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Stellingen 

1. Resistant starch is een voedingsvezel, (o.a. dit proefschrift) 

2. Consumptie van ongekookt of geretrogradeerd onverteerbaar zetmeel in realistische 
hoeveelheden heeft bij gezonde mensen geen effect op het serum-cholesterolgehalte. 
(dit proefschrift) 

3. Consumptie van ongekookt onverteerbaar zetmeel verhoogt de schijnbare absorptie 
van magnesium bij ratten. Dit wordt niet veroorzaakt door een toename van de 
oplosbaarheid van magnesium in de digesta via een door fermentatie geïnduceerde 
pH-verlaging. (dit proefschrift) 

4. Er is geen experimentele onderbouwing voor de suggestie dat een toename van het 
aantal bifidobacteriën in het colon van de mens gunstig is voor diens gezondheid. 

5. Het functional food-concept ondermijnt de voorlichtingsinspanningen om de 

consument te leren dat niet de afzonderlijke voedingsmiddelen, maar juist de totale 

voeding in meer of mindere mate als gezond kan worden beschouwd. 

6. De hoeveelheid acetylsalicylaat in voeding is te laag om het risico op hart- en 

vaatziekten te beïnvloeden. 

7. In laboratorium-toxiciteitsproeven, bedoeld om de ecotoxicologische normering van 

bodemverontreiniging te onderbouwen, is het gebruik van natuurlijke gronden te 

verkiezen boven het gebruik van OECD-grond. 

8. Door de huidige Nederlandse normen en waarden over zorgtaken zijn de kansen op 

de arbeidsmarkt voor de vrouw kleiner dan voor de man. 

9. De boventoon die economisch denken in Nederland voert, vormt een gevaar voor de 

inhoudelijke discussie. 

10. Onderzoek doen naar onverteerbaar voedsel terwijl er mensen sterven van de honger 

is een teken van enorme weelde. 

Stellingen behorend bij het proefschrift "Physiological effects of consumption of resistant starch". 

Marie-Louise Heijnen, Wageningen, 2 april 1997. 



Aan iedereen die, op welke wijze dan ook, 

een bijdrage heeft geleverd aan de 
totstandkoming van dit proefschrift. 



Abstract 

Physiological effects of consumption of resistant starch 

PhD thesis by Marie-Louise Heijnen, Department of Human Nutrition, Wageningen 

Agricultural University, Wageningen, the Netherlands. April 2, 1997. 

Resistant starch (RS) is defined as the sum of starch and products of starch degradation 

not absorbed in the small intestine of healthy individuals. Thus, RS enters the colon 

where it may be fermented. In this respect, RS resembles some types of dietary fibre. 

Three types of RS are being discerned: RS^ physically entrapped starch; RS2, uncooked 

starch granules; RS3, retrograded starch. The estimated current meander capita RS intake 

in the Netherlands is 5 g/d. The amount of RS in foods can be manipulated by the choice 

of raw products and food processing techniques. This is of potential interest if an 

increased RS consumption would be beneficial for human health. In this thesis several of 

the hypotheses concerning putative positive effects of RS consumption on human 

physiology are studied. Daily consumption of up to 32 g RS2 or RS3 was tolerated well 

by healthy individuals and increased colonic fermentative activity and stool weight. 

Replacement of 27 g digestible starch by RS2 reduced diet-induced thermogenesis and 

postprandial glucose and insulin responses proportionally to the amount of indigestible 

carbohydrate consumed. When compared with an equivalent amount of glucose, daily 

supplementation of 30 g RS2 or RS3 for 3 wk did not affect serum lipid concentrations in 

healthy subjects, and daily supplementation with 32 g RS2 or RS3 for 1 wk did not affect 

putative risk factors for colon cancer, subjective feelings of hunger, faecal ammonia 

excretion and apparent absorption of magnesium, calcium and phosphorus in healthy 

individuals. No differences were observed between RS2 and RS3 in the parameters 

studied. In piglets, dietary RS3, but not RS2, shifted nitrogen excretion from urine to 

faeces, and RS2 reduced apparent magnesium and calcium absorption. In rats, dietary 

RS2, but not RS3, increased apparent, but not true magnesium absorption. It was 

concluded that daily consumption of up to 32 g RS2 or RS3 is not unfavourable for healthy 

individuals, but it also does not have great beneficial effects on human physiology, at 

least for the parameters and time span studied in this thesis. Especially the significance 

for human health of increased activity and site of fermentation in the colon, and the 

possible role of the various types of RS in the prevention of colon cancer should be 

studied further. 



Contents 

1. General introduction. 1 

2. Replacement of digestible by resistant starch lowers diet-induced 

thermogenesis in healthy men. British Journal of Nutrition 1995;73:423-432. 16 

3. Resistant starch has little effect on appetite, food intake and insulin 

secretion of healthy young men. 29 
European Journal of Clinical Nutrition 1995;49:532-541. 

4. Limited effect of consumption of uncooked (RS2) or retrograded (RS3) 

resistant starch on putative risk factors for colon cancer in healthy men. 43 

Submitted for publication. 

5. Retrograded (RS3) but not uncooked (RS2) resistant starch lowers faecal 

ammonia concentrations in healthy men. 62 

American Journal of Clinical Nutrition 1997;65:167-168 (letter to the editor). 

6. Consumption of retrograded (RS3) but not of uncooked (RS2) resistant 

starch shifts nitrogen excretion from urine to faeces in cannulated piglets. 66 
Submitted for publication. 

7. Effect of consumption of uncooked (RS2) and retrograded (RS3) resistant 

starch on apparent absorption of magnesium, calcium and phosphorus in 

pigs and man. Submitted for publication. 11 

8. Dietary raw versus retrograded resistant starch enhances apparent but not 

true magnesium absorption in rats. Journal of Nutrition 1996;126:2253-2259. 88 

9. Neither raw nor retrograded resistant starch lowers fasting serum 

cholesterol concentrations in healthy normolipidaemic subjects. 99 

American Journal of Clinical Nutrition 1996;64:312-318. 

10. Conclusions and recommendations. 115 

References. 131 

Samenvatting. 155 

Curriculum vitae. 162 



1 
General introduction 



Chapter 1 

Introduction 

Starches are an important component of the human diet. In the Netherlands, on average 
45 percent of energy intake is derived from carbohydrate, i.e. 248 g/d. About half of the 
carbohydrate intake is provided by starches (126 g/d) and the other half by mono- and 
disaccharides (121 g/d) (Voorlichtingsbureau voor de Voeding 1993). The Dutch Health 
Council (1992) recommends to increase, at the expense of fat, the carbohydrate intake to 
55 percent of energy intake, which would be 300 g/d on average, but to limit the intake 
of mono- and disaccharides to 15-25 percent of energy, which would be 82-136 g/d. 
These recommendations imply an increase of starch intake to 164-218 g/d on average. 

Starch structure 

Starches consist of amylose and amylopectin. Amylose is a straight-chain polymer of 
glucose linked by a-1,4 glucosidic bonds, with a molecular weight varying from 50,000 
to 200,000 Dalton (Whistler & Daniel 1985). Amylopectin is a branched-chain polymer 
of glucose linked by a-1,4 and a-1,6 glucosidic bonds, with a molecular weight of one 
to several million Dalton (Whistler & Daniel 1985). The amylopectin: amylose ratio varies 
in different starch sources, but is normally about 80:20 (Whistler & Daniel 1985). 
However, e.g. maize varieties with an amylose content as low as 0% and as high as 70% 
do exist. Native starch occurs in granules, which vary widely in shape (from spheres to 
rods) and size (from 1 pm to over 100 um). The size and form of such a granule are 
characteristic of the plant of origin (Whistler & Daniel 1985). The crystallinity of native 
starch granules varies from 15 to 45%. The rest of the granule has an amorphous 
structure (Asp et al. 1996). Three crystalline forms of starch granules have been 
identified with diffractometric spectra: (i) the A-pattern, displayed in general by cereal 
starches; (ii) the B-type, as in starch from potatoes and some tropical tubers; (Hi) the C-
form, displayed by most legumes. Some consider the C-type as a distinct crystallographic 
pattern, others as a mixture of the A- and B-forms. 

On heating in an aqueous environment the starch granule absorbs water and swells, the 
crystalline structure of the amylopectin disintegrates, and the granule ruptures. The 
polysaccharide chains take up a random configuration, causing swelling of the starch and 
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thickening of the surrounding matrix (gelatinization). The extent of gelatinization depends 

on the temperature, the amount of water present and the duration of the heat treatment. 

Most heat-treated foods contain granular structures ranging from relatively intact granules 

to virtually destroyed granules (Whistler & Daniel 1985, British Nutrition Foundation 

1990). When the granule ruptures, amy lose leaks out. On cooling or drying, the linear 

amy lose molecules readily associate and form hydrogen bonds. This is referred to as 

rétrogradation. Amylopectin molecules associate less readily, but rétrogradation occurs 

when linear side-chains align (Whistler & Daniel 1985, British Nutrition Foundation 

1990). 

Starch digestion and absorption 

Starches have to be hydrolysed to their constituent monosaccharides because man can 

only absorb monosaccharides. In the alimentary tract, starches are mainly hydrolysed by 

substrate-specific enzymes. Starch hydrolysis starts in the mouth: saliva contains the 

enzyme a-amylase, which hydrolyses the a-1,4 glucosidic bonds at random, producing 

oligosaccharides and small amounts of glucose (Shils & Young 1988). Since the a-1,6 

linkages of amylopectin are not affected by «-amylase, branched oligosaccharides, the so-

called «-limit dextrins (5 to 10 glucose units) remain too. Salivary a-amylase continues 

its action in the stomach until it is destroyed by the stomach acid. Some acid hydrolysis 

of starch occurs in the stomach, though only to a minor extent (Shils & Young 1988). 

Pancreatic a-amylase continues the work of salivary a-amylase in the duodenum and 

jejunum before it is destroyed by trypsin in the lower intestine (Brand 1988, Shils & 

Young 1988). The remaining residues of dietary starch (oligosaccharides and a-limit 

dextrins) and the disaccharides saccharose and lactose are hydrolysed to monosaccharides 

by brush border enzymes in the upper and mid-jejunum: maltase, isomaltase (which can 

hydrolyse the a-1,6 linkage), saccharase and lactase (Shils & Young 1988). 

Monosaccharides are transported across the intestinal mucosa into the splanchnic 

capillaries by several ways, either separately or combined: glucose and galactose by 

active absorption and passive diffusion, fructose by facilitated diffusion, and sugar 

alcohols by passive diffusion (Shils & Young 1988). After absorption, most of the glucose 

and other monosaccharides after conversion to glucose in the liver pass into the 
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circulation. They serve either as energy source for cells, or are stored as glycogen 
(mainly in the liver) or as fat (mainly in adipose tissue and the liver). Small quantities of 
monosaccharides are used by the gut wall for maintaining its own viability. 

The key factor that influences the rate and extent of starch digestion and absorption is 
the accessibility of the digesta to the intestinal enzymes. This depends in turn on e.g. the 
nature of the starch, food processing, physical structure and particle size of the food, and 
the presence or absence of interactions with other nutrients such as protein and fat. 

Resistant starch 

Until about 15 years ago starch was supposed to be completely digested in the upper 
digestive tract. However, in 1982 Dr. Englyst introduced the expression "resistant starch" 
(RS) for starch that was not hydrolysed by incubation with a-amylase and pullulanase 
(enzyme that breaks up a-1,6 glycosidic bonds) during determination of non-starch 
polysaccharides (Englyst et al. 1982). At that time, Englyst was referring to retrograded 
starch that is resistant to digestion by a-amylase in the small intestine (Englyst & 
Cummings 1985). Later, he showed in experiments with ileostomists that retrograded 
starch is only a small proportion of the starch remaining undigested in the small intestine 
of man (Englyst & Cummings 1986, 1987). 

Recently, resistant starch was the subject of a concerted action within the agroindustrial 
research programme of the Commission of the European Communities (FLAIR Concerted 
Action no. 11 'Physiological Implications of the Consumption of Resistant Starch in 
Man'). EURESTA is the acronym for the European RESistant ST Arch research group 
that consisted of scientists from universities, research institutes and industry from 40 
research groups in 11 European countries. The concerted action ran from July 1990 until 
June 1994. 

At the beginning of EURESTA the following definition of resistant starch was agreed 
upon: 'Resistant starch is the sum of starch and products of starch degradation not 
absorbed in the small intestine of healthy individuals' (Asp 1992). Thus, RS enters the 
colon where it may be (partly) fermented. 
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Three types of resistant starch are being discerned (Englyst et al. 1992): 
RSj-. starch that is physically inaccessible to a-amylase due to the partitioning by intact 

plant cell walls, e.g. starch in legumes, and in coarsely ground grains and seeds; 
RS2: uncooked B-type starch granules, e.g. as in unripe bananas, raw potato, and 

uncooked high-amylose maize starch; 
RS3: retrograded starch, mainly consisting of retrograded amylose, e.g. part of the 

starch in stale bread, and in cooked and cooled potatoes or pasta. 
RS1; RS2 and RS3 can coexist in the same food. RS as defined by EURESTA is composed 
in vivo {i.e. at the end of the small intestine) of three main fractions: (i) glucose and 
oligosaccharides, (ii) a crystalline fraction of intermediate molecular size, and (Hi) a high 
molecular weight fraction containing residues of resistant granules and physically enclosed 
starch. The relative size of these fractions varies, depending on the origin and the 
treatment of the starch (Faisant et al. 1993, 1995a). The fraction with glucose and 
oligosaccarides indicates that some starch is partially hydrolysed in the small intestine 
without being totally hydrolysed and absorbed. This may be due to a lack of time and/or 
to the relatively low activity of the brush border enzymes and limited capacity of glucose 
transport (Asp et al. 1996). 

Measurement of resistant starch 

Various in vitro methods are being used to determine the RS content of foods. The four 
most commonly mentioned are the methods of Englyst et al. (1992), Muir and O'Dea 
(1992), Champ (1992), and Berry (1986). 

In the method of Englyst et al. (1992) the various types of starch are measured by 
controlled enzymic hydrolysis and measurement of the released glucose using glucose 
oxidase. Chewing of the food is mimicked by mincing and standardized milling with glass 
balls, in the presence of guar gum to increase the viscosity. Total starch (TS) is 
determined as glucose released by enzymic hydrolysis with a-amylase and 
amyloglucosidase following gelatinization in boiling water and treatment with potassium 
hydroxide to disperse retrograded amylose. These two enzymes, a-amylase and 
amyloglucosidase, only hydrolyse a-1,4 glycosidic bonds and not /3-l,4 bonds as in e.g. 
cellulose so that indeed only starch is being determined. TS is corrected for free glucose 
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but includes maltose and maltodextrins. Rapidly digestible starch (RDS) and slowly 
digestible starch (SDS) are measured after incubation with pancreatic amylase and 
amyloglucosidase at 37 °C for 20 min and a further 100 min, respectively. RS is the 
starch not hydrolysed after 120 min incubation. RSt is determined by comparing the 
glucose released by enzymic digestion of a homogenized food sample with that released 
from a non-homogenized food sample. RS2 is determined by comparing the glucose 
released by enzymic digestion of a boiled, homogenized food sample with that of an 
uncooked, homogenized food sample. RS3 is determined as the fraction that resists both 
dispersion by boiling and enzymic digestion, and that can only be dispersed to measure 
glucose with potassium hydroxide or dimethyl sulphoxide. 

An advantage of the method of Englyst et al. is that it is validated in ileostomy patients 
for a limited number of experimental starchy products, foods, and mixed meals 
(Langkilde & Andersson 1995a, Silvester et al. 1995, Englyst et al. 1996). On average, 
very good agreement between RS measured in vitro and starch recovered in ileostomy 
effluent was found, but there was substantial variation between individuals. Therefore, 
Englyst et al. (1996) proposed to change the definition of RS slightly into: 'Resistant 
starch is the sum of starch and starch-degradation products that, on average, reach the 
human large intestine'. A disadvantage of the Englyst method is that it is time-consuming. 

The 2 h-incubation time in the method of Englyst et al. is much less than the time food 
remains in the small intestine in vivo. Muir and O'Dea (1992) initially used incubation 
times based on physiological transit times, i.e. 6 h for the small intestine. After 
preparation, the food samples were chewed normally to mimic the stage just before 
swallowing. This phase of the method is difficult to standardize. The method of Muir & 
O'Dea (1992) was validated against starch digestion in ileostomates. After the incubation 
time was increased from 6 h to 15 h good agreement was found both for single foods 
(Muir & O'Dea 1993) and for mixed meals (Muir et al. 1995). 

In Berry's method (1986) only a-amylase and amyloglucosidase are used for enzymic 
breakdown of starch. Therefore, this method is not suitable for samples that contain 
protein or fat. Further, RS, is not measured by this method. Champ (1992) modified 
Berry's method to make it easier and quicker by eliminating the gelatinization step and 
the pullulanase hydrolysis. Minor modifications were proposed by Sauro-Calixto 
(unpublished) and Faisant (Faisant et al. 1995b). 
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Each method has its own advantages and disadvantages; in general they give comparable 
results for foods and semipure starchy reference materials, although differences do exist 
(Champ 1992, Dysseler & Hoffem 1995ft, c). None of the methods takes into account the 
low-molecular weight fragments soluble in aqueous ethanol that are products of starch 
breakdown potentially digestible but found at the end of the small intestine of humans in 
vivo (Champ 1995). 

In this thesis the method of Englyst et al. (1992) is used because (i) it is the only 
available method discerning the three types of RS, (ii) it measures RS in foods as eaten, 
and (Hi) it is the method which is best validated with in vivo studies. 

Intake of resistant starch 

Within the framework of EUREST A, the per capita availability of RS was evaluated from 
data on the intake of starchy foods from ten European countries during the period 1992 
to 1994. The RS content of the foods used in the calculations was determined by the 
method of Englyst et al. (1992) or by Berry's method as modified by Champ (1992). 
Different food consumption methods and balance sheets or disappearance statistics were 
used. The data from some countries were incomplete. 

The mean RS intake in Europe is estimated to be 4.1 g dry matter/d (Table 1.1; 
Dysseler & Hoffem 1995a). RS intake ranges from 3.2 g/d in Norway to 5.7 g/d in 
Spain. In the Netherlands mean RS intake is estimated to be 5.3 g/d. Bread and potatoes 
are the major sources of RS in most countries, providing together 60% to 90% of the 
total RS intake. The contribution of other sources of RS fluctuates considerably between 
the countries. The differences between the countries may be due to differences in dietary 
habits, but also to under- or overestimation in the analysis of some starchy foods. 

These data should be regarded as indicative only, because they differ with respect to 
their origin and completeness and because different analytical methods were used. In any 
case, the current RS intake in Europe seems low. 
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General introduction 

Rationale of this thesis 

An average per capita intake of about 5 g RS per day in the Netherlands is only 4% of 
the mean total starch intake of 126 g/d (Voorlichtingsbureau voor de Voeding 1993). 
However, the intake of RS can be varied at the individual level by the choice of foods 
and preparation method. Further, in food industry, the amount of all three types of RS 
in foods can be manipulated (Muir et al. 1995). This can be achieved through the choice 
of raw materials (e.g. high- or low-amylose variants of cereals), and through food 
processing techniques and conditions (e.g. extent of milling of grains, amount of water 
present during cooking, or repeated heating and cooling cycles to promote 
rétrogradation). 

The possibility to manipulate the RS content of foods to increase RS intake is of 
potential interest if an increased RS consumption would be beneficial for human health. 
Because RS is by definition not absorbed in the small intestine, it enters the colon where 
it may be (partly) fermented. In this respect, RS resembles some types of dietary fibre. 
Therefore, some of the hypotheses about putative beneficial effects of dietary fibre on 
human health may be applicable to RS as well. The research carried out within the scope 
of this thesis aimed at studying several of the hypotheses concerning putative positive 
effects of RS consumption on human physiology. 

Physiological effects of resistant starch consumption 

The putative beneficial effects of RS consumption on human physiology that are studied 
in the experiments described in this thesis are introduced below. Different types of RS 
may have different effects on human physiology. Therefore, in most of the studies 
reported in this thesis, uncooked resistant starch (RS2) was compared with retrograded 
resistant starch (RS3). These two types of RS were chosen because some studies suggest 
that RS2 is better fermentable than RS3 (Schulz et al. 1993, Olesen et al. 1994, 
Cummings et al. 1995, Champ et al. unpublished results), and because it is relatively 
easy to prepare well-defined experimental foods that contain RS2 and RS3, in contrast to 
RS!. Glucose was used as control because it is fully digestible. In each study, subjects 
also were asked to report any discomforts perceived to be due to RS consumption. 
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Glucose and insulin 

Because RS is by definition not digested and absorbed as monosaccharides in the small 

intestine of man, the blood glucose concentration is expected not to rise after consumption 

of RS, in contrast to after consumption of digestible starch. When less glucose is 

available in the blood for uptake by the body cells, less insulin will be secreted by the 

pancreas as insulin is the principal hormone facilitating glucose uptake by cells. More 

attenuated concentrations of glucose and insulin in blood may be beneficial for diabetes 

patients, but also for healthy individuals. 

In the randomized multiple cross-over study described in Chapter 2 postprandial 

glucose and insulin concentrations in blood were measured in 10 healthy men after 

consumption of RS2 from uncooked potato starch or digestible starch from pregelatinized 

potato starch. In the randomized multiple cross-over study reported in Chapter 3 24-h 

insulin secretion was measured in 24 healthy men after consumption of a daily supplement 

containing RS2 from uncooked high-amylose maize starch, RS3 from retrograded high-

amylose maize starch or glucose. Each supplement was consumed for 1 wk by every 

subject in random order. 

Diet-induced thermogenesis 

Consumption of RS instead of digestible starch implies a reduction in net energy intake 

because RS is not absorbed in the small intestine. The energy value of RS is not zero as 

RS is fermented in the colon, and estimated to be 8 kJ/g (Livesey 1995) whereas the 

energy value of digestible starch is 17 kJ/g. Thus, consumption of RS instead of 

digestible starch may be of benefit in weight-reducing diets if no compensation occurs. 

The obligatory energy costs of ingesting, digesting, absorbing and metabolising the food 

consumed makes up 60-70% of the diet-induced thermogenesis (DIT). The rest of the DIT 

can be ascribed to a facultative thermogenic effect of the food (Himms-Hagen 1989). The 

facultative part of the DIT may be increased by insulin via stimulation of the sympathetic 

nervous system (Landsberg & Young 1983). If consumption of RS induces a lower blood 

insulin concentration than consumption of digestible starch, RS may reduce the DIT. This 

would counteract the above mentioned advantage of consumption of RS instead of 

digestible starch in weight-reducing diets. 

In the randomized multiple cross-over study described in Chapter 2 the DIT was 

measured in 10 healthy subjects after consumption of RS2 from uncooked potato starch 
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and after consumption of digestible starch from pregelatinized potato starch. To assess 

the impact of fermentation products on the DIT, lactulose (an indigestible disaccharide 

that is rapidly fermented in the colon) was studied as well. H2 and CH4 excretion in 

breath were determined as a semi-quantitative measure for colonic fermentation 

(Rumessen 1992). 

Feelings of hunger and food intake 

Some dietary fibres have satiating power that may be due to delaying gastric emptying 

(Roberfroid 1993, Truswell 1993) or to attenuating the blood glucose concentration 

(Leathwood & Pollet 1988, Holt et al. 1992). Since RS resembles dietary fibre in several 

aspects, RS may have a satiating effect, too. If so, consumption of RS would be helpful 

in weight-reducing diets also by suppressing feelings of hunger. Alternatively, RS may 

reduce satiety when it replaces digestible starch because RS provides less net energy 

(Livesey 1995). 

The effect of RS on feelings of hunger and food intake was studied in 24 healthy men 

during consumption of a daily supplement containing RS2 from uncooked high-amylose 

maize starch, RS3 from retrograded high-amylose maize starch or glucose as reported in 

Chapter 3. Each subject consumed every supplement for 1 wk in random order in this 

multiple cross-over study. 

Colon cancer risk 

Colon cancer is the second most common cause of cancer deaths in both males and 

females in Western, affluent, societies. Genetic predisposition accounts for probably a 

minority of the colon cancer cases. Apart from a possible inherited susceptibility to colon 

cancer, international incidence and migrant studies indicate that environmental factors, 

especially dietary factors, play an important role in the aetiology of sporadic (acquired 

rather than inherited) colon cancer (Lapré 1992, Govers 1993). By analogy with dietary 

fibre, RS is hypothesised to reduce the risk for colon cancer in several ways: 

(i) By 'dilution' of the intestinal contents and reduction of intestinal transit time, thus 

reducing the contact of carcinogens with the colonic mucosa (Burkitt 1971). This may 

happen if consumption of RS increases stool mass. 

(ii) By the production of butyrate. Colonic fermentation of RS may lead to the 

production of short-chain fatty acids (SCFA; Muir et al. 1994, Cummings et al. 1995, 
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Nordgaard et al. 1995). Some studies indicate that fermentation of RS leads specifically 

to an increase in butyrate (Scheppach et al. 1988&, van Munster et al. 1994è, Phillips et 

al. 1995). Butyrate is a putative protective factor towards colon cancer (Roediger 1982, 

Gamet et al. 1992, Scheppach et al. 1995, Csordas 1996). 

(Hi) By reduction of the cytotoxicity of faecal water. The SCFA produced during 

colonic fermentation of RS induce a decrease in colonic pH resulting in reduced solubility 

of bile acids (Bruce 1987). Further, the initial, irreversible step in bacterial conversion 

of primary into secondary bile acids (7a-dehydroxylation) is inhibited at pH below 6.5 

(MacDonald et al. 1978, Nagengast et al. 1988a). The amount of soluble long-chain fatty 

acids and soluble bile acids (Rafter et al. 1986), the secondary bile acids in particular 

(van der Meer et al. 1991), affect the cytotoxicity (i.e. the cell-damaging properties) of 

faecal water. Faecal water is the fraction of faeces which contains the water-soluble, not-

bound components of the faeces (Lapré 1992) that are in contact with the colonic mucosal 

cells (Bruce 1987, Geltner Allinger et al. 1989, van Munster & Nagengast 1991). There 

are indications, but not yet conclusive evidence, that a higher cytotoxicity of faecal water 

is associated with higher colonic cell proliferation in rat (Lapré & van der Meer 1992) 

and man (Stadler et al. 1988). Hyperproliferation of colonic epithelial cells is suggested 

to be an important biomarker of increased susceptibility to colon cancer (Lipkin 1988). 

(iv) By reduction of the amount of deoxycholic and lithocholic acid. Rat studies 

indicated that the secondary bile acids deoxycholic and lithocholic acid may be colon 

tumour promoters (Narisawa et al. 1974, Bull et al. 1983, Summerton et al. 1985). 

The effect of daily consumption of a supplement containing RS2 from uncooked high-

amylose maize starch, RS3 from retrograded high-amylose maize starch or glucose on 

putative risk factors for colon cancer as explained above was studied in 24 healthy men 

in a randomized multiple cross-over study described in Chapter 4. Each subject consumed 

every type of supplement for 1 wk in random order. 

Nitrogen excretion 

When RS enters the colon, more fermentable substrate becomes available for the bacteria. 

Hence, more energy is available for bacterial growth. Bacterial growth also requires 

nitrogen. Nitrogen is derived from ammonia (NH3) produced by bacteria from dietary 

protein that escapes digestion, endogenous proteins such as pancreatic and intestinal 

secretions and sloughed epithelial cells (Mason 1984), and urea that diffuses from blood 
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to the colon (Rémésy & Demigné 1989, Younes et al. 1995a). Ammonia can be used for 

bacterial protein synthesis, thus trapping nitrogen for excretion in the faeces. Further, the 

conversion of ammonia into ammonium (NH4
+) is enhanced by a reduction in pH due to 

colonic fermentation of RS. Ammonium is not well absorbed from the colon and will be 

excreted in the faeces. The usual route of excretion of ammonia is via urine after 

conversion into urea. Thus, increased colonic fermentation of RS may shift nitrogen 

excretion from urine (urea) to faeces (bacteria, ammonium). This may be of interest for 

the dietary management of chronic renal disease, such as may occur in diabetic patients 

(Rampton et al. 1984, Parillo et al. 1988). Also, reduction of the return of ammonia from 

the gut to the body, thereby decreasing detoxification of ammonia to urea in the liver, 

may lessen the workload for the liver, which is of interest for cirrhotic patients (Wolpert 

et al. 1971, Weber et al. 1985). 

In the randomized multiple cross-over study described in Chapter 4, in which 24 

healthy men consumed a daily supplement containing RS2 from uncooked high-amylose 

maize starch, RS3 from retrograded high-amylose maize starch or glucose, each for 1 wk, 

faecal ammonia and urinary urea excretion were measured, too, as reported in Chapter 

5. To measure nitrogen absorption by the colon, nitrogen metabolism was studied in 

piglets with a cannula at the end of the ileum as described in Chapter 6. The piglets 

consumed a diet containing RS2 from uncooked high-amylose maize starch, RS3 from 

retrograded high-amylose maize starch or glucose. The pig is the animal closest to man 

in terms of anatomy and physiology of the digestive tract (Bach Knudsen et al. 1993, 

Rowan et al. 1994). 

Mineral absorption 

Minerals play an essential role in vertebrate animals, including man. For example, 

magnesium plays a key role in many fundamental biological processes such as muscle 

contraction, enzyme activation and neural excitability (Ryan 1991), and calcium is the 

most prominent mineral in the skeleton and is essential for e.g. several enzyme activities, 

transmission of nerve impulses, and second messenger functions (Nordin 1988). Some 

dietary fibres may reduce mineral absorption by binding or complexing minerals in the 

gut (Rossander et al. 1991). RS has no binding or complexing capacities as it is devoid 

of uronic acids (Younes et al. 1996). The effect of RS on mineral absorption is thought 

to be a consequence of its fermentation in the colon. Several hypotheses have been 
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proposed. Mineral absorption may be stimulated by fermentable RS by increasing the 

soluble pool of the mineral (only solubilised minerals can be absorbed) through 

acidification of the gut contents (Heijnen et al. 1993, Schulz et al. 1993, Hara et al. 

1996, Younes et al. 1996) and/or by hypertrophy of the colonic wall, i.e. by increasing 

the surface area for absorption (Younes et al. 1996). It has been proposed also that the 

SCFA produced during RS fermentation in the gut may stimulate colonic cell proliferation 

(Lupton & Kurtz 1993) which would increase the mineral absorption capacity. Further, 

SCFA may enhance magnesium absorption by a Mg2+/H+ exchanger located in the apical 

membrane of the epithelium in the distal colon (Scharrer & Lutz 1992). These hypotheses 

imply that fermentable RS would enhance not only the absorption of dietary (exogenous) 

minerals but also that of endogenous minerals, thus leading to an increase in true mineral 

absorption. This can only be valid if the excretion of endogenous minerals is not affected. 

The apparent absorption of magnesium, calcium and phosphorus was studied in man 

and pigs consuming RS2, RS3 or glucose as reported in Chapter 7. The piglets were 

cannulated at the end of the ileum to study the contribution of the small and the large 

intestine to mineral absorption. The results were compared with those of the rat study 

described in Chapter 8. In all species studied, the same RS2 and RS3 preparations from 

high-amylose maize starch were used. To test whether RS enhances true magnesium 

absorption, the retention of orally and intraperitoneally administered 28Mg (van den Berg 

et al. 1995) was measured in rats fed RS2 or RS3, as described in Chapter 8. The results 

were compared with those from rats fed either glucose or lactulose. 

Serum cholesterol concentration 

Consumption of soluble dietary fibres decreases serum cholesterol concentration both in 

normo- and in hyperlipidaemic subjects (Topping 1991, Truswell 1995). A decrease in 

serum cholesterol concentration is associated with a reduction of the risk for coronary 

heart disease. The proposed mechanisms whereby soluble fibres exert their cholesterol-

lowering effect include (i) inhibition of cholesterol absorption by enhanced viscosity of 

the intestinal contents, (ii) enhanced bile acid excretion and (Hi) inhibition of hepatic 

cholesterogenesis and lipoprotein synthesis by propionate produced by bacterial 

fermentation of dietary fibre in the colon. The latter two mechanisms may be valid for 

RS, too. However, it has been noted that the physiological concentration of propionate 

may be too low to inhibit cholesterogenesis in the liver (Topping 1991, Lin et al. 1995). 
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Furthermore, it is not obvious why soluble fibres and RS would increase bile acid 

excretion since specific binding of bile acids is not likely (Topping 1991). Nevertheless, 

interruption of the enterohepatic circulation of bile acids may lead to a smaller bile acid 

pool, which, in turn, impairs cholesterol and fat absorption by reduced micellar 

solubilisation (Färkkilä & Miettinen 1990). Further, bile acid malabsorption stimulates 

bile acid synthesis from cholesterol, ultimately causing enhanced cholesterol synthesis and 

(through upregulated hepatic LDL receptors) a decrease in serum cholesterol 

concentration (Färkkilä & Miettinen 1990). 

