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STELLINGEN 

1. De afwezigheid van dode cellen in natuurlijke grond wordt niet 
aangetoond door de waarneming van Bohlool en Schmtdt, dat dode 
rhizobium cellen, die zijn aangehecht aan objectglaasjes, verdwijnen 
na ingraven van deze objectglaasjes in grond (Bottomley en Dughri). 

B.B. Bohlool en E.L. Schmidt. 1973. Soil Sci. Soo. Am. Proc. 37:561-564. 

P.J. Bottomley en M.H. Dughri. 1989. Appl. Environ. Microbiol. 55:959-964. 

2. Het vochtgehalte van de grond voor inoculatie is van wezenlijk 
belang voor de overleving van geintroduceerde bacterien. 

Dit proefschrift. 

3. Indien op de Y-as van Figuur 3 uit het artikel van Vargas en Hattori 
geen log aantal cellen/g grond maar 105 cellen/g grond had gestaan, 
dan hadden de punten in de grafiek goed overeengekomen met de 
aantallen genoemd in de tekst. 

R. Vargas en T. Hattori. 1986. FEMS Microbiol. Ecol. 38:233-242. 

De verminderde afname van het aantal geintroduceerde bacterien in 
natuurlijke grond na toevoeging van een protozoeremmer en de conclu-
sie dat protozoen de belangrijkste oorzaak zijn van de teruggang van 
het aantal geintroduceerde bacterien (Habte en Alexander), is 
prematuur gezien het in dit proefschrift gevonden synergetisch 
effect van de combinatie van predatie en concurrentie met andere 
microorganismen. 

M. Habte en M. Alexander. 1975. Appl. Microbiol. 29:159-164. 

M. Habte en M. Alexander. 1977. Arch. Microbiol. 113:181-183. 

5. De uitspraken van Alexander geven geen eenduidig uitsluitsel over 
het al dan niet voorkomen van selectieve predatie door protozoen van 
autochtone, dan wel geintroduceerde bacterien. 

W.L. Chao en M. Alexander. 1981. Soil Sci. Soc. Am. J. 45:48-50. 

J.J. Pena-Cabriales en M. Alexander. 1983. Soil Sci. Soc. Am. J. 47:241-245. 

De waarneming van Kilbertus dat porien in verschillende gronden 
gemiddeld een drie maal zo grote diameter hebben als de zich erin 
bevindende bacterien of bacteriekolonies, impliceert wel een heel 
letterlijke betekenis van survival of the "fittest". 

G. Kilbertus. 1980. Rev. Ecol. Biol. Sol 17:543-557. 



In grond is ruimte geen beperkende factor voor de overleving van 
bacterien, ook al biedt maar een deel van de totale porie-ruirate in 
grond mogelijkheden voor overleving van bacterien ('habitable pore 
space') of bescherming tegen predatie door protozoen ('protective 
pore space'). 

Dit proefschrift. 

Dat Applied and Environmental Microbiology zijn kolombreedte aan-
geeft met 3 5/i6 inch, is weinig consequent met de expliciete eis 
dat, ook in de aan dit tijdschrift aangeboden artikelen, Sl-eenheden 
gebruikt moeten worden. 

Als vervolg op de studie van Kircz naar het profiel van de vrouw van 
de promovendus, rechtvaardigt de achterstand van het aantal vrouwe-
lijke promovendi een vervolgstudie naar het profiel van de partner 
van de promovenda. 

J. Kircz. NRC Handelsblad 16-2-1984. 

10. Het invoeren van een dalurenkaart voor museumbezoek tijdens stille 
uren (Westermann) biedt in de toekomst mogelijkheden om verder te 
bezuinigen op de studiefinanciering. 

M. Westermann. 1989. Quote 4 p. 25. 

11. Er zijn geen woorden voor de blindheid voor dyslexie. 

12. Hoewel het begrip biologische controle in veel gevallen toepasselij-
ker is dan het begrip biologische bestrijding, verraadt de gebruiker 
hiermee zijn niet-planteziektenkundige achtergrond. 

Stellingen behorende bij het proefschrift 'Distribution and population 
dynamics of Rhizobium sp. introduced into soil', J. Postma. 
Wageningen, 22 September 1989. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL SCOPE 

In the past decades, bacteria have frequently been introduced into the 

soil to improve crop production. Direct beneficial effects arise when the 

bacteria provide the plant with useful products. This is the case with 

free-living and symbiotic bacteria (e.g. Rhizobium spp.) [50,51] which 

are able to fix atmospheric nitrogen. Moreover, soil bacteria may enhance 

the mineral uptake of plants, for example by solubilization of phosphate 

in soil, and the production of auxins, gibberelin and cytokinin-like 

substances may stimulate root development [14]. Beneficial effects of 

rhizosphere-colonizing bacteria also occur from the suppression of soil-

borne pathogens. Mechanisms such as the production of antibiotics, myco-

parasitism, competition for nutrients and cell wall degrading enzymes are 

suggested to be responsible for this suppression [41]. Bacteria have also 

been applied to soil for the degradation of xenobiotics [38,44]. It is 

clear that the introduction of bacteria in soil, as biofertilizers or as 

biological control agents, can diminish the application of chemical 

fertilizers and pesticides, whereas xenobiotic-degrading bacteria offer 

possibilities to reduce environmental problems with soil pollution. Due 

to recent advances in molecular biology, opportunities are created to 

improve bacterial strains by genetic engineering [14,35,50] and the 

introduction into soil of beneficial bacteria has become an important 

issue. 

For a successful application of bacteria, the establishment and survi­

val of the newly introduced bacterial population is necessary. However, 

numbers of bacteria have been found to decrease drastically after their 

introduction [18], so that heavy inocula were applied to increase their 

chances of survival. Introduced bacteria are thought to be less adapted 

to the soil than the autochthonous population [22] and soil usually 

reacts as a biological buffer against nonresident bacteria [6]. Abiotic 

factors, such as temperature, pH, salinity, moisture content, substrate 

availability and presence of oxygen are important for the survival of 



bacteria. In general, high population levels of introduced bacteria can 

exist in soil when sterilized [33,52]. Thus, abiotic factors are not 

the only factors responsible for the low survival rates of the introduced 

bacteria. The decline of bacteria introduced into natural soil has been 

attributed mainly to predation by protozoa and to competition with other 

microorganisms [25,48,52]. Other possibilities such as microorganisms 

capable of producing antibiotics or lytic enzymes, bacteriophages and 

Bdellovibrio were suggested to be less important [1,24,48]. 

Soil type was found to influence the survival of introduced bacteria 

[18], as well as the numbers of indigenous bacteria [7] and the activity 

of the soil microflora [60]. Differences between the soil types in their 

pore size distribution and water relationships affect the habitable space 

for soil organisms [17]. Therefore, texture and structure are recognized 

more and more as key factors in the control of biological interactions in 

soil [17,59,61]. 

Since soil is a heterogeneously structured system, composed of a diver­

sity of microhabitats [22,53], knowledge about bulk parameters is not 

sufficient to understand the processes in soil. It is the microenviron-

ment of the bacteria that determines their survival and activity. 

Although the occurrence of favourable microhabitats for bacteria in soil 

is generally accepted [22,31,32,39,43], precise data about the distribu­

tion of introduced bacteria over such microhabitats in soil are scarce. 

Knowledge about the spatial distribution of bacteria in soil and methods 

applicable for such studies, are discussed in the following paragraph. 

For a better understanding of the ecology of bacteria introduced into 

soil, the research done in this thesis focussed on the spatial distribu­

tion of introduced bacteria through the soil matrix. This thesis work was 

part of an exchange programme between Germany and the Netherlands. In the 

German counterpart research project the role of reserve materials on 

survival of bacteria introduced into soil was examined by U. Hoff 

(Institute for Soil Biology, FAL, Braunschweig, FRG). 

1.2 DISTRIBUTION OF BACTERIA IN SOIL 

The possibility of studying the distribution of bacteria on a micro-

scale in a complex system like soil is limited by the availability of 

techniques. Therefore, possibilities and problems of different approaches 

to study the bacterial distribution in soil are discussed here first. 

Microscopic techniques are hampered by the large proportion of opaque 



solid particles compared to the small size of bacteria. In situ observa­

tion of bacteria in soil is not possible, but soil samples embedded in 

resin or plastic can be used so that the soil is not disturbed during the 

preparation of sections. Ultrathin sections, prepared using ultramicro-

tomy, can be observed with transmission electron microscopy (TEM). 

However, ultrathin sections of large areas of the soil fabric are 

technically difficult to produce [19] and sand grains damage the diamond 

knives. Scanning electron microscopy (SEM) has the advantage that 

polished blocks and even non-embedded frozen soil can be viewed ("cryo-

scan") [11]. Bacteria have been seen by SEM in systems with only clay 

minerals [15] and in clayey soils [26], but it was found to be difficult 

to distinguish bacterial cells from other soil components. Cells embedded 

in soil particles are invisible with SEM and the contrast between cells 

and their background is relatively poor [56]. According to Hagen et al. 

[26], the minimal number of microorganisms required for detection with 

SEM was between 10 and 10 cells per gram of soil. 

Bacteria in thin sections prepared from embedded soil have also been 

observed with light microscopy after the bacteria were stained with a 

diachrome [2,36]. Fluorochromes would appear more suitable to stain and 

observe bacteria on opaque particles, since incident illumination can be 

used. Fluorochromes have been applied to thin soil sections [3-5,54,55], 

however, a reliable technique for staining bacteria in situ has not been 

described yet. 

Microscopic observations of disturbed soil samples can give information 

about, for example, clustering of cells, occurrence of bacteria on 

organic or mineral particles, but not on the type and size of pores in 

which bacteria occur. In order to minimize the disturbance between 

bacteria and their natural surrounding Casida [10] used a special soil 

incubation chamber, whereas also microscope slides [40,57] and glass 

capillaries [9,47] have been buried in soil and recovered from time to 

time to be monitored. Others studied individual soil particles or aggre­

gates [34,42] and surface films of soil crumps [8,27,62] with various 

microscopic techniques. However, with most of these techniques, only the 

surface of aggregates and soil particles could be examined. 

One of the major problems of the present microscopical techniques is 

their inability to distinguish between viable and dead bacteria. However, 

the detection of specific bacteria is possible when antisera conjugated 

with a fluorochrome are applied. 

Another approach to study the bacterial distribution in soil is the 



preparation of different fractions by washing, wet sieving, dry sieving 

or density gradient centrifugation. In this way, soil particles of 

different sizes and densities with their associated bacteria are 

separated. Enumeration of the bacteria in the obtained fractions may 

provide indirect information about the distribution of bacteria over 

different microhabitats in soil. The advantage of such an approach is 

that bacteria can easily be quantified and that only viable cells are 

enumerated by using plate counts. 

Hattori [28,29,30] proposed a 'washing-sonication method' which is 

based on the idea that water-stable aggregates can be washed gently to 

remove microbial cells from the outer part, whereas those in the inner 

part can be dispersed by sonic oscillation. The reliability of this 

hypothesis was assessed in several experiments. Interesting information 

about soil aggregates as microhabitats of bacteria was obtained with 

these experiments. 

The distribution of bacteria in soil is neither random nor uniform. 

Their distribution echoed the distribution of organic matter in soil 

[12]. Using TEM, colonies or single cells associated with cellular 

remnants, faecal materials or amorphous organic matter have been observed 

[20]. Microscopic observations of the abundancy of cells on different 

types of soil particles, showed that the organic matter, which represen­

ted only 15% of all particles in soil, contained approximately 60% of the 

attached bacterial population [34]. Moreover, it was estimated that only 

0.02% of the sand grain and 0.17% of the organic surfaces were occupied 

by bacteria [34]. The relative higher occupation of organic matter by 

bacteria was also detected with wet sieving: 2.2% organic matter, 83.8% 

sand and 14.0% silt and clay particles contained 41.7, 12.0 and 46.3%, 

respectively, of the culturable bacteria in soil [37]. The use of a 

nutrient-poor medium for the enumeration of bacteria, resulted in higher 

percentages of bacteria isolated from the sand particles [37]. 

Aggregates are also expected to be favourable habitats for bacteria. 

Hattori [31,32] suggested a distinct distribution of bacteria over the 

inner part of aggregates, containing capillary pores, and the outer part 

of aggregates, containing wider pores and the surface of aggregates. The 

inner part provides protection against water fluctuations and toxic 

compounds such as ethylene dibromide and HgCl2 [30,32]. Gram-negative 

bacteria were relatively more abundant in the inner part than in the 

outer part, whereas most bacteria in the outer part were in sporeform 



[31]. Moreover, anaerobic bacteria were present in the inner part of soil 

aggregates of paddy soil [63] . The detected importance of small pores 

agreed with TEM observations in which bacteria were most frequently 

observed in pores of 1-2 /jm in diameter, whereas 80-90% of the cells 

occurred in pores of 0.8-3 /jm in diameter [39]. Interestingly, in three 

soils a consistent ratio of 1:3 between the mean diameter of bacteria or 

microcolonies and the mean diameter of pores was detected [39]. The 

pores in which bacteria occurred, had multiple or single entrances and 

seemed sometimes completely closed [39]. Moreover, bacteria in interiors 

of micropores and mucigel deposits were found to be protected against 

chloroform treatment [20]. Other microscopic results showed that the 

numbers of colonies consisting of >6 bacterial cells were constant or 

decreased from the periphery to the centre of aggregates in two different 

soils assessed [36]. 

Bacteria can occur as single cells or as microcolonies [20,21]. Large 

groups of cells were observed on the surfaces of soil particles and 

aggregates [21,27,62]. The occurrence of microcolonies decreased with 

depth [6] and varied with soil particle type [49]. Bacillus subtilis 

occurred generally in small colonies (4-5 cells) on organic particles, 

but on mineral particles only 1-2 cells were grouped together [49]. 

The presented information clearly shows the existence of microhabitats 

which are favourable for survival of indigenous bacteria. In contrast to 

indigenous bacteria, which are thought to be mostly associated with soil 

particles [16,45,46], introduced bacteria are suggested to be located in 

relatively open areas, more exposed to soil stress factors [59]. After 

the introduction of Bradyrhizobium japonicum, the number of free bacteria 

decreased faster than those associated with soil particles [46]. Many 

authors speculated about the presence of protective niches for introduced 

bacteria [13,24,33,52,59], but only Vargas and Hattori [58] presented 

evidence for such a phenomenon. They found that after introduction of 

protozoa and bacteria into sterilized soil, mainly the bacteria in the 

outer part of aggregates were predated [58]. 

1.3 OUTLINE OF THIS THESIS 

In this thesis, two soil types were used: a loamy sand and a silt loam. 

Both were Dutch arable soils, but differed in their particle size distri­

bution, organic matter content, pH, CaC03, as well as their cation 

exchange capacity (CEC) [18]. As a result pore diameter distribution and 



soil water retention functions were also different (Fig. 1 in Chapter 4 ) . 

Rhizobium leguminosarum biovar trifolii strain R62, which is a symbiotic 

nitrogen-fixing bacterium, was used as a model organism to investigate 

the effect of the distribution in soil on the population dynamics of 

bacteria introduced into soil. Specific antisera and reliable antibiotic 

resistance markers could be obtained with this bacterium. Moreover, it 

was able to produce substantial amounts of reserve material. This was a 

prerequisit for the counterpart research project where the influence of 

such storage materials on the survival of introduced bacteria had to be 

assessed. 

Two methods for the specific enumeration of bacteria after introduction 

into soil have been compared (Chapter 2) : selective plating using an 

antibiotic-resistant strain and quantitative immunofluorescence. To be 

able to study the spatial distribution of the organism in soil, different 

fluorochromes (including FITC-conjugated antiserum) were tested for their 

ability to stain bacteria in thin soil sections (Chapter 3). In addition, 

a method which separated freely occurring bacteria from bacteria associa­

ted with soil particles or aggregates was developed (Chapter 4 ) . 

Emphasis on techniques was followed by studies on the influence of the 

spatial distribution in soil on the population dynamics of the introduced 

bacteria. The effect of inoculating soil at different initial moisture 

contents on the distribution as well as on the population dynamics of 

rhizobial cells, was first assessed in natural soil (Chapter 4 ) . For a 

better understanding of the basic processes that control the survival of 

introduced bacteria in natural soil, the role of competition and 

predation was studied (Chapter 5) . The influence of attachment to soil 

particle surfaces was studied with a R. leguminosarum strain and three 

mutants which were altered in their cell surface properties (Chapter 6). 

The capacity of soils to contain bacterial populations was investigated 

(Chapter 7 and 8) . The occurrence of final population levels of introdu­

ced bacteria in sterilized and natural soil was studied in more detail by 

using different inoculum densities (Chapter 7), whereas the magnitude and 

importance of the habitable pore space in supporting these population 

levels was discussed in Chapter 8. 
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CHAPTER 2 

THE DYNAMICS OF RHIZOBIUM LEGUMINOSARUM BIOVAR TRIFOLII 

INTRODUCED INTO SOIL AS DETERMINED BY IMMUNOFLUORESCENCE AND 

SELECTIVE PLATING TECHNIQUES 

ABSTRACT 

After the introduction of Rhizobium leguminosarum biovar trifolii into 

a loamy sand and a silt loam, high recovery percentages were determined 

using quantitative immunofluorescence. Soil type, but not inoculum densi­

ty between 10* and 10 cells per gram of soil, significantly influenced 

the recovery percentage of the immunofluorescence technique. Recovery 

percentages determined using selective plating were independent of either 

soil type or inoculum density and exceeded those determined by immuno­

fluorescence . 

The serological and genetic markers used for detection were stable 

during 55 days of incubation in phosphate-buffered saline and soil 

extract solution. After the introduction of R. leguminosarum biovar 

trifolii into both sterilized soil types, the population increased to 

0.5-1 x 10 cells per gram of soil, but a decline was demonstrated in 

non-sterile loamy sand and silt loam during incubation of 90 days at 

15°C. Starvation of rhizobial cells in the phosphate-buffered saline and 

soil extract solution, as well as incubation in both soil types, resulted 

in a significant decrease in mean cell size. 

J. Postma, J.D. van Elsas, J.M. Govaert and J.A. van Veen. 1988. FEMS 

Microbiology Ecology 53:251-260. 
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2.1 INTRODUCTION 

Studies on the dynamics of microorganisms after their introduction into 

soil have recently gained more interest. Often inconsistent results were 

obtained in field trials and survival and establishment of microorganisms 

introduced in soil ecosystems are poorly understood [15]. 

So far, two different methods for the specific enumeration of strains 

introduced in soil have been used: selective plating (SP) using antibio­

tic-resistant strains, and quantitative immunofluorescence (IF). Both 

methods have their limitations. In general, plate counts are considered 

to underestimate the number of autochthonous soil bacteria [28]. Underes­

timation of introduced bacteria can be caused by aggregation of bacteria 

and by the presence of cells which have lost the ability to form colonies 

on solid media. Furthermore, strains marked with antibiotic resistance, 

either by spontaneous or transposon-induced mutations or by plasmid 

transfer, may have a weakened ecological competence. Serological techni­

ques do not have these disadvantages, since no genetic modification is 

needed. Further, all cells are, in principle, stainable and can be 

counted, independent of their physiological condition, provided that cell 

walls with the antigens are present. Moreover, direct microscopical 

observation provides the opportunity to obtain additional information on, 

for example, cell size. Nevertheless, problems still exist on the use of 

quantitative IF for the enumeration of soil microorganisms [5,6,8,9,11, 

13,20,24-26]. Uncertainties remain about the optimal dispersing and floc-

culation of different soil types, the stability of bacterial antigens in 

soil, the sensitivity and efficiency of the technique and the influence 

of the inoculum density on the recovery percentage. 

This paper deals with the population dynamics and the changes in cell 

sizes of Rhizobium leguminosarum biovar trifolii by comparing the 

behaviour of the cells in low nutrient suspensions and in two soil types, 

as determined by the immunofluorescence and plate counting techniques. 

2.2 MATERIALS AND METHODS 

Soils. Samples from two Dutch soils, a loamy sand and a silt loam were 

air-dried to 8 and 20% moisture content, respectively, sieved through a 4 

mm sieve and stored at 4°C. When needed, soil was sterilized by 7-irradi-

ation (4 Mrad) . To part of the loamy sand portions, 10% (w/w) of Na-

saturated bentonite was added. The main characteristics of the two soils 
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have been described by van Elsas et al. [15]. 

Bacterial strain and antiserum. R. leguminosarum biovar t r i f o l i i R62 

was isolated from Dutch arable soil. Using a spontaneous rifampicin (Rp)-

resistant mutant, a clone resistant to kanamycin (Km) was produced by 

transposon Tn5 mutagenesis using the suicide plasmid method of Simon et 

al. [27]. Growth rates of the resistant mutant and wild type in yeast 

extract mannitol broth (YMB) did not differ substantially [16]. Bacterial 

suspensions used for inoculations, were grown in YMB [16] for 2 days at 

29°C on a rotary shaker, washed twice by centrifugation (6000 x g, 15 

min), and resuspended in demineralized water. 

An antiserum against whole R. leguminosarum biovar trifolii R62 cells 

was prepared by four subcutaneous injections of rabbits using bacterial 

suspensions resuspended in phosphate-buffered saline (PBS). The first 

injection was without adjuvant, whereas Freund's incomplete adjuvant was 

used in the following injections. Blood obtained from the marginal ear 

vein of the rabbits was fractionated according to Allan and Kelman [1] 

and stored at -20°C. Part of the serum was conjugated with fluorescein-

isothiocyanate (FITC) [1]. Antiserum dilutions were made in PBS supple­

mented with 0.05% sodium azide. The optimal dilution of the conjugated 

antiserum was 1:100 for staining cells in glass-slide preparations and 

1:50 for soil suspensions on filters. 

The conjugated antiserum did not show cross-reaction with 80 random 

bacterial isolates from both soil types at the optimal dilution. Only one 

R. leguminosarum biovar trifolii strain was stained by the unconjugated 

antiserum (titre 1:100), and 13 strains of nine different Rhizobium spp., 

including three other R. leguminosarum biovar trifolii strains, remained 

unstained. 

Selective plating technique. To determine the number of colony-forming 

units (cfu), soil portions corresponding to 10 g dry weight were 

transferred to 250 ml Erlenmeyer flasks containing 95 ml of 0.1% sodium 

pyrophosphate and 10 g gravel (diameter 2-4 mm), and shaken on a rotary 

shaker for 10 min at 280 rpm (room temperature) . Suspensions were 

serially diluted in 0.1% sodium pyrophosphate, and 0.1 ml of the appro­

priate dilution was plated on yeast extract mannitol agar [16] containing 

50 mg/1 Km, 20 mg/1 Rp and 100 mg/1 cycloheximide (C). Plates with 20-300 

colonies were counted. 

Immunofluorescence technique. In order to prepare filters with bacte­

rial cells which could be stained and enumerated, soil suspensions were 

allowed to flocculate, whereafter appropriate volumes of the supernatant 
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could be filtered. Different combinations of dispersing solutions 

(demineralized water, 0.1% partially hydrolyzed gelatin diluted in 0.1 M 

ammonium phosphate, 0.1% sodium pyrophosphate) and flocculation agents 

(1 g CaCl2.2H20, 0.7 g Ca(OH)2/MgC03) [2] were tested for both soil 

types. Results indicated that for each soil type a different flocculation 

procedure was optimal. Hence, the silt loam (10 g) was dispersed in 195 

ml of 0.1% partially hydrolyzed gelatin diluted in 0.1 M ammonium phos­

phate [11,20]. After blending twice with a Braun's blender two times for 

20 s at maximum speed with a 5 s interval, the suspension was allowed to 

flocculate for 15 min. This method also appeared to be suitable for the 

loamy sand amended with 10% bentonite clay. In contrast, the loamy sand 

(10 g) was dispersed in 195 ml demineralized water and blended as descri­

bed. 5 ml 20% CaCl2. 2H2O was added to 95 ml of the suspension. After 

shaking, the suspension was allowed to flocculate for 30 min. The super-

natants of the flocculated suspensions were used for IF counting. 

Polycarbonate membrane filters (Nuclepore, 0.4 /xm, 25 mm diameter) 

stained with Irgalan black were used to filter the supernatants [4,18]. 

