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ABBREVIATIONS 

A473, A650, absorbances at 473 and 650 nm, respectively 
ACMA, 9-amino-6-chloro-2-methoxyacridine 
ALA, 5-aminolevulinic acid 
ATP, adenosine triphosphate 
BSA, bovine serum albumin 
Chl(ide), chlorophyll(ide) 
C672, C678, C685, chlorophyll(ide) with absorption maxima at 672, 

678 and 685 nm, respectively 
CMC, carboxymethylcellulose 
CP, chlorophyll-protein complex 
D, dark(ness) 
D etioplasts, etioplasts isolated from dark-grown seedlings 
EDTA, ethylenediamine tetraacetate 
FMN, flavin mononucleotide 
FR, far-red (light) 
high WL, white light of high fluence rate 
HIR, high irradiance response 
HW, half band-width 
Kav> t n e fraction of the gel phase of a gel bed which is available for 

a substance 
kDa, kilodalton 
10KP, pellet resulting from centrlfugation at 10,000 x £ 
10KS, supernatant resulting from centrlfugation at 10,000 x £ 
LF, low fluence 
LFR, low fluence response 
low WL, white light of low fluence rate 
MOPS, N-morpholino-3-propane sulfonic acid 
mRNA, messenger RNA 
NADPH, nicotinamide adenine dinucleotide phosphate 
P, phytochrome, or total phytochrome 
P628, P636 and P650, protochlorophyll(ide) with absorption maxima at 

628, 636 and 650 nm, respectively 
PChl(ide), protochlorophyll(ide) 
Pfr, far-red absorbing form of phytochrome 
PLB, prolamellar body 
Pr, red absorbing form of phytochrome 
R, red (light) 
R etioplasts, etioplasts isolated from red pre-irradiated seedlings 
RNA, ribonucleic acid 
RNP, ribonucleoprotein 
rRNA, ribosomal RNA 
TCA, trichloroacetic acid 
VLF, very low fluence 
VLFR, very low fluence response 
V0, void volume (the volume of the liquid phase of a gel bed) 
Vf, total volume of a gel bed 
WL, white light 
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1 GENERAL INTRODUCTION 

Light is indispensible for life on earth. Without light, plants would be 

unable to photosynthesize and so to produce oxygen and biomass on which other 

living organisms depend. Chlorophyll (Chi) is the principal pigment 

responsible for light absorption in the process of photosynthesis. This 

pigment is concentrated, in leaves of light-grown higher plants, in special 

organelles, the chloroplasts. Apart from enabling plants to photosynthesize, 

light in various ways influences their growth and development 

(photomorphogenesis). The principal pigment mediating many photomorphogenetic 

responses is phytochrome (P). Generally speaking, only very small amounts of 

light are required for photomorphogenic responses as compared to 

photosynthesis. 

Seeds contain food reserves which enable the seedlings to grow for a period 

of time without light. Apart from other differences with light-grown 

seedlings, dark-grown seedlings of angiosperms are unable to form Chi. 

Instead of chloroplasts, the leaves contain "etioplasts" (Section 1.4.1) which 

are able, by the action of red light (R), to develop into chloroplasts. At 

least three photoreceptors control chloroplast development. P controls 

several processes during Chi accumulation (Schopfer and Apel, 1983). For the 

expression of these P induced processes, the light dependent reduction of 

protochlorophyll(ide) (PChl(ide)) into chlorophyll(ide) (Chl(ide)) is 

required. In this process, PChl(ide) itself is the photoreceptor. Finally, 

the presence of Chi is required for the formation of the internal chloroplast 

structure (Mohr and Kasemir, 1975). The present study is mainly concerned 

with functional and structural aspects of the first stages of the greening 

process in seedlings and isolated etioplasts after transfer to light and with 

the role played by P. Some general aspects of the initial photomorphogenic 

processes in etioplasts and of the pigments involved are discussed in this 

chapter. 

1.1 Phytochrome 

P is a photoreversible pigment widely distributed in the plant kingdom. P 

dependent responses have been observed in angiosperms, gymnosperms, ferns, 

liverworts, mosses and algae (Borthwick, 1972b). A few examples of such 

responses are: photoinduction of seed germination, inhibition of hypocotyl 

growth, induction of leaf expansion and regulation of flowering of 

photoperiodically sensitive plants (e.g., Shropshire and Mohr, 1983). 

P exists in two interconvertible forms characterized by different 

absorption spectra. In completely dark-grown tissue only the R absorbing 

form, Pr, is present, with an absorption maximum at 666 nm. When irradiated 

with light of suitable wavelength, Pr is photoconverted into the far-red light 

(FR) absorbing form, Pfr, with an absorption maximum at 730 nm (e.g., Pratt, 

1979). Due to overlap of the Pr and Pfr absorption spectra, it is impossible 

to convert all Pr to Pfr. A saturating R irradiation results in a 
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photoequilibrium between Pr and Pfr with Pfr forming about 86% of total P 

(Vierstra and Quail, 1983). When irradiated with FR, Pfr is predominantly 

photoconverted back to Pr. Pfr is considered to be the physiologically active 

form of P (e.g., Borthwick, 1972a; Pratt, 1979). In dicotyledons, Pfr slowly 

reverts to Pr in the dark. This "dark reversion" appears to be absent in most 

monocotyledons (Frankland, 1972). Moreover, Pfr can be irreversibly 

transformed to a colourless product both in dicotyledons and monocotyledons 

(Kendrick, 1972; Frankland, 1972). This transformation is called phytochrome 

destruction. In summary: „ 

Pr N P f r > ? 
f;;^^ F R ^^y dark destruction 

dark reversion 
The P chromophore is an open-chain tetrapyrrole (e.g. , Scheer and Krauss, 

1979). The chromophore is covalently attached via a thio-ether linkage to 

cystein on the apoprotein. The amino acid sequence of the 124 kilodalton P 

apoprotein of Avena and its major proteolytic cleavage sites are known 

(Vierstra and Quail, 1986). The exact structure of the chromophore and the 

changes upon phototransformation are still incompletely understood. 

Photoconversion of Pr into Pfr involves Z,E- (or cis, trans-) isomerization of 

the chromophore. However, the observed optical difference of Pr and Pfr is 

best explained by a combination of changes in both the chromophore and the 

protein environment (Rtldiger et al. , 1985). Several intermediates have been 

detected in the Pr —* Pfr and Pfr —> Pr phototransformations (Spruit and 

Kendrick, 1973; 1977; for reviews see Kendrick and Spruit, 1977; Rttdiger and 

Scheer, 1983). 

R-FR photoreversibility, i.e. the effect of a brief R irradiation being 

reversed by a subsequent FR irradiation is often used as a criterion for 

involvement of P in a response of plants to light. However, we may expect 

from the photochemical properties of the pigment, that responses of completely 

dark-grown plants to light evoked by extremely small amounts of Pfr should not 

be photoreversible by FR. In this case, the reversibility criterion breaks 

down. "High irradiance responses" (HIRs), responses to prolonged FR, have 

been shown also to be mediated by P (Mohr, 1972; Mancinelli and Rabino, 1978). 

HIRs are dependent on fluence rate, suggesting that in these responses the 

rate of interconversion of Pfr and Pr (or cycling) is important. 

Although much research has concentrated on P since its detection in 1959 

(Butler e_t al.), still many questions are unanswered, for example, its 

localization within the cell and the primary mode of action of Pfr. 

1.2 Investigations on the localization of phytochrome in plants 

1.2.1 Distribution of phytochrome within the plant 

Using an antibody-labelling method, Pratt and Coleman (1974) studied the 

distribution of P in etiolated seedlings. In maize seedlings, a relatively 

uniform distribution was observed. Seedlings of oat, rye, barley and rice 

showed high P concentrations in the tip of their coleoptiles and near the 
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shoot apex. High concentrations of P were observed near the leaf base of 

rice, barley and rye. In dark-grown roots of oats high P concentrations were 

found in the root caps. Apparently, P is found primarily in morphogenically 

active regions of a plant (Pratt et_ al., 1976). Evidence for inter-organ 

control of P mediated effects has been obtained by Caubergs (1974); De Greef 

et al. (1976) and Black and Shuttleworth (1976). 

1.2.2 Subcellular distribution 

Immunocytological techniques provided evidence that in dark-grown tissue, 

Pr is distributed throughout the cytoplasm (Coleman and Pratt, 1974; Mackenzie 

et al. , 1974). Electron microscopy indicated that P may also be associated 

with various membranes. In dark-grown oat and rice seedlings, the diffuse 

distribution of Pr changed within a minute after R irradiation into an 

association of P (as Pfr) with discrete but as yet unidentified regions within 

the cell, about 1 urn in diameter (e.g. , Pratt et̂  al. , 1976; Epel et al. , 

1980). Whether this translocation of P represents a binding of Pfr to 

specific, biologically active receptor sites within the cell, is not known 

(Pratt, 1983). The original diffuse distribution was slowly resumed over a 

period of 1-2 h at 25 °C (Mackenzie et_ al. , 1975) after FR irradiation. 

Although in wheat, barley and rye this redistribution of P was not observed by 

Mackenzie et al. (1978), different fixing and sectioning techniques have 

shown its occurrence, at least, in wheat (Epel et al., 1980). 

The immunocytochemically observed redistribution of P is possibly related 

to "pelletabllity" of Pfr in vitro (Quail, 1983). In several papers (Quail, 

1974; Marme et al., 1974; 1976) specific binding of Pfr to particulate 

material has been demonstrated. Binding was induced by In vivo R irradiation 

in zucchini, maize and oats, while jLn vitro R had a positive effect on 

pelletability of P only in zucchini (Marme et al., 1976). Identification of 

the component(s) with which P becomes associated and the demonstration of a 

possible biological significance of the binding reaction have not so far been 

achieved (Quail, 1983). 

Several attempts have been made to demonstrate P spectrophotometrically in 

preparations of cell organelles. Associations of P with the plasma membrane 

and endoplasmic reticulum (Marme et al., 1976), mitochondrial and microsomal 

fractions (Furuya and Manabe, 1976), nuclei (Wagle and Jaffe, 1980) and 

etioplasts (e.g. , Cooke et_ al. , 1975; Evans, 1976) have been claimed. 

However, a clear picture of the localization of P either in dark-grown, 

de-etiolated (i.e., briefly irradiated) or green tissue has not yet been 

obtained. 

1.3 Primary effects of phytochrome 

The primary mode of action of P is still a matter of discussion. In most 

reactions, there are probably several steps between the initial action and the 

final response, which often becomes measurable only after several hours. It 

has been suggested (Mohr, 1972) that P might act by controlling gene activity. 



P mediated changes in levels of rRNA (Thien and Schopfer, 1982) and mRNA 

(e.g., Gollmer and Apel, 1983) have indeed been observed. However, P 

responses have been reported on a time scale that seems to exclude gene action 

(for a review, see Quail, 1983). Membranes have been frequently proposed as 

sites of action for P (e.g., Hendricks and Borthwick, 1967; Brownlee and 

Kendrick, 1977). Several of the rapid P mediated events are likely to involve 

changes in membrane properties. It cannot be excluded, however, that these 

changes are an indirect consequence of a more rapid primary event elsewhere in 

the cell (Quail, 1983). The primary action of P may be different in different 

cells and cell compartments (Mohr, 1972; 1977). Kendrick (1983), on the other 

hand, proposed a model of primary Pfr action at the membrane level, involving 

ion transport. 

1.4 Greening of dark-grown seedlings and the influence of phytochrome 

1.4.1 Etioplasts 

Young seedlings contain proplastids: small organelles with a poorly 

developed thylakoid system. In the light these proplastids directly develop 

into chloroplasts. In dark-grown seedlings, proplastids develop into 

etioplasts. Etioplasts are generally slightly smaller than chloroplasts and 

irregular-ellipsoidal in shape. Like chloroplasts, they have a double 

membrane envelope. However, instead of grana and stroma thylakoids, they 

contain one or more so-called prolamellar bodies (PLBs) and some prothylakoids 

radiating from the PLBs. A PLB is a three-dimensional lattice formed by 

interconnected membrane tubules that are often arranged in a very regular way, 

resulting in a "paracrystalline" structure (see e.g. Fig. 2.2 in Chapter 2 ) . 

The PLB probably mainly functions as a carrier for lipid components necessary 

for the development of stroma and grana thylakoids (Virgin and Egneus, 1983). 

Under natural conditions etioplasts are formed in the primary leaves or 

cotyledons of seedlings germinating in the soil, before they are exposed to 

light. Plastids containing PLBs are also observed in plants grown in light of 

low fluence rate (e.g., Weier and Brown, 1970). Etioplast-like organelles are 

found in some algae, e.g. Euglena gracilis (Klein et al., 1972). In gland 

cells of tentacle heads of Drosera capensis etioplast-like organelles were 

observed (Kraak, 1974), even though the plants were light-grown. However, 

these etioplast-like organelles do not contain regular, para-crystalline PLBs 

but aggregates of tubules resembling disorganized PLBs instead. The 

fully-formed etioplasts with large paracrystalline PLBs commonly studied in 

the laboratory probably rarely occur in nature. 

Etioplasts contain substantial levels of many components of mature 

chloroplasts (Virgin and Egneus, 1983) and In vivo are able to transform 

rapidly into functional chloroplasts on exposure to light (Wellburn, 1984). 

Etioplasts in dark-grown angiosperms contain no Chi but only relatively small 

amounts of PChl(ide) a and PChl(ide) a esters (Section 1.4.3). 



1.4.2 Ultrastructural changes in etioplasts during greening 

Upon irradiation of dark-grown seedlings, the membranes of the PLBs lose 

their paracrystalline structure (Gunning, 1965). This process, a re­

arrangement of the membrane tubules, is called tube transformation or PLB 

dispersal and can take place in the dark after a brief irradiation. The 

process is rapid in young seedlings; durations ranging from 1 min to 1 h have 

been reported (Kirk and Tilney-Bassett, 1978). Following tube transformation, 

perforated thylakoids (prothylakoids) grow out from the remains of the PLBs 

("vesicle dispersal", Gunning, 1965). The perforations in the thylakoids 

disappear during the first hours of greening (Henningsen and Boynton, 1974). 

In young dark-grown seedlings PLB dispersal can also take place in the dark 

following a brief irradiation. The membrane material for the thylakoids at 

this stage is probably derived from the PLBs (Bradbeer et al., 1974). As 

irradiation continues, membrane overlaps form, the "stacks" of two thylakoids 

being the first stage of granum formation. Some phases of the light induced 

ultrastructural development of etioplasts are P mediated, e.g., the rate of 

stroma thylakoid and grana formation (Girnth et_ al., 1979). 

1.4.3 Protochlorophyll(ide) species and their photochemistry 

PChl(ide) will be used as a term for both unesterified protochlorophyllide 

and protochlorophyllide esters including protochlorophyll, irrespective of 

whether they are divinyl or monovinyl species (Cohen and Rebeiz, 1981). At 

least three spectrally distinct PChl(ide) forms exist: P628, P636 and P650, 

with absorption maxima around 628, 636 and 650 nm, respectively. On 

irradiation at 77K, P628 fluoresces at 632 nm, while both P636 and P650 

fluoresce at 655 nm (e.g. , Kahn et_ al. , 1970). Efficient energy transfer from 

P636 to P650 accounts for absence of a P636 fluorescence emission band. 

General agreement exists on P650 being a phototransformable species (e.g., 

Shibata, 1957; Kahn et̂  al. , 1970) and P628 being nonphototransformable. 

Whether P636 is directly phototransformable or serves as a precursor of P650 

is uncertain (Sundqvist e_t al. , 1980). In older dark-grown seedlings almost 

certainly only the non-esterified pigment (i.e., PChlide) can be photoreduced 

(Griffiths, 1974b; Virgin, 1981). However, in young seedlings photo-

transformation of PChl has been demonstrated (e.g., McCarthy et al., 1982). 

The PChl(ide) content and the ratios of the various components vary with 

the age of the seedlings. In young dark-grown seedlings the amount of 

PChl(ide) is very low. In dark-grown bean leaves a maximum PChl(ide) content 

was reached after 10 days (Akoyunoglou and Siegelman, 1968). In 3-day old 

bean leaves 60% of PChl(ide) present was in the form of non-phototransformable 

P628 (Klein and Schiff, 1972), most of the phototransformable pigment being in 

the form P636, with smaller amounts of P650. During subsequent growth (from 3 

to 7 days) the percentage of photoconvertible PChl(ide) increased, while P650 

increased faster than P628 and P636. At the same time, PLBs were formed and 

increased in size. 



Most PChl(ide) is bound to proteins forming a PChl(ide) holochrome complex 

(Kasemir, 1983b). The different absorption maxima of the PChl(ide) forms have 

been proposed to be due to differences of aggregation of the molecules (e.g., 

Mathis and Sauer, 1972; Virgin, 1981), conformational differences of the 

PChl(ide) holochrome (Gassman, 1973a), differences in environment (Gassman, 

1973b), binding to different kinds of proteins (Guignery et al., 1974) or 

different modes of binding to proteins (Boardman, 1966). Griffiths (1978; 

1980) obtained evidence that photoactive PChl(ide), P636/650, exists as a 

ternary complex with the enzyme PChl(ide) oxidoreductase and NADPH. The 

enzyme is probably identical with, or part of, the PChl(ide) holochrome (Apel 

et al^_, 1980). 

The localization of PChl(ide)-protein complexes at the sub-organelle level 

is still a matter of debate (Kasemir, 1983a). Fluorescence and phase contrast 

microscopy indicated PChl(ide) within etioplasts to be located in centres 

(Boardman and Wildman, 1962). These centres corresponded in number and size 

to the PLBs observed in electron micrographs of etioplasts and the conclusion 

has been drawn that PChl(ide) is localized in the PLBs. However, 

histoautoradiography and biochemical analysis showed that -^H-PChl(ide) 

synthesized from 3H-5-aminolevulinic acid (ALA) was not only localized in the 

PLBs but also in the prothylakoids (Lafleche et̂  al., 1972). LUtz and Klein 

(1979) separated PLBs and prothylakoids of etioplasts of dark-grown oat 

seedlings and, using saponin markers for the PLBs, concluded that PChl(ide) is 

mainly localized in the prothylakoids. Ryberg and Sundqvist (1982) showed 

that the prothylakoids of etioplasts of dark-grown wheat seedlings contain 

about 60% of the total amount of PChl(ide) present. However, PLBs were found 

to contain a higher ratio of phototransformable to non-phototransformable 

PChl(ide) than the prothylakoid fraction. 

1.4.4 Biosynthesis of protochlorophyll(ide) 

The first stages in (P)Chl(ide) formation are probably the same as for the 

synthesis of porphyrins in general. The pathway from the earliest Chi 

precursor that has been unequivocally identified, ALA, to PChl is as follows 

(Virgin, 1972; Kirk and Tilney-Bassett, 1978; Castelfranco and Beale, 1983): 

5-aminolevulinic acid (ALA) ALA-dehydratase * porphobilinogen (PBG) 

^ uroporphyrinogen III _ „0 ^ coproporphyrinogen III 

— — > protoporphyrinogen IX — — j ; ^ protoporphyrin IX • > 

Mg-proto-IX monomethylester —^ -> —> —> Mg-2,4,-divinylpheoporphyrin a5 

^ protochlorophyllide a_. 

Available evidence suggests that formation of ALA in plants follows a 

pathway different from that in animals and bacteria (Castelfranco and Beale, 

1983), the details of which are still uncertain. 

Phytochrome (through Pfr) has at least two controlling points in PChl(lde) 
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biosynthesis. The activity of the enzyme ALA-dehydratase is increased by 

prolonged exposure to FR, which operates via formation of Pfr (Kasemir and 

Masoner, 1975; Balange and Lambert, 1980). However, the Pfr controlled 

formation of ALA is probably a more important factor (Masoner and Kasemir, 

1975; Kasemir, 1983a). 

1.4.5 Photoconversion of protochlorophyll(ide) into chlorophyll(ide) and 

subsequent regeneration of protochlorophyll(ide) 

Light absorbed by PChl(ide) itself is effective in its photoconversion 

(e.g. , Koski e_t al. , 1951). A very short light treatment (a few ms) can 

saturate the conversion (Madsen, 1963). PChl(lde) phototransformation has 

been observed in vivo, in isolated etioplasts, isolated PLBs and purified 

PChl(ide) holochrome (e.g., Brodersen, 1976). After (partial) photoconversion 

of PChl(ide) into Chl(ide), energy transfer from P650 (and P636) to the newly 

formed Chl(ide) is observed at -196 °C (e.g., Kahn et al., 1970; Sundqvist and 

Klockare, 1975). The PChl(ide) and Chl(lde) molecules therefore must be 

located in close proximity. The temperature dependence of PChl(ide) 

phototransformation has been studied by Smith and Benitez (1954) and Sironval 

and Brouers (1970). At -196 °C no phototransformation is observed. At -70 °C 

photoconversion is fairly rapid and extensive. Increase in temperature up to 

40 °C increases the rate of phototransformation. Prolonged heating of leaves 

at 40 °C or short heating at 55 °C destroys the phototransformation capacity 

(Smith and Benitez, 1954). 

After phototransformation of PChl(ide) in dark-grown seedlings by a 

light-flash, new PChl(ide) is formed in subsequent darkness. The rate of the 

so-called PChl(ide) regeneration is strongly dependent on the age of the 

seedlings (Akoyunoglou and Siegelman, 1968). No lag phase in PChl(ide) 

regeneration was observed in dark-grown bean seedlings younger than 5 days, 

while in older seedlings the duration of the lag phase increased with 

increasing age: in 11-day old seedlings it lasted 60 min. Virgin (1955) 

showed the rate of Chl(ide) formation during a 2 h irradiation at medium 

fluence rate to equal the rate of PChl(ide) regeneration in darkness. 

By examining the effect of FR following a brief R irradiation, a possible 

influence of Pfr on the PChl(ide) regeneration rate was studied. No 

significant effect of Pfr was detected in these experiments (Akoyunoglou, 

1970; Spruit and Raven, 1970; Jabben et al., 1974), only in older seedlings a 

small effect of Pfr was observed after a few hours of darkness (Akoyunoglou, 

1970; Spruit and Raven, 1970). However, Pfr formed by a R pre-irradiation 

several hours earlier, appears to stimulate PChl(ide) regeneration (Virgin, 

1958; Augustinussen and Madsen, 1965; Jabben et al., 1974; Jabben and Mohr, 

1975). A quantitative correlation between the effect of Pfr on the rate of 

PChl(lde) regeneration and the initial rate of Chl(ide) accumulation in light 

was shown by Jabben et al. (1974). 



1.4.6 Chlorophyll(ide) species and their transformation 

When older dark-grown seedlings of angiosperras containing relatively high 

concentrations of P650 are briefly irradiated, a Chl(ide) a_ species with 

absorption maximum around 678 nm (C678) is formed. During subsequent darkness 

the absorption maximum first shifts to 684 nm (Bonner, 1969) and then back to 

672 nm (Shibata, 1957). The latter shift has become known as the Shibata 

shift. Esterification of Chlide â  with phytol (via geranylgeranyl Chlide, 

Benz et_ al. , 1980) takes place simultaneously with (Sironval et_ al. , 1965) or 

after (Akoyunoglou and Michalopoulos, 1971) the Shibata shift. Finally, a 

stable photosynthetlcally active form C677 is slowly formed (e.g., Virgin, 

1972). Recently, short-lived species intermediate between P650 and C678 have 

been detected (e.g., Inoue et al., 1981; Belyaeva and Litvin, 1981). 

Stimulation of the rate of the Shibata shift by Pfr has been claimed by 

Jabben and Mohr (1975) and stimulation of the rate of phytylation of Chlide a_ 

by Liljenberg (1966) and Kasemir and Prehm (1976). 

1.4.7 Chlorophyll accumulation 

When older dark-grown angiosperm seedlings are continuously irradiated, 

after the initial photoconversion of PChl(ide) into Chl(ide) a rather slow 

phase of Chi (including Chlide) accumulation or even a temporary decrease in 

total Chi is observed (e.g., Raven, 1972): the so-called lag phase in Chi 

accumulation. Rapid Chi accumulation takes place after the lag phase and 

proceeds until the pigment content approaches that of the mature, green leaf. 

The duration of the lag phase is dependent on seedling age (Sisler and Klein, 

1963; Akoyunoglou and Argyroudi-Akoyunoglou, 1969) and on the fluence rate. 

At high fluence rate the lag phase is extended, probably because of 

photobleaching of Chi (e.g., Raven, 1972; Virgin, 1972). 

The lag phase in Chi formation is eliminated or shortened by 

pre-irradiation of dark-grown seedlings with a low R fluence (working through 

Pfr), followed by several hours of darkness (Withrow et al., 1957; Mitrakos, 

1961; Kasemir et_ al. , 1973; Raven, 1973). Although hardly any reversion of 

this R effect by FR is obtained in some plant species (Virgin, 1961; Raven and 

Spruit, 1972) P has been shown to be involved in the response in these species 

as well (Raven, 1973). 

1.5 Transport model for phytochrome 

In 1973, Raven and Spruit proposed a transport model for phytochrome 

accounting for their observations on effects of various pre-irradiation 

treatments on Chi accumulation in white light (WL). FR reversibility of the 

effect of R appeared more pronounced in briefly R pre-irradiated 

("de-etiolated") seedlings than in seedlings previously grown In complete 

darkness. Even green "safelight" caused a significant de-etiolation, 

resulting in an increase of FR reversibility. The increase in R/FR 

reversibility is accompanied by a marked decrease in sensitivity of the 
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seedlings to R (Raven and Shropshire, 1975). 

In agreement with data of iramunocytological studies (Section 1.2) the 

transport model assumes that initially, Pr is distributed troughout the 

cytoplasm of plant cells. This soluble P will be called "bulk P". Pfr 

molecules formed by irradiation of dark-grown seedlings are proposed to 

migrate to receptors in the cells, thereby eliciting a physiological response. 

A small fraction of total P is proposed sufficient to saturate the receptor 

sites, predicting a high sensitivity of dark-grown seedlings to R. The small 

amount of Pfr formed by FR would be sufficient to saturate a significant 

proportion of the receptor sites and therefore very limited reversion by FR of 

the effect of R is anticipated. The model further assumes that binding of Pfr 

to the receptors is irreversible. Dark reversion of Pfr into Pr was proposed 

to occur at the receptors, so that after a dark period of sufficient duration, 

a second R pre-irradiation results in an additional response. However, a 

considerably higher R fluence would now be needed to give a similar effect as 

produced by the first R pre-irradiation, as no concentration of Pfr occurs 

this time. The small percentage of Pfr formed by FR would now have no 

noticeable effect and therefore this second R effect would be largely 

reversible by FR. 

Interestingly, the P transport model also provides an attractive 

explanation for the "Zea" paradox (Hillman, 1967). In maize, a small fluence 

of R insufficient to cause a spectrophotometrically detectable conversion of 

Pr into Pfr, saturates the R induced enhancement of a phototropic response to 

blue light (Briggs and Chon, 1966). Paradoxically, the R effect was FR 

reversible, even though the FR irradiation produced more Pfr than the R 

irradiation that it reversed. Assuming that Pfr has migrated to the reaction 

centres before the FR irradiation, these observations are accounted for by the 

transport model. 

1.6 Aim of the investigations 

The success of the transport model in explaining a number of otherwise 

enigmatic physiological responses, asks for a more direct confirmation of its 

basic assumptions. In particular, the reality of the proposed receptors and 

their activation by minute fractions of cellular P after its photo-

transformation to Pfr has to be demonstrated. A plausible candidate for the 

receptor sites for P is the etioplast. An increase of the P content of the 

etioplasts after irradiation of completely dark-grown seedlings, as implied by 

the model, would provide evidence both in favour of the model and for the 

etioplasts being a site of action of Pfr. Consequently, etioplasts were 

isolated from dark-grown and R pre-irradiated seedlings and their P content 

was measured spectrophotometrically (Chapter 4 ) . 

