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7 Het vervangen van voedertabellen door simulatiemodellen kan bijdragen aan een 

doelmatiger dierlijke produktie. 

8 Het fokken van dieren die niet op normale wijze hun volwassen gewicht kunnen 

bereiken miskent de intrinsieke waarde van het dier. 

9 In veevoedingsonderzoek wordt teveel van multiple comparison tests gebruik 

gemaakt. 

10 Bij proeven ter bepaling van de behoefte aan nutriënten is er voor elke gewenste 

uitkomst wel een methode te vinden. 

11 Het voorstel tot afschaffen van de voetoverheveling is een ongewenste 

inmenging in het gezinsleven en getuigt van onderwaardering van het 

ouderschap. 

12 Een eigentijdse herdenking en viering van 4 en 5 mei kan een wezenlijke bijdrage 

leveren aan het besef dat vrede, vrijheid en gelijkwaardigheid van onschatbare 

waarde zijn. 

13 De ontkenning van de beschermwaardigheid van een kind vanaf de conceptie 

maakt de uterus van veilige moederschoot tot "the most dangerous place to be". 

14 Paars: een sombere kleur voor het wetenschappelijk onderwijs. 

Paul Bikker 

Protein and lipid accretion in body components of growing pigs: effects of body 

weight and nutrient intake. 

Wageningen, 13 september 1994. 



STELLINGEN 

Om de eiwitbenutting van varkens te kunnen verhogen moet meer rekening 

gehouden worden met de eiwit- en energieafhankelijke fasen in de eiwitaanzet. 

Dit proefschrift 

Zolang de intrinsiek bepaalde maximale dagelijkse eiwitaanzet niet is bereikt, 

wordt de optimale eiwit/energie verhouding in het voer weinig beïnvloed door 

het voerniveau. -

Dit proefschrift ; j j ';'.-'? t~ 

uij-o/v •::. : ... 
Een lineaire toename in zowel eiwit- als vetaanzet bij een toenemende 

energieopname impliceert meestal een kromlijnige stijging in de verhouding 

tussen vet- en eiwitaanzet. 

Dit proefschrift 

Een lineaire relatie tussen energieopname en energieretentie, bij een stijgende 

verhouding tussen vet- en eiwitaanzet, impliceert nog geen variatie in k of kf. 

Dit proefschrift 

De verhouding tussen vet- en eiwitaanzet stijgt bij een toenemend diergewicht. 

Deze stijging is groter bij een hogere energiegift. 

Dit proefschrift 

De gunstigere lichaamssamenstelling (meer vlees, minder vet) bij slachten, zoals 

soms gevonden na een voerbeperking in het eerste deel van het mesttraject, is 

geen gevolg van compensatoire groei, maar een direct gevolg van de eerdere 

voerbeperking. 

Dit proefschrift 
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Dit proefschrift is het resultaat van vier en een half jaar onderzoek bij de 

vakgroep Veevoeding van de Landbouwuniversiteit te Wageningen. Terecht staat 

deze vakgroep bekend om haar prettige werksfeer, goede collegiale verhoudingen 

en teamgeest. Hierdoor was het ook mogelijk piekperioden tijdens de experimenten 

op te vangen. Allereerst bedank ik dan ook ieder die tijdens deze periode aan de 

vakgroep verbonden was voor de plezierige tijd die ik hier als AIO heb gehad. 

Natuurlijk zijn er een aantal mensen die een bijzondere bijdrage aan dit onderzoek 

hebben geleverd. Ik wil mijn waardering en dank voor hun betrokkenheid uitspreken 

door hun inbreng kort te noemen. 

Gedurende het eerste jaar van mijn onderzoek werd ik enthousiast begeleid door 

Bas Kemp. Na zijn vertrek werd de dagelijkse begeleiding overgenomen door mijn 

promotor, Martin Verstegen, terwijl Bas Kemp en Marlou Bosch het onderzoek wat 

meer op de achtergrond bleven volgen. De gezamenlijke discussies, jullie adviezen 

en jullie commentaar op onderzoekvoorstellen en concept artikelen waren een bron 

van motivatie en hebben in belangrijke mate bijgedragen aan dit onderzoek. 

Het vertrek van mijn begeleider ging uiteraard niet ongemerkt voorbij. Martin, ik 

ben je veel dank verschuldigd voor de geweldige manier waarop je dit hebt 

opgevangen. Je deed dit op je eigen manier: niet altijd gestructureerd, wel altijd 

enthousiast. Je deur stond altijd open en een concept verhaal was meestal de 

volgende dag al van commentaar voorzien. Zonder je steun zou dit onderzoek niet 

tot een goed eind zijn gebracht. 

Dear Roger, 18000 km is a great distance, but only one day per fax. Your 

scientific work was an important starting point. I highly appreciate your comments, 

criticism, and encouragements. I enjoyed the times we met each other somewhere 

in Europe, to present and discuss scientific results. Thanks for your support. 

Jan van den Broecke (Eurolysine) en Jan Smulders (UTD) dank ik voor de 

discussies rondom de opzet van de verschillende experimenten, en de gelegenheden 

om mijn onderzoekresultaten te presenteren. 

De basis van dierexperimenteel onderzoek wordt gelegd in de stal. De 

medewerkers van proefaccomodatie "De Haar" vormden dan ook een belangrijke 

schakel in dit onderzoek. Met name de deskundige inbreng van André Jansen en 

Ries Verkerk mag hier niet onvermeld blijven. Bij de ileale verteringsproef, 

uitgevoerd op het ILOB, heeft met name Kasper Deuring een belangrijke rol 

gespeeld. Piet Roeleveld en Karel Siebers produceerden een deel van de 

proefvoeders. De inzet van Peter van der Togt en Tamme Zandstra bij de 



organisatie en uitvoering van tal van activiteiten, zoals het wegen, slachten en 

cutteren van de varkens, was in twee woorden geweldig en onmisbaar. Karel de 

Greef heeft mij in de destructieve kant van de slachtproeven ingewijd. Na het 

experimentele werk werd het personeel van het lab van onze vakgroep ingeschakeld 

voor de verwerking van een groot aantal monsters. Met name Marianne van ' t End 

heeft zich kranig geweerd bij de analyse van ongeveer 500 diermonsters. Bedankt. 

In verschillende fasen van dit promotieonderzoek werd een belangrijke bijdrage 

geleverd door een aantal gemotiveerde studenten en stagiaires. Door hun vragen 

en ideeën en hun praktische inbreng in de stal, het slachthuis en het lab hebben zij 

een grote bijdrage geleverd. Achtereenvolgens deden Ard van Enckevort, Vassilis 

Karabinas, Richard Sasse en Härmen van Laar een afstudeervak. Vassilis, 

sometimes it was not very clear who was the supervisor, and who the student. 

Thanks for your impressive contributions, also after your graduation. Rody de Wolf, 

Herbert Wisselink, Elmar Adams, Arjan van de Heuvel, Marcel van Dijk, Riekie van 

Roekel, Jacqueline Akkers en David Nagy participeerden in het kader van hun stage 

in mijn onderzoek. 

Een groot deel van de engelse tekst van dit manuscript werd gecorrigeerd door 

Barbara Williams. Bedankt. 

Tenslotte, een wetenschappelijke prestatie als het schrijven van een proefschrift 

komt slechts tot stand als de huiselijke omstandigheden hiervoor optimaal zijn. 

Zonder enige twijfel heeft mijn echtgenote dan ook een cruciale bijdrage aan het 

gereed komen van dit proefschrift geleverd. Tegelijk is zij ook degene die de nadelen 

van deze soms asociale bezigheid heeft ondervonden. Coby, bedankt voor je geduld 

en steun. Aan jou draag ik dit proefschrift op. 

Bennekom, juli 1994. 



Geprezen zij de naam van God van eeuwigheid tot eeuwigheid, want Hem 

behoort de wijsheid en de kracht. ... Hij verleent wijsheid aan wijzen en 

kennis aan hen die inzicht hebben. 

(Daniël 2:21,22) 
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GENERAL INTRODUCTION 

PIG PRODUCTION 

The primary aim of pig production is to provide food for human consumption. 

Meat is an important component of the daily menu of most western people. In The 

Netherlands, the yearly meat consumption is about 80 kg per head, of which about 

50% is pork (LEI-DLO and CBS, 1993). Worldwide pig meat production is about 

4 0 % of the total meat production (F.A.O., 1990). 

Historically, pigs were kept in small populations and used to valorize waste- and 

by-products of human food production. During the last decades, the number of pigs 

per farm and the total production of slaughter pigs has been tremendously 

increased and the feed composition changed towards industrial by-products, e.g. 

grain by-products and soybean meal. In The Netherlands the number of slaughter 

pigs raised yearly increased from 5 million in 1960 to over 20 million in 1990. 

Simultaneously, the average farm size increased from 20 to 450 pigs per farm. 

Industrialization, the increase in world population, the increased consumption of 

(pig)meat per head, and the use of new rational production techniques are some of 

the important factors that stimulated and enabled these drastic changes in the 

nature of pig production. In addition, the geographical situation, the good structure 

of the pig husbandry and feed industry, and the professional skills of the people 

involved, facilitated a competitive pig industry in The Netherlands. 

Despite the valuable contribution of animal husbandry to the human food 

package, concerns have risen with regard to the quality of the end-products, the 

welfare of the animals and the negative impact on the environment. There is an 

increasing awareness that an economical production of large quantities of meat, 

milk, and eggs does not guarantee a sustainable animal husbandry. It is more and 

more recognized that on a global scale attention should be paid to the position of 

the producers, the health and welfare of the animals, the quantity, quality, variety 

and price of the products, and the consequences for the environment. In pig 

production, some of these criteria (e.g. amount and quality of produced carcasses, 

the economic efficiency and environmental consequences) are substantially 

influenced by the biological efficiency of conversion of nutrients into edible body 

tissues. In our opinion, the optimal utilization of nutrients for the valorization of 

edible products of high quality is an important aspect of a more sustainable animal 

production. Therefore, in pig production, attention should be focused on an efficient 
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utilization of nutrients for the production of lean meat of high quality, rather than 

on the increase and exploitation of the animals' capacity for body gain. This 

requires detailed knowledge of the response relationships between nutrient intake 

and animal performance in terms of nutrient retention and body composition. These 

relationships have been studied in this thesis for pigs of a modern genotype. The 

results, together with clearly defined goals and restrictions in pig production, will 

contribute to the design of biologically and economically efficient feeding strategies. 

In order to define an optimum feeding strategy for growing pigs, different criteria 

can be used to determine optimum protein and energy allowances, e.g. maximum 

body or lean tissue gain, maximum efficiency of body or lean tissue gain, maximum 

body lean content, and minimum nitrogen excretion. The use of different criteria 

presumably leads to different optimum protein and energy allowances, depending 

for example on market conditions and legislation. Furthermore, results may depend 

on the aggregation level at which these optima are calculated, e.g. animal, farm or 

regional level. Therefore, concepts for the response relationships between nutrient 

intake and tissue deposition as determined in this study, presumably can best be 

applied when they are included in simulation models. 

RESPONSES TO PROTEIN AND ENERGY INTAKE 

During the last decade, the emphasis in animal production has switched from 

maximizing daily gain to improving the efficiency of gain and increasing the lean 

tissue growth or protein deposition. These changes were stimulated by the 

increasing consumers demand for lean meat. Secondly, the enhancement of daily 

protein gain at the same feed intake is associated with an increase in rate and 

efficiency of body gain and a decrease in carcass lipid content (Campbell, 1988). 

It has been long recognized that protein accretion can be determined by intrinsic 

factors, i.e. age or body weight, sex and genotype of the pig (e.g. M^lgaard, 1955; 

Thorbek, 1975) and extrinsic, mainly nutritional factors, i.e. energy intake, protein 

intake and protein quality (Miller and Payne, 1963). Contrasting views and 

experimental results exist concerning the relative importance of intrinsic and 

extrinsic factors. 

Black and Griffiths (1977) and (Campbell et al., 1984, 1985b) reported a 

linear-plateau relationship between protein intake and protein accretion. These 
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results gave rise to the development of the concept of protein- and energy-

dependent phases in protein deposition. At a constant energy intake, protein 

accretion increases linearly with increasing protein intake until the required 

protein/energy ratio has been reached. A further increase in protein intake above 

the inflection point has no beneficial effect on protein gain. At a higher energy 

intake level, protein accretion responds to higher levels of daily protein intake 

(Figure 1a). Others described the relationship between protein intake and protein 

accretion at constant energy intake as linear (Zhang et al., 1984), curvilinear (ARC, 

1981 ; Fuller and Garthwaite, 1993) and two-phase linear (Batterham et al., 1990). 

These different response relationships will be discussed in Chapter 2. The slope of 

the relationship between nitrogen intake and nitrogen accretion represents the 

marginal efficiency of protein utilization for protein gain. According to the ARC 

( 1981 ), this marginal efficiency is determined by the digestibility and quality of the 

dietary protein, the amino acid availability, protein supply, and animal factors such 

as body weight and genotype. 

For diets adequate in amino acids, the response to incremental amounts of feed 

reflect the effect of energy intake on protein deposition. The response of protein 

accretion to energy intake has been described as linear, curvilinear and 

linear-plateau. Campbell and Dunkin (1983) and Close et al. (1983), reported a 

linear increase in protein deposition with increasing energy intake for pigs below 

40 kg live weight. Consequently, protein gain was restricted by energy intake. On 

the other hand, the linear-plateau response relationships (Figure 1b) reported by 

T3 
J 50 

100 

50 

high energy 

low energy 

100 200 300 

Protein intake, g/d 

150 r 

"5 

I 100 
'w 
o 
a 
a> 
ç 50 
S 
o 
ÓZ 

20 40 

Energy intake, MJ/d 

Figure 1 . (a) Linear-plateau and curvilinear relationships between protein intake and protein 
deposit ion at t w o levels of energy intake, (b) Linear and linear-plateau relationships 
between energy intake and protein deposit ion. 
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Campbell et al. (1983, 1985a) and Dunkin et al. (1986) and the curvilinear 

response in Schneider et al. (1982) indicate that in these studies a maximum 

protein deposition was reached at high energy intake levels. This maximum was 

caused most likely not by a lack of certain nutrients since energy intake was varied 

by feeding incremental amounts of a protein adequate diet. These studies support 

the concept of Whittemore and Fawcett (1976) that pigs have a maximum capacity 

for protein deposition. It depends on the protein and energy allowances and the 

feed intake capacity of the pig, whether this PD m a x is reached. The chance that 

PD m a x can be reached is biggest for older and heavier pigs, castrates and pigs of 

a poor genotype for protein accretion. The slope of the response relationship 

between energy intake and protein accretion reflects the assignment of dietary 

energy to protein and lipid accretion. This slope can be affected by the sex and the 

genotype of the pig (Campbell and Taverner, 1988). Furthermore, Black and 

Griffiths (1975) reported a diminishing slope with increasing body weight in lambs. 

However, in pigs the effect of body weight on the relationship between energy 

intake and protein deposition is unclear. This effect was studied in this thesis. 

Whittemore and Fawcett (1976) assumed that no protein was retained at energy 

equilibrium (maintenance energy intake). This assumption implies that wi th a linear 

increase in protein (PD) and lipid (LD) accretion with increasing energy intake, the 

ratio LD/PD remains constant until a plateau in protein deposition is reached. This 

assumption is included in several pig growth models (e.g. Moughan et al., 1987; 

Pomar et al., 1991 ; Werkgroep TMV, 1991). However, the results of Close et al. 

(1983) and Fuller et al. (1976) indicated a positive nitrogen balance at the expense 

of lipid loss at maintenance energy intake. As a result, LD/PD increased with 

increasing energy intake. This was confirmed by the results of Campbell et al. 

(1983), De Greef et al. (1994) and others. The response of LD/PD to energy intake 

was also examined in this study. 

The relationship between energy intake and tissue deposition may depend on the 

body composition of the pig at the start of the treatment period (Kyriazakis et al., 

1991). A period of protein or energy restriction can result in relatively fat or lean 

pigs, respectively, which may affect the accretion of protein and lipid in a later 

stage. Indeed several authors have reported an increased rate and efficiency of 

growth after a previous restriction. Most of these studies, however, do not allow 

an assessment of which body components gained faster during rehabilitation. In 

addition, it is often not clear at which stage differences, detected after slaughter, 
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had developed. Results of De Greet et al. (1992) and Kyriazakis et al. (1991) 

indicate that protein accretion can be increased and lipid accretion decreased in pigs 

which were previously fed a low protein diet. It is not clear what effects an energy 

or feed restriction may have on subsequent protein or lipid accretion, nor whether 

a possible effect depends on the feed intake during rehabilitation. These effects 

have been studied in this project. 

THIS THESIS 

At an adequate protein intake, the partition of dietary energy between protein 

and lipid accretion is determined by the relationship between energy intake and 

protein deposition (Whittemore and Fawcett, 1976). Knowledge of this relationship 

is essential for the determination of the effect of an increase in energy intake on the 

rate of gain and body composition. In addition, this relationship determines the 

possible rate of protein accretion at each level of energy intake and thus the amino 

acid requirements at tissue level. Therefore, this relationship has a big influence on 

the amino acid requirements and the optimal amino acid to energy ratio in the diet. 

However, there is little information about the relationship between energy intake 

and protein and lipid accretion in pigs of improved genotype for lean tissue gain 

(Campbell and Taverner, 1988; Rao and McCracken, 1991). Furthermore, as 

mentioned above, no sound data have been published, which would allow the 

determination of the effects of body weight and previous nutrition on these 

relationships. In addition, hardly any information is available about the effect of 

energy intake on accretion rates of lean tissue and other body tissues, and about 

the distribution of protein and lipid among body components. Therefore in this 

study the effect of energy intake on protein and lipid accretion, LD/PD, growth of 

body components and distribution of protein and lipid among body components 

were determined in pigs from 20 to 45 kg and from 45 to 85 kg. It was also 

studied how a previous feed restriction affects the pigs' response to energy intake 

in the latter weight range. 

Both for the definition of efficient feeding strategies and in order to determine 

the pigs' response to energy intake at adequate protein intake, the protein/energy 

requirements of genetically improved pigs need to be known. Although many 

requirement studies have been published, less information is available concerning 
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the requirements of genetically improved animals. In addition the interaction 

between feeding level and optimal protein/energy ratio in improved pigs is not well 

known. Since data of ileal digestible amino acid contents of feedstuffs become 

increasingly available, requirements should also be based on amino acids absorbed 

in the small intestine. Since lysine is often the first limiting amino acid, we 

determined the optimal ileal digestible lysine/energy ratio for genetically improved 

gilts from 20 to 45 kg (Chapter 1). This chapter also shows the differences in 

estimated requirements owing to different response models. 

We realize that the requirement figure determined was related to the sex and 

specific genotype of the pigs used in this trial. However, from the response 

relationship between energy intake and protein accretion, the dietary lysine or 

protein requirements can be estimated when the marginal efficiency of protein 

utilization for protein retention is known. This marginal efficiency is derived from 

the relationship between protein intake and protein deposition. As discussed above, 

this relationship cannot be predicted very well. In addition, in many studies in which 

protein utilization was estimated, the results were partly determined by the 

digestibility and amino acid pattern of the dietary protein. Therefore we determined 

the relationships between ileal digestible protein and lysine intake and protein and 

lysine retention (Chapter 2). We used a large number of lysine intake levels and a 

diet in which lysine was the first limiting amino acid. In order to determine the 

interactions with energy intake, we assessed these relationships at two energy 

intake levels. Within this study it was not possible to determine the effects of 

protein and energy intake separately in two weight ranges. This would have 

required more time and experimental capacity than was available. Since the amino 

acid requirements are most crucial in young pigs, we conducted this part of the 

study in growing pigs (20-45 kg) rather than in fattening pigs. We used the results 

to develop a simple factorial model to estimate the optimal lysine/energy ratio. In 

the model, a parameter was used which represented the marginal efficiency of 

amino acid utilization. This model allows simulations of the effects of energy intake, 

body weight, sex and genotype, on the optimal lysine/energy ratio for protein 

accretion, based on the effects of these factors on protein and lipid accretion. 
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OUTLINE OF THIS THESIS 

The first three chapters relate to the first series of investigations (Experiment 1 ) 

of this project, in which the effects of energy and protein intake were varied 

independently. In Chapter 1 the optimal ratio between ileal digestible lysine and 

energy was determined for improved pigs at two levels of energy intake. In addition 

a simple factorial model was developed to calculate lysine/energy requirements. In 

Chapter 2 the interrelationships between energy and protein (lysine) intake on 

protein (lysine) deposition have been further analysed, and different models to 

describe this relationship have been compared. In Chapter 3 the effects of energy 

and protein intake on the amino acid composition of the carcass, the organs and 

the whole body are described. Possible consequences for losses and requirements 

of amino acids are discussed. 

Chapter 4 to 6 relate to the second series of investigations (Experiment 2) to 

determine the responses of body gain and body composition to energy intake, in 

pigs of different body weight and with different nutritional histories. In Chapter 4 

the response relationships of growth performance and body composition to energy 

intake were determined in growing pigs from 20 to 45 kg. We measured the rate 

and efficiency of body gain, the deposition of protein and lipid, and the accretion 

of organs, lean and fat tissue in relation to the level of energy intake. In Chapter 5 

and 6 these response criteria were determined in pigs from 45 to 85 kg. These pigs 

had received either a low or a high energy level from 20 to 45 kg, to assess the 

effects of previous nutrition on subsequent performance and body composition. In 

Chapter 5, the results have been reported for body gain, body composition, and 

accretion of organs, lean and fat tissue. In Chapter 6 the responses of protein and 

lipid accretion in body components in relation to energy intake and previous 

nutrition are discussed. 

In the general discussion the results of the six chapters of this thesis are 

combined. First the interrelationships between protein and energy intake, body 

weight and previous nutrition on rate and composition of gain are discussed. 

Thereafter, the consequences for the efficiency of protein and energy utilization are 

addressed. Finally, some important consequences of the results of this study for the 

pig husbandry are suggested. 
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7 Het vervangen van voedertabellen door simulatiemodellen kan bijdragen aan een 

doelmatiger dierlijke produktie. 

8 Het fokken van dieren die niet op normale wijze hun volwassen gewicht kunnen 

bereiken miskent de intrinsieke waarde van het dier. 

9 In veevoedingsonderzoek wordt teveel van multiple comparison tests gebruik 

gemaakt. 

10 Bij proeven ter bepaling van de behoefte aan nutriënten is er voor elke gewenste 

uitkomst wel een methode te vinden. 

11 Het voorstel tot afschaffen van de voetoverheveling is een ongewenste 

inmenging in het gezinsleven en getuigt van onderwaardering van het 

ouderschap. 

12 Een eigentijdse herdenking en viering van 4 en 5 mei kan een wezenlijke bijdrage 

leveren aan het besef dat vrede, vrijheid en gelijkwaardigheid van onschatbare 

waarde zijn. 

13 De ontkenning van de beschermwaardigheid van een kind vanaf de conceptie 

maakt de uterus van veilige moederschoot tot "the most dangerous place to be". 

14 Paars: een sombere kleur voor het wetenschappelijk onderwijs. 

Paul Bikker 

Protein and lipid accretion in body components of growing pigs: effects of body 

weight and nutrient intake. 

Wageningen, 13 september 1994. 



STELLINGEN 

Om de eiwitbenutting van varkens te kunnen verhogen moet meer rekening 

gehouden worden met de eiwit- en energieafhankelijke fasen in de eiwitaanzet. 

Dit proefschrift 

0 1 &?, -"A 

Zolang de intrinsiek bepaalde maximale dagelijkse.ej.vwtaanzet niet is.bereikt, 

wordt de optimale eiwit/energie verhouding in het voer weinig beïnvloed door 

het voerniveau. 

Dit proefschrift 

Een lineaire toename in zowel eiwit- als vetaanzet bij een toenemende 

energieopname impliceert meestal een kromlijnige stijging in de verhouding 

tussen vet- en eiwitaanzet. 

Dit proefschrift 

4 Een lineaire relatie tussen energieopname en energieretentie, bij een stijgende 

verhouding tussen vet- en eiwitaanzet, impliceert nog geen variatie in k of kf. 

Dit proefschrift 

De verhouding tussen vet- en eiwitaanzet stijgt bij een toenemend diergewicht. 

Deze stijging is groter bij een hogere energiegift. 

Dit proefschrift 

De gunstigere lichaamssamenstelling (meer vlees, minder vet) bij slachten, zoals 

soms gevonden na een voerbeperking in het eerste deel van het mesttraject, is 

geen gevolg van compensatoire groei, maar een direct gevolg van de eerdere 

voerbeperking. 

Dit proefschrift 

Upcp 
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DIGESTIBLE LYSINE REQUIREMENT OF GILTS WITH HIGH GENETIC POTENTIAL 

FOR LEAN GAIN, IN RELATION TO THE LEVEL OF ENERGY INTAKE 

P. Bikker, M.W.A. Verstegen, R.G. Campbell, and B. Kemp 

ABSTRACT 

One hundred gilts were used to determine the optimal ratio between ileal 
digestible lysine and digestible energy in the diet, and the effect of energy intake 
level on this optimal ratio for gilts wi th high genetic potential for lean gain, between 
20 and 45 kg BW. In a 2 x 15 factorial arrangement the pigs were fed either 2.5 
or 3.0 times the energy requirements for maintenance. Average daily lysine intake 
in the treatment period ranged from 6.4 to 18.2 g/d in 15 graduated steps. The 
first 12 increments were .74 g/d, and the last two increments were 1.48 g/d. 
Average daily gain (ADG), gain/feed, and protein deposition increased curvilinearly 
(P < .01) with increasing lysine intake. The ADG was maximized at 606 and 768 
g/d, gain/feed was maximized at .564 and .604 kg/kg, and protein deposition was 
maximized at 108 and 128 g/d at the low- and high-energy levels, respectively. The 
ratio between lipid and protein deposition decreased curvilinearly with increasing 
lysine intake (P < .01) and reached a minimum of .53 and .75 at the low- and 
high-energy levels, respectively. The lysine requirements (ileal digestible lysine/DE, 
grams/megaJoule), determined with a linear-plateau model, were .57 for ADG and 
gain/feed, and .62 for protein deposition. These estimated requirements were 
similar for the two energy levels. Consequently, approximately .60 g of ileal 
digestible lysine/MJ of DE was required to optimize performance in gilts wi th high 
genetic potential for lean gain, irrespective of the feed intake level. In addition, a 
factorial model to estimate the lysine/energy requirements is proposed. 

Key words: Pigs, Energy Intake, Lysine, Protein Retention, Nutrient Requirements 

INTRODUCTION 

For optimum protein utilization, pigs need a diet with an appropriate amino 

acid/energy ratio. This optimum ratio is likely to depend on the genetic capacity of 

the animals for protein deposition (Campbell et al., 1985). Due to improvements in 

genetic potential for lean tissue growth, protein requirements are also expected to 

increase. However, information concerning the protein deposition capacity or amino 

acid requirements of improved animals is scarce. Furthermore, lysine requirements 

have been determined mostly at one energy intake level or with ad libitum intake, 

whereby intakes of energy at different dietary lysine contents were different. 

Energy intake level, however, can affect the ratio between lipid and protein 

deposition (LD/PD ratio) (De Greef et al., 1992). Therefore, the optimum dietary 
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protein/energy ratio may be affected by energy intake level as well, as reported by 

Campbell et al. (1984) for male pigs from 45 to 90 kg. 

The aims of the present study were to determine the optimum ileal digestible 

lysine/energy ratio for pigs of 20 to 45 kg BW with high capacity for lean tissue 

growth, and to investigate the effect of energy intake level on the lipid/protein 

deposition ratio and lysine/energy requirements. In addition, a factorial model to 

estimate the required dietary lysine/energy ratio for maximum protein deposition is 

proposed. 

EXPERIMENTAL PROCEDURES 

Animals and Design 

One hundred female pigs of a commercial strain (VOC Nieuw Dalland) were used 

in the experiment. At the start of the experiment the animals were 65 days old and 

BW was 20 kg. To determine initial body composition, five pigs were allocated to 

an initial slaughter group and slaughtered at 20 kg BW. A second group of five pigs 

was given ad libitum access to feed in order to determine the maximum protein 

deposition of these pigs. Ninety pigs were allocated equally among 30 treatments 

in a 2 x 15 factorial arrangement. The respective factors were level of feeding, 

equivalent to 2.5 and 3.0 times energy requirements for maintenance, and protein 

intake, ranging from an average of 127 to 350 g/d during the treatment period in 

15 graduated steps. Intake of lysine, being the first-limiting amino acid, ranged 

concurrently from an average of 6.4 to 18.2 g/d in the treatment period. The first 

12 increments in lysine intake were .74 g/d and the last two increments were 

1.48 g/d. The 90 pigs were grouped in three blocks on the basis of initial BW, and 

the 30 dietary treatments were randomly allocated among the pigs in each block. 

Diets and Feeding 

At each of the 15 levels of lysine (protein) intake, the animals were offered feed 

at one of two energy intake levels, in order to separate the effects of energy and 

lysine intake. The animals on the low energy intake level were fed diets with a 

calculated lysine content ranging from .44 to 1.24 g of lysine/MJ of DE. The first 

12 increments were .05 g/MJ, the last two increments were .1 g/MJ. The animals 

on the high energy intake level received an extra amount of protein-free energy 
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(Diet 2, Table 1 ), equivalent to .5 times energy for maintenance. Consequently, the 

lysine/energy ratios on the high-energy intake were 83% of those for animals on 

the low-energy intake level and ranged from .37 to 1.03 g/MJ of DE. The pigs 

offered feed on an ad libitum basis received a diet with 15.3 MJ of DE/kg and .79 g 

of lysine/MJ of DE. The lysine/energy ratio for each treatment was kept constant 

throughout the experiment. 

To ensure a constant amino acid balance, a protein-rich (Diet 1), and a protein-

free diet (Diet 2) were formulated (Table 1). These were fed in different ratios to 

each of the treatment groups. Consequently, protein and lysine intake varied 

concurrently. To determine the lysine requirements, lysine had to be the 

first-limiting amino acid. A mixture of barley and protein-rich feedstuff s was chosen 

to compose Diet 1 according to this demand. Apart from lysine, the contents 

(g/16 g of N) of the essential amino acids in Diet 1 were at or above those in ideal 

protein (Wang and Fuller, 1990). The lysine content (g/16 g of N) of Diet 1 was 

80% of that in ideal protein, to ensure that lysine was the first-limiting amino acid. 

Diet 1 was formulated to contain 1.24 g of lysine/MJ of DE. Diet 2 was formulated 

to ensure a constant intake of other nutrients (e.g., Na, K, Ca, P, Mg, CI, and fiber) 

independent of the ratio between the two diets in the daily ration. Ileal digestibility 

of crude protein and amino acids was determined in a digestibility experiment 

involving five entire male pigs averaging 28.6 ± .2 kg BW fitted with Post-Valve 

T-Caecum (PVTC) cannulas (Van Leeuwen et al., 1991). 

The two feeding levels were chosen to provide average DE intakes between 20 

and 45 kg BW of 15.8 and 18.8 MJ/d, which was equivalent to 2.5 and 3.0 times 

energy for maintenance respectively. The pigs' daily feed allowances increased with 

increasing BW according to a scale based on metabolic BW, with maintenance 

requirements taken as .475 MJ of DE/kg B W 7 5 (ARC, 1981). The DE 

concentrations of Diets 1 and 2 were determined using 12 intact male pigs in 

metabolism cages at two different body weights, averaging 23.2 ± .5 and 

41.5 ± .9 kg. Because of a difference in DE content of Diets 1 and 2 (Table 1 ), the 

DE concentration of the daily ration increased slightly with an increasing proportion 

of Diet 2 in the ration. Therefore gain/feed (kilograms/kilogram) was standardized 

on the basis of a diet with 15 MJ of DE/kg by calculating gain/15 MJ of DE intake 

for each individual animal. 

Diets were analysed for dry matter, nitrogen, and ash according to ISO 

(International Organization for Standardization) 6496 (1983), ISO 5983 ( 1979), and 
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ISO 5984 (1978), respectively. Amino acids were determined at the laboratories 

of Eurolysine (Paris, France) with an amino acid analyzer (Beekman 6300, Palo Alto, 

CA) after hydrolysis with 6 N hydrochloric acid under reflux at 110°C for 23 h. The 

sulphur amino acids were analyzed after oxidation with performic acid and 

subsequent hydrolysis with HCl as previously described (Mason et al., 1980). 

Tryptophan was determined by HPLC after alkaline hydrolysis using barium 

hydroxide at 125°C for 16 h (Landry et al., 1988). 

Table 1 . Composition of the experimental diets as fed 

Ingredient, g/kg 

Barley 

Maize starch 

Soybean meal (45% CP) 

Maize gluten meal (63.7% CP) 
Potato protein 

Danish herring meal 

Skimmed milk powder 

Dextrose 
Animal fat 

Soybean oil 

Cane molasses 

Cellulose 

CaC03 

Monocalcium phosphate 

NaCI 

MgO 
KHC03 

DL-methionine 

L-threonine 

L-tryptophan 
Fumaric acid 

Premix3 

Diet 1 

345 

-
200 

100 
50 

100 

130 

-
8.0 

12.0 

20.7 

5.0 

5.0 

-
1.0 

-
-

1.4 

1.2 

.7 

10.0 

10.0 

Diet 2 

-
726.5 

-
-
-
-
-

50 

18.0 

27.0 

50.0 

45.0 

8.5 

26.0 

6.3 

2.8 

20.0 

-
-
-

10.0 

10.0 

Nutrient, g/kg 

Dry matter 

Crude protein0 

Ash 

Digestible energy, MJ 

Lysine0 

Diet 1 

897.3 

350.4 

55.9 

16.00 
18.5 

Diet 2 

890.7 

6.2 

56.0 

13.97 
.09 

Contributed the following per kilogram of diet: retinol, 9,000 IU; cholecalciferol, 1,800 IU; o-
tocopherol, 40 mg; menadione dimethyl-pyrimidinol bisulphite, 3 mg; thiamin, 2 mg; riboflavin, 
5 mg; niacin, 30 mg; d-pantothenic acid, 12 mg; vitamin B6, 3 mg; vitamin B12, 40 / /g ; ascorbic 
acid, 50 mg; choline, 1,000 mg; d-( + )biotin, .10 mg; folic acid, 1.0 mg; copper, 168 mg; 
cobalt, .53 mg; iodine, .38 mg; iron, 80 mg; manganese, 44 mg; selenium, .060 mg; zinc, 109 
mg. This mixture also supplied 40 mg of tylosin per kilogram of diet. 
Analysed content. 
Determined ileal digestibility coefficients: crude protein . 81 , lysine .83. 
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Housing and Management 

The pigs were housed individually in pens with half-slatted floors in an insulated 

building, from June to September. They were fed equal portions twice daily at 

0800 and 1600. Water was available ad libitum. The animals were weighed twice 

a week, on Monday and Thursday, before feeding and feed allowances were 

adjusted to expected gain for the following period of 3 or 4 d, respectively. Pigs 

reaching 45 kg were killed on Tuesday or Friday, on the date that their BW was 

closest to 45 kg. If after weighing, it was decided that the animal was to be 

slaughtered the next day, the pig was given its normal feed allowance for that day 

and was killed the following morning. 

Slaughter Procedure and Carcass Analysis 

The gilts were killed by electrical stunning and exsanguination and the blood and 

organs were collected separately. After emptying the gastrointestinal tract, blood 

and individual organs were weighed, stored together per pig in a plastic bag, and 

frozen at -20°C. The scalded, scraped, and eviscerated carcass, including head and 

feet (carcass), was split longitudinally and the two halves were weighed. The right 

half was sealed in a plastic bag and stored at -20°C. The frozen carcass and organ 

fractions (referred to together as empty body) were cut into small pieces and 

homogenized separately in a commercial butcher's mincer. Each fraction was 

subsampled for proximate analysis. 

Dry matter content was determined after drying samples in a vacuum oven at 

50°C and a vacuum of 100 torr, using anhydrous calcium chloride as the drying 

agent. After 16 h, the vacuum was changed to 15 torr and the samples were 

weighed every 4 h until they obtained constant weight. Nitrogen content was 

determined in the fresh samples by Kjeldahl analysis according to ISO 5983 ( 1979). 

Lipid content was assessed by extraction of freeze-dried samples with petroleum-

ether and drying the extract at 103°C to a constant weight according to ISO 6492. 

Ash was analysed by burning oven-dried samples in a muffle furnace at 550°C 

according to ISO 5984 (1978). 

Statistical Analysis 

From the 90 animals used in the factorial arrangement, four pigs (treatments 

2.5 x M .94 g of lysine/MJ of DE; 3.0 x M . 4 1 , .53, and 1.03 g of lysine/MJ of DE) 

were excluded from the statistical analysis, due to ill health. For the remaining 44 
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animals on the low and 42 animals on the high-energy intake treatments, the effect 

of lysine (protein) intake on criteria of performance and body composition was 

determined by regression analysis estimating a linear and curvilinear effect of 

average daily lysine intake in the treatment period. The curvilinear effect was 

determined using a two-phase linear model based on Koops and Grossman (1993): 

y = A - b * s * In (1 + e ( c - x ) / s ) [1] 

in which: y = dependent variable, x = independent variable, A = plateau for the 

dependent variable (second phase), b = slope of the linear (first) phase, c = point 

of transition for the independent variable, and s = parameter regulating the 

smoothness of transition. This model was chosen because it can describe both 

linear-plateau and curvilinear relationships. A small smoothness parameter (s) 

results in an abrupt change from linear to plateau, whereas a large value of s results 

in a smooth transition. When the data did not enable a proper estimation of the 

smoothness of transition, parameter s was fixed to a value of .05, which 

guaranteed a sharp change from linear to plateau. 

If only the linear effect of lysine intake was significant (P < .05), the effect of 

energy intake on the intercept and slope of this linear relationship was determined 

using dummy variables and the backward elimination procedure (Draper and Smith, 

1981). The F-value 3.96 (P = .05, error df = 80) was used as the criterion. When 

a curvilinear effect was present (P < .05), the effect of energy intake on each of 

the three parameters A (plateau), b (slope), andc (inflection point) in Model [1] was 

determined using the same procedure. 

Data were analysed by linear (GLM) and derivative-free nonlinear (NLIN, method 

DUD) regression procedures (SAS, 1989). 

RESULTS 

Performance Criteria 

Both BW at slaughter and empty body weight (weight of carcass plus organs and 

blood) as a fraction of BW were not affected by energy or lysine intake (P > .1). 

The average slaughter weight was 45.5 kg (SEM .58) and empty body weight as 

a fraction of slaughter weight was .92 (SEM .009). Average daily gain and 

gain/feed increased curvilinearly with increasing lysine intake (P < . 0 1 ; Table 2). 
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Table 2. Effect of daily lysine intake on the growth rate and gain/feed of gilts from 20 to 45 kg, fed 
at 2.5xM or 3.0xM (M = energy for maintenance) 

Mean h 
intake. 

6.38 

6.98 

7.87 

8.55 

9.24 

10.1 

10.9 

11.4 

12.3 

12.9 

13.7 

14.5 

15.4 

16.9 

18.2 

Mean 

SEMb 

/sine 
g/da 

(127) 

(139) 

(155) 

(168) 

(181) 

(197) 

(212) 

(222) 

(238) 

(251) 

(265) 

(279) 

(297) 

(325) 

(350) 

Regression0 

Intercept (a) 

Slope (b) 

Transition point (c) 

Plateau (A) 

Smoothness 
parameter (s) 

RSDd 

ADG, g/d 

2.5xM 

425 

462 

468 

527 

511 

558 

611 

569 

610 

588 

578 

581 

602 

623 

614 

555 

-

10.2 

607 

23.0 

48.7 

1.36 
40.2 

3.0xM 

477 

505 

563 

609 

608 

643 

737 

708 

684 

736 

724 

796 

762 

739 

784 

672 

-

1 2 . 1 " 
7 6 8 " 

Gain/feed, 

2.5xM 

.403 

.443 

.445 

.507 

.496 

.531 

.582 

.547 

.570 

.557 

.545 

.547 

.560 

.582 

.577 

.526 

kg/kg 

3.0xM 

.390 

.418 

.452 

.490 

.484 

.510 

.577 

.567 

.554 

.593 

.584 

.642 

.602 

.581 

.616 

.537 

.0187 

- -
.0332 

11.0 

.565 

.503 

.031 

12.6 * 

. 6 0 4 " 

Mean daily protein intake (g/d) in parentheses. 
Pooled standard error for 30 treatment groups. 
Regression analysis using Model [1] y = A - b * s » ln(1 + e'c " x"s) in which: y = dependent 
variable, x = independent variable, A = plateau for the dependent variable, b = slope of the 
linear phase, c = point of transition for the independent variable, and s = parameter regulating 
the smoothness of transition. When the curvilinear effect was not significant (P > .05), the 
model was reduced to a linear model: y = a + b * x. 
* P < .05 and * * P < .01 for differences in estimates of parameters A, a, b, and c between 
the two energy levels. When parameter estimates for the two energy levels were not different, 
one estimate is given. Also one estimate is given for smoothness parameter s. 
RSD, Residual standard deviation of the model including only significant (P < .05) parameters. 
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The ADG increased with increasing lysine intake to a level of 607 and 768 g/d at 

the low- and high-energy levels, respectively. The rate of increase (slope) was 

similar for the two energy levels (P > . 1 ), but at the lower energy level the plateau 

was reached at a lower lysine intake (P < .01). The same effects were found for 

gain/feed, which increased to .565 and .604 kg/kg at the low- and high-energy 

levels, respectively. The ADG and gain/feed for the animals with ad libitum access 

to feed were 1,097 ± 41 g/d and .594 ± .014 kg/kg, respectively. 

