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STELLINGEN 

L. Voor voltammetrische metaalspeciatie is de grootte van de diffusiecoSffi-
:ie'nt van net ligand vrijwel laltijd een noodzakelijk gegeven. 

)it proefschrift, hoofdstuk 2. 

!. De door De Lurdes Simoes Goncalves et al. gegeven interpretatie van voltam-
letrische experimenten aan metaal/kolloTd complexen is onzorgvuldig, omdat op 
mvoldoende gronden een eventuele bijdrage van gebonden metaal lonen aan de 
itroom is verwaarloosd. 

I. de Lurdes Simoes Goncalves, L. Sigg en W. Stumm, Environ. Sci. Technol., 
.9(1985)141. 

lit proefschrift, hoofdstuk 3. 

I. In het conductometrisch deel van hun studie naar de interactie van zink 
.onen met polymethacrylaat ionen in kaliumnitraat, besteden Kolawole en 
Hayemi ten onrechte geen aandacht aan het vrijkomen van gebonden kalium ionen 
ils gevolg van toevoeging van zink ionen. 

l.G. Kolawole en J.Y. Olayemi, Macromolecules, 14(1981)1050. 

lit proefschrift, hoofdstuk 6. 

. De door Britz voorgestelde verfijning van de berekening van gradienten op 
iasis van numerieke verdelingsfuncties, verkregen door gebruik van de Crank-
icolson methode, is zinloos. 

'.Britz, Anal. Chim. Acta, 193(1987)277. 

. De veronderstelling van Wells et al. dat het contactoppervlak van N-alkyl-
enzamiden op ODS kolommen niet alleen door de structuur van deze verbindingen 
epaald wordt, wekt twijfel omtrent de door hen opgestelde structuur-retentie 
elaties. 

.J.M. Wells, C.R. Clark en R.M. Patterson, J. Chromatogr., 235(1982)61. 

. Het is niet juist on a priori te beweren dat in geval van tensammetrische 
etectie in vloeistofstromen een grotere gevoeligheid ook een groter lineair 
ereik betekent, omdat het ruisniveau onafhankelijk is van de aard van de te 
etecteren verbinding. 

. Lankelma en H. Poppe, J.Chromatogr. Sci., 14(1976)310. 
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7. De veronderstelling van Lovric en Branica dat hun differentiele pulsvoltam-
metrisch signaal door een te grote integratietijd van net analoge geheugen in 
het meetinstruraent is verstoord, is vrijwel zeker onjuist. 

M. Lovric en M. Branica, J. Electroanal. Chem., 183(1985)107. 

8. Blj modelberekeningen aan fotochemische systemen voor waterstofproductie 
uit water verricht door Miller et.al., wordt de oxydatie van waterstof aan het 
katalysator oppervlak ten onrechte a priori verwaarloosd. 

D.S. Miller, A.J. Bard, G. Mclendon 
en J. Ferguson, J. Am. Chem. Soc. 103(1981)5336. 

J.M. Kleijn, Proefschrift, Landbouwuniversiteit, Wageningen, 1987, 
hoofdstuk 6. 

9. Indien auteurs van studieboeken met vraagstukken geen antwoordenlijst menen 
te moeten opnemen en daar als belangrijkste reden voor aanvoeren dat de 
methode waarmee het antwoord verkregen wordt belangrijker is dan het antwoord 
zelf, is het consequenter om een "methodenlijst" op te nemen. 

P.J. van Duin en A. Waasdorp, Analytische Chemie; vraagstukken, Agon Elsevier, 
Amsterdam, 1970. 

10. De volstrekte openheid van parlementaire enquetes betreffende vermeend 
wanbeleid kan een ondermijnend effect op de publieke opinie hebben. 

11. De term "permanent" waarmee kappers een bepaalde haarbehandeling 
aanduiden, heeft veeleer betrekking op de frequentie van het kapsalonbezoek 
dat uit die behandeling voortvloeit dan op de duurzaamheid van het resultaat. 

Proefschrift Hans G. de Jong 
Electrochemical Analysis of Metal Complexes 
Wageningen, 9 december 1987 



CHAPTER 1 

INTRODUCTION 

GENERAL 

Nowadays, heavy metals are used in a wide variety of industrial products 

such as paints (Pb,Cd), gasoline (Pb) and batteries (Pb,Cd,Ni,Zn). As a conse

quence of the industrial applications, the level of a number of heavy metals 

in the environment increases. Since even at low concentrations, these metals 

are harmful to living organisms, their accumulation in certain parts of the 

environment has become a well-known and serious problem [1]. 

The bioaccumulation and toxicity of heavy metals are mainly governed by 

their and nature and chemical state. Heavy metals show a tendency to form 

complexes with organic and inorganic ligands. This tendency is the mechanism 

of their toxic action e.g. interaction of heavy metals and natural polyacids 

such as RNA and DNA probably may account for their mutagenic and carcinogenic 

effects. Another important aspect of the tendency to form complexes is that 

naturally occurring chelating agents such as fulvic and humic acids appear to 

render heavy metals to be less toxic [1]. 

The serious pollution hazard of heavy metals demands reliable analytical 

techniques, which allow the detection of the very low concentration levels 

usually encountered in natural samples. Besides, methodes are required which 

specify the different chemical complex forms of a particular metal ('speci-

ation'). The most popular techniques in the analysis of heavy metals are 

Atomic Absorption Spectroscopy (AAS) and voltammetry [2]. 

The detection limit of both techniques is sufficiently low for most of the 

environmental samples, however only voltammetry allows direct speciation in 

the original sample. 

In natural samples, a great number of ligands such as proteins, humlcs, 

and fulvics are much larger than the uncomplexed metal ion. For such systems, 

voltammetry is still in its infancy due to a complete lack of a rigorous 

theory. The present study is concerned with developing such a theory against 

the background of applying voltammetry as a tool for heavy metal speciation. 

For the solution of a great deal of analytical problems the analytical 

chemist not only needs a thorough understanding of the method used, but also 
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FIGURE 1 : A typical voltammogram recorded under polarographic or 

stationary state conditions. 

of the physical chemistry of the system studied. This is particularly true for 

the analysis of heavy metals in natural samples. The natural complexing agents 

such as fulvic and humic acids are polyfunctional ligands and exhibit poly-

electrolyte-like behaviour in their interaction with heavy metals [3]. In 

studying this type of interaction, another electroanalytical method, conducto-

metry, has already been proven to be a very useful tool [3). Although its 

detection limit is insufficient for most environmental samples, conductometry 

is well suited for speciation purposes. Therefore the present study includes a 

treatment of the analysis of the conductivity of metal/polyelectrolyte sys

tems. 

VOLTAMMETRY 

In voltammetry, the current at a working electrode is measured as a 

function of the applied potential. When a repeating mercury electrode is 

employed as a working electrode the term polarography is used to distinguish 

this special form of voltammetry. A typical current-potential relation is 

shown in Fig. 1. Under polarographic or stationary state conditions a wave

like voltammogram is usually obtained. The plateau corresponds to the limiting 

situation where the concentration of the electroactive analyte (i.e. the 

component to be determined) is zero at the electrode surface. The concentra

tion gradient is at its maximum and the diffusion-controlled current takes a 

limiting value. In order to achieve this well-defined diffusion-controlled 



behaviour, efforts are made to avoid other forms of mass-transport of the 

analyte such as convection and conduction (or: migration). By avoiding vibra

tion and stirring during the actual measurement, convection is practically 

eliminated. Conduction effects are normally minimized by introducing an excess 

of an electroinactlve electrolyte. Therefore voltammetry is traditionally 

applied to systems with a low ratio between the concentration of the etectro-

active species and the inert electrolyte. 

Under conditions of diffusion control the limiting current, 1^, for a 

stationary planar electrode is given by the Cottrell equation which reads 

l£=nFADW(iTt)^ 

where n is the number of electrons involved in the electrode reaction, F the 

Faraday, A the surface area of the electrode, D and c are the diffusion 

coefficient and the bulk concentration of the analyte respectively and t is 

the time during which the elecrode potential is applied, i.e. the effective 

electrolysis time. 

Another important characteristic of the current-potential relation is the 

half-wave potential, E L . This is the potential at which the current is equal 

to half the limiting current. It permits qualitative identification of the 

analyte. 

Voltammetry of complexes 

Already in the early days of voltammetry, its potentialities for the 

study of metal complexes were recognized [4,5]. These systems consist in the 

simplest form of an electroactive metal ion (M) which associates with an 

electroinactlve ligand (L) to form an electroinactlve complex (ML) 

k 
a 

M + L ^ ML 

kd 

where ka and kj are the association and dissociation rate constants respec

tively. Charges of ionic species are omitted for the sake of simplicity. 