To study the effect of consumption of RS2 and RS3 on serum cholesterol concentrations 

in man, the randomized multiple cross-over study described in Chapter 9 was conducted. 

Fifty-seven healthy men and women consumed a daily supplement containing RS2 from 

uncooked high-amylose maize starch, RS3 from retrograded high-amylose maize starch 

or glucose. Each subject consumed every supplement for 3 wk in random order. 

The following chapters (2-9) contain the reports of the experiments that were conducted 

to study the above explained possible effects of RS consumption on human physiology. 

In Chapter 10, the conclusions from these experiments are discussed and 

recommendations for further research are made. 
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Replacement of digestible by resistant starch lowers 
diet-induced thermogenesis in healthy men 

Heijnen MLA, Deurenberg P, van Amelsvoort JMM, Beynen AC. 

British Journal of Nutrition 1995;73:423-432. 

Abstract 
This study describes the effect of replacement of digestible starch by resistant starch (RS) on 
dietary-induced thermogenesis (DIT), postprandial glucose and insulin responses, and colonic 
fermentation. Ten healthy males consumed three test meals, consisting of diluted, artificially-
sweetened fruit syrup and either 50 g raw potato starch (550 g RS/kg), or 50 g pregelatinized 
potato starch (0 g RS/kg) or 30 g pregelatinized potato starch plus 20 g lactulose (670 g 
indigestible disaccharide/kg). The meals were served in the morning after an overnight fast. Each 
volunteer consumed each meal twice on six separate days in random order. Metabolic rate was 
measured by indirect calorimetry in the fasting state for 15 min and postprandial^ for 5 h. 
Shortly before and hourly up to 7 h after consumption of the test meal, end-expiratory breath 
samples were obtained for H2 and CH4 analysis. Shortly before and 30, 60, 180, and 300 min 
postprandial^, blood samples were taken for glucose and insulin analyses. Postprandial increases 
in glucose and insulin levels were proportional to the amount of digestible carbohydrate in the 
meal. Breath H2 and CH4 concentrations indicated that the pregelatinized starch was not 
fermented and that lactulose was fermented rapidly. Fermentation of the raw starch started only 
6 to 7 h after consumption, resulting in a rise in breath H2 but not in CH4. The replacement of 
27 g digestible starch by RS in a single meal lowered DIT by on average 90 kJ/5 h, as could also 
be calculated by assuming that RS does not contribute to DIT. The ingestion of lactulose resulted 
in a substantial rise in DIT which was most likely caused by its fermentation. 
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Introduction 

Dietary-induced thermogenesis (DIT) depends on the composition of the meal, including 

the type of carbohydrate (Sharief & MacDonald 1982, Schwarz et al. 1989). About 60-

70% of DIT comprises the obligatory energy costs of ingesting, digesting, absorbing and 

metabolizing the food consumed. The rest of the DIT can be ascribed to a facultative 

thermogenic effect of the food (Himms-Hagen 1989). A meal with a high content of 

rapidly digestible and absorbable carbohydrate, resulting in relatively high postprandial 

blood glucose concentrations and hence relatively high insulin responses, may increase 

the facultative part of the DIT via stimulation of the sympathetic nervous system 

(Landsberg & Young 1983). 

Resistant starch (RS) is not absorbed in the small intestine of healthy humans (Englyst 

et al. 1992). Therefore, RS consumption represents a lower net energy intake compared 

with an identical amount of digestible starch. This might be of benefit for the obese. 

Furthermore, because of its indigestible character, RS consumption may result in lower 

postprandial glucose and insulin responses compared to digestible starch consumption 

which in turn could lower the DIT. A lower DIT after ingestion of RS would counteract 

the advantage for obese people when consuming RS instead of digestible starch. 

Since RS is not absorbed in the small intestine it enters the colon where it can be 

fermented, resulting in the production of H2, short-chain fatty acids (SCFA), C02 and in 

some people also CH4 (Cummings & MacFarlane 1991). Parts of these products are 

absorbed from the colon, and H2, CH4 and C02 are partly excreted in breath. The 

percentage of people producing CH4 (as measured by CH4 in end-expiratory air) varies 

from 20 to 70% in different studies (Pitt et al. 1980, Bjorneklett & Jenssen 1982, 

McNamara et al. 1986, Segal et al. 1988, Gibson et al. 1990). It could be suggested that 

the absorption and metabolism of fermentation products contribute to the DIT. 

In this study the effect of replacing digestible starch with resistant starch on DIT, 

postprandial glucose and insulin responses, and colonic fermentation (as measured by H2 

and CH4 in end-expiratory air) was investigated. To assess the impact of fermentation 

products generated from RS, lactulose, an indigestible disaccharide that is rapidly 

fermented in the colon, was studied as well. 
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Subjects and methods 

The study was carried out at the Department of Human Nutrition, Wageningen 
Agricultural University. 

Subjects 
Ten apparently healthy (as assessed by a medical questionnaire) male students, aged 24 
(SD 2, range 20-26) y, mean body weight (in bathing trunks) 72.2 (SD 8.6, range 61.0-
91.1) kg, mean height 1.83 (SD 0.08, range 1.72-1.99) m, mean body mass index 21.5 
(SD 1.5, range 19.4-23.5) kg/m2, with no history of gastrointestinal diseases or diabetes 
mellitus and not using a special diet or medication, participated in the study. 

Before entering the study, the volunteers were screened for CH4 in their breath on three 
separate days. A subject was classified as a CH4 producer when at least two of three end-
expiratory breath samples had a CH4 concentration >3 ppm after subtracting the CH4 

concentration of the ambient air (McNamara et al. 1986, Nagengast et al. 1988fr, 
Rumessen 1992). Three out of the ten subjects were found to be CH4 producers. 

Experimental meals 
Table 2.1 shows the composition of the experimental meals. For meal A, 50 g raw potato 
starch (supplied by the Institut National de la Recherche Agronomique, Nantes, France) 
containing 550 g RS/kg (type 2, i.e. raw starch granules, RS2) as measured in vitro 
according to the procedure of Englyst et al. (1992) was used. For the control meal B, 50 
g pregelatinized potato starch (Institut National de la Recherche Agronomique, Nantes, 
France) containing 0 g RS/kg (Englyst et al. 1992) was used. As a reference (meal C) 
we used lactulose (Sirupus Lactulosi; Pharmachemie B.V., Haarlem, the Netherlands), 
an indigestible disaccharide (4-0-|8-D-galactopyranosyl-D-fructose, C12H22Ou) that is 
rapidly and extensively fermented in the colon. However, because of its laxative effect 
only 20 g lactulose was served in a meal. Therefore we added 30 g pregelatinized potato 
starch to meal C to have equal amounts of 50 g carbohydrates in all meals. The raw and 
pregelatinized potato starch were both in a dry powdered form and lactulose was available 
as a syrup, containing 667 g lactulose, 110 g galactose, 10 g glucose, 10 g fructose and 
60 g lactose/1. The starches and lactulose syrup were added to 125 ml concentrated fruit 
syrup (Irma A/S, Rodovre, Denmark) containing 23 g glucose, 35 g fructose and 9 g 
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Table 2.1 Composition of the experimental meals 

Total starch (g) 
Rapidly digestible starch (g) 
Slowly digestible starch (g) 
Resistant starch (g) 
Total mono- + disaccharides (g) 
Digestible mono- + disaccharides (g) 
Lactulose (resistant disaccharide) (g) 
Total carbohydrate (g) 
Digestible carbohydrate (g) 
Resistant carbohydrate (g) 
Gross energy6 (kJ) 

A 
Raw potato 

starch 

40.7a 

3.0a 

10.6a 

27.1» 
8.4C 

8.4C 

-
49.1 
22.0 
27.1 

830 

Meal 

B 
Pregelatinized 
potato starch 

46.5" 
44.0" 
2.6" 
-
8.4' 
8.4C 

-
54.9 
54.9 

-
930 

C 
Lactulose plus 
pregelatinized 
potato starch 

27.9" 
26.4" 
1.5" 
-

34.1cd 

14.1cd 

20.0" 
62.0 
42.0 
20.0 

1008 

From raw potato starch. 
From pregelatinized potato starch. 
From concentrated fruit syrup. 
From lactulose syrup. 
Calculated as total starch (g) x 17.2 kJ plus total mono- + disaccharides (g) x 15.5 kJ 
(Passmore & Eastwood 1986). 

sucrose/1. Tap water was added to reach a final volume of 500 ml. The raw and 
pregelatinized potato starches differed in water content (166 and 49 g/kg respectively) so 
that meal A and B differed slightly in total starch content (Table 2.1). 

The meals were prepared freshly every day just before consumption. Meal A was a 
liquid suspension in which the raw starch tended to sink to the bottom of the glass. Meal 
B was viscous and had to be eaten with a spoon. Meal C was less viscous than B and 
could be drunk as meal A. Because of these clear differences in viscosity the subjects 
were able to distinguish between the meals although they did not know which viscosity 
corresponded to which type of meal. 
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Experimental design 
On a measurement day, subjects were picked up at home by car after an overnight fast. 
After voiding and weighing, the subjects rested on a bed in a semi-supine position and 
after a period of about 15 min in which the metabolic rate stabilized, resting metabolic 
rate (RMR) was measured for 45 min. Then the subjects consumed one of the 
experimental meals within 10 min and postprandial energy expenditure (PEE) was 
measured for 5 h. During the metabolic rate measurements the subjects watched video 
movies. They were allowed to go to the toilet if necessary. All urine produced during the 
metabolic rate measurements was collected for N determination, necessary to estimate the 
amount of protein oxidation. Shortly before and 30, 60, 180 and 240 min after 
consumption of the meal, blood samples were taken by venepuncture for determination 
of glucose and insulin concentrations. Immediately after the meal the subjects judged the 
palatability of the meals using visual analogue scales. Shortly before and every hour for 
7 h after consuming the meals a questionnaire asking for gastrointestinal complaints was 
filled in and end-expiratory breath samples were taken for measuring H2 and CH4 

concentrations. Every time a breath sample was taken a sample of the ambient air was 
taken as well. After the metabolic rate measurements were completed (after 5 h) the 
subjects were served a standardized lunch consisting of two white rolls and one roll with 
raisins, together with 20 g margarine, 24 g raw {i.e. salted, dried and smoked) ham, 20 
g cooked ham, 250 ml partly skimmed milk and coffee or tea (total meal: 3.11 MJ; 
carbohydrate 43% energy intake, fat 41% energy intake, protein 16% energy intake, and 
3.9 g dietary fibre). Two more breath samples were collected at 6 and 7 h after the test 
meal. Figure 2.1 shows the flow diagram of an experimental day. On most measurement 
days, two subjects were measured simultaneously. 

Each subject consumed every type of meal twice. Since a period of at least 6 d 
separated each two successive measurement days of a subject, carry-over effects were not 
expected nor was an effect of the order of the meals. To be sure, the order of the meals 
was random but different for every subject. All measurements were completed within 2.5 
months. On the 3 d before the measurements a standardized diet consisting of ordinary 
foods and containing carbohydrate 60% energy intake, fat 28% energy intake, protein 
12% energy intake, and 3.5 g dietary fibre/MJ was provided. The amount of food was 
attuned to individual energy needs as based on World Health Organization energy 
requirement formulas (1985); a suitable activity factor was assessed by asking the 
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Figure 2.1 Time schedule for a measurement day. RMR, resting metabolic rate; DIT, 

diet-induced thermogenesis; B, blood sample; E, end-expiratory breath sample; Q, 

questionnaire on gastrointestinal complaints. 

subjects about their sporting activities. At 2 d before the measurements the subjects 

abstained from strenuous physical activities. Throughout the experimental period the 

subjects kept a diary in which they noted any deviations from the study protocol, 

gastrointestinal complaints, illnesses and medication taken. 

Methods 

RMR and DIT were measured by indirect calorimetry with a ventilated-hood system as 

described in detail elsewhere (Weststrate 1993). Metabolic rate was calculated using the 

formula of Jéquier et al. (1987). DIT was calculated by subtracting RMR from 

postprandial energy expenditure (PEE). 

Plasma glucose was measured enzymically by the combined activities of hexokinase 

(EC 2.7.1.1) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) (Abbott Spectrum 

High Performance Diagnostic System; Abbott Laboratories, North Chicago, IL, USA). 

Serum insulin was measured by immunoassay with a commercial test combination 

(Boehringer Mannheim GmbH, Germany). 

Urinary N was determined by the Kjeldahl method with a Kjeltic autosampler system 

1035 analyser (Tecator, Sweden). 

End-expiratory breath samples were collected in plastic syringes of 60 ml (Plastipak, 

Becton Dickinson, Dublin, Ireland). Within 2 h after collection, a 20 ml portion of each 

sample was used to measure H2 with an electrochemical measurement cell (Exhaled 

Hydrogen Monitor; Gas Measurement Instruments Ltd., Renfrew, Scotland). The 

measurement cell was calibrated twice a day with 105 ppm H2 in N2 gas (Intermar B.V., 
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Breda, the Netherlands). The remaining portion of the breath sample was used for a 
duplicate CH4 determination by gas chromatography (Hewlett Packard, model 427, 
Stimadzu, Chromatopac C-R3A). For calibrating (once daily), 5 ppm and 29 ppm CH4 

in N2 gases were used (Intermar B.V., Breda, the Netherlands). 

Statistical analysis 
Results are expressed as means with their standard errors. First the means of the 
duplicates per subject per type of meal were calculated, then the mean and standard error 
per type of meal. The significance of the differences between the three meals regarding 
glucose, insulin and DIT was assessed by analysis of variance with type of meal as fixed 
factor and subject as random factor (thus taking the intrinsic individual levels into 
account). In general, adding the order of the meals to the model did not contribute to the 
model. In the case of a statistically significant effect (P value < 0.05) in the analysis of 
variance, group means were compared by pairwise Student's t tests. Because of the small 
numbers of CH4 (ra=3) and non-CH4 producers (n=7) the differences between the meals 
regarding H2 and CH4 excretion in breath were only described and not statistically 
evaluated. The statistical analysis package SAS, release 6.07 (Statistical Analysis Systems 
Inc., Cary, NC, USA) was used to perform the statistical analyses. 

Ethical considerations 
The experimental design and possible discomforts were explained to the subjects before 
written informed consent was obtained. The experimental protocol was approved by the 
Medical-Ethical Committee of the Department of Human Nutrition of the Wageningen 
Agricultural University. 

Results 

On one of the measurement days, lactulose was added wrongly to one meal and omitted 
wrongly from another. Inspection of the diaries revealed that one subject was taking 
antibiotics on his last measurement day. The results of these volunteers on those three 
experimental days were excluded from the statistical analysis. 
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The meals were acceptable to the volunteers but in general palatability was regarded as 

suboptimal. With increasing viscosity (raw starch < lactulose < pregelatinized starch) 

the meals were less appreciated. 

Few gastrointestinal complaints were reported after consumption of the raw and pre

gelatinized starch meals. One subject reported abdominal complaints starting in the 

evening of a measurement day on which he had consumed a raw starch meal. 

Consumption of the lactulose meal resulted in increased flatulence and intestinal rumbling 

in most subjects, indicative of fermentation of lactulose by the intestinal bacteria. The 

discomfort caused by the reported intestinal complaints was described as light in most 

cases and sometimes as moderate. 

Postprandial plasma glucose rose to a peak value 30 min after consumption of the 

meals and returned to baseline levels within 3 h. The peak values differed significantly 

between the meals (P < 0.0001): the mean changes from baseline were 3.9 (SE 0.5), 2.5 

(SE 0.5) and 0.5 (SE 0.2) mmol/1 for the pregelatinized starch, lactulose and raw starch 

meals respectively. At 1 h after consumption the plasma glucose concentration was 1.5 

(SE 0.4) mmol/1 higher after the pregelatinized meal than after the raw starch meal and 

1.3 (SE 0.3) mmol/1 higher than after the lactulose meal (P < 0.0001). At 3 h after 

consumption plasma glucose concentration was 0.4 (SE 0.2) mmol/1 higher after the raw 

starch meal than after the pregelatinized meal and 0.3 (SE 0.2) mmol/1 higher than after 

the lactulose meal (P < 0.001). 

Postprandial serum insulin rose to a peak value 30 min after consumption of the meals 

and returned to baseline levels within 3 h. The peak value after consumption of the raw 

starch meal was lower (P < 0.01) than after the pregelatinized starch meal (19 mU/1) and 

the lactulose meal (8 mU/1), the changes from baseline being 37 (SE 18), 36 (SE 7) and 

7 (SE 3) mU/1 for the pregelatinized starch, lactulose and raw starch meals respectively. 

At 1 h after consumption the serum insulin concentration was 36 (SE 13) mU/1 higher 

after the pregelatinized meal than after the raw starch meal and 27 (SE 8) mU/1 higher 

than after the lactulose meal (P < 0.0001). 

After consumption of lactulose the H2 concentration in end-expiratory air rose rapidly 

to a peak value 3 h after consumption of the meal, both in non-CH4 and CH4 producers. 

The total area below the H2 curve, as a measure for the total amount of H2 expired during 

the experimental period, was larger after consumption of the lactulose meal than after 

consumption of the other two meals, both for CH4 and non-CH4 producers (Table 2.2). 
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However, the amount of H2 produced by CH4 producers after consumption of lactulose 

was about half of the amount produced by non-CH4 producers. In CH4 producers breath 

CH4 concentration also tended to increase after lactulose consumption. Pregelatinized 

potato starch seemed to be fully absorbed and not fermented since the H2 and CH4 

concentrations in end-expiratory air up to 7 h after consumption of the meal were not 

different from the fasting values, both in CH4 and non-CH4 producers. Up to 5 h after 

ingestion of the raw starch meal in non-CH4 producers, and up to 6 h in CH4 producers, 

breath H2 concentration did not differ from that after consumption of the pregelatinized 

starch meal. At 6 to 7 h after consumption of the raw starch meal, however, breath H2 

concentration started to rise: mean difference 7 (SE 2) ppm at 6 h and 12 (SE 5) ppm at 

7 h in non-CH4 producers, and 5 (SE 1) ppm at 7 h in CH4 producers. No difference was 

found in breath CH4 excretion after consumption of the pregelatinized and raw starch 

meals (Table 2.2). 

Table 2.2 Amount of H2 expired during 7 h after consumption of a meal containing 50 

g raw potato starch, 50 pregelatinized potato starch or 20 g lactulose plus 30 g pre

gelatinized potato starch by CH4 (n=3) and non-CH4 producers (n = 7)a 

(ppm x 7 h) 

Non-CH4 producers CH4 producers 

Area below the CH4 curve 
(ppm x 7 h ) 

CH4 producers 

449 
400 
592 

49 
192 

-143 

+ 186 
±164 
±256 

±51 
±101 
+ 71 

leal: 
Raw starch (A) 
Pregelatinized starch (B) 
Lactulose (C) 

lean difference11 

A - B 
C - B 
A C 

63 +12 
43 ±10 

511 ±57 

20 ±14 
468 ±60 
-448 +53 

23 
28 

271 

-5 
243 

-248 

±6 
±7 
±140 

±1 
±134 
+ 135 

a Mean values with their standard errors. First the means of the duplicates per subject were 
calculated, then the mean and SE per meal. 

b Values were calculated from the differences on each individual separately for each pair of diets. 
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RMR was similar before every meal: 5.0 (SE 0.2), 5.0 (SE 0.2) and 4.8 (SE 0.2) kJ/min 
for the raw starch, pregelatinized starch and lactulose meals respectively. 

DIT rose rapidly after consumption of the meals, started to decrease within 1 h and 
levelled off after 2 h. Mean DIT, total DIT and DIT as percentage of RMR after the 
pregelatinized and lactulose meals were similar; DIT after the raw starch meal was 
significantly lower, both in terms of magnitude and duration (Table 2.3). 

Table 2.3 Effects of meals containing 50 g raw potato starch, 50 g pregelatinized potato 
starch or 20 g lactulose plus 30 g pregelatinized potato starch on diet-induced 
thermogenesis (DIT; calculated as postprandial energy expenditure minus resting 
metabolic rate (RMR)) in young men (n=10f 

Meal: 
Raw starch (A) 
Pregelatinized starch (B) 
Lactulose (C) 

Analysis of variance: 
Meal 
Subject 

Mean difference' 
A - B 
C - B 
A - C 

kJ/min 

0.1 ±0.1" 
0.4 ±0.1 
0.5 ±0.1 

P < 0.0001 
NS 

-0.3 ±0.1 
0.1 ±0.1 

-0.4 ±0.1 

DIT 

kJ 

36 ±23" 
125 ±16 
164 +18 

P < 0.0001 
NS 

-90 ±30 
39 ±22 

-128 ±20 

% RMR 

2.6 ±1.5" 
8.6 ±1.2 
11.5 ±1.4 

P < 0.001 
NS 

-6.0 ±2.0 
2.9 ±1.6 

-8.9 ±1.4 

NS, not significant. 
" First the means of the duplicates per subject were calculated, then the mean and SE per meal. 
b Mean values were significantly different from the pregelatinized starch and lactulose meals, 

P < 0.05 (Student's t test). 
c Values were calculated from the differences on each individual separately for each pair of diets. 
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Discussion 

To our knowledge the influence of RS consumption on DIT has not been reported before. 

We found a DIT of 125 (SE 16) kJ in 5 h after consumption of a meal containing 1000 

g digestible carbohydrates/kg (B), i.e. 14% of the gross energy content of the meal. 

Based on the fact that the raw starch meal (A) contained 550 g RS/kg and 450 g 

digestible carbohydrate/kg, an expected theoretical value of DIT of about 50 kJ in 5 h can 

be calculated. The observed value of 36 (SE 23) kJ was well within the 95% confidence 

limits. The somewhat lower value could be due to a lower digestibility in vivo compared 

with the digestibility determined in vitro by the Englyst method (Englyst et al. 1992). 

DIT after 2 h was 83 (SE 6) kJ for the pregelatinized starch, whereas 35 (SE 8) kJ was 

found for the raw starch. The latter value compares well with the expected theoretical 

value of 33 kJ. It can be concluded that consumption of a meal in which part of the 

digestible starch is replaced by RS lowers DIT during the first 5 h after the meal to the 

extent expected based on the amount of indigestible carbohydrate in the meal. 

Possibly the DIT after consumption of RS is postponed: SCFA produced upon colonic 

fermentation of RS could add to the DIT. However, since the fermentation of the type 

of RS used (type 2, RS2, raw starch granules) started only 6 to 7 h after consumption, as 

indicated by the H2 concentration in end-expiratory air (a finding that is in accordance 

with other studies; Olesen et al. 1992) we cannot confirm this with our current 

experimental design in which DIT was measured for the first 5 h after the meal. Since 

RS fermentation most probably occurs gradually the possible 'SCFA-effect' will be too 

small to be measured by indirect calorimetry. The delayed RS2 fermentation compared 

with lactulose could mean that RS2 is a less suitable substrate for colonic fermentation, 

or that RS2 is fermented at a different site in the colon compared with lactulose. In 

addition, the time to pass through the digestive tract could be longer for RS2 than for 

lactulose. It can be calculated that an intake of 27 g RS/d would reduce the daily energy 

expenditure of these subjects by approximately 0.7%. 

Although the difference was not statistically significant, it is striking that DIT after 

consumption of 20 g (indigestible) lactulose plus 30 g pregelatinized (digestible) starch 

was larger than after consumption of 50 g pregelatinized starch. Based on the amount of 

digestible starch a DIT of 97 kJ in 5 h was expected. However, 164 (SE 18) kJ was 

found. Thus 66 kJ of the observed DIT was caused by the lactulose. Of this 3.3 kJ/g 
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lactulose, 1.2 kJ can be ascribed to heat of fermentation (Livesey 1992) and 1.8 kJ to the 

metabolism of the rapidly absorbed (McNeil et al. 1978, Ruppin et al. 1980, Pomare et 

al. 1985, Scheppach et al. 1991, Peters et al. 1992) SCFA (Smith and Bryant 1979, 

Stryer 1988) formed during the rapid fermentation of lactulose, as found in this and other 

studies (Bjorneklett & Jenssen 1982, Florent et al. 1985, Würsch et al. 1989, Cloarec et 

al. 1990, Rumessen et al. 1990). The combustion of part of the H2 and CH4 produced 

upon lactulose fermentation might account at least partly for the remaining gap of 0.3 kJ, 

although the efficiency of the conversion of fermentable carbohydrate to the combustible 

gases H2 and CH4 might be as low as the equivalent of 0.02 kJ gas (breath + flatus) per 

kJ carbohydrate fermented (Ruppin et al. 1980). Although these calculations seem to fit 

the data nicely, it should be kept in mind that large variations were found in DIT and, 

in view of the breath H2 concentrations, probably not all lactulose was fermented within 

the 5 h period after consumption. 

Ritz et al. (1993) found a significant increase in C02 production when 20 g lactulose 

was added to a standardized glucose load of 50 g. This excess C02 probably arose from 

colonic fermentation of lactulose and from addition to the fuel mix of SCFA, especially 

acetate, produced during lactulose fermentation. To be precise, the calculation of energy 

expenditure based on indirect calorimetry should be corrected for the C02 produced 

during colonic fermentation. However, for several reasons it is very hazardous to estimate 

the proportion of exhaled C02 that arises from lactulose fermentation. First, the end 

products of colonic fermentation depend on the composition of the bacterial flora, so that 

there are several fermentation equations possible. Second, it is not known which 

proportion of the C02 produced during fermentation is absorbed, and third, it is not 

known which proportion of the absorbed C02 can eventually be measured in breath. It 

can be calculated that energy expenditure is overestimated by a maximum of 0.9% when 

no correction is made for the amount of C02 produced during fermentation of lactulose. 

Since this is only a small error, especially in view of the large variation inherent in the 

ventilated-hood method, that would not alter the conclusion, no such correction was made 

when presenting the results of this experiment. 

Not surprisingly, postprandial plasma glucose and serum insulin levels were 

proportional to the amount of digestible carbohydrate in the meals, as found by others as 

well (Collings et al. 1981, Jenkins et al. 1987a, Holm et al. 1988, 1989, Bornet et al. 

1989, Holm & Björck 1992). However, plasma glucose and serum insulin responses after 
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the raw starch meal were smaller than expected from the amount of rapidly digestible 
carbohydrate (RDS) as was found by Raben et al. (1994) as well. Raben et al. (1994) 
suggested that the lack of increase in gastric inhibitory polypeptide (GIP) and glucagon-
like peptide-1 (GLP-1) that they found after a raw starch meal might explain the 
difference in insulin response between the meals, beyond what can be expected from the 
glucose-stimulated insulin secretion (GIP and GLP-1 are both potent stimulators of insulin 
secretion). Possibly the decrease in insulin response after consumption of the raw starch 
meal explains to a substantial extent the reduction in DIT found. 

In conclusion, consumption of a meal in which part of the digestible starch is replaced 
by resistant starch was found to lower DIT during the first 5 h after the meal to the extent 
that would be expected based on the amount of indigestible carbohydrate in the meal. 
This outcome might be explained by the observation that the resistant starch used was not 
fermented within 5 h after consumption as evidenced by unchanged H2 and CH4 

concentrations in end-expiratory air. 
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Abstract 
This study investigated whether resistant starch types 2 and 3 are more satiating than glucose. 
During 4 wk 24 healthy male volunteers consumed a daily supplement with either glucose or 
high-amylose maize starch (RS^ or extruded and retrograded high-amylose maize starch (RS3) 
in a crossover, single-blind, randomized and balanced study design. Each type of supplement was 
consumed for 1 wk. In the first wk each subject consumed the glucose supplement. The RS2 and 
RS3 supplements provided for 30 g resistant starch/d. At the end of wk 2, 3 and 4, subjects rated 
their appetite each whole hour on a visual analogue scale. Food intake was measured 1 d/wk 
using the 24-h recall method. Subjects collected 24-h urine during the last two days of wk 2, 3 
and 4 to determine C-peptide excretion as a measure for the 24-h insulin secretion. 
Supplementation with RS2 caused significantly (P < 0.05) lower appetite scores than 
supplementation with RS3 and glucose, though subjects paradoxically felt less full while 
consuming RS2. The cyclic pattern of appetite during the day did not change with the 
supplements. Energy and macronutrient intake was similar in the three supplementation periods. 
When consuming RS3, subjects had a significantly (P < 0.0012) lower urinary C-peptide 
excretion than when consuming RS2 or glucose: 3.74 +1.42 nmol/d for RS3, 4.39 ±1.52 nmol/d 
for RS2 and 4.71 ±1.73 nmol/d for glucose. The mechanism for this lower insulin secretion is 
yet unclear. Consumption of 30 g/d RS2 and RS3 had little influence on appetite and food intake, 
but RS3 reduced the insulin secretion. 
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Introduction 

Resistant starch (RS) is the sum of starch and products of starch hydrolysis that passes 

undigested into the colon of healthy subjects (Asp 1992). This is estimated to be 

approximately 10% (2-20%) of the amount of starch consumed in the Western diet 

(Stephen et al. 1983, McNeil 1984, National Institute of Nutrition 1990, Stephen 1991). 

In the Netherlands the average RS intake is estimated to be 5 g/d (Dysseler & Hoffem 

1995a). In the colon the undigested starch is partly fermented, producing short-chain fatty 

acids, C02 , H2 and in some subjects CH4 (Cummings & Englyst 1991). 

Three forms of RS are currently distinguished (Asp et al. 1993): RS, is starch that is 

included in a plant cell wall, and thus physically inaccessible to a-amylase. RS2 is native 

starch, included in granula, that can be made accessible to the enzyme by gelatinization. 

RS2 is almost totally fermented in the colon (Flourie et al. 1986). RS3 is retrograded 

starch that forms after cooling of gelatinized starch (Colonna et al. 1992). Malabsorption 

of RS3 is about 50% (Molis et al. 1992). RS3 is fermented in the colon (Faulks et al. 

1989, Molis et al. 1992) but less well than RS2 (Gee et al. 1992). 

RS is thought to have physiological effects comparable with soluble dietary fibres 

(Faulks etal. 1989, National Institute of Nutrition 1990, Stephen 1991, Siemensma 1991, 

de Deckere et al. 1992). For this reason, several positive effects on human health have 

been attributed to RS. It is possibly protective against colon cancer, mainly by decreasing 

the conversion of primary bile acids in secondary bile acids; it can be beneficial for 

diabetics by lowering blood glucose and insulin levels; and it can be helpful in the therapy 

of obesity by increased feeling of fullness and because of the reduced energy intake when 

RS replaces digestible carbohydrate (National Institute of Nutrition 1990, Nishimune et 

al. 1991, Ritz et al. 1991, Rasmussen 1993). This article focuses on the possible 

influence of RS on food intake, appetite and insulin secretion. 

While assuming that RS can be compared with soluble fibres, several mechanisms are 

proposed by which RS might suppress appetite and food intake. Consumption of soluble 

fibres delays the emptying of the stomach (Dreher 1987, Torsdottir 1989, Roberfroid 

1993, Truswell 1993). This is caused by the water-binding capacities of the fibre, thus 

binding the fluid contents of the stomach. A delayed gastric emptying can cause an 

extended feeling of fullness. This has been shown by the correlation between echographic 

gastric emptying and appetite measured on a visual analogue scale (VAS) (Bergmann et 
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al. 1992). A slower emptying rate means a delayed digestion and absorption of nutrients 
(Jenkins et al. 1978b, Ritz et al. 1991, Truswell 1992, Roberfroid 1993). Postprandial 
glucose levels in the blood will thus be lower than after consumption of digestible 
carbohydrates (Grossman 1986, Leathwood & Pollet 1988, Holt et al. 1992, Dowse et 
al. 1993, Moffett et al. 1993, Raben et al. 1994). Some investigators suggest that this 
lower, but longer-lasting, glucose peak is associated with an extended feeling of satiety 
and delayed return of appetite (Grossman 1986, Leathwood & Pollet 1988, Holt et al. 
1992). This effect is not always found (Krishnamachar & Mickelsen 1987, Sepple & Read 
1989, Raben et al. 1994). The digestion and absorption of glucose is also delayed by the 
increased viscosity that hinders the contact between enzyme and substrate (Stephen 1991). 
Soluble, viscous fibres also increase the water-stirred layer in the gut, thus again delaying 
the diffusion of sugars from the lumen into the blood (Jenkins et al. 1987Ö, Roberfroid 
1993, Truswell 1993). 
The aim of this study was to answer the following questions: 

1. Does RS have a more and longer-lasting satiating effect then digestible carbohydrate? 
2. Does the average food intake decrease when consuming RS instead of digestible 

carbohydrate? 

