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STELLINGEN 

1. De efficientie van de energiestofwisseling verandert niet noemenswaardig tijdens 
zwangerschap. 
Dit proefschrift. 

2. Door de grote verschillen tussen vrouwen in extra energiebehoefte tijdens 
zwangerschap en lactatie hebben algemene aanbevelingen voor extra energie-
inneming weinig praktische waarde. 
Dit proefschrift. 

3. Om te voorkomen dat in net Iichaamsvetweefsel opgehoopte omgevings-
contaminanten vrijkomen en in de moedermelk belanden, verdient het aanbeveling 
tijdens lactatie niet af te slanken. 

4. Door implantatie van een bevruchte eicel in combinatie met hormoontherapie 
kunnen vrouwen ook na de menopauze kinderen krijgen (Saner, Paulson en Lobo. 
Lancet 1993; 341: 321-323). Deze ontwikkeling is niet in het belang van de 
kinderen. 

5. In obese vrouwen is het thermisch effect van de maaltijd positief gerelateerd aan 
de hoeveelheid visceraal vet. 
Leenen, van der Kooy, e.a. American Journal of Physiology: Endocrinology & 
Metabolism 1992; 263 (26): E913-E919. 

6. The progress of science requires more than new data; it needs novel frameworks 
and contexts. 
Gould. The flamingo's smile. Reflections in natural history. W. W. Norton & Company, 
Inc. New York 1985:138. 

7. In de stad is de fiets een sneller vervoermiddel dan de auto of het openbaar 
vervoer. 
De Volkskrant, 17 mei 1993. 

8. Bij gebruik van de 'shuffle'-functie van een CD-speler wordt de artistieke keuze van 
de kunstenaar veronachtzaamd. 

9. Een iets geringere consumptie van vlees en zuivelprodukten en een grotere vraag 
naar biologisch geproduceerd voedsel kunnen ervoor zorgen dat de milieuschade 
door intensieve landbouw vermindert. 
Alders. De Volkskrant, 10 mei 1993. 

10. Voor een goed begrip van 'verantwoorde' televisieprogramma's is grondige kennis 
van 'pulp' programma's tegenwoordig een vereiste. 

11. In het land van melk, boter en kaas staan waarheden als koeien in hoog aanzien. 
Toch zijn er ook waarheden als lama's, als tijgers, ja, als eenhoorns en basilisken. 
Mulisch. Paniek der onschuld. De Bezige Bij, Amsterdam 1979:137. 

Stellingen behorend bij het proefschrift The efficiency of energy metabolism during pregnancy 
and lactation in well-nourished Dutch women' van Caroline Spaaij. Wageningen, 29 juni 
1993. 
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ABSTRACT 

The efficiency of energy metabolism 

during pregnancy and lactation 

in well-nourished Dutch women 

Thesis by Caroline Spaed), 

Department of Human Nutrition, 

Wageningen Agricultural University, 

Wageningen, the Netherlands, 

29 June 1993. 

Pregnancy and lactation involve extra energy needs. As extra energy intakes over 

pregnancy and lactation are limited, and energy savings by reduced physical activity are 

assumed to be restricted, it has been postulated that during pregnancy and lactation, 

energy expenditure is further reduced by improved efficiency of energy metabolism. Such 

improved metabolic efficiency could be reflected in reduced diet-induced thermogenesis, 

and increased work efficiency. This hypothesis was addressed in a longitudinal study, 

including pre-pregnant baseline measurements, measurements in each trimester of 

pregnancy and measurements during lactation at 2 months post partum. No changes were 

observed in diet-induced thermogenesis or work efficiency during pregnancy (Chapters 

2 and 3, respectively) and lactation (Chapter 5). The power of the study was sufficient 

to detect changes of physiologically importance in both parameters. As no metabolic 

adaptations appear to take place, we reassessed the magnitude of the imbalance between 

energy inputs and outputs during pregnancy and lactation. Pronounced underestimation 

of the energy savings by reduced physical activity might be the major cause of this 

imbalance (Chapter 4). Large differences in the changes in energy intake and in physical 

activity are observed between subjects. This high between-subject variability implies that 

energy intake recommendations based on group averages may have only limited value 

for individual women. 
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Chapter 1 

INTRODUCTION 

Human pregnancy and lactation impose large physiological stresses on the maternal 

body. Amongst the main nutritional interests are the energy requirements during 

pregnancy and lactation. Positive energy balances are needed to establish adequate 

weight gain of both mother and fetus during pregnancy and adequate breast milk 

production during lactation. Good understanding and quantification of energy costs and 

possible energy savings during pregnancy and lactation are needed to formulate 

recommendations for dietary energy intake throughout the reproductive cycle. 

Pregnancy 

To achieve an optimal outcome of pregnancy, nutrient and energy intakes should meet 

maternal and fetal requirements. The use of maternal weight gain during pregnancy as 

an indicator for maternal nutritional status and the progress of pregnancy has been 

subject to much investigation. The weight gain is positively related with birth weight1"4, 

so that the risk of having a low-birth-weight infant decreases if a higher maternal weight 

gain is achieved. However, as weight gain is also positively associated with weight 

retention after delivery5"8, excessive weight gains over pregnancy should be avoided to 

prevent the onset of obesity. High weight gain is furthermore associated with toxemia9"11, 

but in this relationship, toxemia is probably rather the cause than the effect. Both low 

and high maternal weight gains are associated with increased neonatal mortality12. 

Therefore, monitoring weight gain over pregnancy is considered important for the 

evaluation of the progress of pregnancy. 

During the last 10-15 years, much attention has been payed to the role of pre-

pregnant body mass index in the relationship between maternal weight gain and fetal 

growth: in underweight women, fetal growth appears to be strongly related with maternal 

weight gain, whereas this relationship is weak or even absent in the very obese4,13"15. 

Therefore, recommended weight gain during pregnancy should be highest in thin women, 

whereas in the obese, low weight gains apparently do not affect pregnancy outcome. 



CHAPTER 1 

Weight gain during pregnancy is made up of the increased weight of fetus, placenta, 

amniotic fluid, uterus, breasts, blood, maternal fat stores, and extracellular extravascular 

fluid. The energy cost involved with this tissue gain consists of the energy cost of fat and 

protein deposition, the energy content (i.e. protein and fat content) of these tissues, and 

the energy needed for maintaining these tissues. In general, no allowance is made for the 

increased energy cost of moving a heavier body mass, assuming that this expenditure is 

compensated by a reduction of physical activity. 

The most valuable estimates of the energy costs of pregnancy are obtained with 

longitudinal study designs, preferably those that include measurements before conception. 

From 1987 onwards, several such longitudinal studies have been published16"24. There are 

pronounced differences between the estimates of the energy costs of human pregnancy 

in these studies (Table 1). 

To cope with the energy costs of pregnancy, women can either increase their energy 

intake or reduce their energy expenditure. In all the longitudinal studies16'17'19,20'22,25"27 

except one18, the observed changes in energy intake over pregnancy appeared to be 

insufficient to meet the energy costs of pregnancy (Table 1). This indicates that 

substantial energy savings must occur during human pregnancy. 

One of the mechanisms to save energy is by reducing the amount and pace of physical 

activity. Various investigators have reported that pregnant women reduce the pace or 

intensity of activities28"30. Weight gain during pregnancy will cause an increase of the net 

cost of weight-bearing activity over pregnancy, which might be (partly) compensated by 

reducing walking pace. Nagy and King observed a 11% increase in the net cost of self-

paced walking, with a 4% reduction of walking pace28, whereas in a study by van Raaij 

et a/29 a 25% reduction of self-selected pace was observed in combination with a slight 

decrease of the net cost of the activity. The potential for energy savings over pregnancy 

by reduced physical activity appears to be limited. Using an activity-diary technique, 

estimates of the savings by Scottish16, Gambian19 and Dutch31 women were respectively 

109, 75 and 76 MJ. Although the latter figures must be treated as crude estimates, 

increased energy intake plus energy savings by reduced physical activity seem to be 

insufficient to meet all energy costs of pregnancy. 

It has therefore been postulated that improved efficiency of energy metabolism may 

be involved in the conservation of energy by reducing energy expenditure. Such 

adaptation could be reflected in a reduction of diet-induced thermogenesis. So far, only 

10 



INTRODUCTION 

TABLE 1 Energy cost of pregnancy and cumulative increase in energy intake over 

pregnancy; estimates from longitudinal studies. 

Country"* N Energy costs (MJ) * Extra energy intake (MJ) 

The Gambia19 

The Gambia19 

The Gambia23 

The Philippines20 

Thailand18 

Scotland16 

The Netherlands17 

Scotland25 

England22 

Sweden21 

Australia26 

Canada27 

23 * 

29* 

21 

40 

44 

88 

57 

162 

12 

22 

49 

16 

-49 

115 

144 

181 

208 

281 

286 

289 

293 

578 

-
. 

-123 

40 

0 

238 

88 

22 

149 

203 

13 

28 

* Estimated as the sum of the cumulative increase of maintenance costs over pregnancy, the energy cost of the gain in maternal 

fat stores (46 MJ/kg fat), plus the energy cost of remaining fat and protein deposition (42-49 MJ, dependent of birth weight of 

the baby). 

t Women receiving no energy supplement. 

t Energy-supplemented women. 

one longitudinal study on a small group of women has been published, suggesting that 

the thermic effect of a meal is reduced by almost 30% in mid-pregnancy32. Improved 

metabolic efficiency might also result in a higher work efficiency. Changes in work 

efficiency over pregnancy could be evaluated as the net energy cost (energy cost minus 

basal or resting metabolic rate) of an exercise on which weight gain has no impact; 

standardized cycling exercise is generally assumed to meet this condition. Previous 

studies have shown that the net energy cost of cycling exercise are unchanged or even 

11 



CHAPTER 1 

slightly reduced during pregnancy33"38. However, none of these studies evaluated whether 

the net costs of the exercise were truly independent of weight gain. 

The study presented in this thesis was designed to investigate changes in diet-induced 

thermogenesis and work efficiency in human pregnancy, against the background of the 

energy balance of pregnancy of the subjects studied, characterized by their energy cost 

of pregnancy and their changes in energy intake and physical activity over pregnancy. In 

a subgroup of women respiration-chamber measurements were also carried out, to 

estimate 24-hour energy expenditure and the apparent digestibility and metabolizability 

of dietary energy. This combination of measurements provided a unique oppertunity to 

evaluate changes in energy expenditure over pregnancy. 

Lactation 

Compared with the energy cost of pregnancy, the energy cost of human lactation appear 

to be easier to calculate: extra energy needs during lactation depend solely on the 

volume and energy content of breast milk produced and on the energetic efficiency of 

milk production. WHO estimates the energy cost of human lactation to be on average 

3.1 MJ/d, or about 2.6 times the average energy cost during pregnancy39. During 

lactation, energy intake is clearly elevated above the early-pregnant or post-lactating 

situation40"42. However, extra energy intakes appear to be insufficient to meet all the cost 

of lactation4043. Body fat may also serve as an energy source during lactation. A tendency 

towards mobilization of body fat is observed in lactating women, as fat cells in the 

femoral region show a higher basal lipolysis and a lower lipoprotein lipase activity 

compared to non-pregnant non-lactating women and pregnant women44. In most40'41'43, 

but not all42 longitudinal studies body fat appears to be mobilized during lactation. 

Energy savings might furthermore be established by reduced physical activity. Such 

reduction has been observed with the activity-diary technique40'42, and also in a study 

combining doubly-labelled water estimates of total daily energy expenditure with basal 

metabolic rate measurements42. 

For the lactating Dutch women studied previously in our department41, extra energy 

intakes, fat mobilization and reduced physical activity seemed to be insufficient to meet 

the energy cost of lactation. Additional reductions of energy expenditure seem to be 

required to meet all the costs involved. Therefore, it has been postulated that metabolic 

12 



INTRODUCTION 

adaptations occur during lactation, resulting in a reduction of diet-induced thermo-

genesis45 and increased work efficiency. This hypothesis is addressed in this thesis. 

Outline of the thesis 

This thesis presents the results of a large longitudinal study including pre-pregnant 

baseline measurements, in which changes during pregnancy and early lactation in the 

thermic effect of a meal and work efficiency were investigated. The impact of pregnancy 

on the thermic effect of a standard meal is described in Chapter 2. Changes during 

pregnancy in work efficiency are discussed in Chapter 3. In this chapter, changes during 

pregnancy in the net cost of cycling exercise and in delta work efficiency are presented, 

and attention is payed to the impact of the weight gain during pregnancy on these costs. 

Furthermore, pregnancy-induced changes in the recovery cost after exercise and in heart 

rate during and immediately after cycling are discussed. A reassessment of the extra 

energy needs during pregnancy is given in Chapter 4. For this purpose, the results 

presented in Chapters 2 and 3 are combined with the measurements carried out in the 

respiration chamber46 and with estimated changes in energy intake and physical activity. 

The effect of lactation on metabolic efficiency is discussed in Chapter 5. Finally, the 

overall conclusions and research suggestions are given in Chapter 6. 

References 

1. Davis CH. Weight in pregnancy; its value as a routine test. Am J Obstet Gynecol 

1923;6:575-81. 

2. Singer JE, Westphal M, Niswander K. Relationship of weight gain during pregnancy 

to birth weight and infant growth and development in the first year of life: a report 

from the Collaborative Study of Cerebral Palsy. Obstet Gynecol 1968;31:417-23. 

3. Peckham CH, Christianson RE. The relationship between prepregnancy weight and 

certain obstetric factors. Am J Obstet Gynecol 1971;111:1-7. 

4. Abrams BF, Laros RK. Prepregnancy weight, weight gain, and birth weight. Am J 

Obstet Gynecol 1986;154:503-9. 

5. Abitbol MM. Weight gain in pregnancy. Am J Obstet Gynecol 1969;104:140-57. 

13 



CHAPTER 1 

6. Greene GW, Smiciklas-Wright H, Scholl TO, Karp RJ. Postpartum weight change: 

how much of the weight gained in pregnancy will be lost after delivery? Obstet 

Gynecol 1988;71:701-7. 

7. Ohlin A, Rossner S. Maternal body weight development after pregnancy. Int J 

Obesity 1990;14:159-173. 

8. Parham ES, Astrom MF, King SH. The association of pregnancy weight gain with 

the mother's postpartum weight. J Am Diet Assoc 1990;90:550-4. 

9. Tompkins WT, Wiehl DG, Mitchell RM. The underweight patient as an increased 

obstetric hazard. Am J Obstet Gynecol 1955;69:114-23. 

10. Thomson AM, Billewicz WZ. Clinical significance of weight trends during 

pregnancy. Br Med J 1957;1:243-7. 

11. Shepard MJ, Hellenbrand KG, Bracken MB. Proportional weight gain and 

complications during pregnancy, labor and delivery in healthy women of normal 

prepregnant stature. Am J Obstet Gynecol 1986;155:947-54. 

12. Naeye RL. Weight gain and outcome of pregnancy. Am J Obstet Gynecol 

1979;135:3-9. 

13. Frentzen BH, Dimperio DL, Cruz AC. Maternal weight gain: effect on infant birth 

weight among overweight and average-weight low-income women. Am J Obstet 

Gynecol 1988;159:1114-7. 

14. Mitchell MC, Lerner E. Weight gain and pregnancy outcome in underweight and 

normal weight women. J Am Diet Assoc 1987;89:634-8. 

15. Winikoff B, Debrovner CH. Anthropometric determinants of birth weight. Obstet 

Gynecol 1981;58:678-84. 

16. Durnin JVGA, McKillop FM, Grant S, Fitzgerald G. Energy requirements of 

pregnancy in Scotland. Lancet 1987;ii:897-900. 

17. van Raaij JMA, Schonk CM, Vermaat-Miedema SH, Peek MEM, Hautvast JGAJ. 

Energy requirements of pregnancy in the Netherlands. Lancet 1987;ii:953-5. 

18. Thongprasert K, Tanphaichitre V, Valyasevi A, Kittigool J, Durnin JVGA. Energy 

requirements of pregnancy in rural Thailand. Lancet 1987;ii:1010-2. 

19. Lawrence M, Lawrence F, Coward WA, Cole TJ, Whitehead RG. Energy 

requirements of pregnancy in the Gambia. Lancet 1987;ii: 1072-5. 

20. Tuazon MAG, van Raaij JMA, Hautvast JGAJ, Barba CVC. Energy requirements 

of pregnancy in the Philippines. Lancet 1987;ii: 1129-30. 

14 



INTRODUCTION 

21. Forsum E, Sadurskis A, Wager J. Resting metabolic rate and body composition of 

healthy Swedish women during pregnancy. Am J Clin Nutr 1988;47:942-7. 

22. Goldberg GR, Prentice AM, Coward WA, Davies HL, Murgatroyd PR, Wensing C, 

Black AE, Ashford J, Sawyer M. Longitudinal assessment of energy expenditure in 

pregnancy by the doubly-labelled water method. Am J Clin Nutr, in press. 

23. Poppitt SD, Prentice AM, Jequier E, Schutz Y, Whitehead RG. Evidence of energy 

sparing in Gambian women during pregnancy: a longitudinal study using whole-body 

calorimetry. Am J Clin Nutr, in press. 

24. Prentice AM, Whitehead RG. The energetics of human reproduction. Symp Zool 

Soc London 1987;57:275-304. 

25. Durnin JVGA. Energy requirements of pregnancy. Acta Paediatr Scand Suppl 

1991;373:33-42. 

26. Truswell AS, Ash S, Allen JR. Energy intake during pregnancy. Lancet 1988;i:49. 

27. Dibblee L, Graham TE. A longitudinal study of changes in aerobic fitness, body 

composition, and energy intake in primigravid patients. Am J Obstet Gynecol 

1983;147:908-14. 

28. Nagy LE, King JC. Energy expenditure of pregnant women at rest or walking self-

paced. Am J Clin Nutr 1983;38:369-76. 

29. van Raaij JMA, Schonk CM, Vermaat-Miedema SH, Peek MEM, Hautvast JGAJ. 

Energy cost of walking at a fixed pace and self-paced before, during and after 

pregnancy. Am J Clin Nutr 1990;51:158-61. 

30. Banerjee B, Khew KS, Saha N. A comparative study of energy expenditure in some 

common daily activities of non-pregnant and pregnant Chinese, Malay and Indian 

women. J Obstet Gynecol Br Commonw 1971;78:113-6. 

31. van Raaij JMA, Schonk CM, Vermaat-Miedema SH, Peek MEM, Hautvast JGAJ. 

Energy cost of physical activity throughout pregnancy and the first year postpartum 

in Dutch women with sedentary lifestyles. Am J Clin Nutr 1990;52;234-9. 

32. Illingworth PJ, Jung RT, Howie PW, Isles TE. Reduction in postprandial energy 

expenditure during pregnancy. Br Med J 1987;294:1573-6. 

33. Ueland K, Novy MJ, Metcalfe J. Cardiorespiratory responses to pregnancy and 

exercise in normal women and patients with heart disease. Am J Obstet Gynecol 

1973;115:4-10. 

15 



CHAPTER 1 

34. Knuttgen HG, Emerson K. Physiological response to pregnancy at rest and during 

exercise. J Appl Physiol 1974;36:549-53. 

35. Blackburn MW, Calloway DH. Energy expenditure of pregnant adolescents. 

J Am Dietet Assoc 1974;65:24-30. 

36. Blackburn MW, Calloway DH. Basal metabolic rate and work energy expenditure 

of mature, pregnant women. J Am Dietet Assoc 1976;69:24-28. 

37. Lehmann V, Regnat K. Untersuchung zur Korperlichen Belastungsfahigkeit 

schwangeren Frauen. Der EinfluB standardisierter Arbeit auf Herzkreislaufsystem, 

Ventilation, Gasaustausch, Kohlenhydratstoffwechsel und Saure-Basen-Haushalt. Z 

Geburtsh Perinat 1976;180:279-89. 

87. Edwards MJ, Metcalfe J, Dunham MJ, Paul MS. Accelerated respiratory response 

to moderate exercise in late pregnancy. Resp Physiol 1981;45:229-41. 

39. World Health Organization. Energy and protein requirements. Chapter 6. Estimates 

of energy and protein requirements of adults and children (WHO Technical Reports 

Series 724) Geneva: WHO, 1985:84-5. 

40. Butte NF, Garza C, Stuff JE, Smith EO, Nichols BL. Effect of maternal diet and 

body composition on lactational performance. Am J Clin Nutr 1984;39:296-306. 

41. van Raaij JMA, Schonk CM, Vermaat-Miedema SH, Peek MEM, Hautvast JGAJ. 

Energy cost of lactation, and energy balances of well-nourished Dutch lactating 

women: reappraisal of the extra energy requirements of lactation. Am J Clin Nutr 

1991;53:612-9. 

42. Goldberg GR, Prentice AM, Coward WA, Davies HL, Murgatroyd PR, Sawyer MB, 

Ashford J, Black AE. Longitudinal assessment of the components of energy balance 

in well-nourished lactating women. Am J Clin Nutr 1991;54:788-98. 

