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heden tot gebruik van voorinformatie bij de bemonstering beperkt zijn. 

Dit proefschrift 

Bij de interpolatietechniek kriging wordt de steekproeffout van het geschat­
te semivariogram ten onrechte verwaarloosd, waardoor de kriging-variantie 
vaak een te optimistische schatting is van de voorspellingsnauwkeurig-
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Abstract 

Brus, D.J., 1993. Incorporating models of spatial variation in sampling 
strategies for soil. Doctoral thesis, Wageningen Agricultural University, 
Wageningen, The Netherlands, (xii) + 211 pp. 

The efficiency of soil sampling strategies can be increased by incorporating 
a spatial variation model. The model can be used in the random selection of 
sample points i.e. in the sampling design, or in spatial estimation (prediction). 
In the first approach inference is based on a sampling design, in the second 
on a probabilistic model. The advantages and disadvantages of these two 
approaches, referred to as the design-based and model-based approach, are 
dealt with from a theoretical and a practical point of view. Estimation by random 
sampling stratified by soil map unit, and kriging are taken as examples of the 
two approaches in several case studies. 

The commonly accepted belief in geostatistical literature that the design-based 
approach is not valid in areas with autocorrelation is incorrect. Furthermore, 
the claimed optimality of the model-based approach is questionable. The two 
approaches use different criteria for assesment of the quality of estimates, 
consequently optimum estimation has a different meaning in each approach. 

In a regional survey with small observation density (1 observation per 25 ha), 
estimates of values at points were generally not significantly improved by soil 
map stratification (cc=0.10), neither by estimation with variograms as in kriging. 
Stratified random sample estimates of values at points were as accurate as 
those provided by kriging. 

In the model-based approach the quality of the estimates depends on the 
quality of the model. To avoid this, a new approach for spatial estimation is 
proposed, the model-assisted approach, making use of non-ergodic variograms. 
This approach incorporates the sampling error of the non-ergodic variogram 
in the kriging error, making the estimation variance estimates always valid. A 
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set of new methods is presented for unbiased and robust estimation of the non-
ergodic variogram and its sampling error. 

Many factors determine the efficiency of an approach that incorporates spatial 
variation models, making the decision process rather complicated. A simple 
decision-tree is presented with seven questions related to the aim of the survey 
(local or global estimation, criteria for assessment of the quality of the 
estimates), the constraints (available budget and sampling costs) and prior 
information (soil map). 

Additional index words: sampling strategy, soil map, phosphate saturation, 
spatial variation, model-based inference, design-based inference, model-
assisted inference, kriging, stratified random sampling, non-ergodic variogram, 
bootstrap, robustness, unbiasedness. 
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Chapter 1 

General introduction 



General introduction 

Motives 

In recent years the need for soil survey information with quantified accuracy 
has grown considerably. Although soil maps exist for all parts of the world, the 
quality of these soil maps, expressed by the spatial variability of soil properties 
within map units and map purity, is seldom quantified. Moreover, soil maps 
focus on information relevant to land evaluation, i.e. for assessment of the land 
suitability for several land use types. They usually lack information on soil 
properties relevant to environmental protection studies. Consequently, often 
additional data have to be collected in the field. This thesis deals with statistical 
methods for collecting soil data (sampling) and for calculating estimates of 
areal means and values at points from the data (spatial estimation). By applying 
statistical methods the accuracy of these estimates can be quantified. 

Collecting soil data is generally rather expensive, especially if laboratory 
measurements of soil physical and soil chemical properties are needed or 
measurements of difficult to determine properties such as characteristics of 
the frequency distribution of the water table. Therefore, it is important that 
efficient sampling strategies are developed; strategies giving maximum 
accuracy of the estimates at the lowest costs. One way of increasing the 
efficiency is to incorporate models of spatial variation in the sampling strategy. 
At the highest level, two approaches can be distinguished: (i) incorporation in 
the sampling design (sampling plan), where the model is used in the random 
selection of sample points and (ii) incorporation in the estimator, where the 
model is used in calculating the estimates from a sample. 

An example of the first approach, dealt with in this thesis, is estimation by 
random sampling stratified by soil map unit. A soil map can be considered as 
a discrete model of spatial variation of the soil. By soil map stratification we 
hope to obtain more homogeneous subareas, the means of which can be 
estimated more accurately than the mean of the whole area for a given sample 



size. This is an attractive approach for the Netherlands because there is a soil 
map at the scale of 1:50 000 for the whole of it and more detailed soil maps 
(scale 1:10 000) for large parts of it. Samples are selected from the strata by 
some chance mechanism such that all elements have a nonzero probability 
of inclusion in the sample, specified by the sampling design of that stratum (see 
below). These inclusion probabilities are used in the inference, i.e. in calculating 
the estimates. To estimate the values at points the estimated mean of a map 
unit is used as the estimator for all points within that map unit. Following 
Särndal et al. (1992) such inference will be referred to as design-based. 
However, there is a widespread belief in geostatistical literature that design-
based inference is not valid if data are autocorrelated. This would severely 
restrict the applicability of this approach, because soil data often show autocor­
relation, also within map units. 

