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Opinions concerning reproduction have altered considerably since Antonie 

van Leeuwenhoek 'saw' a miniature human (homunculus) within the spermhead. 

He thought the women's role to be restricted to protection and nutrition 

of the developing embryo. Nowadays everyone accepts that contributions of 

maternal and as well as paternal gametes to the next generation are 

necessary. In a sexual life cycle, development of new offspring starts, by 

definition, with the fusion of maternally and paternally derived haploid 

germ cells, resulting in a diploid 1-cell embryo, the zygote. The fusion, 

called fertilization, triggers a sequence of morphological and molecular 

changes in the maternally derived germ cell, the oocyte. 

The present thesis deals with a descriptive investigation concerning 

the order and timing of morphological, genetical and molecular changes 

during the first cell cycle in zygotes from Swiss mice after delayed 

fertilization. 
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STELLINGEN 

1. De snelheid waarmee post-ovulatoir verouderde eicellen reageren op 

activerende prikkels, is aanleiding om het begrip "arrest van de tweede 

meiotische metafase" niet op te vatten als het stilstaan van cel-

biologische processen. 

Dit proefschrift 

2. De ontkoppeling van morfologische en moleculaire ontwikkelingskenmerken 

na eicel veroudering is een aanwijzing dat meerdere parameters nood

zakelijk zijn voor een kwaliteitsbeschrijving van het zoogdier 

preimplantatie embryo. 

Dit proefschrift 

3. De bijdrage van het sperma aan de vroeg embryonale ontwikkeling moet 

ruimer opgevat worden dan louter mikroinjectie van erfelijk materiaal. 

Swann K. (1989): Winter Heeting Society for the Study of Fertility, Warwick, UK. 

4. De locatie van het sperma intreepunt en de af snoer ing van het tweede 

poollichaampje krijgen te weinig aandacht in discussies over het al dan 

niet aanwezig zijn van polariteit in de zoogdier zygote. 

Petersen R.A. (1986): In: Experimental approaches to mammalian embryonic development. 

Eds. J. Rossant & R.A. Pedersen, pp 16. 

5. De plannen tot privatisering van de voorlichting over de insekten-

bestuiving en bijenhouderij getuigen van een onderschatting van het 

ecologisch en economisch belang van de imkerij. 

6. De export van embryotransplantatie technieken vanuit de eerste naar de 

tweede en derde wereld vereist een zorgvuldige integratiestudie. 

Een integratiestudie omvat: economische, culturele, sociale en 

technologische dimensies. 



7. Centralisatie van het beroepsonderwijs bevordert het vergrijzingsproces 

van plattelandskernen. 

8. Het aantal geitenwollensokkendragers in het onderwijs is niet af

hankelijk van vrijstelling van de dienstplicht voor toekomstige 

leraren, wel van het aantal geiten dat beschikbaar is voor de wolpro-

duktie. 

Behandeling onderwijsbegroting 15 februari 1990. 

9. Kennis van de wordingsgeschiedenis van de geabstraheerde figuratieve 

kunst is in hoge mate bepalend voor de waardering van deze kunst. 

10. Voorwaarden voor de ontwikkeling van empirische theorieën zijn én 

toepassing én evaluatie, én de eventueel daardoor vereiste correctie, 

herziening en uitbreiding. Dit geldt ook voor planeconomische theo

rieën. 

Stellingen behorend bij het proefschrift "Zygote development after delayed 

fertilization, a cytological and genetical analysis of embryos of the 

mouse" van Marleen Boerjan 

Wageningen, 27 april 1990 
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SUMMARY 

Chapter I gives (1) a brief review of morphological and molecular 

changes in mammalian oocytes initiated by fertilization, (2) a summary of 

published data on several aspects of post-ovulatory ageing in relation to 

embryonic development and (3) a description of methods to time ovulation 

and fertilization. 

Precise timing of ovulation and fertilization was a prerequisite for the 

study of the consequences of delayed fertilization for embryonic develop

ment. 

Chapter II describes the methods of ovulation induction and artificial 

insemination. We induced ovulation with injections of luteinizing hormone 

releasing hormone (LHRH) at pro-oestrus of the oestrus cycle. The number 

of oocytes that ovulated after LHRH administration was similar to that 

after spontaneous ovulation. Although LHRH was administered 8-12 hrs 

before the expected endogenous luteinizing hormone (LH) surge, we found no 

significant effect of LHRH induced ovulation on embryonic mortality. This 

method of ovulation induction, supplemented with artificial insemination 

to achieve in vivo fertilization, provided a tool to study aspects of 

early embryonic development after delayed fertilization. 

Investigations were carried out to determine in detail the timing of the 

distinct morphological changes triggered by fertilization of unaged 

oocytes and oocytes aged post-ovulation for 12 hrs. Sperm penetration was 

shown to be accelerated by 1 hr 30 min after delayed insemination compared 

with sperm penetration in unaged oocytes. The rate of progression to the 

first cleavage division was also influenced by the post-ovulation age of 

mouse oocytes prior to fertilization: penetrated aged oocytes needed less 

time (1 hr 30 min) to reach the 2-cell stage than zygotes from unaged 

oocytes. This observation was confirmed by experiments carried out later: 

the percentages of 3- and 4-cell embryos from aged and unaged oocytes, 

collected 36 hrs after insemination, were 14% and 7% respectively (Chapter 

IV). 

Fertilization activates, among other things, a cascade reaction of 

protein synthetic alterations. 

Chapter III deals with protein synthetic activity in unaged and aged 

LHRH induced oocytes, in unaged superovulated oocytes and in zygotes 



derived from these types of oocytes. Polypeptides with a relative 

molecular weight of 35 kOa were predominantly synthesized by LHRH induced 

and superovulated secondary oocytes and zygotes from these oocytes. This 

study of patterns of 35 kDa proteins synthesized by zygotes from aged and 

unaged LHRH induced oocytes revealed that fertilization dependent protein 

synthetic changes of the 35 kDa protein complex were advanced in zygotes 

from aged oocytes with reference to pronuclear development. 

A fraction (16.7%) of morphologically normal zygotes from unaged 

superovulated oocytes did not synthesize the 35 kDa protein complex at 

all. 

It was of interest to learn more about the in vitro developmental capac

ity of embryos from aged oocytes. 

In Chapter IV the results of these investigations are arranged and 

discussed. One-cell and late 2-cell embryos from aged and unaged oocytes 

were cultured in the presence and absence of DNA damage or DNA-damaging 

agents for different periods of time. On the one hand we studied the 

progression to metaphase of the first cleavage division in zygotes from 

aged and unaged oocytes fertilized with X-irradiated sperm. On the other 

hand the in vitro developmental capacity of late 2-cell embryos was 

evaluated in presence and absence of the thymidine analogue 5-Bromode-

oxyuridine (BrdU). 

Post-ovulatory ageing had an effect on the morphology of male as well as 

female pronuclear chromosomes of the first cleavage metaphase. We also 

found a detrimental effect of fertilization with X-irradiated spermatozoa 

on the morphology of male and female pronuclear chromosomes. This effect 

was particularly observed in male pronuclear chromosomes of zygotes from 

aged oocytes. Furthermore, fertilization with X-irradiated spermatozoa led 

to an arrest at interphase in 27% and 7% of zygotes from aged and unaged 

oocytes respectively. This arrest was not shown after fertilization with 

sperm not irradiated with X-rays. 

This experimental setup also enabled us to compare the amount of 

radiation induced chromosome damage in zygotes from aged and unaged 

oocytes. Zygotes from aged oocytes did not contain more chromosome damage 

than zygotes from unaged oocytes, when the visible chromosome mutations 

originating from the X-irradiated spermatozoa were analyzed at metaphase 

of the first cleavage division. 

In Chapter IV we also have shown that zygotes from aged oocytes and 



unaged oocytes develop in vitro at similar rates from the late 2-cell 

stage, collected at 36 hrs after insemination, to the 8-cell stage (24 hrs 

cultures). However, in vitro development of 2-cell embryos from aged 

oocytes collected 30 hrs after insemination and cultured for 66 hrs is 

impaired. 

To determine the number of sister-chromatid exchanges, we cultured 2-

cell embryos from aged and unaged oocytes, collected 36 hrs after insemi

nation, in the presence of BrdU for 24 hrs. SCE levels were not sig

nificantly different between embryos from aged and unaged oocytes. 

Cell proliferation of late 2-cell embryos from aged oocytes, collected 36 

hrs post-insemination, from aged oocytes was clearly retarded and 

asynchronous during the 24 hrs culture period in the presence of 10~6 M 

BrdU. 

In Chapter V a cytochemical method is described to determine in individ

ual oocytes the distribution of the activity of SDH (succinate dehydrog

enase), an enzyme which is located on the inner membrane of mitochondria. 

We showed that treatment of oocytes with the drug caffeine prior to cyto

chemical staining resulted in an intens staining of the cells by a 

formazan precipitate. We applied the cytochemical staining procedure to 

preovulatory oocytes of mice. In a maturation experiment in vitro we found 

that the location of formazan correlated well with the location of 

mitochondria in subsequent stages of maturation. Unfortunately, this 

cytochemical staining procedure could not be applied to ovulated and 

fertilized oocytes, since these cells acquired a poor morphology during 

the staining procedure and displayed high levels of non-dehydrogenase 

formazan production. 



CHAPTER I 

GENERAL INTRODUCTION 

THE SECONDARY MOUSE OOCYTE 

Mammalian oocytes acquire their full competence to complete embryonic 

development during growth and after resumption and completion of the first 

meiotic maturation division in the follicle. Maturation starts after the 

binding of luteinizing hormone to receptors on hormonally primed granulosa 

cells of the cumulus mass (Niswender and Nett, 1988), and is characterized 

by the resumption of meiosis which involves a sequence of reorganizations 

in the nucleus, the cytoplasm (Zamboni, 1970; Van Blerkom and Runner, 

1984) and the plasma membrane (Nicosia et al., 1978; Maro et al., 1986a). 

At the molecular level, oocyte maturation is characterized by both the 

cessation of transcription prior to germinal vesicle breakdown (GVB, 

Wassarman and Letourneau, 1976) and stage related alterations in quantita

tive and qualitative patterns of protein synthesis and post-translational 

modifications (mouse: Schulz and Wassarman, 1977; Huarte et al., 1987; 

sheep: Moor and Crosby, 1986). 

Maturation culminates in the ovulation of highly organized secondary 

oocytes, arrested in metaphase of the second meiotic division with the 

spindle orientated with its long axis parallel to the oocyte membrane 

(Fig. la, Szollosi et al., 1972). The cortical cytoplasm overlying the 

meiotic spindle appears to be devoid of cortical granula (Nicosia et 

al.,1977) and mitochondria (Zamboni, 1970), the plasmalemma is free of 

microvilli (Nicosia et al., 1978) and concanavalin A-binding sites (Maro 

et al., 1984). The differentiation of the cytocortical region associated 

with the meiotic spindle is mediated by condensed meiotic chromosomes 

(Maro et al., 1986b; Van Blerkom and Bell, 1986). It has been demonstrated 

that the presence of condensed meiotic chromosomes is correlated with: 

(1) A local disappearance of concanavalin A-binding sites and microvilli 

at the cell surface. (2) An actin-rich filamentous area in the cell cortex 

between the chromosomes and the plasma membrane (Maro et al., 1986b; Van 

Blerkom and Bell, 1986). The equatorial region of the meiotic spindle is 

attached to the membrane and it is therefore suggested that the subcorti

cal layer of actin plays an important role in spindle rotation during 

second polar body extrusion after fertilization (Maro et al., 1984; Webb 

et al., 1986). (3) The formation of microtubules, which appears to occur 



because of a lowering of the critical concentration for the polymeri

zation of tubulin in the presence of chromosomes (Maro et al., 1986a). In 

the freshly ovulated mouse oocyte the microtubules are located exclusively 

within the body of the spindle (Maro et al., 1985), although microtubule 

organizing centers (MTOCs) are present in the cytocortex (Calarco-Gillam 

et al., 1983; Maro et al., 1985). 

Figure 1. Light micrographs of mouse embryos at different stages of zygote 

development, (bar represents 30 jim). 

a. an unaged unfertilized oocyte; the spindle (arrow) is tangentially 

orientated along the plasma membrane. 

b. an unfertilized oocyte post-ovulatory aged for 16-18 hrs; the spindle 

(arrow) is located more to the center of the cell and has a radial 

orientât ion. 

c. an unaged fertilized oocyte; the second mei otic cleavage division has 

been resumed and a second polar body (arrow) is formed. 

d. an unaged fertilized oocyte; the spermatozoon (arrow) has penetrated the 

vi tell us (micrographs c-d represent the same oocyte, but in different 

focal pianes). 

e. a zygote in pronuclear (arrow) interphase. 

f. a 2-cell embryo. 



FERTILIZATION 

The sequence of morphological changes upon activation 

Upon fusion of the sperm plasma membrane with the microvilli rich part 

of the oocyte, the second meiotic cleavage division is resumed. This be

comes visible by the extrusion of the second polar body (Fig. lc). Subse

quently, the chromosomes of the activated egg décondense and form a 

haploid interphase nucleus; in the second polar body the chromosomes clump 

and a nuclear envelope is formed (Zamboni, 1972). 

The spermhead penetrates the vitellus and also forms an interphase 

pronucleus (Fig. Id). The sequence of events leading to a mature male 

pronucleus is different from that for female pronuclear development. In 

the male pronucleus the sperm-specific protamines are replaced by oocyte 

derived histones; this process involves the reduction of many SS-cross-

links present in mature sperm (reviewed by Yanachimachi, 1988). 

By definition, pronucleus formation is complete if the chromatin has 

decondensed and a pronuclear membrane is formed. The nuclear membrane is 

thought to be derived from endoplasmatic reticulum membranes (Zamboni, 

1972). In this stage of development the female pronucleus is located close 

to the second polar body and the male pronucleus is often accompanied by a 

sperm tail. The maternally and paternally derived genomes can, therefore, 

be distinguished in the interphase of the first cell cycle. DNA-replica-

tion takes place in both the male and the female pronucleus during inter

phase (Ambramczuk and Sawicki, 1975; Luthardt and Donahue, 1973; Krishna 

and Generoso, 1977; Molls et al., 1983; Howlett and Bolton, 1985). 

Following pronuclear formation the progression to the first cleavage 

division is, at the morphological level, characterized by: (1) migration 

of the pronuclei towards the center of the cell, (2) disappearance of the 

pronuclear membranes, (3) formation of two sets of condensed chromosomes 

which align in a common metaphase plate and (4) cytokinesis resulting in a 

2-cell embryo (Fig. If). 

The role of the cytoskeleton becomes clear in studies on intracellular 

reorganizations following fertilization. Firstly, the cleavage furrow of 

meiosis II and thus of second polar body formation can only be formed in 

the actin-rich domain overlying the meiotic spindle and an uniform layer 

of microfilaments is associated with the plasma membrane after fertiliza

tion. Secondly, the critical concentration for the polymerization of 

microtubules is lowered upon fertilization and therefore many asters of 

microtubules are formed around the cytoplasmic MTOCs (Maro, 1985; Schatten 
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et al.,. 1985). These asters enlarge to form a dense cytoplasmic network of 

microtubules by the pronuclear stage. It has been suggested that these 

cytoskeletal elements mediate the migration of the pronuclei. The network 

of microtubules disassembles at the end of interphase and MTOCs located 

close to the condensing chromosomes form the spindle of the first mitotic 

division. 

Molecular changes observed in mammalian oocytes after fertilization 

The sequence of morphological changes described above and characteristic 

for the first cell cycle, is accompanied and possibly regulated by a 

cascade of molecular changes. The intact oocyte is normally fertilized by 

a single spermatozoon; shortly after fertilization modifications of the 

zona pellucida and the plasma membrane occur. These inhibit the penetra

tion of surplus spermatozoa and it has long been recognized that these 

modifications are the result of the cortical reaction or exocytosis of 

cortical granules (Austin, 1956; Gwatkin et al., 1973; Gulyas, 1980). 

Evidence is accumulating that the cortical reaction is a secondary 

response of the oocyte to the fusion of sperm and oocyte membranes. In the 

sea urchin (reviewed by Yanachimachi, 1988) and in the hamster (Miyazaki, 

1988) the fusion of both membranes induces, probably via the inositide-

triphosphate cycle, a wave of Ca2+-release and an intracellular increase 

of pH. The Ca2+-release initiates exocytosis of cortical granules as shown 

in hamster and sheep oocytes (Miyazaki et al., 1988; Cran et al., 1988). 

The increase of the intracellular pH could be a trigger that activates 

metabolic processes necessary for pronuclear formation and progression to 

the first cleavage division (reviewed by Yanachimachi, 1988). Among these 

are processes like modifications of proteins (Cullen et al., 1980; Van 

Blerkom, 1981; Howlett and Bolton, 1985) and the unmasking of maternally 

derived messenger RNAs (mmRNA) for the translation of fertilization depen

dent proteins (Howlett, 1985). It should be noted that in the early mouse 

embryo transcription does not occur before early the two-cell stage (Clegg 

and Piko, 1983; Bolton et al., 1984) and it has been suggested that this 

embryonic directed transcription is dependent on pronuclear DNA-synthesis 

(Bolton et al., 1984). 

ASPECTS OF DELAYED FERTILIZATION 

In mammals, except man, the time of mating is restricted to a period 

shortly before the moment of ovulation. Thus, delayed mating is not a 



natural occurrence in most mammals. Delayed fertilization can, however, 

occur after artificial insemination. 

It is known that oocytes aged post-ovulation loose their capacity for 

normal development before the end of their fertilizable life: in the mouse 

fertilizable life is at least 15 hrs, but 17% of zygotes from oocytes aged 

in vivo for 12 hrs showed abnormal in vivo development (Marston and Chang, 

1964); rabbit eggs are fertilizable until at least 7 hrs post-ovulation, 

but pre-implantation development of oocytes fertilized after 7 hrs post-

ovulatory ageing is impaired (Austin, 1967); hamster oocytes aged in vivo 
for 12 hrs could be fertilized in vitro, only 21% of these penetrated aged 

oocytes underwent first cleavage (Juetten and Bavister, 1983). 

Delayed fertilization induces two distinct abnormalities of fertiliza

tion, namely (1) triploidy as a result of dispermic penetration or reten

tion of the second polar body (reviewed by Szollozi, 1975) and (2) ex

trusion of an abnormal second polar body. In the mouse, di- or polyspermy 

is ascribed to the migration of cortical granules to the center of the 

vitellus during ageing (Szollozi, 1975). Abnormal extrusion of the second 

polar body could be a result of post-ovulatory changes in the organization 

of cytoskeleton elements (Webb et al., 1986; Eichenlaub-Ritter, 1986). 

The organization of the cytoskeleton in aged oocytes shows features which 

are normally observed in the fertilized oocytes: the actin-rich layer 

overlying the meiotic spindle disappears during the post-ovulatory ageing 

period and this could be the cause of abnormal abstriction of second polar 

bodies (Webb et al., 1986). In 30% of oocytes aged for 12 hrs the cortical 

actin shows an uniform distribution along the plasma membrane (Webb et 

al., 1986). The disappearance of the actin rich region is followed by the 

migration of the meiotic spindle towards the center of the oocyte 14-18 

hrs after ovulation (Fig lb, Szollozi et al., 1972; Webb, 1986). Further

more, cytoplasmic asters of microtubules can be visualized with im

munofluorescence in oocytes aged post-ovulation for 12 hrs (Eichenlaub-

Ritter, 1986). In fertilized unaged oocytes these asters of microtubules 

appear 6-12 hrs after sperm penetration (Maro, 1985; Schatten et al., 

1985); apparently the formation of asters is independent of, but acceler

ated by, fertilization. Eichenlaub-Ritter (1986) postulated that these 

premature alterations of the cytoskeleton enables the aged oocytes to 

catch up with the normal developmental schedule. Evidence of an accelera

ted early embryonic development has been found in mice (Fraser, 1979; 

Smith and Lodge, 1987; the present study) and in the rat (Shalgi, 1985). 
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PROCEDURES FOR TIMING OF OVULATION AND FERTILIZATION 

The timing of fertilization related events is, by definition, controlled 

by the fertilization programme and can be related to (1) the time of 

mating in the case of spontaneous ovulation (Abramczuk and Sawicki, 1975; 

Schrabonath, 1988), (2) the moment of human chorionic gonadotrophin (hCG) 

administration in a superovulation procedure (Luthardt and Donahue, 1973) 

or (3) the moment of mixing of gametes in vitro fertilization experiments 

(Howlett and Bolton, 1985). Each of these different experimental designs 

have provided time schedules for the sequence of fertilization events. 

However, the timing of fertilization events and the duration of the cell 

cycle phases appear to vary with the experimental designs (Table 1). The 

observed differences in timing can partly be explained by interstrain 

variations. The length of the zygotic DNA synthetic phase appears to be 

dependent on the paternal genotype (Schrabonath, 1988). 

In many in vivo experiments the moment of ovulation is related to the 

midpoint or the end of the dark period. However, the interval between the 

midpoint of the dark period and ovulation is dependent on the length of 

the dark period and varies between mouse strains (Braden 1957; Bingel and 

Schwartz, 1969). Therefore, the moment of ovulation should be determined 

for each mouse strain used in investigations concerning the timing of fer

tilization events. There are also strain differences in the transport of 

spermatozoa and as a consequence differences in the moment of sperm 

penetration (Nicol and McLaren, 1974). 

