-chlorobenzoate (Fig. 6.3). Final breakthrough was almost complete (C/Co=0.9) and 

was preceded by a wash-out of high numbers of inoculated cells from the column. Only small 

numbers of cells (< 200 CFU/ml) were detectable in the effluent at the end of the experiment. 

The results confirm that Pseudomonas sp. strain B13 performed worse under conditions of 

low ionic strength. The simulation model predicted an initial wash-out of cells at a level that 

was 50 times higher than observed in the experiment and it predicted a breakthrough of 3-

chlorobenzoate until >99% of the influent concentration without the temporal removal 
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observed in the experiment (not shown). The deviations between the experimental data and 

model simulations may have resulted partly because it was not possible to obtain a reliable 

value for the filtration rate constant ç(& value of 0.05 h"1 was used) from the curve at pl=2.3 

(Fig. 6.1). Furthermore, the initial conditions were badly defined due to the second addition of 

cells. Finally, it became clear from parallel experiments with columns packed with glass and 

teflon beads that attachment of strain 813 is reversible under the experimental conditions. This 

contradicts predictions based on the DLVO-theory (Rijnaarts et al 1993a). 

1 1.5 2 

Time (days) 

Figure 6.3: Behavior of 3-chlorobenzjoate and Pseudomonas sp. strain B13 after re-inoculation of a column 
operated at a pi of 2.3. The 3-chlorobenzoate concentration is plotted as the ratio of the effluent and influent 
concentrations (C/CQ). 

Experiments with Rhodococcus sp. strain C125 

Another set of experiments was done with Rhodococcus sp. strain C125 as model system. This 

strain is highly hydrophobic and has a high negative charge (Rijnaarts et al 1993a, Rijnaarts et 

al 1993b) which allowed accurate control of adhesion. Its biomass was quantified by OD^ 

measurements to obtain more accurate data. Inoculation of the columns for the 

biotransformation experiments was done by means of displacement experiments to obtain an 

accurately defined initial biomass distribution. Cells suspended in mineral medium with pl-

values varying from 1 to 2.5 were applied to small columns packed with sand from the Rhine 

River. After 1 hour the suspensions were replaced by cell free mineral medium of the same pi 

to eliminate suspended cells. The löwer the pi, the more cells were retained in the columns, as 

expected (Fig. 6.4). 
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Figure 6.4: Displacement of Rhodococcus Cl 25 in columns packed with sand from the Rhine at pl-values of I 
(•), 1.5 ( • ) , 2 (A), and 2.5 ( • ) . Solid lines represent fits of the data to equation (2). Cell densities are 
plotted as the ratio of effluent and influent cell densities (B/BQ). 

The transport and biotransformation of benzoate (50 |J.M) was measured in the same 

columns immediately after completion of the displacement experiments. Thus, the initial 

distribution of cells in the columns was exactly defined. Benzoate breakthrough curves were 

measured in 2 low (pi = 2.5) and 2 high (pi = 1.5) ionic strength columns, while steady state 

effluent concentrations of benzoate were determined in all columns after 24 and 48 hours of 

operation. Both at high and low ionic strength, a partial breakthrough of benzoate was 

observed, followed by decreasing effluent concentrations, indicative of increasing 

biotransformation rates, most probably due to growth of Rhodococcus (Fig. 6.5). The initial 

removal was highest in the-columns operated at high ionic strength, as expected. Complete 

breakthrough without degradation was observed in control columns without added cells and 

operated under similar conditions (Fig. 6.5). 

Model calculations were performed using the parameter values from a fit of equation 

(2) to the data from the displacement experiments at pl=1.5 and pl=2.5, respectively (Table 

6.1). Values of V and D were estimated from tracer experiments. The microbial parameters 

AM«> ̂ m *°& y were obtained from the batch experiments (Table 6.1). The value of b was not 

determined experimentally and estimated to be.5% of//^ (Table 6.1). Equations (12a,b) and 

(14a,b) were both used in the model calculations to see how the assumptions regarding 

detachment of daughter cells resulting from cell division would affect the results. The model 

predicts a partial breakthrough followed by a rapid decline of the benzoate concentration in 

the effluent if it is assumed that daughter cells do not detach from the solid phase (Fig. 6.5). A 
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similar initial breakthrough followed by a much slower decline of the effluent concentration is 

predicted if detachment of daughter cells is being assumed (Fig. 6.5). The calculations 

assuming detachment of daughter cells give the closest simulation of the data at pl=2.5, while 

the calculations assuming no detachment yield the closest simulation at pI=l.S. However, 

neither of the model calculations predicted the data exactly. Especially the slow rise of the 

benzoate concentration after initial breakthrough (Fig. 6.5) is not represented in the model 

calculations. The reason for this rise is unclear. Either the activity of Rhodococcus sp. strain 

CI25 decreased or there has been an unexpectedly high wash-out of cells during the first 

hours of the experiments. The possibility of a high wash-out of cells could not be checked by 

means of the OD^ measurements because benzoate also absorbs light at a wavelength of 280 

run. The predicted steady state effluent concentration of benzoate is 0.95 |iM. This value is 

well below the concentrations of 5 to 10 \iM which were observed after 24 and 48 hours of 

column operation. The measured steady state effluent concentrations had no correlation with 

the ionic strength of the aqueous medium. 

çfpXXXXXtOoOOOO O O O O O O O O O O O Q O 0 O ° 0 O O 0 O O 0 ° O 0 

Figure 6.5: Breakthrough of 50 juM benzoate in duplicate columns inoculated with Rhodococcus C125 and 
operated atpl-values of 1.5 ( • , • ) and 2.5 (A,#). No biotransformation of benzoate took place in non-
inoculated controls (O). Dashed lines represent model simulations assuming no detachment, solid lines 
simulations assuming detachment of newly formed cells. Concentrations are plotted as the ratio of the effluent 
and influent concentrations (CC„). 

DISCUSSION 
The adhesion of bacteria to solid surfaces in aqueous environments depends on the surface 

characteristics of the bacteria and solids and on the chemical composition of the water. If all 

surfaces are negatively charged, the DLVO-theory predicts a positive correlation of adhesion 

with the hydrophobicity of cells and solids and With the ionic strength of the water (Van 

Loosdrecht et al 1989, Rijnaarts et al 1993a, Rijnaarts et al 1993b). Though the attachment of 
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Table 6.1: 

Parameter 

D 

V 

L 

«J 

Rm 

^max 

*, 
r 
b 

9 

c„ 

«0 

Column parameters used in model calculations 

Pseudomonas BY. 

pi =.1.3 

0.047 cm2 h"1 

1.18 cm h"1 

10.0 cm 

1.0 

1.17 

0.13 h"1 

150 U-M 

63mgmM 

0.008 h"1 

0.21 h"1 

3.2 (lM 

0 

Source 

Tracer experiment 

Tracer experiment 

-
Control experiment 

Breakthrough experiment 

ME. Tros (pers. comm.) 

M.E. Tros (pers. comm.) 

M.E. Tros (pers. comm.) 

M.E. Tros (pers. comm.) 

Breakthrough experiment 

-

-

Rhodococcus C125 

pi = 1.5 

14.6 cm2 h-1 

29.8 cm h-1 

10 cm 

1.0 

1.33 

0.2 h"1 

20.0 UM 

44.4 mg-mM 

0.01h"1 

3.33 h"1 

50 uM* 

24mg/ld 

0e 

pi = 2.5 

12.5 cm2 h-1 

31.4 cm h-1 

10 cm 

1.0 

1.20 

0.2 h"1 

20.0 UM 

44.4 mg'inM 

0.01 h"1 

1.74h"1 

0» 

50 UM0 

24mg/ld 

0e 

Source 

Tracer experiment 

Tracer experiment 

-
Control column 

Displacement experiment 

Benzoate depletion 

Benzoate uptake 

Batch experiment 

estimated as 5 % of ^ ^ 

Displacement experiment 

-

-

As described in Materials and Methods 
b -2h<«<0h 
c r>0h 
d i < - l h 

bacteria to negatively charged hydrophilic surfaces like glass is predicted to be irreversible 

with the DLVO-theory, it becomes reversible at lower ionic strengths in the medium due to 

steric hindrance (Rijnaarts et al 1993a). Adhesion of both strains was indeed positively 

correlated with the ionic strength of the aqueous phase (Fig. 6.1, 6.4). Moreover, the value of 

the filtration rate constant obtained for Pseudomonas sp. strain B13 at pl=1.3 was an order of 

magnitude lower than the value obtained for the much more hydrophobic Rhodococcus sp. 

strain C125 at pl=1.5 (Table 6.1). 

Only a limited reversibility of attachment was allowed in the model (via equation 

14a,b) and this may explain why the model failed to yield correct simulations of the 

biotransformation experiments with Pseudomonas sp. strain B13. Attachment of this strain to 

glass beads was reversible at pi-values down to 1 (Rijnaarts et al 1993a). A similar behavior 

may be expected in the experiments presented here since the organic carbon content of the 

sand used in the columns was less than 0.1%. However, the data from the breakthrough 

experiments (Fig. 6.1) do not allow the estimation of possible detachment rates and therefore 

no attempts were made to include reversible behavior other than detachment of daughter cells 

resulting from growth, in the model. 

The different levels of benzoate breakthrough observed at low and high ionic strength 

in the experiments with Rhodococcus sp. strain CI25 (Fig. 6.5) reflect the different numbers 

of bacteria that adhered to the sand in the columns during the displacement experiments. The 

decline of the benzoate concentrations after initial breakthrough which was observed in all 
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experiments suggest that Rhodococcus grew on benzoate as source of carbon and energy! At 

low ionic strength, the closest fit of the model to the data was obtained when it was assumed 

that daughter cells resulting from cell division detach to the aqueous phase (Fig. 6.5). In 

contrast, the assumption that no detachment occurs at all yielded the closest fit at high ionic 

strength, which could be explained by a decreasing detachment rate with increasing ionic 

strength (Rijnaarts et al 1993a). 

Steady state effluent concentrations after 24 and 48 hours of column operation varied 

between 5 and 10 |XM in all column experiments. These had no correlation with the ionic 

strength of the aqueous medium. Based on the values of ß^, Ks and b, a steady state effluent 

concentration of 0.95 pM can be calculated from equation (17). If equation (17) is used 

inversely to calculate b from the observed steady state effluent concentration, the result is a 

value between 0.07 and 0.2 h or 30 to 100% oî/x^. Such values are unrealistic since values 

of b are normally less than 10% of /u,^. Apparenüy, other factors then microbial decay and 

maintenance requirements alone, contribute to the establishment of the steady state residual 

concentrations. The much higher steady state concentrations in the column experiments point 

to a mechanism that has nothing to do with the adhesion behavior of the introduced cells. A 

heterogeneous distribution of cells in the column material can account fof the high steady state 

effluent concentrations. Such a heterogeneous distribution may result from the fact that micro

organisms never occupy space as a continuum like in a biofilm, but are present as 

microcolonies varying in size from a few to hundreds of cells (Hirsch and Rades-Rohkohl 

1983, Harvey et al 1984). As a result, the column material consists of a number of "hot spots" 

with microbial activity, separated by desert areas with no activity at all. A certain fraction of 

the organic compounds fed to the column will then travel through areas without microbial 

activity. Some bacteria will only "see" substrate after diffusion of these molecules through the 

desert areas. Thus, diffusion through the soil matrix may limit the biotransformation rate. 

Biotransformation will stop as soon as the supply rate of substrate cannot meet the 

maintenance requirements anymore (Schmidt et al 1985a). The resulting residual concentration 

can be calculated from the effective diffusion coefficient of the organic compound in the soil 

under consideration and from the maintenance coefficient, dry weight density and radius of the 

micro-organisms (Chapter 8). The present model formulation does not account for such a 

distribution of cells in the column and hence, the model is not able to exactly reproduce the 

experimental data. 

CONCLUSIONS 

The biotransformation of organic compounds by introduced bacteria in saturated soil can be 

understood by taking into account the transport of degrading bacteria and the transport of 

organic compounds simultaneously. The ionic strength of the water in which bacteria are 
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introduced can be used to control the transport and attachment of bacteria. If a low ionic 

strength is used, bacteria may travel long distances which can be advantageous when the 

contamination is located far below the soil surface. On the other hand, a high ionic strength 

will generally stimulate the attachment of bacteria to the solid phase and hence, the 

effectiveness of their application. 

Steady state effluent concentrations as observed in the column experiments can only 

partly be explained by the presented model approach. A full explanation most probably 

requires the incorporation of a heterogeneous distribution of bacteria in the column material 

together with the kinetics governing diffusion of the organic compounds to spots of microbial 

activity. Efforts to reduce residual amounts of contaminants after bioremediation should 

include a maximization of diffusion rates of the contaminants. 

