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STELLINGEN 

De konklusies van het onderzoek van Stuckey and McCarty (1984) betreffende de 
methanogene toxiciteit van aangebrande eiwitten en suikers zijn zeer aanvechtbaar. 

Stuckey and McCarty. 1984. Wat. Res. 18: 1343-1353. 

Aan de octrooiaanvraag (European Patent Application # 85850078.8, 1985) betreffende de 
vermindering van de methanogene toxiciteit van vetzuren door middel van de toevoeging 
van calcium, ijzer of aluminium, worden zeer ten onrechte rechten ontleend aangezien 
de methode reeds in 1981 uitgebreid is gepubliceerd. 

Hanaki et al. 1981. Biotechnol. Bioengineer. 23: 1591-1610. 

3. Naast lignine moeten vooral flavonoiden uit naalden, bladeren en de bast van bomen 
worden beschouwd als belangrijke precursors van humus. 

Hurst and Burges. 1967. Soil Biochemistry Marcel Dekker Inc., N.Y. pp. 260-286. 

4. Noch de Nederlandse noch de Amerikaanse wetgeving betreffende de lozing van 
afvalwater beschermt het leefmilieu in voldoende mate tegen het vrijkomen van toxische 
verbindingen. 

Het voorstel van de kunstmestfabrikant Kemira, om d.m.v. toevoeging van salpeterzuur 
aan mest de luchtverontreiniging met ammoniak te verminderen, kan worden aangemerkt 
als een typisch voorbeeld van een werkwijze, waarbij de oplossing van één 
milieuprobleem een ander veroorzaakt. 

Volkskrant 3 Juni, 1989 b.z. 19 

Gezien de unieke rol die schimmels in de natuur spelen bij de afbraak van complexe 
polyfenolen moet meer aandacht worden besteed aan de toepassingsmogelijkheden van 
deze microorganismen in de milieubiotechnologie. 

7. Tanninen zijn slechts effectieve beschermers van kernhout tegen schimmelaantasting, 
voor zolang ze niet zijn geautoöxideerd. 

Lyr. 1962. Nature 195: 289-290. 

Overplukken wordt vaak genoemd als de oorzaak voor het verdwijnen van paddestoelen 
in Nederland. Ontbossing en verontreiniging spelen waarschijnlijk een grotere rol. 

Het publiekelijke openbaar maken van een z.g. wetenschappelijke of technische 
doorbraak, zonder dat daarbij een controleerbaar basis wordt verstrekt in de vorm van 
toegankelijke wetenschappelijke publikaties of octrooien, is een weinig elegante 
handelswijze van de zijde van een wetenschappelijke instelling. 

LUW en Ecotechniek, B.V. NOS Journal, 20 Juni, 1989; en de brochure "De Voordelen 
van het Mestoverschot" 



10. De vaste fraktie van anaëroob uitgegiste mest mag niet worden aangemerkt als "single 
cell protein". 

LUW en Ecotechniek, de brochure "De Voordelen van het Mestoverschot" 

11. Het selektieve krimp en groei beleid van Nederlandse universiteiten, dat onder andere is 
bedoeld om een meer markt gerichte universiteit te krijgen, brengt het grote gevaar met 
zich mee, dat de universiteit steeds meer als een goedkoop adviesbureau gaat 
functioneren voor het bedrijfsleven. 

12. De risicos van atoomenergie worden ook in een z.g. vrije markteconomie - uiteindelijk 
grotendeels afgewenteld op de totale gemeenschap, aangezien geen verzekerings
maatschappij de gevolgen van een nucleair ongeluk durft te dekken. 

13. Het was in Spanje gedurende de middeleeuwen al mogelijk een telegram te versturen. 

Stellingen behorende bij het proefschrift "The Effect of Tannic Compounds on Anaerobic 
Wastewater Treatment" van J. A. Field. 

Wageningen, 6 oktober 1989 
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Abstract 

Field, J. A. (1989) The Effect of Tannic Compounds on Anaerobic Wastewater Treatment. 
Doctoral Thesis. Wageningen Agricultural University. Wageningen, The Netherlands. 

Anaerobic wastewater treatment is an alternative to the conventional aerobic treatment 
processes for the removal of easily biodegradable organic matter in medium to high strength 
industrial wastestreams. Anaerobic treatment has several advantages, however one important 
disadvantage is the high sensitivity of the anaerobic bacteria (ie. methanogenic bacteria) to 
toxic compounds. The anaerobic technologies were initially developed for the treatment of 
non-toxic organic wastewaters. As the technology matured, the limits of its application to 
toxic wastewaters were studied. Past research has been mostly directed towards the toxic 
effects of compounds introduced by man into the industrial process rather than natural 
constituents present in agricultural wastewaters. 

This dissertation investigates the role of natural polar phenolics (ie. tannins and related 
compounds) on anaerobic digestion. Tannins are important constituents of certain types of 
agro-industrial wastewaters such as vegetable tannery effluent; olive oil mill effluent; wine 
vinasse; coffee pulp water; debarking wastewater; and masonite (fiber board) wastewater. A 
distinct feature of highly hydroxylated phenolics is that they are readily oxidized to darkly 
colored humic compounds. Such transformations can generate products which differ in 
toxicity and biodegradability compared to the original tannic compounds. Industrial process 
waters are often exposed to conditions which promote phenol oxidation, therefore the role 
of humus forming processes was a major consideration included in this study. 

The toxicity of tannin compounds to anaerobic bacteria was determined. The 
concentration of tannins found to cause 50% inhibition to methanogenic bacteria was 350 and 
700 mg L~' of condensed and hydrolyzable tannins, respectively. The condensed tannins were 
the major inhibitors present in wastewater derived from the debarking of wood at pulping 
factories. 

The effects of oxidation treatments on the methanogenic toxicity of phenolic compounds 
was evaluated. The initial polymerization of monomers led to a higher toxicity due to an 
increase in tannic qualities. The oligomers formed have stronger hydrogen bonds with 
proteins than the monomers. They are thus more likely to react with the functional 
proteins of bacteria. If the polymerization was continued, a decrease in toxicity occurred 
due to a lower effectiveness of high MW compounds to penetrate bacteria. 

These results indicated that toxic oligomeric tannins can be detoxified by oxidative 
polymerization. The application of autoxidation (aeration at a high pH) as a pretreatment 
prior to anaerobic digestion of tannin containing wastewater was tested. Debarking 
wastewaters of coniferous trees were successfully detoxified by autoxidation pretreatments. 
The tannins were converted to poorly degradable humic compounds that were non-toxic. 
During anaerobic treatment, no inhibition occurred and the fermentable fraction of the 
wastewater was converted to methane. The high MW humic products were non-toxic for 
aquatic organisms and thus could be discharged to the surface waters with considerably less 
environmental impact as compared to the unoxidized tannins. 

Up to date, methods of combatting toxic organic pollutants have been largely based on 
microbial degradation or physical-chemical removal. A viable alternative approach to these 
methods that potentially is applicable for certain aromatic compounds, could be 
polymerizing these inhibitory compounds to non-toxic humus. The humus forming process is a 
natural mechanism in the forest environment that detoxifies tannic compounds before such 
compounds are released into the surface waters. The humus forming reactions were imitated 
in this study and were an effective method for eliminating the environmental impact of 
tannins in wastewater. Research should be continued to determine the extent to which 
humus forming processes can be applied for the treatment of other toxic organic contaminants. 
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The Effect of Tannic Compounds on Anaerobic 
Wastewater Treatment: General Introduction. 



THE EFFECT OF TANNIC COMPOUNDS 
ON ANAEROBIC WASTEWATER TREATMENT: 

GENERAL INTRODUCTION 

J. A. Field 

Dept. of Water Pollution Control 
Wageningen Agricultural University 
Bomenweg 2, 6703 HD, Wageningen 

The Netherlands 

ABSTRACT - Little is known about the effect of tannic compounds on anaerobic wastewater 
treatment. The tannins, in any case are important constituents of certain types of agro-
industrial wastewaters. Since the toxicity of tannins to enzymes and aerobic microorganisms 
has been reported, their inhibitory effects on the bacteria involved in the anaerobic 
treatment process should be considered. A distinct characteristic of tannic and related 
monomeric phenolic compounds is their high susceptibility to become polymerized to darkly 
colored humic compounds upon exposure to air during the handling of process waters and 
wastewaters. Reactions which cause the oxidative polymerization potentially can effect the 
biodegradability and toxicity of the phenolic fraction. The literature reveals that the 
anaerobic biodegradability of phenolic compounds decreases with the increasing molecular 
weights. Therefore the humus forming reactions are expected to decrease the 
biodegradability of the phenolic fraction during subsequent anaerobic wastewater treatment. 
The oxidative polymerization of monomeric phenols to tannic substances has been reported 
to increase the toxicity of the phenols towards enzymes and microorganisms. Whereas, in 
contrast, the polymerization of tannins to humic-like compounds has been shown to decrease 
the inhibitory characteristics. The possibility that the humus forming reactions can be 
imitated in order to detoxify tannins in wastewater is discussed. 

1. BACKGROUND 

The anaerobic technologies of wastewater treatment are an alternative to aerobic 
biological treatment processes for the removal of easily biodegradable organic matter in 
medium to high strength industrial waste streams. The advantages of the anaerobic approach 
can be outlined as follows (McCarty, 1964a; Lettinga et al., 1980; Speece, 1983): (1) 
anaerobic bacteria have a lower cell yield than aerobic bacteria, thus anaerobic technologies 
are responsible for less excess sludge production; (2) aerobic bacteria must be supplied with 
air, thus operating costs associated with aeration are eliminated; (3) anaerobic bacteria can 
be immobilized in dense biofilms, enabling the application of more compact wastewater 
treatment facilities; (4) the production of a methane gas, a fuel which can be utilized by 
industry to lower energy costs. The anaerobic treatment alternative, however has several 
important disadvantageous. Namely, the higher sensitivity of the most important bacteria 
involved, methanogenic bacteria, to toxic compounds. Additionally, the slow growth rate of 
methane bacteria, which implies long recovery times are required if the treatment process is 
severely upset. 

The anaerobic method was initially developed for the treatment of non-toxic organic 
wastewaters of the food industry. As the technology matured, the limits of its application to 
toxic wastewaters have been studied. The effects of ammonia, sulfur compounds, salt, heavy 
metals, volatile fatty acids, long chain fatty acids, surfactants, antibiotics, cyanide, 
halogenated hydrocarbons, formaldehyde and furfurals have received considerable research 
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attention (see Table 1). From these studies, it appears that the presence of such toxic 
compounds does not necessarily rule out the possibility for anaerobic treatment (McCarty, 
1964b; Yang et al., 1979; Speece, 1983): in many cases, subtoxic concentrations of such 
compounds can be tolerated; anaerobic bacteria can adapt to toxic concentrations; the toxic 
compounds may undergo transformations by anaerobic bacteria that lead to compounds of 
decreased toxicity; and for certain toxins, adjusting the environmental conditions (for 
example pH) can minimize the inhibiting effect. 

Past research has been mostly directed towards the toxic effects of compounds introduced 
by man into the industrial process rather than the natural constituents of the agricultural 
feedstocks which ultimately are extracted into the wastewater. Perhaps the natural phenolic 
constituents of plants (lignin, tannins) deserve more attention since these are abundant in 
agricultural wastewaters, especially from the forest industries. Since the purpose of tannins 
in plants is to inhibit pathogenic microorganisms, the possibility that they could disturb the 
efficiency of anaerobic bacteria cannot be overlooked (White, 1957). Therefore tannic 
compounds should be the first of the natural phenolic constituents to be studied further. 

A distinct feature of tannic compounds is that they are readily oxidized to darkly colored 
humic compounds. Such transformations can produce products which differ in toxicity and 
biodegradability compared to the original tannic compounds present in the industrial 
feedstocks. Industrial process waters are often exposed to conditions which promote phenol 
oxidation, therefore the role of the humus forming processes is an essential consideration 
that needs to be included in the study of tannins. In some cases, the humus forming 
reactions are an unavoidable consequence inherent to a specific industrial process; however 
in other cases, the humus forming reactions can be applied as part of the overall 
wastewater treatment scheme. 

Table 1 . Studies on the Nethanogenic Toxicity of Amonia, Sulfur Confounds, Sa l t , Heavy 

Metals, Vo la t i l e Fatty Acids, Long Chain Fatty Acids, Surfactants, Ant ibiot ics, 

Cyanide, Halogenated Hydrocarbons, Foraldehyde and Furfurals. 

Compounds References 

ammonia 3, 5, 174, 176, 178, 216, 239, 303 

sulfur compounds 70, 137, 154, 175, 181, 224, 239, 248, 250 

salt 184, 185, 212, 251 

heavy metals 99, 138, 149, 191, 221, 222, 223, 226, 239, 242, 273 

volatile fatty acids 10, 54, 138, 179, 180, 211 

long chain fatty acids 54, 116, 177, 252 

surfactants 238, 283, 310 

antibiotics 29, 42, 322 

cyanide 79, 239, 269, 323 

halogenated hydrocarbons 22, 54, 134, 182, 239, 256, 277, 288, 301, 320, 323, 323 

formaldehyde 54, 134, 239, 241, 322 

furfurals 23, 325 



2. SOURCES AND CHEMISTRY OF TANNINS 

Tannins are polar phenolic compounds in plant extracts that are recognized based on 
their reactivity with proteins or related polyamide polymers. Tannins that are used by the 
tanning industry normally are oligomeric, ranging in MW's from 500 to 3000 g mole"1 (White, 
1957). However, tannins up to MW of 5000 to 28,000 g mole"1 have been described (Jones 
et al., 1976). Since tannins are polar compounds, they are easily extracted into the process 
water (ie. eventually the wastewater) by contact of the feedstocks with water. 

Hydrolyzable tannins, which occur only in the wood or leaves of very specific species of 
woody plants, are polyesters of trihydroxybenzoic acid (gallic acid) and/or a dimer, ellagic 
acid (Figure 1). They are readily hydrolyzed by acid or enzymes (Haslam, 1966). Since 
hydrolyzable tannins are not common to a wide variety of agricultural products, their 
presence in wastewater would be limited to that of vegetable tanneries which use extracts 
of rather uncommon plants that contain hydrolyzable tannins. However, it should be stated 
that some tanneries may use condensed tannins instead. 

Condensed tannins are polymers of flavonoid type monomers that are linked together by 
covalent bonds between the C4 and C8 (Figure 1), that are not readily hydrolyzed (Gupta 
and Haslam, 1980; Haslam, 1966; Porter, 1974; Karchesy and Hemmingway, 1980; Hemingway 
et al., 1982). The procyanidins, polymers of catechins, are perhaps the most classic example 
of condensed tannins. The condensed tannins are more widespread than hydrolyzable tannins, 
as they are common to fruits (grapes and apples), tree bark, olives, beans, coffee and 
sorghum grains. The concentration of tannins in various feedstocks are indicated in Table 2. 
The presence of condensed tannins would be expected in the wastes or wastewaters 
generated from the feedstocks listed in Table 2, namely apple pulp, cannery wastewaters 
(apples and beans), sorghum and wine vinasses, coffee pulping wastewaters, edible oil 
industry wastewater (olives) and debarking wastewaters (paper industry). The tannin 
concentrations listed are quite high, often the tannins account for 1 to 10% of the feedstock 
dry weight or one to several grams per liter in liquid samples. Therefore, the wastewaters 
originating from tannin containing feedstocks could potentially contain significantly high 
concentrations of tannins. In certain cases, like debarking wastewater, the tannin fraction is 
estimated to be responsible for 50% or more of the COD, based on the available literature 
data concerning the composition of bark extracts (Hegert et al, 1965; Karchesy and 
Hemmingway, 1980; Markham and Porter, 1973; Updegraff and Grant, 1975). 

Since lignin is also a natural polymeric constituent of plants, consideration should be 
given to its chemistry for several reasons. Firstly, the structural features of lignin should 
be highlighted that are distinct from tannins. Secondly, lignin also plays an important role 
in the humus forming processes. Lignins are complex polymers found in wood and grasses. 
The lignin content of wood generally ranges from 17 to 30% (Higuchi, 1980; Fengel and 
Wegner, 1984). The content in various grasses (straw) ranges from 8 to 21% (Misra, 1980; 
Hartley, 1983; Lindberg et al., 1984). The monomeric units of lignin are primarily coniferyl, 
sinapyl and p-coumaryl alcohols (Higuchi, 1980), which are illustrated in Figure 2. These 
monomers are connected by a variety of intermonomeric bonds. The most predominant 
intermonomeric linkages are the ether bonds (ß-O-4, see Figure 2) which connect the side 
chain with the ring (Glasser and Kelley, 1987). Various direct carbon-to-carbon bonds 
between two side chains, between two rings or between the side chain and the ring, are 
responsible for most of the other intermonomeric connections. Lignins are heterogeneous 
mixtures of high MW polymers ranging from 1,000 to greater than 100,000 g mole" . The 
averaged MW values reported for isolated lignin extracts range from 7,000 to 85,000 
depending on the isolation method and source (Fengel and Wegner, 1984). 

Due to its high content of methoxy groups, lignin is an apolar polymer. Therefore simple 
contact between lignocellulosic feedstocks and water is not sufficient to extract lignin in 
the process water. However during chemical pulping and bleaching of lignocellulose, alkali 
conditions are employed to partially depolymerize and modify the native lignin in order to 
solubilize it; thereby extracting a considerable amount of lignin in forest industry process 
waters (Forss, 1982; NEERI, 1986; Sagfors and Stark, 1988; Lindstorm and Osterberg, 1984; 
Osterberg and Lindstrom, 1985; Priha, 1985). 
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Under certain conditions, the modifications of lignin can include the demethylization of 
methoxy groups or cleavage of ether bonds resulting in lignins enriched in phenolic 
hydroxyl groups. Such lignins have tannic properties since they are capable of precipitating 
proteins (Augustin and Puis, 1982; Bryce, 1980) and they are susceptible to the 
polymerization reactions of the humus forming process (Martin and Haider, 1980; Salkinoja-
Salonen, 1980; Huttermann et al., 1980). 

3. HUMUS FORMING PROCESSES 

Humic compounds can be regarded as poorly biodegradable darkly colored high MW 
compounds composed of enzymatically or autoxidatively polymerized phenolic units 
(Stevenson, 1982; Martin et al., 1972; Hurst and Burges, 1967; Haider et al., 1975; Sjoblad 
and Bollag, 1981). Historically, several theories on the genesis of humus have been 
developed. The original concept of humus, "lignin theory," postulates that humus is a 
modified lignin polymer. Modifications of the lignin structure include the demethylization of 
methoxy groups (producing hydroxyl groups) and the oxidation of terminal aliphatic side 
chains (producing carboxylic acid groups). This form of humus genesis is probably important 
in water logged soils and aquatic environments (Stevenson, 1982). The modern day concept 
of humus, "polyphenol theory," postulates that plant polymeric phenols such as lignin and 
condensed tannins are oxidatively attacked by microorganisms, producing low molecular 
weight phenols, phenolic acids and flavonoids that undergo enzymatic or autoxidative 
conversion to quinones. The quinones polymerize to form humic compounds (Stevenson, 1982; 
Haider et al., 1975; Martin et al., 1982; Hurst and Burges; 1967; Sjoblad and Bollag, 1981). 
During soil humus genesis, copolymerization of the quinones with amino compounds can 

Table 2. Tannin Concentration in Various Agricultural Feedstocks. 

Feedstock 

GRAPES 

red wines 

white wines 

APPLES 

apple cider 

BEAMS 

red beans 

black beans 

white beans 

SORGHUM 

sorghum grain 

COFFEE 

coffee pulp 

OLIVES 

olive oil wastewater 

BARK 

pine bark 

spruce bark 

larch bark 

douglas fir bark 

hemlock bark 

birch bark 

oak bark 

chestnut bark 

Concentration 

1 

0.2 

0.3 

0.6 

0.3 

0.2 

1.8 

2 

5 

6 

6 

5 

9 

10 

8 

8 

to 5 

to 

3. 

to 

to 

to 

to 

to 

to 

to 

to 

2 

1.3 

1.2 

0.4 

3.0 

8.6 

6 

20 

37 

to 20 

to 

to 

to 

to 

to 

25 

18 

15 

16 

14 

units 

9L-1 

OL"1 

9L-1 

% dry 

% dry 

% dry 

% dry 

% dry 

gi'' 

% dry 

% dry 

% dry 

% dry 

% dry 

% dry 

X dry 

% dry 

wt. 

wt. 

wt. 

wt. 

wt. 

wt. 

wt. 

wt. 

wt. 

wt. 

wt. 

wt. 

wt. 

References 

266 

266 

192 

35 36 

35 

35 

62 106 

71 220 225 

17 

126 153 206 298 319 

126 186 

126 186 319 

126 319 

126 130 

126 

126 259 

126 



account for the low to moderate concentrations of organic nitrogen in humus, ranging from 
0.4 to 6% of the dry weight (Stevenson, 1982; Martin et al., 1972; Hurst and Burges; 1967). 
Originally, lignin was considered the most important parent material to humus. However, the 
analysis of humus structures reveals a high content of phloroglucinol units, which can only 
be derived from flavonoid compounds (Hurst and Burges, 1967). Therefore, not only lignin, 
but also the condensed tannins are important sources of phenols in naturally occurring 
humus. Finally, it has been shown that microorganisms themselves can synthesize low MW 
phenolic compounds from simple carbohydrate substrates. These too can eventually be 
incorporated in the humus polymer (Haider et al., 1972). The various pathways of humus 
genesis are outlined in Figure 3. 

Humus genesis is produced by a complex set of reactions, that potentially involve both 
depolymerization and polymerization of plant polyphenols. The humus forming reactions are 
not limited to soil environments, analogous reactions can take place in process waters and 
wastewaters if the phenols present undergo oxidative reactions. The oxidative reactions may 
occur by: simple autoxidation; the addition of oxidants (H2O2, O3); extracellular phenol 
oxidizing enzymes of plants and fungi. 

3.1. Autoxidation 

Autoxidation of phenolic compounds can occur if three conditions are met: (1) the phenol 
contains at least two neighboring hydroxyl groups on the ring(s); (2) neutral to alkaline pH; 
(3) exposure to air or oxygen. Ortho-dihydroxy phenols are converted to quinones which 
condense with one another, eventually becoming extensively polymerized to darkly colored 
humus-like high MW compounds, as illustrated in Figure 4 (Singleton, 1972; Hathway and 
Seakins, 1955 and 1957). The autoxidative polymerization of catechin and the related 
condensed tannins is perhaps the most important example of autoxidation which can take 
place in wastewaters. The condensed tannins are important constituents of many types of 
wastewaters and their autoxidation readily occurs with neutral to alkaline pH conditions. 

Autoxidation of trihydroxy phenols leads to the formation of benzotropolones which are 
not extensively polymerized (Singelton, 1972; Mathew and Parpia, 1971). As illustrated by the 
formation of purpurogallin from pyrogallol (Figure 5), the destruction of some of the 
aromatic rings is already evident at an early stage of the autoxidation. With gallocatechins 
of green tea (trihydroxy B rings), autoxidation may produce both high MW pigments (like 
phlobatannins in Figure 4) and benzotropolones (like purpurogallin in Figure 5), the latter 
are eventually destructively oxidized to aliphatic acids and CO2 (Singleton, 1972). 

With high alkali supply, phenols will largely be destructively oxidized. In order to gain 
more insight in the types of reactions that can occur, the destructive oxidation of lignin 
during oxygen bleaching should be considered. This process which involves aerating 
lignocellulosic materials in hot alkaline solutions can hydrolyze ether intermonomeric bonds 
of lignin and cleave aromatic rings to aliphatic carboxylic acids (Glasser, 1980; Glasser and 
Kelley, 1987). 

3.2. Oxidants 

Certain oxidants like H2O2 and O3 might be added to wastewaters to transform phenolic 
compounds as part of a treatment process. Generally, they are applied at high rates that 
cause destructive oxidations with the formation of phenolic acids, phenols with increased 
hydroxylation, and aliphatic carboxylic acids as well as CO2 in extreme cases (Glasser, 1980; 
Glasser and Keller, 1987; Mallevialle, 1975; Keating et al., 1978; Gilbert, 1983; Dore et al, 
1980; Duguet et al., 1987). The general reaction leading to the aromatic ring cleavage are 
shown in Figure 6. Extensive oxidations with H2O2 and O3 have been used to decolorize 
lignin and humic compounds in wastewaters and drinking water supplies (Paice and Jurasek, 
1984; Flogstad and Odegard, 1985; Mallevialle, 1975; Gilbert, 1988). Additionally, these 
oxidants have been used to destructively oxidize monomeric xenobiotic aromatic compounds 
(Keating et al., 1978; Gilbert 1983, and 1987). 
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The oxidation reactions can also polymerize the phenolic compounds if low rates of 
oxidants are supplied (Duguet et al. 1987; Chrostowski et al., 1983). 

3.3. Phenol Oxidizing Enzymes 

Phenol oxidizing enzymes are present in plants. Perhaps the most important phenol 
oxidizing enzyme of plants is tyrosinase. During agricultural processing, the physical 
destruction of plant cells allows the phenolic compounds, tyrosinase and air to come into 
contact with each other, whereby the resulting oxidation process leads to coloration. The 
phenomenon, commonly observed in food is called "food browning" and may be responsible 
for the coloration of certain wastewaters and wastes where tyrosinase and phenols are 
present (like potato starch wastewater and apple pulp). 

Tyrosinase has two activities: (1) the catecholase activity is only reactive with simple 
phenols, phenolic acids and flavonoids with neighboring hydroxyl groups (ortho-dihydroxy 
rings), that are oxidized to quinones; (2) the creosolase activity hydroxylates monohydroxy 
phenolic compounds to their dihydroxy counterparts, which are in turn suitable substrates 
for the catecholase activity (Baruah and Swain, 1959; Kendal, 1949). The stoichiometry of 
the enzyme's activities is given in Figure 7. The enzymatic step is necessary to oxidize 
phenols to their respective ortho-quinones, thereafter the reaction is a non-enzymatic 
condensation of quinones with amino compounds and other quinones or phenols (Hess, 1958; 
Jackson and Kendal, 1949; Loomis and Battaile, 1966; Mason and Peterson, 1965; Mathew 
and Parpia, 1971; Sarkar and Burns, 1984; Singleton, 1972), eventually forming darkly colored 
high MW melanin polymers. Based on their genesis, N content, high MW and dark color, 
these polymers are almost completely analogous to the concept of humus according to the 
polyphenol theory (Haider et al., 1972; Stevenson, 1982). Melanin is a complex three 
dimensional polymer, composed of indole-type units. A proposed conceptual structure is given 
in Figure 8. 

Fungi are the most important group of microorganisms involved in the genesis of humus 
in soils (Haider et al., 1972 and 1975; Martin et al., 1972; Sjoblad and Bollag, 1981) as well 
as in the biodégradation of lignin (Kirk et al., 1977; Kirk and Fenn, 1982; Kirk and Farrell, 
1987; Haars et al., 1987; Haider and Trojanowski, 1980; Iwahara, 1980). They are involved in 
the depolymerization and modification of lignin and tannins, producing intermediates that are 
susceptible to polymerization to humic substances. The polymerization of the low MW 
phenols may occur as a result of extracellular fungal phenol oxidizing enzymes or as a the 
result of autoxidation (Haider et al., 1972; Martin and Haider, 1980). The latter mechanism 
of polymerization is quite important since the low MW phenols resulting from the 
degradation of lignin are highly hydroxylated. 

Wood degrading fungi can be classified into two groups depending on the type of decay: 
white-rot, in which both lignin and polysaccharides are metabolized; and brown-rot in 
which only polysaccharides are metabolized and the lignin is modified (Kirk and Fenn, 1982; 
Kirk, 1971; Kirk and Shimada, 1985). The primary modification of lignin by brown-rot fungi 
is the demethylization of aromatic methoxy groups (Kirk and Shimada, 1985; Kirk 1971; 
Haider and Trojanowski, 1980). As a result there is an increase in phenolic hydroxyl groups. 
Although white-rot fungi can ultimately degrade lignin completely, they too can initially 
modify lignin by demethylating the methoxy groups (Chen and Chang, 1985; Kirk et al., 1977; 
Haider and Trojanowski, 1980). 

Numerous enzymes of fungi are involved in the degradation and modification of lignin. 
The lignin degrading activity of white-rot fungi has been attributed to an H2O2 dependent 
enzyme, ligninase (Tien and Kirk, 1983 and 1984). White-rot fungi contain enzymes that 
produce H2O2 by the oxidation of easy substrates like glucose (Highley, 1987; Eriksson et 
al., 1986; Kelley et al., 1986; Kelley and Reddy, 1986). The major activity of ligninase is the 
cleavage between side chain carbons that results in lignin depolymerization (Figure 9). Other 
reactions associated with the degradation of lignin, such as aromatic ring cleavage (see 
Figure 10), have been reported (Umezawa and Higuchi, 1987 and 1986; Umezawa et al., 1986; 
Miki et al., 1987; Kirk and Fenn, 1982; Chen and Chang, 1985). Ligninase can also oxidize 
phenols to quinones, suggesting that oxidative coupling and thus polymerization can occur 
(Tien and Kirk, 1984) as shown in Figure 9. Research with isolated ligninase, has produced 
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predominantly depolymerization reactions of lignin if the lignin was previously methylated 
(Tien and Kirk, 1983), however, natural lignins (with phenol groups) are actually polymerized 
by isolated ligninase (Haemmerli et al., 1986a). Cultures of white-rot fungi depolymerize 
natural lignins if easily biodegradable carbohydrate substrates are available (Fukuzumi et al., 
1977, Eaton et al., 1980; Milstein et al., 1983; Livernoche et al., 1983; Kirk 1980; Leatham, 
1986). This is most likely attributable to the presence of enzymes that reduce the quinones 
at the expense of carbohydrate oxidation, thereby preventing the polymerization (Kirk et al., 
1977; Ander et al., 1980; Kirk and Shimada, 1985; Haemmerli et al., 1986a). 

The lignolytic activities of fungi are associated with enzymes that primarily have a 
polymerizing effect on phenols. These are referred to as phenol oxidases and include 
tyrosinase, peroxidase and laccase (Kirk and Shimada, 1985; Ishihara, 1980; Sjoblad and 
Bollag, 1981; Martin and Haider, 1980). The major difference between phenol oxidases and 
ligninase is that phenol oxidases are only effective on phenolic moieties, whereas ligninase 
oxidizes both phenolic and non-phenolic sections of the lignin polymer (Harvey et al., 1985). 
The distinction between tyrosinase and laccase is that the latter can oxidize phenols with 
methoxy groups, peroxidase is also effective with methoxy substituted phenols but requires 
H2O2 as an oxidant (Sjoblad and Bollag, 1981). 

Considering that fungi are the best suited organisms for degrading or modifying 
recalcitrant and toxic phenolic compounds, their direct use or the use phenol oxidizing 
enzymes (from fungi or plants) in wastewater treatment should not be overlooked. In this 
regard, already several research groups have examined using white-rot fungi; (1) for the 
decolorization of forest industry bleaching wastewaters by degradation of the lignin fraction 
(Fukuzumi, 1980; Paice and Jurasek, 1984; Livernoche et al., 1983; Royer et al., 1983; 
Eriksson and Kolar, 1985; Eaton et al., 1980 and 1982; Sundman et al., 1981); (2) for the 
decolorization of industrial polymeric dyes (Glenn and Gold, 1983); and (3) for the 
degradation of environmental chemicals like chlorinated phenols and polycyclic aromatics 
(Eaton, 1985; Bumpus et al., 1985; Arjmand and Sandermann, 1985; Kohler et al., 1988; 
Bumpus and Aus, 1987; Huynh et al., 1985; Haemmerli et al., 1986b; Hammel et al., 1986). 
Additionally, soil fungi are applicable for the degradation of the condensed tannins 
(Chandra et al., 1973; Grant, 1976). While the former applications are based on the 
destructive action of white-rotters and soil fungi, other applications take advantage of 
phenol oxidase enzymes for polymerization of low MW phenols. Laccase isolated from fungi 
(Hakulinen, 1987; Campbell and Joyce., 1983) or peroxidase isolated from horseradish roots 
(Schmidt and Joyce, 1980) can be utilized to improve the lime precipitability of lignin 
derived phenols in forest industry wastewaters. Likewise, laccase of fungi have been applied 
to the polymerization of wastewater lignosulfonates to very high MW compounds that were 
suitable for use as commercial binding materials (Haars et al., 1987). Atlow et al. (1984) 
demonstrated the utilization of mushroom tyrosinase for the treatment of phenol containing 
coking wastewaters. The phenols were oxidatively polymerized to high MW insoluble pseudo-
melanin which were removed from the wastewater by settling or filtration. The same 
research group has produced similar polymerizations of coking wastewater phenols and 
aromatics with horseradish peroxidase (Alberti and Klibanov, 1981; Klibanov et al., 1980). 
Even earlier research, has demonstrated the use of fungal phenol oxidizing enzymes for the 
transformation of toxic monomeric chlorinated phenols to colored nontoxic polymers (Lyr, 
1963). Finally, tyrosinase, peroxidase and laccase are also capable of polymerizing condensed 
tannins (Hathway and Seakins, 1957; Updegraff and Grant, 1975; Weinges et al., 1969). This 
type of polymerization can potentially be applied to debarking wastewaters in order to 
eliminate the tannin fraction by their conversion to humic compounds. 

4. ANAEROBIC BIODEGRADATION OF PHENOLIC COMPOUNDS 

The degradation of aromatic compounds in anaerobic environments is different from the 
degradation in aerobic environments for a number of reasons (Schink, 1988). Firstly, aerobic 
microorganisms utilize O2 as a terminal acceptor of electrons, while anaerobic 
microorganisms can only utilize NO3, SO4 and CO2 for this purpose. Secondly, aerobic 
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organisms have enzyme systems (oxygenases) that can incorporate oxygen atoms (from O2) 
into aromatic substrates; thereby, producing less inert aliphatic acids. Furthermore, aerobic 
organisms utilize the high reactivity of superoxides, peroxides and hydroxyl radicals 
generated from O2 as a method of primary attack to destroy polymeric phenolic structures 
in the extracellular environment. 

Essentially all natural phenolic compounds are ultimately degradable in aerobic 
environments. This would even include the most stable forms of humus, although these may 
have half-lives in aerobic soils ranging from 300 to 3000 years (Hurst and Burges, 1967). The 
geological accumulation of the so called "fossil fuels" provides evidence that certain phenolic 
compounds are in fact not biodegradable in anaerobic environments. The fossil fuels are 
derived from lignin and humus that survived degradation in ancient anaerobic environments. 
Therefore, it is important to ascertain the limits of phenolic biodegradability in anaerobic 
environments. From a technological point of view, it is important to determine which 
structural features of phenolic compounds are related to recalcitrance in anaerobic 
microbial communities. 

4.1. Monomeric Phenols 

The recalcitrant nature of phenolic compounds in the anaerobic environment is not 
limited by the metabolism of the aromatic ring. Already in the 1930's, evidence that simple 
phenolic monomeric compounds are mineralized to CH4 and CO2 by anaerobic microorganisms 
was reported (Tarvin and Buswell, 1934). Since that time, numerous experiments have 
demonstrated that the monomeric units of lignin, hydrolyzable tannins and condensed 
tannins; as well as other simple phenolic compounds are biodegradable in anaerobic 
environments. These experiments are summarized in Table 3. The table also illustrates that 
even aromatic amino acids and humic-like monomers (indole) are biodegradable. Furthermore, 
even benzene rings that lack polar substitutions, like benzene itself and toluene, can be 
hydroxylated by anaerobic microorganisms (Vogel and Grbic-Galic, 1986) to phenol and p 
cresol; respectively, which are compounds that are otherwise known to be mineralized 
anaerobically. 

The important events in the anaerobic degradation of monomeric phenols are illustrated 
in Figure 11. Initially, the lignin and tannin monomers are simplified by several catabolic 
steps. During the simplification process, numerous types of fermentative bacteria are 
involved. The activities of these bacteria cause: (1) cleavage of flavonoids in A and B rings; 
(2) saturation of double bonds on the side chains; (3) demethylization of methoxy groups; (4) 
dehydroxylation of phenolic groups; (5) removal of aliphatic side chains; (6) decarboxylation; 
and (7) ß oxidation or oxidative decarboxylation of aliphatic side chains. Finally, several 
simple aromatic compounds with one or two functional groups can be recognized just prior 
to point that the aromatic rings are broken open. Two possibilities exists for the 
decomposition of the ring, these shall be denominated as the "phenol" and "trihydroxy" 
pathways. 

During the decomposition of mono- and dihydroxy (or methoxy) flavonoid B rings and 
lignin monomers, phenol and benzoic acid are the most common simplified aromatic 
degradation intermediates found. Their aromatic rings are saturated to form cyclohexane type 
compounds which are cleaved to higher fatty acids of 5 to 7 carbons, acetic acid and H2. 
The fatty acids in turn are degraded by acetogenic organisms to acetic acid and H2. This 
sequence of reactions is thermodynamically unfavorable (ie.AG° benzoic acid = +70 kj mol" 
1). The "phenol" pathway is a syntrophic pathway in which the acidification of the aromatic 
compounds and fatty acid intermediates to acetic acids and H2 is made thermodynamically 
favorable by the methanogenic removal of acetic acid and H2 (Ferry and Wolfe, 1976; 
Mclnerney et al., 1981). This is in correspondence with the observation that adding 
methanogenic inhibitors to cultures actively degrading mono- or dihydroxy (or methoxy) 
phenolic compounds causes an accumulation of simplified aromatic intermediates, 
cyclohexane compounds and fatty acids (Grbic-Galic, 1986; Lane, 1980; Colberg and Young 
1985b; Healy et al., 1980; Fedorak et al., 1986). Furthermore, addition of acetic acids to the 
cultures can drastically decrease the anaerobic degradation rate of simplified phenolic 
compounds, like phenol and p cresol (Fedorak et al., 1986). Therefore, in the absence of 
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Table 3. The Anaerobic Biodegradabf lity of Monomerie Phenolic Cc^wunds Reported in the Literature. 

Compound Evidence Degradation Reference 

LIGNIN MONOMERS 

p coumaric acid 

p coumaric acid 

p coumaric acid 

p coumaric acid 

p coumaric acid 

p coumaric acid 

ferulic acid 

ferulic acid 

ferulic acid 

ferulic acid 

ferulic acid 

ferulic acid 

ferulic acid 

ferulic acid 

ferulic acid 

ferulic acid 

ferulic acid 

ferulic acid 

ferulic acid 

coniferyl alcohol 

caffeic acid 

caffeic acid 

caffeic acid 

caffeic acid 

caffeic acid 

caffeic acid 

sinapte acid 

guaiacol 

gua i acoI 

vanillic acid 

vanil lic acid 

vanillic acid 

vanillic acid 

vanillic acid 

vanillic acid 

van i11i n 

vaniI lin 

vanillin 

syringic acid 

syringic acid 

syringic acid 

syringaldehyde 

syringaldehyde 

anaerobic fiIter 

isolated bacteria 

isolated bacteria 

isolated bacteria 

isolated bacteria 

pig manure 

enrich, culture 

sewage sludge 

enrich, culture 

isolated bacteria 

isolated bacteria 

isolated bacteria 

isolated bacteria 

isolated bacteria 

isolated bacteria 

isolated bacteria 

enrich, culture 

isolated bacteria 

CSTR 

enrich, culture 

isolated bacteria 

rat faeces 

isolated bacteria 

isolated bacteria 

isolated bacteria 

CSTR 

isolated bacteria 

isolated bacteria 

anaerobic sludge 

sewage sludge 

isolated bacteria 

isolated bacteria 

isolated bacteria 

anoxic lake sediments 

sewage sludge 

sewage sludge 

isolated bacteria 

isolated bacteria 

sewage sludge 

isolated bacteria 

enrich, culture 

sewage sludge 

isolated bacteria 

I-VFA, Disapp, CH4 

I-arom 

I-arom 

I-arom 

Disapp 

I-arom 

I-arom, I-aliph, I-VFA 

Disapp, CH4 

I-arom, Disapp, CH4 

I-arom, Disapp 

I-arom 

I-arom, Disapp, Reduc-N03 

I-arom 

I-arom 

I-arom 

Disapp 

I-arom, I-aliph, I-VFA, Disapp, CH4 

I-arom, Disapp 

Disapp, CH4 

I-arom, Disapp, CH4 

I-arom 

I-arom 

I-arom 

I-arom 

I-arom, Disapp 

Disapp, CH4 

I-arom 

I-arom, Disapp, Reduc N03 

Disapp, CH4 

Disapp, CH4 

Disapp, Reduc-N03 

I-arom 

I-arom, I-VFA, Disapp 

CH4 

CH4 

CH4 

I-arom 

Disapp 

CH4 

I-arom 

I-arom, I-VFA, Disapp, CH4 

CH4 

I-arom 

286 

49 

145 

83 

305 

271 

103 

128 

101 

232 

49 

287 

12 

145 

83 

305 

129 

102 

98 

101 

145 

31 

243 

83 

102 

98 

12 

287 

23 

128 

287 

12 

88 

328 

140 

128 

12 

305 

128 

12 

151 

128 

12 

HYDROLYZABLE TANNIN MONOMERS 

gal lie acid 

gallic acid 

gallic acid 

isolated bacteria 

enrich, culture 

isolated bacteria 

I-VFA, Disapp 

I-VFA, Disapp, CH4 

I-VFA, Disapp 

183 

151 

261 

Abbreviations: I-aroa = aromatic degradation intermediates; I-aliph = aliphatic degradation 

intermediates; I-VFA = volatile fatty acid degradation intermediates; Disapp = disappearance of phenolic 

compound; CH4 = formation methane from phenolic compound; Reduc-1*03 = anaerobic respiration nitrate. 
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Table 3. The Anaerobic Biodegradability of Monomerie Phenolic Co^ïounds (Continued). 

Compound 

gallic acid 

pyrogallol 

pyrogallol 

pyrogallol 

pyrogallol 

pyrogallol 

pyrogallol 

pyrogallol 

CONDENSED TANNIN MONOMERS 

catechin 

catechin 

catechin 

quercetin 

quercetin 

naringin 

apigenin 

myricetin 

rutin 

rutin 

rutin 

hesperetin 

mixed flavonoids 

SIMPLE PHENOLS 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

p cresol 

Inoculum 

CSTR 

isolated bacteria 

sewage sludge 

enrich, culture 

isolated bacteria 

sewage sludge 

CSTR 

sewage sludge 

(FLAVONOIDS) 

rat intestinal contents 

rat faeces 

enrich, culture 

isolated bacteria 

rumen fluid 

rumen fluid 

rat intestinal contents 

rat intestinal contents 

isolated bacteria 

rumen fluid 

rat faeces 

rat intestinal contents 

UASB, contact process 

sewage sludge 

sewage sludge 

sewage sludge 

sewage sludge 

digested pig manure 

anaerobic sludge 

anaerobic filter 

anoxic lake sediments 

sewage sludge 

sewage sludge 

sewage sludge 

immob. enrich, cutture 

enrich, culture 

enrich, culture 

CSTR 

CSTR 

sewage sludge 

anaerobic filter 

sewage sludge 

enrich, culture 

anaerobic AC fiIter 

anaerobic AC filter 

anaerobic fixed film 

anaerobic AC filter 

sewage sludge 

sewage sludge 

enrich, culture 

sewage sludge 

Evidence Degradation 

Disapp, CH4 

I-VFA, Disapp 

CH4 

I-VFA, Disapp, 

I-VFA, Disapp 

CH4 

Disapp, CH4 

CH4 

I-arom, I-aliph 

I-arom 

I-arom, I-aliph 

I-arom, I-VFA, 

I-arom, Disapp 

I-arom, Disapp 

I-arom, I-aliph 

I-arom, I-aliph 

Disapp 

I-arom, Disapp 

I-arom 

I-arom, Disapp 

Disapp 

CH4 

Disapp, CH4 

CH4 

Disapp, CH4 

I-VFA, Disapp, 

Disapp, CH4 

D i sapp 

CH4 

Disapp, CH4 

Disapp, CH4 

CH4 

Disapp, CH4 

I-VFA, Disapp, 

CH4 

I-VFA, Disapp 

Disapp, CH4 

CH4 

Disapp, CH4 

CH4 

Disapp, CH4 

I-VFA, Disapp, 

Disapp, CH4 

I-VFA, Disapp, 

Disapp, CH4 

I-arom, I-VFA, 

CH4 

Disapp, I-VFA, 

CH4 

CH4 

, D 

, I-

sapp 

VFA, CH4 

Disapp 

, D 

, D 

CH4 

CH4 

CH4 

CH4 

sapp 

sapp 

Disapp, CH4 

CH4 

Ref 

98 

183 

50 

151 

261 

140 

98 

264 

63 

31 

15 

183 

265 

265 

105 

104 

48 

265 

31 

139 

17 

50 

52 

128 

127 

304 

55 

55 

328 

327 

34 

140 

66 

79 

78 

228 

98 

30 

30 

77 

314 

313 

161 

308 

163 

171 

264 

284 

50 
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Table 3. The Anaerobic Biodegradability of Monomerie Phenolic Compounds (Continued). 

Compound 

p cresol 

p cresol 

p cresol 

p cresol 

p cresol 

p cresol 

p cresol 

p cresol 

p cresol 

p cresol 

p cresol 

p cresol 

p cresol 

m cresol 

m cresol 

m cresol 

m cresol 

ethylphenol 

catechol 

catechol 

catechol 

catechol 

catechol 

catechol 

catechol 

catechol 

catechol 

catechol 

catechol 

hydroquinone 

hydroquinone 

hydroquinone 

hydroquinone 

"A" RING OF FLAVONOIDS 

resorcinol 

resorcinol 

resorcinol 

resorcinol 

resorcinol 

resorcinol 

resorcinol 

phloroglucinol 

phloroglucinol 

phloroglucinol 

phloroglucinol 

phloroglucinol 

phloroglucinol 

phloroglucinol 

phloroglucinol 

phloroglucinol 

phloroglucinol 

phloroglucinol 

Inoculum 

sewage sludge 

digested pig manure 

sewage sludge 

sewage sludge 

sewage sludge 

enrich, culture 

enrich, culture 

sewage sludge 

anaerobic filter 

sewage sludge 

enrich, culture 

anaerobic fixed film 

sewage sludge 

sewage sludge 

enrich, culture 

enrich, culture 

sewage sludge 

anaerobic filter 

enrich, culture 

sewage sludge 

sewage sludge 

anaerobic filter 

sewage sludge 

enrich, culture 

sewage sludge 

anaerobic filter 

sewage sludge 

anaerobic AC filter 

enrich, culture 

anaerobic filter 

sewage sludge 

enrich, culture 

enrich, culture 

sewage sludge 

sewage sludge 

anaerobic filter 

sewage sludge 

sewage sludge 

anaerobic fiIter 

isolated bacteria 

isolated bacteria 

sewage sludge 

rumen fluid 

isolated bacteria 

rumen fluid 

isolated bacteria 

isolated bacteria 

sewage sludge 

sewage sludge 

CSTR 

sewage sludge 

Evidence Degradation 

Disapp, CH4 

I-VFA, Disapp, CH4 

I-arom, Disapp, CH4 

Disapp, CH4 

CH4 

I-VFA, Disapp, CH4 

CH4 

CH4 

Disapp, CH4 

CH4 

Disapp, CN4 

I-VFA, Disapp, CH4 

CH4 

CH4 

I-VFA, Disapp, CH4 

Disapp, CH4 

CH4 

Disapp, CH4 

I-arom, I-aliph, CH4 

CH4 

Disapp, CH4 

Disapp 

CH4 

I-VFA, Disapp, CH4 

CH4 

Disapp, CH4 

CH4 

Disapp, CH4 

Disapp, I-VFA, CH4 

Disapp 

I-arom, Disapp, CH4 

I-VFA, Disapp, CH4 

Disapp, I-arom, I-VFA, CH4 

CH4 

Disapp, CH4 

Disapp 

CH4 

CH4 

Disapp, CH4 

Disapp, I-VFA 

I-VFA, Disapp 

CH4 

I-aliph, Disapp, CH4 

I-VFA, Disapp 

Disapp 

Disapp 

Disapp 

I-arom, I-VFA, Disapp, CH4 

CH4 

Disapp, CH4 

CH4 

Reference 

52 

304 

327 

34 

140 

79 

78 

30 

30 

77 

314 

308 

264 

140 

79 

314 

264 

30 

15 

128 

127 

55 

140 

79 

30 

30 

264 

278 

284 

55 

327 

79 

284 

50 

52 

55 

140 

30 

30 

293 

183 

50 

13 

261 

265 

292 

240 

327 

140 

98 

264 

15 



Table 3. The Anaerobic Biodegradability of Monomerie Phenolic Compounds (Continued). 

Compound 

SIMPLE BENZOIC ACIDS 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

benzoic acid 

p hydroxybenzoic 

p hydroxybenzoic 

p hydroxybenzoic 

p hydroxybenzoic 

p hydroxybenzoic 

p hydroxybenzoic 

p hydroxybenzoic 

p hydroxybenzoic 

p hydroxybenzoic 

acid 

acid 

acid 

acid 

acid 

acid 

acid 

acid 

acid 

protocatechuic acid 

protocatechuic acid 

protocatechuic acid 

protocatechuic acid 

protocatechuic acid 

protocatechuic acid 

AROMATIC ACIDS 

phenylacetic acid 

phenylpropionic acid 

cinnamic acid 

cinnamic acid 

cinnamic acid 

cinnamic acid 

cinnamic acid 

AROMATIC AMINO ACIDS 

phenylalanine 

phenylalanine 

phenylalanine 

phenylalanine 

tyrosine 

tyrosine 

tyrosine 

tyrosine 

tyrosine 

L dopa 

Inoculum 

sewage sludge 

rumen fluid 

anaerobic fiIter 

enrich, culture 

enrich, culture 

isolated bacteria 

anaerobic sludge 

anoxic lake sediments 

anoxic lake sediments 

sewage sludge 

CSTR 

sewage sludge 

enrich, culture 

sewage sludge 

enrich, culture 

sewage sludge 

sewage sludge 

enrich, culture 

isolated bacteria 

anoxic lake sediments 

sewage sludge 

pig manure 

sewage sludge 

enrich, culture 

sewage sludge 

enrich, culture 

isolated bacteria 

anoxic lake sediments 

sewage sludge 

sewage sludge 

anaerobic filter 

isolated bacteria 

sewage sludge 

rumen fluid 

anaerobic fiIter 

isolated bacteria 

isolated bacteria 

rumen fluid 

enrich, culture 

isolated bacteria 

rumen 

anaerobic fiIter 

enrich, culture 

isolated bacteria 

pig manure 

rumen 

rat faeces 

Evidence Degradation 

CH4 

I-aliph, Disapp, CH4 

Disapp, CH4 

I-aliph, I-VFA, Disapp, CH4 

Disapp, CH4 

Reduc-N03 

Disapp, CH4 

CH4 

CH4 

CH4 

Disapp, CH4 

CH4 

I-aliph, I-VFA, CH4 

CH4 

I-VFA, Disapp, CH4 

CH4 

Disapp, CH4 

I-arom, I-aliph, Disapp, CH4 

Reduc-N03 

CH4 

CH4 

I-arom 

CH4 

I-VFA, Disapp, CH4 

CH4 

I-arom, I-aliph, Disapp, CH4 

Reduc-N03 

CH4 

CH4 

CH4 

Disapp, CH4 

I-arom, Disapp 

CH4 

I-aliph, Disapp, CH4 

Disapp, CH4 

Disapp 

I-arom, Disapp 

I-aliph, Disapp, CH4 

I-arom, I-aliph, Disapp, CH4 

I-arom 

I-arom, I-VFA 

I-arom, Disapp, CH4 

I-arom, I-aliph, I-VFA, Disapp, CH4 

I-arom 

I-arom 

I-arom, I-VFA 

I-arom 

Reference 

128 

13 

286 

81 

82 

287 

55 

328 

140 

140 

98 

30 

156 

264 

294 

50 

128 

14 

287 

140 

140 

271 

264 

294 

128 

14 

287 

140 

140 

264 

286 

102 

128 

13 

286 

305 

102 

13 

16 

72 

263 

286 

16 

72 

271 

263 

31 

16 



Table 3. The Anaerobic Bîodegradabïlïty of Monomerie Phenolic Compounds (Continued). 

Compound 

HUMIC-LIKE M0N0MER1C 

tryptophan 

tryptophan 

tryptophan 

tryptophan 

indole 

indole 

indole 

APOLAR BENZENES 

toluene 

benzene 

Inoculum 

UNITS 

enrich, culture 

isolated bacteria 

pig manure 

rumen 

sewage sludge 

sewage sludge 

enrich, culture 

enrich, culture 

enrich, culture 

Evidence Degradation 

I-arom, 

I-arom 

I-arom 

I-arom, 

I-arom, 

I-arom, 

D i sapp, 

I-arom, 

I-arom, 

Disapp, 

I-VFA 

Disapp, 

Disapp, 

CH4 

D i sapp 

Disapp 

CH4 

CH4 

Reduc-N03 

Reference 

16 

72 

271 

263 

27 

203 

312 

309 

309 

methanogenesis (or anaerobic respiration), mono and dihydroxy phenolic monomers may 
behave as recalcitrant compounds. 

During the decomposition of hydrolyzable tannin monomers, flavonoid A rings, trihydroxy 
flavonoid B rings and trihydroxy (or methoxy) lignin monomers, the most likely end 
products of the aromatic simplification process are pyrogallol and phloroglucinol. These 
simple trihydroxy compounds are cleaved into acetic acid and the reaction is 
thermodynamically favorable (ie.AG" pyrogallol = -158 kj mol ). Addition of methanogenic 
inhibitors to methanogenic consortia degrading trihydroxy (or methoxy) phenolics has no 
effect on the rate of acidification to acetic acid (Kaiser and Hanselmann, 1982), and even 
pure cultures of isolated strictly anaerobic fermentative bacteria can completely acidify the 
trihydroxy phenols in the absence of methane bacteria (Schink and Pfennig, 1982). 
Therefore, the "trihydroxy" pathway is not a syntrophic pathway. The acidification of 
trihydroxy phenolics is not inhibited by the accumulation of methanogenic substrates. The 
trihydroxy phenolics compounds should be regarded as easy substrates. 

In anaerobic microbial environments with active methanogenesis, most monomeric phenolic 
compounds can be degraded rapidly after adequate acclimation. The fact that phenolic 
monomeric substrates can be degraded at moderate to high loading rates in reactors with 
immobilized sludge has been demonstrated on numerous occasions (Chmielowski and Kusznik, 
1966; Suidan et al., 1983; Khan et al., 1981; Khan et al., 1982; Chou et al., 1979; Wang et 
al., 1986; Dwyer et al., 1986; Suidan et al., 1980b; Suidan et al., 1988; Fox et al., 1988; Kim 
et al., 1986). 

4.2. Polymerie Lignin and Tannins 

Natural lignins, which are high molecular weight (MW) polymers, in contrast to monomers 
are not biodegradable in anaerobic environments (Figure 12). The fact that the lignin 
polymer is not an available anaerobic substrate is not due to the cleavage of lignin 
intermonomeric bonds. Each type of intermonomeric bond present in lignin can be cleaved by 
anaerobic microorganisms fed dimeric model lignins (Chen et al., 1985a; Chen et al., 1985b; 
Chen et al., 1987; Zeikus et al., 1982). Even lignin oligomers of 3 to 7 monomeric units 
are partly biodegradable in anaerobic environments (Figure 12). It is also evident that such 
oligomeric lignins are somewhat depolymerized during anaerobic digestion (Colberg and 
Young, 1982) indicating that intermonomeric cleavage of such compounds can also occur. 
There appears to be an inverse correlation between lignin polymer size and its anaerobic 
biodegradability. Therefore it is the high MW quality of natural lignins that is responsible 
for its recalcitrance in anaerobic environments. Large polymers cannot be taken-up by 
microorganisms to be attacked intracellular^, and the only extracellular enzymes in nature 
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Figure 11. Anaerobic degradation pathways of tannin and lignin monomers. 