Superovulation (Fowler and Edwards, 1957) is another widely used method 

for the induction and timing of ovulation. Administration of pregnant mare 

serum gonadotrophin (PMSG) induces follicular growth in mature and imma

ture female mice, and a subsequent injection of human chorionic gonado

trophin (hCG) triggers preovulatory maturation and ovulation (Fowler and 

Edwards, 1957; Marston and Chang, 1964). The release of oocytes is related 

to the moment of the hCG administration, so ovulation can be timed within 

a few hours. However, the accuracy in estimating the moment of ovulation 

is dependent upon age and strain of the females: ovulation occurs 10-12 

hrs and 10-14 hrs after the hCG injection in mature and in immature Swiss 

females respectively (Marston and Chang, 1964). In CFi female mice ovula

tion occurs between 10 and 14 hrs after hCG adminstration (Donahue, 1972). 

Also, the number of oocytes released after superovulation differs between 

strains (Fowler and Edwards, 1957). 

Despite the advantages of superovulation, the procedure is a target for 
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criticism. Abnormal embryonic development has been described after super-

ovulation (Foote and Ellington, 1988): the incidence of pre-implantation 

embryonic death has been shown to be increased to 44% in the LACA stock 

after in vivo fertilization of superovulated oocytes (Beaumont and Smith, 

1975); abnormal development in vivo and increased sister chromatid 

exchange in embryos from superovulated oocytes have been described (Swiss 

females: Elbling and Colot, 1985); the incidence of polyploidy, which can 

be ascribed to the failure of second polar body extrusion, has found to be 

increased in superovulated fertilized oocytes from A/HE females (Takagi 

and Sasaki, 1976). In sheep, follicle maturation by PMSG induces a 

pattern of protein synthesis in the oocytes that is normally seen in 

luteinizing hormone (LH) activated oocytes. This phenomenon is called 

premature activation and leads to aged and morphological abnormal oocytes 

(Moor et al., 1985). Moreover, administration of hCG at pro-oestrus of the 

oestrus cycle has been shown to increase pre-implantation embryonic death 

in the rat (Mattheij et al, 1986 and 1987) and in Swiss-random bred female 

mice (De Boer et al., submitted). Administration of luteinizing hormone 

releasing hormone (LHRH) at pro-oestrus has no deleterious effect on 

embryonic development, however (Mattheij et al., 1986 and de Boer et al., 

submitted). These observations made us decide to time ovulation by the 

administration of LHRH at pro-oestrus of the cycle. Pro-oestrus was simply 

determined by evaluation of vaginal smears taken daily (Thung et al., 

1956). 

The age of embryos derived after in vitro fertilization is related to the 

moment of mixing female and male gametes and therefore timing of fertil

ization is precise after in vitro fertilization. However, embryos grown in 
vitro can exhibit retarded development because of sub-optimal culture 

conditions (Bavister, 1987). Although the quality of culture media for in 
vitro pre-implantation development is improving, they will nevertheless 

never mimic the oviductal environment completely. 

It will be clear that an exact timing of fertilization events is impos

sible and can only be approached in comparative studies using one stock or 

strain of mice and the same set of experimental conditions. In the 

present study we used LHRH to time ovulation and artificial insemination 

to time fertilization. The maternal germ cells derived from Swiss random-

bred females and Swiss x L111 males were sperm donors. 
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TABLE 1: Length (hrs) of cell cycle phases of the first embryonic cell 

cycle in the mouse as estimated by different authors. 

Authors plus genotype G2+M t ime of 

cleavage 

(50% point) 

Natural mating 

Schabronath (1988) 

(AKR/NHAN) 

(CBA/JHAN) 

6.4 

11.1 

19.1 p.c. 

21.1 p.c. 

Molls et al. (1983) 

NHRI 

Krishna and Generoso (1977) 

(C3HxC57BL)Fi females x 

(SEC x C57BL)Fi males 1-2 18.0 p.c. 

Superovulation 

Donahue (1972) 

CF1 males and females 32-34** 

Luthardt and Donahue (1973) 

CF1 males and females 

Abramczuk and Sawicki (1975) 

Swiss 3.5-4.0 

in vitro fertilization 

after natural ovulation 

Kaufman (1973), 

CFLP x CFLP 

(C57BLxA2G)Fi x (C57BLxA2G)Fi 

in vitro fertilization 

after superovulation 

Howlett and Bolton (1985) 

(C57BL.10 x CBA)F; 

2 

In 39m 

31.5* 

29.8* 

18-22* 

Footnote: Mncludes completion of meiosis II; **post hCG; ***post-insemina

tion; p.c. post-conception. 
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CHAPTER II. 

THE FIRST CELL CYCLE OF ZYGOTES OF THE MOUSE DERIVED FROM 

OOCYTES AGED POST-OVULATION IN VIVO AND FERTILIZED IN VIVO 
M.L. Boerjan and P. de Boer, 
will be published in: Molecular Reproduction and Development, 
25:000-000 (1990). 

SUMMARY 
This paper describes an analysis of the first cell cycle of mouse oocy

tes aged post-ovulation and fertilized in vivo. For this purpose we devel
oped a procedure for inducing ovulation in vivo that allows accurate 
timing of ovulation. The method is based on a luteinizing hormone 
releasing hormone (LHRH) administration at pro-oestrus. This ovulation 
procedure had no detectable effect on the rate of ovulation or post-im
plantation embryonic death. 

We used this method of ovulation induction in an analysis of the separ
ate stages of the first cell cycle of in vivo fertilized post-ovulation 
aged oocytes. All stages assessed were shorter in aged oocytes (12 hrs 
post-ovulation) than in zygotes from unaged oocytes (1 hr post-ovulation): 
(1) the time interval between insemination and penetration of the aged 
oocytes was 1 hr 30 min shorter than the time interval of the unaged 
oocytes; (2) pronuclear formation in the fertilized aged oocytes was 
somewhat quicker than pronuclear formation in fertilized unaged oocytes; 
(3) in zygotes from aged oocytes the time between formation of pronuclei 
and the pronuclear membrane breakdown was 1 hr shorter than in zygotes 
from unaged oocytes; (4) the first cleavage division was 3 hrs advanced in 
zygotes from aged oocytes compared with the moment of the first cleavage 
division in zygotes from unaged oocytes. 

We also determined the glutathione (GSH) content of unaged and aged 
oocytes to investigate a possible relationship between the rate of pronuc
lear formation and GSH. The level of GSH was two times lower in oocytes 
aged post-ovulation for 12 hrs than in unaged oocytes. The level of GSH in 
fertilized unaged oocytes was half that in unfertilized unaged oocytes; 
this decline was not observed after fertilization of aged oocytes, howev
er. 

In summary, we developed a procedure that allows in vivo fertilization 
at defined points of time after LHRH-induced ovulation. Under the 
conditions used in this procedure we could detect several differences 
between zygotes derived from unaged and post-ovulation aged oocytes. 

Key words:ageing, glutathione, luteinizing hormone releasing hormone. 

INTRODUCTION 

The first cell cycle of mammalian embryonic development can be divided 

in three distinct phases: (1) formation of the female and male pronuclei, 

(2) DNA synthesis, (3) onset of mitosis and first cleavage. The analysis 

of the first cell cycle after post-ovulatory ageing could provide a tool 
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to study the regulation of the first cell cycle, because in mice the 

duration of the first embryonic cell cycle is influenced by the post-

ovulatory age of the oocyte (Fraser, 1979). Little is known about the 

regulation of first cell cycle phases, although the synthesis of cell 

cycle dependent proteins in the mouse zygote has been described (Howlett 

and Bolton, 1985). 

Several authors have reported that oocytes aged in vivo for 4-7 hrs and 

fertilized in vitro have a shorter first cell cycle than zygotes derived 

from unaged oocytes (Shalgi et al.,1985; Smith and Lodge, 1987). A detai

led study of the first cell cycle of oocytes aged and fertilized in vivo 
has not been published, however. The aim of this investigation was to 

analyze in detail the first cell cycle in zygotes derived from oocytes 

that were aged post-ovulation in vivo and fertilized in vivo. The main 

problem to be solved was the exact determination of the moment of ovula

tion. One way to circumvent this problem is activation of follicles by 

pregnant mare's serum gonadotroph in (PMSG), followed by induction of 

ovulation by human chorionic gonadotrophin (hCG) (Fowler and Edwards, 

1957); the age of the oocytes can then be referred to the moment of hCG 

administration. However, this superovulation procedure may have detrimen

tal effects on embryonic development (Foote and Ellington, 1988). We 

therefore tested an alternative procedure of ovulation induction, namely 

injection of luteinizing hormone releasing hormone (LHRH) shortly before 

the expected endogenous luteinizing hormone (LH) surge. In this study 

fertilization was precisely timed by means of artificial insemination. We 

did not find a detectable effect of these ovulation and fertilization 

conditions on the rate of ovulation or post-implantation embryonic death. 

We subsequently used this system in an investigation of some aspects of 

the first cell cycle of oocytes that were aged and fertilized in vivo, 
namely (1) the rate of sperm penetration, (2) the rate of pronucleus 

formation, (3) the rate of pronuclear membrane breakdown, and (4) the 

moment of the first cleavage. 

We also measured the glutathione (GSH) content of unaged and post-

ovulation aged oocytes, before and after fertilization, because it has 

been suggested that pronuclear development is dependent on the level of 

GSH in the oocyte (Perreault et al., 1988; Calvin et al., 1986). 

In summary, we developed a procedure that allows in vivo fertilization 

at defined intervals of time after LHRH induced ovulation. This procedure 

gave us the opportunity to study some aspects of the first cell cycle in 
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oocytes aged post-ovulation for 12 hrs and fertilized in vivo. We could 

detect several differences between zygotes from unaged and aged oocytes. 

MATERIAL AND METHODS 
Animals and housing conditions 

Females were random bred Swiss (CpbSE(S)) mice, and males were 
Fi(CpbSE(S) x LIII), with LI 11 being a linkage testing stock from the MRC 
Radiobiology Unit, Chilton, U.K. Throughout all experiments the mice were 
kept in two air-conditioned rooms (20 °C, 60% relative humidity) with a 
dark/light schedule of 4 hrs dark and 20 hrs light. In one of the two 
animal rooms the dark period coincided with the natural night, in the 
other room the dark period was 11 hours later. In each cage we kept three 
females and one male; the male was separated from the females. 

Determination of post-implantation embryonic death 
The influence of the 4 hrs dark/20 hrs light schedule on ovulation rate 

and on post-implantât ion embryonic death was determined as follows: fema
les that were adapted to the dark-light schedule for at least 3 weeks were 
mated to Fi males. The first day of pregnancy was the day a vaginal plug 
was found; on day 13 of pregnancy the number of decidua and the number of 
moles were determined. The percentage of post-implantation embryonic death 
is expressed as: (no. of moles)/(no. of decidua)*100. We also analyzed the 
effect of LHRH induced ovulation on post-implantation embryonic death: 
LHRH (Sigma no: L7134, 200 ng/ female) was administered 14 hrs before the 
expected LH peak. Females were mated to Fi males after the LHRH injection 
and post-implantation embryonic death was determined on day 13 of pregnan
cy. 

Determination of natural and induced ovulation 
Vaginal smears were taken daily. In the animal room with the dark period 

during the day the smears were taken between 8:00 - 9:00 hrs A.M. in the 
other room we took smears between 5:00 - 6:00 hrs P.M. The smears were 
stained and classified according to Thung et al. (1956). 

Mice with at least two consecutive regular 4-day cycles were selected by 
inspection of the vaginal smears. Pro-oestrus females were killed at 
appropriate intervals after the midpoint of the dark period, and the 
numbers of oocytes in the ampullae were counted. 

LHRH (200 ng/female) was injected intraperitoneally 8-12 hrs before the 
expected LH peak which occurs in mice 12 hrs before the moment of ovula
tion (Runner and Palm, 1953). Females were killed at appropriate time 
points after the injection and the number of secondary oocytes in the 
ampullae was counted. 

Artificial insemination (AI) 
Fertilization was performed by means of artificial insemination (West et 

al., 1977): the cauda epididymis of an Fi male were cut into 3-4 pieces 
and sperm was allowed to disperse in 0.3 ml Dulbeccos medium (Dulbecco and 
Vogt, 1954) supplemented witho3 mg/ml bovine serum albumin (BSA, BDH, no. 
44004), during 15 min at 35 °C. The sperm suspension was then carefully 
sucked off. Only those sperm suspensions with at least 40.10^ cells/ml and 
more than 70% moving and normal looking spermatozoa were used for 
insemination, 50 ̂ 1 of the sperm suspension was brought into the uterus 
via the cervix with a blunt 21 gauge injection needle. The females were 
not anaesthetized before the insemination. The sperm suspension from one 
male was sufficient for the insemination of 4 females of which two carried 
unaged oocytes and two had aged oocytes. 
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The females were inseminated at 13 hrs (1 hr post-ovulation) and 24 hrs 
(12 hrs post-ovulation) after the LHRH injection. In these experiments 
LHRH was injected 8-12 hrs before the expected LH peak. 

Light microscopic analysis of zygotes 
The cumulus-oocyte complexes were released from the ampullae at 

appropriate intervals after insemination. Cumulus cells were removed by 
incubation in 300 U/ml hyaluronidase (Sigma, type I-S bovine testis, no. H 
3506)in Dulbeccos medium. Subsequently the oocytes were washed in 
Dulbeccos medium and fixed in Heidenhain fixative (2 parts HgCl2 sat., 2 
parts H2O and one part formaldehyde 40%) for at least 15 min. After 
fixation we transferred the oocytes to a microscope slide and carefully 
covered them with a cover glass provided with vaseline walls without 
squashing the cells. After a post-fixation in Carnoy's fixative for 15 min 
the cells were stained with aceto-orcein (0.75% in 45% acetic acid). 

We defined oocytes as fertilized when a sperm head had penetrated the 
vitellus. Pronucleus formation was considered to be complete when the 
nuclear membrane could be clearly observed in the aceto-orcein stained 
cells. Due to the fixation with HgCl2 the nucleoli were obvious and their 
development could be evaluated. 

For aged as well as unaged oocytes, the median interval between AI and 
pronuclear formation, pronuclear breakdown and first cleavage was deter
mined. 

Determination of GSH in secondary oocytes and zygotes 
We determined the level of glutathione (GSH, L-glutamyl-L-cysteinylgly-

cine) in groups of oocytes or zygotes by means of a fluorometric procedure 
(Hissin and Hilf, 1976) as modified by Rietjens et al. (1985). 

We disrupted cumulus free oocytes or zygotes collected from one female 
by suspending them in 30 ß\ PE-buffer (0.1 M sodium phosphate buffer, 5 
mM EDTA, pH 8.0), and freezing them in liquid N2. Subsequently, we thawed 
the samples and quickly added 30 /il o-Phthaldialdehyde (Sigma, no. P-
1378) solution (1 mg/ml in methanol) and 540 ß\ PE-buffer. Twenty minutes 
after mixing we measured the fluorescence M 412 nm (excitation at 335 
nm). Stock solutions of GSH (Merck no. 4090) (5-50 ng/ml) were used as a 
reference. 

RESULTS 

Effect of the ovulation induction procedure on post-implantation embryonic 

death 

The mice used in this investigation were maintained in a 4 hrs dark/20 

hrs light schedule, because there appears to be less variation in the 

moment of ovulation among females maintained in a 4 hrs dark/20 hrs light 

cycle than among females maintained in a 10 hrs dark/14 hrs light cycle 

(Braden, 1957; Bingel and Schwartz, 1969). We examined whether this 

dark/1 igjit schedule had any harmful effects on the number of ovulated 

oocytes or on post-implantât ion embryonic death (Table 1). The number of 

ovulated oocytes was similar in all four experimental groups (Table 1, 

P>0.05, Student's t test among paired groups). There appears to be a 

slight effect of the 4 hrs dark/ 20 hrs light schedule on the mean and 
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variability of percentage post-implantation embryonic death, but this is 

not statistically significant (Table 1, P>0.05 Mann-Whitney U test; group 

1 vs group 4; group 3 vs group 4). The embryonic death in females kept on 

a schedule with the dark period coinciding with the natural night did not 

differ significantly from that in females which were maintained in a 

schedule with the dark period coinciding with day time (Table 1; Mann-

Whitney U test, P>0.05, group 2 vs. group 3 ) . 

TABLE 1. The effects of LHRH administration and of a short (D)ark 

(4hrs)/long (L)ight (20hrs) regime on post-implantation development. 

total no. of post-implantation 

decidua death (%) '' 

treatment females mean t s.d. mean ± s.d. 

1. LHRH induced. 

4 hrs D(day)/20 hrs L3' 46 9.8 ± 2.3 19.6 ± 23.9 

2. 4 hrs D(night)/ 

20 hrs L 2 ' 74 10.9 ± 2.2 12.4 ± 16.9 

3. 4 hrs D(day)/ 

20 hrs L 3' 19 10.3 ± 3.1 15.0 t 22.6 

4. Control 10 hrs 

D (night)/14 hrs L 20 10.8 * 2.3 9.0 t 12.7 

Footnote: 1) death (%)=no. of moles/decidua * 100. 

2) 4 hrs D(night)/20 hrs light: midpoint dark period 1:00 AM 

3) 4 hrs D(day)/20 hrs light: midpoint dark period 2:00 PM 

We induced ovulation by an LHRH injection 14 hrs before the expected 

endogenous LH-peak; follicle disruption was therefore advanced and the 

resulted mating frequency was 65% instead of 100%. This advanced ovulation 

caused no significant increase in pre-implantation or post-implantation 

death (Table 1; P>0.05 Mann-Whitney U test;group 1 vs. group 3 ) . 

Ovulation in spontaneously ovulating females 

The day of ovulation was determined by inspection of vaginal smears, 

taken before the midpoint of the dark period. Females with a pro-oestrus 

vaginal smear (see materials and methods) were killed at appropriate 

intervals after the midpoint of the dark period and the numbers of oocytes 
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in the ampullae were counted (Table 2). The mice that had not ovulated at 

the time of observation showed big swollen follicles. Two out of seven 

females had ovulated at 3 hrs 45 min after the midpoint of the dark 

period; at 5 hrs 15 min all females had ovulated. Thus ovulation essen

tially occurs between 3 hrs 30 min and 5 hrs after the midpoint of the 

dark period. Because in mice ovulation occurs about 12 hrs after the LH 

peak (Runner and Palm, 1953) we conclude that in our experimental system 

the endogenous LH surge occurs 7-8 hrs before the midpoint of the dark 

period. Within a female, follicles appear to ovulate almost simultaneous

ly; we never found swollen follicles and cumulus-oocyte complexes on the 

ovaries of the same female (Table 2). 

TABLE 2: Rate of natural and LHRH-induced ovulation. 

females 

no. of 

eggs in ampullae 

of ovulated fe

males 

mean/female ± s.d. 

mice with 

eggs in the 

ampul 1ae 

eggs on the 

ovaries 

mean/females 

± s.d. (range) 

natural ovulation 

time (hrs) after midpoint of the dark period 

3h 15 - 3h 45 min 4 

3h 45 - 4h 7 11.5 

4h - 4b 15 6 12.8 

4h 15 - 4h 45 5 9.7 

4h 45 - 5h 15 5 9.8 

3.5 
1.1 
3.0 
3.6 

0 
2 
5 
4 
5 

0 
0 
0 
0 
0 

b) LHRH-induced ovulation 

time (hrs) after LHRH injection 

11 

12 

13 

15-32 

3 
8 

13 
49 

0 
8 . 3 ± 2 . 3 

8 . 8 t 2 . 1 

9 . 3 i 2 . 3 

0 
7 
13 
49 

0 . 3 i 0 . 6 ( 0 - 1 ) 

0 . 6 ± 0 . 7 ( 0 - 2 ) 

0 
0 

Ovulation induced by LHRH 

The experiment described in Table 2b was carried out to assess whether 

ovulation induced with LHRH had any influence on the rate of ovulation. In 

this experiment we administered LHRH 8-12 hrs before the expected endoge

nous LH peak, so that the time point of induced ovulation was slightly 

earlier than that of the expected natural ovulation. Eleven hrs after the 

LHRH injection we did not find any cumulus-oocyte complexes in the ampul-
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lae, but in one female we did find a cumulus-oocyte complex on one of the 

ovaries (Table 2b). All other females ovulated between 11 and 13 hrs after 

the LHRH injection (Table 2). Thus, the time between the LHRH-induced LH 

peak and ovulation is the same as that between the endogenous LH peak and 

ovulation, namely about 12 hrs (Table 2b; Runner and Palm, 1953). The 

number of ovulated oocytes per female after LHRH induction does not differ 

significantly from the number of naturally ovulated oocytes per female 

(Table 2b, P>0.05 Student's t test). In this paper we refer the age of the 

oocyte to the moment of the LHRH injection: in the experiments described 

below the unaged oocytes were collected at 13 hrs after the LHRH injection 

and the aged oocytes were collected at 24 hrs after the injection. This 

corresponds to 1 hr and 12 hrs after ovulation, respectively. 

TABLE 3: The effect of the mode of ovulation and insemination on the fertilization rate of unaged 

oocytes . 

natural ovulation 

natural mating 

artificial insemination 

induced ovulation 

natural mating 

artificial insemination 

Footnote: 1) The rate of fert 

females 

10 

10 

8 

10 

1 izat ion was 

mean 

of eggs/female 

t s.d. 