In a voltammetric experiment on the metal complex system, the consumption 



of M may be accompanied by dissociation of ML. Thus the comlpex may give rise 

to a net production of extra M which can be reduced. For this type of system 

the limiting current and the half-wave potential are at given experimental 

conditions governed by : (i) the homogeneous association/dissociation kinet

ics, i.e. the average life-times of M and ML, (11) the diffusion coefficients 

of M and ML. 

In the case of equal diffusion coefficients of M and ML, extensive theo

retical treatments have been given by various authors for different electrode 

geometries [6,10]. In fact, until now the electrochemical literature almost 

exclusively dealt with this kind of systems [11,12]. However, in natural sam

ples containing chelating agents such as fulvic and humic acids, the ligands 

are much larger than the uncomplexed metal and consequently their diffusion 

coefficient is significantly smaller. Although various authors carried out a 

lot of experimental work on the voltammetry of metal complex systems with 

large ligands such as fulvic and humic acids, proteins and synthetic polyacids 

[see ref. 3 for an extensive literature compilation], the importance of this 

aspect was only recently fully recognized [3,13,14]. In the last mentioned 

studies experimental data of labile complexes, that are complexes which give 

rise to a limiting current controlled by diffusion of ML, were analyzed using 

a tentative theoretical approach. In this respect the theoretical basis of 

voltammetry, which was advanced as one of the distinguished advantages [2] has 

been largely insufficient. The electrochemical literature on this subject only 

contains some tentative treatments [13,15] and some approximate theoretical 

studies [16,17] which suffer from quite severe limitations. Obviously, a 

rigorous treatment of the voltammetry of metal complex systems in which the 

diffusion coefficients of the species are different, is needed. The main part 

of the present study is concerned with the development of such a theory. 

CONDUCTOMETRY 

In conductometry the electrical resistance of an electrolyte solution is 

measured. The conductivity K of a sample of an electrolyte may be defined in 

the same way as for a metallic conductor 

K-1/RA 

where R is the resistance and 1 and A are the length and the surface area of 



the portion of the solution studied* For an electrolyte solution < is related 

to the concentration c and the molar conductivity X of the ions i.e., 

[XiCi 

As was already indicated earlier, the conductometric assessment of heavy 

metal/polyelectrolyte interaction is of relevance for the analysis of environ

mental samples and has been the subject of many experimental and theoretical 

studies [18-26]. Theoretical treatments of the conductivity of polyelectrolyte 

solutions are generally based on the assumption that the ions are either in 

some kind of bound state or are completely free [25]. As a consequence of this 

assumption the conductivity of a polyelectrolyte solution may be formulated as 

K m I fiXiCi 

where f^ is the fraction of ions of type i that are supposed to be completely 

free. The ions which are bound thus do not contribute to the overall conducti

vity of the solution. 

In analyzing conductometric titrations of polyelectrolytes with solutions 

of multivalent metal nitrates, eleven [3,27] employed a conductivity excess 

function, A K T , defined by 

AK^»AKJJ - AK_ 

where A K ^ is the change of conductivity of a solution without polyelectrolyte, 

upon addition of the metal ions and A<D is the same for the solution with 

polyelectrolyte. The interpretation of data using this function remained more 

or less qualitative [3,27] especially because the role of the conductivity of 

the polyion was uncertain. For the further development of conductometric 

analysis a quantitative interpretation of the conductivity excess function is 

needed. In the present study such an interpretation is given. The role of the 

conductivity of the polyion has been assessed for systems in which the inter

action between the counterions and the polyion is not specific. For such 

systems fj is dependent only on the nature of the counterions, provided that 

they have the same charge. The molar conductivity of the polyion can then be 



evaluated from the relation between the overall molar conductivity of the 

polyelectrolyte solution and that of the counterions [24]. 

THE PRESENT STUDY 

Purpose and overview of this study 

The main purpose of this study is to develop the electroanalysis of the 

interaction of heavy metals with ligands which are much larger than the metal 

ions. The methods used here, volt amine try and conduc tome try, are to be applied 

in such a way that the physical chemical characteristics of the metal complex 

systems can be quantified experimentally. At least it should be possible to 

evaluate the equilibrium amounts of complexed and uncomplexed metal. 

In the case of voltammetry this objective has led to the development of 

of a theory which gives a detailed description of the behaviour of the limit

ing current and the half-wave potential in metal complex systems with differ

ent diffusion coefficients of the species. This technique gives information 

about the stability constant of the complex and in certain cases also about 

the rate constant of the complex dissociation reaction. 

For the conductometric analysis, the conductivity excess function is the 

cornerstone for the interpretation of the data. Using the two state approach 

advocated by Manning [20,28,29] this function is quantitatively described. In 

this way information is obtained about the fractions complexed and uncomplexed 

metal ions. 

Model systems 

The purpose of the present study is to develop appropriate theory for the 

electrochemical behaviour of metal/polyelectrolyte systems and to (re)consider 

the interpretation of experimental data. Suitable model systems should meet 

the following requirements: 

i. the heavy metals should be polarographically active 

ii. the ligand should have such dimensions that its diffusion 

coefficient differs substantially from that of the free 

metal. 

As examples of the heavy metals Cd, Pb and Zn are chosen. They are 
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FIGURE 2 : Structural formulas of PAA and PMA. 

polarographically active and of environmental relevance. Humlc and fulvlc 

acids are llgands occurring In nature, but they are not homogeneous with 

respect to thermodynamics and kinetics of metal binding and diffusion coeffi

cient [30] and therefore they are not very suitable In the stage of verifying 

theory. A better choice Is a homofunctional synthetic polyacid such as poly-

acrylicacid (PAA) or polymethacrylicacid (PMA). The structural formulas of 

these two macromolecules are shown in Fig.2. To a certain extent the stability 

constant of metal/polyelectrolyte complexes can be manipulated by adjusting 

the amount of negative charge on the polyion and this is a suitable feature in 

verifying theoretical elaborations. The physical chemistry of the association 

between metal ions and highly charged polymeric anions is still under develop

ment and many theoretical investigations are carried out on this subject 

[28,29,31-36]. In their interaction with heavy metals fulvlc and humlc acid 

exhibit polyelectrolyte-like behaviour [3] and metal ion association occurs 

predominantly through carboxylic groups [37,38]. It is clear that PAA and PMA 

share interesting and important properties with fulvlc and humlc acids and 

therefore are suitable choices with respect to both the environmental rele

vance and the methodological objectives of this work. 

Outline of this thesis 

In chapter 2 a rigorous theoretical treatment is given for the voltam-

metric limiting current of metal complex systems in which the diffusion 

coefficients of the species involved are different. The equation for the 

limiting current is formulated In the Laplace domain and is rigorous with 

respect to the values of the complex association and dissociation rate con

stants as well as to the values of the diffusion coefficient of the species. 

It is valid for an excess of ligand and a stationary planar electrode. In a 

number of limiting cases e.g. equal diffusion coefficients of the species, and 



very small values of the diffusion coefficient of the complex, analytical 

expressions in the time domain are derived-

Chapter 3 is concerned with the behaviour of the limiting current as a 

function of the electrolysis time, the ratio of the diffusion coefficients of 

the species and the association/dissociation rate constants. New qualifica

tions to specify the behaviour of a metal complex are introduced. The lability 

concept is reformulated in an unambiguous and generalized manner. In order to 

facilitate practical use, some Cottrell plots and working curves are presen

ted. 

In chapter 4 the complete current-potential relation for voltammetry of 

metal complex systems is treated. The general relation Is again formulated in 

the Laplace domain. Besides its limitation to reversible electrode processes, 

it has the same range of validity as the limiting current equation of chapter 

2. The half-wave potential is obtained numerically from the general current-

potential relation and its behaviour as a function of the electrolysis time, 

the ratio of the diffusion coefficients of the species and the assoclatlon/-

dissociation rate constants is discussed. In some special cases, analytical 

expressions for the half-wave potential in the time domain are derived. 

In chapter 5 experimental data on the voltammetry of some heavy metal/-

polyelectrolyte systems are (re)considered. The Zn/PMA system was found to be 

labile at the experimental time scale i.e. from 0.01 to 0.1 s electrolysis 

time. The stability constants calculated from limiting current and half-wave 

potential data agreed resonably well. The Pb/PAA system is not labile at the 

same time scale. In this case the equations from chapter 2, 3, and 4 were 

needed to estimate the stability constant. 