References: (11 cleavage of flavanoids in A and B rings Griffiths and Smith, 1972a and b; Honohan et al., 1976; 
Brown, 1977; Simpson et al, 1969; Balba and Evans, 1980a; Lane, 1980; Krumholz and Bryant, 1986; Das, 1969; (2) 
Hydrogénation of double bonds on the side chain Grbic-Galic, 1985; Chesson, 1982; Peppercorn and Goldman, 
1971; Healy et al., 1980; Ohmiya et al., 1986; Griffiths and Smith, 1972b; (31 demethylization of methoxy groups 
Frazer and Young, 1986; Schink and Pfennig, 1982; Bach and Pfennig, 1981; Kaiser and Hanselmann, 1982a and b; 
Boyd et al., 1983; Taylor, 1983; Balba and Evans, 1980a; Grbic-Galic, 1985; Balba et al, 1979; (41 Dehydroxvlation 
Peppercorn and Goldman, 1971; Booth and Williams, 1963; Scott et al., 1963; Healy et al., 1980; Grbic-Galic, 1983; 
Grbic-Galic, 1985; Grbic-Galic, 1986; Griffiths and Smith, 1972a; Balba et al., 1979; Szewzyk et al., 1985; (5) 
removal aliphatic side chains Kaiser and Hanselmann, 1982b; Balba and Evans, 1980a; Tarvin and Buswell, 1934; 
Young and Rivera, 1985; (61 decarboxylation Finkle et al., 1962; Balba and Evans, 1980a; Balba et al., 1979; 
Indhal and Scheline, 1968; Steinke and Paulson, 1964; Grbic-Galic, 1986; (7) 6 oxidation or oxidative 
decarboxylation aliphatic side chains Berry et al., 1987b; Young, 1984; Healy et al., 1980; Grbic-Galic, 1983; 
Grbic-Galic, 1985; Grbic-Galic, 1986; Colberg, 1988; (81 phenol to benzoate Neufeld et al., 1980; Knoll and 
Winter, 1987; (91 pyrogallol to phloroglucinol Haddock and Ferry, personal communication; (101 trihydroxy 
benzenes to acetate Kaiser and Hanselmann, 1982a; Schink and Pfennig, 1982; Schink, 1988; Patel et al., 1981; 
(111 phenol to cyclohexanone Balba et al., 1979; Balba and Evans 1980a; Evans, 1977; Schink, 1988; Colberg, 
1988; (121 benzoate to carboxv cvclohexane Healy et al., 1980; Balba and Evans, 1977; Colberg, 1988; Keith et 
al., 1978; Szewzyk et al., 1985; (131 cvclohexanes to fatty acids Healy et al., 1980; Balba and Evans, 1977; Balba 
et al., 1979; Evans, 1977; Colberg, 1988; Keith et al., 1978. 
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Figure 12. The role of polymer size on the biodegradability of lignin. 

Data : type lignin, (number of monomeric uni ts or approximat ion) , days of digestion, inoculum, measurement of 

degradat ion, percent degraded, reference; 1. syringic acid, f l ) , 17 days, sewage sludge, gas product ion, 80%, 

Healy and Young, 1979; 2. vanillin, ( l ) , 28 days, sewage sludge, gas product ion, 72%, Healy and Young, 1979; 3. 

vanillic acid, f l ) , 28 days, sewage sludge, gas product ion, 86%, Healy and Young, 1979; 4. vanillic, ( l ) , 16 days, 

anoxic lake sediment, 14C in gas, 33%, Zeikus et al., 1982; 5. ferulic acid, ( l ) . 34 days , sewage sludge, gas 

product ion, 86%, Healy and Young, 1979; 6. coniferyl alcohol. (1), 8 days, enrich, cu l ture , gas product ion, 93%, 

Grbic-Gal ic , 1983; 7. ferulic acid, ( l ) , 8 days, enrich, cul ture, gas poroduct ion, 93%, Grbic-Gal ic , 1983; 8. 

dehydrodivanil l in, (2), 8 days, rumen fluid, d isapp, I -VFA, 80%, Chen et al., 1985a; dehydrodiisoeugenol, (2). 8 

days, rumen bacter ia , d isappearance, 70%, Chen et a!., 1987; 9. vera t ry lg lycol -beta-guaiacyl e ther, (2), 4 days, 

rumen bacter ia , d isappearance, 90%, Chen et al-, 1985b; 10. guaiacylglycol-beta-guaiacyl e ther, (2), 16 days , 

anoxic lake sediment , 14C in gas, 28%, Zeikus et al., 1982; 11. kraft lignin, (mixture oHgomeric and high MW 

lignin), 30 days , anoxic lake sediment , 14C in gas, 1 1 % , Zeikus et al., 1982; 12. high MW fraction heat alkali 

extracted lignin, (high MW lignin). 30 days, anoxic lake sediment, 14C in gas, 0%, Zeikus et al., 1982; 13. lignin 

poplar wood, (high MW lignin), 180 days, soil, 14C in gas, 0%, Odier and Monties, 1983; 14. na tu ra l lignin 

unspecified source, (high MW lignin), 41 days, anoxic sediments, rumen contents , 14C in gas, 0%, Hacket t et al., 

1977; 15. lignin pine wood, (high MW lignin), 60 days, thermophilic enrich, cul ture, 14C in gas, 3%, Benner and 

Hodson, 1985; 16. synthet ic lignin, (high MW lignin), 60 days, thermophilic enrich, cul ture, 14C in gas, 4%, 

Benner and Hodson, 1985; 17. kraft lignin, (mixture oligomeric and high MW lignin). 60 days, thermophil ic 

enrich, cul ture, 14C in gas, 23%, Benner and Hodson, 1985; 18. heat alkali ex t rac ted lignin douglas fir wood, 

(fraction average — 7) . 43 days, enrich, cul ture, 14C in gas, 6%, Colberg and Young, 1985a; 19. heat alkali 

extracted lignin douglas fir wood, (fraction average = 4) . 43 days, enrich, cul ture, 14C in gas, 26%, Colberg and 

Young, 1985a; 19. heat alkali ex t racted lignin douglas fir wood, (fraction average = 2) . 43 days, enrich, cu l ture , 

14C in gas, 34%, Colberg and Young, 1985a; 20. heat alkali ex t racted lignin douglas fir wood, (average = 4) , 30 

days, sewage sludge, 14C in gas, 18%, Colberg and Young, 1982; 21 . lignin grass, (high M W lignin), 294 days, 

marsh anoxic sediments , 14C in gas, 17%, Benner et al., 1984; 22. lignin i red mangrove wood, (high MW lignin). 

246 days, marsh anoxic sediments, 14C in gas, 1.5%, Benner et al., 1984; 23. synthet ic lignin, (high M W lignin). 

276 days, marsh anoxic sediments , 14C in gas, 4%, Benner et al., 1984; 24. lignin grass, (high MW lignin). 7 

days, rumen fluid, 14C in gas, 0 .3%, Akin and Benner, 1988; 25. heat alkali ex t racted lignin pea t , (fraction 

average = 3) . ND days, sewage sludge, gas product ion, 30%, Young and McCar ty , 1981; 26. heat alkali ex t rac ted 

lignin peat , (fraction average = 6) . ND days, sewage sludge, gas product ion, 7%, Young and McCar ty , 1981. 
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capable of depolymerizing lignin promote a nonspecific oxidative erosion, whereby oxygen 
derived radicals play a key role (Kirk et al.„ 1987). 

The anaerobic biodegradability of tannins has not been as thoroughly studied. In many 
respects, condensed tannins are similar to lignins since their intermonomeric bonds involve C 
to C linkages between branch and ring carbons. Unaltered condensed tannins of plants, 
however have a distinctly lower MW than lignin. The tannins are most commonly present as 
oligomeric constituents. In one previous study, the disappearance (82%) of oligomeric 
condensed tannins in olive oil mill wastewater during anaerobic treatment by a contact 
reactor has been reported (Balice, et al., 1988), however poor removal efficiencies (5%) were 
observed in a UASB reactor. The difference was attributed to the longer hydraulic retention 
times (9 days versus 1) in the contact reactor. In any case, the monomeric condensed 
tannins were removed with a higher efficiency in the UASB reactor, indicating that they are 
more readily biodegradable than the oligomers. 

Hydrolyzable tannins are quite distinct from lignin because they are composed of easily 
hydrolyzable ester bonds. These bonds are cleaved by a hydrolytic extracellular enzymes, 
called tannase, of aerobic microorganisms (Yamada et al., 1968, Aoki et al., 1976). The 
hydrolytic activity of such enzymes presumably does not require oxygen. Experiments with 
gallotannic acid as a sole carbon source during anaerobic digestion have demonstrated a high 
conversion (68% of the COD) to methane (Gollakota and Sarada, 1988). The anaerobic 
bacteria are therefore capable of hydrolyzing the ester intermonomeric bonds of this 
hydrolyzable tannin (of nine monomeric units). Likewise, high removal efficiencies of 
hydrolyzable tannins in olive oil mill effluents (67 to 73%) have been observed during 
anaerobic treatment in both a UASB and a contact reactor (Balice et al., 1988). 

4.3. Humus Polymers 

Humus is similar to lignin due to its high MW. However, humic polymers are richer in 
direct C to C bonds between aromatic rings, and to some extent certain humic compounds, 
melanin, have amino compounds incorporated in the polymer structure. They are highly 
condensed polymers which possibly contributes to their recalcitrance. 

Humic substances are clearly less biodegradable than various types of high MW lignins in 
aerobic environments. Lignins incubated in aerobic soils are mineralized for 10 to 20% after 
60 to 175 day incubations; whereas in parallel experiments, peat and melanin were only 
mineralized for about 5% and phenolase polymers, autoxidation polymers or natural humus for 
only 1% or less (Martin and Haider, 1980; Martin et al., 1972). Even white rot fungi, which 
were capable of decolorizing lignin polymers, were not able to decolorize humic polymers 
prepared from the oxidation of ortho-dihydroxy phenols (Fukuzumi, 1980). 

Very few experiments have been conducted to study the anaerobic biodegradability of 
humic substances. The biodegradability of peat was investigated using anaerobic sludge 
adapted to lignocellulosic substrate for 1.5 years. Absolutely no conversion of the peat COD 
was observed in 31 days (Owens et al., 1979), the sludge was in any case able to partially 
decompose depolymerized peat samples. Likewise it has been observed that the autoxidation 
products of pyrogallol were not degraded by anoxic muds capable of degrading unoxidized 
pyrogallol under anaerobic conditions (Schink and Pfennig, 1982). 

Therefore, humus forming processes, like autoxidation and phenol oxidase oxidations, 
which can occur rather rapidly in the handling of process waters and wastewaters, have a 
significant implication on the biodegradability of phenolic fraction for both aerobic as well 
as anaerobic treatment systems. These polymerization reactions can transform biologically 
degradable substrates to colorful recalcitrant organic substances. In this regard, anaerobic 
treatment may be advantageous to aerobic treatment with respect to the COD efficiency for 
wastewaters that contain highly hydroxylated phenolic substances prone to autoxidative or 
phenol oxidase polymerization. The condensed tannins are a good example of such 
compounds. During their fungal decomposition in aerated cultures, a large fraction of the 
tannins are polymerized to nonbiodegradable humic substances (Updegraff and Grant, 1975; 
Grant, 1976; Chandra et al., 1973). Significant degradation was only obtained if the 
polymerization reactions were carefully prevented by not agitating the culture medium or 
lowering the pH to 3. With bacterial cultures, Das (1969) could only obtain degradation of 
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Condensed tannin monomers under anaerobic conditions, because the humic substances 
produced by aeration were not degraded by aerobic bacteria. 

5. TOXICITY OF PHENOLIC COMPOUNDS 

The biodegradability of phenolic compounds is important for understanding the ultimate 
efficiency of phenolic compound removal during biological waste treatment. Considering that 
the phenolic compounds are often present in the wastewater with other substrates, than it is 
also important to evaluate the inhibitory effects of the phenolic compounds on the anaerobic 
metabolism of easily biodegradable organic matter. Generally, the rate limiting stage of the 
biodégradation is the methanogenesis of acidified substrates. Therefore, the inhibiting effects 
of phenolic compounds on the activity and growth of methanogenic bacteria deserves close 
attention. Additionally, the inhibiting effect on extracellular hydrolytic enzymes will also be 
of importance in cases where the polymeric substrates are major constituents of the 
wastewater. If inhibition occurs, the phenolic compounds than play a role in reducing the 
rate at which wastewater can be treated. The possibility that phenolic compounds are 
exposed to humus forming processes should also be considered, since the chemical 
transformation of phenols during such processes may have a distinct impact on their 
inhibitory characteristics. 

5.1. The Methanogenic Inhibition of Monomerie Phenols 

In the past, considerable research has been directed towards the inhibiting effect of 
numerous compounds on the activity of methanogenic bacteria. Among the compounds, 
several monomeric phenols and related aromatics have been investigated. The inhibiting 
concentrations found are summarized in Table 4. The inhibitory nature of monomeric 
phenols is highly related to the apolarity of the compounds. Phenolic acids and the polar 
phenols with several hydroxyl group substitutions are the least toxic; whereas increasing 
toxicity is evident with increasing alkyl substitutions and with decreasing number of 
hydroxyl groups. The apolarity perhaps enables the compounds to become partially solubilized 
in the membranes of bacteria, which would damage the membrane's function. The degree of 
inhibition observed for any given phenolic compound varies with different assay substrates. 
Lower inhibition is observed with acetic acid that only involves acetoclastic methanogenesis. 
The highest inhibitions are evident where propionic acid or phenol are utilized as assay 
substrates. In addition to acetoclastic methanogens, these are metabolized by acetogenic 
bacteria and autotrophic methanogens. Therefore, the latter bacteria are more sensitive to 
the toxicity of phenolic compounds. 

5.2. The Toxicity of Tannic Compounds 

The toxicity of tannic compounds to methane bacteria has not been studied. However, 
numerous indications of tannin inhibition are evident from the literature. The high 
methanogenic toxicity of debarking wastewater, which is similar to a crude tannin extract, is 
reported from two previous studies (Latola, 1985; Rekunen, 1986). Similarly, a water 
extraction of bark, which removes tannins, greatly increased the convertibility of bark to 
methane by anaerobic digestion (Kuwahara et al., 1984). Inhibition during the anaerobic 
treatment of vegetable tannery wastewater applied at high concentrations was attributed to 
the tannins present, 320 mg L~' (Arora et al., 1975). The fact that tannins are toxic to 
methane bacteria could be expected, considering the inhibitory characteristics tannins have 
towards a wide variety of enzymes (Table 5) and microorganisms (Table 6). Tannins are also 
inhibitory to viruses (Thung and van der Want, 1951; van Schreven, 1941) and plants 
(Percuoco et al., 1973). Furthermore, with regard to aquatic toxicity of tannins, studies cited 
by Mahadevan and Muthukumar (1980) report that tannins are lethal to fresh water fish at 
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Table 4. The Nethanogenîc Toxicity of Nonoaeric Phenolic Compounds Reported 

in the Literature. 

Compounds 

Phenolic acids 

p coumaric acid 

ferulic acid 

vanillic acid 

benzoic acid 

Polar simple phenols 

hydroquinone 

resorcinol 

catechol 

catechol 

catechol 

Simole Dhenols 

guaiacol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

Apolar simple phenols 

p cresol 

p cresol 

p cresol 

p cresol 

napthol 

napthol 

eugenol 

p ethylphenol 

Apolar simple aromatics 

p cymene 

ethylbenzene 

Concentration 

mg L"1 

3300** 

4850 

5040 

4880 

4400 

3190 

2640 

3000 

1500 

** 
2200 
2444 

2250 ** 
1800 

875 

900 

700 

1000 ** 
800 

500 

500 

650 

300 ** 
250 

250 

** 
500 
340 

Substrate 

cel lul 

cel lul 

cel lul 

c2 

c2 
c2 
c2 
c2 
c3 

c2 
c2 
c2 

c2,c3 
c3 
phenol 

sewage 

c2 

c2.c3 
c3 
phenol 

c2 
C 3 
C2 
phenol 

c2 
c2 

ose 

ose 

ose 

sludge 

Inhibition 

% 

50 

0 

0 

35 

35 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

Reference 

234 

234 

234 

54 

54 

54 

54 

30 

30 

23 

54 

30 

77 

30 

66 

241 

30 

77 

30 

314 

30 

30 

23 

314 

23 

54 

from top to bottom the compounds are approximately placed in order of 

increasing apolarity. 

substrates: C2 = acetate; C3 = propionate 

indicates 50% inhibitory concentration was estimated from data. 
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Table 5. Tannin Inihibition of Enzyaes Reported in the Literature. 

Tannin Type 

(or source) 

commercial tannin 

commercial tannin 

wattle tannin 

wattle tannin 

wattle tannin 

grape leaf tannin 

commercial tannin 

commercial tannin 

commercial tannin 

commercial tannin 

chinese gallotannin 

turkish gallotannin 

pentoga11oyl gIucose 

theaflavin 

thearubigen 

tannic acid 

tannic acid 

tannic acid 

wattle tannin 

tannic acid 

wattle tannin 

tannic acid 

wattle tannin 

tannic acid 

wattle tannin 

tannic acid 

wattle tannin 

sorghum tannin 

carob pod tannin 

m-digallic acid 

carob pod tannin 

m-digallic acid 

carob pod tannin 

m-digallic acid 

tannic acid 

tannic acid 

tanic acid 

acid condensed epicatechin 

acid condensed epicatechin 

sorghum tannin 

sorghum tannin 

sorghum tannin 

sorghum tannin 

sorghum tannin 

sorghum tannin 

Concentration 

9L-' 

1.7 

0.004 

10.0 

10.0 

0.17 

0.16 

0.17 

0.51 

0.003 

0.034 

1.8 

1.8 

1.8 
7.6 

7.0 

1.7 

0.85 

0.4 

0.4 

1.0 

1.0 

1.0 

1.0 

1.0 

2.0 

2.0 

2.0 

0.14 

0.267 

0.267 

0.016 

0.016 

0.107 

0.107 

0.12 

0.12 

0.12 

0.087 

0.087 

0.030 

0.006 

0.050 

0.033 

0.050 

0.011 

Enzyme Inh 

pectinase 

peroxidase 

pectinase 

cellulase 

urease 

pectinase 

xylanase 

pectinase 

peroxidase 

laccase 

pectinase 

pectinase 

pectinase 

pectinase 

pectinase 

succinoxidase 

malate decarboxylase 

alcohol dehydrogenase 

alcohol dehydrogenase 

lactate dehydrogenase 

lactate dehydrogenase 

peroxidase 

peroxidase 

catalase 

catalase 

0-glucosidase 

0-glucosidase 

a-amylase 

trypsin 

trypsin 

a-amylase 

a-amylase 

Ii pase 

lipase 

malate dehydrogenase 

isocitrate dehydrogenase 

G-6-P dehydrogenase 

malate dehydrogenase 

G-6-P dehydrogenase 

a-amylase (pancrease) 

a-amylase (bacteria) 

a-amylase (barley) 

pectinase-methyl esterase 

pectinase-lyase 

ribulosediphosphatase 

ibition 

% 

84 

70 

70 

80 

50 

98 

50 

50 

50 

50 

85 

75 

96 

72 

73 

97 

90 

29 

76 

100 

100 

41 

50 

42 

80 

48 

47 

68 

55 

30 

80 

70 

60 

90 

100 

100 

100 

98 

96 

95 

56 

65 

50 

100 

97 

Reference 

202 

202 

26 

26 

26 

246 

200 

200 

200 

200 

31 

31 

31 

31 

31 
141 

141 

97 

97 

97 

97 

97 

97 

97 

97 

97 

97 

62 

285 

285 

285 

285 

285 

285 

84 

84 

84 

33 

33 

276 

276 

276 

276 

276 

276 

23 



Table 6. The Tannin Inhibition of Microorganisms Reported In the Literature. 

Type Tannin 

Cor source) 

Concentration Microorganism 

9 L 

Observation Inhibition Ref. 

FUNGI 

white oak heartwood 

white oak heartwood 

elLigotannins 

chinese chestnut bark 

american chestnut bark 

Japanese chestnut bark 

chestnut wood 

gallotarmin 

wattle tannin 

chestnut wood 

gallotarmin 

wattle tannin 

chestnut wood 

gallotarmin 

wattle tannin 

chestnut wood 

gallotarmin 

wattle tannin 

oak acorn 

commercial tannin 

commercial tarmin 

commercial tannin 

commercial tannin 

commercial tannin 

commercial tannin 

commercial tannin 

commercial tarmin 

commercial tannin 

chestnut wood 

wattle tannin 

1.0 

1.0 

1.0 
12.0 

12.0 

12.0 

0.31 

0.31 

0.31 

0.31 

0.31 

0.31 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2.2 

7.7 

7.7 

7.7 

7.7 

7.7 

7.7 

7.7 

7.7 

7.7 

4.6 

4.6 

Polyporus versicolor 

Poria monticola 

Poria monticola 

Endothia parasitica 

Endothia parasitica 

Endothia parasitica 

Fusarium solani 

Fusarium solani 

Fusarium solani 

Verticillium albo-atrum 

Verticillium albo-atrum 

Verticillium albo-atrum 

Fusarium solani 

Fusarium solani 

Fusarium solani 

Verticillium albo-atrum 

Verticillium albo-atrum 

Verticillium albo-atrum 

Calvatia gigantea 

Aspergillus fumigatus 

Aspergillus terreus 

Fusarium oxysporum 

Absidia glauca 

Oospora sulphurea 

Pénicillium granulatus 

Pénicillium implicatum 

Pénicillium nigricans 

Pénicillium lilacinum 

Saccharomyces cerevisiae 

Saccharomyces cerevisiae 

growth 

growth 

growth 

growth 

growth 

growth 

germination 

germination 

germination 

germination 

germination 

germination 

germination 

germination 

germination 

germination 

germination 

germination 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

respiration 

respiration 

5 

92 

28 

100 

20 

20 

100 

100 

100 

100 

84 

100 

100 

100 

0 

100 

100 

50 

50 

99 

66 

100 

100 

100 

0 

0 

0 

100 

20 

10 

119 

119 

119 

229 

229 

229 

195 

195 

195 

195 

195 

195 

195 

195 

195 

195 

195 

195 

157 

61 

61 

61 

61 

61 

61 

61 

61 

61 

20 

20 

oak wood 

wattle tannin 

chestnut wood 

wattle tarmin 

chestnut wood 

wattle tannin 

chestnut wood 

wattle tannin 

chestnut wood 

wattle tannin 

chestnut wood 

wattle tannin 

5.0 Nitrifying bacteria 

5.0 Nitrifying bacteria 

4.6 Azotobacter vinelandii 

4.6 Azotobacter vinelandii 

4.6 Azotobacter chroococcum 

4.6 Azotobacter chroococcum 

4.6 Rhizobium melitoti 

4.6 Rhizobium meliloti 

4.6 Pseudomonas flourescens 

4.6 Pseudomonas flourescens 

4.6 Escherichia coli 

4.6 Escherichia coli 

nitrification 

nitrification 

respiration 

respiration 

respiration 

respiration 

respiration 

respiration 

respiration 

respiration 

respiration 

respiration 

50 

48 

51 

84 

99 

99 

0 

5 

0 

0 

39 

23 

19 

19 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

24 



Table 6. The Tannin Inhibition of Hicroorganisas Reported In the Literature (Continued). 

Type Tannin 

(or source) 

tannic ac id 

carob pod 

tannic ac id 

tannic ac id 

carob pod 

tannic ac id 

carob pod 

tannic ac id 

carob pod 

tannic ac id 

carob pod 

tannic ac id 

carob pod 

tannic ac id 

carob pod 

tannic ac id 

carob pod 

tannic ac id 

myrobolam tannin 

quebracho tannin 

chestnut wood 

mimosa tannin 

Concentration 

9 L - 1 

0.012 

0.015 

0.045 

0.012 

0.015 

0.045 

0.075 

0.010 

0.060 

0.030 

0.075 

0.250 

0.600 

0.100 

0.100 

0.100 

0.100 

10.0 

20.0 

20.0 

20.0 

5.0 

Microorganism 

CeUv ib r io fu lvus 

CeUv ib r i o fu lvus 

Sporocytophaga myxococcoides 

CeUv ib r i o fu lvus 

C e l l v i b r i o fu lvus 

Sporocytophaga myxococcoides 

Sporocytophaga myxococcoides 

C lost r id ium ce l lu losolvens 

C lost r id ium ce l lu loso lvens 

Bac i l lus s u b t i l i s 

Bac i l lus s u b t i l i s 

Streptococcus cremoris 

Streptococcus cremoris 

Escherichia c o l i 

Escherichia c o l i 

C e l l v i b r i o fu lvus 

C e l l v i b r i o fu lvus 

Desulphovibrio desulphuricans 

Desulphovibrio desulphuricans 

Desulphovibrio desulphuricans 

Desulphovibrio desulphuricans 

Desulphovibrio desulphuricans 

Observation 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

growth 

r esp i ra t i on 

r esp i ra t i on 

r esp i r a t i on 

r esp i r a t i on 

growth 

growth 

growth 

growth 

growth 

I n h i b i t i o n 

/e 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

15 

4 

29 

26 

100 

100 

100 

100 

100 

Ref. 

132 

132 

132 

132 

132 

132 

132 

132 

132 

132 

132 

132 

132 

132 

132 

132 

132 

32 

32 

32 

32 

32 

R 

pheno l 

<d> OH 
H b 

p ro t e i n 
/ / / / 

-- 0= C 
ond \ 

CHR 
/ 

HN 
\ \ \ \ 

Figure 13. The hydrogen bond between phenol and proteins. 
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Table 7. Effect of H u m s Forming Reactions on the Toxicity of Polar Phenolic Hommers and Tannins. 

Compound Cone. 

9L-1 

Polymerization 

method 

Microorganism 

or Enzyme 

Observation Inhibition % 

before 

oxid. 

after 

oxid. 

Ref. 

PART A. INCREASE IN INHIBITION BY POLYMERIZING MONOMERIC PHENOLS 

catechol 

catechol 

o cresol 

protocatechuate 

protocatechuate 

catechol 

catechin 

epicatechin 

epigallocatechin 

EPGa 

lueco-anthocyanidin 

catechol 

catechol 

catechol 

catechol 

epicatechin 

epicatechin 

catechol 

catechol 

chlorogenate 

chlorogenate 

catechin 

2.200 

0.110 

0.025 

0.154 

0.154 

1.1 
2.9 

2.9 

3.1 

4.6 
2.9 

0.110 

0.110 

us* 
NS 

0.087 

0.087 

0.330 

0.330 

0.944 

0.944 

1.429 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

phenol 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

oxidase 

condensation 

condensation 

phenol 

phenol 

phenol 

phenol 

oxidase 

oxidase 

oxidase 

oxidase 

autoxidized 

pectinase 

pectinase 

pectinase 

pectinase 

cellulase 

pectinase 

pectinase 

pectinase 

pectinase 

pectinase 

pectinase 

polygalacturonase 

PM esterase 

Fusarium oxysporum 

Fusarium oxysporum 

malate dehydrogenase 

G-6-P dehydrogenase 

C. miyabeanusc 

C. miyabeanus 

CM virus 

TN viruse 

bacteria (rat gut) 

activity 

activity 

activity 

activity 

activity 

activity 

activity 

activity 

activity 

activity 

activity 

activity 

activity 

growth 

germination 

activity 

activity 

growth 

germination 

infectivity 

infectivity 

growth 

64 

0 

70 

0 

0 

18 

19 

0 

0 

35 

11 

0 

0 

low 

low 

0 

0 

0 

94 

13 

13 

low 

97 

28 

95 

36 

33 

63 

80 

93 

63 

74 

95 

68 

75 

high 

high 

98 

96 

100 

100 

97 

97 

high 

202 

202 

202 

202 

202 

31 

31 

31 

31 

31 

31 

272 

272 

272 

272 

33 

33 

233 

233 

118 

118 

63 

PART B. DECREASE IN 

commercial tannin 

commercial tannin 

oxid. catechol 

oxid. catechol 

oxid. o cresol 

oxid. protocatechuate 

oxid. protocatechuate 

apple tannins 

tallowwood tannin 

canaigre tannin 

chestnut wood tannin 

canaigre tannin 

chestnut wood tannin 

wattle tannin 

1.7 

0.004 

2.200 

0.110 

0.025 

0.154 

0.154 

NS 

NS 

1.0 

1.0 

1.0 

1.0 

1.0 

INHIBITION BY POLYMERIZING TANNINS (LOU 

autoxidation 

autoxidation 

phenol oxidase 

phenol oxidase 

phenol oxidase 

phenol oxidase 

phenol oxidase 

phenol oxidase 

phenoloxidase 

autoxidation 

autoxidation 

autoxidation 

autoxidation 

autoxidation 

pectinase 

peroxidase 

pect i nase 

pectinase 

pectinase 

pectinase 

cellulase 

pectinase 

Coriolus versicolor 

Fusarium solani 

Fusarium solani 

V. albo-atrun 

V. albo-atrun 

V. albo-atrun 

MW POLYMERIC 

activity 

activity 

activity 

activity 

activity 

activity 

activity 

activity 

activity 

growth 

growth 

growth 

growth 

growth 

PHENOLS) 

84 

70 

97 

28 

95 

36 

33 

45 

95 

100 

100 

100 

100 

50 

0 

0 

65 

0 

70 

0 

0 

0 

19 

0 

0 

0 

0 

0 

202 

202 

202 

202 

202 

202 

202 

306 

254 

195 

195 

195 

195 

195 

a EPG = epigallocatechin-gallate, b PM = pectin-methyl, c C. = Cochliobolus, CM = Cucumber Mosaic, 
e f 

TN = Tobacco Necrosis, V. = VerticiIlium 

partially polymerized monomeric phenols (20 to 60 minutes of oxidation) were polymerized further up to 

1020 minutes. 

NS = not specified, acid catalyzed condensation 
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concentrations ranging from 6.5 to 320 mg L" ' . This corresponds to the very high fish 
toxicity generally observed for debarking wastewater (Virkola and Honkanen, 1985). 
Concentrations as low as 25 to 100 mg COD L"1 were responsible for 50% fish (rainbow 
trout) kills. 

Although the apolarity of phenolic compounds is a characteristic correlated to increasing 
methanogenic toxicity, tannins appear to be highly toxic regardless of the fact that they are 
highly polar compounds. The ambiguity perhaps is attributable to a unique mechanism of 
inhibition. Tannin compounds are noted for their sorptive reactions with proteins, called 
tanning (White, 1957). The hydrogen (H) bonding reactions with proteins (Figure 13) that are 
necessary for tanning are postulated to cause toxicity to bacteria because such interactions 
interfere with the functioning of enzymes (Goldstein and Swain, 1965; Gupta and Haslam, 
1980; Haslam, 1974; White, 1957; Ladd and Butler, 1975; Loomis and Battaile, 1966; Strumeyer 
and Malin, 1969; Daiber, 1975; Tamir and Alumot, 1969; Hart and Hillis, 1972). The polar 
monomeric phenols have limited H bonding capacity, while the oligomeric tannins have a far 
superior H bonding capacity because of their ability to form multiple H bonds, called,"cross-
linking" (Bate-Smith, 1973; Haslam, 1974; Loomis and Battaile, 1966; Endres and Hormann, 
1963; Williams, 1963). Likewise we can expect that the toxicity of the oligomeric tannins is 
then far superior to their monomeric counterparts, as has been shown to be the case with 
metabolic enzymes (Boser, 1961; Firenzuoli et al., 1969; Hulmes and Jones, 1963), 
extracellular enzymes (Haslam, 1974; Lyr, 1965; Lyr, 1961; Williams, 1963) and eubacteria 
(Henis et al., 1964). The minimum MW for effective tannins is approximately 500 g m o l e , 
which are equivalent to dimers (White, 1957; Williams, 1963). Therefore the low methanogenic 
toxicity of polar monomeric phenolic compounds can be explained by the fact that these are 
poor tanning substances. 

5.3. Effect of Humus Forming Reactions on the Toxicity of Polar Phenolic Compounds 

During the humus forming process, low MW phenolic substances are subjected to 
oxidative polymerization reactions. The reactivity of monomeric phenolics with proteins has 
been shown to increase as they are polymerized to oligomeric tannins (Chollot et al. 1961). 
This corresponds to the increase in the toxicity of monomeric phenols to enzymes, 
microorganisms and viruses (Table 7A), as they are oxidized to low MW polymers. Thus 
during the early stages of humus development, the nontannic polar phenolic monomers of 
low toxicity can be potentially converted to tannic substances of higher toxicity. 

The tannins which are already quite toxic on the other hand become less toxic as they 
are oxidatively polymerized to high MW polymers of humic qualities (Table 7B). Thus there 
appears to be a maximum effective tannin size. For the effective tanning of hides, a 
maximum MW of 3,000 g mole"' has been found (White, 1957). The limitation is due to the 
poor penetration of high MW tannins into the interfiber spacings of the hide protein fibers. 
Likewise, we can expect that a similar maximum size must not be exceeded for penetration 
to bacterial enzymes or other functional proteins. The penetration barrier may consist of the 
outer membranes of gram negative bacteria (Nikaido and Vaara, 1985), cell envelopes of 
archaeobacteria (König, 1988), extracellular polysaccharides (Whitfield, 1988) forming slime 
layers around bacteria or glycocalyx (a polysaccharide) that surrounds the cell membranes of 
higher organisms. Considering reconstituted outer membranes of gram negative bacteria as a 
model, exclusion limits to passive diffusion have been reported to range between 600 and 
3000 g mole"1 (Vachon et al., 1985; Hancock and Nikaido, 1978; Vachon et al., 1988). Thus 
oligomeric tannins would be the most effective tannins for inhibiting the growth and 
metabolism of bacteria. 

In any case, tannins are reactive with soluble proteins up to a MW of approximately 
20,000 g mole"', which is equivalent to polymers of about 70 monomeric units (Jones et al. 
1976). This would indicate the existence of high MW tannins that can potentially react with 
freely soluble extracellular enzymes, although they may not be inhibitory to microorganisms. 
The final products of phenol oxidation are high MW humic compounds that are even non
toxic towards extracellular enzymes (Table 7B). In this case, a loss in tanning capacity is 
perhaps due to an excessive size, in which the majority of the phenolic groups are buried 
too deep in the molecule or are too stabilized for effective H bonding interactions. 
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Additionally, it has been suggested that during autoxidation some ring opening may occur, 
producing polymers with increased carboxylic acid groups and thus contributing to a 
decrease in the tannic properties (Lewis and Papavizas, 1967). 

The final end products of phenol oxidation are thus nontoxic humic compounds. The non-
toxicity of at least two types of humic compounds towards methanogenic bacteria has been 
reported, these include: peat up to 16 g L"1 (Owens et al., 1979); and an extract of melanin 
(Lane, 1983). 

The non-toxicity of humic compounds reveals a natural mechanism in the environment to 
detoxify tannic compounds of plants between the time that tannins are released to the 
forest floor and the time they enter ground and surface waters. This mechanism is the 
natural humus forming processes which occur in the forest soil. Potentially the humus 
forming reactions can be imitated in order to detoxify toxic concentrations of tannins in 
wastewater by their polymerization. In fact, this principle has already been applied to 
detoxify tannin inhibitors of pectinase during apple pulp fermentation by a simple oxidation 
pre-treatment (Verspuy and Pilnik, 1970). 

6. SCOPE OF THIS DISSERTATION 

The objectives of this dissertation are to define the anaerobic biodegradability and 
methanogenic toxicity of tannic compounds and to determine the extent to which these are 
altered by the humus forming process. 

Chapters 2 - 4 investigate the biodegradability and toxicity of tannic substances and 
related compounds during anaerobic conditions. Chapters 5 - 7 describe the effects of 
oxidative reactions on the biodegradability and toxicity of defined tannic and monomeric 
phenolic compounds. Chapters 8 - 1 0 explore the possibility to utilize the humus forming 
reactions to detoxify the methanogenic inhibition caused by tannins in wastewater. Chapter 
11 compares the anaerobic treatment performance of unoxidized and oxidatively detoxified 
tannin containing wastewater, fed continuously to laboratory scale reactors. 
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ABSTRACT 

Potatoes, which are important agricultural feedstocks for the starch industry, 
contain tyrosine and phenol oxidase. Since L-dopa can he formed from tyrosine 
by phenol oxidase, both tyrosine and \.-dopa are presumably present in potato 
starch wastewaters. The purpose of this study was to evaluate the 
methanogenic toxicity and anaerobic degradability of these two phenolic 
amino acids. Tyrosine was found to be negligibly toxic to methane bacteria, 
while L-dopa caused from 40% to 50% inhibitions of the methanogenic 
activity at a concentration of327mg liter ~ '. The toxicity of L-dopa occurred 
only if anaerobic sludge was exposed to L-dopa in the presence of Volatile 
Fatty Acids ( VF A ) . The L-dopa toxicity could be minimized by maintaining 
low VF A concentrations in the media and by adapting the sludge to VF A prior 
to L-dopa exposure. 

Both tyrosine and L-dopa were anaerobically degraded to CHt; however, 
only tyrosine was degradable after prolonged operation of continuously VFA-
fed, granular sludge, packed columns. Phenol and p-cresol were identified as 
phenolic intermediates of anaerobic tyrosine degradation. Both p-cresol and 
m-cresol were identified as phenolic intermediates of anaerobic L-dopa 
degradation. 

INTRODUCTION 

Potatoes are an important agricultural feedstock of the starch industry. 
They contain both tyrosine and the phenol oxidase known as tyrosinase 
(Mathew & Parpia, 1971; Baruah & Swain, 1959; Mapson et al., 1963). This 
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suggests the presence of both tyrosine and oxidation products of tyrosine in 
the wastewater generated from the processing of potatoes for starch. 
Tyrosinase plays an important role in the browning of potatoes which occurs 
when the tissue is damaged. Figure 1 illustrates the oxidation of tyrosine to 
the brown polymeric products, referred to as mélanine, by the enzymatic 
action of tyrosinase (Nelson & Dawson, 1944; Mason, 1955; Rolland & 
Lissitzky, 1962; Mason & Peterson, 1965; Mathew & Parpia, 1971; 
Singleton, 1972). Tyrosinase has two enzyme activities. The first activity, 
cresolase, hydroxylates monohydroxy phenolic compounds to o-dihydroxy 
phenolic compounds. With tyrosine as substrate, the cresolase activity 
results in the formation of L-dopa. The second activity, catecholase, oxidizes 
the o-dihydroxy phenolic compounds to their respective quinones. The 
oxidation of L-dopa by the catecholase activity produces dopaquinone. In 

'Ao, 

y \/\/™H Ldopo 

7? o. 

polymerization 

.L 
Fig. 1. The cresolase and catecholase activities of tyrosinase (a phenol oxidase) and 

subsequent polymerization of dopaquinone to form brown mélanine compounds. 
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the presence of air dopaquinones polymerize spontaneously to form 
mélanine. 

The cresolase activity is not reversible. The catecholase activity, on the 
other hand, is reversible (Fig. 1) in the presence of reducing agents (Nelson & 
Dawson, 1944; Mathew & Parpia, 1971; Walker, 1975; Muneta, 1981). The 
reducing agents reduce the quinones to their o-dihydroxy phenolic 
precursors. Therefore, the aeration of tyrosine in the presence of both 
tyrosinase and reducing agents should lead to the accumulation of L-dopa. 
This has been confirmed by several researchers using ascorbate or 
dihydroxyfumarate as the reducing agent (Kendal, 1949; Rolland and 
Lissitzky, 1962; Muneta, 1981). Sulfur dioxide is most commonly used in the 
potato starch industry to minimize coloration of the process water. While 
sulfur dioxide partially functions to prevent browning by inactivation of 
tyrosinase (Diemar et ai, 1960), it also functions like ascorbate by reducing 
quinones back to o-dihydroxy phenolic compounds (Mathew & Parpia, 
1971). The aeration of potato process water during the manufacture of 
starch may lead to the accumulation of L-dopa from tyrosine, since reducing 
agents ensure that dopaquinone is reduced to L-dopa. 

Tyrosine is present in potatoes in significant concentrations. The 
literature average tyrosine concentration of potatoes is 5750mg kg"1 dry 
tuber solids (Labib, 1962; Mapson et ai, 1963; FAO, 1970; Kaldy & 
Markakis, 1972; Davies & Laird, 1976; Livingstone et ai, 1980; Samotus et 
ai, 1982). Taking into account the removal of starch during processing and 
that two-thirds of the potato wastewater amino acids are present in the free 
form (Heisler et ai, 1972), we have calculated that an average of 15mg free 
tyrosine would be expected per gram of potato-starch wastewater COD. The 
percentage conversion of tyrosine to L-dopa will largely depend on the 
amount of cresolase activity present in the potato process water and the 
reducing agents available to prevent further oxidation of L-dopa to mélanine 
pigments. 

The methanogenic toxicity of several phenolic compounds has been 
established (Chou etui, 1978; Pearson et ai, 1980; Fedorak& Hrudey, 1984; 
Benjamine/«/., 1984). However, the toxicity of tyrosine and L-dopa have not 
been studied. The purpose of this study was to evaluate the methanogenic 
toxicity and anaerobic degradability of tyrosine and L-dopa since these 
compounds may be present in toxic concentrations in potato starch 
wastewaters. 

METHODS 

Media contained the following nutrients (per liter): H,BO,. 005mg; 
0-05 mg; MnCl2 .4H,0. 0-5 mg; CuCl2 .2H,6, 
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003 mg; (NH4)6 Mo 7 0 2 4 . 4H 2 0 , 005 mg; A1C13.6H20, 009 mg 
CoCl2 .6H20, 2mg; NiCl2 .6H20, 005mg; Na2Se 0 3 . 5H 2 0 , 01mg: 
EDTA, 1mg; resazurine, 0-2mg; 36% HCl, 0001ml; NH4C1, 0-28g: 
K2HP04 , 0-25g; MgS0 4 .7H 20, 01 g; NaHC03 , 0-4g; yeast extract, 01g 
and CaCl2. 2H20, 001 g. Batch-fed experiments were conducted in 0-25- or 
0-5-liter serum flasks or 2-5 liter pots. Cultures were either unshaken, shaken 
(serum flasks placed in a reciprocal shaker; 1 min, shaking, 4 min, rest cycles), 
or stirred (2-5-liter pots with an agitator that rotated in the sludge 
bed at about 0-5 cycles s - 1 ; (1 min, stirring, 4 min, rest cycles)). Granular 
sludge (1-5 years in 4°C storage) used in the experiments was originally 
obtained from an UASB reactor treating potato-derived wastewater. 
Sludge concentrations used were between 1-0 and 1-5 g organic solids (OS) 
liter-1. Exact OS concentrations are reported in Figure and Table 
captions. The Volatile Fatty Acid (VFA) substrates used throughout the 
experiments were obtained from a stock solution containing 100:100:100g 
acetate:propionate:butyrate per kilogram of pH 6-8 neutralized (with 
NaOH) solution. The chemical oxygen demand ratio of the VFA stock was 
24-3:34-4:41-3% of the total COD for C2, C3 and C4, respectively. Exact 
concentrations of VFA used during the experiments are listed with the 
Tables and Figures. The temperature of all experiments was 30°C. 
Continuously fed experiments were conducted in 0-2-liter columns packed 
with 3-4 g OS granular sludge, which was previously adapted for 5 weeks on 
a continuous feed of 5 g COD per liter VFA. The columns contained a sieve 
(1 mm openings) between the top of the sludge bed and effluent discharge to 
prevent granular sludge wash-out. The columns were operated for 3 months 
with hydraulic retention times (HRT) ranging from 11 to 2-4 h and VFA 
influent concentrations ranging from 4-7 to 24-7 g COD per liter. The VFA 
loadings and operating modes are indicated in the Figure with the column 
results. The feed of all columns contained the nutrient supplementation used 
in the batch assays. One column was a VFA-fed control, while 300 mg per 
liter tyrosine and 327 mg per liter L-dopa were present in the feeds of the 
second and third columns. 

The phenolic amino acids were tyrosine (MW = 181 and COD = 1-724 g 
0 2 per gram of tyrosine) and L-dopa (MW = 197 and COD = 1-503 g 0 2 per 
gram of L-dopa) obtained from Janssen Chimica (Beerse, Belgium). Both 
amino acids are illustrated in Fig. 1. In all cases (except where otherwise 
indicated), the nutrient supplement, sludge and VFA were brought together, 
adjusted to pH 7-4 with NaOH and predigested overnight prior to addition 
of the phenolic amino acids. This addition was conducted under N2 flushing 
conditions. 

Methane production was monitored with modified mariotte flasks 
containing 3% NaOH to remove CO, from the gas. Volatile Fatty Acids 
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(VFA) were analyzed on a Packard 417 gas Chromatograph equipped with a 
2m x 2mm ID column packed with 10% Fluorad FC 431 on supelcoat 
(100-120 mesh). The carrier gas (N2) was saturated with formic acid (flow, 
35 ml min"1). The oven temperature was set at 130°C. The FID detector 
signal was processed with a SP41 Spectra Physics integrator. The VFA 
standards (C2-C5) were obtained from Merck. Several aromatic compounds 
could be detected by this chromatography procedure without derivatiz-
ation. Standards tested included phenol, /?-cresol, o-cresol, m-cresol, benzoic 
acid, /7-ethylphenol, w-ethylphenol, phenylacetic acid and 3-phenyl-
propionic acid. The p-cresol and m-cresol could not be separated into 
distinct peaks when injected together. The two components, however, gave 
unique peaks when injected alone. The pH was monitored with a Knick 511 
meter and Schot Gerate N61 double electrode. The phenolic amino acids 
have UV light absorbing properties. The elimination of UV absorbence 
from the media is indicative of the phenolic's disappearance from the media. 
UV absorption was measured with a Perkin-Elmer 550 A spectro
photometer and a Hellma 100-QS 1 cm quartz cuvette. Absorption is 
reported as the absorption of the media containing phenolic amino acids less 
the absorption of the control media (which contained no UV absorbing 
compounds). 

Methanogenic activities are reported for batch assays as a percentage 
ratio of the treatment CH4 production rate and control CH4 production 
rate at the time period of maximal control activity. Inhibition is defined as: 
100 — activity. The methanogenic inhibition caused by the phenolic amino 
acids in the continuously VFA fed experiments was calculated as follows: 

(1 - ( £ p a a / £ control)) x 100; 

where E paa = COD removal efficiency of phenolic amino acid treated 
column which received the same VFA loading as the control; E control = 
COD removal efficiency of control column. 

RESULTS 

Toxicity of tyrosine and L-dopa 

Figure 2A indicates the cumulative methane production from four 
consecutive VFA feedings of granular sludge, with 300 mg liter * tyrosine 
or 327 mg liter ~ ' L-dopa (concentration of equivalent molarity) and without 
any phenolic amino acids present in the media. Tyrosine was not 
significantly toxic to methanogenesis. Only a 4% inhibitition of the CH4 

production rate was evident in the first VFA feeding, which became 2% or 
less in the consecutive feedings. While L-dopa appeared non-toxic during the 

45 



J. A. Field, G. Letlinga, M. Geuris 

500 600 
time ( h) 

Fig. 2A. The cumulative CH4 production from stirred VFA batch-fed cultures (2-5 liters) 
with 1-36g OS per liter granular sludge and 417 g COD per liter VFA (C2:Cj:C4) added on 
days 0, 7, 15 and 20 as indicated by the arrows. The media included either 300mg l i ter - 1 

tyrosine ( - - ) or 327mg liter ' L-dopa ( ). The VFA-fed control is indicated by the 
unbroken line ( ). New VFA solution for each additional feeding was added to existing 
media. Tyrosine and L-dopa were added only once at time 0. Fig. 2B. The UV absorbance of 

30 x diluted media at 215 nm with tyrosine (O) or L-dopa ( • ) . 

first 50 h of assay, a 49% inhibition of the CH4 production was suddenly 
evident in the remainder of the first feeding: this increased to a 53% 
inhibition in the second feeding. The L-dopa toxicity decreased in the third 
and fourth VFA feedings, when 17% and 6% inhibition of the CH4 

production rates were observed. 
Figure 3A-D illustrates the decreases of methanogenic activity resulting 

from increasing concentrations of L-dopa in four consecutive VFA feedings. 
The toxicity of L-dopa reached its maximum in the second feeding. A large 
loss (43%) of methanogenic activity was evident on increasing the L-dopa 
concentration from 0 to 400 mg liter ~ '. Increasing the L-dopa concentration 
beyond 400 mg liter " ' only increased the inhibition to 52% (Fig. 3B). The L-
dopa toxicity decreased in the third and fourth feedings if the L-dopa 
concentration was 1000mg liter"1 or less. No, or little, decrease in L-dopa 
toxicity was observed in the third and fourth feedings for treatments which 
received 1400 mg l i t e r 1 or more L-dopa. 

The effect of shaking during the assay period on the L-dopa toxicity is 
shown in Fig. 4A-B for the first and second VFA feedings. The toxicity of 
200 to 400 mg per liter of L-dopa could be decreased by not shaking. The 
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200 400 600 1000 1400 1800 2200 
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Fig. 3. The aclivity of CH4 production in shaken VFA batch-fed cultures (025 liter) with 
various concentrations of L-dopa added only at the beginning of the experiment. The sludge 
concentration was l-46g OS liter" ' and the VFA were added at 4 17g COD liter - 1 to the 
existing supernatant on days 0. 8, 14 and 41 for activity assays shown in Figs 3A, B, C and D, 
respectively. The control activities were 399, 833, 847 and 839 mg COD liter ' day ~ ' in parts 

A, B, C and D. 

shaking most likely brought the sludge into better contact with both VFA 
and L-dopa. 

The effect of VFA concentration during a 3-day exposure of sludge with 
327 mg per liter of L-dopa on the activity of the sludge following the shaken 
exposure periods is shown in Fig. 5. L-dopa was not toxic if no VFA were 
present during the exposure period. Sojust the better contact of L-dopa with 
the sludge was not the reason for increased toxicity on shaking. Increasing 
the VFA concentration to 2g COD litre -1, during the L-dopa exposure 
period, increased the L-dopa toxicity to 39% inhibition. The highest 
concentration of VFA, 4g COD liter-1, increased the L-dopa toxicity to 
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Fig. 4. The activity of CH4 production in shaken (O) and unshaken ( • ) VFA batch-fed 
cultures (0-25 liter) with various concentrations of L-dopa added only at the beginning of the 
experiment. The sludge concentration was 1-27 g OS per liter and the VFA were added at 
417 g COD per liter to existing supernatant on days 0 and 9 for the activity assays indicated in 
Figs 3A and B, respectively. The control activities of the shaken cultures were 437 and 885 mg 
COD liter ~ ' day " ' and the control activities of the unshaken cultures were 490 and 915 mg 

COD liter ' d ay - 1 in parts A and B, respectively. 

47%. The better contact of the sludge with the VFA must have caused the 
increased toxicity on shaking. The presence of VFA in the media appears to 
have a synergistic toxicity with L-dopa. Adapting the sludge on 4 g COD per 
liter VFA for 5 days prior to L-dopa exposure reduced the synergistic effect 
of the VFA on the L-dopa toxicity. The maximum level of VFA, 4 g COD 
liter"1, used during the 3-day L-dopa exposure period caused 33% 
inhibition with VFA-adapted sludge (Fig. 5). The toxicity was not related to 
the VFA alone, since the controls showed increasing activity with 
increasing VFA concentrations during the exposure period. 

The toxic effect of L-dopa with VFA present was damaging to the methane 
bacteria. This wasevident since exposing the sludge to L-dopa and VFA for 3 
days caused the sludge to lose its activity when assayed on replaced media 
which contained no L-dopa (Fig. 5). The damage caused by 1000mg liter ', 
or less, L-dopa was not permanent since the lost activity was partially 
recovered after 20 to 41 days (Figs 2 and 3D). 

The performance ofVFA-fed columns with 327 mg liter" ' L-dopa present 
in the feed is compared with 300mg liter" ' tyrosine and a VFA control in 
Fig. 6. The columns in this experiment were packed with sludge which was 
previously adapted to a continuous feed of 5 g COD per liter VFA. The 
column receiving L-dopa had lower levels of COD removal efficiencies than 
the control column, indicating that the methanogenic activity was inhibited 
by the L-dopa. The maximum L-dopa inhibition of 14% (occurring between 
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Fig. 5. The CH4 production in shaken VFA batch-fed cultures (0-25 liter) as affected by 
exposure of the sludge (I-36 g OS per liter) to 327 mg liter l L-dopa at various concentrations 
of VFA during a 3-day prc-incubation period. The activities are reported for the 3-day assay 
period, which followed, on replaced medium with 417g COD per liter VFA and without L-
dopa. Activities are reported as a percentage of the respective control activities which were 
exposed to the same concentrations of VFA during pre-incubation as the L-dopa treatments. 
Before pre-incubation, the sludge was either pre-adapted to 4 g COD per liter VFA for 5 days 
(O) or not pre-adapted to VFA (•)• The sludge which was not adapted to VFA before pre
incubation had control activities of 335, 491, 607, 686, 683 and 750mg COD liter"' d ay - 1 

when 0, 0-5, 10, 15, 20 and 4-0g COD per liter, respectively, of VFA were supplied to the 
media in the pre-incubation period. The sludge which was pre-adapted to VFA before the 
prc-incubation period had control activities of 833, 856, 960 and 859 mg COD liter ~ ' d a y - ' 
when 0,0 5, 2 and 4 g COD liter ', respectively, of VFA were supplied to the media in the pre

incubation period. 

days 3 to 8; 71-189 h) was much lower than the L-dopa toxicity in batch-fed 
assays with lower concentrations of unadapted (to VFA) sludge (Fig. 2A). 
After 20 days (490h), the inhibition decreased to 30%. After 68 days 
( 1636 h), the inhibition increased to 12% when the columns were overloaded 
with VFA for 3 days. Sludge recovered from the L-dopa column after 74 
( 1776 h) days was exposed to 327 mg liter ! L-dopa and 6 g COD per liter 
VFA for 5 days with shaking. Following the exposure, 1-5 g OS per liter of 
this sludge had 7% less activity than the same sludge only exposed to 6g 
COD per liter of VFA. 

The column receiving tyrosine showed only negligible inhibitions in the 
first week. After 3 weeks (500 h), the COD removal efficiency of the tyrosine-
treated column was slightly greater than the control. 

Anaerobic degradation of tyrosine and L-dopa 

During the VFA-fed assays, certain modifications of both tyrosine and L-
dopa were evident from the disappearance of UV absorption in the media 
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Fig. 6. Results from continuously VFA fed columns. A. The phenol ( • ) and /!-cresol ( • ) 
concentration observed in the effluent of the column fed VFA and 300 mg per liter tyrosine. 
The p-cresol (A) concentration observed in the effluent of the column fed VFA and 327 mg 
per liter L-dopa. B. The UV absorbance of the effluents (diluted 16 x ) from the VFA-fed 
columns receiving tyrosine ( ) and L-dopa ( ). C. The VFA concentrations in the 
effluents of the VFA-fed columns receiving tyrosine (Oh L-dopa (A) and no phenolic amino 
acids(O)- D. The COD removal efficiency of the VFA-fed columns receiving tyrosine ( • ) , L-
dopa (A) and no phenolic amino acids (O)- The VFA space loading of the columns ( ). 
The loading was approximately the same for all of the columns. At time 0, the columns (each 
0-2liter) were filled with 34g OS granular sludge which was previously adapted to a 
continuous feed of 5 g COD per liter of VFA for 5 weeks. At the end of the experiment the 
VFA-fed control column contained 9-28 g OS. The operation mode of the columns in a given 
time period is summarized by the letter codes at the bottom of the Figure: (A) HRT 6 1 to 
10-7h, influent COD 4-7 to4-9g liter ';(B) HRT 7-4 to 100h, influent COD 7-4g liter '; (C) 
HRT 77 to 10-9 h, influent COD 9-9g liter '; (D) HRT 68 to 10-0 h, influent COD 7-4 g 
liter" '; (E) HRT 5 3 to 7 8h, influent COD 9-9 g liter '; (F) HRT 4 4 to 5-4 h, influent COD 
12-3 g liter '; (G) VFA overload period HRT 4 1 to 47 h, influent COD 247 g liter '; (H) 
VFA overload period HRT 2-4 to 2-7 h, influent COD 12-3 g liter '; (I) HRT 8-2 to 14-0h. 

influent COD 14-8 g liter '; (J) HRT 2 7 to 3 8 h. influent COD 7-4 g liter '. 
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(Figs 2B and 7, Table 2). The appearance of phenolic intermediates (Tables 1 
and 2 and Fig. 6A) indicates that at least some biological transformations of 
tyrosine and L-dopa were occurring during digestion. Phenol and p-cresol 
identified in the tyrosine treatments accounted for 55% of the initial tyrosine 
COD (Table 1). The/j-cresol identified in the L-dopa treatments accounted 
for 33% to 37% of the initial L-dopa COD (Tables 1 and 2). In the effluent of 
the continuously fed columns the maximum concentrations of phenol and p-
cresol from the tyrosine treatments occurred between 4 and 21 days (96 and 
504 h) of operation and were approximately equivalent to 60% of the initial 
tyrosine COD. The maximum concentrations of /»-cresol from the L-dopa 
treatment occurred between 55 and 66 days (1320 and 1584 h) of operation 
and were equivalent to approximately 33% of the initial L-dopa COD. After 
30 days of the L-dopa column operation, m-cresol was present in the effluent 
in a proportion ranging from 25% to 50% of the total w-cresol plus p-cresol 
concentration. The combined concentrations of the two cresols are reported 
asp-cresol in Fig. 6A (w-cresol andp-cresol peaks could not be distinguished 
by the integrator). 

