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STELLINGEN 

1. Veranderingen in concentraties van p-cresol en vluchtige vetzuren in 

varkensdrijfmest kunnen een indruk geven van de werkzaamheid van aan 

drijfmest toegevoegde stankbestrijdingsmiddelen. 

2. Het toevoegen van bacteriemengsels aan drijfmest ter bestrijding 

van stank is zinloos. 

3. Het schema voor de anaërobe afbraak van tyrosine zoals voorgesteld 

door Drasar en Hill berust in belangrijke mate op foutieve 

veronderstellingen van Baumann. 

Drasa, B.S. en Hill, M.J. Human intestinal flora. 

Academie Press. London. 1974. 

Baumann, E. Ber. dtschn. chem. Ges. 12, 1450 (1879). 

4. De opmerking van Yasuhara en Fuwa dat fenolen in varkensdrijfmest afkomstig 

zijn van ontsmettingsmiddelen getuigt van lichtvaardig concluderen. 

Yasuhara, A. en Fuwa, K. 

Buil. Chem. Soc. Japan 50, 731 (1977). 

5. Aaetobaateriwn woodii in combinatie met een acetaat-benuttende gist 

biedt betere vooruitzichten voor de productie van "single cell protein" 

uit celluloserijk afval dan het kweken van schimmels hierop. 

6. De betekenis van strict anaërobe niet spore-vormende bacteriën bij de 

fermentatie van kuilvoer wordt onderschat. 

7. Onderzoek naar de rol van kuilvoer als infectiebron van Listeriosis 

zoals uitgevoerd door Gouet et al. geeft geen relevante informatie. 

Gouet, P., Girardeau, J.P. en Riou, J. 

Anim. Feed Sei. Techn. 2, 297 (1977). 



8. Het aantal sporen van lactaat-vergistende Clostridia in voordroogkuil 

kan worden beperkt door het in te kuilen gras te hakselen. 

9. De gebruikelijke lange middagpauzes bij het kleuter- en basisonderwijs 

zullen binnenkort niet meer in onze samenleving passen. 

10. Fouten in referentielijsten kunnen gedeeltelijk worden voorkomen door 

van de namen van auteurs van wetenschappelijke publicaties steeds eerst 

het hoofdwoord en vervolgens, gescheiden door een komma, voornamen en 

dergelijke te vermelden. 
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INTRODUCTION 

In the past decennia important changes in the agricultural practices of 

intensive livestock farming for meat production have occurred. Larger production 

units with less labour available resulted in highly efficient systems for 

feeding and waste handling. In the Netherlands the slatted floor method has 

become the predominant waste handling system for piggeries. The pigs are kept 

on floors with slots, through which the droppings fall into the underlying pits, 

where the wastes are collected and stored until discharge. 

This intensification has some negative, mainly environmental, sides. The 

area available for landspreading wastes diminishes, especially in districts 

with high densities of animal confinement units. As a consequence greater amounts 

of farm slurries are often applied than justified for fertilizing. Pollution of 

water courses with animal manures is the result and the necessity of applying 

untraditional methods for the disposal of animal manures has become apparent. 

The large emission of obnoxious odours has become another main problem 

associated with modem intensive animal farming. 

The labour-saving system of anaerobic storage of swine wastes under slatted 

floors in pig fattening houses is thought to be the main source of malodours 

which are emitted upon ventilation. The ventilation air is enriched with the 

malodorous components produced in stored slurry (Skarp, 1975). 

The goal of the present investigation was to provide information about the 

microbial processes in anaerobically stored piggery wastes which lead to the 

accumulation of malodorous constituents. 

Odour 

Odours can be defined objectively (instrumentally) only by giving the complete 

spectrum of the composing volatile chemicals, including their respective 

concentrations. For nearly all odorous systems this is impossible because of 

the great number of components involved, often present in very low concentrations. 

In case the odour can be reproducibly defined, no information is givem about the 

nature of the odorous sensation. To include the sensorial sensation in an odour 
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dcscription, instrumental methods fail and sensorial methods must be applied. 

Accurate characterization of an odour includes reference to (a) the odour 

strength (intensity) and to (b) the quality (nature) of the odour. Odour 

strength as perceived by observers does not increase proportionally with the 

concentration of the odorant, but with a fractional power of the concentration 

(Dravnieks, 1972). Odour strength is usually measured by estimating the 

dilution of odorous air with odour-free air until a mixture is obtained which 

is just indistinguishable from odour-free air, or by indicating the strength 

on a scale of intensity. For reliable and reproducible results, rather large 

panels are needed. Estimation of threshold dilution of air from piggeries with 

an olfactometer and a panel has been reported by Lindvall (1974). One man 

olfactometers have also been used for comparative measurements (Nolfermann 

et al., 1977). But the results obtained depend too much on the response of one 

individual. Differences in sensitivity between individuals are known to be 

large (Moncrieff, 1967). 

To describe odour quality, odour classification systems are used (Harper 

et al., 1968), whereby not only the subjectivity of the human nose (as with 

the measurement of odour intensity) but also the subjectivity of the human 

language (as to the description of the observed sensation) is introduced 

(compare e.g. Bart, 1973). 

For the odour from piggeries no attempts have been made to classify the 

odour quality in more precise terms than offensive, objectional etc. The 

unique unchangeable quality of the smell has never been proven. It is likely, 

indeed, that changes in the quality of the smell from piggeries do occur just 

as well as changes in the intensity. Nevertheless the odour always seems to be 

identifiable as originating from swine wastes. That these odours do not possess 

a constant chemical composition can be derived from the occurrence of different 

concentrations of some main volatiles, and of differences in pH value of the 

wastes. Volatility of short chain carboxylic acids and basic components (Ml, 

and amines) are markedly influenced by pH value. Furthermore, changes in observed 

sensation will occur upon dilution of the odorous air. 

Investigators have tried to find correlations between odour strength and 

instrumentally measured concentrations of odorous components. Barth et al. 

(1974) found high correlations between odour intensity and the concentrations 

of volatile fatty acids, Nil. and FLS in a limited number of samples of dairy 

manure with different pH values due to aeration. However, it is theoretically 

difficult to understand how a direct relationship can exist beween odour 
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intensity and concentration of volatile acid and basic components in the wastes 

independent of the pll level of the wastes. 

Schaefer (1977) correlated odour intensity with the concentrations of 

volatile fatty acids (C?- Cr), phenol, p-cresol, indole, skatole and NH, in 

the ventilation air at about twenty piggeries. The highest correlation 

coefficient was obtained with p-cresol. Correlations with the other components 

were non-significant. 

Schaefer et al. (1974) tried to characterize odour quality of swine wastes 

by comparing the odour of the wastes with those of synthetic mixtures of mal

odorous components. A mixture of phenol, p-cresol, indole, skatole, butyric 

acid and diacetyl was selected by a panel as having similarity with the odour 

from swine wastes. 

Volatiles identified in livestock, confinement units 

In order to characterize the smell of animal wastes in terms of concentrations 

of the malodorous components, a great number of volatiles has been identified 

in the air of animal confinement units. Nbst work has been directed to the 

identification of components in the air of piggeries. Some workers in addition 

have identified volatiles in the liquid manure. Table 1 contains a compilement 

of components identified by different authors. It shows that largely the same 

constituents have been identified in the air and in the mixed wastes. This 

confirms the general assumption that malodours which are emitted from piggeries 

originate from the wastes. In addition to the components listed in Table 1, 

about 25 different hydrocarbons, 7 chlorinated hydrocarbons and 2 terpenes 

have been identified by Velghe (pers. comm.) in the head space of piggery 

wastes. Schaefer et al. (1974) analysed also barn dust for volatiles. In a 

dust extract they identified 32 components. Seventeen of these have been 

demonstrated in the wastes or air by other workers. The remaining components 

were terpenes which probably originated from feed particles. 

That some volatile components have been found in the wastes and not in the 

air may have two explanations. 

1)Volatiles present in the wastes are undetectable in the air because of 

chemical reaction in the atmosphere, consequently compounds are formed which 

do not originate from the wastes. Notably reduced sulphur compounds are very 

reactive in air. 

2) Discrepancies because of the use of different analytical techniques by 

workers analysing air and wastes. 
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Table 1. Literature review of volatiles identified in the air of swine 

confinement units and in anaerobically stored piggery wastes 

Component Air Waste 

Methanol 2 12 
Ethanol 2 12 
1-Propanol 2 12 
2-Propanol 2 12 
1-Butanol 2, 10 12 
2-Butanol 10 12 
2-Methyl-l-propanol 2 12 
3-Methyl-l-butanol 10 12 
2-Ethoxy-l-propanol 10 
2-Methyl-2-pentanol 16 
2,3-Butanediol 10 
3-Hydroxy-2-butanone 10 12 
Propanone 8 

! 16 
12 

12 

2-Butanone 
3-Pentanone 
Cyclopentanone 
2-Octanone 
2,3-Butanedione 

Methanal 
Ethanal 
Propanal 
Butanal 
Pentanal 
Hexanal 
Heptanal 
Octanal 
Decanal 
2-Methy1-1-propanal 

Methanoic acid 
Ethanoic acid 
Propanoic acid 
Butanoic acid 
2-Methylpropanoic 
Pentanoic acid 
2-Methylbutanoic i 
3-Methylbutanoic . 
Hexanoic acid 
2-Methylpentanoic 
4-Methylpentanoic 
Heptanoic acid 
Octanoic acid 
Nonanoic acid 

ac 

îci 
3ci 

id 

d 
d 

acid 
ac :id 

16 
8, 
16 
10, 
7, 

2 
2, 
2, 
2 
2 
2 
2 
2 
2 
2 

10, 
10, 
7. 
10, 
10, 

11 
11 

11 
10, 
11 
11 

16 

16 
10, 

8 
8 

• H . 

. H , 
10, 

. H . 
11, 

11 

11, 16 

. 16a 

, 16 
11, 16 

, 16 
. 16 

12 
12 
12 
12 
12 

12 

11 
11 
11 
11 
11 
11 
11 
12 

11 
12 
12 
12 
12 

Ethylformate 12 
Methylacetate 12 
Ethylacetate 16 12 
Propylacetate 
Butylacetate 12 
i-Propylacetate 12 
i-Butylacetate 12 
i-Propylpropionate 
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10, 11, 16 

7, : 
10, 
10, 
10, 
10 
10, 
10 
10 
11 
11, 
10, 

11 
4 
4 
10 
4 

13 
9, 
13 
13 

13, 
10 

16 
16 
16 
16 
16 
16 
16 
16 

10, 
16 
16 
16 

16 

16 
16 

11, 

10 

11, 16 

13 

j_2» 17 
_12_, 17 
j_2, 17 

11 
12 

12 

j_2f 17 
12 
12 

11 
12 
12, 17 
12, 17 

Phenol 
3-Methylphenol 
4-Methylphenol 
4-Ethylphenol 
Toluene 
Xylene 
Indane 
Benzaldehyde 
Benzoic acid 
Methylphtalene 
Indole 
Skatole 
Acetophenone 
Phenylacetic acid 
3-Phenylpropionic acid 

Ammonia 
Methylamine 
Ethylamine 
Trimethylamine 
Triethylamine 

Carbonylsulphide 
Hydrogen sulphide 
Metnanethiol 
Dimethylsulphide 
Diethylsulphide 
DimethyIdisulphide 
Dimethyltrisulphide 
Ethanethiol 
Diethyldisulphide 
Propanethiol 
Butanethiol 
Dipropyldisulphide 
2-Methylthiophene 
Propylprop-1-enyldisulphide 
2,4-Dimethylthiophene 
2-Methylfuran 

Components with underlined references are considered by the respective author 
as main constituents responsible for the offensive odours from piggery wastes. 

1 Bethea and Narayan (1972) 
2 Merkel et al. (1969) 
3 White et al. (1971) 
4 Miner and Hazen (1969) 
5 Burnett (1969) 
6 Mosier et al. (1973) 
7 Hammond et al. (1974) 
8 Härtung et al. (1971) 
9 Day et al. (1965) 

12, 15 
15 
12 
12 
12 
12 
12, 15 
12 
15 
15 

10 Miner et al. (1975) 
11 Schaefer et al. (1974) 
12 Schreier (pers. comm.) In part 

published: Schreier (1975) 
13 Banwart and Bremner (1975) 
14 Elliott and Travis (1973) 
15 Janowski et al. (1975) 
16 Velghe (pers. comm.) 
17 Yasuhara and Fuwa (1977) 
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As data on volatiles in livestock wastes from other animals than pigs are 

scarce, no statement can be made concerning the effect of kind of animal on 

composition of volatiles in the wastes. Schreier (pers. comm.) found no 

quantitative differences in the volatile components present in liquid swine 

manure and in liquid cattle manure. 

If highly advanced analytical techniques would be applied, other volatile 

components than those reported in Table 1 would undoubtedly be identified 

in pig wastes. But these additional components are most likely present in 

very low concentrations. Even if these compounds would contribute significantly 

to the bad smell, further research can not be recommended because methods to 

be applied in routine analyses of such constituents are lacking. 

During anaerobic storage of the wastes microbial degradation takes place 

which leads to the accumulation of the various volatile products among which 

various malodorous components. These microbial processes in animal wastes have 

been described in general terms only. Few attempts have been made to describe 

the formation of malodorous compounds from precursor to smelling substances. 

In the following section the important groups of volatiles in piggery wastes 

will be discussed in connection with literature data on their formation in 

model systems and by pure cultures of bacteria. 

S-aontaining volatiles. Many sulphur-containing compounds have been detected 

in the head space of pig wastes (Table 1). Most of these compounds are present 

in trace amounts only (Banwart and Bremner, 1975). Hydrogen sulphide and 

methanethiol are most frequently reported as constituents of piggery wastes 

and are quantitatively the most important S-containing volatile constituents. 

In the ventilation air traces only of these compounds have been reported 

(Schaefer et al., 1974; Avery et al., 1975). This is probably due to the 

oxidation of mercaptans to the less volatile disulphides by air (Kadota and 

Ishida, 1972) and possibly by adsorption. Hydrogen sulphide is likely to 

originate mainly from the microbial reduction of sulphate. Urine contains 

about 1100 mg/1 of sulphur mainly as sulphate which originates from animal 

metabolism (Loehr, 1974). Sulphate-reducing organisms have been found in pig 
3 4 

wastes in numbers of 10 - 10 per ml (Rivière et al., 1974). Sulphate-reducing 

bacteria have been shown to produce trace amounts of carbon disulphide, 

carbonyl sulphide, methanethiol, ethanethiol and propanethiol (Hatchikian 

et al., 1976). In addition hydrogen sulphide can be produced by microbial 

degradation of cysteine and cystine (Freney, 1967; Rivière et al., 1974). 

Carbon disulphide and diethyl sulphide have been reported as products from 
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cysteine (Tablo 2). Methionine is decomposed mainly to methanethiol and 

dimethyl sulphide (Freney, 1967; Kadota and Ishida, 1972). Most of the other 

identified S-containing volatiles seem to be derived from more seldomly 

occurring amino acids like substituted cysteins, which occur in plants 

(Freney, 1967; Meister, 1965). 

Addition of plant residues to soils lead to volatilization of methanethiol, 

dimethyl sulphide, dimethyl disulphide, carbonyl sulphide and carbon disulphide 

(Banwart and Bremner, 1976). Hydrogen sulphide does not evolve because this gas 

is strongly adsorbed by soils (Bremner and Banwart, 1976). From most of the 

minor S-containing constituents of plants (Freney, 1967) the products of 

anaerobic decomposition are not known, however, these products may contribute 

to the smell. Likewise no precursors can be indicated for some of the identified 

S-containing compounds. 

Table 2. Sulphur-containing volatiles and their possible precursors 

Products Possible precursors 

H2S Cysteine, cystine (4), sulphate 
Methylmercaptan Methionine, methioninesulphoxide, methioninesulphone, 

S-methyleysteine (1) 
Ethylmercaptan Ethionine, S-ethylcysteine (1) 
Dimethyl sulphide Methionine, methioninesulphoxide, methioninesulphone, 

S-methylcysteine, homocysteine (1) 
Dimethyl disulphide Methionine, methioninesulphoxide, methioninesulphone, 

S-methylcysteine (1) 
Diethyl disulphide Ethionine, S-ethylcysteine (1) 
Methylethyl sulphide Ethionine, S-ethylcysteine (1) 
Carbon disulphide Cysteine, cystine, lanthionine, djenkolic acid, 

homocysteine (1) 
Carbon sulphide Lanthionine, djenkolic acid (1) 
Methylthioacetate Methionine + glucose (2) 
Diethyl sulphide Cysteine, cystine (3) 
Dipropyl disulphide Propylcysteine (5) 
Diallyl disulphide Allylcysteine (5) 

1 Banwart and Bremner (1975a) 4 Freney (1967) 
2 Francis et al. (1975) 5 King and Coley-Smith (1969) 
3 Kondi (1923) 

Volatile amines. Anaerobic incubation of protein-containing products with 

bacteria is often leading to the production of vo la t i l e amines. Inoculation of 

meat with Clostridii<m sporogenes gave r i se to the production of dimethylamine, 

ethylamine and 1,4-diaminobutane; after inoculation with Bacillus liaheniformis, 

propyl- butyl- , i -butyl - , amyl-, and isoamylamine and diaminoethane could be 

identif ied (Curda et a l . , 1972). 



Golovnya et al. (1969) detected 8 primary, 9 secondary and 4 tertiary amines 

in a culture of Streptococcus lactis in skim milk. Various authors reported the 

presence of volatile amines in the spent culture media of Clostridia (Prévôt 

and Sarrat, 1960; Billy, 1962b; Prévôt and Thouvenot, 1962; Brooks and 

Moore, 1969). Among the non-sporeforming bacteria which have been studied, 

volatile amines have been demonstrated to be produced by bacteria belonging to 

the genera Bacteroides, Streptococcus, Staphylococcus, Eubacterium (Persky and 

Billy, 1962), Aerobacter, Escherichia, Micrococcus, Pseudomonas, Saraina, 

Mycobacterium, Corynebacterium (Bast, 1971) and Proteus (Proom and Woiwod, 

1951). The principal volatile amines produced by these organisms include methyl-, 

ethyl-, propyl-, butyl-, amyl-, iso-butyl-, iso-amyl-, hexyl-, dipropyl-, 

and dibutylamine. 

Two mechanisms of the microbial formation of amines have been proposed. 

Ekladius et al. (1957) and Bast et al. (1971) demonstrated the presence of a 

neutral amino acid decarboxylase in Proteus vulgaris and Bacillus sphaericus. 

This enzyme catalyses the formation of ethylamine, propylamine, butylamine, 

iso-butylamine, iso-amylamine, 3-methylbutylamine, and 2-phenylethylamine 

from the corresponding amino acids. 

Bast (1971) obtained experimental indication that the formation of hexylamine 

and ethylamine by Saraina lutea, hexylamine by Escherichia coli, and iso-

butylamine by Aerobacter aerogenes were performed by amination of the 

corresponding aldehydes. 

Another source of the amines in wastes is found in urine. Daily excretion 

of dimethylamine is estimated at 20 mg in humans of which about 50'o originates 

from choline by the activity of the gut flora (Asatoor and Simenhoff, 1965). 

Choline is degraded to either ethylamine plus ethanolamine or to trimethylamine 

which is easily demethylated (Drasar and Hill, 1974). 

Carbonaceous volatiles. A great number of volatiles built up of C, H and 0 

only have been identified in piggery wastes (Table 1). Among these are volatile 

fatty acids, aldehydes, ketones, esters and alcohols. The microbial aspects of 

the short-chain carboxylic acids will be discussed separately in Chapter 2 because 

of their abundant occurrence in piggery wastes. 

The carbonaceous volatiles detected in piggery wastes are formed mainly by 

microbial action, though it cannot be excluded that some of the compounds 

reported in Table 1 originate directly from the feed and have passed unchanged 

the alimentary tract. 
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A number of alcohols, ketones and acids may be produced as a result of 

deamination of amino acids, with subsequent reduction or oxidation of the formed 

ketones. Similar products may, however, also arise from concerted action of 

bacteria on simple carbohydrates. Adamson et al. (197S) and Francis et al. 

(197S) could identify a great number of volatile products after the addition 

of glucose to soils under anaerobiosis. The identified products in the head space 

consisted of 2 aldehydes, 4 ketones, 9 alcohols and 15 esters. 

Studies with pure cultures of anaerobic bacteria have shown that volatile 

fermentation products accumulate in the spent media. However, usually the used 

media are analysed only for the most abundant products like alcohols, volatile 

fatty acids, acetoin, and 2,3-butandiol, which are of interest for taxonomie 

purposes (Doelle, 1975). Few reports deal with the formation of volatiles in 

minor or trace quantities by pure cultures. 

Aromatic compounds. The formation of aromatic volatile compounds will be 

discussed in detail in Chapters 3 and 4. In Chapter 3 the formation of indole 

and skatole is also given attention. 

Properties of swine excreta 

Farm slurry is composed of urine and faeces. In additon, depending on farm 

management water, bedding material and other wastes of undefined origin may 

enter the pit. The production ratio of faeces to urine is a main factor governing 

the dry matter content of the mixed excreta. For this production ratio different 

figures have been published. An average ratio of faeces to urine of 1:1.5 is 

mentioned by Tietjen et al. (1977) for fattening pigs. For animals of 40 kg 

they give a ratio of 1:2.6 and for heavy pigs (130 kg) 1:1.3. The production 

ratio depends also on the feeding and drinking water regime. O'Callaghan et 

al. (1971) found a linear relationship between water intake of pigs and urine 

production. The same authors concluded that there is also a linear relationship 

between the production of feaces and total excreta, and meal and meal-plus-water 

intake. Literature data on properties of urine and faeces are summarized in 

Tables 3 and 4. The presented data are averages of experiments reported by 

different authors and can be considered as approximate values only. Considerable 

variation in composition of urine and faeces may arise from differences in feed. 

The data on composition of mixtures of freshly voided excreta can be calculated 

from Tables 3 and 4, but they have also been published by several authors 

(Dale, 1972; Loehr, 1974; Rivière et al., 1974; Miner and Smith, 1975; Sutton 

et al., 1976). 
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Table 3. Literature data of chemical and physical properties of pig urine 

Component g/kg Reference 

Dry matter 
Ash 
BOD5 

N-total 
Urea 
P 
S 
Ca 
Mg 
Cu 

Density 
Viscosity 

IC 
9 
11 
4. 
0. 
1. 
0. 
0. 
0. 