Empty Body Characteristics 

The mean empty body composition (grams/kilogram) of the five pigs killed at 20 

kg was water 690 ± 1.9, protein 164 ± 2.0, lipid 105 ± 3.2, and ash 

30.9 ± .73. 

Water and protein content at 45 kg increased while lipid content decreased, both 

curvilinearly (P < .05) with increasing lysine intake; whereas ash content decreased 

linearly (P < .01 ; Table 3). The slopes of these relationships were not affected by 

energy intake (P > .05), which implies that the respective rates of increase and 

decrease in content with increasing lysine intake were similar at the two energy 

intake levels. Water content increased with increasing lysine intake to a maximum 

of 682 and 664 g/kg on the low- and high-energy levels, respectively. Protein 

content reached maxima of 182 and 176 g/kg and lipid content decreased to 104 

and 124 g/kg on the low- and high-energy levels, respectively. At each level of 

lysine intake, lipid content was higher and water, protein and ash contents were 

lower at the high-energy intake level. 

Rates of Deposition 

The mean empty body composition of the animals slaughtered at 20 kg BW, was 

used to calculate the deposition rates of body components between 20 and 45 kg 

(Table 4). Water, protein, and ash deposition rates increased curvilinearly with 

increasing lysine intake (P < .01). Lipid deposition decreased curvilinearly with 

increasing lysine intake (P < .05). The respective rates of increase (slopes) in 

water, protein and ash deposition rates and the decrease in lipid deposition rate 

were not affected by energy intake (P > .1). At each level of lysine intake, lipid 

deposition was on average 47 g/d higher for pigs on the high-energy level than for 

pigs on the low-energy level. Water, protein, and ash deposition rates were similar 

foT the two energy intake levels, at each level of lysine intake below the intake 
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point at which the plateau started. However, at lysine intakes beyond the point of 

inflection, for gilts fed the low-energy diet, extra energy intake enhanced the 

plateau in water deposition from 367 to 441 g/d, in protein deposition from 108 

to 128, g/d and in ash deposition from 17.6 to 19.3 g/d. Deposition rates in the 

empty body (grams/day) for the animals having ad libitum access to feed were 

571 ± 17.9 for water, 166 ± 5.2 for protein, 217 ± 15.0 for lipid, and 

26.1 ± 1.8 for ash. 

Table 3. Effect of daily lysine intake on the composition of the empty body of gilts at 45 kg, fed 
2.5xM or 3.0xM (M = energy for maintenance) between 20 and 45 kg 

Mean lysine 
intake, g/da 

6.38 

6.98 
7.87 

8.55 

9.24 

10.1 

10.9 

11.4 

12.3 

12.9 

13.7 

14.5 

15.4 

16.9 

18.2 

Mean 

SEMb 

Regression0 

Intercept (a) 

Slope (b) 
Transition 
point (c) 

Plateau (A) 
Smoothness 
parameter (s) 
RSDd 

Water 

2.5xM 

618 

618 

641 

638 

655 

660 

663 

666 

665 

670 
673 

660 

679 

684 

683 

658 

3.0xM 

581 

605 

613 

613 

630 

637 

640 

647 

652 

663 

659 

669 

654 

653 

671 

639 

6.79 

- -
38.1 

6.25 

682 664** 

2.87 
11 .7 

Empty body composition, g/kg 

Protein 

2.5xM 3.0xM 

161 

163 

169 

167 

172 

175 

173 

181 

181 

183 

181 

181 

180 

182 

184 

176 

-

11.3 

182 

143 

150 

154 

155 

159 

162 

165 

169 

168 

171 
174 

176 

176 

175 

176 

165 

2.45 

-
4.44 

13.2** 

176** 

.98 
3.75 

Lipid 

2.5xM 3.0xM 

177 

179 

150 

153 

132 

121 

124 

116 

115 

111 

106 
118 

101 

97 

99 

127 

-

10.4 

104 

231 

204 

190 

196 

173 

159 
154 

147 

140 

130 

131 
119 

130 

138 

116 

157 

7.52 

-
19.2 

11.5** 

124** 

1.53 

12.7 

Ash 

2.5xM 

35.3 
35.7 

33.4 

33.9 

32.7 

32.8 

33.2 

32.1 

31.9 

31.7 

32.5 

32.8 

31.7 

29.8 

29.9 

32.6 

3.0xM 

36.0 

34.1 

31.5 

30.6 

31.2 

32.6 

31.9 

30.2 

29.3 

30.9 

31.2 

30.1 

30.0 

29.6 

28.4 

31.2 

.984 

37.5 

-

_ 
-

1 

36.0 

42 

_ 
-

_ 
.67 

a,b,c,d S e e T a b | e 2 . 
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Ratio between Lipid and Protein Deposition 

The ratio between lipid and protein deposition (LD/PD) decreased curvilinearly 

(P < .01) with increasing lysine intake both in the carcass and organ fraction and 

in the empty body (Table 5). For all three fractions the rates of decrease (slopes) 

Table 4. Effect of daily lysine intake on the deposition rates of water, protein, lipid, and ash in the 
empty body of gilts between 20 and 45 kg, fed at 2.5xM or 3.0xM (M = energy for 
maintenance) 

Mean lysine 
intake, g/da 

6.38 

6.98 

7.87 

8.55 

9.24 

10.1 

10.9 

11.4 

12.3 

12.9 

13.7 

14.5 

15.4 

16.9 

18.2 

Mean 

SEMb 

Regression0 

Intercept (a) 

Slope (b) 

Transition 
point (c) 

Plateau (A) 

Smoothness 
parameter (s) 

RSDd 

Water 

2.5xM 3.0xM 

213 

229 

258 

286 

288 

321 

341 

344 

347 

351 

347 

326 

354 

387 

382 

318 

-

9.79 

367 

214 

242 

277 

298 

318 

336 

393 

397 

385 

423 

404 

436 

419 

419 

457 

361 

14.5 

-
43.0 

11.4** 

4 4 1 * * 

1.89 

24.2 

Deposition 

Protein 

2.5xM 3.0xM 

61 

67 

74 

82 

82 

94 

97 

104 

107 

107 

102 

100 

103 

112 

113 

94 

-

10.9 

108 

55 

63 

73 

80 

86 

91 

111 

112 

107 

117 

118 

126 

126 

124 

129 

101 

3.81 

-
10.8 

13.0** 

128** 

24.4 

6.3 

rates, g/d 

Lipid 

2.5xM 3.0xM 

94 

99 

80 

94 

71 

68 

76 

65 

68 

61 

56 

68 

51 

51 

53 

70 

-

54 

145 

140 

133 

152 

133 

114 

133 

118 

106 

101 

99 

88 

104 

111 

86 

117 

7.99 

-
-5.78 

14.0 

101 

.05e 

14.9 

2.5xM 

15.3 

16.5 

15.2 

17.6 

15.5 

17.4 

18.9 

17.5 

17.9 

17.4 

17.8 

18.0 

17.2 

16.5 

16.4 

17.0 

-

17.6 

Ash 

3.0xM 

17.5 

17.2 

16.1 

16.6 

17.5 

19.3 

21.8 

19.2 

17.4 

20.3 

20.0 

19.8 

19.7 

19.2 

18.3 

18.7 

994 

-
.57 

10.9 

19.3** 

05e 

1.74 

a .b 'c 'd See Table 2. 
e Smoothness parameter (s) could not be estimated and was fixed to the value of .05 in 

Model [1]. 
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were similar for the two energy levels (P > .1). However, both in the carcass and 

empty body, at each level of lysine intake, LD/PD ratios were higher at the 

high-energy level than at the low-energy level. At levels of lysine intake beyond 

which maximum protein deposition was reached, LD/PD in the carcass was .57 and 

. 8 1 , and in the empty body .53 and .74, at the low- and high-energy intake levels, 

Table 5. Effect of daily lysine intake on the ratio between lipid and protein deposition in body 
components of gilts between 20 and 45 kg live weight, fed at 2.5xM or 3.0xM 
(M = energy for maintenance) 

Mean lysine 
intake, g/da 

6.38 

6.98 

7.87 

8.55 

9.24 

10.1 

10.9 

11.4 

12.3 

12.9 

13.7 

14.5 

15.4 

16.9 

18.2 

Mean 

SEMb 

Regression0 

Intercept (a) 

Slope (b) 

Transition 
point (c) 

Plateau (A) 

Smoothness 
parameter (s) 

RSDd 

Lipid deposition/protein deposition 

Carcass 

2.5xM 

1.64 

1.62 

1.17 

1.23 

.95 

.79 

.85 

.69 

.69 

.62 

.60 

.73 

.56 

.51 

.52 

.88 

3.0xM 

3.00 

2.42 

2.01 

2.13 

1.69 

1.39 

1.30 

1.14 

1.10 

.96 

.94 

.77 

.91 

.98 

.75 

1.43 

0.103 

-
-

7.61 

.57 

1 

-
.57 

9 . 5 5 " 

. 8 1 * * 

.97 

180 

Organs 

2.5xlv 

.79 

.60 

.41 

.54 

.28 

.29 

.30 

.22 

.22 

.27 

.19 

.31 

.20 

.17 

.17 

.33 

3.0xM 

.90 

.94 

.64 

.64 

.63 

.48 

.50 

.47 

.32 

.30 

.25 

.24 

.33 

.40 

.21 

.48 

0.062 

-
-

10.7 

-
.096 

i3.r* 

.25 

.29 

115 

Empty body 

2.5xM 

1.54 

1.49 

1.08 

1.15 

.87 

.72 

.78 

.64 

.63 

.58 

.55 

.68 

.51 

.46 

.47 

.81 

3.0xM 

2.66 

2.22 

1.81 

1.91 

1.55 

1.25 

1.20 

1.06 

.99 

.86 

.84 

.70 

.83 

.90 

.67 

1.30 

0.092 

-
-

8.25 

.53 

1 

-
.45 

10 .1 * * 

.74** 

.82 

162 

a'b.<=.d See Table 2. 
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respectively. In the organs LD/PD ratio was on average .15 higher at the 

high-energy intake level than the low intake level: .33 vs .48. The plateau in LD/PD 

ratio, however, estimated as .25, was similar (P > .05) for the two energy intake 

levels. 

Required Lysine/Energy Ratios 

The lysine/energy ratios required to maximize ADG, gain/feed, and protein 

deposition were calculated using quadratic and linear-plateau models. The linear-

plateau model was based on Model [1] with parameter s fixed at .005 and ileal 

digestible lysine/digestible energy (grams/megaJoule of DE) as the independent 

variable. The results from these calculations are presented in Table 6. Energy intake 

level did not affect the optimum lysine/energy ratio (P > .05). Furthermore, the 

lysine/energy ratio required to support maximum protein deposition was higher than 

the corresponding ratios required to support maximum gain and gain/feed. 

Estimates of requirements based on the quadratic model were considerably higher 

than those using the linear-plateau model. 

Table 6. Ileal digestible lysine requirements (g/MJ of DE) for live weight gain, gain/feed, and protein 
deposition based on linear-plateau and quadratic regression models for gilts between 20 
and 45 kg live weight, fed at 2.5 or 3.0 times energy for maintenance 

Criterion 

Live wt gain 

Gain/feed 

Protein deposition 

Linear-plateau 

Requirement3 

.57±.019 

.57 ±.017 

.62 ±.013 

F-valueb 

.18 

.01 

1.1 

Quadratic 

Requirement3 F-valueb 

.79±.037 2.42 

.78±.029 2.01 

.82±.027 3.15 

3 Lysine/energy ratio (mean ± SE) required for maximum performance of pigs at the two energy 
intake levels. 

b F-value for an effect of energy intake level on lysine requirements. Critical value of F(1,80): 
P = .05, F = 3.96. 

DISCUSSION 

Deposition Rates 

Gilts that had ad libitum access to feed gained 1,097 g/d, of which they 

deposited 166 g of protein and 217 g of lipid. Thus, the gilts used in this 

experiment had a high potential for lean tissue growth. On the basis of genetic 
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capacity for protein deposition, these animals were comparable with those used by 

Rao and McCracken (1990, 1992) and in general were better than pigs used in 

other requirement studies reported in the literature. Compared with animals with 

ad libitum access to feed, protein and lipid deposition and LD/PD were much lower 

for the pigs on the 2.5 and 3.0 times energy for maintenance treatments. At each 

of the latter two energy intake levels, protein deposition increased, and lipid 

deposition and LD/PD decreased with increasing lysine (protein) intake in agreement 

with the results of Campbell et al. (1985). 

At levels of lysine intake beyond those required to maximize protein deposition, 

protein deposition remained constant and independent of lysine intake. Lipid 

deposition also reached a plateau but only at very high levels of lysine intake 

(Table 4). This plateau could only be estimated with a fixed smoothness parameter 

(s). The latter was mainly caused by the relatively large variation in lipid deposition 

between animals, and the smaller range of lysine intake levels over which the 

plateau was valid. A t similar protein gain and rising protein intake, increasing 

amounts of amino acids have to be deaminated. Therefore, the energy available for 

deposition of protein and lipid will decrease. The plateau in protein deposition and 

the continued decrease in lipid deposition, suggest that at high levels of lysine and 

protein intake excess dietary protein was deaminated and excreted mainly at the 

expense of lipid deposition. This is somewhat different from the results of Campbell 

et al. (1984, 1985), who found a decreased protein deposition at high levels of 

protein intake, and probably reflects differences in genotypes and in protein 

deposition capacity between the experiments. 

At levels of lysine and protein intake beyond those required to maximize protein 

deposition, protein and lipid deposition in the body increased with increasing energy 

intake (Tables 4 and 5). These results are in agreement with Ellis et al. (1983), 

Campbell et al. (1984, 1985), and Rao and McCracken (1992) for animals of similar 

or higher body weights. Apart from the latter, these authors also reported an 

increased LD/PD ratio at higher energy or feed intake levels, as in the present 

experiment. However, the carcass LD/PD ratios of .57 and .81 for pigs on the low-

and high-energy intake levels in the present experiment were lower than most 

values from the literature, which range from .7 to 1.2. 
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Lysine Requirements 

Lysine requirements are defined here as the required ratio between ileal digestible 

lysine and digestible energy (grams/megaJoule), which supports maximum ADG, 

gain/feed, or protein deposition. These requirements were estimated with a linear-

plateau and a quadratic model. According to Baker (1986) the curvilinear method 

indicates the requirements for maximal response of all animals in a population, 

whereas a broken-line response predicts requirements for the average animal in the 

population. Furthermore, the quadratic method tends to overestimate the 

requirement of a nutrient, if the dependent variable (e.g., ADG) remains constant 

after the requirement for that nutrient has been met (Williams et al., 1984). 

Presumably this overestimation increases if the range of intake levels of that 

nutrient increases above the requirement. In our experiment, the linear-plateau 

model gave a good estimate of the optimum lysine/energy ratios for the average 

animal, because ADG, gain/feed, and protein deposition remained constant after the 

inflection point. The quadratic model gave a large overestimation as illustrated for 

the rate of protein deposition in Figure 1. The plateau model used in this experiment 
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Figure 1. Effect of dietary lysine/energy on protein deposition (mean + SE, n = 3) in gilts from 
20 to 45 kg body weight, fed at 2.5 or 3.0xM (M = energy for maintenance) described 
with a linear-plateau ( ) and a quadratic regression model (- -). Maximum protein 
deposition was reached at .62 and .82 g of ileal digestible lysine/MJ of DE, calculated 
with the linear-plateau and the quadratic model, respectively. These lysine/energy 
requirements were not affected by the level of energy intake (P > .05). 
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has the ability to interpolate between tested levels of a nutrient and describes an 

objective breakpoint. This represents a large benefit compared with the plateau 

model described by Martinez and Knabe (1990) and the method of using two 

intersecting straight lines. 

In this experiment, the optimum lysine to energy ratios for ADG and gain/feed 

were somewhat lower than the optimum for protein deposition (Table 6). Similar 

results were reported by Campbell et al. (1985) and Batterham et al. (1990) for 

pigs of similar body weight. Requirements in our experiment based on the linear-

plateau relationship were .57 g of ileal digestible lysine/MJ of DE for ADG and 

gain/feed and .62 g for protein deposition. The corresponding total lysine/energy 

values were .69 and .75 g of lysine/MJ of DE, respectively. Published results of 

experiments in which lysine requirements were determined on ileal digestible bases 

are scarce. Batterham et al. (1990) using quadratic regression estimated ileal 

digestible lysine/digestible energy requirements of restrictedly fed females of .59, 

.60, and .66 g/MJ for ADG, gain/feed, and protein deposition, respectively. In 

contrast Martinez and Knabe (1990) reported ileal digestible lysine requirements for 

ADG and gain/feed ratio for female and castrated male pigs with ad libitum access 

to feed as .50 g/MJ of DE. Differences between the three experiments presumably 

reflect differences in genetic capacity for protein deposition between the pigs and 

possibly also differences in feed intake. 

A number of experiments have been published in which lysine requirements were 

estimated on the basis of total lysine. These were reviewed by the ARC (1981) and 

NRC (1988). The ARC (1981) and NRC (1988) propose total lysine requirements 

for pigs of approximately 20 to 45 kg as .84 and .53 g/MJ of DE, respectively. 

Recent experiments with animals in the same live weight range suggest 

requirements of .80 (Yen et al., 1986) and .71 g of lysine/MJ of DE (Campbell et 

al., 1988) for female pigs; and .72 g/MJ of DE for females and barrows (Chiba et 

al., 1991). For entire males requirements were determined as .80 g of total 

lysine/MJ of DE (Rao and McCracken, 1990). Large differences between proposed 

requirements for animals within a certain weight range are due to variations in 

energy intake level (Campbell et al., 1984), sex (Williams et al., 1984), genetic 

capacity (Campbell et al., 1985), measuring technique (Rao and McCracken, 1990), 

method of analysis (Baker, 1986), pattern, digestibility and availability of dietary 

amino acids, and environmental conditions (ARC, 1981). These discrepancies can 

be reduced to some extent, if protein requirements are based on ileal digestible 
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amino acids. This can be done because a considerable amount of data on ileal 

digestible amino acid contents of feedstuffs has become available in the last few 

years (Lenis, 1992). 

Effect of Energy Level on Lysine/Energy Requirements 

In this experiment, the optimum lysine/energy ratios were not affected by energy 

intake level. The ad libitum feed intake was considerably higher than feed intake on 

the energy level of 3.0 times maintenance. Therefore, no firm conclusions can be 

drawn for feeding levels that approach ad libitum intake. However, as long as the 

intrinsic capacity for protein deposition has not been fully utilized, protein 

deposition reaches a maximum at each energy level, determined by minimum lipid 

deposition. Thus, the reason why protein deposition reaches a plateau is similar at 

each energy level, namely the distribution of energy between protein and lipid 

deposition. Therefore, also at high-energy levels, protein deposition may approach 

the plateau with similar protein utilization. 

A constant optimum protein/energy ratio was also determined by Campbell et al. 

(1985) and Fuller et al. (1986) for restrictedly fed animals. Giles et al. (1987), 

however, reported higher lysine/energy requirements for restrictedly fed female pigs 

between 20 and 45 kg than for animals offered feed on an ad libitum basis. 

Similarly, Campbell et al. (1984) found that the dietary protein/energy requirement 

of male pigs from 45 to 90 kg, fed 3.2 times energy for maintenance, was lower 

than that of pigs fed 2.5 times maintenance energy. In the latter two experiments, 

the higher energy intake levels probably exceeded those required to support 

maximum protein deposition. The excess energy allowance, without increase in PD, 

would result in a reduced estimate of the optimum lysine/energy. This interaction 

between energy intake and protein requirements is most likely to occur at live 

weights above rather than below 50 kg, in females and barrows rather than in 

males, and also in pigs of low rather than of high genetic potential for lean gain 

(SCA, 1987). 

Below maximum protein deposition, LD/PD increased with increasing energy 

intake. However, in the present and afore mentioned experiments this increasing 

LD/PD did not result in a noticeable reduction of lysine/energy requirement. This 

may be because as energy intake level increases, the proportion of consumed 

nutrients used for maintenance processes decreases. Protein/energy required for 

maintenance is lower than protein/energy required for growth, because 
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maintenance requirements are mainly energy requirements. Consequently, an 

increase in energy level, with a concomitant increase in growth, results in a dilution 

of these maintenance requirements and therefore an increased total protein/energy 

requirement. As a result, an increasing energy level can have two antagonistic 

effects on the optimum protein/energy ratio, by a dilution of maintenance 

requirements and an increase in LD/PD. The net effect depends on the relationship 

between energy intake and protein deposition and probably will be small below the 

maximum protein deposition. In the present experiment, these effects presumably 

compensated each other. 

As discussed above, the effect of energy intake on lysine/energy requirements 

is likely to be mediated by an effect on the partitioning of consumed energy 

between maintenance, protein deposition, and lipid deposition. Presumably the 

same is true for the effects of body weight, sex, and genotype on the optimum 

lysine/energy. Consequently, the effect of these factors on lysine/energy 

requirements can be estimated without conducting experiments, if a factorial model 

is used in which both lysine and energy requirements for maintenance, protein and 

lipid deposition have been included. 

Factorial Approach 

Based on ARC (1981) and Fuller and Wang (1987) ileal digestible lysine 

requirements (LySj) can be estimated as follows: 

Lys; = Lysm + (PD * Lyspr) / e [2] 

where Lysm = lysine for maintenance, PD = protein deposition (grams/day), Lyspr 

= lysine content of deposited body protein (grams/gram), and e = efficiency with 

which ileal digestible lysine is retained. 

Based on the ARC (1981), energy requirements (ME;) can be calculated as 

follows: 

ME; = ME m + 1/kp*P + 1/k f*F [3] 

where MEj = metabolizable energy intake (megaJoules/day), ME m = ME required 

for maintenance (megaJoules/kilogram BW 5 ) , P and F are energy retained as 

protein and fat and k and kf are efficiencies of utilization of ME for protein and fat 
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accretion. 

The combination of Models [2] and [3] allows the calculation of the required 

lysine/energy ratio (Q) in grams/megaJoules. 

Û . [LySm + {PD * LysPr) ' e] * ( 1 0 0 ° * - 9 6 ) [4] 
MEm + Mkp* PD* 23.7 + Mkf* LD * 39.6 

PD and LD are protein and lipid deposition, respectively, 23.7 and 39.6 are energy 

contents of body protein and fat, respectively, (kiloJoules/gram) 1,000 is a factor 

to calculate megajoules from kiloJoules and .96 is a factor to calculate DE from ME 

(ARC, 1981). 

To test the validity of Equation [4], the value of Q was calculated for the present 

experiment. Protein and lipid deposition at adequate levels of lysine intake 

(Table 6), were 106 and 57 g/d at the low-intake level and 126 and 101 at the 

high-intake level. In addition the following values were adopted: Lysm = .036 g/kg 

LW-7 5 (Fuller et al., 1989), Lyspr = .066 g/g, e = .74 and MEm = 550 

kJ/kg L W 7 5 , (Bikker et al., 1993), kp = .54 and kf = .74 (ARC, 1981). 

Based on these values, the required lysine/DE ratios (Q) for the pigs at the low-

and high-energy intake levels were calculated as .63 and .61 g of ileal digestible 

lysine/MJ of DE, respectively. These values agree with the determined optimum of 

.62 g of lysine/MJ of DE. This result implies that Equation [4] can be useful to 

estimate the optimal dietary lysine/energy. The correctness of the results, however, 

depends on the precision with which the input factors are known. Furthermore, it 

should be stressed that when a constant efficiency of lysine utilization (e) is 

assumed as in the present experiment, Equation [4] gives the optimum 

lysine/energy ratio according to the linear-plateau method. 

IMPLICATIONS 

An exact quantification of the optimum ratio between ileal digestible amino acids 

and energy in the diet for genetically improved pigs is necessary for efficient 

nitrogen utilization and minimal nitrogen excretion. The present results showed that 

the optimum lysine/energy ratio for growing gilts (20 to 45 kg) with a high potential 

for lean tissue growth was .60 g of ileal digestible lysine/MJ of digestible energy. 
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There was only a small difference between optima for daily gain, gain/feed, and 

protein deposition. The optimum lysine to energy ratio was not affected by feed 

intake level. Extrapolation of these results using a factorial model indicated that as 

long as an intrinsically determined maximum protein deposition has not been 

reached, the optimum lysine to energy ratio is largely unaffected by feed intake 

level. 
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INDEPENDENT EFFECTS OF ENERGY AND PROTEIN INTAKE ON PROTEIN 

DEPOSITION AND UTILIZATION IN GROWING PIGS 

P. Bikker, M.W.A. Verstegen, B. Kemp, and R.G. Campbell 

ABSTRACT 

One hundred gilts of a commercial strain were used to determine independently 
the effects of protein and energy intake, on protein and lysine deposition and 
utilization in gilts with high genetic potential for lean gain, from 20 to 45 kg. In a 
2 x 1 5 factorial arrangement, protein intake ranged from 127 to 350 g/d in 15 
graduated steps. The first 12 increments were 14 g/d, the last two increments 
were 28 g/d. Lysine was the first limiting amino acid in the diet. At each of the 15 
levels of protein intake, the animals were offered energy at one of two levels (2.5 
and 3.0 times energy for maintenance, on average 15.8 and 18.8 MJ of DE/d). 
Protein and lysine deposition, increased with increasing protein intake to a 
maximum rate of 108 and 8.0 g/d respectively, at the low energy level. The extra 
protein-free energy allowance of 3.0 MJ of DE/d for pigs fed 3.0 times maintenance 
did not affect these deposition rates at low levels of protein intake, but improved 
protein and lysine deposition to approximately 128 and 9.5 g/d respectively, at high 
levels of protein intake. These results support the concept of protein and energy 
dependent phases in protein deposition. Gross efficiencies of utilization of ileal 
digestible protein and lysine were .58 and .77, respectively, in the protein 
dependent phase, at both energy levels. The relationships between protein intake 
and deposition and between lysine intake and deposition were best described by 
a linear-plateau model. However, no firm conclusion was drawn about the 
smoothness of transition between the linear and plateau phase. 

Keywords: Pigs, Energy Intake, Protein Intake, Protein Utilization, Lysine Utilization 

INTRODUCTION 

Utilization of dietary protein depends both on the composition of the diet (i.e., 

amino acid pattern and protein to energy ratio), and the efficiency with which body 

protein is being deposited. Knowledge of the efficiency of body protein deposition 

is essential for a factorial calculation of requirements of pigs and also to accurately 

predict the growth response of the animals to a change in nutrient input 

(Whittemore, 1983). 

According to the ARC (1981) and Fuller and Crofts (1977) the efficiency of 

protein utilization decreased gradually with increasing protein intake and with 

increasing protein/energy ratio. Campbell et al. (1984, 1985), however, reported 

a constant marginal efficiency of protein utilization, independent of protein or 

energy intake, at levels of protein intake below the requirements. Furthermore, 
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efficiency of protein utilization has often been calculated using a reference value 

for ideal protein and faecal rather than ileal digestibilities, both of which are a 

possible source of error. In addition the amino acid pattern of body protein can be 

affected by protein and energy intake (Batterham et al., 1990; Bikker et al., 1994a) 

The present study was therefore undertaken to determine: (1) the relationships 

between ileal digestible protein intake and deposition, and lysine intake and 

deposition, (2) the efficiencies of utilization of ileal digestible protein and lysine, and 

(3) the interrelationships between protein and energy intake, on protein and lysine 

deposition and utilization. 

EXPERIMENTAL PROCEDURES 

Animals and Experimental Design 

One hundred female pigs of a commercial strain (VOC Nieuw Dalland, Venray, 

The Netherlands) were used in this study. At an average BW of 20 kg, 90 animals 

were allocated on the basis of BW among 30 treatment combinations in a 2 x 15 

factorial arrangement with three pigs per treatment combination. The respective 

treatments were energy intake level, equivalent to 2.5 and 3.0 times energy 

required for maintenance, and protein intake, in 15 graduated steps ranging from 

an average of 127 to 350 g/d during the treatment period. To allow calculation of 

nutrient retention, five animals were killed at commencement of the experiment for 

determination of initial body composition, at 20 kg BW. In addition, five animals 

received feed ad libitum, to determine maximum protein deposition. 

Diets and Feeding 

At each of the 15 levels of protein intake, the animals were offered feed at one 

of the two energy intake levels in order to separate the effects of energy and 

protein intake. On the low energy intake level, the animals were fed diets with a 

calculated total lysine content ranging from .44 to 1.24 g/MJ DE. The ileal 

digestible lysine/DE ratio for these 15 groups were as follows: .34, .38, .42, .46, 

.50, .53, .57, . 6 1 , .65, .69, .73, .77, .80, .88, and .95 g/MJ. The animals on the 

high energy level received an extra amount of protein-free energy of 3.0 MJ per 

day. Consequently lysine/energy ratios at this intake level were 83% of those for 

the animals on the lower energy level. The ratios determined ileal digestible 
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lysine/DE for these 15 groups were: .28, .32, .35, .38, . 4 1 , .45, .48, . 5 1 , .54, 

.57, . 6 1 , .64, .67, .73, and .80 g/MJ of DE. The two energy intake levels, 

averaging 15.8 and 18.8 MJ of DE/d, were equivalent to 2.5 and 3.0 times energy 

for maintenance respectively. The animals were fed according to a scale based on 

metabolic BW ( kg 7 5 ) , with maintenance requirements taken as .475 MJ of 

DE/kg - 7 5 (ARC, 1981). The pigs provided feed on an ad libitum basis received a 

diet with 15.3 MJ of DE/kg and .61 g of ileal digestible lysine/MJ of DE. 

A protein-rich (Diet 1) and a protein-free diet (Diet 2) were formulated to ensure 

a constant dietary amino acid balance. Diet 1 consisted mainly of barley, soybean 

meal, maize gluten meal, herring meal, skimmed milk powder, and potato protein. 

The main ingredients of Diet 2 were maize starch, dextrose, animal fat, and 

soybean oil. The composition of the diets has been previously published by Bikker 

et al. (1994b). The chemical composition of the diets, including amino acids, is 

presented in Table 1. These two diets were fed in different ratios to each of the 

treatment groups. Diet 1 was formulated to contain 1.24 g lysine/MJ of DE. 

A more detailed description of procedures, including proximate analysis of the 

diets and determination of digestible energy and ileal digestible amino acids, has 

been given elsewhere (Bikker et al., 1994b). 

Management and Carcass Analyses 

The gilts were housed individually in pens with half slatted floors in an insulated 

building. They were fed equal rations twice daily at 800 and 1600. Water was 

available ad libitum. The animals were weighed twice a week and feed allowances 

adjusted accordingly. At 45 kg the gilts were killed by electrical stunning and 

exsanguination. The blood and organs were collected and the contents of the 

gastro-intestinal tract were removed. The blood and individual organs (together 

referred to as organ fraction) were weighed, stored together per pig in a plastic bag 

and frozen at -20°C. The scalded, scraped and eviscerated carcass, including head 

and feet (carcass), was split longitudinally and the two halves were weighed. The 

right half was sealed in a plastic bag and stored at -20°C. The frozen carcass and 

organ fractions (together referred to as empty body) were homogenized separately 

in a commercial butcher's mincer. Each fraction was subsampled for proximate 

analysis as described by Bikker et al. (1994b). In addition, the ether extracted 

carcass and organ samples were ground with a centrifugal mill (Retsch ZM-1), and 

amino acid contents subsequently determined at the laboratories of Eurolysine 
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Table 1. Analysed chemical composition and determined ileal digestibility of crude protein and 
amino acids of the experimental diets as fed 

Nutrient, g/kg 

Dry matter 

Crude protein 
Ash 

Digestible energy (MJ/kg) 

Essential amino 

Lysine 
Methionine 

acids 

Methionine + Cystine 

Threonine 

Tryptophan 

Arginine 

Histidine 

Isoleucine 

Leucine 

Phenylalanine 

Phenylalanine+ 

Valine 

Tyrosine 

Nonessential amino acids 

Alanine 

Aspartic acid 

Cystine 

Glutamic acid 
Glycine 

Serine 

Tyrosine 

Diet 1 

897.3 

350.4 
55.9 

16.00 

18.5 

9.6 

13.8 

14.6 

4.1 

18.4 

8.0 

15.5 

31.3 
16.6 

27.7 

17.3 

18.5 

29.7 

4.2 

59.6 
13.2 

16.7 

11.1 

Diet 2 

890.7 

6.2 

56.0 

13.97 

.09 
NDa 

.07 

.09 

.04 

ND 

ND 

.09 

.33 
ND 

ND 

.19 

.19 

.61 

.07 

.61 

.09 

.12 

ND 

Ileal digestibility 

-
.81 

-
-
-

.83 

.91 

.84 

.81 

.82 

.90 

.86 

.86 

.90 

.89 

.90 

.84 

.85 

.78 

.67 

.89 

.76 

.83 

.91 

a ND not detectable 

(Paris). Amino acids were determined with an amino acid analyzer (Beekman 6300, 

Palo Alto, California) after hydrolysis with 6 N hydrochloric acid under reflux at 

110°C for 23 h. The sulphur-containing amino acids were analysed after oxidation 

with performic acid and subsequent hydrolysis with HCl as previously described 

(Mason et al., 1980). 

Statistical Analysis 

Four animals had to be excluded from the experiment due to bad health. For the 

remaining animals, 44 and 42 at the low and high energy intake level, respectively, 

the effect of protein and lysine intake on protein and lysine deposition was 
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determined with regression analysis, using a two-phase linear model, based on 

Koops and Grossman (1993): 

y = a + b, * x - (b-, - b2) * s * In ( 1 + e (x " c ) 's) 

in which y = dependent variable, x = independent variable, a = intercept, 

b1 = slope of the first phase, b2 = slope of the second phase, c = point of 

transition between the first and the second phase, and s = parameter regulating 

the smoothness of transition. 

This model was used to determine whether protein and lysine deposition reached 

a maximum, or continued to increase at high levels of protein intake. Subsequently, 

four different models were used to describe the relationship between intake and 

deposition of ileal digestible protein and lysine. These four models were: a linear-

plateau model wi th smooth transition (Koops and Grossman, 1993), a linear-plateau 

model with abrupt transition, similar to a bent-stick model (Campbell et al., 1984, 

1985), a monomoiecular model (ARC, 1981), and a Michaelis-Menten model 

(Phillips, 1981 , Fuller and Garthwaite, 1993). The respective equations of these 

models are given in Table 3. 

The effect of energy intake on regression parameters was determined using 

dummy variables and the backward elimination procedure (Draper and Smith, 

1981). Data were analysed by linear (GLM, SAS, 1989) and nonlinear (NONLIN 

package, Dennis et al., 1981) regression procedures. 

RESULTS 

Protein and Lysine Deposition 

The results of protein and lysine deposition and utilization are presented in 

Table 2. In addition, animals receiving feed on an ad libitum basis deposited 

166 ± 5.2 g of protein and 10.9 ± .56 g of lysine per day. Deposition of protein 

and lysine increased curvilinearly (P < .001) with increasing protein intake. The 

results of calculations with the two-phase linear model showed that the slopes, 

representing the marginal efficiencies of protein and lysine utilization, were not 

affected by energy intake (P > .1). In addition, the slope of the second phase (b2) 

for protein and lysine deposition was not different from zero (P > .1). Thus at high 

levels of protein intake, protein and lysine deposition had reached a maximum, 
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Table 2. Effect of daily protein and lysine intake on deposition rates of protein and lysine in the 
empty body of gilts between 20 and 45 kg, fed 2.5xM or 3.0xM (M = energy for 
maintenance) 

Protein intake3, 
g/d 

127 (6.37) 

138 (6.98) 

155 (7.86) 

168 (8.55) 

181 (9.25) 

197 (10.1) 

212 (10.9) 

222 (11.4) 

238 (12.3) 

251 (12.9) 

265 (13.7) 

279 (14.5) 

297 (15.4) 

325 (16.9) 
350 (18.2) 

Mean 

SEMb 

Regression0 

Intercept (a) 

Slope 1 ( b ^ 

Slope 2 (b2) 

Transition 
point (c) 
Smoothness 
parameter (s) 

RSDe 

Protein 
deposition, g/d 

2.5xM : 

61 

67 

74 

82 

82 

94 

97 

104 

107 

107 

102 

100 

103 
112 

113 

94 

3.8 

-7.3 

.64 

.067 

173** . 

10.7 

6.2S 

Î.OxM 

55 

62 

73 

80 

85 

91 

111 

112 

107 

117 

118 

126 

126 

124 

131 

101 

d 

204** 

1 

Protein deposition: 
ileal digestible 

protein i 

2.5xM 

.58 

.58 

.58 

.60 

.56 

.58 

.57 

.58 

.54 

.52 

.47 

.44 

.42 

.42 

.40 

.52 

ntake, g/g 

3.0xM 

.53 

.56 

.58 

.58 

.56 

.56 

.63 

.62 

.56 

.58 

.55 

.56 

.52 

.47 

.46 

.55 

.0189 

Lysine 
deposition, g/d 

2.5xM 3.0xM 

4.3 

4.6 

5.5 

5.3 

5.6 

6.7 

6.5 

7.3 

7.9 

7.8 

7.2 

7.2 

7.6 

8.4 

8.2 

6.7 

-

9.61* 

3.6 

4.6 

5.1 

5.9 

5.5 

6.4 

7.5 

6.9 

8.2 

8.3 

8.3 

9.1 

9.3 

8.9 

9.6 

7.1 

.44 

010 

.77 

12d 

* 11.7** 

.52 

.7123 

Lysine deposition: 
ileal digestible 

lysine intake, g/g 

2.5xM 

.79 

.78 

.84 

.74 

.73 

.80 

.72 

.76 

.75 

.71 

.62 

.59 

.59 

.59 

.54 

.69 

.041 

3.0xM 

.69 

.80 

.78 

.82 

.71 

.76 

.82 

.72 

.82 

.77 

.73 

.76 

.73 

.63 

.64 

.73 

In parentheses the daily lysine intake is given. Ileal digestibility for protein and lysine was .815 
and .834, respectively. 
Pooled standard error for 30 treatment groups. 

a + b.. * x - (b, - b,) • s * In (1 + e (x - c)/s ) in Analysis using a two-phase linear model y 
which: y = dependent variable, x = independent variable, a = intercept, b-| and b2 = slope of 
the first and second phase respectively, c = transition point between the two phases, and s = 
parameter regulating the smoothness of transition. **P < .01 for differences in estimates of 
parameter a, b1# b2, and c between the two energy levels. When parameter estimates for the 
two energy levels were not different, one estimate is given. Also one estimate is given for 
smoothness parameter s. 
b2 estimates for protein and lysine deposition were not different from zero (P > .1) 
RSD Residual standard deviation of the model including only significant (p < .05) parameters. 
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which had been determined by energy intake. Consequently, the relationships 

between protein and lysine intake, and protein and lysine deposition were further 

analysed with the four models that contained a maximum or an asymptote. The 

results of these analyses are presented in Table 3 for protein deposition and in 

Table 4 for lysine deposition. One parameter estimate is given when differences in 

the estimate between the two energy levels were not significant (P > .05). In 

Figure 1 the respective relationships for protein deposition, using parameter 

estimates from Table 3, are presented graphically. 
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Figure 1. Effect of daily ileal digestible protein intake on protein deposition (mean ± se, n = 3) 
in gilts from 20 to 45 kg BW, fed 2.5xM (-o-) or 3.0xM (-•-) (M = energy for 
maintenance), described with four models: linear-plateau with smooth transition 
(Model 1), linear-plateau with sharp transition (Model 2), monomolecular (Model 3), and 
Michaelis-Menten (Model 4). The parameter estimates are presented in Table 3). 
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Table 3. Parameter estimates of four different models to describe the relationship between 
ileal digestible protein intake (g/d) and protein deposition in the empty body of gilts 
between 20 and 45 kg, fed at energy levels (EL) of 2.5 or 3.0 times energy for 
maintenance 

Parameter estimates3 

Model EL 

2.5 

3.0 

2.5 

3.0 

2.5 

3.0 

2.5 

3.0 

ab 

108 

128 

107 

126 

115 

141 

111 

131 

b 

.70 

.58 

-170 

47.6 

c 

173 

206 

183 

218 

.0158 

.0122 

134 

152 

s 

19.9 

1d 

-

5.35 

int.b 

-8.1 

-.48 

-170 

47.6 

R2 

.9174 

.9121 

.9089 

.9168 

RSDC 

6.30 

6.46 

6.58 

6.32 

[1] a-b.s* ln(1+e ( c"x , / s) 

[2] a-b.s. ln(1+e , c" x ) / s ) 

[3] a-(a-b)*e'cx 

[4] b-Ma-bJ/d+lc/x)8) 

a One parameter estimate is given when estimates for the two energy levels were not different 
(P > .05). Two estimates are given when estimates for the two energy levels were different 
(P < .01) 

b Parameter a represents the maximum protein deposition. Int. is the intercept, representing 
the protein deposition at zero protein intake. 

c RSD Residual Standard Deviation of the model, including only significant (P < .05) 
parameters. 

d Parameter s fixed to a value of 1 in order to describe a linear-plateau relationship, wi th sharp 
transition. 

