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A W O P Z ^ , / ' / 0 

Bij transformatie van dierlijke cellen, plantecellen en schimmels, 

met uitzondering van gist, is integratie van het transformerende 

DNA in het genoom via niet-homologe recombinatie veeleer regel 

dan uitzondering. 

VI 

Het isoleren van pyrroloquinoline quinon als groei-stimulerende 

factor uit cultuurmediurn van Escheri chi a coli is niet toe te 

schrijven aan productie van PQQ door bovengenoemde bacterie doch 

aan het gebruik van onzorgvuldig gewassen glaswerk door de 

auteurs. 

Ameyama M et al. (1984) Agric Biol Chem 48: 3099-3107. 

VII 

Het verwerven van goedkeuring voor het gebruik van Aspergillus 

ni du!ans als industrieel productie-organisme zou een alternatief 

kunnen zijn voor het m.b.v. recombinant DNA technieken "veredelen" 

van reeds in gebruik zijnde Aspergillus productiestammen. 

VIII 

Het aanstellen van afgestudeerden met a.i.o. (achterstand in 

onderwijs) in de functie van a.i.o. (assistent in opleiding) zal 

bij het huidige universitaire beleid leiden tot a.i.o. (achter

stand i n onderzoek ) . 

Stellingen bij het p r o e f s c h r i f t van K. W e r n a r s : "DNA-mediated 

t r a n s f o r m a t i o n of the f i l a m e n t o u s fungus Aspergi1 lus n i d u l a n s " • 

W a g e n i n g e n , 2 december 1986. 
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CHAPTER 1 

General introduction 

The genus Aspergillus 

General aspects 

Aspergilli, are a group of fungi named after the resemblance 

of their vegetative spore-forming structures to an aspergillum (a 

holy-water sprinkler). These fungi develop branched filamentous 

structures called hyphae, consisting of multinucleate cells with a 

rigid cell wall. Pored septa (cross-walls between the cells) allow 

migration of nuclei and cytoplasm. Formation of conidios por e s 

(vegetative spores) takes place on top of conidiophores bearing 

specialized cells. The Aspergillus species share mutual morpho

logical characteristics, but great differences in life cycle and 

physiology are observed. Some Aspergillus species (e.g. A. nidu-

lans) have a known sexual stage and belong to the Ascomycetes. The 

official genus name is Emericella. Other Aspergilli (e.g. A. 

niger, A. oryzae) have only a vegetative life cycle and belong to 

the Fungi imperfect!. Because the Aspergilli are well known, the 

imperfect genus names are still used for species with a perfect 

stage. 

From a human point of view some Aspergillus species possess 

disagreeable properties whereas others can be very advantageous. 

A. fumigatus for example is notorious for causing aspergillosis 

whereas Aj_ f lavus is feared for its excretion of very harmful 

toxins (Bennett 1980; Edwards and Al-Zubaidy 1977). On the other 

hand, Â _ niger and Â _ oryzae are of economic importance for their 

ability to produce several organic acids and enzymes on industrial 

scale (Berry et al. 1977; Jakubowska 1977; Barbesgaard 1977). 

Applications of recent developments like specific hydroxylation of 



progesterone by Â _ ochraceus (Madyastha et al. 1984) or biodégra

dation of halogenated aromatic hydrocarbons by Â _ niger (Shailub-

hai et al. 1984) are very promising. 

Genetics of Aspergillus nidulans 

a) Life cycle 

Aspergillus nidulans (Eidam) Winter is an ascomycete, capable 

of reproducing both vegetatively and sexually (Figure 1). In the 

vegetative growth cycle, the mycelium forms vertical branches 

(conidiophores) on which long chains of uninucleate asexual spores 

(conidia) develop, each from one uninucleate sterigma. Each coni-

dium can give rise to a new colony, thus completing the cycle. 

Under optimized conditions the vegetative cycle takes only two 

days. Conidia have shown to be convenient starting material to 

study mutations per s e and to obtain mutant strains by using 

irradiation (X-rays, U.V.) or chemical mutagens (Pontecorvo et al. 

1953; Alderson and Heartly 1969; Bos 1985). 

Sexual reproduction takes place within specialized structures. 

It starts with the differentiation of mycelium into a branched 

ascogonlum, which consists of binucleate cells. The tissue is 

surrounded by a dense hyphal structure and the ascocarp is called 

a cleistothecium. In the top cells of the ascogonlum karyogamy 

(nuclear fusion) takes place yielding diploid zygotes, which enter 

meiosis followed by a mitotic division. Thus each zygote produces 

eight haploid cells. After another mitosis the ascus contains 

eight binucleate cells which develop into ascospores. Germination 

of these spores results in the formation of a normal haploid 

mycelium. A^ nidulans can complete the generative cycle in about 

10 days. 



Figure 1: L i f e c yc l e of A s p e r g i l l u s n i d u l a n s (Eidam) Win te r . 

Repr in ted wi th p e rmi s s ion of d r . C . J . Bos 
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b) H e t e r oka r yo s i s 

Between t he hyphae of Â_ n i du l an s s t r a i n s anas tomoses ( f u s i on s ) 

can o c cu r a l l o w i n g e xchange of n u c l e i . By t h i s p r o c e s s myce l i um 

c on t a i n i ng n u c l e i of d i f f e r e n t genotype ( h e t e roka ryon ) can a r i s e . 

He te rokaryons can be s e l e c t e d and ma in t a ined i f s e l e c t i v e p r e s s u r e 

i s a p p l i e d . For two s t r a i n s w i t h complementary a uxo t r oph i c p r op e r 

t i e s t he h e t e r o k a r y o t i c a s s o c i a t i o n can be ma in t a i ned by c u l t u r i n g 

on medium l a ck i ng t he supp lements r e qu i r e d by t he p a r e n t a l s t r a i n . 

S i n c e i s g e n e r a l c o n i d i o s por es of Aj_ n i d u l a n s a r e m o n o n u c l e a t e 

they cannot be used for t he p r opaga t i on of h e t e r ok a r yon s . 

L a b o r a t o r y s t r a i n s of A. n i d u l a n s u s u a l l y form h e t e r o k a r y o n s 

r e a d i l y ; i n c o n t r a s t between wi ld type s t r a i n s h e t e r oka ryon i n 

c o m p a t i b i l i t y can be encoun te red (Gr ind l e 1963a, b ) . 



c) Sexual analysis 

Since Â _ nidulans is homothallic (no mating types) strains can 

easily be crossed by the isolation of cleistothecia from a hetero-

karyon. Since cleistothecia are formed in general as the result of 

a single fertilization event, all asci within it will usually be 

of the same origin. Thus a cleistothecium of a heterokaryon will 

either contain ascospores of one parental type if "self ing" has 

occurred, or will segregate for different alleles of genes in both 

parents if "cross fertilization" has taken place. Using strains 

with a different colour of the conidiospores these hybrid cleisto

thecia can be recognized easily from the resulting colonies (Pon-

tecorvo et al. 1953). 

In the diploid zygotes normal meiotic crossing-over takes 

place. From the intrachromosomal recombination frequencies gene 

maps for each of the Â _ nidulans chromosomes have been con

structed. Recently, an updated description of known loci and a 

linkage map was published by Clutterbuck (1984). 

d) Parasexual analysis 

Occasional fusion of two nuclei in vegetative mycelial cells 

can result in the formation of diploid nuclei and a sterigma 

containing such a nucleus will yield a chain of diploid conidia. 

Conidia heterozygous for different auxotrophic markers can be 

identified by the ability of the resulting colonies to grow on a 

medium lacking the supplements required by either parent. The 

frequency of these heterozygous diploid conidia on a heterokaryon 

is about 1 0 - 6 . 

A. nidulans diploids are not completely stable and can "break 

up" to give haploid strains (Pontecorvo et al. 1954). This pheno

menon is based on irregular segregation (non-disjunction) of chro

matids during mitosis, estimated to occur about once in 50 nuclear 



divisions (Käfer 1977). The resulting daughter cells are aneuploid 

(2n+l and 2n-l) and develop abnormally due to genome imbalance. 

The 2n+l aneuploid can regain normal growth by loss of a single 

chromosome to give the original diploid number (2n). In the 2n-l 

strain sequential loss of other chromosomes by non-disjunction 

will produce the normal haploid chromosome number (n); this pro

cess is known as haploidization. The frequency of haploidization 

can be enhanced by arsenate (van Arkel 1963), p-fluorphenylalanine 

(McCully and Forbes 1965), benlate (Hastie 1970) or chloralhydrate 

(Singh and Sinha 1976). 

In diploid nuclei mitotic crossing-over may occur, however its 

frequency is low and consequently, following haploidization, in 

general not more than one cross-over event is detected in about 

200 haploids (Pontecorvo and Käfer 1958). 

The alternation of haploid and diploid stages in the absence of 

meiosis is known as the parasexual cycle (Pontecorvo 1956). 

Features of this cycle, which are summarized in Figure 2, have 

been found in many other fungi besides A;_ nidulans (Roper 1966). 

Figure 2: The para-sexual cycle 
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The parasexual cycle is a convenient tool for genetic analysis. 

Compared to the meiotic process mitotic recombination between 

homologous chromosomes occurs with low frequency, i.e. during ha-

ploidizatlon preponderantly non-recombinant chromosomes reassort. 

Haploid!zat ion of a diploid obtained by combination of a strain 

carrying an unmapped mutation and a master strain (i.e. a strain 

having each chromosome marked with a mutant gene) allows as

signment of this mutation to a particular chromosome (Pontecorvo 

1956). Parasexual analysis also allows the detection of chromo

somal translocations. A translocation in one of the component 

strains of a diploid will cause linked segregation of the two 

chromosomes involved during haploidization due to inviability of 

segregants carrying duplications or deletions (Käfer 1962). Other 

applications of the parasexual cycle are the study of mitotic 

recombination per se, gene mapping and centromere localization 

(for a review see Clutterbuck 1974). 

Genetic transformation 

a) History 

In 1928 Griffith observed that mice, injected with a mixture of 

heat-killed cells of a virulent Diplococcus pneumoniae strain and 

living non-virulent cells of the same bacterial species, frequent

ly succumbed to infection, and that the blood of these animals 

contained living virulent Diplococcus cells. The phenomenon was 

not observed after injection with either heat-killed cells of the 

virulent strain or living non-virulent cells. This observation may 

be considered as the discovery of genetic transformation although 

the driving force behind the change of non-virulent to virulent 



cells remained elusive. A few years later Dawson and Sla (1931) 

succeeded in inducing this transformation Va vitro. 

Although in the fourties already valid experimental evidence 

was given that DNA is the substance that brings about genetic 

transformation in bacteria (Avery et al 1943; McCarty and Avery 

1946) many scientists at that time were reluctant to accept the 

view that DNA is the carrier of genetic transformation until 

Hershey and Chase (1952) demonstrated that when a bacterial virus 

infects a bacterium the DNA enters the cell whereas most of the 

protein remains outside. Genetic transformation was then defined 

as the transfer of a heritable character by purified DNA. 

Since then, further development of the chemistry of DNA, its 

molecular structure and the unraveling of genetic processes (for 

an overview see Portugal and Cohen 1977) have established the 

process of genetic transformation as a method to transfer genetic 

information, at first only among bacteria. 

The first evidence for genetic transformation in eukaryotic 

organisms was provided by McBride and Ozer (1973). From that time 

on genetic transformation has been applied to animal cells, plant 

cells and fungi. Some of these eukaryotic systems for gene trans

fer will be briefly reviewed here. 

b) Gene transfer to animal cells. 

Several procedures are available now for the introduction of 

transforming DNA into animal host cells. Recombinant DNA molecules 

of viral origin can enter cultured host cells by either infection 

(using an infectious particle) or by transformation/transfection 

using naked DNA molecules. Transformation occurs at very low 

frequencies but it can be increased drastically by coprecipitating 



the cells and the transforming DNA with calcium phosphate (Graham 

and van der Eb 1973), resulting in the uptake of exogenous DNA by 

about 20% of the cells (Chu and Sharp 1981). Klebe et al. (1981) 

demonstrated that polyethylene glycol can induce a similar effect. 

Introduction of exogenous DNA by micro-injection into the nu

cleus of cultured cells is also possible (e.g. Kondoh et al. 

1983). This technique can in addition be used for gene transfer to 

undifferentiated cells like oocytes, eggs and embryos. A well 

known result using this mode of gene transfer is the generation of 

"super mice" from fertilized egg cells micro-injected with an, in 

vitro altered, rat growth hormone gene (Palmiter et al. 1982). 

Another method of DNA transfer makes use of elect ropermea-

bilization or electroporation. This technique applies an electri

cal pulse field to reversibly open up the cell membrane, allowing 

the transforming DNA to enter (Stopper et al. 1985; Toneguzzo et 

al. 1986). A method using a fine laser beam for the introduction 

of foreign DNA has recently been described by Kurata et al. 

(1986). 

For the introduction of DNA into mammalian cells several se

lectable markers are available. The first marker to be used was 

the thymidine kinase gene of Herpes simplex virus. Upon transfor

mation, TK cells can be selected on a suitable medium (Wigler et 

al. 1977), however the use of TK recipient cells is a prerequi

site. Other cloned genes, being used as selectable marker, have 

either a (semi) dominant character or are hemizygous: the dihydro-

folate reductase (DHFR) gene (Wigler et al. 1980; O'Hare et al. 

1981), the CAD gene coding for the multifunctional enzyme carbamyl 

phosphate synthetase: aspartate transcarbamylase: dihydroorotase 

(de Saint Vincent et al. 1981), the xantine-guanine phosphoribosyl 

transferase (XGPRT) gene (Mulligan and Berg 1981), the neomycine 

phosphotransferase gene (Colbere-Garapin 1981) and the hygromycin 



B phospotransferase gene (Blochhinger and Diggelmann 1984). 

An important observation from Wigler et al. (1979) was that DNA 

without a selectable marker can be introduced into mammalian cells 

by cotransformation with a selectable vector. 

Cloned genes not linked to a functional (eukaryotic) origin of 

replication, will integrate into the genomic DNA of the recipient 

without showing any site specificity (Robbins et al. 1981, Steele 

et al. 1984). Rubnitz and Subramani (1984) have shown that the 

process of homologous recombination in mammalian cells requires 

only very short stretches of sequence homology. 

Many integrating vectors harbouring a drug resistance gene, can 

be amplified by gradual increase of the selective pressure giving 

concomitant amplification of unselected vector sequences (for a 

review see Stark and Wahl 1984). Using viral origins of replica

tion from SV40 and bovine papilloma virus (BPV), (shuttle) vectors 

have been constructed which are able to replicate autonomously in 

mammalian cells (e.g. Lusky and Botchan 1981; Law et al. 1983). 

c) Gene transfer to plant cells, 

For the introduction of exogenous DNA into plant cells several 

techniques can be used now. The most advanced system employs the 

soil bacterium Agrobacterium tumefaciens. This prokaryote has 

evolved a natural system for the genetic engeneering of plant 

cells. Virulent Â _ tumefaciens strains harbour large plasmids (Ti-

plasmids). Upon infection a section of these plasmids (T-DNA) is 

transferred to the plant cell and becomes integrated in the nu

clear DNA. This gives the cell tumorous properties: a callus-like 

growth and production of opines. These opines can be used by the 

A. tumefaciens bacteria as sole carbon- and nitrogen source (for 



review see van Montagu and Schell 1982). 

For the transfer of foreign DNA into plant cells with the help 

of A^ tumefaciens bacteria, vectors can be used which are derived 

from these Ti-plasmids. Genes cloned within the T-DNA region 

integrate into the plant genome together with this region (de 

Framond et al. 1983; Hoekema et al. 1983; Herrera-Estre lia et al. 

1983). 

A. tumefaciens provides one way for overcoming the cell wall as 

an obstacle for the delivery of DNA into the nucleus. Another way 

to circumvent the cell wall barrier is the use of protoplasts 

which often appear to be totipotent (Davey 1983). An in vitro 

system for transforming these protoplasts with A_̂  tumefaciens has 

been developed (Marton et al. 1979). Protoplasts can also be 

transformed by coprecipitation with the naked Ti-plasmid DNA 

(Krens et al. 1982). 

The Ti-system can now be used for routine integration of 

foreign genes into plant nuclear DNA and their transfer to sexual 

offspring (Zambryski et al. 1984). A general drawback of this 

system is its host range limitation. 

Another method for gene transfer into plants makes use of DNA 

plant virusses as vectors. Brlsson et al. (1984) have described 

such a system using the Cauliflower Mosaic Virus as a cloning 

vector for the bacterial DHFR-gene. This system has also a limited 

host range. Furthermore, it is hampered by restrictions of the 

size of the cloned gene and the lack of transfer of the cloned 

sequence to sexual offspring. 

Plant protoplasts can be used as recipient for direct gene 

transfer via naked DNA which subsequently integrates into the 

genomic DNA. This DNA can be introduced either by micro-injection 

(Crossway et al. 1986) or by a calciumphosphate/PEG treatment 

(Paszkowski et al. 1984). Transformants cannot be selected by 

10 



their ability to grow i_n vitro in the absence of growth hormones 

as in the case of Ti-transformed cells. Recently, selectable genes 

have been constructed by linking plant promotors to bacterial 

genes such as the neomycine phosphotransferase gene, the dihydro-

folate reductase gene and the chloramphemicol acetyltransferase 

gene, all conferring resistance when expressed in plants (Bevan et 

al. 1983; Herrera-Estrella et al. 1983; Horsch et al. 1984). The 

integration of the DNA appears to be not site-directed; it usually 

occurs in a tandem array of several copies, which sometimes show 

mitotic and/or meiotic instability (Paszkowski et al. 1984; Potry-

kus et al. 1985 a, b and c; Hain et al. 1985; Jongsma et al. 

1986). A great advantage of the direct gene transfer method is the 

absence of host range limitations (Potrykus et al. 1985 b; L'órz et 

al. 1985). However, the latter procedure depends on the production 

of regenerable protoplasts which can sometimes be problematic. 

d) Transformation of fungi 

- Saccharomyces cerevisiae 

In 1978 Hinnen et al. successfully transformed the yeast 

Saccharomyces cerevisiae with a chimaeric plasmid. Protoplasts of 

a Leu2~ strain were incubated with an E. coli vector containing 

the cloned yeast leu2 gene in the presence of PEG and CaClo and 

regenerated on medium lacking leucine. The transformants were 

shown to have integrated the transforming vector into the genomic 

DNA, mostly one copy at the homologous leu2 locus. The discovery 

that many yeast genes are able to complement mutations in Ê _ coli 

(e.g. trpl, his3, arg4, ura3) subsequently increased the number of 

marker genes for yeast transformation (Clarke and Carbon 1978; 

Davis et al. 1979; Petes et al. 1978). The type of vector used by 

11 



Hinnen et al. (1978) belongs to the class of Yip-vectors (^east 

integrative plasmid), which are unable to replicate autonomously 

in yeast, can only be maintained by integration into the yeast 

genomic DNA and give rise to 1-10 transformant s/p g DNA. Once inte

grated the cloned gene is transmitted stably and shows Mendelian 

segregation. 

Integration of transforming plasmid DNA into the yeast genomic 

DNA almost exclusively takes place by homologous recombination 

(Szostak and Wu 1979; Orr-Weaver et al 1981). This phenomenon 

allows precise targeting of integration events and can therefore 

be used to introduce deletions, gene disruptions and gene replace

ments by transformation (Scherer and Davis 1979; Botstein and 

Davis 1982; Stuhl 1983 a; Rudolf et al. 1985). 

Soon after the development of Yip-vectors chimaeric plasmids 

were constructed which were able to replicate both in E^ coli and 

in yeast and they were called YEp's (jeast episoial plasmids). 

These are derived from the 2 u plasmid, naturally occurring in 

many Saccharomyces strains and replicating under nuclear control 

(Broach 1982). Combination of 2 \i DNA and Ej_ coli plasmids yielded 

vectors which had high copy numbers in yeast. They transformed at 

fairly high frequencies ( 1 0 - 1 0 yeast trans formant s / ]s 8 DNA) 

(Beggs 1978, Gerbaud et al. 1979, Struhl et al. 1979), thus al

lowing direct selection of cloned genes in yeast. A disadvantage 

of these vectors is their tendency to give new recombinants by in 

vivo recombination with endogenous 2 n plasmids in the recipient 

Saccharomyces strains. 

Another class of autonomously replicating vectors are YRp's 

(^east replicator £lasmids), containing a fragment of chromosomal 

yeast DNA conferring autonomous vector replication (ars) (Struhl 

et al. 1979; Kingsman et al. 1979). Although these plasmids trans

form yeast very efficiently and are present in 5-40 copies/cell, 
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the resulting transformants are rather unstable. With a low fre

quency stable transformants arise (10 /generation) due to homolo

gous integration of the YRp-vector into the genomic DNA 

(Stinchcomb et al. 1979; Nasmyth and Reed 1980). 

By insertion of a functional centromere region (CEN) of yeast 

into an YRp-vector, plasmids can be obtained with behave very 

simular to yeast chromosomes (Clarke and Carbon 1980; Hsiao and 

Carbon 1981; Stinchcomb et al 1982; Fitzgerald-Hayes et al 1982). 

These circular mini-chromosomes, which are present in one copy per 
_2 

nucleus, are lost at a frequency of only 10 per generation and 

about 90% of the cells entering meiosis with the correct number of 

plasmids, show proper disjunction (Clarke and Carbon 1980; 

Fitzgerald-Hayes et al 1982 a). By addition of telomeric sequences 

such a vector is able to replicate in a linear form (Szostak and 

Blackburn 1982; Murray and Szostak 1983). Small constructs were 

found to be rather unstable but larger ones (50-150 kb) behaved 

like naturally occurring chromosomes. 