After washing with 10-20 ml sterile saline (0.85% NaCl), 0.05-0.1 ml of a 

gelatin-rhodamine isothiocyanate (RhITC) solution prepared according to 

Bohlool and Schmidt [3], was diluted in 1 ml saline and was applied on 

the filter to reduce non-specific staining. The filters were stained with 

four drops of the optimal antiserum dilution and kept 30 min in the dark 

and under humid conditions. Excess antiserum was removed by filtration 

using 10 ml saline. The use of PBS instead of saline for washing the 

filters resulted often in a higher background fluorescence. The stained 

cells were enumerated using a Zeiss epifluorescence microscope equipped 

with incident illumination from a HBO-50 mercury light source and a Zeiss 

FITC-filterpack (excitation filter BP450-490, beam splitter FT510, 

barrier filter LP520). Either 50, 30 or 20 microscopic fields were coun­

ted, when 0-1, 1-5 or more than 5 cells, respectively, were present per 

microscopic field. The cells on the filters showed a Poisson distribution 

(P<0.05). This was determined by enumerating the cell numbers per micro­

scopic field separated 0.5 or 1 mm from the next field along perpendicu­

lar lines. 

Efficiency of the detection techniques. Soil portions corresponding to 

10 g dry weight were inoculated using bacterial cultures grown as descri­

bed. Sterile demineralized water was added to control soil portions. The 

inoculum density was determined using IF and SP. Soil samples were 

analysed after 3 h of incubation at 12°C. For both techniques, the 
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recovery percentage was defined as the difference between the bacterial 

numbers detected in the inoculated soil and those in the control, divided 

by the bacterial numbers in the inoculum, determined by the same techni­

que. The influence of the inoculum density on the recovery percentage was 

assayed by inoculating soil portions with different inoculum densities 

between 104 and 10° cells/g dry soil. 

In four different experiments, the variation of the recovery percentage 

was studied in duplicate portions of the loamy sand inoculated with 10' 

cells/g dry soil and incubated 3 h at 12°C. For every soil portion two 

filters were analysed. 

To compare the efficiency of both techniques, R. leguminosarum biovar 

trifolii cells were incubated for 90 days in the loamy sand and the silt 

loam. Plate counts were made of thoroughly shaken suspensions and in 

flocculated and non-flocculated blended suspensions. In addition, the 

cells in the flocculated suspension were enumerated by IF. 

Population dynamics, stability of markers and cell length during 

incubation in low-nutrient solutions. Bacterial suspensions were prepared 

as described and introduced into either 100 ml PBS or 100 ml soil extract 

solution (SES) (pH 7.2) prepared from the loamy sand according to 

Parkinson et al. [23]. The initial cell concentrations were approximately 

10° cells/ml. Duplicate flasks were incubated 55 days at 20 C on a rotary 

shaker (180 rpm). Bacterial numbers were determined by plating on non­

selective media and by IF using glass-slide preparations. These were made 

by spreading 0.01 ml suspension on a 1 cm' surface area. After drying and 

heat fixing, these preparations were stained with antiserum. The stabili­

ty of the antibiotic resistance was checked by replica plating on the 

selective media. The stability of the antigenic determinants was deter­

mined through the intensity of the staining reaction on the glass-slide 

preparations. For that purpose all cells detected by transmitted light 

were controlled on their reaction with the antiserum. The lengths of 20 

randomly chosen stained cells were measured using an ocular micrometer in 

order to determine the cell sizes during the incubation. 

Population dynamics and cell length during incubation in soil. Dynamics 

of rhizobial cells introduced in natural and sterilized soil was determi­

ned during incubation for 90 days. Loamy sand or silt loam samples 

corresponding to 10 g dry weight, were inoculated with approximately 4.5 

x 10' cells/g dry soil in sterile demineralized water establishing the 

final moisture contents of the loamy sand and the silt loam of 18% and 

42%, respectively, corresponding to pF 2.0 (-10 kPa). Control soils 
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received sterile demineralized water. The soil portions were incubated at 

15°C in a humid chamber. After different incubation periods, bacterial 

numbers in duplicate soil portions and a control of each soil type were 

assayed using both IF and SP. In addition, the lengths of 30 IF-stained 

cells were measured in the non-sterile soil portions and compared with 

the length of the cells in the inoculum. 

2.3 RESULTS 

Testing of different combinations of dispersing and flocculation 

agents. After inoculation of bacterial cells into the loamy sand, frayed 

cells were detected when Ca(OH)2/MgC03 was used as a flocculation agent. 

No cfu were detected in the suspension, whereas the pH of the suspension 

exceeded 9.5. Dispersion of the loamy sand in demineralized water 

followed by flocculation with CaCl2 was considerably better, showing 

clearly stained bacterial cell walls. The combination of sodium pyrophos­

phate with CaCl2 improved the flocculation of soil particles. However, 

the clear supernatant contained only about one-tenth of the number of 

cells obtained when using demineralized water. Therefore, it was decided 

to use demineralized water in combination with CaCl2-

The silt loam showed a slow, but complete flocculation when deminera­

lized water and CaCl2 were used, and no cells could be detected in the 

supernatant. Partially hydrolyzed gelatin in ammonium phosphate resulted 

in a fast flocculation of the silt loam and considerable amounts (>50%) 

of cells were recovered in the supernatant. The loamy sand did not 

flocculate with the gelatin solution when combined with either CaCl2 or 

Ca(OH)2/MgC03. 

Sensitivity, variability and efficiency of the immunofluorescence tech-

nique. The calculated detection limit of the used IF procedure was 10 -

10 cells/g dry soil, depending on the dilution rate and the enumerated 

filter surface. But the detection limit was influenced by the background 

population. Despite the specificity of the antiserum, the number of stai­

ned cells varied from 0 to 0.3 per microscopic field in control soil por­

tions, corresponding to 0-10-5 cells/g dry soil. The mean background popu­

lations in both soil types were approximately 8 x 104 cells/g dry soil. 

The main sources of variation in the IF technique were determined in 

four experiments in which the recovery percentage was studied each time 

in two loamy sand portions using duplicate filters. The greatest varia­

tion, 45% of standard error, occurred between the experiments. However, 
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there was a variation of 

36% between the duplicate 

soil portions and 19% 

between the filters. 

Results of studies on 

the recovery of rhizobial 

cells from both soils 

after 3 h of incubation at 

12°C with inoculum densi­

ties between 104 and 108 

cells/g dry soil are shown 

in Table 1 and Fig. 1. 

Regression analysis showed 

no significant influence 

of inoculum density on the 

recovery percentage of 

both the IF and SP techni­

que (P>0.05). However, 

fluctuations in recovery 

values seemed to be 

greater at lower inoculum 

densities. The mean reco­

very from the loamy sand 

determined by IF was significantly higher (P<0.05) than that from the 

silt loam and the loamy sand amended with bentonite. The recovery percen­

tage determined by SP was not significantly influenced by soil type and 

was 100% (P>0.05). 

During the IF procedure, around 40% of cfu were lost with flocculation 

of the soil portions which were incubated for 3 h. Longer incubation 

periods resulted in significantly increasing losses during flocculation 

log inoculated bacterial numbers/g dry soil 

Fig. 1. Recovery of R. leguminosarum biovar 
trifolii from loamy sand and silt loam using 
different inoculum densities. O, IF counts 
in loamy sand; •, SP counts in loamy sand; 
•, IF counts in silt loam; •, SP counts in 
silt loam; A, mean recovery % of IF counts 
in loamy sand; B, mean recovery % of IF 
counts in silt loam; C, mean recovery % of 
SP counts in loamy sand and silt loam. 

Table 1. Recovery percentages of R. leguminosarum biovar trifolii 3 h 
after the introduction into loamy sand, silt loam and loamy sand with 
bentonite, determined by immunofluorescence (IF) and selective plating 
(SP) . Results are expressed as the mean, with standard error between 
parenthesis. 

loamy sand silt loam loamy sand + 
10% bentonite 

recovery % IF 
recovery % SP 

67 (5) 
101 (7) 

50 (5) 
99 (7) 

48 (6) 
101 (9) 
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R leguminosarum biovar trifolii 
in phosphate - buffered saline 

(P<0.05). Losses of cfu during flocculation were around 80% after 28 and 

56 days of incubation. There was no significant influence of soil type on 

the flocculation (P>0.05). 80% of the cfu in the flocculated suspension 

were enumerated by IF in 3 h-incubated soil portions. In both soil types 

longer incubation resulted in significantly increasing numbers of IF-

stained cells as compared to cfu in the same flocculated suspension 

(P<0.05). After 28 and 56 days the number of IF-stained cells was higher 

than the number of cfu in the same flocculated suspension. 

Population dynamics, stability of markers and cell length during 

incubation in low nutrient solutions. Plate counts of R. leguminosarum 

biovar trifolii in PBS 

decreased markedly with 

time in contrast to IF 

counts which remained 

stable (Fig. 2). In SES, 

both plate and IF counts 

increased during the first 

days and than remained 

constant. All bacterial 

cells remained resistant 

to Km during the experi­

ment. Also, the antigenic 

determinants were stable 

during the incubation 

period. 

Mean cell lengths (Table 

2), measured in IF prepa­

rations, decreased signi­

ficantly during incubation 

in PBS and SES (P<0.05). 

This decrease could be 

fitted with non-linear re­

gression by an exponential 

function and the final 

mean cell length in this 

model was 1.99 /zm for PBS 

and 1.78 /jm for SES. Cell 

diameter did not change 

visibly. 

50 60 
time (days) 

£ 
C 

Is 
0) 4-

O 
CO 

n 
O) -

°2-

ir J R leguminosarum biovar trifolii 
in soil extract solution 

10 20 30 40 50 60 

time (days) 

Fig. 2. Dynamics of R. leguminosarum b iovar 
trifolii i n phophate-buffered s a l i n e and 
s o i l e x t r a c t s o lu t i on a t 20°C as determined 
by IF (•) and SP (•) . Standard dev ia t ions 
a re i nd ica t ed by ba rs or a re wi th in the d i ­
mension of the symbol. 
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loamy sand 

80 100 
time (days) 

silt loam 

100 

time (days) 

Fig. 3. Dynamics of R. leguminosarum biovar trifolii after introduction 
in loamy sand and silt loam (15°C, moisture contents 18 and 42%, resp.) 
as determined by IF (0,«) and SP (•,•). Enumeration were corrected for 
the recovery percentages given in Table 1. Open and closed symbols repre­
sent sterile and non-sterile soil, respectively. Standard deviations are 
indicated by bars or are within the dimension of the symbol. *, no dupli­
cate present. 
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Population dynamics and cell length during incubation in soil. After 

the introduction of R. leguminosarum biovar t r i f o l i i in non-sterile loamy 

sand and silt loam, cell counts were increased little after 2 days of 

incubation, but thereafter they decreased steadily. Under sterile 

conditions, counts increased up to 0.5-1 x 10 cells per gram of soil and 

stayed at a high level (Fig. 3). Comparing both techniques, the IF counts 

corrected for the recovery percentage were similar to the plate counts 

during the first 7 days of incubation, thereafter the IF counts were 

mostly lower than the plate counts except for the last sampling date. 

After the introduction in the non-sterile loamy sand and silt loam, the 

mean cell length of the rhizobial cells (Table 2) decreased significantly 

(P<0.05). Non-linear regression analysis showed that the ultimate mean 

cell length was 1.72 /im for the loamy sand and 1.62 fj.m for the silt loam 

and that the decrease in cell length was faster in the silt loam than in 

the loamy sand. 

Table 2. Length of IF-stained R. leguminosarum biovar trifolii cells 
starved in phosphate-buffered saline (PBS) and soil extract solution 
(SES) at 20°C, and incubated in loamy sand and silt loam at 15°C. 

incu­
bation 
period 

3 h 
1 d 
2 d 
7 d 

14 d 
28 d 
55 d 

PBS * 

2.66 
2.55 
2.19 
2.22 
1.89 
1.94 
2.03 

(0.62) 
(0.52) 
(0.52) 
(0.70) 
(0.46) 
(0.42) 
(0.46) 

SES * 

2.61 
2.64 
1.94 
1.55 
1.67 
1.89 
2.03 

(0.55) 
(0.51) 
(0.38) 
(0.36) 
(0.40) 
(0.46) 
(0.58) 

incu­
bation 
period 

0 
1 
3 
6 

12 
1 
2 
8 

14 
28 
56 

90 

•y^k'k'k 

h 
h 
h 
h 
d 
d 
d 
d 
d 
d 

d 

loamy 
sand 

2.05 
2.09 
2.05 
1.92 
1.81 
1.91 
1.85 
2.00 
1.87 
1.79 
1.66 
1.65 
1.85 

** 

(0.51) 
(0.52) 
(0.44) 
(0.57) 
(0.47) 
(0.35) 
(0.44) 
(0.68) 
(0.42) 
(0.51) 
(0.50) 
(0.42) 
(0.53) 

silt 
loam 

2.05 
2.15 
2.09 
1.98 
1.87 
1.76 
1.61 
1.76 
1.78 
1.50 
1.61 
1.63 
1.61 

** 

(0.51) 
(0.54) 
(0.37) 
(0.55) 
(0.36) 
(0.44) 
(0.42) 
(0.41) 
(0.42) 
(0.42) 
(0.37) 
(0.41) 
(0.37) 

mean cell length (/im) and standard deviation of 20 randomly chosen 
cells. mean cell length (fim) and standard deviation of 30 randomly 
chosen cells. just before inoculation. 
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2.4 DISCUSSION 

A prerequisite for succesful use of the IF and SP technique is stabili­

ty of the serological and genetic markers. In this work we showed stabi­

lity of the serological and genetic markers of R. leguminosarum biovar 

trifolii upon incubation in low nutrient solutions during 55 days. The 

stability of the serological markers of a Lotononis strain during 12 

years [14] and more than 95% stability of serological and genetic markers 

of R. leguminosarum biovar trifolii during 3 years [7] is described. 

Nevertheless, there is still some doubt as to long-term stability [29]. 

The IF technique developed, permitted high recoveries of the introduced 

R. leguminosarum biovar trifolii cells from the loamy sand and the silt 

loam. Variations in recovery, depending on soil type, dispersing and 

flocculation agent, have been reported in the literature [2,11,20]. The 

use of different inoculum densities (10^-10° cells/g dry soil) did not 

produce significant differences in recovery percentage. Wollum and Miller 

[31] also did not detect a significant effect of inoculum density (10°-

10" cells/g soil) on the recovery of rhizobial cells. Crozat et al. [12] 

found a higher recovery percentage of Bradyrhizobium japonicum at 10 

cells/g soil as compared to higher inoculum densities. However, at 10 

cells/g soil or more, recovery percentages were not related to the 

inoculum densities. 

An advantage of the IF technique for bacterial counting is that harsher 

and more effective disruption procedures can be used than when using 

viable counting methods, since microbial cell integrity and not viability 

is required [24]. In our hands, similar plate counts of introduced R. 

leguminosarum biovar trifolii were obtained by the extraction methods 

used for the IF and SP techniques. A draw-back for general applicability 

of the IF technique is that the optimal combination of dispersing and 

flocculation agent is dependent on the soil type, suggesting that this 

combination should be adjusted for each new soil studied. Since floccu­

lation may cause, as shown, a complete loss of bacteria, a compromise 

should be sought between clearance of supernatants and recovery of 

bacteria. Bezdicek and Donaldson [2] also found that the flocculation 

agent which produced highest recovery did not produce the clearest 

supernatants. 

The recovery percentages determined with IF were higher than those 

measured by Crozat et al. [12]. Nevertheless, not all rhizobial cells 

introduced into soil were recovered with IF. The observed lower counts 
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with IF than with SP in soil-less cell suspensions must be due to losses 

of cells during preparation and counting of the IF filters. The greater 

discrepancy between IF and SP counts found in soils may be due to 

additional losses in the desorption and flocculation procedure of the IF 

technique, or to masking of cells by soil particles. When the successive 

procedures of the IF technique were compared at prolonged incubation 

periods, increasing numbers of cfu were lost from the supernatant during 

flocculation. These observations might be explained by assuming that 

during the incubation period more cells were increasingly tightly 

attached to soil particles. Thus, for more realistic counts the recovery 

percentage should actually be adjusted during the incubation period. 

A striking phenomenon observed was the increasing number of IF-stained 

cells compared to the number of cfu in the same flocculated supernatants 

after prolonged incubation periods. Similarly, Bohlool and Schmidt 

reported an increasing IF/plate count ratio upon prolonged incubation in 

sterile soil [20,26]. The occurrence of higher IF counts than plate 

counts in the same supernatant can be explained by the staining of IF-

detectable non-colony-forming units. When R. leguminosarum biovar 

trifolii was starved in PBS, IF counts were found to be constant as 

compared to a decrease in plate counts. Similar results in aquatic 

systems were reported by Kurath and Morita [22] and Colwell et al. [10] 

who in addition, demonstrated that part of the cells which had lost the 

ability to reproduce on plates could still grow in the suspension after 

addition of nutrients. That the decrease in plate counts was not observed 

in soil extract solution was perhaps caused by persistence of the viabi­

lity of cells due to the presence of organic substrates. 

Two important questions arise when IF is used for enumeration: how long 

do dead cells remain detectable by IF and do dead cells accumulate in 

soil? Bohlool and Schmidt [4] and Cleyet-Marel and Crozat [9] showed that 

the majority of heat-killed rhizobial cells introduced into non-sterile 

soils disintegrated within 2 weeks. In addition, heat-killed Bacillus 

thuringiensis cells were not detectable by IF after a short incubation in 

soil, and viable cells disappeared even faster [30]. Based on such data, 

together with the common-sense realization that dead cells do not pile up 

in most natural envirnoments, Bohlool and Schmidt [6] suggested that 

inclusion of dead cells in counts is not likely to be a major error in IF 

enumerations. 

A significant decrease of the mean length of R. leguminosarum biovar 

trifolii cells upon starvation in low nutrient solutions and in both soil 

22 



types was observed. The dynamics of cell sizes in relation to starvation 

in natural environments has mostly been studied in aquatic environments. 

Upon starvation, Pseudomonas cells rapidly turned into small spheroids 

via fragmentation, without losing their viability, followed by a 

continuous size reduction accompanied by a slow loss of viability [21]. 

Jensen and Woolfolk [19] studied cell sizes of Pseudomonas putida in a 

vigorously shaken culture. After 336 days, most cells were relatively 

small, non-viable and almost spherically shaped. Crozat et al. [13] also 

reported a decrease in the length of rhizobial cells after introduction 

into soil. On the other hand, Hill and Gray [17] showed that B. subtilis 

cells present on organic matter in soil were longer than those in culture 

which may, however, be due to the inhibition of septum formation by com­

pounds of the organic substrate (Gray, T.R.G., personal communication). 

IF was reliable for enumerating bacteria introduced into soil, although 

at a lower recovery efficiency than SP. The most important advantages of 

the IF technique are the possibility to enumerate non-colony-forming 

units which are not necessarily dead, and the possibility to determine 

cell sizes or other qualitative values. In addition, IF may be used as an 

alternative for SP when antibiotic-resistant strains are not available. 

In contrast, the advantages of SP are that the method is easy to apply 

and does not depend on flocculation processes which were shown to change 

within an experiment. Only cells able to divide are counted and, impor­

tant for survival studies, where low numbers of cells have to be enumera­

ted, the detection limit of SP is lower than that of the IF technique. 
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CHAPTER 3 

BACTERIA IN THIN SOIL SECTIONS STAINED WITH THE FLUORESCENT 

BRIGHTENER CALCOFLUOR WHITE H2R 

ABSTRACT 

Bacteria in thin soil sections were stained with the fluorescent 

brightener calcofluor white M2R. The fluorochrome was applied to the soil 

sample after fixation and before embedding in a polyester resin. Thin 

soil sections were prepared from the hardened blocks. Acridine orange, 

applied to the polished thin soil sections, was useful to counterstain 

the soil matrix. Best results were obtained with rhizobial cells grown in 

a culture medium and introduced into the test soils. After their intro­

duction into the soil, most rhizobial cells were detected in combination 

with clay particles and organic matter surrounding the quartz particles. 

Surfaces of larger pores, especially in 'Beekeerd' loamy sand, were 

covered with the introduced cells. Indigenous soil bacteria were also 

stained, but most at a lower intensity. Comparison to observations on 

stained soil smears suggested that some of smaller coccoids, starving 

cells, and bacterial spores remained unstained. 

Calcofluor white proved to be an excellent fluorochrome to study fungal 

hyphae and plant roots in thin soil sections. However, these tissues 

stained to such an extent that bacterial cells on these tissues were more 

difficult to detect. 

J. Postma and H.-J. Altemttller. Soil Biology and Biochemistry (in press) 
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3.1 INTRODUCTION 

One of the major problems in soil microbiology is the examination of 

the distribution of microorganisms in natural soil and their relation to 

the mineral and organic fraction of soil. The technique of preparing 

sections from soil embedded in a resin provides the opportunity to study 

relatively undisturbed soil samples. Alexander and Jackson [1,2] were the 

first to apply this technique to study soil microorganisms in their 

natural environment. With this technique larger microorganisms such as 

fungi have been observed [2,9,12]. There have been relatively few studies 

on bacteria stained with diachromes (cotton blue and soluble blue) 

[2,14]. To observe bacteria on opaque soil particles, fluorochromes would 

appear to be more suitable as incident illumination can be used. 

The fluorochrome acridine orange was used to stain thin soil sections 

to observe roots in undisturbed soil contact [4,5,7]. Altemuller and 

Vorbach [6] were able to improve the fluorescence of fungal mycelia 

slightly with the use of trypaflavine (acriflavine) . In this kind of 

section bacteria could only be detected under favourable conditions, for 

example colonies in voids. 

Tippkotter et al. [19] also presented staining techniques for resin-

embedded soil samples. The fluorochromes Mg-ANS, auramine 0, calcofluor 

white M2R, lucifer yellow CH and uvitex OB were recommended to stain 

biological features [18], but the details provided were not sufficient 

for subsequent replication. 

A reliable technique for the staining of bacteria in thin soil sections 

is, therefore, not available. With respect to our aim to examine the 

spatial distribution of a certain bacterial strain in different soil 

types, it was inevitable that new dyes would have to be tested. In view 

of their favourable properties (high contrast, low concentration and the 

possibility to use incident illumination) only fluorochromes were 

considered. 

3.2 MATERIALS AND METHODS 

Soils and bacterial inoculum. Three soil types were used: a 'Beekeerd' 

loamy sand common in the eastern part of the Netherlands, a Dutch polder 

silt loam and a German Parabraunerde silt loam derived from loess near 

Braunschweig. The soil samples were air dried and sieved <2 mm. The 

Parabraunerde was fractionated into aggregates of 0.5 to 1 mm size. 
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A strain of Rhizobium leguminosarum biovar trifolii (R62) [13,16] was 

used as inoculum. The rhizobial cells were grown in yeast extract 

mannitol broth [16]. 

Preparation and staining of soil smears. Small volumes (0.1 ml) of soil 

suspensions with rhizobial cells (10 -10' cells/g soil) were spread on 

glass slides, dried and heat fixed. Soil smears were stained with 

different fluorochromes using the following procedures. In order to test 

the possibility to stain a specific strain, preparations were stained for 

30 min under dark and humid conditions with conjugated antiserum in the 

concentrations 1:10, 1:25, 1:50 and 1:100. The antiserum was prepared 

against R. leguminosarum biovar trifolii R62 and conjugated with 

fluorescein iso-thiocyanate (FITC) [16]. Non-specific fluorochromes were 

also tested. Acridine orange (AO) was applied for 2 min and tested at the 

of concentrations 1.0, 0.2, 0.1, 0.07 or 0.05 g/1 diluted in deminerali-

zed water. Calcofluor white M2R (Polysciences, Inc., Warrington, U.S.A.) 

(CFW), now named cellufluor, was applied for 5 min using a concentration 

of 1 g/1. A mixture of 1.74 g/1 europium(III) thenoyltrifluoroacetonate 

(designated Eu(TTA)3) and 24 mg/1 CFW in 50% (v/v) ethanol [8] was also 

used. Soil smears were stained for 1 h. The excess of the fluorochromes 

was removed by rinsing with their dilution solutions. Some soil smears 

were also rinsed with acetone to test the influence of this solution on 

the staining effect. 