Table 4 . Parameter estimates of four different models to describe the relationship between 
ileal digestible lysine intake (g/d) and lysine deposition in the empty body of gilts 
between 20 and 45 kg, fed at energy levels (EL) of 2.5 or 3.0 times energy for 
maintenance 

Parameter estimates 

Model EL a" s int.L RSDC 

[1] a-b.s. ln(1+e' c - x ) / s ) ^ ® ' ° ° .85 

[2] a-b*s*ln(1+e , c"x ) / s) 

[3] a-(a-b).e"cx 

[4] b + (a-b)/(1+(c/x)s) 

2.5 7.80 

3.0 9.30 

2.5 8.76 

3.0 11.0 

2.5 8.62 

3.0 9.61 

.74 

-6.82 

3.46 

9.85 

11.79 

10.26 

12.26 

.226 

.169 

1.28 -.20 .8314 .7159 

.01d .27 .8288 .7170 

-6.82 .8269 .7210 

8.12 4.49 3.46 .8195 .7362 

See footnotes Table 3. 
Parameter a represents the maximum lysine deposition. Int. is the intercept, representing 
the lysine deposition at zero lysine intake. 
Parameter s fixed to a value of .01 in order to describe a linear-plateau relationship, with 
sharp transition. 
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Utilization of Dietary Protein and Lysine 

The gross efficiencies of protein and lysine utilization are also presented in 

Table 2. These efficiencies are calculated as the ratio of protein deposition to ileal 

digestible protein intake and lysine deposition to ileal digestible lysine intake. The 

efficiencies of protein and lysine utilization decreased curvilinearly with increasing 

protein and lysine intake. The relationship between protein (lysine) intake and gross 

efficiency of protein (lysine) utilization is implicitly determined by the model chosen 

to describe the relationship between protein intake and protein deposition. This is 

illustrated in Figure 2, in which the efficiency of protein utilization is described on 

the basis of Model [1] , using the parameter estimates from Table 3. Therefore, no 

separate analysis was conducted to describe the relationship between protein 

intake and the gross efficiencies of protein and lysine utilization. 

The response curve for protein and lysine deposition described by Model [2] , can 

be divided into a protein dependent phase, in which protein deposition is limited by 

protein intake, and an energy dependent phase (the plateau), in which protein 

deposition is determined by energy intake. The gross efficiencies of protein and 

lysine utilization of animals in the protein dependent phase were .581 ± .0064 
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Figure 2. Effect of daily ileal digestible protein intake on gross efficiency of protein utilization 
(mean ± se, n = 3) in gilts from 20 to 45 kg BW, fed 2.5xM (-o-) or 3.0xM (-•-) 
(M = energy for maintenance), described on the basis of Model 1, linear-plateau with 
smooth transition, using the parameter estimates from Table 3. 
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(n = 24) and .576 ± .0068 (n = 31) for protein and .770 ± .016 and 

.769 ± .012 for lysine at the low and high energy level respectively. These gross 

efficiencies were not significantly affected by protein intake (P > .05), nor by 

energy intake (P > .1). However, protein and lysine utilization decreased rapidly 

with increasing protein intake when deposition rates had reached a maximum 

(Table 2). 

DISCUSSION 

Protein and Lysine Deposition 

The relationship between protein intake and protein deposition at constant 

energy intake has been described as linear (Zhang et al., 1984), two-phase linear 

(Batterhametal., 1990), curvilinear (ARC, 1981 ; Fuller and Garthwaite, 1993) and 

linear-plateau (Campbell et al., 1984, 1985). Different models often accounted 

efficiently for the measured variation in the response parameter. Frequently, 

however, only a small number of protein intake levels was used to derive a model. 

Therefore, protein and lysine intake were varied over a wide intake range in 15 

graduated steps in the present study. Four models that mathematically represent 

the biological response of the animal were used to describe the relationship 

between protein and lysine intake and protein and lysine deposition. The slope of 

each model represents the marginal efficiency of protein or lysine utilization. This 

marginal efficiency is defined as the increase in protein or lysine deposition per unit 

increase in protein or lysine intake, and is calculated as the first derivative of the 

model. 

In order to select the most suitable model to describe the response relationships, 

physiological criteria should be taken into account. A model which relates to 

physiological mechanisms is to be preferred. There is little sense in selecting the 

model wi th the best f it, if it is not in line with physiological processes. In addition, 

statistical criteria can be used to evaluate the models. Since protein accretion is 

determined by protein synthesis and degradation, ideally the description should take 

into account how amino acid intake affects these two processes. However, this 

was not possible because in our study only the changes in protein accretion, being 

the net result of protein synthesis and degradation, in response to protein and 

energy intake were measured. Therefore, the description of the response of protein 
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deposition should meet present knowledge of protein utilization at different levels 

of protein intake. 

It seems unlikely that animals continue to increase protein deposition at 

extremely high levels of protein intake, at a constant digestible energy intake level 

(Harper, 1983). This was confirmed by results of the two-phase linear model 

(Table 2). These results showed that the marginal efficiencies of protein and lysine 

utilization reached zero in the second phase. The linear relationship between protein 

intake and protein deposition as determined by Zhang et al. (1984), and Fuller et 

al. (1989) presumably implies that protein requirements were not met in these 

studies. The two-phase linear relationship reported by Batterham et al. ( 1990) could 

be the result of combining data of male and female pigs in the analysis, whereas 

the two sexes presumably differed in maximum protein deposition at the supplied 

energy level. Consequently, models with a maximum or asymptote were chosen in 

the present study. 

At amino acid intakes below maintenance requirements, dietary amino acids are 

used to replace obligatory losses. The efficiency of utilization of limiting amino 

acids for this aim seems constant (ARC, 1981 ; Fuller et al., 1989). A t low and 

moderate protein intake levels above maintenance, the marginal efficiency of amino 

acid utilization for protein accretion seems largely constant and independent of the 

level of protein intake as reported by Batterham et al. (1990) and Fuller et al. 

(1989) in pigs, and Bolton and Miller (1985) in rats. At high levels of protein intake 

the pigs presumably will reach a maximum rate of protein accretion, determined by 

the daily energy intake. Whether the marginal efficiency diminishes gradually at 

high protein levels (curvilinear) or drops abruptly when a plateau is reached 

(rectilinear) is a matter of debate. Fisher et al. (1973) have shown that a linear-

plateau relationship between amino acid intake and egg output in individual chicks, 

resulted in a smooth population response curve, due to variation in body weight and 

maximum egg production between birds. The transition was more gradual wi th 

increasing variation in the maximum egg output. A similar difference between the 

response of individual animals and the response of a group of animals may exist for 

protein and lysine deposition. Therefore, a curvilinear decrease was to be expected 

in this study. 

The results in Table 3 and 4 indicated that the goodness of f it of the four models 

was quite similar. However, differences between the models were present in their 

estimates of maximum protein (lysine) deposition at the two energy levels and of 



50 Chapter 2 

protein (lysine) gain or loss at zero protein intake. Although care has to be taken 

when judging the response of a model outside the data range, a model which 

describes a biologically acceptable response over a large intake range is to be 

preferred. In Model [3] estimates for maximum protein and lysine deposition were 

somewhat higher than in the other models. Furthermore, Model [3] gave very large 

negative estimates, whereas Model [4] gave positive estimates for protein accretion 

at zero protein intake. No measurements were taken at low intake levels in this 

study. These would be needed in order to accurately determine and interpret 

estimates at zero protein intake. Nevertheless, these results suggest that the 

Models [3] and [4] are not suitable to describe the response relationships. 

Model [3] represents a diminishing decrease in marginal efficiency of protein 

utilization with increasing protein intake. The largest decrease is found at low levels 

of protein intake (Figure 3). Model [4] describes a sigmoid relationship with an 

inflection point between 130 and 150 g protein intake per day, resulting in an 

increasing marginal efficiency until the inflection point, and a decrease thereafter 

(Figure 3). These responses are not in harmony with the criteria discussed above. 

Therefore, the monomolecular model and the Michaelis-Menten equation were 

considered less suitable to describe the response relationship between protein 

(lysine) intake and protein (lysine) retention. 

Models [1] and [2] describe a linear response in protein deposition at low levels 

of protein intake. In Model [1] , the marginal efficiency decreases gradually with 

increasing protein intake, whereas in Model [2], the marginal efficiency is constant 

until a plateau is reached, whereby it drops to zero (Figure 3). The intercept of 

Model [1] , representing the obligatory protein losses, results in a maintenance 

requirement of 11.6 g/d (8.1 / .70), which is in good agreement with ARC (1981). 

The intercept of Model [2] suggests a small overestimation of protein gain at zero 

protein intake. Furthermore, as discussed above, a curvilinear response curve for 

a population of animals is to be expected. These results and considerations suggest 

that of the four models used in this study, Model [1] is the most appropriate to 

describe the relationship between protein intake and protein deposition for a group 

of animals. Firm conclusions about the smoothness of the transition between the 

increasing phase and the plateau phase for an individual animal could not be drawn 

because of variation in the data between animals. 

In order to exclude the effect of variation between animals, Fuller and Garthwaite 

(1993) measured the response in nitrogen retention of individual animals between 
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35 and 73 kg, in six sequential balance periods. Because of the better f it of the 

curvilinear models compared with a rectilinear model, they concluded that the 

rectilinear model is presumably not the most appropriate model for a description of 

the response of individual animals. In their design however, the effect of body 

weight on protein deposition and on protein/energy requirements presumably led 

to variation between measurements on the same animal, contributing to the better 

f it of the curvilinear functions. These considerations imply that it is unclear whether 

the linear-plateau Model [2] is a good approximation of the response of an individual 

animal. In our opinion their is no published evidence which confirms or invalidates 

the suitability of this model. 

It is clear from Figure 1 and Tables 3 and 4, that at low levels of protein and 

lysine intake, the extra energy allowance had no beneficial effect on the rate of 

protein or lysine deposition. Protein and lysine deposition were similar regardless 

the level of energy intake. With extra energy intake only lipid deposition increased 

at these low protein (lysine) levels (Bikker et al., 1994b). However, at high levels 

of protein intake, protein and lysine deposition increased by 20 and 1.5 g/d 

respectively, with an extra energy allowance of 3.0 MJ DE per day. This means 

that at high protein intake levels energy intake limits protein accretion. These 

50 100 150 200 250 300 

Ileal digestible protein intake, g/d 

350 

Figure 3. The marginal efficiency of ileal digestible protein utilization in gilts from 20 to 45 kg fed 
3.0 times energy for maintenance. The lines were calculated as the first derivative of 
the four models from Table 3: linear-plateau with smooth transition (M1 ), linear-plateau 
with sharp transition (M2), monomolecular (M3), and Michaeiis-Menten (M4). 
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results are in agreement with Campbell et al. (1984, 1985) and support the 

concept of energy and protein dependent phases in protein deposition as discussed 

by Campbell (1988). Around the transition point, the protein dependent phase may 

gradually change into the energy dependent phase (see discussion above). 

Protein and Lysine Utilization 

The gross efficiencies of ileal digestible protein and lysine utilization were 

determined as .58 and .77, respectively, in the protein dependent phase. In this 

phase, these efficiencies were not significantly affected by protein or energy intake. 

The lower value for protein is a reflection of the dietary amino acid composition, 

which was designed to be lysine-deficient. The almost constant gross efficiencies 

of protein and lysine utilization in the protein dependent phase, suggest that protein 

and lysine requirements for zero nitrogen balance were only a small part of the ileal 

digestible protein and lysine intake. This is partially due to the use of apparent 

rather than true ileal digestibility coefficients. Ileal losses account for a large part 

of the maintenance requirements for protein and lysine (Fuller, 1991), and these 

losses are already accounted for in the use of apparent digestibility values. Protein 

and lysine utilization decreased rapidly when protein deposition reached a plateau, 

as a result of an over-supply of dietary protein relative to dietary energy. Under 

these conditions, an extra energy allowance improved protein and lysine utilization 

(Table 2, Figure 2). The maximal gross efficiency of lysine utilization of .77 is in 

good agreement with the maximum of about .73 in pigs calculated by Batterham 

et al. (1990) and of .75 in rats by Bolton and Miller (1985). 

Marginal efficiency of lysine utilization is represented by the parameter b in 

Models [1] and [2]. In Model [1] the estimate of .85 ± .16 is valid at low levels of 

lysine intake, and decreases gradually with increasing lysine intake (Figure 3). In 

Model [2] , the estimate of .74 ± .05 is the average marginal efficiency for the 

protein dependent phase (Figure 3). Batterham eta l . (1990), determined a marginal 

efficiency of ileal digestible lysine utilization of .85 using a bent-stick model, and 

Bolton and Miller ( 1985) determined a value of .83 using a linear model. Differences 

between the latter two values and the average of .74 in the linear phase of this 

study may have been due to the fact that the lowest levels of lysine intake in the 

studies of Batterham et al. (1990) and Bolton and Miller (1985) were much lower 

than in this study: approximately 10% versus 45% of requirements. The use of 

different regression models may also have affected the calculated marginal 



Utilization of Ileal Digestible Protein and Lysine 53 

efficiencies. Furthermore, variability in amino acid analyses and feed characteristics, 

and the use of different methods to estimate ileal digestibility may have contributed 

to the reported differences. 

The inefficiency of approximately 15% of ileal digestible lysine in these three 

studies may be due to part of the lysine being absorbed in a form unavailable for 

protein synthesis, or to losses in physiological processes. Taking into account the 

composition of the diets used in these studies, a reduced availability of lysine is not 

likely to be the main source of loss. However, several pathways in the intermediate 

metabolism can be distinguished, by which absorbed amino acids can be lost or 

used for purposes other than protein synthesis. Of these, losses due particularly to 

the inefficiency of protein turnover and(or) inevitable amino acid catabolism may 

be considerable (Moughan, 1991). It has been reported that oxidation of a limiting 

amino acid can be reduced to less than 5% of the amino acid flux (Simon, 1989). 

However, because the flux rate can amount five to eight times the deposition rate 

(Simon, 1989, Rao and McCracken, 1992), this oxidation can be a considerable 

proportion of the digested amino acids. In conclusion, for practical purposes it is 

advisable to adopt a maximum efficiency of lysine utilization for protein deposition 

considerably less than 100%. On the basis of the discussed results, a maximum of 

80% seems preferable. 

IMPLICATIONS 

An optimum in efficiency of utilization of dietary protein is required, if sustainable 

animal production is to be achieved. For the gilts in this study, the maximum 

efficiencies of utilization of ileal digestible protein and lysine, being the first limiting 

amino acid, were .58 and .77 respectively. This indicates possibilities to improve 

protein utilization in practice by using an amino acid profile attuned to the 

requirements of the animals. This study indicates a maximum marginal efficiency 

of lysine utilization of approximately .80. In order to improve protein deposition 

and(or) utilization effectively, it is crucial to know whether protein deposition is 

limited by protein or by energy intake. Supplying dietary protein above the 

requirement results in a drastic decrease in protein utilization. Consequently 

possibilities to improve protein utilization should be studied under conditions 

whereby protein intake limits protein deposition. 
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AMINO ACID COMPOSITION OF GROWING PIGS IS AFFECTED BY PROTEIN 

AND ENERGY INTAKE 

P. Bikker, M.W.A. Verstegen, and M.W. Bosch 

ABSTRACT 

Ninety five female pigs from 20 to 45 kg body weight were used to elucidate the 
effects of energy and protein intake on the amino acid composition of the protein 
in the carcass, organs and empty body of growing pigs. In a 2 x 15 factorial 
arrangement, protein intake ranged from 127 to 350 g/d in 15 graduated steps. 
The respective digestible energy allowances were 15.8 and 18.8 MJ/d. Whole body 
amino acid contents (g/16 g nitrogen) were (mean ± SEM) lysine 6.64 ± .028, 
methionine 2.11 ± .012, threonine 3.62 ± .016 and total essential amino acids 
42.8 ± .16. The organ fraction contained 14.8 and 15.8% (SEM .13) of whole 
body protein at the low and high energy levels, respectively. The concentrations of 
essential amino acids were 41.8 ± .19 and 48.4 ± .13 g/16 g nitrogen in the 
carcass and organs, respectively. Concentrations of a number of amino acids, both 
in carcass, organ and whole body protein, and protein deposited between 20 and 
45 kg, were affected by protein and(or) energy intake. The amino acid pattern of 
the newly deposited protein was slightly different from that of the empty body 
protein. The changes in amino acid contents were presumably the result of effects 
of protein and energy intake on the proportions of muscle and non-muscle carcass 
tissues, and on relative weights of blood and viscera. Consequences of these 
changes for the amino acid requirements are discussed. 

Keywords: pigs, amino acid composition, protein intake, energy intake, body protein 

INTRODUCTION 

The amino acid requirements of growing pigs depend upon the relative 

proportions of dietary amino acids utilized for maintenance and for body gain, and 

upon the amino acid composition of protein being deposited. The ratio between 

amino acids used for maintenance and those used for growth, can be affected by 

animal factors such as body weight, sex, and genotype, and nutritional factors such 

as feeding level and dietary composition. Considerable differences exist between 

the optimal amino acid composition for maintenance, including endogenous losses, 

and for growth (Fuller et al. 1989). Therefore, differences in the above mentioned 

ratio between maintenance and growth may influence the ideal amino acid 

composition of the diet. 

The amino acid requirements for growth are often assumed to be constant, but 

Batterham et al. (1990) and Campbell et al. (1988) showed an effect of dietary 
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protein content on whole body amino acid composition. However, it was not clear 

which changes in the body led to this effect on composition. Bikker et al. 

(unpublished data) determined an increase in the relative organ mass and a 

decrease in relative lean tissue mass with increasing energy intake, which may also 

have an effect on whole body amino acid composition. Therefore in this study the 

effect of protein and energy intake on the amino acid composition of carcass, organ 

and whole body protein in growing pigs was determined, and the consequences for 

the ideal dietary amino acid composition are discussed. 

The present study is part of a project to determine the interrelationships between 

dietary protein and energy on protein and lipid deposition, and the amino acid 

composition of growing pigs with a high genetic potential for lean gain, in order to 

derive an efficient feeding strategy for these animals. The effects of protein and 

energy intake on performance criteria, and deposition rates of protein and lipid of 

pigs in the present experiment has been reported previously (Bikker et al. 1994a). 

EXPERIMENTAL PROCEDURES 

Animals and Design 

The amino acid composition of carcass and organ protein was determined in pigs 

of 20 (n = 5) and 45 kg (n = 90) body weight. Five animals from a group of 95 

female pigs of a commercial strain (VOC Nieuw Dalland, Venray, The Netherlands), 

were allocated on the basis of body weight to an initial slaughter group. These pigs 

were killed at 20 kg to determine the body composition at the start of the 

experiment. The remaining 90 pigs were allocated among 30 treatment 

combinations in a 2 x 1 5 factorial arrangement, with three pigs per treatment 

combination. The respective treatments were energy intake level, equivalent to 2.5 

and 3.0 times the energy required for maintenance, and protein intake, ranging 

from an average of 127 to 350 g/day during the treatment period in 15 graduated 

steps. The first 12 increments were 14 g/d, the last 2 increments were 28 g/d. 

Diets and Feeding 

A protein-rich (Diet 1 , Table 1 in Chapter 1) and a virtually protein-free diet 

(Diet 2, Table 1 in Chapter 1 ) were formulated and combined in different ratios, and 

were fed to each of the 30 treatment groups in order to supply the appropriate daily 
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amounts of protein and energy. The contents of dry matter, crude protein, inorganic 

matter, digestible energy, and amino acids of Diet 1 and Diet 2 were analysed as 

described by Bikker et al. (1994a). The use of these two diets ensured a constant 

amino acid balance in the daily ration and allowed for the separation of the effects 

of energy and protein intake. Lysine was the first limiting amino acid in Diet 1, 

which was formulated to contain 1.24 g lysine per MJ digestible energy (DE). On 

the low energy level (2.5 times maintenance) the animals received diets with 

calculated lysine contents of .44, .49, .54, .59, .64, .69, .74, .79, .84, .89, .94, 

.99, 1.04, 1.14, and 1.24 g/MJ DE. At the high energy level (3.0 times 

maintenance), the animals had similar levels of daily protein intake, but received 

extra non-protein energy (Diet 2) of 3.0 M J DE/d, equivalent to .5 times energy for 

maintenance. Consequently, the lysine/energy ratios at this energy intake level were 

83% of those at the low energy level, and ranged from .37 to 1.03 g/MJ DE. The 

daily energy allowances were calculated on the basis of metabolic body weight 

( kg 7 5 ) wi th energy requirements for maintenance taken as .475 MJ DE /kg 7 5 (ARC 

1981). The daily energy intakes on the low and the high energy levels were an 

average of 15.8 and 18.8 MJ DE respectively, during the treatment period. The 

pigs received their daily allowances in two equal rations at 800 and 1600 h. They 

had free access to drinking water. 

Carcass Analyses 

At 45 kg the animals were killed by electrical stunning and exsanguination. Blood 

and organs were collected and the contents of the gastro-intestinal tract removed. 

Blood and individual organs, including mesenteric fat (together referred to as the 

organ fraction), were weighed, stored together per pig in a plastic bag and frozen 

at -20°C. The scalded, scraped and eviscerated carcass, including head and feet 

(carcass), was split longitudinally and the two halves weighed. The right half was 

sealed in a plastic bag and stored at -20°C. The frozen carcass and organ fractions 

were cut into small pieces and homogenized separately in a commercial butchers' 

mincer. Each fraction was subsampled for proximate analysis. Dry matter content 

was determined after drying samples in a vacuum oven at 50°C and a vacuum of 

100 torr, using anhydrous calcium chloride as the drying agent. After 16 h, the 

vacuum was changed to 15 torr and the samples were weighed every four h until 

they obtained constant weight. Nitrogen content was determined in the fresh 

samples by Kjeldahl analysis according to ISO 5983 (1979). Lipid content was 
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assessed by extraction of f reeze-dried samples with petroleum-ether, and drying the 

extract at 103°C to a constant weight according to ISO 6492. Ash was analysed 

by burning oven-dried samples in a muffle furnace at 550°C according to ISO 5984 

(1978). 

In addition, the ether extracted carcass and organ samples were ground with a 

centrifugal mill, and the amino acid contents determined subsequently at the 

laboratories of Eurolysine (Paris). A representative sample containing about 10 mg 

of nitrogen was hydrolysed with 25 ml hydrochloric acid (6 mol/l) under reflux at 

110°C for 23 hours (Mason et al. 1980). To determine the sulphur-containing 

amino acids a similar amount of sample was oxidized for 16 hours at 0 °C with 5 ml 

of an oxidation mixture (.5 ml 30% H 2 0 2 and 4.5 ml 8 0 % formic acid solution, 

also containing 4.73 g phenol per kg). Excess reagent was degraded on completion 

of the oxidation by adding .84 g sodium disulphite (Mason et al. 1980). The 

samples were subsequently hydrolysed as described above. On completion of the 

hydrolysis the pH of the mixture was adjusted to 2.2 by carefully adding NaOH 

(7.5 mol/l), and then filtered through a .2 //m filter. Subsequently 200 //L of 

hydrolysate and 50 /vL of a norleucine solution as internal standard were 

supplemented with a buffer solution to 1 ml. Amino acids were determined with an 

amino acid analyzer (Beekman 6300, Palo Alto, CA), with a Sodium High 

Performance Column (Beekman 338052) with ion exchange resin. The elution 

started with a pH 3.7 buffer (Beekman 338057) operating at 50°C, which was 

changed to a pH 4.0 buffer (Beekman 338058) at 77°C, 15.7 min after injection 

of the sample. The third buffer with pH 3.0 (Beekman 338056) was used at 77°C 

from 26.6 to 50.0 min after injection of the sample. Amino acids were determined 

using ninhydrine as a colouring reagent at 140°C in a spectrophotometer at a 

wavelength of 570 nm. Amino acids were quantified using an amino acid standard 

solution containing 18 amino acids (Sigma AA-S-18), L-methionine sulfone (Sigma 

M 0876), L-cysteic acid (Sigma C 7630), and norleucine. Concentrations of proline, 

hydroxyproline and tryptophan were not determined. 

The protein and amino acid retention between 20 and 45 kg for each individual 

animal was calculated as the difference of its composition at 45 kg, and the 

assumed body composition at 20 kg. The latter was derived from the pigs 

slaughtered at 20 kg. 

The protocol of this experiment was approved by the ethical committee of the 

Wageningen Agricultural University. 
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Statistical Analysis 

Four animals had to be excluded from the experiment, two animals died, and two 

had large feed refusals. For the remaining animals, 44 and 42 at the low and high 

energy intake level respectively, the effect of protein intake on amino acid 

composition of carcass, organ and empty body protein was analysed by linear 

regression analysis, using the GLM-procedure of SAS (SAS 1989). The effect of 

energy intake on regression parameters was determined using dummy variables and 

the backward elimination procedure (Draper and Smith 1981 ). Probability levels less 

then .05 were considered statistically significant. 

RESULTS 

Distribution of Protein and Amino Acids 

The protein content of the empty body (g/kg fresh material) increased with 

increasing protein intake from 161 to 182 at the low energy level and from 143 to 

176 at the high energy level (Bikker et al. 1994a). The distribution of this protein 

between the carcass and organ fraction was affected by energy intake (P < .001). 

At the low energy level, 14.8% of total body protein was in the organs, compared 

to 15.8% at the high energy level (Table 1 ). Large differences were present in the 

distribution of individual amino acids between the carcass and organs. Amino acids 

in the organs, as a proportion of the whole body amino acid content, varied from 

12% (methionine, glycine, arginine) to 2 0 % (cystine, leucine, valine, 

phenylalanine). At the high energy level, these proportions of individual amino acids 

in the organs were between 1.01 (glycine) and 1.12 (tyrosine) of those at the low 

energy level. 

Amino Acid Composition 

In Tables 2, 3, and 4 the average amino acid patterns in the carcass, organs and 

total empty body are presented for the low and high energy level. Comparison of 

Tables 2 and 3, showed marked differences in the amino acid composition between 

the carcass and organ protein. The contents (g/16 nitrogen (N)) of lysine, threonine, 

histidine, tyrosine, aspartic acid, and serine were 10 to 30% higher, and the 

contents of cystine, leucine, phenylalanine, and valine were 40 to 50% higher in 

the organ fraction than in the carcass. Contents of methionine, arginine, isoleucine. 
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Table 1 . Distribution 
protein and 

of whole body protein and amino acids in female pigs at 45 kg as affected by 
energy intake 

Relative amount in organs, %a Effects'3 

Amino acid 

Crude protein 

Lysine 

Methionine 

Cystine 

Threonine 

Histidine 

Isoleucine 

Leucine 

Phenylalanine 

Tyrosine 

Arginine 

Valine 

EAAC 

Alanine 

Aspartic acid 

Glutamic acid 

Glycine 

Serine 

2.5 x M 

14.83 
17.07 

11.70 

20.70 

16.02 

18.49 

12.95 

20.17 

20.24 

16.77 

11.96 

20.66 

16.85 

15.36 

16.96 

13.51 

11.15 

17.46 

3.0 x M 

15.78 
17.45 

13.14 

22.28 

17.08 

19.98 

13.65 

20.76 

21.96 

18.76 

12.79 

21.53 

17.81 

15.80 

17.63 

14.10 

11.31 
18.32 

SEM 

.13 

.21 

.17 

.28 

.21 

.26 

.17 

.22 

.25 

.31 

.21 

.22 

.20 

.16 

.19 

.16 

.17 

.20 

Energy 
* » » 

NS 
* * # 
# * * 

* * # 
* * * 
# * 

NS 
* # * 
* • # 

* * 
* # 

» » # 

* 
# 
* * 

NS 
* * 

Protein 

NS 
* » 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

• 
NS 

NS 

# 
NS 

Slope (b) 

-
.00695 

-
-
-
-
-
-
-
-
-
-
-

.00429 

-
-

.00359 

-

Protein and amino acids in the organs as a percentage of the whole body protein and amino acid 
content. Values are means for gilts fed 2.5 times maintenance (2.5 x M, n = 44) and 3.0 times 
maintenance (3.0 x M, n = 42). At each of the two energy levels, the pigs received 15 graded 
levels of protein. SEM pooled standard error for the two energy intake levels. 
Linear regression (y = a + bx) was used to determine effects of protein and energy intake. NS 
not significant (P > .05), * P < .05, • * P < . 0 1 , * * * P < .001. The regression coefficient (b) 
for the effect of protein intake, if P < .05, represents the change in amount of an amino acid 
in the organs, as a percentage of whole body amino acids, per g increase in daily protein intake. 
Essential amino acids, tryptophan not included. 

glutamic acid and glycine were 10 to 30% lower in the organ fraction. As a result, 

the total content of essential amino acids (excluding tryptophan) was considerably 

higher in the organ protein than in the carcass protein, 48.40 ± .13 and 

41.78 ± .19 g/16 g N (mean ± SEM) respectively. 

The amino acid composition of the empty body protein (Table 4) is the result of 

the amino acid patterns of both carcass (about 85%) and organ protein (about 

15%). Consequently, the amino acid composition of the empty body protein was 

to a large extent similar to that of the carcass protein. In Table 5, the amino acid 

composition of the protein deposited in the treatment period from 20 to 45 kg live 
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Table 2. Amino acid composition of the carcass protein of female pigs at 45 kg as affected by 
protein and energy intake 

Amino acid 

Lysine 

Methionine 

Cystine 

Threonine 

Histidine 

Isoleucine 

Leucine 

Phenylalanine 

Tyrosine 

Arginine 

Valine 

EAAC 

Alanine 

Aspartic acid 

Glutamic acid 

Glycine 

Serine 

Content 

2.5 x M 

6.49 

2.17 

.82 

3.55 

2.70 

3.50 

6.07 

3.23 

2.43 

6.70 

4.03 

41.68 

6.20 

7.67 

12.38 

9.27 

3.73 

, g/16 g nitrogen3 

3.0 x M 

6.48 

2.20 

.82 

3.57 

2.64 

3.56 

6.18 
3.17 

2.38 

6.75 

4.12 

41.87 

6.36 

7.80 

12.57 

9.55 

3.72 

SEM 

.045 

.020 

.008 

.026 

.027 

.028 

.043 

.026 

.027 

.039 

.029 

.27 

.029 

.047 

.070 

.077 

.020 

Energy 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

* 
NS 

* * * 
NS 

NS 

* 
NS 

Effects" 

Protein 

NS 

NS 

NS 

NS 
* * 
NS 

NS 

NS 

NS 

NS 

NS 

NS 
* * * 
NS 

NS 
# » # 
NS 

Slope (b) 

-
-
-
-

.00080 

-
-
-
-
-
-
-

-.00116 

-
-

-.00313 

-

Values are means for gilts fed 2.5 times maintenance (2.5 x M, n = 44) and 3.0 times 
maintenance (3.0 x M, n = 42). At each of the two energy levels, the pigs received 15 graded 
levels of protein. SEM pooled standard error for the two energy intake levels. 
Linear regression (y = a + bx) was used to determine effects of protein and energy intake. NS 
not significant (P > .05), * P < .05, * * P < . 0 1 , * * * P < .001. The regression coefficient (b) 
for the effect of protein intake, if P < .05, represents the change in amino acid content per g 
increase in daily protein intake. 
Essential amino acids, tryptophan not included. 

weight is given. The contents of most amino acids of this deposited protein were 

similar to those of empty body protein. The concentrations of lysine, histidine and 

isoleucine however, were slightly higher, and concentrations of glycine and alanine 

were slightly lower in the deposited protein, compared to the empty body protein. 

Effect of Protein and Energy Intake 

The amino acid pattern of the organ protein and to a lesser extent carcass 

protein, was affected by both protein and energy intake. In the carcass protein 

valine, alanine and glycine (g/16 g N) increased with extra energy intake, histidine 

increased with increasing protein intake, and alanine and glycine decreased with 

increasing protein intake. In the organ protein, lysine, leucine, glycine, and serine 
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Table 3. Amino acid composition of the organ protein of female pigs at 45 kg as affected by protein 
and energy intake 

Amino acid 

Lysine 

Methionine 

Cystine 

Threonine 

Histidine 

Isoleucine 

Leucine 

Phenylalanine 

Tyrosine 

Arginine 

Valine 

EAAC 

Alanine 

Aspartic acid 

Glutamic acid 

Glycine 

Serine 

Content, g/16 g nitrogen3 

2.5 x M 

7.67 

1.64 

1.22 

3.88 

3.50 

2.98 

8.79 

4.70 

2.80 

5.22 

6.01 
48.43 

6.45 

8.98 

11.09 

6.66 

4.53 

3.0 x M 

7.31 
1.77 

1.26 

3.92 

3.51 
3.00 

8.64 

4.76 

2.91 

5.27 

6.03 

48.36 

6.37 

8.90 

11.01 
6.49 

4.46 

SEM 

.061 

.010 

.009 

.020 

.022 

.017 

.036 

.022 

.028 

.057 

.029 

.18 

.030 

.039 

.048 

.058 

.021 

Energy 
# * * 
* # * 
# * 
NS 

NS 

NS 
* * 
NS 

* 
NS 

NS 

NS 

NS 

NS 
NS 

* 
* 

Effects" 

Protein 
* # # 
NS 

NS 

NS 
* * 
* * 

* * * 
NS 

NS 
# * 
* * # 
•» * * 

* 
* * * 
• 

NS 

NS 

Slope (b) 

.00478 

-
-

.00074 

.00058 

.00171 

-
-

-.00197 

.00137 

.00852 

.00085 

.00159 

.00145 

-
-

a , b 'c See footnotes Table 2. 

were lower at the high energy level, whereas methionine, cystine, and tyrosine 

were higher. Lysine, histidine, isoleucine, leucine, valine, alanine, aspartic acid and 

glutamic acid in the organ protein increased with increasing protein intake, whereas 

arginine decreased. For significant effects of protein intake, the change in amino 

acid content per g increase in total protein intake is given in Tables 2, 3, and 4. 

Furthermore the effect of protein intake on lysine and glycine in organ and empty 

body protein is illustrated in Figure 1 . 

The effects on the amino acid pattern in the empty body protein (Table 4), being 

the sum of carcass and organ protein, were to a large extent a reflection of effects 

in the carcass protein. The effects of protein and energy intake on the amino acid 

composition of the deposited protein (Table 5) were qualitatively similar to the 

effects on empty body protein. However, these effects were between 1.5 and 2 

times as large as in the empty body protein. 
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Table 4 . Amino acid composition of the empty body protein of female pigs at 
protein and energy intake 

Amino acid 

Lysine 

Methionine 

Cystine 

Threonine 

Histidine 

Isoleucine 

Leucine 

Phenylalanine 

Tyrosine 

Arginine 

Valine 

EAAC 

Alanine 
Aspartic acid 

Glutamic acid 

Glycine 

Serine 

Content, g/16 g nitrogen3 

2.5 x M 

6.67 

2.09 

.88 

3.60 

2.82 

3.43 

6.47 

3.45 

2.48 

6.48 

4.32 

42.69 

6.23 
7.86 

12.19 

8.89 

3.85 

3.0 x M 

6.61 

2.13 

.89 

3.63 

2.78 

3.47 

6.57 

3.42 

2.46 

6.52 

4.42 

42.89 

6.36 
7.97 

12.32 

9.07 

3.84 

SEM 

.040 

.017 

.007 

.022 

.023 

.024 

.037 

.022 

.024 

.033 

.026 

.23 

.026 

.041 

.061 

.065 

.017 

Energy 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 

NS 
• # 
NS 
# * * 
NS 

NS 

NS 

NS 

Effectsb 

Protein 
* * 
NS 

NS 

NS 
# * 
NS 

NS 

NS 

NS 

* 
NS 

NS 
# * 
NS 

NS 
# » » 
NS 

45 kg as affected by 

Slope (b) 

.00154 

-
-
-

.00078 

-
-
-
-

-.00077 

-
-

-.00085 

-
-

-.00263 

-

a , b , c See footnotes Table 2. 

DISCUSSION 

Distribution of Protein and Amino Acids 

At the low and high energy level, 14.8 and 15.8% of total body protein 

respectively, was in the organ fraction. These values are in good agreement with 

Wünsche et al. (1983) who reported in pigs of 35 kg, 15.7% of body protein was 

in the organ fraction. The distribution of individual amino acids between carcass 

and organs in the latter study, was also in good agreement with the results of the 

present study (Table 1). The big differences in the distribution of individual amino 

acids was the result of the considerable differences between amino acid patterns 

of carcass and organ protein, as discussed below. 

Amino Acid Composition 

The average lysine content (g/16 g N) of empty body protein of 6.64 at 45 kg 

is in good agreement with recent results of Moughan and Smith (1987) 6.2, 
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Table 5. Amino acid composition of protein deposited in 
20 and 45 kg as affected by protein and energy 

Amino acid 

Lysine 

Methionine 

Cystine 

Threonine 

Histidine 
Isoleucine 

Leucine 

Phenylalanine 

Tyrosine 

Arginine 

Valine 

EAAC 

Alanine 

Aspartic acid 

Glutamic acid 

Glycine 

Serine 

Content, g/16 g nitrogen3 

2.5 x M 

7.09 

2.18 

.83 

3.69 

3.02 
3.54 

6.52 

3.47 

2.50 
6.41 

4.34 

43.56 

5.97 

8.03 

12.41 

8.59 

3.85 

3.0 x M 

7.05 

2.27 

.85 

3.76 

2.97 

3.65 

6.71 

3.43 

2.46 
6.46 

4.54 

44.12 

6.17 

8.28 

12.70 

8.89 

3.83 

SEM 

.070 

.030 

.013 

.039 

.040 

.043 

.064 

.039 

.045 

.060 

.045 

.40 

.046 

.071 

.108 

.118 

.030 

the empty body of female pigs between 
intake 

Energy 

NS 

* 
NS 

NS 

NS 
NS 

# 
NS 

NS 
NS 
# * 
NS 
* * 
* 

NS 

NS 

NS 

Effects" 

Protein 
* * 
NS 

NS 

NS 

* 
NS 

NS 

NS 

NS 

* 
NS 

NS 
* * 
NS 

NS 
» * * 
NS 

Slope (b) 

.00220 

-
-
-

.00117 

-
-
-
-

-.00135 

-
-

-.00131 

-
-

-.00465 

-

a 'b ' c See footnotes Table 2. 

Campbell et al. (1988) 6.4, Batterham et al. (1990) 6.4, Kemm et al. (1990) 6.3, 

Chung and Baker (1992) 6.2, and Kyriazakis et al. (1993) 7.0. The concentration 

of other amino acids in the whole body was also in agreement with these authors. 

However, between the lowest and highest reported values for each amino acid, a 

relative difference of 5 to 20% was found. Cystine may be underestimated in the 

present study because the bodies were scalded and scraped before slaughter and 

hair protein is extremely rich in cystine (Wünsche et al., 1983). 

Considerable differences were present in the amino acid composition of protein 

in the carcass and organs. Schulz and Oslage (1976) and Wünsche et al. (1983) 

showed that the amino acid patterns of blood protein, muscle protein and protein 

in the hide, bone and adipose tissue (connective tissues) are distinctly different. 

Blood protein is relatively rich in lysine, histidine, leucine, phenylalanine, valine, and 

aspartic acid, and low in methionine, isoleucine, arginine, glycine, and glutamic 

acid. Muscle protein is relatively rich in lysine, histidine, methionine, leucine, and 

isoleucine and low in glycine and proline. Protein in the hide, bone and adipose 
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Figure 1. Contents of lysine (o-lys, eb-lys) and glycine (o-gly, eb-gly) in organ and empty body 
protein respectively, plotted against daily protein intake for gilts fed 15 graded levels 
of protein at two energy intake levels. Data for the two energy levels were combined, 
points represent means ± SEM (n = 6). 

tissue is relatively rich in alanine, glycine, proline, and hydroxyproline and low in 

most of the essential amino acids, presumably because of the high proportion of 

collagen in these tissues (Riis 1983, Williams 1978). These differences in the amino 

acid pattern of different tissues presumably accounted for the reported differences 

of the amino acid composition of carcass and organ protein. 

Effect of Protein and Energy intake 

Changes in the concentration of a number of amino acids in carcass, organ and 

empty body protein due to an increase in energy or protein intake, demonstrated 

that body amino acid composition is dependent on nutrient intake. Changes in 

amino acids in the empty body with increasing protein intake were also reported by 

Campbell et al. (1988), Batterham et al. (1990) and Chung and Baker (1992). 

Generally an increase in some essential amino acids and a decrease in alanine, 

glycine and proline was found. The present study indicates that these changes 

were the result of changes in carcass and organ protein (Table 2). The changes in 
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carcass protein presumably reflect an effect of protein intake on lean and adipose 

tissue content. Bikker et al. (1994a) reported an increase in protein content and a 

decrease in lipid content with increasing levels of protein intake. Thus at low levels 

of protein intake, lean tissue (muscle) is reduced relative to other carcass tissues. 

In addition, Bikker et al. (unpublished data) found a decrease in carcass lean tissue 

content with an increase in energy intake. Because of the differences in amino acid 

composition between muscle and non-muscle carcass tissues as reported above, 

these effects presumably mediated the effect of nutrient intake on carcass amino 

acid composition. This is supported by results of Krick et al. (1993) with pigs 

treated wi th exogenous porcine somatotropin. Carcass protein of hormone treated 

pigs contained higher levels of most of the essential amino acids and lower levels 

of glycine and alanine, whereas porcine somatotropin is known to increase carcass 

muscle percentage. 

The changes in concentration of a number of amino acids in the organ fraction, 

may be the result of the effect of protein and energy intake on the weight of blood 

and individual organs as reported by Bikker et al. (1994b). The weight of liver and 

empty intestines, relative to the whole organ fraction, increased with increasing 

energy intake. The weight of blood, kidneys, pancreas and spleen increased with 

increasing levels of protein intake. Blood, digestive tract, and liver contain about 5, 

4 , and 3% of the whole body protein, respectively (Schulz and Oslage 1976). 

Therefore, these three fractions together contain about 85% of the organ protein. 

Results of Schulz and Oslage (1976) indicate that the amino acid composition of 

the liver and the digestive tract is similar to that of muscle tissue. However, the 

concentration of certain amino acids in blood protein is distinctly different, as 

reported above. Differences between blood and several organs can to a large extent 

account for the effect of protein and energy intake on amino acid composition in 

the organ fraction. 