So a wide variety of yeast vector classes, each with specific 

properties concerning mode of replication, copy number, transform

ing frequency etc. is available for yeast transformation. They are 

useful to study very different topics, e.g. gene structure and 

function, effects of gene dosage, gene regulation and expression 

of foreign cloned genes. These applications and several others are 

reviewed by Mishra (1985). 

The discovery that several bacterial genes conferring antibio

tic resistance, e.g. chloramphenicol acetyl transferase and amino

glycoside phosphotransferase, are expressed in yeast (Cohen et al. 

1980; Jiminez and Davies 1980) has allowed the construction of 

vectors carrying these genes as dominant selection markers for 

transformation especially of non-mutant strains. The transforma

tion procedure has been simplified by the observation that intact 
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yeast cells can be transformed with exogenous DNA after treatment 

with lithium acetate (Ito et al. 1983) making the use of (osmoti-

cally labile) protoplasts unnecessary. At present the yeast trans

formation system is the most advanced one among all eukaryotic 

transformation systems developed; it has evolved into a cloning 

system suitable for the study of many basic and applied problems 

in molecular genetics. 

- Neurospora crassa 

N. eras sa was the first filamentous fungus serving as a reci

pient for transformation using a chimaeric plasmid. Case et al. 

(1979) were able to transform a qa2 deficient strain with a vector 

containing the wild type gene. 

All of the transformants examined showed integration of the 

vector into the genomic DNA, about 40% at loci different from the 

resident qa2 locus. Others (e.g. Bull and Wootton 1984) have found 

that integration of transforming plasmids into the genome can 

occur in long arrays of tandemly repeated vector copies. 

Meanwhile, some other cloned genes like am (Kinsey and Rambo-

sek, 1984) and pyr4 (Buxton and Radford, 1983) have been used as 

selection markers for N. crassa transformation. As reported for 

yeast (Ito et al. 1983) intact Neurospora cells i.e. germinating 

conidiospores, can efficiently be transformed after treatment with 

lithium acetate (Dhawale et al. 1984), which simplifies Neurospora 

transformation. 

In 1983 Stohl and Lambowitz have constructed a vector con

sisting of plasmid pBR325, the qa2 gene and a mitochondrial plas

mid. This construct could replicate in E. coli and could be re-

isolated via E. coli from undigested DNA of KU_ crassa qa2 trans

formants. Further analysis showed that loss of the mitochondrial 

sequences from this plasmid did not abolish the presence of free 
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circular vector molecules in N. eras sa transformants (Stohl et 

al. 1984). These authors favour the idea that these free plasmids 

are maintained in N̂ _ crassa by autonomous replication. Recombinant 

plasmids containing the â m gene were also claimed to replicate 

autonomously (Grant et al. 1984). Other attempts to construct 

vectors, autonomously replicating in N. crassa were made by Buxton 

and Radford (1984) and Paietta and Marzluf (1985). 

All Neurospora vectors developed as yet, even the ones claimed 

to be autonomously replicating, are able to integrate into the 

genomic DNA and frequently do so. Therefore conclusive evidence 

for autonomous replication of plasmids in N. crassa has not yet 

been given. 

- Other filamentous fungi 

Concomitantly with the developments in the field of transfor

mation of Aj_ nidulans (subject of this thesis) and in part thanks 

to them, direct gene transfer has been achieved recently in seve

ral other filamentous fungi. In Podospora anserina transformation 

has been demonstrated using a chimaeric plasmid consisting of 

bacterial DNA and Podospora mitochondrial DNA. This plasmid repli

cated autonomously in this fungus and expressed the Podospora 

senescence trait (Stahl et al. 1982). A chromosomally integrating 

vector containing the ura5 gene as selection marker was applied by 

Begueret and coworkers (Begueret et al. 1984; Razanamparany and 

Begueret 1986). A very sophisticated system was recently developed 

by Brygoo and Debuchy (1985); these authors selected P. anserina 

transformants using chimaeric vectors containing cloned tRNA sup

pressors . 

The cloned ajdS gene from Â _ nidulans (Hynes et al. 1983) can 

serve as a selection marker in other fungi as was demonstrated in 

Cochliobolus heterostrophus (Turgeon et al. 1985). Moreover this 
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gene can be used to transform the industrially important A^ niger 

(Kelly and Hynes 1985). Recently another A. nidulans gene, argB, 

was shown to be useful as selection marker in A_̂  niger too 

(Buxton et al. 1985). 

Aim and outline of our investigations 

The aim of the work presented here was to develop a genetically 

well-marked, preferentially homologous DNA vector system for the 

fungus Aspergillus. Such a system should provide means for the 

genetic manipulation of this fungus using recombinant DNA techni

ques . 

The species A. nidulans has been a subject of genetic studies 

for thirty years and thus has become a genetically well-charac

terized eukaryotic organism. In the sixties A. nidulans was also 

recognized as convenient host for biochemical and developmental 

investigations at the molecular level. For these reasons the spe

cies A. nidulans was chosen for the transformation studies 

described here and the results obtained should be the basis for 

the use of recombinant DNA techniques in the genetic manipulation 

of other, biotechnologically important Aspergillus species like A. 

niger. 

At the time these studies were started the possibility of DNA 

mediated genetic transformation of A^ nidulans was yet to be 

demonstrated. Although protoplasts could be prepared in fairly 

high amounts and regenerated on osmotically stabilized media, the 
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absence of useful selection markers hampered the transformation 

studies. Efforts initiated by us and by others to select A. nidu-

lans genes in E^ coli via complementation were, at that time, 

unsuccessful. 

Extensive screening of wild type Aspergillus strains did not 

result in the detection of free endogenous plasmid structures to 

be used in vector constructions. Due to the fact that A. nidulans 

in general is insensitive to antibiotics, even at high concentra

tions, bacterial vectors containing drug resistance genes could 

not be used as selection markers in A^ nidulans transformation. 

However, the cloning by other groups of the A. nidulans amdS 

and t r pC genes and the N̂ _ eras s a py r4 gene in 1982 and 1983 has 

eventually allowed successful transformation of A^ nidulans. The 

intensive and competitive efforts of several Aspergillus research 

teams around the world have now made A^ nidulans to an attractive 

eukaryotlc host for the study of transformation and for performing 

a variety of gene cloning experiments. 

The following chapters describe the experiments we have per

formed in this respect, partly in close collaboration with the 

Recombinant DNA Research Group of the Medical Biological Labora

tory TNO at Rijswijk (The Netherlands). 
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CHAPTER 2 

Gene amplification in Aspergillus nidulans by transformation 
with vectors containing the amdS gene 

K. Wemars1, T. Goosen1, L. M. J. Wennekes1, J. Visser1, C. i. Bos1, H. W. J. van den Broek1, 
R. F. M. van Gorcom2, C. A. M. J. J. van den Hondel2, and P. H. Pouwels2 

1 Department of Genetics, Agricultural University, 53 Generaal Foulkesweg, NL-6703 BM Wageningen, The Netherlands 
2 Medical Biological Laboratory-TNO, Rijswijk, The Netherlands 

Summary. Conidial protoplasts of an A. nidulans amdS 
deletion strain (MH1277) have been transformed to the 
AmdS phenotype with a plasmid carrying the wild type 
gene (p3SR2). Optimalisation of transformation and 
plating conditions now has resulted in frequencies of 
300-400 transformants per pg of DNA. 

Analysis of DNA from AmdS transformants of 
MH1277 showed that transformation had occurred by 
integration of vector DNA sequences into the genome. 
In virtually all these transformants multiple copies of the 
vector were present in a tandemly repeated fashion, not 
preferentially at the resident, partially deleted amdS 
gene. It is suggested that the observed integration phe
nomena are dependent on the genetic background of the 
A. nidulans strain, used for transformation. A model to 
explain the tandem type of integration is proposed. 

Key words: Transformation of Aspergillus - Conidial 
protoplasts - Multicopy/tandem integration - Gene 
amplification 

Introduction 

Fungi play an important role in chemical industry. They 
are used in fermentation processes as well as for the pro
duction of antibiotics and different metabolites. Several 
of the biotechnologically important species belong to 
the genus Aspergillus. Well known examples are A. niger 

Abbrevations: bp, base pairs; kb, 1,000 bp; EtBr, ethidiumbro-
mide; PEG, polyethyleneglycol; r-DNA, ribosomal DNA; c.f.u., 
colony forming units 
Offprint requests to: H. W. J. van den Broek 

and A. oryzae which are used for the production of organ
ic acids and enzymes (Berry et al. 1977; Jakubowska 
1977; Barbesgaard 1977). The development of methods 
for in vitro genetic manipulations might be exploited for 
a more direct and efficient improvement of Aspergilli. 
For the cloning and expression of eukaryotic genes in 
Aspergillus a suitable DNA vector system has to be devel
oped. In this context we have studied the aspects of 
transformation, using the genetically well marked, but 
industrially unimportant species A. nidulans as a model 
system. 

For this organism effective methods have been devel
oped in our laboratory for the production of large quan
tities of protoplasts from both hyphae and conidiospores 
(van den Broek et al. 1979; Bos and Slakhorst 1981). 
Especially the conidial protoplasts were thought to be a 
very useful starting material for transformation experi
ments. 

A. nidulans is insensitive to most antibiotics. Even 
the aminoglycoside G418 and hygromycin B, which is 
applicable to yeast and higher eukaryotes (Jimenez and 
Davies 1980; Colbère-Garapin et al. 1981; Gritz and 
Davies 1983) does not sufficiently inhibit growth of 
A. nidulans. We therefore were not able to use resistance 
genes of bacterial origin for the selection of transfor
mants. Instead we used the A. nidulans amdS gene as a 
selection marker in our transformation studies. The 
amdS gene has been studied by Hynes and coworkers 
(Hynes and Pateman, 1970; Hynes 1982) and recently 
the gene has been isolated, cloned and characterised 
(Hynes et al. 1983). The successful use of this gene as a 
selection marker in the transformation of mycelial proto
plasts, was recently reported by Tilburn et al. (1983). 

In this paper we describe the transformation of conid
ial protoplasts of amdS deletion strains using various 
Plasmids with the cloned wild type amdS gene. A model 
explaining the results is presented. 
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Fig. 1. Schematic drawing of the plasmids 
p3SR2, pGW315, pGW317, pGW324 and the 
A. nidulans ribosomal repeat unit. Plasmid 
p3SR2 is a pBR322 derivative (Bolivar et al. 
1977) in which the smaller EcoRl-Sall frag
ment has been replaced by a5.2kb^4. nidulans 
DNA fragment, containing the complete wild 
type amdS gene (Hynes et al. 1983). Plasmids 
pGW315, pGW317 and pGW324 were con
structed by inserting three EcoRl fragments 
(3.6, 0.9 and 3.3 kb respectively), constituting 
the A. nidulans ribosomal repeat unit, into 
the EcoRl restriction site of p3SR2. These 
r-DNA fragments were derived from plasmid 
pMNl (Borsuk et al. 1982). E - EcoRl restric
tion site, S = Sail restriction site 

Materials and methods 

Chemicals and enzymes. Acetamide and L-proline were purchased 
from Sigma, acrylamide (gel electrophoresis quality) from Serva. 
Polyethyleneglycol (PEG) was from Merck, KochLight and BDH. 
For selective medium Oxoid purified agar was washed with cold, 
distilled water followed by washing in 96% ethanol and subse
quent drying at 65 °C before use. [a-32P]dATP was from New 
England Nuclear. Blots were made on Schleicher & Schuil BA85 
nitrocellulose. Restriction endonucleases were purchased from 
Boehringer Mannheim, T4-DNA ligase and DNA polymerase 
from New England Biolabs. All other chemicals used were of 
analytical grade. 

Strains. As recipients for transformation the A. nidulans strains 
MH1277 (biAl, amdS320, amdllS, amdAl, niiAA; Hynes et al. 
1983), WG290 (a yA2, panfoßlOO-derivative of MH1277; Til-
burn et al. 1983) and MH1354 (biAl,amdS36$,amdAl,niiA4; 
Hynes et al. 1983) were used. 

Plasmids were propagated in E. coli Kl 2 strain JA221. 

Media and growth conditions. For the preparation of conidio-
spores, the A. nidulans recipients were grown on agar-solidified 
complete medium (Pontecorvo et al. 1953) without nitrate, con
taining 3.7 g NH4 Cl/1 as nitrogen source, supplemented with 
15 nM D(+)biotin and 8 juM pantothenic acid. Plates were ino
culated with approximately 1 x 103 conidiospores and incubated 
for 3 days at 37 °C. 

AmdS+ transformants were selected on minimal medium 
(Pontecorve et al. 1953), in which nitrate was replaced by 10 mM 
acetamide as sole nitrogen source, 15 mM CsCl, 1.0 M sucrose, 
15 nM D(+)biotin and 8 MM pantothenic acid, solidified with 
1.2% agar. In non-selective medium the acetamide/CsCl was 
replaced by 10 mM L-proline. Transformants were propagated 
on the selective medium described above, in which 1.0 M sucrose 
was replaced by 50 mM glucose. 

For the preparation of mycelium A. nidulans strains were 
grown in non-selective minimal medium containing 50 mM glu
cose. One liter flasks, containing 250 ml of medium were inocu
lated with 106 conidiospores/ml and incubated for 18 h in a New 
Brunswick G25 orbital shaker at 37 °C (300 rpm). Mycelium 
was harvested by filtration, washed with distilled water, blotted 
dry and frozen immediately in liquid nitrogen. It was either used 
directly for DNA isolation or stored at -80 °C until use. 

E. coli was grown in L-broth medium supplemented with the 
appropriate antibiotics. 

Plasmids. Plasmid p3SR2 is described in Fig. 1. The plasmids 
pGW315, pGW317 and pGW324 were constructed as explained 
in the legend of Fig. 1. 

Plasmid DNA was extracted from E. coli cells using standard 
procedures (Birnboim and Doly 1979) and purified by two suc
cessive isopycnic centrifugations in CsCl/ethidiumbromide fol
lowed by Sepharose 6B column chromatography. 

Preparation of protoplasts. For the preparation of conidial proto
plasts the procedure described by Bos and Slakhorst (1981) was 
scaled up to convert 2 x 109 conidiospores into 1-1.5 x 109 

viable protoplasts; the residual intact conidiospores (1-30%) 
were not removed. The conidial protoplast suspension was stored 
overnight in the lytic mature at 4 °C. 

Mycelial protoplasts were prepared according to van den Broek 
et al. (1979). Cellular debris was removed by centrifugation for 1 
min at 1,000 x g. These protoplasts were used for transformation 
immediately after preparation. 

Protoplasts were collected by centrifugation, washed twice 
with 1.0 M sorbitol, 10 mM CaCl2, 10 mM Tris (pH 7.5) and 
resuspended in the same buffer at a density of 0.5-1.0 x 109 

protoplasts/ml. 

Transformation of A. nidulans protoplasts. Protoplasts were 
transformed essentially as described by Tilburn et al. (1983) 
with minor modifications. A 100 jul aliquot of the protoplast 
suspension was mixed with an equal volume of the same buffer 
containing the vector DNA. Immediately thereafter the suspen
sion was thoroughly mixed with 1 ml of a solution containing 
60% (w/v) PEG 6000, 10 mM CaCl2,10 mM Tris (pH 7.5). After 
20 min incubation at room temperature the protoplasts were col
lected by centrifugation (5 min, 12,000 x g) and resuspended in 
400 Ml 1.0 M sorbitol, 10 mM CaCl2, 10 mM Tris (pH 7.5). Ali-
quots of 100 M1 were plated on selective medium using a 2 ml 
0.25% agar overlay. The viability of the protoplasts was deter
mined by plating appropriate dilutions on non-selective medium. 
Transformant colonies appeared after 24-36 h of incubation at 
37 °C. 

Isolation of A. nidulans DNA. DNA was isolated from 0.5-1.0 g 
liquid N2 frozen mycelium as described by Yelton et al. (1984). 

DNA manipulations. DNA was digested with restriction endonu
cleases according to the manufacturers instructions. Ligations 
were performed with T4-DNA ligase using standard procedures. 
DNA was fractionated on 0.6% agarose gels and transferred from 
the gels onto nitrocellulose according to Southern (1975). 
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Specific DNA fragments were isolated from gels using a glass 
powder-binding procedure (Vogelstein and Gillespie 1979). 

Hybridisation probes were labelled by nick translation (Rigby 
et al. 1977) and hybridised with the blots at 68 °C for at least 
24 h as described by Maniatis et al. (1982). After washing the 
blots were autoradiographed on Sakura X-ray film at -80 CC 
using Tungsten intensifying screens. 

Results 

Properties of AmdS* transformants 

Transformants appearing on selective medium after trans
formation of MH1277 with p3SR2 show a wide varia
tion in growth rate. Two classes of colonies can be distin
guished: 
- Type I, showing continuous growth and normal sporu

lation on acetamide, 
— Type II, which are extremely small, never sporulate 

and do not show further development upon prolonged 
incubation. 
In control experiments, in which no transforming 

DNA is added, colonies are never found. The Type II 
transformants cannot be considered to be abortive, as 
they can be rescued by conversion into Type I. This may 
be achieved by transferring Type II colonies to non-selec
tive medium, followed by replating of conidiospores on 
selective medium. With at least 50% of the Type II colo
nies this results in the appearance of Type I, whereas 
Type II is no longer found. Although the Type I colonies, 
found after transformation, have a fairly homogeneous 
appearance (no sectors), initially a large variation is 
found in the fraction of conidiospores, possessing the 
AmdS+ property; values ranging from 0.1% to virtually 
100% are found. However, after this first subculturing 
step colonies are all homogeneous in the AmdS+ property. 

The individual Type I transformants differ greatly in 
growth rate on medium containing the non-inducing 
substrate acrylamide as sole nitrogen source and several 
(about 0.1%) of the AmdS+ transformants have a colony 
morphology which differs from the parental type sug
gesting that transformation to the AmdS+ phenotype 
is not an identical event in all individual transformants. 

The stability of the AmdS+ property through mitosis 
in two p3SR2-derived transformants of MH1277, ht6 
and ht7, was investigated during subculturing for five 
successive growth cycles on nonselective medium. From 
each cycle none of the 400 colonies tested had lost the 
AmdS+ property, suggesting that these p3SR2-derived 
transformants were mitotically stable. The stability of 
the same two transformants through meiosis was investi
gated by analysing selfed fruiting bodies. A relatively 
low viability of the ascospores was observed for both 
transformants and MH1277 (about 10% compared to a 
wild type strain). From both transformants 350 individ

ual colonies, arisen from ascospores, were tested; all still 
contained the AmdS property. 

Transformation frequency 

With 10 Mg of p3SR2 in general 10-100 transformants 
of Type I and 10-500 of Type II were obtained, using 
conidial protoplasts. This frequency (1— 50//Ltg) is com
parable to that reported for S. cerevisiae or N. crassa 
using integrating vectors (Hinnen et al. 1978; Case et al. 
1979). In the system used, the viability of the protoplasts 
after transformation is relatively high (40—50%). Both 
the transformation frequency and the ratio of Type 1/ 
Type II colonies varies between individual experiments. 
However, with aliquots of one batch of protoplasts 
always reproducible results have been obtained. 

In contrast to the results for S. cerevisiae with linear
ised vectors (Orr-Weaver et al. 1981), linearisation of the 
vector p3SR2, either within or outside the amdS coding 
sequence, does not alter the transformation frequency. 

Since the possibilities for direct cloning and selection 
of genes in Aspergillus depends on a high transformation 
frequency, many parameters which might affect this 
frequency (e.g. carrier DNA, incubation period, incuba
tion temperature, PEG molecular weight, PEG concen
tration, addition of cations, purity of transforming DNA) 
have been studied. Only the purity of the vector DNA 
was a factor of great importance for efficient transfor
mation. Best results were obtained with DNA, extensively 
purified by two cycles of CsCl/ethidiumbromide centrif-
ugation, followed by Sepharose 6B column chromato
graphy. 

A non-linear relationship was observed between the 
number of transformants and the amount of p3SR2 used 
for transformation. A minimum of 2 ßg of vector DNA 
was needed to obtain any transformant at all. The num
ber of transformants increased almost exponentially 
with an increasing amount of p3SR2 DNA (up to 10 jig) 
and at higher concentrations this relation became linear. 
With more than 50 jug the frequency dropped, possibly 
caused by impurities in the DNA preparations (results 
not shown). 

For our transformation system recently a correla
tion was found between transformation frequency and 
density of plating. In the standard procedure 108 proto
plasts are transformed and plated at a density of 2.5 x 
107 c.f.u./plate, normally resulting in a frequency of 
50-70 transformants/ug of DNA. When 107 protoplasts 
are used for transformation and plated at 2.5 x 106 

c.f.u./plate, the frequency drops about one order of 
magnitude. If, however, 2.5 x 106 incubated protoplasts 
are plated in the presence of 2.5 x 107 untreated conidio
spores from the amdS deletion strain, the transformation 
frequency is at least 5 times higher than under the stan-
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Fig.2A, B. Analysis of DNA from AmdS+ transformants obtained 
with conidial protoplasts of MH1277 and plasmid p3SR2. A. 
nidulans DNA (2-5 /ig) w as digested with£coRI,fractionatedon 
an agarose gel and transferred to nitrocellulose as described in 
Materials and methods. Blots were probed with P-labelled 
amcB-fragment (i.e. the large EcoRl-Sall fragment of p3SR2) 

(panel A) or 32P-labelled plasmid pBR322 (panel B). Lanes 1 
and 11 contain DNA from the untransformed MH1277 strain 
and a wild type strain respectively; lanes 2-4, DNA from c t l - 3 
and lanes 6-10, DNA from ct4-8. Lane 5 contains linearised 
p3SR2. Arrows indicate the position of molecular weight markers 
(kb) 

dard condition. Under these optimised conditions fre
quencies of 300—400 transformants/ixg of DNA can 
routinely be obtained. 