The soil smears were mounted with a cover slip using either water or 

glycerol for direct control. Others were mounted with catalized Vestopal 

160, a polyester resin [3], to test the durability of the dyes under 

conditions of resin embedding. The samples hardened within 1 day. 

Preparation and staining of bulk soil portions. Glass cores (30 mm 

diam.), closed at the bottom with a rough cotton cloth, were filled with 
O Q 

the three soil types and inoculated with 10-10 rhizobial cells/g soil. 

The bulk density was approximately 1.0 g/cm . The soil portions were 

fixed for 6 h with 2.5% (v/v) glutaraldehyde [19] and then washed twice 

with demineralized water. The soil portions were treated with a solution 

of CFW (1 g/1) in demineralized water for 12 h followed by new washing 

procedures. After this, the soil portions were dehydrated 4 times with 

100% acetone, with each stage lasting for about 12 h. 

Preparation and staining of rhizosphere soil portions. Planar glass 

vessels of 9 x 12 cm size and 0.8 cm wide were filled with Parabraunerde 

aggregates following the technique of Altemuller and Vorbach [7]. Seeds 

of Lepidium sativum were applied and a root system developed throughout 
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the soil under moist conditions. After 1 week the units were fixed and 

stained with CFW as described above. The dehydration was started with 

diluted acetone (50% v/v) and the strength was increased to 100% in 4 

steps until the samples were free of water. 

Preparation and counterstaining of thin soil sections. Both cores and 

planar vessels were impregnated with Vestopal 160 by displacement of the 

acetone with a slow rising level of undiluted resin [7]. Cores and planar 

vessels were catalyzed for 7 days and 3 weeks hardening, respectively. 

The concentration of catalyst used ranged from 0.6 to 1.8 ml/1, whereas 

0.3 to 0.9 ml/1 accelerator was used. These concentrations were tested 

for each charge of resin. After hardening, sections of 15 //m thickness 

were prepared [3,7]. 

To counterstain the soil matrix, AO (1.0 and 0.2 g/1 10% HC1) was 

applied to the thin section surface for 2 min and the sections were 

carefully rinsed with 10% HCL and demineralised water. 

Microscopy and photography. The soil smears and thin soil sections were 

examined with a Leitz epifluorescence microscope equipped with incident 

illumination from a HBO-50 mercury light source and appropriate filter 

combinations for the different fluorochromes. Figures 1, 2 and 3, which 

originally were colour slides, are transformed to black and white 

photographs for this thesis. 

3.3 RESULTS 

Effects of the thin soil section procedure on the fluorochromes. The 

different steps which are important for sucessful staining of bacteria in 

thin soil sections were examined. Fluorochromes were tested on soil 

smears to see if they could withstand mounting in polyester resin and 

rinsing with acetone. Stained soil smears mounted in water or glycerol 

were used as a reference. Those fluorochromes which provided good results 

were tested further in the thin soil section technique. 

When water or glycerol were used as mounting fluid, soil smears stained 

with FITC-conjugated antiserum resulted in clear and bright stained 

rhizobial cells. With polyester resin, however, the intensity of the 

stain was diminished and bacterial cells adhering to soil particles could 

no longer be detected. 

The colour and intensity of bacteria treated with AO in water was found 

to depend on the fluorochrome concentration. Bacteria stained from an 

intensive red (1.0 g/1) to a weak green (0.05 g/1) and the soil colour 

30 



varied from red to orange red. The occurrence of weakly-green coloured 

bacteria seen on red soil particles was also reported by Rouschal and 

Strugger [17]. Microcolonies and bacteria varying considerably in size 

and shape were detected in the soil smears. Much of the staining effect 

disappeared after mounting in polyester resin, as the resin adsorbed some 

of the stain and fluoresced green. Under such circumstances the bacterial 

cells were poorly visible. 

Bacterial cells were stained bright blue with CFW (1 g/1), whereas the 

soil did not adsorb the fluorochrome. The polyester resin had no negative 

influence on the staining intensity. The intensity of CFW stained 

bacterial cells did not diminish during the 9 months they were stored at 

room temperature. 

Eu(TTA>3 in combination with CFW resulted in highly intense red 

staining of the bacterial cells, whether mounted in water or resin. The 

red colour remained intensive in resin embedded preparations during the 6 

months of storage. The intense red colour disappeared, however, when the 

soil smears were rinsed with acetone. Since acetone was used to dehydrate 

soil portions before embedding with Vestopal, Eu(TTA)3 with CFW was not 

considered to be of use in the thin sectioning technique. 

As only CFW was found to withstand the described procedures, CFW 

stained soil portions were embedded with resin for thin sectioning. Large 

numbers of bacteria could be detected in the thin soil sections after the 

soil portions were stained with CFW (Figs 1, 2, 3 and 4 ) . Counterstaining 

the thin section surfaces with AO (0.2 g/1 10% HC1) resulted in a higher 

contrast between soil matrix and bacteria (compare Figs 1 and 2) . 

Bacteria in relation to the soil matrix were, therefore, studied in thin 

soil sections stained with CFW, mostly in combination with AO. Details 

about the fluorescence properties of CFW can be found in Table 1. 

Detection of bacteria in undisturbed soil systems. Large numbers of 

uniform bacterial cells of approx. 0.7 x 2.0 /im were found together with 

the clay particles and organic matter surrounding the quartz particles in 

the three test soils. The surfaces of larger pores (mostly in the 

'Beekeerd' loamy sand) were also covered with these cells (Fig. 3). The 

great difference in density of the cells over short distances was 

striking (Figs 2 and 3) . The bacterial numbers also differed between 

different locations in the thin soil sections. Assuming that bacteria in 

thin soil sections could be detected up to a maximum of 3 /jm depth, the 

number of stained bacteria in Figure 3 (approx. 100) would correspond to 

2 x 10 cells/g soil at the given bulk density and magnification. In 
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Fig. 1. Bacterial cells in Parabraunerde 
counterstaining (UV excitation, bar=30 /im) . 

stained with CFW without 

Fig. 2. Bacterial cells in Parabraunerde stained with CFW and counter-
stained with AO on the thin section surface (UV excitation, bar=30 fim) . 
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Fig. 3. Bacterial cells in 'Beekeerd' loamy sand stained with CFW and 
counterstained with AO on the thin section surface (UV excitation, 
bar-30 /xm) . 

order to obtain an impression of the average cell density in the soil it 

is necessary to enumerate a large number of microscopic fields, so that 

microscopic fields with low numbers of bacteria will also be taken into 

account. 

Indigenous bacteria were also stained, but at a much lower intensity. 

For example, in Figure 1 a large number of smaller coccoid cells can be 

seen in the smaller pores or enclosed by clay particles and organic 

matter. 

The detection of bacteria on growing roots with CFW was more 

complicated. The brightness of the bacteria was generally found to be 

less than that of the root tissues (Table 1) and in most cases it was 

impossible to detect the bacterial cells on root surfaces. 

An example of the excellent staining of root tissue with CFW is shown 

in Figure 5. Cell walls of Lepidium sativum roots in the planar vessel-

system stained strong violet blue (UV excitation) or light blue (violet 

excitation) (Table 1). The penetration of root hairs in the surrounding 

soil and other features of root - soil contact were clearly visible. 

Cells filled with cytoplasm were well marked by the whitish fluorescence 

of the cytoplasm against the light blue of the cell wall (violet excita-
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Fig. 4. Bacterial cells in Parabraunerde stained with CFW and counter-
stained with AO on the thin section surface (UV excitation, bar=30 pm). 

Fig. 5. Diagonal section of a Lepidium sativum root in the planar vessel 
system with Parabraunerde stained with CFW (Violet excitation, bar=200 
Aim, roots are light blue) . 
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Fig. 6. Fungal hyphae in residual plant tissue in the planar vessel 
system with Parabraunerde stained with CFW (Violet excitation, bar-30 pm, 
fungal hyphae are bright blue and plant tissue is yellowish). 

tion). Young hairs, root tips, early stages of side root formation and 

cap cells were therefore especially noticeable. In older cells a thin 

layer of cytoplasm remained visible for certain time. 

An interesting observation was that fungal hyphae also stained well. 

Cell walls were light blue and only younger parts exhibit a whitish 

fluorescence of the internal plasma fillings (violet excitation) (Table 

1). Since fungal hyphae appeared to be in some way similar to root hairs, 

studies of fungal mycelium around roots are restricted to such cases 

where the morphology is clearly visible in order to prevent any misinter­

pretation. On the other hand, the CFW-stained fungal tissues were easily 

recognizable in plant residues (Fig. 6) where the cellulose components 

had so far degenerated that the general fluorescence pattern was ruled by 

yellowish shades with occasional blue spots or fibers, representing 

remnants of cellulose. In such an environment the light bluish fungal 

hyphae formed were readily detected. 
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Table 1. Fluorescence properties of organic components and clay material 
in thin soil sections after treating the soil samples with calcofluor 
white M2R * ) . 

uv 
exitation filter 340-380 
beam splitter 400 
barrier filter 430 

Violet 
355-425 
455 
460 

Blue 
390-490 
510 
515 

Bacteria 
-Rhizobium (inoculated) 
-indigenous forms 

Fungal tissue 
-fresh hyphal walls 
-altered hyphal walls 

-cytoplasma 

Fresh root tissues 
-cell walls 
-cytoplasma 

Residual plant tissues 
-cell walls 

Clay material 

light blue 
integrades 
to white 
and gray 

violet blue 
whitish to 
yellowish 
bluish white 

violet blue 
bluish white 

yellowish 
to brownish 

brownish 

**) 
2 

I 

light blue 1 
integrades | 
to white and | 
yellowish 0 

light blue 
to 
light yellow 
whitish 

light blue 
whitish 

yellowish 
to brown 

yellow-brown 

light green 0 
integrades | 
to yellowish 0 

light green 1 
to | 
yellow 0 
yellowish 0 

light green 2 
yellowish 1 

yellowish to 2 
dark yellow 1 

yellowish 

Clay material 
counterstained with 
acridine orange 

reddish red-orange orange 

*) Observation lens: Leitz NPL Fluotar 40/1.30 oil 
' Relative brightness: 0-dim, 1-moderate, 2-bright, 3=intensive 

3.4 DISCUSSION 

The examination of the different fluorochromes resulted in a useful 

staining procedure for bacteria in thin soil sections. We obtained the 

best results with a CFW-treatment (1 g/1) of the soil portions and coun-

terstaining the thin section surfaces with AO (0.2 g/1 10% HC1) . Other 

fluorochromes were unsuitable as they became ineffective at different 

stages of the procedure. 

An attempt to stain specific bacteria in thin soil sections was un­

successful, since FITC-conjugated antiserum lost its brightness after the 

resin Vestopal 160 was applied as mounting fluid. AO had to be used in 

low concentrations to obtain a good contrast between the soil matrix and 

bacterial cells. After mounting in polyester resin, however, bacterial 

36 



cells which had fluoresced green became scarcely visible, since the resin 

adsorbed some stain and also fluoresced green. For the soil smears 

Eu(TTA>3 in combination with CFW proved to be excellent, even after moun­

ting with the resin. However, acetone which is used to dehydrate the soil 

portions before embedding with Vestopal had a negative influence on the 

staining effect. Drying the soil with ethanol can not be used as an al­

ternative, since 100% ethanol is detrimental to the staining effect [8]. 

Using CFW large numbers of uniform, rod-shaped bacterial cells were 

stained. They had the same length as freshly grown rhizobial cells 

(approx. 2.0 fim) [16]. Moreover, they were found along the surfaces of 

larger pores, whereas indigenous bacterial cells are mostly found in 

small pores [15]. These observations suggested that these stained cells 

were the introduced rhizobial cells. The indigenous bacteria were less 

intensively stained with CFW and were found in smaller pores. After the 

observations of AO-stained soil smears, where many types of microcolonies 

and bacteria of varying sizes and shapes were seen, we assume that not 

all indigenous bacteria were stained in the thin soil sections. 

CFW, which has a high affinity for cellulose fibers, is active at a 

wide pH range (5.0 to 8.5) [11]. Since CFW is essentially non-toxic [11], 

it may be possible to stain bacteria before they are introduced into 

soil. CFW is effectively adsorbed by growing cultures of bacteria, yeasts 

and fungi, with active growth centers showing the greatest fluorescence 

[10,11]. This may explain why rhizobial cells just introduced into soil 

are better stained than indigenous soil bacteria, as the rhizobial cells 

were taken from a rich medium, whereas most indigenous bacteria are 

usually in a resting or starvation stage in soil which is a relatively 

poor medium. 

Bacterial cells, but also fungal hyphae and plant roots, were clearly 

visible in relation to the soil matrix. This facilitates the examination 

of the distribution of microorganisms in natural soil. Bacteria 

associated with growing roots, however, were difficult to detect, since 

plant roots were very intensively stained. The problems encountered, as 

well as the staining improvements made during this study, are therefore 

indicative of the necessity to develop further staining procedures with 

fluorochromes in order to study bacteria in the rhizosphere. 
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CHAPTER 4 

INFLUENCE OF DIFFERENT INITIAL SOIL MOISTURE CONTENTS ON THE 

DISTRIBUTION AND POPULATION DYNAMICS OF INTRODUCED RHIZOBIUM 

LEGUMINOSARUM BIOVAR TRIFOLII 

ABSTRACT 

Data on bacterial distribution in soil were obtained with a method of 

washing and thoroughly shaking of the soil. Bacterial cells attached to 

or enclosed in different size groups of soil particles or aggregates were 

separated and enumerated on plates containing selective media. Soil 

portions of a loamy sand and a silt loam with different initial moisture 

contents were inoculated with Rhizobium leguminosarum biovar Crifolii. 

Results of this experiment indicated that the initial moisture content 

influenced the distribution of the inoculated rhizobial cells. Differen­

ces in distribution were still found after prolonged incubation periods, 

suggesting a lack of transport and migration of the rhizobial cells. It 

was shown that rhizobial cells survived better in soils with a lower, 

than in soils with a higher initial moisture content. Rhizobial cells 

attached to or enclosed in soil particles or aggregates larger than 

approx. 50 pm had a more favourable microhabitat than unattached cells or 

cells attached to smaller particles. 

J. Postma, S. Walter and J.A. van Veen. 1989. Soil Biology and Biochemis­

try 21:437-442. 
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4.1 INTRODUCTION 

Soil is a heterogeneous, discontinuous and structured environment. It 

is composed of a diversity of microhabitats, and because of their relati­

vely small size and their isolation from one another, only small environ­

mental changes are expected to be necessary to alter their microbiologi­

cal composition [16]. A further assumption is that survival and activity 

of the microorganisms are dependent on their distribution among micro-

habitats. An uneven distribution of bacteria among different types of 

soil particles was observed by Filip and Kanazawa [4] . The numbers of 

bacteria decreased from organic matter to silt and clay particles and to 

sand particles, respectively. The distribution of bacteria among aggre­

gates and pores of different sizes is also expected to influence their 

survival. Hattori and Hattori [7] suggested that capillary pores (up to 

6.0 /um) are the most favourable microhabitats for bacteria. The outer 

part of the aggregates, containing wider pores and the surface of aggre­

gates, is more directly exposed to influences of environmental conditions 

than the inner part of the aggregates with capillary pores, and the most 

pronounced influence of moisture, nutrients (glycine) and toxins (HgCl2) 

was detected in the outer part of aggregates [5,6,13]. Moreover, bacteria 

in smaller pores may be protected from predation by, for example, 

protozoa [1,18]. Kilbertus [9] determined, with electron microscopy, that 

the smallest pores which containend bacterial cells were 0.8 /jm and that 

most bacteria were located in pores of 1-2 /jm. 

We have investigated the influence of bacterial distribution among 

microhabitats on the dynamics of introduced bacteria in soil. A method 

was developed to distinguish between bacteria attached to or closed in by 

soil particles or aggregates of different sizes, which gives information 

on bacterial microdistribution in soil. Rhizobium leguminosarum biovar 

trifolii, used as a model organism in our experiments, was inoculated 

into loamy sand and silt loam with different moisture contents. On the 

basis of different initial moisture contents, soil portions with water-

filled pores of different diameter were prepared, in order to influence 

the distribution of the introduced bacterial cells. 

4.2 MATERIALS AND METHODS 

Soils. Samples from two Dutch arable soils, a loamy sand and a silt 

loam, were air-dried to 8 and 20% moisture content, respectively, sieved 
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<2 mm and stored at 2°C. 

Prior to use, the soils 

were air-dried to moisture 

contents of 1.3 and 4.0%, 

respectively. The rela­

tionships between the soil 

water potentials and the 

moisture content of 

repacked samples of both 

soils, determinded accor­

ding to Klute [10], are 

given in Figure 1. Parti­

cle-size distribution and 

other characteristics of 

both soils were described 

by van Elsas et al. [3]. 

Culturing and enumera­

ting R. leguminosarum bio-

var trifolii. R. legumino­

sarum biovar trifolii 

R62::Tn5 with resistance 

1(PF) 

-10b -105 -1b4 -103 - iO2 -10 -1(kPa) 
water potential 

Fig. 1. Relationship between soil water 
potential and moisture content of repacked 
samples of the loamy sand (•) and the silt 
loam (•). 

to kanamycin (Km) and rifampicin (Rp) [8,15] was used. The strain was 

cultured in yeast extract mannitol broth [8] supplemented with 25 mg/1 

Km. After 2 days at 28°C on a reciprocal shaker, the cells were washed by 

centrifugation (7000 x g, 15 min) and resuspended in demineralized water 

prior to inoculation. 

The number of colony-forming units (cfu) in suspensions was determined 

on plates containing yeast extract mannitol agar supplemented with 50 

mg/1 Km, 20 mg/1 Rp and 100 mg/1 cycloheximide. These concentrations of 

antibiotics were sufficient to enumerate rhizobial numbers up to 10 cfu 

/g soil, without disturbance by other soil microorganisms. After dilution 

of the suspension in 0.1% sodium pyrophosphate, 0.1 ml was spread on 

duplicate plates. Plates with 20-300 colonies were counted. 

Distribution of bacteria introduced into soil at various initial 

moisture contents. Different volumes of demineralized water were added to 

portions of loamy sand or silt loam corresponding to 10 g dry weight. 

This resulted in loamy sand portions with moisture contents of 1.3, 4, 7, 

10 or 13% and in silt loam portions with moisture contents of 4, 18, 24, 

30, 36 or 42%. The added water in the silt loam portions spread by 
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capillary forces during incubation for 2 days at 2"C, whereas the loamy 

sand portions were mixed well before incubation. Thus, soil portions with 

decreasing water potentials, and therefore with increasing water-filled 

pore neck diameters, were prepared. The soil portions were inoculated 

with approx. 3 x 10 washed R. 1eguminosarum biovar trifolii cells g/dry 

soil in sufficient demineralized water to ensure that the loamy sand and 

the silt loam contained 16 and 45% moisture after inoculation. According 

to Fig. 1, this should correspond to -10 kPa. Again, only the loamy sand 

portions were mixed and both loamy sand and silt loam portions were incu-

bated for 1 day at 2°C. Mean bulk density of both soils was 1.0 g/cnr. 

Numbers of bacteria in different soil suspensions were enumerated by 

selective plating after the suspensions were prepared using the following 

procedure. 

Duplicate soil portions were transferred into 250 ml Erlenmeyer flasks. 

After adding 100 ml of demineralized water, the suspension was shaken 

lightly for 3 min on a rotary shaker (150 rpm at a diameter of 32 mm) and 

decanted carefully after settling for 20 s. This was repeated four times 

and a sample of the last washing suspension was taken, whereafter the 

total amount of washing syspension was increased to 500 ml. To determine 

the number of bacteria remaining in the washed soil (fraction A ) , the 

soil was shaken thoroughly in 95 ml 0.1% sodium pyrophosphate with 10 g 

gravel (2-4 mm diameter) on a rotary shaker (10 min, 280 rpm). The entire 

experiment was done twice in order to examine the reproducibility of the 

technnique. Linear regression analysis was carried out on logarithmic 

values. 

Distribution and population dynamics of introduced bacteria. Soil 

portions were prepared and inoculated in essentially the same way as in 

the previous experiment. Different volumes of demineralized water were 

added to loamy sand and to silt loam portions, so that soil portions of 

approx. -100,000, -500 and -32 kPa were prepared. The soil portions were 

inoculated with 3 x 10' washed R. leguminosarum biovar trifolii cells/g 

dry soil in sufficient demineralized water to ensure that the loamy sand 

and the silt loam contained 16 and 45% moisture after inoculation. Mean 

bulk densities for the loamy sand and the silt loam were, respectively, 

1.0 and 0.9 g/cm . Soil portions were incubated under dark, humid condi­

tions, the first day at 2°C and thereafter at 15 "C. Numbers of bacteria 

were determined at days 1, 28, 55 and 111 using the following procedure. 

Three different soil suspensions were distinguished: fractions A, B and 

C, containing soil particles and aggregates larger than approx. 50 /im, 
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between 2 and 50 i^m and <2 /xm, respectively. To obtain these suspensions, 

duplicate soil portions were washed five times as described in the 

previous experiment. Precipitation speed of the soil particles in water 

was calculated using Stokes' law, supposing spherical particle shapes and 

a density of 2.65 g/cm . Fraction A contained the remaining soil after 

the entire washing procedure in which the soil particles were, each time 

before decanting, allowed to settle for 20 s. The bacteria in this frac­

tion were extracted from the soil particles by shaking thoroughly in so­

dium pyrophosphate with gravel. The amount of remaining soil was weighed 

after filtration and drying at 105°C. Fraction C contained only particles 

which were left in the upper 1 cm of the washing suspension after 1 h of 

precipitation. Fraction B was the difference between numbers of bacteria 

in the non-precipitated washing suspension and in fraction C. Numbers of 

bacteria in these fractions were enumerated by selective plating, trans­

formed to logarithmic values and analyzed by analysis of variance. 

4.3 RESULTS 

The washing procedure with a total of 500 ml demineralized water was 

sufficient to determine the number of cells which were still attached to 

or closed in by the soil after washing (fraction A ) , because the number 

of cells in fraction A exceeded the number of cells in the last washing 

suspension. The percentage of cells in fraction A decreased at increasing 

moisture content (w/w • 100 'O ) 

Fig. 2. Percentages of 
R. leguminosarum bio-
var trifolii cells 
remaining in the 
washed soil (fraction 
A) as compared to the 
total number of cells 
of this strain in the 
soil, 1 day incubated 
at 2°C after inocula­
ting loamy sand (•) 
and silt loam (•) at 
different initial 
moisture contents. 
Standard deviations 
between duplicates are 
0.15 and 0.21 and be­
tween replications of 
the experiment 0.11 
and 0.24 for the loamy 
sand and the silt 
loam, respectively. 
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Fig. 3. Distribution and dynamics of R. leguminosarum biovar trifolii 
introduced into loamy sand and silt loam at different initial moisture 
contents. A, cfu attached to or closed in by soil particles and aggrega­
tes >50 /xm; B, cfu attached to or closed in by soil particles and aggre­
gates between 50 and 2 /jm; C, unattached cfu and cfu attached to soil 
particles <2 jim; S, sum of cfu in the fractions A, B and C. Bars indicate 
standard deviations. 
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initial moisture contents (Fig. 2) . Standard deviations of duplicates 

were small (0.15 and 0.21 for the loamy sand and the silt loam, respecti­

vely) and results were highly reproducible with the used combination of 

shaking speed and amplitude. The mean values of both experiments had 

standard deviations of 0.11 and 0.24 for the loamy sand and the silt 

loam, respectively. In the loamy sand, the percentages of cells in 

fraction A decreased up to the initial moisture content of 10%. The silt 

loam showed a fast decrease in the percentage of cells in fraction A up 

to the initial moisture content of 18%, which was followed by a slow 

decrease up to about 30%. At these moisture contents maximal numbers of 

cells were washed out. 

The second experiment also showed that the first day after inoculation 

the number of cells in fraction A was significantly (P<0.05) higher at 

the lowest initial moisture content than at the higher moisture contents 

(Fig. 3). Comparing both soil types, significantly (P<0.05) higher 

numbers of cells in fraction A were found in the silt loam. After longer 

incubations, the pattern of decreasing numbers of cells in fraction A at 

increasing initial moisture contents was still present. At days 28, 55 

and 111 significantly (P<0.05) more cells were still found in fraction A 

at the lowest initial moisture content compared to the two higher initial 

moisture contents for both soil types. 