) 

.6 
1-10.7 
87 
1 
14 
12 
25 

1022 kg/m3 

1. 106 Ns/m 

Baader et al. (1972) 
Loehr (1974) 
Baader et al. (1972) 
Tietjen and Vetter (1972) 
Vogel (1969) 
Tietjen and Vetter (1972) 
Loehr (1974) 
Loehr (1974) 
Loehr (1974) 
Robinson et al. (1971) 

Backhurst and Harker (1974) 
Backhurst and Harker (1974) 

a) Production/day.100 kg 3.0-4.5 kg (Baader et al., 1972; Tietjen and Vetter, 
1972). 

Table 4. Literature date of chemical and physical properties of pig faeces 

Component g/kg Reference 

Dry matter 
Ash 
BOD5 
Crude protein 
Crude fibre 
Fat 
N 
P 
Ca 
Mg 
K 
Mn 
Zn 
Cu 
S 

Density 
Calorific value 
of dried faeces 

170 
30 
55 
30 
70 
8 
5.4 
5.9 
8.3 
1.3 
0.7 
0.04 
0.31 
0.24 
0.5 

1164 kg/m3 

16.3 MJ/kg 

Baader et al. (1972) 
Smith (1973) 
Baader et al. (1972) 
Smith (1973) 
Smith (1973) 
Hennig and Poppe (1975) 
Tietjen and Vetter (1972) 
Tietjen and Vetter (1972) 
Tietjen and Vetter (1972) 
Tietjen and Vetter (1972) 
Robinson (1971) 
Robinson (1971) 
Robinson (1971) 
Robinson (1971) 
Loehr (1974) 

Backhurst and Harker (1974) 

Backhurst and Harker (1974) 

Production/day.100 kg 2.0-3.2 kg (Baader et al., 1972; Tietjen and Vetter, 
1972) . 

In common farming practice the mixed excreta are stored in pits. Under 

conditions of anaerobiosis the components of the slurry are subject to microbial 

degradation. Notably the organic fraction (about 75-80& of the dry weight) is 

converted from polymerous products to components with a low molecular weight. This 

results in a changed composition of farm slurries as compared with mixtures of 

faeces and urine. Characteristic analyses of slurries from different pig 
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fattening units with anaerobic storage of the wastes are given in Table 5. They 

show that there is a large variation in composition of slurries. Though there 

is considerable difficulty in drawing representative samples from farm pits, 

sampling errors probably account for a minor part of the observed variability. 

Experimental evidence from Sutton et al. (1976) and Rivière et al. (1974) 

support this assumption. These workers sampled one farm pit for periods up to 

two years and found relatively narrow ranges of concentrations of the various 

components analysed. 

Table 5. Composition of anaerobically stored piggery wastes 

Component Units Mean Standard 
deviation 

Range Reference 

Dry matter 
Dry matter 
Ash 
Total N 
NH^-N 
K 
P 
Mg 

Phenol 
p-Cresol 
4-Ethylphenol 
Indole 
Skatole 
Total volatile 
fatty acids 
Acetic acid 
Propionic acid 
iso-Butyric acid 
Butyric acid 
branched-Valeric 

acids 
n-Valeric acid 

% 
% 
% d.m 
g/kg wet 
•i 

it 

H 

M 

mg/kg 
ii 

•i 

II 

it 

g/kg 

" 
" 
" 
ii 

" 
H 

weight 

wet weight 

wet weight 

8 
8.2 
31.1 
4. 3 

-
2.0 
1.8 
0.7 

23.2 
235 
27.8 
2.9 
40 

11.8 
6.8 
2.8 
0.4 
0.9 

0.4 
0.4 

5.9 
3.2 
4.6 
1.9 
-
0.8 
1. 1 
0.4 

14.2 
71 
19.7 
2. 1 
16 

5.6 
3.5 
1.3 
0.3 
0.7 

0.4 
0.6 

1-21 
3.3-14.9 
24-40 
1.2-7 
2.3-9.1 
0.6-3.4 
0.1-4.5 
0.1-1.5 

7-55 
140-340 
6-72 
0-11 
9-54 

4-27.6 
2-15.7 
1.2-6.6 
0.2-1.0 
0.4-3. 1 

0.2-1.0 
0.1-1.0 

1 
2 
2 
1 
4 
1 
1 
1 

2 
2 
2 
2 
2 

3 
3 
3 
3 
3 

3 
3 

1 Tunney and Molloy (1975) 
2 Spoelstra (1977) 
3 Spoelstra (see Chapter 2) 
4 Loehr (1974) 

It is not possible with the available information to quantify the importance 

of the various factors of farm management involved in pig fattening on the 

composition of the anaerobically stored wastes. Drinking water regime of the 

animals, drinking water system installed and composition of the feed have been 

shown to have great influence (O'Callaghan et al., 1971a). Storing conditions 

are expected to be important as well, but as long as no treatment techniques 
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(aeration, methane fermentation, treatment with chemicals) are applied the 

temperature of the wastes will be the ruling factor, which is climate-dependent. 

The policy of pit emptying is also management-dependent, emptying the pit 

completely or withdrawing by preference the more liquid or more sedimented 

fraction of the heterogeneous pit contents,and the frequency of pit emptying 

are of great importance on waste composition. The decision to empty pits depends 

on favourable weather conditions for landspreading, kind of crop and demand 

for fertilizer. In the case of a too small storage capacity pit emptying may be 

forced (O'Callaghan et al., 1971b, 1973). 

Generally, the storage of swine wastes is characterized by continuous input 

with a discontinuous discharge with often large intervals between two successive 

discharges. Thus the decomposition of the wastes is more comparable with 

batchwise kinetics than with a continuous flow system. In the waste channels 

an uneven distribution of solids over the depth occurs. The ash content of the 

dry matter decreases with depth indicating that organic material settles. The 

decrease of pll with depth suggests a poor transport of even soluble components 

in the wastes (Figure 1). 

pH 6.8 7.0 72 5 Dry matter!'/.) 

34 38 42 46 Ash(%dry matlar) 

Fig . 1. change of pH, dry mat te r and ash with the depth of waste con ten t s 
in a waste channel . 
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Miorobiology 

Little work has been performed on the microbial composition of piggery wastes. 

Some reports have appeared which deal with hygienic aspects (Elliott et al., 

1976) and occurrence of organisms used as indicators for faecal contamination 

(Rivière et al., 1974; Tamâsi, 1977). The last-mentioned authors estimated 

also the number of bacteria possessing different physiological properties. 

After 77 days of anaerobic storage of mixed swine excreta they found 1.1 x 10 
c 4 5 

mdole-producing, 1.1 x 10 H7S-producing, 1.5 x 10 urealytique, 4.5 x 10 
5 4 

ammonifying, 1.1 x 10 gelatine-degrading and 4.5 x 10 sulphate-reducing 

bacteria per ml of waste. Because they did not apply anaerobic incubation 

techniques it must be assumed that these data refer to facultative anaerobic 

organisms only. Hobson and Shaw (1973, 1974) studied the microbiology of swine 

wastes in relation with methane fermentation. They tried to demonstrate the 

presence of cellulolytic bacteria but did not succeed. For starting methane 

fermentation they found it advisable to dilute the influent wastes. This 

indicates that the growth of methanogenic and/or acetogenic bacteria is 

inhibited by high concentrations of some constituents of the wastes. 
Odour abatement 

In the literature many attempts have been described to abate odours from 

intensive animal farming. Most research has been directed to waste treatment 

but treatment of the ventilation air has also been investigated. The main 

difficulty in judging the effectiveness of odour-abating methods is found in 

the measurement of the odour intensity. Good results have been obtained by the 

use of olfactometers with sniffing panels (Lindvall, 1974). But for reliable re

sults rather large panels are needed which makes this method expensive.In another 

approach, concentrations of one or more constituents of the odour are monitored 

as an indicator for the odour intensity. Compounds which have been used as such 

indicators are ammonia, hydrogen sulphide (Avery et al., 1975; Cole et al., 1976; 

Miner and Stroh, 1976) and volatile fatty acids (Avery et al., 1975). 

Aeration of the wastes is the most approved technique of odour abatement 

(e.g. Loehr, 1969; Converse et al., 1971; Hashimoto, 1974). Aeration can be 

applied to diminish obnoxious odours or as part of a more advanced treatment 

system. The goal of waste treatment may be the production of an effluent which 

can be discharged safely onto watercourses (Robinson, 1974) or recycling as 

feed (Day and Harmon, 1974). Aeration can be performed in indoor or outdoor 

basins (Day et al., 1975) with mechanical aerators (Baader et al., 1977). 
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Addition to the wastes of other hydrogen acceptors than air oxygen has been 

investigated. Cole et al., (1976) found that nitrate at the rate of initially 

18.3 kg/m and subsequently weekly 5.3 kg/m changed the odour and moderately 

removed sulphide. Also 1LCL was found to diminish odours (Cole et al., 1976). 

This product acts as an oxygen donor for microbial processes and as a chemical 

oxidation agent of some malodorous constituents of the wastes. Notably reduced 

sulphur compounds are oxidized (Kibbel et al., 1972). 

Strongly oxidizing chemicalslike NaOCl, CIO, and KMnO. have been tested 

but were found to have effects for short periods only (Cole et al., 1976). 

Many other chemicals or commercial mixtures of chemicals have been considered 

for their odour-diminishing effect upon addition to wastes (Burnett and Dondero, 

1970; Ritter et al., 1975; Cole et al., 1976). These chemicals can be divided 

into different groups dependent on their presumed way of action. Masking agents 

cover the obnoxious odour with a stronger pleasant smell. Deodorants destroy 

the odour by chemical reaction. Counteractants add an odour to the malodour in 

such a way that an odourless mixture results. Though some of these products 

had a positive influence on the odour of animal wastes according to panel 

members, they have not found wide application. 

Enzymes and dried mixtures of bacterial cultures have been tested for their 

odour abating value by Hofman (1975), Cole et al. (1976) and Miner and Stroh 

(1976). No significant influence on the bad smell of farm wastes could be 

detected by these authors. 

Another class of odour-abating chemicals has been tested to poison the 

microflora of the wastes and thus preventing the formation of malodorous 

substances. Formaldehyde (Seltzer et al., 1969),cyanamide (Meyer and Hugenroth, 

1973) and heavy doses of a strong acid or a base (Sweeten et al., 1977) have 

been reported to be more or less successful. However, costs are considerable 

and health hazards for the applicant are not excluded. 

Methane fermentation of animal wastes also removes the offensive odours, 

though an ammoniacal smell remains (Hobson et al., 1974; Van Velsen, 1977; 

Welsh et al., 1977). The same applies for the aerobic process of liquid 

composting (Crabbe et al., 1975). 

OUTLINE OF THE INVESTIGATION 

Because odour is not directly accessible to measurement, the work has been 

restricted to general microbial aspects of piggery wastes and to the microbial 
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production of a number of volatile components shown by Schaefer et al. (1974) 

to contribute to the bad smell. 

In Chapter 2 overall processes of the degradation of plant fibre material 

and protein to volatile fatty acids are described. 

Aspects of the microflora were studied because it was expected that 

information about the predominant bacteria in the wastes would contribute to 

the understanding of the processes involved. 

Results of experiments on the enumeration and isolation of the strict 

anaerobic microflora are given in Chapter 3. 

In Chapter 4 attention is given to the formation of indoles and simple 

phenols in piggery wastes. The conversion of tyrosine to simple phenols in 

freshly voided faeces and in anaerobically stored farm slurry was studied in 

more detail and is discussed in Chapter 5. 

In Chapter 6 tyrosine catabolism of Clostridium sporogenes NCIB 10696 and 

of a strain of Clostridium ghoni is described. This study was needed to perform 

some of the experiments mentioned in the preceding chapter. 

Chapter 7 contains a general discussion section on the possible causes of 

the accumulation of volatile components in piggery wastes. The obtained 

information is suggested to be helpful in judging the effectiveness of odour-

abating methods applied to such wastes. 
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VOLATILE FATTY ACIDS IN ANAEROBICALLY STORED 
PIGGERY WASTES 

Volatile fatty acids (VTA) were estimated in 30 samples of farm slurries. 

The total concentration of VTA in these samples ranged from 4.0 to 27.6 g/1 

(average 11.8 g/1 with standard deviation of 5.6 g/1). From laboratory-

experiments it was derived that VFA are produced from faeces whilst only 

nonsignificant amounts originate from urine. During 70 days incubation of 

a mixture of freshly voided faeces and urine, 431 of the protein and 24'» 

of the plant-fibre residues were degraded. The resulting products were 

predominately VFA and carbon dioxide. 

INTRODUCTION 

During the storage of mixed wastes from piggeries in pits under slatted 

floors, anaerobic microbial decomposition of the wastes takes place. Under 

the prevailing conditions, numerous organic compounds of low molecular 

weight are accumulated. Among these, the volatile fatty acids (VFA) are 

quantitatively the most important group. The VFA in piggery wastes have 

received some attention in literature. They have been demonstrated to 

contribute to the bad smell of the wastes (Schaefer et al.,1974). Removal of 

VFA from the wastes by methane fermentation has been studied (Hobson and 

Shaw, 1974; Van Velsen, 1977). In addition attempts have been made to utilize 

the VFA of the wastes as substrates for microorganisms, with the object to 

produce single cell protein (Henry et al., 1976; Ensign, 1977; McGill and 

Jackson, 1977). The processes leading to the accumulation of VFA in the 

wastes have received little attention. In the work reported here, information 

is given about concentrations of VFA in piggery wastes and about their 

precursors. 
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MATERIALS AND METHODS 

Samples 

Faeces and urine were collected separately from pigs held in metabolism 

cages. Samples of slurries from farms with storage of wastes under slatted 

floors were composed from grab samples. The sampling procedures have 

previously been described in more detail (Spoelstra, 1977). 

Experiments 

Urea in the urine used in the experiments was hydrolysed by incubation 

w.ith urease and the liberated ammonia neutralized with 2 N HCl previously 

to mixing the urine with faeces. Incubation mixtures were seeded with a drop 

of farm slurry. 

Experiment 1. A mixture was prepared of freshly voided faeces and urine 

(mixing ratio 1:1 w/w) and diluted with water to a dry matter content 

of 61. This suspension and a mixture of faeces with water but without 

urine were incubated at 15°C and 25 C in closed 1-1 flasks. The pH value of 

the suspension was maintained at 7.0. Samples to be analysed for VFA were 

taken periodically. 

Experiment 2. In another experiment 8 1 of a mixture of faeces and 

urine (mixing ratio 1:1.1 w/w,drymatter content 9%~) was stored anaerobically 

for 150 days at about 18°C. The initial pH value was brought to 7.0 and was 

not adjusted during the experiment. Samples were taken and analysed for VFA, 

dry matter, ash, pH, NH.-N, Kjeldahl-N and fibre content. In addition gas 

production and the composition of gas formed were analysed. 

Estimation of VFA. 

Waste samples were centrifuged at 24,000 x g for 20 minutes. The supernatant 

was subjected to gas chromatographic analysis without further treatment. It 

was introduced into a glass column (1 m x 4 mm) packed with 20°s Tween 80 on 

Chromosorb W-AW (80-100 mesh). The column was installed in a Packard model 

409 gas Chromatograph equipped with a flame ionization detector. The temperature 

setting of the column oven was 115°C and that of the injector and the detector 

170 C. As carrier gas nitrogen (80 ml/min) saturated with formic acid was 

applied (Fohr, 1974). Formic acid is not detected by this sytem. Isovaleric 

and a-methylbutyric acids are not separated by the column used. Both isomers 

are probably present in the wastes being decomposition products of amino acids. 
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The concentration of isovaleric acid plus a-methylbutyric acid will be 

referred to as branched valeric (b-valeric) acids. 

Gases 

Gas production was measured by replacement of acidified water by the gas 

formed. The gas composition was determined in samples drawn from the head 

space of the container in which the slurry was stored. The samples were 

analysed gas-chromatographically as described by Van Kessel (1978). 

Nitrogenous compounds 

Protein content was calculated as the difference between total Kjehldahl-N 

and NI1.-N multiplied by 6.25. NH.-N was determined by distillation of NIL 

from a sample to which borate buffer (pH 8.6) had been added. The ammonia 

was collected in a 4o solution of boric acid which was subsequently titrated 

with HCl. 

Fibre content 

Samples were washed with an equal volume of a 0.5 M EÜTA solution (pH 7.0) 

and centrifuged for 30 min at 39,000 x g. Washings with 0.5 M EDTA were 

repeated twice and the residues were subsequently subjected to three washings 

with each of the solvents S% n-butanol in water, 961 ethanol, and acetone. 

The acetone-washed residues were dried and weighed. 

RESULTS 

VFA in farm slurries. 

Concentrations of VTA in samples of farm slurries are presented in Table 1. 

The samples from piggery number 1 were taken at weekly intervals from 

December 1976 to April 1977. The temperature of the waste during this period 

fluctuated from 10°C to 15°C. In this farm, pigs have free access to water 

which is supplied by drinking nipples. A considerable amount of the drinking 

water is spoiled and consequently the wastes are diluted. This is in contrast 

with piggery 3. Here liquid feeding is practised and very high waste 

concentrations are reached. The concentrations of VFA in samples from this 

piggery were also found to be high. 
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T a b l e 1 . C o n c e n t r a t i o n s ( g / kg we t w e i g h t ) o f v o l a t i l e f a t t y a c i d s i n s l u r r y 
s amp le s from 6 p i g g e r i e s . 

P i g g e r y 1 2 3 4 5 6 
number 
No. o f 19 3 3 1 1 1 
s amp le s 
Sampl ing Dec . 76 - J u l y 75 F e b r . - J a n . 7 7 Nov. 75 J u l y 73 
p e r i o d A p r i l 77 J u l y 77 
Dry m a t t e r 4 5 . 4 + 1 8 . 5 a 63 + 2 4 123 + 3 3 26 14 71 
pH 7 .19 + 0 . 17 N .D . b ' 7 . 6 + 0 . 1 4 7 . 5 7 . 4 7 . 2 
Formic a c i d N.D. N.D. N .D. N .D. N .D. 0 . 0 7 
A c e t i c a c i d 6 . 0 + 2 . 5 8 . 1 + 1 . 8 1 2 . 3 + 3 . 9 4 . 7 6 . 9 8 . 1 
P r o p i o n i c 2 . 8 + 1 . 3 3 . 4 + 1 . 0 4 . 2 + 0 . 8 1.27 1.24 2 . 8 5 
a c i d 
I s o b u t y r i c 0 . 3 3 + 0 . 1 2 0 . 5 6 + 0 . 17 0 . 90 + 0 . 4 9 0 . 3 2 0 . 2 7 
a c i d 
Butyric acid 0.71 + 0.29 1.26+0.67 1.72+1.24 0.79 0.30 
b-Valeric 0.36+0.13 0.92+0.29 1.59+0.31 0.47 0.20 1.17 
acids 
valeric acid 0.20 + 0.05 0.24+0.06 0.27+0.07 0.37 0.04 0.21 

a Mean and standard deviation of the mean 
b Not determined 

0.69 

0.60 

About 30 samples of slurry from 6 farms were analysed for VFA. The total 

amounts ranged from 4.0 to 27.6 g/1 (mean and standard deviation of the mean 

were 11.8 + 5.6 g/1). Generally, the lower VFA concentrations were found in the 

more diluted wastes. In the samples tested, acetic and propionic acid 

represented 53.5 + 12.21 and 24.4 +_ 8.4°Ô (mean and standard deviation of the 

mean), respectively, of the total amount of VFA present in the wastes. These 

figures amounted to 3.5 + 1.5, 6.8 + 5.9, 4.2 + 2.3 and 2.4 + 2.9 for 

isobutyric, butyric, b-valeric and valeric acids, respectively. Formic acid 

was determined in one sample only (piggery 6 ) . The concentration found 

corresponds with 0.61 of the total amount of VFA in this sample. 

Experiment 1. 

No important differences in the accumulation of VFA were observed between 

mixtures with and without urine added to the faeces. In the presence of urine, 

VFA tended to be slightly higher at the end of the incubation period. The 

mixtures incubated at 25°C showed a much larger increase in the content of 

VFA than those incubated at 15°C (Figure 1). 
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Fig . 1. Product ion of VFA in mixtures of faeces p lus water (o—o) and faeces 
plus urine (t ») incubated at 25 C and 15 C, respectively. C i C„ '2' ̂ 3' -1 "4' 
b C, and C denote acetic, propionic, isobutyric, butyric, branched valeric 
and valeric acids, respectively. 

Experiment 2. 

Data on the production of VFA during an incubation period of 150 days of 

a mixture of faeces and urine are presented in Figure 2. The total amount 

of VFA increased from 5 g/1 to 20 g/1. Acetic, propionic and butyric acids 

were in this order the most important acids. The other acids accumulated 

from about 0.1 to 0.8 g/1. The pH value declined during the storage period 

from 7.0 to 6.4. The NH,-N concentration increased from 2.63 .to 4.11 g/1 

during the same period. 



- 2 1 -

20 
VFA 

( g / k g wel weight 

50 100 ,50 
Incubation period (days) 

Fig. 2. Production of VFA in a mixture of faeces and urine incubated at 
18°-20°C. C_, C , i C , C , b C 5 and C 5 denote acetic, propionic, isobutyric, 
butyric, branched valeric and valeric acids, respectively. 

The results on decomposition of fibre and protein and the production 

of gas and VFA during the first 70 days of the experiment are given in Figure 3. 

Gas was produced during the first 40 days of the experiment, afterwards no 

gas production was measurable. The average composition of the gas produced 

was 80$ CCL and 20°» methane. Hydrogen was always present in low amounts 

(about 0.02°a). During the 70 days period about 241 of the fibre and 43°& of the 

protein was degraded. 

From the available information a mass-balance was calculated which is 

presented in Figure 3 . An attempt was made to differentiate the fibre 

fraction in cellulose, hemicellulose and lignin. The analytical results 

were, however, not accurate enough to allow conclusions about the extent to 

which the cellulose and hemicellulose fractions were degraded. 
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20 40 60 
Incubation period (days) 

Fig. 3. a) Decrease of fibre (o—o.) and protein (•—•) content, increase of 
VFA (x—x) and gas productiontO—D) in an anaerobically stored mixture of 
faeces and urine, 
b) Mass balance calculated from the data in figure 3 . Note different scale. 

The percentage of fibre that was hydrolysed after incubation for 30 min 

with 12% H^SO. at ambient temperature and subsequently 6 h at 100 C decreased 

during the 70 days incubation period from 78 to 67. 