9.4 i 2.2 

9.8 t 2.3 

10.1 ; 1.6 

9.5 ± 2.6 

determined 15 hrs a 

no. of 

fert ilized egg 

female ± s.d. 

8.6 ± 3.1 

9.5 t 2.6 

9.7 • 1.7 

8.4 ± 3.6 

fter artificial 

s/ 

fert ilizat ion 

rate (%) 

± s.d. 

87.8 ± 19.7 

95.6 + 8.2 

96.4 • 7.3 

85.4 ± 29.1 

inséminât ion 

Natural mating vs. AI 

The rate of fertilization of naturally ovulated or LHRH induced unaged 

oocytes was not affected by AI (Table 3; P>0.05, Mann-Whitney U test). 

Secondary oocytes could be fertilized until 28 hrs after the LHRH injec

tion, although the morphology of the resulting zygotes deteriorated and 

the number of dispermic zygotes increased if AI was delayed until 25 hrs 

after the LHRH injection (Table 4, Fig. lc). In most of the abnormal one-

cell embryos there were cytoplasmic fragments adjacent to an enlarged 

second polar body, whereas the pronuclear membranes were less visible in 

light microscopic preparations (Fig. lc,d). In addition, the fraction of 

unfertilized oocytes with an abnormal meiotic spindle increased with 
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TABLE 4: The efficiency of fert 

no. 

females 

13 (freshly ovulated 7 

24 (aged) 4 

25 (aged) 4 

26 (aged) 4 

27 (aged) 4 

28 (aged) 2 

Footnote: 1) The rate of fertil 

ilization of freshly 

of 

eggs/female 

(± s.d.) 

7.6 i 2.5 

10.7 t 1.5 

9.5 ± 1.3 

9.0 i 1.4 

10.0 t 2.8 

9.5 ± 0.7 

ization was det 

ovu ated and aged oocytes1. 

percent zygotes 

an abnormal 

abstriction 

fertilization second polar 

ermined 6 

(%) 

77 

100 

87 

42 

53 

84 

hrs after 

body 

1.9 

2.3 

69.7 

66.6 

52.4 

62.5 

with 

percent 

dispermic 

zygotes 

0.0 

2.3 

3.3 

6.7 

9.5 

0.0 

artificial insemination. 

TABLE 5: Duration of the subsequent stages of the first cell cycle of zygotes, derived from aged 

and unaged oocytes. 

event 

sperm penetration (tj) 

pronucleus formation 

female and male (t2) 

pronucleus breakdown (t3 

first cleavage (t4) 

time of ob

servation 

hrs after AI 

2-4 

3-7 

15-22 

15-22 

UNASED 

n 

148 

173 

165 

165 

50% time point 

3 hrs 15 min 

5 hrs 15 min 

17 hrs 30 min 

20 hrs 30 min 

time of ob

servât ion 

hrs after AI 

1.5-4 

3-6 

12-19 

12-19 

AGED 

n 

176 

167 

193 

193 

50% time 

1 hrs 45 

3 hrs 15 

14 hrs 30 

17 hrs 30 

point 

min 

min 

min 

min 

longer post-ovulatory ageing periods (not shown). 

Effect of in vivo ageing on sperm penetration, pronucleus formation and 

first cleavage 

After artificial insemination, unaged oocytes (Table 5 and Fig. 2, 

t=13) were penetrated later than oocytes that were aged post-ovulatory for 

12 hrs (Table 5 and Fig. 2, t=24). At 3 hrs 15 min after AI 50% of the 

unaged oocytes were fertilized (Table 5 and Fig. 2, ti). For the aged 

oocytes this 50% time point was 1 hr 45 min .;! er AI (Table 5 and Fig. 2, 

ti). The difference in the rate of penetration between the two experimen

tal groups was statistically significant as tested with a Chi-square test 

on independence (P< 0.001). 
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Pronuclei were found in 50% of the fertilized unaged oocytes at 5 hrs 15 

min after AI: for the post-ovulatory aged oocytes this 50% time point was 

at 3 hrs 15 min after insemination (Table 5 and Fig. 2, t2). The dif

ference in 50% time points between zygotes from unaged and aged oocytes 

is statistically significant (P<0.001, Chi-square test). The time interval 

between penetration and pronucleus formation (t2-ti) was 30 min shorter in 

fertilized aged oocytes than in fertilized unaged oocytes. No difference 

was observed in the rate of female or male pronucleus formation in both 

types of zygotes. 

In female as well as male pronuclei the number of nucleolus-1 ike par

ticles per nucleus decreases with time (Table 6 and Fig. 3 ) . Most of the 

younger zygotes had pronuclei with several small nucleolus-1 ike particles 

(Table 6 and Fig. 3) whereas the number of nucleolus-1ike particles was 

lower in more developed pronuclei. This phenomenon occurred in fertilized 

aged and unaged oocytes. Taking into account the time difference of fer

tilization between unaged and aged oocytes, we observed a rate of "nucle

oli fusion" which was comparable for both groups of zygotes. However, in 

zygotes from aged oocytes the fusion of the nucleolus-1ike particles was 1 

hrs later than in zygotes from unaged oocytes with respect to pronucleus 

membrane formation (Table 5, t2; Table 6 ) . 

TABLE 6: Development of pronuclear nucleoli in zygotes derived from unaged (a) and aged (b) 

oocytes. 

Hours after AI 

a) zygotes from 

unaged oocytes 

5 

6 

7 

b) zygotes from 

aged oocytes 

3 

4 

5 

no of 

zygotes 

13 

27 

39 

11 

24 

33 

part ici es 

pronuc 

l<n<10 

(X) 

38 

78 

82 

27 

33 

76 

n 

no. 

the fema 

eus (n) 

n>10 

(%) 

62 

22 

18 

73 

67 

24 

of 

le 

nue eolus- ike 

pa 

1< 

rticles 

pronuc 

n<10 

(%) 

22 

74 

62 

27 

28 

72 

in 

eus 

the male 

(n) 

n>10 

(%) 

78 

26 

38 

73 

72 

28 
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The time between formation of pronuclei (t2) and the pronuclear membra

ne breakdown in 1 -eel 1 embryos (t3) from aged oocytes was 11 hrs 15 min 

(Table 5, Fig. 2, t3), whereas in the 1-cell embryos from unaged oocytes 

the pronuclear stage was 12 hrs 15 min (P<0.001, Chi-square test). 

Seventeen hours and 30 min after AI 50% of the fertilized aged oocytes 

were in the 2-cell stage (Table 5 and Fig. 2, t4), for the fertilized 

unaged oocytes this 50% time point was 20 hrs 30 min (Table 5 and Fig.2, 

t 4 ) . 

The glutathione content of aged and unaged oocytes 

We determined the level of glutathione (GSH) in unfertilized unaged 

oocytes and oocytes that were aged post-ovulation in vivo for 12 hrs. In 

the unfertilized unaged oocytes the concentration of GSH was 21 mM, which 

is two times the highest concentration found in somatic cells (Meister 

and Anderson, 1983). In the fertilized unaged oocytes the GSH concentra

tion was only 9 mM (Table 7, P< 0.05 Student's t test). We found no 

difference in GSH content between fertilized unaged oocytes at the start 

of the first cell cycle, i.e. 7 hrs after AI, and fertilized unaged 

oocytes which were collected shortly before pronuclear membrane breakdown 

(16 hrs after AI). 

TABLE 7: GSH concentration in unfertilized and fertilized unaged oocytes in and oocytes that were 

aged post-ovulatory for 12 hrs*'. 

unaged aged 

no. of ng/oocyte no. of ng/oocyte 

females ± s.d. mM4' females ± s.d. mM^' 

Unfertilized 6 2.3 ± 1.03' 21 6 1.1 ± 0.5 9 

Fertilized, hours after 

artificial insemination 

5 2 ) 7 0.9 ± 0.2 8 

72> 7 1.0 î 0.2 9 

132) 7 0.9 t 0.3 7 

162> 11 0.9 ± 0.4 8 

Footnotes:l) The oocytes were pooled per female. 

2) The zygotes were collected at phases of the first cell cycle that were comparable 

for the "unaged" and "aged" zygotes (Fig. 3 ) . 

3) Compared with the other experimental groups P<0.05. 

4) For the calculation of the molarity we used a volume of 0.36 nl/oocyte, based on a 

mean radius of 44 ^.m/oocyte (Fig. 1) 
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In the unfertilized aged oocytes the GSH concentration was half of that 

in the unfertilized unaged oocytes (Table 7, P<0.05 Student's t-test). The 

aged oocytes demonstrated no further decline in GSH content after 

fertilization (Table 7, P>0.05 Student's t-test). 

In summary, the concentration of GSH in unfertilized unaged oocytes was 

higher than that of unfertilized in vivo aged oocytes. In fertilized aged 

oocytes the level of GSH was similar to that in fertilized unaged oocytes. 

DISCUSSION 

Delayed mating or insemination results in an increased embryonic mor

tality in mice (Sakai and Endo, 1988; Marston and Chang, 1964), rats 

(Blandau and Jordan, 1941), rabbits (Adams and Chang, 1962), pigs (Hunter, 

1967), hamsters (Juetten and Bavister, 1983) and man (Bomsel-Helmreich, 

1976). This embryonic loss might be a result of chromosomal anomalies that 

could arise after delayed fertilization (Vickers, 1969; Shaver and Carr, 

1967). Another factor involved in this increased embryonic mortality might 

be an asynchrony, in zygotes from aged oocytes, between cytoplasmic 

functions on the one hand and the rate of the second meiotic division or 

first cleavage on the other hand. Several authors reported that, in vitro, 
the first cell cycle is shorter in mouse zygotes derived from aged oocytes 

than in those derived from unaged oocytes (Fraser, 1979; Smith and Lodge, 

1987). Many in vivo aged and in vitro fertilized hamster oocytes fail to 

extrude the second polar body (Juetten and Bavister, 1983). The extrapola

tion of these observations to the effects of in vivo fertilization of in 
vivo aged oocytes is not unambiguous; mouse oocytes aged post-ovulation 

in vivo for 12 hrs are activated instead of being penetrated in in vitro 
fertilization experiments (Kaufman, 1973), whereas in vivo these oocytes 

are readily penetrated (this study and Marston and Chang, 1964). Moreover, 

the possible interactions between oviduct and the oocyte are not implica

ted in the above mentioned in vitro studies. Futhermore, the oocytes that 

were used for the above cited studies were obtained by superovulation, 

induced with PMSG and hCG. Thus obtained oocytes might differ from 

naturally ovulated oocytes (Foote and Ellington, 1988). 

In this study we have tried to complement the in vitro investigations 

with an in vivo analysis of the effects of post-ovulatory ageing of 

oocytes on the first embryonic cell cycle. For this purpose, we developed 
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Figure 1. Light micrographs of imaged and postovulation aged ooyctes fertilized in vivo. 
Zygotes were stained with aceto-orcein after fixation in Haidenheins fixative as described 
in materials and methods. Bar represents 22 /im. 

(a) Fertilized unaged oocyte collected 20 hrs after artificial insemination (AI). 

Pronuclear membranes and nucleoli are clearly visible in this zygote. 

(b) Fertilized aged oocyte; females were inseminated 24 hrs after the LHRH injection. The 

zygote was collected 15 hrs after AI. Pronuclear membranes are visible in this zygote 

derived from an oocyte aged postovulation for 12 hrs. 

(c,d) Fertilized aged oocytes; females were inseminated 28 hrs after the LHRH injection. The 

zygote was collected 6 hrs after AI. The pronuclear membranes are very vague in this 

zygote from oocytes aged postovulation for 16 hrs. 

(d) An example of the abstriction of an abnormal large second polar body in a zygote 

derived from an oocyte aged postovulation for 16 hrs. 

a procedure that allows a precise timing of ovulation as well as in vivo 
fertilization, and that has minimal effects on embryonic development. We 

chose to induce ovulation by injection of LHRH at proestrus; thus the 

endogeneous LH-surge was advanced by about 8-12 hrs. Fertilization could 

be precisely timed by means of AI. These procedures mimic more closely the 

natural processes of ovulation and fertilization than commonly used 

methods of superovulation by PMSG and hCG and in vitro fertilization. Our 

procedure has no detectable effect on the rate of ovulation or post-

implantation embryonic death (Table 1). In contrast, superovulation is 

correlated with a higher embryonic mortality in the rat (Sherman et al., 

1982) and mouse (Beaumont and Smith, 1975). Furthermore, ovulation induced 

by hCG is correlated with embryonic death in mice (de Boer et al., in 
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preparation) as well as rats (Mattheij et al., 1986). The observed 

increase in variability in percentage of post-implantation embryonic 

death among females, kept in a short dark/long light regime, could 

probably be ascribed to a genetical variation in the outbred Swiss strain 

used throughout this study. 

With this in vivo system we analyzed the effects of ageing of the oocyte 

on the following parameters of the first embryonic cell cycle: (1) the 

rate of sperm penetation, (2) the rate of pronucleus formation, (3) the 

rate of pronucleus membrane breakdown and (4) the moment of first cleavage 

(Fig. 2 ) . All these stages were advanced in zygotes derived from aged 

oocytes; this is particularly striking with respect to the rate of sperm 

penetration (Fig. 2, tj). Two possible explanations can be considered with 

respect to this effect. First, post-ovulation changes in the composition 

of the oviductal fluid may influence sperm transport and capacitation of 

spermatozoa (Nieder and Corder, 1983; Hunter, 1987; Fraser and Ahuja, 

1988). Or second, post-ovulation changes of the cumulus, zona pellucida or 

*i *2 

»1 «2 

l3 '4 

h l4 

t=24 

H t=13 

—I 1 1 1 1 1 I I I I I 
0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 20 22 

Hours after AI 

Figure 2. Time intervals between artificial insemination (AI) and the 50% time points of the 

seperate stages of the first cell cycle in zygotes derived from unaged oocytes (t=13). and 

from oocytes aged postovulatory for 12 hr (t=24). 

tt: Interval between AI and penetration of 50% of the secondary oocytes. 

t^'- Interval between AI and pronuclear formation of 50% of the zygotes. 

f3: Interval between AI and pronuclear breakdown of 50% of the zygotes. 

f4: Interval between AI and first cleavage of 50% of the zygotes. 
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plasmalemma of the oocytes could result in an altered rate of sperm 

penetration. The observation (Fraser, 1979) of more rapid penetration of 

sperm into aged oocytes in vitro, where sperm transport and capacitation 

would not be a factor, is consistent with this. We think it unlikely that 

changes in sperm transport are responsible for the difference in the rate 

of sperm penetration, because sperm are found in the oviduct within 15 min 

after mating (Blandau, 1973). It also seems unlikely that changes in the 

cumulus cause a more rapid penetration of sperm, because the cumulus of 

unaged oocytes appears to stimulate sperm penetration in mouse (Wolf et 

al., 1977) and hamster (Bavister, 1982). On the other hand, the cumulus of 

aged oocytes appears thinner than that of unaged oocytes, and one might 

argue that sperm meet less resistance while passing an aged cumulus. It 

is also possible that post-ovulation changes in the zona pellucida, plasma 

membrane and cytocortex caused an altered rate of sperm penetration: 

several authors have reported that such changes do occur. For instance, 

Gaunt (1985) decribes the post-ovulation accumulation in the oocyte 

membrane of an oviductal protein and Longo (1981) observed a more uniform 

distribution of lectin-binding sites on the plasma membrane. Also, a 

post-ovulatory reorganization of the cytocortex has been described (Webb 

et al., 1986). However, none of these alterations have been associated 

with an altered rate of sperm penetration. 

An other effect of in vivo post-ovulatory ageing of oocytes is the more 

rapid formation of pronuclei after fertilization (Fig. 2; t2). This has 

also been observed after in vitro fertilization of oocytes aged in vivo 
for 4-7 hrs (Fraser, 1979; Smith and Lodge, 1987). In the young maternal 

and paternal pronuclei several small nucleolus-1ike bodies could be ob

served, more developed pronuclei contained one or a few larger nucleoli. 

The replacement of several smaller nucleolus-1ike particles by a single 

large nucleolus has also been described by Fraser (1979). The nature of 

these nucleolus-1ike particles is not clear, however. 

There is some evidence that GSH is involved in the reduction and thereby 

decondensation of sperm protamine (Perreault et al., 1984, 1988; Calvin et 

al. 1986). The observation that the GSH concentration decreases after 

fertilization is in agreement with this hypothesis (Perreault et al. 1988, 

and Table 7). The more rapid formation of pronuclei in zygotes from aged 

oocytes could then be due to a higher concentration of GSH in these cells. 

However, we measured a lower concentration of GSH in unfertilized aged 

oocytes than in unfertilized unaged oocytes (Table 7). Moreover, there is 
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Figure 3. Fusion of nucleol us-1ike particles in zygotes from aged oocytes. 

(a,b) Male (a) and female (b) pronucleus in the same zygote derived from an aged oocytes. 

The zygote was collected at 3 hrs after artificial insemination (AI), many nucleolus-

1 ike particles are visible in the early zygote, 

(c) Female pronucleus in a zygote collected at 4 hrs after AI. In this more advanced 

zygote the nucleolus-1ike particles are replaced by one distinct nucleolus. 

(Bar represents 22 /tm). 

hardly a detectable decrease of GSH after fertilization of aged oocytes 

(Table 7). Thus it is doubtful that GSH plays a major role in sperm 

chromatin decondensation in at least aged oocytes. In aged oocytes, either 

relatively small amounts of GSH are involved or additional factors, for 

instance synthesis of GSH, play a role. 

In summary, we have developed a procedure that allows in vivo ovulation 

induction and fertilization at defined points of time. This procedure 

provides us with a tool to compare the earliest stages of development in 
vivo of zygotes derived from aged and unaged oocytes. By such a compari

son we hope to obtain more insight in the cellular functions that are 

important for early embryonic development. 

Acknowledgments 
This project was carried out as part of the research of the working 

party "Early Pregnancy" from the Agricultural University Wageningen. 
The authors thank F.A. van der Hoeven for his skilful technical assistan
ce and the technical staff of the Laboratory Animal Centre of the Agricul
tural University for their help with the care and breeding of the mice. We 
are very grateful to Prof. Dr. C. Heyting for critical reading of the 
manuscript. 

REFERENCES 

Adams CE and Chang MC (1962): The effect of delayed mating on fertilization in the rabbit. J 

Exp Zool 151:155-168. 

Bavister BD (1982): Evidence for a role of postovulatory cumulus components in supporting 

fertilizing ability of hamster spermatozoa. J Androl 3:365-372. 



32 

Beaumont HM and Smith AF (1975): Embryonic mortality during the pre- and post-implantât ion 

periods of pregnancy in mature mice after superovulation. J Reprod Fert 45:437-448. 

Blandau RJ (1973): Gamete transport in the female mammal. In: Geiger SR (ed) "Handbook of 

Physiology, vol. II, part 2" Washington DC: American Physiological Society: pp 153-163. 

Bingel AS and Schwartz NB (1969): Timing of LH release and ovulation in the cyclic mouse. J 

Reprod Fert 19:223-229. 

Blandau RJ and Jordan ES (1941): The effect of delayed fertilization on the development of 

the rat ovum. Am J Anat 68:275-288. 

Bomsel-Helmreich 0 (1976): The ageing of gametes, heteroploidy, and embryonic death. Int J 

Gynaecol Obstet 14:98-104. 

Braden AWH (1957): The relationship between the diurnal light cycle and the time of ovulation 

in mice. J Exp Biol 34:177-188. 

Calvin HI and Grosshans K, Blake EJ (1986): Estimation and manipulation of glutathione levels 

in prepuberal mouse ovaries and ova. Gamete Res 14:265-275. 

Dulbecco R and Vogt M (1954): Plaque formation and isolation of pure lines with poliomyelitis 

viruses. J Exp Med 99:167-182. 

Foote RH and Ellington JE (1988): Is a superovulated oocyte normal? Theriogenology 29:111-

123. 

Fowler RF and Edwards RG (1957): Induction of superovulation and pregnancy in mature mice by 

gonadotrophins. J Endocrinol 15:374-384. 

Fraser LR (1979): Rate of fertilization in vitro and subsequent nuclear development as a 

function of the post-ovulatory age of the mouse egg. J Reprod Fert 55:153-160. 

Fraser LR and Ahuja KK (1988): Metabolic and surface events in fertilization. Gamete Res 

20:491-519. 

Gaunt SJ (1985): In vivo and in vitro cultured mouse pre-implantat ion embryos differ in their 

display of a teratocarcinoma cell surface antigen: Possible binding of an oviduct 

factor. J Embryol Exp Morphol 88:55-69. 

Hissin PJ and Hilf R (1976): A fluorometric method for determination of oxidized and reduced 

glutathione in tissues. Anal Biochem 74:214-226. 

Howlett SK and Bolton VN (1985): Sequence and regulation of morphological events during the 

first cell cycle of mouse embryogenesis. J Embryol Exp Morphol 87:175-206. 

Hunter RHF (1967): The effect of delayed insemination on fertilization and early cleavage in 

the pig. J Reprod Fert 13:133-147. 

Hunter RHF (1987): The timing of capacitation in mammalian spermatozoa- a reinterpretation. 