Vector modifications 

For S. cerevisiae it has been reported that an increased 
homology between the integrating vector and the chro
mosome results in an increase in transformation frequen
cy (Szostak and Wu 1979). To increase homology of the 
amdS containing vector and the A. nidulans genome the 
three EcoRl fragments, together constituting the ribo-
somal repeat unit of A. nidulans, were cloned in p3SR2 
(Fig. 1). The resulting plasmids were then used to trans
form A. nidulans. Irrespective the r-DNA fragment in
serted, the transformation frequency was similar to that 
obtained with p3SR2. Also for these modified vectors, 
linearisation did not influence the frequency of trans
formation. 

Biochemical analysis of AmdS* transformants 

To investigate the state and location of the vector se
quences used for transformation, DNA of a number of 
AmdS+ transformants, obtained with p3SR2, has been 
analysed by Southern blotting and hybridisation with 
specific P-labelled probes. 

When Southern blots of undigested DNA from dif
ferent transformants were probed with 2 P-labelled 
p3SR2, strong hybridisation signals were found in the 
region of the chromosomal DNA (results not shown). 
Even under conditions where 1 copy/10 A. nidulans nu
clei could be detected, no indications for the presence of 
free plasmid DNA sequences were obtained from these 
experiments. This indicates that transformation proba
bly has occurred by integration of the vector DNA into 
the A. nidulans genome. 

To analyse the integrated vector sequences, DNA of 
eight AmdS+ transformants (ctl-ct8) obtained with 
conidial MH1277 protoplasts and p3SR2, was digested 
with Eco RI prior to gel electrophoresis and blotting. The 
autoradiographs after hybridisation with the 2 P-labelled 
amdS fragment (i.e. the large EcoRl-Sall fragment of 
p3SR2; Fig. 1) or pBR322 are shown in Fig. 2. The 
hybridisation patterns observed are, in general, very 
complex, with up to 21 distinct bands (ct8) hybridising 
to pBR322, the amdS fragment or both. Furthermore 
each individual transformant shows a different pattern. 
This may indicate multiple insertions of vector DNA 
into the genome. From this experiment it could not be 
established whether or not integration had occurred at 
the site of the resident, partially deleted, amdS gene 
since the £coRI fragments from the wild type and the 
deletion strain, hybridising to the amdS probe, migrate 
very similarly on the gel (Fig. 3A, lanes 1 and 11). 
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Fig. 3A,B. Analysis of DNA from AmdS transformants obtained 
with conidial protoplasts of MH1277 and plasmid p3SR2. A. 
nidulans DNA (2-5 Mg) was digested with Xhol, fractionated by 
agarose gel electrophoresis and transferred to nitrocellulose. Blots 
were probed with 32P-labelled amdS fragment (panel A) or 3 2P-

labelled plasmid pBR322 (panel B). Lanes 1 and 11 contain 
DNA from the untiansformed MH1277 strain and a wild type 
strain respectively; lanes 2-4, DNA from c t l - 3 and lanes 6-10, 
DNA from ct4-8. Lane 5 contains linearised p3SR2. Arrows in
dicate the position of molecular weight markers (kb) 
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Fig. 4A, B. Analysis of DNA from AmdS+ transformants obtained 
with mycelial protoplasts of MH1277 and plasmid p3SR2. A. 
nidulans DNA (2-5 Mg) was digested with either EcoRl (panel A) 
or Xhol (panel B), fractionated on an agarose gel and transferred 
to nitrocellulose. Blots were probed with 32P-labelled amdS frag

ment. Lanes 1 and 11 contain DNA from the untransformed 
MH1277 strain and a wild type strain respectively; lanes 2-4, 
DNA from h t l - 3 and lanes 6-10, DNA from ht4-8. Lane 5 
contains linearised p3SR2. Arrow indicates the position of molec
ular weight maker (kb) 

Blots of Xhol digested DNA of the same set of trans
formants showed much simpler hybridisation patterns 
with both pBR322 and the amdS fragment (Fig. 3B). In 
all transformants, except ct2, a fragment of at least 4 0 kb 
can be observed, hybridising strongly to both probes. 

Since no Xhol restriction site is present in p3SR2, this 
result suggests that the integration of the vector in most 
transformants must have occurred in a tandemly repeated 
fashion. However, the possibility of a free multimeric 
form of vector DNA cannot be completely excluded (see 
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Fig. 5A, B. Analysis of DNA from AmdS+ transformants (ytl -3) 
obtained with conidial protoplasts of WG290 and p3SR2. A. 
nidulans DNA (2-5 ß$) was digested with either EcoRl (panel A) 
or Xhol (panel B), fractionated on an agarose gel and transferred 
to nitrocellulose. Blots were probed with 32P-tabelled amdS frag
ment. Lanes 1 and 6 contain DNA from the untransformed 
WG290 strain and a wild type strain respectively; lane 2 DNA 
from ytl and lanes 4-5, DNA from yt2-3. Lane 3 contains 
linearised p3SR2. Arrow indicates the position of molecular 
weight marker (kb) 

These results are completely different from those re
ported by Tilburn et al. (1983), who observed predomi
nantly, as in ct2, integration of one copy of p3SR2 at 
the resident amdS locus with transformants obtained 
from mycelial protoplasts of WG290, a yA2, panto-
ßlOO-derivative of MH1277. Since the results obtained 
by us with mycelial protoplasts of MH1277 (Fig. 4) are 
completely equivalent to the ones found for conidial 
protoplasts, it is suggested that the tandem integration 
of multiple copies of p3SR2 is not influenced by the 
physiological differences between the protoplasts. 

Considering that differences between the acceptor 
strains might be involved in the observed discrepancies 
we then analysed the DNA of several AmdS transfor
mants obtained with p3SR2 and WG290. Examples of 
the resulting hybridisation patterns are shown in Fig. 5. 
In most WG290 transformants the pattern is consistent 
with the integration of one copy of the vector at the 
partially deleted amdS gene (ytl and yt2). Although in 
very few cases different hybridisation patterns were ob
served (yt3), tandemly repeated, multiple copy integra
tions were never found. These results strongly suggest 
that the type of integration is dependent on the strain 
used for transformation. 

The influence of additional A. nidulans ribosomal 
DNA sequences in the vector on the hybridisation pat
tern, was examined by analysing MH1277 transformants, 
obtained with the plasmids pGW315, pGW317 and 
pGW324. The results invariably show complex hybridisa
tion patterns indicating that multicopy tandem integra
tion is not influenced by extensive homology between 
the vector and the chromosome (not shown). Whether or 
not integration had taken place at the ribosomal repeat 
could not be determined by these standard blotting 
procedures. 

Discussion). Based on this observation, the complex hy
bridisation patterns, obtained with£coRI digested DNA, 
can only be explained if sequence rearrangements have 
taken place within the individual copies in the tandem. 
In addition to the large Xhol fragment in most transfor
mants a 7 kb fragment, hybridising only with the amdS 
probe and corresponding to the amdS deletion fragment 
in MH1277, is present. If integration of the vector has 
occurred, in most transformants this has not taken place 
at the resident amdS locus. 

Over 30 conidial p3SR2-derived transformants of 
MH1277 have been analysed as described before. In only 
one case (ct2) a hybridisation pattern was found which 
could be explained as being the result of integrative re
combination of one single copy of p3SR2 at the resident 
amdS locus. 

Stability of the tandemly repeated inserts 

The correlation between mitotic and meiotic stability of 
the AmdS+ phenotype and the stability of the integra
tion patterns derived from Southern analysis has been 
investigated with transformants ht6 and ht7. The hy
bridisation patterns of £coRI digested DNA from the 
extensively subcultured transformants remained com
pletely unchanged. This indicates that not only the AmdS 
property, but also the integration of the tandemly ar
ranged vector DNA sequences is inherited in a stable 
manner during mitosis. 

Meiotic stability was investigated with DNA from 
colonies, arisen from ascospores of selfed cleistothecia 
from the same set of transformants. The results (Fig. 6) 
show that in some cases alterations in the hybridisation 
patterns have occurred. This indicates that in spite of the 
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Fig. 6. Meiotic stability of the hybridisation 
pattern of AmdS+ transformants. DNA from 
two progeny colonies of selfed cleistothecia 
of ht7 was digested with EcoRl and probed 
with 32P-labelled amdS fragment. The arrow 
indicates the difference between the two 
hybridisation patterns. Lane 2 is identical 
to the parental pattern 

apparent phenotypic stability of the AmdS+ property, 
the tandemly repeated inserts are not always meiotically 
stable. 

Discussion 

Transformation of A. nidulans mycelial protoplasts has 
been reported now by a few research groups using dif
ferent selection markers (Ballance et al. 1983; Tilburn 
et al. 1983; Yelton et al. 1984; J. L. Johnstone, Univer
sity of Glasgow, pers. comm.). In general, one copy of 
vector DNA becomes integrated into the genome at the 
homologous site. 

In this paper we show that also conidial protoplasts 
of A. nidulans can be used for transformation. Conidial 
protoplasts have the advantage that they can be prepared 
and purified easily in large amounts (Bos and Slakhorst 
1981) and give viability values after handling, which are 
much higher than those reported for mycelial protoplasts 
(Yelton et al. 1984). Using the conidial protoplasts, 
transformation of amdS deletion strains results in the 
formation of growing colonies (Type I), but also in a 
large fraction of transformant colonies, which fail to 
develop into mature ones (Type II). Others (Tilburn et 
al. 1983; Yelton et al. 1984) have also observed such 
type of colonies, which they called "abortives". Our ob
servations support the assumption that this description is 
not adequate since the majority still contains the vector 
DNA sequences,- as indicated by their capacity to be 
converted into well growing (Type I) transformants. We 
would like to speculate that, once the vector DNA has 
entered the cell, integration into the genome is limited in 
time. The Type II colonies would then have stopped 
growing by lack of sufficient nitrogen, before integration 

has taken place. Upon transfer to non-selective medium, 
growth is resumed, thus providing new opportunities for 
the vector to integrate. The large variation in the frac
tion of AmdS conidiospores from the initial Type I 
transformants might reflect the same time limitation: an 
early integration event will lead to a large fraction of 
AmdS conidiospores, whereas later events will result in 
an increased number of cells which do not contain the 
AmdS property. That such colonies nevertheless grow 
and sporulate on selective medium can be explained by 
cross-feeding of untransformed cells by AmdS cells. 

In contrast to other organisms, homology between 
the vector and the genome of the acceptor does not seem 
to have great impact on the transformation frequency. 
Neither an increased homology by adding r-DNA frag
ments to the vector, nor a decreased homology by using 
acceptor strains, in which all amdS sequences are deleted 
(e.g. MH1354, unpublished results) has an effect on 
transformation frequency. 

Under optimised transformation conditions we now 
are able to obtain 300-400 transformants/^g DNA. 
However, since this frequency is still rather low for direct 
selection of cloned genes in A. nidulans we continue our 
search for elements and conditions which will improve 
the transformation frequency. 

Southern blotting experiments with DNA from trans
formants of MH1277 revealed a type of gene amplifica
tion: multiple copies of complete and incomplete vec
tors arranged in a tandemly repeated fashion. Although 
the results shown here do not fully exclude the possibili
ty of free multimeric forms of the vector DNA (cf. 
Grant et al. 1984), results on the genetic analysis of 
these transformants (Wernars et al. to be published) un
ambiguously indicate chromosome-linked inheritance of 
the AmdS property, thus strongly favouring the idea of 
integrated vector DNA copies. In A. nidulans occasional
ly integratin of more than one copy of the vector has 
been observed (Tilburn et al. 1983; Yelton et al. 1984), 
but amplified, integrated vector DNA as a result of trans
formation is very unusually and may even be unique. 
Amplification of integrated sequences in eukaryotes has 
been reported, but only as the result of the application 
of selective pressure (see for review: Stark and Wahl 
1984). 

The hybridisation results with the A. nidulans strains 
MH1277 and WG290 strongly suggest that the type of 
integration is strain dependent. It can be speculated that 
a cryptic mutation, present in MH1277 but not in WG290 
is responsible for this. In fact, strains with different 
amdS deletions, e.g. MH1354 (Hynes et al. 1983) but 
sharing the same genetic background as MH1277 exhibit 
similar integration phenomena upon transformation (un
published results). At present we are trying to map the 
putative mutation on the A. nidulans genome by genetic 
analysis, in order to exploit it also in combination with 
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other selection markers. The blotting data anyhow clear
ly indicate that the integration is not preferentially at 
the resident, partially deleted, amdS locus. Together 
with the occurrence of A. nidulans transformants, which 
show altered colony morphology this could signify that 
integration of transforming sequences might lead to gene 
disruption. If integration was to be completely at ran
dom, this would provide novel means of isolating A. 
nidulans genes. Detailed analysis of a number of MH1277 
transformants should elucidate whether integration 
shows any site specificity. 

To explain the observed multicopy type of integra
tion we propose the following model. An efficient non
homologous recombination system is assumed, which is 
repressed in WG290 but derepressed in MH1277, due to 
the cryptic mutation. This system efficiently recombines 
a number of plasmid molecules, which have entered the 
protoplast, in a non-homologous fashion. The resulting 
"scrambled" cointegrate subsequently is integrated into 
the genome. Since apart from this non-homologous re
combination system, homologous recombination still 
occurs, integration into the genome can take place either 
at the resident, partially deleted amdS locus or at random 
locations. The presence of a "scrambled" cointegrate 
as an intermediate in the integration process not only 
explains the formation of tandem vector repeats, but 
also the sequence rearrangements observed within these 
tandems. 

The transformation system described here seems to 
be a promising one; it combines fairly high transforma
tion frequencies with high stability and amplifications of 
the integrated vector DNA sequences. 
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CHAPTER 3 

Genetic Analysis of Aspergillus nidulans AmdS transformants. 

Karel Wernars, Theo Goosen, Klaas Swart, Henk W.J. van den Broek. 
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Summary 

To correlate the genetic background of an A^ nidulans amdS 

deletion strain MH1277 with the integrational behaviour of trans

forming vectors, classical genetic methods were used to construct 

AmdS strains in which whole chromosomes were exchanged with those 

of a master strain. Progeny strains were transformed to the AmdS 

phenotype with vector p3SR2. From Southern analysis it was con

cluded that transformants from all constructs contained tandemly 

repeated, multiple copy inserts of vector DNA as found for MH1277 

derived AmdS transformants. 

AmdS transformants of MH1277 were analyzed genetically to 

prove that the transformant phenotype is genome-linked and that 

transformation by integration can take place at various chromo

somes. In one case the AmdS property showed linkage to both 

chromosome II and IV, due to a chromosomal translocation. 

Sexual analysis of two transformants with AmdS insertions on 

the same chromosome revealed a considerable instability of the 

AmdS phenotype in one of the strains upon selfing. Due to this 

instability no decisive answer could be given for the degree of 

linkage between the AmdS insertions in these transformants. 

Key words ; Transformation, Aspergillus, amdS, genetic analysis. 
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Introduction 

Since Pontecorvo et al. (1953) established techniques for the 

genetic analysis of As pergillus nidulans, many studies (for a 

review see Smith and Pateman 1977) have contributed to a better 

understanding of genetic processes in lower eukaryotes. 

The elegance with which genetic analysis of A_̂  nidulans can be 

performed is due to features of its life cycle. Besides an asexual 

reproduction cycle yielding the vegetative conidia, efficient 

sexual reproduction by means of ascospores can occur. This allows 

easy crossing of A. ni dulans strains. In contrast to many other 

eukaryotes A^ nidulans can alternate between diploid and haploid 

stages without going through meiosis. This process, the so called 

parasexual cycle allows rapid reassortment of whole chromosomes 

(Pontecorvo et al. 1953; Roper 1966). These studies have resulted 

in a linkage map for A_̂  nidulans, comprising over five hundred 

different loci, distributed over eight linkage groups (Clutterbuck 

1984). 

As was concluded from DNA analysis, transformation of the amdS 

deletion strains MH1277 and WG290 with vectors containing the wild 

type amdS gene resulted in integration of the transforming se

quences into the genomic DNA of the recipient (Tilburn et al. 

1983; Wernars et al. 1985). Our studies also revealed that in 

nearly all MH1277 derived AmdS transformants integration was not 

at the resident amdS locus whereas in WG290 derived transformants 

it was (Wernars et al. 1985). For other Aj_ nidulans transformation 

systems (Yelton et al. 1984; Ballance et al. 1983; John and 

Peberdy 1984) non-homologous integrations have been reported in 

some cases but no evidence was found that the genetic background 

of the strains used for transformation could affect the behaviour 

of the transforming vector upon integration. 

39 



We proposed a model to explain the difference between reci

pients MH1277 and WG290 with respect to integration, assuming a 

cryptic mutation in the genome of MH1277 which leads to multiple 

copy, tandemly repeated integration (Wernars et al. 1985). In this 

paper experiments are described which aimed at providing a genetic 

basis for the model by mapping the mutation. 

Although Southern analysis of MH1277 AmdS transformants showed 

that vector integration usually is not at the homologous locus, no 

indication was obtained about the site(s) where integration did 

take place. We therefore analysed genetically a number of such 

transformants to locate the AmdS property with respect to linkage 

group. 

Materials and Methods 

Strains. The following A^ nidulans strains were used 

WG201: suAladE20, yA2, a_d_E20, ; acrAl; meaB6; pyroA4; £A1; sB3; 

ni cB8 ; riboB2 (strain collection Dept. of Genetics, Agricul

tural University) 

WG314: y_A2; acrAl ; amdI18, £md_S320; pyroA4; _p_Al; S.B3; pan-

toBlOO; riboB2 (strain collection Dept. of Genetics, Agricul

tural University) 

- MH1277: blAl; amdI18, amdS320; amdA.7; niiA4 (Hynes et al. 1983) 

MH1277 derived AmdS + transformants: ht6, ht7, ct2, ct3, ct7 and 

ct8 (Wernars et al. 1985). 

Plasmids were propagated in Ej_ coli K-12 strain MH1 (Goddard et 

al. 1983). 

Media. The media used for Â _ nidulans were essentially as de

scribed by Pontecorvo et al. (1953). Their composition per liter 
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of deionized water was: 

MM: glucose 10 g, KCl 0.5 g, MgS04.7H20 0.5 g, K H 2 P 0 4 1.5 g, of 

each FeS04, ZnCl2, MnCl2 and CuSO^ 1 mg. One of the following 

nitrogen sources was added: NaNOo 70 i H , L-proline 

10 mM, acetamide 10 mM or methylammoniumchloride 100 mM. 

ME: glucose 5 g, malt extract 20 g, tryptlcase pepton 1 g, vitamin 

free casamino acids 1 g, yeast extract 1 g, yeast ribonucleic 

acid hydrolysate 0.2 g. 

Before autoclaving the pH was adjusted to 6.0 with NaOH. If 

appropriate, MM was solidified with 1.2% Oxoid agar No. 1 and ME 

with 1.5% Oxoid technical agar No. 3. For growth of auxotrophs the 

medium was supplemented with the required amino acids (2 mg/ml) 

and vitamins (D( + )biotin 1 p_ g / m 1, nicotinamide 1 pg/ml, panto

thenic acid 0.2 mg/ml, pyridoxin 1 pg/ml, riboflavin 10 yg/ml). 

Acriflavin resistance was tested on ME containing this compound 

at a concentration of 50 ug/ml. 

E. coli was grown as described earlier (Wernars et al. 1985). 

Manipulât ion t e chnique s for A. nidulans. All techniques for in 

vivo manipulation of Â _ nidulans including sexual crosses, para-

sexual cycle with benlate induced haploidis ation, collection of 

conidia, colony replication and testing were carried out using 

established procedures (Pontecorvo et al. 1953; Hastie 1970; Row

lands and Turner 1973; Upshall et al. 1977; Bos 1985). Selection 

of heterokaryons and diploids from AmdS transformants was per

formed on MM containing acetamide. Sexual crosses were performed 

on MM containing proline, selfings on ME. 
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Results 

Is a genetic factor responsible for tandem Integration In A. nldu-

lans? 

To map the putative mutation responsible for the multicopy, 

tandem integration (Wernars et al. 1985) a diploid of MH1277 and 

master strain WG201 was constructed. Haploid segregants were iso

lated and analysed for their phenotype. To facilitate the dis

tinction between green diploids and haploids, in this experiment 

only segregants with yellow coloured conidia were taken. From a 

total of 250 haploid segregants, eight were chosen with different 

combinations of MH1277 and WG201 markers (Table 1), but all with 

yA2 from WG201 and amdS320 from MH1277 in common. To examine the 

pattern of vector integration, these strains were transformed with 

p3SR2 and from each, two AmdS transformants were randomly taken 

and their DNA was subjected to Southern blotting analysis. In all 

cases this revealed integration of many vector copies in a tandem-

ly repeated fashion (results not shown) as found previously with 

MH1277 derived AmdS + transformants (Wernars et al. 1985). There

fore it can be concluded that exchange of chromosomes between 

MH1277 and WG201 by means of the parasexual cycle did not result 

in loss of the multicopy, tandem integration phenomenon. 