The carcass protein accounts for about 85% of the empty body protein 

(Table 1). Therefore the changes in empty body amino acid composition with 

nutrient intake are mainly the result of a change in the proportion of muscle and 

non-muscle carcass protein as mentioned above. In addition, the composition of 

body protein can be affected by the increase in the proportion of body protein in 

the organs with increasing energy intake. 
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Amino Acid Composition of Deposited Protein 

The effects of protein and energy intake on the amino acid pattern of the protein 

deposited between 20 and 45 kg were larger than the effects on the composition 

of body protein at 45 kg. This was to be expected because newly deposited protein 

is directly affected by energy and protein intake, whereas about half of the body 

protein at 45 kg was already present at the start of the experiment, and therefore 

not affected by nutrient intake between 20 and 45 kg. 

The differences in the amino acid pattern between empty body protein at 45 kg, 

and the deposited protein between 20 and 45 kg, were the result of slightly higher 

contents (g/16 g N) of glycine (9.3), and alanine (6.6) and slightly lower values for 

lysine (6.1), histidine (2.6), isoleucine (3.3), and total essential amino acids (41.5) 

in the empty body protein of 20 kg pigs at the start of the experiment. A relative 

low ratio of muscle tissue to connective tissue in the young pig (Riis 1983) could 

explain these differences. This supposition is supported by Campbell et al. (1988) 

who reported significantly higher concentrations of glycine, alanine, proline, and 

hydroxyproline in 8 kg pigs compared to pigs of 20 kg, but not by results of Chung 

and Baker (1992) for pigs of similar body weights. This indicates that an effect of 

body weight presumably depends on genotype and feeding strategy. Furthermore 

the proportion of non-protein nitrogen may also decrease wi th increasing body 

weight (Zhang et al., 1986), resulting in lower contents of both essential and non­

essential amino acids in the young pig (Moughan and Smith, 1987). Bikker et al. 

(unpublished data) found a similar distribution of deposited protein in growing 

(20-45 kg) and finishing (45-85 kg) pigs, fed on the basis of metabolic body 

weight. These results suggest that the influence of body weight on the amino acid 

composition of pigs of this improved genotype will be more pronounced in the 

piglet and the growing pig than in the finishing pig. 

Consequences for Protein Requirements 

The effect of protein intake on the amino acid composition of the empty body 

seems to be of little importance for animal husbandry, because in practice animals 

will usually be fed close to their protein requirements. However, for nutritional 

research, this effect implies that the marginal efficiency of amino acid utilization, 

determined under the assumption of a constant concentration of the studied amino 

acid in body protein (e.g. Heger and Frydrych 1985), can be confounded by an 

effect of protein intake on amino acid concentration. 
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Results of Table 5 suggest that for body gain, the requirements of methionine, 

leucine, isoleucine, and valine relative to lysine, increase slightly with an increase 

in feeding level. Moreover, Bikker et al. (unpublished data) found that the 

distribution of deposited protein between organs, lean and non-lean carcass parts 

may vary considerably with feeding level. The proportion of whole body protein 

deposition, deposited in the organs, increased from 10 to 16% and in the non-lean 

carcass parts from 29 to 31 % in growing pigs (20-45 kg), whereas the proportion 

in the lean tissue decreased from 61 to 53% with an increasing energy level from 

2.2 to 3.7 times maintenance. This may exert an effect on the amino acid 

requirements. 

The organs contain about 15% of the whole body protein and therefore have 

little effect on the amino acid composition of whole body protein. However, owing 

to the high turnover rate of organ protein, protein synthesis in the organs may 

account for about 50% of daily protein synthesis (Riis 1983, Simon 1989). The 

effect of organ protein on amino acid requirements is therefore, presumably, larger 

than suggested by the proportion of organ protein in the whole body protein. Fuller 

et al. (1989) found a higher concentration of total essential amino acids in dietary 

ideal protein for growth than in whole body protein. This may be explained by the 

high concentration of essential amino acids in the organ protein and the relatively 

large contribution of organs to the total amino acid requirements, as discussed 

above. Also taking into account the differences in amino acid composition between 

actual protein deposition and earlier deposited protein, these findings imply that 

whole body amino acid composition is not a good measure for the dietary ideal 

amino acid pattern. This is even more so in situations where the turnover of organ 

protein makes a relatively large contribution to the total protein synthesis, e.g. in 

slow growing animals or with diets which increase endogenous losses. 

In conclusion, it can be stated that whole body amino acid composition is 

affected by the level of protein and energy intake. These effects are caused 

presumably by changes in the proportions of muscle and non-muscle carcass parts, 

the proportions of blood and viscera in the organ fraction, and the proportions of 

carcass and organ tissue in the whole body. These changes can affect the amino 

acid requirements for tissue deposition. A long term aim should be to distinguish 

between tissue groups with different amino acid compositions, turnover rates and 

growth rates, in order to determine the whole body amino acid requirements in 

relation to factors such as body weight, body composition, and feeding level. 
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PROTEIN AND LIPID ACCRETION IN BODY COMPONENTS OF GROWING GILTS 

(20-45 KG) AS AFFECTED BY ENERGY INTAKE 

P. Bikker, V. Karabinas, M.W.A. Verstegen, and R. G. Campbell 

ABSTRACT 

Twenty-eight gilts of a commercial hybrid were used to determine the 
relationships between energy intake and tissue deposition, and body composition 
in growing pigs f rom 20 to 45 kg, with a high genetic caprcity for lean gain. The 
gilts received a single diet at six intake levels (1.7, 2.2, 2.7, 3.2, and 3.7 times 
maintenance (M); and ad libitum) ranging from 11.3 to 27.2 MJ DE/d. At 45 kg the 
animals were killed and their bodies dissected into carcass and organ fractions. 
Carcasses of pigs at 2.2 and 3.7 x M were dissected into lean and other carcass 
parts. Daily gain (ADG) increased linearly from 371 to 1075 g/d. Gain/feed 
increased from 500 to 600 g/kg. Deposition rates of protein and lipid increased 
linearly from 75 to 172 g/d and from 28 to 193 g/d, respectively. The ratio 
between lipid and protein deposition increased from .3 to 1.1. The relative organ 
mass and the non-lean carcass parts increased with increasing energy intake, 
whereas the body lean percentage decreased from 53.9% at 2.2 x M to 47 .4% at 
3.7 x M. In the carcass and organs, protein content decreased and lipid content 
increased with increasing energy intake. The proportion of body protein in the lean 
tissue decreased wi th increasing energy intake. Protein deposition increased wi th 
5.77 g per MJ increase in DE intake, of which only about 4 0 % was deposited in 
the lean tissue. Consequently ADG, gain/feed and protein deposition in the pigs are 
optimized at maximum feed intake, whereas lean percentage, efficiency of lean gain 
and distribution of body protein are optimal at lower levels of energy intake. An 
optimal feeding strategy can be designed after definition of the desired product and 
market circumstances. 

Keywords: Pigs, Energy Intake, Protein Accretion, Lipid Accretion, Body Components 

INTRODUCTION 

Knowledge of the effect of energy intake on performance and body composition 

of pigs is essential for the development of biologically and economically efficient 

feeding strategies (Campbell, 1988). According to Whittemore and Fawcett (1976), 

the distribution of dietary energy between protein and lipid accretion, and 

consequently performance and carcass quality is determined by the relationship 

between energy intake and protein deposition. This relationship has been described 

as linear, curvilinear, and linear-plateau, depending on the maximum capacity for 

protein deposition (PDmax) in relation to the maximum feed intake (Campbell, 

1988). For growing female pigs from 20 to 45 kg, Campbell et al. (1983) 
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determined a linear-plateau relationship with a PD m a x of 128 g/d. However, in gilts 

of modern genotype, results of Bikker et al. (1994a) indicated a much higher 

PD m a x , of over 160 g/d. Furthermore, the distribution of protein within the body 

can be affected by feed intake (De Greef and Verstegen, 1993). Therefore the 

present experiment was designed to determine: 1. the relationship between energy 

intake and lipid and protein deposition, and 2. the effect of energy intake on body 

composition and sites of protein deposition, in pigs with a high genetic capacity for 

lean gain. 

This experiment is part of a larger project to study the effects of energy intake, 

body weight and nutritional history on tissue deposition in improved pigs. 

EXPERIMENTAL PROCEDURES 

Animals and Design 

Twenty-eight 9-10 wks old gilts of a commercial hybrid (VOC Nieuw-Dalland, 

Venray, The Netherlands) were used in this study. They had an average body 

weight (BW) of 21.7 ± .3 kg at the start of the experiment. These animals were 

assigned to four blocks of seven pigs on the basis of BW, and from each block the 

pigs were randomly allocated to an initial slaughter group and six treatment groups. 

The four animals of the initial slaughter group were killed at the commencement of 

the experiment to determine the initial body composition. The six treatment groups 

represented six levels of feed intake, ranging from 1.7 times the energy for 

maintenance to ad libitum. 

Dietary Treatments 

There were six treatment groups, corresponding to six levels of feed intake: 1.7, 

2.2, 2.7, 3.2, and 3.7 times energy for maintenance (M) and ad libitum. Digestible 

energy requirements for maintenance were calculated as .475 MJ DE per kg 

metabolic body weight (BW 7 5 ) (ARC, 1981 ). One experimental diet (Table 1 ), was 

used for all treatment groups in order to ensure a constant dietary amino acid 

profile, to avoid interaction between energy intake and protein quality. This diet 

was designed to be adequate in protein and amino acids, with an amino acid 

composition close to that of ideal protein (Wang and Fuller, 1990), to allow 

determination of the relationship between energy intake and nutrient retention. The 
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ileal digestibility of dietary protein and amino acids was determined at an intake 

level of 2.5 x M in a trial, involving five entire male pigs, averaging 28.1 ± .6 kg 

BW and fitted with Post-Valve T-Caecum cannulas (Van Leeuwen et al., 1991 ). The 

DE concentration of the diet was measured in a digestibility trial using ten entire 

male pigs with a BW of 30.7 ± .7 kg. These animals were housed in metabolism 

cages and received the experimental diet at 2.2 or 3.7 x M. The results of these 

two trials are included in Table 1. 

The diet was analysed for dry matter, nitrogen, ash and amino acids according 

to procedures described previously (Bikker et al., 1994a). 

Table 1 . Composition of the experimental diet as fed 

Ingredient, g/kg 

Barley 

Wheat 

Maize 

Soybean meal 

Maize gluten meal 

Potato protein 

Fish meal 

Animal fat 
Soybean oil 

CaC03 

Monocalcium phosphate 

NaCI 

L-lysine 

DL-methionine 
L-threonine 

L-tryptophan 

Calcium propionate 

Vitamin mineral premix3 

218.5 

231.6 

270.6 

100.3 
12.0 

45.0 

40.0 

29.5 

11.6 

6.8 

7.4 

2.5 
3.1 

1.2 

1.9 

.5 

7.5 

10.0 

Nutrient, g/kgb 

Dry matter 

Crude proteinc 

Ash 

Digestible energy, MJ/kg 

Lysine0 

Methionine + cystine0 

Threonine0 

Tryptophan0 

871.2 

198.7 

43.1 

15.1 

11.3 

7.3 

8.9 

2.7 

Contributed the following per kilogram of diet: retinol, 10000 IU; cholecalciferol, 1800 IU; 
o-tocopherol, 30 mg; menadione dimethyl-pyrimidinol bisulfite, 4 mg; thiamin, 1 mg; riboflavin, 
5 mg; niacin, 25 mg; pantothenic acid, 12 mg; pyridoxine, 1 mg; vitamin B12, 40 //g; ascorbic 
acid, 50 mg; choline, 200 mg; copper, 20 mg; cobalt, .25 mg; iodine, .50 mg; iron, 80 mg; 
manganese, 30 mg; selenium, .15 mg; zinc, 100 mg. This mixture also supplied 20 ppm 
salinomicine per kilogram of diet. 
Analysed content. 
Determined ileal digestibility coefficients: crude protein, .81 ; lysine, .86; methionine and cystine, 
.84; threonine, .82; and tryptophan, .82. 
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Housing and Management 

The pigs were housed individually in pens with half slatted floors in an insulated 

building, at an air temperature between 18 and 22°C. The pigs were offered the 

experimental diet in two equal portions per day, at 800 and 1600. The diet was 

pelleted and offered in dry form. The animals had free access to water. The pigs 

were weighed twice a week on Monday and Thursday, prior to feeding, and the 

daily feed allowances were adjusted to the expected gain for the following period 

of three or four days respectively. Feed refusals were collected and weighed twice 

a week. 

Slaughter Procedures and Carcass Analyses 

At a BW of 45 kg, the animals were killed by electrical stunning and 

exsanguination. The blood was collected, the viscera separated and the contents 

of the stomach and intestines removed. Blood and viscera were weighed, combined 

(organ fraction) per animal and stored in a plastic bag at -20°C. The cleansed and 

eviscerated carcass, including head and feet (carcass), was split longitudinally and 

the two halves were weighed and stored in plastic bags at -20°C. 

The right side of the carcasses of the animals from the feeding levels 2.2 and 

3.7 x M, was dissected into trimmed major joints (further referred to as lean 

fraction) and other carcass parts (further referred to as fat fraction) according to the 

Dutch standard dissection method (Bergström and Kroeske, 1968; Kanis, 1988). 

The lean fraction comprised four parts, the ham, shoulder, and loin, all without 

subcutaneous fat, and meat scraps, a group of miscellaneous muscles. The fat 

fraction consisted of backfat, belly, fat trimmed from ham and shoulder, lard, the 

first four ribs, head, feet, tail, and backfat scraps (Walstra, 1980). For the animals 

of the initial slaughtergroup a value of 60 .5% lean tissue in the carcass was 

adopted from De Greef (1992), who used animals with the same genetic 

background. 

The frozen carcass (left plus right halves) and organ fractions were homogenized 

in a commercial butchers' mincer and sub-sampled for proximate analysis. For pigs 

from the treatments 2.2 and 3.7 x M, the lean fractions were also homogenized 

and sub-sampled for proximate analysis. Thereafter, proportional aliquots of the 

lean and fat fractions and of the left side of the carcass were combined per animal 

and homogenized to provide a sample of the whole carcass. Composition of the fat 
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fraction was calculated on the basis of the composition of the whole carcass and 

the lean fraction. 

Dry matter, nitrogen, lipid and ash contents in organ, carcass and lean fractions 

were determined as described previously (Bikker et al, 1994a). 

Statistical Analysis 

Regression analysis was used to determine linear and quadratic effects of feed 

intake on performance parameters and body characteristics, using the backward 

elimination procedure (Draper and Smith, 1981 ). In addition, a linear-plateau model 

(Bikker et al., 1994a) was used to derive a possible intrinsically determined 

maximum rate of protein deposition. Data were analysed by linear (GLM) and 

derivative-free nonlinear (NLIN, method DUD) regression procedures (SAS, 1989). 

RESULTS 

Performance 

Average DE intake (20 to 45 kg) for the six treatment groups ranged from 11.3 

to 27.2 MJ/d for 1.7 x M up to ad libitum (Table 2). The concomitant average daily 

gain increased linearly (P < .001) with increasing feed intake from 371 g/d to 

1075 g/d. The relationship between DE intake (DEI, MJ/d) and ADG (g/d) was 

described as: 

ADG = -104 ( ± 43) + 43.6 ( ± 2.2) x DEI (r2 = .948, RSD = 60.3) [1] 

Gain/feed increased linearly (P < .01) with increasing feed intake. The quadratic 

effect just failed to be significant (P = .06), but gain/feed was similar for the three 

highest feeding levels. Backfat thickness increased with the first two increments 

in feeding level and remained constant, at about 8.3 mm thereafter (Table 2). 

Body Composition 

Empty body weight as a percentage of live weight, and carcass weight as a 

percentage of empty body weight decreased (P < .05 and P < .001), with 

increasing feeding level. Lean tissue content in the empty and in the carcass also 

decreased with increasing feed intake (P < .01) (Table 3). Rate of carcass gain 

increased curvilinearly and gain of organs, lean and fat tissue increased linearly with 
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Table 2. Energy intake and performance of gilts between 20 and 45 kg at six levels of feed intake 

Feeding level, times maintenance energy Effects3 

Parameter 

Feed intake, g/d 

DE intake, MJ/d 

ADG, g/d 

Gain/feed, g/kg 

Backfat, mm 

1.7 

750 

11.3 

371 

505 
6.7 

2.2 

941 
14.1 

488 

522 

7.3 

2.7 

1161 

17.4 

631 

547 

8.2 

3.2 

1362 

20.5 

818 

604 

8.6 

3.7 

1582 

23.8 

959 

610 
8.2 

ad lib 

1813 

27.2 

1075 

600 

8.3 

Mean 

1268 

19.0 

724 

565 
7.9 

SEMb 

38 

.57 

26 

23 

.32 

L 

-
-

* * * 
* * 
* 

Q 

-
-

NS 

t 

* 

Linear (L) and quadratic (Q) effects of energy intake. NS not significant, P > . 1 , î P < . 1 , 
* P < .05, * * P < .01 , * * * P < .001. 
Pooled standard error of the six treatment groups. 

Table 3. Body composition of gilts at 45 kg, fed at six feeding levels from 20 to 45 kg BW 

Parameter, %a 

Empty body 

Carcass 
Organs 

Lean 

Fat 

Lean in 
carcass 

Feeding level 

1.7 

95.5 

83.5 
16.5 

-
-

-

2.2 

97.1 

84.4 
15.6 

53.9 

30.5 

63.8 

, times maintenance energy 

2.7 

96.5 

83.1 

16.9 

-
-

-

3.2 

94.5 

80.8 
19.2 

-
-

-

3.7 

94.7 

81.0 

19.0 

47.4 

33.7 

58.5 

ad lib 

94.9 

80.9 
19.1 

-
-

-

Mean 

95.5 

82.3 
17.7 

50.6 

32.1 

61.1 

SEMC 

.46 

.57 

.57 

.66 

.52 

.68 

Effects'3 

L Q 

NS 
* * * NS 

NS 

ND 

ND 

• * ND 

Empty body weight (live weight less contents of the digestive tract) as percentage of live 
weight. Carcass, organs, lean, and fat as percentage of the empty body and lean as percentage 
of the carcass. 
Linear (L) and quadratic (Q) effects of energy intake. NS not significant, P > . 1 , t P < . 1 , 
* P < .05, * * P < . 0 1 , * * * P < .001, ND not determined. 
Pooled standard error of the six and two treatment groups. 

increasing feed intake (Table 4). 

The chemical body composition (g/kg) of the animals of the initial slaughter 

group was: water 704 ± 5.3, protein 161 ± 2.0, lipid 96.6 ± 5.8, and ash 

28.9 ± .98. These values were used to calculate nutrient retention of the other 

pigs. 

The water, protein, lipid and ash content of the carcass, organs, and empty body 

of the animals at 45 kg were significantly affected by feed intake (Table 5). Only 

the ash content of the viscera was not affected (P > . 1 ). These effects were most 

pronounced for the first two increments in feeding level. For protein and ash 
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Table 4 . Deposition rates of carcass, organs, lean and fat tissue, and efficiency of lean gain in gilts 
between 20 and 45 kg at six levels of feed intake 

Parameter, 
g/d 

Carcass 

Organs 

Lean 
Fat 

Lean/feed, 
g/kg 

1.7 

299 

46.6 

-
-

-

Feeding level. 

2.2 

419 

55.5 

279 

140 

298 

2.7 

518 

84.3 

-
-

-

times maintenance 

3.2 

612 

139 

-
-

-

3.7 

716 

158 

405 

311 

258 

ad lib 

801 

180 

-
-

-

Mean 

561 

110 

342 
226 

278 

SEMb 

20.7 

9.6 

14.1 

13.5 

13.0 

Effects3 

L Q 

* * # * 
* * * NS 

ND 

* * * ND 

NS ND 

a , b See footnotes Tables 2 and 3. 

Table 5. Composition of the carcass, organs and empty body of gilts of 45 kg, fed at six feeding 
levels from 20 to 45 kg 

Parameter, 
g/kg 

CARCASS 
Water 

Protein 

Lipid 

Ash 

ORGANS 

Water 

Protein 

Lipid 
Ash 

EMPTY BODY 

Water 

Protein 
Lipid 

Ash 

1.7 

669 

198 

91 

38.6 

786 

162 
27.1 

9.8 

689 

192 
81 

33.8 

Feeding 

2.2 

656 

191 

114 

33.5 

781 

159 

36.0 

10.0 

675 

186 
102 

29.8 

level. 

2.7 

631 

179 

148 

33.1 

780 

156 

37.7 

9.7 

656 

175 
130 

29.1 

times maintenance 

3.2 

624 

175 

159 

33.8 

781 

149 

44.4 

9.7 

654 

170 
137 

29.1 

3.7 

629 

177 

152 

33.7 

782 

154 

39.8 

10.1 

658 

173 
131 

29.2 

ad lib 

616 

172 

172 

33.0 

774 

153 

44.7 

10.0 

646 

169 

148 

28.6 

Mean 

638 

182 

140 

34.3 

781 

155 

38.3 

9.9 

663 

177 
121 

30.0 

SEMb 

7.4 

2.7 

8.7 

.98 

4.5 

1.8 

4.0 

.16 

6.8 

2.4 
7.7 

.78 

Effects3 

L 

* # # 
* * 

* * * 
* 

NS 
* * 

» » * 
NS 

# * # 
* # 
* » * 
* * 

Q 

NS 

* 
NS 

* 

* 
NS 

NS 

NS 

NS 

* 
NS 

* 

a , b See footnotes Tables 2 and 3. 

content of the carcass and empty body, this was reflected by the quadratic effect 

(P < .05) of feed intake. Water and protein content in the carcass, viscera, and 

empty body, decreased with increasing feeding level whereas lipid content 

increased in all three fractions. However, the increase in lipid content from 1.7 x M 

to ad libitum was much greater than the decrease in protein content, about 70 g/kg 

vs. 20 g/kg. 
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Deposition Rates 

Deposition rates of protein (PD), lipid (LD), and ash in carcass, organs and empty 

body increased linearly (P < .001) with increasing feed intake (Table 6, Figure 1). 

For water deposition, a quadratic effect (P < .05) of feed intake was present. Total 

daily protein deposition increased from 75 to 172 g. This effect of energy intake 

was described as: 

PD = 16.1 (±7 .9 ) + 5.77 (± .40) x DEI (H .904, RSD = 11.1) [2] 

The linear increase in lipid deposition in the empty body ranged from 28 to 193 g/d 

and was described as: 

LD = -94.0 (±11 .6) + 10.5 (± .59) x DEI (r2 = .936, RSD = 16.4) [3] 

The ratio between lipid and protein deposition (LD/PD) in the empty body increased 

linearly from .3 to 1.1 with increasing feed intake. The biggest increase in LD/PD 

Table 6. Deposition rates of water, protein, lipid, and ash in the carcass, organs and empty body 
of gilts between 20 and 45 kg at six levels of feed intake 

Parameter, 
g/d 

CARCASS 

Water 

Protein 

Lipid 

Ash 

Lipid/protein 

ORGANS 

Water 
Protein 

Lipid 

Ash 

Lipid/protein 

EMPTY BODY 

Water 

Protein 

Lipid 

Ash 

Lipid/protein 

1.7 

193 

66.7 

26.6 

12.8 

.35 

36.1 

8.5 

1.5 

.43 

.12 

229 

75.3 

28.1 

13.2 

.32 

Feeding 

2.2 

267 

88.9 

47.1 

13.9 

.55 

42.8 
9.9 

2.4 
.54 

.25 

309 

98.8 

49.5 

14.5 
.52 

level. 

2.7 

304 

98.8 

92.9 

16.9 

.95 

65.0 

14.3 

4.0 

.76 

.29 

369 

113 

96.9 
17.6 

.87 

times maintenance 

3.2 

350 

112 

123 

20.6 

1.09 

108 
21.0 

8.0 

1.26 

.39 

456 

134 

131 
21.9 

.98 

3.7 

417 

135 

134 
24.1 

1.00 

123 

25.7 

7.7 
1.56 

.30 

539 

160 

142 

25.7 

.89 

ad lib 

445 

143 

183 

26.0 

1.29 

136 

28.9 

10.9 

1.73 
.37 

580 

172 

193 

27.8 

1.13 

Mean 

329 

107 

101 
19.1 

.87 

85 
18.1 

5.8 

1.05 
.29 

414 

125 

107 

20.1 

.78 

SEMb 

15.0 

4.92 

11.0 

1.12 

.099 

8.10 
1.04 

1.01 
.064 

.053 

17.3 

4.95 

11.9 

1.13 

.089 

Effects3 

L 

* * * 
» * # 
* * * 
* * * 
* * * 

» * * 
* * * 
NS 
# * * 
# * # 

* * * 
» # » 
* * * 
* * * 
* * * 

Q 

* 
t 

NS 

NS 

NS 

NS 

NS 
* # # 
NS 

NS 

* 
t 

NS 

NS 

NS 

a , b See footnotes Tables 2 and 3. 
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Figure 1 . The relationships between daily digestible energy intake (DEI) and rate of protein 
depos i t i on (PD = 16 .1 + 5 .77 x DEI), rate of l ip id depos i t i on 
(LD = -94.0 + 10.5 x DEI) and the ratio between lipid and protein deposition (LD/PD). 
The curvilinear increase in LD/PD was calculated as the ratio between the equations for 
lipid and protein deposition. 

was found with the first two increments in feeding level, but a significant quadratic 

effect was not found. 

Lean and Fat Tissue 

Carcasses of animals of two treatment groups, 2.2 and 3.7 x M were dissected. 

Large differences were present in the composition of the lean and fat fractions 

(Table 7). Lipid content and LD/PD were three to four times higher in the fat 

fraction than in the lean fraction, whereas water and protein content were lower 

in the fat fraction. Results in Table 7 suggest a decrease (not significant) in protein 

content and an increase (not significant) in lipid content in these two fractions, with 

increasing feeding level. Protein and lipid deposition and LD/PD increased 

significantly with increasing feed intake both in the lean and fat fractions. The 

distribution of body protein was affected by feed intake (Table 8). The proportion 

of body protein deposited in the organs increased, while the proportion of body 

protein in the lean tissue decreased with increasing energy intake. 



88 Chapter 4 

Table 7. Composition of lean and fat tissue at 45 kg and deposition rates of protein and lipid in lean 
and fat tissue of gilts between 20 and 45 kg at two levels of feed intake 

Parameter 

Content, g/kg 
Water 

Protein 

Lipid 
Ash 

Deposition, g/d 

Protein 

Lipid 
Lipid/protein 

Lean tissue 

Energy level 

2.2xM 

707 

199 

57.2 

33.3 

60.3 

16.9 
.29 

3.7xM 

699 

193 

68.5 
35.4 

85.1 

34.3 

.40 

SEMa 

3.9 

1.3 
3.7 

1.2 

2.2 

1.3 

.029 

Effect13 

NS 

NS 

t 

NS 

* * 
* * 
* 

Fat tissue 

Energy level 

2.2xM 

565 

178 

213 

33.9 

28.6 

30.2 

1.11 

3.7xM 

532 

155 

269 

31.2 

49.4 

99.7 
2.02 

SEMa 

9.2 

8.1 

17.9 

2.5 

3.0 

8.0 
.27 

Effect13 

t 

Î 

t 

NS 

# * * 
* # # 
* 

a Pooled standard error of the two treatment groups. 
b Linear effects of energy intake. NS not significant, P > . 1 , t P < . 1 , * P < .05, 

* * • P < .001. 
P < . 01 , 

Table 8. Distribution of body protein deposited in gilts between 20 and 45 kg, at two levels of feed 
intake 

Fraction, % 
Empty body 

Carcass 

Organs 

Lean 

Fat 

Lean in carcass 

2.2xM 

100 

89.9 

10.1 

61.0 

28.9 

67.8 

3.7xM 

100 

84.0 

16.0 

53.1 

30.8 

63.3 

SEMa 

-
.51 

.51 

.85 

.96 

1.06 

Effect6 

-
* * * 
# * * 
# # 
NS 

* 

Slope0 

5.77 

4.42 

1.35 

2.51 

2.16 

-

Extra PDd 

100 

76.5 

23.5 

41.2 

35.3 

53.8 

Pooled standard error of the two treatment groups. 
Linear effects of feed intake. NS not significant, P > . 1 , t P < . 1 , * P < .05, * * P < . 01 , 
* * * P < .001. 
Slope, linear increase in protein deposition (g/MJ DE) in the empty body, carcass and organs 
(based on six treatment groups) and in lean and fat tissue (based on two treatment groups). 
Distribution of extra protein, deposited with an increase in feed intake, based on the slopes of 
the linear regression. 
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DISCUSSION 

Design 

In order to determine the effects of dietary protein or energy on protein and lipid 

accretion, ideally the input of energy and protein should be varied independently, 

as in Bikker et al (1994a). However, the variation of energy intake over a wide 

range of intake levels at constant adequate protein intake, would at low energy 

intake levels lead to diets extremely high in protein. In addition this design would 

not allow the inclusion of a group of animals receiving feed ad libitum. Therefore 

in this experiment the effect of energy intake on performance and body composition 

was determined by feeding graduated levels of one diet with a constant, adequate 

protein to energy ratio. 

Performance and Accretion Rates of Protein and Lipid 

The ad libitum feed intake of 27.2 MJ DE/d was similar to that of gilts wi th the 

same genetic background in an earlier experiment (Bikker et al., 1994a). With 

increasing energy intake, ADG increased linearly to 1075 g/d at the ad libitum 

intake level. This linear increase was in good agreement with findings of many 

authors, reviewed by the ARC (1981) for pigs in this weight range. The increase 

in ADG of 44 g/MJ DE was higher than derived by Close et al. (1983), who found 

33 g/MJ ME, Campbell et al. (1983), who found 25 g/MJ DE, and others (see 

review ARC, 1981). Gain/feed was improved with the first three increments in 

feeding level from 500 to 600 g/kg and remained relatively constant at the higher 

intake levels. This response was presumably the result of the combined effects of 

a reduction of the proportion of energy used for maintenance purposes and an 

increase in the proportion of fat in the body gain (Table 6). These results indicate 

that the highest performance of these gilts is attained when the animals are given 

free access to feed. 

Protein deposition responded linearly to an increase in daily energy intake from 

75 to 172 g/d, with a slope of 5.77 g/MJ DE. A similar response in protein gain to 

energy intake was reported by Campbell et al. (1988) and Rao and McCracken 

(1991) for genetically improved boars from 40 to 90 kg. This indicated the high 

genetic capacity for lean growth of the animals in relation to their feed intake 

capacity. In contrast, Campbell et al. (1983) reported for unimproved gilts between 

20 and 45 kg, a linear increase in protein deposition of 4.19 g/MJ DE until a 
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plateau of 128 g/d was reached, at a daily intake of 29.4 MJ DE. These results 

indicate that genetic differences between animals can find expression both in the 

slope, reflecting the distribution of dietary energy at sufficient protein intake, 

between protein and lipid deposition, and in the maximum capacity (plateau) for 

protein deposition (PDmax). This conclusion is in agreement with Campbell et al. 

(1988) who compared two lines of boars between 45 and 90 kg BW. 

The almost significant (P = .07) quadratic component in the relationship 

between DE intake and protein deposition may indicate that some pigs had reached 

their PD m a x . Therefore this relationship was further analysed with a linear-plateau 

model. Compared to the linear regression, this model showed an improved 

goodness-of-fit, R2 = .937 (P < .01). Model parameters were estimated as: slope, 

6.53 ± .41 g/MJ; plateau, 170 ± 6.6 g/d; and point of transition 25.4 ± 1 . 1 5 

MJ DE/d. However, this plateau was caused by two out of four animals of the ad 

libitum treatment, which consumed more feed than their counterparts (29.6 vs. 

24.8 MJ DE) without showing any further increase in protein deposition. These 

results may imply that for the pigs used in this study, the energy intake required for 

PD m a x was about the maximum daily feed intake. 

Lipid deposition increased linearly from 28 to 193 g/d. From the linear increase 

in protein and lipid deposition, one might conclude that below PD m a x the ratio 

LD/PD is constant and independent of energy intake (e.g. Whittemore, 1983). 

However, LD/PD increased from .3 to 1.1 in the present study. Extrapolation of 

equations [2] and [3] indicated that at zero lipid deposition, 68 g of protein would 

be retained. This finding is supported by Close et al. (1983) and Kyriazakis and 

Emmans (1992a,b), who reported protein deposition rates of 40 to 90 g/d while the 

lipid deposition was about zero. This preference for protein deposition at low 

energy intake levels (and consequently different points of intersection of the x-axis 

for protein and lipid deposition), explains the increase in LD/PD with energy intake, 

and therefore also in body lipid content, even where protein and lipid deposition 

increased linearly with increasing DE intake. The LD/PD of .3 at 1.7 x M was in 

good agreement with Kyriazakis and Emmans (1992a,b), and much lower than 

.8 to 1.0, often suggested as the minimum LD/PD (e.g. Ellis et al. 1983). Each MJ 

increase in DE intake resulted in an increase in protein and lipid deposition of 5.77 

and 10.5 g/d respectively (Equation [2] and [3]). Thus the LD/PD for extra weight 

gain, here defined as A L D / A P D , was 1.82. With increasing energy intake the LD/PD 

will approach this value curvilinearly, until the feed intake capacity or PD m a x 
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becomes limiting. This is illustrated in Figure 1, which shows the increase in protein 

and lipid deposition, and in LD/PD, calculated as the quotient of Equation [3] and 

[2]. These results are in good agreement with Campbell et al. (1983), Rao and 

McCracken (1991) and Kyriazakis and Emmans (1992a,b). The relationship of 

LD/PD to energy intake means that a constant LD/PD is not a good criterion to 

define the genetic capacity of a pig, as suggested by Whittemore (1983) and as 

also used in several pig growth models. The slope between energy intake and 

protein deposition, and the ratio A L D / A P D can be useful alternatives. 

Body Composition and Distribution of Protein 

The weight of the empty body as a percentage of live weight, decreased slightly 

with increasing feed intake, owing to an increase in gutfill. Within the empty body, 

the carcass weight decreased from approximately 84 to 81 % with a concomitant 

increase in weight of the viscera from 16 to 19%. The latter increase was 

predominantly the result of the response of the food processing organs, including 

the intestines, liver, and kidneys, to an increased feed intake, and representing 

increased metabolic activity (Bikker et al., 1994b). The response of metabolically 

active organs to nutrient intake was also reported by Koong et al. (1983) and Rao 

and McCracken (1992), but was not found by Giitte et al. (1978). Results of the 

latter study were obtained by feeding incremental amounts of starch and 

saccharose in addition to a constant amount of a high protein diet, which was the 

same for all energy intake levels. These different effects of nutrient intake on organ 

growth indicate that the dietary composition may be important for the response of 

organs to an increased feed intake. 

The percentage of lean tissue in the empty body decreased from 53.9 to 47 .4% 

with an increase in feeding level from 2.2 to 3.7 x M. This decrease was the result 

of the above mentioned decrease in carcass weight, and a decrease in the lean 

percentage within the carcass from 63.8 to 58.5%. The reduction in carcass lean 

of .55% per MJ increase in DE intake was in agreement with reductions of . 3 % 

(Ellis et al., 1983), . 4 % (Kanis, 1988) and . 7% (Gütte et al., 1978) per MJ DE for 

pigs between 70 and 110 kg. However, Haydon et al. (1989) and Rao and 

McCracken (1992) found no effect of feed restriction on lean percentage in pigs 

from 20 to 50 and from 30 to 90 kg respectively. There are two possible 

explanations for these differences: the genetic capacity of the animals, and the 

levels of feed intake applied. A restriction in energy intake in animals which have 
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reached PD m a x will mainly reduce the fat deposition and consequently will increase 

the lean percentage more than in pigs which have not yet reached PD m a x . 

Secondly, in this study an increase in DE intake from 2.2 to 3.2 x M affected 

protein and lipid content much more than a similar increase from 3.2 x M to ad 

libitum, due to a curvilinear increase in LD/PD. The choice of energy intake levels 

therefore influences the effects on LD/PD and body composition which will be 

found. 

In agreement with the decrease in lean percentage, the efficiency of lean gain 

(lean gain/feed intake) decreased from 298 to 258 g/kg feed, when the feeding 

level increased from 2.2 to 3.7 x M. Owing to the small number of dissected 

animals, this effect was not significant (P = .13). Conversely, gain/feed (Table 2) 

increased from 522 to 610 g/kg with an increase in intake from 2.2 to 3.7 x M. 

These results indicate that the energy intake level required to optimize efficiency 

of lean gain was lower than the level required to optimize body gain. This was also 

found by Kanis (1988) for pigs from 30 to 110 kg. 

The effect of feed intake on body tissues suggested an effect of feed intake on 

the sites of protein deposition. This was confirmed by results in Table 8. Protein 

deposited in the organs, as a proportion of whole body protein deposition between 

20 and 45 kg, increased from 10.1 to 16.0% and the proportion in the lean tissue 

decreased from 61.0 to 5 3 . 1 % , when the energy intake was increased from 2.2 

to 3.7 x M. Based on the slopes of the linear regression of protein deposition in the 

empty body, carcass, organs, and lean and fat tissue, it was concluded that of each 

extra gram of protein deposited only about 4 0 % was deposited as lean tissue. This 

finding was in agreement with De Greef and Verstegen (1993) for pigs between 25 

and 65 kg. Studies in which the source of energy is different and(or) in which 

protein intake is kept constant may give different results (Susenbeth and Keitel, 

1988). Therefore this effect of feed intake on protein distribution needs further 

evaluation, especially because protein in lean meat is the most valuable for human 

consumption. 

The present study indicates that protein deposition increases linearly with 

increasing energy intake in growing gilts (20-45 kg) with a high genetic potential 

for lean gain. However, a decreasing proportion of the protein is deposited as lean 

tissue. Secondly, the rate of lipid accretion increases more with energy intake than 

the rate of protein accretion. As a consequence ADG, gain/feed and protein 

deposition in these pigs are optimized at maximum feed intake. The lean 
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percentage, efficiency of lean tissue deposition, and proportion of body protein 

deposited as lean tissue, are optimized at lower levels of energy intake. 

Consequently, an optimal feeding strategy for these pigs can only be designed after 

appropriate definition of the desired product and market circumstances. 

IMPLICATIONS 

Daily gain and protein and lipid deposition in growing gilts (20-45 kg) responded 

linearly to increasing energy intake up to maximum feed intake. The lean tissue 

percentage, the efficiency of lean tissue gain and the proportion of body protein in 

the lean tissue, decreased with increasing energy intake. Giving animals free access 

to feed will therefore optimize daily gain and protein deposition but not body 

composition. For modelling growth in pigs, extra protein deposition per MJ 

digestible energy intake or the ratio extra protein/extra lipid deposition with 

increasing energy intake, can be used as a parameter to define the genetic capacity 

of the animals. 
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PERFORMANCE AND BODY COMPOSITION OF FATTENING GILTS (45-85 KG) 

AS AFFECTED BY ENERGY INTAKE AND NUTRITION IN EARLIER LIFE. 

1 . GROWTH OF THE BODY AND BODY COMPONENTS 

P. Bikker, M.W.A. Verstegen, B. Kemp and M.W. Bosch 

ABSTRACT 

Forty-eight gilts of a commercial hybrid Were used to determine the effects of 
energy intake from 20 to 45 kg, on the relationship between energy intake and 
weight gain of the body and body components from 45 to 85 kg. Two groups of 
24 gilts received a single diet either at 2.2 (low pigs) or 3.7 (high pigs) times 
maintenance (M) from 20 to 45 kg. From 45 to 85 kg the pigs were fed the same 
diet at one of six intake levels (1.7, 2.2, 2.7, 3.2 and 3.7 x M and ad libitum). At 
85 kg, the animals were dissected into organs, lean and fat tissue. In the low pigs, 
body and lean tissue gain between 45 and 85 kg increased curvilinearly with 
increasing energy intake from 432 to 1412 g/d and from 228 to 507 g/d, 
respectively. In the high pigs, body and lean tissue gain increased from 394 to 
1201 g/d and from 238 to 508 g/d, respectively. The percentage lean tissue in the 
carcass decreased curvilinearly with increasing energy intake from 62.9 to 56.5%, 
and from 62.5 to 53.9% in the low and high pigs, respectively. Previously 
restricted pigs gained on average 140 g/d faster (P < .001) and their carcass lean 
tissue content at slaughter was almost 3% higher (P < .001). These differences 
increased with increasing energy level between 45 and 85 kg. The increased gain 
was largely the result of an increase in organ growth and gut contents, and was 
only evident up to 65 kg. Accretion rates of lean and fat tissue were not affected 
by previous nutrition (P > .1). Thus the higher lean content at 85 kg in previously 
restricted pigs was not the result of compensation in lean gain, but was already 
present at the end of the restriction phase at 45 kg. 

Keywords: Pigs, Energy Intake, Body Gain, Body Components, Nutritional History 

INTRODUCTION 

Compensatory gain in pigs after a period of feed restriction has been studied by 

many authors during several decades. Nielsen (1964), Owen (1971) and Donker et 

al. (1986) reported an increase in feed intake and consequently in body gain, in 

pigs with free access to feed after a period of restriction. Others reported an 

increase in the efficiency of gain in restrictedly fed animals after a period at a low 

feeding level (Campbell et al., 1983; Kirchgessner et al., 1984). These studies 

however, do not allow the determination of the presence and the degree of 

compensation are affected by the level of feeding in the realimentation period. In 

addition, little information is available concerning the effect of a previous restriction 
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on the composition of body gain in the realimentation period. This information is 

even more important since Koong et al. (1983) reported that weights of metabolic 

organs at slaughter are significantly affected by the feeding strategy. Thus it may 

be that an increase in organ gain accounted for a large part of the compensatory 

gain in the reported studies. 