Res Reprod 19:3-4. 

Juetten J and Bavister 8 (1983): Effects of egg ageing on in vitro fertilization and first 

cleavage division in the hamster. Gamete Res 8:219-230. 

Kaufman MH (1973): Parthenogenesis in the mouse. Nature 242:475-476. 

Longo FJ (1981): Changes in the zonae pellucidae and plasmalemmae of ageing mouse eggs. Biol 

Reprod 25:399-411. 

Marston JH and Chang MC (1964): The fertilizable life of ova and their morphology following 

delayed insemination in mature and immature mice. J Exp Zool 155:237-252. 

Mattheij JAM, de Boer P, Dekker B, Rijnders E and Swarts JJM (1986): Administration of human 

chorionic gonadotrophs but not of luteinizing hormone-releasing hormone at pro-oestrus 

or late di-oestrus has a deleterious effect on pregnancy in the rat. Gynaecol Obstet 

Invest 22:84-90. 

Meister A and Anderson ME (1983): Glutathione. Annu Rev Biochem 52: 711-760. 

Nieder GL and Corder CN ( 1983) :Pyruvate and lactate levels in oviducts of cycling, pregnant 

and pseudopregnant mice. Biol Reprod 28:566-574. 

Perreault SD, ßarbee RR and Slott VL (1988): Importance of glutathione in the acquisition and 

maintenance of sperm nuclear decondensing activity in maturing hamster oocytes. Dev Biol 

125:181-186. 

Perreault SD, Wolff RA and Zirkin BR (1984): The role of disulfide bond reduction during 

mammalian sperm nuclear decondensation in v ivo. Dev Biol 101:160-167. 

Riet Jens ICM, Alink GM and Vos RME (1985): The role of glutathione and changes in thiol 

homeostasis in cultured lung cells exposed to ozone. Toxicology 35:207-217. 



33 

Runner MN and Palm JE (1953): Transplantation and survival of unfertilized ova of the mouse 

in relation to post-ovulatory age. J Exp Zool 124:306-316. 

Sakai N and Endo A (1988): Effects of delayed mating on pre-impl antat ion embryos in spon

taneously ovulated mice. Gamete Res 19:381-385. 

Shalgi R, Kaplan R and Kraicer PF (1985): The influence of post-ovulatory age on the rate of 

cleavage in in vitro fertilized rat oocytes. Gamete Res 11:99-106. 

Shaver El and Carr DH (1967): Chromosome abnormalities in rabbit blastocysts following 

delayed fertilization. J Reprod Pert 14:415-420. 

Sherman D, Nelken M and Kraicer PF (1982): Pre-implantat ion losses of zygotes in superovu-

lated immature rats. Gamete Res 6:1-10. 

Smith AL and Lodge JR (1987): Interactions of aged gametes: in vitro fertilization using in 

vitro aged sperm and in v ivo aged ova in the mouse. Gamete Res 16:47-56. 

Thung PJ, Boot LM and Muhlbock 0 (1956): Senile changes in the oestrus cycle and in ovarian 

structure in some inbred strains of mice. Acta Endo 23: 8-32. 

Vickers AD (1969): Delayed fertilization and chromosomal anomalies in mouse embryos. J 

Reprod Fert 20:69-76. 

Webb M, Howlett SK and Maro B (1986): Parthenogenesis and cytoskeletal organization in ageing 

mouse eggs. J Embryol Exp Morphol 95:131-145. 

West JD, Frels WI, Papaioannou VE, Karr JP and Chapman VM 1977): Development of interspecific 

hybrids of Mus. J Embryol Exp Morphol 41:233-243. 

Wolf DP, Hamada M and Inoue M (1977): Kinetics of sperm penetration into and the zona 

reaction of mouse ova inseminated in vitro. J Exp Zool 201:29-36. 



35 

CHAPTER III 

ASYNCHRONY BETWEEN PRONUCLEAR DEVELOPMENT AND PROTEIN SYNTHETIC CHANGES IN 

ZYGOTES OF THE MOUSE DERIVED FROM OOCYTES AGED POST-OVULATION IN VIVO AND 

FERTILIZED IN VIVO 

M.L. Boerjan, C.W. op het Veld and M.B.H. Koopman 

SUMMARY 
The pattern of proteins synthesized by 1-cell embryos derived from 

unaged oocytes and oocytes aged post-ovulation in vivo was analyzed by 
means of 35s-methionine labelling and gel electrophoresis. The oocytes 
were obtained after ovulation induction by an injection of luteinizing 
hormone releasing hormone (LHRH) at pro-oestrus, or after a superovulation 
procedure. The analysis was performed in unfertilized aged and unaged 
secondary oocytes and in zygotes derived from them. 

The patterns of proteins synthesized by aged and unaged LHRH induced 
secondary oocytes and unaged superovulated secondary oocytes were very 
similar: these oocytes showed a predominant synthesis of 35 kDa proteins. 
Zygotes from aged as well as unaged LHRH-induced oocytes also showed a 
predominant synthesis of one group of polypeptides with a relative molecu
lar weight of about 35 kDa. The proteins of the 35 kDa protein complex 
migrated in an upper (u), middle (m) or lower (1) band in 10% Polyacryl
amide SDS-gels, as has been found before (Howlett and Bolton, 1985). The 
(u)- and (m)-band 35 kDa proteins were shown to be synthesized by 
secondary oocytes and during the first cleavage division. Early pronuclear 
zygotes from unaged LHRH-induced oocytes synthesized (u)- and (m)-, but no 
(1)- band 35 kDa proteins. In contrast, part (38%, n=47) of the early 
pronuclear zygotes from aged LHRH induced oocytes did synthesize the (1)-
band 35 kDa proteins. Late pronuclear zygotes from aged as well as unaged 
oocytes synthesized predominantly the (l)-band 35 kDa proteins. However, 
25% (n=24) of late pronuclear zygotes from aged oocytes synthesized (m)-
and (l)-band 35 kDa proteins, in late pronuclear zygotes from unaged 
oocytes this percentage was 5.8% (n=51). Thus, in zygotes from aged 
oocytes at least part of the fertilization dependent changes in the 35 kDa 
protein synthetic pattern are advanced with reference to the morphological 
stage of pronuclear progression. 

Most (80.6%, n=36) of the early pronuclear zygotes from unaged superovu
lated oocytes synthesized (u)- and (m)- band 35 kDa proteins, like early 
pronuclear zygotes from unaged LHRH-induced oocytes. However, 16.7% did 
not synthesize any of the 35 kDa proteins at all. Thus, with respect to 
their protein synthetic pattern of 35 kDa proteins, zygotes from unaged 
superovulated oocytes are deviant from zygotes derived from unaged LHRH-
induced oocytes. 

Key words: post-ovulatory ageing, zygotes, protein synthesis, mouse. 

INTRODUCTION 

In a previous paper we have shown that major morphological changes 

induced by fertilization are accelerated in mouse zygotes derived from 
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oocytes aged post-ovulation in vivo (Boerjan and de Boer, in press). These 

processes include sperm penetration, formation of pronuclei and progres

sion to the first cleavage division. In the present study we have analysed 

whether in vivo post-ovulatory ageing had any effect on the pattern of 

proteins synthesized by secondary oocytes and zygotes. 

In oocytes that were obtained by superovulation, fertilization was 

correlated with changes in the pattern of synthesis (Howlett and Bolton, 

1985) as well as modification of proteins (Howlett, 1986). This was par

ticularly clear for a group of proteins with relative molecular weights of 

about 35 kDa, the 35 kDa protein complex (Howlett and Bolton, 1985). In 

one-dimensional polyacrylamide-SDS gels the proteins of this complex can 

be resolved into three bands, namely an upper (u), middle (m) and lower 

(1) band; these bands probably contain the same polypeptide (Howlett and 

Bolton, 1985), phosphorylated to different extents, with the 1-band 

proteins being the less phosphorylated form (Howlett, 1986). The (u)- and 

(m)- band 35 kDa proteins are synthesized in unfertilized oocytes and 

during metaphase of the first cleavage division. Fertilization triggers 

the resumption of the second meiotic division and a transition from the 

synthesis of (u)- and (m)- band 35 kDa proteins to the synthesis of (1)-

band 35 kDa proteins during the pronuclear stage (Howlett and Bolton, 

1985). 

Aged superovulated oocytes synthesize predominantly (u)-band proteins, 

although the synthesis of (l)-band 35 kDa proteins starts 24 hrs post-

ovulation (Howlett and Bolton, 1985). Thus, some of the protein synthetic 

changes triggered by fertilization also occur after in vivo ageing of 

oocytes, although they take place later than the corresponding changes 

detected in fertilized oocytes (Howlett and Bolton, 1985). Other changes 

are entirely dependent on fertilization and never occur in aged oocytes 

(Howlett and Bolton, 1985). Protein synthesis has not been studied in 

zygotes derived from aged oocytes. We therefore decided to analyse which 

changes occur in the pattern of polypeptides synthesized by fertilized and 

unfertilized aged oocytes that were obtained under conditions resembling 

more closely the natural ovulation conditions than in superovulation 

procedures used in previous studies on protein synthetic activity in 

zygotes of the mouse (Cullen, 1980; Van Blerkom, 1981; Howlett and Bolton, 

1985). For this purpose we made use of luteinizing hormone releasing 

hormone (LHRH) induced ovulation and artificial insemination (AI) (Boerjan 

and de Boer, in press). In contrast to superovulation procedures (mouse: 
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Fowler and Edwards, 1957; Beaumont and Smith, 1975), LHRH induction of 

ovulation does not influence detectably the number of ovulated oocytes or 

the frequency of embryonic death (Boerjan and de Boer, in press). Because 

superovulation itself may be correlated with changes in the protein 

synthetic pattern, at least in maturing sheep oocytes (Moor et al., 1985), 

we have included series of superovulated unaged oocytes and the zygotes 

derived from them, as a control. 

We analyzed the protein synthetic pattern in early and late pronuclear 

zygotes. In zygotes from unaged oocytes we found a transition from the 

synthesis of exclusively (u)- and (m)- band 35 kDa proteins in early 

pronuclear zygotes to the synthesis of predominantly (l)-band proteins in 

late pronuclear zygotes. This is in agreement with Howlett and Bolton 

(1985). In contrast, several early pronuclear zygotes from aged oocytes 

synthesize predominantly the (l)-band 35 kDa proteins. Apparently, post-

ovulatory ageing prior to fertilization causes an asynchrony between 

pronuclear development and modifications of the polypeptides of the 35 kDa 

complex. 

In most superovulated oocytes and early pronuclear zygotes derived from 

them the protein synthetic pattern resembled that of LHRH-induced unaged 

oocytes before and after fertilization respectively. However, part of the 

zygotes from superovulated oocytes did not synthesize any protein of the 

35 kDa complex. 

MATERIALS AND METHODS 
Animals and housing conditions 

Females were random bred Swiss CpbSE(S))mice and males were Fi(CpbSE(S) 
x LIII), with LI 11 being a linkage testing stock from the MRC Radiobiology 
Unit, Chilton, UK 

Housing conditions of animals have been described in detail in a previ
ous paper (Boerjan de Boer, in press). Briefly, mice were kept in two 
separate animal rooms (20 °C, 60% relative humidity) in a 4 hrs dark/20hrs 
light schedule in which the onset of the dark periods differed by 11 hrs. 
In this dark/light schedule ovulation occurs between 3 hrs 45 min and 5 
hrs 15 min after the midpoint of the dark period (Boerjan and de Boer, in 
press). The day of ovulation could be predicted by evaluation of vaginal 
smears (Thung et al. 1956). 

Ovulation induction and superovulation 
Ovulation was induced by an intraperitoneal injection of LHRH (200 
ng/female, Sigma no: L 7134) 8-12 hrs before the expected endogenous LH-
surge (Boerjan and de Boer, in press). Superovulation was induced by an 
intraperitoneal injection with 5 IU PMSG (pregnant mare serum gonadotro
p h ^ ; Gestyl, Organon) at di-oestrus; 48 hrs later these females were 
injected with 7 IU hCG (human chorionic gonadotrophin; Pregnyl, Organon). 
In both systems, ovulation follows 12 hrs after the last injection (LHRH; 
Boerjan and de Boer, in press; hCG; Marston and Chang, 1964). 
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Collection and fertilization in vivo of unaged oocytes and oocytes aged 
post-ovulation for 12 hrs 

Unaged oocytes were collected 13 hrs after LHRH or hCG injection and 
aged secondary oocytes were recovered 24 hrs after LHRH administration. In 
vivo fertilization was performed by artificial insemination (AI) exactly 
as described previously (Boerjan and de Boer, in press). In order to 
obtain embryos derived from aged and unaged oocytes respectively, we 
inseminated females 24 hrs (12 hrs post-ovulation, aged) and 13 hrs (1 hr 
post-ovulation, unaged) after LHRH administration. Superovulated females 
were inseminated 13 hrs (unaged) after the hCG injection. 

We collected early pronuclear zygotes (EPZ) from aged and unaged oocytes 
respectively 5 and 7 hrs after insemination; late pronuclear zygotes (LPZ) 
from aged and unaged oocytes were recovered 13 and 16 hrs post-insemina
tion respectively. These differences in times of collection were intro
duced to correct for the accelerated penetration and progression through 
the first cell cycle in zygotes derived from aged oocytes (Boerjan and de 
Boer, in press). The zygotes from superovulated oocytes were collected 7 
hrs after AI. 

The zygotes were recovered from the ampullae and cumulus cells were 
removed by incubation for 1-2 min in medium M2 with 300 U/ml hyaluronidase 
(Sigma, type I-S bovine testis, no. H3506; M2 according to Fulton and 
Whittingham, 1978). Eggs were then washed 3 times in 1 ml medium M2 and 
cultured under paraffin oil (Fisher 0-119) in medium M16 (Whittingham, 
1971) plus 4 mg/ml BSA (Sigma, fraction V) at 37 °C in humidified air 
with 5% C02-

Labelling with ^S-methionine 
Secondary oocytes and zygotes were labelled for 1 hr in medium M16+BSA 

containing 1 mCi/ml 35$_metnionine (1128 Ci mmol'l, Amersham), washed 3 
times in 2 ml protein free medium M2, and then transferred individually 
to 20 ß\ of sample buffer (Laemmli, 1970). The samples were then heated in 
a boiling waterbath for 3 min. 

Measurement of ^S-methionine incorporation into proteins by TCA preci
pitation 

Incorporation of 35s-methionine into trichloroacetic acid (TCA) insoluble 
proteins was determined in each of the samples as follows: 1.5 /il aliquots 
of sample were brought onto a piece 1 cm' Whatman no. 1 filterpaper and 
dried. The filterpaper was boiled in a 5% TCA solution for 10 min, washed 
in 5% TCA (2x), 100% ethanol (5 min), diethylether (lx) and dried. The 
radioactivity bound to the paper was counted in 1 ml scintillation fluid 
(Instagel II;Hewlett Packard) in a Beekman scintillation counter. 

Electrophoresis and fluorography 
The proteins synthesized by individual eggs were separated on 10% SDS 

Polyacrylamide gels according to Laemmli (1970). Per single lane per gel, 
the same amount of TCA precipitable counts was loaded. A mixture of 
protein molecular weight markers was co-electrophoresed on each gel (^C-
methylated protein mixture, CFA.645; Amersham). Fluorography and radiog
raphy was performed according to Laskey (1977). 

Statistical analysis 
The samples loaded on a particular gel were selected such that we could 

expect (u)-, (m) or (l)-bands to be present in at least one lane of the 
gel. This enabled us to identify the proteins of the 35 kDa protein 
complex in individual oocytes and zygotes. The composition of the 35 kDa 
protein complex was recorded in early pronuclear zygotes (EPZ) and late 
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pronuclear zygotes (LPZ) from aged and unaged oocytes as well as in the 
unfertilized oocytes. This resulted into the classification of zygotes 
into 12 classes depending on the composition of the 35 kDa protein complex 
(Fig. 2). This classification was made for all the experimental groups of 
embryos and tested by 2xC contingency tables. The groups were pooled prior 
to analysis if necessary. 

RESULTS 

35S-methionine labelled proteins from individual oocytes and zygotes 

were separated on 10% Polyacrylamide SDS gels. Fig. 1 shows representative 

fluorographs of these gels. 

The protein synthetic patterns in aged and unaged LHRH-induced secondary 

oocytes, as well as in unaged superovulated secondary oocytes, are similar 

in most respects (Fig. 1A, aged oocytes, lanes 1-3; unaged superovulated 

oocytes, lanes 4-6 and 8-9; unaged oocytes, lanes 10-11). Oocytes and 

zygotes from all experimental groups synthesized predominantly proteins 

of the 35 kDa protein complex, and smaller amounts of several other prote

ins, including a 30 and a 46 kDa polypeptide (cf. Howlett and Bolton, 

1985). The synthesis of the 30 kDa and 46 kDa proteins was very similar in 

oocytes and zygotes from aged and unaged oocytes (Fig. 1A and IB, bands a 

and b ) . 

All aged as well as unaged LHRH induced, and unaged superovulated 

secondary oocytes synthesized predominantly (u)- and (m)- band 35 kDa 

proteins, and no (l)-band proteins (Fig. 1A; 1C, lanes 1-3 and lanes 5-

10). In some of the experiments we found little protein synthetic activity 

in unaged LHRH induced (Fig. 1C, lanes 8-10) and superovulated oocytes 

(Fig. 1C, lanes 5-7). Aged oocytes analyzed at the same day showed higher 

levels of protein synthetic activity (Fig. 1C, lanes 1-3). We have no 

explanation for this difference in protein synthetic activity between 

unaged and aged secondary oocytes. 

In zygotes, we analyzed the protein synthetic patterns at the early and 

late pronuclear stage. The major 35 kDa proteins synthesized by early 

pronuclear zygotes (EPZ) from LHRH induced unaged oocytes were still the 

(u)- and (m)- band 35 kDa proteins (Fig. IB, lanes 9-10; Fig. 1C, lanes 

17-18; Fig. ID, lanes 1-3); 8.9% (n=45) of EPZ from unaged LHRH induced 

oocytes synthesized exclusively (u)-band proteins, whereas 91.1% syn

thesized both (u)- and (m)- band 35 kDa proteins. These zygotes showed no 

synthesis of 1-band 35 kDa protein (Fig. 2a). In contrast, part of the 

early pronuclear zygotes from aged LHRH induced oocytes synthesized (1)-

band 35 kDa proteins: 38.3% (n=47) of these zygotes synthesized only (1)-
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band 35 kDa proteins (Fig. 1C, lane 13 and Fig. ID, lane 9; Fig. 2c); 8.5% 

showed the synthesis of both (m)- and (1)- band 35 kDa proteins and 42.6% 

synthesized (u) and (m)-band 35 kDa proteins (Fig. IB, lane 1; Fig. 1C, 

lanes 11-12; Fig. ID, lane 10-11; Fig. 2c). Furthermore, 8.5% synthesized 

the (l)-band 35 kDa proteins plus a polypeptide with a mobility slightly 

higher than that of the (l)-band proteins. We called these the (l+)-band 

35 kDa proteins (Fig. IB, lanes 3-5; l+-band). Two percent (2.1 %) of the 

EPZ from aged LHRH induced oocytes synthesized none of the 35 kDa proteins 

at all (Fig. 2c). The differences between EPZ from aged and unaged oocytes 

with respect to the synthesis of particular combinations of the polypep

tides of the 35 kDa complex were significant (X^2= 35.9, P<0.001). 

Most (92.2%, n=51 ) of the late pronuclear zygotes (LPZ) from unaged 

oocytes (Fig. IB, lanes 6-8; Fig. ID, lanes 4-7; Fig. 2b) synthesized 

predominantly (1)- or (1) and (1+)- band 35 kDa proteins. The remainder of 

these LPZ synthesized (u) and (m)- band (2%) or (m)- and (l)-band (5.8%) 

kDa proteins (Fig. 2b). Seventy five (75%, n=24) of LPZ from aged oocytes 

synthesized (1)- or (1) and (1+)- band 35 kDa proteins (Fig. 2d) and 25% 

synthesized (m)- and (l)-band proteins (Fig. ID, lanes 12-14). The 

differences between LPZ from aged and unaged oocytes with respect to the 

synthesis of particular combinations of 35 kDa proteins were significant 

(X22=7.4, P<0.025). 

Of the EPZ from unaged superovulated oocytes, collected 7 hrs after AI, 

80.6% (n=36) synthesized (u)- and (m)- band 35 kDa proteins (Fig. 1C, lane 

14); 2.7% of these zygotes synthesized only (l)-band 35 kDa proteins and 

16.7% did not synthesize 35 kDa proteins at all (Fig. 1C, lanes 15 and 

16; Fig. 2e). 

Figure 1. Protein synthetic patterns in aged and unaged LHRH induced or superovulated oocytes 

and in zygotes derived from them. After ^S-methionine labelling of the secondary oocytes or 

zygotes their proteins were separated on 10% Polyacrylamide SDS-gels. This figure shows 

autoradiographs of these gels. Each lane shows the proteins synthesized by one oocyte or 

zygote. 

A.lanes 1-3, unfertilized aged LHRH induced oocytes; lanes 4-6, unfertilized unaged superovu

lated oocytes; lane 7, marker proteins; lanes 8-9, unfertilized unaged oocytes superovu

lated oocytes; lanes 10-11, unfertilized unaged LHRH induced oocytes. 