In chapter 6 a procedure is described for the analysis of the conduct

ivity of solutions of anionic polyelectrolytes in which both mono- and di

valent counterlons are present. Alkali polyacrylate solutions with and without 

alkali nitrate were titrated with zinc nitrate. The results give a picture of 

the counterlonic atmosphere around the polyion. Up to a certain zinc/polyacid 

ratio the zinc ions are found to be bound quantitatively. The added zinc ions 

displace the bound alkali ions. The exchange ratio showed a discrete behaviour 

as a function of the zinc/polyacid ratio. For highly charged polyions this 

ratio is close to unity. The composition of the counterlonic atmosphere is 

found to be largely independent of the alkali nitrate concentration. 
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CHAPTER 2 

VOLTAMMETRY OF METAL COMPLEX SYSTEMS WITH DIFFERENT 
DIFFUSION COEFFICIENTS OF THE SPECIES INVOLVED 

PART I. ANALYTICAL APPROACHES TO THE LIMITING CURRENT 
FOR THE GENERAL CASE INCLUDING 
ASSOCIATION/DISSOCIATION KINETICS 

HANS G. DE JONG and HERMAN P. VAN LEEUWEN * 

Laboratory for Physical and Colloid Chemistry, Agricultural University, De Dreijen 6, 
6703 BC Wageningen (The Netherlands) 

KAREL HOLUB 

The J. Heyrovsky Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, 
Jilska 16, 11000 Praha-1 (Czechoslovakia) 

(Received 6th March 1987) 

ABSTRACT 

An exact solution is derived for the limiting current of a metal complex system for which the diffusion 
coefficients of the free and complexed metal are different. The solution is formulated in the Laplace 
domain and holds for a stationary planar electrode under conditions of an excess of ligand. It is valid for 
any set of values of the association/dissociation rate constants, which includes any value for the stability 
constant of the complex. In combination with a suitable inverse transformation method, highly interest
ing results are obtained for the current transients. The exactness of the treatment has been verified in 
various ways. For a number of limiting cases, fully analytical expressions in the time domain are derived. 
Important features appear, among them a generalized lability criterion for metal complex systems. 

INTRODUCTION 

The voltammetry of metal complexes has been a subject of considerable interest 
for many years. In the early days of polarography, the Czechoslovak school [1] drew 
attention to the specific potentialities of voltammetric techniques for the characteri
zation of homogeneous complexation reactions of electroactive metal ions. Since 
then, much electrochemical work on metal complexes has been done (see, for 

* To whom correspondence should be addressed. 

© 1987 Elsevier Sequoia S.A. 
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example, ref. 2), practically all of it being devoted to complexes with diffusion 
coefficients equal to that of the uncomplexed metal. In theoretical treatments, the 
approximation of equal diffusion coefficients has always been very welcome since it 
leads to substantial simplification of the derivations of expressions for currents, for 
example. We are now facing the situation that practically all of the experimental 
polarographic experience and the theoretical background are applicable only to 
systems with small inorganic and organic ligands, where the diffusion coefficients of 
the different species are approximately equal. 

In recent years, voltammetry has developed a high degree of popularity in the 
field of metal speciation in natural waters. Extensive lists of references to studies of 
heavy metal speciation in systems with large ligands such as humic acids, polysac
charides, polyelectrolytes, etc. can be given [3]. However, as indicated above, the 
theoretical basis for interpreting the experimental current data for these systems 
with strongly unequal diffusion coefficients is largely incomplete. Koutecky [4] 
derived an equation for the reduction current at a DME for the case of a (quasi-) 
monomolecular reaction scheme under the condition that the rate constants for the 
complex association/dissociation reactions are high with respect to the reciprocal 
time-scale of the experiment. Dogonadze's parallel treatment [5] for an RDE is 
limited by essentially the same kinetic prerequisites. Lovric and Ruiic [6] derived a 
current equation for the same type of reaction at a planar electrode, but their 
treatment is subject to the joint limitations of a large stability constant (practically 
all of the metal in complexed form) and not too different diffusion coefficients of 
the species. 

There is an apparent need for a more general theory of the voltammetric behavior 
of metal complex systems with different diffusion coefficients of the species. Such a 
theory should be rigorous, at least with respect to the magnitudes of the diffusion 
coefficients and the rate constants of the complex association/dissociation reac
tions. We intend to outline in a series of papers that both analytical and numerical 
approaches can be applied successfully in achieving this goal. The present paper is 
devoted primarily to the analytical solutions that can be arrived at for the elemen
tary system of an electroactive metal ion and an electroinactive complex for which 
(i) the diffusion coefficients are unequal, (ii) the rate constants of association/dis
sociation have finite values and (iii) the stability constant can have any value. 

FORMULATION OF THE PROBLEM 

In its most elementary form, a metal complex system consists of a metal ion M 
which may be reduced to the metal M', and a ligand L with which M may form the 
electroinactive complex ML: 

M +L?SML (1) 
U n e *j 
IvT 
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Charges of ionic species are omitted for the sake of simplicity. The rate constants ka 

and kA determine the stability constant K of the complex: 

K = kjk& (2) 

For semi-infinite diffusion of M, L and ML to or from a stationary planar 
electrode, we may write 

^ L = D M ^ + kd(cML-KcMcL) (3a) 

-£=Dh-^ + kd(cML-KcMcL) (3b) 

^ = ^ M L ^ - M « U L - KcMcL) (3c) 

with the boundary conditions 

f = 0, x>0 cML/cMcL = K 

t>0, x ->oo cM = cM, cL = c£, cML = cMh 

where c and c* denote the concentration and bulk concentration, respectively. In 
the limiting current regime, further boundary conditions for the system under 
consideration are 

t > 0, x = 0 < . 
\ acM L /9x , 3cL /3x = 0 (5b) 

Here, we will restrict ourselves to the case of an excess of ligand L, i.e. 
c * :s>

 (CM + CML)> S O t h a t the complex association reaction becomes quasi-mono-
molecular. Then one is allowed to replace the constants ka and K by 

K' = Kct = cML/cM (6b) 

and the transport of L, eqn. (3b), can be ignored. 
Under the conditions given and after transformation into the Laplace domain, 

the transport equations (3a) and (3c) read 

(7a) d2cM 

dx 2 

d2cML 

dx2 

s + K 
DM

 CM 

= - K c 
DMLCM 

^ > M C M L 

+ * +*d 
DML 

cM 

DM 

CML — 

r* CML 

DML 
(7b) 

where s is the Laplace transform parameter and the overbar denotes a transformed 
variable. 
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RIGOROUS SOLUTION 

The set of simultaneous differential equations (7a) and (7b) can be treated 
according to d'Alembert's method. This involves the selection of a new set of 
equations for a variable which is a linear combination of the original variables cM 

and cML. For this purpose, we define 

(8) 

(9) 

^ ± - ^ML ± ^ ± ^ M 

and choose k ± to be (see Appendix A for a brief explanation) 

k± = d_±dr 

with 

-{^x±l) + €-l±K' 

- l \ l / 2 
d^idl + KT1)1 

where 

« = DML/DM 

Following d'Alembert's methodology, eqns. (7a) and (7b) are replaced by 

d2*d 

dx2 
s + k6 

D ML 

k±k* |.p _ c M k . k ±CM 

D ML D M 

which may be solved straightforwardly to give 

s + k. 
* ± -

cML + fc±tcM 
+ / 1 ± ( J ) exp 

Z> ML 

k±kd 
DM 

1/2 

(10) 

(11) 

(12) 

(13) 

(14) 

The integration constants A+(s) and A_(s) can be found by exploiting the 
boundary conditions (5a) and (5b). Reformulated for ¥ ± , these conditions are 

x = 0 

( * + - * _ = 0 
k_ d ¥ + 

+ 
k+ d¥_ 

k+ — k_ dx k+ — k- dx 
= 0 

and their application to eqn. (14) leads to 

cM (d- + dt + K'r1) - (d_ -dt + K'rl){d+ - dr)(d+ + dTy
x 

* - ( ' ) - • 

Kd 

(d+-dt)-(d_ + dT)(d_-dIy
1{di-d?)1/2 

d_-dr + K'rl d_ + dT + K'e-^ 
d+ + dt d+-dt 

+ A_(s) 

(15a) 

(15b) 

(16a) 

(16b) 
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From the profiles of ¥ + and ^ _ the gradient (dcM/dx)x„0 can be obtained by 
using, for example, 