43. Guillermo-Tuazon MA, Barba C, van Raaij JMA, Hautvast JGAJ. Energy intake, 

energy expenditure, and body composition of poor rural Philippine women 

throughout the first 6 mo of lactation. Am J Clin Nutr 1992;56:874-80. 

44. Rebuffe-Scrive M, Enk L, Crona N, Lonnroth P, Abrahamsson L, Smith U, 

Bjorntorp P. Fat cell metabolism in different regions in women. J Clin Invest 

1985;75:1973-6. 

45. Illingworth PJ, Jung RT, Howie PW, Leslie P, Isles TE. Diminution in energy 

expenditure during lactation. Br Med J 1986;292:437-41. 

46. de Groot LCPGM, Boekholt HA, Spaaij CJK, van Raaij JMA, Drijvers JJMM, van 

16 



INTRODUCTION 

der Heijden LJM, van der Heide D, Hautvast JGAJ. Energy balances of healthy 
Dutch women before and during pregnancy: no supportive evidence for metabolic 
adaptations in pregnancy. Submitted. 

17 



Chapter 2 

NO SUBSTANTIAL REDUCTION OF 
THE THERMIC EFFECT OF A MEAL DURING PREGNANCY ' 

Caroline J.K. Spaaij, Joop M.A. van Raaij, Lidwien J.M. van der Heijden, 

Frans J.M. Schouten, Jose J.M.M. Drijvers, Lisette C.P.G.M. de Groot, 

Harry A. Boekholt and Joseph G.AJ. Hautvast 

Abstract 

To study changes in the thermic effect of a meal (TEM) during pregnancy, 

metabolic rate was measured in the fasting state and during the first 180 min after 

consumption of a standardized testmeal in 27 women before, and in each trimester 

of pregnancy. Resting metabolic rate (RMR) showed a steady increase during 

pregnancy, values in wk 24 and 35 of pregnancy were significantly higher than the 

pre-pregnancy baseline (Tukey's studentized range test). The pattern of changes of 

postprandial metabolic rate (PPMR) was similar to that of RMR. Consequently, the 

TEM (PPMR minus RMR) did not change during pregnancy; mean TEM-values 

before and in wk 13, 24 and 35 of pregnancy were, respectively 117.3 (SD 19.4) 

kJ/180min, 116.4 (SD 23.7) kJ/180min, 111.6 (SD 24.4) kJ/min and 111.5 (SD 26.7) 

kJ/min. We consider changes of TEM less than 15% to be physiologically of little 

importance. If true changes in TEM during pregnancy are 15% or more, we would 

have had an chance of 90% to observe significant changes in TEM in this study, 

given the number of subjects and the methods used. Therefore, we conclude that 

no substantial reduction of TEM occurs during pregnancy. 

Accepted for publication in the British Journal of Nutrition 
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CHAPTER 2 

Introduction 

Longitudinal studies in various countries have shown that the energy costs of pregnancy 

are considerable1"5. In a previous study on the energy requirements of pregnancy, the 

question has been raised whether processes of metabolic adaptation, resulting in a 

lowering of metabolic rate, might occur during pregnancy2. Metabolic adaptation could 

be reflected in a reduction of the thermic effect of a meal. So far, one longitudinal study6 

and two cross-sectional studies7'8 have been published on this issue, but the results were 

inconsistent. 

In the present study we tried to investigate whether the thermic effect of the meal is 

reduced during pregnancy, using a longitudinal approach including baseline 

measurements which were carried out before the onset of pregnancy. The number of 

subjects in our study was calculated to be sufficient for detecting a 15% change in the 

thermic effect of the meal with a statistical power of 90%. 

Subjects and methods 

Study design 

Resting metabolic rate (RMR), postprandial metabolic rate (PPMR) and body weight 

(BWt) were measured in 27 healthy Dutch women before, and in wk 13, 24 and 35 of 

pregnancy. The thermic effect of a meal was calculated as PPMR minus RMR. Metabolic 

rate measurements (RMR and PPMR) were carried out twice in each measurement 

period at two non-consecutive days within one wk. Before pregnancy, 22 out of the 27 

women had a second measurement period (two more measurement days). Afterwards it 

appeared that half of the pre-pregnant measurement days fell in the preovulary and half 

in the postovulary phase of the menstrual cycle. 

Each measurement day was preceded by 3 d with standardized food intake. At a 

measurement day the woman arrived fasting by car at the metabolic unit between 07.00 

and 07.30 hours. BWt was measured after voiding. The woman was installed under a 

ventilated hood on a hospital bed. Data over the first 25 min were not used for analysis. 

After measurement of RMR (35 min), a liquid testmeal was consumed, followed by the 

PPMR measurement (180 min). Immediately after the PPMR measurement, urine was 

collected quantitatively. 
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THERMIC EFFECT OF A MEAL IN PREGNANCY 

Subjects 

For the recruitment of subjects, advertisements in local newspapers, and posters 

spread in public buildings were used. They were living in the town of Wageningen and 

surrounding areas and reflected middle-upper socioeconomic stratum. Their ethnic 

background was Caucasian. They were non-smokers. Participants were judged to be 

healthy by medical histories and urine analysis. All women gave their informed consent. 

The study was approved by the Ethical Committee of the Department of Human 

Nutrition of the Wageningen Agricultural University. 

TABLE 1 Subject characteristics (N=27). 

Mean ± SD 

Age (y) * 

Height (cm) 

Body weight (kg) * 

Body mass index (kg/m2) + 

Body fat % (wt/wt %) n 

Parity + § 

Length of gestation (wk) " 

Weight gain during pregnancy (kg) ' 

Placental weight (g) 

Baby birth weight (g) ** 

Baby length (cm) " t + 

Baby head circumference (cm) " +t 

29.9 

169 

62.8 

21.8 

28.7 

0.8 

40.0 

11.7 

657 

3517 

51.0 

36.6 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

3.8 

7 

8.5 

2.4 

5.2 

0.9 

1.3 

3.0 

114 

323 

5.1 

3.2 

At onset of present pregnancy. 

t Before present pregnancy. 

t Estimated with densitometry using under water weighing. 

§ Nulliparae: N= l l ; primiparae: N=13; multiparae: N=3. 

|| Length of gestation was derived from the first day of the woman's last reported menstrual period; classification according to 

Hytten9: 24 women "term" (259-293 d), 1 woman preterm (2S8 d), and 2 women postterm (296 and 299 d). 

1 Last recorded weight during pregnancy (1-7 d before delivery) minus pre-pregnant weight. 

** Sex baby: female N=13; male N=14. 

t t Number of days after delivery: mean 9 (SD 4) d. 
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Initially, 38 women participated in the study. We succeeded to collect data before and 

in every trimester of pregnancy from 28 women. One of these women developed 

gestational diabetes. This article is based on the results of the remaining 27 women. 

Some characteristics of these women are given in Table 1. Twenty-five infants were 

delivered normally and two by Caesarian section. 

Measurements of metabolic rate 

Ventilated hood device. Metabolic rate was measured by open-circuit indirect 

calorimetry using the ventilated hood technique. Two hoods were connected to one set 

of gas analyzers, so that two subjects could be measured simultaneously. A perspex hood 

(vol 30 L) with an air inlet on top and an air outlet at the right side, was placed over the 

head of the woman. Fresh filtered atmospheric air was drawn through the hood by 

negative pressure created by a pump downstream (Ocean SCL210, Dieren, the 

Netherlands). Airflow through the hood was maintained at 40 L/min by a control valve 

(Brooks 5837, Veenendaal, the Netherlands) and measured in the outlet airstream by a 

thermal mass flowmeter (Brooks 5812N, Veenendaal, the Netherlands). The mass 

flowmeter was calibrated at least once a year by the manufacturer. Flow readings from 

the mass flowmeter were directly converted to STPD conditions (standard temperature 

and pressure, dry air). A small and constant quantity of air (0.4 L/min) was continuously 

withdrawn by an airtight pump for 0 2 and C02 analysis. Before gas analysis the sample 

was passed through the drying agent CaCl2 (Merck 2387, Darmstadt, Germany). Through 

a system of computer driven valves (Biirkert 211A, Ingelfingen, Germany) either fresh 

filtered atmospheric air, or outlet air from the ventilated hood, or calibration gas was 

passed to the analyzers. Oxygen consumption and carbon dioxide production were 

calculated using the Haldane correction10. 

The zero and span point of the C02 analyzer (Analytical Development Company 

SS100, Hoddesdon, UK) were calibrated using standard gasses (for the zero point: 100% 

N2 and for the span point: gas mixture containing 0.6% C02). The zero level (0% 02) 

and the span point (20.95% 02) of the 0 2 analyzer (Servomex 1100A, Zoetermeer, The 

Netherlands) were calibrated with 100% N2 standard gas and fresh filtered atmospheric 

air, respectively. These calibrations were carried out before the measurement of resting 

metabolic rate; the span point of the 0 2 analyzer was recalibrated at least every 60 min. 

Simultaneously with metabolic rate measurements, subject's movements were recorded 
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as an index value by a load cell (Tokyo Sokki Kenkyujo TKA-200A, Tokyo, Japan) 

placed under one leg of the bed on which the woman lay during the measurement. 

Actual analyses were integrated over 2 min and printed over 2.5 min intervals. If both 

hoods were used simultaneously, one value per 5 min of 0 2 consumption (mL/min), C02 

production (mL/min), and body movement index, was printed for each subject. If high 

0 2 consumption and C02 production values appeared in combination with a high body 

movement index, these values were excluded. Missing values also occurred when the span 

point of the 0 2 analyzer was checked, or when the woman needed to visit the lavatory. 

Missing values were replaced by the mean of the 2 preceding and the 2 following values. 

Variability. Ethanol combustion tests were carried out at least once per month to 

detect systematic deviations in the ventilated hood system. In each test about 25 g of 

ethanol was combusted in about 2 h. Instead of the ventilated hood, an airtight 

combustion chamber was linked to air inlet and air outlet. The reproducibility of the 

system was determined by 6 alcohol combustion tests for each ventilated hood device, 

carried out on separate days within a period of 2 wk. Day-to-day coefficients of variation 

were 2.1% for 0 2 consumption, 1.9% for C02 production, 1.9% for respiratory quotient, 

and 1.9% for metabolic rate. These values agree very well with those presented by 

Bogardus et aln. 

Measurement of N-excretion. Subjects voided immediately after arriving at the 

laboratory. Urine was collected quantitatively 4 hours later, when the PPMR 

measurement had finished. Urine was weighed and 2 samples were taken which were 

frozen at -20 °C. In these urine samples the urea concentration was determined 

(Boehringer Mannheim BV 396346 kit, Almere, The Netherlands)12. Urea-nitrogen 

excretion was calculated by multiplication of urine weight with urea concentration. To 

obtain total nitrogen (N) excretion, the assumption was made that 85% of urinary N is 

excreted as urea13. 

Calculation of metabolic rate and non-protein respiratory quotient. Metabolic rate 

(MR, in kJ/min) and non-protein respiratory quotient (npRQ) were calculated from 0 2 

consumed (V02, mL/min), C02 produced (VC02, mL/min) and N-excretion (mg/min), 

using formulae given by J6quier10. Metabolic rate values were averaged to obtain one 

value per 5 min for each subject on each measurement day. These 5-min averages were 

used for further analyses. 

23 



CHAPTER 2 

Standardization of diet on days prior to measurements 

During the 3 days preceding metabolic rate measurements, the woman followed strict 

guidelines for her dietary intake. Guidelines reflected the individual energy requirement 

of each subject as estimated by a 5-d weighed food record, carried out about 2 wk before 

the first measurement day. Between periods, guidelines were only changed at the 

woman's request, so that within each period the prescribed energy intake followed the 

subject's habitual intake. The proportions of protein, carbohydrate and fat were 

standardized at respectively 15, 50 and 35 energy%. Maximally one alcoholic beverage 

per day was allowed, replacing an equivalent amount of energy from carbohydrates. The 

standardization of energy intake was done because short term over- or underfeeding14 

as well as the macronutrient composition of the diet on days prior to measurement days15 

might influence both resting metabolic rate and the thermic effect of a standard meal. 

Resting metabolic rate 

Resting metabolic rate (RMR) was measured after 12 hours fasting. On the day 

before a measurement day, the woman refrained from intensive physical activity. During 

the measurement the woman was lying in supine semi-recumbent position, in complete 

physical rest, but awake, watching non-stressing video films. 

Analysis of variance of measurements before and during pregnancy of 27 subjects with 

complete data, revealed that the within person day-to-day variation coefficient in RMR 

was 4.7%, which is within the normal range11'16'17. There was no systematic difference 

between the first and second day of measurement within the same week. 

To investigate whether resting metabolic rate (RMR) was measured under steady 

state conditions, the 35 min period during which RMR was measured was divided into 

7 periods of 5 min. Analysis of covariance with RMR as dependent variable and time as 

covariable revealed that there was no decrease in RMR throughout the 35 min of the 

measurement, and with Tukey's studentized range test it appeared that there were no 

differences between any pair of 5-min RMR values. Therefore we conclude that the 

duration of the period of rest preceding the RMR measurement (25 min) was sufficient 

for reaching the steady state. 

Postprandial metabolic rate and thermic effect of a meal 

Testmeal. The meal consisted of 375 g yoghurt-based liquid formula containing 1325 
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kJ (15 en% protein, 30 en% fat and 55 en% carbohydrate). The recipe was 581 g full-

cream yoghurt, 323 g unsweetened orange juice, 65 g white sugar, 13 g sunflower oil and 

18 g protein powder (Protifar* Nutricia Nederland BV, Zoetermeer, The Netherlands) 

per 1000 g. The macronutrient composition per 100 g was 20.5 g dry matter, 0.7 g ash, 

3.3 g protein (Kjeldahl method, nitrogen content was multiplied with 6.38 to obtain 

protein content), 3.0 g fat (Rose Gottlieb method) and 13.5 g carbohydrate (calculated 

by subtraction). Testmeals were prepared in bulk in three batches, and stored at -20°C. 

Postprandial metabolic rate (PPMR) was measured during the first 180 min following 

consumption of the testmeal. The conditions of measurement were exactly the same as 

during the RMR measurement, except for the postprandial state. The thermic effect of 

the meal (TEM) was calculated as PPMR minus RMR and expressed as kJ/min in time-

response curves, or as kJ/180 min if the cumulative TEM over 180 min is considered. 

The within person day-to-day variation coefficient of PPMR was 3.9%, which 

resembles the value observed for RMR. The within person day-to-day variation 

coefficient of TEM was 22.6%. There was no systematic difference between PPMR or 

TEM values of the first and second day of measurement within the same week. 

The duration and magnitude of the thermic effect of the meal increases with the 

energy content of the meal18, thus meal size and duration of the measurement should be 

well-balanced to each other. We limited the postprandial period to 180 min to avoid 

stress caused by prolonged measurement, which might occur especially in late pregnancy. 

We choose a relatively small testmeal to ensure that a 3-h postprandial period would 

cover the main part of the thermic effect of the meal. 

A side study in which 8 non-pregnant non-lactating (NPNL) women were measured 

at 3 non-consecutive days within a 2 wk period, following exactly the same procedures 

but now up to 300 min after the testmeal, revealed that 86% of the full TEM-response 

was covered during the first 180 min after consumption of the testmeal. The cumulative 

TEM over 300 min was 132 kJ (10% of the energy content of the testmeal); from 270 

and 300 min after the meal PPMR was only slightly above RMR level (mean difference 

0.14 (SEM 0.04) kJ/min). In late-pregnancy, some gastrointestinal responses to a meal 

are delayed19, suggesting that the TEM-response might be spread over a longer period, 

and that the first 180 min after the meal might cover a smaller part of the TEM-response 

than in the non-pregnant state. Therefore, in a second cross-sectional study, metabolic 

rate was measured in the fasting state and in the period from 270 to 300 min after the 
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meal, in 5 late-pregnant and 8 NPNL women at 3 non-consecutive days within a 2-wk 

period. No difference in TEM between 270 and 300 min after the meal was observed 

between late-pregnant women (mean 0.13 (SEM 0.08) kJ/min) and NPNL-women (mean 

0.13 (SEM 0.05) kJ/min). This result does not indicate a prolonged TEM-response in 

late-pregnancy. 

Statistics 

Data analysis was carried out using the programme provided by SAS (SAS Institute, 

Inc, Cary, NC). Data are expressed as mean ± SD, unless stated otherwise. The Shapiro 

and Wilk test were used to test whether data were a random sample from a normal 

distribution. Tukey's studentized range test (significance level a=0.05) was used to 

investigate whether significant changes during pregnancy had occurred. 

The statistical power (/?) to detect the physiologically important change between two 

periods (A), if this change truly exists, was determined by calculating tp ^ 

fp = { A y/N J sL } - ta, 

where s4 is the estimated within-subject standard deviation in the change of the 

parameter and N is the number of subjects. At an a of 0.05, and a sample size of 26 

(df =25), ta is 2.060 (two-tailed). The jS of tf is read from the one-tailed ^-distribution 

table (df =25). 

Results 

Resting metabolic rate and postprandial metabolic rate 

Resting metabolic rate (RMR) increased from before pregnancy to 13 wk gestation 

(Table 2), but this increase did not reach statistical significance (mean difference 0.18 

(SEM 0.05) kJ/min). In wk 24 of gestation RMR was significantly higher than in wk 13 

(mean difference 0.34 (SEM 0.08) kJ/min). This increase was similar to that from wk 24 

to wk 35 of gestation (mean difference 0.34 (SEM 0.07) kJ/min). 

The differences in postprandial metabolic rate PPMR (average value of 180 min) 

were very similar to the differences in RMR observed between the values before and 

at each trimester of pregnancy (Figure 1 and Table 2). There was a slight but non­

significant increase in PPMR from pre-pregnant levels to the first trimester of pregnancy 

(mean difference 0.18 (SEM 0.05) kJ/min). The increase from wk 13 to wk 24 of 
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TABLE 2 Resting metabolic rate (RMR), postprandial metabolic rate (PPMR) and 

thermic effect of a meal (TEM) before and during pregnancy in 27 women. 

Period RMR PPMR* TEM t 

Before pregnancy 

Pregnancy wk 13 

Pregnancy wk 24 

Pregnancy wk 35 

kJ/min 

3.76 ± 0.33 A* 

3.94 ± 0.42 A 

4.28 ± 0.51 B 

4.62 ± 0.51 c 

kJ/min 

4.41 ± 0.30 A 

4.58 ± 0.41 A 

4.90 ± 0.53 B 

5.24 ± 0.46 c 

kJ/180min 

117.3 ± 19.4 A 

116.4 ± 23.7 A 

111.6 ± 24.4 A 

111.5 ± 26.7 A 

Average metabolic rate during the first 180 min after the testmeal. 

t Cumulative increase of metabolic rate above RMR level during the first 180 min after the testmeal ({PPMR minus RMR} * 180). 

t Within each column, means with the same letter are not significantly different (Tukey's studentized range test). 

gestation was almost twice as large (mean 0.32 (SEM 0.08) kJ/min) and an increase of 

0.34 (SEM 0.07) kJ/min was found from wk 24 to wk 35. 

Thermic effect of a meal 

The time-response curves of TEM are given in Figure 2. There are only minor 

differences between the curves representing the pre-pregnant measurements and the 

measurements in wk 13 and 24 of gestation. In the third trimester of pregnancy, the first 

100 min after the meal TEM tended to be slightly decreased compared to pre-pregnant 

values, whereas from 100 to 180 min after the meal both curves followed almost the 

same pattern. However none of these differences reached statistical significance. The 

cumulative TEM over 180 min did not change significantly during pregnancy (Table 2): 

the change from before pregnancy to wk 13 of gestation was -0.9 (SEM 4.5) kJ/180min, 

the change from wk 13 to wk 24 of gestation was -4.9 (SEM 4.5) kJ/180min, and the 

change from wk 24 to wk 35 of gestation was -0.1 (SEM 6.0) kJ/180min. 
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FIGURE 1 Metabolic rate before and after consumption of the testmeal in 27 women, 

before pregnancy ( ), and in wk 13 ( ), in wk 24 

( — • — • — ), and in wk 35 ( ) of pregnancy. 

90 120 150 180 
time after meal (min) 

F I G U R E 2 Thermic effect of a meal (TEM) in 27 women, before pregnancy 

( ) , and in wk 13 ( ) , in wk 24 ( ), and in 

wk 35 ( ) of pregnancy. 
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Protein oxidation and non-protein respiratory quotient 

N-excretion during the RMR- and PPMR-measurements diminished during pregnancy. 

Mean values of N-excretion were: before pregnancy 10.38 (SD 2.22) mg/min, at 13 wk 

gestation 9.48 (SD 1.38) mg/min, at 24 wk gestation 9.13 (SD 2.22) mg/min, and at 35 

wk gestation 8.05 (SD 0.85) mg/min. The mean reduction of N-excretion from before 

pregnancy to wk 13 of gestation was 0.90 (SEM 0.45) mg/min and not significant 

(Tukey's standardized range test), but values at wk 24 and 35 of gestation were 

significantly below pre-pregnancy values: mean reductions were respectively 1.25 (SEM 

0.42) mg/min and 2.33 (SEM 0.54) mg/min. 