3. Does RS decrease the 24-h excretion of insulin compared with digestible 
carbohydrate? 

4. Is there a difference between native starch (RSj) and retrograded starch (RS3) with 
respect to questions 1, 2 and 3? 

Materials and methods 

Subjects 
Twenty-four healthy male volunteers participated in the study. Table 3.1 shows some 
characteristics of the subjects at the beginning of the study. Selection criteria were: age 
(>18 y), stable weight (reported fluctuation during last 3 months < +2.5 kg), no 
diabetes mellitus, no kidney diseases, no stomach or bowel surgeries, and a good 
appetite. All subjects were non-CH4 producers (breath CH4 concentrations < 3 ppm above 
the concentration in ambiant air on three different days). Subjects gave their written 
informed consent. The study protocol was approved of by the Medical-Ethical Committee 
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of the Department of Human Nutrition in Wageningen. Subjects kept a diary during the 
experiment in which illness, medications, deviations from normal daily physical activities 
and the time-points of consumption of the supplements were reported. 

Table 3.1 Characteristics of the 24 male subjects in the run-in period (wk 1) 

Characteristic Mean ±SD Range 

Age(y) 23 ±1.8 20 -27 
Height (m) 1.84+0.07 1.70-1.99 
Weight (kg) 76.9 ±7.5 63.0 - 94.9 
BMI(kg/m2) 22.7+1.8 19.4-26.0 

Study design 
Subjects consumed a daily supplement in three portions per day during 4 wk in a single-
blind, randomized, balanced cross over study. In the first wk (run-in period) every subject 
consumed the supplement with glucose (control supplement). In the next 3 wk each of the 
three types of supplement (glucose, RS2, RS3) were consumed for 1 wk. Appetite was 
measured on day 6 of wk 2, 3 and 4. Subjects collected their 24-h urine during days 6 
and 7 in wk 2, 3 and 4. Body weight was measured twice a wk and every wk each 
subject was interviewed by a dietitian to measure food intake (energy and macronutrient 
intake). Body weight and energy and macronutrient intake had already been measured in 
the screening. 

Supplements 
Table 3.2 shows that the supplements consisted of a mixture of skim yogurt (Coberco), 
skim milk (Coberco), mashed canned fruit, glucose (glucose monohydrate (CL 02001; 
Cerestar, Vilvoorde, Belgium), Amaizo-7 (maize starch with 70% amylose; Cerestar, 
Vilvoorde, Belgium) or extruded, retrograded Amaizo-7 (Cerestar, Vilvoorde, Belgium). 
Amaizo-7 contains 63.3 g RS/100 g; extruded, retrograded Amaizo-7 contains 29.9 g (in 
vitro measurements; Englyst et al. 1992). The three different supplements are indicated 
by the terms glucose, RS2 and RS3. The supplements were made three times a wk, and 
the subjects took them home. The subjects consumed three portions of about 200 g each 
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day, together with their regular meals. They were instructed not to eat pulses and unripe 
bananas during the experiment, because of their relatively high RS-content. 

Table 3.2 Recipe for each supplement/d. The levels of ingredients were set in order to 
obtain 30 g resistant starch in the RS2 and RS3 supplements. The three supplements 
contain equal amounts of carbohydrate. 

Ingredient Glucose RS, RS, 

Skim yogurt (g) 
Skim milk (g) 
Glucose (g) 
Amaizo-7 (g) 
Treateda Amaizo-7 (g) 
Mashed fruit (g) 

Mean weight (g) 

144 
216 
110.4 

0 
0 

123-18 

606 

144 
216 
58.5 
47.4 
0 

123-183" 

144 
216 

0 
0 

100.2 
123-183" 

603 579 

Extruded retrograded. 
1 Depending on the type of fruit. 

Table 3.3 shows the macronutrient composition of the supplements. The daily dose RS 

given, 30 g/d, is about six times the average intake of RS in the Netherlands (Dysseler 

& Hoffem 1995a). Earlier experiments with 30 g RS/d did not lead to serious gastro

intestinal complaints, though some subjects reported increased flatulence (Heijnen et al. 

1995, van Munster et al. 1994A). 

Compliance 
To check whether the subjects really consumed the supplements, 80 /xmol lithium was 
added per supplement portion (Sanchez-Castillo et al. 1987). This amount is 100 times 
more than the amount that is found in food, and 100 times less than the therapeutic dose. 
Lithium is almost totally (>95%) excreted in urine. By determining the amount of 
lithium in 24-h urine the consumption of the supplements could be checked. When in a 
wk lithium recovery from a subject was less then 80%, data from this subject for that wk 
were excluded from statistical analysis. 
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Table 3.3 Composition of the supplements/d, computed from the Dutch food table (NEVO 
Foundation 1987) 

Energy (MJ) 
Water (g) 
Protein (g) 
Fat (g) 
Carbohydrate (g) 
Mono- + disaccharides (g) 
Polysaccharides (g) 
Dietary fibre (g) 
Resistant starchb (g) 

Glucose 

2.46 
454.5 

12 
0 

138 
132 

0 
2 
4 

RS2 

1.98a 

452.4 
12 
0 

136 
90 
12 
2 

32 

RS3 

1.95a 

441.9 
12 
0 

136 
42 
60 
2 

32 

a Assumed that RS is totally undigestible, not taking fermentation into consideration. 
b As determined in vitro by the procedure of Englyst et al. (1992). 

Measurements 
Appetite 
Subjects were instructed to rate their appetite at each whole hour of the day. The first 
rating had to be done just after waking up, and the last rating just before going to bed. 
Appetite was measured according to six dimensions: 

• appetite for a meal 
• appetite for something sweet 

• appetite for something savoury 

• satiety (fullness) 
• feeble, weak with hunger 

• appetite for a snack. 
Each appetite dimension was represented by a 150 mm VAS. The left- and right-hand 
sides of the VAS were anchored with the terms 'weak' and 'strong' respectively. The 
subjects were instructed that 'appetite for a meal' referred to appetite for a whole meal, 
either a hot meal or a sandwich meal; 'appetite for something sweet' referred to appetite 
for a cookie, chocolate, candy bar, sweet pie or a sweet dessert; 'appetite for something 
savoury' referred to appetite for peanuts, cheese, cocktail nuts, french fries or a savoury 
dessert; 'satiety (fullness)' referred to a feeling of having eaten too much; and 'feeble, 
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weak with hunger' referred to a strong urge to eat, with clear physical symptoms. 

The ratings on the 150 mm VAS were read automatically by an Optical Mark Reader and 

were converted into scores from 1 to 25. A score of 1 corresponded with the left side of 

the scale (weak), a score of 25 corresponded with the right side of the scale (strong). 

Ratings that were given half an hour before or a quarter of an hour after a whole hour 

were regarded as if they had been given on that whole hour. 

Pleasantness 

Subjects rated the pleasantness of the three supplements on a 150 mm visual analogue 

scale. The left- and right-hand sides of the scale were anchored by the terms 'very bad' 

and 'very good'. The ratings were converted into scores from 1 to 25 by hand. This 

measurement was done in wk 2, 3 and 4, and subjects rated the supplement that they had 

had the last three days. Differences in pleasantness because of the type of fruit were 

eliminated in this way. 

Energy and macronutrient intake 

Every wk, preferably on different days, subjects were interviewed by one of three 

dietitians to get a 24-h food recall. Throughout the study each subject was interviewed 

by the same dietitcian, who also coded the food intake. Subjects were also asked some 

questions on how they included the supplements into their habitual diet. Food intake was 

computed using a computerized food composition table (NEVO Foundation 1987). 

Energetic compensation (EC) for the supplements was computed using the following 

formula: EC = (Escreening-E)/Eslippi x 100%, in which Escreening is the mean energy intake 

during the screening, E is the mean energy intake during one supplement period, and 

Esuppi is the energy content of the supplement. An EC of 100% would mean that subjects 

reduced their energy intake with the energy content of the supplement. Energy and 

macronutrient intake during the screening and wk 2, 3 and 4 are discussed in this article. 

C-peptide in 24-h urine 

Subjects collected 24-h urine on days 6 and 7 of wk 2, 3 and 4. They stored their urine 

in plastic bottles with an antibacterial agent. Completely collected urine of both days was 

pooled. Incompletely collected urine was not used. C-peptide concentration was measured 

using a radioimmunoassay (Biodata C-peptide kit, code 10282). 
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Statistical analysis 

Distribution of the data was first tested for normality using the Wilk-Shapiro test 

(Snedecor & Cochran 1980). Visual judgement showed that residual variances were 

homogeneous. Differences between the three supplements were tested by analysis of 

variance, using the procedure GLM (general linear model) of the SAS software package 

(SAS Institute Inc., 1989). Testing started with an extensive model with 'group' (six 

subjects who received the supplements in the same order) and 'supplement' as main 

effects. To correct for possible carry-over effects, 'subject' nested in 'group' was added. 

'Group x supplement' was included as interaction term. If possible, the model was 

simplified to only 'subject' and 'supplement' as main effects. Supplements were two-by-

two compared by defining them as contrasts in the GLM procedure. 

Results 

Compliance 

Lithium recovery was <80% for three subjects in wk 3. In wk 3 one subject reported 

that he had forgotten to eat one of the three portions of supplement on a measurement 

day. Because of illness, data of one subject in wk 2 are eliminated. Data of these subjects 

in these wk were eliminated from statistical analysis. According to the diaries 99% of the 

supplements was consumed. 

Pleasantness 

The pleasantness of the supplements as measured on a VAS from 0 (very bad) to 25 (very 

good) was 17.3 +5.3 for glucose, 12.6 ±5.5 for RS2 and 4.7 ±4.9 for RS3. These 

ratings were significantly different (P < 0.002). Despite differences in taste, subjects did 

not know when they consumed which supplement. 

Appetite ratings averaged over the day 

Figure 3.1 shows the appetite ratings, averaged over the day (0800-2300 h). Differences 

between the scores for the three supplements had normal distributions and the variances 

were homogeneous. Average scores were fitted in a model with 'subject' and 

'supplement' as main effects. Consumption of RS2 caused significantly lower scores than 
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either the glucose or the RS3 supplement for all appetite dimensions except for appetite 

for something savoury. This means that subjects consuming RSj had less appetite, but 

paradoxically were feeling less full. 

25 
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O 
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CO g 
CD 

- m^» m-m b Wm 

I I I I I I 
MEAL SAV SWEET FULL FEEB SNACK 

Appetite dimensions 
Glucose RS2 RS3 

Figure 3.1 Mean appetite scores averaged over the day, measured with a 150 mm visual 

analogue scale. A score of 1 means 'weak'; a score of 25 means 'strong'. Each mean 

score was computed from 351-364 scores. Abbreviations on the x-axis mean: MEAL, 

appetite for a meal; SAV, appetite for something savoury; SWEET, appetite for something 

sweet; FULL, satiety, fullness; FEEB, feeble and weak with hunger; SNACK, appetite for 

a snack. abSame characters indicate significant differences (P < 0.05). 

Appetite ratings during the day 

Mean appetite scores for each supplement were also plotted against time of the day. The 

course during the day of responses for appetite for a meal, appetite for something 
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savoury, and feeble and weak with hunger were almost identical, while the course of 
responses for satiety (fullness) was the reverse. Therefore, only responses for appetite for 
a meal, appetite for something sweet and appetite for a snack are shown in Figure 3.2. 
Only responses between 0800 and 2300 h are shown, because very few responses were 
given outside this time frame. 

Figure 3.2A shows that appetite for a meal peaked at the usual Dutch meals: breakfast 
(0800 h), lunch (1200 h), dinner (1800 h) and, less distinct, evening snack (2200 h). 
Appetite for something sweet (Figure 3.2B) did not show such distinct peaks, but was 
highest at lunchtime, dinnertime and in the late evening. Figure 3.2C shows three peaks 
in appetite for a snack: at 1200 h, 1600-1800 h, and after 2200 h. Differences between 
supplements had a normal distribution, and residual variances were homogeneous. 
Differences were tested using a model with 'subject' and 'supplement' as main effects. 

Figure 3.2A shows that resistant starch seemed to cause less appetite for a meal 
between 1000 and 1300 and after 2000 h. Appetite for something sweet (Figure 3.2B), 
tended to be higher when consuming RS3 between 1500 and 1800 h. Figure 3.2C shows 
that glucose tended to give a higher appetite for a snack between 1000 and 1500 h, and 
in the evening after 2000 h. RS2 tended to decrease the appetite for a snack. Appetite for 
something savoury was not affected by the type of the supplement. Subjects felt less 
feeble and weak with hunger at dinnertime when consuming RS2 than when consuming 
glucose. The type of supplement did not have a significant effect on satiety (fullness). 

Intake of energy and macronutrients 
Table 3.4 shows the average daily intake of energy and macronutrients during screening, 
and in wk 2, 3 and 4 as computed without the supplements. Energy intake was not 
significantly affected by the different supplements. Carbohydrate, fat and protein intake, 
as percentage of total energy intake, did not differ between the supplements. There was 
a small, but not significant, shift in the ratio of mono- and disaccharides to poly
saccharides as percentage of total energy intake. Subjects tended to eat more dietary fibre 
when consuming the glucose supplement. Energetic compensation when consuming the 
glucose supplement was 24%, when consuming RS2 -5% {i.e. an increase in energy 
intake) and when consuming RS3 15%. Subjects sometimes replaced habitual food items 
for the supplements. This happened mostly at breakfast, and instead of bread or milk 
products. Body weight of the subjects remained constant during the study. 
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Figure 3.2 Average scores during the day for (A) appetite for a meal, (B) appetite for 

something sweet and (C) appetite for a snack. Each mean score was computed from 18-24 

scores. Significant differences are indicated as follows: a = glucose significantly different 

from RS2; b = glucose significantly different from RS3; c = RS2 significantly different 

from RS3 (P < 0.05). 
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Table 3.4 Daily intake of energy and nutrients during screening and wk 2, 3 and 4 of 
the experiment, computed without the supplements. Results are expressed as mean ±SD. 

Screening Glucose RS2 RS3 

Energy (MJ) 
Protein (% of energy intake) 
Fat ( % of energy intake) 
Carbohydrate ( % of energy intake) 
Mono- + disaccharides 

( % of energy intake) 
Polysaccharides ( % of energy intake) 
Alcohol ( % of energy intake) 
Dietary fibre (g/MJ) 

Excretion of C-peptide in 24-h urine 
Excretion of C-peptide was highest while consuming the glucose supplement: 4.71 ±1.73 
nmol/d. When consuming RS2 the excretion was 4.39 +1.46 nmol/d, and when 
consuming RS3 3.74 +1.42 nmol/d. The difference between glucose and RS3 was 
significant (P = 0.0001), as was the difference between RS2 and RS3 (P = 0.0012). 

Discussion 

This study did not show a marked effect of RS on appetite and energy intake. Hourly 
ratings for the six appetite dimensions on a 150 mm VAS did not show a more satiating 
effect for RS compared to glucose. Averaged over the day RS2 tended to be more 
satiating, but the differences between the supplements were of little practical significance. 
The biggest difference was 1.1, which is relatively small on a scale from 1 to 25. 
Paradoxically, when consuming RS, energetic compensation tended to be smaller than 
when consuming glucose; in other words RS tended to be less satiating. Presumably, no 
effect on appetite was found because in this study, subjects were allowed to eat and drink 
ad libitum. It could be expected that they adjusted their energy intake to the supplements 
so that their habitual pattern of appetite dimensions did not change. Energy intake though, 
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computed from the 24-h food recalls, remained constant during the three supplement 

periods and as high as before the experiment (Table 3.4). A preload-testmeal study 

design, as described by Delarghy et al. (1993), would give a better insight in the 

relationship between appetite and energy intake. In the study of Delarghy, dietary fibre 

was given in a breakfast, and subjects fasted until lunchtime. Energy intake during lunch 

and the rest of the day was recorded. Subjects rated their appetite on a visual analogue 

scale. Energy intake during lunch (and during the whole day) can be an indication for the 

satiating effect of the fibre. 

When analysing the results of energy intake, the big within-subject variance attracted 

attention. With 23 subjects, a within-subject variance of 3.27 MJ (five 24-h food recalls 

per person) was found. When the level of significance is set at 5% and the desired power 

is 90% a reduction in energy intake of at least 1.73 MJ would be classified as significant. 

This is about 13% of the daily energy intake. In future experiments the within-subject 

variance could be minimized by providing for all the meals. 

Appetite during the day did not change when consuming indigestible starch. Subjects 

maintained their regular pattern of food intake. This was also shown in a weight reduction 

study of de Graaf et al. (1993). The three peaks during the day for appetite for a meal 

and for something savoury are in agreement with a statement of Read that people are 

batch feeders (Read 1992). This means that they take discrete meals, with 3 to 4 h in 

between, in which they eat little or no food. 

Consumption of the RS3 supplement tended to cause a higher consumption of mono-

and disaccharides and a lower consumption of polysaccharides compared to the glucose 

supplement. This can be explained by the bad taste of RS3: to make this supplement more 

palatable to eat, subjects added sugar and fruit syrup. Subjects also tended to exchange 

bread for the RS3 supplement at breakfast. 

This study showed that consumption of RS decreased 24-h insulin excretion. RS3 had 

the biggest effect: a decrease of 20%. The excretion of C-peptide was relatively low 

compared to a study of Jenkins et al. (1987b) where diets with high and low glycaemic 

index (GI) index were compared. In Jenkins' study excretion of C-peptide was 12.2 

nmol/d for the low-GI diet. Consumption of carbohydrates was 38 g/MJ. The subjects of 

our study consumed 32 g carbohydrate/MJ when consuming the glucose supplement. This 

difference is too small to explain the seemingly low excretion of C-peptide in our study 

as compared to Jenkins' study. 
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C-peptide excretion when consuming glucose was highest, but this is caused by one very 

high excretion (11.2 nmol/d). Without this number, C-peptide excretion was in the range 

of 3.15-7.04 nmol/d. Mean excretion becomes 4.39 +0.92 nmol/d. This is still 

significantly higher than when consuming RS3 and similar to RS2. 

The reason why RS3 had more influence on the C-peptide excretion than RS2 is yet 

unclear. It is possible that RS3 delays the emptying of the stomach more than RS2 does, 

so less glucose enters the blood at one time. It is also possible that RS3 is better 

fermented in the colon. Fermentation products could decrease the hepatic output of 

glucose (Thorburn et al. 1993). However, other studies indicate that RS3 is less well 

fermented than RS2. 

There were small differences in effect between RS2 and RS3 with the variables 

measured. RS2 tended to be more satiating than RS3. The C-peptide excretion was more 

decreased by RS3. It is too early to decide whether RS2 and/or RS3 can be used in the 

therapy of obesity and diabetes. Further insight in the fermentation of resistant starch in 

healthy people is necessary. Beside this, efforts should be made to make resistant starch 

more palatable, because the RS used in this study was not fit for household use. 
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Limited effect of consumption of uncooked (RS2) or 
retrograded (RS3) resistant starch on putative risk 
factors for colon cancer in healthy men 

Heijnen MLA, van Amelsvoort JMM, Deurenberg P, Beynen AC. 

Submitted for publication. 

Abstract 
To investigate whether resistant starch (RS) affects putative risk factors for colon cancer, 24 
healthy men consumed for 4 wk a daily supplement in addition to their habitual diet in a single-
blind randomized balanced multiple cross-over trial. During the first week, all subjects consumed 
the control supplement containing glucose. Subsequently, each subject consumed in random order 
a supplement with RS2 (uncooked high-amylose maize starch), RS3 (extruded and retrograded 
high-amylose maize starch), and glucose, each for 1 wk. The RS2 and RS3 supplements provided 
32 g RS/d and the glucose supplement 4 g RS/d. To measure compliance lithium was added to 
the supplements. Weekly, faeces, 24-h urine and breath samples, and a 24-h food-consumption 
recall were obtained from each subject. Compliance as measured by urinary lithium recovery was 
satisfactory. The mean composition of the background diet did not differ between the various 
supplementation periods. Breath H2 excretion, stool weight and faecal starch excretion were 
significantly higher during RS than during glucose supplementation, and did not differ between 
RS2 and RS3. There were no significant differences between the three supplements in faecal dry 
weight, pH and short-chain fatty acid concentrations, nor in the pH, bile acid concentrations, 
cytotoxicity and osmolality of faecal water. It is concluded that in healthy men supplementating 
the habitual diet for 1 wk with 32 g/d RS compared with glucose has no effect on putative risk 
factors for colon cancer, except for increasing stool weight and colonic fermentative activity. 
There were no significant differences between RS2 and RS3 in the parameters studied. 
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Introduction 

As resistant starch (RS) is not absorbed in the small intestine of healthy individuals (Asp 

1992) but is (partly) fermented in the colon, it may have positive effects on putative risk 

factors for colon cancer, by analogy with dietary fibre. Colonic fermentation of RS may 

lead to the production of short-chain fatty acids (SCFA; Muir et al. 1994, Cummings et 

al. 1995, Nordgaard et al. 1995). Some studies indicate that fermentation of RS leads 

specifically to an increase in butyrate (Scheppach et al. 1988ft, van Munster et al. 1994ft, 

Phillips et al. 1995). Butyrate is a putative protective factor towards colon cancer 

(Roediger 1982, Garnet et al. 1992, Scheppach et al. 1995, Csordas 1996). SCFA, which 

are physiologically active in the large intestine, induce a decrease in colonic pH resulting 

in reduced solubility of bile acids (Bruce 1987). Further, the initial, irreversible step in 

bacterial conversion of primary into secondary bile acids (7a-dehydroxylation) is inhibited 

at pH below 6.5 (MacDonald et al. 1978, Nagengast et al. 1988a). The amount of soluble 

long-chain fatty acids and soluble bile acids (Rafter et al. 1986), the secondary bile acids 

in particular (van der Meer et al. 1991), may affect the cytotoxicity, i.e. the cell-

damaging properties, of faecal water. Faecal water is the fraction of faeces which 

contains the water-soluble, not-bound components of the faeces (Lapré 1992) that are in 

contact with the colonic mucosal cells (Bruce 1987, Geltner Allinger et al. 1989, van 

Munster & Nagengast 1991). A diet-induced increase of the bile acid concentration in 

faecal water resulted in a higher cytotoxicity of faecal water in man (Rafter et al. 1987) 

and rat (Lapré et al. 1991) and was associated with higher colonic cell proliferation in 

rats (Lapré & van der Meer 1992). In healthy volunteers, proliferation of mucosal cells 

from a rectal biopsy was increased and associated with an increase in the concentrations 

of total and secondary bile acid in faecal water after consumption of fat as a bolus 

(Stadler et al. 1988). However, there is no conclusive evidence for a causal relationship 

between cytotoxicity of faecal water and mucosal proliferation. Hyperproliferation of 

colonic epithelial cells is suggested to be an important biomarker of increased 

susceptibility to colon cancer (Lipkin 1988). However, in rats colonic epithelial 

proliferation was found not to be a reliable predictor of tumor formation (Young et al. 

1996). In addition, rat studies indicated that the secondary bile acids deoxycholic and 

lithocholic acid may be colon tumor promoters (Narisawa et al. 1974, Bull et al. 1983, 

Summerton et al. 1985). 
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The hypothesis that RS consumption may be protective towards colon cancer is supported 

by some epidemiological and experimental studies. In an ecological study, strong inverse 

associations were found between large bowel cancer incidence and consumption of starch 

or of non-starch polysaccharides (NSP) in combination with RS which was estimated to 

be 5% of total starch intake (Cassidy et al. 1994). Supplementation with 28 g RS/d for 

2 wk resulted in an increase of breath H2 excretion (a semi-quantitative measure of 

colonic fermentation; Rumessen 1992) and faecal SCFA excretion, in a decrease of 

secondary bile acid concentration and cytotoxicity of faecal water, and in a decrease of 

colonic mucosal proliferation in rectal biopsies (van Munster et al. 1994b). However, this 

study lacked a control group and only RS derived from uncooked granular starch {i.e. 

RS2; Englyst et al. 1992) was studied. Cummings et al. (1996) found that RS2 gave 

greater proportions of acetate in faeces but RS3 {i.e. retrograded resistant starch; Englyst 

et al. 1992) more propionate. However, the amounts of RS consumed in their experiment 

were different between the various types of RS studied, and faecal bile acids, cytotoxicity 

of faecal water and mucosal proliferation were not measured. These parameters were also 

not measured in a study with a diet containing 39 g/d of a mixture of RS[ {i.e. starch 

physically inaccessible to a-amylase; Englyst et al. 1992), RS2 and RS3 (Phillips et al. 

1995). This high-RS diet induced a lower faecal pH and increased faecal concentration 

and excretion of butyrate and acetate compared with a diet containing only 5 g RS/d. 

Recently, three studies were published that investigated the effect of dietary RS on 

chemically-induced colon cancer in rats (Caderni et al. 1994, Sakamoto et al. 1996, 

Young et al. 1996). However, in these studies the amount and/or the type of RS used is 

unclear. 

Because the studies mentioned above are not conclusive, we investigated whether 

supplementating the habitual diet with 32 g/d of either RS2 or RS3 compared with an 

equivalent amount of glucose would affect positively putative risk factors for colon cancer 

in 24 healthy men in a randomized balanced multiple cross-over trial. Because it has been 

suggested that RS2 is better fermentable than RS3 (Cummings et al. 1995, Schulz et al. 

1993, Champ et al. unpublished results) we hypothesized also that consumption of RS2 

compared with RS3 would increase breath H2 excretion and faecal SCFA concentrations, 

and would decrease faecal pH, and secondary bile acid concentrations and cytotoxicity 

of faecal water. 
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Methods 

Subjects 

Twenty-four apparently healthy men were recruited by advertisements in local newspapers 

and posters mounted in public buildings in Wageningen. The inclusion criteria were as 

follows: age > 18 y; weight fluctuation during the previous 3 mo not more than 2.5 kg; 

no diseases of the kidneys or the gastrointestinal tract; no diabetes mellitus; no stomach 

or bowel surgeries other than removal of the appendix; no complaints of diarrhea, 

obstipation or abdominal pain; no use of antibiotics or laxatives during the previous 3 mo; 

and preferably a good appetite and daily stools. One subject took antibiotics in week 2: 

his data were excluded from statistical analysis. 

Characteristics of the subjects were (mean ±SD): age, 23 +2 y; height, 1.84 +0.07 

m; body weight, 76.9 ±7.5 kg; body mass index (BMI), 22.7 ±1.8 kg/m2. The 

experimental design of the study and possible discomforts of the consumption of the 

supplements were explained to the subjects before they gave their written informed 

consent. The study protocol was approved by the Medical-Ethical Committee of the 

Department of Human Nutrition of the Wageningen Agricultural University. Subjects 

were paid for their participation after they had completed the experiment. 

Study design 

The subjects consumed for 4 wk a daily supplement in three portions/d in addition to their 

habitual diet in a single-blind randomized balanced multiple cross-over trial using an 

orthogonal Latin-square design for three treatments. During the first week (run-in period) 

each subject consumed the control supplement containing glucose. Subsequently, each 

subject consumed a supplement containing RS2, RS3 or glucose; each type of supplement 

was consumed for 1 wk. The 24 subjects were randomly divided into six groups before 

the experiment started. Each group consumed the supplements in one of the six possible 

sequences to eliminate variation due to residual effects of the previous supplement or to 

drift of variables over time (Snedecor & Cochran 1980). The groups were not different 

with respect to age, height, body weight and BMI {data not shown). 

During d 5-7 of wk 2, 3 and 4 the subjects defaecated twice at the Department of 

Human Nutrition. The faecal samples were weighed and frozen immediately at -20 °C. 

With each supplement portion 10 radioopaque barium-sulfate impregnated, polyethylene 
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rings (TD Medical B.V., Eindhoven, the Netherlands) were swallowed (i.e. 30/d) to 

serve as a marker for faeces collection. All stools were X-rayed before sampling to count 

the polyethylene rings in each frozen stool. At d 6 and 7 of wk 2, 3 and 4 the subjects 

collected 24-h urine for determination of lithium (see below). Weekly, a 24-h food-

consumption recall was obtained from each subject to check whether the amount and 

composition of the habitual diet had remained constant. Subjects were weighed twice a 

week while wearing light indoor clothes with empty pockets and without shoes. 

Supplements 

The supplements consisted of a mixture of 144 g/d skim yogurt, 216 g/d skim milk, 123-

183 g/d mashed canned fruit (the amount depending on the type of fruit used), and either 

one of the carbohydrate preparations (obtained from Cerestar Vilvoorde, Belgium). The 

carbohydrate added was 110.4 g/d glucose (glucose monohydrate, dry weight 91.6%) for 

the glucose supplement, 58.5 g glucose plus 47.4 g/d uncooked high-amylose maize 

starch (Amaizo-7, dry weight 90.3%, 63.3% RS by wt as measured in vitro (Englyst et 

al. 1992)) for the RS2 supplement and 100.2 g/d retrograded high-amylose maize starch 

(extruded and retrograded Amaizo-7, dry weight 90.8%, 29.9% RS by wt as measured 

in vitro (Englyst et al. 1992)) for the RS3 supplement. The amounts of ingredients were 

set to obtain 30 g RS in the RS2 and the RS3 supplements and equal amounts of glucose 

units in the supplements. Corrections were made for the different water contents of the 

carbohydrate preparations and for the water excluded during formation of glycosidic 

bonds. The supplements had identical nutrient compositions except for the type of 

carbohydrate (Table A. I). In vitro analysis (Englyst et al. 1992) confirmed that the control 

supplement contained mostly digestible carbohydrate, whereas the RS2 and the RS3 

supplements contained 32 g RS/d (Table 4.1). To measure compliance, 80 jumol lithium 

chloride was added to each supplement portion and lithium recovery in 24-h urine was 

measured by atomic absorption spectrophotometry as described before (Heijnen et al. 

1996a). We did not try to equalize the gross energy content of the supplements because 

there is no accurate estimate of the amount of energy that RS supplies. At most, the 

glucose supplement contained 500 kJ (about 4% of total energy intake in this group of 

subjects) more than the RS supplements assuming that RS supplies no energy at all. 

The supplements were prepared in the kitchen of the Department of Human Nutrition 

three times a week and the subjects took them home for consumption. Supplements were 
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described elsewhere (Glatz et al. 1985, Grundy et al. 1965) with minor modifications. 

The bile acid dérivâtes were analyzed on a capillary fused silica column (length 25 m, 

internal diameter 0.20 mm) coated with 0.11 /*m HP Ultra-1 phase (Hewlett-Packard Co, 

Polo Alto, CA) by using a Hewlett Packard gas Chromatograph (model 5890 series II) 

equipped with a liquid sampler (model HP-7673) and a mass selective detector (model 

HP-5971) operating in electron impact (70 eV) and selected ion mode (SIM). One /xl was 

injected in split mode (split ratio 1:100). Helium gas was applied as the carrier gas with 

a constant flow rate of 0.7 ml/min. The oven temperature which was initially 150 °C, 

was gradually increased to 275 °C and maintained at this temperature for 30 min. The 

temperature of the injection port was 325 °C and of the direct MS-interface 275 °C. 

Instrument control and data acquisition were performed with HP MS-ChemStation version 

C.03.00 software on a HP Vectra 486/25T computer. The amount of each bile acid was 

calculated from area response by using the internal standard method with a 5-points 

multilevel braqueting calibration with pure standards. 

H2 in breath 

Assuming that the amount of H2 in breath is directly related to the extent of colonic 

fermentation in vivo (Rumessen 1992), end-expiratory breath samples were obtained to 

test the hypothesis that RS2 is better fermentable than RS3. Unfortunately, due to 

unforeseen technical problems a considerable number of the breath samples could not be 

analyzed. Therefore, another experiment was carried out with 15 apparently healthy non

smoking men with the same characteristics as those in the initial study, and using exactly 

the same supplements, study design, and inclusion and exclusion criteria as in the first 

study, but omitting the run-in period. To avoid excess H2 being channelled into CH4 

production, only subjects that were non-CH4 excreters were enrolled. A subject was 

classified as non-CH4 excréter when on three different days before the study started the 

CH4 concentration in his breath was <3 ppm above the concentration in ambient air 

(Nagengast et al. 1988ft, Rumessen 1992). All subjects completed the study successfully. 

They reported in their diaries that 98% of the supplements were consumed. The 

frequency of defaecation, the rated consistency of the faeces, and the number and 

severeness of gastrointestinal discomforts were very similar to those in the main 

experiment (data not shown). Body weight remained constant throughout the study. 

