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STELLINGEN 

- I -

De poging van Baskir en medewerkers om de ketenstatistiek in een bolvormig 

rooster uit te voeren is mislukt. Eerst zondigen zij tegen de inversiesymmetrie 

regels en door opeenvolgende "correcties" neigt hun rooster vervolgens naar een 

vlakke geometrie. 

J.N. Baskir, T.A. Hatton en U.W. Suter; Macromolecules, 20 (1987), 1300. 

- II -

Het is mogelijk om de statistische thermodynamica van associâtiekollolden te 

ontwikkelen zonder bij voorbaat de posities van de kopgroepen in het grensvlak 

vast te leggen. 

Dit proefschrift. 

- III -

Een gemiddeldveld theorie kan slechts dan de gel-vloeibaar faseovergang in 

bilaag membranen reproduceren indien een orientatieafhankelijke entropieterm in 

de statistische verwerking wordt meegenomen. 

Dit proefschrift hoofdstuk 4. 

- IV -

Het gedrag van ketenmoleculen in een grensvlak met laterale inhomogeniteiten 

kan bestudeerd worden met een tweedimensionale variant van het, door Scheutjens 

en Fleer geïntroduceerde, zelfconsistente veld model. 

Dit proefschrift hoofstuk 5. 

J.M.H.M. Scheutjens en G.J. Fleer; J. Phys. Chem. 83 (1979), 1619. 

- V -

Vloeistoffen laten zich het eenvoudigst modelleren met roostertheorieè'n, 

terwijl kristallen zich beter met continue theorieën laten beschrijven. 



- VI -

De toenemende professionalisering in het ontwikkelingswerk is geen garantie 

voor een betere uitvoering van de professie. 

- VII -

Het is afkeurenswaardig dat bij sporten zoals turnen, gymnastiek en ponyrijden 

zoveel militaristische trekjes terug te vinden zijn, vooral omdat er kinderen 

bij betrokken zijn. 

- VIII -

Het maximale gewicht dat in een stelling gelegd kan worden wordt voornamelijk 

bepaald door het aantal steunpunten van de basis. 

- IX -

Uitgerekend rekencentra kunnen er op rekenen dat ze over enkele jaren zijn 

uitgerekend. 

Mozes was een kolloïdchemicus. 

Exodus 33.: 20. 

- XI -

In een proefschrift is een culinaire stelling op zijn plaats. 

Proefschrift Frans A.M. Leermakers 
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Introduction 

Oil and water don't mix. If we shake the two liquids vigorously, we can 

at best obtain an emulsion, that is a fine distribution of oil droplets in 

water or the other way around. However, such an emulsion is unstable, it 

separates into the two original liquids (phase separation). 

In contrast to oil, there are other liquids, like alcohol, that mix very 

well with water. We refer to molecules that do dissolve in water as 

hydrophilic and as hydrophobic when they do not. Hydrocarbons belong to the 

latter category. Hydrocarbons with small molecules like methane, ethane and 

propane are inert gases at ordinary conditions and dissolve poorly in water. 

Higher hydrocarbons, like octane, nonane and decane are liquids which do not 

mix with water. Oil consists for a large fraction of hydrocarbons. In fact it 

is common usage to use the term "oil" as a collective noun for all liquids 

that do not significantly mix with water. Alcohol molecules are composed of 

ethane and a polar hydroxyl group. The influence of the polar group is so 

strong that the molecule as a whole is hydrophilic. 

If, however, the hydrophobic hydrocarbon moiety is much longer than in 

ethane, one polar group at the end of the molecule is not strong enough to 

render the entire molecule so soluble that it can mix with water in all 

proportions. Let us modify decane by attaching a polar group at one end of the 

hydrophobic chain. The resulting molecule is pictured as having an apolar tail 

and a polar head and is referred to as amphipathic or amphiphilic. Experience 

has shown that large amounts of these amphipolar molecules can be dissolved in 

water, not as molecules but as associates of, usually several tens of 

molecules, called micelles. 

Micelles can have various sizes and shapes. Irrespective of their 

morphology the heads are found at the interface between the apolar tails and 

water. The average sizes and shapes of these association colloids, the way the 

molecules arrange themselves in the structure, and whether or not any water is 

present in the micelles is determined by the energy and entropy balance, that 

is by a compromise between the tendency to organise itself due to 

intermolecular interactions and the tendency to randomise. At this point it is 
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Figure 1. 

A model of the lipid Dipalmitoylphosphatidylcholine. 

worth while to realise that relatively small changes in conditions (increasing 

the concentration or the temperature, variations in polar/apolar ratio of the 

bipolar molecules) can dramatically effect the properties of the micelles. 

Spherical micelles are composed of 50 to 100 amphipathic molecules. Extremely 

high aggregation numbers are found in flat lamellar micelles called bilayer 

membranes. In biological systems membranes are formed by amphipathic molecules 

called lipids which commonly possess two apolar tails and one polar head 

group. Figure (1) gives an example of a (phospho)lipid. 

Membranes are essential for life. Due to their structure membranes permit 

the compartmentalisation of living matter, that is: they prevent the mixing of 

the contents of cells with the surroundings. However, many membranes are semi­

permeable, that is: some specific substances can pass it where all others are 

rejected. Membranes are not only part of the cell wall, but a large variety of 

membranes is found inside cells as well. The nucleus, mitochondria, liposomes, 

chloroplasts and many other cell organelles hold membranes and have a 

membrane-like envelope. Most membranes also contain proteins besides the 

constituent lipid molecules. These proteins can be loosely adsorbed on the 

membrane or they can have a strong interaction with it when they span the 

membrane in a trans-membrane configuration. The contact of the protein with 
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the membrane is in general essential for its biological activity. Further, and 

this illustrates the complexity of natural membrane systems, not only single 

membranes are observed, but double membranes or even multilayer membrane 

systems also occur. For example, the myelin sheath surrounding the axon of a 

nerve cell is several bilayers thick, in chloroplasts grana stacks (aggregated 

bilayers) are in equilibrium with stroma lamellae (non-aggregated bilayers) 

and in mitochondria two membranes are associated. In all these examples, the 

membrane-membrane interaction contributes significantly to the biological 

activity of the structures. 

Membranes are not only found in cells. Certain viruses, like for example 

the retrovirus causing AIDS, possess a coat formed by a continuous bilayer in 

which viral coat proteins are embedded. 

It is in the nature of man to use insights gained from the study of 

natural processes for his own benefit. We will illustrate this by mentioning a 

few examples of applications of membrane systems. Knowing membrane properties 

helps to develop drugs, anaesthetics, pesticides etc. Membrane-like vesicles 

are used to build artificial chloroplasts. These systems might help us to 

better understand photosynthesis. A very interesting application is the use of 

man-made liposomes to encapsulate drugs. These liposomes are designed to give 

a controlled release of the drug on the site of the human body where the drug 

is needed. 

v V 7 <? <3 < 3 ^ A ' 
V 

Figure 2. 

Two-dimensional cross-section through a membrane composed of amphiphilic 

molecules with a head group segment and one tail of nine apolar segments 

each. The triangles indicate water. This membrane system has a high degree 

of order. 



Several of these applications are still in an early stage of development. 

Research on these and several other applications will benefit from a better 

understanding of membrane structures and the factors that mould them, i.e., 

the very theme of this thesis. 

Extensive experimental research on the lipid matrix showed, among other 

facts, that: 

- the hydrophobic core of the membrane is virtually free of water. 

the membrane thickness is roughly twice the length of the extended apolar 

tails of the lipid molecules. 

there is a high degree of order along the bilayer. 

the lateral mobility in the membrane is high and fluid-like, while the 

transversal mobility (flip-flop) is slow and solid-like. 

membranes show a phase transition: they have a high-temperature fluid-like 

and a low-temperature gel-like phase. Biological membranes are always 

found to be in the fluid state. 

A membrane is often pictured as in figure (2). The tails are ordered and the 

head groups are supposed to be all in the same plane. Although this is known 

to be an oversimplified representation, many experiments teach us that, in 

broad lines, figure (2) might not be too bad. Can we understand this membrane 

structure from a physical point of view? It is not straightforward why such a 

high degree of ordering should be expected in the bilayer. Why do lipid 

A^ i^r 
"A 

Figure 3. 

A similar membrane as given in figure 2. In this case the membrane is more 

disordered. 
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raolecules give up so much entropy in the membrane? We like to know why a 

significantly different membrane structure, as for example the one given in 

figure (3), is not found. One of the goals of the present thesis is to give 

answers to these questions. 

Recently, considerable progress has been made on the statistical 

mechanics of interacting chain molecules in inhoraogeneous systems. Especially 

the theoretical developments of Scheutjens and Fleer [1] have served as a 

starting point to elaborate a theory for association colloids [2]. The new 

theory, elaborated in much detail in this thesis can deal with many of the 

systems discussed above. The thesis contains five chapters which are written 

such that they can be read independently. 

In chapter (1) we present some general aspects of the morphology of 

micelles. In agreement with experimental data, the theory predicts that small 

chain surfactants form spherical micelles whereas lipid molecules prefer 

membrane structures. This encouraged us to study in chapter (2) the structure 

of model membranes formed by model lecithin-like molecules. Realising that 

open membranes do not exist (in practice membranes are always closed) we treat 

lipid vesicles in chapter (3). The gel-liquid phase transition in lipid 

membranes is examined in chapter (4). Finally, in chapter (5) the theory is 

applied to study the interaction of copolymers with a model bilayer membrane. 

[1] J.M.H.M. Scheutjens, and G.J. Fleer; "Statistical Theory of the Adsorption 

of Interacting Chain Molecules." 

1. "Partition Function, Segment Density Distribution, and Adsorption 

Isotherms". J.Phys.Chem. 83 (1979) 1619. 

2. "Train, Loop, and Tail Size Distribution", J.Phys.Chem. 84 (1980) 178. 

[2] F.A.M. Leermakers, J.M.H.M. Scheutjens, and J. Lyklema; "On the Statisti­

cal Thermodynamics of Membrane Formation", Biophys.Chem. 18 (1983) 353. 



CHAPTER 1 

SURFACTANT MICELLES 

Abstract 

Recently we generalised the lattice theory for chain molecules in 

inhomogeneous systems of ScheutJens and Fleer [1] to amphipolar molecules in 

non-lamellar geometries [2,3,4]. This theory is used to study surfactant 

micelle systems. 

In this paper it is shown that the critical micelle concentration for 

surfactant micelles is theoretically well defined. The fact that in most 

experimental systems the first order phase transition is not clearly 

observable is explained. The relation between chain architecture and overall 

surfactant concentration on the size and shape of surfactant micelles is 

discussed. Segment density profiles through a cross section of a spherical 

micelle are presented. 

Introduction 

Above the critical micelle concentration amphipolar molecules in aqueous 

solutions form association colloids. This phenomenon is of considerable 

theoretical and technological interest. In 1976 Hall and Pethica [5] published 

an extensive theoretical analysis of micellisation in solutions of nonionic 

surfactants, based on the thermodynamics of small systems developed by Hill 

[6]. This framework is used here to present a detailed analysis of surfactant 

systems over a wide concentration range. Statistical thermodynamics is used to 

give an interpretation on a molecular level. For example, the relation between 

the architecture of the amphiphiles and their aggregation structure is worked 

out in some detail. Segment density profiles for the association colloids are 

also obtained. Our approach is more general than other statistical mechanical 

theories [7-9], because no preassigned positions of the amphiphiles are 

required, i.e., the positions of the head groups are not a priori fixed onto 

certain lattice sites in the system. It is the first statistical approach 

which successfully applies the thermodynamics of small systems to it. 

Complementary to our approach, Molecular Dynamics [10] and Monte Carlo [11] 

simulations can also give detailed information on surfactant-water systems. In 



these simulations methods the computation time is many orders of magnitude 

larger than for a statistical one. Typically, our statistical approach needs 

less than a minute CPU on a VAX 8700. 

In the following part the theory is briefly reviewed. A more detailed 

discussion is given elsewhere [2]. See also ref. [3] for more results on 

surfactant micelles. 

Theory 

To facilitate the counting of conformations of chain molecules a lattice 

is introduced. The lattice is designed to have shells of L(z) lattice sites of 

constant volume on which the segments of the chain molecules and the solvent 

molecules are placed. The lattice layers are numbered z = 1 M, where 1 is 

the centre of the lattice and M a layer in the bulk solution. In general the 

volume of the lattice from layer number 1 up to a layer z is (in units of 

lattice sites): 

V(z) = 2 A z + T t h z 2 + (4ir/3) z3 (z>0, h2> wA ) (1) 
s s 

where the parameters As and h, determine the geometry of the lattice. For a 

spherical lattice, As and h are zero. For rods of length h, with a 

hemispherical cup at either end, As is zero. For planar parts we assume that 

an area As is surrounded by a curved half of a cylinder. A disk of radius Rj 
2 

would have an area A = it R. and a contour length 2 h = 2 w R,: for all other 
2 s d ° d' 

structures h > ir A . 
s 

The number of lattice sites in layer z is given by the simple expression: 

L(z) = V(z) - V(2-l) (2) 

The contact area S(z) (in units of surface area of an unperturbed lattice 

site) between layer z and z+1 is given by: 

S ( z ) = 2 A + 2 w h z + 4 ï ï Z 2 ( 3 ) 

Equation (2) and (3) determine X . (z) the fraction of contacts of a site in 
z'-z 

layer z with sites in layer z' where z' is z-1, z, and z+1, respectively: 
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X_1(z) = X_1 S(z-1)/L(z) 

XQ(z) = 1 - X_1(z) - Xx(z) (4) 

X1(z) = Xl S(z)/L(z) 

Here X = X are the fractions of contacts a site has in flat lattice with 

either of its neighbouring layers. 

A spatial conformation of a chain molecule is specified by the lattice 

sites in which the consecutive segments, numbered s = l,...,r, are situated. 

This definition implies that when one of the segments of conformation c is 

fixed on the lattice all other segments have a specified position. In a 

lamellar lattice the degeneration of a conformation c Is u = L because only 

the first segment can choose between L lattice sites. The degeneracy of a 

conformation c in a curved lattice is slightly more complicated while the 

degeneracy should not depend on which segment of a conformation is placed 

first. When segment number 1 of conformation c is free to choose its position 

in the lattice layer the degeneracy is given by: 

c c, r Xzfs-n-zfs^z(s)^ 
<ƒ = LC(z(l)] n zC8

c
1} z C s ) (5) 

S = 2 Xz(s-l)-z(s) 

where z(s) is the lattice number segment s is in. The superindex c indicates 

that the segment positions of conformation c are taken. Further, X , ,._ , ,. 

is X , X , or X when segment s-1 is in a previous, same or following layer 

with respect to the position of segment s, respectively. Realising that the 

number of steps from z to z+1 must be equal to the number of steps from z+1 to 

z, i.e., X.(z) L(z) = X ,(z+1) L(z+1), equation (5) can be transformed in 

order to assign an other segment than segment number 1 of conformation c to 

choose its position. 

The conformations are generated by a Markov-type approximation [2] . In 

this procedure we accept chains which can intersect with themselves or with 

other molecules in the lattice. The structure of the molecules (branching, 

chain length etc.) determines the number of allowed conformations. The main 

advantage of accepting this possibility is, that the conformations can be 

generated using a recurrence relation. Very efficient computation schemes have 

been developed to generate all conformations [2]. Using them, the number of 

operations needed to generate all conformations is reduced from about 3r to 

about r. We refer to reference [2] for more details of our computation method. 
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To calculate the statistical weight of each conformation, the potential 

of each conformation must be known. Three contributions are identified. First, 

the potential of a given conformation depends on the number of segment (x)-

segment (y) and segment-solvent contacts. We will use a mean field 

approximation to calculate the average interaction each segment in the 

molecule has with the surrounding molecules. Second, differences between 

gauche and trans configurations are accounted for. To do this, a third order 

Markov process, the rotational isomeric state (RIS) scheme, is used to 

generate the various conformations of the chains. In the RIS scheme the 

"memory" of the random walk type of conformations is two bonds long. A third 

bond can only have three different directions. Two of them result in a gauche 

and a third one in a trans configuration. A third contribution to the 

potential of a conformation u'(z) originates from hard core interactions. 

u'(z) is chosen such that all lattice sites are filled, i.e., E <(> (z) = 1 for 

each layer z. The u'(z) potentials are normalised with respect of the bulk. 

Thus this interaction is independent of the type of segment or solvent 

molecule. 

The average segment density of segments of type x in layer z is given by 

<j> (z) = n (z)/L(z), where nx(z) is the number of segments of type x in layer 

z. The potential u c of conformation c is given by: 

Sc „8 u = kT E E Y / N<<t> (z )> + n U 5 + E u' (z ) . ^xyfs) rx s v s 
s=l x J s=l 

(6) 

n*=c is the number of gauche bonds in conformation c and US the energy 

difference between a gauche and a trans configuration. The nature of segment 

number s is y(s). In equation (6) the well known Flory-Huggins parameters 

XJ-, occurs. They are only non-zero when x 4 y, because the energetic effect of 

any xy contact is taken with respect to the pure phases x and y. The angular 

brackets in equation (6) indicate an averaging over three consecutive layers: 

<*(z)> = X_L(z) <Kz-l) + XQ(z) <(>(z) + X^z) <j,(z+l) (7) 

The number of chains in conformation c is now given by: 

c „ c -uc/kT (o) 
n = C ui e (°' 

Realising that a solvent molecule is a "chain" of only one segment, a similar 
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equatlon applies for solvent molecules. In equation (7) C is a normalisation 

constant which is either found from the number of molecules in the system, or 

from the bulk concentration. 

Summation of all segments of each conformation result in the segment 

density distributions. With these segment density profiles, new statistical 

weights of each conformation can be calculated. In general a self-consistent 

set of conformations can only be found iteratively [2]. As soon as a self-

consistent micelle profile is found the partition function can be evaluated. 

Thermodynamics of small systems 

For surfactant micelles, the excess free energy plays a key role in 

determining the stability of a given arrangement of molecules. We showed 

before [3] that for micelles with a fixed centre of mass the excess free 

energy A is given by the following, rather forbidding equation: 

^ ( z ) 
Aa/kT = - E n° + E L(z) ln( b ) 

1 z *W (9) 

+ \ E E E (XxW+ XyW- X ^ ) L(z) [* (O <•(«)> - •£ <>J] 
z x y i l i y 

where i indicates the molecule type i = 1 (water), 2 (amphiphile),..., the 

superscript b indicates the bulk value and the superscript o indicates that 

the quantity is counted as an excess value with respect to the bulk solution. 

Equation (9) contains an osmotic, an ideal mixing and an interaction term. The 

excess free energy given in equation (9) is identical to the subdivision 

potential for fixed centre of mass defined by Hill [6]. Hall and Pethica [5] 

showed that in equilibrium A must be compensated for by terms not included in 

equation (9). The most important term of this kind is the translational 

entropy of the micelle, for the computation of which the volume fraction of 

micelles in the system must be known. Let Vg be the volume of the small system 

in which one micelle is present. Realising that n»r„ is a good approximation 

for the volume of the micelle we find for the equilibrium condition of the 

micelle: 

A°/kT . In V g (10) 
a 

n 2 r2 

From a mass balance we know that 
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n 2 r 2 ^ r2 + J> 
— V — *2 

s 
(11) 

where (J>„ is the overall surfactant concentration in the system. Combining 

equations (10) and (11) we find the useful formula: 

c)>2 = exp(-A°/kT) + $° (A° » 1) (12) 

Which gives us the overall surfactant concentration of the system at 

given A . ). We note that our present model is only valid for low micelle 

concentrations, i.e., as long as the micelles do not interact with each other. 

Results 

First, the behaviour of A-^Bß is discussed, an unbranched surfactant with 

12 tail segments and three head group segments. The interaction parameters are 

found by fitting known CMC values for a series of surfactants with different 

tail-lengths [3]. How to obtain CMC values with the present theory will be 

discussed below. The following set is used throughout this paper: 

XAW = 1 - 6 , XBW = ~ ° " 5 ' XAB = 1 - 5 ' T h e h i g h v a l u e f o r t h e tail-water 

interaction is chosen to promote phase separation between tails and water. The 

50 100 ISO 

surfactant molecules/micelle 

Figure 1. 

The excess free energy A as a function of n? for a surfactant A^2B3 i n a 

spherical aggregate. The dashed curve can be found when shape variations 

are taken into account. 
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50 100 150 

surfactant molecules / micelle 

Figure 2. 

Log <j>- as a function of the excess number of surfactants AJ^BT aggregated 

in a globular geometry. Two arbitrary points of equal overall surfactant 

concentration are indicated. 

negative head group-water interaction represents an attraction between these 

two species. Further, the tail-head interaction is chosen fairly repulsive, 

promoting the partitioning of head groups and tail segments. This increases 

the stability of the micelles. The flexibility of the acyl chain is reduced 

due to steric hindrance. This is modelled by an energy difference between a 

gauche and trans configuration of u8 = 0.8 kT (T = 300 K ) . 

Figure (1) gives the excess free energy A (with fixed centre of mass) as 

a function of the excess number of surfactants aggregated. The part with 

negative A a is physically irrelevant. The part of the curve with a positive 

slope leads to micelles that are metastable because for a given composition 

another micelle system with a lower free energy can always be found (see 

figure 2 ) . The very first thermodynamically stable micelles are found at the 

maximum in figure (1). From the equilibrium condition given in equation (10), 

we know that the translational entropy of the micelles also passes a maximum. 

We conclude that micelle concentration can not exist below a given 

concentration; in other words, the small system (which holds only one micelle) 

can not be arbitrarily large. At the CMC a micelle has the same average number 

of surfactant molecules in it and the concentration of micelles is finite (the 

size of the small system is limited). Thus, theoretically the CMC is well 
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defined. The same conclusion was reached by Ruckenstein an Nagarajan [12-14]. 

We note, that the slope 8A /3n„ contains information on the size fluctuations 

of micelles [5,15]. The steeper the curve the sharper the size distribution 

is. Near the maximum in A large fluctuations in micellar size must be 

expected. Near the CMC the micelles change their aggregation number rather 

than that more micelles are formed. See also discussion of figure (4). 

Figure (2) gives the relation between the equilibrium volume fraction on 

the number of aggregated surfactants. A c passes through a maximum when log ct>» 

goes through a minimum in accordance with Gibbs' law; the pertaining value 

of <j>„ is the CMC. At each overall concentration iL, beyond the CMC there are 

two possible equilibrium concentrations <(>„. In figure (2) one of such 

combinations is indicated. As can be easily seen, the molecules in the bigger 

micelle have always a lower chemical potential and these micelles are 

therefore thermodynamically more favourable. For very small micelles we 

require very high equilibrium concentrations, as would be characteristic for 

nucleation phenomena. In the physically realistic part of figure (2), beyond 

the CMC and for bigger micelles, the chemical potential rises with n? because 

gain in energy of the tails upon micellisation is counteracted by the loss in 

energy of the repulsive head groups. This repulsive force rises with 

increasing aggregation number, while this gives a larger number of head groups 

«10 

5-1 

/-—CMC 

»10 

•2 

Figure 3. 

The equilibrium bulk concentration as a function of the overall surfactant 

A12B3 v ° l u m e fraction. 
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«10 

Figure 4. 

The volume fraction of micelles as a function of the overall surfactant 

A12B3 v°l"me fraction. 

in the interface between the apolar tails and polar head groups. This 

mechanism is responsible for the finite dimensions of the micelles, i.e., it 

prevents the micelles from growing indefinitely towards macroscopic 

dimensions. 

We note that especially when the maximum A°(n?) is not high, the micelle 

concentration at the CMC is relatively high. Naturally, the first micelles can 

only be formed by a surplus of surfactants in the system. Thus there can be a 

difference between the theoretically defined CMC at the maximum in A (n„) and 

the lowest possible equilibrium volume fraction of the system. 

In many experimental systems the overall concentration is fixed. In 

figure (3) the equilibrium bulk concentration cj>7 is related to the overall 

concentration <|> . Obviously, below the CMC ^ = <(>!?, as there are no micelles. 
b — 

Surprisingly, the difference between <|> and <)>„ remains undetectable over a 

considerable concentration range just beyond the CMC. Only at higher concen­

trations becomes §~ essentially independent of the overall concentration. As 

given in equation (12), as long as Aa is large no big difference between <j) 

and (j) can be expected. The behaviour changes dramatically when exp(-Aa/kT) 

becomes of the order of ()>„. As a consequence, the theoretical CMC is difficult 

to determine experimentally. In the last case a more convenient definition of 

the CMC is useful, for example, the point where the A " a n d * start to deviate 

can be identified as the experimental CMC. 

The concentration of micelles as a function of composition is given in 
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1 1 1 1 1 1 1 1 1 

30 35 40 

layer z layer z 

Figure 5. 

Segment density distribution through a cross section of a globular micelle 

composed of: a) 45 molecules A^2B3 (tne equilibrium bulk volume fraction 

is 3.92 10-3 (CMC), and Aa= 16.51 kT per micelle), b) 97 molecules A1 2B3 

(the equilibrium bulk volume fraction is 4.46 10-3, and Aa= 7.5 kT per 

micelle). 

figure (4). As anticipated in figure (1), the micelle concentration is not 

detectable initially, although the concentration of micelles is finite at the 

CMC. The presence of micelles often defies experimental observation at the 

thermodynamic criterion for the CMC. Only when the micelles are larger does 

their concentration become linear with the overall surfactant concentration. 

In figure (5a) the segment density distribution through a cross section 

of a micelle is given at the C M C The micelle consists of 45 A^2B3 molecules. 

The layers are numbered arbitrarily, so the origin of the lattice and the 

centre of the micelle is between layers 20 and 21. As can be seen from the 

segment distributions, the head groups are not confined to one layer but 

spread out over several layers. The local concentration of head groups is low. 

This gives plenty of room for many tail-water contacts. The distribution of 

segments of a given rank in the surfactant molecule (not presented) is also 

wide. This indicates that the entropy of the chain molecules in the aggregates 

is rather large, and that a dynamic picture of the micelles is more correct 

than a static one. The profiles show that some solvent is found in the core of 

the micelle. Indeed, this must be expected for a liquid consisting of simple 

unassociated isotropic monomers. For water this is not a good model. 

Therefore, we believe that the amount of solvent in the micelle is 
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2048 

2CK8 

2048 

Figure 6. 

Stability domains for micelles of varying shapes. Given is the relative 

change in equilibrium concentration $, for A^^Bß micelles of different 

shapes, characterised by the parameters As and h. The overall surfactant 

volume fraction is near its CMC. In the graph with iso-,j>_ lines the fault 

line gives the limit of the physically significant area. 

overestimated. In figure (5b) the segment distributions of a cross section 

through a globular micelle in which 97 surfactant molecules are aggregated is 

given. These micelles are found at an overall surfactant volume fraction of 

$9 = 0.005. The unfavourable inhomogeneities observed in the centre of this 

micelle originate from the fact that the radius of the micelle is too big. 

This indicates that other micellar shapes might be more favourable at this 

surfactant concentration. 

We showed that in more concentrated systems the micelles are larger, the 

corresponding chemical potential of the surfactants is higher and the excess 

free energy of the micelles are lower. In general, when A° approaches zero, 

the system can change its surface area without change in Gibbs energy. Thus we 

can expect shape fluctuations in the concentrated regime. In order to 

investigate this phenomenon, the equilibrium bulk concentration at given 

composition has been calculated for micelles of other geometries by changing h 

and A in equations (1) and (3). Figure (6) shows how, for the surfactant A11B3 

near the CMC, the shape variations are related to the equilibrium bulk. 
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2048 

2048 

2048 

Figure 7. 

Stability domains for micelles of varying shapes. See also figure (6). The 

overall surfactant concentration is very high so that the micelles do not 

have any translational entropy (A 0 = 0). 

2048 

2048 

Figure 8. 

Stability domains for micelles of varying shapes for the lipid molecule 

with a lecithin-like structure: 

A8- B - A 

A8- B - A 

A - B„ 

for moderate overall volume fractions. See also figure (6). 
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concentration. As can be seen, the globular micelle has the lowest free 

energy. (In figure (6) the most favourable micelle shape is indicated by an 

asterisk.) Therefore it is concluded that the very first micelles are 

globular. 

At very high overall concentration (micelles with A a = 0; translational 

entropy is neglected) we see in figure (7) that for the same molecules disk­

like structures have the lowest free energy. However, the variation in 

chemical potential as a function of micellar shape is small, so that a 

homodisperse micelle system is very unlikely. Consequently, the curve shown in 

figure (1) is modified for small A 0 when we allow shape variations. In this 

case a dashed curve as sketched in figure (1) will more likely be followed. 

Similar analysis for a lipid lecithin-like molecule with two apolar tails 

of 8 (A) segments, a glycerol backbone, and three head group (of type B) 

segments, shows that the very first association colloids are again globular 

micelles. Increasing the concentration of the lipids has the effect that the 

aggregates grow in to flat membrane-like structures. This is illustrated in 

figure (8). This tendency is more pronounced when the tails are longer. 

