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STELLINGEN 

1. Atmosferische chemie is de wetenschap die zich bezighoudt met het 
onderzoeken van het atmosferisch deel van de kringlopen van stoffen. De 
volgende processen worden hierbij onderzocht: emissie, transport, chemische 
omzetting en verwijdering. Tevens wordt de invloed van de chemische 
samenstelling van de atmosfeer op het klimaat bestudeerd. 

2. Het door Hoell et al. (1982) gebruikte model om het vertikale 
koncentratieprofiel van ammoniak in de troposfeer te berekenen is 
onrealistisch omdat reaktie met zwavelzuur-bevattend aerosol niet expliciet 
in het model is opgenomen. 
(Hoell, J.M., Levine, J.S., Augustsson, T.R., Harward, C.N. (1982) 
Atmospheric ammonia: Measurements and modeling, AIAA Journal 20, 88-95.; 
zie ook hoofdstukken 3 en 5 van dit proefschrift) 

3. De faktor ß die door Eliassen (1978) in lange-afstand transportmodellen 
wordt gebruikt, geeft niet alleen de hoeveelheid geëmitteerd reaktieprodukt 
weer of dient om de overall-reaktiesnelheid te korrigeren voor een relatief 
grotere reaktiesnelheid dichtbij de bron. Het is in de eerste plaats een 
korrektiefaktor die ervoor dient om te kompenseren voor de onderschatting 
van de hoeveelheid reaktieprodukt die anders zou optreden als gevolg van 
de introduktie van de korrektiefaktor a. 
(Eliassen, A. (1978) The OECD study of long range transport of air 
pollutants: long range transport modelling, Atmospheric Environment 12, 
479-487; zie ook hoofdstuk 4 van dit proefschrift) 

4. Het zou voor het overleven van de mensheid nuttig kunnen zijn te weten 
welke maatschappelijke processen ertoe geleid hebben dat "zure regen" van 
een reeds lang door wetenschappers gesignaleerd probleem tot een door de 
maatschappij ervaren probleem werd. 

5. Meteorologische onderzoekers dienen hun weerzin voor de modellering van 
veel voorkomende, doch niet-ideale situaties te overwinnen. 

6. Indien het zo is dat de produktiviteit van een wetenschapper het 
grootst is als deze jong is, wordt dit wellicht ten dele veroorzaakt door 
het feit dat men dan veelal geen relatie en/of kinderen heeft. 

7. De nadruk die bij de beoordeling van de kwaliteit van wetenschappers 
wordt gelegd op de onderzoekskapaciteiten, heeft tot gevolg dat 
universiteiten beschikken over veel niet-overdraagbare kennis. 

8. De benoeming van buitengewoon- en bijzonder-hoogleraren kan leiden tot 
een grote invloed van buiten-universitaire instellingen op het reilen en 
zeilen van universiteiten, hetgeen in strijd kan zijn met de belangen van 
deze universiteiten. 

9. Overheidsinstellingen kunnen veel beter bestuurd worden, indien 
projektgewijze wordt gewerkt, een financiële verantwoording per projekt 
gegeven wordt en het beschikbare geld naar keuze voor materiële of 
personele kosten gebruikt mag worden, dan wel aan derden uitbesteed mag 
Worden. 



10. Voor het goed funktioneren van instellingen en de daar werkende mensen 
is het van belang, dat er serieus werk wordt gemaakt van karr1ère-afbouw,, 
d.w.z. het tijdig in overeenstemming brengen van de werkinhoud met de 
kapaciteiten van de ouder wordende werknemer. 

11. De Nederlandse samenleving zou ontwricht raken, indien alle 
vrijwilligers ineens met hun werk zouden stoppen. 

12. De Nederlandse regering maakt een ernstige denkfout door impliciet aan 
te nemen dat een vermindering van het aantal ambtenaren automatisch leidt 
tot een financiële besparing, met name in die gevallen waar dan als gevolg 
werk aan derden uitbesteed moet worden. 

13. De kinderopvang in Nederland dient snel verbeterd te worden. 

14. De besparingen waar de Nederlandse regeringen weinig energie ingestoken 
hebben zijn energiebesparingen. 

Willem A.H. Asman, 
Atmospheric behaviour of ammonia and ammonium 
Wageningen, 2 november 1987. 
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CHAPTER 1. INTRODUCTION 

1.1 Why are ammonia and ammonium important components? 

This study deals with the atmospheric behaviour of ammonia (NH3) and 

ammonium (NH ) . Although ammonia and ammonium are important atmospheric 

components, also in a quantitative sense, the attention has until now 

mainly been focussed on S0X and N0 X as being the main acidifying 

components. Ammonia and ammonium are important components both in the 

atmosphere and after having been deposited for several reasons: 

a. Ammonia is the most abundant alkaline component in the atmosphere. In 

many parts of Europe up to 70% of the acid in precipitation is 

neutralized by ammonia (EMEP, 1984). Also a large fraction of the 

acid in aerosols at ground level is neutralized by ammonia (chapter 

3). As a result the reaction product ammonium is an important 

component in aerosols at ground level and in precipitation. 

b. When ammonia and ammonium are deposited and enter the soil as 

ammonium, nitrification can occur by Nitrosomas and Nitrobacter 

leading to the overall reaction (Van Breemen, 1982): 

N H | + 20. -•»• 2 H+ + N0~ + H.O 
4 2 3 2 

As a result not only is acid formed by the oxidation, but also acid 

formed in the atmosphere is no longer neutralized by ammonia. In this 

way ammonia and ammonium can cause acidification of the soil which 

may lead to adverse effects on vegetation. 

Nitrification can also occur after ammonia and ammonium have been 

deposited on water surfaces as has been observed In moorland pools in 

the southeastern part of the Netherlands (Schuurkens en Leuven, 

1987). 

c. Very high concentrations of ammonia (yearly average higher than about 

75 ng m ) can cause direct damage to sensible plants (Van der 



Eerden, 1982). 3ut such high concentrations occur usually only nearby 

sources, as for example stables (Asman and Maas, 1986). 

d. In forest ecosystems a high input of ammonia and ammonium leads to 

leaching of potassium, magnesium and calcium from the soil, often 

resulting in increased ratios of ammonium to potassium and magnesium 

and/or aluminium to calcium in the soil solution (Roelofs et al., 

1987). Field investigations show a clear correlation between these 

increased ratios and the conditions of some plant species. 

Ecophysiological experiments proved that increased ratios of ammonium 

to potassium inhibit the growth of symbiotic fungi and the uptake of 

potassium and magnesium by the root system (Roelofs et al., 1987). 

Other experiments proved that coniferous trees take up ammonium by 

the needles and compensate for this by excreting potassium and 

magnesium. This combination of effects often results in potassium 

and/or magnesium deficiencies, severe nitrogen stress and as a 

consequence premature shedding of leaves or needles (Roelofs et al., 

1987). Moreover, trees may become more susceptible to other stress 

factors, such as ozone, drought, frost and fungal diseases. 

In the southern part of the Netherlands where perhaps the highest 

emission density of ammonia in Europe is, the damage of the forest 

seems to be clearly related to ammonia and ammonium, although other 

components may play a role as well (Den Boer, 1986). 

e. Ammonia and ammonium are nitrogen components which can act as plant 

nutrients as nitrogen is often a limiting factor for plant growth in 

natural systems. If ammonia and ammonium are deposited in large 

enough quantities the nitrogen-poor species will disappear or even 

become extinct, because they are no longer able to compete with 

nitrophilous species, which will lead to a different ecosystem 

(Ellenberg, 1987). This phenomenon has caused a shift in the 

Netherlands from heath- and peatlands into grasslands (Roelofs et 

al., 1987). 

f. A large part of the input of ammonia and ammonium to isolated lakes 

in the Netherlands, which are poor in calcium and nutrients 



originates from atmospheric deposition. This input can lead to 

acidification of the lakes and increase in the ammonium concentration 

in the water. This causes a change in vegetation. Moreover, it causes 

an increase in mortality of eggs and larvae of frogs (Schuurkes and 

Leuven, 1987). 

g. If ammonia is absorbed by cloud droplets this will cause a rise in pH 

which enhances the rate of oxidation of dissolved sulphur dioxide by 

ozone (Maahs, 1983). The result of this effect is that somewhat more 

sulphur dioxide will be taken up by cloud droplets and will be 

oxidized to sulphate. 

h. uptake of ammonia by raindrops will also lead to a rise in pH, which 

enhances below-cloud scavenging of sulphur dioxide (Adewuyi and 

Carmichael, 1982). 

i. The presence of ammonia at the earth's surface may decrease the 

surface resistance for the dry deposition of sulphur dioxide and in 

this way influence the dry deposition (velocity) of sulphur dioxide 

(Adema, 1986). 
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1.2 What should be known to describe the atmospheric behaviour of a 

component? 

To understand the atmospheric behaviour of a component, information 

should be known on emission, transport, deposition processes, reactions 

and concentrations of the component. In the following these points are 

discussed with the emphasis on ammonia and ammonium. 

1.2.1. Emission 

The spatial variation of the emission should be known, also as a 

function of time if concentration/deposition patterns should be known as 

a function of time. Moreover, information is needed on the (effective) 

source height of the emissions. This because the source height 

influences the concentration, e.g. that at ground-level. It will 

therefore affect the amount of material being dry deposited and hence 

determine how much material is left for transport over longer distances. 

For ammonia only the geographical distribution of the yearly averaged 

emission Is known. Ammonium is not emitted in significant quantities. 

1.2.2. Transport 

To describe the transport of airborne components it is necessary to have 

information on the windfield as a function of time. Windfields can be 

constructed or computed from meteorological observations. In the models 

described in this thesis only information is used which is extracted 

from windfields. To compute the values of effective removal parameters 

used in the long-range transport model (chapter 4) information is used 

on the frequency of occurrence of the wind speed during periods of 

different atmospheric stability. In the long-range transport model 

(chapter 5) backward-trajectories are used. A backward-trajectory is the 

path along which an air parcel travels before reaching a certain 

location (receptor point). Wind speed and wind direction are functions 

of height in the atmosphere. This is taken into account, as far as 

possible in both the parameterization and in the long-range transport 

model itself. 
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1.2.3 Deposition processes 

Both dry and wet deposition processes should be known as they determine 

how much of a component is deposited and how much will be transported 

further away. 

1.2.3.1 Dry deposition 

The dry deposition process is described by using a dry deposition 

velocity, v (m s - 1 ) . A linear relation is assumed between the flux F 

(mole m s ) to the earth's surface and the concentration of a 

component (mole m ) at a certain height (reference height; in our model 

1 m above the earth's surface): v = F/c. 

This dry deposition velocity is determined by three subsequent processes 

(Fowler, 1980). 

a. Transport from the reference height to a thin layer (laminar layer) 

just above the earth's surface. The transport is caused by turbulence 

and is hence influenced by meteorological conditions (wind speed, 

atmospheric stability), but also by the vegetation height. This 

transport is the same for all substances, apart from aerosols with 

diameter > 10 (im for which gravitation is also of importance. The 

resistance to transport by this process is called aerodynamic 

resistance. 

b. Transport through the laminar layer. The thickness of this layer 

depends on meteorological circumstances. Gases are transported by 

molecular diffusion through this layer. Aerosols with a 

diameter < 0.1 um are able to diffuse through the laminar boundary 

layer by Brownian diffusion. The efficiency of this mechanism 

decreases with increasing particle size. But in general Brownian 

diffusion is not an efficient process compared with molecular 

diffusion. Inertial impaction is another mechanism by which aerosols 

can be transported through this layer to the surface. For this 

mechanism the particle must have sufficient momentum to cross the 

laminar layer. This mechanism is only efficient for particles with 

diameter > 1.0 \m. As a result the transport of aerosols through the 
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laminar layer shows a minimum in the size range 0.1 pm < particle 

diameter < 1.0 (im and in consequence this transport is a limiting 

factor to the overall dry deposition of aerosols of this size range. 

The size of ammonium containing aerosols is usually < 1.0 um. The 

resistance to transport by this process is called boundary layer 

resistance. 

c. Surface processes. After having reached the surface the mechanism of 

dry deposition depends on the physical and chemical properties of 

both the component and the surface. Moreover biological processes 

(e.g. opening of the stomata) may play a role if the surface consists 

of vegetation. Reactive gases are often attached well to the surface, 

depending e.g. on their (chemical) solubility in water. The 

resistance to transport by these processes is called surface 

resistance. 

For ammonia which may already be present at the surface the transport 

will depend on the difference between the air concentration and the 

concentration at the surface. If the latter is higher no dry 

deposition will occur, but emission. The atmospheric part of the 

emission process depends on the same transport processes as the dry 

deposition, the only difference being the direction of the flux. 

1.2.3.2 Wet deposition 

in-cloud scavenging 

Clouds are formed when air is lifted up or is mixed so that it becomes 

supersaturated with water vapour. Condensation takes place on aerosols, 

which act as condensation nuclei. As a result, components originating 

from these aerosols will turn up in cloud water. Most aerosols will act 

as condensation nuclei. The remaining aerosols may be exposed to 

scavenging by cloud elements. 

The in-cloud residence time of cloud droplets is so large that they have 

taken up enough of a gas that there will exist equilibrium between the 

concentration in the droplet and the concentration in the interstitial 

air surrounding the droplet (this equilibrium may be influenced by other 
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components present in the droplet). For a not very soluble gas (e.g. 

sulphur dioxide) a minor part will dissolve in the cloud water. But for 

a very soluble gas as ammonia most of the gas will dissolve in the cloud 

water, also because dissolved ammonia is partly depleted by reaction 

with protons to ammonium. Because of the long lifetime of cloud 

droplets, oxidation reactions can be of importance for some components 

like sulphur dioxide. Due to physical processes in the cloud involving 

the ice-phase, snow flakes and raindrops are formed which on their way 

to the earth's surface may take up both aerosols and gases below the 

cloud base. It should be mentioned here that most clouds will never 

precipitate, but continue to serve as "reactors" in which liquid phase 

reactions occur (Asman, 1986). 

below-cloud scavenging 

For aerosols the rate of below-cloud scavenging depends on the aerosol 

size distribution, the properties of the aerosol and the size 

distribution of the precipitation elements (snowflakes, raindrops). For 

not very soluble gases (e.g. sulphur dioxide) the concentration in 

raindrops leaving the cloud base will be in equilibrium with the air 

concentration in the cloud, which is not likely to be very different 

from the air concentration below the cloud. The uptake of such a gas 

below cloud base will generally not be substantial. Only when the 

concentration decreases strongly with height substantial below-cloud 

uptake may take place. For a very soluble gas like ammonia the situation 

is different. Most drops will not have reached equilibrium with respect 

to the air concentration below cloud base. This because the air 

concentration below cloud base is much higher than the interstitial air 

concentration within the cloud and the mass transfer rate through the 

air-drop interface is simply not large enough to cause equilibrium of 

the drops before they reach the ground. The rate of below-cloud 

scavenging of very soluble gases depends on the physical and chemical 

properties of the gas and the size distribution of the raindrops. On 

scavenging of gases by snowflakes not much is known (Asman, 1986). 
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Overall-scavenging 

As precipitation Is usually acidic, scavenged ammonia exists in 

precipitation as ammonium and cannot be distinguished from ammonium 

which originates from scavenging of ammonium aerosol. Moreover, 

measurements will not give any information of the relative importance of 

the scavenging process (below-cloud or in-cloud) involved. To model 

scavenging, geographically detailed information on the occurrence of 

precipitation (rate, time of duration) is needed. In this thesis six-

hourly averaged precipitation fields are used. 

1.2.3 Reactions 

When a component reacts it will be transformed into a reaction product 

which may have different chemical and physical properties than the 

original component (precursor). In the atmosphere gaseous ammonia will 

react with acidic gases (nitric acid, hydrochloric acid) or acidic 

aerosols (e.g. containing sulphuric acid). The reaction product ammonium 

aerosol may be deposited at a different rate than the precursor and, 

e.g. as a result, be transported further away than would have been 

possible for its precursor as is the case for ammonium. 

1.2.4 Measurements 

Measurements may either be used to describe (a part of) a process 

involved, or may be used to check model results. There are a lot of 

problems associated with measurements, some of which will be discussed 

below. 

Measurements involve sampling and analysis of chemical components. Some 

problems associated with the interpretation of measurements are: 

a. Sometimes not only the component of interest is sampled but also 

another component at the same time which may be transformed into the 

component that is analysed in the sample. An example is ammonia which 
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can be dry deposited in a bulk sampler and will be analysed as 

ammonium (Slanina and Asman, 1980). 

b. The sample may be not representative. There exist many kinds of non-

representativeness : 

The sample may be taken during a short time-period, but the result is 

used to draw conclusions about periods associated with different 

circumstances. 

The sample may be only representative of the concentration in a small 

area, whereas conclusions are drawn which are supposed to be valid 

for larger areas. An example is a precipitation sample which is 

contaminated by a bird-dropping, causing a high ammonium 

concentration (Asman et al. 1982). Although this concentration itself 

may be realistic enough, it will certainly not be representative of a 

larger area. 

Another example is that concentrations are often only measured at 

ground level, but are sometimes assumed to be representative of the 

whole mixing layer, which may not be the case. 

c. The analytical method is not only sensitive to the component of 

interest, but also to a limited extent to other components. This can 

give serious trouble if these other components are present in 

relatively high concentrations, without this being realized. 

d. The sample may become contaminated during transport or in the 

laboratory, or the concentration of the component of interest may 

change during storage due to processes as adsorption, biological 

activity or reaction. Examples are the change in ammonium 

concentration in precipitation which occurs in not light-protected 

bottles (Ridder et al., 1984) and contamination ammonia is always 

present in the laboratory atmosphere and is emitted by human beings. 

e. A non-systematic error is associated with all measurements. This 

should be taken into account when a conclusion is drawn from e.g. the 

difference between the values during two periods at one site. This 

means that such differences should be evaluated statistically which 

is very often not done. 
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f. Sometimes the effect of a process Is completely masked by the 

variation of other processes occurring at the same time. This will 

often be the case during measurements in the field. An example is 

e.g. measurements of plume washout of a powerplant, where the spatial 

variation in the concentration of the component which was washed out 

was mainly caused by the spatial variation in rainfall rate and not 

by spatial variations in the efficiency • of the washout process 

itself. By adopting a special procedure for correcting the 

concentrations for the variation of the rainfall rate it appeared to 

be possible to obtain information on the washout of the component 

(Slanina et al., 1983). 

Sometimes one might not even be aware of another process which 

influences the observations. An example is perhaps the vertical 

concentration profile of ammonia measured by Hoell et al. (1982). 

They explain this vertical profile completely by diffusion of ammonia 

from the earth's surface and reaction with OH, 0 and 0 ( D ) , and some 

heterogeneous loss including rainout and dry deposition. They 

apparently completely ignore the certainly more important reaction 

with acidic components. 

g. Laboratory experiments are not always representative of field 

conditions. E.g. measurements of the dry deposition velocity of a 

component in the laboratory are usually not representative of field 

conditions as no or reduced turbulence in air exists compared to 

field conditions. 

h. Measurements sometimes give contradictory results. 

The problems discussed above indicate that measured data can only be 

used with care and only after examination of all probable errors 

associated. This is sometimes difficult as the description of the 

methods used in literature is not always sufficient. 

The measurement of ammonia and ammonium and related components is not 

easy as Indicated by some examples given above. 
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1.3. Putting the pieces of a puzzle together 

To describe the atmospheric behaviour of a component much more 

information should be known than is usually available. Not only a lack 

of information on processes and actual concentration patterns exists, 

but also part of the information available seem to be contradictory. To 

tackle this problem a systematic approach is necessary. A useful way to 

proceed is to use a model as a logical framework for the integration of 

the existing knowledge. Model results can then be used for the following 

purposes: 

a. To get an indication of the probability of the results of 

measurements which then may lead to the rejection of doubtful 

results. 

b. To get an Indication about the strategy for obtaining additional 

Information (what to measure, when and where?). 

c. To interpolate measured data. 

d. To give an Indication of situations In the past or in the future or 

In other regions. This can be dangerous of course as one is never 

sure whether all important factors are Included in the model, 

especially not if this situation Is completely different from the 

situation for which the model was originally developed. 

e. To get an indication of the variability In the atmospheric behaviour 

of a component caused by the uncertainty in the different processes 

involved (sensitivity analysis). 

A useful way of applying models is using them in an iterative cycle 

combined with measurements both in the field and in the laboratory: 

using the model results to plan additional measurements and using those 

measurements to improve the model etc. One should be aware, however, of 

the inherent danger of looking for what one expects to find. 
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1.4 The ammonia and ammonium case 

1.4.1 Scope of this thesis 

A few models for ammonia and ammonium exist. Russell et al. (1983) made 

a multi-layer Lagrangian transport model describing the transport and 

formation of ammonium nitrate aerosol for California. They did not take 

reactions of ammonia and sulphuric acid into account, nor wet 

deposition. Their model was mainly used to compute diurnal variations of 

ammonium nitrate aerosol, ammonia and nitric acid concentrations, which 

were compared with measurements for one day. 

De Leeuw et al. (1986) developed a multi-layer Lagrangian transport 

model with detailed chemistry including the reaction with sulphuric acid 

containing aerosol and wet deposition. Their model was especially 

designed to describe episodes with high aerosol concentrations. 

More complicated models as discussed above have the advantage of giving 

more insight in detailed (chemical) mechanisms. But the results obtained 

with such models are often difficult to verify as components are 

involved which are not measured, or not at all levels the model gives 

results for. Moreover, more complicated models require relatively more 

computing time, which makes them less suitable to compute long-term 

average concentrations. At this moment no good information is available 

on seasonal variations in the ammonia emission. Moreover, much 

information on the variation both in time and space of other processes 

is also lacking. This means that some processes involved can be 

described in detail, whereas others cannot. Such models suffer then from 

an imbalance in the treatment of different processes, and the results of 

the models will be no better than is dictated by the weakest link in the 

chain. It should be mentioned here that such models still can be very 

valuable to study mechanisms and possible interactions between different 

processes and components. But because of the lacking information on e.g. 

short-time variation in emission no realistic short-term concentrations 

can be obtained. 
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Some information on the processes involved is available, but sometimes 

only on a yearly basis. It seems therefore most appropriate to integrate 

the existing knowledge by using a relatively simple model for the 

computation of yearly averaged concentrations. A first attempt to do 

this was made by Fisher (1984). He tried to compute deposition fields 

for ammonium in precipitation and the total deposition (sum of dry and 

wet deposition) of Nl^ (sum of ammonia and ammonium) for Europe. But he 

had to conclude that his approach would remain limited until the main 

rates of removal of nitrogen compounds were better known. 

The scope of this thesis is: 

a. To evaluate the existing knowledge of all processes involved. 

b. To acquire additional crucial information on some processes from own 

field measurements. 

c. To integrate this knowledge by applying a model for the computation 

of long-term average (ground level) concentrations, with emphasis on 

the European scale. This model has been developed especially for 

ammonia and ammonium. 

d. To show some new applications of models: computation of historical 

import/export balances and concentration patterns. 

1.4.2. On the presentation 

This thesis consists mainly of separate articles (chapters 3 to 6) which 

were submitted to Atmospheric Environment. This has some consequences: 

a. Some information is presented in more than one article or part of 

this thesis. 

b. A list of references appears after each chapter. 

c. The articles have not been written at the same time. As a result some 

information was not yet known at the time of preparation of some 

articles, although this does not lead to any serious inconsequences. 
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In the following a preview is given of the contents of the different 

chapters. 