B.lanes 1-5, early pronuclear zygotes (EPZ) from aged LHRH induced oocytes; lanes 6-8, late 

pronuclear zygotes (LPZ) from unaged LHRH induced oocytes; lanes 9-10, early pronuclear 

zygotes (EPZ) from unaged LHRH induced oocytes. 

C.lanes 1-3, unfertilized LHRH induced aged oocytes; lane 4, marker proteins, lanes 5-7 

unfertilized unaged superovulated oocytes; lanes 8-10 unfertilized LHRH induced unaged 

oocytes; lanes 11-13, EPZ from aged LHRH induced oocytes; lanes 14-16, EPZ from unaged 

superovulated oocytes; lanes 17-18, EPZ from unaged LHRH induced oocytes. 

0.lanes 1-3, EPZ from unaged LHRH induced oocytes ; lanes 4-7, LPZ from unaged LHRH induced 

oocytes; lanes 9-11, EPZ from aged LHRH induced oocytes; lanes 12-14, LPZ from aged LHRH 

induced oocytes. 
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DISCUSSION 

In the present study we analyzed the pattern of proteins synthesized by 

aged and unaged LHRH induced oocytes and by zygotes derived from them. 

The overall patterns of polypeptides synthesized by oocytes and zygotes 

from aged as well as from unaged oocytes are comparable to those syn

thesized by unaged superovulated oocytes and zygotes derived from them 

(Howlett and Bolton, 1985). These authors have described the synthesis of 

three fertilization dependent protein complexes with relative molecular 

weights of 30, 35 and 46 kDa respectively. The electrophoretic mobilities 

of these polypeptides change after fertilization and during progression of 

the first cell cycle as a result of post-translational modifications 

(Howlett and Bolton, 1985; Howlett, 1986). We could recognize the 

synthesis of 30 kDa and 46 kDa polypeptides and a predominant synthesis of 

35 kDa proteins. The synthesis of the 30 kDa and 46 kDa proteins was 

comparable in zygotes from aged and unaged oocytes and we therefore did 

not analyze the synthesis of these proteins in more detail. 

In one-dimensional polyacrylamide-SDS gels the proteins of the 35 kDa 

protein complex could be resolved into four bands, namely an upper (u), 

middle (m), lower (1) band and a (l+)-band. We assume that the (u)-, (m)-

and (1)- band 35 kDa proteins synthesized by oocytes and zygotes were 

similar to the (u)-, (m)- and (l)-band 35 kDa proteins described by 

Howlett and Bolton (1985). In that case, (u)-, (m)- and (l)-band 35 kDa 

proteins are transiational products from one mRNA, phosphorylated to 

different levels, with (l)-band proteins being the less phosphorylated 

form. The nature of the (l + )-band protein synthesized by some of the 

zygotes is not clear. A more detailed study should be performed to 

determine whether this protein is a less phosphorylated form of the (1)-

band 35 kDa proteins. 

Figure 2. Histograms of frequencies of zygotes that synthesized particular combinations of 

the 35 kDa proteins. The newly synthesized proteins were analyzed as described in the 

materials and methods section. The classes have been placed from left to right according to 

their most likely order of appearance during the progression of the first cell cycle as 

described by Howlett and Bolton (1985). 

U. (u)-band 35 kDa proteins; m, (m)-band 35 kDa proteins; 1, (l)-band 35 kDa proteins; 1+, 

(l)-band 35 kDa proteins are synthesized plus a band with a somewhat higher relative mobility 

than the 1-band; no, these zygotes synthesized no proteins of the 35 kDa complex. 
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We did not observe synthesis of (l)-band 35 kDa proteins by fertilized 

LHRH induced and superovulated oocytes: (l)-band 35 kDa proteins were 

synthesized by fertilized oocytes from all experimental groups. We 

therefore conclude that synthesis of the (l)-band 35 kDa proteins is a 

fertilization dependent event, at least in zygotes from random-bred Swiss 

females. Howlett and Bolton (1985) did observe the synthesis of (l)-band 

35 kDa proteins by secondary oocytes from (C57BL.10 x CBA)Fi mice. The 

discrepancy between our observations and those describe by Howlett and 

Bolton (1985) could be ascribed to the use of different mouse strains. 

The overall patterns of proteins synthesized by early pronuclear zygotes 

(EPZ) from aged and unaged LHRH induced oocytes were very similar; the 

same holds for the proteins synthesized by late pronuclear zygotes (LPZ) 

from aged and unaged oocytes. Thus, post-ovulatory ageing prior to 

fertilization had no detectable effect on detectable patterns of proteins 

synthesized by 1-eel 1 embryos. The main differences between zygotes from 

aged and unaged oocytes was observed in the time, with respect to the 

development of the pronucleus, when modifications of 35 kDa proteins 

occur. 

We found, like Howlett and Bolton (1985), a transition from a predomi

nant synthesis of (u)- and (m)-band 35 kDa proteins in EPZ to a predomi

nant synthesis of (l)-band 35 kDa proteins in LPZ. EPZ from unaged 

oocytes, collected 7 hrs post-insemination, synthesized exclusively (u)-

and (m)- band 35 kDa proteins. However, a large proportion (38%) of EPZ 

from aged oocytes, collected 5 hrs post-insemination, synthesized already 

(l)-band 35 kDa proteins. Thus, in zygotes from aged oocytes an asynchrony 

occurred between pronuclear progression and modifications of the 35 kDa 

protein complex. 

(u)- and (m)-band 35 kDa proteins are so-called M-phase proteins: the 

synthesis of these proteins is predominant during metaphase of the second 

meiotic division and the first cleavage division in zygotes from unaged 

superovulated oocytes (Howlett and Bolton, 1985; Howlett, 1986). One LPZ 

(2%) from an unaged oocyte synthesized (u)- and (m)- band 35 kDa proteins. 

Possibly this embryo developed at a slower rate than other remaining LPZ 

from unaged oocytes. 25% of the LPZ from aged oocytes synthesized, besides 

the 1-band 35 kDa proteins, m-band proteins, whereas only 5.8% of the LPZ 

from unaged oocytes did so. Apparently, in some LPZ from aged oocytes the 

synthesis of the metaphase associated (u)- and (m)-band 35 kDa proteins 

had already started, while LPZ from unaged oocytes still synthesized 
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predominantly the interphase associated 1-band 35 kDa protein. 

In summary, in zygotes from aged oocytes some fertilization induced 

changes in the protein synthetic pattern of the 35 kDa protein complex 

are advanced with reference to the developmental stage of the pronucleus. 

It has been suggested that the control of the timing of synthesis and 

modifications of proteins during progression of the first cell cycle is 

•regulated by an oocyte programme and a fertilization programme (Van 

Blerkom, 1981; Johnson et al., 1984), and that the oocyte programme can 

proceed independently from fertilization (Howlett and Bolton, 1985). 

Synthesis of the (u)- and (m)-band 35 kDa proteins by aged LHRH induced 

oocytes (this paper) and by aged superovulated oocytes (Howlett and 

Bolton, 1985) could be controlled by the oocyte programme. This would 

explain why synthesis is continued after ovulation. It would be of 

interest to investigate if the (u)- and (m)- 35 kDa proteins play a role 

in the maintenance of meiotic arrest of the ovulated oocyte and chromosome 

condensation during the first cleavage division. The proteins of the 35 

kDa complex are probably not a member of the histone Hl-family, because 

the majority of the 35 kDa proteins were not acid soluble (data not shown) 

which is a characteristic of histone-like proteins (O.H.J. Destrée, pers. 

comm.; Smith et al., 1988). 

The precocious synthesis of (l)-band 35 kDa proteins by early pronuclear 

zygotes from aged oocytes could be explained as follows: factors involved 

in modifications of (u)- and (m)-band 35 kDa proteins are progressively 

activated after ovulation. Therefore, the modification of (u)- and (m)-

band 35 kDa proteins to (l)-band 35 kDa proteins can occur in early 

pronuclear zygotes from aged oocytes, but not in those from unaged 

oocytes. 

The premature transition to the synthesis of (l)-band 35 kDa protein and 

the early synthesis of M-phase proteins in LPZ from aged oocytes may be 

the cause of a shorter first cell cycle in zygotes from aged oocytes 

(Boerjan and de Boer, in press). This premature protein synthetic 

transition also supports the notion that oocytes aged post-ovulation try 

to catch up with the normal developmental schedule as has been suggested 

by Eichenlaub-Ritter (1986). The study of the first cell cycle in zygotes 

from aged oocytes could provide a model to get more insight into oocyte 

and fertilization programmes and the regulation of the first cleavage 

division. 
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Protein synthesis in oocytes and zygotes after superovulation 

The protein synthetic patterns of the superovulated unaged unfertilized 

oocytes were similar to those of LHRH induced oocytes. 

Most of the EPZ from superovulated unaged oocytes, collected 7 hrs after 

AI, synthesized predominantly the (u)- and (m)-band 35 kDa proteins. 

However, 16.8% of these EPZ did not synthesize any of the proteins of the 

35 kDa complex. This is remarkable since the 35 kDa complex proteins were 

synthesized in all superovulated unfertilized oocytes analyzed. Apparent

ly, fertilization of some superovulated oocytes triggers the morphological 

changes but not the protein synthetic changes of the 35 kDa proteins. 

This observation supports the notion that superovulation procedures 

affect the quality of ovulated oocytes, which is reflected in (1) 

poor embryonic development of embryos derived from them (reviewed by Foote 

and Ellington, 1988; mouse; Beaumont and Smith, 1975); (2) increased 

frequencies of sister-chromatid exchanges (mouse; Elbling and Colot, 1985) 

or (3) premature activation of follicular oocytes (ovine; Moor et al., 

1985). 
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CHAPTER IV 

THE INTEGRITY OF CHROMATIN IN CLEAVAGE STAGE MOUSE EMBRYOS DERIVED FROM 

UNAGED OOCYTES AND OOCYTES AGED POST-OVULATION IN VIVO. 
M.L. Boerjan, L.A. Saris and F.A. van der Hoeven 

SUMMARY 
This paper gives the results of two studies concerning the integrity of 

chromatin in cleavage stage embryos from unaged oocytes and oocytes aged 
post-ovulation in vivo for 12 hrs. In these experiments ovulation was 
induced by an injection of luteinizing hormone releasing hormone (LHRH) at 
pro-oestrus. Artificial insemination was performed at 13 hrs and 24 hrs 
after LHRH in order to obtain embryos derived from unaged and aged (12 
hrs post-ovulation) oocytes respectively. 

In a first study we compared chromosome damage in zygotes from aged and 
unaged oocytes after fertilization with spermatozoa irradiated with 2 Gy 
of X-rays. 

In a second study we analyzed the number of sister-chromatid exchanges 
(SCEs) during the 4th cleavage division. Two-cell embryos collected 36 hrs 
post-insemination were exposed to 10~6 M 5-Bromodeoxyuridine (BrdU) for 
two cell cycles (24 hrs) and chromosome preparations from these embryos 
were stained for sister-chromatid differentiation by means of the fluores
cence plus Giemsa technique. In a control experiment 2-cell embryos 
collected 30 and 36 hrs post-insemination were cultured in the absence of 
BrdU for 66 and 24 hrs respectively. 

Post-ovulatory ageing prior to fertilization affected neither the per
centage of zygotes with chromosome abnormalities nor the number of SCEs 
per metaphase significantly, although both parameters gave a higher read
ing in embryos from aged oocytes. 

Post-ovulatory ageing had an effect on the morphology of male as well as 
female pronuclear chromosomes of the first cleavage metaphase. After 
fertilization with X-irradiated sperm a larger fraction of zygotes from 
aged oocytes (27%) than from unaged oocytes (7%) was arrested at inter
phase. Also, the morphology of male and female pronuclei was affected more 
in zygotes from aged than from unaged oocytes after fertilization with X-
irradiated sperm. This effect was particularly observed for the male 
pronuclear chromosomes of zygotes from aged oocytes. We suggest that 
post-ovulatory alterations in secondary oocytes affect the male and female 
pronuclear chromatin structure after fertilization. These chromatin al
terations could interact with DNA-lesions induced in the spermatozoa prior 
to fertilization, such that development to first cleavage is blocked. 

Delayed fertilization did not disturb the second to fourth cleavage 
divisions in vitro in the absence of BrdU, thereafter development in vitro 
ceased. Cell division was clearly retarded and asynchronous when late 2-
cell stages from aged oocytes were cultured in the presence of 10~6 M 
BrdU. 

In summary, irradiation and BrdU affected adversely the developmental 
capacity of zygotes and of late 2-cell embryos respectively. The develop
mental capacity of embryos derived from aged oocytes was affected more 
than of embryos from unaged oocytes. This could be an indication of an 
increased sensitivity of cleavage stage embryos from aged oocytes to DNA 
insults. 

Key words: zygotes, post-ovulatory ageing, embryonic development, 
X-rays, BrdU, SCEs, mouse. 
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INTRODUCTION 

Delayed fertilization of mouse oocytes results in poor embryonic develop

ment (Marston and Chang, 1964). Cytological studies of mouse oocytes have 

revealed that post-ovulatory ageing affects: (1) the duration of the first 

cell cycle after in vitro (Fraser, 1979) and in vivo (Boerjan and de 

Boer,in press) fertilization; (2) the block to polyspermy (reviewed by 

Szollosi, 1975); (3) the organization of both the cytoskeleton and the 

second meiotic spindle (Szollosi, 1975; Eichenlaub-Ritter et al., 1986; 

Webb et al., 1986) and (4) the formation of the second polar body (Webb et 

al., 1986; O'Neill and Kaufman, 1988). Triploidy has been demonstrated in 

embryos after delayed fertilization in the mouse (Marston and Chang, 1964; 

Vickers, 1969) and rabbit (Austin, 1967). Trisomy and monosomy have not 

been reported after post-ovulatory ageing in the mouse (Vickers, 1969; 

O'Neill and Kaufman, 1988; Zackowski and Martin-Deleon, 1988). 

To our knowledge, the effect of post-ovulatory age of the oocyte on the 

post-fertilization sensitivity to DNA-damage has not been investigated. 

One-cell mouse embryos exhibit unscheduled DNA synthesis (UDS) in response 

to irradiation with ultraviolet light (Brazill and Masui, 1978; Brandriff 

and Pedersen, 1981). Cytogenetical analyses have revealed the influence of 

the oocyte on damage in sperm induced by X-rays prior to fertilization 

(Katoh et al., 1983; Matsuda et al., 1985). In this paper, we describe an 

experiment to compare chromosome damage in zygotes from aged and unaged 

oocytes after fertilization with X-irradiated spermatozoa. Males were 

irradiated with 2 Gy of X-rays and sperm was collected from the cauda 

epididymis within one week after treatment. This time interval was chosen 

for two reasons: (1) in male germ cells there is no UDS during the week 

prior to ejaculation after induction of DNA lesions by X-rays (Sega et 

al., 1978) and (2) the number of dominant lethal mutations that are in

duced by X-irradiation during this period is constant (Bateman, 1958). 

The integrity of chromosomal DNA in preimplantation mouse embryos can 

also be analyzed by studying the number of sister-chromatid exchanges 

(SCEs) during early cleavage divisions (Bennett and Pedersen, 1984; 

Elbling and Colot, 1985; Vogel and Spielmann, 1988). Bennett and Pedersen 

(1984) suggested that, after in vitro fertilization with UV irradiated 

sperm, strain-specific differences in DNA repair by zygotes are reflected 

in variations between strains of the frequency of SCEs. This suggestion 

made us decide to study DNA repair in embryos from aged oocytes by means 

of a comparison of the frequencies of SCEs in embryos derived from aged 
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and unaged oocytes. To visualize sister-chromatid exchanges, we cultured 

late 2-cell stages for two cell cycles (24 hrs) in the presence of 5-

Bromodeoxyuridine (BrdU). 

The experiments carried out in this study are based on a method that was 

recently developed and that enables us to obtain embryos from aged and 

unaged oocytes in a strictly controlled manner; the method implies 

treatment with luteinizing hormone releasing hormone (LHRH) to induce 

ovulation, and artificial insemination (AI) to time fertilization in vivo 
(Boerjan and de Boer, in press). 

Our findings indicate that post-ovulatory ageing before fertilization 

neither significantly affects the percentage of zygotes with chromosome 

abnormalities nor the number of SCEs per metaphase during early cleavage, 

although both parameters gave a higher reading in embryos from aged oocyt

es. We found however, that both irradiation and BrdU affected the develop

mental capacity of zygotes and 2-cell embryos respectively, particularly 

of those derived from aged oocytes. We consider this as an indication of 

an increased sensitivity of cleavage stage embryos from aged oocytes to 

DNA insults. 

MATERIALS AND METHODS 
Animals 

Female mice were random bred Swiss (CpbSE(S)) and male mice were 
Fi(CpbSE(S)*LIII), with LI 11 being a linkage testing stock from the MRC 
Radiobiology Unit, Chilton UK. 

Housing conditions and ovulation induction 
The method of ovulation induction has been described elsewhere (Boerjan 
and de Boer, in press). Briefly, mice were housed in a 20 hrs light/4 hrs 
dark schedule. We used two air-conditioned animal rooms (20 °C, 60% rela
tive humidity) in which the onset of the dark periods differed by 11 hrs. 
The day of ovulation was predicted by evaluation of vaginal smears and 
ovulation was induced by an intraperitoneal injection of 200 ng LHRH 
(luteinizing hormone releasing hormone, Sigma no. L 7134)/female 8-12 hrs 
before the expected endogenous luteinizing hormone (LH) surge, which 
occurs 7-8 hrs before the midpoint of the dark period (Boerjan and de 
Boer, in press). 

Delayed fertilization in vivo 
Fertilization was performed by means of artificial insemination (AI) 

with 50 ß\ of an epididymal sperm suspension collected from X-irradiated 
or from untreated males. Artificial insemination was performed as descri
bed by Boerjan and de Boer (in press). The cauda epididymis from untreated 
males were cut into 3-4 pieces in 0.3 ml Dulbeccos medium (Dulbecco and 
Vogt, 1954) supplemented with bovine serum albumin (BSA, BDH, no. 44004, 3 
mg/ml). Epididymal sperm from X-irradiated males was collected in 0.25 ml 
Dulbeccos medium. This was necessary to obtain 30.10^ moving spermatozoa/-
ml, a prerequisite to achieve appropriate rates of fertilization (90-
100%). 
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Ovulation takes place 12 hrs after LHRH administration (Boerjan and de 
Boer, in press). We inseminated females 13 and 24 hrs after LHRH admini
stration, in order to obtain embryos derived from unaged and aged (for 12 
hrs post-ovulation) oocytes respectively. In a typical experiment, two 
females carrying unaged and two females carrying aged oocytes were insemi
nated with sperm collected from one male. 

X-irradiation of males 
X-irradiated spermatozoa were obtained 2- months old males. The males 

were irradiated with 2 Gy of X-rays (Philips X-ray machine; 250 kV, 10 
mA; internal filter 1.95 mm Al equivalent; external filter 0.6 mm Sn + 
0.25 mm Cu + 1 mm Al ) at a rate of 0.16 Gy/min. Males were used within one 
week of irradiation, because during this period the frequency of dominant 
lethals due to chromosome damage in embryos fertilized with X-irradiated 
sperm is constant (Bateman, 1958; see also Sega and Sotomayor, 1982). 

Collection and culture of zygotes 
We collected the zygotes derived from aged and unaged oocytes in medium 

M2 (Fulton and Whittingham, 1978), 5-6 and 7-8 hrs after artificial in
semination respectively. This time difference was introduced as fertiliza
tion and pronuclear development is faster in aged oocytes than in unaged 
oocytes (Boerjan and de Boer, in press). The cumulus oocyte complexes were 
released from the ampullae, cultured in droplets of medium M16 (Whitting
ham, 1971) in an atmosphere of 5% CO2 in air at 37 °C. Medium M16 was 
supplemented with 4 mg /ml BSA (BDH, no. 44004) and 0.03 /ig/ml colchicine 
(Sigma, no. C 9754), to achieve arrest of the zygotes at metaphase of the 
first cleavage division. The droplets were covered with paraffin oil 
(Fisher Scientific Company, 0-119), that had been equilibrated with medium 
M16 without BSA and colchicine. 

Chromosome preparations 
After a culture period of 19-20 hrs the zygotes from aged oocytes had 

lost their cumulus cells and could be used without further treatment. 
However, the zygotes from unaged oocytes still had some cumulus cells 
which were removed by a brief treatment in hyaluronidase (300 U/ml medium 
M2, Sigma, type I-S bovine testis, no. H 3506). The naked zygotes were 
incubated on ice in a 1% sodium citrate hypotonic solution for 15 min. 
Subsequently chromosome preparations of the first cleavage metaphases were 
made according to Tarkowski (1966). The preparations were preferentially 
stained for constitutive centric heterochromatin (C-banding) by the fol
lowing technique, based on that of Sumner (1972). After slide preparation, 
the chromosomes were post-fixed for 10 min in Carnoy's fixative and 
hydrolysed for 30 min in 0.2 N HCl. Within 3 days of storage at 4 °C, the 
slides were dipped in a 4% solution of Ba(0H)2 for 15 sec at 37 °C, 
thoroughly rinsed in aqua dest. and incubated in 2xSSC for 90-100 min at 
60 °C. The chromosomes were stained in 5% Giemsa in Gurr's buffer pH 6.8 
(BDH, no. 33193) for 20 min. Because of the great variation in chromosome 
morphology and the degree of spreading of metaphases (chromosome overlap, 
stickiness), we subjectively classified the preparations for both 
characteristics as good, fair or poor. Classification was performed 
independently by two persons after agreement about criteria. 