DISCUSSION 

The amounts of VFA in farm slurries (Table 1) show large variations which 

must mainly be attributed to the different amounts of water entering the pits. 

However, variations in microbial activity due to storage conditions (temperature) 

also influence the content of VFA. Generally, the mutual ratios of the VFA 

were found to be rather constant. Acetic acid, propionic acid and butyric acid 

showed in this order the highest concentrations. The remaining acids are 
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usually present in concentrations of about 5-101 of the acetic acid 

concentration. Formic acid is probably present in even lower concentrations. 

These results are consistent with those of Cooper and Cornforth (1978). 

From Figure 1 it is concluded that VFA are mainly produced from 

constituents of the faeces. No significant increase of the VFA content was 

obtained when urine was added to the faeces. The production of VFA proceeds 

more rapidly at higher storage temperatures. 

The results presented in Figure 3 suggest that the main overall processes 

which take place in anaerobically stored piggery wastes are 1) degradation 

of plant fibre residues to VFA 2) degradation of protein to VFA and ammonium. 

The decomposition of fibre and protein is accompanied with the formation of 

C02. Besides some methane is formed in the slurry. Production of CO, and CH. 

i n piggery waste has also been observed by Stevens and Cornforth (1974). 

As is shown in Figure 3 the production of gas and VTA does not balance 

completely with the degradation of fibre and protein. After an incubation 

period of 7 days more VFA and gas is formed than polymers are degraded. 

This is possibly the result of the formation of VFA and gas from easily 

degradable compounds that have not been included in the analyses. A further 

factor which may be responsible for this surplus is the incorporation of 

water during hydrolysis of polymers like various soluble carbonaceous 

components and possibly fat. At the end of the experiment about 0.5 g more 

fibre and protein were degraded than gas and VFA formed. This may be explained 

by the formation of soluble products other than VFA e.g. alcohols, phenols 

(Spoelstra, 1977), phenolic acids. 

Plant fibre consists of cellulose, hemicellulose and lignin which is 

probably not degraded under anaerobic conditions. Cellulose and hemicellulose 

are first decomposed to oligomers or monomers, which subsequently are converted 

to mainly acetic, propionic and butyric acids. Most amino acids - the monomers 

of protein - are also decomposed to one or more of these VFA. However, valine, 

leucine and isoleucine are degraded to isobutyric, isovaleric and a-methyl-

butyric acids, respectively (Allison, 1978). Acetic acid may also be 

synthesized from H 2 and CCL as has been demonstrated to occur in the intestine 

of some rodents (Prins and Lankhorst, 1977). The VTA content of the wastes 

niay be lowered by methane fermentation, in which formic or acetic acid may 

be used as substrate. Methane fermentation in stored farm wastes is usually 

not a quantitatively important process. This has also been observed for slurry 
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of cattle and poultry (Ensign, 1977). 
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Media for enumeration of the microbiota of anaerobically stored piggery wastes 
were tested. Highest colony counts were obtained with 80 to 100% farm slurry 
supernatant included in the anaerobic roll tube media. Colony counts with these 
media numbered 2 X 109 to 12 X 109/g (wet weight), which represents about 20% 
of the microscopic counts. Lower percentages of slurry supernatant in the media 
gave lower colony counts. Addition of glucose, cellobiose, and s tarch or of 
Trypticase to media with 20% slurry supernatant did not increase colony counts. 
Higher values were obtained when hemicellulose preparations were added to 
these media. Incubation a t 25°C gave the highest numbers. Incubation a t 15 to 
37°C gave counts of about 70 and 10%, respectively, of those at 25°C. Of the 
colonies picked for isolation, about 20% were obtained in pure culture. The 
isolates apparently belonged to the genera Peptococcus, Ruminococcus, Pepto-
streptococcus, and Bacteroides. 

In intensive pig-fattening units, the animals 
are usually kept on slatted floors. The droppings 
are collected and stored underneath the floors, 
where the mixture of feces and urine is decom
posed under the prevailing anaerobic conditions. 
This leads to accumulation of malodorous com
pounds, which may cause a serious odor nuis
ance to the surroundings when emitted with the 
ventilation air. Odor problems also arise when 
the slurry is spread on the land. 

Wastes as stored in farm pits differ in com
position. Notably, the dry mat te r contents show 
large variations (18). Variation in composition is 
a result of farm management; it is influenced by 
such factors as the rations fed, drinking water 
regimen, frequency and way of pit emptying, 
and storage conditions. In spite of all these var
iations, slurries from different piggeries may be 
considered as a group of wastes tha t are char
acterized by the anaerobic degradation of fibrous 
and proteinaceous mat te r leading to the accu
mulation of volatile fatty acids. These processes 
proceed in the presence of high NH.i levels, 
derived from the decomposition of urea and 
protein. Table 1 contains measurements of the 
main features of farm slurry and of freshly 
voided pig feces. 

The microbiota of farm slurry was studied as 
Part of a research program on the origin of the 
obnoxious odors emitted from farm slurries. Be
cause little microbiological work has been per
formed on pig slurries, no special techniques and 
media were available. 

Anaerobic culturing techniques developed for 

the s tudy of the microbiota of the rumen and of 
the intestinal t ract have been adapted and used 
throughout this study. Typical rumen media, 
like M10 (4) and a 40% rumen fluid medium, 
were used as a s tarting point for the experiments. 

MATERIALS AND METHODS 

Slurry samples. Farm slurry samples were taken 
as grab samples from farm pits with storage of wastes 
under slatted floors. The sampling procedure has been 
described in detail elsewhere (16). Weights of the pigs 
ranged from 20 to 100 kg. The animals received com
mercial rations. The average age of the wastes cannot 
be established, but must be assumed to have ranged 
from several weeks to several months. 

Anaerobic techniques. Media were prepared ac
cording to the methods of Hungate (10). However, 
NajCO.-i, cysteine-hydrochloride, and Na2S were added 
after boiling the media but before tubing and auto-
claving. Tubes were gassed with an oxygen-free mix
ture of 96% COi and 4% H2. This gas mixture was used 
for all counting experiments. The tubes were provided 
with a screw cap to prevent blowing-out of the stop
pers during autoclaving. Serial dilutions of farm slurry 
were made in the medium described as "dilution 
blanks" by Holdeman and Moore (9). For the first 
dilution, containing 10 * g of slurry per ml, a pre-
weighed sample of about 1 g of slurry, added to 99 ml 
of dilution medium, was mixed for 1 min under a 
stream of CO.. in an electric blender. Subsequent di
lutions were made by injecting 0.5 ml of liquid with a 
1-ml disposable syringe into a stoppered tube (28 by 
140 mm, Kontes) containing 49.5 ml of dilution me
dium. Tubes (22 by 140 mm, Kontes) containing 6 ml 
of molten agar medium were inoculated with 1 ml 
containing 10 " g of slurry. Inoculation was done in 
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TAHI.B 1. Characteristics of freshly voided feces 
and of anaerobically stored wastes from piggeries 

Characteristic 

DM" (%) 
Ash (% of DM) 
Crude protein (% of DM) 
Fiber (% of DM) 

PH 
Ammonia (g/liter) 
Volatile fatty acids (g/liter) 
Cresol (mg/liter) 
Storage temperature (°C) 

Feces 

(ref.) 

17-25 
17(15) 
19(15) 
40(15) 

Anaerobically 
stored wastes 

(ref.l 

2-14 (16) 
20-40 (Hi) 

6.7-7.8 (Hi) 
2.3-9.1 (11) 

4-20 (12) 
100-:j50 (Hi) 

10-20 

" DM, Dry matter. 

eight replicate tubes. Roll tubes were prepared by 
spinning the tubes in a refrigerator until solidification 
of the agar and then were incubated in upright position 
at 25°C. 

Media. Medium 10 (M10) of Caldwell and Bryant 
(4) was used, but the fatty acid mixture was replaced 
by the mixture of Bryant (2). The 40'f rumen fluid 
medium (K40) was similar to medium 98-5 of Bryant 
and Robinson (3). Rumen fluid was obtained from a 
fistulated grazing cow with free access to water. 

Farm slurry supernatant (SS) was prepared from 
the same batch of slurry in which bacteria were 
counted. For each experiment, a new batch of farm 
slurry was used. An almost clear SS was obtained by 
centrifugation of the slurry at 25,000 X g for 30 min. It 
was found to be convenient to strain the slurry through 
cheesecloth before centrifugation to eliminate the 
coarsest particles. 

Media containing SS were supplied with miner
als, Na_,S 9H.-0, cysteine-hydrochloride, resazurin, 
Na-jCO.i, and agar in the same concentrations as in 
medium 98-5 (3). Rumen fluid was replaced by either 
10, 20, 40, 60, or 80'? SS. These media are referred to 
as SS10, SS20, SS40, SS«), and SS80. To the medium 
with 100'; SS (SS100) no minerals were added. Car
bohydrates, when included in the media, were supplied 
at a level of 1 g of each per liter. 

The formulations of Sweet K broth and peptone-
yeast extract-glucose (I'YG) broth are given by Holde-
man and Moore (9). The pH value of the media after 
autoclaving was 6.9. The hemicellulose preparation 
added to the media was a mixture of: xylan (Fluka), 
gum xanthan, locust bean gum, and gum arabic (the 
latter three purchased from Sigma). Incorporation of 
a mixture of 1 g of each of these polymers per liter 
gave the following composition on a monomer base 
(milligrams per liter): mannose (1,580), galactose (610), 
arabinose (355), xylose (350), glucuronic acid (285), 
glucose (260), rhamnose (155), and pyruvic acid (70). 
Hemicellulose (gum mixture), sometimes difficult to 
dissolve, was mixed with water, boiled while stirred, 
left overnight at room temperature, and added to the 
media, which were then boiled to expel oxygen. 

Bacterial counts. Colony counts were performed 
after 5 or 6 weeks of incubation time unless otherwise 
stated. Only colonies visible with the unaided eye were 
counted. For the microscopic count, a Burker-Turk 
counting chamber with a depth of 0.01 mm was used. 

In 20 to 40 squares of 0.0025 mm", all bacterial cells 
and clumps were counted in a dilution containing 10 "' 
g of slurry per ml. 

Means were statistically compared by t tests (17). 
Isolation and identification of s t rains. For the 

isolation of bacteria, roll tubes were inoculated with 
10 " g (wet weight) of slurry. Inoculation with highly 
diluted suspensions was chosen to increase the possi
bility of picking pure cultures. Colonies were trans
ferred after 4 and 7 weeks to either Sweet K broth or 
SSI00 medium enriched with hemicellulose but with
out agar. Media and methods for identification of 
strains were similar to those of Holdeman and Moore 
(9). Minor modifications were the following. Media to 
test acid formation from carbohydrates were tubed 
into 10-ml Vacutainer tubes (Becton, Dickinson & Co.) 
and inoculated with a syringe. Incubation was done at 
25°C, and identification tests were performed after 7 
to 10 days. The composition of volatile fatty acids in 
spent media was determined gas chromatographically. 
One microliter of culture fluid supernatant (centri-
fuged for 20 min at 25,000 x g) was introduced on a 
glass column (1 m by 4 mm [ID]) packed with 20'? 
Tween 80 on Chromosorb W-AW (80 to 100 mesh). 
Carrier gas (N..; flow, 80 ml/min) was saturated with 
formic acid. The column oven temperature was 115°C. 

From nonvolatile acids, methyl esters were pre
pared as described by Holdeman and Moore (9). Gas-
chromatographic separation was achieved by a glass 
column (2 m by 2 mm [ID]) packed with b% Carbowax 
20M on Chromosorb W-HP (100 to 120 mesh). Oper
ational temperature was 140°C. Nitrogen was applied 
as carrier gas (30 ml/min). The gas chromatographs 
used were equipped with flame ionization detectors. 

Individual isolates were tested in PYG for growth 
at 37°C. Controls were incubated at 25°C. Cultures 
were observed for 5 weeks. 

Isolated strains were maintained in Sweet E broth 
stored at 25°C. Transfer to fresh medium once per 3 
months was sufficient to maintain viability. 

R E S U L T S 

Pre l iminary e x p e r i m e n t s . In preliminary 
experiments, colony counts on rumen media 
M10 and R40 were compared with those on 
media including SS (Table 2). The media with 
20 and 40% SS were found to be superior to both 
M10 and the rumen fluid medium (R40). Colony 
counts on MIO and R40 gave mutually compa
rable results. To find an opt imum level of SS, 
media containing different percentages of SS 
were tested (Table 3). Colony counts were nearly 
doubled when the percentage of SS was in
creased from 20 to 8 01 or higher. 

Incubat ion t emperature . Counts at 25°C 
with SS100 increased by about 35% when the 
incubation period was extended from 2 to 3 
weeks. Longer incubation gave additional small 
increases of colony counts. With incubation a t 
15°C, colony numbers were nearly doubled when 
the incubation period was increased from 5 to 
10 weeks. 

Highest colony numbers were obtained when 
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TABLE 2. Comparison of colony counts of farm 
slurry on media MIO and R40 with media 

including SS 

Expt" Medium* Colony count' 

MIO 
R40 

MIO 
SS40 

MIO 
SS20 

R40 
SS20 

3.47 ± 1.11" 
3.90 +. 0.45" 

1.20 ± 0.86" 
2.96 ± 0.98v 

2.95 ± 0.29" 
5.83 ± 0.79" 

1.44 ± 0.36" 
2.03 ± 0.48v 

" Only counts of the same experiment are compa
rable. 

Cellobiose, glucose, and starch were included with 
all media except the SS20 of experiment 4, which 
contained no carbohydrates. 

' Count per 10"" g (wet weight), mean with standard 
deviation of the mean. Different symbols (x, y) denote 
significance at P < 0.01. 

TABLE 3. Effects of amounts ofSS contained in 
media on colony counts 

Expt" %SS 
Carbohydrates 

included 
Colony count' 

10 
20 
40 

20 
40 
60 
80 

20 
100 

20 
100 

C, G, S 
C, G,S 
C, G, S 

C.G, S 
C,G, S 
C, G, S 
C, G, S 

None 
None 

None 
None 

3.32 ± 0.67" 
3.72 ± 1.59v 

6.60 ± 0.89v 

5.83 ± 0.79" 
8.17+ 1.54vp 

9.40 ± 1.20" 
12.0 ± 2.30' 

1.48 + 0.44" 
2.62 ± 0.47v 

2.02 ± 0.40" 
3.92 ± 0.63y 

" Only counts of the same experiment are compa
rable. 

C, Cellobiose; G, glucose; S, starch. 
r Count per 10"g (wet weight), mean with standard 

deviation of the mean. Different symbols denote sig
nificance at P < 0.01 (x, y) or P < 0.05 (p, q, r). 

incubation was at 25°C (Table 4). Counts at 
15°C were about 70% of the counts obtained at 
25°C. Incubation at 37°C gave numbers amount
ing to less than 10% of the counts at 25°C. 

Addi t ions to media . T h e results of experi
ments with different carbohydrates added to 
SS20 and SS100 are presented in Table 5. The 
most frequently used additions to rumen media 
(cellobiose, glucose, and starch) tended to de
crease colony counts when added to SS20. No 
significant effect (at P < 0.05) was obtained 
when starch or cellobiose was deleted from M10 

(data not recorded). Addition of Trypticase to 
SS20 (Table 6) gave no general effect on num
bers when counted after 10 weeks. Only t he 
addition of 30 g of Trypticase per liter gave 
higher colony numbers than tha t of 2 g/ l i ter (P 
< 0.05). However, counted after 17 days, 10 and 
30 g of added Trypticase per liter gave higher 
numbers of bacteria than 2 g/li ter ( P < 0.01 and 
P < 0.05, respectively), whereas 10 g/l i ter 
showed increased counts compared with those 
with no Trypticase added ( P < 0.01). Here, as in 
the case with the addition of cellobiose, glucose, 
and starch, t he higher substrate levels tended to 
give some large colonies t ha t might overgrow 
others. 

Colony counts were higher when the hemicel-
lulose preparation was included in the SS20 

TABLE 4. Effect of incubation temperature on 
colony counts 

Expt" Medium 
Carbohy

drates* 
included 

Incuba
tion temp 

<°C) 
Colony count' 

SS80 
SS80 
SS80 

SS100 
SS100 
SS100 

C, G, S 
C,G, S 
C,G, S 

None 
None 
None 

15 
25 
37 

15 
25 
37 

4.82 ± 0.55" 
7.10 ± 0.8O" 
0.31 ± 0.18' 

3.84 ± 0.20" 
5.17 ± 0.63* 
0.63 ± 0.15" 

" Only counts of the same experiment are compa
rable. 

* C, Cellobiose; G, glucose; S, starch. 
' Count per 10" g (wet weight), mean with standard 

deviation of the mean. Different symbols (x, y, z) 
denote significance at P < 0.01. 

TABLE 5. Effect on colony counts of carbohydrates 
added to media with SS 

Expt" Medium 
Carbohy
drates* in

cluded 
Colony count' 

1 

2 

3 

4 

SS100 
SS100 

SS80 
SS80 
SS80 

SS20 
SS20 

SS20 
SS20 

None 
C G , S 

C,G, S 
G 
C 

None 
C G , S 

None 
S 

6.06 ± 1.26" 
5.86 ± 0.31" 

7.10 ± 0.80"* 
6.23 ± 0.58"'q 

6.30 ± 1.04" 

2.02 ± 0.40" 
1.21 ± 0.39v 

2.03 ± 0.48" 
1.81 ± 0.67" 

" Only counts of the same experiment are compa
rable. 

* C, Cellobiose; G, glucose; S, starch. 
' Count per 1 0 s g (wet weight), mean with standard 

deviation of the mean. Different symbols denote sig
nificance at P < 0.01 (x, y) or P < 6.05 (p, q). 
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medium (Table 7). When hemicellulose was 
added to the SS100 medium, no significant in
crease in colony numbers was obtained in most 
experiments. An additional indication tha t the 
added mixture of gums was utilized as substrate 
is derived from the greater average colony size 
on t h e roll tubes containing this mixture. 

In Table 8, microscopic counts and colony 
counts are compared. With the SS80 and SSI00 
media, colony counts reached about 20% of the 
microscopic counts. 

Iso lat ion and identif icat ion. In two exper
iments, bacteria were isolated from farm slurry 
and subsequently identified. In the first experi
ment, 42 colonies were transferred to Sweet E 
broth. Only 22 tubes showed good growth after 
a 3-week incubation period. On transfer to PYG 
broth, 7 isolates developed, and another 5 
strains, all of them cocci, grew when 0.2% Tween 
80 had been included in the PYG broth. In t he 
second experiment, 100 colonies were inoculated 
into SS100 with t he hemicellulose preparation 
but without agar. Growth in this medium was 
difficult to observe because of undissolved hem
icellulose particles. From all of t he lat ter tubes, 
0.1 ml was transferred to PYG broth enriched 
with 0.2% Tween 80. Twenty-one tubes showed 
good growth. Inoculating 0.1 ml of liquid from 
the 79 hemicellulose-containing tubes t ha t did 
not give growth in PYG without Tween 80 did 
not give positive results as contrasted with PYG 
with 2% oxgall, which enabled 5 more strains to 
grow. These 5 bacteria (4 cocci and 1 small rod) 
were not further identified. T h e s trains growing 
in PYG or PYG with Tween 80 were checked 
for puri ty by microscopic examination and sub
sequently used for identification tests. T he 33 
isolates could be divided into three groups. 

Group I consisted of 10 strains of non-sac-
charolytic gram-positive cocci. Only 2 of these 
grew a t 37°C. The bacteria occurred in pairs or 
chains, and 1 organism showed tetrads. They 

TABLE 6. Effect on colony counts of Tryptica.se 
added to SS20 

Eipt" Tryptica.se added 
(g/liter) Colony count* 

0 
10 

0 
2 

10 
30 

1.24 ± 0.44" 
1.48 ± 0.37" 

2.04 ± 0.34" 
1.77 ± 0.27"" 
2.06 ± 0.39" 
2.32 ± 0.28"'" 

" Only counts of the same experiment are compa
rable. 

* Count per 10 * g (wet weight), mean with standard 
deviation of the mean. Different symbols denote sig
nificance at P < 0.01 (x, y) or P < 0.05 (p, q). 

APPL. ENVIKON. MICROHIOL. 

TABLE 7. Effect on colony counts of addition of 
hemicellulose preparation to media including SS 

Expt" Medium 
Hemicel

lulose 
prepn 

Colony count 

SSI 00 
SSI 00 

SS100 
SSI 00 

SS100 
ssioo 
SS20 
SS20 

SS20 
SS20 

-
+ 

— 
+ 

_ 
+ 
-
+ 

— 
+ 

2.62 ± 0.47' 
3.64 ± 0.31" 

5.17 ±0.63" 
4.96 ± 0.39" 

4.17 ± 0.93" 
4.44 ± 0.77" 
1.90 ± 0.34v 

3.64 ± 0.75' 

2.03 ± 0.48" 
3.:» ± 0.39v 

" Only counts of the same experiment are compa
rable. 

* Count per 10 * g (wet weight), mean with standard 
deviation of the mean. Different symbols (x, y, z) 
denote significance at P < 0.01. 

TABLE 8. Comparison of microscopic counts with 
colony counts of farm slurry 

Medium 

SS40 
SS80 
SS80 
SS100 
SS100 

Microscopic 
count" 

36 
62 
30 
20 
17 

Colony 
count" 

2.96 
12.0 
7.10 
5.17 
3.92 

tt» 

8 
19 
24 
26 
23 

" Count per 10 9 g (wet weight). 
* Colony count as percentage of the microscopic 

count. 

fermented carbohydrates weakly or not a t all. 
These bacteria resemble Peptococcus species or 
the non-saccharolytic species of the genus Pep
tostreptococcus. 

Group II comprised 13 cocci t ha t fermented 
carbohydrates. Four of these (1 grew at 37°C) 
were gram-positive to gram-variable cocci t ha t 
fermented cellobiose, glucose, fructose, lactose, 
and mannose. The main acids produced were 
acetic and succinic acids. They were tentatively 
identified as Ruminococcus spp. Two other 
gram-positive cocci (1 grew at 37°C) were pres
ent in chains only. The cells had tapered ends 
and produced mainly acetic and succinic acids 
from all carbohydrates tested. These 2 s trains 
were identified as Peptostreptococcus produc
tifs. Seven isolates (5 grew a t 37°C) of gram-
positive cocci occurred in pairs or chains and 
fermented glucose, fructose, maltose, and starch. 
The main acids formed were acetic, succinic, and 
(less) lactic. These isolates belong, probably, to 
the genus Peptostreptococcus. 