Chapter 2 

In this chapter some information is presented on the geographical 

distribution of the yearly averaged ammonia emission in Europe, which is 

essential to understand the model results. 

Chapter 3 

In this chapter field measurements are described. These measurements 

were performed for the following purposes: 

a. To verify the estimated emission density 

b. To get an indication on the vertical concentration profiles of 

ammonia, ammonium and related components in an area where emission 

occurs. This information is needed to model the horizontal transport. 

c. To get an indication of the overall conversion rate of ammonia to 

ammonium. 

Chapter 4 

In this chapter is described how correction factors can be computed 

which can be used in a simple Lagranglan long-range transport model to 

describe the effects of turbulent mixing on concentration and deposition 

patterns. By using these correction factors more realistic results can 

be obtained. 
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Chapter 5 

This chapter forms the basic part of the thesis and describes the 

evaluation and integration of the present knowledge, the setup of the 

model, numerical aspects of the model and comparison of model results 

with measurements. Although the model in principle would allow to vary 

most parameters as a function of time and space (e.g. dry deposition 

velocity, reaction rate, mixing height etc.) this was not done in 

practice in view of all uncertainties in the parameter values. 

Therefore, also no processes like escape into the reservoir layer were 

taken into account. 

Chapter 6 

In this chapter it is shown that it is not only possible to use a model 

to describe the present situation, but also to give estimates of 

concentrations in the past. These estimates make it possible to know 

where trends in concentrations measured in the past can be expected. 

Chapter 7 

In this chapter the conclusions of this study are summarized and 

discussed. 
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CHAPTER 2. EMISSION 

An emission inventory for NH-j for Europe has been made by Buijsman et 

al. (1987). Table 1 and Figure 1 show the total anthropogenic NH-j 

emissions in Europe around 1980. Buijsman et al (1987) showed that the 

natural emission of NHo in Europe is about 750 x 10' tonnes year-1, 

which is about 10% of the anthropogenic NH-j emission in Europe. No 

sources for the emission of NH, are known which means that all Nil found 
4 4 

in the atmosphere originates from the emission of NHo. 

REFERENCE 

Buijsman, E., Maas, J.F.M, Asman, W.A.H. (1986) Antropogenic NH-j 

emissions in Europe, Atmospheric Environment 21, 1009-1022. 
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Table 1.: Total antropogenlc NH-j emissions In Europe In the early 

80's. All data In 10J t NHj y , except the emission densities 

( t 

Country 

Albany 

Austria 

Belgium 

Bulgaria 

Czechoslovak! 

Denmark 

Finland 

France 

FRG 

GDR 

Greece 

Hungary 

Ireland 

Italy 

Luxemburg 

Netherlands 

Norway 

Poland 

Portugal 

Romania 

Spain 

Sweden 

Switzerland 

Turkey 

U.K. 

U.S.S.R. 

Yugoslavia 

NH3 km- 2 y" 

Llvestock 
wastes 

16 

62 

74 

91 

a 127 

87 

38 

569 

329 

159 

69 

83 

110 

252 

4 

128 

27 

317 

38 

237 

177 

46 

49 

632 

307 

1046 

167 

X ) . 

Fertilizers 

4 

9 

4 

31 

39 

23 

4 

130 

35 

42-

25 

42 

5 

101 

<1 

12 

7 

80 

7 

53 

49 

6 

4 

47 

90 

210 

29 

Industrial 
sources 

<1 

1 

4 

4 

4 

1 

1 

9 

6 

6 

2 

4 

1 

7 

0 

8 

2 

7 

1 

11 

5 

1 

<1 

4 

7 
t 

(61) 

2 

Total * 

21 

72 

82 

i26 

170 

111 

44 

709 

371 

207 

95 

130 

117 

361 

5 

150 

36 

405 

47 

301 

232 

52 

53 

683 

405 
t 

1256 

198 

s 
Emission 

density 

1.7 

1.7 

5.3 

4.7 

2.4 

3.8 

0.7 

4.4 

2.4 

3.2 

2.2 

1.9 

1.9 

2.0 

3.4 

6.4 

0.3 

2.1 

4.0 

1.9 

1.1 

1.1 

4.5 

0.9 

2.1 

1.6 

1.9 

Europe 5241 1091 102 6434 

Emission from ammonia, fertilizer and related plants. 
Differences can occur due to rounding. 
Industrial emissions in the USSR not taken into account. 

§ Defined as: 
agricultural emissions 

agricultural area 
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CHAPTER 3. 

(Submitted for publication in Atmospheric Environment) 

VERTICAL DISTRIBUTION OF GASES AND AEROSOLS: THE BEHAVIOUR OF AMMONIA 

AND RELATED COMPONENTS IN THE LOWER ATMOSPHERE. 

•k C * 

Jan-Willem Erisman, Aart W.M. Vermetten, Willem A.H. Asman, 

Institute for Meteorology and Oceanography (IMOU), State University of 

Utrecht, 5 Princetonplein, 3584 CC Utrecht, The Netherlands. 

Anita Waijers-IJpelaan, Jacob Slanina, 

Netherlands Energy Research Foundation (ECN), P.O. Box 1, 1755 ZG Petten, 

The Netherlands. 

Abstract. 

Vertical concentration profiles for NH,, HNO, and HCl-gas and for NH. , NOl, 
2- - + 

SO, , CI and Na aerosol were obtained from a meteorological tower in the 
-2 -1 

central part of the Netherlands. An upward NH, flux of 0.12 /jg m s was 

calculated from the NH, profiles and meteorological data. From the HNO, 
-1 profiles a maximum HNO, dry deposition velocity of 4 cm s was calculated. 

Good agreement was found between the measured concentration products 
o 

[NH,]. .x [HNO,], . and the theoretical values at temperatures above 0 C 

and relative humidities below 80%. In other cases higher NH, and/or HNO, 

concentrations in the gasphase were measured than theoretically predicted. 

* Present address: National Institute of Public Health and Environmental 

Hygiene, Laboratory for Air Research, P.O. Box 1, 3720 BA Bilthoven, The 

Netherlands. 

f Present address: Agricultural University Wageningen, Department of Air 

Pollution, P.O. Box 8129, 6700 EV Wageningen, The Netherlands. 
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1. Introduction. 

Ammonia and ammonium are important atmospheric components. Ammonia is the 

major neutralizing gas in the atmosphere, so it plays an important role in 

the neutralization of atmospheric acids generated by the oxidation of 

sulfurdioxide and nitrogen oxides. As a result ammonium is a major 

constituent of atmospheric aerosols. 

Most of the ammonia is emitted near the earth's surface and in western 

Europe most of it will react irreversibly with H„S0, containing aerosol. A 

smaller part of the atmospheric ammonia will react with gaseous HNO. and 

HCl to form aerosol compounds like NH.NO, and NH.C1 (Pio and Harrison, 

1987) which can dissociate again by: 

-> NH.NO-, . < NH,. . + HNO.. . 4 3(s) ^ 3(g) 3(g) 
NH.CI. . < ' NH,. . + HCl. . 

4 (s) 3(g) (£) 
To model the atmospheric behaviour of NH,, NH, and related components, it 

is necessary to have information on the vertical distribution of these 

components. Some information on the vertical distribution of NH, and/or NH, 

can be found in the literature (Georgii and Müller, 1974; Böttger et al., 

1978; Georgii and Lenhard, 1978; Lenhard and Gravenhorst, 1980; Hoell et 

al., 1980; Levine et al., 1980; Hoell et al., 1981; Alkezweeny et al., 

1986). However, many of the measurements reported were made by aircraft and 

subsequently do not describe the distribution in the lowest part of the 

atmosphere where the most pronounced concentration gradients are likely to 

occur, as NH, is emitted at or near the earth's surface. 

It was therefore decided to measure vertical gradients at the 

meteorological tower of the Royal Netherlands Meteorological Institute 

(KNMI) located at the rural site of Cabauw in the middle of the 

Netherlands. This had the added advantage, that usually detailed 

meteorological data were available, which can be very helpful to interpret 

the results. Not only NH, and NH, were measured, but also gaseous HNO» and 
2- - + HCl, and NO,, SO., CI and Na in aerosols. 3 4 

Furthermore, information about the equilibrium involving NH, especially for 

the reaction with HNO,, is also essential for modelling purposes. 

Therefore, the concentration products of NH, and HNO, are compared with 
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theoretically derived concentration products pertinent to the dissociation 

equilibrium of NH.NO,. The relation between these concentration products 

and the temperature and relative humidity is also discussed. 

2. Experimental. 

The samples were taken at a meteorological tower which is 213 m high and is 
o 

situated at Cabauw in the central part of The Netherlands (51.55 N, 4.55 
o 

E). The tower is surrounded by pastures where cattle are usually grazing. 

In the nearby surroundings of the tower no nitrogenous fertilizers are 

used. Cabauw is located in an area with an average ammonia emission density 
-2 -1 

of approximately 0.20 fig NH, m s , which is somewhat higher than the 
-2 -1 average emission density in the Netherlands, 0.14 /ig NH. m s (Buijsman 

et al., 1984). 

The samples were taken at heights of 25, 100 and 200 m. At ground level the 

samples were taken at 2 m height at some distance from the tower building. 

The sampling system consists of two dénuder tubes and a filterpack. The 

first tube is coated with NaF to collect acidic gases (HNO- and HCl), the 

second tube is coated with H,P0, to collect gaseous NH,. The filterpack 

consists of three filters. The first filter is a teflon filter (Mitex 

Millipore LS 5 /im, 4> 47 mm) on which aerosol particles are retained. The 

other filters are paper filters (Whatman 41, $ 51 mm), impregnated with NaF 

and H-P0, respectively. These are used to collect HNO, and NH,, generated 

by evaporation of NH.NO, from the first filter. 

After sampling the filters are rinsed with deionized water, which is 
2- - - + 

subsequently analysed for SO, , NO*, CI (ionchromatography), NH, 

(colorimetric method with nitroprussic-hypochloride with flow injection and 

UV detection) and Na (AAS) at ECN. Details about sampling and analytical 

methods can be found in Ferm (1979), Slanina et al. (1981) and Slanina 

(1982). The accuracy for sampling and analysis is 5 - 10%. The detection 
.3 

limit for gases and aerosols is about 0.05 /ig m for a 12 hour sampling 
period at a flow rate of 10 1 min 
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Measurements have been carried out during 30 day-time (9 a.m. till 9 p.m.) 

and 30 night-time (9 p.m. till 9 a.m.) periods. During the first 15 periods 

samples were taken only at 2, 100 and 200 m height. At the meteorological 

tower wind speed, wind direction, temperature and relative humidity are 

measured continuously at several levels (Driedonks et al., 1978). 

Unfortunately, however, no meteorological data for the tower were available 

for the first 12 sampling periods. For these periods ground level data for 

the nearby station De Bilt (20 km from Cabauw) were used. The samples were 

taken during different seasons and meteorological circumstances. 

3. Vertical concentration profiles. 

The averaged concentrations for measured components are presented in Table 

1. The meteorological data are extensively described by Erisman et al. 

(1986B). The average day- and night-time concentration profiles are 

presented in Figures 1 and 2. These present the average concentrations for 

the last 15 sampling periods, including the 25 m sampling height. This was 

done because only concentrations measured at different heights at the same 

time can be compared. 

For NH, a strong decrease in concentration with increasing height is 

observed. The NH, concentration gradient is much more pronounced during 

night-time than during day-time. At night (ground) temperature inversions 

were frequently observed. Together with increased atmospheric stability and 

lower windspeed the occurence of ground inversions is presumably the reason 

for the relatively high NH, concentrations at ground level during night

time. This in spite of the much lower emission rate of NH, observed during 

night-time (Beauchamp et al., 1982). 

For HNO, a strong increase with height is observed. A stronger increase 

with increasing height was observed for HNO- concentrations during night

time than during day-time. This is presumably caused by the occurence of 

inversions during night-time. Inversions prevent downward transport of HNO, 

and upward transport of NH,.The strong increase of HNO, concentration with 
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Table 1. The average concentrations for measured components. 

Height 

(m) 

2 

25 

100 

200 

average 

min. 

max. 

number 

average 

min. 

max. 

number 

average 

min. 

max 

number 

average 

min. 

max. 

number 

NH3 

8.3 

0.8 

49.4 

56 

6.2 

0.7 

19.0 

32 

3.6 

0.1 

12.1 

60 

2.1 

0.1 

10.0 

58 

HN03 

1.1 

0.0 

12.1 

55 

0.8 

0.0 

6.3 

32 

2.2 

0.0 

23.3 

60 

2.6 

0.0 

19.5 

58 

Concentrât 

HCl 

0.5 

0.1 

1.9 

55 

0.4 

0.1 

3.0 

32 

0.6 

0.1 

3.0 

60 

0.8 

0.1 

2.8 

58 

NH* 
4 

5.6 

1.2 

20.3 

53 

5.0 

1.2 

15.6 

32 

5.0 

1.0 

15.4 

58 

4.1 

0.8 

13.6 

56 

ion (/ig 

N0~ 

10.5 

0.1 

44.3 

53 

10.1 

1.0 

41.1 

32 

8.5 

0.5 

26.7 

57 

7.8 

0.8 

37.2 

56 

m"3) 

sop 
4 

9.2 

2.1 

32.5 

53 

9.4 

1.6 

25.0 

32 

8.6 

0.7 

26.1 

57 

8.1 

0.4 

23.3 

56 

CI" 

1.2 

0.1 

4.6 

53 

1.4 

0.1 

5.0 

32 

1.4 

0.2 

12.1 

57 

1.1 

0.3 

4.5 

55 

Na+ 

0.5 

0.1 

1.9 

46 

0.5 

0.1 

1.6 

32 

0.5 

0.1 

1.7 

55 

0.4 

0.1 

1.9 

53 
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Figure 1. Average vertical profiles for the day-time sampling periods 

including 25 m sampling height. 
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Figure 2. Average vertical profiles for the night-time sampling periods 

including 25 m sampling height. 
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height might be explained by two processes: a) reaction with NH, and b) dry 

deposition. The NH, concentration near NH, emitting surfaces can easily be 

so high that virtually all HNO, has reacted with NH, before it can be 

deposited at the earth's surface. It was not possible to deduce the 

relative importance of reaction from our measurements, because the HNO, 

concentrations at all heights are much lower than the NO, concentrations. A 

significant increase in NO, concentrations due to reaction of HNO, to NO, 

aerosol could therefore not be detected. If the gradient is the result of 

the reaction with NH, it is possible that the dry deposition velocity of 

HNO, is lower, than calculated . 

Two methods were applied to calculate the HNO, dry deposition velocity from 

the HNO, profiles and meteorological data, assuming that reaction with NH, 

is unimportant. 

If equilibrium in the atmospheric boundary layer has been established, the 

dry deposition velocity, v,, can be calculated according to Onderdelinden 

et al. (1986): 

vdl-(tci(z2)/ci(z2)]-l)/ra(z1,z2) (1) 

where c.(z.) is the HNO, concentration at height z. and r (z-.z-) is the 
iv 1' 3 ° 1 a 1 2 

difference between the aerodynamic surface resistances, controlled 

predominantly by turbulent mixing above a surface, at height z. and z„. 

The dry deposition velocity could also be calculated by assuming that v, is 

inversily proportional to the sum of three resistance terms (Walcek et al., 

1986): 

vfv^,»'1 (2) 

where r is the aerodynamic resistance, r, is an additional resistance that 
a J b 

accounts for pollutant transfer across the atmospheric near surface layer, 
and r is a resistance associated with pollutant-surface interaction, r 

s r a 

and r, were calculated according to Onderdelinden et al. (1984), r was 

assumed to be zero, due to its high miscibility on surfaces (Walcek et al., 

1986). Both methods were applied for sampling periods where no inversions 
occured, the deposition velocities were found to be v,,= 4.0 cm s and 

-1 
LT _> 1 Q r*m e 
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velocities are also in the same order of magnitude as the averaged HNO. dry 

deposition velocity in the Netherlands, v.- 3.4 cm s , calculated by 

Erisman (1987) . 
+ 2-

The NH,, SO, and NO. concentration decreased slightly with increasing 

height. This decrease was somewhat larger during day-time than during 
+ 2-

night-time. NH,, SO, and NO. are only formed by reaction of the emitted 

primary components : NH,, S0„ and NO . As the reaction is slow compared to 

atmospheric mixing processes, and the dry deposition velocities are low, no 
+ 2-

pronounced vertical gradients of NH, , SO, and NO, were observed. No 

significant gradients could be observed for HCl, Cl and Na . 

The average concentrations given in Table 1 are not annual averages, 

because measurements were not carried out on an annual basis. However, the 

measurements were carried out during different seasons and meteorological 

conditions. These averages, therefore, might give a good picture of what 

the annual averages could be. This is supported by the fact that the 

average NH, concentration is in very good agreement with the emission 

concentration relation given by Erisman et al. (1986) (see Figure 3). For 

measuring sites with different emission densities in the Netherlands a 

strong relation was found between the median concentration of NH, and the 

estimated local emission density. In Figure 3 this relation is presented 

including the average NH, concentration at Cabauw. 

4. Ammonia flux. 

Under steady state conditions, the vertical flux of a trace constituent 

into the first few hundred metres of the atmosphere is proportional to the 

gradient of the mixing ratios if it can be assumed that sources and sinks 

are homogeneously distributed at the earth's surface. The NH, flux can be 

represented by (Onderlinden et al., 1987): 

F - -Kz ( dcj/dz) (3) 
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Figure 3. Measured NH.. concentration vs. calculated NH- emission (5x5 km ) 

for The Netherlands. Average NH. concentration at Cabauw is 

marked with ( • ). 
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where K is the average eddy diffusity, c. is the concentration of NH, and 

z is the height. 
-2 -1 An average net upward NH, flux of 0.12 /ig m s was calculated from the 

individual sampling periods. Buijsman et al. (1984) calculated an average 
-2 -1 net NH, emission flux of 0.20 /ig m s , while the NH- deposition flux for 

- 2 - 1 
this area was calculated by Asman and Maas (1986) to be 0.06 /ig m s 

-2 -1 
From these two fluxes an average net upward NH, flux of 0.14 /ig m s can 

be calculated, which is in very good agreement with the average flux, 

calculated from the individual sampling periods. Although, the agreement is 

worse if we take into account that the emission could be higher by 30% to 

40% as suggested by Buijsman (1987). 

An estimate of the conversion rate of gaseous NH, to particulate NH, is 

useful for modelling atmospheric transport of NH . This conversion rate is 

the result of various reactions, diffusion to aerosols and vertical 

exchange processes in the atmosphere. It will be different under different 

circumstances as it will depend on e.g. concentrations of reaction agents 

involved, temperature, relative humidity and the rate of vertical mixing. 
-3 -1 The conversion rate R (/jg m s ) can be computed from equation (4) , 

assuming steady state conditions: 

d (K dçi) + R = o (4) 
dz Z QZ 

-3 2 
where c. is the NH, concentration (/ig m ) and K is the eddy diffusity (m 

-1 1 z -4 -3 -1 
s ). For day-time periods R was calculated to be 5 10 /ig m s and for 

-4 -3 -1 night-time periods 3 10 fig i s , sampling periods where inversions 
occured were not taken into account. In order to obtain a value of the 

overall conversion rate constant, k, commonly used in transport models, it 

was assumed that NH, is converted into NH, by one irreversible reaction 

with a first-order reaction mechanism: 

R = k c. (5) 
l 

-4 -1 -5 -1 
k was calculated to be 1 10 s for day-time periods and 5 10 s for 
night-time periods. In fact the reaction mechanism is much more 
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complicated, because many components are involved and different types of 

reactions take place in both the gasphase and in solutions. 

5. Temperature and relative humidity dependence of the NH.NO, dissociation 

constant. 

Theoretical calculations of the formation of atmospheric nitrate aerosol 

based on thermodynamic equilibrium between NH, , HNO, and aerosol 

constituents have been presented by several authors (see e.g. Stelson and 

Seinfeld, 1982A, 1982B, 1982C; Tanner, 1982; Bassett end Seinfeld, 1983, 

1984; Russell and Cass, 1984). Pure NH.NO, does not exist in the atmosphere 

but is present in particles of mixed composition. Stelson and Seinfeld 

(1982A) determined the dependence on temperature and relative humidity of 

the NH.NO, aerosol dissociation constant: K = P„„,_, x P.,,,, , where P. is 4 3 e HN03 NH3 l 
the partial pressure of component i at equilibrium. Later they reported 

(Stelson and Seinfeld, 1982C) that addition of H„SO, to the mixture does 

not lower the value of K to a large extend, unless the H„SO,/HNO, ratio is 

very large. 

The product of measured NH, and HNO, concentrations, K , has been compared 

with the theoretically derived dissociation constant (Stelson and Seinfeld, 

1982A). Most of the measurements were made in the United States, where in 

general NH, concentrations are lower and HNO, concentrations are higher 

than in most parts of Europe (Doyle et al., 1979; Stelson et al., 1979; 

Cadle et al., 1982; Tanner, 1982,1984; Hildemann et al., 1984; Jacob et 

al., 1986 and Lewin et al., 1986). In Japan measurements were carried out 

in an area far away from large emission areas (Chang et al., 1986). For 

Europe only measurements in the North-Western part of England exist 

(Harrison and Pio, 1983). From the measurements in the United States, Japan 

and Europe it can be concluded that K is in good agreement with K for 

temperatures above 0 C and relative humidities below 80%. At temperatures 
o 

below 0 C, K was found to be higher than K (Cadle et al., 1982). At m ° e 

relative humidities above 80% different authors, however, obtained 

different results. Hildemann et al. (1984), Harrison and Pio (1983), Chang 



40 

et al. (1986) and Lewin et al. (1986) found good agreement between K and 

K , whereas Stelson et al. (1979), Cadle et al. (1982), Tanner (1982) and 
e 

Jacob et al. (1986) found K values which were higher than K . 
m e 0 

Our measurements were carried out for a wider range of temperatures (-10 
o 

to 25 C) and relative humidities (35 to 100% r.h.) than reported elsewhere 

in the literature. The sampling period was 12 hours. During such a long 

period the temperature, the relative humidity and the concentrations will 

change. As a result, the values of K derived from 12 hourly averaged NH, 

and HNO. concentrations might be different from the value of K computed 

from the 12 hourly averaged temperature and relative humidity. This effect 

has not yet been quantified. K derived from the 12 hour averaged 

temperature and relative humidity was estimated to be 10% lower on the 

average (max. 30%) than K derived from the temperatures and relative 

humidities for these 12 hours. 

The concentration products K for all periods and heights were plotted 

versus the reciprocal temperature and are shown in Figure 4 (for relative 

humidities below 80%) and in Figure 5 (for relative humidities above 80%. 
In most cases where the relative humidity could not be determined, the 

o 
temperature was below 0 C. At these temperatures the relative humidity 

cannot be measured at the tower. The data for these conditions are plotted 

in Figure 5. In Figures 4 and 5 the relation given by Stelson and Seinfeld 

(1982A.1982B) are also plotted. In Figure 4 the regression function is 
plotted as well. From these figures it can be concluded that a reasonable 

o 
agreement exist between K and K for temperatures above 0 C and relative 

humidities below 80%. In other cases the measured concentration product K 
r m 

is larger than the value of K computed from the relation given by Stelson 

and Seinfeld (1982A). This means that more NH, and HNO, is present in the 

gasphase than predicted by using the theoretical relation. 