Therefore, lecithin molecules are likely to prefer flat membranes over small 

micelles. Additional details of the cross over from a given association 

structure into another as a function of molecular architecture are given 

elsewhere [3]. 

Conclusions 

The thermodynamics of small systems is combined with a statistical 

thermodynamical Self-Consistent Field theory and applied to amphiphilic 

molecules in aqueous solutions. Micelle formation is found to be a first order 

phase transition, but because of the low concentration of the micelles at the 

CMC, the theoretical critical point is not easily found experimentally. We 

showed that the very first micelles to form are globular and have fluctuations 

in size. At higher surfactant concentration the micelles can change their 

shapes. Then larger fluctuations with respect to their shapes are predicted. 

This behaviour strongly depends on the architecture of the molecules. 

Lecithin-like molecules are shown to prefer membrane-like structures, whereas 

short chain surfactants will form relatively small aggregates even at high 

surfactant concentration. 
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CHAPTER 2 

LIPID BILAYER MEMBRANES 

Abstract 

Step-weighted random walks (modified Markov chain statistics) combined 

with a self-consistent field approximation form the basic concepts of a Flory-

Huggins type of theory to describe the lipid bilayer [1] . The purpose of the 

present paper is to extend this model by incorporating the rotational isomeric 

state scheme, both for linear and branched chain molecules. Only three 

measurable interaction energy parameters of a Flory-Huggins type are required, 

namely for the head group tail, the head group water, and the tail water 

contacts. In addition, the theory needs one energy parameter for the internal 

trans/gauche transition energy of the chain. Results of this self-consistent 

field (SCF) theory are given for membranes formed by lecithin-like molecules. 

With respect to earlier work, more detailed insight is obtained in the 

behaviour of the lipid bilayer above the gel to liquid phase transition 

temperature. Equilibrium conditions are formulated. Segment density profiles 

and solvent distributions are calculated. It is shown that the two apolar 

tails of the lecithin do not behave identically. The tail next to the head 

group is lifted slightly more out of the membrane than the other tail. The 

well-known balance of forces, responsible for membrane formation is analysed. 

We found that the repulsive tail head interaction, often ignored in theories, 

is essential for the stability of association colloids. 

Introduction 

Lipid bilayer membranes provide the living cell with a surface on which 

protein molecules have interaction. Membranes also are the interfaces between 

cell compartments. The recognition that these properties serve vital functions 

in living material has stimulated the research on lipid bllayers. There is a 

need for a general theory which describes equilibrium properties of lipid 

bilayers, explains the polymorphism of lipid aggregates, gives insight into 

the molecular behaviour of the lipids in an aggregate, and eventually shows 

the gel to liquid phase transition behaviour. These topics have been the 
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subject of many studies and several theories deal with various aspects of this 

problem. In a series of papers we will show that it is possible to design a 

comprehensive statistical thermodynamical theory which is able to deal with 

all of these aspects simultaneously. 

Molecular dynamics (MD) is an alternative method to obtain detailed 

information on aggregates of amphipolar molecules. One of the first MD studies 

on the bilayer membrane is performed by Van der Ploeg and Berendsen [2]. The 

excluded volume of the molecules is treated rigorously and all interactions 

are taken into account with high accuracy. Indeed, modern simulations do not 

fix the head groups positions to a certain plane and the few results obtained 

so far seem realistic [3]. Unfortunately, MD needs many parameters. It has 

been shown recently that results depend on the model which is used to simulate 

the solvent phase [4]. Further, the method is limited by the small number of 

molecules, and the relatively short tail lengths, which can be taken into 

account. Because of the time scale of the simulations (in the order of 100 

pico seconds) a slow process like the exchange of lipids between a membrane 

and the bulk solution cannot yet be simulated by molecular dynamics. 

In principle, Monte Carlo (MC) simulations may also be useful to gain 

insight into the behaviour of amphipolar molecules in aqueous media. Results 

for small surfactant molecules have recently been obtained by Owenson and 

Pratt [5]. They did not restrict the positions of the head groups, and 

therefore their results should compare well with ours. However, for 

computational reasons, detailed information on lipid membranes formed by 

lecithins is not yet available. 

Statistical mechanical calculations based on a self-consistent field do 

not rely as much on the computer capacity as MD or MC techniques do. The 

quality of the outcome of such calculations depend on the rigour of the 

partition function derived. Several groups studied the conformations of 

hydrocarbon tails anchored to a given plane [6,7] or have used (arbitrary) 

head group positions [8]. The main result of these theories is the order 

profile along the hydrocarbon chain. Very critical for this profile is the 

effective head group area or, in other words, the number of chains per surface 

area. This parameter can be estimated from experimental values of the membrane 

thickness. The question why a given membrane thickness is found remains to be 

solved. 

Our theory has a more ab initio character. It allows all molecules to 
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distribute freely throughout the system. In this way, equilibrium with the 

bulk solution is automatically guaranteed. In other words, the membrane 

structure can no longer be dictated. The membrane thickness and the average 

surface area per molecule are results of the calculations. The composition of 

the molecules and the values for the interaction parameters determine the 

properties of the aggregates. The morphology of the association colloids can 

also be studied if one allows for non-planar aggregates as well. 

This article explains the statistical and computational aspects of the 

rotational isomeric state scheme in a Markov approximation, applied to 

branched molecules in a lamellar geometry. All conformations of a chain are 

generated in the mean field due to all of the other chains. During this 

generating process the different conformations are properly weighted. Our 

method of generating chain conformations shows similarities with the theory of 

Dill and coworkers [8]. After some manipulations the segment density profile 

is found. The statistical weight of each individual conformation can be 

calculated when this profile is known. Therefore, the theory can also be 

formulated in terms of a set of conformations defining the equilibrium 

properties of the system [9]. When doing so, the relation between our theory 

and MC simulations [5], or with theories in which the individual (tail) 

conformations are generated, as in the work of Gruen [7], is more clear. From 

this set of chain conformations, the partition function of the system can be 

calculated from which all necessary thermodynamic quantities follow. For more 

details of the derivation of the partition function, we refer to other papers 

[1,10]. 

First order Markov chains 

A polymer chain is built up of r segments (e.g. CH2 groups), with ranking 

numbers s = l,..,r. Each segment may be connected to one or more other 

segments in the chain, but we assume that no ring structures are present, so 

that each chemical bond connects two independent parts of the chain. One of 

the main goals of a many-chain problem is to calculate the whole set of 

conformations of all molecules in a give volume. To deal with this, it is 

convenient to design a lattice composed of lattice sites to which polymer 

segments or solvent molecules are confined. Scheutjens and Fleer modified a 

matrix method first introduced by Di Marzio and Rubin [11] to generate all 

conformations of the polymer chains in this lattice. In the absence of a 
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potential field, this matrix formalism can be shown to be equivalent with 

random walk statistics. It is characteristic for the random walk on the 

lattice that each step has Z options, irrespective of previous steps, where Z 

is the co-ordination number of the lattice, i.e., the number of neighbouring 

lattice sites. In the present elaboration the lattice consists of parallel 

layers of L lattice sites each. They are numbered z = 1 M, where layer 

numbers 1 and M form the boundaries of the system. A fraction A , of these Z 

sites is situated in a previous layer, a fraction A in the next layer and a 

fraction A in the same layer. We are interested in the density distribution 

of each segment for a given potential profile u(z) (a free energy per 

segment). This profile is usually different for each type of segment or 

solvent molecule and includes hard core interactions and specific contact 

energies. In this way we can use simple Boltzmann statistics to obtain the 

distribution functions. For example, the density distribution of solvent, 

denoted by subscript W, is given by 

*w( z ) = *w G w ( z ) (1) 

where <(>w(z) is the volume fraction of solvent in layer z, $ that in the bulk 

solution and Gy(z) = exp(-uw(z)/kT) gives the distribution function of solvent 

molecules. Similarly, GA(z) = exp(-uA(z)/kT) gives the distribution function 

of monomers of type A in a potential field uA(z), whereas GA(z) \ ,_ Gß(z') 

gives the distribution function of AB dimers, where segment A is in layer z 

and segment B in layer z'. The distribution of A segments of these dimers is 

thus given by G(z,AB) = GA(z) EgiAgt-z GB(z*). 

Generally, each segment s contributes a factor G.(z,s) to the 

distribution function of a chain i and the distribution function of the last 

segment of a chain of s segments can be expressed in a Markov approximation 

G(z,s ) = G(z,s) Z A , G(z',s*) 
i , z — z 1 

(2) 

The subscript 1 refers to the bond 1 with which the rest of the chain is 

connected. Note that the subindex i is dropped to indicate that the equation 

is general applicable. G(z*,s{) is the distribution function of segment s' 

when the bond between s and s' is disconnected. In shorthand notation equation 

(2) is written as 
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G(z,s ) = G(z,s) <G(z,s|)> (3) 

The angular brackets denote a weighted averaging of G(z,sj) over layers z-1, 

z, and z+1. Equation (3) is a recurrence relation that expresses the end 

segment distribution into that of a chain that is one segment shorter. A 

segment with chain parts at two of its bonds (1 and 2) has a distribution 

function G(z,s ) = <G(z,s')> G(z,s) <G(z,s")> or 

G(z,s12) = G(z,Sl) G(z,s2)/G(z,s) (4) 

We have assumed that segment s' and s" may overlap each other occasionally 

(Markov-type behaviour). The volume fraction of segment s in layer z is now 

calculated as 

*(z,s12) = C G(z,s12) (5) 

where C is a normalisation constant, obtained from the volume fraction <j> 

C - - É - (6) 

or from the total amount of segments 6 = E E <k(z,s) in the system. Since 
z s 

Ez G(z,s12) is independent of s, £ | G(z,s12) = r J G(z,rj) = r G(r.), the 

normalisation constant is 

C = 9 

r G(C l) (7) 

Starting at either chain end, equation (3) generates all end segment 

distribution functions needed in equation (4) from the monomer distribution 

function G(z,s) (substituted by GA(z), GB(z), etc., depending on the type of 

segment s), so that the volume fraction distributions can be obtained from 

equation (5). This procedure is repeated for each type of molecule (i) in the 

system. For monomers equation (5) reduces to the simple form of equation (1). 

The segment density distributions should obey the volume restriction 

requirement (constant density) in each layer z: 
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I $ (z) = 1 (8) 
X 

Here, x denotes segment or solvent type (x = A, B, W, . . . ) • In the simplest 

case there are only hard core interactions in the system, so that Gx(z) = 

exp(-u' (z)/kT) for all segment types x. In this case u'(z) is the hard core 

potential and is chosen such that equation (8) is satisfied. More generally, 

the potential profile of segment x includes energetic contributions from 

nearest neighbour interactions, which can be expressed in terms of Flory-

Huggins parameters x : 

xy 

u (z) = u'(z) + kT Z V f<«|> (z)> - <f,bl (9) 
x x̂y1- Ty ryJ 

The summation y runs over all segment types. The angular brackets again 

indicate a weighted average over three consecutive layers (z' = z-1, z, z+1): 

<<(>(z)> = Ï X ,_ <Kz') (10) 
z , z z 

The number of equations ((8) and (9)) always equals the number of unknowns 

(u'(z) and ux(z)), so that the set of simultaneous equations can be solved 

numerically. 

Branched molecules are treated very similarly. If segment s (connected 

with bonds 1 and 2 in the chain) has a branch at bond 3, we apply equation (4) 

to connect the chain parts at bonds 1 and 2 and an equivalent equation (11) to 

connect the branch at bond 3 

G(z,s123) = G(z,s12) G(z,s3)/G(z,s) (11) 

G(z,S3) is generated using equation (3) and starting at the end of the branch 

chain. The density distribution of the branching segment follows from 

(j>(z,s-|23) = C G(z,si23)* Equations (4) and (5) remain valid for all other 

segments, because these segments have only two bonds each. However, G(z,s,) or 

G(z,S2) should include the contribution of the branch. If the branch is in the 

chain part that is connected to bond 1 of segment s and the branch point is 

s', we can obtain G(z,si) using equation (3) starting at G(z,si3): 

G(z,s1) = G(z,s") <G(z,s{3)>, where s" is the segment directly connected to 

s'. 
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Rotational isomeric state scheue 

Due to steric hindrance, a sequence of three C-C bonds has three 

favourable, one trans (t) and two gauche (g+, g~), configurations (see figure 

1). The two gauche configurations have an energy US « 1 kT higher than the 

trans configuration. Each additional C-C bond has again three possible 

orientations which form trans or gauche configurations with its two 

predecessors. The whole chain will fit on a tetrahedral (diamond) lattice, 

where each bond is in one of four orientations e", f", g", or h". In each of 

these orientations we distinguish two opposite directions: e and e', f and f', 

g and g', h and h', respectively (see figure 2). We orient the lattice in such 

a way that bonds in orientations f" and g" connect segments within the same 

lattice layer and bonds in orientations e" and h" connect segments in 

neighbouring lattice layers. If we rotate this lattice around its z axis over 

Figure 1. 

Schematic drawing of gauche and trans configurations in a chain and the 

energy as a function of the angle $ between two consecutive bonds in the 

chain. The three minima in the energy curve correspond with a g+, t, and 

g configuration, respectively. The trans configuration is energetically 

most favourable. 
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angles of 120 degrees we get a superposition of 3 tetrahedral lattices which 

is very similar to a hexagonal lattice: each lattice site gets 12 instead of 4 

neighbours, but the 6 of them in the same layer do not form a hexagon. As we 

will apply a mean field approximation within each layer, this difference will 

not affect the results. Hence it will suffice to consider only the tetrahedral 

lattice with the four bond orientations defined above. 

There are two types of sites in the lattice which are mirror images of 

each other. Sites of type I have neighbours (all of type II) in directions e, 

f, g, and h, whereas sites of type II are surrounded by sites of type I in 

directions e', f ', g' and h' (see figure 2b). We will assume that a segment 

can at the most have four possible bonds. These bonds give a segment an 

orientation, irrespective whether the bonds are free or not. A segment on a 

site in a tetrahedral lattice may assume one out of 12 orientations: one bond 

z-1 z z+1 

Figure 2. 

a. Identification of lamellae in a tetrahedal lattice. All segments are on 

one of the parallel planes. 

b. Alternative representation of the same lattice. The eight bond 

directions, four bond orientations and the two types of sites are 

indicated. 
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Table 1. Compilation of segment orientations in a tetrahedral lattice. 

segment 

site 

bond number 

orientation 

isomer 

I 

1234 

ehfg 

efgh 

eghf 

fhge 

fgeh 

fehg 

gefh 

gfhe 

ghef 

hgfe 

hfeg 

hegf 

I 

II 

1 2 3 4 

h'e'f'g' 

h'f'g'e' 

h'g'e'f' 

f'e'g'h' 

f'g'h'e' 

f'h'e'g' 

g'h'f'e* 

g'fe'h' 

g'e'h'f' 

e'g'f'h' 

e'f'h'g' 

e'h'g'f 

isomer 

I 

1234 

he f g 

hfge 

hgef 

fegh 

fghe 

fheg 

ghfe 

gfeh 

gehf 

egfh 

efhg 

ehgf 

II 

II 

1 2 3 4 

e'h'f'g 

e'f'g'h 

e'g'h'f 

f'h'g'e 

f'g'e'h 

f'e'h'g 

g'e'f'h 

g'f'h*e 

g'h'e'f 

h'g'f'e 

h'fe'g 

h'e'g'f 

can choose between four directions and a second bond between three. The 

directions of any other bonds are then fixed because of its stereo 

specificity. The first column of table (1) lists all these orientations for a 

site of type I. Each orientation can be obtained from another one by rotation 

around one of the bonds (keep any one bond in position and exchange the three 

others). The stereo isomer is obtained by exchanging any two bond 

orientations. The third column of table (1) lists all orientations of the 

isomer on a site of type I (exchanging h and e). As a mirror image of a 

segment on a site I is equivalent to its stereo isomer on a site II, we obtain 

a complete list of bond direction combinations on sites II by reversing all 

directions in the first and third column in table (1), giving columns four and 

two, respectively. 

A segment orientation is defined by specifying the directions of two of 

its bonds. We will use the symbol s e f when the first bond of segment s is in 

direction e and the second bond in direction f. Equivalently, s** "** signifies 

that bond one is in direction g' and bond three is in direction h'. To 

indicate the fact that the segment is part of a chain we write c
h , *' e ' if 

s14 
bond 1 in direction h' and bond 4 in direction e' are connected to other chain 
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parts. 

In this paper we assume that the potential profile (equation (9)) is 

independent of the orientation of a segment, so that 

G(z,sa0) = { ° , " . « =.e (12) 
1 G(z,s) otherwise 

where o and ß stand for the bond directions e, f, g, and h (or e', f ' , g', 

and h' for sites of type II)- There are 24 non-zero independent values 

G(z,s ). Equation (2), describing elongation of the chain at s' by one 

segment s, becomes: 

G ( z , 8 p = G(z,sat3) £ Ap " a "Y G(z\s'* a ) (2a) 

Y* 

In this case bond 1 of segment s (in direction a) is connected to bond 2 of 

segment s' (in direction a')- Layer z' is either z-1, z, or z+1 , depending 

on the direction of a1- There are only three non-zero contributions to 

G(z,s1
P), because all combinations with a = ß are excluded by equation (12). 

The superscript ß"-a"-Y" refers to a sequence of three bonds, in orientation 

ß", a", and Y"> respectively (a superscript 3"O"Y" would refer to three bond 

orientations of the same segment), forming a gauche or trans configuration. 

The three configurations are properly weighted by \ or A8: 

xa"-ß"-Y" . r A* if a." = Y" (13) 
1 A otherwise 

where Ag = l/(2+exp(u8/kT)) and A' = 1 - 2 A8. Equation (2a) applies even to 

dimers and end segments, because the difference between t and g affects only 

the orientation of the next bond, which is a free bond in these cases. 

Therefore, the recurrence equation (2a) can be started at G(z,s1 ) = 

G(z,s ). The equivalent of equation (2a), starting at the other chain end 

reads: 

G(z,s„ ) = G(z,s ) Z A G(z ,sl ) 

Y' 

where bond 2 of segment s in direction ß is attached to bond 1 of segment s' 

in direction ß'. 

The end to end connection of two chains at segment s in orientation aß is 
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now just a variation of equation (4), because all gauche and trans energies 

are already accounted for. 

G(z,og) = G(z,s^) G(z,sf)/G(z>S
aB) (4a) 

«fi 
and G(z,s^2) in equation (5) becomes the average value of G(z,s12) 

G(z,s12) = H XaeG(z,s^) (14) 
a 3 

Here, A = 1/24 is the inverse of the number of segment orientations on sites 

of type I and II. The number of segments on sites of type I must be equal to 

those on type II, i.e., E.$. (zT) = I. f. (Z
TT)

 = 0.5. In the present treatment 

there is no numerical difference between G(z,saß) and G(z,sa ), so that this 

constraint is automatically obeyed. Moreover, the consecutive segments in a 

chain are placed on alternate type of sites. Only the chain as a whole may in 

certain systems prefer to start always on the same type of site. For example, 

in a crystal the chains would be all in the same orientation. 

A branch in the chain presents some extra difficulties. Instead of 

equation (11) we have 

G(z,s«g) = G(z.s^) G(z.s^) G(z.s^) / G ( z , s ^ ) 2 (11a) 

Although the orientation of a segment is fixed by the direction of two of its 

bonds, all three bond directions are indicated in equation (11a) for the sake 

of clearness. Obviously, G(z,sa ) = G(z,saP). The chain end distribution 

function G(z,s1 ) indicates that the rest of the chain is connected to bond 1 

of s, which is in the a direction. This quantity is found by a modification of 

equation (2a). When s' is the segment adjacent to the branching segment s then 

G(z,Sl
aß6) = G(z,sae«) E AY"-a"-ß"«" G ^ . ^ . Y V J (2b) 

Y1 

where bond 2 of segment s' in direction a' is connected to bond bond 1 of s 

in direction a- To segment s also the directions B and 6 are assigned to which 

bond 2 and 3 will be connected, respectively. The parameter ̂ Y ~a ~S S 

weights their contributions: 
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.a"-ß"-Y"6" _ , Xll if "" = Y" °r a" = 6" (15) 
1 X g g otherwise 

where Xt g = \tXg/(2 XCX8 + X8X8) and X 8 8 = 1 - 2 Xtg- It is illustrative to 

give the equivalent expression (2b) for the case that bond 3 of s' in 

direction ß' is connected to bond 2 of segment s, while bond 1 and 3 of 

segment s are in directions a and 6, respectively: 

G(z,sf6) = G(z,saß5) z xY"-e"-°"6" G( Z -,s'-^') 

Y' 

Obviously, by the following equation a segment s" in orientation aß is 

connected with bond 1 to bond 2 of segment s which has other chain parts at 

bonds 1 and 3: 

G ( Z , S ^ ) = G ( z ,s-ae) z xe"-«"-Y"s" G(z..„TV«', ( 2 c ) 

Y' 

where G(z,s™^Y) = G(z,sJlßY) G(z,s"ßY)/G(z,saßlr). The summation over y< 

represents the three directions of bond 1 of segment s with bond 2 in 

direction a'• These orientations can be obtained from table 1 and determine 

the directions 6' simultaneously. This formalism is easily extendible for a 

branch point with four groups. For example, a segment s" in orientation aß 

is connected through bond 1 to bond 2 of segment s' to other chain parts at 

bonds 1, 3, and 4 by: 

G(z,s^ae) = G(z,8"aß) Z x6"-«"^"6"6" GCz-.s'^0'6'8') (2d) 

Y' 

where xß"-a"-Y"6'V= xggt/ ( 3 ^ggtj . 1 / 3 > 

Computational aspects 

Due to the symmetry of the lattice and the mean field approximation, many 

of the quantities G are numerically equal. We have already mentioned the 

equivalence of sites of type I and II. Moreover, there will be an equal number 

of bonds in orientations e" and h" (between two layers) and similarly in 

orientations f" and g" (within a layer). Generally, for a segment with two 

bonds there are only 7 numerically different segment orientations aß, instead 

of 24. These are listed in table (2). In appendix A the resulting equations 

((2a) and (4a)) are given in matrix notation. 
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Table 2. Degenerate segment orientations 

eh = h'e' 

ef = eg = h'g' E h*f' 

fh = gh = g'e' 5 f'e' 

fg = gf = g*f i f 'g' 

fe = ge E g'h' = f'h' 

hf 5 hg = e'g' = e'f' 

he = e*h' 

For a segment with three or four bonds each orientation on a site of type I 

has only one numerically equivalent orientation on a site of type II, e.g., 

ehfg = h'e'f'g', efgh = h'f'g'e', etc., so that 12 different numbers remain. 

(The corresponding pairs are listed in table 1 next to each other.) 

To fix the membrane on the lattice we place a reflecting boundary in the 

centre of the the bilayer [1] (there is no reason why the bilayer would be 

asymmetric), between layers 0 and 1. This is accomplished by setting all 

(image) quantities in layer 1-z equal to those in layer z. 
12 12 

Thus G(l-z,sef ) = G ( z > s
h e f e )> <l>(l-z»s) " <t>(z>s), etc. In fact, the molecules 

are rotated over 180 degrees, rather than reflected, because a reflection 

would produce the stereo isomer. The rule to find the rotated bond directions 

is to replace e, f, g, h, e', f , g', by h' for h, g, f, e, h', g', f , and 

e', respectively. 

Obviously, the reflecting boundary could also be placed in layer 0 so 

that quantities in layer -z equal those in layer z. A similar reflecting 

boundary can be placed in the bulk solution, between layers M and M+l or in 
layer M. Hence, calculations for only M or M+l layers are to be performed. 

Membranes are initiated in the first few layers by a suitable initial guess 

(see appendix B ) . 

Evaluation of the Markov chain and mean field approximations 

It is appropriate to summarise the shortcomings and advantages of the 

Markov chain approximation and, consequently, the local mean field 

approximation coupled to it. Strictly spoken, our chain statistics has pure 

Markov behaviour only if all steps are weighted with a constant factor, i.e., 

for a homogeneous system. In a concentration gradient the steps are weighted 



-34-

according to the local potential and therefore our method may also be 

characterised as "a step weighted random walk". Since in a Markov 

approximation only short range correlations (along the chain) are taken care 

of, we were able to use a recurrent relation which guarantees (within certain 

limits) the generation of all allowed conformations of a chain in the average 

field of all other chains. By incorporation of some memory along the chain 

path (RIS scheme), direct backfolding can be forbidden. With this method we 

cannot prevent a chain segment to enter a lattice site which is already 

occupied by a segment of one of the other chains. We also allow the chain to 

enter a lattice site which is already occupied by a segment of the same chain 

if it is more than four bonds apart. We compensate for any multiple occupancy 

of sites by allowing only L segments in each lattice layer. 

The consequence of using the average segment density in each layer is 

that inhomogeneities in each layer parallel to the membrane are neglected. 

When a lamellar lattice is used, the membrane is forced to be flat and 

spontaneous undulations along the bilayer are not taken into account. 

There are a few impressive achievements in the present treatment. One can 

generate all conformations of chains of up to 10,000 segments without too much 

computational effort. The segment density profiles of each conformation can be 

calculated so that very detailed information on the segment positions is 

available. Any number of different types of molecules (for example 

polydisperse polymers, additives e t c ) can be introduced without undue 

complications. If necessary, other interactions (for example electrostatic) or 

external potentials (for example long range Van der Waals interactions) can be 

taken into account as well. 

Comparison with other theories 

Dill and coworkers use a different but similar recurrence relation to 

generate all possible conformations of chains on a lattice [8]. However, they 

fix the head groups in particular layers and allow all segments only to be in 

the same layer or in the layers closer to the centre of the aggregates. 

Gruen either samples the set of conformations, or generates the whole set 

[7]. His approach does not make use of a lattice and consequently his set of 

conformations for the lipid molecules is in this respect more realistic than 

ours. For computational reasons, a predetermined number of head groups were 

confined to a given layer so that equilibrium with the bulk solution was lost. 
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A more severe drawback of his approach is that one cannot be sure to find the 

set of conformations which minimises the free energy. Gruen generated several 

solutions obeying the space filling requirement. The chain packing 

corresponding to the lowest free energy found was accepted as the physical 

realistic solution. 

Both Gruen and Dill et al. did not allow solvent molecules or head groups 

in the tail region, and therefore they did not need to take energetic 

interactions into account. For the space filling requirement both theories 

need a kind of osmotic potential like our u'(z). 

In our theory all essential energetic interactions are accounted for. Our 

segment density profiles are self-consistent, and equilibrium with the bulk 

solution is always guaranteed. Standard thermodynamics are used to find the 

equilibrium properties of the system. 

Results and discussion 

Lipid molecules 

We will concentrate on lecithin-like molecules modelled by a glycerol 

backbone, two identical tails of p (CH2) apolar (A) segments each and a head 

group of q polar (B) segments: 

Ap-B-A 

Ap-B-A (16) 

A-Bq 

We disregard volume differences between a terminal CHo group and a CHT group, 

nor do we specify more details in the head group. Henceforth the solvent 

simply is indicated as "water" and is modelled as a monomer of segment type W 

The solvent molecules are denoted by i = 1 and the lipids by i = 2. 

Interaction parameters 

In the most simple case there are three x parameters for the various 

contacts in the system. Roughly, xA U (tail segment/water interaction) is 1.6, 

XDII (head group segment/water interaction) is 0 or slightly negative, 
BW 

and v (tail segment/head group segment interaction) is around 1.5. This set 

of x values implies that head groups are soluble in water, but the tails avoid 
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head groups and water molecules (high ^ values). It mimics the well-known 

opposing forces stabilising the lipid aggregates. Phase separation between 

tails and water is the driving force for association. Head groups repel tails 

and therefore they are forced to be on the outside of the aggregate. As they 

like water, micelle or membrane growth is limited and the aggregate stabilises 

at a certain size. In literature the interaction between tails and heads is 

often neglected. The choice xA R
 = 1»5 mimics a repulsion between these types 

of segments. If this interaction is too weak, the head groups mix too easily 

with tail segments and consequently too many tail segments would be exposed to 

the water phase. In this case no stable associates are formed. In the RIS 

scheme one extra parameter is needed namely the energy difference between a 

gauche and a trans configuration. We used a value of 1 kT at T = 275. This 

resembles a literature value of around 0.8 kT at room temperature [12]. 

Branch points 

We have allowed minor simplifications with respect to the computations at 

the branch point. We will only account for non-overlapping chain parts. In 

other words, a second order Markov approximation is used instead of a third 

order (RIS) Markov approximation. Typically, a second order Markov 

approximation has a chain end distribution function G(z,s.'a) which states that 

the free bond 2 will be connected with a segment in direction a, while bond 1 

is connected with a chain in any of the three remaining directions. In this 

case all Xa Y equal 1/3 for all possible combinations of the three 

meeting chain parts. Further, we did not distinguish between the two 

enantiomers. Consequently, the number of ways to connect the three subchains 

in the branch point is doubled. Therefore, in this case the normalisation 

given in equation (14) for the branch segment \a^= ^ A is used. In this way 

the number of operations for the branch point is reduced from 12 to 3. 