(***) = J _ ( ^ ^ ) (17) 
{ dx }x.o k_\ dx ) x - 0

 K1,) 

resulting in 

dcK 

\ dx )x=o 

D^kY2 

(d+ + dt + K'e-*)(d+ + dt)
1/2-(d_-dr + K'e-i)(d+-dT)(d+ + dry

l/2 

(d+-dI)(d_-dI)-(d_ + dt){dl-d?)1/2 

(18) 

s: 

/ d c M \ , Zc&fcy2 (* + /)1/2(</_ + </r)(rf+ + </r)
1/2</r 

I dx )x-o D\£ [K't-V2s1/2(s + l)1/2 + kd(d_ + dT)
2(d+ + dT)]s

1/2 

(19) 

where 

l = kd(l + K') = k'a + kd (20) 

Equation (19) is too complicated to allow analytical inversion to the original 
transient. Later we will see that this is possible only in a number of limiting cases. 
The inversion of eqn. (18) or (19) to the time domain can be carried out numerically, 
using the computation method developed by Crump [7]. The procedure involves an 
approximation of the general inversion formula 

f(t)=CXp^at) j°°[Re{f(s)} cos at-lm{ f(s)} sin at] do, (21) 

by a Fourier series containing both cosine and sine terms, selected such that the 
error is minimized: 

/(0 = ^ i */ (« ) .+ E [Re{f(a + kwi/T)} cos{k*t/T) 
k = l 

^lm{f(a + kiri/T)} sin(kirt/T)] - error (22) 
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where T is some number greater than t/2, a is some number greater than the 
exponential order of /(f) and the error is given by 

00 

error = i ; e xp ( - 2na r ) / ( 2 / i r+0 (23) 
n = l 

In conjunction with this series approximation procedure, the rate of convergence is 
increased by applying the epsilon algorithm series transformation [7]. The complete 
inversion program is available as a FORTRAN subroutine (FLINV) in the IMSL 
Library [8]. We tested the program on a DEC VAX 8600 computer with a number 
of transients of the type rx/2 and experfc (*1/2). The result was that the inversions, 
exact up to five digits over the complete decay function, could be performed within 
a few seconds CPU time and this is most satisfactory. 

The inversion of eqn. (18) according to the procedure given was without any 
problem. A typical example of some results is given in Fig. 1, where the calculated 
normalized current <I> is given as a function of the normalized time (k'at) for a given 
set of parameter values. The current parameter <l> is defined as 

• = {"D™!)1/2 L-\(dcM/dx)x=0} (24) 

where c* = c^ + C^L a nd L~x denotes the inverse transform. 0 thus represents the 
current as compared with the current under the condition that all the metal is 
present as the free metal species M, with a diffusion coefficient DM. As long as 
DML is smaller than DM, which is the usual situation, O is between zero and unity. 
The results in Fig. 1, as well as other properties of the current for the present 
system, will be discussed extensively in a separate paper [9]. Here, we just want to 

0 .8 -

0.7 

0.6 

0.5 

- 3 - 2 - 1 0 1 2 

l og (k ' 0 t ) 

Fig. 1. The normalized current * as a function of the normalized time k'„t, as obtained from eqn. (18). c 
( - />ML/J>M)-O.1; J C ' - I . 
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TABLE 1 

Calculated transients ($, /): (a) from digital simulation [11], using different step sizes; (b) from inversion 
of eqn. (18). £ = 0.1, X"=l , fed=l s - 1 

t/% 

0.01 
0.125 
0.25 
0.5 
1 
2 
4 
8 

16 
32 
64 

128 

(a) 
1000 steps 

0.504258 
0.553928 
0.598575 
0.665074 
0.738612 
0.780574 
0.774726 
0.757113 
0.748004 
0.744010 
0.742153 
0.741259 

(a) 
10000 steps 

0.504849 
0.555899 
0.601735 
0.669860 
0.744719 
0.786205 
0.778110 
0.758944 
0.749384 
0.745243 
0.743320 
0.742394 

(a) 
100000 steps 

0.504939 
0.556440 
0.602662 
0.671309 
0.746569 
0.787826 
0.778926 
0.759259 
0.749576 
0.745398 
0.743457 
0.742520 

(b) 

0.504963 
0.556676 
0.603078 
0.671969 
0.747411 

0.788549 
0.779261 
0.759360 
0.749625 
0.745432 
0.743342 
0.742542 

establish its correctness as a rigorous solution for the metal complex system under 
the above-mentioned conditions. 

It is easily verified from Fig. 1 that the short-time limit corresponds to the 
response for the free metal only, i.e. to the region where the complex is inert. In the 
long-time limit, the response corresponds to the mean diffusion coefficient of the 
complex system as has already been predicted for these conditions [10]. As a final 
test, we calculated the $, t curve directly from the original differential equations, 
using the explicit finite difference methodology of Feldberg [11]. Although this is 
probably not the most suitable numerical technique for the present problem, we 
used it at this stage because it is easy to program and sufficient for the purpose of 
verifying eqn. (18). A comprehensive evaluation of the application of different 
numerical techniques to the present system will be the subject of an intended 
separate investigation. Table 1 shows some results of the comparison between the 
inversion of eqn. (18) and the numerical simulation. The agreement is quite 
reasonable, provided that the step size in the simulation is sufficiently small. 
Anyway, the time steps must be smaller than 1/k'^ and l/kd, otherwise the 
simulation does not work. It is interesting to note here a few further aspects: (i) with 
decreasing step size, the digital simulation yields results that are closer and closer to 
the results from the Laplace domain formula (18); (ii) for some limiting cases (to be 
discussed below), the agreement between the exact solution for the transient and the 
numerical inversion of eqn. (18) is perfect; (iii) the computation of the inverse of 
eqn. (18) is several orders of magnitude faster than the digital simulation procedure; 
even for not too severe accuracy requirements and not too high k'j and kdt values, 
the computing times typically differ by a factor of 103. Summarizing the results, it 
can be concluded that the newly derived equation for the gradient, eqn. (18) or (19), 
is an exact expression. In combination with a suitable inversion algorithm, it 
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provides us with a fundamental extension of the voltammetry of metal complex 
systems. 

SOME LIMITING CASES 

Starting from the general expression for the gradient, eqn. (18) or (19), or at some 
stage of its derivation, it is possible to impose simplifying conditions which allow 
the formulation of analytical expressions for the transient in the time domain. 

(A)DML/DM^0 

Under conditions where the diffusion of the complex species ML may be 
neglected, the starting differential equation for ML, eqn. (3c), loses the term with 
Z)ML. Then eqn. (7b) is simplified to 

~Kcu + (s + kd)cML - cMh = 0 

and this allows direct substitution of cML into eqn. (7a), yielding 

d2c M 1 

dx2 D M 

s(s + l) 
s + kd 

« - M -
C& 

DM 
f S + l 1 
s + kd 

Taking into account the boundary conditions (5), this can be solved to 

s1 

CM = 1 — exp — 
<1/2(s + lf/2 

D\£{s + kdf
/2 

yielding for the gradient at the electrode surface 

dcM \ cS, (s + lf/2 / d c M \ - M 

^ / 2 , 1 / 2 ( , +^ d ) 1 / 2 

(25) 

(26) 

(27) 

(28) 

For the case where Z)ML is finite but still very much smaller than DM (e = 
DML/DM •« 1), it is possible to approach the problem by writing the concentration 
functions in asymptotic sequences: 

cM = ^ 

= c ML,0 "•" £ CML,1 + €2C ML,2 
(29) 

Substitution of eqns. (29) into the differential eqns. (3a) and (3c) and equating terms 
of like powers in c generates a new set of differential equations. In this set, the 
zero-order equation (« = 0) is identical to eqn. (26) and the further terms are given 
by 

3c M,/ d2c 

3c ML,i _ j 

37/ 

32c 

3T 

^ + X ( c M L , 1 . - ^ ' c M , , ) 

i - 1 , 2 , 

3TJ2 

(30) 
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where 

r=(K + kd)t 

(K + kAi/2 
v=[-^r] x 

(31) 

(32) 

A = ( l + # ' ) (33) 

The boundary conditions for eqn. (30) run parallel with those in eqns. (4) and (5). 
For the first-order approximation, taking the terms with e1 into account, it follows 
that 

CM = 
M 

1/2 

1 - 1 
tK'l3/2s1/2(s + l) 

2(l + K')\s + kd)
5/2 rj exp 

1(' + IY 
ll/2(s + kd) 

1/2 

from which 

\ dx )x=o 

r* 

Dtf 

(s + l) 
1/2 

+ 
€K'l2(s + l) 1/2 

sl/2{s + kdy
/l 2(1+ K')s^2(s + kd) 

5/2 

(34) 

(35) 