To investigate whether an adaptation to RS as substrate for colonic fermentation took 
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place, end-expiratory breath samples were collected both on d 2 and 7 of each 

supplementation period. On each sampling day, one sample was collected between 0730-

0830 h, one between 1200-1300 h, one between 1630-1730 h, one between 2000-2100 

h, and one the next morning between 0730-0830 h. Breath samples were taken and stored 

in plastic syringes of 60 ml equipped with a cap (Plastipak, Becton Dickinson, Dublin, 

Ireland). Immediately after all samples at one time-point had been collected, their H2 

content was measured with an electrochemical measurement cell (Exhaled Hydrogen 

Monitor; Gas Measurements Ltd., Renfrew, Scotland). The measurement cell was 

calibrated before each run with ambient air and 100 ppm H2-in-air gas (Intermar BV, 

Breda, the Netherlands). The 24-h integrated breath H2 excretion was estimated by 

calculating geometrically the area under the curve of breath H2 content versus time 

(Wolever & Jenkins 1986). 

Statistical analysis 

Differences between group means for each variable were evaluated by two-way analysis 

of variance with the GLM (General Linear Models) procedure of SAS (release 6.09; 

Statistical Analysis Systems Institute Inc, Cary, NC). The model contained 'subject' as 

the random factor, thus taking the intrinsic individual levels into account, and 

'supplement' as the fixed factor. When the analysis of variance indicated a significant 

effect of supplement (P < 0.05), Tukey's Studentized range test was used for pair-wise 

comparison of the group means for each variable as induced by the three supplements. 

This method encompasses a downward adjustment of the significance limit for multiple 

testing. The 24-h integrated breath H2 excretion on d 2 of a supplementation period was 

compared with d 7 by using a paired t test. 

Results 

Compliance 

According to the diaries 0.4% of the glucose supplements, 1.4% of the RS2 supplements, 

and 1.9% of the RS3 supplements was not consumed. Mean (+SEM) urinary lithium 

recovery was 96 +3% during glucose supplementation, 100 +3% during RS2 

supplementation and 9 2+2% during RS3 supplementation. 
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Food consumption and body weight 
No significant differences were found in reported energy and nutrient intakes when the 
various supplements were given (Table 4.2). Body weight remained constant throughout 
the study (ANOVA, P = 0.06). 

Table 4.2 Energy and nutrient intakes during daily supplementation of the habitual diet 
with either 32 g glucose, RS2, or RS3 for 1 wk1 

Nutrient 

Energy (MJ/d) 
Protein (g/d) 
Fat (g/d) 
Carbohydrate (g/d) 
Alcohol (g/d) 
Dietary fibre (g/d) 

Glucose2 

13.0 ±1.0 
97 ±7 

126 ±12 
355 ±26 
22 ±7 
39 ±3 

Dietary supplement 

RS2 

13.6 ±1.0 
105 ±9 
123 ±11 
366 ±28 
36 ±11 
34 ±3 

RS3
2 

13.3 ±0.6 
106 ±5 
132 ±8 
357 ±18 

18 ±7 
34 ±2 

1 Mean ±SEM. Supplements are not included in the calculations (n=23). Calculated by using a 
computerized food composition table (NEVO Foundation 1987). There were no significant 
differences by ANOVA. Amounts of RS as measured in vitro (Englyst et al. 1992). 

2 One subject reported to have consumed two supplement portions only on the day of the 24-h food-
consumption recall; his data were excluded from analysis. 

H2 in breath 
Supplementation with RS2 and RS3 led to significantly more H2 excretion in breath than 
supplementation with glucose, both on d 2 (P < 0.01) and d 7 (P < 0.05, Table 4.3). 
Breath H2 excretion during RS2 and RS3 supplementation was similar. For each 
supplement H2 excretion was similar on d 2 and d 7. 

Frequency and consistency of faeces 
During supplementation with RS2 more defaecations (mean +SEM: 10.2 ±0.7 stools/wk) 
were reported than during supplementation with glucose (8.9 ±0.5 stools/wk; P < 0.05). 
The number of stools during RS3 supplementation (9.6 ±0.5 stools/wk) did not differ 
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significantly from either glucose or RS2 supplementation. The mean rated consistency of 

the faeces (scored on a scale of 1 to 8) did not differ during glucose (5.6 ±0.2), RS2 (5.4 

±0.2), and RS3 supplementation (5.5 ±0.2). This agrees with the lack of difference in 

percentage dry weight of the faeces {see below). 

Table 4.3 Area under the 24-h curve ofH2 concentration in end-expiratory breath versus 

time during daily supplementation of the habitual diet with either 32 g glucose, RS2, or 

RS3 for 1 wk1 

Area on day 2 (ppm.h) 
Area on day 7 (ppm.h) 
Area, mean of days 2 and 7 (ppm.h) 

Glucose2 

420 ±39" 
454 ±58a 

432 ±43a 

Dietary supplement 

RS2 

683 ±73" 
634 ±64" 
658 ±61" 

RS3
2 

660 ±71" 
656 ±67" 
662 ±64" 

Mean ±SEM; n=15. Values in the same row with different superscript letters are significantly 
different (P < 0.05). Amounts of RS as measured in vitro (Englyst et al. 1992). 
n= 14 due to missing values. 

Faecal output 

Stool weight was higher during RS supplementation than during glucose supplementation 

(Table 4.4). If the data of two subjects with relatively very high stool weights were 

omitted, mean (+SEM) stool weight during RS3 supplementation changed from 301 +29 

g/d to 267 ±15 g/d which is similar to the stool weight after RS2 supplementation (277 

+ 20 g/d). Faecal dry weight and pH did not differ significantly between the three 

supplementation periods (Table 4.4). After RS supplementation more starch was found 

in faeces than after glucose supplementation, the highest amount being 18% of the amount 

supplemented (RS3 in this case). The pH, cytotoxicity and osmolality of faecal water were 

not different during the three supplementation periods (Table 4.4). 
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Table 4.4 Faecal parameters after daily supplementation of the habitual diet with either 
32 g glucose, RS2, or RS3 for 1 wie 

Mixed wet faeces 
Wet weight (g/d) 
Dry weight (g/d) 

(%) 
Starch3 (g/d) 

PH 
Faecal water 

pH 
Cytotoxicity4 (%) 
Osmolality (mosmol/kg) 

Glucose2 

232 
55 
24.9 

1.1 
6.8 

6.7 
53 

553 

±19a 

±3 
±0.9 
±0.4a 

±0.1 

±0.1 
±8 
±24 

Dietary supplement 

RS2 

277 ±20a'b 

66 ±5 
24.3 ±0.7 
4.5 ±1.7a-b 

6.7 ±0.1 

6.6 ±0.1 
59 ±9 

528 ±17 

RS3 

301 ±29" 
66 ±4 
23.2 ±0.9 
5.6 ±2.0" 
6.6 ±0.1 

6.5 ±0.2 
49 ±9 

528 ±19 

Mean ±SEM; n=23. Values in the same row with different superscript letters are significantly 
different (P < 0.05). Amounts of RS as measured in vitro (Englyst et al. 1992). 
«=22 due to missing values. 
Measured as starch and its degradation products (corrected for free glucose) according to the 
procedure of Björck et al. (1987). 
Measured as release of potassium from erythrocytes due to lysis (Govers et al. 1996). 

SCFA in faeces 
Total SCFA concentration in faeces did not differ significantly between the three 
supplementation periods (Table 4.5). The molar ratio of acetate:propionate:butyrate (the 
main SCFA) was approximately 4:1:1 during the three supplementation periods. The sum 
of isobutyric, valeric, isovaleric and caproic acid comprised only 7.9 ±0.6% (mean 
+SEM) of the total amount of faecal SCFA during glucose supplementation and 7.5 
±0.6% during RS2 and RS3 supplementation (not significantly different). Isovalerate 
comprised a significantly lower (P < 0.05) percentage of total SCFA during RS3 than 
during glucose supplementation and caproate a significantly higher (P < 0.05) 
percentage. 
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Table 4.5 Short-chain fatty acids (SCFA) in faeces after daily supplementation of the 

habitual diet with either 32 g glucose, RS2, or RS3 for 1 wk1 

Glucose2 

106.5 ±6.2 
59.4 ±0.9 
16.2 ±0.7 
16.5 ±0.5 
1.7 ±0.1 
2.4 ±0.1 
2.6 ±0.3" 
1.3 ±0.2a 

Dietary supplement 

RS2
3 

115.6 ±6.9 
59.8 ±1.4 
15.1 ±0.6 
17.7 ±1.2 
1.6 ±0.1 
2.2 ±0.2 
2.3 ±0.2"-b 

1.4 ±0.2ab 

RS3
3 

109.0 ±7 . 4 

59.5 ±1 . 7 

15.4 ±1.3 
17.6 ±0.8 
1.4 ±0.2 
2.2 ±0.2 
2.1 ±0.3a 

1.8 ±0.4b 

Total (fimol/g wet feces) 
Acetate (% of total) 
Propionate ( % of total) 
Butyrate (% of total) 
Isobutyrate ( % of total) 
Valerate (% of total) 
Isovalerate (% of total) 
Caproate (% of total) 

1 Mean ±SEM; « = 2 3 . Values in the same row with different superscript letters are significantly 

different (P < 0.05). Amounts of RS as measured in vitro (Englyst et al. 1992). 
1 n=22 due to missing values. 
3 n = 2 1 due to missing values. 

Bile acids in faecal water 

The concentration of total, primary (sum of cholic and chenodeoxycholic acid), secondary 

(sum of deoxycholic acid, isodeoxycholic acid, lithocholic acid, isolithocholic acid, 12-

ketolithocholic acid, 12-keto-isolithocholic acid, ursodeoxycholic acid, and 7-

ketodeoxycholic acid), and individual bile acid concentrations in faecal water did not 

differ significantly between the three supplementation periods (Table 4.6). However, 

compared with glucose, supplementation with RS2 and RS3 tended to increase total bile 

acid concentration, mainly due to an increase in secondary bile acids, especially 

lithocholic and isolithocholic acid. Secondary bile acids comprised about 85% of total bile 

acids in all supplementation periods. Deoxy cholic acid was by far the most abundant bile 

acid, followed by lithocholic and isodeoxycholic acid. 

Gastrointestinal discomforts 

During RS3 supplementation 91% of the subjects and during RS2 supplementation 82% 

of the subjects reported flatulence, compared with 55% of the subjects during glucose 

supplementation. Of those mentioning flatulence, half reported flatulence on 4 d/wk or 
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Table 4.6 Concentration of bile acids in faecal water after daily supplementation of the 

habitual diet with either 32 g glucose, RS2, or RS3 for 1 wk' 

Glucose2 

384 +61 
34 +14 
24 +11 
11 ±3 

350 ±62 
196 +34 
65 +12 
47 +13 
19 +8 
15 +3 
5 +2 
2 +0.5 
1 ±0.3 

89 +3 

Dietary supplement 

RS2
2 

485 +131 
47 +8 
31 ±6 
16 +2 

439 ±131 
226 ±60 
54 ±12 

101 ±38 
37 ±19 
11 ±3 
6 +2 
3 ±0.6 
2 ±0.3 

84 +3 

RS3
3 

480 ±189 
40 ±12 
28 ±9 
12 ±3 

441 ±181 
224 ±93 
60 ±17 
92 ±41 
42 +27 
13 ±5 
6 ±4 
3 ±0.8 
2 +0.5 

87 +3 

Total bile acids (/xmol/1) 
Total primary bile acids (/tmol/l) 

Cholic acid (/*mol/l) 
Cheno-deoxycholic acid (/xmol/1) 

Total secondary bile acids (/tmol/1) 
Deoxycholic acid (/*mol/l) 
Isodeoxycholic acid (^mol/1) 
Lithocholic acid (/rniol/1) 
Isolithocholic acid (/wnol/1) 
12-Ketolithocholic acid (ftmol/1) 
12-Keto-isolithocholic acid (/xmol/1) 
Ursodeoxycholic acid (^mol/1) 
7-Ketodeoxycholic acid (/xmol/1) 

Secondary bile acids ( % of total) 

1 Mean ±SEM; «=23. There were no significant differences by ANOVA. 
Amounts of RS as measured in vitro (Englyst et al. 1992). 

2 n=2l due to missing values. 
3 n= 19 due to missing values. 

more during RS2 and RS3 supplementation, and only 18% during glucose 

supplementation. Bloated feelings were reported by 41% of the subjects during RS3 

supplementation, by 28% of the subjects during RS2 supplementation and by 9% of the 

subjects during glucose supplementation. During glucose and RS2 supplementation 

subjects reported bloated feelings for only 1 d/wk, while during RS3 supplementation 33 % 

of the subjects who suffered from bloated feelings reported them 4 d/wk or more. Very 

few other gastrointestinal discomforts were reported: only on 1 d/wk by 5% of the 

subjects during glucose supplementation, by 18% of the subjects during RS2 

supplementation and by 14% of the subjects during RS3 supplementation. Severe side 

effects were not reported. 
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Awareness of the nature of the supplements 

The subjects were not informed about the sequence in which they would receive their 

supplements until they completed the experiment. At the end of the study the participants 

were asked to indicate the supplement sequence as perceived. The sequence was 

perceived right by 2 of the subjects (8%); 10 subjects (42%) were able to discern the 

glucose from the RS supplements but could not discern between the RS2 and RS3 

supplements. The other 12 subjects (50%) perceived the sequence of their supplements 

totally wrong. 

Discussion 

This study showed that in healthy men 1 wk supplementation with 32 g/d RS2 or RS3 

compared with glucose increased H2 excretion in breath, faecal starch excretion and stool 

mass, but had no effect on faecal pH and SCFA concentrations, nor on the bile acid 

concentrations and cytotoxicity of faecal water. No differences were found between RS2 

and RS3. Others have shown that a dietary change for 1 wk is sufficiently long to detect 

changes in faecal pH (Govers et al. 1996), faecal bile acids (Rafter et al. 1987, Stadler 

et al. 1988, Govers et al. 1996), cytotoxicity of faecal water (Rafter et al. 1987, Govers 

et al. 1996) and mucosal proliferation (Stadler et al. 1988). In our study, both reported 

compliance and compliance as assessed by urinary lithium recovery were > 90%. Lithium 

recovery during RS, supplementation was slightly lower than during glucose and RS2 

supplementation, possibly because most subjects appreciated the RS3 supplement as the 

least palatable (de Roos et al. 1995). Despite differences in palatability, only half of the 

subjects was able to discern the glucose from the RS supplements. It is unlikely that 

awareness of the nature of the supplements or the small difference in lithium recovery 

could have affected the outcome of the study with regard to faecal composition and breath 

H2 excretion. As in other studies with comparable supplements (van Munster et al. 

1994a, b, Heijnen et al. 1996a) no changes were observed in the composition of the 

background diet during the study. Therefore, it may be assumed that differences in the 

outcome variables are caused by consumption of the supplements. The supplementation 

dose of 32 g RS/d is estimated to be about six times the current average intake of RS in 
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the Netherlands (Dysseler & Hoffem 1995a). This dose was tolerated well as only some 

flatulence and bloated feelings were reported. 

As found by others too (Muir et al. 1994, van Munster et al. 1994a, b) breath H2 

excretion was increased during consumption of RS. Based on this semi-quantitative 

measure (Rumessen 1992), there did not seem to be a difference in fermentability 

between RS2 and RS3. However, the existence of a difference between RS2 and RS3 in the 

rate of fermentation and/or location of fermentation in the colon cannot be excluded on 

the basis of the results of this study (MacFarlane et al. 1992). The latter may have 

important consequences for colon cancer risk (Csordas 1996). We may not have measured 

the optimal fermentability of RS if a plateau level of H2 excretion was reached e.g. 

because the amount of bacterial enzymes was limiting. Our results seem to disagree with 

in vitro data (Cummings et al. 1995), a rat study (Schulz et al. 1993), and two human 

studies (Olesen et al. 1994, Champ et al. unpublished results) that suggest that RS2 is 

better and/or quicker fermentable than RS3. However, the in vitro and human studies are 

difficult to interpret because not only the type of RS but also the amount of RS differed. 

Furthermore, in vitro studies may show inconsistent results depending on the inocula 

used: some subjects fermented one kind of RS well and another type poorly, implying that 

different colonic flora ferment various RS sources differently (Cummings et al. 1996). 

In the rat study (Schulz et al. 1993), the RS dose provided per kg metabolic body weight 

was about 5 times larger than the maximum dose that is tolerated well in human studies. 

Thus, the specific type and amount of RS and factors relating to the subject seem to 

determine whether or not and to which extent the amount of H2 in breath increases after 

consumption of RS. During consumption of the glucose supplements there was also a 

significant H2 excretion in breath, probably because the background diet provided a 

considerable amount of dietary fibre. 

Compared with glucose, RS supplementation increased stool weight by 1.4 g/g RS2 and 

by 2.2 g/g RS3. As others reported similar results (van Munster et al. 1994a, Phillips et 

al. 1995, Cummings et al. 1996) it can be concluded that RS2 and RS3 have a mild 

laxative effect. This may be positive for human health because an inverse relationship has 

been reported between stool weight and colon cancer incidence (Cummings et al. 1992). 

Burkitt (1971) proposed a protective mechanism by dilution of the intestinal contents and 

reduction of intestinal transit time, thus reducing the contact of carcinogens with the 

colonic mucosa. The increase in stool weight can be explained for 7% only by the 
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increase of starch in the faeces. The increase in faecal mass cannot be explained by an 

increase in water content as, in agreement with others (Scheppach et al. 1988a, Phillips 

et al. 1995, Cummings et al. 1996), no differences in percentage dry matter of the faeces 

were found. Therefore, most likely stool weight was increased mainly by an increase in 

bacterial mass, which is supported by the reported increase in faecal nitrogen excretion 

after RS consumption (Birkett et al. 1996, Cummings et al. 1996). Further support is 

provided by a study in which starch malabsorption was induced by the a-amylase 

inhibitor acarbose which caused an increase in faecal bacterial mass and nitrogen 

excretion, and in bacterial nitrogen and diaminopimelic acid in faeces (Scheppach et al. 

1988a). 

Bacterial mass and colonic fermentation may be increased due to the availability of 

more substrate (RS) in the colon. This is confirmed by the increase in breath H2 excretion 

and the small amount of starch in the faeces representing only 15-18% of the RS 

supplemented. Others (Phillips et al. 1995, Cummings et al. 1996) also reported an 

overall RS digestibility of 80-90%, and some found almost 100% (van Munster et al. 

1994b). No significant differences between RS2 and RS3 were found with respect to faecal 

starch excretion which is largely in agreement with the findings of Cummings et al. 

(1996). The likely increase in colonic fermentation was not reflected in a drop of faecal 

pH which agrees with some studies (van Munster et al. 1994b) but not with others 

(Phillips et al. 1995). The pH of the colonic contents has been shown to rise gradually 

during the passage from caecum to sigmoid (Cummings et al. 1987, Fallingborg et al. 

1989, MacFarlane et al. 1992), which is probably due to the rapid absorption of SCFA 

by the colonic epithelium (Cummings 1981, Cummings et al. 1987, MacFarlane et al. 

1992). Thus, faecal pH is not necessarily a good indicator for fermentation and acidity 

in the proximal colon, and this may be the explanation for the absence of a change in 

faecal pH. 

The rapid absorption of SCFA from the colon is probably also the explanation for the 

lack of differences between the supplements in faecal SCFA concentrations in this study 

and as reported by others (van Munster et al. 1994fr, Phillips et al. 1995, Cummings et 

al. 1996), too. In contrast, starch malabsorption induced by acarbose resulted in an 

increased faecal SCFA excretion (Scheppach et al. 1988fr). The total amount of SCFA 

excreted tended to be increased after RS supplementation both in this study and the one 

by Cummings et al. (1996) and was significantly increased after RS consumption in two 
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other studies (van Munster et al. 1994b, Phillips et al. 1995). This was probably related 

to the higher stool mass after RS consumption. The molar ratios of acetate, propionate 

and butyrate in this study, approximately 0.60, 0.15 and 0.17 are in the same range as 

reported before (Cummings 1981) and did not differ between the three supplements. The 

present study did not show a clear increase in faecal butyrate excretion after RS 

consumption, while some others did (Scheppach et al. 1988e, van Munster et al. 1994ft, 

Phillips et al. 1995). Cummings et al. (1996) found a significant higher molar ratio of 

butyrate, but only after consumption of RS2 from potatoes. Failure to measure an increase 

of faecal butyrate, however, does not exclude the possibility that in vivo fermentation of 

RS specifically increases butyrate production. Obviously, it is very difficult to measure 

SCFA production in the human colonic contents in vivo. 

In the present study, bile acid concentrations in faecal water did not differ between RS 

and glucose supplementation, nor between RS2 and RS3. This is in accordance with the 

lack of a difference in cytotoxicity of faecal water. However, the faecal sampling method 

used may not have been optimal (Setchell et al. 1987) and the within-subject variability 

was very large, which may explain why the tendency of RS2 and RS3 to increase the 

concentration of total and secondary bile acids in faecal water was not statistically 

significant. In contrast, van Munster et al. (1994ft) reported a decrease in total bile acid 

concentration in faecal water, mainly due to a decrease in deoxycholic acid concentration 

after consumption of 28 g/d RS2 for 2 wk. The primary bile acid concentration in freeze-

dried faeces rose significantly, and the secondary bile acid concentration tended to 

decrease in their study. Concomitantly, cytotoxicity of faecal water and mucosal 

proliferation in rectal biopsies decreased significantly. Unfortunately, however, there was 

no control group in this study. Starch malabsorption as induced by acarbose significantly 

decreased secondary bile acid concentration and excretion in faeces, and significantly 

increased the primary bile acid concentration and excretion (Bartram et al. 1991). 

In conclusion, the present findings do not support the initial hypothesis that 1 wk 

supplementation of the habitual diet with 32 g/d of either RS2 or RS3 from maize starch 

compared with an equivalent amount of glucose positively affects putative risk factors for 

colon cancer in healthy men. No differences were found between RS2 and RS3. Neither 

does this study support a difference in fermentability between RS2 and RS3 as evaluated 

by breath H2 excretion. No information could be obtained about the colonic location of 

fermentation of RS2 and RS3 nor on the magnitude of butyrate production in situ. Both 
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factors may be important regarding colon cancer risk. In addition, since consumption of 

RS2 and RS3 increased stool mass, a protective but perhaps limited effect of (longer term) 

resistant starch consumption towards colon cancer is still feasible. 
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Retrograded (RS3) but not uncooked (RS2) resistant 
starch lowers faecal ammonia concentrations in 
healthy men 

Heijnen MLA, Deurenberg P, van Amelsvoort JMM, Beynen AC. 
American Journal of Clinical Nutrition 1997;65:167-168 (letter to the editor). 
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Dear Sir: 

Birkett et al. (1996) reported that consumption of 39 g resistant starch (RS)/d but not 5 

g/d, for 3 wk, lowered faecal concentrations of ammonia in healthy subjects. The RS 

used was a mixture of the three major types that occur naturally in the human diet 

(Englyst et al. 1992), namely, physically entrapped starch (RS,), uncooked starch 

granules (RS2), and retrograded starch (RS3). We wish to extend the interesting findings 

of Birkett et al. (1996) by reporting here for the first time the results of an experiment 

that compared RS2 and RS3 as derived from well-defined maize starches. 

Healthy men consumed a supplement each day in addition to their habitual diet in a 

single-blind, randomized 3 x 3 Latin-square experiment (de Roos et al. 1995). During the 

first week (run-in period) all subjects consumed the control supplement containing 

glucose. Subsequently, each subject consumed for 1 wk a supplement with RS2 (Hylon 

VII; i.e. uncooked high-amylose maize starch), RS3 (extruded, retrograded Hylon VII), 

and glucose. The 24 subjects were randomly divided into six groups before the start of 

the run-in period. Each group consumed the supplements in one of the six possible 

sequences so as to eliminate variation due to residual effects of the previous supplement 

or to drift of variables over time. The daily supplements provided 2 M J and consisted of 

a mixture of skim yogurt, skim milk, mashed canned fruit, lithium, and either glucose, 

RS2, or RS3 (de Roos et al. 1995). The dietary variables were added to the supplements 

as identical amounts of glucose units (101 g glucose units/d). Radioopaque, barium-

sulphate impregnated, polyethylene rings were swallowed with each supplement portion 

to serve as a marker for faeces collection. The RS2- and RS3-containing supplements each 

provided 32 g RS/d and the supplement with glucose contained 4 g RS/d as determined 

in vitro by the Englyst method (1992). Compliance, as measured by urinary recovery of 

lithium, was satisfactory and comparable in the three supplementation periods (de Roos 

et al. 1995). Weekly 24-h food consumption recalls showed that the amount and 

composition of the background diet were similar for all dietary periods (de Roos et al. 

1995). Body weight remained constant throughout the study. On the last 2 d of each 

period, the subjects collected 24-h urine. Urinary urea and creatinine were measured by 

using commercial test combinations (no. 1688-05 and no. 1694-06; Abbott Laboratories, 

Irving, TX). During the last 3 d of each period, the subjects defaecated twice at the 

Department of Human Nutrition. The faeces were weighed and frozen immediately at 

63 



Chapter 5 

-20 °C. Ammonia was extracted from homogenized faeces with perchloric acid and 
measured with the use of a commercial test combination (Ammonia UV-method, cat. no. 
1112732; Boehringer Mannheim GmbH, Mannheim, Germany). 

One subject took antibiotics during the experiment; his data were excluded from 
statistical analysis. Glucose and RS2 consumption produced similar faecal ammonia 
concentrations, whereas RS3 had a significant lowering effect (Table 5.1). Thus, the 
finding of Birkett et al. (1996) that a diet rich in a mixture of RS types lowered faecal 
ammonia concentrations may have been caused specifically by the RS3 component. Birkett 
et al. (1996, Pillips et al. 1995) and ourselves (Table 5.1) found that consumption of RS 
increased faecal output which explains the decrease in faecal ammonia concentration 
because the absolute ammonia excretion was only slightly affected (Table 5.1). 

Table 5.1 Faeces production, faecal ammonia excretion, and urinary urea excretion after 
1 wk of daily supplementation of the habitual diet with 32 g of either glucose, uncooked 
resistant starch (RS2), or retrograded resistant starch (RS3) in 23 healthy men' 

Faeces 
Wet weight (g/d) 
Ammonia 

O^g/g wet faeces) 
(mg/d) 

Urinary urea 

(g/d) 
(g/g creatinine) 

Glucose 

232 ±19a 

648 ±41b 

143 +10 

26.2 +1.1 
15.7 +0.7 

Dietary 

277 

595 
157 

27.4 
15.7 

supplement 

RS2 

+20a'b 

+39" 
+ 10 

+ 1.1 
±0.5 

301 

481 
134 

24.9 
15.3 

RS3 

±29" 

+ 36" 
+ 11 

±1.1 
±0.6 

Mean +SEM; values in the same row with different superscript letters are significantly different, 
P < 0.05, as assessed by ANOVA with 'subject' as the random factor and 'supplement' as the 
fixed factor, followed by Tukey's studentized range test. 

It is difficult to see that RS3 lowers faecal ammonia concentrations by a specific 
mechanism rather than by raising the bulk of faeces. Birkett et al. (1996) suggested that 
RS fermentation in the colon stimulates bacterial growth and thereby ammonia 
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incorporation into bacterial protein. This mechanism should be associated with less 
absolute excretion of faecal ammonia, and with less urinary urea excretion, which was 
not observed either by Birkett et al. (1996) or by ourselves (Table 5.1). It would also 
imply that RS3 is more fermentable than RS2, for which there is no evidence (Olesen et 
al. 1992, Schulz et al. 1993, Cummings et al. 1995). 

This study shows that RS3, but not RS2, significantly lowers faecal ammonia 
concentrations in healthy men, which might be advantageous in the protection against 
colon cancer. In further research on RS in health and disease, discrimination between the 
various types of RS would appear to be relevant. 
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Consumption of retrograded (RS3) but not of 
uncooked (RS2) resistant starch shifts nitrogen 
excretion from urine to faeces in cannulated piglets 

Heijnen MLA, Beynen AC. 

Submitted for publication. 

Abstract 
To study the effect of resistant starch (RS) on N excretion, three groups of six cannulated piglets 
each were fed a diet containing either uncooked resistant starch (RS2), retrograded resistant starch 
(RS3), or glucose. The use of piglets with a cannula at the end of the ileum allowed measurement 
of the contribution of colonic N to urinary N. We hypothesized that RS2 would lower colonic 
absorption of N when compared with RS3, because RS2 may be more fermentable than RS3, thus 
trapping more N in bacteria. Ileal digesta, urine and faeces were collected quantitatively. 
Replacement of glucose by either RS2 or RS3 did not affect N retention but increased faecal N 
excretion. The latter was probably due to the combination of a decrease in ileal N absorption and 
an increase in N trapping by bacteria. Bacterial growth probably was enhanced as a result of 
fermentation of RS2 and RS3 because virtually no starch was recovered in faeces and faecal mass 
had increased. RS3, but not RS2, reduced urinary N excretion, mainly in the form of urea, which 
can be explained by the observed reduced colonic N absorption. This difference between RS2 and 
RS3 may relate to the greater ileal fermentation of RS2, as indicated by less starch in the ileal 
digesta after RS2 feeding. Thus, more fermentable substrate was available in the colon of the RS3-
fed piglets so that more N could be trapped in bacteria in the colon after RS3 instead of RS2 

consumption. If these results can be extrapolated to man, consumption of RS3 rather than 
digestible carbohydrate may lower the workload for the kidneys and the liver and may therefore 
be beneficial for patients with kidney or liver malfunction. 
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Introduction 

In rats, dietary uncooked resistant starch (RS2) led to a shift of N excretion from urine 

to faeces (Younes et al. 1995a). Dietary retrograded resistant starch (RS3) increased 

faecal N excretion without affecting urinary N excretion in rats (Brunsgaard et al. 1995). 

In pigs, RS2 in the form of raw potato products (Wünsche et al. 1987) and starch 

infusions into the terminal ileum (Gargallo & Zimmerman 1981, Misir & Sauer 1982, 

Mosenthin et al. 1992) also increased faecal N excretion which was balanced by a 

reduction in urinary N output. A high-RS diet was found to increase faecal N excretion 

in man without a concomitant decrease in urinary N excretion (Birkett et al. 1996). If a 

shift of N excretion from urine to faeces occurs after consumption of RS, it can be 

explained by increased bacterial protein synthesis and a subsequent decrease in colonic 

absorption of N in the form of ammonia. The indigestible, fermentable carbohydrates that 

reach the colon supply energy for bacterial growth for which N also is required. N is 

derived from ammonia produced by bacteria from dietary protein that escapes digestion, 

endogenous proteins such as pancreatic and intestinal secretions and sloughed epithelial 

cells (Mason 1984), and blood urea after its diffusion into the gut (Rémésy & Demigné 

1989, Younes et al. 1995a, b). It is reported that 60-90% of faecal N is bacterial N 

(Stephen & Cummings 1980, Mason 1984, Ahrens & Kaufmann 1985, Wünsche et al. 

1987, Mosenthin et al. 1992). 

When higher amounts of bacterial fermentable substrates are included in pig feed, the 

amount of soluble N in both faeces and urine can be lowered, so that nitrate and ammonia 

generation from manure is also lowered which in turn reduces environmental pollution 

(Hegedüs 1993, Kirchgessner & Roth 1993). In man, an increase in faecal N excretion 

at the expense of renal excretion may be of interest for the dietary management of chronic 

renal disease, such as may occur in diabetic patients (Rampton et al. 1984, Rivellese et 

al. 1985, Parillo et al. 1988). Also, reduction of the absorption of ammonia from the gut, 

thereby decreasing urea production in the liver, may lessen the workload for the liver, 

which is beneficial for cirrhotic patients (Weber 1979, Weber et al. 1985). 

The aim of this experiment was to study the effect of dietary RS2 and RS3 on N 

excretion in cannulated piglets. The use of piglets with a cannula at the end of the ileum 

allowed measurement of the contribution of colonic N to urinary N. We hypothesized that 

RS2 would lower colonic absorption of N when compared with RS3, because RS2 may be 
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more fermentable than RS3 (Schulz et al. 1993, Olesen et al. 1994, Cummings et al. 

1995, Champ et al. unpublished data) thus trapping more N in bacteria. We chose the 

pig as experimental animal because the pig is generally accepted as the species that is 

closest to man in terms of anatomy and physiology of the digestive tract (Fleming & Arce 

1986, Graham & Aman 1986, Bach Knudsen et al. 1993, Rowan et al. 1994). 

Materials and methods 

The experimental protocol was approved by the Animal Ethical Committee of the 

Wageningen Agricultural University. The experiment was carried out at the Institute for 

Animal Nutrition and Physiology ILOB/TNO, Wageningen. 