NOTATION 
Subscripts b and c are used to distinguish between bacteria and organic compound. 

b specific maintenance rate of bacteria (T ) 

B0 Influent bacterial density (M^L ) 

Bm Attached bacterial density (M^M,"1) 

Baq Aqueous bacterial density (M bL ) 

Bj Initial bacterial density ( M b L ) 

Bwrbed Sorbed bacterial density (M^M^1) 

Bn Total bacterial density (M^L"3) 

C Concentration of the organic compound (Mc-L~3) 

C0 Influent concentration of organic compound (MCL ) 

C, Initial concentration of organic compound (MCL ) 

Cm Residual steady state concentration (Mc-L ) 
9 1 

D Dispersion coefficient ( L T ) 

Kp Microbial partition coefficient (L3 Ms ) 

Ks , Half saturation constant (MCL ) 

L Column length (L) 

X Filtration coefficient ( L 1 ) 

(J.,^ Maximum specific growth rate ( T ) 

P Sink term describing biotransformation (Mc-L -T ) 

Rd Retardation factor of organic compound (-) 

Rm Microbial retardation factor (-) 

p Bulk soil density (ML"3) 

t t ime(T) 

V Interstitial pore water velocity ( LT ) 
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Y Yield coefficient (M^MJ 
z Axial co-ordinate (L) 
e Soil porosity (L"3L"3) 
q> First order filtration rate constant (T1) 
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MODELING TRANSPORT AND RADIAL DIFFUSION LIMITED 
BIODEGRADATION OF ORGANIC CONTAMINANTS IN SATURATED 

COLUMNS 

Tom N.P. Bosma, Edward J. Bouwer, Maarten de Gee, 

and Alexander J.B. Zehnder 

to be submitted to Water Resources & Research 

ABSTRACT 
A numerical model to describe the transport of organic contaminants in columns operated 

under saturated flow conditions was developed. Retarded dispersed flow, external mass 

transfer, intra-aggregate diffusion, and biotransformation in aggregates were represented in the 

model. Column breakthrough was characterized by 8 independent parameters in the model 

equations: the Peclet number, the retardation factor, a non-equilibrium index, an external mass 

transfer modulus, a maximum specific growth rate modulus, the half saturation coefficient, and 

the yield coefficient. The basic model run resulted in an initial breakthrough of contaminant 

followed by an almost linear decrease of the effluent concentration due to radial diffusion 

limited biotransformation and microbial growth. Breakthrough dynamics were most sensitive 

to the non-equilibrium index and the specific growth rate modulus. In contrast, model steady 

state is exclusively determined by the maximum growth rate modulus, the half saturation 

constant, and the decay rate modulus. Leaching dynamics from a contaminated column only 

depend on the non-equilibrium index, and not on any of the microbial parameters. Therefore, 

pumping water amended with nutrients in a bioremediation scheme will merely result in a 

hydrodynamic wash-out of contaminants instead of stimulating biotransformation. 
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INTRODUCTION 
The behavior and fate of organic contaminants in ground water depends on a complex 

interaction of physical, chemical and biological processes. Infiltration of contaminated water 

and leaching of soil bound contaminants are responsible for migration of contaminants through 

aquifers. Dispersion and diffusion tend to spread contaminants, while sorption onto soil 

retards their movement. Chemical reactivity and biologically mediated decomposition 

determine contaminant persistence in soil and ground water. Microbial transformation is often 

required for their complete mineralization. 

Rates of sorption and desorption during transport of contaminants are largely 

influenced by pore and surface diffusion (Wu and Gschwend 1986). This explains non-

equilibrium phenomena such as equilibration times in the order of months in batch experiments 

(Ball and Roberts 1991), and both strong tailing of breakthrough curves of sorbing species in 

column experiments (Schwarzenbach and Westall 1981) and a flow rate dependency of the 

observed retardation factor in column experiments (Valocchi 1985, Brusseau 1992). The 

existence of an immobile fraction of the pore water in soil enhances such non-equilibrium 

phenomena in column experiments (Van Genuchten and Wierenga 1976, Van Genuchten and 

Cleary 1979, Schwarzenbach and Westall 1981, Valocchi 1985, Brusseau 1992). 

The majority of indigenous bacteria was hypothesized to colonize surfaces in the 

interior of aggregates of soil particles (Stotzky 1972, Hattori and Hattori 1976), rather than 

being freely suspended in mobile pore water. Indigenous bacteria in the subsurface are indeed 

mainly associated with the solid phase (Hirsch and Rades-Rohkohl 1983, Harvey et al 1984). 

Soil aggregates may serve as micro-habitats for micro-organisms, where they are protected 

from adverse environmental influences such as drying out and prédation by protozoa and 

nematodes (Stotzky 1972). 

At old waste sites, biotransformation of previously sorbed contaminants must take 

place for remediation. Biodegradable contaminants in soil are often metabolized more slowly 

than in aqueous culture. Sorbed substrates are less available for biotransformation (Ogram et 

al 1985) and biotransformation rates are limited by diffusion of the chemical from soil 

aggregates to the bulk liquid (Rijnaarts et al 1990). Thus the overall reaction rate in 

aggregated soil is - at least partly - controlled by sorption rates (Bouwer and Zehnder 1993). 

Mathematical modeling provides an effective means to integrate physical, chemical and 

biological processes and to determine the relative contributions of each process to the overall. 

behavior of organic chemicals under saturated flow conditions. This paper focuses on the 

interaction between biotransformation and retarded intra-aggregate diffusion and their effects 

on the transport of organic chemicals that are the sole source of carbon and energy for soil 

micro-organisms. A mathematical model for one-dimensional flow was developed that 

considers advection, dispersion, external mass transfer, sorption retarded intra-aggregate 

diffusion, and biotransformation of an organic contaminant. A sensitivity analysis was 
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performed to determine the relative contribution of diffusion, sorption and biotransformation 

in describing the fate and behavior of organic contaminants under saturated flow conditions. 

Two scenario's were evaluated. The first scenario considered the transport of contaminated 

water through an initially uncontaminated column with an initial homogeneous distribution of 

bacteria in soil aggregates representing the migration of contaminated ground water in an 

aquifer. The second involved the percolation of an initially contaminated column with 

microbial activity at the aggregate surface only, with clean water to simulate a ground water 

remediation scheme. 

MODEL FORMULATION 
Several models have been proposed to describe the transport of biodegradable organic 

substances under aerobic saturated flow conditions. The biological reaction rate is generally 

modeled using the Monod relationship (Monod 1949). Assuming constant biomass levels, the 

Monod equation becomes zero order at high contaminant concentration and first order at low 

concentration. These simplified equations are often used for modeling biodégradation kinetics 

in a well-defined concentration range. A dual Monod expression that contains a term for the 

substrate (contaminant) and a nutrient is often used to describe the combined consumption of 

nutrients and contaminants because they both have the potential to limit microbial activity 

(Borden et al 1986, Molz et al 1986, Kindred and Celia 1989). Microbial migration with the 

advective flow (Borden et al 1986) or even chemotactic movement against nutrient 

concentration gradients are also included sometimes (Corapcioglu and Haridas 1984, Chapter 

5). Other more complex kinetic relationships that account for toxic inhibition and competitive 

and non-competitive inhibition have been employed to model biodégradation process (Bailey 

and Ollis 1986). Recent approaches successfully include kinetically controlled sorption in the 

description of transport and biotransformation in columns with introduced bacteria (Brusseau 

et al 1992, Chen et al 1992). 

A micro-colony approach to simulate biodégradation coupled to advective-dispersive 

transport demonstrated that biodégradation would be expected to have a major effect on 

contaminant transport when proper conditions for growth exist (Molz et al 1986). Micro

colonies were represented as disks of uniform radius and thickness attached to pore surfaces. 

A boundary layer of given thickness was associated with each colony across which substrate 

and oxygen were transported to the colonies by diffusion. 

A model considering advective flow in macropores, external mass transfer from macro-

to micropores, and combined pore and surface diffusion in the micropores was shown to give 

appropriate simulations of contaminant transport in aggregated soil (Crittenden et al 1986). 

We combined this approach with biotransformation inside soil aggregates to simulate the 

transport of biodegradable organic substances under saturated flow conditions (Fig. 7.1). 
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macropore transport 

external mass transfer 

pore diffusion 

bacteria 

Figure 7.1: Mass transport mechanisms in the mobile phase (macropores) and the stationary phase 
(micropores). Modified after Crittenden et al (1986). 

Because the majority of indigenous ground water bacteria is associated with the solid phase, it 

is assumed that they are only present in the aggregates and hence, that biotransformation can 

only take place m aggregates (Fig. 7.1). For the same reason, Chemotaxis and migration with 

advective flow were not included to describe the fate and behavior of micro-organisms. 

Finally, we assumed that the organics are the only limiting nutrients. With these assumptions 

the mobile phase mass balance becomes (Crittenden et al 1986): 

at dl . di u. • 
(1) 

where Rd is the axial retardation coefficient, Dc the axial dispersion coefficient, V the axial 

flow rate, t the temporal, z the axial, and r the radial co-ordinate, C the macropore, and c the 

micropore contaminant concentration, 6C the macropore porosity, km the external mass transfer 

coefficient and R the aggregate radius. A listing of all symbols and their dimensions is given in 

the Notation section. The term on the left hand side in equation (1) describes the retarded 

concentration change of contaminant in the mobile phase with time. The terms on the right 

hand side represent the contaminants' axial dispersion and diffusion, advective flow, and liquid 

phase mass transfer from the mobile to the stationary phase, respectively. It is subject to the 

following initial and boundary conditions: 

C(r = 0,z) = / (z) (2a) 
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VC(t,z = 0)-Dc
dC(t'* 0 ) = VC0(0 (2b) , 

az 

8 C ( f ' Z = L ) = 0 (2c) 
az ' 

where L is the column length and C0(t) the influent concentration. The initial contaminant 

distribution in the macropores is given in equation (2a). In the first scenario, simulating the 

infiltration of contaminated water in a clean environment, the initial concentration was set at 

zero throughout the column. The second scenario involving bioremediation of polluted soil 

with a pump and treat method, was simulated with an initial homogeneous distribution of 

contaminant throughout the column. The influx of contaminant via the inlet is defined in 

equation (2b). The influent concentration C0 does not have to be constant in time. It has the 

shape of a pulse in a typical displacement experiment, where the breakthrough of a substance 

is studied followed by displacement by clean water. However, we used a constant positive 

non-zero value in the first scenario and kept it at zero in the second scenario. The outlet 

boundary condition in (2c) establishes that no reaction and no dispersive flow takes place 

beyond the column. 

The equation for radial transport of a contaminant in the micropores of a spherical 

aggregate of radius R is presented as: 

^ r , ^ ^ ^ ^ ^ ^ ^ ( 3 ) 

dt ' dr\ dr 

where Dt is the effective intra-aggregate diffusion coefficient̂  B the microbial density, ß the 

specific growth rate of micro-organisms, and Y the yield coefficient. The left hand term in 

equation (3) describes the concentration change of contaminant in the stationary phase with 

time. The right hand side terms represent radial diffusion in the aggregate and contaminant 

removal by biotransformation, respectively. The following initial and boundary conditions 

apply: 

c(f = 0,r,z) = g(r) (4a) 

Mt,r = 0,z)=Q ( 4 b ) 

dr 

Di
Mt'r = R'z) = km[C(t,z)-c{t,r = R,z)] (4c) 

dr 

Equation (4a) gives the initial contaminant distribution in the aggregates. The boundary 

condition in (4b) ensures a symmetric solution around the center of the aggregate, which is an 

imperative because of the spherical symmetry. Equation (4c) is the boundary condition for the 

aggregate surface, stating that the mass flux at the aggregate surface is proportional to the 

concentration difference between macro- and micropores. The external mass transfer 
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coefficient km expresses the mass transfer resistance between the mobile and stationary phase. 

If km approaches infinity, condition (4c) is equivalent to imposing the Dirichlet boundary 

condition c(t,r=R,z)=C(t)z), which treats the two phases as a continuum without mass transfer 

resistance. 

Microbial growth and biotransformation of organic contaminants are described by 

Monod kinetics in which the uptake rate saturates to a maximum value as contaminant 

concentration increases (Monod, 1949). Hence the specific growth rate is given by: 

c(t,r,z)' , ~ 

"*'-*'^IJaïT) ' (5) 

where //„^ is the maximum specific growth rate and Ks the half saturation constant. Microbial 

growth is described as: 

^ ^ =mt,r,z)-b]B{t,r,z) (6) 
at 

where b is a first order coefficient describing decay of bacteria. 