Parasexual analysis of AmdS— transformants 

Six p3SR2-derived transformants of MH1277, i.e. ht6, ht7, ct2, 

ct3, ct7 and ct8 (Wernars et al. 1985), were subjected to genetic 

analysis. Diploids were constructed between these transformants 

and the A m d S - master strain WG314. Since the use of a non-selec

tive nitrogen source occasionally resulted in the isolation of 

heterozygous diploids with an AmdS phenotype, selection of di-
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Table 1: Marker composition of eight haploid segregants from 

diploid MH1277/WG201. 

Segregant 

WG338 

WG339 

WG340 

WG341 

WG342 

WG343 

WG344 

WG345 

Mark 

y_A2 

(I) 

* 

* 

* 

* 

* 

* 

* 

* 

er mutations from WG201 

acrAl meaB6 pyroA4 

(II) (III) (IV) 

* 

* 

* 

* 

and ] 

pAl 

(V) 

* 

* 

inkage group 

sB3 nicB8 

(VI) (VII) 

* 

* 

* 

riboB2 

(VIII) 

* 

The presence of a genetic marker originating from parent WG201 is 

designated by "*". All strains denoted carry amdS3 20 from parent 

MH1277. 

ploids was carried out on MM containing acetamide. Haploid segre

gants were isolated and tested for the presence of genetic markers 

and the transformed AmdS property. The results are summarized in 

Table 2. 

It is to be noticed that the AmdS phenotype predominated among 

the segregants of three diploids (i.e. those derived from ct3, ht7 

and ct8). This might suggest a disadvantage for the chromosome 

carrying the AmdS insertion. 

In all groups, with the exception of ct2, strong linkage is 

found between the AmdS phenotype and at least one marker of 

WG314, confirming the previous conclusion from the biochemical 

analysis (Wernars et al. 1985) that the transforming sequences are 
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Table 2. Marker distribution of haploid segregation from diploids 

of strain WG314 and the AmdS transformants. 

marker from 

W0314 

£A2 

acrA1 

pyroA4 

£A1 

sB3 

pantoBIOC 

riboB2 

w.t. 

L.G. 

I 

II 

IV 

V 

VI 

VII 

VIII 

VIII 

MH1277 

w.t. 

w.t. 

w.t. 

w.t. 

w.t. 

w.t. 

w.t. 

niiA4 

Total 

ct2 

-
82 

V 

42 

71 

42 

71 

23 

90 

61 

52 

64 

49 

56 

57 

60 

53 

113 

+ 

85 

37 

55 

67 

70 

52 

24 

98 

68 

54 

65 

57 

61 

61 

66 

56 

122 

ct3 

-
158 

0 

73 

85 

84 

74 

81 

77 

85 

73 

84 

74 

107 

51 

110 

48 

158 

+ 

1 

63 

25 

39 

44 

20 

29 

35 

32 

32 

29 

35 

46 

18 

48 

16 

64 

ht7 

-
55 

48 

103 

0 

49 

54 

22 

81 

18 

85 

22 

81 

54 

49 

62 

41 

103 

+ 

18 

20 

4 

34 

15 

23 

2 

36 

10 

28 

7 

31 

22 

16 

24 

14 

38 

ct8 

-
98 

39 

137 

0 

62 

75 

27 

110 

84 

53 

70 

67 

66 

71 

70 

67 

137 

+ 

57 

31 

1 

87 

42 

46 

26 

62 

46 

42 

35 

53 

55 

33 

56 

32 

88 

ht6 

-
50 

41 

33 

58 

44 

47 

14 

77 

42 

49 

19 

72 

91 

0 

+ 

39 

42 

37 

44 

36 

45 

13 

68 

35 

46 

10 

71 

0 

81 

91 

0 

91 

5 
76 

81 

ct7 

-
99 

74 

170 

3 

169 

4 

59 

114 

74 

99 

73 

100 

121 

52 

124 

49 

173 

+ 

102 

85 

6 

181 

0 

187 

70 

117 

81 

106 

100 

87 

124 

63 

123 

64 

187 

Only the tested markers are listed. The segregants able to grow on 

acetamide as sole nitrogen source are designated "+", those unable 

by "-". The boxes denote linkage between a marker and the AmdS 

property. Both strain WG314 and the AmdS transformants carry the 

«1IM1S320 mutation on linkage group III. L.G.= linkage group; 

w.t. = wild type gene. 

44 



integrated into the genomic DNA. 

For ct2 no linkage is observed to any of the tested markers 

(Table 2, first column). By elimination, the AmdS insertion can 

only be assigned to linkage group III, which carries the amdS320 

mutation, but no other genetic marker. This again is in accordance 

with the results of the biochemical analysis which showed inte

gration of a single vector copy at the homologous, partially 

deleted amdS locus. 

In four other transformants the AmdS property maps on one 

chromosome only: for ct3 and ht6 on chromosome I and VIII respec

tively, for both ht7 and ct8 on chromosome II. From the results in 

Table 2 however, it cannot be concluded whether integration in ht7 

and ct8 has occurred at the same chromosomal location. 

In contrast to the transformants mentioned above, the AmdS 

property in ct7 shows linkage to two markers: to acrAl on chromo

some II and £J£_r_oA4 on IV. At first sight this would be in 

Table 3. Distribution of the markers acrAl and pyroA4 and the 

transformed AmdS property, among haploid segregants from 

the diploid WG314//ct7. 

Number of haploid 

segregants 

169 

181 

6 

3 

1 

0 

Phenotype 

AcrA-, PyroA-, 

AcrA + ,PyroA + , 

AcrA-, PyroA , 

AcrA+, PyroA+, 

AcrA-, PyroA , 

AmdS-: 

AmdS + 

AmdS+: 

AmdS": 

AmdS-: 

: other recombinants 

parental (WG314) 

parental (ct7) 

recombinant 

recombinant 

recombinant 



accordance with integration on both chromosomes. However, in addi

tion the two markers failed to segregate independently from each 

other: among the segregants, only 2% had separated the acrAl and 

pyroA4 marker instead of 50% (Table 3 ) . This led to the con

clusion that a translocation between chromosomes II and IV is 

involved (see Discussion). 

As the integration of the transforming vector into the chromo

somal DNA is the result of a recombination event it is worthwhile 

to investigate mitotic recombination in our material. From the 

segregation experiments mentioned before the frequency of mitotic 

recombination for chromosome VIII could be estimated (Table 4 ) . 

Although the distribution of the segregants is distorted at the 

expense of the NiiA" mutants in general and the NiiA-, RiboB -

recombinants in particular, the recombination frequency for these 

two markers is at least 3%; this is an order of magnitude higher 

than 0.1-0.3% per chromosome arm, as estimated by Käfer (1977). 

Table 4. Distribution of the niiA4 and riboB2 markers among 

haploid segregants from the diploids of strain WG314 and 

AmdS transformants 

Phenotype 

of segregant 

Transformant in diploid 

ct2 ct3 ht7 ct8 ht6 ct7 

Nii ,RiboT 

Nii+,Ribo~ 

Nii",Ribo~ 

Nii+,Ribo+ 

107 

115 

2 

11 

64 

153 

0 

5 

55 

76 

0 

10 

99 

121 

0 

5 

76 

91 

0 

5 

113 

245 

0 

2 
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Sexual analysis of transformants ht7 and ct8 

To determine whether the AmdS sequences had integrated at 

identical chromosomal locations the transformants ht7 and ct8 with 

the AmdS insertions mapping on the same chromosome (i.e. II), 

were further analysed by sexual crossing. Since both transformants 

have similar phenotypes direct crossing could not be performed. 

Therefore derivatives of ht7 and ct8, which combine the AmdS 

phenotype and additional markers, were selected from the previous 

experiment. Thus crosses were made between ht7 and ct8-pyro (̂ A2 ; 

A m d S + ; £md^I 18 , ajnd_S320; pyroA4; armdA7 ; niiA4) , ht7 and ct8-ribo 

(yA2; A m d S + ; amjII18, a_mjlS320; £md_A7 ; riboB2). As a control 

selfings of the individual partners were performed. Progeny from 

crossed cleistothecia and selfings was analysed and the results 

are summarized in Table 5A. 

Selfings of ct8-pyro and ct8-ribo showed a fairly stable 

meiotic transmission of the AmdS phenotype: only one single AmdS-

colony was obtained. Strain ht7 however behaved completely 

different. Of all progeny tested over 40% had an A m d S - phenotype 

and large differences in AmdS /AmdS ratio were found for the 

individual cleistothecia. 

Surprisingly the crosses ht7 x ct8-pyro and ht7 x ct8-ribo 

yielded a rather small number of AmdS- progeny. In only one cleis-

tothecium a 1:1 ratio of AmdS and AmdS- ascospores was found. The 

high meiotic instability in the parental strain makes it difficult 

to draw conclusions about the relative distance between the AmdS 

insertions in both parents. 

In order to test the possibility that in contrast to ht7 

itself derivatives of ht7 would display stable meiotic transmis

sion of the AmdS property, these were used in combination with 

ct8 (Table 5B.). Like ht7, its derivatives ht7-pyro (£A2 ; A m d S + ; 
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| l a b l e 5 . Sexual a n a l y s i s of t r a n s f o r m a n t s h t7 and c t8 

A) cleisto-

thecium 

1 

2 

3 

4 

5 

\ 6 

7 

8 

9 

10 

11 

12 

Total 

ct8-pyro 

self ing 

+ 

49 0 

48 0 

12 1 

52 0 

26 0 

12 0 

199 1 

ct8-ribo 

self ing 

+ 

17 0 

27 0 

42 0 

48 0 

36 0 

20 0 

12 0 

9 0 

26 0 

43 0 

26 0 

306 0 

ht7 

self ing 

+ 

16 24 

17 13 

12 38 

36 14 

32 18 

13 5 

27 7 

32 18 

32 18 

37 13 

28 0 

18 30 

286 212 

ht7 

X 

ct8-

+ 

100 

50 

49 

199 

-pyro 

-

0 

0 

1 

1 

ht7 

X 

ct8-

+ 

98 

38 

155 

41 

332 

ribo 

-

2 

1 

1 

49 

54 

B) cleisto-

thecium 

1 

2 

3 

4 

5 

6 

Total 

ht7-pyro 

self ing 

+ 

28 12 

33 25 

52 48 

32 2 

32 30 

177 117 

ht7-ribo 

self ing 

+ 

39 0 

32 11 

34 17 

24 10 

25 8 

22 6 

176 52 

ct8 

selfing 

+ 

30 0 

98 2 

68 0 

26 2 

68 1 

290 5 

ct8 

X 

ht7-

+ 

98 

100 

100 

298 

•pyro 

2 

0 

0 

2 

,ct8 

X 

ht7-

+ 

100 

99 

94 

293 

ribo 

-

0 

1 

6 

7 

48 



Table 5: Selfed or crossed cleistothecia were isolated and from 

each a number of progeny colonies was tested for the presence (+) 

or absence (-) of the AmdS phenotype. Crossed cleistothecia con

tained YA and YA~ progeny in a 1:1 ratio. 

A) ht7 with ct8 derivatives 

B) ct8 crossed with ht7 derivatives 

For further explanation see text. 

a_mdI18, a_mj!S320; pyroA4; amdA7j niiA4) and ht7-ribo (y_A2 ; AmdS + ; 

amdI18, amdS320; amdA7; riboB2) frequently lost the AmdS + pheno

type upon selfing but the crosses only yielded again small numbers 

of AmdS- progeny. 

The possibility that the observed instability in ht7 and its 

derivatives was mitotic rather than meiotic was ruled out by 

analysis of their conidiospores: among 300 tested none was AmdS . 

Discussion 

In the experiments described here classical genetic methods 

were applied. Firstly we tried to find support for our hypothesis 

(Wernars et al. 1985) that a cryptic mutation in the genome of 

MH1277 is responsible for the multiple copy, tandemly repeated 

type of integration of the transforming vector. However, none of 

the constructed strains with exchanged chromosomes from MH1277 and 

WG201 predominantly integrated one copy of the vector DNA at the 

homologous locus. Since chromosome III contains the indispensible 

amdS deletion, this chromosome could not be tested in this way, 

leaving the possibility that the presumed mutation might be pre-
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sent on chromosome III. On the other hand master strain WG201 

might contain the same mutation. However, the latter possibility 

cannot be verified since no pedigrees are available for both 

strains. 

Recent reports involving transformation of A. nidulans (John 

and Peberdy 1984 ;Ba1lance and Turner 1985; Durrens et al. 1985; 

Miller et al. 1985) indicate that tandem integration, although 

less pronounced than in MH1277, also occurs in other strains. 

Therefore our model (Wernars et al. 1985) might need revision by 

the assumption of the presence of a cryptic mutation in WG290, 

resulting in the absence of multiple copy integration. 

Based on data, obtained from Southern analysis (Wernars et al. 

1985) we already concluded that AmdS transformants of MH1277 have 

integrated the transforming DNA into the genome. Transformation by 

integration of the vector into the genomic DNA has been reported 

so far for all A_̂  nidulans transformation systems (Tilburn et al. 

1983; Ballance et al. 1983; John and Peberdy 1984; Yelton et al. 

1984). Genetic analysis can be employed to verify a conclusion 

like this. Mitotic haploidisation was successfully used by John

stone et al. (1985) for the genetic analysis of an ArgB transfor

mant. However, the method failed in the analysis of Pyr transfor

mants, due to loss of the transformant phenotype (Ballance and 

Turner 1985). This loss could be due to the fact that the master 

strain used was a uridine prototroph, resulting in the absence of 

selective pressure necessary to maintain the transforming DNA in 

the diploid. Our observation that AmdS- diploids will arise in the 

absence of selective pressure supports this assumption. 

The genetic analysis of six MH1277 AmdS transformants unambi

guously shows a genome linked inheritance of the transformant 

phenotype. There seems to be no preference for the integration 

into one of the eight chromosomes: in six transformants the AmdS 
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property mapped on five different chromosomes. With the exception 

of ct2 the transformant phenotype mapped outside linkage group III 

containing the resident amdS region. For ct2 the result is in 

agreement with the conclusion from the biochemical analysis 

(Wernars et al. 1985). From all transformants tested, ct7 is the 

only one that shows linkage of the AmdS property to two markers 

on different chromosomes. This situation however cannot be simply 

explained by assuming that the AmdS property is present on two 

linkage groups, in view of the observation that the pyroA4 and 

acrAl markers fail to segregate independently. Linkage of two, 

previously unlinked markers can occur as a result of a transloca

tion event (Bainbridge and Roper 1966). Such an event cannot have 

occurred in WG314 since this marker linkage was absent in the 

other segregant pools (result not shown). When however, a translo

cation was present in the transformant this could also lead to 

apparent linkage of markers from the master strain (Käfer 1962, 

1965; Bainbridge 1980) due to inviability or poor growth of se-

gregants with an imbalanced chromosome complement. Therefore it is 

very likely that ct7 contains a translocation involving linkage 

groups II and IV. Integration of the amdS vector in one or both of 

these chromosomes will then result in the segregation of mainly 

A m d S - , AcrA - , PyroB - and AmdS , AcrA , PyroB haploids from 

ct7//WG314. Another option might be that translocation occurred as 

the result of vector integration, e.g. by homologous recombination 

between vector inserts on both chromosomes. 

The observation from Table 2, that segregation of A m d S - and 

AmdS phenotype is strongly biassed in some segregant pools may 

reflect a disadvantage during reassortment of chromosomes carrying 

a large insert. The fact that this bias is not found for all 

transformants might be connected with length and/or location of 

the insert. 
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As a result of mitotic crossing-over in a heterozygous diploid 

haploid segregants can be obtained in which recombination has 

taken place between markers on the same chromosome. This process 

has been studied extensively (Roper and Pritchard 1955; Pontecorvo 

and Käfer 1958) and Käfer (1977) estimates the frequency of mito

tic crossing-over to be 0.1 to 0.3% per chromosome arm. In the 

diploid combinations of WG314 and the MH1277 AmdS + transformants 

this frequency is at least an order of magnitude higher, con

sidering the 3% recombinants between niiA4 and riboB2 on chromo

some VIII. De Bertoldl et al. (1980) have found that the use of 

benlate does not lead to an increase of mitotic recombination. One 

could speculate that this unusually high level of recombination is 

the basis of a peculiar integration mechanism in MH1277. 

The sexual analysis of ht7 and ct8 revealed a high instability 

of the AmdS phenotype upon selfing in the former transformant. 

For A_̂  ni dulans transformants meiotic instability has been re

ported, as well as stable transmission of the transformant pheno

type (Ballance and Turner 1986; Ward et al. 1986; Johnstone et al. 

1985). Tandem repeats can easily undergo rearrangements through 

meiosis (Miller et al. 1985; Durrens et al. 1985). In previous 

experiments (Wernars et al. 1985) this was also found for ht7. In 

that experiment however, AmdS ascospores as a result of selfing 

were not observed.In the course of the experiments described here, 

no obvious explanation was found for this discrepancy. Possibly 

transformant ht7 underwent genetic change during storage or hand

ling. 

Considering the results obtained with the ht7 derivatives 

(Table 5) it seems obvious that the instability of the AmdS 

phenotype in ht7 is correlated with the chromosome containing the 

vector insert. Apparently, loss of the transformant phenotype 

depends on factors that can differ for each individual cleisto-
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thecium as no fixed AmdS : AmdS- ratio was found. Since crosses of 

ht7 and ct8 (or their derivatives) mainly yielded AmdS progeny, 

presence of chromosome II from ct8 during meiosis seems to have a 

stabilising effect on the inheritance of the AmdS phenotype. 

About the mode of action of this stabilisation one might specu

late. If integration of vector DNA in chromosome II of ht7 occur

red at a location disadvantageous for maintenance during meiosis, 

a strong selective pressure will be present for loss of this draw

back. Upon selfing of ht7 this might occur by elimination of the 

vector insert whereas in a cross the whole chromosome II of ht7 

could be discarded. This hypothesis implies that the majority of 

the AmdS progeny from the crosses ht7 x ct8 will possess chromo

some II from ct8. However, the results described here do not allow 

a conclusion about this. Due to the meiotic instability of the 

AmdS phenotype in ht7 no decisive answer can be given on how 

closely or not the AmdS insertions in both transformants are 

linked. If the observed instability results from the location of 

the vector integration, the site in which this occurred is pro

bably different for ht7 and ct8, since the latter exhibits a 

stable meiotic inheritance of the transformant phenotype. 
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CHAPTER 4 

Isolation of transforming DNA sequences from Aspergillus nidulans 

AmdS transformants in E. coli. 

T. Goosen, K. Wernars, J.C. Vos, L.M.J. Wennekes, C.A.M.J.J. van 

den Hondel and H.W.J, van den Broek 
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Summary 

Digestion of DNA from Aspergillus nidulans MH1277-derived AmdS 

transformants with the restriction enzyme EcoRI, followed by liga

tion and transformation to Ê _ coli, resulted in ampicillin resis

tant colonies bearing plasmids which were either identical or 

strongly related to the amdS vector used originally to transform 

A. nidulans. Similar plasmids could also be selected in E. coli 

using undigested DNA from the same AmdS transformants. Evidence 

is presented that these transformants also contain free circular 

plasmid DNA molecules, be it at very low copy number, which arise 

in Aspergillus by excision through in vivo recombination between 

individual copies within integrated tandem repeats. 

A detailed analysis of reisolated vector sequences is present

ed . 

Introduction 

Analysis of Aspergillus nidulans transformants by Southern 

blotting (Wernars et al. 1985; Yelton et al. 1984) or genetic 

analysis (Wernars et al. 1986; Johnstone et al. 1985) invariably 

shows that the transforming DNA sequences are integrated in the 

genome. For manipulation and analysis of cloned genes it is highly 

desirable to possess simple procedures for reintroducing the 

transformed DNA sequences into E^ coli. 

For the lower eukaryote Saccharomyces cerevisiae this was 

achieved by the construction of shuttle vectors, able to replicate 

autonomously in both E_̂_ coll and Sj_ cerevi s iae (Struhl 1983). 

Similar vectors have also been developed for animal cells (e.g. 

Lusky and Botchan 1981). In some systems the use of vectors of 

58 



viral origin has enabled the isolation of transforming sequences 

by in_ vivo packaging into viral particles (Cone and Mulligan 1984; 

Brisson et al. 1984). 

As all efforts to construct vectors able, to replicate auto

nomously in kj_ nidulans (van Gorcom, pers. coin.; Goosen et al. 

1985) have been unsuccessful, isolation of transforming sequences 

from Aspergillus would require jji vitro circularization prior to 

transformation into E_̂  coli. 

We here describe such re-isolation experiments with DNA from A. 

nidulans AmdS transformants, which either contain one or multiple 

copies of the transforming amdS gene (Wernars et al. 1985). These 

experiments also indicate that circularization can occur spon

taneously i_n vivo in these A^ nidulans transformants. We present a 

detailed analysis of several reisolated plasmids. 

Materials and Methods 

A. nidulans strains. MH1277-derived AmdS transformants htl, 

ht2, ht3, ht4, ht7, ct2, ct5 and ct8 were described previously 

(Wernars et al. 1985). The transformants rlOtl, rl2tl and rl3tl 

were obtained by transformation of A. nidulans strain MH1277 to 

the A m d S + phenotype using vectors pGW315, pGW317 and pGW324 re

spectively (Wernars et al. 1985). Southern blotting analysis 

showed that they contain multiple copies of the vector inserted in 

a tandemly repeated fashion (unpublished results). 

E. coli strains. Strain JA221 ( A trpE 5, leuB, recA, hsdR~, 

HsdM+; Clarke and Carbon 1978) and KMBL1164 (thi, A lac-pro, supE; 

Giphart-Gassler and van der Putte 1979) were used for transforma

tion . 
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Media and growth. All media and growth conditions have been 

described before (Wernars et al. 1985). 