During the RMR-measurement non-protein respiratory quotient (npRQ) had a mean 

value of 0.88 before pregnancy as well as during pregnancy (Table 3). After consumption 

of the testmeal npRQ increased to a peak value at 60-90 min after the meal. Thereafter 

TABLE 3 Non-protein respiratory quotient (npRQ)* before and during pregnancy. 

Before During pregnancy 

pregnancy 

Wk 13 Wk 24 Wk 35 

Fasting state 0.88 ± 0.04 A t 0.88 ± 0.06 A 0.88 ± 0.05 A 0.87 ± 0.05 A 

Postprandial state 

0-30 min * 0.88 ± 0.05 A 0.89 + 0.06 A 0.90 ± 0.05 A 0.88 ± 0.05 A 

30-60 min 0.96 ± 0.04 A 0.97 ± 0.06 A 0.96 ± 0.05 A 0.92 ± 0.04 B 

60-90 min 0.97 ± 0.04 A 0.95 ± 0.05 A 0.95 ± 0.05 A 0.92 ± 0.04 B 

90-120 min 0.94 ± 0.04 A 0.93 ± 0.04 ** 0.91 ± 0.05 x 0.90 ± 0.04 c 

120-150 min 0.92 ± 0.04 A 0.91 ± 0.05 M 0.90 ± 0.04 B 0.90 ± 0.03 B 

150-180 min 0.89 ± 0.04 A 0.87 ± 0.05 A 0.87 ± 0.05 A 0.87 ± 0.04 A 

npRQ was calculated as the ratio of CC^-production and 02-consumption after correction for the amounts of CO2 and O2 

attributable to protein oxidation, 

t Within each row, means with the same letter are not significantly different (Tukey's studentized range test). 

t Time after consuming the testmeal. 
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npRQ decreased again. Non-protein RQ between 90 and 150 min after the meal was 

significantly reduced in wk 24 of gestation npRQ compared to the pre-pregnancy value: 

mean changes for the periods 90-120 min and 120-150 min after the meal were, 

respectively: -0.03 (SEM 0.01), and -0.03 (SEM 0.01). In wk 35 the peak value was even 

smaller, and values between 30 and 150 min after the meal were significantly below the 

pre-pregnant level: mean changes for the periods 30-60 min, 60-90 min, 90-120 min, and 

120-150 min after the meal were, respectively: -0.04 (SEM 0.01), -0.05 (SEM 0.01), -0.04 

(SEM 0.01), and -0.03 (SEM 0.01). 

Discussion 

The women in the present study were all healthy and well-nourished. Their weight gains 

during pregnancy and the birthweights of their children (Table 1) were as expected for 

western women eating without restriction1'2'9. The increase of RMR during pregnancy 

closely resembled the pattern observed in our previous study21. 

The macronutrient composition of our testmeal was representative for western 

countries, although the fat content was a bit lower than in the average Dutch diet (30 

instead of 40 energy%). During the 180 min postprandial measurement period we 

covered the main part (86%) of the full thermic effect of this testmeal (see subjects and 

methods section). It seems therefore appropriate to extrapolate the TEM-results to total 

daily diet-induced thermogenesis. Still, some caution is needed as gastrointestinal 

responses to a liquid meal might differ from responses to the normal mixed diet. 

Our results show that there is no change in the thermic effect of the meal (TEM) 

during pregnancy. Until now only one publication gives results on longitudinal changes 

in TEM during pregnancy6. In that study, TEM appeared to be reduced in the second 

(-28%), but not in the first (-1%) and third (-15%, NS) trimesters of pregnancy compared 

to post-lactational measurements. However, their study population was small (N=7) and 

maybe not representative, since RMR in wk 35 of gestation was only 7.9% higher than 

in the postlactational state, which is a small increase compared to the present study and 

to other longitudinal studies in well-nourished populations1'2*5. Two small cross-sectional 

studies have been published, in which TEM-values of pregnant women and non-pregnant 

control subjects were compared7'8. Nagy & King8 did not observe any difference (4 late-

pregnant, 6 early-pregnant and 6 non-pregnant women), but Contaldo et aL1 found a 
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significantly lower TEM (-35%) in 5 late-pregnant versus 5 non-pregnant women. 

Prentice et aL22 studied metabolic rate in 8 women before and during their pregnancies 

with a whole body calorimeter. From 24-h metabolic rate, basal metabolic rate, and 

metabolic rate during exercise, they derived the energy costs of diet-induced 

thermogenesis plus minor physical movements, and found this factor to be constant 

throughout pregnancy. 

The large within subject variation in TEM (22.6% in our study) might have caused 

the inconsistency of the previous studies6"8,22, which all described groups of only 4 to 8 

women. In the present study we were interested in a 15% reduction of TEM throughout 

pregnancy. With the mean pre-pregnancy energy intake of 9.6 (SEM 0.3) MJ/d in our 

women, such reduction would result in an energy saving of about 0.15 MJ/d. If a 

reduction in TEM of 15% really occurred, we in our study would have had a chance of 

90% to find a significant reduction. Our results therefore suggest that it is unlikely that 

physiologically significant changes in diet-induced thermogenesis occur during pregnancy. 

More research is needed to investigate if other processes of metabolic adaptation occur 

during pregnancy. 

The reduction of N-excretion during pregnancy indicates that protein oxidation is 

diminished. This was also found by De Benoist et al23 and Fitch & King24. The decrease 

of N-excretion might reflect the anabolic state of the body. On a daily basis, a reduction 

with on average 1.5 mg N/min could reflect accumulation of 13.5 g protein, which is 

equivalent to about 70 g lean tissue25. However, Hytten9 estimated total protein 

accumulation during pregnancy to be only 925 g, or on average about 3.5 g/d. Therefore, 

the reduction of N-excretion appears to be far too high to be explained by protein 

accumulation. Possibly, it also reflects a shift from protein oxidation towards oxidation 

of carbohydrates and fats. This could be a usefull adaptation to the increased energy 

needs during pregnancy, because the net ATP-yield of protein is lower than the net ATP-

yield of an energetically equivalent amount of carbohydrate or fat26. 

Fasting non-protein respiratory quotient (npRQ) was unchanged during pregnancy, 

suggesting that the proportion of oxidized carbohydrate to oxidized fat is unchanged in 

the fasting state. In contrast, a progressive reduction of postprandial npRQ was observed 

during pregnancy. This suggests that the postprandial increase in carbohydrate oxidation 

gets smaller when pregnancy advances: carbohydrates appear to be saved at the expense 

of fats. This fits with the findings of Williams et al21 that glucose uptake by adipose 
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tissue diminishes and plasma levels of free fatty acids and glycerol increase steadily in 

pregnancy. 
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NO CHANGES DURING PREGNANCY 
IN THE NET COST OF CYCLING EXERCISE, 

NOR IN DELTA WORK EFFICIENCY 

Caroline J.K. Spaaij, Joop M.A. van Raaij, 

Lisette C.P.G.M. de Groot, Lidwien J.M. van der Heijden, 

Harry A. Boekholt and Joseph G.A.J. Hautvast 

Abstract 

This study was carried out to investigate whether work efficiency 

improves during pregnancy. Resting metabolic rate (RMR), cycling 

metabolic rate (CMR) at workloads of 30, 45, 60 and 75 Watts, 

and post-cycling metabolic rate (PCMR) were measured in 26 

women before the onset of pregnancy and in wk 13, 24 and 35 of 

gestation. RMR, CMR and PCMR increased significantly and to 

a similar extent during pregnancy, so that the net energy costs of 

cycling activity (CMR minus RMR) and the net recovery costs 

after exercise (PCMR minus RMR) were unchanged. Delta work 

efficiency did not change during pregnancy, implying that changes 

in CMR during pregnancy were similar at all workloads. We 

conclude that during pregnancy no clear changes in work efficiency 

occur. 
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Introduction 

Hytten1 estimated the total energy costs of pregnancy, defined as protein and fat accumu­

lation in fetus and mother plus the increase of maintenance metabolism, to be 335 MJ. 

Longitudinal studies in various countries2"6 have confirmed that pregnancy involves 

considerable energy costs. The hypothesis has been raised that physiological and 

metabolic adaptations, resulting in a lowering of metabolic rate, might occur during preg­

nancy2. The present study was carried out to explore whether the energy costs of stand­

ardized physical activity change during pregnancy, and comparisons are made with values 

obtained in the same women before pregnancy. Cycling exercise was chosen to avoid 

confounding by gestational weight gain: work load during cycling exercise is assumed to 

be largely independent of body weight. 

Several studies have been published about pregnancy-induced changes in metabolic 

rate or oxygen consumption during standardized cycle ergometer exercise7"14. In previous 

longitudinal studies, measurements during pregnancy were compared with post partum 

values, including data of lactating mothers7"13. This cannot be considered appropriate, as 

lactation might involve changes in energy metabolism15. The present study is unique in 

its use of pre-pregnant measurements as baseline. 

Subjects and methods 

Study design 

Metabolic rate and heart rate during and immediately after cycle ergometer exercise, 

resting metabolic rate, body weight, and leg circumferences were measured in 26 healthy 

Dutch women before, and in wk 13, 24 and 35 of pregnancy. Metabolic rate, heart rate 

and body weight measurements were carried out twice in each measurement period at 

two non-consecutive measurement days within one wk. Twenty-two out of the 26 women 

had a second measurement period before pregnancy (two more measurement days). 

Afterwards it appeared that about half of the pre-pregnant measurement days fell in the 

preovulary and half in the postovulary phase of the menstrual cycle. 

At a measurement day the woman arrived fasting by car at the metabolic unit 

between 0700 and 0730. After voiding, body weight was measured. The woman was 

installed under a ventilated hood on a hospital bed, and after a 25 min period in which 
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metabolic rate reached a steady state, resting metabolic rate was measured during 35 

min. The rest of the morning was used for measurements of resting metabolic rate in the 

postprandial state (data not included in this article). After the postprandial 

measurements, the woman was allowed to drink one or two cups of tea with or without 

sugar. The woman was then re-installed under the ventilated hood, and performed a 25.5 

min cycle-ergometer exercise programme (4 different work loads), immediately followed 

by a 10.5 min post-cycling period (still seated on the cycle ergometer, but without body 

movements). Then the subject received a lunch. On one of the two measurement days 

within the same period, leg anthropometry was performed after lunch. 

Subjects 

For the recruitment of subjects, advertisements in local newspapers and posters spread 

in public buildings were used. All participants were judged to be healthy by medical his­

tory and urine analysis. They were all non-smokers. They were living in the town of 

Wageningen and surrounding areas and reflected middle-upper socioeconomic stratum. 

Their ethnic background was Caucasian. Further subject characteristics are given in 

Table 1. All women gave their informed consent. The study was approved by the Ethical 

Committee of the Department of Human Nutrition of the Wageningen Agricultural 

University. 

Cycle ergometer 

We used a cycle ergometer with a maximum work load of 250 W (type RH, Lode BV, 

Groningen, the Netherlands). The electro-magnetic brake in this cycle ergometer consists 

of a disk rotating in a magnetic field with such high speed, that the work load is largely 

independent of the rotation frequency of the pedals17. A digital voltmeter (type DPM 

339, Display Elektronika, Utrecht, the Netherlands) was connected to the ergometer to 

allow for more accurate adjustments of the work load (accuracy 1 mV - 0.25 Watts). The 

work load at the crank of the ergometer was checked once a year and the ergometer was 

readjusted if necessary. The position of the saddle was adjusted to the height of the 

woman, so that her back was straight, and her knee slightly bent when the peddle was 

at its lowest position. The woman was instructed to rotate the peddles with a frequency 

of 60 rotations per minute. 
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TABLE 1 Subject characteristics (N=26). 

Mean ± SD 

Age (y) ' 

Height (cm) 

Body weight (kg) * 

Body mass index (kg/m2) f 

Body fat % (wt/wt %) f* 

Parity f § 

Length of gestation (wk) ' 

Weight gain during pregnancy (kg) ' 

Placental weight (g) 

Birth weight (g) " 

Baby length (cm) **ft 

Baby head circumference (cm) " +t 36.7 ± 3.2 

* At onset of present pregnancy. 

t Before present pregnancy. 

t Estimated with densitometry using under water weighing. 

§ Nulliparae: N=l l ; primiparae: N=13; multiparae: N=2. 

|| Length of gestation was derived from the first day of the woman's last reported menstrual period; classification according to 

Hytten : 24 women "term" (259-293 d) and 2 "postterm" (296 and 299 d). Twenty-four infants were delivered normally and 2 by 

Caesarian section. 

1 Last recorded weight during pregnancy (1-7 d before delivery) minus pre-pregnant weight. 

•* Sex baby: female: N=13, male: N=13. 

t t Number of days after delivery: 11 ± 7 d. 

30.0 

169 

62.4 

21.8 

27.5 

0.7 

40.2 

11.8 

654 

3512 

51.3 

+ 

+ 

+ 

+ 

± 

+ 

+ 

± 

± 

+ 

+ 

3.9 

7 

8.5 

2.4 

4.9 

0.8 

1.1 

3.0 

117 

333 

5.0 

Metabolic rate 

Ventilated hood device. Metabolic rate during rest and cycle ergometer exercise was 

measured by open-circuit indirect calorimetry using the ventilated hood technique. A 

perspex hood (vol 30 L) with an air inlet on top and an air outlet at the right side, was 

placed over the head of the woman. Mean values of Oa consumption (V02, mL/min) and 

C02 production (VC02, mL/min) were printed every 2.5 min during resting metabolic 
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rate measurements, and every 1.5 min during cycling and post-cycling metabolic rate 

measurements. The zero and span points of the 0 2 and C02 analyzers were calibrated 

just before the measurements of resting metabolic rate and just before start of the cycling 

programme, using standard gases (for the zero points 100% N2, for the span point of the 

C02 analyzer a gas mixture containing 0.6% C02) and fresh filtered atmospheric air (for 

the span point of the 0 2 analyzer). 

Ethanol combustion tests were carried out at least once per mo to validate the 

ventilated hood system. In each test about 25 g of ethanol was combusted in about 2 h. 

Instead of the ventilated hood, an airtight combustion chamber was linked to air inlet 

and air outlet. The reproducibility of the system was determined by 6 alcohol combustion 

tests for each ventilated hood device, carried out on separate days within a period of 2 

wk. Day-to-day coefficients of variation were 1.9% for metabolic rate and 1.9% for 

respiratory quotient. These values agree very well with those presented by Bogardus et 

a/.18. Metabolic rate (MR, in kJ/min) was calculated from oxygen consumption (V02, in 

L/min) and carbon dioxide production (VC02, in L/min) using Weir's formula19: MR 

= 16.3 V02 + 4.6 VC02. Respiratory quotient (RQ) was calculated as VC02 divided by 

vo2. 
Resting metabolic rate. Resting metabolic rate (RMR) was measured after 12 hours 

fasting. On the day before a measurement day, the woman refrained from intensive 

physical activity. During the measurement the woman was lying in supine semi-recumbent 

position, and was in complete physical rest, but awake, watching non-stressing video 

films. 

CVcling metabolic rate. The cycling programme consisted of 25.5 min cycling exercise: 

for 7.5 min at 30 W, for 6 min at 45 W, for 6 min at 60 W, and for 6 min at 75 W. To 

ensure that the Oz- and C02-concentrations in the air coming out of the ventilated hood 

remained within the range required for gas analysis, the flow rate of air through the 

ventilated hood was increased with work load: 120 L/min at a work load of 30 W, 140 

L/min at 45 W, 180 L/min at 180 W and 200 L/min at a work load of 75 W. Only 

results from the last 3 min at each work load were used for calculation of gross cycling 

metabolic rate (CMRg^g). Net cycling metabolic rate (CMR,^,) was calculated as 

CMRg,^ minus RMR. Delta work efficiency (dWE) is defined by Gaesser and Brooks20 

as: dWE = 100 * Aworkload / ACMRg,^. We estimated delta work efficiency as the 

inverse slope from linear regression of CMRg,^ on work load, but only if CMRgnja,-
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values at all 4 work loads were obtained. Regression lines were calculated for each 

subject individually. 

Post-cycling metabolic rate. After finishing the cycling programme the subject 

remained seated on the cycle ergometer for another 10.5 min during which the post-

cycling metabolic rate (PCMRp^J was measured. After the first 4.5 min in this period, 

flow rate of air through the ventilated hood was reduced from 200 L/min to 120 L/min. 

This influenced gas exchange measurements in the following 1.5 min, so that V02- and 

VC02-values over the period 4.5-6 min after cycling had to be replaced by the average 

of the values obtained 3-4.5 min and 6-7.5 min after cycling. Net post-cycling metabolic 

rate (PCMR..J was calculated as P C M R ^ minus RMR. 

Heart rate 

Heart rate was registered during exercise and the subsequent recovery period (type 

Sporttester PE-3000, Polar Electro KY, Kempele, Finland). Heart rate was measured 

by an electrode belt, connected around the trunk of the subject, and then transmitted to 

a wrist receiver, that stored one value every 15 sec. Heart rate values were averaged and 

analyzed over the same time periods as metabolic rate values. 

Body weight and leg anthropometry 

Body weight was measured in the laboratory on an electronic balance (Berkel 

ED60-T, Rotterdam, The Netherlands), or at home on a spring balance (Seca 760, 

Lameris Instruments BV, Utrecht, The Netherlands). 

Body height and sitting height (total height when seated minus seat height) were 

measured with a microtoise to the nearest 1 mm. Leg length was calculated as body 

height minus sitting height. Circumferences of the leg were measured with a plastic tape 

to the nearest 1 mm, at three sites: directly below the gluteal fold (thigh circumference), 

halfway between the ilia-crest and the patella (upper leg circumference) and at the 

broadest part of the calf (calf circumference). At each of these sites, the cross-sectional 

area was calculated as circumference square divided by 4m. The mean of these three 

cross-sectional area's was called "leg cross-sectional area". Leg index was obtained by 

multiplication of "leg cross-sectional area" by leg length. 

40 



WORK EFFICIENCY IN PREGNANCY 

Statistics 

Data are expressed as mean ± SD. Data analysis was carried out using the 

programme provided by SAS (SAS Institute, Inc, Cary, NC). The Shapiro and Wilk test 

was used to evaluate whether the data are a random sample from a normal distribution. 

Tukey's studentized range tests were used to analyze whether significant changes during 

pregnancy had occurred (significance level ar=0.05). Pearson correlation coefficients (r) 

and p-values were used to described associations between pairs of variables (null 

hypothesis r=0). If a parameter was correlated with more than one variable, the general 

linear models (GLM) procedure of the SAS-package was used to investigate the 

association with the combination of variables. 

Results 

Body weight and leg anthropometry 

Body weight increased steadily during pregnancy (Table 2) to a mean gestational 

TABLE 2 Body weight and leg anthropometry before and during pregnancy. 

Before During pregnancy 

pregnancy 

wk 13 wk 24 wk 35 

Body weight (kg) 62.4 ± 8.5 A' 63.5 ± 8.6 B 68.0 ± 8.7 c 72.6 ± 9.1 D 

Leg circumferences (cm): 

Thigh 58.3 ± 4.1 A 58.7 ± 4.4A 59.9 ± 4.6B 60.6 ± 4.9B 

Upperleg 55.8 ± 4.4 A 56.0 ± 4.6A 56.7 ± 4 . 6 M 57.5 ± 4.4 B 

Calf 36.4 ± 2.2 M 36.1 ± 2.3 A 36.6 ± 2.4B 37.2 ± 2.3 c 

Leg index (dm3) + 16.6 ± 2.7 A 16.7 ± 2.8 A 17.3 ± 2.9 B 17.7 ± 3.0 c 

* On each row means sharing the same letter are not significantly different (Tukey's studentized range test, N=26). 

t Leg index was calculated as the mean of thigh, upper leg, and calf cross-sectional area's (dm*) times leg length 

(leg length = height - [{height when seated} - {seat height}]; mean ± SD: 7.94 ± 0.41 dm). 

41 



CHAPTER 3 

weight gain of 11.8 kg (Table 1). In wk 35 of gestation, body weight was 10.3 ± 2.2 kg 

(16.5%) above the pre-pregnant value. Leg circumferences at thigh, upper leg and calf 

sites showed small but significant increases during pregnancy (Table 2). Leg index was 

calculated from these 3 leg circumferences and from leg length, and showed a significant 

increase as well (Table 2). In wk 35 of gestation, leg index was 1.1 ± 0.9 dm3 (7%) above 

the pre-pregnant value. 

TABLE 3 Gross and net metabolic rates before and during pregnancy. 