During incubation, the number of cells in fractions B and C decreased 

more quickly than that in fraction A (Fig. 3) resulting in a significant 

(P<0.001) increase in the percentages of fraction A (Table 1). After 111 

days, the percentage of cells in fraction C, consisting of free cells and 

Table 1. Percentage of R. 1eguminosarum biovar trifolii cells remaining 
in the soil after five consecutive washings as compared to the total 
number of the rhizobial cells after inoculating loamy sand and silt loam 
at different initial moisture contents. 

incubation 

soil type 

loamy sand 
loamy sand 
loamy sand 

silt loam 
silt loam 
silt loam 

period 

initial 
moisture 
content 

(w/w.100%) 

1.3 
6.3 

10.3 

4.0 
32.0 
34.0 

ld,2°C 

2.2 
1.8 
0.9 

7.5 
3.6 
2.8 

28d,15°C 

2.8 
1.6 
1.4 

14.8 
16.5 
8.6 

55d,15°C 

14.6 
12.5 
9.3 

48.6 
32.4 
36.3 

llld,15°C 

45.0 
37.1 
39.8 

53.1 
34.3 
38.5 
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cells attached to soil particles that were <2 jum, was reduced to 10-35% 

of the total number of rhizobial cells in both soil types. After 28, 55 

and 111 days of incubation the sum of cells in fractions A, B and C 

followed the same trend as the number of cells in fraction A, even at 

days 28 and 55, when fraction B or C contained still more cells than 

fraction A. So, inoculation 

of soil at lower moisture T a b l e 2- Percentage of soil that was not 
suspended during the washing procedure 

contents resulted in higher after different incubation periods. 

survival rates of rhizobial * 
incubation loamy sand 

cells. period 
After prolonged incubation 

1 d, 2'C 89 ± 1 (5) 78 ± 6 (5) 
both soil types became more 28 d, 15°C 93 ± 1 (6) 78 ± 6 (5) 

stable to the washing proce- 5 5 d' 1 5 ° C 9 4 ± l ^ 8 1 ± 3 <6> 
6 111 d, 15°C 95 ± 1 (6) 82 ± 3 (6) 

dure since less soil came in 

suspension (Table 2). * M e a n v a l u e ± s t a n d a r d deviation (number 
of values) 

In both experiments the 

method of washing and thoroughly shaking of soil suspensions showed 

constant recovery percentages: the sum of rhizobial cells in the 

different fractions was constant after 1 day at 2°C. 

4.4 DISCUSSION 

The results of both experiments showed that different distribution 

patterns of cells introduced into soil could be achieved by inoculating 

soils at different initial moisture contents. At lower initial moisture 

contents (higher water potentials) , only the narrowest pores will be 

filled with water and the inoculum is expected to penetrate into narrower 

pores and more inoculated cells will penetrate aggregates than in soil 

with higher initial moisture contents. When water fluxes are not too 

large, water in pores will prevent introduced cells from penetrating 

these pores. 

Increasing the initial moisture content, the percentage of cells 

attached to or closed in by soil particles or aggregates >50 /jm (fraction 

A) decreased only up to a certain moisture content (Fig. 2 ) , suggesting 

that attachment or enclosure of cells was limited to a certain initial 

moisture content range. The largest water-filled pore necks corresponding 

to these moisture contents, can be calculated when the water potential is 

known with pF - log 0.15 - log r [pF = log(cm H2O) and r = radius in cm] 

[18]. Thus, when the moisture contents corresponded to the water poten-
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tials given in Figure 1, attachment or enclosure of cells took place when 

pore necks up to 9 and 0.6 fim in the loamy sand and the silt loam, 

respectively, were not yet water filled. Similar to our results, Vargas 

and Hattori [18] found increasing numbers of Aerobacter aerogenes cells 

washed out of the soil when higher initial moisture contents were used, 

however, their recovery percentages were not constant. They calculated a 

critical pore neck diameter of 2.5 pm for sandy clay loam up to where 

cells were retained by the soil. 

In the silt loam higher numbers of cells were found in fraction A than 

in the loamy sand, which can be due to a larger volume of capillary pores 

or to stronger attachment of cells to the silt and clay particles. 

The second experiment showed that, at increasing initial moisture 

contents, the pattern of decreased numbers of cells in fraction A was 

still found after longer incubation periods. If appreciable transport and 

migration would take place, the differences would be expected to 

diminish, because there was no other difference between the soil portions 

than the initial moisture content. Thus, the persistence of these 

differences can only be explained by a lack of appreciable transport and 

migration of the cells from fraction A to places where they can be washed 

out. A lack of migration over short distances was also suggested by 

Labeda et al. [11]. 

The number of cells which were unattached or attached to smaller soil 

particles up to 50 /zm decreased faster than the cells attached to or 

closed in by soil particles or aggregates >50 /jm (fraction A ) . Moreover, 

the pattern of higher survival rates at lower initial moisture contents 

correlated with the pattern of cell numbers in fraction A. This may be 

interpreted by assuming that soil particles or aggregates >50 /im 

represent a more favourable microhabitat. Increased attachment as a 

reason for the change in the number of cells in fractions A, B and C can 

only play a minor role, because the numbers of cells in fraction A of the 

soil portions with different initial moisture contents were not equal. 

Other results affirming that the free state is less favourable for 

bacterial cells than attachment to or closing in by soil particles or 

aggregates are described by Drazkiewicz and Hattori [2], Hattori [6], 

Nioh and Furusaka [13] and Ozawa and Yamaguchi [14]. 

By sieving, rewetting and mixing the soil, we expect that aggregates 

have lost stability. During the incubation of the soil portions, however, 

we detected an increase in aggregate stability, since less soil came in 

suspension during the washing procedure. This increase can be a result of 
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biological activity of microorganisms, but also physical mechanisms can 

play a role [12]. 

The described method of washing and thoroughly shaking soil suspensions 

is relatively simple and the results are highly reproducible. The method 

gives interesting results about distribution, transport or migration and 

population dynamics, but being an indirect method, interpretation is 

sometimes difficult. Distinguishing between cells strongly attached to or 

closed in by soil particles or aggregates, is for example not possible 

using the method described. Moreover, weakly attached cells will become 

detached. Micro-aggregates (up to 250 ^m) are suggested to be stable to 

rapid wetting and to agricultural practices [17] , which means that the 

enclosure of cells in such aggregates will not be disturbed. Forces 

during the washing procedure influenced the size of the different 

fractions and the fact that fractions B and C were often showing the same 

pattern as fraction A, means that some disruption of soil structure 

during the washing procedure cannot completely be excluded. 
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CHAPTER 5 

THE ROLE OF MICRONICHES IN PROTECTING INTRODUCED RHIZOBIUH 

LEGUHINOSARUM B IOVAR TRIFOLII AGAINST COMPETITION AND 

PREDATION IN SOIL 

ABSTRACT 

The importance of microniches for the survival of introduced Rhizobium 

leguminosarum biovar Crifolii cells was studied in sterilized and 

recolonized sterilized loamy sand and silt loam. The recolonized soils 

contained several species of soil microorganisms, but were free of proto­

zoa. Part of these soil portions were inoculated with the flagellate Bodo 

saltans, precultured on rhizobial cells. The introduced organisms were 

enumerated in different soil fractions by a standardized soil washing 

procedure. 

The total number of rhizobial cells was influenced only little (silt 

loam) or not at all (loamy sand) by the recolonization with microorga­

nisms or by the addition of flagellates alone. However, when both 

flagellates and microorganisms were present, numbers of rhizobial cells 

decreased drastically. This decrease was more than the sum of both 

effects separately. Nevertheless, population levels were still higher 

than in natural soil. 

In the presence of flagellates higher percentages of rhizobial cells 

and other microorganisms were associated with soil particles or aggrega­

tes >50 ^m than in the absence of flagellates. In recolonized soils, 

however, the percentages of particle-associated rhizobial cells were 

lower than in soils not recolonized previous to inoculation. Thus, the 

presence of other microorganisms hampered rhizobial cells in the coloni­

zation of sites where they can be associated with soil particles or 

aggregates. 

J. Postma, C.H. Hok-A-Hin and J.A. van Veen (submitted) 
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5.1 INTRODUCTION 

Survival of rhizobial cells introduced into natural soil was shown to 

be influenced by the spatial distribution of cells in soil [21] . Upon 

introduction into relatively dry soils, higher numbers of cells were 

found to be associated with soil particles and aggregates >50 jun, which 

resulted in a higher survival percentage than after introduction into 

relatively moist soils. It can be hypothesized that at lower moisture 

contents, smaller pores are not yet water filled, allowing the inoculum 

to penetrate easier into narrower pores. Thus, more cells will reach the 

inner part of aggregates [21,26]. Capillary pores up to 6 y.m in diameter 

are suggested to be the most favourable microhabitats for bacteria [12]. 

One reason may be that bacteria in smaller pores may be protected from 

predation by protozoa [4,26]. Also abiotic conditions may be more favour­

able in these small pores, since moisture content will be more constant. 

Thus, these small pores might act as protective microniches for the 

introduced bacteria. In order to assess the role of the protective micro-

niches in the ecology of introduced bacteria, more information is needed 

about the kind of protection of bacteria situated in these small pores. 

The influence of particular groups or species in soil on the population 

dynamics of introduced bacteria can be examined by removal or reduction 

of these groups with biocides. However, also non-target groups might be 

affected and specific protozoacides are not yet available [15,16]. 

Cycloheximide, an inhibitor of protein synthesis in eukaryotes, has only 

a limited effect on protozoa when applied to soil [10,16]. The role of 

particular groups of microorganisms can also be studied by introducing 

them into sterile soil. Although this procedure does not fully cover the 

array of processes in natural soil, phenomena such as competition and 

predation might be analysed in this way. 

In the present study, the dynamics of Rhizobium leguminosarum biovar 

trifolii introduced into sterilized loamy sand and silt loam was inves­

tigated. Soils with different initial moisture contents were inoculated 

in order to manipulate the spatial distribution of the rhizobial cells. 

The influence of competition and predation on distribution and population 

dynamics of rhizobial cells was studied by recolonizing the sterilized 

soil with a group of isolated soil microorganisms or by adding flagella­

tes precultured on rhizobial cells, or a combination of both. Although 

other interactions than competition and predation might occur, the added 

components will be refered to as competitors and predators, respectively. 
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5.2 MATERIALS AND METHODS 

Soils. Two Dutch arable soils, a loamy sand and a silt loam [7,20,21] 

were air-dried to 8 and 20% moisture content, respectively, sieved <2 mm 

and stored at 4°C. Prior to use, the soil was further dried to a moisture 

content of respectively 1.3 and 4%. The soil was sterilized by 7-irradia­

tion (4 Mrad) and sterility was tested by dilution plating on nutrient 

agar (NA) (3.25 g Oxoid nutrient broth and 13 g agar in 1000 ml water, pH 

7.2). 

Recolonisation of sterilized soils. In order to obtain soils with 

different competitors but free of predators, about 80 bacterial isolates 

from both soils were isolated on NA. These microorganisms were not 

further identified. The loamy sand isolates were grown for 3 days as a 

mixed population in loamy sand extract [18] and used to inoculate the 

sterilized loamy sand. A similar procedure was followed for the silt 

loam, growing the isolates obtained from silt loam in silt loam extract. 

The inoculated loamy sand and silt loam were moistured up to approx. 15 

and 40% moisture content, respectively, and were incubated for at least 4 

weeks at room temperature. The soils were then dried again to 1.3 and 4% 

moisture content. Numbers of microorganisms in these recolonized dried 

soils, enumerated by dilution plating on NA, were between 8 x 10' and 3 x 
o 

10 colony forming units (cfu) /g dry soil. The absence of protozoa was 

tested with the most probable number method described below. 

Culturing and enumerating rhizobial cells. R. leguminosarum biovar 

trifolii R62::Tn5 resistant to kanamycin (Km) and rifampicin (Rp) [13,20] 

was used. The bacterium was cultured in yeast extract mannitol broth [13] 

supplemented with 25 mg/1 Km. After growing for 2 days at 29°C on a rota­

ry shaker, the cells were washed by centrifugation (7000 x g, 15 min) and 

resuspended in sterile demineralized water. 

Numbers of rhizobial cells were determined on plates containing yeast 

extract mannitol agar (YMA) supplemented with 50 mg/1 Km, 20 mg/1 Rp and 

100 mg/1 cycloheximide. 

Culturing and enumerating protozoa. A flagellate, Bodo saltans [24], 

approx. 3 x 8 /jm, was used. During one year, the flagellates were 

regularly diluted in sterile demineralized water with freshly grown 

rhizobial cells. After growing several days at room temperature, the 

highest dilution containing flagellates was diluted again. In this way an 

uniprotozoan population with a minimum of microorganisms other than R. 

leguminosarum biovar trifolii was obtained. We did not succeed in elimi-
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nating the other microorganisms completely, although antibiotics were 

used. Numbers of non-rhizobial cells could be enumerated in the presense 

of high densities of rhizobial cells by dilution plating on tryptone soya 

agar (3.75 g tryptone, 1.25 g soya peptone, 1.25 g NaCl, 13 g agar, 1000 

ml water), since rhizobial cells did not grow on this medium. To inocu­

late the soil, flagellates were cultured in sterile demineralized water 

with rhizobial cells. Part of this suspension was added to the rhizobium 

inoculum just before inoculation of the soils. 

Protozoa in (soil)suspensions were enumerated in microtiterplates by a 

most probable number (MPN) method [5]. With a microdiluter (Titertek) 4-

fold dilutions with 8 replicates were made in amoeba saline (120 mg NaCl, 

4 mg MgS04.7H20, 4 mg CaCl2.2H20, 142 mg Na2HP04, 360 mg KH2P04, 1000 ml 

water) containing approx. 10° rhizobial cells/ml. The presence of proto­

zoa was determined microscopically after an incubation period of 14 to 28 

days at 15°C. 

Experimental design. Soil portions of sterile (S) and recolonized 

sterilized soil (SC), corresponding to 10 g dry weight, were incubated in 

glass cores (diameter 30 mm) , which were closed by autoclavable plastic 

(polystyren) (bottom) and alluminium caps (top). Sterile demineralized 

water was added to the soil portions in order to obtain moisture contents 

of 1.3, 6.3 and 10.3% in the loamy sand and 4, 30 and 34% in the silt 

loam. These moisture contents corresponded in both soils with water 

potentials of -100,000, -500 and -32 kPa, respectively [21]. After mois­

tening, the soil portions were incubated in a moisture chamber for 2 days 

at 4°C. The added water in the silt loam portions spread by capillary 

forces only, whereas the loamy sand portions were mixed with a spatula 

prior to incubation. The soil portions were then inoculated with 

rhizobial cells or with a mixture of rhizobial cells and flagellates 

(+F) , resulting in 4 treatments: S, SC, S+F and SC+F. The inocula were 

added in as much demineralized water so that after inoculation the loamy 

sand and the silt loam contained 16 and 45% moisture, respectively, which 

corresponded with pF 2 (-10 kPa). Numbers of inoculated rhizobial cells 

and flagellates were 0.6-1 x 10 and 7 x 10 /g dry soil, respectively. 

The number of non-rhizobial cells added with the flagellates was 4 x 10 

/g dry soil. Again, only the loamy sand portions were mixed with a spatu­

la and both loamy sand and silt loam portions were incubated for 1 day at 

4°C and thereafter at 15°C. Bulk densities of both soils varied between 

0.9 and 1.1 g/cm . Numbers of bacteria and protozoa were determined 1, 28 

and 56 days after inoculation and for some samples on days 7 and 14 too. 
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Sampling procedure. Duplicate soil portions were washed 5 times with 

100 ml sterile demineralized water as described by Postma et al. [21]. 

This washing suspension contained soil particles approx. <50 /xm. A sus­

pension with soil particles <2 /jm was obtained by taking a sample from 

the upper 1 cm of the washing suspension that was allowed to settle for 

1 h. The remaining soil after the entire washing procedure (>50 urn) was 

shaken thoroughly (10 min, 280 rpm) with gravel (diameter 2-4 mm) in 95 

ml 0.1% sodium pyrophosphate in order to suspend the particle-associated 

organisms. Numbers of rhizobial cells, other microorganisms and flagella­

tes in the different fractions were determined by dilution plating on YMA 

with appropriate antibiotics, by dilution plating on NA and by the MPN 

method, respectively. The amount of the remaining soil was weighed after 

filtration and drying at 105°C for one day. 

Statistical analyses. First, the effects of initial moisture content 

and incubation period were studied separately per treatment with analysis 

of variance. Then, a total analysis of variance was carried out to 

analyse the effects of competition, predation and initial moisture 

content, using only the results of days 28 and 56, when population sizes 

became more or less stable. In all analyses of variance the logarithm of 

the response variable was used, since we were interested in proportional 

effects on bacterial numbers or percentages and the variance of replica­

tes appeared to be stable on the log scale. Least significant differences 

(LSD) were calculated for a=0.05. When percentages have been presented 

instead of their logarithmic values, LSQ-values (least significant 

quotient) are given (LSQ=10LSD). 

5.3 RESULTS 

Effects of initial moisture content on rhizobial numbers. One day after 

inoculation, the total numbers of rhizobial cells were similar within 

each treatment (Fig. 1). After 28 and 56 days of incubation, total number 

of rhizobial cells were unaffected by the 3 initial moisture contents in 

all treatments of the loamy sand and in treatment S of the silt loam. In 

treatments SC, S+F and SC+F of the silt loam, however, total numbers of 

rhizobial cells introduced into the dryest soil were significantly 

(P<0.05) higher than the numbers of cells introduced into soils with 

higher initial moisture contents. 

In the silt loam, 1 day after inoculation, the numbers of rhizobial 

cells associated to soil particles >50 /im (Fig. 2) were significantly 

55 



20 30 40 

ime (days) 
20 30 40 

time (aays) 

Fig. 1. (left and right page) Total number of rhizobial cells in steri­
lized (S) and recolonized (SC) loamy sand and silt loam with or without 
added flagellates (+F), inoculated at different moisture contents. 
•, O and • represent an initial moisture content of 1.3, 6.3 and 10.3% in 
the loamy sand and 4, 30 and 34% in the silt loam. Bars indicate least 
significant difference (LSD) for a=0.05. 

higher (P<0.05) at the lowest initial moisture content than at the two 

higher initial moisture contents. The differences in numbers of particle-

associated rhizobial cells as a result of the different initial moisture 

contents, disappeared in treatment S within 7 days, whereas in the other 

treatments these differences were significant over a longer period, un-

till the end of the incubation in treatment SC. 
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In the loamy sand, the dynamics of the number of cells associated with 

larger soil particles did not show such a consistent pattern (Fig. 2). 

Significant differences upon initial moisture content in the loamy sand 

occured in treatments SC and SC+F, although in the latter treatment the 

initial moisture content of 6.3% did not always result in lower numbers 

of particle-associated rhizobial cells as compared to the lowest initial 

moisture content. 

No clear differences due to different initial moisture contents were 

detected in rhizobial numbers in suspensions with soil particles <2 ^m. 

Effect of competition and/or predation on rhizobial numbers. In steri­

lized loamy sand and silt loam (treatment S) total numbers of rhizobial 
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Fig. 2. (left and right page) Number of rhizobial cells associated with 
soil particles or aggregates >50 /im in sterilized (S) and recolonized 
(SC) loamy sand and silt loam with or without added flagellates (+F) , 
inoculated at different moisture contents. 
•, O and D represent an initial moisture content of 1.3, 6.3 and 10.3% in 
the loamy sand and 4, 30 and 34% in the silt loam. Bars indicate least 
significant difference (LSD) for a=0.05. 

cells after 28 and 56 days of incubation were approx. 5 x 10^ and 5 x 10^ 

/g dry soil, respectively (Fig. 1). In the loamy sand total numbers of 

rhizobial cells were significantly reduced when both competitors and 

predators were added (treatment SC+F). The addition of only one of these 

components had no significant effect. In the silt loam, however, the 



10 20 30 40 50 60 

time (days) 

addition of only competitors or only predators resulted in a significant 

reduction as compared to non-reinoculated sterilized soil, but the 

addition of both resulted in an even stronger reduction of rhizobial 

numbers. Only when both competitors and predators were added, rhizobial 

numbers decreased during the overall incubation period. 

The numbers of rhizobial cells in the washing suspension (particles <50 

/jm) and in the suspension with soil particles <2 yum showed a similar 

pattern as the total numbers of rhizobial cells. 

The numbers of rhizobial cells associated with larger soil particles 

showed a different pattern: in the loamy sand, as well as in the silt 

loam, highest numbers of particle associated cells were found when only 
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predators were added (Fig. 2). There were no significant differences 

between the other treatments in the loamy sand. In the silt loam, 

however, all treatments differed significantly: in the order of treat­

ments SC+F, SC, S and S+F, increasing numbers of particle-associated 

rhizobial cells were found on days 28 and 56. 

Particle-associated cells as a proportion of the total number of 

rhizobial cells increased during the incubation period and were in all 

treatments significantly (P<0.001) higher in the silt loam than in the 

loamy sand (Fig. 3). On days 28 and 56, the presence of competitors 

resulted in a significant reduction of the percentages of particle-

associated cells by a factor 0.60 and 0.62 in the loamy sand and the silt 

loam, respectively. When flagellates were added relatively more cells 

were particle-associated as compared to the treatments without predators. 

Differences were a factor 2.33 and 2.63 in the loamy sand and the silt 

loam, respectively. 

Dynamics of the competitors. The first day after inoculation, total 

numbers of microorganisms had already increased by a factor 2 in the 

recolonized soils. The introduced numbers of non-rhizobial cells in 
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Fig. 3. Percentages of rhizobial cells associated with soil particles or 
aggregates >50 fj.m in sterilized (S) and recolonized (SC) loamy sand and 
silt loam with or without added flagellates (+F) . Mean values for the 
different moisture contents are presented. 

, sterilized soil; , recolonised sterilized soil; o, no 
flagellates added; •, flagellates added. Bars indicate least significant 
difference (LSD) between treatments at days 28 and 56. 
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treatment S+F were low, but increased drastically during further incuba­

tion (Table 1). The initial moisture content had no significant effect on 

the number of competitors one day after inoculation nor after prolonged 

incubation, so that interaction with the effect of initial moisture 

content on rhizobial numbers can be excluded. Mean data of the 3 initial 

moisture contents are presented in Table 1. 

The percentages of particle-associated competitors (Table 1) resemble 

strongly those of particle-associated rhizobial cells (Fig. 3). 

Table 1. Total numbers, numbers and percentages of particle-associated 
microorganisms in the sterilized soils (S) that were recolonized with 
microorganisms (SC) and/or amended with flagellates (+F). 

log total number log associated % associated 
incubation in days 28 56 28 56 28 56 

loamy sand SC 
loamy sand S+F 
loamy sand SC+F 

silt loam SC 
silt loam S+F 
silt loam SC+F 

8.92 
8.67 
8.38 

LSD = 

9.25 
9.14 
9.02 

LSD = 

8.88 
8.78 
8.26 

0.15 

9.42 
9.21 
9.06 

0.09 

8.10 
7.97 
7.67 

LSD = 

8.51 
9.01 
8.74 

LSD -

7.91 
8.07 
7.56 

0.27 

8.84 
8.93 
8.75 

0.17 

17.3 
20.4 
19.7 

LSQ = 

19.1 
72.5 
53.3 

LSQ = 

17.0 
20.0 
20.6 

1.6 

28.4 
53.8 
49.4 

1.3 

LSD - least significant difference (a-0.05) 
LSQ — least significant quotient (a=0.05) 

Table 2. Total numbers, numbers and percentages of particle-associated 
flagellates in sterilized soils (S) and sterilized recolonized soils (SC) 
where flagellates (+F) were added. 

incubation in days 

loamy sand S+F 
loamy sand SC+F 

silt loam S+F 
silt loam SC+F 

log total number 
28 56 

6.32 
4.37 

LSD = 

5.97 
4.17 

LSD -

5.06 
3.56 

0.18 

4.74 
4.27 

0.18 

log 
28 

4.30 
3.05 

LSD -

5.21 
2.78 

LSD = 

associated 
56 

3.37 
ND 

• 0.25 

3.62 
2.85 

• 0.18 

% associated 
28 56 

1.0 
5.1 

LSQ -

20.2 
4.4 

LSQ -

2.4 
ND 

1.5 

7.8 
4.1 

1.9 

ND = not detectable 
LSD = least significant difference (a=0.05) 
LSQ = least significant quotient (a-0.05) 
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Dynamics of the predators. No significant effect of initial moisture 

content was detected on the numbers of flagellates; therefore, only mean 

numbers are presented in Table 2. After inoculation with 7 x 10 

flagellates /g dry soil, numbers increased 10 to 300 times during the 

first 28 days. Thereafter, numbers decreased again. 