An example of the second approach, dealt with in this thesis, is kriging (Journel 
and Huijbregts, 1978). Kriging uses a probabilistic (geostatistical) model to 
describe spatial variation. An important part of this model is the variogram. It 
describes spatial dependence as a function of the lag vector separating two 
points. This model is believed to be a more natural and adequate description 
of spatial dependence than a soil map, which neglects spatial autocorrelation 
within map units. Kriging is qualified as optimal in the sense that its estimates 
are unbiased and have minimum variance. As opposed to the previous 
approach, inference is based on the model. Following Särndal et al. (1992) 
such inference will be referred to as model-based. 

Purpose 

The main purpose of this thesis is to elaborate on the merits of the design-
based and model-based approach for incorporation of spatial variation models 
in sampling strategies, from a theoretical and a practical point of view. 
Important questions dealt with are: 
(i) Is design-based inference indeed invalid in areas with autocorrelated data? 

(Chapter 2) 
(ii) Are kriging estimates also optimal in the sense of classical sampling 

theory (Chapters 2 and 4) and what is the worth of the calculated kriging 



variance as a measure of estimation variance? (Chapter 7) 
(iii) Can estimates of global means (Chapter 3) and of values at points 

(Chapter 4) be improved by soil map stratification, and how strong is this 
effect? How strong is the effect of estimation with variograms on the 
accuracy of estimates at points? (Chapter 4) How strong is the effect of 
soil map stratification plus estimation with variograms on the accuracy of 
estimates at points? (Chapter 4) 

(iv) Which approach gives the most accurate estimates of values at points: 
estimation by random sampling stratified by soil map, or kriging? (Chapter 

4) 
(v) Does it pay to revise a soil map before using it in spatial estimation? 

(Chapter 5) 
(vi) What decision-rules can be used for choosing between the two 

approaches? (Chapters 2-7) 

Definitions and scope 

In this thesis, the survey region is considered as a finite population of soil auger 
cores, which implies that the number of different possible sampling locations 
is finite. This is because the main body of sampling theory is formulated in 
terms of finite populations. Results and conclusions presented in this thesis 
also hold if the population is assumed to be infinite. Sampling is the selection 
of a subset of elements from the population. Note that a sample refers to a 
set of elements and not to a single element. The probability of selection of any 
subset (sample) is determined by the sampling design. The elements in the 
sample are observed; the target variables are measured for each element in 
the sample. Unless otherwise stated, I assume that the variables are measured 
without error. The values of the target variables are used to calculate an 
estimate of the population parameters (e.g. means, totals) or the values at 
points and of the accuracy of these estimates. The combination of sampling 
design and formula used to calculate an estimate (estimator) is referred to as 
a sampling strategy. 

The location of the soil auger cores is defined in two dimensions only. Variation 
of soil properties with depth is incorporated in the definition of the target 



variable. Furthermore, I will focus on soil surveys at a regional scale with 
sampling densities varying from 1 to 10 observation points per 25 ha. Most 
of the soil properties observed are relevant to the problem of phosphate 
leaching from agricultural soils to the groundwater and surface water, which 
is a considerable environmental problem in the Netherlands. Important 
questions in this context are: 
- how much phosphate can be sorbed by the soil in a block of a given size 

or at a given point before it leaches to the groundwater? 
- what is the mean degree of phosphate saturation of a block or at a point? 
- what is the fraction of the area saturated with phosphate? 

Outline of this thesis 

Chapter 2 outlines the perspectives and concepts of design-based and model-
based inference of population parameters. The meaning of unbiased and 
minimum variance estimates obtained by these two types of inference, are 
compared. I deal with the relative merits of the two approaches and with rules 
for choosing. In a case study, stratified simple random sample estimates 
(stratified by a 1:50 000 soil map) of areal fractions saturated with phosphate 
and their accuracies are compared with those obtained by kriging, for blocks 
of various size. 

In Chapter 31 calculate the gain in precision of estimates of the global means 
of various phosphate sorption characteristics by using a 1:50 000 soil map and 
a land use map for stratification in simple random sampling. The precision with 
a simple random sample (without stratification) of the same size is taken as 
a point of reference. This is done in two areas with contrasting historical 
phosphate loads. Three stratifications are evaluated, namely by land use, soil 
map unit and by both, in combination with three methods of allocating numbers 
of sample points to the strata. 

Chapter 4 assesses the effect of soil map stratification on the accuracy of 
estimates of four soil properties at points. Six estimation methods are 
examined: global mean, moving average, nearest neighbour, inverse squared 
distance, Laplacian smoothing splines and ordinary point kriging. I compare 



the efficiency of the variogram and the 1:50 000 soil map as spatial variation 
models by comparing the accuracy of estimates at points obtained by unstra-
tified kriging with that obtained by using the means of soil map units as 
estimators. Also the effect of the combination of both models is assessed by 
calculating the accuracy of estimates by kriging within three soil map units 
(stratified kriging). 

The first sheets of the Soil Map of the Netherlands at the scale of 1:50 000 
are possibly out-of-date and as a result are poor models of spatial variation. 
We might think of first revising the soil map and then using the revised map 
for stratification in spatial estimation. The alternative would be to leave the map 
unchanged and to spend all the money collecting additional data at points. In 
Chapter 5 the efficiency of four strategies for updating soil maps is compared: 
(i) revision, (ii) upgrading, (iii) revision plus upgrading and (iv) upgrading by 
two-phase sampling. In revision all funds are used for model improvement, 
whereas in upgrading and upgrading by two-phase sampling all funds are used 
for sampling. In revision plus upgrading the funds are distributed between the 
two activities. The efficiency is assessed for design-based estimation of the 
global mean and the values at points. 