We found that most discrepancies between field observations and theoretical 

considerations occur at night at 2 m sampling height, where highest 

relative humidities were observed. These discrepancies could probably occur 

because NH, and HNO, may not be well enough mixed and/or not enough time 

was allowed for reaction. Another explanation could be that under these 

circumstances the HNO, concentrations are close to the detection limit so 

that the concentration product K becomes more uncertain (measuring 

artefacts may not be excluded at such low concentrations). At high relative 
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humidity all surfaces, even teflon as used in this study, can absorb 

waterlayers. This effect could lead to an underestimation of NH, and HNO, 

concentrations due to absorption in waterlayers, present in the inlet of 

the dénuder-filterpack systems. Moreover, discrepancies may occur because 

12 hourly averaged concentrations were used. For temperatures lower than 
o 

0 C, the sampling equipment should be tested to see whether artefacts 

6. Conclusions. 

From the vertical concentration profile measurements information on the 

processes in the lower part of the atmosphere was obtained. Some 

conclusions are: 

- NH, concentration decreases strongly with increasing height, whereas an 

increase of HNO, concentration with increasing height was observed. The 

latter could be the result of dry deposition or reaction. If the reaction 

of HNO, with NH, is the most important, this could imply that the 

calcuted HNO, dry deposition velocity of 4 cm s is a maximum. 
+ 2- -

A small decrease of NH,, SO, and NO, concentrations with increasing 

height was observed. No significant gradient could be found for Na , CI 

and HCl. 
-2 -1 

- An average net upward NH, flux of 0.12 /ig m s was calculated from the 

concentration measurements and meteorological data, which is in agreement 

with estimates from cattle statistics and calculation of the dry 

deposition. 
-4 -3 -1 

An overall conversion rate constant of 1 10 /ig m s for day-time 
-5 -3 -1 

periods and 5 10 /ig m s for night-time periods were calculated. 

- A comparison was made between the concentration product of the measured 

NH, and HNO, concentrations and thermodynamic equilibrium between 

NH,N0,(s) and its precursor gases NH, and HNO,, at a wide temperature and 

relative humidity range (-10 to 25 C and 35 to 100% r.h.). Good 
o 

agreement was found at temperatures above 0 C and relative humidities 
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below 80%. In the other cases higher NH, and/or HNO, concentrations were 

measured in the gasphase than predicted. 
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ABSTRACT 

In simple Lagrangian long-range transport models used for air pol

lution studies turbulent mixing is described in a very approximate 

way. This description has the effect that calculated concentrations 

and deposition patterns may not be realistic. However, correction 

factors, derived from more detailed diffusion theory calculations, 

can be introduced easily into these simple models so that an adequate 

account of the mixing process is taken. If such correction factors 

are applied in simple models, the increase in computing time is ne

gligible, whereas the results are about as good as those of more so

phisticated models which need much more computing time. 

This paper describes how the necessary correction factors can be put 

into a simple model and how a reactive diffusion model is used to 

derive the values of these factors. Calculated values are given for 

the pollutants NH_, SO- and NO and for their reaction products 
+ 2- - -> x 

NHK, SOJ. and N0_, respectively. 

Sensitivity calculations are made and results are compared with the 

results of other diffusion models. 
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1. INTRODUCTION 

For long-range air pollution transport calculations fairly simple Lagran-

gian models are frequently used, e.g. the EMEP model (Eliassen et al., 

1983). In these models instantaneous homogeneous mixing of emitted and 

produced components throughout the mixing layer is assumed. However, in 

reality this mixing process requires some time, thus affecting deposition 

patterns. This especially applies to species emitted at low height and/or 

exhibiting large deposition velocities. Yet the long-range transport and 

deposition processes can be described adequately with such simple models, 

provided two types of corrections are applied: 

- A correction factor for the fact that near the source - with low emis

sion height - ground level concentrations will be higher than average, 

resulting in faster depletion due to enhanced dry deposition. A reduced 

effective source strength should therefore be used in the long-range 

transport calculations. However, if this reduced source strength is used 

right from the point of emission, the rate by which reaction products 

are formed will be underestimated in the near-source area. This can be 

corrected by the introduction of a small direct emission rate of the 

reaction product. 

- Correction factors for the fact that the dry deposition flux is over

estimated at larger distances from the source, if it is calculated 

from height-averaged concentrations and the dry deposition velocity 

at reference height: the ground level concentration will be lower 

than average because depletion due to dry deposition takes place at 

ground level. This overestimation can be avoided by introducing 

modified (effective) depletion parameters: effective dry deposition 

velocities and effective reaction constants. 

Some of the above-mentioned correction factors have been introduced in 

earlier model calculations. Eliassen et al. (1983) described EMEP model 

calculations in which a correction factor for additional local dry deposi

tion of SO- was introduced, together with an effective dry deposition ve

locity of S0_. The correction factors were derived from simple Gaussian 
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plume dispersion calculations (Högström, 1979) and similarity theory 

(Eliassen et al., 1983). An identical approach has been adopted by Asman 

et al. (I986A), who used a similar Lagrangian model to study SO- and NO 

transport to and from the Netherlands. This model (IE model) was developed 

in a joint effort by IMOU and ECN. 

Recently, we used the IE model to study the transport of ammonia and ammo

nium over Europe (Asman et al., I986B, I986C). Ammonia is mainly emitted 

at ground level and has a relatively large dry deposition velocity. A 

further complication arises from the relatively fast transformation of 

ammonia to ammonium. It was therefore felt necessary to pay further atten

tion to the parameters introduced above. Scriven and Fisher (1975) desc

ribed an analytical diffusion model (based on K-theory) which provides 

useful physical insight in effective parameters. However, it is rather 

limited with respect to, e.g., the vertical variations of wind velocity, 

eddy diffusivity and the concentration of reaction products. This may be 

an important restriction if a ground-level source like ammonia is consi

dered. Asman and Maas (1986) developed a surface depletion model which 

could also be used to derive effective removal parameters. But this 

model also neglects the vertical variation of the reaction product con

centration. Moreover, the dispersion parameters used in this model may 

be less adequate for ground-level sources. 

We have chosen to derive parameter values from detailed numerical calcula

tions based on the diffusion equation. In particular for ground-level 

sources this approach is quite adequate (Hanna et al., 1982). 

This paper is intended to provide details of the numerical diffusion cal

culations and the way in which the results can be incorporated in a La

grangian long-range model. Section 2 gives the mathematical details and in 

section 3 information is provided on model input data. 

Finally, in section 4, several results are presented. Most results apply 

to NH./NHK as the effect of introducing effective depletion parameters 

is largest for these components. But for the sake of comparison other 

species like S0_ and NO are considered as well. 
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2. BASIC EQUATIONS 

2.1. Equations used in a Lagrangian model 

According to the principles described in section 1 the equations used 

in a long-range transport model for the horizontal cross-wind integrated 

fluxes Q (mole s ) due to a point (or line) source Q (mole s ) can be 

formulated as follows: 

dQ v 

d Q2 ve2 
u t d 7 = keQl - "H" Q2 <2> 

where : 

u = transport velocity of the air parcel (= x/t) (m s ) 
-1 

v = dry deposition velocity (m s ) 

k = (pseudo) first-order chemical reaction constant (s ) 

H = mixing layer height (m) 

Subscripts 1 and 2 refer to the emitted component and its 

reaction product, respectively, and subscript e refers to 

"effective value". 

The above equations apply to transport during dry periods, i.e. with

out scavenging. 

The solutions of (1) and (2) are: 

v . 
Q1 = ( l - a i -ß)Q o e x p H - j p • k e ) t ] (3a) 

v ? 
Q2 = (ß-a2)QQ exp(--jj-t) • 

( 1 " a r p ) Q o v , ° v , [exP(-f^t)-exp[-(^§i+k ) t ] ] . (3b) 
e l . e2 

In (3) the correction factors a and ß have been introduced (see sec

tion 1 ) : 

a = additional (or: apparent direct) local dry deposition 

(fraction of Q ); 
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ß = apparent direct emission of the reaction product (fraction 

of Q o ) . 

At a given distance x from the source the dry deposition rate d 

(mole s m ) is: 

d.(x) = jĵ i Q±(x) (i=l,2) (k) 

-1 -1 
and the production rate p (mole s m ) is 

k 
p(x) = -f- Q (x). (5) 

t 

Up to this distance the integrated dry deposition D (mole s ) is: 

x 

o 
D..(x) = O j ^ + / di(x')dx' (i-1,2) (6) 

and the integrated production (mole s ) is: 

x 
P(x) = fJQo + / p(x')dx'. (7) 

o 

The following relations hold 

Qo " Ql + Q2 + Dl + D2 ( 8) 

P = Q2 + D2. (9) 

Analytical evaluation of the integrals in (6) and (7) is straightfor

ward, e.g.: 

D (x) = a Q + -jj! —±- Q [l-exp(-(^*k )t)]. (6a) 
el . 
H e 

2.2. Equations used in the numerical diffusion model 

The time-independent two-dimensional diffusion equations for the 
-2 

cross-wind integrated concentrations C.(x,z) (mole m ) are: 

3C. 3 3C. 
U 3 T • 3i {K 3 ^ - kCl ( 1 0 ) 

3C g 3C 
u a " a - K a + kCi (11> 

3x 3z v 3z ' 1 
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with given initial concentrations at the source (x=o), and boundary 

conditions: 

3C. 
v.C. 

l l 
(i=1.2), (12) 

z=z z=z 
r i 3C. 

3z = 0 (i-1.2), (13) 

z=H 

where the following new parameters have been introduced: 

u(z) = wind velocity (m s ) 
2 -1 

K(z) = (eddy) diffusion coefficient (m s ) 

z = reference height (in this paper equal to 1 m above 

ground level). 

The horizontal fluxes Q. (mole s ) are: 

Qi(x) = /C.(x,z)u(z)dz (i=l,2). (14) 

The dry deposition rates d. (mole s m ) are (the index r refers 

to reference height): 

d.(x) = v .C.(x,z ) (i=l,2), (15) 

and the production rate p is: 

p(x) = /k(z)C1(x,z)dz. (16) 

Eqs. (10) and (11) are solved numerically. The finite difference 

scheme used in PLUVIUS (Easter et al., 1984) is adopted in our calcu

lations. In view of the simplicity of the equations, high numerical 

accuracy can be achieved easily. Total dry deposition integrated up 

to distance x, D (mole s ), 

x 
D (x) = / di(x,)dx' (1-1,2) (17) 

o 

is also evaluated numerically. 
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2.3. Combination of the two approaches 

The results of the diffusion calculations are used in the following way. 

At any distance x the ratio d.(x)/Q.(x) is determined (eqs. (14) and 

(15)), which gives us the effective dry deposition velocities v ., accor

ding to eq. (4). Similarly, the ratio p(x)/Q.. (x) (eqs. (14) and (16)) gi

ves us the effective reaction constant k , according to eq. (5). Finally, 

by putting Q.(x), eq. (14), equal to the expressions in (3a) and (3b), and 

by putting D.(x), eq. (17). equal to the expression in (6a), three inde

pendent equations are obtained from which a,, a? and ß can be determined. 

All calculated values for v ., k , a. and B will be dependent on x, but 
ei e 1 

will tend to constants for sufficiently large x. These constant values are 

the parameter values to be used in the long range transport model. 

2.4. Application to receptor-oriented models 

Equations (1) and (2) apply to transport from a point or line source along 

forward trajectories. If backward trajectories to a fixed receptor point 

are to be used, the same effective parameter values can be introduced in 

the model equations, although in a slightly different way: In this case an 

air parcel of height H is considered, containing a pollutant load L (ver-
-2 

tically integrated concentration, mole m ); this air column will be fed 
-2 -1 

continuously by partly homogenized ("gridded") emissions E (mole m s ). 

In this more general case the equivalents of eqs. (1) and (2) are: 

dL 

dt 
1 = "l"Hi+ke)Ll + (1_arß)E (la) 

dLp v p 

d1T • keLl - H L 2 + <P-a2>E- < 2 a ) 

The values of L. and L_ at the receptor point, calculated with (la) and 

(2a), give us the following information. At this point, supposed to be 
-2 -1 

situated in an area with emission density E (mole m s ), the total dry 

deposition fluxes are a.E + (v ./H)L., which gives us, by definition, the 

pollutant air concentrations at reference height: 

a.E + (v ./H)L. 
1 v ei 1 

C . = (i-1.2). (18) 
ri v . 

ri 
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2.5. Including wet deposition 

In Lagrangian models the wet deposition process is usually modelled by 

means of a single scavenging coefficient A (s ) (independent of the dis

tance to the source), which is related to the (measured) scavenging ratio 
-3 -3 

S (mole m in precipitation / mole m in air) by: 

A = |ï , (19) 

with 

I = precipitation rate (m s ) 

H = mixing height (m). 

A includes in-cloud scavenging (rain-out) as well as below-cloud scaven

ging (wash-out). In the IE model (Asman et al., 1986A, I986B, 1986C) use 

is made of gridded time-dependent data on the precipitation rate. With the 

inclusion of wet deposition eqs. (la) and (2a) are transformed into: 
dL v S..I 

dT = 't H +1T+keN + U-V"* ( lb ) 

dL. v _ SpI 

dT - keLi - ( i -+ ir )L2+ u-aJE- <2b> 

-2 -1 
Wet deposition fluxes (mole m s ) at the receptor point are equal to 

(S.I/H)L. (i=l,2), where I is the precipitation rate on arrival of the 

considered air parcel. Strictly speaking, the values of a, ß and v are 

dependent on the precipitation rate. This effect can in principle be taken 

into account. However, this refinement does not seem to be justified, in 

view of the approximate way in which the wet deposition process is model

led. For instance, by the use of a scavenging coefficient in the Lagran

gian model which is independent of the distance to the source, near-source 

effects on the wet deposition rate are ignored. (Fortunately, this will 

lead to two compensating effects: use of the reduced source strength in 

eq. (lb), i.e. (l-a..-ß)E instead of E, will lead to an underestimation of 

wet deposition near the source; on the other hand, in this same area the 

wash-out process is dominant but is less effective than the rain-out pro

cess which dominates at larger distances). 
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3. METEOROLOGICAL INPUT DATA 

Calculations have been made for neutral atmospheric conditions 

(Pasquill class D), which prevail in the Netherlands (about 70% 

of the time). 

Similarity theory gives us the profiles in the surface layer of 

wind velocity u and diffusivity K (Pasquill, 1974): 

u# z 

u(z) = — ln(—) , (20) 

o 

with 

u» = friction velocity 

K = Kârmân's constant (0.35-0.40) 

z = surface roughness length, in all calculations assumed to be 

equal to 0.2 m, corresponding to moderately flat terrain. 

According to Dutch recommendations (TNO,1984) the logarithmic profile 

was extended up to 200 m, above which a constant value was 

assumed: u(z>200 m) = u = u(200). 

K(z) = KU,Z. (21) 

This linear variation was assumed valid for z < z < 50 m; above 
r — — 

50 m K was kept constant (Hanna et al., 1982). Decrease of K near 

the top of the mixing layer was not considered; instead, the zero net 

flux boundary condition (13) was applied. 

Combination of (20) and (21) gives: 

K(z) « 0.04 u(10).z (zS50 m). (22) 

The constant value of K for z>50 m may be evaluated from a different 

point of view. For constant u and K and no depletion the diffusion 

equation gives a Gaussian plume with coefficient of vertical dispersion 

(Pasquill, 1974): 

az(x) = (2Kx/u)è. (23) 
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For Pasquill class D Briggs (1973) evaluated a (x) for open-country condi

tions : 

a = 0.06x(l+0.0015x)~* , (102m<x<10 m) (24) 

which, for large x, tends to 

az « 1.55 x4 . (25) 

From (23) and (25) we find: 

K * 1.2 u. (26) 

(For distances larger than 10 km data for a presented by Pasquill 

(197*0 suggest a somewhat larger value, up to K = 2u). 

In our model calculations K(z>50) is equal to 50 KU # , see (21). With 

(20) we have the following relation between K and u: 

K(z>50) = 50 K' , (27) 
u(z) ln(z/zQ) 

with K2 « 0.15 and z = 0.2 m. 
o 

The ratios of K and u (according to (27)) presented below show that our 

adopted values for K fit in quite reasonably with (26). 

K(z>50) 
u(10) 

1.9 

K(z>50) 
u(50) 

1.3 

K(z>50) 
u(100) 

1.2 

K(z>50) 
u(z>200) 

1.1 
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4. RESULTS 

4.1. An example: NH_/NH^ 

Diffusion calculations have been performed for a ground-level NH_ source, 
-1 

with a wind velocity of 4 m s at 10 m height. Dry deposition velocities 

v are 8.0x10 J and 1.0x10 J m s for NH and NHa, respectively, 
r *5 -1 

the adopted reaction constant k is 8.0x10 s , independent of z, and the 

mixing height is 800 m (Asman et al., 1986B). For the initial condition 

(at x=o) the emission was assumed to take place at z = z (= 1 m). 

Calculated parameter values are: a, = O.255, a_ = 0.0079, ß = 0.099, 
vel = 5-4xl0~3 m s"1, vg 2 = 9-9x10 m s"1 and k& = 8.2xl0~5 s"1. 

Figure 1 shows the calculated horizontal flux Q as a function of the 

distance from the source, both according to diffusion theory and ac

cording to the Lagrangian model if the above parameter values are 

incorporated. Near the source the Lagrangian model underestimates the 

sum of airborne NH_ and NH^. This sum is, in case of precipitation, 

proportional to the wet deposition flux calculated with the Lagrangian 

model (Asman et al., I986B). However, scavenging near the source will be 

less effective than assumed in the model, since the more efficient in-

cloud scavenging cannot yet be active. As mentioned earlier, there is 

thus a certain compensation of approximations. 

Figure 2 shows the dry deposition D, integrated up to distance x. 

From Fig. 2a it can be seen that the additional local dry deposition of 

NH- indeed takes place quite near the source: two thirds of it are de

posited within 5 km distance from the source and 90% within 30 km. The 

- very small - additional dry deposition of NHj. is extended over a 

larger area, because the formation of NHj. by reaction takes time. 

The use of an accurate value for the additional (or: apparent direct) 

local dry deposition factor a of NH_ is quite important in Lagrangian 

models. This can be demonstrated by the following example. 
-2 

Consider an area with a homogeneous emission density E (mole m 

and assume that this area is large enough so that an equilibrium 

situation can be established, i.e. dL /dt = 0 in eq. (la) (see se 

tion 2.4). We may then derive the total NH dry deposition flux. 
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DIFFUSION THEORY 

LAGRANGIAN MODEL 

0.1 

20 40 60 80 100 120 

x(km) m 

Fig. la. Normalized horizontal flux Q/Q as a function of distance x from 

the source, according to diffusion (K-theory) calculations and 

according to the simple Lagrangian model if correction factors 

and effective removal parameters, derived from the diffusion 

calculations, are incorporated. Shown are values for NH_. Compare 

with Fig. lb which shows values for NHj. and the sum of NH- and 

NH,.. 
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0J6 -

NH3.NH4 

DIFFUSION THEORY 

LAGRANGIAN MODEL 

x (km) 

Fig. lb. Normalized horizontal flux Q/Q of NHY and the sum of NH- and NH^ 

as a function of distance x from the source. See text Fig. la. 
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100 120 

x(km) & 

DIFFUSION THEORY 

LAGRANG IAN MODEL 

Fig. 2. Normalized dry deposition D/Q integrated up to distance x from 

the source, of NH, (Fig. 2a) and NH^ (Fig. 2b). Correction fac

tors and effective removal parameters, derived from the diffusion 

calculations, were used in the Lagrangian model calculations. 

Note the different scales in the two figures. 
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which is made up of two contributions, viz. the apparent direct local 

dry deposition o. E from local sources and the term (v -/HJL.. With the 

parameter values mentioned above the term o^E appears to contribute 

nearly 84% to the total NH_ dry deposition. Furthermore, a variation 

of 10/K in a- would change total dry deposition by nearly &%. The same 

sensitivity applies to the equilibrium NH_ concentration at reference 

height, see eq. (18). On the other hand, complete ignorance of the 

correction factors in a Lagrangian model would result in a severe 

underprediction of the equilibrium NH_ ground-level concentration, by 

almost 65%. The sensitivity to the other effective parameter values 

(fi, k and v .) appears to be much less. 

In this example the effective source strength of NH_ is (l-a.-ß)Q = 

O.65 Q (eq. 3a)- It is interesting to note that the analytical model of 

Scriven and Fisher (1975), assuming a height-independent eddy diffusivity, 

would give O.76 Q . Neglecting the suppression of turbulence near ground-

level leads to an underprediction of local dry deposition. A similar 

underprediction has been found with the surface depletion model of 

Asman and Maas (1986). 

4.2. Climatologically averaged parameter values 

For long-term calculations with a Lagrangian model we have tried to de

termine climatological averages of the effective parameters. Diffusion 

calculations have been performed for Pasquill class D for three wind 

velocity classes, viz. 1.45, 4 and 8 m s at 10 m height; these values 

have been recommended for long-term pollution studies in the Nether

lands (TNO, 1984). 

Results are presented in Table 1. Calculated values for v _ and k are 
eti e 

in all cases almost equal to the reference values and are not presented 

in the table. Furthermore, weighted averages of the parameter values 

are given, in accordance with climatological conditions in the Nether

lands (TNO, 1984). These averages have been used in our long-range 

transport calculations for NH./NH^ (Asman et al., I986B, I986C). Clearly, 

there is a strong dependence of most parameter values on the wind velocity 

(or turbulence level), and one may wonder whether this dependence should 

be taken into account in a Lagrangian model. On the other hand, in reality 

the dry deposition velocity of NH_ at reference height is itself dependent 

on the wind velocity (Asman et al., 1986B), tending to lower values at 
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Table 1. Calculated parameter values for the long-range transport 

model of NH /NH^. 

u(10) 

-1 
m s 

1.45 

4.0 

8.0 

u(zè200) 

-1 
m s 

2.6 

7.1 

14.1 

K(l) 

2 -1 
m s 

0.054 

0.15 

0.30 

weighted average: 

K(zà50 

2 -1 m s 

2.7 

7-5 

15.0 

a1 

0.436 

0.255 

0.157 

0.240 

a2 

O.O265 

O.OO79 

O.OO29 

0.0086 

ß 

O.I92 

O.O99 

O.O5O 

O.O92 

vel 
-1 

m s 

3.24*10~3 

5.44xl0"3 

6.6lxl0-3 

5.6lxio-3 

w.f. « 

0.16 

0.39 

0.45 

Weighting factor according to Dutch climatological data (TNO, 1984) 
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lower wind velocities and/or turbulence levels. If this variation is taken 

into account, the variation of, e.g., the apparent direct local dry depo

sition of NH_ with wind velocity would be reduced substantially (see sec

tion 4.3). 