Transformation of E. coli. Transformation was carried out using 

the RbCl procedure described by Maniatis et al. (1982). Frequen

cies were determined using 20pg of pBR322 DNA. 

All other procedures were as described previously (Wernars et al. 

1985). 

Results 

Isolation of transforming sequences from A. nidulans by in vitro 

circularization. 

Re-isolating transforming sequences by iji vitro circularization 

was initially performed with DNA from strain ct2, which contains 

only one copy of the vector p3SR2. The DNA of this strain was 

digested to completion with EcoRI, phenol extracted and precipi

tated. Then a 0.15 pg aliquot of this digested DNA was ligated in 

a volume of 150 ^ 1 overnight at 16 °C and subsequently used to 

transform Ê _ coli strain JA221. 

This yielded six ampicillin resistant E. coli transformants. 

Five of these clones contained an identical 11.4kb plasmid and the 

remaining colony had a 9.0kb plasmid. 

The restriction map of the larger plasmid was in agreement with 

that predicted for a homologous vector integration at the amdS 

locus (fig. 1). Compared to the restriction map of the aindS re

gion, reported by Hynes et al. (1983), we found additional Sail 

and BamHI sites. The 9.0kb plasmid was indistinguishable from the 

parental vector p3SR2. It is obvious from fig. 1 that this 9.0kb 
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Figure 1: Physical map of the aodS locus in AmdS transformant 

ct2 and re-isolated plasmids 

Bn 

E B 

Bg Bg 

B 

\ ^ V y \ \ ^ r 

Bg Br 

B B 

SSVsM 

Bn Br 

B S B 

Underlined restriction sites were not represented in the pre

viously published physical map of the amdS genomic region (Hynes 

et al. 1983). 

E= EcoRI, B = BamHI, S = Sail, Bg = Bglll. 

I^^H: bacterial DNA, I 1 : Aj_ nidulans DNA, 

V//\: A. nidulans amdS DNA. 

Top: transformant ct2. Bottom: re-isolated plasmid. 

plasmid can not have arisen from an iji vitro circularization 

event. 

A similar re-isolation experiment was carried out with DNA from 

ht7, ct5 and ct8, all containing tandemly repeated, multiple 

copies of the vector p3SR2 (Wernars et al. 1985). The results 

(table 1) show that the frequencies with which plasmids could be 

re-isolated from these transformants, exceeded by far that of ct2. 

The frequency in which plasmid molecules are re-isolated is more 

or less proportional to the estimated copy number of the vector 
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Table 1: Ampicillin resistant Ê _ coli transformants obtained with 

EcoRI digested and religated A. nidulans AmdS + DNA 

AmdS+ 

transformant 

ct2 

ht7 

ct5 

ct8 

E. coli transformants 

per 1 pg DNA 

37 

140 

45 

250 

copy number 

1 

29 

7 

36 

Transformant DNA (100 ng) was digested with EcoRI, self-

llgated and used to transform E. coli strain JA221 to ampi-

cilline resistance. The transformation frequency of pBR322 

DNA was 2x10 trans f or mant s/ug DNA. The number of vector 

copies in AmdS transformants was determined by DNA dot 

blotting (results not shown). 

present in the genome of the AmdS transformants. The plasmids 

obtained had various sizes, ranging from approximately 7 to 15kb. 

From the results presented here we conclude that the re-

isolation of transforming sequences from MH1277 derived AmdS 

transformants by Va vitro circularization is possible, even when 

only one single copy is present in the genome. 
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Re-isolation of transforming sequences from undigested transfor

mant DNA. 

As mentioned in the previous section, a 9.0 kb plasmid indis

tinguishable from p3SR2 was re-isolated from ct2 DNA. Since the in 

vitro circularization procedure could not have yielded this plas

mid we examined the possibility that free circular vector mole

cules are present in undigested DNA from MH1277 derived A m d S + 

transformants. From a number of such transformants DNA was iso

lated and without further treatment transformed to the non-

Table 2: Ampicillin resistant E^ coli transformants obtained 

with undigested A. nidulans AmdS + DNA 

AmdS+ 

transformant 

htl 

ht2 

ht3 

rlOtl 

rl2tl 

rl3tl 

E. coli transformants/ug DNA 

JA221(r~m+) 

16 

2 

4 

3 

4 

17 

KMBL1164(r+m+) 

0 

0 

0 

0 

0 

0 

Of each A_;_ nidulans AmdS transformant ten aliquots of 100 ng 

undigested DNA were used to transform each of the Ej_ coli 

strains JA221 and KMBL1164. Transformation frequency of 

pBR322 DNA was 5xl06 transformants/yg DNA. 
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restricting E^ coli strain JA221. This indeed yielded a number 

of ampicillin resistant colonies (Table 2), all containing Plas

mids. To ascertain that these plasmids really originate from 

Aspergillus, the DNA preparations were simultaneously transformed 

to the restricting host KMBL1164. Although modified pBR322 trans

formed both strains with equal frequencies, Aspergillus DNA did 

not give transformants in KMBL1164 (Table 2). 

These results indicate that free circular vector sequences 

might be present in A^ nidulans AmdS transformants. 

Are free plasmids present in AmdS— transformants? 

Undigested DNA preparations of nineteen transformants were 

fractionated on a 0.4% agarose gel, blotted onto a nitrocellulose 

3 2 membrane and probed with P-labelled p3SR2 DNA. On the resulting 

autoradiograms (fig. 2) no hybridisation signals corresponding to 

free plasmids could be detected even after prolonged exposure, 

whereas 0.1 ng of p3SR2 gave a strong signal. Since the haploid A. 

nidulans genome has about 3x10 the size of p3SR2 (Timberlake 

1978) we estimate that the supposed free plasmid molecules are 

present in a ratio of less than 1 copy per 50 to 100 Â _ nidulans 

genome equivalents. 

One could assume that no free plasmids are present at all in 

the AmdS transformants, but that integrated copies of the trans

forming vector are circularized in EMJ_ coli. We therefore subjected 

DNA from four AmdS transformants to centrifugation in CsCl/EtBr 

gradients. From these gradients, in which only a chromosomal DNA 

band was visible, fractions of chromosomal and plasmid density 

were collected, purified and aliquots were transformed to Ej_ coll. 

The results are shown in Table 3. 
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Figure 2: Southern analysis of undigested DNA from AmdS transfor

mants 

/. 1 2 3 t. 5 / 6 7 8 9 10 11 12 13 V, 15 16 /17 1» » / 

I n 

A. nidulans DNA 3 iig/lane) was fractionated by electrophoresis 

on a 0.3% agarose gel, transferred onto a nitrocellulose membrane 

and hybridized with 32P-labelled p3SR2. Lanes 1-19: AmdS + trans

formants, obtained by transformation of strain MH1277 with plasmid 

p3SR2; wt = wild type Aj_ nidulans ; WG260 = A_;_ nidulans strain 

MH1277. The marker lanes contain 0.1 ng p3SR2 DNA. 

Although in the fractions of plasmid density no DNA could be 

detected by physical means they yielded ampicillin resistant E. 

coli JA221 transformants. A number of transformants in the same 

order of magnitude could be obtained upon using 1 |ig of DNA from 
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the chromosomal fraction for transformation. The results demon

strate that indeed low numbers of free circular plasmids are 

present in AmdS transformants of A. nidulans strain MH1277. 

Table 3: Ampicillin resistant E. coli transformants obtained 

with fractionated undigested A. nidulans AmdS DNA 

AmdS+ 

transformant 

ht2 

ht4 

ht7 

rl3tl 

Number of E. coli transformants with: 

"plasmid band" 

6 

2 

1 

5 

chromosomal band 

1 

11 

1 

23 

Transformant DNA was subjected to CsCl/EtBr gradient centri-

fugation. Fractions of chromosomal and plasmid density were 

collected, the DNA was purified and dissolved in equal vo

lumes. These preparations were used to transform E_̂_ coli 

strain JA221. Of the chromosomal fractions 1 |ig of DNA was 

transformed, which equals about 1% of the DNA recovered. Of 

the plasmid fraction, which contained no visible amount of 

DNA, one half was taken for transformation. The transforma

tion frequency of pBR322 DNA was 5x10 transformants/pg. 
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Analysis of re-isolated plasmids. 

Plasmid DNA was extracted from ampicillin resistant E. coli 

transformants, obtained with undigested DNA from A_̂  nidulans AmdS 

transformant rl3tl, purified, digested with both EcoRI and Sail 

and fractionated on a 0.6% agarose gel. Of 12 plasmids isolated 5 

showed restriction patterns identical to pGW324, the plasmid ori

ginally used to transform A. nidulans. The other 7 plasmids were 

markedly different. These, together with one of the former plas

mids (p21-6) were further analyzed. 

EcoRI and Sail digested DNA was blotted from gels onto nitro-

3 2 cellulose membranes in triplicate and hybridized to P-labelled 

pGW324-fragments (fig. 3). 

The resulting autoradiograms showed that despite different 

restriction pattern all plasmids were reminiscent to pGW324 as 

they hybridized to the aids fragment (Fig. 3B), pBR322 (fig. 3C) 

and the 3.3kb EcoRI fragment of A_̂  nidulans ribosomal DNA (Fig. 

3D). 

In Haelll digests of the plasmids this relation was even more 

obvious. Some Haelll fragments of re-isolated plasmids appeared to 

be doublets, where pGW324 showed singular bands (Fig. 4A). Probing 

3 2 
with P-labelled amdS fragment also indicated that in some re-
isolated plasmids sequence duplications had occurred (Fig. 4B). 

To establish which Aj_ ni dulans DNA sequences were present in 

the plasmids re-isolated from rl3tl, three of these, p21-l, p21-10 

and p21-ll were labelled by nick translation and used as hybridi

zation probes for blots of restriction digests of chromosomal A. 

nidulans DNA (Fig. 5 ) . 

With all three plasmids only the expected ribosomal DNA frag

ments (strong signals) and amdS containing fragments (weak sig

nals) were visible. This means that the re-isolated plasmids 
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s o l e l y c o n s i s t e d of f r a g m e n t s , p r e s e n t i n t h e p a r e n t a l p l a s m i d 

pGW324. 

F igu re 3 . Southern a n a l y s i s of r e - i s o l a t e d p l a sm id s : EcoRI - S a i l 

double d i g e s t s 

> j ! , > ' 5 ' ? ? ? ? ' < ? - • o » » » ? * ' « ' ^ • » • o » » » * « - * ^ ' 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / 

Plasmids re-isolated from undigested DNA of AmdS transformant 

rl3tl were digested with E coRI and Sail and submitted to gel 

electrophoresis on 0.6% agarose. The DNA was transferred to nitro-

32 cellulose membranes in triplicate and hybridized with P-labelled 

DNA fragments. The arrows indicate the positions of minor hybri

dization signals visible on the original autoradiograms. 

Panel A: EtBr-stained gel. Panel B: blot hybridized with EcoRI -

Sail amdS fragment. Panel C: blot hybridized with pBR322 DNA. 

Panel D: blot hybridized with the 3.3kb EcoRI fragment of A^ 

nidulans rDNA. 

Fragments were isolated from pGW324 (Wernars et al. 1985) which is 

identical to pRRR13. 
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Figure 4: Southern analysis of re-isolated plasmids: Haelll di

gests 

/ / / / / / / / / 

fllW* m là 

Plasmids r e - i s o l a t e d from und ige s t ed DNA of AmdS t r a n s f o rman t 

r l 3 t l were d i g e s t e d w i th H a e l l l and s ubmi t t ed to g e l e l e c t r o p h o r e 

s i s i n 1.2% a g a r o s e . The DNA was t r a n s f e r r e d t o a n i t r o c e l l u l o s e 

membrane and h yb r i d i z ed w i t h 3 2 P - l a b e l l e d amdS f ragment . 

P a n e l A: E t B r - s t a i n e d g e l . P a n e l B: a u t o r a d i o g r a m . pRRR13 i s 

i d e n t i c a l to pGW324. The a r row i n d i c a t e s t h e p o s i t i o n of doub le t 

b ands . 
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Figure 5: Hybridization of re-isolated plasmids to chromosomal A. 

nidulans DNA 

ƒ 
/*7*7*7 A?,?*? / */*!/ 

/ / / / / / / /////// /////// 

M*-' 

"b 

Chromosomal Â _ nidulans DNA from a wild type strain (wt) and 

strain MH1277 (WG260) was digested with BamHI, EcoRI or Xhol, 

fractionated by gel electrophoresis and transferred to nitrocellu-

3 2 lose membranes (in triplicate). Re-isolated plasmids were P-

labelled and used as hybridization probes. 

Panel A: blot hybridized with p21-l. Panel B: blot hybridized with 

p21-10. Panel C: blot hybridized with p21-ll. Marker lane contains 

linearized p3SR2 DNA (1 ng). 
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Discussion 

Our results show that transforming vector DNA sequences can be 

re-isolated from AmdS transformants of Â _ nldulans strain MH1277 

- even in the most unfavourable situation. When only one copy of 

the vector had integrated into the genomic DNA, isolation by in 

vitro circularization was possible. Resulting plasmids revealed 

incompleteness of the physical map of the chromosomal amdS region, 

previously published by Hynes et al. (1983). Since this map was 

based on data from genomic blotting experiments, being more prone 

to errors than plasmid mapping, Hynes et al. probably overlooked 

these sites. 

From AmdS transformants, carrying multiple copies of the in

serted vector, plasmids could be recloned at a considerably higher 

frequency. These showed a similar length polymorphism as found in 

Southern blots of EcoRI digested chromosomal DNA (Wernars et al. 

1985). Some of these EcoRI fragments have not been found among the 

re-cloned plasmids, probably due to the absence of a pBR322 origin 

of replication and/or B-lactamase gene. 

Furthermore, a clear correlation was present between the number 

of integrated vector copies in each A_̂  nidulans transformant and 

the frequency in which plasmids could be recloned. 

One plasmid re-isolated from transformant ct2 could not have 

been formed by ±ja vitro circularization. Extraction of this plas

mid as a closed circular molecule from A^ nidulans would be a 

plausible explanation for its isolation. Indeed vector molecules 

could also be isolated in E^ coli using undigested AmdS transfor

mant DNA although even thorough analysis by Southern blotting had 

not revealed any sign of free plasmids in this material. The pre

sence of very large free multimeric vector co-integrates could not 

have been detected in this way. However, upon transformation into 
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E. coli such co-integrates would resolve, yielding a heterogeneous 

colony. Since these were never found (not shown) we consider this 

explanation unlikely. 

An other possibility could be that the plasmids have arisen by 

recombination dependent circularization of tandem vector repeats 

in E_̂  coli, which can occur even in a recombination deficient 

strain (Conley and Saunders 1984). The CsCl/EtBr centrifugations 

however, demonstrated the presence of free covalently closed cir

cular vector molecules in the A_̂  nidulans DNA preparations. More

over the use of a recombination proficient E. coli as recipient 

strain did not increase the transformation frequency (results not 

shown). We therefore conclude that recombination dependent circu

larization does not play an important role in the formation of re-

isolated plasmids. 

Like the recloned plasmids, also plasmids isolated from un

digested DNA show a wide range of sizes and differences in re

striction patterns. Nevertheless, those examined all exclusively 

consisted of DNA sequences present in the parental vector whereby 

duplications and/or deletions had taken place. In view of the 

resemblance with the state of the integrated vector DNA, consist

ing of large, rearranged tandems, we propose that the free plasmid 

molecules arise by excision through ĵ n vivo recombination between 

individual copies within such a tandem repeat. 

Also for A. nidulans transformants, obtained with other select

ion markers indications have been found for the presence of free 

vector molecules (Johnstone et al. 1985; Ballance and Turner 

1985). Although this certainly needs further investigation, the 

presence of free vector molecules might be a common feature for 

many A^ nidulans transformants. 

The prospects of gene cloning in Aspergillus using the aiidS 

selection marker are promising. It offers fairly high transforma-
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tion frequencies, amplification of the cloned sequences, a stable 

mitotic transmission and, as shown here, a simple re-isolation 

procedure. 

Acknowledgements 

We are grateful to several pre-doctoral students who partici

pated in this project. Thanks are due to Elly van Liempt, Aafke 

van der Kooi and Trees Makkes for typing the manuscript and to 

Piet Madern for the reproduction of figures and autoradiographs. 

Discussions with our colleagues were highly appreciated. This work 

was (in part) supported by a grant from the Netherlands Organisa

tion for the Advancement of Pure Research (ZWO). 

References 

Ballance D J, Buxton F P, Turner G (1983) Transformation of Asper

gillus ni dulans by the orotidine-5'-phosphate decarboxylase 

gene of Neuros pora eras sa. Biochem Biophys Res Commun 112: 

284-289 

Ballance D J, Turner G (1985) Development of a high-frequency 

transforming vector for Aspergillus nidulans Gene 36: 321-331 

Brisson N, Paszkowski J, Penswick J R, Gronenborn B, Potrykus I, 

Hohn T (1984) Expression of a bacterial gene in plants using a 

viral vector. Nature 310: 511-514 

Clarke L, Carbon J (1978) Functional expression of cloned yeast 

DNA in E. coli: Specific complementation of arginino- succinate 

lyase (argH) mutations. J Mol Biol 120: 517-532 

73 



Cone R D, Mulligan R C (1984) High efficiency gene transfer into 

mammalian cells: Generation of helper free recombinant retro

virus with broad mammalian host range. Proc Natl Acad Sei USA 

81: 6349-6353 

Conley E C, Saunders J R (1984) Recombination dependent recircula-

rization of linearized pBR322 plasmid DNA following transforma

tion of Escherichia coli. Mol Gen Genet 194: 211-218 

Giphart-Gassler M, van der Putte P (1979) Thermo-inducible expres

sion of cloned early genes of bacteriophage Mu. Gene 7: 33-50 

Goosen T, Wernars K, Wennekes L M J, Visser J, Bos C J, van den 

Broek H W J, van Gorcom R F M, Kos A, van den Hondel C A M J J, 

Pouwels P H (1984) Multiple copy integration of transforming 

sequences in Aspergillus nidulans. In: Proceedings of the Third 

European Congress on Biotechnology, Vol. Ill, Verlag Chemie, 

Weinheim 311-316 

Hynes M J, Corrick C M, King J A (1983) Isolation of genomic 

clones containing the ajwlS gene of As pergillus nidulans and 

their use in the analysis of structural and regulatory muta

tions. Mol Cell Biol 3: 1430-1439 

Johnstone I L, Hughes S G, Clutterbuck A J (1985) Cloning of an 

Aspergillus nidulans developmental gene by transformation. EMBO 

J 4: 1307-1311 

Lusky M, Botchan M (1981) Inhibition of SV40 replication in simian 

cells by specific pBR322 DNA sequences. Nature 293: 79-81 

Maniatis T, Fritsch E F, Sambrook J (1982) Molecular cloning, A 

laboratory manual, Cold Spring Harbor Laboratory, Cold Spring 

Harbor, New York. 

Struhl K (1983) The new yeast genetics. Nature 305: 391-397 

Tilburn J, Scazzocchio C, Taylor G G, Zabicky-Zis s man J H, 

Lockington R A, Davies R W (1983) Transformation by integration 

in Aspergillus nidulans. Gene 26: 205-221 

74 



Timberlake W E (1978) Low repetitive DNA content in Aspergillus 

nidulans. Science 202: 973-975 

Wernars K, Goosen T, Wennekes L M J, Visser J, Bos C J, van den 

Broek H W J, van Gorcom R F M, van den Hondel C A M J J, 

Pouwels P H (1985) Gene amplification in Aspergillus nidulans 

by transformation with vectors containing the amdS gene. Curr 

Genet 9: 361-368 

Wernars K, Goosen T, Swart K, van den Broek H W J (1986) Genetic 

analysis of Aspergillus nidulans AmdS transformants. Mol Gen 

Genet (in press) 

Yelton M M, Hamer J E, Timberlake W E (1984) Transformation of 

Aspergillus nidulans by using a t rpC plasmid. Proc Natl Acad 

Sei USA 81: 1470-1474 

Yelton M M, Timberlake W E, van den Hondel C A M J J (1985) A 

cosmid for selecting genes by complementation in Aspergillus 

nidulans : Selection of the developmentally regulated v_A locus. 

Proc Natl Acad Sei USA 82: 834-838 

75 



CHAPTER 5 

One-step gene replacement in Aspergillus nidulans by cotransforma-

tion. 

Karel Wernars, Theo Goosen, Bert M.J. Wennekes, Klaas Swart, Cees 

A.M.J.J. van den Hondel and Henk W.J. van den Broek 
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Summary 

When during the transformation of amdS320 deletion strains of 

A. nidulans with a vector containing the wild type amdS gene an 

non-selected DNA sequence was added, the AmdS transformants were 

cotransformed at high frequency. Cotransformation with an amdS320, 

trpC801 double mutant strain showed that both the molar ratio of 

the two vectors and the concentration of the cotransforming vector 

affect the cotransformation frequency. The maximum frequency ob

tained, was defined by the gene chosen as selection marker for 

transformation. 

Cotransformation was applied to induce a gene replacement in A. 

nidulans. An amdS320 strain was transformed to AmdS and cotrans-

formed with a DNA fragment containing a fusion between a non

functional A^ nidulans t rpC gene and the E.coli lacZ gene. Ten 

AmdS , LacZ transformants with a Trp" mutant phenotype were 

selected. All of these strains could be transformed with a func

tional copy of the A_̂  nidulans t r pC gene, but only two strains 

yielded TrpC transformants which, with a low frequency, had a 

LacZ - phenotype. These latter transformants had also lost the 

AmdS phenotype. 