As maize etioplasts were the main object of the present studies, a detailed 

investigation of the influence of P on the lag phase in Chi accumulation in 

this species was made (Chapter 3). This appeared to be of even more interest 

since in monocotyledons probably no Pfr dark reversion occurs (Frankland, 
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1972). This provided a possibility to test the P transport model, since the 

model as originally proposed predicts that a second R pre-irradiation will 

have no additional effect if there is no Pfr dark reversion at the receptors. 

The diversity of P controlled processes related to Chi accumulation 

complicates the analysis of these processes in the intact plant. The isolated 

etioplast provides an attractive system to investigate the development of the 

photosynthetic apparatus on a sub-cellular level. In addition to the above 

investigations, evidence has been sought for a direct influence of P in this 

respect on the etioplast. Possible P involvement in the following aspects of 

development of the photosynthetic apparatus was examined in isolated 

etioplasts: ultrastructural development (Chapter 5 ) , PChl(ide) regeneration 

(Chapter 6) and changes in the spectral properties of the plastid pigments 

after a light pulse (Chapter 7 ) . 
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2 MATERIALS AND METHODS 

2.1 Plant material 

Seeds of Zea mays L. cv. Capella were obtained from Van der Have B.V. 

(Kapelle Biezelinge, The Netherlands), seeds of Pisum sativum L. cv. Krombek 

and Phaseolus vulgaris L. cv. Dubbele Witte z. dr. from Sluis and Groot 

(Enkhuizen, The Netherlands), seeds of Avena sativa L. cv. Condor from 

Kweekbedrijf Zelder (Ottersum, The Netherlands) and seeds of Hordeum vulgare 

L. cv. Julia from Proefbedrijf Nude (Wageningen, The Netherlands). 

Dr. ir. A.W. de Jong (Kweekbedrijf Zelder) kindly provided seeds of the 

genetically homogeneous maize varieties Z27 and WJ. Seeds of Zea mays L. 

cv. Capella were treated with Captan anthra. 

2.2 Cultivation of seedlings 

In initial experiments, seeds of maize, barley and pea were imbibed for 6 h 

under dim daylight before sowing. In later experiments all seeds were sown 

without previous soaking. Seeds were sown in pots filled with sterilized 

potting compost in dim daylight and the seedlings were grown subsequently in 

complete darkness as described by Raven (1973) at a temperature of 22 °C. 

Plants were used at an age of 8 days in most experiments. 

2.3 Equipment for irradiations 

2.3.1 Equipment for pre-irradiations 

In most experiments red (R) pre-irradiation consisted of 5 min R 

fluorescent light (Philips TL 40, colour 15) at an irradiance of 0.85 W m - 2 (5 

pmol m~2 s~l) at the top of the leaves. Maximum emission of this light source 

was at 658 nm. In the experiments described in Chapter 3, pre-irradiations 

were given with different fluences of R and far-red light (FR). For various 

low fluences of R, the R fluorescent light was used for different periods and 

at different distances of the light source from the plants. Alternatively, a 

Leitz Prado 500 slide projector equipped with a 667 nm interference filter 

(Balzers, Liechtenstein, half band-width (HW) 21 nm) was used. A range of 

fluence rates was obtained by combining this source with neutral glass filters 

(type NG, Schott und Gen., Mainz, W. Germany). For high fluence rates of R 

and FR, the "Xenosol V" irradiation equipment described by Spruit e_t al. 

(1979) was used. For R irradiation, Baird Atomic interference filters with 

transmission maxima at 655 nm or 666 nm (HW 15 nm) were used and for FR 

irradiation Baird Atomic interference filters with transmission maxima at 

731 nm (HW 19 nm) or 750 nm (HW 20 nm). Fluence rates were measured with a 

wavelength corrected photodiode meter (Optometer 80 X, United Detector 

Technology Inc., Santa Monica, California, USA). The fluence rates at the top 

of the leaves were 17 W m - 2 (95 umol m - 2 s ) for the 655 nm filter, 35 W m - 2 

(195 pmol m~2 s-1) for the 666 nm filter, 23 W m~2 (140 pmol m~2 s-1) for the 

731 nm filter and 10 W m~2 (65 pmol m - 2 s~l) for the 750 nm filter. 
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2.3.2 Equipment for continuous irradiation with white light 

Greening of plants took place in a controlled climate room at 20 °C under 

white fluorescent tubes (Philips TL 40 W/33). The light was attenuated by a 

dense metal wire screen to give a low fluence rate of about 7 W m - 2 at the top 

of the leaves. Alternatively, the plants were irradiated in an aluminium 

cabinet (Joustra, 1970) at 20 °C under similar white fluorescent tubes at a 

fluence rate of 8.5 W m - 2 at the top of the leaves (low WL). High fluence 

rate white light (31 W m - 2 , high WL) was obtained from white fluorescent tubes 

(Osram-L, 115 W/20 Sa) placed above and at two sides of the plants. 

2.3.3 Safelights 

During isolation and purification of etioplasts in the cold room a dim 

green safelight was sometimes used. This safelight, with maximum emission at 

about 525 nm, was obtained from a green monophosphor fluorescent tube (Philips 

TL 40/17), wrapped in 2 layers of no. 62 blue Cinemoid (The Strand Electric 

Corp.) and 2 layers of no. 46 orange-yellow Cinemoid. The fluence rate of 

this safelight was 0.3 mW m - 2 (10~3 pmol m - 2 s~l). Acetone extracts of leaf 

pigments were prepared under a similar green safelight. However, in this case 

only one layer of blue Cinemoid and one layer of orange-yellow Cinemoid were 

used. The fluence rate of this safelight was 0.9 mW m~2 (4 x 10~3 

pmol m - 2 s~l). 

2.4 Isolation of etioplasts 

Leaves were harvested from 8-day old dark-grown or R pre-irradiated 

seedlings. At this age, leaves of monocotyledons used were usually still 

completely within the coleoptile. As removal of the coleoptiles took too much 

time, leaves and coleoptiles were harvested together and subsequently cut in 

pieces of 5-10 mm. Leaves from pea seedlings were collected together with a 

small part of the epicotyl hook. Harvesting was done either in complete 

darkness or under a dim green safelight at room temperature or at 4 °C. All 

further operations were performed at 4 °C either in darkness or under a dim 

green safelight. 

The leaf material was ground 2 or 3 times during 4 s with isolation medium 

using an Ultraturrax homogenizer. The medium consisted of 0.15 M 

Na/K-phosphate buffer, pH 7.3, containing 9% (w/v) sucrose, 0.2% (w/v) bovine 

serum albumin (BSA) (Sigma, fraction V) and 45 mM 2-mercaptoethanol. A tissue 

to buffer ratio between 0.5 and 1 was used. The pH of the homogenate was 7.0. 

In some experiments MOPS buffer, pH 7.5, was used instead of phosphate buffer. 

This buffer contained 25 mM N-morpholino-3-propane sulphonic acid, 3 mM EDTA 

(disodium salt), 250 mM sucrose, 0.2% (w/v) BSA and either 14 or 45 mM 

2-mercaptoethanol. The leaf homogenate was filtered twice through 4 layers of 

Nytal gauze (pore diameter about 20 um). The filtrate was centrifuged for 5 

min at 130 x £ to remove most of the nuclei and intact cells. The resulting 

supernatant was centrifuged for 5 min at 1,700 x g. The pelleted etioplasts 
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were resuspended in isolation medium by dispersing them gently with a fine 

brush. The etioplast suspension was centrifuged again for 5 min at 1,700 x j*, 

yielding a "crude, washed etioplast pellet". 

2.5 Purification of etioplasts by use of a Sephadex G-50 (coarse) column 

Wellburn and Wellburn (1971a) developed the Sephadex G-50 (coarse) column 

method for purification of isolated etioplasts. This method has the advantage 

over density gradient centrifugation that isotonic media can be used. Intact 

etioplasts and also mitochondria (Quail, 1977; Hilton and Smith, 1980) readily 

pass through the column, while nuclei, membranous fragments and broken 

etioplasts are reported to remain on the top of the column (Wellburn and 

Wellburn, 1971a). 

A column of 40 cm length and 2.6 cm diameter, equipped with a flow adaptor 

(Pharmacia, Sweden, type K26/40) was used. The Sephadex G-50 (coarse) beads 

were allowed to expand overnight in excess isolation medium (Section 2.4) at 

4 °C, 2-mercaptoethanol being added only shortly before preparation of the 

column. The Sephadex suspension was stirred before pouring it in the gel 

reservoir on top of the column. Isolation medium was run immediately through 

the column at a rate of 3-4 ml rain-!. When the column had packed, the gel 

reservoir was replaced by the flow adaptor and flow of isolation medium at the 

original rate was brought about by a peristaltic pump. Since the standard 10 

pm bed support nets became blocked by the crude etioplast preparations, they 

were replaced by Nytal nets (Section 2.4). 

Etioplasts were isolated as described in Section 2.4. However, the 

centrifugation step at 130 x j* could be omitted since nuclei and cells 

remained on the top of the column. The crude, washed etioplast pellets were 

resuspended in 4 ml of isolation medium and loaded on the top of the column. 

This was done by injecting them carefully by means of a 10 ml plastic syringe 

with a 0.9 x 50 mm needle in a short tube connected with the column by a LV-4 

laboratory valve (Pharmacia). Flow of isolation medium through the column was 

stopped during loading of the etioplasts on the column and resumed immediately 

afterwards. A small fraction of the eluate was continuously monitored at 254 

nm with a LKB 8300 A Uvicord II to detect fractions containing nucleic acids 

and their derivatives. In initial experiments the remainder of the eluate was 

collected by a LKB 7000 Ultrorac fraction collector. In Fig. 2.1 an elution 

profile of oat etioplasts is shown, being representative also for maize, 

barley, bean and pea etioplasts. The elution profiles did not show a shoulder 

on the main peak. In this respect, they resembled those of Evans (1976) and 

Hilton and Smith (1980) but not those of Wellburn and Wellburn (1971a). 

Fractions forming the main peak were divided into three portions: fractions 

collected before maximum absorption at 254 nm was reached, fractions collected 

around the maximum and those appearing subsequently. The fractions were 

examined by means of light and electron microscopy. No differences were found 

other than in number of etioplasts per ml. In fractions forming the low, 

broad second peak no distinct cell material was detectable by light 
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Fig. 2.1 Elution profile obtained by Sephadex G-50 (coarse) column 

purification of a crude, washed etioplast preparation from 8-day old 

dark-grown oat seedlings. 

microscopy. In later experiments, the fraction collector was no longer used 

and eluate was collected as soon as the absorbance at 254 nm increased until 

the main peak had passed. 

Phase contrast microscopy indicated that less than 1% of the etioplasts in 

the eluate was broken. In electron micrographs about 10% of the etioplasts 

appeared broken, however, during preparation of samples for electron 

microscopy (Section 2.15) etioplasts may have become damaged. In our 

experience, the Sephadex G-50 (coarse) column could be used with equal 

effectiveness for the purification of etioplasts from dicotyledonous and 

monocotyledonous plants. Fig. 2.2 shows electron micrographs of a crude, 

washed maize etioplast preparation and a Sephadex G-50 purified preparation. 

2.6 Further purification of etioplasts using a discontinuous sucrose gradient 

Hilton and Smith (1980) showed that carotenoids (markers for etioplasts) 

and the mitochondrial membrane marker enzymes cytochrome c oxidase and 

succinate dehydrogenase elute simultaneously on a Sephadex G-50 (coarse) 

column. Obviously, it is impossible to separate etioplasts from mitochondria 

by the Sephadex G-50 technique. A discontinuous sucrose gradient (Hilton and 

Smith, 1980) was used to obtain etioplast preparations free from mitochondrial 

contamination. Eluate of the Sephadex G-50 (coarse) column containing 

etioplasts was centrifuged at 1,700 x j* and the pellet was resuspended in 2 ml 

isolation medium. Such suspensions were layered on to discontinuous sucrose 

gradients consisting of 7 ml 55 or 65% (w/v) sucrose, 11.2 ml 40% sucrose and 

7 ml 25% sucrose. The tubes containing the sucrose gradients were centrifuged 

in a swing-out rotor in an Omega II ultra centrifuge (Heraeus-Christ) for 20 

min at 8,000 x £. According to Hilton and Smith (1980), the fraction banding 

at the 40/25% interface contains extractable carotenoids and high cytochrome c 

oxidase activity, while the fraction banding at the 55/40% interface also 

shows a peak of extractable carotenoids but lacks cytochrome c oxidase 
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Fig. 2.2 Electron micrographs of etioplast preparations from 8-day 

old dark-grown maize seedlings, a. a crude, washed etioplast prepara­

tion, b. a Sephadex G-50 purified etioplast preparation. The arrow 

indicates a broken etioplast. 

activity. The different fractions were studied by means of light and phase 

contrast microscopy. The fraction banding at the 40/25% interface consisted 

of about equal amounts of broken and intact etioplasts. The fraction banding 

at the 55/40% interface consisted mainly of intact etioplasts with a small 

percentage of broken etioplasts. Intact etioplasts were also found in the 

pellet, even if 65% instead of 55% (w/v) sucrose was used. 

The 55(or 65)/40% interface fraction was centrifuged at 1,400 x £ for 5-10 

min either at room temperature or at 4 °C. The 40/25% interface fraction was 

centrifuged at 16,000 x g_ for 20 min at 2 °C. The pellets were carefully 

mixed with 0.5 g CaC03 for phytochrome (P) measurement. 

2.7 Gel filtration on Sepharose CL-2B 

Gel filtration on Sepharose CL-2B (Jose, 1977) was used to separate any 

ribonucleoprotein (RNP)-absorbed P (Quail and Gressel, 1976) from membrane-

associated or "true" etioplast P. Etioplasts were purified in the absence of 

BSA by the Sephadex G-50 method and resuspended in 2.5 or 5 ml 35 mM MOPS 

buffer, pH 7.0, containing 1 mM EDTA and 14 mM 2-mercaptoethanol (Jose, 1977). 

Gel filtration using Sepharose CL-2B was carried out at room temperature under 

a dim green safelight on a K26/40 column (Pharmacia, Sweden) at a flow-rate of 

0.5 ml min~l. Fractions (5-6 ml each) were eluted with 25 mM MOPS, pH 7.0, 

containing 14 mM 2-mercaptoethanol. The void volume (VQ) and total bed volume 

(Vt) of the column were determined with Blue Dextran 2000 (Pharmacia) and 

potassium iron(II)cyanide (K.4[Fe(CN)D] .3H20), respectively, both being eluted 

with 150 mM NaCl. Blue Dextran was detected spectrophotometrically in 

fractions eluted from the column at 620 nm. Potassium iron(II)cyanide was 
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monitored at 750 nm after addition of 0.2 ml of a concentrated ammonium iron 

sulphate (NH4Fe(S04>2.12H20) solution to the fractions. 

2.8 Estimation of chlorophyll, protochlorophyll and carotenoid content of 

leaves and etioplast preparations 

Concentrations of chlorophyll(ide) (Chl(ide)), protochlorophyll(ide) 

(PChl(ide)) and carotenoid pigments in leaves and etioplast preparations were 

estimated after extraction in acetone/water (final concentration 80% (v/v)). 

Appropriate samples of whole leaves or segments were weighed on a "Centrogram" 

balance (Ohaus Scale Corp. model 311) under a green safelight. The samples 

were ground in acetone in a mortar with a little purified sea sand (Merck, 

Darmstadt, Germany) and a small amount of CaC03 was used to minimize 

pheophytin formation (Bruinsma, 1963). The leaf extract was filtered through 

a glass filter (Schott und Gen., Mainz, Germany, type 3D3) under suction and 

the residue on the filter was extracted a second time. Combined extracts were 

routinely clarified by centrifugation for 30 min at 16,000 x j[ at 2 °C. In 

the experiments described in Chapter 3, the opal glass method of Shibata et 

al. (1954) was used to minimize the effect of light scatter. 

For pigment determinations in acetone extracts of etioplast preparations, 

25 ml 80% acetone was added to the pelleted etioplasts. The pellet was 

resuspended and the suspension was centrifuged for 5 min at 1,400 x g_ at room 

temperature. The supernatant showed very little light scattering. In the 

pellet Chl(ide), PChl(ide) and carotenoids were no longer detectable. 

The extracts were kept in darkness a few hours until measurement. The 

absorption of the extracts was measured in cuvettes with either 1 or 5 cm path 

length (depending on pigment concentration) in a Zeiss model PMQ II spectro­

photometer. Any absorption at 800 nm, if present, was subtracted from the 

absorption at other wavelengths as a correction for remaining light scatter. 

Pigment concentrations of extracts containing mixtures of PChl(ide) and 

Chl(ide) were calculated using equations of Anderson and Roardman (1964). For 

extracts containing negligible amounts of PChl(ide), equations derived from 

Arnon (1949) and Bruinsma (1963) were used (see also Raven, 1973). Acetone 

extracts containing water and mixtures of Chlide and its esterified 

derivatives exhibit slightly different absorption maxima between 663 and 667 

nm (Raven, 1973; Scheutjens, 1975). The absorbance at the red maximum was 

used in the calculations. 

As a measure of the concentration of carotenoids, the absorbance at 473 nm 

in 80% acetone was taken (Bottomley, 1970; Raven, 1973). The contribution of 

other pigments (mainly Chi b) to the absorption at this wavelength was 

corrected for when appropriate using data of MacKinney (1941) of specific 

absorption coefficients of Chi â  and Chi _b in 80% acetone at 473 nm. 

In some experiments (Chapter 3 ) , in vivo measurements were used to estimate 

the relative Chi content of leaves. Sections of the outer half of the rolled 

primary maize leaves, at a distance of 2 to 4 cm from the apex, and the outer 

half of bean leaves were taken for the measurements. For each measurement one 
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leaf piece was used. A piece of white paper giving about the same scatter was 

used as a reference. The absorption of the leaves was measured at 672.5 nm in 

a Cary 14 spectrophotometer. The absorptions at 590 and 730 nm were used to 

estimate the baseline. 

2.9 Estimation of phytochrome content 

The P content of samples was estimated spectrophotometrically using the 

spectrophotometer described by Spruit (1970) in its dual wavelength mode of 

operation. The measuring beam was at 730 nm and the reference beam at 806 nm. 

Cuvettes with a volume of about 0.2 ml and a path length of 1.6 mm (Fig. 2.3) 

were used. CaC03 was used as a scattering agent (Butler, 1962). For 

measurements of the P content of a leaf homogenate or supernatant, samples of 

0.2 ml were added to cuvettes filled with dry CaC03. When the P content of an 

etioplast preparation was measured, 1 g of CaC03 was carefully mixed with the 

etioplast pellet and the cuvette was filled with the homogeneous mixture. For 

a representative example of such a P measurement see Fig. 2.4. 

P content is expressed in absorbance units. Differences in absorbance of 

about 4 x 10_5 A (AA)730-806 as a result of P phototransformation by actinic 

irradiation were the smallest differences that could be detected. 

ac 3D 

n> * l t l II I I I I tf , I I I I > I > A 

Fig. 2.3 Cuvettes used for measurements of the phytochrome content of 

etioplast preparations (1) and for absorption measurements (2) and 

fluorescence measurements (3) of (proto)chlorophyll(ide) in etioplast 

preparations. a. black "Plexiglass", b. clear "Plexiglass", c. 

phosphor bronze sheet, 0.2 mm thick. Depth of the cells: (1) 1.6 mm, 

(2) and (3) 0.2 mm. The front cover was mounted with tape (1), with 

screws (2) or with clamps (3). 
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Fig. 2.4 A representative example of a phytochrome measurement of a 

maize etioplast preparation. Phytochrome measurements were made at 

room temperature or at 0 °C. Actinic irradiations to interconvert Pr 

and Pfr were of 1 or 2 min duration and traces were recorded during 

1 min after each actinic irradiation. At least three alternating R 

(653 nm) and FR (732 nm) actinic irradiations were given during each 

measurement. Cal.: calibration signal, 4 x K p A A. 

2.10 Estimation of protein content 

Protein was assayed by the method of Lowry et al. (1951) using BSA (Sigma, 

fraction V) as a standard. The Folin-Ciocalteu's phenol reagent used in this 

method is intensely coloured by 2-mercaptoethanol. Therefore, proteins in 

preparations containing 2-mercaptoethanol were precipitated by 5% trichloro­

acetic acid (TCA), washed and dissolved in distilled water before adding the 

reagent. BSA present in etioplast preparations was removed by washing the 

etioplasts in isolation medium without BSA. 

2.11 Studies of protochlorophyll(ide) regeneration and the Shibata shift 

using absorption spectrophotometry 

PChl(ide) regeneration was studied by absorption spectrophotometry. 

Absorption spectra of leaves and etioplast preparations were measured in a 

Cary 14 spectrophotometer. For monocotyledons, leaf pieces 2-4 cm from the 

apex of the outer half of the rolled leaf were used. One or two layers of 

leaves or leaf pieces were mounted behind an opening in a piece of brass. A 

suitable piece of "opaline" perspex sheet or one or two pieces of white paper 

mounted behind an opening of similar size were placed in the reference beam. 

For the recording of difference spectra, one or two layers of comparable 

leaves or leaf pieces were used as a reference. Absorption spectra of 

etioplasts were measured in dense suspensions contained in 10 ul microcuvettes 

with a light path of 0.2 mm (Fig. 2.3). After the recording of an absorption 

spectrum of dark-grown leaves or etioplasts from 400 to 800 nm at room 

temperature, no photoconverslon of PChl(ide) into Chl(ide) by the measuring 

beam could be detected. 

Spectra were measured with the Cary spectrophotometer at different 

temperatures using an optical cryostat, in which the samples could be 
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irradiated in situ (Spruit, 1970). Spectra were recorded before and after 

various dark periods following a R (649 nm) irradiation sufficient to 

photoconvert all phototransformable PChl(ide) into Chl(ide) (4-12 s, depending 

on the sample). PChl(ide) regeneration in the dark after R was also measured 

directly according to the method of Jabben and Mohr (1975). Absorption 

changes at 650 nm were recorded immediately after the R pulse, using 720 nm as 

a reference wavelength. The Shibata shift was similarly monitored, by 

recording absorption changes at 690 nm. 

2.12 Fluorescence spectrophotometry 

Fluorescence spectra of leaves and etioplast preparations were measured at 

77K. The spectrofluorimeter was equipped with an analog differentiator (Fig. 

2.5). The excitation source was a 250 W 24 V quartz-halogen incandescent 

lamp. Excitation light was filtered through 20 mm of saturated copper 

sulphate solution and an interference filter (Balzers, B 40, 425 nm, HW 12 nm) 

plus a 2 mm BG 12 filter (Schott und Gen. , Mainz). Alternatively, a small 

high-pressure mercury lamp with a similar copper sulphate filter plus 4 mm BG 

12 was used. To separate the fluorescence light from excitation light 

scattered by the sample, filter F3 was inserted between the sample and 

monochromator. This filter consisted either of one layer of yellow Cinemoid 

no. 1 (The Strand Electric Corp.) plus 3 mm GG 495 (Schott und Gen.) or of 

3 mm yellow Plexiglas (Rfhm und Haas, Darmstadt) plus one layer of yellow 

Cinemoid. 

Rec. 

Fig. 2.5 Spectrof luorimeter. La: excitation light source; L \ , 1*2, L3: 

lenses; Fi, F3: filters (see text); F2: 20 mm saturated CUSO4-S0IU-

tion; M j , M 2 , M3: mirrors; Mon.: grating monochromator; PM: photo-

multiplier; PS: multiplier power supply; DVM: digital voltmeter; 

Dr.: multi-speed drive; R e c : recorder; SC: sample cell (inside 

cryostat). 
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Fig. 2.6 Low temperature sample holder for fluorescence studies, 

br: brass; cu: copper; cc: sample cell compartment; sc: sample cell 

(see Fig. 2.3); sp: phosphor bronze springs (2). Liquid nitrogen 

charge: 110 ml. Cryostat not shown. 

Brass sample holders were constructed for leaves and for etioplast 

preparations (Fig. 2.6). The cuvette used for etioplast samples is shown in 

Fig. 2.3. Sample holders were placed inside optical cryostats and were filled 

with liquid nitrogen for measurements at 77K. It took 3 min after addition of 

liquid nitrogen into the sample holder before the temperature had dropped 

below 93K as measured with a thermocouple inside the sample holder. If more 

rapid cooling was desired, the samples in their holders were immersed in 

liquid nitrogen for 60 s before insertion into the optical cryostat. 

Fluorescence probes were added to etioplast preparations to indicate the 

concentration of etioplasts present in the measuring cuvette. Ideally, a 

fluorescence probe or indicator should have one or more emission bands located 

outside the spectrum of the etioplasts. Moreover, the probe should not 

influence the characteristics of the etioplasts and their spectra (peak 

positions, peak heights and rate of shifts). Several compounds were tested: 

fluorescein, acridin yellow, acriflavin, rivanol, rhodamin B, quinacrin, 

erythrosin, eosin, folic acid, flavin mononucleotide (FMN) and 9-amino-

6-chloro-2-methoxyacridine (ACMA). Acriflavin was the only compound 

acceptably meeting the criteria mentioned above. Its peak position is at 

516-520 nm and a minor band is found at 572 ran. At 620 nm all probes, 

including acriflavin, showed some fluorescence, however at wavelengths above 

640 nm fluorescence by acriflavin was negligible. 

When etioplast suspensions to which acriflavin was added were washed in 

isolation medium, the height of the acriflavin fluorescence peak at 518 nm 

considerably decreased. Apparently, part of acriflavin is not or only weakly 

bound to the etioplasts. Therefore, carboxymethylcellulose (CMC) was added to 
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prevent the etioplasts to sink to the bottom of the cuvette. A solution of 

5 g CMC and 12.3 mg acriflavin in 200 ml distilled water was dialysed twice 

during 24 h. 9% (w/v) sucrose was added to the dialysed solution. About 20 

drops were added to an etioplast pellet and carefully mixed with a fine brush. 

Samples from this mixture were taken for recording fluorescence spectra. No 

influence of CMC and acriflavin on fluorescence characteristics of etioplast 

preparations were detected. 

Since 2-mercaptoethanol has a destructive effect on the phototransform-

ability of PChl(ide) (Schopfer and Slegelman, 1968; Gassman, 1973a), this 

compound was omitted from the isolation medium for etioplasts after the first 

centrifugation step at 1,700 x j* (Section 2.4). 

2.13 Smoothing and differentiation of spectra 

The different absorption and fluorescence bands of the PChl(ide) and 

Chl(ide) species in dark-grown and short-term irradiated leaves and etioplast 

preparations overlap to some extent. In such cases, maxima in the spectra do 

not correspond to the true maxima of the components. Moreover, the peak 

heights observed do not reflect the relative contributions from the 

components. In the case where one band is small in comparison to other 

overlapping band(s) and only a shoulder is formed by the small band, it is 

impossible to accurately determine the position of its maximum and its height 

by direct inspection of the spectrum. In such cases the determination of 

derivative spectra can be helpful. First as well as higher derivatives can be 

used to establish the location of peaks in a spectrum (Vandeginste and De 

Galan, 1975). If the original spectrum contains only a single band, its 

maximum corresponds to a passage through zero in derivatives of odd order and 

to the extreme values (maxima and minima) in even-order derivatives (Fig. 

2.7a). This also more or less holds for two or more overlapping bands as 

illustrated in Fig. 2.7b. With increasing order of the derivative, the 

sharpness of the bands increases, resulting in improved resolution. On the 

other hand, the number of extremes increases with increasing order of the 

derivative. To determine the number of the different components of the 

fluorescence or absorption spectra and their parameters: peak wavelength, 

height and HW, second and fourth derivatives of the spectra were used. The 

second derivatives were obtained either on-line by an analog differentiator or 

by the use of a suitable computer program. Fourth derivatives were obtained 

exclusively by computation. 