4.3. Effect of variation of input data 

Many input data for the diffusion calculations (and also for the 

Lagrangian model calculations) are uncertain and/or dependent on various 

conditions (e.g. atmospheric). They are at best reasonable estimates of 

space and time averaged values. In order to evaluate these uncertainties 

a series of diffusion calculations for NH./NHj. has been made in which 

each input parameter has been varied separately. Results are presented in 

Table 2. As should be expected, the important parameter a- (the apparent 

direct local dry deposition of NH_) is strongly dependent on the dry depo

sition velocity v 1 and on the turbulence level. It may be mentioned that 

the surface depletion model of Asman and Maas (1986) predicts a variation 

in a, of about a factor 2 if very stable or very unstable stratification 

is considered instead of neutral conditions. However, meteorological con

ditions in the Netherlands are such that on average these variations with 

stability are almost completely balanced. The data in Table 2 have been 

used in a sensitivity study with our Lagrangian model (Asman et al., 

I986C). 

4.4. Results for various pollutants 

Pollutants like NH_, SO- and NO exhibit significantly different chemical 

and physical behaviour. Moreover, concentration patterns of these sub

stances are affected by the source height. We made some diffusion calcu

lations for these species in order to show the possible variations in ef

fective parameters for the Lagrangian model. One wind velocity was con

sidered, viz. 5-4 m.s at 10 m height, which is the weighted average for 

Pasquill class D, according to Table 1. Dry deposition velocities v and 

reaction constants k were taken from Asman et al. (1986A). The results are 

presented in Table 3. The emission height and the dry deposition velocity 

have a large influence on the calculated value of OL . The lower the emis

sion height or the larger the dry deposition velocity, the larger a, will 

be. The average emission height of S0_ is rather large in the Netherlands; 

this leads to a relatively low value of a-, despite the rather large dry 
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Table 2. Calculated parameter values for NH_/NH^ for various model 

input data. The parameter values are "climatological averages", 

i.e. weighted averages over 3 wind velocity classes (cf. 

Table 1 ) . 

Variant 

Standard 

H x i 

k x i 

vrl x * 
v r 2 x i 

K x i 

u x 1.15 

al 

.240 

.196 

.259 

.138 

.240 

• 351 

.217 

a2 

.0086 

.0026 

.0053 

.0107 

.0044 

.0187 

.0071 

ß 

.092 

.039 

.052 

.090 

.092 

.145 

.081 

vel 
-1 m s 

5.6xl0"3 

6.6xl0-3 

5.8xio"3 

3.2xio-3 

5.6xl0-3 

4.3xl0-3 

5.9X10- 3 
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deposition velocity. The dry deposition velocity of NO is relatively 

small which leads to a relatively low value of a,, despite the low emis

sion height. But for NH_ the emission height is low and the dry deposition 

velocity is rather large, which explains the large value of a... The re

sults indicate that, for the prevailing meteorological conditions and 

emission heights in the Netherlands, accurate knowledge of the effective 

parameter values for SO- and NO is less urgent than for NH_. 

In an earlier stage we computed a. of SO- with a simple Gaussian plume 

dispersion model which took dry deposition into account by means of the 

source depletion concept. For this pollutant, which in the Netherlands is 

emitted predominantly at high source heights, we found reasonable agree

ment between the source depletion model and the K-model used in this paper, 

provided the constant value of the eddy diffusivity K above the surface 

layer is in accordance with the dispersion parameter a , as in eq. (23). 

Calculations by Högström (1979) of a, of SO-, also made with a Gaussian 

model with source depletion, confirm this conclusion. 

Eliassen and Saltbones (1983) derived an expression for the effective dry 

deposition velocity of S0_, based on similarity theory, which for neutral 

atmospheric conditions reads: 

v = v [l^S- ln^r\ (28) 
e r L Ku» z J 

* r 

where z should be taken equal to 50 m. 

With eq. (20) and taking u(10) = 5-4 m s" , z = 0.2 m and K = 0.4, we 
-3 -1 ° 

find that v * 7.0x10 m s for SO , which is 10% higher than the value 

given in Table 3- Still better agreement would be obtained if a somewhat 

larger value of K above the surface layer would be used in the diffusion 

calculations, which would be in accordance with a values for distances 
z 

larger than 10 km from the source given by Pasquill (197^) (see section 

3). 



69 

o 
G 

CO 
U 
cd 

CU 
3 

i H 
cd > 

CU 
4-> 
CU 

u 
CS a 
co 

si 

•p 

• & 
•H 
<U 

J3 

CO 
3 
O 

• H 
U 
ca > 

T 3 
CD 
•P 
•P 
•H 
a 
O) 

o 
a 
• p 

c Cl) 
u 
e» 

C M 

C M 

• H 
T 3 

M 
0 

C M 

0) 
0) 
3 

r H 
01 

> 
M 
Cl) 
• P 
Cl) 
CO 

u 
crt 
a 

T l 
Cl) 
J-> 
crt 

r H 

3 
o 

r H 

cet 
o 

ro 

0) 
H 
£> 
cd 
H 

S 

.rr 

m 
II 

o 
r H 

-̂̂  3 

-
TS 
Cl) 
hfl 
cd 
u 
Cl) 

> cd 

>> i-H 
r-H 

cd 
o 

• H 
hO 
O 

i - l 

O 
-p 
cd 
s • H 

i - i 

o 
X 

4-> 

o 
a 

r H 
1 

CM en 
CD 

> S 

i H 
I 

r H ( 0 
eu 

> a 

cû. 

CM 

a 

i - i 

0 

c 
O - P 

• H J 3 
CD hO a 
CO - H 

• H CD 
a j a 

M 

r H 
1 

Ü C0 

*-H 
1 

C\J CO 
M 

> a 

r H 
1 

» H en 
u 

> a 

>> 
M 
cd 

T 3 
CO c 
• P 0 

S eu 
• P CO 
3 

r H 
r H 
O >> 

CU M 
cd 
a 

• H 
U 

a. 

co co 
o o 
t-H r H 
X X 

o o 
r H i - l 

ro co 
o o 
r H » H 
X X 

o o 
VD VD 

vu 00 
r - t— 
o o 

oo i n 
i n i n 
o o 
o o 

r H V O 
CM r H 

O O 
r H 

i n 

o 
i H 
X 

o 

oö 

ro 
i 
o 
<-H 
X 

o 
T-H 

ro 
i 

o 
r H 
X 

O 

oö 

• 3 -
3 3 
2 

ro 
33 
5S 

co ro co 
o o o 
r H r H r H 
X X X 

o o o 
r H r H r H 

C O C O C O 

o o o 
r H r H r H 
X X X 

co co co 
\ß \o VO 

-=f .=r co 
o o o 
o o o 

• j a - o n 
o o o 
o o o 
o o o 

in c\i t— 
r H r H O 

O O O 
i n O O 

r H C\J 

V D 

O 
r H 
X 

o \ 
C O 

C O 
1 

o 
r-i 
X 

o 
r H 

C O 
1 

O 
r-\ 
X 

O 

oö 

J -
o 
c/> 

CM 

o 
co 

co 

o 
r H 
X 

o 
r H 

C O 

o 
^-< X 

co 
V O 

o 

CM 
o 
o 
o 

r H 
O 

1 

O 

o 
- 3 -

co co 
o o 
r H r H 
X X 

VO VO 

CM CM 

CO c o 

o o 
r H r H 
X X 

0 0 0 0 

CM CM 

r H CJ \ 
r H O 
O O 

CM CM 

in ü-
o o 
o o 

oo in 
o o 

o o 
r H O 

r^ 

i n 

o 
^-< X 
CM 

T-i 

co 
1 

o 
r H 
X 

0 0 

CM 

co 
1 

o 
r H 
X 

o 
co 

co 
o 
S5 

X 
O 
Z 



70 

5. CONCLUSIONS 

The very approximate description of turbulent mixing in simple long-range 

transport models can introduce large errors in calculated ground-level 

concentrations and deposition patterns. Correction factors have been de

fined which can be used in these models to reduce the errors. Values for 

these correction factors have been derived in a consistent way with an 

efficient and flexible numerical reactive diffusion model based on 

K-theory. Some of the results could be checked with other models and theo

ries. 

The results show that the correction factors are very important for ground 

level sources of pollutants with relatively high dry deposition veloci

ties, such as NH_. The factors are dependent on meteorological conditions 

and have therefore an inherent uncertainty. However, by applying the pro

posed combination of diffusion theory and simple long-range transport a 

substantial improvement is obtained in calculated ground-level concentra

tions and deposition patterns. Results are thus obtained which are about 

as good as those of more sophisticated models which require much more com

puting time. 
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Abstract 

This paper reviews available data on ammonia emission and other 

parameters used in the model, viz. dry deposition velocities, scavenging 

coefficients and the pseudo-first order reaction rate . There are some 

striking differences in emission and subsequent behaviour of ammonia and 

sulphur dioxide. Ammonia is predominantly emitted near or at ground 

level, whereas sulphur dioxide is mainly emitted from higher sources. 

Moreover, the conversion rate of ammonia to ammonium is higher than for 

sulphur dioxide to sulphate. The approximate treatment in the Lagrangian 

model of turbulent mixing (instantaneous homogeneous mixing over the 

whole mixing layer) had to be modified by the introduction of several 

correction factors derived from detailed diffusion calculations. 

Contrary to sulphur dioxide, the concentration at ground-level of 

ammonia will be determined to a large extent by local sources, which 

hinders model verification. For this purpose only measurements in the 

Netherlands could be used. The model has been run for the year 1980. The 

computed ammonium concentrations in air and precipitation are in 

agreement with the available measured data. The model results show that 

the dry deposition of ammonia in any country is mainly caused by inland 

sources, whereas the dry and wet deposition of ammonium is to a 

considerable extent caused by foreign sources. Moreover some numerical 

aspects of the model are discussed and the results of a sensitivity 

analysis are shown. 
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1. Introduction 

Ammonia and ammonium are important atmospheric components. Ammonia is 

the most abundant alkaline component in the atmosphere. A substantial 

part of the acid in the atmosphere generated by the oxidation of sulphur 

dioxide and nitrogen oxides is neutralized by ammonia (see e.g. Asman et 

al., 1982). As a result ammonium is a major component in aerosols and in 

precipitation. Ammonia and ammonium are also important components in 

biological cycles. Nitrogen can be a limiting factor for growth in 

oligotrophic ecosystems. In many ecosystems a substantial part of the N-

input is caused by deposition of ammonia and ammonium from the 

atmosphere. Very high concentrations of ammonia can cause direct damage 

to vegetation (Van der Eerden, 1982). After deposition ammonia and 

ammonium may be taken up by the needles of trees. This results often in 

the excretion of potassium and magnesium by the needles, which may lead 

to potassium and/or magnesium deficiencies, depending on the soil 

conditions (Roelofs et al., 1985). These deficiencies may lead to 

premature shedding of needles. 

When ammonia and ammonium are deposited and enter the soil as ammonium, 

nitrification can occur : 

NH+ + 2 0 2 -• 2 H+ + N0~ + H20 . 

As a result not only is acid formed by the oxidation, but also acid 

formed in the atmosphere is no longer neutralized by ammonia (Van 

Breemen et al., 1982; Asman et al., 1982). In this way ammonia and 

ammonium can cause acidification of the soil. It should be mentioned, 

however, that nitrification does not always occur and sometimes is 

incomplete. If ammonia is absorbed by cloud droplets this will cause a 

rise in pH which enhances the rate of oxidation of dissolved sulphur 

dioxide by ozone (Maahs, 1983). The result of this effect is that 

somewhat more sulphur dioxide will be taken up by cloud droplets and 

will be oxidized to sulphate. Uptake of ammonia by raindrops will also 

lead to a rise in pH, which enhances below-cloud scavenging of sulphur 

dioxide. 
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Different kinds of transport models exist for different purposes. There 

are, for example, models with very detailed chemistry, which include 

ammonia and ammonium (Russell et al., 1983; De Leeuw et al., 1986). 

These are more suited to determine the relative importance of different 

reaction mechanisms and the extent of non-linear behaviour. They can 

also be used to interpret measurements during relatively short periods 

(episodes). They are however not well suited for computing long-term 

(annual average) concentrations, because this would require too much 

computing time. For this purpose relatively simple linear models may be 

used, which at very least lead to an objective spatial interpolation 

between measured concentrations (Eliassen, 1978; Eliassen and Saltbones, 

1983). Moreover, simple import-export matrices can be calculated with 

such models, which are useful for policy makers. An attempt to model 

ammonia and ammonium over Europe has been made by Fisher (1984). His 

work was severely handicapped by lack of information on the emission of 

ammonia, on the transformation rate of ammonia to ammonium and on the 

dry deposition velocity of ammonia. 

IMOU and ECN have been engaged in a project together with the 

Netherlands Organization for Applied Scientific Research TNO and the 

Kernforschungsanlage-Jülich (F.R.G.) to study the atmospheric behaviour 

of ammonia and ammonium. With the information gained from this project 

it is possible to make a considerable step forward in the modelling of 

the atmospheric behaviour of ammonia and ammonium on a European scale. 

The model applied here is a linear Lagrangian receptor-oriented model of 

the EMEP-type (Eliassen, 1978). In the following sections information is 

given concerning the parameters used in the model, which is followed by 

the presentation of the main results of a complete model run. 

Emissions 

The gridded (net) NH3 emission data used in the model are based upon the 

work of Buijsman et al. (1985A) and include emissions caused by animals, 

by the use of fertilizers and by some industrial processes. Some other 
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aspects of the emission that can be of importance in modelling will also 

be presented in this section. 

2.1. Emission data used 

The major part of the NHj emission is caused by decomposition of animal 

manure. The mineral inorganic part of the nitrogen in manure (about 50% 

of the total N-content) is easily lost as NH3. Data on the mineral part 

of nitrogen in manure were used to calculate the emissions. The other 

part of the nitrogen in manure consists of organic nitrogen. The 

emission of, for example, amines is unimportant compared to the emission 

of NHo. Sluijsmans and Kolenbrander (1976) and Commission of the 

European Communities (1978) estimate that the remaining nitrogen also 

can be taken up by plants over longer periods, up to 100 years. It is 

not yet clear whether this part of the nitrogen can cause any NHo 

emission. It was therefore assumed that this part would not lead to any 

emission. No important sources for NH aerosols are known. This means 

that all NH found in the atmosphere originates from the conversion of 

emitted NH.,. The emissions computed by Buijsman et al. (1985A) are 

conservative estimates. This is partly because some emission may occur 

more than one week after spreading of the manure (Asman,1986), whereas 

the emission estimated by Buijsman et al. (1985A) is derived mainly from 

measurements during the first week after spreading. In addition some 

sources of NHj could not be included in the gridded part of their 

emission survey. To take account of these sources we used gridded 

emission data in the model which are 20% higher than their gridded 

emission data. Furthermore, ammonia emissions in Iceland, Marocco, 

Algeria, Tunesia, Libya and an extended part of the USSR were estimated 

from cattle statistics and were used in the calculations. Although we 

computed concentrations for each central point of an EMEP grid element 
n 

(about 150 x 150 km ) , the emissions used in the computations are for IE 

grid elements (about 75 x 75 km ) . 

For Europe as a whole the amount of potential acid emitted is much 

larger than the amount that can be potentially neutralized. In Europe 

(Iceland, USSR and Turkey excluded) 1.3 x 10^2 equivalent S02 is emitted 
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each year, 3.1 x 10 equivalent NO and 3.1 x 10 equivalent NHo 

(Dovland and Saltbones, 1979; Eliassen et al., 1982). Asman and Janssen 

(1986) examined the geographical distribution of S02, N0X and NH3 

emissions in Europe and found that it is very likely that in most places 

the conversion rate of NH3 to NH aerosol is not limited by the amount 

of acid present in the atmosphere. 

2.2. Diurnal and seasonal variations in the emission rate 

Because of diurnal variations in wind-speed and temperature, the 

emission rate of NHo from manure and urine in the field is higher during 

day-time than during night-time (Beauchamp et al., 1978, 1982; Hoff et 

al., 1981; Harper et al., 1983; Lockyer, 1984; Ryden and McNeill, 1984). 

For the same reasons it is also likely that the emission from stables 

and during storage will show the same pattern. The ground-level 

concentration, however, tends to be higher during night-time than during 

day-time (Alkazweeney et al., 1986). This is confirmed by measurements 

undertaken by IMOU and ECN in an area in the Netherlands where emission 

occurs. This phenomenon can be explained by a combination of effects. 

During night-time the atmosphere is usually more stable, the mixing 

height tends to be lower and even inversions may occur at ground level. 

Moreover, because of the reduced turbulence, the dry deposition velocity 

will in general be lower than during day-time. It is difficult to take 

all these effects into account in the model. 

Seasonal variations in the emission rate are likely to be caused by the 

application of manure and fertilizer. Application will usually occur 

before the growing season starts. In the Netherlands a maximum in the 

NHo concentration was clearly observed in March, which could be 

attributed to the spreading of manure collected during wintertime when 

cattle are kept indoors (Vermetten et al., 1985). There is some 

indication that a less pronounced peak occurs in autumn as well. Lenhard 

and Gravenhorst (1980) found from measurements by aircraft in Western 

Germany a flux density of NH3 which was substantially higher in summer 

than in winter. Fluctuations in the emission rate will depend on the 



79 

local agricultural practices and are also affected by soil and weather 

conditions. As a result seasonal variations in the emission rate are 

likely to vary from region to region and will be different for different 

years. Because most of the above mentioned effects and variations could 

not be quantified, any diurnal or seasonal variation in the emission 

rate has been neglected in our model. 

3. Dry deposition 

When evaluating publications on the dry deposition velocity of a 

component it must be noticed that this velocity can be defined in 

different ways. It can be determined by experiments in the laboratory, 

during which the circumstances are not always representative of field 

conditions (e.g. wind-speed and turbulence). Moreover it does not 

represent the dry deposition velocity for a certain reference height. 

The dry deposition velocity deduced from laboratory and field 

experiments may not be representative of other surfaces and 

circumstances. Often the surface is not well defined as it consists of 

both soil and vegetation. This may be important e.g. because an acid 

soil is likely to absorb NH3 very well. The overall dry deposition 

velocity used in our model should represent the loss rate in the mixing 

layer due to dry deposition averaged over a large area, which often 

consists of surfaces with different properties. This loss rate can be 

influenced by other factors than just the dry deposition velocity near 

ground level (e.g. reduced exchange due to inversions). This means that 

the dry deposition velocity used in our model under certain 

circumstances is not necessarily the same as the dry deposition velocity 

measured in the field under the same circumstances. 

3.1. Dry deposition of ammonia 

Malo and Purvis (1964) used filter paper as a surrogate for soil under 

field conditions and compared the rate of absorption of ammonia by soils 

and filter paper in a gas chamber. From these measurements a dry 

deposition velocity of 3 x 10~3 m s - 1 can be deduced. The procedure used 

is rather doubtful, because the measured cumulative deposition was 
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related to ambient concentrations measured during only 1 hr a day. 

Hannawalt (1969A, 1969B) determined the adsorption of NH3 by soils in a 

gas chamber. From his experiments a dry deposition velocity of 5 x 10 

m s can be deduced. This is certainly an underestimate of the dry 

deposition velocity under atmospheric circumstances as the air flow in 

the gas chamber was reduced compared to field conditions. Rodgers (1978) 

measured the deposition of NH3-N to different soil samples under field 

conditions. From his measurements a dry deposition velocity of 6 x 10 

— 3 — 1 to 5 x 10 m s can be deduced if it is assumed that no dry deposition 

of NH, aerosol occurred at the same time. Hutchinson et al. (1972) 
4 

measured the uptake rate of NHo by plants in a gas chamber. From their 

measurements a dry deposition velocity of 2 x 10 to 6 x 10 m s on 

the leaf of soybean, sunflower, corn and cotton can be deduced. The air 

flow in their experiment was not representative of field conditions. The 

uptake rate was 3 times higher in the light than in the dark. According 

to Hutchinson et al. (1972) this would suggest that uptake occurs 

through the stomata. Their measurements imply a rather high deposition 

velocity of probably l x l O ^ t o S x l O ^ m s under field conditions. 

Horvâth (1982, 1983) determined the dry deposition velocity of NH3 by 

the gradient technique. He found deposition velocities of 5 x 10 to 
_ p _ i 

1 x 10 m s on soil, but emission occurred on occasions. Van Aalst 

(1985A, 1985B) using the same technique found during day-time a 

deposition velocity of 1.8 x 10 m s on heather (and soil) and long 

grass (and soil) in a nature reserve. Van Aalst (1986A) states that, 

although the long grass seemed to be almost dead, the deposition 

velocity was still high. This could indicate that the uptake of NH3 does 

not only take place through the stomata of the plants or that the 

absorption by soil is very important. Van Aalst (1986B) found a dry 
— 2 — 1 deposition velocity of 2.2 x 10 m s over a forest. 

If NH, (or NH aerosol) is present in or on the surface onto which dry 

deposition takes place, the observed (net) dry deposition velocity can 

be reduced (or even net emission can occur), as it depends on the 

difference in ambient and surface concentrations. A reduction of the dry 

deposition velocity may also have occurred during the experiments 

discussed before. Farquhar et al. (1980), Lemon and Van Houtte (1980) 

and Horvâth (1982, 1983) found that below a certain ambient NH3 
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concentration ("compensation point") emission occurred and above this 

concentration deposition occurred. This means for example that plants 

can absorb NHo when the ambient concentration is high, but that the 

absorbed NHo can be released if the ambient concentration drops. This 

mechanism could even lead to "secondary transport" of NH-, to areas with 

a low surface concentration of NH3 (e.g. nature reserves). Farquhar et 

al. (1980) found that the compensation point of Phaseolus vulgaris L. 
—3 —3 

ranged from lug m (15"C) to 3 pg m (25°C). This does not necessarily 

mean that the NH, concentration in air should have the same value, 

because during the transport from the leaves to the reference height 

where the concentration is measured dilution will occur. The 

"compensation point" has only been determined for a few plant species 

under a few conditions and often when fertilizers containing 

NH, were applied. As a result no general quantitative conclusions can 

yet be drawn on the influence of the existence of a "compensation point" 

on the dry deposition flux over large areas. But the existence of NH3 in 

or on the surface will lead to a certain reduction of the overall dry 

deposition velocity representative of a larger area, as should be used 

in our model. For water surfaces some information on the existence of 

this phenomenon is also available (Horvâth, 1982; Georgii and 

Gravenhorst, 1977). They found that both deposition and emission could 

occur, depending on the difference between the atmospheric ammonia 

concentration and the equilibrium concentration in water. 

During part of the time (net) emission will occur in areas where manure 

and fertilizer are applied or cattle are grazing. Then no (net) dry 

deposition can take place. As a result the overall dry deposition vel

ocity for such areas will be less than the dry deposition velocity for 

ammonia-free surfaces. This effect is potentially important in European 

countries as a substantial part of the land (10-85%) is used for 

agricultural purposes. Asman (1986) estimated that the reduction of the 

overall dry deposition velocity is of the order of 20% if a half-life 

of 4 days is used for the rate of volatilization of NH^. However, in 

some areas consisting mainly of grassland where cattle are grazing this 

reduction could be up to 50%. The reduction of the dry deposition 

velocity to account for the effects described above, is small compared 

to the large uncertainty in the dry deposition velocity itself. 
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Therefore, this effect is not taken into account yet. The concept of a 

reduced dry deposition velocity is, however, in principle more correct 

to compute realistic annual ammonia fluxes for areas for which only the 

net annual ammonia emission is known and where both emission and 

deposition can occur. 