Model scaling 

The model was scaled to perform a sensitivity analysis with dimensionless parameters. The 

advantage of scaling is that it helps to compare results obtained at different scales, by means of 

the resulting dimensionless parameters. Time and the axial and radial co-ordinates were scaled 

using the following definitions: 

t = t - (7a) 
V 

z = zL (7b) 

r = rR (7c) 

where t is dimensionless time, z the dimensionless axial, and 7 the dimensionless radial co

ordinate. The following dimensionless parameters result from scaling: 

Vf 
Pe = — (8a) 

Dc 

K = ̂ - (8b) 

R2 

m^ß^— (8c) 

R2 

bf=b— (8d) 
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% 
The Peclet number Pe is a dimensionless measure for axial dispersion, whereas AT is an external 

mass transfer modulus. The parameters mf and bf are the maximum growth rate modulus and 

decay rate modulus, respectively. Tf is the ratio of the time scales of axial and radial transport 

of a conservative tracer {Rjpl, mf =0) and may be viewed as a non-equilibrium index 

(Valocchi 1985), values >5 indicating equilibrium behavior (Rao and Jessup 1983). Given the 

above definitions, the scaled model equations become: 

^ = P e - . i ! ^ _ ^ £ ) _ 3 l ^ r / , [ C ( F , z ) - c ( f , F = l,z-)] (9) 
dt dz dz 0C ' 

Mt,f,z)= Tr2^Ml^l^ELLIlB(lr,z) (10) 
dt ' df df Y 

—,- - _. c(t,r,z) / i i \ 
M(t,r,z) = mf ; (11) 

Ks+c(t,r,z) 
dB{t,T,z) = [-(jTI)_ Ï 7 Ï ) ( 1 2 ) 

at 

subject to initial and boundary conditions: 

C(t = 0,z) = f(z) (13a) 

C(F,? = 0 ) -P g - ' dC(t,l = 0) = CM (13b) 
az 

j 

' M i ^ . o (13c) 
dz 

c(t = 0,r,z) = g(r) ' (14a) 

dc(t,r=0,z) 
df 

dc{t,r = \,z) 

= 0 (14b) 

= K[C(t,z)-c(t,r = l,z)] (14c) 
df 

The interpretation of the initial and boundary conditions for the scaled and non-scaled model 

formulation are analogous. The scaled model was solved numerically as described in the 

Appendix. 

85 



Chapter 7 -

PARAMETER ESTIMATION 
Parameters of the non-reactive transport of n-octanol in small columns (H.H.M. Rijnaarts, 

personal communication) were used to perform a sensitivity analysis. The value of Dc was 

estimated independently from the breakthrough response of chloride that was used as 

conservative tracer (H.H.M. Rijnaarts, personal communication). The mass transfer coefficient 

km was estimated using the correlation (Wilson and Geankoplis 1966): 

V 
*=1 . 09— 

.ft 

VR 
-% 

(15) 

The aqueous diffusion coefficient of octanol was taken from the literature (Oelkers 1991). All 

other transport parameters were measured independently (H.H.M. Rijnaarts, personal 

communication). The measured breakthrough of n-octanol was successfully described with the 

model using D, and Rd as fitting parameters (Fig. 7.2). 

Microbial parameters were taken from a previous model effort that simulated 1,4-

dichlorobenzene biotransformation in columns packed with river sediment (Chapter 5). The 

initial biomass was also included as parameter because it is difficult to measure accurately in 

soil. All parameter values used in the sensitivity analysis are listed in Table 7.1. 

octanol (C/Q,) 
1 

0.75 

0.5 

0.25 

n i 

' f^^^ 
1 D,= 3.6x1 O^crn/h 

*J- j ;—\ 1 1_ 

8 12 

pore volumes 

16 20 

Figure 7.2: Breakthrough of n-octanol in small columns. Solid line represents model simulation. 
Data were taken from the literature (H.H.M. Rijnaarts, personal communication). 
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SENSITIVITY ANALYSIS 

A sensitivity analysis was performed to determine the relative contribution of diffusion, 

sorption and biotransformation in describing the fate and behavior of organic contaminants in 

saturated columns. Two scenario's were evaluated. The first scenario considered the transport 

of contaminated water through an initially uncontaminated column with an initial 

homogeneous distribution of bacteria in soil aggregates representing the migration of 

contaminated ground water in a clean aquifer. The second involved the percolation of an 

initially contaminated column with clean water to simulate a ground water remediation 

scheme. 

Calculations were made for an organic compound with a hydrophobicity similar to n-

octanol, which may be representative for contaminants like chlorinated benzenes. The 

breakthrough curve calculated in the standard run appears in Fig. 7.3, together with the 

criteria that served as a basis for the sensitivity analysis. We did the sensitivity analysis by 

systematically halving and doubling each of the parameters. It is ensured that model sensitivity 

Table 7.1: Column parameters used to examine model sensitivity 

Parameter 

Column Length L 

Flow rate V 

Axial dispersion coefficient Dc 

Retardation factor Rd 

Intra-aggregate diffusion coefficient Dt 

Macropore porosity 0C 

Aggregate radius R 

Aqueous diffusion coefficient (D ) 

Mass transfer coefficient jfc„ 

maximum specific growth rate ß^^ 

half saturation constant Ks 

Yield coefficient y 

Decay coefficient b 

Influent concentration C0 

Initial biomass density B0 

Value 

10 cm 

158cm/h 

63 cm2/h 

2 

3.610"5 cm2/h 

0.296 

0.019 cm 

0.7710'5cm2/s 

25,6 cm/h 

0.01 h"1 

20mg/l 

0.1 

0.001 If1 

50mg/l 

lOOmg/1 

Source 

H.H.M. Rijnaarts (pers. comm.) 

H.H.M. Rijnaarts (pers. comm.) 

H.H.M. Rijnaarts (pers. comm.) 

H.H.M. Rijnaarts (pers. comm.) 

H.H.M. Rijnaarts (pers. comm.) 

H.H.M. Rijnaarts (pers. comm.) 

H.H.M. Rijnaarts (pers. comm.) 

Oelkers (1991) 

Wilson and Geankoplis (1966) 

Chapter 5 

Chapter 5 

Chapter 5 

Chapter 5 

set for sensitivity analysis 

set for sensitivity analysis 

Dimensionless parameters 

Peclet number Pe 

scaled mass transfer coefficient K 

Non-equilibrium index T, 

maximum specific growth rate modulus mf 

Specific decay rate modulus b. 

25 

6500 

0.063 

0.1 

0.01 

-

• -

-

-

-
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to each parameter is compared on an equal basis with this approach. The results are useful to 

rank the parameters according to their impact on chosen model properties. Based on such a 

ranking, th» level of accuracy needed for each parameter value can be assessed. Results of the 

sensitivity analysis were compared based on (i) the maximal concentration breaking through, 

and (ii) the observed decline in the effluent after breakthrough (Fig. 7.3). Both criteria are 

important characteristics of the dynamics occurring during saturated flow. 

Table 7.2 reports the impact of each parameter on each of the chosen criteria. In 

general, the decline after breakthrough appears to be a more sensitive criterion than the 

maximum concentration reached after breakthrough. An increase of the highest concentration 

correlates with a decrease of the decline after breakthrough, as expected. Parameters can be 

grouped into three classes of sensitivity. The most sensitive parameters (with respect to model 

dynamics) are the non-equilibrium constant Tf and the maximum growth rate modulus my, 

which have similar effects on the breakthrough of contaminant (Fig. 7.4,7.5). 

The microbial parameters Y, Ks, and B0, have similar impacts on breakthrough, 

although less pronounced, as mf has. The model is insensitive to changes in the rate modulus 

bf, the retardation factor Rd, the Peclet number Pe, and the mass transfer modulus K. So, 

simulation of the breakthrough of a biodegradable contaminant requires an accurate 

determination of Tf and mp while order of magnitude estimations of br Pe, and arare sufficient. 

The only effect of Rd is that it moves the breakthrough front in time. It does not have an 

observable effect on the highest concentration breaking through or the decline afterwards 

(Table 7.2). 

C/C„ 

0.75 

0.5 -

0.25 

} decline 

25 50 75 

pore volumes 
100 

Figure 7.3: Basic model run. The highest concentration reached and the decline after breakthrough were used 
as criteria in the sensitivity analysis 

88 



Modeling radial diffusion limited biodégradation 

Table 7.2: Relative changes of the highest concentration breaking through, and the decline after breakthrough, 
as a result of halving and doubling parameter values 

Parameter 

Non-equilibrium constant Tf 

Scaled specific growth rate mf 

Initial biomass B0 

Yield coefficient Y 

Half saturation constant Ks 

Scaled decay coefficient bf 

Retardation factor Rd 

Peclet number Pe 

Scaled mass transfer coefficient K 

highest concentration3 

halving 

1.12 

1.12 

1.12 

0.80 

0.95 

1.00 

1.00 

1.00 

1.00 

doubling 

0.77 

0.78 

0.80 

1.12 

1.06 

1.00 

1.00 

1.00 

1.00 

halving 

0.22, 

0.21 

0.11 

1.38 

1.52 

1.10 

1.02 

0.98 

1.00 

decline3 

doubling 

3.46 

3.13 

1.38 

0.11 

0.52 

0.79 

0.96 

1.01 

1.01 

normalized with respect to the highest concentration breaking through and the concentration decline after breakthrough 
in the standard run. Values greater than 1 represent an increase, values below 1 a decrease 
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Figure 7.4: Model sensitivity to the scaled maximum specific growth rate m. 
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Figure 7.5: Model sensitivity to the non-equilibrium constant T, 

100 

The second scenario involved leaching of contaminants entrapped in soil aggregates, to 

simulate pump and treat systems that are used to stimulate biotransformation. The initial 

conditions were a homogeneous distribution of contaminant at a concentration of 50 (J.g/1 

throughout the column and biomass present only at the boundary of the aggregates at a 

density of 100 y.g/1. The influent concentration was set at a value of zero. A model run with 

the basic parameter set showed that the percolation of 20-25 pore volumes of clean water was 

sufficient to decrease the effluent concentration to near zero (Fig. 7.6). The contaminant was 

also completely removed from the aggregates in this period of time. Leaching dynamics were 

not sensitive to variation of any of the microbial parameters, in contrast to the observation 

with contaminant breakthrough. Tf appeared to be the only sensitive parameter in this scenario. 

A similar result was found with a model describing leaching of non-aqueous phase pollutants 

from a soil column, where dynamics were most sensitive to pore water velocity and dissolution 

kinetics and not affected by microbial kinetics (Seagren et al 1993). Decreasing Tr which 

means shifting towards non-equilibrium, causes more tailing in the leaching curve (Fig. 7.7). 

The mass flow in the macropores is sufficient to maintain a steep diffusion gradient between 

micro- and macropores and almost no biotransformation of leaching contaminant takes place. 
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Figure 7.6: Leaching of contaminant during flushing of a column with clean water. The shape of the curve did 
not change in response to halving and doubling any of the microbial parameters. 
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Figure 7.7: Sensitivity of contaminant leaching to the non-equilibrium index T. 
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DISCUSSION 

According to our calculations the behavior and fate of biodegradable organic contaminants in 

the saturated zone will mainly be controlled by the values of the dimensionless variables Tf and 

trip while the effectiveness of flushing of a contaminated aquifer with clean water will be 

exclusively determined by the value of Tf Values of Tf <5 indicate non-equilibrium in the 

system under consideration, while values >S point at equilibrium behavior. The actual value of 

this parameter is determined by the dimensions and geometry of the system, as expressed in 

the pore water velocity (V), the travel path (which is equivalent to the column length L), the 

aggregate radius (/?), and the intra-aggregate diffusion coefficient (£>,). As can be inferred 

from equation (8e), relatively high values of L and £>,., and small values of V and R, lead to 

high values of Tf and hence, equilibrium behavior. Of these parameters, the effective intra-

aggregate diffusion coefficient may vary by several orders of magnitude (Chapter 8), from ca. 

10"5 cm2/s (aqueous diffusion, Weber et al 1991) to 10"10-10"n cm2/s for highly chlorinated 

benzenes in organic rich sediments (Wu and Gschwend 1986, Ball and Roberts 1991). Values 

as low as 10"13 and 10"17 cm /s, have been reported for soils that have been contaminated for 

decades with hexachlorocyclohexane (Rijnaarts et al 1990) and 1,2-dibromoethane (Steinberg 

et al 1987). Hence values of Tf are also expected to vary by many orders of magnitude in 

natural soils and sediments. 

Under certain restrictions, the non-equilibrium index Tf may be used to interpret results 

at the larger field scale. Assuming that the size of aggregates and intra-aggregate diffusion 

rates are similar in columns and in the field, transport under field conditions would tend more 

to equilibrium behavior than transport in a laboratory column, because the travel path will in 

general be longer and the pore water velocity smaller. However, other factors like the 

presence of preferential streamlines in wide pores, will have similar and maybe even more 

noticeable effects on contaminant transport in comparison to the smaller scale aggregation in 

laboratory columns (Rappoldt 1992). The counterbalancing effects during up-scaling suggest 

that transport at the field scale may be described with a model similar to the one presented 

here. The aggregate radius used in the model then represents an average diffusion length in the 

field, which may be determined e.g. by measuring the average distance between wide pores 

(Rappoldt 1992). 