Southern blotting analysis of DNA from these transformants 

confirmed the inactivation of the wild type t rpC gene, but re

vealed that also amdS vector sequences were involved in the gene 

replacement events. 

Introduction 

Intensive research in the last few years has resulted in the 

development of methods for genetic manipulation of fungi at the 
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molecular level (for a review see Mishra 1985). For Aspergillus 

nidulans transformation procedures have been developed based on 

complementation of mutant strains with cloned genes (Bailance et 

al. 1983; Tilburn et al. 1983; Yelton et al. 1984; John and Peder-

by 1984). In all reports on transformation of A. nidulans so far 

this complemetation is effectuated by integrated copies of the 

transforming vector in the genomic DNA of the recipient. 

Plasmids carrying a selectable marker gene have successfully 

been used as vectors to clone genes in A_̂  nidulans e.g. ̂ A (Yelton 

et al. 1985) and g-tubulin genes (May et al. 1985). Also the 

introduction of an Â _ nidulans trpC-E. coli lacZ hybrid gene into 

A. nidulans (van Gorcom et al. 1985) was based on such a vector. A 

disadvantage of this procedure is the need to link the DNA of 

interest covalently with the vector containing the selectable 

gene. In bacteria (Kretschmer et al. 1975), yeasts (Hicks et al. 

1978; Gaillardin et al. 1985) and mammalian cells (Wigler et al. 

1979) introduction of non-selected DNA sequences can be 

accomplished by cotransformation with a selectable gene without 

prior covalent linkage of both sequences. 

In this report we have employed the amdS gene (Hynes et al. 

1983), the trpC gene (Yelton et al. 1983) and the Â _ nidulans 

trpC-E. coli lacZ hybrid gene (van Gorcom et al. 1985) to demon

strate that in Â _ nidulans too, cotransformation can be used as a 

practical tool for the introduction of non-selected DNA sequences. 

Development of transformation systems for A^ nidulans has also 

provided the opportunity to study gene expression and regulation 

at the molecular level. Cloned genes can be mutated in vit ro and 

subsequently reintroduced into the Aj>_ nidulans genome. In such 

studies it is essential to direct the mutated gene to a pre

determined chromosomal location. In the yeast Saccharomyces cere-

vis iae homologous recombination between a transforming DNA se-

79 



quence and its counterpart on the genome of the recipient has been 

used to obtain transformants in which the former had replaced the 

latter in either one-step or two-step procedures (Scherer and 

Davis 1979; Rothstein 1983) and even methods have been developed 

which directly select for this event (Struhl 1983). 

Also from the fungus Neurospora crassa, in which integration of 

transforming sequences at non-homologous loci is far more frequent 

than in S_̂  cere vis iae (Dhwale and Marzluf 1985), transformants 

have been isolated which had undergone replacement of a resident 

gene by an i_n vitro disrupted copy (Paietta and Marzluf 1985). 

Although non-homologous integration in Aj_ nidulans is in some 

cases very high (Wernars et al. 1985), at least with some genes 

site directed replacement can be realized (Miller et al. 1985). 

Here we report the use of cot rans f ormation to generate TrpC -

mutants in which the wild type trpC gene has been replaced. The 

nature of these transformants is analyzed and discussed. 

Materials and Methods 

Strains. A. nidulans strains MH1277, WG290 and FGSC237 were 

described previously (Hynes et al. 1983; Tilburn et al. 1983; 

Wernars et al. 1985; this thesis; Yelton et al. 1984). Strain 

WG316 (£A1, pabaAl; amdI18, amdS320; trpC801) was constructed by 

somatic recombination (Bos and Kobus, unpublished). 

All plasmids were propagated in Ej_ coli strain MH1 (Goddard et 

al. 1983). 

DNA isolation and manipulât ion. Isolation of plasmids and A. 

nidulans DNA was described previously (Wernars et al. 1985). The 

plasmids used in this study are described in fig. 1. 
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Figure 1: Plasmids used in this study. 

I I I 
E B 

J L j y 

E E B S/XE E 

L I I II . I imaS trpC lacZ 
XJS 

E E B S/XE E B x/S 

~- . r j r amOS t rpC - - ' 

pGW315: jimd.S containing vector with a fragment from the A. 

nidulans ribosomal repeat (Wernars et al, 1985). 

pHYlOl: trpC containing vector (Yelton et al, 1984). 

pAN24-2: pGW315-derivative containing the Â _ nidulans trpC gene 

(van Gorcom, unpubl. results). 

pAN92-20: constructed from pAN92-2 (van Gorcom et al. 1985) by 

removal of the BamHI site distal to the lacZ sequence. 

pAN924-22: pGW315-derivative containing the A^ nidulans trpC -

E. coli lacZ hybrid gene from pAN92-2 (van Gorcom et al. 1985). 
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DNA was manipulated according to standard procedures described 

previously (Wernars et al. 1985). 

Media, growth and transformation of A. nidulans. Media and 

growth conditions have been described previously (Wernars et al. 

1985; this thesis). For growth of tryptophan auxotrophs all media 

were supplemented with 1 mg/ml L-tryptophan. 

Transformations were carried out with conidial protoplasts (Bos 

and Slakhorst 1985) using the following method: A maximum of 10 pi 

DNA solution in sterile bidest was mixed with 2.10 protoplasts in 

0.2 ml sorbitol solution (1.0 M sorbitol, 50 mM C a C l 2 ) . After 

addition of 50 nl PEG-buffer (25% w/v polyethyleneglycol 6000, 50 

mM CaCl2, 10 mM Tris pH 7.5) the mixture was incubated on ice for 

20 minutes. Then 2 ml PEG buffer was added and after a 5 minutes 

interval 4 ml sorbitol solution both at room temperature. Aliquots 

were plated on MMS using a toplayer of 4 ml MMS containing 1.3% 

agar. To test A^ nidulans transformants for the expression of 

bacterial 6-galactosidase activity they were screened for blue 

colour on solidified M9 medium (pH 7.5), containing 2% glucose 

and 40 IJg/ml X-gal (van Gorcom et al. 1985). 

Enri chment for Trp~ mutant s. Trp" mutants were isolated by 

filtration enrichment as used for the isolation of auxotrophic 

mutants and recombinants (Bos et al. 1981; Bos 1985). Twenty ml 

of liquid MM, supplemented with 8 |iM pantothenic acid, was inocu

lated with 2x10 conidiospores and incubated for 14 hours at 37 °C 

under vigorous agitation. Then the suspension was filtered through 

a sterile funnel containing a glasswool plug to remove germinated 

conidiospores. The material that passed the filter was pelleted by 

centrifugation, resuspended in 20 ml fresh medium and incubated 

for another 5 hours. Filtration was then repeated and aliquots of 
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the resulting suspension were plated on ME containing tryptophan. 

Such a treatment resulted in a reduction of colony forming units 

to 0.5-1.0xl04. 

Results 

Cotransformation. As shown previously (van Gorcom et al. 1985), 

approximately 85% of the AmdS transformants from strain MH1277, 

obtained with a vector containing both the cloned aedS gene and 

the trpC-lacZ hybrid gene, exhibited expression of a 6-galactosi-

dase fusion protein. 

In a similar experiment this strain was transformed with equi-

molar amounts of pGW315 (amdS) and pAN92-20 (trpC-lacZ). When 

tested for lacZ gene expression a large proportion of the AmdS 

transformants turned blue on X-gal medium (Table I ) . In fact the 

percentage of ß-galactosidase expressing transformants was as high 

as that obtained with both genes on one composite vector. 

As strain MH1277 is known to integrate large numbers of vector 

DNA copies upon transformation (Wernars et al. 1985, chapter 2 ) , 

this phenomenon could have accounted for the high cotransformation 

frequency. However with the amdS320 strain WG290 which in general 

does not exhibit multi-copy integration, similar cotransformation 

frequencies were obtained (Table 1). This indicates that cotrans

formation frequencies are high irrespective the acceptor strain 

used. 

To correlate the cotransformation frequency and the concen

trations of the cotransforming vectors, pGW315 (amdS) and pHYlOl 

(trpC) were used in combination with the amdS320, trpC801 double 

mutant strain WG316. This strain was transformed with mixtures of 

both plasmids in various concentrations and either AmdS or TrpC 
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Table 1: Transformation and cotransformation of A^ nidulans 

(amdS320) 

vector 

pGW315(amdS) 

pAN924-22 

(amdS, trpC-lacZ) 

pGW315(amdS) + 

pAN92-20(trpC-lacZ) 

AmdS transf. 

(transf/yg DNA) 

MH1277 

51 

55 

47 

WG290 

47 

52 

53 

AmdS+ LacZ+ 

phenotype (%) 

MH1277 

0 

78 

83 

WG290 

0 

81 

85 

A. nidulans strains MH1277 and WG290 were transformed with 5 

Pg of each plasmid. AmdS transformants were selected and analyzed 

for expression of ß-galactosidase. Transformation frequencies are 

per \ig of amdS vector. 

transformants were selected. These transformants were then tested 

for the expression of the second marker gene. As a control trans

formants obtained with plasmid pAN24-2 (amdS and trpC) were tested 

similarly. The results of this experiment are represented in 

Figure 2. 

The graph in panel A of this figure represents a situation in 

which AmdS transformants were selected upon transformation with a 

plasmid mixture containing a fixed concentration (0.6 pg or 6.0 

lig) of the amdS vector and various amounts of cotransforming trpC 

vector). At low concentrations increase of the amount of the 
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c o t r a n s f o r m i n g t r p C v e c t o r r e s u l t s i n a s h a r p i n c r e a s e of t h e 

c o t r a n s f o r m a t i o n f r e q u e n c y w h e r e u p o n b o t h c u r v e s d e f l e c t and r e a c h 

a max imum l e v e l of a b o u t 95%. 

The e f f e c t of r e v e r s i n g t h i s c o t r a n s f o r m a t i o n e x p e r i m e n t w i t h 

r e s p e c t t o b o t h m a r k e r s i s shown i n p a n e l B of F i g u r e 2 . A l t h o u g h 

t h e s h a p e of t h e c u r v e s o b t a i n e d i s s i m i l a r t o t h a t of p a n e l A, 

t h e maximum c o t r a n s f o r m a t i o n f r e q u e n c y r e a c h e d i s m a r k e d l y l o w e r : 

F i g u r e 2 : C o t r a n s f o r m a t i o n of A. n i d u l a n s w i t h amdS and t r p C 

g e n e s . 
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The Aj_ n i d u l a n s amdS, t r p C d o u b l e m u t a n t s t r a i n WG316 was c o t r a n s -

f o r m e d w i t h v a r i o u s a m o u n t s of b o t h v e c t o r s . S e l e c t e d t r a n s f o r 

m a n t s w e r e a n a l y z e d f o r t h e e x p r e s s i o n of t h e s e c o n d m a r k e r g e n e . 

A) S e l e c t i o n AmdS + ( o o : 6 \ig pGW315; • • : 0 .6 vg pGW315) , 

c o t r a n s f o r m a t i o n TrpC . 

B) S e l e c t i o n T r p C + ( o o : 4 y g p H Y l O l ; • • : 0 .4 v g p H Y l O l ) , 

c o t r a n s f o r m a t i o n AmdS . 



only up to 50-60% of the TrpC selected colonies possessed also 

the AmdS phenotype. 

The maximum cotransformation frequencies were similar to those 

found in the control experiments with pAN24-2: 95% of the AmdS 

transformants was also TrpC and 62% of the TrpC transformants 

had an AmdS phenotype. 

Induction of Trp~ mutants by cotransformation. In the previous 

section we have demonstrated that genes can efficiently be intro

duced into Aj_ nidulans without selection, using cotransformation. 

To replace the wildtype t rpC gene by the in vi t ro constructed A. 

nidulans trpC-E. coli lacZ hybrid gene, strain WG290 was trans

formed with a mixture of 2 Mg pGW315 and 2 vg pAN92-20. Since in 

other organisms gene replacement appears to be favoured by the use 

of linear DNA (Orr-Weaver et al. 1981; Paietta and Marzluf 1985) 

the transformation was carried out with either Xhol-diges ted or 

undigested pAN92-20 DNA. AmdS transformants were selected on 

medium supplemented with tryptophan and screened for LacZ expres

sion. With both digested and undigested cot rans forming vector 

about 75% of the transformants exhibited bacterial ß-galactosi-

dase activity. 

These transformants were then screened for Trp mutants by stab 

inoculation of conidiospores on medium lacking tryptophan. Among 

150 AmdS+, LacZ+ transformants, obtained with Xhol digested pAN92-

20, two tryptophan auxotrophs were found. With the undigested DNA, 

+ + + + 

150 AmdS , LacZ transformants yielded none. Both AmdS , LacZ , 

Trp" colonies obtained were designated Ta and Tb. 

To obtain more Trp" mutants, transformation experiments were 

repeated using 5 pg of pGW315 and 7 \i g of Xhol-digested pAN92-20. 

AmdS transformants were selected at a density of 100 sporulating 

colonies per plate. Eighteen pools were prepared each containing 



the conidiospores of two of these plates and this material was 

used for the selection of Trp - mutants. Dilutions were plated on 

ME containing tryptophan to obtain single colonies of which 200 

were tested from each pool. In two pools (1 and 17) tryptophan 

auxotrophs were encountered (one and four, respectively), all 

showing LacZ expression. From both pools one was taken for 

further analysis; they were designated Tl and T17, respectively. 

Since the abundancy of Trp - conidia was apparently low, an 

enrichment procedure for these mutants was applied for eight pools 

Table 2: Abundancy of Trp and LacZ colonies obtained from 

conidiospore pools. 

pool 

number 

11 

12 

13 

14 

15 

16 

17 

18 

not enriched 

Trp- per 200 

colonies tested 

0 

0 

0 

0 

0 

0 

4 

0 

lacZ+ 

(%) 

25 

33 

29 

53 

30 

56 

57 

62 

enriched for Trp-

Trp- per 100 

colonies tested 

1 

3 

4 

0 

7 

1 

4 

1 

LacZ+ 

(%) 

19 

16 

16 

28 

22 

24 

43 

25 

Single colonies were obtained on ME supplemented with L-

tryptophan and these were tested for tryptophan requirement 

and expression of the trpC-lacZ hybrid gene. 

87 



as described in Materials and Methods. Aliquots of the treated 

suspensions were plated and for each pool 100 colonies were tested 

for tryptophan auxotrophy and expression of the g-galactosIdas e 

fusion protein. The results are shown in Table 2. 

After enrichment, in seven out of eight pools one or more 

tryptophan requiring colonies, all expressing the trpC-lacZ hybrid 

gene were found. It should be noted that enrichment for Trp" at 

the same time resulted in reduction of the percentage of colonies 

with a LacZ phenotype. 

From these Trp- transformants six independent ones were taken 

and designated Til, T12, T13, T15, T16 and T18. The rate of spon

taneous reversion of these strains to tryptophan prototrophy was 

— 8 determined to be below 10 per conidiospore. 

Transformation of Trp~,LacZ strains to tryptophan prototrophy. 

To investigate the possibility of restoring tryptophan prototrophy 

by reintroduction of the intact trpC gene, all ten Trp", LacZ 

mutant strains described above and the trpC801 mutant FGSC237 were 

transformed with 10 yg Xhol-digested pHYlOl DNA. Each of these 

strains could be transformed to TrpC , indicating that all induced 

Trp strains, were TrpC- indeed. Surprisingly however, whereas the 

classical trpC801 mutant strain FGSC237 gave rise to about 40 

transformants per y g vector DNA, the TrpC-, LacZ mutants trans

formed at frequencies of 1100-1400 per y g DNA. 

We considered the possibility that these high transformation 

frequencies were correlated with the presence of bacterial sequen-

ces in the genome of the TrpC , LacZ strains. Therefore the 

amdS320, trpC801 double mutant strain WG316 was transformed with 

Plasmids pGW315 (amdS) or pHYlOl (trpC) to A m d S + or TrpC + pheno

type, respectively. These transformants were then used as acceptor 

strain in a transformation experiment with the second marker. No 
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differences in transformation frequencies could be detected be

tween the original double mutant acceptor strain and the strains 

that had already been transformed once, thus invalidating our 

supposition. 

If transformation of a TrpC~, LacZ strain to tryptophan proto-

trophy was the result of replacement of the trpC-lacZ hybrid gene 

by a copy of the wild type t rpC gene, then its LacZ phenotype 

should be abolished provided that no more than one biologically 

active copy of the trpC-lacZ gene was present in the genome of 

that strain. 

To isolate such TrpC , LacZ colonies, transformants obtained 

with Xhol-digested pHYlOl DNA were tested. Conidiospor es from 

about 1200 TrpC transformant colonies were collected and plated 

on X-gal medium. Only from TrpC - , L a c Z + strains Tl and T13 TrpC + 

transformants were found which did not express the g-galactosidase 

fusion protein. These LacZ colonies occurred at a frequency of 

10 per conidiospore. At the same time both strains had lost then 

AmdS phenotype, suggesting that in Tl and T13 the amdS and trpC-

lacZ genes are contiguous. One Tl-derived and one T13-derived 

white TrpC colony was taken for further analysis and designated 

T1W and T13W, respectively. 

— + + — 

Biochemical analysis of TrpC ,LacZ and TrpC , LacZ transfor

mants. The structural rearrangements in the DNA of the transfor

mants described above were visualized by Southern blotting analy

sis. DNA from these transformants was isolated, digested with 

various restriction endonucleases, fractionated by electrophore-
32 sis, blotted onto nitrocellulose and hybridized with P-labelled 

probes (t rpC, lacZ and aadS). The resulting autoradiograms are 

shown in Figure 3. 

In the TrpC - , L a c Z + transformants Tl and T13, the 4.2 kb wild 
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Figure 3: Southern analysis of TrpC~, LacZ transformants Tl and 

T13 and TrpC+, LacZ~ derivatives TIW and T13W. 

1 2 3 4 5 6 7 e 8 10 11 12 13 14 15 16 17 18 19 20 21 22 

• ! • t< 

1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 19 20 21 22 

:-ff 
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1 2 3 4 5 6 T 8 8 10 11 12 13 14 15 16 17 18 « 20 21 22 

- S • 

A. n i d u l a n s DNA was i s o l a t e d , 2 |ig was d i g e s t e d w i t h r e s t r i c t i o n 

enzymes, f r a c t i o n a t e d on a 0.6% aga rose ge l and b l o t t e d to n i t r o -

32 c e l l u l o s e i n t r i p l i c a t e . B l o t s were h yb r i d i z ed w i th P l a b e l l e d 

p robes . 

Lanes 1, 2 and 3: WG290 DNA; lanes 4, 5 and 6: Tl DNA, lanes 7, 8 

and 9: T13 DNA, lanes 14, 15 and 16 T1W DNA, lanes 17, 18 and 19: 

T13W DNA, lanes 20, 21 and 22: wild type A^ nidulans DNA. 

The DNA in lanes 1, 4, 7, 14, 17 and 20 was digested with Xhol, 

the DNA in lanes 2, 5, 8, 15, 18 and 21 with BamHI, the DNA in 

lanes 3, 6, 9, 16, 19 and 22 with Xhol and BamHI. 

Lane 10: 3 ng pHYlOl digested with Xhol, lane 11: 3 ng pAN92-20 

digested with BamHI, lane 12: 3 ng pAN92-20 digested with Xhol, 

BamHI and EcoRI, lane 13: 3 ng pAN92-20 digested with Xhol and 

BamHI. 

Panel A: Hybridized with labelled 4.2 kb trpC fragment 

Panel B: Hybridized with labelled 3.1 kb lacZ fragment 

Panel C: Hybridized with labelled 5.2 kb amdS fragment 

91 



type Xhol-fragment containing the resident trpC gene, was absent. 

However, in neither of these strains hybridisation signals corres

ponding to the 7.3kb Xhol-fragment carrying the trpC-lacZ hybrid 

gene were observed. Instead, only a band of high molecular weight 

(about 20-25 K b ) , hybridizing to each of the trpC, lacZ and amdS 

probes was visible in these lanes. In the Xhol digests of Tl and 

T13 also the 6.6kb fragment was detected, corresponding to the 

Xhol amdS320 deletion fragment of WG290. This indicates that the 

transforming amdS vector had not integrated at the homologous, 

partially deleted aids locus. Digestion with BamHI or double 

digestion with BamHI/Xhol revealed that for none of the probes 

used. Tl and T13 yielded identical hybridization patterns. Al

though the size of some of the hybridizing fragments correspond 

with those of the cloned t rpC-lacZ hybrid gene (Figure 1) others 

could not be assigned. It is however obvious from digestion of the 

large Xhol fragment by BamHI, that the former contained both trpC, 

lacZ and amdS sequences. So the presumed gene replacement event at 

the trpC locus did not only involve the trpC-lacZ hybrid gene, but 

also amdS sequences. 

Probing the restricted DNA from the TrpC , LacZ- transformants 

TIW and T13W with the labelled trpC fragment yielded a hybridiza

tion pattern undistinguishable from that obtained with WG290 DNA. 

At the same time hybridization with the amdS fragment showed that 

this pattern is also identical to the WG290 situation whereas the 

lacZ probe revealed the absence of bacterial ß-galactosidase se

quences. Thus in these transformants the wild type t rpC gene has 

been restored and at the same time lacZ and amdS sequences have 

been removed. This lacZ probe showed some minor hybridization sig

nals in all Aspergillus DNA preparations. We assume these were due 

to cross-hybridization between the bacterial ß-galactosidase and 

some A. nidulans sequence. 
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Discussion 

Cotrans format ion of Aj_ nidulans is a very efficient process; 

the frequency with which it takes place can equal that of compo

site vectors. In this respect A. nidulans resembles other lower 

eukaryotes like the yeasts S. eerevi s iae (Hicks et al. 1978) and 

Yarrowia lipolytica (Gaillardin et al. 1985) where cotransforma-

tion has also been reported to be efficient. 