We adopted a value of 8 x 10 J m s l for the overall dry deposition 

velocity of NH3 in our model. This value lies in the middle of the -

wide - range of values found in the literature. The consequence of 

applying an overall dry deposition velocity in the model is that the dry 

deposition of NH3 in agricultural areas might be overestimated (the dry 

deposition velocity will be relatively low there because of the presence 

of ammonia at the surface). This will lead to underpredictions of 

concentrations in these areas. The dry deposition of NH3 onto forests 

might be underestimated (it will be relatively high there because it 

will be mainly determined by the aerodynamic resistance), at least close 

to agricultural areas. The spatial resolution of the model however is 

not suited to treating such refinements. 

3.2. Dry deposition of ammonium aerosol 

NH, is mainly found in fine particles (Lenhard and Gravenhorst, 1980 ; 

Stevens et al., 1984 ; Clarke et al., 1984). This arises because coarse 

particles generally originate from resuspended soil and are therefore 

more likely to be alkaline. As a result absorption of NH3 cannot occur. 

Fine particles are likely to be more acid, e.g. as a result of the 

formation of H2SO4 from SO2, and absorption of NH3 by these particles 

can easily occur. 

Gmur et al. (1983) measured the dry deposition velocity of (Nlfy^SO^ 

aerosols onto plants in the laboratory. They found a dry deposition 

velocity of 3.2 x ÎO--* m s-*. This is certainly aa underestimate as the 

air flow was much lower than that in typical field conditions. 

Gravenhorst et al. (1983) derived Indirectly a dry deposition velocity 

of 5 x 10""3 to 1.5 x 10~2 m s~* over a spruce and a beech forest. These 

values are very high, however, and are at least not likely to be 

representative of other surfaces. A dry deposition velocity for NH^ 
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aerosol of 1 x 10 - 3 m s - 1 was adopted for the overall dry deposition 

velocity used in our model. Although quite a range in deposition 

velocities is reported for fine particles, the value does not seem to be 

unreasonable (Sehmel, 1980; Davies and Nicholson, 1982). 

4. Wet deposition of ammonia and ammonium 

It should be pointed out that for NHo no equilibrium exists between the 

air concentration and the concentration in raindrops, like that usually 

assumed for SO9. The solubility of NH3 is much larger than for SO9 

(Hales and Drewes, 1979) and is enhanced by the reaction with IT" in the 

drop. As a result the mass transfer rate through the air/drop interface 

is not high enough for drops of most sizes to reach saturation before 

they reach the earth's surface. As the ground level concentration in 

areas with emission is much higher than the concentration aloft, no 

equilibrium between the ground level air concentration and the 

concentration In precipitation will exist. Asman (1985A) deduced from 

the computations of Levine and Schwartz (1982) a function for the below-

cloud scavenging coefficient of NH3 of the form AjjC = 2.64 x I * 

(where A. in s at temperature 25°C, I the precipitation rate in 

m s - 1 ) . This value is in agreement with that of Janssen and Ten Brink 

(1985). At a rainfall rate of 1 mm hr _ 1 , A b c takes the value 9.2 x 10~5 

NH3 within cloud will dissolve mainly in the acid cloud droplets. The 

in-cloud scavenging of NH3 will therefore proceed at about the same rate 

as the in-cloud scavenging of S O ^ - aerosol particles which act as 

condensation nuclei. From measurements within the EMEP-project 

(Whelpdale, 1981) it is known that the overall scavenging ratio, S, for 

S O ^ - is of the order of 105 to 10*>, where S = concentration in 

precipitation/concentration in air (mole m~3)/(mole m - 3 ) . The average 

value is about 10°. This reflects mainly in-cloud scavenging. The 

average liquid water content of clouds is higher at higher rainfall 

rates. The scavenging ratio will therefore be lower at a higher rainfall 

rate, because the dissolved NH3 and NH, is then more diluted. Although 
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this might be relatively unimportant, this effect is accounted for by 

using a value for the in-cloud scavenging ratio S^c of NH3 deduced from 

Liu et al. (1982), namely: S l c = 5000 x I~0 , 3 6. This leads to a value of 

1.1 x 10° for S l c at a rainfall rate of 1 mm hr_ 1. The in-cloud 

scavenging coefficient is \ c - Sic.I/H, where H is the height of the 

mixing layer (m). At a rainfall rate of 1 mm hr and a height of the 

mixing layer of 800m A. takes the value 4.0 x 10~ s . 

Ammonia is emitted at or near ground level. The cloud base is generally 

a few hundred metres above ground. This means that very near a source, 

when the plume is under the cloud base, scavenging will occur at a much 

lower rate than at some distance from the source, where the remaining 

NH3 is scavenged mainly by in-cloud processes. Computations show, 

however, that the results of the model calculations are not very 

sensitive to this effect and therefore a value of S = 5000 x l-0«3° j s 

used for the overall scavenging coefficient of NH3. 

For NH aerosol the same overall scavenging coefficient is used 
+ 

because NH containing aerosols will act as condensation nuclei and 

hence will be scavenged in the cloud at about the same rate as NH3. 

5. Reactions of ammonia and ammonium 

Under European conditions most ammonia will react with acid aerosol 

(e.g. containing H2SO4). A minor part will react with gaseous HNO3: 

NH3 + HNO3 • NH4NO3 (See for these reactions: Stelson and Seinfeld, 

1982). Temperature and relative humidity have a great influence on the 

equilibrium concentration of NH4NO3. Ammonia is mainly released from the 

earth's surface whereas HNO3 and acid aerosol are formed throughout the 

whole mixing layer. It is therefore likely that the pseudo first order 

reaction rate k is a function of height. Moreover k is likely to be 

dependent on time of the day and season. Lenhard and Gravenhorst (1980) 

measured concentrations of NH3 and NH, aerosol over western Germany at 

100m and at 700m above ground level. From their measurements and 

vertical eddy diffusivity coefficients they estimate an average value 

for k at 400m of 1.2 x 10-5 s~l in winter and 2.1 x 10-5 s-1 in summer. 
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They note also that k is likely to be greater at a lower level. 

Vermetten et al. (1985) measured NH3 and NH aerosol concentrations at a 

meteorological tower in the Netherlands. They calculated values of k 

— 5 — "\ — 1 between 10 J and 10 s , which should be representative of the lowest 

100m of the atmosphere. The concentration profiles of all components 

involved as well as the temperature, relative humidity and mixing height 

are different at different sites and under different circumstances. As a 

result k will not be a constant, but will vary with time and place. As 

insufficient information was available on the factors influencing k, a 

constant value for k was adopted. This value was chosen in such a way 

that realistic concentrations were calculated. NHo and NH aerosol 

concentrations at ground level are very sensitive to the value of k 

chosen, whereas NH in precipitation is not influenced very much in 

areas with relatively high emissions, as the scavenging coefficients for 

NH3 and NH, aerosol are the same. This means that a value of k should be 

taken which is representative of the lowest part of the atmosphere. We 

adopted a value of 8 x 10 - 5 s , partly based on the results of 

sensitivity studies. 

Ammonia also can react with OH, 0 and 0 ( D ) . Levine et al. (1980) found 

that the reaction with OH was most important. When adopting a constant, 

relatively high, OH-concentration of 4 x 10 molecules cm"J (Logan et 

al., 1981) a pseudo first order reaction rate of 5.4 x 10 s for 

ammonia is found. This value is much lower than the pseudo first order 

rate for the reaction of NH3 with acid aerosol and nitric acid. 

Therefore the reaction with OH is neglected in our model. However 

outside areas with high emissions the reaction with OH may play a more 

important role over a larger scale. 

6. Parameter values used in the model 

In the Lagrangian model used in our transport calculations instantaneous 

homogeneous mixing of emitted and produced components over the mixing 

layer is assumed, although in reality it takes some time for the mixing 

to take place. Long-range transport and deposition processes can be 

described adequately with this simple model, provided two types of 

corrections are applied: 
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Near the source, at or near the earth's surface, ground level 

concentrations will be higher than computed if instantaneous mixing is 

assumed. This results in a relatively faster depletion near the source 

due to enhanced dry deposition. To correct for this effect the source 

strength Q (mole s ) of a point source used in such a model is reduced 

to a certain fraction of Q: yQ- However, if this reduced source strength 

is used right from the point of emission, not only will the rate of dry 

deposition near the source be underestimated but also the rate of 

production of reaction products. This is corrected for in the model by 

the introduction of an apparent direct local deposition aQ at the source 

and an apparent direct emission ßQ of the reaction product 

(where a + ß + y = 1; Janssen and Asman, 1986). 

At larger distances from a point source when components can be expected 

to be fully mixed, a vertical concentration gradient will still be 

present. The ground level concentration is lower than the concentration 

aloft, because depletion due to dry deposition occurs near the earth's 

surface. Therefore, the dry deposition flux would be overestimated if it 

were computed from the height-averaged concentrations ( c ) computed in 

the model and the dry deposition velocity at reference height. This can 

be avoided by the introduction of effective dry deposition velocities 

(v
e) to be used in the model for both the precursor and the product. The 

dry deposition flux is then c ,ve« 

Close to the source the deposition rate of NH3 is relatively high. A 

good parameterization of this phenomenon is important as a determines 

the amount of NHj that is available for long-range transport. Moreover, 

the calculated ground-level concentration is to a large extent 

determined by <x. The values of the parameters introduced above have been 

calculated with a numerical reactive diffusion model using K-theory 

(Janssen and Asman, 1986). 

The following equations are used for the height-averaged concentrations 

of NH3 and mit aerosol (subscript 1 refers to NH3; subscript 2 refers to 

NH, aerosol; see Table 1 for the list of symbols) 
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De v S .1 

De v S .1 

The operator — is the total time derivative, I is the precipitation 

rate (m s ) and E is the ammonia emission rate averaged over the grid 

element (moles m s ). The remaining parameters are presented in Table 

1 together with their values. The ground-level concentration c„ of a 

component in a receptor point in a grid element with emission rate E 

can be computed from: c = (v .c + a.E )/v (Janssen and Asman, 1986). 
g e g 

In the model a constant mixing height of 800 ra is applied, being the 

approximate harmonic mean mixing height in N.W.-Europe at 00 and 12 GMT 

(Buch, 1984). The mixing height is defined by Buch as the height up to 

the lowest stable layer (with dT/dz > -5.0 x 10 - 3 K m _ 1 ) with base above 

200 m. A harmonic mean is taken because the height-averaged 

concentration is proportional to H- 1. This definition of the mixing 

layer is in fact not very satisfactory as stable surface layers cannot 

be taken into account (H = 0 then and hence H - 1 is undefined). Buch 

found that stable surface layers occur about 30-40% of the time in N.W.

Europe and as expected they occur mainly during night-time. The best way 

to tackle this problem is perhaps to adapt the correction factors a and 

ß while not taking into account mixing heights lower than 200 m. 

The 850 hPa isobaric 4-day backward trajectories arriving at the centres 

of each EMEP-grid element every six hours in the year 1980 were provided 

by EMEP and used in the calculations. From measurements it is known that 

the NH-j-concentration decreases very rapidly with height (Georgii and 

Müller, 1974; Georgii and Lenhard, 1978; Lenhard and Gravenhorst, 1980; 

Vermetten et al., 1985; Alkazweeny et al., 1986). In general the 

concentration weighted transport height will be much lower than the 850 

hPa level (about 1500 m ) . Therefore we reduced the 850 hPa wind-speed by 

15% and backed the wind-direction by 15 degrees. In this way a wind-

vector representative of a 200 m level is obtained (Asman, 1985B). 

Six-hourly gridded precipitation fields for the year 1980 were also 
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obtained from EMEP. These data were compared with the annual 

precipitation amounts found in "Monthly climatic data for the World" 

(N0AA.1981) (Maas and Van der Veen, 1986). It was found that the data 

obtained from EMEP were about 15% higher than the climatic data. 

Therefore, a correction factor of 0.85 was applied to the EMEP-data. 

7. Measurements used to test the model 

7.1. Ammonia 

There are few reliable measurements of the NH, concentration in air. 

Older measurements are most abundant, e.g. those presented by Egner, 

Eriksson (1955). However, in view of the long sampling times, possible 

influences of bacterial processes and the presence of NHj in the 

laboratory we prefer not to use these older measurements. In recent 

years the dénuder technique has been developed to measure NH3 (Ferm, 

1979). If daily samples are taken using this technique and any contact 

with NHo after sampling is avoided, reliable data can be obtained. As 

the NH3 emission can be highly variable in time, the NHo concentration 

in air can be highly variable in time as well. This means that 

concentrations can only be used where sampling has been undertaken for a 

long period of at least one year. There are only a very few stations in 

Europe where such measurements are available. 

Another problem arises from variability of concentrations in space. If 

measurements at only one point in a grid element (150 x 150 km ) are 

available, these measurements will usually not be representative of such 

a large grid element and cannot be used then to check the model. 

For the Netherlands, there are measurements (Diederen, 1984; Erisman et 

al., 1986) that can be related to emissions on a 5 x 5 km grid 

(Buijsman et al., 1984). Computations with the surface depletion model 

of Horst (1977) made by Asman and Maas (1986B) show that the 

contribution to the annual average concentration caused by emission from 

one relatively large point source usually drops to a very low value 

within a few hundred metres of the source. Other computations (Asman and 
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Maas, 1986A) show that the NH-j concentration not too near a point source 

is affected to a large extent by local emissions (over a scale of about 

5-30 km). The Dutch measuring sites are located in such a way that 

generally no influence of nearby permanent point sources could be 

expected. Occasionally, however, daily concentrations up to 250 ug m 

can be found, if manure spreading occurs in the near surroundings. To 

avoid the influence of such high values, median concentrations are used 

instead of mean concentrations. Figure 1 shows the relation between the 

measured median concentration and the local emission of NH3. Using this 

relation and the average emission rate in the Netherlands, a median NH, 

concentration in the Netherlands of about 5 ug m is computed. This is 

only a rough estimate of the ammonia concentration but it is the only 

one available to check the model. The background concentration of NH3 is 

likely to be negligible compared to concentrations usually found in 

areas with some emission and may be of the order of a few tenths of a ug 

port 

-3 

_3 
m . Georgii and Gravenhorst (1977) report a background concentration in 

marine areas of approximately 0.1 (ig m 

7.2. Ammonium aerosol 

For NH aerosol more measurements exist although some interference with 

NH-> cannot be excluded. There are measurements from the Netherlands 

(Diederen, 1984; Erlsman et al., 1986), from the United Kingdom 

(Harrison and McCartney, 1980), from Poland (Pruchwicki, 1984) and from 

EMEP-stations in Denmark, Hungary, the USSR and Poland (EMEP, 1983A, 

1983B; Mészâros and Horvâth, 1984). Although some of the measurements 

were made in years other than 1980, these will still be used to check 

the model (see section 8). As NH, aerosol is a reaction product, the 

spatial variation in the average concentration will be much less than 

for NH3. Computations made by Asman and Maas (1986B) show that the 

average concentration does not vary much within a grid element of 150 

xl50 km^- This means that the measured concentrations referred to above 

can be used to check the model results. Georgii and Gravenhorst (1977) 

reported NH aerosol concentrations between 0.2-1 ug m - 3 for maritime 
4 
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Figure 1. Relation between measured concentration and calculated emission 

for NH . 

. . -1 2 
Emissions are given in tons y for the 5 x 5 km area in which 
the station is located. 

50 100 150 200 

EMISSION (T0NS/YR) 
250 
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background locations. Buijsman et al. (1985B) found a NH concentration 

in precipitation on the Atlantic Ocean of about 5 pmole l- 1. Adopting a 

low scavenging ratio of 105 and assuming that all NH in precipitation 

is caused by scavenging of NH aerosol an upper limit of 0.9 ug m is 

found. A more realistic value would be 0.1-0.2 ug m . 

7.3. Ammonium in precipitation 

NH in precipitation has been measured at many sites in Europe. These 

data offer a good possibility to test the model. Precipitation is often 

still collected with bulk samplers that are not covered with a lid 

during dry periods. Thus some dry deposition is sampled in addition to 

the wet deposition and the real concentration will be overestimated when 

these results are used (Galloway and Likens, 1978; Slanina and Asman, 

1980; Söderlund, 1982; Ridder et al., 1984). The composition of the 

sample can also change during storage in the field and in the laboratory 

(Ridder et al., 1984, 1985). The magnitude of this change depends on the 

conditions and duration of storage. Buijsman and Erisman (1986) examined 

and corrected recent data for 210 stations in Europe. Not all the data 

are for 1980. As meteorological conditions are different in different 

years, it is not strictly correct to use data for other years than 1980. 

However, the exclusion of this data will lead to a larger uncertainty in 

the deposition pattern than would otherwise occur. The measurement sites 

are not evenly distributed over Europe. Their density is highest in 

N.W.-Europe. Buijsman et al. (1985B) found a background concentration in 

precipitation of about 5 ânole 1 . 

8. Results of the model calculations and discussion 

Figures 2, 3 and 4 show computed concentrations in air and precipitation 

without any added background concentration. In the model the emissions 

are spread evenly over a grid element, even if no emission occurs in 

part of the grid element. Together with the geographical resolution of 

the statistical data used to calculate the emissions, this will 
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Figure 2. Computed NH. concentration in air (yg m ). 
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Figure 3. Computed NH, aerosol concentration (ug m ). 

N H 4 aerosol - 1980 

IMOU/ECN-87 

0 200 100 km 
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Figure 4. Computed NH, concentration in precipitation (ymole 1 ). 
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influence the concentration gradients computed with the model. Moreover, 

concentrations are only computed for the central point of each grid 

element. Figures 5 and 6 show the relations between computed and 

measured concentrations of NH in air and precipitation for EMEP grid 

elements (no background concentrations added). For NH, in aerosols a 

significant correlation exists between computed and measured 

concentrations, although not many measurements are available (r = 0.71, 

n = 16). For NH in precipitation the agreement between model results 

and measurements is good, the correlation coefficient for 90 EMEP-grid 

elements is 0.73, which is statistically significant. 

Table 2 shows the country by country budget for total deposition of Nl^ 

(=dry plus wet deposition of both NH, and NH ) and country averaged 

concentrations in air and precipitation. The total deposition caused by 

a country is somewhat smaller than the emission of that country as not 

all emitted material is deposited within the receptor area. Country by 

country budgets for dry deposition of NH,, dry deposition of NH aerosol 

and wet deposition of NH were also computed (see Asman and Janssen, 

1986). From these results it appears that over 90% of the NH3 dry 

deposition in a country is caused by emissions within the country 

itself. This arises for two reasons. Firstly NH3 is emitted at ground 

level and has a relatively high dry deposition velocity. Secondly the 

conversion of NH3 to NH aerosol relatively rapid (compared to the 
2-

conversion of SO2 to SO aerosol). (For the latter a pseudo first order 

reaction rate of 3.9 x 10- 6 s - 1 has been used by Asman et al., 1986). A 

substantial part (20-80%) of NH in air and precipitation in most 

countries appears to come from foreign sources, which points to true 

long-range transport. 
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-3, Figure 5. Computed vs. Measured NH, aerosol concentration (pg m ) 
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Figure 6. Computed vs. measured NH, concentration in precipitation (ymole 1 ) 
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Numerical aspects of the transport model 

9.1. Time Interpolation 

Equations (1) and (2) describing the ammonia transport model are mass-

consistent. As a result the computation using one backward trajectory to 

one receptor point will be mass consistent. This does not necessarily 

mean that the results for Europe as a whole are mass-consistent, when 

many backward trajectories, arriving at receptor points at 6 hour 

intervals, are used. One reason is that the yearly integrated time a 

grid-element is crossed by trajectories is not the same for every grid 

element. As a result there may be differences between the actual amount 

of ammonia emitted and the emitted amount of ammonia used in the 

calculations. This effect can be avoided by using forward-trajectories 

with a point source in the centre of each grid element which releases a 

puff every 6 hours, representative of all emissions in that grid 

element. This has, however, the disadvantage that the concentration 

patterns computed with the model are sensitive to the assumed location 

of the point sources within the grid elements. 

A second reason why the model might not be mass-consistent Is that the 

depositions obtained every 6 hours at a receptor point have to be 

interpolated in time to compute the annual deposition. This is not 

likely to be a big problem during a dry period, as the dry deposition 

rate (amount deposited per unit time) is not likely to vary much over 6 

hours. A linear Interpolation would then give reasonable results. 

However, it can pose a major problem during wet periods as a large 

fraction of the airborne components can be removed within a few hours. 

In our model we use precipitation data with a time resolution of 6 

hours. This means that a grid element is either wet or dry during a 6-

hour period. As a consequence the period during which a moving air 

parcel is exposed to precipitation will usually be so long that no 

linear interpolation can be applied. Different ways of interpolation are 

shown in Figure 7. The physically most probable Interpolation should lie 

in between the stepwise variation and the linear variation and is 

indicated by the dotted curve. In Table 3 the results of several model 
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Figure 7. Interpolation of 6-hourly concentration data. 

Wet depositions are derived from the time-dependent product 

of concentration and precipitation rate. 
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versions for the Netherlands are presented.In version 1 (standard) 

backward trajectories to midpoints of EMEP grid elements are used 

applying the physically most probable interpolation. In version 3 the 

linear interpolation is applied and in version 4 the stepwise 

interpolation is applied. In version 9 forward trajectories are used; 

emissions are assumed to take place in the midpoint of EMEP grid 

elements and the apparent direct local dry deposition is calculated as 

in the standard run. In version 9 there are no problems with 

interpolation in time, because for each puff integration of wet and dry 

depositions per grid element can be carried out without numerical 

approximations. The results of version 9 were used to find out which 

interpolation procedure should be adopted. It appeared that the average 

of the versions 3 and 4 gave about the same results as version 9. This 

average is used as the standard version (no. 1) (no forward trajectories 

were available for regions outside the Netherlands). 

Table 3 shows that the method of interpolation has a great influence on 

results, especially the way in which NH in wet deposition may be 

attributed to source regions. This is of major importance in policy 

decisions. If linear interpolation was applied, the total calculated 

deposition originating from any country was usually about 10% higher 

than the emission from the same country. This unrealistic phenomenon is 

absent when the standard version of the model is used. This also 

supports our adopted interpolation scheme. 

The effect discussed above is different from the effect caused by space 

and time smoothing of precipitation data as discussed by Eliassen and 

Saltbones (1983). 

9.2. Area integrated apparent direct local dry deposition 

After the calculations have been performed for a one year period with 

equations (1) and (2), dry depositions for NH3 (Dig) a n d f o r 

NH aerosol(D2g) a r e obtained for the central point of each grid 

element. Then the apparent direct local dry depositions of NH3 

and NH aerosol have to be added, being «i-Eyg and a2.Ey g respectively. 
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— 2 —1 
(E is the emission density in the grid element in moles ra year ) . 

In this way total dry depositions for each central point of a grid 

element are obtained (D]_t and Ö2st r e s P e c t i v e l y ) • T o calculate the 

total dry deposition in a country two different methods can be followed, 

which will be illustrated for the dry deposition of NH3: 

a. The dry deposition is computed from the added values Di„t f°r the 

central points of the grid elements that lie in this country. (If 

more than one country is situated in a grid element a fraction of the 

deposition should be added proportional to the area occupied by the 

country). 

b. The dry deposition is computed from the added values D, for the 

central points of the grid elements that lie in this country. Then 

the apparent direct local dry deposition for the whole country is 

added: ot̂ .E , where E is the emission of the whole country in 

moles year . 