For expression (35) it is possible to carry out the inverse transformation into the 
time domain. Details are given in Appendix B. The result is 

* ( 0 -
rl/2 

( 1 + * ' ) 

where 

^m(fca; kd; t) 

%(K; kd; t) + 
€K' 

2(1 + K') 
%(K\ kd; t) (36) 

T(2j + l)(lt) 
2y + m + l 

= > ' exp(-fcd / ) + ̂ e x p [ - - I t £ i - i '-
T(m + i ) KV V 2 )JtoT(2j + m + 3/2)42J(j\Y 

X / ^ ( m + i ; 2y + m + 3 /2 ; i ( ^ - kd)t) 

(2j+l)lt 
4(2y + m + 3/2)( - — ^ ( m + ^ + m + S/^H^-fcd)')} (37) 

in which T is the gamma function and 1F 1 is the hypergeometric Kummers 
function, defined by 

F(n- h- r\--i I Qr I a ( * + 1 ) ^ | «(<»+ ! ) ( « + 2 ) Z3 

1 F 1 ( a , f t ) z) - l + -Z + ^ r T y- + f e ( f e + l ) ( f e + 2 ) - + (38) 

The correctness and usefulness of expression (37) can be read from Table 2, where 
some calculated transients for different e are compared with the results from the 
inversion of the exact eqn. (18). As expected, the agreement is very good for low e, 
whereas it is readily lost at higher e, especially if // is not much smaller than unity. 
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TABLE 2 

Calculated transient ($ , /) for different values of c(DML/DM): (a) from inversion of eqn. (18); (b) from 
eqn. (37). K'=10, kd=l s _ 1 

'/» 

0.01 
0.125 
0.25 
0.5 
1 
2 
4 
8 

16 
32 
64 

128 

£=io-" 

(a) 

0.099793 
0.178437 
0.232361 
0.292911 
0.338747 
0.347672 
0.327675 
0.312109 
0.306320 
0.303893 
0.302565 
0.302425 

(b) 

0.099792 
0.178436 
0.232360 
0.292911 
0.338749 
0.347676 
0.327679 
0.312109 
0.306321 
0.303893 
0.302756 

e - 1 0 - 2 

(a) 

0.099793 
0.178521 
0.232701 
0.294232 
0.343171 
0.358587 
0.344481 
0.329027 
0.321977 
0.318928 
0.317396 
0.317133 

(b) 

0.099793 
0.178541 
0.232798 
0.294679 
0.344932 
0.363214 
0.349813 
0.330878 
0.322643 
0.319443 
0.317979 

< = 1 0 - 1 

(a) 

0.099796 
0.178992 
0.234535 
0.300883 
0.363793 
0.407618 
0.426753 
0.430295 
0.429259 
0.428020 
0.427252 
0.427119 

(b) 

0.099798 
0.179488 
0.236778 
0.310753 
0.401134 
0.504469 
0.551032 
0.501507 
0.471023 
0.460809 
0.456374 
accuracy lost 

(B)DML/DM^1 

For the degenerate case where £>ML = DM = D, we have: 

e - 1 < / + = - L ( i + i / ) 

d_ = \{\-K') dt=\{\+K') 

so that eqn. (19) is simplified to 

(d£M\ = 
\ dx /x=o 

( l + * > f i M (' + 0 1/2 

Dx/1 s^2[K's^2+(s + l)1/2] 
(39) 

This expression is identical to the result obtained by Koutecky and Brdidka [12]. 
After some rearrangement, the analytical solution for the transient, valid for both 
K' > 1 and K' < 1, is found as (see Appendix C for details): 

(*01/a 
* ( / ) = 

(K'2-l) 

1+1'AY [\(i+i')]2jn2j+i)t2j-i/2 

Ij-i r (2y + i ) (y ! ) 2 

+ 

1+^7TT)H3;2 j+3 /2 ;—'J 
(i+iy 

4(2j + 5/2)(2j + 3/2) 

1 

1F1U;2j + S/2; ^ V 

m^2 

4/V/2 

[jTi + 2//1/2)1F1(l; 3/2; /'/) 

,/i(2; 5/2; I't) (40) 
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TABLE 3 

Calculated transient ($, /) for e =1 and different kA values: (a) from inversion of eqn. (18): (b) from 
eqn. (40). tf'=10 

t/» 

0.01 
0.125 
0.25 
0.5 
1 
2 
4 
8 

16 
32 
64 

128 

/td = 1 0 _ 1 s - 1 

(a) 

0.091817 
0.101974 
0.112471 
0.131940 
0.165779 
0.218861 
0.292096 
0.382759 
0.486751 
0.597845 
0.706319 
0.801628 

(b) 

0.091816 
0.101973 
0.112471 
0.131940 
0.165778 
0.218860 
0.292106 
0.382698 
0.486750 
0.597844 
0.706317 
0.801626 

kd=ls~l 

(a) 

0.099808 
0.180618 
0.240337 
0.319546 
0.414963 
0.522158 
0.633575 
0.738900 
0.828110 
0.895265 
0.940330 
0.967703 

(b) 

0.099807 
0.180616 
0.240335 
0.319544 
0.414961 
0.522157 
0.633574 
0.738898 
0.828107 
0.895259 
0.940017 
accuracy lost 

where 

l' = l/{K'2-\) (41) 

Since expression (40) is still rather involved, we tested it by making some calcula
tions and comparing these with the results from the rigorous eqn. (18). As can be 
seen from Table 3, the agreement is excellent. For high values of //, the computation 
of eqn. (40) loses accuracy because the precision requirements for evaluating the 
series involved become too severe. 

Returning to eqn. (39), it is readily seen that further simplification leads to sound 
limits. For K' -* 0, i.e. when there is practically no complex, the gradient becomes 
CM(DS)1/2, which corresponds to the normal Cottrell response of the free metal M. 
For l/s -»0, i.e. when the conversion of ML into M and vice versa is very slow, the 
result for the gradient is again c^/(Ds)l/2, reflecting that only diffusion of the free 
metal is responsible for the current. 

(C) The short time limit (s —> ooj 

If s satisfies the conditions 
s s , 

(42) 

then d ± is simplified to \{t * + Y)s/kd and eqn. (19) is reduced to 

d c M \ cZ, (s + l)1/2 
/ £ £ M \ 

V dx / x _ 0 

C M 

D]£2 (43) 

Since i » / , which is already implied by condition (42), we obtain for the gradient 
Cf^/(DMs)1/2. As in the previous section, this is again the diffusional response of M 



22 

only. The conditions imply that the complex ML does not contribute to the current 
in this regime, where $ is simply c^/c*. 

(D) The long time limit (s -* 0) 

If 5 is so small that 

f'F^1 (44) 

then d± reduces to \(t~l ±K') and eqn. (19) is simplified to 

l**u\ C&kY* ?»(€-* +K')"2 

\dx}x=o D)& [K'rl^/2li/2 + kdt-\e-1 + K')\s^2 V ' 

The first term in brackets in the denominator of eqn. (45) may be neglected if s 
satisfies a further condition: 

k2 / - - 1 

(*:+*,•) 
' (£r + l) (46) 

It will be outlined [9] that condition (46) is, in fact, a generalized form of the 
electrochemical lability criterion for a metal complex system. With this condition 
satisfied, the expression for the gradient reduces to 

^t),.rS^^K'^*^'" ( 4 7> 
Recalling that the mean diffusion coefficient D for the present system is given by 

£ = ^ > M L + ^ > M (48) 

eqn. (47) can be rewritten as 

\ dx j , _o DM*1 /2 l ' 

which is identical to the result obtained by Koutecky [4]. The appearance of the 
mean diffusion coefficient in this specific limiting case is a further illustration of the 
general validity of eqn. (19). Some interesting features of the "dynamic" regime will 
be discussed in detail elsewhere [9]. 