Group III comprised gram-negative rods t ha t 

http://Tryptica.se
http://Tryptica.se
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often occurred in long pleomorphic cells. Of the 
10 isolates in this group, 5 were able to grow at 
37°C. The acids produced were acetic and suc
cinic, and 7 isolates also formed propionic acid 
as a major product. The bacteria in this group 
can be described as saccharolytic Bacteroides. 

DISCUSSION 

Colony c ount s on SS-conta in ing media. 
The data of Tables 2 and 3 show tha t it is 
advisable to incorporate about 80% SS in media 
for colony counts of the microbiota of farm 
slurries. The opt imum quanti ty may vary with 
the degree of dilution and with the composition 
of the slurry under investigation. Lower amounts 
of SS in the media result in lower colony counts, 
indicating tha t the main substrates for many 
organisms are diluted too much to allow devel
opment to visible colonies. It may be expected 
tha t addition of the proper substrates to SS20 
will give colony numbers of the same magnitude 
as obtained with media with high levels of SS. 
Addition of the compounds most frequently used 
as substrates in rumen media (cellobiose, glu
cose, and starch) to SS20 media did not increase 
colony counts (Table 5). The negative results of 
enrichment of the media with Trypticase (Table 
6) suggest tha t protein degradation products are 
not limiting. 

Of t he products tested as added substrate, 
only the hemicellulose preparations increased 
colony numbers, though counts remained lower 
than those obtained with SS80 and SS100 (Table 
7). Probably, only a limited fraction of the hem
icellulose in the slurry is present in water-soluble 
form. T h e remaining insoluble fraction, includ
ing the residues of plant cell walls from the 
forage, is removed by centrifugation and, there
fore, does not occur in the SS fraction that is 
used in the nutrient media used for counting. 
The relatively low concentration in the SS frac
tion of soluble components derived from hemi
cellulose apparently is sufficient for giving opti
mum growth of the microbiota. However, upon 
fivefold dilution, the concentration of the nutri
ents for many bacteria is too low to give visible 
colonies. Enrichment of the diluted SS medium 
with the hemicellulose preparation restored 
growth of these bacteria to a large extent. How
ever, restoration is not complete, presumably 
because the added hemicellulose preparation 
does not contain the required components in 
optimum concentration. 

St imulatory effects of hemicellulose prepara
tions on bacteria have been reported from rumen 
isolates by Dehority (6). Some workers found 
increased counts of rumen bacteria when fibrous 
material of the forage fed to ruminants was 

included in t he media (5, 7). Salyers et al. (14) 
reported the fermentation of gums by Bacte
roides spp. T h e use of commercial gums as a 
substi tute for the hemicellulose of plant fiber in 
nutr ient media has the advantage t ha t a more 
homogeneous medium is obtained and tha t 
ra ther well-defined products are used (19). The 
combination of gums used in the present work 
was chosen as a trial mixture. The monomer 
composition does not reflect the composition of 
the hemicellulose fraction of plant material left 
in piggery wastes. It may be t ha t o ther combi
nations of the gums used or including o ther 
gums in SS20 medium would have further in
creased colony counts. 

Temperature . Highest colony counts were 
obtained at an incubation temperature of 25°C, 
with a small decline for counts at 15°C. These 
incubation temperatures do not deviate much 
from temperature generally found in stored farm 
slurries. Counts at 37°C, the expected opt imum 
temperature of the microbiota of the incoming 
feces, show a sharp decrease. These results in
dicate tha t the intestinal microbiota of the pig 
does survive poorly in the wastes and is not 
likely to play a role in the decomposition of the 
slurry during storage. This conclusion is sup
ported by the work of Allen and Brock (1), who 
found tha t only 1% of the aerobically growing 
intestinal microbiota of the rat was cultivable a t 
25°C. 

When different slurries were inoculated into 
the respective SSI00 media, considerable differ
ences in colony counts were found. These differ
ences were, probably, largely due to differences 
in dry ma t te r content of the wastes. With the 
media SS80 and SS100, colony counts ranged 
from 2.6 x 10a to 12.0 X lOVg (wet weight). 
These numbers are considerably higher than the 
6.5 X 10"/ml reported by Hobson and Shaw (8), 
who used a medium with centrifuged fluid from 
an anaerobic digester with cellobiose, maltose, 
glucose, and lactate as substrates. But their 
counts have probably been negatively influenced 
by the incubation temperature of 38°C. 

The colony counts with the media SS80 and 
SS100 amount to 20% of the microscopic counts. 
Comparable figures have been reported for the 
rumen microbiota (5). Recoveries of the intes
tinal microbiota are usually higher (13), How
ever, farm slurries differ from both these habi
tats by not being a continuous system but a 
system without discharge, thus more approach
ing a batch culture, in which higher percentages 
of dead organisms are expected. 

Iso lates . T h e few samples from which orga
nisms were isolated and the low number of iso
lates obtained for identification give a limited 
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impression of the microbiota of piggery wastes. 
Isolates that could be grown in PYG represent 
about 20% of the colonies picked for isolation 
and only 4% of the microscopic count. Colonies 
were picked after 4 and 7 weeks, so part of the 
picked colonies may have been dead. Recoveries 
increased somewhat when isolates growing only 
in PYG with 2% oxgall were included. 

All organisms isolated were strict anaerobes. 
Earlier experiments had shown that counts on 
aerobically incubated media yielded 1 X 108 to 
5 X 10* colonies per g (Spoelstra, unpublished 
results). 

The tentatively identified anaerobic orga
nisms consisted of gram-positive cocci (70%) and 
gram-negative pleomorphic rods (30%). Hobson 
and Shaw (8) also reported gram-positive cocci 
as the most important group of bacteria in pig
gery wastes. They also found Clostridia to be an 
important group. However, in the present study 
no Clostridia were isolated. 

The identified organisms seem to belong to 
the genera whose representatives usually are 
isolated from the gastrointestinal tract of hu
mans and animals and consequently have opti
mum temperatures around 37°C. However, the 
majority of the present strains did not grow at 
37°C. This discrepancy causes some doubt about 
the identity of the isolated organisms, but it is 
also a reflection of the little attention that has 
been paid to the microflora of anaerobic ecosys
tems at lower temperatures. 
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Phenol, p-cresol, 4-ethylphenol, indole and skatole, which contribute to a large 
extent to the bad smell of piggeries, were estimated in anaerobically stored piggery 
wastes. p-Cresol, indole and skatole were also found in freshly voided faeces. Phenol, 
p-cresol and 4-ethylphenol are present in the urine as their glucuronides. It was shown 
that upon contact of urine and faeces, the urinary glucuronides are hydrolysed almost 
instantly liberating phenols. This hydrolysis is caused by the high /^-glucuronidase 
activity of faeces. Protein degradation followed by transformation of tyrosine and 
tryptophane were found to be additional processes contributing to the accumulation 
of phenol, p-cresol, indole and skatole during the anaerobic storage of piggery wastes. 

1. Introduction 

In a recent report, Schaefer et al.1 using organoleptic techniques, identified phenol, p-cresol, indole, 
skatole and volatile fatty acids as the main components causing the smell of the ventilation air of 
piggeries. They also identified these components in the stored piggery wastes. 

Phenol, p-cresol and 4-ethylphenol occur as conjugated compounds in the urine of mammals.2 

These phenolic compounds originate from the microbial degradation of tyrosine in the intestinal 
tract.3 '5 They are absorbed bv the body and subsequently detoxicated by conjugation with glucur
onic acid or sulphuric acid to glucuronides and sulphates, respectively.2.6 However, the sulphate 
conjugation is of minor importance in pigs.7-8 

Intestinal microbial degradation of tryptophane can lead to indole and skatole. Indole can be 
absorbed and hydroxylated to 3-hydroxyindole. As possible detoxication products of skatole, 
various hydroxyskatoles and indole-3-carboxylic acid are mentioned.2 The detoxication products 
are mainly excreted with the urine. 

In the intestinal contents of pigs, a high level of /5-glucuronidase of bacterial origin occurs.9 '10 

This enzyme hydrolyses glucuronides. Therefore, it was expected that mixing of faeces with urine 
would cause a rise in the contents of free phenols due to enzymatic hydrolysis of the glucuronides 
present in the urine. 

Faeces contain a considerable amount of protein, which was expected to be an additional source 
of phenols and indoles in the slurry. 

Possible pathways for the microbial formation of simple phenols from tyrosine have recently 
been discussed by Drasar and Hill.11 Tryptophane decomposition to indole and skatole by the 
rumen microflora has been described by Yokoyama and Carlson.12 

The present work deals with the origin and formation of phenol, p-cresol, 4-ethylphenol, indole 
and skatole in anaerobically stored mixed wastes of piggeries. The presence of these compounds in 
the slurry will be related to the malodours in the ventilation air of piggeries. 

2. Materials and methods 
2.1. Samples 
Faeces and urine were collected separately overnight from castrated male pigs (Dutch Landrace or 
Yorkshire) held in metabolism cages. The urine was collected in buckets containing 5 ml 6% HCl 
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to prevent microbial growth. AH animals from which samples were taken were fed with fodders 
comparable with commercial forage. This means that 350 parts/106 copper as CuSOj and 10 parts/ 
106 Chlortetracycline or virginiamycine were used as food additives. 

Samples of slurry were taken from farms with storage of the wastes under slatted floors. Generally 
the wastes were accessible only through the provision used for emptying the pit. The sampling 
device consisted of a 100-ml container mounted on a 1.8 m long stick. The container could be opened 
and closed by a rubber stopper which was manipulated by an attached lath. Several samples at 
different depths were taken and mixed. 

2.2. Experimental design 
A number of laboratoiy experiments were performed in which fresh faeces and urine were mixed. 
The mixing ratio of faeces and urine was 1:1.1 (w/w) approximating production ratios. To get a 
manageable fluid, the mixed wastes were diluted to a dry matter content of about 6%.The mixtures 
were inoculated with a few drops of a farm slurry and incubated anaerobically in closed 1-1 flasks. 
The pH value was measured twice a day and if necessary adjusted to pH 7.0. This pH value was 
chosen arbitrarily from the pH range 6.7-7.8 generally found in farm slurries. 

To avoid a rise in pH value immediately after incubation due to urea hydrolysis, the urine used 
in these experiments was incubated with 50 mg/litre urease (Merck, 250 000 E/g) for 3 h at 50°C 
and subsequently neutralised with 2 N-HC1. The formation of phenols and indoles was followed by 
sampling periodically and analysing as outlined in section 2.3. 

To demonstrate the importance of faecal ^-glucuronidase in liberating phenols from urinaiy 
glucuronides, mixtures of faeces and urine (1:1.1) were incubated both in the absence and presence 
of glucaro-l,4-lactone, which is a specific competitive inhibitor of jS-glucuronidase. To be sure 
of complete inhibition, the initial inhibitor concentration was 20 ITIM, and because of the instability 
of this compound at pH values higher than 6.1,13glucaro-l,4-lactone was added again after8and 13 h 
incubation time in amounts corresponding to 6.7 and 8.7 mmol, respectively. The formation of 
phenols and indoles by bacterial metabolism during the incubation period was prevented by shaking 
the mixtures with 4% (v/v) toluene for 30 min prior to incubation. Quantities of 100 ml were 
incubated in conical flasks of 300 ml capacity under an argon atmosphere at 20'C. The pH value 
was maintained at 7.0. 

Separate experiments were performed to test the occurrence of intermediates in the anaerobic 
degradation of tyrosine and tryptophane by adding these compounds to faeces as well as to farm 
slurries. The formation of phenols and indoles was determined semiquantitatively after overnight 
incubation under an atmosphere of nitrogen. The tested compounds were added in concentrations 
of about 1 mg/ml. The pH value was buffered with 0.05 M sodium phosphate at pH 7.0. 

2.3. Estimation of phenols and indoles 
Two ml of a freshly prepared 6"/0 NaHC03 solution and 1.00 ml of a standard solution of 5-decanol 
in ether were added to a sample of slurry of about 5 g. 5-Decanol was used as an internal standard 
in the gas-chromatographical analysis. Subsequently, the sample was extracted four times with 20 ml 
of ether. The emulsion, which was usually formed during the ether extraction, was broken by gentle 
centrifugation. The combined ethereal fractions were evaporated under reduced pressure at a 
maximum temperature of 25°C to a volume of a few millilitres. The residual ether was dried by 
adding anhydrous CaSO.», and transferred to a 10 ml test tube. The volume was further reduced to 
0.5-1 ml by holding the test tube in a waterbath of 30°C. Approximately 1 microlitre of the final 
ethereal solution was injected for gas-chromatographical analysis (Figure 1). 

The gas Chromatograph used was a Varian 2240 model equipped with a flame ionisation detector. 
A column of stainless steel was used of 3 m x 3 mm o.d. packed with 10% SE 30 on chromosorb 
W/AW, 80/100 mesh. The operational data were: temperature, oven 140"C; injectionport, 150"C; 
detectorblock, 190"C; flow of carrier gas (N2), 40 ml/min; air, 300 ml/min and H2, 30 ml/min. 

The peak heights obtained were measured relative to the peak height of the internal standard 
and compared with a calibration curve, which had been obtained by the same procedure as described 



-33-

Figure 1. Gas chromatogram of the analysis of a 
slurry sample. Peak number with attenuation in 
brackets: 1, solvent; 2, phenol (16); 3, p-cresol (32); 
4, 4-cthylphenol (32); 5, internal standard (32); 
6, unknown (2); 7, indole (2); 8, skatole (4). 

0 3 6 9 
Retention time (min) 

above with mixtures of known concentrations of phenol, p-cresol, 4-ethylphenol, indole and skatole, 
dissolved in water. 

To get information more quickly, a semiquantitative modification was also used. To about 3 g 
of a sample in a 10 ml centrifugation tube 1.5 ml 6% NaHC03 and 2.0 ml of a solution of 5-decanol 
in ether were added. The tubes were closed and shaken. The layers were separated by centrifugation 
and about 1 microlitre of the ethereal layer injected for gas-chromatographical analysis. 

2.4. Hydrolysis of urinary conjugates 
Both acidic and enzymatic hydrolysis of conjugates in the urine were carried out as described by 
Duran et a/.14 Acidic hydrolysis was performed with 2 N hydrochloric acid. The enzyme preparation 
used for enzymatic hydrolysis was a mixture of arylsulphatase and glucuronidase (glusulase, 
Boehringer). 

2.5. Glucuronidase assay 
Slurry samples were diluted 10-20-fold and shaken with 4°/0 (v/v) toluene for 30 min. Toluene-
treated samples were incubated at 30 C with 0.05 M sodium phosphate buffer (pH 7.0) and 1.0 mM 
p-nitrophenylglucuronide (Merck). Periodically, 2 ml samples were taken from the assay mixture 
and the reaction stopped by placing the sample for 1 min in a boiling water bath. Subsequently, 
the sample was centrifuged for 15 min at 10 000 g. The supernatant was diluted to a suitable volume 
and supplied with 1.0 ml of 1 N-NaOH. The extinction was measured at 400 n m with a spectro
photometer. From the slope of the obtained line and a calibration curve of p-nitrophenol, the amount 
of p-nitrophenol liberated per unit time was calculated. The jS-glucuronidase activity is expressed in 
units: one unit corresponds with 1 f*g p-nitrophenol liberated per minute and per gram of sample 
(wet weight). 

3. Results 
3.1. Phenols and indoles in slurries 
Slurry samples from 13 piggeries with animals on slatted floors were analysed (Table 1 ). The sample 
of piggery number 1 was taken when the pit had recently been emptied and cleaned. The samples of 
piggeries 2-6 were taken at different times of the year. 



Piggery 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Date of 
sampling 

Oct. 1975 
Aug. 1975 
Aug. 1975 
Aug. 1975 
March 1976 
March 1976 
Oct. 1975 
Oct. 1975 
Oct. 1975 
Oct. 1975 
Oct. 1975 
Oct. 1975 
Oct. 1975 

Table 1.. 

Dry 
matter 
(%) 

14.9 
4.5 
5.4 
9.1 
8.5 
8.3 

10.9 
4.4 
7.6 

10.1 
9.0 
3.3 

10.8 
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Analytical data for slurry 

Ash 
(%d.m.) 

24 
36 
31 
32 
27 
31 
32 
35 
27 
26 
28 
35 
40 

Phenol 

12 
55 
20 
40 
20 
21 
43 
17 
18 
19 
19 
7 
8 

samples from 

p-Cresol 

140 
200 
150 
170 
170 
200 
300 
280 
290 
340 
320 
180 
320 

piggeries 

4-Ethylpheno! 

(mg/kg wet weight) 

8 
13 
6 

18 
19 
15 
72 
25 
32 
48 
38 
15 
52 

S. F. 

Indole 

3 
3 
1 
2 
5 
5 

11 
2 
3 
6 
5 
0 
6 

S poelstra 

Skatole 

10 
49 
42 
53 
50 
50 
54 
29 
41 
56 
38 
9 

38 

The remaining samples were taken in the autumn of 1975 just before landspreading of the slurries, 
which had been stored during the preceding summer. The monthly mean temperatures for June, 
July, August and September 1975 were 15.1, 17.8, 19.9 and 15.2°C, respectively. The monthly mean 
temperatures for these months departed —0.4, +0.8, +3.1 and +0.9'C from normal (measured at 
the Dutch Meteorological Institute in De Bilt). 

The concentration of p-cresol in the samples tested varied between 140 and 340 mg/kg of 
slurry wet weight; it was generally higher in the slurry samples taken in the autumn of 1975 than 
in the other samples. The concentrations of phenol, 4-ethylphenol and skatole amounted to about 
10% and indole to 1 % of the concentrations of p-cresol. 

3.2. Phenols and indoles in freshly voided excreta 
Part of the phenols and indoles in farm slurries were already present in the freshly voided excreta 
(Table 2). Fresh faeces were found to contain large amounts of p-cresol, moderate quantities of 
indole and skatole, while phenol and 4-ethylphenol could not be detected. Urine contained con
siderable amounts of conjugated phenols, whereas free phenols were found in minor or trace 
quantities only. 

Table 2. Example of an analysis of freshly voided faeces and urine of pigs (mg/kg wet weight) 

Phenol p-Cresol 4-Ethylphenol Indole Skatole 

Faeces (undiluted; dry matter 21 %) 
Urine, free phenols 
Urine, conjugated phenols" 
Urine, conjugated phenols" 

0 
0 
1 
2 

137 
4 

78 
78 

0 
trace 

21 
22 

5 
0 
0 

— 

34 
0 
0 

— 
0 Enzymatically hydrolysed. 
t Acid-hydrolysed. 

3.3. Phenols and indoles in faeces and in a mixture of faeces and urine upon incubation (Figure 2) 
Faeces incubated anaerobically without urine at 25 °C produced considerable amounts of p-cresol 
and skatole, but at 15 C only small quantities were formed. Indole production occurred in small 
quantities at both temperatures, while phenol and 4-ethylphenol were formed neither at 15 nor at 
25°C. 

Addition of urine to faeces gave a fast initial increase in the concentrations of phenol, p-cresol 
and 4-ethylphenol. The initial increase of p-cresol at 25'C was slightly higher and that of phenol 
about four times higher than that at 15 'C. 
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Figure 2. Phenol, /»-cresol, 4-ethylphenol, indole and skatole in faeces and in a mixture of faeces and urine upon 
incubation at 15 and 25"C. • • . Faeces: O C, faeces + urine (1 : I.I). Dry matter content of the mixtures 
was about 6%. Arrow -> indicates the level o f the compound in the mixture which originated from fresh faeces. 
Arrow-*•+ indicates calculated level in the mixture of faeces and urine originating from fresh faeces and urinary 
glucuronide. 
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No temperature influence was observed with 4-ethylphenol. The production of indole was also 
stimulated by added urine, while no stimulating effect of urine on the formation of skatole was 
observed. 

In a similar experiment, a mixture of faeces and urine was incubated for 150 days. Phenol, p-cresol 
and 4-ethylphenol accumulated during this period, while the content of indole and skatole declined 
after an increase during the first 2 months (Figure 3). 

Figure 3. 
p-cresol, • -
indole, • — 

(a) Protein, (b) Phenol, 
— • ; 4-ethylphenol, 
• and skatole, A— 

50 100 
Incubation period (days) 

O ; 

— a ; 
\ in a 

mixture of faeces and urine (dry matter content 9 %; 
mixing ratio 1:1) during anaerobic storage at 18-
20°C. The first sample was taken 2 h after mixing 
faeces and urine when the conjugated phenols of the 
urine had been completely hydrolysed by faecal 
glucuronidase. 

3.4. Activity of ̂ -glucuronidase 

Twelve samples of slurries were analysed for activity of jS-glucuronidase. The average activity found 
in these samples was 12.9 units. The lowest and highest activities amounted to 3.2 and 21.6 units, 
respectively. 

The addition of glucaro-l,4-lactone to a mixture of faeces and urine prevented the primary 
increase of phenols. This effect is shown for p-cresol in Figure 4. At the beginning of the incubation 
period the mixture contained 27 mg/litre free and 18 mg/litre conjugated p-cresol, which originated 
from the faeces and the urine used, respectively. The rise in the content of p-cresol in the presence of 
glucaro-l,4-lactone after 25 h incubation time must be attributed to the instability of the inhibitor 
at the pH value of the mixture. 

Similar results were obtained for 4-ethylphenol. The results for phenol were unclear due to the low 
content of phenol in the mixture and the inaccuracy of the analytical method in that range. 

No effect of the addition of glucaro-l,4-lactone on the formation of indole and skatole was 
observed. 
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Figure4. Inhibition of the initial increase ofp-cresol 
in a mixture of faeces and urine by glucaro-1,4-
lactone. • • , Mixture of faeces and urine 
treated with toluene and glucaro-l,4-lactone added. 
O O, Same mixture without glucaro-1,4-
lactone. Arrows indicate time of addition of inhibitor. 

20 40 
Incubation period (h) 

3.5. Phenols and indoles formed from tyrosine and 
tryptophane and possibly occurring intermediates 

Addition of possible intermediates of the anaerobic degradation of tyrosine and tryptophane to 
faeces gave approximately the same pattern of phenols and indoles formed as when these inter
mediates were added to slurries (Table 3). However, a few remarkable exceptions were found. When 
tyrosine was added to slurry, a rise in the content of phenol was noticed, which did not occur when 
tyrosine was added to faeces. Ethylphenol was formed when p-coumaric acid was added to faeces 
but not when it was added to slurry. 