With electronic analog differentiation, the speed of scanning through a 

spectrum determines the shape of the derivative spectra. Essentially, such 

spectra are derivatives of a photomultiplier current against time. For this 

reason, the scanning speed has to be kept constant during a recording. On the 

other hand, the wavelength dependence of spectrometer transmission and 

spectral response of the photomultiplier enter into the output and tend to 

distort the derivative spectra obtained in this way. Fortunately, the 

response of the RCA 31034 multiplier was remarkably flat over the wavelength 
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Fig. 2.7 Examples of a Gaussian band (a) and a Gaussian band pair (b) 

and their first to fourth derivatives. 

interval examined and the distortions introduced in this way proved to be 

small. A second practical problem is that the need for rigorous electrical 

filtering of the signal before the first and between the first and second 

differentiation, introduces a time delay which translates into a wavelength 

shift between the original spectrum and its derivatives. Moreover, the 

magnitude of the shift depends on the scanning speed. To overcome this 

problem, the spectra were routinely scanned twice at the same speed, once from 

low to high, the second time from high to low wavelength values. The average 

peak position between each pair of runs has been taken as the true wavelength. 

For the computer calculations of second and fourth derivatives, the 

IMSL-routine DCSEVU (IMSL, 1984) was used on a DEC-10 computer. Spectra were 

digitized by hand at 1 nm intervals, with the result that the spectra are 

already smoothed to some extent by eye. However, further smoothing was 

necessary. The original data and, when a fourth derivative was determined, 
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also the second derivative were smoothed by the IMSL-routine ICSSCU (IMSL, 

1984). 

2.14 Deconvolution of spectra 

The computer program "ACCU" for curve analysis was kindly supplied by 

Dr. W. Verwer (Laboratory for Biophysics, University of Utrecht). This 

program was used to improve the band parameters found by derivative 

spectrophotometry (Section 2.13). The program was originally developed in the 

Shell Development Laboratory in Emeryville (California) and is described by 

French et al. (1967) as the RESOL or RESOLV program. The program was 

modified by Mr. A. Keetman and Mr. G. van Eck (Department of Computer Science, 

Agricultural University, Wageningen) for use on a DEC-10 computer. 

Raw data of spectra were entered in digital form at 1 nm wavelength 

intervals. Approximate values for maxima, heights and half-widths of bands 

estimated by derivative spectrophotometry were also entered. The shape of the 

bands can be specified in the program as Gaussian and/or Lorentzian. The 

assumption that absorption and fluorescence bands of PChl(ide) and Chl(ide) 

are symmetric and Gaussian and/or Lorentzian in shape probably is not 

completely realistic. For absorption bands, the tails of Gaussian bands are 

slightly too low while the tails of Lorentzian curves are far too high (French 

et al., 1972; Jabben et al., 1974). However, although an intermediate form 

might give a better fit, satisfactory results were obtained both for 

absorption and fluorescence spectra using Gaussian curves alone. 

During each iteration all parameters are adjusted within certain specified 

limits to give a better fit to the original curve. Weighting factors and 

damping factors can be set to improve the results of each iteration. The 

program ends after a number of iterations specified by the operator or when 

the change of standard error is within the limit specified. The final output 

can be given as plotted curves of the calculated bands, their sum and the 

original data. The error curve is plotted below the analyzed spectra. 

Examples of such deconvolutions are shown in Chapters 6 and 7. 

2.15 Electron microscopy 

For electron microscopical studies of etloplasts "in situ", small (about 4 

mm^) leaf pieces were fixed. The leaf pieces were taken at a distance of 

about 2 cm from the apex of a primary monocotyledonous leaf or out of the 

middle of a dicotyledonous leaf. During WL treatment in vitro, etioplast 

suspensions in the incubation medium described by Wellburn and Wellburn (1973) 

were rotated at 4 rpm. Fixation of leaf pieces was carried out for about 3 h 

and fixation of isolated etioplasts for 2 h at room temperature or overnight 

at 4 °C in darkness in 5% (v/v) glutaraldehyde in 0.025 M Na/K-phosphate 

buffer, pH 7.3, containing 5% (w/v) sucrose. Post-fixation was carried out 

for a similar period in 1% (w/v) 0s04 in 0.025 M Na/K-phosphate buffer, pH 

7.3, containing 5% (w/v) sucrose. Dehydration was carried out at room 

temperature through a graded ethanol series followed by propylene oxide. All 
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manipulations were performed under a dim green safelight or in darkness until 

the material was fixed and dehydrated. The material was embedded in Epon 812 

or in Spurr's resin. Electron micrographs were taken of different parts of 

etioplast pellets. No differences were observed between top, bottom and other 

parts of the pellet. 

In order to quantify the volume of the prolamellar body, a weight method 

used by Horton and Leech (1975) was adopted. The areas of etioplasts (small 

sections were disregarded) and their PLBs were cut out of photocopy paper and 

weighed. Weight was consistently proportional to the area of the paper. 

2.16 Statistics 

Standard deviation: S.D.=V C(x-x) /(n-1), where x is the mean value and n 

is the number of samples. 

Standard error of the mean: S.E.x=S.D./ vn. 

Coefficient of variation: S.D./x x 100%. 

Results are expressed as mean ± standard error of the mean. The Student's 

t-test was used to test whether the difference between two means is 

statistically significant. 
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3 THE INFLUENCE OF RED AND FAR-RED PRE-IRRADIATION ON CHLOROPHYLL 

ACCUMULATION IN CONTINUOUS WHITE LIGHT 

3.1 Introduction 

Raven and Shropshire (1975) demonstrated that in dark-grown pea seedlings, 

sensitivity for red light (R) potentiation of rapid chlorophyll (Chi) 

accumulation in continuous white light (WL) is extremely high (very low 

fluence response or VLFR). After a previous R pre-irradiation, the 

sensitivity decreases substantially (low fluence response or LFR). These 

observations were explained by Raven and Spruit (1973) on the basis of the 

phytochrome (P) transport model. Dark reversion of receptor-associated Pfr to 

Pr forms an essential aspect of this model. Frankland (1972) demonstrated 

that in contrast to dicotyledons, Pfr dark reversion appears to be absent in 

monocotyledons. The predictions of the model were therefore tested for maize 

as a member of the latter group. 

Since photobleaching of newly formed pigments could be a cause of the lag 

phase in Chi accumulation, greening in WL of high fluence rate was also 

examined. Carotenoids probably play a role in protecting Chi against 

photobleaching (Frosch et al., 1979; Klockare et al., 1981; Malhotra et al., 

1982). Therefore, a possible R effect on carotenoid content of maize 

seedlings was studied. 

In this chapter Chi will be used as a collective term for chlorophyllide 

and its esters, and similarly protochlorophyll (PChl) for protochlorophyllide 

and its esters. 

3.2 Results 

3.2.1 Variation in rate of greening 

In vivo measurements of the Chi content of individual maize leaves after a 

5 h WL period showed considerable variation, even for seedlings grown together 

in a plant pot. Leaf sections taken at a distance of 2.5 to 3.5 cm from the 

apex of "long" and "medium long" leaves on average had a higher Chi a_ content 

than those of "short" leaves (Table 3.1). However, also within classes of 

seedlings with a certain leaf length the rate of greening was variable. 

Coefficients of variation (Chapter 2, Section 2.16) were similar for two 

genetically homogeneous maize varieties Z27 and WJ and for cv. Capella. For 

the experiments described in this chapter 8-day old seedlings of cv. Capella 

were used, unless otherwise indicated. 

3.2.2 Greening in white light of low fluence rate and the effect of red 

pre-irradiation 

When dark-grown maize seedlings were placed in WL of rather low fluence 

rate (8.5 W m~2) (low WL), after the first rapid formation of Chl(ide) a_ from 

endogenous PChl(ide) a_, further Chi a_ accumulation proceeded slowly during the 

first 3 h (the "lag phase") (Fig. 3.1). Over the following 3 h the rate of 
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Table 3.1 Relative chlorophyll concentration in "long", "medium 

long" and "short" -8-day old maize leaves after 5 h of white 

fluorescent light (8.5 W m~2) measured as the height of the 

absorption peak at 672.5 nm (means of 12 experiments each). 

Sample Leaf 

length 

(cm) 

8-9 

7-8 

6-7 

Relative 

peak height 

at 672.5 nm 

41 ± 2 

38 ± 1 

32 ± 1 

No. of leaves 

per experiment 

6 

8 

6 

Long leaves 

Medium long leaves 

Short leaves 

Chi â  accumulation more than doubled. After 7 h the rate became somewhat 

slower again, but was still faster than during the lag phase. 8-day old 

dark-grown seedlings of the maize varieties Z27 and WJ showed lag phases 

similar to that of cv. Capella. 

When a brief standard R pre-irradiation (5 min 658 nm, 0.85 W m~2 or 5 

umol m - 2 s~l) was given 16 h prior to low WL, Chi a_ accumulation immediately 

started at an increased rate (Fig. 3.1). After 3-4 h in low WL, the rate of 

Chi a_ accumulation increased slightly and after 6-7 h it slowed down to the 

0 10 15 
Period of low 

20 
W L (h) 

25 

Fig. 3.1 Chlorophyll â  (Chi a) accumulation in 1 cm leaf sections (17 mg 

fresh weight) of 8-day old maize leaves after transfer to continuous white 

fluorescent light (WL) of low fluence rate (8.5 W m~2) at 20 °C. 0: 

dark-grown seedlings, •: seedlings pre-irradiated with a standard fluence 

of red light (R) 16 h prior to WL. Results have been corrected for the 

amount of Chi â  (0.06 ug per leaf section) formed during R pre-irradiation. 
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same level as that for dark-grown seedlings. A R pre-irradiation 4 or 40 h 

prior to low WL had the same potentiating effect as a R pre-irradiation 16 h 

prior to low WL (see also Section 3.2.4). 

3.2.3 Greening in white light of high fluence rate and the effect of red 

irradiation 

When placed in WL of high fluence rate (31 W m~2) (high WL), after 15 min 

of irradiation a quantity of Chi a_ was formed similar to that in low WL. 

During the following 7 h the amount of Chi a_ hardly increased 

(Fig. 3.2); after 7 h almost 10 times less Chi a_ had accumulated than after 

7 h low WL (Fig. 3.1). After 20 h high WL, the quantity of Chi a. was still 

approximately 7 times smaller than that formed after 20 h low WL. 

Pre-irradiation of dark-grown seedlings with a standard fluence of R 16 h 

prior to WL strongly stimulated Chi a. accumulation in high WL. However, in R 

pre-irradiated seedlings the Chi a_ accumulation rate was also lower in high 

than in low WL: after 7 h high WL about half as much Chi a_ had accumulated as 

in low WL. 

3.2.4 Effects of various pre-irradiation treatments on greening in white 

light of low fluence rate 

Using the method of Raven (1973), the effects of different pre-irradiation 

treatments on Chi a. accumulation rate in low WL were studied. In these 

experiments a standard R pre-irradiation consisted of either 5 min R (658 nm) 

at an irradiance of 0.85 W m~2 (5 umol m-2 s-l) or alternatively 20 s R (655 

u 
Dl 

0.5-

•LL I 8 
0.5 1.0 

5 10 15 
Per iod of high WL (h) 

20 

Fig. 3.2 Chlorophyll a (Chi a) accumulation in 1 cm leaf sections (17 mg 

fresh weight) of 8-day old maize leaves after transfer to continuous white 

fluorescent light (WL) of high fluence rate (31 W m- 2) at 20 °C. 0: 

dark-grown seedlings, t: seedlings pre-irradiated with a standard fluence 

of red light (R) 16 h prior to WL. Results have been corrected for the 

amount of Chi a (0.06 ug per leaf section) formed during R pre-irradiation. 
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nm) at an irradiance of 17 W m-2 (95 p.mol m~2 s~l) at the top of the leaves. 

Both irradiations were considered to be saturating with regard to Pr —» Pfr 

phototransformation. 

The amount of Chi a accumulated after 5 h low WL was twice as high for 

maize seedlings pre-irradiated with a standard fluence of R as for dark-grown 

seedlings. The potentiating effect of a standard R pre-irradiation on Chi a 

accumulation in low WL was taken as 100%. Potentiating effects of other 

pre-irradiation treatments were calculated as follows (see Raven, 1973): 

Ct - Cd 
potentiation = x 100% 

Cr - Cd 

where Cd = Chi a_ content without an inductive light treatment, Cr = Chi a_ 

content resulting from a pretreatment with a standard R fluence 16 h before 

low WL and Ct = Chi a_ content resulting from a light pretreatment of given 

wavelength and fluence 16 h before low WL; Chi â  was determined after a 5 h 

period of low WL. 

The potentiating effect of a standard R pre-irradiation 16 h prior to low 

WL was reduced to 48% by 2 or 5 min FR (750 nm, 10 W m~2 or 65 umol m~2 s-*) 

given after R. On the other hand, the FR treatment alone resulted in 20% 

potentiation (Table 3.2). One min FR was slightly less effective than 

2 or 5 min FR, suggesting that with this fluence photostationary equilibrium 

was not completely attained. Compared with results published for pea (Raven, 

1973), the potentiating effect of FR pre-irradiation was only small for maize 

seedlings and FR gave a better reversion of the effect of R. In this respect, 

bean is intermediate between pea and maize (Raven, 1973; see Table 3.2). 

For pea seedlings, the potentiating effect of R was nearly twice as large 

when a dark interval of 40 h instead of 16 h was inserted between R and WL 

(Raven, 1973; see Table 3.2), but for maize seedlings the potentiating effects 

of R given 16 h and 40 h before low WL were not significantly different (Table 

3.2). In maize, the reversion by FR given immediately after R was more 

pronounced when the pre-irradiatlons were followed by a dark period of 40 h 

instead of 16 h. The potentiating effect of FR alone, correspondingly 

decreased. Similar results were published for bean seedlings (Raven, 1973; 

see Table 3.2). 

3.2.5 Effects of a second pre-irradiation 

Calculations of percentage potentiation by two successive pre-irradiations 

were as follows: 
Crlt2 - Cdld2 

potentiation = x 100% 

Crlr2 - Cdld2 

where Cdld2 = Chi a_ content without any inductive light treatment, Crld2 = 

Chi a_ content resulting from a pretreatment with a standard R fluence given 

40 h before low WL and Crlt2 = Chi a_ content resulting from a pretreatment 

with a standard R fluence 40 h before WL, followed by a second light 

pretreatment of given wavelength and fluence 16 h before low WL; Chi a was 
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determined after a 5 h period of low WL. 

For pea and bean, the effects of two successive R pre-irradiations have 

been reported by Raven (1973) to be almost additive. However, for maize seed­

lings the potentiation resulting from two R pre-irradiation treatments was on­

ly about 1.5-fold that resulting from a single R pre-irradiation (Table 3.2). 

Table 3.2 Effects of various red (R) and far-red (FR) pre-

irradiation treatments on chlorophyll a_ accumulation in white 

fluorescent light (WL) (8.5 W m- 2) in previously dark grown maize, 

pea and bean seedlings (data of pea and bean seedlings from Raven, 

1973). Note that the pre-irradiation treatments were different for 

maize. Chlorophyll a_ was measured after 5 h WL. The effect of a 

standard R pre-irradiation (given 16 h prior to WL in the case of a 

single pre-irradiation treatment and 40 h prior to WL in the case 

of two treatments) was taken as 100% and the effects of all other 

treatments are presented as a percentage of the effect of this 

standard pre-irradiation treatment. 

Pre-ir 

40 h 

before 

_ 

-

-

R 

R/FR 

FR 

R 

R 

R 

R/FR 

radiati 

WL 

on treatment 

16 h 

before 

Rb 

R/FRd 

FRC 

-

-

-

R 

R/FR 

FR 

R 

WL 

Effect 

maize3 

100 

48 ± 8 

20 ± 5 

102 

28 ± 5 

12 i 2 

147 

98 ± 4 

67 ± 5 

122 ± 5 

(%) 

(21)e 

(20) 

(ID 

( 5) 

(31) 

(17) 

(13) 

( 7) 

peaa 

100 

91 

88 

198 

-

-

279 

221 

187 

-

bean3 

100 

83 

48 

107 

30 

20 

181 

108 

-

-

3 the age of the seedlings at the time of WL irradiation was 8 days 

for maize, 7 days for pea and 10 days for bean. Data for pea 

from Raven (1973, Fig. 51) and for bean from Raven (1973, 

Figs. 38, 48 and 52) 

° R pre-irradiation for maize seedlings: 5 min 658 nm, 0.85 W m~2 

(5 umol m~2) or 20 s 655 nm, 17 W m-2 (93 Umol m ~ 2 ) , for pea and 

bean seedlings: 1 min 651 nm, -3 W m~2 (16 pmol m- 2) 
c FR pre-irradiation for maize seedlings: 2 or 5 min 750 nm, 10 

W m- 2 (63 p.mol m - 2 ) , for pea and bean seedlings: 1 min 739 nm, 

4.15 W m-2 (26 umol m- 2) 

" FR pre-irradiation followed R pre-irradiation immediately 
e the number of experiments is given within parentheses 
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Contrary to the effect of a single R pre-irradiation, the effect of a 

second R pre-irradiation has been claimed to be completely reversible by 

subsequent FR in bean seedlings. In pea seedlings, FR reversibility of R 

potentiation also seemed increased for the second R preirradiation (Raven, 

1973). However, the present results with maize seedlings show that a FR (750 

nm) pre-irradiation 16 h prior to low WL still partially reversed the effect 

of a R pre-irradiation given 40 h prior to low WL (Table 3.2). For bean 

seedlings, no comparable data were reported. In pea seedlings (Raven, 1973; 

Raven and Shropshire, 1975) a FR pre-irradiation 16 h prior to low WL also 

slightly decreased the effect of R 40 h prior to low WL. Consequently, FR 

photoreversibility can better be expressed as {(R)-(R+FR)}/{(R)-(FR)}, where 

(R) is the percentage potentiation by R only, (R+FR) is the percentage 

potentiation by R followed by FR immediately and (FR) is the percentage 

potentiation by FR alone. Expressed in this way, in maize and in pea (less 

evident) the effects of both a first and a second R pre-irradiation were 

60-80% reversed by subsequent FR. 

3.2.6 Effect of pre-irradiation on carotenoid formation in white light 

In 8-day old dark-grown maize seedlings appreciable amounts of carotenoids 

are present. R pre-irradiation did not significantly influence the amount of 

carotenoids as measured by the absorption of leaf extracts at 473 nm in 80% 
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Fig. 3.3 Carotenoid accumulation in 1 cm leaf sections (17 mg fresh 

weight) of 8-day old maize leaves after transfer to continuous white 

fluorescent light (WL) of low fluence rate (8.5 W m~2) at 20 °C. 0: 

dark-grown seedlings, •: seedlings pre-lrradiated with a standard fluence 

of red 16 h prior to WL. Carotenoids were measured by the absorbance at 

473 nm of extracts of the leaf sections in 80% aqueous acetone. Results 

are expressed as percentage of dark controls. 
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acetone in water. During irradiation of previously dark-grown maize seedlings 

with low WL, the carotenoid content tends to increase (Fig. 3.3). Although 

the determination of carotenoids shows considerable variation, the results in­

dicate a slight R induced stimulation of carotenoid synthesis in low WL. This 

R stimulation was partially reversed by 2 or 5 min FR (750 nm) (Table 3.3). 

When 8-day old dark-grown maize seedlings were placed in high WL, the 

carotenoid content initially showed a slight decrease (Fig. 3.4). However, 

Table 3.3 Influence of various red (R) and far-red light 

(FR) pre-irradiation treatments on carotenoid content of 

8-day old maize seedlings after 5 h of white fluorescent 

light (WL) (8.5 w m-2). Results are expressed as percentage 

of non-pretreated controls. 

Pre-irradiation Percentage of No. of 

treatment control without experiments 

pre-irradiation 

40 h 16 h 

before WL before WL 

R 129 ± 3 44 

R/FR 111 ± 3 21 

FR 106 ± 4 20 

R - 141 ± 7 9 

R/FR - 109 ± 7 6 

FR - 105 ± 4 5 
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Fig. 3.4 Carotenoid accumulation in 1 cm leaf sections (17 mg fresh 

weight) of 8-day old maize leaves after transfer to continuous white 

fluorescent light (WL) of high fluence rate (31 W m~2) at 20 °C. 0: 

dark-grown seedlings, t: seedlings pre-irradiated with a standard fluence 

of red 16 h prior to WL. Carotenoids were measured by the absorbance at 

473 nm of extracts of the leaf sections in 80% aqueous acetone. Results 

are expressed as percentage of dark controls. 
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after 16-20 h of high WL the carotenoid content had increased. R pre-

irradiation did not significantly influence carotenoid formation in high WL. 

3.2.7 Fluence-response curves for red potentiation 

The logarithmic fluence-response curve for R potentiation of rapid Chi a_ 

accumulation in WL has been interpreted to be monophasic (Kraak and Spruit, 

1985). However, the data given in Fig. 3.5 can satisfactorily be fitted by a 

biphasic curve as well. The results in Fig. 3.5 are plotted on the assumption 
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Fig. 3.5 Logarithmic fluence-response curves for R potentiation of rapid 

chlorophyll a_ (Chi a) accumulation in white light (WL) of low fluence rate 

(8.5 W m~2) in 8-day old dark-grown maize seedlings. Open symbols: 

potentiation of a single red light (R) pre-irradiation 16 h prior to WL. 

Closed symbols: the additional potentiation of a second R pre-irradiation 

16 h prior to WL, subsequent to a standard R fluence 40 h prior to WL. The 

mean potentiating effect of fluences higher than 1 mmol m~2 has been taken 

as 100% for both R pre-irradlations. Chi â  was determined after 5 h WL. 

The mean amount of Chi &_ formed after a 5 h WL period was 2.28 times that 

in the non-pretreated controls after a single R pre-irradiation at fluences 

higher than 1 mmol m~2; after a second R pre-irradiation at these fluences, 

the mean Chi a_ was 2.90 times that in the non-pretreated controls. 

Exposure times ranged from 4 to 1200 s at the following wavelengths: o : 

658 nm, A : 667 nm, O : 655 nm, n : 666 nm. Irradiances at the top of the 

leaves were 5, 95 and 195 pmol m~2 s~l for the 658, 655 and 666 nm light, 

respectively. Irradiances of the 667 nm light were obtained using neutral 

glass filters (maximum 1 uraol m~2 s~l). 
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that all fluences above 1 mmol in-2 (I.e., the fluence required to attain the 

maximum percentage of Pfr possible) saturate potentiation. The large scatter 

in the data makes firm conclusions difficult. However, in vivo spectroscopy 

of maize leaves confirmed that in the VLFR region, 0.05 - 1 pmol m - 2 R, 10-20% 

potentiation is obtained. Upon a second R pre-irradiation, no evidence for a 

VLFR was observed. Both a single and a second R pre-irradiation showed a 

considerable response in the LFR range. On average, a single R 

pre-irradiation at fluences higher than 1 mmol m - 2 yielded 2.28 times more 

Chi a in a 5 h WL period than the non-pretreated controls, while after two 

subsequent R pre-irradiations at these fluences 2.90 more Chi a_ was formed 

than in non-pretreated controls. 

3.3 Discussion 

Maize seedlings grown in complete darkness for 8 days show the 

characteristic lag phase in Chi a_ accumulation (Virgin, 1978) when placed in 

low WL (8.5 W m - 2 ) . Most of this lag phase is eliminated by a short R 

pre-irradiation, followed by a dark period (Fig. 3.1). The optimum duration 

of the dark period between R pre-irradiation and WL is dependent on the plant 

species and also appears to be age dependent (Virgin, 1956; Akoyunoglou, 1970; 

Raven, 1973). For 8-day old maize seedlings, the effect of R was the same 

whether followed by a dark period of 4, 16 or 40 h. 

In high WL (31 W m - 2 ) Chi a_ accumulation was inhibited compared to low WL 

during the first hours of irradiation (Fig. 3.2). Newly formed Chi is 

probably photobleached at this high irradiance (e.g., Dorsman ^t al., 1977; 

Axelsson and Selstam, 1979; Ryberg, 1980). Although R pre-irradiation did not 

completely prevent this, its large effect indicates that besides exerting a 

stimulating effect on the Chi biosynthesis system (Chapters 6 and 7 ) , R also 

stimulates the formation of a protection mechanism against photobleaching of 

Chi. A similar conclusion was reached for mustard seedlings by Oelze-Karow et 

al. (1983). Carotenoids are thought to play an important role in protection 

of Chi against photobleaching (e.g., Malhotra et al., 1982). In contrast to 

reports in the literature, under our experimental conditions R pre-irradiation 

had no effect on total carotenoid content of seedlings in subsequent darkness 

and little effect on the rate of carotenoid formation in WL (Figs. 3.3 and 

3.4). The present results agree with those of Cohen and Goodwin (1962) who 

found that although R stimulates carotenoid synthesis in 4- or 5-day old maize 

seedlings, R stimulation is negligible in maize seedlings of more than 6 days 

old. R dependent formation of specific carotenoids and/or association of Chi 

molecules with carotenoids may be crucial for the protection of Chi against 

photobleaching (see Chapter 8 ) . 

Logarithmic fluence-response curves for rapid Chi accumulation in WL for 

pea (Raven and Shropshire, 1975; Spruit et al., 1979), bean (Spruit et al., 

1979) and maize (Fig. 3.5) have been interpreted as biphasic. The VLFR and 

LFR range for maize are very similar to those observed for other biphasic 

fluence responses in this (e.g., Vanderhoef et_ al., 1979) and other plant 

species (e.g., Cone, 1985). Within the error limits of the data, the 



-34-

fluence-response relationships shown in Fig. 3.5 saturate at 1 mmol m - ' R, 

corresponding to that fluence which attains the maximum percentage of Pfr 

possible. Previous workers have provided evidence for additional potentiation 

above this level in pea (Raven and Shropshire, 1975) implicating the 

involvement of a high irradiance reaction (HIR, Chapter 1, Section 1.1). On 

the basis of the present data it is impossible to eliminate the involvement of 

an HIR and obviously more detailed studies at high fluences would be of 

interest. The present data clearly demonstrate some response in the VLFR 

range in the case of dark-grown seedlings in agreement with Raven and 

Shropshire (1975). Additionally, after preliminary irradiation ("de-etiola­

tion") the response is restricted to the LFR range. This decrease in 

sensitivity for R was explained for pea by the P transport model of Raven and 

Spruit (1973). The model predicts a second R pre-irradiation to have an 

additional potentiating effect after dark reversion of receptor-bound Pfr to 

Pr. Since in maize no Pfr dark reversion has been demonstrated (Frankland, 

1972), no effect of a second R pre-irradiation was expected, contrary to 

observation. However, the possibility has to be considered that in contrast 

to bulk P (Chapter 1, Section 1.5), Pfr present at the receptors is subject to 

dark reversion in maize (see Chapter 8 for further discussion). 

In maize, a R pre-irradiation 40 h prior to low WL proved still partially 

reversible by FR given 16 h prior to WL. This implies the presence of Pfr 

active in potentiation, 24 h after R, despite the fact that Pfr destruction 

occurs in bulk P during the dark period (Chapter 4, see also Chapter 8 ) . A 

second pre-irradiation, 16 h prior to low WL, will inevitably influence the 

Pfr level left after the first R pre-irradiation. Taking this into account, 

the extent of FR reversibility proved similar for a single and a second R 

pre-irradiation in maize seedlings. Also, the difference in FR reversibility 

between completely dark-grown and "de-etiolated" pea and bean seedlings 

claimed by Raven (1973) should be similarly considered. R potentiation in 

previously dark-grown seedlings is predicted by the transport model (Raven and 

Spruit, 1973) to be non-photoreversible by FR during the period of migration 

of Pfr to the proposed receptors. The claimed lack of photoreversibility by 

FR of R potentiation in dark-grown pea seedlings was explained in this way 

(Raven, 1973). However, there are indications that the half-life of migration 

is only a few seconds at room temperature (e.g., Spruit et al., 1979; Pratt, 

1979) implying that migration was complete at the end of a 5 min or even a 

20 s R pre-irradiation. In this case, a R pre-irradiation is predicted to be 

reversible by subsequent FR. In maize, the potentiating effects of both a 

first and a second R pre-irradiation appeared only partially reversed by FR. 