Chromosome abnormalities were classified according to Evans and 0vRior-
dan (1975). 
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Analysis of sister-chromatid exchange (SCE) 
Females that carried embryos from imaged or aged oocytes, were killed 

by cervical dislocation 36 hrs after artificial insemination (AI). The 
embryos were recovered by flushing the oviducts in medium M2 supplemented 
with 4 mg BSA/ml. The numbers of unfertilized, 2-cell (2c), 3-cell (3c) 
and 4-cell (4c) embryos were recorded. The embryos were transferred to 
droplets of medium M16 containing 4 mg BSA/ml and 10~6 M 5-Bromodeoxy-
uridine (BrdU, Sigma no. Bo5002) and cultured for 24 hrs in an atmosphere 
of 5% CO2 in air at 37 °C as described previously. As a control, we 
cultured 2-cell embryos collected 36 hrs after AI without BrdU for 24 hrs. 
Colchicine (1 /zg/ml ) was added 3-4 hrs before the end of culture. 
Chromosome preparations were made according to Tarkowski (1966). Inspecti
on of the flattening specimen in Carnoy's fixative under a phase-contrast 
microscope enabled us to prevent cell loss of these multicellular 
embryos. The slides were stored in the dark for two weeks at 37 C before 
further treatment. Sister-chromatid differentiation in embryonic mitoses 
was achieved according to the method of Elbling and Colot (1985), a 
variant of the Fluorescence Plus Giemsa (FPG) method: the slides were 
immersed in 50 ßq 33258 Hoechst/ml in Dulbeccos medium:water (1:3, pH 
7.4), exposed to UV-light (366 nm; Blak-Ray lamp model UVL-56; Ultra
violet-Prod. Inc, San Gabriel, Calif. USA) at a distance of 12 cm for 7;8 
hrs, rinsed in double distilled water, incubated in 2xSSC pH 7 at 60 °C 
(20 min), rinsed again and stained in 5% Giemsa dissolved in Gurrs' buffer 
pH 6.8 for 20 min. For each embryo we recorded:(1) the number of inter
phase nuclei, (2) the number of metaphases and (3) in those mitoses that 
showed sister-chromatid differentiation the number of SCEs. 

Culture of two-cell embryos without BrdU 
Two cell embryos were collected 30 after AI and cultured in medium M16 

supplemented with 4 mg/ml BSA under paraffin oil (Fisher Scientific 
Company, 0-119, equilibrated with culture medium) for 66 hrs. Numbers of 
nuclei/embryo were determined in spread preparations made according to 
Tarkowski (1966). 

RESULTS 

Development to the first cleavage division in zygotes after fertilization 

with X-irradiated sperm 

First cell cycle progression 

A proportion of zygotes derived from the fertilization of aged and 

unaged oocytes with X-irradiated sperm, exhibited an arrest at pronuclear 

interphase, such an arrest was not shown by control zygotes of either age 

(Table 1). Of the zygotes from aged oocytes and irradiated sperm, 27% 

arrested in interphase, whereas 7% of zygotes from unaged oocytes and 

irradiated sperm were blocked during this phase (X2j=18.8, P<0.001, Table 

1). The male and female pronuclei behaved synchronously with respect to 

progression to metaphase or to pronuclear arrest (Fig. 1). 
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TABLE 1: Development in vitro of aged and unaged secondary oocytes after in vivo fertilization 

with untreated and X-irradiated epididymal sperm. 

no. of After 20 hrs culture 

ferti1ized oocytes no. of zygotes in 

diploid triploid interphase metaphase 

{%) (%) (%) [%) 

1) Fertilizat ion with 

untreated sperm 

Embryos from 

unaged oocytes 

Embryos from 

aged oocytes 

no. of 

females 

10 

9 

no. of 

oocytes 

85 

97 

2) Fertilization with 

X-irradiated sperm 

Embryos from 

unaged oocytes 

Embryos from 

aged oocytes 

19 

20 

80 (94) 1 (1) 

84 (87) 5 (5) 

140 121 (86) 0 (0) 

187 153 (82) 3 (2) 

0 (0) 

1 (1) 

31 (100) 

38 (99) 

9 (7) 112 (93) 

42 (27) 114 (73) 

Metaphase preparations of the first cleavage division 

The metaphase preparations of the separate experimental groups appeared 

to differ with respect to chromosome morphology and the spreading of the 

metaphases. To analyze this further, we categorized the preparations into 

3 classes with respect to chromosome morphology or metaphase spreading: 

good, fair and poor (Figs. 2 and 3 ) . We analyzed the outcome of these 

classifications in 2x3 contingency tables. Table 2 shows the chi-square 

values for tests on independence for the variables "aged", "unaged", "X-

ray" and "control" (= unirradiated) of the male and female pronuclear 

chromosomes. 

The results obtained for zygotes from aged and unaged oocytes differed 

in the following aspects: (1) after fertilization with control sperm the 

morphology of both male and female pronuclear chromosomes was better in 

zygotes from unaged than from aged oocytes (X22=10.7 and X^2=12.5 respec

tively, P<0.005). After fertilization with X-irradiated sperm such a 

difference was only demonstrable for male pronuclear chromosomes (X^2= 

16.4, P<0.001 ,Fig. 1). (2) After fertilization with X-irradiated sperm, 
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male pronuclear metaphase chromosomes in zygotes from unaged oocytes 

spread better than those in zygotes from aged oocytes (X22=10.6, P<0.005). 

X-irradiation of sperm prior to fertilization had an effect on chromosome 

morphology in both male and female pronuclei of zygotes derived from 

unaged oocytes (X22=12.1 and X22=11.2 respectively, P<0.005). Post-

ovulatory ageing and fertilization with X-irradiated sperm had a cumu

lative effect on the morphology of the male pronuclear chromosomes 

(X22=16.4, P<0.001, Fig. 1). 

AI w i th c o n t r o l s p e r m AI w i th X—i r rad ia ted s p e r m 

chromosomes of male pronuclei 

embryos from unaged oocytes 

embryos from aged oocytes 

chromosomes of female pronuclei 

embryos from unaged oocytes 

embryos from aged oocytes 

F i g u r e 1 : Diagrams showing t he e f f e c t o f X - i r r a d i a t e d spermatozoa on t he development t o t he 

m i t o s i s of t he f i r s t c leavage d i v i s i o n in unaged and aged o o c y t e s . ( H | ) zygotes i n p r o n u 

c l e a r a r r e s t (%); (I I) p r e p a r a t i o n s c l a s s i f i e d as good (%); ( I / / / I l p r e p a r a t i o n s c l a s s i f i e d as 

poor (%). 

Chromosome aberrations at metaphase of the first cleavage division 

As discussed in the previous paragraph, a fraction of the metaphase 

preparations from zygotes fertilized with X-irradiated sperm were of poor 

quality and could therefore not be analyzed for chromosome aberrations. 

Thus, 72 (64.3%) first cleavage metaphases of zygotes from unaged oocytes 
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Figure 2: Chromosome spreads of male pronuclei at metaphase of the first mitotic cleavage 

division of embryos derived from oocytes aged post-ovulation for 12 hrs and fertilized with 

X- i rradiated spermatozoa. 

a-b. The chromosomes in these preparations were scored as poor. 

c. The chromosomes in these preparations were scored as good and chromosome aberrations 

could be observed: 2 fragments (thin arrows); 1 dicentric chromosome (double arrows); 1 

marker chromosome (arrow head); 1 presumptive translocation chromosome with 2 C-bands 

(thick arrow); 2 double minutes (small arrows). 
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TABLE 2: Chi-square values of tests on independence between the variables "aged", "unaged**. 

"irradiated", "control" *' for the morphology of the chromosomes and the spreading of the 

metaphases. 

Male pronuclei Female pronuclei 

Morphology of the chromosomes 

"unaged" "aged" "unaged" "aged" 

"X-ray" 16.4 n.s. 

** ** 
12.1 n.s. 11.2 n.s. 

"Control" 10.7** 12.5** 

Spreading of the metaphases 

"unaged" "aged" "unaged" "aged" 

"X-ray" 10.6* n.s. 

7.6* 11.4** n.s. n.s. 

"Control" n.s. n.s. 

Footnotes:1). "aged": zygotes from aged oocytes; "unaged": zygotes from unaged oocytes; 

"X-ray": oocytes fertilized with X-irradiated sperm; "control": 

oocytes fertilized with unirradiated sperm. 

*** P< 0.001; ** P< 0.005; * P< 0.025. 

and 46 (40.3%) metaphases of zygotes from aged oocytes were of sufficient 

quality to determine frequencies of chromosome aberrations. 22% of the 

analyzed metaphases from unaged oocytes exhibited aberrations, whereas 28% 

of the analyzed metaphases from aged oocytes did so (Table 3, X^j= 0.6, 

n.s.). In both embryos from aged and unaged oocytes the observed aberra

tions were mainly of chromosome type (Table 3 ) . One zygote from an aged 

oocyte fertilized with X-irradiated sperm showed 7 chromât id-type aberra

tions. This cell was omitted from the calculation of the mean number of 

aberrations/metaphase which was 0.28 for both the zygotes from unaged and 

aged oocytes. 

Chromosome breaks were observed in the male pronucleus of one embryo 

from an aged oocyte fertilized with control sperm. 
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(a) control 

k 
m f 
good 

(b) X - r a y 

At 
m f 
poor 

m f 
fa ir 

m f 
good 

spreading of metaphases 

(c) control 

hi Ml 

R 80-

(d) X-ray 

m f 
good 

JL 
fair good 

-d) in chromosome prepara-

poor fair good poor 

Figure 3: Quality of chromosome morphology (a-b) and spreading 

tions of first cleavage metaphases. Zygotes derived from unaged (OZ3) a n d a9ed (||) oocytes, 

fertilized with control (a, c) or X-irradiated (b, d) sperm. f= female pronucleus; m= male 

pronucleus. 

TABLE 3: Frequencies of chromosome aberrations in the first cleavage metaphases of unaged and 

post-ovulatory aged oocytes after fertilization with X-irradiated sperm. 

no. of 

ygotes 

no. of 

zygotes 

with chromo

some aberra

tions (%) 

Chromatid tvDe 

gap fragment 

frag 

ment 

Chromosome type 

di- ex- iso-

cen- mi- chan- chroma-

trie nute ge t id gap 

Zygotes from 

unaged oocytes 

Zygotes from 

aged oocytes 

72 

46 

16 (22) 

13 (28) 
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Rate of fertilization 

For both unaged and aged oocytes the rate of fertilization was 10% lower 

after AI with X-irradiated sperm than with untreated (control) sperm 

(Table 1), although we used a concentration of irradiated sperm which was 

1.2 times that of control sperm, in order to achieve a sperm count of at 

least 30.106 healthy looking spermatozoa/ml. Probably, irradiation of the 

male affected the fertilization capacity of sperm in the AI procedure. 

Development of 2-cell embryos in vitro and the analysis of sister-chroma-

tid exchanges 

The in vivo stage of development 36 hrs after artificial insemination AI 

At the time of collection (36 hrs after AI) a greater proportion of 

embryos from aged oocytes had developed beyond the 2-cell stage than those 

derived from unaged oocytes. Besides the expected 2-cell stages, we found 

3.3% 3-cell and 3.7% 4-cell embryos from unaged oocytes. For embryos from 

aged oocytes these percentages were 11.2 and 2.8 respectively (Table 4, 

X22=12.4, P<0.005). 

Post-ovulatory ageing and in vitro development in the absence of BrdU 

After a culture period of 24 hrs in the absence of BrdU, 83% of the 

embryos from aged oocytes and 72% of the embryos from unaged oocytes 

consisted of more than 8 blastomeres (Table 4, x2j=3.3 n.s). Thus, embryos 

from aged and unaged oocytes develop at the same rate during a 24 hrs 

culture period without BrdU. However, 2-cell embryos collected 30 hrs 

after AI and cultured without BrdU for 66 hrs showed poor development when 

derived from aged oocytes (Table 5, Mann-Whitney U test, P<0.05). Embryos 

from unaged oocytes divided at a rate only slightly slower than in vivo 
rates of development (mean number of cells ± s.d./embryo, collected from 

the same stock of mice on afternoon day 4, with day 1 the day of the 

vaginal plug is 46.2 ± 16.6, De Boer et al., submitted). 

Post-ovulatory ageing and in vitro development in the presence of BrdU 

After a culture period of 24 hrs in the presence of 10~6 M BrdU, we ob

served a heterogeneity in cell number/embryo which was greater among em

bryos from aged oocytes than among embryos from unaged oocytes (Table 4 ) : 

about 51% of the embryos from aged oocytes had more than 8 blastomeres, 
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whereas 86% of embryos from unaged oocytes had more than 8 cells (X22=45.8 

P<0.001). Some nuclei in embryos derived from aged oocytes had a 

heteropycnotic appearance. 

We conclude that BrdU and post-ovulatory altered factors interact such 

that the following cleavage divisions of late two-cell embryos are im

paired. 

TABLE 4: In vitro development of embryos derived from aged and unaged oocytes 

collected at 36 hrs after AI and cultured for 24 hrs. 

start of the culture period end of the culture period 

no, of no. of embryos with (60 hrs after AI ) 

fe- oocytes ferti- 2-C1' 3-C1' 4-C1) no. of no. of embryos with 

males 1 ized (7.) (%) (%) (%) cells2' mito- cell no. cell no 

* s.d. sisis.d. <8 It) >8 (%) 
Embryos derived from: 

unaged oocytes 24 242 241 (99) 224 (93) 8 (3) 9 (4) 

aged oocytes 25 269 246 (91) 211 (86) 28 (11) 7 (3) 

Embryos cultured in the presence of BrdU 

Embryos derived from: 

unaged oocytes 15 160 159 (99) 149 (94) 5 (3) 5 (3) 10.4±3.7 1.9±2.5 22 (14) 136 (86) 

aged oocytes 16 177 161 (93) 139 (86) 16 (10) 6 (4) 7.0+3.2 1.3±1.8 75 (49) 79 (51) 

Embryos cultured in the absence of BrdU 

75 (91) 3 (4) 4 (5) 9.6±4.2 1.4*1.9 23 (28) 58 (72) 

72 (85) 12 (14) 1 (1) 9.8±3.5 1.5*1.8 14 (17) 70 (83) 

Footnotes: 1) 2-C; 3-C and 4-C is respectively: 2, 3 and 4 blastomeres/embryo. 

2) total eel 1s=interphases + mitoses 

The number of sister-chromatid exchanges in embryos from unaged and aged 

oocytes 

Although the majority of the embryos from unaged oocytes developed 

beyond the 8-cell stage and thus had passed two DNA-synthetic phases in 

the presence of BrdU, the number of metaphases which demonstrated chroma

tid differentiation was low (Table 6 ) . Sister-chromatid differentiation 

was observed in 28 metaphases of embryos derived from unaged oocytes and 

Embryos derived 

unaged oocytes 

aged oocytes 

from: 

9 
9 

82 
92 

82 (100) 

85 (92) 
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TABLE 5: In vitro development of embryos derived from aged and unaged oocytes collected at 30 hrs 

after artificial insemination and cultured for 66 hrs in the absence of BrdU. 

no . of Blastomeres/embryo 

females embryos after a culture period of 66 hrs 

Embryos from unaged oocytes 4 43 70 ± 9 

Embryos from aged oocytes 3 27 14 ± 15 

in 13 metaphases of aged oocytes (Table 6 ) . The SCE count of broken cells 

has been corrected for the chromosomes missing, under the assumption that 

these chromosomes were of average length and had the average number of 

SCEs per unit length. We found a slightly higher number of SCEs per mito

sis in embryos from aged oocytes (32.5 ± 11.4) than in embryos from unaged 

oocytes (25.8 + 11.0), but this difference is not significant at the 5% 

level (Mann-Whitney U test, 0.05<P<0.1). 

The results of this experiment confirm to some extent the outcome of the 

experiment described in the previous paragraph: post-ovulatory ageing does 

not result in an obvious increase in chromosome damage. However, develop

ment in vitro of two cell embryos from aged oocytes is inhibited in the 

presence of BrdU and, therefore, the number of SCEs could be underestima

ted in metaphases of these embryos. 

TABLE 6: The number of sister chromatid exchanges in cleavage stage embryos derived 

from unaged and aged oocytes cultured for 24 hrs in the presence of BrdU. 

no. of chromatid differentiation in SCE/ 

females fertilized no. of mitosis 

oocytes females embryos metaphases t s.d. 

embryos from unaged oocytes 15 159 7 12 28 25.8 t 11.0 

embryos from aged oocytes 16 155 4 7 13 32.5 ± 11.4 
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DISCUSSION 

In the present study several comparisons were made between embryos from 

aged and unaged oocytes. Firstly, we investigated the behaviour in vitro 
of aged and unaged oocytes that were fertilized in vivo with control and 

X-irradiated sperm. Secondly, we studied embryonic development in vitro of 

late two-cell embryos in the presence and absence of BrdU to determine the 

level of SCEs and the kinetics of the cleavage divisions. 

The first cell cycle with and without irradiated sperm 

First cell cycle progression 

We observed no effect of post-ovulatory ageing on the transition of 

zygotes to metaphase of the first cleavage division when females were 

inseminated with non-irradiated sperm. However, fertilization with sper

matozoa irradiated in vivo with 2 Gy showed an arrest in interphase in 

27% and 7% of zygotes from aged and unaged oocytes respectively. We do not 

know whether this arrest occurs at Gi, S- or G2-phase of the first cell 

cycle. To our knowledge, this is the first indication of a developmental 

arrest that might be the result of DNA-lesions present in sperm prior to 

fertilization. 

A delay in the development to the 2-cell stage has been demonstrated in 

zygotes exposed to X-rays 5 hrs after in vitro fertilization (Matsuda et 

al., 1983) or after irradiation in vivo at the early pronuclear stage with 

a peak of sensitivity at the beginning of S phase (Grinfeld and Jacquet, 

1987). BALB/c zygotes X-irradiated at the beginning of S-phase showed an 

arrest in G2 of the first cell cycle and cleaved for the first time when 

normally the second cleavage division takes place (Grinfeld et al., 1987). 

In these retarded zygotes more chromosomal aberrations were found than in 

irradiated zygotes which cleaved at the right time (Grinfeld and Jacquet, 

1988). Chromosomal aberrations were probably not the only cause of 

developmental delay, because embryos from Fi hybrids (BALB/c x C57BL) were 

not susceptible to G2 arrest when irradiated, despite the high levels of 

irradiation damage shown by these zygotes (Grinsfeld and Jacquet, 1988). 

These authors suggested that modifications in first cell cycle dependent 

protein synthesis and protein phosphorylation could be related to the 

observed G2 arrest (Grinfeld et al., 1988). 

Metaphase preparations of the first cleavage division 

Post-ovulatory ageing had an effect on the morphology of the chromosomes 
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of the male as well as the female pronucleus. Possibly, factors involved 

in chromosome condensation have been changed during the post-ovulatory 

ageing period. We think it likely that these factors are related to the 

meiotic chromosome condensation factors whose condensation activity de

creases with the post-ovulatory age of the secondary oocyte (Czolowska et 

al., 1986). 

We also found a detrimental effect of fertilization with X-irradiated 

sperm on the morphology of male and female pronuclear chromosomes in 

zygotes from unaged oocytes. The deteriorated chromosome morphology shown 

in both pronuclei cannot be explained from X-ray induced DNA lesions 

alone, since DNA-damage was present in the male pronucleus and not in the 

female pronucleus. Matsuda et al. (1988) found that accumulation of UV-

induced DNA-damage resulted in a pulverized appearance of chromosomes, but 

this effect on chromosome morphology only concerned the UV irradiated 

genome. In the present study, the effects of 'ageing' and 'irradiation' 

on chromosome morphology seem to be additive as especially shown in the 

male pronucleus (Fig. 1). 

From our results we suggest that post-ovulatory alterations in the 

secondary oocyte affect the chromatin structure in the male and female 

pronucleus after fertilization. These chromatin alterations could interact 

with DNA-lesions induced in the spermatozoon prior to fertilization, such 

that development to first cleavage is blocked. 

Chromosome aberrations at metaphase of the first cleavage division 

We found no clear effect of post-ovulatory ageing on the frequency of 

zygotes with aberrations after fertilization with X-irradiated sperm. 

However, we could have underestimated the frequency of chromosome aberra

tions because a greater fraction of metaphase preparations from zygotes 

derived from aged oocytes than from unaged oocytes exhibited a fair or 

poor quality. 