Before 

pregnancy 

Gross metabolic rates (kJ/min) 

RMR (26)* 

C M R g ^ O W * ^ 

C M R ^ 45W <& 

C M R ^ 60W ™ 

C M R ^ 75W <21> 

PMR^**2 0) 

3.84 ± 0.33 A t 

14.3 ± 1.2 AB 

17.3 ± 1.3 A 

20.9 ± 1.6 ** 

24.5 ± 1.8 ** 

8.4 ± 0.8 A 

Net metabolic rates (kJ/min) " 

CMRnet 30W (^ 

CMRnet 45W (25) 

CMRnet 60W (24) 

CMRnet 75W (21) 

PMRnet ™ 

10.5 ± 1.0 A 

13.5 ± 1.1 A 

17.0 ± 1.5 A 

20.6 ± 1.6 A 

4.5 ± 0.7 A 

During pregnancy 

Wkl3 

4.01 

14.1 

17.2 

20.6 

24.2 

8.6 

10.1 

13.2 

16.6 

20.2 

4.5 

+ 

+ 

± 

± 

± 

± 

± 

± 

± 

± 

+ 

0.43 A 

0.9 A 

1.7 A 

2.1 A 

2.8 A 

1.1 A 

1.3 A 

1.5 A 

2.0 A 

2.6 A 

0.8 A 

Wk24 

4.35 

14.7 

17.8 

21.4 

25.6 

9.1 

10.4 

13.5 

17.1 

21.2 

4.7 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0.51 B 

1 4 B C 

1.5^ 

1 .8^ 

1.7 BC 

1.2 B 

1.1 A 

1.1 A 

1.4 A 

1.2 A 

0.8 A 

Wk35 

4.70 

15.2 

18.2 

21.7 

25.7 

9.7 

10.5 

13.5 

17.0 

20.9 

4.9 

±0.51 c 

± 1.4 c 

± 1.6 B 

± 1.9 B 

± 2.1 c 

± 1.0 c 

± 1.1 A 

± 1.4 A 

± 1.7 A 

± 2.0 A 

± 0.8 A 

* Group size between brackets. 

t On each row, means sharing the same letter are not significantly different (Tukey's studentized range test). 

t Work load during cycling. 

§ Postcycling metabolic rate, measured during the first 103 min after cycling. 

I Net metabolic rate is calculated as gross metabolic rate minus resting metabolic rate (RMR). 
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Metabolic rate 

Resting metabolic rate (RMR) increased steadily during pregnancy up to a 22% 

increase over the pre-pregnant value in wk 35 of gestation (Table 3). The gross costs of 

cycle ergometer exercises (CMR^^) tended to be below pre-pregnant values in wk 13 

of gestation, but at none of the four work loads, this decrease reached statistical 

significance (Table 3). From wk 13 onwards, CMRg,^ increased steadily, and at every 

work load the value in wk 35 of gestation was significantly higher than in wk 13 (Table 

3). Gross post-cycling metabolic rate (PCMRg^J showed a steady increase from the pre­

pregnancy state onwards (Table 3). CMRnet (CMRg,^ - RMR) did not change 

significantly during pregnancy (Table 3), but values in wk 13 of pregnancy tended to be 

lower than pre-pregnancy values (difference 0.3 to 0.4 kJ/min, NS). At the work loads 

30, 45 and 60 Watt, CMRne,-values in wk 24 and 35 of gestation were identical to pre­

pregnancy values; CMRnet-values at the highest work load (75 W) tended to be somewhat 

higher in wk 24 and 35 of gestation than before pregnancy, but this increase was 

statistically not significant. PCMRnet (PCMRg,^ minus RMR) showed a non-significant 

8% increase in wk 35 of gestation, compared with pre-pregnant values (+0.34 ± 0.79 

kJ/min, Table 3). 

From 21 women, delta work efficiency (dWE) values were obtained in each 

measurement period. Their pre-pregnancy value was 27.1 ± 2.7 %, and values in wk 13, 

24 and 35 of gestation were respectively: 27.5 ± 4.9 %, 25.3 ± 1.1 %, and 26.5 ± 3.4 %. 

None of the differences between measurement periods were statistically significant 

(Tukey's studentized range test). 

In the pre-pregnancy period, at every work load CMRg,^ was significantly correlated 

with RMR, with body weight (BWt) and with legindex. CMRnet-values were significantly 

correlated with BWt and legindex as well; however, a significant correlation between 

CMRnet and RMR was only observed at the lowest work load (30 W). Similar 

associations existed in the measurement periods during pregnancy. Within each 

measurement period RMR, legindex and BWt were significantly correlated. We choose 

pre-pregnant CMR at a work load of 60 W to describe the associations in more detail. 

RMR, BWt and legindex explained respectively 20%, 28% and 32% of the variance in 

CMRg,^, and when these three variables were combined, the explained variance was 

35%. RMR explained only 6% of the variance in CMRnet, but BWt and legindex 

respectively 20% and 24%; addition of BWt or RMR to legindex did not further increase 
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TABLE 4 Respiratory quotients before and during pregnancy. 

Measurement Before 

condition pregnancy 

During pregnancy 

Wkl3 Wk24 Wk35 

At rest <*>' 

Cycling 30W*(26) 

Cycling 45W (2S) 

Cycling 60W (24) 

Cycling 75W (21) 

Postcyclings(20) 

0.82 ± 0.02 B 

0.85 ± 0.03 A t 0.85 ± 0.04 A 0.85 ± 0.03 A 0.85 ± 0.04 A 

0.84 ± 0.04 M 

0.87 ± 0.03 ** 

0.89 ± 0.03 ** 

0.90 ± 0.03 A 

0.92 ± 0.05 A 

0.86 ± 0.03 A 0.84 ± 0.04 B 

0.88 ± 0.03 A Oi ).87 ± 0 . 0 3 ^ 0.85 ± 0.03 B 

0.90 ± 0.03 A 0.89 ± 0.04 M 0.88 ± 0.03 B 

0.90 ± 0.03 A 0.90 ± 0.04 A 0.89 ± 0.04 A 

0.92 ± 0.05 A 0.91 ± 0.05 A 0.89± 0.04 A 

* Group size between brackets. 

t On each row, means sharing the same letter are not significantly different (Tukey's studentized range test). 

t Work load during cycling. 

§ Postcycling metabolic rate, measured during the first 10.5 min after cycling. 

Rz. Thus, legindex seemed to be the strongest determinant of CMRg,^ and CMRnet. 

Respiratory quotient 

The respiratory quotient during cycle ergometer exercise (RQC) increased with work 

load (Table 4): within each measurement period, significant differences in RQC existed 

between 30 W and all higher work loads, as well as between 45 W and the two higher 

work loads (60 and 75 W) (Tukey's studentized range test). Although no changes during 

pregnancy were found in the respiratory quotient under resting conditions (RQR), the 

respiratory quotient during cycle ergometer exercise (RQC) decreased during pregnancy: 

at the three lower work loads the decrease of RQC from wk 13 to 35 of pregnancy was 

statistically significant (Table 4). Post-cycling respiratory quotient (RQP) tended also to 

decrease during pregnancy, but the changes did not reach statistical significance 

(Table 4). 
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TABLE 5 Heart rate before and during pregnancy. 

Measurement Before During pregnancy 

condition pregnancy 

Wk 13 Wk 24 Wk 35 

Cycling 30W*(26)t 99 ± 11 AB* 96 ± 9 A 99 ± 9 A 102 ± 10 B 

Cycling 45W <*> 110 ± 12 A 108 ± 10 A 108 ± 9 A 109 ± 17 A 

Cycling 60W (24) 122 ± 15 A 120 ± 14 A 119 ± 11 A 121 ± 14 A 

Cycling 75W (21> 134 ± 16 A 132 ± 16 A 133 ± 12 A 133 ± 16 A 

Postcycling§(20) 95 ± 13 A 95 ± 13 A 95 ± 8 A 98 ± 11 A 

* Work load during cycling. 

t Group size between brackets. 

t On each row, means sharing the same letter are not significantly different (Tukey's studentized range test). 

§ Postcycling metabolic rate, measured during the first 103 min after cycling. 

Heart rate 

Heart rate during cycling exercise at a work load of 30 W increased significantly 

during pregnancy (Table 5). However, at none of the other work loads a change in HRC 

during pregnancy was observed. Heart rate in the post-cycling recovery period (HRP) did 

not change either. 

Discussion 

The women in the present study were all healthy and well-nourished. Their weight gains 

during pregnancy and the birthweights of their children (Table 1) were as expected for 

western women eating without restriction2,3'16. The increase in RMR closely resembled 

the pattern observed in our previous study21. 
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Metabolic rate during cycling exercise 

We observed a small but steady increase of gross cycling metabolic rate (CMRg^J 

during pregnancy (Table 3). This agrees with findings in other studies (Table 6): from 

mid-pregnancy onwards, CMRg^-values were above the non-pregnant baseline in all 

studies 7A1°-14, except for a study involving pregnant adolescents instead of adults9. The 

changes during pregnancy in cycling metabolic rate disappeared when resting metabolic 

rate (RMR) was subtracted from CMRg,^: no significant changes during pregnancy in 

CMRnet were observed. With our study design, we had a chance of 90% to detect a 4% 

change in CMRnet, if such change truly occurs. The constancy of CMRnet indicates that 

the increase in CMRg,^ was caused by the increase in RMR, which is supported by the 

association between CMRg^ and RMR. No significant association was observed 

between the change in CMRg,^ from pre-pregnancy to wk 35 of pregnancy (ACMRg,^) 

and the corresponding change in RMR (ARMR), but the larger measurement error of 

the delta's, compared to the original values, might have attenuated this correlation. Table 

6 shows that in most previous longitudinal studies, CMRnet appears to be unchanged or 

slightly reduced in all but the last four weeks of gestation7"911"13. 

No significant increase in delta work efficiency (dWE) occurred during pregnancy. 

Changes in CMRg,^ as a result of a specific increase of work load, were not significantly 

influenced by gestation. Thus, the increase during pregnancy in CMRg,^ reflected a 

change in metabolic rate which is independent of work load. 

Methodological considerations 

Instead of pre-pregnancy baseline values, other longitudinal studies used post partum 

values as baseline. From a group of 22 women we collected data at 9 wk after delivery, 

which enables us to compare our pre-pregnancy baseline with the post partum value 

(Table 7). Post partum CMRg^a. was somewhat below the pre-pregnant value (-0.38 ± 

2.07 kJ/min, paired Mest: p=0A0). Thus, the increase in CMRg,^ during pregnancy 

would have been somewhat larger if post partum values instead of pre-pregnancy values 

had been used as a baseline. RMR appeared to be higher post partum than before 

pregnancy ( + 0.13 ± 0.34 kJ/min, paired Mest: p=0.08), the increase during pregnancy 

in RMR would thus have been smaller if post partum values instead of pre-pregnancy 

values were used as a baseline. In wk 24 and 35 of gestation, CMRnet was slightly higher 

than the post partum value but slightly lower than the pre-pregnancy baseline. We 
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conclude that studies using a post partum baseline tend to overestimate the difference 

in CMR„e, between pregnant and non-pregnant state. 

Cycling is generally assumed to be a weight-independent activity. We assumed that 

leg mass might influence cycling metabolic rate, as the legs have to be rotated. Our data 

confirmed this hypothesis: CMR was significantly associated with our index of leg mass 

and this association was stronger than the association between CMR and body weight. 

Thus, cycling exercise is dependent of the weight of the legs rather than total body 

weight. We assume that leg weight influences the work output during cycling exercise. 

Therefore, part of the increase during pregnancy in CMRg,^ might have been the result 

of the increased leg mass, inducing increased work load. CMRnet was unchanged during 

pregnancy despite the increased leg mass, and might have decreased if leg mass had not 

changed. However, because of the small change in legindex during pregnancy (gestation 

wk 35 minus pre-pregnancy: +1.1 ± 0.9 dm3) as well as the small regression coefficient 

for the effect of legindex on CMR (before pregnancy, legindex was estimated to 

influence CMRg^gow and CMRnet)60W with respectively 0.33 and 0.27 kJ/min per dm3), 

the effect on CMR will have been limited. 

TABLE 7 Longitudinal changes in cycling metabolic rate during pregnancy {N=22)\ 

comparison of changes relative to pre-pregnant versus post partum baseline. 

Measurement periods RMR (kJ/min) CMR at 60 W (kJ/min) 

Baseline Pregnancy RMRbaseline ARMR CMRbaseline ACMR. ACMR„ 

Pre-pregnant 

9 wk pp 

wk l3 
wk24 
wk35 

wkl3 
wk24 
wk35 

3.84 

3.98 

+ 0.17 
+ 0.51 
+ 0.86 

-0.01 
+ 0.36 
+ 0.78 

21.0 

20.7 

-0.5 
+ 0.4 
+ 0.7 

-0.2 
+0.8 
+ 1.1 

-0.6 
-0.1 
-0.2 

-0.2 
+ 0.4 
+ 0.4 
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The relationship between CMR and RMR, body weight or legindex underlines the 

importance of collecting data longitudinally: in a cross-sectional analysis, differences in 

CMR between groups could result from pregnancy-induced changes in CMR, but also 

from differences in leg mass, inducing differences in work load between groups. 

Metabolic rate during recovery after cycling, and heart rate during and after cycling 

Post-cycling metabolic rate (PCMR^^) increased during pregnancy to a level 1.2 ± 

0.9 kJ/min (14.8%) above pre-pregnancy value in wk 35 of gestation. The corresponding 

increase in PCMRnet ( P C M R ^ minus RMR) was smaller (0.3 + 0.8 kJ/min or 7.4%) 

and statistically not significant (Table 3). PCMRnet reflects the extra oxygen uptake after 

exercise, eliminating the oxygen debt which is built up during the cycling programme. 

This oxygen debt is the result of anaerobic energy-yielding processes, which occur 

especially during the first minutes of exercise. Thus, the oxygen debt built up during 

exercise does not change substantially, and recovery of exercise does not cost more 

energy during pregnancy. 

The increase in gross metabolic rate during pregnancy involves increased oxygen 

transport from lungs to tissues. As plasma haemoglobin is rather decreased than 

increased during pregnancy22, an increase in blood circulation (heart rate and/or stroke 

volume) would be expected during pregnancy. Stroke volume has been reported to be 

increased24'25, as well as decreased23 during pregnancy. We observed a small but 

significant increase during pregnancy in heart rate during cycling exercise (Hc) at the 

lowest work load (30 W), but not at the higher work loads (Table 3). This is in line with 

previous studies, in which heart rates at rest12'23 and during 0 and 30 W cycling exercises23 

were reported to be increased during pregnancy, whereas heart rates at higher work 

loads8,12'23'24 as well as maximal heart rate23 seemed to be unchanged during pregnancy. 

Thus, the increase in blood circulation during pregnancy might (partly) be realized by 

increased heart rate under resting conditions or during minor exercise, but not during 

moderate or heavy exercise. 

During the recovery period heart rate (HRP) was slightly higher (NS) in wk 35 of 

gestation compared to values earlier in pregnancy and before pregnancy (Table 5). Signi­

ficantly higher recovery heart rates during pregnancy have previously been observed, the 

differences being comparable to differences in heart rate under resting conditions w'a. 

We conclude that the changes during pregnancy in gross cycling metabolic rate are 
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independent of work load and attributable to changes in resting metabolic rate. Thus, 

pregnancy does not involve a work-specific change in metabolic rate. Furthermore, the 

amount of energy needed for recovery after exercise appeared not to change during 

pregnancy, or only to a very limited extent. We therefore conclude that work efficiency 

is not substantially improved during pregnancy. 
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Chapter 4 

CRITICAL REASSESMENT OF 
THE EXTRA ENERGY NEEDS DURING PREGNANCY 

Caroline JK Spaaij, Joop MA van Raaij, 

Iisette CPGM de Groot, Joseph GAJ Hautvast 

Abstract 

Energy costs of pregnancy in 26 Dutch women, calculated as cumulative 

increase of RMR during pregnancy (ARMRC U M : 189 MJ) plus energy 

cost of increased maternal fat stores (97 MJ) and gain in other tissues 

(49 MJ), were 335 MJ. The efficiency of energy metabolism appeared to 

be unchanged during pregnancy, because both the thermic effect of a 

meal and work efficiency were constant. Energy savings by reduced 

physical activity (120-261 MJ) appeared to be higher than earlier 

estimates (100 MJ). These behavioural adaptations plus increased energy 

intake (43 MJ) accounted for 163-304 MJ. As slight over-estimation of 

ARMRQJM and slight under-estimation of the increase in energy intake 

during pregnancy cannot be excluded, our study suggests that during 

pregnancy extra energy needs may be met by increased energy intake 

plus behavioural adaptations. As a result of the large between-subject 

variability in both factors, energy intake recommendations for well-

nourished pregnant women seem to have limited value. 
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Introduction 

Several longitudinal studies have been published in which the energy costs of pregnancy 

were estimated, along with changes in energy intake and physical activity during 

pregnancy1"8. Most of these studies confirmed that pregnancy involves considerable 

energy costs1"3,5"8, but failed to demonstrate a sufficient increase in energy intake during 

pregnancy XA4A7. A reduction of physical activity could lower energy expenditure during 

pregnancy, but the amount of energy saved by such behavioural adaptation is generally 

assumed to be limited to a maximum of about 100 MJ over the entire pregnancy1'4'9. In 

a previous study in our laboratory the estimated increase in energy intake during 

pregnancy (48 MJ)2 and estimated energy savings by reduced physical activity (76 MJ)9, 

were together much below the estimated energy costs of pregnancy (286 MJ)2. This 

discrepancy between the extra demands and the extra supplies of energy during 

pregnancy has been subject to much debate1'2'7'8'10. 

In the study presented here, several options are addressed which could reduce or 

eliminate this discrepancy. Over-estimation of the energy cost of pregnancy, under­

estimation of the increase in energy intake and under-estimation of the energy savings 

by reduced activity could all explain (part of) the discrepancy. However, if the increase 

in energy intake and energy savings by behavioural adaptations together, are truly below 

the energy costs of pregnancy, it would be reasonable to assume that extra reductions of 

energy expenditure during pregnancy occur. Such further reductions of energy 

expenditure might be established by metabolic adaptations, which could result in reduced 

diet-induced thermogenesis and in improved work efficiency. 

Our results on longitudinal changes during pregnancy in the thermic effect of a meal11, 

the energy cost of cycle ergometer exercise12, and 24-hour metabolic rate13 were 

described separately in more detail. In this publication, all these metabolic rate 

measurements are combined, and presented along with changes in energy intake and 

physical activity during pregnancy. After evaluating possible explanations for the 

difference between the demand- and supplies-sides of the energy balance equation of 

pregnancy, the implications of these findings for energy intake recommendations are 

discussed. 

54 



EXTRA ENERGY NEEDS DURING PREGNANCY 

Subjects and methods 

Study design 

In 26 women, measurements of resting metabolic rate (RMR), postprandial metabolic 

rate (PPMR), cycling metabolic rate (CMR) and body weight (Wt) were carried out 

before pregnancy and in wk 13, 24 and 35 of gestation, on two non-consecutive days 

within one week. In 22 of these women two more pre-pregnant measurement days were 

accomplished. Afterwards it appeared that about half of the pre-pregnant measurement 

days were carried out in the preovulatory and half in the postovulatory phase of the 

menstrual cycle. Body fat mass (FM) was estimated on one of the two measurement days 

within the same week. Energy intake (EI) and habitual physical activity (PA) were 

determined at about 2 wk before the first pre-pregnant measurements and at 1 or 2 wk 

after the measurement weeks during pregnancy. 

In a subgroup of 10 women, measurements of 24-hour metabolic rate (24hMR) were 

carried out on two consecutive days before pregnancy, and in wk 12, 23 and 34 of 

gestation. 

Subjects 

For the recruitment of subjects, advertisements in local newspapers, and posters 

spread in public buildings were used. All participants were judged to be healthy by 

medical histories and urine analysis. They were all non-smokers. They were living in the 

town of Wageningen and surrounding areas and reflected middle-upper socioeconomic 

stratum. Their ethnic background was Caucasian. Further subject characteristics are given 

in Table 1. All women gave their informed consent. The study was approved by the 

Ethical Committee of the Department of Human Nutrition of the Wageningen 

Agricultural University. 

Metabolic rate 

Metabolic rate (MR, in kJ/min) was calculated from oxygen consumption (V02, in 

L/min) and carbon dioxide production (VC02, in L/min) using Weir's formula14: MR 

= 16.3 V02 + 4.6 VC02. 

Ventilated hood measurements. RMR, PPMR and CMR were measured by open-

circuit indirect calorimetry using ventilated hood equipment as described previously11. 
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TABLE 1 Characteristics of the study subjects. 