TABLE 1 
The Concentrations of Phenol and />-Cresol in Tyrosine and L-Dopa Supplied 
Media at Several Selected Sampling Times Following Initiation of VFA-Fcd Batch 

Digestions. Details of This Experiment are Described in the Legend to Fig. 2. 

Time of 
digestion 

do 

A. Concentration 
72 

165 
211 
354 
475 
593 

Control 

of phenol in 
0 
0 
0 
0 
0 
0 

B. Concentration of/)-cresol in 
72 

165 
211 
354 
475 
593 

0 
0 
0 
0 
0 
0 

300 

media 

media 

Treatment 

mg liter " ï tyrosine 

(mgliter~') 
0 

37-8 
371 
42-7 
25-5 
0 

(mgliter- '} 
27-5 
65-4 
77-4 
64-2 
78-4 
78-6 

327 mg liter l L-dopa 

0 
0 
0 
0 
0 
0 

0 
0 
0 

33-4 
580 
67-2 

C. Phenol +/>-crcsol COD expressed as a percentage of initial amino acid COD 
211 — 54-8 — 
593 — — 34-5 
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TABLE 2 
The UV Absorbance and p-Cresol Concentration in VFA-Fed, Shaken, 
Batch Cultures at Selected Sampling Times with Various L-Dopa 
Concentrations. Details of the Experiment are Reported in the Legend to 

Fig. 4. 

Time of Initial L-dopa concentration (mgliter'l) 
digestion 

(h) 0 100 200 300 400 

A. UV absorption (205 nm) in 31 x diluted media" 
24 — 0-303 0-603 

216 — 0038 0096 
384 — 0-034 0088 

B. Concentration of p-cresol in media (mg liter ') 
24 0 0 0 

216 0 11-7 430 
384 0 104 44-6 

C. p-Cresol COD expressed as a percentage of the initial L-dopa COD 
384 — 17-4 37-4 32-8 35-4 

"Absorbance data reported as treatment less control (no L-dopa). 

TABLE 3 
The Cumulative CH 4 Production and UV Absorption After a 51-Day Digestion of 327 mg 
liter - ' L-Dopa As Sole Substrate with I -3 g OS Granular Sludge per Liter. The Experiment 
was Conducted in 0-5-Liter Serum Flasks Filled to 0-25-Liter Culture Volume. No Shaking 

was Employed during the Assay Period. 

0-860 
0-388 
0119 

0 
26-4 
58-7 

1090 
0-627 
0165 

0 
45-7 
84-4 

h-Dopa Controls 
(327 mg liter' ' ) (no L-dopa) 

2" 

Cumulative CH4* ml per liter of culture 205 209 88 102 
(30CC at atmospheric pressure) 

UV absorbanccf at beginning of assay, 1031 1-062 — — 
205 nm, dilution = 31 x 

UV absorbance after 51 days'digestion, 0-370 0-461 — — 
205 nm, dilution = 31 x 

" 1 and 2 are replicates. 
h If all of the L-dopa were converted to CH4 , then the treatments would have 191 ml more 
CH 4 than the controls. 
cThe absorbance data reported as treatment less control. 
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Fig. 7. The disappearance of UV absorbance from the media (diluted 67 x ) with various 
concentrations (mgliter -1) of L-dopa supplied at the beginning of a VFA-fed batch 

experiment. Details of the experiment are described in the legend to Fig. 3. 

The anaerobic degradation of L-dopa to CH4 was confirmed by providing 
L-dopa as the sole substrate for granular sludge. Granular sludge (1-3 g OS 
sludge per liter) was allowed to digest with only 327 mg per liter L-dopa as 
substrate. After a 51-day digestion period the L-dopa treatments produced 
about twice as much CH4 as the control sludge (Table 3). The extra 
production was approximately equal to 60% of the maximum CH4 

production expected, based on the theoretical COD content of the L-dopa. A 
lower than 100% recovery of the COD was expected since some UV 
absorbance remained in the treatments (Table 3). 

The disappearance of UV absorption in VFA batch-fed cultures supplied 
only once with L-dopa was usually significant. In many cases (L-
dopa < lOOOmg liter ') greater than 90% disappearance was evident in the 
treatments (Fig. 7). The continuously fed columns, which received a constant 
supply of 327 mg per liter of L-dopa were, however, not able to reliably 
remove UV absorbance (Fig. 6B). While UV absorption elimination 
increased to 75% in the first 21 days (500h) of operation, the elimination 
decreased to 33% + 9% after about 56 days (1350 h) of operation (Table 4) 
and remained low for the rest of the experiment (Fig. 6B). Low conversion of 
the L-dopa toCH4 + VFA CODwasalsoobserved(Table4).Thetyrosine-fed 
column had increasing levels of UV absorption elimination with time 
(Fig. 6B). After about 56 days ( 1350 h) 90% ± 7% of the UV absorbance was 
eliminated and the extra COD of the CH4 and the effluent VFA was 
equivalent to 73% of the tyrosine COD (Table 4). This is strong evidence 
that tyrosine was degraded to CH4 during digestion in the continuous 
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TABLE 4 
The Recovery of Tyrosine and L-Dopa COD as CH4 + VFA COD and the Disappearance of 
UV Absorption (215 nm, Media Diluted 16 x ) from the 52nd (1244 h) to 60th Day (1452 h) of 
Continuously VFA-Fed Column Operation with 300 or 327 mg liter ' Tyrosine or L-Dopa 
Present in the Influents. Hydraulic Retention Times were Between 7-5 and 10 h. Other Details 

of the Experiment are Reported in the Legend to Fig. 6. 

300 mg liter' tyrosine 327 mg liter'' L-dopa 

COD recovery %' 
Disappearance UV ABS% 

73-4+16-7* 
900 + 6-8 

230 ±15-9 
330 ± 9-2 

°[(CH4 + VFA)COD„ t„ 

(CH4 + VFA)COD„„, 

(CH4 + VFA)COD„ 

COD, 

' + one standard deviation. 

„ - (CH4 + VFA)CODco„lrel] x 100/COD„„, where 

„, = the quantity of COD leaving the phenolic amino acid-
treated, VFA-fed column as CH 4 in the gas or VFA (C2 to 
C5) in the effluent for a given time interval 

„, = the quantity of COD leaving control VFA-fed column as 
CH 4 in the gas or VFA (C2 to C5) in the effluent for a given 
time interval 

„ = the quantity of COD entering the phenolic amino acid-
treated, VFA-fed column as phenolic amino acid COD 

column, since almost no VFA nor phenol or p-cresol intermediates were 
apparent in the effluent (during the period evaluated in Table 4). 

The elimination of UV absorbance in the tyrosine column was greatly 
disturbed when the column was severely overloaded with VFA, allowing 
high concentrations of VFA in the effluent (Fig. 6B). The />-cresol 
intermediate of anaerobic tyrosine degradation also reappeared in the 

2 3 

log (VFA concentration mg COD I ) 

Fig. 8. The relationship between effluent/>-crcsol and VFA concentrations of the VFA-fed 
column with 300mg liter l tyrosine in the feed. Data arc reported from the time period 
representing the 52nd (1244h) to 70th (1689h) day of column operation. The sludge was 
adapted to anaerobic tyrosine degradation by the 52nd day. The HRT associated with each 
reported value of effluent/7-crcsol arc coded to demonstrate that HRT was not the only factor 
determining the /;-cresol concentration: (G) = 4-9 to 5-4h HRT; ( • ) = 6 4 to 6-5 h HRT; 

( 0 ) = 7-3 to 7-4 h HRT ; (# ) = 8-2 to 8-8 h HRT; (A) = 9-1 h HRT. 
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-begin absorption 

1 2 3 4 
begin VFA concentration (gCOD I ) 

Fig. 9A. The UV absorption of L-dopa (327 mg liter " ') supplied media (diluted 31 x) 
following 3 days of batch digestion with various concentrations of VFA present. B. The 
concentration of/7-cresol present in the L-dopa supplied media after 3 days of digestion. Data 
in both Figs 9A and B arc reported for sludge which was previously adapted on 4 g COD per 
liter VFA for 5 days (O) or sludge which was not previously adapted ( • )• Details of this 

experiment are described in the legend to Fig. 5. 

effluent. This suggested a relationship between the anaerobic degradation of 
/»-cresol and the effluent VFA concentration. The level of formed p-cresol 
left undegraded could be linearly correlated with the log of the VFA 
concentration in the effluent (Fig. 8). The high concentrations of VFA may 
lower the free energy available for p-cresol degradation, since VFA are 
important intermediates of this degradation (Young & Rivera, 1985). The 
logarithmic relationship supports this theory. Shortening the hydraulic 
retention time (HRT) to increase the VFA loading could also contribute to 
increases in the effluent /?-cresol concentration by decreasing the contact 
time with the bacteria. The data, presented in Fig. 8, are coded for HRT to 
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demonstrate that, at any given HRT, a linear relationship between p-cresol 
and log VFA concentrations was still evident, confirming that the presence 
of VFA in the media is unfavourable for the anaerobic p-cresol degradation. 

The formation of the p-cresol intermediate of anaerobic L-dopa 
degradation was drastically reduced during the VFA overload period (Fig. 
6A). The high concentrations of VFA in this case prevented the formation of 
p-cresol from L-dopa. Likewise, low L-dopa UV absorption elimination 
during the VFA overload period was evident (Fig. 6B). The unfavourable 
effect of high VFA concentration on the formation of p-cresol from L-dopa 
was also observed in batch-fed experiments (Fig. 9). 

DISCUSSION 

Tyrosine was found not to be toxic to methanogenic bacteria and easily 
degraded to CH4 after 8 weeks operation of a granular-sludge column. 
Therefore, its presence in potato starch wastewater should not significantly 
affect anaerobic waste treatment. However, prior conversion of tyrosine to 
L-dopa by potato tyrosinase could affect the anaerobic waste-treatment, 
since L-dopa was found to be toxic to methanogenic bacteria and less 
degradable than tyrosine. 

The toxicity of L-dopa was significantly greater in cultures which were 
shaken with VFA present. The shaking provided good contact between the 
granular sludge and the VFA in the media. The fact that L-dopa was not 
toxic if no VFA were present indicated that the toxicity of L-dopa is 
synergistic with VFA. The synergistic influence of VFA on the L-dopa 
toxicity could be reduced by adapting the sludge to VFA before allowing the 
sludge to come into contact with the L-dopa. Therefore, maintaing low VFA 
concentrations in the media and adapting the sludge to VFA are two 
measures which can be utilized to minimize the toxicity of L-dopa, if it is 
present in the wastewater. 

The anaerobic degradation of tyrosine to CH4 was observed for the first 
time many years ago (Tarvin & Buswell, 1934). The observation that phenol 
and /7-cresol are intermediates of anaerobic tyrosine degradation has 
already been reported (Tarvin & Buswell, 1934; Eisden et al, 1976; Brown, 
1977; Spoelstra, 1978; Balba & Evans, 1980). The results of this study are in 
agreement with these previous observations, which establish the anaerobic 
degradability of the most commonly occurring phenolic amino acid, 
tyrosine. The operation of a continuous VFA-fed column with tyrosine 
present in concentrations expected in potato starch wastewater indicates 
that a large percentage of the tyrosine can be completely degraded after the 
sludge has had 2 months' experience with the tyrosine. 

56 



Methanogenic toxicity of phenolic amino acids 

The anaerobic degradation of L-dopa, another phenolic amino acid, to 
CH 4 , is established in this study. One intermediate, /?-cresol, was observed 
during the batch degradation of L-dopa (m-cresol was also observed in 
continuous cultures). However, the continuous operation of a VFA-fed 
column with L-dopa present indicated that only a small percentage of the L-
dopa COD is degraded to VF A and C H 4 after a prolonged experience of the 
sludge with the L-dopa. Therefore, the removal of phenolic amino acid COD 
in potato wastewater will be greatly affected if the tyrosine is converted to L-
dopa by potato tyrosinase before the wastewater enters anaerobic waste-
treatment. 
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Abstract—Gallotannic acid was found to be highly toxic to methanogenic activity. Concentrations, 
representing 50% inhibition, approximated 700 mgl~'. The toxicity was persistent despite the rapid 
degradation of gallotannic acid to volatile fatty acids and methane. A 72.5% loss of sludge activity was 
associated with a 1 day exposure of methanogenic granular sludge to lOOOmgl-1 gallotannic acid. The 
toxicity of gallotannic acid was persistent over 2 month assay periods. The monomeric derivatives of 
gallotannic acid, gallic acid and pyrogallol were much less toxic. The 50% inhibition concentration of the 
monomers approximated 3000 mg 1 ~ ' and their toxicities were not persistent. No activity losses were 
evident after sludge was exposed to 3000 mgl~' gallic acid for 19 days. 

The lower toxicities of the monomers compared to the gallotannic acid polymer suggests that the 
mechanism of toxicity was "tanning", since data in the literature indicate that tannin polymers are more 
effectively adsorbed and precipitated with proteins compared to their monomeric counterparts. Functional 
proteins (enzymes) located at accessible sites in or on the methane bacteria are most likely disturbed by 
the tanning action. 

Key words—methanogenic toxicity, anaerobic phenolic degradation, tannic acid, gallic acid, pyrogallol 

INTRODUCTION 

Tannins are by definition phenolic compounds which 
are highly reactive with proteins (Gupta and Haslam, 
1980; Haslam, 1966) and are polymers ranging in 
mol. wt from 500 to 3000 g mol ' (White, 1957). 
They may be entering anaerobic digestion processes 
where wastewaters utilized are derived from sources 
highly concentrated with tannins. Several examples of 
such sources include apples (Lea, 1978), sorghum 
(Gupta and Haslam, 1980), grapes (Singleton and 
Esau, 1969; Van Buren, 1970), banana (Goldstein 
and Swain, 1963), coffee (Elias, 1979), cacao (Gold
stein and Swain, 1963), beans (Bressani and Elias, 
1980), and bark (Niiranen in Virkola and Honkanen, 
1985; Karchesy and Hemingway, 1980; Herrick, 
1980; Haslam, 1966; Wise, 1946). While the toxicity 
of several simple phenols on methanogenesis has 
previously been investigated (Chou et ai, 1978; 
Fedorak and Hrudey, 1984; Pearson et ai, 1980; 
Benjamin et ai, 1984), there is little information 
available regarding the influence of tannins. The 
toxicity of tannins on several enzymes, however, has 
been established (Loomis and Battaile, 1966; Daiber, 
1975; Tamir and Alumot, 1969; Gupta and Haslam, 
1980). 

The purpose of this study was to evaluate the effect 
of a tannin on the methane production from granular 
anaerobic sludge. Common occurring tannins, 
known as condensed tannins, are polymers of 
flavanols (Gupta and Haslam, 1980). Figure 1 illus
trates the structure of procyanidins which are com

mon condensed tannins. Condensed tannins are not 
readily available in pure form. Therefore, gallotannic 
acid, a hydrolyzable tannin, was chosen as a tannin 
for study, since it is a commercially available refer
ence compound. Hydrolyzable tannins are polyesters 
of gallic acid (Haslam, 1966). Figure 1 illustrates the 
structure of gallotannins which are common hydro
lyzable tannins. Gallic acid and pyrogallol (Fig. 1) 
were also studied, since they are monomeric deriva
tives of gallotannic acid. 

MATERIALS AND METHODS 

Media contained the following nutrients (per liter): 
H,BO,, 0.05 mg; FeCl,-4H20, 2 mg; ZnCl,. 0.05 mg; 
MnCl;-4H,0, 0.05 nig; CuCl, 2H.O, " 0.03 mg; 
(NH4)6Mo,024 4H,0, 0.05mg; A1C1, 6H,0, 0.09 mg; 
CoCl, 6H, O, 2 mg; NiCl, 6H, O, 0.05 mg; Na, SeO, 5H2 O, 
0.1 mg; EDTA, 1 mg; resazurine. 0.2 mg; 36% HCl, 
0.001ml; NH4C1, 0.28 g; K,HP04, 0.25g; MgSO„ 7H,0, 
0.1 g; NaHCO,, 0.4 g; yeast extract, 0.1 g and CaCl, 2H,0, 
0.01 g. Batch fed experiments were conducted in 0.25 or 
0.51. serum flasks. Two shaking regimes were utilized: 
unshaken cultures and shaken cultures, which were recip
rocally shaken with 1 min shaking per 4 min rest cycle. 
Granulated sludge (1.5 years in 4"C storage) used in the 
experiments, was originally obtained from an UASB reactor 
treating potato derived wastewater. Sludge concentrations 
utilized ranged from 1.0 to 1.5g organic solids (OS) 1 ' . 
Exact OS concentrations are reported in figure and table 
captions. The volatile fatty acid (VFA) substrates utilized 
throughout most of the experiments were obtained from a 
stock solution containing 100:100:100 g ace
tate propionate :butyrate per kg of pH 6.8 neutralized (with 
NaOH) solution. The chemical oxygen demand ratio of the 
VFA stock was 24.3:34.4:41.3% of the total COD for C . 
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Fig. I. Tannins and their monomeric derivatives. 

C, and C4, respectively. Exact concentrations of VFA used 
during the experiments are listed in tables and figures. The 
temperature used in all assays was 30 C. 

The phenolic compounds utilized were obtained from 
Janssen Chimica, Boom BV and British Drug House for 
gallic acid (3,4,5-trihydroxybenzoic acid), pyrogallol 
(1,2,3-trihydroxybenzene) and gallotannic acid (a polyester 
of 9 gallic acid units and I sugar moiety), respectively. 
Gallotannic acid (MW= 1701) has the following formula: 

Methane production was monitored with modified Mar-
iotte flasks containing 3% NaOH (which served to remove 
C02 from the gas). Volatile fatty acids (VFA) were analyzed 
with a Packard 417 gas Chromatograph equipped with a 
2 m x 2 mm id. column packed with 10% Flourad FC 431 
on supelcoat (100-200 mesh). The carrier gas (N-,) was 
saturated with formic acid (flow 35 ml min-1). The oven 
temperature was set at 130 C. The FID detector signal was 
processed with a SP41 Spectra Physics integrator. The VFA 
standards (all isomers of C2 through C5 ). Several aromatic 
compounds could be detected by this chromatography 
procedure without derivatization. Standards tested included 
phenol, /;-cresol, o-cresol, m-cresol, benzoic acid, p-
ethylphenol, m-ethylphenol, phenylacetic acid, and 
3-phenylpropionic acid. None of these aromatic com
pounds, however, were identified in cultures which degraded 
pyrogallol, gallic acid and gallotannic acid. The pH was 
monitored with a Knick 511 meters and a Schot Gerate N61 
double electrode. Phenolic compounds have u.v. absorbing 

properties. The elimination of u.v. absorbance from the 
media is indicative of the phenolic compound's disap
pearance. Ultraviolet absorption was measured with a 
Perkin-Elmer 550 A spectrophotometer and a Hellma 
100-QS 1 cm quartz cuvette. Absorption is reported as the 
absorption of the media containing phenolic compounds 
less the absorption of the control media (which contained no 
u.v. absorbing compounds). 

Methanogenic activities are reported for batch assays as 
a percentage ratio of treatment CH4 production rate and 
control CH4 production rate. The percentage inhibition is 
defined as: 100 —activity; where activity is expressed as a 
percent of the control. 

The recovery of phenolic COD as VFA and CH4 COD 
(indicative of the percent conversion of phenolics to fer
mentation end products) was calculated by summing up the 
COD present as produced CH4 and as VFA in the media for 
both the treatment and the VFA fed controls and taking the 
difference of these two sums and dividing by COD added 
with the phenolic compound treatment. 

Anaerobic degradation of gallotannic acid 

The disappearance of u.v. absorption during VFA 
fed serum flask batch digestion with gallotannic acid 
present in the media is illustrated in Fig. 2. At almost 
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Fig. 2. The disappearance of u.v. absorption in 0.5 1. serum flask digestions of gallotannic acid and 4.17 g 
COD 1 ' VFA with 1.11 g OS I ' granulated sludge (unshaken). 

all of the initial gallotannic acid concentrations rapid 
disappearance of u.v. absorption commenced after 
100 h. Most of the u.v. loss is related to biological 
anaerobic degradation of gallotannic acid since COD 
balancing results (Fig. 3) indicate that large per
centages of the gallotannic acid COD were recovered 
as CH4 and VFA. Where high concentrations of 
gallotannic acid were utilized, the inhibition of meth-
anogenesis was extreme (Fig. 4). In one case, the 
methanogenic activity was so low that increases of 
the acetate concentration in the media could be 
observed as a result of gallotannic acid degradation 
(Table I). Acetate is therefore an important inter
mediate of anaerobic gallotannic acid degradation to 
CH4 and CO,. 

Pyroga l io l ( • ) 

Gall ic acid l o ] 

9200 6800 

OCidl«) 

2500 

1.000 ÉO00 
Py rogQI Io l and ga l l i c a c id 

0 » 0 600 BOO 1500 2000 

Gallolünmc acid 

Begin concentration mg l ' of indicated compounds 

Fig. .V The recovery of gallotannic acid and hydrolyzable 
tannin monomer COD in VFA + CH4 fractions following 
19 days of digestion (details of experiment reported in Fig. 

2 caption). 

Anaerobic degradation of hydrolyzable tannin mono
mers 

Losses (or partial losses) of u.v. absorption were 
observed during VFA fed serum flask batch di
gestions with gallic acid or pyrogallol added at 
concentrations up to 4 g I ~ '. This corresponded to the 
recovery (or partial recovery) of the COD added with 
these compounds in CH4 and VFA (Fig. 3). Where 
initial concentrations were $ 2 g l ' pyrogallol or 
3 g 1 ' gallic acids, > 90% phenolic COD conversions 
to CH„ and VFA and >90% u.v. absorption losses 
were observed. With 4 g l " ' gallic acid, the meth-
anogenesis was extremely inhibited (Fig. 4) and it was 
possible to observe an increase of the acetate concen
tration in the media (Table 2) resulting from gallic 
acid degradation. This indicates that acetic acid is an 
important intermediate of anaerobic gallic acid de
gradation. 

Low concentrations of gallic acid amended VFA 
fed batch cultures, were not inhibitory but were 
stimulatory to the CH„ production (Fig. 4). The 
stimulatory effect is related to the fermentation of the 
phenolic compound. The VFA added to the medium 
by degrading a non-toxic phenolic compound would 
not be expected to increase the methane production 
rate based on Monod kinetics. This is because the 
concentrations of VFA in the VFA fed media were in 
large excess of K, values reported for Methanotrix. 
The added VFA contributes to a stimulatory effect, 
however, due to several other reasons. Firstly, 
diffusional limitations in unshaken or intermittently 
shaken cultures would be compensated by increasing 
the VFA concentration of the bulk solution. Sec
ondly, the sludge has a higher activity on acetate than 
propionate and butyrate (the latter two make up 76% 
of the VFA stock solution COD) and the VFA added 
to the culture media by degrading trihydroxy pheno-
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Concentration of compound (gl 

Fig. 4. (a) The in situ activity of sludge expressed as a 
percentage of the control activity during the first VFA 
(4.17 g COD r ' ) feeding for various concentrations of gallic 
acid (O). pyrogallol ( • ) and gallotannic acid ( • ) in still 
standing (unshaken) 0.5 I. batch serum flask digestions with 
1.11 g O S r ' granulated sludge; gallotannic acid (D) with 
1.05 OS r ' granulated sludge in unshaken experiments; and 
gallotannic acid (3) with 1.05 g OS 1" ' granulated sludge in 
mechanically shaken (reciprocal shaking for 1 min every 
5 min) experiments. The absolute activities of the controls 
were: 497.3, 471.9, 477.5, 522.0 and 504.3 mg COD g"' OS 
added d"1, for O, • . • , D and H. respectively, (b) The 
sludge activity following 19 days (O, • , • ) , 25 days (H) 
or 54 days (Q) of digestion. Supernatants were decanted 
under N2 flushing and replaced with nutrient supplemented 
medium (pH 7.4) containing 4.17g COD 1"' VFA, in
hibitors were not included in replacement medium. The 
absolute activities of the controls were 961.1, 918.5, 868.9, 
971.0 and 1052 mg COD g"' OS added d"1 for O, • , • , 

• and B, respectively. 

lies was observed to be acetate. The moment that the 
acetic acid from the phenolic compound fermentation 
was released into the bulk media of VFA fed cultures 
there was a simultaneous stimulation of the methane 
production beyond the rate of the VFA fed control. 
Therefore, the time when the methane production 
rate of the phenolic treated VFA cultures increased 
beyond the control is indicative of the time needed for 
the cultures to adapt to the phenolic substrate. This 
adaption time could be referred to as the lag period 
for phenolic compound degradation. The short lag 
periods (several days) required for anaerobic decom
position of pyrogallol and gallic acid are reported in 
Table 3 for initial concentrations of these compounds 
which were not toxic to methanogenesis. 

Toxicity of gallotannic acid 

Gallotannic was observed to inhibit the activity of 
methanogenic bacteria (Fig. 4). The concentration of 
gallotannic acid corresponding to 50% inhibition 
approximated 700 mg 1 ~' in various experiments. The 
toxicity of gallotannic acid was persistent. The in
creases of the activity which were observed after 
approx. 800 h (1 month) of digestion were propor
tional to the increases in the control activity (Fig. 5). 
There was little recovery of the relative activity 
(percentage of the control activity). Even when super
natant was removed and replaced with new medium 
(lacking gallotannic acid), only partial recovery (in 
experiments without shaking) or no recovery (in 
experiments with shaking) of residual sludge activity 
were observed in assays conducted after 19, 25 or 54 
days of digestion (Fig. 4). Relative activity of recov
ered sludge was actually lost at high concentrations 
of gallotannic acid (1.5—2.0 g l - 1 ) compared to the in 
situ activity of the first VFA feeding (Fig. 4). Cultures 
subjected to these high concentrations were also 
associated with pH drops in the media (Table 4). 

The observation that activity was not recovered 
after gallotannic acid was degraded, indicates that the 
initial exposure of the sludge to gallotannic acid prior 
to degradation was sufficient to impart a damaging 
effect. Table 5 confirms this hypothesis, since 1 day 
exposure of the sludge to gallotannic acid resulted in 
large losses of activity. The toxicity of gallotannic 
acid was greatest for the metabolism of butyrate 
compared to acetate and propionate (Table 5). 

Toxicity of hydrolyzable tannin monomers 

The two monomeric derivatives of gallotannic acid 
(gallic acid and pyrogallol) were found to be much 
less toxic than gallotannic acid (Fig. 4). The residual 
sludge activity, following 19 days exposure to either 
2 g 1 " ' of gallic acid or pyrogallol with VFA substrate 
was similar to the control residual sludge activity. 
The control sludge was exposed for 19 days to only 
the VFA substrate. In contrast to the monomeric 
derivatives, the residual sludge activity remaining 
after 19 days exposure to 2 g 1 ' gallotannic acid with 
VFA substrate was only 3% of the control. The 
methanogenic toxicities observed at 4 g I ' gallic acid 
and pyrogallol (Fig. 4) were not completely due to the 
compounds themselves. The high concentration of 
gallic acid caused a severe drop in medium pH (Table 
4), which undoubtedly contributed to lower methano
genic acid. The pyrogallol stock solution contained 
low concentrations of oxidized impurities. These 
impurities are known to cause more toxicity than 
pyrogallol itself (unpublished data). 

DISCUSSION 

Degradation of trihydroxy phenolic compounds and 
hydrolyzable tannin 

The anaerobic degradation of gallotannic acid 
occurred rapidly and was associated with a rather 
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Table 1. Changes in VFA and CH4 COD at selected time intervals of methanogenesis 
inhibited anaerobic digestion with 4.i7g COD l"1 VFA and 2 g I"1 gallotannic acid (2.48 g 
COD r ' ) in a 0.51. (contents) serum containing 1.11 g OS 1 ~ ' granulated sludge. The VFA 
substrate was added to the culture first to allow the medium to become anaerobic by a 16 h 
predigestion. Following the predigestion, the gallotannic acid was added to initiate the 
assay. The COD of the VFA at the beginning of the assay is equal to the VFA COD added 

before predigestion minus the COD of the CH4 evolved during predigestion 

Event Time (h) c2 

1014 
ND 

ure 

ND 
1596 
1942 

c, 

1434 
ND 

ND 
1288 
1228 

COD 

VFA 

C, 

1722 
ND 

ND 
1676 
1602 

(mg l 1 ) 

Ooul* 

4172 
3822 

3822t 
4656 
4868 

CH„ evolved 

0 
350 

01 
582 
932 

Addition of VFA to the culture 
Predigestion (overnight) 
Begin predigestion 0 
End predigestion 16 
Addition of gallotannic acid to the culture 
Assay 
Begin assay 0 
First sampling 217 
Second sampling 459 

*c .oui = C 2 through C 5 . 
tSame as the end of predigestion. 
$CH4 COD data of the assay is reported as CH4 accumulated from the beginning of the 

assay (and does not include CH4 produced during predigestion). 
ND = no data. 

Table 2. Changes in VFA and CH4 COD at selected time intervals of methanogenesis 
inhibited anaerobic digestion with 4.17g COD 1~' VFA and 4gl ' gallic acid (4.52g COD 
l"1) in 0.5 1. (contents) serum flasks containing 1.11 g OS 1 ' granulated sludge. The VFA 
substrate was added to the culture first to allow the medium to become anaerobic by a 16 h 
predigestion. Following the predigestion, the gallic acid was added to initiate the assay. The 
COD of the VFA at the beginning of the assay is equal to the VFA COD added before 

predigestion minus the COD of the CH4 evolved during predigestion 

Event Time (h) c2 

1014 
ND 

ND 
2224 

c, 

1434 
ND 

ND 
1332 

COD 

VFA 

c4 

1722 
ND 

ND 
1576 

(mgl ') 

C„„i* 

4172 
3776 

3776t 
5216 

CH evolved 

0 
396 

0} 
412 

Addition of VFA to the culture 
Predigeslion (overnight) 
Begin predigestion 0 
End predigestion 16 
Addition of gallic acid to the culture 
Assay 
Addition gallic acid 0 
End digestion 456 

*C,„U! - C; through Cj. 
tSame as the end of predigestion. 
tCH4 COD data of the assay is reported as CH4 accumulated from the beginning of the assay 

(and does not include CH4 produced during predigestion). 
ND = no data. 

short (4 days) lag phase with untried granular meth-

anogenic sludge. The ester intermonomeric bond of 

hydrolyzable tannins is therefore, readily degradable 

under anaerobic conditions. However, no conclu

sions can be made from this study regarding the 

degradability of condensed tannins, since these are 

polymers of flavanoid compounds connected by ring 

C-branch C intermonomeric bonds (Gupta and 

Haslam, 1980; Haslam, 1966). There is very little 

Table 3. Lag period for pyrogallol and gallic acid anaerobic de
gradation during VFA (4.17g COD 1 ') digestion (111 g OS I 'j 
based on gas yield data from methanogenesis uninhibited cultures 

Compound 
Concentration 

(mgl"1) 
Lag period 

Observations (days)* 

Gallic acid 

Pyrogallol 

1000 
2000 
1000 

2 
5 

4-5 

•Based on time when methane production rate of VFA fed treatment 
increased beyond the rate observed for the VFA fed control. 

information available in the literature concerning the 

anaerobic degradability of condensed tannins except 

to note that comparable intermonomeric linkages of 

dehydrovanillin (Chen et al., 1985) and Douglas fir 

lignin (Colberg and Young, 1985b) are anaerobically 

degradable with adapted incolum. Additionally, con

densed tannin monomers (flavanoids) are eliminated 

by rumen fluid (Simpson el al., 1969) or are converted 

in anaerobic environments by digester sludge (Balba 

and Evans, 1980) and digestive tract flora (Brown, 

1977) to aromatic intermediates, which are otherwise 

known to be degradable to CH4 in methanogenic 

sludges. 

The gallic acid monomer of hydrolyzable tannins 

and pyrogallol (the decarboxylated form of the 

monomer) were also readily degraded by meth

anogenic granular sludge. The rapid anaerobic 

fermentation of gallic acid, pyrogallol and other 

methoxy substituent variations of the galloyl group 
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0 begin goUotonnic 

2 0 0 acid concentrations 

6 0 0 mg l~' 

1 0 0 0 

Time of additional VFA feedings 

Fig. 5. Cumulative methane production from gallotannic acid and VFA (4.17 g COD I " ' ) fed batch serum 
flask (0.5 l.) digestions with l.05 g OS l~' granular sludge. Horizontal lines indicate the COD equivalent 
(in gas production) of added VFA substrates. VFA (2.09 g COD l ' ) of additional feedings (without 
gallotannic acid) was added directly to existing supernatant under N, flushing. The shaking regime was 

performed twice daily by hand for 2 min. 

Table 4. Original and final pH following 19 days of anaerobic digestion (1.11 g OS I ' 
granular sludge) with VFA (4.17 g COD 1 ' ) substrate and added phenolic compounds 

Original 
concentration 

( m g l ' ) 

0 
300 
600 

1000 
1500 
2000 
3000 
4000 
6000 

Pyrogallol 

-Before* 

7.40 

— 
— 7.50 

— 7.43 
7.39 
7.32 
7.22 

-After 

7.43 

— 
— 7.25 

— 6.80 
7.05 
7.45 
7.45 

Gallic acid 

Before* 

7.40 

— 
— 6.35 

— 5.50 
5.18 
4.95 
4.61 

After 

7.40 

— 
— 7.18 

— 7.05 
7.05 
5.25 
5.00 

Gallotannic acid 

Beforet 

7.57 
7.40 
7.43 
7.40 
7.30 
7.38 

— 
— 
~ 

After 

7.45 
7.35 
7.20 
7.10 
6.55 
5.72 

— 
— 
— 

•The begin pH was not adjusted in the culture media. The original pH was also not 
measured in silt: but in solutions made to the same composition as in the experiments. 

tBegin pH adjusted with NaOH under N; flushing and then measured in situ. 

(1,2,3-trihydroxybenzene) has previously been de
scribed by Schink and Pfennig (1982) and Kaiser and 
Hanselmann (1982a,b). These studies have indicated 
as our study that anaerobic fermentation of galloyl 
derivatives is non-obligatory syntrophic with meth-
anogenesis. In this study, gallic acid and gallotannic 
acid were readily degraded to acetate at gallic acid 
and gallotannic acid concentrations which were toxic 
to methanogenesis. Kaiser and Hanselmann (1982a) 
have observed that adding specific methanogenesis 
inhibitors to syringic acid (3,5-dimethoxy-4-
hydroxybenzoic acid) degrading cultures resulted in 

Table 5. Inhibition caused by 24 h exposure (reciprocal shaking 
I min every 5 min) of 1.11 g OS I ' granulated sludge to 1 g I ' 
gallotannic acid. Following exposure gallotannic acid was decanted, 
sludge was rinsed with H20 and sludge activity determined on 
replaced media (not containing gallotannic acid) with begin VFA 
concentration of 4 g COD I ' (pH 7.4). The COD based average 
inhibition (for comparison with others reported in this article with 

Cj:C,:C4 substrate) was 72.5% 

Absolute activity 
of control 

(mg COD g ' OS d ' ) 

Inhibition by 
gallotannic acid 

(%) 
C, 
c, 
c, 

1053 
503 
446 

69.0 
62.4 
82.6 

no delay in the syringic acid fermentation; however, 
acetate accumulated instead of being converted to 
CH4. 

The mechanism(s) involved in anaerobic galloyl 
derivative degradation appear to differ largely from 
those involved in the decomposition of other simple 
phenolic and aromatic compounds. The addition of 
specific methanogenic inhibitors to cultures de
grading other kinds of natural phenolic compounds 
results in the accumulation of o-dihydroxy (or me-
thoxy) compounds or aromatic compounds lacking 
hydroxyl groups (Healy et al., 1980; Colberg and 
Young, 1980b). Additionally adaption of sludge to 
methanogenesis has been reported to be beneficial for 
phenol and p-cresol (Van Velsen, 1981) as well as 
benzoate (Ferry and Wolfe, 1976; Balba and Evans, 
1977; Clark and Fina, 1952) fermentation. While il is 
not necessarily true that the fermentation of non-
galloyl type phenolics is obligatory syntrophic with 
methanogenesis (Young, 1984), disturbing meth
anogenesis, nonetheless, disturbs the fermentation of 
non-galloyl type phenolics but docs not disturb the 
fermentation of galloyl type phenolics. Cultures en
riched on galloyl (or methoxy substituents) type 
phenolics do not cross acclimate with benzoic acid 
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and other non-galloyl type phenolics, but they do 
cross acclimate with other galloyl types (Kaiser and 
Hanselmann, 1982; Schink and Pfennig, 1982). This 
suggests that the population of organisms responsible 
for the anaerobic degradation of trihydroxybenzenes 
are different from the degraders of other simple 
phenols. 

Additional evidence for separate organisms in
volved in the anaerobic degradation of 
1,2,3-trihydroxy vs o-dihydroxy and monohydroxy 
type phenolics is evident from the short lag periods 
required by our granular sludge to initiate the de
gradation of pyrogallol, gallic acid and gallotannic 
acid (2-5 days), while the same sludge needed 31 days 
to initiate the degradation of phenol and more than 
56 days to initiate the degradation of catechol 
(1,2-dihydroxybenzene) under the same experimental 
conditions (unpublished data). Similar results have 
also been reported in the literature. Horowitz et al. 
(1981) observed that digester sludge needed 1 week to 
degrade 50 mg C1 ' pyrogallol while 2 and 3 weeks 
were required for the same amount of phenol and 
catechol, respectively. Healy and Young (1979) ob
served that 300 mg 1" ' syringic acid (a methoxylated 
galloyl type compound) degradation was initiated 
after 2 day lag periods by digester sludge, while from 
8 to 21 day lag periods were required for 300 mgl ' 
of 9 other non-galloyl type aromatic compounds 
tested. 

Tannin toxicity 

Gallotannic acid, while rapidly biodegraded, is still 
highly toxic to methanogenic activity. The toxicity in 
severe cases results in the loss of activity which is 
slowly or completely not recovered over long assay 
periods (2 months). A plausible mechanism for the 
toxicity may involve the "tanning" of proteins (such 
as enzymes) located at accessible sites in the methane 
bacteria. The observation that a hydrolyzable tannin 
polymer was significantly more toxic than its mono-
meric derivatives corresponds closely to observations 
in the literature that tannin polymers (and dimers) are 
more effectively adsorbed or precipitated with pro
teins than their lower molecular weight counterparts 
(Haslam, 1974; McGuiness et al., 1975; Bate-Smith, 
1973). 

This study indicates that tannins are potent in
hibitors of methanogenesis. Therefore, their presence 
in wastewater should be considered when evaluating 
the feasibility of anaerobic waste treatment processes. 
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ABSTRACT - The principal methanogenic toxins of bark soluble matter were identified as 
the tannins. The tannins, which were measured with a selective tannin adsorbent, called 
polyvinylpyrrolidone, accounted for about half of the aqueous extractable COD of tree bark. 
The 50% inhibitory concentration of bark tannins averaged approximately 600 mg COD L~' 
(350 mg tannin solids L~'). The toxicity caused by the resin fraction of bark was 
demonstrated not to be very important to the methanogenic toxicity of aqueous extracts. 
While tree resin compounds were found to be very toxic to methanogenic bacteria, the 
solubility of the resin fraction was very poor due to the low natural pH during the aqueous 
extraction. Additionally, those compounds aqueous extracted from tree resin at the natural 
pH were not as toxic as all the tree resin compounds solubilized by alkali and supplied at 
similar concentrations. Anaerobic biodegradability results indicated that 30 to 50% of the 
bark water soluble COD can be acidified to methanogenic substrates during short term 
digestion. Pine and birch bark water soluble COD acidified up to 70% after long term batch 
digestion of 7 weeks. The high level of bark aqueous extract UV absorbance elimination by 
anaerobic digestion and the appearance of phenolic degradation intermediates indicated that 
at least some of the bark phenolic compounds were degraded. 

KEYWORDS - Tannins, procyanidins, flavonoid compounds, phenolic compounds, 
polyvinylpyrrolidone, anaerobic digestion, methanogenesis, bark wastewater, methanogenic 
toxicity, resin, resin acid. 

1. INTRODUCTION 

1.1. Source and Composition of Bark Wastewater 

Bark wastewater is principally derived from the contact of water with mechanically 
damaged bark. The major sources of such wastewater in the forest industry are associated 
with wet and half-wet debarking and bark pressing operations as outlined in Figure 1. 
Debarking removes from 96.0 to 99.7% of the bark from the wood (Hatton, 1987), therefore 
small amounts (from 0.3 to 4%) of the bark may enter the pulping process. Bark soluble 
matter can account for important contributions to pulping wastewater if bark is pulped 
together with the wood (masonite, fiber board, card board etc.). Generally, 3 to 9 m3 of 
water are used to debark 1 metric ton of harvested tree (dry weight basis) with wet 
debarking processes. This corresponds to approximately 20 m3 to 60 m3 of water brought 
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into contact with each metric ton of bark (dry weight). If bark presses are utilized, an 
additional 0.5 to 0.8 m^ of bark juice can be squeezed out of each metric ton of bark (dry 
weight). Some reported values of debarking and bark pressing effluent COD are cited in 
Table 1. 

The compounds released from bark into wastewater are the water soluble compounds. The 
truly soluble compounds included simple carbohydrates (sugar), polar phenolic monomers and 
polymeric tannins. Apolar resin compounds are only slightly extractable from bark with 
water (at the natural pH of the extracts 3.5 to 5.5). Based on the available literature data, 
the predicted average composition of bark water soluble COD is outlined in Figure 2 
(Hegert, 1960; Hathway, 1962; Wise, 1946; Kuwahara et al., 1984; Karchesy and Hemingway, 
1980; Hegert et al., 1965; Pearl and Buchanan, 1976; Herrick, 1980; Fengel and Wegener, 
1984; Markham and Porter, 1973; Updegraff and Grant, 1975; Junna, 1983). 

Tannins are clearly the most dominant constituents of bark water soluble COD. This is 
not surprising due to the high tannin contents of whole bark (soluble + insoluble matter) 
previously reported in the literature, Table 2. Tannins are phenolic compounds that display 
sorptive reactions with proteins (Haslam, 1966; Loomis and Battaile, 1966; White, 1957) 
through hydrogen bonding. Two general classes of tannins are recognized, the hydrolyzable 
tannins and condensed tannins, Figure 3. The hydrolyzable tannins are not very common in 
bark. They are polymers of gallic acid linked together by easily hydrolyzed ester bonds. 
They are also easily hydrolyzed and degraded during anaerobic digestion (Field and Lettinga, 
1987). The condensed tannins are very common in bark. They are polymers of flavonoid 
compounds linked together by difficult to hydrolyze C-C bonds. The predominant types of 
condensed tannins isolated from bark are the procyanidins (Karchesy and Hemingway, 1980; 
Hemingway et al., 1982) which are polymers of catechin and its isomer, epicatechin. Other 
flavonoids, including leucocyanidins, dihydroquercetin, gallocatechin and epigallocatechin, 
have been identified in bark extracts (Hegert, 1960) and are undoubtedly involved in the 
polymeric condensed tannins of bark. Piceatannol (tetrahydroxy stilbene) is reported to be 
an important monomeric unit of bark tannins isolated from spruce (Hegert, 1960; Cunningham 
et al., 1963) and white pine (Hegert, 1960). Effective tannins, with regard to the tanning of 
hides, are low molecular weight polymers (oligomers) ranging from 500 to 3000 g mole" in 
size (White, 1957). The majority of bark tannins correspond to this size class (Karchesy and 
Hemingway, 1980; Hemingway et al., 1981, Hegert et al., 1965). To a lesser extent monomeric 
tannins as well as high molecular weight tannins (phlobaphenes) are present in the total 
bark tannin fraction. Not all of the water soluble monomeric phenols present in bark 
extracts are tannic. Some of the monomers have structures characteristic of lignin, for 
example guaiacol, vanillin and ferulic acid (Hegert, 1960). 

Resin is a mixture of diverse compounds that together make up the oily (fatty) 
constituents of wood and bark. An appropriate definition for resin is the apolar solvent 
extractable fraction of wood or bark. Resin is poorly soluble by aqueous extraction; however 
under alkaline conditions, resin can be dissolved in water. The major constituents of 
coniferous wood resin are resin acids, long chain fatty acids (LCFA), fat (LCFA esters of 
glycerol), apolar phenols, lignans and volatile terpenes (Rudloff and Sato, 1963; Sato and 
Rudloff, 1964; Fengel and Wegener, 1984). Typical resin compounds are illustrated in Figure 
4. The resin acids account for about 25 to 40% of coniferous wood resin but are distinctly 
less important in bark resin (Fengel and Wegener, 1984). Birch wood resin contains no resin 
acids and is dominated by neutral fats and triterpenol compounds. Betulinol derivatives are 
typical examples of birch triterpenols (Fengel and Wegener, 1984; Ekman and Sjoholm, 
1983). 

1.2. Toxicity of Bark Soluble Matter 

Bark soluble matter is highly toxic. One review article (Virkola and Honkanen, 1985) 
cited finish literature which indicated that the fish LC50 96h toxicity concentration of wet 
debarking effluent corresponds to an effluent dilution of 50 to 100 times. Resin acids have 
been identified as important fish toxins in forest industry wastewater (Leach and Thakore, 
1976; Rogers, 1973). The resin acid concentration reported for a finish wet debarking 
effluent (Junna et al., 1983) was much lower than the reported resin acid LC50 96h 
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Table 1. S O K COO Concentrations Previously Reported from Bark Wastewater. 

Wastewater Reference Wastewater 

mg L mg L 

Reference 

Wet Debarking 4111 Cr W84 

1333 Cr W84 

1034 Mn W84 

940 Mn V+H84 

Half-wet Debarking 

Bark Press 20,000 to 60,000 Cr ACpc 

2000 

889 

500 

Cr 

Mn 

Mn 

W84 

W84 

V+H84 

+ Çr = COD determined with the Chromate method; Mn = COO determined with the permanganate method 
& U84 = Wirkkala, 1984; V+H84 = Virkola and Honkanen, 1984; ACpc = Ahlstrom Corp., Finland 

Table 2. Literature Reported Extract able Tannin Yields of Bark 

Species Bark 

Pine (Pinus) 

P. s y l v e s t r i s 

P. taeda 

P. ponderosa 

P. ponderosa 

P. rad iata 

P. rad iata 

P. rad iata 

Spruce (Picea) 

P. jezoensis 

P. abies 

P. s t ichens is 

Larch (Lar ix) 

L. gmel in i i 

L. decidua 

L. occ identa l is 

Tannin Cone. 

% bark dry wt. 

16 

10 

5 t o 

6 t o 

17 to 

17 to 

16 

6 

5 t o 

11 to 

5 t o 

6 t o 

11 

9 

18 

21 

18 

37 

12 

20 

9 

Reference 

H62 

K+K80 

K62 

W46 

H62 

M+P73 

U+G75 

K84 

H62 

H62 

K84 

H62 

W46 

Species Bark Tarm 

% bark 

Douglas Fir (Pseudotsuga) 

P. menziesii 

P. menziesi i 

Hemlock (Tsuga) 

T. canadens i s 

T. heterophyl la 

T. heterophyl la 

Birch (Betula) 

B. alba 

Oak (Quercus) 

Q. robur 

Q. robur 

Chestnut (Castanae) 

C. sa t iva 

5 

6 

10 

15 

9 

10 

12 

8 

n Cone, 

dry wt . 

t o 

t o 

t o 

t o 

t o 

t o 

t o 

8 

t o 

25 

9 

11 

16 

18 

15 

16 

14 

0 
Reference 

H62 

W46 

H62 

H62 

H65 

H62 

H62 

S88 

H62 

H62 = Hathway, 1962; K+H80 = Karchesy and Henmingway, 1980; W46 = Wise, 1946; M+P73 = Markham and 

Porter, 1973; U+G75 = Updegraff and Grant, 1975; K84 = Kuwahara et al., 1984; H65 = Hegert et al., 

1965; S88 = Sealbert et al., 1988 
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Figure 1. Possible sources of bark soluble 
matter in forest industry wastewater. 
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soluble COD based on the available 
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Table 3. The Inhibition of Hethanogenïc Activity by Defined Conpounds which are Related to Extractable 

Bark Compounds. 

Compound Concentration 

mg L"1 

Substrate 

Part A. Compounds related to resin and lignin 

Inhibition 

% 
Reference 

LCFA 

lauric acid 

capric acid 

lauric acid 

myristic acid 

oleic acid 

mixture LCFA 

mixture LCFA 

525 

1027 

869 

1104 

1235 

250* 

250* 

50 

50 

50 

50 

50 

50R 

50 

Chou et al., 1978 

Koster and Cramer, 1987 

Koster and Cramer, 1987 

Koster and Cramer, 1987 

Koster and Cramer, 1987 

Hanaki et al., 1981 

Hanaki et al., 1981 

Resin Acids 

abietic:oleic acids 1178 99"' Andersson and Welander, 1985 

Volatile Terpenes 

p cymene 

L îmonene 

Li<pin Related Nonomers 

guaiacol 

eugenol 

Miscellaneous 

ethyl benzene 

p cresol 

phenol 

phenol 

phenol 

500 

250 

2200 

250 

340 

800 

1500 

1800 

2444 

50K 

50R 

50" 

50R 

50 

50 

50 

50 

50 

Benjamin et al., 1984 

Benjamin et al-, 1984 

Benjamin et al., 1984 

Benjamin et al., 1984 

Chou et al., 1978 

Fedorak and Hrudey, 1984 

Field and Lettinga, 1989 

Fedorak and Hrudey, 1984 

Chou et al., 1978 

Part B. Compounds related to monomeric and polymeric tannins 

Polar Nonoaeric Phenols 

catechol 

catechol 

pyrogallol 

gallic acid 

resorcinol 

L dopa 

Hvdrolvzable 

gallotannic 

Tannins 

acid 

1755 

2640 

3000 

3200 

3190 

1000 

700 

50" 

50 

50R 

50R 

50 

50R 

50 

Field and Lettinga, 1989 

Chou et al., 1978 

Field and Lettinga, 1987 

Field and Lettinga, 1987 

Chou et al., 1978 

Field et al., 1987 

Field and Lettinga, 1987 

percent inhibition compared to substrate control 

approx. 50% inhibition cone, estimated from available reported data 

the assay substrate: C 2 = acetate; Cj = propionate; C^ = butyrate; Hj = hydrogen 

recovery of at least some of the inhibited activity before completion of a long term assay 

no recovery of the inhibited activity during long term assays 

the abietic:oleic acid mixture was 52:48% on a dry weight basis 
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concentration if this bark wastewater were diluted to the wastewater LC50 96h 
concentration (50 to 100 times). This indicates that resin acids are not likely the principal 
fish toxins of debarking effluents. Clearly, another group of toxins are important in bark. 

Bark soluble matter is also highly toxic to methane bacteria. Severe inhibitions of 
methane bacteria by bark soluble matter during anaerobic digestion are evident in several 
studies (Latola, 1985; Rekunen, 1986; Wirkkala, 1984; Kuwahara et al. 1984). In these studies, 
removal of bark soluble matter from the whole wastewater (or waste) influent was associated 
with large improvements of methanogenic activity in separate start up attempts with new 
sludge. While resin compounds are highly toxic to methane bacteria, Table 3A, their 
concentration in bark wastewater is expected to be lower than the 50% toxicity values 
reported. Resin compounds are also not unique to bark, therefore other compounds unique 
to the bark are expected to account for improved methanogenic anaerobic digestion of total 
forest industry wastewater when the bark substream is excluded. 

The compounds which are unique to bark are tannins. They are the suspect toxicants of 
bark soluble matter for two reasons. Firstly, they are highly concentrated in bark. 
Secondly, they are known to be toxic to enzymes and microorganisms (Gupta and Haslam, 
1980; Haslam, 1974; White, 1957; Ladd and Butler, 1975; Loomis and Battaile, 1966; Singleton 
and Esau, 1969; Strumeyer and Malin, 1969; Daiber, 1975; Tamir and Alumot, 1969; Verspuy 
and Pilinik, 1970). Methanogenic toxicity from tannins in tannery wastewater is also evident 
from one previous study (Arora et al., 1975). We have confirmed the methanogenic toxicity 
of a hydrolyzable tannin, gallotannic acid (Field and Lettinga, 1987). This oligomeric tannin 
was distinctly more toxic than polar phenolic monomers including tannin monomeric 
derivatives, Table 3B. 

The purpose of this study was to determine the fermentable COD substrate of bark 
soluble matter and determine if the bark tannins are responsible for the previously indicated 
methanogenic toxicity. 

2. MATERIALS AND METHODS 

2.1. Biological Assays 

All assays contained essential inorganic macro and micro nutrients as outlined previously 
(Field et al., 1987). Batch fed assays were conducted in 0.5 or 1.0 L serum flasks. The 
assay temperature was 30±2°C. For experiments described in this study, the serum flasks 
were not shaken during the assay period. 

Anaerobic bark extract acidification experiments were conducted with approximately 5 g 
VSS L~' granular sludge which was originally cultivated in a UASB for recycle paper 
wastewater (Roermond). Acidification assays were supplied with approximately 2 g COD L"1 

bark extract and 2 g L" ' NaHCÛ3 to buffer eventual VFA accumulations. The percent 
acidification of the COD was calculated by the summation of cumulative CH4 COD and media 
VFA COD for a given assay period. The acidification results are corrected for the 
acidification of sludge controls. In certain examples, the acidification during the toxicity 
assays is reported; in which case, the results are corrected for VFA substrate fed sludge 
controls. Additional feedings during acidification assays are initiated by removing the 
anaerobically digested medium from the sludge and replacing it with a freshly prepared bark 
extract containing medium. 

Anaerobic bark extract methanogenic toxicity assays were supplied with approximately 4 g 
COD L"1 neutralized with NaOH 100:100:100 g kg"1 acetate (C2), propionate (C3),and 
butyrate (C4) VFA stock solution. This stock solution COD is 24.3:34.4:41.3% C2, C3 and C4 
COD; respectively. The VFA stock solution served as the substrate for the toxicity assays 
which were also fed variable concentrations of the bark extract. All treatments and 
substrate controls were supplied with 2 g L"' NaHCÛ3. From 1.0 to 1.5 g VSS L~' granular 
sludge was used, that was either obtained from a UASB treating potato derived wastewater 
(Aviko) or vinasse (Nedalco). 
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Following the first feeding, medium was removed and the second feeding is initiated with 
new medium containing only VFA substrate. This is done in order to evaluate the residual 
activity of the sludge following a defined exposure (approximately 2 weeks) to the bark 
extract. The first feeding activity is less reliable than the second feeding activity because 
the bark extract is not only a toxin but also a substrate and because the toxins do not 
express their full toxicity prior to the time period used to calculate the methanogenic 
activity. The activity was evaluated in the time period when 60 to 80% of the supplied VFA 
substrate was most rapidly used by the VFA fed control. The activity of the control is 
expressed as the amount of CH4, as COD, produced by 1 g VSS sludge per day (mg COD g" ' 
VSS d"1). The activity of the bark extract treatments (extract and VFA) are reported as a 
percent of the control (VFA) methanogenic activity. 

