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fijiïo$zo\ }Z<+2 

STELLINGEN 

behorende bij het proefschrift 

Analysis of the Exit Problem for Randomly Perturbed Dynamical Systems 

in Applications 

1. Het is in de literatuur gebruikelijk om bij de constructie van contouren 

in de toestandsruimte waarlangs de eikonaalfunctie een constante waarde 

aanneemt uit te gaan van een beginwaarde-probleem. Deze methode is 

problematisch vanwege de sterke afhankelijkheid van beginwaarden. Deze 

moeilijkheid wordt vermeden door het probleem te herformuleren als rand­

waarde-probleem. Zie hoofdstuk 4 van dit proefschrift. 

2. De uitdrukking (3.28) in [1], zijnde de kans dat op een bepaald tijdstip 

de stochastisch belaste slinger een kritieke energie heeft overschreden, is 

incorrect omdat niet aan de rechter-randvoorwaarde is voldaan. Rekening 

houdend met verschillen in notatie wordt de juiste uitdrukking gegeven 

door formule (5.15) in hoofdstuk 2 van dit proefschrift. 

[1] A. Katz and Z. Schuss (1985), Reliability of elastic structures driven 

by random loads. SIAM J. Appl. Math. Vol. 45, No. 3, 383-402. 

3. In de praktijk worden verdelingen voor de levensduur van mechanische sy­

stemen dikwijls verkregen door meetresultaten te benaderen met een be­

kende statistische verdeling (zoals de gammaverdeling, de Weibull-verde-

ling, e tc) . M.b.v. het uittreemodel is het soms mogelijk om deze verdelin­

gen (en/of hun momenten) af te leiden uit de dynamica van het systeem 

[1],[2]. 

[1] J. Grasman en H. Roozen (1989), Reliability of stochastically forced 

systems. Proc. of the second workshop on road-vehicle-systems and 

related mathematics, June 20-25, 1987, Torino, 219-235. 

[2] Dit proefschrift hoofdstuk 2. 



4. Bij toepassing van de stralenmethode kan een cusp-singulariteit optreden. 

In de standaardvorm is deze singulariteit gegeven door P(Ç,a,b) = \Ç4 — 

a£2 — b£. De lijnen Pf = 0 in het (a, 6)-parametervlak komen overeen 

met stralen. Dit zijn precies de lijnen die in [1] gebruikt worden om de 

cusp-singulariteit uit te beelden. 

[1] T. Poston and I. Stewart (1978), Catastrophe theory and its applica­

tions. 

5. Dynamische systemen vormen een uitgebreid studie- en onderzoeksgebied 

voor wiskundigen, maar bieden in een aantal gevallen ook niet-wiskundigen 

de mogelijkheid om met elementaire middelen (zoals een microcomputer) 

op relevante wijze modelbouw te verrichten in hun eigen discipline. 

6. De oplossing van een tweede-graads algebraïsche vergelijking is voor ve­

len standaardkennis. Weinigen echter kunnen een derdegraadsvergelijking 

oplossen. Zie hiervoor [1]. 

[1] R.M. Miura (1980), Explicit roots of the cubic polynomial and appli­

cations. CMS Applied Math. Notes, 5, 22-40. 

7. Een goede bibliotheek is voor wiskundigen van primair belang. Bezuinigen 

op het boekenbudget moet dan ook opgevat worden als een zeer ernstige 

maatregel. 

8. Een voorwaarde voor succesvolle practische toepassing van het inverse 

model van de electrocardiografie is dat men van elk te onderzoeken persoon 

de individuele geometrie van hart- en torso-oppervlak in rekening brengt. 

9. Wie in boekwinkel of bibliotheek zoekt naar boeken over lineair program­

meren, zijnde een onderdeel van de operationele analyse, treft deze gewoon­

lijk aan tussen de computerboeken. 

10. Wie zich op een autoweg bevindt waarvan bekend is dat een van de twee 

rijstroken (die dezelfde verkeersrichting hebben) verderop geblokkeerd is, 

schiet het snelst op door op de geblokkeerde rijstrook te gaan/blijven rijden 

en pas vlak voor de blokkade op de andere rijstrook in te voegen. 
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OVERVIEW 

In the preface of his book entitled 'Theory and applications of stochastic 

differential equations', Z. Schuss (1980) noticed a gap between the theory of 

stochastic differential equations and its applications. In addition to the work 

of Schuss and many others in the field, the present work aims at narrowing this 

gap. 

This thesis deals with randomly perturbed dynamical systems. Such sys­

tems frequently arise in the modelling of phenomena in biology, mechanics, 

chemistry, and physics. In some cases random perturbations form a minor as­

pect of the problem under study. Then a deterministic description can be used. 

In the present work the behaviour of the dynamical systems depends essentially 

on the random perturbations. We encounter systems with so-called 'diffusion 

across the flow' (Chapters 1,2) and systems with 'diffusion against the flow' 

(Chapters 1,3-5). The stability of equilibria of these systems (and thus, the 

lifetime, reliability of these systems) is affected by random perturbations. 

In the study of so-called 'exit problems' we consider a domain in the state 

space of the dynamical system and try to compute statistical quantities related 

to escape from this domain, such as the probability density function of the 

exit-time, the probability density function of exit points on the boundary of 

the domain (or, less ambitiously, the first few statistical moments of these 

densities: mean, variance, etc.). The expectation value of the exit-time can be 

used to express the stochastic stability of the system. 

We speak of randomly perturbed dynamical systems, so we assume that 

the stochastic fluctuations are small. This is often a realistic assumption. To 
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derive expressions for the statistical quantities mentioned above, we employ 

asymptotics where the small parameter is related to the intensity of the random 

perturbations. The asymptotic method used in Chapter 2 is well-established. 

The asymptotics in Chapters 3-6 are of a formal character. The asymptotic 

analysis is performed to the lowest order necessary to incorporate the essential 

effects. In view of the complexity of this simplest approach, we did not carry 

out higher order calculations. 

The first chapter forms an introduction to some important topics in the 

theory of exit problems. We discuss the relevant (initial-) boundary-value 

problems, the classification of boundaries of domains of stochastic dynami­

cal systems, and we give elementary examples of systems with 'diffusion across 

the flow' and 'diffusion against the flow' and their asymptotic solution. This 

chapter facilitates access to literature on exit problems and to the remaining 

chapters of this thesis. A more detailed treatment of the topics touched upon 

in this chapter is found in the cited literature. 

Chapter 2 is concerned with the dynamics of a loaded stiff rod. The load 

consists of a deterministic part and a small stochastic part. An accumulation of 

stochastic load fluctuations may drive the energy of the rod across some critical 

level. The expectation value of the time to reach this critical energy level is a 

measure for the reliability of the system that contains the rod. According to 

the directions in which the loads act, various cases are distinguished. We de­

rive expressions for the expectation value of the exit-time and (for some of the 

cases) of a number of other statistical quantities, as the exit-time density, its 

moments and cumulants and the probability density function of the square root 

of the energy (as a function of time). We use an asymptotic method known as 

the averaging technique. As a matter of fact, the model is a randomly loaded 

slightly damped oscillator. Since many practical systems near equilibrium be­

have essentially like a slightly damped oscillator, the results obtained may be 

expected to have a wide range of application. 

In Chapter 3 we study the exit problem for a stochastic dynamical system 

of interacting biological populations. Exit from the domain (the positive or-

thant) corresponds with extinction of a population. We start with a birth and 

death process, having a discrete state space, and subsequently formulate an 

'approximate' Fokker-Planck (or forward Kolmogorov) equation in a continu­

ous state space. It is assumed that the deterministic system associated with the 

stochastic dynamical system has a point attractor in the positive orthant. The 



biological system will remain for some (probably long) time in a neighbourhood 

of the attracting point, but after a (rare) succession of random fluctuations, 

one of the populations will get extinct. Determining the expected time of exit 

(of whichever of the populations), and of which population will probably get 

extinct first, requires the numerical solution of a system of so-called 'ray equa­

tions' (obtained from the Fokker-Planck equation by the WKB-method). In 

literature these differential equations arc provided with initial conditions, which 

entails difficulties in the numerical construction of contours in the state space 

on which the eikonal function attains a constant value (confidence contours). 

We define boundary conditions instead of initial conditions and thereby resolve 

these difficulties. The ideas are illustrated by a two-dimensional generalized 

Lotka-Volterra model. This model allows a nice demonstration of the concepts 

of deterministic stability and stochastic stability. Numerically constructed con­

fidence contours are shown for predator-prey, mutualism and competition vari­

ants of the model. We carry out numerical simulations of birth-death processes 

to check the results. 

A discussion of various ways of numerical solution of the system of ray 

equations is found in Chapter 4. In particular we explain the boundary-value 

method referred to above. Moreover we give some details on the numerical 

construction of rays and confidence contours. At the end we present an ex­

ample with intersecting rays. This phenomenon is investigated analytically in 

Chapter 6. 

In Chapter 5 we are concerned again with a stochastic version of the 

two-dimensional generalized Lotka-Volterra model. The approach differs from 

that in Chapter 3 in that now we pay attention to what happens near the 

boundaries of the domain (the positive coordinate axes). The main difficulty 

is caused by the fact that the normal components of both the drift and the 

diffusion coefficients vanish near the boundaries, as linear functions of the dis­

tance to the boundaries. To obtain expressions for the statistical quantities 

of interest, we generalize a method of other authors in the study of a similar 

one-dimensional problem. The asymptotic expressions contain some unknown 

constants, that can be obtained numerically. Explicit calculations are carried 

out for a predator-prey system as an example. 

Applying the WKB-method to the forward Kolmogorov equation, we ob­

tain the ray equations. In the solution of the ray equations one sometimes 

observes intersecting rays forming caustic surfaces. This phenomenon is stud-



ied in Chapter 6. Near locations of intersecting rays, the WKB-approximation 

does not hold. We derive a uniform asymptotic expansion in terms of new 

canonical integrals whose validity extends over regions containing caustics. We 

start with the simple case of a cusp arising in a diffusion problem for which 

explicit results can be obtained. Subsequently, we generalize it to a formal 

approach to singularities arising in the forward Kolmogorov equation. 

The text of each of the chapters has appeared as a report or a publication 

in a scientific journal or is going to: 

[1] H. Roozen (1989), A short introduction to exit problems. CWI Quarterly, 

Vol. 2, No. 1, 45-65. 

[2] H. Roozen (1989), Stochastic stability of the loaded stiff rod. Journal of 

Engineering Mathematics 23, 357-376. 

[3] H. Roozen (1987), Equilibrium and extinction in stochastic population 

dynamics. Bull. Math. Biol., Vol. 49, No. 6, 671-696. 

[4] H. Roozen (1986), Numerical construction of rays and confidence contours 

in stochastic population dynamics. Technical Note, Centre for Mathemat­

ics and Computer Science, Amsterdam. 

[5] H. Roozen (1989), An asymptotic solution to a two-dimensional exit prob­

lem arising in population dynamics. SIAM J. Appl. Math. Vol. 49, No. 

6, 1793-1810. 

[6] H. Roozen (1989), Singularities arising in the asymptotic solution of the 

forward Kolmogorov equation. Report (submitted for publication). 



A SHORT I N T R O D U C T I O N T O EXIT P R O B L E M S 

H. Roozen 

Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

Many phenomena that occur in nature and technology exhibit a stochastic behaviour. 

When the stochastic element is relevant, it has to be included in the modeling of such 

phenomena. We discuss models with a deterministic component and a small stochas­

tic component. The short term behaviour of these models is determined mainly by 

the deterministic component, whereas the long term behaviour is influenced consid­

erably by the stochastic component. For the description of the long term behaviour, 

deterministic stability concepts (stable, neutral equilibrium) are inadequate and have 

to be replaced by stochastic stability concepts (the expected exit time from a region 

containing such a deterministic equilibrium). In the study of so-called exit problems 

we consider a domain in the state space of a stochastic dynamical system and try to 

determine statistical quantities (such as the mean exit time, the distribution of exit 

points over the boundary of the domain, etc.) related to leaving this domain. We 

treat the exit problems from an asymptotic (in the limit for small noise) point of view. 

1. I n t roduc t ion 

In this contribution we will study some aspects of stochastic dynamical 

systems that have a deterministic part (defining the associated 'deterministic 

system') and a small stochastic part consisting of Gaussian white noise (referred 

to as 'stochastic fluctuations'). 

In some of these systems, the dynamical characteristics of interest are dom­

inated by the deterministic system, while the stochastic fluctuations are only 



Figure 1. Illustration of diffusion (a) with, (b) across and (c) against 

the flow. 
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of secondary importance, in the sense that omission of the stochastic fluctua­

tions does not essentially alter these characteristics. This if demonstrated, for 

example, by a 'diffusion with the flow', see Figure la. Starting at a point in a 

bounded domain D, the trajectories of the stochastic dynamical system leave 

the domain D with probability close to one in the same time as the determin­

istic trajectory through that point. The probability density function defined 

on the boundary dD, describing the point of exit from D of the stochastic dy­

namical system, is concentrated near the deterministic exit point. Stochastic 

systems of this type will not be considered here. 

In other stochastic dynamical systems, the stochastic fluctuations, though 

small, are of great importance to the dynamical characteristics of interest. 

Without stochastic fluctuations these characteristics are essentially changed. 

One such example is a 'diffusion across the flow', as depicted in Figure lb. The 

deterministic system consists of a center point, surrounded by closed trajec­

tories. Consider a domain D, enclosed by one of these trajectories. In the 

deterministic system no exit from D can occur, since we follow ceaselessly the 

closed trajectory through the starting point. In contrast with this fact, in the 

stochastic dynamical system, i.e. in the deterministic system perturbed by 

stochastic fluctuations, exit will occur in finite time with probability one. An­

other such example is a 'diffusion against the flow', depicted in Figure le. A 

bounded domain D is entered at its boundary dD by deterministic trajectories 

that converge to an asymptotically stable limit point contained in D. In this 

deterministic system, if we start at some point in D, we approach the limit 

point along the trajectory through the starting point. Again, the determinis­

tic system does not allow exit from D, but when this system is perturbed by 

stochastic fluctuations, exit will happen in finite time with probability one. Al­

though more complicated systems exist that exhibit a similar behaviour, such 

as attracting limit cycles or strange attractors, etc., notably in higher dimen­

sional domains, we will confine ourselves to systems of the two simple types 

described here, in particular to systems of the last type. 

We will concentrate on a few statistical characteristics related to the prob­

lem of exit from a domain, like the expectation value of the time of first exit 

(which provides a measure for the stability of the stochastic system) and the 

distribution of exit points over the boundary of the domain. 



2. The equations 

A stochastic system is frequently described either in tenns of a stochastic 

differential equation (that, as an extension to an ordinary differential equation, 

contains stochastic terms) [1], or in terms of a Kolmogorov equation. In the 

former case, an equivalent description in terms of a Kolmogorov equation may 

be possible. In this section we formulate the forward and backward Kolmogorov 

equations [19,55], which form the starting point of our analysis. 

We consider a stochastic dynamical system that has been defined on the n-

dimensional domain D in the state space. Let v(x,t)dx denote the probability 

that the system is in the infinitesimal subregion (x, x + dx) E f l a t time t. This 

function satisfies the forward (Kolmogorov) equation (also called the Fokker-

Planck equation) 

•£ = Mtv, x e D, (2.1) 

where the differential operator Mt is defined by 

t = i t = i j = i j 

Equation (2.1) has to be supplemented with the relevant initial and boundary 

conditions. The first term on the right side of (2.2) represents the deterministic 

part of the dynamical system, 6 is called the deterministic or drift vector. The 

second term on the right side represents the stochastic fluctuations. The ma­

trix ea is known as the diffusion matrix and is symmetric and positive (semi-) 

definite. The parameter e, 0 < e <; 1, indicates that the stochastic fluctuations 

are small relative to the deterministic part. When e = 0 the stochastic fluctu­

ations are absent and equation (2.1) reduces to the Liouville equation. Then, 

if the initial position is deterministic, the initial probability density is a delta 

function, say 6(x — Xo), and the solution of the Liouville equation corresponds 

to the solution of the system of ordinary differential equations 

- ^ = &,(*), » = 1,2 n (2.3a) 

with initial conditions 

x(0) = x0. (2.36) 

This system is defined as the deterministic system corresponding to the stochas­

tic dynamical system. 
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In order to determine the distribution of exit points over dD, as well as the 

expected time of first exit from D, we use backward equations. Let p(x, y) dSy 

be the probability of exit at dSy G dD, given that we started at x G D, i.e. p 

is the exit density. Note that p is a probability density function with respect 

to y. We define the function ua(x) as follows: 

«,(*) = / f(y)p(x,y) dSy, (2.4) 
JdD 

where ƒ is a function on dD that can be chosen arbitrarily. With ƒ defined as 

the indicator function 

•{i 
on d\D, where d\D Ç dD, . . 

0 on d0D = dD\d1D, { b ) 

us{x) is the probability of exit at d\D, given that we started at x G D. The 

function u, is the solution of the stationary backward equation 

Lcu, = 0, x E D, (2.6a) 

subject to the boundary condition 

u, = ƒ(*), x G dD, (2.66) 

where the differential operator L£ is defined by 

n « n n Qo 
v ^ . / x du f v ^ V ^ / x d'u ,„ „, 

*«« s I > W ^ + 2 EE-oWä^J. (2-7) 
and a and 6 are the same functions as above. 

We consider the time-dependent backward equation 

-£ = Ltu (2.8a) 

as well. With the boundary condition 

u = ƒ(*), x G dD, (2.86) 

where ƒ is the indicator function (2.5), and the initial condition 

u(x,0) = 0, xED, (2.8C) 
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u(x,t) is the probability that exit occurs at d\D on the time interval (0,i\, 

given that we started at z € D on time t = 0. 

The time of (first) exit from D is defined as 

r(x) = inf {t\x(t) € dD, x{0) = x£D}. (2.9) 

Its expectated value T(x) = Er(x) is the solution of the boundary value prob­

lem: 

L(T=-1, x£D, (2.10a) 

T=0, x€dD. (2.106) 

Equation (2.10a) is known as the Dynkin equation. 

The reader interested in the details of the equations and the corresponding 

conditions that we have given here, and in related material, is referred to the 

literature [19,55]. In later sections we shall be concerned with the asymptotic 

solution of (2.1),(2.6),(2.8) and (2.10) for small e. 

The backward and forward differential operators Lt and Mt defined above 

are formal adjoints, which means that the following relation holds [48]: 

/ / (vL(u - uM<v) dx= f P.Z dSx, (2.11) 
J JD JdD 

where P is the vector with components 

+ biuv, i = l , 2 , . . . , n (2.12) 
n 

e 
du d{<iijv)' 

11 dxj dxj 

dSx is an infinitesimal surface element containing x, and £ denotes the outward 

normal on dD. 

3. The boundary 

In the study of exit problems, the behaviour of the stochastic system at and 

near the boundary of the domain deserves special attention, since the domain 

is left via the boundary. For a given stochastic system we must verify whether 

the boundary can actually be reached from the interior domain. 

In many practical situations the type of the boundary is determined by 

the drift vector and the diffusion matrix. For one-dimensional stochastic sys­

tems there is a classification of such boundaries originating from Feller [16]. In 
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h 
yes 
yes 
yes 
no 
no 
no 

integ 

h 
yes 
no 
no 
yes 
yes 
no 

rable 

h 

yes 
no 

U 

yes 
no 

type 
of 

boundary 
regular 

exit 
natural attracting 

entrance 
natural repelling 

boundary 
is 

attainable 
yes 
yes 
no 
no 
no 

interior 
is 

attainable 
yes 
no 
no 
yes 
no 

Table 1. Boundary classification for one-dimensional stochastic sys­

tems. Five boundary types are defined according to the integrability of 

some of the functions I\ to I4. The last two columns indicate whether 

the boundary is attainable from the interior domain and whether the 

interior domain is attainable from the boundary. 

a semi-group approach to adjoint forward and backward equations he distin­

guished the regular, exit, entrance and natural boundaries. In table 1 we have 

repeated schematically the boundary classification as it has been described in 

[54]. The type of boundary depends on the integrability at the boundary point 

of some of the following functions: 

h(x) = exp — I b(t)/a(t) dt. 

-J b(t)/a(t) h(x) = 
eayx) 

h(x) = h(x) J' I2(t) dt, 

h{x) = h{x)J h(t)dt. 

dt 

(3.1) 

If there are sample paths that hit the boundary in finite time, the boundary is 

attainable, otherwise it is unattainable. Table 1 indicates that it makes sense to 

talk of an exit problem only if at least one of the boundaries of the domain (an 

interval) is a regular or exit boundary (which are the only cases that permit the 

boundary to be reached in finite time from the interior domain). When we have 

a regular boundary we should speak of the problem of first exit from a domain, 

since in that case the exited domain can be re-entered and subsequently re-

exited. For higher dimensional stochastic systems a similar classification has 

never been published. 
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In other situations we dispose of a stochastic system, denned by a drift 

vector and a diffusion matrix on a domain D, and we want to erect a bound­

ary of a desired type at any place in D, thereby restricting the domain to a 

subdomain D' of D. Examples of such boundaries are absorbing and reflecting 

boundaries [19]. On reaching an absorbing boundary from the interior domain 

D', the system is taken apart (is absorbed) so that this domain cannot be 

entered again, comparable with an exit boundary. At a reflecting boundary 

no probability can pass, so that exit at this boundary is impossible. With re­

spect to the solution of the forward equation an absorbing boundary implies 

the boundary condition v(x,t) = 0, where x G dD', and a reflecting boundary 

implies the condition £.J(x, t) — 0, where x Ç dD', £ is the outward normal on 

dD' and J is the probability current, i.e. the vector with components 

Ji(x,t) = bi(x)v-^^2T-(aij(x)v), *'=l,2,...,n. (3.2) 

Absorbing and reflecting boundaries can be set up in domains of any dimension. 

4. An example of diffusion across the flow 

In this section we treat a simple example of diffusion across the flow. 

Consider an oscillator with a small damping, that is subjected to a stochastic 

forcing. The damping effect is introduced here since it leads to a realistic model, 

without essential complications for the analysis that follows. As a consequence 

of the stochastic effects, the energy of the oscillator can reach some critical level 

after some time. This critical level can for example be chosen as the energy 

at which the system, the oscillator is part of, breaks down. We will derive an 

expression for the expected time needed to reach this critical energy level, which 

is a measure for the stochastic stability of the oscillator. In nondimensional 

form, the differential equation for this problem is formally [53] 

x + cax + x = y/cq(x) £, (4.1) 

where x is the deviation from the equilibrium position, the dot denotes dif­

ferentiation with respect to the time /, c is a small positive parameter, and 

ea is a nonnegative 0(e) damping constant. The right side of (4.1) represents 

12 



Gaussian white noise with intensity cq2{x). The function q is approximated by 

the first two terms of its Taylor expansion around x — 0 

q(x)&ß0+ßix. (4.2) 

It is assumed that not both ß0 and ß\ are zero. The second order formal 

differential equation (4.1) is replaced by the system of first order stochastic 

differential equations [1] 

dx = xdl, 
(4.3) 

dx = -(eax + x)dt + \/t{ß0 + ß\x) dW, 

where W represents Brownian motion. The undisturbed (e = 0) system (4.1) 

is an undamped oscillator, whose dynamics are described by closed trajectories 

around the origin in the (x,i:)-phase space. Each trajectory corresponds to 

an energy level. The energy is larger for orbits farther away from the origin. 

The effect of nonzero c is that the trajectories tend to spiral slightly inwards to 

approach the origin as a consequence of damping if a ^ 0 and contain stochastic 

fluctuations in the i-direction. The backward equation corresponding to (4.3) 

reads [19] 
du .du , . . du e .„ „ x , ô 2 u .J ,. 
- = x--{cax + x)-+-(ß0 + ßlXf— (4.4) 

with u defined as in Section 2. This equation is studied asymptotically for 

small c and on the time scale of 0{e~l). With 

t = t/e, u = u° + cux + •••, (4.5) 

and the transformations (x,x) —* (r,0) defined by 

z = v 2 r c o s 0 , i = v2» 's inö, (4.6) 

we obtain to leading order in e 

implying that u° is a function of r and t only. The variable r is the square 

root of the dimensionless energy of the undisturbed (e = 0) system. The 

nondimensionalization process can be carried out such that the critical energy 

corresponds to r2 = 1, thus r G [0,1]. To the next order in e we obtain an 
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equation in terms of u° and u1. Terms with u1 vanish by integration of this 

equation with respect to 0 from 0 to 2n and the additional assumption that ul 

is periodic in 0 with period 2ic. The resulting equation for «° reads 

du° / a 0 \ du° ( 2\d
2u° 

with 

a0 = ßlß, ai = 0?/16, a2 = 3/?2/16 - a /2 . (4.86) 

The description to this order in e includes the effects of both damping and 

stochastic fluctuations. If, as a consequence of the latter effect the critical 

energy r2 = 1 is reached in finite time with probability one, starting from 

r G [0,1], the oscillator is said to be stochastically unstable. In that case, the 

stability of the oscillator is measured by the expected time of exit from the unit 

interval at 1. 

In the present discussion we only consider the case |/?o|,|AI 3* 0(e*), so 

that ao and aj do not vanish in the asymptotics leading to equation (4.8a) and 

thus appear in this equation indeed. The boundary r = 0 is then an entrance 

boundary and at r = 1 we adopt an absorbing boundary in order to model 

the breakdown of the oscillator at the critical energy. Thus exit from the unit 

interval can take place only at r = 1. Let u,(r) be the probability of exit at 

r — 1, given that we started at r on time t = 0. The leading order term w°(r) 

in the expansion of ua(r) in powers of e is obtained by solving the stationary 

equation (4.8a) with boundary condition u°(l) = 1. The only relevant solution 

(i.e. yielding values u°(r) G [0,1]) is wj(r) = 1. There is no freedom to 

specify an arbitrary boundary condition at r = 0. We conclude that if we 

start somewhere on the interval [0,1], exit at r = 1 will occur with probability 

one, so that the oscillator is stochastically unstable. Next we consider the 

expected exit time T(r), starting from a point r. Similar to the time scaling 

in (4.5) we put T — T/e and similar to the expansion of « in (4.5) we put 

f = f ° + ef1 + • • -, so that T = f°/e + fl + • • •. An approximation for T is 

found by solving the Dynkin equation 

, / a 0 \ df° j 2\9
2f° 

- 1 = ( T + a 2 r ) - g - + («o + a i r 2 ) - ^ , (4.9a) 

with the boundary conditions 

t ° (0 ) is finite, (4.96) 

T°( l) = 0. (4.9c) 
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For Œ2 ^ ai we find 

1 «2 . 1 

T(r)~-r-^ x / [ ( - s 2 + 1 ) 2 a i 2 - l l - ^ , (aaîÉO!). (4.10) 
e(ai - a2) Jr L\a0 / J s 

If Ü2 = a,i, this is substituted into equation (4.9a). Solving the corresponding 
boundary value problem we find 

T(r) ~ 7^~ f - l o g ( - * 2 + l ) ds. (4.11) 
2ca\ Jr s Vao / 

The reader is asked to take notice of the order of magnitude of the results 

(4.10) and (4.11) in order to compare this with results to be derived later for 

diffusion against the flow systems. The cases that either ßo or ß\ are of order 

0 ( e 5 ) must be treated separately. In the case ßo = O(e ' ) it can be shown 

that if the damping is larger than a certain value the oscillator is stochastically 

stable on the time scale under consideration. This means that on this time 

scale the probability of exit is less than one, in contrast with the result above. 

A more detailed description of the exit problem for oscillators as described 

here can be found in [53]. The stochastic stability of oscillators with a dif­

ferent type of damping (as cubic damping) or noise (red, dichotomic, etc.) 

and with a forcing described by a potential function has been treated in [14]. 

The asymptotics that we have used in this example to arrive at equation (4.8) 

are well established and are known under the names of averaging technique 

[3,31,35,50,56] and adiabatic elimination of fast variables [19]. 

5. Diffusion against the flow 

In this section we discuss the exit problem for systems that are of diffusion 

against the flow type. First we treat a one-dimensional system, then a mul­

tidimensional potential system that can be treated with essentially the same 

means, and we will conclude with more general multidimensional systems. 

5.1 A one-dimensional system 

Consider the stochastic system defined on [a,/?], where a < 0 and ß > 0, 

with drift coefficient b(x) satisfying 

> 0 , *€[<*,0), 
b(x) ^ = 0, x = 0, (5.1.1a) 

< 0 , z€ (0 , / ? ] , 
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so that x = 0 is an attractor, and diffusion coefficient (a(x), 0 < f < l , with 

a (ar)>0, x£[a,0\. (5.1.16) 

For this system we will find the functions us and T defined in Section 2, asymp­

totically for small e. The boundary value problem for u, reads 

L(us = ^a(x)-^- + b(x)-^- = 0, (5.1.2a) 

u,(a)=ca, us(ß) = cß, (5.1.26) 

where ca and Cß are given constants. The choice of boundary conditions (5.1.26) 

incorporates the following cases 

1. us(a) = 1,«,(/?) = 0: u,(x) is the probability of exit (in finite time) at 

the boundary a, given we start in x. 

2. us(a) = 0,«,(/?) = 1: u,(x) is the probability of exit (in finite time) at 

the boundary ß, given we start in x. 

3. ua(a) = 1, u,(ß) = 1: us(x) is the probability of exit (in finite time and 

independent at which of the two boundaries), given we start in x. 