Kriging directly provides an estimate of the accuracy of the estimates, the 
kriging variance. However, the mean kriging variance often differs considerably 
from the empirical mean squared error of estimation: generally it is an 
underestimate. In this thesis I analyze the causes of this discrepancy and show 
how it can be eliminated by using non-ergodic variograms in kriging, i.e. 
variograms describing spatial dependence in the area actually sampled only 
(Isaaks and Srivastava, 1988). In Chapter 6 I propose a new set of sampling 
strategies for the estimation of these non-ergodic variograms. An important 
advantage of these strategies is that they yield unbiased and robust estimates 
of the sampling error of the estimated variogram. 

Chapter 7 shows that incorporation of this sampling error in the error of 
estimates obtained by kriging eliminates the main cause of the discrepancy 
between the mean kriging variance and the mean squared error of estimation. 
Thus, a new approach for incorporation of spatial variation models in sampling 



strategies emerges, the model-assisted approach. I explain how the role of the 
model differs fundamentally between the model-based and model-assisted 
approach. 

Finally, the main results and major conclusions of this thesis are presented 
in Chapter 8. In this chapter I also present a decision-tree for choosing between 
the design-based, model-based and model-assisted approach. 

Notation 

Variables such as soil properties, and model parameters will be printed in 
italics. To distinguish between fixed and random variables, random variables 
will be underlined. Symbols for matrices and vectors will be printed in bold face 
italics. 

References 

Isaaks, E.H. & Srivastava, R.M. 1988. Spatial continuity measures for probabilistic and 
deterministic geostatistics. Mathematical Geology 20, 313-341. 

Journel, A.G. & Huijbregts, C.J. 1978. Mining Geostatistics. Academic Press, London. 
Särndal, C-E, Swensson, B. & Wretman, J. 1992. Model assisted survey sampling. 

Springer-Verlag, New York. 
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Chapter 2 

Design-based versus model-based estimates 
of spatial means. Theory and application in 

environmental soil science 



Environmetrics 4, 123-152 (1993) 

with Jaap J. De Gruijter 



Design-based versus model-based estimates of 
spatial means. Theory and application in 
environmental soil science 

The perspectives and concepts of the classical sampling or design-based approach 
and the geostatistical or model-based approach are compared. We show that un-
biasedness and minimum variance in the design-based approach is quite different 
from that in the model-based approach and that design-based strategies are always 
valid, whether or not there is spatial autocorrelation. Model-based predictions of spatial 
means will generally not have the desirable property of unbiasedness in the design-
based sense. Model-based strategies contain a risk arising from biased selection of 
sample points and they do not allow the accuracy of predictions to be assessed 
objectively, i.e., based on the sample data alone. Model-based strategies are useful 
for local estimation i.e. for many small blocks and points, provided that there are 
enough data to estimate the variogram. In a case study on phosphate saturation, 
design-based and model-based estimates of the areal fractions saturated with phos­
phate were similar, but with smaller blocks the differences between the estimates 
provided by the two approaches, increased to magnitudes of practical importance. 
KEY WORDS: sampling strategy; spatial dependence; unbiasedness; phosphate 
saturation. 

Introduction 

Since about 1960 random sampling designs have been successfully applied 

in soil geography, especially to estimate spatial means and variances of 

areas. For estimation of the values at points, these strategies seemed to 

be not very successful due to the large internal variance of the soil map 

units, whose estimated means were used as estimators (Morse and Thorn-

burn, 1961; Webster and Beckett, 1968; Beckett and Webster, 1971; 

Marsman and De Gruijter, 1986). Since 1980 numerous papers have recom­

mended kriging as a better technique for local estimation of soil properties. 

See for instance Burgess and Webster (1980), Burgess et al. (1981), 

Webster (1985) and Oliver et al. (1989). Kriging uses a probabilistic model 
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describing spatial autocorrelation or related quantities as a function of the 
lag vector separating two points and this model is believed to be a more 
natural and adequate description of spatial autocorrelation than a soil map 
which neglects spatial autocorrelation within map units. Kriging is qualified 
as optimal in the sense that its estimations are unbiased and have minimum 
variance. Kriging is also used for global estimation (block kriging), so there 
are two rather different approaches for estimating means of soil properties 
in areas, referred to as the design-based and the model-based approach. 
However, there is a rather wide-spread belief in the literature on applied 
geostatistics that design-based strategies are not valid in areas with 
autocorrelated data (see e.g. Russo and Bresler, 1981 ; Olea, 1984; Dahiya 
et al., 1985; Yfantis et al., 1987; Barnes, 1988; Burrough, 1991). 

The purpose of this paper is: 
- to make clear that classical sampling theory and design-based strategies 

are valid with autocorrelated data; 
- to draw the attention of soil scientists to the different meanings of 

unbiasedness and minimum variance in model-based and design-based 
sampling strategies; 

- to work out a case study to see whether differences in design-based 
estimates and model-based predictions of spatial means (areal fractions) 
are relevant to practice; 

- to elaborate the relative merits of the two methods and to develop rules 
for choosing between them. 