In both soils total numbers and numbers of particle-associated preda­

tors were higher in treatment S+F than in treatment SC+F (Table 2) . 

Numbers of particle-associated predators were sometimes to low for 

reliable counts, as a consequence the percentages of particle-associated 

predators showed relatively larger variances. The results show that the 

percentages of particle-associated predators are much lower than the 

percentages of the particle-associated competitors (Table 1) and 

particle-associated rhizobial cells (Fig. 3). 

5.4 DISCUSSION 

Distribution and population dynamics of rhizobial cells were first 

assessed in the absence of other organisms. By inoculating sterilized 

soils at increasing moisture contents, decreasing numbers of rhizobial 

cells were associated with soil particles, similar to results previously 

found in the natural soil [21]. However, in contrast with these earlier 

observations in natural soil, the differences in distribution disappeared 

rather quickly in sterilized soil and significant differences in survival 

were not detected. Thus, the maintenance of these differences in distri­

bution might be the result of the presence of other organisms, rather 

than of abiotic factors. 

The decline of bacteria introduced into natural soil has been attri­

buted mainly to predation by protozoa [1,9,10,22] and to competition with 

other microorganisms [11,14,19]. Other possibilities such as microorga­

nisms capable of producing antibiotics or lytic enzymes, bacteriophages 

and Bdellovibrio were suggested to be less important [1,9,22]. Therefore, 

sterilized soil was recolonized with a group of microorganisms which were 

assumed to act as competitors. To part of the sterilized and recolonized 

soil portions, flagellates pregrown on rhizobial cells, acting as preda­

tors, were added. The added flagellates and microorganisms were not 

sufficient to obtain the same effects as in the natural soil. Neverthe­

less, in the recolonized silt loam significant differences due to the 

initial moisture content were detected. Thus, competition with other 

microorganisms may be an important factor to maintain the differences in 
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distribution of rhizobial cells due to the initial moisture contents. The 

presence of predators, as a single group, did not result in similar 

differences. 

The experimental design used in this study covered only part of the 

entire array of processes that determine the population dynamics of 

introduced bacteria in natural soil. However, it did give indications on 

the role of individual components such as competition and predation on 

the survival of introduced bacteria. Moreover, it added information to 

further develop the concept of the existence of protective microniches 

provided by physical and chemical conditions of the soil for the intro­

duced bacteria. 

The spatial distribution of rhizobial cells was influenced by the 

presence of competitors as well as predators. Many suitable niches will 

be occupied by the introduced competitors after a recolonization period 

of 4 weeks. Rhizobial cells then have to compete for substrates and 

habitable pore space with the large numbers of microorganisms already 

present. This could explain that in the recolonized soil lower percenta­

ges of rhizobial cells were associated with soil particles and aggregates 

as compared to soil that was not recolonized previous to inoculation. 

Although indigenous rhizobia were mentioned to be competitive enough to 

use readily available substrates in soil in the presence of a natural 

soil population [8,27], introduced rhizobia were shown to be less compe­

titive [8,19]. Not only the competitive ability, but also the moment of 

inoculation is important. Inoculated bacteria have less chance to 

colonize suitable microniches when other competitive microorganisms are 

already present [3,25]. 

Predators caused the opposite effect on the distribution of rhizobial 

cells as the competitors: the percentages of particle-associated rhizo­

bial cells were higher in treatments where predators were present than in 

treatments without predators. Also the percentage of particle-associated 

competitive microorganisms increased in the presence of predators. This 

agrees with the concept that particle-associated bacteria are found in 

smaller pores which are physically protected from predation [4,21,26]. 

The larger flagellates were not able to enter these sites. Evidence for 

this is the observation that most of the flagellates were, similar to the 

results of Vargas and Hattori [26], not associated with soil particles 

and aggregates >50 ^m. Firm attachment to soil surfaces might also pro­

tect bacteria from predation by filter feeding flagellates (K.B. Zwart, 

pers. communication). 
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It is surprising, that recolonization and addition of flagellates alone 

had little effect on the total number of rhizobial cells. Even in the 

treatment where flagellates were added in combination with a low number 

of microorganisms which increased drastically during incubation, rhizo­

bial numbers did not decrease to numbers comparable to the treatment 

where flagellates were added to the recolonized soils. This could be due 

to the presence of a different microbial population and/or to the 

sequence of introduction [3,25]. 

Our results indicate that rhizobial cells inoculated in non-recolonized 

sterilized soil were able to compensate for the loss of predated cells, 

since the absolute number of particle-associated rhizobial cells was 

higher in this treatment than in sterilized soil without flagellates. 

This higher number of particle-associated cells can be explained by 

regrowth in combination with selection on particle-associated cells, 

since active attachment of rhizobial cells as a direct response to the 

presence of predators is not likely. A compensation of predated cells by 

regrowth can be expected [1,6,11], since predation deminished bacterial 

numbers more effective when bacterial growth was inhibited [11]. In 

addition, protozoa have been detected to cause a higher respiration rate 

and N-turnover [6,17]. Substrates produced by metabolic activity or death 

and lysis of protozoa may allow bacterial reproduction [23,25]. 

The survival of rhizobial cells only decreased drastically when compe­

titors and predators were both added to the sterilized soil. The fact 

that the population of rhizobial cells did not decrease down to levels 

found in natural soil, can be due to the larger variation in species of 

predators and microorganisms in natural soil. Amoebae are thought to be 

important bacteriophorous predators in soil based on their higher numbers 

[2,17] and combinations of predators increase the overall activity in 

soil [6]. 

The synergetic effect of the combination of competitors and predators 

may be explained in the following way. Flagellates predate mainly on 

accessible bacterial cells, i.e. cells outside the protective micro-

niches, which resulted in an increased percentage of particle-associated 

rhizobial, as well as non-rhizobial, cells. The capability of the intro­

duced rhizobial cells to compensate for the loss of predated cells will 

be dependent on competitional factors. In the recolonized sterilized 

soil, however, the regrowth of rhizobial cells will be limited by the 

presence of competitive microorganisms at many of the suitable micro-

niches. Thus, with the increased turnover due to predation, the 
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competition for substrates and habitable pore space will become more 

important for the survival of introduced bacteria. 
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CHAPTER 6 

POPULATION DYNAMICS OF RHIZOBIUM LEGUHINOSARUM Tn5 MUTANTS 

WITH ALTERED CELL SURFACE PROPERTIES INTRODUCED INTO STERILE 

AND NON-STERILE SOILS 

ABSTRACT 

The influence of cell surface properties on attachment to soil par­

ticles and on population dynamics of introduced bacteria was studied in 

sterilized and natural (=non-sterilized) loamy sand and silt loam. Rhizo-

bium leguminosarum strain RBL5523 and three Tn5 mutants with altered cell 

surface properties were used. Cellulose fibrils were absent in RBL5762. 

Both RBL5810 and RBL5811 produced 80-90% less soluble exopolysaccharides 

and RBL5811 had in addition an altered lipopolysaccharide composition. 

In sterilized soil the total number of cells, as well as the number of 

particle-associated cells, of RBL5523 and RBL5810 were higher as compared 

to cell numbers of RBL5762 and RBL5811. Differences in percentage of 

particle-associated cells between strains in sterilized soil were only 

found at high inoculum densities, when populations increased little. In 

the natural silt loam final population sizes, as well as numbers of 

particle-associated cells, of RBL5523 were higher as compared to the 

other strains after 56 and 112 days of incubation. Differences between 

final numbers were, in both natural soils, maximal a factor 10 and none 

of the mutants survived systematically to a lesser extent than the other 

mutants. Nevertheless, RBL5810 had a lower growth rate and RBL5811 had in 

all cases lower percentages of particle-associated cells than the other 

mutants. 

The importance of association with soil particles or aggregates for the 

survival of introduced cells was affirmed by the pronounced increase of 

the percentage of particle-associated cells during incubation in natural 

as well as sterilized soil. However, no clear relation between altered 

cell surface properties, particle-association and survival was found. 

J. Postma, C.H. Hok-A-Hin, J.M.Th. Schotman, C.A. Wijffelman and J.A. van 

Veen (submitted) 
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6.1 INTRODUCTION 

Bacteria introduced into soil have to cope with harsh conditions in the 

soil and to compete with well-adapted indigenous organisms [3,26]. An 

important aspect for survival of bacteria might be their association with 

soil particles or aggregates. For example, 90% of the indigenous rhizo-

bial cells were found to be associated with soil particles [19] and 

extensive procedures (sonication, blending and shaking) for dislodging 

indigenous soil bacteria, demonstrate the strength of their association. 

As for introduced bacteria, the relative number of particle-associated 

cells increased with time after their introduction [1,19,23,24]. 

Association with soil particles or aggregates can be due to enclosure 

in pores or attachment to soil particle surfaces. Enclosure in pores can 

be manipulated by varying the moisture content prior to inoculation 

[23,24,30]. The impact of attachment, i.e. irreversible contact between 

bacterial cells and soil particle surfaces, might be examined by using 

bacteria with altered cell surface properties. Mutants with altered 

properties such as absence of cellulose fibrils, exopolysaccharide (EPS) 

or lipopolysaccharide (LPS) have been used for studying the infection 

proces of rhizobial cells [4,8,13,17,28]. However, the effect of these 

properties on attachment and on population dynamics in bulk soil are 

unknown. In natural soil not only the attachment, but also biotic 

interactions might be influenced by altered cell surface properties. 

Speculations have been made about the protective function of capsular and 

extracellular polysaccharides against predators and bacteriophages 

[5,9,29] . 

In the present paper, the effect of an altered cell surface on 

particle-association and population dynamics of introduced bacteria was 

studied in sterilized as well as in natural soil. A Rhizobium legumino-

sarum strain and three Tn5 mutants were used as model organisms. Since 

attachment may be influenced by growth of cells, different inoculum 

densities were applied to sterilized soil. In survival studies in natural 

soil, inoculations were executed at two different initial moisture 

contents in order to establish differences in distribution of the 

inoculated cells according to Postma et al. [24]. Total cell numbers and 

numbers of particle-associated cells were distinguished. 
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6.2 MATERIALS AND METHODS 

Soils. Two Dutch arable soils, a loamy sand and a silt loam [6,21,24] 

were air dried to 8 and 20% moisture content, respectively, sieved <2 mm 

and stored at 4°C. Part of the soil was sterilized by 7-irradiation (4 

Mrad) and sterility was tested by dilution plating on nutrient agar (3.25 

g Oxoid nutrient broth and 13 g agar in 1000 ml water, pH 7.2). The non-

sterilized (or natural) loamy sand and silt loam were, prior to use, 

further dried to a moisture content of 1.5 and 5%, respectively. 

Bacterial strains. Strain RBL5523 [25] is derived from R. leguminosarum 

biovar trifolii strain LPR5039 which was cured from its Sym plasmid [11]. 

In a rifampicin (Rp)-resistant derivate of LPR5039, the R. leguminosarum 

Sym plasmid pRLl::Tnl831 was crossed by selecting for transfer of specti-

nomycin (Sp) [25]. Tnl831 codes for resistance against Sp, streptomycin 

(Sm) and mercuro chloride [20]. RBL5762, RBL5810 and RBL5811 were Tn5 

mutants of this strain obtained by transposon mutagenesis as described by 

Smit et al. [28], following the method of Beringer et al. [2]. The 

strains were choosen for their altered cellulose fibril, EPS or LPS 

properties (Table 1) . Each mutant contained only one Tn5 insertion and 

the location of Tn5 was not in the Sym plasmid as was determined by the 

method described by Smit et al. [28]. The impaired EPS production of 

RBL5810 and RBL5811 was due to different mutations, since complementation 

for EPS production occured with different clones from a LPR5039 cosmid 

bank (H.C.C. Canter Cremers, pers. communication). 

Table 1. Bacterial strains 

cellulose EPS LPS contact el.phor. 
fibrils angle *' mobil. ^' 

RBL5523 
RBL5762 
RBL5810 
RBL5811 

1) diminished fluorescence on RMM plates with Km and 0.02% calcofluor 
white under UV light and no extracellular fibrils detected by electron 
microscopy [28] 

2) colonies with non-mucoid appearence on YMA and a reduction of soluble 
exopolysaccharide production of 80-90% (w/w) as compared to RBL5523 
(M.C.C. Canter Cremers, pers. communication) 

3) colonies lacking the O-antigen-containing LPS species determined 
according to de Maagd [17] 

4) data obtained from M.C.M. van Loosdrecht: contact angle (°) and 
fill O N ' 

electrophoretic mobility (10 m V~ sec ) are a measure for adhesion 
of bacterial cells to surfaces [14,15] 
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Growth rate. The strains were pre-cultured in yeast extract mannitol 

broth (YMB) [10] supplemented with 50 mg/1 Sm, whereafter 250 ml Erlen-

meyer flasks containing 50 ml YMB without Sm were inoculated so that 

approx. 10 cells/ml were obtained. For each strain, two such batch 

cultures were incubated on a reciprocal shaker at 15°C. Cell numbers were 

determined daily by dilution plating on yeast extract mannitol agar (YMA) 

[10] , supplemented with 100 mg/1 cycloheximide (C) in order to suppress 

fungal growth. 

Colony morphology. To assess the ability of the strains to produce 

slime, the strains were cultured on plates containing solid media with 

different C/N ratio's and colony morphology was monitored after 6-10 days 

at 28°C. YMA, trypton yeast agar (TYA) (5.0 g trypton (Oxoid), 3.0 g 

yeast extract (Oxoid), 1.0 g CaCl2.2H2O and 13 g agar in 1000 ml water) 

and soil agar were used. Soil agar was prepared of 50 g 7-irradiated (4 

Mrad) loamy sand or silt loam in 100 ml water agar (13 g agar per 1 H2O). 

Stability of antibiotic resistance markers. Inocula cultured in the 

presence of Sm and cells reisolated from both sterilized soils after an 

incubation of 54 days at 15°C were tested for their antibiotic resistance 

by replica plating. From each combination of strain, soil and inoculum 

density, at least 100 colonies from YMA without antibiotics were trans­

ferred to YMA with 200 mg/1 Sm, 100 mg/1 Sp and 20 mg/1 Rp. 

Sterile soil experiment. Inocula of the 4 strains were cultured in YMB 

supplemented with 50 mg/1 Sm. After growing for 2 days at 29°C on a rota­

ry shaker, the cells were washed by centrifugation (7000 x g, 15 min), 

and resuspended in sterile demineralized water. Two inoculum densities 

were used to inoculate glass cores containing sterilized loamy sand and 

silt loam, corresponding to 10 g dry weight. Inoculum densities corres­

ponded to approx. 10' and 10 cells/g of dry soil. After inoculation, the 

moisture content was 16% in the loamy sand and 40% in the silt loam. The 

loamy sand portions were mixed with a spatula and in the silt loam 

portions the added moisture spread by capillary forces only. After incu­

bation for 1, 14, 33 and 54 days at 15°C in a moisture chamber to prevent 

the soil from evaporation, duplicate soil portions were washed 5 times 

with sterile demineralized water as described by Postma et al. [24]. The 

remaining soil after the washing procedure was shaken thoroughly (10 min, 

280 rpm) with gravel (diameter 2-4 mm) in 95 ml 0.1% sodium pyrophosphate 

in order to suspend particle-associated bacteria. Rhizobial cells in both 

suspensions were enumerated by dilution plating on YMA supplemented with 

100 mg/1 C, so that total numbers and numbers of particle-associated 
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cells were distinguished. 

Natural soil experiment. Glass cores containing loamy sand and silt 

loam corresponding to 10 g dry weight were prepared. In order to manipu­

late the distribution of the inoculated rhizobial cells, demineralized 

water was added to part of the soil portions, obtaining loamy sand with 

1.5 and 6.5% and silt loam with 5 and 30% moisture. The soil portions 

were incubated in a moisture chamber for 2 days at 4°C. The added water 

in the silt loam portions spread by capillary forces only, whereas the 

loamy sand portions were mixed with a spatula prior to incubation. The 

soil portions were then inoculated with rhizobial cells cultured and 

washed as described and added in as much demineralized water as was 

needed to obtain 1-4 x 10' cells/g dry soil and final moisture contents 

of 16 and 45% in the loamy sand and silt loam, respectively. Again, only 

the loamy sand portions were mixed with a spatula and both loamy sand and 

silt loam portions were incubated for 1 day at 4°C and thereafter at 

15°C. Bulk density was approx. 1.0 g/cmJ for both soils. Total rhizobial 

numbers and numbers of particle-associated cells were determined in 

duplicate soil portions with the washing procedure [24] after 1, 28, 56 

and 112 days of incubation. YMA supplemented with 100 mg/1 Sm, 50 mg/1 

Sp, 20 mg/1 Rp, 100 mg/1 C and 50 mg/1 benomyl was used to enumerate the 

introduced strains. This combination of biocides was shown to have no 

influence on rhizobial numbers, but resulted in a sufficient suppression 

of indigenous microflora to enumerate 10 rhizobial cells/g of dry soil. 

Statistical analyses. Effects of strain variation, incubation time, in­

oculum density or initial moisture content were studied using analysis of 

variance. The logarithm of the response variable was used, since propor­

tional effects on bacterial numbers and percentages are studied, and the 

variance of replicates appeared to be stable on the log scale. Least sig­

nificant differences (LSD) were calculated for significant levels a=0.05. 

6.3 RESULTS 

Growth rate. Generation times of the strains RBL5523, RBL5762 and 

RBL5811 were 10-11 h, whereas RBL55810 had a generation time of 19 h. 

Colony morphology. RBL5523 and RBL5762 formed mucoid colonies on YMA 

(high C/N ratio), but not on TYA (low C/N ratio). On soil agar, which was 

expected to have a C/N ratio of approx. 11, the tiny colonies of RBL5523 

and RBL5762 were also muciod. Colonies of RBL5810 and RBL5811 were non-

mucoid on all solid media tested. 
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Stability of antibiotic resistance markers. All colonies of the 4 

strains were resistent to the antibiotics tested when the strains were 

cultured in YMB supplemented with Sm, as well as after incubation for 54 

days in sterilized soil. There was one exception: 2% of the colonies were 

not resistent to the combination of Sm, Sp and Rp in the treatment where 

10' RBL5811 cells/g dry soil were introduced into sterilized silt loam. 

Sterile soil experiment. After introduction into sterilized soil, 

n 
E 

n 
o 

20 30 40 

ime (days) 

Fig. 1. Total cell numbers of 4 J?, leguminosarum strains introduced into 
sterilized loamy sand and silt loam at two inoculum densities. A, low 
inoculum density; B, high inoculum density. •, RBL5523; O, RBL5762; •, 
RBL5810; A, RBL5811. Bars indicate least significant difference (LSD) for 
a-0.05. 
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populations of the 4 strains increased during the first period of incuba­

tion (Fig. 1). When approx. 10 cells/g dry soil were introduced, cell 

numbers increased, in general, with a factor 32 and 64 in the loamy sand 

and the silt loam, respectively. At the higher inoculum density (10" 

cells/g dry soil) increases were only 2 and 4 fold, respectively. After 

33 and 54 days of incubation, when populations were stabilized or started 

to decrease, differences in total numbers due to the inoculum density had 

20 30 40 

time (days) 
20 30 40 

time (days) 

Fig. 2. Numbers of particle-associated cells of 4 R. leguminosarum 
introduced into sterilized loamy sand and silt loam at two inoculum 
densities. A, low inoculum density; B, high inoculum density. •, RBL5523; 
O, RBL5762; D, RBL5810; A, RBL5811. Bars indicate least significant 
difference (LSD) for a=0.05. 
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disappeared in the silt loam. In the loamy sand population levels were 

still significantly higher at the high than at the low inoculum density; 

the difference was decreasing, but was still a factor 3.5 at day 33 and 

2.5 at day 54. The strains RBL5523 and RBL5810 showed in most cases 

significantly higher final population levels (mean values at days 33 and 

54) than RBL5762 and RBL5811. Often the final population level of RBL5762 

was lower than RBL5811, but this difference was only significant in the 

silt loam when high inoculum densities were used (Fig. 1). 

The number of particle-associated cells increased strongly between day 

1 and 14 (Fig. 2). RBL5523 and RBL5810, which survived best, showed at 

days 33 and 54 in all cases a higher number of particle-associated cells 

than RBL5762 and RBL5811. 

Particle-associated cells as proportion of the total number of cells 

was, 1 day after inoculation, not significantly affected by the inoculum 

density and was only 0.4-2.5%. The percentage of particle-associated 

cells increased up to 8-28% during 33 days of incubation. Thereafter, the 

percentage of particle-associated cells stabilized. Interestingly, there 

were significant differences in percentage of particle-association 

between strains when high inoculum densities were applied. However, 

applying low inoculum densities, the percentage of particle-associated 

cells were not significantly different for the 4 strains and, in general, 

values were higher than at the high inoculum densities. 

Natural soil experiment. Introduction of the 4 strains into both 

natural soils resulted in a decrease of cell numbers (Fig. 3) . One day 

after inoculation, differences in initial moisture content did not 

influence total numbers (Fig. 3). However, after prolonged incubation 

survival levels of RBL5523, RBL5810 and RBL5811 were higher in the silt 

loam with 5% than in the silt loam with 30% moisture before inoculation. 

In the silt loam with 5% as well as 30% moisture before inoculation, 

RBL5523 survived better than the Tn5 mutants and significantly lower 

numbers of RBL5811 cells survived in the silt loam with an initial mois­

ture content of 30% as compared to RBL5762 and RBL5810 (Fig. 3). Survival 

levels in the loamy sand differed little, except for RBL5810 which had 

lower numbers of cells than the other strains after 112 days in the loamy 

sand with an initial moisture content of 6.5%. 

The number of particle-associated cells was more or less constant 

during the first 28 days of incubation. This was followed by a steady 

decline during the rest of the experiment (Fig. 4 ) . One day after inocu­

lation there was a significantly higher number of particle-associated 
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cells in both soils at lower than at higher initial moisture contents; 

the only exception was RBL5762 in loamy sand. After an incubation of 56 

and 112 days, the numbers of particle-associated cells (Fig. 4) showed a 

similar pattern as the total numbers (Fig. 3): the same sequences in cell 

numbers of strains were found and the differences due to initial moisture 

content were again clearly present in the silt loam for the strains 

RBL5523, RBL5810 and RBL5811. 

The percentage of particle-associated cells was, one day after inocula­

tion, significantly higher in the soils inoculated at lower than at 

higher moisture contents. One day after inoculation, the percentage of 

particle-associated cells was only 0.1-4.2%, but increased up to 20-60% 

in 56 days. Thereafter the percentage stabilized. In the loamy sand no 

differences due to initial moisture content were present, whereas in the 

silt loam the percentage of particle-associated cells was higher for each 

strain at the lower than at the higher initial moisture contents. RBL5811 

had in both soils significantly lower percentage of particle-associated 

cells as compared to the other 3 strains. RBL5523 had in the silt loam, 

at both initial moisture contents, significantly higher percentages than 

the other strains. 

6.4 DISCUSSION 

Association with soil particles, as a result of attachment to surfaces 

of soil particles or enclosure in soil pores, has been shown to influence 

the survival of introduced bacteria in soil. In the present study R. 

leguminosarum mutants with altered cell surface properties were compared 

for their possible differences in their capacity to attach to soil 

particles. Differences in final population sizes and numbers of particle-

associated cells between the strains were detected, but it was hard to 

relate them to the altered cell surface properties. 

Comparable population sizes were expected for the different strains 

within one sterilized soil, since each soil system is suggested to have 

its own 'biological space' [18] with a distinct capacity to maintain a 

certain population [12,22]. The 4 strains were expected to be more or 

less similar in their nutritional need, since the mutants used were all 

originating from the same strain and differed only by a Tn5 insertion. 