Membrane in a frame 

Membranes in a frame are known as black lipid films. Since they are 

restricted from translation, they are relatively easy examined experimentally. 

The membrane thickness and, more generally, the membrane composition can be 

modified by a suitable experimental conditions. In our theory the membrane 

composition is changed by changing the lipid concentration in the system. In 

doing so, thermodynamic data can be calculated. Figure (3a) shows how the 
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Figure 3. 

a. Excess surface free energy per lattice site as a function 

("membrane thickness"). 

b. Equilibrium volume fraction of lipids in the bulk as a function of 9 

The lipid membrane is composed of lecithin-like molecules of tail 

14 and head group size 3, see text. The solid parts of the 

represent stable membranes. Energy parameters: XATJ = 1-^5 X 

of e° 

2* 
length 

AAB 
1.5; US = 27 5/300 kT. Temperature: 300 K. 

*AW *BW 

curves 

-0.3; 

excess free energy A a expressed as 

6i *w ( z ) 

AC/kTL - - Z — + E In —. + 
i *i z b 

(17) 
b b. 

* E Z E ( x x U
+ xvU- X ™ ) [<L.(Z> <<t>w(z)> - M J 

z x y 
*xW *yW *xy lsx xTy' 

depends, among other quantities, on the excess amount of lipids, e£ , which is 

a measure of the membrane thickness: 

e° = E (+2(z) - ^ ) 
z=l 

(18) 
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Figure (3b) gives the equilibrium concentration of lipids in solution as a 

function of 9„. For very thin membranes the equilibrium concentration of 

lipids in the bulk (and hence their chemical potential) is high, but passes a 

minimum when the membranes grow thicker. A second minimum is present at 

high Qj, when on the membrane a second bilayer is formed (only present if the 

bilayers attract each other). In figure (3a), the excess free energy of the 

film is behaving oppositely: when the chemical potential decreases, the excess 

free energy increases. This is in accordance with Gibbs' law. 

Only the middle parts of the curves (solid lines) in figure (3) are 

operational. If A a is negative the membrane will spontaneously increase its 

surface area and thin membranes are unstable because 3A°/3 6? > 0 (see below). 

Free membranes 

In contrast with a membrane in a frame, a free membrane does not feel the 

constraint of the frame and therefore it will adjust its surface area As until 

the surface tension vanishes. From thermodynamics the change in Gibbs energy A 

at constant pressure p and temperature T, surface tension y and chemical 

potential \i . 

dA = Y dA + Z Vj dn. (19) 
s . i l 

l 

Indeed, equilibrium is established when (3A/3A 1 = 0 , thus Y = 0. For 
v s ' p .T .n , 

s t ab l e equi l ibr ium the f ree energy A as a function of the area must be convex 
at t h i s po in t : (3A2/32A 1 _ > 0, thus ( 3 Y / 3 A ) _ > 0. Since 

<• s - lp,T,n i " s / p , T , n 1 

36? 

IT < ° ( 20 ) 

s 
stable equilibrium is found when (3y/38?) < 0, or equivalently, 

3 ( A ° / L ) < 0 (21) 
o 

392 

The stable points for the free membranes and the stability range for membranes 

in a frame are found with the help of figure (3a). 

The conclusion that free membranes have no surface tension is also 

reached by applying the thermodynamics of small systems [13,14], assuming that 
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the membrane has no translational entropy. Indeed, the translational entropy 

of the membrane is relatively small, but there are contributions due to 

undulations. The number of undulations and their distribution depend on the 

free energy of curvature of the bilayer. Curved bilayers (vesicles) will be 

examined in a following publication [15]. The wave length of the undulations, 

is large compared to the membrane thickness, so that only a very small excess 

free energy per surface site is present. Therefore, all membrane systems 

discussed below are assumed to have a zero excess free energy. 

First order Markov chains compared to rotational isomeric state scheme 

Figure (4) shows the overall segment density profiles through a cross 

section of membranes consisting of lecithin molecules with tails of 14 

segments. In figure (4a) the first order Markov approximation is used, whereas 

in figure (4b) the result for the RIS scheme is shown. The difference between 

the two graphs is obvious. As expected, the RIS scheme leads to considerably 

thicker membranes. As the chain density in the membranes is the same for both 

approximations, the head group density for the RIS membrane is higher. 

Nevertheless, the head group density is still rather low and therefore many 

tail segments are in contact with the water phase. 

• <z> 

head groups 

Figure 4. 

Segment density profiles through cross sections of a membrane composed of 

lecithin-like molecules. Parameters as in figure(3). The layers are 

numbered arbitrarily, 

a) First order Markov approximation, b) RIS approximation. 
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Figures (4a) and (4b) suggest that a large amount of water is present in 

the membrane, which is certainly an overestimation. The water concentration in 

the membrane reaches the binodal concentrations predicted by the Flory-Huggins 

(FH) theory [16]. It is well-known that the FH theory (and hence also our 

theory) successfully predicts phase separation qualitatively, but that the 

compositions of the phases are wrong. Corrections for this defect are rather 

involved. One very successful method to improve the membrane picture will be 

discussed in a future publication where an orientation-dependent molecular 

field is introduced in the theory [17]. The model also needs to be improved 

with respect to the water phase (water molecules are treated as unpolarisable 

monomers). Further, a more advanced description of the membrane system must 

include the compressibility of the system. A full analysis of these last two 

factors are also left for future work. 

RIS membranes 

Figure (5) shows the segment density profiles of the lipids from figure 

(4b) on a logarithmic scale for the volume fractions. In this figure we see 

that the segment density profiles outside the membrane fall off more or less 

exponentially until the bulk volume fraction is reached. This takes place over 

a distance comparable with the tail length of the lipids and with the membrane 

thickness. Apparently, very few dangling tails stick out of the membrane. 

Our membranes are symmetrical with respect to the midplane, but the 
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Figure 5. 

Density profiles of the lipids of the membrane of figure (4b) on a 

logarithmic scale for the volume fractions. 
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Figure 6. 

Individual segment density profiles (in arbitrary units) for the membrane 

given in figure (4b). The segment numbers are indicated (see (16)). Only 

one side of each distribution is given. Details are given in the text. 

overall symmetrical segment density profile is composed of two asymmetrical 

contributions: one from each side of the membrane. We define a molecule to 

belong to that side of the membrane where the branching segment is found. 

Figure (6) shows the individual segment distributions in the membrane of 
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figure (4b). For every segment either the left or the right hand side profile 

is shown. Figure (6a) represents tail number 1, figure (6b) tail number 2 

(closest to the head group) and figure (6c) the glycerol backbone and the head 

group (see (16)). All segments have a wide distribution, although segments in 

the glycerol backbone are confined to less layers than those in the molecular 

extremities (the two tail ends and the end of the head group). These results 

suggest that the glycerol backbone is the most rigid part of the molecule. 

Note that this rigidity is not due to intrinsic sterical hindrances inside the 

molecule itself but to interactions with the environment. Interestingly, the 

first tail (the one further away from the head group) is buried about half a 

layer deeper in the membrane than the tail next to the head group, and its 

segments have slightly wider distributions (compare figures (6a) and (6b)). 

Clearly, the head group pulls the molecule towards the water phase and the 

tail closest to this head group is affected most. Similar trends are observed 

experimentally [18]. 

12h 

1 0 -

8 -

LV 12 14 16 18 
tail length p 

Figure 7. 

Membrane thickness as a function of tail length of the lecithin molecules. 

Dashed line: first order Markov approximation, solid line: RIS Markov 

approximation. Energy parameters as in figure (3). Short molecules do not 

form membranes. 
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Figure (7) gives 9? as a function of the tail length p, for both first 

order Markov and RIS scheme calculations. Clearly, the RIS scheme produces 

thicker membranes and a larger increase in thickness per added tail segment. 

The membrane thickness is actually larger than 8~, because the volume fraction 

of segments in the membrane is less than 1. The membranes found by our theory 

are about 50% too thin compared to experimental values [19]. (Other 

definitions of the membrane thickness can be given, which give up to 20% 

larger values.) One of the main reasons for this discrepancy is that in our 

approach the excluded volume of neighbouring chains is only weakly 

incorporated. The tails bend too easily. In a future publication we will 

correct for this [17]. Other theories, which fix the head group density in a 

given plane, actually force the chains to do steps towards the centre of the 

membrane, and therefore do not suffer from this problem, though at the expense 

of other (severe) simplifications. 

Qualitatively, the results of figure (7) correspond with measurements 

reported by Cornell et al. [19]. Their conclusion, that a change in length of 

the acyl chain gives a smaller change in membrane thickness, is fully 

supported by our calculations. Their measurements indicate also, in accordance 

with our predictions, that in the centre of the membrane the segments must 

have a more isotropic distribution. Quantitatively, our results overestimate 

this behaviour, as explained above. 

Table 3. Dependence of log <j>7 = u p + v on the energy parameters. 

Y Y Y Ug/kT ü v XAW XRW *AB u j « V 

1.7 

1.6 

1.5 

1.6 

1.6 

1.6 

1.6 

1.6 

1.6 

For surfactants (amphiphilic molecules with one apolar tail and a polar 

-0.3 

-0.3 

-0.3 

-0.2 

-0.4 

-0.3 

-0.3 

-0.3 

-0.3 

1.5 

1.5 

1.5 

1.5 

1.5 

1.4 

1.6 

1.5 

1.5 

275/300 

275/300 

275/300 

275/300 

275/300 

275/300 

275/300 

250/300 

300/300 

-0.3186 

-0.2803 

-0.2426 

-0.2802 

-0.2804 

-0.2803 

-0.2803 

-0.2800 

-0.2806 

1.745 

1.711 

1.656 

1.622 

1.799 

1.646 

1.775 

1.715 

1.708 
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head group) often a linear relation between log((j>-) (» log CMC) and the number 

of apolar tail segments is found: log((j>9) = u p + v, where p is the number of 

tail segments, u the slope and v the intercept [20]. Our calculations also 

show this linearity. Data for u and v are collected in table (3) for various 

values of the four parameters in the model. The calculations are performed 

with the RIS scheme, but the first order Markov approximation gives similar 

trends. Inspection of table (3) reveals that for the slope u only the 

interaction x A W between tails and solvent is important. The intercept is 

influenced by all parameters, but the head solvent interaction is most 

effective. 

Table 4. Dependence of the membrane thickness on the energy parameters. 

X.„ y v US/kT flo 

1.5 

1.6 

1.7 

1.6 

1.6 

1.6 

1.6 

1.6 

1.6 

- 0 . 3 

- 0 . 3 

- 0 . 3 

-0 .2 

- 0 . 4 

- 0 . 3 

- 0 . 3 

- 0 . 3 

- 0 . 3 

1.5 

1.5 

1.5 

1.5 

1.5 

1.4 

1.6 

1.5 

1.5 

275/300 

275/300 

275/300 

275/300 

275/300 

275/300 

275/300 

250/300 

300/300 

10.31 

11.01 

11.66 

11.18 

10.86 

11.12 

10.92 

10.87 

11.16 

Table (4) collects data for the dependence of 6?, a measure for the 

membrane thickness, on the energy parameters for a lecithin molecule with tail 

lengths of 16 segments. As can be seen in table (4), the thickness increases 

when the interaction between tails and water becomes less favourable ( X A U 

higher), when the head groups and water attraction is less (x less negative) 
BW 

and when the interaction between tails and head groups becomes smaller 

(XAR lower). The membrane thickness also increases if the stiffness of the 

chains increases. The energy parameters can only be chosen between certain 

limits: if, e.g., the head tail repulsion is too weak, no membranes exist for 

which the excess free energy is vanishing. Fitting the calculations with 

experimental values, especially critical micellisation concentration data, 

will give an indication of the values for the energy parameters. 
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Conclusions 

The elegance of the present theory is that only four measurable energy 

parameters are needed to model the association behaviour of lipid molecules to 

form membrane-like structures, without the need to restrict the head groups to 

given layers. Real equilibrium with a bulk solution is maintained. The Markov 

chain approximation allows for a very efficient generation of the set of 

conformations which can be calculated with standard numerical techniques in 

about 60 CPU seconds on a VAX 8600 computer. The extension of the Markov 

statistics to the rotational isomeric state scheme improves the model 

considerably, as direct backfolding is excluded. The theory gives good insight 

into the force balance of the membrane. Some membrane properties found are not 

yet in full agreement with experiments, but the theory is easily improved and 

can be readily adopted to a wide range of complicated systems. 

Appendix A 

Referring to table (2) equation (2a) is written in the form: 

G(z,s ) = G(z,s) I X , G(z\s*) 
1 = z.=z'-z - 1 

where 

(Al) 

G(z,seh) 0 0 0 0 0 0' 

0 G(z,sef) 0 0 0 0 0 

0 0 G(z,sfh) 0 0 0 0 

G(z,s) = | 0 0 0 G(z,sf8) 0 0 0 | , (A2) 

0 0 0 0 G(z,sfe) 0 0 

0 0 0 0 0 G(z,shf) 0 

0 0 0 0 0 0 G(z,she) 

=X-1 
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X8 0 

0 0 

0 0 

0 0 

0 0 

0 0 

2A8 0 
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Ç(z,s1) 

(A3) 

The equivalent equation (Al) for evaluating the chain end distribution 

functions from the opposite chain end reads 

G(z,s„) = G(z,s) Z X X , X G(z\s!) 
— A = . — ~z — Z — — i. 

(A4) 

where the product X X X is a x matrix that operates on bond 1 of segment s', 

instead of bond 2. The matrix X rearranges the segment orientations, so that 

orientation aß replaces ßa, and is given by: 

0 0 0 0 0 0 1 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

0 0 0 1 0 0 0 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

1 0 0 0 0 0 0 

(A5) 

The volume fractions are calculated with (see equations (4a) and (14)): 

G(z,s12) = GT(z,Sl) g-^z.s) W G(z,s2) 

after suitable normalisation. In equation (A6) 

(A6) 
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1 0 0 0 0 0 0 

0 2 0 0 0 0 0 

0 0 2 0 0 0 0 

1/12 I 0 0 0 2 0 0 0 I (A7) 

0 0 0 0 2 0 0 

0 0 0 0 0 2 0 

0 0 0 0 0 0 1 

Alternatively, one can use the same X matrices as given in equation (A3), but 

then the vectors G are replaced by vectors X G and the matrix G by X G X. The 

equivalent equation (A4) reads: 

X G(z,s2) = (X G(z,s) X) Z Xz,_z (X G(z,Sp) (A4a) 

When there is no preferential orientation of a monomer then X G X = G. 

Equation (A6) becomes: 

G(z,s12) = GT(z,Sl) G-1(z,s) W X (X G(z,s2)) (A6a) 

Equations (A6) and (A6a) are identical because the product X X gives the 

identity matrix. 

Appendix B 

The volume fraction profiles cannot be found analytically. We have an 

implicit set of equations which can be solved, for instance, with the FORTRAN 

program of Powell [21]. If we formulate the ktn guess for the free segment 

weighting factors as G (z), then: 

-ux(z)/kT = M<4k^» - Ï X,, (^^y - fy (BD 
y i V 

The volume fractions <t> (z) are obtained from Ĝ  (z) and normalised by 
rx x 

6./(r G.(r )] except for the solvent profile, for which we use 

4»! = 1 - Z±ti*± = 1 - ̂ lV^i^l^ " T h e d e n o m l n a t o r Z ,* ,(z) l s t h e s u m 

of volume fractions in layer z and is introduced to avoid too strong 

fluctuations of i4(z) during the iterations. It will be 1 when the final 

solution is attained. Further, we define: 
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u'(z) = i r l u'(z) (B2) 
y y 

as the average u'(z). The boundary conditions are 

Z * (z) = 1 (B3) 

y y 

and 

u'(z) = u'(z) (for all segment types x) (B4) 

The following function can be formulated which combines all requirements 

fx ( z> = 1--nröö + «•<*>-«;<«> (B5) 

y y 

(k) This function is reasonably linear in Gv (z) and only zero for all x and z 

when equations (B3) and (B4) are obeyed. 

The iteration is started by a small (step) profile in the free segment 

weighting factors to initiate inhomogeneities near the reflecting boundary. 
2 —ft 

The tolerance /fj; j f (z) ) was typically less than 10 °. 
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CHAPTER 3 

LIPID VESICLES 

Abstract 

We present a statistical thermodynamical theory to study lipid vesicles 

in aqueous media. All conformations of the amphiphilic molecules are generated 

in a rotational isomeric state scheme. The statistical weight of each 

conformation is calculated using standard Boltzmann statistics for which self-

consistent equipotential layers of variable curvature are introduced in a way 

that parallel planes give flat membranes, whereas lattice layers with 

spherical geometry give globular micelles or vesicles. 

Unilamellar, multilamellar and multicomponent vesicles are examined. 

Segment density profiles through cross sections of the vesicle membranes are 

found to be asymmetric: the inner shell is compressed, while the outer one is 

slightly expanded. 

The free energy of curvature per vesicle composed of one type of lipid 

molecules is of the order of 200 kT and is independent of its radius. 

Therefore, these vesicles are considered thermodynamically unstable and are 

expected to grow. The small amount of curvature energy of the lecithin 

vesicles implies that they are easily deformed. This is confirmed by 

calculations on vesicles with a cylindrical geometry. 

In multicomponent vesicles the amphipolar molecules distribute themselves 

between the inner and outer shell to optimise energetic interactions and 

packing constraints. This enhances the asymmetry of the vesicle membrane. 

Adding surfactants can lead to degradation of the vesicle system into 

composite micelles. On the other hand, vesicles composed of two types of 

lecithin-like molecules with a repulsive interaction between them can be 

extremely asymmetric and tend to be thermodynamically stable at a given 

vesicle radius. 

Introduction 

Lipid vesicles are found in a large variety of sizes and composition. 

Unilamellar, bilamellar or even multilamellar vesicles have been encountered 

experimentally. Recent experimental research concentrates on various 
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applications of the spherical membrane particles. They can be used as capsules 

for drug delivery [1], as artificial chloroplasts for the conversion of solar 

energy [2,3], and as model systems for the study of biological membranes. 

The self-assembly of lipid molecules into membranes or vesicles has much 

in common with the formation of micelles from small surfactant molecules. 

Pioneering theoretical work has been done by Israelachvilli et al. , who 

combined the thermodynamics of the self-assembly of association colloids with 

the architecture of the amphiphilic molecules [4,5]. Their analysis of lipid 

vesicles is focused on the packing phenomena of the outer monolayer, assuming 

that the inner monolayer has always an optimal packing. Based on this 

assumption, they predict that vesicles are thermodynamically stable. In 

contrast to this, Helfrich argues that vesicles are distorted membranes, and 

therefore are inherently unstable [6]. We will contribute to the solution of 

this discussion. 

Both the approaches of Israelachvilli et al. and that of Helfrich are 

semi phenomenological models which give only limited information on a 

molecular level. More detailed insight into the structure and organisation of 

lipid vesicles can be obtained from so called computational physics. For the 

case of lipid bilayers, recent Monte Carlo [7] and Molecular Dynamic [8] 

simulations have given promising results, but up to now no results for lipid 

vesicles have been generated with these techniques. This is due to 

computational problems. 

One way to overcome these problems is to make use of statistical methods 

based on a self-consistent field principle. The state of the art of 

statistical thermodynamics of association colloids is that the "effective" 

head group area (or, equivalently, the number of chains per surface area) are 

input parameters [9,10,11]. Since for the vesicles the inner and outer sheaths 

are expected to have a different packing, the exact head group areas at both 

sides of the asymmetric membrane are uncertain. There was to the authors 

knowledge, no statistical thermodynamical analysis for the entire lipid 

vesicles available. 

Recently, we introduced a theory for the lipid bilayer [12] , which is an 

extension of the theory of Scheutjens and Fleer, originally developed for the 

study of polymers in inhomogeneous systems [13,14]. In contrast with older 

statistical approaches, in this bilayer theory the condition of spatial 

restrictions of the molecules is relaxed. The head groups of the amphiphilic 

molecules are not confined to any pre-assigned position. A mean field argument 
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is used to project the 3D space on a concentration gradient in one dimension. 

This mean field approximation was previously used for a lamellar geometry. In 

this paper we will generalise the theory for various curvatures of the 

associates. See reference [15] for results of the theory applied to surfactant 

micelles. 

The curved lattice 

Because of the complexity of the system, statistical mechanics of a 

system which contains chain molecules is bound to demand with appoximations. 

In order to restrict the number of configurations, frequently one uses a 

lattice on which the conformations of the molecules are generated. However, 

even on a lattice the number of different conformations is very large. Often 

more assumptions must be introduced. A Markov approximation is commonly used, 

which assumes that the position of a segment depends only on that of the 

Figure 1. 

A schematic two dimensional representation of a curved lattice with 

spherical geometry. The amphiphatic molecules in various conformations 

form a spherical vesicle. 
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preceding segment along the chain, as if the consecutive segments would form 

the path of a random walker. One of the best known theories along this line is 

the Flory-Huggins theory for polymer solutions [16] which, in addition to the 

Markov approximation, introduces a mean field assumption to account for the 

interactions of segments with the other molecules. Although inhomogeneities in 

the system are neglected, thermodynamic properties of polymer solutions are 

qualitatively well described. 

The Scheutjens-Fleer theory is an extension of this theory. Here, in this 

approach the mean field approximation is restricted to only two dimensions, 

i.e., within parallel lattice layers, and a modified Markov process (a step-

weighted random walk) is applied to account for the inhomogeneities normal to 

these layers. In this way several interfacial studies were performed 

[13,14,15,17]. 

Originally, a lattice composed of M flat parallel layers of L lattice 

sites each was used. Since the mean field assumption forces the association 

structure to have the same symmetry as the lattice, only flat membranes could 

be considered [12,17]. To study variations in shape one needs to design 

lattices with other geometries [15]. Figure (1) gives a two dimensional 

representation of a spherical lattice in which amphiphilic molecules are 

arranged (arbitrarily drawn) in a vesicle-type association structure. The 

layers are numbered starting from the centre: z = 1,...,M, where z =1 is the 

centre of the vesicle and z = M is a layer in the bulk solution. We require 

that all lattice sites have equal volumes and that all lattice layers are 

equidistant. As a consequence, the number of lattice sites L(z) varies from 

layer to layer and is not necessarily an integer. We assume that the co­

ordination number Z, that is the number of lattice sites in direct contact 

with a given site, is independent of the curvature of the lattice layer. 

Most frequently, association colloids are either spherical, (finite) 

cylindrical, or lamellar. The volume V(z) (in number of lattice sites) of a 

lattice with any of these geometries up to layer z is given by: 

V(z) = 2 A z + i h z 2 + i , z 3 (z > 0 , h 2 > wA ) ( 1 ) 
s J s 

where 2 Ag z is the number of sites in planar and i h z the number of sites 

in cylindrical geometry. A spherical geometry results if both As and h are 

zero. The situation with Ag = 0 and h finite represents a rod of length h with 

a half sphere at each end, whereas other cases apply for disk-like structures. 
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2 
The restriction h > TTA is necessary, because the contour around the planar 

s 

area is formed by half a cylinder. The number of lattice sites in layer z is 

easily found: 

L(z) = V(z) - V(z-l) (2) 

The contact area S(z) between layers z and z+1 is obtained by differentiation 

of equation (1) with respect to z 

S ( z ) = 2 A + 2 T r h z + 4 n z 2 ( 3 ) 

We define X , (z) as the fraction of contacts that a given lattice site in 
z'-z 

layer z has with layer z'. Obviously, 

*_!<z) + y z ) + Vz) = l < 4 > 
The total number of possible steps from lattice sites in layer z to say, layer 

z+1, must be equal to those from layer z+1 to z. Mathematically: 

Z L(z) A (z) = Z L(z+1) A (z+1) (5) 

for every layer z. We expect A.(z) to be proportional to the contact area S(z) 

between layer z and z+1, and X_.(z) to be proportional to S(z-l), the surface 

area between the layers z and z-1. Therefore, 

A_1(z) = A_x S(z-1)/L(z) 

A0(z) = 1 - A_1(z) - A ^ z ) (6) 

Ax(z) = \ x S(z)/L(z) 

where A = A are the corresponding transition probabilities for a planar 

lattice in the bulk solution. 

The total volume of the system is V = E L(z) lattice sites. Each of 

these sites must contain either a segment of a lipid molecule or a solvent 

molecule. We will refer to apolar segments in the system as segments A, to 

polar segments as segments B, and to solvent molecules as segments W. Index x 

is used to denote any of these segment types. Thus, L(z) = 2 n (z) where 

n (z) is the number of segments x in layer z. We will not consider free 
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unoccupied lattice sites here. (If necessary, compressibility can be 

incorporated by introducing artificial monomers representing empty lattice 

sites.) 

The volume fraction $ (z) of segments x in layer z is obviously 
x 

n (z) 

When all segments along the polymer chain of type i are numbered, s = 

l,...,ri, we can specify the volume fraction ^.(z,s) of segment s of molecule 

i in layer z. 

First order Markov approximation 

We force the system to have a constant density, i.e., E.(f>.(z) = 1 for 

all layers z. If no energetic interactions are present, the molecules only 

experience a hard core potential u'(z). We normalise u'(z) such so that for 

large z (in the bulk solution) u'(z) = 0. In general, every segment x, has in 

addition to this, energetic interactions originating from the contacts with 

its neighbouring molecules and feels a total potential ux(z). In the mean 

field approximation, the exact positions of the neighbouring molecules in each 

layer is not known. Instead, we make use of volume fractions to calculate the 

composition-dependent potential: 

ux(z) = u'(z) + kT E Xxv(<*v(z)> - * p (8) 

The bulk solution is again taken as the reference state where u E 0. In 
x 

equation (8) the angular brackets indicate an averaging over three consecutive 

layers: 

<• (z)> = I A , (z) * (z') (9) 
X , z -z X 

Further, in equation (8) the well-known Flory-Huggins interaction parameters 

are used. These x a r e exchange parameters and therefore they are zero by 

definition when x = y. If we do not account for the chain connectivity, the 

weighting factor Gx(z) t 0 find a segment x in layer z is given by the 

Boltzmann factor containing the local potential experienced by segment x: 

G (z) = exp(-u (z)/kT) (10) 
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The volume f r ac t ion of a loose segment x in l ayer z would be given by: 

4>x(z) = <t>x G
x ( z > -

We now will take the chain connectivity into account. In a Markov 

approximation the chain generation can be expressed in a recurrence relation, 

one for each layer z. These relations can be expressed in a matrix-vector type 

operation. This method has been used by Scheutjens and Fleer to study polymers 

near flat interfaces. Modifications to allow for curvature effects of the 

lattice will be discussed below. More details of the chain generation method 

are discussed at length elsewhere [18]. 

For unbranched chains, a segment along the polymer chain has two bonds. 

Let us refer to them by subscript 1 and 2. From the point of view of a segment 

s', the chain part connected at bond 1 may contain a string of segments 

attached at, for example, segment number 1. Then the other bond (2) is 

connected with the tail that ends at segment number r. Let us define a 

weighting factor G(z,si) which accounts for the probability that the end of an 

s mer is in layer z and that only bond 1 of this s-mer is connected with a 

string of in this case (s-1), segments. The position of segment s' = (s-1), is 

confined to three layers, namely z' = z+1, z' = z, and z' = z-1. The weighting 

factor G(z,s^) is built up from the weighting factor G(z,s) of segment s and 

that of the rest of the chain, G(z',s{), averaged over all viable positions of 

s': 

G(z,Sl) = G(z.s) S X , (z) G(z\s') (11) 
1 z , z -z 1 

As equation (11) is recurrent, and G(z,l ) = G(z,l), only the x's and the 

free segment weighting factors (given in equation (10)) are needed to generate 

the end segment distribution functions G(z,s.) in layers z. 

The properties for the boundary layers z = M and z = 1 must be chosen so 

as to avoid influences of the boundary of the system on the segment density 

profiles. In most cases reflecting boundary conditions are used to minimise 

the unwanted influence. 

As compared with a naive way of calculating the segment density profiles, 

namely by generating each conformation one by one, the advantage of this 

recurrence relation is that it adds, and properly weights, many conformations 

together. After (r-1) step operations, all possible conformations are 

generated. The cost for adding together the individual conformations is that 

the segment density distribution can only be found after additional 
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calculation of the complementary chain end distribution functions G(z,s ). 

The values for G(z,s ) are found by starting the chain generation procedure 

from the other end of the chain, that is at segment r, using equation (11) and 

replacing bond 1 by bond 2. The segment density distributions are found by a 

composition formula which connects the two chain ends together: 

<(. (z,s) = ClGl(z,si) Gi(z,s2)/Gi(z)s) (12) 

The division by G.(z,s) is a correction for double counting of the 

overlapping segment s and C.̂  is a normalisation constant. The total volume 

fraction molecules of type i contribute in layer z is found after summation 

over all its segments: c(>.(z) = E c(>.(z,s). 