Varying the microbial parameters Y, K^ and B0, caused similar features in the 

breakthrough behavior as changing mf but the deviations were smaller. The model was 

insensitive to variation in bf So, it seems plausible to apply second order growth kinetics and 

to neglect microbial decay, if one is only interested in the breakthrough dynamics of a 

contaminant during infiltration. The steady state that will arise during the percolation of 

contaminated water through a column was not addressed in the sensitivity analysis. A steady 

state solution will develop when the growth rate of bacteria, and hence the biotransformation 

rate, equals zero, as given by equation (16): 
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dt 
= {^f)B = {mf-0--bf 5 = 0 (16) 

It can be easily inferred that a stable residual micropore concentration c „ exists, below which 

no degradation will occur: 

b, b 
c™=K>—L-r=K>-rE-z (17> 

mf~bf -"max-6 

This relation is the same as found for continuous cultures (Middeldorp et al in prep.) and 

biofilm models (Bouwer and McCarty 1984). The macropore concentration will approach cm 

also because the net flux over the aggregate boundary will equal zero at steady state, which is 

only the case if the micro- and macropore concentrations are equal (equation 12c). So, within 

the framework Used in this paper, the steady state residual concentration of a chemical 

percolated through a column will not be affected by physical and chemical parameters, but 

only by microbial kinetics. The reason for this is the assumption that bacteria are 

homogeneously distributed in soil aggregates. As a consequence, all biotransformation will 

take place at the surface of the aggregates, as demonstrated by calculations with an analytical 

solution to equations describing microbial growth in aggregates (Priesack 1991). The effect of 

intra-aggregate diffusion rates on residual concentrations can only be accounted for by 

explicitly including diffusion -kinetics in the terms describing microbial uptake of contaminants 

(Chapter 8), and by assuming discrete zones of microbial activity in the aggregates. Residual 

concentrations in aggregated soil are probably inversely proportional to the effective diffusion 

coefficient D, as demonstrated by calculations for a single cell surrounded by a matrix with 

diffusion resistance (Chapter 8). 

In conclusion, the physical and chemical processes of diffusion and sorption appear to 

be of primary importance in determining the breakthrough of biodegradable contaminants in 

•aggregated soil. Microbial kinetics appear to be of secondary importance. A dependency on 

diffusion kinetics of the residual concentration reached in steady state can only exist if discrete 

zones of microbial activity are present in soil aggregates. Pumping clean water amended with 

nutrients will probably not be effective to enhance biodégradation rates during in situ 

bioremediation of aggregated soil, because its efficacy completely depends on the ratio 

between pore Water velocity and radial diffusion kinetics and not on microbial kinetics. 

Instead, efforts should be focused on decreasing diffusion distances between microbes and 

bulk contaminants by cracking and pulverizing the soil, and on minimizing transport by mass 

flow, by applying only slow flushing rates when water amended with nutrients has to be added 

to the soil. 
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NOTATION 

a., 

a, 

' i - l - i '"((l+i-l-i) 

2 / ; - I - , 2 

b Bacterial decay coefficient (T 1 ) 

B Microbial density (Mm-L~3) 

bf Bacterial decay rate modulus (dimensionless) 

A r'~JM
 r .(i=0,i=I) 

(r,-rM)(rM-rl_l) 

( ' w i X ' w - ' H ) 
C Macropore contaminant concentration (MCL ) 

C0 Influent concentration (MCL ) 

c Micropore contaminant concentration ( M C L ) 

cr First derivative of c with respect to r 

c„ Second derivative of c with respect t o r 

cm Residual micropore contaminant concentration under steady state conditions (Mc-L ) 

(n-r,.,)2 

Dc Axial dispersion coefficient (L2^"1) 

Di Effective intra-aggregate diffusion coefficient (LT" ) 

4r f-2r , . 

0C Macropore porosity 

/ Number of radial nodes 

i Radial node index (0,...,I) 

j Axial node index (0,...,number of axial nodes) 

94 



Modeling radial diffusion limited biodégradation 

km External mass transfer coefficient (LT"1) 

Kt Half saturation constant (MCL"3) 

K External mass transfer modulus (dimensionless) 

L Column length (L) 

mf Maximum specific growth rate modulus (dimensionless) 

p Specific growth rate (T 1 ) 

JI Scaled specific growth rate (dimensionless) 

fi^ Maximum specific growth rate (T 1 ) 

Pe Peclet number (dimensionless) 

R Aggregate radius (L) 

r Radial co-ordinate (L) 

F Dimensionless radial co-ordinate 

Rd Axial retardation coefficient (dimensionless) 

t Temporal co-ordinate (T) 

t Dimensionless time 

Tf Non-equilibrium index (dimensionless) 

V Linear pore water velocity ( L T ) 

Y Yield coefficient (M^M; 1 ) 

z Axial co-ordinate (L) 

z Dimensionless axial co-ordinate 

APPENDIX: NUMERICAL APPROXIMATION 

Because of the non-linear Monod kinetics, a numerical approach is necessary to solve the 

transport equations formulated in the previous section. The numerical approximation consists 

of two stages. The first stage involves a discretization of the spatial co-ordinates (i.e., the axial 

co-ordinate z and the radial co-ordinate r). The differential equations are approximated by 

finite difference equations and a large system of ordinary differential equations is Obtained. 

The second stage involves an approximate solution of the system of ordinary differential 

equations by means of a stiff-stable integration method. 

Both axial and radial co-ordinates are discretized by finite difference methods. For the 

radial co-ordinate we set r=re i=0,...,I, with r0=0, r,= l . Writing c^cii.r^Zj) (where ZJ denotes 

the axial co-ordinate) we have: 

IA?2^c(f'r'Zi)J S0r-,c-1 ~(a-' +0r')C/ +ûr,C'+l r'2-^-\r2-^-c(t,r,Zj)\ =or.,cM-(«.,+or, )cj+a,cI+l (18a) 

with 
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Ir -r 1 
g-,= ^ M , — r (I») 

n-n-i r,{rM-rM) 

ax=^lZJU__l__ (18c) 
rM-ri'r,<-rM-ri-l) 

For arbitrary sequences {rt}, the truncation error of this approximation is first order in (r, - rM) 

and in (rf+1 - r,). If, however, the sequence {r,} is equidistant with stepsize h = r, - rM, the 

truncation error is second order in h. 

For j = 0 and i = I, the above approximation involves the virtual points rM and r,+1, 

and the virtual values cM and c1+1, respectively. Virtual points and virtual values are eliminated 

using the boundary conditions. These involve the derivative %rc(r), which is approximated 

by 
cr(ri) = y5_1c,..1-(yS.1+y81)c1.+M+. (19a) 
where cj[r) denotes the first derivative of ct with respect to r, and 

&.=7 r'~JM , (19b) 
(»!-»;_ lX»'w-»;_,) 

ßi= izJh (19c) 

This relation may be used to eliminate the virtual point and virtual value for i = I+\ from 

equations (15a-c). We find: 

r'2— [r2— c(t,r,Zj)J sy. lc l.1-y.1c l+tf0Cr('}) (20a) 

with 

7-, = , 2
 A2 (20b) 

('i-'i-i) 

,yo =
4 r ' ~ 2 r / - ' (20c) 

r / ( ' } - r ; - i ) 

The virtual point and virtual value for i = -1 are eliminated by direct use of the symmetry at 

r=0: 
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r' 

= lm\crr(t,r,zj)+-cr(t,r,zj)\ 

= lim {crr(t,r,z,)i + 2hm < ~ —\ 
r-»0 r-»0 y r \ 

(21) 

= 3cIT(f,0,z,.) 

where cn denotes the second derivative of c with respect to r. Hence 

The discretization of the axial co-ordinate z was done similarly. The resulting set of non-linear 

differential equations was implemented in FORTRAN-77 and solved with the stiff-stable Gear 

method (Gear 1971) implemented in IMSL-9.2 (MSL 1987). 

r 
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BIOAVAILABILITY: A LIMITING FACTOR IN THE BIOREMEDIATION OF 
POLLUTED SOB.. 

FACTORS AFFECTING THE MOBILITY AND UPTAKE OF POLLUTANTS 

Tom N.P. Bosma, Peter J.M. Middeldorp, Gosse Schraa and Alexander J.B. Zehnder 

to be submitted to Environmental Science & Technology 

ABSTRACT 
Organic pollutants in soil can be removed by means of biological treatment. A major problem 

in the application of these treatments is the efficiency of biodégradation in soil. The bulk of the 

pollution can often be removed but certain residual amounts remain unaltered and 

biodégradation rates are often much slower than expected on the basis of laboratory trials. 

Sorption retarded diffusion kinetics are shown to have a big impact on biotransformation rates 

in soil and on residual concentrations remaining after biotransformation. Residual 

concentrations are predicted to be inversely proportional to effective diffusion coefficients in 

soil and proportional to the metabolic efficiency of the degrading micro-organisms. 

Bioremediation techniques should try to increase diffusion rates in soil to overcome the 

limitation. Dissolution kinetics mainly slow down biotransformation rates but do not affect 

residual concentrations. Biotransformation rates may be increased by adding solvents that 

enhance the solubility of pollutants. Furthermore, a dispersion of the chemical would also be 

effective. After long exposure times, pollutants may become covalently bound to soil organic 

matter via polymerization reactions with natural organic compounds. Thus, a Chemically and 

biologically inactive bound residue is generated that remains unaltered for decades or even 

. centuries. The occurrence of such reactions in soil could be stimulated to inactivate pollutants. 

However, smaller intermediates which are formed initially, may form highly mobile colloids 

which are easily transported over long distances, together with bound pollutants. Moreover, 

similar reactions may also lead to formation of dioxins. Therefore, it is not recommended to 

stimulate the formation of bound residues as a way to detoxify soil. 
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INTRODUCTION 
Organic pollutants in soil can be removed by means of biological treatment. A major problem 

in the application of these treatments is the efficiency of biodégradation in soil. The bulk of the 

pollution can often be removed but certain residual amounts remain unaltered (Valo and M.S. 

1986, Wang and Bartha 1990). In addition, biodégradation rates are often much slower than 

expected on the basis of laboratory trials. Prerequisites for biotransformation are that the 

overall reaction is thermodynamically favorable and that micro-organisms posses 

biodegradative capacities, possibly after acquisition via gene transfer (Van der Meer et al 

1992, Middeldorp et al in prep.). The kinetics of microbial growth are not always sufficient to 

explain the slow biological removal rates in soil and the occurrence of residual amounts after 

bioremediation (Middeldorp et al in prep.). This chapter describes how biotransformation rates 

and residual concentrations may be controlled by dissolution, sorption and diffusion kinetics 

and by coupling to soil organic matter via chemical bonds (bound residue formation). 

SORPTION AND DIFFUSION 
Sorption can be defined as the partitioning of a compound between a solid (e.g. soil particles) 

and a liquid phase. The adsorption isotherm of hydrophobic organic pollutants in soil is linear 

at low concentrations, which means that sorption is linearly correlated with the concentration 

in the liquid phase (Karickhoff et al 1979, Karickhoff 1981): 

S=KpC (1) 

where 5 is the amount of compound adsorbed on the solid phase, K the partition coefficient 

and C the concentration of the compound in the liquid phase. A listing of all symbols and their 

dimensions is given in the Notation section. Sorption of hydrophobic compounds in soil can be 

viewed as a partitioning process between the aqueous and organic phases (Chiou et al 1979, 

Karickhoff et al 1979, Schwarzenbach and Westall 1981). Equilibrium partition coefficients 

for sorption of hydrophobic organics to soil organic matter (Koc) can be estimated from 1-

octanol/water partition coefficients or water solubilities, using linear free energy relationships 

(Karickhoff et al 1979, Schwarzenbach and Westall 1981, Chiou et al 1983, Hasset et al 1983, 

Curtis 1986). K^ can also be estimated using a molecular topology model, that uses the 

molecular structure to calculate the first-order molecular connectivity index of a compound 

(Sabljic1 1987). A linear relationship was demonstrated between the first-order molecular 

connectivity index and empirically determined log^^-values óf hydrophobic compounds. 

Linear free energy relationships also hold for simultaneous sorption of dilute non-polar 

compounds (Schwarzenbach and Westall 1981) and in aquifer materials with an organic 

carbon content (ƒ„,.) as low as 0.1% (Barber et al 1992). However, in aquifer materials with 

lower organic carbon contents, the presence of several non-polar compounds together can 

have a synergistic effect resulting in stronger sorption than predicted from linear free energy 
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relationships (Brusseau 1991). Furthermore, the contribution of mineral surfaces as sorption 

sites may become significant {Schwarzenbach and Westall 1981). X^-values can be converted 

to Ay-values when the foc of a soil is known, by using the relationship: 

Kp = LKoc (2) 

The partitioning of hydrophobic organic contaminants between organic matter and water is a 

physical process that reaches site equilibrium within milliseconds or, at most, seconds (Weber 

et al 1991). Sorption rates of organic pollutants found in soil and sediment are generally 

slower, reaching apparent equilibrium within a day, as a result of the existence of a diffusion 

layer between the bulk fluid and the sorption site (Weber et al 1991). However, several 

researchers have observed that, after contact times in the order magnitude of years, aggressive 

extraction methods are needed to remove organic chemicals sorbed to soil (Karickhoff 1980, 

Steinberg et al 1987). A two-site model can be used to account for this apparent irreversible 

sorption (Karickhoff 1980). One site accounts for a rapid equilibration and the second, defined 

by a small rate constant, accounts for the apparent strong binding after long contact times. 