However, final population sizes of the strains in the sterilized soils 

differed for unknown reasons: RBL5523 and RBL5810 had, in general, higher 

final population sizes than RBL5762 and RBL5811. 
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In the natural soil, where more pronounced differences were expected 

due to the influence of biotic factors, differences between strains were, 

in general, not larger than a factor 10. In the natural silt loam RBL5523 

had approx. 3 times higher final population sizes than the strains with 

altered cell surface properties. However, in the natural loamy sand 

differences were less clear. It was remarkable that RBL5810, which had a 

much slower growth rate, did establish well. 

100 120 

40 60 80 
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Fig. 

40 60 

time (days) 

3. Total cell numbers of 4 R. leguminosarum strains introduced into 
natural loamy sand and silt loam with two different moisture contents 
before inoculation. A, low initial moisture content; B, high initial 
moisture content. •, RBL5523; O, RBL5762; •, RBL5810; A, RBL5811. Bars 
indicate least significant difference (LSD) for a=0.05. 
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The importance of particle-association was affirmed in several ways. 

(1) In both sterilized and natural soil the percentage of particle-

associated cells increased drastically during incubation, similar to 

previous results [23,24]. (2) In sterilized and natural soil, final 

population sizes of the 4 strains followed the same pattern as the number 

of particle-associated cells. In the natural silt loam the differences in 

numbers of particle-associated cells were more pronounced and earlier 

40 60 80 

ime (days) 

Fig. 4. Numbers of particle-associated cells of 4 R. 1eguminosarum 
strains introduced into natural loamy sand and silt loam with two 
different moisture contents before inoculation. A, low initial moisture 
content; B, high initial moisture content. •, RBL5523; O, RBL5762; •, 
RBL5810; A, RBL5811. Bars indicate least significant difference (LSD) for 
a-0.05. 
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visible than the differences in the total population size, giving 

evidence that the population size was influenced by the number of 

particle-associated cells and not vise versa. (3) A higher percentage of 

particle-associated cells due to the inoculation procedure for 3 of the 4 

strains in natural silt loam, resulted in a higher survival rate. (4) 

RBL5811 which had the lowest percentage of particle-associated cells in 

both soils, was one of the lesser surviving strains, whereas the better 

survival of RBL5523 in natural silt loam corresponded with the highest 

numbers and percentage of particle-associated cells. However, to what 

extent attachment to particle surfaces contributes to the particle -

association is not clear. 

Differences between strains in percentages of particle-associated cells 

were only found in sterilized soil when population sizes had increased 

2-4 times during incubation. When population sizes increased 32-64 times, 

no differences between strains were found, and the percentage of 

particle-associated cells was in general higher than when populations 

increased little, suggesting that cell proliferation had more effect on 

association than the alterations of the cell surface of R. leguminosarum. 

The differences between the strains in final population size and 

numbers of particle-associated cells could not be explained by EPS 

production or adhesion properties. The two EPS impaired strains, RBL5810 

and RBL5811, reacted differently. EPS production has been suggested to 

play a role in attachment of bacteria to soil particles [1,7] and to 

protect bacteria from predation [5,9,29]. However, inconsistent results 

on attachment [1] as well as on predation [27] of EPS producing bacteria 

have been found. Concerning the measured contact angle and electrophore-

tic mobility of the 4 strains (Table 1) , RBL5811 was expected to have 

highest adhesion values to glass, polystyrene surfaces and probably also 

to soil particles [15,16]. However, RBL5811 was the strain with the 

lowest percentage of particle-associated cells. Reasons for this might be 

the relative low adhesion values of all strains used and the fact that 

adhesion is only a first reversibel step in the attachment process to 

surfaces. 

Thus, particle-association is found to be important for the survival of 

introduced bacteria, but none of the results gave evidence for the role 

of attachment. It might be that, in soil, enclosure in pores is of more 

importance than attachment to surfaces. Another possibility is that 

differences between the strains studied were not large enough, or that 

all used strains had too low adhesion values. 
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CHAPTER 7 

INFLUENCE OF THE INOCULUM DENSITY ON THE GROWTH AND SURVIVAL 

OF RHIZOBIUM LEGUMINOSARUM BIOVAR TRIFOLII INTRODUCED INTO 

STERILE AND NON-STERILE LOAMY SAND AND SILT LOAM 

ABSTRACT 

After the introduction of Rhizobium leguminosarum biovar trifolLL into 

natural loamy sand and silt loam, bacterial numbers increased only 

directly after inoculation. Thereafter, bacterial numbers decreased until 

an equilibrium was reached. This decrease was exponential on the log 

scale and could be described by the function Y = A + B . R*-, where Y is 

the log number of rhizobial cells at time t, A represents the log of the 

final population size, B is the difference between the log(initial number 

of bacteria) and A, R is the daily reduction factor of Y-A and t is time 

in days after inoculation. The final population sizes increased with 

increasing inoculum densities (10-10 bacteria/g soil). In sterilized 

soil, however, the populations increased up to an equilibrium, which was 

not affected by the inoculum density. 

The final population sizes were higher in the silt loam than in the 

loamy sand in natural, as well as in sterilized soil. The final popula­

tion size was reached earlier in the natural silt loam than in the loamy 

sand. Also the growth rate in sterilized soil was higher in the silt loam 

than in the loamy sand. The growth rate of low inoculum densities in the 

silt loam was exponential and approximately the same as in yeast extract 

mannitol broth. The growth rate in the loamy sand could be improved by 

increasing the bulk density of the soil from 1.0 to 1.4 g/cm . 

J. Postma, C.H. Hok-A-Hin and J.H. Oude Voshaar. FEMS Microbiology 

Ecology (in press) 

81 



7.1 INTRODUCTION 

The growing interest in the introduction of selected or genetically 

engineered bacteria into soil for beneficial effects on crop growth, 

makes it necessary to improve the understanding of the ecology of 

introduced organisms [4,9]. Introduced bacteria have to cope with the 

harsh conditions of the soil and to compete with well-adapted indigenous 

organisms [4,26]. In general, bacterial numbers tend to drop upon 

introduction, but proper mathematical descriptions fitting the survival 

curves are scarse. In a few studies on the survival of bacteria an 

exponential decrease was detected, which enabled the authors to calculate 

'rate constants of dying' [21] or 'half-live' values [16]. Crozat et al. 

[8] and Corman et al. [6] found that log transformed numbers of bacteria 

did not show a constant decrease, but rather fitted a function reaching a 

non-zero equilibrium. Steinberg et al. [28] proposed a more complex 

mathematical model on the basis of a predator prey relation. 

An important aspect, when introducing microorganisms into soil, is the 

inoculum density. A minimum inoculum level is necessary to obtain 

beneficial effects on crop growth [3,15,27]. Wood and Cooper [30] showed 

that at increasing inoculum densities, increasing numbers of Rhizobium 

leguminosarum biovar trifolii survived under stress conditions in a 

liquid medium. Also Postgate [23] mentions that dense populations are 

killed to a lesser extent than sparse populations. Crozat et al. [7,8] 

and Corman et al. [6], however, showed that the inoculum density did not 

affect the final population size of Bradyrhizobium japonicum strains in 

different soils. 

In the present paper a strain of R. leguminosarum biovar trifolii with 

two antibiotic-resistance markers was used as a model organism. Different 

inoculum densities were introduced into two soils under sterile and non-

sterile conditions, and bacterial numbers were determined by selective 

plating. The decrease of the introduced bacteria was mathematically 

described and it was tested whether or not the final population size was 

affected by the inoculum density. Additional experiments were carried out 

to explain some of the phenomena found during these experiments. The 

nutritional state of the inoculated bacteria was varied in order to 

examine its impact on the growth and survival of the cells immediately 

after inoculation. Furthermore, the growth rates in the sterilized soils 

under varying conditions were compared with the growth rate in yeast 

extract mannitol broth. 
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7.2 HATERIALS AND METHODS 

Soils and bacterial inoculum. Samples from two Dutch arable soils, a 

loamy sand and a silt loam [9,24] were air-dried to 6-8 and 19-20% 

moisture content, respectively, which corresponded to approximately pF 4 

(-10^ kPa). The soil was sieved <2 mm and stored at 4°C. When needed, the 

soil was sterilized by 7-irradiation (4 Mrad). Sterility was tested by 

dilution plating on nutrient agar (3.25 g Oxoid nutrient broth and 13 g 

agar in 1000 ml water, pH 7.2). 

R. 1eguminosarum biovar trifolii R62::Tn5 with resistance to kanamycin 

(Km) and rifampicin (Rp) [14,24] was used as a model organism. Bacterial 

suspensions used for inoculations were cultured in yeast extract mannitol 

broth (YMB) [14] supplemented with 25 mg/1 Km. After growing for 2 days 

at 29°C on a rotary shaker, the bacterial suspension was washed by cen-

trifugation (7000 x g, 15 min), and resuspended in sterile demineralized 

water (SDW). 

Inoculations with different bacterial densities. Soil portions corres­

ponding to 10 g dry weight were incubated in glass cores (diameter 30 

mm), which were closed by autoclavable plastic (polystyren) (bottom) and 

an aluminium cap (top). The bacterial suspension prepared as described, 

was diluted in SDW as to obtain inocula of 7 x 10', 7 x 10° and 7 x 105 

cells/g dry soil. Soil moisture content in the loamy sand and the silt 

loam was 8 and 19% before inoculation and 18 and 44% after inoculation, 

which corresponded to approximately pF 2 (-10 kPa). In the silt loam the 

added inoculum was spread by capillary forces only, whereas the loamy 

sand portions were mixed with a spatula. Bulk densities were 1.0 and 0.9 

g/cm for the loamy sand and the silt loam, respectively. The soil 

portions were incubated at 15°C in a moisture chamber to minimize evapo­

ration. After 3 h, 2, 7, 14, 28, 56, 83, 111 and 125 days of incubation, 

duplicate portions were taken to determine the numbers of rhizobia by 

selective plating on yeast extract mannitol agar containing 50 mg/1 Km, 

20 mg/1 Rp and 200 mg/1 cycloheximide [24]. Soil portions without inocu­

lum were used as control and indicated that the medium was sufficiently 

selective to enumerate rhizobial numbers up to 10 bacteria/g dry soil. 

Total numbers of bacteria in both soils after incubation for 83 days at 

15°C were determined on nutrient agar. 

This experiment was repeated under similar conditions in both steri­

lized and natural soil. A wider range of inoculum densities was applied: 

3 x 10°, 3 x 10° and 3 x 10 4 cells/g dry soil. The moisture content of 
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the loamy sand and the silt loam before inoculation was 6 and 20% and 

after inoculation 16 and 40%, respectively. Bulk densities were 1.0 and 

0.9 g/cm . Numbers of rhizobia were determined after 3 h, 2, 7, 29, 56, 

84 and 112 days of incubation. 

Statistical analysis of the effect of inoculum density. The survival 

curves were described by the function: 

Y = A + B . Rc where, 

Y = log number of bacteria on time t, 

A = log of the final population size, 

B - log of the ratio between the initial number of bacteria and the final 

population size, or the difference between log (initial number of 

bacteria) and A, 

R - daily reduction factor of Y-A, 

t = time in days after inoculation. 

10 and 10 are given in cells/g dry soil and B and R are dimensionless. 

This exponential curve on the log scale is equivalent to the Gompertz 

curve on the number scale that was used by Corman et al. [6], In the 

present paper the curves were fitted on the log scale, since the variance 

between the replicates appeared to be stable on the log scale. The curves 

were fitted with a non-linear regression algorithm of the statistical 

program Genstat 5 [11]. The goodness of fit of the curves was checked by 

comparing their residual variance with the variance between the replica­

tes. Within each set of three curves, first the effect of the inoculum 

density on R was tested. Then the effect of the inoculum density on A and 

B was tested. 

The influence of the inoculum density on the final population size in 

sterilized soil was tested by analysis of variance with the statistical 

program Genstat 5 [11]. 

Inoculation with starved and non-starved cells. The influence of the 

nutritional state on growth and survival of cells immediately after 

inoculation was studied in the following experiment. Two types of inocu­

lum were prepared: a bacterial suspension which was cultured and washed 

as described previously and a bacterial suspension which was cultured in 

YMB, starved for 3 days at 15 °C in phosphate-buffered saline (pH 7.2) 

(PBS) and then resuspended in SDW. Non-sterile soil portions were inocu­

lated with the non-starved and starved bacterial suspensions. Bacterial 

numbers were determined by selective plating after 3 h, 2, 3 and 4 days 

of incubation in a moisture chamber at 15°C. In order to determine cell 

sizes, 0.1 ml of the inoculum suspensions and of suspensions of the soil 
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portions were spread on glass slides, dried, heat-fixed and stained with 

1:100 diluted antiserum against the used rhizobial strain [24]. Bacterial 

numbers were determined by epifluorescence microscopy [24]. The length of 

15 randomly-chosen stained cells was measured with an ocular micrometer. 

The effect of starved and non-starved inoculum on cell length and log 

transformed bacterial numbers was tested by analysis of variance. 

Growth rate in sterilized soil and in YMB at 15°C. In order to compare 

the growth rate in sterilized soil under varying conditions with that in 

a liquid growth medium, low inoculum densities of bacterial suspensions 

cultured in YMB and resuspended in SDW were added to sterile loamy sand 

and silt loam. The loamy sand was also inoculated with a bacterial 

suspension resuspended in YMB instead of SDW. Loamy sand with a higher 

bulk density was prepared by pressing the soil after the inoculum was 

mixed through the soil with a spatula or by inoculating without mixing 

the soil. In the latter treatment the inoculum was spread by capillary 

forces only. The soil portions were incubated at 15°C in a moisture 

chamber. Moreover, two 300 ml Erlemeyer flasks containing 100 ml YMB were 

inoculated, placed on a reciprocal shaker (120 rpm) and incubated at 15°C 

as well. Bacterial numbers were determined by selective plating every 1 

or 2 days until stationary phase. Generation times during the exponential 

phase were calculated. 

7.3 RESULTS 

Different inoculum densities in natural soil. After inoculation in 

natural soil, bacterial numbers increased between 3 h and 2 days of incu­

bation in both soils at all inoculum densities (Fig. 1). From the second 

day on, bacterial numbers decreased to an equilibrium population size. 

Ommitting the observations at 3 h, the data fitted well to the equation 

Y = A + B . Rc, as the residual variance did hardly exceed the variance 

between the replicates. The resulting values of A, B and R in the two 

experiments are given in Table 1. Both experiments showed in principle 

the same trends, although the exact values of A, B and R were sometimes 

different. 

The daily reduction factor of Y-A (R) was not significantly (P>0.05) 

affected by the inoculum density and curves with equal values for R were 

fitted, in order to obtain more stable estimates of the asymptotes A. The 

given R values corresponded with reaching the final population size 

within 10% of the asymptote in 80-120 days for the loamy sand and in 50-
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Fig. 1. Population dynamics of R. leguminosarum biovar 
natural loamy sand and silt loam after inoculation with 7 x 10', 7 x 10 
and 7 x 105 cells/g dry soil. Standard deviations are indicated by bars 
or are within the dimension of the symbol. 
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Table 1. Experimental data of R. leguminosarum biovar Crifolii in 
natural loamy sand and silt loam fitted with non-linear regression. 

soil 
type 

loamy 
sand 

loamy 
sand 

silt 
loam 

silt 
loam 

inoc 
dens . 
(log) 

7.85 
6.85 
5.85 

8.48 
6.48 
4.48 

7.85 
6.85 
5.85 

8.48 
6.48 
4.48 

end 
exp. 
days 

125 
125 
125 

112 
112 
112 

125 
125 
125 

112 
112 
112 

Y = A + 

A 

3.94 
3.62 
3.24 

4.94 
3.82 
2.03 

5.83 
5.71 
5.39 

5.84 
4.52 
2.90 

B . Rc * 

B 

4.68 
3.88 
3.01 

3.55 
2.75 
2.14 

2.45 
1.77 
0.65 

2.70 
1.92 
1.42 

R 

0.972 
0.972 
0.972 

0.978 
0.978 
0.978 

0.960 
0.960 
0.960 

0.950 
0.950 
0.950 

variance 
accounted 
for 

99.2% 

97.9% 

97.3% 

98.3% 

Y = log number of bacteria on time t 
A = log of the final population size 
B = log (initial number of bacteria) - A 
R = daily reduction factor of Y-A 
t = time in days after inoculation. 
10* and 10" are given in cells/g dry soil, B and R*- are 
dimensionless and t is given in days. 

60 days for the silt loam. Although the differences were sometimes small, 

the final population size (A) was significantly (P<0.001) affected by the 

inoculum density within each set of curves (Table 1) . Higher inoculum 

densities resulted in higher final population sizes. Also the values of B 

were significantly affected by the inoculum density (P<0.001). Higher 

inoculum densities resulted in higher values of B. This means that lower 

survival percentages were found when more bacteria were inoculated, since 

the survival percentage is equal to 1/10B . 100%. Interestingly, the 

survival in the silt loam was 10-100 times higher than in the loamy sand. 

The size of the total bacterial population was 4.5-7.9 x 10^ cells/g 

loamy sand and 1.3-2.7 x 10° cells/g silt loam. 

Inoculation with starved and non-starved cells. Rhizobial cells cultu­

red in YMB showed an increase of cell numbers just after inoculation in 

natural soil (Fig. 1 and Table 2). However, upon introduction of starved 

cells, bacterial numbers decreased significantly (P<0.05) immediately 

after inoculation in both soils. 

The mean cell length of starved rhizobial cells was significantly 
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20 30 

time (days) 
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time (days) 

Fig. 2. Population dynamics of R. leguminosarum biovar trifolii in 
sterilized loamy sand and silt loam after inoculation with 3 x 10^, 3 x 
10° and 3 x 10* cells/g dry soil. Standard deviations are indicated by 
bars or are within the dimension of the symbol. *, replicate without 
bacterial growth was excluded. 



shorter (P<0.05) than the mean length of non-starved cells (Table 3). The 

mean cell length of non-starved cells decreased significantly (P<0.05) 

after inoculation, while the mean cell length of starved cells just 

before inoculation was not significantly different from the cells 3 h, 2, 

3 and 4 days after inoculation. 

Different inoculum densities in sterilized soil. In sterilized soils 

the rhizobial numbers reached a population size of approximately 5 x 10' 

bacteria/g loamy sand in 30 days and 2.5 x 10° bacteria/g silt loam in 14 

days (Fig. 2). During the last 20 days of the incubation, the population 

size was not significantly (P>0.1) affected by inoculum densities and 

remained more or less constant. In the loamy sand not only the time 

Table 2. Log cell numbers of starved and non-starved inoculum of R. 
1eguminosarum biovar trifolii after inoculation in natural loamy sand and 
silt loam. 

3 h 
2 d 
3 d 
4 d 

LSD (0 .05) = 

non-si 

loamy 

7.82 
7.83 
7.83 
7.64 

= 0.21 

tarved 

sand 

inoculum 

silt loam 

7.59 
7.77 
7.69 
7.30 

starved inoculum 

loamy sand silt loam 

7.97 7.71 
7.61 7.51 
7.56 7.39 
7.41 7.03 

non-starved inoculum was grown in yeast extract mannitol broth, 
starved inoculum was grown in yeast extract mannitol broth and 
then starved in phosphate-buffered saline for 3 days at 15°C. 

Table 3. Mean cell length in /im of starved and non-starved inoculum of 
R. leguminosarum biovar trifolii just before and up to 4 days after 
inoculation in natural loamy sand and silt loam. 

0 h** 
3 h 
2 d 
3 d 
4 d 

LSD (0. .05) 

non-s 

loamy 

2.42 
1.86 
2.00 
2.17 
1.72 

- 0.42 

tarved 

sand 

inoculum 

silt loam 

1.98 
1.85 
1.55 
1.46 

starved inoculum 

loamy sand silt loam 

1.65 
1.78 1.50 
1.96 1.80 
2.02 1.63 
1.64 1.25 

non-starved inoculum was grown in yeast extract mannitol broth, 
starved inoculum was grown in yeast extract mannitol broth and 
then starved in phosphate-buffered saline for 3 days at 15°C. 
just before inoculation 
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needed to reach the equilibrium population size was longer than in the 

silt loam, also the lag time was longer (Fig. 2). 

Growth rate in sterilized soil and YMB at 15°C. Introduction of low 

inoculum densities into sterile silt loam resulted in an exponential 

growth of cells, starting 1 day after incubation (Fig. 2). The generation 

time was 11.2 hours and only slightly higher than the 10.3 hours in YMB 

at 15°C (Table 4 ) . The growth rate in the loamy sand, as well as in the 

loamy sand amended with YMB, was rather irregular. The lag times were 

different for different soil portions. Using only those portions with 

increased bacterial numbers, the calculated growth rate in the loamy sand 

was still much lower than in the silt loam and in YMB. However, the 

growth rate in the loamy sand could be improved by increasing the bulk 

density from 1.0 to 1.4 g/cm-5 (Table 4 ) . The generation time was reduced 

from >22.9 to 13.5 hours, which is in the same range as the generation 

time in silt loam and YMB. 

Table 4. Generation time of R. leguminosarum biovar trifolii at 15°C in 
different growth media, inclusive sterilized soil. 

growth medium 

loamy sand 
loamy sand 
loamy sand 
loamy sand 
silt loam 
YMB 

inoculum 

in SDW 
in YMB 
in SDW 
in SDW 
in SDW 

bulk 
g/cm3 

1.0 
1.0 
1.5 
1.4 
0.9 

soil 
mixed 

yes 
yes 
yes 
no 
no 

treatment 
pressed 

no 
no 
yes 
no 
no 

generation 
time 

> 22.9 
> 22.9 

13.5 
13.5 
11.2 
10.3 

generation time in hours calculated on duplicate soil portions or 
Erlenmeyer flasks during exponential phase 
soil portions with no growth were excluded 

7.4 DISCUSSION 

R. leguminosarum biovar trifolii introduced into sterile loamy sand and 

silt loam, reached a final population size, which was not affected by 

inoculum density. This corresponds to experiments of Bennett and Lynch 

[2]: independent of the inoculum size, 3 bacterial species colonized 

sterilized barley roots up to a final population size, representing the 

substrate supply in the rhizosphere. Nannipieri et al. [20] found that 

each soil system has its own distinctive 'biological space' with regards 

to the level of microbial biomass and enzyme activity. It is therefore 

suggested that the final population size in sterilized soil represents 
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the capacity of the soil in terras of available habitable space, moisture 

and substrate for maintenance of the bacteria. Comparing both soils, the 

'biological space' of the silt loam is 5 times higher than of the loamy 

sand. In addition, our experiments showed that the total number of 

bacteria in natural soil corresponded well to the number of rhizobia in 

the previously sterilized soil. 

Not only was the final population size in the sterilized silt loam 

higher than in the loamy sand, it was also reached earlier. The addition 

of low inoculum densities to the sterile silt loam resulted in an expo­

nential growth almost equal to the growth rate in YMB. The fact that the 

growth rate in soil was comparable with that in a shaken liquid culture, 

indicates that the solid phase of the silt loam was not really a physical 

barrier for the growth of cells. In the loamy sand the growth rate was 

certainly not exponential and slower than in the silt loam even after 

addition of YMB. Therefore, nutritional factors did not affect the growth 

rate in the loamy sand. On the other hand, the growth rate in the loamy 

sand could be improved by raising the bulk density from 1.0 to 1.4 g/cm . 

Water retention curves of both soils [25] showed that the loamy sand had 

relatively fewer small pores than the silt loam. At similar bulk densi­

ties the loamy sand had therefore more larger pores which are air filled 

at pF 2 (-10 kPa) than the silt loam. Since growth of cells, or formation 

of microcolonies, is a form of movement [5,19], it is likely that large, 

air-filled pores function as a barrier for translocation and thus inhibit 

colonization and accessibility to substrate sources. Also Hamdi [12] 

showed that translocation of rhizobial cells through sterilized soil was 

sooner restricted in soil with larger soil particles, because of 

discontinuous water-filled pores. 

In natural soil, however, a net increase of rhizobial numbers was only 

found the first 2 days after inoculation. This increase corresponded to 

0.4-1.7 cell divisions and was accompanied by a decrease in cell length. 