Table 3. Formation of phenols and indoles from tyrosine and tryptophane and from possibly occurring intermediates 
of the degradation of these two amino acids upon incubation of faeces and slurry 

Compound added 

Tyrosine 
4-Hydroxypyruvic 

acid 
irans-p-Coumaric 

acid 
4-Hydroxyphenyl-

acetic acid 
4-Hydroxyphenyl-

propionic acid 
4-Hydroxybenzoic 

acid 
Phenylalanine 
Tryptophane 
Tryptamine 
Indole-3-pyruvic 

acid 
Indole-3-acryIic 

acid 
IndoIe-3-propionic 

acid 
Indole-3-acetic acid 
Indoxylsulphate 
Indole-3-carboxylic 

acid 

P 

+ + + 

Faeces (37=C) 

C EP I S 

+ + 

+ 

+ + 

+ + + 

+ + + + + 

+ + 

+ + + 

+ 

Slurry (25 C) 

P C EP I 

+ + + 

+ + 

+ + 

+ + 

+ + 

+ 

+ + 

S 

+ 

+ 

+ 

P 

+ + 

+ 

+ + 

i 

Slurry (37°C) 

C EP I S 

+ 

+ 

+ + 

+ + + + 

+ + + 

+ + 

Formed in small ( + ), moderate (+ + ) and large (+ + + ) quantities. 
P, phenol; C, p-cresol; EP, 4-ethylphenol; I, indole; S, skatole. 
Compounds were added in concentrations of about 1 mg ml. pH was buffered with 0 .05 M phosphate buffer 

at pH 7.0. Incubation was done overnight at the indicated temperature under nitrogen. 



S. F. Spoelstra 

4. Discussion 

Phenol, p-cresol, indole and skatole were mentioned by Schaefer et al.1 as important components 
of the ventilation air causing the smell of piggeries. These compounds, and in addition 4-ethylphenol, 
which also contributes to the phenolic components in the odour, were shown to be constituents of 
slurry. 

The p-cresol contents found in the samples of slurries taken in the autumn of 1975, which were 
generally higher than those in the other samples, may have been influenced by the long storage time 
at relatively high temperatures (Table 1). The age of the farm slurries sampled was difficult to estab
lish. In general the pits were emptied in relation with land spreading wastes, which occurred by 
preference in the spring and in the autumn. The dry mattercontents as reported in Table 1 probably 
give an inaccurate estimation of the dry matter content of the sampled slurries. This was caused by 
the difficulty of taking representative samples of the heterogeneous slurry at farm sites. 

The fast initial increase of phenols, upon the addition of urine to faeces (Figure 2), the inhibitory 
effect of glucaro-1,4-Iactone (Figure 4) and the high /3-glucuronidase activity in faeces9'10 indicate 
that the increased concentrations of phenols were, at least partially, due to the hydrolysis of the 
corresponding urinary glucuronides by faeces ^-glucuronidase. From the concentrations of glucu-
ronides in the urine used in these experiments it was calculated that the initial increase of p-cresol 
was largely explained and that of 4-ethylphenol completely explained by hydrolysis of their urinary 
glucuronides. In the case of phenol the primary increase was higher than can be explained by hydro
lysis of conjugated phenol alone. So other compounds may be present in the urine which are readily 
degraded to phenol. 4-Hydroxybenzoic acid is probably such a compound, because it is normal 
constituent of urine,2 and it can be decarboxylated by faeces.15 Data from Table 4 confirm that 
4-hydroxybenzoic acid is decarboxylated by faeces as well as by farm slurry. The same table indicates 
that urinary tyrosine was not likely to play a role in phenol production in the experiments described, 
but that it might do so in slurries. 

It is likely that urinary glucuronides were hydrolysed nearly instantaneously upon contact with 
faeces at both 15 and 25°C (Figure 2). Other urinary precursors of phenol, p-cresol, and indole 
may be transformed slower or transformed in relation with bacterial growth. The high ^-glucu
ronidase activities in slurries reported in section 3.4 suggest that fast hydrolysis of urinary glucu
ronides also occurs under farm conditions. 

p-Cresol, skatole and small quantities of indole and phenol formed in faeces incubated at 25°C 
were probably derived from degradation of the proteinaceous fraction of the faeces. Incubated at 
15°C no or only small amounts of these compounds were formed from faeces indicating that their 
formation is related with bacterial growth. In faeces mixed with urine the formation of skatole 
and the secondary increase of p-cresol is also attributed to bacterial protein degradation 
(Figures 2 and 3). 

Indole is present in fresh faeces (Table 2) and it is also produced from both urinary precursors 
and probably from protein degradation (Figures 2 and 3). Possible urinary precursors are trypto
phane and indole-3-carboxylic acid (Table 3). Indole and skatole are the only compounds of which 
a decrease in concentration has been observed during incubation (Figure 3). Disappearance of 
indole in an anaerobic environment has also been described in relation to the indole test as a 
determinative factor for Enterobacteriaceae.1* 

Skatole is present in fresh faeces. The production of this compound did not increase upon 
addition of urine. The observed accumulation of skatole is due to protein putrefaction (Figures 2 
and 3). 

The results of the laboratory experiments given in Figures 2 and 3 demonstrate that in addition 
to glucuronide hydrolysis, phenols and indoles are also derived from protein degradation. It is 
likely that the same processes take place in slurries stored under farm conditions. This view is 
supported by the data of Tables 1 and 2 giving the levels of phenols and indoles in piggery wastes 
and those in urine and freshly voided faeces, respectively. Comparison of the concentration of 
p-cresol in slurries (200-300 mg/kg wet weight) with that in mixed freshly voided excreta (about 
100 mg/kg wet weight) suggests that 100-200 mg/kg wet weight is derived from protein degradation. 
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The contribution of protein degradation to the amount of phenols and indoles in slurry is 
dependent on temperature and consequently may show seasonal variations. This is in contrast 
with the contribution of freshly voided excreta and that of urinary precursors which are more 
constant. 

The information obtained may be helpful in predicting the effect of odour-abating measures. 
This concerns especially methods aiming to diminish the formation of odorous substances by 
alternative waste handling systems or addition of chemical or biochemical products to the slurry. 
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DEGRADATION OF TYROSINE IN ANAEROBICALLY 
STORED PIGGERY WASTES AND IN FAECES OF PIGS 

Radioactively labeled compounds that might be intermediates in the anaerobic 

degradation of tyrosine were added to pig faeces and to stored piggery wastes. 

Changes in the compounds were followed by using thin-layer and gas chromatography. 

In faeces, p-cresol and 3-phenylpropionic acid were the end products of tyrosine 

metabolism; in anaerobically stored mixed wastes, phenol, p-cresol and minor 

quantities of phenylpropionic acid were formed. Schemes were proposed for the 

degradation of tyrosine in pig faeces and in mixed wastes. 

INTRODUCTION 

Research on the chemical composition of the malodour emitted by piggeries 

revealed that p-cresol, phenol, and 4-ethylphenol are important constituents 

of the bad smell (32). Because the origin of these simple phenols was poorly 

understood a research program was started on the formation of simple phenols 

in piggery wastes. 

In a previous investigation (37),high levels of p-cresol and moderate amounts 

of phenol and 4-ethylphenol were detected in anaerobically stored piggery 

wastes; the origin of these compounds was studied. Some of the simple phenols 

in these wastes were present at the time that excreta were voided. Upon 

anaerobic storage of the mixture of faeces and urine, which generally occurs 

in pits under slatted floors, protein degradation proceeds and concentrations 

of phenol and p-cresol increase (37). The simple phenols present in freshly 

voided faeces and urine are believed to originate from microbial degradation 

of tyrosine in the intestinal tract (13). 

Formation of phenol from tyrosine has been reported for many bacteria 

possessing the enzyme tyrosine phenol lyase (EC 4.1.99.2) (9,11,15,16,26,31). 

An alternate pathway leading to phenol, with decarboxylation of 4-hydroxybenzoic 

acid as the final step, has also been proposed (6,13). 



-41-

p-Cresol is produced from tyrosine via decarboxylation of (4-hydroxy)-

phenylacetic acid (22,34,39). Organisms reported to produce p-cresol belong 

mainly to the Clostridia (15,31), but non-spore-forming organisms have also 

been mentioned (39). 

It has been suggested that 4-ethylphenol, present in the urine of mammals 

would also be derived from tyrosine (28). But Bakke (2,3) concluded from 

experiments with rats that p-coumaric acid in plant material of fodders is the 

precursor of 4-ethylphenol. The conversion of p-coumaric acid to 4-ethylphenol 

is performed by the intestinal microflora of rats (4,34). No organisms have been 

described which produce 4-ethylphenol from tyrosine. 

The microbial degradation of tyrosine as part of an anaerobic ecosystem has 

been studied in the faeces of man (12), the caecal contents of rats (3-5) arid 

the rumen of sheep (36). For these different ecosystems the available information 

shows a complex pattern of possible degradation routes. End products of tyrosine 

degradation in the intestine seem to be simple phenols, whereas in the rumen 

aromatic acids are accumulating. In the work reported here tyrosine degradation 

was studied in anaerobically stored piggery wastes and in freshly voided faeces 

of pigs. 

MATERIALS AND NETHODS 

Samp les 

Faeces, separated from urine, were collected overnight from castrated male 

pigs (Dutch Landrace or Yorkshire), held in metabolism cages. 

Farm slurry was taken as a grab sample from farms with storage of mixed 

wastes under slatted floors. 

Extraction procédure 

For the estimation of phenols and aromatic acids in slurry or faeces, 

samples (usually 3 g) were adjusted to pH 8.5 and extracted three times with 

double volumes of ether. The ethereal layers were combined, dried over anhydrous 

N^SO,, and evaporated under reduced pressure to a volume of about 1 ml 

(neutral extract). The pH of the extracted sample was adjusted to a value of 

2.0 and the sample again extracted twice with double volumes of both ether and 

ethylacetate. The combined organic layers were dried over N^SO., evaporated 

under reduced pressure to dryness, and dissolved in about 1 ml of acetone 

(acid extract). 
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Gaa chromatography 

The neutral extracts were subjected to gas-chromatographical analysis for 

the qualitative determination of phenol, cresol, ethylphenol and tyrosol. 

The operational data have been described before (37). 

Aromatic acids were analysed as their trimethylsilyl derivatives or as methyl 

esters. The dry acid extract was supplied with 0.2 ml of a mixture of B.S.A. 

(N,0-bis-(trimethylsilyl)acetamide, Pierce) and chloroform (1:2 v/v). The 

reaction mixture was allowed to stand for 20 min at room temperature and was 

subjected to gas chromatographical analysis. Methyl esters were prepared with 

boron trichloride-methanol reagent (Sigma). The gas Chromatograph used was a 

dual column Varian 2440 model equipped with flame ionization detectors. For the 

analysis of trimethylsilyl- and methyl derivatives of aromatic acids, a 3 m 

stainless steel column (outer diameter 1/8") packed with 10« OV-17 on Chromosorb 

W/AW was used. The column oven temperature was 200 C, temperature settings 

of injection port and detector block were set 30°C higher than the oven 

temperature. As carrier gas nitrogen (15 ml/min) was applied. Hydrogen and air 

flows were adjusted at 30 ml/min and 300 ml/min, respectively. Table 1 gives 

retention times of phenolic acids. 

Table 1. Gas chromatography of some phenolic acids 
a 

Compound Relative retention time 

Phenylacetic acid 
4-Hydroxybenzoic acid 
3-Phenylpropionic acid 
(4-Hydroxyphenyl)acetic acid 
p-Coumaric acid 
3-(4-Hydroxyphenyl)propionic acid 
(4-Hydroxyphenyl)lactic acid 
(4-Hydroxyphenyl)pyruvic acid 

4-Hydroxybenzoic acid = 1.00 

Thin-layer chromatography 

Neutral and acid extracts were applied to 0.25-mm layers of cellulose 

(MN 300, Macherey Nagel) or of silicagel G 1500 Ls 254 with an ultraviolet 

indicator (Schleicher-Schiill). For the two-dimensial development solvent 1 

(1.51 formic acid) and solvent 2 (upper layer of benzene:acetic acid:water = 

10:7:3) were used in that order. Silica gel layers were developed usually 

Trimethylsi 
derivatives 

0.36 
1.00 
0.57 
1.12 
3.53 
1.75 
2.50 
4.48 

lyl Methyl 
derivatives 

0.31 
1.00 
0.45 
1.16 
3.05 
1.51 
-
-
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in one direction only with solvent 2. Cellulose chromatograms were sprayed 

with either diazotised sulfanilamide or with Fast blue B salt followed by a 

101 Na?CO, solution (38). Rf values are given in Table 2. Colours of the 

various compounds produced by the sprays were reported by Scheline (33). 

Table 2. Names and abbreviations used, and Rf values, of phenolic compounds 
studied by thin-layer chromatography 

Chemical name 

Phenol 

4-Methylphenol 
4-Hydroxybenzyl 
alcohol 
4-Hydroxybenzaldehyde 
4-Hydroxybenzoic acid 

4-Hydroxystyrene 
4-Ethylphenol 
2- (4-Hydroxyphenyl) 
ethanol 
4-(2-Aminoethyl) 
Phenol 
Phenylacetic acid 
4- (Hydroxyphenyl) 
acetic acid 

trans-3- (4-Hydroxy-
Phenyl)acrylic acid 
3-Phenylpropionic 
acid 
3-(4-Hydroxyphenyl)-
propionic acid 
DL-(4-Hydroxyphenyl)-
lactic acid 
(4-Hydroxyphenyl)-
Pyruvic acid 
(4-Hydroxyphenyl) 
alanine 

Trivial name 

-

p-Cresol 

-

-
-

p-Vinylphenol 
-

Tyrosol 

Tyramine 

-

-

trans-p-
coumaric acid 
Hydrocinnamic 
acid 
Phloretic 
acid 

-

-

Tyrosine 

Abbreviation 

-

-

-

-
-

-
-

-

-

PAA 

HPAA 

PCA 

PPA 

HPPA 

HPLA 

HPPyrA 

-

Rf, 
cellulose 

Solvent 1 

0.81 

0.82 

0.87 

0.79 
0.60 

-
0.83 

0.84 

-

-

0.84 

0.35 

" 
0.80 

0.88 

-

-

Solvent 2 

1 

1 

0.19 

0.58 
0.41 

-
1 

0.35 

-

-

0.37 

0.49 

~ 

0.56 

0.04 

-

-

Rf,silica 
gel 

Solvent 3 

0.41 

0.43 

0.06 

0.17 
0.19 

-
0.44 

0.08 

-

0.51 

0.15 

0.18 

0.53 

0.20 

0.03 

-

-

Media 

Clostridia were grown in closed 1-1 serum bottles with either medium A 

(peptone 5 g/1, yeast extract 2 g/1, tyrosine, 0.2 g/1) or one quarter strength 

reinforced clostridial medium (RCM; Oxoid) enriched with 0.2 g/1 tyrosine. 

Radiochemical experiments 

Radioactive compounds that were possible intermediates in the degradation of 

tyrosine were added to tubes of 14 ml capacity containing 3 g of either slurry 
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or faeces diluted with 2 parts of water. The tubes were supplied with about 

0.30 pmol (approximately 0.05 pCi) of the test substances. The added tyrosine 

and tyramine contained 0.1 pCi and 0.25 pCi, respectively. The tubes were flushed 

with oxygen-free nitrogen, closed with Suba-seal stoppers and incubated at 20 

(farm slurry) or 37°C (faeces). At the end of the incubation period the samples 

were extracted as outlined under extraction procedures. About 10 pi of the 

extract was supplied to thin layers of silica gel, which were developed with 

solvent 2. Distribution of radioactivity was determined by scraping the spots 

into scintillation vials. Non-radioactive reference compounds were run together 

with the samples. 

Because phenol and p-cresol could not be separated by thin-layer chromatography, 

the ratios of phenol and p-cresol formed from added radioactive test substances 

were estimated by gas chromatography. For this reason 5-10 pi of the neutral 

extract was injected on a gas Chromatograph equipped with an effluent splitter, 

thus offering the possibility of collecting 901 of a compound after separation 

on the OV-17 column. The compounds were collected in a glass capillary which 

could be attached to the outlet of the stream splitter. The capillary was cooled 

with a mixture of solid carbon dioxide and acetone. The collected fractions were 

washed with ether into scintillation vials. 

Total activity in the neutral and acid extracts was determined by using an 

internal standard ([_ c3_toluene) as correction for quenching. The liquid 

scintillation counter used was the Mark I model of Nuclear Chicago. 

Chemicals 

Tyrosol was prepared microbiologically by incubating Saaaharomyaes cerevisiae 

with tyrosine and sucrose according to Ehrlich (14). The Laboratory strain S, 

was used. 

4-Hydroxystyrene was isolated from the culture medium of a Clostridium sp., 

strain A, which had been incubated with p-coumaric acid at pH 5.7. The strain 

had been isolated from pig faeces and was identified as CI. ghoni. The product 

was isolated by extraction with ether of the culture medium brought to pH 8.5, 

and after reduction of the ethereal layer purified by gas chromatography. The 

nature of the product was confirmed by mass spectrometry. 

4-Hydroxybenzylalcohol, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 

(4-hydroxyphenyl)acetic acid, 3-(4-hydroxyphenylpropionic acid, p-coumaric 

acid, tyramine, (4-hydroxyphenyl)pyruvic acid, 3-phenylpropionic acid and 

phenylacetic acid were purchased from Fluka. DL-(4-hydroxyphenyl)lactic acid 
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was obtained from Sigma. Abbreviations used for chemical compounds are given 

in Table 2. 

RadioahemiaaIs 

L-[[U- C 3 tyrosine and side chain labeled [_2- C~\ tyramine were purchased 

from the Radiochemical Centre, Amersham. 

[U- 1 4 C] tyrosol, [U- 1 4 C] HPAA, [U- 1 4 C] HPLA and [U- 1 4 C] HPPA were 

prepared microbiologically as described below. 

Cells of an overnight culture of Clostridium strain A, grown in 1 1 medium A 

at 37°C, were harvested and aseptically transferred to a 25-ml tube. The cells 

were incubated under a nitrogen atmosphere at 37 C for one week with 0.5 mmol 

L-£u- C~\ tyrosine (20 uCi), 0.25 mmol a-ketoglutaric acid and 1.0 mmol 

glycerine in 10 ml 0.1 M sodium phosphate buffer (pH 7.0). The only products 

formed from tyrosine under these conditions were tyrosol, HPM and HPLA. The 

results of these experiments will be dealt with in a separate paper. 

{_ U- C 3 HPPA was isolated from the spent culture medium of CI. sporogenes 

NC1B 10696. This organism was shown to accumulate HPPA by Eisden et al. (15). 

The organism was grown in 50 ml one quarter strength RCM supplemented with 

0.5 mmol L-[U-1 4C] tyrosine (5 pCi) at 37°C. 

Tyrosol was extracted from the reaction mixture at pH 8.5 with ether. The 

aromatic acids were extracted at pH 2 with ether and ethylacetate. The residues 

of the dried organic layers were taken into a little acetone and applied to thin 

layers of cellulose which were developed with solvent 2. The areas with the 

desired products were scraped from the plates and the scrapings reextracted 

with acetone. The nature of the products was confirmed by gas chromatography 

°f trimethylsilyl derivatives and by two-dimensiol thin-layer chromatography. 

Ultraviolet light was used to detect spots on the silica gel layers with 

fluorescence indicator. The thin-layer chromatograms of HPPA when observed under 

UV light showed impurities which, however, did not carry label. 

The labeled substances were dissolved in water and their concentrations were 

determined gas-chromatographically in a subsample as trimethylsilyl derivatives. 

RESULTS 

Preliminary experiments (Table 3) 

Experiments were set up to get an impression of the pathways involved in 

tyrosine degradation leading to simple phenols. Possibly occurring intermediates 
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Table 3. Production of phenol, p-cresol and 4-ethylphenol from tyrosine and from 
possibly occurring intermediates of the anaerobic degradation of tyrosine upon 
incubation of these compounds with farm slurries and faeces a 

Substrates Products 

Phenol p-Cresol 4-Ethylphenol 

Farm slurry Faeces Farm slurry Faeces Farm slurry Faeces 

++ 

++ 

13 

0 
++ 

++ 

++ 

H 

H 

Tyrosine ++ - ++ +++ 
4-Hydroxystyrene - - - ++ +++ 
4-Hydroxybenzaldehyde + + 
4-Hydroxybenzyl 
alcohol 
Tyrosol 
4-Hydroxyben zoi c 
acid 
Tyramine 
(4-Hydroxypheny1)-
acetic acid 
p-Coumaric acid - - - - +++ 
(4-Hydroxypheny1) -
propionic acid 
(4-Hydroxypheny1)-
lactic acid 
( 4-Hydroxypheny 1 )-
pyruvic acid 
None - - - - -

Test substances were added in concentrations of about 1 mg/ml. The pH value was 
buffered with 0.05 M phosphate buffer at pH 7.0. Stoppered tubes were incubated 
under a nitrogen atmosphere at 25 (farm slurry) or 37 C (faeces) and analysed 
qualitatively after 20 h. 

b 
Formed in small (+), moderate (++) and large quantities (+++). Symbol in 
brackets denotes that no p-cresol had been formed after normal incubation time, 
but that it was formed on long-term incubation. 

were added to the wastes which were analysed qualitatively for simple 

phenols after overnight incubation. N'o formation of phenol or p-cresol was 

detected with the qualitative method of analysis used when no substrate had been 

added to farm slurry or faeces. To approach the temperatures of the ecosystems 

farm slurry was incubated at 25 and faeces at 37°C. Previous experiments (37) 

had shown that no substantially different results were obtained when farm 

slurry was incubated at 20 or at 37°C. Phenol was formed in farm slurry from 

tyrosine and in minor quantities from HPPyrA, whereas no phenol was formed 

when these substances were added to faeces. In farm slurry as well as in faeces 

4-hydroxybenzoic acid was decarboxylated to phenol. Small quantities of phenol 
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were also formed from 4-hydroxybenzyl alcohol and from 4-hydroxybenzaldehyde. 

p-Crcsol was produced from a greater number of substances than phenol; the 

types of compounds which were converted to p-cresol were similar with farm 

slurry and faeces. Moderate to large amounts of p-cresol were produced from 

tyrosine, III'PyrA, 11PAA, 4-hydroxybenzyl alcohol and 4-hydroxybenzaldehyde. 

Minor quanti t ies were found when HPLA was added. Tyramine and tyrosol gave no 

detectable quanti t ies of p-cresol after overnight incubation, but large amounts 

were found when analysed af ter one week or more. 