Remark that u,(x) = 1 solves (5.1.2a) and satisfies choice 3 of the boundary 

conditions. Thus, with probability one exit occurs (in finite time). This result 

is independent of e and independent of the starting point x. 

The reduced equation (5.1.2a), i.e. equation (5.1.2a) with e = 0, is solved 

by any constant CQ. This solution is valid away from a and ß but not near these 

points since the boundary conditions (5.1.26) cannot be satisfied. We assume 

that the functions a and 6 have the Taylor series expansions 

a(x) = a(a) + a'(a)(x — a) + • 

b(x) = 6(a) + b'(a)(x - a) + • 

near 

near 

near 

near 

X 

X 

X 

X 

= <*, 

= », 

= ß , 

= ß . 

(5.1.3) 
a(x) = a(ß) + a'(ß)(x-ß) + 

b(x) = b(ß) + b'(ß)(x -ß)+-

As an abbreviation we use the notation 6(i) = 2b(x)/a(x). It follows from 

(5.1.1) that 6(a) > 0 and b{ß) < 0. A boundary layer analysis near x — a 

and x = ß shows the presence of 0(e) boundary layers m ar these points. An 

asymptotic expression for u, to leading order in € that is uniformly valid on 

[a, ß] is given by 

Us(x) ~ Co+(ca-co)exp[-6(a)(x-a)/e]-|-(c0-Co)exp[-6(/?)(a;-/?)/e]. (5.1.4) 
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Note that the constant Co is left undetermined by the given asymptotics. To find 

Co we utilize a variational formulation of the boundary value problem (5.1.2), 

following [23], see also [61]. After multiplication by the factor 

g(x) = exp ƒ 
Jo 

2b(s) - ea'(s) ^ 

ea(s) 

equation (5.1.2a) can be written as the Euler equation 

dFu, 

(5.1.5) 

dx 
Fu, = 0, (5.1.6) 

with F = ^(u's)
2ag. Consequently, the solution of (5.1.2) corresponds to an 

extremal of the functional 

J[u,] = j -(u',)2agdx, (5.1.7) 

with respect to functions us satisfying the boundary conditions (5.1.26), see 

[5,9,46,47]. The expression (5.1.4) for us is substituted into the integral in 

(5.1.7), and this integral is evaluated asymptotically for small e by the method 

of Laplace [2,4]. The constant Co is determined by the requirement that the 

corresponding function us is an extremal of the functional J thus obtained, 

that is, by 

£ - 0 . (5X8) 

In addition to (5.1.1) we shall henceforth assume that 

6' (x)<0, x£[a,ß). (5.1.9) 

Carrying out the above procedure we then find that the largest contributions 

to the integral in (5.1.7) are from the neighbourhoods of a and /?, and CQ is 

given by 

c = c,6(af)exp[-7(a)/t] - cßb(ß)exp[-I(ß)/c] 

b(a)exp[-I(a)/e}-b(ß)exp[-I(ß)/e} ' ) 

where I{x) is defined as 

I(x) = - f b(s) ds, (> 0 for x Ï 0). (5.1.11) 
Jo 

17 



The result (5.1.10) simplifies to 

co = < 

e, if 7(a) </(/?), 

% , i m * ' < * < ' < • > ' (5.1,2) 
ca6(a) - C/?6(/î) i f / ( a ) = / ( / ? ) 

6(a) - 6(/?) 

In the limit e —• 0 we thus have the following result. The position of the 

starting point is of importance only if we start in 0(e)-neighbourhoods of the 

boundaries a and /?. All other starting points exit with the same probability 

at a certain boundary; this is with probability one at the boundary with the 

lowest value of I. If 1(a) = I(ß) and if we start outside O(e)-neighbourhoods 

of the boundaries, the probability of exit at a and the probability of exit at ß 

are constants with values between zero and one (adding to one), depending on 

6(a) and b(ß). 

The asymptotic result that we have derived above is found alternatively 

by evaluation for small e of the exact solution of the boundary value problem 

(5.1.2). For the higher dimensional problems in the following subsections no 

exact solution is possible in general, and can we only use asymptotic methods. 

Next we derive an expression for the expected time T of exit from the 

interval [a,/?]. The function T satisfies the inhomogeneous equation 

with the conditions 

T(a) = 0, T(ß) = 0. (5.1.136) 

The approach to this boundary value problem is largely the same as above, 

the only additional difficulty is the appearance of the inhomogeneous term in 

(5.1.13a). We anticipate that T is of the form 

T(x) = c0(e)r(x), (5.1.14a) 

where Co is a constant with respect to x that depends on c in the following way 

l/c0(e) = o(e), (5.1.146) 

asymptotically for small e. Expression (5.1.14a) is substituted into (5.1.13) and 

the corresponding boundary value problem is asymptotically solved to obtain 

T. For T we find 

T{x) ~ c0(c) { l - exp[-6(o)(x - a)/e) - exp[-6(/?)(* - ß)/e)) , (5.1.15) 
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to leading order in e uniformly on [a,0\. The unknown constant CQ is deter­

mined again from a variational principle. Equation (5.1.13a) is multiplied by 

the factor g defined in (5.1.5). The solution of the boundary value problem 

(5.1.13) then corresponds to an extremal of the functional 

J[T\ = J ^-{T'fa-T\gdx, (5.1.16) 

with respect to functions T{x) satisfying the boundary conditions (5.1.136). 

This functional is evaluated by substitution of (5.1.15) into (5.1.16) and ap­

plication of the method of Laplace. The major contributions to the integral 

in (5.1.16) are from neighbourhoods of a and ß and from a neighbourhood of 

x = 0. Putting (5.1.8) it is found that 

2xc 

C° 6(a)exp[- /(a) /e]-6(/J)exp[-I( /?) /e]" 

This result simplifies to 

TTC 

C0 = 4 */ -6'(0)a(0) '< 

f - ^ exp [7 ( a ) / e ] , if 7(a) < /(/?), 

- ^ exp[7(/?)/e], if ƒ(/?) < 7(a), (5.1.18) 

j - i j - e x p ï / ^ / e ] , if 7(a) = /(/?). 

Thus, in the limit e —• 0, if we start outside an O(e)-neighbourhood of the 

boundaries a and /?, the expected exit time is independent of the starting 

point x and equals one of the constants given in (5.1.18), depending on the 

magnitude of 7(a) and I(ß). Note that the expected value of the exit time 

is an exponential function of the reciprocal of the small parameter c, which is 

very large. 

Other asymptotic approaches to the type of problem we encountered in this 

subsection can be found in de Groen [24], who used an eigenfunction expansion 

method, in Jiang Furu [26], who used the two-scale method, and in Matkowsky 

and Schuss [41], whose method will be explained further on. A biologically 

relevant model in which at one of the boundaries of the domain both the drift 

and diffusion coefficients vanish, linearly with the distance to this boundary, 

has been treated in [25,52,59,60]. 
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5.2 Potential systems 

The method to determine c0 in the previous section is based on the fact 

that with the factor g defined in (5.1.5) the nonself-adjoint backward differential 

operator Le turns into a self-adjoint operator, so that consequently variational 

formulations of the boundary value problems of exit become feasible. In this 

subsection we shall see that for multidimensional stochastic systems a similar 

factor g exists only for a class of so-called potential systems. Results for these 

systems will be derived. 

We consider an n-dimensional stochastic system with a domain D that 

contains a deterministic point attractor and that has a boundary dD at which 

the deterministic trajectories enter D. We assume that the diffusion matrix 

is positive definite. First we study the asymptotic solution of the boundary 

value problem (2.6). Equation (2.6a) with e = 0 is solved by a constant CQ. It 

can be shown [19,55] that this solution is valid outside an 0(e)-neighbourhood 

of dD (this is related to the fact that deterministic trajectories enter D). We 

assume that dD is smooth. For points x £ D near dD, we introduce n—\ new 

coordinates along dD, and the new coordinate p = \x — x'\, where x' is the 

projection of x on dD. Using the stretching transformation 

z = ep (5.2.1) 

we then obtain from (2.6a) the boundary layer equation 

I ö ( « ' ) ^ + * ( * ' ) ^ = 0 , (5.2.2a) 

with â and 6 defined as 

n n n 

*(*') = £ E "ii&Kiti. *(*') = - E 6'(*%-, (5.2.26) 

where £ denotes the outward normal on dD. Equation (5.2.2a) is solved with 

the conditions (2.66) and lim u, = CQ. In the original variable x we find 
z—>00 

u,(x) ~ co + (ƒ(*') - c0)exp[-6(«')k - *'IA1. (5-2-3) 

uniformly on D, where 6(x') = 2b(x')/ü(x'). We intent to determine the un­

known constant c0 from a variational principle again. In general the backward 
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operator Le defined in (2.7) is nonself-adjoint. A factor g(x) is sought such 

that gLc is self-adjoint. This requirement leads to the following expression 

dlogg 
= E«tf 

dXi j=x 
1 ^ dxk k=i 

= Vit i = l , 2 , . . . , n (5.2.4) 

where cC1 denotes the inverse of a;j (we assume this matrix is invertible). A 

function g satisfying (5.2.4) exists only if the vector field V is irrotational, that 

is, can be described by a potential function <f> as follows 

« = - & < 5 " > 

Stochastic systems for which (5.2.5) holds are called potential systems. The 

remaining analysis in this subsection will be restricted to such systems. In 

order for the vector field V to be irrotational independent of the value of e, we 

assume in addition that 

<j> = <j>0 + c<j>l. (5.2.6) 

From (5.2.4),(5.2.5) and (5.2.6) it follows for g that 

g(x) = exp[-<p0(x)/e + <t>i(x)], (5.2.7a) 

with 

*o(*) = - ƒ EÈsa r . ^ c / * , - , 
Jx° « = 1 jzzl 

-x n n n n 

j*° i=ij=i t = i oxk 

M*)=-I >:i:tf£.%£**<. 
(5.2.76) 

The integrals in (5.2.7b) are functions of x that are independent of the path 

of integration. The integrals equal zero at the point xo, which is chosen to 

coincide with the position of the deterministic attractor. Using the relationship 

(5.2.4) with the matrix a brought to the left side, we find that equation (2.6a) 

multiplied by g can be written as the Euler equation 

n Q 

-F«+Eïï7-F«*. = 0 ' (5-2-8°) 
1 = 1 a x i 

with F equal to 

F = -g ^2 X ] a<J Ux< Uxi • (5.2.86) 
i = l j '= l 
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In these expressions we suppressed the subscript s of « for the reason of clarity. 

Thus, the solution of the boundary value problem (2.6) corresponds to an 

extremal of the functional 

JD 
F dx, (5.2.9) 

taken over functions u, satisfying the boundary condition (2.66). Expression 

(5.2.3) for us is substituted into the integral in (5.2.9), which subsequently is 

evaluated for small e by the method of Laplace. To be definite we assume that 

the drift vector and the diffusion matrix are such that the major contributions 

to this integral come from the boundary dD. From (5.1.8) we then find 

= lap m b(y)t(y) exp[-&,(g)/e + fr(y)] dSy 

fdDb(yn(y)eM-My)/e + My)]dsy ' [ ' ' ; 

Using the definition (2.4) of us we write 

l i m / f (y) 
c^° JdD 

'p(x,y)
 b(y)t(y) «pI-*o(y)A + My)] dSy = o. faDb(y)Ç(y) exp[-^o(i/)A + ̂ i(y)] dsy 

(5.2.11) 

This result indicates that for small e the exit density p is independent of the 

starting point x, given |ar — a?'| ^> 0(c), and that this density is sharply peaked 

near the boundary point(s) with minima] potential 0o- In typical situations, 

there is a unique y* such that 

*o(v) > M»'), fory^y*, y,y*edD, (5.2.12) 

see Figure 2. Then (5.2.11) implies that in the limit e —• 0 the exit density 

becomes: 

p(x,y) = 6(y-y*), (5.2.13) 

that is, exit occurs with probability one at y*. For cases that the minimum of 

0o on dD is attained on a set larger than one point, the reader is referred to 

the literature [41]. 

An asymptotic expression for the expected time of exit from a region, for 

systems of the potential type considered above, can be derived as in subsection 

5.1. This is left as an exercise for the reader. 
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Figure 2. Contours on which <j>o attains a constant value. This value 

is higher for contours farther away from XQ. The lowest value of <j>o 

on dD is attained at y*. 

5.3 More general multidimensional systems 

As we have seen in Section 5.2, the method to determine Co described in 

Section 5.1 for one-dimensional stochastic systems is applicable to multidimen­

sional systems only if they are of a particular potential type. In the present 

section we give a brief outline of the approach to more general multidimensional 

systems, due to Matkowsky and Schuss [41]. 

We take over the discussion of Section 5.2 until the determination of the 

constant co. The idea is to determine this constant by the employment of the 

relationship (2.11) between the backward operator (2.7) and the adjoint forward 

operator (2.2). To this aim, we first construct a solution of the stationary 

forward equation (2.1). This is done by means of the WKB-method [37], which 

assumes that this solution is of the form 

v(x)-w(x)exp[-Q(x)/e], (5.3.1a) 

for small e, where 

Q(x0) = 0, w(x0) = 1. (5.3.16) 

The condition on w is a normalization. Substitution of (5.3.1a) into (2.1) with 

the left side set equal to zero yields to leading order in e the eikonal equation 

. b^+i:2:Tdx-dx-=o> (5-3-2) 
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and to the next order in 6 the transport equation 

n 

i = i 

dw \-^ 
dxi i = i 

E / a , j d2Q dujj dQ\ db{ 

. \ 2 dxidxj dxi dxj J ox,- 0. 

(5.3.3) 

The functions Q and w are solutions of equations (5.3.2) and (5.3.3). Then the 

relation (2.11) is evaluated with the function v defined by (5.3.1),(5.3.2),(5.3.3) 

and the expression (5.2.3) for us. In the limit e - > 0 w e obtain 

_ UP f(y) b(y)t(y) w(y)exp[-Q(y)/e] dSy 

JdD
b(y)-t(y)w(y)eM-Q(y)/e]dsy • [ - > 

Following the argument of the previous subsection, we find that for small e the 

exit density p is peaked near the boundary point(s) with the lowest value of 

Q. Thus, the role played by the potential </>o in Section 5.2 is taken over here 

by the function Q. The potential 4>o w a s expressed explicitly in terms of the 

drift vector and the diffusion matrix by (5.2.76). Except in some special cases, 

no such explicit expression exists for Q. In practice this function is obtained 

through numerical integration of the eikonal equation by the ray method [37]. 

Such an integration scheme may include the transport equation as well in order 

to determine w. 

The method described in the present section is powerful in the sense that it 

can be applied to a large class of problems in arbitrary dimension. However, the 

asymptotics to the stationary forward equation (2.1) are not (yet) supported 

by a solid mathematical background. The asymptotic method described above 

is related to an asymptotic method used frequently in geometrical optics and 

diffraction theory. For the latter method a more or less extensive literature 

exists, see for example the publications of Keller and coworkers [7,30] and 

Ludwig [36], and the more recent work of Duistermaat [13], Maslov [39], Maslov 

and Fedoriuk [40], etc.. For the former method, i.e. the asymptotic method 

to the partial differential equations related to exit problems, the literature is 

limited, see for example Cohen and Lewis [8], Ludwig [37] and a more recent 

paper of Brannan [6]. 

For the expected exit time the following formula has been derived [41]: 

T(X) ~ ^ *MQ(y*)M r! _ e x p [ _ 6 V ) k _ , , | / e ] } , ( 5.3.5û) 
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in which: 

Hx(x0) = det\7^-(x0)\ , (5.3.56) 
{VXiUXj ) i,j = l,2 n 

H7(y*) = det i^-(y*)\ , (5.3.5c) 

where xo is the deterministic equilibrium point and y* is the unique (by as­

sumption, for other cases see the literature) point on dD with the lowest value 

ofQ. 

Now that we have obtained expressions for the expected exit time for a 

diffusion across the flow in Section 4 and for diffusions against the flow in 

Section 5, it is interesting to compare them in their dependence on the small 

parameter e. For the former type of diffusion this dependence is algebraic, 

while for the latter it is exponential. Thus, the persistence of diffusions against 

the flow is much greater than of diffusions across the flow. 

In the stochastic systems under consideration the deterministic flow was 

directed inward at the boundary of the domain. Other systems, in which the 

deterministic flow at the boundary coincides with the boundary, have been 

analysed in [42] and [43]. In the first paper there are no critical points of the 

deterministic system located on this boundary, whereas in the second paper 

there are. 

Above we studied exit problems using formal asymptotic methods. The 

same subject has been studied by Ventcel and Freidlin [17,58], Friedman [18] 

and others from a probabilistic point of view. Rigorous mathematical methods 

have been used by Day [11,12], Evans and Ishii [15], Kamin [27,28] and others. 

The stochastic systems that we considered had a continuous domain. In 

chemistry, physics, biology and other areas one meets processes with a discon­

tinuous domain, for example birth or birth-death processes. For these pro­

cesses, asymptotic methods that resemble the method described in this subsec­

tion have been presented in [32,33,34,44]. 

6. Some applicat ions 

Exit models have many applications. We mention only a few of them. 

There are applications in population genetics, see for example Crow and Kimura 

[10], who describe the change in gene frequency of biological populations by 

means of a stochastic diffusion model. Exit from a domain here corresponds 
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to the fixation of a gene. See also Maruyama [38] and Gillespie [20]. An­

other application in biology is the description of the dynamics of stochastic 

populations. In such applications, exit corresponds to extinction of a species. 

Examples can be found in Goel and Richter-Dyn [21], Ludwig [37], May [45], 

Nisbet and Gurney [49], Roozen [51,52], Rough garden [54]. Other applications 

are in mechanics and reliability theory. Many mechanical systems near equilib­

rium behave essentially like the diffusion across the flow model or the diffusion 

against the flow model that we studied in this paper. The stochastic domain 

can be chosen as the domain in which the system is known to function prop­

erly. Exit may correspond to break down of the system. The expected exit 

time is a measure for the reliability of the system. See for example Grasman 

[22], Katz and Schuss [29], Roozen [53]. For an application of an exit model 

to the dynamics of the atmospheric circulation, see de Swart and Grasman 

[57]. The expected exit times predict lifetimes of alternative circulation types. 

Other applications of exit models can be found in the literature. 
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STOCHASTIC STABILITY OF T H E LOADED STIFF R O D 

H. Roozen 

Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

A stiff rod, held in a vertical position by an elastic hinge, is subjected to a load 

consisting of a deterministic and a small stochastic component, both acting in fixed 

directions. The rod is slightly damped and carries out small oscillations around an 

equilibrium position. Above a critical energy level, the mechanical system of which 

the rod forms a part, may get damaged. At some time, an accumulation of stochastic 

effects can lead to an excess of this critical energy level. In this paper we derive various 

statistical expressions related to the time needed to reach the critical energy level. 

These expressions can be adopted as a measure of the reliability of the mechanical 

system. 

1. I n t roduc t ion 

In their paper [7], Katz and Schuss considered the reliability of elastic 

structures with random loads. The reliability of such structures was treated as 

an exit problem in the theory of stochastic dynamical systems. Starting with 

the simple pendulum, a sequence of models has been considered with increasing 

complexity, viz. the double pendulum, the n-fold pendulum and the elastic 

continuous column. It has been shown that the exit behaviour of these more 

complex pendula is essentially the same as that of the simple pendulum. In this 

paper we will study the simple pendulum (or stiff rod) into more detail than 

was done by Katz and Schuss. In contrast to their approach, in which both 
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the deterministic and stochastic loads to the simple pendulum were applied 

vertically, we will allow these loads to act independently from each other, in 

arbitrary fixed directions. 

In Section 2 we will give a description of the stiff rod model and derive 

the stochastic equation in dimensionless form. The deterministic load is of 

order 0(e°), the stochastic load has intensity of order O(e), and the damping 

is of order 0(e), where 0 < t C 1 is a small parameter. In Section 3 we will 

derive the backward equation, valid on the time scale of order 0 ( e _ 1 ) , which 

is needed in the study of the problem of exit from an energy interval. This 

interval, bounded below by zero and above by a critical energy, is scaled to 

the unit interval. In the Sections 4, 5 and 6 we will distinguish three cases, 

according to the magnitude of the angles in which the deterministic and the 

stochastic loads act. The regular case is treated in Section 4, while Sections 5 

and 6 treat two special cases. For each of these cases, we will derive expressions 

for the expected exit time from the unit interval. For some special cases the exit 

time density, the corresponding cumulants and some other related expressions 

will be derived as well. In Section 7 we give some of the results in dimensional 

form. The discussion in Section 8 is directed towards some practical aspects of 

the results obtained. 

2. The model 

An unloaded stiff rod of length /, with mass m at a distance /' from the 

hinge O, and spring constant ft at O, carries out small oscillations around the 

equilibrium position <p — 0. Next a deterministic load Pd is applied to the rod, 

acting under the fixed angle ipd, as indicated in Figure 1. The potential energy 

due to Pd is given by 
2 

-Pdl[l- cos{ip- <pd)] « -Pdl(l -cos<pd -<psm<pd+ —cos<pd), (2.1) 

where we assumed that \<p\ is small so that 

sin (f fa ip, 

cos ip ss 1 — <p~/2. 

The potential energy due to the spring property of the hinge equals 

\,^2C-. (2.3) 
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Figure 1. The loaded stiff rod. 

Differentiating the total potential energy, which is obtained by adding (2.1) and 

(2.3), with respect to ip and equating this to zero we obtain the new equilibrium 

position ipe 

-Pd sin ipd ,_ .. 
fe = —. s . (2.4) 

ßl - Pd cos ipd 

It is assumed that /// ^> \Pd\, so that \<pe\ is small, in agreement with (2.2). 

The arbitrary constant that may be added to the potential energy is chosen 

such that the total potential energy equals zero at ipe. The kinetic energy of 

the rod is given by 

The Lagrange equation of motion reads 

I'2 o9z 
»Z-(j cos <fd — sin (fid 
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To describe a more realistic system, we extend the model with a damping term 

and a stochastic load component: 

I'2 d2z dz (z . \ (z \ ,. . _ 
ml2"d~i2~ + a~dl + fXZ ~ [jcos<P<i-sm<Pd) Pd= [jcos<ps -sm<p,j t(yt)P,. 

(2.7) 

Here £(.) is a Gaussian white noise process and 7 denotes a constant frequency 

(an appropriate choice is the unit frequency), so that jt is a dimensionless 

quantity. Ps has the dimension of a load. Note that the stochastic load com­

ponent is zero for (p — <ps (which is possible only if if, is small). Here <p, is 

the fixed angle under which the stochastic load acts. The damping constant is 

denoted by a. With the abbreviations 

I'' - Pä , o a x 
ra=m-p-, n = n —cosfd, (2.8) 

and the change of variable from z to »/ given by 

Z = 1-Ù™2±, (2.9) 
A* 

where 77 is the deviation from the equilibrium position (2.4), we have 

~ d2n dr) f cosy s Pd sin <pd cos <p, . \ 
rn-de + aTt+tir)=\—rr> Ji BU1*»J ^ t ) p > - (210) 

Suppose the rod is part of a mechanical structure, that functions well as long 

as the energy of the rod is below a critical value R? (recall that the energy 

of the rod takes its minimal value zero, when it is at rest at the equilibrium 

position ipe determined by the deterministic load). With the transformations 

r,*=rh/Ji/R, f =ty/ß/Ä, P*d =Pd/RVÏ, , 0 , , x 
(2.11a) 

P; = Ps/Ry/p, 7* = iy/Ä/ß, 

and the white noise scaling property 

cm = w) = -j=g an, (2.116) 
we obtain the equation of motion in dimensionless variables, denoted by * 

(2.12) 
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We make the following assumptions on the magnitude of the various terms 

P* r R cos <p, , n* • . • J a I 
= Vf. — - = «il «l "d S l n fd + s\n<ps = fc0, r^a. = ek, 

(2.13) 

in which 0 < e < l and fc, fco, &i are O(e0) constants. Equation (2.12) becomes: 

^ + £ t i ) + i ? = > / c ( t i i j - t o ) ^ . (2-14) 

where we suppressed the * of?;* and the dot denotes differentiation with respect 

to t*. Equation (2.14) describes an 0(f) damped oscillation of the stiff rod from 

a load consisting of a deterministic part of 0(c°) and a stochastic part with 

intensity of 0(e). We note that ipd and <pt are arbitrary fixed angles. Equation 

(2.14) can be written as the system 

dn 

dn ( 2 1 5 ) 

-J; = ~(«fcl) + J,) + s/l {km - fco) t. 

3. The backward equation 

The undisturbed (e = 0) system (2.15) is an undamped oscillator, whose 

dynamics are described by closed trajectories around the origin in the (»;,»))-

phase plane. Each trajectory corresponds to an energy level. The energy is 

larger for orbits farther away from the origin. The effect of a nonzero e is that 

the trajectories tend to spiral inwards to approach the origin (as a consequece of 

damping) and exhibit stochastic fluctuations in the ^-direction. The backward 

Kolmogorov equation corresponding to (2.15) reads [10, Ch.5] or [4, Ch.4]: 

du .du . . . . ou e ., , ,2<92u .„ . . 
_ = „ _ _ {(kl] + „ ) _ + _ {kir] _ t o ) _ (3.1) 

We will use this equation with the function «(»/,/*) and with various other 

functions in the place of w, which will be defined later on. The remainder of this 

section applies to all these functions. Equation (3.1) is studied asymptotically 

for small e on a time scale of order e - 1 . With 

t* = t/e, (3.2a) 

u = u° + eu1 + • • •, (3.26) 
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and the transformation (rj, 77) —• (r, 6) denned by 

T)=v2rcos0, r) — V2Ï* sin 0, (3-3) 

we obtain to leading order in e 

implying u° = u°(r,t). Note that r2 is the dimensionless energy of the undis­

turbed (e = 0) system, r G [0,1] and r2 = 1 corresponds to the critical energy. 

To the next order in e an equation is obtained in terms of u° and w1. Terms 

with w1 vanish by integration of this equation with respect to 0 from 0 to 2w 

and the additional assumption that u1 is periodic in 0 with period lit. The 

resulting equation for u° reads 

du° /On \ du° 1 o\d2u° Ou" / o 0 \ ou" ( i\<Ju .„ . . 
-W=(T + a2r) -Er+{ao + <nr j _ - , (3.5a) 

with 
1 1 3 1 

Thus, the description to this order in t includes damping and stochastic effects. 

If, as a consequence of the latter effect, the critical energy r2 = 1 is reached in 

finite time with probability one, starting from r 6 [0,1], the rod is stochastically 

unstable [10]. In that case, the mean exit time from the unit interval at 1 is a 

measure for the stability (reliability) of the rod (and thus an index of reliability). 

Below we will discuss this problem of exit from the unit interval. Several cases 

are distinguished, according to whether ko,k\ are equal or unequal to zero. 

4. The regular case 

Let the regular case be defined by ko ^ 0,&i •£ 0. This case occurs, in 

general, when &o and k\ are chosen arbitrarily. In this case ao > 0, a\ > 0. The 

boundary r = 0 of the unit interval is classified as an entrance boundary, see 

Feller [3], meaning that r — 0 cannot be reached in finite time from the interior 

of the interval, and the interior can be reached in finite time from r = 0. At 

r = 1 an absorbing boundary [4] is adopted. It can be reached in finite time 

from the interior of the interval. On reaching this boundary, absorption occurs, 
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so that the interval cannot be entered again. Thus, exit from the unit interval 

can take place only at r — 1. Let us(r) be the probability of exit at r = 1, 

starting from a point r € [0,1]. Its leading order part u°(r) in an expansion in 

powers of e satisfies the stationary backward equation (3.5a) with the boundary 

condition u°(l) = 1. We find us(r) ~ u°(r) = 1 as the only relevant (i.e. finite) 

solution. There is no freedom to specify an arbitrary boundary condition at 

r = 0. We conclude that if we start somewhere on the interval [0,1], exit at 

r = 1 will occur with probability one, so that the oscillator is stochastically 

unstable. Next we consider the expected exit time T(r), starting from a point r. 

Similar to the time scaling (3.2a) we put T = T/e and similar to the expansion 

(3.26) of u we put f = f ° + ef1 + • • •, so that T = f°/e + f1 + • • •. An 

approximation for T is found by solving the Dynkin equation [10, p.118] 

- 1 = {- + H -^ + («o + ßlr
2) -wr, (4.1a) 

with the conditions 

f°(0) is finite, (4.16) 

f ° ( l ) = 0. (4.1c) 

We find 

1 "2 1 

T(r)~ 1 / [ ( ^ 2 + l ) 2«i *-l]±ds, ( a2# a i) . (4.2) 

Only if the exponent in the integrand is a simple rational number, the integral 

reduces to a simple expression. If the exponent is equal to a positive integer, 

the binomial expansion can be used to evaluate the integral. If a2 = a i , this 

is substituted into equation (4.1a). Solving the corresponding boundary value 

problem we arrive at: 

T(r) ~7T— I - logf^s2 + l) ds. (4.3) 
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5. The first special case: angles of deterministic and stochastic 

load are related in a particular way. 