Therefore, an alternative explanation for the incomplete photoreversibility 

has to be found. Most likely, a rapid escape of potentiation from Pfr control 

takes place. For several P reactions an escape from Pfr control within 5 min 

has been reported (e.g., Jabben and Mohr, 1975; Girnth et al., 1978; Warner et 

al. , 1981). However, part of the R potentiation in maize seedlings remains 

under Pfr control even over prolonged dark periods (see above). 
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4 THE PRESENCE OF PHYTOCHROME IN ETIOPLASTS 

4.1 Introduction 

Cooke et_ al. (1975) were the first to report the presence of phytochrome 

(P) in wheat etioplasts. They detected P spectrophotometrically in 

preparations purified by the Sephadex G-50 (coarse) column method of Wellburn 

and Wellburn (1971a). Evans (1976), Evans and Smith (1976a,b) and Hilton and 

Smith (1980) observed P in barley etioplasts obtained by a similar procedure. 

However, Quail (1977) claimed that P co-eluting with oat etioplasts on a 

Sephadex G-50 column was not detectable in the etioplast pellet after 

centrifugation of the column eluate at 3,000 x j*. 

Preparations of etioplasts purified by a Sephadex G-50 column are 

contaminated by mitochondria (Chapter 2, Sections 2.5 and 2.6). Therefore, it 

remains possible that P detected in these preparations is associated with the 

contaminating mitochondria. That P is present in or on mitochondria has been 

reported by Manabe and Furuya (1974) and Billett and Smith (1978). However, 

Hilton and Smith (1980) showed that a small part of P present in the Sephadex 

G-50 column eluate was consistently associated with the pure etioplast 

fraction of the eluate recovered from a discontinuous sucrose gradient. 

The authors reporting the presence of P in etioplast preparations have 

always isolated etioplasts from dark-grown seedlings under a green safelight. 

Since Raven in 1973 had already shown that even a minimal fluence of green 

safelight can cause de-etiolation of seedlings, the possibility has to be 

considered that a minute amount of the far-red light (FR) absorbing form of P, 

Pfr, formed by the safelight becomes associated with the etioplasts. For this 

reason etioplasts were isolated in complete darkness. If the etioplasts are 

the targets for Pfr of the transport model, it is to be expected that they 

will be enriched in P after red light (R) irradiation. 

4.2 Results 

4.2.1 Phytochrome assay - general aspects 

In liquids with a relatively high P content, for example a filtered leaf 

homogenate, P was readily detected spectrophotometrically in cuvettes with a 

10 mm path length. For measurements of P in e.g. etioplast preparations, a 

scattering agent such as CaC03 had to be added to increase the optical 

path length and hence the detection level. However, P measurements in 10 mm 

cuvettes with CaC03 added were not reliable (Table 4.1), probably because the 

samples are so highly opaque that most of the light reaching the 

photomultiplier has not traversed the sample, but has e.g. followed a path by 

multiple reflections along the side walls of the cuvette. Moreover, the low 

light fluence transmitted by such samples greatly reduces the signal-to-noise 

ratio. The optimum path length for P measurements in our samples mixed with 

CaC03 proved to be 1.6-2.0 mm. Cuvettes with a path length of 1.6 mm were 

used unless otherwise indicated. The coefficient of variation (Chapter 2, 
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Table 4.1 Spectrophotometry assay of the phytochrome (P) 

content (104 A ( A A ) 730/806) in a supernatant obtained by 

centrifugation of a filtered leaf homogenate of dark-grown 

maize leaves at 1.700 x g_, in black-sided cuvettes of 

different path lengths. The cuvettes with a path length of 

10 mm contained 2 ml samples to which 2 g CaC03 was added. 

The cuvettes with a path length of 1.6 mm contained 

approximately 0.2 ml samples plus approximately 0.3 g CaC03. 

Sample Apparent P content 

10 mm cuvette 1.6 mm cuvette 

Supernatant (undiluted) 10.5 15.9 

Duplicate sample 28.3 20.3 

Supernatant (diluted 1:1) 38.7 8.4 

Duplicate sample 19.9 8.4 

Section 2.16) for the measurements was about 15%. Several other scattering 

and stabilization media for P measurements in etloplast preparations were 

tried. These included Ficoll, hydroxyethylcellulose and Sephadex G-50 

(coarse), but none of these proved satisfactory. The spectrophotometrically 

detectable P content of samples did not significantly decrease during storage 

for several days at -18 °C. 

4.2.2 Estimation of the phytochrome content of various fractions obtained 

during etioplast isolation and the Sephadex G-50 procedure 

P was observed in most fractions obtained during etioplast isolation and 

purification (Fig. 4.1). 98-99% of P measured in the leaf homogenate remained 

in the supernatant upon centrifugation at 1,700 x £. After washing and 

centrifugation of the first pellet containing the etioplasts, about 65% of P 

present in the pellet remained in the supernatant. During elution of the 

resulting pellet (a "crude, washed etioplast preparation") on a Sephadex G-50 

column, additional P was lost. This P was possibly associated with (broken) 

etioplasts and other cell components which remained on the column. After 

centrifugation of the column eluate at 1,700 x £, the amount of P in the 

supernatant was near the detection limit. Although the pellet (a "Sephadex 

G-50 purified etioplast preparation") contained only a small proportion of the 

P originally present in the leaf homogenate, its P signal usually was far 

above the detection limit (Chapter 2, Fig. 2.4). The P detectable in Sephadex 

G-50 purified etioplast pellets was not removed by (repeated) washing of the 

pellet in isolation buffer (Table 4.2). 

P was detected in preparations of purified etioplasts isolated from R 

pre-irradiated maize seedlings (R etioplasts) as well as from dark-grown 
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seedlings (D etioplasts), even if the etioplasts were isolated and purified in 

complete darkness. Addition of Mg 2 + either as 10 or as 100 mM MgCl2 to the 

isolation medium had no influence on the amount of etioplast-associated P both 

in D and in R Sephadex G-50 purified etioplast preparations. Small quantities 

of P were also detected in Sephadex G-50 purified D and R etioplast 

preparations from pea, bean and oats. 

4.2.3 Photochrome in etioplast preparations free from mitochondria 

The discontinuous sucrose gradient procedure of Hilton and Smith (1980) was 

used to separate mitochondria from etioplasts. Both D and R maize etioplast 

preparations purified by the Sephadex G-50 column technique were used. In 

both cases about 50% of P originally present in the preparations appeared to 

be present in the purified etioplasts recovered from the fraction banding at 

the 55/40% or 65/40% sucrose interface as well as from the pellet at the 

bottom of the sucrose gradient (Chapter 2, Section 2.6). 

The pellet obtained by centrifuging the fraction banding at the 40/25% 

interface at 16,000 x g_ contained about 15% of the P content of the original 

etioplast preparation. According to Hilton and Smith (1980) this fraction 

Leaves homogenized by Ultraturrax 

filtration through 4 
layers of Nytal (2 x) 

Horaogenate 

I 
Pellet 

(discarded) 

centrifugation, 
5 mln at 130 x £ 

Supernatant 

centrifugation, 
5 min at 1,700 x £ 

Pellet Supernatant 
(discarded) 

washing; centrifugation, 
5 min at 1,700 x £ 

Crude, washed 
etioplast preparation 

Supernatant 
(discarded) 

Sephadex G-50 column 

Eluate containing etioplasts 

centrifugation, 
5 min at 1,700 x £ 

Sephadex G-50 
purified e t ioplast 

preparation 

Supernatant 
(discarded) 

F i g . 4 .1 Scheme of e t i o p l a s t i s o l a t i o n and p u r i f i c a t i o n . 
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Table 4.2 Phytochrome (P) in Sephadex G-50 purified 

maize etioplast preparations after washing, as a 

percentage of P in the non-washed preparation. 

Pretreatraent of P present after washing (%) 

intact seedlings 

1 x washing 2 x washing 

Dark grown plants 88 n.d. 

5 rain R + 25 min Da 84 n.d. 

5 min R + 2 h D 89 81 

5 min R + 4 h D 109 n.d. 

5 min R + 5 h D 81 100 

a D: dark period between red light (R) pre-irradiation 

of intact seedlings and etioplast isolation 

n.d.: not determined 

contains both mitochondria and etioplasts. Counts of etioplasts showed that 

the fraction contained about 10 x less etioplasts than the combined fractions 

containing pure etioplasts. The etioplasts of the 40/25% interface fraction 

are predicted to contribute about 5% of the total P content, leaving 10% for 

possible association with mitochondria. About 35% of P originally present in 

the preparations was not recovered from the pellet at the bottom of the 

sucrose gradient plus the 55/40% or 65/40% and 40/25% interfaces. 

We can tentatively conclude from our experiments that at least 50% of P 

measured in Sephadex G-50 purified maize etioplast preparations is present in 

or on the etioplasts and not in the contaminating mitochondria. 

4.2.4 Gel filtration on Sepharose CL-2B 

In Cucurbita pepo, two types of association of P with particulate cell 

material have been demonstrated (Quail, 1975; Jose, 1977). One of them is 

formed by an association of P with ribonucleoproteln (RNP) and is considered 

to be an artifact. The other is proposed to be a binding of P to a membrane 

fraction. Separation of membrane-associated from dissolved and RNP-adsorbed P 

was obtained by linear sucrose gradients (Quail, 1975) and gel filtration on 

Sepharose CL-2B (Jose, 1977). The latter technique was used to examine 

whether P present in the etioplast preparations here was RNP-adsorbed. 

After elution of Sephadex G-50 purified etioplast preparations on Sepharose 

CL-2B, P was detected in two protein bands with K a v (see Abbreviations) 

similar to those in Cucurbita pepo. Apparently some RNP-adsorbed P was 

present in our etioplast preparations. However, the etioplast band contained 

at least 50% of P present in the original etioplast preparation. 

4.2.5 Suborganelle localization of phytochrome 

Etioplasts were isolated from dark-grown and red light (R) pre-irradiated 
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maize seedlings in MOPS buffer (Chapter 2, Section 2.4) and purified by the 

Sephadex G-50 column method. The purified preparations were fractionated into 

envelope, prolamellar body and stroma fractions by the method of Mackender and 

Leech (1974) as modified by Evans and Smith (1976a), see Fig. 4.2. MOPS 

buffer without sucrose was used as a lysis medium. 

After exposure to the lysis medium for 15 min at 4 °C, many etioplasts 

appeared still intact when examined by phase contrast microscopy. The 

possibility exists that under these conditions the envelopes first have become 

slightly opened and then reconstituted. Therefore, the etioplasts were 

sonicated in the lysis medium until phase contrast microscopy indicated that 

all etioplasts were broken. 

In agreement with results of Evans and Smith (1976a), P was demonstrated 

only in the 20 KP fraction (Fig. 4.2) containing the plastid envelopes. In 

the other fractions P signals were at or below the detection limit. 

Lysed etioplasts 
in MOPS buffer 

centrifugation for 10 min 
at 3,000 x £ 

Pellet (3KP) Supernatant (3KS) 
containing 
prolamellar 
material 

centrifugation for 30 min 
at 20,000 x £ 

1 
Pellet (20KP) Supernatant (20KS) 
containing containing stroma 
envelope and other constituents 
membranes 

Fig. 4.2 Fractionation of lysed etioplasts. 

4.2.6 Phototransformation difference spectrum of phytochrome 

To confirm unequivocally the presence of P in the etioplast preparations, a 

phototransformation difference spectrum was constructed. Measurements of 

( A) were made at 0 °C at several wavelengths between about 630 to 780 nm, 

with the reference beam at 806 nm. One etioplast preparation was used for 

each spectrum. After measurements at three different wavelengths, a 

measurement at 730 nm was included as a control. These control measurements 

showed that the P content did not decrease significantly during the measuring 

period of several hours. 

The phototransformation difference spectrum for P in a crude, washed D 

etioplast preparation from pea leaves is shown in Fig. 4.3. The FR peak 

(FRmax) was found at about 726 nm and the R peak (Rmax) was between 

660 and 670 nm. The isosbestic point in the difference spectrum was located 

between 680 and 690 nm. The ratio of the absorption peaks at Rmax (A Rmax) 

and FRmax (A FRmax) was about 1.2 : 1, which falls within the range normally 

observed in vivo (Grill, 1972; Spruit and Kendrick, 1973). 
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820 660 700 740 780 
Wavelength (nm) 

Fig. 4.3 Phototransformation difference spectra (Pfr —> Pr) of A : a 

crude, washed etioplast preparation from 8-day old dark-grown pea leaves, 

D: a Sephadex G-50 purified etioplast preparation from 8-day old dark-

grown maize leaves (only the far-red part is shown), O : a homogenate of 

8-day old dark-grown maize leaves. 

The phototransformation difference spectra for P in Sephadex G-50 purified 

etioplast preparations from dark-grown or R pre-irradiated maize seedlings had 

a FRmax between 725 and 730 nm (Fig. 4.3). The 620 - 690 nm region of these 

spectra could not be measured with precision due to time- and irradiation 

dependent changes in PChl(ide) and Chl(ide) content. In the pea etioplast 

preparation used for the measurements shown in Fig. 4.3, (P)Chl(ide) pigments 

probably did not appreciably interfere with the P measurements for the 

following reasons, (i) In pea etioplast preparations the ratio P:(P)Chl(ide) 

appeared to be much higher than in maize etioplast preparations. (ii) The pea 

etioplast preparation was kept overnight at 4 oc in darkness and probably had 

lost its ability for PChl(ide) regeneration (see Chapters 6 and 7 ) . 

The phototransformation difference spectrum for P in a filtered maize leaf 

homogenate (Fig. 4.3) appeared "normal" (Quail, 1974). The Rmax was found 

between 660 and 670 nm, the FRmax at about 730 nm, the isosbestic point at 

about 685 nm and the A Rmax : A FRmax ratio was about 1 : 1 . 

4.2.7 Phytochrome content of etioplasts isolated from dark-grown or red 

pre-irradiated maize leaves 

Under our experimental conditions, R pre-irradiation (5 min 658 nm, 0.85 

W m~2 or 5 umol m~2 s~l) did not significantly influence the fresh weight of 

maize and pea leaf material over a subsequent 16 h dark period. Also the 

total amount of carotenoids per gram leaf fresh weight as indicated by the 

absorbance at 473 nm (A473) was not significantly influenced by R pre-

irradiation (Chapter 3). Therefore, the A473 nm in 80% acetone/water (v/v) was 
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used as an estimate of the number of etioplasts in a maize or pea etioplast 

preparation. 

When A ( A A ) 730-806 values were normalized to an A473 of 1.0, the P 

content of R maize etioplasts slightly exceeded that of D etioplasts 

(Fig. 4.4). The difference was significant (p<0.05) for crude, washed 

etioplasts and just below significance for Sephadex G-50 purified etioplasts 

(Student's t-test). The P content of etioplasts isolated in green safelight 

from dark-grown maize seedlings was slightly higher than that of D etioplasts 

isolated in complete darkness, but lower than that of R etioplasts for both 

types of preparations. 

4.2.8 Estimation of the percentage of leaf photochrome present in etioplasts 

About 10-15% of leaf P remained in the residue upon filtration of the leaf 

extract. Therefore, as an estimation of the P content of the leaves 115% of 

the P content of the leaf homogenate was taken. The proportion of the 

combined leaf etioplasts present in preparations in which P was measured was 

estimated assuming a linear relationship between the etioplast content of 

leaves and etioplast preparations and the carotenoid absorbance at 473 nm in 

their 80% acetone/water (v/v) extracts. Under the experimental conditions 

here, addition of CaC03 resulted in an approximately 14-fold amplification in 
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Fig. 4.4 Phytochrome content of etioplasts isolated from 8-day old maize 

leaves after various dark periods following red (R) pre-irradiation. The 

phytochrome content is expressed as A (A A) 730-806 for preparations of 

A473 - 1.0. a. crude, washed etioplast preparations, b. Sephadex G-50 

purified etioplast preparations. The full lines represent the average of 

the data points. d: average value for etioplasts from 8-day old 

dark-grown maize leaves. The vertical bars represent the standard error of 

the mean. 
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signal both for homogenate and for supernatant samples. Although no exact 

data are available for etioplast samples, It Is estimated that addition of 

CaC03 increased their P signal at least 10-fold, making both types of 

preparations comparable. Assuming the P content of Sephadex G-50 preparations 

being representative of the P content of etioplasts iji vivo, about 1.7% of 

total maize leaf P appeared associated with D etioplasts. For pea etioplasts, 

this percentage was about 1.3%. 

In R pre-irradiated maize leaves, Pfr dark destruction occurred as 

indicated by the decrease in P content of the leaf homogenates (Fig. 4.5). 

Due to the scatter in the values it was not possible to establish the kinetics 

of the reaction. The half-time agrees with that normally found for Pfr dark 

destruction (e.g., Stone and Pratt, 1978). After a dark period of 4 h at 

22 °C, 25-30% of the amount of P present in homogenates of dark-grown leaves 

remained. As the P content of R etioplasts remained essentially constant 

(Fig. 4.4), the percentage of total leaf P associated with the etioplasts 

increased over this period. A regression line calculated for such data 

suggests a small but statistically insignificant increase of the P content of 

etioplasts soon after R pre-irradiation from approximately 1.7% to 2.4% (Kraak 

and Spruit, 1985). 

Although only limited data were obtained for pea etioplasts, they were 

qualitatively similar to those obtained with maize etioplasts. 

4.2.9 Pr and Pfr dark reactions in etioplast preparations 

During storage of etioplast preparations in darkness at room temperature, 

their spectrophotometrically detectable P content decreased. We have studied 

whether the rate of this decrease was different for Pr and Pfr. After 

measuring the P content of Sephadex G-50 purified etioplast preparations from 

dark-grown seedlings, the preparations were irradiated with actinic R or FR 

o 
oo 

io 
1.6 

0.8 

0 4 8 12 16 
Dark period after R (h) 

Fig. 4.5 Phytochrome content of 8-day old maize leaves after various dark 

periods following red light (R) pre-irradiation. Phytochrome was measured 

in leaf homogenates and is expressed as A (AA) 730-806 per 100 g of leaf 

material, d: phytochrome content of 8-day old dark-grown maize leaves. 
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Fig. 4.6 Spectrophotometrically detectable phytochrome in darkness at 

room temperature after a terminal red (R) (O) or far-red light (A) 

irradiation in a. etioplast preparations from dark-grown maize leaves, 

b. horaogenates of similar leaves. The original phytochrome content of the 

preparations was taken as 100%. 

for 2 min. The cuvettes were subsequently kept in darkness at 22 °C and after 

a specific time interval their P content was again measured. Before all P 

measurements, PChl(ide) was photoconverted into Chl(ide) by a 3 min R 

irradiation. Fig. 4.6 shows a limited loss of both spectrophotometrically 

detectable Pr and Pfr in maize etioplast preparations as well as in maize leaf 

homogenates during a storage period of 6 h at 22 °C. The rate was slow 

compared to Pfr dark destruction in vivo (Fig. 4.5). 

Direct spectrophotometric demonstration of Pfr dark reversion in etioplast 

preparations proved impossible. Even when FR was given as a first actinic 

irradiation, measurements of Pfr were unreliable because photoconversion of 

PChl(ide) into Chl(ide) interfered with the measurements. 

4.3 Discussion 

No completely satisfactory procedure for the isolation of undamaged 

etioplasts of high purity with a high yield exists. Sephadex G-50 purified 

etioplast preparations are contaminated by mitochondria (Evans, 1976; Quail, 

1977; Hilton and Smith, 1980). In electron micrographs of our Sephadex G-50 

purified etioplast preparations, mitochondria were occasionally observed. The 

activity of triose phosphate isomerase (Quail, 1977) and the presence of 

cytoplasmic RNA (Evans, 1976) in these preparations have been indications of 

other contaminants. However, the presence of P remaining after (repeated) 

washing and further purification of Sephadex G-50 etioplast preparations on a 

discontinuous sucrose gradient and on Sepharose CL-2B support the conclusion 

that a substantial fraction of the pigment detectable in these preparations is 

associated with the etioplasts. Etioplast-associated P appears to be mainly, 

if not completely, present in or on the etioplast envelope (Section 4.2.5; 

Evans and Smith, 1976a). Phytochrome phototransformation difference spectra 

of maize etioplast preparations showed large deviations in the R region due to 
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interference by PChl(ide) and Chl(ide) pigments. However, the difference 

spectrum for P in a pea. etioplast preparation leaves no doubt that the 

absorption changes measured at 730/806 nm in etioplast preparations are mainly 

due to Pr —> Pfr interconversions. The absorption maximum of Pfr present in 

pea and maize etioplast preparations was between 726 and 730 nm, i.e. 

slightly lower than in vivo (e.g., Quail, 1974). Vierstra and Quail (1982) 

showed that native 124 kllodalton (kDa) Pfr from Avena has its absorption 

maximum at 730 nm. On incubation as Pr, this maximum shifts to 722 nm, 

concomitant with a proteolytic degradation to 118 and 114 kDa P. On the basis 

of its FRmax, it can be concluded that P in etioplast preparations and in 

maize leaf homogenates only partially shows this degradation. 

It is difficult to exclude the possibility that P becomes attached to the 

etioplast membranes during isolation of the etioplasts. Bound P, detected in 

vitro, does not necessarily imply that P is also bound in vivo (e.g., Pratt, 

1979). On the other hand, it is possible that P molecules associated with 

etioplasts iji vivo are released during leaf homogenization and subsequent 

procedures. Crude, washed etioplast preparations contain more P on a 

carotenoid basis than Sephadex G-50 purified preparations. This may indicate 

that P is lost from etioplasts during purification, but other possibilities 

exist (Section 4.2.2). In this connection, the results of Brownlee e_t al. 

(1979) are of interest. They found that the large amount of Pr associated 

with particulate material at low pH could be decreased by washing in media of 

high pH. It is not known whether a low pH prevents the release of native Pr 

or causes a non-specific association of Pr. Other factors apart from pH might 

also influence the amount of P detectable in etioplast preparations. However, 

it has been shown here that the association of P with etioplasts is not 

dependent on the presence of divalent cations such as Mg2+, whereas 

pelletability is enhanced by these ions (Pratt and Marme, 1976). Also, gel 

filtration on Sepharose CL-2B showed that most of the P present in etioplast 

preparations is not bound to ribonucleoproteins. Evidence for P forming an 

intrinsic component of the etioplast is provided by an In vitro effect of P on 

the amount of extractable gibberellins by etioplasts (Cooke and Saunders, 

1975; Cooke and Kendrick, 1976; Evans, 1976). However, the physiological 

meaning of this effect is not clear. 

If the P content of Sephadex G-50 purified etioplast preparations does 

indeed reflect the in vivo P content of etioplasts, the results here indicate 

that etioplasts of dark-grown maize seedlings contain 1.7% of total leaf P 

(Section 4.2.8). Assuming that the P concentration in cells of dark-grown 

seedlings is about 10"? M (Kendrick and Frankland, 1983), a plant cell with a 

volume of about 10^ p? would contain about 6 x 10& P molecules. At a 

concentration of about 1.7% of P, about 105 p molecules would be present in 

the combined etioplasts of such a cell. Since there are on an average about 

100 etioplasts per cell (Leech, 1984), one etioplast would then contain about 

10-5 p molecules. If the etioplasts contain only 25-50% of P present in 

Sephadex G-50 preparations (Sections 4.2.3 and 4.2.4), still some hundred P 
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molecules would reside in or on each etioplast. 

Results shown in Sections 4.2.7 and 4.2.8 suggest that R pre-irradiation of 

maize seedlings may result in a small increase of the quantity of P in the 

etioplasts. Smith et al. (1978) reported that when mixtures of the 

100,000 x g_ supernatant of the homogenate of etiolated barley leaves 

(containing soluble P) and Sephadex G-50 purified etioplasts were R irradiated 

in vitro, the amount of pelletable P per mg protein increased two-fold. The 

authors suggested that Pfr molecules form dimers. If one of the two molecules 

forming a dimer is a component of the etioplast membrane, then subsequent 

centrlfugation would pellet the dimer. Roth-Bejerano and Kendrick (1979) also 

found an approximately two-fold increase of pelletable P per mg protein after 

in vivo or in vitro R irradiation in 1,000 x £ and 20,000 x £ pellets of crude 

homogenates of etiolated barley leaves. Brownlee et al. (1979) similarly 

speculated that this two-fold increase might result from the formation of 

Pfr:Pfr dimers after irradiation, one Pfr molecule being a native 

membrane-associated molecule and one Pfr molecule binding via this molecule 

and to a steroid component of the membrane. However, the results here with 

maize and pea etioplasts do not support the dimer hypothesis. The increase of 

the P content of the etioplasts after R irradiation, if any, was less than 

two-fold. 

The P transport model of Raven and Spruit (1973) assumed that the Pfr 

receptors are devoid of P in dark-grown plants. On the assumption that the 

etioplasts are the sites of the Pfr receptors, a revised model should 

incorporate that in dark-grown plants these receptors are already partially 

occupied by P molecules in the R absorbing form, since P was detected in 

etioplasts isolated in complete darkness form dark-grown seedlings. In 

agreement with the original model, we now postulate that unoccupied receptor 

sites for P molecules are present in etioplasts and that only Pfr molecules 

are able to bind to these sites. Following R irradiation, Pfr molecules 

formed in the cytoplasm are proposed to migrate to the etioplasts and become 

active in potentiation of rapid Chi accumulation in white light (WL). It 

appeared important to examine whether a relatively small increase in amount of 

P molecules per etioplast would be sufficient to explain the considerable 

decrease in sensitivity for R potentiation following R pre-irradiation. Since 

the quantity of P in the cytoplasm vastly exceeds that in the etioplasts, in 

the original as well as in the revised model small fluences of R would form 

enough Pfr molecules outside the etioplasts to saturate the Pfr receptor sites 

of the etioplasts. However, any P originally associated with the etioplasts 

would then still be mainly in the Pr form. To give an illustration: results 

shown in Section 4.2.8 suggest that about 0.7% of total P may migrate to the 

etioplasts after a standard R pre-irradiation. As a standard R irradiation 

results in formation of the maximum percentage of Pfr possible, we may assume 

that all Pfr binding sites then become occupied. A fluence just sufficient to 

form 0.7% of Pfr in the cytoplasm might be sufficient to saturate the receptor 

sites in the etioplasts, though higher fluences are required if the etioplasts 
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Fig. 4.7 Proposed model of migration of Pfr from the cytoplasm to the 

etioplasts following a low fluence of red light (R), transforming 0.7% of 

Pr into Pfr. 1: dark-grown, 100% Pr; 2: low R fluence: 0.7% Pfr formed 

in cytoplasm and receptor organelle; 3: after migration of Pfr, the 

receptor organelle has about 30% Pfr, the cytoplasm less than 0.7%. 

c: cell, t: receptor (or target) organelle. 

have to "compete" for Pfr with other organelles and membranes. A R fluence 

which converts 0.7% of cytoplasmic P into Pfr would also convert 0.7% of Pr 

originally present in the etioplasts into Pfr. Since we have found that about 

1.7% of total leaf P initially resides in the etioplasts, we calculate that 

after the migration process is complete, 30% of P present in the etioplasts 

(2.4% of total P) is in the Pfr form (see Fig. 4.7). Obviously, migration to 

the etioplasts of a fraction of cytoplasmic Pfr, too small to be spectro-

photometrically detectable, would meet the requirements of the model. 

We may expect that a further potentiation of rapid Chi accumulation occurs 

when the remainder of Pr in the etioplasts is phototransformed into Pfr. As 

additional migration of Pfr is impossible, considerably higher R fluences are 

required to give an appreciable additional potentiating effect by conversion 

of the organelle Pr. In case a first R pre-irradiation is saturating with 

regard to Pr —» Pfr phototransformation, either occurrence of Pfr dark 

reversion in the receptor sites or resynthesis of receptor sites has to be 

postulated for a second R pre-irradiation to give an additional potentiating 

effect (see Chapters 3 and 8 for further discussion). 