By applying method (a) the apparent direct local dry deposition is 

spread out evenly over the whole grid element, whereas by applying 

method (b) the apparent direct local dry deposition is assumed to take 

place directly at the source. From Figure 8 it can be seen that the 

enhanced dry deposition of NH3 in reality occurs relatively close to the 

source. Computations show that 65% of it takes place within 5 km 

distance from the source and 90% within 30 km (Janssen and Asman, 1986). 

Method (b) is therefore better and is used to calculate the dry 

deposition in a country. 

The concentration maps (Figures 2 and 3) can only be calculated by using 

method (a), while the average concentration for a country is obtained by 

applying method (b). This may lead to an apparent discrepancy when 

comparing average concentrations for a country (Table 2) and the 

concentrations estimated from the maps. The discrepancy between the two 

methods will be most apparent for a country when: 

the relative contribution of the apparent direct local dry deposition 

is large. 

there are large emission variations across its frontiers, e.g. in 

coastal areas. 

- it is a small country (large ratio of circumference and area). 
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The Netherlands is an extreme example, which is demonstrated in Table 4. 

(Compare also versions 1 and 2 in Table 3). 

9.3. Spatial resolution 

To investigate the influence of the density of the receptor points a 

version of the model was made for the Netherlands with receptor points 

in each centre of an IE grid element (4 IE grid elements form one EMEP 

grid element). The results are presented in Table 3 (version 5). A 

better preservation of concentration gradients is obtained, which - for 

the Netherlands with its extremely high emissions - results in higher 

calculated average concentrations and depositions, because all central 

points of EMEP grid elements covering the Netherlands happen to lie near 

its frontiers. The two different ways to account for the apparent direct 

local dry deposition discussed in section 9.2 now give results which are 

closer to each other (compare versions 5 and 6 in Table 3 with versions 

1 and 2). The reason is that in version 6 this deposition is spread 

evenly over a four times smaller area (75 x 75 km ) than in version 2, 

which - according to Figure 8 - is closer to reality. The effect of 

different time integrations on concentrations in precipitation remains 

the same (see versions 5, 7 and 8 ) . 

10. Sensitivity analysis 

To investigate the influence of uncertainties in the parameters used in 

the model a sensitivity study was made. This could be done by simply 

changing the value of one of the parameters and running the model again. 

The values of ocj, a^, ß and v j e , however, are not independent, 

but are chosen by reference to numerical reactive diffusion model in 

which the independent variables are H, k, vj, vo, K (eddy diffusivity) 

and u£ (transport velocity). In fact vj and V2 will be a function of 1^, 

but this could not be taken into account. Therefore, it was decided to 

change the independent variables and then to use the derived values of 

the computed dependent variables in the model. Table 5 shows the 
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Figure 8. Dry deposition of NH, integrated up to distance x from the source. 

Wind-speed at 10 m height: 4 m s . Calculations with a numerical 

reactive diffusion model gave an apparent direct local deposition 

of a. = 0.26. The Lagrangian model would produce the dotted line 

if this enhanced dry deposition is assumed to take place at the 

source. 

D = integrated dry deposition rate. 

Q = emission rate. 
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calculated parameter values used in the sensitivity study. The 

sensitivity study was done for a receptor point in an area with a high 

emission density in S.E. Netherlands (Table 6; 51.8°N, 5.6°E) and for a 

receptor point in an area with a low emission density (Table 7; Central 

Sweden; 58.6°N, 14.8°E). In version 2 the mixing height was multiplied 

by a factor •£. In version 2a both the scavenging ratios and the mixing 

height were multiplied by a factor |. Version 2a seems to be physically 

more reasonable for evaluating the variation of the mixing height, as 

the wet removal rate remains the same as in the standard version. 

Table 7 shows that the computed origin of NH in precipitation over 

Central Sweden can be rather sensitive to the turning of the 

trajectories (compare version 13 with the standard version). This may be 

caused by the existence of a strongly prevailing wind-direction 

associated with precipitation periods. The sensitivity analysis 

indicates further that a wide range of possible parameter values would 

give acceptable agreement with measured concentrations. 

11. Concluding remarks 

Although the model calculations give satisfactory results this does not 

mean that our present knowledge of the atmospheric behaviour of ammonia 

and ammonium is sufficient. Parameter values in a model are chosen 

either using empirical evidence or physical reasoning independent of the 

model or by adjusting parameters to give the best agreement with 

measured concentrations. A wide range of possible parameter values would 

give acceptable agreement with measured concentrations. Long-range 

transport modelling of ammonia and ammonium requires not only an 

adequate description of processes on a large scale, but it also requires 

an adequate description of the processes on a local scale as they 

determine the fraction of NH which can be transported over longer 

distances. Further research should be undertaken in the following areas: 

- the emission of NH3> riie importance of organic nitrogen compounds to 

the emission of N H T should be determined. In addition the emission 
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rate as a function of time should be determined over longer periods, 

especially for meadows. 

the dry deposition velocity of NH3. This should be determined for 

different surfaces and circumstances (including during the night) to 

obtain a more realistic overall dry deposition velocity for NH3. In 

this respect the uptake of NH3 by representative plants should be 

studied to determine the value of the compensation point. The mutual 

influence of emission and dry deposition of NHo may require a more 

sophisticated modelling of the dry deposition process. 

the apparent reaction rate for the conversion of NH3 to NH 

aerosol as a function of height. It should be determined at sites 

with different chemical and climatological regimes and for different 

seasons. 

the influence of the patchy nature of precipitation on the wet 

removal rates to be used in a model. 

the dependence of dry deposition velocities on the resistance of the 

atmosphere needs to be better defined (via K and the atmospheric 

stability). 

Moreover, one should realize that the quality of the measurements used 

to check the model is often poor. For NHo and NH aerosol, measurements 

should be undertaken at more stations in such a way that the results can 

be used to verify model results. For NH3 this means that one should be 

able to relate the concentration with the local emission. 

Acknowledgements 

Prof. Dr. A. Eliassen, projectmanager of MSC-W of EMEP Oslo, Norway, is 

acknowledged for placing trajectory and precipitation data at our 

disposal and for his willingness to discuss modelling problems. Dr. B. 

Fisher of Central Electricity Research Laboratories, Leatherhead (UK) 

and many colleagues are acknowledged for critical reading of the draft-

report. We are grateful to E. Buijsman, J.F.M. Maas, J.W. Erisman (IMOU) 

and D. Nierop (ECN) for their contributions to this work. 



114 

Part of this work, at IMOU was supported by the Netherlands Ministry of 

Housing, Physical Planning and Environment. 

The ECN part of this investigation was supported by the Netherlands 

Ministry of Economic Affairs (contract with the Management Office for 

Energy Research PEO). 



115 

References 

Alkazweeny, A.J., Laws, G.L., Jones, W. (1986) Aircraft and ground 

measurements of ammonia in Kentucky, Atmospheric Environment 20, 357-

360. 

Asman, W.A.H., Jonker, P.J., Slanina, J., Baard, J.H. (1982) 

Neutralization of acid in precipitation and some results of 

sequential sampling. In: Georgii, H.-W., Pankrath, J. (eds.) 

Deposition of atmospheric pollutants, Reidel, Dordrecht, The 

Netherlands, 115-123. 

Asman, W.A.H. (1985A) Acid deposition modelling incorporating cloud 

chemistry and wet deposition. In: Lee, S.D., Schneider, T., Grant, 

L.D., Verkerk, P.J. (eds.) Aerosols, research, risk assessment and 

control strategies, Lewis Publishers, Chelsea MI, USA, 337-347. 

Asman, W.A.H. (1985B) The wind at heights of 10, 80 and 200 m in 

comparison with the wind at the 850-mbar level, Report R-85-6, 

Institute for Meteorology and Oceanography, State University Utrecht, 

The Netherlands. 

Asman, W.A.H. (1986) Some aspects of the emission and dry deposition of 

ammonia, Report R-86-7, Institute for Meteorology and Oceanography, 

State University Utrecht, The Netherlands. 

Asman, W.A.H., Buijsman, E., Verraetten, A., Ten Brink, H.M.,Heijboer, 

R.J., Janssen, A.J., Slanina, J. (1986) Import en export van zuur in 

Nederland, (Import and export of acid pollution in the Netherlands, 

in Dutch with summary in English), Report IMOU R-86-10/ECN-186, 

Institute for Meteorology and Oceanography, State University Utrecht, 

and Netherlands Energy Research Foundation, Petten, The Netherlands. 

Asman, W.A.H., Janssen, A.J. (1986) A long-range transport model for 

ammonia and ammonium for Europe and some model experiments, Report R-

86-6, Institute for Meteorology and Oceanography, State University 

Utrecht and Netherlands Energy Research Foundation, Petten, The 

Netherlands. 

Asman, W.A.H., Maas, J.F.M. (1986A) Beschrijving van het NIL-model voor 

de demonstratiefase van het Systeemonderzoek Verzuring (Description 

of the NHjç model for the demonstration phase of the Dutch 

acidification model, in Dutch), Report R-86-1, Institute for 

Meteorology and Oceanography, State University Utrecht, The 

Netherlands. 



116 

Asman, W.A.H., Maas, J.F.M. (1986B) Schatting van de depositie van 

ammoniak en ammonium in Nederland t.b.v. het beleid in het kader van 

de hinderwet (Estimation of the deposition of ammonia and ammonium in 

the Netherlands, in Dutch), Report R-86-8, Institute for Meteorology 

and Oceanography, State University Utrecht, The Netherlands. 

Beauchamp, E.G., Kidd, G.E., Thurtell, G. (1978) Ammonia volatilization 

from sewage sludge applied in the field, J. Environ. Qual. _7_, 141— 

146. 

Beauchamp, E.G., Kidd, G.E., Thurtell, G. (1982) Ammonia volatilization 

from liquid dairy cattle manure in the field, Can. J. Soil Sei. 62 

11-19. 

Buch, H. (1984) Sector analysis of relevant meteorological parameters 

for long range transport of air pollutants, Report no. 27, Danish 

Meteorological Institute, Copenhagen, Denmark. 

Buijsman, E., Maas, J.F.M., Asman, W.A.H. (1984) Een gedetailleerde 

ammoniakemissiekaart van Nederland (A detailed ammonia emission map 

of the Netherlands, in Dutch with summary in English), Report V-84-

20, Institute for Meteorology and Oceanography, State University 

Utrecht, The Netherlands. 

Buijsman, E., Maas, J.F.M., Asman, W.A.H. (1985A) Ammonia emission in 

Europe, summary report, Report R-85-2, Institute for Meteorology and 

Oceanography, State University Utrecht, The Netherlands. 

Buijsman, E., Asman, W.A.H., Ridder, T.B., Frantzen, A.J., Adolphs, R. 

(1985B) Chemical composition of precipitation collected on a 

weathership in the North Atlantic. A joint KNMI/ECN/IMOU/RIVM 

project, report R-85-5, Institute for Meteorology and Oceanography, 

State University Utrecht, The Netherlands. 

Buijsman, E., Erisman, J.W. (1986) Ammonium wet deposition flux in 

Europe, Report R-86-5, Institute for Meteorology and Oceanography, 

State University Utrecht, The Netherlands. 

Clarke, A.G., Willison, M.J., Zeki, E.M. (1984) A comparison of urban 

and rural aerosol composition using dichotomous samplers, Atmospheric 

Environment _18^ 1767-1775. 

Commission of the European Communities (1978). Information on 

Agriculture no. 47, BrusseIs/Luxemburg. 



117 

Davies, T.D., Nicholson, K.W. (1982) Dry deposition velocities of 

aerosol sulphate in rural Eastern England. In: Georgii, H.-W., 

Pankrath, J. (eds.) Deposition of atmospheric pollutants, Reidel, 

Dordrecht, The Netherlands, 31-42. 

De Leeuw, F.A.A.M., Van Rheineck Leyssius, H.J., Van Den Hout, K.D., 

Diederen, H.S.M.A., Berens, M., Asman, W.A.H. (1986) Een Lagrangiaans 

lange-afstand transportmodel met niet-lineaire atmosferische chemie 

(A Langrangian long-range transport model with non-linear chemistry, 

in Dutch): MPA-model, Report National Institute of Public Health and 

Environmental Hygiene, Bilthoven, The Netherlands. 

Diederen, H.S.M.A. (1984) Voorkomen, niveaus, karakterisering en 

interakties van gasvormige verbindingen en aerosolen in de 

buitenlucht bij verschillende meteorologische kondities, Hoofdstuk 

11, Eindrapportage FLAT-projekt (Occurrence, levels, characterization 

and interaction of gaseous compounds and aerosols in outdoor-air 

under different meteorological conditions, in Dutch), TNO, Delft, The 

Netherlands. 

Dovland, H., Saltbones, J. (1979) Emissions of sulphur dioxide in Europe 

in 1978, EMEP/CCC-Report 2/79, Norwegian Institute for Air Research, 

Lillestr^m, Norway. 

Egner, H., Eriksson, E. (1955) Current data on the chemical composition 

of air and precipitation, Tellus _7_, 266-271. 

Eliassen, A. (1978) The OECD study of long range transport of air 

pollutants : long range transport modelling, Atmospheric Environment 

12, 479-487. 

Eliassen, A., Hov, 0. , Isaksen, I.S.A., Saltbones, J.,Stordal, F. (1982) 

A Lagrangian long-range transport model with atmospheric boundary 

layer chemistry, J. Appl. Meteor. 21, 1645-1661. 

Eliassen, A., Saltbones, J. (1983) Modelling of long-range transport of 

sulphur over Europe : a two-year model run and some model 

experiments, Atmospheric Environment 17, 1457-1473. 

EMEP (1983A) Preliminary data report April 1981- September 1981, 

EMEP/CCC-report 1/83, Norwegian Institute for Air Research, 

LillestrjJm, Norway. 

EMEP (1983B) Preliminary data report October 1981-March 1982, EMEP/CCC 

report 3/83, Norwegian Institute for Air Research, Lillestr^m, 

Norway. 



118 

Erisman, J.W., Verraetten, A.W.M., Asman, W.A.H., Mulder, W., Slanlna, 

J., Waijers-Ypelaan, A. (1986) Ammoniak en ammonium koncentratles In 

de Nederlandse buitenlucht (Ammonia and ammonium concentrations over 

the Netherlands, in Dutch with summary in English), report R-86-3, 

Institute for Meteorology and Oceanography, State University Utrecht, 

The Netherlands. 

Farquhar, G.D., Firth, P.M., Wetselaar, R., Weir, B. (1980) On the 

gaseous exchange of ammonia between leaves and the environment : 

determination of the ammonia compensation point, Plant Physiol. 66, 

710-714. 

Ferm, M. (1979) Method for the determination of atmospheric ammonia, 

Atmospheric Environment 13, 1385-1393. 

Fisher, B.E.A. (1984) The long-range transport of air pollutants, some 

thoughts on the state of modelling, Atmospheric Environment 18, 553-

562. 

Galloway, J.N., Likens, G.E. (1978) The collection of precipitation for 

chemical analysis, Tellus 30, 71-82. 

Georgii, H.-W., Muller, W.J. (1974) On the distribution of ammonia in 

the middle and lower troposphere, Tellus 26, 180-184. 

Georgii, H.-W., Gravenhorst, G. (1977) The ocean as source or sink of 

reactive trace-gases, Pageoph. 115, 503-511. 

Georgii, H.-W. Lenhard, U. (1978) Contribution to the atmospheric NH3 

budget, Pageoph. 116, 385-392. 

Gmur, N.F., Evans, L.S., Cunningham, E.A. (1983) Effects of ammonium 

sulfate aerosols on vegetation - II. Mode of entry and responses of 

vegetation, Atmospheric Environment 17, 715-721. 

Gravenhorst, G., Höfken, K.D., Georgii, H.-W. (1983) Acidic input to a 

beech and spruce forest. In: Beilke, S., Elshout, A.J. (eds.) Acid 

deposition, Reidel, Dordrecht, The Netherlands, 155-171. 

Hales, J.M., Drewes, D.R. (1979) Solubility of ammonia in water at low 

concentrations, Atmospheric Environment 13, 1133-1147. 

Hannawalt, R.B. (1969A) Environmental factors influencing the sorption 

of atmospheric ammonia by soils, Soil Sei. Soc. Amer. Proc. 33, 231-

234. 

Hannawalt, R.B. (1969B) Soil properties affecting the sorption of 

atmospheric ammonia, Soll Sel. Soc. Amer. Proc. 33, 725-729. 



119 

Harper, L.A., Catchpoole, V.R., Davis, R., Weir, K.L. (1983) Ammonia 

volatilization : soil, plant, and microclimate effects on diurnal and 

seasonal fluctuations, Agron. J. 75, 212-218. 

Harrison, R.M., McCartney, H.A. (1980) Ambient air quality at a coastal 

site in rural Norh-West England, Atmospheric Environment 14, 233-244. 

Hoff, J.D., Nelson, D.W., Sutton, A.L. (1981) Ammonia volatilization 

from liquid swine manure applied to cropland, J. Environ. Qual. 10, 

90-95. 

Horst, T.W. (1977) A surface depletion model for deposition from a 

Gaussian plume, Atmospheric Environment 11, 41-46. 

Horvâth, L. (1982) On the vertical flux of gaseous ammonia above water 

and soil surfaces. In Georgii, H.-W., Pankrath, J. (eds.) Deposition 

of atmospheric pollutants, Reidel, Dordrecht, The Netherlands, 17-22. 

Horvâth, L. (1983) Concentration and near surface vertical flux of 

ammonia in the air in Hungary, Idojârâs 87, 65-70. 

Hutchinson, G.L., Millington, R.J., Peters, D.B. (1972) Atmospheric 

Ammonia : absorption by plant leaves, Science 175, 771-772. 

Janssen, A.J., Ten Brink, H.M. (1985) De samenstelling van neerslag 

onder een rookgaspluim : modellering, berekening en validatie (Plume 

wash-out: modelling, calculation and validation, in Dutch with 

summary in English), Report ECN-170, Netherlands Energy Research 

Foundation, Petten (N.H.), The Netherlands. 

Janssen, A.J., Asman, W.A.H. (1986) Effective removal parameters in 

long-range transport models derived from diffusion theory 

calculations, Report ECN-187/IMOU R-86-15, Netherlands Energy 

Research Foundation, Petten (N.H.) and Institute for Meteorology and 

Oceanography, State University Utrecht, The Netherlands. 

Lemon, E., Van Houtte, R. (1980) Ammonia exchange at the land surface, 

Agron. J. 21» 876-883. 

Lenhard, U., Gravenhorst, G. (1980) Evaluation of ammonia fluxes into 

the free atmosphere over Western Germany, Tellus 32, 48-55. 

Levine, J.S., Augustsson, T.R., Hoell, J.M. (1980) The vertical 

distribution of tropospheric ammonia, Geophys. Res. Lett. _7_> 317-320. 

Levine, S.Z., Schwartz, S.A. (1982) In-cloud and below-cloud scavenging 

of nitric acid vapor, Atmospheric Environment 16, 1725-1734. 

Liu, M.-K., Stewart, D.A., Henderson, D. (1982) A mathematical model for 

the analysis of acid deposition, J. Appl. Meteor. 21, 859-873. 



120 

Lockyer, D.R. (1984) A system for the measurement In the field of losses 

of ammonia through volatilization, J. Sei. Food Agric. 35, 837-848. 

Logan, J.A., Prather, M.J., Wofsy, S.C., McElroy, M.B. (1981) 

Tropospheric chemistry: a global perspective, J. Geophys. Res. 86, 

7210-7254. 

Maahs, H.G. (1983) Kinetics and mechanism of the oxidation of S (IV) by 

ozone in aqueous solution with particular reference to SO2 oxidation 

in nonurban tropospheric clouds, J. Geophys. Res. 88, 10721-10732. 

Maas, J.F.M., Van der Veen, S. (1986) Comparison of the amount of 

precipitation used in the EMEP-model with the amount of precipitation 

in "Monthly climatic data of the world (1980)", Internal Report 86-3, 

Institute for Meteorology and Oceanography, State University Utrecht, 

The Netherlands. 

Malo, B.A., Purvis, E.R. (1964) Soil absorption of atmospheric ammonia, 

Soil Sei. _9_7_, 242-247. 

Mészâros, E., Horvâth, L. (1984) Concentration and dry deposition of 

atmospheric sulfur and nitrogen compounds in Hungary, Atmospheric 

Environment _U}> 1725-1730. 

NOAA (1981) Monthly climatic data for the world Vol. _33_, National 

Climatic Center, Ashville, NC, USA. 

Pruchwicki, J. (1984) Personal communication of the Institute of 

Meteorology and Water Management Warsaw, Poland to Dr. R.M. van 

Aalst, TNO, Delft, The Netherlands. 

Ridder, T.B., Baard, J.H., Buishand, T.A. (1984) De invloed van 

monsternamemethoden en analysetechnieken op gemeten chemische 

concentraties in regenwater (The influence of sampling methods and 

analysis methods on measured concentrations in precipitation, in 

Dutch), Technisch Rapport no. 55, Royal Netherlands Meteorological 

Institute,De Bilt, The Netherlands. 

Ridder, T.B., Buishand, T.A., Reijnders, H.F.R., 't Hart, M.J., Slanina, 

J. (1985) Effects of storage on the composition of main components in 

rainwater samples, Atmospheric Environment 19, 759-762. 

Rodgers, G.A. (1978) Dry deposition of atmospheric ammonia at Rothamsted 

in 1976 an 1977, J. Agric. Sei. _9°_> 537-542. 

Roelofs, J.G.M., Kempers, A.J., Houdijk, A.L.F.M., Jansen, J. (1985) The 

effect of airborne ammonium sulphate on Pinus nigra var. maritima in 

the Netherlands, Plant and Soil 84, 45-46. 



121 

Russell, A.G., McRae, G.J., Cass, G.R. (1983) Mathematical modeling of 

the formation and transport of ammonium nitrate aerosol, Atmospheric 

Environment 17, 949-964. 

Ryden, J.C., McNeill, J.E. (1984) Application of the micrometeorological 

mass balance method to the determination of ammonia loss from a 

grazed sward, J. Sei. Food Agric. _35_, 1297-1310. 

Sehmel, G.A. (1980) Particle and gas dry deposition: a review, 

Atmospheric Environment 14, 983-1011. 

Slanina, J., Asman, W.A.H. (1980) Detection of acid compounds in the 

atmosphere by careful sampling and analysis of rainwater. In: 

Drabl^s, D., Tollan, A. (eds.) Ecological impact of acid 

precipitation, Proceedings of an international conference, 

Sandefjord, Norway, March 11-14, 1980, SNSF-prosjekt 0slo-As, 138-

139. 

Sluijsmans, C.M.J., Kolenbrander, G.J. (1976) De stikstofwerking van 

stalmest op korte en lange termijn, Stikstof 76, 349-354. 

Söderlund, R. (1982) On the difference in chemical composition of 

precipitation collected in bulk and wet-only collectors, Report CM-

57, Department of Meteorology, University of Stockholm, Sweden. 

Stelson, A.W., Seinfeld, J.H. (1982) Relative humidity and temperature 

dependence of the ammonium nitrate dissociation constant, Atmospheric 

Environment _16_, 983-992. 