We assume fco = 0 while ki ^ 0. In this case ao = 0, ai > 0. The angles 

<Pd,fs are related by 

0 = fci P*d sin ifd + sin <p,. (5.1) 

An important case is the vertically loaded pendulum (<pd = V» = 0). Since 

ao = 0, the behaviour is qualitatively different from that in Section 4. At r = 0 

we now have a natural boundary, meaning that r — 0 cannot be reached from 

the interior of the unit interval, and the interior of the unit interval cannot be 

reached from r = 0, in finite time. Let u,(r) now be defined as the probability 

of exit at r — 1, starting from a point r of the half open interval (0,1]. This 

probability is obtained by solving the stationary backward equation (3.5a) on 

the interval 8 < r < 1 with 0 < i < 1, where the boundary conditions are 

u°(S) = 0, u°(l) = 1. In the limit « -»Owe obtain 

( s ƒ 1, oo > a i , (damping below level a2 = a i) , , . 
u»(r) ~ | J . I -OJ /0^ a2 < a i j (damping beyond level a2 = a i ) . ^ ' ' 

In the first case of (5.2), exit at r = 1 occurs with probability one, as in Section 

4 the rod is stochastically unstable. In the second case of (5.2), the probability 

of exit at r = 1 can be made arbitrarily small by starting close enough to 

r = 0, the rod is stochastically stable. We will continue with the stochastically 

unstable case here; the treatment of the stochastically stable case is postponed 

until subsection 5.4. The expected exit time is obtained by solving equation 

(4.1a) with a0 = 0 under the conditions f ° ( l ) = 0, f°(6) = 0, 0 < 6 < 1. In 

the limit 5 —*• 0 

T(r) ~ — log -, (a2 > a i ) . (5.3) 
e(a2 — ai) r 

Because ao = 0, the differential equations describing the exit problem have a 

simple form, so that a variety of interesting expressions can be derived. 

5.1 The probability of exit before a certain time (a2 > a\) 

Henceforth, the dimensionless time t* will be denoted by /, for convenience. 

Let u(r, t) be the probability that exit through r — 1 takes place on the time 
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interval [O,*], starting in r 6 (0,1] on t — 0. With a0 = 0 the backward 

equation (3.5a) reads 

du0 du0
 2d

2u° 
_ r = a 2 r _ + a i r _ 

This equation has to be solved with the conditions 

= a2 r-5— + air a i r - (5.4a) 

«°(r.0) = 0, (5.46) 

u°(6,t) = 0, 6-+0, (5.4c) 

u°(l,f) = l . (5.4d) 

Taking the Laplace transform with respect to t 

t°° 
ü°(r,*) = / e " " u°(r,t)dt, (5.5) 

./o 

the following boundary value problem is obtained 

«i^Çir + a*r^r- = sü° - U°M) = sü°> (5-6a) 
or1 or 

ü°(6,s) = 0, 6-*0, (5.66) 

ü ° ( l , « ) = i . (5.6c) 
s 

The equation (5.6a) is an equidimensional or Euler equation [1], that by the 

change of variable 

r = e", (5.7) 

transforms into „ „ 
dû0 dû 

ai-ö-2- + ( a 2 - a i ) - ä sw° = 0, (5.8) 

where the coefficients of the derivatives have become constants. The charac­

teristic equation 

axk
2 + (a2 - ax)k - s = 0 (5.9) 

corresponding to this equation is solved by 

, , x - ( a 2 - ai) + y/(a2 - a i ) 2 + 4ais 
M« ) = ^ (5.10a) 

k2(s) = - ( « 2 - a 1 ) - V ( « 2 - a 1 ) - - i + 4 a l g 

2ai 
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The solution of (5.8) is 

w° = Ci(a) ek^p + C2(s) ek^fi, (5.11) 

and that of (5.60) 

«° = d(s) rkl^ + C2(s) r
k*'\ (5.12) 

The unknown functions C\ and Ci follow from the boundary conditions (5.66c) 

- 1 
\m\Ci{s) = lim • . v = 0, 

in which we used the positivity of a\, and, in the same limit 

C i ( s ) = l / s . 

The solution of (5.6) is 

ü°{r,s) = rkl^/s. 

(5.13a) 

(5.136) 

(5.14) 

Using some elementary properties of Laplace transforms and the inverse trans­

form formula 5.129 [8, p.264], we obtain as solution of problem (5.4) 

u°(r, —) = -erfc 
log: 

2vT 
cVl + -r 2cerfc J ^ + CN/?' 

.2Vt 

where 
«2 - « i 

2a, 
(0 < c < 1, c = 1: no damping). 

(5.15a) 

(5.156) 

With u(r, t) ~ u°(r,t) we obtain an approximation of u(r,t). It is easily verified 

that this result is in agreement with 

lim u(r,t) = us(r), (5.16) 

with us(r) = 1, as in the first case of (5.2), where u,(r) was the probability that 

exit at r = 1 will occur, starting at r £ (0,1]. The function u has been depicted 

in Figure 2a. The result derived in this subsection differs from formula (3.28) 

in Katz and Schuss [7], since we took into account the right hand boundary 

condition. 

As an application, we consider the following problem. What is the proba­

bility of failure of the mechanical system during an operating time t? Let vo(r) 

be the probability density function of the initial ?• (recall that r is the square 
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Figure 2a. The probability u(r,t) for the undamped rod with e = O.Ol 

and a\ — 1/16. For r = 0.2 the probability of failure exit pf corre­

sponding to an operating time t has been indicated. 

root of the dimensionless energy). The probability of failure pj is determined 

by 

pf = / v0(r)u(r,t) dr. (5.17) 
Jo 

In Figure 2a, the probability of failure for v0(r) = 6(r — 0.2) has been indicated. 

5.2 The exit time density, its moments and cumulants (02 > ai) 

We define r(r,t)dt as the probability that the time of exit through r = 1 is 

in the time interval (t,t + dt), given that we started at 7- € (0,1] on t = 0. The 

function r(r,t) is a probability density with respect to t. In this subsection, 

we will derive expressions for r(r,t) and its n-th moment /z„(r) and cumulant 

Kn(r). The function 

1 / r(r,t') dt', 
Jo 

(5.18) 

is known to satisfy the backward equation [4]. By differentiation with respect 

to t, it follows that r satisfies the backward equation as well, so that for its 
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leading order term r° we have 

dr° 2d
2T° dr° . . . . . 

ir = a i r^5-+ a a r -3r- (519) 
Taking the Laplace transform of r ° with respect to t, 

/•OO 

f°(r,s)= e—* r°(r,t) dt, (5.20) 
Jo 

equation (5.19) becomes 

a i r 
d2f° df° 

+ a2r^- = 8f° - T°(r, 0) = sf°, (5.21) 
dr2 dr 

in which the initial condition 

r°(r,0) = 0 (5.22) 

has been used, valid for 6 < r < 1, where again 0 < i < 1. For r = 6 and 

r = 1 the probability density function r(r,t) equals the delta function 6(t — 0), 

or 

H°o(r) = 1, (5.23a) 

/&(,•) = 0, m > 0 , (5.236) 

where /i£,(r) is the m-th moment about the origin t — 0 of (.~XT®(T,Ï). Ex­

pression (5.23a) results from the normalisation of the density r(r,t) and the 

expansion 

r ( r , 0 ~ r ° ( r , f ) . (5.24) 

By the relation [6, p.6] 

t-lf°(r,s) = G°(v,is) = £ L-f. ^(r), (5.25) 
*—' m! 
m=0 

in which G° is the characteristic or moment generating function of £ - 1 T ° , the 

conditions (5.23) translate into boundary conditions for (5.21) 

f°(1,s) = f°(6,s) = €, (6 — 0). (5.26) 

The boundary value problem (5.21, 5.26) is solved in a way similar to that in 

the previous section. We find 

6~kl - 1 
lim C2(s) = Hm e -.—-. = 0, (5.27a) 
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because ai > 0, and, in this limit, 

Ci(s) = e, (5.276) 

so that 

f°(r,s) = €rk^\ (5.28) 

Using the inverse Laplace transform formula 5.85 [8, p.258], the following result 

is obtained 

f - - c2t ( 1 ° g r ) 2 

^ r°( r ' f) = f77(los;)f 2 e 4f • (5-29) 
eai ai z-y'Tr \ r / 

With (5.24), an approximation to r(r,t) follows, see Figure 26. 

Next we will derive expressions for the moments and cumulants of the 

density r(r,t). The moments fin(r) about t = 0 of r(r,t) are found starting 

from the definition 
/•OO 

Hn(r)= / tnT(r,t)dt. (5.30) 
Jo 

Using the obtained approximation of T(r,t), and formulas 3.471:9 [5, p.340] 

and 8.468 [5, p.967], it is found after some calculation that 
M r ) ~ (4ea l C

2)-" ^ f " ~J " 1 ) ! ^ c l o g r " 1 ) ' , n > 1. (5.31) 
^ (J _ 1 ) ! ( n - J ) ! 

With (5.28) the moment generating function G of T(r,t) yields 

G(r,is) = f(r,s) ~ - f°(r,s/e) = r * 1 ^ . (5.32) 

Taylor expanding the logarithm of G(r, is) around s = 0 we find 

log G(r, i*) ~ £ i - / - K n ( r ) , (5.33) 
n = l 

with the cumulants /c„(r) given by 

^~(ë)^ l os;< "^ (5-34) 
the double exclamation mark being defined as in [5, p.xliii]. 

In this subsection we have obtained expressions for the lifetime density 

of a mechanical system, as well as its moments and cumulants, as functions 
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1000 

Figure 2b. The probability density function of the exit time, depending 

on the starting point r, for the undamped rod with e = 0.01 and a\ = 

1/16. 

of the initial r. When the initial r is not known, but its density vo(r) is, 

these expressions should be integrated with respect to r from 0 to 1 with the 

weight function vo(r), as at the end of the previous subsection. This remark 

applies also to other results in this paper, in particular to the expressions of 

the expectation of the exit time. 

5.3 Solution of the forward equation (Ü2 > a i ) 

Let us define v(r,t)dr as the probability of being in the interval (r,r+dr) 

at time t, given the probability vo(r')dr' of being in the interval (T1 ,rJ + dr') 

at time t = 0, where r,r' £ (0,1]. In this subsection, an expression for v(r,t) 

will be derived. The Fokker-Planck or forward Kolmogorov equation associated 

with (5.4a) reads 

dv° d , n. d2 , , 0 . 

dt ' dr 

which has to be solved with the conditions 

v°(r,0) = vo(r), 
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v°(s,t) = o, a —o, 

v°(l,t) = 0. 

(5.366) 

(5.36c) 

The last two conditions result from erecting absorbing boundaries at r = 6 and 

r = 1, and VQ in (5.36a) is the initial density. Equation (5.35) is rewritten as 

dv° 2d
2v° fA . dv° ,„ , o 

"5T = a i r -fia + (4ai - a2)'*"ô7 + (2ai ~ a2)v • 

Taking the Laplace transform of t; with respect to t 

/•OO 

v°(r,s) = / e—* v°(r,t) 
Jo 

dt, 

(5.36, 5.37) changes into the boundary value problem 

2„-;0 ,d2v dv J-,0 

<*ir ST + ( 4 a i - a2)r-K- + (2ai - a2 - s)t>° = -w0(r) 
dr dr 

(5.37) 

(5.38) 

(5.39a) 

v°(6,s) = 0, 6-+0, (5.3%) 

v°(l ,s) = 0. (5.39c) 

The change of variable (5.7) turns equation (5.39a) into the equation 

d2v° dv° 

By solving its characteristic equation, the homogeneous equation associated 

with (5.40) is found to have the independent solutions 

e l - i - t . W ) ^ e(-i-t3(»))p ) 

with fci and k2 defined in (5.10), and Wronskian 

W(p) = (Jkj - *2) c^-*»-*3-8)". 

(5.41) 

(5.42) 

The inhomogeneous equation (5.40) is solved by the method of variation of 

parameters [1]. In the original variable r its solution reads 

v (r, s) = 

+ 

- l - i b . 

ai(ki - k2) 

ai(h - k2) 

C\{s)+ f v0(r') (r')fcl dr' 

C2(s) + J vo(r') (r'f* dr' 

(5.43) 
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in which it is assumed that the initial density v0 is sufficiently regular so that the 

integrands remain finite in the integration domain (note that ki > 0, ^2 < 0). 

The functions C\ and Ci are determined by the boundary conditions (5.396c). 

For C2 we find 

ö-hl f v0(r') (r')fcl dr' - 6~k* I v0(r') (r')*2 dr' 
<*(•) = à 6_k3 _ s_ki J* . (5.44) 

The second term in the nominator is bounded by v0(6). This bound is finite if 

v0 is bounded. Then, consequently, in the limit for 6 —• 0 

C2(s) = - f v0(r') (r')fcl dr', 
Jo 

Ci(s) = 0. 

(5.45a) 

(5.456) 

The solution of (5.39) can be written in the following form 

v°(r, s) = 
ai(fci -k2) J:^(J) 
e I r 

r I k\ — hi _>±)* - * 2 
(5.46) 

dr'. 

The solution of problem (5.35, 5.36) is obtained using the inverse Laplace 

transform 5.87 [8, p.258] 

„ <v f1 , ^1 (rye-ct 

vu(r,—)= / v o ( r ) - ( - ) — 7 = Ï 
ai Jo r^r'J 2Vrt 

Hfr)' 
4t 

( l o g r V ) \ 
At dr', (5.47) 

and with v(r,t) ~ v°(r, t) we have an approximation of v(r,t), see Figure 2c. 

The results (5.15, 5.29, 5.47) are related by 

d 
(5.48a) 

OT ai eai ax 

1 - / v°(r, — )dr=u°(r*,— ), for w0(r) = «(r - r"). (5.486) 
Jo ai «1 

The example in Figure 2c shows the decay of v with time due to exit at r = 1. 

For small r we see an increase of v with time because of systems that are driven 

to r = 0, but cannot exit there since r = 0 is a natural boundary. 
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v ( r , t ) 

t -500 

Figure 2c. The function v(r, t) corresponding to the initial density 

vo(r) = 6(r — 0.2), for the undamped rod with e = 0.01 and ai = 1/16. 

As an application of the result derived here, we discuss the construction 

of confidence intervals. Suppose we are interested in the confidence interval 

of probability p at time t, for systems not yet exited (the probability that the 

system has not yet exited is given by the integral of v(r, t) with respect to r 

from 0 to 1). Let r\ and r2 be the lower and upper boundary of the confidence 

interval, respectively, so that 0 < r\ < r2 < 1. The values of r\ and r^ are 

determined by the conditions 

v(ri,i) = v(r2,i), 

I v(r,t) dr / I v(r,t) dr = p, 

from which they can be computed numerically. 

(5.49a) 

(5.496) 

5.4 The stochastically stable case (a2 < ay) 

As we have seen at the beginning of Section 5, for stochastically stable 

systems the probability of exit at r = 1 is given by 

uj(r) = r 1 - "^ 0 1 
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Let T(r) be defined here as the expected time of exit through r = 1, where it 

is given that exit through r — 1 will occur. An expression for T is found by 

solving the boundary value problem [4, p.142] 

- « J = a 3 r | - ( U ? f °) + a i r 2 | l ( « ° f °), (5.51a) 

u°(6)f °(6) = 0, ( « - O ) , (5.516) 

«S(l)f°( l) = 0. (5.51c) 

We find 
T(r)~ f,

 1
 n J o g - - (5.52) 

e ( a i - a 2 ) r 
Starting at a given position r, with increasing damping (decreasing a2) the 

probability of exit at r = 1 decreases according to (5.50), and the mean time 

of exit at r = 1, given that exit occurs, decreases as well, according to (5.52). 

Thus, in systems with damping far beyond the level a2 = a\ (i.e. a2 <C ai) , 

starting away from r = 1, exit is not likely to occur, and if it occurs, it probably 

is relatively shortly after starting. In such systems, failure mechanisms of a 

type, different from that discussed in this paper, are of importance. See the 

remark in Section 8. 

6. The second special case: horizontal stochastic load. 

We assume k\ = 0. It follows that a\ — 0. This case corresponds to a 

horizontal stochastic loading. Using (2.13) we find that Jfê  = 1. The backward 

equation similar to (3.5) reads 

du° /oo \ du° d2u° 

with 

a0 = g, o2 = --k. (6.16) 

This is the backward equation of a Rayleigh process [4,12]. As in Section 4, 

r = 0 is an entrance boundary, r = 1 is an absorbing boundary, and it can be 

verified that the probability of exit at r = 1, starting at any point of the closed 

unit interval, equals one. For the mean exit time we find 

- A 1 -
ea2 Jr L 

a2 2 
— - s 

T(r) ~ — / 1 - e 2a0 - ds, (a2 ^ 0). (6.2) 
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6.1 The subcase of no damping 

du° / I d a 0 d2u°\ 

In the special case that there is no damping, i.e. k = 0 and thus a2 = 0, 

equation (6.1a) becomes 

du° _ f\du° d2»°> 
dt \r dr dr2 

For the leading order term u° in the expansion of u(r,t), defined as in Section 

5, this equation is supplemented with the conditions 

ti°(r,0) = 0, (6.36) 

u°(0,t) is finite, (6.3c) 

ti°(l,î) = l . (6.3d) 

The initial-boundary value problem (6.3) is the same as for axisymmetric heat 

conduction in a cylinder, which has the solution [11, p.175] 

-'M-"- E^£^ . 
where the summation extends over the positive roots of 

Jo te) = 0, (6.5) 

Ji being the Bessel function of the first kind of order i. The exit time density 

yields 

«-^M^M^g^-p^. (6.6) 
Next we compute the characteristic function and the first few cumulants 

corresponding to this density. The differential equation for r ° yields 

dr° / 1 0 r ° d2r°\ ,„ x 

Taking the Laplace transform of r° with respect to t we obtain 

d2f° 10 r° « 0 

"5T+"3 f = ° . (6-8) 
or^ r or ao 

where we used the initial condition 

T°(r.0) = 0. (6.9) 
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The general solution of (6.8) is 

f°(r, s) = c i io( \ / s / ao »*) + c2Ko(y/s/a0 r), (6.10) 

where 7o, KQ are modified Bessel functions of the first and second kind, respec­

tively. Using the boundary conditions 

f°(l ,«) = e, (6.11a) 

T° (0 , s) is finite, (6.116) 

we find 

f°(r, s) = e J O ( N A K r) /J0(v^Äto). (6-12) 

The characteristic function of 7-(r,t) is given by 

G(r ,»«)~c- 1 r°( r ,« /«)- (6-13) 

The cumulants Kn(r) of r(r, t) are generated by 

logG(r ,«) ~ £ t ^ - K„(r). (6.14) 
n= l 

Using the Taylor expansion [5, p.961] 

the cumulants are obtained as 

Ä» / i „2n\ 
- « - ( ^ - • • n (616) 

where the /?„ are found from the recurrent relations 

2 

f > ( -4 ) ' (i!) i Q = -i», (n = 1,2,3,...). 

The first few ß's are given by 

(6.17) 

A = i * = è« A = è- (618) 
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7. Examples in dimensional variables 

Below we give some of the results in dimensional form. Let exclusively for 

the present section T denote the dimensional exit time and r, R the dimensional 

energy and dimensional critical energy, respectively. Using (2.11),(2.13) we find 

in the case of the undamped rod (a2 = 3ai), according to formulas (4.2),(5.3) 

and (6.16) respectively, that for the regular case 

T(r) ~ 8 7 " ^ 2 lo //JA2 c°s 2 <P» + 2(pd sin <pd cos <pt + Iß sin <ps)
2 

P2 V ßr2 cos2 if, + 2(Pd sin ipd cos <pa + Iß sin <ps )
2 ' 

for the vertically loaded rod 

8ymßl2 R 
T ( ' ) pT~ l oS 7 ' (7-2) 

and for a horizontal stochastic loading 

with m, /i defined in (2.8). Recall that in order for these formulas to be applica­

ble, the dimensionless parameter combinations in (2.13) must have the required 

order of magnitude. This is especially important for the last parameter group 

in (2.13). If the damping constant is large, so that this group is larger than 

indicated, for example of order 1, then the exit time is exponentially large, see 

[10, Ch.7.4] or [4, p.362], and the model presently described clearly doesn't 

apply. 

8. Discussion 

In this paper we have studied the exit problem on the time scale of order 

0(e~1). We have distinguished three cases, depending on the values of ko and 

ki. The case treated in Section 4 has been called regular, in the sense that an 

arbitrary choice of ko and k\ (or tpd and <ps) will almost always lead to this case. 

In Sections 5 and 6 the special cases ko — 0 and k\ = 0 have been treated, 

respectively. Confining ourselves to the first special case (a similar remark 

applies to the second special case) it can be remarked that in practice ko will 
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O 1 

Figure S. The expected exit time for the nearly vertically loaded un­

damped rod according to the formulas (8.1a) and (8.16). 

never be equal to zero exactly. For example, due to practical imperfections, an 

exactly vertically loaded rod does not exist. In view of the asymptotics that we 

have used, the left side of (5.1) may be replaced by O(e ' ) in order for the first 

special case to remain applicable. As an example, consider a nearly vertically 

loaded rod with ai > ai. If relation (5.1) is satisfied within 0 ( e 7 ) , the mean 

exit time is given by (5.3), otherwise it is given by (4.2) with small ao measuring 

the deviation from exactly vertical. For the undamped rod (02 = 3ai) these 

exit times yield respectively 

T(r) 1 1 1 

2 ^ - l o g ; ' 
(8.1a) 

T(r) 
1 

log ax + a0 (8.16) 
2eai *~° V ai»"2 + ao' 

which have been depicted in Figure 3 for ao = 0.01 and ai = 1, r being the 

square root of the dimensionless energy. Moreover, we see that (8.1a) is a good 

approximation to (8.16) away from r = 0. 

The expressions (4.2), (4.3), (5.3), (6.2), and (6.16) with n = 1, give the 

expected time T(r) needed in the various cases considered to reach a critical 

energy level (which, in these cases, will happen with probability one). This 
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critical energy was chosen as the upper bound of the normal operating energy 

range of a system. Given a probability density function vo(r) of the initial r, 

we can adopt the constant 

Jo 
v0(r)T(r) dr (8.2) 

as the expected failure time for that system. 

The formulas (5.34), (6.16) with n = 2 (higher cumulants are often of less 

practical interest) can be used to indicate the variance in failure time. It was 

not possible to obtain similar simple expressions for all cases considered. In 

such cases the variance is easily obtained numerically by solving a recurrent 

system of elliptic boundary value problems [4, p.138 and p.171]. 

Due to the simplicity of the equations in some special cases, we were able 

to find expressions for the probability density of the exit time, see (5.29) and 

(6.6). In practice the failure density is obtained by fitting experimental data 

with some statistical density (exponential, gamma, Weibull or lognormal), see 

for example [9]. In the present paper we showed how to derive such a density 

by employing the dynamics of the system. 

A stock or investment policy can be based on the expression for u obtained 

in Section 5.1. Given an operating time t and a probability density of initial 

energies, the probability of failure is determined by (5.17). The expression for 

v in Section 5.3 can be used for the construction of confidence intervals. 

The stochastic stability of oscillators with a different type of damping (as 

cubic damping) or noise (red, dichotomic, etc.), and with a forcing that can be 

described by a potential function, has been treated by Dygas, Matkowsky and 

Schuss [2]. 

Finally, it may be remarked that in practice failure mechanisms, different 

from the type considered here, may be present. One such a mechanism, to 

mention, is wear out, which becomes important, especially in systems with 

damping beyond the level a^ — a\. An approach to wear out could be as 

follows. Assume that wear out depends on the state r £ [0,1] and the time 

t G (0,oo), expressed for some application by a penalty function P(r,i). Let 

S(r,t)dr be the expected time spent in (r,r-\-dr) during the time interval (0,<) 

S(r,i)= f v(r,t')dt', (8.3) 
Jo 
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where v(r,t)dr is the probability of being in (r,r + dr) on time t (i.e. the 

solution of the forward equation). A wear out function can be defined by 

W(t)= f P(r,t)S(r,t) dr. (8.4) 
Jo 

The failure time tj follows from 

W(tj) = We, (8.5) 

where Wc is a critical value, so that excess of this value leads to failure of the 

system. In general, the computations involved become very complicated, so 

that in practice this scheme has to be simplified somewhere. 
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EQUILIBRIUM AND EXTINCTION IN STOCHASTIC 
POPULATION DYNAMICS 

• H. ROOZEN 

Centre for Mathematics and Computer Science, 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

Stochastic models of interacting biological populations, with birth and death rates depending on 
the population size are studied in the quasi-stationary state. Confidence regions in the state space 
are constructed by a new method for the numerical solution of the ray equations. The concept of 
extinction time, which is closely related to the concept of stability for stochastic systems, is 
discussed. Results of numerical calculations for two-dimensional stochastic population models 
are presented. 

1. Introduction. This paper describes properties of stochastic population 
systems defined by birth and death rates depending on the population size. The 
state variables are the non-negative population numbers, so that the state space 
is formed by the positive orthant and its boundary. The deterministic 
dynamical system associated with the stochastic system is assumed to have a 
stable equilibrium point lying in the interior of the state space. For large 
population sizes the statistically quasi-stationary state of the stochastic system 
is described by a probability density function (p.d.f.) defined on the state space, 
with a maximum at the equilibrium point. Close to the equilibrium point this 
p.d.f. is approximately multivariate Gaussian. At a larger distance, deviations 
from the Gaussian shape become pronounced. Part of this paper deals with the 
construction of the contours of the associated confidence regions in state space. 
A method has been developed for the numerical solution of the ray equations, 
needed in the computation of the contours. The method does not have the 
disadvantages of the numerical methods that are normally used to solve the ray 
equations, such as the initial value approach or shooting methods. 

An important concept in stochastic population dynamics is the concept of 
stability. Once a stochastic system of populations is caught within the 
attraction domain of a stable equilibrium point of the corresponding 
deterministic system, it will remain there for a long time, attracted by the 
equilibrium point. Stochastic fluctuations give rise to deviations from the 
equilibrium point. Large departures may occur, which can lead to escape from 
the domain of attraction of the equilibrium. With probability one this will 
happen within a finite time. On hitting the boundary of the state space by 
stochastic fluctuations, the domain of attraction is left: one population 
becomes extinct. The birth and death rates for that population are zero, the 
boundary is absorbing. The ecological stability of a system is expressed in terms 
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of the mean extinction time, for which expressions are given. A related problem 
that will be touched upon is which of the populations of a stochastic system is 
expected to become extinct first. 

In the second part of this paper the foregoing theory is applied to a stochastic 
system consisting of two interacting populations. The associated deterministic 
system is a generalized Lotka-Volterra system with two components. A 
systematic treatment of this system is given. The stability condition for the 
interior equilibrium point is derived. Close to the equilibrium the quasi-
stationary state of the stochastic system is approximately described by a two-
dimensional Gaussian p.d.f. The parameters of this Gaussian p.d.f. are 
expressed in the parameters of the stochastic model. As a consequence, some 
conclusions about the behaviour of the stochastic model can be drawn. For a 
number of particular cases, contours of confidence regions in the state space are 
depicted. There is a good agreement with the results of numerical simulations 
of the original stochastic birth and death processes. Finally, the concept of 
extinction is treated. Results obtained by the ray method and by the 
approximate method in which the p.d.f. is assumed to be Gaussian, are 
compared with the data, obtained by the numerical simulations. 

2. Derivation of the Fokker-Planck Equation. In this section the Fokker-
Planck or forward Kolmogorov equation is derived. This is a transport 
equation for the joint probability density function for the number of individuals 
in each of the populations of a population system at time t. First a system with a 
single population is considered. Then the straightforward generalization to n 
populations is made. 

One population. Let the number of individuals in a single population at 
some time t be given by the non-negative integer N. Assume that the population 
has an infinitesimal birth rate B(N) and an infinitesimal death rate D(N). This 
means that the probability of a single birth or death in the small time interval 
(t, t + At) is given by B(N)At and D(N)At. The probability of multiple births 
and deaths in the time interval is proportional to (At)2 and may be neglected for 
small At. The probability P(N, t) of having N individuals at time t, satisfies the 
equation: 

P{N, t + At) = P{N-i, t)B(N-l) At + P(N+ 1, t)D(N+ 1) At 

+ P(N, t)U-{B(N) + D(N)} At]. (1) 

Thus the number of individuals at some time is obtained by either one of three 
mutually exclusive events in the foregoing small time interval of length At, i.e. a 
birth, a death, neither birth nor death. In the limit At-»O the master equation is 
obtained: 
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vP(N t) 
y ' = P{N- 1, t)B(N- l) + P(N+ 1, t)D(N+ l)-P{N, t) {B(N) + D(N)}. 

(2) 

In this way a discrete state space Markov process has been defined. An 
approximating process in a continuous state space is constructed in the 
following way. A new population variable x = N/K is introduced by scaling N 
with K and the corresponding p.d.f. P(x, t) is defined by 

P(N,t) = PriN-i-<N(t)<N + ^\ = PrL-^<x(t)<x + ^k 

= P(x,t)^. (3) 

The parameter AT is typical for the population size. A natural choice is the size of 
the equilibrium of the deterministic system, which by assumption is large. Then 
x may approximately be treated as a continuous variable and functions of x as 
continuous functions. With 

B(N) = B(xK) = B(x), 

D(N) = D(xK) = D(x), (4) 

we obtain from the master equation: 

"*•• 'L P(X - i ,, \BL - L)+P(X+I. ,W, 4 V Pix, „{BM 
dt \ K J \ K) \ /T J \ K) 

+ D(x)}. (5) 

The birth and death rates B and D are assumed to be expressible in van 
Kampen's (1981) canonical form, that is, in a power series in K'1 of the 
following kind: 

B(x)=f(K)[°B(^y 'B(JJK-1 + 2B$K-2+ • • • } 

D(x)=f(K)[°D(^y i ^ t f - i + * / ) ^ J : - 2 + • • J. (6) 

It is assumed that B and D are smooth functions. By a Taylor series expansion 
(Kramers-Moyal expansion) of the functions on the right side of equation (5) 
up to second order in K~l, the following Fokker-Planck equation is obtained: 

1 dP{x,t) 1 d 
f(K) dt Kdx 

( » - » ^ ^ ^ ( ' ^ - ^ ( x ) ) 
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+ 

+ ~(2B(x)-2D(x))+---}P(x 

K2Ôx2 (°B(x) + °D(x)) 

+ i ( 1B(x)+ 1ÖW) 

+ iï(
25(x)+2Z)(x))+---Wt)l. (7) 

In the simple case that 

f{K) = K, 
i5(x) = iZ)(x) = 0,forJ>0, (8) 

so that B and D are given by 

Ä ( X ) = A : . 0 Z / ^ 

D{X) = K.°D(J\, (9) 

the Fokker-Planck equation takes the form 

+ 4 ë [{°^)+°^>w} .̂ o]. (io) 
The first term on the right side expresses the drift of the system, the second one 
the diffusion. For large values of K the diffusion is small compared to the drift. 