4-Lthylphenol was detected when PCA had been added to faeces, but not when 

i t was added to farm s lurry. 4-!Iydroxystyrene was to ta l ly reduced to 4-ethyl-

phenol. 

The influence of the pH value of farm s lurry and faeces on the formation 

of simple phenols was studied by adding the above-mentioned precursors to the 

wastes mixed with sodium phosphate buffer of the desired pH value (final 

concentration 0.1 M) and incubating the mixture overnight. The pH was controlled 

and adjusted, i f necessary, after the addition of the solution with the t e s t 

substances. After fermentation the pH value never deviated more than 0.1 uni t 

from the i n i t i a l value. In farm slurry phenol was produced from added tyrosine 

in the pH range 7.0 - 8.0, whereas the decarboxylation of 4-hydroxybenzoic 

acid occurred over the whole range studied (pH 6 - 8.5), with s l igh t ly higher 

a c t iv i t i e s at the lower pH values (Fig. 1). The optimum pH for the conversion 

of tyrosine and HPAA to p-cresol was about pH 7.0 in farm s lurry . In faeces no 

optimum was found and p-cresol was produced over the whole pH range studied 

(Pig. 2) . The formation of 4-ethylphenol from PCA in faeces declined with r i s ing 

pH values. At pH 5.5, 4-hydroxystyrene was also accumulated (Fig. 3). 

Aromatic acids 

After overnight incubation of both farm slurry and faeces with tyrosine, the 

gas-chromatographical analysis of the acid extracts showed minor peaks with the 

same retention time as HPAA, which were absent when no tyrosine had been added. 

But interpretation of the chromatograms was d i f f icul t because of the presence 

of many unknown components. Inoculation of media A and RCM with 10 g of farm 

slurry per l i t r e of medium did show accumulation of mainly IIPPA. Small amounts 

of HPAA and tyrosol were also present in both media. A minor peak with the same 

retention time as PCA appeared in the gas chromatogram when both t r imethyls i ly l -

and methyl derivatives were prepared. This peak could not with certainty be 

identified as PCA. Sirmle nhcnols were not formed. 
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Fig. 1. Effect of pH value on the formation of phenol from tyrosine 
and 4-hydroxybenzoic acid ( D O ) added to farm slurry. 
o o No addition. 
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Fig. 2. Effect of pH value on the formation of p-cresol from tyrosine (•-
and (4-hydroxyphenyl)acetic acid (a D) added to pig faeces. 
o o No addition. 
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Fig. 3. Effect of pH value on the formation of 4-hydroxystyrene (» •) 

and 4-ethylphenol (o o) from p-coumaric acid added to pig faeces. 

Radiochemical experiments with farm slurry 

In Table 4 the distribution of radioactivity over the neutral and acid 
1 X 

extracts are given after incubation of \_\i- C ] tyrosine with farm slurry. 

Thin-layer chromatograms of the neutral extract showed that radioactivity was 

present only in the spot with the same Rf values as that of phenol and p-cresol. 

Gas chromatography with the use of the effluent splitter confirmed that no 

labeled neutral compounds other than phenol and p-cresol were present. In two 

slurry samples the ratio of phenol to p-cresol formed was found to approach 1. 

Aromatic acids present in slurry sample I (Table 4) after the incubation period 

consisted mainly of HP.AA (53o) and PPA (25°), with minor quantities of HPPA and 

UPLA. In a similar experiment labeled IIPAA and I1TPA were incubated with farm 

14. Table 4. Distribution of radioactivity (%) after addition of L-£u- c ] 
tyrosine to farm slurry. Incubated for 20 h at 20 C. 

Waste sample pH Phenol + 
p-cresol Ratio 

phenol 
p-cresol 

I 
II 
III 
IV 

7.5 
7.8 
7.7 
7.3 

51 
56 
55 
55 

0.79 

0.84 

Aromatic acids 

12 
11 
10 

file:///_/i


-50-

slurry (Table 5). p-Cresol was formed from HPAA, and no PAA was present, 

whereas 251 from the added IIPPA was recovered dehydroxylated as PPA. About 3°0 

of the added label was found in the neutral extract. 

Table 5. Distribution of radioactivity (%) after addition of |_ U- C~] 
(4-hydroxyphenyl) acetic acid or [] U-14C ~] 3- (4-hydroxyphenyl) propionic acid 
to farm slurry. Incubated for 20 h at 20°C 

Compound added p-Cresol Aromatic acids 

HPAA 

9 

0 

HPPA 

0 

71 

PAA 

0 

0 

PPA 

0 

25 

(4-Hydroxyphenyl)-
acetic acid 
3-(4-Hydroxyphenyl)-
propionic acid 

75 

3 

Table 6 gives the results of a similar experiment in which various labeled 

possible intermediates of the anaerobic degradation of tyrosine were added to 

farm slurry. In this experiment the incubation period was 3 hours. No trans

formation products of tyrosol and tyramine were detected. The transformation 

pattern of both HPAA and HPPA corresponded with those of Table 5. Tyrosine and 

HPLA were obviously readily fermented, tyrosine to mainly phenol and p-cresol, 

with the intermediate compound HPAA accumulating in this short-term experiment. 

A minor percentage of the label was located in HPLA, HPPA and PPA. The main 

products formed from HPLA were HPPA and HPAA, though p-cresol and PPA also 

carried some label. 

Table 6. Distribution of radioactivity (%) after incubation under anaerobic 
conditions of farm slurry with labeled tyrosine and with labeled possible 
intermediates of tyrosine degradation. Incubated for 3 h at 20°C 

Compound added 

Tyrosine 
Tyrosol 
Tyramine 
(4-Hydroxyphenyl)-
acetic acid 
3-(4-Hydroxyphenyl) • 
propionic acid 
(4-Hydroxyphenyl)-
lactic acid 

Phenol + 
p-cresol 

31 
0 
0 

17 

3 

2 

Tyrosol 

0 
100 
0 

0 

0 

0 

Aromat 

HPLA 

9 
0 
0 

0 

0 

75 

ic acid 

HPAA 

38 
0 
trace 

72 

0 

6 

s 

HPPA 

6 
0 
0 

0 

95 

11 

PPA 

2 
0 
0 

0 

5 

1 
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Radioahemiaal experiments with faeces 

Labeled tyrosine was added to five samples of freshly voided faeces from 

different pigs. The mixtures were incubated at 37 C for 20 hours. Analysis of 

the neutral extract by thin-layer and gas chromatography revealed that it 

contained no other labeled product than p-cresol. No label was recovered in 

phenol or 4-ethylphenol. p-Cresol comprised 19-35% (average 28%) of the label 

added initially. The acid extract contained 351 (range 31-46%) of the added 

radioactivity of which 95°» (range 82-99%) was present in PPA, and 4% (,1.5-131) 

in HPLA; the other aromatic acids were absent or present in traces only. In 

these experiments on the average 63» (71% if including CO- lost in decarboxyl

ation reactions) of the added label was recovered. 

The results of the experiments with added labeled tyrosine and intermediates 

to faeces are given in Table 7. Here, as was the case with farm slurry, no 

p-cresol or aromatic acids were produced from either tyrosol or tyramine. The 

decarboxylation of HPAA to p-cresol was nearly completed within the three hours 

of the experimental period. Dehydroxylation of HPAA was not obvious but might 

have occurred in trace amounts. This is in contrast with HPPA which was de-

hydroxylated almost quantitatively to PPA. p-Cresol and PPA were accumulated 

in about equal amounts from the breakdown of tyrosine. The products formed 

from HPLA were PPA and p-cresol. 

Table 7. Distribution of radioactivity (%) after incubation under anaerobic 
conditions of pig faeces with labeled tyrosine and labeled possible inter
mediates of tyrosine degradation. Incubation for 3 h at 37oc 

Compound added p-Cresol 

Tyrosine 
Tyrosol 
Tyramine 
(4-Hydroxyphenyl)-
acetic acid 
3-(4-Hydroxyphenyl) -
propionic acid 
(4-Hydroxyphenyl)-
lactic acid 

Tyrosol Aromatic acids 

38 
trace 
0 

73 

5 

14 

0 
97 
0 

0 

0 

0 

HPLA 

1 
0 
0 

0 

0 

40 

HPAA 

2 
0 
0 

9 

0 

3 

HPPA 

0 
0 
0 

0 

7 

trace 

PPA 

32 
0 
0 

0 

91 

21 
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DISCUSSION 

Labeled versus unlabeled test compounds 

In preliminary experiments 1 mg of test compound was added per ml of sample. 

Addition of compounds in these concentrations might lead to erroneous results, 

due to enzyme induction or selection of bacteria. These problems could be 

overcome by the use of radioactive substances in combination with short 

incubation periods. Comparison of the results obtained with labeled and non-

labeled test compounds revealed that they showed the same tendencies. So 

overnight incubation with 1 mg/ml of test substance gives good indications 

as to the processes occurring in the systems studied. 

Phenol 

In farm slurry nearly half of the tyrosine is converted to phenol. The 

involved bacteria probably possess the enzyme tyrosine phenol lyase, which 

degrades tyrosine to phenol, pyruvate and ammonia (lig. 4J. This conclusion 

TL H 0 ^ 

Û f NH2 

H0-^3"C-C-C00H 

ÖU ' 0 
n HOC 

1 1 HO-^^-C-COOH 

0Ü ' m «°<H 

)Vc-C-C00H 
7 ' * . . H 

^ . ? 
HO-^^-C-C-COOH 

Oi \ ' 
HO-^^-C-C-COOH 

Oi t [ 
H0-^3"C-C-C00H 

Oi ' ' 
^ - Ç - Ç - C O O H 

Y 

TL 

YR 

YTTT 

Fig. 4. Proposed schemes for the degradation pathways of tyrosine in faeces of 
pigs (solid arrows) and in anaerobically stored mixed wastes (dashed arrows) 
I, tyrosine; II, (4-hydroxyphenyl)pyruvic acid; III, (4-hydroxyphenyl)acetic 
acid; IV, p-cresol; V, (4-.hydroxyphenyl) lactic acid; VI, p-coumaric acid; 
VII, 3-(4-hydroxyphenyl)propionic acid; VIII, 3-phenylpropionic acid; and 
IX, phenol. 
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is supported by several observations. Phenol was readily produced from tyrosine 

but only in a minor degree from IIPPyrA (Table 3). This observation is consistent 

with the results obtained by Ichihara et al. (23) with tyrosine phenol lyase 

from Escherichia coli. 'Hie only other compound from which phenol was formed was 

4-hydroxybcnzoic acid. In farm slurry this compound was decarboxylated over the 

complete range studied (piI b.O - 8.5), whereas phenol was produced from tyrosine 

at the higher pi I values only (pH 7.0 - 8.5). This corresponds with pH ranges 

reported for tyrosine phenol lyase from different bacteria (9,25,27). 

A possible explanation for the complete absence of phenol production in 

faeces may be found in the repression of the enzyme tyrosine phenol lyase by 

simple carbohydrates which are liberated by the degradation of the cellulose-

hemiccllulose fraction of plant cell wall constituents in faeces. In stored 

farm slurry the more easily degradable fraction of plant cell wall material 

has already been consumed. 

p-Cresol 

The degradation of tyrosine to p-cresol via IIPPyrA and IIPAA is a major 

pathway in the breakdown of tyrosine in both farm slurry and in faeces. In 

experiments with tyrosine added to the samples, IIPAA accumulated (Tables 6 and 

7). Pure-culture studies have shown that many tyrosine-degrading bacteria 

accumulate IIPAA in their medium, without being able to decarboxylate this 

compound (15,22,59,40)- from the foregoing it is concluded that the conversion 

of tyrosine to p-cresol in piggery wastes probably occurs in at least two steps, 

by different bacteria, the first to IIPAA and the second to p-cresol. 

4-llydroxybcnzyl alcohol and 4-hydroxybenzaldehyde were found to be mainly 

reduced to p-crcsol in faeces and in slurry with minor amounts of phenol being 

formed (Table 3). Phenol is obviously formed via oxidation to 4-hydroxybenzoic 

acid followed by decarboxylation. Similar results have been obtained by Scheune 

(35) with intestinal contents of rats. Whether these transformations are part 

of the tyrosine metabolism is not clear. Japanese workers found accumulation 

of 4-hydroxybenzaldehyde and 4-hydroxybenzoic acid when Proteus vulgaris was 

incubated with tyrosine (21,40). However, the methods applied by these authors 

to isolate p-hydroxybenzaldehyde from the incubation mixture may not have 

excluded the formation of this compound by chemical decomposition of possibly 

accumulated IIPPyrA (8). 

Mien faeces or slurry- were incubated with radioactive IQTA, 2-5° of the label 

*as recovered in the neutral extract. Theoretically phenol may be produced 
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from HPPA by ß-oxidation to p-hydroxybenzoic acid and successive decarboxylation. 

However, longer incubation periods with labeled HPPA did not result in higher 

recoveries of label in the neutral extract indicating that artefacts may have 

been involved. The results reported in Table 7 indicate that the conversion 

of HPPA to PPA in faeces proceeds much more readily than in farm slurry. In 

contrast to faeces the pathway of reductive tyrosine degradation (.from IIPPyrA •+ 

HPPA; Fig. 4) is of minor importance in farm slurry. 

Tyrosine degradation with decarboxylation to tyramine as the first step and 

continuing according to the scheme tyramine -* tyrosol -»• 1IPAA •* p-crcsol could 

not be demonstrated in either farm slurry or faeces (Tables 6 and 7). That this 

is a possible route is concluded from experiments with long incubation periods 

with tyramine and tyrosol (Table 3J. In these long-term experiments large amounts 

of p-cresol were produced from both substances. Tyramine has been reported to 

be produced in small amounts by the microflora of human faeces. Asatoor (1) 

recovered 0.61 of the labeled tyrosine (1.8 pmol) added to human faecal bacteria 

as tyramine after 25 hours at 35 C. 

Reductive degradation of tyrosine 

PCA is probably the intermediate in the reduction of HPLA to HPPA. However, 

this compound has not been shown to be present in the wastes. Tanaka (41) 

described this pathway for Proteus vulgaris, and earlier Hirai (20) had noticed 

the accumulation of large amounts of PCA by the same organism in a medium with 

tyrosine. In addition, the formation of the corresponding acrylic acids from 

both indolelactic acid (18,30) and from phcnyllactic acid (18,29) have been 

reported to occur in the degradation of tryptophan and phenylalanine, which 

are structurally related to tyrosine. The occurrence of PCA as an intermediate 

in the decomposition of tyrosine to IQ'PA makes it likely that also 4-ethylphenol 

can be a product of tyrosine metabolism. PCA is readily converted to 4-ethyl

phenol by faeces (Table 3), which agrees with findings of Schel ine (34) and 

Bakke (4). The accumulation of 4-hydroxystyrene in faeces incubated at pH 5.5 

(Fig. 3) and the observation that 4-ethylphenol is not produced from HPPA 

(Table 3; 4,12,34) suggest that PCA is first decarboxylated to 4-hydroxystyrene 

followed by hydrogénation to 4-ethylphenol. Decarboxylation of PCA in pure 

culture has been reported for an Aerobaater sp. (17), Bacillus sp. (24) and for 

a number of fungi (7,19). The conversion of PG\ to 4-ethylphenol via hydro

génation to HPPA and decarboxylation as proposed first by Baumann (b) and later 

by other authors (13,42) is not likely to occur in the wastes studied here. 
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Deaarboxylation reactions 

A remarkable process in farm slurry as well as in faeces is the decarboxyl

ation of various 4-hydroxyphenylcarboxylic acids (Table 3; Fig. 4). These 

decarboxylations did not occur when synthetic media were inoculated with farm 

slurry (see Results). In these experiments 11PPA and HPAA accumulated. With 

respect to the organisms and enzymes involved in the decarboxylation reactions 

not much is known. Schel ine (33) concluded that decarboxylation of aromatic 

acids occurs only when a free hydroxy1 group is present in the para-position. 

Finkle et al. (17) reported a constitutive enzyme which decarboxylates PCA; 

this enzyme aLsodecarboxylated other phenylacrylic compounds bearing a 4-hydroxy 

group in the ring. The same bacterium could form a different adaptive enzyme 

able to decarboxylatc 4-hydroxy-benzoic acid, but not HPAA, so probably different 

enzymes decarboxylatc PCA, HPAA and 4-hydroxybenzoic acid. 

Dehych'oxylation of HVPA 

In faeces PPA is a main degradation product of tyrosine, whereas in farm 

slurry only minor amounts of this compound are formed (Tables 6 and 7). The 

dehydroxylation of 1IPPA to PPA has been reported to occur also in the rumen of 

sheep (30) and in faeces of man (12); it may be a common reaction in anaerobic 

environments. The significance of the dehydroxylation of HPPA may lie in the 

linkage of the degradative pathways of tyrosine and phenylalanine. 

Curtius et al. (12) reported the occurrence of rearrangement reactions of 

ring substituents leading to the formation of trace amounts of 3-hydroxyphenyl 

compounds. These reactions have not been considered in the work reported here. 
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DEGRADATION OF TYROSINE BY TWO CLOSTRIDIUM SPP. 

A study was made of the degradation of tyrosine by Clostridium sporogenes 

N O B 10696 and by a strain of Cl. ghoni isolated from pig faeces. 

Both organisms were found to accumulate (4-hydroxyphenyl)acetic acid, 

tyrosol | (4-hydroxyphenyl)ethanol| and (4-hydroxyphcnyl)lactic acid in 

tyrosine-containing culture media. Cl. sporogenes produced in addition 

3-(4-hydroxyphenyl)propionic acid. p-Coumaric acid was demonstrated to be 

an intermediate probably in the conversion of (4-hydroxyphcnyl)lactic acid 

to 3-(4-hydroxyphenyl)propionic acid. p-Coumaric acid, when added to media of 

Cl. ghoni, was decarboxylated and hydrogenated to 4-ethylphenol. Thus the 

possibility of the formation of 4-ethylphenol as a product of tyrosine 

metabolism was shown. 

INTRODUCTION' 

Phenol and p-cresol have long been known to be products of the anaerobic 

microbial degradation of tyrosine. Some Clostridia have been described 

accumulating these simple phenols in their culture media (e.g. Eisden 

et al., 1976). Another simple phenol, viz. 4-ethylphcnol, usually present in 

the urine of mammals (Lederer, 1943; Grant, 1948; Spoelstra, 1977) is presumed 

to originate also from the microbial degradation of tyrosine. However, no pure 

or mixed cultures have sofar been described that produce 4-cthylphenol from 

tyrosine. As precursor of 4-ethylphenol p-coumaric acid is well established 

(Finkle etal., 1962; Indahl and Scheline, 1968). 

In the present communication the tyrosine catabolism of two clostridial 

strains is described. It was shown that under some conditions small quantities 

of p-coumaric acid accumulate. In addition the formation of aromatic acids 

and an aromatic alcohol by these bacteria is reported. 
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MATLRIALS AND METHODS 

Organisms 

Clostridium sporogenes NCIB 10696. CI. ghoni was isolated from pig faeces. 

lliis motile strain did not produce acids from carbohydrates, gelatin was 

liquefied completely, indole produced and esculin hydrolysed. In a peptone 

yeast extract medium acetic, propionic,iso-butyric, butyric, isovaleric 

and o-methylbutyric acids accumulated. 

Media 

One quarter strength reinforced clostridial medium (RCN1, Oxoid) was enriched 

with 0.2 g/1 tyrosine (medium B). Medium A had the following composition 

(g/1): peptone 5, yeast extract 2, and tyrosine 0.2. 

The bacteria were grown in 1-1 serum bottles equipped with a screw cap 

which held a rubber septum in place. Anaerobiosis was achieved by autoclaving 

the bottles with the screw cap somewhat loosened to allow air to escape. 

Immediately after autoclaving, the cap was tightened. Media were inoculated 

with a syringe and incubated at 37 C. 

Extraction procedures 

Tyrosol, 4-hydroxystyrene and 4-ethylphenol were extracted with 

diethylether from incubated culture media brought to pH 8.3. 

For the extraction of phenolic acids the pH of the medium was adjusted 

to 2 and the media subsequently extracted with diethylether and ethyl 

acetate. The organic layers were combined and evaporated under reduced 

Pressure to dryness. 

Gas chromatography 

Tyrosol, 4-hydroxystyrene and 4-ethylphenol were separated by transferring 
1 ul of the diethylether extract, which previously had been reduced to a volume 

°f about 1 ml, on a 10°* SE-30 column. The operational data have been described 

before (Spoelstra, 1977). 

The phenolic acids in the dried extract were either trimethylsilylated 

°r converted into the methylesters. The thus treated samples were subjected 

to gas chromatography on a 10°. OV-17 column. These methods have been described 

in detail elsewhere (Spoelstra, 1978). 
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Mass spectra were taken with a combined gas chromatograph-mass spectrometer 

equipment. The mass spectrometer was a Ml 70-70 type of V.G. Mass spectra 

were taken at 50 eV. 

Thin-layer chromatography 

Extracts with phenolic acids or neutral phenolic compounds were applied to 

thin layers of cellulose or silica gel. For development either 1.5' formic 

acid or the upper layer of benzene/acetic acid/water (10/7/3) was employed. 

Spots were visualized by spraying with diazotised sulphanilamide followed 

by a 10% Na2C0, solution. Rf values of the various phenolic compounds have 

been listed previously (Snoelstra, 1978). 

To estimate the distribution of radioactivity in extracts from culture 
r 14 —, 

media which had been incubated with L-|_U- CJ tyrosine, all identified 

spots from thin layers were scraped into different scintillation vials and 

counted for radioactivity with a liquid scintillation counter. 
Chemicals 

Tyrosol was prepared microbiologically by incubating Caecharonyces 

cerevisiae with tyrosine and sucrose according to Ehrlich (1911). 

L-L U-14_| tyrosine was purchased from the Radiochemical Centre, Amersham. 

All other chemicals were obtained commercially and were of the highest 

purity offered. 

RESULTS 

Accumulation of products derived from tyrosine by jrovinj cultures 

In preliminary experiments, gas and thin-layer-chromatographic analyses 

of spent culture media showed that CI. sporojenes accumulated (hydroxyphcnyl)-

acetic acid, (hydroxyphenyl)lactic acid and (hydroxyphenyl)propionic acid. 