Therefore in this study the effects of energy intake from 20 to 45 kg on 

performance, tissue deposition and composition of gain between 45 and 85 kg 

have been studied in gilts at six levels of feeding from 45 to 85 kg. 

EXPERIMENTAL PROCEDURES 

Animals and Design 

Forty-eight 9 - 1 0 wks old gilts of a commercial hybrid (VOC Nieuw-Dalland, 

Venray, The Netherlands) with an average liveweight of 21.8 ± .2 kg at the start 

of the experiment, were used in this study. These animals were allocated on the 

basis of BW among 12 treatment combinations in a 2 x 6 factorial arrangement 

with four pigs per treatment combination. The respective treatments were level of 

feeding from 20 to 45 kg, equivalent to 2.2 and 3.7 times energy for maintenance 

(M), and level of feed intake from 45 to 85 kg, ranging from 1.7 times energy for 

maintenance to ad libitum. The treatment period from 20 to 45 kg will be further 

referred to as the nutritional history and the gilts with the low (2.2 x M) and high 

(3.7 x M) nutritional history will be referred to as low and high pigs respectively. 

The treatment period from 45 to 85 kg will be further referred to as the fattening 

period. 

Dietary Treatments 

The six feeding levels in the fattening period were 1.7, 2.2, 2.7, 3.2, and 

3.7 x M, and ad libitum. One experimental diet, adequate in protein and amino 

acids, was used from 20 to 85 kg for all treatment groups, in order to ensure a 

constant dietary amino acid profile. This allowed the determination of the 

relationship between energy intake and tissue deposition. The DE concentration of 

the diet was measured in a digestibility trial using ten intact male pigs at a BW of 

30.7 ± .7 kg and at a BW of 65.7 ± 2.0 kg. These animals were housed in 

metabolism cages and received the experimental diet at 2.2 or 3.7 times 
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maintenance. Energy digestibility was not affected by the level of feed intake nor 

by the BW of the animal. The composition of the experimental diet, including the 

DE concentration and contents of digestible amino acids, has been published 

previously (Bikker et al., 1994a). The energy content of the experimental diet was 

15.1 MJ of DE/kg. 

Housing and Management 

The pigs were housed individually in pens wi th half slatted floors in an insulated 

building, at an air temperature between 18 and 22°C. The pigs were offered the 

experimental diet in two equal portions per day, at 800 and 1600. The diet was 

pelleted and offered in dry form. The animals had free access to water. The pigs 

were weighed twice weekly on Monday and Thursday, prior to feeding, and the 

daily feed allowances were adjusted to expected gain for the following period of 

three or four days, respectively. The feed allowances were based on metabolic 

body weight (BW ), wi th digestible energy requirements for maintenance 

calculated as .475 MJ DE per kg B W 7 5 (ARC, 1981 ). Feed refusals were collected 

and weighed twice weekly. 

Slaughter Procedures and Carcass Analysis 

At a l iveweight of 85 kg, the animals were killed by electrical stunning and 

exsanguination. Body components were collected and stored as described by Bikker 

et al. (1994a). The bodies were dissected into three fractions or tissue groups, 

referred to as organ, lean and fat fraction. The organ fraction comprised the blood 

and all organs, including mesenteric fat. The lean fraction comprised the ham, 

shoulder, and loin, all without subcutaneous fat, and meat scraps. The fat fraction 

comprised all other carcass parts and consisted mainly of backfat, belly fat, other 

fat depots, head, feet, and tail (Bikker et al., 1994a). 

The body composition of the pigs at 20 and 45 kg was estimated using the data 

presented in Bikker et al. (1994a). The latter experiment from 20 to 45 kg was 

conducted in the same period, under similar experimental conditions, and with gilts 

from the same herd as the present study. 

Statistical Analysis 

Regression analysis was used to determine linear and quadratic effects of feed 

intake in the fattening period, on performance, tissue deposition and body 



102 Chapter 5 

composition. The effect of nutritional history on regression parameters was 

determined using dummy variables and a backward elimination procedure (Draper 

and Smith, 1981 ). Data were analysed by linear (GLM) regression procedures (SAS, 

1989). 

RESULTS 

Performance 

In the growing period from 20 to 45 kg, daily gain of the high pigs was much 

higher (P < .001 ) than that of the low pigs, 959 vs. 501 g/d (Table 1 ). As a result 

the low pigs were 22 days older at the start of the fattening period. In addition, 

these pigs had less backfat (Table 1) and a higher (P < .01) estimated body lean 

percentage, 53.9 vs. 47 .4% (Bikker et al., 1994a) at 45 kg. 

In the fattening period, the average DE intake at the different intake levels, 

increased from 18.3 to 44.8 MJ/d for the low pigs, and from 18.0 to 41.9 MJ/d 

for the high pigs (Table 2). The concomitant ADG increased curvilinearly with 

increasing energy intake to 1412 and 1201 g/d, respectively. Gain/feed also 

increased curvilinearly with increasing DE intake. The first increments in energy 

level led to a large increase in feed efficiency, which remained relatively constant 

at the three highest energy levels. The rate and efficiency of empty body gain also 

increased curvilinearly. The low pigs showed a better performance in this period 

than the high pigs, which is reflected by an effect of the nutritional history on the 

linear component of the relationships for ADG, gain/feed, and rate and efficiency 

Table 1 . Performance from 20 to 45 kg of gilts at two feeding levels 

Parameter 

Days in exp. 

DE intake, MJ/d 

ADG, g/d 
Gain/feed, g/kg 

Backfat, mm 

Energy level3 

Low (2.2xM) 

47.4 

14.2 

501 
534 

7.6 

High (3.7xM) 

25.8 

23.6 

959 

613 

8.5 

SEMb 

.86 

.15 

13 
9.4 

.12 

Effect0 

* * * 
* * * 
* * * 
* # * 
* # * 

Energy level times energy for maintenance (M). 
Pooled standard error of the two treatrr 
Effect of energy intake, * * * P < .001. 

b Pooled standard error of the two treatment groups, n = 24. 
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of the empty body gain. This implies that the difference between high and low pigs 

increased with increasing levels of energy intake (DEI), which is illustrated for ADG 

(g/d) in Figure 1. These relationships were described as: 

ADG = -550 (±167) + [61.4 (±11.3) - 1.87 (±.37) x DUM] x DEI - .44 (±.18) x DEI2 

(r2 = .943, RSD = 80.8) [1] 

in which DUM represents the dummy variable for the nutritional history, with values 

of -1 and + 1 for the low and high pigs respectively. Consequently, the coefficients 

for the linear component were 63.3 and 59.5 (P < .001 ) for the low and high pigs, 

respectively. On average, ADG and gain/feed between 45 and 85 kg were 138 g/d 

and 49 g/kg higher for the low pigs. However, results in Table 3, in which the 

fattening period was divided in two periods of 20 kg, showed that this improved 

gain and efficiency were only evident from 45 to 65 kg of BW. 

Table 2. Energy intake and performance of gilts between 45 and 85 kg, at six levels of feed intake, 
and with two nutritional histories3 

Feeding level, times maintenance Effects0 

Parameter His.3 1.7 2.2 2.7 3.2 3.7 ad lib Mean SEMD DE intake History 

DE intake, 
MJ/d 

ADG, 
g/d 

Gain/feed, 
g/kg 

Empty body 
gain, g/d 

EB gain/feed. 
g/kgd 

Backfat, 
mm 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

18.3 

18.0 

4 3 2 

3 9 4 

356 

331 

4 1 6 

3 9 4 

343 

331 

8.6 

8.8 

23.6 

23.9 

6 5 6 

659 

419 

4 1 6 

621 

6 4 4 

397 

407 

9.2 

10.3 

29.3 

28.7 

988 

801 

510 

4 2 2 

916 

783 

473 

412 

10.3 

12.4 

35.5 40.4 44.8 32.0 

34.6 39.2 41.9 31.0 

1148 1278 1412 986 

907 1127 1201 848 

489 478 475 455 

397 434 434 406 

1073 1195 1298 920 

906 1087 1162 829 

457 447 437 426 

396 418 420 397 

10.9 12.2 11.5 10.4 

13.4 13.0 14.1 12.0 

.52 

40 L 

19 L Q 

36 

17 L 

.79 L* 

iL 

AL 

AL 

AL 

AL 

His., nutritional history, feeding level from 20 to 45 kg, being 2.2 (L) or 3.7 (H) times 
maintenance. 
Pooled standard error of the 12 treatment groups, n = 4. 
Linear (L) and quadratic (Q) effects of energy intake between 45 and 85 kg, and effects of the 
nutritional history on the intercept (AI ) , linear (AL) and quadratic (AQ) component of the 
regression equation. * P < .05, * * P < . 0 1 , * * * P < .001. 
Empty body gain per kg feed intake. 



104 Chapter 5 

1500 

. 1200 
c 
'5 
_>. 
CO 

o 
is 
œ 600 
< 

0 Low pigs 

A High pigs 

900 

300 
15 20 25 30 35 40 

DE intake (45-85 kg), MJ/d 

45 

Figure 1. Daily gain from 45 to 85 kg at six levels of energy intake, in gilts which had received 
either 2.2 (low pigs) or 3.7 (high pigs) times energy for maintenance from 20 to 45 kg 

Table 3. Energy intake and performance of gilts from 45 to 65 kg and from 65 to 85 kg, at six 
levels of feed intake, and with two nutritional histories3 

Feeding level, times maintenance Effects0 

Parameter 

45-65 kg 

DE intake. 
MJ/d 

ADG, 
g/d 

Gain/feed, 
g/kg 
65-85 kg 

DE intake. 
MJ/d 

ADG, 
g/d 

Gain/feed, 
g/kg 

His.3 

L 

H 

L 
H 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

16.3 

16.1 

400 
354 

370 

332 

20.6 

20.6 

469 

454 

344 

334 

2.2 

21.0 

21.4 

606 
588 

435 

415 

26.5 

26.7 

716 

739 

408 

418 

2.7 

26.2 

25.7 

955 
729 

551 

428 

32.8 

32.6 

1024 

903 

472 
419 

3.2 

30.6 

30.6 

1341 

871 

662 

430 

38.9 

38.7 

1007 

949 

391 

370 

3.7 

35.8 

35.4 

1287 

1034 

543 

441 

44.8 

43.5 

1271 

1234 

428 

429 

ad lib 

42.5 

40.3 

1772 
1270 

630 

477 

46.5 

43.4 

1158 

1152 

376 

402 

Mean 

28.7 

28.3 

1060 
808 

532 

421 

35.0 

34.2 

941 

905 

403 

395 

.64 

58 L 

27 

AL 

AL 

62 

45 L 

20 L 

His., nutritional history, feeding level from 20 to 45 kg, being 2.2 (L) or 3.7 (H) times 
maintenance. 
Pooled standard error of the 12 treatment groups, n = 4. 
Linear (L) and quadratic (Q) effects of energy intake between 45 and 65 kg and between 65 and 
85 kg, and effects of the nutritional history on the intercept (AI ) , linear (AL) and quadratic (AQ) 
component of the regression equation. * P < .05, * * P < .01 , * * * P < .001. 
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Backfat thickness increased linearly with increasing feeding level (Table 2), and 

was on average 1.6 mm higher for the high pigs. This difference increased with 

increasing energy intake (Table 2). 

Body Composition 

Empty body weight as a percentage of liveweight at slaughter (85 kg), decreased 

linearly with increasing energy intake (Table 4). Weight of the carcass as a 

proportion of the empty body decreased linearly and the organ weight increased 

linearly with increasing feeding level. The lean fraction as a percentage of the 

empty body and as a percentage of the carcass, decreased curvilinearly with 

increasing energy intake, whereas the fat fraction increased curvilinearly. The lean 

tissue as a percentage of both the empty body and the carcass, was on average 

2 - 3% higher in the low pigs than in the high pigs. The percentage of fat tissue 

was 2 - 3% higher in the high pigs. 

Table 4. Body composition of gilts at 85 kg, fed at six levels of feed intake between 45 and 85 kg, 
and with two nutritional histories3 

Feeding level, times maintenance Effects 

Parameter 

Empty body, 

% 

Carcass, 
% 

Organs, 
% 

Lean, 
% 

Fat, 
% 

Lean in 
carcass, % 

His.b 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

97.1 

97.2 

86.5 

85.9 

13.5 

14.1 

54.4 

53.7 

32.1 

32.2 

62.9 

62.5 

2.2 

96.8 

96.9 

85.6 

86.1 

14.4 

13.9 

51.9 

51.6 

33.7 

34.5 

60.6 

59.9 

2.7 

96.2 

96.7 

84.6 

84.6 

15.4 

15.4 

50.2 

46.2 

34.4 

38.3 

59.4 

54.7 

3.2 

96.4 

97.2 

83.7 

84.4 

16.3 

15.6 

49.0 

45.6 

34.6 

38.7 

58.6 

54.1 

3.7 

96.4 

96.4 

83.5 

83.0 

16.5 

17.0 

47.1 

44.4 

36.4 

38.5 

56.4 

53.6 

ad lib 

95.7 

96.7 

83.0 

84.2 

17.0 

15.8 

47.0 

45.4 

36.1 

38.8 

56.5 

53.9 

Mean 

96.4 

96.8 

84.5 

84.7 

15.5 

15.3 

49.9 

47.8 

34.5 

36.9 

59.1 

56.4 

.31 L i L 

.43 L" 

.43 L 

.88 L Q i L 

.89 L Q i L 

1.02 L Q i L 

a Empty body weight (live weight less contents of the digestive tract) as percentage of live 
weight and weight of carcass, organs, lean and fat tissue as percentage of empty body 
weight. 

b , c 'd See footnotes Table 2. 
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Growth of Body Components 

The deposition rate of organ tissue increased linearly (P < .001 ) with increasing 

energy intake, from 46 g/d to 244 g/d for the low pigs, and from 37 to 166 g/d for 

the high pigs (Table 5). Consequently, there was an increasing difference 

(P < .001 ) between the low and high pigs. Deposition rates of carcass, and of lean 

and fat tissue, increased curvilinearly with increasing energy intake in the fattening 

period. On average, deposition rates of both lean and fat were 1 5 g/d higher (not 

significant, P > .05) in the low pigs. The efficiency of lean tissue deposition (g/kg) 

decreased quadratically with increasing energy intake (Table 5). This efficiency was 

relatively constant at the three highest feeding levels, and was not affected by the 

nutritional history of the gilts. 

The composition of body gain was affected by energy level and nutritional 

history. In Table 6 the relative contribution of gain of carcass, organs, lean and fat 

tissue, to the total body gain is given. The results showed an increase in the 

proportion of organ and fat gain and a large decrease, from about 58% to 40%, in 

the proportion of lean tissue gain, with increasing energy intake. Furthermore, at 

each level of energy intake the proportion of organ gain was about 4 % higher and 

lean gain was about 3% lower in the low pigs. 

Table 5. Growth rates of body components and efficiency of lean gain in gilts between 45 and 85 
kg, fed at six levels of feed intake, and with two nutritional histories3 

Feeding level, times maintenance Effects0 

Parameter 

Carcass, 
g/d 

Organs, 
g/d 

Lean, 
g/d 

Fat, 
g/d 

Lean/feed, 
g/kg 

His.3 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

367 

359 

46 

37 

228 

238 

139 

121 

188 

200 

2.2 

538 

601 

81 

53 

305 

370 

232 

232 

195 

234 

2.7 

782 

699 

142 

92 

426 

355 

356 

344 

220 

187 

3.2 

888 

805 

187 

112 

471 

401 

417 

404 

201 

175 

3.7 

993 

935 

211 

166 

478 

451 

516 

484 

178 

174 

ad lib 

1064 

1028 

244 

145 

507 

508 

557 

520 

171 

184 

Mean 

772 

738 

152 

101 

402 

387 

369 

351 

192 

192 

29.7 L 

11.5 L AL 

28.6 L Q 

18.0 L Q 

12.9 Q 

a 'b ' c See footnotes Table 2. 
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Overall Performance from 20 to 85 kg 

In Table 7 are given the overall performance and lean tissue deposition in the 

growing-fattening period. On average, the low pigs needed 96 d, and the high pigs 

79 d, to grow from 20 to 85 kg. As a consequence, the age difference was 

reduced from 22 d at 45 kg to 17 d at 85 kg due to the compensatory gain in the 

low pigs. The ADG between 20 and 85 kg increased linearly with increasing DE 

intake and the linear component was affected by the nutritional history. However, 

the average daily energy intake was much higher for the high pigs, 27.9 vs. 21.9 

MJ. Therefore, the effects of energy intake and nutritional history cannot be 

derived directly from Table 7. In order to illustrate these effects, the ADG between 

20 and 85 kg has been plotted against DE intake, which is shown in Figure 2. A t 

similar daily energy intake, the low pigs gained about 65 g/d faster than the high 

pigs. Consequently, the gain/feed in the low pigs was also higher. The difference 

was about 40 g/kg. However, the maximum daily gain in the high pigs was 285 g/d 

higher than in the low pigs, 1123 vs. 838 g/d, because of the lower energy intake 

of the low pigs. Further analysis showed that the extra ADG of 65 g/d in the low 

pigs comprised an increase in organ gain of 21 g/d (P < .001), an increase in fat 

Table 6. Composition of body gain in gilts between 45 and 85 kg, fed at six levels of feed intake 
and, with two nutritional histories 

Feeding level, times maintenance Effects 

Parameter3 

Carcass, 
% 

Organs, 
% 

Lean, 
% 

Fat, 
% 

Lean in 
carcass, % 

His.b 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

88.8 

90.8 

11.2 

9.2 

55.1 

60.2 

33.7 

30.7 

62.1 

66.3 

2.2 

86.9 

91.9 

13.1 

8.1 

49.6 

56.5 

37.2 

35.4 

57.1 

61.4 

2.7 

84.7 

88.4 

15.3 

11.6 

46.0 

44.9 

38.7 

43.5 

54.4 

50,8 

3.2 

82.8 

87.7 

17.2 

12.3 

43.7 

43.6 

39.1 

44.2 

52.8 

49.7 

3.7 

82.5 

85.0 

17.5 

15.0 

39.6 

41.0 

42.9 

44.0 

48.0 

48.3 

ad lib 

81.3 

87.6 

18.7 

12.4 

38.6 

43.1 

42.7 

44.5 

47.4 

49.1 

Mean 

84.5 

88.6 

15.5 

11.4 

45.4 

48.2 

39.1 

40.4 

53.6 

54.3 

.93 L i l 

.93 L AI 

1.94 L Q AI 

1.97 L Q 

2.21 L Q 

a Percentage of carcass, organs, lean and fat tissue in the empty body gain and percentage of 
lean tissue in the carcass gain. 

b ' c , d See footnotes Table 2. 
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Figure 2. Average daily gain from 20 to 85 kg, in gilts fed at six energy levels between 45 and 
85 kg. The low and high pigs received 2.2 and 3.7 times energy for maintenance from 
20 to 45 kg, respectively 

Table 7. Overall performance of gilts from 20 to 85 kg, fed at two feeding levels between 20 and 
45 kg (His.a), and at six feeding levels from 45 to 85 kg 

Feeding level, times maintenance Effects0 

Parameter 

DE intake. 
MJ/d 

Days in 
experiment 

ADG, 
g/d 

Gain/feed, 
g/kg 

Lean gain, 
g/d 

Lean/feed, 
g/kg 

His.a 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

16.8 

19.0 

141 

128 

446 

499 

403 

397 

242 

268 

219 

213 

2.2 

19.5 

23.7 

111 

85 

579 

756 

448 

482 

293 

381 

226 

243 

2.7 

21.5 

26.9 

86 

74 

752 

844 

528 

474 

363 

367 

255 

206 

3.2 

23.6 

30.6 

85 

71 

771 

916 

492 

452 

363 

399 

231 

197 

3.7 

24.7 

32.8 

80 

60 

807 

1063 

494 

489 

360 

435 

220 

200 

ad lib 

25.4 

34.3 

76 

58 

838 

1123 

499 

495 

367 

476 

219 

210 

Mean 

21.9 

27.9 

96 

79 

699 

867 

477 

465 

331 

388 

228 

212 

.40 

3.5 

29.9 L 

17.6 L Q 

19.3 L 

11.1 Q 

AL 

AI 

a ,b See footnotes Table 2. 
c Linear (L) and quadratic (Q) effects of energy intake between 20 and 85 kg, and effects of 

the nutritional history on the intercept (A I ) , linear (AL) and quadratic (AQ) component of the 
regression equation. * P < .05, * * P < . 0 1 , * * * P < .001. 
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Figure 3. Percentage of lean tissue in the empty body of gilts at 85 kg, fed at six energy levels 
between 45 and 85 kg. The low and high pigs received 2.2 and 3.7 times energy for 
maintenance from 20 to 45 kg, respectively 

gain of 18 g/d (P < .01), and an increase in lean gain of 14 g/d (not significant, 

P > .05). Thus at similar overall daily energy intake, the nutritional history did not 

affect (P > .05) the daily lean tissue deposition nor the efficiency of lean gain 

(Table 7). Because of the increase in deposition rates of other tissues, the body 

lean percentage at similar average energy intakes between 20 and 85 kg, was 

1.6% lower in the low pigs (Figure 3). 

DISCUSSION 

In the discussion the effects of energy intake between 45 and 85 kg on body 

gain, efficiency of gain and body composition is discussed first. Thereafter the 

effects of the nutritional history on performance and tissue deposition are 

discussed. Finally, attention is paid to the overall performance between 20 and 85 

kg of BW. 

Effect of Energy Intake between 45 and 85 kg 

Daily gain increased with increasing energy intake. The increase per MJ DE 

decreased with increasing body weight. On average, ADG increased by 34.2 ± 1 . 5 
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g/MJ of DE intake in the present study. For gilts from 20 to 45 kg, Bikker et al. 

(1994a) reported a linear increase in ADG of 43.6 ± 2.2 g/MJ of DE. The mean 

slope for lean growth (g/MJ DE), decreased from 12.5 ± 3.1 for 20-45 kg pigs to 

9.6 ± 1 . 0 for 45-85 kg pigs. Consequently, the marginal efficiency of body and 

lean tissue gain (g/MJ DE) decreased with increasing body weight, presumably 

because older pigs deposit more lipid and less protein per unit extra energy (Bikker 

et al., 1994b). 

A small quadratic effect was present in the relationship between energy intake 

and body and lean tissue gain (P < .05). Results in Table 3 indicate that this 

quadratic effect on tissue deposition was only present after 65 kg. The curvilinear 

effect indicates that either a plateau in lean tissue growth rate was reached, or that 

the slope for lean tissue growth decreased gradually with increasing energy intake. 

The results do not clearly show that a plateau in lean tissue gain was reached. 

Furthermore a gradual decreasing slope can be explained by a decreasing proportion 

of lean gain in the total body gain (Table 6), and(or) by a change in composition of 

the lean tissue. Diminishing returns of lean tissue gain with feed intake were also 

reported by Kanis (1988). The decrease of the lean proportion in the gain (Table 6) 

showed that at low intake levels, the animals have a preference for muscle gain, 

whereas the proportion of fat tissue gain increases at higher intake levels. This is 

in agreement with Davies (1983), who reported that pigs at a high feeding level 

deposited proportionately more fat and less muscle, relative to animals at a low 

feeding level. These results strongly challenge the assumption proposed by 

Whittemore (1986) that the ratio of fat to lean is constant in the nutritionally 

limited phase of growth. 

In addition to the increasing proportion of fat tissue gain, the relative organ gain 

also increased with increasing feed intake (Table 6). This was mainly the result of 

growth of the liver, kidneys and digestive tract. An increase in the weights of 

metabolically active organs, with increasing feed intake, was also reported by 

Koong et al. (1982 and 1983), Davies (1983), Rao and McCracken (1992) and 

Bikker et al. (1994a). This effect reflects presumably a functional hypertrophy of 

the organs in order to process the incremental amounts of feed, and illustrates the 

adaptive capacity of the animal to the nutritional environment. 

As a consequence of the decreasing proportion of lean gain, the lean percentage 

in the body at 85 kg decreased by . 3% per MJ DE intake, with a concomitant 

increase in backfat (Table 2) and fat tissue content (Table 4). An increase in lean 
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and a decrease in fat percentage with a reduction in energy intake, was also 

reported by Ellis et al. (1983), J0rgensen et al. (1985), Susenbeth and Keitel 

(1988), but not by Rao and McCracken (1992). As discussed by Bikker et al. 

(1994a), the effect of a reduction of energy intake on body composition, depends 

on the genotype of the pig and the level of energy intake. The latter was confirmed 

by the presence of a curvilinear effect of DE intake on lean and fat percentage in 

this study. In agreement with Kanis (1988), and Bikker et al. (1994a), the 

efficiency of lean tissue gain decreased with increasing energy intake. Because of 

a curvilinear increase in gain/feed with increasing energy intake, the highest lean 

efficiency was reached at a lower intake level than the maximum efficiency of body 

gain. This is also largely in agreement with Ellis et al. (1983), who reported an 

increase in gain/feed with increasing feed intake, whereas lean efficiency was 

constant or tended to decrease. 

In conclusion, the results of the present study showed an increase in the 

proportion of organ and fat tissue, and a decrease in the proportion of lean tissue, 

in the body gain, with increasing energy intake. Consequently the ratio of fat to 

lean increases substantially with an increase in the level of energy intake, even 

when the maximum rate of lean deposition has not been reached. As a result, the 

lean percentage and efficiency of lean gain are optimized at lower feed intake levels 

than daily gain, gain/feed and lean tissue growth rate. 

Effect of the Nutritional History on Performance from 45 to 85 kg 

At the end of the restriction period at a BW of 45 kg, the animals on the low 

feeding level were 22 d older and had leaner bodies than the high pigs. From 45 to 

85 kg these low pigs showed a higher daily gain than the high pigs (Table 2). This 

difference in ADG increased with increasing energy intake. The difference was very 

small at the two lowest feeding levels, and higher at the other four intake levels. 

Because of similar intakes of low and high pigs, this compensatory gain was caused 

by an increased gain/feed (Table 2). For the animals with free access to feed, the 

increase in DE intake of about 3 MJ/d would have also contributed to the higher 

gain in these treatment groups. An increased feed intake and daily gain after a 

period of feed restriction, was also reported by Nielsen (1964), Owen et al. (1971), 

Donker et al. (1986). This literature does not allow a determination to be made as 

to whether the compensatory growth was caused by the increased feed intake or 

by an increased efficiency. However, in the studies of Nielsen (1964), Campbell et 



112 Chapter 5 

al. (1983), and Kirchgessner et al. (1984), previously restricted pigs showed 

compensatory gain and gain/feed at a similar daily feed intake, as their 

non-restricted counterparts. These authors reported an increase in daily gain of 

about 80-100 g/d after a restriction to 55-75% of the control feeding level for 

several weeks. These references and the present study, show that the rate of gain 

and feed efficiency are higher after a period of feed restriction. In addition the 

present study shows that this compensation increases with increasing energy 

intake in the realimentation phase. 

Nutrition and Gain in Body Components 

In the present study, the low pigs gained on average, about 140 g/d more 

between 45 and 85 kg. A large part of this extra gain was caused by increased gut 

fill (50 g/d, Table 2), and increased organ growth (50 g/d, Table 5). The gain of 

lean tissue, which is the most important edible product, was only 15 g/d (not 

significant) higher in the low pigs. The efficiency of lean gain was also not affected 

by the nutritional history. In most of the above mentioned studies, the deposition 

of different tissues was not determined. However, Mersmann (1987) and Pond and 

Mersmann (1990) reported an increased gain of liver, kidneys and the digestive 

tract in pigs during the rehabilitation period, without significant compensation in 

body or carcass gain. Furthermore, the data of Drouillard et al. (1991) in energy 

restricted and refed lambs, suggested a small compensation in non-visceral tissue 

and a larger compensation in visceral tissue. Carstens et al. (1991) reported 

compensatory growth in steers which were previously restricted in feed intake. This 

compensation consisted of gut fill and non-carcass water and protein. 

Consequently, these results indicate that the compensatory gain after a period of 

feed restriction is largely caused by a functional increase in organ growth and in the 

contents of the intestinal tract. 

It has been suggested that carcass quality is higher in pigs after a period of 

restriction and compensation (Robinson, 1964). This was confirmed by this study, 

because the low pigs had less backfat and fat tissue, and a higher lean percentage, 

at 85 kg (Table 4). Similar results were reported by Nielsen (1964), Campbell et al. 

(1983) and Mersmann et al. (1987). However, from the literature it cannot be 

concluded whether the improved carcass quality is a direct result of the feed 

restriction in the restriction phase, or an effect of this restriction on the composition 

of gain during realimentation. This study shows that the higher carcass quality of 
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the low pigs was not caused by an increase in lean gain. Moreover, the proportion 

of lean gain in the total gain from 45 to 85 kg, was even lower in the low pigs than 

in the high pigs, because of the increased organ growth (Table 6). The higher 

percentage of lean tissue in the carcass of the low gilts at 85 kg, was already 

present at 45 kg, due to the restriction in feed intake from 20 to 45 kg. The lean 

percentage was still higher at 85 kg, because of the lack of compensation in lean 

or fat tissue gain. This may have been the reason for the lower fat content in the 

other studies, since composition of gain was not reported (Nielsen, 1964; Campbell 

et al., 1983), or no compensation in lean and fat deposition was found (Mersmann, 

1987). 

Presumably, the above-mentioned compensation took place during the first few 

days or weeks of the realimentation period, because a compensation in gain was 

only present between 45 and 65 kg. It seems reasonable to assume that the 

metabolically active organs adapt to the increased feeding level very soon after the 

start of the realimentation period. This is in agreement with Owen et al. (1971) 

who found the highest increase in gain immediately after the end of the restriction 

period. The energy requirements for this extra gain may be small, because it mainly 

consisted of water and protein (Bikker et al., 1994b). Presumably the maintenance 

requirements were somewhat lower during the first days of the realimentation 

period, because a period of undernutrition can reduce the basal energy expenditure 

(Ledger and Sayers, 1977; Koong et al., 1983; Ferrell et al., 1985). When feed 

intake is restored, both the maintenance requirements and the energetic efficiency 

of gain return rapidly to that of the continuously fed animal (Webster, 1979; 

Graham, 1975; Schnyder et al., 1982). Furthermore feed and protein intake 

stimulate growth of certain visceral tissues by suppressing protein degradation 

(Reeds, 1989), which thereby enables an efficient regrowth of these tissues. 

Overall Performance from 20 to 85 kg 

The overall performance from 20 to 85 kg shows the combined effects of energy 

intake on performance between 20 and 45 kg and between 45 and 85 kg. As 

expected, ADG and gain/feed increased with increasing energy intake. Furthermore, 

the low pigs were on average 17 d older at 85 kg, which means that only 5 d of 

the time-lag of 22 d were compensated for by the compensatory gain and feed 

efficiency. From the results in Table 7, and Figures 2 and 3, it was concluded that 

at similar average daily energy intake, the distribution of the intake had an effect 
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on rate of gain and body composition. The rate and efficiency of body gain were 

higher in the pigs with a low intake from 20 to 45 kg and a high intake from 45 to 

85 kg, than in pigs with a high intake from 20 to 45 kg and a low intake from 45 

to 85 kg. This can be explained by the higher average metabolic body weight, and 

consequently the higher maintenance requirements of the pigs with the high intake 

and daily gain below 45 kg (Wenk et al., 1980). At similar average daily energy 

intake, the mean metabolic body weight between 20 and 85 kg, was 2.2 - 2.6 kg 

less for the low pigs, which allowed them to use 1 - 1.3 MJ DE/d more for tissue 

deposition. This largely explains the higher daily gain and gain/feed of these 

animals. The lean percentage was lower in the low pigs than in the high pigs, at 

similar energy intake, mainly because of a higher organ mass at 85 kg in low pigs. 

This indicates that organ mass at slaughter is affected more by the feeding level in 

the period just before slaughter, than by the feeding level in earlier life, which is in 

agreement with results of Koong et al. (1982 and 1983) in pigs and Ferrell et al. 

(1985) in lambs. The overall daily lean gain was not significantly different for low 

and high pigs (Table 7), indicating that the extra gain in low pigs is of limited 

benefit for pig production. As a result, at similar average daily intakes, the 

distribution of the dietary energy between the growing and fattening phase of these 

gilts, seems of little importance for pig production. However, maximum attainable 

gain of the body and lean tissue is of course much higher if pigs receive a high 

feeding level both in the grower and finisher period (Table 7, Figure 2). 

In conclusion, this study showed that after a period of feed restriction, 

compensatory gain and feed efficiency increased with increasing feeding level in the 

realimentation period. This extra gain was largely accounted for by an increase in 

the contents of the digestive tract, and by the increased growth of metabolically 

active organs, which responded to the increase in feed intake. The higher carcass 

quality at slaughter in restricted and realimented pigs, was caused by the restriction 

per se and not by an effect of previous restriction on the composition of gain in the 

realimentation period. 
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IMPLICATIONS 

Lean tissue percentage and efficiency of lean tissue gain decreased with 

increasing energy intake. Giving animals free access to feed, will therefore optimize 

body and lean tissue gain but not body composition and efficiency of lean gain. 

After feed restriction in the growing period, pigs show compensation in the rate and 

efficiency of body gain, which is mainly caused by an increase in organ growth. 

The better carcass composition of compensating animals is the result of maintaining 

the better carcass composition present at the start of the realimentation phase. As 

a result, compensatory gain after a period of feed restriction is of limited value for 

the pig industry. 
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PERFORMANCE AND BODY COMPOSITION OF FATTENING GILTS (45-85 KG) 

AS AFFECTED BY ENERGY INTAKE AND NUTRITION IN EARLIER LIFE. 

2. PROTEIN AND LIPID ACCRETION IN BODY COMPONENTS 

P. Bikker, M.W.A. Verstegen and R.G. Campbell 

ABSTRACT 

Forty-eight gilts of a commercial hybrid were used to investigate the response 
relationships between energy intake and deposition of protein and lipid in body 
components of fattening pigs (45-85 kg), as affected by previous nutrition. Two 
groups of 24 gilts received a single diet either at 2.2 (low pigs) or 3.7 (high pigs) 
times maintenance (M) from 20 to 45 kg. From 45 to 85 kg, pigs from each of 
these two groups were fed the same diet at one of six intake levels (1.7, 2.2, 2.7, 
3.2 and 3.7 x M, and ad libitum). At 85 kg, the animals were dissected and 
analysed. Protein content in the whole body decreased curvilinearly from 190 to 
166 g/kg (P < .001 ) and lipid content increased from 116 to 210 g/kg (P < .001 ) 
with increasing energy intake. The mean content of protein was 6 g/kg higher and 
of lipid 29 g/kg lower (both P < .001) in previously restricted pigs. Protein (PD) 
and lipid deposition (LD) in the whole body, organs, lean and fat tissue increased 
linearly (P < .001 ) with increasing energy intake. In the whole body PD, increased 
from 83 to 187 g/d and LD from 46 to 392 g/d. The respective response 
relationships in g/d were PD = 21.8 + 3.78 x DEI and LD = -193 + 13.7 x DEI 
(DEI is digestible energy intake, MJ/d). The LD/PD ratio increased curvilinearly from 
.6 to 2.2. Previous nutrition had only small effects on PD and LD. Only PD in the 
organs was on average 7 g/d higher (P < .001) in previously restricted pigs. Thus 
the higher protein content and the lower lipid content in previously restricted pigs 
was not the result of compensation, but was already present at the end of the 
restriction phase at 45 kg. 

Keywords: Pigs, Energy Intake, Protein Accretion, Lipid Accretion, Nutritional History 

INTRODUCTION 

The assignment of dietary energy above maintenance to protein and lipid 

accretion in growing pigs is largely determined by the relationship between energy 

intake and protein deposition (Whittemore and Fawcett, 1976). It is not clear how 

this relationship is affected by body weight (BW) and previous nutrition. Black and 

Griffiths (1975) reported that in lambs, the slope between protein deposition and 

energy intake falls with increasing BW, whereas Whittemore ( 1986) suggested that 

this slope was largely unaffected by BW in pigs. Furthermore, Campbell (1988) 

suggested that a plateau in protein deposition could be reached in fattening pigs 
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rather than in growing pigs, but it may be that due to genetic improvements, even 

older pigs of an improved strain cannot reach a plateau of protein deposition. 

Several authors have reported an increased gain after a period of feed restriction 

(Bikker et al., 1994b). The effect of a previous restriction on subsequent protein 

and lipid deposition, however, is unclear. 

In this study, the relationship between energy intake and deposition and 

distribution of body protein, has been determined in fattening gilts (45 - 85 kg) in 

relation to the feeding level from 20 to 45 kg. The results will be compared with 

those of growing gilts (20 - 45 kg) of the same genotype (Bikker et al., 1994a) to 

investigate whether the distribution of dietary energy between protein and lipid 

accretion is affected by the BW of the pigs. 

EXPERIMENTAL PROCEDURES 

Animals and Feeding 

Forty-eight gilts with an average BW of 21.8 ± .2 kg were allocated among 12 

treatment combinations in a 2 x 6 factorial arrangement. The respective treatments 

were the level of feeding from 20 to 45 kg, equivalent to 2.2 and 3.7 times energy 

for maintenance (M), and the level of feeding from 45 to 85 kg, equivalent to 1.7, 

2.2, 2.7, 3.2, and 3.7 x M, and ad libitum. One experimental diet, based on cereals 

and soybean meal, with an energy content of 15.1 MJ of DE/kg, was used from 

20 to 85 kg for all treatment groups. The composition of this diet has been 

published previously (Bikker et al., 1994a). The treatment period from 20 to 45 kg 

will be referred to as the nutritional history and the gilts with the low (2.2 x M) and 

high (3.7 x M) nutritional history will be referred to as low and high pigs, 

respectively. The treatment period from 45 to 85 kg will be referred to as the 

fattening period or the realimentation period. 

The initial body composition of the pigs at 20 and 45 kg was estimated using the 

data presented in Bikker et al. (1994a). This experiment from 20 to 45 kg was 

conducted in the same period, under similar experimental conditions, and with gilts 

from the same herd as in the present study. 
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Slaughter Procedures and Carcass Analysis 

At a liveweight of 85 kg, the animals were killed by electrical stunning and 

exsanguination. Body components were collected and stored as described by Bikker 

et al. (1994a). The bodies were dissected into three fractions or tissue groups, 

referred to as the organ, lean, and fat fractions. The organ fraction comprised the 

blood and all organs, including mesenteric fat. The lean fraction comprised the ham, 

shoulder, and loin, all without subcutaneous fat, and meat scraps. The fat fraction 

comprised all other carcass parts and consisted mainly of backfat, belly fat, other 

fat depots, head, feet, and tail (Bikker et al., 1994a,b). The different fractions were 

homogenized and subsampled for proximate analysis as described by Bikker et al. 

(1994b). Dry matter, nitrogen, lipid and ash contents in the organ, carcass, lean 

and fat fractions were determined as described by Bikker et al. (1994a,b). 

A more detailed description of the experimental procedures has been given in the 

first paper of this series (Bikker et al., 1994b). 

Statistical Analysis 

Regression analysis was used to determine the linear and quadratic effects of 

feed intake in the fattening period on performance, tissue deposition and body 

composition of the pigs. The effect of the nutritional history on the regression 

parameters was determined using dummy variables and a backward elimination 

procedure. (Draper and Smith, 1981). Data were analysed by linear (GLM) 

regression procedures (SAS, 1989). 

RESULTS 

The effects of energy intake and nutritional history on daily gain, feed efficiency, 

and deposition rates of carcass, organs, lean and fat tissue in these animals have 

been presented in Bikker et al. (1994b). 

Body Composition at 85 kg 

At 85 kg, the pigs contained on average 173 g/kg protein and 180 g/kg lipid 

(Table 1). The composition of all body components was affected by the level of 

energy intake from 45 to 85 kg. Water and protein content in the empty body, 

carcass and lean tissue (Tables 1, 2 and 3) decreased linearly or curvilinearly with 
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increasing levels of energy intake. A quadratic effect on lean tissue protein content 

just failed to be significant (P = .08). The lipid content in all fractions increased 

curvilinearly with energy intake. Ash content decreased linearly or curvilinearly in 

all fractions, apart from ash in the lean tissue, which was not affected (P > .1) by 

energy intake. The curvilinear response relationship indicates that the effects of the 

energy intake level on the body composition were bigger at low intake levels than 

at high intake levels. 

The composition of all fractions was influenced by the nutritional history. Tissues 

of the low pigs, contained more water and protein and less lipid at 85 kg BW than 

tissues of the high pigs. The difference in composition between low and high pigs 

was small at the lowest intake level, and increased with increasing energy intake. 

This was indicated by an effect of the nutritional history on the slope rather than 

on the intercept of the relationships between energy intake from 45 to 85 kg and 

water, protein and lipid content in the body. On average, the low pigs contained 6 

g/kg more protein and 29 g/kg less lipid in their bodies than the high pigs. 