2.2. Extract Preparation 

Warm water extracts of bark were prepared from 18 g of air dried (70°C for 2 days) 
cross milled bark per L of 60°C tap water containing 250 mg L~' ascorbic acid. The bark 
and water were placed in a N2 filled gas tight container and shaken at 30°C for 3 hours, 
paper filtered and stored under N2 at 4°C. Extracts were not stored longer than 4 days. 

Bark was collected from freshly cut trees at a local forest or from delivered logs at 
Parenco paper factory (Renkum, the Netherlands). The common name, latin name (and 
average air dried moisture content) of species used in this study were as follows: scot's 
pine, Pinus sylvestris (2.63%); norway spruce, Picea abies (10.30%); fir, Abies alba (2.60%); 
douglas fir, Pseudotsuga menziessi (2.58%); european white birch, Betula verrucosa (5.82%); 
larch, Larix decidua (2.86%). and european beech, Fagus sylvatica (2.45%). The whole bark 
was always sampled at the part of the trees that ranged from 10 to 20 cm in diameter. The 
air dried bark was stored from 0.5 to 6.0 months prior to use for preparing extracts. 

2.3. Methods 

UV absorbance was measured in a 1 cm quartz cuvette by diluting extracts (to < 0.8 
absorbance units) in pH 6, 0.2 M KH2PO4 buffer as described earlier (Field et al., 1987). The 
UV absorbance was measured at 215 nm (UV2J5) and is reported as lx absorbance units of 
the sample. The UV215 is indicative of the phenol compound concentration of bark extracts 
because their aromatic structure absorbs UV light. 

COD (the micro method with dichromate) and VSS were determined according to standard 
methods (American Public Health Assoc, New York). 

VFA and the same gas chromatographic procedure for the determination of anaerobic 
intermediates of phenolic compound degradation (carboxycyclohexane, p cresol, phenol) is 
previously described (Field et al., 1987). 

The reversed phase HPLC chromatography method for bark tannins was adapted from 
previously reported methods designed for condensed tannins in apple juice and wine (Lea, 
1982; Lea, 1980; Wilson, 1981). The column used in this study was a 200 mm x 3 mm ID Cjg 
Chromosphere. A gradient was used with 4% (v/v) acetate in water (A) or in methanol (B). 
The A:B ratio was 98:2 at 0 minutes, 75:25 at 23 minutes and 2:98 at 33 minutes to 45 
minutes. The sample size was 0.02 mL. The total solvent flow was 0.6 mL minute . UV 
absorbance was detected at 280 nm. 

The development of the polyvinylpyrrolidone (PVP) method for tannin determination of 
bark extracts and wastewater is described in the results. The standard method developed is 
applicable to extracts and wastewater that contain from 2 to 7 g COD L"l bark soluble 
matter. The standard tannin determination, called the PVP method, was with 7 ml extract 
added to 0.1 g cross-linked PVP (Janssen Chimica, Beers, Belgium), capped in a N2 flushed 
test tube, shaken intensely for 1 hour in a 30°C bath. After shaking, samples were either 
glass fiber filtered (extracts) or membrane filtered (wastewater). Both COD and UV2]5 were 
measured from the filtered PVP untreated and treated samples. The tannin COD and tannin 
UV215 were both determined by difference of PVP untreated and treated samples corrected 
for COD and UV215 of a PVP blank. Ideally, the quantity of tannin COD should be 5 to 20% 
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of the quantity of PVP. If samples were too concentrated than they were diluted or if 
samples were too dilute than less PVP was used in order to arrange this tannin COD to PVP 
percentage. 

The development of a standard active carbon (AC) test, for determining bark extract AC 
adsorbable matter, is described in the results. The standard method developed called, the 
exhaustive AC treatment, was 7 ml extract added to 0.2 g granular AC (Darco, 20-40 mesh, 
Aldrich Chemie, West Germany) capped in a N2 flushed test tube and shaken intensely for 2 
hours. Another method called, the half exhaustive AC treatment, was the same except the 
shaking was mild (the AC granules were not suspended by the shaking). The calculation of 
AC adsorbable matter was the same as described for PVP. 

3. RESULTS AND DISCUSSION 

3.1. Polyvinylpyrrolidone Determination of Tannins 

One approach for determining tannins is to measure those compounds that have hydrogen 
bonding affinities with proteins and polyamides (Gupta and Haslam, 1980; Bate-Smith, 1973; 
Hathway, 1962; Wise, 1946). In many earlier studies the removal of enzyme inhibitors from 
plant extracts has been achieved by adding protein or polyamide, which serves as an 
indicator for tannin toxicity (Loomis and Battaile, 1966; Ladd and Butler, 1975; Verspuy and 
Pilnik, 1970; Strumeyer and Malin, 1969; Tamir and Alumot, 1969). We have chosen for the 
use of an insoluble cross-linked PVP as a specific adsorbent of tannins in bark extracts. The 
tannin adsorbing properties of PVP are considered better than most other polyamides 
(Loomis and Battaile, 1966). In order to develop the guidelines for the tannin determination, 
we have examined the adsorption of bark extract COD and UV215 by PVP under variable 
conditions; such as PVP concentration (Figure 5) and contact time (Figure 6). The figures 
illustrate that the ultimate COD and UV215 adsorption from pine, spruce and birch bark 
extracts by PVP ranged from 35 to 65% (COD) and 82 to 97% (UV). This indicates that 
tannins account for about half of all the bark extract compounds and a large majority of 
the UV light absorbing aromatic compounds. 

The PVP determination developed from these results utilizes the contact time and PVP 
concentration which correspond to approximately 90% of the ultimate adsorption. This is one 
hour contact of the extract with 14.3 g PVP L~', as described in the methods. The pH has 
no effect on the tannin determination as long as the pH is between 3 and 8 (Table 4). The 
COD and UV215 of a pure tannic monomer (catechin) solution (Figure 6), and pure tannin 
extracts (Table 5) were almost completely adsorbed by PVP during the tannin determination. 
Indicating that tannins are effectively detected by PVP. 

The PVP tannin determination was applied to the measurement of tannins of numerous 
bark extracts, reported in Tables 4 and 5. Repeated measurements of similarly prepared 
extracts indicate that the results are very reproducible, including the relationship between 
measured tannin UV and tannin COD. The percentage of bark extract COD and UV215 that 
was detected as tannins as well as the tannin UV:COD ratio varied between species. 

Tannins were also determined from several real wastewaters which contain bark soluble 
matter (Table 6). The proportion of membrane filtered COD and UV2J5 of the wastewater, 
which was tannin, was lower than those of laboratory made aqueous bark extracts. However, 
the tannin fraction was still quite large ranging from 13 to 30% of the soluble COD. 
Considered as a fraction of the soluble wastewater aromatic compounds (UV data), the 
tannins account for nearly half to more than half of these compounds in both bark and bark 
+ wood derived wastewaters. 

A small percentage of the bark soluble matter is expected to be composed of resin 
compounds (Figure 2). The toxicity of some resin compounds to methane bacteria has been 
reported (Table 3), which led us to evaluate the PVP adsorption of resin compounds, in 
order to confirm that only the toxicity caused by tannins is removed by PVP adsorption 
treatments. The percentage COD and UV215 adsorption of an abietic acid standard solution 
and a crude pine resin extract by PVP was very marginal (Table 7), indicating that resin 
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Figure 5 (left). Bark extract COD and UV (215nm) adsorption after 1 hour contact time 
with variable PVP concentrations. Pine bark extract (lot 1 bark) was diluted 1.6x ( 0 ) . 
Spruce bark extract (lot 2 bark) was diluted 1.6x ( • ) . Birch bark extract was not diluted 
( A ) . The mg COD L"1 (and UV 215nm, lcm,lx) of the extracts, after dilution, was 2893 
(86.4), 3129 (89.0), and 2657 (69.4); respectively, for pine, spruce and birch. 

Figure 6 (right). Bark extract COD and UV (215nm) adsorption by 14.3 g L"1 PVP with 
variable contact times. Pine bark extract (lot 2 bark) was either diluted 1.6x ( # ) or was 
undiluted ( O)- Spruce bark extract (lot 2 bark) was diluted 1.6x ( • ) . Birch bark extract 
was not diluted ( A ) - The adsorption of the bark extracts is compared with the adsorption 
of a condensed tannin monomer, catechin ( ^ ) . The mg COD L"1 (and UV 215nm, 1cm,lx) 
of the extracts, after dilution, was 2928 (85.4), 4751 (146.5), 3115 (100.3), 3198 (64.1), and 
1276 (70.8); respectively, for pine (1.6x), pine (lx), spruce, birch and the catechin solution. 

12 16 20 24 28 32 36 

HPLC re ten t i on t ime (minutes) 

b. spruce 

12 16 20 24 28 32 36 
HPLC re ten t i on t ime (minutes) 

Figure 7. The reversed phase HPLC chromatograms of pine (a.) and spruce (b.) bark extracts. 
The top solid line is the untreated extract. The bottom solid line is the PVP treated extract. 
The shaded area between these lines is the tannin peak area. The dotted line is the HPLC 
solvent background. 
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Table 4 . The Percentage Bark Extract COO and UV (215m) Adsorbed by the PVP 

Determination at pH Values Ranging f ro» 3 to 8 . 

* 
pH 

Pine (lot I)1 

3 

4 

5 

6 

7 

8° 
average 

Soruce (lot 2) 1 

3 

4 

5 

6 

7 

8 

average 

Birch2 

3 

4 

5 

6 

7 

8 

average 

COO 

total 

mg L"1 

3066 

3066 

3050 

3066 

3050 

2756 

3060 

3097 

3113 

3229 

3066 

3082 

3019 

3118 

3978 

3726 

3821 

3805 

3758 

3774 

3810 

tannin 

% 

31.5 

30.9 

28.5 

29.9 

28.5 

33.2 

29.9 

58.3 

56.0 

59.3 

55.8 

57.0 

55.8 

57.0 

46.3 

42.6 

44.1 

43.8 

43.1 

43.5 

43.9 

UV 

total 

1cm,1x 

95.5 

93.3 

94.3 

92.5 

91.1 

67.9 

93.3 

114.2 

103.1 

102.9 

99.7 

102.5 

97.1 

103.1 

86.0 

83.0 

85.0 

88.8 

84.2 

85.8 

85.4 

tanni n 

% 

73.1 

74.1 

72.1 

72.2 

71.7 

76.3 

72.6 

91.5 

88.9 

89.3 

89.9 

86.5 

88.6 

89.1 

77.6 

76.5 

78.7 

77.1 

76.4 

76.6 

77.2 

UV:COD 

tarmin 

1cm,1x mg 

0.0721 

0.0729 

0.0782 

0.0728 

0.0752 

0.0566 

0.0742 

0.0579 

0.0526 

0.0465 

0.0524 

0.0504 

0.0510 

0.0518 

0.0362 

0.0400 

0.0397 

0.0411 

0.0397 

0.0400 

0.0395 

pH a f t e r adjustment w i th HCl or NaOH ex t rac t d i l u t e d 1.6x i n 0.2 M KH,PO, 
1 -1 

und i lu ted bark ex t rac t prepared w i th 18 g a i r d r ied bark L 
? -1 
c und i lu ted bark ex t rac t prepared w i th 36 g a i r d r ied bark L 

p ine bark pH 8 data discarded from the ca l cu la t i on of the average 

compounds are not adsorbed by PVP. The UV:COD ratio of the unadsorbed resin compounds 
is distinctly lower than those reported for tannins. 

The HPLC chromatograms obtained from PVP untreated and treated bark extracts, 
presented in Figure 7 indicate that bark tannins are a complex mixture of numerous tannic 
compounds. The tannins with retention times between 8 and 28 minutes correspond to 
monomeric (300 g mole"1) and oligomeric (500-3000 g mole"') procyanidins (condensed 
tannins) previously identified with a similar HPLC method in apple juices (Lea, 1982; Lea, 
1980; Wilson, 1981). The tannins of greater than 28 minutes retention time correspond to 
high molecular weight tannins. The majority of the bark tannins are oligomers. A comparison 
of the chromatograms from the two species analyzed, pine and spruce, indicates that the 
different species do not have the same tannin composition. 

3.2. Active Carbon Adsorbable Matter of Bark Extracts 

The adsorption of bark extract COD and UV215 by granular AC is presented in Table 8 
for variable conditions. The ultimate elimination of COD and UV215 with AC was 96% (COD) 
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Table 5. The Total COD and UV (215na) of Glass Fiber Filtered Aqueous Extracts of Bark or Purified 

Hydrolyzable Tannins. 

Extract1 

BARK 

spruce (Lot 1) 

spruce (lot 2) 

pine (Lot 1) 

pine (lot 2) 

birch 

larch 

douglas fir 

fir 

beech 

bark average: 

* 
n 

4 

3 

3 

3 

7 

1 

1 

1 

1 

HYDROLYZABLE TANNIN** 

aleppo 

tarra 

1 

1 

tota 

mg L 

5793 

5013 

4166 

4772 

3519 

7193 

7226 

7611 

3324 

3597 

3735 

COD 

SD 

1 

(228) 

( 91) 

(408) 

(126) 

(450) 

tannin 

% 

51.1 (3.2) 

57.9 (0.7) 

42.0 (2.3) 

31.3 (0.2) 

48.0 (4.0) 

49.3 

52.4 

58.5 

29.9 

46.7 (10.5) 

92.8 

83.9 

UV 

totalSD 

1cm,1x 

156 ( 3) 

156 (11) 

128 ( 9) 

140 ( 5) 

89 (10) 

309 

279 

316 

77 

263 

242 

• SD tannin 

% 

88.4 (0.9) 

89.0 (0.9) 

73.7 (8.7) 

66.6 (3.1) 

81.3 (2.4) 

77.9 

90.9 

88.6 

36.6 

77.0 (17.2) 

94.4 

97.0 

UV:C0D 

• SD 
tannin 

1cm#1x mg 

0.0466 (0.0016) 

0.0474 (0.0030) 

0.0538 (0.0054) 

0.0625 (0.0033) 

0.0434 (0.0039) 

0.0685 

0.0671 

0.0630 

0.0283 

0.0534 (0.0132) 

0.0792 

0.0821 

Tannin Yield+ 

percent of 

bark dry wt. 

10.8 

10.7 

5.9 

5.7 

5.9 

11.8 

12.6 

14.9 

3.3 

9.1 

all bark extracts were prepared with 18 g air dried bark L 

n = number of samples analyzed 

the hydrolyzable tannin extracts were obtained in dry powder form from OmniChem (Wetteren, Belgium), 

aleppo tannins were isolated from the galls of Quereus infectoria 

tarra tannins were isolated from the pods of Caesalpinia spinosa 

the tannin yield from the bark (dry weight tannins extracted/dry weight bark) was estimated assuring 

the COD:dry weight ratio of bark tannins is equal to that of the condensed tannin monomer, catechin 

(1.7). 

the values reported in the parenthesis are the standard deviation units. 

and 100% (UV) of the extract values with an excess of AC. This indicates high removal of 
all bark compounds and complete removal of the complex UV light absorbing organic matter 
(including tannins). The AC should be regarded as a "universal" adsorbent. Based on these 
results the standard treatment as described in the methods was chosen based on the 
conditions that correspond to 90% of the ultimate adsorption. The AC adsorption of bark 
soluble matter was not affected by pH between 3 and 8. It was influenced by the shaking 
intensity employed. Only about a third of the extract matter was adsorbed with mild shaking 
that only swirled the extract above a stationary bed of AC granules instead of throwing the 
AC granules into suspension as was the case with intense shaking. The resin extracts, which 
were not adsorbed by PVP were adsorbed by AC as will be discussed later. 

3.3. The Anaerobic Biodegradability of Bark Extracts 

The anaerobic biodegradability of bark extracts is reported in Table 9. The conversion of 
bark extract COD to VFA and CH4 (called acidification) reached very high percentages 
(approximately 70%) after long term (7 to 8 weeks) batch anaerobic digestions of pine and 
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Table 6. The Unfiltered and Filtered Total and Tannin COD and UV (215™) of Clarified 

Wastewaters Containing Bark Solii>le Natter. 

* ** 
Wastewater site 

Debarking Wastewaters 

PU 1 

BHU-R 2 

BPr 2 

PPr 1 

P/SPr 3 

UFtotal1 

mg 

1464 

9763 

25314 

9662 

24900 

CM 

MFtotal2 

L"1 

1047 

5437 

17847 

5865 

20700 

tanni n 

% 

29.8 

13.0 

29.3 

20.4 

19.8 

UFtotal1 

mg 

ND+ 

114 

379 

113 

ND 

UV 

MFtotal2 

f1 

16 

66 

225 

61 

168 

. 2 
tannin 

% 

55.6 

54.0 

70.8 

42.4 

65.5 

UV:C0D 

tannin 

1cm,1x mg 

0.029 

0.050 

0.031 

0.022 

0.027 

Nasonite Uasteuaters 

SMPlp 

SMPr 

15784 

19427 

13084 

19427 

5.9 

11.0 

ND 

ND 

106 

176 

40.8 

46.4 

0.056 

0.038 

wastewaters: PU = pine wet debarking; BHW = birch half wet debarking with partial wastewater 

recirculation; BPr = birch bark pressing effluent; PPr = pine bark pressing effluent; P/SPr = 70% 

pine and 30% spruce bark pressing; SMPlp = spruce wood and bark pulping; SMPr spruce wood and bark 

pressing 

one of four forest industries visited in central and northern europe 

UF = unfiltered, 

ND = no data 

. 2 MF = membrane filtered (tannin COD and UV expressed as a ratio of the MFtotal) 

Table 7. The Poor Adsorption of Resin Ccopound COD and UV (215m) by PVP 

Resin Solution PH UV:COD 

crude fresh pine resin 5.5 

abietic acid 5.5 

crude fresh pine resin 8.0 

abietic acid 8.0 

MFtotal1 

mg L"1 

604 

642 

1333 

1498 

adsorbed 

% 

0.0 

0.0 

5.3 

1.4 

MFtotal1 

mg L"1 

2.83 

2.43 

10.65 

11.00 

adsorbed 

% 

13.1 

0.7 

19.1 

13.3 

unadsorbed 

1cm, 

0.0041 

0.0038 

0.0068 

0.0065 

adsorbed 

x mg 

NA+ 

NA+ 

0.0287 

0.0695 

solutions were prepared from 2 g L indicated resin compound at pH 11 (with NaOH), the pH was 

Lowered (with HCl) to the indicated pH value 

solutions were membrane filtered 
+ NA = not applicable because no COO was adsorbed 
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Table 8 . The Adsorption of F i l tered Bark Extract COD and UV (215m) by Granular Active Carbon (AC) in fer 

Variable Conditions. 

Sample 

A. 

A. 

B. 

C. 

Adsorption 

constant 

28.6 g AC L"1 

pH = 5 

intense shaking 

2.0 h 

ph = 5 

intense shaking 

28.6 g AC L"1 

2.0 h 

intense shaking 

28.6 g AC L"1 

2.0 h 

pH = 5 

Conditions 

variable 

Time (h) 

0.1 

0.3 

1.0 

2.0 

4.0 

16.0 

AC <g L"1> 

4.3 

8.6 

14.3 

28.6 

42.9 

57.1 

EM 
3 

4 

5 

6 

7 

8 

** 
Shaking 

mild 

intense 

* 
Pine 

COD UV 

-- X adsorbed --

50.9 

66.9 

84.2 

91.7 

91.7 

90.1 

32.7 

51.9 

69.6 

91.7 

93.4 

95.1 

85.7 

88.2 

88.5 

87.5 

87.5 

84.6 

36.3 

89.6 

58.9 

77.9 

96.6 

100.0 

100.0 

97.5 

47.4 

53.6 

88.8 

100.0 

100.0 

100.0 

99.0 

100.0 

100.0 

96.9 

100.0 

98.6 

41.1 

100.0 

COD 

Spruce 

UV 

-- % adsorbed --

36.6 

47.2 

77.1 

86.0 

90.4 

94.2 

23.5 

46.2 

62.7 

86.0 

94.7 

95.8 

84.5 

84.2 

85.1 

83.8 

82.0 

79.1 

32.2 

87.5 

36.5 

46.0 

83.6 

95.7 

99.5 

99.1 

27.4 

57.9 

68.1 

94.6 

99.5 

100.0 

90.0 

92.2 

94.7 

92.4 

90.8 

86.6 

28.4 

93.5 

The 1.6x d i l u t e d ex t racts used had the fo l low ing COD as mg L <and UV 215nm as 1cm, 1x ) : 2569 

(64 .5 ) , 2351 (59 .5 ) , and 2531 (56.3) w i th p ine ; and 4006 (111.4) , 3928 (111.6) , and 4182 (107.5) w i th 

spruce bark from samples A, B, and C; respect ive ly . ** 
intense shaking = exhaustive AC treatment; m i l d shaking = ha l f exhaustive AC treatment 

birch bark extracts. The long term acidification of these extract was sustained during 
repeated feedings. The acidification of spruce bark extract was distinctly lower (44%). These 
results indicate that large fractions of the bark extracts are potentially convertible to CH4 
in anaerobic environments. The UV light absorbing matter of the extracts was also 
eliminated by long term anaerobic digestions. The ultimate percentage eliminated reached 91, 
62 and 74% of pine, spruce and birch bark extract UV215; respectively. These results 
indicate that many bark phenolic compounds, responsible for the UV light absorbance, were 
biologically modified by anaerobic digestion. 

The COD which could be expected to be acidified in anaerobic wastewater treatment 
reactors, generally corresponds to the short term (1 week) acidification. The short term 
acidification of bark extracts ranged from 40 to 50% of the total COD in first, second and 
third feedings. The short term acidifiable COD accounted for about 70% of the long term 
acidifiable COD. The short term acidification of bark extract COD was less when VFA stock 
solutions were fed to the medium together with the extracts (Table 10). The presence of the 
added VFA prevented the acidification of about 13% (spruce) to 27% (pine) of the COD 
which was acidified in 1 to 2 weeks when no VFA was added. The fact, that VFA is known 
to hinder the degradation of phenolic compounds (Field et al., 1987), serves as an indication 
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Table 9. The acidification (A), Hethanogenesis CN), Elimination (ECOD) of Bark Extract COO and 

Elimination of Bark Extract UV, 215 nu, (EUV) by Anaerobic Digestion. Assays Were Conducted with 5 g VSS 

L~' Granular Sludge. 

Days* 

* 
M 

Pine 

* 
A EUV* ECOD* M 

Spruce 

A 

---- % 
EUV ECOD M 

Bi 

A 

rch 

EUV ECOD 

First Feeding 

4 

S 

12 

16 

24 

32 

48 

57 

17.2 

30.4 

49.0 

56.8 

63.6 

65.3 

69.3 

ND+ 

32.7 

40.7 

51.2 

59.4 

64.3 

65.3 

69.3 

ND 

54.3 

66.3 

74.4 

79.4 

83.2 

86.0 

91.1 

ND 

87.1a 

16.5 

18.1 

21.5 

23.6 

ND 

34.6 

37.2 

ND 

34.0 

49.1 

54.7 

58.4 

ND 

61.0 

61.8 

ND 

34.0 

49.1 

54.7 

58.4 

ND 

61.0 

61.8 44. 

ND 

15.4 

25.5 

34.4 

39.4 

ND 

51.6 

I ND 

65.3 

39.1 

47.9 

56.0 

56.0 

ND 

65.2 

ND 

77.6 

45.0 

55.3 

56.8 

56.2 

ND 

65.1 

ND 

73.5 58.3 

Second Feeding 

1 

3 

4 

8 

12 

32 

41 

Third Feeding 

1 

3 

4 

9 

12 

24 

8.6 

25.6 

29.7 

36.4 

55.8 

ND 

ND 

5.3 

10.8 

11.4 

16.8 

21.8 

52.1 

20.0 

50.9 

55.5 

60.8 

74.2 

ND 

ND 

18.0 

36.5 

38.9 

46.7 

54.2 

56.3 

18.3 

52.2 

57.9 

70.0 

74.0 

87.9 

ND 

21.1 

49.4 

53.8 

63.0 

68.2 

79.5 

84.6a 

8.1 
28.7 

32.0 

42.6 

45.5 

ND 

ND 

4.6 

9.4 

12.2 

19.9 

17.2 

ND 

21.1 

0.0 

1.6 

3.2 

6.9 

ND 

6.9 

16.9 

30.5 

41.8 

56.1 

56.5 

ND 

71.6 

6.4 

16.6 

25.3 

43.8 

ND 

52.2 

15.1 

33.5 

40.1 

56.7 

62.5 

ND 

71.6 

8.2 

18.4 

26.8 

43.6 

ND 

62.2 

21.< 

M = % conversion extract COD to CH4; A = % conversion extract COD to VFA+CH^; EUV = % elimination of 

extract UV; ECOD = % elimination of extract COD where final COD was measured from the unfiltered 

settled supernatant of the medium. The initial extract COD as mg L (and UV, 215 nm, as 1cm,1x) in 

the assays was 1885 (58.4), 1992 (69.1), and 2238 (69.9) for pine; 2037 (54.1), and 1914 (52.4) for 

spruce; and 1804 (46.1), 1675 (47.4), and 1882 (51.6) for birch at the start of the first, second and 

third feedings; respectively. The values reported are triplicate averages, 

days of anaerobic digestion 

no residual VFA in assay medium when COD of supernatant was measured. 

that some phenolic compounds are included in the acidifiable substrate. On many occasions 
small amounts (< 1% extract COD) of p cresol, phenol and carboxycyclohexane were 
identified in the assay media of bark extract digestions. These are reported to be anaerobic 
intermediates of plant phenolic compounds (Balba and Evans, 1980; Young, 1984; Field et al„ 
1987). Their maximum concentration after 2 weeks of digestion was higher (1 to 4% extract 
COD) when VFA was added to the assay together with bark extracts. 

The quantity of extract COD acidified was always a little less if the extract was 
previously treated with PVP to remove the tannins (Table 10). This indicates that at least 
some of the short term acidifiable COD originates from the tannins, which are possibly 
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simple monomeric phenolic compounds and sugar glycosides of the tannin fraction. The 
average bark extract COD is approximately half tannins and half non-tannins (Table 5). The 
majority, about 80%, of the short term acidifiable substrate originates from the non-tannin 
half and the remaining (20%) short term substrate originates from the tannin half. 

3.4. The Methanogenic Toxicity of Bark Extracts 

The effect of bark extract soluble matter on the methanogenic activity of granular 
methanogenic sludge is shown in Figure 8. The bark extracts were very toxic, the soluble 
bark COD concentrations corresponding to 50% inhibition of methanogenic activity ranged 
from 880 to 1929 mg COD L"l and were less than the soluble COD concentrations generally 
observed in most bark wastewater. Therefore, the high methanogenic toxicity of bark 
wastewaters is indicated. 

3.5. The Methanogenic Toxicity of Bark Tannins 

In order to evaluate the role of tannins in the observed toxicity, the effect of both 
untreated and PVP treated extracts on the methanogenic activity was tested as shown in 
Figure 9, 10, 11 and Tables 11 and 13. A complete (spruce, douglas fir) or almost complete 
(pine, larch) removal of the methanogenic toxicity was observed by specifically removing 
the tannins from the extract with PVP. The toxicity of coniferous bark water soluble matter 
is primarily caused by tannins. The coniferous bark non-tannin fraction was non-toxic to 
mildly toxic. In these cases, the resin compounds are either not responsible or are only 
responsible for mild toxicity, since PVP which removes most of the toxicity does not remove 
resin compounds (Table 7). The hard wood extracts ranged from the least toxic bark (beech) 
to the most toxic bark (birch). The PVP treatment of highly toxic birch bark, indicated that 
the tannins were only responsible for about half of the methanogenic toxicity. Based on 
these results the 50% (and 80%) inhibitory concentration of pine, spruce and birch bark 

Table 10. The Percentage Acidif icat ion of Extract COD during Short Term Anaerobic 

Digestion with (+) or without ( - ) Supplementation of 4 .0 g COD L as VFA. 

Type 

Pine 

Pine 

Pine 

Spruce 

Spruce 

Larch 

Douglas Fir 

Beech 

Extract 

VFA added 

(-) 
<+> 

(+> 

(-) 
(+) 

(+) 

(+> 

(+) 

* 
Assay concentration 

mg COO L"1 

5000 

5430 

1885 

1437 

2298 

3597 

3613 

2327 

Days* 

7 

15 

14 

14 

15 

13 

13 

13 

** 
Acidification 

Untreated PVP Treated 

% extract 

45.2 

32.8 

33.2 

42.0 

36.4 

35.1 

46.4 

54.3 

COD 

36.4 

28.9 

ND+ 

29.1 

30.1 

26.6 

38.1 

45.8 

The assays reported i n t h i s Table were with 1.4 g VSS L granular sludge and 2.0 t o 

2.5 g NaHCOj L as bu f fe r . The COD values reported are the untreated bark ex t rac t 

COD concentrat ions i n the assay medium. * 
A c i d i f i c a t i o n i s the conversion of the COD to VFA+CH^, expressed as percentage of the 

untreated bark ex t rac t COD. The COD removed from the bark ex t rac t by PVP treatment i s 

reported i n Table 5. 

ND = no data 
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a. Pine 

2 3 
g extract COD L'1 

Figure 8. The first VFA feeding activity ( O ) and the residual sludge activity ( • ) of the 
second VFA feeding after 14 days exposure to various concentrations of bark extract COD. 
During the first feeding, 2 g NaHC03 L"1 was added as buffer (pH 7.2 to 7.8). The toxicity 
assays utilized 1.4 g VSS L ' 1 granular sludge and 4.1 g COD L"1 as VFA substrate per 
feeding The tannin COD was 44.8, 55.4 52.1 and 58.5% of the total extract COD; the tannin 
UV (215nm) was 75.6, 89.9, 83.2 and 88.6% of the total extract UV; and the UV:COD ratio of 
the tannins was 0.0534, 0.0467, 0.0412 and 0.0630 lcm,Ix mg"1 for pine, spruce, birch and fir 
bark extracts- respectively. The control methanogenic activities during the first (and 
second) VFA 'feedings were 266 (689), 350 (555), 368 (553), and 383 (797) mg COD g"1 VSS 
d"1 for the experiments with pine, spruce, birch, and fir bark extracts; respectively. In one 
duplicated toxicity assay with pine bark extract, the residual sludge activity of the second 
VFA feeding ( • ) is shown following a first feeding when the assay pH dropped to 6.7 
(because the buffer was added after 4 days of digestion). The 50% (80%) methanogen.c 
inhibition concentrations of bark extract COD were 1040 (2350), 1000 (1530), 880 (1080), and 
1929 (2807) mg L - 1 . for pine, spruce, birch, and fir; respectively, based on the second 
feeding activity results. 
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Figure 9. The cumulative CH4 production of VFA fed assays, containing pine and spruce 
bark extracts, treated with PVP or untreated. Details of this experiment are described in 
Table 11. a = time period used to determine activity; TM = theoretical maximum methane 
production from VFA feed COD; R = recovery, distinct increase of activity during the 
residual sludge activity assay (second feeding). 

° 0 

360 0 120 240 360 

t ime ( hours ) 

Figure 10. The cumulative CH4 production of VFA fed assays, containing larch and douglas 
fir bark extracts, treated with PVP or untreated. Details of this experiment are described in 
Table 11. The figure legend can be found in the caption of Figure 9. 
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Figure 11. The cumulative CH4 production of VFA fed assays, containing birch bark 
extract, treated with PVP or untreated. Details of this experiment are described in Table 11. 
The figure legend can be found in the caption of Figure 9. 

Table 1 1 . Nethanogenic Act iv i ty of Granular Sludge with Bark Extracts and Tannin Free Bark Extracts (PVP 

Treated) Present in the F i rst and Second VFA Feeding Media. 

Assay 

A 

B 

C 

C 

D 

E 

F 

C 

* 
Bark Extract 

** 
Type Assay cone. 

,-1 

pine (lot 2) 

spruce (lot 1) 

larch 

douglas fir 

birch 

birch 

bi rch 

beech 

2942 

2298 

3597 

3613 

1968 

1396 

1225 

2327 

Act 

First 

26.6 

17.6 

13.4 

42.0 

4.3 

4.5 

5.6 

84.5 

vity 

Feed 

with Extract 

Second 

28.5 

14.8 

1.9 

5.4 

0.9 

1.2 

0.7 

93.1 

Feed 

% control 

Activity 

First 

activity 

68.4 

90.1 

70.1 

92.4 

16.9 

38.5 

47.2 

97.6 

with 

Feed 

PVP Treated Extract 

Second Feed 

82.2 

102.7 

83.1 

102.0 

30.7 

51.1 

53.7 

99.1 

Assays were conducted w i th 1.4 g VSS L granular sludge fed VFA at 4 .1 g COD L per feeding (w i th 

the exception of assay A, where the second feeding VFA concentrat ion was 2.5 g COD L ) , the f i r s t 

feeding media contained 2.0 to 2.5 g L NaHC&j as bu f f e r , the second feeding was conducted a f te r 13 

to 15 days of the f i r s t feeding to determine the residual sludge a c t i v i t y a f t e r replacing the 

supernatant w i th a VFA contain ing medium. The f i r s t (and second) feeding cont ro l a c t i v i t i e s were 301 
-1 -1. (330), 294 (665), 333 (801), 267 (504), 195 (562), and 285 (719) mg COD g" ' VSS d~'; respectively, 

for assay A, B, C, D, E, and F. 

The COD concentrations of the untreated bark extracts in the assay mediun are reported. The COD 

removed from the bark extract by PVP treatment is reported in Table 5. 
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tannins was estimated to be about 410 (920), 510 (780), and 845 (1040) mg COD L"1; 
respectively (1 mg condensed tannin = 1.7 mg COD). The condensed tannins of bark are 
about twice as toxic as a standard hydrolyzable tannin studied previously (Field and 
Lettinga, 1987). 

3.6. The Methanogenic Toxicity of Coniferous Resin 

Figure 12 illustrates that filtered extracts of alkaline extracted resin compounds are 
highly toxic to methane bacteria. The 50% inhibitory concentrations were 160 and 320 mg 
COD L"1 for crude pine resin and abietic acid (1 mg resin = 2.8 mg COD). However, when 
30 g COD L~' of crude pine resin was extracted with water, only 2% of the COD was 
solubilized in 2 days because the natural pH was low (6.3). The highest concentration (520 
mg COD L~l) of the low pH extracted resin tested for toxicity only caused about a 15% 
inhibition. The resin material extracted at a low pH (similar to bark extracts) have distinctly 
lower toxicity than alkaline extracted resin. The toxicity of low pH extracted resin 
compounds in bark extracts can be expected to be low even though conifer bark may 
contain high levels of resin (about 3 to 5% of the bark dry weight, Fengel and Wegener, 
1984). We did not study hardwood resin. The methanogenic toxicity of low pH aqueous 
extracts of birch resin should be evaluated since they are unique in composition and because 
non-tannin compounds were recognized as important toxins in birch bark extracts. 

Table 12. The Granular Active Carbon (AC) Adsorption and Calcium (Ca) Precipitat ion of Resin COD and UV 

(215cm), and the Influence of these Treatments on the Methanogenic Act iv i ty of Sludge Exposed to the 

Resin. 

Resin Extract pH C00+ 

total 

mg L"1 

A. AC Treatments of Resin Extracts 

fresh pine resin 7.9 910 

abietic acidF 11.3 1002 

B. Ca Treatments of Resin Extracts 

abietic acidF 11.6 1128 

abietic aci<r 

adsorbed 

% 

75.6 

94.7 

63.1 

total 

1cm,1x 

6.1 

8.6 

8.8 

UV* 

adsorbed 

% 

78.0 

94.1 

63.1 

Act 

Untreated Resin 

First6 Secondb 

% control 

8.5 

6.4 

3.0 

1.4 

5.2 

7.9 

. . ** 
lvity 

Treated 

First 

activity -

91.1 

74.7 

40.0 

3.2 

Resin 

Second 

83.7 

87.8 

48.7 

3.9 

The AC treatment was the ha l f exhaustive method described p rev ious ly . The Ca treatment was w i th 250 

mg L Ca . The f resh pine res in ex t rac t was prepared from 2 g L at pH 10.0. The ab i e t i c ac id 

ex t rac t was prepared from 0.36 g L at pH 11.5. The ex t rac ts were d i l u t e d 1.25x i n t o pH 7.8 media 

contain ing 1 g NaHCO* L (note the reported concentrat ions are given f o r the und i lu ted e x t r a c t ) . 
-1 -1 

Assays were conducted w i th 1.4 g VSS L granular sludge fed VFA at 4.1 g COO L per feeding. The 

second feeding was conducted a f te r 13 to 15 days of the f i r s t feeding to determine the res idual 

sludge a c t i v i t y a f t e r replacing the supernatant w i th a VFA conta in ing medium. The con t ro l 

methanogenic a c t i v i t i e s dur ing the f i r s t (and second) feedings were 373 (931), 441 (1117), and 429 

VSS d , fo r pine res in AC, ab ie t i c ac id AC and ab i e t i c ac id Ca experiments; 

respectively. 
The COO and UV of the ex t racts were measured from membrane f i l t e r e d samples 

Adsorbed by ac t ive carbon or p rec ip i ta ted by calcium 

F i r s t = f i r s t feeding of a c t i v i t y assay; Second = second feeding of a c t i v i t y assay 

Extracts were cent r i fuged and f i l t e r e d before d i l u t i n g them in to the assay medium 

Extracts were not cent r i fuged nor f i t t e r e d before d i l u t i n g them i n to assay, i e . the assay contained 

the calcium ab ie t i c ac id f loccu les 
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The half exhaustive treatment of AC could remove high levels of COD and UV215 from 
alkaline resin extracts, Table 12. The AC treated resin extracts gave mild toxicity while the 
untreated resin extracts were highly toxic. Precipitations with 250 mg L"1 Ca2+ partially 
removed abietic acid toxicity (Table 12) but only if the Ca2+-abietic acid floccules were 
filtered out of the solution. 

3.7. Toxicity of AC versus PVP Adsorbable Bark Matter 
Extracts of pine and spruce bark were treated with PVP or with the half exhaustive 

treatments of AC. The AC treatment was arranged so that it adsorbed the same amount of 
COD as the PVP (Table 13). However, the AC had only a small effect on removing the 
observed methanogenic toxicity because it removed only some and not all of the tannins. 
The compounds determined by PVP are therefore specific for the toxic factors (tannins) in 
these coniferous barks. 

4. CONCLUSIONS 

The average bark extract is composed approximately half out of tannins and half out of 
non-tannins. The non-tannin compounds are responsible for the majority of the readily 
available anaerobic digestion substrate. The tannin compounds are responsible for the 

Table 13. The Adsorption of Bark Extract COD and UV (215m and 280na) by PVP and Granular AC, and the 

Influence of these Treatments on the Methanogenic Activity of Sludge Exposed to the Bark Extracts. 

COO UV 215nm UV 280nm Activity 

total adsorbed total adsorbed total HPLC+ adsorbed First3 Second^ 

mg L"1 % 1cm,1x X signalxlO6 % % control activity 

A. Pine (lot 2) Bark Extract 

untreated 5663 166.8 4.70 

PVP 30.7 67.3 

AC 35.5 45.7 

PVP + AC 66.9 72.8 

58.1 

48.9 

97.9 

33.8 

94.3 

62.4 

102.7 

2.5 

83.3 

26.1 

92.7 

3. Spruce (lot 1) Bark Extract 

untreated 5760 170.4 

PVP 52.0 88.0 

AC 60.1 68.0 

AC + PVP 85.4 97.4 

83.6 

68.6 

95.3 

8.9 

116.3 

27.9 

m* 

0.9 

115.4 

2.7 

ND+ 

PVP = extract treated with PVP in accordance with the tannin determination; AC = extract treated 

with granular AC in accordance with the half exhaustive method; PVP+AC - extract first treated with 

PVP followed by AC; AC+PVP = extract first treated with AC followed by PVP 

Assays were conducted with 1.4 g VSS L granular sludge fed VFA at 4.1 g C00 L per feeding, the 

extracts were diluted 1.25x into the first feeding media which contained 2.5 g L NaHCOj as buffer. 

The second feeding was conducted after 13 to 15 days of the first feeding to determine the residual 

sludge activity after replacing the supernatant with a VFA containing medium. The control 

methanogenic activities during the first (and second) feedings were 367 (961), and 337 (722) mg COD 

g VSS d" , for pine (A.) and spruce (B.) experiments; respectively. 

the integrator units of the HPLC chromatograms reported in Figure 7 based on the 280 nm signal. 

ND = no data; a First = first feeding of activity assay; Second = second feeding of activity assay 

86 



o O 

uu-

60-

20-

IV 
V • 

\ \ 
X 
\ \ 

\ 

1 1 L_ 

abietic acid 
pH 11 extract 

"-•o 

pine pitch 
pH 6 extract-

concentration g COD L" 

Figure 12A. The methanogenic activity of the first ( O ) and second ( 0 ) VFA (4.1 g COD 
L~') feedings of 1.4 g VSS L~' granular sludge with variable concentrations of an alkaline 
abietic acid extract (PH 11 during extraction) present in the first feeding media for 14 days. 
The control methanogenic activities were 275 and 577 mg COD g"1 VSS d"1 during the first 
and second feedings, respectively. The abietic acid extract was adjusted to pH 8, paper 
filtered and diluted into pH 7.8 assay media. 

Figure 12B. The methanogenic activity of the first ( • ) and second ( • ) VFA (4.1 g COD 
L"1) feedings of 1.4 g VSS L~' granular sludge with variable concentrations of fresh pine 
resin aqueous extract (pH 6.3 during extraction) present in the first feeding media for 13 
days. The control methanogenic activities were 230 and 676 mg COD g"1 VSS d'1 during the 
first and second feedings, respectively. The extract was diluted into pH 7.8 assay media. The 
methanogenic activity of the first ( O ) and second ( # ) VFA feedings of a similar assay 
with variable concentrations of fresh pine resin alkaline extract (pH 9.2 during extraction) 
present in the first feeding media for 14 days. The control methanogenic activities were 276 
and 719 mg COD g~' VSS d~' during the first and second feedings, respectively. The 
extract was adjusted to pH 8, paper filtered and diluted into pH 7.8 assay media. 
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majority of the methanogenic toxicity. These observations indicate that the tannins must be 
eliminated or detoxified if anaerobic treatment of bark wastewater is expected to function 
properly. In so far as the anaerobic digestion substrate and tannin methanogenic toxicity can 
serve to be indicative of BOD and aquatic toxicity, both bark BOD and tannin toxicity need 
to be eliminated to relieve the environmental impact of bark wastewater. 
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ABSTRACT - Phenolic compounds are often present in agricultural wastewater intended for 
anaerobic treatment. During industrial processing, storage or wastewater pretreatments, these 
compounds are susceptible to oxidative modifications leading to the formation of colored 
oxidized products. In this study, the role of the oxidative coloration on changing the 
methanogenic toxicity and anaerobic biodegradability of phenolic compounds was examined. 
Short exposures to air increased the methanogenic toxicity of monomeric phenols provided 
these compounds have neighboring hydroxyl groups, necessary for the coloration, and if 
their oxidized products lack free carboxylic acid groups. In contrast, a methanogenic toxic 
tannin, gallotannic acid (oligomeric), was detoxified by oxidative coloration. The extensive 
oxidation of a monomer, L dopa, produced a dark colored precipitate which was nontoxic. 
These results indicated that the initial products of the oxidation of monomers are toxic 
whereas highly polymerized products are nontoxic. The colorless phenolic compounds tested 
in this study were either partially or fully degraded (with the exception of catechol). The 
trihydroxy phenols were the most readily biodegradable compounds. The oxidized solutions of 
trihydroxy phenols were less biodegradable in proportion to their color. 

KEY WORDS - phenolic compounds, phenol, catechol, pyrogallol, phloroglucinol, gallic acid, 
gallotannic acid, L_dopa, caffeic acid, p_coumaric acid, methanogenic bacteria, 
methanogenic toxicity, autoxidation, tyrosinase, anaerobic biodegradability phenolic 
compounds, anaerobic digestion 

1. INTRODUCTION 

Phenolic compounds are important constituents of various agricultural products used as 
feedstocks in industry. They eventually can become incorporated in wastewater if the 
feedstocks are processed under wet conditions. The natural occurrence of phenolic 
compounds in wastewater may affect the efficiency of anaerobic waste treatment since 
phenols are toxic to methanogenic bacteria (Chou et al., 1978; Fedorak and Hrudey, 1984; 
Pearson et al., 1980; Benjamin et al., 1984; Blum et al., 1986). Phenols are susceptible to 
oxidative modifications that lead to the formation of colored compounds. The possibility that 
their toxicity and biodegradability are altered by short exposures to air, therefore cannot be 
ignored. 

Figure 1, illustrates some examples of oxidation products derived from various phenolic 
monomers. Autoxidative alterations occur if the phenols have at least two neighboring 
hydroxyl (ortho) groups (Mathew and Parpia, 1971; Singleton, 1972). The ortho-dihydroxy 
phenols, which are the most common type in agricultural products, are generally polymerized 
in a fashion analogous to humus forming reactions. Under neutral to alkaline conditions, the 
exposure to air will cause the formation of unstable ortho-quinones. The subsequent 
condensation reactions polymerize the phenols (Hathway and Seakins, 1955; and 1957) to 
compounds with stable color. Ultimately, darkly colored humic-like compounds such as 
melanin are formed. The same type of oxidation can be catalyzed more rapidly and at lower 
pH values with phenol oxidases (for example tyrosinase). The enzymes have the capability of 
hydroxylating mono-hydroxy phenols to ortho-dihydroxy phenols which are then converted 
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to ortho-quinones by a second activity of the enzyme. Tyrosinase has been applied to 
polymerize simple monomeric phenols to insoluble humic compounds that can be separated 
from the wastewater (Atlow et al., 1984). 

The trihydroxy phenols are even more reactive with oxygen by autoxidation as compared 
to the dihydroxy phenols, but their polymerization is limited and ultimately they are 
depolymerized by partial destruction of the aromatic structure. This type of oxidation can be 
characterized by the formation of purpurogallin (Figure 1), its structure illustrates the 
ambiguous reactions that lead to its formation: condensation of two pyrogallol rings; and 
the destruction of the aromaticity of one of the rings. 

The impact of phenol coloration on the methanogenic toxicity and anaerobic 
biodegradability of the phenols was investigated in this study by aerating solutions of simple 
phenolic compounds under autoxidative conditions and in one case with a crude extract of 
tyrosinase. 

Precursors Examples Oxidized Products 
HO OH 

HO / \ OH 

ca techo l H0<D A u t o x i d a t i o n > H °CHP> 0 H A- p s e u d o - m e l a n i n 
H O C ^ 2 M P > O H 

HO HO OH OH HN_j-£vOH 
0H B. me l an i n 

r=-. A ,COOH 

L d o p a H O C3 / YH2 Phenol Oxidase 

^ a l l i c a c i d HO<f̂ ))coOH Autoxidation 
*- ..10 

p y r o g a l l o l HO<Q> Autoxidation > HO ) 

HO 

C. carboxy 
H p u r p u r o g a l l i n 

3> D. p u r p u r o g a l l i n 

Figure 1. Oxidative modification of phenolic compounds. References: A. Singleton, 1972; B. 
Singleton, 1972; C. Sjoblad and Bollag, 1981; D. Mathew and Parpia, 1971. 

2. MATERIALS AND METHODS 

2.1. Analytical Methods 

2.1.1. UV Absorbance and Color of the Extracts 
The ultra violent (UV) and visible light absorbance (color) of the extracts was measured 

in a 1 cm quartz cuvette by diluting to less than 0.8 absorbance units in pH 6, 0.2 M 
KH2PO4 buffer as described earlier (Field et al., 1987; Field and Lettinga, 1987). The UV 
absorbance was usually measured at 215 nm. The UV light absorbance is indicative of the 
total phenolic concentration. 

2.1.2. Color 

The term color was quantified by the absorbance of visible light. Generally color was 
based on the absorbance at 440 or 340 nm at a dilution in 0.2M KH2PO4 pH 6 buffer to an 
absorbance less than 0.8 units. Most compounds used did not have any absorption at 340 nm 
and only the oxidized color products gave absorbance at 340 nm in close association with 
the development of visible absorbance at higher wavelengths. 
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Usually, color based on 340 nm absorbance was reported for the samples obtained after 
anaerobic digestion, in which case it is called, "anaerobic digestion stable" (ADS) color. 

2.1.3. COD, VSS and VFA Determinations 
The COD (the micro method with dichromate) and VSS were determined according to 

standard methods (American Public Health Assoc, New York). The method for determining 
the volatile fatty acids by gas chromatography were described previously (Field and Lettinga, 
1987). The same gas chromatographic procedure was used to determine certain intermediates 
of phenolic degradation by extending the retention time to 2 hours. The compounds tested 
are listed in the Tables. 

2.2. Oxidation Treatments 

2.2.1. Autoxidation Phenolic Compounds 
An initial set of experiments were conducted by preparing the anaerobic assay medium 

(nutrients and substrate), including the phenolic compound, and aerating the medium with 
pressurized air through a porous stone. Generally, the pH during autoxidation was 7.4 and 
the time of aeration ranged from 1 second to 15 minutes. The autoxidation was stopped by 
placing the sludge in the assay bottles and flushing the head space with N2. 

In other experiments, the phenolic compounds were in most cases autoxidized at higher 
pH values (7.4 to 12) and as a pure stock solution. The pH was adjusted to the initial value 
with NaOH and the autoxidation was stopped by readjusting the pH to 6.5 with HCl. The 
stock solution was then immediately diluted in the assay medium and the assay was started 
after adding the sludge and flushing the head space with N2. 

2.2.2 Oxidation L Dopa with Potato Tyrosinase 
In two experiments L dopa (1.818 g L~') was oxidized at pH 6.5 with 0.1 M KH2PO4 

buffer extracts of potato (Doré) peels. The potato peels are known to contain tyrosinase 
(Mathew and Parpia, 1971). In one experiment designated, "mild oxidation," the L_dopa was 
treated with a tyrosinase at a concentration diluted 255x from the fresh potato peel while 
exposed to air (for 0 to 69 hours) in an open shake flask (contents 0.11 L) using 0.25 
rotations per second. The colored products of this oxidation were completely soluble. In a 
second experiment designated, "intense oxidation," the L_dopa was treated with a tyrosinase 
concentration diluted 58x from the fresh potato peel, using 1 rotation per second and 
shaking (for 0 to 49 hours). The colored products of this oxidation were soluble but 
precipitated to a large extent in the first 24 hours of the anaerobic assay. An additional 
treatment was aerated with 2 rotations per second shaking for 49 h. The colored products 
were completely insoluble and this treatment was designated "pre-flocculated." 

2.3. Bioassays 

All assays contained essential inorganic macro and micro nutrients as outlined previously 
(Field and Lettinga, 1987). The batch fed assays were conducted in 0.5 L serum flasks. The 
assay temperature was 30 ± 2- C. The serum flasks were not shaken during the assay period. 

The anaerobic toxicity assays of oxidized and unoxidized phenolic solutions were supplied 
at the start of each feeding substrate of approximately 4 g COD L~' neutralized with NaOH 
VFA stock solution, 100:100:100 g kg"1 acetate (C2), propionate (C3) and butyrate (C4). The 
stock solution COD ratio is 24:34:41 C2:C3:C4. From 1 to 1.5 g VSS L"1 granular sludge was 
used in the assays, that was either obtained from a UASB treating potato derived 
wastewater ("AVIKO") or vinasse ("NEDALCO"). 

The assays were carried out in one, two or three consecutive feedings. The first feeding 
always supplied the VFA substrate to the treatments (assays with phenolic compounds) and 
the control. The first feeding generally lasted for one to three weeks. In this study, 
numerous types of experiments were conducted as outlined follows: Type 1 Only the first 
feeding in the presence of the phenolic solution; Type 21 First feeding with phenolic 
solution present, the additional feedings were initiated by adding VFA to the existing 
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medium; Type 2R first feeding with phenolic solution present, the second feeding was 
initiated after decanting the first feeding medium and replacing it with VFA medium not 
containing phenolic solutions (residual activity). 

Methane production was monitored with a modified mariotte flask constructed from serum 
flasks. These flasks were filled with 3 to 5% NaOH solutions to dissolve all CO2. 

The activity of the controls is expressed as the amount of CH4 in COD produced by one 
gram of VSS per day (mg COD g"1 VSS d"1). The activity of the phenolic solution supplied 
assays is reported as the percentage of the control activity. The activities are based on the 
methane production rates during the activity period; where, the activity period is the time 
interval of maximum control activity. The activity period was usually a 4 to 5 day period 
within the first 6 days of the first feeding and the first 2 to 3 days of the consecutive 
feedings. Inhibition is equal to 100 minus the percent of control activity. The specific assay 
conditions and control methanogenic activities are reported in Table 1 for each of the 
experiments in this study. 

The recovery of phenolic COD in the form of VFA and CH4 was calculated by summing 
up the COD present as produced CH4 and as VFA in the media. The VFA control sum was 
subtracted from the phenol treated assay sum. The difference was labelled "recovery COD" 
(RCOD). 

2.4. Materials 

The phenolic compounds were obtained from Janssen Chimica, Boom BV and British Drug 
House. 

Table 1. The Assay Parameters of the Experiments Conducted in this Study. 

Numbe 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Experiment 

r Compound Concentrât 

catechol 

and phenol 

pyrogallol 

pyrogallol 

catechol 

gal lie acid 

gal lie acid 

gallotannic acid 

phloroglucinol 

p coumaric acid 

and caffeic acid 

L dopa 

L dopa 

* 
ion 

in Assay 

mg L" 

351 

300 

1000 

1000 

1000 

1000 

750 

1000 

500 

1000 

1000 

1000 

800 

I 

to 

to 

to 

1755 

1500 

1500 

** 
Type 

21 

1 

2Rb 

21 

1 

1 

2R 

1 

21 

21 

2R 

Sludge 

VSS 

si"1 

1.46 

1.05 

1.05 

1.10 

1.05 

1.82 

1.05 

1.46 

1.46 

1.50 

1.50 

Assay 

Duration 
_. ++ 
Time 

First Second 

... 

10 

1 

9 

25 

10 

7 

22 

days 

21 

17 

Activity Control 

First 

(mg COD 

389 

440 

Second Th i rd 

g"1 VSS d"1) 

762 693 

reported in Table 

540 

440 

314 

453 

385 

445 

686 

385 

1050 962 

971 

931 

839 

550 

Concentration unoxidized phenolic compound (mg dry matter per liter) in assay media, the 

oxidized phenolic solutions were diluted in the same fashion as the unoxidized compound. 

Type of toxicity assay (see text methods). 

Unless otherwise stated, the VFA spikes used in the experiments supplied 4 g COD L 

(C2:C3:C4 = 24:34:41 % of the COO). 

Duration time of the feedings are reported to indicate the exposure time prior to the 

feedings which followed. 

Assays of experiment 3 were supplied with 4 g COD L of either acetate, propionate or 

butyrate. 
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3. RESULTS 

3.1. Effect of Oxidation on the Methanogenic Toxicity of Phenolic Compounds 

Table 2 illustrates the role of the hydroxylation pattern of phenols on their susceptibility 
to coloration by autoxidation. The absence of colored compounds illustrates how the simplest 
monohydroxy phenolic compound, phenol itself, did not react with the oxygen. In contrast, 
the simplest ortho dihydroxy phenol, catechol, did produce colored products upon 
autoxidation. The autoxidation, however, did not affect the UV absorbance, indicating the 
phenolic characteristic of the colored compounds. 