The approximating continuous process and the original discrete process 
have the same first and second jump moments. However, as a consequence of 
truncating the Taylor expansion after two terms, higher moments do not agree. 
The higher moments of the continuous process are all zero, while for the 
discrete process the odd moments are equal to the first moment and the even 
moments are equal to the second moment. 

An approximation to birth-death processes incorporating higher jump 
moments can be found in Knessl et al. (1984,1985). The methods described in 
this paper are also applicable to that approximation, as it gives rise to a 
Hamilton-Jacobi system similar to (28). 
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n populations. For every population i from a system of n populations, the 
birth rate is B^N^ N2,. .., N„) and the death rate is D^N^ N2,..., N„). Let 
the ^.(xj, x2,. . . , x j and the Di(xl, x2,. . . , x„) be defined by 

B^N,, N2,..., N^B^x.K,, x2K2,..., xnKn) = Bi(xl, x2, . . . , x„), 

Dt(Nlt N2,..., Nn) = Di(xlK1, x2K2, ..., xnKn) = Dt(xx, x2, . . . , x„). (11) 

New variables xi = NJKi were introduced by scaling the old ones by the sizes of 
the equilibrium populations. On assuming the canonical forms 

Bi(xl,x2,...,xJ = Ki°Bi(^,^,...,^y 

the following Fokker-Planck equation is obtained: 

dP(xl,x2, . . . ,x„, f) 
dt 

= îL§l{°Bi(x1,x2,...,xn) 

-°Di(xl,x2,. . .,xn)}P(x1,x2,.. . ,x„,t)] 

I v " I 

+ °Z) I(x1,x2,...,xn)}P(x1,x2,. . . ,xfl,r)]>. 

The population sizes AT,- are assumed to be large and of equal order: 

so that 

1 

Substitution in the Fokker-Planck equation gives: 

dP( 
dt 

in which 

60 

(13) 

Äi = 0 ( - ) , (e small) (14) 

K=Kie,Ki = 0(l). (15) 

^ = t [ - ^ {Hx)P(x, 0} + f J ^ {*i(x)P(x, t)}\ (16) 



bi(x)=°Bl{x)-°Di{x), (17a) 

ai(x) = Ki(°Bi(x)+°Di(x)). (17b) 

This form of the Fokker-Planck equation, valid for a system of n populations 
having large equilibrium values of equal order, is the starting point of our 
analysis. 

For very large populations the diffusion term may be neglected. The system 
is then described by the Liouville equation: 

8P( 
~~dt ̂ =i[-|w<*,<»]. <«> 

It can be shown (Gardiner, 1983) that this equation with initial condition 

P(x,t0\x0,t0) = ô(x-xQ) (19) 

describes a deterministic motion which can also be found by solving the system 
of differential equations: 

^P- = bi{x),i=\,2,...,n (20) 

at 

with initial conditions 

x(t0) = x0. (21) 
This system of differential equations defines the deterministic system associated 
with the Fokker-Planck equation. The equilibrium points of the deterministic 
system are found by putting 

6((x) = 0 , i = l , 2 , . . . , n (22) 

that is, by equating birth and death rates. 

Boundary classification. For one-dimensional stochastic systems a com­
plete classification of boundaries exists (Gardiner, 1983; Feller, 1952; 
Roughgarden, 1979). In order for the one-dimensional population system to 
have an exit boundary at x = 0, the following conditions must be satisfied: 

J(0,t)<0, (23a) 

6(0) = 0,a(0) = 0, (23b) 

in which J is the probability current defined by 
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J(x, t) = b(x)P(x, t)-~{a(x)P(x, t)}. (24) 
2 ex 

By (23), x = 0 can be reached from the interior of the state space, while the 
interior cannot be reached from x = 0. Using (23b), the requirement (23a) 
results in a degeneration condition for a: 

VOL 

— (0)>0. (25) 
ex 

For higher dimensions no complete classification of boundaries exists. An 
examination of the probability current and drift and diffusion coefficients at the 
boundaries x, = 0 can reveal whether these boundaries can be reached from the 
interior of the state space and vice versa. 

3. Asymptotic solution of the Fokker-Planck equation. In this section, the 
asymptotic analysis of Ludwig (1975) for small noise strength e is carried out, 
leading to the ray equations. A local analysis in the neighbourhood of the 
equilibrium point is given. Moreover, the numerical solution of the ray 
equations is discussed. 

The analysis will be restricted to a study of the quasi-stationary state. A non-
trivial stationary state does not exist for a stochastic process with absorbing 
boundaries. For a discussion of this point in relation to population dynamics, 
see Nisbet and Gurney (1982). Apart from possibly a short initial period of 
time, the quasi-stationary state is supposed to give a close description of the 
stochastic process during a long period of time. The quasi-stationary state is 
obtained by putting the l.h.s. of equation (16) equal to zero: 

o=I 
e d 2 

— {bt(x)Pt(x)} + - ^ {at{x)P,{x)} . (26) 

The function Ps(x) is the p.d.f. corresponding to the quasi-stationary state. On 
the assumption that the deterministic system (20) has a stable equilibrium 
point lying in the interior of the state space, we apply the asymptotic analysis of 
Ludwig for small e. A simple WKB-Ansatz to the solution of equation (26) is: 

ƒ»,(*) = C e x p ( - ^ Y (27) 

in which C is a normalization constant. Substitution of this expression in 
equation (26) and rearranging terms in equal powers of a yields to leading order 
in e: 
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t[w^+ i^. ÔQ 

OX; 
(28) 

We assume that the stochastic system is described sufficiently accurately by 
(27), (28). Otherwise, higher order terms in e must be included in the WKB-
approximation, see Ludwig (1975). Equation (28) is called the eikonal 
equation. It is a Hamilton-Jacobi equation and can be written as: 

H(x,p) = 0, (29) 

in which H is the Hamiltonian 

H(x,p)=i(biPi + ̂ aipf\ (30) 

with 

" - & 

The corresponding system of ordinary differential equations is: 

dx, ÔH . . . . 
- i = - = bi + aiPi, (32a) 

dp,. ÔH " [db. , 1 da, 2~| „ „ . 

in which s is a parameter along the characteristics. The rate of change of Q with 
s is given by 

£--^.rt+if5p.-ij«rf*>. (32c) 

The dynamical system defined by the equations (32) is assumed to have an 
equilibrium point given by 

X' = H i= l ,2 , . . . ,n . 
Pi = 0j 
ß = 0 (33) 

It is seen that the projection of this equilibrium point on the x-space coincides 
with the equilibrium point of the deterministic system. The equations (32) are 
called the ray equations. The projections of solutions of (32) on the x-space are 
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called rays. All rays emanate from the equilibrium point. Rays may be 
interpreted as paths of maximum likelihood joining (points in the neighbour­
hood of) the equilibrium point with points in x-space. See Ludwig (1975) and 
the references given there. 

Local analysis near the equilibrium. In the neighbourhood of the equilib­
rium point of the ray equations, Q is approximated by a quadratic form: 

Q(x) * Q{x) = £ 1 Pu(Xi - 1 ) (x. - 1 ), (34) 
i.j 

in which Pu is a symmetric matrix: 

Differentiation of expression (34) gives an approximation for the pf: 

Pi = ^ « I Pij(Xj-l), i= U 2 , . . . , n. (36) 
cxi j 

The deterministic vector field 6, near the equilibrium point is approximated by 

bi^l1^-L{Xj-l),i=l,2,...,n. (37) 

Substitution of the approximations (36) and (37) in tne eikonal equation gives: 

l | ^ ( * i - l ) Z ^ ( ^ - l ) + ̂ i | i : / ,
y ( x i - l ) | 2 =0. (38) 

Making use of the symmetry of Pip this can be rewritten in the matrix form: 

PAP + PB + B,P = 0, (39) 

in which B=(dbi/dxJ), t denotes the transpose and A is a diagonal matrix 
containing the values of at at the equilibrium point. Left and right 
multiplication with S = P~1 gives: 

A + BS + SB' = 0. (40) 

If the matrices S and A are written columnwise as vectors, a linear system with 
n 2 equations is obtained, which can be solved for S. The matrix P is obtained by 
inversion of 5. All eigenvalues of B are negative, because of the assumed 
stability of the equilibrium point of the deterministic system. Consequently, the 
last two operations can be carried out. The elements of the matrix P can be 
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substituted in expression (34), resulting in an approximation of Q in the 
neighbourhood of the equilibrium point. 

Confidence regions. From the Ansatz (27) it is clear that contours of 
constant Q (hypersurfaces) in the state space, are contours of constant 
probability. Let Qz be the value of Q corresponding to the contour, for which 
the probability of being in the region R enclosed by this contour, is equal to z: 

L' Ps(x')dx' = z,0<z<l. (41) 

In order to construct the contour enclosing the confidence region of probability 
z, the corresponding value Qz of Q has to be determined. The following 
heuristic method is used. According to the local analysis, in a first 
approximation Ps has an n-variate normal distribution around the equilibrium 
point, given by 

Ps(x) = C e x p ( - ^ \ (42) 

Then by a standard result in probability theory (Hogg and Craig, 1970), 
2Q(x)/e has a chi-square distribution with n degrees of freedom. The value 
2QJs which will not be exceeded by 2Q(X)/E with probability z, can be found in 
a table of the chi-square distribution with n degrees of freedom. In the case 
n = 2, used in the examples in Section 5, the chi-square distribution has a simple 
form from which it can be derived that 

Ö z = - e l n ( l - z ) . (43) 

Numerical solution of the ray equations. The local analysis near the 
equilibrium point may not be a sufficiently accurate approximation away from 
this point. Then the ray equations have to be solved numerically. 

(i) The initial value approach 
For the system (32) a starting point x(0) at s = 0 is chosen close to the 
equilibrium point. The formulas (34) and (36) give the initial values for Q and p, 
(i= 1, 2 , . . . , n). The ray equations are solved numerically by using a routine 
for solving a system of ordinary differential equations written in first-order 
form with conditions in the form of initial values. For this purpose the NAG-
library contains Runge-Kutta Merson routines or variable order, variable step 
Adam routines. On applying such a routine, the solution Q(s), xf(s), pt(s) 
(i= 1, 2 , . . . n) is obtained along the ray defined by the initial point x(0). Once 
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the initial point has been chosen, there is no control over the way the ray 
develops through space. Generally there is a very strong dependence on the 
initial point. Especially when the eigenvalues of the deterministic system in the 
equilibrium point do not have ratios close to one, it is impracticable to choose 
the initial points in such a way that a bundle of rays is obtained, which 
uniformly covers the state space around the equilibrium point. Thus, the 
method is not well suited for the construction of the contours of the confidence 
regions. 

Even shooting methods, in which the initial point is manipulated 
systematically as to obtain the desired rays, did not solve the difficulty 
(Ludwig, 1975). 

(ii) The boundary value approach 
Instead of specifying the In + 1 conditions at a starting point close to the 
equilibrium, n + 1 conditions are imposed at the starting point coinciding with 
the equilibrium and n conditions are imposed at an endpoint which can be 
chosen freely: 

-oc: ß = 0,x, = l, / = 1 , 2 , . . . 

s = 0: x,. = <?,., i ' = l , 2 , n 

,n (44a) 

(44b) 

where the et are the coordinates of the endpoint. At s-> — oc the condition for x 
has been retained and that for p has been dropped. This choice is understood as 
follows. Trajectories of (32ab) exist, that for decreasing s leave a neighbour­
hood of the equilibrium point and in the limit s-* — oo approach the subspace 
with negative eigenvalues. Condition (44a) forbids such solutions. 

The limit s-+ — oc (in numerical computations replaced by s= — s*, s* a 
sufficiently large number) will cause the characteristic to start at (close to) 
x = 1, p = 0. The characteristic lies in the unstable manifold through x = 1, p = 0. 
It can be shown (Roozen, 1986) that the plane tangent to this manifold at this 
point satisfies (39), so that the boundary value solution corresponds to an 
initial value solution. 

The two point boundary value problem thus described is solved by using an 
appropriate routine, for example the NAG-routine D02RAF. This routine uses 
a deferred correction technique and Newton iteration. On a grid of s-values, a 
first approximation to the solution has to be given, from which the routine 
iteratively tries to find the solution. Experience has shown that the method 
works well provided that a good first approximation is given and a sufficient 
number of grid points are used. 

Endpoints may exist, for example in the neighbourhood of a caustic, which 
can be connected with the equilibrium by more than one characteristic. In that 
case, the characteristic that is constructed by the boundary value approach 
depends on the first approximation to the solution. 
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Because the endpoints can be chosen at will, contours of confidence regions 
can be constructed by this method quite efficiently. The contours and rays of 
the stochastic two population models shown in Section 5 of this paper, have 
been obtained by this method. Details of the numerical construction of rays 
and contours can be found in Roozen (1986). 

4. Extinction. In this section, exit from a region R with boundary S is treated. 
Questions of interest are the following. What is the expected first exit time and 
which population is expected to exit first? In the birth-death models treated in 
this paper, exit at the boundary x, = 0 means extinction of population i. 

The expected time of first exit T(x), starting in a point x in a region R with 
boundary S, satisfies the Dynkin equation, which can be derived from the 
backward Kolmogorov equation (Gardiner, 1983; Schuss, 1980) and is given 
by: 

i = l 

dT(x) e . ,d2T{x) 
W ^ + ̂ W ^ l - l . (45) 

It has to be solved with the boundary condition 

r(x) = 0forxeS. (46) 

The problem is rewritten as 

LeT=-I in R 

T=0onS. (47) 

The operator Lt is the formal adjoint of the operator on the right side of 
equation (16) working on the p.d.f. 

The probability P(x, x') of exit at x'eS, starting from xeR is related to the 
solution u(x) of the boundary value problem: 

Leu = 0inR 

u=J[x) on S (48) 

by the relation 

u(x) = $J(x')P(x,x')dSx,. (49) 

After choosing the function/, we can solve the problem (48) and obtain the 
corresponding function u(x). If for example f(x') = S(x' — a), then by solving 
(48), u(x) = P(x, a) is obtained. 
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In the asymptotic analysis for small £, see Ludwig (1975), Matkowsky and 
Schuss (1977), it follows for the expected exit time that 

r~eöu*"c , (50) 

in which x* e S is the boundary point at which Q takes its minimal value at the 
boundary. The most likely point of exit is the boundary point x*. The 
asymptotic results have been derived for the case that at the boundary S the 
trajectories of the deterministic system enter the region R. 

In the study of extinction the boundaries x, = 0 (/'= 1, 2,. . . . n) are of 
interest. If x, = 0 is the boundary which contains x*, then i is the population 
which most likely will get extinct first. However, in the application to the birth 
and death models, some complications arise. At x, = 0 (/= 1, 2,. . . , n) the 
trajectories of the deterministic system remain in the boundary x, = 0. The 
functions a,(x) and fc,(x) tend to zero at the boundary x, = 0, which requires a 
new type of local asymptotic analysis. As a consequence of the fact that a;(x) 
and bt(x) vanish near the boundaries, the rays there deflect and large gradients 
in the ray variables are found. 

The problems are avoided by studying the mean time needed for a system of 
populations to reach one of the small positive levels x, = /, (i'= 1, 2,. . . , n), 
assuming the WKB-Ansatz to be valid for x,>/, (/'= 1, 2, . . . , n). The 
computation of x* and Q(x*) can be carried out efficiently by using a variant of 
the boundary value approach. With respect to the boundary x, = /, the 
boundary conditions are: 

S-+-00: ß = 0, x ; = l , j=l,2,...,n 

s = 0: xi = li,pj = 0, j=l,2,. . . ,n andj^i. (51) 

The variant of the boundary value approach with conditions (51) has to be 
solved for each of the boundaries x, = /, (« = 1, 2 , . . . , «). The boundary at 
which the smallest value for Q is found is the expected exit boundary and the 
point on this boundary where this value is taken is the expected exit point. For 
the details of the numerical solution, see Roozen (1986). 

5. A stochastic two population model. In this section the theory is applied to a 
stochastic two population model. The model under consideration is described 
by birth and death rates of the form: 

Bt(Nlt #2) = AMA.o + ̂ JV , +Xl2N2) 

Di{Nl,N2) = Nl(n10 + fi11N1+fil2N2) 

D2(N1,N2) = N2(fi20 + n21N1+ti22N2), (52) 
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in which the Xi} and \ii} are constants, such that the birth and death rates are 
positive for all admitted values of N1 and N2. 

The deterministic system. In the original variables iV1 and N2, the 
deterministic system is given by the generalized Lotka-Volterra system: 

-^-N^o + buNt + b^NJ 

AM 

- ^ = N2(b20 + b21N1+b22N2), (53) 

in which fei;= 1, Xi} — fitj for i'= 1, 2 and7 = 0,1, 2. The equilibrium populations 
K^ and K2 are given by 

K — ^22^io~"i2"2o is _ b l l b 2 0 — b2lbl0 

è21f e12-f ellè22' 2 b21è12-f cllÖ22 

Introduction of new variables 

x. = 
N-

x, = -* , /= 1,2 (55) 

gives: 

dx, . 
—-- = K jX^ l + oe — xl — <xx2) 

Ax 
-^l = k2x2(l + ß-ßXl-x2), (56) 

in which: 

k^-b^K» k2=-b22K2, a = ^ , ß = ^ - (57) 
°11Ä1 °22Ä2 

Assuming that both populations have a self-limiting growth (i.e. that 6 n and 
b22 are negative) the factors kx and /c2 are positive. They can be interpreted as 
the reciprocals of time scales for the respective populations. The type of 
interaction between the populations is determined by the parameters a and ß as 
shown in Fig. 1. 

For the subsequent analysis it is important to know the condition under 
which the equilibrium of the deterministic system at (1,1) is stable. 
Linearization of the system ft^Xj, x2), b2{xx, x2) which is given by equations 
(56), in the neighbourhood of the equilibrium point gives: 
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predator-

prey 

mutualism 

competition 

predator-
prey 

Figure 1. The type of interaction between the two populations depending on the 
parameters a and ß. 

dx 
d? 

= Bx, 

in which x = (x, — 1, x2 — 1)' and the matrix B is given by 

B = \ ~ k l ~*kl 

l - ß k 2 - k 2 

The eigenvalues of B are: 

K> = 
-(kl+k2)±J(kl-k2)

2+4klk2<xß 

(58) 

(59) 

(60) 

The condition for stability is that the real parts of the eigenvalues are negative, 
resulting in 

aj3<l. (61) 

Figure 2 shows the region of stability in the a,/?-parameter plane. From Figs 1 
and 2 it can immediately be concluded that the equilibrium ( 1, 1 ) is stable for all 
predator-prey models, while for mutualism and competition models this 
equilibrium is stable for parameter values of a and ß in only a small region of the 
a,/?-parameter plane. 

The same kind of stability analysis as given above can be carried out for the 
equilibrium points at (0. 0), ( 1 + a, 0) and (0, 1 + ß), which are of interest only if 
both coordinates are non-negative. It can be shown that also for these 
equilibrium points the type of stability depends on a and ß only. 

70 



Figure 2. Deterministic stability. The region of stability (shaded) of the 
deterministic system at the equilibrium point (1, 1) depending on the parameters 

a and ß. 

Local analysis of the stochastic system near the equilibrium. On the 
assumption (61) the theory of the preceding sections may be applied. Here the 
local analysis is made, which is valid in the neighbourhood of the equilibrium 
point. Generally the system (40) has to be solved numerically. In this case 
however, it is possible to find explicit expressions. In scaled variables x, the 
functions at(x) defined by equation (17b) are given by 

in which 

and 

al{xi,x2) = x1xl(ai0 + anKix1+a12K2x2) 

a2(Xj, x2) = K2x2(a20 + a21K1x1 +a22K2x2), 

au = ^u + Vij for i' = 1, 2 and ; = 0, 1, 2 

(62) 

p - i - £ l ± ^ 2 _K1+K2 

The matrix A is diagonal with elements ax and a2 equal to: 

a1=a1{l,l) = Kl(al0 + a11K1+a12K2) 

a2 = a2{\, \) = K2{a20 + a2lKl+a22K2). 

(63) 

(64) 

The matrix B is defined by (59). Equation (40) leads to the following linear 
system: 
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— 2Ä', — oikl —!xkl O 

-ßk2 -kt-k2 O -*kx 

-ßk2 O -k1-k2 - * * , 

O -ßk2 -ßk2 -2k2 

The solution of this system is given by 

H111 
*21 

*12 

_s22 _ 

r_a' i 
0 

0 

_ — a2 _ 

(65) 

2*,* 2(* 1+* 2)( l -a/?) 

ra^aCÄj + Jk^ l -a^Q + fl^Jtf -a,/Hcf-a2aJfc? 
*|_ -a^k2-a2xk2 alß

2k2 + a2kl[k1+k2(l-xß)')_ 

The matrix P in expression (34) is found by inversion of the matrix S: 

• (66) 

/ > = 5 _ 1 = 
2(ki+k2) 

(ai(ik2 — a2y.k1)
2 + aia2(kl +k2)

2 

a/*)] ajkl + a2aik2 

alk2[k2 + kl{l-xß)'] + a2x
2k2 

'alß
2kl + a2kiikl+k2(l 

aj]k2 + a2xk2 (67) 

By using (42) the bivariate normal p.d.f. is determined. The corresponding 
confidence contours in the state space are ellipses. In some special cases the 
expression for P can be simplified. For example, the competition model, treated 
by May [1974, p. 123-129]. is a particular case of our more general model. The 
p.d.f. derived by May is easily found from the formulas given above. 

The expressions show the complex dependence of the ellipses on the 
parameters/:,, k2, a, ß of the deterministic system and the noise components at 

and a2 at the equilibrium point. It may be noted that multiplication of 
fcj, k2, ö j , a2 with the same constant leaves the resulting p.d.f. invariant. The 
effect of an increase (decrease) of velocity by which the system returns to the 
deterministic equilibrium cancels the effect of an increase (decrease) of the 
stochastic fluctuations. 

The covariance matrix corresponding to a bivariate normal distribution is 
given by Batschelet (1981): 

b>ffiff2 °\ J' 
(68) 

in which a\ and a\ are the variances and p is the correlation coefficient. On 
equating this matrix to the actual covariance matrix eS, the following 
expressions for the variances and the correlation coefficient are obtained: 
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_2_„alk2[k2 + kl(l-aßy] + a2a
2k* 

al~k -,,, /, tu , i, w i Zä~\ ' y°y> 2/c1fe2(fc1+fc2)(l-a^) 

g | . , e u 2 . l [ f c l + M i - « f f l + ^ ^ t ( 7 0 ) 

-(fltfflcf + aattfc2) ( 7 1 ) 

^ { a ^ ^ + fc1(l-a/?)]+fl2a
2fc1

2}{a2fc1[fe1+fc2(l-«^)] + Ma*22}' 

Note the dependence of the first two expressions on e, the reciprocal of the 
mean of the equilibrium populations. The parameters ku k2, a,, a2, E are all 
positive. The condition for a stable equilibrium is that 1 — aß is positive. Then, 
it is easily seen that the sign of the correlation coefficient p equals the sign of the 
numerator on the right side of equation (71), from which it follows that for 
competition (a>0, ß>0) the correlation coefficient is negative and for 
mutualism (a<0, ß<0) the correlation coefficient is positive. For predator-
prey systems both positive and negative values are possible. 

For the cases that the local analysis is also valid far from the equilibrium, an 
expression for the expected exit time can be derived. Let C, be the minimal 
value of Q in equation (34) for which the ellipse touches the axis x, = 0 and 
define Tt by 

7;. = ec'/£, i = l , 2 . (72) 

It can easily be shown that 

fl (k1+k2)klk2(l-ccß) } f 

1 (k.+k^k^jl-OLß) } _ A 1 / 2 „ , 

£ a^kl + ajkjik^k^l-aß)^ 7>exp - fl2;y, , T r r . ,. r . O T h ^ - <74) 

The last equalities in (73) and (74) follow from (69) and (70). For the expected 
extinction time T it follows that 

r - m i n ^ , T2). (75) 

The ecological stability index ç, defined in Nisbet and Gurney (1982, p. 10) by 

£s ln T (76) 

then satisfies: 

*~Zsaia{e*'e*} (77) 



Recalling that scaled population variables are used, this result can be seen as a 
two-dimensional generalization of the one-dimensional result in Nisbet and 
Gurney (1982, p. 202). 

Given the values of a,. a2. kx, k2 it may be wondered which combination of a 
and ß leads to the largest ecological stability. Figure 3 shows the curves of equal Z 
in the a, /^-parameter plane. Typically, the largest ecological stability is found in 
predator-prey systems. As an illustration of the different meaning of stability in 
deterministic and stochastic systems. Fig. 3 should be compared with Fig. 2. 

Fig. 3. Stochastic stability. Curves of equal I. derived from the local analysis, in the 
a./(-parameter plane. The arrows indicate increasing values of ç. The difference in ç-
values between successive curves in each of the figures is constant. In the atypical 
case at/k1 = a2/k2 the maximum of ^ is adopted on ß= —a,a/a2, which is a line 
through the origin with a negative slope. Fig. 3a shows a case al/kl aa2/k2 and 
Fig. 3b shows a case a ,/fc, ?,a2/k2. The actual values of a,. a2, fc,, k2 are 1.0,1.3,1.1, 

0.8 for case a and 1.0, 8.0, 1.1, 0.7 for case b. 

Apart from the time to extinction it may be convenient to have an expression 
for the expected time for a system of populations to reach one of the levels x, = /, 
(expressed in units of the equilibrium populations) with /, not necessarily equal 
to zero. It is found that with 

7j. = e<l ' -1 , ï /2 '?,i=l,2 (78) 

the expected time T satisfies: 

r~min(r'1., T
lt). (79) 

The points of contact of the ellipses with the axes xt = lt and x2 = l2 are given by 

(80) 
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TABLE I 
(A) The Birth and Death Rates for Three, Two-population Models. 

(B) Parameters of the Corresponding Deterministic System. 

1 2 3 
Predator-prey Mutualism Competition 

A 

B 

w») 
(ftl) 

a 
ß 

k2 

K2 

1. 
.6 
.280 
.480 

.004 

.0056 

.012 
0. 

.8 
-.7 

.4 

.4 
50 
50 

0. 
0. 

.0064 

.008 

.6 

.8 

.480 

.480 

.004 

.0016 

.012 
0. 

-.7 
-.2 

.4 

.4 
50 
50 

.0056 

.0016 
0. 

.0096 

1. 
.8 
.64 
.56 

.004 
0. 

.008 

.0008 

.8 

.2 

.2 

.2 
50 
50 

0. 
.0016 
.0032 
.0056 

(A) The coefficients appear in the same order as in (52). (B)The values of the parameters can be calculated 
from the birth and death rates. 

TABLE II 
Results of Numerical Birth-Death Experiments 

1 Number of Exit at x, =0.1 Exit at x2 =0.1 
£ experiments log T a t .x 2= % of exp a t .x ,= %ofexp 

10 
20 
40 
60 
80 

200 
200 
150 
50 
50 

2.175 
3.067 
4.554 
5.530 
6.879 

1.14 
1.11 
1.21 
1.14 
1.26 

57 
59.5 
61.3 
82 
94 

1.21 
1.30 
1.48 
1.61 
1.65 

43 
40.5 
38.7 
18 
6 

and 

x^l+^d-^x^l,, (81) 
' i t 

respectively. 
In cases that the local analysis is valid only in a small neighbourhood of the 

equilibrium, the expressions given here cannot be used. Instead, the full system 
of ray equations (32) has to be solved numerically. 

Construction of contours. For the cases, defined by the birth and death rates 
in Table I, the ray equations (32) have been solved numerically by the method, 
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presented in this paper as the boundary value approach. Figure 4 shows the 
confidence contours and rays for the various cases. The cases 1 and 3 are similar 
to the examples 1 and 2 of Ludwig (1975). The difficulties reported by Ludwig 
in the construction of rays in his second example, the competition model, were 
also experienced by the author, when the initial value approach was used, in 
which the initial values were chosen equidistantly on a small circle around the 
equilibrium point. As a consequence of the fact that the eigenvalues of the 
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Figure 4(a) and (b). 
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Figure 4. Rays and confidence contours for (a) the predator-prey model, (b) the 
mutualism model, (c) the competition model, defined in Table I, as obtained by 
solving the ray equations by the boundary value approach. From the inside 
outwards, the three (inner) contours correspond to the 50%, 95% and 99% 

confidence regions, respectively. 

linearized deterministic system at the equilibrium point do not have a ratio 
close to one [ratio 5.7 in Ludwig (1982)], almost all rays follow very closely and 
nearly indistinguishable from each other one of two paths, as shown in 
Fig. 5. The boundary value approach introduced in this paper overcomes 
these problems, see Fig. 4c. From the figures it is apparent that close to the 
equilibrium the contours have the elliptic shape, while further away deviations 
from the elliptic shape tend to come in. 