The percentages of zygotes from aged and unaged oocytes with chromosome 

aberrations (28 % and 22% respectively) were somewhat higher than the 

15.6% given by Matsuda et al. (1985). These authors probably underesti

mated the number of di-centric chromosomes and fragments since they did 

not apply the C-banding technique, which was used in our study. The per

centage found by us is in agreement with an estimate of dominant lethality 

(25%) of Searle and Beechey (1974) who used a comparable irradiation 

protocol. 
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Development of 2-cell embryos in vitro and the analysis of sister chroma

tid exchanges 

Post-ovulatory ageing and in vitro development 

Our aim was to collect late 2-cell embryos 36 hrs after AI. At this time 

we found a higher percentage of 3-cell embryos from aged oocytes than from 

unaged oocytes (Table 4). In a previous study we have shown that in vivo 
fertilization and progression through the first cell cycle of oocytes 

post-ovulatory aged for 12 hrs was accelerated (Boerjan and de Boer, in 

press). The relative high percentage of 3-cell embryos could be an indica

tion of a more asynchronous cleavage of individual blastomeres within a 

2-cell embryo from an aged oocyte than from an unaged oocyte. 

Late 2-cell embryos from aged and unaged oocytes developed beyond the 8-

cell stage after a 24 hrs culture period in the absence of BrdU. This is 

in agreement with the rate of development in vitro described for embryos 

from other mouse strains (Smith and Johnson, 1986). Embryonic development 

in vitro of 2-cell embryos after delayed insemination was strongly 

impaired during a 66 hrs culture period which started 30 hrs after AI 

(Table 5). Apparently, delayed fertilization does not disturb the first 3-

4 cleavage divisions, but thereafter development ceases. 

Cell division was clearly retarded and asynchronous in embryos from 

aged oocytes when cultured in the presence of 10~6 M BrdU. This could be 

an indication of disturbed DNA replication and transcription on a BrdU 

substituted template, in analogy with the retarded DNA replication on BrdU 

substituted templates shown in proliferating somatic cells (O'Neill et 

al., 1984). Possibly, chromatin structure changes during the post-ovula

tory ageing period (see first part of this discussion) and thereby in

fluences replication. In embryos from unaged oocytes we found no in

hibitory effect of BrdU on development during the 24 hrs culture period. 

From the literature it can be concluded that cell proliferation in 

pre-implantation embryos is very sensitive to BrdU (Garner, 1974! Pollard 

et al., 1976; Vogel and Spielmann, 1988). Garner (1974) found that 2-cell 

embryos undergo at least two cell divisions in the presence of 10~7 to 10" 

6 M BrdU, but these embryos died between the 8-cell and late morula 

stages. 
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The number of sister-chromatid exchanges in embryos from unaged and aged 

oocytes 

The mean number of SCEs/metaphase is not significantly different at the 

5% level in embryos from aged and unaged oocytes. However, the number of 

SCEs could have been underestimated, because chromatid differentiation was 

not shown in all metaphase preparations. Chromatid differentiation can 

only be shown in cells which passed two cycles of DNA replication in the 

presence of BrdU (Perry and Wolff, 1974) and this had not happened in all 

embryos examined. Particularly embryos from aged oocytes developed poorly 

in the presence of BrdU. 

The number of SCEs/metaphase is comparable with that found in a previous 

study on SCEs in morulae and blastocysts of the mouse (Vogel and Spiel-

mann, 1988) but much higher than the data presented by especially Elbling 

and Colot (1985) and by Bennett and Pedersen (1984). The overall conclus

ion from this and the previous paragraph can be formulated as follows: 

mouse oocytes change during the post-ovulatory ageing period such that 

embryos from aged oocytes are more sensitive to DNA-affecting agents like, 

X-rays and BrdU than embryos from unaged oocytes. This sensitivity can be 

linked to the impaired chromosome morphology during first cleavage that 

occurs after post-ovulatory ageing. We suggest that the study of post-

ovulatory ageing prior to fertilization could give more insight into the 

relation between chromatin structure and early embryonic development. 
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CHAPTER V 

A CYTOCHEMICAL STAINING PROCEDURE FOR SUCCINATE DEHYDROGENASE ACTIVITY IN 

PREOVULATORY MOUSE OOCYTES EMBEDDED IN LOW GELLING TEMPERATURE AGAROSE 

M.L. Boerjan, W.M. Baarends and H-J.T. Ruven, 

SUMMARY 
This report describes a cytochemical staining procedure for SDH (suc

cinate dehydrogenase) activity in preovulatory oocytes of the mouse. The 
oocytes were embedded in low gelling temperature agarose and treated with 
caffeine prior to the cytochemical staining in the presence of NBT (nitro 
blue tetrazolium), PMS (phenazinemethosulphate) and succinate. This 
procedure resulted in an intense staining of the oocytes by formazan 
precipitate. The level of aspecific formazan production in the absence of 
succinate was very low. We applied the procedure to oocytes matured in 
vitro and found that the location of the formazan precipitate, as a result 
of SDH activity, correlated well with the location of mitochondria. 

The chromatin of the cytochemically stained oocytes could subsequently 
be analyzed by means of the DNA specific fluorochrome DAPI. In preovulato
ry oocytes, we found a correlation between chromatin organization and the 
location of mitochondria: in oocytes with an intact germinal vesicle the 
mitochondria were uniformly distributed in the cytoplasm as shown by fine 
grains of formazan precipitate. In oocytes with condensed chromatin the 
mitochondria apparently had clustered, because the formazan precipitate 
was more coarse in these cells. 

Key words: oocyte, cytochemical staining, succinate dehydrogenase, caf
feine, low gelling temperature agarose. 

INTRODUCTION 

Mammalian oocytes require nuclear and cytoplasmic maturation for the 

acquisition of full developmental competence. Nuclear maturation or 

resumption of meiosis is characterized by germinal vesicle breakdown and 

development to metaphase II (Austin and Short, 1982). Cytoplasmic matura

tion is characterized by a spatial rearrangement of cellular organelles. 

In the mouse preovulatory oocyte, mitochondria move to the region of spin

dle formation of the first meiotic division (Van Blerkom and Runner, 

1984); in bovine preovulatory oocytes, mitochondria move to the site of 

polar body formation (Hyttel et al., 1986). It has been suggested that 

mitochondria are located or moved to regions of the maturing oocyte which 

are energy (ATP) demanding (Van Blerkom and Runner, 1984). However, little 

is known about the activities of mitochondrial enzymes involved in energy 

metabolism of preovulatory oocytes. In this paper we describe a cytochemi

cal method to determine in individual oocytes the distribution of the 

activity of SDH (succinate dehydrogenase), an enzyme which is located on 

the inner membrane of mitochondria. 
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SDH activity can be localized in tissues by incubation of tissue sec

tions in a medium with a tetrazoliumsalt and succinate as substrate (Pear-

se, 1972). This procedure cannot be applied to whole cells, however, 

because the permeability for NBT (nitro blue tetrazolium) and PMS (phenaz-

ine methosulphate) of the intact inner mitochondrial membrane is limited 

(Hale and Wenzel, 1978). Certain drugs can induce injury of mitochondrial 

membranes and thereby increase the permeability for NBT and PMS. This can 

be measured by an increased rate at which mitochondria stain for SDH 

activity (Acosta and Wenzel, 1975). In this paper we show that treatment 

of oocytes with the drug caffeine prior to cytochemical staining results 

in intensely stained cells by formazan precipitates. 

We applied the procedure to preovulatory oocytes of mice. In a maturati

on experiment in vitro we found that the location of formazan correlated 

well with the location of mitochondria in subsequent stages of maturation. 

MATERIALS AND METHODS 
Collection of primary mouse oocytes 

Female Swiss CpbSE(S) mice were kept in air-conditioned rooms (20 °C, 60% 
relative humidity) with a 4 hrs dark (1:00-5:00 p.m.)/20 hrs light cycle. 
Females were killed by cervical dislocation and the ovaries were rapidly 
removed and freed from adhering tissue in cold (4 °C) 100 mM potassium 
phosphate buffer (Pi buffer, pH 7.4). We isolated primary oocytes as 
follows: the ovaries were rubbed through a nylon-filter (100 /zm mesh, 
Stokvis-Smith BV, Haarlem, The Netherlands) in Pi buffer (4 °C) and 
oocytes with an intact germinal vesicle, free from follicular cells and a 
diameter of 85-100 /an were collected; these oocytes are probably fully 
grown (Pedersen and Peters, 1968). The isolated oocytes were washed in 
fresh Pi buffer (4 °C). 

In vitro maturation of mouse oocytes 
The preovulatory mouse oocytes were collected in Medium-2 (Fulton and 
Whittingham, 1978) supplemented with 4 mg/ml bovine serum albumin (BSA 
fraction V, Sigma; ST. Louis, M0) and cultured in droplets of Medium-16 
(Whittingham, 1971) supplemented with 4 mg/ml BSgA under paraffin oil (0-
119, Fisher Scientific; New Jersey, USA) at 37 °C in an atmosphere of 5% 
CO2 in air. The mouse oocytes were cultured foro6 hrs. 
The cultured cells were washed in Pi buffer (4 °C) before embedding in low 
gelling temperature agarose. 

Embedding of oocytes in low gelling temperature agarose 
Droplets of 8-10 /zl 0.5 % low gelling temperature agarose (Sea plaque 

agarose, FMC Bioproducts; Rockland, USA) in Pi buffer at 28-30 °C, were 
placed on small cover glasses coated with agar. The coating of cover 
glasses is necessary to fix droplets of low gelling temperature agarose to 
the cover glass. The coating was performed as follows: a 0.5% agar (Bacto-
agar, Difco laboratories; Detroit Michigan, USA) solution in water was 
pipetted onto a cover glass (1 ml/cover glass of 24 x 40 mm) and after 
gelling the agar was dried in an incubator at 50 °C. 
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The oocytes were placed in the droplets of low gelling temperature agaro
se, the cover glasses with the oocytes were subsequently transferred to 4 
°C until the agarose had set. The cover glasses with the cells embedded in 
the agarose droplets can be incubated in the incubation media used in the 
cytochemical staining protocol. 

Protocol for cytochemical staining of SDH activity 
1. Incubation of agarose droplets with the cells in freshly prepared 10 mM 

caffeine (BDH ltd; no. 275774, Poole, UK) in Pi-buffer pH 7.4 at 4 °C 
for 45 min. 

2. Preincubation in Pi buffer at 37 °C for 10 min. 
3. The enzyme reaction is carried out at 37 °C for 20 min. The composition 

of the reaction media is summarized in Table 1. Succinate is replaced 
by NaCl in the control medium, to obtain the appropriate osmolarity 
(280-300 mosmol). The incubation medium should be kept in the dark to 
avoid non-enzymatic staining of the oocytes. 

4. The cover glasses with the agarose droplets are rinsed overnight in 
ice-cold Pi buffer in the dark. This washing step is crucial and 
should last at least 10-15 hrs. During this step excess of NBT and 
PMS diffuse out of the cells and agarose. 

TABLE 1: Composition of the reaction mixtures for cytochemical staining of SDH-activity in 

primary mouse oocytes 

control cytochemical 

stain ing of 

SDH activity 

inhibit ion 

SDH with 

malonate 

1 mg/ml 

50 mM 

50 mM 

10 mM 

1 mM 

1 mM 

50 /ig/ml 

of 

NBT1) 

Sodium succinate^ 

Sodium malonate^' 

NaCl 

HEPES buffer3' 

Calcium chloride3' 

Potassium cyanide3' 

PMS4' 

1 mg/ml 

130 mM 

10 mM 

1 mM 

1 mM 

50 lig/m^ 

1 mg/ml 

50 mM 

55 mM 

10 mM 

1 mM 

1 mM 

50 /tg/ml 

Footnotes: 1) NBT (nitro blue tetrazolium, Sigma; grade III, N-6876) was added from a stock 

solution of 5 mg NBT/ml in a mixture of 1 part dimethylformamide and 1 part 

absolute ethanol or pure dimethylformamide. 

2) Sodium succinate (BDH; no. 30219) and sodium malonate (Merck; no. B527) were added 

from stock solutions in deionized water 

3) 20 mM Calcium chloride (CaCl?, Merck; no. 2382) is dissolved in 100 mM 

2-(4(2hydroxyethyl)-l-piperazinyl)-ethansulfonacid (HEPES, Merck; no. 10110) 

pH 7.4 in deionized water; 20 mM potassium cyanide (KCN, Merck; no. 4967) is 

dissolved in 100 mM HEPES pH 7.4. The CaClj solution and the KCN solution are mixed 

(1:1) before adding to the incubation mixture. A precipitate is formed in otherwise 

prepared Hepes buffers. 

4) PMS (N'-methylphenazonium methosulphate, BDH; no. 24014) was added from a stock 

solution of 5 mg/ml in deionized water. 

All stock solutions were prepared shortly before use. 
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After cytochemical staining oocytes were fixed in 0.1 % glutaraldehyde 
(Merck; no. 820603, Darmstadt, FRG) in Pi buffer for 20 min at 4 °C. Thus 
stained and fixed oocytes were then collected from the agarose, transfer
red to slides and mounted in DAPI (4,6-diamidino-2-phenylindole, Sigma; D-
1388) 10 /ug/ml in Pi buffer, pH 7.4. DAPI fluorescence was observed with a 
Zeiss fluorescence microscope (filter combination 487701). 

Preparation of cryosections 
Mouse oocytes cytochemically stained for SDH activity were embedded in 

15% gelatine (Merck; 4078) in Pi buffer; gelatine blocks containing oocy
tes were frozen in liquid N2 and 8 pm sections were cut on a cryostat 
(Reichert-Jung, Heidelberg, FRG) at -20 °C. 

RESULTS 

Fig. la through Fig. lj show representative micrographs of oocytes 

cytochemically stained for SDH activity in preovulatory mouse oocytes. The 

reduction of NBT in the absence of substrate (succinate) was nihil if the 

oocytes were incubated in 10 mM caffeine prior to staining (Fig. la). In 

the presence of succinate the cytoplasm of the oocyte was stained 

intensely (Fig. le) and the dehydrogenase activity was inhibited in the 

presence of the competitive inhibitor of SDH, malonate (Fig. lb). A prein

cubation in 10 mM caffeine was chosen because in oocytes incubated 

without caffeine a formazan precipitate was formed in the absence of 

succinate (Fig. lc) and less formazan was produced in the presence of 

succinate (Fig. Id) compared to the amount of formazan produced in oocytes 

treated with caffeine before the cytochemical staining (Figs. le-j). The 

caffeine treatment gave better results with respect to nonspecific 

reduction of tetrazolium than freezing and thawing of the cells (not 

shown). 

Preovulatory oocytes were heterogeneous with respect to the distribu

tion of formazan precipitate after staining for SDH activity: in some 

oocytes the precipitate was formed in fine grains (Fig. le), in others the 

grains were coarser (Figs, lg and li). The formation of coarser grains was 

correlated with an altered chromatin organization (Figs. If, lh and lj), 

namely disappearance of the nucleolus and/or condensation of chromatin. 

This correlation is shown in detail in Table 2. We classified the 

cytochemically stained oocytes with respect to the clustering of formazan 

precipitate (class 1 = fine grains to class 4 = coarse grains) and also 

scored the chromatin organization of each oocyte (class I = chromatin or

ganized into an intact germinal vesicle and class II = disappearance of 

the nucleolus and/or chromosome condensation). The mean class for forma

zan clustering was 1.9 ± 0.7 for oocytes with intact germinal vesicles 
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(class I), and 2.6 ± 0.8 for oocytes which showed chromatin condensation 

(class II). This difference is significant at the 0.1% level (t = 5.9, 

Student's t test, Snedecor and Cochran, 1967). 

In order to find out whether the distribution of formazan precipitate 

correlates with the distribution of mitochondria, we also performed the 

cytochemical staining for SDH activity after maturation in vitro of mouse 

oocytes with intact germinal vesicles. Before maturation, the formazan 

precipitate is formed throughout the cytoplasm as shown in cryosections 

of cytochemically stained oocytes (Fig 2a). After 6 hrs of maturation in 
vitro most of the oocytes have proceeded to metaphase I (Fig. 2d). In a 

small fraction of these cells the SDH activity is concentrated in a sphere 

around the condensed chromosomes (Fig. 2d). These observations are in good 

agreement with those described by Van Blerkom and Runner (1984) with 

respect to the distribution of mitochondria in maturing oocytes. 

Thus in maturing follicular oocytes an altered chromatin organization 

is accompanied with at least one aspect of cytoplasmic organization, 

namely the distribution of SDH activity, and thus of mitochondria. 

TABLE 2: The relation between chromatin organization and the clustering of formazan precipitate 

in mouse oocytes, cytochemically stained for SDH activity. 

Formazan clustering 

class 1 class 2 class 3 class 4 mean ± s.d. 

no. of (fine) (coarse) 

oocytes n (%) n (%) n (%) n (%) 

CI ass I : 

oocytes with an intact 

germinal vesicle 102 30 (29) 55 (54) 14 (14) 3 (3) 1.9 t 0.7 

Class II: 

oocytes with 

altered chromatin organization1' 87 3 (3) 40 (46) 31 (36) 13 (15) 2.6 ± 0.8 

Footnote: 1. oocytes which showed chromatin condensation and/or disappearance of the nucleolus. 
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Figure 1. Representative micrographs 

of preovulatory oocytes of the mouse 

with intact germinal vesicles after 

cytochemical staining for succinate 

dehydrogenase activity. The oocytes 

were embedded in low gelling tempera

ture agarose and treated with or 

without caffeine (a-b and e-j: 10 mM 

in Pi buffer and c-d: Pi buffer only) 

before the cytochemical staining, (a) 

This oocyte was treated with 10 mM 

caffeine prior to the cytochemical 

staining. No formazan is formed during 

the incubation in absence of substrate 

(succinate) for SDH. (b) This oocyte 

was treated with 10 mM caffeine prior 

to cytochemical staining in the 

presence of substrate (succinate) and 

a competitive inhibitor (malonate). 

(c) This oocyte was treated with Pi 

buffer only prior to cytochemical 

staining in the absence of substrate 

for SOH. Formazan is formed as a 

result of non-SOH activity, (d) This 

oocyte was treated with Pi buffer only 

prior to cytochemical staining in the 

presence of substrate, (e-f ) Caffeine 

treatment was performed prior to 

cytochemical staining in the presence 

of succinate. The oocyte is intensely 

stained with fine grains of formazan 

(e) and demonstrates an intact 

germinal vesicle after DAP I staining 

(f)- (g-j) These oocytes were treated 

with caffeine prior to the cytoche

mical staining in presence of 

succinate. Chromatin clustering (h) 

or chromosome condensation (j) is 

accompanied with the formation of 

coarse grains of formazan precipitate 

(g-i). Bars represent 30 tim. 
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DISCUSSION 

In this report we present a cytochemical procedure for the demonstration 

of SDH activity in intact oocytes from the mouse. The procedure involves 

embedding of unfixed intact oocytes in an isotonic matrix of agarose, and 

permeabilization of cellular and mitochondrial membranes with caffeine 

prior to cytochemical staining. The embedding in isotonic agarose has the 

advantage that several oocytes can be carried together through the 

staining procedure, and that fixation, which interferes with SDH cyto

chemistry (Hansen and Andersen, 1983), is not necessary. However, if 

fixation is omitted, the oocyte and mitochondrial membranes are impermea

ble to NBT as well as PMS (Hale and Wenzel, 1978). We found that in 

oocytes treated with caffeine prior to the cytochemical staining the 

reduction of tetrazdlium to formazan occurred at a higher level than in 

oocytes pre-incubated in phosphate buffer only. Also, caffeine treatment 

of the oocytes resulted in a very low level of reduction of tetrazolium in 

the absence of succinate. Caffeine inhibits, among other effects, Ca2+-

dependent ATPase (Nath and Rebhun, 1976) and probably affects the 

permeability of the inner mitochondrial membrane (GM Alink, personal 

communication). We have also tried to permeabilize the oocyte membranes by 

freezing on dry ice. However, in contrast to Vivarelli et al. (1976) we 

found that frozen and thawed oocytes had a high level of apparent 

dehydrogenase activity in the absence of added substrate (not shown). 

Another procedure to permeabilize oocyte membranes is the incorporation of 

oocytes in a Polyacrylamide matrix. This method has been used successfully 

to determine cytochemically the activity of cytoplasmic enzymes involved 

in carbohydrate metabolism (De Schepper et al., 1985). However, because of 

the high osmolarity of the monomer acrylamide solution, this procedure can 

only be applied after fixation of the oocytes (Van Noorden et al., 1982). 

Under our experimental conditions of SDH staining the oocytes are well 

preserved. The conformation of chromatin could still be analyzed in cells 

cytochemically stained for SDH activity, and the location of formazan 

precipitate was in good agreement with the location of mitochondria in 

matured oocytes (Van Blerkom and Runner, 1984). 

The intrafollicular environment of atretic antral follicles does not 

sustain meiotic arrest in oocytes. Oocytes in these follicles could under

go premature nuclear maturation as shown by the disappearance of the 

nucleolus and chromosome condensation (Centola, 1983 and Himelstein-Braw, 

1976). However, it is not known if this premature nuclear maturation is 
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accompanied by premature cytoplasmic maturation. Our results demonstrate a 

coarser formazan precipitate and therefore clustering of mitochondria in 

mouse oocytes which showed premature chromatin clustering (Figs, lg and 

lh) or chromosome condensation (Fig. li and lj) in presumed pyknotic nu

clei. Apparently in preovulatory mouse oocytes clustering of mitochondria 

is accompanied by an altered chromatin organization. 