The autoxidation applied was mild to imitate the conditions that might be expected if 
phenolic wastewaters were exposed to air. The exposure to air had no consequence to the 
methanogenic toxicity of phenol which was expected as this compound was not affected by 
the autoxidation. The coloration of the catechol solution had a significant effect on 
increasing its methanogenic toxicity (Figure 2). Based on the activity during the second VFA 
feeding, the 50% inhibiting concentration of catechol was decreased by 33%. 

Autoxidation treatments were applied to a variety of phenolic compounds (Table 3), the 
results of these experiments are summarized in Figure 3. The phenols which lacked the 
ortho hydroxyl groups (p coumaric acid, phloroglucinol), like phenol, were not colorized or 
otherwise not colorized to a large extent by autoxidation. Likewise, their methanogenic 
toxicity was not affected. Although, caffeic acid has the ortho dihydroxy substitution, it did 
not form a colored solution by the autoxidation applied and therefore, its autoxidation also 
did not affect its methanogenic toxicity. Pyrogallol, with three neighboring hydroxyl groups, 
was dramatically colored by the short autoxidation treatment applied. Although, the 
unoxidized pyrogallol was completely nontoxic to methane bacteria, the pyrogallol solutions 
recovered after short aeration periods of one second to 15 minutes were highly toxic. This 
indicated the high toxicity of the first autoxidation product produced, purpurogallin (Figure 
1). An additional experiment demonstrated that the autoxidized pyrogallol solution was able 
to damage the methanogenic activity of sludge even after only a one day contact with the 

Table 2 . The UV absorbance (a t the Start of the Experiment) 

and the Anaerobic Digestion Stable Color (Day 9 of the 

Experiment) of Unoxidized and Autoxidized Phenol and Catechol 

Compound 

Phenol 

Catechol 

Concentration 

mg L"1 

300 

600 

1000 

1500 

351 

702 

1170 

1755 

ADS* 

unox 

Color 

auto* 

340 rm 

5x, 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

1cm 

0.016 

0.022 

0.040 

ND 

0.256 

0.360 

0.390 

ND 

UV Absorbance 

unox 

215 

1x, 

14.7 

28.2 

50.2 

77.3 

17.3 

35.4 

60.0 

87.2 

auto 

nm 

cm 

15.8 

31.2 

51.6 

ND 

19.3 

38.7 

61.4 

ND 

ADS Color = anaerobic d iges t ion s tab le co lor 

ND = no data 

unox = the unoxidized phenolic solution; auto = the 

autoxidized phenolic solution, the solution was aerated at 

a pH of 7.4 for 15 minutes and then allowed to stand for 5 

days in an open flask exposed to the atmosphere 
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Table 3. Influence of Aerating Phenolic Solutions (pH = 7.4) on the Nethanogenic Activity of Sludge. 

Experiment 

Number Compound Concentration 

9L-1 

Type* 

Autoxidation 

ADS Color Methanogenic Activity 

340nm First Second Third 

5x,1cm percent control 

2. pyrogallol 1.00 

A (1 sec) 

A (1 min) 

A (15 min) 

0.000 

0.276 

0.486 

0.895 

138.0 

57.0 

41.0 

32.4 

4. catechol 1.00 

A (1 sec) 

A (1 min) 

A (15 min) 

0.003 

0.000 

0.026 

0.159 

62.3 

61.0 

60.8 

47.9 

60.1 

64.7 

65.9 

47.8 

78.8 

80.2 

77.9 

56.9 

5. gallic acid 1.00 

A (1 min) 

A (15 min) 

0.000 

0.070 

0.135 

124.0 

118.0 

119.0 

7. ga l lo tarmic ac id 1.00 

6. g a l l i c ac id 0.75 

A (1 min) 

A (15 min) 

D (1 min) 

D (5 hour) 

D (73 hour) 

0.085 

0.245 

0.320 

0.015 

0.043 

1.040 

1.265 

28.9 

39.2 

55.4 

141.2 

136.1 

99.0 

91.9 

25.8 

46.6 

64.2 

8. phloroglucinol 

phloroglucinol 

9. caffeic acid 

p coumaric acid 

1.00 

0.50 

1.00 

1.00 

0 
B 

0 

B 

0 

C 

0 

C 

0.021 

0.137 

0.013 

0.038 

0.000 

0.038 

0.000 

0.004 

128.4 

113.4 

119.5 

106.5 

82.5 

83.8 

74.0 

92.0 

88.6 

88.2 

82.5 

87.1 

Concentration of the unoxidized and oxidized phenolic compound (dry matter basis) in the assay media. 

Anaerobic Digestion Stable Color of the media after 58, 1, 12, 25, 9, 18 and 9 days of digestion, 

respectively for experiments 2, 4, 5, 7, 8, 9 and 6. 

First, Second and Third VFA Feedings (spikes) as outlined in Table 1. 

Type Autoxidation: 0 = unoxidized, A = assay medium with phenolic compounds aerated at pH 7.4 for 1 

second to 15 minutes (the 15 minute aerated control had on the average 98% of the unaerated control 

activity), B = phenolic stock solution aerated for 2 hours at pH 11.5, Ç = phenolic stock solution 

aerated at pH 8 for 15 minutes followed by aerating at pH 10 for 5 minutes, D = phenolic stock 

solution aerated for 1 minute to 73 hours at pH 12 

96 



120 

100 

80 

60 

40 

20 

120 

100 

80 

60 

40 

20 

120 

100 

80 

Phenol 
first feeding 

600 1200 1800 

Phenol 
second feeding 

600 1200 1800 

Phenol 
third feeding 

600 1200 
Concentration Phenol (mg/L) 

1800 

120 

100 

80 

60 

40 

20 

120 

100 

80 

60 

40 

20 

120 

100 

80 

60 

40 

20 

Catechol 
first feeding 

600 1200 1800 
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Figure 2. The effect of a mild autoxidation on the methanogenic activity of granular sludge 
exposed to phenol and catechol in three consecutive VFA feedings (Experiment 1). The 
autoxidation treatment and formation of colored products are described in Table 2. 

sludge (Table 4), and that its toxicity was effective on both the metabolism of acetoclastic 
(acetate) as well as acetogenic substrates (propionate and butyrate). Gallic acid which has a 
very similar structure to pyrogallol except for its free carboxylic acid group, was not 
colored as extensively which might serve as an explanation for why it did not increase in 
methanogenic toxicity by short autoxidation treatments. When a severer autoxidation was 
applied, producing comparable levels of color, the autoxidized solutions were still nontoxic. 
Thus a large difference in methanogenic toxicity is indicated if the autoxidized products 
contain free carboxylic acids, like carboxy-purpurogallin (Figure 1), as compared to 
purpurogallin which lacks the free carboxylic acid group. Perhaps the fact that this group 
would be dissociated at the assay pH (7.4) plays a role in decreasing the toxicity. 

In contrast to the monomers tested, the autoxidative coloration of gallotannic acid led to 
a decrease in its methanogenic toxicity (Table 3). It was not clear which mechanism led to 
the detoxification effect. The experiment was repeated but efforts to reproduce the brown 
colored solution with autoxidation failed, finally autoxidation was conducted at a higher pH 
(11) but in these cases only a green colored extract that produced a yellow precipitate when 
the pH was again adjusted to 7 was evident. The only difference, in the way in which the 
autoxidation was performed in the latter attempts, is that, in the original experiment, the 
gallotannic acid was autoxidized together with the nutrient and substrate solutions of the 
anaerobic assay. Since the nutrient solution used in this particular experiment was an old 
unsterile solution, it was speculated that the nutrient solution was contaminated with some 
sort of microorganism that influenced the oxidative alterations of the tannin. 
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Figure 3. Summary of the effect of oxidation treatments on the coloration and methanogenic 
toxicity of phenolic compounds examined in this study. A and B refer to the "mild" and 
"intense" oxidations of L_dopa with tyrosinase (see Figure 4). 

In addition to the autoxidative methods, the phenol oxidase (tyrosinase) catalyzed 
oxidation of phenols was studied using L dopa. This compound is suspected to be present in 
potato starch wastewaters as a product of the naturally present tyrosine (a phenolic amino 
acid) resulting from the monohydroxylase activity of the potato tyrosinase. While tyrosine 
was not toxic, L dopa was found to be a methanogenic inhibitor (Field et al., 1987), 
indicating the role of the monohydroxylase activity on changing the methanogenic toxicity 
of tyrosine. In this study the role of the dihydroxylase activity was considered by oxidizing 
solutions of L-dopa with tyrosinase. With mild oxidation conditions, the L-dopa was 
polymerized to soluble colored solutions with a low but significantly increased methanogenic 
toxicity (Figure 4a). However, when a more extensive oxidation was performed, the colored 
products precipitated in the anaerobic assay media and were less toxic than L dopa (Figure 
4b). In one case, the data point labeled "pre-flocculated", the oxidation was so extensive 
that all the L dopa was converted to darkly colored compounds that were already insoluble 
before mixing them together with the anaerobic assay media. These were completely 
nontoxic. This indicated that the intermediate products of the melanin formation were the 
most effective inhibitors, whereas mature melanin was nontoxic. 

3.2. Effect of the Oxidation on the Anaerobic Biodegradability of Phenolic Compounds 

3.2.1. Biodegradability of Unoxidized Phenolic Solutions 
Unoxidized catechol was not degraded anaerobically during the toxicity assays of this 

study as is evident from the absence of UV absorbance elimination after 50 days of 
anaerobic digestion (Figure 5), likewise not any recovery of the catechol in the form of 
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Table 4. Influence of a One Day Exposure of Sludge to 15 Hinute 

Autoxidized 1 g L Pyrogallol on the Nethanogenic Activity 

Fol lowing the Exposure. The Autoxidized Pyrogallol Containing 

Mediua Has Decanted after One Day and the Sludge Uas Supplied 

with Individual VFA Substrates (4 g COD L 1 ) in a Nediun 

Lacking Autoxidized Pyrogallol to Determine the Residual 

Activity. 

VFA Absolute Activity 

of the control 

mg COD g"1 VSS d"1 

Exposed Sludge 

Activity 

percent control 

1031 

499 

428 

52.0 

32.6 

40.5 

experiment 3 substrate: 

butyrate 

C2 = acetate, C3 = propionate; C^ = 

1000 

< 
900 ̂1 

pre-flocculated 

Color of Medium (at s tart assay) 
Absorbance (440nm), 5x diluted 

Figure 4. The methanogenic activity of sludge exposed to potato phenol oxidase (tyrosinase) 
oxidized L dopa. A. Mild oxidation and B. Intense oxidation. Methanogenic activity during 
the 1st ( A ) and 2nd ( # ) feeding and the VFA concentration of the media ( O ) at the 
end of the 1st feeding. Experimental conditions are described in Table 1 (experiments 10 and 
11 for A. and B.. respectively) and oxidation conditions are described in Materials and 
Methods. 
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VFA and CH4 was observed. Although no degradation occurred in this study, the anaerobic 
biodegradability of catechol has been confirmed in several studies (Balba and Evans, 1980; 
Healy and Young, 1978 and 1979; Horowitz et al., 1981; Blum et al., 1986; Suidan et al.i 
1980). Of all the simple phenolic compounds, inoculum appears to need more time to 
acclimate to catechol (Healy and Young, 1978 and 1979) or in studies with short term assays, 
the acclimation does not occur (Simpson et al., 1969; Chmielowski et al., 1965; Kaiser and 
Hanselmann, 1982a and b; Clark and Fina, 1952). Additionally, in the other studies, the 
biodégradation of catechol was investigated without a substrate VFA spike. Since the 
biodégradation of some simple phenolic compounds are inhibited by high VFA concentrations 
(Fedorak et al., 1986), this would indicate that the conditions of a toxicity assay (ie. VFA 
added) are not the most favorable for catechol degradation. 

The cinnamic acids studied, caffeic and p coumaric acids, were biologically transformed to 
intermediates of lower UV absorbance but no recovery of the phenolic COD in the form of 
VFA and CH4 was observed after 18 days of digestion (Table 5). 

Unoxidized phenol, although not readily degraded initially, was finally degraded by the 
sludge after a certain lag phase which was increasingly longer with the increasing phenol 
concentrations (Figure 5). The accumulation of two intermediates of its biodégradation, 
benzoic acid and carboxycyclohexane, were observed (Table 6), as has been observed' 
previously (Neufeld et al., 1980; Knoll and Winter, 1987; Keith et al., 1978). With the highest 
concentration of phenol tested, 1500 mg L ' 1 , an almost complete conversion of the phenol 
to benzoic acid occurred, although no elimination of the UV absorbance was apparent. 

In contrast to the mono- and dihydroxy phenols, the unoxidized trihydroxy phenols were 
degraded readily in short time periods of digestion as is evident from the rapid elimination 
of the UV absorbance and recovery of the phenolic COD in the form of VFA and CH4 
during the toxicity assays with pyrogallol and phloroglucinol (Figure 6 and 
respectively). This indicates, that the mechanisms of anaerobic trihydroxy 
biodégradation are quite distinct from those of the mono- and dihydroxy 
biodégradation. 

Table 7, 
phenolic 
phenolic 

Table 5. The Elimination of UV Absorbance and the Appearance of Phenolic Intermediates 

during the Toxicity'Assay with Hydroxy Cïmaaic Acids (Experiment 9 ) . 

Cinnamic Aci 

Type 

p coumaric acid 

(4 hydroxy) 

caffeic acid 

(3,4 dihydroxy) 

ds Supplied 

Concentration 

mg L-1 mg COD 1-1 

1000 1854 

1000 1600 

Intermediates* 

Type Concentration 

mg 

phenol 

4 ethylphenol 

3 phenylpropionate 

phenol 

3 ethylphenol 

C00 L-1 

684 

3 

627 

14 

3 

ROOD** 

% 

0.0 

0.0 

EUV" 

65.6 

62.3 

The intermediates of the hydroxy cinnamic acid degradation observed in the medium after 

24 days of digestion during the toxicity assay. Only the following intermediates were 

invest igated wi th the GC procedure ut iIized: phenol ; p,m and o cresol; 4 and 3 

ethylphenol; benzoate; carboxycyclohexane; phenyl acetate; and 3 phenylpropionate. 

Potential intermediates such as catechol, hydroxy- 3 phenylpropionates and cinnamic 

acids were not determinable. The COD/DS ratio of the phenols mentioned in the Table: p 

coumaric acid = 1.854; caffeic acid = 1.600; phenol = 2.383; ethylphenol = 2.623; 3 

phenylpropionate = 2.240. 

RCOD = the recovery of the phenolic COO as VFA and CH^ after 18 days of digestion; EUV = 

the elimination of the UV absorbance after 24 days of digestion (day 0 UV215nm 1x, 1cm = 

77.2 and 87.7, respectively for p coumaric and caffeic acid). 
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Figure 5. The elimination of UV absorbance from the media during the toxicity assay with 
unoxidized and autoxidized phenol and catechol (Experiment 1). The initial UV absorbance 
of the media are reported in Table 2. 

Table 6 . Concentration of Phenol, Anaerobic Degradation Intermediates of Phenol i n the Media and the 

Recovery of Phenol COD as CH^ and VFA a t Selected Sampling Tines of the Toxicity Assay (Experiment 1 ) . 

Da/ 0 Day 38 Day 50 

Phenol Phenol Benzoate CCH RCCO COO Pheno l B e n z o a t e CCH RC0D COD 

Balance Balance 

™ 1-1 

0 

300 

600 

1000 

1500 

mg COD L"1 

0 

715 

1430 

2383 

3575 

0 

0 

519 

1177 

2917 

- mg COD 

0 

0 

100 

472 

234 

.-1 

0 

0 

0 

57 

0 

0 

662 

592 

310 

102 

X 

NA 

92.6 

84.8 

84.6 

91.0 

0 

0 

0 

291 

436 

0 

0 

0 

376 

3350 

L"1 -

0 

0 

0 

145 

0 

0 

792 

1374 

1692 

102 

% 

NA 

110.8 

96.1 

105.1 

108.8 

CCH = carboxycyclohexane, the phenolic intermediates invest igated wi th the GC procedure are l i s t e d i n 

the Footnote of Table 5 

* * P.COD = phenolic COD converted to VFA and CH4; * COD/DS Rat ios: phenol = 2.383; benzoate = 1.967; CCH 

= 2.250 

* COD Balance = (phenol + intermediates + RCCO/phenolgcy^ 

3.2.2. Biodegradability of Oxidized Phenolic Solutions 
Since unoxidized catechol was not biodegradable in this experiment, the effect of the 

coloration on its biodegradability could not be determined. Although, unoxidized phenol and 
the cinnamic acids were biodegraded or at least transformed to intermediates during the 
anaerobic digestion, since the autoxidation of these compounds did not produce color, their 
autoxidation had no effect on their biodegradability. 

The autoxidation of the trihydroxy phenolics decreased their conversion to VFA and CH4 
and decreased the elimination of UV absorbance (Figure 6 and Table 7). In all cases, the 
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Figure 6. The recovery of phenolic COD as VFA and CH4 and the elimination of UV 
absorbance from the media during the toxicity assay with unoxidized pyrogalloi ( O ) and 
with pyrogalloi autoxidized for 1 second (A ) , 1 minute ( • ) . and 15 minutes ( 0 ). Results 
were obtained from Experiment 2. The initial UV absorbance of the assay media at the start 
of the experiment was 60.8, 64.8, 68.8 and 68.9 lx, 1cm 215nm absorbance units, respectively 
for the pyrogalloi which was unoxidized, autoxidized for 1 second, 1 minute and 15 minutes. 

Table 7. The Anaerobic Biodegradability of Phloroglucinol and 

Autoxidized Phloroglucinol. 

Days of 

Digestion 

unox 

4 

9 

auto 

4 

9 

0.5 (g 

RCOD* 

75.0 

101.8 

78.4 

85.3 

Concentration Phlorog 

L"1) ** 
EUV 

93.0 

98.0 

71.3 

86.2 

1.0 (g L"1) 

RCOD EUV 

63.5 63.8 

103.0 98.9 

62.9 59.1 

86.1 73.3 

ucinol 

1.5 (g 

RCOD 

27.3 

95.6 

ND" 
ND 

L-1) 

EUV 

25.8 

98.4 

ND 

ND 

Recovery of phenolic COD as VFA and CH^ 

Anaerobic e l im ina t ion of UV215 absorbance ( the 1x, 1cm 

absorbance at the s t a r t of the experiment was 30 .5 , 62.0 

and 92.4, respect ive ly fo r 0 .5 , 1.0 and 1.5 g L 

ph lo rog luc ino l ) . The resu l ts were obtained from experiment 

unox = the unoxidized phenolic s o l u t i o n , auto = the 

autoxidized phenolic so lu t i on (see Table 3 f o r desc r ip t ion 

of the au tox ida t ion ) . 

ND = no data 
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Figure 7. The elimination of UV by anaerobic digestion of autoxidized trihydroxy phenols as 
a function of the anaerobic digestion stable color. The duration of the digestion was for 
58, 9, 25, and 9 days for pyrogallol (1 g L"1, experiment 2), phloroglucinal (1 g L~j, 
experiment 8), gallotannic acid (1 g L~', experiment 7), and gallic acid (0.75 g L" , 
experiment 6), respectively. 

decrease in the ultimate biodegradability corresponded to the level of coloration (Figure 7), 
indicating that the colored oxidation compounds were not biodegradable. The biodégradation 
which did occur from the colored phenolic solutions, was most likely related to the fraction 
of the colorless precursors which escaped transformation during autoxidation as has been 
reported previously in one study with partially colored solutions of pyrogallol (Schink and 
Pfennig, 1982). 

The colored products of gallic acid, gallotannic acid and phloroglucinol did not affect the 
rate at which the biodégradation of the colorless fraction occurred. However, the colored 
products of pyrogallol autoxidation were unique, since they inhibited the rate of 
biodégradation (Figure 6). Since the pyrogallol solution which was autoxidized for only one 
minute lowered this rate even more than the solution which was autoxidized for 15 minutes, 
the most likely explanation for the inhibition is that the first autoxidation product, 
purpurogallin, was the inhibitor of the anaerobic pyrogallol degradation. 

4. DISCUSSION 

Phenolic compounds are often present in agricultural wastewater intended for anaerobic 
treatment. These compounds are susceptible to oxidative coloration during industrial 
processing, storage or wastewater pretreatments which inevitably could contribute to changes 
in their methanogenic toxicity. In this study we have observed that an increase in the 
toxicity occurred under mild conditions of autoxidation if the phenolic compound tested has 
neighboring hydroxyl groups and lacks free carboxylic acid groups. A similar increase in 
toxicity also occurred when L_dopa was oxidized mildly with potato tyrosinase. Although, 
this appears to form an exception to the trend, since L dopa contains a free carboxylic acid 
group, this group is actually cleaved during the initial stages of the oxidation (Singleton, 
1972). Therefore the initial products of oxidative coloration are toxic to methane bacteria, 
provided that these products are devoid of free carboxylic acid groups. 

The oxidative modifications of phenols did not always lead to an increased methanogenic 
toxicity. When a methanogenic toxic oligomer, gallotannic acid, was successfully oxidized to 
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soluble colored products, a distinct detoxification was observed. Detoxification of L_dopa 
occurred when an extensive oxidation with tyrosinase was applied, producing a darkly 
colored melanin precipitate. These latter experiments suggest that highly polymerized 
products of the oxidation are nontoxic. 

The oxidative coloration also affected the biodegradability of the phenolics. Trihydroxy 
phenolic solutions which were readily biodegradable during the toxicity assays, became less 
biodegradable after autoxidation in proportion to the formation of colored compounds. In 
most cases, the autoxidized products did not affect the rate at which the biodegradable 
fraction was degraded. However, the initial autoxidation product of pyrogallol was inhibitory 
to the biodégradation of the pyrogallol. 

The oxidative coloration of phenols therefore cannot be ignored. The results of this study 
demonstrate that short exposure of phenol bearing wastewaters to air prior to anaerobic 
treatment can have a drastic effect on both the methanogenic activity of the reactor sludge 
and the anaerobic biodegradability of the phenolic wastewater components. 
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ABSTRACT - The tannin theory describes the effectiveness of tannic compounds as bacterial 
inhibitors based on their MW. The inhibition is postulated to result from the hydrogen 
bonding of the tannins with bacterial proteins (ie. enzymes). Oligomeric tannins are expected 
to be the most effective inhibitors. The oligomeric tannins form stronger hydrogen bonds 
with proteins as compared to their monomers. The high MW tannins are also reactive with 
proteins in the bulk solution; however, they are not able to penetrate to bacterial proteins. 
In this study, tannins were polymerized with autoxidation to colored compounds to 
investigate the role of tannin MW on methanogenic toxicity. The autoxidation of catechin, a 
tannin monomer, paralleled the expected toxicity as predicted by the tannin theory. The 
toxicity increased as it was polymerized to oligomeric tannins and decreased as the 
oligomers were converted to nontoxic high MW tannins. The autoxidation of green tea 
tannins, oligomeric tannins, did not lead to extensive polymerization reactions and no 
accumulation of high MW tannins were observed. Instead, the toxic green tea tannins were 
transformed to colored nontannic compounds of variable MW, which were nontoxic. 

KEY WORDS - tannin, catechin, phenolic compounds, flavonoid compounds, anaerobic 
digestion, methanogenic bacteria, methanogenic toxicity, anaerobic biodegradability phenolic 
compounds, autoxidation, detoxification, HPLC tannins 

1. INTRODUCTION 

1.1. The Tannin Theory 

The tannin theory model for methanogenic toxicity is based on the relationship found 
between tannin polymer size and quality as a tanning agent for the preparation of leather 
from hide. White (1957) recognizes tanning agents with maximal quality for the leather 
industry to be polar oligomeric phenols of 2 to 10 monomeric units in length (ie. MW = 500 
to 3000). The hydrogen (H) bonding reactions with proteins (Figure 1) that are necessary for 
tanning are postulated to cause toxicity to bacteria because such interactions interfere with 
the functioning of enzymes (Gupta and Haslam, 1980; Haslam, 1974; White, 1957; Ladd and 
Butler, 1975; Loomis and Battaile, 1966; Strumeyer and Malin, 1969; Daiber, 1975; Tamir and 
Alumot, 1969). The polar monomeric phenols have limited H bonding capacity, while the 
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Figure 1. The hydrogen bond between phenol and proteins. 
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oligomeric tannins have a far superior H bonding capacity because of their ability to form 
multiple H bonds, called,"cross-linking" (Bate-Smith, 1973; Haslam, 1974; Loomis and 
Battaile, 1966). The reactivity of monomeric phenolics with proteins has been shown to 
increase as they are polymerized to oligomeric tannins (Chollot et al. 1961). Likewise we can 
expect that the toxicity of the oligomeric tannins is then far superior to their monomeric 
counterparts, as has been shown to be the case with metabolic enzymes (Boser, 1961; 
Firenzuoli et al., 1969), eubacteria (Singleton and Esau, 1969) and methanogenic bacteria 
(Field and Lettinga, 1987). 

Tannins used for preparing leather must not exceed a maximum size (approx. 3000 g 
mole" ' ) because the tannins must penetrate into the interfiber spacings of the hide proteins 
(White, 1957). Likewise, we can expect that a similar maximum size must not be exceeded 
for penetration to bacterial enzymes. Therefore we can recognize high MW tannins that are 
still good tannins in the sense that they react effectively with proteins available in the bulk 
solution but fail as tanning agents for preparing leather and fail as toxins to bacteria 
because in both cases they are too large for penetration. Polymers yet even larger than high 
MW tannins have no H bonding affinities towards proteins. Based on the protein 
precipitation data of Jones et al. (1976), the polymer size associated with a loss in reactivity 
towards soluble extracellular proteins is approximately 20,000 g mo le - 1 . In this case, 
perhaps there is no capacity for H bonding because the molecule has such an excessive size 
that the majority of the phenolic groups are buried too deep in the polymer to be effective. 
These very high molecular weight nontannic polymers can be called humus because they have 
many characteristics associated with humic compounds: darkly colored; phenolic; high MW; 
oxidative genesis; and poor biodegradability (White, 1957). 

Evidence for the detoxification of tannins by their polymerization to high MW compounds 
is reported in the literature. The oxidative polymerization of apple tannins (procyanidins) 
with phenolase has been found to eliminate the inhibitory effect of the tannins on pectinase. 
The decrease in tannin toxicity was attributed to the high MW tannins formed (Verspuy and 
Pilnik, 1970). The antibiotic properties of wine are generally reported to be due to the wine 
tannins (anthocyanidins). Old wine aged for 82 years was less than one third as bactericidal 
as the younger wines, aged for only 9 to 10 years. The loss of antibiotic properties was 
suggested to be due to the slow polymerative oxidation of the tannins (ie. from oxygen 
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Figure 2. Conceptual overview of the tannin theory. 
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leaking through the wood of the storage barrels), eventually polymerizing them to excessive 
sizes (Singleton and Esau, 1969). Generally, high MW phenolic compounds have not been 
observed to cause methanogenic toxicity. Humic acid isolated from peat was not found to 
cause toxicity to methane bacteria at 1 g L " ' (Brons et al., 1985) nor peat up to 16 g L"' 
(Young and McCarty, 1981). Likewise, a highly oxidized soluble extract of melanin pigments 
was not toxic to methane bacteria (Lane, 1983). 

A conceptual overview of the tannin theory is presented in Figure 2. The figure 
illustrates the theorized toxicity of tannins on either bacterial enzymes or free extracellular 
enzymes based on the expected H bonding strength as well as the penetration limitations. In 
this figure four categories of soluble polar phenolic compounds are recognized, the group 
(I), (II), (III) and (IV) compounds. These are; respectively, monomeric tannins, oligomeric 
tannins, high MW tannins and humus in increasing order of MW. 

1.2. Objectives 

Since the molecular weight plays such an important role in the behaviour of tannic 
compounds, the purpose of this study was to determine if coloration of tannic compounds by 
oxidative polymerization can lead to changes in the methanogenic toxicity that correlated to 
the basic trends recognized by the tannin theory. Catechin was chosen as a model compound 
since it is a typical monomeric unit of condensed tannins, procyanidins (flavonoids with 
dihydroxy rings), that are expected in certain forest industry wastewater that contain bark 
tannins (Field et al., 1988). Catechin also fulfills the structural requirements suggested to be 
necessary for the alteration of phenolic compound toxicity by autoxidation (Field and 
Lettinga, 1989). Green tea was chosen since its tannins have a similar flavonoid structure 
but are unique in that they have trihydroxy rings, which could potentially effect their 
behaviour during autoxidation. An additional objective was to determine if the coloration 
products of the autoxidations were in fact polymerized products. 

1.3. Oxidative Polymerization of Tannic Compounds 

The polymerization reactions of the tannins are illustrated in Figure 3 with classic 
examples of the products obtained by autoxidation or phenolase oxidation. 

Precursors Examples Oxidized Products 
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Figure 3. Oxidative polymerization of flavonoid tannin monomers. References: A. Hathway 
and Seakins, 1955 and 1957; B. Brown et al., 1969; C. Singleton, 1972. 
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2. MATERIALS AND METHODS 

2.1. Analytical Methods 

2.1.1. Standard Determinations 
The UV absorbance, Color, COD, VSS and VFA determinations were described in the 

previous article (Field and Lettinga, 1989). 

2.1.2. PVP Determination of Tannins 
The determination of the total tannin concentration by adsorption on the insoluble 

polyamide, polyvinylpyrrolidone (PVP), was described previously (Field et al., 1988). In this 
study, the tannin concentration of the extracts were based on the COD and UV215 light 
absorbance units adsorbed on the PVP. 

2.1.3. HPLC of Tannins and Oxidized Tannins 
Part of the results presented in this article are based on the high performance liquid 

chromatography (HPLC) characterization of the tannic compounds. The technique utilized is a 
reverse phase system with a solvent gradient that runs from a highly aqueous solution to 
methanol. Several other research groups have utilized similar methods for the analysis of 
tannins (Wulf and Nagel, 1976; Rosten and Kissinger, 1982; Wilson, 1981; Lea, 1980; and 
1982). Generally two factors play an important role in determining the retention times: (1) 
increasing MW can be associated with increasing retention time; (2) increasing apolarity can 
be associated with increasing retention time. Plant tannins in their unaltered form are 
mixtures of oligomers and each MW fraction may be composed of several compounds that 
have a mean retention time. This median value has been shown to increase with increasing 
MW of the oligomeric and highly polymeric condensed tannins isolated from apple juice and 
white wine (Wilson, 1981; Lea, 1980; and 1982). HPLC chromatograms of unoxidized and 
oxidized apple juice presented by Lea (1982) are shown in Figure 4. The unoxidized 
chromatogram illustrates the specific peaks of the colorless natural monomeric and 
oligomeric condensed tannins (procyanidins) which are the group (I) and (II) tannins of the 
tannin theory, respectively. After the oxidation these compounds disappeared to a large 
extent and there appeared a colored broad high MW peak. The broad peak indicates a 
heterogeneous mixture expected from a random polymerization process. The high MW peak 
eluted when the solvent gradient changed rapidly over to methanol. This peak is most likely 
associated with the group (III) and (IV) tannins of the tannin theory. 

The hydrolyzable tannins do not have the same behaviour as the condensed tannins with 
the reversed phase HPLC method. Verzele and Delahaye (1983) observed that the oligomeric 
hydrolyzable tannins eluted when the solvent gradient changed mostly over to methanol, 
which coincided with the point where the high MW condensed tannins elute. Therefore, the 
aforementioned HPLC method for indicating the MW of tannins is limited to the condensed 
tannins. 

The reversed phase high pressure liquid chromatographic method of characterizing 
condensed tannins was adapted from previously reported methods (Lea, 1982; and 1980; 
Wilson, 1981). The column used in this study was 200 mm x 3mm ID with Cjg Chromsphere 
packing. A gradient was used with 4% acetate (v/v) in water (A) or in methanol (B). The 
A:B ratio was 98:2 at 0 minutes, 75:25 at 23 minutes and 2:98 at 33 through 45 minutes. The 
sample size was 0.02 mL. The total solvent flow was 0.6 mL per minute. The UV absorbance 
was detected at 280 nm. Under the conditions utilized, the elution of the broad high MW 
peak started at 28 minutes retention time. Recently we have introduced the concept of 
treating samples with polyvinylpyrrolidone to specifically remove the tannins and thereafter 
process a chromatogram of the non-tannin fraction (Field et al., 1988). This enables the 
possibility of distinguishing tannic and non-tannic peak areas. The total extract as well as 
the PVP treated extract are plotted together, the difference in peak area between the two 
represents the tannin peak area. 

The four important categories of compounds that can be recognized in the HPLC 
chromatograms are the monomeric phenolic oxidation precursors (I) which are located by a 
standard, the oligomeric tannins (II) which are represented by newly formed tannic peak 
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area of less than 28 minutes, the high MW tannins (III) which are located in the tannic 
peak area of the high MW peak and high MW humus (IV) in the non-tannic peak area of the 
high MW peak. 

The low MW tannin concentration (monomeric plus oligomeric) was estimated by taking 
the ratio of tannin peak area < 28 minutes : total tannin peak area from the HPLC 
chromatograms and multiplying it by the total PVP determined tannin concentration. 

2.2. Autoxidation Phenolic Compounds 

The phenolic compounds were autoxidized at high pH values (9 to 11.5) by aerating the 
phenolic stock solutions. The stock solutions were prepared fresh and with 250 mg L" 
ascorbic acid to prevent premature coloration. The pH was adjusted to the initial value with 
NaOH and the autoxidation was stopped by readjusting the pH to 6.5 with HCl. The stock 
solutions were than immediately diluted in the assay media and the assays were started after 
adding the sludge and flushing the head space with N2. 

100:0 gradient 
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0:100 
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unoxidized 

-pH7+ - pH 2.5 -

10 20 30 
retention time (min) 

Figure 4. The HPLC of apple tannins in normal and oxidized apple juice as reported by Lea 
(1982). Procvanidin Tannins: (EC) epicatechin, a monomer; (BI, B2) procyanidin dimers; (3', 
4', 5') oligomeric procyanidins; (Y) oxidatively polymerized procyanidins. Miscellaneous 
Monomeric Compounds: (CA) Chlorogenic acid; (PN) Phloridzin. (This Figure is a modified 
reprint with permission of the publisher, Elsevier Science Publishers B.V., Amsterdam). 
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2.3. Bioassays 

The bioassay used in this study for determining the methanogenic toxicity are described 
in the previous study (Field and Lettinga, 1989). The specific assay conditions and control 
methanogenic activities are reported in Table 1 for each of the experiments in this study. 
On certain occasions, the method was modified, as described in the footnote of Table 1. 

Table 1 . The Assay Parameters of the Experiments Conducted in th is Study. 

Number 

1. 

2. 

3. 

Experiment 

Compound 

catechin 

catechin 

green tea 

* 
Concentration 

in Assay 

mg L"1 

1535 

1433 

3370 (COD) 

** 
Type 

2Ra 

P2Ra 

2R 

Sludge 

vss 
9L-' 

1.38 

1.38 

1.38 

Buffer 

NaHCO, 

9L-' 

1.0 

1.0 
3.0 

Assay 

Duration'1"1' 

days 

21 

14 

8 

Activi 

F i rst 

(mg COD 

318 

768 

357 

ty 

g 

Control 

Second 
1 VSS d"1) 

868 

1002 

831 

Concentration unoxidized phenolic compound (mg d ry matter per l i t e r unless COO is ind icated) 

i n assay media, the ox id ized phenolic so lu t ions were d i l u t e d i n the same fashion as the 

unoxidized compound. ** 
Type of t o x i c i t y assay: Type 2R: F i r s t feeding w i th phenolic s o l u t i on present. The second 

feeding was i n i t i a t e d a f t e r decanting the f i r s t feeding medium and replacing i t w i th VFA 

medium not conta in ing phenolic so lu t ions ( res idual a c t i v i t y ) . Type P2R: The sludge was given 

a (1 week) prefeeding of VFA wi thout phenolic s o l u t i o n . The prefeeding media was decanted and 

replaced wi th the phenolic so lu t i on containing f i r s t feeding media. The second feeding was 

the same as type 2R. 

The VFA spikes used in the experiments suppl ied 4 g COD L (C2:C3:C^ = 24:34:41 % of the 

COD). 

Duration time of the first feeding, to indicate the exposure time prior to the second feeding 

which followed. 
a The first feeding activity results of experiments 1 and 2 are reported for the initial 2 (to 

3 ) days of the assay before unoxidized catechin degradation. 

Table 2. Characteristics of Phenolic Stock Solutions Used in the Autoxidation 

Experiments. 

Experiment 

Number Compound 

Phenolic Stock Solution 

Untreated 

Total Tannin Total Tannin 

Autoxidized 

* 
Max. Color * Dilution 

Stock Solution 

3tal in Assay Media 

mg COD I"1 Abs 215nm,1x Abs 440nm,1lx 

1. 

2. 

catechin 

catechin 

3727 2539 197 181 

3481 3048 156 145 

green tea 4815 2338 254 196 

1.569 

1.780 

0.646 

1.43 

1.43 

1.43 

The PVP determinable tannins. 

The maximum color development by autoxidation, the color of the stock solutions 

before anaerobic treatment. 
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2.4. Materials 

Catechin was obtained from Janssen Chimica. Chinese green tea extract was prepared by 
shaking 16 g dry tea per liter hot (60°) water (containing 250 mg L"1 ascorbic acid) for 3 
hours. The characteristics of the stock phenolic solutions that were autoxidized and their 
dilution into the assay media are reported in Table 2. 

3. RESULTS 

3.1. Catechin Autoxidation 

3.1.1. Changes in Catechin Characteristics 
Catechin solutions were autoxidized for periods between 5 minutes and 22 hours during 

two separate experiments, labelled series 1 and 2. The catechin used in series 2 contained 
more impurities and was more susceptible to foaming compared to the catechin of series 1. 
During series 2, a lower intensity of aeration had to be applied. Consequently, the rate of 
coloration was slower than the rate obtained during series 1. The autoxidation increased 
both the anaerobic digestion stable color (340nm) of the media as well as the color (440nm) 
measured directly from the autoxidation solutions (Figure 5A). The color increased rapidly in 
the initial phase of autoxidation but the rate decreased as the autoxidation continued. While 
dramatic changes in the solution color were evident, very minor changes occurred with 
respect to the UV light absorbance and COD of the catechin solution (Figure 5A). This 
indicated that the colored products were not suspended solids but instead soluble products 
of the oxidation. 

During the initial phases of the autoxidation no losses in the PVP determinable tannins 
were evident (Figure 5B), indicating that the initial color products formed were still 
reactive with PVP as catechin is. However as the autoxidation was continued to very high 
levels of color, a noticeable decrease in the PVP determinable tannins was evident (Figure 
5B), which indicates the point when the polymerization had advanced so far that the 
compounds loose their tannic quality, called "detannification." The detannification begins 
when the first high MW tannins are polymerized to humus. 

The PVP tannin determination can detect all compounds that have at least a minimal 
tanning capacity as represented by compounds with at least one cross-linking possibility via 
H bonds with the polyamide (Endres and Hörmann, 1963; Olsson and Samuelson, 1974). Figure 
6 illustrates that single ring compounds like phloroglucinol with spread-out hydroxyl groups 
or compounds like catechin with multiple hydroxylated rings have the minimum tannin 
quality whereas other types of monomers do not. Unfortunately, the PVP method cannot 
detect the difference in tanning power that is expected between the monomeric tannin (ie. 
the catechin precursor) and the polymeric tannins formed by the autoxidation (oligomeric 
and high MW tannins). The difference in tanning power is indicated by the greater 
resistance of the polymeric tannins against desorption with polar organic solvents. Table 3 
shows that a greater percentage of autoxidized tannins (ie. polymeric tannins) resist 
desorption from PVP when treated for one hour with methanol. The greater resistance 
against desorption of the polymeric tannins is expected due to their greater H bonding 
strength in comparison with a tannin monomer. The desorption of the tannins was not 
complete even in the case of catechin, therefore the difference in tanning strength could 
perhaps be better indicated with a stronger stripping solvent. 

The fact that the autoxidation coloration truly caused polymerization reactions was 
confirmed by HPLC determinations of the autoxidized solutions recovered after different 
autoxidation periods (Figures 5B and 7). During the course of the autoxidation, the catechin 
peak decreased and was paralleled by the formation of oligomeric tannins that upon further 
autoxidation were polymerized to the high MW peak. The final stage of polymerization, when 
high MW tannins are converted to humus is indicated by the increase of material in the 
high MW peak which is not adsorbed onto PVP. 
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Om 5m 20m 1.5h ser ies 2 

A. Stock Solution Charac ter i s t ics 

-A- Total Color 440 nm (% COLTf) 
-A- Tannin Color 440 nm (% COLTf) 
- • - COD (% C0DT0) 
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series 2: s ta r t ing pH = 11.0 

Figure 5. The autoxidation of catechin. Where: COLTf = maximum color developed by 
autoxidation, CODT0 and UVTO = COD and UV of the unoxidized stock solution (Table 2) , 
and UVTx = total UV of the sample. Assay conditions: experiments 1 and 2 in Table 1 for 
series 1 and 2, respectively. 
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Compound 

phenol 

catechol 

pyrogallol 

phloro-
glucinol 

gallic acid 

gallotannic 
acid 

caffeic acid 

L dopa 

catechin 

Structure Adsorpt 

»O 
HO 

HO 

HO 

< ^ O H 

HO 
HO 

H O v C y C O 0 H 

HO 

- H O 0 ' -i 

HO<g>C=J 
- ,' J n= 9 

H ^ V 0 0 0 " 

H S^- \ A /COOH 

OH 

y^oH 
H 

ion by PVP 

(%) 
22.6 

29.6 

38.1 

82.5 

15.2 

96.2 

18.1 

18.3 

98.5 

Figure 6. The adsorption of selected phenolic compounds (1 g L~* ) on PVP (using the PVP 
determinable tannin method). The minimal tanning quality is indicated by a high level (> 
80%) of adsorption on the PVP. 

Table 3 . The Desorption of Catechin and Catechin Autoxidaticn 

Tannin Products fro» PVP by Methanol. 

Autoxidat ion Time 

m 

h 

= minutes 

= hours 

0 m 

5 m 

15 m 

1 h 

4 h 

Adsorbed Tannins Desorbed * 
from PVP by Methanol 

% a l l tannins adsorbed 

27.9 

25.0 

18.8 

11.4 

10.4 

0.1 g PVP with adsorbed tannins treated with 7ml methanol 

for 1 h. This method was not very exhaustive because 

methanol is a weak stripping solvent. The tannins were 

measured with UV light absorbanee at 280 nm because methanol 

has absorbance at 215 nm. 
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The samples tested represented all stages of the autoxidation, these included points 
where the group (I), (II), or (III) tannins were dominant. Therefore, the catechin 
autoxidation series is a continuum of analogous tannic compounds that vary only in MW 
which gives an ideal bases for testing the validity of the tannin theory for methanogenic 
toxicity. 

12 20 28 36 
retention time (min) 

Figure 7. The HPLC of catechin after (A) 0, (B) 1.5, (C) 6 and (D) 22 hours of autoxidation 
(starting pH 11). The top chromatogram was the total UV of the sample. The bottom 
chromatogram was the UV remaining after removing the PVP determinable tannins. The 
shaded area between the two chromatograms represents the tannin peak area. 
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3.1.2. Changes in Catechin Toxicity 
The second feeding methanogenic sludge activity, that survived a two to three week 

exposure to the autoxidized catechin solutions, is shown in part C of Figure 5. The second 
feeding sludge activity followed the expected pattern according to the tannin theory. During 
the initial stages of autoxidation, when the monomeric tannin was polymerized to oligomeric 
tannins, an increased toxicity (decreased sludge activity) was observed, corresponding to the 
toxification phase of the tannin theory. When a toxic autoxidized sample was treated with 
PVP, a complete removal of the toxicity was evident (Figure 8) indicating that the tannins 
were responsible for the toxicity. At a later stage of autoxidation, a continuation of the 
autoxidation resulted in a decreased toxicity, corresponding to the detoxification phase of 
the tannin theory. At the end of the autoxidation, only about half the original tannin 
content was detannified and yet there was no residual toxicity remaining. This clearly 
demonstrates the existence of nontoxic high MW tannins, since these were the only tannins 
present in the most autoxidized solution. Therefore, the detoxication corresponded to the 
conversion of the oligomeric tannins to high MW tannins, as would be expected from a 
lowered penetration ability to the bacterial enzymes. 

Certain changes in the catechin and autoxidized catechin toxicity were evident if the 
sludge activity during the initial three days of exposure (first feeding) is compared with the 
sludge activity in the second feeding, following two to three weeks of exposure (Figure 5C). 
During the initial period of exposure, catechin expressed an inhibitory effect on the sludge 
activity. After three days of anaerobic digestion the monomeric flavonoid, catechin, was 
biologically cleaved. Directly afterwards, complete reversal of the catechin toxicity was 
evident (Figure 8). The anaerobic degradation was certainly an important factor contributing 
to the reversal of the monomeric tannin toxicity. However, this behaviour is not the same 
as that of oligomeric tannins previously studied. Gallotannic acid, which like catechin is 
degraded anaerobically after several days of anaerobic digestion (Field and Lettinga, 1987), 
caused a residual inhibition to the sludge which was still evident several weeks after the 
biodégradation. Therefore catechin is not a strong inhibitor which can impart a residual 
damage to the sludge as the oligomeric tannins can. This may be due to the fact that 
monomeric tannins have a weaker H bonding with the proteins compared to the oligomeric 
tannins. 
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-A- Autoxid. 1.5 h + PVP 

Figure 8. The cumulative methane production during the methanogenic toxicity assay of 
autoxidized catechin (experiment 2). Where: a = the activity period used for the reported 
activities in Figure 5; TM = the theoretical maximum CH4 production based on the VFA 
supplied to the assay. 
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The oligomeric tannic products of the catechin autoxidation were effective methanogenic 
toxins that left a residual sludge toxicity following a two to three week exposure (Figure 
5C). While the oligomeric products at various stages of the autoxidation caused similar levels 
of inhibition, a large difference in their initial toxicities was evident during the first three 
days of anaerobic digestion (Figure 5C) during the first feeding. During this initial exposure 
period, the early stage oligomers (small oligomers) expressed more toxicity than the late 
stage oligomers, ie. those which have a border-line size between oligomeric and high MW 
tannins. The delayed toxicity response of the anaerobic sludge to the late stage oligomers 
clearly demonstrates that penetration is an important factor. Those compounds that have a 
size just slightly less than the maximum effective size are exactly those compounds which 
are expected to take a long time to penetrate. 

3.1.3. Changes in Catechin Biodegradability 
The disappearance of PVP determinable tannins and media UV215 absorption as well as 

the recovery of phenolic COD as VFA and CH4 during anaerobic digestion were found to 
decrease with the catechin concentration still remaining after autoxidation (Figure 5D). This 
indicated that the autoxidized products were not degraded and that only catechin was 
transformed anaerobically. 

The complete loss of PVP determinable tannins by anaerobic digestion of unoxidized 
catechin, indicates that the catechin is cleaved, since the diphenolic structure is an 
essential attribute to the tannic quality of this monomer. The A ring intermediate was most 
likely phloroglucinol as observed by other researchers (Simpson et al., 1969; Brown, 1977). 
Phloroglucinol was most likely immediately acidified to VFA and CH4 after cleavage as was 
the case in similar experiments supplied with phloroglucinol (Field and Lettinga, 1989). The 
residual UV215 absorption and incomplete acidification of the phenolic compounds indicate 
that the B ring remained in the media as an unidentified nontannic phenolic degradation 
intermediate. While it is known that catechol (benzene with the same substitution as the B 
ring) is not degraded under similar experimental conditions, the nontoxicity of the phenolic 
intermediates would indicate that catechol was not predominant. Catechol would have 
imparted a small level of toxicity, considering the results of previous experiments conducted 
under similar conditions (Field and Lettinga, 1989). In addition to catechol (Balba and Evans, 
1980), 3 phenylpropionic acid and phenylacetic acid substituted intermediates are known to 
occur as the B ring intermediate during the anaerobic degradation of flavonoids (Brown, 
1977; Lane, 1980; Krumholz and Bryant, 1986). 

3.2. Green Tea Extract Autoxidation 

Green tea was chosen, because it is known to contain high levels of polyphenolic 
compounds. Vuataz and Brandenberger (1961) found that 80% of green tea extractable 
matter is composed of polyphenols. Two tannic monomers, epigallocatechin gallic acid and 
epicatechin gallic acid were identified and accounted for about 25 and 5% of all the 
polyphenols, respectively. These monomeric compounds should be expected to behave as 
oligomeric tannins since they are composed of three hydroxylated rings. 

3.2.1. Changes in Green Tea Characteristics 
The results obtained from the autoxidation of green tea extracts are outlined in Figure 9. 

During the autoxidation, rapid coloration (based on 440nm) occurred, while little losses in 
COD were observed. The UV215 absorbance was decreased by nearly half and most of the 
PVP determinable tannins were eliminated. This indicated drastic modifications of the 
aromatic structures resulted from the autoxidation. 

The HPLC chromatograms illustrate a few prominent tannin peaks with distinct retention 
times (Figure 10) in the unoxidized tea extract. At the early stages of the autoxidation, 
these peaks decrease, yielding a heterogeneous mixture of tannins that could be detected at 
almost all retention times. At the end of autoxidation, the tannin peak area was largely 
replaced by non-tannic peak area. There was some accumulation of compounds in the high 
MW humic peak area. These might correspond to thearubigins, which are high MW 
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Figure 9. The autoxidation of green tea. Where: COLTf = maximum color developed by 
autoxidation, CODT0 and UVTO = COD and UV of the unoxidized stock solution (Table 2), 
and UVTx = total UV of the sample. Assay conditions: experiment 3 in Table 1 
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polyphenols recovered from black tea (Brown et al., 1969; Crispin et al., 1968; Miliin et al., 
1969). However, for the most part, the autoxidation eliminated the tannins without 
drastically modifying the MW of the polyphenols. This may be due to the formation and 
subsequent destruction of theaflavins which is also reported to occur during the auto- and 
enzymatic oxidations of tea (Singleton, 1972; Mathew and Parpia, 1971). 

3.2.2. Changes in Green Tea Toxicity 
The unoxidized green tea caused methanogenic inhibition (Figure 9) that was still evident 

in the second feeding. Unlike the catechin monomer, which was only temporarily inhibitory, 
green tea tannins have an inhibition characteristic of oligomeric tannins. During the 

20 28 36 
retention time (min) 

Figure 10. The HPLC of green tea extract after (A) 0, (B) 0.25 and (C) 24 hours of 
autoxidation (starting pH 11). The top chromatogram was the total UV of the sample. The 
bottom chromatogram was the UV remaining after removing the PVP determinable tannins. 
The shaded area between the two chromatograms represents the tannin peak area. 
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autoxidation, the detoxification of green tea paralleled the decrease in total tannin content. 
Since only part of the tannins were converted to high MW compounds, the detoxification of 
the green tea by autoxidation cannot be completely due to polymerization. The destruction 
of tannin structure seems to also have been involved. 

3.5.3. Changes in Green Tea Biodegradability 
During the 8 days of the first feeding, unoxidized green tea phenolics were biologically 

modified and partially converted to VFA and CH4. This is illustrated in Figure 9D by the 
disappearance of UV2J5 absorbance and recovery of green tea COD as VFA and CH4. The 
colored detoxified products of tea, in contrast were degraded to a much lesser extent. 

4. DISCUSSION 

4.1. Methanogenic Toxicity 

The methanogenic toxicity of polar phenolic compounds depends on the tannic quality of 
these compounds and their capacity to penetrate. An important factor governing the 
tannin quality and penetration ability is the polymer size (ie. MW) of the tannic compounds. 
The relationship between tannin toxicity and MW has been outlined by the tannin theory. In 
this study, we have found that polymerizing phenolic compounds with oxidative reactions to 
colored compounds caused changes in methanogenic toxicity that paralleled the expected 
toxicity as predicted by the tannin theory. This was most clearly demonstrated by 
autoxidizing catechin, a tannin monomer, to tannins of increasing MW. Essentially the ideas 
expressed by White (1957) with regard to the tannin size ranges which are most effective 
for the preparation of leather from hide are applicable for understanding those tannin 
compounds which are the most effective inhibitors of methanogenesis. In both cases, the 
oligomeric tannins are the most effective. They constitute the best compromise between 
being large enough for effective tanning quality and being small enough for penetration. 

Unlike catechin (dihydroxy rings), the autoxidation of green tea tannins (trihydroxy 
rings) did not cause extensive polymerization to high MW compounds. The autoxidation; 
however, did largely transform the tea tannins to colored oxidation products. These products 
did not have tannic qualities and they were nontoxic. 

Phenolic compounds present in agricultural are susceptible to oxidative modifications 
during short exposures to air which will have an impact on their methanogenic toxicity. In 
cases where the predominant phenols are monomeric tannins, than the oxidative 
polymerization leads to oligomeric tannins, which would increase the wastewater toxicity. On 
the other hand, in cases where the predominant tannins are oligomers, than the initially 
toxic wastewater could potentially be detoxified by applying the concepts of the tannin 
theory. In this regard, oxidative polymerization can be applied to transform the toxic 
oligomers to nontoxic high MW tannins and humic compounds. 

4.2. Anaerobic Biodegradability 

The colorless phenolic compounds tested in this study were partially degraded. The 
flavonoid structure was cleaved and the A ring corresponding to phloroglucinol was 
converted to VFA and CH4 while the B ring remained in the media and was not identified. 
The colored products of phenolic oxidation were not degraded anaerobically. These 
compounds are analogous to humic compounds, since they are the poorly degradable colored 
products of oxidatively modified phenolic compounds. 
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ABSTRACT - In a previous study, catechin (a condensed tannin monomer) was polymerized 
by autoxidation treatments. The resulting oligomeric tannins were responsible for the 
methanogenic toxicity observed in the autoxidized catechin solutions (Field et al., 1989). In 
this study, the autoxidation of pyrogallol (a hydrolyzable tannin monomer) did not cause 
extensive polymerization. Initially some polymerization occurred producing toxic intermediates 
that were later destroyed by a destructive type of oxidation caused by prolonged 
autoxidation treatments. The first intermediate formed, purpurogallin (a dimer), caused a 
high level of toxicity to both the methanogenic activity and to the anaerobic degradation of 
pyrogallol. Since purpurogallin is a highly toxic autoxidation product that lacks tannic 
features, the changes in methanogenic toxicity induced by the autoxidation of pyrogallol 
cannot be estimated by changes in the oligomeric tannin concentration. 

Regardless of the reactions that take place during the autoxidation of tannin monomeric 
derivatives, the initial reactions can potentially lead to colored products of increased 
methanogenic toxicity. These are later detoxified by prolonged autoxidation, either by 
polymerization to high MW compounds (with condensed tannin model compounds), or by 
destruction of the initially toxic intermediates to low MW compounds (with hydrolyzable 
tannin model compounds). 

I. INTRODUCTION 

Monomeric phenolic compounds are susceptible to oxidative alterations to colored 
products during short periods of exposure to air. These alterations can potentially affect the 
methanogenic toxicity of phenolic wastewaters intended for anaerobic treatment. The 
autoxidation of dihydroxy ring type phenols like catechin, a condensed tannin monomer, 
causes polymerization. Initially, methanogenic toxic oligomeric tannins are formed, but these 
are later polymerized further to nontoxic compounds of high MW. The tannin theory (Field 
et al., 1989) is applicable to describing the modifications in the methanogenic toxicity that 
result from the alterations in MW by polymerization. However with trihydroxy ring phenols, 
the oxidative reactions are not entirely polymerative, and the resulting products do not 
necessarily have tannic structures. Nonetheless, these modifications may be of great 
importance, since rather strong methanogenic toxins were produced by short autoxidation of 
the hydrolyzable tannin monomer model compound, pyrogallol (Field and Lettinga, 1989). The 
objective of this work was to study the methanogenic toxic products of pyrogallol 
autoxidation in more detail. 