Animals and housing 

Eighteen crossbred castrates (FL*NL)*GY aged 10 weeks and with an average body 

weight of 16 kg were used. At the age of 6 wk they had been fitted with a post-valve T-

caecum cannula (PVTC), as described by van Leeuwen et al. (1991). In PVTC pigs, the 

caecum is partially removed and the cannula is joined with the remnants of the caecum 

directly opposite the ileo-cecal valve. When the cannula is open, the ileo-cecal valve, 

which normally protrudes into the caecum, protrudes into the cannula, allowing 

quantitative collection of the ileal digesta (van Leeuwen et al. 1991). The piglets were 

housed individually in stainless-steel metabolic crates in a temperature-controlled (25 °C) 

barn. Lights were on from 0800 to 1600 h except on the days that digesta were collected, 

when they were on from 0800 to 2100 h. 

Experimental diets 

Three diets were used, containing either glucose, RS2 or RS3 (Table 6.1). The amount of 

glucose equivalents was equal for the three diets. The RS2 and RS3 diets each contained 

168 g RS per kg diet. Corrections were made for the different water contents of the 

carbohydrate preparations and for the water excluded during formation of glycosidic 

bonds. We did not try to equal the energy content of the diets because there is no 

accurate estimate of the amount of energy that RS supplies; in any event this energy is 

unlikely to greatly exceed 8.4 kJ/g (Livesey 1990). As the piglets in the RS2 and RS3 
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groups ate 114 g RS/d as determined by the in vitro method of Englyst et al. (1992) the 
energy intake may have been approximately 958 kJ less in the RS groups than in the 
glucose group {i.e. 9% of the energy content of the glucose diet). The powdered diets 
were stored at 4 °C until used for feeding. 

Table 6.1 Composition of the diets 

Diet 

Glucose RS2 

376.9 
275.1 

-
320.0 
28.5 

619 
169 

RS3 

-
613.1 
320.0 
67.4 

619 
168 

Ingredients 
Glucose1 (g) 680.5 
RS2 preparation2 (g) 
RS3 preparation3 (g) 
Constant components4 (g) 320.0 
Demineralized water (g) 

Carbohydrates 
Glucose equivalents (g/kg) 619 
Resistant starch (g/kg) 

Meritose, Cerestar, Vilvoorde, Belgium; dry weight 90.9%. 
Uncooked high-amylose maize starch, Cerestar, Vilvoorde, Belgium; dry weight 90.3%; 61.4 g 
resistant starch/100 g according to the procedure of Englyst et al. (1992). 
Retrograded high-amylose maize starch, Cerestar, Vilvoorde, Belgium; dry weight 90.8%; 27.4 
g resistant starch/100 g according to the procedure of Englyst et al. (1992). 
The constant components consisted of the following (g/kg diet): wheat gluten, 90; casein, 90 
soybean oil, 20; cellulose, 50; CaC03, 12.5; CaHP04, 20; NaCl, 5; MgO, 2; KHC03, 15 
NaHC03, 2.5; Cr203, 1.6; premix, 10; Cr203, 2.5. The premix consisted of the following (mg) 
Mn02, 70; FeSO„.7H20, 400; ZnSO„.H20, 300; Na2Se03.5H20, 0.2; KI, 0.5; CuS04.5H20, 100 
CoS04.7H20, 2.5; thiamin, 2; riboflavin, 5; nicotinamide, 30; D,L-calcium pantothenic acid, 12 
pyridoxine, 3; cyanocobalamin, 0.04; folic acid, 1; biotin, 0.1; ascorbic acid, 50; choline chloride, 
1000; menadione, 3; D,L-alpha tocopheryl acetate, 40; retinyl acetate and retinyl palmitate, 18 
(2700 retinol equivalents); cholecalciferol, 0.045; maize meal, 7962.615. 

Prior to the experiment the piglets were fed a commercial diet. The piglets were divided 
into three groups of six animals each so that body weight distributions of the groups were 
similar. Each group of piglets was randomly assigned to either the glucose, RS2 or RS3 
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diet. In 4 d the ration gradually changed from commercial to each of the three 

experimental diets. After that, the experimental diets were given for another 10 d. It was 

considered important to standardize the intake of glucose equivalents and the nutritional 

status of the animals because ileal digesta were to be collected. Therefore, the piglets 

were fed on a restricted basis. The piglets were given an amount of feed that was 

equivalent to 2.6 times the maintenance requirement; this feeding regimen had already 

been installed prior to the start of the experiment. Maintenance level was assumed to be 

420 kJ per kg metabolic weight. The feed was provided to the piglets in two meals of 

identical size, at 0800 and 1600 h during the adaptation period and at 0800 and 2000 h 

during the collection period, starting two days in advance. The piglets received tap water 

at a water:feed ratio of 2.35:1 (w/w). Body weights were measured at the beginning and 

at the end of the experiment. 

Collection of faeces, urine and ileal digesta 

On d 9-11 urine and faeces were collected qualitatively from each animal. Urine was 

collected in a bucket that was placed under the tray with a funnel that was present under 

the tenderfoot mesh floor of the cages. Faeces were removed from the cage floor and the 

tray. Urine and faeces collections were frozen at -20 °C until analysis. 

On d 12-14 ileal digesta were collected quantitatively for 12-h periods, starting 15 min 

before the morning meal and ending 15 min before the evening meal. One hour prior to 

the collection period, the PVTC cannula was opened to adapt the animals and the digesta 

flow. During this hour the position of the valve changed and instead of protruding in the 

intestinal lumen it protruded into the lumen of the cannula. Digesta flowed through the 

cannula into a small plastic bag attached to the cannula with a selftightening nylon strap. 

Every hour the bags were replaced, weighed and frozen at -20 °C. 

Chemical analyses 

The faeces and ileal digesta were thawed, pooled per animal per 3 d, homogenized in 

demineralized water with a blender (Braun Multimix MX32; Braun, Frankfurt/Main, 

Germany) and then freeze-dried overnight. Dry matter content was determined as the 

weight difference before and after freeze-drying. Starch was measured in faecal and ileal 

samples as the difference between total glucose and free glucose, adapted from the 

method from Björck et al. (1987). 
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The urine was thawed and pooled per animal per 3 d. Creatinine was measured in lightly 
acidified urine with the use of a commercial test combination (Creatinine, MA-KIT 10 
ROCHE; Roche Diagnostics, Basel, Switzerland) and a COBAS-BIO auto-analyser 
(Hoffmann-La Roche B.V., Mijdrecht, the Netherlands). Urea was measured in 
nonacidified urine by the urease method with the use of a commercial test combination 
(Urea UV, MA-KIT 10 ROCHE; Roche Diagnostics, Basel, Switzerland) and the auto-
analyser. 

N in feed, faecal, ileal and urine samples was measured by the Kjeldahl method. N 
balance was calculated as N intake minus N excretion via faeces and urine. Colonic N 
absorption was calculated as N in ileal digesta minus N in faeces. 

Statistical analysis 
For evaluation of the group comparisons that had been defined a priori, i.e. the RS2 

versus glucose group, the RS3 versus glucose group, and the RS2 versus RS3 group, a 
two-tailed Student's t test was performed with a pre-set P value of 0.05. Because the 
contrasts were defined a priori, Bonferroni's adaptation was not applied. The statistical 
analysis package SAS, release 6.09 (SAS Institute Inc., Cary, NC) was used. 

Results 

Body weight and food intake 
Both initial and final body weights did not differ between the dietary groups. Food intakes 
were also similar in the three groups (Table 6.2). 

Ileal digesta and faeces 
The piglets fed RS3 had a markedly higher production of ileal digesta and faeces (Table 
6.2) than the piglets fed glucose or RS2 (P < 0.05). Feeding RS2 also led to a 
significantly higher faecal output than feeding glucose (P < 0.05). The dry matter 
content of the ileal digesta was higher in the RS2 than in the glucose group, and higher 
in the RS3 than in the RS2 and glucose groups (P < 0.05). The dry matter content of the 
faeces was approximately twice as high (P < 0.05) in the RS2 and RS3 groups compared 
with the glucose group (Table 6.2). A considerable amount of starch was recovered in 
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the ileal digesta from the piglets fed 114 g RS2 or RS3 per day: 50 and 81 g/d 
respectively, compared with only 1 g/d in the glucose group. The amounts of starch in 
ileal digesta were significantly different between all dietary groups (P < 0.05). In the 
faeces virtually no starch was recovered in either of the dietary groups (Table 6.2). 

Table 6.2 Body weight, food intake and production of faeces, urine and ileal digesta in 
piglets fed diets with either glucose, uncooked (RS2) or retrograded resistant starch (RS3)' 

Body weight (kg) 
Initial 
Final 

Food intake (g/d) 
Ileal digesta 

Production (g/d) 
Dry matter (g/d) 
Starch (g/d) 

Faeces 
Production (g/d) 
Dry matter (g/d) 
Starch (mg/d) 

Urine 
Production (ml/d) 
Creatinine (mmol/d) 
Urea (mmol/d) 

Glucose 

16.6 
21.1 

682 

577 
69 

1 

55 
27 
46 

971 
7.0 

168 

±0.4 
±0.5 
±11 

±92a 

±3a 

± l a 

±8a 

±4a 

±9 

±34 
±0.4 
±4" 

Diet 

RS2 

16.4 ±0.6 
20.9 ±0.7 

678 

780 
149 
50 

91 
52 

129 

915 

±15 

±57a 

±8b 

±2" 

±7" 
±2" 
±39 

±29 
7.2 ±0.3 

160 ±6" 

16.7 
21.2 

683 

1159 
201 
81 

142 
52 

141 

862 
6.9 

141 

RS3 

±0.4 
±0.5 
±11 

±46" 
±6C 

± 3 ' 

±15c 

±4" 
±57 

±53 
±0.4 
±5a 

1 Values are means ±SEM for 6 piglets per dietary group. Values in a row with different 
superscripts are significantly different (P < 0.05). Note that starch is expressed in g/d for the ileal 
digesta and in mg/d for the faeces. 

Urine 
Urine production and urinary creatinine excretion were similar in the dietary groups 
(Table 6.2). Urinary urea excretion was lower in the RS3 group compared with the 
glucose and RS2 groups (P < 0.05). 
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N balance 

The N intake was similar in the dietary groups (Table 6.3). The N content of the ileal 

digesta was significantly higher in the RS2 and RS3 groups compared with the glucose 

group (P < 0.05). Of the amount of N entering the colon {i.e. the N content of the ileal 

digesta since these were collected at the end of the ileum) about 1 g/d was absorbed by 

the colon in the glucose and RS2 groups and only 0.6 g/d in the RS3 group. The latter was 

significantly lower than in the glucose group (P < 0.05 ). In the RS2 and RS3 groups, 

N excretion via the faeces was respectively 100% and 150% (P < 0.05 ) higher than in 

the glucose group. N excretion via the urine (mainly as urea) was 6% lower in the RS2 

group (P > 0.05) and 14% lower in the RS3 (P < 0.05) group compared with the 

glucose group. The N balance was similar in the dietary groups, approximately 11 g/d 

(Table 6.3). 

Table 6.3 N balance and apparent colonic N absorption in piglets fed diets with either 

glucose, uncooked (RS2) or retrograded resistant starch (RS3)' 

N intake (g/d) 
N in ileal digesta (g/d) 
N in faeces (g/d) 
N in urine (g/d) 
N balance2 (g/d) 
N absorbed by colon3 (g/d) 

Glucose 

16.4 +0.3 
1.7 ±0.1a 

0.6 +0.1a 

4.9 ±0.1" 
10.9 +0.1 
1.1 ±0.2" 

Diet 

RS2 

16.7 +0.4 
2.3 +0.2" 
1.2 +0.1" 
4.6 +0.2a'b 

10.9 +0.2 
1.0 +0.2ab 

RS3 

17.1 +0.3 
2.1 +0.1" 
1.5 +0.2b 

4.2 +0.1a 

11.4 +0.3 
0.6 +0.1 a 

1 Values are means +SEM for 6 piglets per dietary group. Values in a row with different 
superscripts are significantly different (P < 0.05). 

2 Calculated as N intake minus N in faeces and urine. 
3 Calculated as N in ileal digesta minus N in faeces. 

Apparent N absorption 

Apparent mouth-to-anus absorption of N was calculated as a percentage of intake. In 

piglets fed the glucose diet, mean (+SEM) N absorption was 96.3 +0.4%. Feeding the 
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RS2 and RS3 diets resulted in percentages N absorption of 92.5 +0.4% and 91.2 ±0.9%, 

respectively. The RS diets significantly reduced N absorption when compared with the 

glucose diet (P < 0.05). 

Discussion 

Dietary RS2 and RS3 versus glucose increased faecal N excretion resulting in a reduced 

apparent N absorption. The increase in faecal N after RS consumption was probably due 

to the combination of a decrease in ileal N absorption and an increase in bacterial N 

through stimulation of bacterial growth in the gut by fermentation of undigested RS. The 

latter is confirmed by the recovery of virtually no starch in the faeces of the piglets fed 

RS2 and RS3, indicating that overall both RS2 and RS3 were extensively fermented. 

Wünsche et al. (1987) also recovered no starch in the faeces of pigs that consumed RS2 

from raw potatoes. In man, 1 % (van Munster et al. 19946) to about 20% (Phillips et al. 

1995, Heijnen et al. submitted) of the RS provided was recovered in the faeces. In rats, 

9% of the RS2 and 35% of the RS3 consumed was recovered in faeces (Schulz et al. 

1993). Thus, the pig seems a good RS fermenter in comparison with man and rat. The 

expected increase in faecal bacterial mass in the piglets fed RS2 or RS3 was confirmed by 

the increase in faecal mass. An increase in stool mass after RS cosumption also was 

found in man (van Munster et al. 1994, Phillips et al. 1995, Cummings et al. 1996, 

Heijnen et al. submitted) and rat (Schulz et al. 1993, Heijnen et al. 19966). Fermentation 

of RS in the colon probably induced a lower colonic pH (not measured). A lower pH 

enhances the conversion of ammonia (NH3) into ammonium (NH4
+). Ammonium is less 

well absorbed by the colon than ammonia and will be excreted in the faeces. This process 

may also have contributed to the observed increase in faecal N excretion. 

Dietary RS3, but not RS2, reduced urinary N excretion, mainly by reducing urinary 

urea excretion, which can be explained by the observed reduced colonic N absorption. 

A priori, we expected the effects of RS2 and RS3 to be just the other way around because 

we assumed that RS2 is better fermentable than RS3 (Schulz et al. 1993, Olesen et al. 

1994, Cummings et al. 1995, Champ et al. unpublished data). The discrepancy between 

the results and our expectations can be explained by the finding that RS2 was fermented 

in the small intestine to a greater extent than RS3, as indicated by the lower amounts of 
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starch in the ileal digesta after RS2 feeding. This means that less fermentable substrate 

entered the colon in the RS2-fed piglets when compared with the RS3-fed piglets. Thus, 

although the overall digestibility of RS2 and RS3 was equal, they differed in the site of 

fermentation: RS2 was fermented for 56% in the ileum and for 44% in the colon, whereas 

RS3 was fermented for 29% in the ileum and for 71% in the colon. Fermentation in the 

ileum of the pig is possible as especially the distal third of the ileum contains a significant 

amount of bacteria, i.e. about 108-109 viable counts/g digesta (Chesson et al. 1985, Liu 

et al. 1985, Bach Knudsen et al. 1993). Ileal fermentation of RS corresponds with the 

observed increase in the amounts of ileal N and digesta. However, the increase in ileal 

N after RS feeding may also reflect a decrease in protein digestion and absorption. 

The effect of RS3 on the routes of N excretion as found in the present study agrees with 

studies in which starch was infused into the terminal ileum of pigs (Gargallo & 

Zimmerman 1981, Misir & Sauer 1982, Mosenthin et al. 1992). In those studies 

fermentation also took place mainly in the colon and the increase in faecal starch 

excretion was balanced by a decrease in urinary N excretion, as in our study after RS3 

feeding. However, we have no explanation for the discrepancy between the effect of RS2 

on the routes of N excretion in the present study and in the study by Wünsche et al. 

(1987). In the latter, the increase in faecal N excretion was balanced by a decrease in 

urinary N excretion after pigs were fed RS2, whereas in the present study this balancing 

did not occur after RS2 feeding but only after RS3 feeding. 

In conclusion, replacement of glucose by either RS2 or RS3 in pig feed did not affect 

N retention but increased faecal N excretion due to ileal and colonic fermentation of RS. 

Ileal fermentation of RS2 was greater than that of RS3, resulting in a higher availability 

of fermentable substrate in the colon of the RS3-fed piglets when compared with the RS2-

fed piglets. Thus, after RS3 consumption more N could be trapped in bacteria in the colon 

than after RS2 consumption, so that RS3 but not RS2 reduced colonic N absorption 

resulting in a reduced urinary N (urea) excretion. If these results can be extrapolated to 

man, consumption of RS3 instead of digestible carbohydrate may lower the workload for 

the kidneys and the liver and may therefore be beneficial for patients with kidney or liver 

malfunction (Weber 1979, Rampton et al. 1984, Rivellese et al. 1985, Weber et al. 1985, 

Parillo et al. 1988). 
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Effect of consumption of uncooked (RS2) and 
retrograded (RS3) resistant starch on apparent 
absorption of magnesium, calcium and phosphorus 
in pigs and man 

Heijnen MLA, Beynen AC. 

Submitted for publication. 

Abstract 
The effect of uncooked (RS2) and retrograded (RS3) resistant starch on overall apparent 
absorption of magnesium, calcium and phosphorus was studied in man and the site of mineral 
absorption in swine. Twenty-three healthy men consumed in addition to their habitual diet daily 
supplements providing either 32 g glucose, RS2 or RS3. Each subject consumed each supplement 
for 1 wk in random order. Three groups of 6 piglets each consumed for 2 wk a diet containing 
either glucose, RS2 or RS3. The piglets were cannulated at the end of the ileum which allowed 
estimation of the ileal and colonic mineral absorption. Urine and faeces were collected, and in 
the piglets also ileal digesta, for measurement of magnesium, calcium and phosphorus. 
Supplementation of the diet with either RS2 or RS3> when compared with glucose, had no effect 
on mineral absorption in the healthy men. Dietary RS2, but not RS3, versus glucose reduced (P 

< 0.05) total absorption of magnesium and calcium and ileal absorption of phosphorus in the 
pig. Neither RS2 nor RS3 consumption stimulated mineral absorption in man as was found in rats. 
The amount of RS per MJ of energy intake that man is able to consume is much lower than the 
amounts used in experiments with rats. Differences between species or in RS and/or mineral 
intake may explain why RS2 reduced the apparent absorption of magnesium and calcium in pigs 
in this study and raised it in rats in earlier studies. 
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Introduction 

In rats, uncooked resistant starch (RS2) compared with digestible starch raised apparent 

magnesium and calcium absorption (Rayssiguier & Rémésy 1977, Andrieux & Sacquet 

1986, Schulz et al. 1993, Younes étal. 1993, 1996). Uncooked (RS2) versus retrograded 

resistant starch (RS3) also raised apparent magnesium and calcium absorption in rats 

(Schulz et al. 1993, Heijnen et al. 1996b). It has been proposed that RS2 compared with 

either digestible starch or RS3 raised apparent magnesium and calcium absorption by 

increasing ileal solubility of magnesium and calcium due to a reduction in pH (Heijnen 

et al. 1993, Schulz et al. 1993, Hara et al. 1996, Younes et al. 1996). In contrast to 

digestible starch, RS is not absorbed in the small intestine but may be fermented by the 

bacterial flora in the gut and some studies indicate that RS2 is more fermentable than RS3 

(Schulz et al. 1993, Olesen et al. 1994, Cummings et al. 1995). However, since RS2 

compared with RS3 increased only apparent but not true magnesium absorption by 

decreasing endogenous magnesium loss with faeces, the proposed mechanism seems to 

be incorrect (Heijnen et al. 1996fr). 

Magnesium (Hardwick et al. 1991) and calcium (Nellans & Goldsmith 1981, Ammann 

et al. 1986, Bronner et al. 1986, Trinidad et al. 1996) may not only be absorbed from 

the small but also from the large intestine, especially from the caecum in the rat (Hara 

et al. 1996). Distal magnesium and calcium absorption may be stimulated by fermentable 

RS2 by increasing the soluble pool of the mineral (Schulz et al. 1993, Younes et al. 1993, 

1996) through acidification of the caecal contents (Andrieux & Sacquet 1986, Demigné 

et al. 1989, Schulz et al. 1993, Younes et al. 1993, 1996) and/or by hypertrophy of the 

caecal wall, i.e. by increasing the surface area for absorption (Démigné et al. 1989, 

Levrat et al. 1991, Younes et al. 1993, 1996). Scharrer and Lutz (1990, 1992) have 

proposed that the short-chain fatty acids (SCFA) produced during carbohydrate 

fermentation in the gut may enhance magnesium absorption by a Mg2+/H+ exchanger 

located in the apical membrane of the epithelium in the distal colon. SCFA may also 

stimulate colonic cell proliferation (Lupton & Kurtz 1993) which could increase the 

mineral absorption capacity. 

To our knowledge, the effect of RS consumption on mineral absorption in man has not 

been reported before. Therefore, we included measurements on magnesium, calcium and 

phosphorus absorption in a human experiment designed to measure the effect of RS2 and 
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RS3 on putative risk factors for colon cancer (Heijnen et al. submitted). To study the 

contribution of the small and the large intestine to the absorption of magnesium, calcium 

and phosphorus, we fed piglets that were cannulated at the end of the ileum glucose, RS2 

and RS3. Of all domesticated animal species, the pig is in gastro-intestinal physiology, 

diet and size most similar to man (Graham & Aman 1986, Liu et al. 1985, Rowan et al. 

1994). In the present studies with pigs and man, the same RS2 and RS3 preparations were 

used. We hypothesized that, compared with glucose, RS2 but not RS3 would raise 

magnesium and calcium absorption. 

Methods 

In a piglet experiment and a human experiment the effect of dietary RS2 and RS3 on the 

apparent absorption of magnesium, calcium and phosphorus was compared with that of 

dietary glucose. In each study the same RS preparations were used: uncooked high-

amylose maize starch (Hylon VII; Cerestar, Vilvoorde, Belgium), containing 61.4%-

63.3% RS2 by wt as measured in vitro according to the procedure of Englyst et al. 

(1992); and retrograded high-amylose maize starch (extruded and retrograded Hylon VII; 

Cerestar, Vilvoorde, Belgium), containing 27.4%-29.9% RS3 by wt as measured in vitro 

according to the procedure of Englyst et al. (1992). In the pig study, glucose, RS2 or RS3 

was included in the feed. In the human study, subjects consumed dietary supplements 

containing glucose, RS2 or RS3 in addition to their habitual diet. The feeds and 

supplements used within a study only differed in the type of carbohydrate used. The 

amount of glucose equivalents was equal for the three diets /supplements within a study. 

Corrections were made for the different water contents of the carbohydrate preparations 

and for the water excluded during formation of glycosidic bonds. We did not try to equal 

the energy content of the diets and supplements within a study because there is no 

accurate estimate of the amount of energy that RS supplies. In diet, faeces, digesta and 

urine samples magnesium and calcium were analysed by atomic absorption spectro

photometry and phosphorus was measured colorimetrically. 
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Piglet study 

The experimental procedure has been detailed elsewhere (Heijnen & Beynen submitted). 

The experimental protocol was approved by an Animal Ethical Committee. Crossbred 

castrates (FL*NL)*GY aged 10 wk and with an average body weight of 16 kg were used. 

At the age of 6 wk they had been fitted with a post-valve T-caecum cannula (PVTC) 

allowing quantitative collection of the ileal digesta, as described by van Leeuwen et al. 

(1991). No differences in growth performance, organ weights, nitrogen balance, mineral 

balances, and several blood variables were found between PVTC-pigs and intact pigs 

(Köhler et al. I992a,b). The piglets were housed individually in stainless-steel metabolic 

crates. 

Three groups of six animals each consumed either the glucose, RS2 or RS3 diet for 2 

wk. It was considered important to standardize the intake of glucose equivalents and the 

nutritional status of the animals because ileal digesta were to be collected. Therefore, the 

piglets were fed on a restricted basis, i.e. an amount of feed that was equivalent to 2.6 

times the maintenance requirement. Maintenance level was assumed to be 420 kJ per kg 

metabolic body weight. The feed was provided to the piglets in two meals of identical 

size, at 0800 and 2000 h. The piglets received tap water at a water:feed ratio of 2.35:1 

(w/w). Food intake and initial and final body weights of the piglets did not differ 

significantly between the three diet groups. The piglets fed RS2 or RS3 consumed 114 g 

RS/d (Heijnen & Beynen submitted). 

On d 9-11 faeces was collected quantitatively from each animal and frozen at -20 °C 

until analysis. On d 12-14 ileal digesta were collected quantitatively for 12-h periods, 

starting 15 min before the morning meal and ending 15 min before the evening meal. 

Digesta flowed through the cannula into a small plastic bag attached to the cannula with 

a self-tightening nylon strap. Every hour the bags were replaced, weighed and frozen at -

20 °C. Faeces and ileal digesta were pooled per animal per 3 d. 

Apparent total absorption of minerals was calculated as mineral intake minus faecal 

excretion and expressed as percentage of intake. Apparent ileal absorption was calculated 

as mineral intake minus ileal excretion and apparent colonic absorption was calculated as 

total absorption minus ileal absorption. Mineral intakes with tap water were less than 1 % 

of the intakes with the diet and were ignored when calculating mineral absorptions. 
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Human study 

The experimental procedure has been detailed elsewhere (Heijnen et al. submitted). 

Twenty-four apparently healthy men with a mean (±SD) age of 23 ±2 y and a mean 

BMI of 22.7 +1.8 kg/m2 participated in the study. One subject took antibiotics in wk 2: 

his data were excluded from statistical analysis. The experimental design of the study and 

possible discomforts were explained to the subjects before they gave their written 

informed consent. The study protocol was approved by the Medical-Ethical Committee 

of the Department of Human Nutrition of the Wageningen Agricultural University. 

The subjects consumed for 4 wk a daily dietary supplement in addition to their habitual 

diet in a single-blind randomized multiple cross-over experiment. During the first wk 

(run-in period) each subject consumed the control supplement (glucose). Subsequently, 

every subject consumed the RS2, RS3 and the glucose supplement each during 1 wk. The 

24 subjects were randomly divided into six groups before the start of the experiment. 

Each group consumed the supplements in one of the six possible sequences to eliminate 

variation due to residual effects of the previous diet or to drift of variables over time 

(Snedecor, 1980). The groups were not different with respect to age, height, body weight 

and BMI {data not shown). 

The supplements consisted of a mixture of skim yogurt, skim milk, mashed canned 

fruit, and either glucose (4 g RS/d), RS2 or RS3 (32 g RS/d) and were consumed in three 

equal portions of approximately 170 g/d, essentially with breakfast, lunch and dinner. 

To check compliance, 80 /umol lithium chloride was added to each supplement portion 

and lithium recovery in 24-h urine was measured by atomic absorption spectrophotometry 

as described before (Heijnen et al. 1996a). Mean lithium recovery was >90% for each 

supplement (Heijnen et al. submitted). Furthermore, the subjects were asked to report 

daily the times of consumption of the supplement portions in a diary. According to the 

diaries 99% of the supplements provided was consumed. 

At d 6 and 7 of wk 2, 3 and 4 the subjects collected 24-h urine. During d 5-7 of wk 

2, 3 and 4 the subjects produced two faecal samples at the Department of Human 

Nutrition. The faecal samples were weighed and frozen immediately at -20 °C. 

Radioopaque polyethylene rings were swallowed as a marker to determine which 

proportion of the daily faeces output had been collected (Branch & Cummings 1978). 

Every week a 24-h food consumption recall was obtained from each subject. No 

significant differences were found in energy and nutrient intake when the various 
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supplements were consumed and body weight remained constant throughout the study 

(Heijnen et al. submitted). 

Assuming that the subjects were in mineral equilibrium and that minerals were excreted 

only via faeces and urine (thus ignoring losses via sweat, hair and nails) apparent 

absorption of magnesium, calcium and phosphorus was calculated as the amount of 

mineral in 24-h urine divided by the amount of mineral in 24-h faeces plus urine, 

corrected for marker recovery. This formula was used since the exact intake of 

magnesium, calcium and phosphorus was not determined. 

Statistical analysis 

Per study, differences between group means for each variable were evaluated by analysis 

of variance with the GLM (General Linear Model) procedure of SAS (release 6.09; 

Statistical Analysis Systems Institute Inc., Cary, NC, USA). The models contained 'diet' 

or 'supplement' as a fixed factor. In the human study, 'subject' was added as a random 

factor, thus taking the intrinsic individual levels into account. When the analysis of 

variance indicated a significant effect of diet or supplement (P < 0.05), Tukey's 

Studentized range test was used for pair-wise comparison of the group means. This 

method encompasses a downward adjustment of the significance limit for multiple testing. 

Results 

Magnesium 

Apparent magnesium absorption was approximately 62% of intake in piglets (Table 7.1) 

and 35% of intake in men (Table 7.2). In the piglets, total magnesium absorption was 

lower (P < 0.05) in the RS2 than in the glucose group (Table 7.1). Relatively less 

magnesium seemed to be absorbed from the colon and more from the ileum in the RS2 

and RS3 groups compared with the glucose group. In men, magnesium absorption did not 

differ between glucose, RS2 and RS3 supplementation (Table 7.2). 

Calcium 

Calcium intake differed slightly between the three dietary groups in the piglet study 

(Table 7.1) due to small differences in calcium content measured in the diets. Apparent 
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calcium absorption was approximately 73% of intake in piglets (Table 7.1) and 14% of 
intake in men (Table 7.2). In the piglets, total absorption of calcium was lower (P < 
0.05) in the RS2 than in the glucose group (Table 7.1). No significant differences were 
found in ileal and colonic calcium absorption. In men, no differences were found in 
calcium absorption after supplementation with glucose, RS2 or RS3. 

Table 7.1 Apparent absorption of magnesium, calcium and phosphorus in cannulated 
piglets fed diets with either glucose, uncooked resistant starch (RS-J, or retrograded 
resistant starch (RS3)' 

Mineral 

Magnesium 
Intake (mmol/d) 
Ileal absorption ( % of intake 
Colonic absorption (% of intake) 
Total absorption ( % of intake) 

Calcium 
Intake (mmol/d) 
Ileal absorption (% of intake) 
Colonic absorption ( % of intake) 
Total absorption (% of intake) 

Phosphorus 
Intake (mmol/d) 
Ileal absorption ( % of intake) 
Colonic absorption ( % of intake) 
Total absorption ( % of intake) 

Glucose 

30 
33 
34 
67 

151 
58 
21 
78 

107 
69 
7 

75 

±0.5 
±6.0 
±3.9 
±3.7" 

±2" 
±1.9 
±1.2 
±2.5" 

±2" 
±2.0" 
±5.3 
±6.8 

Diet 

RS2 

30 ±0.7 
33 ±5.2 
21 ±3.8 
54 ±3.6a 

140 ±3 a 

51 ±3.7 
16 ±2.7 
67 ±2.5a 

100 ±2a 

56 ±3.8a 

13 ±2.6 
69 ±2.4 

30 
37 
26 
63 

147 
55 
20 
75 

101 
63 
12 
75 

RS3 

±0.5 
±2.8 
±4.2 
±3.3a 'b 

± 2 a ,b 

±1.9 
±2.9 
±2.2a>b 

±2a-b 

±1.5a-b 

±2.1 
±2.3 

Values are means ±SEM for 6 piglets per dietary group. Values in the same row with different 
superscripts are significantly different. 

Phosphorus 
Phosphorus intake differed slightly between the three dietary groups in the piglet study 
(Table 7.1) due to small differences in phosphorus content measured in the diets. 
Apparent phosphorus absorption was approximately 73% of intake in piglets (Table 7.1) 
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and 50% of intake in men (Table 7.2). In both piglets and men, absorption of phosphorus 
was similar during glucose, RS2 and RS3 consumption (Table 7.1, 7.2). In the piglets, 
phosphorus was absorbed mainly from the ileum. Ileal absorption was lower (P < 0.05) 
in the RS2 than in the glucose group (Table 7.1). No differences were found in colonic 
phosphorus absorption. Relatively more phosphorus seemed to be absorbed from the 
colon and less from the ileum in the RS2 and RS3 groups compared with the glucose 
group. 

Table 7.2 Apparent absorption of magnesium, calcium and phosphorus in men after daily 
supplementation of their habitual diet with either 32 g glucose, uncooked resistant starch 
(RSJ, or retrograded resistant starch (RS3)' 

Mineral 

Glucose 
n=21 

36 ± 1.3 
14 + 0.9 
51 ± 1.9 

Dietary supplement 

RS2 

n = 20 

35 + 1.5 
15 ± 1.7 
51 + 1.8 

RS3 

«=22 

35 + 1 . 9 
14 + 0.8 
50 + 1.8 

Magnesium (% of intake) 
Calcium (% of intake) 
Phosphorus ( % of intake) 

Values are means +SEM. 