In conclusion, preovulatory mouse oocytes could be cytochemically 

stained for SDH activity after incorporation into low gelling temperature 

agarose and treatment with caffeine. This method offers a cytochemical 

procedure to study mitochondrial enzyme activity in individual oocytes in 

relation to the organization of chromatin. 
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Figure 2. Cryosections of mouse oocytes before (a-b) and after (c-d) 6 hrs maturation in 

vitro. The oocytes were cytochemically stained for SDH activity, subsequently sectioned and 

stained with DAP I for chromatin localization, (a-b) A primary oocyte with an intact germinal 

vesicle. The formazan is distributed uniformly over the cytoplasm. After maturation to 

metaphase of the first meiotic division, the formazan is located in the perinuclear region 

(c-d). Bars represent 30 tim. 
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CHAPTER VI 

GENERAL DISCUSSION 

The present study deals with developmental aspects of the first cell 

cycle as a function of the post-ovulation age of mouse oocytes prior to 

fertilization. The use of LHRH to induce ovulation and artificial 

insemination provided us with tools to study the effect of delayed 

insemination on the timing of fertilization events. 

Several molecular and structural alterations occur in post-ovulatory 

aged oocytes and zygotes derived from them. In mouse secondary oocytes 

aged for 24 hrs a change in the carbohydrate composition of the plasma-

membrane has been noted (Longo, 1981). Also, the organization of the 

cytoskeleton changes after post-ovulatory ageing (Webb et al., 1986; 

Eichenlaub-Ritter et al., 1986). Two examples of structural alterations 

are shown in Fig. 1: Figs, la and b are light micrographs, taken with 

Nomarski optics, of zygotes from unaged oocytes (Fig. la) and oocytes aged 

post-ovulation in vivo for 12 hrs (Fig. lb). The zygotes from aged oocytes 

have several cytoplasmic bubbles on their surface (Fig. lb, arrows), 

whereas those from unaged oocytes have not (Fig. la). In a preliminary 

electron microscopical study, we found an ageing related accumulation of 

granular material within the perivitelline space (Fig. Id), whereas the 

perivitell ine space of zygotes from unaged oocytes was clear (Fig. lc). 

The nature of this granular material is not known. It has been suggested 

that cortical granules are discharged prematurely in the perivitell ine 

space during post-ovulatory ageing of hamster oocytes (Longo, 1974). To 

our knowledge, premature discharge of cortical granules has not been 

described earlier in oocytes of the mouse. 

In the present study, the consequences of delayed fertilization in vivo 
for embryonic development were our main interests. Oocytes post-ovulatory 

aged for 12 hrs could be fertilized in vivo, but we found a clear effect 

on the timing of several processes activated by fertilization. The timing 

of the morphological changes after fertilization was analyzed in Chapter 

II and, of the changes in protein synthetic patterns in Chapter III. 

Several of these changes appear to be accelerated after delayed fer

tilization, whereas retardation was not found in any of the processes 

studied. After delayed insemination, sperm penetration was accelerated by 
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1 hr 30 min compared with sperm penetration in unaged oocytes (Chapter 

II). The rate of sperm penetration can be influenced by: (1) the oviductal 

environment, (2) the cumulus mass, (3) the zona pellucida and (4) the 

perivitelline space and the oocyte membrane. For reasons discussed in 

Chapter II, it is unlikely to expect that post-ovulation alterations in 

the oviduct, cumulus mass or zona pellucida are the first responsible 

causes for acceleration of sperm penetration after delayed fertilization. 

Post-ovulation changes in the composition of the oocyte membrane and\or 

the perivitelline space could influence the rate of sperm penetration. It 

would be of interest to investigate the role of the post-ovulatory changed 

oocyte membrane and perivitelline space in the fusion of sperm and oocyte 

membranes during fertilization. 

The rate of progression to the first cleavage division was also 

accelerated by the post-ovulation age of mouse oocytes prior to fertiliza

tion: penetrated aged oocytes needed less time (1 hr 30 min) to reach the 

2-cell stage than zygotes from unaged oocytes. This could be an indication 

that oocytes aged post-ovulatory have lost their control over the meiotic 

arrest and the regulation of the first cell cycle. This is supported by 

the notion of the easy parthenogenetic activation of aged oocytes (O'Neill 

and Kaufman, 1988). Evidence for the accelerated development of zygotes 

from aged oocytes came also from the study of fertilization dependent 

changes in the protein synthetic patterns (Chapter III). This was par

ticularly clear for the synthesis of a group of proteins with molecular 

weights of about 35 kDa, which represent the major newly synthesized 

polypeptides in secondary oocytes and zygotes. The individual proteins of 

the 35 kDa complex are probably the same polypeptide, phosphorylated to 

different extends (Howlett, 1986). One distinguishes upper (u)-, middle 

(m)- and lower (1)- band 35 kDa proteins. We found that a large fraction 

(38.3%) of the early pronuclear zygotes from aged oocytes synthesized (1)-

band 35 kDa proteins; normally these proteins appear in mid- to late 

pronuclear zygotes from unaged oocytes. We conclude that first cell cycle 

dependent modifications of the 35 kDa complex appear to become separated 

from the major morphological changes triggered by fertilization. Thus, 

post-ovulatory ageing prior to fertilization results in an accelerated 

development and decoupling of the sequence of some fertilization events. 

For several reasons we assume that the proteins of the 35 kDa protein 

complex play an important role in processes involved in the progression 

of the first cell cycle of mouse oocytes: (1) the 35 kDa proteins are 
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phosphorylated during the metaphases of the second meiotic division and 

the first cleavage division. (2) Early pronuclear zygotes from aged 

oocytes, which showed an accelerated progression to the first cleavage 

division, synthesized (l)-band 35 kDa proteins. These proteins are 

synthesized later in the pronuclear stage of zygotes from unaged oocytes 

(Chapter III and Howlett and Bolton, 1985). (3) Phosphorylation of (1)-

band 35 kDa proteins is absent in zygotes from BALB/c females arrested in 

G2-phase after X-irradiation of early pronuclear zygotes (Grinfeld et al., 

1988). We suggest that studies concerning post-ovulatory ageing could give 

more insight in the functional role of the 35 kDa proteins. 

Most studies concerning protein synthesis by cleavage stage embryos were 

performed with fertilized superovulated oocytes (Cullen, 1980; Van 

Blerkom, 1981; Howlett and Bolton, 1985). As a control we studied the 

pattern of proteins synthesized by superovulated oocytes and early 

pronuclear zygotes derived from them. The overall pattern of proteins 

synthesized by LHRH induced and superovulated oocytes was similar. 

However, a fraction (16.7%) of morphologically normal zygotes from unaged 

superovulated oocytes did not synthesize the 35 kDa protein complex at 

all. In view of the possible role of 35 kDa proteins during the progres

sion of the first cell cycle, care should be taken when interpreting 

studies of timing of development in zygotes derived from superovulated 

oocytes. 

Zygotes and embryos from aged oocytes showed a higher sensitivity to DNA 

insults than embryos from unaged oocytes (Chapter IV). Fertilization with 

X-irradiated spermatozoa led to an arrest at interphase in 27% and 7% of 

zygotes from aged and unaged oocytes respectively (Chapter IV). From the 

experiments in Chapter IV we tentatively concluded that post-ovulatory 

ageing affected the chromatin structure of the male as well as the female 

pronuclear chromosomes. The results suggest that factors involved in the 

formation of first cleavage metaphase chromosomes alter during the post-

ovulatory ageing period. The ageing related alterations of these factors 

could interact with DNA-lesions induced by X-rays in the spermatozoon 

prior to fertilization, such that the progression to the first cleavage 

division is blocked. It would be of interest to investigate (1) if the 35 

kDa phosphoprotein complex plays a role in the condensation of first 

cleavage chromosomes and (2) if the premature modifications of the 35 kDa 

proteins in zygotes from aged oocytes influence the chromatin structure. 
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Cell proliferation of late 2-cell embryos from aged oocytes, collected 36 

hrs post-insemination, was clearly retarded and asynchronous during the 24 

hrs culture period in the presence of 10~6 M BrdU (Chapter IV). Appa

rently, the development of cleavage stage embryos from aged oocytes is 

more sensitive to DNA insults (X-ray induced modifications, BrdU substitu

tion) than the development of embryos from unaged oocytes. We would like 

to suggest that this sensitivity concerns the chromatin structure and not 

the integrity of the DNA helix, because post-ovulatory ageing prior to 

fertilization affected neither the percentage of chromosome abnormalities 

in oocytes fertilized with X-irradiated spermatozoa, nor the number of 

SCEs per metaphase during the 4th cleavage division (Chapter IV). The 

post-ovulation altered chromatin structure could influence DNA replication 

and transcription. 

In summary, in the present study we have shown that zygotes from aged 

oocytes seem to catch up with the normal developmental schedule, with 

respect to major fertilization dependent morphological and protein 

synthetic changes. This accelerated development of cleavage stage embryos 

from aged oocytes had no significant effect on embryonic development up to 

the 8-cell stage in the absence of DNA insults. However, in the presence 

of DNA insults the developmental capacity of embryos from aged oocytes was 

impaired. It would be of interest to analyze the timing of embryonic 

genome activation in embryos from aged oocytes. Translational activity in 

2-cell embryos appears to be essential for normal development up to the 8-

cell stage including events concerned with the cell-contact-induced 

polarization of blastomeres (Johnson et al., 1984; Kidder and McLachlin, 

1985). Studies of timing of DNA replication activity and of embryonic 

genome activation could possibly provide an insight into the causes of 

poor embryonic development after delayed fertilization. 



83 

Figure 1. 

a. Light micrograph of an unfixed early pronuclear zygote from an unaged oocyte collected 7 

hrs post-insemination (Nomarski optics, bar represents 30 |tm). Arrow head indicates the 

second polar body. 

b. Light micrograph of an unfixed pronuclear zygote from an aged oocyte collected 5 hrs post-

insemination (Nomarski optics, bar represents 30 Jim). Cytoplasmic bubbles can be seen 

(arrow). Arrow head indicates the second polar body. 

Electron micrograph of pronuclear zygote from an unaged oocyte collected 7 hrs post-

insemination (10440x). The perivi tel 1 ine space is clear (arrow). 

Electron micrograph of pronuclear zygote from an aged oocyte collected 5 hrs post-

insemination (10440x). The perivitel1ine space is filled with granular material (arrow). 

Frans de Loos, Dept. of Herd Health and Reproduction, Utrecht University, kindly produced the 

electron micrographs from the zygotes from aged and unaged oocytes. Methodology according to: 

de Loos F et al., 1989. 
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SAMENVATTING 

Dit proefschrift beschrijft de resultaten van experimenten uitgevoerd 

met bevruchte verouderde eicellen. In de natuurlijke situatie zal het 

sperma reeds voor de ovulatie in de eileider aanwezig zijn, omdat 

zoogdieren, behalve de mens, een duidelijk bronstgedrag rondom het moment 

van ovulatie vertonen. De eicel zal dan ook spoedig na ovulatie in de 

eileider bevrucht worden, waarna de embryonale ontwikkeling start. Als het 

sperma te laat in de eileider aankomt veroudert de eicel voordat bevruch

ting plaats vindt. De mens vertoont geen bronstgedrag, het sperma zal in 

sommige gevallen de eileider pas na de ovulatie bereiken, met als gevolg 

dat de de eicel te laat bevrucht wordt. Door het toenemend gebruik van 

kunstmatige inseminatie in de landbouwkundige en de humane praktijk, is de 

kans dat verouderde eicellen bevrucht worden toegenomen. Toepassing van 

kunstmatige inseminatie vereist namelijk een nauwkeurige kennis van het 

ovulatie moment, zodat het sperma de eileider bereikt voordat ovulatie 

plaatsvindt. De verouderde eicel, mits niet te oud, kan nog wel bevrucht 

worden maar de embryonale ontwikkeling verloopt afwijkend, zoals uit het 

vervolg van deze samenvatting zal blijken. 

De in dit proefschrift beschreven experimenten zijn steeds vergelijking

en tussen bevruchte niet verouderde eicellen en eicellen die na de 

ovulatie zijn verouderd voordat ze bevrucht werden. Een voorwaarde voor de 

bestudering van aspecten van eicelveroudering is een exacte kennis van het 

ovulatiemoment. Dit doel werd na enig ontwikkelingswerk bereikt en de 

resultaten hiervan zijn in hoofdstuk II terug te vinden. Bij de muis is de 

dag van ovulatie door middel van vaginale uitstrijkjes vast te stellen. 

Bij de muis ligt het moment van ovulatie vast ten opzichte van het middel

punt van de nacht (donkerperiode): bij Swiss 'outbred' vrouwelijke muizen 

vindt de ovulatie plaats tussen 3 uur 45 min en 5 uur 15 min na het 

middelpunt van de nacht (hoofdstuk II). De piek van het ovulatie in

ducerende luteiniserende hormoon (LH), die 12 uur aan de ovulatie vooraf 

gaat, valt dan 7-8 uur voor het middelpunt van de nacht. Van deze kennis 

is gebruik gemaakt bij het opstellen van een werkzaam model voor de 

bestudering van eicelveroudering: een injectie met luteinizerend hormoon 

releasing hormoon (LHRH, luteinizerend hormoon vrijmakend hormoom) 8-12 

uur voor de verwachte endogene LH piek zorgde ervoor dat in ons systeem de 

ovulatie plaatsvond op een door ons gekozen moment. De methode van 

ovulatie inductie met behulp van LHRH blijkt geen significant nadelig 
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effect te hebben op de embryonale ontwikkeling na de implantatie, gemeten 

op dag 13 van de dracht (dag van dekking is dag 1, hoofdstuk II). Het 

gemiddeld aantal geovuleerde eicellen is vergelijkbaar met dat na spontane 

ovulatie (8-12 per vrouwtje, hoofdstuk II). 

De ovulatie vindt tussen 12 en 13 uur na de LHRH injectie plaats. Wij 

hebben daarom het moment van de kunstmatige inseminatie als volg gekozen: 

13 uur na de LHRH injectie voor de bevruchting van niet verouderde, en 24 

uur na de injectie voor de bevruchting van verouderde eicellen. Toepassing 

van kunstmatige inseminatie was om twee redenen noodzakelijk: (1) om het 

moment van introduceren van het sperma nauwkeurig te bepalen en (2) omdat 

de vrouwtjes 12 uur na de ovulatie geen bronstgedrag meer vertonen en 

daarom niet meer door mannetjes worden gedekt. 

Definitie: embryo's van niet verouderde eicellen zijn verzameld uit 

vrouwtjes die 13 uur na de LHRH injectie zijn geinsemineerd en embryo's 

van verouderde eicellen zijn verzameld uit vrouwtjes die 24 uur na de LHRH 

injectie zijn geinsemineerd. 

De resultaten van de studie naar de gevolgen van ei cel verouder ing voor 

de vroeg embryonale ontwikkeling kunnen als volgt puntsgewijs worden 

samengevat: 

1. Een-cellige embryo's van 12 uur verouderde eicellen hebben, na fixatie 

met Heidenhain's fixatief en kleuring met aceto-orcein, licht micros

copisch een uiterlijk dat vergelijkbaar is met dat van een-cellige 

embryo's van niet verouderde eicellen (hoofdstuk II). Cytoplasma 

blaasjes zijn zichtbaar als Zygoten van 12 uur verouderde eicellen met 

de Nomarski optiek bekeken worden, deze blaasjes zijn niet zichtbaar in 

embryo's van niet verouderde eicellen. 

2. Is de periode tussen ovulatie en inseminatie langer dan 12 uur, dan 

zien bevruchte verouderde eicellen er niet meer normaal uit. Zeer oude 

eicellen hebben na bevruchting vaak een vergroot tweede poollichaampje 

(hoofdstuk II). 

3. Bevruchte verouderde eicellen ontwikkelen zich in vivo tot twee-

cellige embryo's (hoofdstukken II en IV). 

4. In embryo's van verouderde eicellen is de morfologie van de metafase 

chromosomen van de eerste klievingsdeling significant minder mooi dan 

de morfologie van de metafase chromosomen van embryo's van niet 

verouderde eicellen (hoofdstuk IV). 

5. Twee-cellige embryo's van verouderde eicellen, verzameld 36 uur na de 
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inseminatie, groeien gedurende een kweek van 24 uur in een tempo dat 

vergelijkbaar is met dat van 2-cellige embryo's van niet verouderde 

eicellen (hoofdstuk IV). 

6. Embryo's van verouderde eicellen, verzameld 30 uur na de inseminatie, 

ontwikkelen zich slecht gedurende een 66-urige kweek, terwijl de 

embryo's van niet verouderde eicellen, ook 30 uur na de KI verzameld, 

zich goed ontwikkelen gedurende een 66-urige kweek (hoofdstuk IV). 

7. Verouderde eicellen worden sneller bevrucht dan niet verouderde 

eicellen: 1 uur en 45 min na de inseminatie is 50% van de verouderde 

eicellen reeds bevrucht. Voor de niet verouderde eicellen is dit 

percentage bereikt 3 uur en 15 min na de inseminatie (hoofdstuk II). 

8. De verouderde eicellen maken na de bevruchting de eerste cel cyclus 

sneller af: 17 uur en 30 min na de inseminatie van de vrouwtjes die 

verouderde eicellen dragen is 50% van de Zygoten reeds in het 2-cel 

stadium. In de groep van niet verouderde bevruchte eicellen wordt dit 

percentage bereikt na 20 uur en 30 min (hoofdstuk II). Deze versnelde 

ontwikkeling van bevruchte verouderde eicellen wordt bevestigd door het 

tweemaal hogere percentage (14% vs 7%) 3- en 4-cellige embryo's 36 uur 

na de inseminatie verzameld, vergeleken met het percentage 3- en 4-

cellige embryo's van niet verouderde eicellen, eveneens 36 uur na de 

inseminatie verzameld (hoofdstuk IV). 

9. Bevruchte eicellen van zowel verouderde als niet verouderde eicellen 

synthetiseren eiwitten. Na gelelektroforese is het patroon van deze 

gesynthetiseerde eiwitten voor beide proefgroepen vergelijkbaar. De 

beide proefgroepen synthetiseren relatief veel eiwitten met een 

molecuul gewicht van ongeveer 35 kDa (het 35 kDa complex) (hoofdstuk 

III). 

10. Het 35 kDa eiwitcomplex bestaat uit een upper (u)-, middle (m)- en een 

lower (l)-band: de (u)- en (m)- band eiwitten worden door onbevruchte 

en pas bevruchte eicellen gesynthetiseerd. In een later stadium van de 

ontwikkeling, maar voordat eerste klievingsdeling plaats vindt, maken 

een-cellige embryo's de (l)-band eiwitten (hoofdstuk III). 

11. 38% van de een-cellige embryo's van verouderde eicellen, die zich 

vroeg in het pronucleus stadium bevinden (5 uur na de inseminatie 

verzameld) synthetiseren de (l)-band van het 35 kDa eiwitcomplex. Deze 

vorm van het 35 kDa complex wordt door jonge Zygoten (7 uur na de 

inseminatie verzameld) van niet verouderde eicellen nog niet gemaakt 

(hoofdstuk III). 
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12. Na bevruchting met X-ray bestraald sperma, groeit 27% van de een

cellige embryo's van verouderde eicellen niet door tot het twee-cel 

stadium. Voor embryo's van niet verouderde eicellen is dit percentage 

7% (hoofdstuk IV). 

13. De mannelijke pronucleus chromosomen in een-cellige embryo's van 

verouderde eicellen bevrucht met Röntgen bestraald sperma hebben een 

slechte morfologie (hoofdstuk IV). 

14. In één-cellige embryo's van verouderde en niet verouderde eicellen, 

bevrucht met X-ray bestraald sperma, is het aantal chromosomen met 

zichtbare schade niet significant verschillend (hoofdstuk IV). 

15. In een 24 uurs kweek, in aanwezigheid van de thymidine analoog 5-

Bromodeoxyuridine (BrdU)«, groeien 2- cell ige embryo's van verouderde 

eicellen, verzameld 36 uur na de inseminatie, slechter dan twee-cellige 

embryo's van niet verouderde eicellen (hoofdstuk IV). 

16. Het aantal zuster Chromatide uitwisselingen tijdens de 4de klievings

deling is niet significant verschillend in embryo's van verouderde en 

niet verouderde embryo's (hoofdstuk IV). 

17. Er is een cytochemische kleuringsmethode voor het aantonen van de 

activiteit van het mitochondriale enzym succinaat dehydrogenase in 

individuele eicellen uit het ovarium is ontwikkeld (hoofdstuk V ) . Met 

behulp van deze methode kan de localisatie van de mitochondrien in 

ovariele eicellen aangetoond worden. Helaas bleek deze methode niet 

bruikbaar voor het aantonen van SDH activiteit in geovuleerde en 

bevruchte eicellen. 
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voeren. Hiervoor mijn dank. 

Hans de Jong wil ik op deze plaats bedanken, omdat hij altijd bereid was 

een oplossing te vinden voor een vastgelopen computerprogramma. 

De heren Busscher en Verhoef van de Radiologische Dienst TNO Arnhem dank 

ik voor het bedienen van de X-ray bestralingsapparatuur. 

Christa Heyting is in laatste instantie bij het nu gepresenteerde 

onderzoek betrokken. Samen met Peter de Boer heeft zij veel tijd besteed 

aan de redactie van dit proefschrift. Ik ben hen beide hiervoor zeer 

erkentelijk. 

Tot slot wil ik alle medewerkers van de Vakgroep Erfelijkheidsleer 

bedanken voor de plezierige werksfeer. 
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