If the number of molecules nt is known (= g ^ ( z ) L(z)/r1), the 

normalisation constant in equation (12) is given by C = n /G. (r ), where 

G (r ) = E G (z,r ) L(z). For given bulk volume fraction A ^ the normalisation 
i 1 z l 1 i 

constant is C. = c)>./r,. These two cases represent a canonical (closed) and 

grand canonical (open) system, respectively. 

Rotational isomeric state scheme in planar geometry 

The chain statistics discussed above exploits a first order Markov-type 

approximation. Direct backfolding of a chain to a previously occupied lattice 

site is not forbidden. For long polymer molecules one can consider each set to 

4-8 bonds as one statistical chain element that can be treated as an ideally 

flexible, i.e., independent segment. For small lipid molecules, we would lose 

too much detail if the number of segments would be reduced by, say a factor of 

6. Therefore we prefer to improve on the conformational statistics. Details of 

the RIS scheme for planar symmetry have already been described elsewhere [18]. 

Here we summarise the significant parts and in the next section we will give 

details of the RIS scheme in arbitrary lattice geometries. 

Our goal is to keep track of three successive bond directions of the 

molecules in a tetrahedral (diamond) lattice. In this lattice, four bond 

orientations denoted by e", f", g", and h", are present per site. We 

distinguish two opposite directions in each orientation. For example, e and e' 

are the directions in orientation e". Bonds in orientations e" and h" connect 

segments in different layers. The two other orientations, i.e., f" and g" are 

parallel to the lattice layers. Each site on the tetrahedal lattice has four 

neighbours. There are two types of sites. For a given site of type I the four 
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directions are e, f, g, and h. The neighbouring sites are of type II and have 

bond directions e' , f ' , g' and h' . The consecutive segments in a chain 

molecule are alternately on sites of type I and II. The rotational isomeric 

state scheme is a three choice propagation scheme. This means that a step in, 

e.g., orientation e" can only be followed by a step in one of the three other 

orientations, in his case f", g", or h". We define the chain end distribution 

function G(z,s. ) as the weighting factor for conformations with the end of a 

chain of s segments in layer z, while the string of (s-1) segments is 

connected to segment s at bond 1 in direction a and the next segment (s+1) 

will be attached to bond 2 in direction g. Directions a and g are two out of 

e, f, g, and h, or two out of e', f', g', and h', depending on the type of 

site where the orientation of a segment s is on. The spatial orientation of a 

segment is fully determined by specifying the directions of two of its bonds. 

We assume that there is no preferent orientation for a segment when it is not 
«fi 

connected in a chain. Therefore, we can set G(z,s ) = G(z,s) for 

all a * B and G(z,s ) = 0 in other cases. For each of the 24 possible aß 

segment orientations the recurrence relation is given by: 

G(z,sf) = G(z,saf5) E Aß""a""Y"G(z\s^'a') (13) 

Y* 

In this case bond 2 of segment s' (in direction a') is connected to bond 1 of 

segment s (in direction a). Layer z' is either z-1, z, z+1, depending on the 

direction a'• The summation over y' will only have 3 nonzero contributions, 

for which y' # a'. Each step is weighted by either trans or gauche 

probabilities: 

xa"-e"-Y"= j XC if a" = y" ( 1 4 ) 

X otherwise 

If US is the energy difference between a gauche and a trans configuration (due 

to steric hindrance) then X8 = 1/(2 + exp(U8/kT)) and Xt = 1 - 2 X8. The 

equivalent equation (13) for the case that a string of segments is attached to 

bond number 2 is: 

G(z,sf) = G(z,sae) X X a "- e " _ Y "G(z', S ' ß V ) 

Y' 

The volume fraction of a segment in a given orientation is again given by a 

composition formula: 
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<t,(z>S
ati) = C Aa t iG(z,sp G ( z , e p / G(z,safi) (15) 

In equation (15) the volume fractions for each segment orientation s p are 

weighted according to the a priori probability X = 1/24 for each orientation. 

The volume fraction of segment s in layer z is found by summation over all its 

orientations: 

«(.(z.s) = E E *(z,sa0) (16) 

a e 

Rotational isomeric state scheme and curvature 

A molecule with chain length r in an all-trans configuration is not 

likely to have all its segments in the same layer z of a spherical lattice 

when r > L(z)/2. Following an all-trans molecule in a direction towards the 

centre of the lattice, starting from one end, we would probably pass the 

centre at either side and move away from it. Although we have continually 

moved in essentially the same direction, we have changed our orientation with 

respect to the centre by almost 180 degrees. 

In order to keep track of the bond orientations in a spherical lattice, 

it is convenient to define bond directions in spherical co-ordinates. Hence 

for each site of type I we will call e directions those most closely pointing 

towards the centre and h directions those most closely pointing outwards. The 

remaining directions, f and g, are the most tangential ones. For sites of type 

II these directions are h', e', g', and f', respectively. Far from the centre, 

sites of type I and type II alternate and the lattice layers are essentially 

planar. A segment on a site of type I has a neighbour on a site of type II in 

the layer z in direction f and is seen by that neighbour in direction f ' . 

However, there are anomalies because of the curvature. Its neighbour in the 

(planar) direction f could well be in layer z+1, i.e., in spherical co­

ordinates this neighbour is in direction h. Apparently sites are occasionally 

rotated with respect to each other. This occurs at regular intervals, but we 

will only account for average probabilities of such transitions. Let us 

examine the neighbours of a site of type I in layer z more closely. As there 

are four bond directions per site and ^ L(z) sites of type I in layer z, we 

have \ L(z) bonds emanating in direction e (toward the centre). However, there 

are only ^ L(z-l) sites of type II in layer z-1, so that only ^ L(z-l) bonds 

in direction e' are available to connect with. We know, from the first order 
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Markov statistics above, that we can expect a total of S(z-l) (» L(z-^)) 

possible bonds between layers z and z-1, hence there are \ S(z-l) bonds with 

sites of type I in layer z. We must conclude that ^ (S(z-l) - L(z-l)) of them 

are bonds from layer z-1 into directions f' and g' (same number of each), 

pointing to layer z because of the curvature. The remaining \ (L(z-l) -

S(z-l)) possible bonds in direction e must be connected with bonds of segments 

in the same layer z, in directions f ' and g' . A similar reasoning applies to 

the bonds between layer z and z+1 and for sites of type II. Normalising by 

\ L(z) gives the average distribution of connections per site in layer z. 

Equation (13) can now be written as: 

G(z,s°ß) = G(z,saß) 1 Af5""a""Y"G'(z,,sjYV) ( 1 3 a ) 

Y' 

where G' (z' ,s.'aß) is composed of contributions from segments s' in layer z', 

connected to bond 1 of segment s in direction a- Bond 2 of segment s' is 

supposed to be in direction a', but may differ in spherical co-ordinates. The 

analysis above leads to the following relations 

G,< z-i' s i ' e '> - w - ^ - i > < e ' > + H I - ^ ){G(Z)S?'f') + G<z>sr
g'} 

, S(z-l) - L(z-l) , ß ' f Y'g' , 
+ * ÜÏ) 1C(Z 1 | S1 ) + G(z l , S l } ( 1 7 a ) 

P. / ° ' f \ Ji , f S W - S t z - l ) ! , . . a'f', . , ,. S(z-l), nf Y ' e ' G'(z,Sl ) = {1 - h ( j ^ y —J} G(z,Sl ) + h (1 - L ( z ) J G(z,sx ) 

+ h ( f ^ y - 1) G^+l.s}'6 ' ) (17b) 

G . ( . t . -
, « ,

) - {1 - * ( S ( 2 )
L - J ( Z - 1 ) ) } G ( Z , s ^ ' ) + % ( 1 - l g g > ) G(z,sf , e ') 

+ M ! g} - l )G ( z + l > s ? ' e ,
) ( 1 7 c ) 

G ,(z+l,sJ , ,h ') - G(z+l,sJ,,h') (17d) 

Obviously, in planar geometry all corrections are zero and equations (13) and 

(13a) are identical. Another limiting case is the homogeneous solution where 

all equations G and G' are equal. 

Directions a' in equation (17) refer to either appropriate directions e', 

f', g', and h'. Directions ß' and y' are related to a' according to table (1), 

because fixed segment orientations are rotated by 90 degrees. 
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Table 1. Relation between a', ß', and y' i° equation (17). 

a' 

e ' 

f ' 

g' 

h' 

B 

f 

h 

e 

g 

Y' 

g' 

e ' 

h ' 

f' 

It may for some sites be difficult to recognise the bond which is pointing 

most outwards (direction e') that which is pointing most inwards (direction 

h ' ) , but there will be no candidates for both directions. Consequently, there 

are no transitions between e' and h' directions. Also, a segment in, e.g. , 

orientation e'f' is easily distinguished from a segment in orientation f'e', 

which is rotated over 180 degrees. Excluding these obviously impossible 

transitions table (1) can be constructed. 

Equation (17) and table (1) apply to sites of type II, but similar 

results are obtained for sites of type I, by exchanging e', f ' , g', and h' 

with h, g, f, and e, respectively. 

In the first layer of the lattice (z = 1) there are about 4 sites 

(L(l) = 4ir/3), two of type I and two of type II. They form two pairs, 

connecting bonds in (planar) directions e - e' and h - h', respectively. This 

requirement is met by placing a reflecting boundary at z = 0, i.e., set L(0) = 

S(0) = L(l) and rotate orientations a3 over 180 degrees (replace e, f, g, h, 

e', f', g', and h' by h, g, f, e, h', g', f', and e', respectively). 

Iteration 

For a given set of segment potential profiles {u (z)} the segment 

density distributions can be evaluated for any segment type x. These 

distribution functions are used to check equation (8) and the boundary 

constraint Z <\> (z) = 1. The potential profiles are changed until these 

conditions are met. Mathematically this problem can only be solved 

iteratively. Details on the computational aspects of the problem have been 

published before [12]. 

Excess free energy 

For association colloids, the excess free energy of the aggregates with 

respect to the free energy in the bulk solution is of great importance. An 

elegant study of the equilibrium conditions of micellar solutions, by Hall and 
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Pethica [19], shows that the small system thermodynamics developed by Hill 

[20] is very useful in this respect. In the present calculations the grand 

canonical partition function (E) for one association colloid with fixed 

centre of mass is available (see appendix A ) . From this partition function the 

excess free energy A° of this colloid can be derived in a similar way as done 

before [13]: 

<)>w(z) 
A°/kT = -In H = -E n? + I L(z) In -Ar— + 

1 z *W (18) 

h E I E(xxW+ Xy W" X ™ ) L(z) [+x(z) <* (z)> - <£ £] 
z x y 

where: 

ni = ni - V i / r i (19) 

is the excess number of molecules with respect to the bulk solution, and Vg is 

the small system volume, i.e., the volume available per aggregate. For big 

vesicles the excess free energy as given in equation (18) is the main 

contribution to the "subdivision potential" as defined by Hill [20]. Small 

entropical contributions (e.g. due to the translational entropy of the 

vesicle) can in first approximation be neglected. 

Results 

In this section we will describe the association of lecithin-like 

molecules (type i = 2) in vesicles in aqueous solution. The water molecules 

(type i = 1) are modelled as amorphous monomers. This is not a very good model 

for water but, as we will see, good first order results are obtained. The 

lecithin molecules are composed of a glycerol backbone with two apolar tails 

of p segments each and a head group of q segments: 

Ap-B-A 

A -B-A (20) 

A-Bq 

We have chosen a somewhat schematic architecture of the molecules. It is 

assumed that all head group segments are of the same polarity, and we ignore 

the difference in volume between a CH3 and CH2 groups. The overall shape of 
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the molecule can be modified by changing the tail length p and head group size 

q. Extensions of the theory to incorporate branched molecules have been 

published elsewhere [18]. Surfactant molecules are modelled as linear 

amphiphilic molecules AJ,B '. In most elaborations we will choose the apolar 

(A') and polar (B') segments to be identical to the apolar (A) and polar (B) 

segments of the lecithin molecules and drop the prime. Usually, the 

interaction between the apolar tail segments and the water molecules is chosen 

as XAU = 1-6. The interaction between head groups and tail segments is set to 

*AB mimicking rather strong repulsion between these types of segments. The 

interaction between head group segments and water is chosen slightly attrac­

tive: x R U
 = "0.3. We do not include electrostatic interactions. If necessary, 

the interaction between the water molecules and the head groups can be varied 

to simulate changes in ionic strength. A more rigorous treatment of electro­

static contributions is possible, but only at the cost of a large number of 

new parameters. The chain stiffness is a property of the chemical nature of 

the chains and refers to the difference in intramolecular energy between the 

rotational isomers of the chain sections. We selected an energetic difference 

between a gauche and a trans orientation of 1 kT at T = 275, which corresponds 

to the 2100 kJ/mole at room temperature often quoted in literature [21]. 

Lattice artifacts 

The calculated thickness and chemical potential of the lipid associates 

vary slightly when the membrane is "moved" gradually over the lattice. 

Consequently, the excess free energy also changes upon this process. For very 

big vesicles, A variations can become very large because of L(z) in equation 

(18). The variation is periodical with a "wavelength" of one lattice layer. 

This problem is solved in most cases by "growing" the vesicle stepwise, by 

adding more lipids to the system, until the radius of the vesicle is increased 

by one layer. The average of the A values is essentially free from lattice 

artefacts. 

All calculations are performed canonically. The mathematical routes that 

we have followed to generate vesicles during the iteration procedure is not 

necessarily identical to the mechanisms by which they evolve in practice. 

Mathematically two approaches are available. The first one is to start with a 

spherical micelle (h = Ag = o in equation (1)) and increase the amount of 

lipids to force the micelle to grow until, after some rearrangements of the 

lipid molecules, water is found in the centre of the micelle and a closed 
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lipid bilayer is formed. This method is useful to study small vesicles. A 

second method is to start with a flat membrane and curve it until a vesicle 

with given radius is formed. Changing the curvature of the lattice is 

mathematically realised by modifying L(z) and A ,_ (z). This last method is 

used to generate big vesicles, composed of over 50,000 aggregated molecules. 

We start with discussing a two-component system composed of lecithin 

molecules in water. Both uni- and bilamellar vesicles will be analysed. In the 

subsequent part we will discuss some aspects of multicomponent systems. We 

will return to the two-component system in a final section where the 

deformation of the vesicles is studied. 

Uni- and Bilamellar Vesicles 

Figure (2a) shows the excess free energy of a spherical association 

colloid as a function of n°, the number of molecules aggregated, and figure 

(2b) gives the corresponding equilibrium volume fraction of lipids in 

solution, again as a function of n?. For very small aggregation numbers, a 

l og <^ 

— i — 
500 

® 

— I — 
1000 2000 

Figure 2. 

Free energy of curvature of a vesicle (a) and corresponding 

equilibrium volume fraction of lipids in the bulk solution (b) as a 

function of the number of lecithin molecules aggregated in the 

vesicle. The lecithin molecules have two apolar tails, each 16 

segments long and three head group segments. The energy parameters are 

XAW = 1 - 6 , XBW = ~ 0 , 3 , XAB = 1 - 5 w h e r e A = t a i l segment, B = head 
group segment, W = water molecule. The stiffness parameter \J& = 

275/300 kT (T = 300 K). 



globular micelle is found, then some intermediate structures are observed 

before a spherical unilamellar vesicle is found. The intermediate structures 

causes the dip in figure (2a). Above the point where the excess free energy 

per vesicle levels off and the equilibrium volume fraction stabilises, bulk 

solution is found in the heart of the vesicle. As we know from the 

thermodynamic analysis, a free flat membrane has a vanishing excess free 

energy per unit surface area when boundary effects are neglected. Therefore, 

the excess free energy of the aggregate in figure (2a) can be interpreted as a 

free energy of curvature. Helfrich [6] predicted that this free energy is 

independent of the radius of the vesicle. His estimation for this quantity is 

about 300 kT per aggregate, which is of the same order of magnitude as our 

result. 

As can be seen from figure (2b), the equilibrium concentration of lipids 

in solution stabilises at a lower value as found for the globular micelle. 

This indicates that micelles formed from those molecules are not very stable. 

Such micelles develop spontaneously into lamellar membranes, or vesicles. Note 

that the total number of aggregates decreases when they grow, since the total 

amount of lipids in the system is fixed. 

We have not accounted for the translational freedom of the vesicles, 

which is dependent on the average lipid concentration (or equivalently the 

vesicle concentration) of the system. This effect would change the excess free 

energy by only a few kT, and can be neglected in most cases. 
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Figure 3. 

Segment density profile of a cross section through a flat membrane (a) 

and curved vesicle (b) composed of the same lecithin molecules as in 

figure (2). In the vesicle 2220 molecules are aggregated. 
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Figure (3a) gives the overall segment density distribution across a flat 

membrane composed of the same molecules as in figure (2). This situation 

corresponds to an infinitely big vesicle. (The lattice layers in figure (3a) 

are numbered arbitrarily.) Figure (3b) gives the corresponding profiles for a 

globular vesicle composed of 2220 molecules. Here, layer 1 is towards the 

centre of the vesicle. The membrane thicknesses of the curved and non-curved 

membranes are the same, but the differences in segment density profiles are 

obvious. Apparently, the free energy of curvature is stored into the segment 

density profiles. With respect to the flat membrane, the head group density is 

higher on the inside of the vesicle and slightly lower on the outside. The 

tail segment distributions are also affected by curvature as can be seen from 

the slight increase of the tail density in the outer half of the bilayer with 

respect to the inner half. These findings are in perfect agreement with NMR 

data for small unilamellar vesicles [22-26]. 

Since the excess free energy per vesicles is independent of the radius, 

the curvature energies can be tabulated. 

Table 2. The effect of the energy parameters on the free energy of curvature 

and n„/L, (a measure for the membrane thickness), f 

vesicle composed of lecithin molecules (p = 16, q = 3). 

and n°/L, (a measure for the membrane thickness), for a small unilamellar 

XAW 
1.6 

1.3 

1.6 

1.6 

1.6 

XBW 
- 0 . 3 

- 0 . 3 

0 

- 0 . 3 

- 0 . 3 

XAB 
1.5 

1.5 

1.5 

1.2 

1.5 

U8(kT) 

275/300 

275/300 

275/300 

275/300 

300/300 

n°/L 

11.01 

8.69 

11.55 

11.40 

11.16 

Aa(kT) 

207 

101 

230 

219 

215 

Table (2) shows that the free energy of curvature increases with increasing 

tail water or head-group water repulsion and with decreasing head-group tail 

repulsion. Also the stiffness of the molecules increases the free energy of 

curvature. As we will see below, the free energy of curvature increases with 

increasing tail length as well. 

In table (2) na/L, the excess number of molecules per unit area (lattice 

site) which are aggregated in the corresponding flat lattice, i.e., for 

infinitely big vesicles, is also given. There is a correlation between the 

free energy of curvature and n
a / L . Clearly, the energy needed to bend a 
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Figure 4. 

A vesicle composed of two membranes. The lecithin molecules are 

identical to the ones used in figure (2). This double membrane is in 

equilibrium with an equilibrium lipid volume fraction of 

<(> = 5.72 10 in the bulk. There are 7200 molecules aggregated. 

membrane is highest for the thickest membrane. This is not very surprising 

since deviations in positions of the lipids upon curving are more significant 

in thick membranes than in thin ones. 

Figure (4) shows density profiles through a cross section of a bilamellar 

vesicle composed of the same molecules as in figure (2). In this complex 

structure 7200 molecules are aggregated. Obviously, the inner membrane is more 

affected by the curvature than the outer one. The excess free energy of this 

aggregate is 404 kT, which is twice the amount of the corresponding 

unilamellar counterpart. By the given choice of parameters, the membranes do 

not attract each other. The equilibrium concentration of lipids in the bulk, 

and consequently also the chemical potential of the lipids in the bilamellar 

vesicles, is close to that of the unilamellar vesicle. As in the unilamellar 

case, the free energy of curvature of this bilamellar vesicle independent of 

the radius of the vesicle. This indicates that the two membranes forming the 

vesicle can be considered as virtually independent. Since the two membranes 

which form the bilamellar vesicle are forced to be between the two boundary 

layers z = 1 and z = 50, the observed membrane separation is not likely the 

equilibrium one. 

The equilibrium distance between two flat membranes is found by 

minimising the chemical potential as a function of this distance, because at 

all times the excess free energy of the lipid membranes is essentially zero, 
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Figure 5. 

Bilamellar planar membrane (a) and vesicle (b) composed of the same 

lecithin as in figure (2). The membranes attract each other. This is 

realised by increasing xR U from -0.3 to 0 and decreasing % from 1.5 

to 1.2. 

as argued above. When approaching each other, the membranes are allowed to 

change their composition (thickness) in order to relax any induced surface 

free energy, so that equilibrium is continually ensured. 

Figure (5a) shows two strongly attracting flat membranes. Attraction 

between the membranes could be realised by lowering the interaction between 

tail and head group segments to x 
AB 

1.2 and zeroing the repulsion between 

head-groups: v = 0 . Because of this attraction the two membranes become 
6 *BW 

asymmetrical. The number of lipids aggregated per membrane per unit surface 

area is reduced from n^/L = 12.2 for an isolated membrane to n°/L = 11.6 for 

the mutually adsorbed bilayers. Figure (5b) shows the corresponding bilamellar 

vesicle. As is shown in figures (5a) and (5b) the head group area between the 

two tail regions overlap considerably. As compared to the segment density 

profiles in figure (5a), those in figure (5b) show some distortion originating 

from the strong curvature. The bilamellar vesicle has a total free energy of 

curvature of 440 kT, which is significantly smaller than twice the free energy 

of curvature for the corresponding unilamellar vesicle (250 kT). This is 

related to the fact that the mutually interacting bilayers are slightly 

thinner than the isolated ones. Both for the unilamellar and bilamellar 

vesicle the free energy of curvature is independent of its radius. In this 

case, the chemical potential of the lipids in the unilamellar membrane (not 

shown) is slightly higher than that in the bilamellar membrane. The 
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equilibrlum volume fractions are 1.84 10~° and 1.76 10" , respectively. 

In conclusion, for attracting membranes multilamellar vesicles are 

energetically more favourable then unilamellar ones. Not only multilamellar 

vesicles will be formed, but they will attract each other mutually: a phase 

separation is observed. 

In the case of repulsive bilayers we showed that uni- and bilamellar, and 

undoubedly also multilamellar, lecithin vesicles are thermodynamically 

unstable. If two of such identical vesicles fuse, half of their curvature 

energy is gained. Volume restrictions prevent eventually the growth of the 

vesicles except if they form more multilayers. 

Multicomponent Vesicles 

Experimentally vesicles composed of one type of lipid are not very 

interesting. Frequently multicomponent systems are found. In the following we 

will discuss the physical behaviour of vesicles composed of two types of 

amphiphiles. First we study the addition of small chain surfactants, leading 

to degradation of the vesicle system at high surfactant concentration. 

Secondly we consider vesicles composed of two kinds of lipid molecules. 

0.4 0.6 0.8 

fraction of surfactant 

Figure 6. 

Free energy of curvature of a unilamellar vesicle composed of a 

mixture of lecithin and surfactant molecules as a function of the 

relative (volume) fraction of surfactant in the system. The lecithin 

molecules are identical to the ones considered in figure (2). The 

surfactant is of an A Bj type, for which the A and the B segments are 

energetically identical to the A and B segments in the lecithin 

molecules. Curves for p = 8, 12, and 16 are plotted. 
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Additlon of surfactants 

To isolate proteins from (bio)membranes, the latter must be broken up in 

order to free the protein. Surfactants are frequently used for this purpose. 

The physics of this process is analysed below. 

In the previous section, we have shown that a vesicle has a (low) free 

energy of curvature. Surfactant molecules are expected to accommodate well in 

a vesicle. If this is the case, the free energy of curvature must be affected. 

Figure (6) shows the effect on the free energy of curvature as a function of 

the fraction of surfactants in a unilamellar vesicle, for a series of 

surfactants (Agß3 up to A16B3). Fraction zero represents a vesicle composed of 

only lipids, whereas fraction 1 represents a surfactant vesicle. The lecithin 

molecules are the same as in figure (2). As can be seen from figure (6), 

elongation of the acyl tail length with one apolar segment, gives rise to an 

increment of the free energy of curvature of the surfactant vesicles of about 

5 kT. Further, figure (6) shows that the free energy of curvature can be 

rather small (~ 50 kT) at high surfactant lipid ratio. There are at least two 

reasons to expect that in this regime a real vesicle membrane will break up 

into parts. 

- Since the excess free energy is very low, it does not cost much energy to 

increase the total surface area. Because subdivision will increase the entropy 

of the system, free energy is gained. (In the calculation this subdivision was 

disregarded.) 

- At these high surfactant concentrations the critical micelle concentration 

of the surfactants is passed. For example, for the ratio lecithin:surfactant 

^12^3 of 2:8 the equilibrium bulk volume fraction of the surfactant is 

3.75 10~3, while the CMC is 3.45 10~3. Thus, micelles composed of surfactants 

accommodating a few lipids are formed. Although interesting by itself we will 

not deal with the structure of these micelles here. Increasing the fraction of 

surfactants will eventually transform the whole system into a micellar one. 

Figure (7) gives the segment density profiles of a cross section through 

a vesicle composed of lecithin and surfactant A]^B3 molecules (volume fraction 

ratio 6:4). As can be seen in figure (7), these surfactants prefer the outer 

side of the vesicle. The preference is not very large. The tail profile is 

particularly affected and has a clear maximum at the outer half of the 

vesicle. The head group densities of the surfactant and the lipid molecules 

are about equal on the inside, but on the outside more surfactant head groups 

are observed than lipid head groups. 
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Figure 7. 

Segment density profiles through a cross section of a unilamellar 

vesicle composed of a mixture of lecithin molecules as in figure (2) 

and A12B3 molecule (dashed curves). The relative (volume) fraction of 

surfactants in the mixture is 0.4. Parameters as in figure (2). 

Multicomponent lecithin vesicles 

In multicomponent vesicles the various constituents can distribute 

themselves differently over inner and outer layer of the curved membrane. In 

figure (8), the excess free energy of a vesicle composed of two slightly 

different lipid molecules is shown as a function of their relative proportion 

in the mixture. The lipids in the mixture differ only with respect to their 

tail lengths. Molecules as in figure (2) with p = 16 are mixed with molecules 

with p' = 12, 14, 16, and 18. It appears that the excess free energy is 

essentially a linear function of the composition in the mixture or, in this 

case, the average tail length. This linear behaviour is found when the 

fractionation of lipids between the inner and outer layer is weak, i.e., when 

the two lipids mix readily. Each segment that the tails are longer increases 

the free energy of curvature by about 12 kT per vesicle. As lecithins have two 

tails, this increment is on a molecular basis about the same as for a simple 

surfactant, see figure (6). 

When the head group size increases, the free energy of curvature 

decreases. This is shown in Figure (9), where the excess free energy of a 

vesicle is plotted as a function of the fraction of lipids that differ only in 

head group size, q' = 6 compared to q = 3 (uppermost curve). A linear 

behaviour is again apparent, but this can no longer be expected when the 
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Figure 8. 

0.4 0 6 0.8 

fraction of modified lipids 

Free energy of curvature of a unilamellar vesicle composed of two 

types of lecithin molecules as a function of the (volume) fraction of 

lipid molecules for which the tail lengths are modified. One lipid 

molecule is as in figure (2), the modified tail length p' is 

indicated. Parameters as in figure (2). 

difference between the lipids in the mixture becomes much larger. To verify 

this, we have increased the attraction between water and head groups of the 

bigger molecule, by changing XRITJ from -0.3 to -0.5. As long as there is no 

repulsion between the two types of molecules, there is again an almost linear 

dependence of the free energy of curvature on the fraction of modified lipid 

in the system (see second curve from top). In the two lower curves of figure 

(9) additional repulsive interactions between the head-groups (third curve 

from top) or between the tails (bottom curve) are introduced. Although the 

repulsion between the head groups (y , = 1) was chosen much stronger than 
DO 

between the different tails (v . = 0.2), the latter interaction is much more 
AA 

effective. There are two reasons for this. Firstly, the head group density is 

much lower than the tail density, so that head groups have less unfavourable 

contacts than the tail segments in the densely packed inner part of the 

membrane. Secondly, per molecule the number of tail segments is much larger 

than the number of head group segments, so that a more co-operative behaviour 

can be expected for the tails. 

As can be seen in figure (9), the free energy of curvature goes through a 

minimum for xAAi = 0 . 2 at a modified lipid fraction of about 0.68. As 

expected, studying the segment density profiles at this minimum, given in 
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Figure 9. 

Free energy of curvature of a unilamellar vesicle composed of two 

types of lecithin molecules (one of them is as in figure (2)) as a 

function of the (volume) fraction of the lipid molecules for which the 

head group size is increases from q' = 3 to q' = 6. The interaction 

parameters are the same as in figure (2) (upper curve). The three 

lower curves are for molecules which after modification differ also in 

interaction parameters: Xniu = "0-5 in stead of -0.3. In addition, for 

one curve a repulsive force between polar segments, x , = 1> a nd f°r 

another curve a repulsive force between apolar segments, x.,i = 0*2 is 

introduced. The primes indicate segments of modified molecules. 

figure (10), reveals that the two lipid species fractionate themselves between 

the outer and inner layer. The bigger head groups prefer the outer layer and 

the corresponding molecules are necessarily present In higher numbers. 