Discussion 

In the present studies, dietary RS2, but not RS3, versus glucose reduced the apparent total 
absorption of magnesium and calcium and the apparent ileal absorption of phosphorus in 
the pig. Supplementation of the habitual diet with 32 g/d of either RS2 or RS3 for a week, 
when compared with glucose, had no effect on apparent magnesium, calcium and 
phosphorus absorption in healthy men. 

In contrast to the present findings in the piglets, RS2 enhanced the apparent absorption 
of magnesium and calcium in rats (Rayssiguier & Rémésy 1977, Andrieux & Sacquet 
1986, Schulz et al. 1993, Younes et al. 1993, 1996, Heijnen et al. 1996b). This 
discrepancy may be due to species differences in e.g. hormonal control; bacterial flora, 
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anatomy or physiology of the digestive tract; or in eating pattern over the day. Moreover, 

the piglets had a much higher intake of RS and minerals per MJ of energy intake than the 

rats. The values for total, colonic and ileal absorption of magnesium, calcium and 

phosphorus are similar to those found by van der Heijden et al. (1995) but higher than 

those in the study of Larsen and Sandström (1993). However, in the latter study the pigs 

were older and the magnesium and phosphorus intakes were higher than in our study. 

Magnesium absorption tended to be shifted from colon to ileum to some extent in the 

piglets fed RS2 and RS3 when compared with those fed glucose. This may be connected 

with the finding that RS is fermented already in the ileum, RS2 to a greater extent than 

RS3 (Heijnen & Beynen submitted). Fermentation in the ileum of the pig is possible as 

especially the distal third of the ileum containes a significant amount of bacteria (Chesson 

et al. 1985, Liu et al. 1985 Bach Knudsen et al. 1993), even though the pig is essentially 

a colon fermenter, like man (Graham & Aman 1986). The bacteria found in the ileum are 

part of the normal ileal flora, and are not airborne microorganisms that came into the gut 

when the piglet was operated (Chesson et al. 1985). In the study from van der Heijden 

et al. (1995) magnesium was absorbed mainly from the colon, in contrast to our findings. 

Both in our study and that from van der Heijden et al. (1995) calcium and phosphorus 

were absorbed mainly from the ileum. Larsen and Sandström (1993) found that minerals 

were absorbed from the small intestine and excreted in the large intestine. Because in the 

pig RS is fermented both in the ileum and the colon and in man probably almost 

exclusively in the colon, and mineral absorption may be affected by fermentation in the 

gut, the pig does not seem to be a good model for man to estimate the contribution of the 

various parts of the digestive tract to mineral absorption. 

We found no effect of RS2 or RS3 supplementation on apparent absorption of 

magnesium, calcium and phosphorus absorption in man. Langkilde and Andersson found 

no effect of RS2 (1995Z?) nor RS3 (1992) compared with digestible starch on magnesium 

and calcium excretion in the ileal effluent from ileostomy patients. Possibly, our dose of 

RS was too small to influence mineral absorption. However, the daily dose of RS 

supplemented was six times larger than the current average estimated intake of RS in the 

Netherlands (Dysseler & Hoffem 1995a). Furthermore, man cannot consume more than 

about 30 g RS/d without unpleasant side-effects like flatulence and bloated feelings. 

Another explanation for the lack of effect of RS on mineral absorption in man may be the 

short duration of the supplementation. Each supplement was consumed for 1 wk only. 
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However, others (Balasubramanian et al. 1987, Brink et al. 1993, Siener & Hesse 1995) 
found differences in mineral absorption in man after a change in the diet within 5-10 d. 
Further, the present study was not a balance study designed to investigate effects on 
mineral absorption, so that minor changes cannot be excluded. It also cannot be excluded 
that RS affects mineral absorption when the mineral intake is marginal or inadequate. 

The low percentage of calcium absorption in our human study may be explained by the 
high calcium intake in this group of young students (Allen 1982): about 2000 mg/d, of 
which 500 mg came from the supplements. The discrepancy between the present human 
study on one hand and the present pig study and rat studies reported by others on the 
other hand may be explained by (i) the much higher dose of RS per MJ of energy intake 
that the animals consumed (Table 7.3; RS intakes per M J of energy intake in the rat 
studies were in between those from our human and pig study), (ii) differences in 
fermentation efficiency between the species or (Hi) by other species differences like e.g. 
hormonal control or anatomy or physiology of the intestinal tract (Mathers 1991). 
Furthermore, the ileal starch digestibility in rats, piglets and man may be different (Roe 
et al. 1996). Therefore, the amount of starch that was truly resistant in each species is 
uncertain and may not have been the intended amount fed (based on in vitro RS analysis). 

Table 7.3 Comparison of the intakes of resistant starch, magnesium, calcium and 
phosphorus in the piglet and the human study 

Study 

Human' Piglet 

Resistant starch intake (g/MJ2) 
Magnesium intake (mg/MJ2) 
Calcium intake (mg/MJ2) 
Phosphorus intake (mg/MJ2) 

2 
36 

133 
167 

14 
90 

727 
395 

1 For the human study the values of the mineral intakes are only indicative since they are calculated 
using a computerized food composition table. This HUVO-95 table, which is developed at the 
Department of Human Nutrition and is based on the NEVO-93 table (NEVO Foundation 1993), 
contains values for the magnesium, calcium and phosphorus content of 58%, 88% and 85% of the 
foods, respectively. Furthermore, the values are based on three 24-h recalls per subject only. 
The energy resistant starch supplies when it is fermented in the colon was not included. 
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In conclusion, neither RS2 nor RS3 consumption stimulated mineral absorption in man as 
was found in rats. The amount of RS per M J of energy intake that man is able to 
consume is much lower than the amounts used in experiments with rats. RS2, but not RS3, 
reduced the apparent absorption of magnesium and calcium in pigs in the present study, 
in contrast to the increase found in rats in earlier studies. This discrepancy may be 
explained by differences between species and/or by differences in RS and/or mineral 
intake. 
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Dietary raw versus retrograded resistant starch 
enhances apparent but not true magnesium 
absorption in rats 

Heijnen MLA, van den Berg GJ, Beynen AC. 

Journal of Nutrition 1996;126:2253-2259. 

Abstract 
Dietary raw (RS2) versus retrograded resistant starch (RS3) raises apparent magnesium 

absorption in rats. The mechanism proposed is that RS2 enhances magnesium availability for 

absorption; it does this by increasing ileal solubility of magnesium due to a reduction in pH as 

a consequence of RS2 fermentation in the gut. The mechanism implies that dietary RS2 versus 

RS, would raise true magnesium absorption and stimulate reabsorption of endogenous 

magnesium, leading to a lower faecal excretion of endogenous magnesium. Dietary lactulose 

versus glucose raises apparent magnesium absorption, and the mechanism proposed is similar 

to that for the stimulatory effect of RS2 versus RS3. Thus, we measured in rats fed RS3, RS2, 

glucose or lactulose true magnesium absorption on the basis of the retention of the orally and 

intraperitoneally administered radiotracer 28Mg. Feeding rats with RS, instead of RS3 

significantly enhanced apparent but not true magnesium absorption, because RS2 lowered faecal 

excretion of endogenous magnesium. When compared with dietary glucose, lactulose 

significantly raised both apparent and true magnesium absorption, but did not affect faecal 

excretion of endogenous magnesium. It is suggested that the proposed mechanism by which 

RS2 and lactulose would enhance magnesium absorption is disproved by the present data. 
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Introduction 

Magnesium absorption may be influenced by the type of resistant starch (RS) in the diet. 

Schulz et al. (1993) found that raw (RS2) versus retrograded resistant starch (RS3) raised 

apparent magnesium absorption in rats. RS is not absorbed in the small intestine but may 

be fermented by the bacterial flora in the gut, RS2 being more fermentable than RS3 

(Olesen et al. 1992, Schulz et al. 1993, Cummings et al. 1995, Champ et al. unpublished 

results). The difference in fermentability between the two types of RS may explain their 

different effects on magnesium absorption. Fermentation in the gut lowers the pH which 

in turn raises magnesium concentration in the liquid phase of digesta because insoluble 

magnesium complexes in the solid phase will dissolve (Brink & Beynen 1992). Because 

only soluble magnesium may cross the intestinal epithelium (Brink et al. 1992a), an 

increase in magnesium solubility would stimulate absorption. Indeed, the stimulatory 

effect of RS2 on apparent magnesium absorption, when compared with RS3, was 

associated with a lower pH and higher magnesium solubility in the ileal lumen (Schulz 

et al. 1993). The mechanism by which RS2 may stimulate magnesium absorption appears 

similar to that underlying the stimulatory effect of lactulose G8-l,4-galactosyl-fructose), 

another poorly digestible but well-fermentable carbohydrate. Dietary lactulose versus 

glucose lowered ileal pH, raised magnesium solubility in ileal contents, and improved 

apparent magnesium absorption in rats (Heijnen et al. 1993). 

In light of the mechanism proposed earlier (Heijnen et al. 1993, Schulz et al. 1993) 

to explain the stimulatory effect of RS2 on apparent magnesium absorption (magnesium 

intake minus faecal excretion), it would be expected that RS2 enhances not only the 

absorption of dietary (exogenous) magnesium but also that of endogenous magnesium. It 

could be suggested that RS2 versus RS3 enhances true magnesium absorption (magnesium 

intake minus faecal excretion of exogenous magnesium) and lowers the faecal excretion 

of endogenous magnesium. To test the suggestion, we measured true magnesium 

absorption in rats fed either RS2 or RS3. On the basis of the retention of orally and 

intraperitoneally administered 28Mg (van den Berg et al. 1995), true magnesium 

absorption was calculated using the method of Heth and Hoekstra (1965). Faecal 

excretion of endogenous magnesium was calculated as the difference between true and 

apparent absorption. The effect of RS2 versus RS3 was studied simultaneously with that 

of lactulose versus glucose. The effect of lactulose on apparent magnesium absorption 
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(Heijnen et al. 1993) is greater than that of an identical amount of RS2 (Schulz et al. 

1993). Therefore, the feeding of lactulose was expected to elicit greater, and thus more 

easily detectable effects on true magnesium absorption and faecal excretion of endogenous 

magnesium because RS2 and lactulose are believed to share the same mechanism of action 

as mentioned above. 

Materials and methods 

The experimental protocol was approved by the Animal Experiments Committee of the 

Department of Medicine, Erasmus University, Rotterdam. The experiment was carried 

out at the Interfaculty Reactor Institute, Delft University of Technology. 

Animals and housing 

Outbred male Wistar rats (Hsd/Cpb:WU, Harlan, Zeist, the Netherlands) were used. On 

arrival, the rats were 5 wk old and had a mean body weight of 85 g. The rats were 

housed individually in metabolism cages (Tecniplast Gazzada, Buguggiata, Italy) in a 

room with controlled temperature (20-22 °C), relative humidity (50-60%) and light cycle 

(lights on 0600-1800 h). 

Experimental diets 

The composition of the four diets used is shown in Table 8.1. The diets differed with 

respect to the carbohydrate component and contained either RS3, RS2, glucose or 

lactulose. The amounts of monosaccharide equivalents were equal for the four diets. 

Corrections were made for the different water contents of the carbohydrate preparations 

and for the water excluded during formation of glycosidic bonds. When compared with 

the glucose diet, the lactulose diet contained lactulose at the expense of an identical 

amount of glucose equivalents. The RS2 and RS3 diets each contained 116 g RS/kg diet. 

The lactulose diet contained 90.5 g lactulose/ kg diet; this amount is based on earlier 

studies in rats (Heijnen et al. 1993). The powdered diets were stored at 4 °C until used 

for feeding. 
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Table 8.1 Composition of the diets 

Ingredients 
Glucose1 (g) 
RS2 preparation2 (g) 
RS3 preparation3 (g) 
Lactulose4 (g) 
Constant components5 (g) 
Demineralized water (g) 

Carbohydrates 
Monosaccharide equivalents (g/kg) 
Glucose equivalents (g/kg) 
Resistant starch (g/kg) 

Chemical analysis 
Magnesium (mg/kg) 

RS3 

-
-

467.7 
-

397.1 
135.2 

467.1 
467.1 
116.4 

280.4 

Diet 

RS2 

288.7 
208.8 

-
-

397.1 
105.4 

469.7 
469.7 
115.7 

256.6 

Glucose 

519.1 
-
-
-

397.1 
83.8 

471.9 
471.9 

0 

273.9 

Lactulose 

414.4 
-
-

181.0 
397.1 

7.5 

471.9 
376.7 

0 

265.4 

Meritose, Cerestar, Vilvoorde, Belgium; dry weight 90.9%. 
Raw high-amylose maize starch, Cerestar, Vilvoorde, Belgium; dry weight 90.3 % ; 61.4 g resistant 
starch/100 g according to the procedure of Englyst et al. (1992). 
Retrograded high-amylose maize starch, Cerestar, Vilvoorde, Belgium; dry weight 90.8%; 27.4 
g resistant starch/100 g according to the procedure of Englyst et al. (1992). 
Duphulac; Duphar BV, Amsterdam, the Netherlands; dry weight 50%. 
The constant components consisted of the following (g/kg diet): casein, 143.8; palm oil, 156.2; 
maize oil, 34.3; cellulose, 19.0; CaHP04.2H20, 4.0; NaH2P04.2H20, 11.0; MgC03, 1.3; KCl, 
6.6; mineral premix, 9.5; vitamin premix, 11.4. The mineral premix consisted of the following 
(mg/10 g): FeS04.7H20, 174; Mn02, 79; ZnS04.H20, 33; NiS04.6H20, 13; NaF, 2; CuS04.5H20, 
15.7; Na2Se03.5H20, 0.3; KI, 0.2; CrCl3.6H20, 1.5; SnCl2.H20, 1.9; NH4V03, 0.2; maize meal, 
9679.2. The vitamin premix consisted of the following (mg/12 g): thiamin, 4; riboflavin, 3; 
pyridoxine, 6; niacinamide, 20; DL-calcium pantothenate, 17.8; folic acid, 1; biotin, 2; choline 
chloride, 2000; cyanocobalamine, 50; menadione, 0.05; all-rac-a-tocopheryl acetate, 60; retinyl 
acetate and retinyl palmitate, 8 (1200 retinol equivalents); cholecalciferol, 0.025; maize meal, 
9828.125. 

For a run-in period of 9 d, all rats were given free access to the glucose diet and 
demineralized water. Then, the rats were divided into four groups of nine animals each 
so that body weight distributions of the groups were similar. One group of rats continued 
to receive the glucose diet and the other groups were switched to either the RS2, RS3 or 
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lactulose diet. The four diets were given for another 4 wk. The daily amount supplied 

was 80% of the mean of that consumed ad libitum during the last 3 d of the run-in period 

(mean +SD: 13 ±2 g/d, «=36). Because the rats were growing, the amount of food 

given was increased by 1 g each week. We had decided to supply restricted amounts of 

feed so that all rats would consume identical amounts of glucose equivalents. Any food 

spilled was recorded. The rats had free access to demineralized water. Body weights were 

measured two times per week. 

Radiotracer study 

On d 14, after being deprived of food overnight, five rats of each group received 28MgCl2 

with an extrinsically labeled meal. The remaining four rats of each group were injected 

intraperitoneally with the radiotracer. To equalize handling and treatment of each rat, the 

rats receiving the radiotracer orally were injected intraperitoneally with distilled water, 

and the rats that were injected with 28Mg were given a meal without the radiotracer. On 

d 21, the route of administration of radiotracer for each rat was reversed. On the days 

of radiotracer administration, the treatment order of the rats was randomized. 

The 28MgCl2 was prepared at the Interfaculty Reactor Institute according to a procedure 

described by Kolar et al. (1991). The radioactive meals were prepared by adding 100 ßl 

of 150 mmol/128MgCl2 (1.3 GBq/mol) in distilled water to 2 g of experimental diet. The 

added solution was dried and then mixed with the diet. For intraperitoneal administration, 

the 100 ßl of radiotracer solution was injected. The meals with or without the radiotracer 

were presented to the rats after 16 h of food deprivation. In general, the meals were 

consumed within 10 min. Subsequently, the intraperitoneal injection was given. The rats 

were given the meal and injection sequentially with 10-min intervals. Throughout the 

experiment, measurements of radioactivity in the individual rats were carried out in the 

same order as 28Mg was administered. 

Radioactivity in individual rats was determined using a specially designed whole-animal 

gamma scintillation detector (van den Berg et al. 1995) within 10 min after administration 

of 28Mg. Then, all rats received their habitual diets. For another 4 d, radioactivity in the 

rats was determined at regular intervals, i.e. 0, 3, 7, 20, 32, 43, 55, 68, 79 and 92 h 

after administration of 28Mg. The efficiency of the whole-body counter for detection of 
28Mg was 65%, and its stability was monitored by counting a 65Zn source. 
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Collection of faeces 
From d 14 to 17 and d 21 to 24, faeces of each rat were collected quantitatively with the 
use of the metabolism cages. Faeces were frozen at -20 °C until analysis. Complete 
collection of urine was not possible due to whole-body counting. 

Magnesium analyses 
Diet samples and faeces (after drying for 48 h at 60 °C) were weighed, homogenized, 
and ashed at 500 °C for 17 h. The ash was dissolved in 5 ml of 6 mol/1 HCl. After 
appropriate dilution of the samples, magnesium was analysed in the presence of 41 
mmol/1 LaCl3 by atomic absorption spectrophotometry (Varian AA-475; Varian Techtron, 
Springvale, Australia), using an air-acetylene flame. Magnesium was measured at a 
wavelength of 285.3 nm. 

Calculations 
True magnesium absorption was calculated according to the method of Heth and Hoekstra 
(1965). Counting measurements were corrected for background and radioisotope decay 
and then expressed as percentage of the administered dose. Within dietary groups and per 
administration route, the data of the two measurement periods were pooled. Plots of the 
logarithm of the percentage of radioactivity retention after intraperitoneal and oral 28Mg 
administration versus time were constructed. The equations for the radioactivity retention 
curves were fitted using the least-squares method, assuming parallelism for the oral and 
the intraperitoneal curve within each rat. The zero-time intercepts were determined by 
extrapolating the linear parts of the curve. The percentage of true absorption was 
calculated by dividing the intercept of the retention curve for oral 28Mg by that of the 
retention curve of intraperitoneal 28Mg and multiplying by 100. This calculation was 
performed for each rat. Absolute true magnesium absorption was calculated by 
multiplying magnesium intake and the percentage of true magnesium absorption. Apparent 
magnesium absorption was calculated as magnesium intake minus faecal magnesium 
excretion. Faecal excretion of endogenous magnesium was calculated as absolute true 
magnesium absorption minus absolute apparent magnesium absorption. 
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Statistics 
Statistical analysis was restricted to group comparisons that had been defined a priori, 
i.e., the RS2 versus RS3 group and the lactulose versus glucose group. For evaluation, a 
two-tailed Student's t test was performed. The statistical analysis package SAS, release 
6.09 (SAS Institute Inc., Cary, NC, USA) was used. 

Results 

Body weight, food intake and faeces production 
The initial and final body weights of the rats did not differ significantly among the four 
diet groups (Table 8.2). Group mean final body weight was somewhat lower in the rats 
fed lactulose (lactulose versus glucose, P = 0.06), which could relate to their greater 
food spillage. Faeces production was twofold higher in the RS2 group and fourfold higher 
in the RS3 group compared with the glucose and lactulose groups. Faeces production in 
the RS3 group was higher (P = 0.0001) than in the RS2 group. 

Table 8.2 Body weight, food intake and faeces production in rats fed the diets with either 
retrograded resistant starch (RS3), raw resistant starch (RS^, glucose or lactulose' 

Diet 

RS3 RS2 Glucose Lactulose 

Body weight (g) 

Initial2 120 +3.4 120 ±3.1 123 ±3.0 124 ±3.2 
Final 185 ±2.2 184 ±2.3 187 ±2.6 179 ±3.2 

Food intake3 (g/d) 14.0 ±0.1 14.1 ±0.2 13.6 ±0.2 12.1 ±0.4* 
Faeces production3 (g/d) 3.6 ±0.13 2.3 ±0.07* 0.7 ±0.04 0.8 ±0.10 

' Values are means ±SEM, n=9. 
2 Body weight after the 9-d run-in period when the rats were 6 wk old. 
3 Average values for d 14-17 and d 21-24. 

Significant difference for RS2 versus RS3 or significant difference for lactulose versus glucose 
(P < 0.05). 
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Apparent magnesium absorption 

Due to differences in food spillage and magnesium concentrations of the diets, magnesium 

intakes differed among the groups (Table 8.3); magnesium intake in the RS3 group was 

higher than in the RS2 group (P = 0.0001) and was higher in the glucose than in the 

lactulose group (P = 0.0003). Apparent magnesium absorption expressed as percentage 

of intake was higher (P = 0.005) in the RS2 than in the RS3 group (95% CI of the 

difference: 2-9%). Feeding of lactulose instead of glucose led to a 14 percentage units 

higher (P — 0.0003) apparent magnesium absorption (95% CI of the difference: 8-19%). 

Table 8.3 Apparent and true absorption of magnesium in rats fed the diets with either 

retrograded resistant starch (RS3), raw resistant starch (RS2), glucose or lactulose' 

Diet 

Glucose Lactulose 

Intake (/tmol/d) 162 +2 149 +2" 153 +2 132 +4* 
Apparent absorption (% of intake) 6 2 + 1 68+1* 6 9 + 2 83+2* 
True absorption (% of intake) 8 3+3 8 2 + 1 8 2 + 4 96+4* 
Endogenous loss with faeces (^mol/d) 34 +4 20 +2* 19 +5 17 +5 

' Values are means +SEM, n=9. Average values for d 14-17 and d 21-24. 
Significant difference for RS2 versus RS3 or significant difference for lactulose versus glucose 
(P < 0.05). 

True magnesium absorption 

For each dietary treatment, the semilogarithmic retention curves for orally and 

intraperitoneally administered 28Mg were found to be linear between 30 and 100 h post-

administration (Figure 8.1). True magnesium absorption was similar in the RS2 and RS3 

groups, but was higher in the lactulose group compared with the glucose group (P = 

0.02). Faecal excretion of endogenous magnesium was lower (P = 0.01) in the RS2 than 

in the RS3 group (95% CI of the difference: 5-24 /amol/d), but was similar in the 

lactulose and glucose groups (Table 8.3). 
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72 84 96 

Time post administration (h) 

Figure 8.1 Retention curves for radioactivity in rats fed on diets containing either 

retrograded resistant starch (RS3), raw resistant starch (RS^, glucose or lactulose after 

oral and intraperitoneal administration of 28Mg. Values represent means ±SD, n=9; for 

the intraperitoneal curves, the SD sometimes were smaller than the symbols. Linear 

regression equations for each curve were established for the six timepoints beyond 30 h 

postadministration for each rat. Note that the y-axis has a logarithmic scale. RS3 diet, 

intraperitoneal: logy = -0.0019 (SD 0.0002)x + 1.96 (SD 0.018); oral: logy = -0.0020 

(SD 0.0001)x + 1.89 (SD 0.037). RS2 diet, intraperitoneal: log y = -0.0019 (SD 

0.0002)x + 1.95 (SD 0.012); oral: logy = -0.0022 (SD 0.0003)x + 1.87 (SD 0.035). 

Glucose diet, intraperitoneal: log y = -0.0017 (SD 0.0002)x + 1.97 (SD 0.012); oral: 

logy = -0.0021 (SD 0.0004)x + 1.90 (SD 0.085). Lactulose diet, intraperitoneal: log 

y = -0.0017 (SD 0.0002)x + 1.93 (SD 0.020); oral: logy = -0.0021 (SD 0.0002)x + 

1.93 (SD 0.042). 
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Discussion 

In agreement with the study of Schulz et al. (1993) we found that the feeding of RS2 

instead of RS3 significantly enhanced apparent magnesium absorption in rats. However, 

RS2 did not raise true magnesium absorption when compared with RS3. This implies that 

RS2 feeding does not affect intestinal magnesium absorption, but depresses the faecal 

excretion of endogenous magnesium. Indeed, the rats fed RS2 had a lower group mean 

loss of endogenous magnesium with faeces than the rats fed RS3. We can only speculate 

as to the basis for a lower faecal loss of endogenous magnesium in rats fed RS2. RS2 

might reduce intestinal fluid secretion or depress the turnover of epithelial cells, leading 

to less loss of endogenous magnesium. Another possibility is that RS2 inhibits the 

magnesium efflux from the mucosa into the intestinal lumen, because dietary RS2 raises 

the magnesium concentration in the liquid phase of ileal lumen (Schulz et al. 1993). 

As in earlier work (Brink et al. \992b, Verbeek et al. 1993, van der Heijden et al. 

1994), true magnesium absorption was measured with the use of oral and intraperitoneal 

administration of tracer doses of 28Mg. The initial loss of total body activity after oral 

administration of 28Mg is caused by passage of the radiotracer through the intestine and 

its excretion in faeces. Dietary lactulose markedly reduced the initial loss of 28Mg. This 

indicates, as was indeed found after calculation, that true magnesium absorption was 

enhanced by lactulose. Thus, the observed stimulatory effect of lactulose on apparent 

magnesium absorption, as was found previously (Heijnen et al. 1993), reflects true 

absorption rather than depressed loss of endogenous magnesium. In fact, faecal excretion 

of endogenous magnesium was not affected by lactulose in the diet. 

We had proposed earlier (Heijnen et al. 1993, Schulz et al. 1993) that stimulation of 

apparent magnesium absorption by RS2 versus RS3 and by lactulose versus glucose is due 

to an increase in ileal solubility of magnesium as caused by a decrease in pH which in 

turn results from enhanced bacterial fermentation. Watkins et al. (1992) and Younes et 

al. (1996) have suggested a similar mechanism to explain their findings that apparent 

magnesium absorption in rats was enhanced by a diet containing wheat bran fibre 

compared with a fibre-free diet, or by a diet containing RS2 compared with a diet 

containing digestible starch, respectively. In contrast, Scharrer and Lutz (1990, 1992) 

have proposed that the short-chain fatty acids (SCFA) produced during carbohydrate 

fermentation in the gut may enhance magnesium absorption by a Mg2+/H+ exchanger 
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located in the apical membrane of the epithelium in the distal colon. Both dietary 
lactulose (Demigné et al. 1989) and RS2 (Demigné et al. 1989, Younes et al. 1996) have 
been shown to enlarge the SCFA pool in the caecum of rats. The two competing 
mechanisms proposed would imply simultaneous stimulation of the absorption of dietary 
and endogenous magnesium and thus would lead to a decrease in the loss of endogenous 
magnesium with faeces associated with an increase in true magnesium absorption. 
Clearly, the greater apparent magnesium absorption in rats fed RS2 instead of RS3 can be 
explained by a decrease in entry of endogenous magnesium into the intestinal tract rather 
than by the two mechanisms described. The stimulatory effect of dietary lactulose on 
apparent magnesium absorption can be explained by either mechanism, but then lactulose 
should simultaneously enhance the intestinal excretion and reabsorption of endogenous 
magnesium so that the amount of endogenous magnesium in faeces remains unaffected 
as was observed. We feel that the condition of an extra excretion and reabsorption of 
endogenous magnesium balancing each other is unlikely. It then becomes problematic to 
describe how dietary lactulose stimulates magnesium absorption. 

In conclusion, feeding rats RS2 instead of RS3 enhanced apparent but not true 
magnesium absorption because RS2 lowered the faecal excretion of endogenous 
magnesium. When compared with glucose feeding, RS2 had no effect on magnesium 
absorption, whereas lactulose raised both apparent and true magnesium absorption. Schulz 
et al. (1993) and Heijnen et al. (1993) have proposed that both RS2 and lactulose would 
enhance magnesium absorption by raising ileal solubility of magnesium due to a reduction 
in pH of ileal contents which in turn results from enhanced bacterial fermentation. The 
proposed meachanism now appears to be incorrect. According to the mechanism, RS2 

feeding should raise true magnesium absorption, and lactulose feeding should lower the 
faecal excretion of endogenous magnesium, but these effects were not observed. 
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Neither raw nor retrograded resistant starch lowers 
fasting serum cholesterol concentrations in healthy 
normolipidaemic subjects 

Heijnen MLA, van Amelsvoort JMM, Deurenberg P, Beynen AC. 

American Journal of Clinical Nutrition 1996;64:312-318 

Abstract 
The question addressed was whether dietary resistant starch would lower serum cholesterol and 
triacylglycerol concentrations in healthy normolipidaemic subjects. In a randomized single-blind 
3 x 3 Latin-square study with corrections for any carry-over effects, 27 males and 30 females 
consumed supplements containing glucose, or resistant starch (RS) from raw high-amylose maize 
starch (RS2) or from retrograded high-amylose maize starch (RS3). The RS2 and RS3 supplements 
provided 30 g RS/d. Each type of supplement was consumed in addition to the habitual diet for 
3 wk. At the end of each 3-wk period, fasting blood samples and a 24-h food consumption recall 
were obtained from each subject. The subjects collected 24-h urine samples for lithium 
determination, which was added to the supplements to check compliance. Mean lithium recovery 
was 97% and did not differ between supplements. The mean composition of the background diet 
was similar when the three supplements were taken. Body weight remained constant throughout 
the study. There were no significant differences in the fasting concentrations of serum total, 
HDL, and LDL cholesterol; triacylglycerols, or 3a-hydroxy bile acids after consumption of 
glucose, RS2, or RS3. Evidence is presented that the lack of effect of RS2 and RS3 on serum lipid 
concentrations cannot be explained by insufficient statistical power, a low dose, or a short 
duration of treatment. The subjects reported softer stools and more gastrointestinal symptoms 
after supplementation with RS than after glucose. Neither the RS2 nor the RS3 supplements 
lowered serum lipid concentrations in healthy, normolipidaemic men and women. 
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The supplements were prepared in the kitchen of the Department of Human Nutrition 

three times a week and the subjects took them home for consumption. Supplements were 

stored at 4 °C until consumed. Supplements were consumed in three equal portions of 

approximately 115 g/d, essentially with breakfast, lunch and dinner. Supplements had to 

be consumed as provided and after stirring. 

Table 9.2 Composition of the supplements1 

RS2 (in glucose equivalents, g/d) 
Digestible glucose equivalents (g/d) 
Protein (g/d) 
Fat (g/d) 
Cholesterol (mg/d) 
Energy3 (kJ/d) 

Dietary suppleme 

Glucose RS2 

0 30 
87 57 
10 10 
0.4 0.4 

10 10 
1824 1314 

nt 

RS3 

30 
57 
10 
0.4 

10 
1314 

1 Calculated by using a computerized food composition table (HUVO-95) that was developed at the 
Department of Human Nutrition and is based on the NEVO-93 table (NEVO Foundation 1993). 

2 As measured in vitro according to the procedure of Englyst et al. (1992). 
3 Ignoring the energy that RS provides when it is fermented in the colon. 

Compliance 

To check whether the subjects really consumed the supplements, 80 /*mol lithium chloride 

was added per supplement portion (Sanchez-Castillo et al. 1987, van Houwelingen et al. 

1987). This amount is 100 times the amount found in food and 100 times less than the 

dose used in antidepression drugs. About 95% of the ingested lithium is recovered in 

urine (Sanchez-Castillo et al. 1987, LeClercq et al. 1990). After a continuous intake of 

lithium, it takes 4-5 d for its excretion in urine to reach a steady concentration (LeClercq 

et al. 1990). Lithium was only added to the supplement portions that were to be 

consumed in the week before 24-h urine samples were collected (day 10 of each 3-wk 

period) to limit as much as possible the amount of lithium consumed. Subjects were told 

that a safe substance was added to the supplements to check their compliance. They were 
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given the impression that the substance was added to every supplement portion and that 
measurements in urine and blood could show their compliance over the last days before 
collection of urine or blood. When the urine was turned in, subjects were asked whether 
the collection had been successful. The urinary lithium concentration was measured by 
atomic-absorption spectrophotometry (model 2380; Perkin-Elmer, Norwalk, CT, USA), 
with a precision of 2.5%. Furthermore, the subjects were asked to report daily in a diary 
the times of consumption of the supplement portions. 

Food consumption 
The subjects were free to eat and drink what they wanted in addition to the supplements, 
but they were encouraged to maintain their habitual diet as much as possible. Subjects 
were instructed to minimize the consumption of products presumed to contribute 
significantly to their RS intake, such as muesli; unripe bananas; lentils; beans; fried or 
baked potatoes; cooked and cooled potatoes, rice and pasta; and potato chips. Subjects 
were asked to report the consumption of these foods and also deviations from their 
habitual diet or activity pattern in a diary. In the last week of every 3-wk period, a 24-h 
recall was obtained from each subject by one of the four dietitians involved. Each subject 
was interviewed by the same dietitian throughout the study. The way of interviewing and 
coding the foods was standardized. Energy and nutrient intakes were calculated using a 
computerized food-consumption table (HUVO-95) that was developed at the Department 
of Human Nutrition and based on the NEVO-93 table (NEVO Foundation 1993). 