Table 1 . Chemical composit ion of the empty body of gilts at 85 kg, fed at six feeding levels 
between 45 and 85 kg, and w i th t w o nutrit ional histories3 

Feeding level, t imes maintenance Effects0 

Parameter 

DE intake, 
MJ/d 

Water, 
g/kg 

Protein, 
g/kg 

Lipid, 
g/kg 

Ash, 
g/kg 

His.3 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

18.3 

18.0 

650 

649 

192 

190 

114 

117 

34.2 

34.1 

2.2 

23.6 

23.9 

626 

618 

182 

179 

151 

163 

33.8 

30.7 

2.7 

29.3 

28.7 

622 

577 

178 

163 

154 

217 

29.5 

27.8 

3.2 

35.5 

34.6 

609 

565 

172 

159 

175 

227 

29.9 

29.2 

3.7 

40.4 

39.2 

587 

581 

165 

162 

200 

214 

29.9 

29.0 

ad lib 

44.8 

41.9 

583 

565 

168 

164 

193 

226 

29.5 

28.4 

Mean 

32.0 

31.0 

613 

592 

176 

170 

165 

194 

31.1 

29.9 

.52 

10.4 L A L 

2.89 L Q A L 

12.3 L Q A L 

.70 L Q A L 

His., nutrit ional h istory, feeding level f rom 20 to 45 kg, being 2.2 (L) or 3.7 (H) t imes 
maintenance. 
Pooled standard error of the 12 t reatment groups, n = 4 . 
Linear (L) and quadratic (Q) effect of energy intake between 45 and 85 kg, and effect of the 
nutrit ional history on the intercept ( A I ) , linear ( A L ) and quadratic ( A Q ) component of the 
regression equation. * P < .05, * * P < . 0 1 , * * * P < . 0 0 1 . 
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Table 2. Chemical composition of the carcass of gilts at 85 kg, fed at six feeding levels between 
45 and 85 kg, and with two nutritional histories3 

Feeding level, times maintenance Effects0 

Parameter 

Water, 
g/kg 

Protein, 
g/kg 

Lipid, 
g/kg 

Ash, 
g/kg 

His.3 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

633 

630 

197 

194 

125 

129 

38.1 

38.1 

2.2 

605 

598 

186 

182 

166 

179 

37.9 

34.1 

2.7 

598 

547 

181 

166 

172 

242 

33.2 

31.2 

3.2 

581 

534 

176 

160 

198 

255 

33.9 

32.9 

3.7 

556 

547 

167 

164 

227 

243 

34.0 

33.0 

ad lib 

550 

532 

171 

166 

219 

254 

33.6 

32.0 

Mean 

587 

565 

180 

172 

185 

217 

35.1 

33.5 

11.4 L 

3.21 L 

13.4 L Q 

.82 L 
K * * __ # * 

i L 

i L 

i L 

i L 

a 'b ' c See footnotes Table 1. 

Retention between 45 and 85 kg 

Deposition rates of protein and lipid in the empty body (Table 4, see also 

Figure 1), carcass, organs, lean and fat tissue (Table 5), increased linearly with 

increasing energy intake between 45 and 85 kg. Only for protein deposition in the 

lean tissue was there a tendency (P = .07) towards a quadratic effect. Average 

protein deposition in the body increased from 83 g/d at the lowest energy level, to 

187 g/d for animals with free access to feed. The ratio between lipid and protein 

Table 3. Chemical composition of the lean tissue of gilts at 85 kg, fed at six feeding levels between 
45 and 85 kg, and with two nutritional histories3 

Feeding level, times maintenance Effects0 

Parameter His.3 1.7 2.2 2.7 3.2 3.7 ad lib Mean SEMb DE intake History 

Water, 
g/kg 

Protein, 
g/kg 

Lipid, 
g/kg 

Ash, 
g/kg 

L 

H 

L 

H 

L 

H 

L 

H 

689 678 

696 672 

207 202 

206 204 

680 

662 

202 

192 

673 

655 

196 

192 

88.2 

108 

60.1 79.3 77.3 

60.0 82.4 107 

39.1 35.7 36.7 35.5 

34.9 35.0 33.4 39.1 

667 

662 

191 

191 

98.1 

103 

35.0 

37.8 

666 

658 

193 

194 

676 

667 

199 

196 

102 84.2 

107 94.6 

38.0 36.6 

32.2 35.4 

4.78 L Q 

2.27 L 

4.70 L 

1.73 

il iL iQ 

il iL iQ 

a,b'c See footnotes Table 1. 
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deposition (LD/PD), increased curvilinearly from about .6 to 2.2, with the biggest 

increase at the low feeding levels. 

Deposition rates of protein (PD) and lipid (LD) in the empty body were not 

affected (P > .05) by the nutritional history of the pigs (Table 4). The linear 

relationships with energy intake (DEI, MJ/d), combined for the low and high pigs, 

were: 

PD = 21.8 ( ± 11.6) + 3.78 (± .35) x DEI (r2 = .724, RSD = 21.1) [1] 

LD = -193 ( ± 20.3) + 13.7 ( ± .62) x DEI (r2 = .918, RSD = 37.1) [2] 

Protein deposition in the empty body tended (P = .08) to be somewhat higher in 

the low pigs than in the high pigs. This was mainly due to an increased rate of 

protein deposition, on average 7.0 g/d, in the organs of the low pigs (Table 5). This 

difference increased with increasing levels of feed intake. Water and ash deposition 

in the empty body were higher in the low pigs. The higher water retention of these 

pigs was also largely accounted for, by an increased water retention in the organs. 

Distribution of Deposited Protein and Lipid 

The distribution of body protein and lipid, deposited between 45 and 85 kg was 

Table 4. Deposition rates of water, protein, lipid, and ash in the empty body of gilts between 45 
and 85 kg, at six levels of feed intake, and with two nutritional histories3 

Feeding level, times maintenance Effects0 

Parameter 

Water, 
g/d 

Protein, 
g/d 

Lipid, 
g/d 

Ash, 
g/d 

Lipid/protein 
dep., g/g 

His.a 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

256 

254 

83 

83 

53 

39 

15.9 

15.4 

.66 

.50 

2.2 

349 

374 

110 

123 

131 

131 

23.3 

21.1 

1.18 

1.08 

2.7 

517 

385 

157 

120 

197 

248 

26.4 

20.7 

1.30 

2.08 

3.2 

576 

430 

172 

133 

273 

301 

31.7 

26.8 

1.70 

2.33 

3.7 

586 

544 

172 

165 

375 

338 

35.3 

31.6 

2.23 

2.05 

ad lib 

616 

544 

194 

180 

397 

386 

37.4 

32.1 

2.08 

2.19 

Mean 

483 

422 

148 

134 

238 

240 

28.3 

24.6 

1.53 

1.71 

35.8 L Q 

9.93 L 

20.9 L 

1.48 L 

.233 L Q 

AL 

AL 

a 'b , c See footnotes Table 1. 
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affected by the level of energy intake (Tables 6 and 7). The proportion of protein 

and lipid deposited in the carcass and lean tissue, decreased markedly with 

increasing energy level, whereas the proportion deposited in the organs and in the 

fat tissue increased with increasing energy intake. Furthermore, the distribution of 

protein but not of lipid was affected by the nutritional history. In the high pigs, a 

bigger proportion of the deposited protein was in the carcass and in the lean tissue, 

whereas a smaller proportion was deposited in the organs. 

Retention between 20 and 85 kg 

Daily gain (g/d) between 20 and 85 kg BW, increased from 446 to 838 g/d for 

the low pigs and from 499 to 1123 g/d for the high pigs (Bikker et al., 1994b). In 

Table 8, the daily retention of water, protein, lipid and ash between 20 and 85 kg 

is presented. The retention of these nutrients increased linearly with increasing 

Table 5. Deposition rates of protein and lipid in different tissues of gilts between 45 and 85 kg, at 
six levels of feed intake and with two nutritional histories3 

Parameter 

CARCASS 

Protein, 
g/d 

Lipid, 
g/d 

ORGANS 

Protein, 
g/d 

Lipid, 
g/d 

LEAN TISSUE 

Protein, 
g/d 

Lipid, 
g/d 

FAT TISSUE 

Protein, 
g/d 

Lipid, 
g/d 

His.a 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

L 
H 

L 

H 
L 

H 

Feeding 

1.7 

75.0 

75.8 

49.9 

37.6 

7.9 

6.8 

2.7 

1.7 

49.7 

51.6 

14.3 
12.3 

25.4 

24.2 

35.6 

25.3 

2.2 

96.7 

113 

124 

124 

13.4 

9.5 

7.4 

7.0 

63.0 

79.2 

33.1 
35.5 

33.7 

34.0 
90.6 

88.5 

level, times maintenance 

2.7 

134 

107 

186 

233 

22.7 

13.1 

11.1 
14.2 

88.5 

67.8 

44.1 

54.3 

45.7 

39.4 
142 

179 

3.2 

143 

115 

258 

285 

28.5 

17.7 

15.0 

15.8 

92.1 

77.0 

60.4 

60.8 

51.3 

38.2 
198 

224 

3.7 

140 

140 

355 

319 

31.5 

25.0 

19.8 

19.4 

87.0 

84.5 

76.3 
66.6 

53.1 

55.6 
279 

252 

ad lib 

158 

159 

374 

365 

36.2 

21.2 

23.1 

21.3 

93.4 

98.7 

89.7 
76.7 

64.3 

60.1 
285 

288 

Mean 

125 

118 

225 

227 

23.4 

15.6 

13.2 

13.2 

78.9 

76.5 

53.0 

51.0 

45.6 
41.9 

172 

176 

SEMb 

8.82 

19.6 

1.93 

1.69 

6.78 

3.20 

3.65 

18.3 

Effects0 

DE intake History 

L . . . 

L*** 

L*** At'" 

L . . . 

L*** 

L " * 

L*** 

L*** 

a 'b ' c See footnotes Table 1 . 
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Table 6. Distribution of protein deposited between 45 and 85 kg, among different body tissues, as 
a percentage of whole body protein deposition, in gilts at six feeding levels, and with two 
nutritional histories3 

Feeding level, times maintenance Effects0 

Parameter 

Carcass, 
% 

Organs, 
% 

Lean, 
% 

Fat, 
% 

His.a 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

90.5 

91.8 

9.5 

8.2 

59.9 

62.5 

30.6 

29.3 

2.2 

87.8 

92.3 

12.2 

7.7 

57.3 

64.8 

30.6 

27.5 

2.7 

85.6 

89.1 

14.4 

10.9 

56.5 

56.4 

29.1 

32.8 

3.2 

83.5 

86.7 

16.5 

13.3 

53.6 

57.6 

29.9 

29.0 

3.7 

81.6 

84.9 

18.4 

15.1 

50.7 

51.2 

30.9 

33.7 

ad lib 

81.2 

88.0 

18.8 

12.0 

47.8 

54.5 

33.4 

33.5 

Mean 

85.0 

88.8 

15.0 

11.2 

54.3 

57.8 

30.7 

31.0 

.92 L 

.92 L 

2.00 Q 

1.71 Q 

i L 

AL 

AI 

a 'b , c See footnotes Table 1. 

energy intake between 20 and 85 kg. At similar average daily energy intake 

between 20 and 85 kg, lipid deposition (g/d) was 17.4 g higher (P < .05) in the 

low pigs, which was indicated by an effect of the nutritional history on the 

intercept of the linear relationship between energy intake and lipid deposition. Most 

of this extra lipid was deposited in the fat tissue. Daily water and protein deposition 

in the organs (data not shown) were 15.8 and 3.0 g higher in the low pigs 

Table 7. Distribution of lipid deposited between 45 and 85 kg, among different body tissues, as a 
percentage of whole body lipid deposition, in gilts at six feeding levels, and with two 
nutritional histories3 

Feeding level, times maintenance Effects0 

Parameter 

Carcass, 
% 

Organs, 
% 

Lean, 
% 

Fat, 
% 

His.3 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

95.7 

96.1 

4.3 

3.9 

30.7 

33.8 

65.0 

62.4 

2.2 

94.5 

94.7 

5.5 

5.3 

26.1 

27.3 

68.4 

67.4 

2.7 

94.3 

94.2 

5.7 

5.8 

22.8 

22.3 

71.4 

71.9 

3.2 

94.5 

94.7 

5.5 

5.3 

22.3 

20.5 

72.2 

74.2 

3.7 

94.7 

94.2 

5.3 

5.8 

20.5 

19.7 

74.2 

74.5 

ad lib 

94.2 

94.6 

5.8 

5.4 

22.7 

20.2 

71.5 

74.3 

Mean 

94.6 

94.8 

5.4 

5.2 

24.2 

24.0 

70.5 

70.8 

.62 L 

.62 L 

2.26 L 

2.09 L Q 

a 'b 'c See footnotes Table 1. 
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Table 8. Deposition rates of water, protein, lipid, and ash in the empty body of gilts between 20 
and 85 kg, fed at two feeding levels from 20 to 45 kg and at six levels from 45 to 85 kg 

Feeding level, times maintenance Effects0 

Parameter 

DE intake 
20-85 kg, MJ/d 

Water, 
g/d 

Protein, 
g/d 

Lipid, 
g/d 

Ash, 
g/d 

Lipid/protein 
dep., g/g 

His.a 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

L 

H 

1.7 

16.8 

19.0 

272 

305 

87 

97 

52 

59 

15.8 

17.2 

.61 

.63 

2.2 

19.5 

23.7 

331 

428 

105 

134 

94 

133 

19.6 

22.6 

.90 

1.00 

2.7 

21.5 

26.9 

425 

430 

131 

132 

122 

209 

21.2 

22.1 

.95 

1.58 

3.2 

23.6 

30.6 

424 

465 

129 

142 

146 

239 

21.8 

26.1 

1.16 

1.71 

3.7 

24.7 

32.8 

423 

544 

128 

164 

179 

257 

23.2 

29.3 

1.42 

1.57 

ad lib 

25.4 

34.3 

429 

554 

135 

176 

179 

285 

23.5 

30.0 

1.33 

1.65 

Mean 

21.9 

27.9 

384 

454 

119 

141 

129 

197 

20.8 

24.6 

1.06 

1.36 

.40 

23.7 L 

6.5 L 

10.0 L AI 

.87 L 

.120 L Q 

a 'b See footnotes Table 1. 
c Linear (L) and quadratic (Q) effect of energy intake between 20 and 85 kg, and effect of the 

nutritional history on the intercept (AI ) , linear (AL) and quadratic (AQ) component of the 
regression equation. * P < .05, * * P < . 0 1 , * * * P < .001. 

(p < .001). The rates of water and protein deposition (g/d) in the body were 22 

and 6.0 g higher in the low pigs, but these differences were not significant 

(P > .1 ). As a result of these effects body protein content at 85 kg (Table 1 ) was 

4.5 g/kg lower in the low pigs than in the high pigs, when compared at similar 

average daily energy intake between 20 and 85 kg. Water content was slightly 

lower and lipid content was somewhat higher in the low pigs, but these differences 

were not significant. 

DISCUSSION 

Effect of Energy Intake between 45 and 85 kg 

Protein and lipid deposition increased linearly with increasing energy intake, with 

increments of 3.8 and 13.7 g/MJ of DE, respectively. This indicates that an 

intrinsically determined maximum in protein deposition (PDmax) had not yet been 



130 Chapter 6 

reached. The PD m a x may be above the range of protein deposition observed here. 

Therefore, the feed intake probably limited expression of the genetic potential. 

Similar results were reported for genetically improved entire male pigs by Campbell 

and Taverner (1988) and Rao and McCracken (1991). Campbell and Taverner 

(1988), reported a linear increase in protein deposition to 189 g/d at an energy 

intake of 41 MJ of DE/d. Rao and McCracken (1991) determined a linear increase 

in protein deposition to 230 g/d, determined by nitrogen balance, at about 38 MJ 

of DE/d. In the latter two studies, the respective increments in protein deposition 

were 5.3 and 4.4 g/MJ DE. Therefore it was concluded that in male and female 

pigs of improved genotype between 45 and 85 kg, the relationship between energy 

intake and protein deposition is essentially linear up to high levels of feed intake, 

rather than linear-plateau as reported for unimproved pigs by Campbell et al. (1985) 

and Dunkin et al. (1986). However, big differences in the slope and the level of the 

linear relationship, were found between this study, Campbell and Taverner (1988) 

and Rao and McCracken (1991). These differences were presumably the result of 

different selection strategies, and of differences between male and female pigs. 

The ratio between lipid and protein deposition (LD/PD) increased curvilinearly 

from about .5 at the lowest intake level to 2.2 at the higher intake levels. This 

increase in LD/PD with increasing energy intake has been reported earlier for young 

and older animals (Campbell et al, 1983b; De Greef et al., 1994; Bikker et al., 

1994a). Nevertheless, it is often assumed that below PD m a x the LD/PD ratio is 

constant and independent of energy intake. This assumption has been used in 

several pig growth models (Moughan et al., 1987; Pomar et al., 1991 ; Werkgroep 

TMV, 1991 ). Results of our study imply that models based on this assumption will 

underestimate protein deposition, and overestimate lipid deposition, at low intake 

levels. 

The curvilinear increase in LD/PD ratio with increasing energy intake caused a 

curvilinear increase in body lipid content and a curvilinear decrease in body protein 

content with increasing energy intake (Tables 1, 2 and 3). Body composition was 

relatively constant at the higher feeding levels. These effects of energy intake on 

body composition were in good agreement with Campbell and Taverner (1988) and 

Bikker et al. (1994a). In addition, our study showed that these effects of energy 

intake on body composition were present in all dissected body tissues, carcass, 

organs, lean and fat tissue. 

Very little information is available concerning the effect of energy intake on the 
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distribution of deposited protein within the body, whereas with regard to human 

consumption protein deposited in the lean tissue is the most valuable. In the 

present study, a quadratic decrease of 18% in the proportion of body protein 

deposited in the lean tissue, was found when energy intake increased from the 

lowest to the highest feeding level (Table 6). An increasing proportion of the 

deposited protein was found in the organs, and, to a lesser extent, in the fat tissue. 

Based on linear regression analysis, we found that from each extra gram of 

deposited protein with increasing energy intake, 25% was deposited in the organs, 

39% in the lean tissue and 37% in the fat tissue. The drop in the proportion of 

protein deposited in the lean tissue with increasing energy intake, agreed with the 

results of growing female pigs in Bikker et al. (1994a) and with the results of 

growing and fattening male pigs of similar genotype in De Greef and Verstegen 

(1993). 

In conclusion, protein and lipid deposition increased linearly, and LD/PD and lipid 

content increased curvilinearly with increasing energy intake. The proportion of 

body protein deposited in the lean tissue, decreased with increasing energy intake. 

These results imply that maximization of protein deposition is accompanied by a 

deterioration in the body composition, even in pigs of improved genotype. 

Effect of the Nutritional History 

Several authors reported an effect of a previous restriction in feed intake on body 

gain in the realimentation period, as discussed in Bikker et al. (1994b). However, 

information of the effect of a feed restriction in the growing period on protein and 

lipid deposition in pigs in the fattening period was not available. In this study, the 

previous feed restriction had only a small, insignificant effect on daily rate of whole 

body protein deposition. This effect was largely caused by a higher rate of protein 

deposition in organ tissue between 45 and 85 kg in the low pigs than in the high 

pigs. Water retention, but not lipid retention, in the organs was also higher in the 

low pigs. These differences between the low and high pigs increased with 

increasing energy intake, indicating a functional hypertrophy of metabolically active 

organs, with increasing feed intake. These results are in good agreement with 

Carstens et al. (1991), who reported compensatory gain in steers after a period of 

feed restriction. This compensation was largely caused by an increased gut fill and 

an increase in protein and water retention in non-carcass tissues. Drouillard et al. 

(1991) found an increase in gain of water, protein and lipid in visceral tissue but 
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not in non-viscera, after a period of energy restriction in lambs. Stamataris et al. 

(1991) studied the effect of feed restriction between 6 and 12 kg on nutrient 

retention in pigs with free access to feed from 12 to 24 kg. They reported an 

increase in feed intake, body gain and deposition of protein, and ash but 

predominately of lipid, in previously restricted pigs. In agreement with the present 

study, this extra protein was deposited in the organs. An increase in the rate of 

lipid deposition due to the previous restriction, was not found in our study. Only the 

low pigs with free access to feed, which had a higher feed intake than the high 

pigs, used this extra energy for both protein and lipid deposition. The reason for the 

difference between our study and Stamataris et al. (1991) is not clear. Due to a big 

increase in feed intake, the previously restricted pigs in Stamataris et al. (1991) 

presumably had reached their maximum protein deposition. It can also not be 

excluded that the lipid reserves of these young pigs at the end of the restriction 

were so low that repletion of these reserves was more necessary than in the 

present experiment. 

With increasing energy intake, protein deposition in the organs of previously 

restricted pigs was progressively higher than in pigs previously fed at a high energy 

level. There was no evidence that protein deposition in the carcass is higher due to 

a previous feed restriction. As a consequence, the distribution of deposited protein 

was affected by the nutritional history (Table 6). In previously restricted pigs, more 

of the total amount of deposited protein was retained in the organs and less in the 

carcass and lean tissue. The similar LD/PD from 45 to 85 kg for low and high pigs, 

indicated that the distribution of dietary energy between protein and lipid deposition 

was not affected by the nutritional history. Consequently, the lower lipid content 

at 85 kg in previously restricted animals (Table 1), as found in this study and 

reported earlier (e.g. Campbell et al., 1983a), was not the result of compensation 

in protein or lipid deposition. It was a direct result of the restriction between 20 and 

45 kg, which was still present at 85 kg. Finally these results suggest that if PD m a x 

has not been reached, an increase in maximum feed intake in the realimentation 

phase results in an increase in both protein and lipid deposition. 

The effect of the nutritional history on overall deposition between 20 and 85 kg 

can be derived from Table 8. Average rates of protein and lipid deposition were 

considerably higher in the high pigs because of their higher feed intake. However, 

if the pigs were compared at similar daily energy intake, lipid and protein deposition 

were 17 g/d (P < .05) and 6 g/d (not significant) higher in the low pigs. The 
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calculated daily energy retention was about 830 kJ/d higher in the low pigs. 

Possible reasons for this increased energetic efficiency have been discussed in the 

first paper of this series (Bikker et al., 1994b). It can be concluded that at similar 

daily energy intake, the distribution of the total energy allowance between the 

growing and the fattening period has only a small effect on tissue deposition. 

Effect of Body Weight 

Black and Griffiths (1975) concluded that in lambs nitrogen, retention increased 

linearly with increasing energy intake, at a rate that decreased with increasing 

liveweight. Results of nitrogen balance trials with pigs in four weight ranges 

(Dunkin and Black, 1985) suggested an effect of BW on the relationship between 

energy intake and nitrogen retention in pigs also, but the design of that study did 

not allow firm conclusions to be drawn. To determine the effect of BW on protein 

and lipid deposition, the results of the present experiment were compared with 

those obtained with pigs from 20 to 45 kg (Bikker et al., 1994a). These two 

experiments were conducted simultaneously, with pigs of the same herd, in the 

same stable, using the same experimental diet. The relationships between energy 

intake and protein deposition, lipid deposition and LD/PD are presented in 

Figure 1a, b and c. Since the nutritional history did not affect protein and lipid 

deposition in the empty body from 45 to 85 kg, results of the high and low pigs in 

this weight range were combined. The slope for protein deposition decreased 

markedly with increasing BW from 5.77 + .40 to 3.78 ± .35 g/MJ DE. Reversely, 

the older pig retained more lipid with each MJ increase in energy intake. The slope 

for lipid deposition increased from 10.5 ± .59 to 13.7 ± .62 g/MJ DE. As a result, 

the ratio LD/PD increased with increasing energy intake, from .3 to 1.1 in the 

growing pigs and from .5 to 2.2 in the fattening pigs. Thus, at similar rates of 

protein deposition, the fattening pigs retained twice as much lipid as the growing 

pigs. 

In the pigs used in this study, BW had a considerable effect on the slope of the 

relationship between energy intake and protein deposition. However, it may be that 

depending on the selection strategy, and consequently the genotype of the pig, an 

effect of BW is expressed mainly on the slope, or on the level of the dose-response 

relationship between energy intake and protein accretion. In addition, the genotype 

presumably influences the magnitude of the effect of BW. The reported effect of 

BW on protein deposition has two important implications. At similar rates of protein 
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deposition the finisher pigs become fatter than the grower pigs, and because of the 

higher LD/PD in the finisher pigs, the required protein/energy ratio in the diet 

decreases with increasing BW. 

IMPLICATIONS 

In the gilts used in this study, protein and lipid deposition increased linearly and 

body lipid content increased curvilinearly with increasing energy intake. Therefore, 

maximization of protein deposition is accompanied by an increase in lipid content 

of the body. The increment in protein deposition with increasing energy intake, 

diminished with increasing body weight. Consequently, at similar rates of protein 

accretion, the lipid deposition increases with increasing body weight. Therefore, 

finishing pigs become fatter than growing pigs. After a feed restriction in the 

growing period, compensation in protein retention is likely to occur only in the 

organs. There was no evidence of a beneficial effect of a previous restriction on 

carcass protein accretion. 
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GENERAL DISCUSSION 

INTRODUCTION 

The life of an animal starts at conception with a unicellular stage. From that 

point the animal grows and develops in order to reach its mature size and shape. 

For several reasons this growth to maturity is an essential part of the animal's life. 

It reduces the chance of prédation, it enables the animal to participate in the 

reproduction and to protect its progeny etc. In general terms growth and 

development to maturity serve the survival of the individual animal and its species. 

In pig production, however, animals seldomly reach their mature body weight. The 

pigs are raised in order to be slaughtered between 80 and 120 kg, well below their 

mature weight of 300 to 400 kg. For biologically and economically efficient meat 

production, the pigs should attain their slaughter weight with a good growth rate 

and an efficient conversion of nutrients into body tissues. In addition, the carcasses 

should contain a high content of lean meat. These three criteria, growth rate, feed 

conversion and lean meat percentage are highly influenced by the applied feeding 

strategy, i.e. the feed allowances and the composition of the diet. The general aim 

of this study was to determine how protein and energy intake separately affect the 

accretion and distribution of protein and lipid in body components and how they 

influence the composition of body tissues in pigs with a high genetic capacity for 

lean gain. Pigs from 20 to 45 kg and from 45 to 85 kg were studied in order to 

determine the effects of body weight and of a previous feed restriction on these 

response relationships between nutrient intake and tissue deposition. 

Some general aspects of growth and development will be discussed first in order 

to show the framework within which this study was conducted. Secondly, the 

effects of protein and energy intake on growth and development of the body and 

body tissues and on the deposition and distribution of protein and lipid will be 

discussed. Thereafter the effects on the feed conversion and on the efficiency of 

dietary energy and protein utilization are addressed. In each of these sections the 

effects of body weight and previous nutrition will be included. Finally some possible 

implications of the results of this study for defining efficient feeding strategies, for 

animal breeding, and for modelling animal growth will be discussed. 
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GROWTH, GROWTH CURVES AND EFFICIENCY OF BODY GAIN 

Growth is usually understood as a largely irreversible increase in size and weight 

of the body, whereas development refers to changes in the shape, form and 

functioning of the body as the growth of the animal progresses. Growth and 

development are based on processes of cell proliferation (hyperplasia), cell 

differentiation and cell filling and enlargement (hypertrophy). Presumably the first 

two processes are mainly responsible for the prenatal and early post-natal growth 

of the animal, whereas post-natal growth is mainly a result of hypertrophy, e.g. of 

muscle fibres. Brody (1945) distinguished two principal phases in the age curve of 

growth, the relationship between age and body weight: a self-accelerating phase 

of growth with an increasing slope and a self-inhibiting phase of growth with a 

decreasing slope. He described the first segment, which was mainly determined by 

a growth accelerating force, with an exponential function assuming constant 

relative growth (dW/dt = kW t , W = weight, t = t ime, k = constant). To describe 

the second segment, which is mainly determined by a growth retarding force, he 

used the Spillman function with a linearly decreasing growth rate with increasing 

body weight (dW/dt = k(A-W t), A = mature body weight). This type of curve 

between age and body weight, somewhat misleadingly referred to as growth curve, 

has been called the S-shape or sigmoid growth curve. The concept of an increasing 

and a diminishing slope in the growth curve appeared useful to describe the 

increase in body weight in many mammalian species (Taylor, 1980). It should be 

stressed that a large part of the accelerating growth may take part in utero. A 

number of mathematical models have been used to describe the sigmoid growth 

curve (Parks, 1982) of which the logistic and the Gompertz function may be the 

best known. These two models differ in the relative weight of the animal at the 

point of inflection between the increasing and diminishing phase of growth. In the 

Gompertz function, the body weight in the inflection point is .37 times the mature 

weight and in the logistic function .5 times the mature weight. At this inflection 

point, the growth rate is maximal. Therefore biologists refer to growth near this 

maximum growth rate as the growth spurt (Parks, 1982), and this is related to the 

puberty of the animal. On the other hand Whittemore (1993) argued that since 

postnatal growth is largely determined by cell enlargement and cell filling rather 

than cell multiplication, it would be more likely to assume a constant absolute 

growth rate rather than a constant relative growth rate. For pigs this assumption 
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implies that if piglets are given unlimited nutrition and an excellent environment, it 

may be that the maximum absolute growth rate can be achieved early in life and 

be relatively constant through most of the growth period. 

In many studies the relationship between age and body weight has been 

determined for animals of different species which had free access to feed. These 

growth curves and their parameters are of limited value if the animals cannot eat 

according to their physiological requirements. For many years people have realized 

that growth is not only determined by age or body weight but also by nutrient 

intake (e.g. Hammond 1932). Therefore Parks (1982) proposed an equation, based 

on the Spillman function, to relate the body weight of an animal to its cumulative 

feed intake. Subsequently, the feed intake was expressed as a function of age in 

order to determine the age curve of growth. This approach has the advantage of 

allowing the calculation of feed efficiency. The model of Parks (1982), indicates 

that this feed efficiency decreases linearly with an increasing degree of maturity. 

Taylor (1982) combined genetically standardised curves for growth and feed intake 

and reported a curvilinear decrease in feed efficiency with increasing maturity. 

However, again these two approaches apply mainly to ad libitum fed animals and 

are only suitable for animals which are restricted in their feed intake if the level of 

feed intake does not affect the feed efficiency. Therefore the determination of the 

potential growth curve does not give insight to the effects of nutrient intake on 

growth, development and feed efficiency. Nevertheless it is evident from many 

studies that feed intake can have important effects on body gain, body composition 

and feed efficiency (ARC, 1981 ). These effects are likely to be different for pigs of 

different genetic capacity for body gain. 

The general aim of this study was to determine the interrelationships between 

protein and energy intake, on body and tissue gain and feed efficiency in pigs with 

a high genetic capacity for lean tissue deposition. The responses to energy intake 

were determined in two weight ranges (20-45 kg and 45-85 kg) to also study the 

effect of body weight and previous nutrition on the relationships between energy 

intake and animal performance. The results will enable us to better define feeding 

strategies for genetically improved pigs with a high capacity for lean gain, and to 

validate and improve models to simulate growth in the pig. 
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GROWTH AND DEVELOPMENT 

Body and Tissue Gain 

As described above, an animal grows to reach its mature body weight or protein 

mass. The potential growth curve can be described satisfactorily with a sigmoidal 

model, e.g. the Gompertz function. The actual relationship between age and body 

weight, however, is largely determined by the feed intake of the animal. Results in 

chapter 4 and 5 showed a linear and curvilinear increase in daily gain with energy 

intake for gilts from 20 to 45 kg and from 45 to 85 kg respectively. Furthermore, 

the rate of gain was on average 140 g/d higher for pigs which were previously 

restricted in feed intake. For some of the treatment groups, the relationship 

between age and body weight has been presented in Figure 1. This figure illustrates 

the effect of feed intake on the relationship between age and body weight of the 

pigs. 

Body weight gain can be regarded as the increase in mass of different tissues, 

e.g. organs, lean and fat tissue, and the contents of the digestive tract. The 

development of different tissues has been studied by several authors (Hammond, 

1932; McMeekan, 1940a,b; Davies, 1983; De Greef, 1992), often using allometric 
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relationships between a body component and body weight or another component 

(W-| = aW 2
b ; Huxley, 1932). This approach assumes a constant ratio between the 

relative growth rates of the components to be compared. If, for example, lean 

tissue mass (W^) is related to empty body mass (W2) and b < 1, then the relative 

growth rate of lean tissue is lower than that of the empty body, and consequently 

the proportion of lean tissue in the body will decrease with increasing body weight. 

Results of these studies generally indicate that the proportion of lean tissue in the 

empty body or in the carcass decreases with increasing body weight (Walstra, 

1980; Davies, 1983; Whittemore et al., 1988). 

In the present study, the lean tissue content in the empty body was about 2% 

lower at 85 kg than at 45 kg and the lean content in the carcass was 3-4% lower 

at 85 kg. The fat tissue in the empty body and in the carcass was about 4 % higher 

at 85 kg. These results also indicate a decrease in body and carcass lean 

percentage with increasing body weight. However, it must be realised that feed 

intake in most studies increased with increasing body weight, and consequently 

part of this decreasing lean percentage may be related to an increasing feed intake 

(see below). 

An effect of feed or energy intake on tissue deposition was evident in the 

present study. The carcass growth rate between 20 and 45 kg and between 45 

and 85 kg increased curvilinearly with increasing energy intake. The rate of gain of 

the lean and fat tissue between 45 and 85 kg also increased curvilinearly with 

increasing energy intake. The relative increase in growth rate with energy intake 

was higher for fat tissue than for lean tissue, and consequently the percentage of 

lean tissue in the body gain decreased with increasing energy intake. This is 

illustrated in Figure 2. As a result, the lean tissue percentage decreased quite 

dramatically with increasing energy in both the growing and the fattening pig. The 

biggest decrease was observed at the lower intake levels (Chapter 4 and 5). These 

results are in agreement with the view of Hammond (1932) that fat tissue develops 

later and faster than muscle tissue, and is therefore more influenced by nutrient 

intake. 

Whittemore (1986), however, proposed a constant ratio between fat and lean 

tissue, independent of the feed intake, for animals in the nutritionally limited phase 

of growth, i.e. at feeding levels below those required to reach the maximum rate 

of lean tissue gain. According to this assumption, the animal will not fatten and 

body composition will be relatively constant over a wide range of body weights 
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Figure 2 . Daily gain of organs, lean and fat t issue f rom 45 to 85 kg, absolute and as percentage 
of the empty body gain in pigs previously fed at a low feeding level. 

until feed intake is sufficient to maximize lean tissue gain. Theoretically this 

supposition can be combined with studies which report a decrease in lean tissue 

percentage with increasing energy intake or body weight (e.g. Davies and Lucas, 

1972; Walstra, 1980; Ellis et al., 1983; Whittemore et al., 1988), provided that the 

pigs in those studies had reached a maximum lean tissue deposition rate. However, 

the present study showed that the lean percentage decreases gradually with 

increasing energy intake even when the animals have not reached a maximum in 

lean tissue gain. The ratio between fat and lean tissue accretion increased from .5 

to .8 and from .6 to 1.1 between 20 and 45 kg and between 45 and 85 kg 

respectively. In conclusion, lean tissue accretion increased curvilinearly and lean 

tissue percentage decreased curvilinearly with increasing energy intake. Therefore 

even in pigs with high genetic capacity for lean gain as used in this study, the 

maximization of lean gain is accompanied by a decrease in body and carcass lean 

content. 

In order to distinguish between the effects of body weight and energy intake on 

body composition and lean tissue deposition, the maintenance energy requirement 

was determined as the energy intake at zero energy retention. Subsequently, body 

composition and tissue deposition of the growing (20-45 kg) and fattening 

(45-85 kg) pigs were compared at similar energy intake above maintenance. The 

most important results are presented in Table 1. 

At similar daily energy intake above maintenance, the daily gain of the total 

body, the empty body and the organs was higher in pigs between 20 and 45 kg 
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Table 1. Mean differences in tissue deposition and body composition between growing (20-45 kg) 
and fattening (45-85 kg) pigs compared at similar daily energy intake above maintenance 

Criteria 

GAIN, g/d 

Live weight 

empty body 

organs 

lean tissue 

fat tissue 

protein retention 

lipid retention 
BODY COMPOSITION 

Organs in body, 

Lean in body, % 

Lean in carcass, 

% 

% 

Difference3 

growing-fattening 

108 
66 

43 

29 

0 

18.9 

-25.5 

3.4 

-1.0 
0.9 

Significance" 

* * * 
# # * 
* * * 
NS 

NS 
* * * 
* * * 

* * # 
NS 

NS 

a Difference calculated as amount from 20-45 kg minus amount from 45-85-kg. 
b NS not significant, P > .05, * * * P < .001. 

than between 45 and 85 kg. These differences increased with increasing feed 

intake. As a result of these effects, the percentage of organ tissue in the body was 

3.4% higher in the young pigs. The lean content in the body and in the carcass 

was only 1 % lower and 1 % higher, respectively, in the young pigs. A bigger 

decrease of 2-4% in lean content in the body and in the carcass with increasing 

body weight was reported above. Consequently, the larger part of this decrease 

was not the result of an increase in body weight per se but the result of the higher 

feed intake of the heavier animals. Nevertheless, owing to an increase in the ratio 

between lipid and protein deposition with body weight (discussed below) body gain 

per MJ of energy decreased with increasing body weight. These findings are in 

agreement with results from the relationship between energy intake daily gain of 

body and tissues. The increase in body gain (slope) with energy intake decreased 

from 43.6 g/MJ of DE between 20 and 45 kg to 34.2 g/MJ between 45 and 85 kg. 

The slope for lean tissue gain decreased from 12.5 to 9.6 g/MJ. Consequently, in 

the weight range from 20 to 85 kg, body gain per unit of extra energy intake 

diminishes with increasing body weight. The lean tissue content also decreases 

with increasing body weight, but this is to a considerable extent the result of the 

higher feed intake of heavier animals. This conclusion is supported by the results 

of Davies (1983) and De Greef et al. (1994). The latter reported only small 
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differences in body composition at different body weights in pigs which received 

a constant and rather low amount of energy for body gain. Davies (1983) reported 

a bigger decrease in body muscle content with increasing body weight in pigs at 

a high feeding level than in pigs at a low feeding level. 

Effects of Previous Nutrition 

Body gain from 45 to 85 kg was higher in animals which had been restricted in 

energy intake from 20 to 45 kg at 2.2 times energy for maintenance (low pigs), 

compared to pigs previously fed 3.7 times maintenance (high pigs). Furthermore, 

these low pigs had a higher percentage lean tissue, a lower percentage fat tissue, 

and similar organ weights at 85 kg compared to the high pigs. These differences, 

however, were already largely present at 45 kg as a result of the feed restriction. 

For example, the lean content in the carcass was, on average, 5% higher in the low 

pigs at 45 kg (Chapter 4, Table 3), and 3% higher in low pigs at 85 kg (Chapter 5, 

Table 4) compared to the high pigs. Significant compensation in accretion rate was 

only determined for the organ tissue. As discussed in Chapter 5, many authors 

have reported compensatory gain after a period of feed restriction. Most of these 

studies, however, do not allow the determination of which tissues are deposited 

during compensation, when differences in body composition were developed, and 

whether maximum protein or lean tissue growth rate was reached in the 

realimentation phase. This information is necessary to gain insight into the 

mechanisms of compensation. Presumably in many of those studies a large portion 

of the compensatory gain can be caused by a response in the size and weight of 

metabolically active organs to nutrient intake. Our experiment did not indicate that 

the lean to fat tissue ratio in the gain was affected by previous nutrition. After a 

period of feed restriction, animals presumably follow the normal growth rate and 

tissue deposition according to their body weight, apart from an increase in organ 

size. If in the realimentation phase the voluntary feed intake of previously restricted 

animals is higher than that of previously generously fed animals, the compensating 

animals may become fatter. This is even more likely when they have reached a 

maximum protein or lean tissue growth rate. This view is supported by the work 

of Lister and McCance (1967) who restricted young piglets to keep their body 

weight constant for one year. In the realimentation period they followed a similar 

growth curve as the ad libitum fed control animals, but they did not reach the same 

mature body mass. When animals are restricted at a younger age than in the 
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present study or when they are restricted in protein intake at a high energy intake, 

there is probably a compensation in lean or fat tissue deposition (Kyriazakis et al., 

1991; De Greef et al., 1992). 

The organs, especially the metabolically active organs, appear to be quite 

sensitive to the amount and type of ingested nutrients. In general, the organs can 

be regarded as early maturing tissue in the sense that the relative organ mass 

decreases with increasing body weight (this study, Walstra, 1980; Davies, 1983; 

De Greef, 1992). Nevertheless, in both the growing and the fattening pigs in this 

study the relative organ mass increased with increasing feed intake. In addition, it 

seems likely from the rapid increase in daily gain in animals changed from a low to 

a high feeding level at 45 kg and from the above mentioned increase in organ gain 

in realimented pigs, that the metabolically active organs respond quite rapidly to an 

increase in feeding level. This assumption is supported by the results of an energy 

restriction and subsequent realimentation on weights of specific organs of Pond and 

Mersmann (1990). Conversely, animals at a high feeding level to 45 kg and a low 

feeding level thereafter had a high organ mass (19% of body weight) at 45 kg and 

a low organ growth (9% of total body gain) from 45 to 85 kg. 

In addition, results of this study showed that the response to nutrient intake 

differs between organs and also depends on the type of nutrients. The organs 

involved in digestion and absorption of nutrients, especially intestines, liver, kidneys 

and pancreas, showed the biggest increase in weight with increasing energy intake. 

Furthermore when protein and energy intake were varied independently, the kidneys 

and pancreas responded mainly to increasing protein intake, whereas the liver and 

the small intestine were mostly affected by non-protein energy intake (Table 2). 

Effects of quantity and type of ingested nutrients on organ mass in pigs have 

been found by several authors. (Koong et al., 1982, 1983; Pond et al., 1988, Rao 

and McCracken, 1992) These effects presumably reflect the adaptive capacity of 

the animal to process the ingested nutrients. 

In conclusion metabolically active organs respond rapidly in size and weight to 

a change in daily nutrient intake. Together with an increase in digestive tract 

contents, this response can largely account for the increase in body weight gain 

(compensation) after a period of feed or energy restriction as reported in many 

studies. An increase in lean or fat tissue gain during rehabilitation was not found. 

Therefore the lean content which is higher at the end of the restriction phase may 

still be higher at the end of the realimentation phase. This could explain the higher 
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lean content as sometimes reported for previously restricted animals and also found 

in our study. 