Number of women 

Parity * 

Nulliparae (N) 

Primiparae (N) 

Multiparae (N) 

Age (y) + 

Height (cm) 

Body weight (kg) ' 

Body mass index (kg/m2) ' 

Body fat % (wt/wt %) ' * 

Length of gestation (wk) 5 

Gestational weight gain (kg) " 

Girls/boys 

Birth weight (g) 

Placental weight (g) 

Baby length (cm) 

Baby head circumference (cm) 

Full group 

0.7 

29.9 

169 

62.6 

21.9 

27.7 

40.2 

11.7 

26 
+ 

12 

11 

3 
+ 

+ 

+ 

+ 

+ 

+ 

+ 

0.9 

3.9 

7 

8.6 

2.5 

5.2 

1.1 II 

3.0 

12/14 

3517 

654 

51.3 

36.7 

+ 

+ 

+ 

+ 

329 

119 

5.0 " 

3 . 2 " 

Subgroup 

0.4 

29.2 

169 

61.6 

21.4 

28.4 

40.5 

12.2 

3523 

661 

52.8 

36.2 

10 
+ 

6 

4 

0 
+ 

+ 

+ 

+ 

+ 

+ 

+ 

6/4 
+ 

+ 

+ 

+ 

0.5 

2.8 

6 

9.6 

3.2 

5.9 

1.2 ' 

2.9 

237 

111 

1.5 « 

1.1** 

* Before present pregnancy. 

t At onset of present pregnancy. 

t Estimated with densitometry using under water weighing. 

§ Length of gestation was derived from the 1st d of the woman's last reported menstrual period. 

|| 24 women delivered at term (length of gestation 259-293 d, as defined by Hytten, ref. 24) and 2 women postterm (296 and 299 

d); 24 infants were delivered normally and 2 by Caesarian section. 

1 9 women delivered at term (259-293 d) and 1 woman postterm (296 d); all infants were delivered normally. 

** Last recorded weight during pregnancy (1-7 d before delivery) minus pre-pregnant weight, 

t t One to 2 wk (11 ± 7 d) after delivery. 

tt One to 2 wk (13 ± 7 d) after delivery. 

56 



EXTRA ENERGY NEEDS DURING PREGNANCY 

During the measurements the woman watched non-stressing video films. The day-to-day 

coefficient of variation of MR, determined by ethanol combustion tests, was 1.9%u. 

RMR was measured during 35 min after 12 h fasting, while the woman was lying in 

supine semi-recumbent position, in complete physical rest, but awake11. The within-

subject day-to-day coefficient of variation for RMR, as calculated from all pairs of 

measurement days in the same week, was 4.6% (SD 0.19 kJ/min). 

PPMR was measured during the first 180 min following consumption of a testmeal. 

The conditions of the PPMR measurement were exactly the same as during the RMR 

measurement, except for the postprandial state. The within-subject day-to-day coefficient 

of variation for PPMR was 3.8% (SD 0.18 kJ/min). The testmeal consisted of 375 g 

yoghurt-based liquid formula containing 1325 U (15 energy % protein, 30 energy% fat 

and 55 energy% carbohydrate)11. The thermic effect of the meal (TEM) was calculated 

as PPMR minus RMR. The within-subject day-to-day coefficient of variation for TEM 

was 21.5% (SD 0.14 kJ/min). For the extrapolation of the TEM-response to daily diet-

induced thermogenesis (DIT), we assumed that our postprandial measurement covered 

85% of the total thermic effect of the testmeal11, that within subjects, the thermic effect 

of a meal was proportional to its energy content15, and that differences in composition 

between testmeal and diet did not result in different thermic effects. Thus, DIT was 

estimated from TEM and total daily energy intake (for free-living conditions we used the 

5-d weighed record estimate, see further, and for respiration-chamber conditions we used 

the energy content of the supplied diet, see further). 

CMR was measured during the last 3 min of a 6-min period during which the woman 

was performing cycle ergometer exercise at a work load of 45 Watts and 60 rotations per 

min. The women cycled with her back straight, and knees slightly bent with the peddle 

at its lowest position12. Net cycling metabolic rate (netCMR) was calculated as CMR 

minus RMR. Within-subject day-to-day coefficients of variation for CMR and netCMR 

were 3.1% and 4.1% (SD's 0.54 and 0.55 kJ/min). 

Respiration chamber measurements. Detailed descriptions of the respiration chamber 

system16 and the measurement procedure13 are given elsewhere. Gas-exchange 

measurements were made during two consecutive 24-h periods, beginning and ending at 

0800. During days spent in the respiration chamber and the 6 preceding days, diet was 

supplied to the women. The energy content of the diet was tuned to each woman's 

individual pre-pregnant energy requirement13. The energy content was kept constant 
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throughout pregnancy, because previous longitudinal studies failed to show a significant 

change in energy intake during pregnancy2,10. The macronutrient composition of the diet 

was 15 energy% protein, 35 energy% fat and 50 energy% carbohydrate. 

The woman entered the respiration chamber on the day preceding the first 24hMR-

measurement at about 2300 and left the chamber after the third night in the chamber. 

A standardized light activity schedule was followed in the respiration chamber: time from 

2345 to 0815 was spent in bed, meals were consumed at 0900,1300 and 1830, there were 

five 15-min cycling periods per day (work load 15 Watts, 50 rotations per min) and the 

remaining time was spent with sitting activities13. The within-subject day-to-day coefficient 

of variation for 24hMR was 2.1% (SD 0.19 MJ/d). 

Body weight and body fat mass 

Body weight was measured in the laboratory on an electronic balance (Berkel 

ED60-T, Rotterdam, The Netherlands), or at home on a spring balance (Seca 760, 

Lameris Instruments BV, Utrecht, The Netherlands). The density of the body was 

determined from Wt and body volume obtained by the under-water weighing technique. 

FM was calculated from body density using the Siri equation for pre-pregnant and post 

partum measurements17 and using recently developed equations for measurements during 

pregnancy18. Within-subject day-to-day coefficient of variation in FM estimated by 

hydrodensitometry was 7.0% (SD 1.17 kg). Fat deposition in maternal stores during 

pregnancy was also estimated from the sum of four skinfold thicknesses before pregnancy 

and 4 wk after delivery19. Within-subject day-to-day coefficient of variation in FM 

estimated from 2 4 skinfolds was 12.6% (SD 2.28 kg). Finally, fat deposition during 

pregnancy in maternal fat stores was also estimated from factorial analysis of total 

gestational weight gain (at 40 wk gestation) and from factorial analysis of weight 

retention at 4 wk post partum20. 

Energy intake 

Food consumption was recorded over 5 consecutive days (Wednesday through Sunday) 

by the individual weighed-inventory technique as described earlier3,21'22. Basically this 

consists of weighing each item of food or drink immediately before consumption and 

repeating the procedure on leftovers. Weighing and recording was done by the woman 

herself using electronic scales incorporating a zeroing button and having a digital read 
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out (type 1203 MP, Sartorius GMBH, Gottingen, FRG; weighing range 0-4000 g, 

accuracy 1 g). Attention was drawn to the prime importance of not interfering with 

normal eating patterns. All food items recorded were converted into food codes 

according to the Dutch food encoding system23, the quantity per day was calculated, and 

the Dutch computerized food composition table was used23 for conversion to EI. Within-

subject day-to-day coefficient of variation in EI was 19.6% (SD 1.89 MJ/d). 

Activity pattern 

On the days of the weighed food consumption record, the woman recorded the times 

of rising and going to bed, as well as the duration of any period spent lying during the 

day. From this we calculated active time, which was defined as the total period (min/d) 

during which the subject was not lying. On the same days, the woman carried a 

pedometer (Kasper & Richter, Uttenreuth, Germany) and recorded the read-out both 

when rising and when going to bed. Step size was not individually adjusted, but fixed at 

0.75 m/step, because of its variability during mixed activities. Walking activity is defined 

as the mean number of steps per day. Within-subject day-to-day coefficients of variation 

for active time and walking activity were 11.0% and 38.9%. 

Calculation of cumulative changes during pregnancy 

For the calculation of cumulative or average changes during pregnancy we had to 

extrapolate the measurements during pregnancy to the full period of pregnancy. We 

assumed that values did not change during the first 3 weeks after the onset of the last 

menstruation preceding conception: the first 2 weeks are preconceptual and it takes 

several days after conception before the embryo becomes implanted in the wall of the 

uterus. Thus, to calculate the cumulative change in RMR, 24hMR and EI during 

pregnancy, changes relative to pre-pregnancy values in the three gestational periods are 

averaged and extrapolated over 261 days (38 weeks minus 5 days, since implantation of 

the embryo in the uterus is assumed to take place about 5 days after ovulation). 

Statistics 

Data are presented as mean ± SD and refer to the group of 26 women, unless stated 

otherwise. Data analysis was carried out using the programme provided by SAS (SAS 

Institute, Inc, Cary, NC). Paired f-tests were used to analyze whether a response 
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parameter changed significantly compared to its pre-pregnancy value (significance level 

a=0.05). Pearson correlation coefficients (r) and p-values were used to describe 

associations between pairs of variables (null hypothesis r=0). If a parameter was 

correlated with more than one variable, the general linear models (GLM) procedure of 

the SAS-package was used to investigate the association with the combination of 

variables. 

To partition the total variability in the cumulative change during pregnancy (s2
A) into 

a between-subjects component (s2
iS) and a random component (S2

AK), this random 

component was estimated from the random variance for single measurements (s2
R = 

within-subject day-to-day variance) using the following formula: 

s*R * 2612 s2
R * 872 s\ * 872 s \ * 872 

s\R = - ^ + - ^ + - * + ^ 
" V mwktt " W i nVkss 

where mpre, m^^, m , ^ and m , ^ = the number of measurement days within that 

measurement period, and where 261 and 87 represent the number of days over which the 

measurement value was extrapolated when calculating the cumulative change. By 

subtracting S2
AR from the total variance in the cumulative change of the parameter 

(s2J, we obtained an estimate of 'true' between-subject variability in the change of the 

parameter during pregnancy. 

Results 

After presenting data on the energy costs of pregnancy (fat gain, cumulative increase of 

RMR), and on relations of these costs with pre-pregnant subject characteristics, data on 

the cumulative increases in energy intake and on energy savings by reduced physical 

activity during pregnancy are given. 

The energy costs of pregnancy 

Gain in body fat mass. We used five approaches to estimate the gain in fat mass 

during pregnancy (Table 2). The estimates varied between 1.33 kg (S4skinfolds, fat 

retention at 4 wk post partum) and 2.41 kg (hydrodensitometry, fat retention at 9 wk post 

partum; 2 women not measured). The average value of four estimates, both 

hydrodensitometry estimates and the two estimates through factorial approaches, was 

2.10 ± 2.18 kg. Assuming that deposition of 1 kg fat takes 46 MJ (the energy content of 
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TABLE 2 Estimates of gain in maternal fat stores during pregnancy. 

Method and calculation Weight Fat stores 

kg kg 

Fat gain from hydrodensitometry at wk 35 of gestation 

Fat gain at 35 wk of gestation * 2.37 ± 2.23 

minus fat gain in tissues other than fat stores + 0.5 

Gain in maternal fat stores 1.87 ± 2.23 

Factorial analysis of weight gain at 40 wk gestation 

Weight gain at 40 wk gestation * 11.71 ± 2.95 

minus birthweight baby 3.52 ± 0.33 

minus weight placenta 0.65 ± 0.12 

minus 4.77 kg f * 4.77 

Gain in adipose tissue (80% fat) 2.78 ± 3.00 

Gain in maternal fat stores 2.22 ± 2.40 

Factorial analysis of weight retention at 4 wk post partum 

Weight retention at 4 wk post partum * 2.94 ± 3.37 

minus gain in breast mass * 0.4 

Gain in adipose tissue (80% fat) 2.54 + 3.38 

Gain in maternal fat stores 2.03 ± 2.70 

Fat gain from S4skinfolds at 4 wk post partum 

Fat retention at 4 wk post partum * 1.33 ± 2.67 

Gain in maternal fat stores 1.33 ± 2.67 

Fat gain from hydrodensitometry at 9 wk post partum 

Fat retention at 9 wk post partum *§ 2.41 ± 2.68 

Gain in maternal fat stores 2.41 ± 2.68 

* Change relative to pre-pregnancy value. 

t Values given by Hytten (23). 

t Sum of increased weights of uterus, breasts, blood, extravascular extracellular and amniotic fluids (23). 

§ N=24. 
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TABLE 3 Energy cost of pregnancy. 

Factor Full group (N=26) Subgroup (N= 10) 

MJ 

Energy cost of tissue gain: 

Gain in maternal fat stores *+ 97 ± 100 127 ± 80 

Gain in other tissues * * 49 49 

Cumulative change in metabolic rate: 

ARMRCUM 189 ± 106 239 ± 98 

ADITCUM -6 ± 60 11 ± 59 

A24hMRCUM 150 ± 118 

Total energy costs of pregnancy: 

Tissue gain + A R M R ^ M 335 ± 154 415 ± 147 

Tissue gain + A R M R ^ M + A D H ^ 329 ± 160 426 ± 135 

Tissue gain + A24hMRCUM 326 ± 137 

* Values of 29 and 46 Id were applied as the energy needed for depositing each g of protein and fat, respectively, allowing for both 

the energy content of the tissue and the energy cost of deposition . 

t Fat gain during pregnancy: the average value of 4 estimates. 

t The amounts of protein and fat deposited in tissues other than maternal fat mass were assumed to be 925 g and 480 g. 

fat plus the energy cost of its deposition), this gain in body fat mass costs 97 ± 100 MJ 

(Table 3). 

Cumulative increase in resting metabolic rate. Resting metabolic rate (RMR) 

increased significantly during pregnancy (Table 4). The cumulative increase in RMR 

during pregnancy (ARMRCJM) was estimated to be 189 ± 106 MJ (Table 3). About 

22.5% of the variance in A R M R ^ ^ , was attributable to random measurement error, 

suggesting that the main part (77.5%) of the variance in ARMRCJM was caused by 

between-subject differences in the increase of RMR during pregnancy. 

Cumulative change in diet-induced thermogenesis. No significant changes during 
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pregnancy were observed in the thermic effect of the meal (TEM) (Table 4). On average, 

TEM decreased with 0.03 ± 0.12 kJ/min. The main part (58.6%) of the variance in 

A T E M ^ ^ was attributable to random measurement error. Within each measurement 

period, diet-induced thermogenesis (DIT) was estimated for each woman from her 

TEM-response and habitual daily energy intake (5-d weighed record). The cumulative 

change of DIT during pregnancy (ADITC U M) was estimated to be -6 ± 60 MJ (p=0.55) 

(Table 3). 

Change in net cycling metabolic rate. Net metabolic rate during standardised cycle 

ergometer exercise (netCMR) tended to decrease at 13 wk gestation, but was close to 

pre-pregnancy level at wk 24 and wk 35 of gestation (Table 4). On average, netCMR 

TABLE 4 Changes during pregnancy relative to pre-pregnant value. 

Component Pre-pregnancy 

value 

Change 

wkl3 wk24 wk35 

24hME t 8.56 ± 0.82 

Gross metabolic rates 

RMR I 3.82 ± 0.35 

PPMR I 4.46 ± 0.33 

CMR I 17.28 ± 1.24 

Net metabolic rates 

TEM » 0.64 ±0.11 

NetCMR * 13.45 ± 1.13 

MJ/d 

+ 0.10 ± 0.56 +0.37 ±0.52* +1.27 ± 0.43 s 

kJ/min 

+ 0.16 ± 0.27 § +0.48 ± 0.40 § +0.87 ± 0.42 * 

+ 0.16 ± 0.25 § +0.45 ± 0.39 § +0.83 ± 0.36 5 

-0.11 ± 1.49 +0.48 ± 1.38 +0.85 ± 1.45 5 

-0.01 ± 0.13 

-0.27 ± 1.43 

-0.04 ± 0.15 

-0.00 ± 1.33 

-0.04 ± 0.17 

-0.02 ± 1.49 

* Value during pregnancy minus pre-pregnancy value. 

t Data from the subgroup of 10 women. 

t Significantly different from zero with paired t-test: O.OlspsO.QS. 

§ Significantly different from zero with paired t-test: psO.01. 

|| Data from the full group of 26 women. 
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diminished with 0.10 ± 1.22 kJ/min during pregnancy (p=0.69). The variance of 

AnetCMRcuM was largely (for 91.1%) attributable to true between-subject differences 

in the response to pregnancy, only 8.9% of the variance appeared to be caused by 

measurement error. 

Cumulative increase of 24-hour metabolic rate. Twenty-four-hour metabolic rate 

increased steadily from 8.56 ± 0.82 MJ/d before pregnancy to 9.83 ± 0.96 MJ/d at 

gestation wk 35 (iV=10) (Table 4). The increase was significant in wk 24 (p=0.05) and 

wk 35 (p< 0.0001) of gestation. The cumulative increase in 24hMR was estimated to be 

150 ± 118 MJ (p=0.003) (Table 3). Only 10.8% of the total variance in A24hMRCUM was 

attributable to random measurement error, the remaining 89.1% of the variance 

appeared to represent true between subject differences. 

Toted energy costs of pregnancy and relationship with pre-pregnant characteristics 

The sum of energy deposition in tissues and the cumulative increase of the 

maintenance costs of the body (ARMR C U M ) amounted to 335 ± 154 MJ during 

pregnancy (Table 3). The total costs of pregnancy were hardly affected if the change in 

DIT during pregnancy was taken into account as well (Table 3). In the subgroup of 

women that was measured in the respiration chamber, ARMR C U M was substantially 

higher than in the total group of 26 women (Table 3). Their change in 24hMR during 

pregnancy appeared to be 37% lower than ARMRCUM (Table 3). 

A strong positive association was observed between ARMR C U M and pre-pregnant body 

fat percentage (r=0.50,p=0.01) (Figure la). The total cost of pregnancy, calculated as 

tissue gain plus A R M R ^ , ^ was significantly related with pre-pregnant body fat 

percentage (r=0.46, p=0.02) as well (Figure lb). However, pre-pregnant body fat 

percentage was not related with fat gain during pregnancy (r=0.18,/?=0.38), birthweight 

of the baby (r=0.33, p=0.10), ATEMaverage (r=-0.34, p=0.09), AnetCMR^^ (r=-0.12, 

p=0.57), or A24hMRCUM (r=-0.09, p=0.81, N= 10). Neither age, nor parity appeared to 

influence (components of) the energy costs of pregnancy. 

Change in habitual physical activity during pregnancy 

Active time diminished from a pre-pregnant value of 915 ± 35 min/d with 42 ± 44 

min/d at wk 13 of gestation (p< 0.0001), with 42 ± 55 min/d at wk 24 of gestation 

(p=0.0007), and with 87 ± 54 min/d at wk 35 of gestation (p< 0.0001). The average 
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reduction of active time during pregnancy was 57 ± 41 min/d (p< 0.0001). Step count 

diminished from a pre-pregnant value of 11.4 ±3.1 thousand steps per day with 1.2 ± 

2.5 thousand steps/d at wk 13 of gestation (p=0.03), with 0.7 ± 3.8 thousand steps/d at 

wk 24 of gestation (p=0.38), and with 2.4 ± 3.7 thousand steps/d at wk 35 of gestation 

(p=0.002). The average reduction of walking activity during pregnancy was 1.4 ± 2.7 

thousand steps per day (p=0.01). 

Cumulative change in energy intake during pregnancy 

No significant increase of energy intake was observed in these women. Energy intake 

was 9.50 ± 1.64 MJ/d before the onset of pregnancy, and changes in wk 13, 24 and 35 

of gestation were respectively -0.13 ± 1.46 MJ/d (p=0.65), +0.13 ± 1.67 MJ/d 

(p=0.70), and +0.50 ± 1.65 MJ/d (p = 0.13). Thus, the cumulative increase in energy 

intake was only 43 ± 349 MJ during pregnancy (p=0.54). 

Discussion 

Methodological considerations 

For the amounts of protein and fat deposited in fetus, placenta, uterus, breasts, blood 

volume, volume of amniotic fluid and other extracellular extravascular fluids, we used 

Hytten's estimates, i.e. 925 g protein and 480 g fat24; assuming that protein and fat 

deposition cost respectively 29 and 46 kJ/g1, the estimated energy cost of this factor is 

49 MJ. We consider Hytten's estimate appropriate for our study population because the 

birthweights and placental weights in our women (3517 and 654 g) were similar to the 

values on which Hytten based his estimates (respectively 3400 and 650 g). Quantitative 

knowledge about the relationship of birthweight plus placenta weight (together about 

75% of these costs) with weight gains of uterus, breasts, blood, amniotic fluid and other 

extracellular extravascular fluids is limited. Furthermore, the amounts of protein and fat 

in these tissues are probably not proportional to the tissue weight. Because of these two 

reasons, we preferred using the same value (49 MJ) for all women to making individual 

estimates for this factor. 

From our 5 estimates of gain in maternal fat stores during pregnancy, we used the 

average of only four (from hydrodensitometry and factorial methods) when calculating 

the energy costs of pregnancy. These four estimates where based on "whole-body" 
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measurements, whereas the fifth estimate, the skinfold estimate, was based on the 

amount of fat at only 4 subcutaneous sites of the body. The validity of the post partum 

estimate of fat mass from the sum of four skinfolds might be reduced because of site-

specific changes in skinfold thicknesses25'26'27 and fat cell metabolism during pregnancy28. 

The cumulative change in RMR during pregnancy (ARMR C U M ) was calculated as the 

average RMR (MJ/d) during pregnancy minus the average pre-pregnant RMR times 261 

days. Pre-pregnant RMR-measurements can be affected by the menstrual cycle29"31. 