Because a change in coffee (Urgert et al. 1995) or alcohol consumption (Kris-Etherton 
etal. 1988) can influence serum cholesterol concentrations, subjects were told to maintain 
their usual coffee and alcohol consumption patterns. Subjects were asked to report daily 
in their diaries what type and the amount of coffee they drank and whether they had 
deviated from their habitual alcohol consumption. 

Gastrointestinal complaints 
In the same diary the subjects were asked to report daily whether they suffered from 
flatulence, a bloated feeling, belching, stomach ache, belly ache, nausea, vomiting, 
appetite disturbance, diarrhea, or constipation. The severity of the complaints was rated 
as 0 (absent), 1 (minor), 2 (moderate), or 3 (severe). For each subject a mean score for 
each type of complaint was calculated per supplement period. Furthermore, the subjects 
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were asked to record in their diaries illness, medicine use, start of menstruation, and time 

of defaecation. They also rated the consistency of their faeces from 1 (watery) to 5 (like 

pellets). A mean consistency score was calculated per subject for each supplement period. 

Blood analysis 

Blood was obtained by venipuncture and within 1 h serum was obtained by low-speed 

centrifugation for 10 min at 1500 x g and 4 °C (Sigma 4K10; Salm en Kipp B.V., 

Breukelen, the Netherlands) and analyzed enzymically for total cholesterol (Siedel et al. 

1983), HDL cholesterol (Warnick et al. 1982), triacylglycerols (Fossati & Prencipe 

1982), and 3a-hydroxy bile acids. Triacylglycerols and total and HDL cholesterol were 

analyzed with a Spectrum Analyzer (Abbott Laboratories, Chicago, IL, USA). 3a-

Hydroxy bile acids were measured with a commercial test kit (Enzabile; Nycomed 

Pharma AS, Oslo, Norway) and a Cobas-Bio Analyzer (Roche Diagnostica, Basel, 

Switzerland). All samples from a particular subject were analyzed in one run. The CV 

within runs was 1.0% for total cholesterol, 0.8% for HDL cholesterol, 1.4% for 

triacylglycerols, and 5% for 3a-hydroxy bile acids. Mean bias with regard to the target 

values from serum pools provided by the Centers for Disease Control and Prevention, 

Atlanta, GA, USA, was 0.05 mmol/1 for total cholesterol, 0.01 mmol/1 for HDL 

cholesterol, and 0.05 mmol/1 for triacylglycerols. LDL cholesterol was calculated by 

using the equation of Friedewald et al. (1972). The mean of the values of the two blood 

samples per period were used in the statistical analysis to exclude as much as possible the 

within-subject fluctuations in total and HDL cholesterol concentrations (Rotterdam et al. 

1987). 

Statistical analysis 

Differences between the variables as induced by the three supplements were tested by 

analysis of variance with the GLM (general linear model) procedure of SAS (release 

6.09; Statistical Analysis Systems Institute Inc., Cary, NC, USA). The model contained 

'subject' as a random factor, thus taking the intrinsic individual concentrations into 

account, and 'supplement' as a fixed factor. When the analysis of variance indicated a 

significant (P < 0.05) effect of supplement, Tukey's Studentized range test was used for 

pair-wise comparison of the supplements and for calculation of the 95% CIs for the 

differences between two supplements. This method encompasses a downward adjustment 
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of the significance limit for multiple testing. With 60 subjects the a priori power was 

calculated to be >90% for detecting a significant effect (P < 0.05) of RS compared with 

glucose on the serum total cholesterol concentration when testing one-sided, if the real 

population effect was >0.15 mmol/1 and assuming the same within-subject variation as 

in previous studies at our department. 

Results 

Within 3 wk after the study began, three women dropped out for personal reasons. A 

fourth female participant had a traffic accident that leading to hospitalization; therefore, 

she could not finish the experiment. However, she had completed the RS2 and RS3 

supplementation periods. One woman developed a bladder infection in the beginning of 

her RS3 period; she took antibiotics for 1 wk, which might have affected her colonic 

flora. The results analyzed with and without the data from the subject that took antibiotics 

were similar unless stated otherwise. 

Food consumption and body weight 

No significant differences were found in energy and nutrient intakes when the various 

supplements were given (Table 9.3). Between the treatment periods, no changes in coffee 

and alcohol consumption were reported. Body weight remained constant throughout the 

study. The mean (±SD) change in body weight was -0.2 +0.8 kg (range: -2.0 to 1.7 kg) 

over the glucose periods, 0.2 +1.1 kg (range: -2.1 to 4.0 kg) over the RS2 periods, and 

0.0 +1.0 kg (range: -2.6 to 1.9 kg) over the RS3 periods. 

Compliance 

According to the diaries, 99% of the supplements provided were consumed. It was 

reported that 1% of the glucose supplements, 1.1% of the RS2 supplements, and 1.3% 

of the RS3 supplements were not consumed. Mean lithium recovery was >95% and did 

not differ significantly among the three supplementation periods (Table 9.4). Mean 

lithium recovery increased by 1-2% when the data from urine collections that were 

reported to be incomplete were excluded. The three lowest lithium recoveries found in 

107 



Chapter 9 

individual subjects (36%, 39%, and 45%) corresponded with diaries reporting failure to 
consume all supplement portions. 

Table 9.3 Energy and nutrient intakes during daily supplementation of the habitual diet 
with either 30 g glucose, RS2, or RS3 for 3 wk1 

Nutrient 

Energy3 (MJ/d) 
Energy4 (MJ/d) 
Protein (g/d) 
Fat (g/d) 
Carbohydrate (g/d) 
Alcohol (g/d) 
Dietary fibre (g/d) 
Cholesterol (mg/d) 

Glucose2 

10.3 + 0.5 
12.1 ± 0.5 
88 ± 4 
89 + 6 
309 + 16 
10 + 3 
20 ± 1 
258 + 21 

Dietary supplement 

RS2 

10.9 + 0.5 
12.2 + 0.5 
95 ± 4 
103 ± 6 
311 + 15 
7 ± 2 
23 ± 2 
263 + 26 

RS3 

10.1 ± 0.4 
11.4 ± 0.4 
89 + 4 
92 ± 5 
293 ± 14 
7 ± 2 
20 ± 1 
218 ± 15 

Mean +SEM. Supplements are not included in the calculations (n = 57). Calculated by using a 
computerized food-composition table (HUVO-95) that was developed at the Department of Human 
Nutrition and is based on the NEVO-93 table (NEVO Foundation 1993). There were no significant 
differences by ANOVA. 
n=55; one subject had the flu on the day his 24-h recall was scheduled and one subject had had 
a traffic accident and was hospitalized. 
Supplements not included. 
Supplements included; the energy RS supplies when it is fermented in the colon was not included. 

Serum concentrations of lipids and 3a-hydroxy bile acids 
No treatment effects were found with regard to fasting concentrations of serum total 
cholesterol, HDL- and LDL-cholesterol, triacylglycerol, and 3a-hydroxy bile acids (Table 
9.5). The mean difference (95% CI) in serum triacylglycerol concentration between 
glucose and RS2 was 0.11 (-0.00;0.22) mmol/1 (P > 0.05). When the GLM procedure 
as described above was run separately on the data from males and females, no significant 
treatment effects were found in either sex {data not shown). Within-subject variance was 
0.42 mmol/1 for total cholesterol, 0.12 mmol/1 for HDL-cholesterol, and 0.34 mmol/1 for 
triacylglycerol. When the data were analysed after exclusion of the data from the subjects 
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Table 9.4 Lithium recovery in urine during daily supplementation of the habitual diet 

with either 30 g glucose, RS2, or RS3 for 3 wk1 

Dietary 
supplement: 

n 
Mean ±SD (%) 
Range (%) 

All urine 

Glucose 

532 

98 ±18 
42-146 

collections 

RS2 

57 
96 ±18 
35-136 

RS3 

57 
96 ±21 
36-134 

Complete urine collections 

Glucose 

502 

99 ±15 
71-146 

RS2 

51 
99 ±15 
68-136 

RS3 

55 
97 ±21 
36-134 

1 Lithium chloride was added to the supplements for 1 wk before urine collection. 
2 Data from four subjects are missing: one was hospitalized after a traffic accident, the weight of the 

urine from one subject was not recorded, and urine bottles from two different subjects were 
accidentally pooled. 

with a lithium recovery outside the range of the mean +2 SD and from the subject that 

took antibiotics, only the treatment effect for triacylglycerol changed slightly so that it 

just reached the concentration of statistical significance. The mean difference (95% CI) 

in serum triacylglycerol concentration between glucose and RS2 was 0.13 (0.03;0.22) 

mmol/1 (P < 0.05), between glucose and RS3 0.10 (0.00;0.19) mmol/1 (P < 0.05), and 

between RS2 and RS3 -0.03 (-0.12;0.07) mmol/1 (P > 0.05). Since the distribution of the 

serum triacylglycerol concentration was rather skewed, the statistical analysis was 

repeated on the logarithm of the triacylglycerol concentration. No significant differences 

were found then, neither when all data were analysed (P = 0.09) nor when the data of 

the above mentioned subjects were excluded (P = 0.11). 

Gastrointestinal complaints 

During supplementation with RS («=57), more flatulence, bloated feelings, belching, and 

belly aches were reported than during glucose supplementation (n=56). The scores (mean 

+SEM) for flatulence were 0.27 ±0.04 for glucose, 0.73 +0.06 for RS2, and 1.09 

+ 0.07 for RS3 (P < 0.0001 for all comparisons). RS3 ingestion caused more bloating 

(0.33 +0.05) than did either the consumption of glucose (0.08 +0.02; P < 0.0001) or 

RS2 (0.19 +0.05; P < 0.05). More belching (P < 0.05) was reported during 

supplementation with RS3 (0.13 +0.03) than during supplementation with either RS2 (0.07 
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±0.02) or glucose (0.06 +0.02). Belly ache was reported more during RS2 (0.09 +0.03) 

and RS3 (0.10 +0.02) supplementation than during glucose consumption (0.05 +0.01, 

P < 0.05). 

Table 9.5 Fasting serum lipids and 3a-hydroxy bile acids after 3 wk of daily 

supplementation of the habitual diet with 30 g glucose, RS2, or RS/ 

Dietary supplement 

Glucose2 RS, RS, 

Total cholesterol (mmol/1) 4.69+0.14 4.61+0.13 4.61+0.13 
HDL cholesterol (mmol/1) 1.47+0.04 1.45+0.05 1.45+0.04 
LDL cholesterol3 (mmol/1) 2.72+0.11 2.71+0.10 2.69+0.10 
Triacylglycerol (mmol/1) 1.09+0.07 0.98+0.05 1.03+0.08 
3cx-Hydroxy bile acids (/xmol/1) 3.25+0.28 3.08+0.28 3.08+0.28 

1 Mean +SEM; n=57. For each subject, means from the two blood drawings on days 18 and 22 of 
each 3-wk period were used in the statistical analysis. One subject, during the glucose 
supplementation period, had blood drawn on day 18 only because he had the flu. There were no 
significant differences by ANOVA. 

2 rc = 56, one subject was hospitalized after a traffic accident. 
3 Calculated with the formula of Friedewald et al. (1972): 

LDL-cholesterol = total cholesterol - HDL-cholesterol - (triacylglycerol/2.184). 

Frequency and consistency of faeces 

During supplementation with RS3, a slightly higher number of bowel movements per day 

(mean +SEM: 1.4 +0.05; n=51) was reported than during supplementation with either 

RS2 (1.3 ±0.05; « = 57) or glucose (1.3 ±0.06, P < 0.05; « = 56). During glucose 

supplementation, somewhat harder stools were reported (rated consistency/stool, mean 

±SEM: 3.4 ±0.08; «=56) than during either the RS2 (3.2 +0.07, P < 0.05; «=57) or 

RS3 (3.1 ±0.07, P < 0.01; «=57) supplementation periods. 

Awareness of the nature of the supplements 

The subjects were not told the sequence in which they would receive their supplements 

until they completed the experiment. At the end of the study the participants were asked 
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to guess their supplement sequence. The sequence was guessed right by 78% of the 

participants. Eighteen percent of the volunteers was able to discern the glucose from the 

RS supplements but could not discern between the RS2 and RS3 supplements. Two 

subjects (4%) guessed totally wrong. 

Discussion 

This study shows that in healthy normolipidaemic men and women, supplementation of 

their habitual diet for 3 wk with 30 g RS/d from either raw (RS2) or retrograded (RS3) 

starch did not lower fasting concentrations of serum lipids when compared with 

supplementation of the diet with glucose. 

With 57 subjects and one-sided testing at P < 0.05, this study had a statistical power 

of 56% to detect a significant treatment effect on serum total cholesterol between RS and 

glucose >0.10 mmol/1. The power was 85% for a treatment-induced difference >0.15 

mmol/1 and 97% for a difference >0.20 mmol/1. A serum cholesterol lowering of >0.20 

mmol/1, or >4% for a baseline value of 5.0 mmol/1, is considered meaningful with 

regard to the risk of coronary heart disease. 

Both reported compliance and compliance as assessed by lithium recovery in urine were 

high and did not differ between treatment periods. The variation in lithium recoveries was 

relatively large, but it was symmetrical around the mean and similar for all three 

supplement periods. The large variation most likely was due to day-to-day variation in 

urine production and composition, which was not accounted for by the single 24-h urine 

collection per treatment period. The sequences in which the supplements were consumed 

were guessed at least partly correctly by 96% of the subjects. However, it is unlikely that 

awareness of the nature of the supplements could have affected the study outcome with 

regard to serum lipid concentrations. The consumption of the different supplements was 

confirmed by the reported severity of gastrointestinal complaints and stool consistencies. 

As anticipated, consumption of RS2 and RS3 elicited more gastrointestinal complaints and 

softer stools than did consumption of glucose. 

Serum lipid concentrations have been found to stabilize within 2 wk after a dietary 

change (Connor et al. 1961, Keys et al. 1965, Stasse-Wolthuis et al. 1980, Brussaard et 

al. 1982, Mensink & Katan 1987, Wolever et al. 1994), so that the 3-wk treatment period 
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used can be considered sufficiently long to detect any changes in serum lipid 

concentrations. The subjects consumed 30 g RS/d in addition to their habitual diet. This 

daily dose of RS is estimated to be about six times the average intake of RS in the 

Netherlands (Dysseler & Hoffem 1995a). Assuming that RS may be regarded as a kind 

of dietary fibre, the 30 g of RS applied in the supplements was a significant increase in 

dietary fibre intake compared with the habitual mean intake of 15 g/d in the Netherlands 

(Voorlichtingsbureau voor de Voeding 1993), or with the 20 g/d in our group of 

volunteers (Table 9.3). The glucose supplement provided at most 500 kJ (4% of total 

energy intake) more than did the RS supplements on the basis that RS supplies no energy 

at all. Probably, the subjects compensated for the difference in energy intake because no 

treatment effects on body weight were found. 

It is often believed that women are less suitable subjects for studying dietary effects on 

serum lipids because of confounding effects of the menstrual cycle (Barclay et al. 1965, 

Kim & Kalkhoff 1979) or the use of oral contraceptives (Demacker et al. 1982). With a 

proper study design, however, such confounding effects are eliminated. In our 

randomized study the women entered the trial at different stages of their menstrual cycle 

so that the start of menstruation in the premenopausal women was equally spread over 

the three periods. The number of women starting menstruation was 17 during the glucose 

period, 22 during the RS2 period, and 18 during the RS3 period. Moreover, the 

supplements were given in random sequence, which provided that any effects of 

menstrual cycle would be averaged out and thus could not have systematically biased the 

comparisons of the supplements. 

Our results do not agree with those of several studies in rats (Demigné & Rémésy 

1982, de Deckere et al. 1992, 1993, Morand et al. 1994, Verbeek et al. 1995, Younes 

et al. 1995c) in which RS was found to lower blood cholesterol and triacylglycerol 

concentrations. This discrepancy might be due to either a species effect or to 

incomparable doses. The rats in the study of de Deckere et al. (1993) were fed daily 4.6 

g RS/kg metabolic wt (body weight075), in the rat study of Verbeek et al. (1995) 5.6 g 

RS/kg metabolic wt per day was given, and in the study of Younes et al. (1995c) rats 

were fed daily 12.3 g RS/kg metabolic wt. Other studies with rats reported insufficient 

information to calculate the intake of RS on the basis of metabolic weight. The subjects 

in our study consumed daily 1.2 g RS/kg metabolic wt. It is not feasible for humans to 

consume more RS per day as with 30 g/d, flatulence, bloating, and belching were 
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frequently reported in this study and also in other studies (van Munster et al. 1994a, 

Heijnen et al. 1995). Thus, it appears that the lack of effect of RS consumption on serum 

lipid concentrations in humans, as seen in this study, and the lowering effect found earlier 

in rats relates to the 4- to 10-fold higher RS doses administered to the rats. 

To our knowledge a study on the intake of foods containing well-defined RS in relation 

to blood lipid concentrations in humans has not been reported before. In three cross-over 

studies the effect of high-amylose starch on blood lipid concentrations in humans was 

investigated (Behall et al. 1989, Reiser et al. 1989, Behall & Howe 1995). In these 

studies 10-12 healthy men consumed high-amylose foods that were incorporated into their 

diet for > 5 wk. Reiser et al. (1989) and Behall et al. (1989) found a 7% decrease in the 

total cholesterol concentration and an 18% decrease in the triacylglycerol concentration. 

Behall & Howe (1995) reported that the total cholesterol concentration was elevated by 

11 % and the triacylglycerol concentration was lowered by 28%. Thus, a high- (compared 

with a low-amylose diet) did not consistently affect the blood cholesterol concentration, 

whereas it lowered the triacylglycerol concentration. It is difficult to compare results from 

the reported studies on high amylose intakes and those from the present study because the 

extent to which amylose intake was associated with either RS2 or RS3 is unknown. 

Furthermore, Reiser et al. (1989) used fructose administration as a control. Fructose 

compared with regular starches has been found to increase blood cholesterol and 

triacylglycerol concentrations in some studies (Hollenbeck 1993). Thus, when a high 

amylose intake is compared with a high fructose intake, as in the study of Reiser et al. 

(1989), the observed lipidaemic effects may be enhanced. 

The major determinant of the serum bile acid concentration in healthy subjects is the 

rate of intestinal absorption of bile acids (LaRusso et al. 1978). In the present study 

neither RS2 nor RS3 affected the serum concentration of 3a-hydroxy bile acids. This 

finding is in line with the unaltered serum cholesterol concentrations and also points to 

an unaltered enterohepatic cycle and cholesterol absorption and synthesis. In contrast, 

Verbeek et al. (1995) found in rats that RS3 (compared with digestible starch) 

significantly increased the serum 3a-hydroxy bile acid concentration by 72%. Again, the 

large RS dose used in the rat study could explain why an effect was found. 

In conclusion, this study showed that daily supplementation of the habitual diet with 

30 g RS from either raw or retrograded starch for 3 wk did not lower serum lipid 

concentrations in healthy normolipidaemic men and women. It is possible that RS 

113 



Chapter 9 

supplementation lowers serum cholesterol concentrations in hyperlipidaemic subjects. In 

any event, the lack of effect found in this study cannot be explained by insufficient 

statistical power, low RS doses, short duration of the trial, or inferior compliance by the 

subjects. 
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Conclusions 

The purpose of the experiments described in this thesis was to study physiological effects 

of resistant starch (RS) consumption. The following conclusions can be drawn from these 

studies: 

1. Consumption of up to 32 g RS2 or RS3 per day is tolerated well by healthy 

individuals. 

After daily consumption of circa 30 g RS2 from uncooked potato or high-amylose maize 

starch or of RS3 from retrograded high-amylose maize starch, some subjects mentioned 

increased flatulence and bloated feelings, but severe discomforts were not reported 

(Chapter 2-5, 9). These findings agree with those of other studies (Tomlin & Read 1990, 

Muir et al. 1994, van Munster et al. I994a,b, Phillips et al. 1995). 

A supplementation dose of 30 g RS/d was used in the human studies described in this 

thesis because it was thought to be the maximum that would be tolerated well and because 

the amount was six times higher than the current estimated average RS intake of 5 g/d 

in the Netherlands (Dysseler & Hoffem 1995a, Chapter 1). If RS is considered a type of 

dietary fibre, supplementation with 30 g RS/d represents also a considerable increase in 

fibre intake in the Netherlands, which is on average 15 g/d (Voorlichtingsbureau voor de 

Voeding 1993). The Dutch Health Council (1992) recommends to aim at an average 

intake of 28 g fibre/d. 

Because the RS dose used was considerably higher than the estimated habitual RS 

intake, only well-defined RS supplements were given to the experimental subjects. Thus, 

the volunteers ate their habitual diet enriched with experimental, RS-containing 

supplements. This study design is justified by the observation that no differences in the 

background diet occurred during the various supplementation periods, as measured by 24-

h food consumption recalls (Chapter 3-5, 9). Thus, any changes in the parameters studied 

were most likely caused by the RS supplements. 

Each subject was provided with the same absolute amount of RS as was also done in 

other studies by e.g. van Munster et al. (\994a,b) and the group of Cummings (Silvester 

et al. 1995, Cummings et al. 1996). Alternatively, the amount of RS supplied could have 

been kept constant as expressed on the basis of kg (metabolic) body weight or unit of 

energy intake. The latter approach was used by e.g. the group of Muir (Muir et al. 1994, 
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Phillips et al. 1995). From a practical point of view, it is easier to supply each subject 

with the same amount of RS. 

2. RS2 from uncooked potato or high-amylose maize starch and RS3 from retrograded 

high-amylose maize starch are both fermented in the colon of healthy individuals. 

Consumption of 27 g RS2 from uncooked potato starch in a single meal caused an 

increase in postprandial breath H2 excretion when compared with consumption of an 

equivalent amount of pregelatinized potato starch (Chapter 2). Compared with glucose 

supplementation, 1 wk of daily supplementation with 32 g RS2 or RS3 from high-amylose 

maize starch also increased breath H2 excretion (Chapter 4). H2 excretion in breath is a 

semi-quantitative index of colonic fermentation (Rumessen 1992). During consumption 

of the glucose supplements there also was a significant H2 excretion in breath, probably 

because the background diet contained a significant amount of indigestible but fermentable 

material, e.g. dietary fibre. These findings are confirmed by studies from others (Muir 

et al. 1994, van Munster et al. 1994a, b). 

The finding that RS2 and RS3 are fermented in the colon is confirmed by the small 

amount of starch found in the faeces, representing only 15-18% of the RS supplemented 

(Chapter 4). This agrees with the results from studies by others (van Munster et al. 

1994ft, Phillips et al. 1995, Cummings et al. 1996, Poppitt et al. 1996). 

3. RS2 and RS3from high-amylose maize starch are equally fermentable in the colon 

of healthy individuals. 

One wk of daily supplementation with 32 g RS2 or RS3 from high-amylose maize starch 

increased breath H2 excretion to the same extent in a single-blind, randomized multiple 

cross-over study with 24 healthy men (Chapter 4). This is confirmed by the recovery of 

the same small amounts of starch in the faeces after consumption of the two types of RS 

(Chapter 4). It is important that the results from the H2 measurements were confirmed 

by those from the amounts of starch in faeces, as Poppitt et al. (1996) showed recently 

that measurement of 24-h H2 and CH4 excretion in breath did not adequately predict the 

extent of fermentation of non-starch polysaccharides (NSP) and RS in either individuals 

or groups of healthy subjects. 

The lack of a difference in fermentability between RS2 and RS3 seems to disagree with 

in vitro data (Cummings et al. 1995), a rat study (Schulz et al. 1993), and two human 
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studies (Olesen et al. 1994, Champ et al. unpublished results) which suggest that RS2 is 
better and/or quicker fermentable than RS3. However, the in vitro and human studies by 
others are difficult to interpret because not only the type of RS but also the amount of RS 
differed between treatments. Furthermore, in vitro studies may show inconsistent results 
depending on the inocula used. Some subjects fermented one kind of RS well and another 
type poorly as illustrated by the amount of starch in faeces, implying that different 
colonic flora ferment various RS sources differently (Cummings et al. 1996). In the rat 
study (Schulz et al. 1993), the amount of RS provided per kg metabolic body weight was 
circa 5 times larger than the presumed maximum amount that is tolerated well by man. 
Thus, the specific type and amount of RS as well as factors relating to the subject all 
seem to determine whether or not and to which extent the amount of H2 in breath 
increases after consumption of RS. 

It cannot be excluded on the basis of the findings in this thesis that RS2 and RS3 differ 
in the rate of fermentation and thus in the location of fermentation in the colon. As 
colonic fermentation occurs along the longitudinal transit of digesta, slow fermentation 
implies fermentation more distally in the intestines. The latter may be especially 
beneficial for colon cancer risk, since tumours in the sigmoid colon, rectosigmoid 
junction, and the rectum account for nearly 70% of all cases (Austoker 1994). The less 
fermentable, and thus more distally fermented dietary fibres were protective, whereas the 
more fermentable ones failed to protect or even enhanced the tumour growth in 
experimentally-induced colon cancer (Csordas 1996). At least RS2 from uncooked potato 
starch seems to be fermented slowly as breath H2 only started to rise 6 to 7 h after 
consumption {Chapter 2). In contrast, breath H2 reached a peak value already at 3 h after 
consumption of lactulose, an indigestible disaccharide that is rapidly fermented in the 
colon {Chapter 2). These findings agree with those of Olesen et al. (1994). Nordgaard 
et al. (1995) demonstrated that pure RS of undefined type is fermented slowly in vitro as 
measured by SCFA production in faecal homogenates. 

4. Replacement of digestible starch by RS2 from uncooked potato starch reduces 
postprandial glucose and insulin responses in healthy men. 
Replacement of 27 g digestible potato starch by 27 g RS2 from uncooked potato starch 
reduced postprandial blood glucose and insulin concentrations in a single-blind, 
randomized cross-over study with 10 healthy men {Chapter 2). This agrees with findings 
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from others (Holm & Björck 1992, Olesen et al. 1994, Raben et al. 1994; Liljeberg & 

Björck 1994, Granfeldt et al. 1995). 

However, the glucose and insulin responses after the meal containing RS2 from 

uncooked potato starch were smaller than expected from the amount of rapidly digestible 

carbohydrate present in the meal, as was found by Raben et al. (1994) as well. Raben et 

al. (1994) found no change in gastric inhibitory polypeptide (GIP) and glucagon-like 

peptide-1 (GLP-1) after a meal containing uncooked starch. GIP and GLP-1 are both 

potent stimulators of insulin secretion so that uncooked starch could indeed produce a 

lower insulin response than expected from the glucose-stimulated insulin secretion. In a 

study by Granfeldt et al. (1995) a meal with low-amylose bread, providing 45 g digestible 

starch, was taken as control meal. A meal with high-amylose bread, providing 45 g 

digestible starch plus 25 g RS, reduced postprandial glucose and insulin responses to the 

same extent as did a meal with high-amylose bread providing 29 g digestible starch plus 

16 g RS. The reduction in blood glucose and insulin concentrations in the presence of RS 

was ascribed to reduced enzymic accessibility of the digestible starch in the presence of 

RS and not to a smaller amount of digestible carbohydrate in the meal (Granfeldt et al. 

1995). 

Supplementation of the habitual diet with 32 g RS3/d, but not with RS2 (both from high-

amylose maize starch), lowered 24-h insulin secretion measured as urinary C-peptide in 

a single-blind, randomized multiple cross-over study with 24 healthy men {Chapter 3). 

It is as yet unclear why only RS3 but not RS2 reduced C-peptide excretion. Possibly, RS3 

reduced the gastric emptying rate more than RS2 so that glucose entered the blood more 

gradually, resulting in less insulin secretion. 

5. Replacement of digestible starch by RS2 from uncooked potato starch lowers diet-

induced thermogenesis in healthy men. 

In a single-blind, randomized cross-over study with 10 healthy men, replacement of 27 

g digestible potato starch by 27 g RS2 from uncooked potato starch in a single meal 

lowered diet-induced thermogenesis (DIT) by on average 90 kJ during the first 5 h after 

the meal (Chapter 2). This reduction is also calculated when assuming that the 

indigestible carbohydrate in the meal does not contribute to the DIT. Others (Ranganathan 

et al. 1994, Tagliabue et al. 1995) also found that RS did not add to the total thermogenic 

effect of the meal during the first 5 to 6 h postprandially. Possibly, the RS2-induced 
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decrease in insulin response {Chapter 2) explains the reduction in DIT because the 

facultative part of the DIT may be increased by insulin via stimulation of the sympathetic 

nervous system (Landsberg & Young 1983). 

Consumption of 20 g lactulose (Chapter 2, Ritz et al. 1993) increased DIT, which was 

most probably caused by its fermentation products. Because the fermentation of RS2 

started only 6 to 7 h after consumption, as indicated by the H2 concentration in end-

expiratory air, and because DIT was measured during the first 5 h after the meal only, 

any possible contribution of fermentation products of RS2 was not included in the DIT as 

presented in Chapter 2. As RS fermentation probably occurs slowly, the contribution of 

its fermentation to the DIT will most likely be too small to be measured by indirect 

calorimetry. 

Replacement of digestible starch by RS may be used in weight-reducing diets because 

the metabolisable energy value of RS is estimated to be 8 kJ/g (Livesey 1995) whereas 

the energy value of digestible starch is 17 kJ/g. However, part of this difference seems 

to be counteracted by a RS-induced decrease of the DIT. The DIT of fermentation 

products of RS is postponed compared with the DIT of digestion products of digestible 

starch, so that the magnitude of the decrease in DIT measured in the first 5 h 

postprandial^ is an over-estimation of the true decrease in DIT that may occur. 

6. Daily supplementation with 32 g RS2 or RS3 from high-amylose maize starch does not 

affect subjective feelings of hunger in healthy men. 

Daily supplementation of the habitual diet with 32 g RS2 or RS3, when compared with an 

equivalent amount of glucose, did not affect subjective ratings of hunger in a single-blind, 

randomized multiple cross-over study with 24 healthy men (Chapter 3). A few 

statistically significant differences were found that were, however, of no practical 

relevance. Each subject consumed each supplement for 1 wk and feelings of hunger were 

measured on d 6 of each week. Possibly, no effect on feelings of hunger was found 

because the subjects were allowed to eat and drink ad libitum in addition to the 

supplements. Thus, the participants could adjust their energy intake to the supplements 

so that their habitual pattern of hunger feelings would not change. However, energy 

intake computed from 24-h food consumption recalls remained constant during the three 

supplementation periods. Therefore, any possible compensation would have fallen within 

the variance in energy intake as assessed by 24-h food consumption recalls. 
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Raben et al. (1994) found that replacement of 27 g digestible starch by 27 g RSj from 

uncooked potato starch in a single meal induced significantly lower subjective ratings of 

satiety and fullness. This may be due to the lower metabolisable energy content of the RS 

meal compared with the digestible starch meal. In contrast, others (Holm & Björck 1992, 

Granfeldt et al. 1994, Holt & Brand Miller 1994) found increased subjective satiety 

scores after meals containing RS. Because of the single meal study design used, these 

experiments cannot be compared with the one described in Chapter 3. It appears that the 

satiating effect of RS might be studied better with a preload-test meal design as described 

by e.g. Delargy et al. (1993) and Hulshof et al. (1993). 

7. RS2 and RS} from high-amylose maize starch increase stool weight in healthy men. 

Daily supplementation of the habitual diet with 32 g RS2 or RS3 from high-amylose maize 

starch, compared with an equivalent amount of glucose, increased stool weight by 1.4 g/g 

RS2 and 2.2 g/g RS3 {Chapter 4). Others reported similar results (Phillips et al. 1995, 

Cummings et al. 1996, van Munster et al. 1994fr). However, consumption of 10 g RS3/d 

from cornflakes was not sufficient to increase faecal bulk (Tomlin & Read 1990). 

This RS-induced increase in faecal mass might be positive for human health because 

an inverse relationship has been reported between stool weight and colon cancer incidence 

(Cummings et al. 1992). Burkitt (1971) proposed a protective mechanism by "dilution" 

of the intestinal contents and reduction of intestinal transit time (due to an increase in 

digesta volume), thus reducing the contact of carcinogens with the colonic mucosa. 

The increase in stool weight cannot be explained by extra starch or water in the stool, 

but is most likely due to an increase in bacterial mass. This is supported by the results 

from other studies (Scheppach et al. 1988a, Birkett et al. 1996, Cummings et al. 1996) 

and by the increase in colonic fermentation as illustrated by an increase in breath H2 

excretion {Chapter 4). 

8. One week of daily supplementation with 32 g RS2 or RS3 from high-amylose maize 

starch has no effect on a number of putative risk factors for colon cancer in healthy 

men. 