Later, a sorption-retarded radial diffusion model was successfully applied to explain very slow 

sorption of hydrophobic chemicals (Wu and Gschwend 1986, Ball and Roberts 1991): 

with 

^ ! /(<S»,T) (4) 

where r is the radial co-ordinate, Deff the effective intra-particle diffusivity, Daq the pore fluid 

diffusivity of the sorbate, 6a the porosity of the sorbent, t the tortuosity factor, and ps the solid 

phase density. The function f(6a,z), yielding the correction factor for pore geometry, is given 

by (Ullman and Aller 1982): 

f(ea,x) = e: (5) 

where the exponent i has a value between 1 and 2. 

Effect on biotransformation rates 

The effect of sorption kinetics on biotransformation kinetics was evaluated by assuming that 

bacteria are present inside soil aggregates containing micropores with immobile water (Hattori 

and Hattori 1976, Fig. 8.1). Uptake and biotransformation result in a depletion of organic 

pollutants close to the bacterium* which leads to a diffusion gradient between the bulk soil and 

the region surrounding the bacterium. Resupply of pollutants takes place via diffusion through 

the micropores. 
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Figure 8.1: View of and of a bacterium in a soil particle illustrating the diffusion paths of substrate to the cell 
(A) and a schematic representation (B) illustrating the concept used in the derivations. 

Bacteria which are faced with low supply rates of nutrients synthesize a lot of transporter 

enzymes relative to the amount of metabolic enzymes. This strategy allows the cell to operate 

rate-limiting metabolic enzymes at maximal rates (Button 1991). So, below some critical rate 

of substrate diffusion to the cell surface, each molecule approaching the cell surface will be 

taken up and the uptake rate will equal the diffusive flux at the cell-water interface. Then, the 

growth, rate is fully controlled by the diffusive flux. The steady-state flux of a chemical to a 

spherical cell, is obtained when equation (3) equals zero or when: 

dr\ dr) 

(Crank 1975). The following boundary conditions apply to equation (6): 

C(r=R) = 0 

(6) 

(7a) 

C(r = oo) = Cb (7b) 

where R is the radius of the cell and Cb is the bulk pollutant concentration (see also Fig. 8. IB). 

Equation 7a is the mathematical equivalent of the assumption that each molecule diffusing to 

the cell surface is taken up immediately. Solving equation (6) with these boundary conditions 

yields: 

C = -Q-+C, (8) 

(Von Smoluchowski 1918, Crank 1975). Thus, the flux at the cell surface becomes 
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^ *\dr)mK * R 
(9) 

where F„Ä is the flux per unit area at the cell surface. Multiplication of F^ with the surface 

area of the cell (ApR2) yields the total flux of substrate at the cell surface: 

(FM)r=R = D^Cb(4nR) (10) 

The growth rate of a cell is given by (Pirt 1982) 

dB 
— =Yq-mYB (11) 
dt 
where Y is the observed yield, q the substrate uptake rate, m the maintenance coefficient, and 

B the dry cell weight. When all substrate diffusing to a cell is taken up, the uptake rate equals 

the total diffusive flux at the cell surface: 

q = DjCk(4xK) (12) 

and the growth rate becomes: 

dB 
— =YD^C„(47lR)-mYB (13) 

Hence, uptake and growth rates are first order in the bulk concentration of contaminant in 

case of diffusion limitation and negligible maintenance requirements. This explains why first 

order degradation terms are applicable so often to account for biodégradation of chemicals in 

soil. DeeCh should be kept as high as possible to be able to maintain high transformation rates 

in a bioremediation process. In other words, one must try to create a significant flux of 

pollutants to the degrading micro-organisms by increasing the diffusion rate. Pump-and-treat 

methods which are often used in bioremediation schemes, are not suitable for this purpose, 

because they do not affect the soil structure that is causing the diffusion limitation. Similarly, 

the addition of solvents that increase the water solubility of pollutants does not remove 

limitations caused by diffusion. Pulverization has been shown to be an effective way to 

enhance rates of desorption (Steinberg et al 1987) and mineralization of organic compounds 

(Rijnaarts et al 1990). 

Effect on residual concentration 

The biotransformation rate in soil depends on the rate of pollutant diffusion to the surface of a 

microbial cell, as shown above. When the diffusive flux, i.e. the value of D^Ob in equation 

(13), decreases, maintenance requirements significantly reduce growth rates until the amount 

of substrate taken up is just enough to meet the maintenance requirements. Cells will either die 

or enter a dormant state when the supply rate of substrate cannot meet the maintenance 

requirements anymore (Stevenson 1978). Residual concentrations are believed to result from 
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this situation. To obtain an expression for the residual concentration that does not depend on 

the cell mass, £ in equation (13) can be replaced according to 

B-ptfxS*) (14) 

where pb is the dry weight density and f 7t/?3 the volume of a cell. Consequently, the growth 

rate becomes: 

^- = YD^Cb{A7iR)-YmPb^nS?) (15) 

at 

The term Z)tfCt(4*R) at the right hand side of equation (15) represents the total flux of 

substrate at the cell surface while mph(jJtR3) is the minimal total flux at thé cell surface 

required to satisfy the maintenance requirements. Equating the growth rate to zero and 

replacing Cb by the residual concentration Cr yields: 

^ = impbR (16) 

Both the left and right hand sides of equation (16) represent the minimal flux per unit area 

required to satisfy the maintenance requirements of a bacterial cell. It can easily be solved for 

the residual concentration: 

C - i 2 a £ (17) 

where the denominator is the product of the cell radius R, and the flux per unit area \mpbR 

required to satisfy the maintenance requirements of a bacterial cell. It can be viewed as a 

parameter which expresses the efficiency of cellular metabolism. High values reflect a low 

efficiency typical of eutrophic bacteria, whereas low values reflect a high efficiency typical of 

oligotrophic bacteria. Since fl, is not expected to vary strongly among bacteria, mainly m and 

R will determine the range of variation of this parameter among different bacterial species. It 

can easily be inferred that it is advantageous for oligotrophic bacteria to be small, since the 

efficiency, i.e. |mp bR 2 , is proportional to R2. 

Equation 17 shows that the residual or threshold concentration of a biodegradable 

organic compound in soil is inversely proportional to D^ and proportional to \mpbR
2. Fig. 

8.2 graphs the calculated aqueous threshold concentration as a function of the effective 

diffusion coefficient in the range from 10 (aqueous diffusion, Weber et al 1991) to 10" 

cm2s_1 (diffusion in soil, Wu and Gschwend 1986, Myrand et al 1992). The upper line 

represents large copiotrophic bacteria whereas the lower line represents small oligotrophic 

bacteria. The difference between the upper and lower line stands for the variation of threshold 

concentrations that are the result of differences in metabolic efficiency between bacterial 

species. Values of the efficiency parameter %mpbR
2 were based on published values of m 
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Figure 8.2: Threshold for growth as a function of the effective dijfusivity in soil. The upper line represents 
large copiotrophic bacteria, whereas the lower line represents small oligotrophic bacteria. 

(Chesbro et al 1979, Bouillot et al 1990), pb (Schmidt et al 1985a), and R (Ishida and Kadota 

1981, Carlucci et al 1986). With the chosen range for jtnpbR
2, the resulting variation in 

residual concentration is three orders of magnitude. The effect of D^ is even more drastic. A 

variation of seven orders of magnitude of the residual concentration may be expected based on 

its published values (Wu and Gschwend 1986, Myrand et al 1992). The overall variation in the 

residual concentrations estimated from our approach, is as large as 10 orders of magnitude, 

with a lower limit of about 5- lO^ug-I"1 and an upper limit of Sgl"1 (Fig. 8.2). 

The literature does not provide data to check the validity of the presented approach. 

Maintenance requirements of bacteria are well studied for pure cultures (Chesbro et al 1979, 

Pirt 1982, Bouillot et al 1990) but not for indigenous soil bacteria. The role of intra-particle 

diffusion in sorption of hydrophobic chemicals in soils and aquifers is also well studied (Wu 

and Gschwend 1986, Ball and Roberts 1991) but reports relating effective diffusion of organic 

substrates to biotransformation are scarce (Rijnaarts et al 1990). No data are available that 

relate effective diffusion of organic substrates to residual concentrations that remain after 

biotransformation. However, some indirect evidence for the validity of the derived expression 

for residual or threshold concentrations is provided by the observation that biotransformation 

of chlorobenzenes in columns packed with sediment from a dune infiltration area, resulted in 

residual concentrations that were positively correlated with compound hydrophobicity 

(Chapter 2). Residual concentrations varied from 0.03 mg-1"1 for chlorobenzene to 2.6 mg-1"1 

for 1,2,4-trichlorobenzene. In a related study, a stable residual effluent concentration of 
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0.1 mg-r1 was found after biotransformation of 1,2-dichlorobenzene by indigenous bacteria in 

columns packed with Rhine river sediment (Van der Meer et al 1987). Reported residual 

concentrations did not depend on the influent concentration in a range from 1-100 ug/1. In a 

column with sediment from the same source and inoculated with the polychlorobenzene 

mineralizing Pseudomonas sp. strain PS 1, the residual effluent concentration of 1,2-dichloro

benzene was 6 ugT1. So, the residual concentration of 1,2-dichlorobenzene obtained with 

indigenous bacteria differed from that obtained with a pure culture by a factor of about SO. 

The observed difference may reflect the differences in efficiencies of 1,2-dichlorobenzene 

metabolism between indigenous cells and PS1. The residual concentration after 1,2,4-

trichlorobenzene transformation by inoculated Pseudomonas sp. strain PS1 in the same column 

was 20 ugT1 (Van der Meer et al 1987). Assuming that the strain has a similar metabolic 

efficiency during growth on both 1,2-dichloro- and 1,2,4-trichlorObenzene, the residual 

concentration values of 6 and 20 ugT would reflect a lower value of D^ for 1,2,4-

trichlorobenzene compared to 1,2-dichlorobenzene, which is expected because of the greater 

hydrophobicity, i.e. the greater value of Kp, of the trichlorobenzene. 

The calculated values of the residual concentration are valid only in the region 

immediately surrounding each individual cell. High values occur in soil particles where low 

values of D# are prevalent, lower values in soil particles with higher effective diffusivities. So, 
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Figure 8.3: Schematic visualisation of the distribution of a pollutant in a soil particle and surrounding liquid 
(Douben and Harmsen 1991). The vertical scales are different in a way that the soil concentration » water 
concentration. 
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each micro-environment, surrounding a bacterial cell, has its own unique residual 

concentration. Since both soil and microbial properties vary spatially, a pattern of varying 

threshold concentrations result for a soil or aquifer as a whole. This implies that, in the course 

of bioremediation, a decreasing fraction of the total bacterial population will contribute to 

biodégradation. As a consequence, more and more regions in a particular soil or aquifer do not 

contribute anymore to the process- of biodégradation as soon as the local residual 

concentration has been reached, which means that the diffiision distances between pollutants 

and still active micro-organisms also increase in the course of time. This may account for the 

very slow biotransformation rates that are often found in later stages in soil bioremediation. 

The occurrence of inaccessible residual concentrations after bioremediation, 

particularly in the case of "aged" pollutions was reported by several research groups 

(Salkinoja-Salonen et al 1989, Weissenfels et al 1992, Beurskens et al 1993). Different 

degradation patterns were found in two soils contaminated with chlorophenols (Salkinoja-

Salonen et al 1989). Pollution in one soil occurred only recently, while the other soil was 

already polluted for over 40 years. Although sufficient amounts of chlorophenol degrading 

micro-organisms were detected in both soils, degradation only occurred in the recently 

polluted soil. A freshly added amount of pentachlOrophenol in the old polluted soil however, 

was mineralized instantaneously. When the residual chlorophenols were extracted from the old 

polluted soil and then added again followed by inoculation of the soil with a polychlorophenol 

degrading pure culture, part of the chlorophenols were degraded (Middeldorp and Salkinoja-

Salonen, unpublished data). Similar results were reported for two soils contaminated with 

polycyclic aromatic hydrocarbons (Weissenfels et al 1992), the reductive dechlorination of 

hexachlorobenzene in contaminated sediment (Beurskens et al 1993). 