Figure 6 shows the result of a numerical simulation (see the Appendix) of the 
predator-prey system. Each of about 35,000 dots represents a visit. Because the 
population sizes can take on only integer values, the dots should lie on a two-
dimensional grid. However, the dots have been plotted slightly away from their 
grid positions in a random way, in order to get a good idea of the corresponding 
p.d.f. The agreement with the constructed contours is quite good. 

Exit boundary and exit time. As an illustration of the theory dealing with 
the expected exit point and the expected exit time, a number of numerical 
simulations (see the Appendix) have been carried out for the competition 
model given in Table I. with different values of the noise parameter e. The 
results are shown in Table II. The first column shows the value of e _ 1 . The 
second column shows the number of experiments carried out for the 
corresponding case. Column 3 shows the values found for log T, in which 7" is 
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Figure 5. Rays obtained by the initial value approach. The initial points were chosen 
equidistantly on a circle around the equilibrium point. Instead of covering the state 
space uniformly in the neighbourhood of the equilibrium, there is a tendency for the 
rays to follow one of two main directions. For this illustration an extremely large 
radius ( = 0.05) of the circle was chosen. For a small radius (for example = 0.001 ) the 
effect is stronger and the rays leave the equilibrium almost indistinguishable from 

each other in one of two directions. 

Figure 6. Result of a numerical simulation of the predator-prey birth-death 
process, defined in Table I, together with the 95% and 99% confidence contours as 
obtained by the boundary value approach. The 50% contour is almost invisible. 
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Figure 7. Relationship between log Tand l/e. The crosses are values obtained by the 
experiments. The lines correspond to the expressions (82a) and (82b) with 

C =C = 1 
Hoc Way 1 -

the mean time needed for one of the populations of the system to reach 10% of 
its equilibrium value. The resulting columns 4 and 5 show the mean point of 
exit at the boundary xx = 0.1, x2 = 0.1 (in units of the equilibrium values) 
respectively, with the percentage of exits at that boundary. 

The approach based on the local analysis, as described in this paper, 
indicates that (0.1,1.31) is the most probable exit point, so that population 1 is 
expected to exit first. The expected exit time is 7]oc~e006062/e. 

Solution of the ray equations, in the way described at the end of section 4, 
indicates that (0.1,1.25) is the most probable exit point, so that population 1 is 
expected to exit first. See Fig. 4c, which indeed suggests that the boundary 
Xj =0.1 is tangent to a contour line in the neighbourhood of (0.1,1.25). The 
corresponding value of g is lower than is the case for the contour, to which the 
boundary x2 = 0.1 is tangent. The expected exit time is r r ay~e007508 /£ . 

As is seen, the mean exit point obtained from the experiments agrees well 
with the value from the asymptotic theory for small e. Notice the increasing 
percentage of exits in the neighbourhood of the predicted place for decreasing 
values of e in the experiments. The approach based on the local analysis leads to 
results which agree reasonably well with the results of the experiments. 

We write the relationships between T and e as 

<T _/-< -0 .06062/c 
1 loc — '"loc c ' 

rp _ / " „0.07508/£ 
1 ray — Way c ' 

(82a) 

(82b) 
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in which Cloc and Cray are constants. In a graph of InT against e these 
relationships are straight lines which, asymptotically for small e, should be 
parallelled by a line fitted through the data points of the experiments, see Fig. 7. 
At this point the experimental data agree reasonably well with the theory. 

It must be noted that in the numerical simulations above, the (largest) values 
of e are not small compared with the minimal value 0.07508 of Q, so that the 
validity of the first order WKB-approximation may be questioned here. 
However, there is a practical reason (a limited computing time) that makes it 
almost impossible to obtain simulation results for smaller values of e. 

The author thanks J. Grasman, J. B. T. M. Roerdink and H. E. de Swart for 
remarks on the manuscript and/or discussions. The idea to formulate the 
conditions of the ray equations as boundary conditions originated from R. M. 
M. Mattheij. 

APPENDIX 

Numerical simulation of stochastic birth-death processes. Numerical simulations have been 
carried out in order to check the results obtained by the theory. The simulations are discussed 
here for a two population model, the generalization to higher dimensions being straightforward. 

Let a system of two populations be in the state {Nlt N2) at time t. Then in the small time 
interval of length Af succeeding t, one of the following five mutually exclusive events occurs: 

(1) a birth in population 1 with probability Bl(Nl, N2)&t 

(2) a death in population 1 with probability D1{N1, N2)At 

(3) a birth in population 2 with probability B2(Nl, N2)At 

(4) a death in population 2 with probability D2(Nl, N2)At 

(5) neither a birth nor a death in one of the populations with probability 
1 - [ £ , ( # „ NJ+D^Ni, NJ+B^N^ N2) + D2(Nlt JV2)]At. (Al) 

• In a more convenient form for numerical simulation, the process is described as follows. When 
the process has arrived in a state (Ni, N2) there is a waiting time TNi N2 in that state, followed by a 
jump away from that state, which then is with probability one to one of the states (N1 + 1,N2), 
(JV, — 1, N2), (Nt, N2 + l), (Nt, N2 — l). The waiting time TNlNl is distributed exponentially: 

P(TNi N 2 > r ) = e-lBl<N.•w2> + Cl<"l•"^> + B^<wl•"2> + D^<^•''^>>, ( A 2 ) 

see for example Karlin and Taylor (1975/1981). Using the inverse method [Abramowitz and 
Stegun (1972, p. 950, 953)] we obtain as random deviates from this exponential distribution: 

' — B^U + D™' (A3) 

in which U is a random number on the interval (0, 1). Note that r depends on Nl and N2. 
After the generation of the waiting time, a jump has to be made to one of the four neighbouring 

states indicated above, with total probability equal to one. These jump probabilities: 
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Bt £>, B2 D2 

T'T'T'-T (A4) 

are obtained from the old probabilities by scaling with 5: 

S = 5 , + Z ) , + ß 2 + Z)2. (A5) 

The jump that is actually carried out is determined by a random number generator. To this end 
the interval (0, 1) is divided into four disjunct subintervals, each of which correponds to one of 
the jumps, the length of the interval being equal to the probability of the jump. A number is 
randomly chosen from the interval (0, 1 ) and the jump corresponding to the interval in which the 
random number lies is carried out. 
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NUMERICAL CONSTRUCTION OF RAYS A N D CONFIDENCE 

CONTOURS IN STOCHASTIC POPULATION DYNAMICS 

H. Roozen 

Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

We consider a stochastic system with small stochastic fluctuations, where the 

associated deterministic system has a stable equilibrium point. The stationary 

Fokker-Planck (or forward Kolmogorov) equation can be solved by the WKB-

method, leading to a system of ray equations. This technical note deals with 

the numerical solution of the ray equations. The methods which are described 

here have been applied to stochastic birth-death models [1]. This technical 

note is a supplement to paper [1]. 

1. Introduction 

We consider the n-dimensional stochastic system which is described by the 

stationary Fokker-Planck equation: 

o = - È jê-lW.(*)] + 5 Ê E TÄTM*) WL (il) 
>=i OXi z i=i j=i aXiXi 

in which b is the deterministic vector field, a the symmetric positive definite 

diffusion matrix, and c a small parameter. It is assumed that in a bounded 

region R of the state space x, the deterministic system 

dx 
- = 6(«) (1.2) 

82 



has a single stable equilibrium point. Without loss of generality this equilibrium 

is positioned at the origin. We assume that at the boundary S of the region R 

the deterministic vector field is directed inwards to R. The asymptotic theory 

for small e yields expressions for the most probable exit point x* £ S from the 

region R, and the expected time of exit from R [2]. 

To the solution of (1.1) a simple WKB-Ansatz [3] is made 

Ps(x) = Cexp[-Q(x)/c}. (1.3) 

Substitution in (1.1) leads to leading order in e to the eikonal equation: 

0=£M*)^+£r^teév (L4) 

This is a Hamilton-Jacobi equation and can be written as H(x,p) = 0, in which 

H is the Hamiltonian 

H(x,p) = '^2bipi+^2^aijpipj, (1.5) 
« 'J 

with pi = dQ/dxi. The corresponding system of ordinary differential equations 

is: 

dxi dH , v ^ / • - ^ x / -, /> x 
— = — = bi + 2^aijPj, ( t = l , 2 , . . . n ) (1.6a) 

dpi dH v ^ dbi \-^\da;k ,. , „ . ., „,. 

— = -H(x,p) + J2 -jj-Pi = £ \aijPiPh ( 1 6 c ) 
i i ,j 

in which s is a parameter along the characteristics. The projection of a char­

acteristic on the x-space is called a ray. The system (1.6) is called the system 

of ray equations. It can be considered as a dynamical system in which Q and 

the elements of x and p are the state variables. The variable Q is passive in 

the sense that it depends on the other state variables, while the other state 

variables do not depend on Q. If desired, Q could be omitted from the system 

and be computed afterwards from the values of x and p along a characteristic. 

The dynamical system (1.6) is assumed to have the equilibrium point 

x = p = 0, Q = 0. (1.7) 
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The projection of this equilibrium point on the x-space coincides with the sta­

ble equilibrium point of the deterministic system. The value of Q is zero at 

the equilibrium point. All characteristics start in a close neighbourhood of the 

equilibrium point. As is seen from equation (1.6c), the value of Q along a 

characteristic is nondecreasing. The function Q is useful for the construction 

of confidence contours. The confidence contour of probability z (0 < z < 1) en­

closes the smallest region in the x-space where with probability z the system can 

be found. By assumption (1.3) the confidence contours are (n — l)-dimensional 

surfaces in the «-space on which Q has a constant value. The function Q is also 

useful in finding the most probable exit point and the expected time of exit 

from R. The asymptotic theory in [2] shows that the point x* on S which has 

the lowest Q-value is the most probable point of exit, and that the expected 

exit time is expressed in the value of Q at x* by the relation T ~ exp[Q(x*)/e]. 

Various ways of numerically solving the system of ray equations are discussed 

below. 

2. The initial value approach 

The initial point x(s = 0) of a ray is chosen close to the equilibrium 

(1.7). A local analysis in the neighbourhood of this equilibrium yields values 

for p(s = 0) and Q(s = 0). In this local analysis, Q is approximated by a 

quadratic form 

Q(x) « \x*Px, (2.1) 

in which t denotes the transpose and P is a symmetric matrix. It follows that 

p=^ß.^Px. (2.2) 
ax 

The deterministic vector field b is approximated by its linearization at x = 0: 

6 KBX, (2.3) 

in which B = (dbi/dxj(Q)). Substitution of (2.2) and (2.3) in the eikonal 

equation gives: 

PAP + PB + B*P = 0, (2.4) 

in which the matrix A is given by A = (a;j(0)). Left and right multiplication 

of (2.4) with S = P-1 gives: 

A + BS + SB* = 0. (2.5) 
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If the matrices 5 and A are written columnwise as vectors, a linear system 

with n2 equations is obtained, which can be solved for S. The matrix P 

is obtained by inversion of S. All eigenvalues of B are negative because of 

the stability of the equilibrium of the deterministic system. Consequenty, the 

last two operations can be carried out. The elements of the matrix P can 

be substituted in expressions (2.2) and (2.3), resulting in approximations for 

p(s = 0) and Q(s = 0). 

The ray equations are solved numerically by a routine for solving a system 

of ordinary differential equations in first order form, with initial conditions. 

Such routines can be found for example in the NAG-library [4]. The solution 

x(s),p(s),Q(s) is obtained along the characteristic determined by the initial 

point x(s = 0). In cases that one is interested in the ray starting from a partic­

ular point where the values of p, x and Q are known (or can be approximated, 

as above), the initial value method performs well, and by using an appropriate 

numerical routine, the solution can be obtained with a high accuracy. There 

is no control however, over the way the ray develops through x-space. Gen­

erally, there is a strong dependence on the choice of the initial point. Thus, 

the method is not well suited for the construction of confidence contours. This 

has been demonstrated for a two-dimensional stochastic model in [1]. In some 

numerical integration routines there is the possibility of using a termination 

criterion based upon the value of one of the state variables. If it is desirable to 

terminate the computation along a characteristic at a specific value of Q, then 

the treatment of Q as a state variable is advantageous. 

3. The boundary value method 

In this approch n + 1 conditions are imposed at the beginning of the ray 

and n conditions at the end of the ray, respectively: 

s ^ - o o : Q = 0,x = 0, s-0:x = e, (3.1) 

where e is the position of the end point which can be chosen freely. In the 

numerical computations the limit s —+ —oo is replaced by s = —s*, with s* 

a sufficiently large number. The problem is solved using the NAG-routine 

D02RAF, ment for a system of ordinary first order differential equations with 

boundary conditions. This routine uses a deferred correction technique and 
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x=2 

Figure 1. Some trajectories of the system (3.3) in the (x,p)-state 

space. 

Newton iteration. On a grid of s-values, an initial estimate to the solution 

has to be given, from which the routine iteratively tries to find the solution. 

The initial estimate for the «-coordinates on the grid follows from a linear 

interpolation between the coordinates of the equilibrium point and the end 

point. The initial estimate for the corresponding values of p and Q is based on 

the local analysis formulas (see section 2). An alternative way to obtain initial 

estimates is to use known values along a characteristic close to the desired 

characteristic. 

For s —* —oo the condition x = 0 has been imposed and not the condition 

p = 0. The motivation for doing this is explained by means of an example. 
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Example 1. We consider the one-dimensional stochastic system defined by 

b(x) = x(l - x), a{x) = 2x. (3.2) 

The deterministic system has an unstable equilibrium at x = 0 and a stable 

equilibrium at x = 1. A solution is sought in the form of the WKB-Ansatz, Q 

having a minimum at x = 1. The system of ray equations yields: 

dx 
— = x(l-x) + 2xp, (3.3a) 
as 

± = (2x-l)p-p2, (3.36) 

% = xp\ (3.3c) 

The system (3.3a6) has the following equilibrium points: 

(*,p) = ( l > 0 ) I ( 0 1 0 ) 1 ( 0 , - l ) , ( | , - i ) . (3.4) 

Trajectories of the system (3.3a6) are depicted in Fig. 1. The local analysis in 

the neighbourhood of (x,p) = (1,0) shows that the solution of this example is 

situated along the line p = x — 1. Linearization of this system at (x, p) = (1,0) 

gives: 

(IMïïX-;1)-
The matrix has the following eigenvalues and corresponding eigenvectors: 

A 1 = - l , w1 = (\Y Aa = l, « » 3 = ( } Y (3-6) 

So in a neighbourhood of the equilibrium (x,p) — (1,0) there is a stable man­

ifold corresponding to the first eigenvalue and eigenvector and an unstable 

manifold corresponding to the second eigenvalue and eigenvector. Let in the 

present example the end of the ray be specified by for example: 

s = 0 : x - 2. (3.7) 

From Fig. 1 it is apparent that by the condition 

s-* - o o : p = 0, (3.8) 
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the solution is not uniquely determined. Apart from the desired solution along 

the characteristic p — x — 1, there is an infinite number of other solutions 

satisfying condition (3.7) as well as condition (3.8). In contrast, the condition 

s —+ —oo : x = 1, (3-9) 

together with condition (3.7) determine the solution uniquely. From this exam­

ple we see that the condition for s —* —oo must not be such that it determines 

a surface in the (a;,p)-space which coincides with the stable manifold at the 

equilibrium point. 

Remark. Apart from this, Fig.l exhibits an interesting feature. The re­

gion enclosed by the trajectories connecting the equilibrium points (x,p) = 

(1,0), ( 0 , -1 ) , 

(0,0) contains periodic orbits. Along such an orbit s increases and by (3.3c), 

Q increases as well. After every rotation the value of Q has increased. In this 

region, Q is a multi-valued function of x. In the region 0 < p < x — 1, Q(x) 

is two-valued. The solution we are interested in is situated along p = x — 1 

(which is a straight line; generally in one-dimensional stochastic systems we 

have a curve). Suppose we try to find the solution by the initial value method 

of section 2. Small errors occur in the initial values of the ray variables and 

are introduced by the numerical integration of the ray equations. As a conse­

quence, the line p = x — 1 is not followed exactly. In the limit s —• oo, instead 

of approaching the point (x,p) = ( 0 , -1 ) asymptotically, a trajectory close to 

p = x — 1 is followed, which in the neighbourhood of (0,-1) curves upward 

or downward along the p-axis. When this happens, the computation can be 

terminated because the results have lost significance. This demonstrates the 

difficulty involved in numerically constructing the characteristic that connects 

two equilibria. Moreover, we see that a picture of the state space can be helpful 

in understanding the behaviour of numerical methods. 

Let us return to the original system (1.6). Linearization of the equations 

(1.6a6) at the equilibrium (x,p) = (0,0) yields: 

(f)-(î 40(;). 
in which the matrices A and B consist of the values of (ajj) and (dbi/dxj) at 

the equilibrium (x,p) = (0,0). Let the eigenvalues of the linearized determin-
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istic system at x = 0 be given by A,-, (i = 1 , 2 , . . . ,n) and the corresponding 

eigenvectors by Wi. By the assumption of stability of the deterministic equi­

librium, the real pa r t s of the eigenvalues are negative. The eigenvalues of the 

matr ix in (3.10) are given by ±A,- (i = 1 , 2 , . . . , n ) . There is a stable manifold 

at (x,p) = (0,0) of dimension n formed by the eigenvectores corresponding to 

the eigenvalues with negative real par t , and an unstable manifold of dimension 

n formed by the eigenvectors corresponding to the eigenvalues with positive 

real par t . The eigenvectors corresponding to the eigenvalues with negative real 

par t are given by (wt
i,0

t)t. When the conditions for s —• —oo are chosen as: 

s —* —oo : x — 0 (and of course, Q = 0), ( 311) 

then in the (x,p)-space the surface (O',;»')* is introduced which is perpendicular 

to t he stable manifold at (x,p) = (0 ,0) . Thus , by this choice of conditions, the 

kind of non-uniqueness as discussed in example 1 does not occur. 

Construction of a single ray. The following discussion it, based upon the 

experience with the two-dimensional population models described in [1]. Other 

applications may require slight adaptat ions. The ray to be constructed is de­

termined by the boundary conditions (3.1). The NAG-routine D02RAF has 

been used without t he continuation facility. The grid consisted of 64 equidis­

tant (in the parameter s) points. Experience has shown tha t the performance 

of the boundary value method depends critically on a sufficient number of grid 

points. The magnitude of s* is less critical. The parameter tol, which expresses 

the maximum absolute deviation of the computed value from the t rue value in 

each component of t he solution, was set equal to 0.01. The Jacobians which 

have to be computed were based on the exact analytical expressions. However, 

at an early stage of programming, it may be convenient to use the facility by 

which the Jacobians are approximated numerically. The initial es t imate for 

the x-coordinates on the grid was based on a linear interpolation between the 

coordinates of the equilibrium point and the end point. The initial Q- and 

p-values were derived by the local analysis. 

Only when the end point is close to the equilibrium point the solution is 

obtained. If not, the initial est imate is not accurate enough and the routine 

fails. Rays with end points far from the equilibrium point are constructed 

successfully by one of the following methods 
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x»0 

Figure 2. Construction of a ray (growing ray method). 

(1) Growing ray method. A line is drawn from the equilibrium point to the 

end point. At point 1 on this line close to the equilibrium, the solution is 

obtained by applying the routine. The solution for the ray to point 1 is 

used as initial estimate for the ray to point 2 on the line. The solution for 

the ray to point 2 is used as initial estimate for the ray to point 3, etc.. 

This procedure is repeated until the point x = e has been reached. See 

Fig. 2. 

initial 

ray 

x-0 

estimated next points 

contour 
\ • — 

better estimates of next points 

Figure 3. Construction of a confidence contour. 

(2) Neighbouring ray method. An alternative method is to construct a ray 

passing close to x — e by the initial value method and using the values 

along this ray as initial estimate to the desired ray through x — e. 
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Construction of a confidence contour. This is treated most easily for n = 2. 

The generalization to arbitrary n is straightforward. A single ray is constructed, 

for example by the initial value method. The precise course of the ray is 

immaterial, but the ray must contain the Q-value corresponding to the desired 

contour. The point on the ray at which this value is attained is the first point 

of the contour. Moreover, the values of p\ = dQ/dx\ and pi — dQ/dx2 are 

known at this point. An arbitrary but small distance d is specified. Based on 

the values of p\ and p2 an estimate of the second point 2a of the contour can 

be made, lying a distance d away from the first point of the contour. The ray 

with end point 2a is then computed. The known values along the first ray are 

used as initial estimate to the solution corresponding to the second ray. From 

the solution of the second ray a better estimate can be made of the position 

of the second point of the contour, which will be close to the point 2a. By 

connecting this point with the first point we have obtained a small segment 

of the contour. The procedure is repeated for obtaining the following rays, 

see Fig.3. A mechanism must be built in to assure that a clockwise (or anti­

clockwise) direction is followed. The procedure terminates after a complete 

rotation. A result of this procedure for a 2-dimensional stochastic population 

model as treated in [1] is shown in Fig. 4. 

The exit problem. The determination of the most probable exit point x* 

and the value of Q at this point can be carried out in several ways. In a variant 

of the boundary value method for confidence contours, rays are constructed 

with end points a small distance away from each other on the exit boundary. 

The solution along a ray serves as initial estimate for the solution along the 

next ray. The point on the boundary where the lowest value of Q is found is 

an estimate for x* and the corresponding value of Q is an estimate for Q(x*). 

Another approach has been followed in [1]. For a two-dimensional system 

in which the confidence contours are convex curves, exit was studied at the 

boundaries xi — 0.1 and x2 = 0.1. Exit at x2 = 0.1 is treated as follows. 

To obtain the point at x2 = 0.1 which has the lowest Q-value, the boundary 

conditions are formulated as: 

s —* —oo : Q = 0, Xi = £2 = 1 (the equilibrium), 
(3.28) 

s = 0 : x2 = 0.1, pi = 0 . 

The condition p\ — dQ/dx\ — 0 indicates that we are looking for an extremum 

of Q as a function of Xj. The initial estimate to the solution is a ray constructed 
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Figure 4- The rays used in the construction of a confidence contour. 

The confidence contour is obtained by connecting the end points of the 

rays. 

by the initial value method which is believed to be close to the desired ray. 

Alternatively, the problem is solved first with aj2 = 0.9 instead of 0.1. The 

solution of this problem is used as initial estimate to the solution of the problem 

with x-x = 0.8, etc. The procedure is repeated until the solution at x2 = 

0.1 has been obtained. The boundary x\ = 0.1 is treated in the same way. 

The boundary which contains the lowest value of Q is the most probable exit 

boundary, and the point on this boundary where the minimum value is attained 

is the most probable exit point. 

4. The shoot ing me t hod 

Shooting methods, in which the initial point of a characteristic is manip­

ulated systematically in order to obtain the desired characteristic, have been 

used by Ludwig [3] to find the most probable exit point in a population model 

and by De Swart and Grasman [5] to find the characteristic connecting equilib-
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rium points in a stochastic model in meteorology. The use of shooting methods 

is rather elaborate because of the sensitivity of the solution to the choice of the 

initial point of the characteristic. Results for these problems can be obtained 

easily by means of a boundary value method. 

5. Intersecting rays 

Rays starting in a neighbourhood of the equilibrium of a system of ray 

equations, with initial values chosen in accordance with the local analysis, may 

intersect. This leads to non-uniqueness of Q(x). In this section we confine 

ourselves to some remarks on this phenomenon and give an example. 

In the one-dimensional stochastic system of example 1, the line introduced 

by the local analysis is tangent to the unstable manifold of the system of ray 

equations (1.6a6) at the equilibrium point (in this example, both are coincident 

in the whole (x,p)-space). More general we have: the plane p = Px in the (x,p)-

space with P satisfying equation (2.4) is tangent to the unstable manifold of 

the system of ray equations (1.6a6) at the equilibrium x = p = 0. 

In the following it is shown that the linearized unstable manifold at x = 

p = 0 satisfies equation (2.4). Let the eigenvalues of B be given by A,- (i = 

1,2,.. . , n). By the assumption that the deterministic equilibrium is stable, the 

real parts of the A,- are negative. The eigenvalues of the system (3.10), which 

is the linearization of the system (1.6ai) at x = p = 0, are given by the A,-

with the corresponding eigenvectors («?',()')' and by the —A, with the corre­

sponding eigenvectors (v\,z\y, i = 1,2, ...,n. Let V = («i, vo,... ,v„), Z = 

(zi, z2, • • •, z„) and let L be the diagonal matrix with elements Ai, A2, . . . , An. 

With respect to the eigenvalues — A; corresponding to the unstable manifold 

we have by the definition of eigenvalues and eigenvectors: 

BV + AZ = -VL, 
(5.1) 

-BlZ = -ZL. 

The unstable manifold is given by 

in which the parameters a* and the elements of Vi and 2,; generally are complex 

numbers. The last n equations in (5.2) are used to eliminate the a*: 

a = Z~lp, (5.3) 
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in which a is the vector (cti, a2,..., a„ ) ' . Substitution in the first n equations 

in (5.2) gives: 

x = VZ~lp, (5.4) 

and, by inversion, 

p = ZV~1x. (5.5) 

This is the equation for the unstable manifold of the system (1.6a6) at the 

equilibrium point. With the equations (5.1) it is easily shown that ZV~X 

satisfies the equation (2.4) for P . So ZV~X equals P. It is assumed that the 

inverse matrices above exist. 

In Example 1 the unstable manifold is p = x — 1, which is a single-valued 

function of x. For an n-dimensional stochastic system the characteristics, with 

initial values according to the local analysis, lie on an n-dimensional hypersur-

face through the equilibrium point in the 2n-dimensional (x,p)-space. On this 

hypersurface the characteristics do not intersect. Results in [3,6] exhibit non-

uniqueness in Q(x). Consequently, we conclude that this hypersurface may be 

folded so that the projections of the characteristics on the x-space (the rays) do 

intersect. Regions in the x-space where Q is non-unique are bounded by caus­

tics. Caustic points can be detected numerically at the cost of a large amount 

of extra computation by keeping up the value of a Jacobian along the rays [3,6]. 

The occurrence of caustics is also demonstrated in the following example. 

Example 2. We consider the system with n = 2: 

6!(a:) = x i ( l - * i ) + X3, h(x) = -ßx2, (ß>0,ß?l) 
(5-6) 

a n = <»22 = 1> °12 = °21 = 0-

The deterministic system has the equilibrium points x\ = 0, «2 = 0 and xi — 

1,SC2 = 0. The latter equilibrium is stable. A WKB-Ansatz leads to the ray 

equations 

dur 1 (\y r\ 

-j- = x i ( l -xi) + x2+pi, —r- = -ßx2 + P2, (5.7a) 

^ • = ( 2 x 1 - l ) p l l ^ . = -pl+ßp2, (5.76) 

^ = ( P ? + P 1 ) / 2 . (5.7C) 
ds 
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Figure 5. A cusp singularity arising in the solution of system (5.7) 
with ß = 3/2. 

The system (5.7a6) has the equilibrium points 

Q , -1/4(1 + ß2), -/?2/4(l + ß2), -0 /4(1 + ß2)) , 

(0,0,0,0)', 

(1,0,0,0)'. 

The matrix P, following from the local analysis is given by 

p=J{1tß)J1+? „ r i . A (5.9) /?2 + 2/? + 2 V - 1 ß2 + ß+l) ' 
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The system (5.7) has been solved numerically by the initial value method, 

in which the initial points were chosen on a circle with radius 0.01 around 

X\ = l , z 2 = 0 and the corresponding valuse of p i ,p 2 and Q were chosen 

according to the local analysis. Fig. 5 shows rays for ß = 3/2. A number 

of rays were chosen very close to the ray connecting x\ = \,X2 = 0 with 

xi = 0, X2 = 0. In the neighbourhood of x\ = 0, X2 = 0 part of those rays turn 

away to the right and intersect other rays. The figure shows the projection 

of a cusped manifold. In the region in the z-space between the caustics (the 

projection of the cusp edges) Q{x) is a 3-valued function. 
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1. I n t roduc t ion 

Consider a two-dimensional stochastic system that has a stable determin­

istic equilibrium and in which the stochastic fluctuations are small. Various 

systems of this type have been studied in literature, see Matkowsky and Schuss 

[9,10], Matkowsky, Schuss and Tier [11], Hanson and Tier [7], Wazwaz and 

Hanson [14,15]. With respect to the behaviour of the deterministic system at 

the boundary of the region under consideration, different cases can be distin­

guished: the deterministic vector field enters the region [9], or it is tangent to 
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the boundary of the region. In the latter case, there may be no deterministic 

critical points on the boundary [10], or there may be [11]. It is assumed in 

[9,10,11] that the diffusion tensor is nonsingular. The asymptotic theories for 

small stochastic fluctuations lead to expressions for the exit distribution and 

the (lowest) statistical moments of the exit time. An asymptotic analysis of 

a one-dimensional stochastic system in which the diffusion coefficient becomes 

singular at the boundary is given in [7,14,15]. In this system, both the drift and 

the diffusion coefficients vanish, linearly with the distance to the boundary. 