2. METHODS 

The methods utilized for the measurement of COD, UV absorbance, color and tannins; the 
H PLC characterization of phenolic solutions; and the autoxidation method have been 
described in previous publications (Field and Lettinga, 1989; Field et al., 1989). The tannin 
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determination was based on the COD and UV of the phenolic stock solution which was 
adsorbed on an insoluble polyamide, polyvinylpyrrolidone (PVP) as described in detail in 
Field et al. (1988). 

The general method utilized during the bioassays to determine the methanogenic toxicity 
of the phenolic solutions was described in the previous publications (Field and Lettinga, 
1989; Field et al., 1989). In this study, granular sludge was first prefed for one week with 4 
g COD L~' of stock VFA solution to adapt the sludge to the VFA substrate. At the end of 
the prefeeding period, the supernatent was decanted, thereafter phenolic compounds were 
added together with 4 g COD L~' VFA to initiate the first feeding of the toxicity assay. 
After two weeks of exposure to the phenolic medium, the supernatant was decanted and 
replaced with a 4 g COD L~' VFA solution in order to determine the residual activity of 
the sludge during the second feeding of the toxicity assay in the absence of the phenolic 
solution. The specific conditions during the assays are reported in Table 1. Two experiments 
were conducted. In the first experiment the toxic effects of autoxidizing pyrogallol were 
examined. The characteristics of the pyrogallol stock solution are reported in Table 1. In the 
second experiment, the toxicity of purpurogallin was examined at various concentrations. The 
purpurogallin stock solutions were prepared in demineralized water, as they had lower 
solubility in tap water (presumably due to the interactions with Ca2+). 

The phenolic compounds, pyrogallol and purpurogallin were obtained from Janssen Chimica 
(Tilburg, The Netherlands). 

Table 1. The Assay Parameters of the Experiments Conducted in this Study and the Pyrogallol Stock 

Solution Characteristics. 

Exper

iment3 

# 

1. 

2. 

ASSAY CONDITIONS 

Cone. Sludge Buffer 

in assay VSS NaHCOj 

mg L"1 g L"1 g L"1 

1385 1.38 1.0 

25 to 200 1.50 1.0 

Activity Control 

F i rst Second 

mg COD g"1 VSS d"1 

768 999 

771 1004 

PYROGALLOL STOCK SOLUTION 

COD 

total tannin 

mg COD L"1 

4223 1579 

UV 215nm 

total tannin 

1cm,1x 

198 72 

Max.c 

Color 

440nm 

1cm, 11x 

2.113 

Di lution 

factor 

in assay 

2.0 X 

Experiment 1 = autoxidation series of pyrogallol; Experiment 2 = concentration series of unoxidized 

purpurogallin. 

For experiment 1 the concentration of unoxidized pyrogallol (mg dry matter per liter) in assay media 

is shown, the autoxidized pyrogallot solutions were diluted in the same fashion as the unoxidized 

pyrogallol solution. For experiment 2 the range of purpurogallin concentrations tested (mg dry matter 

per liter) are shown. 

the maximum color (based on absorbance at 440 nm) developed by autoxidation. 

3. RESULTS 

3.1. Changes in Pyrogallol Characteristics 

The data collected at various stages of the pyrogallol autoxidation are summarized in 
Figure 1. During the initial stages of the autoxidation, the formation of color was 
associated with the conversion of pyrogallol to its first autoxidation intermediate, 
purpurogallin (Figure 1A, 2A and 2B). Associated with the formation of purpurogallin was a 
precipitate. It was first evident after 10 minutes of autoxidation when the pH of the 
solution was dropped to 7 by addition of HCl (ie. in order to render the solutions suitable 
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A. Stock Solution Character is t ics 

-AT- Total Color 440 nm (% COLTf) 
-A- Tannin Color 440 nm (% COLTf) 
-0- COD (% CODT0) 
-O- UV Absorbance (% UVT0) 

B. Tannins and Pyrogallol 

-AT Total Tannin UV (% UVTx) 
-B- Pyrogallol (% PYRT0) 

C. Methanogenic Activity Sludge 

(% Control Activity) 

A Activity 1st Feed 
- • - Activity 2nd Feed 

D. Anaerobic Biodegradability 

-A- % El iminat ion of Tannin UV 
- 0 - % El iminat ion of Total UV 
- • - % Recovery of Phenolic COD 

as Methane and VFA 

E. Autoxidation Time 

series 1 
series 2 
series 3 

s t a r t ing pH = 9.0 
s t a r t ing pH = 11.0 
s t a r t ing pH = 11.5 

Figure 1. The autoxidation of pyrogallol. Where: COLTf = maximum color developed by 
autoxidation, CODT0, UVT0 and PYRTO = COD, UV and pyrogallol of the unoxidized stock 
solution (Table 1), and UVTx = total UV of the sample. Assay conditions: experiment 1 in 
Table 1. Note: the data are reported for the paper filtered solutions. 
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Figure 2. The HPLC of pyrogallol after (A) 0, (B) 0.17, (C) 6 and (D) 48 hours of 
autoxidation (starting pH 9 for B, 11 for C and 11.5 for D). The top chromatogram was the 
total UV of the sample. The bottom chromatogram was the UV remaining after removing the 
PVP determinable tannins. The shaded area between the two chromatograms represents the 
tannin peak area. 
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for the bioassays). A purpurogallin standard also had the same poor solubility in water at a 
neutral or acidic pH. The large decreases in UV and COD of the filtered solutions from 10 
minutes to 1 hour of autoxidation are due to the formation of the purpurogallin precipitate 
rather than oxidative destruction of the phenolic compounds (Figure 1A). Eventually, the 
precipitate accumulated to up to approximately 50% of the original pyrogallol COD when the 
oxidation was stopped (pH lowered to 7) at time intervals between 1.5 and 3 hours (data not 
shown). 

When the autoxidation was continued to 6 hours, the precipitate was no longer evident. 
Most of the purpurogallin was further oxidized to soluble products. These products were 
present in the HPLC chromatogram as nontannic peak area with a low retention time or as 
tannic peak area at high retention times (Figure 2C). The estimation of high MW tannins by 
assuming they occupy the peak area of more than 28 minute retention time, as was the case 
with catechin (Field et al., 1989), was not applicable for the autoxidation products of 
pyrogallol. Purpurogallin, a dimer, had a retention time of 31 minutes with the HPLC 
procedure. Therefore, it is conceivable that other products of the autoxidation with low 
MW also occupied the peak area at high retention times. 

When the autoxidation was continued beyond 6 hours, a destructive effect on the 
intermediate autoxidation products was evident. A decrease in color, COD and UV215 was 
observed and most of the HPLC peak area was present at very low retention times (Figure 
2D), which indicates polar low MW compounds. 

Pyrogallol was not a good tannin since it was only partially (36%) adsorbed by PVP. Its 
first autoxidation product, purpurogallin was adsorbed by PVP to the same extent. In fact 
during the first 6 hours of the autoxidation, there was no significant change in the 
percentage of the phenolic compounds adsorbed by PVP (tannins) (Figure IB). Since between 
1 and 6 hours of autoxidation there was a considerable loss in pyrogallol and purpurogallin, 
the PVP determinable tannins remaining are attributable at least in part to some tannic 
compounds (with a high percentage adsorbance by PVP) as is evident in the HPLC plots 
(Figure 2C). During the destructive phase of the autoxidation (beyond 6 hours), the PVP 
determinable tannin concentration decreased. The tannic compounds formed were eventually 
destroyed (Figure 2D). 
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Figure 3. The methanogenic toxicity of purpurogallin in the first ( A ) and second ( # ) VFA 
fed assay. Assay conditions: experiment 2 in Table 1. 
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3.2. Changes in Pyrogallol Toxicity 

The methanogenic toxicity of the pyrogallol solution increased rapidly during the first 
hour of autoxidation (Figure 1C). Since the initial phase of the autoxidation corresponded to 
the formation of purpurogallin, a high methanogenic toxicity of purpurogallin was suspected. 
This was confirmed by measuring the effect of variable concentrations of purpurogallin on 
the methanogenic activity of granular sludge in a separate experiment (Figure 3). In the 
second feeding, the concentration of purpurogallin that corresponded to 50% inhibition was 
45 mg L . The activity results reported in Figure 3 are based on the activity during the 
initial two days of the assay, when most of the VFA substrate of the controls are consumed. 
However, in this time period the purpurogallin treatments were only utilizing acetic acid. 
The toxicity of purpurogallin on the metabolism of propionic acid was more severe. Table 2 
illustrates that very little propionic acid was consumed during the entire assay. Similar 
results were also observed with the pyrogallol treatments that were autoxidized from 10 
minutes to 1 hour (data not shown). Although according to Figure 3, the purpurogallin 
toxicity in the first feeding appeared not to be strong, this was due to a three day delay in 
the full expression of its toxicity. The fact that the pyrogallol treatments autoxidized from 
10 minutes to 1 hour did show strong toxicity in the first feeding (ie. without any delay) 
may be due to interactive effects between pyrogallol and purpurogallin. 

The autoxidized solutions of pyrogallol were filtered before using them in the toxicity 
test reported in Figure 1C. Therefore, only the toxicity of the soluble purpurogallin was 
actually measured. The purpurogallin precipitate was also extremely toxic. The sludge 
exposed for two weeks to the unfiltered 1 hour oxidized solution (containing both insoluble 
and soluble fractions of purpurogallin) had only 4% of the control activity (data not shown). 
This was lower than the activity shown (16% of the control) for the sludge exposed to the 
filtered 1 hour autoxidized-pyrogallol-containing solution. 

The high toxicity of purpurogallin exceeds the toxicity expected based on the measured 
tannin concentration. Therefore, the reason for its toxicity does not seem to be related to 
tannin qualities. This is further confirmed by its partial adsorption on PVP and low 
solubility in water, both characteristics are not associated with tannic compounds. 

Between 1 and 6 hours of autoxidation, most of the purpurogallin was autoxidized further 
to soluble products which were also toxic (Figure 1C). At this stage, some of the tannic 
autoxidation products were possibly responsible for the toxicity. 

Detoxification of the autoxidized solutions began at the point the autoxidation became a 
destructive oxidation (after 6 hours of autoxidation). The decrease in the inhibitory effect 
paralleled closely the decrease in PVP measured tannin concentration during this phase 
(Figure 1C). 

Table 2 . The VFA Concentration in the Nediun and the Total Methane Production at the End of the First 

and Second VFA Feeding of the Purpurogallin Toxicity Assay. 

PURPUROGALLIN END FIRST FEEDING (11 DAYS) END SECOND FEEDING (14 DAYS) 

C o n c e n t r a t i o n 

mg L " 1 mg COO L " 1 mg COD L " 1 

0 13 18 0 31 3856 20 0 0 20 3649 

100 13 950 89 1277 2461 9 1062 0 1082 2489 

150 14 971 85 1292 2409 10 993 0 1180 2564 

200 14 1000 80 1300 2428 15 1281 1071 3210 1153 

C£ = acetate; Cj = propionate; C^ = butyrate; Ct = total volatile fatty acids (C2 - Cj); CH^ = metane 

produced per liter of assay medium. At the start of each VFA feeding 4000 mg COD L were added as a 

VFA mixture (containing 972, 1376 and 1652 mg COD L C2, C3 and C^; respectively). 
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3.3. Changes in Pyrogallol Biodegradability 

Pyrogallol is readily degraded in anaerobic environments (Field and Lettinga, 1987). After 
the unoxidized pyrogallol solution has been digested for 2 weeks a complete elimination of 
the UV215 absorption and PVP determined tannins, as well as a complete conversion of 
pyrogallol COD to VFA and CH4, was observed (Figure ID). 

During the course of autoxidation, there was a decrease in the available level of 
pyrogallol (ie. pyrogallol surviving the oxidation treatment) (Figure IB); however in the 
purpurogallin forming stage of the oxidation, the decrease in pyrogallol biodegradability was 
greater than the decrease in pyrogallol available (Figure ID). This indicates that 
purpurogallin was toxic to the biodegradability of pyrogallol as was also indicated by similar 
observations in a previous study (Field and Lettinga, 1989). An improvement in the 
pyrogallol degradation did occur at a later point in the oxidation (at 1 hour) and may have 
resulted from a decrease in the soluble purpurogallin concentration. The purpurogallin peak 
area in the HPLC chromatograms at 1 hour autoxidation (data not shown) was in any case 
lower than that at 20 minutes autoxidation. At 6 hours of autoxidation, no available 
pyrogallol was present nor was there any degradation observed. Therefore, the autoxidized 
products were not biodegradable. Schink and Pfennig (1982) also observed that the colored 
compounds of autoxidized pyrogallol solutions were not degraded, while degradation of the 
colorless pyrogallol did occur. 

During the destructive phase of the autoxidation, the colored solutions were still for the 
most part not degraded anaerobically. However, associated with the decrease in color was a 
very small increase in biodegradability (Figure ID). The biodegradability was so low that it 
was impossible to determine if it was real or a result of experimental error. However, it is 
known that destructively oxidizing humus with ozone can increase its biodegradability 
(Gilbert, 1988), thus it is plausible that a continuation of the present destructive oxidation 
could have led to an increased biodegradability. 

4. DISCUSSION 

In a previous study, we have shown that changes in the methanogenic toxicity of 
catechin polymerized to colored compounds by autoxidation parallel the tannin quality of the 
compounds (Field et al., 1989). The tannin quality is related to the MW of the compounds. 
Since oligomers are the only effective tannins which can penetrate bacteria, they are the 
only significantly toxic tannins. 

Unlike catechin, the autoxidation of pyrogallol did not cause extensive polymerization. 
Initially, some polymerization occurred producing toxic intermediates that were later 
destroyed by a destructive type of oxidation caused by prolonged autoxidation treatments. 
The first intermediate formed, purpurogallin (a dimer), caused a high level of methanogenic 
toxicity. As little as 45 mg L~' of soluble purpurogallin, was shown to cause 50% inhibition 
of the methanogenic activity. The rapid increase of methanogenic toxicity during the initial 
period of pyrogallol autoxidation can therefore be explained by the formation of small 
amounts of purpurogallin. As the autoxidation proceeds, high levels of purpurogallin 
accumulate at concentrations that are no longer fully soluble in water. The unfiltered 
autoxidized solutions which contain these purpurogallin precipitates caused nearly complete 
inhibition of the methanogenic activity. Purpurogallin is more toxic to methane bacteria 
than the oligomeric tannins in autoxidized solutions of catechin (Field et al., 1989) and the 
tannins (primarily oligomeric) of aqueous tree bark extracts (Field et al., 1988). 
Purpurogallin also effectively inhibited the anaerobic degradation of pyrogallol. Since 
purpurogallin lacks tannin features and is highly toxic, the changes in the methanogenic 
toxicity induced by the autoxidation of pyrogallol cannot be estimated by the changes in the 
oligomeric tannin concentration. Clearly, other factors besides the tannin quality are 
involved in the methanogenic toxicity of autoxidized pyrogallol. 

Regardless of the reactions that take place during the autoxidation of tannin monomeric 
derivatives, the initial reactions can potentially lead to colored products of increased 
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methanogenic toxicity. These are later detoxified by prolonged autoxidation, either by 
polymerization to high MW compounds (with condensed tannin model compounds), or by 
destruction of the initially toxic intermediates to low MW compounds (with hydrolyzable 
tannin model compounds). 

5. LITERATURE CITED 

Field, J. A. and Lettinga, G. (1987). The methanogenic toxicity and anaerobic degradability of a hydrolyzable 
tannin. Wat. Res. 21: 367-74. 

Field, J. A., Leyendeckers, M. J. H., Sierra-Alvarez, R., Lettinga, G. and Habets, L. H. A. (1988). The 

methanogenic toxicity of bark tannins and the anaerobic biodegradability of water soluble bark matter. Wat. 
Sei. Tech. 20(1): 219-40. 

Field, J. A. and Lettinga, G. (1989). The effect of oxidative coloration on the methanogenic toxicity and 

anaerobic biodegradability of phenols. Biological Wastes In Press. 
Field, J. A., Kortekaas, S. and Lettinga, G. (1989). The tannin theory of methanogenic toxicity. Biological Wastes 

In Press. 
Gilbert, E. (1988). Biodegradability of ozonation products as a function of COD and DOC elimination by the 

example of humic acids. Wat. Res. 22: 123-26. 
Schink, B. and Pfennig, N. (1982). Fermentation of trihydroxybenzenes by Pelobacter acidgallici gen, noy. sp. 

nov.. a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133: 195-201. 

132 



CHAPTER 8 

Oxidative Detoxification of Aqueous Bark Extracts. 
Part I: Autoxidation. 

(Submitted for publication) 



OXIDATIVE DETOXIFICATION OF AQUEOUS BARK EXTRACTS. 
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ABSTRACT - The aqueous extracts of bark were studied as a model for wet debarking 
wastewater. These extracts are known to contain a high concentration of methanogenic 
toxic tannins. The objective of this study was to modify the native bark tannins 
(oligomers) with oxidative methods in order to decrease their methanogenic toxicity. The 
tannins were polymerized by autoxidation, forming colored high molecular weight tannins 
that were non-toxic to methanogenic bacteria. The autoxidation of pine bark extracts 
provided complete detoxification. In the case of spruce bark, which was responsible for 
extracts of higher toxicity, the detoxification was either partial or complete depending on 
the specific sample of spruce bark from which the extract was prepared. The autoxidation of 
birch bark did not result in significant detoxification. Although, the oligomeric tannins 
were effectively polymerized, birch bark extracts contain non-tannin toxins which were not 
affected by the autoxidation and evidence that highly toxic intermediates were formed 
during the high pH autoxidation of birch bark extracts is presented. 

Autoxidative detoxification offers an interesting approach for pretreating coniferous bark 
wastewaters. The oxidation reactions of the pretreatment serve to detoxify the largely non-
BOD tannin fraction. Thus the methanogenic bacteria are not inhibited during the anaerobic 
wastewater treatment for removing BOD. 

KEY WORDS - tannin, procyanidin, phenolic compounds, anaerobic digestion, methanogenic 
bacteria, methanogenic toxicity, autoxidation, detoxification, bark, debarking wastewater 

1. INTRODUCTION 

1.1. Objectives 

Evidence indicating the high methanogenic toxicity of aqueous bark extracts has 
previously been reported (Field et al., 1988). The majority of the methanogenic toxicity was 
attributable to the tannin fraction of the extract. The tannin fraction generally accounted 
for about half of the extract COD. Biodegradability studies indicated that about half of the 
COD was readily fermentable substrate. Most of this substrate was found to belong to the 
non-tannin fraction. 

These extracts were studied because they were representative of wet debarking 
wastewater from the forest industry. The anaerobic treatability of debarking wastewater is 
expected to be limited by the severe methanogenic toxicity. Considering the importance of 
the tannin fraction to the methanogenic toxicity, improvement of debarking wastewater 
treatability might be expected if the toxicity of the tannins could in some way be eliminated 
from the wastewater prior to anaerobic treatment. In a previous study (Field et al., 1989a), 
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we have demonstrated the relationship between tannin MW and methanogenic toxicity by 
polymerizing the model bark tannin monomer, catechin. The oligomeric intermediates, which 
have an analogous structure to native bark tannins were found to have the strongest 
toxicity. The high MW end products of the autoxidation were not inhibitory. The objective 
of this study was to evaluate the role of modifying the native bark tannin polymer size with 
oxidative methods in order to decrease their toxicity. 

1.2. Autoxidative Reactions of Tannins 

The native tannins present in bark are predominantly oligomeric procyanidins (Porter, 
1974; Karchesy and Hemingway, 1980). They are colorless polymers formed by biosynthetic 
pathways analogous to acid condensation reactions. The procyanidins are linked mainly by 4 
to 8 intermonomeric bonds (Karchesy and Hemingway, 1980; Hemingway et al., 1982), see 
Figure 1. 

Autoxidation of procyanidins can occur spontaneously under alkali conditions. The 
sequence of reactions is the formation of o-quinone on the B ring and subsequent 
condensation reactions (Hathway and Seakins, 1955 and 1957). The resulting polymers are 
pigments characterized by intermonomeric bonds formed between two aromatic rings (Figure 
1), namely the 2', 5', or 6' position of the B ring is linked to the 6 or 8 position of the A 
ring (Hathway and Seakins, 1955 and 1957). The colorless native bark tannins can be 
polymerized oxidatively to produce high MW compounds with color. These high MW products 
of bark tannin oxidation are generally referred to as phlobatannins and phlobaphanes. 
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Figure 1. The intermonomeric bonds of native bark tannins (procyanidins) and oxidatively 
polymerized products of the procyanidins (phlobatannins). 

2. MATERIALS AND METHODS 

2.1. Bark Extract Preparation 

Warm water extracts were prepared from 18 g of air dried milled bark per liter of 60° C 
tap water containing 250 mg L~' ascorbic acid (to prevent premature oxidation). Bark was 
collected from freshly cut trees at a local forest or from logs delivered to Parenco paper 
factory (Renkum, the Netherlands). The following species were utilized in this study: scot's 
pine (Pinus sylvestris): norway spruce (Picea abies): and european white birch (Betula 
verrucosa). The extracts of spruce bark varied in toxicity and detoxification capacity 
depending on the lot of spruce bark collected. Three lots referred to as "lot 1", "lot 2" and 
"lot 3" were used in this study. The toxicity and detoxification capacity of pine and birch 
bark extracts were similar for the various lots of bark collected; therefore, no distinction 
between the various lots were made. 
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2.2. Methods 

2.2.1. UV Absorbance and Color of the Extracts 
The ultra violent (UV) and visible light absorbance (color) of the extracts was measured 

in a 1 cm quartz cuvette by diluting to less than 0.8 absorbance units in pH 6, 0.2 M 
KH2PO4 buffer. The UV absorbance was measured at 215 nm (UV215). UV Absorbance is 
reported as lx (ie. undiluted extract) absorbance units. The UV light absorbance is 
indicative of the total phenolic concentration. The color was indicated by measuring the 
visible light absorbance at 440 nm. The color is indicative of the oxidatively polymerized 
products. 

2.2.2. COD and VSS Determinations 
The COD (the micro method with dichromate) and VSS were determined according to 

standard methods (American Public Health Assoc, New York). 

2.2.3. PVP Determination of Tannins 
The determination of the total tannin concentration by adsorption on the insoluble 

polyamide, polyvinylpyrrolidone (PVP), was described previously (Field et al., 1988). The 
extracts were shaken with 14.3 g L~' PVP for 1 h and filtered. In this study, the tannin 
concentration of the autoxidized extracts were based on the UV215 light absorbance units 
adsorbed on the PVP. 

2.2.4 HPLC 
The reversed phase high pressure liquid chromatographic method of characterizing bark 

extract tannins was adapted from previously reported methods designed for analyzing 
condensed tannins in apple juice and wine (Lea, 1982 and 1980; Wilson, 1981). The specific 
parameters and conditions of the HPLC procedure used in this study were described 
previously (Field et al., 1989a). The UV absorbance was detected at 280 nm. The total 
extract as well as the PVP treated extract (according to the tannin determination) are 
plotted together, the difference in peak area between the two represents the tannin peak 
area. 

The three important categories of compounds that can be recognized in the HPLC 
chromatograms are the low MW tannins (oligomers), the high MW tannins and high MW 
humus (Field et al., 1989a). The low MW tannins are represented by the tannin peak area of 
a retention time less than 28 minutes. The high MW tannins are represented by the tannin 
peak area of a retention time greater than 28 minutes. The high MW humus is the non-
tannin peak area of greater than 28 minutes. 

The low MW tannin concentration was estimated by taking the ratio of tannin peak area 
< 28 minutes to total tannin peak area from the HPLC chromatograms and multiplying it by 
the total PVP determined tannin concentration. 

2.3. Autoxidation Treatments of the Extracts 

The bark extracts were aerated with pressurized air through a porous stone. The aeration 
rate applied during the autoxidation studies corresponded to approximately 30 vol. air per 
vol. extract per hour. The extracts were brought to a specific pH (between 10 and 12) with 
NaOH. For example, the NaOH consumed to raise 2 and 6 g COD L~' spruce extracts to pH 
10.2 was 0.13 and 0.44 g NaOH L"1, respectively and to pH 11.7 was 0.44 and 1.0 g NaOH L" 
1. Generally a drop in pH of 1 to 2 pH units was observed to occur during autoxidation. The 
autoxidation reactions were stopped at given time intervals by removing the aeration stone 
and lowering the pH to 6.5 with HCl. 
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2.4. Bioassays 

All assays contained essential inorganic macro and micro nutrients as outlined previously 
(Field and Lettinga 1987). The batch fed assays were conducted in 0.5 L serum flasks. The 
assay temperature was 30 ± 2° C. The serum flasks were not shaken during the assay period. 

The anaerobic toxicity assays of bark extract were supplied with approximately 4 g COD 
L"1 neutralized with NaOH VFA stock solution, 100:100:100 g kg"1 acetate (C2), propionate 
(C3) and butyrate (C4). The stock solution COD ratio is 24:34:41 C2:C3:C4. Usually, 1.4 g 
VSS L"1 granular sludge was used in the assays, that was either obtained from a UASB 
treating potato derived wastewater (Aviko) or vinasse (Nedalco). The sludge was previously 
rinsed with water in an upflow column to clean out the fine dispersed matter. 

The assays were carried out in two consecutive feedings. The first feeding supplied the 
VFA substrate to the treatments and the control. The first feeding generally lasted for two 
weeks. Both treatments and controls received from 0.5 to 2.0 g NaHCÛ3 L"1 as buffer to 
accommodate an eventual acidification of the substrate present in the bark extract of the 
treatments. Under the conditions of the assay, the activity of granular sludge is not largely 
affected by VFA starting concentrations between 4 to 10 g COD L~'; therefore, the 
accumulation of additional VFA by the acidification of the extract treatments (generally less 
than 1 g COD L~') had little effect on the activity assayed. At the start of the assays, the 
pH ranged from 7.4 to 7.8. At the end of the experiments, the pH was 7.5 to 8.0 if VFA 
were consumed, and 6.9 to 7.1 if VFA were not significantly consumed (ie. in cases with 
highly inhibitory treatments). 

The second feeding was designed to measure the residual activity of the sludge following 
the exposure of the extract to the sludge during the first feeding. To initiate the second 
feeding, the medium supernatant of the first feeding was decanted (through a tea sieve) 
while flushing the serum flask with N2 gas, and the sludge from both the treatments and 
control was supplied with new media containing 4 g COD L~' from the VFA stock solution. 
In the second feeding, the treatments were not supplied with bark extracts. 

Methane production was monitored with serum flasks modified into mariotte flasks. These 
flasks were filled with 3 to 5% NaOH solutions to dissolve all CO2. 

The activity of the controls is expressed as the amount of CH4 in COD produced by one 
gram of VSS per day (mg COD g~' VSS d~'). For a given sludge, the first feeding activities 
of the controls varied due to the variable periods of previous storage in refrigeration (4° 
C). After the sludge adapted to the VFA substrate in the first feeding, the control sludge 
activities from the second feedings were comparable for a given sludge in the various 
experiments. The activity of the extract supplied assays is reported as the percentage of the 
control activity. Inhibition is equal to 100 minus the percent of the control activity. 
Examples can be found in a previous publication (Field et al., 1988), which illustrate how 
the period for determining the activity is chosen during the first and second feedings. 

2.5. Experiments 

The specific extract parameters and assay conditions of most of the experiments 
conducted in this study are listed in Table 1. In an additional experiment, the effect of 
variable exposure times of sludge to spruce bark extract was investigated. During the 
exposure period the assays were supplied VFA substrate at 4 g COD L~' and the unoxidized 
or autoxidized spruce bark (lot 2) extract at an assay concentration of 2.5 g COD L . The 
control was only supplied with the VFA substrate. The granular methanogenic sludge 
concentration was 1.4 g VSS L"' and 0.5 g NaHCÜ3 L"' was supplied during the exposure 
period as buffer. For exposure periods longer than 2 weeks, the exposure medium was 
exchanged with new medium as outlined above. At the end of the given exposure period, the 
exposure medium was exchanged for medium containing only 4 g COD L~' VFA to assay the 
residual sludge activity. 
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Table 1. The Bark Extract Characteristics and Activity Assay Parameters of the Experiments-

Experiment Assay 

Untreated Autoxidized Conditions Control Activity 

Max. Color Buffer Dilution Exposure First Feed Second Feed 

Total Tannin Total Tannin Total NaHCOg Extract0 Timed 

(mg COO L"1) (215nm,1x) (440nm,11x) (9 L"1) (X) (days) (mg COD g"1 VSS d"1) 

Fiqures 

2.pine 

2.spruce 

3.pi ne 

3.spruce 

4.birch 

9.pulpb 

3546 

5785 

4886 

5997 

4069 

16039 

1425 

2694 

2097 

3256 

1976 

895 

117.2 

154.8 

126.0 

159.2 

98.7 

112.4 

83.6 

137.9 

103.7 

135.1 

81.0 

46.7 

0.527 

0.677 

0.417 

0.574 

0.401 

0.144 

1.0 

2.0 

2.0 

2.0 

2.0 

10.0 

2.0 

2.1 

1.67 

2.27 

2.5 

1.67 

13 

13 

14 

15 

14 

15 

172 

411 

263 

231 

178 

350 

649e 

739e 

534f 

583f 

565f 

560f 

g . 1 _ 1 

In all assays the sludge concentration was 1.4 g VSS L and 4 g COO L as VFA was supplied. 

Pulp wastewater from a masonite factory (particle board). The filtered C X was 13661 mg L~ . In the 

assay, approx. 75% of the wastewater COD acidified to methane and VFA. Since the wastewater alone 

supplied sufficient substrate, the standard toxicity was modified in the first feeding. No additional 

VFA was added to the assay treatments. The control received 4 g COD I as VFA. 
c The dilution factor of the extract in the assay media. 

Exposure time to the treatments during the first feeding 
e "Aviko" granular sludge 

f "Nedalco" granular sludge 

3. RESULTS 

3.1. Changes In Bark Extract Characteristics 

Pine, spruce and birch bark extracts were autoxidized at pH 10.2 and 11.7 for various 
time periods. The development of color, change in the total UV light absorbance and tannin 
concentration during the course of pine, spruce and birch bark extract autoxidation are 
plotted in Figures 2, 3, and 4. The procyanidin tannins of the bark extract underwent 
extensive coloration, similar to the autoxidation of the procyanidin monomer, catechin (Field 
et al., 1989a). The visible absorbance of the different extracts tested increased 10 to 30 fold 
by autoxidation. 

The autoxidation caused very minor losses (10 to 20%) of the total extract UV 
absorbance, which indicates the oxidation was not highly destructive to the aromatic rings. 
However a considerable decreases in the PVP measured tannins (detannification) indicates a 
change during autoxidation of at least some tannins to other aromatic structures that lack 
tannin quality. These colored non-tannic products of autoxidation will be referred to as 
humus. The detannification by autoxidation ranged from 30 to 50% in the various 
experiments. Therefore the autoxidation procedure could not serve to bring about a complete 
transformation of the tannins to humus. 

3.2. Polymerization of the Oligomeric Bark Tannins 

The bark extracts were analyzed with the HPLC to evaluate the MW classes of tannins 
that are originally present as well as those formed during the course of the oxidation. These 
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H Hr1 I I 
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Autoxidation Time (hours) 

-©- Activity 1st Feed (% Control) 
- • - Activity 2nd Feed (% Control) 

Figure 2. The methanogenic activity of sludge exposed to autoxidized (pH 10.2) extracts of 
pine and spruce (lot 1) bark as a function of the extract color. UVTO = the total UV 
absorbance of the untreated extract (reported in Table 1); TANTO = the PVP determined 
tannin concentration of the untreated extract (reported in Table 1). 

0.1 0.2 0.3 0.4 
Extract Color (4 10 nm. l lx ) 

H 
0.05 0.25 1.0 3.5 19.0 

Autoxidation Time (hours) 

0.2 0.4 0.6 
Extract Color (440 nm, l lx ) 

I H I h h 
0.03 0.17 0.27 1.0 4.0 

Autoxidation Time (hours) 

-A- Extract UV (% UVTO) -©- Activity 1st Feed (% Control) 
- • - Extract Tannin (% TANTO) • - Activity 2nd Feed (% Control) 

-Er- Extract Low MW Tannin (% TANTO) 

Figure 3. The methanogenic activity of sludge exposed to autoxidized (pH 11.7) extracts of 
pine and spruce (lot 1) bark as a function of the extract color. UVTO and TANTO are 
defined in the caption of Figure 2. 
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- • - Activity 2nd Feed (% Con t ro l ) 

Figure 4. The methanogenic activity of sludge exposed to autoxidized (pH 11.5) extracts of 
birch. UVTO and TANTO are defined in the caption of Figure 2; COLTf = the maximum 
color (abs 440nm) obtained with the autoxidation (reported in Table 1). 

chromatograms obtained from pine and spruce are shown in Figures 5, 6 respectively. The 
chromatograms reveal that the majority (-80%) of the original bark tannins belong to the 
low MW category. During the autoxidation, a rapid conversion of the oligomeric tannins to 
the high MW tannins occurred. By the end of the autoxidations some conversion of the high 
MW tannins to humus was evident from the increase in non-tannic material in the high MW 
peak. 

The HPLC results enabled an estimation of the low MW tannins concentrations, which are 
plotted in Figures 3 and 4. The autoxidation decreased the low MW tannin concentration by 
80 to 90%. 

3.3. Autoxidative Detoxification of Bark Extracts 

In Figures 2 and 3, the activity of methanogenic sludge after 2 weeks exposure to the 
coniferous bark extracts is illustrated. In the case of pine bark, the sludges exposed to the 
original extract were inhibited approximately 80% (ie. 20% of the control activity). Sludges 
exposed to highly autoxidized extracts only were inhibited by 5%. In the case of spruce bark 
(lot 1), the original extracts caused approximately 97% inhibition. The highly autoxidized 
extracts caused 30 to 40% inhibition. The coniferous bark extracts were therefore highly 
detoxified by the autoxidation method. 

The low MW tannins concentrations during the autoxidation are plotted together with the 
methanogenic activity results in Figure 3. The observed decrease in the methanogenic 
toxicity by autoxidation closely corresponded to the decrease of the low MW tannin 
concentration. This indicated that the oligomeric tannins were responsible for the 
methanogenic toxicity as was observed in the autoxidation experiments with catechin (Field 
et al., 1989a). 

As previously stated in the methods, the detoxification of spruce bark extracts varied 
depending on the specific lot of bark collected. The extracts prepared from lot 2 bark, 
were more toxic and more difficult to detoxify than those of lot 1. Figure 8 illustrates that 
the second feeding activity following a two week exposure to 2.5 g COD L~' unoxidized 
spruce bark (lot 2) extract was inhibited by 100%. Autoxidation provided detoxification, but 
87% inhibition was still evident after a similar exposure to 16 hour autoxidized (pH 11.5) 
spruce bark extract. The autoxidation reactions with extracts of lot 2 spruce bark were 
exhausted after one day, since in one experiment (results not shown), the extract 
autoxidized for one week at pH 11.5 was not less toxic nor contained less low MW tannins 
as compared to the extracts autoxidized for one day. 

Finally, extracts prepared from another lot of spruce bark (lot 3) could be completely 
detoxified. The second feeding activity following a 14 day exposure to 2.6 g COD L~' 
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20 28 36 
retention time (min) 

Figure 5. HPLC chromatograms during the course of pine bark extract autoxidation (for: A, 
0.0; B, 0.05; C, 1.0; and D, 19.0 hours with a starting pH of 11.7). The boundary between 
low and high MVV tannins is at 28 minutes retention time. The top chromatogram is the 
entire extract, the bottom chromatogram is the PVP treated extract. The tannin peak area 
is the shaded area between the two chromatograms. 

140 



spruce bark (lot 3) was inhibited by 98%, whereas no (ie. 0%) inhibition was evident from 
the extracts autoxidized for 16 hour at pH 11.5 and only 15% inhibition was observed from 
the extract autoxidized for 16 hour at pH 8 (results not shown). 

No reason can be offered in order to explain the variable detoxification results obtained 
with different lots of spruce bark. Factors such as the different seasons when the bark was 
collected, variable periods of time between tree felling and collection of samples, and the 
variations in the spruce tree varieties from which different samples of bark were collected; 
undoubtedly, contributed to the variability. 

On numerous occasions, a delayed response was observed in the full expression of the 
inhibition caused by partially detoxified coniferous bark extracts. For example in Figure 2, 
a large difference in activity was observed between the first and second feedings of the 
sludge exposed to the pine bark extract autoxidized for only 0.75 hours at pH 10.2. This 
delayed response was also observed with autoxidized catechin (Field et al., 1989a). The 
exposure time needed for spruce bark extract tannins to express their full toxicity was 
observed to increase with the degree of the autoxidation (Figure 7). In order to impose 50% 
of the eventual inhibition, 1, 2 and 6 days were required by unoxidized, 1 hour autoxidized 
and 16 hour autoxidized spruce bark (lot 2) extracts, respectively. For 80% of the eventual 
inhibition, 3, 6 and 12 days were required, respectively. The delay in the toxicity is perhaps 
due to the slow penetration of partially polymerized tannin oligomers to the bacteria. 

In Figure 4, the activity of methanogenic sludge exposed to the birch bark extract for a 
two week period is illustrated. In this case, the original extract caused 97% inhibition. The 
highly autoxidized extract caused 85% inhibition. While some detoxification was evident, it 
was not as substantial as that observed with the coniferous barks. The autoxidation was in 
any case quite effective in decreasing the concentration of the original low MW 
procyanidin tannins; therefore, these low MW tannins were not responsible for the toxicity 
remaining after autoxidation. Birch bark extracts are unique from the coniferous bark 
extracts because the tannin fraction is only responsible for about half of the methanogenic 
toxicity (Field et al., 1988). Therefore, birch bark contains non-tannic toxins, which are not 

Xjd^^^àx 
2 6 10 14 18 22 26 30 34 38 

retention time (min) 

Figure 6. HPLC chromatograms during the course of spruce bark extract autoxidation (for: 
A, 0.0; B, 0.03; C, 0.17; and D, 4.0 hours with a starting pH of 11.7). See caption of Figure 
5 for explanation of symbols. 
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Figure 7. The methanogenic activity of sludge after various exposure periods to unoxidized 
and autoxidized (pH 11.5) spruce (lot 2) bark extracts, supplied at 2.5 g COD L"1 to the 
medium. 

Percent 

0 0.35 0.7 1.05 1.4 
L0G(1 + Autoxidation Time in Hours) 

-A- Extract Color (% ColTf) 
-A- Extract UV (% UVT0) 
- • - Extract Tannin (% TANT0) 
-B- Extract Low MW Tannin (% TANT0) 
- 0 - Activity 1st Feed (% Control) 
- • - Activity 2nd Feed (% Control) 
---- Activity 2nd Feed of PVP 

Treated Extract (% Control) 

Figure 8. The methanogenic activity of sludge exposed to autoxidized (pH 12) masonite pulp 
wastewater as a function of the autoxidation time. The feedstock for the pulping was 
predominantly wood and bark of spruce. UVTO; TANTO and COLTf are defined in the 
captions of Figure 2 and 4. 

present in coniferous bark. However, the detoxification achieved with autoxidation was much 
lower than the detoxification achieved by treating the extract with PVP (according to the 
tannin determination) to remove the tannins. This indicates that after autoxidation additional 
toxins were present in the extract than just the original non-tannin toxins of the birch 
bark extract. The additional toxicity must have been produced during the autoxidation. The 
difficulty in detoxifying birch extracts may be due to a toxification process, that competes 
with the detoxification of the oligomeric tannins, either by raising the pH at the start of 
autoxidation or the autoxidation itself. In one experiment with lower concentrations of birch 
bark extract (results not shown), a distinct increase in the extract toxicity was observed 
during the initial stages of the autoxidation. Possibly, some trihydroxy residues present in 
birch bark extract produce highly toxic autoxidation intermediates as was previously 
observed with pyrogallol (1,2,3-trihydroxybenzene), which produced a highly methanogenic 
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toxic compound (purpurogallin) in the initial stages of the autoxidation (Field et al., 1989b). 
In any case, it is known that birch lignin contains syringyl residues (related to trihydroxy 
residues) and that these are generally absent in coniferous lignin. 

3.4. Autoxidative Detoxification of Wastewater 

One real wastewater was tested for autoxidative detoxification. It was the pulp water 
from a masonite (fiber board) factory which used predominantly spruce wood including bark. 
As shown in Figure 8, this wastewater caused 95% inhibition (only 5% of the control 
methanogenic activity). Removal of the tannins from the wastewater with PVP resulted in a 
detoxification of about half of the inhibition. The autoxidation of these tannins resulted in a 
similar level of detoxification and corresponded to the reduction in the low MW tannin 
concentration. 

4. DISCUSSION 

4.1. Autoxidative Detoxification 

The autoxidation polymerized the tannic compounds in bark extracts leading to their 
detoxification as was anticipated from the tannin theory (Field et al., 1989a). The 
polymerization caused the formation of colored high molecular weight tannins that were too 
large to penetrate into (or on) cells as well as the formation of colored higher MW non-
tannic humus compounds that were unreactive. 

The autoxidation method is a simple technique because it only involves the addition of 
0.2 to 1.0 g NaOH L~' for debarking wastewater with oxidation times ranging from 1 to 20 
hours depending on bark species and tannin concentration. The disadvantage of the 
autoxidation method is that it is only suitable for coniferous bark. Birch bark extracts are 
not highly detoxified by this method due to the presence of non-tannin toxins and the 
formation of toxic intermediates by high pH autoxidation. Therefore the applicability of 
autoxidation for bark wastewater detoxification should not be used where birch bark 
accounts for a large proportion of the bark extractives in the wastewater. 

4.2. Ecological Significance 

In this study, autoxidation was effective in eliminating the methanogenic toxicity of the 
tannins in aqueous extracts of coniferous bark. Recent studies have revealed that also the 
acute toxicity of spruce bark tannins to fish is drastically eliminated by the autoxidation 
treatment (Temmink et. al., 1989). These results establish that the high MW colored tannins 
and humic compounds formed during polymerative oxidation have considerably less aquatic 
toxicity compared to the original bark tannins. The dramatic change in the aquatic toxicity 
reveals a natural mechanism in the environment to detoxify tannic compounds between the 
time that tannins are released to the forest soil and the time they enter the ground and 
surface waters. This mechanism is perhaps the natural humus forming processes which occur 
in the forest soil. 

The pollution problem of debarking wastewater tannins is due to the fact that the 
tannins, which serve to offer a pathological resistance in the bark, short-circuit the 
polymerization reactions of the humus forming processes in the soil. They are directly 
discharged in their toxic form into the surface waters. The role of oxidative detoxification 
should be viewed as a treatment method which imitates the natural detoxification mechanism 
of soil humus processes. In view of these results, special attention should be paid to the 
implication of color norms in debarking wastewater discharge control regulations. In 
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debarking wastewater, color is not necessarily a negative factor for the environment. The 
colored compounds are for the most part nontoxic and do not contain BOD. 

The norms for debarking wastewater should be designed to eliminate those characteristics 
which can be damaging to aquatic life; namely, BOD and toxic compounds. Oxidative 
detoxification of bark wastewaters as a pretreatment to anaerobic treatment can offer an 
interesting approach to meeting both of these objectives. The oxidation reactions of the 
pretreatment serve to detoxify the largely non-BOD tannin fraction. Thus the methanogenic 
bacteria are not inhibited during the anaerobic wastewater treatment for removing BOD and 
the non-BOD fraction is distinctly less toxic for the aquatic organisms of the discharge 
environment. 
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ABSTRACT - The most important problem associated with the high pH autoxidative 
detoxification of methanogenic toxins in debarking wastewater was that its application was 
limited to the aqueous extractives of bark from specific species. This problem can potentially 
be resolved by applying alternative oxidation methods. In this study a high level of 
detoxification was obtained for all bark species tested by short term destructive oxidations 
with H2O2, or by long term aerobic biological treatments which caused high levels of 
polymerization. The applicability of high pH autoxidation was also made feasible for all 
species of bark by applying a granular active carbon treatment after the autoxidation. A 
second problem with the autoxidative detoxification method was the development of colored 
end products. Although these compounds are non-toxic and are non-biodegradable, their 
elimination from the wastewater would be necessary if discharge norms concerning color and 
non-biodegradable COD must be fulfilled. The destructive oxidation produced non-toxic low 
MW compounds which did not have much color. The autoxidation and long term aerobic 
biological treatments produced highly colored humic end products which could be eliminated 
by calcium precipitation. 

KEY WORDS - tannin, procyanidin, phenolic compounds, anaerobic digestion, methanogenic 
bacteria, methanogenic toxicity, autoxidation, hydrogen peroxide, detoxification, bark, 
debarking wastewater, calcium precipitation, active carbon 

1. INTRODUCTION 

In the previous study (Field et al., 1990), high pH autoxidative methods were examined 
for the detoxification of debarking wastewaters, so that such wastewaters can be made 
suitable for anaerobic treatment. The method was based on modifying the toxic oligomeric 
procyanidins (tannins) of bark extractives, by their polymerization to nontoxic high MW 
compounds. 

One disadvantage of the autoxidative detoxification was that its applicability was limited 
to the bark extractives of specific species. The autoxidation was effective for coniferous 
bark extracts, providing complete detoxification of pine bark extracts. However, the 
detoxification of spruce bark extracts was in some cases only partial and in other cases 
complete depending on the specific bark samples collected, from which the extracts were 
prepared. In contrast, the high pH autoxidation of birch bark extracts was not at all 
effective. 

A second disadvantage of the autoxidative detoxification is that the polymerized end 
products are darkly colored non-biodegradable humic compounds. However, if no discharge 
requirements, regarding color and non biodegradable COD, have to be fulfilled, the humic 
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Compounds can be discharged, having a much lower consequence for the environment as 
compared to the toxic tannic precursors. If these discharge requirements must be met, then 
it may be feasible to precipitate the humic compounds with calcium. Additionally, oxidative 
approaches, which cause destructive modifications of the phenols could be employed since 
these do not produce polymerized colored compounds. Destructive oxidation reactions 
generally lead to the fragmentation of the polyphenols to aliphatic carboxylic and phenolic 
acids (Glasser, 1980). 

The objectives of this study were to determine if alternatives to high pH autoxidation 
could improve the reliability of the oxidative approach for the detoxification of bark 
extracts. Both destructive methods (H2O2 oxidation) and polymerative methods (long term 
aerobic biological treatment) were examined. The autoxidative method was also reevaluated 
in combination with active carbon treatments to determine if active carbon is capable of 
adsorbing the residual toxins present in autoxidized birch and spruce bark extracts. Finally, 
the effectiveness of calcium was studied, for precipitating the high MW colored products of 
the polymerative oxidations. 

2. MATERIALS AND METHODS 

2.1. Standard Methods, Analysis and Bioassays 

The preparation of bark extracts, analysis of COD, VSS, UV absorbance, color and 
tannins as well as the HPLC procedure used to estimate the low and high MW tannin 
fractions were described in the previous publication (Field et al., 1990). The determination 
of granular active carbon (AC) adsorbable matter of bark extracts was previously described 
in detail in another publication (Field et al., 1988). The AC adsorbable matter was 
determined with 28.6 g L " ' of granular AC shaken with the extract for 2 hours, followed by 
filtering through a membrane filter. 

The extracts prepared from spruce bark varied in toxicity and capacity to be detoxified 
by autoxidation, depending on the particular sample of bark collected. In this study, the 
most toxic and most difficult to detoxify sample of spruce bark was utilized, previously 
labelled "lot 2" (Field et al., 1990). 

The bioassays used in this study to determine the methanogenic toxicity of the bark 
extracts are described in the previous publication (Field et al., 1990). The anaerobic 
granular sludge used in the assays was obtained from a UASB treating vinasse ("Nedalco"). 
The specific assay conditions of the experiments conducted in this study are listed in Table 
1. All bioassay results reported in this study are the averaged data of duplicate run 
experiments. 

2.2. Extract Treatments 

2.2.1. Autoxidation 
The high pH autoxidation treatment of the bark extracts was described in the previous 

study (Field et al., 1990). In this study, the starting pH of the autoxidation was always 
11.5. 

2.2.2. H2O2 Oxidation 
Extracts were treated with 6 g H2O2 L~' for spruce and 3 g H2O2 L"1 for birch bark 

extracts. The starting pH was adjusted to 11.5 with NaOH. Iron (10 mg Fe^+ L~') was added 
as oxidation catalyst. The contents were stirred with a magnetic stirrer. During the 
oxidation period, the pH dropped 4 to 5 units. If the iodometrically determined H2O2 was 
not completely eliminated after an overnight treatment, then the pH was again raised to 11 
and the reaction was continued for a few more hours until the H2O2 concentration dropped 
below 30 mg L~'. The total time period of the H2O2 oxidations were approximately 22 hours, 
after which time the pH was adjusted to 6.5 with HCl. 
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Table 1. The Bioassay Parameters of the Experiments Conducted în 

this Stud/. 

Experiment Assay 

Conditions Control Activity 

Buffer Dilution Exposure First Feed Second Feed 

NaHC03 Extract0 Timed 

(gl'1) (X) (days) (mg COO g~1 VSS d"1) 

Tables 

2.spruce 

2.birch 

3.spruce 

3.birch 

2.0 

2.0 

2.0 

1.0 

2.5 

2.5 

1.25 

2.22 

14 

14 

15 

10 

285 

248 

337 

380 

719 

727 

722 

920 

The ex t rac t COD and tannin concentrat ions are reported in the 

t ab les . In a l l assays the sludge concentrat ion was 1.4 g VSS 
-1 -1 

L and 4 g COD L as VFA was suppl ied. 

The d i l u t i o n fac tor of the ex t ract i n the assay media. 

Exposure t ime to the treatments dur ing the f i r s t feeding. 

2.2.3. Aerobic Biological Treatment 
Extracts were aerated (30 v/v h through a porous stone) after inoculating with 1 g L~' 

(fresh weight) composted bark and supplying inorganic nutrients (250 mg L~' NH4+N; and 
other nutrients supplied by adding a stock nutrient solution at one tenth the concentration 
prescribed for the anaerobic bioassays). The pH of the extracts at the start of aeration was 
5.8, during the first week the pH dropped quickly to approximately 4. The period of aeration 
tested was 4 weeks for spruce and 3 weeks for birch. By the end of the experiments, the 
pH was approximately 6.5. No microbiological determinations were conducted. The purpose of 
applying the aerobic biological treatment was to produce highly polymerized samples of bark 
extract by imitating the conditions that the tannins might encounter in an aerobic forest 
soil. 

2.2.4. PVP Treatment 
Extracts were treated with an insoluble polyamide, polyvinylpyrrolidone (PVP), to 

specifically remove the tannin fraction. The treatment was in accordance to the tannin 
determination (14.3 g PVP L"1 for 1 hour shaking followed by filtering the extract). 

2.2.5. AC Treatments 
Extracts were treated with AC to remove the AC adsorbable matter. The treatment was 

in accordance with the exhaustive AC adsorbable matter determination (28.6 g AC L~' for 2 
hours intense shaking followed by centrifugation to remove AC). The half exhaustive 
granular active carbon treatment (1/2 AC) was conducted in the same fashion but only 
gentle shaking was employed in such a way that only about half of the COD and UV were 
adsorbed as was the case with the exhaustive method. Details of the 1/2 AC method are 
described in Field et al. (1988). 

2.2.6. Ca2+ Precipitation 
The precipitation of bark extract matter with calcium was conducted at various pH values 

(arranged with HCl and NaOH) with 50 to 1250 mg L"1 Ca2+ supplied as CaCl2. The 
precipitation was allowed to occur for 1 hour after which the extracts were membrane 
filtered to separate the precipitate. The difference in the COD, UV absorbance and color 
before and after precipitation was calculated to be the Ca2+ precipitable matter. 
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3. RESULTS 

3.1. Destructive Oxidative Detoxification with H2O2 

Both the hydrogen peroxide oxidation of the untreated and autoxidized extracts of spruce 
and birch bark at a high pH were tested. The effect of these oxidations on the total, 
tannin and low MW tannin COD and UV as well as the color of the extract is shown in 
Table 2. The H2O2 treatments caused large compositional changes. The large loss of COD (14 
to 22%), total UV215 (45 to 51%) and tannin (75 to 90%) from the original extract, as well 
as the loss of COD (7 to 14%), total UV215 (25 to 28%) and tannin (58 to 68%) from the 
autoxidized extracts, indicate the destructive nature of the H2O2 oxidation. These changes 
occurred without increasing the extract color to a large extent. In fact, the H2O2 treatment 
of the autoxidized extracts caused color to disappear (52 to 58%), which was quite distinct 
from the autoxidation (where color was formed). The HPLC chromatograms (Figure 1), reveal 
the absence of polymerization, since the characteristic high MW peak area (> 28 min.) was 
not formed. Instead a destructive oxidation occurred, which caused a decrease in MW. A 
large amount of the peak area was associated with very low retention times (< 4 min.), 
where almost no compounds were present in the original extract. The autoxidized extract 
was less effected by H2O2 in terms of COD and UV2J5 losses, indicating the greater 
resistance of the high MW autoxidation products to these destructive modifications. In any 
case, both the H2O2 treatments of the original and autoxidized extracts resulted in 
sufficient reductions of the low MW tannin concentration, that a complete removal of the 
methanogenic toxicity due to tannins was observed (Table 2 and Figure 2). The H2O2 
treatments of the spruce bark extracts were able to reduce the low MW tannin 
concentration of the extracts better than by autoxidation alone. Consequently, H2O2 treated 
spruce bark extracts were less toxic than the autoxidized extract. The H2O2 treatment of 
the birch bark extracts decreased the methanogenic toxicity of the original extract to a 
level approximately equivalent to the detoxification achieved by selectively removing the 
tannins with PVP. This was a distinctly higher level of detoxification than that achieved 
with the autoxidation alone. The combined autoxidation and H2O2 treatment provided 
complete detoxification. 

3.2. Aerobic Biological Treatment 

After 3 to 4 weeks of aerobic biological treatment, the paper filtered COD, UV2]5 and 
tannin was decreased; respectively, by 29 to 33, 26 to 30 and 67 to 73% (Table 2) from the 
original spruce and birch bark extracts. While the COD elimination was slightly higher than 
observed by the H2O2 treatment, the loss of UV215 was distinctly lower. No oxidative 
changes (ie. coloration and UV losses) of the phenolic compounds occurred in the first week 
of the biological treatment, however this was the time period that most of the COD losses 
occurred. The oxidative coloration began after this first week. Therefore, the COD 
disappearance was probably BOD used to sustain primary growth of the inoculated organisms 
rather than destructive oxidative reactions of the phenols. 

By the end of the biological treatment, highly polymerative oxidations of the spruce bark 
tannins occurred as can be witnessed from the HPLC chromatograms of Figure 1. Compared 
with the high pH autoxidized extract, the degree of polymerization was higher because the 
aerobic biological treatment produced more color and more high MW humus products (the 
PVP unreactive compounds of the high MW peak area). Likewise, a lower level of toxicity 
was evident as compared to the autoxidized extract (Table 2 and Figure 2). 

The biological treatment of birch bark extract was unique because a large fraction of the 
oxidation products were colloidal. The colloidal matter of the biologically oxidized extract 
accounted for 58, 70 and 89% of the paper filtered COD, UV2)5 and color, respectively. The 
paper filtered biologically treated extract (including both the soluble and colloidal matter) 
was not toxic to the methane bacteria (Table 2 and Figure 2). 
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Table 2. The Influence of Various Treatments of Spruce and Birch Bark Extracts on the Methanogenic Activity of 

Granular Sludge Exposed to the Extracts. 