However, as pre-pregnant RMR-estimates were based on measurements at 4 (sometimes 

2) separate days in our study, the menstrual-cycle effects are neglectable. The question 

remains whether the mean of measurements in wk 13, 24 and 35 of gestation (only three 

timepoints) is a valid estimator of the average RMR throughout gestation. In a recent 

publication7, the mean of BMR-values at wk 12, 24 and 36 of gestation appeared to be 

2% higher than the mean of BMR-values at wk 6, 12, 18, 24, 30 and 36. We therefore 

admit that our estimate of ARMR C U M might be slightly too high. 

For the extrapolation of the TEM-response to total daily diet-induced thermogenesis 

(DIT), we assumed that, per kJ consumed, the thermic effect of the regular diet was 

similar to that of the testmeal, despite small differences in macronutrient composition. 

Yet, differences in physical state were more pronounced and might have influenced the 

thermic effects. In our study, however, changes in TEM rather than the TEM as such 

were investigated, and it seems improbable that the thermic effect of a mixed meal 

would change during pregnancy if the thermic effect of the testmeal is unchanged. For 

the calculation of DIT, we furthermore assumed that TEM is proportional to energy 

intake. Therefore, under- or over-estimation of energy intake would cause similar 

estimation errors of DIT. However, as changes in DIT were studied rather than DIT as 

such, and as TEM appeared to be unchanged during pregnancy, estimation errors in 

changes of energy intake, but not in energy intake as such, appear to reduce the validity 

of estimated changes in DIT. 

The validity of estimated changes in energy intake is only reduced if the extent of 

over- or under-reporting is affected by repeating the measurement. Increasing under­

reporting has been observed in two previous studies32'33, however, in another study good 

agreement was observed when repeating a dietary record34. With present knowledge, we 

cannot exclude the possibility that increasing levels of under-reporting mask true 

increases in energy intake during pregnancy. 
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Actual energy costs of pregnancy 

Gestational weight gain, birth weight and placental weight in our women were as 

expected for western women eating without restriction1*2,6'7'24. Our estimate of A R M R ^ ^ 

(189 MJ) was within the upper range of values from other longitudinal studies in western 

countries: values of women in Schotland1, Sweden6, England7, the Netherlands20, and the 

USA35 were, respectively: 126 MJ, 210 MJ, 124 MJ, 144 MJ, and 113 MJ. As described 

earlier, we cannot exclude that our estimate of ARMRCUM was somewhat too high, 

although, the estimate was within the range normally observed. The gain in maternal fat 

stores during pregnancy, calculated as the average of four estimates (the 

hydrodensitometric and factorial estimates), was 2.1 ± 2.2 kg. This finding is consistent 

with results of most previously published longitudinal studies carried out in western 

countries: 2.3 kg1, 2.0 kg20,2.3 kg7; however, in Swedish women, a substantially larger fat 

deposition during pregnancy was observed (3.86 or S.836 kg, depending on the 

methodology used), but their average gestational weight gain was also higher (13.6 kg). 

We studied the possibility of increased metabolic efficiency during pregnancy. Our 

results strongly suggest that no important changes in TEM-response occur during 

pregnancy, a finding which was presented earlier in more detail11. Energy intakes did not 

change substantially either, therefore, total daily diet-induced thermogenesis appeared 

to be unchanged during pregnancy in these women. A previous publication showed a 

significant TEM-decrease in mid-pregnancy37, but the group size was small; two small 

cross-sectional studies showed conflicting results38'39. If metabolic efficiency would have 

been increased during pregnancy, this could have also resulted in improved work 

efficiency during pregnancy. However, the lack of a change in the net cost of cycling 

exercise, a non-weight-bearing activity, suggested that work efficiency was unchanged. 

The pattern and magnitude of changes in cycling metabolic rate were similar at three 

other work loads12, and consistent with results of other studies4*45. The lack of changes 

in TEM and netCMR during pregnancy indicate that in well-nourished women, 

pregnancy does not affect metabolic efficiency. 

The high variability in ARMR C U M was probably largely attributable to true between 

subject differences. Although age, nor parity influenced ARMR C U M , a significant 

association was observed with pre-pregnant body fat percentage. The total energy costs 

of pregnancy appeared to be positively related with pre-pregnant body fat percentage as 

well. The relationship between ARMR C U M and pre-pregnant body fat percentage was 
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earlier described by Prentice et aL46 (r=0.84, p<0.005, N=8), and certainly warrants 

further investigation. Neither age, nor parity appeared to influence (components of) the 

energy costs of pregnancy. As a result of the smaller increase of RMR during pregnancy 

in thinner women (Figure la), their total energy costs of pregnancy are lower compared 

to fatter women (Figure lb). This relationship was not the result of an association of 

birthweight with body fat percentage. Therefore, the lower ARMRCUM in thinner women 

suggests that the efficiency of energy metabolism was inversely related with pre-pregnant 

body fat percentage. 

Role of activity pattern in reducing energy expenditure 

Especially at the end of pregnancy when weight gain is large, the net cost of weight-

bearing activities, such as walking, might increase47. As metabolic efficiency does not 

improve during pregnancy, changes in total daily energy expenditure are caused by 

changes in RMR, changes in activity pattern and changes in the net cost of weight-

bearing activity. 

Our women significantly reduced their free living physical activity during pregnancy: 

active time reduced with 57 min/d and walking activity with 1.4 thousand steps/d, which 

was consistent with earlier observations in another group of Dutch women (active time: 

-70 min/d)9. If per day a woman would replace 1 h of sitting activity (about 6 kJ/min) 

or moderate exercise (about 15 kJ/min) by rest (about 4 kJ/min), energy savings 

between about 120-660 kJ/d could be established, which is in line with the general 

assumption of 360 kJ/d48. However, combination of 24hMR-, RMR- and DIT-data of a 

subgroup of 10 women revealed that for the days in the respiration chamber, when 

changes in the time spent sleeping or in supine rest were not allowed, the net cost of 

physical activity (netPA) decreased with about 308 kJ/d (-13%) or 80 MJ over the entire 

pregnancy (p=0.02) (Figure 2). This suggests that the amount and/or intensity of physical 

activity was reduced and is consistent with the observed reduction of Doppler- and 

Actometer counts during days in the respiration chamber13. Under free living conditions, 

the pre-pregnant netPA was about 3 MJ/d, or 30% higher than in the respiration 

chamber. This might imply that under free living conditions, larger energy savings by 

reduced activity could be established than in the respiration chamber. Subtraction of the 

energy savings by reduced active time (120-660 kJ/d) from pre-pregnant netPA (3 

MJ/d), leaves 2.88-2.34 kJ/d. If changes in the type and intensity of these remaining 
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net cost of physical activity (netPA, by subtraction). Pre-pregnancy values 

of 24hMR, RMR, DIT and netPA were, respectively: 8.56, 5.32, 0.89, and 

2.35 MJ/d. 

activities result in another 13% reduction of the net costs, as observed in the respiration 

chamber (370-300 kJ/d), the total savings by behavioural adaptations (reduced activity 

and changes in type and intensity of remaining activity) could amount to 490-960 kJ/d, 

or 127-250 MJ over the entire pregnancy. Thus, the average amount of energy saved by 

reduced physical activity might be substantially higher than the usual assumption of 100 

MJ. Because of the large between-subject variation in changes of physical activity during 

pregnancy, some women might even fully compensate the energy costs of pregnancy by 

reduced physical activity. 
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Longitudinal studies using the doubly labelled water (2H2
180) method could possibly 

give definite answers about the amount of energy saved by reduced physical activity. So 

far, two doubly-labelled water studies with conflicting results have been published7,36: the 

results of one study suggested that the net cost of physical activity were increased during 

pregnancy7, whereas in the other study these costs appeared to be unchanged36. 

The role of increased energy intake 

The small increase of energy intake in our women (43 ± 349 MJ over the entire 

pregnancy) is consistent with previous estimates for Dutch (22 MJ)2 and Scottish women 

(57 MJ, ref. 10), yet, the increase was much higher in 12 English women (203 MJ)7. The 

overall variability in the cumulative increase of energy intake is extremely high, and even 

if the impact of the large within-subject day-to-day variability in energy intake on this 

cumulative change is subtracted from the total variance, the variance remains high (SD 

221 MJ). This suggests that profound between-subject differences in the increase in 

energy intake during pregnancy exist. Some women might pay the energy costs of 

pregnancy largely by increased energy intakes. 

Conclusions 

The generally accepted assumptions about energy savings by reduced physical activity 

are probably too low. For the entire pregnancy, we estimated that energy savings by 

behavioural adaptation (127-250 MJ) plus increased energy intake (43 MJ) could 

amount to 170-293 MJ. The upper range of this estimate comes close to the estimated 

energy cost of pregnancy (335 MJ). As the energy costs of pregnancy might be slightly 

over-estimated and the increase in energy intake during pregnancy might be slightly 

under-estimated, our study suggests that the energy costs of pregnancy may be met by 

increased energy intakes plus energy savings by reduced physical activity. 

Changes during pregnancy in both energy intake and physical activity show very large 

between-subject variability. It seems reasonable to assume that women cope with the 

energy costs of pregnancy by either of these mechanisms or by a combination of the two. 

We conclude that as a result of the large differences between subjects in the way they 

cope with the energy costs of pregnancy, general energy intake recommendations for 

pregnancy are of limited use. Obviously, in obstetrical practice, deviations of body weight 

gain from the desired weight change could give rise to individual energy intake 
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recommendations. 
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THE EFFECT OF LACTATION ON RESTING METABOLIC RATE 

AND ON DIET- AND WORK-INDUCED THERMOGENESIS 

Caroline J.K. Spaaij, Joop M.A. van Raaij, 

Lisette C.P.G.M. de Groot, Lidwien J.M. van der Heijden, 

Harry A. Boekholt and Joseph G.A.J. Hautvast 

Abstract 

Energy metabolism was measured in 24 women before pregnancy 

and during lactation, 2 months post partum. Resting metabolic rate 

(RMR) increased with 0.17 ± 0.38 kJ/min during lactation, and 

postprandial metabolic rate (PPMR) showed a similar increase 

(0.17 ± 0.45 kJ/min). Thus, the thermic effect of the meal (PPMR 

minus RMR) was not affected by lactation. During lactation gross 

cycling metabolic rates (CMR) were slightly reduced. Net cycling 

metabolic rate (CMR minus RMR) tended to decrease with 0.6 

kJ/min at each work load, however, only at the the lowest work 

load (30 W) the change was statistically significant. Changes in 

metabolic rate during the recovery period after exercise were not 

significant, but resembled changes in RMR rather than changes in 

CMR. Thus, no major changes in metabolic efficiency occurred 

during lactation. The lactation-induced increase in RMR appeared 

to be positively related with body mass index, suggesting that the 

efficiency of breast milk production might related to body mass 

index. 
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Introduction 

Lactation causes substantial energy stress. WHO estimates the energy cost of lactation 

to be almost 3 MJ/d1. In a group of 40 lactating Dutch women, basal metabolic rate 

appeared to be reduced with 0.3 kJ/min at 9 wk after delivery compared to 12 wk 

gestation2. The hypothesis was raised that the efficiency of energy metabolism could be 

improved during lactation. However, in other longitudinal studies no such decrease in 

resting metabolic rate during lactation was observed3"6. The present study was carried out 

to investigate whether any of the three components of energy metabolism (resting 

metabolic rate, diet-induced thermogenesis and work-induced thermogenesis) show signs 

of metabolic adaptation during lactation. Pre-pregnant measurements were used as a 

baseline. Measurements were repeated at 2 mo after delivery, during lactation. 

Subjects and methods 

Study design 

Resting metabolic rate (RMR), postprandial metabolic rate (PPMR), cycling metabolic 

rate (CMR), post-cycling metabolic rate (PCMR), heart rate during and after cycling 

exercise (HRc and HRP), body weight (BWt), body fat mass (FM), energy intake, and 

habitual physical activity were measured in 24 healthy Dutch women before pregnancy 

and during lactation (9 wk post partum). Metabolic rate, heart rate and body weight 

measurements were carried out on two (N=5) or four (N=19) non-consecutive days 

before pregnancy and on two non-consecutive days after delivery. Afterwards it appeared 

that about half of the pre-pregnant measurement days fell in the preovulary and half in 

the postovulary phase of the menstrual cycle. Each measurement day was preceded by 

3 days, during which energy intake was kept relatively constant (maximal variation 

1 MJ/d), and macronutrient composition of the diet was standardized at 15 energy% 

protein, 50 energy% carbohydrate and 35 energy% fat. Body composition measurements, 

using under-water weighing and skinfold techniques, were performed on one out of two 

measurement days. At 4 wk post partum body weight and skinfold measurements were 

performed at the woman's home. Energy intake and habitual physical activity were 

determined about 2 wk preceding the first pre-pregnant measurement day, and in the 

week following the post partum measurement days (10 wk post partum). At 10 wk post 
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partum, breast milk intake of the infants was determined as well. 

At a measurement day the woman arrived fasting by car at the metabolic unit 

between 0700 and 0730. After voiding, body weight was measured. The woman was 

installed under a ventilated hood on a hospital bed, and after a 25 min period in which 

metabolic rate reached a steady state, RMR was measured during 35 min. A liquid meal 

was given and PPMR was measured during the subsequent 3 h. The woman was allowed 

to drink one or two cups of tea with or without sugar during a 20-30 min pause. She was 

then re-installed under the ventilated hood, and CMR and HRC were measured during 

a 25 min cycling programme. Throughout the subsequent 10.5 min, the woman remained 

seated on the cycle ergometer, but without body movements. In this period PCMR and 

HRP were measured. The subject had lunch, on one out of two measurement days 

followed by body composition measurements. 

Subjects 

For the recruitment of subjects, advertisements in local newspapers, and posters 

spread in public buildings were used. Participants were judged to be healthy by medical 

histories and urine analysis. They were all non-smokers. They were living in the town of 

Wageningen and surrounding areas and reflected middle-upper socioeconomic stratum. 

Their ethnic background was Caucasian. Further subject characteristics are given in 

Table 1. All women gave their informed consent. The study was approved by the Ethical 

Committee of the Department of Human Nutrition of the Wageningen Agricultural 

University. 

Infant breast milk intake 

The amount of breast milk ingested over a 5-d period was determined by weighing the 

infant before and after each feeding (test-weighing procedure) on an automatic, 

electronic balance (Babyscale model MBS 201, Weightec Ltd, New Haven UK; range 

0-10 kg). The mothers were instructed not to change the infant's diapers or clothes 

between the weight measurements before and after the feeding. 

Metabolic rate and respiratory quotient measurements 

Ventilated hood device. Metabolic rate was measured by open-circuit indirect 

calorimetry using the ventilated hood technique. A perspex hood (vol 30 L) with an air 
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TABLE 1 Subject characteristics (N=24). 

Mean ± SD 

Age (y) ' 29.8 ± 3.7 

Height (cm) 170 ± 7 

Body weight (kg) f 62.5 ± 8.7 

Body mass index (kg/m2) + 21.7 ± 2.3 

Body fat % (wt/wt %) ** 27.6 ± 5.2 

Parity t § 0.6 ± 0.7 

Length of gestation (wk) l 40.3 ± 1.2 

Weight gain during pregnancy (kg) ' 11.3 ± 3.1 

Placental weight (g) 640 ± 95 

Birth weight (g) " 3496 ± 282 

Baby length (cm) **t+ 51.2 ±5 .3 

Baby head circumference (cm) " n 36.7 ± 3.4 

* At onset of present pregnancy. 

t Before present pregnancy. 

t Estimated with densitometry using under water weighing. 

5 Nulliparae: N=12; pritniparae: N=ll; multiparae: N=l. 

| Length of gestation was derived from the first day of the womanfe last reported menstrual period; classification according to 

Hytten : 22 women "term" (259-293 d) and 2 women "postterm" (296 and 299 d). Twenty-three infants were delivered normally 

and 1 by Caesarian section. 

1 Last recorded weight during pregnancy (1-7 d before delivery) minus pre-pregnant weight, N=22 (same subjects as in Tabic 2). 

** Sex baby: female: N=13, male: N=11. 

t t Number of days after delivery: 12 ± 7 d (N=22). 

inlet on top and an air outlet at the right side, was placed over the head of the woman. 

During metabolic rate measurements the woman watched non-stressing video films. 

Mean values of Oz consumption (VOz in mL/min) and COz production (VC02 in 

mL/min) were printed every 2.5 min (RMR and PPMR measurements) or every 1.5 min 

(CMR and PCMR measurements). The zero and span points of the 0 2 and C02 
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analyzers were calibrated just before RMR and CMR measurements, using standard 

gasses (for the zero points 100% N2, for the span point of the C02 analyzer a gas mixture 

containing 0.6% C02) and fresh filtered atmospheric air (for the span point of the 0 2 

analyzer). 

Metabolic rate (MR, in kJ/min) was calculated from oxygen consumption (V02, in 

L/min) and carbon dioxide production (VC02, in L/min) using Weir's formula8: MR = 

16.3 V02 + 4.6 VC02. Respiratory quotient (RQ) was calculated as VCOz divided by 

vo2. 
Ethanol combustion tests were carried out at least once per month to validate the 

ventilated hood system. In each test about 25 g of ethanol was combusted in about 2 h. 

Instead of the ventilated hood, an airtight combustion chamber was linked to air inlet 

and air outlet. The reproducibility of the system was determined by 6 alcohol combustion 

tests for each ventilated hood device, carried out on separate days within a period of 2 

wk. Day-to-day coefficients of variation were 1.9% for MR and 1.9% for RQ. 

Measurement conditions of gross metabolic rates and respiratory quotients. RMR was 

measured during 35 min after 12 h fasting. On the day before a measurement day, the 

woman refrained from intensive physical activity. During the measurement the woman 

was lying in supine semi-recumbent position, and was in complete physical rest, but 

awake. The 25 min of rest preceding the RMR measurement appeared to be sufficient 

for reaching steady state level. 

PPMR was measured during the first 180 min following consumption of a testmeal. 

The conditions of the PPMR measurement were exactly the same as during the RMR 

measurement, except for the postprandial state. The testmeal consisted of 375 g yoghurt-

based liquid formula containing 1325 kJ (15 energy% protein, 30 energy% fat and 55 

energy% carbohydrate). The recipe was 581 g full-cream yoghurt, 323 g unsweetened 

orange juice, 65 g white sugar, 13 g sunflower oil and 18 g protein powder (Protifar* 

Nutricia Nederland BV, Zoetermeer, The Netherlands) per 1000 g. Testmeals were 

prepared in bulk in three batches, and stored at -20 °C. 

The cycling programme consisted of 25.5 min cycling exercise: for 7.5 min at 30 W, 

for 6 min at 45 W, for 6 min at 60 W, and for 6 min at 75 W. Only results from the last 

3 min at each work load were used for calculation of gross cycling metabolic rate 

(CMRgros;,). The women rotated the peddles with a frequency of 60 per minute. The 

women cycled with her back straight, and knees slightly bent with the peddle at its lowest 
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lowest position. Our cycle ergometer (type RH, Lode BV, Groningen, the Netherlands) 

was connected to a digital voltmeter (type DPM 339, Display Elektronika, Utrecht, the 

Netherlands) to facilitate accurate adjustments of work load. The ergometer was checked 

once a year and readjusted if necessary. 

Gross post-cycling metabolic rate (PCMRg^g) was measured during the first 10.5 min 

after finishing the cycling programme, while the subject remained seated on the cycle 

ergometer. 

Calculation of net metabolic rates. Thermic effect of the meal (TEM), net cycling 

metabolic rate (CMR^,), and net post-cycling metabolic rate (PCMR„et) were calculated 

by subtracting RMR from respectively PPMR, CMR and PCMRB 

Measurement of heart rate 

Heart rate was registered during the cycling programme and the subsequent recovery 

period. Heart rate was measured by an electrode belt, connected around the trunk of the 

subject, and transmitted to a wrist receiver, storing one value every 15 sec (type 

Sporttester PE-3000, Polar Electro KY, Kempele, Finland). Heart rate values were 

averaged and analyzed over the same time periods as cycling metabolic rates and post-

exercise metabolic rate. 

Body weight and fat mass 

Body weight was measured on an electronic balance (Berkel ED60-T, Rotterdam, The 

Netherlands). The density of the body was determined from body weight and body 

volume obtained by the underwater weighing technique, or estimated from the sum of 

four skinfolds (triceps, biceps, subscapular and supra-iliac)9. Body fat mass was calculated 

from body density, using the Siri equation10. 

Energy intake 

Food consumption was recorded over 5 consecutive days (Wednesday through Sunday) 

by the individual weighed-inventory technique as described earlier2'11. Basically this 

consists of weighing each item of food or drink immediately before consumption and 

repeating the procedure on leftovers. Weighing and recording was done by the woman 

herself using electronic scales incorporating a zeroing button and having a digital read 

out (type 1203 MP, Sartorius GMBH, Gottingen, FRG; weighing range 0-4000 g, 
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accuracy 1 g). Attention was drawn to the prime importance of not interfering with 

normal eating patterns. All food items recorded were converted into food codes 

according to the Dutch food encoding system12, the quantity per day was calculated, and 

the Dutch computerized food composition table was used12 for conversion to energy 

intake. 