In addition a neutral product, which could be extracted at pH 8.5 with 

diethylether was present. Estimation of the gas-chromatographic retention 

times and of the Rf values of this compound and of authentic chemicals 

indicated that the unknown compound might be tyrosol. Its identitv as 

tyrosol was confirmed by combined gas chromatography and mass spectrometry 

of the neutral extract of the culture medium of CI. sporojenes. Figure 1 

shows the mass spectra of tyrosol prepared as described under Chemicals and 

that from the tyrosine-containing culture medium of CI. sporjjencs. The spectrum 
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of the latter shows some mass peaks derived from contaminants which were not 

completely separated gas chromatographically from tyrosol. 

r* 

e- 75 

a so 

JSK 

0 I. |—Ll ,1.1 • I , • i l i ^ r*- 1 •• • 1 r-
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P i 9. 1. Mass spectra of tyrosol obtained as described in Materials and Methods 
(a) and of tyrosol in the spent nutrient medium of Cl. sporogenes (b). 

CI. glioKi produced the same end products from tyrosine as Cl. sporogenes, 

except that (hydroxyphenyl)propionic acid was not formed by this organism. 

Table 1 gives the distribution of radioactivity over the accumulated 
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degradation products in media to which [_U- C~] tyrosine had been added. The 

data recorded show that Cl. sporogenes degraded 2-5 times more of the added 

tyrosine than Cl. ghoni. The main degradation product of Cl. sporogenea was 

(hydroxyphenyl)lactic acid, while smaller amounts of (hydroxyphcnyl)acetic 

acid and (hydroxyphenyl)propionic acid and minor amounts of tyrosol were 

formed. The accumulated amounts of (hydroxyphenyl)propionic acid increased 

with the incubation period. 3-Phenylpropionic acid was formed in the media 

but it contained no label (see Discussion). 

Cl. ghoni converted tyrosine to mainly (hydroxyphenyl)acetic acid and 

minor amounts of (hydroxyphenyl)lactic acid and tyrosol whereas no 

(hydroxyphenyl)propionic acid was formed. 

Experiments with washed cells 

The bacteria were grown in medium A, harvested after 18-20 hours incubation 

and washed twice with 0.1 M potassium phosphate buffer (pH 7.0) and incubated 

in the phosphate buffer under a N- atmosphere with tyrosine (0.025 M) and 

a-ketoglutaric acid (0.025 M) under sterile conditions. Separate experiments 

had shown that no growth occurred in this medium. After one week Cl. ghoni 

had accumulated (hydroxyphenyl)lactic acid, (hydroxyphenyl)acetic acid and 

tyrosol. Cl. sporogenea produced the same products but (hydroxyphenyl)-

propionic acid which accumulated in the growing culture was not detected 

in the solution with washed cells. In similar experiments with short incubation 

periods (0.5 to 4 hours) (hydroxyphenyl)pyruvic acid was found to be 

accumulated by both organisms. In the case of Cl. sporoger.es the gas 

chromatograms of phenolic acids both as trimethylsilyl derivatives and as 

methyl esters showed small peaks with retention times similar to those of 

the corresponding derivatives of p-coumaric acid. 

In a similar experiment washed cells collected from 1.5 1 of a culture of 

Cl. sporogenea in medium A were incubated with 5 umolj^U- C J tyrosine (4 pCi) 

and 5 umol a-ketoglutaric acid (total volume 15 ml). The reaction mixture 

was sampled, after 2, 30 and 180 minutes, whereupon the reaction in the samples 

was stopped by adding I O until a pH of 2 was reached. The extracts of the 

samples containing the phenolic acids,prepared as described in Materials and 

Methods.were applied to thin layers of cellulose. After development with 1.5» 

formic acid and spraying, heavily loaded layers showed in addition to spots of 

(hydroxyphenyl)lactic acid and (hydroxyphenyl)acetic acids faint spots with a 

http://sporoger.es
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violet colour and an Rf value similar to that of p-coumaric acid. These spots 

were scraped into scintillation vials and the relative amount of these products 

estimated. The results of this experiment are summarized in Table 2. 

Table 2. Distribution of radioactivity upon incubation of resting cells of 
CI. sporogenes (with 5 pmol (4 UCi) of L-|_U-CJ) tyrosine and 5 umol of 
ct-ketoglutaric acid at 37 C (total volume 15 ml) 

Incubation 
period (min) 

2 
30 

180 

Radioactivity 

p-Coumaric 

260 
7500 
1800 

acid 

(dpm) 

(Hydroxyphenyl)-
lactic acid 

9,000 
474,000 
478,000 

(Hydroxyphenyl)-
acetic acid 

3,400 
42,000 
84,000 

Label located in tyrosol and (hydroxyphenyl)pyruvic acid was not estimated 

It is shown that the presumed p-coumaric acid is accumulated in the first phase 

of the experiment. After an incubation period of three hours the amount of 

presumed p-coumaric acid had decreased to 25°s, when compared with the 30 min 

incubation period. From the reaction mixture of a similar experiment with 

non-labeled tyrosine which had been incubated for 30 min, the phenolic acids 

were extracted and trimethylsilyl derivatives prepared. Combined gas 

chromatography and mass spectrometry confirmed that indeed p-coumaric acid 

was present in the mixture (Fig. 2). 

Incubation with ^i-ooumavia aoid 

Enrichment of the nutrient media with 1 mg/ml of p-coumaric acid resulted 

in the accumulation by CI. ghoni of large amounts of 4-ethylphenol at pH values 

ranging from 6 to 8. After incubation of this bacterium in media with pH values 

between 5.5 and 6.0 in the presence of p-coumaric acid in addition to 

4-ethylphenol, a second phenol accumulated. This compound was extracted from 

the spent culture medium of CI. ghoni grown for 10 days at pH 5.75 in ROl 

with 10 g/1 of p-coumaric acid added. The unknown phenol was collected by 

gas chromatography by means of an effluent splitter and identified as 4-

hydroxystyrene by mass spectrometry (Fig. 3). 
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DISCUSSION 

In spent culture media of CI. ghoni and CI. sporogenes NCIB 10696 the 

presence of tyrosol was demonstrated. By using labeled tyrosine, it was proven 

that tyrosol was formed from this amino acid. As far as known, tyrosol has 

not earlier been demonstrated to be accumulated by Clostridia. 

Short-term experiments with washed cells incubated with tyrosine and 

a-ketoglutarie acid resulted, among other products, in the accumulation of 

(hydroxyphenyl)pyruvic acid, indicating that a transaminase was involved. 

Aromatic amino acid transaminases have been demonstrated in CI. sporogenes 

by O'Neil and DeMoss (1968). Tyrosol and (hydroxyphenyl)acetic acid are 

probably formed by decarboxylation of (hydroxyphenyl)pyruvic acid and 

conversion of the resulting (hydroxyphenyl)acetaldehyde to mainly 

(hydroxyphenyl)acetic acid and less tyrosol (Table 1). In cells of yeast 

alcohol dehydrogenase was found by Sentheshanmuganathan and Eisden (1958) 

to be responsible for the reduction of (hydroxyphenyl)acetaldehyde to 

tyrosol. 

The reduction of (hydroxyphenyl)pyruvic acid to (hydroxyphenyl)lactic 

acid is performed by both organisms studied. Jean and DeMoss (1968) have 

reported the presence of a dehydrogenase in CI. sporogenes with activity 

towards indolepyruvic, phenylpyruvic and (hydroxyphenyl)pyruvic acids. 

CI. sporogenes NCIB 10696 was mentioned by Eisden et al. (1976) to 

accumulate (hydroxyphenyl)propionic acid. No other degradation products from 

tyrosine were detected by these authors. However, our results show that in 

addition to (hydroxyphenyl)propionic acid also (hydroxyphenyl)acetic acid, 

(hydroxyphenyl)lactic acid and tyrosol are formed by this organism. 

From the present investigation it is concluded that p-coumaric acid 

probably functions as intermediate in the conversion of (hydroxyphenyl)lactic 

acid to (hydroxyphenyl)propionic acid. In early literature, Hirai (1921) 

described the accumulation of p-coumaric acid when cells of Proteus vulgaris 

had been incubated with tyrosine for 12 days. Tanaka (1968) obtained also 

indications that p-coumaric acid is an intermediate in the decomposition of 

tyrosine. 

In experiments with washed cells (Table 2) p-coumaric acid was present 

in significant amounts after 30 min incubation; longer incubation periods 

resulted in diminishedconcentrations. This is consistent with observations 
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of Moss et al. (1970) concerning the accumulation of cinnamic acid 

(phenylacrylic acid) by washed cells of Cl. sporogenes upon incubation with 

phenylalanine. Microbial formation of acrylic acids from tryptophan and 

phenylalanine has been described by Hansen and Crawford (1967). 

Cl. ghoni converts p-coumaric acid via 4-hydroxystyrene to 4-ethylphenol 

(Results). Decarboxylative activity towards (4-hydroxyphenyl)acrylic acids 

seems to be a common reaction among bacteria of the intestinal tract 

(Finkle et al., 1962; Indahl and Scheline, 1968; Scheline, 1968). The 

occurrence of p-coumaric acid as an intermediate in the degradation of 

tyrosine may give an explanation for the formation of 4-ethylphenol in the 

gut of mammals. Confusion exists about the origin of this compound which is 

usually present in urine (Lederer, 1943; Grant, 1948). Bakke (1969) concluded 

from experiments with rats receiving diets with and without plant material 

that p-coumaric acid from plant material is most likely the precursor of 

4-ethylphenol. But the present results suggest that 4-ethylphenol may also 

arise from tyrosine via p-coumaric acid. Under which conditions p-coumaric 

acid can accumulate in vivo remains obscure;neither can the question be 

answered whether 4-ethylphenol is formed from tyrosine by single organisms 

or by mixed cultures. 

In peptone-containing nutrient media Eisden et al. (1976) found that 

Cl. sporogenes NCIB 10696 formed phenylpropionic acid in addition to 

(hydroxyphenyl)propionic acid. The former was assumed to be derived 

exclusively from phenylalanine. However, phenylpropionic acid can also originate 

from tyrosine by dehydroxylation of (hydroxyphenyl)propionic acid as it was 

demonstrated in mixed cultures by Scott et al. (1964) and by Curtius et al. 

(1976). In the present study with labeled tyrosine added to the peptone-

-containing media A and B of Cl. sporogenes NCIB 10696, phenylpropionic acid 

was found to carry no label. From this result it is concluded that phenyl-

propionic acid was not formed from tyrosine by this bacterium. 
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GENERAL DISCUSSION 

Overall processes 

Gross overall processes in anaerobically stored piggery wastes include 

the degradation of high molecular weight compounds like plant fibre and protein 

to volatile low molecular weight components. In Chapter 2 it was demonstrated 

that 241 of the plant fibre and 431 of the crude protein of swine faeces 

were decomposed during anaerobic storage, with volatile fatty acids being 

almost the sole non-gaseous products. 

Degradation of plant fibre 

Analyses to establish the degree to which the composing products of plant 

fibre (i.e. cellulose, hemicellulose and lignine) were degraded failed due 

to analytical errors. Lignine has never been demonstrated to be decomposable 

under anaerobiosis (Yamane and Sato, 1963). Consequently the demonstrated 

degradation of plant fibre must be attributed to the decomposition of 

cellulose and/or hemicellulose. Indirect evidence provided in Chapter 3 suggests 

that the degradation of hemicellulose is an important process in piggery wastes. 

Higher colony counts were obtained when hemicellulose was added to counting 

media, whereas cellobiose, an intermediate of cellulose degradation, did not 

have a positive effect on colony counts. These results indicate that many 

bacteria in the wastes are capable of utilizing or even need hemicellulose for 

their growth and that cellulolytic organisms are not predominant. In Chapter 3 

isolates are mentioned which have tentatively been identified as Rwninoaoaaus 

spp. However, these isolates have not been tested for their ability to ferment 

cellulose, whilst some ruminococci are known to be able to utilize hemicellulose 

(Dehority, 1965). Attempts to isolate cellulolytics from stored piggery wastes 

by Hobson and Shaw (1974) were not successful. However, these authors claim to 

have counted about 10 /ml cellulolytic bacteria in a methane digestor installation 

with piggery wastes as influent. The limited information indicates that 

cellulolysisis of minor importance in stored wastes, in contrast with the 

degradation of hemicellulose. 

Details about the anaerobic microbial decay of plant fibre and the involved 

bacteria are poorly understood. In pure culture the decomposition of 

hemicellulose can be performed by representatives of the genera Baateroides 

(Salyers et al., 1977a, b) and Riminocoeous (Dehority, 1963). However, it must 
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be assumed that degradation in anaerobic natural ecosystems is the result 

of the concerted action of different kinds of bacteria. 

Dehority (1965) showed that some cellulolytic bacteria (ruminococci and 

one strain of Butyrivibrio) degraded hemicellulose without utilizing the 

oligomeric degradation products. The same author (1973) described two-

membered cultures of a cellulolytic and a non-cellulolytic bacterium which 

together converted hemicellulose to volatile fatty acids and alcohol. In this 

culture the cellulolytic organism degraded hemicellulose without utilizing 

the degradation products. These were converted to volatile fatty acids and 

alcohol by a Baateroides strain, which could not attack the intact 

hemicellulose. Similar synergistic degradation patterns were found in various 

combinations of bacteria degrading hemicellulose or pectin. Latham and Wolin 

(1977) studied the degradation of cellulose by Ruminoeoccus flavefaaiens and 

by a mixed culture of this bacterium and Methanobaaterium ruminantium. In the 

mixed culture the electron sink products formed by the Ruminoooaaus sp. in 

monoculture (succinate and hydrogen) were absent or diminished and instead 

C02i CH. and more acetate accumulated. Similar observations were reported 

by Ianotti et al. (1973) of a mixed culture of Ruminoooaaus albus and 

Vibrio suoainogenes. The latter bacterium utilized the hydrogen produced by 

the ruminoeoccus tc reduce fumarate to succinate, thus enabling the 

ruminoeoccus to generate 4 moles of ATP instead of 3.3 from 1 mole of glucose 

fermented. The difference of 0.7 mole ATP was lost in the monoculture by the 

formation of the electron sink product ethanol from acetyl CoA. In general, 

no or few electron sink products accumulate if the hydrogen produced by 

various fermentation reactions is consumed by other organisms. Similarly the 

absence of considerable amounts of electron sink products in the rumen was 

explained by Hungate (1966) as caused by the consumption of hydrogen by 

methanogens. In anaerobically stored piggery wastes methane is formed in only 

low amounts. This means that H, which is intermediary formed during the 

anaerobic degradation of waste components (for instance the formation of 

acetic acid) is eliminated by the formation of other electron sink products 

mainly propionic acid and smaller amounts of higher fatty acids. Other 

hydrogen-consuming processes may be present in the wastes, like the synthesis 

of acetic acid from C02 and H2- This reaction is performed by Clostridium 

aaetiaun (Wieringa, 1940, 1941) and by Aaetobaaterium woodii (Balch et al., 

1977), and has been demonstrated to occur probably in the intestine of some 
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rodents (Prins and Lankhorst, 1977). However, no experimental data are 

available on the occurrence of such metabolic reactions in piggery wastes 

to verify these speculations. 

Accumulation of low molecular weight compounds 

Generally the final products of microbial degradation of carbonaceous 

material in an anaerobic natural ecosystem are methane and CO,. In stored 

piggery wastes only some methane is formed (Chapter 2, Stevens and 

Cornforth, 1974). The rate of methanogenesis under storage conditions is not 

high enough to prevent the accumulation of products of the acid-forming 

fermentation. This is in contrast with digester units for methane fermentation 

of sewage sludge or of piggery wastes. In other words the acid-forming and 

methanogenic steps in the microbial degradation of the complex substrates in 

piggery wastes are in unbalance. This may have consequences for the 

degradation of other compounds. Wolfe (1971) expressed this as follows. 

"Under natural anaerobic conditions the methane bacteria which oxidize molecular 

hydrogen may be considered actually to "pull" the degradation in microbial 

food chains by displacing unfavourable equilibria". What actually causes the 

low rate of methanogenesis in stored piggery wastes is not clear, but a number 

of factors which are unfavourable for methane fermentation can be enumerated. 

Methane fermentation in digester units proceeds at temperatures around 35°C, 

whereas the storage temperature of wastes, dependent on the season,ranges 

from 10-20°C. Though methane fermentation in nature occurs below 10°C 

(Svensson, 1975), it is well-known that mesophilic methanogens produce 

methane at a lower rate and grow much slower at lower temperatures (Van den Berg, 

1977; Zeikus and Winfrey, 1976). Overloading with organic degradable material 

causes failure of digester installations. Digestion of swine wastes was found 

to be inhibited at loading rates of 4-8 kg total solids/m .day (Schmid and 

Lipper, 1969). Such overloading results in diminished methane production and 

accumulation of VTA in the digestor. An overload situation is likely to be 

present in stored wastes. The presence in the wastes of substances inhibitory 

to methanogens is another possibility. Inhibition of the acetogenic intermediate 

stage is indicated by the presence of small amounts of hydrogen (Chapter 2) 

and by the observation of some authors that it is advisable to dilute the 

wastes to obtain balanced digestion (Hobson and Shaw, 1973). The high levels 

of M L in the wastes may also cause inhibition. In the literature, several 

authors have reported ammonia concentrations which are inhibitory to digestion 



-72-

(Schulze and Raju, 1958; McCarty, 1964). However,others obtained balanced 

methane fermentation of piggery waste at much higher ammonia concentrations 

(Kroeker et al., 1975; Van Velsen, 1977). Melbinger and Donellon (1971) stated 

that Nil, becomes not toxic at high concentrations unless the rate of formation 

increases more rapidly than the acclimation of methanogens. Cappenberg 

(1974, 1975) demonstrated that methanogens were inhibited by 0.001 mM ILS and 

found that addition of sulphate to mud of a freshwater lake increased the 

H?S concentration which caused inhibition of methanogenesis. Zehnder and 

Wuhrman (1977) noticed inhibition of their strain AZ by ILS. However, good 

methanogenesis in the presence of rather high ILS concentrations was reported 

by Zhilina and Zavarzin (1973). The presence of ILS in piggery waste has been 

reported by several authors (Stevens and Cornforth, 1974; Banwart and Bremncr, 

1975). A considerable contribution to the ILS formation in the wastes 

originates from the reduction of sulphate which is excreted with the urine. 

Volatile fatty acids have in concentrations of 2000-3000 mg/1 been suggested 

as inhibitory to anaerobic methane digestion (e.g. Schulze and Raju, 1958). 

But later Kugelman and Chin (1971) reported that volatile fatty acids were not 

toxic to methanogens in levels up to 6 g/1. Propionic acid was found to be 

slightly toxic at this level to acid-forming bacteria. 

Toxic effects of heavy metals, notably copper,may be of importance in piggery 

wastes. In general, the actual concentration of the toxic cation is diminished 

a hundred-fold or more by complexation reactions and by precipitation as 

poorly soluble sulphides. Inhibition can also be caused by the presence of 

high concentrations of light metal cations (Van den Berg et al., 1976; 

Kugelman and McCarty, 1965). The toxity of these cations can partially or 

completely be overcome by the presence of antagonistic cations (Kugelman and 

Chin, 1971). 

The unbalance between the processes of acid formation and methane production 

is the main key to understanding the accumulation of volatiles (malodorous 

products) in piggery wastes. Under balanced conditions the volatiles are 

converted to CH, and CCu. With exception of formic acid, acetic acid and 

methanol,more than one bacterial species is needed for the conversion of 

volatiles to methane. The exact nature of the conversion of the end products 

of acid-stage fermentation towards suitable substrates (i.e. CC>2, H7, acetic 

acid) for methane production is unknown. It is assumed that the so-called 

intermediate group of organisms depends on methanogens for maintaining a very 
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low hydrogen pressure. Sofar only one organism belonging to this intermediate 

group has been isolated. This is the S organism isolated from the former 

Methanobaatllus omelianskii (Bryant et al., 1967). The S organism oxidizes 

ethanol to acetic acid and hydrogen and the methanogen {Methanobaeterium 

M.O.H.) produces methane from H2 and CO-. Similar associations can be 

expected in the conversion of other low molecular substances to methane. This 

may apply also for the decomposition of aromatic substances to methane by 

mixed cultures (Balba and Evans, 1977). Benzoic acid (Ferry and Wolfe, 1976), 

phenol and catechol (Ilealy and Young, 1978) have been reported to be 

degraded to methane by mixed cultures. Van Velsen (1977) found that 

concentrations of phenols and indoles were reduced with 90'. and more in piggery 

wastes during balanced methane fermentation. 

Odour and microbial aatabolism 

From the foregoing discussion and from the data compiled in Chapter 1 Table 1 it 

can be derived that it is not possible to speak of the presence of specific 

malodour-producing microbial processes in the wastes. The accumulated volatile 

compounds result from the overall conversion of complex substrates. The main 

volatile (and consequently odour) producing microbial processes are the 

degradation of plant fibre and of protein. Of course partial processes can be 

identified which lead to one or more typical malodorous products (e.g. tyrosine 

degradation) but such processes do not proceed independently but are 

simultaneously with other partial processes leading to volatiles and are 

unbreakably associated with the overall process viz. , degradation of 

macromolecular components. 

Likewise no specific odour-diminishing microbial processes exist. But 

the odour disappears together with the transformation of the accumulated 

volatiles when the environment is changed (e.g. aeration, methane fermentation). 

Carbohydrates (plant fibre material) in the wastes are degraded to a 

limited number of compounds, mainly acetic, propionic and butyric acids. This 

is in contrast with the degradation of proteins, which in addition to straight 

chain carboxylic acids lead to branched chain acids, sulphur compounds, amines, 

phenols, and indoles among others (Chapter 1). It is not possible to quantify 

the contribution of volatiles derived from protein versus those from plant 

fibre and other miscellaneous substances to the total of smelling compounds in 

the wastes. But the impression arises that the most pungent and the greatest 

variety of obnoxious smelling compounds originate from protein. This observation 
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is confirmed by results of the few existing organoleptic studies on the 

main components of the smell from piggeries and of piggery wastes (Schaefer 

et al., 1974; Barth et al., 1974). 

The use of p-cresol and volatile fatty acids as indicator compounds for odour 

As has been pointed out in the Introduction the main difficulty in judging 

the effectiveness of odour-abating methods is found in the measurement of 

the reduction of odour intensity and the change of the quality of the odour. 

In the preceding section it was argued that the microbial formation and 

disappearance of odour are strongly related with the proceeding of overall 

processes, which are governed by environmental factors (temperature, oxygen 

input, organic loading). Instead of using sensorial methods for comparison 

of odour it is likely that a fair indication about odour development can be 

obtained by monitoring concentrations of one or more properly chosen 

components which reflect the degradation of the main (macromolecular) waste 

constituents. 