The experiments with the amdS and trpC genes indicate that the 

frequency of cotransformation is both determined by the absolute 

amount of cotransforming vector and the ratio of transforming and 

cotrans f orming vector. For best results high concentrations of 

both vectors should be used. The maximum cotransformation frequen

cy to be reached depends on the nature of the cotransforming DNA: 

over 95% for trpC but only about 60% for ajn jlS. This difference 

might reflect a relatively large number of amdS genes inactivated 

in the act of integration, since similar results are obtained with 

a plasmid containing both genes. 

In our attempts to replace the wild type trpC gene by the trpC-

lacZ hybrid gene only a small fraction of the AmdS , LacZ co-

trans formant s had acquired tryptophan auxotrophy, even when the 

hybrid gene was on a linear DNA fragment. This implies that gene 

replacements are rare events compared to Sj;_ cerevisiae (Scherer 

and Davis 1979) even to other Â _ nidulans transformation systems 

(Miller et al. 1985; Johnstone et al. 1985). 

The determination of the exact frequency with which gene re

placement occurs in our experiments is not straightforward. As 

found previously (Wernars et al. 1985) only a fraction of the 

conidia on a primary transformant colony actually has the trans

formant phenotype. For TrpC cot rans formant colonies this would 

mean that they will be overlooked in the stab-inoculation tests. 
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This problem could be overcome by pooling and replating the coni-

dia from the primary transformants prior to testing, however the 

number of tryptophan auxotrophs within such a pool is no longer a 

measure for the frequency among the primary colonies. By using an 

enrichment procedure, Trp- transformants could be isolated from 

seven out of eight pools, each containing conidia of about 200 

colonies. This would suggest that at least 0.5% of the primary 

transformants contain tryptophan auxotrophic cells. It may be 

possible that by vegetative propagation of primary transformants, 

new TrpC-, LacZ colonies could have been generated by secondary 

events. Although such secondary rearrangements can occur in A. 

nidulans upon melosis (Wernars et al. 1985; Miller et al. 1985) 

they, however, never have been observed upon mitosis. 

The enrichment procedure for tryptophan auxotrophs showed to be 

both simple and effective. Especially in gene replacement studies, 

in which the desired transformants are rare but selectable, such 

an enrichment procedure may be very time saving. 

Enrichment for tryptophan auxotrophs resulted in a simultaneous 

enrichment for LacZ - , which appears to be contradictious since 

TrpC- conidia should be LacZ . Since the enrichment procedure is 

based on distinction of germinated and non-germinated conidia this 

is probably caused by a better germination of LacZ conidia. It 

can be speculated that expression of the bacterial ß-galactosidase 

is responsible for this phenomenon. A more likely explanation 

might be that the presence of one or more copies of the trpC-lacZ 

hybrid gene In the genome results in an increased depression of 

the resident trpC gene due to repressor dilution, which in turn 

resulted in a better germination. The possibility that the trpC-

lacZ hybrid gene influences germination by specific integration on 

a locus involved in this process is falsified by the observation 

that among TrpC , LacZ transformants analyzed no site specific 
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integration was found (unpublished results). 

Transformation of the TrpC-, LacZ mutants to tryptophan pro-

totrophy with pHYlOl DNA results in transformation frequencies 30 

times higher than obtained with the classical t rpC801 mutant 

strain. Using a trpC801, amdS320 double mutant strain this pheno

menon was not observed. A different genetic background of the 

strains involved may be responsible for such an increase of trans

formation frequency. On the other hand it may be connected with 

the presence of trpC-lacZ sequences in the genome. 

Only from TrpC-, LacZ+ mutants Tl and T13 TrpC+ transformants 

could be isolated which had simultaneously lost the LacZ pheno-

type. This is characteristic for candidates having undergone a 

novel gene replacement. The other eight TrpC - , LacZ mutants 

probably contain multiple trpC-lacZ insertions, strongly decrea

sing the chances to abolish LacZ expression, as it would require 

multiple independent replacement events. 

Southern blotting analysis of DNA from Tl and T13 revealed the 

absence of the wild type trpC Xhol-fragment. However, the hybri

dization patterns were not as expected for a simple replacement of 

the trpC gene by t rpC-lacZ. The results suggest that it was re

placed by trpC-lacZ sequences containing co-integrations with amdS 

vector sequences, however without abolishing LacZ expression. 

Cointegrate formation has been demonstrated previously for amdS 

transformation (Wernars et al. 1985). However it was seldomly 

observed in strain WG290. The presence of cointegrated sequences 

in both TrpC , LacZ transformants analyzed here could be for

tuitous. On the other hand it might have been caused by the use of 

linear DNA fragments for transformation. The hybridization pat

terns obtained with DNA from T1W and T13W upon probing with trpC 

and amdS DNA were identical to that of WG290 and no hybridization 

signals to a lacZ probe could be found. The reversion of Tl and 
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T13 to the TrpC phenotype and simultaneously to both the AmdS 

and lacZ" phenotype implicates a close linkage of both markers. 

This confirms the conclusion from the Southern analysis that these 

strains contain a trpC-lacZ-amdS cointegrate. Considering the low 

reversion frequencies of Tl and T13 to the TrpC phenotype we 

discard the possibility of spontaneous excision. Our results 

suggest that in T1W and T13W the wild type t r pC situation has been 

restored by a novel replacement event. 

In this chapter we showed that cotransformation can be used for 

the introduction into A_̂  nidulans of genes for which direct se

lection is not possible. Cotransformation is an efficient process 

and the cotransformation frequency of unlinked sequences can equal 

that of covalently linked genes. 

In our replacement study with the Â _ nidulans trpC gene and the 

trpC-lacZ hybrid gene, cotransformation proved to be a helpful 

tool. Although gene replacement is possible in Â _ nidulans the 

whole procedure is less straightforward than for yeast. The 

problems encountered, resemble those in similar studies with Neu-

rospora eras sa (Paietta and Marzluf 1985). Non-homologous inte

gration, co-integrations and integration of more than one copy can 

occur and make it necessary to check transformants with the de

sired phenotype by Southern analysis. Nevertheless, we think that 

gene replacement by cotransformation in A. nidulans is a poten

tially powerful method for the study of gene regulation and the 

generation of mutants. 
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CHAPTER 6 

The effect of the A_̂_ nldulans ansl sequence on Aspergillus trans

formation. 

Karel Wernars, Theo Goosen, Cees van den Hondel, Bert Wennekes 

and Henk van den Broek 
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Summary 

Vectors which in addition to the ^_ eras sa pyr4 gene contain 

the 3.5kb A^ nidulans ansl DNA fragment, show increased transfor

mation frequencies of a uridine auxotrophic A_̂_ nidulans strain 

(Ballance and Turner 1985). We have assessed in detail the effect 

of this ans 1 sequence on A_̂  nidulans transformation, using the 

cloned A^ nidulans amdS, t rpC and argB genes as well as the N. 

crassa pyr4 gene as selection markers. With trpC, am£S and pyr4, 

but not with argB, ansl increased the transformation frequency 

when added on a cotransforming vector. In the case where the ansl 

sequence was covalently linked to the amdS gene on a composite 

vector, location of ansl within these vectors was found to deter

mine its influence on the frequency of transformation. Using 

similar vector constructs with argB the effect of ansl was margi

nal . 

Introduction 

Transformation of Â _ nidulans is most commonly achieved by 

complementation of auxotrophic mutants with the cloned wild type 

gene. Most of the genes available are homologous e.g. amdS (Hynes 

et al. 1983), trpC (Yelton et al. 1983), argB (Berse et al. 1983) 

prn (Durrens et al. 1986). However, Ballance et al. (1983) de

veloped a heterologous transformation system using the cloned N. 

crassa pyr4 gene (Buxton and Radford 1983) to transform an A. 

nidulans pyrG mutant strain to uridine prototrophy. In all A. 

nidulans transformants obtained the vector DNA has integrated into 

the genome (Tilburn et al. 1983; Ballance et al. 1983; Yelton et 
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a l . 1984 ; John and P ebe rdy 1984; Werna r s e t a l . 1985; Du r r e n s e t 

a l . 1 986 ) . 

To i n c r e a s e t h e p r a c t i c a l u se of A. n i d u l a n s t r a n s f o r m a t i o n , 

e .g. fo r d i r e c t s e l e c t i o n of c loned genes i n A^ n i d u l a n s , a t t e m p t s 

have been made t o imp rove t h e t r a n s f o r m a t i o n f r e q u e n c y . For t h e 

amdS t r a n s f o r m a t i o n s y s t em , p a r a m e t e r s were e xamined and t h e 

t r a n s f o rm ing a b i l i t y of newly c o n s t r u c t e d v e c t o r s was t e s t e d (Wer

n a r s e t a l . 1 985 ) . However , n e i t h e r i n c r e a s e d homology b e t w e e n 

v e c t o r and genomic DNA, no r t h e i n c l u s i o n of y e a s t s e l e c t e d A. 

n i d u l a n s ARS s e q u e n c e s (Goosen e t a l . 1984) r e s u l t e d i n an i n 

c r e a s e of the Aj_ n i du l an s t r a n s f o r m a t i o n f requency . 

S i m i l a r e xpe r imen t s c a r r i e d out by Ba l l ance and Turner (1985) 

w i th t he N_;_ c r a s s a pyr4 gene y i e l d ed a 3.5kb DNA f r agment , d e s i g 

na ted a n s l , which con fe r r ed autonomous r e p l i c a t i o n t o y e a s t v e c 

t o r s and was found to i n c r e a s e t he t r a n s f o r m a t i o n f requency of t he 

py r4 gene 50 -100 f o l d . However , t h e Aj_ n i d u l a n s t r a n s f o r m a n t s 

ob t a ined i n v a r i a b l y c a r r i e d t he v e c t o r sequences i n t e g r a t e d i n t o 

t he genome. 

I n t h i s s t u d y we have examined t h e e f f e c t s of ans 1 on t r a n s 

f o r m a t i o n of A. n i d u l a n s w i t h v a r i o u s s e l e c t i o n m a r k e r s , u s i n g 

e i t h e r c o m p o s i t e v e c t o r s c o n t a i n i n g b o t h ans 1 and t h e s e l e c t e d 

gene or c o t r a n s f o r m a t i o n of two s e p a r a t e v e c t o r s . 

M a t e r i a l and Methods 

A. n i d u l a n s t r a n s f o r m a t i o n . 

S t r a i n s G191 (pabaAl , pyrG89; f_wAl, uaY9: B a l l a n c e and T u r n e r 

1 985 ) , FGSC237 ( p a b a A l , y_A2 ; t r p C 8 0 1 : Y e l t o n e t a l . 1 984 ) , MH1277 

( b iA l ; amdI18, amdS320; amdA7; n i iA4: Hynes e t a l . 1983) and WG328 
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(biAl; methH2, argB2: constructed in our laboratory by dr. C.J. 

Bos) were used for transformation. Media have been described 

previously (Wernars et al. 1985). For growth of auxotrophs the 

appropriate supplements were added: tryptophan (lmg/ml), arginine 

(0.5 m g / m l ) , uridine (3 m g / m l ) , D(+)-biotin (10 p g / m l ) , para-

aminobenzoic acid (0.2 Mg/ml) and methionine (20 mg/ml). 

Transformation was carried out with conidial protoplasts (Bos 

and Slakhorst 1981) using the following procedure: A maximum of 10 

plDNA solution in sterile bidest was mixed with 2.10 protoplasts 

in 0.2 ml sorbitol solution (1.0 M sorbitol, 50 mM CaCl2)> After 

addition of 50 pi PEG-buffer (25% w/v polyethylene glycol 6000, 50 

mM CaCl2» 10 mM Tris pH 7.5), the mixture was incubated on ice for 

20 minutes. Then 2 ml PEG buffer was added and after a 5 minutes 

interval 4 ml sorbitol solution, both at room temperature. Ali-

quots were plated on MMS using a toplayer of 4 ml MMS containing 

1.3% agar, held liquid at 47 °C. To test A_̂  nidulans transformants 

for the expression of bacterial g-galactosidase activity, these 

were screened for their ability to give blue coloured colonies on 

solid M9 medium (pH 7.5), containing 2% glucose and 40 \i g/ml X-gal 

(van Gorcom et al. 1985). 

- Construction of plasmids. 

Plasmids p3SR2 (Hynes et al. 1983; Wernars et al. 1985), pDJB2 

(Ballance and Turner 1985), pAN92-20 (chapter 5) and pBB116 (Berse 

et al. 1983) have been described. The constructions of the other 

plasmids used in this study are schematically shown in figure 1. 
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[Figure 1: Construction of vectors 
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A) Plasmid pGW128 was constructed by elimination of the ans 1 

containing EcoRI fragment from pDJB2. Plasmid pGW128 is equiva

lent to pDJBl (Ballance and Turner 1985). Plasmids pGW235 and 

pGW236 contain the EcoRI ansl fragment inserted in pBR322 in 

opposite orientations. Plasmid pGW337 was constructed by inser

tion of the EcoRI amdS fragment from pGW325 (panel C) into one 

of the EcoRI sites of pDJB2. 

B) Plasmid pGWlOl was constructed by insertion of the argB con

taining BamHI fragment from pBB116 into pBR322. Insertion of 

this BamHI fragment into pGW235 and pGW236 (panel A) yielded 

pGW129, pGW130, pGW131 and pGW132. 

C) Plasmid pGW325 was obtained from p3SR2 by converting the Sail 

site into an EcoRI site, using Klenow DNA polymerase and a 

synthetic linker. Insertion of the EcoRI fragment containing 

the ans 1 sequence into one of the EcoRI sites of pGW325 yielded 

Plasmids pGW333, pGW334, pGW335 and pGW336. 

Only relevant restriction sites are indicated. 

E = EcoRI; B = BamHI; P = PvuII; S = Sail.Results 

Results 

- ansl and the N̂ _ crassa pyr4 selection marker. 

Since our transformation procedure is slightly different from 

the one used by Ballance and Turner (1985), the effect of ansl was 

reassessed (table 1). Indeed the ansl containing vector pDJB2 gave 

rise to an increased number of Pyr transformants of both type I 

(stable) and type II (abortive) (Wernars et al. 1985) as compared 

with vector pGW128. 

Since it is known from our previous studies (chapter 5) that A. 
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Table 1: Effects of the ans 1 sequence on the frequency of 

transformation using the pyr4 gene 

vectors 

pGW128(pyr4) 

pDJB2(pyr4, ansl) 

pGW128(pyr4)+pAN92-20(trpC-lacZ) 

pDJB2(pyr4, ansl)+pAN92-20(trpC-lacZ) 

pGW128(pyr4)+pGW236(ansl) 

Pyr+ transf./ug DNA 

type I 

2.6xl02 

3.0xl03 

1.5xl02 

1.5xl03 

2.4xl03 

type II 

1.3xl03 

3.0xl03 

7.0xl02 

3.0xl03 

3.0xl03 

Strain G191 was transformed with 5 ug of each vector. Pyr 

transformants were classified according to their morphology 

(Wernars et al. 1985): type I (well growing) and type II 

(abortive). Transformation frequencies are per vg pyr4 con

taining vector. 

nidulans can be cot rans formed very efficiently, we investigated 

the effect of ansl on the frequency of cotransformation. Strain 

G191 was transformed with pGW128, or pDJB2, in the presence of an 

equal amount of vector pAN92-20. From both experiments 100 type I 

colonies were tested for bacterial ß-galactosidase expression. 

Among the pGW128 transformants 57% expressed the hybrid trpC-lacZ 

gene, whereas of the pDJB2 transformants this was only 15%. Al

though pyr4 transformation is stimulated, the frequency of trpC-

lacZ cotransformation is decreased. 

The enhancing effect on transformation is not dependent on 

covalent linkage of the ansl and pyr4 sequences. Cotransformation 
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of strain G191 with a mixture of pyr4 containing (pGW128) and ansl 

containing (pGW236) vectors is almost as efficient as transforma

tion with the composite vector pDJB2 (Table 1). 

ansl and the Aj_ nidulans trpC selection marker. 

The effect of ansl on transformation with the A^ nidulans trpC 

gene (Yelton et al. 1984) was examined by cotransforming ans 1 

containing vectors with the trpC vector pHYlOl. The results are 

summarized in Table 2. 

Transformation of the tryptophan auxotrophic strain FGSC237 

with vector pHYlOl yielded about 500 type I (stable) TrpC+ trans

formants per y g of DNA. Cotransformation of pHYlOl with the ansl 

containing vectors pGW236 or pDJB2 resulted in a five fold in-

Table 2: Effects of the ans 1 sequence on the frequency of 

transformation using the trpC gene 

vectors 

pHYlOl(trpC) 

pHY101(trpC)+pDJB2(pyr4, ansl) 

pHY101(trpC)+pGW236(ansl) 

TrpC+ transf./vig DNA 

type I 

5.0xl02 

2.5xl03 

2.5xl03 

type II 

>5xl03 

>5xl03 

>5xl03 

Strain FGSC237 was transformed with 5 \i g of each vector. 

TrpC transformants were classified according to their mor

phology (Wernars et al 1985): type I (stable) and type II 

(abortive). Transformation frequencies are per pg of t rpC 

containing vector. 
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crease of this frequency. In all experiments, type II (abortive) 

TrpC transformants were observed in such high frequencies that an 

increase by ansl would have escaped notice. 

These results suggest that ansl can also stimulate the fre

quency of t rpC transformation in trans. Furthermore, the ansl 

sequence does not require the N̂ _ eras sa pyr4 gene to exert its 

stimulating effect. 

ansl and the A^ nidulans amdS selection marker. 

The effect of ansl on transformation with the Â _ nidulans amdS 

gene was studied using a variety of vectors, each containing both 

ansl and amdS sequences but with different relative orientations 

(see Fig. 1, C) and the results are presented in table 3. 

With pGW333 and pGW334 the frequency of type I (stable) A m d S + 

transformants obtained was 20 to 30 times higher than with the 

ansl-less vector pGW325, whereas the number of type II (abortive) 

ÂmdS transformants about doubled. These two composite vectors 

contain ansl inserted upstream of the amdS gene. However, plasmids 

pGW335 and pGW336, having ans 1 inserted downstream of the amdS 

gene, showed no increase. Apparently in the case of amdS the 

position of the ansl sequence with respect to the EcoRI amdS 

containing DNA fragment is decisive for the increase of the trans

formation frequency. 

Also for amdS, cotransformation with pGW236 (ans 1) or pDJB2 

(pyr4, ansl) resulted in a 4 to 5 fold increase of the number of 

type 1 transformants, again showing the ability of ansl to act in 

trans. 

Surprisingly when pGW236 (ansl) was cotransformed with vectors 

pGW333, pGW334, pGW335 or pGW336, no increased transformation fre

quencies were observed (Table 3 ) . With pGW333 and pGW334 the 

stimulating effect of the ansl sequence which is present on the 
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Table 3: Effects of the ans 1 sequence on the frequency of 

transformation using the amdS gene 

vectors 

pGW325(amdS) 

pGW333(amdS, ansl) 

pGW334(amdS, ansl) 

pGW335(amdS, ansl) 

pGW336(amdS, ansl) 

pGW325(amdS)+pGW236(ansl) 

pGW325(amdS)+pDJB2(pyr4, ansl) 

pGW236(ansl)+pGW333(amdS, ansl) 

pGW236(ansl)+pGW334(amdS, ansl) 

pGW2 36(ansl)+pGW3 35(amdS, ansl) 

pGW236(ansl)+pGW336(amdS, ansl) 

AmdS+ transf./pg DNA 

type I 

2.0xl02 

3.6xl03 

6.0xl03 

2.0xl02 

2.0xl02 

9.0xl02 

9.0xl02 

3.0xl03 

4.8xl03 

2.0xl02 

2.0xl02 

type II 

l.OxlO3 

2.0xl03 

2.0xl03 

l.OxlO3 

l.OxlO3 

l.OxlO3 

l.OxlO3 

1.5xl03 

1.5xl03 

l.OxlO3 

l.OxlO3 

Strain MH1277 was transformed with 5 p g of each vector. AmdS 

transformants were classified according to their morphology: 

type I (stable) and type II (abortive). Transformation fre

quencies are per pg of amdS containing vector. 

vector was not further reinforced by supplying ansl simultaneously 

in trans. In vectors pGW335 and pGW336 apparently the interaction 

of ansl and a_m<lS i s such that even the stimulating action of ansl, 

supplied on a cotransforming plasmid, is abolished. 

Moreover, as demonstrated with vector pGW337 (amdS, ansl, pyr4) 

(Fig. 1,A), placing ans 1 downstream of the amdS fragment, also 
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resulted in the loss of stimulation of pyr4 transformation. 

This plasmid showed neither increased transformation frequen

cies in amdS nor in pyrG A. nidulans strains (Table 4). 

Table 4: Influence of the amdS containing DNA fragment on the 

ansl effect 

vectors position and orientation 

of vector components 

relative transformation 

frequency 

Pyr+ AmdSn 

pGW128 

pDJB2 

pGW337 

pGW336 

pGW334 

pGW325 

h -C 

EZZ2ZZZZZZ^(-

ezzzzzzzzzi 

\ZZZZZZZ23t 

low 

high 

low low 

low 

high 

low 

Strains MH1277 (AmdS-) and G191(Pyr~) were transformed using 

5 ]ig of vector DNA and the type I (stable) transformants were 

scored. Transformation frequencies are related to those of 

pGW128 (low) and pDJB2 (high) for pyr4 and to those of pGW325 

(low) and pGW334 (high) for amdS. 

i ^ : pyr4 fragment, i 1 :ans1 fragment. yssssjt^ amdS frag

ment. 