Figure (11) shows the free energy of curvature as a function of the 

radius of the vesicle in figure (10) at a fixed composition of the mixture. 

Here, the radius of the vesicle is defined as the number of layers from the 

centre of the vesicle up to the centre of the bilayer membrane. The optimal 

vesicle size for the given mixture composition is found at the minimum in 

figure (11). The deeper this minimum the more narrow the vesicle size 

distribution. In example the optimal vesicle radius is about 25 lattice units. 

Because the minimum in figure (11) is not very deep, the size distribution is 

probably not very sharp. The chemical potentials of the two lipids are also 

functions of the vesicle radius. For the smaller lipid, which is situated on 

the inside of the vesicle, the chemical potential passes through a weak 
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Figure 10. 

Segment density profiles through a cross section of the vesicles given 

at the minimum in figure (9) (xB.w
 = -0.5, X A A . " 0-2, and X ß B , = 0). 

The dashed curves are the profiles for the fraction (0.68) of modified 

lipids. 
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Figure 11. 

Free energy of curvature of the vesicle in figure (10) as a function 

of its radius. 

minimum near the optimal vesicle radius. In this region the chemical potential 

of the bigger lipid goes through a weak maximum. These two trends compensate 

each other. 

Vesicle Deformation 

In this part we will discuss the free energy expenditure for deforming a 

globular vesicle into a rod-like vesicle. To this end we could use a finite h 
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and A = O in equation (1). The difference in excess free energy of this 

structure with respect to the perfectly globular one could then be identified 

as to the deformation energy. However, in this approach the mean field 

approximation would mix the sphere and cylinder geometry. Since the two cups 

of a hollow rod are essentially half spheres with known curvature energy, we 

only have to add the curvature energy of a part of an infinitely long hollow 

cylinder with the same radius. In this case equation (1) reduces to 
2 

V(z) = w h z . This last method is also preferred, because it gives more 

information and more accurate data. Strictly, the combination of a sphere with 

a cylinder can be done done when the chemical potentials of the lipids of both 

structures are identical. In this approach this is not necessarily the case. 

However, the deviations are small. Figure (12) gives the curvature energy per 

unit length (the thickness of a lattice layer) of the cylinder as a function 

of the number of lecithin molecules aggregated per unit length, which is a 

measure of the radius of the cylinder. Similar to the curve found for globular 

vesicles in figure (2), some irregularities at very small cylinder radius are 

found. For these intermediate structures between filled cylinders and hollow 

cylinders are responsible. As can be seen in figure (12), the free energy of 

curvature of a hollow cylinder decreases with increasing radius. Thus, the 

amount of free energy needed for curving a flat membrane into a cylinder 

depends on the radius of the cylinder in contrast to the constancy of the free 
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Figure 12. 

Dependence of the free energy of curvature per unit length of a 

cylinder composed of lecithin molecules as in figure (2) on the number 

of lecithin molecules aggregated per unit length. 



-77-

energy of curvature of a sphere. 

Applying this to the deformation of a globular vesicle into a rod, we 

conclude that the excess free energy increases with deformation. When a 

globular vesicle is deformed into a very long rod, the energy required is not 

only high because of the small radius of curvature, but also because the 

energy is proportional to the length of the rod. 

Discussion 

Although the present theory underestimates the membrane thickness and 

overestimates the amount of water in the membranes, some general observations 

of the segment density profiles do give interesting insights. Our theory shows 

that the entropy of the tails in the aggregates is quite high. All segments 

have many options regarding their spread in positions, i.e., they are not 

confined to one layer, but have a distribution over several layers. The 

segments near the tail ends have the highest entropy, while the segments close 

to the branch point are more confined. Physically, the interfaces between the 

solvent and the apolar phase extend over several layers. There are many tail-

water contacts, notwithstanding the repulsive energy between them. The overlap 

between the head group profile and the tail profile is so strong that the head 

groups are in rather apolar medium. This supports the observation that 

substantial repulsion between tails and head groups, as expressed in the 

positive X A R parameter, is important for the membrane stability. 

Our results for single component unilamellar and multilamellar vesicles 

show that the vesicles are thermodynamically unstable because they lose free 

energy when fusing. Vesicles can grow either by fusion or by diffusion of 

single lipids from other vesicles (via the solution). By our theory we do not 

get mechanistic information on how the vesicles grow. Eventually, when 

vesicles fill up the whole solution, the growth of the vesicles is expected to 

stop. 

Most vesicles analysed in this paper have a free energy of curvature of 

the order of 200 kT. Small artefacts inherent in lattice calculations are 

responsible for uncertainties in this parameter of about 5 to 10 kT. Other 

vesicles, composed of surfactants or mixtures appear to have a very low free 

energy of curvature. In these systems, the energy cost for enlarging the 

surface area is very small, and therefore the lattice artefacts will manifest 

themselves more strongly. Obviously, when the excess free energy per surface 

area is very small, large curvature fluctuations may occur. 
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In many biological systems, the membrane surface area is essentially 

constant. The vesicle and liposome sizes are controlled. In nature, the 

various lipids are not likely to repel each other as effectively as we assumed 

in figure (10). However, like the lipids in this figure, many proteins adsorb 

preferentially on one side of the vesicle. In the presence of a low molecular 

weight additive, the free energy of curvature might be very low at a certain 

curvature. Thus, the complex multicomponent vesicles found in nature may be 

close to real thermodynamical equilibrium. 

Conclusions 

For the first time a detailed a priori statistical thermodynamical 

analysis of the lipid vesicle system is possible. We showed that non-

interacting unilamellar as well as multilamellar vesicles are 

thermodynamically unstable. Both for uni- and multilamellar vesicles the free 

energy of curvature per associate is basically independent of the radius of 

the vesicle. A correlation between the thickness of the membrane and the free 

energy of curvature is observed. Although the segment density profiles predict 

more solvent in the thin membranes than is usually observed for water, several 

details of the organisation of the lipid molecules in the vesicles correspond 

well with experimental data. As expected, in multicomponent vesicles the 

various lipids distribute differently between the inner and outer layer of a 

curved membrane. This fractionation is never complete. Repulsion between the 

different amphipolar molecules promotes the partition. If the partitioning is 

strong the vesicles may show a narrow size distribution. Addition of small 

surfactants is found to destabilise the vesicles at a high surfactant-lipid 

ratio. From comparison between curvature energy of spheres and cylinders it 

can be concluded that the excess free energy of vesicles increases very with 

the degree of deformation. 

Appendix A. Partition function 

The grand canonical partition function H of a system of n^ molecules of 

various type i of which n| in conformation c in equilibrium with a bulk 

solution with chemical potential u., can be expressed by: 

* a exp(-U(int)/kT) expfz.n u./kT) 

3(V,T,{u})-3 Z -J s i-Hf <A1) 
{n^} a exp(-U (int)/kT) e x p ^ n ^ / k T ) 

The * indicates the pure component reference state. The summation is over all 
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possible sets {iu } in volume V at temperature T. In a first order Markov 

approximation a conformation is defined by the layer numbers in which each of 

the successive chain elements finds itself. U(int) is the interaction energy 

between all molecules in the system, U (int) the same in the reference system. 

The quantity U(int) - U (int) contains all possible segment-segment and 

segment-solvent nearest neighbour contact energies in the volume V in excess 

to those in the reference state. For this excess energy we have 

(U(int) - U*(int))/kT = h I Z T Z nx±(z) Xxy(<<t>y(z)> " ^ ) (A2) 
i z x y y y £ 

where the division by 2 corrects for double countings. In equation (A3) r J 

indicates the number of segments y of molecule i. Thus, the quotient r /r 

gives the fraction of y segments in the chain i and hence in the reference 

state. nx^(z) is the number of segments x of molecule type i in layer z. 

The total degeneracy n in the reference state is composed of the 
* 

individual degeneracies Û. of the reference systems of various molecules. 

These degeneracies have been derived by Flory [16]: 

r ( r i n i ) ! . Z ^ i " 1 ) 1 1 ! , ,.,, 

a = n o = n [ , (-irï-) ] (A3) 
i i i" i i 

The degeneracy of the system can be derived following the same line of 

arguments as in reference [13]. Now some extra attention must be paid to the 

fact that not each lattice layer has the same number of lattice sites. The 

result is: 
c 

n 

^w--«-f%ô yi%-i (A4) 

z L(z) i c n.! 

where the degeneracy of a chain in conformation c in the curved lattice is 

given by: 

Ui=Li(1)J£ZX(2<s-D-z(s))i (A5) 

Here L^(l) gives the number of lattice sites of the layer z where conformation 

starts. For a flat lattice L(z) is independent of z. For this case the present 

partition function reduces to the one derived in reference [13]. 

The chemical potential for a mixture of polymers in solution can be 

expressed as [28]: 
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(Ui- U*)/kT = In <f,J + 1 - r.E «t/r + h r E E Xxy U * r ^ K « ? " *y l) <A6> 
j J J x y 3 1 } 

In a rotational isomeric state scheme all spatial configurations are kept 

apart so that the degeneracy of a chain in conformation c in the curved 

lattice (originating from translation) is given by: 

r K.<«-\^-7JAZ^) «ƒ= L C ( Z ( 1 ) ) n1 z(s-D-s(s)- • ( A 7 ) 

S = 2 Az(s-l)-z(s) 

Further, in equation (Al) a term Q S / Q S must be included, which is the 

canonical partition function accounting for the various gauche (or trans) 

configurations in the system compared to the reference state: 

Qg exp(-E nfu^/kT) 

Q8" n 4 3 (2 exp(-U8/kT) + l)ni(ri 3 ) 

i 

(A8) 

where US is the energy difference between a gauche and a trans configuration, 

n? is the number of gauche bonds in molecules of type i. Finally due to the 

modified definition of a conformation, equation (A4) is simplified to: 

* (r-in-i)! 

ü* = n ii4i- (A9) 
i n i ! 

It is possible to write the partition function in terms of segment density 

profiles. See reference [13]. 



-81-

literature 

1. G. Poste, and D. Papahadjopoulos; in: "Uses of liposomes in biology and 

medicine", (G. Gregoriadis and A. Allison Eds.), Wiley, NY (1979) 101. 

2. M. Calvin; Accounts Chem. Res. 11 (1978) 369. 

3. C Laanen, W.E. Ford, J.W. Otvos, and M. Calvin; Proc Natl. Acad. Sei. 

USA 78 (1981) 2017. 

4. J.N. Israelachvilli, D.J. Mitchell, and B.W. Ninham; J. Chem. Soc. 

Faraday Trans. II 72 (1976) 1525. 

5. J. N. Israelachvilli, D.J. Mitchell, and B.W. Ninham; Biochem. Biophys. 

Acta 470 (1977) 185. 

6. W. Helfrich; Z. Naturforsch. 28c (1973) 693. 

7. B. Owenson, and L.R. Pratt; J. Phys. Chem. 88 (1984) 6049. 

8. P. v.d. Ploeg, and H.J.C. Berendsen; J. Chem. Phys. 76 (1982) 3271. 

9. A. Ben-Shaul, I. Szleifer, and W.M. Gelbart; Proc Natl. Acad. Sei. USA 

81 (1984) 4601. 

10. K.A. Dill, and P.J. Flory; Proc. Natl. Acad. Sei. USA 78 (1981) 676. 

11. D.W.R. Gruen; J. Colloid Interface Sei. 89 (1985) 153. 

12. F.A.M. Leermakers, J.M.H.M. Scheutjens, and J. Lyklema; Biophys. Chem. 19 

(1983) 353. 

13. J.M.H.M. Scheutjens, and G.J. Fleer; J. Phys. Chem. 83 (1979) 1619. 

14. J.M.H.M. Scheutjens, and G.J. Fleer; J. Phys. Chem. 84 (1980) 178. 

15. F.A.M. Leermakers, P.P.A.M. v.d. Schoot, J.M.H.M. Scheutjens, and J. 

Lyklema; in: "Surfactants in Solution. Modem Applications", (K.L. Mittal 

Ed.) in press. 

16. P.J. Flory; "Principles of Polymer Chemistry", Cornell University Press, 

Ithaca, NY (1953). 

17. J.M.H.M. Scheutjens, F.A.M. Leermakers, N.A.M. Besseling, and J. Lyklema; 

in: "Surfactants in Solution. Modern Application", (K.L. Mittal Ed.), in 

press. 

18. F.A.M. Leermakers; PhD thesis, Wageningen (1988) chapter 2. 

19. D.G. Hall, and B.A. Pethica; in: "Nonionic surfactants", (M.J. Schick, 

Ed.), Marcel Dekker, NY (1976), Ch. 16. 

20. T.L. Hill; "Thermodynamics of small systems", Vols 1 and 2, Benjamin, NY 

(1963,1964). 

21. N.K. Adan, and G. Jessop; Proc Roy. Soc. London, Ser A, 112 (1926) 362. 

22. B.A. Cornell, J. Middlehurst, and F. Separovic; Faraday Discuss. Chem. 

Soc. 81 (1986) (in press). 



-82-

23. B.C. Cornell, J. Middlehurst, and F. Separovic; Biochem. Biophys. Acta 

598 (1980) 405. 

24. D.G. Brouilette, J.P. Segrest, D.Ng. Thian, and J.L. Jones; Biochemistry 

21 (1982) 4569. 

25. C. Huang, J.T. Mason; Proc. Natl. Acad. Sei. USA 75 (1978) 308. 

26. A. Chrzeszczyk, A. Wishnla, and C.S. Springer, Jnr.; Biochem. Biophys. 

Acta 470 (1977) 161. 

27. O.A. Evers; PhD thesis, Wageningen (1988). 



-83-

CHAPTER 4 

THE GEL TO LIQUID PHASE TRANSITION 

Abstract 

A new theory is introduced to model the lipid membrane structure and 

stability both above and below the gel to liquid phase transition temperature, 

Recently, we elaborated a Self-Consistent Field (SCF) theory, in which the 

full set of conformations was generated in a Rotational Isomeric State scheme 

and Boltzmann statistics was used to determine the statistical weight per 

conformation. In the new theory we take into account that the anisotropic 

distribution of the molecules on the lattice induce a self-consistent 

anisotropic molecular field. This field, which is a function of the bond 

orientations, is an extra factor which influences the statistical weight of 

each conformation and is based on a generalisation of Di Marzio's analysis of 

systems with rigid rods. This elegant refinement follows from elementary 

statistics, is free of new adjustable parameters and significantly improves 

details of the structure of the model membranes. 

To examine the properties of this SCAF (Self-Consistent Anisotropic 

Field) theory we use a model membrane built up by lecithin-like molecules 

composed of apolar and polar segments. The model has three nearest neighbour 

interaction parameters of the Flory-Huggins type, namely: for the interaction 

between apolar segments and water, that between polar segments and water, and 

that between polar and apolar segments. A fourth parameter is the dihedral 

trans/gauche energy difference. 

The theory predicts a first order gel to liquid phase transition for the 

model membranes. Depending on the membrane concentration both an intercalated 

(in the dilute regime) and a non-intercalated (in the concentrated regime) gel 

phase are observed. Detailed information on the various membrane phases is 

obtained. Order parameter and segment density profiles are given. 

Introduction. 

Many biological processes depend on the physical properties of the 

bilayer membranes. One of the best known aspects of the bilayer membrane is 

that at a characteristic temperature an order to disorder phase change takes 



-84-

place. Many experimental and theoretical studies have been performed in order 

to understand this critical behaviour. During the main phase transition, the 

membrane changes dramatically from a high temperature fluid-like nature, in 

which the apolar tails have considerable flexibility and disorder, to a low 

temperature gel-like nature, in which the apolar tails are aligned [2-6]. 

Recently, also intercalated gel phases have been found experimentally in which 

the tails of many lipids cross the centre of the membrane and the CH3 groups 

are found near the glycerol backbone of the lipids on the other side of the 

membrane [7-9]. Simultaneously with the main gel to liquid phase transition, 

the membrane system changes from a high-temperature state where interaction 

between the membranes is repulsive so that the system is very soluble, to a 

low-temperature attractive state. The transition temperature or rather, very 

narrow temperature range, is known as the Krafft point. For some membrane 

systems, also a (reversible) pre-melting transition is observed [3,10]. 

Theoretical studies on the gel to liquid phase transition proved that a 

co-operative gauche to trans transition of the apolar tails is thermodynami-

cally possible [6,11-13]. Until recently, no theory was able to account for 

both the intercalated and the non-intercalated gel phases, nor does any of 

them they take the interaction between membranes into account. We will show 

that the new theory is general enough to account for the observed phenomena 

and provide detailed information on both of these effects. 

Recently, we introduced a self-consistent field theory for which the 

partition function is worked out with Flory-Huggins type approximations, 

namely Markov-like chain statistics combined with a local mean field 

assumption [1]. This theory successfully interpreted the force balance of the 

lipid membrane. We needed no artificial restrictions on the molecules in the 

system. The equilibrium membrane thickness is found from a thermodynamic 

analysis: a free membrane has a vanishing surface tension [14,15]. We were 

also able to extend our work to study aspects of morphological phenomena of 

associates of surfactants by also considering lattices with spherical or 

cylindrical geometry [16]. For small molecules it is very important that the 

Markov-type statistics is extended to include the so called Rotational 

Isomeric State scheme. In this approximation any five consecutive segments do 

not overlap [14]. 

Although promising a few problems remained. One of them is that the 

apolar tails in the interior of the membrane showed a melt-like behaviour, so 

that the membranes found were too thin. Another problem was that the 
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experimentally observed critical phase behaviour of the membrane system was 

not reproduced. 

A significant improvement of our theory for the lipid membranes can be 

formulated and is elaborated in this paper. The novel idea is that the 

statistical weight of each conformations in the membrane is influenced by the 

orientation of the neighbouring chains. The molecules induce a self-consistent 

anisotropic molecular field which leads to an orientation dependent packing 

entropy. We derive the partition function in terms of a set of conformations 

of the chain molecules. The evaluation of the partition function is 

facilitated when it is given in terms of segment density profiles. With these 

segment density profiles a detailed study of a model membrane composed of 

model lecithin-like molecules is performed. 

Self-Consistent Anisotropic Field theory 

Even short chain molecules have a huge number of possible spatial 

arrangements. In order to keep the number of conformations countable, a three-

dimensional lattice composed of lattice sites with equal volume is used, to 

which the molecules in the system are confined. In this paper we will use a 

lattice with flat lamellar geometry. The lattice layers are numbered z = 

1,...,M and have L lattice sites each. In each layer inhomogeneities are 

disregarded, so that a mean field approximation for the interaction energy is 

appropriate. Each lattice site will be filled with either a solvent (water) 

molecule or a lipid (apolar or polar) segment. The co-ordination number of the 

lattice is Z. A fraction Xn of these neighbouring sites is in the same layer, 

a fraction X in a previous layer and a fraction x. In t n e following layer. 

Chain molecules can have various types of composition. Lipid molecules 

are branched. They have a glycerol backbone on to which there are bound two 

apolar tails of 12 to 20 CH2 segments each (actually, one of them is the 

terminal CH3 segment) and one head group composed of polar and apolar 

segments. A complete lipid molecule is assumed to have r segments or, more 

exactly, the total volume of the lipid molecule is r lattice sites. In the 

following derivation we will discuss, for the sake of simplicity, linear 

chains only. Modifications of the molecular structure are easily incorporated 

in the model, as has been shown in earlier work [14]. In the "Results" section 

we will discuss membranes composed of lecithin-like molecules. 
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The partition function 

The central issue is how the chain molecules distribute themselves in the 

system. In reference [17] a conformation is defined by specifying the lattice 

layers in which the consecutive segments are situated. It is worth realising 

that each conformation defined in this way is degenerate, for in many cases 

more than one spatial configuration can be found that obeys this definition. 

However, in the present derivation of the partition function we decided to 

treat the various spatial configurations in each conformation individually. 

The choice is motivated by the fact that it does not effect the final result 

and that the Rotational Isomeric State scheme is presented more easily in non-

degenerate conformations. (We will still use the term conformations.) When the 

number of segments r^ in chain i is larger than 1 and the first segment is 

fixed at a given lattice site, the other rj-1 segments have, in a rotational 

isomeric state scheme (third order Markov) approximation, Z 3 i viable 

arrangements, since the first bond of the chain has Z possible directions, 

whereas all subsequent bonds can choose out of 3 directions, chain backfolding 

being prohibited. 

The total number of molecules of type i in conformation c is denoted by 
c c 

n. • A summation of n over all conformations gives ti±, the total number of 

molecules of type i in the system. If the positions of all molecules of type i 

are known, the partition function can be calculated and our problem is solved. 

We will work out this procedure for a given but arbitrary set of molecules 

The grand canonical partition function can formally be written as: 

A a Q8 exp(-U(int)/kT) exp(z n y /kT) 

sOi.L.T.fpJ) - s £ -*—-* s î^A* (i) 
{n^} ß Q 8 exp(-U (int)/kT) e x p ^ n ^ / k T ) 

and is composed of a combinatorial factor fi, energetic and entropie 

contributions from gauche (or trans) configurations Q8, the interaction energy 

U(int) and chemical potentials {y. }. The corresponding quantities of the bulk 

phase of each pure component (the reference state) are indicated by an 

asterisk. 

Energy 

For a given set of conformations, all volume fractions in each layer can 

be calculated. Each segment has interactions with its surrounding molecules. 

The energetic effects of these contacts are accounted for by Flory-Huggins 

energy parameters x • A Flory-Huggins parameter gives the energetic effect in 
xy 
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units of kT of exchanging two types of segments (x and y) from their own 

environment (pure x, or y, respectively) to the other. Therefore the FH 

parameters are zero when the segments are the same: x = 0. If molecules i 

are composed of different segment types, the contact energy of a segment x in 
* * 

the reference state is given by kT E x <t> i > w n e r e <(> • i-s the fraction of y 

segments in molecules i. The total interaction energy of the system is, in a 

mean field approximation, given by: 

U(int ) - U*(int) = h kT E Z Z E n (z) Xvv(<<t> ( z » " C ' ( 2 ) 

i z x y x l *y y y 1 

where both x and y run over all segment types: W (water), A (apolar), B 

(polar), etc.. The number of x segments in layer z is nx(z) and their volume 

fraction <j> (z). Here, the angular brackets indicate that an average over three 

consecutive lattice layers is taken to account for the contacts with segments 

in these layers: 

<<Kz)> = E X ,_ <Kz') (3) 
z , z z 

In equation (2) the division by 2 corrects for double counting of the 

contacts. 

In addition to this, one can have energetic contributions originating 

from local conformations in the chains. In a Rotational Isomeric State (RIS) 

scheme each sequence of four segments can be in a low energy trans (t) state 

or in one of the two possible gauche (g+ or g~) states having an energy 

exceeding that of the trans configuration by an amount U8- Let n^ be the 

number of gauche configurations that molecule that chain i has in conformation 

c. Then, 

Q 8 = n n exp(-n8CU8/kT) (4) 
i c X 

accounts for the energy of the total number of gauche configurations in the 

system. 

Entropy 

Next, we will be concerned with the derivation of the, somewhat more 

involving, combinatory factor for our system. Let us first place the molecules 

one after the other on the lattice, each having an arbitrary but specified 
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conformation. This set of conformations has the only restriction that the 

total number of segments and solvent molecules in each layer equals L. The 

number of ways to distribute this set of conformations in the lattice 

contributes to the degeneracy and hence to the entropy of the system. Without 

excluded volume corrections of other molecules in the system a conformation c 

is L-fold degenerated, because the first segment has a choice between L 

starting points. However, the layer is empty only before the first segment is 

placed in a lattice layer. When subsequent segments are offered, one has to 

correct for the fact that not all lattice sites in this layer are vacant any 

longer. If at a certain moment in each lattice layer u(z) sites are filled 

with segments, only L-u(z) sites are unoccupied. The vacancy probability Pv(z) 

determines whether a following segment can be placed on the lattice given the 

fractional occupation of this layer: 

PV(z) 
L - u(z) (5) 

Figure (1) illustrates equation (5) for dimers. After k segments are placed 

Î »=©, 

Î 

z-1 z+1 

Figure 1. 

Dimers on a square lattice. One of the dimers has one of its segments in 

layer z, while the next segment is to be' placed in z+1. In a SCF 

approximation the probability of finding a vacant site in layer z+1 in 

this lattice would be Pv(z+1) = 4/8. In a SCAF approximation this 

probability is Pv(z+1) = 4/6, because there are already two bonds in this 

orientation. 



-89-

each into a certain layer, k-1 consecutive corrections have been performed. 

Eventually, the number of ways to place all chain molecules of a given type i 

in the system is: 

n. n.(z)-l , , ,. 
„(n ) = L * n H L ~U(Z) (6) 

z u(z)=0 

The derivation will proceed by filling the remaining sites with other 

molecules (including the solvent molecules). Along similar lines, the original 

mean field theory was developed [17]. 

A serious drawback of this approach is that the excluded volume of 

neighbouring molecules is only roughly accounted for. Already in 1956 Flory 

showed that the Flory-Huggins theory could be generalised to treat rigid rod 

liquid crystals [18]. Di Marzio worked out the partition function of rigid 

rods on a lattice [19,20], and recently, Van der Schoot showed that the work 

of Di Marzio can in principle be adapted for the present type of theories 

[21]. For this improvement not only the position of the segments must be 

known, but also the segment-segment bond orientations are to be traced. For 

this purpose, we introduce a notation for bond orientations. In general, the 

bond orientations follow the possible orientations in the lattice, denoted by 

a" = e",f ",g",h",... Each orientation a" can be divided into two opposite 

directions, denoted by a and a', The number of bonds a" between layers z and 

z' are given by: n™ (zllz') = na(z) + n a (z1) (the value of z' depends on the 

direction a). Thus a bond h from layer z to z+1 and the bond h' from layer z+1 

to z are added in n (zllz+1) = n (z) + n (z+1). When a chain is added to the 

lattice, the first segment is put on a vacant lattice site with probability 

(L - u(z))/L. Then, simultaneously with the addition of each subsequent 

segment of the chain, also an extra segment-segment bond appears in the 

system. 

The insight for the improved statistics is based on the fact that the 

u a (zllz') bonds already present in orientation a(zllz') cannot block any next 

bond to be placed in directions a(z) or a'(z'). The correction accounting for 

this is given by a factor L/(L-ua (zllz1)), because not L, but fewer sites are 

a priori accessible and hence the factor normalises the probability for the 

excluded volume correction of equation (6). So in this case the vacancy 

probability Pv(z) = (L-u(z))/(L-ua"(z llz')). S e e a lso figure (1). An 

alternative argument when z' = z for this correction is as follows. Of all 

pairs in the same orientation as the direction of the bond to be placed, only 
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one segment is visible and the other segment is hidden behind this one. The 

hidden segment cannot prevent the present bond from being placed into the 

indicated direction. 

For each bond of a molecule a correction factor is introduced unless this 

bond is the first of its kind in the lattice. After all -a^ molecules are 

placed, the number of bonds in orientation a"(zllz') is n a (zllz') and thus 

there are n a (zllz') - 1 correction factors. Equation (6) is replaced by: 

n n (z)-l _ n" (zllz')-l 
W(n.) = L 1 n 1n L . u U J n n \. n i (6a) 

z u(z)=0 z a" ua (zllz')=0 (L-u™ (zllz')) 

For a dense highly oriented system, the corrections are very large indeed. In 

this case our previous SCF theory underestimates the entropy. 

After adding the other molecules, including the solvent, and accounting 

for indistingulshability of the n. molecules, the following expression for 

the combinatorial factor fi is found: 

n = L !
M n n - L n B(L-•«•(«•«'))» (7) 

c .. L ! 

i c n.! z a 

It is easy to verify that, for the case of rigid rods (e.g., dimers), this 

result is identical to equation (Al) of reference [20]. To recover the 

original equation for il [17], just assume that all E.n (r.-l) bonds are 

oriented in different orientations so that n a (zllz') = 1 and the last factor 

in equation (7) reduces to n.L~ni'ri . (Remember that equation (7) is in 

terms of spatial configurations rather than degenerate conformations.) 

As reference states, systems composed of pure molecules i are used. The 

combinatory factor n for each state i is analogous to the one derived by 

Flory [22], extended with orientation effects as in equation (7): 

(Vl)l (Vl- nf *) ! 
R.= s n -, ri (8) 

i n±l a.. ( V l ) ! 

where n a is the number of bonds in the reference state in the indicated 

orientation. 

As above the contributions of the gauche and trans configurations are 

incorporated in a canonical type of partition function: 
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. n. n. * n.(r.-3) 
Qg* - Z x 3 x (2 exp(-nf V / k T ) + l) i l (9) 

The first bond of each molecule has a choice of Z directions, the subsequent 

bonds have each a choice of 3 directions, of which 2 are weighted according to 

the gauche-trans energy difference US except for the second bond. 