Activity pattern 

On the days of the weighed food consumption record, the woman recorded the times 

of rising and going to bed, as well as the duration of any period spent lying during the 

day. From this we calculated active time, which was defined as the total period (min/d) 

during which the subject was not lying. On the same days, the woman carried a 

pedometer (Kasper & Richter, Uttenreuth, Germany) and recorded the read-out both 

when rising and when going to bed. Step size was not individually adjusted, but fixed at 

0.75 m/step, because of its variability during mixed activities. Walking activity is defined 

as the mean number of steps per day. 

Statistics 

All data are presented as mean ± SD. Data analysis was carried out using the 

programme provided by SAS (SAS Institute, Inc, Cary, NC). Shapiro and Wilk tests were 

used to evaluate whether data are normally distributed. Changes between pre-pregnant 

and post partum values were evaluated with paired Mests (significance level a=0.05). 

Body weight and body composition were determined in 3 instead of 2 measurement 

periods. Therefore, Tukey's studentized range tests (a=0.05) were used to evaluate 

changes in these parameters. Pearson correlation coefficients (r) were calculated to 

examine associations between pairs of variables. If a parameter was correlated with more 

than one variable, the general linear models (GLM) procedure of the SAS-package was 

used to investigate the association with the combination of variables. 

Results 

Breast milk output 

Breast milk consumption of the 2 month old babies was 718 ± 145 g/d (N=23, 1 

missing value, range: 566 to 969 g/d). Mothers fed their babies 5.4 ± 0.8 times per day. 
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TABLE 2 Body weight and fat mass before pregnancy and after delivery (N=22). 

Before 4 wk after 9 wk after 

pregnancy delivery delivery 

Body weight 62.5 ± 8.7A* 65.4 ± 9.6A 64.7 ± 9.6A 

Body fat mass 

under-water weighing 17.6 ± 4.9A - 19.9 ± 6.3 B * 

sum of four skinfolds 17.6 ± 4.9 A 18.8 ± 5.2 B 18.3 ± 5 . 3 A B t 

* On each row, means sharing the same letter are not significantly different (comparisons of 3 periods: Tukeys studentized range 

tests; comparisons of 2 periods: paired t-tests). 

t Significant difference between fat mass estimated with under-water weighing and skinfold techniques at 9 wk post partum (paired 

t-test; p=0.03). 

Body weight and body fat mass 

Body weight at 9 wk after delivery (64.4 ± 9.2 kg) was significantly above pre-

pregnant body weight (62.4 ± 8.5 kg) (paired t-test: p=0.002). In 2 women we failed to 

determine body weight and body composition at 4 wk post partum. Results of the 

remaining 22 women are presented in Table 2. Their weight retention at 9 wk post 

partum (2.1 ± 2.4 kg) was similar to that in the whole group (2.0 ± 2.7 kg). 

At 4 wk after delivery weight retention was 2.8 ± 2.8 kg. Body weight reduced 

significantly over the second month post partum (change from 4 to 9 wk after delivery: 

-0.7 ± 1.5 kg). At 4 wk after delivery, body fat mass estimated from the sum of 4 

skinfolds was significantly higher than the pre-pregnant value (+1.3 ± 2.3 kg, Table 2). 

From 4 to 9 wk after delivery, a significant reduction in the fat mass estimated from 

skinfolds was observed (-0.6 ± 1.1 kg). 

In the pre-pregnancy period, fat mass estimates from skinfold and under-water 

weighing techniques were similar, however, at 9 wk post partum, fat mass estimated from 

skinfolds was significantly lower than fat mass estimated by under-water weighing (paired 
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f-test,/?=0.03). Fat retention at 9 wk post partum was estimated to be 2.3 ± 2.5 kg with 

the under-water weighing technique and 0.7 ± 2.2 kg with the skinfold technique. 

At 4 wk post partum, body fat retention (skinfold technique) was significantly 

correlated with weight retention (r=0.86,/>=0.0001). Similar associations were observed 

for the increases of fat mass and body weight at 9 wk post partum above pre-pregnancy 

values (under-water weighing technique: r=0.87, p=0.0001; skinfold technique: r=0.91, 

p=0.0001). 

TABLE 3 Metabolic rates before pregnancy and during lactation. 

Measurement condition 

Gross metabolic rates 

RMR 

PPMR 

C M R ^ 30 W 

C M R ^ 45 W 

C M R ^ O W 

C M R ^ 75 W • 
P C M R ^ t 

Net metabolic rates 

TEM 

CMRnet 30 W 

CMRnet 45 W 

CMRnet 60 W 

CMRnet 75 W f 

PCMRne,t 

Before 

pregnancy 

3.80 

4.45 

14.5 

17.5 

21.0 

24.9 

8.5 

0.64 

10.7 

13.7 

17.2 

21.0 

4.6 

+ 

+ 

± 

± 

± 

± 

± 

± 

+ 

± 

± 

± 

± 

0.35 

0.35 

1.1 

1.2 

1.5 

1.6 

0.9 

0.11 

1.0 

1.1 

1.4 

1.5 

0.7 

During 

lactation 

kJ/min 

3.98 ± 

4.61 ± 

14.1 ± 

17.1 ± 

20.6 + 

24.4 ± 

8.7 + 

0.64 ± 

10.1 ± 

13.1 + 

16.6 ± 

20.4 ± 

4.7 + 

0.40 

0.46 

1.2 

1.4 

1.7 

1.9 

1.0 

0.15 

1.0 

1.2 

1.6 

1.7 

0.9 

Change 

+ 0.17 

+ 0.17 

-0.4 

-0.4 

-0.5 

-0.5 

+ 0.2 

-0.01 

-0.6 

-0.6 

-0.6 

-0.6 

+0.1 

+ 0.37 * 

± 0.45 

± 1.0 

± 1.4 

± 2.1 

+ 2.3 

+ 0.9 

± 0.20 

± 1.0* 

± 1.5 

± 2.1 

± 2.3 

± 1.0 

* Paired t-test: p < 0.05. 

t N = 20 (4 women had missing value). 
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Metabolic rate, heart rate and respiratory quotient 

Metabolic rates are presented in Table 3. During lactation, resting metabolic rate 

(RMR) was significantly higher than before pregnancy (+0.17 ± 0.37 kJ/min;/?=0.03), 

and a similar, but insignificant increase was observed in postprandial metabolic rate 

(PPMR) (+0.17 ± 0.45 kJ/min;p=0.09). The increase in PPMR was strongly correlated 

with the increase in RMR (r=0.88, p=0.0001). Gross post-cycling metabolic rate 

(PCMRgroJ tended to be increased as well ( + 0.22 ± 0.92 kJ/min), but the increase was 

not significant (p=0.29) nor related with the increase in RMR (r=-0.10, p=0.64). During 

lactation, gross metabolic rates during cycling exercise (CMRg^) tended to decrease, but 

the decrease was statistically not significant (for work loads from 30 to 75 W, p-values 

were respectively: 0.08, 0.20, 0.29 and 0.34). 

No changes were observed in the thermic effect of the meal (TEM), nor in the net 

recovery costs after the cycling programme (PCMRnet). The net costs of cycling exercise 

(CMRnet) tended to diminish with 0.6 kJ/min during lactation (Table 3), however, only 

at the lowest work load the change was statistically significant (from 30 to 75 W,/(-values 

were respectively: 0.01, 0.07, 0.16 and 0.24). 

TABLE 4 Respiratory quotients before pregnancy and during lactation. 

Measurement condition 

At rest, fasting state 

At rest, first 3h after meal 

Cycling at work load 30 W 

Cycling at work load 45 W 

Cycling at work load 60 W 

Cycling at work load 75 W * 

Post-cycling 0-10.5 min * 

Before 

pregnancy 

0.85 ± 0.03 

0.89 ± 0.02 

0.84 ± 0.04 

0.86 ± 0.03 

0.89 ± 0.03 

0.90 ± 0.03 

0.93 ± 0.05 

During 

lactation 

0.82 ± 0.03 

0.86 ± 0.02 

0.83 ± 0.04 

0.85 ± 0.04 

0.88 ± 0.05 

0.89 ± 0.04 

0.91 ± 0.06 

Change 

-0.03 ± 0.04 * 

-0.03 ± 0.03 * 

-0.01 ± 0.03 

-0.01 ± 0.03 

0.00 ± 0.04 

0.00 ± 0.04 

-0.02 ± 0.06 

* Faired t-test: p < 0.001. 

t N = 20 (4 women had missing value). 
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TABLE 5 Heart rates before pregnancy and during lactation. 

Measurement condition 

Cycling at work load 30 W * 

Cycling at work load 45 W * 

Cycling at work load 60 W * 

Cycling at work load 75 W f 

Post-cycling 0-10.5 min * 

Before 

pregnancy 

99 ± 13 

111 ± 14 

124 ± 16 

133 ± 14 

94 ± 12 

During 

lactation 

beats/min 

97 ± 12 

110 ± 14 

124 ± 17 

136 ± 15 

94 ± 11 

Change 

-2 ± 9 

-2 ± 9 

0 + 1 1 

+2 ± 14 

0 ± 10 

* N = 20 (4 women had missing value), 

t N = 17 (7 women had missing value). 

ARMR was significantly correlated with the body mass index at 9 wk post partum 

(r=0.43, />=0.04). However, neither body mass index (r=0.12, p=0.59), nor ARMR 

(r=-0.22, p=0.31) were significantly related with breast milk output. A similar 

association was observed between APPMR and body mass index (r=0.43, p =0.03). 

RQ was significantly below the pre-pregnant value during lactation under resting 

conditions in both the fasting state (-0.03 ± 0.04; p=0.0003) and the postprandial state 

(-0.03 ± 0.03; p=0.0001). However, no significant changes in RQ were observed during 

cycling exercise, nor during the recovery period after the cycling programme (Table 4). 

During lactation, heart rates during and after cycling exercise were similar to pre-

pregnant values (Table 5). 

Habitual energy intake and physical activity 

Energy intake was 9.61 ± 1.77 MJ/d before pregnancy and 10.24 ± 1.93 MJ/d during 

lactation. Thus, the women tended to increase their energy intake during lactation with 

0.63 ± 2.52 MJ/d (p=0.23). 

A significant reduction of active time occurred during lactation (before pregnancy: 912 
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± 37 min/d; during lactation: 868 ± 72 min/d; change: -45 ± 57 min/d, p=0.001). 

Walking activity decreased significantly as well (before pregnancy: 11.4 ± 3.5 lO^teps/d; 

during lactation: 9.3 ± 3.6 lO'steps/d; change: 2.1 ± 4.2 103steps/d,/7=0.02). 

Discussion 

The women in the present study were all healthy and well-nourished. Their weight gains 

during pregnancy (11.3 kg), length of gestation (40.3 wk), and the birth weights of their 

children (3496 g) were as expected for western women eating without restriction7'11. 

Breast milk output at 9 wk after delivery (718 ± 145 g/d) was within the normal 

range1,13"15 and similar to the value in a group of Dutch women studied previously (745 

±131 g/d, N=40)2. Assuming that energy content of breast milk is 3 kJ/g and that the 

efficiency of conversion is 80%1, lactation cost these women 2.69 ± 0.54 MJ/d, or 26.3% 

of their mean daily energy intake (10.24 MJ/d). Thus, the extra energy requirement 

during lactation was considerable in these women. 

Part of this extra energy requirement seemed to be realized by increased energy 

intake. Furthermore, the women appeared to save energy by reducing their physical 

activities during lactation. With the skinfold technique, body fat mobilization over the 

second month after delivery was estimated to be 0.55 kg over a 5-wk period, or 15.7 g/d, 

and thus might have yielded about 0.6 MJ/d, assuming that the energy equivalent of fat 

mass is 37.7 kJ/g16. The question remains whether improved efficiency of energy 

metabolism could be another way by which women meet the energy costs of lactation. 

Resting metabolic rate (RMR) increased with 4.5% after delivery. In a Swedish study, 

a similar (5%) increase in RMR above pre-pregnant baseline measurements was 

observed in 23 lactating women at 2 mo after delivery5, but in two other longitudinal 

studies RMR-values during lactation were similar to those after lactation had stopped3'4. 

The increase in RMR was significantly associated with post partum body mass index, but 

not with breast milk output. This suggests that in thinner women, the increase in RMR 

associated with breast milk production is lower than in fatter women. This finding needs 

further investigation. 

Postprandial metabolic rate (PPMR) showed changes similar to changes in RMR. As 

a result of this, the thermic effect of the meal (TEM) was unchanged, indicating that 

metabolic efficiency is not improved during lactation. Previous studies on the effect of 
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lactation on thermic effect of a meal were relatively small and showed conflicting 

results4,17,18. 

No significant changes in the gross metabolic rate during cycle ergometer exercise 

(CMRposs) were observed between the pre-pregnant and post partum period, although 

CMRg,^ decreased at each work load. During lactation, the net costs of the cycling 

exercise (CMRne,) tended to decreased with 0.6 kJ/min at each work load, but the 

decreases was only statistically significant at the lowest work load. Such small changes 

in CMRnet cound not bring about major energy savings on a daily basis. 

No significant changes were observed during lactation in the metabolic rate during the 

recovery period after the cycling program (PCMRg,^), but the mean change in 

PCMRg^ (+0.22 kJ/min) resembled the change in RMR (+0.17 kJ/min). The net 

recovery costs (PCMRnet) during lactation were very similar to pre-pregnancy value. 

The average energy output of breast milk was estimated to be 2.15 MJ/d (breast milk 

output 718 g/d, energy content of breast milk 3 kJ/g)1. The increase in RMR during 

lactation was 0.17 kJ/min or 0.25 MJ/d. Energy expenditure increased to a similar 

extend in the postprandial and post-exercise states and tended to decrease rather than 

increase during physical activity. We therefore do not expect that 24-h energy 

expenditure increases more than RMR. If we define the energy costs of lactation as the 

sum of the energy content of the breast milk and the increase of resting metabolic rate 

during lactation, the energy costs of lactation were 2.40 MJ/d or less. The efficiency of 

breast milk production, defined as the energy content of the breast milk divided by the 

total energy costs of lactation times 100%, was estimated to be 90% or higher. 

We conclude that healthy, normal-weight, lactating women seem to cope with the 

energy requirements of lactation by fat mobilization, by increasing energy intake and by 

reducing their physical activity. No general improvement of metabolic efficiency was 

observed, but the efficiency of breast milk production might related to body mass index. 

Acknowledgements 

We thank the participants for their invaluable cooperation; Frans Schouten and Jose 

Drijvers for their technical assistance and cooperation in data collection, doctoral 

students Fernie van Beest, Carola Beijen, Jeroen van Berkum, Polly Boon, Anne Linda 

van Kappel, Titia Lekkerkerk, Nadia Lysens, Saskia de Pee, Vera van Randwijk, 

89 



CHAPTERS 

Annelies Rietdijk, Hinke Stellingwerf, Cora Tabak, Rix ten Veen, Regina in 't Veld, 

Cisca Versluys, Mireille Westbroek, and Jantine van Woerden for general cooperation 

and their assistance in data collection. 

References 

1. World Health Organization. Energy and protein requirements. Geneva: WHO, 

1985. (WHO technical report series 724.) 

2. van Raaij JMA, Schonk CM, Vermaat-Miedema SH, Peek MEM, Hautvast JGAJ. 

Energy cost of lactation, and energy balances of well-nourished Dutch lactating 

women: reappraisal of the extra energy requirements of lactation. Am J Clin Nutr 

1991;53:612-9 

3. Guillermo-Tuazon MA, Barba C, van Raaij JMA, Hautvast JGAJ. Energy intake, 

energy expenditure, and body composition of poor rural Philippine women 

throughout the first 6 mo of lactation. Am J Clin Nutr 1992;56:874-80. 

4. Illingworth PJ, Jung RT, Howie PW, Leslie P, Isles TE. Diminution in energy 

expenditure during lactation. Br Med J 1986;292:437-41. 

5. Sadurskis A, Kabir N, Wager J, Forsum E. Energy metabolism, body composition, 

and milk production in healthy Swedish women during lactation. Am J Clin Nutr 

1988;48:44-9. 

6. Goldberg GR, Prentice AM, Coward WA, Davies HL, Murgatroyd PR, Sawyer 

MB, Ashford J, Black AE. Longitudinal assessment of the components of energy 

balance in well-nourished lactating women. 

7. Hytten FE. Weight gain in pregnancy. In: Hytten FE, Chamberlain G, eds. Clinical 

physiology in obstetrics. Part 2. Nutrition and metabolism. Oxford: Blackwell 

Scientific Publications 1980:193-233. 

8. Weir JB. New methods for calculating metabolic rate with special reference to 

protein metabolism. J Physiol 1949;109:1-9. 

9. Durnin JVGA, Wormersly J. Body fat assessed from total body density and its 

estimation from skinfold thickness: measurements on 481 men and women aged 

from 16 to 72 years. Br J Nutr 1974;32:77-97. 

10. Siri WE. Gross composition of the body. In: Lawrence JH, Tobias CA, eds. 

Advances in biomedical and medical physics. Vol IV. New York: Academic Press, 

90 



METABOLIC EFFICIENCY DURING LACTATION 

1956:239-80. 

11. van Raaij JMA, Schonk CM, Vermaat-Miedema SH, Peek MEM, Hautvast JGAJ. 

Body fat mass and basal metabolic rate in Dutch women before, during, and after 

pregnancy: a reappraisal of energy cost of pregnancy. Am J Clin Nutr 1989;49:765-

72. 

12. Nevo Foundation. Dutch food composition table 1985. The Hague. The 

Netherlands Bureau for Food and Nutrition Education, 1985 (in Dutch). 

13. Wallgren A. Breast milk consumption of healthy full-term infants. Acta Paediatr 

Scand 1945;32:778-90. 

14. Whitehead RG, Paul AA. Infant growth and human milk requirements: a fresh 

approach. Lancet 1981;2:161-3. 

15. Butte NF, Garza C, Stuff JE, O'Brian Smith E, Nichols BL. Effect of maternal diet 

and body composition on lactational performance. Am J Clin Nutr 1984;39:296-306. 

16. Grande F. Energy balance and body composition changes. Ann Intern Med 

1968;68:467-80. 

17. Motil K, Montandon CM, Garza C. Basal and postprandial metabolic rates in 

lactating and nonlactating women. Am J Clin Nutr 1990;52:610-5. 

18. Frigerio C, Schutz Y, Whitehead R, J6quier E. Postprandial energy expenditure 

in lactating and non-lactating women from the Gambia. Eur J Clin Nutr 1992;46:7-

13. 

91 



Chapter 6 

GENERAL DISCUSSION 

The primary aim of the present study was to investigate whether the efficiency of energy 

metabolism improves during pregnancy and lactation, which could be reflected by 

reduced diet-induced thermogenesis or improved work efficiency. Such metabolic 

adaptations would lower energy expenditure and could consequently help to explain the 

discrepancy observed between extra energy needs and extra energy intakes during 

pregnancy and lactation. 

In the present study, data were collected in well-nourished Dutch women. As a 

consequence of our recruitment procedure and of the large investment of time and effort 

required from the women, the participants of the study had a higher-than-average 

educational level, were from middle-upper socio-economic class, and had a relatively 

large interest in nutritional issues (about one out of three participants was educated 

and/or working in the field of medicine, nursing or dietetics). It seems reasonable, 

however, to assume that the physiological/metabolic changes during pregnancy which 

were the main interests in this study, are largely independent of these factors. 

Changes in metabolic efficiency during pregnancy and lactation 

The results of the present study strongly indicate that throughout the reproductive cycle, 

diet-induced thermogenesis remains unchanged compared to the pre-pregnant baseline 

value (Chapters 2 and 5). The study was designed to have a sufficient statistical power 

to detect a change of 15% in the thermic effect of the meal with 90% confidence. A 15% 

reduction would result in an energy saving of about 0.15 MJ/d, which is of modest 

physiological importance if compared to the energy costs of pregnancy (1.2 MJ/d) and 

lactation (3.1 MJ/d)1. However, the mean changes in the thermic effect of the meal 

observed in the present study were only 5% or lower. 

The study also indicates that no major changes in work efficiency occur during 

pregnancy (Chapter 3) and lactation (Chapter 5). Although the net cost of cycling 

exercise tended to be reduced in early pregnancy and during lactation, none of these 
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changes were statistically significant. In mid- and late-pregnancy the net costs of cycling 

exercise were similar to the pre-pregnant baseline. These results were in line with 

previous findings2"7. 

Standardized cycling exercise is generally considered a weight-independent activity. 