APPENDIX A 

d'Alembert's method for treating simultaneous differential equations 

Consider the two differential equations 

j£ = af+bg + c (Al) 

j& = a'f+b'g + c' (A2) 
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from which, by linear combination, the following equation can be written: 

d(f+mg) 
d« 

= (a + ma')f+(b + mb')g + (c + mc') (A3) 

Equation (A3) can be formulated in terms of one new variable if the constant m is 
selected such that (b + mb') = m(a + ma'), i.e. if m is equalized to the roots (m ±) 
of the quadratic equation 

, , ( * - * ' ) _ b m2+± ^ - ^ - - ^ = 0 (A4) 
a a 

The original differential equations of the variables / and g may now be replaced by 
the new pair of equations of one variable, ( / + m+g) or ( / + m_g): 
d ( / + w ± g ) 

dw x x x = (fl + m ± f l ' ) ( /+w ± g) + (c + m±c ' ) (A5) 

APPENDIX B 

Inverse Laplace transformation of eqn. (35) 

The basic element, denoted as Gm, in the inversion of eqn. (35) is 
1 / 2 

Gm(s) = (S + '^ 4 .1- with/H = 0o r2 (Bl) 
5

1 / 2 ( . + ^ d ) m + 1 / 2 

This expression can be rearranged to 

"1 + 1 /2 / . i \ m + l / 2 | 1/2 

\ l / 2 

<U')- * -*,„+, . \ - + , J ^ 1} (B2> 
(* + fcd)"

+1/z (s + *d) 

Using the convolution theorem, the inversion yields 

tm~1/2 , , x /exp(-fcd0 
Gm{t)= exp(-fcdf)+ , r , ^ V 

xr(r-M)m-1/2exp[-K^-A:d)«][/oa/M) + /ia/«)]d« (B3) 
•'o 

where 70 and /j are modified Bessel functions of the zeroth and first order, 
respectively. These functions may be expanded in series [13]: 

"'>-«'>£*$£» (B4) 

Substitution into eqn. (B3) yields an expression that can be integrated term-by-term 
using the formula [14] 

f'[t - K]M_ V " 1 exp(0«) dw = B(n, o)/"+ ' ,-1
1F1(a; a + /»; # ) (B5) 

•'o 
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where B is the beta function and ^Fx is Kummers' confluent hypergeometric 
function. 

APPENDIX C 

Inverse Laplace transformation of eqn. (39) 

Written in the form of the normalized gradient 0, eqn. (39) reads 

*(*) = ( „ / ) 1 / 2 W r
 {S + 1)1/2

 1 / 2 1) (CI) 

which can be rearranged to 

(*0V2 

*(0 = K'2-l 
K'L-H — + K'lL-1 

(s-l'){s + l)^) \(s-l')(s + l) V2 I / ,'\t , i \ V 2 

-L-H^)-IL-< 1 
(C2) 

.*-/'/ U 1 / 2 ^- / ' ) 
where 

l' = l/{K'2-\) (C3) 
Although for the second and fourth terms between the main brackets of eqn. (C2) 
tabulated inversions are available, we made an alternative derivation in order to 
avoid complex arguments in the time functions for K' < 1. 

Starting with the second term on the right-hand side of eqn. (C2), we introduce 

"(0 = W - -7— -&) (C4) 

which can be written as 

"(') = W 1—T^)*L-'[ ji — 1 (C5) 
\{s-l')l/2\ \(s-l')l/\s + l)1/2l 

where the asterisk denotes the convolution of the two time functions. Using 
tabulated transforms, H(t) is found to be 

» ( o - ^ / , ^ l : i ( , " ' ) ' ' 1 ' . [ « ' + ' > ] * • • TO 
"• Jo (t-u) 

Expanding I0 into series according to eqn. (B4) and integrating term-by-term using 
eqn. (B5) results in 

j-o 42jT(2j+3/2)(j\f 
(C7) 
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Taking into account that H = 0 for t = 0, we may treat the first term of eqn. (C2) by 
using 

so that 

where 

«(.)-.»[Hi--i)«l£[t(,+T^T~' /' 
,=o r(2y + i)(y!)2 

xf1f1(|;2y + 3/2;l(/ + / ' )0 

(C9) 

-Ti^__1F1(3/2; 2y + 5/2; i ( , + / ' )o} (CIO) 

For treating the two remaining terms on the right-hand side of eqn. (C2), we 
introduce 

+ (2 

FM-L"{7^n) (cn) 

The function F(t) can be written as a convolution integral 

nt)„w-^f2SU£du (C12) 
Jo {t-u)w 

which is readily solved using eqn. (B5), yielding 

F{t) = 2 ( / » 1 / 2
1 F 1 ( l ; 3 /2 ; / ' r ) (C13) 

Using this result, the inversion of sl/2/(s — I') is easily realized. Because F(0) = 0, 

s^2 

Mi^o)"^0 (C14) 

so that 

L_1{ ( 7=7 ) } = "r^ i F i ( 1 ; 3/2; rt)+T(rA)1/2iFi(2; 5/2; n) (C15) 

The resulting expression for $ becomes 
/ \ l / 2 

$(f) = l^L!_[i^'(/ + /')if(,) + ^'G(0-F'(0-/F(0] (C16) 
A — 1 

Substitution of the different functions and rearrangement yields eqn. (40). 
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CHAPTER 3 

VOLTAMMETRY OF METAL COMPLEX SYSTEMS WITH DIFFERENT 
DIFFUSION COEFFICIENTS OF THE SPECIES INVOLVED 

PART II. BEHAVIOUR OF THE LIMITING CURRENT AND ITS 
DEPENDENCE ON ASSOCIATION /DISSOCIATION KINETICS AND 
LABILITY 
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ABSTRACT 

The behaviour of the limiting current of a metal complex system for which the diffusion coefficients 
of the free and complexed metal are different is investigated as a function of the electrolysis time, the 
association/dissociation rate constants, the stability constant and the diffusion coefficient ratio. For very 
fast chemical reactions an analytical expression for the limiting current in the time domain is derived. It 
incorporates the generalized lability condition for a metal complex system. In order to facilitate practical 
application of the theory developed, Cottrell plots and some working curves are presented as diagnostic 
tools. 

INTRODUCTION 

In Part I, a rigorous solution was described for the limiting current of a metal 
complex system in which the diffusion coefficients of the species involved may be 
unequal [1]. The solution which is formulated in the Laplace domain is valid for a 
stationary planar electrode and is restricted to an excess of ligand. It is fully 
rigorous with respect to the values of the association/dissociation rate constants, 
thus including any stability constant of the complex. 

The aim of the present paper is to elaborate on the new theory and to investigate 
the behaviour of the limiting current as a function of the electrolysis time (t), the 
ratio DML/DM (e), the stability constant of the complex (K') and the association 
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and dissociation rate constants (k'a, kd). The purpose is to gain a thorough 
understanding of the complications inherent to the chemical kinetics of the complex 
system and the diffusion coefficients of the species involved. Application of the new 
insights to practical metal speciation is facilitated by the development of diagnostic 
tools, such as Cottrell plots and so-called isoflux diagrams. As was found earlier, the 
condition for lability of metal complexes appears to be of great importance [2] and 
therefore explicit attention is paid to systems with different lability characteristics. 

(I) TIME DEPENDENCE OF THE LIMITING CURRENT 

Under the conditions indicated in the Introduction, the expression for the 
normalized limiting current, <&, follows from combination of eqns. (19) and (24) of 
Part I [1]: 

2(^ d / )V 2 , - J (s + l)
l/\d_ + dr)(d+ + dr)

l/2dT \ 
t1/2(l+K') \s1/2[K'e-^2s^2(s + l)l/2 + kd(d_ + dr)

2(d+ + dT)\ j 

(1) 

with 

/ = *„(! + *") (2) 

' * - 5 i-(e-'±l) + ^±K' 
kd 

(3) 

dt=[d2 + K'i-x)l/2 (4) 

where s is the Laplace variable. $ represents the limiting current as normalized with 
respect to the limiting current under the condition that all metal is present as free 
metal (M). 

To investigate the behaviour of $ ( / ) as functions of e, k'a, kd and K', eqn. (1) 
was numerically inverted using a DEC VAX 8600 computer and the FORTRAN 
subroutine FLINV from the IMSL library [1,3]. 

(1.1) &(t) as a function of e 

In Fig. 1, $ is plotted vs. / for various values of e. It is clear that the $ , / 
relation is strongly governed by association and dissociation kinetics, that is, by the 
average life times of the complex (ML) and the free metal (M), TM L ( = A:J1) and TM 

( = k'~ ) respectively. According to the magnitudes of TM L and TM relative to t, 
three characteristic regimes can be distinguished and these are discussed in the 
following. 