The two-dimensional stochastic system treated in this paper arises in pop­

ulation dynamics [8,12]. The diffusion matrix is diagonal and becomes singular 

at the boundary. There, the normal components of both the drift and the diffu­

sion vanish linearly with the distance to the boundary. This system differs from 

the system treated in [11] in that the diffusion tensor becomes singular at the 

boundary, and from the system in [7,14,15] in the dimension. Extending the 

methods presented in [7,11], asymptotic expressions are derived for the proba­

bilities of exit at the two boundaries as well as the expectation and variance of 

the exit time. 

Section 2 describes the stochastic model and formulates the boundary 

value problems with respect to exit boundary and exit time. In section 3 we 

find asymptotic expressions for the probability of exit at each of the boundaries, 

valid uniformly outside an asymptotic small neighbourhood of the origin. In 

section 4, a derivation largely analogous to that in section 3 leads to asymptotic 

expressions for the expectation and variance of the exit time that are uniformly 

valid. Section 5 is concerned with the numerical determination of constants that 

appear in the formulas obtained in sections 3 and 4. As an example, section 6 

treats a predator-prey system. 

2. The stochastic model and the boundary value p rob lems 

We consider the two-dimensional stochastic system with small stochas­

tic fluctuations, described by the following forward Fokker-Planck (or forward 

Kolmogorov) equation 

dv(x,t) _ 
dt 

= M(v = ^2 
2 r d e O2 

- — [bi(x)v(x,t)]+--^[ai(x)v(x,t)] (2.1) 

in which v is the probability density function and 0 < e <C 1 is a small parame-
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ter. The variables *i and x2 denote the densities of two biological populations. 

The state space consists of the region R: 

R= {(*i,*2) |*i,*2 real and > 0}. (2.2) 

The diffusion matrix is diagonal with elements 

a\(x) = xi(aio + auXi+ai2X2), 
(2.3) 

a2{x) = x2(a2o + 021*1 + «22*2), 

in which the aij are positive real numbers. This diffusion matrix is singular at 

*i = 0 and x2 = 0. The drift vector is of the generalized Lotka-Volterra form 

6i(*) = xi(bio + 611*1 + 612*2), 
(2.4) 

b2(x) = x2(b20 + 621*1 + 622*2), 

where the 6^ are real numbers that are restricted by assumptions made below. 

Thus, *i = 0 and x2 — 0 are characteristic boundaries. The deterministic 

system 

IT = h{x)' 
associated with the stochastic system (2.1) has the equilibria 

(2.5) 

(0,0), (2.6a) 

(0,-620/622), (2.66) 

( - 6 io /6u ,0 ) , (2.6c) 

* ^ ^ , * | ) H ( ^ 1 0 - ^ 2 0 , ^ 2 0 - ^ 1 0 ) . (2.6a-) 
V 621612 -611&22 621612-611622/ 

By assumption the critical points (2.66, c) lie on the positive *2-axis, *i-axis 

respectively, with order 0(1) distance from the origin 

-620/622 > 0, -620/622 = 0(1), -610/611 > 0, -610/611 = 0(1), 

(assumption 1) 

and are attracting along the *2-axis and xi-axis respectively: 

620 > 0, 610 > 0. (assumption 2) 
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x _ 1 

The deterministic system has an equilibrium in R with coordinates of order 

O(l): 

arf > 0, x\ = O(l) , x | > 0, x | = O(l) . (assumption 3) 

The following assumption is made with respect to the stability of the deter­

ministic system at xe. In the neighbourhood of xe we have by linearization of 

the deterministic vector field: 

b=(b1(x),b2(x))t^B(x-xe), (2.7) 

where the matrix B is given by 

B = (Bij)=^(x^=(bijx
e
i). (2.8) 

The eigenvalues of B are 

bnx\ + b-x2x\ ± \/(bnxl + b^xf^)2 - 4(6n622 - 612621)«!x\ 

(2.9) 

The condition for stability of the deterministic system at xe is that the real 

parts of Ai and A2 are negative. With the use of the assumptions (1-3) this 

condition results in 

611622 > 612621. (assumption 4) 

By the assumptions (1-4) the equilibria (2.66, c) are saddle points. The equi­

librium (2.6a) is an unstable node. 

At the boundary Xi = 0 we have 

Ji(x,t) = bi(x)v(x,t) - i—[ai(x)v(x,t)] < 0, (2.10a) 

bi(x) = 0, at(x) = 0, (2.106) 

for i = 1,2. By (2.10a) the probability current J, at x, = 0 is negative, which 

indicates that the boundary xi = 0 can be reached from R. Once x,- = 0 has 

been reached, by (2.106) it cannot be left. Thus, x t = 0 and x2 = 0 are exit 

boundaries. 

Starting away from xi = 0 and X2 = 0, the stochastic system described 

above will likely remain in the neighbourhood of the stable equilibrium xe of the 

deterministic system for a long time. With small probabilities large excursions 
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from xe occur. In such an excursion the system may exit at xi = 0 or x2 = 0. 

This will happen within a finite time with probability one. 

The boundary value problems describing exit are commonly defined on a 

bounded region. However, for the asymptotic analysis held in this paper, the 

use of the unbounded region R and the boundary dR defined by 

dR = R\R= {(xi,X2)\x\X2 = 0 and x\ + X2 > 0} (2.11) 

will not lead to any difficulty. This is confirmed by results for the analogous 

one-dimensional exit model, which can be computed explicitly. 

In order to determine the probabilities of exit at Xi = 0 and X2 = 0, a study 

is made of the stationary backward Fokker-Planck (or backward Kolmogorov) 

equation 

r v ^ \, , \ du e d2u' 
0 = Lcu = ^\bi(x)— + -ai(x)^ 

»= i 

in R, (2.12a) 

with the boundary condition 

in which 

u = f(x) on dR, 

u(x)= f f(x')P(x,x')dSxl, 
JdR 

(2.126) 

(2.12c) 

where P(x,x ' ) is the probability of exit at x' £ dR, starting from x € R. With 

the definition 
1, for Xi = 0, 
0, else, / (*) •{• 

(2.13) 

the function u(x) is the probability of exit at the particular boundary x, = 0, 

starting from x 6 R. In this paper only boundary conditions of the form 

n ) ~ \ C b 2 , x2 = 0, (2.14) 

are considered with CM , Cj,2 constants that are equal to either zero or one. 

Another point of interest is the determination of the expectation ET(x) 

and variance VarT(x) of the exit time T(x), starting from x 6 R. By 

ET(x) = Tu VarT(x) = T2 - 7? , 

the expectation and variance of T are expressed in the moments 

Tt(x) =< T > 
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of T, which satisfy the equations 

LeTi = gi(x) i n f i , (2.17a) 

and conditions 

for i = 1,2 with 

Ti=0 on dR, (2.176) 

gi(x) = -l, jf2(«) = - 2 7 \ ( J 0 . (2.17C) 

Equation (2.17a) with i = 1 is the Dynkin equation. Although higher mo­

ments can be determined as well, the analysis of the exit time in this paper 

is restricted to its expectation and variance. For a derivation of the boundary 

value problems (2.12, 2.17), the reader is referred to [4,13]. 

In biological terms, exits means extinction of a species. The expected exit 

time is a measure for the stochastic persistence of the ecosystem, see Ludwig 

[8]. The type of interaction between the two populations is mutualism for 

&12 > 0, 621 > 0, competition for 612 < 0, 621 < 0, and predation-prey in the 

other cases. 

The motivation for the present study is the following one. In [12] we 

analyzed the exit problem for the system of populations described above by 

the method of Ludwig [8]. In that approach, the boundaries # 1 = 0 and £2 = 0 

of R were replaced by the boundaries *j = /,•, where the /j were small positive 

numbers, i = 1,2. Thus the region R was restricted to the smaller region Ä/. 

Whereas the deterministic flow was tangent to the boundaries Xi = 0 of 72, it 

was directed inward to Ri at the boundaries ar,- = /,• of i2j. Consequently, the 

asymptotics of Matkowsky and Schuss [9] could be applied to the problem of 

exit from Ri, as an approximation to the problem of exit from R. In the present 

paper we adopt a different point of view. The behaviour of the stochastic system 

near the boundaries x t = 0 and x? = 0 will be treated by a variant of [7,11]. In 

this approach we may take the limits /,• —• 0, where this was not allowed in the 

previous study [12]. Thus we obtain expressions to the problem of exit from R 

without the need to approximate R by a rather arbitrary smaller region R\. 

In [5] Gillespie treated an exit problem related to a multidimensional sin­

gular diffusion arising in genetics. His study differs in various aspects from 

the present one. In our model the deterministic system is more complicated 

since the behaviour near the boundaries x\ = 0 and x-i = 0 is dominated by 

the critical points (0, — 620/&22) anc^ (~^io/&n>0), where no such critical points 
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are present in [5]. Moreover, for our model no explicit solution of the station­

ary forward equation is available and no zero probability flux condition holds. 

These facts give rise to a substantially more elaborate study. 

3. The exit boundary 

In this section the exit problem (2.12) with ƒ as in (2.14) is solved asymp­

totically for small e. The solution contains an unknown constant. To obtain 

an expression for this constant we use an integral formula that results from the 

divergence theorem. In the integral formula, a formal solution of the forward 

equation adjoint to (2.12a) is needed. This adjoint equation is solved by the 

WKB-method, see Ludwig [8]. Near the boundaries x\ = 0 and x2 = 0, the 

solution of the adjoint equation is peaked at the critical points (0, —620/622) 

and (—6io/6n,0) respectively. Neighbourhoods of these critical points play an 

important role in the subsequent analysis. This approach is a variant of the 

method of Matkowsky, Schuss and Tier [11], that was indicated in Hanson and 

Tier [7]. 

3.1. The backward equation 

An asymptotic analysis of the boundary value problem (2.12) reveals the 

existence of an outer solution, valid away from Xi = 0 and a;2 — 0. Near these 

boundaries, an examination of different stretchings of the normal coordinate 

shows the presence of a boundary layer of width 0(e). Inside the boundary 

layers, the diffusion parallel to the boundary is negligible, except near critical 

points of the deterministic system. Thus, the following regions are distinguished 

region A : xi = M\c, x2 + 620/622 > M2y/f, 

region B : xx = M3e, \x2 + 620/6221 = M4y/e, 

region C : xi — M$e, M6e < x2 < -620/622 - M?\fê, 

region D : Xi = M8e, x2 = M9e, (3.1) 

region A' : xx + ho/bn > Mios/ê, x2 = Mue, 

region B' : |ari + 6 i 0 /6n | = Mi2\/e, x2 - Mi3e, 

region C' : M14e < xx < -bi0/bn - M15y/e, x2 = M16e, 
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Figure 1. The outer region and the boundary layer regions. In the 

regions A,A',C,C' the diffusion parallel to the boundary is negligible, 

while this is not the case in the regions B,B' and D. 

where the M* are arbitrary positive numbers independent of e, see Figure 1. 

3.1.1. The outer solution 

The reduced equation corresponding to (2.12a) reads 

2 

axi 2 > M £ - O . 
»=I 

which has the solution 

u = Cb, 
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with Ct a constant with respect to x, which is yet undetermined. An expression 

for Cb will be found in subsection 3.3. The solution (3.3) is valid in R except 

near Xi = 0 and x2 = 0 because the boundary condition (2.126,2.14) cannot 

be satisfied. 

3.1.2. The boundary layer solution in the regions B and B' 

Near the critical point (0,-620/622) of the deterministic system, we intro­

duce the stretched coordinates 

xi - xi/e, x2 = («2 + 620/622)/^, (3.4) 

and the boundary layer function 

U(xi,x2) = u(cxi, -620/622 + \/ëx2). (3.5) 

Substitution into (2.12a) leads to the boundary layer equation 

9U . d7U , ÔU , d2U n klXl— + l e i x ^ - * * * , _ - + k4-^ = 0, (3.6) 

in which 
* i = ho - &12&20/&22, 

k-i = 2 (010 - 012^20/^22), 

&3 = &20, 

k4 = - 2 " ( a 2 0 - «22^20/622)630/622-

(3.7) 

From the assumptions (1-4) and the positivity of the a,ij it follows that the 

constants Ar,- are positive. By the separation of variables 

U{xux2) = w(xl)z{x2), (3.8) 

equation (3.6) leads to the ordinary differential equations 

, _ d2w , _ dw 
«2*1-7=9" + « I ^ T Aw = 0, (3.9a) 

dxf dx\ 
d2z dz 

k4 — 7 - k3x2 h Xz = 0, (3.96) 
dx2 dx2 
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in which A is a separation constant. The general solution of (3.9a) is 

u»(*i) = {ciWx^i-ii) + C2W_Al,è(5i)} exp[-*!/2] , (3.10) 

in which 

xi = kixi/k2, Xi = A/fci, (3.11) 

Wy i and W_x » are Whittaker functions [6] and c\,c2 are arbitrary con­

stants. The general solution of (3.96) is 

z(x2) = {c3Dx2(x2) + c4£>-Aa-i(iÎ2)} exp[^/4] , (3.12) 

in which 

x2 = \Zka/k4 X2, A2 = A/fc3, (3.13) 

D\3 and £ ) _ A 2 - I are parabolic cylinder functions [3] and c$, CA are arbitrary 

constants. At Xi = 0 we have the boundary condition 

U(0,x2) = Cbl. (3.14) 

This condition can be satisfied only if A = 0. The matching condition with the 

outer solution (3.3) is stated as 

lim U(x1,x2) = Cb. (3.15) 
Xl—*oo 

The boundary layer solution satisfying both conditions (3.14) and (3.15) is 

given by 

£/(*!,*2) = Ch + (Cu - C6)exp[-x1] (3.16a) 

or, in the original notation: 

u(xltx2) = Cb + ( C H - Ct)exp[-kixi/k2e]. (3.166) 

The boundary layer region B' around the critical point (—6i0/6u, 0) yields a 

similar result: 

u(xux2) = Cb + (Ch2 - C t)exp[-fcix2/ik2c], (3.17) 

in which 

k'i = 620 - 62i6io/6n, k'2 = -(a2o - a2 i6io/6n). (3.18) 

106 



xi(ho + b\2X2)-^~ + x2{b2o + l>22X2)-zz- + zi7;(aio + ai2X2)^2 = O- (3.20) 

3.1.3. The boundary layer solution in the regions A,A' and C ,C ' 

Introduction of the stretched coordinate x\ in (3.4) and the boundary layer 

function 

U(xux2) = u(exl,x2) (3.19) 

into equation (2.12a) leads to the boundary layer equation 

dU , . . J P . 1 , xd2/7 
i-ä=- + «2(020 + l>22X2)-z— + * IT:(«IO + anx^-^Y 
ox\ ax2 2 ax{ 

In order to make this equation separable, the variable x\ is replaced by the 

new variable 

y = xu(x2), (3.21) 

with the function 7 still to be determined. Equation (3.20) becomes 

d2w .LTV ï d\V x^iho + h^x^dW 
y-ö-r + r(«2)y-ör- + —, ; :TÄ~ = 0' (3-22) 

ay2 dy \{aw + al2x2)f ox2 
where 

W(y,x2) = U(xi,x2), (3.23) 

and 

T(x2) = TT ; T I6« + 6»*a + **(*'«> + h^W/l] • (3.24) 
5 (a 1 0 + ai2x2)y 

The function 7 is chosen such that 

r(ar2) = 1. (3.25) 

Then (3.24) is a Bernoulli equation. In terms of the reciprocal 7 - 1 it is a 

linear equation that can be solved by the method of variation of constants [1]. 

Since (3.24,3.25) is a first order differential equation there is one integration 

constant. This constant follows from a matching condition, see below. The 

partial differential equation (3.22) with (3.25) can be solved by separation of 

variables: 

W{y,x2) = w(y)z(x2), (3.26) 

which leads to the ordinary differential equations 

cPw dw 
dy2 dy 

«2(020 + b22x2) dz 
| (aio + ai2x2)y dx2 
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in which A is a separation constant. To satisfy the matching conditions 

U(0,x2) = Cbu Hm U{xux2) = Cb, (3.28) 
Xi—»oo 

A must equal zero and the solution of (3.20),(3.28) is obtained as 

U(x1,x2) = Cb + (Cbl-Cb)exp[-y(x2)xi], (3.29a) 

or, in the original notation: 

u(xux2) = Cb + (Cu - C*t)exp[-7(a;2)î;i/e]. (3.296) 

The integration constant in the problem (3.24),(3.25) for y is chosen such that 

(3.29) matches the solution (3.16), that is, by the condition 

lim y(x2) = ki/k2. (3.30) 
x3—• — 620/&22 

For future purpuses we remark that at x2 = —620/622 and x2 = 0 the function 

7 - 1 has the Taylor series expansions 

_ i / -. k2 012610-010612 , . 620, /o ai \ 
7 (*2) = T- + ot. ih j . 1 . \ (^z + r - ) + • • •, (3.31a) 

«1 2fci(02o + *;i) 622 
-1/ \ a10 «»12610 - Ö10&12 . / Q O I I A 

7 («2) = ;TT -^T—TT 7—r *2 + • • •, (3.316) 
26io 2610(620 - 610) 

respectively. 

The boundary layer regions .A' and C' along the ii-axis are treated simi­

larly. There the solution is given by 

u(*i,*a) = Cb + (Cb2 - C»)exp[-7(*i)*2 /c] . (3.32) 

in which y(x\) solves a Bernoulli problem analogous to (3.24),(3.25),(3.30). 

The treatment above in the direction along the boundary leads to a correct 

result only for constant boundary conditions. Readers interested in boundary 

conditions (2.126) with nonconstant ƒ are referred to the approach in [11]. 

3.1.4. Summary 

A boundary layer analysis in the region D leads to a complicated expression 

for u. This is due in part to the conditions to be satisfied by u. Besides matching 
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conditions with the solutions in C (see (3.296) and (3.316) with x2 = 0) and 

C' these are the conditions (2.126,2.14) along x\ — 0 and x2 = 0. In order to 

retain simplicity and since it will turn out in the remainder of section 3 that 

for small e the asymptotic small region D is not important to the dynamics 

elsewhere, we discard the solution in this region. It is easily verified that the 

results of subsection 3.1 can then be summarized as follows. The uniform 

asymptotic expansion for small c in R \ D, D an O(c)-neighbourhood of the 

origin, of the boundary value problem (2.12),(2.14) is given by 

« ( * )= 7r{Ch+(Cbi-Cb)exp[-y(x2)xi/e}}{Cb + (Cb2-Cb)exp[-7(x1)x2/e]}, 

(3.33) 

in which 7,7 solve Bernoulli problems as dicussed in section 3.1.3. Expression 

(3.33) is the uniform asymptotic expansion in R of the boundary value problem 

(2.12) with the boundary conditions 

u(0,x2) = Cbl{l + (Cb2/Cb-l)exp[-2b20x2/a20e]}, 

u(ari,0) = Cb2{\ + (Cbl/Cb - l )exp[-26i0x1 /a10c]}, 

which are different from the boundary conditions (2.14) in the region D. The 

remainder of section 3 concerns the determination of Cb, which is yet unknown. 

3.2. The adjoint equation 

The forward equation adjoint to (2.12a) is given by 

Mev = 0, (3.35) 

with the operator Me defined in (2.1). The function v(x) describes the proba­

bility density corresponding to the (quasi-) stationary state of the system (2.1). 

The solution of equation (3.35) is needed in section 3.3. 

3.2.1. The WKB-approximation 

A solution of (3.35) is sought in the form of the WKB-Ansatz [8] 

v(xi,x2)-w(xux2)exp[-Q(xl,X2)/€], e -*• 0, (3.36a) 
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where 

Q(xl,x'2) = 0, 

w(x\,x2) = \, (normalization). 

(3.366) 

(3.36c) 

Substitution of this form into (3.35) leads to leading order 0(e 1 ) to the eikonal 

equation 

. dQ 1 (dQX 
bidx- + 2ai{dx~) = o, 

and to order O(e0) to the transport equation 

2 

E Ô , . * dQ d . - 1 d2Q 
= 0. 

(3.37) 

(3.38) 

The numerical computation of the functions Q and w subject to the conditions 

(3.366, c) is treated in section 5. 

3.2.2. Behaviour near the boundary 

To investigate the asymptotic behaviour of Q in the ^-direction for small 

x\, the expansion 

Q(xi,x2) = Qo(x2) + Qi(ar2)xi + TQ2(X2)XI + -- (3.39) 

is substituted into (3.37). Terms of order 0(x°) are collected, which results in 

dQp _ 620 + 622X2 
dx-i i ( a 2 0 + a-nx-x) 

(3.40) 

This expression indicates that inside the interval x2 € [0,00) the only extremum 

of Qo is a minimum, situated at the critical point x2 = —620/622- By (3.36a) the 

probability density function v is sharply peaked at this critical point. There­

fore, the probability of meeting the stochastic system in the boundary layer 

x\ = 0(e), asymptotically equals the probability of meeting the system in the 

boundary layer region B. 

To study the WKB-solution in the region B the new variable 

£•2 = x2 + 620/622 
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is introduced and Q is approximated by the Taylor series expansion 

Q(xi ,x2) = Q0 + Q2x2 + Qixi + -Q3x\ + ••• (3.42) 

Note that x\ is of the order 0(13) m the region B. Substitution of (3.42) into 

the eikonal equation (3.37) determines the constants 

Qi = 0, Qi = - * i / * 2 , Qz = *s/*4, (3-43) 

and leaves the constant QQ undetermined. The value of Qo is obtained by 

solving the problem (3.35,3.36) numerically. 

A boundary layer analysis is carried out to reveal the behaviour of the 

transport function w in the region B. The WKB-solution of the stationary 

forward equation of a one-dimensional variant of our model can be calculated 

explicitly and indicates a singular behaviour. The stretched coordinates (3.4) 

and the boundary layer function 

V(xi ,x2) = v(exi, -&20/&22 + Vêx2) (3.44) 

are introduced. Substitution into (3.35) leads to the boundary layer equation 

-^JLfrV) + k2^xlV) + k3^-(x2V) + U%2 = 0, (3.45) 

with the ki defined in (3.7). By the separation assumption 

V(x1,x2) = r(x1)s(x2), (3.46) 

(3.45) leads to the ordinary differential equations 

* I- \ l d 

d2s , d 

k2-j^(xir) - fci-j—(arjr) - fir - 0, (3.47a) 

*4-TT2 + k3-r-(x2s) + fis = 0, (3.476) 
dx2 dx2 

in which fi is a separation constant. The general solution of (3.47a) is 

r(*i) = {ciW^-xi) + c2W_llui(xi)} xï1 expfr/2], (3.48) 

with 

/ i i = / i / * i , (3.49) 
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ci,C2 arbitrary constants and ï\ defined in (3.11). The general solution of 

(3.476) is 

s(x2) = {c3£>M2(î2) + c4I>_„a_i(«xa)}exp[-*2/4], (3.50) 

with 

P2 = n/fa, (3.51) 

C3,C4 arbitrary constants and x2 denned in (3.13). Putting 

fi = 0, c2 = 0, c4 = 0, (3.52) 

the boundary layer solution 

V(x\,x2) = const. îj"1exp[ièi — x2/2] (3.53) 

is obtained. The leading order part of the WKB-solution (3.36a) with Q given 

by (3.42,3.43) agrees with the exponential function in the boundary layer solu­

tion (3.53). The solution (3.53) indicates that the transport equation w behaves 

according to 

w ~ xï1 (3.54) 

in the region B. Substitution of the expansion 

w(xi,x2) = xj"1 (u>o 4-^2^2 + tfixi + -W3Î2 H ) (3.55) 

into the transport equation (3.38) and using (3.42,3.43) leaves the constant 

wo undetermined. Its value is obtained by solving the problem (3.35,3.36) 

numerically. 

As a conclusion, in the boundary layer region B the WKB-solution (3.36) 

behaves as 

v{xi,x2) = Ci(e) xïl exp[(k1x1/k2 - k3xl/2k4)/e], (3.56) 

in which 

C1(e) = w0exp[-Qo/e], (3.57) 

where iuo, Qo as in (3.55),(3.42) respectively, have to be determined numerically. 

A similar result can be derived in the boundary layer region B'. There, the 

WKB-solution is 

v(xlt 13) = C2{c) xï1 exp[(k[x2/k2 - i^2/2Jb4)/c], (3.58) 
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where the constants in C2, which is the analogue of C\, have to be determined 

numerically. The constants k'z,k'4 are given by 

and x\ by 

k'3 = 610, k'4 = - ^ (o io - aii&io/&ii)&io/6n, 

xi = xi + bio/bn. 

(3.59) 

(3.60) 

3.3. Application of the divergence theorem 

Using the divergence theorem the following integral relation can be derived: 

/ (vLcu — uMev) dR' = 
JR' 
f ^ \i f du dv\ ( e dat 

(3.61) 
dS, 

where R' is a region with boundary dR' on which the operators Le,Me are 

defined and v denotes the outward normal on dR'. In the right side of (3.61) v 

and its conormal derivative must be evaluated at the boundary. By (3.56),(3.58) 

these functions become singular at *i = 0 and #2 = 0. To avoid singular 

functions, R' is chosen as a slight modification of the region R: 

R' = {(xi,x2)\xi,x2 > 6), (3.62) 

and 

dR' = R'\R' = {(au, x2)\(xi - 6)(x2 -6) = 0 and Xl + x2 > 26}, (3.63) 

with 

0 < 6 < e. (3.64) 

By (2.12a) and (3.35) the left side of (3.61) equals zero. First the boundary 

xi — 6 of R' is considered. There, the right side of (3.61) is written as 

p T e / du dv\ f edaA 
dx2 (3.65) 

Xi=S 

The only significant contribution to this integral comes from the boundary layer 

region B. Using the expression (3.166) for u and (3.56) for v, the integrand in 
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(3.65) is evaluated. Subsequently the limit 6 —* 0 is taken and asymptotically 

for small e the following result is obtained: 

/ (aio - &io*2/*i)Cu - ^aioCt + {(ai2 - 6i2fc2/fci)Cji+ 
Jo l (3.66) 

-•^ai2Cb}x2 (ki/k2)C1(e)exp[-k3xl/2k4e] dx2. 

This integral is evaluated by the method of Laplace [1]. The boundary x2 = 6 

is treated similarly. Both results are used in the divergence formula (3.61) to 

obtain the following expression for Cj: 

Ch - C^Kt+CW, > ( 367) 

with the abbreviations 

Ki = kis/kJkH, K2 = k[yJk'Jk'3. (3.68) 

Expression (3.67) completes the analysis of section 3. With (3.33) the following 

result is obtained. Denoting the probability of exit at the boundary x, = 0, 

starting at x, by U{(x), we have 

dtfKj + C2(c)K2 exp[-7(»a)«iA] 
" l W C1{e)Kl+C2(e)K2 

u2(x) = 

• [ l - exp[ -7 (* i )*2 /c ] ] , (3.69a) 

Ci(QA'i exp[-7(*i)*2 /e] + C2(QJf2 

Ci(c)/Ci+C2(e)^2 

• [ l - e x p t - T ^ J x - i / e ] ] , (3.696) 

asymptotically for small e in R\ D, D an O(e)-neighbourhood of the origin. It 

is easily verified that in the region R\D, the expressions (3.69a) and (3.696) 

add up to one. Rewriting (3.57) and the analogous expression for C2 as 

d(e) = woi exp[-Qo,7e], i = 1 , 2 , (3.70) 

and using the fact that WQi,Ki are order 0(1) constants, (3.69) can be simpli­

fied. In the case Q01 < Q02 we find 

« i ( * ) ~ l -exp[-7(a; i )a:2 /e] , u2(x) ~ exp[-y(x1)x2/e], (3.71a) 
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and in the case Qoi > Q02' 

u^x) ~ exp[-y(x2)xi/e], u2(x) ~ 1 - exp[-y(x2)xi/e]. (3.716) 

4. The expectation and variance of the exit t ime 

In this section the boundary value problems (2.17) are solved asymptoti­

cally for small e. Assume that T{(x) is of the form 

Ti(x) = CT,i(e)n(.v), (4.1) 

in which 

C^(e)9i(x) = o(e), e^O. (4.2) 

Substitution of (4.1) into (2.17a) yields to leading order the reduced equation 

2 

i = i 
dxj 

5 > ( z ) ^ - = 0, (4.3) 

which is solved by a constant that is taken 1 without loss of generality (any 

other value can be incorporated in Cr,i)-

n(x) = 1. (4.4) 

This is the outer solution, valid away from 0(e) boundary layers along Xi = 0 

and x2 = 0. A boundary layer analysis can be held as in section 3, with 

w replaced by r,-. The only difference is in the boundary condition, for this 

case stated by (2.176). The following uniform asymptotic expansion for r,- is 

obtained: 

n(xi,x2)= l - e xp [ -7 (x 2 ) x i / e ] 1 - exp[~7(xi)a;2/f] (4.5) 

valid in R (the region D included, due to the bounday conditions, which are 

simpler here than in section 3). The unknown CTJU) are determined using 

the integral relation (3.61) with u replaced by T,-. After some calculation, this 

integral relation reduces to 

9Ti] 
— f I vgidxldx2= I «1U-3— dx2+ ƒ \a2v-— 

e J s J s Je L oxi J Xi=s J6 L ox2 l ! = l 
dx\. 