The difference in the process of bioremediation in freshly and "aged" contaminated soil 

is illustrated in Fig. 8.3. In freshly contaminated soil, contamination only reaches the 

macropores and the outer, relatively easy accessible, regions of aggregates (Fig. 8.3 A). After 

bioremediation, the pollutant is completely depleted in the macropores, while a small residue 

remains in the outer regions of the aggregates (Fig. 8.3B). Opposed to this, "aged" 

contaminations have penetrated the aggregates completely, including regions with extremely 

narrow and tortuous micropores (Fig. 8.3C). After bioremediation, macropores and the outer 

regions of the aggregates are clean, but a considerable residual amount of contaminant remains 

in the internal part of the aggregates (Fig. 8.3D). As a result of the bioremediation process, a 

steep diffusion gradient exists between the inner part of the aggregates and the macropores, 

which may result in a very slow diffusion to the rnacropores again. This explains why sites 

which are supposed to be cleaned by in-situ bioremediation, sometimes appear to be polluted 

again after a few years. It is easy to infer from equation (17) that residual concentrations can 

be decreased by increasing the value of DeJfr So, as mentioned before, the most appropriate 

way to remove limitations caused by sorption and diffusion, is to pulverize soil particles with 
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micropores having high tortuosity. In an in-situ design, the development of long diflusion 

distances may be prevented by ploughing the soil regularly. It may be difficult to pulverize soil 

particles in-situ. 

DISSOLUTION OF SOLID AND LIQUID PHASE POLLUTANTS 
Since hydrophobic pollutants are generally not equally dispersed in soil, they tend to stick 

together at high concentrations, forming particles or droplets. Normally, it is assumed that 

only biodégradation of dissolved pollutants is possible So, there is a possibility that 

dissolution kinetics limit biotransformation. The dissolution from a solid or non-polar liquid to 

thé aqueous phase can be described as (Perry et al 1963): 

J^KAiC^-C) (18) 

where J is the dissolution rate, K the mass transfer coefficient governing dissolution, A the 

solid/water contact surface, and C,^ the maximum water solubility. When the uptake of 

pollutant by the degrading micro-organisms is limited by the dissolution rate, C will approach 

zero and the dissolution rate approaches its maximum value: 

J~=*AC„ (19) 

Under these conditions, q in equation (11) may be substituted by 'Jm. Thus, an expression for 

growth limited by dissolution of pollutant is obtained: 

^=YKACtmK-YmB (20) 

Equation (20) shows that biotransformation rates are positively correlated with the surface 

area of the pollutant droplets or particles (Thomas et al 1986). Furthermore, as long as the 

surface area A does not change significantly, the biomass will increase linearly with a rate that 

is controlled by Y and Cnn (Volkering et al 1992). So, in case of a low water solubility of a 

pollutant or a small contact surface A, bioremediation of soil may be limited by the dissolution 

rate. This limitation may be overcome by the addition of solvents that enhance the solubility of 

pollutants. Furthermore, a dispersion of the chemical resulting in a higher contact area, would 

also increase biotransformation rates. However, in the course of the biotransformation 

process, the size of droplets or particles will decrease until they completely dissolve in the 

aqueous phase. Then, biotransformation can be described using Monod kinetics. Thus, 

residual concentrations after bioremediation will not be affected by the presence of droplets or 

particles purely consisting of pollutant. 
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BOUND RESIDUE FORMATION 

Pollutants like chlorinated phenols, benzoic acids, and anilines, are very similar to natural 

organic compounds and can be incorporated in humus-like structures via oxidative coupling in 

a similar manner as their natural analogues (Bollag and Loll 1983). This reaction is catalyzed 

by a series of inorganic materials, such as sesquioxides, clay, oxides and oxyhydroxides of 

iron, silica, and allophane (Scheffer et al 1959, Zieçhmann 1959, Kyuma and Kamaguchi 1964, 

Wang et al 1986), and by peroxidases and phenol mono-oxygenases (Martin and Haider 

1971). Oxidative coupling proceeds through a radical mechanism which ultimately yields high 

molecular weight polymers of considerable stability (Sjoblad and Bollag 1981, Stevenson 

1982). Both phenolic lignin derivatives, such as vanillic acid, vanilEn, ferulic and syringic acid, 

and a number of man-made organics such as chlorinated phenols, naphtholic compounds and 

halogenated anilines can be cross-coupled with natural phenols in soil (Bollag et al 1980, 

Berry and Boyd 1985, Bollag and Liu 1985, Fig. 8.4). The susceptibility of substituted anilines 

and phenols to enzymatic coupling is enhanced by electron donating substituents on the 

aromatic ring, which increase electron density at the reaction centers, i.e. the -NH2 and -OH 

groups, and stabilize the positively charged transition state (Bordeleau and Bartha 1972, Berry 

and Boyd 1984). Chemicals which are thus incorporated in organic matter, loose their original 

chemical and biological activity, and hence, are less available, less toxic and less mobile than 

the "free" compounds (Bollag 1991). However, macromolecular components of dissolved 

organic matter form colloids in soil which have the potential to serve as carriers facilitating the 

transport of contaminants which bind to organic matter (McCarthy and Zachara 1989, 

Dunnivant et al 1992). Thus, the incorporation of chlorinated compounds in macromolecular 

precursors of organic matter may initially increase instead of decrease their mobility. The 

stability of soil colloids is determined by a complex interaction between physical and chemical 

conditions (McCarthy and Zachara 1989). Colloids moving through soil become exposed to 

varying environmental conditions which may lead to their deposition, decomposition and the 

release of bound chemicals. Moreover, oxidative coupling reactions can also yield by far more 

hazardous products than the substrates, like polychlorodibenzodioxins and -dibehzofurans 

(Svenson et al 1989, Öberg et al 1990, Fig. 8.5). 

Little is known of the biodegradability of pollutants which are chemically bound to soil 

organic matter. It has been postulated that, once pollutants have been incorporated in organic 

matter, they may bè considered harmless and will biodegrade in a similar fashion as soil 

organic matter, with a half-live of more than 500 years (Bollag 1991). An initial step in the 

biotransformation of organic matter is the release of basic components like phenols, anilines, 

and benzoic acids as a result of fungal activity. Then, these molecules are degraded rapidly by 

other micro-organisms (Calderbank 1989). There is indeed some evidence that soil bound 

pollutants are mineralized via such a pathway (Haider and Martin 1988). Degradation rates 

may be increased by stimulating microbial activity in soil via the addition of easily degradable 
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Figure 8.4: Suggested hybrid products resulting from the combined incubation ofsyringic acid and 2,4-
dichlorophenol with a fungal laccase (Bollag et al 1980). 
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Figure 8.5: Formation of2,3,7,8-dibenzo-p-dioxinfrom 2,4,5-trichlorophenol after hydrogen 
peroxide/peroxidase treatment (Svenson et al 1989, Öberg et al 1990). 

organic carbon (Mac Rae 1986). Light may stimulate a sequential photochemical and 

microbial degradation of organic molecules bound to humic acid (Amador et al 1989). In the 

top soil, such a mechanism could lead to the breakdown of small organic molecules which are 

initially formed via oxidative coupling. 

It has been proposed to treat contaminated soil with oxidative enzymes to incorporate 

man-made anilines and phenolic compounds in organic matter, thereby reducing their 

bioavailability and toxicity (Klibanov et al 1980, Klibanov et al 1983, Berry and Boyd 1985, 

Bollag et al 1988, Shannon and Bartha 1988, Bollag 1991, Bollag and Myers 1992). However, 

based on present knowledge, it is not possible to predict the effectiveness of oxidative 

coupling with regard to the decontamination of soil. 

FUTURE PERSPECTIVE 

A limited availability of organic pollutants for biodégradation may be caused by physiological 

or thermodynamic factors or from the presence of undissolved pollutants, slow desorption 

rates, or oxidative coupling to soil organic matter. In combination, all these factors result in 
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reduced biotransformation rates. In addition, slow desorption and coupling to organic matter 

result in high residual concentrations after bioremediation. 

Dissolution rates may be enhanced by dispersion of the pure component through the 

soil, and by the addition of surfactants that increase its maximum solubility. No effect of 

surfactants on residual concentrations are to be expected however, because these are mainly 

the result of slow desorption and coupling to organic matter. Removal of desorption limitation 

can be achieved by pulverization of the soil, which leads to a decrease of diffusion distances, 

and the disappearance of highly tortuous micropores. However, such an approach seems not 

to be feasible in an in-situ bioremediation scheme. 

The role of coupling of pollutants to soil organic matter in bioremediation, is still 

unclear. On one hand, it can be argued that thus immobilized pollutants are not hazardous 

anymore, because they have lost their chemical and biological activity. On the other hand, 

macromolecules of dissolved organic matter may form colloids which are highly mobile and 

may thus serve as carriers for pollutants which are coupled to them. The application of 

enzymatic oxidative coupling as a bioremediation technique, requires that more is known of 

the potential rembbilization of pollutants coupled to soil organic matter. 

So, we have to face the fact that high residual concentrations remain after 

bioremediation of "aged" pollutions, due to strong sorption and coupling to organic matter, 

unless special measures are being taken to mobilize the pollutants. In ex-situ remediation, the 

soil may be pulverized to increase biotransformation rates and decrease potential residual 

concentrations. It is imaginable to remove the mobile fraction of pollutant in a relatively short 

time via an intensive biological in-situ treatment, leaving the immobilized fraction where it is, 

trapped in the inside of soil aggregates, where it is biologically and chemically inactive. Then, 

in a second stage, an extensive treatment should suffice to monitor and control pollutants that 

are slowly desorbing from the soil aggregates. One approach, could be to monitor 

concentration levels in the macropores continuously and to stimulate biotransformation by the 

addition of nutrients, as soon as some critical level is reached. Another could be to apply a 

slow pump-and-treat method continuously. Treatment in the second stage can be stopped as 

soon as total pollution concentrations in the soil are below acceptable limits: 

Since long exposure times have a negative effect on the expected result of 

bioremediation, new soil pollutions should be treated biologically as soon as possible to 

achieve optimal results. This implies that biological soil treatment should be included in 

activities which almost inherently lead to soil pollution with organic chemicals. 
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NOTATION 

Subscripts c and b are used to distinguish contaminant and bacteria. 

A solid/water contact surface area (L2) / 

B cell dry weight (Mb) 

C l iquid concentration (Mc-L"3) 

Ch bulk contaminant concentration (Mç-L"3) 

Cm maximum water solubility (M^L) 

D^ aqueous diffusion coefficient (L2-T_ 1) 

Deff effective intra-particle difiusion coefficient (L/-T"1) 

fa. fraction organic carbon 

Fr=R flux per unit a rea at the cell surface (Mo-T'^L"2) 

Flol total flux at the cell surface (M/T1) 

J dissolution rate ( 

./max maximum dissolution rate ( 

K mass transfer coefficient governing dissolution (L-T"1) 

Kx partition Coefficient for sorption of hydrophobic organics to soil organic matter 

(L3-M;X) 

Kp partition coefficient for sorption o f hydrophobic organics t o soil ( L / ^M/ 1 ) 

m maintenance coefficient (Mj-M,," 'T" ) 

q substrate uptake rate (Mc-T"1) 

6a porosity o f t he sorbent 

R cell radius 

r radial co-ordinate (L) 

Pi cell dry weight density (M^L" 3 ) 

ps solid phase density (Ms-L"3) 

S sorbed concentration (M^M" 1 ) 

t tortuosity factor 

Y observed yield ( M ^ M / 1 ) 
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SYNOPSIS 

Hydrophobie organic contaminants like DDT, Polychlorobiphenyls (PCB's) and polyaromatic 

hydrocarbons (PAFTs), have been detected all over the world. They tend to accumulate in the 

atmosphere and in the soil as a result of their physical and chemical properties. Breakdown 

mainly proceeds by (photo)chemical reactions in the atmosphere and via microbial 

transformation in the soil. Microbial transformation can be viewed as part of the ecological 

process of decomposition, that is, the remineralization of organic material by biota. This 

Chapter discusses the ecological significance of biotransformation and the dependence of 

biotransformation rates on environmental conditions, and suggests ways to improve the 

effectiveness of biological soil remediation techniques. 

Contaminant cycling in ecosystems 

Chemicals are released into the environment by human activities. Normally, they enter the 

abiotic part of the ecosystem which may be viewed as a contaminant pool (Fig. S.l). Biota 

take up contaminants directly from the abiotic environment e.g. via leaves or the skin, or 

ingest them by feeding on a lower trophic level. Organisms have systems at their disposal to 

excrete or detoxify contaminants. Excretion brings contaminants back to the contaminant 

pool, while detoxification results in a decontamination as indicated in Fig. S.l. 

Plants and animals are not always able to detoxify or excrete contaminants after 

uptake. The inability of organisms to handle xenobiotic compounds may have several causes. 

One example is the absence of appropriate enzymes to transform the compounds, another the 

accumulation in (animal) fat tissue before excretion or enzymatic transformation has taken 

place. Contaminants accumulate in the food chain when organisms are not able to detoxify or 

excrete them. Accumulation is indicated by the use of different grey shades in Fig. S. 1. 

The population of "decomposers" (Fig. S.l) is specialized in the uptake and conversion 

of all kinds of dead organic material, like for instance dead animals and plant debris. 