(1.1.1) The static regime (TM, TML » t) 
The first regime is the static or non-dynamic regime, which is encountered if TM L 
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0.75 

Fig. 1. Normalized limiting current (<&) as a function of the electrolysis time (/) for various values of 
/>ML/J>M ( « ) • * ' - ! and ^ - l s " 1 . 

and TM are much larger than t. Here, the short time limit of eqn. (1) applies and this 
reads simply [1]: 

*(t) = (l+K'yl (5) 

The result (1 + K')~l represents the equilibrium fraction of M, indicating that in 
the static region only the diffusion of M is measured. We note that expression (5) 
for $ corresponds to a limiting current proportional to D]^2c^/tl/2, where c^ is 
the equilibrium concentration of M. The chemical equilibrium is frozen so that 
during the experiment, disequilibration in the vicinity of the electrode does not lead 
to any significant formation of M. This static behaviour may be understood in terms 
of the average life times of M and ML. Since TM L » t, the electroinactive ML does 
not dissociate to any significant extent during the actual electrolysis process so that 
there is no contribution of ML to the limiting current. On the other hand, since 
TM » t , M can be reduced at the electrode before it associates with L so that we 
obtain the result of a diffusion-limited current proportional to c£,. 

(1.1.2) The semi-dynamic regime (rM, TML ~ t) 
The intermediate regime is the situation in which TM L and TM have an order of 

magnitude comparable to that of t. It is denoted here as the semi-dynamic regime 
and it shows the most involved 4>, t relation. On the time-scale of the experiment, 
some of the complex species dissociate and some of the M produced will be reduced 
at the electrode. Close to the electrode, cML exceeds the value prescribed by the 
chemical equilibrium (Figs. 2A1 and 2B1) which means that the dissociation rate 
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kdcML exceeds the association rate k'acM. Consequently, the limiting current is 
higher than that in the static case. As t is increased, more complex is allowed to 
dissociate and therefore $ grows with time at the onset of the semi-dynamic regime. 
It is also evident from Fig. 1 that the initial increase of <& is independent of e. In 
this situation the diffusion of the free metal is much faster than its generation by 
dissociation of ML. Close to the electrode, the net concentration of M is therefore 
kinetically limited. The complex is electroinactive and thus the net ML concentra
tion is kinetically limited, too. At the onset of the semi-dynamic regime, only a 
relatively small concentration gradient for ML is developed (Figs. 2A1 and 2B1). In 
this situation, DML is irrelevant and the limiting current density / is still propor
tional to D]£2 but no longer to c£[ and t~x/1. When t is increased further, the 
concentration gradient of ML is much more pronounced (Figs. 2A2 and 2B2), due 
to significant depletion of ML close to the electrode. The rate of diffusional 
transport of ML becomes significant compared to the depletion rate, and in Fig. 1 
the curves for different e no longer coincide. $ increases with increasing e because 
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Fig. 2. Concentration profiles for the free metal (M) and complex (ML) as a function of the time. K' = 1, 
kA =1 s_1 for each figure. Series A for e = 0; series B for * =1. Both series: / = 0.1 s (1); 0.5 s (2); 2 s 
(3); 100 s (4). 
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the higher the value of c, the more complex is transported towards the electrode 
where it can dissociate to yield more electroactive M. 

On increasing t further, a maximum in $ is reached. This maximum is most 
pronounced for the smaller t values. With c approaching 1, the maximum vanishes. 
The occurrence of the maximum may be explained as follows. Consider some 
electrolysis time which is smaller than the time of the maximum. Then cML exceeds 
the local equilibrium value K'cM (Figs. 2A2 and 2B2). Therefore, the gradient of M 
in the vicinity of the electrode is determined mainly by dissociation of ML and 
diffusion of M, the association reaction and diffusion of ML still being relatively 
unimportant. If t is increased to values beyond the maximum, the excess of ML as 
compared to the local equilibrium concentration disappears (Fig. 2A3). Compared 
to the former sitution, the association of M with L has become much more 
important. In this case, the gradient of M is determined not only by diffusion of M 
and dissociation of ML but also by association of M. The net result is that the 
gradient of M, and consequently 0, increases less with / or even decreases in the 
case of the smaller i values. If c approaches 1, the "excess" of ML in the vicinity of 
the electrode persists at higher t values because the rate of diffusion of ML is higher 
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(compare Figs. 2A3 and 2B3) and the depletion of ML proceeds more gradually 
than at low values of e. Typically for c < 1, there is a discrepancy between the 
depletion layers for ML and M in the sense that the former lags behind (compare 
Figs. 2A2 and 2A3 with 2A4). The consequence is that, before reaching the final 
situation of a joint mean diffusion layer, the strongly growing influence from ML 
results in an "overshoot" in the flux of ML and M. This phenomenon, which is a 
typical transient effect, is clearly illustrated by the profile of ML in Fig. 2A3. 

(1.1.3) The dynamic regime (TM, TML « : /) 
In the long time limit, t largely exceeds the average life times of M and ML. 

Here, the chemical state of the metal changes many times during the experiment. 
The dynamic behaviour of the metal complexation equilibrium is typical for this 
regime and therefore it is denoted as the "dynamic" regime. Under the present 
conditions, i.e. with TM « ; / and TM L •« t, eqn. (1) can be simplified by combining 
eqns. (24) and (45) of ref. 1: 

= ( ! M V 1 ^ . i i 

(6) 

which can be transformed into 

*('} - ( ** d ' n+*T ) 3 / a exp( A J ° erfc( A?I/2) (?) 

where 

A fcyv^(«-i+jn 
K'(l + K')l/2 

An expression similar to eqn. (7) was tentatively formulated by Tamamushi and 
Sato [4]. For « = 1, i.e. Z)M = DML, eqn. (7) yields the same flux as that obtained by 
Koutecky and Brdiclca [5]. From eqn. (7), two interesting limiting cases arise, i.e. 
A/1 / 2 :» 1 and Af1/2 <; 1, which are discussed below. 

(I.U.a) The case At1/2 « : 1 (the non-labile system). The experfc function in eqn. 
(7) can be expanded in a series: 

exp( A20 erfc( Ar1 / 2) = 1 - =^— + A2t+... (9) 
IT 

Under the condition that 

A r 1 / 2 « 1 (10) 

eqn. (7) reduces to 

(,kA/2(^+K'r (11) 
K) K'(l + K') y } 
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and a purely kinetic current is obtained. For very large K', eqn. (11) can be reduced 
to 

*(t) = {*kdt/K')1/2 (12) 

which can be rearranged to 

m.^m^^i^r (13) 

where i is the current density, c% = c^ + C^L and n and F have their usual 
meanings. This result is identical to the expression derived using the reaction layer 
concept, valid for a system which is both dynamic and non-labile. 

(I.U.b) The case At1/2 2> 1 (the labile system). For large arguments the experfc 
function in eqn. (7) can be approximated by [6]: 

1 
exp(A20erfc(Af1 / 2) 

2 A2? 4A4r 4,2 
(14) 

A ( ^ ) V 2 

If A/1 / 2 is so large that 

A2t» 1 (15) 

then 

(1 + / T ) 

which is easily rearranged to 

i(t) Dl/2c$ 

»F (vt)l/2 
(17) 

where D is the mean diffusion coefficient of the complex system, so that a purely 
diffusion-controlled current is obtained. 

Inequality (15) may be identified as a lability criterion for the metal complex 
system as a whole, i.e. ML plus M. It compares the situation where the limiting 
current is governed by association/dissociation kinetics (eqn. 11) with the situation 
where the limiting current is purely controlled by diffusion (eqn. 16). A labile 
system obeys condition (15) and its association/dissociation kinetics are so fast that 
the levels of cM and cML are mass transport controlled. An analogous expression for 
the lability criterion was derived in the Laplace domain [1]. 

In earlier studies [7,8] the condition for electrochemical lability of a complex 
species was derived as 

k /1 /2 
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For a complex system with DM =£ DML, the lability criterion was tentatively ex
tended to [2] 

~ ^ r ~ " V ( 1 9 ) 

It should be stressed that condition (19) is formulated for a situation in which 
K' s> 1 and therefore it is concerned with the properties of the complex only, i.e. it 
determines whether or not the species ML is labile. The rigorous condition (15) is a 
lability criterion for the complex system as a whole, i.e. it incorporates any 
distribution over the species M and ML. The relationship between the different 
conditions is clarified further by noting that condition (19) is in fact a special limit 
of condition (15). For K' -* oo, i.e. for systems with ML only, condition (15) 
reduces to 

kdt 

eK 7
 » 1 (20) 

which is similar to condition (19). Thus the new lability criterion (15) may be 
considered as a generalized criterion for the complex system. 

The lability condition is met by the system presented in Fig. 1 for large t values 
and consequently the curves are horizontal, with 4> corresponding to the value 
predicted by eqn. (16). Further examples of lability and non-lability will be 
discussed below. 