After the inoculation of starved cells, which were already found to be 

shorter, no such increase of cell numbers was detected. It is therefore 

suggested that the increase in cell numbers just after inoculation with 

non-starved cells is a result of cell division, which might be necessary 

for survival in poor media such as soil. A decrease in cell length after 

introduction into soil was also detected by Crozat et al. [8] and Postma 

et al. [24]. In aquatic environments, such a rapid size reduction by 

fragmentation is suggested to play a role in the survival mechanism of 

bacteria in a starvation medium [18]. 
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From the second day on, the number of rhizobia decreased until an 

equilibrium was reached after approximately 50 and 100 days in the silt 

loam and the loamy sand, respectively. This shows that part of the intro­

duced rhizobial cells could survive over extended periods. Since the 

decrease could well be described by an exponential equation on the log 

scale, on the original scale the rate of the decrease of the finally 

disappearing cells, in cell numbers, became smaller after longer incuba­

tion times. Such a phenomenon might be explained assuming at least 2 key 

factors responsible for the decrease: (1) a fast factor such as predation 

and (2) a slower factor such as starvation caused by competition for 

nutrients with other microorganisms. 

The final population size in natural soil was clearly affected by the 

soil type: survival of the introduced rhizobia was 10-100 times higher in 

the silt loam than in the loamy sand. This difference in survival could 

not be explained by the 'biological space' alone, since this was 

mentioned to be 5 times higher in the silt loam than in the loamy sand. 

An additional factor is probably the relative higher number of small 

pores in the silt loam. These small pores may provide physical protection 

of microorganisms against predation and harsh environmental conditions. 

Also indigenous bacteria occur mostly in pores smaller than 6 /jm in 

diameter [13,17]. Van Veen et al. [29] mention characteristic capacities 

of soils to preserve organic matter, as well as microorganisms, as a 

result of physical protection. In our experiments the equilibrium popula­

tion size was, during at least 125 days, not only influenced by soil 

type, but also by inoculum density. Crozat et al. [7,8] and Corman et al. 

[6], however, detected in experiments with B. japonicum a final popula­

tion size which indeed depended on soil type, but was not affected by the 

inoculum density. Moreover, inoculum densities of B. japonicum below the 

equilibrium population size, resulted in an increase of cell numbers, 

which did not happen in our experiments. These differences in results on 

the impact of inoculum density can be explained by the fact that the 

bacterial species used was different; fundamental differences in the 

survival kinetics between fast and slow growing rhizobia have been detec­

ted [22] . Also different soil conditions or moisture regimes will have 

influenced the results. Moreover, in our experiments all samples were 

obtained from individual soil portions, whereas Crozat et al. [7,8] took 

their samples at different incubation periods from the same bottle. 

The significant influence of the inoculum density on the final popula­

tion sizes was not a result from a definite survival percentage of the 
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inoculated cells, since the survival percentage was found to be lower at 

higher inoculum densities. Higher final population sizes at higher 

inoculum densities can be explained by assuming that more cells will 

reach a protective niche, when more cells are introduced. In the mean 

time, higher numbers of rhizobia will result in increased competition, 

causing an increased death rate. 

The existance of different population sizes during at least 125 days 

under similar environmental conditions, is only likely when there is no 

extensive translocation of bacteria. Otherwise, bacterial numbers are 

expected to tend to a common final population size, as was the case in 

sterilized soil. Translocation of rhizobia in natural soil has been 

observed to be limited [1,10] and could not be detected in the absence of 

a transporting agent [19]. In natural soil, considerable translocation 

associated with development of microcolonies or motility is unlikely, 

because carbon and energy supply is limiting and, at least for rhizobia, 

growth rarely occurs in the absence of added organic compounds [19,22]. 

In conclusion, the existence of different final population sizes of 

introduced bacteria incubated in natural soil under apparently the same 

environmental conditions, suggests that differences in distribution over 

protective and non-protective microniches might be extremely important 

for survival of introduced bacteria. 
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CHAPTER 8 

HABITABLE PORE SPACE AND POPULATION DYNAHICS OF RHIZOBIUH 

LEGUHINOSARUH BIOVAR TRIFOLII INTRODUCED INTO SOIL. 

ABSTRACT 

The hypothesis that the population size of introduced bacteria is 

affected by habitable pore space, was studied by varying moisture content 

or bulk density in sterilized as well as in natural loamy sand and silt 

loam. The soils were inoculated with Rhizobium leguminosarum biovar 

trifolii and established and maintained at soil water potentials between 

pF 1.7 and 2.3 (-5 and -20 kPa) . Rhizobial cells were enumerated when 

population sizes were expected to be more or less stable. In sterilized 

soils the numbers of rhizobial cells were not affected or decreased only 

slightly with decreasing pF values. In natural soils the decrease in 

numbers of rhizobial cells with decreasing pF values was more pronounced. 

Bulk density had only minor effects on the population sizes of rhizobia 

or total bacteria. 

Soil water retention functions of both soils were used to calculate 

volume and surface area of pores from different diameter classes, and an 

estimation of the habitable pore space was made. Combining these values 

of the theoretical habitable pore space with the measured numbers of 

rhizobial cells, showed that only 0.21 and 0.25% of the habitable pore 

space was occupied in the sterilized loamy sand and silt loam, respecti­

vely. These results showed that, in general, pore space is not limiting 

the proliferation and growth of soil microorganisms. 

J. Postma and J.A. van Veen (submitted) 



8.1 INTRODUCTION 

Each soil system has its own distinctive "biological space" with 

regards to the level of microbial biomass and enzym activity [30] and 

bacteria introduced into sterilized soil reached a certain population 

level independent on inoculum density [27,37,43]. Availability of sub­

strates, moisture, pore space [18,28,30] and a lack of migration to new 

colonizing sites [27] have been suggested to determine these population 

levels. Also in natural soils, introduced bacteria often reach a certain 

survival level [9,10,37,43], which is different for each soil system. 

In previous studies on the population dynamics of R. leguminosarum 

biovar trifolii introduced into different soils, similar water potentials 

were used during incubation and survival was higher in the silt loam than 

in the loamy sand; in sterilized as well as in natural soil [36,37,38]. 

At the water potential used (pF 2) , the finer textured silt loam 

contained 40-45% moisture, whereas the loamy sand contained only 16-20% 

moisture. A better survival in finer textured soils is also observed for 

other introduced bacteria [15,29]. A similar relation was found for the 

number of indigenous bacteria in different textured soils [4]. Although 

many soil factors may differ between soil types, soil moisture is a major 

factor influencing bacterial survival and activity. Finer textured soils 

contain, in general, more water when kept at a similar water potential 

than coarse soils and a larger available pore space might explain at 

least part of the results. 

Pore size distribution as well as the absolute volume of water might 

influence the pore volume or surface area which is suitable for bacteria 

to survive (-habitable pore space) and the part of the habitable pore 

space that protect bacteria from predation (-protective pore space). Data 

about habitable and protective pore space in different soils, and the 

implications for population dynamics of bacteria are scarse, but it seems 

logic to suggest that habitable and protective pore space influences the 

population size of introduced bacteria in those cases that water stress 

does not have a direct effect on bacterial cells. In general, activity of 

soil bacteria is not negatively affected up to water potentials between 

pF 2.7 and 3.5 (-50 and -300 kPa) [8,17]. 

In the present study Rhizobium leguminosarum biovar trifolii was used 

as a model organism. Bacterial cells were introduced into sterilized and 

natural (-non-sterilized) loamy sand and silt loam, and the soils were 

adjusted to different water potentials. Moreover, total pore volume was 
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varied by using two bulk densities. Numbers of rhizobial cells and the 

total populations were enumerated by plating techniques. In addition, 

pore volume and pore surface area of both soils were calculated for 

different pore size classes using water retention functions. 

8.2 MATERIALS AND METHODS 

Soils. Two Dutch arable soils, 

a loamy sand and a silt loam, 

were air dried to 8 and 20% 

moisture content, respectively, 

sieved <2 mm and stored at 4°C. 

Part of the soil was sterilized 

by 7-irradiation (4 Mrad) and 

sterility was tested by dilution 

plating on nutrient agar (3.25 g 

Oxoid nutrient broth and 13 g 

agar in 1000 ml water, pH 7.2). 

Soil characteristics are presen­

ted in Table 1. The relationship 

between soil water potential and 

moisture content of repacked 

samples of the loamy sand and the 

silt loam with bulk densities of 

approx. 1.4 and 1.0 g/cm , res­

pectively (Fig. 1 ) , was determi­

ned according to Klute [25] . 

Soil water potential. Glass 

filters with a fine-porous plate 

made of sintered glass with a 

nominal maximum pore size of 1.0-

1.6 fim were used (all-glass bac­

teria filter, porosity 5, 

Schott). The glass filters were 

connected with a water reservoir 

by a continuous water column 

(Fig. 2). Glass cores, 40 mm 

high, 30 mm in diameter and 

closed at the bottom with a nylon 

Table 1. Particle size distribution 
and other characteristics of the soils 
sieved <2 mm and stored at 4°C. 

loamy 
sand 

pH-KCl 
organic matter 
CaC03 

lutum 
2-16 fj.m 
16-50 /im 

50-105 fim 
>105 /j,m 

1> in -log(H+) 
' in g/lOOg dry soil 

s i l t 
loam 

1) 
2) 
2) 
2) 
2) 
2) 
2) 
2) 

5 .4 
3 .3 
0 . 1 
4 . 3 
0 . 5 
7 . 3 

1 9 . 1 
6 5 . 4 

7 .2 
3 . 5 
8 .2 

3 0 . 9 
1 8 . 1 
23 . 6 
1 1 . 3 
4 . 4 

-10 b -103 -10" -10J - 10 ' -10 -1 (kPa) 
water potential 

Fig. 1. Relationship between soil 
water potential and moisture content 
of repacked samples of the loamy sand 
(•) and the silt loam (•). 



aluminium cap 

glass core(0 30mm) 

soil 

cotton filter 

netting, were filled with soil 

corresponding to 10 g dry weight. 

After saturation of the soil, the 

glass cores were placed on the 

porous plate and the desired 

water potential was obtained by 

varying the hight of the hanging 

water column. The soil portions 

were protected against extensive 

evaporation with an aluminium 

cap. After 14 days, when the 

water potential was established, 

soil moisture contents were 

determined by weighing the soil 

portions. 

With this system it was possi­

ble to establish the water poten­

tial under sterile conditions. 

The entire equipment as shown in 

Figure 2, exclusive the glass 

core, was sterilized in separate 

plastic bags by 7-irradiation 

(2.5 Mrad). Glass cores with 

nylon netting were autoclaved in 

glass containers and aseptically 

filled with irradiated soil, 

saturated, and placed on the 

porous plates, which were then 

closed with a large sterile plas­

tic bag. 

Bacterial strain. R. legumino-

sarum biovar trifolii R62::Tn5 

with resistance to kanamycin (Km) 

and rifampicin (Rp) [19,36] was used as a model organism. Bacterial 

suspensions used for inoculations were cultured in yeast extract mannitol 

broth [19] supplemented with 25 mg/1 Km. After growing for 2 days at 29°C 

on a rotary shaker, the bacterial suspension was washed by centrifugation 

(7000 x g, 15 min), and resuspended in sterile demineralized water. 

Natural soil experiment. Glass cores were filled with the loamy sand 

water reservoir 

Fig. 2. Equipment to establish soil 
portions with a given soil water 
potential. 
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and the silt loam, corresponding to 10 g dry weight. Part of the soil 

portions were pressed by hand in order to obtain higher bulk densities. 

All soil portions were then saturated during 1 day with rhizobial cells 

in as much sterile demineralized water that approx. 4-6 x 10' cells/g dry 

soil were obtained in the saturated soil. Glass cores were weighed and 

placed on the porous plates with hanging water columns of 50, 100 and 200 

cm corresponding to pF values of 1.7, 2.0 and 2.3 and incubated at 15°C 

in the dark. 

Moisture contents and bulk densities of the soil portions were deter­

mined after 14 days and approximately 70 days later, when population 

sizes were expected to be more or less stabilized [37], numbers of 

bacteria were determined by dilution plating [36]. Rhizobial cells were 

enumerated on plates containing yeast extract mannitol agar (YMA) [19] 

supplemented with 50 mg/1 Km, 20 mg/1 Rp, 100 mg/1 cycloheximide and 50 

mg/1 benomyl, whereas total bacterial populations were enumerated on 

nutrient agar. 

Sterilized soil experiment. A similar experiment as in natural soil was 

carried out in sterilized soil under sterile conditions throughout the 
o 

experiment. The inoculum density was 1-3 x 10 cells/g dry soil. Rhizo­

bial cells were enumerated after 14 days on YMA when populations were 

expected to be stabilized [37]. The absense of other microorganisms was 

checked on tryptone soya agar (3.75 g tryptone, 1.25 g soya peptone, 1.25 

g NaCl, 13 g agar, 1000 ml water). Rhizobial cells did not grow on this 

medium. 

Statistical analyses. The effect of pressing soil portions on bulk 

density and the effect of bulk density and water potential on moisture 

content were examined with analysis of variance. Least significant 

differences (LSD) were calculated for significant levels a=0.05. The 

effect of moisture content, sterility and bulk density on the logarithmic 

number of rhizobial cells was analysed with linear regression analysis. 

Total bacterial population size was analysed separately with linear 

regression analysis. 

Estimation of pore volume and surface area. The effective pore neck 

diameter can be approximately expressed as: 

pF = log 0.15 - log r, 

where r is the radius of curvature of the capillary pore (cm) and the 

water potential, pF, is the head expressed as log(cm H2O) of the energy 

of water holding at 15°C [42,44]. The relationship assumes that the 

contact angle between water and soil solids is zero and that pores are 

101 



cylindrical [34]. Pore volume and moisture content are related if no 

swelling occurs during saturation of the soil and when pore water is 

replaced by air without shrinkage when the pF value increases. Pore 

volume corresponding to different pore neck diameters can then be 

calculated from the retention function (Fig. 1). 

For estimation of the pore surface area, a distribution in pore classes 

of equal diameter was made by deviding the entire water retention 

function into steps of 0.1 on the pF scale. Pores were assumed to be 

cylindrical with length 1 (cm) and radius r (cm), thus having a volume of 

1 x jrr̂  and a surface area of 1 x 2wr. Then, the surface area of each 

pore class can be calculated by: 

surface area = 2 x volume x r 

Pore volume and surface area were also expressed in numbers of rhizo-

bial cells that, theoretically, can occupy the pore space. The pore space 

needed for 1 bacterial cell was assumed to be 1 urn and 1.5 ^m , and 

pores <0.8 /jm were expected to be too narrow for the cells to entre. 

8.3 RESULTS 

Bulk density and soil moisture content. By pressing the soil portions, 

bulk density was increased significantly (P<0.05), resulting in signifi­

cant (P<0.05) lower moisture contents for pressed soil at saturation 

(Table 2). However, in the loamy sand only the volume of pores with pore 

necks >60 /an (pF 1.7) had decreased, since the soil moisture content of 

the pressed soil had not decreased at a water potential of pF 1.7. In the 

pressed silt loam the volume of larger pores had decreased, but moisture 

Table 2. Bulk density and moisture content of the loamy sand and the silt 
loam established to different water potentials. 

bulk 
dens . 
g/cm3 

moisture content (w/w) 
pF 0 pF 1.7 pF 2.0 pF 2.3 
saturated 50 cm 100 cm 

' p = pressed soil 

102 

200 cm 

loamy sand 
loamy sand p *•' 

LSD(0.05) 

silt loam 
silt loam p ' 

LSD(0.05) 

1.33 
1.42 

0.02 

0.89 
1.11 

0.02 

41.5 
39.0 

0.9 

80.1 
60.7 

1.1 

28.0 
27.7 

39.6 
41.7 

15.9 
15.8 

1.0 

35.6 
36.7 

1.0 

11.9 
12.1 

32.9 
34.0 



content at pF 2.3 and thus the volume of pores with pore necks <15 fun had 

increased. In the two experiments the moisture contents equivalent to pF 

1.7, 2.0 and 2.3 corresponded well to the values of the water retention 

functions in Figure 1 for the loamy sand, whereas in the silt loam the 

values in the two experiments were lower as compared to Figure 1. 

Population size. Linear regression analysis explained >99% of the 

variance between numbers of rhizobial cells at different soil moisture 

contents (Fig. 3). Rhizobial numbers decreased significantly (P<0.05) in 

the sterilized loamy sand when moisture contents increased, but in the 

silt loam rhizobial numbers were unaffected by the moisture content. A 

more pronounced decrease (P<0.05) of rhizobial numbers was detected in 

•S 9" 

7-

Loamy sand 

V 

4r 10 20 30 

Soil moisture content (w/w.100%) «-

5 -

4 r 

Silt loam 

K » 
%»>< 

30 40 50 

Soil moisture content (w/w.100%)-

Fig. 3. Numbers of R. leguminosarum biovar trifolii and total bacterial 
populations in the loamy sand and the silt loam at moisture contents 
equivalent to pF 2.3-1.7. Rhizobial cells in sterilized soil (0,#) and in 
natural soil (•,•), and total bacterial population in natural soil (A,A). 
Open symbols with dotted lines present the non-pressed and closed symbols 
with solid lines present the pressed soil samples. 
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both natural soils. Rhizobial numbers at moisture contents equivalent to 

pF 2.0 were 2.5-3.2 x 108 and 5-6.3 x 108 cells/g dry soil for the 

sterilized loamy sand and silt loam, and 2-4 x 10 and 3-6 x 10 cells/g 

dry soil for the natural loamy sand and silt loam, respectively. Bulk 

density had only effect on bacterial numbers in the loamy sand (P<0.05). 

No significant influence of moisture content was found for the total 

bacterial numbers in both natural soils, which had an average number of 

3 x 10' and 1.6 x 10 colony forming units/g dry soil in the loamy sand 

and the silt loam, respectively (Fig. 3). 

Pore volume and surface area. Pore volume and surface area, calculated 

from the water potential functions given in Figure 1, are summarized for 

the pores with a pore neck diameter <0.8, 0.8-3, 3-30, >30 ftxa (Table 3 

and 4 ) . 

Table 3. Pore volume and surface area of the loamy sand and the silt 
loam. 

loamy sand silt loam 
pore neck volume surface volume surface 

pF diameter (cmJ/g) (mvg) (cmJ/g) (nr/g) 

>3.6 <0.8 /MI 

3.6-3 0.8-3 Mm 
3-2 3-30 urn 
<2 >30 fim 

0 . 0 7 1 
0 . 020 
0 .067 
0 . 201 

> » 
0 .055 
0 . 0 2 1 
0 . 015 

0 . 306 
0 . 026 
0 . 114 
0 . 155 

> » 
0 .092 
0 .027 
0 . 0 1 1 

Table 4. Pore volume and surface area in the loamy sand and the silt loam 
expressed in bacterial cells that, theoretically, can occupy the pore 
space. 

loamy sand silt loam 
pore neck volume ' surface ) volume ^ surface ̂  

pF diameter (cells/g) (cells/g) (cells/g) (cells/g) 
x 1 0 1 0 x 1 0 1 0 x 1 0 1 0 x 1 0 1 0 

>3.6 <0.8 /jm 02) 02) 02> 02> 
3.6-3 0.8-3 /im 2.0 3.7 2.6 10.2 
3-2 3-30 fim 6.7 1.4 11.4 1.8 
<2 >30 nm 20.1 0.8 15.5 0.7 

accessible pore space 28.8 29.5 
habitable pore space 8.7 14.0 
protective pore space 3.4 4.4 

1) pore volume and surface area needed for 1 bacterial cell was assumed 
to be 1 jum and 1.5 IJ.TR , respectively 

2) minimum pore neck diameter was assumed to be 0.8 /jm 
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8.4 DISCUSSION 

In contrast to the hypothesized increase of bacterial numbers when more 

water-filled pores are present, experimental values showed constant or 

decreasing numbers of rhizobial cells in sterilized soil when moisture 

content increased equivalent to pF values from 2.3 to 1.7. The detected 

decrease of cell numbers in sterilized loamy sand at a higher moisture 

content can be explained by oxygen limitation in part of the soil. The 

soil was sieved <2 mm, thus soil aggregates >1 mm, which are found to be 

partly anaerobic at pF 2 [11] are present. In natural soil, biotic 

factors are expected to play a role in addition to oxygen limitation, 

since the decrease in rhizobial numbers with increasing moisture 

contents, was more pronounced in the natural than in the sterilized soil. 

From predators such as protozoa it is known that they are more active at 

higher soil moisture contents [12,26]. A decrease of introduced bacteria 

with increased moisture contents was previously detected [6,21,32,35] and 

an optimum water potential of pF 2.8-2.5 has been found [6,21]. The total 

bacterial population size, however, did not decrease with increasing 

moisture contents, similar to results of Seifert [41] and Howie [21]. 

Bulk density affected rhizobial numbers as well as the total bacterial 

population size only little. In the loamy sand with a higher bulk densi­

ty, only the volume of pores >60 jzm diminished and rhizobial numbers were 

little lower as compared to the lower bulk density. In the silt loam the 

volume of pores <15 /jm had increased by pressing the soil, but no signi­

ficant influence on rhizobial numbers was found. Since mainly larger 

pores diminished by pressing the soil, results might be influenced by 

oxygen limitation. 

To improve the understanding of these results, the available pore space 

was estimated for various pore neck diameter classes by using the water 

retention function (Fig. 1). The calculated values of the pore volume and 

surface area are only estimations, since pores are not cylindric. More­

over, at water potentials of pF >3 the water content - water potential 

relationship in soil is dominated by surface area adsorbtion effects 

[34]. A realistic value for the surface area of pores <0.8 jum, which is 

expected to be extremely large, cannot be given with the method used. 

Mercury porosimetry and gas adsorbtion techniques might be usefull 

techniques for the assessment of the size distribution of such small 

pores, but these techniques are not yet fully explored for soil systems 

(L.K. Koopal, pers. communication). With backscattered electron scanning 
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images, which has been applied for the characterization of the soil pore 

network, only pores larger than 3 ;um have been studied [5,13,22]. There­

fore, the pore size distribution obtained from the water retention is 

used for a first estimation of available pore space for bacteria. 

For this study, only the part of the pore space suitable for bacteria 

to survive is of interest. Total, accessible, habitable and protective 

pore space are distinguished (Fig. 4 ) . Pores must at least be accessible 

for the bacterial cells. In natural soils, smallest pores which were 

colonized had a diameter of 0.8 fim [24]. Rhizobial cells measure 0.5-0.9 

x 1.2-3.0 /im [23] and a pore neck diameter of >0.8 /im would be sufficient 

to enter pores. Assuming a cell volume of 1 /xm̂  for the introduced cells, 

only 0.11 and 0.21% of the accessible pore space (Table 4) was occupied 

in the sterilized loamy sand and silt loam at pF 2. These percentages 

agree quite well with the occupied pore volumes calculated to be 0.1% [2] 

or 0.4% [8] . 

The habitable pore space, defined as the pore space suitable for the 

cells to survive, is additionally determined by the presence of water 

(Fig. 4 ) . At pF 2, pores >30 /jm have been drained, therefore the habita­

ble pore space is estimated by using only the volume of pores between 

0.8 and 30 /jm in diameter (Table 4 ) . Part of the drained pores might have 

a sufficient waterfilm for bacteria to survive, but the surface area of 

these pores is relatively small as compared to the rest of the habitable 

pore space. Thus., it can be calculated that the number of rhizobial cells 

present in the sterilized loamy sand and silt loam at pF 2, occupied only 

0.37 and 0.44% of the habitable pore space, respectively. 

pore neck 

diameter (^m) 

total pore space 

accessible pore space 

habitable pore space 

protective pore space 

Fig. 4. Schematic pre­
sentation of total, 
accessible, habitable 
and protective pore 
space. 