Decomposers are crucial for the functioning of ecosystems because they recycle nutrients to 

the nutrient pool. Contaminants which are accumulated in the tissue of organisms are recycled 

to the contaminant pool simultaneously. Some bacteria and fungi are able to detoxify and 

mineralize man-made organic compounds like chlorinated benzenes and polyaromatic 

hydrocarbons. Thus, they prevent their accumulation in the environment. These micro

organisms may therefore be viewed as the "decontaminators" of ecosystems (Fig. S.l). Many 

micro-organisms live in soil and ground water where hazardous compounds may accumulate. 

Microbial transformation is the, only mechanism leading to the effective detoxification of such 

compounds. Therefore, it is of interest to know under which environmental conditions 

biotransformation is inhibited or stimulated. The potential of micro-organisms to transform 

contaminants under various environmental conditions is discussed in the following together 

with the factors governing exposure of micro-organisms to contaminants in soil and ground 

water. / 
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Figure S.l: Cycling of hydrophobic organic contaminants in ecosystems. Input to the systemoccurs as a 
result of human activities. Output occurs via chemical or biological pathways resulting in the formation of 
harmless products or in complete mineralization. Micro-organisms that are able to transform and mineralize 
hazardous organic compounds may be viewed as "decontaminators" and belong to the ecological group óf the 
decomposers. 

Potential of micro-organisms to transform organic contaminants 

The capacity of micro-organisms to detoxify anthropogenic chemicals under similar 

environmental conditions is variable among various habitats. This may be related to previous 

exposure of the micro-organisms to the compound under consideration. An adapted 

microflora capable of converting and mineralizing new compounds may evolve after a long 

exposure time. The microflora in a not pre-exposed environment may not be able to detoxify 

the same compound. Dichloropropene and 2,4-D (dichlorophenoxy acetic acid) are examples 

of pesticides that micro-organisms "learned" to transform. Degradation of these compounds in 

the field can be so rapid nowadays that their effectiveness as pesticide is strongly reduced. As 

a result, farmers have to apply considerably larger amounts of these pesticides than was 

necessary in the early times of their use. 

Many non-chlorinated organic compounds can be mineralized by aerobic bacteria. Well 

documented examples are simple aromatic compounds like benzene, toluene, and xylenes. 

More complicated aromatic structures like PAEPs are also susceptible to aerobic degradation. 

Heavily chlorinated compounds are not readily degraded under aerobic conditions. However, 

anaerobic bacteria have a great potential to dehalógenate all Mnds of such chemicals: 

Dehalogenation changes the environmental impact of the parent compounds considerably; 

Partly dechlorinated compounds are often more toxic and more mobile than the original 

compounds. The carcinogenic compound vinylchloride for example, may arise from the 

anaerobic dechlorination of tetra- and trichloroethene (PER and TRI). The anoxic 
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transformation products are often biodegradable under aerobic conditions. The increased 

mobility of the more toxic products allows them to travel to aerobic environments where they 

can be mineralized. Thus, the anaerobic process of dehalogenation may be an important 

mechanism to initialize the complete mineralization of heavily chlorinated contaminants in the 

subsurface environment. 

Most of the information regarding the potential of micro-organisms to degrade organic 

contaminants is obtained from laboratory studies at 20°C. Studies carried out at temperatures 

down to 4°C, reveal only a slight temperature dependency of aerobic biotransformation rates. 

Anaerobic dehalogenation rates are reduced and intermediary dehalogenation products 

accumulate at lower temperatures. It seems that activities of aerobic micro-organisms involved 

in these processes are less dependent on temperature than those of anaerobes. Therefore, the 

aerobic removal rates of non- or partly halogenated compounds may be similar in summer and 

in winter in natural systems, while heavily halogenated compounds will tend to persist more in 

winter because of the reduced activity of anaerobes. 

A microscopic view of soil pollution and micro-organisms 

A picture of a versatile microbial community that is able tô  transform and mineralize a variety 

of hazardous organic compounds arises from the previous section. Nevertheless, 

biodegradable organic contaminants can persist in soil for decades. The microbial 

transformation rate of an organic compound is strongly affected by the potential uptake rate 

which is influenced by the transport rate to individual micro-organisms. The very slow in situ 

biotransformation is probably caused by the properties of the soil matrix surrounding the 

micro-organisms which reduces the transport rate. The microscopic spatial distribution of 

contaminants and micro-organisms will affect biotransformation rates in soil. This paragraph 

discusses how a spatial separation between micro-organisms and contaminants may develop in 

case of pollutions from point and non-point sources. 

Soil is polluted from point sources like for instance accidental spills and landfills (local 

pollution), or from non-point sources like atmospheric deposition and application of pesticides 

(diffuse pollution). The general characteristic of a local pollution is the presence of high 

contaminant concentrations in a small volume of soil (Fig. S.2A, upper part). Diffuse pollution 

is characterized by low contaminant concentrations over a wide area (Fig. S.2B, upper part). 

The lower part of Fig. S.2 schematically shows the local distribution of micro-organisms and 

contaminants in both situations. Bacteria are normally present inside soil aggregates. Low 

concentrations of contaminants flow around these aggregates in the case of diffuse pollution 

(Fig. S.2B). Local pollution initially contaminates pores around soil aggregates. The easily 

accessible part in wide pores may be biotransformed rapidly until nutrients become exhausted. 

This leads to a rapid growth of bacteria in the wide pores. Pollutants which are not 

biotransformed initially will diffuse into the aggregates. Thus, a situation arises with relatively 
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high numbers of bacteria surrounding contaminated aggregates (Fig. S.2A). Degradation 

activity is drastically reduced as a result of spatial separation. A similar situation may arise 

when spots containing pure contaminant exist, where no biological activity is possible 

anymore. Hence, micro-organisms and contaminants are spatially separated both in the case of 

local and diffuse pollution. Biotransformation can only take place after diffusion of 

contaminant through the soil matrix to the micro-organisms. 

Computer calculations based on the concept presented in Fig. S.2 show that intra-

aggregate processes of sorption and diffusion are of primary importance in determining the 

kinetics of biotransformation in soil. Effective diffusion rates in soil aggregates can be up to 1-

10 orders of magnitude smaller than in water, depending on the characteristics of the soil 

matrix. As a consequence, biotransformation rates in different soils are subject to the same 

variation. When the diffusivity in soil aggregates is small, a steep concentration gradient is 

needed to maintain a flux of nutrients and contaminants that is sufficient to sustain microbial 

activity. As soon as the contaminant concentration drops below the value that is needed to 

maintain the gradient, biotransformation will stop. This threshold concentration is inversely 

proportional to the effective diffusion rate of contaminant. So, residual concentrations after 

biotransformation are expected to differ by many orders of magnitude, just like the 

biotransformation rates do. 

ground water table 

microorganisms microorganisms 

/ / • l / • \ 

/ ' • I ' • 

soil aggregat 

B 
Figure S.2; Schematic drawing of "aged" local (A) and diffuse (B) pollution at a macro- (upper part) and 
microscopic (lower part) level. 
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Optimization ofbioremediation techniques to relieve limitation of biotransformation 

Limitation of biotransformation is not only the result of slow diffusion rates in soil, but may 

also be due to physiological or thermodynamic factors, to the presence of undissolved 

pollutants, or to the coupling of pollutant to soil organic matter via covalent bonds (bound 

residue formation). All these factors may result in reduced biotransformation rates. A strong 

association between the pollutants and the soil matrix especially develops at sites which have 

been polluted for years or decades already. Bound residue formation and extremely slow 

diffusion into small, highly tortuous pores have both been proposed as causes for this strong 

association. As a result, bioremediation is particularly difficult for these so-called "aged" 

pollutants (Fig. S.2A). 

Dissolution rates of undissolved pollutants may be enhanced by dispersing the pure 

component through the soil, and by the addition of surfactants that increase maximum 

dissolution rates. These methods have been shown to increase biotransformation rates in 

practice. However, surfactants do not dissolve bound residues which are covalently bound to 

organic matter. In addition, they do not increase diffusion rates in small, highly tortuous pores. 

The existence of bound residues and the extremely slow diffusion rates are causes for high 

residual concentrations that remain after bioremediation. Therefore, surfactants are not 

expected to decrease these residual concentrations. 

The possible application of procedures that enhance bound residue formation as means 

of bioremediation is disputed. It can be argued that pollutants which are present as bound 

residues are not hazardous anymore, having lost their specific chemical characteristics. Thus, 

they have also lost their biological activity. However, pollutants not only bind to the humus 

fraction of the soil, but also to dissolved or colloidal fractions of soil organic matter. This may 

lead to a mobilization of pollutants instead of the intended immobilization. In addition, dioxin-

like products are formed when pollutants with phenolic or carboxylic groups bind to each 

other. The use of applications involving enhancement of bound residue formation requires that 

the possible hazards are better understood and that ways are provided to prevent them. 

Considerable residual concentrations will always remain after bioremediation of "aged" 

pollutions, due to strong sorption and incorporation in organic matter, unless special measures 

are taken to mobilize the pollutants. In an ex situ scheme, the soil may be pulverized to 

increase biotransformation rates and decrease residual concentrations. It is imaginable to 

remove the mobile fraction of pollutant in a relatively short time via a biological treatment 

during in situ remediation. The residual immobilized fraction which is trapped inside soil 

aggregates is biologically and chemically inactive. It should be sufficient to monitor and 

control pollutants that are slowly desorbing from the soil aggregates in an "after-care" phase. 

An approach may be to monitor the concentration level in the macropores continuously and to 

stimulate biotransformation by the addition of nutrients as soon as some critical level is 

reached. An alternative would be to apply a slow pump-and-treat method continuously. The 
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after-care phase can be stopped as soon as total pollution concentrations in the soil are below 

acceptable limits. 

New pollutions have to be treated biologically as soon as possible to achieve optimal 

results because long contact times between pollutants and soil have a negative effect on the 

expected result of bioremediation. A possible strategy is to include biological soil treatment in 

human activities which almost inherently lead to soil pollution with organic chemicals. Thus, 

the establishment of a strong association between contaminants and soil can be prevented. 

This strategy has shown to be effective at tank stations where leaking of benzine or diesel is 

unavoidable. 

Introduction of specialized bacteria is used as a strategy to enhance the 

biotransformation of compounds that are not degraded by the indigenous microflora. The 

success of the addition of micro-organisms depends on their ability to reach the contamination, 

to survive, and to carry out the desired reaction. A better understanding and control of the 

transport of bacteria in soil and ground water will help to optimize techniques for 

bioremediation which employ introduced bacteria. Surface characteristics of bacteria and soil 

particles together with the ionic strength of the flowing water control the transport of bacteria 

under saturated flow conditions. The adhesion of bacteria to soil particles is positively 

correlated with the hydrophobicity of bacteria and the ionic strength of the flowing water. 

Hence, the ionic strength of the water in which bacteria are introduced can be used to control 

microbial transport and attachment. If a low ionic strength is used, bacteria may travel long 

distances and disperse around the point where they are introduced. On the other hand, a high 

ionic strength will generally stimulate the attachment of bacteria to the solid phase and may 

prevent bacteria from moving away from the polluted site. 

Concluding remarks 

Microbial transformation is required to achieve detoxification of hydrophobic organic 

contaminants that accumulate in soil. Micro-organisms can therefore be viewed as a sub-

population of the decomposers with a special function, namely detoxification of the 

environment. The effectiveness of microbial transformation can severely be reduced by the 

relative immobility of organic compounds in the soil matrix where micro-organisms live. 

Limitations resulting from slow diffusion can only be removed effectively during ex situ 

remediation, e.g. by pulverizing the contaminated soil. During a biological in situ treatment the 

bulk of contamination can be removed rapidly. The treatment should be followed by an after

care period in which the possible leaking of the residual amount is monitored to be able to take 

measures if necessary. 

From an ecological stand-point, it can be argued that production and release rates of 

toxicants have to be smaller than in situ biotransformation rates to keep environmental 

pollution within acceptable limits. Treatment as close to the source as possible during the 
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manufacturing and use of chemicals will be an important strategy to reach such a goal. The use 

of pesticides should be regulated such that the amount applied in a growth season is 

completely transformed in situ in the same season. 
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MIKROBIOLOGISCHE AFBRAAK: EEN NATUURLIJK ONTGIFTINGSPROCES 

De kringloop van schadelijke stoffen ïn de natuur 

Als gevolg van menselijke activiteiten belanden vele schadelijke stoffen in het milieu. 

Afhankelijk van de wijze van gebruik komen zé terecht in de bodem, het water of in de lucht. 

Een aantal persistente schadelijke organische verbindingen is inmiddels wereldwijd verspreid. 