The postulated migration of about 0.7% of total P to the etioplasts after R 

irradiation is statistically not significant. Therefore, no supporting 

evidence was obtained from our measurements for the P transport model of Raven 

and Spruit (1973). Although P was consistently found associated with 

etioplasts, it remains uncertain whether the in vivo P acts directly upon the 

etioplasts in controlling rapid Chi accumulation in WL. A different approach 

was therefore followed in an attempt to obtain information on this point 

(Chapters 5, 6 and 7). 
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5 ULTRASTRUCTURAL DEVELOPMENT OF ETIOPLASTS IN SITU AND IN VITRO UPON 

IRRADIATION 

5.1 Introduction 

Greening and ultrastructural development of etioplasts into chloroplasts 

are interconnected. For example, the presence of chlorophyll (Chi) appears to 

be a prerequisite for the formation of grana (Mohr and Kasemir, 1975). The 

greening process (e.g., Raven, 1973; Kasemir, 1983b) as well as ultra-

structural development of etioplasts (Bradbeer and Montes, 1976; Girnth et 

al., 1979) is documented to be under the control of phytochrome (P). 

Isolated etioplasts display ultrastructural changes upon irradiation (Kohn 

and Klein, 1976; Wellburn and Wellburn, 1971b,c; 1973a,b). An effect of P 

upon etioplast development in vitro has been concluded by Wellburn and 

Wellburn (1973b), however according to others (Bradbeer et̂  al. , 1974; 

Bradbeer and Montes, 1976) their experiments are not wholly convincing. 

We have examined, whether red light (R) pre-lrradiation affects the 

ultrastructural development of etioplasts in white light (WL) both in situ and 

in vitro under conditions similar to those in Chapter 3. However, a WL period 

of 1 h instead of 5 h was used, since after longer periods in WL little 

further development of isolated etioplasts is shown and etioplasts begin to 

deteriorate (Wellburn and Wellburn, 1973b). 

Initial experiments were carried out with maize etioplasts. Maize leaves 

contain two types of plastids: bundle sheath and mesophyll plastids. 

According to Klein et al. (1975), in 10-day old dark-grown maize leaves a 

circular arrangement of thylakoids, radiating out from the prolamellar body 

(PLB) is typical of mesophyll etioplasts and a straight arrangement typical of 

bundle sheath etioplasts. However, in the present electron micrographs the 

distinction between bundle sheath and mesophyll etioplasts was usually not 

evident. Since both types of etioplasts might show different developmental 

changes which would complicate the analysis of effects of a R pretreatment, 

further experiments were conducted with etioplasts from seedlings of other 

species. 

5.2 Results 

5.2.1 The ultrastructure of maize, bean and oat etioplasts after Sephadex 

G-50 purification 

Sephadex G-50 purified maize and oat etioplast preparations contain mainly 

intact etioplasts with a continuous double outer membrane (envelope) and a 

dense stroma. The etioplasts are similar in appearance to the corresponding 

etioplasts in intact leaves, though more rounded. "Broken" or "damaged" 

etioplasts are swollen and contain only lightly stained stroma (Fig. 2.2, 

Chapter 2). Although electron micrographs of isolated bean etioplasts usually 

showed an intact envelope, the internal structure of these etioplasts was 

unlike that in situ. Tubules, crystal-containing bodies (Gunning, 1965) or 
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Fig. 5.1 Electron micrographs of etioplasts of 8-day old oat 

seedlings, a-d in situ, e-f in vitro, a. in a dark (D)-grown leaf, b. 

in a leaf pre-irradiated with red light (R) (5 min 658 nra, 5 

umol m~2 s - *), 8 h after R pre-irradiation, c. in a leaf after 55 min 

of white light (WL) (2 W m ~ 2 ) , d. in a leaf after 5 min R followed by 

8 h D and 55 min WL, e. etioplast isolated from a R pre-irradiated 

leaf, f. as e, after 55 min WL in vitro. 
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crystallites (Wellburn and Wellburn, 1971a) and magnograna (e.g., Klein and 

Bogorad, 1964) were found as isolation artifacts in bean etioplasts. Only 

remnants of PLBs were observed, while bean etioplasts in situ contained 

paracrystalline PLBs. Obviously, bean etioplasts are not suitable for studies 

on effects of light treatments on the ultrastructural development of 

etioplasts j_n vitro. 

Etioplasts of 8-day old maize and bean seedlings frequently contained one 

or more starch grains, which were often surrounded by a thylakoid-like 

membrane. The many free, mostly large, starch grains seen in electron 

micrographs of purified etioplast pellets suggest that specifically etioplasts 

containing the larger sized starch grains are susceptible to rupture. In 

etioplasts of 8-day old oat seedlings starch grains were seen less frequently 

and were generally small. 

The PLBs in etioplasts of dark-grown maize, bean and oat seedlings were 

mostly paracrystalline (Gunning and Jagoe, 1967) in appearance. An example 

for oats is shown in Fig. 5.1a. Also (slightly) irregular, but tight, PLBs 

(Fig. 5.Id), and in oat etioplasts some atypical PLBs (Gunning, 1965) were 

seen. After 1 h of WL reacted (Weier ̂ t al., 1970) or loose (Horton and 

Leech, 1975) PLBs were present (Fig. 5.1c). Oat etioplasts sometimes 

contained a stromacentre (Gunning, 1965; Wellburn and Wellburn, 1971a) which 

is probably composed of molecules of rlbulosediphosphate carboxylase (Gunning 

et al., 1968; Kirk and Tilney-Bassett, 1978). Incipient grana (short 

thylakoid overlaps) were observed in etioplasts of maize, bean and oat 

seedlings even when grown in complete darkness (D). Etioplast electron 

micrographs showed numerous ribosomes. Osmiophilic globuli were observed both 

inside and outside the PLBs. 

Effects of irradiations were studied with respect to four morphological 

characteristics: PLB structure, PLB volume, the number of thylakoids with a 

length of at least one third or at least two thirds of the length of the 

etioplast (medium long and long thylakoids, respectively) and the number of 

incipient grana with two or more stacks. Maize and bean etioplasts were found 

unsuitable for these studies for the reasons mentioned above. Therefore the 

results are mainly restricted to oat etioplasts. 

5.2.2 Changes in prolamellar body structure upon irradiation 

About 80% of the etioplasts in 8-day old dark-grown oat leaves contained 

PLBs with a paracrystalline appearance (Fig. 5.1a), the remaining 20% showing 

irregular but tight PLBs (Table 5.1). After 55 min of WL of low fluence rate 

(2 W m - 2 ) , the percentage of paracrystalline PLBs had considerably decreased 

and many loose PLBs were observed (Fig. 5.1c). 

After R pre-irradiation of the plants (5 min 658 nm, 0.85 W m - 2 or 5 

umol m - 2 s~l), followed by 8 h of D, almost all PLBs had a regular, 

paracrystalline appearance (Fig. 5.1b). After 55 min WL most PLBs in R 

pre-irradiated oat leaves still had a tight, paracrystalline or slightly 

irregular appearance (Table 5.1; Fig. 5. Id). 
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PLBs in etioplasts isolated from R pre-irradiated oat seedlings (R 

etioplasts) were very similar in structure to those in situ (Fig. 5.1e). 

After 55 min WL in vitro the structure of the PLBs had changed (Fig. 5.If). 

However, the effect of R pre-irradiation, apparent upon etioplasts in intact 

oat leaves, was not observed in isolated etioplasts (Table 5.1). 

5.2.3 Changes in prolamellar body volume upon irradiation 

The area of PLBs compared to total etioplast area, which gives an 

indication of the PLB volume, was quantified by a weight method described by 

Horton and Leech (1975) (Section 2.15). It was verified that observed changes 

in relative PLB area were not due to changes in total etioplast area. 

Moreover, the number of etioplast micrographs without PLB can be regarded as a 

criterion for the volume of the PLB (Henningsen and Boynton, 1974). 

The average PLB volume in etioplasts In situ slightly increased after R 

pre-irradiation. After 55 min WL the PLB volume in previously dark-grown oat 

leaves had hardly changed. However, in R pre-irradiated leaves the PLB volume 

decreased somewhat during 55 min WL. Differences observed were not 

significant (Student's t-test). However, results obtained by the method of 

Table 5.1 Structure of prolamellar bodies (PLBs) 
different light treatments. 

of oat etioplasts after 

Sample Light treatment Percentage of PLBs with the following No. of 
structure: PLBs 

studied 

paracrystalline (slightly) reacted 
(including irregular, (loose) 
atypical PLBs) tight 

plastids Da 80 20 - 20 
in situ 5 min Rb + 8 h D 96 4 - 52 

55 min WL<: 27 32 41 37 
5 min R + 8 h D 

+ 55 min WL 32 69 - 35 

plastids 5 min R + 6 h D^ 95 5 - 162 
in vitro 5 min R + 6 h D 

+ 55 min WLe 6 47 47 122 

a D: darkness 
b R: a standard red light pre-irradiation (5 min 658 nm, 0.85 W m~2 or 5 

umol m- 2 s-l) 
c WL: white light (2 W m~2) 
d treatment in vivo 
e R in vivo, WL in vitro 
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Henningsen and Boynton (1974) were consistent with the results of the weight 

method shown in Fig. 5.2. 

A similar small, but significant (Student's t-test) decrease in PLB area to 

that in situ was observed in isolated R etioplasts after 55 min WL in vitro 

(Fig. 5.2). 

5.2.4 Growth of thylakoids 

In oat etioplasts, the number of medium long and long thylakoids (Section 

5.2.1) showed a small increase in situ after a brief R irradiation (similar 

results were obtained with maize). During 55 min WL the length of the 

thylakoids considerably increased. The increase was similar in dark-grown oat 

leaves and in R pre-irradiated leaves (Fig. 5.3). 

Though significant (Student's t-test), the increase of thylakoid length of 

R etioplasts during 55 min WL in vitro was small compared to that in situ. 

5.2.5 Formation of incipient grana 

In etioplasts of dark-grown oat leaves, incipient grana with 2 stacks were 

observed. In similar maize etioplasts grana with 3 stacks were also seen. In 

both oat and maize leaves, R pre-irradiation resulted in a small increase in 
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Fig. 5.2 Mean prolamellar body (PLB) area as a percentage of total 

oat etioplast area (see text) after various light treatments. 

Treatments of In situ plastids: D: darkness, R: 5 min red light (R) 

(658 nm, 5 jumol m~2 s-1) followed by 8 h D, W: 55 min of white light 

(WL) (2 W m ~ 2 ) , R+W: 5 min R followed by 8 h D and 55 min WL. 

Treatments of in vitro plastids: R: 5 min R followed by 6 h D in 

vivo, no light treatment in vitro, R+W: 5 min R followed by 6 h D in 

vivo and 55 min WL in vitro. The bars indicate standard errors of the 

mean. The numbers within parentheses denote the number of plastid 

electron micrographs studied. Oat seedlings used for the experiments 

were 8 days old. 
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Fig. 5.3 Mean number of stroma thylakoids with a length of at least 

one third (medium long thylakoids) or two thirds (long thylakoids) of 

the plastid length after various light treatments (see Fig. 5.2) of 

oat etioplasts. The bars indicate standard errors of the mean. The 

numbers within parentheses denote the number of plastid electron 

micrographs studied. Oat seedlings used for the experiments were 8 

days old. 
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Fig. 5.4 Mean number of incipient grana per plastid electron 

micrograph after various light treatments (see Fig. 5.2) of oat 

etioplasts. The bars indicate standard errors of the mean. The 

numbers within parentheses denote the number of plastid electron 

micrographs studied. Oat seedlings used for the experiments were 8 

days old. 
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the average number of incipient grana per etioplast. During 55 min WL, 

formation of incipient grana with 2 (sometimes 3) stacks took place to a 

greater extent in R pre-irradlated than in dark-grown oat leaves (Fig. 5.4). 

More than 3 stacks were not observed in oat etioplasts in the present 

experiments. Bean etioplasts in situ contained grana with up to 5 stacks 

after R pre-irradiation and even 6 stacks following a subsequent WL period of 

75 min. 

The mean number of incipient grana did not increase during 55 min WL in 

isolated R oat etioplasts. After 55 min WL, some isolated etioplasts differed 

from those in situ in possessing some (long) thylakoids running partially 

adjacent to each other, resembling the magnograna observed in isolated bean 

etioplasts (Section 5.2.1). 

5.3 Discussion 

In oat seedlings, R pre-irradiation appeared to retard PLB transformation 

from a tight (mostly paracrystalline) into a loose form. Ryberg and Virgin 

(1978) suggested that the disruption of PLBs in WL is faster with PLBs in a 

paracrystalline form than with those which are loose. The present results, 

although sometimes not significant, support this suggestion: after 55 min WL 

the PLB volume had not changed or even slightly increased in previously 

dark-grown oat leaves, but decreased in R pre-irradiated leaves. Irradiation 

can have two effects on the size of the PLB. R pulses or continuous far-red 

(FR) irradiation cause the formation of large, paracrystalline PLBs in mustard 

seedling etioplasts (Kasemir et̂  al. , 1975). WL irradiation can induce an 

immediate decrease of the PLB volume (Henningsen, 1970; Girnth et al., 1979). 

Results shown by Bradbeer et al. (1974) indicate an increase in PLB volume 

after about 10 min of R and a decrease after prolonged R irradiation. In the 

experiments here, first an increase in PLB volume may have been induced by WL 

and a subsequent decrease may have been accelerated by R pre-irradiation. 

However, changes in PLB volume were small in these experiments. 

An effect of R pre-irradiation on the WL mediated PLB transformation as 

observed in our experiments was also reported by Girnth et al. (1979) for 

mustard seedlings. Four R pulses were given in their experiments, the first 

three of which were followed by 4 h of D and the last by 12 h D. Their 

characterization of PLBs was based both on the arrangement of the PLB tubules 

and on the location of plastoglobuli. However, in our experiments the 

location of plastoglobuli did not change in WL. Girnth et_ al. (1979) 

reported that the effect of R pulses could be reversed by 756 nm FR 

(reversibility being lost after 5 min) and concluded that P was involved. 

Girnth et al. (1978) found that in mustard seedlings, R pulses increased 

the number of stroma thylakoids having a length of at least two thirds of the 

length of the etioplast section after 1 h WL. FR reversibility was 

demonstrated and again escape from reversibility occurred within 5 min. The R 

pulses themselves did not increase the number of long thylakoids in their 

experiments as observed here in oat seedlings (Section 5.2.4). On the other 
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hand, in oat seedlings R pre-irradiation hardly influenced the rate of growth 

of thylakoids in WL. 

The present results on Che effect of R on the rate of formation of 

incipient grana in WL agree with those of Girnth et al. (1978). Although FR 

reversibility was not examined, it appears likely that in oat seedlings R 

pre-irradiation is also working via P. 

Changes in ultrastructure occurring in isolated etioplasts have been 

studied by several authors. Light induced changes of PLB transformation have 

been reported by Wrischer (1973a,b), Horton and Leech (1975) and Kohn and 

Klein (1976) for maize etioplasts and by Wellburn and Wellburn (1971b) for oat 

etioplasts. Light induced changes in PLB volume were reported by Kohn and 

Klein (1976) and light induced stroma thylakoid formation and incipient grana 

formation by Wellburn and Wellburn (1971b) and Kohn and Klein (1976). In the 

experiments here, WL induced PLB transformation was observed together with a 

decrease in PLB volume in etioplasts isolated from R pre-irradiated oat 

seedlings. Some thylakoid growth was also observed but no formation of 

incipient grana. With regard to the PLB transformation, an effect of in vivo 

R pre-irradiation was only apparent in etioplasts in leaves and not in 

isolated etioplasts. Apparently some factor from the cytoplasm is required 

for the expression of the R effect (see Chapter 8 ) . The decrease of the PLB 

volume in WL, which appeared controlled by R, occurred similarly in both 

isolated etioplasts and in situ. However, changes in PLB volume were small. 

Consequently, in order to obtain statistically significant results much larger 

numbers of electron micrographs should be examined. In addition, since the 

ultrastructure of isolated etioplasts after only 1 h of low WL showed some 

deviations from that observed jln situ, priority was given to a study of 

spectral changes in isolated etioplasts which can be observed on a shorter 

time scale (Chapters 6 and 7 ) . 
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6 PROTOCHLOROPHYLL(IDE) REGENERATION IN MAIZE LEAVES AND ISOLATED ETIO-

PLASTS - ABSORPTION STUDIES 

6.1 Introduction 

Isolated etioplasts contain phototransformable protochlorophyll(ide) 

(PChl(ide)). After photoconversion to chlorophyll(ide) (Chl(ide)) by a red 

light (R) pulse, subsequent regeneration of photoactive PChl(ide) can be 

observed (Griffiths, 1974a; 1975). In intact leaves, the rate of PChl(ide) 

regeneration is controlled by the far-red light (FR) absorbing form of 

phytochrome, Pfr (Virgin, 1958; Augustinussen and Madsen, 1965; Jabben et_ al. , 

1974; Jabben and Mohr, 1975). This chapter reports on experiments aimed at 

studying the effect of phytochrome (P) on PChl(ide) regeneration in isolated 

etioplasts from 8-day old maize leaves. A possible effect of P on the Shibata 

shift (Chapter 1, Section 1.4.6) was also studied. A stimulation of the rate 

of the Shibata shift by Pfr was reported by Jabben and Mohr (1975) for mustard 

seedlings and by De Greef (1978) for bean seedlings. However, Klockare (1979; 

1980) found no stimulation of the Shibata shift in wheat seedlings by 

continuous long wavelength FR, which phototransformed part of P into Pfr and 

stimulated Chi biosynthesis. A very slow "Shibata-like" shift has been 

observed in etioplasts isolated from 8-day old dark-grown maize seedlings by 

Horton and Leech (1975). Spectra published by Griffiths (1974a; 1975) show a 

more rapid dark shift of the absorption maximum of newly formed Chl(ide) in 

etioplasts isolated from 7-day old barley seedlings. 

6.2 Results 

6.2.1 Absorption spectra - general aspects 

The absorption spectra were recorded with a Cary 14 spectrophotometer at 

high sensitivity and had a low signal-to-noise ratio. Also, unavoidable small 

differences in light scattering between sample and reference depended on 

wavelength. Therefore, the absorption bands were superimposed upon a sloping, 

curved baseline, precluding a direct determination of peak positions. For a 

number of absorption spectra, curve analysis was applied using the computer 

program ACCU (Chapter 2, Section 2.14). Estimations of peak positions, peaks 

heights and half band-widths (HWs) have to be entered into the program. The 

noise in the original spectra made it impossible to use derivative 

spectroscopy (Chapter 2, Section 2.13) in order to obtain values for these 

parameters. Therefore we used data of Jabben et al. (1974) for the PChl(ide) 

components and data of Virgin and French (1973) for Chl(ide) components. 

6.2.2 Protochlorophyll(ide) species in 8-day old dark-grown maize leaves and 

isolated etioplasts 

Curve analysis indicated three PChl(ide) bands with peak positions at 629, 

638 and 652 nm and HWs of about 25, 17 and 16 nm, respectively, in maize 

leaves and isolated etioplasts. Values for both peak positions and HWs agree 
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satlsfactorily with those determined by Jabben et al. (1974). To conform to 

the literature the bands will be referred to as P628, P636 and P650. 

The ratio of the peak heights of the three bands differed considerably in vivo 

and in vitro. Compared to the band of P628, the band of P636 was lower and 

the band of P650 considerably higher in intact leaves (Fig. 6.1a) than in 

^ — i — i — i — i — i — i — i — i — i — i — i — i — i — i — i 

660 680 

680 

W a v e l e n g t h (nm) 

Fig. 6.1 Absorption spectra and their components of two superimposed 

8-day old dark-grown maize leaves (a) and a crude, washed etioplast 

preparation from similar leaves (b). Data points were read at 2 nm 

intervals from the original spectra and are plotted. The line through the 

points represents the sum of the component curves. The error of fit at 

each point is shown, with its magnification factor, below the spectra. 
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isolated etioplasts (Fig. 6.1b). During storage at room temperature, 

4 or 0 °C, the P650 content of etioplasts decreased further. 

6.2.3 Protochlorophyll(ide) photoconversion 

When samples of dark-grown maize leaves or isolated etioplasts were briefly 

irradiated at room temperature or at 0 °C with saturating R (649 nm), P650 

almost completely disappeared (Figs. 6.2 and 6.3). The absorption increase 

due to newly formed Chl(ide) was about 2.5 times as large as the absorption 

decrease at 650 nm. Curve analysis showed that a small band at about 650 nm 

remained after R irradiation, irrespective of its duration (8 s to 1 min). 

Curve analysis also showed that part (about 50%) of P636 disappeared upon R 

irradiation, which was directly evident on examination of several difference 

spectra of leaves and isolated etioplasts (Fig. 6.4). Photoconversion of P628 

was not observed. 

6.2.4 Protochlorophyll(ide) regeneration 

In the dark following R irradiation, both in intact leaves and isolated 

etioplasts photoactive PChl(ide) (mainly P650) reappeared. As was the case 

for leaves, P650 regeneration could be observed repeatedly in etioplast 

preparations, however in contrast to leaves the amount of regenerated P650 in 

isolated etioplasts gradually decreased. 

The rate of P650 regeneration was examined by monitoring absorbance changes 

at 650 nm, using 720 nm as a reference to correct for wavelength-independent 

baseline changes (method of Jabben et al., 1974). Initially it was verified 
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Fig. 6.2 Absorption spectra of 2 superimposed 8-day old maize leaves, 

recorded at a fast speed at room temperature. Non-irradiated ( ), 

after 12 s red light (R) (649 nm) followed by 2 min ( ), 5 min (-.-.-) 

and 11 min ( ) of darkness. 
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that the shift of the peak position of Chl(lde) observed in maize leaves 

(Section 6.2.5) had no significant influence on the measurements at 650 nm. 

Assuming that the absorption bands are Gaussian in shape (Chapter 2, Section 

2.14) they can be described (e.g. , Talsky et al., 1978) as 
(-2/s2)(A-A r 

A v = A ev max 
A max 

where A is the absorbance at wavelength A , A m a x is the maximum absorbance 

(or peak height), 2ŝ  is the distance between the 2 inflection points of the 

band and A m a x is the peak position. The value for ŝ  is related to HW as 

2ŝ  = 1.67 HW. The Chl(ide) band in maize leaves before the Shibata shift has 

its maximum at about 685 nm (C685) and a HW of about 17.5 nm (Section 6.2.5). 

During the Shibata shift the peak position of the band shifts to 672 nm (C672) 

and its HW increases to 19 nm. We calculate that at 650 nm, C685 and C672 

contribute 0,001% and 2.1%, respectively, of their maximum absorbance. The 

final absorbance increase at 650 nm during P650 regeneration was 100-150% of 
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Fig. 6.3 Absorption spectra of etioplast preparations, a. a crude, 

washed preparation from 8-day old dark-grown maize leaves, non-irradiated 

( ) and after 12 s red light (649 nm) followed by 2 min ( ), 11 min 

(-.-.-) and 35 min ( ) of darkness, b. a crude, washed preparation from 

8-day old maize leaves red pre-irradiated (5 min 658 nm, 5 umol m- 2s- 1) 17 

h prior to etioplast isolation, non-irradiated ( ) and after 12 s red 

light (649 nm) followed by 1 min ( ), 3 min (-.-.-), 4.5 min (— — ) 

and 21 min ( ) of darkness. 
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700 nm 700 nm 

Fig. 6.4 Absorption difference spectra (red minus dark) of a. two 

superimposed 8-day old maize leaves irradiated with saturating red light 

(R) (649 nm), previously dark-grown leaves, - leaves 

pre-irradiated with R (5 min 658 nm, 5 umol m-2 s-1) 7 h before recording 

of the spectrum, b. etloplasts isolated from 8-day old dark-grown maize 

leaves, a crude, washed preparation, R irradiated at 22 °C, - - - a 

Sephadex G-50 purified preparation, R irradiated at 0 °C. 

the initial absorbance decrease as a result of P650 photoconversion, i.e. 

40-60% of the absorbance increase at 685 nm (Fig. 6.4; Section 6.2.3). The 

contribution of C685 to the absorbance at 650 nm calculated from these data is 

insignificant, however 3.5-5% of the absorbance increase at 650 nm in leaves 

can be attributed to the absorbance of C672. Since the beginning of P650 

regeneration coincides with the end of the Shibata shift (see below), only the 

initial absorbance increase at 650 nm could be due to the Shibata shift 

(Fig. 6.5). Similarly, in isolated etioplasts absorption measurements at 

650 nm are probably not significantly influenced by the wavelength shift of 

Chl(ide). 

The absorbance of P636 at 650 nm is about 14% of the value at its peak 

wavelength. Therefore, absorbance changes at 650 nm represent photoconversion 

and subsequent regeneration of the total photoconvertible PChl(ide) pool 

rather than of P650 alone. However, as the major part of these changes is due 

to P650, they are referred to here as P650 photoconversion and regeneration. 

In 8-day old dark-grown maize leaves, P650 regeneration in the dark 

following P650 photoconversion showed a lag phase of several minutes 

(Fig. 6.5). The duration of the lag phase is dependent on temperature 

(Fig. 6.6). At 0 °C, even after 1 h of darkness (D) no P650 regeneration was 

observed. A standard R pre-irradiation (Chapter 3, Section 3.2.2) given 
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12 18 24 30 
Dark period after 

Fig. 6.5 Absorption changes at 650 nm and 690 nm, using 720 nm as a 

reference, in darkness at 22 °C following irradiation with a saturating 10 

s red light (R) (649 nm). The durations of the lag phase of P650 

regeneration and the Shibata shift are defined by the crossing of the 

extrapolated dashed and dotted lines, respectively, with the base line. 

8-day old dark (D)-grown maize leaves without (a) and with (b) R 

pre-irradiatlon (5 min 658 nm, 5 umol m-^ s"*) 17 h prior to measurement. 

several hours before PChl(ide) photoconversion shortened the lag phase (Fig. 

6.6) in 8-day old seedlings. This effect was even more pronounced in 9-day 

old seedlings (Table 6.1). The effect of R was partially reversible by FR 

(Table 6.1) indicating involvement of P, which is in agreement with the 

16r 
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Fig. 6.6 Duration of the lag phase in P650 regeneration (for its 

definition see Fig. 6.5) in 8-day old dark-grown maize leaves in the dark 

following protochlorophyll(ide) photoconversion as a function of 

temperature and red (R) pre-irradiation. Open symbols: dark-grown leaves, 

closed symbols: leaves pre-irradiated with R (5 min 658 nm, 5 

umol m-2 s-*) 5 to 22 h prior to the measurements. 
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literature (Section 6.1). Contrary to intact leaves, P650 regeneration in 

isolated etioplasts showed no lag phase (Fig. 6.7). 

After the lag phase, the absorbance at 650 nm in intact leaves increased 

approximately linearly with time for several minutes (Fig. 6.5), after which 

the rate slowed down. In some experiments, P650 seemed to reach a steady 

state level after about 30-40 min, corresponding with 100-150% of the initial 

dark level. However, in other experiments the absorbance at 650 nm continued 

to increase slowly. This appeared independent of temperature or R pre-

irradiation. The rate of P650 regeneration after the lag phase was higher in 

R pre-irradiated intact leaves than in dark controls (e.g., Fig. 6.5 and 

Table 6.1). Again, FR gave a partial reversion of the R effect (Table 6.1). 

Results of similar experiments with etioplasts are summarized in Table 6.2. 

In isolated etioplasts, unlike leaves, P650 regeneration was observed at 0 °C. 

Even at this temperature, the absorbance at 650 nm increased at the beginning 

of measurement (15-30 s after R irradiation) without a lag phase. In order to 

estimate the absorbance at 650 nm immediately after PChl(ide) photoconversion, 

Table 6.1 The effect of various pre-irradiatlon treatments on P650 

regeneration and the chlorophyll(ide) Shibata shift at 22 °C in 

darkness following photoconversion of P650. Data are given for two 

superimposed 8- or 9-day old dark-grown maize leaves. P650 photo­

conversion was brought about by 17 s red light (R) (649 nm). Data are 

results of two independent experiments for 8-day old leaves and of 

one experiment for 9-day old leaves. 