Stevens, R.K., Dzubay, T.G., Lewis, C.W., Shaw, R.W. (1984) Source 

apportionment methods applied to the determination of the origin of 

ambient aerosols that affect visibility in forested areas, Atmosheric 

Environment _lj8_, 261-272. 

Van Aalst, R.M. (1985A) Emission and deposition of NH3 in Europe. First 

interim report, Report R 85/62, TNO Delft, The Netherlands. 

Van Aalst, R.M. (1985B) Emission and deposition of NHj in Europe. Second 

interim report, Report R 85/204, TNO Delft, The Netherlands. 

Van Aalst, R.M. (1986A) Personal communication, TN0, Delft, The 

Netherlands. 

Van Aalst, R.M. (1986B) Emission and deposition of NH3 in Europe. Third 

interim report, Report R 86/059, TN0, Delft, The Netherlands. 

Van Breemen, N., Burrough, P.A., Velthorst, E.J., Van Dobben, H.F., De 

Wit, T., Ridder, T.B., Reijnders, H.F.R. (1982) Soil acidification 

from atmospheric ammonium sulphate in forest canopy throughfall, 

Nature 299, 548-550. 



122 

Van der Eerden, L.J.M. (1982) Toxicity of ammonia to plants, Agric. 

Envlronm. ]_, 223-235. 

Vermetten, A.W.M., Asman, W.A.H., Buljsman, E., Mulder, W., Slanina, J., 

Waijers-Ypelaan, A. (1985) Concentrations of NH3 and NH over the 

Netherlands, VDI-colloquium 'Forest Decline', June 18-20, 1985, 

Goslar, F.R.G., 241-251. 

Whelpdale, D.M. (1981) Sulphate scavenging ratios at Norwegian EMEP 

stations, EMEP/CCC Report 5/81, Norwegian Institute for Air Research, 

Lillestrfki, Norway. 



123 

CHAPTER 6. 

Estimated historical concentrations and depositions of ammonia and 

ammonium in Europe (1870-1980) 

Willem A.H. Asman , Bas Drukker 

Institute for Meteorology and Oceanography (IMOU) 

Princetonplein 5 

3584 CC Utrecht/The Netherlands 

Anton J. Janssen 

Netherlands Energy Research Foundation (ECN) 

P.O. Box 1 

1755 ZG Petten/The Netherlands 

Present affiliation: 

National Institute of Public Health and Environmental Hygiene 

Laboratory for Air Research 

P.O. Box 1 

3720 BA Bilthoven/The Netherlands 

Present affiliation: 

Department Endocrinology, Growth and Reproduction 

Faculty of Medicine 

Erasmus University 

P.O. Box 1738 

3000 DR Rotterdam/The Netherlands 

(submitted for publication in Atmospheric Environment) 



124 

Abstract 

Ammonia emissions in Europe have increased by at least a factor 2.3 

since 1870. The deposition of ammonia and ammonium in Europe has also 

increased considerably over this period, but the relative increase in 

deposition varies regionally. 
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1. Introduction 

Ammonia and ammonium are important atmospheric components and are 

involved in the acid rain problem. When ammonia and ammonium are 

deposited and enter the soil as ammonium, nitrification can occur which 

results in the formation of acid. Ammonia can also influence the uptake 

of SO2 by droplets and in this way influence the removal of SC>2 from the 

atmosphere. Moreover, nitrogen can be a limiting factor for growth in 

oligotrophic ecosystems. After deposition ammonia and ammonium may be 

taken up by the needles of trees. This results often in the excretion of 

potassium and/or magnesium by the needles which may lead to potassium 

and/or magnesium deficiencies followed by premature shedding of needles 

(Roelofs et al., 1985). 

In the past these adverse effects were not found or not noticed. It 

would therefore be interesting to know the historical ammonia and 

ammonium concentrations and depositions. The purpose of this study is to 

estimate these historical concentrations and depositions. 

The main source of ammonia is the decomposition of animal manure 

(Buijsman et al., 1987). After World War II application and production 

of fertilizers give a minor contribution to the emission of ammonia. 

Fortunately, historical data of livestock statistics are available from 

which emissions can be computed (Buijsman, 1986). As a first 

approximation one could state that the concentrations/ depositions in a 

country will show the same trend as the emission of that country. For 

the ammonia concentration this can be a very acceptable approach as the 

ammonia concentration is mainly determined by local sources, i.e. by 

sources within the country itself (Asman and Janssen, 1987). Model 

results show, however, that for many countries the contribution of 

foreign sources to the concentration of ammonium in air and 

precipitation is dominating. This means that for those countries such an 

approach may be unacceptable, at least if the trend in the emission of 

the neighbouring countries is not the same as for the country itself. 

The best approach would be to compute the trend in concentrations and 

depositions with a model by using very detailed geographical information 

on the historical emission of ammonia. For many countries such very 



126 

detailed information is not available for before World War II. Moreover, 

converting the emission data from historical geographical units 

(municipalities, provinces) to grid-elements, as was done for 1980 

(Buijsman et al., 1987), would be very time-consuming. It was therefore 

decided to use only historical emission data for a country as a whole to 

estimate historical concentrations and depositions. This had the 

disadvantage that it is then implicitly assumed that the trend in the 

emission is the same for different regions within a country, which is 

not necessarily true. Source-receptor matrixes derived from previous 

model calculations for 1980 (Asman and Janssen, 1987) were used to 

compute the historical concentrations/depositions, using historical 

emissions for areas which correspond to countries with boundaries as 

they were in the year 1980. 

By using these previous model calculations it is also implicitly assumed 

that the historical meteorological circumstances are the same as in 

1980. This has the advantage that trends become more clear. Moreover, it 

is assumed that other model parameters in the past have the same values 

as In 1980. This is of course not true. E.g., the (overall) dry 

deposition velocities for NH, and NH could be different from those in 

1980 as the vegetation type could be different from that in 1980. Also 

the pseudo-first order reaction rate constant for the reaction of 

ammonia to ammonium could be different, especially if not enough acid 

would be available to neutralize the ammonia. The data of Fjeld (1976) 

and Buijsman (1986) show that the emissions of anthropogenic SO2 and NH-j 

in 1900 were 33% respectively 61% of those in 1980. The N0 X emission is 

likely to show the same trend as that of S02. In 1980 1.3 x 101 2 eq. 

S02» 3.1 x lO11 eq. N0 X and 3. 1 x 101 1 eq. NH3 were emitted in Europe 

(Iceland, USSR and Turkey excluded; Asman and Janssen, 1987). This means 

that in 1900 the amount of potential anthropogenic acid emitted was 

still larger than the amount that could be potentially neutralized by 

NH,. This was also presumably the case in 1870, but it cannot be 

excluded that earlier in history more NHo was emitted in Europe than 

could be neutralized by potential anthropogenic acid. Apart from 

anthropogenic emissions, emissions of sulphur dioxide and nitrogen 

oxides emitted from natural sources exist which are rather uncertain. It 

seems therefore reasonable to apply the same pseudo-first order reaction 
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constant for the whole period 1870-1980. 

In view of all uncertainties both in the parameters and in the emissions 

it was felt not worth while to run the model with parameter values 

different from those given by Asman and Janssen (1987) for 1980. 

Concentrations and depositions were computed for around the years 1870, 

1920, 1950 and 1980 by using previously calculated source-receptor 

relationships. 

2. Emissions 

Buijsman et al. (1987) computed the ammonia emission in Europe by using 

livestock statistics and emission factors for different categories of 

animals. If available they used information on livestock statistics with 

regard to age and/or weight, on the local nitrogen content in manure and 

urine and on the housing period of cattle. The latter information was 

only available for some countries for 1980 and it would be difficult to 

obtain this information for the past. Moreover, if this information were 

available for some years for a country and one would use more general 

information to compute the emission for the other years because of lack 

of detailed information, this could result in an unrealistic estimate of 

the trend in the emission. The emission factors are also likely to be a 

function of time, as e.g. the average weight of cattle was presumably 

somewhat lower in the past, the nitrogen content of animal fodder was 

lower and the way the manure was stored could be different. It is 

therefore likely that the emission factors were somewhat lower in the 

past than they are today. In view of all these uncertainties it was 

decided to use the same emission factor for all countries for all years, 

implicitly assuming a certain constant age distribution for each animal 

category for all countries. To get a good estimate of the trend in the 

concentrations/depositions these same emission factors were used for the 

year 1980, although the estimates of Buijsman et al. (1987) for 1980 are 

of a better quality. The emission factors used are from Buijsman (1986) 

and are shown in Table 1. 
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Table 1. Ammonia emission factors for domestic animals (kg NH, y 

animal ) 

animal type ammonia emission 

horses 9.43 

cattle 18.2 

pigs 2.83 

sheep 3.08 

goats 3.08 

asses 3.08 

poultry 0.26 

Average values based upon age or weight distribution within an animal 

category for 1980 (Buijsman et al., 1986). 
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Not for all reference years (1870, 1920, 1950, 1980) information was 

available on the animal statistics for all countries. The number of 

animals was then estimated by interpolation or extrapolation. To be able 

to use previous model calculations it was necessary to have estimates of 

the emission for areas which correspond to countries with boundaries as 

they were in the year 1980. This was relatively easy for the year 1950, 

as the boundaries in Europe have not changed since World War II. But 

many countries had different boundaries In the past or did not even 

exist. The emissions for those areas for 1870 and 1920 had to be 

computed. If available, geographically detailed statistics were used for 

this purpose. Otherwise the emission was estimated using trends in 

neighbouring countries. In the Appendix detailed information is given on 

the way the historical emissions were computed. In Tables 2 to 4 the 

livestock numbers are given for around 1870, 1920 and 1950 respectively. 

The livestock numbers for 1980 can be found in Buijsman et al. (1987). 

The emission of ammonia from fertilizers and fertilizer production was 

taken from Buijsman (1986), who adopted a constant emission factor of 50 

kg NH3 ton-1 N in fertilizer due to the application and 5 kg NH3 ton-1 N 

in fertilizer caused by production. The production and consumption of 

nitrogeneous fertilizers for 1950 is given in Table 5. The data for 1980 

can be found in Buijsman et al. (1987). The emission of ammonia from 

fertilizers and fertilizer production was computed only for 1950 and 

1980 as it was unimportant before World War II. The emission of ammonia 

from coal combustion was not taken into account as data before 1920 were 

lacking and the emission factors are rather uncertain. 

The ammonia emission caused by animal manure, application of fertilizers 

and production of fertilizers for 1870-1980 are shown in Figure 1 and 

are partly adopted from Buijsman (1986). To take account of other 

ammonia sources the emission used in the calculations was taken 20% 

higher than the data presented in Figure 1. Furthermore, ammonia 

emissions of Morocco, Algeria, Tunesia and Libya were estimated and used 

in the calculations to get realistic concentrations/depositions in 

southern Europe. The model area includes only the western part of the 

USSR. The historical trend in the emission in this part was estimated 

from livestock statistics of the Ukraine, White-Russia, Lithuania, 

Moldavia, Latvia and Estonia. 
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Table 5. Production and consumption of nitrogeneous fertilizers around 

1950 (103 tonnes N year)* 

country 

Albania 

Austria 

Belgium 

Bulgaria 

Czechoslovakia 

Denmark 

Finland 

France 

G.Ü.R. 

G.F.R. 

Greece 

Hungary 

Iceland 

Ireland 

Italy 

Netherlands 

Norway 

Poland 

Portugal 

Romania 

Spain 

Sweden 

Switzerland 

Turkey 

United Kingdom 

Yugoslavia 

production 

0 

75 

173 

0 

30 

0 

0 

259 

205 

465 

0 

4 

0 

0 

177 

189 

161 

65 

0 

0 

6 

25 

14 

0+ 

275 

4 

consumption 

0 

23 

78 

0 

40 

70 

17 

262 

184 

362 

22 

1 

0+ 

8 

157 

166 

31 

75 

32 

0 

57 

68 

9 

0+ 

219 

6 

total 2127 1887 

Buijsman (1986) 

No information available 
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Fig. 1. Ammonia emission in Europe from animal manure, application and 

production of fertilizers (excl. Turkey and the U.S.S.R.). 
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3. Results and discussion 

The results of the computations are shown in Tables 6 and 7 and Figures 

2 to 5. NHX in the figures means the sum of NH3 and NH,. No "background 

concentrations or depositions" are added. Asman and Janssen (1987) 

estimated for around 1980 background concentrations for NHj in air and 
+ -3 + 

NH aerosol of 0.1 - 0.2 ^g m and for NH, in precipitation 

5 îmole 1 . They estimated a background deposition for around 1980 of 

about 50 mole ha year . It is likely that the background 

concentration/deposition was lower in the past as it is partly caused by 

far away anthropogenic sources. The geographical resolution of the 

results within a country depends on the spatial resolution of the 

emission data for 1980 (Buijsman et al., 1987), as no shifts in emission 

pattern within a country before 1980 were taken into account. The 

geographical resolution of the emission data is different for different 

countries. The more detailed the emission is known, the more detailed 

the concentration and deposition pattern can be computed. 

The computed NH-, concentration in air is representative of a large area 

(150 x 150 km ), whereas a measured NHo concentration can be influenced 

to a large extent by local sources. This makes it difficult to compare 

measurements of NH3 with model results (Asman and Janssen, 1987). 

The NH concentrations in air and precipitation are less influenced by 

local emissions, which makes a comparison of computed and measured 

concentrations possible. Asman and Janssen (1987) found a good agreement 

between computed and measured concentrations of NH in air and 

precipitation for around 1980. Comparison with measured historical 

concentrations is rather doubtful because of the poor quality of these 

data. But the results presented here may indicate where the trend may be 

large enough to be detectable. The figures show a large increase in 

concentrations and depositions, especially for the period 1950-1980. The 

increase in deposition since 1870 has been largest in The Netherlands 

(by a factor 3.7) and relatively moderate in Scandinavia. More detailed 

information, also on historical import/export balances for the separate 

components, can be found in Asman et al. (1987). The results show for 

example that, although the Swedish ammonia emission decreased by 17% in 

the period 1950-1980, the wet deposition of NH, increased by 30%. This 
4 
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Figure 2. NH concentration in air (10 g m ) 
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Figure 3. NH, aerosol concentration (10 g m ) 
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Figure 4. NH. concentration in precipitation (10 mole 1 ) 
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2 -1 -1 
Figure 5. Total NH deposition (10 mole ha year ) 

NH total deposition - 1920 
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is the result of a relative Increase in the import from 63% of the wet 

deposition of NH* in 1950 to 76% in 1980 (Asman et al., 1987). For the 

Netherlands the situation is opposite: the ammonia emission increased by 

122% in the same period, whereas the wet deposition of NH increased 

only by 80%. This is the result of a relative decrease in the import 

from 62% of the wet deposition of NH* in 1950 to 53% in 1980 (Asman et 

al., 1987). These examples indicate that considerable long-range 

transport of NHj^ occurs. It also demonstrates that, at least for NH in 

air and precipitation, a large error can be made by estimating 

concentration trends in one country just by using trends of the emission 

for only that particular country. 
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Appendix 

Procedure followed to compute historical livestock numbers for countries 

with 1980 boundaries from livestock numbers for countries with 

historical boundaries. 

Remarks : 

- The livestock numbers for the year 1980 were taken from Buijsman et 

al. (1987). 

- The livestock numbers for around 1920 were mostly for 1923 for 

practical purposes (new official borders for some countries). 

- Data for poultry 1920: The numbers for Czechoslovakia and the western 

part of the USSR were estimated from the data for 1950 for these 

countries and the trend 1923-1950 for Bulgaria, Finland, Hungary, 

German Democratic Republic, Poland, Romania and Yugoslavia. 

- Data for poultry 1870: The numbers for Belgium, France, Hungary, 

Ireland, Italy, Luxemburg, Netherlands, Poland, Portugal, Romania, 

Spain, Switzerland, United Kingdom and the western part of the USSR 

were estimated from the data for 1870-1923 for the other countries. 
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In the following the procedure is given for separate countries for the 

different years. If data are not known/estimated for these years, but 

data for an other year are used, this Is indicated. 

Albania 

1950: Drejtoria e Statistikës (1959). For buffaloes the same emission 

factor is taken as for cattle. 

1920: Data are estimated from the trend in Yugoslavia (1923-1938) and 

the data for Albania from Drejtoria e Statistikës (1959). 

1870: The estimate for 1923 and the trend for Yugoslavia 1863-1923. 

Austria 

1950: Mitchell (1980). Data for asses from Capone (1953). 

1920: Mitchell (1980). Data for asses used for 1938 (Capone,1953). 

1870: Data are computed for 1880 from data for 1902 (Oesterreiches 

Statistisches Zentralamt, 1932) for Austria with 1980 boundaries 

and the trend 1880-1902 for Austria with historical boundaries 

(Mitchell, 1980). Data for asses lacking. 

Belgium 

1950: Mitchell (1980). Poultry from Landbouw Economisch Instituut (1986) 

and goats and asses from Capone (1953). 

1920: Mitchell (1980). Data for goats, asses and poultry for 1929 from 

Capone (1953). 

1870: Data are for 1880. Data for goats for the year 1866 (Valpy, 1874-

1914). Data for asses lacking. 



148 

Bulgaria 

1950: Mitchell (1980). 

1920: Data are for 1920. Data for former parts of Romania added 

(Colescu, 1925). 

1870: Data are for 1890. The same trend assumed as for Bulgaria with 

historical boundaries. 

Czechoslovakia 

1950: Mitchell (1980). 

1920: Data are for 1925. From Mitchell (1980) minus Ruthenia (Auerhau, 

1932). Data for asses are for 1939 (Capone, 1953). 

1870: Data for 1910 were reconstructed from K.K. Statistischen 

Zentralkommission (1914) and Office de Statistique du Royaume de 

Hongrie (1921). Data for 1870 were computed from these data and 

the trend 1870-1910 for Austria-Hungary (Mitchell, 1980). 

Denmark 

1950: Mitchell (1980). Data for goats from Capone (1953). 

1920: Mitchell (1980). Data for goats are for 1939 (Capone, 1953). 

1870: Mitchell (1980), data for the southern part of Jutland added 

(Kaiserliches Statistisches Amt, 1910). Data for goats and poultry 

from Valpy (1874-1914). 

Finland 

1950: Mitchell (1980). Data for goats from Capone (1953). 

1920: Mitchell (1980). Data for goats for 1939 (Capone, 1953). 

1870: Data are for 1881 (Mitchell, 1980). Reindeer, goats and poultry 

from Institut International d'Agriculture (1939). 
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France 

1950: Mitchell (1980). Data for asses and poultry from Capone (1953). 

1920: Mitchell (1980). Data for asses and poultry for 1929 (Capone, 

1953). 

1870: Mitchell (1980), data for Alsace-Lorraine for 1873 added. These 

data were computed from the data for 1907 (Kaiserliches 

Statistisches Amt, 1910) and the trend 1873-1910 

(Bundesministerium für Ernährung, Landwirtschaft und Forsten, 

1956). 

German Democratic Republic 

1950: Mitchell (1980). Data for asses from Capone (1953). 

1920: Reconstructed for 1925 (Statistisches Reichsamt, 1929). 

1870: Data are for 1873 and were computed from reconstructed data for 

1907 (Kaiserliches Statistisches Amt, 1910) and the trend 1873-

1907 for Germany with historical boundaries (Bundesministerium für 

Ernährung, Landwirtschaft und Forsten, 1956). 

German Federal Republic 

1950: Mitchell (1980). Data for asses from Capone (1953). 

1920: Reconstructed for 1925 (Statistisches Reichsamt, 1929). 

1870: Data are for 1873 and were computed from reconstructed data for 

1907 (Kaiserliches Statistisches Amt, 1910) and the trend 1873-

1907 for Germany with historical boundaries (Bundesministerium für 

Ernährung, Landwirtschaft und Forsten, 1956). 



150 

Greece 

1950: Mitchell (1980). 

1920: Ministère de l'Economie Nationale (1930). 

1870: Data are for 1860 (Ministère de l'Economie Nationale, 1930). Data 

for Tessalia, Crete, eastern Thracla, Ionic Islands, Aegean 

Islands, Epiros and southern Macedonia added, using geographically 

detailed statistics for 1923 and the trend 1860-1923 for the part 

of Greece that already existed in 1860. 

Hungary 

1950: Mitchell (1980). Data for poultry for 1935 (Capone, 1953). 

1920: Office Central Royal Hongrois de Statistique (1927). 

1870: Data are for 1863 and were computed from the data for 1911 (K.K. 

Zentral Kommission, 1864) and the trend 1863-1911 for Hungary with 

historical boundaries. 

Iceland 

1950: Hagstofu Islands (1952). 

1920: Hagstofu Islands (1914, 1932). 

1870: Hagstofu Islands (1914). 

Ireland 

1950: Mitchell (1980). 

1920: Mitchell (1980). 

1870: Computed from the data for 1920 and the trend for the whole of 

Ireland (Mitchell, 1980). 
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Italy 

1950: Mitchell (1980) with additional data for Triest (Capone, 1953). 

1920: Mitchell (1980), minus data for Istria, Rijeka and Zadar for 1929 

(Instituto Centrale di Statistica del Regno d'ltalia, 1933). 

1870: Data are for 1864 (Instituto Centrale di Statistica, 1878). 

Luxemburg 

1950: Service Central de la Statistique et des Etudes Economiques 

(1982). Data for goats from Capone (1953). 

1920: Estimated from the data for 1939 (Capone, 1953) and the trend 

1923-1939 for Belgium. 

1870: Data are for 1880. Estimated from the data for 1923 and the trend 

1880-1923 for Belgium. 

Netherlands 

1950: Mitchell (1980). 

1920: Data are for 1921. From Mitchell (1980). Data for goats, from 

Institut International d'Agriculture (1939). 

1870: Mitchell (1980). Data for goats from Valpy (1874-1914). 

Norway 

1950: Mitchell (1980). 

1920: Mitchell (1980). Data for goats for 1939 from Capone (1953). 

1870: Data are for 1875 (Mitchell, 1980). Data for goats for 1875 from 

Valpy (1874-1914). 
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Poland 

1950: Mitchell (1980). 

1920: Weinfeld (1922-1925) for 1921. Data for parts of Poland that were 

German then were taken from Statistisches Reichsamt (1929). 

1870: Data for 1910 were computed from Weinfeld (1922-1925). Data for 

the parts of Poland that were German were taken from Kaiserliches 

Statistisches Amt (1910) and are for 1907. The trend 1870-1910 is 

assumed to be the same as for the Old Kingdom of Poland (Weinfeld, 

1922-1925). 

Portugal 

1950: Instituto Nacional de Estatlstica (1959). 

1920: Instituto Nacional de Estatlstica (1959). 

1870: Instituto Nacional de Estatlstica (1959). 

Romania 

1950: Mitchell (1980). 

1920: Colescu (1925) and Colescu (1931) which give geographically 

detailed data for 1924 and 1930. Corrected for the parts of 

Boekowina, Bessarabia, Transsylvania which belong to the USSR now 

and corrected for a part that belongs to Bulgaria now. 

1870: Data are for 1888. From Colescu (1903) which gives geographically 

detailed data for 1900 and the trend 1888-1900 for Romania with 

historical boundaries. Data for 1871 for the parts of 

Transsylvania and Boekowina which then belonged to Hungary were 

added (Königliches Ungarisches Statistisches Bureau, 1872). 

Spain 

1950: Mitchell (1980). 

1920: Mitchell (1980). 