We estimated the fractions of square areas saturated with phosphate by 
stratified simple random sampling as an example of the design-based ap­
proach and by indicator block kriging as an example of the model-based 
approach. In stratified simple random sampling we used an existing soil map 
for stratification, which is a way of using an a priori model of spatial structure 
in the sampling design. In indicator block kriging, spatial structure was 
modelled by a single variogram for the entire area. Separate variograms for 
the soil map units might have given better results but it is usually impossible 
to estimate them well in practice for lack of data. We preferred to stick to 
methods that are practicable. Moreover it was not the purpose of our study 
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to determine which method gives the 'best' estimates. The true spatial 
means must be known for this. Also, one should either select the design-
based or the model-based definition of 'best estimate' or choose a hybrid 
definition. 

Hansen et al. (1983) discussed the use of models in sample surveys of finite 
populations in general. They chose the design-based quality criteria and they 
showed that small mistakes in the estimated parameters of a regression mo­
del describing the relation between the target variable and an auxiliary 
variable, may lead to substantial bias of the predicted population mean and 
statements about the sampling errors of those estimates may be very mis­
leading. As the model is never known exactly, they preferred design-based 
estimators. This raises the question of whether kriging behaves similarly to 
regression. In this context the paper of Borgman and Quimby (1988) is very 
interesting. They discussed the advantages and disadvantages of classical 
random sampling and geostatistical sampling and they stated that probably 
the greatest shortcoming of the geostatistical approach is the difficulty in 
knowing when various model assumptions are acceptable or not acceptable. 

Design-based and model-based sampling strategies 

To clarify the differences between the design-based and model-based ap­
proach in spatial sampling we give an example of sampling soil profiles from 
a hypothetical area A with known values of property z at all points in this 
area (Fig. 2.1a). The soil profiles are the sampling units. Let us assume that 
variable z has only two possible values, 0 and 1, and that we want to esti­
mate the spatial mean of z within A, defined as: 

mA=±Yz(x} (2.1) 
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where: 
mA = true spatial mean of z in A; 
N = total number of soil profiles (possible sampling locations) in A 

(population size); 

z(x,) = value of z at location x„ where x, is the vector of co-ordinates of 

point /'. 

4 * • 

• • • • 

* 1 2 

3 « • 

• * 
• • • 

.« « 

« » • 

• * * 

• • • • 

# » 
• • • • 

» • 

• Sample point Value of z (x) 

Fig. 2.1 Repeated sampling in the design-based 
approach (a, b, c) and in the model-based 
approach (a, d, e). In the design-based 
approach the population is fixed and the 
sampling locations are random. In the model-
based approach the sampling locations are 
fixed and the population is random. The 
populations of a, d and e are realizations of 
a 'distance model' (see Text), with true 
proportions of 0.30, 0.32 and 0.47 
respectively 
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For convenience, we assume that N is finite in Equation (2.1) and following 
equations, which implies that the number of different possible sampling lo­
cations is finite. If the population size is assumed to be infinite, then sums 
should be replaced by integrals, but this has no influence on the results. 

The spatial mean of a variable with 0 and 1 as possible values equals the 
proportion of the area with z = 1. To estimate this we selected n locations 
and measured property zon the soil profiles there. The values obtained will 
be indicated as z{x). Either z or x, could be random. 

The design-based approach 
In the design-based approach the n locations are selected randomly. Figure 
2.1a shows a simple random sample with n = 25. At a given location the 
value of z is assumed to be fixed, but unknown. Although these values are 
fixed, the locations are selected randomly, and so we denote the data by 

m-
The probability of selection for any given subset of soil profiles is determined 
by the sampling design p. These probabilities are known and are the key 
to describing the sample-to-sample variation of a proposed estimator 
(Särndal et ai, 1992). Summing the selection probabilities of all subsets with 
soil profile /' in it, gives the inclusion probability of profile /'. In the Horvitz-
Thompson estimator or rc-estimator (Särndal et al., 1992) the values of the 
soil profiles are divided by their inclusion probabilities. For the spatial mean 
this results in the following estimator: 

1 n Z(X) 
m=lT^ZL (2.2) 

~A NU «, 

where: 
mA = estimated spatial mean of area A; 
n = sample size; 
7i = inclusion probability of soil profile /'. 
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With simple random sampling (Cochran, 1977), for instance, the probability 
of selection of any subset of size n is equal, or in other words all con­
figurations of n points have equal probability. From this it follows that the 
inclusion probability of a soil profile is equal for all profiles and equals n/N, 
the sampling fraction. This results in the following estimator of the spatial 
mean: 

A n AX) n A 

^ 4 E — - E 1 * ^ (2-3) 

Note that with this design all points get equal weight. 