(4.6) 

115 



On the right side, the largest contributions to the integrals are from the bound­

ary layer regions B and B'. These integrals are evaluated by the method of 

Laplace, using expressions (4.1),(4.5) with 

7(x2) = h/k2, T ( * I ) = *i/ fc2. (4.7) 

for T and expressions (3.56),(3.58) for v. The left side of (4.6) is evaluated 

using the WKB-expression (3.36a) for v and the method of Laplace for double 

integrals. Letting 6 —• 0, the following expressions are found for CT,^)'-

C T , I ( 0 = 
sj2-Ke/He{xe) 

Cr,2(f) = 2Cf1(c), (4.8) 
Ci(c) / f i+C 2(e) / f 2 ' 

in which He(xe) is the determinant of the Hessian matrix of Q at I e . With 

Q* = min(Qoi)Qo2)> see (3.70), and using the fact that woi,K{,He(xe) are of 

order O(l) , CT , I (£ ) is of the order 

CT , i (e)~v^exp[Q*A]- (4-9) 

In the evaluation of the left side of (4.6) we let t —•+ 0, while the WKB-expression 

(3.36a) for v fails to be integrable in this limit. This procedure was proposed 

by Ludwig [8]. Its correctness has not been proven. See also the remarks in [7] 

at this point. By (2.15) the resulting uniform asymptotic expansions in R of 

the expectation and variance of the exit time are given as 

I _ e-7(«a)«i/£ U _ P—r(*i)*2/e ET(z) = CT,i(f) 

VarT(x) = C f ^e) [l - fe->
<-x>>1'e + e - r ( « i W « + 

_p-f(,X3)T1/t-y(x1)x3/( n 

(4.10a) 

(4.106) 

respectively. 

5. Numerical determination of the WKB-solution 

To obtain the constants Qoi, u>oi, Q02> ^02 in (3.70), The WKB-solution 

(3.36) of the adjoint equation (3.35) is determined numerically. By the 

Hamilton-Jacobi theory [2], the eikonal equation (3.37) is written in terms 

of the Hamiltonian H: 

2 J 

H(x,p) = Y^[biPi + 9a»P?] = 0. (5.1a) 
• = i 
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where 

Pi = 
dQ 
dxi' 

The corresponding system of bicharacteristics reads 

dxi dH , .. , „. 
—-=—— = bi + dipt, (i = 1,2) 
ds op. 

dpi _ dH _ ^ 
As /).r.- £—t ÖXi 

J = l 

dbj 1 daj 2 

di~Pj + 2dx~p\ («•=1,2) 

The rate of change of Q with sis given by 
2 , 2 

<is # + X ! "57W = 12 2Uirf' (which is ^ °)-

(5.16) 

(5.2a) 

(5.26) 

(5.2c) 
»= i i = l 

Here s is a parameter along the characteristics. At s = 0 all characteristics 

start in a neighbourhood of the equilibrium 

x = xe, p = Q, Q = 0, (5.3) 

of the system (5.2). The initial position of a characteristic is specified on a 

circle around xe with radius r <C 1, by the variable 0: 

xi = x\ + r cos 0, X2 = x\ + r sin 0. (5.4) 

The corresponding initial values of p\,p2,Q are obtained by the following local 

analysis. In the neighbourhood of (5.3), Q is approximated by the quadratic 

form 

(5.5) 
1, 

QK^(x-xeyP(x-x<), 

p= —— fa P(x - xe). 
dx 

in which P is a symmetric matrix and t denotes the transpose. It follows that 

(5.6) 

Substitution of the approximations (5.6),(2.7) and the approximation 

ft £ H <"> ai(x
e) 0 
0 a2(x

e) 

of the diffusion matrix into the eikonal equation (3.37) leads to the matrix 

equation 

PAP + PB + B1P = 0, (5.8) 
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which is solved to give 

P = 
—2(j?n 4- B22) 

(BnAx - B12A2)* + AMBU + B22f 

where G is the matrix with elements 

G11 = 021-^1 + [-Bn-022 — B12B21 + Bn]A2, 

G12 = G2I = #22#21-<4l + B11B12A2, 

G22 = BUA2 + [011^22 — #12#21 + B22\A\. 

G, (5.9a) 

(5.96) 

The initial values of pi ,p2,Q are determined by (5.6),(5.5),(5.9). Notice that 

(5.9) also determines the determinant 

He{xe) = PnP22-PnP2i (5.10) 

in (4.8). Next we consider the transport equation (3.38). With (5.2a) and 

see [8], in which J is the Jacobian 

(5.11a) 

J = 

dx\ dxi 

dx2 01 

ds 
'J 2 

do 

(5.116) 

equation (3.38) is rewritten as 

d 2 r dbi da, 
dxi * dxi 

£(ln»'|J|) = - £ 
a s .=1 

Differentiation of (5.2a, 6) with respect to 0 leads to the equations 

d / ö x , \ _ dbi dai dpi 

Ts \WJ -~dö + ~döPi + aiW 
fdpi\=_Y^\_d%_ dbj dPj 1 d2aj 2 

y de J ^ ldxid0V3 dxi de 2 dXidoVi 

(5.12) 

(5.13a) 

d_ 
ds 

ddj daj 
+ dx~~dëPj (5.136) 

i = 1,2, which describe the rate of change with s of dxi/dO and, using (5.2a), 

of J. The initial value at s = 0 of w is chosen according to (3.36c). The 
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initial values of dxi/d0 and dpi/dO are obtained by differentiation of the initial 

expressions (5.4) for *,• and (5.6) for p,- with respect to 0. 

To obtain Qoi,woi, the system of 10 ordinary differential equations (5.2), 

(5.12),(5.13) is integrated. By trial and error the angle 6 of the initial point 

is manipulated in order to obtain a characteristic containing points close to 

(0,-620/622)- Once a (A2 , A)-neighbourhood of (0,-620/622) is reached, 0 < 

A ^C 1, the integration is terminated. Using the values of Q,w obtained nu­

merically at the end point(s) of the characteristic and the formulas (3.42),(3.43) 

for Q and (3.55) for w, valid in the case *i = 0(x\), £2 small, we approximate 

the values of Q01, u>oi • 

The solutions of Q and w obtained by the numerical method described 

above are not always unique functions of x. By assumption, the solution is 

unique along the characteristic which starts at the initial point with r = 0 

and ends at (0, —620/622)- In numerical computations, this characteristic can 

not be followed exactly. Near (0,-620/622) the characteristics curve upward or 

downward along xi = 0 and get into caustic surfaces, as indicated by a change 

of sign in the determinant (5.116). There, the solution is not a unique function 

of x. The numerical integration has been terminated before the determinant 

vanishes. The boundary x\ = 0 cannot be approached too close. Consequently, 

A cannot be taken arbitrary small, which limits the accuracy of the computed 

values of Qo\,u>oi- In the subsequent example, the numerical computation was 

stopped at X\ RS 0.02. 

6. An example 

Consider the predator-prey system defined by the diffusion 

ai(x) = *i(1.28 + 0.80*1 + 0.32*2), 
(6.1a) 

a2(*) = *2(1.08 + 0.28«i + 0.40*2), 

and the drift 
6i(s) = *i(0.72 - 0.40*i - 0.32*2), 

(6.16) 
62(*) = «2(0.12 + 0.28*i - 0.40*2), 

in which *i and *2 denote the prey and predator density, respectively. The 

stochastic system defined by (6.1) has previously been studied in [12]. Some 

trajectories of the deterministic system are depicted in Figure 2. The numerical 
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0.3 

0 1.8 
'1 

Figure 2. Trajectories of the deterministic system associated with the 

stochastic system (6.1). The critical points are (0,0),(0,0.3),(1.8,0) 

and (1,1). 

computation described in section 5 produces the values 

Qoi = 0.26, w01 = 1.1, Qo2 = 0.30, w02 = 1.5. (6.2) 

The projection on the x-plane of the characteristics (called rays), used in this 

computation, are depicted in Figure 3. Outside the region D, the probability 

of exit at the boundary X{ = 0 is given by «,-: 

wi(x) = 
0.69e"0-26/' + l.03e-(°-30+xn,(*>))/£ 

0.69e-° 26/< + 1.03e-° 3 ° / f 

1 _ e-"K*i W f 

- [l _ g- 'Ksi^/el 

(6.3a) 

u2(x) = 
0.69e-(°-26+X3i(XlMc + 1.03e~° 3 0 / c 

0.69e-026 /e + 1.03e-°30/f 

—y(xi)x2/c 

[l _ e-y(.X3>i/t] ] 

(6.36) 
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0.3 

0 1.8 

Figure 3. The rays used in the numerical computation ofQa, u>oi, Q02 

and wo2-

according to (3.69),(3.71). We conclude that if the starting point of the sytem 

(6.1) is outside an O(e)-neighbourhood of the a^-axis, i.e. if the initial predator 

density is not very small, then the prey will get extinct before the predator, 

with probability one in the limit for e - » 0 . The expectation and variance of 

the exit time satisfy equations (4.10), uniformly in R, with 

CT,i(e) = 
sß 

0. i i e -o .26/ £ + o . i6 e-o.3o/£ 
9 . 1^e 0 2 6 / e . (6.4) 

which indicates that if the starting point of the system (6.1) is outside 0(e)-

neighbourhoods of the coordinate axes, i.e. if the initial prey and predator 

densities are not very small, the expected time of extinction of one of the popu­

lations is exponentially large. The functions 7 and 7 are computed numerically. 

The expression (3.31a) supplies the starting values of 7 at — 620/&22±rç, where r) 

is a small number, and a forward (backward) finite difference scheme, based on 

the Bernoulli-equation (3.24,3.25) is used to obtain 7(3:2) for xi > — &20/&22 + »? 

(«2 < — &20/&22 — v)- The graphs of 7,7 are shown in figure 4. In the boundary 
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1.125 

0 .907 

0 . 788 

0.222 

0 

Y ( X J ) 

Y(x 2 ) 

x . 
1 0.3 1.8 

Figure 4- The functions j,y. The critical points, at which the initial 

condition for the Bernoulli differential equation is specified, are indi­

cated. The values denoted along the vertical axis follow from (3.30), 

lim 7(^2) = 26io/aio, see (3.316), and similar formulas for the other 

boundary. 

layers along xi = 0 and i 2 = 0 a small (large) value of 7 ,7 respectively, may 

be interpreted as a relatively weak (strong) stochastic stability. From figure 

4 we conclude that for low prey density the stochastic stability of the system 

(6.1) decreases with increasing predator density; for low predator density the 

stochastic stability increases with increasing prey density. 
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S INGULARIT IES ARIS ING IN T H E A S Y M P T O T I C SOLUTION 

OF T H E FORWARD KOLMOGOROV EQUATION 

H. Roozen* 

Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

In the study of stochastic dynamical systems one is interested in the solution 

of the forward Kolmogorov equation. In case of small stochastic fluctuations, 

a WKB-Ansatz can be made to this solution. This approach leads to a system 

of ray equations. When solving these equations, it is observed that rays may 

intersect in caustic surfaces. Near such locations a WKB-approximation does 

not hold. In this paper we obtain a uniform asymptotic expansion that remains 

valid near caustics. This expansion is expressed in terms of new canonical 

integrals. 

1. I n t roduc t ion 

In the study of stochastic dynamical systems we are interested in the solu­

tion of the forward Kolmogorov equation for various reasons. It describes the 

probability density function of the position of the system in the state space. 

Moreover, it is related to statistical quantities describing the problem of exit 

from a region in the state space. Such quantities are the probability density 

function or expectation value of the exit time, the probability density function 

* Present address: University of Amsterdam, Department of Mathematics, Plantage 

Muidergracht 24, 1018 TV Amsterdam, The Netherlands. 
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of the exit point, the most probable exit point, etc. [19,24]. It is assumed that 

the stochastic fluctuations are small, that is, of intensity of order fc-1, where k 

is a large parameter. For simplicity we assume that the spatial domain extends 

to infinity. We consider initial data involving the large parameter. We look at 

the forward Kolmogorov equation either in time dependent form (a parabolic 

differential equation) or in stationary form (an elliptic differential equation). 

A formal asymptotic solution to these equations can be found by application 

of the WKB-method, as described in [17]. This method leads to a system of 

ordinary differential equations along characteristics. The projection of a char­

acteristic on the (temporal-) spatial domain is called a ray. It may occur that 

at certain locations (the caustic surfaces) rays intersect. Near such locations 

the WKB-method does not hold. We derive an asymptotic expansion that is 

valid uniformly and thus near a caustic. We study in detail one of the simplest 

cases: the cusp caustic arising in a diffusion problem with one spatial variable 

and with a constant diffusion. We conclude with the formulation of a formal 

approach to singularities arising in the forward Kolmogorov equation. 

Section 2 starts with the formulation of a diffusion problem. Application of 

the WKB-method leads to an explicit expression for the asymptotic solution of 

the diffusion problem in terms of the ray variables. For some initial conditions 

the ray pattern shows intersecting rays that form a cusp. 

In Section 3 we give the exact solution of the diffusion problem in the 

form of an integral. This integral is expanded asymptotically by the method of 

Laplace. This approach gives us an interpretation of rays, from which we learn 

how to handle regions in the (time-) space domain where more than one ray go 

through one point. The asymptotic solution is not valid near certain singular 

surfaces. The approach in this section is the same as in [7]. There it served 

to motivate the application of the WKB-method to linear partial differential 

equations. 

In Section 4 we continue with the integral of Section 3. The singularity 

in the integral is assumed to be of the typical form. With the asymptotic 

theory of Chester, Friedman and Ursell [6] we obtain a uniform asymptotic 

expansion of the integral. This expansion is also valid near caustics. It contains 

canonical integrals Uo, U\ and U2 that are not found in earlier literature. 

In this section reference is made to the appendices. Appendix A treats the 

standard cusp and the solution of a third degree algebraic equation. Appendix 

B lists some properties of Uo- The method in this section is similar to that 
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of the uniform asymptotic expansion of oscillatory integrals [14,18] arising in 

hyperbolic problems, such as the reduced wave equation [16]. 

Section 5 is concerned with the evaluation of the uniform asymptotic ex­

pansion near caustics. It turns out that near the fold lines and away from 

the cusp point, the asymptotic solution is obtained with the ray method, by 

taking into account the contribution of only one (nonsingular) ray. Near the 

cusp point we need the uniform expansion involving canonical integrals. The 

determination of the functions arising in this expansion is discussed. 

Section 6 generalizes the approach of the cusp in a diffusion problem to 

singularities arising in the asymptotic solution of the forward Kolmogorov equa­

tion. 

2. The diffusion problem and its solution by the WKB-method 

For a description of the WKB-method applied to linear partial differential 

equations of parabolic and elliptic type we refer to Cohen and Lewis [7], Ludwig 

[17] and Brannan [5]. The last two papers are addressed directly to stochastic 

dynamical systems. In the present paper we consider the problem [7]: 

kvt = vxx, t > 0, i € ( - o o , + o o ) , (2.1a) 

v(0,x) = z(x)exp(-ks(x)), z > 0, (2.16) 

/

+oo 
v(t,x) dx < oo, (2.1c) 

•oo 

asymptotically for k —+ oo, i.e. for a small diffusion. Note that the initial 

condition (2.16) is in the WKB-form. From physical considerations we assumed 

z nonnegative and adopted condition (2.1c). Further assumptions on z and s 

will be made implicitly below. 

The WKB-method presupposes a solution of (2.1) in the form 

v(t,x) = exp[-k{Q(t,x)-k~1]ogw(t,x)-\ }], as k —> oo, (2.2) 

where we indicated only the two highest order terms in k. Substitution of this 

form in (2.1a) gives to leading order in k the eikonal equation and to the next 

order in k the transport equation, respectively 

Qt + Ql = 0, (2.3a) 

wt + 2Qxwx + Qxxw = 0. (2.36) 
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Fig. la. For s"(y) > 0 the (t,x)-space is simply covered by rays. 

The partial differential equations (2.3) can be written as the system of ordinary 

differential equations 

dx _ dp dQ 
dt * ZP' dt - U' dt 

—(logw+ilogj) 0. 

(2.4a) 

(2.46) 

Equations (2.4a) are the so-called ray equations. These follow from (2.3a) 

by the theory of Hamilton-Jacobi [13]. Here p denotes Qx. Solutions x(t,y) of 

the first equation of (2.4a) form rays in the (<,x-)-space. As variable along a 

ray we have chosen t and as a variable that distinguishes rays we take 7, which 

is the position a; of a ray at t = 0. Equation (2.46) follows from (2.36), and 

J denotes the Jacobian dx/dj corresponding to the transformation from 7 to 

x. The explicit solution of system (2.4) with initial condition (2.16) reads in 

terms of the ray variables 

*(*,7) = T + 2*'(7)*, 
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0.5 

- 4 4 

Fig. Ib. Rays in the (t,x)-space that intersect to form a cusp singu­

larity. This happens when s"(j) becomes negative. 

p(t,7) = *'(7). 

Q(t,t) = s(1) + (S'(y))2t, 

J( t ,7) = l + 2«"(7)*, 

w(t,y) = z(7)J-$(t.y). 

Thus, along the ray denoted by 7, the WKB-solution is 

z ( 7 ) ( l + 2«"(7)<)-i exp[-*{«(7) + (s'(j))2t}]. 

(2.56) 

(2.5c) 

(2.5d) 

(2.5e) 

(2.6) 

If «"(7) > 0, the pattern of rays shows a simple covering of (t,ar)-space by 

rays (Fig. la) and the WKB-solution is regular everywhere. If s"(y) becomes 

negative, the pattern of rays is typically as depicted in Fig. lb. In that case, 

the expressions above show that the transport function w is singular at points 

where J vanishes (i.e. where rays intersect to form a caustic). Note that at 
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7i 72 73 

Fig. 2a. Every point P at the depicted side of the caustic (inside the 

cusp), is the point of intersection of three different real rays. 

such points the eikonal function Q remains finite. It will be discussed how 

the WKB-method can be extended to a region where every point lies on three 

different rays, as in Fig. 2a. Moreover, we derive an asymptotic expansion that 

remains valid near caustics. 

3. The exact solution of the diffusion problem 

For an understanding of the phenomena that occur in the presence of 

caustics we study the integral that solves problem (2.1) exactly 

phere 

v(t,x) = (k/2ir) * / («,*), 

I(t,x)= / y(j,t,x)exp[-kf(y,t,x)] dy, 

(3.1a) 

(3.16) 
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Fig. Sb. Form of the function ƒ at the five positions on the ray 72 

indicated in Fig. 2a. The left hand side minimum of 5 has not been 

depicted. 

and 

ƒ = s(y) + (7 - xf/At, g (2*)-MT), (3.1c) 

and the integration interval T consists of the real line. For ƒ and g sufficiently 

smooth the integral I can be expanded for k —* 00 by the method of Laplace 

[2,4]. For given t and x the major contribution to the integral is from one or 

more of the local minima of ƒ on F, that is from points 7,- € T satisfying 

fy(li,t,x) = 0, 

fyy(7iJ,x) > 0. 

(3.2a) 

(3.26) 
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Fig. Sa. Point P passing through the fold curve Fi. 

We find 

*(*>*) ~ J}2(2ir/kf-rr(7i,t,3:))*9(7i,t,x)exp[-kf(-ri,t,x)] as k -* oo, 

(3.3) 

where the summation extends over all ji satisfying (3.2). Typically, only one 

term in (3.3), viz. the one corresponding to the global minimum of ƒ on T, 

contributes to I, while contributions of the other minima are negligible. With 

ƒ defined as in the first equation of (3.1c), the conditions (3.2) become 

*'(7.) + (T.' - * ) / « = 0, 

s " ( 7 , ) + l / 2 < > 0 . 

(3.4a) 

(3.46) 

Equation (3.4a) corresponds to (2.5a). Consequently, the ray denoted by 7,-

may be identified with the locus of points in (<,x')-space, for which f(y,t,x) is 

stationary at 7 = 7,-. Equation (3.46) indicates that this stationary point is a 

local minimum, and thus gives an asymptotic contribution to I by the method of 
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Fig. 3b. Coalescence of stationary points of f on F\. The positions 

are indicated in Fig. 3a. 

Laplace, as long as J is strictly positive along a ray, i.e. up to the moment that 

the tangent point with a caustic is reached. After passing this tangent point, 

the ray corresponds to a local maximum, see Fig. 2b, and does not contribute 

to the integral any more. Thus, from the three rays going through P in Fig. 

2a, only 71 and 73 contribute to I. The contributions are given by (3.3) with 

i = 1,3 and (3.16). With (3.1a) this amounts to the same as (2.6) summed 

up for 7 = 71,73. The discussion which of the two contributions is dominant 

can be found in Section 5. The behaviour sketched above is different from that 

of the well-studied oscillatory integrals (which are of the form (3.16) with ƒ 

imaginary). In that case, application of the method of stationary phase yields 

asymptotic contributions from stationary points (thus local maxima included), 

and after touching a caustic a ray contributes as well. 

For points P,P' in the (/,x)-plane, away from the caustic curves FI,FÏ, 

see Fig. 3a, expression (3.3) is a regular asymptotic expansion of I. However, 

when the point P passes through the caustic curve F\ away from the point 

C, as indicated in Fig. 3a, the local minimum f(f3,t,x) coalesces with the 

133 



local maximum f{l2,t,x) and both stationary points disappear, see Fig. 3b. 

At the point of coalescence on Fi, / 7 7 = 0 and the corresponding expression 

(3.3) becomes singular. At the point C we have / 7 7 = / 7 7 7 = 0. The two min­

ima f(ji,t,x), f(j3,t,x) and the intermediate maximum f(f2,t,x) coalesce. 

In Section 4 we construct an asymptotic expansion of I for k —* oo that is 

uniformly valid in a region in the (<,a:)-space containing caustic curves. 

4. Uniform asymptotic expansion of the integral 

In this section we study the uniform expansion for k —• oo of integrals of 

the type (3.16) where we assume that ƒ and g are known functions and that 

T is the real line. It is convenient to consider ƒ as a function of 7, where t 

and x are merely parameters. We study the case that ƒ has at most two local 

minima with respect to 7 € I \ and where for some value of (t, x) these minima 

coalesce to form one minimum. Up to now we considered only real variables 

and functions. In order to apply the asymptotic theory of Chester, Friedman 

and Ursell [6] to the integral I, 7 must be considered as a complex variable, and 

ƒ and g as complex functions that are real for real 7. The parameters t and x 

remain real-valued. Moreover, ƒ and g are assumed to be analytic functions of 

their arguments. Note that for all (t, *)-values there are always three complex 

stationary points ji of ƒ, while not always three real stationary points 7,- of 

ƒ exist. The typical way for three stationary points to coalesce, say at the 

point 7 = 7c for (t,x) = (tc,xc), is described as follows. In a neighbourhood of 

the point (tc,xe) in the (i,a:)-parameter plane and for 7 near yc, ƒ has three 

stationary points 7^: 

/7(7«,*,*) = 0 fori = 1 , 2 , 3 . (4.1) 

By assumption, a stationary point distinct from the other two is simple, and 

if two (three) stationary points coalesce, it is into a stationary point of order 

two (three). This describes the cusp singularity. A merit of the asymptotic 

theory in [6] is that we can express the asymptotic solution of I in the presence 

of such a singularity, in terms of canonical integrals. This is done as follows. 

Near 7 = j c , (t,x) = (tc,xc) the cusp singularity can be brought in standard 

form by the change of variable from 7 to £ denned by [25] 

ƒ(7. *. *) = \Z4 - <2 - K + c = P « , a, 6) + c, (4.2) 
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where £ is a function of 7, t, x and a, 6, c are functions of t and x. For a descrip­

tion of the standard cusp we refer the reader to appendix A. Differentiation of 

expression (4.2) with respect to £ gives 

"dt f ^ = e-2aÇ-b. (4.3) 

In order for (4.2) to be a one-to-one transformation, dy/d£ must be different 

from zero or infinity. Consequently, the (complex) zeros 7J of / 7 and the 

(complex) zeros of £,• of the right hand side of (4.3) must correspond 

7 = H ^=> i = fc for t = 1,2,3. (4.4) 

The zeros £,• can be expressed explicitly in terms of a and b, see appendix A. 

Insertion of (4.4) into (4.2) gives the therefore nonlinear equations 

f(7i,t,x) = kZi-ag-Ki+c, « = 1,2,3. (4.5) 

When the values at the left hand side are known, these equations can be solved 

by an iterative method (not applicable near the caustic) or an algebraic method 

to obtain the functions a, b, c, see [12,10]. On the fold curve F\ (where the roots 

72 and 73 coalesce), the equations (4.5) imply 

a = ( ( / 2 - / i ) / 3 ) * , 6 = - ( 3 2 / 2 7 ) * ( ( / 2 - / 1 ) / 3 ) * , c = (h + 8 / 2 ) / 9 , (4.6) 

with f2 = ƒ3. On F2 , where 71 and 72 coalesce, similar formulas hold. We used 

the abbreviation fc for f(j{,t,x). At the cusp point C the expressions (4.6) 

reduce to 

a = 0, 6 = 0, c = fx (=f2 = f 3 ) . (4.7) 

The integral I is written as 

I(t,x) = exp(-fcc) ƒ g0(t,t, x) exp[-fc(i£4 - a*2 - &£)] de, (4.8a) 

where 

9o(Ç,t,x)=g(y,t,x)^. (4.86) 

We assume that in a neighbourhood of 7 = -yc, (t, x) — (tc,xc), go has no zeros 

with respect to £• Straightforward expansion of go in a power series in £ near 

£ = 0 results in a series for I in which successive terms do not decrease as 
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ik —* oo. In order to obtain an expansion that is asymptotic, we introduce the 

sequences of functions {</<}, {hi}, {Pi}, {<?»}i {ri}, see [3]: 

9i = Pi + q£ + Ut2 + (£3 - 2aÇ - b)hi, (4.9a) 

T £ = W+I. (4.») 
for i = 0 ,1 ,2 , . . . , N, where N is an arbitrary nonnegative integer, <ft,/ij are 

functions of £,t,x while p»,?«,»"« are functions off and x. By repeated use 

of (4.9) in (4.8a) and integration by parts, we obtain the following uniform 

asymptotic expansion of (4.8a): 

N 

I(t,x)~exp(-kc) {Uolki^ki^Y^Pik-*-* 
»=o 
N 

+U1(k^a,kh)^2qik~^~i (4.10a) 
«=o 

JV 

+U2(k$a,k$b)J2rik-i-i}, asfc->oo, 

/

+0O 

e exp[-(i£4 - a£2 - 60] dt, i = 0,1,2, (4.106) 
•oo 

i=0 

where 
/•+0O 

•/ — oo 

and the error of the expression between the brackets, made by truncation of 

the series, is of the order 

O(k-N-1){k-i\U0(k^a,kh)\ + k-^\U1(k^a,kh)\ + k-T\U2(k^a,kh)\\. 

(4.11) 

The integration in (4.10b) is along the real axis (considered in the complex 

plane, this is from one valley at oo to another valley at oo, as required by the 

theory). Thus, in the presence of a cusp singularity, the asymptotic solution 

for k —• oo of problem (2.1) is expressible in terms of the canonical integral 

Uo(a, b) and, by 

Ui(a,b) = l.Uo(a,b), U2(a,b) = j-U0(a,b), (4.12) 

its first partial derivatives. Usually one is satisfied with the expansion (4.10a) 

with only N = 0. For v(t,x) we then have 

v(t,x) ~ (fc/27r)*exp(-fcc) {U0(k>a,kh)Pok-i 

+Ui(kia,kh)q0k-i (4.13) 

+U2(kia,k*b)r0k~'*}, as k —• oo. 
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Henceforth we restrict ourselves to this case. Using the stationary points (4.4) 

in (4.9a) (with i — 0) and the expressions 

which follow from (4.2) by two differentiations, we obtain the linear system 

(V 2 — la \ ** 
J . ^ j = Po+£.<Zo+tfro, » = 1 , 2 , 3 , (4.15) 

which can be solved for the functions po,qo,ro. In the limiting case that one or 

more stationary points coalesce, the right hand side of (4.14) is analytically well 

defined but numerically indeterminate. In such case it is sometimes convenient 

to use a so-called transitional approximation [11]. The canonical integral UQ 

and its derivatives should be considered as special functions in the same way 

as Airy functions. Some properties of Uo can be found in appendix B. 