Sample Pre-irradiation P650 regeneration Shibata 

treatment shift 

lag phase half time3 (min) 

(min) (min) 

8-day old Db 8.8 8.9 9.1 

leaves Rc + -1 h D 6.3 4.5 6.8 

R/FRe + -19 h D 8.0 5.5 7.5 

FRd + -19 h D 9.0 7.4 9.4 

9-day old D 13.5 12.0 10.8 

leaves R + 22 h D 6.4 4.5 6.6 

R/FR + 22 h D 7.6 6.5 9.1 

a time after the lag phase until 50% of the amount of photoconverted P650 

was regenerated 

*> D: darkness 
c R: 655 nm (1.9 mmol m-^ given in 20 s) 
d FR: far-red light of 750 nm (20 mmol m~2 given in 5 min) 
e R/FR: FR followed R immediately 

The data in the table are accurate to about 1%. 
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Fig. 6.7 Absorption changes in darkness at 22 °C following irradiation 

with 8 s saturating R (649 nm) in a crude, washed etioplast preparation 

from 8-day old dark-grown maize seedlings, measured at 630 nm ( D ) , 650 nm 

( O ) , 670 nm ( O ) and 680 nm ( A ) , using 730 nm as a reference. 

differences with the final level were plotted logarithmically against time and 

the resulting straight line was extrapolated to time zero. Irrespective of R 

pre-irradiation i_n vivo, the final level of regenerated P650 was between 20% 

and 70% of the initial amount of P650 in crude, washed etioplast preparations 

(13 experiments) and about 100% in Sephadex G-50 purified preparations (2 

experiments). A final level was reached after about 30 min at room 

temperature. At 0 °C, regeneration was much slower (Table 6.2) and continued 

for several hours. After prolonged dark periods at room temperature (1 h or 

longer), the absorbance at 650 nm decreased again, probably as a result of 

Table 6.2 P650 regeneration in etioplasts isolated from 8-day old 

dark-grown or red pre-irradiated maize leaves (D and R etioplasts, 

respectively). 

Sample Temperature Half time3 of Fraction of No. of 

(°C) P650 P650 experiments 

regeneration regenerated 

(s) (%) 

D etioplasts 0 

23 ± 2 

R etioplasts 23 ± 2 

725 24 

104 ± 1 9 52 ± 10 

179 ± 37 55 ± 12 

a time for 50% of the final absorption increase at 650 nm to be 

obtained 
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etioplast deterioration. There was no indication in isolated etioplasts of 

the enhancement of the P650 regeneration rate by R pre-irradiation that was 

observed in leaves. 

6.2.5 Wavelength shifts of chlorophyll(ide) bands 

Immediately after a brief R irradiation, maize leaves showed an absorption 

maximum at 685 nm (Fig. 6.2). The initial rapid shift from about 678 to 685 

nm reported in the literature (e.g., Bonner, 1969) was not observed at room 

temperature. However, at 77K the absorption maximum of newly formed Chl(ide) 

was at 679 nm when leaves were frozen in liquid nitrogen immediately upon R 

irradiation and at 683 nm when a dark period of 1-2 min was inserted between R 

and cooling. 

Within several minutes after R irradiation at room temperature, the 

absorption maximum shifted from 685 (HW 17.5 nm) to 672 nm (HW 19 nm) 

(Fig. 6.2). This shift is referred to as the Shibata shift. A small band at 

672 nm appeared to be already present in spectra recorded within 1-2 min after 

R irradiation. In such spectra, the ratio C672 : C685 was about 1 : 5. 

During the Shibata shift the ratio increased to about 4 : 1 . The method of 

Jabben and Mohr (1975) was adopted to study the duration of the Shibata shift 

(for its definition see Fig. 6.5). After irradiation of the leaves in the 

sample compartment of the spectrophotometer, the absorption change at 690 nm 

was measured, using 720 nm as a reference. The first reliable measurements 

were made about 30 s after a 4-12 s R irradiation. In several experiments a 

16 

18 20 22 24 26 28 
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Fig. 6.8 Duration of the Shibata shift (for its definition see Fig. 6.5) 

in 8-day old dark-grown maize leaves as influenced by temperature and red 

light (R) pre-irradiation. Open symbols: dark-grown leaves, closed 

symbols: leaves pre-irradiated with R (5 min 658 nm, 5 jjmol m~2 s-l) 5 to 

22 h prior to the measurements. 0: data from absorption measurements, A : 

data from fluorescence measurements (Chapter 7). 
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small initial increase in the 690 nm absorption was observed, probably caused 

by the initial fast shift of the Chl(ide) peak from 678 to 685 nm. Kinetics 

of the changes at 690 nm have already been shown in Fig. 6.5. 

A strong temperature dependence of the duration of the Shibata shift • in 

leaves was observed (Fig. 6.8). At 0 °C no absorption decrease at 690 nm or 

absorbance increase at 672 nm occurred for at least 1 h. A standard R 

pre-irradiation shortened the duration of the Shibata shift (Fig. 6.8). The R 

effect appeared to be partially reversed by FR (Table 6.1) implicating the 

involvement of P. In all experiments, P650 regeneration in maize leaves did 

not start until the Shibata shift was (almost) complete. 

Although in fluorescence emission spectra of etloplast preparations shifts 

of the peak position of newly formed Chl(ide) were clearly observed (Kraak and 

Spruit, 1980; Chapter 7 ) , similar shifts were not obvious in absorption 

spectra. Curve analysis showed that the 676 nm Chl(ide) absorption band of 

etioplasts after irradiation could be fitted with considerably smaller error 

using 2 bands with peak positions at 672 and 685 nm than with a single band at 

676 nm. The HWs of the 2 bands were similar to those in intact leaves. The 

ratio C672 : C685 immediately after R irradiation was much higher (about 

1 : 1) in isolated etioplasts than in intact leaves (about 1 : 5 ) . The slow 

absorption decrease at 680 nm and absorption increase at 670 nm (Fig. 6.7) 

indicate a slight increase of the ratio in darkness following R irradiation. 

6.2.6 Stability of newly formed chlorophyll(ide) 

Newly formed Chl(ide) appeared less stable in isolated etioplasts than in 

intact leaves. During continuous recording or after a storage period in 

darkness, a marked absorption decrease attributed to Chl(ide) destruction was 

observed in etioplast preparations. Instability of newly formed Chl(ide) was 

also observed in isolated barley etioplasts (Griffiths, 1975). 

6.3 Discussion 

Photoconversion and subsequent dark regeneration of P650 was demonstrated 

in 8-day old dark-grown leaves and isolated etioplasts from maize by 

absorption (difference) spectrophotometry. The kinetics of P650 regeneration 

in isolated etioplasts differed considerably from those in leaves. At room 

temperature, P650 regeneration in isolated etioplasts started at a high rate 

immediately after a brief R treatment, whereas a lag phase of several minutes 

was observed in intact leaves. At 0 °C, P650 regeneration occurred in 

isolated maize etioplasts (Section 6.2.4) confirming the observations in 

barley etioplasts (Griffiths, 1975). However, in intact maize leaves no P650 

regeneration was observed during 1 h at 0 °C. Virgin (1955) found no evidence 

for P650 regeneration at 0 °C in barley leaves after a dark period of 8 h. 

In maize leaves the amount of regenerated P650 was 100-150% of the amount 

before photoconversion and in etioplast preparations only 20-100%. The low 

regeneration in isolated etioplasts may be due to simultaneous degradation of 

P650. A decrease of P650 absorption during storage of maize etioplasts was 
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observed, confirming the observations of Horton and Leech (1972; 1975). 

Griffiths (1974b; 1975) reported a substantial decrease in photoconvertible 

PChl(ide) when barley etioplasts were lysed. Disappearance of the absorption 

band of P650 can be due to denaturation of the holochrome protein (Gassman, 

1973; Dujardin, 1976) or to a (reversible) alteration of the PChl(ide)-

lipoprotein complex to a non-photoconvertible form (Horton and Leech, 1972; 

Gassman, 1973a). Alternatively, disaggregation of dimeric P650 into a 

monomeric form (e.g., Butler and Briggs, 1966) might be the cause of the 

disappearance of the P650 absorption band. According to Henningsen (1970), 

physical treatments inducing a derangement of the tubular membranes of the 

prolamellar body (PLB) result in formation of photoactive P636 from P650 and 

complete denaturation of the PLB membranes results in formation of 

photoinactive P628. It is possible to speculate that during storage of 

isolated etioplasts P650 decreases as a result of alteration of the PLB 

structure after disruption of the plastid envelope. However, electron 

micrographs of broken etioplasts show a PLB structure similar to that of 

intact etioplasts (see Chapter 2, Fig. 2.2). In vivo transformation of P650 

by H2S into P636 and/or P628 has been observed to be reversible (Gassman, 

1973a). Griffiths (1975) showed that addition of NADPH to an etioplast 

membrane preparation with maximum absorption around 630 nm restored their P650 

(and P636) content. This observation provides an alternative explanation for 

the decrease of the P650 content during storage of etioplasts. Leakage of 

NADPH from the etioplasts upon deterioration of the etioplast envelope may 

cause transformation of P650 to photoinactive PChl(ide). 

In maize leaves, P650 photoconversion gave rise to C685 and some C672. The 

presence of a Chl(ide) absorbing at 668-672 nm immediately after P650 

photoconversion has been reported by several authors, e.g. Klockare and 

Virgin (1983). In the experiments here with maize leaves, the ratio 

C672 : C685 after P650 photoconversion was low and increased considerably 

during the Shibata shift. In isolated etioplasts, about 50% of newly formed 

Chl(ide) was already in the C672 form at the time of the first measurements 

(1-2 min after photoconversion of P650). Hardly any increase of C672 was 

observed in subsequent darkness. 

It has been observed (e.g., Goedheer, 1961; Brodersen, 1976) that no P650 

regeneration occurs as long as all Chl(ide) is still in the C685 form. The 

measurements here with intact leaves confirm this. Under all conditions, the 

completion of the Shibata shift was observed to coincide with the start of 

P650 regeneration. Also the data for isolated etioplasts, where fast P650 

regeneration occurs, agree with these observations since a large proportion of 

Chl(ide) was already present as C672 soon after R irradiation. The above 

observation is commonly explained by assuming that C685 formed by 

photoreduction of P650 is still attached to the holochrome protein (e.g., 

Henningsen e_t al. , 1974). Only after removal of Chl(ide) can new PChl(ide) 

become attached to the protein. Dissociation of Chl(ide) from the holochrome 
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is assumed to take place during or after the Shibata shift. Binding of free, 

photoinactive PChl(ide) to the holochrome protein could then result in 

regeneration of P650. Indeed, during regeneration of P650 a concomitant 

decrease of P628 was observed (Fig. 6.7). On the other hand, Oliver and 

Griffiths (1982) proposed that in leaves C685 is stable until a significant 

amount of PChl(ide) has accumulated by jle novo synthesis. Dissociation of 

Chl(ide) from the holochrome, accompanied by the absorption shift of 685 to 

672 nm, is then induced by PChl(ide). 

The aim of the present experiments was, to examine the effect of Pfr on 

P650 regeneration in isolated etioplasts. In maize leaves, formation of Pfr 

shortens the duration of the Shibata shift as well as the lag phase of P650 

regeneration. Moreover, the rate of P650 regeneration after the lag phase is 

higher in the presence of Pfr. In isolated etioplasts from dark-grown and R 

pre-irradiated plants there was no lag phase in P650 regeneration. The rate 

of P650 regeneration in isolated etioplasts appeared not to be increased when 

the leaves had received R pre-irradiation. In the following chapter (7), a 

possible influence of Pfr on the rate of the dark shifts of the fluorescence 

emission maxima of newly formed Chl(ide), both in intact leaves and isolated 

etioplasts is described. 
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7 THE SHIBATA SHIFT IN MAIZE LEAVES AND ISOLATED ETIOPLASTS - FLUORESCENCE 

STUDIES 

7.1 Introduction 

Absorption studies (Chapter 6) indicate that the rate of the Shibata shift 

in maize leaves is stimulated by the far-red light (FR) absorbing form of 

phytochrome, Pfr. In isolated maize etioplasts, the 77K fluorescence emission 

maximum of newly formed chlorophyll(ide) (Chl(ide)) was observed to shift to 

shorter wavelengths (blue shift) at room temperature (Kraak and Spruit, 1980). 

In this chapter, the effect of red light (R) pre-irradiation on the rate of 

this iji vitro "Shibata-like" fluorescence shift is examined. Data on P650 

regeneration were obtained concomitantly and are compared with those obtained 

from absorption studies. A few experiments with bean leaves and bean 

etioplast preparations, containing only mesophyll cell plastids, were included 

to examine whether their fluorescence characteristics differed from those of 

maize, containing both mesophyll cell and bundle sheath plastids. 

Protochlorophyll(ide) (PChl(ide)) photoconversion and dark shifts of the 77K 

fluorescence emission maxima of newly formed Chl(ide) were also examined in a 

holochrome preparation from bean leaves. 

7.2 Results 

7.2.1 Fluorescence spectra - general aspects 

In this chapter, fluorescence emission spectra measured at 77K will be 

considered, unless otherwise indicated. Spectra were recorded from 500 to 800 

nm. Curve analysis was applied to the 620-710 nm region. Fluorescence 

studies of changes in pigment composition meet with some complications that 

are not observed in absorption spectroscopy. Energy transfer from P636 to 

P650 and from P650 (and P636?) to Chl(ide) occurs and, moreover, during or 

following shifts of fluorescence maxima of newly formed Chl(ide), changes in 

fluorescence yield are to be expected (Thorne, 1971a,b; Van der Cammen, 1982). 

Fortunately, changes in fluorescence yield of Chl(ide) observed at room 

temperature (Section 7.2.10) appeared not to occur at 77K. Therefore, the sum 

of the Chl(ide) peaks of spectra of maize leaves could be used as an internal 

standard. For etioplast preparations containing carboxymethyl cellulose (CMC) 

and acriflavin (Chapter 2, Section 2.12), acrlflavin fluorescence was used as 

a standard. Comparing this with the method used for leaves confirmed the 

validity of the above procedure. 

7.2.2 Derivative spectra 

The use of derivative spectroscopy in the resolution of composite bands has 

been outlined in Chapter 2, Section 2.13. The various Chl(ide) and PChl(ide) 

bands were not completely resolved in second derivative spectra of leaves and 

etioplast preparations. On the other hand, in fourth derivatives the noise 

was often too large to allow an accurate estimation of the band parameters. 
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Considerable trial and error was therefore involved before the most suitable 

parameters could be introduced in the "ACCU" program for curve analysis, the 

criteria being a small standard error and a minimum number of bands. 

7.2.3 Fluorescence spectra of dark grown maize leaves and isolated etioplasts 

The fluorescence emission spectra of an 8-day old maize leaf and isolated 

etioplasts are shown in Fig. 7.1. The main band at 656 nm (F656) originates 

from P650 and P636 (Kahn et al., 1970) and a weaker band at 630 nm (F630) can 

be ascribed to P628. A very weak band around 643 nm was sometimes visible in 

the zero order spectra. Derivative spectra revealed this band in all spectra 

and it is proposed that it is due to emission from P636 (e.g., Kahn et al., 

1970). Calculated half band widths (HWs) are 16.5 nm for F630, 15 nm for F643 

and 10 nm for F656, both for leaves and etioplasts. Vibrational bands, i.e. 

emission bands originating from vibrational energy levels of PChl(ide), are 

responsible for the long-wavelength tails of the spectra. 

In isolated etioplasts, the relative height of F656 appeared considerably 

lower than in leaves (Table 7.1), in agreement with results of absorption 

studies (Chapter 6 ) . Data from spectra of etloplast preparations containing 

CMC and acriflavin showed that during storage of etioplasts at 4 °C in 

darkness, the height of F656 further decreased. After storage for 20 h, only 

about half of F656 remained. Concomitantly, F630 and F643 increased to about 

150% and 130% of their original magnitudes, respectively. Decreased energy 

transfer from P636 to P650 may be the reason for the increase of F643, rather 

than an increase in the absolute amount of P636. However, P628 is probably 

formed from P650 during storage of etloplast preparations. 

7.2.4 Photoconversion and subsequent regeneration of protochlorophyll(ide) 

When dark-grown leaves or etioplast preparations were irradiated at room 

temperature for 4 s with 649 nm (25 W m"~2 or 135 umol m-' s - * ) , saturating 

PChl(ide) photoconversion, 77K fluorescence emission at 656 nm was 

considerably reduced and emission bands of Chl(lde) were observed (see Figs. 

7.2 and 7.3 and Section 7.2.5). Experiments with freshly isolated etioplasts 

containing CMC and acriflavin showed that on an average F630/F518 (the height 

of F630, divided by the height of the acriflavin emission band at 518 nm) and 

F643/F518 in spectra of preparations frozen to 77K immediately after R were 

97% and 107%, respectively, of the values in non-irradiated preparations. 

This indicates that P628 (F630) is not photoconverted by R, in agreement with 

absorption studies. The latter indicated that part of P636 is photoconverted, 

whereas its fluorescence (F643) slightly increases. This apparent discrepancy 

may be explained by a simultaneous decrease of energy transfer from P636 to 

P650. Energy transfer from P636 (via P650?) to Chl(ide) may also occur 

(Thorne, 1971a) but with lower efficiency than energy transfer from P636 to 

P650. 

Peak positions and HWs of F630 and F643 in leaves and etioplasts after R 

irradiation were similar to those in non-irradiated samples. However, both 
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Fig. 7.1 77K fluorescence emission spectra of 8-day old dark-grown maize 

leaves (a), a crude, washed etioplast preparation isolated from similar 

leaves (b) and a protochlorophyll(ide) holochrome preparation from 10-day 

old dark-grown bean leaves (c) fitted by the sums of Gaussian components by 

the "ACCU" computer program. Data points were read at 1 nm intervals from 

the original spectra and are plotted. The line through the points 

represents the sum of the component curves. The difference between 

observed and computed fluorescence at each point is shown, with its 

magnification factor, below the spectra. Excitation was at 425 nm. The 

spectra have been corrected for instrument response. 
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derivative spectra and curve analysis consistently showed fluorescence 

emission by the small amount of P650 remaining after R irradiation (Section 

6.2.3) to have its peak at somewhat shorter wavelength (654.5 nm) than in 

non-irradiated samples (656 nm). The HWs of F656 and F654.5 were similar. 

In leaves, the low level of this F654.5 remained essentially constant 

during the first few minutes after R (Figs. 7.2 and 7.4), which is in 

agreement with results of absorption studies. After this lag phase, 

fluorescence emission by P650 both increased and shifted from 654.5 to 656 nm. 

Energy transfer from excited PChl(ide) to Chl(ide) slows down the increase of 

F656, whereas energy transfer from P636 to P650 also influences the magnitude 

of F656. Therefore, determinations of the duration of the lag phase of F656 

re-appearance as shown in Table 7.2 can only be an approximation. 

Nevertheless, as was the case in absorption studies, a strong temperature 

Table 7.1 Relative heights of the protochlorophyll(ide) fluorescence 

emission bands at 77K in various samples as computed by the ACCU computer 

program. For etioplast preparations, only data of spectra recorded 

shortly after etioplast isolation are used. 

Sample Relative height3 of No. of 
spectra 

F630 F643 F655 examined 

D maize leavesb 10 7 83 3 

R maize leaves0 15 7 78 3 

D bean leavesd 10 7 83 1 

D maize etioplastse 30 13 57 6 

R maize etioplastsf 33 12 55 6 

D bean etioplastsg 35 13 52 1 

D bean PChl(ide) holochrome" 8 28 64 2 

3 Percentage of the sum of the heights of the three protochlorophyll(ide) 

bands 

° 8-day old dark-grown maize leaves 
c 8-day old maize leaves pre-irradiated for 2 or 5 min with 658 nm light (5 

umol m~2 s-*) (R) about 16 h prior to recording of the spectra 

" 11-day old D bean leaves 
e Crude, washed etioplast preparations from 8-day old D maize leaves 

f Crude, washed etioplast preparations from 8-day old maize leaves 

pre-irradiated for 0.5, 2 or 5 min with R about 16 h prior to etioplast 

isolation 

8 Crude, washed etioplast preparation from 10-day old D bean leaves 

h Protochlorophyll(ide) holochrome from 10-day old D bean leaves in 

glycerol-tricine buffer 3:1, pH 8.0 
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Fig. 7.2 77K fluorescence emission spectra of 8-day old previously 

dark-grown maize leaves, cooled immediately (a) and after a dark period of 

4 min (b) or 20 mln (c) at 22 °C following irradiation with saturating red 

light (4 s 649 nm, 134 pmol m~2 s~l). Excitation was at 425 nm. See also 

Fig. 7.1. 
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Fig. 7.3 77K fluorescence emission spectra of a crude, washed etioplast 

preparation from 8-day old dark-grown maize leaves, cooled immediately (a) 

and after a dark period of 1.5 min (b) or 10 min (c) at 22 °C following 

irradiation with saturating red light (4 s 649 nm, 134 pmol m~2 s - '). 

Excitation was at 425 nm. See also Fig. 7.1. 
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Fig. 7.4 Relative heights of the 77K fluorescence emission bands of the 

various protochlorophyll(ide) and chlorophyll(ide) pigments in spectra of 

8-day old maize leaves recorded after various dark (D) periods at 22 °C 

following a saturating red irradiation (4 s 649 nm, 134 umol m- 2 s-1) (R). 

All fluorescence spectra were normalized for the sum of the bands at 680 

and 692 nm. O : F655, O : F680, A : F692. a. dark-grown maize leaves, 

b. maize leaves red pre-irradiated (5 mln 658 nm, 5 umol m~2 s-1) about 16 

h prior to recording of the spectra. 

effect was observed in maize leaves. In agreement with absorption studies, a 

short (2 or 5 min ) R pre-irradiation (658 nm, 0.6 or 1.5 mmol m~2) appeared 

to decrease the duration of the lag phase. 

Table 7.2 Estimated duration of the lag phase of 

F655 re-appearance in 8-day old dark-grown (D) and 

red pre-irradiated (R) maize leaves (see Table 7.1 

for details) at various temperatures. 

Temperature Estimated lag phase (min) 

( °C ) 
D leaves R leaves 

13 10-30a n.d. 

19 9 8 
20 7 n.d. 

22 5.5 4 

24 4 3 

a after 30 min a substantial amount of 

re-appeared 

n.d., not determined 

F655 had 
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Spectra of etioplasts were made with samples from a stock stored at 4 °C in 

darkness. The period between recording of the first and last spectrum of a 

series was usually in excess of 10 h. It was observed that within a given 

time interval, less F656 re-appeared after photoconversion of P650 in "aged 

etioplasts" than in fresh samples. Taking this into account, F656 

re-appearance in isolated etioplasts was observed without a lag phase (Figs. 

7.3 and 7.5). After a prolonged dark period following R irradiation, the F656 

level decreased. Table 7.3 shows data on the duration of the dark periods 

after which half the final level of F656 was reached at various temperatures. 

Although the data are only provisional, they indicate that R pre-irradiation 

in vivo has no significant effect on the rate of F656 re-appearance in 

isolated etioplasts. These data agree with data from absorption studies 

(Chapter 6 ) . 

7.2.5 The initial red shift of the main chlorophyll(ide) band in maize leaves 

and isolated etioplasts 

Isolated etioplasts contain relatively small amounts of photoconvertible 

PChl(ide) compared with intact leaves (Chapter 6; Section 7.2.3). 

Consequently, only small amounts of Chl(ide) are formed by In vitro R 

irradiation. In etioplasts isolated from R pre-irradiated maize leaves (R 

etioplasts), shifts of the emission maxima of JJ2. vitro formed Chl(ide) are 

partially obscured by the relatively large Chl(ide) band resulting from the R 

0..-1I-

30 " 6 0 12 18 " 34 

D a r k p e r i o d a f t e r R ( m i n ) 

Fig. 7.5 Relative heights of the fluorescence emission bands at 77K of the 

various protochlorophyll(ide) and chlorophyll(ide) pigments in spectra of 

etioplasts Isolated from 8-day old maize leaves, recorded after various 

dark periods following a saturating red irradiation (4 s 649 nm, 134 

umol m-^ s-*) (R) in vitro. Spectra were normalized for the sum of the 

bands at 674-677 nm and 692 nm (a, b), or acriflavin fluorescence was used 

as an Internal standard (c). O : F655, A : F674-677, ^> : F692. a. a 

crude, washed etloplast preparation from dark grown leaves, at 22 °C, b. a 

similar etioplast preparation as in a, at 0 °C, c. a crude, washed 

etloplast preparation from leaves pre-lrradiated for 30 s with 658 nm red 

light (0.85 W m~2 or jumol m~2 s_1) 17 h prior to etioplast isolation, at 

22 °C. 
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Table 7.3 Half-time of F655 re-appearance in etioplasts 

isolated from 8-day old dark-grown or red pre-irradiated 

maize seedlings (D and R etioplasts, respectively) (see 

Table 7.1 for details) at various temperatures. 

Temperature Half time of P655 re-appearance (min) 

( °C ) 
D etioplasts R etioplasts 

19 1 n.d. 

20 n.d. 2 

21 2 1 

23 0.5 1 

24 0.5 n.d. 

n.d., not determined 

pre-irradiation. Therefore, in later experiments an JJI vivo pre-irradiation 

of 0.5 or 2 min instead of 5 min 658 nm (0.85 W m~2 or 5 umol m-' s-*) was 

given. Although such treatments photoconverted only part of PChl(ide) into 

Chl(ide), they resulted in 65 and 85%, respectively, of the potentiation of 

rapid Chi a_ accumulation in white light by a standard R pre-irradiation, 

respectively (Chapter 3, Fig. 3.5). 

In spectra of leaves frozen to 77K immediately after a saturating 4 s 

irradiation with R of 649 nm, two Chl(ide) fluorescence bands are present 

(Fig. 7.2a): a main band at 692 nm which originates from C685 and a weaker 

band at 674 nm visible as a shoulder in the spectra, which can be ascribed to 

C672. The corresponding bands in isolated etioplasts were observed at 688 and 

674 nm (Fig. 7.3a). In maize leaves, only the last part of the shift of the 

main band from 690 to 694-696 nm (e.g., Gassman et al., 1968) could be 

observed: within a dark period of 10 s at room temperature the peak position 

shifted from 691.8 to 692.8 nm. These bands will be referred to collectively 

as F692. In isolated etioplasts, a red shift of the main fluorescence peak 

was more pronounced. The peak shifted from 688 to 692 nm within 1 min at room 

temperature (Fig. 7.3). At 0 °C, the duration of this shift was about 3 min 

(Table 7.4). To conform to the situation in leaves, the initial main Chl(ide) 

band in isolated etioplasts will be referred to as F692. No effect of tn vivo 

R pre-irradiation on the rate of the initial red shift in isolated etioplasts 

was detected (Table 7.4). 

7.2.6 The Shibata shift in maize leaves and isolated etioplasts and the 

effect of red pre-irradiation 

In intact leaves, F692 began to decrease and a band at 680 nm (F680) was 

formed after a dark period of 1 - 2 minutes following R irradiation (Figs. 
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7.2 and 7.4) (Shibata shift). In isolated etioplasts, unlike in leaves, F692 

decreased and F674 increased immediately in the dark following R irradiation 

(Figs. 7.3 and 7.5). After its initial fast increase, the ratio F674 : F692 

continued to increase slowly in several experiments. 

For reasons dicussed below (Section 7.2.7), the decrease of the F692 band 

was used as a measure for the Shibata shift rather than the change of the 

ratio F692 : F680. Such data fit in well with those derived from absorption 

measurements (Chapter 6, Fig. 6.8). Fluorescence studies support the 

conclusion of absorption studies that R pre-irradiation appears to decrease 

the duration of the Shibata shift in maize leaves. 