Once a sample has been taken and the spatial mean has been estimated, 
one may wonder what would happen if another sample is taken from the 
area using the same design. This is what is done in the design-based 
approach; not in reality, but in the mind. Repeated sampling according to 
the design-based approach is illustrated in Figure 2.1a-c, showing three 
simple random samples of size 25. The three samples came from different 
locations, and so the estimated value from Equation (2.3) also differed from 
sample to sample: 0.32 (= 8/25), 0.36 (= 9/25) and 0.32 for Figure 2.1 a, 2.1 b 
and 2.1c respectively. So the estimation errors (the difference between 
estimated and true mean) were 0.02, 0.06 and 0.02. Although usually only 
one sample is taken from an area, in the design-based approach the mean 
and variance of the estimator over repeated sampling under a given design 
p plays an important role. This type of mean and variance is indicated as 
the p-expectation, Equation (2.4), and the p-variance or sampling variance, 
Equation (2.5), and are defined as: 

s=1 

and 
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o%âlA) = EpMA-Ep(!ÎlA)}2] (2-5) 

where: 
EP(JÈA) = expectation of estimated spatial mean of A over repeated 

sampling under design p; 
p(s) = selection probability of sample s; 
S = number of possible samples under design p; 
mAs = spatial mean of A estimated by sample s; 
oD Q!U) = sampling variance of estimated spatial mean of Sunder design 

The jt-estimator of the sampling variance of the mean of a fixed size 
sampling design is equal to (Särndal et al., 1992, p. 45): 

ç2(rfL) = - L E f ^i^äi^l - m* (2.6) 
"p A 2/V2/=iy=i Hi K nJ 

where: 
7i/y = probability that both of the soil profiles / and j will be included in the 

sample. 

With simple random sampling this sampling variance equals (Särndal et al., 
1992, p. 46): 

P
 A n N n 

where: 
vA = estimated spatial variance of A: 
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E^/)-m/ (2.8) 

~A n-1 

Given a design p, we look for an estimator such that its p-expectation is 
equal to the true value of the spatial mean: 

Ep(mA) = mA (2.9) 

In other words the estimation error over all possible realizations of the 
sampling design p should be zero. If this equality holds the estimator is 
called p-unbiased. Cochran (1977, p. 22) showed that the estimator of the 
spatial mean of Equation (2.3) is p-unbiased with simple random sampling. 
Apart from p-unbiasedness, another desirable property of the estimator is 
that its Mean Squared Error (MSEp) is minimal: 

MSEp^Ep{(mA~mA)2} (2.10) 

If an estimator is p-unbiased, its MSE is equal to its sampling variance (Eq. 
2.5), otherwise MSE will exceed the sampling variance. 

Finally, the inclusion probabilities need not be equal for all soil profiles to 
be able to obtain unbiased estimates of the spatial mean. A well known ex­
ample of a sampling design with unequal inclusion probabilities is stratified 
simple random sampling with optimum allocation. For a well defined design 
the inclusion probabilities are known and Equations (2.2) and (2.6) can be 
used to estimate the spatial mean and its sampling variance. 

The model-based approach 
In the model-based approach the actual population from which we take the 
sample is considered to be just one population out of an infinite set of 
possible populations having in common that they are realizations from the 
same A/-dimensional joint distribution £. Consequently, this approach is also 
referred to as the superpopulation approach (Cassel et al., 1977). One may 
think of these realizations as areas in which the same soil forming processes 
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have led to a more or less similar spatial pattern. So, in the model-based 
approach each soil profile (location) is not associated with one fixed value, 
as in the design-based approach, but with different possible values, each 
with a defined probability of occurring, thus forming a random variable. The 
actual value found at a given location / is interpreted as the realized 
outcome of the random variable z{x). (Note the change in underlining.) 
Therefore, the true spatial mean is also assumed to be random: 

m=lVz{x) (2.11) 
—A N fa' ' 

As the spatial mean is random we shall use the word 'prediction' instead 
of estimation. We shall use the superscript ~ in symbols for predicted var­
iables. This approach is termed 'model-based' because its essential tool is 
a model describing the A/-dimensional joint distribution t, of the variables 
z(x). (Often the symbol £, is attached to the model.) In practice, this is 
usually done by characterizing the mean and variance of z(x) and the covar-
iance of z{x) and z{x-j for any /and;'. Populations are viewed as realizations 
from Ç. Figure 2.1a, d and e, for instance, show three realizations from a 
'distance model' with true spatial means (proportions) of 0.30,0.32 and 0.46 
respectively. A distance model can be described by (Matérn, 1960, p. 37-
39,49): 

ç 
I 
c=1 

z(x) = £ f ( x r x j (2-12) 

where: 
Xç = vector of co-ordinates of the cth centre (random); 
C = number of centres (random). 

In Figure 2.1a, 2.1d and 2.1e the centres are produced by a Poisson 
process with intensity X = 6. For f(x,) we took simply: 
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f(X;) = 1 if 8 . (x,) < D 
' -miir " (2.13) 

f(x;) = 0 otherwise 
where: 
ôroî Xy) = smallest distance of point xt to the centres; 
D = predetermined, fixed distance. 

Thus z[x) = 1 if at least one centre is within distance D from x,. 

In reality one can observe only a single realization from %, and so the mean 
and variance of z{x) are unknown. To circumvent this difficulty the random 
process is assumed to be ergodic i.e., its statistics can be determined from 
a single realization (Papoulis, 1965, p. 327). In practice it is often assumed 
that the covariance of z(x^ and z(Xy) depends only on the distance and direc­
tion separating x, and xy. Half the variance of {z(x) - z{Xj)} is referred to as 
the semivariance, which is often modelled instead of the covariance. 