Example. Computations of the above kind can become quite involved 

(see worked out examples in [21,15]). In the present example we deal with 

functions that are already close to the standard form. Consider problem (2.1) 

with z identically one, and s given by the fourth degree polynomial 

s(j) = C474 + C373 + c 2 7 2 + C17 + c0 . (4.16) 

In order to satisfy condition (2.1c) we assume 

c4 > 0. (4.17) 

The second derivative of s is 

s"(7) = 12C472 + 6C37 + 2c2, (4.18) 

which is positive for I7I sufficiently large. The roots of s"(7) = 0 are 

7i = (-C3 - \Jc\ - 8c2c4 /3j /4c4 , 72 = ( - c 3 + yjcl - 8c2c4/3 J /4c4 , 

(4.19) 

which are real and distinct for 

4 - 8 < W 3 > 0. (4.20) 
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We assume that (4.20) is satisfied. Then «"(7) is negative on the interval 

(7i>72) and the corresponding rays get into a caustic curve, which is the cusp 

described above. The polynomial ƒ given in (3.1c) with s as in (4.16) is brought 

into the standard form (4.2) by two transformations. By the transformation 

from 7 to p defined by 

7 = (4c4)-*p, (4.21) 

the coefficient in the term of degree four in the polynomial becomes \. Subse­

quently the transformation from p to £ is applied, where 

p = t + T, (4.22) 

and T is determined such that the coefficient in the term of degree three in the 

polynomial becomes zero. As a result we find for k —* 00: 

(4.23) 
v(t,x) = (k/4Trt)?h-*exp(-kc(t,x))h-$U0(k$a(t,x),kh(t,x))+ 

+ 0(fc-*)}, 

with 

a(t,x) = vo-vi/t, 

b(t,x) = u2 + (J* + u4x)/t, (4.24) 

C(t, X) = U5 + (V6 + V7X + x2/4)/t, 

where the V{ are expressed in the coefficients c* as follows 

j / 0 = / r* (3c§/8c 4 -C2) , ( >0 ) (4.25a) 

^ = ft-5/4, ( >0 ) (6) 

v2 = -2h-icl + 2h-$c3c2-h-icu (c) 

u3 = h~h3/2, (d) 

v4 = h-*/2, ( > 0 ) (e) 

«/5 = -3h~34/4 + h-2c\c2 - h-lc3Cl + c0, (ƒ) 

ve = h-24/4, (> 0) (g) 

V! = h-lc3/2, (h) 

and h = 4c4. Inverting the first two equations in (4.24), we express t and x in 

a and 6: 

t = vi/{v0 - a), a-= (-1/3 + ^ ( 6 - t / 2 ) / ( i / 0 - a ) ) / i / 4 . (4.26) 
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In Fig. lb we depicted rays for the case 

s(7) = h 4 + 7 3 - 7 2 , (4-27) 

where 

/ x 5 1 L/ . t 1 + x l± . 1 / „ l +2a ; + a:2\ 
«('.-)= 2 - 5 , 6(*,*) = - 4 + — c(t,,) = - (^-7+ j J. 

(4.28) 

5. Evaluation of the uniform asymptotic expansion near caustics 

In the present section we discuss the application of the theory of the pre­

vious section to the diffusion problem of Section 2. Away from the caustic, 

the uniform asymptotic expansion (4.13) can be evaluated by the method of 

Laplace (we apply this method to (4.8a) with (4.9a)) to obtain 

t ; ( t i a ; ) ~ ^ ( 3 ^ - 2 a ) - i ( p o + </o6 + roe,?) exp[-k(P(^,a,b) + c)}, (5.1) 
i 

where the summation extends over the local minima of P with respect to £. 

We restrict ourselves to the global minima, since these yield the dominant 

contributions to v. Outside the cusp, only one local minimum exists, which 

therefore is global. Inside the cusp, two local minima £1 and £3 exist; away 

from the line 6 = 0, if 6 > 0 (6 < 0), the minimum £3 (fi) is global; near 

6 = 0, the minima £1 and £3 are of comparable magnitude and both should be 

accounted for. Thus, before a ray (say £3) gets into a caustic curve (the fold F^; 

the singularity near Fi is described by integrals of incomplete Airy type with a 

boundary layer of order 0(k§), as follows from a simple version of the analysis 

in [15]), there is a region (extending from F\ to a neighbourhood of 6 = 0) 

where it corresponds to a nonglobal minimum and where its contribution to 

v is negligible compared with that of the global minimum (£1). Consequently, 

we may ignore the contribution of a ray shortly after it passes the line 6 = 0. 

Then, provided we are not too close to the cusp point, we never reach a vicinity 

of the fold curve to which the ray is tangent, and the contribution of the ray 

to v is always regular. 

Next we study the region near 6 = 0, a > 0, where the rays £1 and £3, 

which correspond to the local minima of P (Pc = 0,P^ = 3£2 — 2a > 0), have 
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comparable contributions to v. The following analysis is valid for a not very 

small. Let £3 > 0 and £1 = —£3 — e, where e is a small positive number. The 

point of intersection (as,bs) of the rays f 1 and £3 is given by 

a, = (£3
2 + tti + tf )/2 « 6 ( 6 + e)/2, (5.2a) 

6. = - * I e i - 6 É ? * - e & (5-26) 

which is close to 6 = 0. At this point, we find for the function P in the 

exponential in (5.1): 

P ( 6 , a . , M * * 3 ( - & / 4 - 3 £ / 2 ) , 

Forming the quotient of the exponentials in (5.1) we find 

(5.3) 

exp[-fc(P(6, a,, bs) + e)]/ exp[-Jb(P(fc, a, ,b,) + c)]= exp(-k&e). (5.4) 

We discard the contribution from £3 when this quotient is smaller than some 

value 6, 0 < 6min < 6 < 1 (note 6 is bounded below by some value 6mi„ and 

cannot be made arbitrary small). The corresponding value of e is 

c« = - ( 2 4 4 f r 1 log«. (5-5) 

For e > e« the contribution of £3 is negligible with respect to that of £1. It is 

instructive to state this result in terms of a, and bs. Using (5.26) to express e 

in terms of 6, and 6> a n d using subsequently (5.2a) with c = 0 to express 6 

in terms of a,, we find that the contribution of £3 is negligible when bs < bj, 

where 

6j = fc-1(8a,)-Mog5, (5.6) 

This result shows how the width of the region where both £1 and £3 are impor­

tant, decreases for increasing values of k and a,. 

From the discussion above it follows that away from the cusp point a valid 

asymptotic expansion is obtained from the dominant ray contribution(s). In a 

neighbourhood jVof the cusp point where a — 0(k~?),b = 0(k~?), the ex­

pansion (4.10a) holds. The functions a, 6,c and po,90, »"o in this neighbourhood 

must be determined. Inside the cusp, the three real rays going through any 

given point can be constructed numerically by a boundary value method, see 

[23]. Three real values of Q (Section 2) are obtained, that, by identification of 
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(2.2) and (3.3) are the three values f(ji,t,x) in Section 4, where we discussed 

the solution of equations (4.5) for a,b,c. The position on the cusp forms a 

limiting case that can be treated as well. Outside the cusp, the function ƒ has 

one real and two complex conjugate stationary points. Accordingly, we have 

one real Q (associated with one real ray) and two complex conjugate Q-values 

(associated with two complex conjugate rays). The WKB-method of Section 

2 produces only the one real ray and the associated real Q-value. Two more 

values of Q are required in (4.5) in order to determine a, b and c. Consequently, 

either we have to extend our ray method in Section 2 to obtain the complex 

conjugate values as well, or we must determine a, b and c outside the cusp in 

some other way. With respect to the latter possibility, we remark that since we 

need values of a,b,c in N only, these values can be obtained by extrapolation 

of nearby known values inside the cusp. 

Similar remarks yield with respect to the determination of the functions 

Po,qo and ro- These follow from the linear system (4.15). We now assume 

the functions a, 6, c and, consequently, & known in Ar. For the same reason as 

above we only consider positions inside the cusp. There, two of the three rays 

going through any point P correspond to local minima of ƒ. We rewrite the 

equations (4.15) for these rays as 

w(7i, t,x)(Zg - 2a)* = p0 + qoÇi + r0g, i = 1,2,3, (5.7) 

see (5.1). The values w(ji,t,x) of the transport function can be obtained 

numerically by the ray method. The third ray going through P corresponds 

to a local maximum of ƒ. Before reaching P, it touches a caustic, where 

v> becomes infinite. Consequently, it is impossible to compute the transport 

function corresponding to that ray in P. This difficulty can be overcome as 

follows. Though w becomes infinite at a caustic, the left hand side of (4.15) 

remains finite since dy/d£ does. We can compute values of the left hand side 

of (4.15) along the ray before it touches the caustic (we use the left hand side 

of expression (5.7) for this goal) and we use extrapolation to obtain values 

along this ray after touching the caustic. As a result we then have three linear 

equations that can be solved to obtain po><7o and r0 in points P lying inside 

the cusp. Values of these functions in ,V outside the cusp can be obtained by 

extrapolation of the values inside the cusp. 

An alternative way to determine the functions a,b,c is described as fol­

lows. Similarly as in [16], we can obtain differential equations for the functions 
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a,b,c and po,qo,ro- Therefore, the expression (4.13) for v(t,x) is substituted 

into the diffusion equation (2.1a). Using the equations (B2) all second partial 

derivatives are written in terms of derivatives of lower than second order. This 

is easily seen, since it follows from (B2) that 

Uaa = U + 2aUa + bUb. (5.8) 

The three highest order terms in k then vanish on setting 

ct+cl + 2axbbx = 0, (5.9a) 

at - 2aax - b
2
x + 2axcx = 0, (5.96) 

bt - alb + 2bxcx - Aaaxbx = 0. (5.9c) 

The three next order terms in k vanish if 

2p« + 4cxpx + 2(cxx - al)p + 4axbqx + 2(2axbx + axxb)q+ 

+ 2bbxrx + bbxxr = 0, (5.10a) 

46xpx + 2bxxp + 2qt + 4(cx - 2aax)qx + 2(cxx - 2aaxx+ 

- 2al)q - 2(2abx + axb)rx - {2abxx + 4axbx + axxb)r = 0, (5.106) 

4a rp x + 2axxp - 46x5^ - 2bxxq + rt+ 2(cx - 2aax)rx+ 

+ (cxx - 2aaxx - Za2
x)r = 0. (5.10c) 

Here we dropped the subscripts of po, qo and >'o. The equations (5.9) are equiv­

alent to the eikonal equation (2.3a) and the equations (5.10) form an improve­

ment to the transport equation (2.36) in the sense that they behave regular 

near the caustic. The computations above are too laborious to carry out by 

hand, and have been done by machine, using the formula manipulation package 

Macsyma. As remarked earlier, we are interested in the functions a, 6, c and 

Po,qo,ro near the origin in the (a, 6)-plane. A way to obtain these functions 

is to substitute their Taylor expansions at a — b = 0 into equations (5.9) and 

(5.10) above. The unknown Taylor coefficients are determined by using known 

values of these functions inside the cusp near a = 6 = 0, derived (with equations 

(4.5) and (4.15)) from numerical WKB-results. 
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6. Formal solution of the forward Kolmogorov equation 

On the basis of the discussion in the preceding sections we are led to 

a formal approach to singularities (of which the cusp is one) arising in the 

asymptotic solution of the forward Kolmogorov equation with a small diffusion 

term. The problem is stated as follows. For k —* oo find the asymptotic solution 

of 

% - -t £<».«.)+è t Ê 4""'* 1 ' (61°> 
v(0,x) = vo(x) = z(x)exp(-ks(x)), z > 0, (6.16) 

/ v(t,x) dx < oo, (61°) 

where t > 0, Xj € (—oo, +oo), i = 1 , . . . , n, n is the spatial dimension (and con­

sequently x a vector with components x\,..., x„) and T extends over the entire 

Än . Since the process in (6.1a) is time homogeneous we have the representation 

v(t,xi,...,x„) = / t ;0(7i , . . . ,7n)p( ' r i , . . . ,7n,t ,a: i , -- . , iCn) dji ...d-/n, 

(6.2) 

where p(ji,... ,jn,t,xi,... ,xn) is the transition probability (i.e. the condi­

tional probability to be in ( x j , . . . ,xn), given that a time interval t before the 

position was ( 71 , . . . 7n))- The use of this integral in the case of simple stochas­

tic processes (diffusion process, Ornstein-Uhlenbeck process) with known ex­

pressions for p, suggests the following representation for v in (6.1) to overcome 

singularities from intersecting rays: 

v(t,xi,...,xn) = (fc/2ir)^ / g(ji,...,jn,t,xi,...,xn) 

exp[-kf(ylt...,y„,t,xi,...,xn)] dji.-.d^. (6.3) 

Applying Laplace's method to the n-dimensional integral (6.3), a factor 

(k/2ir)~% arises. We see from the initial condition (6.16) that a factor in front 

of the exponential is of order k° (provided z is of this order). This explains the 

factor (k/2n)% in front of the integral in (6.3). As a generalization of (4.2) we 

change variables from ji to & as follows 

f(7i,---,Jn,t,xi,...,xn) = F (£ i , . . . , £ m , a i , a2 , . . . ) H- c+ Q(£m+i, • • • ,Zn), 

(6.4) 
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where F is the unfolding of the singularity in question, such as the cusp, the 

butterfly, etc. See for example [9] and related papers, or texts on catastrophe 

theory. The function Q is a sum of squares of its arguments representing the 

nonsingular part of ƒ, by the Morse lemma. This latter part is not present in 

(4.2). The functions a< (the number of these functions depends on the singular­

ity) and c have arguments t, x i,..., xn. The functions & (»' = 1 , . . . , n) depend 

on 7 i , . . . , 7„, t, xi,..., xn. In much the same way as described in Section 4, we 

change variables from 71 , . . . ,7„ to £ 1 , . . . , £„ and evaluate the resulting inte­

gral to arrive at a uniform asymptotic expansion of v in terms of new canonical 

integrals. In order for these integrals to be convergent (note T extends to infin­

ity in all variables) not all singularities (as listed in for example [9]) can occur 

in F, and in Q the signs of the squares must be positive. 

Example. In [22] we met a cusp singularity in the following problem. 

Determine the asymptotic solution of equation (6.1a) with n = 2 in stationary 

form (that is, with the left hand side equal to zero), where 

h(x) = m ( l - xi) + x2, b2(x) = -ßx2, {ß>Q,ß^l) 
(6.5) 

a n = <*22 = 1, a\i = a2i = 0. 

The deterministic system has the equilibrium points (xi,x2) = (0,0) and 

(xi,x2) = (1,0). The latter equilibrium is stable. The WKB-Ansatz (2.2), 

with the dependence on t omitted since we consider the stationary problem, 

leads to the system of ray equations 

-^• = xi(l-x1) + x2+p1, -^- = -ßx2+p2, (6.6a) 

^ = ( 2 x 1 - l ) p 1 , ^ l = -p1+ßP2, (6.66) 

^ = (P? + P5)/2, (6.6c) 

where s is a variable along the rays and pi = dQ/dxt. The system (6.6a),(6.66) 

has the equilibrium points 

(xi,x2,Pl,p2) = (1/2, - 1 /4 (1 + /?3),_/?V4(l + / ? 2 ) , - 0 / 4 (1+ /?2)), 

(xl,x2,PuP2) = (0,0,0,0), (6.7) 

(xi,z2,Pi,p2) = (1,0,0,0). 
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Near the stable equilibrium (ai,#2) = (1,0) of the deterministic system, it 

follows from a local analysis [22], that Q(x) « ^(xi,X2)P(xi,X2)*, where the 

matrix P is given by 

2(1+/?) (1 + ß - 1 
/?2 + 2/? + 2 V - 1 ß2 + ß+l 

(6.8) 

We fixed ß = 3/2. The system (6.6) of ordinary differential equations with the 

independent variable s has been solved numerically by an initial value routine. 

The initial points (for s = 0) were chosen on a circle with radius 0.01 around 

( x j , ^ ) = (1,0). The corresponding initial values of Pi,P2 and Q followed 

from the local analysis (by assumption, the initial condition for v is in the 

form z(x) exp(—ks(x)) with z{x) taken 1). A number of rays were chosen very 

close to the ray connecting {x\,X2) = (1,0) with (x\,X2) = (0,0). In the 

neighbourhood of («1,2:2) = (0,0) part of those rays turn away to the right 

and intersect other rays. Figure 4 shows the rays and a cusp singularity. 

Outside the cusp (and away from the cusp point), the WKB-method leads 

to an approximation of v for large k. The present paper describes how to use 

the WKB-solution to obtain an approximation of v inside and on the cusp (and 

away from the cusp point). Near the cusp point we have an expansion of v in 

terms of canonical integrals. That expansion is obtained similarly as described 

above. We make the Ansatz that the solution near the cusp point is represented 

by (6.3) with n = 2, where we leave out the dependence on t since we deal with 

a stationary problem. We change variables from 71,72 to £1, £2 as follows 

ƒ(7i, 72, xi , *2) = i t f - ag - 66 + c + £§, (6.9) 

where the first three terms in the right hand side represent the unfolding of 

the cusp. The functions a,b and c depend on X\,x-i and the functions 6 and 

£2 depend on 71,72,^1,«2- It turns out that the solution is of the asymptotic 

form 

v(xi,x2) ~ (k/2n)ï exp(-fcc) {Uo(k^a,k*b)p0k~* 

+U1(k^a,kh)q0k-^ (6.10) 

+Uo(k^a, k*b)r0k~i}, as k —• 00. 

The functions a,b,c and Po,qo,ro satisfy the following equations, similar to 

(4.5) and (4.15) respectively 

f(yu,y2i,xi,x3) = i & - agi - &e« + c, i=l,2,3, (6.11) 
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Fig. 4- A cusp singularity arising in the numerical solution of a 

stationary forward Kolmogorov equation. 

and 

fif(7l«. 72.) 
3& - 2a 

£>(7ii,72i). 
= po + 906. + r0t

2
u, 1=1,2,3, (6.12) 

where 

ö(7i ,72) = / 7 l 7 l / 7 a 7 3 - /7
2

l73. (6.13) 

The index i in 71 j and 72,' denotes points where df/dji = 0,df/dj2 — 0, 

respectively. For a derivation of (6.11) and (6.12) see [8]. We proceed similarly 
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as in Section 5 to obtain the functions a,b,c and po,qo, fo from data obtained 

by the numerical solution of the ray equations (6.6). 
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computations with Macsyma. 

Appendix A: The standard cusp 

In standard form the cusp is given by 

P(t,a,b)=tf*-a?-bt. (Al) 

Repeated differentiation yields 

Pc = £3 - 2<z£ - 6, (42a) 

P « = 3£2 - 2a, (A2b) 

P((( = 6£, (.42c) 

P«et = 6- (A2d) 

With these derivatives we define the following sets in the (a, 6)-parameter plane. 

Lines satisfying P$ = 0: 

b=e~ 2a£, (A3) 

correspond to rays, see Fig. 5. Along the line (AS), P is given by 

P(t,a) = -ît4 + ae. (A4) 

The points Pe = P(( = 0: 

2762 - 32a3 = 0, (Ah) 

form the caustic set. For b < 0 (6 > 0) this set consists of the fold curve Pi 

(P2). The set Pf = P^ç = P^ç = 0 consists of the cusp point C: 

a = 6 = 0 (=F1DF2). (A6) 
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Fig. 5. Lines in the standard cusp that correspond with rays. 

Fig. 6 shows the function P(£,a,b) for various fixed values of a and b. As 

described in Section 4, the roots of Pc = 0 play an important role. These roots 

can be expressed explicitly in terms of a and b as follows. 

For 2762 < 32a3 (inside or at caustic): 

6 = -2(2a/3)*sin(7r/3 + <£), 

£2 = 2(2a/3)*sin</>, (47a) 

6J = 2(2a/3)*sin(7r/3-<£), 

where 

<j> = | a rcs in[ - i6(2a /3)"^] , |</>| < ir/6. (A7b) 

For a > 0, 2762 > 32a3 we have the roots 

sign(6)2(2a/3)* cosh V-, -sign(6)(2a/3)* cosh i> ± i(2a)* sinh xp, (A8a) 

where 

V'= |arccosh[i |6 | (2a/3)- ' ] . (A8b) 
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caustic 

Fig. 6. Graph of the function P(£,a,b) for various fixed values of a 

and b (indicated by the origin of each graph). 

For a = 0 we have the roots 

6*. I ( _ 6 ) £ ± if (-&)$, (AS) 

and when a < 0: 

-2 |2a/3 |*s inh0, |2a/3 |*sinh0±»|2a|* coshfl, (AlOa) 

where 

0 = | a r cs inh[ - l6 |2a /3 | - t ] . (AlOb) 

These formulas have been obtained using [20]. Thus, inside the caustic there 

are three real roots that are ordered as £i < £2 < £3- At F\ (F?) the roots 

£2,£3 (£1,^2) coalesce; at C £i,É2i£3 coalesce. Outside the caustic one real and 

two complex roots exist. Apart from the formulas above, that one real root 

can also be obtained from Cardan's formula [1]: 

i = [b/2 + { ( -2a /3) 3 + (&/2)2}*]* + [6/2 - { ( -2a /3) 3 + (6/2)2}i]*. (All) 
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For any value of a and b, the roots 6 of P$ = 0 are related by: 

6 + 6 + 6 = 0, 

66 + 6 6 + 6 6 =-2a, 

666 = b, 

(AU) 

see [1]. 

U0(a,b) 

25 

a = 1.5 

a = 0.75 

0 1.3 

Fig. 7. Graph of the canonical integral Uo(a, b) for various fixed 

values of a. Because of symmetry only positive values ofb have been 

considered. 
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Appendix B: Properties of the canonical integral 

Without derivation we mention some elementary properties of the canon­

ical integral Uo(a,b), which we denote for convenience by U(a,b). These prop­

erties resemble those of the oscillatory counterpart of U, see for example [12]. 

The function U is symmetric with respect to 6: 

U(a,-b) = U(a,b). 

The following partial differential equations hold: 

Ubb -Ua = 0, 

Uab - 2aUb - bU = 0. 

The derivatives of U(a,b) at (0,0) are given by 

dm+nU .n . , ƒ 0, n odd, 

-ö-^(W)={2
2-*^r(Ï2±?±±), neven, 

which lead to the following Taylor series of U(a,b) at (0,0): 

'2m + 2n + 
0 0 °° „mi2n „ ,„ 

U(a,b) = £ £ AJU 2 * ^ H, ^-J m!(2n)! 
m=0n=0 v ' 

i r / 2 m + 2 n + l \ 

(51) 

(52a) 

(B2b) 

(53) 

(54) 

The corresponding series for U\ and U-z are obtained by differentiation of (B4) 

with respect to 6 and a, respectively. The values of U and its first derivatives 

at (0,0) are 

£7(0,0) = 2~* r ( i ) » 2.5637, 

tf«(0,0) = 2* r ( § ) « 1.7330, 

£4(0,0) = 0. 

For 6 = 0 we have 

U(a,0) = 2\/2 exp(a2/2) E i 4 ( -o/2) , 

fV=ï ï exp(a2/2) Ki (a 2 /2 ) , 

TT^/ôTI exp(a2/2) I_ i (a 2 /2) + U(« 2 /2) 

a < 0, 

a > 0, 

(55a) 

(556) 

(55c) 

(56a) 

, (566) 

where Ei is the Airy-Hardy integral [26], and K,I are modified Bessel functions. 

For large \a\ we have the expansions (use [1], p. 378, 9.7.2 and 9.7.1): 

Uta 0Ï ~ / V*/(~a) {i - ï h + • • }> a — - o o , 
^ { a ' 0 ) ~ l V W ^ e x p ( « 2 ) { l + î ^ + ..-}, a^+oo. ( S 7 ) 
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Note that for a —• —oo there is a gradual decay to zero and for a —* +00 

there is an exponentially fast growth. For some purposes it may be desirable 

to calculate U(a, b) numerically. Using the symmetry of U(a, b) with respect 

to b and the change of variable from £ to y in (4.106) (with * = 0), defined by 

exp(— £) = y, we have 

U(a,b) = f exp[- i ( logy) 4 + a(logy)3]{y»-1 + y " 6 ' 1 } dy, (BS) 
Jo 

where the integration domain has turned into a finite interval. This form is 

suitable for a numerical integration routine. Note that the integrand equals 0 

at y = 0 and 2 at y = 1. The canonical integral has been depicted in Fig. 7. 
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SAMENVATTING 

Analyse van het Uittreeprobleem 

voor Stochastisch Gestoorde Dynamische Systemen 

in Toepassingen 

Een groot aantal verschijnselen dat optreedt in de biologie, mechanica, 

scheikunde en natuurkunde kan wiskundig gemodelleerd worden als een dy­

namisch systeem. Deze verschijnselen kunnen onderhevig zijn aan kleine toe-

valsfluctuaties. Indien deze fluctuaties van ondergeschikt belang zijn voldoet 

een deterministische beschrijving. In het andere geval dienen toevalsfluctuaties 

in de beschrijving van het verschijnsel opgenomen te worden. We hebben dan 

te maken met een stochastisch model. In een stochastisch model wordt onder­

scheid gemaakt tussen een systematisch gedeelte (het deterministische systeem) 

en een gedeelte bestaande uit toevalsfluctuaties. De toevalsfluctuaties spelen 

met name een belangrijke rol in de buurt van stabiele evenwichten van het de­

terministische systeem. Dit komt omdat een systeem lange tijd doorbrengt in 

de buurt van zulke evenwichten en toevalsfluctuaties gedurende deze tijd dus 

alle gelegenheid krijgen om zich te laten gelden. Dit aspect van stochastische 

modellen vormt het onderwerp van het proefschrift. 

Stabiele evenwichten van een deterministisch systeem zijn bijvoorbeeld een 

puntaantrekker of een neutraal evenwichtspunt. Bij afwezigheid van toevals­

fluctuaties is het dynamisch gedrag in de buurt van deze evenwichtspunten als 

volgt te beschrijven. Een systeem dat start in het aantrekkingsgebied van een 

puntaantrekker zal deze aantrekker uiteindelijk steeds dichter naderen. Een 

systeem dat start in de buurt van een zeker neutraal evenwicht zal een gesloten 

baan volgen om dit evenwicht heen. De aanwezigheid van kleine toevalsfluc­

tuaties verandert het evenwichtsbeeld volledig. Als gevolg van deze fluctuaties 

wordt een begrensd gebied dat het evenwichtspunt bevat in eindige (maar soms 
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lange) tijd verlaten. Een maat voor de stabiliteit van een stochastisch systeem 

in de buurt van een stabiel evenwichtspunt is de verwachtingswaarde van de 

tijd die nodig is om uit zo'n gebied te ontsnappen. Bij een puntaantrekker 

moet men denken aan een verwachte ontsnappingstijd van de orde K exp(L/c), 

bij een neutraal evenwicht aan een verwachte ontsnappingstijd van de orde 

M/e, waarin e een kleine positieve parameter is die de intensiteit van de toe-

valsfluctuaties voorstelt en K, L en M constanten zijn. De toevalsfluctuaties 

worden gemodelleerd d.m.v. Gaussische witte ruis. Van practisch belang is 

ook de vraag waar op de rand het gebied verlaten wordt. In dit proefschrift 

richten wij ons hoofdzakelijk op de bepaling van statistische grootheden met 

betrekking tot de ontsnappingstijd en de plaats van ontsnapping. Wij gaan uit 

van kleine toevalsfluctuaties. Enerzijds is dit in veel gevallen een realistische 

aanname, anderzijds stelt dit ons in staat om voor bovengenoemde statistische 

grootheden asymptotische uitdrukkingen af te leiden. Hierbij is e de kleine 

parameter. 

Een model met een neutraal evenwicht komen we tegen in hoofdstuk 2. 

Het is beter om te spreken van een bijna-neutraal evenwicht want een kleine 

demping is toegestaan. Het gaat om een stijve staaf die aan een kant elastisch 

scharniert en aan de andere kant wordt belast. De belasting bestaat uit een con­

stante deterministische kracht en een kleine stochastisch fluctuerende kracht. 

Beide krachten werken in een algemeen gehouden constante richting. Als 

gevolg van de stochastisch fluctuerende kracht kan de energie van het sy­

steem toenemen en op een gegeven moment een kritieke waarde overschrij­

den. We beschouwen het gebied in de faseruimte dat het evenwichtspunt bevat 

en dat wordt begrensd door de gesloten kromme met energie gelijk aan de 

kritieke energie. De asymptotische methode waarvan wij ons in dit hoofdstuk 

bedienen om statistische uitdrukkingen met betrekking tot de ontsnappingstijd 

uit dit gebied af te leiden is goed gefundeerd, zie de desbetreffende referenties 

in hoofdstuk 1. 

De hoofdstukken 3 en 5 beschrijven de dynamica van een systeem van 

biologische populaties met interactie. De faseruimte bestaat uit punten, waar­

van de coördinaten de grootte (dichtheid) van de populaties weergeven. Deze 

ruimte wordt dus gevormd door het positieve orthant en de randen daarvan. 

We nemen aan dat dit systeem een deterministische puntaantrekker heeft in het 

inwendige van de faseruimte. We zijn geïnteresseerd in het verschijnsel dat het 

systeem als gevolg van toevalsfluctuaties een rand bereikt, m.a.w. dat een po-
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pulatie uitsterft. De verwachtingswaarde van de tijd die hiervoor nodig is vormt 

een maat voor de persistentie van het ecologische systeem. Bovendien zijn 

we geïnteresseerd in welke rand waarschijnlijk het eerst bereikt wordt, m.a.w. 

welke populatie waarschijnlijk het eerst uitsterft. De desbetreffende statis­

tische grootheden voldoen aan tweede orde partiële differentiaalvergelijkin­

gen. Asymptotische uitdrukkingen worden verkregen door een WKB-aanname. 

Deze aanname leidt tot een stelsel eerste orde gewone differentiaalvergelijkingen 

(de stralenvergelijkingen). Dit stelsel wordt numeriek opgelost. Hoofdstuk 4 

bespreekt enkele aspecten van deze numerieke integratie. Hoofdstuk 6 ana­

lyseert het soms waargenomen verschijnsel van elkaar snijdende stralen. Een 

voordeel van genoemde asymptotische methode is dat men haar kan toepassen 

op een grote klasse van stochastische problemen. Een nadeel van deze methode 

is het formele karakter. 

Gezien het feit dat tal van verschijnselen zich laat beschrijven als dy­

namisch systeem en toevallig fluctuerende invloeden veelvuldig aanwezig zijn, 

mag men ervan uitgaan dat de practische toepasbaarheid van de gebruikte 

methoden en de afgeleide resultaten groot is. 
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