In etioplasts stored for several hours at 4 °C in darkness ("aged 

etioplasts"), the amount of F674 formed upon photoconversion of PChl(ide) was 

as high as, or even higher than in fresh etioplasts. However, the amount of 

F692 formed was considerably lower. Therefore, the storage period before 

PChl(ide) photoconversion has to be taken into account. In one experiment the 

etioplast samples were irradiated in rapid succession, which appeared the best 

procedure. In this experiment the duration of the "Shibata-like" shift was 

relatively long (Table 7.5), suggesting that "ageing" of etioplasts increases 

the rate of the "Shibata-like" shift. It is therefore conceivable that in 

"ideal", completely native etioplasts, rates approaching those in intact 

leaves could be observed. The data shown in Table 7.5 suggest a small 

increase in the rate of the "Shibata-like" shift in isolated etioplasts 

induced by R pre-irradiation in vivo. However, results were variable and 

further experiments with simultaneously irradiated etioplasts would be needed 

Table 7.4 Estimated duration of the initial red shift 

of the fluorescence maximum of newly formed 

chlorophyll(ide) from 688 to 693 nm in etioplasts 

isolated from 8-day old dark-grown or red pre-irradiated 

maize leaves (D and R etioplasts, respectively) (see 

Table 7.1 for details) at various temperatures. 

Temperature Duration of the red shift (s) 
( oc ) 

D etioplasts R etioplasts 

0 165 n.d. 

19 55 n.d. 

20 n.d. 60 

21 n.d. 50 

22 50 n.d. 

23 40 45 

25 30 n.d. 

n.d., not determined 
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to examine whether the difference between etioplasts isolated from dark-grown 

and R pre-irradiated plants is statistically significant. 

7.2.7 Other shifts in maize leaves and isolated etioplasts 

Immediately after R irradiation, the fluorescence spectra of maize leaves 

showed a weak band at 674 nm in addition to the main band at 692 nm (Fig. 

7.2). The ratio of the peak heights of the bands was 1 : 5 , i.e. similar to 

the ratio of the peak heights of the corresponding absorption bands. After a 

1-2 min dark period, the peak height of "F674" increased and a red shift of 

the peak was obvious in derivative spectra and curve analysis. Near 

completion of this wavelength shift, F680 had appeared and a weak band at 

about 669 nm was observed (Fig. 7.2c). The HWs of the "intermediate forms" 

between F674 and F680 exceeded those of F674 and F680 by several nm. It is 

now proposed that the intermediate forms are in fact composed of both F674 and 

F680, the latter being formed in increasing amounts from F692 by the Shibata 

shift. Indeed, curves could be fitted equally well with one intermediate form 

and with two bands, with peaks at 674 and 680 nm (Fig. 7.2b). The band at 669 

nm may then be formed by a blue shift from F674 (see Section 7.3). Since P650 

was present in insignificant amounts at the time F669 was first detected 

(Fig. 7.4), F669 can not be attributed to a vibrational band of P650. 

In isolated etioplasts, a red shift of F674 to 677 nm was observed which 

Table 7.5 Estimated half time of the "Shibata-like" 

fluorescence shift in etioplasts isolated from 8-day old 

dark-grown or red pre-irradiated maize seedlings (D and R 

etioplasts, respectively) (see Table 7.1 for details) at 

various temperatures. 

Temperature Half time of the "Shibata-like" shift (s) 
( oc ) 

D etioplasts R etioplasts 

0 180 n.d. 

19 40 n.d. 

20 - 20 

21 45 35 

22 100a n.d. 

23 30 25 

24 20 n.d. 

a The etioplast samples of this series were irradiated in 

rapid succession soon after isolation and after an 

appropriate dark period at 22 °C were cooled and stored at 

77K until measurement 

n.d., not determined 
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was faster but less complete than the similar one in intact leaves: its 

duration was less than 1 min at room temperature and about 3 min at 0 °C. No 

lag phase was observed for this shift in isolated etloplasts. As in the case 

of leaves, F677 in isolated etioplasts is probably composed of F674 or F669 

and F681. The complicated behaviour of bands in the 669-680 nm region led to 

the decision to use the decrease of F692 rather than the ratio F692 : F680 as 

a measure for the Shibata(-like) shift (Section 7.2.6). 

7.2.8 Fluorescence characteristics of bean leaves, etioplasts and proto-

chlorophyll(ide) holochrome 

The fluorescence spectra of primary leaves from 11-day old dark-grown bean 

seedlings and etioplasts isolated from 10-day old bean seedlings, resembled 

spectra of maize leaves and etioplasts with regard to peak positions, HWs and 

ratio of the heights of the PChl(ide) bands. Following R irradiation, similar 

shifts of Chl(ide) emission peaks in bean leaves and etioplasts were observed 

as in the case of maize. 

A PChl(ide) holochrome preparation in glycerol-tricine buffer 3:1, pH 8.0, 

was obtained from 10-day old dark-grown bean leaves. The fluorescence 

spectrum of non-irradiated PChl(ide) holochrome showed a main peak at 653 nm 

with distinct shoulders at about 630 and 644 nm (Fig. 7.1). Maximum emission 

550 600 650 
Wav eI en g t h 

700 750 
(n m) 

Fig. 7.6 77K absorption spectra of a protochlorophyll(ide) holochrome 

preparation from 10-day old dark-grown bean leaves in glycerol-tricine 

buffer 3:1, pH 8.0. : non-irradiated; — — : warmed to 5 °C, 

irradiated for 3 min with red light (649 nm, 134 umol m- 2 s-1) (R) at 5 °C 

and subsequently recooled to 77K; : warmed to 5 °C, R irradiated 

for 3 min at 5 °C, kept in darkness for 210 min at 19.5 °C and 

subsequentely recooled to 77K. 
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Fig. 7.7 77K fluorescence emission spectra of the bean 

protochlorophyll(ide) holochrome preparation of Fig. 7.6, cooled to 77K 

immediately after irradiation for 6 s with red light (649 nm, 134 

umol m-2 s-*) (R) (a) or after a dark period of 30 min (b) or 126 min (c) 

following R irradiation at 19.5 °C. Excitation wavelength: 425 nm. See 

also Fig. 7.1. 
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by P650 at 653 nm as compared to 656 nm for leaves was also observed by 

Kahn et al. (1970). Whereas in intact leaves a fluorescence band at F654.5 

remains after R irradiation, F653 in the holochrome preparation proved largely 

photoconvertible. The band with maximum emission at 642 nm was relatively 

high in bean PChl(ide) holochrome as compared to F643 in bean and maize leaves 

and etioplasts (Table 7.1). The 77K absorption spectrum of bean PChl(ide) 

holochrome showed a peak, at 639 nm and only a shoulder at 652 nm (Fig. 7.6), 

in agreement with data of Kahn et al. (1970). Upon cooling to 77K, the 

absorption maximum of P636 shifts slightly to the red and the P650 absorption 

is increased more than the P636 absorption (Kahn et al., 1970). Apparently, 

the ratio of P650 : P636 in bean PChl(lde) holochrome is even lower than in 

etioplasts. Consequently, relatively less energy can be transferred from P636 

to P650 and emission by P636 is observed at 643 nm (Fig. 7.1). 

Immediately after photoconversion of PChl(ide) holochrome, the 77K 

fluorescence emission maximum of the main Chl(ide) band was at 686 nm (Figs. 

7.7 and 7.8). Second and fourth derivative spectra and curve analysis 

revealed a second Chl(ide) band at 671 nm. During a dark period at room 

temperature following photoconversion, the low temperature ratio F671 : F686 

increased slowly (Figs. 7.7 and 7.8). A similar "Shibata-like" shift was also 

observed in holochrome absorption spectra (Fig. 7.6). 

7.2.9 77K fluorescence emission maxima of chlorophyll(ide) formed by in vivo 

red pre-irradiation of high and low fluence 

77K fluorescence emission spectra of maize leaves R pre-irradiated during 2 

or 5 min (658 nm, 0.6 and 1.5 mmol m~2, respectively) about 17 h prior to 

cooling and of etioplasts isolated from similar leaves showed a main band at 

680 nm and weaker bands at 669 and 692 nm. However, spectra of etioplasts 

isolated from leaves pre-irradiated with a subsaturating fluence of R (150 

HL. 
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Fig. 7.8 Relative heights of the 77K fluorescence emission bands of the 

various protochlorophyll(ide) and chlorophyll(ide) pigments in spectra of 

the bean protochlorophyll(ide) holochrome preparation of Fig. 7.6. The 

spectra were recorded after various dark periods at 19.5 °C following 

irradiation for 6 s with red light (649 nm, 134 umol m - 2 s-1) (R). 

O : F652, O : F671, A : F686. 



-81-

umol m-') showed a major band at 674 nm and weaker bands at 680 and 692 nm. 

Also, in a sample of etioplasts Isolated from dark-grown leaves, in which 

PChl(ide) was only partially photoconverted in vitro, the ratio F674 : F692 at 

77K was much higher than in similar samples following saturating irradiation. 

7.2.10 Changes in fluorescence yield of chlorophyll(ide) in maize leaves and 

isolated etioplasts at room temperature 

Maize leaves and isolated etioplasts were examined at room temperature for 

possible changes in Chl(ide) fluorescence yield as observed in bean leaves 

(Thorne, 1971a,b; Van der Cammen, 1982). Samples were irradiated within the 

fluorimeter with blue excitation light (see Section 2.12). P650 was rapidly 

photoconverted at this temperature. As soon as the light was turned on, the 

fluorescence emission spectrum was repeatedly scanned from 660 to 700 nm 

(Figs. 7.9 and 7.10). The first reliable measurements were about 25 s after 

the onset of the irradiation. In maize leaves, a slight initial decrease of 

the fluorescence yield of Chl(ide) formed by photoconversion of P650 was 

observed. The emission maximum shifted from 685.5 nm to 678 nm. Before this 

shift was completed, the fluorescence yield started to increase until after 

about 8 min at room temperature a final level was attained, which was almost 

250% of the original level. 

In etioplasts, the shift of the emission maximum of Chl(ide) was from about 

684 nm to 680 nm. This shift took place immediately after the onset of 

irradiation and was accompanied by a decrease rather than an increase of the 

Chl(ide) fluorescence yield (Figs. 7.9 and 7.10). 
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Fig. 7.9 Fluorescence emission spectra at room temperature during 

continuous irradiation with blue excitation light (425 nm). a. spectra of 

an 8-day old dark-grown maize leaf, recorded at 21 °C. Peaks reached after 

about 25 s (1), 55 s (2), 2 min (3), 3 min (4), 5 min (5) and 8 min (6), b. 

spectra of a crude, washed maize etioplast preparation from dark grown 

leaves, recorded at 22 °C. Peaks reached after about 20 s (1), 40 s (2), 

1.5 min (3), 3 min (4), 4.5 min (5), 8 min (6) and 11 min (7). 
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Fig. 7.10 Changes in peak height ( O ) and peak position ( A ) of 

chlorophyll(ide) fluorescence emission bands at room temperature during 

continuous irradiation with blue excitation light (425 nm) (B), a. an 

8-day old dark (D)-grown maize leaf, at 21 °C, b. a crude, washed 

etloplast preparation from similar leaves, at 22 °C. 

7.3 Discussion 

Visual inspection of 77K fluorescence emission spectra of maize leaves and 

isolated etioplasts reveals a shift of the peak position of newly formed 

Chl(ide) in darkness at room temperature. However, the existence of 

overlapping bands and the occurrence of simultaneous shifts complicated 

kinetic studies. Particularly in the case of R pre-irradiated samples 

Chl(ide) resulting from the pre-irradiation masks wavelength shifts of newly 

formed Chl(ide). In such cases, curve fitting was indispensible. However, 

derivative spectroscopy as well as curve fitting have their pitfalls (Shrager, 

1983; Vandeginste and De Galan, 1975). Application of these methods to 

fluorescence spectra of maize leaves yielded results, essentially in agreement 

with data in the literature, both with respect to the various PChl(ide) and 

Chl(ide) components and to wavelength shifts, therefore indicating their 

usefulness. Gaussian curves provided a satisfactory fit for the bands in the 

620-710 nm region of the spectra. 

In 77K spectra of leaves and etioplasts from maize, four PChl(ide) bands 

were detected. In addition to the main bands at 630 nm and 656 nm, a 

fluorescence emission band at 643 nm was observed. This band can be 

attributed to P636, since a fluorescence emission peak at 643 nm was observed 

in spectra of leaves containing high levels of P636 after treatment with 

5-aminolevulinic acid (ALA) (e.g., Sundqvist and Klockare, 1975). Also in 

spectra of bean PChl(ide) holochrome with a high P636 : P650 ratio (Kahn 

et al. , 1970; Section 7.2.8) had a pronounced band at 643 nm. A 77K 

fluorescence band of P636 has not been previously reported in etiolated leaves 

older than 6 days without ALA treatment. Following saturating photoconversion 

of PChl(ide) by R, a small band remained around 654.5 nm in leaves and 

etioplasts, i.e. at slightly shorter wavelength than photoconvertible F656. 

In absorption spectra a corresponding persistent band around 650 nm was 

observed, in agreement with data of Virgin and French (1973). A 

non-photoconvertible PChl(ide) species with maximum 77K emission at 649 nm was 

detected by El Hamouri and Sironval (1980) after incubation of isolated 
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cucumber etioplasts. The F654.5 : F630 and F654.5 : F643 ratios in isolated 

etioplasts were similar to those in intact leaves and did not increase during 

storage at 4 °C in darkness. In 77K fluorescence spectra of bean PChl(ide) 

holochrome, a phototransformable band was observed at 653 instead of 656 nm. 

Apparently, in this sample the configuration of the holochrome protein is 

altered somewhat by the isolation procedure resulting in a change of the 

fluorescence emission maximum of P650, without affecting its capacity for 

phototransformation. 

In agreement with results of Horton and Leech (1972; 1975) for maize 

etioplasts and of El Hamouri and Sironval (1980) for cucumber etioplasts, a 

decrease of the etioplast P650 content was observed during storage. 

Concomitantly, P628 was observed to increase, suggesting that P628 is formed 

from P650. Whether P636 changed during storage can not be concluded from 

these fluorescence studies (Section 7.2.3). However, absorption measurements 

showed the ratio P636 : P628 in isolated etioplasts to be higher than in 

leaves, so that apparently part of P650 is also transformed to P636 during 

isolation. 

Absorption spectroscopy proved more suitable than fluorescence emission 

spectroscopy for studies on P650 regeneration in darkness. However, 

fluorescence studies confirmed results of absorption measurements in that R 

pre-irradiation shortens the duration of the lag phase in P650 regeneration in 

maize leaves. In absorption as well as fluorescence studies P650 regeneration 

without a lag phase was observed in isolated etioplasts. No stimulation by in 

vivo R pre-irradiation on the rate of P650 regeneration in isolated etioplasts 

could be observed. 

Both in leaves and in isolated etioplasts, photoconversion of PChl(ide) 

resulted in "immediate" formation of some F674. At the same time, F692 

(leaves) and F688 (etioplasts) were formed. In etioplasts isolated from 

seedlings pre-irradiated with a low R fluence, F674 was the dominant Chl(ide) 

band. This band probably corresponds to F675 observed by Litvin and Belyaeva 

(1971) in bean leaves after low irradiance or short-time irradiation. Lang 

and Sarvari (1974) have reported the presence of F674 in maize leaves and 

suggested that it represents a PChl(ide)-ChKide) dimer or aggregate. 

According to Litvin and Belyaeva (1971) this form is rather stable, however 

Lang and Sarvari (1974) reported a blue shift from 675 to 670-672 nm of the 

fluorescence maximum when partially phototransformed leaves were kept in the 

dark for 5-10 min. After complete photoconversion of PChl(ide) in maize 

leaves a similar shift of the fluorescence maximum from 674 to 669 nm is 

likely from the present experiments (Section 7.2.7). However, in maize 

seedlings which were pre-irradiated with a non-saturating R fluence, F674 was 

apparently stable. 

The initial 77K fluorescence emission maximum of the main Chl(ide) band 

formed in isolated maize etioplasts by a brief saturating R irradiation, 

shifted from 688 to 693 nm during a dark period of about 1 min at room 

temperature. In maize leaves, this initial red shift appeared to be more 
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rapid and only the last part was observed. According to Bonner (1969), in 

6-day old maize leaves the shift is complete after 20-30 s at 25 °C. In bean 

PChl(ide) holochrome such a red shift was not detected, in agreement with 

Schultz and Sauer (1972). Oliver and Griffiths (1982) obtained evidence that 

the Chl(ide) forms before and after the initial red shift, C678 and C685, 

respectively, represent ternary complexes of the enzyme protochlorophyllide 

reductase with Chl(ide) and either NADP+ (C678) or NADPH (C685). The NADPH 

required for the shift can be supplied by the high level of endogenous NADPH 

found in etioplasts in dark-grown plants (Mapleston and Griffiths, 1978). 

Lack of NADPH in holochrome preparations is held responsible for the absence 

of this shift (Oliver and Griffiths, 1982). A low supply of NADPH in isolated 

etioplasts may then explain the relatively slow rate of the shift in this 

object. El Hamouri and Sironval (1980) reported that after irradiation of 

isolated cucumber etioplasts, the 77K fluorescence emission maximum of 

Chl(ide) was at 688 nm. However, when a NADPH regenerating enzyme system was 

added before irradiation, the maximum was found at 696 nm. In addition to the 

effect of NADPH, the red shift has been ascribed to a re-arrangement of newly 

formed Chl(ide) (Mathis and Sauer, 1973), which is consistent with the change 

in fluorescence lifetime observed by Van der Cammen and Goedheer (1980). The 

shorter lifetime of the species after the shift indicates a greater 

interaction with its molecular environment. The corresponding decrease in 

fluorescence yield at room temperature observed by Thorne (1971a) in bean 

leaves, was hardly detectable in the present exerlments with maize leaves 

(Section 7.2.10), probably because of the rapidity of the shift. In isolated 

maize etioplasts, a decrease in fluorescence yield did occur, however no red 

shift of the Chl(ide) fluorescence emission peak was observed at room 

temperature. The decrease in fluorescence in isolated etioplasts is most 

likely caused by photobleaching of Chl(ide). 

A Shibata(-like) blue shift of the Chl(ide) emission maximum from 692 to 

680 nm was observed in maize and bean leaves, isolated etioplasts and bean 

PChl(ide) holochrome. Analysis of a number of spectra taken in the course of 

the shift consistently pointed to the presence of only the two components F692 

and F680 in this wavelength interval, no indications of intermediate peak 

position being observed. This suggests interconversion of two discrete 

pigment forms, rather than a continuous wavelength shift, as e.g. caused by a 

gradual change in the physical environment. That no isosbestic point was 

seen, may be explained by simultaneous changes in the level of a number of 

other pigments having appreciable fluorescence in the same region. The 77K 

emission maxima of the two Chl(ide) species involved in the Shibata(-like) 

fluorescence shift were at shorter wavelengths in the holochrome preparation 

than in leaves and isolated etioplasts, which may be attributed to a different 

conformation or some denaturation of the holochrome protein during isolation. 

The duration of the shift differed in the various preparations. The high 

glycerol concentration of the medium is probably the cause of the slow rate of 
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the shift in the PChl(ide) holochrome preparation (cf. e.g., Brodersen, 

1976). In contrast to the initial red shift, which was slower in isolated 

etioplasts than in leaves, the Shibata(-like) fluorescence shift appeared 

considerably more rapid in isolated etioplasts. In experiments with bean 

leaves, Thorne (1971a) also observed that the rates of the initial red shift 

and the Shibata shift are not necessarily proportional. Interestingly, ALA 

treated leaves having a high P636/P650 ratio typical of isolated etioplasts, 

similarly show a rapid Shibata-like shift (Klockare and Sundqvist, 1977; 

Oliver and Griffiths, 1982). In very young dark-grown leaves, as well as in 

the alga Euglena, where P636 is the only photoconvertible PChl(ide) species, 

Chl(ide) has its absorption maximum at 672 ran immediately after R irradiation 

and there is no Shibata shift (Klein and Schiff, 1972). Similar results were 

obtained with frozen and thawed leaves (Butler and Briggs, 1966). Nielsen 

(1975) observed that in a barley mutant producing only photoconvertible 

PChl(ide), the Chl(ide) absorption maximum was at 684 nm and no Shibata shift 

to 672 nm occurred. However, C672 was formed in this mutant after ALA feeding 

which results in formation of PChl(ide) (probably both P628 and P636) with 

absorption maximum around 633 nm. These observations suggest that the 

presence of initially photo-inactive PChl(lde) is a prerequisite for the 

Shibata shift. The inactive PChl(ide) possibly causes Chl(ide) to dissociate 

from the holochrome protein. This suggestion is supported by the observation 

of Oliver and Griffiths (1982), that the absorption maximum of Chl(ide) formed 

by irradiation of etioplast membranes enriched in photo-active PChl(ide), 

remains at 684 nm. Only upon addition of exogenous PChl(ide), the maximum 

shifts to 672 nm. It remains unclear whether the C672 which is formed either 

by a rapid Shibata shift or directly without a Shibata shift and the C672 

formed from C684 by a slow Shibata shift, are identical. Van der Cammen and 

Goedheer (1980) showed that C672 in bean leaves after freezing and thawing has 

a longer fluorescence lifetime than C672 after the Shibata shift, indicating 

that the interaction of C672 with its surroundings is less for the form after 

freezing and thawing. Possibly, inability of isolated etioplasts to 

incorporate Chl(ide) at specific sites of the membranes protecting them 

against photobleaching and denaturation, is the reason for the instability of 

newly formed Chl(ide) in the isolated organelles. 

Both absorption and fluorescence measurements indicate that R pre-

irradiation increases the rate of the Shibata shift in 8-day old maize leaves. 

Data obtained with isolated etioplasts were too variable to demonstrate a 

stimulation of the jtn vitro shift by jLn vivo R pre-irradiation. The results 

presented in Chapter 6 and in this chapter show that isolation of etioplasts 

and storage at 4 °C in darkness drastically influence the kinetics of both 

P650 regeneration and wavelength shifts of newly formed Chl(ide). Even if 

better techniques become available for the isolation of etioplasts, it appears 

doubtful whether an effect of an î i vitro R pre-irradiation can be 

established. Only a positive effect of R could provide evidence for a direct 

action of Pfr upon the etioplasts with regard to Chi accumulation. 



-86-

8 GENERAL DISCUSSION 

8.1 Sensitivity of plants to R potentiation of rapid chlorophyll accumulation 

The action of phytochrome (P) in the development of etioplasts to 

chloroplasts has been studied in seedlings of maize. This plant was chosen in 

preference to pea and bean (Raven, 1973), since etioplasts, isolated from the 

latter proved insufficiently stable for in vitro studies (e.g., Chapter 5 ) . 

Maize seedlings proved less sensitive to red light (R) potentiation of rapid 

chlorophyll (Chi) accumulation in white light (WL) than pea. However, 

dark-grown maize seedlings clearly show a small response in the very low 

fluence response (VLFR) region. Sensitivity of R pre-irradiated maize 

seedlings to a second R irradiation was considerably lower and such plants 

only • showed a low fluence response (LFR). This decrease in sensitivity upon 

de-etiolation is common in photomorphogenic reactions of plants, although the 

opposite effect has also been observed (Beggs et̂  al., 1980). A decrease in 

sensitivity was observed for photocontrol of hook opening in bean seedlings 

(Klein eit al. , 1967), of elongation of pea segments (Fox and Hillman, 1968), 

of hypocotyl elongation of Cucumis seedlings (Black and Shuttleworth, 1976) 

and of wheat seedling growth (Smith et al., 1985). Probably related to this 

phenomenon are the biphasic fluence-response curves observed for inhibition of 

maize mesocotyl elongation (Vanderhoef et al., 1979), for stimulation of oat 

coleoptile growth and for mesocotyl growth inhibition (Mandoli and Briggs, 

1981), for geotropic reactions of oat coleoptiles (Blaauw-Jansen and Post, 

1985) and for seed germination (e.g., Blaauw-Jansen and Blaauw, 1975; Small et 

al. , 1979; Cone, 1985; VanDerWoude, 1985). In most of these cases, a VLFR is 

observed at fluences of 10-^ to 10-^ umol m-' R, which produce 0.1% Pfr or 

less. The LFR on the other hand is observed at fluences of about 1 to 

103 umol m~2, producing from 1 to 86% Pfr (Cone, 1985; Vlerstra and Quail, 

1983). VLF and LF responses have also been observed for the phytochrome (P) 

induced increase in transcript abundance of mRNA of the light-harvesting Chi 

a/_b binding protein (Kaufman et al., 1985). Fluence-response curves for R 

induction of rapid Chi accumulation for pea (Raven and Shropshire, 1975; 

Spruit et al., 1979), bean (Spruit et al., 1979) and maize (Chapter 3) are 

more or less biphasic, however for bean a "VLFR" and a "LFR" were observed at 

fluences higher than in most other cases. In maize seedlings, the VLFR is 

saturated at about 1 umol m~2 R, resulting in about 0.1-1% Pfr, and within the 

error limits of the data the LFR appears to saturate at about 1 mmol m~2 R 

which attains the maximum % Pfr possible. 

Several hypotheses have been put forward to explain biphasic responses to 

R, some of which may also provide an explanation for the decrease in 

sensitivity of pea and maize seedlings to R, or loss of the VLFR, upon 

de-etiolation. Small et al. (1979) proposed that induction of germination in 

lettuce seed is under the control of two processes acting in series, the first 

being extremely sensitive to Pfr, the second much less so. A similar 
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mechanism might also be involved in R potentiation of rapid Chi accumulation. 

Several P controlled processes related to Chi accumulation in WL have been 

reported (Schopfer and Apel, 1983). An indication for at least two different 

initial actions of Pfr is provided by the observation of Jabben and Mohr 

(1975) that the effect of a R pulse on the rate of protochlorophyll(ide) 

(PChl(ide)) regeneration in mustard seedlings remains fully reversible by a 

far-red light (FR) pulse for more than 5 min, while reversibility of the 

effect of a R pulse on the duration of the Shibata shift is lost within 2 min. 

Effects of P on processes both inside the etioplasts (e.g., synthesis of 

5-aminolevulinic acid (Masoner and Kasemir, 1975)) and outside the organelles 

(e.g., induction of the appearance of mRNA activity for the nuclear coded 

apoprotein of the light-harvesting Chi aTb protein complex (Apel, 1979)) give 

additional support for the idea that more than one P controlled process is 

involved in induction of rapid Chi accumulation in WL. It would be 

interesting to determine the sensitivity of these processes to R in the light 

of Small's hypothesis. Blaauw-Jansen (1983) proposed the existence of a Pfr 

destroying enzyme which was assumed to become active at a certain critical 

level of Pfr, accounting for a plateau or even for a decrease in response, the 

latter increasing again when the enzyme becomes saturated upon increasing Pfr 

formation. In this model, the decrease in sensitivity to R upon de-etiolation 

in maize and pea seedlings requires the assumption that the enzyme remains 

active throughout the dark period of 24 h between both R pre-irradiations. 

Cone jat al. (1985) attempted to explain similar complex fluence responses on 

the basis of a Pfr dependent VLFR changing the response to the LFR range. A 

mechanism of P action based on interaction of dichromophoric P with receptors 

was proposed by VanDerWoude (1985). He assumed that P exists in three 

interconvertible species, viz. Pr:Pr, Pr:Pfr and Pfr:Pfr and that a VLFR 

involves interaction of Pr:Pfr with a specific receptor X. Photoconversion of 

at least one of the two chromophores of a dlmer into Pfr would induce binding 

of P. The VLFR to Pr:Pfr is thought to be dependent on the state of the 

membrane. For an explanation of the decrease in sensitivity to R induced by 

de-etiolation, it is essential that P remains bound to X after dark reversion 

of Pr:Pfr or PfrrPfr to Pr:Pr. A decrease in sensitivity to R, or loss of 

VLFR, upon de-etiolation is also readily explained by the P transport model 

proposed by Raven and Spruit (1973) (Chapter 1, Section 1.5). This model, 

which will be discussed in more detail in Section 8.4, is similar in some 

aspects to that of VanDerWoude (1985) but does not require the existence of P 

dimers. 

8.2 Phytochrome in etioplasts 

With regard to potentiation of rapid Chi accumulation, etioplasts are 

candidates for the sites of action of P. Cooke et al. (1975) and Smith and 

coworkers (e.g. , Evans and Smith, 1976a,b) had already demonstrated the 

presence of P in etioplasts isolated under a dim green safelight. 