Using Sterling's approximation for the factorials, the entropy ln(fi/ß ) 

can be written in terms of the set Inf}: 

c 
n. r. 

c , 1 1 
ln(fl(M,L,{n^})/fi ) = - I Z nj In — j - — + 

i c 

E E (L - n" (zllz')) ln(l - 4,° (zllz')) - E E ( r ^ - n" ) ln(l - <|>" ) (10) 
z a" i a" 

where (j>a (zllz') = <)>a(z) + <J>a (z') is the volume fraction of bonds in the 

indicated orientation. The chemical potentials are derived in appendix A and 

read: 

(Ul - P*)/kT - In 4.J - E(r. - r^"b) ln(l - «t,a"b) + E(ri - r*"*) ln(l - çf*) 
a" a" 

+ h r ± l ^ ^ C i - *x>^y- *yi> (ID 

The subscript xi refers to segment type x in molecule type i (if molecule type 

i has no segments x the corresponding values are zero). In equation (11) 

<|>a = E. (J)" , r" is the number of bonds molecule i has in orientation a" 

and the superscript b refers to the bulk solution. 

In order to find the equilibrium distribution of conformations, we 

differentiate the free energy with respect to n., given the boundary condition 

that each lattice layer is filled: E. <(> (z) = 1 for all z. Introducing 

Lagrange multipliers u"(z), the unconstrained function 

f = kT ln(n/n*) + kT ln(Q8/Qg*) - (U(int)-U*(int)) + E n (p - u*) 
i 

+ E u"(z) (E E n^r^(z) - L) 

(12) 

is differentiated with respect to n^. in equilibrium the derivative 
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3f/3n^ = O for all conformations. The result of the differentiation is for the 

combinatorial factor: 

31n n/n , i i In -î^-i - r± - L Z r£ (zllz') ln(l - $a (zllz' )^ 
8ni " z a" (13) 

+ S Z (rt - r*a") ln(l - ,|>*a ) 
i a" 

and for the gauche-trans configurations part of the canonical partition 

function: 

3 1 n Q^/QS* = -nf U8/kT - ln(Z 3 (2 exp(-Ug/kT) + l ) ^ ) 
3n. 

1 n g C n t C (14) 
= in Xl = ln{Ii-(xf) l {X\) l } 

where \g = 1/ (2+exp(Ug/kT) ) and \Z = 1 - 2 Xg are the probabilities for a 

gauche and trans configuration, respectively. The differentiation of the 

interaction energy gives: 

- 3(U(int)-U*(int))/kT . _ r c * ( 1 5 ) 

c xi^ ' *xy Tyv ' xi*xyTyi 
3n. z x y x y 

Further, 

3S n1(pi - P i ) 
i 

3n 
(16) 

and finally, 

3u"(z)(z I nc
± r^(z) - L) 

1 C u"(z) r<(z). (17) 
c x> 

The equilibrium number of molecules i in conformation c in the system can 

conveniently be written in the form 

r r .t 
ni = L CiXi n G i < z > s ) n Ga C(z(s)llz'(s-1)) ( 1 8 ) 

s=l s=2 

where G^(z,s) is a segment weighting factor which, if segment s of molecule i 
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is of type x, is given by: 

Gx(z) = exp(u'(z) - S xy x(<*y(z» ~ *y)) (19> 

where u'(z) = u"(z) - u" so that G° is 1 in the bulk solution, and the 

weighting factors are properly normalised. In the bulk solution the lagrange 

parameter is: 

u"b = - 1 + I ln(l - *a"b) + \ ï Z y «,V (20) 
a" x y 

In equation (18) Ga f(z(s) llz'(s-1) ) is the anisotropic weighting factor 

according to the orientation a" of the bond between segment s and s-1: 

i - A0 1"'5 

Ga (zllz') i (21) 
1 - f (zllz') 

For each orientation o" in the bulk ij)™ b = (2/Z) I.<j>b (1 - 1/r ). 

Next, in equation (18) the normalisation constant C^ is for the grand 

canonical environment 

*i 
C , - - ^ (22) 

I 

and in the case that the number of molecules in the system is given, i.e., in 

a canonical environment, the normalisation is given by: 

r. r. 
where G±(r1) = g \C± sI1G°(z . s ) ^ G a C(z(s) Hz'(s-1)) is the total weighting 

factor of molecules i in the system and Q = Z i> (z) = Z ncr /L is the amount 
i z Ti c i i 

of molecules i in the system. As we will see below, G (r ) can be found 

without the explicit summation over all conformations. 

Series expansion of equation (21) shows that the leading term is 1. When 

all other terms are neglected, which is acceptable for low values of 

<t>a (zllz1) , equation (18) reduces to the SCF one (equation (23) in reference 

[17]) except that the present equation (18) applies for RIS instead of first 

order Markov statistics. 

With the help of equation (18) the excess free energy A a = - kT In H can 

now be written in terms of volume fractions. Substituting equation (18) into 
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equation (10), and taking the maximum term of equation (1) after some 

rearrangements we find: 

Aa/kTL = E {in + E In G a (zllz') 

•5 a" ( 2 4 > 
+ hZZ (xxW+ XyW- X x y ) [*X(Z)<* ( z ) > - ^ 0>y]} 

x y 

Again by s e r i e s expansion of £ „In Ga ( z l lz ' ) and c o l l e c t i ng only the leading 
a bi terms, the isotropic SCF equation -E. 8?/r remains, where ea= z(à (z) - è 

i l l i zVYi Yi 
is the excess amount of segments of molecule type i in the system. 

Segment density profiles 

In order to obtain segment density profiles from the weighting factor 

profiles, without the evaluation of equation (18) for each conformation, a 

recurrence procedure will now be discussed. The rotational isomeric state 

scheme is performed in a tetrahedal lattice for which Z = 4. Each lattice site 

has four bonds with neighbouring sites, in spatial orientations e", f", g", 

and h", respectively. If a site has bonds in directions e, f, g, and h, then 

the neighbouring sites must have neighbours in directions e', f', g', and h', 

respectively. Consequently, a walk through the lattice, consisting of steps 

from one lattice site to the other, alternates between directions indicated 

with and without primes. We define e and h' as directions from z to z-1, h and 

e' as directions from z to z+1 and f" and g" as orientations in a layer. The 

symbols a" , 0" and y" ave used to indicate arbitrary orientations in the 

lattice. We assign an orientation to each segment in the chain; it is 

determined by its bond directions: bond number 1 (pointing to lower ranking 

number) and bond number 2 (pointing to higher ranking number). As there are 12 

bond combinations o3 and 12 combinations o'g', there are in total 24 different 

segment orientations in the lattice. The RIS scheme is a three-choice 

propagation scheme. A bond in orientation e" is succeeded by a bond in either 

f", g", or h" orientation. If a third bond is again in the e" orientation the 

sequence of three bonds is a trans configuration and the other two possible 

orientations of the third bond to the two gauche configurations. The RIS 

scheme is conveniently written in terms of a recurrence relation which 

mathematically expresses the physical process of adding extra segments to a 

string which is already s-1 segments long. Let us define a chain end 
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distribution function G(z,s? ) which gives the statistical weight of finding 

segment s in layer z with bond 1 of segment s in direction a connected to 

segment s' of the other s-1 segments, while bond 2 will be connected in 

direction ß to the next segment. As free (disconnected) segments have no 

preferential orientations, G(z,saß) = G(z,s) for all of the 24 possible 

orientations a3- The chain end distribution function is given by: 

G(z,s?P) = GCz.s0^) Ga"(zllz') Z \y"-a"-Z" GCz'.s'Y'01') (25) 

Y 

Note that, because the very first segment has a free bond 1 so that 

G(z,l?^) = G(z,la ß), all chain end distribution functions are found after r-1 

operations as given by equation (25), provided that the free segment 

distribution functions G(z,s) and Ga (zllz') are known. In equation (25) 

Y"-a"-g" is a sequence of bond orientations, which forms either a trans or a 

gauche configuration. Thus, Xa Y = X if a" = Y" a n a = X otherwise. 

Alternatively, the procedure of generating chain end distribution functions 

can be started at the other chain end, in which case the equivalent of 

equation (25) reads: 

G(z,s£ß) = G(z,saß) Gß"(zllz') I xa""ß""Y" G ( z \ s £ ß V ) 

Y' 

As usual, the segment density profiles follow from the chain end distribution 

functions by a composition formula: 

<Kz,s«ß) = C XaßG(z,s«ß) G(z,s«ß)/G(z,saß) (26) 

where C is a normalisation constant which is discussed above, see equations 

(22) and (23), and X a ß (= 1/24) is the a priori fraction of segments in 

orientation aB* The weighting factor for a chain of r segments in the system, 

as necessary in equation (20), is G(r ) = n J X a ß G ( z , r ^ ) . When a 
1 z ot p l 

summation over both a and g are performed in equation (26) the segment density 

profiles are found. From equation (26) we can select all segments which have 

bond 1 in orientation a": 

/'(zllz') = I {Z <Kz,s£ß) + *(z',s"'ß')} <27> 

s=2 e 
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Order parameters 

Segment order parameters are defined as 

S(s) = < | cos2($(s)) - j> (28) 

In equation (28) the angular brackets indicate an ensemble average and $(s) 

is the angle between the orientation of segment s and the normal of the 

membrane. In our tetrahedal lattice cos (*(s)) has only three possible values. 

Segment orientations e"h" and h"e" are parallel to the bllayer normal so that 

cos ($e ) and cos ($ e ) are unity. Segments in orientations f"g" and g"f" 

are perpendicular to the bilayer normal and thus cos ($ ^ ) = cos (t^ 1 = 

0, while segment orientations e"f", f"e", e"g", g"e", h"f", f"h", h"g", and 

g"h" have an angle of 60 degrees with respect to the normal 

with cos ($ ) = -V-. The order parameter is conveniently calculated as 

| E E E «Kz.s^8") cos2($a"ß") 

S(s) Z °" ß" - | (29) 
E 4>(z,s12) 

Thus, if the probability of finding all segments in orientation e"h" or h"e" 

is 1, the order parameter is 1. On the other hand, when all bonds are parallel 

to the bilayer, the order parameter is -0.5. A random bond distribution will 

result in an order parameter S(s) = 0. 

End segments do not have two bonds, and therefore their orientation is 

fully determined by the direction of the last bond. Equation (29) can be used 

for these segments when we assume that the free bond is randomly distributed 

over the three optional directions. As a consequence the order parameter of an 

end segment is between -0.25 (last bond in f" or g" orientation) and 0.25 

(last bond in e" or h" orientation). 

Computational aspects 

From an initial guess for the G (z) and G a (zllz') weighting factors, 

segment densities <)> (z) and bond orientation profiles <j>a"(z ||Z') can be 

calculated. With these profiles and an initial guess for the M variables u'(z) 

the values of the weighting factors and the boundary conditions E <j> (z) = 1 

can be checked. An implicit set of simultaneous equations results, which can 

be solved by standard numerical techniques [14]. 
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Near z = 1 and z = M reflecting boundaries are introduced, so that 

weighting factors and segment densities in layer z = 0 are exactly identical 

the same quantities in layer z = 1. At one of the boundary layers (z = 1) we 

initiate the bilayer (by an appropriate guess of the weighting factor 

profile), so that with a proper choice of interaction parameters, an 

equilibrium membrane is formed with the boundary layer as its centre. This has 

the effect that the membranes are symmetrical. Together with a reflecting 

boundary between layers z = M and z = ttfl the centre to centre membrane-

membrane distance is 2M. For details of the reflecting boundaries we refer to 

reference [14]. 

As we showed before, free membranes have a vanishing excess free energy 

per surface area, or equivalently, a vanishing surface tension. For a given 

number of molecules per unit of surface area the excess free energy of the 

membrane is evaluated with equation (24). An extra iteration is started to 

find the number of molecules per unit of surface area for which A° = 0 and 

3A°/8 6 < 0. For membranes in a frame this extra iteration is not performed, 

because these membranes cannot adapt their surface area. In such a case, 

either the equilibrium concentration or the number of molecules per surface 

area must be given to determine the normalisation constant C from equations 

(22) or (23), respectively. 

Results and discussion 

In the following we will first discuss some additional approximations 

that we have used to simplify the calculations. Subsequently, we will pay some 

attention to the choices of our energy parameters. Finally, results will be 

given for both singular and interacting membranes composed of lecithine-like 

molecules. 

Some simplifications 

In order to simplify the calculations, we have assumed that the number of 

bonds in orientations f" and g" are always equal. This is probably not a 

severe limitation, because in the liquid phase this will be the case anyway 

and in the gel phase there will be only a very few bonds oriented parallel to 

the bilayer, so that no preference between f" and g" orientations will 

develop. For the e" and h" orientations we applied a slightly different 

approximation. In the derivation of the partition function we treated each 

orientation separately. We assumed that two different orientations would only 
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influence each other randomly. However, this is only the case when these 

orientations are perpendicular. Here we will treat the e" and h" orientations 

as parallel. This has the consequence that they stimulate each other strongly 

and that the number of bonds in these orientations are equal. 

Mathematically, these approximations are summarised as follows. Instead 

of equation (26) we use for orientations g": 

^z,sf'2
a") = «Kz.s^'"") and ^(z.s^8") = •(z.sj1^") (26a) 

and instead of equation (27) we use for orientations e" and h": 

<)>e (zllz') = (t,h (zllz') = 1 1 I {<f>(z,s™|) + (Kz'.s^6')} <27a> 
s=2 a=e,h 0 

The result is that we need only orientations e" and f" in our calculations, 

because orientations g" and h" are numerically equivalent with f" and e", 

respectively. 

Energy parameters 

The present paper will focus on lecithin-like molecules (denoted by 

i = 2) with the following architecture: 

A - B - A 
P I 

A - B - A (30) 
P I 

A - B 
q 

where p is the number of apolar segments in the two tails, q the number of 

polar segments in the head group. The glycerol backbone is mimicked by a 

branched structure with two polar (B) segments and three apolar (A) segments. 

In the present analysis, we only distinguish between polar and apolar groups. 

The volume of a CH3 is set equal to the volume of a CH2. The statistics of 

branched chains has been reported elsewhere [14]. The solvent (i = 1) is 

modelled as a monomer without structure and is referred to as water (W). The 

three types of segments in the system give rise to three FH interaction energy 

parameters. At T = 300 K we choose ^ = 1.6, X ß w = -0.3, and ^ = 1.5. For 

the gauche-trans energy the value of 08 = 1 kT at T = 275 K is used. All 

energy parameters are expected to be inversely proportional to the absolute 

temperature. The present set of energy parameters was found by comparison of 
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Figure 2. 

(a) Excess amount of lipids aggregated, e? = Z ($-(z) - $?), and 

(b) equilibrium lipid concentration, as a function of the absolute 

temperature for membranes composed of lecithin-like molecules with a head 

group of q => 3 polar segments and p = 14, p = 16, and p = 18 apolar 

segments per tail, respectively. The interaction parameters (at 300 K) 

are: Ug= 275/300 kT, x^, - 1.6, XBW = "0.3, xAB= 1-5. 

known CMC data of surfactants with calculated ones [16]. This set was also 

shown to give a satisfactory membrane behaviour [14]. The xA R parameter 

promotes the separation between polar and apolar segments and thus contributes 

to the stability of the membrane system. It can be argued, that the present 

SCAF theory needs a slightly different choice of these parameters because of 

the difference with respect to the SCF theory. 

Unless stated otherwise, all membrane structures shown below, even the 

membranes interacting with each other, are equilibrium membranes without any 

surface tension (vanishing excess free energy A a per unit surface area). 

Non-interacting membranes 

Figure (2) gives information excess amount of lipids per unit of area 

which is a measure of the membrane thickness and the equilibrium lipid 

concentration in the bulk solution as a function of the temperature for three 

homologous lecithins, i.e., p = 14, p = 16, and p = 18 segments per tail. The 

"loop" in figure (2a), which is more pronounced for longer tails is 

characteristic for a first order phase transition. The longer the tails, the 

more pronounced the co-operativity of the transition is. Above the phase 

transition temperature the membrane thickness increases gradually with 
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decreasing temperature, but below the transition the system is frozen and does 

not permit significant structural changes. In figure (2b) we see that at the 

phase transition the slope of log o>~ with temperature changes abruptly. This 

is also found experimentally [23]. As to the tail length dependence we observe 

an increase in the phase transition temperature of about 4 degrees per 

segment. In practical systems often a stronger temperature dependence is 

found. One of the reasons for the difference may be that our energy parameters 

actually represent free energy parameters and thus should be less dependent on 

1/T than assumed. 

The "loops" shown in figure (2a) are asymmetric. The lower bend is wider 

than the upper one. This is due to the higher density, hence lower 

compressibility, in the gel phase compared to that in the liquid phase. 

We will study this transition in more detail, taking the p = 16 q = 3 

lecithin molecule as a characteristic example. Figure (3a) gives a liquid 

membrane at T = 325 K, and figure (3b) a gel membrane at T = 315 K. There are 

several differences between the two membranes. With respect to the liquid 

membrane, the density of the tails in the gel phase is about 7% higher. The 

centre of the gel membrane is completely filled with tails. Water molecules 

penetrate the membrane only as far as the glycerol backbones, whereas in the 

liquid membrane also some water is present in the tail region. We believe 

that, in the present calculations, the amount of solvent in the liquid 
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Figure 3. 

Segment density profiles through a cross section of a membrane composed 

of lecithin-like molecules p = 16, q = 3 in the liquid state (a) at T = 

325 K and in the gel state (b) at T - 315 K. Layers are arbitrarily 

numbered. Interaction parameters as in figure (2). 
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Figure 4. 

Individual segment density profiles of molecules with their branch point 

at the left hand side of the membrane of figure (3), i.e., between layer 

z = 1 and z - 25. Left hand side: liquid state, right hand side: gel 

state, a) and d ) : head groups and glycerol backbone, b) and e ) : first 

tail, next to head group, c) and f ) : second tail at end of glycerol 

backbone. The centre of the membrane is indicated. 
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membranes is somewhat overestimated. This is due to the rather crude modelling 

of the water molecules (unpolarisable monomers not able to form H-bonds). In 

addition to this, more realistic calculations would require accounting of free 

volume in the system. The tendency of the system to have a low chain density 

in the liquid phase is presently only feasible by allowing water molecules in 

the membrane. Both the incorporation of free volume and the development of a 

more advanced theory for the water phase, are left for future work. 

We now examine the gel and the liquid membranes of figure (3) in more 

detail. In figure (4) the individual segment density profiles are given of 

molecules which have their branch point somewhere in the layers z = 1,...,25, 

hence on the left hand side of the membrane. See reference [1] for more 

details on the computational aspects of calculating special segment 

distributions. The density profiles of all those molecules which have their 

branch point on the other side of the membrane are just mirror images of the 

given profiles. (The centre of the membrane is between layers 25 and 26.) The 

graphs on the left hand side (a, b, c) represent the liquid state, whereas in 

the graphs on the right hand side (d, e, f) the gel state is illustrated. As 

can be seen in figure (4), the closer to the branch point the more narrow and 

dense the segment distribution is. This is not very surprising, as the branch 

points connect tails and head groups which hardly mix. Closer inspection of 

figures (4b) and (4c) reveals that the tail closest to the head group (4b) is 

lifted out by about half a layer with respect to the other tail. This is also 

found in experimental NMR work [24,25]. The average difference in position of 

the two tail ends is less, but still 0.2 layers. In the gel phase (see graphs 

d, e, f) near the glycerol backbone this difference in position is about the 

same (0.54 layers) as in the liquid membrane, but the difference remains so 

all along the tails. The two end segments are still 0.5 layers apart. This is 

caused by the fact that in the gel phase the two tails are in all-trans 

conformations. Both in the gel and in the liquid membrane the tail ends cross 

the centre of the membrane considerably. In the gel phase the tail ends reach 

as far as near the glycerol backbone at the opposite side. This enables the 

tail ends to have a little more space to occasionally form a gauche bond which 

is entropically favourable. Therefore, for the- very end of the tails again 

some disorder is found (see also figure (5)). 

In the liquid phase, at T = 325 K, the lipid molecules have on average 20 

trans bonds, whereas in the gel phase 28.2 trans bonds are observed. The 

energy gain upon solidification is 7.5 kT per lipid molecule. As the packing 
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Figure 5. 

Segment order parameters of the tail at the end of the glycerol backbone 

for lecithin-like molecules with p = 14 and q =3, for a liquid membrane 

at T = 330 K and a gel membrane at T = 300 K. Segment 1 is the end 

segment of the tail, segment number 14 is the segment attached to the 

glycerol backbone. 

of the tails is more condensed in the gel phase, also a change in contact 

energy can be expected. Not only the density of the tail region, but also the 

head group density is higher. As a consequence, the total contact energy 

changes from 41 kT per molecule (with respect to the reference state) for the 

liquid membrane to a more unfavourable 46.6 kT in the gel membrane. Thus we 

find a net gain in energy of about 2 kT per molecule. In calorimetric 

experiments often 6-10 kT are reported for the main gel to liquid phase 

transition [3]. This agreement is a very promising, considering the many 

mutually compensating effects, the crude modelling of water molecules, and the 

neglect of free volume in the system. 

The main emphasis of this paper is to study the apolar region of the 

bilayer rather than the polar head group region. We show order parameters for 

the apolar tails only. In figure (5) we give the order parameter profile of 

the segments in the tail most remote from the head group, for a lecithin-like 

molecule with p = 14. The order parameters of the other tail are not 

significantly different from the ones given in figure (5). Both for the gel 

(at T = 300 K) and the liquid membrane (at T = 330 K) the segment order 

parameters are fairly constant. In the gel phase the order parameter is almost 

1.0, the maximum value, whereas in the liquid membrane the maximum of the 

order parameter is about 0.34. Near the tail ends the order is slightly less 
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Figure 6. 

Interaction between two bilayers below (T = 315 K), and above the phase 

transition temperature (T = 320 K, T = 325 K, T = 330 K, and T = 335 K). 

The relative change in equilibrium volume fraction of the lipids is given 

as a function of the distance between the two bilayers. 

(S(2) = 0.23). Even in the gel phase the tails are not fully in all trans 

states. Especially the tail ends may assume gauche configurations. The order 

parameter of the last segment of the tail (s = 1) is very low because the free 

bond has a random orientation. 

Interacting neabranes 

To investigate whether the present phase transition represents 

thermodynamically stable membrane systems, it is checked whether membranes are 

attractive or repulsive. Figure (6) gives A log (fc) which is the difference 

(log <tO?M - (log i(i7)7M . a s a function of the distance between the two 

centres of the membranes (2M). Again the lecithin-like molecules with p = 16 

are considered. When the membranes approach each other, they are allowed to 

modify their surface area and equilibrium concentration to relax any induced 

surface tension. Therefore, the free energy of the system is Z, u.n. and 

A log $° is a qualitative measure of the interaction energy per lipid 

molecule. As can be seen, the equilibrium volume fraction increases when the 

membranes come closer to each other, indicating a repulsion between them. 

Liquid membranes are thinner than gel membranes, so that their interaction 

starts at shorter distances. As expected, the more rigid gel membranes are 

more repulsive than the liquid membranes. 
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The interaction between bilayers as given in figure (6) originates from 

the free energy of mixing only. Long range forces, which are expected to be 

different for the gel and the liquid membranes are not included in the present 

model. The gel membrane has a higher density of lipids than the liquid 

membrane and therefore the Van der Waals attraction must be stronger for the 

gel than the liquid membranes. This can give rise to a local energy minimum in 

the interaction curves especially for the gel phase. In addition, we expect 

for the gel membranes less sterlc repulsion from undulations. Both arguments 

suggest that, with decreasing temperature, at the phase transition a change 

from a repulsive to a more attractive system is likely. A full analysis of the 

membrane-membrane interaction is beyond the scope of the present work. 

In concentrated membrane systems membrane-membrane interaction is one of 

the most important physical factors which must be taken into account. For the 

gel phase this interaction is illustrated in figure (7). In figure (7a) the 

excess free energy is given as a function of 6?, the excess number of segments 

per surface site for various membrane-membrane distances (2M). Note that the 

value for e^ cannot exceed 2M. The excess free energy is found to be zero for 

at least two values of e". The one at ga « 20 is a thermodynamically stable 

solution. The second point is unstable because at this point 3Aa/360 > 0 and 

2M = 44 
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10- 9 -

1 0 " 

10- '3" 

1 0 l J
( 5 10 15 

® 

20 
1 

25 

2 M =40, 

. 
' / 

30 35 40 

Figure 7. 

The excess free energy per surface site (a) and the equilibrium volume 

fraction (b) as a function of the excess amount of lecithin molecules per 

surface site for three membrane-membrane distances (2M = 40, 42, and 44 

lattice layers). The lecithin molecules identical to those in figure (3) 

at a temperature of T » 300 K (gel state). 
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the total free energy of the system is at a (local) maximum. For larger 6? too 

many molecules are accommodated in the membrane and, as a consequence, it 

splits up into two separate membranes so that the membrane distance is 

arbitrary (thus the curve ends). Decreasing the distance between two membranes 

(2M) has no effect when the membranes are thin, i.e., at small 6? values. 

Only for very thick membranes the division into two thin ones is blocked, due 

to the membrane-membrane interaction. In this situation there appears a new 

point for which the excess free energy is zero, i.e., where the membrane 

system is again thermodynamically stable. We call these (interacting) 

membranes stacked or, referring to their structure, spliced bilayers in 

contrast to the (non-interacting) intercalated bilayers. 

Figure (7b) shows how the logarithm of the equilibrium lipid 

concentration depends on 6? for the same systems. In agreement with Gibbs' 

law, variations in chemical potential and excess free energy have opposite 

signs. The equilibrium concentration for the stacked gel phase is higher than 

for the non-interacting gel phase. In figure (6), the (intercalated) gel 

membranes showed a strong increase in chemical potential when they where 

forced to interact with each other. At the same overall lipid concentration, 

the spliced bilayers may be more favourable than the intercalated ones. This 

can be understood by realising that the (thin) intercalated bilayers create 

more polar-apolar interfaces in the system than the (thick) spliced bilayers. 

In figure (8) the stacked membranes are analysed for a constant overall 

lipid concentration at three different temperatures T = 260 K (8a), T = 275 K 

(8b), and T = 290 K (8c). As expected, the membranes are much thicker than the 

non-Interacting gel bilayers. These membranes are characterised by a dip in 

the tail density in the centre of the membrane. This deficit of tail segments 

is compensated by an excess of solvent molecules and a few head groups in this 

region. With decreasing temperatures, the dip becomes less pronounced and 

eventually vanishes. As a consequence, the membrane thickness decreases with 

decreasing temperature. Such a decrease in membrane thickness is often 

reported in literature and is usually explained by a gradual pre-transition 

where the tails start to tilt into given angles. Since in the present approach 

we have not allowed for co-operative tilt, the 'decrease in membrane thickness 

in figure (8) originates from the increase in chain density in the centre. We 

cannot exclude that a tilt process would occur if we would not have made the 

simplifications as mentioned at the beginning of this section, I.e., if we 

would have treated all bond orientations separately. 
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Figure 8. 

Segment density profiles of cross sections through stacked membranes 

composed of the lecithin molecules given in figure (3) at a lipid 

fraction of "Ç. = 0.89 for three different temperatures, a) T = 260 K, 

2M =• 38; b) T = 275 K, 2M = 40 ; c) T = 290, 2M = 42. We have plotted one 

membrane with part of its neighbouring membranes. Layers are numbered 

arbitrarily. 
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Figure 9. 

Individual segment density profiles of lipids with their branch points at 

the left hand side of the membrane given in figure (8c) (i.e., between 

layers 1 and 21). a) Head groups and glycerol backbone, b) tail closest 

to the head group, c) tail at the end of the glycerol backbone. 
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The individual segment density profiles of the spliced membrane at 

T = 290 K are given in figure (9). In line with expectations, in this case 

only a few tail segments cross the centre of the membrane occasionally. In the 

intercalated membrane we found that the positions of the two tails were 

mutually shifted by half a lattice layer. In figure (9) this shift is one 

lattice layer. 

Conclusions 

In this paper we showed that it is possible to obtain much detailed 

information on lipid membrane systems with the help of an ab initio 

statistical thermodynamical theory. Besides nearest neighbour contact 

energies, the theory takes into account the anisotropic interaction between 

the molecules. With this extension co-operative phenomena like order to 

disorder phase transitions are reproduced. We showed that in a bilayer of 

model lecithin-like molecules a first order gel to liquid phase transition 

takes place with increasing temperature. An enthalpy jump of about 2 kT per 

molecule is found. Two types of gel phases are observed: in the dilute regime 

the bilayer tails are intercalated, whereas in a concentrated regime the 

membrane is spliced into two almost non-overlapping lipid layers. For both 

types of gel membranes the tails have a very high degree of order (almost all-

trans). The liquid membrane shows a weaker but still significant ordaining. 