This assumption is of crucial importance to draw conclusions about changes in metabolic 

efficiency during advanced pregnancy: with a weight-independent activity, gestational 

weight gain will not interfere with effects of metabolic or physiological changes on the 

energy cost of the activity. Clearly, in early pregnancy and after delivery, when 

differences with pre-pregnant body weight are relatively small, this assumption is less 

important than in late-pregnancy. The results described in Chapter 3 show that the net 

cost of cycling exercise were positively related with body weight (r=0.53) and leg size 

(r=0.57). Therefore, the increases of body weight and leg size during pregnancy would 

be expected to cause increases in the net cost of cycling exercise. As no such change was 

observed in mid- and late-pregnancy, this might indicate that metabolic efficiency is 

somewhat improved. Yet, the practical importance of such improved metabolic efficiency, 

if present, is limited, because even with cycling activity, which is still relatively 

independent of body weight, no reduction in the net cost is observed. One would expect 

such small improvements of metabolic efficiency to be insufficient to compensate the 

impact of gestational weight gain on the net cost of weight-bearing activities such as 

walking. Still, an earlier study from our laboratory showed only a slight increase of the 

net cost of standardized treadmill exercise in late-pregnancy, but not in early- and mid-

pregnancy8. 

As neither diet-induced thermogenesis nor work efficiency appeared to change during 

pregnancy and lactation, our study indicates that no metabolic adaptations take place 

during the reproductive cycle. This leads us back to the initial question: to what extent 

are the energy costs of pregnancy and lactation met by increased energy intakes, by 

energy savings through behavioral adaptations and, in lactation, by body fat mobilization. 

Energy cost and energy balance during pregnancy 

The estimated energy cost of pregnancy were 335 MJ in our women (Chapter 4). The 

cumulative increase of resting metabolic rate and the gain in maternal fat stores 

accounted for respectively 56% and 29% of the total costs, leaving only 15% for the 
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'obligatory' component of the energy cost of pregnancy: the energy needed for growth 

of fetus, placenta, uterus, breast, blood, extravascular extracellular and amniotic fluids. 

As a result of extrapolating only three resting metabolic rate measurements during preg­

nancy to the entire pregnancy, the cumulative increase in the maintenance costs during 

pregnancy may have been over-estimated to some extent; even so, it seems unlikely that 

the energy costs of pregnancy in our subjects were below earlier observations9'10. 

As in previous studies, the cumulative increase in energy intake (43 MJ) was 

insufficient to meet these costs9"15. The variability of the increase in energy intake during 

pregnancy was very high: the standard deviation was 349 MJ. Certainly, part of this 

variability must have resulted from the high within-subject day-to-day variability in energy 

intake. Still, after extrapolating this 'random variance of single measurement days' to the 

cumulative increase in energy intake during pregnancy, and subtracting this variance from 

the total variance in extra energy intake, a large variance remained (SD 221 MJ), 

indicating profound between subject differences in the cumulative change in energy 

intake during pregnancy. We conclude that some of the women may have increased their 

energy intake enough to meet almost all the energy costs of pregnancy, whereas the 

increases in energy intakes of others were far below their additional energy needs. 

Energy savings during pregnancy by reduced physical activity were probably highly 

variable as well, although only crude indications can be obtained from our data. Our 

unique combination of energy expenditure measurements enabled us to estimate energy 

savings by reduced physical activity during days spent in the respiration chamber. 

Although the activity pattern on these days was more or less standardized, women were 

able to save about 0.3 MJ/d by changes in type and pace of activities. Under free-living 

conditions, women spent on average 1 hour more in bed during pregnancy than before 

pregnancy. Therefore, it seems reasonable to assume that under free-living conditions the 

reduction of physical activity could result in larger daily energy savings than observed in 

the respiration chamber, on average possibly about 0.7 MJ/d. With substantial between-

subject differences in the changes in physical activity during pregnancy, behavioural ad­

aptations might be almost sufficient for some women to cope with the energy cost of 

pregnancy, whereas others may save only little this way. 

Recommended energy intake during pregnancy 

The two main mechanisms by which women deal with the energy cost of pregnancy 
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(increased energy intake and reduced physical activity) are both extremely variable, and 

the energy cost of pregnancy show considerable between-subject variability as well. As 

a result, it is difficult, if not impossible to formulate useful recommendations for 

additional energy intake during pregnancy. Energy intake recommendations based on 

group averages might be far too high or too low for a specific woman. From a point of 

view of energy balance, it might be most appropriate to formulate energy intake 

recommendations on basis of a comparison of the observed gestational weight gain with 

the desired weight gain. 

The role of pre-pregnant body fat percentage 

Based on potential benefits and risks for fetal growth, perinatal mortality, and obesity 

onset, it seems useful to differentiate recommendations for gestational weight gain 

according to body mass index16. The importance of establishing sufficient weight gain 

during pregnancy appears to be inversely related with pre-pregnant body mass index. The 

weakening of the relationship between gestational weight gain and birth weight with 

increasing body mass index17"20, indicates that in heavy women, energy supplies to the 

fetus are generally sufficient, whereas in thin women, fetal growth is more dependent of 

maternal nutrition. In other words: energy balance appears to be more vulnerable in 

thinner than in fatter women. 

In our group of Dutch women (Chapter 4), and in a group of English women21, the 

cumulative increase of resting metabolic rate during pregnancy appeared to be positively 

associated with pre-pregnant body fat percentage. This association was not attributable 

to differences in birthweight, and therefore suggests that changes in metabolic efficiency 

during pregnancy might be inversely related with pre-pregnant body fat percentage. 

However, pre-pregnant body fat percentage appeared not to be associated with the 

change in the thermic effect of a meal or the changes in the net cost of cycling exercise 

during pregnancy. 

Energy cost and energy balance during lactation 

The energy costs of lactation consist of the energy content of the milk secreted plus the 

energy required to produce it. By weighing the baby before and after each feed, breast 

milk output at two months post partum was estimated to be 718 g/d. For calculating the 
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energy cost of lactation, the energy content of the milk was assumed to be 3 kJ/g and 

the conversion efficiency 80%1. Thus, lactation cost our women on average 2.7 MJ/d, 

which is within the normal range for western populations22"25, and about twice as high as 

their average daily energy cost of pregnancy. 

Energy intake tended to be increased above pre-pregnant energy intake during 

lactation ( + 0.6 MJ/d), but the change was statistically not significant. Body fat 

mobilization appeared to supply energy as well (0.6 MJ/d), which fits with the 

observation that during lactation, adipose tissue metabolism is directed towards fat 

mobilization26. Furthermore, a significant reduction in physical activity compared to the 

pre-pregnant situation was observed. 

The increase of resting metabolic rate during lactation was positively related with the 

body mass index in the post partum period, and this relationship was not attributable to 

differences in breast milk output. This finding resembles the positive association between 

the cumulative increase of resting metabolic rate during pregnancy and pre-pregnant 

body fat percentage, and certainly warrants more research. 

Recommended energy intake during lactation 

As extra energy requirements are higher during lactation than in pregnancy, it is 

difficult, or maybe impossible for lactating women to compensate all extra energy needs 

by reduced physical activity. More energy supplies are needed during lactation, which 

could be established by increased energy intake or by body fat mobilization. Fat 

mobilization during lactation could help to return to pre-pregnant body weight, and thus 

to prevent the onset of maternal obesity. However, from a toxicological point of view this 

fat losses during lactation might be unfavourable. Some environmental contaminants such 

as polychlorinated biphenyls27,29, and dioxins28,29 have been observed in breast milk. Their 

adverse effects do not outweigh the nutritional advantages of breast milk over bottle 

milk, however concentrations should be minimized as far as possible29. As these 

contaminants are fat soluble, they accumulate in adipose tissue. Maternal fat loss during 

lactation could therefore increase the concentration of these contaminants in breast 

milk27. Little is known about this relationship, but it might be desirable to avoid weight 

loss during lactation by means of a sufficient increase of energy intake. 
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Suggestions for future research 

We observed that the energy costs of pregnancy and the mechanisms by which women 

cope with these costs are highly variable. It is of interest to investigate if these aspects 

of the energy balance of pregnancy are associated with the characteristics of the subjects 

such as age, body mass index, and socio-economic status. Establishing the desired 

pregnancy outcome, especially those women with relatively high extra energy needs 

and/or little possibility to reduce their physical activity will depend on increases in 

energy intakes during pregnancy. To identify the characteristics of these women, large 

populations should be studied. Determination of the separate components of energy 

balance of pregnancy would be too expensive and time-consuming with such large study 

groups, and would interfere with the need for a heterogeneous study group. In a large 

epidemiological study, gestational weight gain could be a useful indicator for the energy 

balance during pregnancy: the characteristics of women with insufficient weight gains 

during pregnancy would implicitly distinguish those who could benefit most from 

increased energy intakes during pregnancy. 

Epidemiological data suggest that in obese women, gestational weight gain has little 

or no impact on fetal growth. To prevent these women from further weight gain, it could 

therefore be useful to aim with energy intake recommendations for obese women at 

maintaining constant body weight throughout gestation. However, before such 

recommendations could be made, more knowledge on the effects of energy intake and 

weight gain on pregnancy outcome in obese women is needed. 

From all aspects of the energy balance of pregnancy, estimates of the demand-side 

(the costs) are probably more reliable than those at the supplies-side of the balance 

(changes in energy intake and physical activity). Both changes in energy intake and in 

physical activity are known to be highly variable from day to day and it is difficult to 

obtain valid estimates of these factors without interfering with normal patterns. 

Therefore, the validity of estimated changes in energy intake and in physical activity 

warrants more research. 

During lactation, mother and child appear to have conflicting interests if maternal 

body fat mobilisation is concerned. Maternal body fat loss during lactation might increase 

the concentration of contaminants in breast milk, which could have adverse health effects 

for the breast-fed baby. The relationship between maternal fat loss and the concentration 
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of contaminants in breast milk should be addressed in future research. As environmental 

contaminants gradually accumulate in adipose tissue, fat stores of older mothers might 

contain more contaminants than stores of younger mothers. Thus, when studying this 

relationship, confounding by age should be avoided. It is also of interest to study whether 

the adverse effect of fat mobilization during lactation is more pronounced in older versus 

younger mothers. The lipolytic activity in adipose tissue seems to be increased during 

lactation. As a result of this metabolic change, lactation appears to be a period in which 

it might be relatively easy for the mother to bring her amount of body fat back to pre-

pregnant size. Therefore, fat mobilisation during lactation might be important for the 

prevention of gestational onset obesity. More knowledge about this latter factor is 

required as well. For the formulation of energy intake requirements during lactation, the 

pros and cons of maternal fat mobilization have to be weighed carefully against each 

other. 
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Summary 

Pregnancy and lactation involve extra energy needs, respectively to establish and 

maintain adequate weight gain, and to establish adequate breast milk production. Results 

of most previous studies show only small increases in energy intake during pregnancy. 

A reduction in physical activity could lower energy expenditure, however, such energy 

savings are assumed to be limited. Together, these two factors appeared to be insufficient 

to meet all energy costs of pregnancy. It has therefore been postulated that during preg­

nancy, energy expenditure is further reduced by improved efficiency of energy meta­

bolism. Such improved metabolic efficiency could be reflected in reduced diet-induced 

thermogenesis, and increased work efficiency. 

The latter hypothesis was studied using a longitudinal study design. Changes in the 

thermic effect of a meal and in the net cost of cycling exercise were estimated in a group 

of 26 women, along with their energy costs of pregnancy and lactation, and with changes 

in energy intake and physical activity. Baseline values were obtained before conception, 

and the measurements were repeated in wk 12-14, 23-25 and 34-36 of gestation, and at 

9-10 wk after delivery. In a subgroup of 10 women, additional measurements of 24-hour 

metabolic rate were carried out in each period except post partum. 

The results showed no changes in diet-induced thermogenesis or work efficiency 

during pregnancy (Chapters 2 and 3) and lactation (Chapter 5), in other words, no signs 

of metabolic adaptation were observed. Taking the statistical power of the study into 

account, it seems highly improbable that physiologically important changes in either of 

these two parameters occur during pregnancy and lactation. 

As no metabolic adaptations appear to take place during pregnancy, the magnitude 

of the imbalance between the energy costs of pregnancy on the one hand, and extra 

energy intakes and energy savings through behavioural adaptations on the other hand 

(Chapter 4) was re-evaluated. The estimated total energy cost of pregnancy was 335 MJ. 

The cumulative increase of resting metabolic rate during pregnancy and the gain in 

maternal fat stores accounted for respectively 56% and 29% of the total costs, leaving 

only 15% for growth of fetus, placenta, uterus, breast, blood, extravascular extracellular 

and amniotic fluids. The cumulative increase in energy intake (45 MJ) was insufficient 

to meet these costs. Combining all energy measurements lead to the suggestion that the 

energy savings during pregnancy by reduced physical activity might be higher (125-250 
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MJ) than the usual assumption of 100 MJ. Extra energy intakes plus behavioural 

adaptation might thus together amount to 170-295 MJ. The upper range of this estimate 

is only slightly below the estimated energy cost of pregnancy (335 MJ). 

The energy costs of lactation were estimated to be 2.7 MJ/d. During lactation, energy 

intake tended to increase above pre-pregnant energy intake ( + 0.6 MJ/d), though the 

change was statistically not significant. Body fat mobilization appeared to supply energy 

as well (0.6 MJ/d, statistically not significant). A significant reduction in physical activity 

compared to the pre-pregnant period was observed. As described above, energy saving 

up to about 1 MJ/d might be established by such behavioural adaptation. Together, these 

three factors might account for about 2.2 MJ/d, which is only slightly below the 

estimated energy cost of lactation. 

We cannot exclude that the increase in energy intake during pregnancy and lactation 

might be slightly under-estimated, as under-reporting of dietary intakes might become 

more pronounced when dietary records are repeated. Therefore, the observed differences 

between the energy costs of pregnancy and lactation on the one hand, and extra energy 

intakes plus energy savings by reduced physical activity on the other hand, might in 

reality be non-existent. 

The energy cost of pregnancy and lactation vary substantially between women, and 

the two main mechanisms by which women deal with these costs (extra energy intake and 

reduced physical activity) show large between subject variability as well. Therefore, 

energy intake recommendations based on group averages may be far too high or too low 

for a specific woman. The identification of parameters by which more homogeneous 

subgroups of women could be characterised, might lead to improved recommendations 

for energy intake for these subgroups of women. 
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Samenvatting 

Tijdens de zwangerschap en de lactatie (het geven van borstvoeding) is de 

energiebehoefte verhoogd: tijdens de zwangerschap is energie nodig voor het 

bewerkstellingen en handhaven van de gewenste gewichtstoename en tijdens de lactatie 

is energie nodig voor de aanmaak van moedermelk. Uit voorgaand onderzoek is 

gebleken dat vrouwen tijdens de zwangerschap hun energieinneming nauwelijks 

verhogen. Door vermindering van lichamelijke activiteit kan het energieverbruik verlaagd 

worden, maar algemeen wordt aangenomen dat dergelijke besparingen beperkt zijn. 

Deze twee factoren, extra energieinneming en energiebesparingen via een verlaagd 

activiteitenpatroon, lijken tezamen onvoldoende energie op te leveren om in de extra 

energiebehoefte tijdens de zwangerschap ('de kosten') te voorzien. Een dergelijke 

discrepantie is ook geconstateerd tussen enerzijds de kosten van de lactatie, en anderzijds 

de extra energieinneming, de energie die beschikbaar komt door verbranding van 

lichaamsvet, en energie-besparingen via vermindering van activiteit. Daarom is gesugge-

reerd dat het energieverbruik tijdens de zwangerschap en de lactatie mogelijk verder 

wordt gereduceerd via een verhoogde efficientie van de energiestofwisseling. Een derge­

lijke 'metabole adaptatie' zou kunnen blijken uit een verlaging van de 'door voeding ge-

induceerde thermogenese' (de energie die nodig is om een maaltijd te verteren en ver-

werken) of uit een verhoogde arbeidsefficientie. 

Het in dit proefschrift beschreven longitudinale onderzoek is opgezet om de 

bovenstaande hypothese te toetsen. Bij een groep van 26 vrouwen werd bestudeerd of 

de 'door voeding geinduceerde thermogenese' en de arbeidsefficientie veranderden 

tijdens de zwangerschap en na de bevalling ten opzichte van de periode v66r conceptie. 

Bij deze vrouwen werden tevens de kosten van de zwangerschap, veranderingen in 

energieinneming en veranderingen in lichamelijke activiteit geschat. Metingen werden 

verricht v66r de zwangerschap, in de weken 12-14, 23-25 en 34-36 van de zwangerschap 

en tenslotte 9-10 weken na de bevalling. Bij een subgroep van 10 vrouwen werd ook het 

totale dagelijkse energieverbruik gemeten in de meetperiodes v66r en tijdens de 

zwangerschap, echter niet na de bevalling. 

De onderzoeksresultaten lieten tijdens de zwangerschap g66n veranderingen zien in 

de 'door voeding geinduceerde thermogenese' (Chapter 2) en in de arbeidsefficientie 

(Chapter 3). Ook tijdens lactatie bleven beide factoren onveranderd (Chapter 5). Gezien 
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de onderzoeksopzet, de gebruikte meettechniek en het relatief grote aantal vrouwen 

waarop de resultaten gebaseerd zijn, is er slechts een kleine kans dat de energie-

stofwisseling in werkelijkheid w61 efficienter wordt tijdens de zwangerschap en/of de 

lactatie, terwijl dat in dit onderzoek niet gevonden werd. Geconcludeerd wordt dat er 

waarschijnlijk g6en metabole adaptaties van belang optreden tijdens zwangerschap en 

lactatie. 

Gezien deze onderzoeksresultaten is opnieuw het verschil geschat tussen enerzijds 

de kosten van de zwangerschap en anderzijds de extra energieinneming en besparingen 

via verlaagde activiteit. De totale kosten van de zwangerschap werden geschat op 335 MJ 

(Chapter 4). De cumulatieve stijging van de ruststofwisseling over de zwangerschap en 

de toename van de vetreserve van de moeder hadden een aandeel van respectievelijk 

56% en 29% in deze kosten. Slechts 15% van de kosten kwamen voor rekening van de 

groei van baby, placenta, baarmoederweefsel, borstweefsel, bloed en vruchtwater. De 

totale extra energieinneming werd geschat op 45 MJ, en leek dus ook bij deze vrouwen 

onvoldoende om de kosten van de zwangerschap te dekken. Door combinatie van alle 

energieverbruiksmetingen werden aanwijzingen verkregen dat de besparingen door 

verlaagde fysieke activiteit mogelijk groter zijn (125-250 MJ) dan voorheen werd 

aangenomen (100 MJ). Tezamen zouden de extra energieinneming en de activiteits-

verandering 170-295 MJ op kunnen leveren. De bovengrens van deze nieuwe schatting 

ligt dicht bij de geschatte kosten van de zwangerschap. 

De kosten van de lactatie werden geschat op 2.7 MJ/d. Tijdens de lactatie leek de 

energieinneming verhoogd ten opzichte van v66r het begin van de zwangerschap, de 

geschatte extra energieinname was 0.6 MJ/d, maar deze stijging was statistisch niet 

significant. Ook leek tijdens de lactatie mobilisatie van lichaamsvet op te treden 

(statistisch niet significant), hetgeen naar schatting eveneens 0.6 MJ/d opleverde. De 

lichamelijke activiteit was significant verlaagd ten opzichte van de periode v66r aanvang 

van de zwangerschap. Zoals hierboven beschreven, lijken dergelijke gedragsadaptaties 

aanzienlijke besparingen op te kunnen leveren, tot circa 1 MJ/d. Door extra 

energieinneming, mobilisatie van lichaamsvet en energie-besparingen via verminderde 

activiteit kwam in totaal 2.2 MJ/d beschikbaar, hetgeen slecht iets lager is dan de kosten 

van de lactatie. 

Het kan niet worden uitgesloten dat de toename van de energieinneming tijdens de 

zwangerschap en de lactatie licht onderschat is: eerder onderzoek heeft aangetoond dat 
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bij het herhalen van voedselconsumptieonderzoek de onderrapportage toe kan nemen. 

Daarom lijkt het aannemelijk dat vrouwen in werkelijkheid volledig kunnen voorzien in 

de kosten van de zwangerschap en de lactatie door extra energieinneming, energie-

besparingen door vermindering van fysieke activiteit en, tijdens de lactatie, door het 

aanspreken van de vetreserves van het lichaam. 

Tussen vrouwen onderling bestaan aanzienlijke verschillen in de energiekosten van 

zwangerschap en lactatie. Ook de twee belangrijkste mechanismen waarmee vrouwen in 

deze kosten voorzien (extra energieinneming en vermindering van activiteit) lijken sterk 

te verschillen. Daarom zullen aanbevelingen voor energieinneming tijdens zwangerschap 

en lactatie, wanneer deze gebaseerd zijn op dergelijke heterogene groepen, voor de ene 

vrouw te hoog zijn en voor de andere te laag. In de praktijk zullen aanbevelingen voor 

energieinneming tijdens zwangerschap en lactatie pas bruikbaar zijn als deze gericht zijn 

op meer homogene groepen. Vervolgonderzoek is nodig om dergelijke groepen te 

karakteriseren. 
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