When 24 healthy men consumed in addition to their habitual diet a daily supplement 

containing 32 g RS2 or RS, or glucose in a single-blind, randomized multiple cross-over 

study, no differences were found in faecal pH and SCFA concentrations, nor in the pH, 
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bile acid concentrations, and cytotoxicity of faecal water {Chapter 4). Effects might have 

been found when the supplementation period would have been increased to several weeks 

as fermentative activity (indicated by an increase in breath H2 excretion) and stool weight 

were increased by RS supplementation. Further, the variance in faecal parameters would 

be reduced if all faeces produced during 3-5 d would have been collected (Setchell et al. 

1987) instead of two stools produced within 3 d, as in the study described in Chapter 4. 

Daily supplementation with 28 g RS2 from high-amylose maize starch during 2 wk 

positively affected putative risk factors for colon cancer in 13 healthy subjects (van 

Munster et al. 1994è). However, that study lacked a control group. In a subsequent 

parallel study with patients with one or more recently removed adenomas, daily 

supplementation with 28 g RS2 from high-amylose maize starch for 4 wk increased the 

concentration of primary bile acids in faecal water and decreased the concentration of 

secondary bile acids when compared with glucose supplementation (Grubben et al. 1996). 

However, faecal wet and dry weight, pH, SCFA excretion and rectal mucosal 

proliferation were not affected by RS2. The authors suggest that the discrepancy between 

their study and that by van Munster et al. (1994Ö) may be due to a relatively higher fibre 

and lower fat intake in the patients. In a randomized cross-over trial 11 healthy subjects 

consumed two diets, one providing 5 g RS/d and the other 39 g RS/d (Phillips et al. 

1995). Each diet was consumed for 3 wk by each subject. The high-RS diet induced a 

lower faecal pH and increased the faecal concentration and absolute excretion of butyrate 

and acetate. However, as the diets contained a mixture of RS1; RS2 and RS3 it is unclear 

to what extent the effects observed are caused by the various types of RS. 

Recently, three studies have been published that investigated the effect of dietary RS 

on chemically-induced colon cancer in rats (Caderni et al. 1994, Young et al. 1996, 

Sakamoto et al. 1996). However, it is difficult to draw conclusions from these 

experiments for the human situation because the amount and/or the type of RS used in 

those rat studies was not defined. Mazière et al. (1996) found that dietary RS3 reduced 

the amount of aberrant crypt foci (ACF) in the colon of 1,2-dimethylhydrazine (DMH)-

injected rats. Further, RS3 induced a lower caecal pH, and increased faecal and caecal 

mass and butyrate production. Rats fed RS3 or lactulose exhibited decreased levels of 

carcinogen-induced DNA damage in the colonic mucosa when compared with rats fed 

sucrose, digestible starch or soy fibre (Rowland & Rumney 1996). 
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Thus, some studies, particularly those in the rat, suggest a possible favourable effect of 

dietary RS on putative risk factors for colon cancer, while others do not. It should be 

noted that there is no conclusive evidence that the biomarkers used are indeed causally 

related to the development of colon cancer. 

9. One week of daily supplementation with 32 g RS2 or RS3 from high-amylose maize 

starch has no effect on faecal ammonia excretion in healthy men, but RS3 decreases 

faecal ammonia concentration. 

One wk of daily supplementation of the habitual diet with 32 g RS2 or RS3 or glucose 

induced the same amounts of ammonia excretion with faeces in a randomized, single-blind 

multiple cross-over study with 24 healthy men (Chapter 5). Because RS3 supplementation 

increased faecal weight significantly, when compared with glucose, RS3 also decreased 

the faecal ammonia concentration. This may be advantageous in the protection against 

colon cancer (Lin & Visek 1991). Birkett et al. (1996) also reported that in healthy 

subjects consumption of RS lowered faecal concentration of ammonia. They compared 

a diet providing 39 g RS/d with a diet containing 5 g RS/d in a randomized cross-over 

study of 2 x 3 wk. The RS in the diets was a mixture of RS,, RS2 and RS3. Thus, their 

finding may have been specifically caused by the RS3 component. 

As both Birkett et al. (1996) and we (Chapter 5) found no effect of RS on absolute 

faecal ammonia excretion nor on urinary urea excretion, ammonia was not used for RS-

induced bacterial growth because there was no shift of nitrogen excretion from urine to 

faeces. In some studies (Flourié et al. 1986) RS had no effect on absolute ammonia and 

nitrogen excretion in faeces whereas in others (Birkett et al. 1996; Cummings et al. 1996) 

RS increased absolute faecal nitrogen excretion. The latter may point at increased 

bacterial growth as 60% of faecal nitrogen is bacterial nitrogen (Stephen & Cummings 

1980). Starch malabsorption as induced by the glucosidase inhibitor acarbose increased 

faecal nitrogen excretion, faecal bacterial mass and faecal bacterial nitrogen in healthy 

subjects (Scheppach et al. 1988a). Thus, it is not clear yet how RS consumption affects 

nitrogen metabolism in man. 
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10. Consumption ofRS3 but not ofRS2from high-amylose maize starch shifts nitrogen 

excretion from urine to faeces in piglets. 

Replacement of glucose by RS2 or RS3 in the feed of piglets cannulated at the end of the 

ileum did not affect nitrogen retention but increased faecal nitrogen excretion {Chapter 

6). The latter was probably due to the combination of a decrease in ileal nitrogen 

absorption and an increase in nitrogen trapping by bacteria. Bacterial growth probably 

was enhanced as a result of fermentation of RS2 and RS3 because virtually no starch was 

recovered in faeces and faecal mass had increased (Chapter 6, see conclusion 11). 

Fermentation of RS in the colon probably induced a lower colonic pH (not measured). 

A lower pH enhances the conversion of ammonia (NH3) into ammonium (NH4
+). 

Ammonium is less well absorbed by the colon than ammonia and will be excreted in the 

faeces. This process may also have contributed to the observed increase in faecal nitrogen 

excretion. 

Only in the RS3-fed piglets, and not in the RS2-fed piglets, the increase in faecal 

nitrogen excretion was balanced by a decrease in urinary nitrogen excretion, mainly in 

the form of urea, which can be explained by the observed reduced colonic nitrogen 

absorption. A priori, we expected the effects of RS2 and RS3 to be just the other way 

around because we assumed that RS2 is better fermentable than RS3 (Schulz et al. 1993, 

Olesen et al. 1994, Cummings et al. 1995, Champ et al. unpublished data). The 

discrepancy between the results and our expectations can be explained by the greater ileal 

fermentation of RS2 compared with RS3, as indicated by the lower amounts of starch in 

the ileal digesta after RS2 feeding {Chapter 6, see conclusion 11). Thus, more fermentable 

substrate was available in the colon of the RS3-fed piglets so that more nitrogen could be 

trapped in bacteria in the colon after RS3 instead of RS2 feeding. If these results can be 

extrapolated to man, consumption of RS3 rather than digestible carbohydrate may lower 

the workload for the kidneys and the liver and may therefore be beneficial for patients 

with kidney or liver malfunction. 

The effect of RS3 on the routes of nitrogen excretion as found in the present study 

agrees with studies in which starch was infused into the terminal ileum of pigs (Gargallo 

& Zimmerman 1981, Misir & Sauer 1982, Mosenthin et al. 1992). In those studies 

fermentation also took place mainly in the colon and the increase in faecal starch 

excretion was balanced by a decrease in urinary nitrogen excretion, as in our study after 

RS3 feeding. However, we have no explanation for the discrepancy between the effect of 
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RS2 in the present study and in the study by Wünsche et al. (1987). In the latter, the 

increase in feacal nitrogen excretion was balanced by a decrease in urinary nitrogen 

excretion after pigs were fed RS2 from raw potato products, whereas in the present study 

this balancing did not occur after RS2 feeding but after RS3 feeding. 

11. RS2 and RS3from high-amylose maize starch are fully fermented in the digestive 

tract of the pig, and a considerable part is fermented in the small intestine. 

In the faeces of piglets cannulated at the end of the ileum virtually none of the 114 g RS2 

or RS3 fed per day was recovered (Chapter 6), indicating that RS was fully digested in 

the gastrointestinal tract. At the end of the ileum 56% of the ingested RS2 and 29% of the 

RS3 had disappeared. This means that either RS was fermented in the ileum and/or that 

RS as measured in vitro by the procedure of Englyst et al. (1992) does not correspond 

to the amount of the physiologically defined RS in vivo in the pig. The ileum of the pig, 

especially the distal third, contains a significant amount of bacteria (Chesson et al. 1985, 

Liu et al. 1985, Bach Knudsen et al. 1993) so that ileal fermentation of RS is possible. 

Ileal and colonic fermentation is indicated further by the increase in nitrogen content and 

weight of the ileal digesta and faeces (Chapter 6) which could, at least partly, be caused 

by an increase in the number of bacteria. Another indication of increased fermentative 

activity in the ileum is the fact that the increase in dry matter content of the ileal digesta 

was only partly accounted for by undigested starch. Thus, although the overall 

digestibility of RS2 and RS3 in the pig was equal, they differed in the location of 

fermentation: RS2 was fermented for 56% in the ileum and for 44% in the colon, whereas 

RS3 was fermented for 29% in the ileum and for 71% in the colon. 

12. Dietary RS2 but not RS3 from high-amylose maize starch reduces apparent 

absorption of magnesium and calcium in piglets. 

When compared with glucose, dietary RS2, but not RS3, reduced total apparent absorption 

of magnesium and calcium in piglets cannulated at the end of the ileum (Chapter 7). No 

other studies on the effect of RS consumption on mineral absorption in pigs have been 

published so far. These results do not agree with those of human and rat studies which 

may be due to differences in RS and/or mineral intake or to species differences (see 

conclusion 13). 
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Magnesium absorption tended to be shifted from the colon to the ileum to some extent 

in the piglets fed RS2 and RS3 when compared with those fed glucose. This may be 

connected with the finding that RS is fermented already in the ileum (see conclusion 11), 

inducing a lower ileal pH, increasing magnesium solubility and thereby magnesium 

absorption (Heijnen et al. 1993, Schulz et al. 1993, Younes et al. 1996). In a pig study 

comparing dietary fructose with glucose (van der Heijden et al. 1995) magnesium was 

absorbed mainly from the colon, which is in contrast to our findings. Both in our study 

(Chapter 7) and that from van der Heijden et al. (1995) calcium and phosphorus were 

absorbed mainly from the ileum. RS2, but not RS3, significantly reduced the ileal 

absorption of phosphorus while the reduction in total phosphorus absorption did not reach 

statistical significance (Chapter 7). 

13. One week of daily supplementation with 32 g RS2 or RS3 from high-amylose maize 

starch has no effect on the apparent absorption of magnesium, calcium and phosphorus 

in healthy men. 

In a single-blind, randomized multiple cross-over study with 24 healthy men, 1 wk of 

daily supplementation of the habitual diet with 32 g RS2 or RS3 or glucose induced the 

same apparent absorption of magnesium, calcium and phosphorus expressed as percentage 

of intake (Chapter 7). Langkilde and Andersson also found no effect of RS2 (1995b) or 

RS3 (1992) versus digestible starch on ileal absorption of magnesium and calcium in 

ileostomy patients. No other human experiments studying the effect of RS consumption 

on mineral absorption have been published so far. 

In rats, RS2 compared with digestible starch raised apparent magnesium and calcium 

absorption (Rayssiguier & Rémésy 1977, Andrieux & Sacquet 1986, Schulz et al. 1993, 

Younes et al. 1993, 1996). Schulz et al. (1993) and we (Chapter 8) found that RS2 versus 

RS3 also raised apparent magnesium and calcium absorption in rats. The discrepancy 

between the results from our human study (Chapter 7) and from the above mentioned rat 

studies and our pig experiment (Chapter 7) may be explained by the 5-10 times higher 

dose of RS per kg metabolic body weight that the rats and piglets consumed, respectively. 

Other factors involved could be species differences in mineral intake per kg metabolic 

body weight, in fermentation efficiency, or in hormonal control, anatomy or physiology 

of the intestinal tract (Mathers 1991). Furthermore, the ileal starch digestibility in rats, 
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pigs and man may be different (Roe et al. 1996) so that the amount of starch that was 

truly resistant in each species is uncertain. 

It cannot be excluded on the basis of the study described in Chapter 7 that RS could 

affect mineral absorption if the mineral intake was marginal or inadequate, or if RS 

supplementation was continued over a longer period. However, differences in mineral 

absorption were found within 5-10 d after a dietary change (Balasubramanian et al. 1987, 

Brink et al. 1993, Siener & Hesse 1995). 

14. RS2 from high-amylose maize starch does not enhance true magnesium absorption 

in rats. 

Schulz et al. (1993) and Heijnen et al. (1993) have proposed a mechanism to explain the 

observed enhancing effect of RS2 on apparent magnesium absorption in rats (Rayssiguier 

& Rémésy 1977, Andrieux & Sacquet 1986, Schulz et al. 1993, Younes et al. 1996, 

Chapter 8). RS2 would raise the ileal solubility of magnesium due to a reduction in ileal 

pH resulting from enhanced bacterial fermentation of RS. However, RS2 did not enhance 

true magnesium absorption because it lowered the faecal excretion of endogenous 

magnesium (Chapter 8). If the earlier proposed mechanism would be true then the 

absorption of both dietary exogenous and endogenous magnesium should be enhanced, 

resulting not only in an increased apparent absorption but also in an increased true 

absorption. 

15. Neither RS2 nor RS3 from high-amylose maize starch lowers fasting serum lipid 

concentrations in healthy normolipidaemic subjects. 

Daily supplementation of the habitual diet with 30 g RS2 or RS3, when compared with an 

equivalent amount of glucose, did not affect serum concentrations of triacylglycerols, and 

total, LDL and HDL cholesterol in a single-blind, randomized multiple cross-over study 

with 57 healthy men and women (Chapter 9). So far, no other human trials that studied 

the effect of well-defined (experimental) foods rich in RS have been published. In three 

cross-over studies (Reiser et al. 1989, Behall et al. 1989, Behall & Howe 1995) the effect 

of high-amylose maize starch on serum lipid concentrations in healthy men was studied. 

However, these studies showed conflicting results with respect to serum cholesterol 

concentration, and it is unclear whether the effects found are due to RS, to amylose, or 

to a combination of RS and amylose. 
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Chapter 10 

In several rat studies (Demigné & Rémésy 1982, Sacquet et al. 1983, de Deckere et al. 

1992, 1993, 1995, Mathé et al. 1993, Morand et al. 1994, Verbeek et al. 1995, Younes 

et al. 1995c) high-amylose maize starch, RS2 or RS3 lowered serum triacylglycerol and 

cholesterol concentrations considerably. However, the dose of RS per kg metabolic body 

weight that the rats consumed was five times higher than the presumed maximum dose 

humans can consume without negative side effects. Furthermore, the cholesterol 

metabolism in the rat is different from that in man. 

Normolipidaemic subjects were enroled in the study described in Chapter 9 because 

these people were easily accessible to us. Various changes in the diet, such as an increase 

in the soluble fibre content, have been shown to induce both statistically significant and 

physiologically meaningful decreases in serum cholesterol concentration both in 

normolipidaemic and in hyperlipidaemic individuals (Stasse-Wolthuis etal. 1980, Topping 

1991, Truswell 1995). The power calculation in the study described in Chapter 9 was 

based on intra-individual variation in normolipidaemic subjects. The power was 97% for 

a treatment-induced difference in total cholesterol of >0.20 mmol/L. A serum cholesterol 

lowering of >0.20 mmol/L, or >4% for a baseline value of 5.0 mmol/L, is considered 

meaningful with regard to the risk of coronary heart disease. Moreover, the lack of effect 

in the study cannot be explained by (i) a low dose of RS as the daily RS dose provided 

was six times the current estimated RS intake in the Netherlands (Dysseler & Hoffem 

1995a), (ii) insufficient compliance as compliance measured as urinary lithium recovery 

was > 95 %, (Hi) other dietary changes as the amount and composition of the background 

diet did not differ during the various supplementation periods, and (iv) a too short 

intervention period as serum lipid concentrations have been found to stabilize within 2 wk 

after a dietary change (Keys et al. 1965, Stasse-Wolthuis et al. 1980, Brussaard et al. 

1982, Wolever et al. 1994) so that the 3-wk treatment period can be considered 

sufficiently long to detect any changes in serum lipid concentrations. 

Recommendations 

1. More methodological studies should be performed to obtain a widely accepted 

standardized, precise and reproducible in vitro method that is validated by in vivo 

measurements to determine RS in foods as eaten. 
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Conclusions and recommendations 

2. RS should be included in food composition tables, so that epidemiological studies on 

the putative health effects of RS consumption become feasible. 

3. In food consumption studies the preparation method of starchy foods should be 

inquired about in detail, so that RS intake can be estimated better. 

4. If animal experiments are conducted to study mechanisms of action, the dose of RS 

provided should be equivalent, when expressed on the basis of kg metabolic body 

weight, to the presumed maximum dose that humans can consume without negative 

side effects, i.e. circa 30 g/d. 

5. More evidence should be obtained to confirm that the parameters considered risk 

factors for developing colon cancer are indeed true biomarkers predicting colon 

cancer risk. 

6. Studies on the possible role of RS in the prevention of colon cancer should be 

continued and extended. 

7. The significance for human physiology, metabolism and health of increased activity 

and site of fermentation in the colon should be studied further. 

In conclusion, daily consumption of up to 32 g RS2 or RS3 is not unfavourable for 

healthy individuals, but it also does not have great beneficial effects on human 

physiology, at least for the parameters and time span studied in this thesis. Especially the 

significance for human health of increased activity and site of fermentation in the colon, 

and the possible role of different types of RS in the prevention of colon cancer should be 

studied further. 
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Samenvatting 

Hiermee wil ik aan mijn familie en vrienden buiten de 'voedingswereld' uitleggen waar 

ik me de afgelopen vijfjaar op m'n werk mee bezig heb gehouden. 

Zetmeel 

Zetmeel is een belangrijk bestanddeel van onze voeding, naast vet en eiwit. Nederlanders 

eten gemiddeld 126 gram zetmeel per dag, grotendeels afkomstig uit brood, aardappelen 

en pasta. Zetmeel is als het ware een lange ketting van 'suiker-kralen' (glucose-

eenheden). Na het eten van bijvoorbeeld een boterham wordt het zetmeel daaruit in de 

dunne darm (zie figuur) in stukjes geknipt door stoffen die we enzymen noemen. Zo 

komen de afzonderlijke glucose-eenheden ('suiker-kralen') vrij, die dan uit de dunne darm 

opgenomen worden in het bloed. We zeggen dan dat het zetmeel is verteerd. Glucose 

(suiker) is de brandstof voor lichaamscellen. Het bloed met daarin glucose stroomt langs 

de lichaamscellen en die nemen daaruit het glucose op met behulp van het hormoon 

insuline. 

Onverteerbaar zetmeel (RS) 

Vijftien jaar geleden is ontdekt dat niet al het zetmeel dat we eten op deze manier in 

stukjes geknipt wordt in de dunne darm om als glucose opgenomen te worden in het 

bloed. Een deel van het zetmeel in onze voeding kan dus niet verteerd worden. Dit 

onverteerbare zetmeel wordt 'resistant starch' (RS) genoemd in het Engels. Deze Engelse 

term wordt ook in Nederland gebruikt. Er worden drie soorten resistant starch 

onderscheiden: RS,, RS2 en RS3. Deze drie soorten verschillen in de reden waarom het 

zetmeel niet door enzymen in glucose-eenheden geknipt kan worden. Met andere 

woorden: RSl5 RS2 en RS3 verschillen in de oorzaak van hun onverteerbaarheid. 

RS in de dikke darm 

Omdat RS niet in de vorm van glucose-eenheden in het bloed opgenomen wordt uit de 

dunne darm, komt het in de dikke darm terecht (zie figuur). In de dikke darm zitten 

bacteriën die RS (gedeeltelijk) kunnen vergisten (fermenteren). Daarbij wordt RS omgezet 

in onder andere waterstofgas dat gedeeltelijk opgenomen wordt in het bloed. Als het 

bloed langs de longen stroomt, gaat het waterstofgas grotendeels uit het bloed de longen 
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speekselklieren 

slokdarm 

tanden 

tong 

strottehoofd (open) 
dicht 
luchtpijp 

middenrif 

lever 
leverbuizen 

galbuis 
galblaas 

galbuisopening 

dunne darm 
(achter dikke darm) 

dikke darm 

(met daarin bacteriën) 

blinde darm 

maag 
milt 
alvleesklier-buis 
alvleesklier (scheidt o.a. 
insuline en enzymen af) 

dikke darm 

dunne darm 

dikke darm 

rectum 

anus 

Het spijsverteringskanaal van de mens. Voedsel gaat na het kauwen in de mond via de 

slokdarm naar de maag. Van daaruit gaat het via de dunne darm, de dikke darm en het 

rectum naar de anus. Onderweg wordt het voedsel in hele kleine stukjes 'geknipt' door 

maagzuur en stoffen die we enzymen noemen. Enzymen worden door onder andere de 

speekselklieren en de alvleesklier afgegeven. Gal komt uit de galblaas in de dunne darm 

en helpt bij de afbraak van vet. De hele kleine voedselstukjes worden uit de darm 

opgenomen in het bloed en zo afgeleverd bij de lichaamscellen. Die worden zo voorzien 

van energie en bouwstoffen waardoor ons lichaam kan functioneren. 
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in. Het wordt dan vervolgens uitgeademd. Je kunt de hoeveelheid waterstofgas in 

uitademingslucht meten om te weten of er vergisting plaats vindt in de dikke darm. 

Consumptie van RS 

Er wordt geschat dat Nederlanders nu gemiddeld vijf gram RS per dag eten. Er zit een 

klein beetje RS in bijvoorbeeld oud geworden brood, gekookte en weer afgekoelde pasta 

of aardappelen, peulvruchten en onrijpe (groene) bananen. Vijf gram RS per dag is maar 

een klein deel van de 126 gram zetmeel die we in totaal eten. Maar het is mogelijk om 

de hoeveelheid RS die je eet te beïnvloeden door de keuze van je voedingsmiddelen en 

de manier waarop je ze bereidt. Als je bijvoorbeeld gekookte aardappelen koud eet als 

salade, eet je meer RS dan wanneer je vers gekookte aardappelen eet. Ook de 

levensmiddelenindustrie kan de hoeveelheid RS in een produkt beïnvloeden, nl. door de 

keuze van de grondstoffen (b.v. zetmeel uit maïs, aardappelen of tarwe) en van de 

industriële bereidingswijze. 

Is RS goed voor de gezondheid? 

Het kan interessant zijn, zowel voor de levensmiddelindustrie als voor de consument, om 

de hoeveelheid RS in bepaalde voedingsmiddelen te verhogen, als RS goed zou zijn voor 

de gezondheid. Uit eerder onderzoek zijn bepaalde ideeën voortgekomen waarom en hoe 

het eten van RS gunstig zou kunnen zijn voor de gezondheid van de mens. Ik heb, met 

hulp van anderen, experimenten uitgevoerd om een aantal van deze mogelijk gunstige 

effecten van het eten van RS te onderzoeken. Deze experimenten staan in dit proefschrift 

beschreven. 

Experimenten in dit proefschrift 

Omdat de verschillende soorten RS verschillende effecten zouden kunnen hebben, heb ik 

in de meeste experimenten RS2 en RS3 onderzocht. RS, heb ik niet bestudeerd omdat het 

moeilijk is om voedingsmiddelen te maken met RS, erin die iedere keer precies hetzelfde 

zijn. Dat gaat wel goed met RS2 en RS3. Bovendien waren er aanwijzingen uit eerder 

onderzoek dat RS2 beter vergist zou worden dan RS3. Het effect van het eten van RS2 en 

RS3 is steeds vergeleken met dat van verteerbaar zetmeel of glucose (suiker) omdat de 

laatste twee, in tegenstelling tot RS, volledig verteerbaar zijn en opgenomen worden in 

het bloed. Aan de meeste experimenten deden gezonde vrijwilligers mee. Zij aten 
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gedurende een aantal weken ongeveer 30 gram RS per dag naast hun gebruikelijke 

voeding. Deze hoeveelheid RS is zes keer zoveel als hun gebruikelijke RS consumptie. 

De vrijwilligers aten RS in de vorm van meel dat was vermengd met melk en yoghurt en 

waaraan voor de smaak limonadesiroop of fruit uit blik was toegevoegd. Verder heb ik 

twee experimenten met ratten gedaan (waarvan er één in dit proefschrift staat beschreven) 

en één met biggen. 

Geen bijwerkingen 

Het eten van 30 gram RS extra per dag werd goed verdragen door gezonde mensen. 

Sommige vrijwilligers rapporteerden toegenomen winderigheid en een opgeblazen gevoel, 

maar er werden geen ernstige negatieve bijwerkingen gemeld (hoofdstuk 2-5, 9). 

Vergisting van RS 

RS2 en RS3 werden inderdaad vergist door de bacteriën in de dikke darm want de 

hoeveelheid waterstofgas in de uitademingslucht van gezonde vrijwilligers die RS2 of RS3 

hadden gegeten, nam toe (hoofdstuk 2, 4, 9). Ik vond ook nauwelijks zetmeel terug in de 

ontlasting na het eten van RS2 of RS3. Het eten van RS2 en RS3 leidde tot evenveel 

waterstofgas in de uitademingslucht en even weinig zetmeel in de ontlasting (hoofdstuk 

4, 9). RS2 en RS3 lijken dus even goed vergist te kunnen worden. 

Glucose en insuline in het bloed 

Omdat RS niet door enzymen in glucose-stukjes geknipt kan worden om zo opgenomen 

te worden in het bloed, verwachtte ik dat het glucose-gehalte in het bloed na het eten van 

RS minder zou stijgen dan na het eten van verteerbaar zetmeel. Dat heb ik inderdaad 

gemeten bij gezonde vrijwilligers die RS2 hadden gegeten (hoofdstuk 2). Als er minder 

glucose in het bloed wordt opgenomen, is er ook minder van het hormoon insuline nodig 

voor de opname van glucose in de lichaamscellen. Ik heb ook een lager insuline-gehalte 

in het bloed gemeten na het eten van RS2 in plaats van verteerbaar zetmeel (hoofdstuk 2). 

Minder stijging van de glucose- en insuline-gehaltes in het bloed is gunstig voor suiker

patiënten, maar ook voor gezonde mensen. 
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Energie 

RS levert minder energie dan verteerbaar zetmeel omdat het eten van RS niet leidt tot 

opname van glucose (brandstof) in de lichaamscellen. Dit kan nuttig zijn in vermagerings-

diëten. Het voordeel is echter minder groot dan verwacht omdat het afbreken van 

verteerbaar zetmeel tot glucose, het opnemen daarvan in het bloed en de lichaamscellen, 

en het verwerken van glucose in de lichaamscellen ook energie kost. Dat gold niet voor 

RS2, althans niet in de eerste vijf uur na de maaltijd (hoofdstuk 2). RS eten in plaats van 

verteerbaar zetmeel betekent dus minder energie opnemen, maar ook minder energie 

verbruiken. 

Hongergevoelens 

Het eten van RS zou tot minder hongergevoelens kunnen leiden als het werkt als 

maagvulling (een 'vol' gevoel geeft). Dan zou het eten van RS in plaats van verteerbaar 

zetmeel ook op deze manier kunnen helpen in vermageringsdiëten. Maar RS zou juist ook 

tot meer hongergevoelens kunnen leiden omdat het minder energie levert dan verteerbaar 

zetmeel. Gezonde vrijwilligers rapporteerden evenveel hongergevoelens als ze naast hun 

gebruikelijke voeding 32 gram RS2 of RS3 per dag aten als wanneer ze 32 gram glucose 

per dag extra aten (hoofdstuk 3). RS lijkt dus geen verzadigend effect te hebben. 

Hoeveelheid ontlasting 

Het eten van 32 gram RS2 of RS3 extra per dag gedurende een week vergrootte de 

hoeveelheid ontlasting (hoofdstuk 4). Dit kan gunstig zijn voor de stoelgang. Het kan 

mogelijk ook helpen om dikke-darm-kanker te voorkomen doordat schadelijke stoffen die 

in de dikke darm aanwezig kunnen zijn als het ware verdund worden als er meer 'brei' 

in de dikke darm zit. Verder zorgt meer brei in de darmen ervoor dat alles sneller door 

de darmen heen stroomt. Eventueel aanwezige schadelijke stoffen hebben dan minder tijd 

om de dikke darm te beschadigen. De toename van de hoeveelheid ontlasting werd 

waarschijnlijk veroorzaakt door een toename van het aantal bacteriën. Als RS in de dikke 

darm komt, betekent dat meer 'voedsel' voor de daar aanwezige bacteriën, zodat ze zich 

kunnen vermeerderen. 
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Dikke-darm-kanker 

Er zijn aanwijzingen dat vergisting van RS in de dikke darm de kans op kanker aan de 

dikke darm kan verkleinen. Er is gesuggereerd datje aanwijzingen daarvoor kunt vinden 

door bepaalde stoffen in de ontlasting te meten. Ik heb die gemeten in de ontlasting van 

gezonde vrijwilligers die gedurende een week iedere dag 32 gram extra RS2, RS3 of 

glucose hebben gegeten (hoofdstuk 4-5). Ik vond geen verschillen tussen glucose, RS2 en 

RS3. Ik vond dus geen aanwijzingen dat RS zou kunnen helpen om dikke-darm-kanker te 

voorkomen, met uitzondering van een toename van de hoeveelheid ontlasting. Het is 

mogelijk dat het gedurende langere tijd eten van RS wel een effect heeft op de gehaltes 

van bepaalde stoffen in de ontlasting en op het risico voor dikke-darm-kanker. 

Cholesterol-gehalte in het bloed 

Er waren aanwijzingen dat het eten van RS het cholesterol-gehalte in het bloed zou 

kunnen verlagen. Een te hoog cholesterol-gehalte in het bloed kan hart- en vaatziekten 

veroorzaken. Het eten van 30 gram RS2 of RS3 extra per dag gedurende drie weken had 

geen effect op het cholesterol-gehalte in het bloed van gezonde vrijwilligers (hoofdstuk 

9). Het eten van RS kan dus niet helpen om het cholesterol-gehalte in het bloed te 

verlagen. 

Stikstof in biggen 

In biggen leidde het eten van RS3, maar niet van RS2, er toe dat de hoeveelheid stikstof 

in de ontlasting toenam, terwijl de hoeveelheid stikstof in de urine juist afnam (hoofdstuk 

6). Dat is gunstig voor het milieu omdat het minder vervuiling met ammoniak betekent. 

RS2 en RS3 werden in de big volledig vergist. De vergisting begon al in de dunne darm 

(hoofdstuk 6). Dat kan omdat daar bij de big, in tegenstelling tot bij de mens, ook al 

bacteriën zitten. 

Opname van calcium en magnesium 

Calcium (kalk) en magnesium zijn noodzakelijk voor allerlei lichaamsprocessen. Zo is 

calcium bijvoorbeeld een belangrijke bouwsteen van de botten en is magnesium nodig 

voor bijvoorbeeld de werking van spieren. In vergelijking met glucose en RS3 leidde het 

eten van RS2 in de big tot een verminderde opname van calcium en magnesium uit het 

voer (hoofdstuk 7). Ik weet nog niet waarom. Het eten van 32 gram RSj of RS3 extra per 
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dag gedurende een week had geen effect op de opname van magnesium en calcium in 

gezonde vrijwilligers (hoofdstuk 7). Het is mogelijk dat RS wel een effect heeft op de 

opname van calcium en magnesium als deze stoffen in zeer kleine hoeveelheden in de 

voeding voorkomen, of als RS gedurende langere tijd gegeten zou worden. In ratten ver

hoogde RS2 ten opzichte van RS3 de opname van magnesium uit het voer (hoofdstuk 8). 

Dit werd echter niet door vergisting van RS veroorzaakt (hoofdstuk 8), zoals eerder 

onderzoek suggereerde. RS2 en RS3 hebben dus verschillende effecten op de opname van 

calcium en magnesium in rat, big en mens. Dit kan mogelijk verklaard worden doordat 

de rat, big en mens per kilogram lichaamsgewicht verschillende hoeveelheden RS, 

calcium en magnesium aten. Een andere mogelijke verklaring zijn de verschillen tussen 

de rat, big en mens in bijvoorbeeld het spijsverteringskanaal en de bacteriën in de dikke 

darm. 

Conclusie 

Uit de experimenten in dit proefschrift blijkt dat het eten van RS niet ongunstig is voor 

de mens, maar ook niet leidt tot grote positieve effecten op de gezondheid. Ik adviseer 

om nader onderzoek te doen naar het effect van verschillende soorten RS op het risico 

voor dikke-darm-kanker en naar de betekenis van meer vergisting in de dikke darm voor 

de gezondheid. 
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