Table 2. Weight of individual organs at 45 kg as affected by protein, energy and feed intake 

Organ 

Liver 

Kidneys 

Pancreas 

Small intestine 

Large intestine 

Experiment 1 

Weight, 

2.5xMa 

891 

187 

68.8 

980 

670 

g 

3.0xMa 

965 

190 

75.2 

1081 

705 

Effects'5 

Energy 

# # # 

NS 

NS 

* # * 

* 

Protein 

* 
* * * 
* * * 
NS 

* 

b1 

28.1 

25.1 

12.4 

10.2 

33.9 

Experiment 2 

Weight, g 

Mean 

912 

185 

91.7 

1031 

759 

Effect 

Feed 

* * # 

* # # 

* 
* * # 
• 

sb 

b2 

28.2 

4.61 

1.74 

25.6 

11.0 

a First and second column: intake levels 2.5 and 3.0 times energy for maintenance respectively. 
b Linear regression (y = a + bx) was used to determine effects of protein and energy intake. NS 

not significant, P > .05, * P < .05, * * P < . 0 1 , * * * P < .001. The slopes b1 and b2 
represent the increase in organ weight per 100 g crude protein intake/d and per MJ of DE 
intake/d, respectively. 

DEPOSITION AND DISTRIBUTION OF BODY PROTEIN AND LIPID 

Maximum Protein Deposition 

It is well established that protein accretion can be constrained by energy intake, 

protein intake and the animal's intrinsic capacity for protein deposition (PDmax). The 

PD m a x is mainly determined by the intrinsic factors age, body weight, sex, and 

genotype of the animal. Male pigs have a higher capacity for protein deposition 

than females, whereas females can deposit more protein than castrated male pigs 

(Campbell et al., 1983b, 1985; Campbell and Taverner, 1988a). Animals 

intensively selected for body gain or lean tissue deposition have a higher maximum 

protein retention than pigs of an unimproved genotype (Campbell and Taverner, 

1988a). The relationship between body weight and PD m a x is still a matter of 

debate. Different theories for this relationship can be distinguished. The first theory 

is that PD m a x increases gradually with increasing body weight until a maximum is 

reached between 60 and 100 kg, and decreases thereafter (Thorbek, 1975). 

Whittemore (1994) used the derivative of the Gompertz function to describe 

maximum protein deposition versus liveweight, thus representing a relatively 

flat-topped response between 20 and 120 kg. It may be, that potential protein 
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deposition increases rapidly in young pigs and remains largely constant from about 

20 to 100 kg of body weight (Carr et al., 1977; Moughan et al. 1987). This 

assumption is in reasonably good agreement with the earlier mentioned theory of 

Whittemore (1993) that body weight increases linearly with age in a large part of 

the growth period in nutritionally unlimited pigs. 

It must be realised that an increase in protein deposition with increasing body 

weight in restricted or ad libitum fed pigs does not necessarily imply an increase in 

PDm a x . It may also simply reflect the increase in feed intake with increasing body 

weight. No convincing evidence for one of these concepts has been published. 

However, the high rates of growth and protein deposition in young pigs as reported 

by Campbell and Taverner (1988b), Kyriazakis and Emmans (1991), and others 

suggest that animals following the gradual increase in protein deposition with body 

weight (Thorbek, 1975) are more restricted by nutritional or environmental 

conditions than by their intrinsic capacity for protein deposition. This highlights the 

importance of an adequate nutrition and understanding of the effects of nutrient 

intake on protein and lipid deposition. These effects will be discussed in the 

following paragraph. 

Protein and Energy Dependent Phases 

Protein and lipid deposition are largely determined by both protein and energy 

intake. It was the aim of this study to determine the separate effects of protein and 

energy intake in growing (20-45 kg) and fattening (45-85 kg) pigs in order to 

determine interactions with body weight and previous nutrition. Since 

protein/energy requirements are higher in young pigs (e.g. Campbell et al, 1988) 

and supply of dietary protein is therefore more critical in this period, it was decided 

to determine the effect of protein intake in the grower pig only. 

The results discussed in Chapter 1 and 2, supported the concept of protein and 

energy-dependent phases in protein deposition. At low levels of protein intake, 

relative to energy intake, protein deposition is limited by protein intake and 

increases with incremental amounts of dietary protein. Under these conditions an 

increase in the intake of non-protein energy does not affect protein retention, but 

will only increase lipid deposition. Likewise, a decrease in protein intake at constant 

energy intake reduces protein deposition and stimulates lipid accretion. 

Consequently the ratio between lipid and protein deposition (LD/PD) will increase. 

At high levels of dietary protein, an increase or decrease in protein intake did not 
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significantly affect protein deposition. An increase in non-protein energy in this 

energy-dependent phase will increase both protein and lipid deposition. At each 

level of energy intake, protein deposition reaches a maximum, presumably because 

the animal's metabolism strives to realize a certain (minimal) ratio between lipid and 

protein deposition. Consequently it uses part of the dietary energy for lipid 

retention. This LD/PD ratio in the energy-dependent phase increases with increasing 

energy intake (Chapter 1 ), as discussed below. The concept of protein and energy 

dependent phases in protein deposition is supported by the results of this study. 

This concept implies that if the level of feed intake is increased, an increase in 

protein deposition will reflect the response to dietary protein on a low protein diet 

and the response to dietary energy on a diet abundant in protein. 

The smoothness of transition between the protein and energy dependent phases 

remains a point of debate. Even when the relationship follows an abrupt transition 

in an individual animal, variation between animals as in our study, or variation due 

to body weight as in Fuller and Garthwaite (1993), is possibly the reason that a 

curvilinear or gradual transition is observed. The experiment described in the 

Chapters 1 and 2, and similar experiments reported in the literature therefore, do 

not elucidate the biological response of protein deposition of the pig to protein 

intake which lies in the region of the optimum protein/energy ratio. Nevertheless 

they contribute to the search for a mathematical model for a satisfactory 

description of the response curve. 

Effects of Energy Intake and Body Weight 

The relationship between energy intake and protein deposition has been 

described as linear (Campbell and Taverner, 1988b; Close et al, 1983), curvilinear 

(Schneider et al, 1982) and linear-plateau (Campbell et al, 1985). Whether a 

maximum in this response curve can be found, depends on the potential protein 

deposition of the animal and its feed intake capacity. Results of Campbell and 

Taverner (1988b), Campbell and Dunkin (1983a), and Campbell et al. (1983, 

1985), indicate that a maximum protein accretion can more likely be found in older 

pigs than in young pigs, and in females and castrates rather than entire male pigs. 

On the other hand, recent work of Campbell and Taverner (1988a), and Rao and 

McCracken (1991), suggest that in modern pigs of improved genotype, maximum 

protein deposition may be beyond the limits of appetite even at body weights up 

to 90 kg. Before the present study no adequate information was available 
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concerning the effects of body weight and previous nutrition on the relationship 

between energy intake and protein deposition. Therefore it was decided to 

determine this relationship in pigs from 20 to 45 kg and from 45 to 85 kg. The 

latter pigs were fed either a high or a low feeding level from 20 to 45 kg. 

Rate of protein deposition increased linearly with increasing energy intake 

between 20 and 45 kg and between 45 and 85 kg to a rate of 172 and 187 g/d, 

respectively. Although data of two pigs with free access to feed from 20 to 45 kg 

suggested some curvilinearity (Chapter 4), no convincing evidence for a plateau in 

protein deposition was found. These results are in good agreement with those 

obtained for male pigs by Campbell and Taverner (1988a) and Rao and McCracken 

(1991). The data of these three studies (Figure 3) with pigs of high genetic 

capacity for lean gain indicate that PDm a x cannot be reached in genetically 

improved pigs below about 80 to 90 kg. 

Daily lipid accretion also increased linearly with increasing energy intake up to 

200 and 400 g/d. This was to be expected since a linear increase in protein 

deposition implies that from each unit of extra energy, a constant part is used for 

protein accretion and consequently a constant remaining part can be used for lipid 

retention. Thus the ratio between extra lipid and extra protein retention ( A L D / A P D ) 

per unit increase in energy intake is constant. This also means a constant ratio 
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between total lipid and protein deposition (LD/PD) provided that protein and lipid 

accretion are zero at maintenance energy intake. However, extrapolation on the 

basis of the regression equations indicated a positive protein deposition at the 

expense of lipid breakdown at maintenance energy intake (see also Figure 4). A 

preference for protein deposition at low intake levels is supported by experimental 

results of Close et al. (1983) and Kyriazakis and Emmans (1992a,b). These authors 

reported considerable daily rates of protein deposition (40 to 90 g/d), while lipid 

deposition was minimal or even negative. In our study LD/PD at the lowest energy 

intake level was .3 and .5 in the growing and fattening pigs respectively, whereas 

A L D / A P D was 1.8 and 3.6, respectively. Consequently LD/PD is low at low intake 

levels and increases curvilinearly with increasing energy intake (see also Figure 4). 

This finding is supported by the experimental results of Campbell et al. (1983a), De 

Greef et al. (1994), and others. As a result of the increase in LD/PD with increasing 

energy intake, body lipid content will increase curvilinearly and body protein content 

will decrease curvilinearly with incremental amounts of dietary energy. These 

effects of energy intake are also present in pigs of an improved genotype, which 

cannot reach their maximum protein deposition capacity. 

Body Weight 

Whittemore (1986) suggested that the relationship between energy intake and 

protein deposition is largely constant and independent of the body weight of the 

pig. This assumption is unlikely to be correct, because body lipid content has been 

often reported to increase with increasing body weight (e.g. Whittemore et al., 

1988). Lipid content can only be higher at higher body weights, without a change 

in this relationship if the pigs had a feed intake above that required to reach PDm a x . 

In the present study, the lipid content in the body ranged from 80 to 150 g/kg at 

45 kg and from 115 to 221 g/kg at 85 kg. These results show an increase in lipid 

content with increasing body weight even in pigs well below their PDm a x . Since the 

daily energy allowance was based on the metabolic body weight of the pigs, this 

increase is again the result of the combined effects of body weight and energy 

intake. Nevertheless, the regression equations showed a marked decrease in the 

slope for protein deposition, with increasing body weight from 5.8 to 3.8 g/MJ of 

DE, and an increase in the slope for lipid retention from 10.5 to 13.7 g/MJ of DE 

(Figure 1 in Chapter 6). A decline in the slope for protein deposition is in agreement 

with results reported in lambs by Black and Griffiths (1975). To separate the 
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effects of body weight and energy intake, the effects of energy intake above 

maintenance on the rates of protein and lipid retention were also analysed. The 

results as plotted in Figure 4, confirmed the decreasing slope for protein deposition 

and the increasing slope for lipid retention with increasing body weight. In addition, 

no significant effects of body weight were found for the intercepts, which 

represent deposition rates at maintenance energy intake. These results imply that 

at a constant daily energy intake for production fattening pigs deposit more lipid 

and less protein than growing pigs. Consequently, lipid content increases with 

increasing body weight. This effect of body weight is small at very low levels of 

energy intake and considerable at high energy levels. On average, the body lipid 

content was 30 g/kg higher in pigs at 85 kg than in pigs at 45 kg, at similar daily 

energy intake for production from 20 to 45 kg and from 45 to 85 kg. The young 

pigs also retained more water in addition to the higher protein deposition, and so 

gained on average about 100 g/d more than the fattening pigs on a similar amount 

of production energy (see Table 1). In practice, the pigs are fed ad libitum or 

relative to their body weight. Therefore the differences between growing and 

fattening pigs will be even bigger. At the three highest feeding levels the LD/PD in 

the fattening pigs was about twice as high as in the growing pigs. 

Distribution of Protein and Lipid 

Little attention has been paid in the literature to the distribution of deposited 

protein and lipid between body components. Nevertheless, only protein in the edible 

parts of the body, especially the lean meat, is valuable for human consumption. The 

increase in LD/PD and body lipid content and the decrease in body protein content 

with increasing energy intake has already been discussed. Most of the protein, on 

average 55%, was deposited in lean tissue and most of the lipid, on average 70%, 

was deposited in fat tissue (Chapter 4 and 6). Consequently, the effects of 

increasing energy intake on protein and lipid content correspond with a decrease 

in lean tissue percentage. In addition an effect of energy intake on the distribution 

of protein and lipid within the body was found. At the lowest energy level the 

distribution of deposited protein was on average: organs 10%, lean tissue 60%, 

and fat tissue 30% (Chapter 4 and 6). It was calculated with linear regression, that 

from incremental amounts of protein with increasing energy intake, about 25% was 

deposited in the organs, 40% in the lean tissue and 35% in the fat tissue. 

Consequently, the proportion of protein deposited in organs and fat tissue 
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increased, and that in the lean tissue decreased with increasing energy intake. In 

growing pigs (20-45 kg) the proportion of total daily protein retention which was 

deposited as lean tissue decreased from 61 to 53%. In fattening pigs this 

proportion decreased from 61 to 51 %. Results of the first experiment (Chapter 1), 

confirmed the increase in the proportion of organ protein with increasing energy 

intake. This experiment also showed that the distribution of protein between 

carcass and organs was not affected by the protein intake of the animals. The 

proportion of lipid deposited in the lean tissue decreased from 35 to 25% in the 

young pigs and from 32 to 21 % in the older pigs (Chapter 4 and 6). Consequently, 

the decrease in lean tissue percentage with increasing energy intake is not only a 

reflection of an increasing LD/PD but also of a shift in the distribution of nutrients 

among the different body tissues. The ratio between lean tissue deposition and 

protein retention decreased with increasing energy intake from about 2.8 to 2.5 

and from 2.9 to 2.7 between 20 and 45 and between 45 and 85 kg respectively. 

This implies that the decrease in body lean tissue content with increasing energy 

intake is larger than the decrease in body protein content. This may partially explain 

why a linear increase in protein deposition and a curvilinear increase in lean tissue 

accretion with energy intake were found. 

Effects of Previous Nutrition 

Several authors have suggested that the relationships between energy intake and 

rates of protein and lipid deposition in pigs are affected by a previous restriction in 

protein or energy intake (Black et al., 1986; Kyriazakis and Emmans, 1992; De 

Greef et al., 1992). Indeed there is evidence that after a period of protein restriction 

at a high energy intake level, animals retain more protein and less lipid (Kyriazakis 

and Emmans, 1991; De Greef et al., 1992). Kyriazakis and Emmans (1982c) 

concluded that if the ratio between protein and ash or between protein and lipid in 

the body was reduced, the animal has an increased preference for protein accretion 

during rehabilitation. 

After a period of feed or energy restriction, body protein content is higher and 

body lipid content is lower than in generously fed animals (e.g. this study). In 

addition the restricted animals are older at the same body weight. There is little 

evidence that these changes related to an energy restriction have a major effect on 

subsequent protein and lipid deposition. The previously restricted animals (low pigs) 

in this study, showed similar relationships between energy intake and total protein 
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and lipid accretion from 45 to 85 kg to their generously fed counterparts (high 

pigs). Only protein deposition in the organs was increased after the previous 

restriction, which presumably reflected an adaptation in order to enable the animal 

to process the increased amounts of feed. This assumption is supported by our 

observation that the increase in organ growth was higher at high feeding levels in 

the realimentation period. 

Protein and lipid deposition in the carcass from 45 to 85 kg, were similar for high 

and low pigs. Therefore the previously restricted animals were still leaner at 85 kg. 

Hence the lower fat content at slaughter as sometimes reported in animals 

restricted in feed intake during a part of the growing phase (e.g. Campbell et al., 

1983b), may well be the result of the absence of compensation in the 

realimentation phase. These results are in good agreement with the theory of 

compensatory growth presented by Kyriazakis and Emmans (1992) apart from their 

proposition that restricted animals will replete their body lipid stores. It would seem 

likely that the effects of energy intake on protein and lipid deposition in the carcass 

are not affected by a previous energy restriction. Only protein retention in the 

organs will be increased as a direct response to an increased nutrient intake. 

However, if the previously restricted animals eat more, the LD/PD may be increased 

as discussed earlier in this chapter. If due to an increase in feed consumption the 

intake required to reach PDm a x is exceeded, this will cause a rapid increase in 

LD/PD. In conclusion it seems that protein and lipid retention in the carcass are 

determined more by body weight and energy intake than by age or previous 

nutrition. 

EFFICIENCY OF NUTRIENT UTILIZATION 

Efficiency of Body Gain and Lean Tissue Accretion 

The first experiment in this study (Chapter 1) showed a curvilinear increase in 

gain/feed with increasing protein intake up to 565 and 604 g/kg at the low and 

high energy level. This curvilinear response allowed the calculation of an optimum 

protein/energy ratio in the diet. Below the optimal protein/energy ratio gain/feed 

deteriorated with decreasing protein levels due to an increase in lipid accretion and 

a decrease in protein retention. At adequate levels of protein intake, gain/feed 

increased curvilinearly with increasing energy intake, both in growing and finishing 
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pigs (Chapter 4 and 5). Gain/feed was relatively constant at the three highest 

energy intake levels, which is in agreement with the curvilinear increase in LD/PD 

with energy intake. This result agrees well with other studies with improved 

animals (Campbell and Taverner, 1988a; Rao and McCracken, 1991). In studies 

with pigs with a low capacity for protein gain (unimproved animals) a decrease in 

gain/feed at high energy intake levels was found, presumably because the animals 

had reached their maximum protein deposition capacity and deposited excessive 

amounts of lipid (e.g. Campbell and Taverner, 1988a). 

Gain/feed increased with increasing energy intake from about 500 to 600 g/kg 

in growing pigs and from 340 to 470 g/kg in fattening pigs (Figure 5a). In order to 

compare these two groups of pigs, the gain per kg of feed above maintenance was 

also calculated. The results as plotted in Figure 5b, showed a decrease in 

gain/production feed with increasing body weight and energy intake. These results 

are in good agreement with the earlier discussed increase in the ratio LD/PD with 

increasing body weight and energy intake. At low levels of energy intake and in 

growing pigs, relatively more of the energy was used for protein deposition. 

Because of the concomitant water retention, the body gain and gain/feed were 

higher than in heavier pigs and at high levels of energy intake. Furthermore, the 

decrease in body gain/production feed with increasing energy intake (Figure 5b) 

indicates that the increase in body gain/total feed with energy intake (Figure 5a) 

was caused by a reduction in the proportion of energy used for maintenance. 

The lean tissue feed conversion (lean/feed) was also higher in the young pigs 

than in the fattening pigs, on average 278 vs. 192. Contrary to the gain/feed, the 
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Figure 5. (a) Gain/feed vs. energy intake and (b) gain/production feed vs. energy intake above 
maintenance in pigs from 20 to 45 kg and in pigs from 45 to 85 kg previously fed 
either a high or a low energy level. 
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lean/feed decreased with increasing energy intake (Chapter 4, Table 4 and 

Chapter 5, Table 5). This decrease was a reflection of the decreasing proportion of 

lean gain in the total body gain with increasing energy intake. Consequently the 

efficiency of nutrient conversion into lean tissue is optimized at a low feeding level 

and efficiency of nutrient conversion into total body mass is optimized at a high 

feeding level. 

Animals which had been restricted in feed intake from 20 to 45 kg (low pigs) 

showed a slightly improved gain/feed from 45 to 85 kg. As discussed earlier, this 

was mainly the result of an increased organ growth. The lean tissue deposition per 

kg of feed was not significantly affected by the nutritional history. 

Overall, from 20 to 85 kg, the gain/feed was slightly higher in the low pigs than 

in the high pigs when compared at the same average daily energy intake from 20 

to 85 kg (see also Chapter 5, Figure 2). This was presumably the result of the 

somewhat lower average body weight and maintenance requirements of low pigs 

compared to high pigs (see Chapter 5 and 6). However, only organ and fat tissue 

gain and body lipid retention were significantly higher in low pigs at similar average 

daily intake from 20 to 85 kg (Chapter 5, Table 7 and Chapter 6, Table 8). This 

increase in fat tissue and lipid gain presumably reflects the increase in LD/PD with 

increasing body weight. Furthermore, as already discussed, the organs presumably 

responded to the increasing amounts of feed to be processed between 45 and 85 

kg. Lean tissue gain from 20 to 85 kg was similar in low and high pigs when 

compared at the same average intake level, and consequently the percentage lean 

tissue in the body at 85 kg was slightly (about 1.6%) lower in the high animals. It 

was concluded that at a similar average daily energy intake between 20 and 85 kg, 

the feeding strategy (a high level from 20 to 45 kg and a low level from 45 to 85 

kg, or vice versa) had only small effects on the performance of the pigs. The pigs 

which received first a low feeding level and thereafter a high feeding level showed 

a slightly higher gain and gain/feed, a similar rate and efficiency of lean tissue gain 

and a somewhat reduced body lean content, compared to pigs fed according to the 

reverse feeding strategy. 

Energetic Efficiency 

It is generally accepted that the energetic efficiency for lipid accretion (kf) is 

higher than for protein accretion (k ), but there is a large variation in the estimates 

from different studies reported in the literature. For kf, most of the estimates range 
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from .7 to .8, and for kp from .4 to .7 (ARC, 1981 ). In the present study, the ratio 

between lipid and protein accretion (LD/PD) increased with increasing body weight. 

Therefore an increase in the overall efficiency of energy retention as protein plus 

lipid (kpf) with increasing body weight was expected. Furthermore, it has been 

suggested in the literature, that after a period of feed restriction the energetic 

efficiency of body gain is increased. Therefore the effects of body weight and 

previous nutrition were determined for the relationship between metabolizable 

energy intake and energy retention. The results as presented in Figure 6, showed 

that efficiency of energy utilization (k f) between 45 and 85 kg was not 

significantly affected (P > .1), by a feed restriction from 20 to 45 kg. 

Consequently, these results did not confirm the supposition that there would be an 

increased energetic efficiency during realimentation after a period of feed 

restriction. If the energy expenditure was reduced during feed restriction, it was 

presumably rapidly increased after a change in the feeding level. 

The k f between 45 and 85 kg was higher (P < .001) than between 20 and 45 

kg, 0.64 vs. 0.60. This is in good agreement with the higher ratio between lipid 

and protein accretion in heavier animals, because lipid is retained more efficiently 

than protein. 
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A linear relationship between energy intake and energy retention as in Figure 6 

and thus a constant k f , has often been reported (Susenbeth and Menke, 1991). 

It was concluded that this constant k f combined with a considerable increase in 

LD/PD (Figure 4) implied that k or kf was not constant (Susenbeth and Menke, 

1991 ; Reeds, 1991 ). However, it should be stressed that with linear regression, k f 

is not based on the total energy retention, but on the marginal increase in energy 

retention (slope) with increasing energy intake. Due to the linear increase in protein 

and lipid retention, the ratio between protein and lipid in this extra gain ( A L D / A P D ) 

is constant, as already discussed. Therefore a linear increase in energy retention 

and a constant k f is to be expected. This calculated k f is specific for the extra 

tissue deposited with an increase in energy intake. If the composition of this extra 

deposited tissue ( A L D / A P D ) is altered, e.g. when relatively more lipid is retained, 

presumably another k f will be found. This is supported by the higher k f 

determined in the fattening pigs compared to the growing pigs in this study. 

Koong et al. (1982, 1983) reported a positive correlation between fasting heat 

production and weights of organs of the gastro-intestinal tract, liver and kidneys. 

In the present study an increase in organ weights with increasing energy intake was 

found. In order to determine a possible relationship between organ mass and energy 

expenditure, first the metabolizable energy requirements for maintenance were 

calculated. A value of 456 kJ/(kg , 7 5*d) for MEm was found, using linear regression 

between metabolizable energy intake and energy retention. Subsequently, energetic 

efficiencies for energy retention as protein and lipid were determined as k = .43 

and kf = .77 with multiple linear regression. Thereafter, maintenance energy for 

each individual animal was calculated as ME-intake minus energy used for protein 

and lipid accretion, using these estimates for k and kf. Consequently, all factors 

influencing the energy expenditure which were not explained by protein and lipid 

accretion, were accounted for in the estimate of maintenance. Despite the large 

variation between animals, a significant increase (P < .001) in the estimates of 

MEm w i th increasing energy intake was found, as shown in Figure 7. This increase 

might be related to the increased organ weights, reflecting an increased metabolic 

rate at high energy levels. Energy expenditure by the metabolically most active 

tissues (organs) presumably is higher than energy expenditure related to the carcass 

(Koong et al., 1982, 1983). Furthermore, an increase in the proportion of total 

body protein which was deposited in the organs, was found with increasing energy 

intake. Since turnover of organ protein is much higher than turnover of protein in 
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Figure 7. Effect of energy intake on calculated metabolizable energy requirements for 
maintenance in pigs from 20 to 45 kg and in pigs from 45 to 85 kg previously fed 
either a low or a high energy level. 

other tissues (Simon, 1989), this may have contributed to the increased heat 

expenditure of the animals at the high intake levels. 

In conclusion, there was no evidence in this study of an increased energetic 

efficiency in pigs which were previously restricted in their feed intake. Furthermore 

the fattening animals showed a higher efficiency of energy retention (k f) than the 

growing pigs, which can be explained by the higher ratio between lipid and protein 

deposition in the heavier animals. Finally, an increase in feed intake seems to 

increase the heat expenditure of the pigs, which may be explained by an increase 

in the weight and activity of metabolically active organs. 

Efficiency of Nitrogen Utilization 

An efficient retention of dietary nitrogen becomes increasingly important because 

of an increasing awareness of the negative effects of excreted nitrogen. In the first 

experiment of this thesis, the efficiency of utilization of ileal digestible protein and 

lysine, being the first limiting amino acid, was measured as 58 and 74% 

respectively (Chapter 2). These results, compared with a gross efficiency of total 

protein utilization of about 30% in practice (Coppoolse et al., 1990), indicate scope 

for a considerable improvement in nitrogen utilization, especially by better adjusting 
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the amount and pattern of dietary amino acids to the requirements of the animal. 

Because of the different optimal amino acid patterns for maintenance and 

production (Fuller et al., 1989), this ideal amino acid pattern is not constant, but 

depends on the amounts of dietary protein used for maintenance and production. 

In addition, the present study showed that the whole body amino acid pattern is 

not constant but is affected by protein and energy intake (Chapter 3). This effect 

was presumably mediated by the effect of nutrient intake on the growth of different 

tissues with different amino acid compositions. Consequently it would be expected 

that factors which influence the growth and turnover of organs and tissues (e.g. 

nutrient intake, anti-nutritional factors, body weight, and environmental stressors), 

also have an effect on amino acid requirements and the optimal amino acid pattern. 

More emphasis needs to be put on the use of different amino acids for accretion 

of protein in different body components. 

The results of experiment 1 (Chapter 1), illustrated the importance of an 

appropriate definition of the optimal protein/energy ratio. A dietary protein/energy 

below this optimum will increase the body lipid content, whereas above this 

optimum the efficiency of nitrogen utilization will diminish rapidly. If an optimum 

protein or amino acid to energy ratio is to be determined, different methods can 

give very different results for the same set of data as illustrated in Figure 1 and 

Table 6 in Chapter 1. In this experiment the linear-plateau model is to be preferred 

above the quadratic model, mainly because there is no evidence that the increase 

in lysine/DE from .62 to .82, gave any improvement in performance or protein 

deposition. Nevertheless these two methods and others, of which some can be 

rejected on theoretical grounds (Baker, 1986), have been used to determine amino 

acid requirements. In any case both researchers and nutritionists should be aware 

of the difficulties and pitfalls of the determination of nutrient requirements. When 

applying a requirement figure, the method of determination should be taken into 

account. For optimizing the amino acid utilization, it is preferable to model the 

relationships between nutrient intake and amino acid f low in the animal by applying 

experimental results to biological concepts. This allows the inclusion of amino acid 

f low to different tissues, the sites and reasons of amino acid losses, effects of 

genetic, nutritional and environmental factors, etc. At this stage, our knowledge in 

these areas is far from sufficient to realize these aim, but if there is agreement 

concerning this aim, it will give direction to future research. At this moment it is 

possible (and it is being done), to include those dose-response relationships 
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between protein and energy intake and protein and lipid deposition which are 

thought to give the best description of the biological mechanisms, in a 

mathematical model. Stochasticity can be used to account for variation between 

animals and the consequences for simulation of one animal or a group of animals. 

This approach will allow the optimization of energy intake and amino acid/energy 

ratios, taking into account market conditions and nitrogen excretion. 

The efficiency of utilization of faecal digestible protein for protein accretion in the 

second experiment (Chapter 4 and 6), decreased from .57 between 20 and 45 kg, 

to .38 between 45 and 85 kg. This decrease in observed nitrogen utilization with 

increasing body weight has also been reported by other authors (Berschauer et al., 

1980; Rao and McCracken, 1991). As discussed above, nitrogen utilization in the 

energy dependent phase is a reflection of the energy available for protein synthesis 

and not of the potential protein utilization of the animal. Therefore, the decrease in 

efficiency with increasing body weight in the present study, was presumably the 

result of a dietary protein content which was much higher than the requirements 

of the heavier animals. There is little evidence of a diminishing potential protein 

utilization with increasing body weight. Results of Rao and McCracken (1990) 

suggest a similar nitrogen utilization in pigs of 40, 60 and 80 kg of body weight 

when fed a low protein diet. In addition, a balance study in our laboratories with 

pigs at 25, 55 and 85 kg did not confirm a decrease in nitrogen utilization with 

increasing body weight (Bikker, Karabinas, and Van Laar, unpublished data). 

This study did not allow a direct evaluation of the effect of feed intake, and thus 

of the production level, on the utilization of dietary protein. In order to estimate the 

effect of feed intake on protein utilization, a simple calculation was performed. 

Maintenance requirements of .268 g n i t rogen/(kg7 5*d) (Fuller et al., 1989) and an 

efficiency of digestible protein utilization of .60 were adopted. Moreover, it was 

assumed that the dietary protein/energy perfectly matched the requirements at each 

energy intake level. Subsequently, the maximum nitrogen utilization and the 

minimum nitrogen excretion were calculated, at each level of energy intake for the 

pigs between 45 and 85 kg in this study. The results have been plotted in Figure 8. 

The gross efficiency of protein utilization (protein gain/protein intake) increased 

slightly with increasing feed intake due to a dilution of protein requirements for 

maintenance. On the other hand, with increasing feed intake, a decreasing 

proportion of the retained protein was deposited in the lean tissue. Therefore 

protein intake above maintenance is retained with a decreasing efficiency in lean 
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tissue (lean protein gain/[protein intake - maintenance protein]). These two effects 

compensated each other to some extent and as a result, the gross efficiency of 

lean protein retention decreased slightly with increasing feed intake. Figure 8 clearly 

shows that even at a rather high overall protein utilization (50-55%), the efficiency 

of lean tissue protein gain is unlikely to exceed 30%. 

As a next step, the nitrogen excretion per kg of body gain and per kg of lean 

tissue gain was calculated. Figure 8b shows that for each kg of body and lean 

tissue gain, about 25 and 55 g nitrogen was excreted in the urine. In addition, 

nitrogen retained in non-lean body tissues was included in the nitrogen losses 

because of their low value for human consumption. As a result the nitrogen losses 

increased to 80 g per kg lean tissue gain. On the basis of the decreasing efficiency 

of lean protein gain (Figure 8a), one might have expected an increase in nitrogen 

excretion per kg lean tissue gain with increasing feed intake. This would be the 

case if the body and lean tissue protein content were constant. However, due to 

the decrease in protein content, both in the body and in the lean tissue, the 

calculated nitrogen excretion per kg lean tissue or body gain, decreased with 

increasing feed intake. This apparent positive effect, however, was 

counterbalanced by a presumably undesired increase in lipid content of the total 

body and the lean tissue. Therefore an optimal feeding strategy can only be 

designed after definition of a set of criteria in a combination considered as optimal. 
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Figure 8 . (a) Efficiency of protein util ization for protein gain in the body and the lean t issue. 
" + M " protein requirements for maintenance taken into account. " - M " eff iciency above 
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In conclusion there is considerable scope for improvement in nitrogen utilization 

in the pig industry, mainly by better adjustment of the amount and pattern of 

dietary amino acids to the requirements of the animal. Optimum protein and energy 

allowances depend among others, on the body weight and genotype of the pig, on 

the response criteria to be optimized and on the method of determining 

requirements. This rewards the use of models which simulate the rate and 

composition of body gain of the pig in response to nutrient intake. These models 

allow to take animal and environmental factors into account and enable the 

calculation of optima after definition of the desired or acceptable combinations of 

response criteria (e.g. daily gain, carcass quality, nitrogen excretion). Obviously the 

value of these models depends on the adequacy of the description of the animal 

characteristics. This highlights the importance of research aimed at a better 

understanding and quantification of the flow of nutrients to different organs and 

tissues within the body, the metabolic fate of these nutrients, and the 

(endocrinological) regulation of the nutrient flows. 

IMPLICATIONS 

In this section, some important consequences of the effects of protein and 

energy intake, and body weight on protein and lipid retention in body tissues, as 

found in this study, are discussed. 

Protein and Energy Dependent Phases 

The observed efficiency of protein utilization in the energy dependent phase of 

protein deposition, is partially determined by the dietary protein/energy ratio relative 

to the optimum protein/energy ratio. Consequently, an increase in protein retention 

and utilization in this phase does not necessarily imply that the potential protein 

utilization has also been improved. It may simply imply that the control animals 

received an excess of protein. Several measures like fattening entire male pigs 

instead of castrates, improvement of the feed conversion of a pig by breeding, and 

the application of metabolic modifiers have been claimed to improve protein 

utilization. However, it may be that only the assignment of dietary energy to protein 

and lipid accretion has been changed. In other words, these measures may have 

reduced the minimum lipid to protein ratio. Such an effect may be valuable for lean 
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meat production, but without an increase in potential protein utilization, the optimal 

protein/energy ratio in the diet will be proportionately increased. Therefore 

measures and products which claim to improve protein utilization, be it metabolic 

modifiers, selection for an improved gain or gain/feed or dietary ingredients, should 

be tested both in the protein and energy dependent phase. 

Modelling Animal Growth 

Some aspects of modelling animal growth with regard to optimizing protein 

allowances and nitrogen utilization have already been discussed. In addition, this 

study has shown that the relationships between energy intake and protein and lipid 

deposition, are considerably affected by the body weight of the pig. An appropriate 

modelling of the effects of energy intake and body weight on lipid and protein 

deposition, LD/PD and A L D / A P D should receive priority in those models which are 

based on a constant LD/PD ratio. Different possibilities to realize this have been 

discussed by De Greef (1992). In essence these methods are not very different. 

They all imply that the genetic capacity of the animal is not sufficiently defined by 

its maximum capacity for protein deposition, and a minimal ratio between lipid and 

protein deposition. An extra parameter is required to define the relationship 

between energy intake and protein retention below PDm a x . 

Breeding and Selection 

During the last few decades the daily gain and gain/feed have been much 

improved by breeding and selection. The genetic capacity for protein deposition of 

improved animals approaches or even exceeds 200 g per day (this study, Campbell 

andTaverner, 1988a; Rao and McCracken, 1991; De Greef et al., 1992). Although 

improvements in gain are economically important, for sustainable animal husbandry, 

an efficient conversion of feed ingredients into edible tissues seems even more 

important. It depends very much on the selection strategy whether an increase in 

daily gain coincides with an increase in gain/feed or lean gain/feed. Selection for 

gain where animals are allowed restricted amounts of feed, for example, will result 

in a greater improvement in feed efficiency and lean tissue percentage than under 

ad libitum feeding conditions. Furthermore, little attention has been paid to the 

efficiency of protein utilization. Since pigs generally have been selected on 

adequate or even high protein diets, it is unlikely that the potential protein 

utilization has been significantly improved (Kyriazakis et al., 1994). In addition, the 
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biological backgrounds of variation in nutrient utilization, in nutrient f low to 

different organs, and the mechanisms involved, are not well understood. Therefore 

in animal breeding programmes, considerable attention should be paid to the 

determination of biological parameters affecting nutrient utilization and to an 

improvement in the conversion of nutrients into edible carcass parts, especially lean 

tissue. 

Feeding Improved Genotypes 

Protein retention increased linearly with increasing energy intake in the growing 

and the fattening pigs. This indicates that an intrinsicly determined maximum 

protein deposition lies beyond the limits of appetite in this type of pig. Therefore 

the animals can be fed ad libitum without reaching PDm a x , and thus without 

depositing excessive amounts of lipid. Nevertheless LD/PD and lipid content 

increased curvilinearly with increasing energy intake, and the lean tissue percentage 

in the body and the carcass decreased curvilinearly. These results indicate that 

even in these pigs with a high genetic capacity for protein deposition, it is not 

possible to simultaneously maximize both lean tissue gain and lean tissue content. 

In addition, gain/feed was highest at high feeding levels, whereas lean gain/feed 

was highest at low feeding levels. However, LD/PD, lipid content, lean tissue 

percentage and lean gain/feed were relatively constant at the three highest feeding 

levels. Therefore a severe restriction in feed intake, below 75% of the ad libitum 

intake, is required if body composition and lean tissue feed conversion are to be 

improved. This will have major negative consequences for the daily rate of body, 

lean tissue and protein gain. 

If lean percentage is to be increased by feed restriction, this can be realized by 

a severe restriction in either the growing or the fattening phase. Because lean and 

fat tissue deposition were not increased after a previous feed restriction, the higher 

lean percentage in restricted pigs at 45 kg was still present at 85 kg. At a constant 

average daily energy intake between 20 and 85 kg, the distribution of energy 

between the growing and the fattening phase had only a relatively small effect on 

body gain and lean percentage. Body gain was slightly lower and lean percentage 

slightly higher in animals restricted in the fattening phase. The lean tissue growth 

rate between 20 and 85 kg was not significantly affected. The main reason for this 

lack of an effect of energy distribution is that the type of relationship between 

energy intake and LD/PD and body composition was very similar in the two weight 
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ranges in this study. Therefore in these pigs, the effect of a feed restriction is 

determined more by the energy levels which are applied, than by the weight range 

in which the pigs are restricted. Finally these results indicate that the time delay 

caused by a feed restriction is not compensated for, by an increased growth in the 

realimentation phase. There is little or no evidence in the literature, that a period of 

growth retardation by feed restriction in pigs is advantageous because of 

compensation in a later period. In each stage of growth, the animals should be 

adequately fed without expecting them to later compensate for deficiencies in their 

nutrition. 

The results of this study have shown a diminishing slope for the relationship 

between energy intake and protein deposition, and consequently an increasing 

LD/PD with increasing body weight. At similar daily rates of protein deposition, the 

fattening pigs retained about twice as much lipid as the growing pigs. Thus the 

fattening pigs required considerably more energy to deposit one gram of protein and 

the concomitant amount of lipid. Presumably this will have consequences for the 

required dietary protein/energy ratio. In Chapter 1 a simple factorial model was 

proposed to determine the lysine/energy requirements given known protein and lipid 

accretion rates. This model allows simulation of the effects of, for example, energy 

intake, body weight, sex, and genotype, if their effects on protein and lipid 

retention have been determined. This model was used to calculate the ileal 

digestible lysine/energy requirements for the pigs used in this study in different 

weight ranges and for pigs of different sex and genotype from Campbell and 

Taverner (1988a). The results have been presented in Figure 9. The calculated 

lysine/DE requirements decreased markedly from about .60 between 20 and 45 kg 

to .40 between 45 and 85 kg. Because of the linear increase in protein deposition 

with increasing energy intake, the optimal lysine/DE was only slightly affected by 

the daily energy intake. The latter result was also found for the improved male pigs 

in Campbell and Taverner (1988a). However, the unimproved pigs reached a 

plateau in protein deposition at about 33 MJ of DE/d. If the energy intake was 

increased beyond this 33 MJ, no further increase in protein retention was found. 

Therefore the absolute daily lysine requirements remained constant above 33 MJ 

of DE/d. Consequently, if energy intake increased beyond this point, the required 

lysine/energy decreased. This explains the decrease in lysine/energy for the 

unimproved male pigs and the castrates in Figure 9. In conclusion, the lysine or 

protein to energy requirements for protein gain, are only slightly affected by the 
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Figure 9 . Calculated lysine/DE requirements using Model [4] f rom Chapter 1 for pigs of different 
weight f rom this study and for improved (male A) , unimproved (male B) and castrated 
male pigs f rom Campbell and Taverner (1988). 

level of energy intake in pigs which have not reached their PDm a x . At energy levels 

beyond those required to reach PDm a x , the required protein/energy decreases with 

increasing energy intake. A higher ratio between lipid and protein deposition due 

to a higher body weight, or related to sex or genotype, presumably causes a 

considerable decrease in the required protein/energy ratio. These results emphasize 

that an adequate knowledge of the pigs' genetic capacity for protein deposition is 

crucial in order to define an adequate feeding strategy. Future research should aim 

at a better understanding of the mechanisms involved in the control of the 

assignment of dietary energy to protein and lipid accretion. 

CONCLUSIONS 

The following conclusions were drawn on the basis of the results of studies with 

pigs of high genetic capacity for lean gain, described in this thesis. 

Separate protein and energy dependent phases in protein deposition can be 

distinguished. This concept implies that if the level of feed intake is increased, an 

associated increase in protein deposition will reflect a response to dietary protein 

on a low protein diet and a response to dietary energy on a diet abundant in 

protein. 
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In genetically improved pigs with a high capacity for lean gain, it is presumed that 

maximum protein gain (PDmax) cannot be reached at body weights below about 80 

to 90 kg. The intake capacity probably limits protein accretion and consequently 

rate of protein (PD) and lipid deposition (LD) respond linearly to energy intake. The 

ratio LD/PD responds curvilinearly to energy intake. 

The proportion of total daily protein deposition which is deposited in the lean tissue 

decreases with increasing energy intake. 

Appropriate modelling of the effects of energy intake and body weight on lipid and 

protein deposition, LD/PD and A L D / A P D , should receive priority to models which 

are based on a constant LD/PD ratio. 