This spatial covariance or semivariance is used in predicting. The spatial 
mean of a block is predicted by: 

^ = i>,Z(*;) f2"14) 
;=1 

where: 
A,, = weight attached to the rth point. 

In general these weights will be different for different points. This is also true 
for a simple random sample! Let us see how these weights are calculated 
in this approach. 

As in the design-based approach interest is in the mean and the variance 
of the predictor over repeated sampling. However, repeated sampling has 
a different meaning now and is possible only in theory: the sample is taken 
at the same locations but in different hypothetical areas from the same joint 
distribution \. This is illustrated by the vertical row of maps in Figure 2.1 (a, 
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d and e). These figures show that the values at some sampling locations 
differ between the three realizations, hence the predicted spatial means will 
also be different. The mean and variance of the predicted value is referred 
to as the ^-expectation, Equation (2.15), and ^-variance, Equation (2.16). 
Cassel et al. (1977, p. 82) defined these in terms of Lebesgue integrals 
(Papoulis, 1965, p. 141): 

Ek{mA) = fmA<X, (2.15) 
RN 

and 

cl(mA) = E^-E^tf] = j{mA-E^(m A)M (2.16) 
RN 

where: 
E* = expectation over realizations from distribution Ç (model mean); 
o*2 = variance over realizations from distribution Ç; 
RN = /V-dimensional Euclidian space of possible realizations from the 

distribution Ç. 

To find an optimal predictor for mA, the prediction error (the difference 
between the predicted value and the true value) of each realization is con­
sidered. The mean error over realizations of the model Ç should be zero (Ç-
unbiasedness) and the Mean Squared Error should be minimal (minimal 
MSEf): 

Minimize E^{(mA - mA)2^ ( 2 1 7 ) 

subject to Ei(m_A - [RA)=0 

In Equation (2.17) the true spatial mean, mA, is inside the brackets because 
this quantity is random too. The optimal weights are obtained by solving the 
equations: 
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n _ 

E'kp(xj,xj) + y = C(x;,A) V / = 1 ton 
;=1 (2.18) 

n 

EV 
7=1 

where: 
C(x,-,Xy) = covariance of z{x) and z(xy); 
y = Lagrange multiplier; 
C{Xj,A) = mean covariance of z(x^ and A defined as: 

Cix^^lYCix^) (2.19) 

The ^-variance of the predicted spatial mean equals: 

of(m„) = C(A,A) + EEC(x,,xy) - 2£X,- C(Xj,A) = 
/=1 /-1 M (2.20) 

_ n _ 

C(A4) - E h c(*i<A) - N> 

where: 
C(>4,/\) = mean covariance of z{x) in A, defined as: 

^ A ) = 1 £ EC(x,xy) (2.21) 
Ar /=1 y=1 

The Best Linear Unbiased Predictor of mA and its variance can also be ob­
tained as Generalized Least Squares solutions of the corresponding regres­
sion problems, avoiding the use of a Lagrange multiplier (Corsten, 1989): 

mA = ^c-^)-U'c-^+dStAc-^z-H^c-^rU'c^z] (2.22) 

where: 
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Cs = matrix with covariances between sample points; 
CSA = vector with mean covariances between each sample point and all 

points in A 

The covariance function of the distance model of Figure 2.1 is known 
(Matérn 1960, p. 38): 

C(x,xy) = e - 2 ^ 2 { e w _ i } (2.23) 

where: 
r = radius of the circles; 
X = intensity of the Poisson proces; 
A(r,h) - area of the intersection of two circles with radius rand the centres 

h = |x, - X/\ apart. 

Using this function, the optimal predictions were 0.38, 0.34 and 0.46 for 
Figure 2.1 a, 2.1 d and 2.1 e respectively. So the prediction errors were 0.08, 
0.02 and -0.01. Notice the small error of Figure 2.1 e despite the large pre­
dicted value (0.46). This is because the true mean of Figure 2.1e was also 
large compared to that of Figure 2.1a (0.47). In practice the covariance 
function is unknown and should be estimated from sample data as well. 

Dependent or independent? 
In literature on applied geostatistics it is often stated that classical sampling 
theory is inapplicable to spatial sampling of soil properties because this 
theory assumes data to be independent. We shall show that this view is 
incorrect and we shall make clear that in the design-based approach inde­
pendence is not assumed but created by the sampling design. 

Stochastic dependence or independence is not a property of any population 
or region (De Gruijter and Ter Braak, 1990, 1992). It can be a property of 
a set of variables. Two random variables are independent if (Papoulis, 1965, 
p. 40): 
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P(v,w) = P(v) P(W) (2-24) 

where: 
P(v,w) = probability that the first random variable takes the value v and 

the second random variable takes the value w, 
P(v) = probability that the first random variable takes the value v, 
P(w) = probability that the second random variable takes the value w. 