The transcriptional direction of the amdS and pyr4 genes is 

shown (•). 
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- ansl and the A_̂_ nidulans argB selection marker. 

Analogous to amdS a set of four plasmids was constructed car

rying the Aj_ nidulans argB gene (Berse et al. 1983) in combination 

with the ansl sequence Ffig. 1,B). These vectors, designated 

pGW129, pGW130, pGW131 and pGW132, were used to transform strain 

WG328 to arginine prototrophy. As indicated in Table 5 none of 

these constructs yielded an increased number of type I (stable) 

transformants compared to the ansl-less vector pGWIOl. The plas

mids pGW131 and pGW132 however, showed some increase of type II 

(abortive) transformants. The transformation frequency of pGWIOl 

Table 5: Effects of the ans 1 sequence on the frequency of 

transformation using the argB gene 

vectors 

pGWlOl(argB) 

pGW129(argB, ansl) 

pGW130(argB, ansl) 

pGW131(argB, ansl) 

pGW132(argB, ansl) 

pGWIOl(argB)+pGW236 (ansl) 

pGW101(argB)+pDJB2(pyr4, ansl) 

ArgB+ transf./vig DNA 

type I 

l.OxlO2 

l.OxlO2 

l.OxlO2 

l.OxlO2 

l.OxlO2 

l.OxlO2 

l.OxlO2 

type II 

5.0xl03 

5.0xl03 

5.0xl03 

2.4xl04 

2.4xl04 

5.0xl03 

5.0xl03 

Strain WG328 was transformed with 5 p g of each vector. ArgB 

transformants were classified according to their morphology: 

type I (stable) and type II (abortive). Transformation fre

quencies are per pg of argB containing vector. 
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was not affected by cotransforming ansl containing vectors. 

Thus the effect of ans 1 on argB transformation is very small, 

may be even negligable, independent on relative orientations of 

the two sequences. 

Discussion 

The results presented here show that the increasing effect of 

the ans 1 sequence isolated by Ballance and Turner (1985) on A. 

nidulans transformation is not limited to the heterologous pyr4 

gene, but is also found for other (homologous) selection markers. 

Moreover, for its stimulating effect ansl does not require the N. 

eras sa pyr4 sequences. It is obvious however that the effect of 

ansl on transformation with various selection markers is not 

consistent. 

Ballance and Turner (1985) reported a 50 to 100 fold increase 

oi the number of type I (stable) Pyr transformants upon inclusion 

of the ansl sequence into the transforming vector and a simulta

neous decrease of the number of type II (abortive) transformants. 

In our experiments only a 12 fold increase of the number of type I 

Pyr transformants was observed, whereas we also found an increase 

in the number of type II colonies. These differences may be due to 

experimental circumstances. 

Inclusion of the ansl sequence in argB vectors had a marginal 

effect on the frequency of transformation. Only two of the compo

site vectors constructed gave a slight increase in the number of 

type II ArgB transformants. 

With all selection markers examined (pyr4, trpC, argB and 

a i d s ) , but with the exception of argB, cotransformation with a 
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separate vector containing ansl gave rise to increased transforma

tion frequencies, indicating that for the ansl dependent stimula

tion, covalent linkage of ans 1 and the selection marker is not a 

prerequisite• 

One might argue that the formation of cointegrates by the two 

cotransforming vectors, resulting in covalent linkage of ansl and 

the selection marker, preceeds the integration into the genome 

(Wernars et al. 1985). If such a model should be the basis of ansl 

dependent stimulation, then ansl should increase the formation of 

cointegrates and thus increase the overall cotransformation fre

quency. However, the decrease in frequency of trpC-lacZ cotrans-

formants (Table 1) argues against this model. 

For the amdS selection marker inclusion of ansl in the trans

forming vector did increase the transformation frequency but ex

clusively if the ansl sequence was inserted upstream of the amdS 

gene. Insertion of ans 1 downstream of amdS not only showed no 

increase of transformation frequency but also abolished the trans-

acting stimulating effect of cotransforming ansl vectors. 

Even more striking is the effect on Pyr transformation with 

vector pGW337, which was constructed by insertion of a DNA frag

ment containing the amdS gene into the high-frequency transforming 

vector pDJB2. Vector pGW337, again with the ans 1 sequence down

stream of the amdS gene, had lost the stimulating effect of ans 1 

on the transformation frequency for both the aœdS and the pyr4 

selection marker. 

The principle by which the ansl sequence increases the trans

formation frequency is not clear yet. However, our results are 

suggestive at some points. The observation that ansl can exert its 

stimulation iji trans makes it likely that an ansl gene product is 

involved. Since ansl does not enhance the transformation frequency 

of all selection markers apparently also a more or less specific 
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site is required for this gene product to act upon. One could 

speculate that limited autonomous replication of the vector is the 

cause of the stimulation of ansl on transformation. Such replica

tion would of course need a site to be initiated and one or more 

gene products to do so properly. 

On the other hand one could imagine that stimulation of recom

bination might be the basis of ansl action. The situation however 

becomes much more complicated if the negative effect of amdS has 

to be accounted for. Also this inhibition seems to work iji trans, 

as if some repressor for ansl function is involved. However, 

repression is dependent on the orientation of the amdS fragment 

rather then of the ansl fragment, suggesting that such repressing 

activity is located on the andS fragment. In view of the size of 

the fragment and the approximate location of the amdS structural 

gene (Hynes, pers. comm.) this would certainly be possible. 

Our results indicate that the ansl sequence might not be uni

versally applicable to increase transformation frequency in A. 

nidulans. Moreover the observation that the amdS containing DNA 

fragment can completely abolish the stimulating effect of ans 1 

implies a warning for the use of high frequency transforming ansl 

vectors to construct gene libraries in A_̂  nidulans. Cloned DNA 

fragments exhibiting a similar effect will be underrepresented or 

even absent. 
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CHAPTER 7 

Summary and general conclusion 

Although transformation of Sj_ cerevislae and N̂ _ crassa already 

could be achieved at the end of the seventies, positive results 

for A^ nidulans had to await the isolation of useful selection 

markers. As soon as cloned fungal genes of homologous (amdS, trpC 

and argB from A^ nidulans) and heterologous (pyr4 from N̂ _ crassa) 

origin became available transformation procedures for Â _ nidulans 

were developed (Ballance et al. 1983; Tilburn et al. 1983; Yelton 

et al. 1984; John and Pederby 1984). They all are based on the 

ability of these selection markers to complement auxotrophic A. 

nidulans mutants. 

A disadvantage of these transformation markers is the need for 

an auxotrophic recipient strain. With dominant selection markers 

even wild type strains should be good recipients for transforma

tion. However, dominant selection markers like bacterial drug 

resistance genes, could not be developed due to the insensitivity 

of Â _ nidulans for most antibiotics (chapter 2). As found later in 

our studies in some conditions the amdS gene may serve as a domi

nant selection marker. All A. nidulans transformation protocols 

originate from that or S. eerevis iae, being based on the incuba

tion of protoplasts with DNA in the presence of CaClo and poly

ethylene glycol (PEG). 

In our study on Â _ nidulans transformation we initially fo-

cussed on the amdS marker (chapter 2, 3 and 4). Transformation of 

A m d S - strains with vectors containing the wild type amdS gene 

gives rise to two types of transformant colonies, viz. well 

growing, sporulating ones (type I) and tiny non-sporulating ones, 

with stagnating growth (type II). This latter type is not specific 
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for the aids marker, since with variable frequencies these have 

also been observed with other transformation markers (Yelton et 

al. 1984; John and Peberdy 1984; Ballance and Turner 1985; chapter 

6). In general, these colonies have been indicated as "abortives". 

This, however is not correct since at least 50% of the type II 

AmdS transformant colonies can be converted into type I (chapter 

2 ) . 

All type I AmdS transformants, obtained with amdS containing 

vectors have integrated the transforming vector DNA sequences into 

the fungal genome DNA, as could be shown by Southern blotting 

analysis (chapter 2) and confirmed by genetic analysis (chapter 

3). The integration of the transforming vector DNA into the genome 

is a common feature of the aids gene and other cloned genes ( py r4, 

t rpC, argB). However, between the various selection markers, 

differences exist with respect to mode of vector DNA integration 

and transformation frequencies obtained (Ballance et al. 1983; 

Yelton et al. 1984; John and Peberdy 1984). The mode of amdS 

integration depends on the recipient Â _ nidulans A m d S - strain. 

Whereas strain WG290 usually integrates one single vector copy at 

the homologous, partially deleted amdS locus, virtually all AmdS 

transformants of strain MH1277 contain multiple vector copies, 

integrated in tandemly repeated fashion. Integration is not pre

ferentially at the homologous locus, nor at another specific site 

in the genome (chapter 2, chapter 3 ) . Although integration of 

multiple vector copies into the Â _ nidulans genome has been ob

served using other selection markers, such a strain dependency has 

not been reported before. A model to explain the tandem type of 

integration in strain MH1277 (chapter 2) assumes the presence of a 

cryptic mutation in this acceptor. Such a locus has not been 

identified by genetic analysis. However, in diploid combinations 

of MH1277 derived AmdS transformants and a master strain, unusu-
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ally high levels of mitotic recombination are found (chapter 3 ) . 

It is suggested that this is the basis of the peculiar mode of 

vector integration in MH1277. 

Genetic analysis of MH1277 derived AmdS transformants confirms 

the conclusion derived from the biochemical analysis (chapter 2), 

that the transformant property is genome-linked; in six transfor

mants analyzed the AmdS property resides on five different chro-

momes. One of the transformants contains a translocation between 

two chromosomes of which at least one carries the AmdS property. 

Translocation and vector integration in this strain may have 

occurred as two unrelated events. On the other hand it can be 

speculated that the former is a result of the latter. 

In chapter 4 a study is presented concerning the isolation of 

transforming vector sequences from the DNA of MH1277-derived AmdS 

transformants via E. coli. Digestion of the A. nidulans DNA with 

E coRI, followed by ligation prior to E^ coli transformation, 

yields plasmids even from a strain carrying only one single inte

grated vector copy. Following this procedure with AmdS transfor

mants containing multiple copy vector inserts, plasmid molecules 

can be recloned at higher frequencies. The length polymorphism 

found among these plasmids probably reflects the sequence re

arrangements within the tandem inserts (chapter 2) and the reclo-

ning frequency shows a correlation with the number of vector 

copies integrated in each Aj_ nidulans transformant. 

Similar vector plasmids could also be reisolated from undi

gested AmdS transformant DNA. CsCl/EtBr centrifugations clearly 

demonstrate the presence of free covalently closed circular plas

mid molecules within these Aj_ nidulans DNA preparation. Our opi

nion is that these plasmids arise in vivo from recombination 

events between the individual copies within then tandem vector 

inserts, which are present in the genomic DNA of MH1277-der1ved 
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AmdS transformants. Also for A^ nidulans transformants, obtained 

with other selection markers indications have been found for the 

presence of free vector molecules. Although some favour the idea 

of autonomous vector replication (Barnes and McDonald 1986) we 

consider this possibility unlikely. 

Chapter 5 deals with the phenomenon of cotransformation. When 

amdS mutants of A^ nidulans are transformed with a mixture of an 

amdS containing vector and another, unlinked DNA sequence, a large 

fraction of the AmdS transformants also contains this second, 

unselected sequence (chapter 5). The cotransformation frequency is 

demonstrated to depend both on the molar ratio of the two vectors 

and the concentration of the cotransforming vector. Although there 

may be some variation in the extent of cotransformation, it is in 

general such an efficient process in A. nidulans that the DNA of 

the unselected sequence can be found in almost every transformed 

cell. 

Cotrans f ormation has been applied to induce gene replacement 

events in the Aj_ nidulans genome (chapter 5 ) . The aids mutant 

WG290 was transformed with an amdS vector in the presence of a DNA 

fragment, containing an A^ nidulans t rpC - E^ coli lacZ (TrpC-, 

LacZ ) hybrid gene and among the AmdS transformants we have 

screened for TrpC - , LacZ colonies. Since tryptophan auxotrophs 

arise very infrequently, an enrichment procedure for TrpC conidia 

has been applied to demonstrate the presence of the TrpC- trans

formants. We used ten such AmdS , TrpC- transformants, which were 

all lacZ , to study gene replacement. They were each transformed 

to TrpC phenotype with a DNA fragment containing the wild type A. 

nidulans t rpC gene. Only 2 strains yielded at a low frequency, 

transformants which had simultaneously lost their LacZ phenotype. 

These TrpC , lacZ - colonies had the A m d S - phenotype. Southern 

blotting analysis of the two AmdS , TrpC - , LacZ mutants showed 
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replacement of their wild type trpC gene by a trpC, lacZ, anidS-

cointegrate. These results show that gene replacement by cotrans-

formation is possible in Â _ nidulans, although less straight 

forward than directly selectable gene replacements (Miller et al. 

1985). Due to the integrative behaviour of DNA sequences in A. 

nidulans, gene replacement procedures are more complex than in S. 

cerevis iae; in the latter case homologous recombination in the 

dominant mode of stable integration. 

In chapter 6 experiments are described in which the effect of 

the A. nidulans ans 1 DNA fragment (Ballance and Turner 1985) on 

the frequency of Aspergillus transformation is examined, using the 

N. crassa pyr4 gene and the Aj_ nidulans amdS, argB and trpC genes 

as selection markers. We find that ansl can increase transforma

tion frequencies when added on a cotransforming vector with trpC, 

aidS and pyr4, but not with argB. When ans 1 is inserted into the 

vector, again with argB no stimulation is found. In amdS vectors, 

the position of ansl with respect to the amdS gene determined its 

influence on transformation: ansl upstream of amdS increased the 

frequency, whereas ansl downstream of amdS has no effect. Moreover 

the transformation frequency of the latter type of vector can not 

be stimulated by addition of ansl on a cotransforming vector. We 

suggest that ans 1 dependent stimulation involves an ansl gene 

product which, due to its inconsistency in effect may need a 

specific site for its action. The abolishing effect of DNA sequen

ces like aidS may complicate the general applicability of this 

sequence in transformation. 

Transformation of A_̂  nidulans has now evolved to a stage in 

which many problems can be tackled at a molecular level: cloning 

of genes in A_̂  nidulans, introduction and expression of cloned 

genes, either from A_;_ nidulans itself or from other organisms, 

study of the regulation of gene expression in A_̂  nidulans using 
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gene replacements, site directed mutagenesis etc. Moreover, the 

experience obtained with A. nidulans transformation can now be 

applied to other, bio technologically important species like A. 

niger (see chapter 1). 
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Samenvatting 

In de chemische, farmaceutische en voedingsmiddelenindustrie 

spelen schimmels een belangrijke rol bij tal van omzettingen, 

fermentatieprocessen, productie van antibiotica en enzymen. Een 

aantal van deze industrieel belangrijke schimmelsoorten behoort 

tot de groep der Aspergilli. Tot voor kort waren er uitsluitend 

klassiek genetische methoden beschikbaar om de eigenschappen van 

deze schimmels te veranderen maar de snelle ontwikkelingen op het 

gebied van de recombinant DNA technologie hebben daarin verande

ring gebracht. Dit proefschrift behandelt aspecten van de DNA-

afhankelijke genetische transformatie van de schimmel Aspergillus 

nidulans, daarbij gebruikmakend van zowel moderne moleculair bio

logische technieken als genetische analyse. 

Hoofdstuk 1 geeft een beschrijving van de biologie van A. 

nidulans. Dit organisme bezit zowel een vegetatieve (asexuele) 

als een generatieve (sexuele) voortplantingscyclus. Bovendien kent 

A. nidulans afwisseling van een haploide en diploide fase zonder 

dat daarbij méiose optreedt (parasexuele cyclus). Genetisch onder

zoek aan deze schimmel heeft veel informatie opgeleverd over de 

chromosomale organisatie, recombinatie processen, genregulatie 

e.d. In dit hoofdstuk wordt ook een overzicht gegeven van de 

ontwikkeling van de genetische transformatie. Om de resultaten 

betreffende de transformatie van A. nidulans binnen een bredere 

context te kunnen plaatsen, worden enkele resultaten beschreven 

van de genetische transformatie bij dierlijke cellen, plantencel-

len en enkele schimmels. 

Hoofdstuk 2 behandelt de genetische transformatie van de proto

plasten van een A. nidulans amdS mutant (MH1277) met een vector 
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die het gekloneerde wild type amdS gen bevat. De verkregen AmdS 

transformanten konden worden ingedeeld in twee categorieën: goed 

groeiende kolonies (type I) en kleine compacte kolonies, die niet 

zonder meer verder uitgroeien (type II). De transformatle-omstan-

digheden zijn geoptimaliseerd, terwijl de invloeden van vector

veranderingen nader zijn geanalyseerd. 

Analyse van DNA uit AmdS transformanten van stam MH1277 toont 

aan dat integratie van vector DNA sequenties in het genoom is 

opgetreden. Bijna alle trans f o riant en bevatten vele vector co-

plein, gerangschikt in lange, niet perfecte tandems en deze bevin

den zich meestal niet op het homologe, gedeeltelijk gedeleteerde 

amdS locus. Een andere amdS mutant (WG290) vertoont dit opvallende 

integratie fenomeen niet, wat suggereert dat de genetische achter

grond van de recipient van invloed is op het integratie gedrag van 

de transformerende amdS vector. Er wordt een model gepresenteerd 

dat een verklaring geeft voor de tandem integratie in stam MH1277 

en de afwezigheid ervan in WG290. 

In hoofdstuk 3 is geprobeerd een verband te leggen tussen de 

genetische achtergrond van stam MH1277 en het vector integratie

gedrag, beschreven in hoofdstuk 2. Daarbij bleek dat bij uitwisse

ling van chromosomen van MH1277 tegen die van een A^ nidulans 

testerstam het integratie gedrag van MH1277 niet veranderd kon 

worden. Daarnaast bevat dit hoofdstuk een genetische analyse van 

enkele AmdS trans formant en van stam MH1277. Uit deze analyse 

blijkt dat de AmdS eigenschap genoom-gebonden is en dat integra

tie van de amdS vector in verschillende chromosomen kan plaatsvin

den. In een van de AmdS trans formanten bleek een chromosoom 

translocatie te zijn opgetreden. 
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Hoofdstuk 4 beschrijft de isolatie van transformerende DNA 

sequenties uit het DNA van A. nidulans AmdS t rans f or mant en. Dit 

is gedaan door digestie van chromosomaal DNA met E coRI gevolgd 

door zelf-ligatie en transformatie naar Ê _ coll. Dit levert ampi-

cilline resistente kolonies op die plasmiden bevatten, welke sterk 

lijken op of identiek zijn aan de orginele vector. Dergelijke 

plasmiden kunnen echter ook gereïsoleerd worden uit onbehandeld 

chromosomaal DNA. Er is bewijs aangedragen dat deze Aj_ nidulans 

transformanten een zeer klein aantal vrije vector moleculen bevat

ten . 

Hoofdstuk 5 gaat in op de mogelijkheden van cotransformatie bij 

A. nidulans. Als tijdens de transformatie van amdS mutanten met 

een amdS vector gelijktijdig een andere vector wordt toegevoegd, 

dan kan deze worden aangetroffen in het merendeel van de AmdS 

trans f ormant en. Cotransformanten van een amdS, t rpC A. nidulans 

dubbel mutant laat zien dat de cotransformatie frequentie afhangt 

van zowel de molaire verhouding van de cotransformerende vectoren 

als van de concentratie van de cotransformerende vector. Daarnaast 

behandelt dit hoofdstuk het gebruik van cotransformatie als hulp

middel bij het tot stand brengen van gen vervangingen in het A. 

nidulans genoom. Daartoe is amdS mutant WG290 getransformeerd met 

een lineair DNA fragment waarop een A^ nidulans trpC - Ej_ coli 

lacZ (TrpC-, LacZ ) hybride gen ligt. Tien transformanten met een 

AmdS., LacZ , Trp" phenotype zijn geselecteerd. Allen geven na 

transformatie met een functioneel A_̂_ nidulans trpC gen, TrpC 

transformanten, doch bij slechts 2 zijn TrpC transformanten met 

een LacZ- fenotype gevonden. Analyse van het DNA uit deze 2 AmdS , 

LacZ , TrpC - transformanten bevestigde de inactivering van het 

wild-type trpC gen, doch liet tegelijkertijd zien dat er aadS 

sequenties betrokken waren in de vervangingsgebeurtenissen. 
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Hoofdstuk 6 beschrijft een aantal experimenten waarin de in

vloed van de A^ nidulans ans 1 DNA sequentie op de Aspergillus 

transformatie wordt vastgesteld. Van vectoren die, behalve het N. 

eras sa pyr4 gen, deze ans 1 sequentie bevatten was bekend dat zij 

met sterk verhoogde frequenties een uridine behoeftige Aj_ nidulans 

mutant konden transformeren. Nagegaan is of dit verschijnsel uni

verseel is. Gebruikmakend van de A_̂_ nidulans genen t r pC, ar gB en 

amdS als selectiemarkers voor transformatie, zijn geheel verschil

lende effecten van ans 1 gevonden. Als ans 1 aanwezig is op een 

cotransformerende vector, dan heeft dit een positieve invloed op 

de transformatie frequentie met py r4, t r pC en amdS. In het geval 

dat ansl aanwezig is in de amdS vector dan is de locatie van ansl 

ten opzichte van het amdS gen bepalend voor het effect. 

Hoofdstuk 7 tenslotte bevat een concluderende samenvatting. 
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