1870: Data are for 1888 (Mitchell, 1980), 
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Sweden 

1950: Mitchell (1980). Data for goats from Capone (1953). 

1920: Mitchell (1980). Data for goats for 1937 (Capone, 1953). Data for 

poultry for 1927 (Capone, 1953). 

1870: Mitchell (1980). Data for goats and poultry for 1880 (Valpy, 1874-

1914) 

Switzerland 

1950: Mitchell (1980). Data for asses from Capone (1953). 

1920: Data are for 1921 (Mitchell, 1980). 

1870: Data are for 1876 (Mitchell, 1980). 

Turkey 

1950: Central Statistical Office (1955). 

1920: Office Central de Statistique (1927) for 1927. Data for poultry 

are for 1927/1930 (Capone, 1953). 

1870: Data are for 1863, computed from the data for 1923 assuming the 

same trend 1863-1923 as for Yugoslavia. 

United Kingdom 

1950: Mitchell (1980). Data for goats from Capone (1953). 

1920: Mitchell (1980). Data for goats, asses and poultry for 1938 

(Capone, 1953). 

1870: Mitchell (1980). The contribution from Northern-Ireland is 

computed from the data for 1923 and the trend 1870-1923 for 

Ireland as a whole. 

Yugoslavia 

1950: Mitchell (1980). Data for asses from Capone (1953). 
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1920: Mitchell (1980). Data for Istria, Rijeka and Zadar which then 

belonged to Italy for 1929 added (Instituto di Statistica del 

Regno d'ltalia, 1933). 

1870: Reconstructed from data for Istria, Dalmatia, part of Styria and 

Croatia/Slavonia for the year 1863 (K.K. Statistischen 

Zentralkommission, 1864) from data for the "Kroatische 

Militärgrenze" (Königliches Ungarisches Statistisches Bureau, 

1872) for 1871 and data for Serbia for 1900/1905 (Direction de la 

Statistique de l'Etat du Royaume de Serbie, 1901, 1906). It was 

assumed that the ratio of livestock numbers in Montenegro, 

Macedonia, Bosnia-Hercegovina, Vojvodina and Kossovo to the 

livestock numbers for whole of Yugoslavia was the same in 1870 and 

in 1980. 
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CHAPTER 7. FINAL COMMENTS AND DISCUSSION 

7.1 Summary of major findings of this study 

The average NH, concentration at Cabauw, an area where emission 

occurs, decreases strongly with height in the lowest 100 m of the 
+ 2-

atmosphere, whereas the average concentration of NH , SO and NO in 

aerosols does not. 

The average HNOo concentration at Cabauw increases with height. A 

possible reason for this increase apart from dry deposition at the 

earth's surface, may be the reaction with NH3 emitted from the earth's 

surface. 

The net average upward flux of NHj during different meteorological 
-2 -1 

conditions at Cabauw was 0.12 ug m s 
2-

In aerosols at Cabauw somewhat more SO (equivalents) is present 

than N0~ up to 200 m height. 

The first order conversion rate constant for gaseous NH-j to 

particulate NH, in the lowest 200 m of the atmosphere at Cabauw was 

5 x 10 - 5 s for nighttime periods and 1 x 10-^ s - 1 for daytime 

periods. These values are rather uncertain as part of the assumptions 

that had to be made in the calculation are violated. 

Good agreement was generally obtained between the product of measured 

concentrations of NHo and HNO3 and the product derived from 

thermodynamics. At temperatures below 0°C and relative humidities 

above 80%, however, no good agreement was obtained. 

Correction factors are derived which can be used in relatively simple 

atmospheric transport models. These correction factors account for the 

fact that mixing of emitted components over the whole mixing layer 

takes some time and does not occur instantaneously as assumed in the 

simple models. A simple model with correction factors gives as good 

results for a larger scale (> 100 km) as a more sophisticated model, 

but with less computing time. If no correction factors are used in a 

simple model for NH3 the computed NH3 concentration at ground level 

becomes much too low. 
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A long-range transport model was developed based on emissions and 

parameter values which seem to be realistic in view of the present 

knowledge. Concentrations computed with this model are in good 

agreement with measured concentrations. 

A substantial part (20-80%) of NH in air and precipitation in most 

countries appears to come from foreign sources, which points to true 

long-range transport. 

It was demonstrated that for NH-j a historical emission inventory can 

be constructed which can be used to estimate historical concentration 

and deposition patterns. 

The largest relative increase in concentration and deposition of Nl^ 

compounds in Europe since 1870 must have occurred in the Netherlands. 
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7.2 Discussion 

As indicated in chapter 5 uncertainty exists on the parameter values 

(including emission) used in the model. This means that parameter values 

may differ within certain limits from the values used in the model, even 

if no regional or seasonal variations are taken into account. In this 

model the combination of parameter values is chosen in such a way that 

the results obtained are in good agreement with the available 

measurements. This means that, if future research would indicate that 

some parameter values should have somewhat different values or better 

measurements would become available, not only one parameter value should 

be changed but also other parameter values should be changed at the same 

time to give the best possible fit to the measurements. In this way the 

parameters are interdependent. It must be mentioned, however, that the 

model results are not very sensitive to changes in parameter values 

(chapter 5). In this chapter the budget of NH in Europe is considered 

and some additional remarks are made on the flux of NHT and the 

conversion rate of NH, to NH . 

7.2.1 Budget considerations 

The interdependence of parameter values is illustrated by budget 

considerations for a larger area such as e.g. western Europe. The 

atmpospheric lifetime of NIL is relatively short. This is illustrated by 

Figure 1 which shows a map with contributions of NH3 sources in the 

Netherlands to the deposition of NHX in grid elements in Europe (these 

results are obtained with an export-version of the model, using forward 

trajectories; Asman and Janssen, 1986). Because of the relatively short 

lifetime of NHX the yearly average deposition in western Europe should 

be almost equal to the yearly average emission in that area. It would in 

principle be possible to use this relation to compute the emission if 

the deposition were known or vice versa. The deposition consists of the 

contributions of dry deposition of NHß and the dry and wet deposition 

of NH . These contributions will be discussed here as well as the 
4 

possibilities of getting some information from budget considerations and 

wet deposition of NH+> 

4 
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Figure 1. Contribution of NH~ sources in the Netherlands to the deposition 
6 — 1 

of NH in grid elements in Europe (10 mole year ) 
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The only contribution which Is really measured is the wet deposition of 

NH . The measured wet deposition is representative of an area which 

varies from perhaps 20 x 20 km"* in an area with relatively high emission 

density and a. strong gradient in emission density to much larger than 

150 x 150 km in other areas. Although the measurement of wet deposition 

of NH, is not always easy (Buijsman and Erisman, 1986), it is possible 

to compute a realistic wet deposition field for NH for western Europe. 

At least if additional measurements become available in areas which are 

not well covered by precipitation networks. 

The dry deposition of NH aerosol is computed from the NH, aerosol 

concentration and an adopted dry deposition velocity. NH is a reaction 

product which is formed some time after NH, is released from the earth's 

surface. Its dry deposition velocity is low, which means that once it is 

formed it will remain in the air for a long time (during precipitation 

the NH, aerosol is removed very fast, but this will not affect the 
4 + 

yearly averaged NH aerosol concentration as it is mainly determined by 

the concentration during dry periods). Moreover, even if the dry 

deposition velocity would vary somewhat because of a spatial difference 

in surface properties this would not much affect the average vertical 

concentration profile, and hence the ground level concentration, because 

the dry deposition velocity is relatively low. This means, that 

the NH aerosol concentration is representative of a large area, i.e. an 

area which is larger than the area of which a NH concentration in 

precipitation is representive, as this is partly determined by the more 

local contribution of NHj. Although the NH, aerosol concentration is not 

measured at many locations yet, it must be possible to do so in the 

future and to obtain a realistic NH. aerosol concentration field for 
4 

western Europe. This means that the uncertainty that will remain then is 

the uncertainty in the dry deposition velocity of the NH, aerosol. 

The dry deposition of NHj is computed from the NH-> concentration in air 

and an adopted dry deposition velocity. Emission occurs from many 

diffuse sources mainly in agricultural areas. This means that in those 

areas often sources are nearby. Moreover, the sources are at or near 

ground level. As a result the NH3 concentration in areas where emission 

occurs is usually only representative of a relatively small area, maybe 
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5 x 5 km or less. As a consequence a tremendous number of stations 

would be required to measure a realistic concentration field in 

agricultural areas in western Europe. The measured concentration in an 

area where no emission occurs is likely to be representative of a larger 

area. One should, however, be aware of the fact that the vertical 

concentration profile and hence the ground level concentration can 

change if a spatial difference in dry deposition velocity occurs (e.g. 

the dry deposition velocity over heather would be different from the dry 

deposition velocity over forests). The only way to obtain a better 

estimate of the concentration pattern of NHo is to do measurements in a 

limited area, then to develop a model for this area and to apply the 

model then to a larger area. The dry deposition velocity of NHo is not 

well known and in fact one may question the use of the concept of a dry 

deposition velocity for NHg (see 7.2.2). It can be concluded that a 

large uncertainty will always remain In the dry deposition of NHo for 

western Europe. 

Buijsman et al. (1987) mention that the emission they estimated is a 

conservative one and has an uncertainty of approximately 30%. The 

emission seems to be difficult to determine. 

Computations made by Asman and Janssen (1986) show that, with the 

adopted parameters, 30% of the NH3 emitted in the Netherlands Is dry 

deposited as NH3, about 8% is dry deposited as NH and about 62% is wet 
+ 

deposited as NH . This means that, in order to know the total deposition 

of NH in western Europe it seems to be less important to know the dry 

deposition of NH . It is still very important, however, to know the 

concentration pattern of NH for other purposes. It can be used e.g. to 

check conversion rate of the reaction NHo to NH.» As wet deposition 

of NH seems to contribute most to the total NH deposition it can still 
4 x 

be worth while to undertake additional measurements or to improve these 

measurements to get a better estimate of the total NH^ deposition. The 

remaining uncertainty in the total NH deposition will then be caused by 

the uncertainty in the dry deposition of NHo, which is difficult to get 

rid of. If we consider the budget of N ^ it appears that there will 

remain uncertainty on both sides of the balance: in the emission of NH3 

and in the total deposition of N ^ (which is partly due to the 
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uncertainty in the contribution of the dry deposition of NH3). If e.g. 

the emission were higher than assumed, some parameter values in the 

model would have to be changed to leave the computed wet deposition 

of NH unchanged. This means in that case that the dry deposition of NH3 

should be higher than previously computed. 

7.2.2 Modelling the flux: emission and dry deposition of ammonia 

The treatment of the net flux of NH, in the model is somewhat primitive, 

which is caused by a lack of information. Emission of NH, (upward flux) 

is caused by degradation of livestock waste in the stable, during 

storage and in the field. An important additional source is the use of 

fertilizers. As discussed in chapter 5 only the (net) emission is known 

to some extent (e.g. during a few weeks after spreading). The dry 

deposition of NH, (downward flux) in the model is calculated by using a 

constant dry deposition velocity which is no function of meteorological 

circumstances or surface properties. The net (annual) flux is then the 

difference between the annual emission and the annual deposition in a 

grid element. 

In reality the flux will show a variation in time and space which Is, 

directly or indirectly, caused by changes in meteorological conditions, 

by the changes in the difference in partial pressure of NH3 in the air 

just above surface and the partial pressure of NH, in the surface itself 

and by changes in the properties of the surface. The partial pressure of 

NH, in the earth's surface or in plants is usually not known as It 

depends on many factors (amount of ammoniacal N present, temperature, 

humidity, pH of the surface, microbial activity etc.). It is therefore 

in practice not possible to model the flux itself; only the variation 

caused by a variation in temperature, aerodynamic and boundary layer 

resistance could perhaps be taken into account if the necessary 

meteorological information is available. 
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7.2.3 The pseudo first order reaction rate 

The conversion constant k, used in the model (8 x 10 - 5 s _ 1 ) , is somewhat 

different from the value derived from the measurements at Cabauw (about 

5 * 10 - 5 s - 1 to lx 10"4 s _ 1 ) . The value for k used in the model was 

partly based on the results of sensitivity studies. The reason for this 

difference may be explained by one or more of the following facts : 

a. The value of k at Cabauw describes the reaction in the lowest 200 m 

of the atmosphere, whereas the value of k used in the model should 

describe the reaction in the whole mixing layer. 

b. To calculate values for k for Cabauw assumptions have been made which 

are not fulfilled (Chapter 3). 

c. The value of k is likely to have a different value at other locations 

than at Cabauw (Chapter 5 ) . 

It is recommended that the value for k of 8x 10"5 s - 1 should be used, as 

the model results then give a much better fit to the measured 

concentrations over the whole modelling area. 
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Samenvatting van het proefschrift 

"ATMOSFERISCH GEDRAG VAN AMMONIAK AND AMMONIUM" 

Waarom zijn ammoniak en ammonium belangrijk? 

Deze studie beschrijft het gedrag van ammoniak en ammonium in de 

atmosfeer in Europa. Ammoniak (NHo) en ammonium (NH,) zijn belangrijke 

stoffen in de atmosfeer om verschillende redenen: 

a. Ammoniak (gas) is de meest voorkomende zuur-neutraliserende stof in 

de atmosfeer in West-Europa. 

b. Ammonium komt in grote hoeveelheden voor in zwevende stofdeeltjes 

(aerosolen) en in regenwater. 

c. Wanneer ammoniak en ammonium op de bodem of op het oppervlaktewater 

terechtkomen kan het door mikro-organismen tot zuur worden omgezet. 

Hierdoor kan bodem- en waterverzuring ontstaan, hetgeen nadelige 

gevolgen voor de planten kan hebben. 

d. Erg hoge concentraties van ammoniak kunnen direkte schade veroorzaken 

bij planten. 

e. Komen ammoniak en ammonium in bossen terecht, dan kunnen bomen gebrek 

aan magnesium en kalium krijgen, waardoor b.v. de naalden bij 

naaldbomen te vroeg gaan afvallen. Ook kunnen bomen gevoeliger worden 

voor andere stoffen zoals ozon of voor droogte, vorst of 

schimmelziekten. 

f. Ammoniak en ammonium zijn stikstofhoudende voedingsstoffen en kunnen 

wanneer ze op de bodem op in het water terechtkomen de groei van 

plantensoorten bevorderen die van veel stikstof houden. Daardoor 

kunnen plantensoorten achteruitgaan of zelfs uitsterven die niet zo 

goed tegen veel stikstof kunnen. Een voorbeeld hiervan is de 

vergrassing van heide. 

g. Ammoniak kan zuur in wolkendruppels (gedeeltelijk) neutraliseren, 

waardoor de reaktie, waarbij opgelost zwaveldioxidegas in zwavelzuur 

wordt omgezet, sneller kan verlopen. 

h. De opname van ammoniak door regendruppels veroorzaakt een verhoogde 

uitwassing van zwaveldioxide. 
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i. Als zich aan het aardoppervlak ammoniakgas bevindt kan dit wellicht 

bewerkstelligen dat zwaveldioxidegas met een verhoogde snelheid op 

het aardoppervlak terecht kan komen. 

Het gedrag van stoffen in de atmosfeer 

Om het gedrag van een stof in de atmosfeer te kunnen beschrijven, is het 

nodig te weten: 

a. Waar de stof in de lucht geloosd wordt en in welke hoeveelheid 

(emissie). 

b. Hoe de stof in de atmosfeer getransporteerd wordt (richting, 

snelheid, hoogte). 

c. Met welke snelheid de stof door wervels in de lucht naar het 

aardoppervlak getransporteerd wordt en daarop blijft vastzitten 

(droge depositie). 

d. Met welke snelheid de stof door de regen uit de atmosfeer verwijderd 

wordt (natte depositie). 

e. Met welke snelheid de stof reageert tot welke reaktieprodukten of met 

welke snelheid hij uit welke stoffen onstaan is (reaktiesnelheid). 

Informatie over deze deelprocessen apart kan men te weten komen uit 

metingen, zowel in het laboratorium als in het veld. Daarnaast kan men 

informatie over de resultaten van alle processen die tegelijkertijd 

optreden ook uit metingen halen. Aan alle metingen kleven fouten en 

bovendien lijken de resultaten niet altijd met elkaar in overeenstemming 

te zijn. Bovendien is veelal niet alle informatie bekend die nodig is om 

het gedrag van een stof volledig te kunnen beschrijven. 

Om alle beschikbare kennis op een systematische wijze op waarde te 

schatten en te integreren is het nuttig een model te ontwikkelen en toe 

te passen. Door modelresultaten met meetresultaten te vergelijken kan 

men een indruk krijgen van de waarde van de metingen en de 

modelresultaten. Vindt men aanzienlijke verschillen dan kan aangegeven 

worden waar welke aanvullende metingen verricht kunnen worden om meer 

zekerheid te verkrijgen. 
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Doel van het onderzoek 

Doel van het in dit proefschrift beschreven onderzoek, naar het 

atmosferlsch-chemisch gedrag van ammoniak en ammonium in de atmosfeer 

is: 

a. De beschikbare kennis over alle betrokken processen en stoffen 

inventariseren en op waarde schatten. 

b. Aanvullende informatie over sommige processen verschaffen m.b.v. 

metingen in het veld. 

c. De beschikbare kennis integreren door modellen te maken voor de 

berekening van lange-termijn gemiddelde koncentraties op grondniveau, 

i.h.b. voor Europa. 

d. Nieuwe toepassingen van modellen te laten zien. 

In hoofdstuk 1 wordt aangegeven waarom ammoniak en ammonium belangrijke 

stoffen zijn en wat het doel van het onderzoek is. 

In hoofdstuk 2 wordt informatie gegeven over de ruimtelijke verdeling 

van de uitworp van ammoniak in Europa. Ammoniak ontstaat voornamelijk 

uit ontleding van dierlijke mest. Ook het gebruik van kunstmest en 

industriële processen kunnen tot uitworp van ammoniak leiden. Ammonium 

wordt in de atmosfeer gevormd uit de reaktie van ammoniak met zuur, maar 

het wordt niet in de atmosfeer geloosd. 

In hoofstuk 3 worden metingen in het veld beschreven. Hieruit wordt de 

emissiesterkte van ammoniak in de omgeving van Cabauw berekend en wordt 

deze vergeleken met schattingen op grond van kennis over het aantal 

dieren in de omgeving. De koncentratie van ammoniak en ammonium tussen 0 

en 200 m werd gemeten. Met behulp van deze gegevens kan men een idee 

krijgen van het horizontale transport van de stoffen, dat zich immers 

niet alleen aan de grond afspeelt. Daarnaast wordt een indruk verkregen 

van de snelheid waarmee ammoniak reageert tot ammonium. 

In hoofdstuk 4 wordt besproken hoe korrektiefaktoren berekend kunnen 

worden. Deze zijn nodig indien men gebruik wil maken van relatief 

eenvoudige lange-afstand transportmodellen, waarbij aangenomen wordt dat 
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een eenmaal geloosde stof in één klap over de gehele menglaag (ca. de 

onderste 800 m van de atmosfeer) verdeeld wordt. In de praktijk Is dit 

niet het geval en zal er sprake zijn van een pluim die zich geleidelijk 

uitspreidt over de gehele menglaag. Door nu deze korrektiefaktoren in 

een eenvoudig model toe te passen verkrijgt men een resultaat dat even 

goed is als van meer ingewikkelde modellen, echter tegen een fraktie van 

de rekentijd. Deze korrektiefaktoren zijn niet alleen afgeleid voor 

ammoniak en ammonium, doch ook voor zwaveldioxide en stikstofoxiden en 

volgprodukten. 

In hoofdstuk 5 wordt alle beschikbare informatie over de verschillende 

processen geïnventariseerd en onderling vergeleken. Deze processen 

worden geïntegreerd tot een model waarmee de koncentratie van ammoniak 

en ammonium in lucht alsook die van ammonium in regenwater berekend 

wordt. In het model worden de in hoofdstuk 4 afgeleide korrektiefaktoren 

toegepast. Vervolgens wordt nog een onderzoek gedaan naar hoe de 

resultaten van het model veranderen bij verandering van de verschillende 

processnelheden (gevoeligheidsanalyse). Dit wordt gedaan om te kijken 

hoe groot de variatie in de modelresultaten kan zijn t.g.v. onzekerheden 

in de processnelheden. Uiteindelijk worden de processnelheden binnen de 

grenzen van de onzekerheid zo gekozen dat de berekende koncentratie-

patronen zo goed mogelijk overeenkomen met de gemeten patronen. Het 

blijkt dat het lukt de modelresultaten goed in overeenstemming te 

brengen met de meetresultaten. 

Vervolgens wordt m.b.v. het model voor elk land in Europa aangegeven uit 

welke landen de daar terechtgekomen hoeveelheid ammoniak en ammonium 

afkomstig is. Het blijkt dat in veel landen een aanzienlijk deel van de 

depositie wordt veroorzaakt door bronnen in het buitenland. Het blijkt 

dat met name ammonium over grote afstanden getransporteerd kan worden. 

Voor ammoniak is dit niet het geval omdat dit vrij snel (ca. 30% per 

uur) in ammonium wordt omgezet. Uit de berekeningen blijkt, dat ca. 72% 

van de depositie van ammoniak en ammonium in Nederland wordt veroorzaakt 

door emissie in Nederland. Ook blijkt dat Nederland ca. 4,5 maal zoveel 

van deze stoffen exporteert, als dat het importeert. Dat komt omdat 

Nederland t.o.v. de omringende landen een hoge emissiedichtheid heeft en 

omdat het aan één kant aan de zee grenst, waar geen emissie plaatsvindt. 
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In hoofdstuk 6 wordt gegeven hoe groot de toename in de ammoniakemissie 

voor de verschillende landen in Europa was in de periode 1870-1980. Het 

blijkt dat de Europese emissie in 1980 ca. 2 maal hoger was dan in 1870 

(voor Nederland was dat ca. 5 maal). Vervolgens worden voor geheel 

Europa koncentratiepatronen berekend voor de jaren 1870, 1920, 1950 en 

1980. Het blijkt dat de depositie van ammoniak en ammonium in elk land 

in Europa sinds 1870 is toegenomen, het sterkst echter in Nederland (met 

een faktor 3,7). Het berekenen van historische koncentraties en 

deposities is een nieuwe toepassing van dit soort modellen. 

In hoofdstuk 7 wordt een samenvatting van de belangrijkste konklusies 

van deze studie gegeven en worden deze bedlskussieerd. 
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ABSTRACT 

This study describes the atmospheric behaviour of ammonia and ammonium 

on a European scale. The concentrations of ammonia, ammonium and related 

components were measured at different levels of a 200 m high tower in 

the central part of the Netherlands. From these concentration profiles 

the ammonia flux into the atmosphere and the overall pseudo first-order 

reaction constant for the reaction of ammonia to ammonium are 

calculated. Moreover, the measured concentration product [NH3] x [HNOo] 

is compared with the theoretically derived product. 

Correction factors are derived which can be used to describe the 

atmospheric behaviour of ammonia and ammonium adequately with a 

relatively simple long-range transport model. The present knowledge on 

the atmospheric behaviour of ammonia and ammonium is evaluated and is 

integrated in a model which produces concentration and deposition 

patterns of these components for the whole of Europe. Also import/export 

balances for these components for all European countries are presented. 

Moreover, emission and concentration patterns are given for the whole of 

Europe for the period 1370-1980. 