Klassieke voorbeelden zijn di'chloor-diphenyl-trichloorethaan en polychloorbiphenylen - beter 

bekend als DDT en PCB's - die zijn aangetroffen op de Noord- en Zuidpool en in vissen die 

kilometers diep in de oceanen leven. Het probleem van deze Chemikalien is niet alleen dat zij 

zich zo sterk verspreiden, maar ook dat zij de neiging hebben zich op te hopen in dieren die 

aan de top van voedselketens staan (bio-akkumulatie, fig. SI) . Zo heeft massale sterfte onder 

zeeroofVogels geleid tot een verbod van het gebruik van DDT in de westerse wereld en 

massale sterfte onder zeehonden tot een herbezinning op de toepassing van PCB's. Bio-

akkumulatie treedt op als planten en dieren niet in staat zijn om schadelijke stoffen uit hun 

lichaam te verwijderen of af te breken. Hieraan kunnen verschillende oorzaken ten grondslag 

liggen, zoals het ontbreken van enzymen die de giftige stoffen kunnen afbreken (ontgiften) of 

opslag in dierlijk vet voordat uitscheiding of ontgifting heeft kunnen plaatsvinden. Dit heeft tot 

gevolg dat de konsentratie in plant en dier alleen maar kan toenemen in de tijd dat ze leven. 

Planteneters en roofdieren hebben hier in versterkte mate last van omdat zij met hun voedsel 

tegelijkertijd ook de schadelijke stoffen opeten (fig. S.l). 

Een speciale groep organismen heeft tot taak het afval op te ruimen. Zij vormen samen 

de biologische afvalverwerkers van de natuur (fig. S.l). Dit zijn onder andere dieren, zoals 

mieren die in al hun bedrijvigheid veel plantaardig en dierlijk afval opruimen. Bij deze 

opruiming kómen persistente stoffen die in het weefsel van de dode organismen waren 

opgeslagen, weer terug in het milieu. Gelukkig behoren ook bakteriën en schimmels (samen 

ook wel aangeduid als mikro-organismen) die bekend staan om hun vermogen tal van 

organische stoffen te kunnen opnemen en "verbranden", tot de afvalverwerkers. Sommige 

mikro-organismen blijken zich te hebben gespecialiseerd in het onschadelijk maken van door 

de mens gemaakte giftige stoften (ontgifting door mikro-organismen). Een groot aantal 

daarvan leeft in de ondergrond, waar bepaalde schadelijke organische stoffen zich ophopen en 

onder andere een bedreiging vormen voor de kwaliteit van het grondwater. 

Een mikroskopische kijk op bodemverontreiniging en mikro-organismen 

Naast DDT en PCB's worden door de mens nog tal van andere stoffen gebruikt met 

soortgelijke eigenschappen. Dit zijn onder andere bestrijdingsmiddelen voor de landbouw en 

organische oplos- en schoonmaakmiddelen (bv. tetra- en trichlooretheen, beter bekend als 

PER en TRI). Veel van deze stoffen kunnen door mikro-organismen onschadelijk worden 

gemaakt, maar desondanks kunnen ze tientallen jaren persisteren in de bodem en in het 

grondwater. Waarom doen de mikro-organismen in de ondergrond nu niet gewoon hun werk 

en breken deze stoffen af, zoals zé dat in het laboratorium zo netjes doen? Het antwoord op 

deze vraag moet worden gezocht in de omgeving waarin mikro-organismen in de ondergrond 
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Figuur S.l: Kringloop van persistente schadelijke stoffen in de natuur. De mate van ophoping in elk 
/compartiment is aangegeven door middel van verschillende grijstinten. 

moeten teven en de moeilijkheden die zij als gevolg daarvan ondervinden om te kunnen 

overleven. 

Laten we allereerst eens kijken hoe bodemverontreiniging zich manifesteert. De 

aanwezigheid van grote hoeveelheden schadelijke stoffen op bepaalde lokaties, bijvoorbeeld 

onder vroegere gasfabrieken en in stortplaatsen, is de meest in het oog springende vorm. 

Daarnaast komt ook een veel meer gespreide bodemverontreiniging voor, bijvoorbeeld als 

gevolg van het besproeien van gewassen in de landbouw of bij tuinonderhoud, de uitstoot van 

schadelijke stoffen die neerslaan in de nabije en verre omgeving van fabrieken of 

vuilverbrandingsinstallaties, en onbedoeld weglekken tijdens transport. Het verschil tussen 

beide wordt schematisch weergegeven in fig. S.2. In het eerste geval is sprake van een sterk 

gekonsentreerde vervuiling in een (relatief) schone omgeving (fig. S.2A, bovenste deel). In het 

tweede geval wordt de bodem van boven af voortdurend gevoed met kleine hoeveelheden 

verontreiniging die met het bodemwater meegevoerd worden naar hét grondwater (fig. S.2B, 

bovenste deel). Wat heeft dit nu voor konsekwenties voor de mikro-organismen ter plaatse 

waarvan wij zo graag zouden zien dat ze onze rommel weer opruimen? Om dit te begrijpen 

moeten we ons verplaatsen in de leefwereld van een mikro-organisme. Hun blik reikt niet 

verder dan een fraktie van een millimeter en daarom is het onderste deel van fig. S.2 een 

uitvergroting van een detail van de twee bovenste tekeningen, waarin de verspreiding van 

mikro-organismen én van de verontreiniging schematisch is getekend. 

132 



Mikrobiologische afbraak: een natuurlijk ontgiftingsproces 

\ 7 
grondwaterspiegel 

micro-organismen 

verontreinigingen 

gronddeeltjes 

micro-organismen 

B 
Figuur S.2: Oude, lokale verontreinigingen lijken vaak te bestaan uit een /continue massa van schadelijke 
stoffen in de grond (A, bovenste tekening). Op mikroskopische schaal blijkt dat de verontreiniging aan de 
binnenkant van bodemaggregaten aanwezig is terwijl de mikro-organismen op de buitenkant zitten (tekening 
onder). Bifhet transport van relatiefkleine hoeveelheden van verontreinigingen naar grondwater (B, bovenste 
tekening) doet zich de omgekeerde situatie voor. Hier bevinden de bakteriën zich juist in de aggregaten terwijl 
de verontreinigingen met de waterstroom langs de buitenzijde worden gevoerd. In beide gevallen bemoeilijkt 
de ruimtelijke scheiding tussen mikro-organismen en verontreiniging de biologische afbraakprocessen. 

Het eerste wat opvalt op deze kleine schaal, is dat het niets overheerst. Er zijn veel 

meer "schone" dan verontreinigde plekken en ook mikro-organismen komen slechts 

sporadisch voor. In werkelijkheid is dit nog extremer dan in de tekeningen. Daarnaast is het 

verschil tussen de lokale, sterk gekonsentreerde verontreiniging en de met het bodemwater 

meegevoerde verontreiniging ook op deze schaal zichtbaar. In sterk verontreinigde lokaties 

wordt de verontreiniging die zich tussen aggregaten bevindt relatief snel afgebroken. Als 

gevolg daarvan bevindt de verontreiniging zich na verloop van tijd alleen nog binnenin 

aggregaten van bodemdeeltjes, terwijl de overlevende mikro-organismen zich alleen nog in het 

buitenste deel ophouden, in de schonere zones (fig. S.2A). Daartegenover staat dat mikro-

organismen zich juist aan de binnenkant van aggregaten bevinden in de situatie waar 

verontreinigingen met het water door de bodem worden getransporteerd (fig. S.2B). De beide 

situaties komen overeen wat betreft het bestaan van een ruimtelijke scheiding tussen 

verontreiniging en mikro-organismen. Dit heeft konsekwenties voor de snelheid waarmee de 

verontreiniging door de mikro-organismen afgebroken kan worden. De enige wijze waarop het 
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transport van de schadelijke stoffen naar de mikro-organismen kan plaatsvinden is diffusie, het 

mechanisme dat ervoor zorgt dat een druppel inkt die voorzichtig in een kopje water wordt 

gelegd zich tergend langzaam door het water verspreidt totdat er sprake is van volledige 

menging. Het behoeft geen betoog dat diffusie in grond nog veel langzamer gaat, vaak meer 

dan een miljoen keer langzamer dan in water. Dit is de oorzaak dat de afbraak van schadelijke 

stoffen in de ondergrond zoveel langzamer gaat dan wij zouden verwachten op grond van 

onze kennis over de kapaciteiten van de mikro-organismen. Een ander gevolg is dat mikro-

organismen niet alle verontreiniging verwijderen, maar er na verloop van tijd de brui aan geven 

omdat de aanvoer zo langzaam is dat ze niet meer het vermogen hebben de verontreiniging 

nog aan te pakken. 

i 

Biologische reiniging van bodem en grondwater 

Wat is nu de betekenis van dit alles voor de rol die mikro-organismen kunnen vervullen bij het 

opruimen van schadelijke stoffen? In een bodem waar de mens niet ingrijpt en schadelijke 

stoffen diffuus voorkomen zoals geschetst in Fig. S.2B, wordt het natuurlijk afbraakproces 

sterk geremd door het langzame transport van de verontreinigingen naar de mikro-

organismen. Als gevolg hiervan kan een aanzienlijk groter gedeelte dan wordt voorspeld op 

grond van de uitkomsten van laboratoriumtoetsen, naar het grondwater uitspoelen. Het lijkt 

daarom van belang om in modellen waarmee uitspoeling naar grondwater wordt voorspeld, 

rekening te houden met de ruimtelijke scheiding tussen mikro-organismen enerzijds en de 

schadelijke stoffen anderzijds. 

Biologische reiniging van grond zou zich sterk moeten richten op het verkleinen van de 

van nature aanwezige afstand tussen mikro-organismen en verontreinig. Dit zou bereikt 

kunhen worden door de grond weg te nemen en te vermalen voor of tijdens het 

reinigingsproces. Het perspektief voor volledige reiniging op de korte termijn is slecht indien 

men de grond liever op zijn plaats laat liggen dan af te voeren. In dat geval is het wel mogelijk 

om snel de ergste verontreiniging biologisch te verwijderen, maar men blijft zitten met een rest 

die slechts zeer langzaam, d.w.z. in een tijdspanne van vele jaren, verdwijnt. Hoe erg dat is, 

hangt af van de kontekst waarbinnen de reiniging geschiedt. Men moet zich realiseren dat een 

verontreiniging weinig schade aanricht zolang hij netjes is verpakt in een bodemaggregaat. 

Men zou dus kunnen overwegen in korte tijd de ergste verontreiniging te verwijderen en 

vervolgens het vrijkomen van verontreinigingen uit de lokatie te bewaken en in te grijpen 

indien bepaalde grenzen worden overschreden, totdat de grond geheel schoon is. Het nadeel 

van een dergelijke aanpak is dat men lange tijd aktief moet blijven, zij het met een geringe 

inspanning. Een voordeel is dat men de grond op zijn plaats kan laten en weer in gebruik kan 

nemen na de eerste fase van intensieve reiniging. Misschien nog belangrijker is dat de 

struktuur van de grond bij een dergelijke aanpak slechts weinig wordt aangetast, waardoor het 

zijn natuurlijke funktie kan blijven vervullen. Er zijn geen niet-biologische reinigingstechnieken 
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voorhanden die deze voorwaarde vervullen. Het maakt de mikrobiologische aanpak bij uitstek 

geschikt voor reiniging van grond in natuurgebieden waar in het algemeen geen sprake is van 

een direkt gevaar voor de volksgezondheid en waar de biologische funktie van de grond juist 

zwaar telt. 

Konklusies 

Bakterien in de ondergrond spelen een belangrijke rol bij het opruimen van schadelijke stoffen 

in de natuur. Eigenlijk zou aan alle giftige stoffen die wij mensen in het milieu verspreiden, als 

eis moeten worden gesteld dat het natuurlijke afbraakproces (de ontgifting) zo snel verloopt 

dat schadelijke effekten in de natuur achterwege blijven. In het geval van DDT en PCB's is dit 

overduidelijk niet het geval en dit is dan ook de reden voor het verbieden van respektievelijk 

de herbezinning op het gebruik van deze stoffen. Er zijn echter nog tal van stoffen waarvan we 

eigenlijk niet weten of aan deze voorwaarde wordt voldaan. Zijn we nu in staat te voorspellen 

hoe groot de afbraaksnelheid onder natuurlijke omstandigheden zal zijn en hoe groot de rest 

zal zijn die niet meer afgebroken kan worden? Helaas is het antwoord voorlopig nog: "nee". 

Het is echter wel duidelijk dat de afbraak van veel stoffen tijdens het transport naar 

grondwater van nature zeer veel langzamer verloopt dan wij zouden willen. Een getalsmatige 

invulling vraagt onderzoek dat zich specifiek richt op de vraag hoe de hier geschetste 

mikroskopische konsepten kunnen worden toegepast in een natuurlijk, makroskopisch 

systeem. 

Het perspektief voor biologische reinigingsmethoden van sterk verontreinigde grond 

lijkt beter te zijn. Het is duidelijk dat het afbraakproces verbeterd kan worden door de 

verontreinigingen geforceerd uit de grond te verwijderen, bijvoorbeeld door vermalen van de 

grond. Indien een dergelijke aanpak niet mogelijk of gewenst is, kan worden overwogen het 

snel afbreekbare gedeelte van de verontreiniging biologisch te verwijderen en het restant te 

laten zitten. Het is dan wel noodzakelijk om een bewakingssysteem op te zetten om het 

langzaam vrijkomen van het restant te volgen en in te grijpen als dat nodig blijkt te zijn. 
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