The next question is what makes the variables random, or in other words, 
what is the source of stochasticity? In the design-based approach this is 
the sampling process. The locations are selected at random. If the locations 
x,and xyare selected at random and independently then the corresponding 
variables z{x) and z(x) are mutually stochastically independent (De Gruijter 
and Ter Braak, 1990). We noticed that this is hard to understand for some 
model-based thinkers. Therefore we illustrate it by an experiment, which is 
not a proof and superfluous for those who are familiar with design-based 
sampling. The experiment consists of taking a simple random sample with 
replacement of size two from area A of Figure 2.1 a, repeating it 1000 times 
and counting the number of times we have equal values at the two points 
(both zeros or ones). Large or small numbers indicate dependency of var­
iables: positive dependency for large and negative dependency for small 
numbers. Assuming independence the expected number equals 1000{p2 + 
(1-p)2}, where p is the probability of getting value 1 which is equal to the 
areal proportion with value 1. In Figure 2.1a p equals 0.3 and therefore the 
expected number is 580. The realized number was 578. One may conceive 
this number as an estimate of the expected number if data are independent. 
The 95% confidence interval of this estimate equals [547,608] which covers 
the expected value, and so this experiment indicates that the two variables 
are independent. 

In the model-based approach stochasticity is introduced in a completely 
different way, namely via the model Ç. In this approach not the sampling 
locations but the model-realizations are drawn at random and independently 
from each other. The sampling locations stay where they are. To illustrate 
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this we executed an experiment for the points marked 1 and 2 in Figure 
2.1a. We drew 1000 realizations of the distance model and counted the 
number of times with equal values at both points which was 804, so much 
larger than the expected and realized number in the previous experiment. 
The 95% confidence interval of this prediction is [778,827]. However, in this 
approach one has many realizations and therefore the expected number 
over all model-realizations should be calculated. The mean of the areal pro­
portions with value 1 overall model-realizations (^-expectation of areal pro­
portion) is known and therefore also the probability of getting a 1. It is equal 
to 0.35. From this it follows that, assuming independence, the expected 
number is 545. The 95% confidence interval does not cover this value. 
Therefore independence is not likely for points 1 and 2 in Figure 2.1a. 
Remember that these points were selected at random and independently 
from each other. We repeated this experiment for points 3 and 4 of Figure 
2.1a. The counted number is 539 with a 95% confidence interval of [508, 
570] covering the expected number, so that independence is likely for points 
3 and 4. 

In conclusion, values measured at points selected randomly and independ­
ently from each other are independent in the design-based approach and 
at the same time can be dependent in the model-based approach. 

Smoothing 
Let us now suppose we want to estimate z or predict z at all points in A or 
the mean of z or z of m subareas (blocks) of A. For any point or block indi­
vidually, the estimate should be p- or ^-unbiased and the p- or Ç-variance 
should be minimal. On the other hand, one may also be interested in the 
quality of the estimates of the point- or block values as a whole. For exam­
ple, one may wish that the spatial variance of the estimated values is close 
to that of the true values. Although simulation of random fields is the appro­
priate way to reach this, one may wonder how 'bad' results are if values are 
estimated or predicted optimally one by one. 
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In the design-based approach, the spatial variance of the true block-means, 
Equation (2.25), and of the estimated block-means, Equation (2.26), are 
defined as: 

VA^b)^lJ:Nb(mb-mAf (2.25) 
N 0=1 

and 

Mm b ) - - lEA/ b (m b -m/ (2-26) 
N 0=1 

where: 
vA{mb) = spatial variance of true block-means in A; 
vA(mb) - spatial variance of estimated block-means in A; 
mb = spatial mean of block b; 
rnb = estimated spatial mean of block b; 
B = number of blocks; 
Nb = number of soil profiles (possible sampling locations) in block b. 

Note that in Equations (2.25) and (2.26) possible differences in block size 
are taken into account. 

Although the true block-means are unknown, the spatial variance of these 
true block-means can be estimated by: 

Um* 'ZA-JJZ"»**
 (2"27) 

N b=1 

where: 
vA(mb) = estimated spatial variance of true block-means; 
vA = estimated spatial variance of A; 
vb = estimated spatial variance of block b. 

In terms of variance components Equation (2.27) states that the estimated 
between-block variance of true block-means equals the estimated total var­
iance minus the estimated pooled within-block variance. The spatial variance 
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of estimated block-means will be larger than that of the true block-means 
due to sampling errors. Therefore, in the design-based approach we have 
the reverse effect of smoothing. We quantified this effect by the relative 
variance, defined as the ratio of the variance of estimated block-means to 
the estimated variance of the true block-means: 

rv - ^ i = i - (2-28) 
vA(mb) 

In the design-based approach the relative variance will be larger than 1. 

In the model-based approach the spatial variance of true and predicted 
block-means are defined in a similar manner. The only difference is that the 
true spatial means are random. Therefore, the spatial variance of true block-
means is random too: 

vA(mb)^£Nb(mb-mA)2 (2-29) 

In the model-based approach the spatial variance of predicted block-means 
will be smaller than the estimated spatial variance of true block-means due 
to the well-known smoothing effect (Journel and Huijbregts, 1978, p. 451). 
So the relative variance, rv, Equation (2.28), will be smaller than 1. 

Smoothing may be reduced by using a limited number of sampling points 
in the neighbourhood of the block (Journel and Huijbregts, 1978, p. 451), 
but the choice of a neighbourhood is not part of the theory, hence it remains 
arbitrary. 