Ex t rac t 

Treatment9 

Spruce 

2. u n t r t 

3. au to 

4 . H202 

5. auto+H202 

6. b i d 

7. PVPd 

Bi rch 

2. u n t r t 

3 . auto 

4 . H202 

5. auto+H202 

6. b i o l 

7. PVP 

a Treatments 

îeîsimf 

6601 

6372 

5123 

5454 

4148 

AC-ADS 

5109 

3326 

2484 

2739 

1500 

( 4712) e 

3062 

2808 

2629 

2604 

878 

2863 

2178 

1956 

1845 

819 

(2066) e 

2. u n t r t = 

11 .5 : 4 . H202 = e x t r a c t 

COD 

Tannin LMW-Tanninc T o t a l s 
, ™ , -1 

3544 2648 

2245 548 

359 120 

720 107 

950 316 

1620 1116 

1048 118 

397 33 

436 25 

539 4 

un t rea ted bark 

o x i d i zed w i t h 

211.3 

175.2 

102.7 

126.3 

130.7 

( 1 4 6 . 8 ) e 

90.2 

68.9 

49.6 

51.1 

20.3 

( 6 6 . 9 ) e 

e x t r a c t ; 3 . 

U v?15 

AC-ADS 

X 

186.5 

91.4 

61 .0 

67.8 

35.3 

87.2 

46.8 

35.2 

33.8 

18.5 

auto = 

H-,0,: 5 . auto+H202 

Tannin 

163.6 

88 .2 

15.6 

27 .7 

32.5 

76.3 

36.3 

7 .7 

7 .8 

12.7 

e x t r a c t 

C o l o r , V i s 4 4 0 

T o t a l m f 

0.825 

7.689 

1.232 

3.047 

9.768 

(12.243>e 

0.154 

4.180 

0.814 

1.771 

0.638 

( 5 . 8 3 0 ) e 

a u t o x i d i 

= t reatment 3 . 

AC-ADS 

* 

0.660 

3.047 

0.660 

1.452 

2.376 

0.088 

2.310 

0.418 

1.045 

0.550 

zed f o r 

Tannin 

0.407 

4.301 

0.253 

0.924 

2.519 

0.099 

2 .387 

0.077 

0.275 

0.484 

Methanog en 

F i r s t feed 

e x t r a c t s 

1.9 

33 .7 

80 .0 

76.2 

99.3 

90.1 

e x t r a c t s 

5 .6 

17.1 

41.3 

58 .2 

52.5 

47 .2 

22 hour w i t h a 

f o l lowed by t reatment 

d 

c A c t i v i t y 

Second feed 

A c t i v i t y 

l u t e d 2.5x 

1.0 NR9 

20.7 R 

103.4 

104.2 

62.2 

102.7 

d i l u t e d 2.5x 

0 .7 NR 

4 .0 R 

62.4 

95 .9 

88.4 

53 .7 

s t a r t i n g pH o 

4 ; 6 . b i o l = 

extract treated with the aerobic biological treatment; 7. PVP = extract PVP treated. 

AC-ADS: = the granular active carbon (AC) adsorbable matter utilizing the exhaustive method. 

c LMw"-Tannins: = the low molecular weight tannins. 

The activity results of PVP treated spruce extract were borrowed from a previously published experiment (Field et 

al.,1988). 

e Only extracts of the biological aeration treatment (6.) contained significant amounts of colloidal suspended 

matter. In these cases, the paper filtered values are reported in the parenthesis. All other values reported in 

this table are based from membrane filtered (mf) samples. 

The second VFA feeding was started after removing the extract containing medium to determine the studge activity 

remaining after the exposure to the extract (exposure period is reported in Table 1). 

9 NR = no recovery of indicated lost activity prior to the termination of the 2 week long 2nd feeding. 

R = significant recovery of indicated lost activity prior to the termination of the 2 week long 2nd feeding. 
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12 20 28 36 44 
rétention time (min) 

Figure 1. The HPLC chromatograms of untreated extract (2), autoxidized (3) , H2O2 oxidized 
(4), autoxidized plus H2O2 oxidized (5), and aerobic biologically treated (6) extracts of 
spruce bark. The boundary between low and high MW tannins is at 28 minutes retention 
time. For each sample, the top solid line chromatogram is the entire extract, the bottom 
solid line chromatogram is the PVP treated extract. The tannin peak area is the shaded area 
between the two chromatograms. The dotted line chromatogram is the exhaustively AC 
treated extract. 
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Figure 2. The cumulative CH4 production during the digestion of VFA with 2.5x diluted 
spruce and birch bark extracts that were oxidized by various treatments. The second VFA 
feeding was started after removing the extract containing medium to determine the sludge 
activity remaining after the exposure to the extract. TM = the theoretical methane 
production if all the VFA supplied were converted to methane, "a" = the activity period 
chosen to determine the reported activities in Table 2. The abbreviations of the treatments 
are defined in the footnote of Table 2. 

3.3. Granular Active Carbon Treatment of Bark Extracts 

3.3.1 Half Exhaustive Treatments with Active Carbon 
In a previous study, we have found that granular active carbon (AC) can adsorb 

considerable amounts of the bark extract COD (Field et al., 1988). The half exhaustive AC 
treatments removed significant amounts of COD (60%) and total UV215 (40 to 70%) from the 
extracts. The low MW tannins were insufficiently removed. Only 50% of the low MW tannins 
were eliminated from the unoxidized spruce bark extract. The low MW tannins that remained 
still had a sufficiently high enough concentration that the toxicity was still quite strong 
(Table 3). 

Birch bark extracts were unique because they contained non-tannin toxins as is evident 
from the toxicity of the PVP treated extract (Table 3). The combined PVP and AC treatment 
of birch bark extract was non-toxic, indicating that AC could remove the non-tannin toxins. 

Combinations of autoxidizing bark extracts followed by half exhaustive AC treatments 
provided complete detoxification that was higher than the sum of detoxification achieved 
from each individual treatment (Table 3). The PVP treated autoxidized spruce bark extract 
was completely non-toxic, indicating that the toxicity surviving autoxidation was entirely 
tannic. The toxic low MW tannins remaining after autoxidation were highly removed by the 
half exhaustive AC treatment. Likewise, the AC treated autoxidized extract was not very 
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Table 3. The Influence of PVP and Half Exhaustive AC Treatments of Spruce and Birch Bark Extracts and 

Autoxidized Extracts on the Hethanogenic Activity of Granular Sludge Exposed to the Extracts. 

Treatment8 

Spruce Extract 

2. untrt 

3. 1/2AC 

4. auto 

5. auto+1/2AC 

6. PVP 

7. auto+PVP 

Birch Extract 

laïâW 

5760 

2298 

5760 

2494 

COD 

Tannin 

mg COD 

2998 

1458 

2354 

1295 

LMW-Tanninb 

L"1 

2467 

1166 

581 

199 

UV 

ISÏSimf 

1 

170.4 

54.5 

146.4 

68.2 

215 

Tannin 

x 

150.0 

50.1 

105.9 

53.3 

Color 

Totalm 

0.803 

0.242 

3.938 

2.013 

,Vis440 

t Tannin 

1x 

0.649 

0.242 

3.245 

1.232 

Methanogenic Activity 

First Feeding Second Feedinq 

% control activity 

extract diluted 1.25x 

8.9 0.9 NRe 

28.0 2.7 NR 

61.4 12.3 R 

97.6 75.5 

116.3 115.4 

112.8 109.4 

extract diluted 2.22x 

2. untrt 3445 1637 1121 

3. AC1/2 1477 782 657 

4. auto 3445 1291 125 

5. auto+AC1/2 1760 894 0 

93.5 

56.9 

71.6 

49.6 

75.2 

50.9 

35.2 

32.8 

0.231 

0.176 

4.455 

4.323 

0.143 

0.165 

2.332 

NDf 

21.0 

64.0 

32.6 

114.2 

0.0 NR 

63.0 

2.1 R 

105.8 

6. PVP 

8. PVP+AC1/20 

79.3 

105.5 

66.8 

106.7 

a Treatments: 2. untrt = untreated extract; 3. AC1/2 = extract treated with granular active carbon (AC) 

using the half exhaustive method; 4. auto = extract autoxidized for 1 hour (spruce) or 16 hours 

(birch) with a starting pH of 11.5; 5. auto+AC1/2 = treatment 4. followed by treatment 3.; 6. PVP = 

extract PVP treated; 7. auto+PVP = treatment 4. followed by treatment 6.; 8. PVP+AC1/2 = treatment 6. 

followed by treatment 3. 

The LMW-tannins = the low molecular weight tannins. 

c The birch treatment 8. contained only 185 mg COD L"1 and 0.000 1x UV215. 

" The second VFA feeding was started after removing the extract containing medium to determine the 

sludge activity remaining after the exposure to the extract (exposure period is reported in Table 1). 

e NR = no recovery of indicated lost activity prior to the termination of the 2 week long 2nd feeding. 

R = significant recovery of indicated lost activity prior to the termination of the 2 week long 

2nd feeding. 

ND = no data (not measured) 
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toxic. In the case of birch bark, the half exhaustive AC treatment was able to remove the 
toxic intermediates of autoxidation, because it relieved all of the toxicity from the 
autoxidized birch extracts (Table 3). 

3.3.2. Exhaustive Treatments with Active Carbon 
Experiments were continued with a more exhaustive AC treatment of the bark extracts. 

The AC was able to adsorb 77 to 94% of the COD and 88 to 97% of the total UV215 from 
the original spruce and birch bark extracts (Table 2). Since the exhaustive AC treatment 
removed essentially all the bark matter, one should assume that even the unoxidized extracts 
could potentially be detoxified with AC. However, the results with the half exhaustive AC 
treatments indicate that if the extract is first autoxidized, the detoxification can 
potentially be achieved with a less extensive AC treatment. 

The amount of AC adsorbable matter decreased as a result of the oxidative 
polymerization (ie. autoxidation and aerobic biological treatments). The decrease resulted 
from an increase in the concentration of matter not adsorbed by AC. In Figure 1, the HPLC 
chromatograms of autoxidized and aerobic biological treated spruce bark extracts illustrate 
that the matter not adsorbed by AC was in fact high MW tannins and humus. Other research 
groups working with humic acids have also found that granular active carbon is 
increasingly less effective in adsorbing compounds with increasing MW (El-Rehaili and 
Weber, 1987). 

3.4. Calcium Precipitation of Bark Extracts 

Experiments with bark extracts treated with calcium indicate that calcium was only 
capable of precipitating UV light absorbing matter at a high pH from the unoxidized 
extracts. At neutral to low pH's, little or no precipitation occurred. The autoxidation of 
these extracts greatly improved the capacity of calcium to precipitate a significant amount 
of the UV light absorbing matter at the neutral to low pH's (Figure 3; Table 4). The 
precipitation was also effective in removing color from autoxidized extracts (Figure 4). The 
precipitation was even better with the highly polymerized aerobic biologically treated extract 
(Table 4), since complete removal of color was observed. 

Oxidative polymerization of lignin containing wastewater is known to improve the lignin 
precipitation (Schmidt and Joyce, 1980; Milstein et al., 1988). Research with humic acids also 
indicates an increasing effectiveness of precipitation with increasing MW (El-Rehaili and 
Weber, 1987). 

Table 4 . The Effect of Polymerization on the pN 8 Calciua Precipitat ion (500 ag L"1) of 1.5x 

Diluted Spruce Bark Etracts. 

Treatments8 

2. untrt 

3. auto 

6. biot 

total 

5.0 

29.1 

68.0 

COD 

tannin 

1.2 

30.0 

42.2 

uv 2 1 5 

total tannin 

3.8 3.6 

51.1 40.8 

86.8 79.5 

total 

NAC 

53.5 

95.0 

Col or 

tannin 

NA 

39.0 

87.8 

Treatments: d e f i n i t i o n of abbreviat ions are given i n footnote of Table 2 . 

° Calcium p r e c i p i t a t i o n : = ex t ract t reated at pH 8 wi th 500 mg L Ca (as CaCtj) f o r 2 hours 

and decanted through a paper f i l t e r . 
c NA = not app l icab le , because the unoxidized ex t racts do not have s i g n i f i c a n t co lo r . 
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Figure 3. Calcium precipitation of UV215 absorbance from unoxidized pine and birch bark 
extract and autoxidized (16 hours, pH 11.5) extract. Extract Parameters: Pine: Total and 
tannin COD; 6914 and 1783 mg L"1 , respectively. Total and tannin UV; 189.7 and 141.6 ( l x , 
absorbance units), respectively. The extract was diluted 3x for precipitation with calcium. 
Birch: Total and tannin COD; 4380 and 2112 mg L , respectively. Total and tannin UV; 
112.2 and 91.7 ( l x , absorbance units), respectively. The extract was diluted 2x for 
precipitation with calcium. 

100 

0 250 500 750 1000 1250 
Calcium Concentration (mg/L) 

Figure 4. Calcium precipitation of autoxidized birch bark extract color with different pH 
regimes. Extract Parameters: The total and tannin color (440 nm); 6.09 and 3.88 ( l x , 
absorbance units). The extract was diluted 2x for precipitation with calcium. 
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4. DISCUSSION 

The problems associated with the autoxidative approach for detoxifying bark extracts, 
namely its application was limited for specific species of bark, were resolved by applying 
alternative oxidation methods. These were either based on the destruction of the toxic 
tannin structure with H2O2, or by the extensive polymerization of the tannins obtained with 
long term aerobic treatments. Additionally, reliable detoxification for all bark species tested 
was achieved with the autoxidation combined with a subsequent active carbon treatment. 

The high level of detoxification achieved with the H2O2 oxidations indicates the non-
toxicity of the end products obtained after destructive oxidation. The end products are not 
highly colored compounds, thus the destructive methods of oxidative detoxification are 
advantageous if color norms must be fulfilled. The application of H2O2 itself might not be 
economically feasible, considerable costs are expected to be involved in the H2O2 
consumption. The H2O2 consumption needed for maximizing the detoxification was found to 
correspond to approximately lg H2O2 g COD. Future work in the area of destructive 
oxidations should examine less expensive oxidants which may give a similar result, like O3. 
Additionally, white-rot fungi, deserve attention since their lignolytic activities (ligninase), 
which catalyze destructive reactions (Tien and Kirk, 1983 and 84), have already been applied 
to decolorize lignin containing wastewaters (Fukuzumi, 1980; Paice and Jurasek, 1984; 
Livernoche et al., 1983; Eaton et al., 1980 and 82; Sundman et al., 1982). 

The long term aerobic treatments of bark extracts applied in this study polymerized the 
extracts beyond that which can be achieved by high pH autoxidation and were likewise less 
toxic. This indicates that the limitations of the autoxidation method can be resolved by 
developing methods which provide a more extensive polymerization. In this study, the 
aerobic treatments required 3 to 4 weeks to obtain the extensively polymerized extracts. 
Considering that the pH of the aerobically treated extracts had risen to 6.5, it is quite 
possible that the polymerization was the result of long term low pH autoxidation. 
Autoxidation of phenolic compounds is known to occur at pH values as low as 6 (Haider et 
al., 1975). In order to develop methods of rapid polymerization that are more extensive than 
high pH autoxidation, future work should investigate the possibilities of utilizing phenol 
oxidases of fungi and plants. However, one foreseeable problem is the high inhibition of 
such enzymes caused by tannins (Lyr, 1961; Goldstein and Swain, 1965). In any case, 
polymerization of tannins has been observed during the aeration of apple pulp at pH values 
lower than feasible for autoxidation, presumably the polymerization reactions were caused by 
phenol oxidases in the pulp (Lea, 1982; Verspuy and Pilnik, 1970). Polymerization of bark 
extract tannins by fungal cultures at low pH values has also been observed (Updegraff and 
Grant, 1975). Additionally, phenol oxidases have been used to polymerize monomeric model 
compounds of procyanidins (Hathway and Seakins, 1957). 

The non-toxic soluble dark colored humic end products produced from the oxidative 
polymerization of tannins were precipitable with calcium. Therefore if color and non
biodegradable COD produced by polymerization methods, must be removed from the 
wastewater, calcium precipitation can be applied as part of the wastewater treatment system. 
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CHAPTER 10 

Measurement of Low Molecular Weight Tannins: 
Indicators of Methanogenic Toxic Tannins. 
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ABSTRACT - The purpose of this study was to evaluate the effectiveness of several low 
MW tannin measurement methods for indicating the tannin toxicity. The methanogenic 
toxicity of the low and high MW tannins from autoxidized bark extracts was studied by 
selective removal of MW fractions from the extract with active carbon adsorption and 
calcium precipitation treatments. The toxicity of the low MW tannin fraction and the 
nontoxicity of the high MW tannin fraction were demonstrated. The low MW tannin 
concentration, determined by a HPLC method and a method based on the loss of tannins by 
treatment with granular active carbon (AC), had a very close relationship with the 
methanogenic toxicity; whereas, a poor relationship was found based on the total tannin 
concentration. The low MW tannins detected by the HPLC and AC methods had similar peak 
area positions in HPLC chromatograms as the tannins that were adsorbed by polyamide 
(trisacryl GF05) gel beads. These gel beads have an exclusion limit of 3000 g mole"1, 
indicating that this is the approximate MW boundary between toxic and non-toxic tannins. 

KEY WORDS - tannin, methanogenic toxicity, bark, HPLC, anaerobic digestion, granular 
active carbon, trisacryl GF05 gel, polyvinylpyrrolidone, molecular weight, autoxidation, 
calcium precipitation 

1. INTRODUCTION 

The coniferous bark extracts are useful for the study of tannin toxicity. The 
methanogenic toxicity of these extracts is almost entirely due to the tannin fraction (Field 
et al., 1988). The tannins of bark are predominantly oligomers (Porter, 1974; Karchesy and 
Hemingway, 1980; Hemingway et al., 1981 and 1982). According to the trends outlined by the 
tannin theory, only the oligomeric forms of tannins are effective inhibitors of methane 
bacteria (Field et al., 1989). The detoxification of coniferous bark extracts by their 
autoxidative polymerization was due to the conversion of the oligomeric tannins to high MW 
tannins (Field et al., 1990a). Therefore, the total tannin concentration cannot be used to 
estimate the residual toxicity of autoxidized extracts; since only, the oligomeric fraction is 
responsible for the toxicity. 

The purpose of this study was to determine the applicability of measuring the low MW 
tannin fraction as an indicator of the methanogenic toxicity. Methods were investigated to 
distinguish low and high MW fractions of the tannins. The ability to distinguish between 
monomeric and oligomeric tannins of the low MW fraction is not considered necessary since 
the bark tannins contain relatively low contents of monomeric tannins. A method for 
determinig the low MW condensed tannins with a HPLC technique has previously been 
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described (Field et al., 1989). In this study, alternative methods were also investigated by 
use of adsorbants that were selective for the low MW compounds. The use of such methods 
could be advantageous by eliminating the need for a HPLC in order to determine the low 
MW tannins. 

2. MATERIALS AND METHODS 

2.1 Materials 

Extracts were prepared from the bark of norway spruce (Picea abies). utilizing 18 g L"1 

air dried milled bark in 60° C water and shaking for 3 hours. To avoid premature 
autoxidation of the extracts, 250 mg L~' of ascorbic acid was added and the extraction was 
conducted with N2 gas in the head space. 

2.2. Analytical and Bioassays 

The analytical methods regarding the measurement of COD, UV (215nm) and color 
(440nm) are described in previous articles (Field and Lettinga, 1987; Field et al., 1988; Field 
et al., 1990a). The total tannin determination was based on measuring the adsorption of 
soluble bark extract matter on an insoluble polyamide polymer called, "polyvinylpyrrolidone" 
(PVP). The PVP method of tannin determination is described in detail by Field et al. (1988). 
In this study, 14.3 g PVP L~' bark extract was shaken for 1 hour at 30° C and filtered. The 
difference in COD, UV (215nm) and Color (440nm) before and after adsorption on PVP is 
taken as the total tannin concentration expressed either as a COD concentration or as 
absorbance units of UV or visible light. 

The method used for determining methanogenic toxicity is described in previous articles 
(Field and Lettinga, 1987; Field et al 1988; Field et al., 1990a). In this study, VFA 
substrate was supplied at 4.2 g COD L"1. The granular methanogenic sludge concentration 
was 1.4 g VSS L"1 and 2 g L"1 NaHCÛ3 was used as a buffer. A second VFA feeding was 
conducted after 14 days exposure to the extract containing media to determine the residual 
sludge activity in replaced media with extract not present. The control (fed VFA only) 
methanogenic activities were 764 and 952 mg COD g~' VSS d~' during the second VFA 
feeding of experiments labelled part "A." and "B.", respectively. All bioassay results reported 
in this study are the averaged data of duplicate run experiments. 

2.3 Measuring the Low Molecular Weight Tannins 

Three methods were utilized for quantifying the concentration of low MW tannins 
distinctly from the total tannin concentration: (1) HPLC method estimating the low MW 
tannin fraction from HPLC chromatograms; (2) AC method measuring the tannins that are 
adsorbed by granular active carbon; and (3) GG method measuring the tannins adsorbed by a 
polyamide gel bead adsorbant, trisacryl GF05. In all cases, the high MW tannins are 
calculated from the difference between total tannins (PVP determined) and the low MW 
tannins. 

2.3.1 HPLC Method 
The HPLC method has been previously described (Field et al., 1989). In this study, the 

peak area was detected at 280 nm. The low MW tannins are represented by the tannin peak 
area of less than 28 minutes retention time. The ratio of the low MW tannin peak area to 
total tannin peak area is multiplied by the total tannin concentration (PVP determined 
tannins) based on COD, UV 215nm or Color (440nm) to obtain the low MW tannin 
concentration estimate. 
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2.3.2. AC Method 
The AC method was conducted by measuring the PVP determinable tannins in both a 

membrane filtered sample and a membrane filtered exhaustively AC treated (28 g L~' 
granular AC for 2 hours) sample. Details of the exhaustive AC treatment were described 
previously (Field et al., 1988). The difference in the PVP determined tannin contents of the 
untreated and AC treated sample is equal to the low MW tannins. This method assumes that 
granular active carbon is only able to adsorb the low MW tannins. The ability of active 
carbon to adsorb the predominantly oligomeric bark tannins was established (Field et al., 
1988). Additionally, a hydrolyzable tannin oligomer (gallotannic acid) and a condensed tannin 
monomer (catechin) were tested and adsorbed for 96.2 and 98.5%, respectively when treated 
with AC (as solutions of 1 g L ). The inability of active carbon to adsorb high MW tannins 
was indicated from the poor removal of high MW tannins by AC treatment of autoxidized 
spruce bark extracts (Field et al., 1990b). 

2.3.3. GG Method 
Trisacryl GF05 gel beads obtained from Société Chimique, Villeneuve-La-Garenne, France, 

were utilized as an adsorbant for low MW tannins. The gel beads are manufactured for gel 
permeation chromatography and have an exclusion limit of 3000 g mole . Trisacryl GF05 is 
composed of an amide containing polymer that offers sites for hydrogen bonding with the 
low MW tannins that penetrate the beads. 

The bark extract sample was shaken together with 35.8 g L (dry weight) trisacryl GF05 
beads for 1 hour, the membrane filtered filtrate was again treated with the same amount of 
trisacryl GF05 for another hour and then membrane filtered. A replicate of the sample was 
brought through the same procedure without any beads present. The difference in in COD 
concentration (or UV or color) between the untreated and trisacryl GF05 bead treated 
samples is equal to the low MW tannins COD (or UV or color). Distilled water was also 
treated with the gel beads to correct for COD and UV contributions originating from the 
gel beads. The method is abbreviated, "GG". 

2.4. Treatment of Bark Extracts For Testing Toxicity 

2.4.1. Autoxidation 
The autoxidation was generally (unless otherwise stated) performed by aerating extracts 

at a high pH (11.5) for approximately one day as described in Field et al. (1990a). 

2.4.2. PVP Treatment 
Extracts were shaken with 14.3 g L~' PVP for one hour and then paper filtered. 

2.4.3. AC Treatment 
Extracts were intensively shaken with 28.6 g L"1 granular AC for two hours then 

centrifuged followed by paper filtering. 

2.4.4. Ca2+ Treatment 
Extract treated at pH 8 with 500 mg L~' of Ca2+ (as CaCl2) for two hours, then 

decanted through a paper filter. 

2.4.5. GG Treatment 
Experiments were attempted by treating the bark extracts with trisacryl GF05 gel under 

the same conditions as the GG method for determining low MW tannins. However, the gel 
introduced toxicity in the liquid which came into contact with it, most likely related to the 
presence sodium azide in the gel (present in the supplied product). For this reason, the 
bioassay experiments were abandoned for investigating the removal of toxicity with trisacryl 
GF05 gel. 
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3. RESULTS 

3.1. Effect of Treatments on COD, UV, Color and Total Tannins 

The effect of various treatments on the basic parameters of the bark extracts are shown 
in Table 1. Autoxidation was responsible for drastically increasing the color of the extract, 
which resulted from the polymerization of the tannins. Only minor changes in the total 
extract COD and UV were observed. The autoxidation did cause a distinct decrease in the 
total tannin concentration (approximately 30% based on tannin COD and UV). The AC 
treatment removed 87 to 92% of the total extract COD and UV as well as remove 91% of 
the total tannin COD and UV. The AC treatment was thus capable of almost completely 
adsorbing the unoxidized bark matter. However, once the bark was autoxidized, the AC 
treatment was only able to adsorb 54 to 59% of the total COD and UV, and only 40% of the 
total tannin COD and UV. The lower adsorption of autoxidized bark matter on AC is perhaps 
due to a decreasing effectiveness of granular AC towards compounds of increasing MW 
(El-Rehaili and Weber, 1987). In contrast to AC, precipitation with calcium (Ca) was 
ineffective in eliminating total COD and UV and total tannins from the unoxidized extracts 

Table 1 . The COD, UV and Color of Untreated and Treated Spruce Bark 

Extracts and the Total Tannin Concentrations Based on COO, UV and Color 

Neasureaents. 

Treatments 

# 

A. 

2 

3 

4 

5 

7 

B. 

2 

8 

4 

9 

7 

namea 

AC Exp.b 

untrt 

untrt+Ac 

auto 

auto+AC 

auto+PVP 

Ca Exp.b 

untrt 

untrt+Ca 

auto 

auto+Ca 

auto+PVP 

COO 

total 

mg 

4237 

543 

4127 

1679 

2319 

4533 

4120 

4372 

3099 

2495 

tannin 

L-1 .... 

2397 

205 

1808 

1072 

0 

2881 

2606 

1877 

1316 

0 

UV 

total 

1 

109.5 

8.4 

94.3 

43.4 

34.2 

139.5 

120.3 

124.6 

60.9 

48.9 

(215nm) 

tanni n 

x,1cm 

88.4 

7.6 

60.1 

35.8 

0.0 

110.1 

102.9 

75.7 

44.8 

0.0 

Color 

total 

1x 

0.51 

0.10 

4.74 

2.92 

1.07 

0.76 

0.43 

6.20 

2.88 

2.17 

(440nm) 

tannin 

1cm 

0.24 

NDC 

3.67 

2.67 

0.00 

0.51 

0.33 

4.03 

2.46 

0.00 

Treatments: 2^= untreated spruce bark e x t r ac t ; 3^= ex t rac t t reated wi th 

the exhaustive AC method; 4.= autoxid ized ex t rac t (16 h, pH 11.5) ; 5^= 

autoxid ized ex t rac t t reated wi th the exhaustive AC t reatment; 7^= 

autoxid ized ex t rac t t reated w i th PVP treatment; 8^= ex t rac t t reated 

wi th Ca t reatment; 9^= autoxid ized ex t rac t t reated wi th Ca t reatment. 

The spruce bark ex t rac ts were d i l u t e d 1.6x (A) or 1.5x (B) to a stock 

ex t rac t fo r the ana lys is , the resu l ts given i n t h i s tab le are the 

concentrat ions measured i n the d i l u t e d e x t r ac t . The ex t racts used in 

the AC (A) and Ca (B) experiments were prepared separately 

ND = no data, not measured 
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(only 7 to 14% elimination). The Ca precipitation was effective with the autoxidized extract, 
in which case 29 and 51% of the total COD and UV, respectively were precipitated and 30 
and 41% of the total tannin COD and UV were precipitated. The improvement is due to an 
increasing effectiveness of precipitation reactions with phenolic compounds of increasing MW 
(Schmidt and Joyce, 1980; Milstein et al., 1988; El-Rehaili and Weber, 1987). 

3.2. Effect of Treatments on Low and High MW Tannins 

Tables 2 and 3 present the low and high MW tannins measured by the three different 
methods in the untreated and treated bark extracts. The tables illustrate that the major 
effect of the autoxidation is to decrease the low MW tannin concentration. The average 
decrease was 70 and 74 % of the low MW tannin COD and UV. The decrease in low MW 
tannins coincided with an increase in the high MW tannin concentration. Therefore, the 
polymerization reactions of the autoxidation change the MW composition of the total 
tannins. 

The residual low MW tannins in the autoxidized extract were highly adsorbed by the AC 
treatment. The average low MW tannin removal by AC was 79, 75 and 55% based on COD, 
UV and color, respectively. In contrast, the high MW tannins were not effectively adsorbed. 
The average high MW tannin removal was 14, 25 and 3% based on COD, UV and color, 
respectively. The Ca precipitation was not at all effective in precipitating the low MW 
tannins from the autoxidized extracts. However, the high MW tannins were eliminated on the 
average for 46, 50 and 50% based on COD, UV and color, respectively, by Ca precipitation. 
In conclusion, the results indicate that the AC treatment of autoxidized extracts selectively 

Table 2 . The Lou Molecular Wei^it ( IM) Tannins in Untreated and Treated Spruce Bark Extracts as Measured 

by Various Methods. 

Extract 

Tr 

# 

A. 

2. 

4. 

5. 

B. 

2. 

4. 

9. 

eatments 

AC Exp.b 

untrt 

auto 

auto+AC 

Ca Exp.b 

untrt 

auto 

auto+Ca 

HPLCC 

1889 

591 

144 

2161 

460 

360 

COD 

GGC 

1665 

840 

149 

1844 

346 

459 

ACC 

r1 --

2192 

736 

NAe 

2751 

638 

818 

AVGd 

1915 

722 

147 

2252 

481 

546 

HPLC 

69.7 

19.6 

4.8 

82.6 

18.6 

12.3 

UV (215 nm) 

GG 

63.7 

18.3 

4.8 

80.7 

18.0 

12.6 

AC 

, cm 

80.8 

24.3 

NA 

102.9 

28.2 

27.2 

AVG 

71.4 

20.7 

4.8 

88.7 

21.6 

17.4 

HPLC 

0.19 

1.20 

0.36 

0.38 

0.99 

0.67 

Color 

GG 

0.29 

0.74 

0.44 

0.40 

0.65 

0.73 

(440 nm) 

AC 

NDf 

1.00 

NA 

0.32 

1.30 

1.34 

A 

0 

0 

0 

0 

0 

0 

/G 

24 

98 

40 

37 

98 

91 

b 

f 

Treatment name abbreviations are defined in the footnote of Table 1. 

See footnote "b" in Table 1. 

Low MU Tannins: HPLC = estimated from the HPLC data; GG = determined by adsorption on trisacryl GF05; 

AC = determined by PVP tannin measurements before and after AC treatment of extract. 

NA = not applicable 

ND = no data, not measured 
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removes the low MW tannins, whereas Ca precipitation selectively removes high MW tannins. 
These trends are seen in the HPLC chromatograms of Figures 1 and 2. 

The three different methods of determining low MW tannins, basically predicted the same 
trends in the low MW tannin concentration with respect to the various treatments of the 
bark extract. The methods only differed to a small extent in the absolute concentration of 
low MW tannins measured. Generally, the AC method predicted the highest concentration, 
whereas the GG method predicted the lowest concentration. Figure 1 illustrates that the AC 
method exhaustively removed the low MW tannin peak area in the HPLC plots of the 
autoxidized extracts, but also illustrates that the AC method additionally removed a small 
part of the high MW tannin peak area. The GG method did not exhaustively remove the low 
MW tannin peak area of the HPLC plots, but it did not adsorb any high MW tannin peak 
area in the autoxidized extract. 

3.3. Effect of Treatments on Methanogenic Toxicity 

Figure 3, illustrates the effect of the various bark extract treatments on the 
methanogenic activity of sludge exposed to these extracts for 2 weeks. The activity results 
are plotted together with a COD balance of the bark extracts in order to illustrate which 
fraction of the COD is most likely responsible for the toxicity. The non-tannin fraction of 
the autoxidized extracts are not responsible for any toxicity. In a previous study, we have 
also shown that the non-tannin fraction of unoxidized spruce bark extracts are not 
responsible for any toxicity (Field et al., 1988). The autoxidation of the extracts 
dramatically reduces the toxicity, but partial inhibition is still evident. The partial inhibition 

Table 3. The High Molecular Weight (NU) Tannins in Untreated and Treated Spruce Bark Extracts as 

Measured by Various Methods. 

Extract 

Treatments 

# name3 

A. AC Exp.b 

2. untrt 

4. auto 

5. auto+AC 

B. Ca Exp.b 

HPLCC 

508 

1217 

928 

COD 

GGC ACC 

732 205 

968 1072 

923 NAe 

AVGd 

482 

1086 

926 

HPLC 

18.7 

40.5 

31.0 

UV (215 nm) 

GG AC AVG 

24.7 7.6 17.0 

41.8 35.8 39.4 

31.0 NA 31.0 

HPLC 

0.05 

2.47 

2.31 

Color (440 rm 

GG AC 

-0.04 NDf 

2.94 2.67 

2.23 ND 

AVG 

0.01 

2.69 

2.27 

2. untrt 

4. auto 

9. auto+Ca 

720 1037 130 629 

1417 1531 1239 1396 

956 857 498 770 

27.5 29.4 7.2 21.4 

57.1 57.7 47.5 54.1 

32.5 32.2 17.6 27.4 

0.13 0.11 0.19 0.14 

3.04 3.38 2.73 3.05 

1.78 1.73 1.12 1.54 

Treatment name abbreviations are defined in the footnote of Table 1. 

See footnote "b" in Table 1. 

High MW Tannins ((Total Tannin) - (Low MM Tannin)): definitions HPLC: GG and AC determined low MU 

tarmin measurements are given in Table 2 footnote C. 

AVG = averaged high MW tannin concentration based on HPLC, GG, and AC methods. 

NA = not applicable 

ND = no data, not measured 
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20 28 36 
retention time (min) 

Figure 1. The HPLC chromatograms of untreated extract (A) and autoxidized (B) extracts of 
spruce bark. The boundary between low and high MW tannins is at 28 minutes retention 
time. For each sample, the top solid line is the entire extract, the bottom solid line is the 
PVP treated extract. The tannin peak area is the shaded area between the two 
chromatograms. The upper dotted line (long dashes) is the GG treated extract. The lower 
dotted line (short dashes) is the AC treated extract. 

cannot be due to the high MW tannins as these increase in concentration as a result of the 
autoxidation. Therefore, the most likely fraction associated with residual toxicity in 
autoxidized spruce bark extracts is the low MW tannin fraction. The Ca precipitation, which 
has no effect on the low MW tannin fraction in autoxidized extract also had no effect in 
relieving the residual toxicity even though it was capable of removing about half of the 
high MW tannins. On the otherhand, the AC treatment of the autoxidized extract removed a 
majority of the low MW tannin fraction without altering the high MW tannin concentration 
and this corresponded to a distinct decrease in the methanogenic toxicity. 

3.4. Tannins as an Indicator of Methanogenic Toxicity 

3.4.1. Total (PVP) Tannin Data 
The PVP determined tannin data from previous studies and this study are plotted in 

Figures 4(A) and 4(B) as a concentration in the toxicity assay media versus the activity of 
the exposed sludge. When the results were obtained from an experiment with a dilution 
series of unoxidized bark extract, a strong relationship between the sludge activity and PVP 
determined tannins was observed (Figure 4(A)). From this experiment, the 50% inhibiting 
concentration of spruce bark tannins was estimated to be 550 mg COD L~ ' . In contrast, 
when the results obtained from experiments where the bark extracts were oxidatively treated 
or otherwise treated with AC or Ca , than the relationship between the activity and PVP 
determined tannins was very poor (Figure 4(B)). 
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28 36 
retention time (min) 

Figure 2. The HPLC chromatograms of autoxidized (A) and Ca treated autoxidized (B) 
extracts of spruce bark. The boundary between low and high MW tannins is at 28 minutes 
retention time. For each sample, the top solid line chromatogram is the entire extract, the 
bottom solid line chromatogram is the PVP treated extract. The tannin peak area is the 
shaded area between the two chromatograms. 

The dilution experiments did not change the ratio of low MW to total tannins, while the 
oxidation experiments did. When the oxidation treatments alter the MW composition of the 
tannins, the total tannins are no longer good indicators of the methanogenic toxicity. 

3.4.2. HPLC Low MW Tannin Data 
The HPLC estimated low MW tannin data are plotted in Figure 5(A) as a concentration in 

the toxicity assay media versus the activity of the exposed sludge. The results obtained from 
the oxidation experiments showed a strong relationship between activity and low MW 
tannins. This can be attributed to the fact that only the low MW tannins are truely toxic 
and in this case the high MW tannins are discluded from the detection. Of the 24 
experiments, 2 points (encircled in the graph) deviated to some extent from the average 
relationship found with the oxidized extracts. This was possibly due to the fact that these 2 
points are from experiments that utilized extracts prepared from a different (older) sample 
of spruce bark. 

The 50% inhibiting concentration of the HPLC determined low MW tannins from 
unoxidized extracts was 430 mg COD L and from the oxidized extracts was 200 mg COD 
L"1. The higher toxicity of low MW tannins from the oxidized extracts compared with those 
from the unoxidized extract indicates that the low MW tannins from these sources differ in 
toxicity. This behaviour is predicted by the tannin theory which postulates an increasing 
effectiveness of tannins as their size increases, at least as long as they are capable of 
penetrating bacteria (Field et al., 1989). Based on this postulate, we would expect the 
tannins with the largest size in the low MW tannin fraction to be the most toxic. The low 
MW tannins still present after polymerization treatments are more likely to have a greater 
size than the low MW tannins of the original unoxidized extract. 
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Figure 3. The methanogenic activity of sludge exposed for two weeks to unoxidized (2), 
autoxidized (4), autoxidized+AC (5), autoxidized+PVP (7), and autoxidized+Ca (9) treated bark 
extracts. The activity is expressed as a percentage of the activity obtained with a VFA fed 
control. The results are compared with the low and high MW tannin and non-tannin 
fractions expressed as a percent of the total COD in the unoxidized extract (% total tO). 
The stock extract concentrations reported in Tables 1, 2 and 3 were diluted 1.25 X in the 
assay media for Experiment A (AC) and diluted 1.16 X for Experiment B (Ca). 

3.4.3. AC Low MW Tannin Data 
The AC determined low MW tannin data are plotted in Figure 5(B) as a concentration in 

the toxicity assay media versus the activity of the exposed sludge. These results, obtained 
from the oxidation experiments, also showed a strong relationship between toxicity and low 
MW tannin concentration. The same two points which deviated in the figure with the HPLC 
data, also deviated to the same extent with the AC low MW tannin data which indicates 
that the anomalous behaviour is most likely due to the extract rather than the measurement 
methods. 

The 50% inhibiting concentration of the AC determined low MW tannins from the oxidized 
extracts was 250 mg COD L~'. This was slightly less toxic than the low MW tannins 
estimated from the HPLC method because the AC method also adsorbs to a small extent 
some high MW tannins. However the preferential adsorption for low MW tannins was high 
enough that this method is equally as useful for indicating the toxicity as the HPLC 
estimated low MW tannins. 
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Figure 4. The methanogenic activity of sludge after two weeks of exposures to spruce bark 
extracts versus the assay concentration (during the exposure period) of the PVP determined 
tannins. Part A: Data from dilution of the unoxidized extracts. Part B: Data from oxidation 
treatments of undiluted extract. Experiments: 1 ( A ) = Field et al., 1988; 2 ( O ) = Field et 
al., 1990a; 3 ( • ) and 4 ( G ) = Field et al., 1990b; 5 ( • ) and 6 ( A ) = this study (Figure 
3); 7 ( B ) and 8 ( # ) = additional experiments of this study. Treatments: A, extract only; 
B, extract autoxidized (< 15 min.); C, extract autoxidized (> 15 min.); D, extract treated 4 
weeks biologically (aerobic); E, extract oxidized with H2O2; E', autoxidized extract oxidized 
with H2O2; F, extract treated half exhaustively with AC; G, autoxidized extract treated half 
exhaustively with AC; H, autoxidized extract treated exhaustively with AC; I, autoxidized 
extract treated with Ca; J, extract treated with PVP; K, autoxidized extract treated with 
PVP. 

4. DISCUSSION 

The low MW fraction of tannins present in bark extracts was demonstrated to be the 
only tannin fraction responsible for toxicity to methanogenic bacteria. The high MW tannin 
fraction produced by the oxidative treatments of the extracts was likewise shown to not 
inhibit methane bacteria. Therefore an effective indication of tannin toxicity in bark 
extracts should limit itself to the detection of only the low MW tannin fraction as opposed 
to the total tannins. The low MW tannin concentration, determined by the HPLC and AC 
methods, had a very close relationship with the methanogenic toxicity; whereas, a poor 
relationship was found, based on the total (PVP) tannin concentration. The low MW tannins 
detected by the HPLC and AC methods had the same peak area positions (in the HPLC 
chromatograms) as those that were adsorbed by polyamide gel beads. The adsorption sites of 
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these beads are limited in availability to tannins with a MW less than 3000 g mole"1. This 
MW constitutes the approximate upper limit of the various low MW tannins determinations 
proposed and likewise serves as an approximate boundry between non-toxic and toxic 
tannins. This MW has also been suggested to be the maximum effective tannin size for the 
tanning of hides (White, 1957). 

The AC method of low MW tannin determination is recommended the most over the other 
methods. It would be the least expensive because chromatographic equipment would not be 
necessary. Additionally, the granular active carbon and insoluble polyvinylpyrrolidone 
adsorbants are widely available. 
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Figure 5. The methanogenic activity of sludge after two weeks of exposures to spruce bark 
extracts versus the assay concentration (during the exposure period) of the low MW 
tannins. Part A: Based on low MW tannin data of the HPLC method. Part B: Based on the 
low MW tannin data of the AC method. All the data in this figure was obtained from 
oxidation treatments of undiluted extract. Experiment and treatment legends are in caption 
of Figure 4. 
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ABSTRACT - Debarking wastewaters of the forest industry contain high concentrations of 
tannins that are inhibitory to methane bacteria. The tannins can be polymerized to non-toxic 
colored compounds by the application of an autoxidation pretreatment, enabling the 
anaerobic treatment of easily biodegradable components in the wastewater. The continuous 
anaerobic treatment of untreated and autoxidized pine bark extract was studied in laboratory 
scale granular sludge packed columns. The autoxidation doubled the conversion efficiency of 
bark extract COD to methane (from 19 to 40%). After five months of operation, anaerobic 
treatment of the autoxidized extracts was feasible at high influent concentrations (-14 g 
COD L"1) and loading rates (40 g COD L~' d~') with 98% elimination of the biodegradable 
fraction. 

One possible consequence of autoxidizing the tannin fraction (37% of the extract COD) is 
a decrease in its biodegradability. This could potentially cause a decrease in the 
biodegradability of the entire extract. The autoxidation products of the tannins were not 
transformed during anaerobic treatment, whereas about half of the original tannins of the 
unoxidized extract were transformed to potentially biodegradable phenolic intermediates. 
However, the biodegradability of these intermediates was inhibited by a high reactor VFA 
concentration that resulted from the methanogenic inhibited sludge. Therefore, the average 
biodegradability (53%) of the entire extract COD during continuous anaerobic treatment was 
not decreased by the autoxidation pretreatment. The recalcitrant COD expected in the 
effluents of reactors treating autoxidized debarking wastewater can be effectively separated 
by calcium precipitation of the autoxidized products out of the influent prior to anaerobic 
treatment. 

KEY WORDS - debarking wastewater, anaerobic treatment, tannin, detoxification, 
biodégradation 

1. INTRODUCTION 

Previous studies indicate that the debarking wastewaters of the forest industry are 
troublesome to treat by the anaerobic methods (Rekunen 1986; Latola 1985). The problems 
observed were due to their methanogenic toxicity. Aqueous extracts of bark were studied to 
determine the inhibiting compounds of debarking wastewaters. The tannins, which account 
for 30 to 60% of the COD and 70 to 90% of the UV absorbance, were shown to cause most 
of the methanogenic toxicity observed in coniferous bark extracts (Field et al., 1988). 
Autoxidative treatments can be applied to detoxify the tannins (Field et al., 1990a). The 
detoxification effect is due to the polymerization of the toxic low MW tannins to non-toxic 
high MW tannins and non-tannic compounds. 
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The previous work, however, is based on laboratory batch experiments conducted over 
relatively short time periods (~2 weeks). The purpose of this study was to evaluate the role 
of autoxidative detoxification methods in improving the long term anaerobic treatment of 
coniferous bark extract. Since the autoxidation pretreatment might change the 
biodegradability of the tannins and other phenols present in the debarking wastewater, an 
additional objective was to determine if the detoxification method lowers the available 
substrate for methane production. 

2. MATERIALS AND METHODS 

2.1. Bark Extracts 

Throughout this study aqueous extracts of bark were prepared by adding 60° C tap water 
to ground air dried bark of scofs pine (Pinus sylvestris) and shaking for 3 hours with N2 
gas in the head space. The pine bark extracts were prepared to different concentrations by 
using different amounts of air dried bark which ranged from 18 to 144 g L . The average 
characteristics of all the pine bark extracts used in this study are given in Table 1. 

Table 1 . The Average Tannin to Total CTJD and UV Ratios, the 

UV to CTJD Ratio of the Tannins, and the Yield of Tannins 

from the Bark Used in this Study for the Preparation of 

Aqueous Pine Bark Extracts . 

PARAMETER 

AVERAGE 

STD C±) 

n = 29 

COD 

tan/tot 

% 

36.5 

5.4 

UV215 

tan/tot 

% 

77.8 

7.7 

UV:C0D 

tan 

1x,1cm mg 

0.057 

0.008 

Yield3 

tan/bark 

% 

5.0 

1.3 

y i e l d of tannin dry weight (assuming 1.7 g COD 

tannin) per dry weight of bark 

2.2. Analytical Methods 

The UV absorbance of the extracts and samples were based on the absorbance at 215 nm 
in a 1cm quartz cuvette as described previously (Field et al, 1988). 

The tannins were measured according to the polyvinylpyrrolidone (PVP) method, described 
in detail by Field et al. (1988). In summary, this method is based on the disappearance of 
COD and UV absorbance when the extract is shaken together with 14.3 g L~ ' PVP for 1 
hour. The HPLC chromatographic procedure and the low MW tannin determination based on 
the HPLC results were described in previous publications (Field et al., 1989 and 1990a). 

The VFA analysis and the determination of phenol, p cresol and carboxycyclohexane were 
based on the gas chromatographic procedure described by Field et al. (1987). The analysis of 
trans cinnamic acid, 3 phenylpropionic acid and phenylacetic acid was based on a similar gas 
chromatographic procedure, using an oven temperature of 190° C instead of 130° C. 
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2.3. Anaerobic Assays 

The toxicity and biodegradability assays with granular methanogenic used in this study 
were similar to those described previously (Field et al., 1988; Field et al., 1990a). The assays 
were conducted in 0.5 L serum flasks, which were incubated at 30° C. A new type of 
toxicity assay was also utilized in one experiment, designated "the repeated batch digestion". 
The activity was assayed using the substrate present in the bark extract (instead of a VFA 
spike). The alkalinity was provided by adding 1 g of NaHCC>3 per g biodegradable COD. The 
control assay was fed PVP treated extract. The PVP selectively removes the tannin 
fraction, which is responsible for the toxicity (Field et al., 1988) but does not contribute 
significantly to the readily biodegradable substrate. The feedings were repeated by decanting 
the old media (through a tea sieve), while flushing with N2 gas, and replenishing the 
granular sludge with new extract containing media. 

The acidification of the bark extract COD was calculated by the sum of COD converted 
to methane and VFA. This sum was corrected for the same sum obtained from a sludge 
control (no extract added). 

The activity test was conducted for the granular sludge recovered from column 
experiments. The sludge (1.3 g VSS L"1) was fed 4 g COD L"1 neutralized VFA substrate 
containing acetate; propionate and butyrate in a ratio of 1:1:1 dry wt. or 24:34:41 COD basis. 
The assay was conducted in two feedings. At the end of the first feeding, the old VFA 
media was replaced with new VFA media. 

4 

3 

1 $ 

Figure 1. Design of the 0.15 L columns used in the continuous experiments of this study. 1. 
influent; 2. glass beads; 3. granular sludge bed; 4. screen; 5. gas separator; 6. biogas to 
mariotte flask; 7. effluent water lock; 8. syphon break; 9. effluent sampling point; 10. 
effluent discharge. 
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2.4. Column Experiments 

The continuous experiments were conducted in small glass columns which contained 0.15 
L of liquid volume as illustrated in Figure 1. These were placed in a constant temperature 
room of 30 ±2° C. The influents of the columns were prepared from the bark extracts by 
adding required nutrients for bacterial growth as described in Field et al. (1987) and by 
adding alkalinity in the form of NaHCC>3 at approximately one gram per gram of 
biodegradable COD (~ 0.5 g g"1 extract COD). The influents which were prepared for 3 to 
7 day intervals of operation were placed in a refrigerator. The head space of the influent 
containers were filled with N2 gas, and as they were pumped empty, N2 gas was provided 
from a gas bag to replenish the void volume. 

The methane gas production was measured in mariotte flasks of 10 L volume filled with 
5% NaOH to scrub out the CO2 from the biogas. 

In this study two separate experiments were conducted with the columns. The first 
experiment consisted of three columns treating: 1) untreated (unoxidized); 2) PVP treated; 
and 3) autoxidized pine bark extract. These columns were each seeded with 20 g VSS L 
reactor with "AVIK.O" sludge, a granular sludge originally cultivated on potato processing 
wastewater but was obtained after several months of storage in an anaerobic lagoon. After 
seeding, each of the columns were operated under identical conditions with a pH 7 
neutralized VFA stock solution (C^-Cy.CA = 24:34:41% COD) supplied at 4.2 g COD L" 1 and 
an average loading of 12 g COD L~' d for a one month period, followed by an additional 
two weeks with 8.4 g COD L~' and an average loading of 22 g COD L~' at which time the 
COD elimination efficiency was 95% or greater. After this 6 week adaption period to the 
VFA substrate, the column experiment was started (day 0 of the experiment) by changing to 
the bark extract influents. 

The second experiment consisted of one column treating calcium precipitated autoxidized 
pine bark extract. This column was seeded with 31 g VSS L" 1 reactor with the sludge 
obtained from the column 3 (of the first experiment). The experiment was started (day 0) 
directly with the bark extract influent. 

The biodegradability of the bark extracts during the column experiments was evaluated 
with the following parameters: M = % conversion influent COD to methane; VFA = VFA 
remaining in the effluent as % of the influent COD; ECOD = the % COD elimination based 
on the filtered effluent sample. Cells = % conversion of influent COD to cells (estimated 
from ECOD minus M); A = % conversion of influent COD to acidified products (the sum of 
M and VFA); BD = % biodegradability of the influent COD (sum of A and Cells); Y = specific 
cell yield in COD per unit of COD biodegraded; ECODprj = the % elimination of the 
biodegradable COD = [1-(VFA/BD)]*100. 

2.5. Bark Extracts Pretreatments 

Details of the pretreatments applied to the bark extracts are described in the results. 
Autoxidation was conducted by raising the pH of the bark extract to pH 11.5 (requiring 0.7 
to 1 g NaOH L~ ' ) , and aerating with a porous aeration stone. The aeration rate applied was 
high (approximately 30 v/v per hour) to ensure that the supply of air was not limited. After 
autoxidation, the extract pH was readjusted to 6.5 with HCl. 

3. RESULTS 

3.1. Repeated Batch Digestion of Pine Bark Extract 

3.1.1. Effect Autoxidation on Extract Characteristics 
The changes in the pine bark extract characteristics as a function of the autoxidation 

pretreatment time are illustrated in Figure 2. The figure illustrates that the autoxidative 
polymerization caused coloration of the extract associated with a decrease in the tannin 
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Figure 2. The changes in pine bark extract characteristics as a function of the autoxidation 
time (using a starting pH of 11.5). Where: UV = extract UV 215nm as a percent of the 
unoxidized extract UV 215nm (%UVT0), 128 lx,Icm; Tan = the tannin concentration 
expressed as a percent of the unoxidized extract tannin concentration (%TANT0), 2088 mg 
COD L"1 or 105 lx,lcm 215nm; LMWTan = the low MW tannin concentration expressed as a 
percent of the unoxidized tannin concentration; Color = extract VIS 440nm as a percent of 
the maximum VIS 440nm formation during autoxidation (%COLTf), 5.2 lx,lcm. The COD 
concentration of the extract was 6000 mg L •1 

Table 2. Schedule of Feedings for the Repeated Batch Anaerobic Digestion 

of Pine Bark Extract and the Absolute Methanogenic Activities of the PVP 

Treated Extract (Substrate Control). 

# 

1st 

2nd 

3rd 

4th 

5th 

FEEDING 

Started Length 

after for 

-- days --

0 7 

7 7 

14 14 

28 14 

42 14 

BUFFER 

NaHCOj 

9L-' 

2.0 

2.0 

2.0 

4.0 

4.0 

Extract13 

9 

4.8 

4.5 

4.6 

9.4 

9.4 

COO 

PVP 

COO L 

Extract0 

1 

3.2 

3.0 

2.6 

6.3 

4.7 

CONTROL ACTIVITY3 

PVP 

mg COD 

Extract0 

g"1 VSS d"1 

272 

318 

245 

409 

394 

The percent activity results in Figure 3 are expressed as percent of the 

activity of the sludge fed PVP treated extract. 

Assay concentration of the unoxidized and autoxidized pine bark 

extracts (no VFA substrate was added to these assays). 
c Assay concentration of the PVP treated pine bark extracts present at 

the same dilution as the bark extracts (no VFA substrate was added to 

this assay). The PVP control was the tannin free extract which supplied 

50 to 67% of the extract COO and approximately the same amount of 

biodegradable bark extract substrate. 
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content and an even larger decrease of the low MW tannin content. Most of the changes 
occurred after only one hour of autoxidation time, when the concentration of the toxic low 
MW tannins was reduced by 75%. The polymerization reactions cause a low decrease in the 
total UV (only 20%) and no decrease in the COD. 

3.1.2. Effect Autoxidation on Extract Toxicity 
The schedule of feedings utilized in the repeated batch anaerobic digestion of pine bark 

extract is listed in Table 2. The extracts provided the substrate for the toxicity test and 
the control activity was based on the sludge fed PVP treated extract. In a separate 
experiment with a 4 g COD L"1 VFA spike (data not shown), the non-toxicity of the PVP 
treated extract (unoxidized or autoxidized) was confirmed. 

Figure 3 presents the methanogenic activity results of the sludge exposed to the 
unoxidized and autoxidized extracts during five consecutive feedings. In the first feeding, no 
toxicity was evident from any of the extracts. By the second feeding (after one week of 
exposure), the first signs of toxicity were evident from the unoxidized extract; which by the 
third feeding (after 2 weeks of exposure), caused about 85% inhibition. The autoxidized 
extracts, on the other hand, were not inhibitory. During the final two feedings when the 
concentration of the media was raised to 9.4 g COD L~' the level of inhibition caused by 
the unoxidized extract increased to 90%. The 10 minute autoxidized extract started to cause 
inhibition which increased to 85% by the fifth feeding. The extracts autoxidized for 1 hour 
or more had low toxicities (< 25%) throughout all five feedings, indicating that their long 
term exposure to methanogenic sludge would not cause severe inhibition. 

The concentration of individual VFA present in the media at the end of the feedings are 
reported in Table 3. These results show that the low methanogenic activity was due to 
toxicity, because the inhibited digestions left VFA unutilized. Particularly, propionate was 
poorly utilized. 

3.1.3. Effect Autoxidation on Extract Acidification 
The acidification of pine bark extract COD (to VFA and CH4 COD) during the five 

consecutive feedings of the repeated batch digestion is reported in Figure 4. During the 
first three feedings, from 37 to 45% of the unoxidized and autoxidized extract COD was 
acidified. Initially, a higher acidification of the unoxidized extract was observed. However, 
in the second and third feedings, the percent acidification of the unoxidized bark extract 
decreased while the acidification of the PVP treated and autoxidized extracts was increasing. 

o 

a 
o 
o 

fr? 