This implies that even in the centre of the membrane the segments "feel" that 

they are attached to the head group. The order parameter profiles show a 

plateau over the entire tail. Only the tail ends have a lower order. Segment 

density profiles show that in all cases the tails cross the centre of the 

membrane, even in spliced membranes. Although the tails are in an all trans 

conformation, there is a considerable spread in positions for the various 

segments. The chain density in the gel membranes is found to be about 7% 

higher than in the liquid membrane. 

With respect to the results of our previous theory the present results 

show much more order in the bilayer. The extremely high segment density in the 

bilayer is responsible for this order, because at these high densities tails 

cannot choose their own orientations at random but are "pushed" by 

neighbouring molecules in a given direction. 

We believe that the results of the present theory holds promises for the 

possibilities to develop an all-round membrane theory based on statistical 

thermodynamics. The theory can also be used to study crystallisation phenomena 

in polymer solutions. 
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Appendix A. Modified Flory-Huggins theory 

The Flory-Huggins (FH) theory applies to homogeneous systems where no segment 

density gradients are present. This corresponds to our bulk solution, and in 

fact it can be shown that our partition function reduces to that in the FH 

theory for a homogeneous system. The FH theory can therefore be used to find 

expressions for the chemical potential. However, consistent expressions for 

the chemical potential are only found if the FH theory is corrected for the 

fact that a step in a given direction cannot be blocked by other segment-

segment bonds in the same direction. 

When no preferential orientation of the system takes place, the 

population of all bond directions is homogeneous, and the resulting correction 

factors are the same for every bond direction. Following similar arguments as 

shown above for the general case where inhomogeneities in the z directions 

were allowed, the resulting partition function for the case that these 

inhomogeneities are not present (also with respect to the amorphous reference 

state) is given by: 

Q(n. ,V,T) n(n ,V,U) ^ 
-In 1 = - In \ + (U(int) - U (int))/kT = Z n In $. 

Q « .. .. i 
- Z { (V - na ) In (V - na ) - (V - n a ) - V In V + V} - E n. (r± - 1) In V 

a" „̂  ,.Ä „̂  i 
+ Z Z {("Y^ - n" ) In ( n ^ - n" ) - ( n ^ - n" ) - n ^ l n 11^+ n ^ } 

i a" 
* 

i i J " XJ- i x y 

The correspondence with equations (2) and (10) is easily verified, realising 

that each conformation c is equally probable and that the number of gauche 

bonds of a chain is the same in the bulk and in the reference phase. 

Differentiating equation (Al) with respect to n^ results in the chemical 

potential of molecule i. As V = Z.n r , 

+ Z n ^ - 1) l n f c i ^ ) + h Z Z Z n^± x ^ U y " * y l ) (A1) 

(u± - P^/kT = In +J - z j ( r ± - r™ ) ln(l - ^ ) + ( ^ - r£ ) ln( l - fi )} 
a" 

+ \ r Z Z [ x « - £(•£ - f )] (A2) 
x y J J J 

A subindex i refers to a property of molecule type i, whereas if i is not 

specified a summation over all molecules i is assumed. By series expansion of 
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the second and third logarithmic terms and leaving out all square and higher 

order terms, the Flory-Huggins equations are recovered. 
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CHAPTER 5 

INHOMOGENEOUS MEMBRANE SYSTEMS 

Abstract 

Recently, we Introduced a Self-Consistent Field lattice theory to model 

the lipid bilayer membrane [1,2]. In this theory inhomogeneities in layers 

parallel to the membrane were neglected. In the present paper we extend our 

work to account for tangential inhomogeneities along the bilayer. For this, we 

develop a modified Markov approach for generating the conformations of the 

chain molecules, which accounts for segment density gradients in two 

directions. In the remaining dimension a mean field approximation is applied. 

The new theory is suitable for studying the interaction between a big 

copolymer molecule ("protein") with the lipid bilayer. We will give two 

examples of trans-membrane copolymer interactions. The boundary layer of 

lipids between the membrane and the polymer molecules is found to depend 

strongly on the interactions between apolar segments of the copolymer and 

apolar segments of the lipid molecules. 

We also studied lateral phase separation between two nonmixing lipid 

molecules in the membrane. Water only slightly enriches the boundary between 

the two lipid regions. The aliphatic chains are very well able to smoothly 

cover inhomogeneities in the bilayer. No indications of instability of the 

membrane due to the induced inhomogeneities are found. 

Introduction 

To understand all properties of biological membranes, knowledge about the 

membrane-protein interactions is essential. Although these systems are highly 

complex in nature, we believe that it must be possible to improve our 

understanding from merely intuitive towards insight based on molecular 

interactions. Although the present model will not yet take all specific 

interactions into account, the results give at least some insight into the 

subtle energy balances which are responsible for the high diversity of 

membrane systems. 

Since Singer and Nicolson proposed their fluid mosaic model of the 

biological membrane [3], membrane research has been moving towards the study 
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of the membrane-protein interactions. This generally accepted model explains 

many of the properties found for biological membranes, but does not give 

detailed insight on a molecular level. 

To the authors' knowledge no full computational analyses of the complex 

membrane-protein interactions are available. Neither Monte Carlo nor Molecular 

Dynamic techniques can take the conformational freedom of both the protein and 

the lipid molecules into account at the same time. This is due to the 

extremely large computer time needed to solve the problem rigorously. At 

present only Statistical Mechanical, based on a self-consistent field, 

techniques must be considered applicable to give information on these matters. 

In the following part we will discuss a first approach of a theory designed 

for this goal. 

Theory 

A well-known theory for the study of polymers in solution is due to Flory 

and Huggins (FH) [4]. This theory makes use of a lattice on which the polymer 

chain segments are placed using a first order Markov approximation. This means 

that a random walk approximation is applied in which the "history" of the 

chain is only one step (segment) long. Backfolding to previously occupied 

lattice sites is allowed. Further, a mean field approximation over the whole 

homogeneous system volume is used. This is illustrated in figure (la). With 

these two approximations the partition function of a collection of chains on 

the lattice can be worked out analytically. 

Recently, Scheutjens and Fleer (SF) extended the FH approach, and 

proposed a statistical mechanical model for homopolymer adsorption [5,6]. This 

theory has been extended to describe amphiphatic molecules in inhomogeneous 

systems [1]. The SF approach makes use of a modified Markov statistics in 

which inhomogeneities in one dimension are accounted for but where the mean 

field approximation in two dimensions over lattice layers is maintained (see 

figure (lb). The partition function for these systems can no longer be solved 

analytically. Instead, the problem is reduced to a set of implicit equations 

which can be solved with standard numerical techniques. In this respect the 

SF-theory may be called "one-dimensional". One of the advantages of this 

approach is that the computation times are only linearly proportional to the 

chain length of the polymer. Because of this low dependence of computation 

time on chain length, there are in this respect no problems to extend the 

theory to include an arbitrary number of different types of molecules. 
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Figure 1. 

Lattices used for: a) FH theory, b) SF theory, c) 2D SF theory. The mean 

field approximation is performed over the whole space, lattice layers, and 

lattice circles, respectively. 

Another advantage of the great computational efficiency is that a two-

dimensional extension of the SF theory is possible. Towards this goal the 

lattice layers are divided up into concentric equidistant rings. The rings in 

the various layers form a cylinder and cylindrical co-ordinates are 

introduced. A similar Markov process applies and the mean field approximation 

is performed in the individual rings. Then segment density gradients in the 

normal (z) and the radial direction (R) can be followed. In this way, the one-

dimensional SF theory becomes two-dimensional. More specifically, in figure 

(lc) shows a lattice as used in the 2D SF theory. In figure (lc) around a 

given point in a flat plane concentric rings are drawn. The flat layers are 

numbered z = 1,...,MZ and the cylinders are numbered R = 1,...,MR. At the 

boundary layers z = 1, z = Mz and R = MR reflecting boundary conditions are 

introduced. We note that Mz and M R are preferable chosen large enough, so that 

no significant influence of the boundaries is expected. In this way a 

virtually infinitely large system is simulated. The number of lattice sites 

from the centre in a lattice plane up to a layer R' is: 
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A(R') = TT R'2 (1) 

for each layer z. Hence, the number of lattice sites in a given ring is given 

by: 

L(R') = A(R') - A(R*-1) (2) 

The outer circumference of the ring with outer radius R' is found by 

differentiation of equation (1): 

S(R') = 2 TT R' (3) 

(in lattice units). For the modified Markov-type statistics we need step 

probabilities for going from one lattice site to a neighbouring one. We allow 

a step to go up (to lower z ) , to go down, or to stay in the layer, and 

simultaneously a step can go inwards, (to lower R ) , go outwards, or can stay 

in the same shell. We will make use of a hexagonal lattice with a co­

ordination number Z = 12. (Z is assumed constant throughout the lattice.) The 

fraction of neighbouring sites in a previous layer in the z 

direction, X_.(z) = i and a fraction of the neighbouring sites in a following 

layer A (z) = i, leaving for the fraction of neighbouring sites in the 

layer A_(z) = ^. These fractions can be considered a priori step probabilities 

to go from a given site to a neighbouring one, as they do not depend on the 

local potentials. For a step inwards or outwards the probabilities will depend 

on R. We choose these step probabilities to be proportional to the 

circumference the step is crossing: 

* - i< R , >- k - s 8F?-
X0(R') = 1 - A.^R') - X1(R') <*) 

X 1 ^ R > % L(R') 

Now a step simultaneously going up and inwards will have an a priori 

probability X , ,(z,R') = X,(z) A_,(R'). Similar equations hold for all 8 

other possible step directions. 

Special attention is required to define the boundary conditions in the 

system. As stated, reflecting boundary conditions both at layer z = 1 and z = 
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M are introduced. This is realised by assuming the exactly identical 

behaviour of layers z = 0 and z = 1 on the one side of the system, and z = M 

and z = M + 1 on the other side of the system. For each chain which partially 

steps out of the system, i.e., crosses the boundary, we expect another chain 

from outside entering the system along the same boundary. This boundary 

condition induces a symmetry-plane in the system. The boundary conditions in 

the R direction are more troublesome. At the centre R = 0 no lattice sites are 

available and the boundary condition is already specified with the step 

probabilities (no chains can leave the lattice at this side). The boundary 

between the circles MR and MR + 1 is less trivial. Again a reflecting boundary 

condition between those two layers is assumed, i.e., L(MR) = L(MR+1) and the a 

priori step probability to step out of the system at this circle is assumed to 

be the same as the a priori step probability to enter the lattice. We can 

expect errors caused by this idealised boundary conditions when density 

gradients in the R direction are present near MR. To minimise such artefacts, 

MR is preferentially chosen so large that these inhomogeneitles are absent. 

Physically, this corresponds with the assumption that the lateral 

inhomogeneities are spatially remote from each other. In terms of the 

membrane-protein interaction, the proteins or the protein clusters in the 

membrane are very dilute and do not interact with each other. 

Chain distributions in two dimensions 

The chain molecules consist of segments with ranking numbers s = l,...,r. 

The segments do not necessarily have the same physical properties. Although we 

will present results for branched lecithin-like molecules, we discuss the 

distribution of linear chains in the present section. When the chain molecules 

are branched the statistics which account for this are somewhat more involved 

[2]. To find the distribution of the chain molecules, the statistical weight 

of each individual conformation must be known. A conformation of a molecule is 

defined by the sequence of co-ordinates (z,R) where the consecutive segments 

are situated. In general, each conformation is degenerate: various spatial 

configurations can belong to the same conformation. 

A step-weighted random walk approximation is used for generating 

systematically all conformations of the chain molecules on the lattice. In 

this approximation backfolding to previous occupied lattice sites is allowed. 

The random walk approximation can be expressed in a recurrence relation, which 

"enlongates" a chain of s segments long to a chain of s+1 segments. Each step 
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in a random walk is weighed by its a priori step probability 

A , D I (z,R), but we add to the weighting the local potential field, the 
Z — Z , R —R 

segments find themselves in. This last weighting factor (also called free 

segment distribution function) is, for a given segment s, only a function of 

the position of the segment in the system: G(z,R,s). 

When a segment is in a chain it possesses 2 bonds to neighbouring 

segments. Bond 1 points towards a segment with lower ranking number and bond 2 

points to a segment with higher ranking number. End segments have only one 

bond. The bonds of segment s are indicated by subscripts. For example, s' 

indicates that segment s' has only a bond 1, implying that it is an end 

segment. We define the chain end distribution function G(z,R,s..) as the 

weighting factor for segment s in position (z,R) subject to the requirement 

that bond 1 is connected to other segments of the chain. With this chain end 

distribution function the recurrence equation can be expressed as: 

G(z,R,s ) = G(z,R,s ) I Z X (z,R) G(z\R',s') (5) 
1 z' R' - Z > K - K J-

In this equation segment s is connected with bond 1 to bond 2 of segment s' . 

Segment s is now the end of the chain. The recurrence relation is initiated at 

the first segment of the chain and as G(z,R,l.) = G(z,R,l) only the free 

segment distribution functions and the a priori step probabilities need to be 

known to calculate chain end distribution functions for each segment s at 

position (z,R). 

Scheutjens and Fleer show that by combination with the complementary 

chain end distribution functions, (the ones started at the other end of the 

chain G(z,R,s„), obtained from equation (5) by replacing scripts 1 by script 

2 ) , individual segment density profiles are obtained by a composition formula, 

which couples two chain parts: one with s segments and the other with (r-s+1) 

segments: 

((.(z.R.s) = C G(z,R,s12) = C G(z,R,s1) G(z,R,s2) / G(z,R,s) (6) 

Here the devision by G(z,R,s) is Introduced to 'correct for double counting of 

the overlapping segment and C is a normalisation constant. For given segment 

density of the molecules in the bulk A " the normalisation constant C is given 

by- C = <j> /r. Alternatively, when the total number of molecules n in the 

system is known, the normalisation constant is given by: C = n/G(r ), where 
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G(r ) = E I L(R) G(z,R,r ) is the total statistical weight to find the set of 
1 z R 1 

chains containing all possible conformations in the system and n follows from 

the volume fractions: n = E 2 E L(R) <(>(z,R,s). 

The free segment distribution functions have been derived before [2] and 

can be extended to cover the present 2D analysis. It is a Boltzmann factor 

that contains a general potential u'(z,R) independent of the segment type and 

potential contributions, which depend on the local segment densities, specific 

for a given segment type. When segment s is of type x then G(z,R,s) = Gx(z,R), 

Gx(z,R) = exp-(u,(z,R) + E X x y [<<f>y(z,R)> - fy) (7) 

Here, x and y indicate the nature of the segments (solvent is W, apolar 

segments A, polar segments B, etc.). The summation y runs over all segment 

types, x is t n e well known Flory-Huggins interaction parameter which gives 
xy 

the pair energy difference in excess of those for the pure components. 

Therefore, only dissimilar contacts (x # y) have a non-zero x value. The 

angular brackets in equation (7) indicate that a local averaging of the 

segment density profiles with the a priori probabilities is performed: 

<(f>(z,R)> = E E A , _, D(z,R) 4>(z',R') (8) 
z l R i Z Z , K -K. 

The set of equations (5,6,7) cannot be solved analytically. For the 

calculation of the segment density profiles (equation 6) all chain end 

distribution functions must be calculated (equation 5). This is only possible 

when the free segment weighting factors (equation (7)) are known, which in 

turn, depend again on the segment density profiles (equation (6). The energy 

u'(z,R) of equation (7) originates from hard core repulsion interactions of 

all segments in the lattice. Its numerical value is found from the boundary 

condition that all lattice sites are filled: E <)> (z,R) = 1 for all z and R. 

The number of u'(z,R) variables is equal to the number of boundary conditions. 

In the bulk solution u = 0. The set of implicit equations are solved by 

standard numerical methods [2]. 

The first order Markov approach as discussed above, is not very accurate 

for describing small chain molecules [2]. In principle, at least a rotational 

isomeric state scheme must be followed, which prevents the chain from direct 

backfolding. On the other hand, when several segments of the chains are 

grouped in so called statistical chain elements, this problem is also somewhat 
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relaxed. In this paper, we choose for this last approach. The larger the 

segment size, the lower the resolution of the calculations. As a compromise, a 

statistical unit is chosen to be about three CH2 segments long. Obviously, the 

energy parameters must be scaled to the segment size. 

Boundary conditions 

The reflecting boundary conditions are realised by setting: <j> (0,R) = 

* x ( 1 , R ) ' * x ( M z + 1 , R ) = M M z , R ) a n d' f ° r e x a m P l e > G(0,R,s1) = G(l,R,S l), 

G(M +l,R,s ) = G(M ,R,s.) for all R. Membranes are generated near one of the 

boundary layers. As a consequence, the membranes generated with this method 

are symmetrical with respect of their midplane. In addition to reducing 

computation time (only half the membrane has to be calculated) this boundary 

condition is also used to fix the lattice on the membrane. Translational 

freedom of the membrane in the system is not accounted for. For large 

membranes, the translational entropy can safely be neglected. Similarly, the 

inhomogeneities are restricted to the centre of the lattice (near R = 1). 

Consequently, the translational entropy, originating from the distributions of 

the inhomogeneities along the bilayer is neglected. When necessary, such 

entropy terms can be included. 

Results and discussion 

To start the analysis we first describe the segment density profiles of a 

membrane composed of lecithin molecules. Since a lecithin molecule is a 

branched chain, the following architecture is chosen: 

A - B - A 
P I (9) 

A - B - A K ' 
P I 

A - B 
q 

Here p is the number of statistical units (about 3 CH2 units long) of tail 

segments (A), and q is the number of head group units (B). Near the glycerol 

backbone the statistical units are a little unrealistic. Also, we will neither 

model any details in the head group itself, nor increase the volume of the CH3 

end groups. Water is modelled as monomers which are as large as the 

(statistical) units of the chain molecules. 

Figure (2) shows the segment density profile of an equilibrium membrane 

(i.e., with a vanishing surface tension) made of lecithin molecules (p = 6 and 

q = 2) in a one-dimensional analysis. The Flory-Huggins parameters are chosen 
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Figure 2. 

Segment density profiles through a cross section of a membrane composed of 

lecithin molecules (p = 6, q = 2). The equilibrium concentration is 1.6 

10-^, and the excess free energy is zero. The energy parameters are: 

= 3, -0.5, XAW ' XBW ' XAB 
W represents the water molecules. 

2.8 where A is an apolar, B a polar segment and 

in order to mimic a lecithin with 16 CH2 t a l 1 segments, for which the RIS-

scheme calculations have been worked out before [2]. The equilibrium volume 

fractions of lipids in the bulk solution is 1.6 10~°. In the following 

calculations where additives are put into the system, this equilibrium 

concentration is established as good as possible. 

The very unfavourable tail segment-water contact causes the centre of the 

membrane to be almost free of water (see figure (2)). Further, the segment 

density profiles show rather broad distributions indicating that the chains do 

have a considerable amount of conformational entropy. 

Trans-membrane configuration 

One copolymer molecule in the bilayer 

The copolymer molecule is modelled by a chain with apolar A' and polar B' 

segments. The prime indicates that the segment belongs to the copolymer. A and 

A' are chemically different, but of similar polarity. Like B, the polar 

segments B' are water soluble, but there might be some repulsion between B' 

and B. We have chosen for a linear copolymer molecule symmetrical with respect 

to the middle segments. So the two ends will have inverted sequences of polar 

and apolar segments. Since the present calculations are only meant to be an 

illustration of a trans-membrane configuration rather than an exhaustive 
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Figure 3. 

Segment density profiles through a cross section of the copolymer given in 

equation (10) left to itself in a homogeneous solution. The energy 

parameters are xA,w = 2.7, Xß,w = -0.5, xA-B. = 2.8. 

a) Apolar segments A', b) polar segments B'. 

analysis, we choose arbitrarily a specific copolymer. The copolymer (a "model-

protein") has 200 units with a fraction of 0.36 polar segment: 

(B'-A:-B'-A' -B*-A' -B'-A' -B ' -A ' -B ' ]„ 
*• 6 8 6 16 6 16 6 16 6 8 6;2 

(10) 

Figure 4. 

2D segment density profiles for the interaction between the membrane given 

in figure (2) and the "protein" given in figure (3). Additional energy 

parameters: x M . 0.8, *BB' = °' XAB' *BA 
, = 2. The copolymer 

molecule is put in the centre of the lattice. The lattice layers are 

numbered arbitrarily. Where expedient, one quarter of the figure is cut 

out of the profiles to show details of the behaviour in the centre. For 

this quarter the iso-cj>-lines are plotted. 

a) Upper plane: artist's view. Lower plane: lso-i(>u -lines, b) solvent 

profiles, c) apolar segments of the lipid molecules, d) polar segments of 

the lipid molecules, e) apolar segments of the copolymer molecule, 

f) polar segments of the copolymer molecule. 
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Figure (3) shows the segment density profiles of this polymer molecule in a 

homogeneous solution. Such segment density profiles are two-dimensional. The 

layers and rings are renumbered, so the centre of the lattice is not at (R,M) 

= (0.5,0.5) but at (10.5,10.5). To minimise the number of apolar-water 

contacts, the molecule assumes a collapsed configuration, as one can see from 

figure (3) the configuration is globular. Note that the molecule is not forced 

into that globular structure. It could for example also have chosen for a rod­

like configuration and, in fact, molecules of other composition might prefer 

that. 

In figure (4) this copolymer molecule is built into the membrane. 

Clearly, the chain molecule has rearranged its segments with the polar ones 

now on both sides of the membrane. At the boundaries of the system, i.e., near 

R = 0 and R = 20, the membrane has its unperturbed shape, but near the lattice 

centre the segment profiles of the membrane are disturbed. Even at the 

midpoint, where the density of the perturbing molecule is very high, some 

lipid tails are present. Most energetic interactions of the polar and apolar 

segments of the two type of molecules are chosen similar. The most sensitive 

parameter for this distribution is the interaction between the apolar tails of 

the lipid molecules and the apolar segments of the copolymer. To obtain a 

compact segment density of the copolymer in the heart of the membrane, this 

interaction must be repulsive. In the present case XAA' = 0*8- Since the guest 

molecule is not of extremely high molecular weight, the profiles of the 

copolymer and the lipid tails do overlap. A lower value for xAAi would 

increase this overlap and eventually the copolymer would dissolve in the 

centre of the membrane and form a more or less "random" coil. A much higher 

value would increase the separation between the two types of apolar segments. 

We also generated (not shown) this type of membrane-copolymer structures and 

found that they only existed when the membrane was short of lipids per surface 

area (i.e., the membrane was not in full equilibrium). When in this case more 

lipids were offered to the membrane the copolymer was pushed out of the 

membrane. This indicates that very large deviations in membrane properties 

cannot exist in the boundary layers as long as the membrane is in equilibrium. 

Other parameters can also be relevant for the incorporation of a 

copolymer in the membrane. The polar-apolar xAB> XAiB> XABi a n d XA>Bi 

interactions, inherent in the problem because of the architecture of the 

amphiphilic molecules, can shift the position of the central molecule when 

variations in interactions are introduced. Further, it is assumed that the two 

polar segment mix ideal y . = 0. 
DJ5 
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Figure 5. 

Segment density profiles through a cross section of the copolymer given in 

equation (11), left to itself in a homogeneous solution. Energy parameters 

as in figure (3). a) Apolar segments, b) polar segments. 

Cluster of four copolymer molecules in the bilayer 

As a second example of membrane-copolymer interaction, we show the 

incorporation of a more polar chain molecule with a fraction 0.52 of B' 

segments and the following arbitrary segment sequence: 

fBIo-AZ-B6-Aio-B5-A5-B5-Aî 10 B5-A5-B5-Ai0 • B 6 - A 4 - B ; O ) 2 
(11) 

In comparison with figure (3) one can see, that this molecule is more 

hydrophilic: it has more polar parts and it does not have long apolar parts. 

In figure (5) the segment density profiles of a free molecule are indicated. 

Also in this case the structure is almost globular. Due to its longer polar 

parts this copolymer molecule has significantly different segment profiles 

than the one shown in figure (3). 

Since this molecule is much more polar, we cannot expect the copolymer to 

go into the membrane as easily as in our previous example. Adsorption of the 

copolymer onto the membrane is more likely. As our membranes are symmetrical, 

adsorption should only occur at both sides to the same extend. When the chain 

molecule pushes some head groups of the lipids apart, it is rather difficult, 

perhaps impossible, for the lipids to fill up the membrane between the 
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Figure 6. 

2D segment density profiles of the interaction between four copolymers 

given in figure (5) and the membrane given in figure (2). The additional 

interaction parameters are: xAA. = °-7> XABi " XA.B =
 2-8> XBBi = °-5-

o 

The equilibrium concentration of the lipids is in this case 1.8 10 °. 

a. Upper plane: artist's view. Lower plane: iso-if>u -lines, b) solvent 

profiles, c) apolar segments of the lipid molecules, d) polar segments of 

the lipid molecules, e) apolar segments of the four copolymer molecules, 

f) polar segments of the four copolymer molecules. 

sandwich formed by the copolymers. This explains why we were unable to find a 

thermodynamically stable situation when a single copolymer molecule was put in 

the membrane. Surprisingly, we observed a very remarkable structure when four 

copolymer molecules were put together in the lipid membrane. Figure (6) gives 

the segment distributions for this situation. As can be seen, a cluster of 

four molecules did arrange themselves in the lipid membrane, with a clear pore 

in the centre. We do not claim that this structure is the only 

(thermodynamically) stable one, for when the solution would have been more 

dilute, it might have been possible for the copolymer molecules to leave the 

lipid bilayer. Alternatively another cluster with three or five copolymer 

molecules could have been more favourable but we have not investigated this 

possibility. As in our first example, we have introduced a repulsion between 

the apolar segments of the copolymer and the lipid tails xAAi = 0 . 7 . Now, we 

also have a repulsion between the two types of polar segments v = 0.5. This 
BB 

repulsion did also contribute to the partitioning between the polar segments 

of the lipid head groups and the probe as was found in this example. When the 

apolar segments would mix better, the four copolymers would feel even more at 

home at their present position. The hydrophilic heart of the aggregate shows 

that proteins can form hydrophilic pores through which transport of polar 

molecules may occur. 

In many experimental studies on membrane protein interaction, rather high 

protein/llpid ratios are encountered. Our second example may therefore be 

relevant for these studies. 

Lateral phase separation 

Figure (7) shows the segment density profiles of a homogeneous membrane 

composed of of lecithin molecules of p' = 7 apolar and q' = 3 polar segments. 
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For this membrane the excess free energy is zero and the equilibrium lipid 

volume fraction in the solution is: 8.6 10 . In comparison with the segment 

density profiles given in figure (2), this membrane is slightly thicker 

because the apolar tails of the lipids are one unit longer. Therefore, also 

the equilibrium bulk volume fraction is lower. 

layer z 

Figure 7. 

Segment density profiles of a cross section through a homogeneous membrane 

composed of lecithin molecules with p' = 7 and q' = 3. Interaction 

parameters as in figure (2). 

Figure (8) shows the 2D segment density profiles of the two lipid 

molecules (p' = 7, q' = 3 mixed with p = 6, q = 2) in one system. In this case 

(10.5,14.5) is the centre of the lattice. We assigned a repulsion between the 

two apolar segments of xA Ai = 0 . 5 and a stronger repulsion between segments of 

the two head groups: xD„i = !• These repulsions cause a lateral phase 

separation. Studying the segment density profiles reveals that in the boundary 

area the concentration of solvent is slightly higher than in either of the two 

homogeneous membrane phases. This is caused by the fact that the two molecules 

Figure 8. 

2D segment density profiles of two nonmixing lipid molecules given in 

figure (2) (p = 6, q = 2) and figure (7) (p' = 7, q' = 3 ) . The additional 

energy parameters are: xAAi = 0.5, xRRi " !• a ) Upper plane: artistic 

view. Lower plane: iso-<j> -lines., b) solvent profiles, c) apolar segments 

p = 6, d) polar segments q 

segments q' = 3. 

2, e) apolar segments p' = 7, f) polar 
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avoid each other, and thus the water molecules enter to fill the space. High 

solvent concentrations are, however, not found in the interfacial region 

between the two lipids. The energetic effect of exposing tails to water is so 

unfavourable that the tails do fill up most of the space. There are no 

indications of membrane rupture, and one has to go to very extreme situations 

to find an interfacial region in which the water concentration is high. 

Conclusions 

We have extended the theory for the statistical mechanics of amphiphilic 

molecules in associates to include inhomogeneities in two directions. Two 

examples of membrane-copolymer interactions are discussed. In the former 

example a trans-membrane copolymer was shown. In the second example a cluster 

of four polymers in the lipid membrane was studied. In the latter case, the 

four molecules formed a pore, through which transport of hydrophilic molecules 

is possible. The copolymers dramatically changed their conformation in the 

membrane with respect to the same in the aqueous solution. 

We also studied the lateral phase separation between two different lipids 

in a membrane. The boundary layer between the two lipid phases was found to be 

as hydrophobic as in either phase. 