Carcass lean content and efficiency of feed conversion into lean tissue, decrease 

with increasing energy intake. Body and lean tissue gain, gain/feed, and protein 

deposition, increase with increasing energy intake. Consequently, these different 

response criteria cannot be optimized simultaneously. Even when PD m a x has not 

been reached, maximization of lean gain is accompanied by a decrease in body and 

carcass lean content and an increase in lipid content. 

In pigs of the type as used in this study, the effect of a feed restriction on body 

composition is determined more by the energy levels which are applied, than by the 

weight range in which the pigs are restricted. Furthermore a severe restriction in 

feed intake, below 75% of the ad libitum intake, is required if body composition is 

to be improved. This will have negative consequences for the daily rate of body, 

lean tissue and protein gain. 

In the weight range from 20 to 85 kg, extra gain of the body and lean tissue per 

unit of extra energy intake diminishes with increasing body weight. The lean tissue 

content also decreases with increasing body weight. The latter is mainly due to the 

higher feed intake of heavier pigs. 

With increasing body weight the extra protein gain (slope) with increasing energy 

intake diminishes and the extra lipid gain with increasing energy intake increases. 

Consequently, at a constant daily energy intake for production, fattening pigs 
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deposit more lipid and less protein than growing pigs. Therefore, lipid content 

increases with increasing body weight. When pigs are fed ad libitum or relative to 

their body weight, the differences between growing and fattening pigs will be even 

bigger. At the three highest feeding levels in this study the LD/PD in the fattening 

pigs was about twice as high as in the growing pigs. 

Metabolically active organs respond rapidly in size and weight to a change in daily 

nutrient intake. Together with an increase in gut contents, this response can largely 

account for the increase in liveweight gain (compensation), after a period of feed 

or energy restriction as reported in many studies. A significant increase in lean or 

fat tissue gain during rehabilitation was not found in this study. Therefore the lean 

content which is higher at the end of the restriction phase may still be higher at the 

end of the realimentation phase, provided that previously restricted and control 

animals have a similar feed intake in the realimentation period. This can explain the 

higher lean content as sometimes reported for previously restricted animals and also 

found in our study. 

There is no evidence that the relationships between energy intake and protein and 

lipid deposition in the carcass are affected by a previous energy restriction. Protein 

retention in the organs will be increased during rehabilitation as a direct response 

to an increased nutrient intake. There was no evidence in this study of an increased 

energetic efficiency in pigs which were previously restricted in their feed intake. 

Fattening animals show a higher efficiency of energy retention (k f) than the 

growing pigs which is the result of the increased ratio between lipid and protein 

deposition in the heavier animals. 

There is little or no evidence in the literature that a period of growth retardation by 

feed restriction in pigs is advantageous because of compensation in a later period. 

At each stage of growth the animals should be adequately fed. It cannot be 

expected that the pigs later compensate for deficiencies in their nutrition. 

The amounts of lysine or protein relative to energy, required for protein gain, are 

only slightly affected by the level of energy intake in pigs which have not reached 

their PD m a x . A higher ratio between lipid and protein deposition due to a higher 
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body weight, or related to sex or genotype, presumably causes a considerable 

decrease in the required protein/energy ratio. These results emphasize that an 

adequate knowledge of the pigs' genetic capacity for protein deposition is crucial 

in order to define an adequate feeding strategy. 

Optimum protein and energy allowances depend on animal factors as well as on the 

response criteria to be optimized. Animal simulation models will become 

indispensable to take these factors into account and to calculate optima after 

definition of the desired or acceptable combinations of response criteria. 

Future research should aim at a better understanding and quantification of the f low 

of nutrients to different organs and tissues within the body, the metabolic fate of 

these nutrients and the regulation of these nutrient f lows. 
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SUMMARY 

The primary aim of pig production is to provide food for human consumption. 

Therefore, in pig husbandry the conversion of animal feeding-stuffs into edible 

products of high quality should be optimized. Different criteria can be used to 

determine optimal protein (amino acid) and energy allowances (e.g., maximum lean 

tissue gain, maximum efficiency of lean gain, and minimum nitrogen excretion), 

presumably leading to different results. Consequently, optimization requires detailed 

knowledge of the response relationships between nutrient intake and animal 

performance, in terms of nutrient retention and body composition. These 

relationships have been studied in this thesis for pigs of a modern genotype. Special 

attention has been paid to protein and lipid accretion and to lean tissue gain, as 

being important criteria affecting the efficiency of production. Knowledge of the 

response relationships between nutrient intake and tissue deposition, as determined 

in this study, presumably can best be applied when it is included in simulation 

models. 

Responses to Protein and Energy Intake 

Protein and lean tissue gain are largely determined by animal factors like body 

weight, sex, and genotype, and nutritional factors, especially protein and energy 

intake. The literature indicates that intrinsic factors define the maximum daily 

protein deposition capacity of the pig (PDmax), whereas nutrient allowances and the 

feed intake capacity of the pig determine whether this PD m a x can be reached. The 

response of protein gain in the animal to incremental amounts of dietary protein at 

a constant energy intake reflects the digestibility and quality of the dietary protein, 

the amino acid availability, and the metabolic efficiency of utilization of amino acids 

for protein gain. At high levels of protein intake, the marginal efficiency (slope) of 

protein utilization will fall to zero when energy intake becomes limiting. It is a 

matter of debate what kind of mathematical model can best be used to describe 

this response relationship. The response of protein accretion to energy intake, at 

adequate levels of protein intake, reflects the assignment of dietary energy to 

protein and lipid accretion. This distribution of dietary energy is influenced by the 

sex and the genotype of the pig. Whether this relationship is affected by previous 

nutrition (the nutritional history) or by body weight was unclear. Although many 

studies have reported an increased rate and efficiency of body weight gain after a 
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period of feed restriction, it is often not clear when differences between treatments 

were developed, nor which tissues gained faster during rehabilitation. 

Knowledge of the relationship between energy intake and protein accretion is 

essential for determination of the effect of an increase in energy intake on rate of 

gain and body composition. In addition, this relationship determines the possible 

rate of protein accretion at each level of energy intake, and thus the amino acid 

requirements at tissue level. Therefore, this relationship has a big influence on the 

amino acid requirements and the optimal amino acid to energy ratio in the diet. 

Knowledge of the interrelationships between energy and protein intake on protein 

deposition is important to determine the efficiency of protein utilization, optimal 

amino acid/energy ratios, and the effect of the energy intake level on these criteria. 

In the first three chapters of this study, protein and energy intake were varied 

independently in growing pigs (20-45 kg) of a high genetic capacity for lean gain, 

to determine: 

- the optimal ileal digestible lysine/energy allowances for body gain and protein 

deposition; 

- the efficiency of utilization of ileal digestible protein and lysine for protein 

accretion; 

- the interrelationships between energy and protein intake on protein accretion; 

- the effects of protein and energy intake on the amino acid composition of the 

whole body, the carcass and the organs of pigs. 

In the investigations described in Chapter 4 to 6, energy intake at adequate levels 

of protein intake was varied, in growing (20-45 kg) and fattening pigs (45-85 kg), 

to determine: 

- the response relationships between energy intake and protein (PD) and lipid 

deposition (LD), LD/PD and body tissues; 

- the distribution of protein and lipid among different body tissues; 

- the effects of body weight on these criteria; 

- the effect of a feed restriction from 20 to 45 kg on the responses to energy 

intake from 45 to 85 kg. 
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Protein Utilization 

In the first experiment protein deposition increased with increasing protein intake 

to maximum rates of 108 and 128 g/d, at energy intake levels of 2.5 and 3.0 times 

energy for maintenance (M), respectively. The rates of lysine deposition increased 

to 8.0 and 9.5 g/d, respectively. The extra protein-free energy allowance of 3.0 MJ 

of DE/d for pigs fed 3.0 times maintenance, did not affect rates of protein accretion 

at low levels of protein intake, but improved protein and lysine deposition 

significantly at high levels of protein intake. These results support the concept of 

protein and energy dependent phases in protein deposition. The relationships 

between intake and deposition of protein, and between intake and deposition of 

lysine were best described by a linear-plateau model. However, no firm conclusion 

was drawn about the smoothness of transition between the linear and plateau 

phase. The marginal efficiencies of utilization of ileal digestible protein and lysine 

(the first limiting amino acid) were estimated as .58 and .74 respectively. 

Lysine/'energy Requirements 

The ileal digestible lysine requirements, determined with a linear-plateau model, 

were .57 g/MJ of DE for daily gain and gain/feed, and .62 g/MJ of DE for protein 

deposition. These estimated requirements were similar for the two energy levels. 

Different methods to determine the amino acid requirements have been discussed. 

In addition, a simple factorial model to estimate the lysine/energy requirements was 

proposed in Chapter 1. 

Body Amino Acid Pattern 

Whole body amino acid contents (g/16 g nitrogen) of the pigs in this study were 

lysine 6.64, methionine 2 .11 , threonine 3.62, and total essential amino acids 42.8. 

The concentrations of essential amino acids were 41.8 and 48.4 g/16 g nitrogen 

in the carcass and organs, respectively. Concentrations of a number of amino acids, 

both in carcass, organ and whole body protein, were affected by protein and(or) 

energy intake. The amino acid pattern of the newly deposited protein was slightly 

different from that of the empty body protein. The changes in amino acid contents 

were presumably the result of effects of protein and energy intake on the 

proportions of muscle and non-muscle carcass tissues, and on relative weights of 

blood and organs. Possible consequences of these changes for the amino acid 

requirements were discussed. 
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Protein and Lipid Accretion in Response to Energy Intake 

At adequate levels of protein intake, protein and lipid accretion in the whole body 

increased linearly with increasing energy intake in the growing (20-45 kg) and 

fattening (45-85 kg) pigs. In the growing pigs protein and lipid accretion increased 

from 75 to 172 g/d and from 28 to 193 g/d, respectively, when the energy level 

increased from 1.7xM to ad libitum. In the fattening pigs protein and lipid 

deposition increased from 83 to 187 g/d and from 46 to 392 g/d, respectively. 

These results indicate that in these pigs the feed intake capacity rather than PDm a x 

limits protein deposition. The LD/PD ratio increased from .3 to 1.1 and from .5 to 

2.2 in the growing and fattening pigs, respectively. Because of the linear increase 

in rates of protein and lipid accretion, the ratio between extra protein and extra lipid 

retention ( A L D / A P D ) with each unit of extra energy intake was constant. 

Protein distribution was affected by energy intake. The proportion of the daily 

whole body protein accretion, which was deposited in the lean tissue, decreased 

from about 6 1 % at the lowest energy level to about 52% at the highest energy 

level. The proportion of protein deposited in organs and fat tissue increased with 

increasing energy intake. The higher proportion of protein deposited in the organs 

and the higher organ weights at high intake levels seem to be associated with 

higher energy requirements for maintenance. 

Body Composition in Response to Energy Intake 

Between 45 and 85 kg lean tissue accretion increased curvilinearly with 

increasing energy intake, from about 230 to 510 g/d. However, the response of 

organ and fat tissue gain to energy intake was relatively bigger. Both in the growing 

and fattening pigs the organs responded remarkably to nutrient intake, and the 

organ percentage increased considerably with increasing energy intake. As a 

consequence of these effects, the carcass lean content decreased curvilinearly from 

about 63 to 55% with increasing energy intake. This effect was also found in the 

growing pigs. Consequently, maximization of lean gain is accompanied by a 

decrease in the carcass lean content. 

Because of the increase in LD/PD with increasing energy intake, body protein 

content decreased curvilinearly, and body lipid content increased curvilinearly with 

increasing energy intake. Thus even when PD m a x is not reached, body lipid content 

increases with increasing energy intake. However, differences in body lean content 

and body lipid content were very small at the three highest energy levels. 
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Therefore, a severe feed restriction, below 75% of ad libitum, is required, if the 

body composition is to be improved. This will markedly reduce the daily rate of 

body and lean tissue gain. 

Effects of Body Weight 

In this experiment the fattening pigs ate more and consequently gained faster 

than the growing pigs. However, the increase in body and lean tissue gain per unit 

increase in energy intake decreased with increasing body weight. The respective 

increases in body and lean tissue gain per unit energy intake were 43.6 and 12.5 

g/MJ of DE in the growing pigs, and 34.2 and 9.6 g/MJ of DE in the fattening pigs. 

When compared at similar average daily energy intake above maintenance, body 

gain was on average 108 g/d higher in the growing pigs. Lean tissue gain was only 

30 g/d (not significant) higher. Carcass lean content was 3-4% lower at 85 kg than 

at 45 kg. This was largely due to the higher feed intake of the heavier animals. 

When compared at similar daily energy intake above maintenance, the carcass lean 

content was only 1 % lower at 85 kg than at 45 kg. 

The increases in protein and lipid deposition with increasing energy intake (slope 

of the linear regression) were 5.8 and 10.5, respectively, in the growing pig and 

3.8 and 13.7, respectively, in the fattening pig. Consequently, the slope for protein 

accretion decreased drastically with increasing body weight. At similar energy 

intake above maintenance, protein accretion was 19 g/d higher and lipid accretion 

was 26 g/d lower in the growing pigs. Consequently, LD/PD and lipid content 

increased with increasing body weight. This effect of body weight was higher at 

high levels of energy intake. At the three highest feeding levels, LD/PD was twice 

as high between 45 and 85 than between 20 and 45 kg. As a consequence, the 

efficiency of conversion of nutrients into body or lean tissue decreases with 

increasing body weight. 

The ratio between extra lipid and extra protein retention ( A L D / A P D ) increased 

with increasing body weight, because of a decrease in the slope for protein 

accretion vs energy intake, and an increase for lipid accretion. The increase in lipid 

content in the gain in heavier animals caused a higher energetic efficiency (kpf) 

between 45 and 85 kg, compared to pigs between 20 and 45 kg. 
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Effects of a Previous Feed Restriction 

Animals which had been restricted in feed intake at 2.2xM (low pigs) from 20 

to 45 kg, gained on average 140 g/d more from 45 to 85 kg than animals fed at 

3.7xM between 20 and 45 kg (high animals). However, a large part of this 140 g 

compensatory gain was accounted for by an increase in gut-fill, and a response in 

size and weight of metabolically active organs. Between low and high animals, no 

significant differences in weight gain of lean and fat tissue from 45 to 85 kg were 

found. In addition, also in whole body protein and lipid accretion and energy 

retention no differences were found. Only protein gain in the organs was 

significantly higher in previously restricted pigs. The differences in weight gain of 

the body and the organs between low and high pigs, increased with an increasing 

energy level between 45 and 85 kg. This illustrates the response of metabolically 

active organs to nutrient intake. 

It seems likely that the relationship between energy intake and protein and lipid 

accretion in the carcass is not affected by a previous energy restriction. 

Nevertheless, pigs restricted from 20 to 45 kg had a higher lean content and a 

lower lipid content at 85 kg. However, these differences were already present at 

45 kg, due to the energy restriction, and were not the result of differences in tissue 

deposition between 45 and 85 kg. 

Overall, rate and composition of body gain between 20 and 85 kg, compared at 

a similar average daily energy intake, were only slightly affected by the feeding 

strategy. Pigs that received a low feeding level up to 45 kg and a high feeding level 

thereafter, gained slightly faster but had a slightly lower body lean content 

compared to pigs that first received a high feeding level and thereafter a low 

feeding level. No differences were found in rate and efficiency of lean tissue gain. 

Consequences for Defining a Feeding Strategy for Pigs with High Genetic Capacity 

for Lean Gain 

There is little or no evidence in the literature that a period of growth retardation 

by a feed restriction in pigs is advantageous because of compensation in a later 

period. In each stage of growth the animals should be adequately fed without 

expecting them to later compensate for deficiencies in their nutrition. 

The optimal ratio between protein (lysine) and energy for protein gain is only 

slightly affected by the level of energy intake in pigs which have not reached their 

PD m a x . A higher ratio between lipid and protein deposition, due to a higher body 
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weight, or related to sex or genotype, presumably causes a considerable decrease 

in the required protein/energy ratio. These results emphasize that an adequate 

knowledge of the pigs' genetic capacity for protein deposition is crucial in order to 

define an adequate feeding strategy. 

The overall effect of a feed restriction in these pigs is more determined by the 

feeding levels which are applied than by the weight range in which the pigs are 

restricted. Only a severe restriction will significantly affect the body composition. 

Such a restriction will have major negative consequences on daily gain and protein 

deposition. 

Optimum protein and energy allowances depend on animal factors, as well as on 

the response criteria to be optimized. Animal simulation models will become 

indispensable to take these factors into account, and to calculate optima, after 

definition of the desired or acceptable combinations of response criteria. An 

appropriate modelling of the effects of energy intake and body weight on lipid and 

protein deposition, LD/PD and A L D / A P D should receive priority in those models 

which are based on a constant LD/PD ratio. 
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SAMENVATTING 

Het belangrijkste doel van de vleesvarkenshouderij is de produktie van voedsel 

voor de mens. In de varkenshouderij dient de omzetting van diervoeders in 

kwalitatief hoogwaardige vleesprodukten dan ook geoptimaliseerd te worden. Om 

optimale eiwit- en energiegiften te bepalen kunnen verschillende criteria gebruikt 

worden, bijvoorbeeld maximale aanzet van vlees, maximale efficiëntie van 

vleesaanzet of minimale stikstof uitstoot. Deze verschillende criteria leiden zeer 

waarschijnlijk tot verschillende resultaten. Voor een optimale produktie is een 

gedegen kennis van de relaties tussen nutriëntenopname (voeding) enerzijds en 

groei en lichaamssamenstelling van het varken anderzijds dan ook noodzakelijk. In 

dit proefschrift zijn deze relaties bestudeerd bij varkens met een hoge erfelijke 

aanleg voorde groei van spierweefsel (vlees). Hierbij is vooral aandacht besteed aan 

de eiwit- en vetaanzet van de dieren en de groei van spierweefsel, omdat deze in 

belangrijke mate de efficiëntie van de lichaamsgroei bepalen. Daarnaast is vlees een 

belangrijke eiwitbron voor menselijke consumptie. De resultaten van dit onderzoek 

kunnen waarschijnlijk het best toegepast worden door deze te gebruiken voor het 

testen en verbeteren van computermodellen die de groei van varkens onder invloed 

van erfelijke aanleg, voeding en milieufactoren (temperatuur, luchtvochtigheid, 

aantal dieren per hok enz.) voorspellen. Bovendien hopen we dat dit proefschrift de 

inzichten van de lezer in de verbanden tussen voeding en lichaamsgroei en -

samenstelling vergroot. 

Effecten van eiwit- en energieopname 

Eiwitaanzet en vleesgroei bij varkens worden voornamelijk bepaald door 

dierfactoren zoals gewicht, sexe en erfelijke aanleg (genotype) en door 

voedingsfactoren, vooral energie- en eiwitopname. De dierfactoren bepalen de 

maximaal haalbare dagelijkse eiwitaanzet van het varken terwijl de dagelijkse 

voergift, de voerkwaliteit en de voeropnamecapaciteit van het dier bepalen of die 

maximale eiwitaanzet ook daadwerkelijk bereikt wordt. Wanneer een varken bij een 

vaste energiegift een steeds toenemende hoeveelheid eiwit wordt verstrekt (en dus 

het eiwitgehalte in het voer toeneemt) zal in eerste instantie de dagelijkse 

eiwitaanzet toenemen. De toename in eiwitaanzet per eenheid extra opgenomen 

eiwit hangt af van de verteerbaarheid en de kwaliteit van het voereiwit, de 

beschikbaarheid van de aminozuren en van de efficiëntie waarmee het dier 

aminozuren kan benutten voor de aanmaak van lichaamseiwit. Hoe dit verband 
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tussen eiwitopname en eiwitaanzet het best modelmatig beschreven kan worden 

is niet duidelijk. Wel staat vast dat bij hoge eiwitgehaltes in het voer een extra 

eiwitgift niet langer resulteert in een toename in de eiwitaanzet van het dier. De 

eiwitopname is dus in feite te hoog; de energieopname is dan beperkend geworden 

en het dier heeft eerst meer energie nodig om lichaamseiwit te kunnen maken. 

Wanneer in die situatie, dus als er voldoende eiwit (aminozuren) in het voer 

aanwezig is, extra energie (vetten en/of koolhydraten) wordt verstrekt kan het 

varken deze energie gebruiken om lichaamseiwit aan te zetten. Echter, niet alle 

extra energie zal gebruikt worden voor eiwitaanzet; een deel van de energie wordt 

gebruikt voor vetaanzet. De verdeling van energie uit het voer over eiwit- en 

vetaanzet wordt onder andere bepaald door de sexe en het genotype van het dier. 

Het was vóór dit onderzoek niet duidelijk of de verdeling van voerenergie over eiwit-

en vetaanzet ook wordt bepaald door het gewicht van het dier en de voeding in een 

voorgaande periode. Het was wel bekend dat als varkens een bepaalde tijd in hun 

groei beperkt worden, ze daarna soms meer eten en sneller groeien, maar het was 

niet bekend welke weefsels dan extra groeien en wanneer deze verschillen 

optreden. 

Kennis van de relatie tussen energieopname (bij voldoende voereiwit) en de 

aanzet van lichaamseiwit is noodzakelijk om te kunnen bepalen wat het effect van 

een extra voergift op groeisnelheid en lichaamssamenstelling (bijvoorbeeld 

vleespercentage) zal zijn. Tevens bepaalt deze relatie tussen energieopname en 

eiwitaanzet hoeveel eiwit bij een bepaalde energiegift maximaal aangezet kan 

worden en dus hoeveel voereiwit er nodig is. Deze relatie heeft daarom een grote 

invloed op de eiwitbehoefte (aminozurenbehoefte) van het dier en de optimale 

verhouding tussen aminozuren en energie in het voer. Kennis van de relaties tussen 

eiwit- en energieopname enerzijds en eiwitaanzet anderzijds is dus belangrijk om de 

eiwitbenutting, de optimale eiwit/energie verhouding in het voer en de effecten van 

energieopname op deze twee parameters te kunnen bepalen. 

In het onderzoek beschreven in de eerste drie hoofdstukken van dit proefschrift 

werden, bij jonge groeiende varkens (20 tot 45 kg), de dagelijks verstrekte 

hoeveelheden eiwit- en energie in het rantsoen onafhankelijk van elkaar gevarieerd. 

Het doel hiervan was te bepalen: 
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- de optimale verhouding tussen lysine en energie in het voer voor een maximale 

groei en eiwitaanzet. Lysine is het aminozuur waaraan in varkensvoeders het 

snelst een tekort dreigt te ontstaan; 

- de benutting van darmverteerbaar eiwit en lysine voor de aanzet van 

lichaamseiwit; 

- de relatie tussen eiwit- en energieopname enerzijds en de aanzet van 

lichaamseiwit anderzijds; 

- de effecten van eiwit- en energieopname op de samenstelling (het 

aminozurenpatroon) van het lichaamseiwit in het hele dier, het karkas en de 

organen. 

In het onderzoek beschreven in de hoofdstukken 4 tot 6 werd de energieopname 

bij een constant en voldoende hoog eiwitgehalte in het voer gevarieerd. Dit vond 

plaats bij zowel jonge (20 tot 45 kg) als oudere (45 tot 85 kg) dieren om te 

bepalen: 

- de relaties tussen energieopname enerzijds en lichaamsgroei, vleesaanzet, 

vleespercentage, eiwitaanzet, vetaanzet en de verhouding tussen eiwit- en 

vetaanzet anderzijds; 

- de verdeling van eiwit en vet over verschillende lichaamsdelen; 

- het effect van het gewicht van het dier op bovengenoemde parameters; 

- het effect van een voerbeperking tussen 20 en 45 kg op de relaties tussen 

energieopname en lichaamsgroei, eiwit-, vet en vleesaanzet tussen 45 en 85 kg. 

Eiwitbenutting 

In het eerste experiment (hoofdstuk 1 tot 3) werd de varkens een energiegift van 

2.5 of 3.0 keer de energie nodig voor onderhoud (energie nodig voor de basale 

levensprocessen) verstrekt. Bij elk van deze twee energieniveaus varieerde de 

gemiddelde eiwitgift van 130 tot 350 gram per dag. Bij een toenemende 

eiwitopname werd een lineaire toename in eiwitaanzet gevonden tot 108 en 128 

g/d bij energieniveaus van respectievelijk 2.5 en 3.0 keer onderhoud. De 

bijbehorende lysineaanzet steeg tot 8.0 en 9.5 g/d. De extra energiegift ter grootte 

van 3.0 MJ verteerbare energie aan de varkens die 3.0 keer onderhoud gevoerd 

werden had geen effect op de eiwitaanzet bij dieren die een geringe hoeveelheid 

voereiwit kregen. Echter, bij dieren met een grote dagelijkse eiwitgift werden de 

eiwit- en lysine aanzet duidelijk verhoogd door de extra energiegift. Deze resultaten 
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ondersteunen het concept van een eiwit- en een energie-afhankelijke fase in de 

aanzet van lichaamseiwit. Bij een lage opname van voereiwit wordt de eiwitaanzet 

beperkt door de eiwitopname en niet door de energieopname. In deze situatie leidt 

een extra energiegift niet tot een toename in eiwitaanzet, maar een extra eiwitgift 

wel. Bij een hoge eiwitopname ligt dit omgekeerd en resulteert juist een extra 

energiegift in een hogere aanzet van lichaamseiwit. 

De relaties tussen eiwitopname en eiwitaanzet en tussen lysineopname en 

lysineaanzet werden het best beschreven met een lineair-plateau model (zie 

figuur 1, model 1 en 2 in hoofdstuk 2). Het was niet mogelijk op basis van de 

resultaten eenduidig te bepalen of de lineaire toename geleidelijk dan wel abrupt 

overgaat in een plateau. Dit wordt deels veroorzaakt door de variatie tussen dieren. 

Wanneer voor een individueel dier deze overgang abrupt verloopt, kan voor een 

groep dieren een geleidelijke overgang gevonden worden door de variatie tussen 

dieren. De hoogte van het plateau in eiwit- of lysineaanzet werd bepaald door de 

hoeveelheid energie die de dieren ontvingen. De efficiëntie waarmee 

darmverteerbaar voereiwit en -lysine werden gebruikt voor de aanzet van 

lichaamseiwit was onafhankelijk van het energieniveau en bedroeg respectievelijk 

58% en 74%. 

Lysine/energie behoefte 

De benodigde verhouding tussen darmverteerbaar lysine en verteerbare energie 

in het voer voor maximale groei en voerbenutting was .57 g/MJ en voor maximale 

eiwitaanzet .62 g/MJ voor varkens van 20 tot 45 kg. Deze behoeften waren 

vergelijkbaar voor de twee energieniveaus. Het voerniveau had dus geen effect op 

de optimale lysine/energie verhouding. Deze werd bepaald met een lineair-plateau 

model. Het gebruik van een kwadratisch model leidde tot een veel hogere schatting 

van de lysine behoefte (figuur 1 en tabel 6 in hoofdstuk 1). Echter, in 

veevoedingsonderzoek worden beide en andere methoden gebruikt om de behoefte 

aan bepaalde nutriënten te bepalen, waarbij verschillende methoden tot 

verschillende behoeftenormen kunnen leiden. Bij de interpretatie van behoeftecijfers 

dient de methode van bepaling dan ook in de beoordeling betrokken te worden. 

Tenslotte is in hoofdstuk 1 een eenvoudig factorieel model afgeleid om de 

optimale lysine/energie verhouding onder verschillende omstandigheden te kunnen 

schatten. 
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Aminozurenpatroon van lichaamseiwit 

Het aminozurengehalte van lichaamseiwit van varkens van 45 kg, uitgedrukt in 

gram per 16 g stikstof (100 g eiwit) was voor lysine 6.64, voor methionine 2 . 11 , 

voor threonine 3.62 en voor het totaal aan essentiële aminozuren (exclusief 

tryptofaan) 42.8. Het gehalte aan essentiële aminozuren in het karkas en de 

organen was respectievelijk 41.8 en 48.4 g/16 g stikstof. Zowel in het karkas, de 

organen als in het gehele lichaam werd het gehalte van een aantal aminozuren 

beïnvloed door de eiwit- en of energieopname. Tevens was het aminozurenpatroon 

van lichaamseiwit aangezet in de proefperiode enigszins verschillend van het al 

aanwezige lichaamseiwit bij aanvang van de proefperiode (20 kg). Deze 

veranderingen in aminozurengehalten werden waarschijnlijk veroorzaakt door 

effecten van energie- en eiwitopname op de verhouding tussen spierweefsel en 

andere weefsels, met name bindweefsel, en op de relatieve gewichten van bloed 

en organen. Deze verschillende weefsels en organen vertonen namelijk behoorlijke 

verschillen in het aminozurenpatroon. Mogelijke consequenties van deze 

veranderingen in aminozurenpatroon voor de aminozurenbehoefte zijn 

bediscussieerd in hoofdstuk 3. 

Eiwit- en vetaanzet in relatie tot energieopname 

In het vervolg van deze studie werd de respons van eiwit- en vetaanzet op 

energieopname bij een adequate eiwit/energie verhouding bepaald bij groeiende 

varkens van 20 tot 45 kg en van 45 tot 85 kg. In beide gewichtstrajecten werd een 

lineaire relatie tussen energieopname enerzijds en eiwit- en vetaanzet anderzijds 

gevonden. Bij de varkens tussen 20 en 45 kg nam de eiwitaanzet toe van 75 tot 

172 g/d en de vetaanzet van 28 tot 193 g/d, bij een toename in energieniveau van 

1.7 keer onderhoud tot ad libitum (onbeperkt). Tussen 45 en 85 kg namen de eiwit-

en vetaanzet respectievelijk toe van 83 tot 187 g/d en van 46 tot 392 g/d. De 

verhouding tussen vet- en eiwitaanzet nam toe met een toename in energieopname, 

respectievelijk van .3 tot 1.1 en van .5 tot 2.2 bij varkens tussen 20 en 45 kg en 

tussen 45 en 85 kg. De lineaire toename in eiwitaanzet tot aan het hoogste 

energieniveau (ad libitum) betekent dat de genetisch bepaalde maximale dagelijkse 

eiwitaanzet niet bereikt werd. Op het hoogste voerniveau werd de eiwitaanzet 

kennelijk beperkt door de voeropnamecapaciteit van de dieren. 

De verdeling van het aangezette eiwit over verschillende lichaamsdelen was niet 

constant maar werd beïnvloed door de energieopname. Het deel van de dagelijks 
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aangezette hoeveelheid eiwit dat werd aangezet in vlees nam af van circa 61 % bij 

het laagste energieniveau tot circa 52% bij het hoogste energieniveau. Tegelijkertijd 

nam het aandeel eiwit dat werd aangezet in overige karkasdelen (m.n. huid, spek, 

kop, buik en poten) en organen toe met een toename van de energieopname. De 

toename in orgaangrootte en de toename van het aandeel eiwit in de organen bij 

hoge energieniveaus gaat waarschijnlijk gepaard met een enigszins hogere 

energiebehoefte voor onderhoud. Dit wordt veroorzaakt door een hogere 

orgaanactiviteit en de hoge turnover van orgaaneiwit in vergelijking met bijvoorbeeld 

spiereiwit. 

Lichaamssamenstelling in relatie tot energieopname 

De vleesaanzet tussen 45 en 85 kg nam kwadratisch toe van circa 230 tot 510 

g/d met een toename van de energieopname. De groei van overige karkasdelen en 

organen steeg echter nog sneller bij een toenemend energieniveau. Vooral de 

orgaangroei steeg opmerkelijk bij een toenemend voerniveau, zowel tussen 20 en 

45 kg als tussen 45 en 85 kg. Als een gevolg van deze effecten daalde het 

vleespercentage in het karkas van circa 63% bij dieren op de laagste voerniveaus 

tot 55% bij dieren op de hoogste voerniveaus. Deze daling werd in beide 

gewichtstrajecten waargenomen. De stijging in vleesaanzet en de daling in 

vleespercentage bij een toenemend voerniveau betekenen dat wanneer gestreefd 

wordt naar de hoogste dagelijkse vleesaanzet, dit ten koste gaat van het 

vleespercentage. Het is dus niet mogelijk bij een bepaalde energieopname de 

maximale vleesaanzet en een maximaal vleespercentage te realiseren. 

Zoals eerder vermeld, nam de verhouding tussen vet- en eiwitaanzet toe bij een 

stijgend energieniveau. Hierdoor daalde het eiwitgehalte en steeg het vetgehalte in 

het lichaam, beiden kwadratisch, bij een stijging in de energieopname. Dit betekent 

dat varkens vetter worden bij een hogere energieopname, zelfs wanneer hun 

genetisch bepaalde maximale eiwitaanzet niet bereikt wordt. De stijging in 

vetgehalte en de daling in vlees- en eiwitpercentage waren het grootst bij de drie 

laagste energieniveaus. De verschillen tussen varkens op de drie hoogste 

energieniveaus waren klein. Dit betekent dat er een behoorlijke voerbeperking tot 

een voerniveau beneden 75% van de ad libitum opname nodig is, om het 

vleespercentage te verhogen en het vetgehalte te verlagen. Zo'n drastische 

voerbeperking zal echter ook de groei en de vleesaanzet aanzienlijk verlagen. 
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Effecten van het lichaamsgewicht 

De dieren tussen 45 en 85 kg kregen meer voer omdat de voergift werd 

gebaseerd op het lichaamsgewicht. Deze dieren groeiden dan ook sneller dan de 

varkens tussen 20 en 45 kg. De stijging in groei en vleesaanzet per eenheid 

energieopname was echter kleiner bij de zware dieren. Tussen 20 en 45 kg namen 

de dagelijkse groei en vleesaanzet toe met respectievelijk 43.6 and 12.5 g/MJ 

verteerbare energie en tussen 45 en 85 kg met respectievelijk 34.2 en 9.6 g/MJ. 

Wanneer de dieren vergeleken werden bij dezelfde hoeveelheid voer boven 

onderhoud, dus beschikbaar voor lichaamsgroei, bleken de varkens tussen 20 en 

45 kg 108 g/d sneller te groeien. De vleesaanzet van deze varkens was echter 

slechts 30 g/d hoger (statistisch niet significant). Het vleespercentage in het karkas 

van de varkens van 85 kg was 3-4% lager dan van de varkens van 45 kg. Dit kon 

grotendeels verklaard worden door de hogere voeropname van de zwaardere 

varkens. Bij dezelfde hoeveelheid energie beschikbaar voor lichaamsgroei was het 

vleespercentage slechts 1 % lager bij varkens van 85 kg. 

Zoals eerder vermeld stegen de dagelijkse eiwit- en vetaanzet lineair met de 

stijgende energieopname. Voor de varkens tussen 20 en 45 kg was deze stijging 

voor respectievelijk eiwit- en vetaanzet 5.8 en 10.5 g/MJ verteerbare 

energieopname en voor dieren tussen 45 en 85 kg respectievelijk 3.8 en 13.7 

g/MJ. Bij een stijgend gewicht van de varkens daalde dus de toename in 

eiwitaanzet per MJ extra energie. Bij een gelijke hoeveelheid voer voor produktie 

was de eiwitaanzet 19 g/d hoger en de vetaanzet 26 g/d lager bij de varkens tussen 

20 en 45 kg, vergeleken met de varkens tussen 45 en 85 kg. Dit betekent dat bij 

een constante hoeveelheid produktievoer, de verhouding tussen vet- en eiwitaanzet 

en het vetgehalte stijgen bij toenemend gewicht van de dieren. Deze stijging is 

groter bij hoge voerniveaus dan bij lage voerniveaus. Bij de hoogste voerniveaus 

was de verhouding tussen vet- en eiwitaanzet van 45 tot 85 kg twee keer zo groot 

als tussen 20 en 45 kg. Door deze effecten daalt de efficiëntie van de omzetting 

van voer in lichaamsweefsel of in vlees bij een toenemend lichaamsgewicht. 

Anderzijds stijgt de energetische efficiëntie (k f) van de aanzet van 

lichaamsweefsels bij een toenemend gewicht, door de toename in vetaanzet. 

Effecten van een voerbeperking in een eerder groeistadium 

De varkens waarvan de proefperiode liep van 45 tot 85 kg, waren van 20 tot 45 

kg gevoerd op een laag voerniveau (2.2 keer onderhoud) of een hoog voerniveau 
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(3.7 keer onderhoud). Op 45 kg werden de varkens van deze twee groepen 

verdeeld over zes verschillende energieniveaus. De dieren die tot 45 kg het lage 

energieniveau kregen groeiden daarna, van 45 tot 85 kg gemiddeld 140 g/d sneller 

dan de varkens die tot 45 kg een hoog energieniveau kregen. Een groot deel van 

deze extra (compensatoire) groei werd echter veroorzaakt door een toename in 

gewicht en grootte van de organen en in inhoud van het maagdarmkanaal. Er werd 

geen significant hogere vleesaanzet gevonden bij dieren die tot 45 kg op het lage 

voerniveau gehouden werden. Ook in de totale dagelijkse eiwit- en vetaanzet tussen 

45 en 85 kg werden geen aantoonbare verschillen gevonden tussen dieren van de 

twee energieniveaus tot 45 kg. Slechts de dagelijkse eiwitaanzet in de organen was 

duidelijk hoger bij de varkens die tot 45 kg het lage voerniveau kregen. De 

verschillen in lichaamsgroei, orgaangroei en eiwitaanzet in de organen tussen 45 en 

85 kg, ten gevolge van het voerniveau tot 45 kg, werden groter bij een toenemend 

voerniveau tussen 45 en 85 kg. Dit weerspiegelt de toename in metabolische 

activiteit van de organen bij dieren die tot 45 kg een laag voerniveau kregen en 

vanaf 45 kg een hoog voerniveau. 

Er waren geen aanwijzingen dat de eiwit- en vetaanzet in het karkas tussen 45 

en 85 kg beïnvloed werden door het voerniveau tot 45 kg. Toch was op 85 kg het 

vleespercentage hoger en het vetgehalte lager bij de dieren die tot 45 kg het lage 

voerniveau kregen, in vergelijking tot de dieren van het hoge voerniveau. Deze 

verschillen waren echter al aanwezig op 45 kg ten gevolge van de voerbeperking 

tussen 20 en 45 kg en waren niet het gevolg van een compensatoire aanzet tussen 

45 en 85 kg. 

Tenslotte werd bekeken of bij een gelijke gemiddelde energieopname tussen 20 

en 85 kg, het uitmaakte of dieren eerst (van 20 tot 45 kg) een hoog en daarna (van 

45 tot 85 kg) een laag voerniveau kregen, dan wel eerst een laag en daarna een 

hoog voerniveau. De verschillen tussen deze twee voerstrategieën bleken gering. 

De varkens die eerst een laag voerniveau en daarna een hoog voerniveau kregen 

groeiden gemiddeld van 20 tot 85 kg iets sneller maar hadden op 85 kg een iets 

lager vleespercentage dan dieren die eerst een hoog en daarna een laag voerniveau 

kregen. Er waren geen aantoonbare verschillen tussen deze dieren in snelheid en 

efficiëntie van de vleesaanzet. 
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Consequenties voor het definiëren van een voerstrategie voor varkens met een hoge 

genetische aanleg voor vleesaanzet 

Er is weinig of geen bewijs, noch in deze studie, noch in de literatuur, dat een 

voerbeperking gedurende een deel van het groeitraject gunstig is vanwege 

compensatoire groei in een latere periode. In iedere fase van het groeitraject dienen 

varkens een adequate voeding te ontvangen. Er mag niet vanuit gegaan worden dat 

de dieren later wel compenseren voor eerdere deficiënties in hun voeding. 

De optimale verhouding tussen eiwit (of lysine) en energie in het voer wordt 

slechts in geringe mate beïnvloed door het voerniveau bij varkens die hun genetisch 

bepaalde maximale dagelijkse eiwitaanzet nog niet bereikt hebben. Een hogere 

verhouding tussen vet- en eiwitaanzet, bij een toenemend lichaamsgewicht of als 

gevolg van verschillen door sexe of genetische aanleg, leidt zeer waarschijnlijk tot 

een aanzienlijke daling in de optimale eiwit/energie verhouding in het voer. Een 

gedegen kennis van de genetische capaciteit voor eiwitaanzet van een varken is 

derhalve onmisbaar om een adequate voerstrategie te kunnen definiëren. 

Bij varkens zoals gebruikt in deze studie wordt het effect van een voerbeperking 

op de gemiddelde groei in het hele gewichtstraject en op de lichaamssamenstelling 

bij slachten meer bepaald door de gehanteerde voerniveaus dan door de periode 

waarin de dieren beperkt worden. Slechts een sterke voerbeperking zal een duidelijk 

verbetering van de lichaamssamenstelling (meer vlees, minder vet) tot gevolg 

hebben. Zo'n beperking leidt dan tevens tot een flinke afname in groei en 

eiwitaanzet. 

Zowel dierfactoren als de keuze van criteria die geoptimaliseerd moeten worden 

(bijv. groeisnelheid, voederconversieof vleespercentage), bepalen de optimale eiwit-

en energiegift. Computermodellen die de groei van varkens onder verschillende 

omstandigheden simuleren zullen onmisbaar worden om deze verschillende 

aspecten in rekening te brengen. Met behulp van zo'n model kunnen optimale 

voerstrategieën berekend worden, nadat gewenste of acceptabele combinaties van 

doelvariabelen zijn gedefinieerd. Uiteraard dient de respons van een dier op de 

opname van nutriënten op een goede manier in een model weergegeven te worden. 

Een correcte weergave van de effecten van energieopname en lichaamsgewicht op 

vet- en eiwitaanzet verdient prioriteit bij die simulatiemodellen die er ten onrechte 

vanuit gaan dat de verhouding tussen vet- en eiwitaanzet niet beïnvloed wordt door 

de energieopname. 
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