> 
o 

< 

120 

0 0.17 1 4 16 

Autoxidat ion P r e t r e a t m e n t Time ( hou r s ) 

Feeding:G 1st U 2nd 0 3rd H 4 th • 5 th 

Figure 3. The methanogenic activity of granular sludge fed unoxidized and autoxidized pine 
bark extracts in 5 consecutive feedings during a repeated batch anaerobic digestion. The 
schedule of feedings and the extract concentrations are outlined in Table 2. 
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Table 3. The Acetate (C2), Propionate (Cj) and Butyrate (C^) 

Concentrations in the Media at the End of the Third, Fourth 

and Fifth Feedings of the Repeated Batch Anaerobic Digestion 

of Autoxidized Pine Bark Extract. 

Extracts 

Autoxidation 

Pretreatment 

0 hours3 

0.17 hours3 

1 hours 

4 hours 

16 hours 

PVP Control 

VFA Concentration 

THIRD FEEDING 

C2 

418 

74 

61 

54 

77 

80 

c3 

573 

27 

20 

19 

23 

34 

c4 

45 

0 

0 

0 

0 

0 

FOURTH 

C2 

365 

181 

144 

115 

94 

91 

(mg 

FEEDING 

C3 

785 

80 

48 

36 

34 

31 

C4 

83 

1 

0 

0 

0 

0 

COD L" 

FIFTH 

C2 

898 

412 

102 

88 

72 

159 

b 

FEEDING 

C3 

771 

608 

75 

65 

50 

46 

C4 

57 

104 

3 

0 

0 

0 

The unoxidized extract was inhibitory to the 

methanogenesis in the 3rd, 4th and 5th feedings. The 

Extract autoxidized for 0.17 h was inhibitory to the 

methanogenesis in the 5th feeding only. 

a o o 

Autoxidat ion P r o t r o a tmen t Time (hours ) 

Feeding: • 1st 0 2nd Q 3rd H 4th • 5 th 

Figure 4. The acidification of unoxidized and autoxidized extracts of pine bark COD in 5 
consecutive feedings during the repeated batch anaerobic digestion. Where: acidification = 
the % conversion of the COD supplied to VFA and CH4. Part A. 1st to 3rd feeding with 
approximately 5 g COD L" 1 . Part B. 4th to 5th feeding with approximately 10 g COD L ~ \ 
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When the extract was supplied to the assays at higher concentrations in the fourth and fifth 
feedings, the autoxidized ( ä lh) extracts acidified to a greater extent than the unoxidized 
extracts. At the end of the fourth and fifth feeding, the autoxidized extracts also contained 
lower concentrations of intermediates derived from the incomplete degradation of plant 
phenolics; such as phenol, cresol, and carboxycyclohexane (Figure 5). 
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Figure 5. The concentration of phenol, p cresol and carboxycylohexane in the assay media at 
the end of the third, fourth and fifth feeding of the repeated batch digestion. 

3.2. Continuous Treatment of Extract 

3 .2.1. Experimental Set-Up 
Laboratory columns were utilized to investigate the continuous anaerobic treatment of 

pine bark extract, and pine bark extract autoxidized at a starting pH of 11.5 for 16 hours. 
In order to determine if the detoxification was complete the pine bark extract was treated 
with PVP (in accordance with the tannin determination) to prepare a third influent feed 
stock, which was free of tannins. 

The autoxidation did not change the extract COD content and had only a small effect on 
the UV absorbance. The average decrease in the tannin content by the autoxidation 
performed on 19 extracts used to prepare influents in this study was 50.8% ±10.9%. The PVP 
treated extracts contained on the average 63.5% of the COD and only 22.2% of the UV 
absorbing material compared to the unoxidized extract. 

The average load, HRT and influent concentration in various periods of the reactor 
operation are listed in Table 4. 
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Table 4. Period Averaged Operation Para 

of Pine Bark Extract. 

eters of the Continuous Anaerobic Treatment 

Period 

A 

B 

C 

D 

E 

F 

G 

H 

EXPb 

Day No. 

start/ 

end 

0/16 

17/21 

22/56 

57/75 

76/93 

94/119 

120/133 

134/155 

0/155 

Influent Cone. 

9 

unoxa 

6.5 

10.2 

3.9 

4.8 

5.9 

10.1 

8.2 

12.9 

7.2 

C00 L 

autoa 

7.1 

9.9 

3.8 

4.7 

5.7 

9.5 

14.0 

13.9 

7.9 

1 

PVPa 

4.3 

7.8 

2.8 

3.4 

4.2 

6.6 

4.0 

9.8 

5.1 

unox 

10.6 

6.4 

6.7 

5.7 

5.1 

6.2 

7.0 

7.0 

6.8 

HRT 

hours 

auto 

10.3 

5.9 

4.8 

5.5 

4.8 

6.8 

14.8 

8.4 

7.2 

PVP 

10.3 

5.7 

5.6 

7.1 

5.2 

7.8 

7.2 

7.3 

6.8 

9 

unox 

14.8 

41.4 

16.4 

20.1 

32.1 

42.1 

34.6 

46.8 

29.1 

Load 

COO L"1 

auto 

16.7 

44.2 

20.1 

20.4 

30.8 

43.3 

26.9 

41.3 

29.1 

d"1 

PVP 

10.0 

34.7 

13.1 

12.5 

22.7 

23.5 

19.8 

33.3 

20.1 

unox = not pretreated; auto = pretreated by autoxidation for 16 hours at ph 11.5; 

and PVP = pretreated by removing the tannin fraction from the extract by 

adsorption on polyvinylpyrrolidone. 

EXP = experimental average 

3.2.2. Treatment Performance 
The autoxidation of the bark extracts increased the reactor performance. The column fed 

with the unoxidized extract provided lower levels of COD elimination and had higher 
effluent VFA concentrations compared to the column fed with autoxidized extract (Figures 6 
and 7). This was the result of the methanogenic inhibition caused by the unoxidized extract 
tannins. The experiment averaged conversion of the COD to methane, was only 19% with the 
column fed unoxidized extract, whereas twice the yield of methane (40%) was obtained by 
autoxidizing the extract (Table 5). The low yield of methane from the unoxidized extracts 
was due to the incomplete utilization of VFA and likewise an incomplete elimination of 
biodegradable COD was observed. In contrast, the autoxidized extract fed column provided 
the maximum obtainable methane yield possible, since a complete elimination of the 
biodegradable substrate occurred. 

The toxicity of the unoxidized pine bark extract was strong during the initial periods (A 
and B), when the methane production decreased to almost nothing. Afterwards (in period 
C), some adaption to the toxicity was evident. The COD loading was increased in the 
following periods (D to H), without a decrease in the COD conversion efficiency. Although 
adaption occurred, throughout the experiment high concentrations of VFA were present in 
the effluent. The effluent VFA was composed almost entirely of propionate (results not 
shown). Therefore, the unoxidized tannin toxicity was severe for the metabolism of 
propionate (as was also observed in the batch experiments). These results indicate that the 
improvement in methane production after period B was due to adaption of the acetoclastic 
methanogens. 

The treatment of the unoxidized extract with PVP also increased the reactor performance 
to the same extent as the autoxidation treatment. Although the COD elimination and 
conversion of COD to methane was higher (Figure 8), this was only due to the fact that the 
PVP pretreatment removed the poorly biodegradable tannin COD fraction from the influent. 
The quantity of methane produced and COD eliminated was the same, and both columns 
provided the same percentage of biodegradable substrate elimination (Table 5). 
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Table 5 . Average Treatment Efficiency and Biodegradation 

during the Continuous Col u rn Experiments Fed Pine Bark 

Extract-

Parameter3 Units 

ECOD 

M 

VFA 

Cells 

A 

BD 

EC0DBD 

Y 

% infl. COD 
ii 

H 

" 
" 
H 

% infl. CODgD 

9 C00cells S"1 C00BD 

Experimental Average 

unox 

37.4 

18.8 

15.8 

18.4 

34.7 

53.1 

69.9 

0.33 

auto 

51.8 

39.5 

1.4 

12.3 

40.7 

52.9 

97.3 

0.22 

PVP 

74.3 

56.5 

2.4 

16.4 

59.0 

76.3 

97.0 

0.21 

parameters are def ined i n Mater ia ls and Methods 

treatment d e f i n i t i o n s are def ined in the footnote of Table 4 

The pine bark tannins were highly detoxified by the autoxidation. The application of high 
organic loading rates of approximately 40 g COD L~' d~' (25 g biodegradable COD L~' d~') 
and high influent concentrations 14 g COD L 
with 98% removal of the biodegradable COD. 

was feasible by the end of the experiment 

3.2.3. Sludge Activity 
The sludge, obtained from each of the reactors at the end of the experiment, was 

assayed for specific methanogenic activity (Table 6). The specific methanogenic activity of 
the sludge from the column fed PVP treated extract was the highest. The sludge from the 
autoxidized and unoxidized extract fed columns had 34 and 80% less activity in the first 
VFA feeding of the assay, respectively. However, if the net methanogenic capacity of the 
columns are compared (activity multiplied by VSS content) than the autoxidized and 
unoxidized extracts fed columns had 25% and 77% less capacity, respectively, reflecting a low 
and high level of toxicity in these extracts. The low activity of the sludge from the column 
fed unoxidized extract was mostly due to a poor utilization of the propionate and butyrate 
(Table 7). The large increase in activity of this sludge in the second VFA feeding can be 
attributed to the adaption to the butyrate. No adaption to the metabolism of propionate was 
observed even after two weeks of assay in the absence of the toxins. 

3.2.4. Biodegradability of Extracts during the Continuous Experiments 
The experimental average acidification of the unoxidized pine bark extract was 35% 

(Table 5). This was lower than the average acidification of 41% from the autoxidized extract. 
This trend was already recognized in the repeated batch anaerobic digestions. The 
acidification of the PVP treated extract averaged 59% of the influent COD, but if expressed 
as a percentage of the whole extract COD (before PVP treatment) it was equal to 37.5%. 
The experiment averaged biodegradability of the extract COD was the same (53%) for the 
unoxidized and autoxidized extracts (Table 5). Although the average biodegradability of the 
PVP treated extract was higher, it was similar (49%) to the other extracts, if expressed as a 
percent of the original extract COD. Therefore, during continuous anaerobic treatment there 
was not any additional biodegradable substrate present in the tannin fraction. 

The acidification and biodegradability of the extract by the uninhibited PVP treated and 
autoxidized extract fed columns increased during the course of the experiment (Figure 9). In 
the final periods of the experiment (periods F to H), the acidification was 39 to 45% greater 
and the biodegradability was 35 to 38% greater than at the beginning of the experiment 
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Figure 6. Operation and efficiency during the continuous anaerobic treatment of unoxidized 
pine bark extract. Where: %M = the percent conversion of the influent COD to CH4; 
%ECOD = the elimination of COD based on the filtered effluent sample; Effl. VFA = the 
effluent VFA concentration in g COD L" 1 ; Effl. pH = the effluent pH; COD Load = the COD 
loading rate. 

(periods A to B). In contrast, the acidification of the unoxidized extract remained largely 
unchanged and only a 27% increase in biodegradability was observed between the same 
periods. These results indicate that adaption to the acidification and biodegradability of 
certain components in the bark extracts occurred in the un-inhibited columns, while a 
similar level of adaption was not evident in the inhibited column. 

The lower acidification of unoxidized compared to detoxified extracts might result from 
the incomplete biodégradation of phenolic intermediates by methanogenic inhibited digestions, 
as was observed in the batch digestion study. Their degradation is perhaps hindered by the 
high VFA concentrations that result from inhibited methanogenesis. Several studies (Lane, 
1980; Fedorak et al., 1986; Field et al., 1987) have demonstrated that simple phenolic 
compounds are poorly degraded if high concentrations of VFA (and presumably H2) are 
present in the media. The uninhibited methane bacteria maintain low VFA and H2 
concentrations in the media, which favours the degradation of phenols. This postulate is 
supported by the fact that these intermediates (phenol, p cresol and carboxycyclohexane) 
were linearly related to the logarithm of the effluent VFA concentration during the 
continuous column experiments (Figure 10). On one occasion (day 126) other intermediates of 
phenol degradation were investigated, these included trans cinnamate, phenylacetate and 3 
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Figure 7. Operation and efficiency during the continuous anaerobic treatment of autoxidized 
bark extract. Definition of abbreviations are given in Figure 6 caption. 

phenylpropionate, of the three only the latter was found (116 to 137 mg COD L~') in the 
columns which had significant levels of effluent VFA (600 to 800 mg COD L~') on the day 
of sampling. 

During periods C to F of the continuous experiment, the elimination of UV absorbance 
and tannins by anaerobic treatment were measured (Table 8). About half of the UV 
absorbance and 60% of the tannins were eliminated from the unoxidized extract. Very low 
levels of UV absorbance were eliminated from the autoxidized extract which was expected 
assuming that the autoxidized tannin products would have increased recalcitrance (Table 8). 
The UV elimination that did occur corresponded to the quantity of UV absorbance units 
eliminated from the non-tannin fraction (PVP treated extract). No elimination of the 
autoxidized tannins was evident, and to a small extent their concentration increased 
(negative % elimination). The HPLC chromatograms of the influents and effluents, sampled on 
day 106, illustrate the partial elimination and biotransformations of the UV absorbing 
compounds in the unoxidized extracts by anaerobic treatment (Figure 11). In contrast, the 
high MW autoxidation products were not altered by anaerobic treatment. Although a few of 
the UV absorbing compounds were degraded in the autoxidized extract, these were the non-
tannic phenolic compounds that were not altered by the autoxidation. 
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Figure 8. Operation and efficiency during the continuous anaerobic treatment of PVP treated 
pine bark extract. Definition of abbreviations are given in Figure 6 caption. 

The elimination of tannins from the unoxidized extracts must have resulted from 
biological transformations to non-tannic intermediates of lower UV absorbance or to 
compounds not having UV absorbance. In any case, their elimination did not coincide to 
additional acidification nor to additional biodegradability beyond that observed in the 
autoxidized extract. 

3.2.4. Biodegradability of Extracts by Sludge Recovered from the Continuous Experiments 
At the end of the experiment, sludge from the column experiments was recovered to 

study the long term anaerobic biodegradability of bark extract. The sludge recovered from 
the PVP treated extract fed column was able to biodegrade (Figure 12) more bark extract 
COD as compared to the sludge obtained from the unoxidized extract fed column. The same 
trend between the sludges was also observed with respect to the UV elimination (Figure 13) 
and tannin elimination (Figure 14). Therefore, adapting the sludge to phenolic degradation 
in the absence of tannins was better for the degradation of the phenolic compounds in the 
whole bark extract (including tannins). This was probably due to the higher methanogenic 
activity of sludge cultivated on the non-tannin fraction, which served to maintain a lower 
VFA concentration in the media and thereby favour the degradation of phenolic compounds. 
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Table 6. The Sludge Concentration and the Sludge Activity at the End of the Continuous 

Colum Experiments Fed Pine Bark Extract. 

Sludge3 

unox 

auto 

PVP 

— 

a the experiment 

0.62 g COO g"1 

uas 

vss 

sludge Concentrât 

in reactor 

g VSS L"1 

70 

68 

60 

started with 20 

d"1. 

'on 

g VSS L" 

Sludge Activity 

Firstb Second6 

g COO g"1 VSS d"1 

0.111 0.350 

0.370 0.561 

0.559 0.797 

AVIKO granular sludge 

Methanogenic Capacity 

of reactor0 

g COD L"1 d"1 

7.8 

25.2 

33.5 

having an activity of 

b first and second VFA feedings 
c the methanogenic capacity was calculated by multiplying the first feeding's activity by 

the VSS concentration in the reactor (the capacity refers to the acidifiable COO). 

unox = sludge from column fed unoxidized extract; auto = sludge from column fed 

autoxidized extract; PVP = sludge from column fed PVP treated extract. 

Table 7. The Acetate (C2), Propionate (Cj) and Butyrate (C4) 

Concentrations in the Media at the End of the First and 

Second Feedings of the Sludge Activity Test Conducted for 

the Sludge Recovered at the End of the Continuous Pine Bark 

Extract Experiment. 

Sludge 

unox 

auto 

PVP 

c2 

171 

243 

94 

FIRST 

c3 

End Feed 

C4 

ngsa 

C2 
• VFA concentration (mg 

1389 

252 

147 

1537 

28 

11 

134 

25 

32 

SECOND 

C 3 1 
COD L ') 

1436 

33 

59 

C4 

99 

0 

0 

each feeding lasted 7 days, the starting concentration of 

C2, C3 and C4 was 979, 1387 and 1673 mg COD L"1. 

182 



60 

40 

20 

A. unox id ized 

l l l l l l l l 
A B C D E F G H 

u gQ L B. au tox id ized 

2, 40 

20 

u 0 
û- 100 

Ulli 
A B C D E F G H 

A B C D E F G H 
Time Per iod 

D . , . . . \~ M Cells B iodégrada t ion _ _ . . ..... , . to L_ • • Acidification 

Figure 9. The period averaged acidification and biodégradation of the influent COD during 
the continuous anaerobic treatment pine bark extract. Where: acidification = the % 
conversion of the COD supplied to VFA and CH4; biodégradation = acidification + cells. Part 
A. Unoxidized extract. Part B. Autoxidized extract. Part C. PVP treated extract. 
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Figure 10. The sum of the effluent phenolic intermediate concentration (phenol, p cresol and 
carboxycyclohexane) as a function of the effluent VFA concentration during the continuous 
anaerobic treatment of unoxidized (Col 1), PVP treated (Col 2) and autoxidized (Col 3) 
extracts. The results were obtained between day 94 to day 155 of the experiment (R2 = 0.72) 

Table 8 . Period Averaged Elimination of Total and Tannin UV (215 rm) Absorfaance fron Pine Bark Ext racts 

by Continuous Anaerobic Treatment. 

Per. 

C 

D 

E 

F 

EXP 

Day No. 

start/ 

end 

22/56 

57/75 

76/93 

94/119 

22/119 

Infi. 

unoxa 

87 

77 

166 

257 

132 

Total 

Absorbanee 

1cm,1 

auto 

69 

65 

120 

212 

104 

X 

PVP 

21 

24 

59 

55 

38 

UV 

Elimination 

% total UV 

unox 

48.5 

45.3 

50.8 

53.3 

48.6 

auto 

9.9 

23.6 

9.6 

15.9 

12.8 

PVP 

34.5 

54.1 

59.6 

65.5 

48.8 

Tannin 

Infi. Absorbance 

1 

unox 

70 

56 

136 

198 

104 

cm. 1x 

auto 

27 

30 

50 

120 

48 

UV 

Elimination 

% tannin UV 

unox 

65.0 

60.3 

53.7 

62.0 

60.4 

auto 

-22.6 

2.8 

-11.2 

-1.1 

-12.2 

a treatment definitions are defined in the footnote of Table 4 
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unoxidized 

4 8 12 16 20 24 28 32 36 40 

Retention Time (minutes) 
Figure 11. The HPLC chromatograms of the influents (———) and the effluents ( ), 
sampled on day 106, of the continuous anaerobic treatment of unoxidized, autoxidized and 
PVP treated pine bark extracts. 

Based on the long term batch digestion experiments with the sludge cultivated on the 
non-tannin fraction of the wastewater, the ultimate COD biodegradability of the whole 
unoxidized bark extract was 85% after 30 days. The elimination of extract UV and tannins 
reached 80 and 75%, respectively. The whole pine bark extract contains more biodegradable 
substrate as compared to the PVP treated extract (Figure 9). This would indicate that at 
least some of the unoxidized tannins are potentially biodegradable to CH4, VFA and cells if 
they have a sufficiently long residence time in anaerobic conditions. 

3.3. Continuous Treatment of Precipitated Extracts 

3.3.1. Set-Up 
The sludge obtained at the end of the autoxidized extract fed column experiment was 

used to seed another column in order to investigate the anaerobic treatment of calcium 
precipitated autoxidized pine bark extract. In this experiment the pine bark extract was 
autoxidized for 1 h at a starting pH of 11.5, and then 500 mg L"1 of Ca2+ (in the form of 
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Unoxidized Extract (sludge 1) 

PVP Treated Extract (sludge 1 ) 

Unoxidized Extract (sludge 2) 

PVP Treated Extract (sludge 2) 

Figure 12. The biodegradability of unoxidized and PVP treated pine bark extract during 
batch anaerobic digestion by sludge recovered at the end of the continuous experiments fed 
unoxidized (sludge 1) and PVP treated pine bark (sludge 2) extracts. Sludge 1 and 2 
concentrations were 1.25 and 1.09 g VSS L"*', respectively. The unoxidized and PVP treated 
extract concentrations were 3.59 and 2.38 g COD L"' at the start of the assay. 
Biodegradability = the % conversion of the COD supplied to CH4, VFA and cells. 

Unoxidized Extract (sludge 1) 

PVP Treated Extract (sludge O 

Unoxidized Extract (sludge 2) 

PVP Treated Extract (sludge 2) 

0 10 20 30 40 50 

Days 

Figure 13. The UV absorbance (215nm) of the assay media during batch anaerobic digestion 
of unoxidized and PVP treated pine bark extracts by sludge recovered at the end of the 
continuous experiments fed unoxidized (sludge 1) and PVP treated (sludge 2) extracts. Details 
of this experiment are described in Figure 12 caption. The initial UV absorbance of the 
unoxidized and PVP treated extracts were 101 and 28 lx,lcm, respectively. 
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O Tannin UV (sludge 1) 

- • - Tannin COD (sludge 2) 

••©••• Tannin UV (sludge 2) 

Figure 14. The tannin concentration based on COD and UV (215nm) measurements of the 
assay media during batch anaerobic digestion of unoxidized pine bark extracts by sludge 
recovered at the end of the continuous experiments fed unoxidized (sludge 1) and PVP 
treated (sludge 2) extracts. Details of this experiment are described in Figure 12 caption. 
The initial tannin concentration was 1.36 g COD L~' or 75 lx,lcm 215nm absorbance units. 

Table 9 . The Average Reaoval of Extract COO, UV Absorbance 
and Tannins by 1 hour Autoxidation (with a Starting pH of 
11.5) and by Autoxidation Followed by Precipitat ion with 

. - 1 Calciua (500 q L for 2 hours, pH approx. 9 ) . 

Parameter 

Total COD 

Total UV 

Tannin COD 

Tannin UV 

Autox 

4.0 

16.3 

36.4 

43.5 

only 

percent 

(±3.8)a 

(±3.2) 

(±14.1) 

(±11.3) 

Autox. 

removed --

29.6 

72.3 

71.6 

86.0 

• Ca2+ 

(±2.1) 

(±3.6) 

(±6.2) 

(±3.2) 

The values i n parenthesis are the standard dev ia t ion un i t s 

of the reported average. The values reported are the 

average of 5 ex t racts prepared fo r the i n f l uen ts of the 

calcium p rec ip i t a ted autoxid ized bark ex t rac t fed columns. 

Table 10. Period Averaged Operation Parameters of the 

Continuous Anaerobic Treatment of Pine Bark Extract 

Pretreated by Autoxidation and Calcium Precipi tat ion. 

Per. 

A 

B 

c 

EXPa 

Day No. 

start/ 

end 

0/23 

24/54 

55/67 

0/67 

Infi Cone 

g COD L"1 

3.7 

2.8 

2.6 

3.1 

HRT 

hours 

5.3 

6.8 

2.8 

5.6 

Load 

g COD L"1 

17.9 

12.5 

22.9 

16.2 

d"1 

EXP = experimental average 
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Figure 15. Operation and efficiency during the continuous anaerobic treatment of calcium 
(500 mg L~') precipitated autoxidized (starting pH of 11.5 for 1 hour) pine bark extract. 
Definition of abbreviations are given in Figure 6 caption. 

Table 11 . Average Treatment Efficiency and Biodegradation 

during the Continuous Colum Experiments Fed Pine Bark 

Extract Pretreated by Autoxidation for 1 hour at pH 11.5 

followed by Calciun Precipitation. 

Parameter3 Un i ts 

ECOD 

M 

VFA 

Cel ls 

A 

BD 

ECOOgo 

Y 

% i n f l . COD 

" 
" 
II 

" 
II 

% i n f l . COD 

9 C 0 0 c e l l s 9"1 

BD 

cooB D 

Experimental Average 

66.2 

47.8 

4.8 

18.4 

52.6 

71.1 

93.1 

0.26 

parameters are def ined i n Mater ia ls and Methods 
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CaCl2) was added. The precipitate was allowed to settle for 2 hours and the extract was 
then decanted over a paper filter. In a previous study, the ability of calcium to precipitate 
the high MW autoxidation products was observed (Field et al., 1990b). The pretreatment of 
the autoxidized extract by calcium precipitation prior to anaerobic treatment was applied to 
lower the concentration of recalcitrant COD in the anaerobic effluent. Based on the data 
presented in Table 9, the calcium precipitation of the autoxidized extracts removed 27% of 
the COD and 67% of the UV absorbance. 

The average load, HRT and influent concentration in various periods of the reactor 
operation are listed in Table 10. 

3.3.2. Treatment Performance and Biodegradability 
The calcium precipitated autoxidized extract was treated with a higher COD elimination 

efficiency, acidification and was biodegraded to a greater extent (Figure 15 and Table 11) as 
compared to the treatment of the autoxidized extract. This was due to the precipitation of 
poorly degradable COD prior to the anaerobic treatment. However, the parameters were 
comparable to the those of the autoxidized extract fed column if they are expressed as a 
percent of the autoxidized extract COD before calcium precipitation. Therefore, calcium 
pretreatments of autoxidized extracts can be applied to physically remove some of the poorly 
biodegradable COD without decreasing the COD which is potentially convertible by biological 
treatment. The calcium treatment would also decrease the color of the autoxidized 
wastewater as was discussed previously (Field et al., 1990b). 

Previously, an average of 53% biodégradation of the autoxidized extract was observed 
during anaerobic treatment, indicating that 47% of the extract COD would be present as 
recalcitrant COD in the effluent (Table 5). The combined precipitation and anaerobic 
treatment of this extract reduced the autoxidized COD by 79% on the average (27% and 52% 
of the original COD by Ca^+ and anaerobic treatment, respectively), leaving much less 
recalcitrant COD in the anaerobic effluent. 

4. DISCUSSION 

4.1. Effect Autoxidation on Treatment Efficiency 

The debarking wastewaters of the forest industry are troublesome for anaerobic treatment 
due to their high content of methanogenic toxic tannins. An autoxidation pretreatment can 
be applied to polymerize the tannins to non-toxic colored compounds. In this study, the 
anaerobic treatment of aqueous pine bark extracts was improved by the autoxidation 
pretreatment. During anaerobic treatment of unoxidized extracts, incomplete conversion of 
the biodegradable substrates to methane was observed and high concentrations of VFA were 
present in the effluent. Whereas, anaerobic treatment of autoxidized extracts provided twice 
as much methane production. The absence of inhibitory factors in the autoxidized extracts 
was evident from the low effluent VFA concentrations during the continuous experiment and 
was also evident from long term batch toxicity tests. The autoxidation pretreatment 
permitted the anaerobic treatment of pine bark extracts at high influent concentrations (-14 
g COD L~') and loading rates 40 g COD L~' d~' with 98% removal of the biodegradable 
COD. 

4.2. Effect of Autoxidation on the Anaerobic Biodegradability 

The unoxidized tannins, which are responsible for 37% of the extract COD, were 
eliminated 60% by continuous anaerobic treatment, whereas the autoxidized products of these 
tannins were not eliminated at all. The high MW products of autoxidation reactions increase 
the recalcitrance of the tannin fraction. Poor anaerobic biodegradability of high MW 
phenolic compounds has frequently been observed in studies with lignin and peat (Owen et 
al., 1979; Zeikus et al., 1982; Benner and Hodson, 1985; Colberg and Young, 1985). However, 
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the formation of high MW tannin and humic products by autoxidation did not correspond to 
a decrease in the whole extract biodegradability. The extract biodegradability during 
anaerobic treatment was 53% for both unoxidized and autoxidized influents. The elimination 
of tannins as well as other phenols from the unoxidized extracts was due to their partial 
degradation to non-tannic phenolic intermediates as opposed to their complete fermentation 
to VFA and CH4. The methanogenic toxicity caused VFA from the acidification of the 
biodegradable fraction to accumulate. The high VFA concentration inhibited the 
biodégradation of the phenolic intermediates. Therefore, the application of the autoxidation 
pretreatment did not decrease the anaerobic biodegradability of the whole extract. 

The recalcitrant COD expected in the effluents of anaerobic processes treating 
autoxidized bark wastewater can be effectively reduced by calcium precipitation prior to 
anaerobic treatment. The precipitation is also effective in reducing the color of the 
autoxidized extracts (Field et al., 1990b). 
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CHAPTER 12 

Summary and Conclusions 



SUMMARY AND CONCLUSIONS 

1. SUMMARY 

Anaerobic wastewater treatment is an alternative to the aerobic treatment processes for 
the removal of easily biodegradable organic matter in medium to high strength industrial 
wastestreams. The application of anaerobic treatment has several advantages such as low 
excess sludge production, compact treatment facilities, low operation costs and a useful by
product (methane). However, one important disadvantage is the high sensitivity of the 
anaerobic bacteria (ie. methanogenic bacteria) to toxic compounds. 

The anaerobic technologies were initially developed for the treatment of non-toxic 
organic wastewaters. As the technology matured, the limits of its application to toxic 
wastewaters were studied. Past research has been mostly directed towards the toxic effects 
of compounds introduced by man into the industrial process rather than natural 
constituents present in agricultural wastewaters. 

This dissertation investigates the role of natural polar phenolics (ie. tannins and related 
compounds) on anaerobic digestion processes. A distinct feature of tannic compounds and 
other highly hydroxylated phenolics is that they are readily oxidized to darkly colored humic 
compounds. Such transformations can produce products which differ in toxicity and 
biodegradability compared to the original tannic compounds present in the industrial 
feedstocks. Industrial process waters are often exposed to conditions which promote phenol 
oxidation, therefore the role of humus forming processes was a major consideration included 
in this study. 

Chapter 1 
The available literature data regarding the toxicity and biodegradability of tannic 

compounds is reviewed in Chapter 1. 

Chapter 2 
Chapter 2 evaluated the effect of hydroxylation reactions on the methanogenic toxicity 

and anaerobic biodegradability of simple phenolic amino acids. The hydroxylation reactions 
are the first step in a series of reactions leading to darkly colored humic compounds known 
as melanin. Tyrosine (monohydroxy), present in potatoes can potentially be oxidized to L 
dopa (dihydroxy) during the processing of starch. The toxicity of tyrosine to methane 
bacteria was negligible, while L dopa caused from 40 to 50% inhibitions of the methanogenic 
activity at a concentration of 327 mg L~'. The L dopa toxicity was synergistic with volatile 
fatty acids (VFA) and the inhibition thus could be minimized by maintaining low VFA 
concentrations in anaerobic reactors. In long term experiments with continuously operated 
anaerobic columns fed VFA substrates together with L dopa, the methanogenic bacteria 
adapted to the toxicity of L dopa. Both tyrosine and L dopa were anaerobically degradable 
in batch experiments. However, only tyrosine was degradable in continuously operated VFA-
fed columns. 

Chapter 3 
In Chapter 3, the toxicity and biodegradability of a hydrolyzable tannin (gallotannic 

acid) and its monomeric counterparts (gallic acid and pyrogallol) were studied. Gallotannic 
acid was highly toxic to methane bacteria. Concentrations of 700 mg L~' caused 50% 
inhibition. The toxicity was persistent over two month assay periods despite the rapid 
degradation of gallotannic acid. One day exposures of anaerobic sludge to gallotannic acid 
was sufficient to severely damage the sludge activity. In contrast, the monomeric derivatives 
were considerably less toxic. The 50% inhibiting concentrations of the monomers was 3000 
mg L , and their toxicity was not persistent. Gallotannic acid, gallic acid and pyrogallol 
were readily and completely biodegradable in batch anaerobic assays. Under conditions 
inhibitory to methane bacteria, these trihydroxy phenolic compounds were converted to 
acetic acid. 
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Chapter 4 
The toxins of aqueous tree bark extracts were investigated in Chapter 4. The extracts 

were studied as a model for debarking wastewater of the forest industry. The 
polyflavonoids (condensed tannins), which were measured by their adsorption on an insoluble 
polyamide, polyvinylpyrrolidone (PVP), accounted for about half of the aqueous extractable 
COD of bark. The bark extracts caused severe inhibition to methane bacteria. The extracts 
that were treated with PVP to selectively remove tannins, were non-toxic to methane 
bacteria. This indicated that they were the principal toxins of bark soluble matter. The 
concentration of bark tannins causing 50% inhibition to methane bacteria averaged 600 mg 
COD L"1 (350 mg tannin solids L"1). 

Chapters 5 & 6 
In Chapters 5 and 6, the effect of autoxidizing pure phenolic compounds to colored 

polymerized products was studied. Partial polymerization of relatively non-toxic polar 
monomeric phenolics caused the methanogenic toxicity to increase. In contrast, the 
polymerization of toxic tannic compounds led to detoxification. One compound, catechin (a 
condensed tannin monomer) first increased in toxicity and later decreased in toxicity as it 
was polymerized to darkly colored humic compounds. These results formed the basis for 
developing the tannin theory. The theory postulates that the initial polymerization of 
monomers leads to an increased toxicity due to an increase in tannic qualities. The 
oligomers formed are able to form stronger hydrogen bonds with proteins than the 
monomers. They are thus more likely to react with the functional proteins of bacteria. If 
the polymerization is continued, the theory postulates a decrease in toxicity due to a 
decreased effectiveness of high MW compounds to penetrate bacteria. The anaerobic 
biodegradability of the phenolic compounds was found to decreases with the degree in which 
colored products were formed by the oxidation. The end products of phenolic polymerization 
are high MW humic compounds that are non-toxic and non-biodegradable. 

Chapter 7 
In Chapter 7, we observed that pyrogallol (trihydroxy) was not highly polymerized by 

autoxidation. During the initial stages of pyrogallol autoxidation, a highly toxic compound 
was formed. This compound was identified as purpurogallin which is not a tannic compound. 
However it is more toxic than tannins. The concentration of purpurogallin causing 50% 
inhibition to methane bacteria was 45 mg L . Purpurogallin was also toxic to the anaerobic 
biodégradation of pyrogallol. After long periods of autoxidation, purpurogallin is 
destructively oxidized and the methanogenic toxicity is eliminated. 

Chapter 8 
The detoxification of tannin containing wastewater was investigated in Chapter 8. 

Aqueous extracts of bark were treated by autoxidation (aeration at a high pH), in order to 
polymerize the toxic condensed tannins. The unoxidized and autoxidized extracts were tested 
for methanogenic toxicity in batch anaerobic assays fed VFA as substrate. The autoxidation 
of coniferous bark extracts caused high levels of detoxification. Complete detoxification of 
pine bark extracts was obtained. Extracts prepared from different samples of spruce bark 
were either partially or completely detoxified. The degree of detoxification corresponded to 
the decrease in the oligomeric tannin concentration as well as to the increase in color 
bearing polymerized products. Birch bark extracts could not be detoxified by autoxidation 
even though the tannins were successfully polymerized. The poor detoxification results were 
due to the presence of non-tannic toxins in the birch bark extracts. 

Chapter 9 
Alternative methods of oxidation were evaluated in Chapter 9. Both spruce and birch bark 

extracts were detoxified by destructive oxidations with H2O2. The H2O2 oxidation of bark 
extracts provides detoxification without producing the colored humic compounds. Extracts of 
both birch and spruce bark were also highly detoxified by long term aerobic biological 
treatments of 3 to 4 weeks, that were responsible for more extensive polymerization than 
could be achieved by high pH autoxidation. Neither H2O2 oxidation or long term aerobic 
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treatments are considered economically feasible. However, the results of this chapter 
indicate that reliable methods of detoxification for debarking wastewaters of all tree species 
can be achieved by the oxidative treatments that either extensively destroy or extensively 
polymerize the toxins. 

Chapter 10 
The toxicity of high and low MW tannin fractions in autoxidized spruce bark extracts 

was tested in Chapter 10. Calcium precipitation of the tannins only removed the high MW 
tannin fraction and this had no effect in relieving the methanogenic toxicity. In contrast, 
granular active carbon adsorption treatments were only effective in removing the low MW 
tannins and likewise the toxicity of the extract was removed. The oligomeric tannins, that 
remain after autoxidation treatments, are therefore responsible for the residual toxicity in 
partially detoxified extracts. The high MW tannins are non-toxic. In order to monitor the 
toxicity of autoxidized bark extracts, the oligomeric tannins instead of total tannins should 
be measured. 

Chapter 11 
The continuous laboratory-scale anaerobic treatment of untreated and autoxidized pine 

bark extracts was studied in Chapter I I , utilizing granular sludge packed columns. The 
autoxidation pretreatment doubled the conversion efficiency of bark extract COD to methane 
(from 19 to 40%). The improvement in the methane production was due to the better 
utilization of VFA formed from the easily fermentable substrate. After five months of 
operation, anaerobic treatment of the autoxidized extracts was feasible at high influent 
concentrations (-14 g COD L~ ' ) and loading rates (40 g COD L~' d~ ' ) with 98% elimination 
of the biodegradable fraction. The autoxidation products of the tannins were not 
transformed during anaerobic treatment, whereas about half of the original tannins of the 
unoxidized extract were transformed to potentially biodegradable phenolic intermediates. 
However, the biodegradability of these intermediates was inhibited by a high reactor VFA 
concentration that resulted from the methanogenic inhibited sludge. Therefore, the average 
biodegradability (53%) of the entire extract COD during continuous anaerobic treatment was 
not decreased by the autoxidation pretreatment. The recalcitrant COD expected in the 
effluents of reactors treating autoxidized debarking wastewater can be effectively separated 
by calcium precipitation of the autoxidized products out of the influent prior to anaerobic 
treatment. 

2. CONCLUSIONS 

The methanogenic toxicity of polar phenolic compounds depends on the tannic quality of 
these compounds and their capacity to penetrate. An important factor governing the 
tannin quality and penetration ability is the polymer size (ie. MW) of the tannic compounds. 
The relationship between tannin toxicity and MW has been outlined by the tannin theory. 

Phenolic compounds present in agricultural wastewaters are susceptible to oxidative 
modifications during short exposures to air which will have an impact on their 
methanogenic toxicity. In cases where the predominant phenols are monomeric tannins, than 
the oxidative polymerization leads to oligomeric tannins, which would increase the 
wastewater toxicity. On the other hand, in cases where the predominant tannins are 
oligomers, than the initially toxic wastewater could potentially be detoxified by oxidative 
polymerization. 

Debarking wastewater of coniferous trees can successfully be detoxified by autoxidation 
pretreatments prior to anaerobic digestion. This pretreatment should be considered 
economically feasible since it only requires the addition of 0.2 to 1.0 g NaOH L~ ' debarking 
wastewater with aeration periods ranging from 1 to 20 hours depending on bark species and 
tannin concentration. The tannins are converted to poorly degradable humic compounds that 
are non-toxic. During anaerobic treatment, no inhibition occurs and the fermentable fraction 
of the wastewater can be converted to methane. The high MW humic products are non-toxic 
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for aquatic organisms and thus can be discharged to the surface waters with considerably 
less environmental impact as compared to the unoxidized tannins. In a parallel study 
(Temmink, J. H. M., J. A. Field, J. C. van Haastrecht and R. C. M. Merckelbach. 1989. Acute 
and sub-acute toxicity of bark tannins to carp (Cyprinus carpio L). Wat. Res. 23(3): 341-
344.), the high toxicity of unoxidized bark tannins to fish and the low toxicity of 
autoxidized tannins was clearly demonstrated. 

Up to date, methods of combatting toxic organic pollutants have been largely based on 
microbial degradation or physical-chemical removal. A viable alternative approach to these 
methods that potentially is applicable for certain aromatic compounds, could be polymerizing 
the toxins to non-toxic humus. The humus forming process is a natural mechanism in the 
forest environment that detoxifies tannic compounds before such compounds are released 
into the surface waters. The humus forming reactions were imitated in this study and were 
an effective method for eliminating the environmental impact of tannins in wastewater. 
Research should be continued to determine the extent to which humus forming processes can 
be applied for the treatment of other toxic organic contaminants. 
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HOOFDSTUK 12 

Samenvatting en Konklusies 



SAMENVATTING EN KONKLUSIES 

1. SAMENVATTING 

Anaërobe behandeling van afvalwater is een alternatief voor aërobe afvalwaterzuivering 
om afbreekbare organische verontreiniging in industrieel afvalwater te verwijderen. 
Anaërobe zuivering heeft talrijke voordelen zoals bijvoorbeeld lage spuislib produktie, 
kompakte zuiveringsinstallaties, lage bedrijfkosten, en een bruikbaar bijprodukt (methaan). 
Echter, de hoge gevoeligheid van anaërobe bakteriën (met name methaanbakteriën) voor 
toxische stoffen vormt een belangrijk nadeel. 

Aanvankelijk werd anaërobe zuivering op niet toxisch organisch afvalwater toegepast. Met 
het verdere ontwikkelen van de technologie, werden de grenzen van toepassing op toxisch 
afvalwater bestudeerd. Het voorgaande onderzoek was voornamelijke toegespitst op de 
toxische effekten van verbindingen toegevoegd door mensen in industriële processen en niet 
op toxische plantaardige verbindingen die aanwezig zijn in afvalwater vanuit de 
landbouwsektor. 

Deze dissertatie evalueert de rol, die polaire plantaardige fenolen (looizuren, tanninen) op 
het anaërobe vergistingsproces hebben. Een opvallende eigenschap van tanninen is dat ze 
gemakkelijk tot donkere humus-achtige verbindingen worden geoxideerd. Dergelijke 
transformaties kunnen tot Produkten leiden, die andere eigenschappen qua afbreekbaarheid en 
giftigheid hebben dan de oorspronkelijke fenolen in de industriële grondstoffen. Het 
proceswater van industrieën wordt vaak aan omstandigheden blootgesteld welke de oxidatie 
van fenolen bevorderen. Daarom is het humusvormende proces een hoofdzaak van deze studie 
geworden. 

Hoofdstuk 1 
De beschikbare gegevens uit de literatuur over de giftigheid en anaërobe afbreekbaarheid 

van tanninen worden samengevat in Hoofdstuk 1. 

Hoofdstuk 2 
Hoofdstuk 2 evalueert het effekt van hydroxylatiereakties op de toxische werking van 

fenolische aminozuren op methaanbakteriën en op de anaërobe afbreekbaarheid van deze 
verbindingen. De hydroxylatiereaktie is de eerste trap in een reeks die tot donkere 
gekleurde mélanine leiden. Tyrosine (monohydroxy) is aanwezig in aardappelen. Het kan tot L 
dopa (dihydroxy) worden geoxideerd tijdens het verwerken van zetmeel. De toxiciteit van 
tyrosine op methaanbakteriën was gering, echter L dopa veroorzaakte 40 a 50% remming op 
de aktiviteit van methaanbakteriën bij 327 mg L . De toxiciteit van L dopa was 
synergistisch met vluchtige vetzuren (VVZ) en de remming kan door het handhaven van lage 
VVZ koncentraties in anaërobe reaktoren worden verkleind. Tijdens langdurige kontinue 
vergisting in anaërobe kolommen gevoed met VVZ en L dopa, vond adaptatie aan L dopa 
plaats. Zowel tyrosine als L dopa werden tijdens batchproeven anaëroob afgebroken. Echter, 
alleen tyrosine was afbreekbaar in kontinu bedreven kolommen. 

Hoofdstuk 3 
In Hoofdstuk 3, worden de toxiciteit en afbreekbaarheid van hydroliseerbare looizuren 

(gallotanninezuur) en hun monomerische eenheden (galzuur en pyrogallol) beschreven. 
Gallotanninezuur was zeer toxisch voor methaanbakteriën. Een koncentratie van 700 mg L~ ' 
veroorzaakte 50% verlaging van de methanogene aktiviteit. De toxische werking duurde twee 
maanden voort ondanks het feit dat al na enige dagen afbraak van gallotanninezuur werd 
waargenomen. Blootstelling met gallotanninezuur aan het slib gedurende 24 uur was al 
voldoende om de slibaktiviteit te verlagen. In tegenstelling tot dit, waren de monomeren 
minder toxisch. Koncentraties van 3000 mg L~' veroorzaakte 50% remming en de 
slibaktiviteit werd snel hersteld na afbraak van de verbindingen. Gallotanninezuur, galzuur 
en pyrogallol werden gemakkelijk en volledig afgebroken in anaërobe batchproeven. Onder 
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omstandigheden, die toxisch op de methaanbakteriën waren, werden deze trihydroxy fenolen 
tot azijnzuur omgezet. 

Hoofdstuk 4 
De toxische stoffen in waterextrakten van boombast worden beschreven in Hoofdstuk 4. 

Deze extrakten dienden als een model voor ontbastingsafvalwater uit de papier- en 
pulpindustrie. De polyflavonoïden (gecondenseerde tanninen), die op basis van hun adsorptie 
op een niet oplosbaar polyamide (polyvinylpyrrolidone (PVP)) werden gemeten, waren 
verantwoordelijk voor ongeveer de helft van het extrakt chemisch zuurstof verbruik (CZV). 
De bastextrakten veroorzaakten sterke remmingen van de methaanbakteriën. Indien de 
extrakten werden voorbehandeld met PVP om de tanninen selektief te verwijderen, waren ze 
niet giftig. Dus waren de tanninen de primaire toxische stoffen die in de bastextrakten 
werden gevonden. De gemiddelde koncentratie aan basttanninen die 50% remming van de 
methaanbakteriën veroorzaakte was 600 mg CZV L~' (ofwel 350 mg droog gewicht L"1). 

Hoof ds tu ken S & 6 
In Hoofdstukken 5 en 6, wordt de invloed van het autöoxyderen van fenolen tot 

verkleurde en gepolymeriseerde verbindingen beschreven. Gedeeltelijke polymerisatie van 
relatief niet toxische polaire monomeren veroorzaakte een toename in hun toxische werking 
op methaanbakteriën. Polymerisatie van toxische tanninen leidde tot ontgiftiging. 
Polymerisatie van een verbinding, catechine, nam aanvankelijk in toxiciteit toe, maar als de 
polymerisatie werd voortgezet tot donkere humus-achtige verbindingen, werd een afname in 
toxiciteit waargenomen. Deze resultaten vormden de basis voor de looizuurtheorie. Volgens 
deze theorie, vindt een toename van de toxiciteit plaats tijdens de beginfase van de oxidatie 
door betere looiende eigenschappen van de fenolen. De oligomeren die geproduceerd worden, 
zijn in staat sterkere waterstofbruggen te vormen met eiwitten dan de monomeren. 
Daardoor reageren de oligomerische tanninen snel met functionele eiwitten van bakteriën. 
Indien de polymerisatie voortgezet wordt, is een afname in toxiciteit te verwachten wegens 
een verlaagd vermogen van de verbindingen met hoog molekuulgewicht (MW) de bakteriën 
binnen te dringen. De anaërobe afbreekbaarheid van de fenolen nam af in vergelijking met 
de produktie van kleurrijke geoxideerde verbindingen. De eindprodukten van fenoloxidatie 
zijn de hoog MW humus-achtige polymeren die niet giftig en niet biologisch afbreekbaar 
zijn. 

Hoofdstuk 7 
In Hoofdstuk 7, wordt beschreven dat pyrogallol (trihydroxy) slechts gedeeltelijk 

gepolymeriseerd wordt door autoöxidatie. Tijdens het aanvankelijke stadium van de oxidatie, 
ontstond een zeer giftige verbinding. Deze verbinding werd als purpurogalline geïdentificeerd. 
Purpurogalline heeft geen looiende eigenschappen. Echter, het was meer toxisch op 
methaanbakteriën dan tanninen. Een 50% reduktie van de methaanbakteriënaktiviteit werd bij 
45 mg L~ ' waargenomen. Purpurogalline remt ook de afbraak van pyrogallol. Na langdurige 
oxidatie van pyrogallol, werd purpurogalline destruktief geoxideerd en er werd geen toxisch 
effekt meer waargenomen. 

Hoofdstuk 8 
De ontgiftiging van looizuurhoudend afvalwater wordt in Hoofdstuk 8 beschreven. 

Waterextrakten van bast werden door autoöxidatie (beluchting bij een hoge pH) behandeld, 
om de toxische oligomerische tanninen te polymeriseren. De toxiciteit van niet 
geautoöxideerde en geautoöxideerde extrakten werden in anaërobe batchproeven gevoed met 
VVZ bepaald. De autoöxidatie van naaldboombastextrakten veroorzaakte een hoog niveau van 
ontgiftiging. Volledige ontgiftiging van de dennebastextrakten werd bereikt. Extrakten, die 
uit verschillende monsters fijnsparrebast voorbereid werden, konden gedeeltelijk tot volledig 
worden ontgiftigd. De ontgiftiging verliep in samenhang met afname in de koncentratie aan 
oligomerische tanninen en toename in de kleur van het extrakt. Het was niet mogelijk 
berkebastextrakten te ontgiftigen, ondanks dat de tanninen wel werden gepolymeriseerd. De 
slechte resultaten zijn te wijten aan de aanwezigheid van niet-looizuurachtige toxische 
verbindingen in de extrakten van berkebast. 
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Hoofdstuk 9 
Alternatieve technieken van oxidatie werden in Hoofdstuk 9 geëvalueerd. Zowel 

fijnsparre- als berkebastextrakten konden door middel van destruktieve oxidaties met H2O2 
worden ontgiftigd. Met de H2O2 oxidaties, vond de ontgiftiging plaats zonder verkleuring 
van de extrakten. Ook werden fijnsparre- en berkebastextrakten ontgiftigd door langdurige 
aërobe biologische behandeling van 3 à 4 weken. Er werden hogere niveaus van polymerisatie 
bereikt dan mogelijk was met autöxidaties bij hoge pH. Noch de H2O2 oxidatie noch de 
langdurige aërobe behandelingen kunnen worden gezien als ekonomisch haalbare technieken. 
Echter, de resultaten van dit hoofdstuk laten zien dat betrouwbare methoden van ontgiftigen 
voor alle soorten ontbastingsafvalwaters mogelijk zijn door middel van oxidatieve 
behandelingen, die intensieve destruktie of intensieve polymerisatie van de giftstoffen tot 
stand kunnen brengen. 

Hoofdstuk 10 
De toxiciteit van lage en hoge MW tannine frakties in geautoöxideerde 

fijnsparrebastextrakten wordt in Hoofdstuk 10 beschreven. Het neerslaan van de tanninen 
met kalk werkte uitsluitend op de hoge MW tannine fraktie. Dit had geen effekt op de 
toxiciteit. Korrelvormig aktief kool adsorbeerde alleen lage MW tannine wat wel tot 
vermindering van de toxiciteit leidde. De oligomerische tanninen, die na autoöxidatie nog 
overblijven, zijn verantwoordelijk voor de residuele toxiciteit in gedeeltelijk ontgiftigde 
geautoöxideerde extrakten. De hoge MW tanninen zijn niet toxisch. Men moet dus de lage 
MW tannine koncentratie controleren in plaats van de totale tannine koncentratie om de 
toxiciteit van het extrakt tijdens het verloop van de autoöxidatie in te kunnen schatten. 

Hoofdstuk 11 
Het kontinu anaëroob zuiveren van onbehandelde en geautoöxideerde dennebastextrakten 

werd onderzocht door middel van lab-schaal kolommen gevuld met korrelslib. De 
voorbehandeling van het extrakt door autoöxidatie verdubbelde de omzetting van het CZV 
naar methaan (van 19 tot 40%). De verbetering in de methaanproduktie was aan het 
verhoogde verbruik van VVZ (afkomstig van makkelijk te vergisten substraten) te wijten. Na 
vijf maanden bedrijf, was anaërobe zuivering van het geautoöxideerde extrakt mogelijk bij 
hoge influent koncentraties (~14 g COD L~') en hoge belastingen (40 g COD L~' d" ') met 
98% verwijdering van het afbreekbare CZV. De humusachtige verbindingen gevormd uit de 
autoöxidatie van tanninen waren niet biologisch omzetbaar tijdens anaërobe vergisting. 
Ongeveer de helft van de niet geoxideerde tanninen werd wel tot potentiële afbreekbare 
fenolische intermediare verbindingen omgezet. De afbraak van deze intermediare verbindingen 
werd echter geremd door de hoge koncentratie aan VVZ die ophoopde als gevolg van de 
remming van methaanbakteriën. De autoöxidatieve voorbehandeling leidde dus niet tot een 
afname in de afbreekbaarheid van het totale extrakt CZV (53%). Het recalcitrante CZV, dat 
in geautoöxideerd ontbastingsafvalwater te verwachten is, kan makkelijk met kalk uit het 
influent worden geprecipiteerd voorafgaande aan anaërobe zuivering. 

2. KONKLUSIES 

De toxiciteit van polaire fenolen op methaanbakteriën is afhankelijk van het looizuur
gedrag van deze verbindingen en hun vermogen bakteriën binnen te dringen. De belangrijkste 
faktor, die een rol speelt voor zowel het looizuur-gedrag als het binnendringingsvermogen, is 
het molekuulgewicht van de tanninen. De verhouding tussen toxiciteit en MW wordt door de 
looizuurtheorie beschreven. 

Fenolen in afvalwater zijn gevoelig voor oxidatieve omzettingen tijdens korte 
blootstellingen aan lucht. In het geval, de meeste fenolen in het afvalwater polaire 
monomeren zijn leidt de oxidatieve polymerisatie tot oligomerische tanninen, die 
verantwoordelijk zijn voor een toename in de toxiciteit. Echter, in gevallen waar de meeste 
fenolen oligomerische tanninen zijn, kan ontgiftiging plaatsvinden ten gevolge van oxidatieve 
polymerisatie. 
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Ontbastingsafvalwater afkomstig van naaldbomen kan met succes worden ontgiftigd door 
autoöxidatieve voorbehandelingen voorafgaande van de anaërobe zuivering. Deze soort 
voorbehandelingen moeten als ekonomisch haalbaar gezien worden, omdat slechts toevoeging 
van 0.2 à 1.0 g NaOH L~' afvalwater en een aëratietijd van 1 à 20 uren nodig is. De 
tanninen worden tot slecht afbreekbare humus verbindingen omgezet die niet toxisch zijn. 
Tijdens anaërobe vergisting, vindt geen remming plaats en het makkelijk vergistbare 
substraat wordt volledig tot methaan afgebroken. Humus met hoog MW is ook niet toxisch 
voor aquatische organismen en kan dus op het oppervlaktewater geloosd worden. Het effekt 
op het milieu is dan veel kleiner in vergelijking met de niet geoxideerde tanninen. In een 
parallele studie (Temmink, J. H. M., J. A. Field, J. C. van Haastrecht and R. C. M. 
Merckelbach. 1989. Acute and sub-acute toxicity of bark tannins to carp (Cyprinus carpio L). 
Wat. Res. 23(3): 341-344.), werd de hoge toxiciteit van de niet geoxideerde tanninen op 
vissen en de lage toxiciteit van de geautoöxideerde tanninen duidelijk aangetoond. 

Tot nu toe, worden technieken om de toxisch organische verontreiniging te bestrijden 
merendeels gebaseerd op microbiële afbraak of fysisch-chemische verwijderingen. Een 
waardevolle alternatieve techniek, die toepassing op aromatische verbindingen zou kunnen 
hebben, is de polymerisatie van dergelijke verbindingen naar het niet toxische humus. Het 
humusvormende proces is een natuurlijke mechanisme in het bosmilieu om tanninen te 
ontgiftigen voordat deze in het oppervlaktewater terecht komen. De humusvormende reakties 
werden in deze studie nagebootst en bleken zeer effektief de slechte uitwerking van 
tanninen in afvalwater op het aquatische milieu tegen te werken. Onderzoek moet worden 
voortgezet om vast te stellen in hoeverre het humusvormende proces toepasbaar is voor de 
behandeling van andere toxische organische verontreinigingen. 
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