XXXXX represent pores 
filled with water and 
x is the pore neck 
diameter that is still 
water-filled at the pF 
value used (x is 30 /jm 
at pF 2) . — and 
i i indicate if pore 
volume or pore surface 
area of a certain pore 
diameter class are 
expected to be impor­
tant . 
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In natural soil the situation is more complicated, since association of 

cells with soil particles is found to be important for the survival of 

introduced as well as indigenous bacteria [33,39]. Nioh and Furusaka [31] 

detected that most bacteria in wider pores are adsorbed to surfaces, 

whereas part of the bacteria in smaller pores occured freely. Increased 

percentages of particle-associated bacteria were detected in the presence 

of protozoa [38]. Particle-associated bacteria are expected to be better 

protected against predation, either as a result of enclosure in pores 

inaccessible to predators [14,38,44], or possibly by attachment to 

surface areas. Thus, in natural soil only part of the habitable pore 

space offers protection. This protective pore space might be estimated by 

the volume of pores between 0.8 and 3 pm and the surface area of pores 

between 3 and 30 |im (Fig. 4, Table 4) on the assumption that pores <3 /im 

are not accessible to predators. The rhizobial cells occupied only 0.001% 

of the protective pore space in both natural soils, however, a much 

larger part was occupied by other bacteria. Bacteria in different soils 

have been found to have a mean diameter of 0.6-0.75 ^m [24]. Therefore, 

the same mean cell size for the total population as for rhizobial cells 

is used, resulting in an occupation of approx. 0.09 and 0.36% of the 

protective pore space in the loamy sand and the silt loam by culturable 

bacterial cells. Natural soils might contain large numbers of non-

culturable cells, however, there are especially smaller sized cells that 

are non-culturable [3,7]. 

Although large parts of the accessible pore space are not suitable for 

bacteria to survive, and although large parts of the habitable pore space 

are not protected, habitable as well as protected pore space are not 

expected to be a limiting factor for the survival of bacterial cells, 

since in all cases less then 0.5% of the habitable and protective pore 

space were occupied by bacteria. The conclusion that pore space is, in 

general, not a factor limiting survival of bacteria in soil, explains the 

minor impact of increased water-filled pore volumes in sterilized soil, 

either as a result of increased moisture content, or, as in the silt 

loam, by increased bulk density. The presence of higher numbers of 

introduced bacteria [1,40] as well as of indigenous populations [18,40] 

after the addition of substrates, affirm that not pore space but 

substrate availability is one of the major limiting factors in soil. 

Nevertheless, bacteria are not evenly distributed through soil and it can 

not be excluded that locally, where substrate is present, pore space 

limits bacterial growth. 
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An interesting fact was that, eventhough the silt loam has a larger 

pore space, the relative occupance of this pore space was in all cases 

higher than in the loamy sand. This may be caused by a better substrate 

availability in the silt loam. Such an increased occupation of the pore 

space related to substrate, agrees with data of Hissett and Gray [20] who 

detected microscopically that only 0.02% of the soil mineral surface area 

but 0.17% of the organic matter was occupied by bacteria. Moreover, in a 

soil system with a continuous nutrient input through exudation by grass 

or wheat roots, 4-10% of the root surface area was covered by bacteria 

[16,28] . 

The fact that habitable and protective pore space are not limiting 

factors, does not mean, however, that they are unimportant for the 

survival of introduced bacteria. Upon introduction, cells will be distri­

buted over the protective pore space and the non-protected part of the 

habitable pore space. If extensive translocation of bacterial cells does 

not occur, this spatial distribution will influence the survival of the 

introduced bacterial cells. 
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SUMMARY AND CONCLUDING REMARKS 

In this thesis the population dynamics of bacteria introduced into soil 

was studied. In the introduction, the existence of microhabitats favoura­

ble for the survival of indigenous bacteria is discussed. Knowledge about 

the distribution of introduced bacteria over such microhabitats, however, 

is scarse. Nevertheless, it was hypothesized that upon introduction, 

bacteria reach other microsites in soil than bacteria which are already 

present for some time, thereby influencing the survival of introduced 

organisms. Methods to study the distribution of introduced bacteria in 

soil, as well as the effect of their distribution on the population 

dynamics, were assessed. A model organism, Rhizobium leguminosarum biovar 

trifolii and two different soils, a loamy sand and a silt loam, were used 

for this purpose. 

Two methods for the enumeration of bacteria introduced into soil were 

compared (Chapter 2) . Although immunofluorescence was a very promissing 

method at the moment we started our work, selective plating proved to be 

more suitable for the enumeration of low numbers of introduced bacteria, 

since it had a lower detection limit than immunufluorescence. In 

addition, selective plating did not depend on flocculation processes 

which were shown to influence significantly the results obtained with the 

immunofluorescence technique. Moreover, only cells able to divide were 

counted. However, with the immunofluorescence technique we were able to 

determine cell lengths and we detected that the length of cells which 

were grown in a rich medium decreased after their introduction into soil. 

To study the micro-distribution of bacteria in soil, different fluoro-

chromes were tested on their ability to stain bacteria in thin sections 

of undisturbed soil samples. Calcofluor white M2R in combination with 

acridine orange was successfully applied for the detection of bacteria in 

thin soil sections (Chapter 3). However, specific staining of the 

introduced rhizobia with conjugated antiserum was not successful. 

Therefore, an alternative method for the assessment of the distribution 

of introduced bacteria, a soil washing procedure, was used in Chapters 4, 
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5 and 6. With this method, free occuring bacteria and bacteria associated 

with soil particles or aggregates >50 /jm were distinguished. 

The bacterial distribution through soil could be manipulated by inocu­

lating soils at different initial moisture contents. At a lower initial 

moisture content, only the narrowest pores are filled with water, so that 

inoculated rhizobial cells will reach narrower pores when they are trans­

ported passively by the waterflow. At a higher initial moisture content, 

water already present in the narrower pores prevent the introduced cells 

from entering these pores. With such an inoculation procedure, rhizobial 

cells were found to be associated to a larger extent with soil particles 

when soils were inoculated at lower initial moisture contents. In natural 

soils, this resulted in an improved survival of rhizobia during at least 

100 days after inoculation (Chapter 4 ) . Moreover, the number of particle-

associated cells decreased less than the number of free occuring cells in 

natural soil. It was concluded that rhizobial cells associated with soil 

particles or aggregates >50 fim occupied a more favourable microhabitat 

than free occuring cells. In sterilized soil, numbers of both particle-

associated and free occuring cells increased and the initial differences 

in distribution did not result in different final population levels 

(Chapter 5). Therefore, it was concluded that the microhabitats in 

natural soil rendered protection to biotic rather than to abiotic 

factors. 

The influence of competitors and predators on the distribution and 

population dynamics of rhizobium was studied by the addition of specific 

groups of organisms to sterilized soils (Chapter 5). Previous to inocu­

lation with rhizobia, sterilized soils were recolonized with several 

bacterial isolates which were obtained from these soils and part of the 

soil portions were inoculated with a flagellate precultered on rhizobial 

cells. In the presence of flagellates, which predate on bacteria, a 

higher percentage of particle-associated rhizobial cells was present than 

in the absence of flagellates. In recolonized soils, i.e. in the presence 

of competitors, the percentages of particle-associated rhizobial cells 

were lower than in soils that were not recolonized previous to inocula­

tion. Thus, the presence of competitors made it more difficult for 

rhizobial cells to colonize the microsites where they can be associated 

with soil particles or aggregates. The total number of rhizobial cells 

was influenced only little (silt loam) or not at all (loamy sand) by the 

competitors or by the addition of flagellates alone. However, when both 

competitors and predators were present, numbers of rhizobial cells 
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decreased drastically. This synergetic effect was explained by hypothesi­

zing that after the predation of accessible bacterial cells by the 

flagellates, the regrowth of rhizobial cells will be limited by the 

presence of competitive microorganisms in many of the favourable micro-

habitats. 

The association of rhizobial cells with soil particles may be the 

result of enclosure in pores or attachment to soil surfaces of rhizobia. 

The role of attachment was studied with a R. leguminosarum strain and 

three Tn5 mutants which were altered in their cell surface properties 

(Chapter 6) . Although the importance of association with soil particles 

or aggregates was affirmed, the results gave no evidence that attachment 

to soil particle surfaces was an important factor for the survival of 

introduced cells. 

The final population level of introduced rhizobia was studied in more 

detail by inoculating sterilized and natural soils with different 

inoculum levels (Chapter 7). In sterilized soils, populations reached, 

independent of the inoculum density, a final level which was suggested to 

represent the carrying capacity of the soils in terms of available habi­

table pore space, moisture and substrate for survival of the bacteria. In 

natural soil, however, the survival levels were dependent on the inoculum 

density. In this case, the chances of introduced cells to reach 

favourable microhabitats, determined the survival level of the entire 

population. 

In all experiments final population levels in natural and in sterilized 

soils were higher in the silt loam than in the loamy sand (Chapter 2-8). 

Pore space which is suitable for bacteria to survive (=habitable pore 

space) or which protects bacteria from predation (-protective pore space) 

was estimated for both soils. The occupancy by bacteria was in all cases 

lower than 0.5%, so that no serious space limitation could be expected. 

Therefore, the larger water-filled pore volume at the water potential 

used (pF 2) in the silt loam as compared to the loamy sand, could not 

explain the differences in population sizes. In sterilized soil substrate 

availability was suggested to determine the final population level. In 

natural soil, however, the survival of rhizobial cells was suggested to 

be dependent on the number of introduced bacteria that reached the 

protective pore space (Chapter 4 and 7). 

In this thesis it is shown that the soil washing procedure is useful 

for the study of the distribution of introduced bacteria. Immediately 
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after introduction, only few bacteria were associated with soil 

particles. The number of particle-associated bacteria decreased less 

pronounced than the number of free occuring bacteria, giving evidence 

that the distribution of introduced bacteria in soil is indeed an 

important factor influencing its survival. Moreover, the distribution 

could be manipulated by inoculating soil at different moisture contents. 

Inoculation of dryer soils, as well as the use of higher inoculum 

densities, resulted in higher survival levels, which could be well 

explained with the concept of distribution of cells over protective and 

non-protective pore space. The occurance of different population levels 

under apparently the same environmental conditions during incubation, 

suggests that extensive translocation in natural soil is absent. 

The ability to manipulate the distribution and thereby to influence the 

survival of introduced bacteria, is important for the application of 

bacteria in soil. The availability of methods for biological control of 

soil-borne pathogens, nitrogen fixation and degradation of xenobiotics in 

soil, is depending on the possibility of introduced bacteria to establish 

in soil. The knowledge obtained in this research project can be used to 

improve the survival of bacteria introduced into soil. 

The spatial distribution of bacteria through the soil matrix might also 

be a useful concept for other areas in soil(micro)biology. The occurance, 

for example, of genetransfer in different soil systems might be better 

understood when more details about bacterial distribution are available. 

Also the preservation of organic matter and the activity of predators 

will depend on the distribution of bacteria in the soil matrix. 
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SAMENVATTING EN SLOTOPMERKINGEN 

Bacterien kunnen aangewend worden ter bevordering van de plantaardige 

produktie, bijvoorbeeld door fixatie van atmosferische stikstof of door 

bestrijding van ziekten en plagen. Ook kunnen ze ingezet worden voor de 

afbraak van milieuvreemde stoffen. Echter, voor een succesvolle toepas-

sing van bacterien in de bodem is een goede overleving noodzakelijk. Het 

voorkomen van microhabitats die gunstig zijn voor de overleving van 

bacterien, zoals organische stof en kleine porien in aggregaten, is 

besproken in de inleiding van dit proefschrift. Kennis over de ruimte-

lijke verdeling van gelntroduceerde bacterien over zulke microhabitats is 

echter schaars. Men mag aannemen dat bacterien na hun introductie op 

andere plaatsen in de grond voorkomen dan bacterien die reeds langere 

tijd aanwezig zijn en dat dit hun overleving beinvloedt. Daarom is in 

eerste instantie gezocht naar een geschikte methode on de ruimtelijke 

verdeling van gelntroduceerde bacterien in grond te onderzoeken. Vervol-

gens is de invloed van de ruimtelijke verdeling van gelntroduceerde 

bacterien op hun overleving bestudeerd aan de hand van een model organis-

me, Rhizobium leguminosarum biovar trifolii. Dit onderzoek is uitgevoerd 

in twee verschillende grondsoorten, nl. zwak lemig zand en een kleigrond. 

Twee methoden voor het kwantificeren van bacterien na hun introductie 

in grond zijn onderling vergeleken (hoofdstuk 2) . Hoewel immunofluore-

scentie een veel belovende techniek was op het moment dat het onderzoek 

startte, bleek uitplaten op selectieve media geschikter voor het tellen 

van lage aantallen gelntroduceerde bacterien, ten gevolge van een lagere 

detectiegrens. Bovendien was de selectieve plaat methode niet afhankelijk 

van uitvlokprocedures zoals de gebruikte immunofluorescentie procedure en 

werden alleen levende cellen geteld. Met immunufluorescentie was het 

echter mogelijk om cellengtes te bepalen. Cellengtes bleken af te nemen 

nadat cellen vanuit een rijk medium in de grond gebracht waren. 

Om de ruimtelijke verdeling van bacterien in de grond te bestuderen 

werden verschillende fluorescerende kleurstoffen getest op hun vermogen 

om bacterien in slijpplaatjes van ongestoorde grondmonsters te kleuren 
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(hoofdstuk 3). Bacterien waren zichtbaar in de slijpplaatjes na kleuring 

met calcofluor white M2R in combinatie met acridine oranje, maar speci-

fieke kleuring van geintroduceerde bacterien bleek niet mogelijk. Daarom 

is in hoofdstuk 4, 5 en 6 een alternatieve methode gebruikt, een gestan-

daardiseerde procedure van grond wassen, waarbij onderscheid gemaakt werd 

tussen vrij voorkomende bacterien en bacterien geassocieerd met grond. 

Geassocieerde bacterien kunnen ofwel aangehecht zijn aan, danwel 

ingesloten zijn in gronddeeltjes of aggregaten. 

De ruimtelijke verdeling van geintroduceerde bacterien in grond bleek 

afhankelijk te zijn van het vochtgehalte voor inoculatie. Bij een laag 

vochtgehalte zijn alleen de kleinste porien met water gevuld en zullen de 

bacterien tot in de kleinste porien terecht komen als ze passief met de 

waterstroom meegevoerd worden. Als de grond voor inoculatie vochtiger is, 

is er al water aanwezig in de kleinere porien, waardoor het binnendringen 

van deze watergevulde porien door bacterien belemmerd wordt. Inoculatie 

van bacterien in droge grond resulteerde in een groter aantal met grond 

geassocieerde bacterien. In niet gesteriliseerde grond had dit tot gevolg 

dat de overleving van bacterien tot meer dan 100 dagen na inoculatie van 

droge grond beter was dan na inoculatie van natte grond (hoofdstuk 4 ) . 

Bovendien nam in de niet gesteriliseerde grond het aantal met grond 

geassocieerde bacterien minder sterk af dan het aantal vrij voorkomende 

bacterien. Hieruit werd geconcludeerd dat associatie met grond gunstig 

was voor de overleving van de bacterien. In gesteriliseerde grond namen 

zowel de vrij voorkomende als de geassocieerde bacterien toe en verdwenen 

de verschillen in verdeling als gevolg van de inoculatie procedure na 

verloop van tijd (hoofdstuk 5). Daarom werd aangenomen dat het voordeel 

van associatie met grond, in de niet gesteriliseerde grond, het gevolg 

was van bescherming tegen biologische factoren. 

De invloed van concurrentie en predatie op de ruimtelijke verdeling en 

op de populatie dynamica van geintroduceerde bacterien werd bestudeerd 

door herkolonisatie van gesteriliseerde grond met verschillende bacterie-

isolaten, en door aan een deel van de grond een flagellaat voorgekweekt 

op rhizobium toe te voegen (hoofdstuk 5). In aanwezigheid van de 

flagellaat was het percentage met grond geassocieerde bacterien hoger dan 

in afwezigheid van de flagellaat. In de aanwezigheid van concurrerende 

bacterien was het percentage geassocieerde rhizobium cellen juist lager 

dan in hun afwezigheid. Geconcludeerd werd dat de aanwezigheid van 

concurrerende bacterien, rhizobium belemmerde om de gunstige plaatsen, 

daar waar het met de grond geassocieerd kon zijn, te bereiken. Het totaal 
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aantal rhizobium cellen werd maar weinig beinvloed door de aanwezigheid 

van concurrenten of predatoren alleen. Slechts wanneer beiden aanwezig 

waren, nam het aantal rhizobium cellen sterk af. Dit synergistische 

effect werd als volgt verklaard: na de predatie van bacterien door de 

flagellaten is het vermogen van bacterien om dit verlies te compenseren 

afhankelijk van hun concurrentie-vermogen. De hergroei van rhizobium 

cellen zal dus belemmerd worden als geschikte locaties voor groei al 

bezet zijn door concurrerende bacterien. 

De associatie van rhizobium cellen met grond kan het gevolg zijn van 

zowel aanhechting aan grondoppervlaktes als van insluiting in porien. De 

rol van aanhechting werd bestudeerd met behulp van een R. leguminosarum 

stam en drie Tn5 mutanten met veranderde oppervlakte eigenschappen 

(hoofdstuk 6) . Hoewel het belang van de associatie met grond bevestigd 

werd, gaven de resultaten geen aanwijzing dat aanhechting aan oppervlak-

tes een belangrijke rol speelde bij de overleving van geintroduceerde 

bacterien. 

De uiteindelijke populatieomvang van geintroduceerde rhizobium werd 

meer in detail bestudeerd door gesteriliseerde en niet gesteriliseerde 

grond te inoculeren met verschillende inoculumdichtheden (hoofdstuk 7). 

In gesteriliseerde grond werd, onafhankelijk van het inoculumniveau, een 

populatieomvang bereikt waarvan werd aangenomen dat het de capaciteit van 

de grond vertegenwoordigde ten aanzien van de combinatie van beschikbare 

porie-ruimte, vochtgehalte en substraat voor bacterien. In niet gesteri­

liseerde grond was het overlevingsniveau echter afhankelijk van de 

inoculumdichtheid. In dit geval bepaalde de kans van geintroduceerde 

bacterien om gunstigere plaatsen, d.w.z. plaatsen die zowel bescherming 

bieden als waar substraat aanwezig is, te bereiken, de overleving van de 

gehele populatie. 

In alle experimenten was de uiteindelijke populatieomvang, in niet 

gesteriliseerde en in gesteriliseerde grond, hoger in de kleigrond dan in 

de zandgrond (hoofdstuk 2-8). De porie-ruimte die geschikt is voor 

bacterien om te overleven en de porie-ruimte die bacterien beschermt 

tegen predatie in beide gronden werden geschat. De bezettingsgraad door 

bacterien was in alle gevallen minder dan 0,5%, zodat ruimte alleen niet 

werkelijk limiterend is. Daarom kon een groter watergevuld porie-volume 

bij de gebruikte waterpotentiaal (pF 2) in de kleigrond t.o.v. de zand­

grond, het verschil in populatieomvang niet verklaren. In gesteriliseerde 

grond wordt het populatieniveau zeer waarschijnlijk door de beschikbaar-

heid van substraat bepaald. In niet gesteriliseerde grond werd de overle-
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ving bepaald door de verdeling van de geintroduceerde bacterien over de 

beschermde en de niet beschermde porie-ruimte (hoofdstuk 4) en door het 

absolute aantal geintroduceerde cellen (hoofdstuk 7) . Verplaatsing van 

rhizobium in niet gesteriliseerde grond werd gering geacht (hoofdstuk 4 

en 7) . 

In dit proefschrift werd aangetoond dat de gestandaardiseerde procedure 

van grond wassen bruikbaar is voor het bestuderen van de ruimtelijke 

verdeling van geintroduceerde bacterien in grond. Direct na inoculatie 

waren weinig bacterien geassocieerd met grond. Het aantal geassocieerde 

bacterien nam minder sterk af dan het aantal vrij voorkomende bacterien, 

wat aantoont dat de verdeling van geintroduceerde bacterien in grond 

inderdaad een belangrijke factor is die de overleving beinvloedt. 

Bovendien kon de verdeling gemanipuleerd worden door bij verschillende 

vochtgehaltes te inoculeren. Inoculatie van drogere grond, maar ook het 

gebruikt van hogere inoculum-dichtheden, resulteerde in een hoger 

overlevingsniveau, wat verklaard kon worden met het concept van de 

verdeling van bacterien over beschermde en niet beschermde porie-ruimte. 

De aanwezigheid van verschillende populatieniveau's tijdens gelijke 

incubatieomstandigheden, suggereert een geringe verplaatsing van 

bacterien in niet gesteriliseerde grond. 

De mogelijkheid om de verdeling van geintroduceerde bacterien te 

veranderen en daardoor ook de overleving te beinvloeden, is belangrijk 

voor een succesvolle toepassing van bacterien in grond. Het potentieel 

aan beschikbare methoden voor onder andere biologische bestrijding van 

bodemgebonden ziekten, stikstof fixatie en afbraak van milieuvreemde 

stoffen in de bodem, hangt in sterke mate af van de mogelijkheid van de 

geintroduceerde bakterien om zich in voldoende mate te handhaven. De 

kennis die in dit onderzoek is opgedaan, kan aangewend worden om de 

overleving van geintroduceerde bacterien in grond te verbeteren. 

Kennis omtrent de ruimtelijke verdeling van bacteren in grond is ook 

belangrijk voor andere aspecten van de bodem(micro)biologie. Het optreden 

van bijvoorbeeld genoverdracht in verschillende grondsystemen zou beter 

begrepen kunnen worden indien meer bekend is omtrent de verdeling van 

bacterien in grond. Ook de opbouw en afbraak van organische stof en de 

aktiviteit van predatoren zijn mede afhankelijk van de verdeling van 

bacterien in de grond. 
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NAWOORD 

Met veel plezier heb ik de afgelopen 3 3/« jaar aan het onderwerp gewerkt 

dat tot dit proefschrift heeft geleid. Ik zou dan ook de volgende mensen 

hartelijk willen bedanken: 

- Hans van Veen, als initiator van dit onderzoek, voor zijn enorme 
enthousiasme, het altijd bereid zijn om over opzet en resultaten van 
experimenten te discussieren en de steun bij het schrijven van 
wetenschappelijke publicaties. 

- Alex Zehnder voor de stimulans die van hem uitgaat, de vrijheid die hij 
me liet bij de uitvoering van het onderzoek zonder de gang van zaken 
uit het oog te verliezen, en voor het coachen van de eindsprint, zodat 
alles nog op tijd af was. 

- De mensen van de B-groep van het Ital voor alle leuke dingen de we 
samen gedaan hebben, de gezelligheid, de steun op onzekere momenten, en 
natuurlijk ook voor de onderlinge samenwerking en de besprekingen van 
elkaars onderzoek. 

- K. Domsch en de collega's van het Institut fur Bodenbiologie (FAL, 
Braunschweig) , waar gezelligheid en hard werken fantastisch 
gecombineerd werden, voor alle genoten gastvrijheid. 

- H.-J. Altemttller en zijn medewerkers van het Institut fur Pflanzener-
nahrung und Bodenkunde (FAL, Braunschweig) voor hun altijd hartelijke 
ontvangst en voor de unieke kennismaking met de dunslijpplaatjes-
techniek. 

- Lous van Vloten en alle andere kritische lezers van mijn manuscripten, 
niet zozeer omdat commentaar ontvangen zo leuk is, maar wel omdat het 
er mede toe heeft bijgedragen dat de teksten eruit kwamen te zien zoals 
ze in dit proefschrift staan. 

- Chula Hok-A-Hin, Margarit de Klein, Susanne Walter en Tanja Schotman 
voor hun bijdrage aan het praktische werk, dat aan dit proefschrift ten 
grondslag ligt. 

- Eenieder die, op welke wijze dan ook, heeft bijgedragen aan de onder-
steuning van dit werk, want zonder koffie, literatuur en geschikte 
apparatuur is het moeilijk werken, terwijl ook aan de statistische ver-
werking van gegevens, tekstverwerking en het verzorgen van illustraties 
diverse mensen hebben bijgedragen. 

- Mijn 'counterpart' Ulrike Hoff, waarmee ik de afgelopen jaren twee maal 
'stuivertje verwisseld' heb. 

- Familie, vrienden en kennissen voor de stimulans die uitging van de 
getoonde belangstelling en hun vertrouwen in de goede afloop. 

Het proefschrift is nu klaar, dat is natuurlijk fijn, maar bovenal is het 

een prettige en inspirerende tijd geweest waar ik met plezier aan terug 

zal denken. 
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