Spectrophotometric measurements of etioplast preparations obtained in complete 

darkness from completely dark-grown maize, pea and bean leaves (D etioplasts) 
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showed that P was already associated with the organelles in darkness (Chapter 

4 ) . The P content of etioplasts isolated from leaves of R pre-irradiated 

maize seedlings (R etioplasts) marginally exceeded that of D maize etioplasts. 

It can not be excluded that P measured in etioplast preparations is an 

isolation artifact. However, some evidence for etioplast-associated P being 

involved in potentiation of rapid Chi accumulation in WL is provided by the 

observation that the potentiating effect of a R pre-irradiation of maize 

seedlings is still partially reversible by FR even after a dark period of 24 h 

(Chapter 3, Table 3.2). This implies the presence of Pfr molecules at that 

moment, whereas P measurements of leaf homogenates show disappearance of Pfr 

as a result of in_ vivo dark destruction in bulk P within 4 h of darkness after 

R irradiation. The amount of P associated with etioplasts did not decrease 

during the first 12 h of darkness (Chapter 4, Fig. 4.4), indicating that no 

dark destruction occurs in etioplast-associated Pfr. Different rates of Pfr 

dark destruction in a single plant species have been reported: in Amaranthus, 

Brassica and Pharbitis seedlings, the initial fast Pfr destruction is followed 

by a slow Pfr disappearance after a low Pfr/P ratio has been reached (Heim et 

al. , 1981; Brockmann and Schafer, 1982). Slow destruction rates or even 

complete stability of Pfr have been observed in tissues grown for a long 

period in light (Jabben and Holmes, 1983). However, evidence exists that P in 

light-grown tissue is a different species from that in etiolated tissue 

(Tokuhisa et al., 1985). It is attractive to attribute at least that part of 

R potentiation which shows a long-term reversibility by FR, to stable 

etioplast-associated Pfr. 

8.3 Phytochrome and developmental processes in isolated etioplasts 

Direct evidence for involvement of etioplast-associated Pfr in the 

potentiation reaction was sought by studying several light-induced 

developmental processes related to Chi accumulation and possible P involvement 

in isolated etioplasts. For comparison, these processes were also studied in 

vivo. 

Some limited ultrastructural development in WL was shown by isolated R oat 

etioplasts. However, this did not parallel development .in vivo. Preliminary 

experiments described in Chapter 5 show that prospects of detecting in vitro 

effects of Pfr on ultrastructural development of etioplasts are not very 

promising. 

When isolated maize etioplasts are briefly irradiated, chlorophyll(ide) 

(Chl(ide)) is formed from phototransformable PChl(ide). In subsequent 

darkness, regeneration of phototransformable PChl(ide) (mainly P650) occurs 

(Chapter 6 ) . The lag phase of several minutes in P650 regeneration as 

observed in vivo was absent in isolated etioplasts. Also, contrary to the 

situation in vivo, no effect of Pfr on the rate of P650 regeneration was 

observed. Moreover, the proportion of PChl(ide) that was photoconvertible in 

vitro appeared to be lower than In vivo. Curve fitting of 77K fluorescence 

emission spectra with Gaussian components was applied to study the kinetics of 
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wavelength shifts of the fluorescence maxima of newly formed Chl(ide) (Chapter 

7). Although the results have to be interpreted with caution, similar shifts, 

except for differences in their duration, appear to occur In vivo and in 

vitro. In vivo, the duration of the Shibata shift was shortened by Pfr, but 

this was less evident in isolated etioplasts. 

Observations on regeneration of photoconvertible PChl(ide) iji vivo are in 

agreement with reports in the literature (e.g., Kasemir, 1983b) in that Pfr 

appears to increase the blosynthetic capacity of seedlings to form Chl(ide) 

via a stimulation of PChl(ide) formation. However, the lag phase in Chi 

accumulation is more pronounced when greening occurs in WL of high irradiance 

(Virgin, 1972; Raven, 1973; Chapter 3 ) . Raven (1973) also observed that at 

0 °C, the initial photoconversion of PChl(ide) yielded significantly more 

(about 50%) Chl(ide) in green (529 nm) than in R (650 nm). This indicates 

that photodestruction of Chl(ide) also plays a role in the lag phase and 

indeed Pfr has been shown to protect Chi against photodestruction (e.g., 

Oelze-Karow et al., 1983). Singlet oxygen formed by energy transfer from 

Chl(ide) triplet states is probably responsible for Chl(ide) photodestruction 

and may ultimately lead to damage of other systems, e.g., prolamellar body 

(PLB) structure and enzymes involved in PChl(ide) synthesis (Dorsman et_ al. , 

1977; Ryberg et al., 1981). A stimulation of the rate of the Shibata shift 

(Jabben and Mohr, 1975; Chapters 6 and 7) may be part of the protection 

mechanism by Pfr, since Axelsson (1976) has shown that C685, the Chl(ide) form 

preceding the Shibata shift, is 4-5 times less photostable than the C672 form 

present afterwards. Carotenoids play an important role in protection against 

singlet oxygen (Krinsky, 1978). Although the bulk carotenoid content of maize 

seedlings was not increased by R pre-irradiatlon, R induced a slight 

stimulation of carotenoid formation in subsequent WL (Chapter 3). Association 

of Chi and carotenoids in pigment-protein complexes within the thylakoid 

membranes is probably required for protection of Chi. A relationship may 

exist between the rate of the Shibata shift and the rate at which Chi and 

carotenoids become incorporated into such complexes. The apoprotein of a 

major complex, the light-harvesting Chi a/_b protein complex, is synthesized on 

cytoplasmic ribosomes (Apel and Kloppstech, 1978). Both the amount of mRNA 

activity (Apel, 1979) and the steady-state level of mRNA sequences encoding 

the apoprotein (Gollmer and Apel, 1983) are controlled by Pfr. Probably, the 

two constituent polypeptides of the apoprotein are synthesized as soluble 

precursors which are transported across the plastid envelope by a 

post-translational mechanism, converted there to their smaller mature form and 

inserted into the thylakoids (Schmidt et al., 1980). Although the apoproteins 

of some Chl-protein complexes (CPs) appear to be synthesized within the 

plastids, that of at least one other CP, the minor Chi a/1) complex CP29, is 

under nuclear control (Green, 1982). It is not yet known whether newly 

synthesized Chl(ide) molecules in previously dark-grown or R pre-irradiated 

seedlings are bound immediately to the final protein complexes. With the 

present techniques, the proteins of these complexes are detectable only after 
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about 1 h or more irradiation. More early labile CPs have been detected 

(Tanaka and Tsuji, 1985), the synthesis sites of which are not known. 

However, the apoprotein of the ternary NADPH-PChl(ide) oxldoreductase complex 

is also synthesized in the cytoplasm and the role of the cytoplasm in 

providing plastids with structural proteins and other compounds which are 

essential for their development into chloroplasts becomes more and more 

appreciated. 

Changes of both ultrastructure and spectral characteristics of etioplasts 

which occur upon isolation may at least partially be attributed to disturbance 

of pigment-protein complexes. For example, isolation of etioplasts results in 

a decrease of phototransformable PChl(ide) which forms part of the ternary 

NADPH-PChl(ide) oxidoreductase complex (Griffiths, 1978), a major constituent 

of the PLB. Dehesh and Ryberg (1985) argue that the paracrystalline structure 

of the PLB is dependent on the presence of this complex. An alteration of the 

complex, which may be caused either by insufficient NADPH (Chapter 7) or by a 

lack of supply of the apoprotein from the cytoplasm, may account for both a 

decrease of photoconvertible PChl(ide) (Chapters 6 and 7) and the modified 

behaviour of isolated etioplasts with regard to PLB transformation (Chapter 

5). Failure of isolated etioplasts to successfully incorporate newly formed 

Chl(ide) within Chl-protein complexes may account for the lability of newly 

formed Chl(ide) (Chapter 6) and its sensitivity to photodestructlon (Chapter 

7). Furthermore, it is conceivable that isolated etioplasts are unable to 

form incipient grana (Chapter 5) because they lack essential polypeptides 

synthesized in the cytoplasm. 

Although the above findings suggest that P control of ultrastructural 

development, P650 regeneration and Shibata shift is mainly exerted from the 

cytoplasm, they do not necessarily imply that etioplast-associated P is not 

involved in Chi accumulation in WL. Isolated etioplasts may lack one or more 

factors originating in the cytoplasm, essential for the expression of the 

effect of etioplast-associated P on the above mentioned processes. 

Fractionation studies (Evans and Smith, 1976b; Chapter 4) have shown that P 

may be localized exclusively in, or attached to, the plastid envelope. This 

may point to a control by etioplast-associated P of the permeability of the 

plastid envelope for e.g. apoproteins of Chl-protein complexes as well as 

other essential compounds, such as metabolites from mitochondria (Wellburn, 

1984). Indeed, evidence for Pfr mediated changes in envelope permeability of 

both etioplasts and mitochondria has been presented by Hampp and Schmidt 

(1977). 

8.4 The locus of phytochrome action 

Chloroplast development as well as numerous other processes under P 

control are often characterized by biphasic fluence-response relationships 

which are difficult to interpret. It is indeed remarkable that the VLFR 

occurs upon transformation to Pfr of only one in a hundred thousand Pr 

molecules, or even less. Previous irradiation with R or even with green 
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"safelight" (Raven, 1973) results in loss of the VLFR. In such cases 

sensitivity to further activation decreases by several orders of magnitude. 

This behaviour is very clearly shown by the greening process in pea seedlings 

(Raven and Shropshire, 1975) and in maize seedlings (Chapter 3 ) . An 

attractive explanation for these effects appears to be offered by the 

phytochrome transport model, originally proposed by Raven and Spruit (1973) 

and discussed in Section 1.5 and Chapter A. The present experiments suggest 

that, upon an initial irradiation, migration of some 1% of total cytoplasmic P 

to maize etioplasts as Pfr is possible, leading to a local Pfr/P ratio of 

about 30%. This amount of migration satisfies the requirements of the 

transport model. Although it is notable that a pre-irradiation with a R 

fluence producing not more than 1% Pfr saturates the VLFR in maize seedlings 

(see Section 8.1) as well as in pea seedlings (Spruit et al., 1979), this does 

not prove that the etioplast is the only, or even the main target of Pfr 

migration in terms of the model. However, even if a (high) concentration of 

Pfr in other organelles is demonstrated, this would not necessarily invalidate 

the model. Nevertheless, some minor modifications of the original scheme seem 

to be necessary to adapt it to the present observations. 

Raven and Spruit (1973) observed that in seedlings of pea, bean and maize, 

the potentiating effect of R is not or only partially reversible by FR. 

However, if the R irradiation was followed, after an appropriate dark 

interval, by a second R irradiation, the additional potentiation by this 

second R in pea and bean was largely or completely FR reversible. These 

findings were successfully explained by their model assuming that the 

migration of Pfr is slow: FR being ineffective if applied during migration. 

In Chapter 3 it is shown that, if the effect of FR as such is accounted for, 

in maize both a first and a second R pre-irradiation are 60-80% reversible by 

FR. This may also apply to pea where it is more difficult to demonstrate, 

since the potentiating effect of a first FR pre-irradiation is about equal to 

that of R (e.g., Raven and Spruit, 1973) due to the large VLFR. On the basis 

of the model, an initial R pre-irradiation is predicted to be reversible by FR 

when Pfr migration is complete before FR irradiation starts (20 s in the 

present experiments). FR given after R will then revert receptor-bound Pfr to 

Pr and further binding by Pfr will be blocked since all receptor sites are now 

occupied. Interestingly, the Zea paradox (Hillman, 1967; Chapter 1, Section 

1.5) can be explained in a similar way. Indeed, a study on the time course of 

reversibility of the R effect by FR in bean provided evidence for a half life 

of Pfr migration of only about 3 s at room temperature (Spruit et al., 1979; 

Spruit, 1980). Such a rapid migration is in agreement with data from 

immunological studies (Pratt and Marme, 1976) and pelletability studies (Quail 

and Briggs, 1978). The occurrence of a second reaction which rapidly escapes 

reversibility by FR may account for the observed incomplete reversibility of 

the effect of R (see also Spruit et al., 1979). On the other hand, in maize 

seedlings the VLFR induced by a first R pre-irradiation is small in comparison 

to its effect in the LFR range, so that a possible difference in reversibility 
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of a first and a second R pre-irradiation would hardly be observable. 

The potentiating effect of a second R pre-irradiation given 24 h after a 

standard R pre-irradiation of maize seedlings is compatible with the P 

transport model when after the initial R irradiation Pfr dark reversion to Pr 

takes place at the receptors. In view of the small fraction of total cellular 

P bound to the receptors, this is not necessarily in disagreement with the 

established fact that in maize no dark reversion can be observed 

spectrophotometrically. In this respect, observations of Cordonnier et al. 

(1985) are of interest. Addition of a monoclonal antibody to a preparation of 

124-kilodalton oat P, which in the absence of antibody did not exhibit Pfr 

reversion, induced reversion of Pfr to Pr. Binding of Pfr to receptor sites 

in the cell might, as well as binding to antibody, result in Pfr reversion to 

Pr. The observation that the LFR upon a second R pre-irradiation is smaller 

than after a first R (Table 3.2), suggests that Pfr dark reversion may not be 

complete at the time of a second R pre-irradiation. This is compatible with 

the long-term reversibility by FR of the effect of a first R, discussed above. 

However, the interpretation of the additional potentiation of Chi accumulation 

by a second R pre-irradiation must be cautious, since 24 h is a sufficient 

period for many changes to occur during etioplast development, including the 

possible synthesis of new receptor sites. 

Although the results of the present studies can be explained without the 

assumption of P transport, they are equally consistent with the transport 

model as proposed by Raven and Spruit (1973) and do not contradict the 

assumption that the postulated receptor sites are located in or on the 

etioplasts. It appears attractive to attibute the VLFR to migration of Pfr to 

the etioplasts and/or other organelles or membranes. Part of the LFR may be 

attributed to photoconversion into Pfr of Pr already residing in the 

etioplasts in darkness. 

However, though there is now evidence that P is associated with etioplasts, 

no appreciable P effect on developmental processes could be observed once 

these organelles were removed from their natural environment. The effect of P 

on the level of gibberellins extractable from isolated etioplasts found by 

Cooke et al. (1975) and Evans and Smith (1976a) suggests that 

etioplast-associated P may be physiologically active. In the present study, 

indirect indications for involvement of etioplast-associated P in potentiation 

of rapid Chi accumulation in WL were obtained. It appears highly likely that 

for the development of etioplasts into chloroplasts, P processes associated 

with the etioplasts as well as with other cell components are important. 
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9 SUMMARY 

This thesis is concerned with the role played by phytochrorae (P) in the 

development of etioplasts into chloroplasts. 

Previously dark-grown maize seedlings are not as sensitive as pea seedlings 

to very low fluences of red light (R) with regard to induction of rapid 

chlorophyll (Chi) accumulation in white light (WL), but a very low fluence 

response (VLFR) has been established in this plant species as well. Much 

higher fluences of a second R pre-irradiation are required to give an 

additional effect (low fluence response or LFR). When the effect of far-red 

light (FR) as such is accounted for, the effects of both a first and a second 

R pre-irradiation are 60-80% reversible by FR in maize seedlings. In high 

irradiance WL, the lag phase of Chi accumulation is of considerably longer 

duration. This indicates that photodestruction of Chi plays a role in the 

occurrence of a lag phase in Chi accumulation. R has a relatively large 

effect in high irradiance WL (Chapter 3 ) . 

Phytochrome (P) was measured spectrophotometrically for the first time in 

purified etioplast preparations obtained in complete darkness from dark-grown 

seedlings (D etioplasts) (Chapter 4 ) . The P content of etioplast preparations 

from R pre-irradiated seedlings marginally exceeded that of D etioplasts. 

While the total P content of maize leaves, as measured in homogenates, 

decreased after R irradiation as a result of Pfr dark destruction, the P 

content of etioplasts from similar seedlings remained constant. 

Attempts to demonstrate a physiological effect of etioplast-associated P 

were not successful. Preliminary studies on ultrastructural development of 

etioplasts (Chapter 5) showed that the iri vitro development during 1 h WL did 

not completely parallel development _in situ. An effect of iii vivo R 

pre-irradiation on prolamellar body transformation, which was evident in situ, 

was not observed in vitro. In situ, formation of incipient grana in WL was 

stimulated by R pre-irradiation, however, isolated etioplasts proved incapable 

of forming incipient grana. 

In the dark, following a short irradiation, regeneration of 

phototransformable protochlorophyll(ide) (PChl(ide)) was observed in isolated 

etioplasts (Chapters 6 and 7 ) . However, regeneration kinetics differed from 

those In vivo and no effect of in. vivo R pre-irradiation could be 

demonstrated. In vivo, the rate of PChl(ide) regeneration was increased by 

Pfr (Chapter 6 ) . 

Wavelength shifts of the 77K fluorescence emission maxima of newly formed 

chlorophyll(ide) (Chl(ide)) after a short irradiation were studied in leaves 

and isolated etioplasts. Derivative spectroscopy and curve fitting were 

applied to study kinetics of these shifts (Chapter 7). The first shift, a red 

shift, was slower in isolated etioplasts than in leaves. No effect of R 

pre-irradiation was observed on the rate of this shift. The subsequent blue 

shift, the so-called Shibata shift, was more rapid, but less complete in 

isolated etioplasts than in leaves. Whereas in leaves the rate of the Shibata 



-94-

shift was increased by Pfr, this was hardly, if at all, detectable in isolated 

etioplasts. The amount of phototransformable PChl(ide) decreased and the rate 

of the Shibata shift increased during storage of isolated etioplasts at 4 °C 

in darkness. Newly formed Chl(ide) proved unstable in isolated etioplasts. 

The above results point to a decisive influence of the cytoplasm on the 

development of etioplasts in WL. In this respect, polypeptides of Chl-protein 

complexes synthesized in the cytoplasm may play an important role. However, a 

direct influence of etioplast-associated P in the development of etioplasts 

into chloroplasts, e.g. on permeability of the etioplast envelope, can not 

be excluded. Evidence for such an effect is found in the observation that the 

potentiating effect of a R pre-irradiation with regard to rapid Chi 

accumulation in WL is still partially reversible by FR after a dark period of 

24 h. While Pfr in bulk P had already disappeared due to dark destruction 

after 4 h of darkness, the amount of P associated with etioplasts appeared not 

to decrease (see above). It is attractive to attribute at least that part of 

R potentiation which shows a long-term reversibility by FR, to apparently 

relatively stable etioplast-associated Pfr. 

The results are discussed in relation to the phytochrome transport model of 

Raven and Spruit (Chapter 8 ) . It is concluded that, though they do not 

provide a direct support for the model, they are not in disagreement with it. 

The transport model still appears to give an attractive explanation for a 

number of P responses, such as the VLFR and the Zea P paradox. 
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10 SAMENVATTING 

De invloed van fytochroom op de ontwikkeling van etioplasten tot 

chloroplasten vormt het centrale thema van dit proefschrift. Het onderzoek 

was vooral gericht op de z.g. aanloopfase bij chlorofylvorming in wit licht. 

Door een korte voorbelichting van 8 dagen oude kiemplanten van ma'is met 

rood licht wordt inactief fytochroom, Pr, omgezet in de actieve vorra Pfr. De 

aanloopfase bij chlorofyl-accumulatie in wit licht is dan vrijwel afwezig. 

Volledlg in het donker opgegroeide kiemplanten zijn gevoelig voor zeer lage 

doses rood licht, maar bij een tweede rood-belichting zijn veel hogere doses 

vereist om een effect te verkrijgen (Hoofdstuk 3 ) . Belichting met ver-rood 

licht, onmiddellijk na belichting met rood licht, doet het effect van zowel 

een eerste als een tweede roodbelichting voor een groot deel teniet. In wit 

licht van hoge Intenslteit is de aanloopfase bij chlorofylaccumulatie langer 

dan in wit licht van lage intenslteit. Dit wijst erop, dat afbraak van 

chlorofyl onder invloed van licht een oorzaak is van deze aanloopfase. 

Voorbelichting met rood licht heeft een relatief grote invloed op 

chlorofylaccumulatie in wit licht van hoge intensiteit. 

Voor het eerst werd fytochroom spectrofotometrisch gemeten in preparaten 

van gezuiverde etioplasten, die in volledig donker waren ge'isoleerd uit 

kiemplanten die in volledig donker waren opgekweekt ("D etioplasten") 

(Hoofdstuk 4 ) . De hoeveelheid fytochroom in preparaten van etioplasten uit 

rood-voorbelichte planten was iets groter dan in D etioplasten, echter het 

verschil was nauwelijks significant. De totale hoeveelheid fytochroom in 

ma'iskiemplanten nam ten gevolge van donkerafbraak van Pfr sterk af na een 

voorbelichting met rood licht, in tegenstelling tot de hoeveelheid in 

etioplasten uit rood-voorbelichte planten. 

De afname van gevoeligheid voor rood licht na voorafgaande roodbelichting 

kan verklaard worden met een transportmodel voor fytochroom, dat in 1973 werd 

gepubliceerd door Raven en Spruit. De bovengenoemde resultaten kunnen met dit 

model in overeenstemming worden gebracht, als het model enigszins wordt 

gewijzigd. Hierbij wordt aangenomen, dat de receptor-plaatsen, waar de door 

een roodbelichting in het cytoplasraa gevormde Pfr-moleculen zich volgens het 

model zouden concentreren, zich in of op de etioplasten bevinden. In 

tegenstelling tot wat in het oorspronkelijke model verondersteld werd, blijken 

de receptor-organellen dan reeds in kiemplanten, die in het donker zijn 

opgegroeid, fytochroom (in de Pr-vorm) te bevatten. De aanwezigheid van 

Pr-moleculen in de etioplasten van in het donker opgegroeide kiemplanten biedt 

een goede verklaring voor het tweede deel van de dosis-effect curve voor 

inductie van snelle chlorofylaccumulatie in wit licht ("low fluence response" 

of LFR). Activering van de etioplasten door Pfr, dat zich na verhuizing 

vanuit het cytoplasma in deze organellen concentreert, zou juist het eerste 

deel ("very low fluence response" of VLFR) van deze curve verklaren. 

Verhuizing van slechts een klein, spectrofotometrisch nauwelijks meetbaar, 

deel van de totale hoeveelheid fytochroom uit het cytoplasma naar de 
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receptoren kan kwantitatief de grote gevoeligheid voor Pfr van kiemplanten die 

volledig in het donker gegroeid zijn en de afname in gevoeligheid na een 

eerste belichting, goed verklaren. Dat zowel het effect van een eerste, als 

dat van een tweede roodbelichting grotendeels door ver-rood licht omkeerbaar 

zijn in ma'isplanten, maakt een tweede wijziging van het model noodzakelijk. 

In het oorspronkelijke model werd verondersteld, dat Pfr na een roodbelichting 

langzaam verhuist, zodat de ver-rood-belichting tijdens de verhuizing 

plaatsvindt. In plaats daarvan wordt nu verondersteld, dat de verhuizing 

plaatsvindt voor het begin van de ver-rood-belichting. Een snelle 

"ontsnappingsreactie" zou dan verklaren dat het effect van rood licht niet 

geheel door ver-rood licht teniet wordt gedaan. Evenals in het 

oorspronkelijke model wordt aangenomen dat Pfr, dat zich in de receptoren 

heeft geconcentreerd, daar aanwezig blijft. Bij een tweede roodbelichting kan 

dan niet opnieuw een concentratie van Pfr in de receptoren plaatsvinden. Om 

het effect van een tweede roodbelichting in ma'iskiemplanten in overeenstemraing 

met het model te kunnen verklaren, wordt aangenomen dat donker-omzetting van 

Pfr in Pr in de receptoren plaatsvindt. 

Pogingen om een fysiologisch effect van het in de etioplasten aanwezige 

fytochroom rechtstreeks aan te tonen, door processen die in vivo door 

fytochroom be'invloed worden in ge'isoleerde etioplasten te bestuderen, hebben 

geen positief resultaat opgeleverd. 

De ontwikkeling van de ultrastructuur van ge'isoleerde etioplasten verliep 

niet geheel parallel aan de ontwikkeling van etioplasten in bladeren 

(Hoofdstuk 5). In bladeren werd een invloed van rood-voorbelichtlng op de 

verandering van de prolamellaire lichamen geconstateerd, maar niet in 

ge'isoleerde etioplasten. Het begin van de vorming van grana in etioplasten in 

bladeren werd gestimuleerd door rood-voorbelichting, maar ge'isoleerde 

etioplasten bleken niet in staat grana te vormen. 

In het donker na een korte belichting vond, zowel in bladeren als in 

ge'isoleerde etioplasten, opnieuw vorming van licht-omzetbaar protochloro-

fyl(lide) plaats (Hoofdstuk 6 ) . In bladeren versnelde rood-voorbelichting de 

vorming van deze voorloper van chlorofyl, maar in etioplasten ult 

rood-voorbelichte kiemplanten was de snelheid van vorming niet hoger dan in 

etioplasten uit in volledig donker opgegroeide planten. De kinetiek van de 

regeneratie van protochlorofyl(lide) in ge'isoleerde etioplasten verschilde van 

die in bladeren. 

Het fluorescentie-maximum bij 77K van chlorofyl(lide), dat door een 

lichtfllts uit protochlorofyl(lide) wordt gevormd, verschuift in het donker 

bij kamertemperatuur. De kinetiek van de optredende verschuivingen en de 

invloed van rood-voorbelichting daarop, werden bestudeerd bij bladeren en 

geisoleerde etioplasten (Hoofdstuk 7 ) . Hierbij werd gebruik gemaakt van 

afgeleide spectra en het ontleden van spectra in Gauss-krommes. De eerste 

waarneembare verschuiving van het maximum, naar langere golflengtes, bleek 

langzamer plaats te vinden in ge'isoleerde etioplasten dan in bladeren. 
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Rood-voorbelichting had geen invloed op de snelheid van deze verschuiving. De 

daaropvolgende verschuiving, naar kortere golflengtes (de Shibata shift), vond 

in ge'lsoleerde etioplasten sneller, maar minder volledig, plaats dan in 

bladeren. In bladeren nam de snelheid van de Shibata shift toe na 

rood-voorbelichting, maar eenzelfde effect van jLn vivo voorbelichting werd bij 

geisoleerde etioplasten niet of nauwelijks waargenoraen. In geisoleerde 

etioplasten nam de hoeveelheid licht-omzetbaar protochlorofyl(lide) af, en de 

snelheid van de Shibata shift toe, naarraate de etioplasten langer bewaard 

werden bij 4 °C in het donker. Pasgevormd chlorofyl(lide) bleek in 

geisoleerde etioplasten instabiel te zijn. 

Deze resultaten wijzen op een grote invloed van het cytoplasma op het 

vermogen van etioplasten om zich te ontwikkelen onder invloed van wit licht. 

Hierbij zouden polypeptiden van chlorofyl-eiwit complexen, die in het 

cytoplasma gevormd worden, een belangrijke rol kunnen spelen. Toch sluiten de 

resultaten een invloed van in de etioplasten aanwezig fytochroom op de 

ontwikkeling van etioplasten tot chloroplasten niet uit. Het in etioplasten 

aanwezig fytochroom zou bijvoorbeeld de permeabiliteit van de dubbele 

membraan, die de organellen omgeeft, kunnen beinvloeden. Door de volgende 

waarnemingen wordt een invloed van in etioplasten aanwezig fytochroom 

aannemelijk gemaakt. Het effect van een rood-voorbelichting op 

chlorofylaccumulatie in wit licht bleek na een periode van 24 uur nog 

gedeeltelijk omkeerbaar te zijn door ver-rood licht. Reeds 4 uur na een 

roodbelichting leek Pfr door donkerafbraak verdwenen te zijn, alleen de 

hoeveelheid fytochroom in etioplasten bleek constant te blijven (zie boven). 

Het is aantrekkelijk om tenminste dat deel van het effect van rood licht, dat 

na lange tijd nog omkeerbaar is door ver-rood, toe te schrijven aan Pfr, dat 

kennelijk in de etioplasten betrekkelijk stabiel is. 
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