Case study 

To illustrate the differences in procedure and to see whether the differences 
between estimated and predicted means are relevant to practice, we used 
the data of a 'real-world' project on the susceptibility of soils to leaching of 
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Agricultural land 

Forest, heath 

Build-up area (Putten) 

Sample point 
2 km 

Fig. 2.2 Stratified simple random sample from the study area Schuitenbeek 

phosphate (Breeuwsma etal., 1989). Phosphate leaching to groundwater 
and surface water is a considerable environmental problem in large parts 
of the Netherlands. We estimated the areal fraction saturated with phosphate 
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by taking a stratified simple random sample from the area (Fig. 2.2). For 
the purpose of this study, we used the same data to predict this areal frac­
tion by indicator block kriging. 

Study area 
The study area Schuitenbeek is 25 km north of Wageningen, near the village 
of Putten. It is part of the central coversand area. There is intensive livestock 
farming here and as a result there is a large surplus of manure. Only part 
of it is taken away. More phosphate is applied in manure than crops can 
take up, and this may lead to the soils becoming saturated with phosphate 
(Breeuwsma and Schoumans, 1987). 

The study area is 8 km x 8 km, showing a great diversity in soil types, typi­
cal for coversand areas. Plaggepts, Plaggeptic Haplaquods and Typic Hapl-
aquods (Soil Survey Staff, 1975) on coversand ridges alternate with Typic 
Humaquepts in shallow valleys and in the lower areas between coversand 
ridges. In the east, Entic Haplorthods and Typic Haplohumods occur on the 
coversand belt of an ice-pushed ridge formed during the Saalien glaciation 
and on the ice-pushed ridge itself, consisting of coarse, fluviatile sediments 
with gravel. The largest part of the ice-pushed ridge is covered with forest. 

Areal fraction saturated with phosphate 
Van der Zee (1988) showed that the concentration of phosphate in water 
at the top of the saturated zone after a long period of leaching depends 
largely on the areic mass of P205 sorbed by soil (P) and the maximum areic 
mass of P205 which can be sorbed by that soil (Pmax). In this study Pand 
Pmax (both in kg P205 per m2) were defined for the volume of soil above the 
mean highest water table (Wmm; m below surface). Pmax was determined 
indirectly by measuring the oxalate-extractable aluminium and iron content 
in soil horizons above Wmin and using these contents in the following regres­
sion equation (Breeuwsma and Silva, 1992): 
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Pmax = £(4.6+0.39 Mox/)ô /P/ 0.71 (2.30) 
/=1 

where: 
4.6 and 0.39 = regression parameters (mol kg"1, dimensionless); 
L = number of horizons above Wmin; 
Mml = oxalate-extractable aluminium + iron content of soil horizon 

/(mol kg"1); 
5, = for/= 1... L-1: thickness of soil horizon/; for l=L: thickness 

of Lth horizon above Wmin (m); 
p; = volumic mass of soil horizon / (kg rrf3). 
0.71 = conversion coefficient (kg P205 mol-1). 

We measured p, by taking volumetric samples by a gouge auger. 

The ratio of P and Pmax, referred to as the relative mass of phosphate sor-
bed by soil (Pre|), was used as a measure of phosphate saturation of the 
soil. 

The areal fraction saturated with phosphate (Ac) is defined as the proportion 
of the area in which the relative mass of phosphate (Pre() of soil profiles 
exceeds a critical value c (Van der Zee et ai, 1990). 

We took 0.25 as a critical Pre|-value, which is mentioned in the protocol 
"Phosphate-saturated Soils", an official document specifying a standardized 
sampling design (Van der Zee et ai, 1990). To make our study more gener­
al, we also used 0.35 and 0.45 as critical values. These values appear to 
be the 16th, 33th and 53th percentiles, respectively, of the frequency distri­
bution of the Pre|-values in the area. 

Design-based approach: stratified simple random sampling 
Forest and heath were excluded from the sampling frame because we want­
ed to estimate the areal fraction saturated with phosphate, Ac, of agricultural 
land only. The agricultural area was stratified according to the map units 
of an existing soil map at a scale of 1:50 000. We expected the map units 
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to have different mean Pmax and therefore possibly also different mean Ac. 
This expectation was based on observed differences in Wmm and a strong 
correlation between Wmm and Pmax (Brus et al., 1992). Map units supposed 
to have an approximately equal Pmax were grouped together. By stratifying 
according to soil map unit we expected to increase the efficiency of the 
sampling. To get separate estimates of 2 km x 2 km blocks, we also strati­
fied according to 2 x 2 km blocks. Groups of map units within blocks were 
used as strata. 

We allocated 222 points proportionally to the areal extent of the strata but 
with a minimum of two. The spatial mean, Equation (2.31 ), and its sampling 
variance, Equation (2.32), were estimated by (Cochran, 1977 p. 91): 

H 

Q-A 

and 

qjtj • ± E «î£ (2-32) 
AT h=1 nh 

where: 
mh = estimated spatial mean of stratum h; 
Nh = area of stratum h; 
vh = estimated spatial variance of stratum h; 
H = number of strata; 
nh = number of sample points in stratum h. 

To estimate the Ac, first the Pre,-values at the sample points were transfor­
med according to: 

'c = 1 l f Pre\ * c (2.33) 
ic = 0 otherwise 
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