Ammonia and hydrogen sulphide have been used as indicator components for 

the smell. However, these components seem to be less suitable. The major 

part of ammonia in the wastes originates from urea hydrolysis and is in 

addition derived from the degradation of protein. Thus the formation of 

ammonia does not reflect degradation kinetics of the wastes. Moreover, ammonia 

remains unchanged by methanogenesis and shows a retarded reaction to aerobic 

treatment compared with organic volatiles. Hydrogen sulphide formation 

does neither reflect waste degradation kinetics because a relatively large 

part is derived from sulphate reduction. In addition non-soluble sulphides 

may be formed which make concentrations measured difficult to interprète. 

Some demands can be formulated to which components to be selected as 

indicators for smell should answer: 

1 ) the components must be a product of protein or eventually carbohydrate 

degradation. 

2 ) the components should be stable end products under normal (= farm practice) 

conditions of waste storage. Compounds which are temporarily accumulated 

are not suitable. 

3 ) the formation of the component must reflect the kinetics of waste 

degradation, 

the componen 

changes (e.g. aeration, methane formation). 

4 ) the components must respond in a representative way to environmental 
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5 ) the concentrations of the components must easily be measurable. 

Trace components can not be used. 

These demands imply that detailed information must be available about the 

origin, formation and response to environmental changes of the component(s) 

to be chosen as indicator(s). 

In Chapters 4 and 5 the fate of some typical fermentation products of 

protein in piggery wastes has been discussed. This concerns indole, skatole 

and in more detail degradation products of tyrosine, vis. phenol, p-cresol 

and possibly 4-ethylphenol. Indole and skatole are metabolized during 

anaerobic storage (Chapter 4) and can therefore not be recommended as 

indicators of microbial protein degradation. Phenol and 4-ethylphenol show 

also some drawbacks as indicators. Phenol is present in relatively low 

concentrations and is mainly formed during storage. Ethylphenol originates 

from the urine (Chapter 4) and was not found to be formed during anaerobic 

storage. This implies that with 4-ethylphenol as an indicator,proceeding 

niicrobial degradative activity would not be noticed. 

p-Cresol seems to be the best choice for monitoring accumulation of 

volatiles produced from protein. It is present in freshly voided faeces, 

liberated from glucuronidesupon contact of urine and faeces and is 

produced during storage (Chapter 4). In Chapter 5 it was shown that in 

both faeces and anaerobically stored wastes about 504 of the tyrosine 

is converted to p-cresol. Apparently p-cresol production reflects the 

kinetics of microbial protein degradation in the animal as well as in 

the wastes, because a constant part of tyrosine is converted to this 

substance. Furthermore, p-cresol concentrations are diminished during 

aerobic (Spoelstra, unpubl. results) as well as anaerobic waste treatment 

(Van Velsen, 1977). It may be that p-cresol itself contributes significantly 

to the smell of the wastes as suggested by the work of Schaefer et al. (1974) 

and Schaefer (1977), but this is not a requisite for a useful indicator. 

In addition to p-cresol, the analysis of volatile fatty acids - the most 

abundantly occurring volatiles in piggery wastes - will give much information 

about microbial metabolism in the wastes. The accumulation of volatile 

fatty acids under storage conditions originates mainly from carbohydrates 

and in addition considerable amounts are derived from proteins and other 

Miscellaneous organic substances. 
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Volatile components of piggery wastes differing from p-cresol and 

volatile fatty acids might potentially be even better suitable for 

monitoring microbial processes in the wastes and thus might give indications 

about odour development during storage or waste treatment. But at present 

careful studies about origin, production and fate during storage and waste 

treatment are lacking. 

Concentrations of p-cresol and volatile fatty acids as indicators of 

odour development may be applied in laboratory evaluation of chemical or 

biochemical additions (other than pure deodorants etc.) to wastes, as 

well as in testing of waste handling systems at pilot plant or farm scale 

experiments (e.g. channel flushing). Whether these compounds are also useful 

in the evaluation of air samples needs further study. Of course for judgement 

of odour quantity and intensity only methods which use the human nose can 

be applied. 
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SUMMARY 

In modem intensive aninull farming labour-saving waste handling systems 

are applied. As such, slatted floors have found wide application. In this 

system large amounts of malodorous wastes are stored in pits under the slatted 

floors resulting in the emission of malodours with the ventilation air. 

Complaints about odour nuisance caused by piggeries do frequently occur. 

In this thesis the results are reported of investigations on the microbiology 

of anaerobically stored piggery wastes and on the formation in such wastes 

of some malodorous components. 

Chapter 1 

In general, odour can be measured only by sensorial methods and this applies 

exclusively to the odour intensity. Odour quality can be approached only by 

comparing it with other odours as present in an odour classification system. 

'Hie lack of instrumental methods for measuring odour can partially be overcome 

by estimating concentrations of components considered to be characteristic of 

odorous mixtures. 

About 150 volatile compounds have been identified in piggery wastes by 

different workers. Based on literature data the possible origin of some groups 

of volatile compounds in piggery wastes has been indicated in this chapter. In 

addition the composition of urine, faeces and mixed wastes has been given. 

Chapter 2 

Anaerobically stored piggery wastes as found in farm pits contain large 

amounts of volatile fatty acids. The amounts measured in samples from different 

farms ranged from 4-27 g/1. About 201, of these acids were already present in 

the freshly voided faeces. During anaerobic storage large amounts of volatile 

fatty acids are formed by degradation of macromolecular constituents of the 

faeces. In an experiment with a mixture of faeces and urine 43°s of the raw 

protein and 2-U of the fibre were degraded during 70 days storage. Acetic, 

propionic, and butyric acids and small amounts of other lower fatty acids and 

carbon dioxide were the main products formed; in addition some methane was 

produced. 
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Chapter 3 
g 

Colony counts of piggery wastes on an average numbered 5.10 on media 

containing 80-100"«, farm slurry supernatant which were prepared and inoculated 

according to the strictly anaerobic methods developed by llungate. These colony 

counts amounted to about 201 of the cell numbers found by direct microscopic 

observation. Pure cultures were obtained from only 201 of the colonies picked 

for isolation. The isolated bacteria apparently belonged to the genera 

Ruminoaooaus, Peptoeooeus, Peptostreptoooccus and Baoteroid.es. The bacteria 

belonging to these genera are usually isolated from the intestinal tract of man 

and mammals; however, many of the isolates from piggery wastes were unable to 

grow at 37 C. 

Addition of different carbohydrates to media with suboptimal concentrations 

of farm slurry supernatant revealed that the colony counts could be increased 

by incorporating hemicellulose preparations in the media. From these results 

it was concluded that the degradation of hemicellulose is an important process 

in piggery wastes. 

Chapter 4 

Piggery wastes always contain simple phenols. Notably p-cresol was usually 

present in considerable amounts (up to 350 mg/1). Phenol and 4-ethylphenol 

were present in concentrations from 10 to 50 mg/1. Phenol and p-cresol originate 

from the anaerobic degradation of tyrosine, a product of protein break-down. 

These compounds are in the pig formed by the intestinal microflora as well as 

during anaerobic storage of the slurry. The simple phenols formed in the gut 

are partially absorbed by the animal and detoxicated by conjugation with 

glucuronic acid. The phenylglucuronides are excreted into the urine. The phenols, 

and also other compounds excreted as glucuronides, can be liberated by the high 

activity of the enzyme ß-glucuronidase which has been found in the faeces of the 

pig as well as in farm slurry. The phenols bound to glucuronic acid and excreted 

into the urine were liberated nearly instantaneously upon contact with slurry. 

The production of phenols from tyrosine during waste storage proceeded more 

slowly and was strongly influenced by storage temperature. 

The concentrations of indole and skatole in farm slurry were considerably 

lower than those of p-cresol. Indole was found in amounts of 0-15 mg/1 and 

skatole of 10-50 mg/1. Indole and skatole are produced in the intestinal tract 

where tryptophan is their precursor. Urine contained constituent(s) which were 

http://Baoteroid.es
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readily converted to indole upon contact with faeces. Such constituents were not 

found in the case of skatole. During anaerobic storage of farm slurry indole 

and skatole were produced. However, on long-term storage the concentrations 

of these compounds diminished. 

Chapter S 

The experiments described in this chapter showed that the pathway of tyrosine 

degradation in faeces differs from that in farm slurry. In faeces, tyrosine is 

converted to about equal quantities of p-cresol and phenylpropionic acid. 

p-Cresol is formed from tyrosine according to the scheme tyrosine -+ (hydroxy-

phenyl )pyruvic acid -*• (hydroxyphenyl)acetic acid -+ p-cresol. The pathway leading 

to phenylpropionic acid can be summarized as follows: tyrosine -*• (hydroxyphenyl)-

pyruvic acid -*• (hydroxyphenyl)lactic acid -* p-coumaric acid •+ (hydroxyphenyl )-

propionic acid •+ phenylpropionic acid. 

In farm slurry the same pathways were found to exist, however, here only 

about U of the tyrosine was converted to phenylpropionic acid, the main products 

of tyrosine degradation being p-cresol and phenol. The formation of the latter 

product is catalysed by the enzyme tyrosine phenol lyase. An explanation of the 

observed differences in tyrosine decomposition between faeces and farm slurry 

can possibly be found in the higher degree of decomposition of farm slurry 

compared with faeces. Therefore, in faeces tyrosine functions as H-acceptor 

(formation of phenylpropionic acid) and after decay of easily degradable carbo

hydrates as is the case in farm slurry, it is used as energy and carbon source 

(formation of phenol). A further difference between faeces and farm slurry 

was observed concerning the metabolism of p-coumaric acid. In faeces this 

compound was decarboxylated to 4-hydroxystyrene and this product was subsequently 

reduced to 4-ethylphenol. These reactions did not occur in farm slurry. 

For the experiments concerning the degradation of tyrosine described in 

Chapter 5, C-labeled intermediates were used. Some of these labeled inter

mediates were prepared microbiologically by incubating clostridial strains 

with C-tyrosine and isolating the products formed. 

Chapter 6 

The tyrosine metabolism of two Clostridium strains was described. Clostridium 

sporogenes N'CIB 10696 accumulated the following degradation products of tyrosine 

in its culture media: (hydroxyphenyl)acetic acid, (hydroxyphenyl)lactic acid, 

(hydroxyphenyl)propionic acid and tyrosol. p-Coumaric acid was demonstrated to 

be an intermediate product in tyrosine degradation, probably in the conversion 
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of (hydroxyphenyl)lactic acid to (hydroxyphenyl)propionic acid. p-Coumaric 

acid accumulated in small quantities when washed cells were incubated with 

tyrosine and a-ketoglutaric acid. 

CI. ghoni accumulated the same products in its culture medium as 

Cl. sporogenes did, except that (hydroxyphenyl)propionic acid was not formed. 

Cl. ghoni decarboxylated p-coumaric acid, when added to nutrient media and 

subsequently hydrogenated the product 4-hydroxystyrene to 4-ethylphenol. The 

combination of these two clostridial strains suggests a possible pathway for 

the conversion of tyrosine to 4-ethylphenol. 

Chapter 7 

In this chapter overall aspects of microbial conversions in piggeiy wastes 

are discussed. The accumulation of volatiles in farm slurry is attributed to 

the unbalance between the acid stage fermentation and methane fermentation 

which is nearly absent in the slurry. The methane fermentation in piggery 

wastes is presumably inhibited by the relatively low storage temperature and 

high concentrations of ammonia, H2S, and cations. The influences of these 

factors were not investigated. It is concluded that the accumulation of volatile 

products of the acid stage fermentation (as fatty acids and phenols) is the 

cause of the stench of piggeries. 

In addition it is stated that concentrations of p-cresol and volatile fatty 

acids can give a good indication concerning changes in odour levels in relation 

to the development and abatement of odour. 
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S AM EN VATTING 

In de moderne intensieve veehouderij is gezocht naar methoden van mest-

verwijdering die weinig arbeid vragen. Als zodanig hebben in de varkenshouderij 

stallen met roostervloeren een ruime toepassing gevonden. Bij deze werkwijze 

worden grote hoeveelheden onaangename geuren producerende drijfmest onder de 

roostervloeren bewaard. Hen gevolg hiervan is dat met de ventilatielucht stank 

wordt verspreid. Klachten over stankhinder veroorzaakt door varkenshouderijen 

komen dan ook dikwijls voor. In dit proefschrift wordt ingegaan op de micro

biologie van varkensdrijfmest en op de microbiële vorming van enkele stank-

komponcnten. 

Hoofdstuk 1 

In dit inleidende hoofdstuk worden ondermeer de algemene aspecten van het 

meten van stank behandeld. In het algemeen kan geur slechts met behulp van 

sensorische technieken worden gemeten en dit betreft dan alleen de geurintensi

teit. De kwaliteit van een geur kan slechts worden omschreven door vergelijking 

met andere geuren. Het ontbreken van instrumentele methoden voor het meten van 

geur probeert men vaak te omzeilen door het meten van concentraties van ver

bindingen, waarvan men aanneemt dat ze een belangrijke bijdrage leveren tot de 

betreffende geur. 

In varkensdrijfmest zijn door diverse onderzoekers in totaal ongeveer 150 

verschillende vluchtige verbindingen geïdentificeerd. Voor diverse groepen van 

vluchtige verbindingen in drijfmest is op grond van literatuurgegevens in dit 

hoofdstuk aangegeven hoe deze verbindingen in drijfmest mogelijk ontstaan. 

Verder wordt de samenstelling van faeces, urine en drijfmest gegeven. 

Hoofdstuk 2 

Varkensdrijfmest heeft zeer hoge gehaltes aan vluchtige vetzuren. In monsters 

van praktijkbedrij ven varieerden de gehaltes van 4-27 g/l. Ongeveer 201 van de 

vetzuren bleek reeds aanwezig in verse faeces. Gedurende anaërobe bewaring 

worden grote hoeveelheden vetzuren gevormd door anaërobe afbraak van de faeces. 

Lcn experiment wordt beschreven waarin tijdens een opslagperiode van 70 dagen 

in een mengsel van faeces en urine 43'. van het ruw eiwit en 24°Ó van de vezel

fractie werden afgebroken. De produkten die hierbij ontstonden waren azijnzuur, 

propionzuur, boterzuur en in geringere hoeveelheden andere lagere vetzuren, CO,, 

en verder enig methaan. 
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Hoofdstuk 3 

In drijfmest konden met media die volgens de anaërobe Hungate-methode waren 

bereid en geënt en waaraan 80-1001 mestcentrifugaat was toegevoegd, gemiddeld 
o 

5.10 levende bacteriën worden geteld. Deze waarden kwamen overeen met ongeveer 

20% van de microscopische telling. Slechts 20% van de kolonies waarvan de 

bacteriën werden overgeënt, leidden tenslotte tot een reinculture. De geïsoleerde 

bacteriën behoorden tot de geslachten Ruminoaoaaus, Peptococcus, Peptostrepto-

oooau.8 en Baoteroides. Deze bacteriën worden meestal geïsoleerd uit het maag

darmkanaal van mens en dier; het is daarom opvallend dat vele bacteriën uit 

drijfmest niet in staat waren te groeien bij 37°C. 

Door toevoeging van verschillende koolhydraten aan tellingsmedia met sub-

optimale hoeveelheden mestcentrifugaat bleek dat hemicellulose het aantal 

kolonies sterk verhoogde.Dit leidde tot de conclusie dat de afbraak van hemi

cellulose een belangrijk proces is in drijfmest. 

Hoofdstuk 4 

Varkensdrijfmest bevat een aantal eenvoudige fenolen. Met name p-cresol komt 

in aanzienlijke concentraties voor (in dit onderzoek tot 340 mg/l). Verder zijn 

fenol en 4-ethylfenol in geringe concentraties steeds aanwezig. Fenol en p-cresol 

ontstaan door anaërobe microbiële afbraak van tyrosine dat vrijkomt bij de 

afbraak van eiwit. In drijfmest voorkomend fenol en p-cresol worden gevormd 

zowel door de darmflora in het dier als tijdens anaërobe opslag van de drijf

mest. De in de darm gevormde fenolen worden gedeeltelijk door het dier opgenomen 

en gebonden aan glucuronzuur. Deze fenylglucuronides worden daama in de urine 

uitgescheiden. Fenolen, en ook andere verbindingen die geconjugeerd met 

glucuronzuur worden uitgescheiden, kunnen weer vrijkomen uit hun glucuronides 

door de werking van het enzym ß-glucuronidase. In faeces van varkens en ooi in 

varkensdrijfmest werden hoge activiteiten van dit enzym aangetroffen. De fenolen 

die gebonden aan glucuronzuur in de urine werden uitgescheiden kwamen bijna 

onmiddellijk vrij bij contact met de mest, terwijl de vorming van fenolen uit 

eiwit een langzamer proces is dat sterk door de temperatuur wordt beïnvloed. 

De gehaltes aan indol en skatol in varkensdrijfmest waren aanzienlijk lager 

dan die aan p-cresol. Indol werd aangetroffen in hoeveelheden van 0-15 mg/l en 

skatol van 40-50 mg/l. Ook indol en skatol ontstaan in de darm ten gevolge van 

eiwitafbraak, maar in dit geval uit het aminozuur tryptofaan. Ze worden in de 

urine uitgescheiden in de vorm van indolyl-3-carbonzuur en diverse hydroxy-

skatolen. Na menging van de urine met faeces kan uit indolyl-3-carbonzuur 
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indol ontstaan. Verbindingen die dienst doen als snelle precursor van skatol 

werden in dit onderzoek in de urine niet aangetroffen. 

Bij anaërobe opslag van drijfmest werd gevonden dat bij de eiwitafbraak 

indol en skatol ontstaan. Bij langdurige bewaring kan het gehalte aan indol 

en skatol weer afnemen. 

Hoofdstuk 5 

De afbraak van tyrosine in drijfmest verschilde op diverse punten van die 

in faeces van varkens. In faeces werd tyrosine omgezet in ongeveer gelijke 

hoeveelheden p-cresol en fenylpropionzuur. p-Cresol onstaat via (hydroxyfenyl)-

pyrodruivenzuur en (hydroxyfenyl)azijnzuur, dat gedecarboxyleerd wordt tot 

p-cresol. Bij de vorming van fenylpropionzuur traden uitgaande van tyrosine de 

volgende tussenprodukten op: (hydroxyfenyl)pyrodruivenzuur, (hydroxyfenyl)melk-

zuur, p-coumaarzuur en (hydroxyfenyl)propionzuur. 

In drijfmest kwamen dezelfde afbraakroutes voor maar hier werd slechts 

ongeveer H van de tyrosine omgezet in fenylpropionzuur, terwijl ongeveer 

gelijke hoeveelheden p-cresol en fenol werden gevormd. Dit laatste product 

ontstaat door de werking van het enzym tyrosine-fenol-lyase. Een verklaring 

voor dit verschil tussen drijfmest en faeces kan gezocht worden in de verdere 

verteringsgraadvan drijfmest t.o.v. faeces, waardoor tyrosine in faeces vooral 

meer als H-acceptor fungeert (vorming van fenylpropionzuur) en bij uitputting 

van gemakkelijk afbreekbare koolhydraten (hemicellulose), zoals in drijfmest, 

als energiebron en koolstofbron dienst doet (vorming van fenol). Ook t.a.v. 

de afbraak van p-coumaarzuur werd een frappant verschil geconstateerd tussen 

faeces en drijfmest. In faeces werd deze verbinding gedecarboxyleerd tot 

4-hydroxystyreen en het product gereduceerd tot 4-ethylfenol; deze reactie 

vond niet plaats in drijfmest. 

Voor de in dit hoofdstuk beschreven experimenten werd bij de afbraak van 

tyrosine gebruik gemaakt van met C gemerkte tussenprodukten. Een aantal van 
14 

deze gemerkte verbindingen werd geïsoleerd uit incubâtiemedia met C-tyrosine 

van een tweetal Clostridium spp. Het tyrosine catabolisme van deze Clostridium 

stammen is beschreven in hoofdstuk 6. 

Hoofdstuk 6 

Cl. sporogenes N O B 10696 hoopte als afbraakprodukten van tyrosine de 

volgende verbindingen op in de cultuurvloeistof: (hydroxyfenyl)azijnzuur, 

(hydroxyfenyl)melkzuur, (hydroxyfenyl)propionzuur en tyrosol. p-Coumaarzuur 
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bleek een tussenprodukt b i j de afbraak van tyrosine t e zijn waarschijnlijk a ls 

intermediair bi j de omzetting van (hydro.xyfenyl)melkzuur naar (hydroxyfenyl)-

propionzuur.p~Coumaarzuur werd in kleine hoeveelheden geaccumuleerd wanneer 

gewassen cellen werden geïncubecrd met tyrosine en a-ketoglutaarzuur. 

Cl. ghoni, een u i t varkensfaeces geïsoleerde bac ter ie , vormde grotendeels 

dezelfde produkten ui t tyrosine a ls Cl. sporogenes, maar (hydroxyfenyl)propion-

zuur werd n ie t geproduceerd. Deze bacterie bezit het vermogen om p-coumaarzuur 

te decarboxyleren en vervolgens het produkt, 4-hydroxystyrecn, t e hydrogcneren 

to t 4-ethylfenol. De combinatie van deze twee Clostridium-sVdmnvn geeft , 

theoretisch a l thans, een mogelijke route voor de vorming van 4-ethylfenol u i t 

tyrosine. 

Hoofdstuk 7 

In de Discussie wordt ingegaan op diverse aspecten van de microbiële omzet

tingen die plaatsvinden in drijfmest. De ophoping van vluchtige produkten wordt 

toegeschreven aan het ontbreken van evenwicht tussen de zure gisting en de 

methaangisting, die in drijfmest vrijwel afwezig is. Waarschijnlijk wordt de 

methaangisting in drijfmest geremd door factoren zoals lage temperaturen, hoge 

concentraties van ammonia, zwavelwaterstof en diverse remmende kat ionen. De 

invloed van deze factoren werd niet nader bestudeerd. Gesteld wordt dat de 

ophoping van produkten van de zure gisting (zoals vetzuren en fenolen) de oorzaak 

is van de stank van varkensdrijfmest. 

Verder wordt erop gewezen dat de concentraties van p-cresol en van vluchtige 

vetzuren een goede indicatie kunnen zijn betreffende het verloop van het stank

niveau bij het ontstaan en bestrijden van stank in drijfmest. 
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