The present theory is specifically useful for systems which are 

characterised by inhomogeneities in interfaces such as: adsorption of chain 

molecules on heterogeneous surfaces, surfactant adsorption (hemimicelles), 

reversed micelles in membranes, etc.. Further it is possible to improve the 

present theory in various respects. One could think of correcting for the 

backfolding by incorporation of the rotational isomeric state scheme [2] and 

accounting for an anisotropic orientational molecular field [7] to improve on 

the correction for the excluded volume of the other chains. 
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List of most important symbols 

A Free energy; Subscript, indicating an apolar segment type. 

Ag Surface area. 

A a Excess free energy. 

B Subscript, indicating a polar segment type. 

b Superscript, indicating the bulk solution 

C Normalisation constant. 

c Superscript, indicating a given conformation 

CMC Critical Micelle (Micellisation) Concentration. 

e",f",g",h" Orientations in the tetrahedal lattice. Each orientation has 

two opposite directions, for example, e" includes e and e'. 

Gx(z) Free segment weighting factor for segments of type x in layer z. 

G(z,s) Free segment weighting factor for segment s in layer z. 

G(z,s^) Chain end distribution function of the chain part attached to 

segment s by bond 1. 

G(z,s^2) Distribution function of segment s with chain parts at two of 

its bonds (1 and 2). 
aß 

G(z,s.^) Segment distribution function with chain parts at two bonds: 

bond 1 in direction a and bond 2 in direction $. 

G (zllz') Anisotropic weighting factor for a bond in orientation 

a" between layers z and z'. 

G' Segment distribution function with curvature corrections, 

h Length of a cylinder in units of lattice sites, 

i Index of molecule type: i = 1 (water), 2 (amphiphile), 3 

(additive), 

k Boltzmann's constant. 

L(z) Number of lattice sites in layer z. 

M A layer number in the bulk solution, 

n Number of chain molecules in the system. 

n C Number of chains in conformation c. 

n(z) Number of segments in layer z. 

n8 Number of gauche bonds. 
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n a (zllz') Number of bonds in orientation a" between layers z and z'. 

Pv(z) Vacancy probability in layer z. 

p Number of apolar segments per tail in the amphiphilic chain. 

Q Canonical partition function. 

Q 8 Canonical partition function for gauche configurations. 

q Number of polar head group segments in the amphiphilic chain. 

R Radial direction in the cylindrical co-ordinate system; Index 

for circle numbers. 

Rjj Radius of a disk, 

r Number of monomers in a chain. 

r y £ Number of segments y in molecule i. 

r" (zllz') Number of bonds molecule i has in orientation o" between layers 

z and z'. 

S(s) Segment order parameter. 

S(z) Contact area between layers z and z-1 in units of lattice areas, 

s Index indicating the segment number. 

T Absolute temperature. 

U Energy of the system. 

U^ Energy difference between a gauche and a trans configuration. 

u"(z) Hard core potential with respect to the pure reference state. 

u'(z) Hard core potential in layer z with respect to the bulk 

solution. 

ux(z) Potential of segment type x in layer z. 

u c Potential of a conformation c. 

V(z) Volume from layer 1 up to layer z in units of lattice sites. 

Vs Volume of a subsystem, available per association colloid. 

W Subscript indicating water (segment type). 

x,y Subscript, indicating segment type. 

Z Co-ordination number of the lattice, 

z Direction into which inhomogeneities are present; Index for 

layer numbers. 

a"»ß">Y">6" Index for bond orientations in the lattice. Each orientation can 

be divided into two opposite directions indicated by, for 

example, a and a'• 

Y Interfacial tension. 

8 Amount of molecules in the system in equivalent monolayers. 
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X^ Probability of finding three successive bonds in a gauche 

configuration. 

X Probability of finding three successive bonds in a trans 

configuration. 

X , (z) Fraction of neighbours a site in layer z has in layer z'. 
z z 

X Fraction of segment orientations in aB direction. 

X^ Weighting factor for a chain i in conformation c. 

Xa Weighting factor for a a"-ß"-Y" configuration (gauche or trans). 
g t 

X , A A priori probability for a gauche and trans configuration 

respectively, 

o Superscript, indicating excess with respect of bulk solution. 

V Chemical potential. 

E Grand canonical partition function. 

*(s) Angle between the normal of the bilayer and the orientation of 

segment s. 

iji Volume fraction of segments of type x. 

cj>(z,s) Volume fraction of segment s in layer z. 

<|> Overall volume fraction in the system. 

<((>(z)> Weighted average of the volume fraction <j> over three layers z-1, 

z, and z+1. 

X Flory-Huggins interaction parameter. 

fl Combinatory factor. 

(o Degeneracy of a conformation c. 

* Superscript, indicating a reference state of a pure, one 

component, system. 
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Summary 

The aim of the present study was to unravel the general equilibrium 

physical properties of lipid bilayer membranes. We consider four major 

questions: 

1. What determines the morphology of the association colloids (micelles, 

membranes, vesicles) in general? 

2. Do the apolar tails of the lipids in the bilayer organise themselves more 

like matches in a box or rather like hot spaghetti in a pan? 

3. How does this membrane organisation depend on temperature? 

4. How do additives like surfactants or polymers interact with the bilayer? 

These four questions cover a wide range of topics currently subject to 

intensive research. Each one of them calls for a rigorous answer. We believed 

that it would be possible to design one single theory covering the whole 

field. The development of such a theory is undertaken in the present thesis. 

Recently, the statistical thermodynamics of homopolymers at interfaces 

has been worked out by Scheutjens and Fleer (SF). This theory is an extension 

of the Flory Huggins (FH) theory for polymers in solution in the sense that it 

allows for inhomogeneities in one dimension. In the other two dimensions a 

mean field, i.e., an average segment density, assumption is applied. One of 

the strong points of this theory is that, by using a Markov-type 

approximation, all possible conformations of the chains are considered with a 

minimum of computational effort. The SF theory can be extended to describe 

copolymers at interfaces. 

For well-chosen amphipolar molecules the theory is able to deal with 

local phase separation phenomena. Preliminary calculations on surfactant 

bilayers showed that the SF theory needed some modifications in order to be 

relevant to the four topics given above. The main reason for this is that for 

the very small surfactant molecules the Markov-type approximation is not very 

accurate. Five extensions of the theory are presented in this thesis: 

1. For the chain statistics the Markov-type approximation is extended to the 

so called rotational isomeric state scheme. This scheme prevents 

backfolding in chain sections of five consecutive segments. The 
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improvement allowed us to adjust the stiffness of the chain as a function 

of temperature. 

2. The theory is generalised for arbitrary geometries. With this extension 

the polymorphism of association colloids could be studied. 

3. The theory is extended to account for branched chain molecules. This has 

been used to simulate lipid molecules with two apolar tails and one polar 

head group. 

4. In the SF theory the statistical weight of each conformation is found by 

Boltzmann statistics. The potential of each conformation depends on 

segment-segment interactions, hard core contact potentials, and the number 

of gauche bonds in the chain. A new weighting factor is introduced which 

accounts for the average orientation of the molecules. The statistical 

weight of a conformation is increased when its bond directions match with 

those of the surrounding molecules- With this molecular orientâtional 

field co-operative phenomena like crystallisation can be studied. 

5. Allowing for inhomogeneities in two dimensions enables us to study 

membrane-"protein" interactions. 

The properties of the theory with these new features are thoroughly examined 

in five chapters. A short summary of the results and main conclusions of each 

chapter is given below. 

Chapter 1 dealt with the morphology of association colloids. In this 

chapter we prove that the formation of micelles is a first order transition. 

However, the theoretical critical micelle concentration is not observed very 

sharply, because it is very low. We showed that, with increasing concentration 

of bipolar molecules, the micelles first grow and eventually change their 

shapes. Lecithin-like molecules prefer lamellar aggregates over globular ones. 

In chapter 2 the rotational isomeric state scheme is presented and 

details of the statistics of branched chain molecules is given. We present an 

overview of the behaviour of the membranes as a function of the four energy 

parameters. There is no need to restrict the molecules to pre-assigned 

positions in the system. The membrane thickness adjusts itself. The 

equilibrium membrane is free of tension. Its excess free energy per surface 

area is very small. When fluctuations and long range Van der Waals attractions 

are neglected the excess free energy is essentially zero. 
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Vesicle systems are studied in chapter 3. We show that the excess free 

energy of curvature per vesicle is constant for vesicles composed of one type 

of lipid, irrespective of the radius of the vesicle. This remains true for bi-

lamellar and hence for multilamellar vesicles. We show that as a rule, the 

thicker a membrane is the more energy it costs to bend it. Adding surfactants 

to a system containing vesicle is disastrous for the vesicle structures. 

Increasing the surfactant/lipid ratio causes the vesicles to brake up in 

micelles. When vesicles are formed by two compatible lipid molecules, the free 

energy of curvature varies linearly with their composition. If the two bipolar 

molecules do not mix, they partition themselves over the two membrane sides 

and the excess free energy of curvature shows, at constant vesicle radius, a 

minimum as a function of composition. For a given composition the vesicle 

adopts an optimal vesicle radius. 

The membrane structure predicted by the theory significantly improves 

when the orientational dependent molecular field is applied. We derive the 

partition function for this SCAF (Self-Consistent Anisotropic Field) theory in 

chapter 4. Among other things, the order parameter profiles now show the well 

known plateau along the lipid tails. In agreement with experiments, we find a 

first order phase transition which transforms the membrane from a high 

temperature liquid into a low temperature gel state. In the gel phase the 

lipid tails are virtually in a all trans conformation. Because of this, the 

density in the gel membrane is higher than in the liquid phase. For the model 

membrane we observed two possible gel phases. One gel phase was about twice as 

thick as the other. The thin, intercalated, gel membrane was found in the case 

that the membranes were isolated, i.e., when they did not interact with each 

other, while the other gel phase, obviously with non-intercalated membranes, 

was found in the concentrated regime. 

In the final chapter we studied two cases of the interaction of long 

copolymers ("proteins") with a model membrane. In the first example the 

molecule is in a trans membrane configuration. In the second example a group 

of four molecules is clustered together and forms a hydrophilic pore, through 

which polar molecules can pass the membrane. In this chapter we also study the 

boundary region between two areas of lipid molecules which do not mix (lateral 

phase separation). It is characteristic for membrane system, that the lipids 

in the membrane are very efficient in camouflaging the inhomogeneities in the 
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boundary layers. No big differences in solvent profiles are observed along the 

boundary layers. This ability of the lipid molecules to compensate 

irregularities explains why membranes are not easily disrupted. 

It is the first time that a statistical thermodynamical theory is 

presented that can deal with association phenomena without the requirement to 

fix the head groups to pre-assigned positions. We showed that this theory does 

give a very detailed insight into equilibrium membrane properties. The 

correspondence with experimental data is satisfactory. The theory can be 

easily extended to incorporate more details in the calculations and better 

quantitative agreement with experimental data is well feasible. 
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Samenvatting 

Niet alle stoffen lossen op in water. Wanneer we olie en water proberen 

te mengen kunnen we in het beste geval een emulsie maken. Een emulsie is een 

oplossing van waterdruppeltjes in olie of van oliedruppeltjes in water. Deze 

oplossing is instabiel en ontmengt in een water- en olielaag. Dit verschijnsel 

noemen we fasescheiding. 

Stoffen die mengen met water, zoals alcohol, noemen we hydrofiel en 

stoffen die niet in water oplossen worden hydrofoob genoemd. Koolwaterstoffen 

behoren tot de laatste categorie. Methaan, ethaan en propaan zijn gasvormig 

onder normale omstandigheden en lossen slecht op in water. Koolwaterstoffen 

met een hoger moleculair gewicht zoals octaan, nonaan en decaan, zijn 

vloeistoffen en lossen nauwelijks op in water. Olie bestaat voor een groot 

gedeelte uit koolwaterstoffen met een vrij hoog moleculair gewicht. (In feite 

is de term "olie" vaak gebruikt als een verzamelnaam waarmee wateronmengbare 

vloeistoffen worden aangeduid.) Een alcohol molecuul bestaat uit een ethaan 

deel waaraan een polaire hydroxyl groep is gehecht. De invloed van de hydroxy1 

groep is zo groot dat het molecuul in zijn geheel hydrofiel is. 

Om een molecuul met een groter koolwaterstofdeel oplosbaar te houden is 

één klein hydrofiel groepje niet voldoende. Laten we bijvoorbeeld decaan 

chemisch veranderen door aan een van de einden een polaire groep te hechten. 

Dan ontstaat er een molecuul met een apolaire "staart" en een polaire "kop". 

Het molecuul is amfifiel. De ervaring leert dat amflfiele moleculen wel in 

water oplosbaar zijn, niet als afzonderlijke moleculen, maar in groepjes 

tegelijk. Deze groepjes worden micellen of associatie-kolloi'den genoemd. 

Micellen kunnen allerlei vormen aannemen. Onafhankelijk van de micelvorm 

treffen we de koppen aan in het grensvlak tussen het apolaire staartengebied 

en de waterfase. De grootte en de vorm van deze associatie-kollolden, de 

manier waarop de moleculen in de micellen zitten, en of er al of niet water in 

een micel zit, wordt bepaald door de energie- en entropiebalans in het 

systeem. Dit betekent dat de moleculen zoeken naar een evenwicht tussen de 

drang om zich te organiseren om ongunstige energetische interacties te 

ontlopen en de drang om zich zo wanordelijk mogelijk te verspreiden. Het is 
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Figuur 1. 

Een model van het llpidemolecuul Dipalmitoylphosphatidylcholine. 

goed om nu al vast op te merken dat een relatief kleine variatie in 

omstandigheden de eigenschappen van de micellen sterk kan veranderen. Zo'n 

verstoring kan onder andere tot stand gebracht worden door concentratie­

veranderingen, temperatuursveranderingen en variaties in de verhouding 

polair/apolair in het amfifiele molecuul. Bolvormige micellen bevatten vaak 50 

tot 100 amfifiele moleculen. Een veel groter aggregatiegetal wordt 

aangetroffen bij vlakke platte micellen, die door hun structuur ook wel 

bilagen worden genoemd. Ze staan echter beter bekend als membranen. In 

biologische systemen worden membranen gevormd door lipide moleculen welke over 

het algemeen twee apolaire staarten en éên polaire kop bezitten. Figuur (1) 

geeft een voorbeeld van een (fosfo)lipide molecuul. 

Membranen zijn essentieel voor het leven. Door hun vlakke structuur maken 

ze de compartimentalisatie mogelijk van levend materiaal. Ze zijn selectief 

doorlatend (semipermeabel): sommige stoffen mogen het membraan vrij passeren 

terwijl andere moleculen worden tegengehouden. Op deze manier voorkomen ze dat 

de inhoud van de cel zich mengt met de omgeving. We komen niet alleen 

membranen tegen in de wand van de cel maar ook in de cel zelf. Organellen 

zoals de kern, mitochondrion, liposomen, chloroplasten hebben een membraan 

omhulsel en bezitten op hun beurt weer membranen. De meeste membranen bevatten 

naast lipiden ook een groot aantal eiwitten. Het eiwitmolecuul zoekt een 
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plaats in het membraan zodat het zijn funktie goed kan uitoefenen, dit kan 

variëren van losjes geadsorbeerd aan de buitenkant tot vast verankerd in de 

lipid-matrix. Verder, en dit maakt membraansystemen nog ingewikkelder, worden 

niet alleen enkelvoudige membranen, maar ook vaak dubbele membranen en zelfs 

multilaag membranen waargenomen. We geven enkele voorbeelden: een myéline 

schede om een axon van een zenuwcel bestaat uit diverse membranen en in 

chloroplasten zijn grana stapels (geaggregeerde membranen) in evenwicht met 

stroma lamellen (niet geaggregeerde membranen), in mitochondriën zijn twee 

membranen op elkaar geadsorbeerd. In al deze voorbeelden speelt de membraan­

membraan interactie een belangrijke rol voor het biologisch functioneren. 

Membranen komen niet alleen voor in cellen. Ook bepaalde virussen, zoals 

het retrovirus dat AIDS veroorzaakt, bevat een omhullend membraan, waarin 

viruseiwitten zijn ingebed. 

Het is eigen aan de natuur van de mens om zijn inzichten, ontleend aan 

bestudering van natuurlijke processen, te gebruiken in zijn eigen voordeel. 

Opnieuw enkele voorbeelden ter illustratie. Kennis van membraaneigenschappen 

kan helpen bij de ontwikkeling van geneesmiddelen, gewasbeschermingsmiddelen, 

enzovoorts. Vesikels (gesloten membranen) worden gebruikt om kunstmatige 

chloroplasten te maken, die inzichten moeten opleveren om de fotosynthese 

beter te begrijpen. Een interessante ontwikkeling is de toepassing van 

liposomen om geneesmiddelen in te sluiten. Deze liposomen worden ontwikkeld om 

gecontroleerde afgifte van het geneesmiddel op een gewenste plek in het 

menselijk lichaam mogelijk te maken. 

Veel van deze toepassingen van membranen staan nog in de kinderschoenen. 

Een verdere ontwikkeling zou geholpen zijn met een gedetailleerd inzicht in de 

structuur van het membraan en in de factoren die de membraanstructuur 

beïnvloeden. 

Experimenteel onderzoek aan de lipidematrix heeft al veel eigenschappen 

aan het licht gebracht: 

- het hydrofobe binnenste van het membraan bevat vrijwel geen water. 

- de dikte van het membraan is ruwweg twee keer de lengte van de gestrekte 

lipidestaart. 

de moleculen in het membraan zijn zeer geordend. 

de beweeglijkheid van de lipiden in het vlak van het membraan is groot, 

terwijl het omtuimelen van de moleculen van de ene naar de andere kant van 

het membraan zeer traag verloopt. Het membraan heeft dus zowel vloeistof-

als vastestof eigenschappen. 
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Figuur 2. 

Een tweedimensionale doorsnede van een membraanstructuur welke opgebouwd 

is uit amfifiele moleculen bestaande uit één kopsegment en negen staart-

segmenten. De driehoekjes zijn watermoleculen. In deze structuur is een 

hoge mate van ordening aanwezig. 

- membranen bezitten een fasenovergang bij een gegeven temperatuur. Bij hoge 

temperatuur zijn ze vloeibaar en bij lage temperatuur gel-achtig. De 

vloeibare fase is biologisch actief. 

Men illustreert deze eigenschappen vaak met een plaatje als figuur (2). De 

staarten zijn zeer geordend en de kopgroepen zitten keurig in hetzelfde vlak. 

Het is bekend dat deze weergave een versimpeling van de realiteit is, doch 

vele experimenten suggereren dat het plaatje nog niet zo ver van de realiteit 

af zit. Begrijpen we waarom een membraan zo'n structuur bezit? Waarom bestaat 

er zo'n ongunstige organisatiegraad? Is een membraanstructuur zoals geschetst 

in figuur (3) niet veel gunstiger? Immers, in figuur (3) bestaat duidelijk een 

lagere organisatiegraad dan in figuur (2) terwijl er maar een beperkt aantal 

ongunstige staart-water contacten zijn bijgekomen. Het is een van de doelen 

van dit proefschrift om hier duidelijkheid in te brengen. 

De methode die hiervoor gebruikt is staat bekend als de statistische 

thermodynamica. Op dit gebied zijn de laaste tien jaar grote vorderingen 

gemaakt, mede omdat de computer ons een flink deel van het rekenwerk uit 

handen heeft kunnen nemen. De theorie van Scheutjens en Fleer voor de 

beschrijving van ketenmoleculen in grensvlakken [1] heeft diverse 

aanknopingspunten gegeven voor het ontwikkelen van een nieuwe theorie waarmee 

de associatie van lipiden tot membraanachtige structuren bestudeerd kan worden 

[2]. Deze theorie wordt in dit proefschrift op diverse punten aangepast zodat 
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Figuur 3. 

Zie voor een toelichting figuur 2. Nu is in de membraanstructuur duidelijk 

meer wanorde aangebracht. 

een beter beschrijving van lipidmembranen mogelijk wordt. 

In het volgende zullen kort de inhoud en de belangrijkste conclusies van 

de technische hoofdstukken de revu passeren. 

In hoofdstuk 1 zijn de factoren bestudeerd die de micelvorm en -grootte 

bepalen. Bewezen is dat de vorming van de eerste micellen plaats vindt bij een 

kritische concentratie en dat de eerste micellen bolvormig zijn. Door 

verhoging van de concentratie van de amfifiele moleculen neemt de concentratie 

van micellen toe, de micellen worden groter en veranderen van vorm. Een 

uitgesproken vormverandering treedt op in een oplossing van lipidemoleculen. 

Een micel groeit dan uit tot een membraan. 

In hoofdstuk 2 wordt de zogenaamde "rotational isomeric state" 

geintroduceerd, waarmee de statistiek van de ketenconformaties wordt 

uitgevoerd. Met deze toevoeging aan de theorie wordt het membraansysteem 

uitvoerig doorgelicht. De gevoeligheid van een aantal membraaneigenschappen 

voor aanpasbare parameters wordt bekeken. De evenwichtsstructuur, zo wordt 

beredeneerd, staat niet onder spanning. Zou dit wel het geval geweest zijn, 

dan had het membraan zijn oppervlak en dus ook zijn dikte aangepast totdat 

deze spanning zou zijn verdwenen. Het blijkt echter dat de theoretisch 

gevonden membraanstructuur nog vrij ver afwijkt van de experimenteel gevonden 

structuur. 
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In het derde hoofdstuk zijn vesikels beschreven. Vesikels, gekromde 

membranen, dus membranen zonder rand, zijn vooral voor experimentele systemen 

van belang. Om de vesikels te beschrijven is de theorie uitgebreid voor 

gekromde geometrieën. (In hoofdstuk 1 werd hier ook al gebruik van gemaakt.) 

Vesikels opgebouwd uit één soort lipiden vertonen de neiging steeds verder te 

groeien, ze zijn termodynamische instabiel. Wanneer vesikels gevormd worden 

door twee of meer soorten lipiden, en vooral indien deze elkaar niet zo mogen, 

zal de binnenkant van het vesikelmembraan bevolkt worden door voornamelijk de 

ene soort lipiden en de buitenkant door de andere soort. Onder deze speciale 

omstandigheden kunnen vesikels thermodynamische stabiel zijn. 

Wordt aan oplossing met vesikel een groot aantal amfifiel moleculen toegevoegd 

die graag micellen vormen, kan het vesikelsysteem volledig overgaan in een 

micelsysteem. Verder hebben de berekeningen aangetoond dat het meer energie 

kost om dikke membranen te krommen tot vesikels dan dunne membranen. 

In hoofdstuk 4 is wederom de theorie van een nieuw jasje voorzien. Het 

doel is om de zogenaamde co-operatieve gel-eigenschappen van de membranen te 

beschrijven. Met deze toevoeging aan de theorie worden aanmerkelijk betere 

membraanstructuren verkregen, die veel beter aansluiten bij literatuur­

gegevens. Nu wordt ook begrepen waarom de orde in de membranen zo hoog is. Dit 

komt door het grote ruimtegebrek waarin de moleculen hun conformaties moeten 

zoeken. De verbetering in de theorie wordt aangegrepen om het fasengedrag van 

membranen te bestuderen. Hier voorspelt de theorie, in overeenstemming met 

experimentele gegevens, dat het membraan kan overgaan van een vloeibare 

toestand (bij hoge temperatuur) naar een gel-achtige toestand (bij lage 

temperatuur). In tegenstelling tot in het vloeibare membraan liggen de 

lipidestaarten in het gel-membraan in een gestrekte conformatie. Hierdoor 

pakken de lipiden beter en wordt de dichtheid in het membraan groter. Er 

worden twee gelfasen gevonden. Het opmerkelijkste verschil tussen deze twee 

gelfasen is dat de membranen in de ene fase bijna twee maal zo dik zijn dan in 

de andere. In dit laaste geval blijken de staarten van de lipiden in elkaar te 

steken zoals je twee kammen in elkaar kunt schuiven. 

In het vijfde en laatste hoofdstuk is een eerste stap gemaakt naar de 

beschrijving van biologisch interessantere systemen. Getracht is om de 

interactie van grote copolymeren ("eiwitten") met modelmembranen te 

bestuderen. Om dit te verwezenlijken is de theorie voorzien van de 
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mogelijkheid om in twee richtingen concentratieveranderingen waar te kunnen 

nemen. Twee variaties op het thema membraan-copolymeer interacties zijn 

gegeven. Het eerste voorbeeld illustreert hoe een copolymeer in een trans­

membraan configuratie plaats kan nemen. In het tweede voorbeeld wordt de 

associatie van vier copolymeermoleculen in het membraan bestudeerd. Deze vier 

moleculen laten een porie open waardoor hydrofiele moleculen zich vrij 

makkelijk een weg kunnen banen. Het laatste onderwerp dat in dit hoofdstuk ter 

sprake wordt gebracht is de laterale fasescheiding van twee soorten lipiden in 

een membraan. 

In al deze gevallen is gebleken dat inhomogenitelten in het membraan door 

de lipidemoleculen in de grenslaag zeer efficient worden gecamoufleerd. Dit 

aanpassingsvermogen verklaart waarom membranen niet zo gemakkelijk 

"lekgeprikt" kunnen worden. 

Als samenvattende conclusie mogen we stellen dat we er in geslaagd zijn 

een algemene membraantheorie te ontwikkelen. We hebben deze theorie toegepast 

op diverse membraansystemen. Zo begrijpen we nu waarom lipiden in een membraan 

zich meer ordenen als lucifers in een doosje dan als gekookte spaghetti in een 

pan. Over het algemeen is de kwalitatieve overeenkomst met experimentele 

gegevens goed. Door het verder uitbouwen van de theorie zal naar verwachting 

een kwantitatieve overeenstemming met experimenten in de toekomst mogelijk 

zijn. 

[1] J.M.H.M. Scheutjens en G.J. Fleer; "Statistical Theory of the Adsorption 

of Interacting Chain Molecules." 

1. "Partition Function, Segment Density Distribution, and Adsorption 

Isotherms". J.Phys.Chem. 83 (1979) 1619. 

2. "Train, Loop, and Tail Size Distribution", J.Phys.Chem. 84 (1980) 178. 

[2] F.A.M. Leermakers, J.M.H.M. Scheutjens en J. Lyklema; "On the Statistical 

Thermodynamics of Membrane Formation", Biophys. Chem. 18 (1983) 353. 
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Nawoord 

Vier jaar lang heb ik onderzoek mogen doen op een vakgebied waarvoor ik 

al vroeg in mijn studie interessen kreeg. Deze periode wordt nu afgesloten met 

dit proefschrift. Ten onrechte staat alleen mijn naam op de kaft van dit 

boekje. Velen hebben aan de totstandkoming ervan bijgedragen. Enkelen van hen 

wil ik uit de anoniemiteit lichten om hun bijdragen, onder dankzegging, te 

vermelden. 

Er is één persoon die zich bij uitstek heeft ingezet voor het slagen van 

dit onderzoek. Als leermeester trad hij op de voorgrond en als begeleider liet 

hij ruim baan voor persoonlijke initiatieven. In vele (langdurige) discussies 

stonden wij tegenover elkaar en als buren woonden we naast elkaar. Zijn naam, 

Jan Scheutjens, is onverbrekelijk met dit proefschrift verbonden. Mijn 

waardering laat zich misschien het best verwoorden door op te merken dat ik 

tevreden ben met het uiteindelijke resultaat. 

Bij het ter schrift stellen van dit werk heeft Hans Lyklema ook een 

belangrijke rol gespeeld. Efficiënt en nauwgezet heeft hij de soms lastige 

tekst van opbouwende kritiek voorzien. Ondanks de immer gevulde agenda bleef 

hij altijd op de hoogte van de vorderingen en als "ambassadeur" heeft hij ons 

werk menigmaal gepromoot, een promotor waardig. 

De goede sfeer zowel op de vakgroep fysische en kolloïchemie als binnen 

de polymeergroep heeft ertoe bijgedragen dat ik met plezier terug kijk op de 

afgelopen jaren. In Boudewijn van Lent en Peter Barneveld had ik enthousiaste 

collega's waarbij inspanning en ontspanning elkaar op tijd aflosten. Kan ik 

mijn computerprogramma DUBBEL aan de heren van SIMPOL-SOFT overdragen? 

Ik ben me er van bewust dat zonder de enorme tijdsinvestering van Olaf Evers 

om de VAX computer wat gebruikersvriendelijker te maken, het rekenwerk niet op 

dezelfde manier mogelijk zou zijn geweest. 

Tot slot mag het werk van een aantal doctoraalstudenten niet onvermeld 

blijven. Vooral de hoogst boeiende en gevarieerde samenwerking met Paul van 

der Schoot zal me nog lang heugen. Relaties met zijn werk zijn in vrijwel 

ieder hoofstuk van dit proefschrift aanwezig. Ook van Leon ter Beek, Härmen de 

Jong en Cas Meijer heb ik veel geleerd. Helaas was er niet voldoende tijd om 

hun werk in dit proefschrift te kunnen integreren. 

Ik hoop dat het membraanonderzoek nog lang een aandachtsveld van de 

vakgroep mag blijven. 