(1.1.4) Cottrell plots 
In pulse voltammetry, Cottrell plots are useful for investigating some of the 

characteristics of the electrochemical process [9]. In Fig. 3, some typical Cottrell 
plots are presented for a static system (i), a semi-dynamic system (ii) and a labile 
system (iii). The two straight lines represent the two limiting cases: (i) and (iii), their 
slopes corresponding to (1 + A " ) - 1 (eqn. 5) and [(1 + <A")/(1 + K')]i/2 (eqn. 16), 
respectively. At very short times, the curve for the semi-dynamic system approaches 
the static limit (i), and for large t it reaches the labile limit (iii). In the intermediate 
region, the semi-dynamic curve is characteristic. In the time domain of the typical 
maximum in the $ vs. t plots, the semi-dynamic curve exceeds the labile limit. 
From Fig. 3 it is obvious that for both the static and the labile case, the straight 
lines can be extrapolated to the origin. This criterion is useful for tracing the 
dynamic behaviour of a particular system. If the experimental data seem to yield a 
straight line with a significant intercept, either positive or negative, then the system 
could fall in some kinetic category, e.g. semi-dynamic or dynamic but not labile. For 
discrimination between static and labile behaviour, it is necessary to compare the 
half-wave potential for the complex system with that for M. A comprehensive 
discussion of the behaviour of the potential characteristics for all the cases consid
ered here will be presented in a forthcoming paper [10]. 
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Fig. 3. Cottrell plots for a static system (i), a semi-dynamic system (ii) and a labile system (iii). 

(1.2) <fr(t) as a function of kd 

The discussion so far has been concerned with the time dependence of the 
limiting current at fixed values of kd and K'. In Fig. 4, 4> vs. / is plotted for 
various values of kd. Completely to the left, the static limit is found again. The three 

0.01 0.1 1 

Fig. 4. $, / plots for various values of kd. K' = 1 and e = 10~4 

10 100 
t / s 
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Fig. 5. 4>, / plots for various values of K' and c. kd = \ s \ t = 10 4 (a); t = 1 (b). 

curves are constructed for the same K', consequently the equilibrium concentration 
of M is the same in all three cases and therefore the curves coincide in the short 
time limit. At very large times, the labile limit is_found. The different curves in Fig. 
4 hold for the same K' and e and therefore D is the same, so that the curves 
coincide in the long time limit. With decreasing kd values, the 0 vs. t curve shifts 
to the right, i.e. to higher values of the actual electrolysis time. Simultaneously, TM L 

increases and consequently the formation of M by dissociation of ML decreases. 
This results in a shift of the 4>, / curve towards higher t values. The similarity of the 
shapes of the curves is related to the fact that K' is kept constant, which means that 
kd and k't change by the same factor. Plotting 0 vs. / for different kd and constant 
k ̂  yields different pictures which are less transparent. The maxima in the <j>, t 
curves are found at values close to 2kd

 l (see also Fig. 5). This implies that the 
effects of depletion of the excess ML relative to equilibrium conditions are highest 
when / reaches values of the order of TM L . 

(1.3) 4>(t) as a function of K' 

In Fig. 5, $ is plotted vs. t for various values of K' and e. It is seen that in the 
short time limit, $ is independent of « because only cjĵ  is relevant. Since c^ 
decreases with increasing K', we observe a strong dependence of $ on K' in this 
region. In the labile limit, differences between the curves in Figs. 5a and 5b are 
observed. In Fig. 5b the labile limit of 4> is the same for different values of K'. 
Here, the mean diffusion coefficient is equal to DM because e = 1. If e < l , D 
decreases with increasing K', approaching the minimum value £>ML for extremely 
large K'. For e = 1, the $ , / curves show no maximum, as pointed out earlier. With 
K' values approaching zero, the maximum vanishes because most of the metal is 
present as M so that the interconversion between ML and M loses its relevance. It 
should be noted that the position of the maximum does not depend on the value of 
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K' as long as kd is kept constant. This shows that TML (= l/kd) rather than TM 

(= l/k'a) is the leading parameter in this respect. 

(II) ILLUSTRATION OF LABILITY CONDITIONS 

For a metal complex system to behave in a labile manner, it must satisfy 
condition (15). This requirement implies dynamic behaviour, i.e. only dynamic 
systems can be classified as labile or non-labile. If we allow an error of 1% in the 
approximation of $ by eqn. (16), condition (15) becomes A2t > 50. The significance 
of this condition is illustrated by plotting $ vs. t for systems with different values 
of kdt (Fig. 6). Curve a is constructed for a labile system. Both k'j and kdt are 
large compared to one (105 and 104, respectively) and A2t = 103 for e = 1, which 
fulfils the lability condition in the entire « domain. Curve b is constructed for a 
dynamic system since both k'j and kdt are large, i.e. 103 and 102, respectively. 
Contrary to the former case, A2t ~ 10 for e = 1 and the lability criterion is not 
fulfilled. Only for e < 0.3 is the lability criterion fulfilled, and we observe that 
indeed curves a and b almost coincide below this value. Curves a and b clearly 
demonstrate that a dynamic system does not necessarily behave in a labile manner. 

Curve c is typical for the semi-dynamic situation: k'j = 50 and kdt = 5. The 
typical phenomenon of exceeding the $ value for the labile limit (corresponding to 
the maximum in the O, / characteristic) shows up for the lower values of t. Ranging 
to higher values of e, $ increases less than in the dynamic case because cM is 
governed more strongly by the association/dissociation kinetics. Therefore the 

0 0.2 0.4 0.6 0.8 1.0 
e 

Fig. 6. *, i plots for K'=\Q. kdt = 104 (a), 102 (b), 5 (c) and 10 - 4 (d). 
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increase in the diffusional transport of ML inherent to an increase in e exhibits a 
smaller effect on cM in the vicinity of the electrode (cf. Fig. 2). 

Curve d represents the static case, where k'j and kdt are small, i.e. 10~3 and 
10 ~4, respectively. Here, $ is equal to the limit (1 + K')~x so that t is irrelevant. 

(HI) WORKING CURVES FOR SPECIATION PRACTICE 

A convenient way to report results of (semi-)numerical analyses is via the 
so-called working curves [9]. In this section, some working curves are presented as 
examples for use in speciation practice. It should be emphasized that the curves 
depend strongly on the kinetic nature of the system. Only in the static and the labile 
limits is it practical to make use of working curves. In the kinetic case, curves would 
be necessary for every discrete set of k'a, kd and t values. 

One way to construct working curves is to plot <Sf vs. pK'. This is shown in Fig. 7 
for a static and a labile system. As discussed earlier, $ is proportional to D\£2CM for 
a static system, and consequently 3>. vs. K' yields a curve independent of t. In the 
case of large pK', virtually all of the metal is present in the uncomplexed form and 
therefore $ is close to unity. In Fig. 7b, 0 is plotted vs. pK' for a labile system. 
The differences with Fig. 7a are striking. There exists a clear dependence of $ on e 
because D is operative. The differences between the _yarious curves in Fig. 7b 
increase with increasing K'. For large K' and t < 1, D approaches the limiting 
value Z)ML and the current is then proportional to D]^lc^/tl/2. For low K', 
virtually no ML is present in the solution, so that the e dependence disappears and 
the curves in Fig. 7b coincide. 

In metal speciation practice, one often has some crude idea about the order of 
magnitude of K' and/or t. In such a case, isoflux diagrams may be helpful in 
determining K' and c more accurately. $ is obtained experimentally as the ratio 
between the current for the complex system and the current obtained under 

01 1 10 100 
pK' 

Fig. 7. $ , pK' plots for a static system (a) and a labile system (b). 

10 100 
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Fig. 8. Isoflux diagrams for a labile system, showing pK' as a function of i at given values of * . 

conditions where all of the metal is in the uncomplexed form (often realized by 
remeasuring at very low pH). In Fig. 8, isoflux diagrams are presented for a labile 
system. These diagrams are suitable for not too extreme values oi K'. For a given c, 
one can read the stability constant of the complex from the diagram using the 
measured value of $. In cases of kinetic behaviour, one may solve the speciation 
problem by fitting the theoretical equation for <b to the experimental data. 
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ABSTRACT 

An exact equation is derived for the current-potential relation of a metal complex system in which 
the diffusion coefficients of the different species are unequal. The equation is formulated in the Laplace 
domain and is valid in the case of excess ligand and reversible reduction at a stationary planar electrode. 
It is rigorous with respect to the values of the association and dissociation rate constants and the 
diffusion coefficients of the species. In some limiting cases, analytical expressions in the time domain 
were obtained. In cases where derivation of analytical time functions was impossible, half-wave potentials 
were calculated after numerical inversion of the complete current-potential relation. 

INTRODUCTION 

In the previous papers of this series, we presented a rigorous treatment of the 
limiting current of a metal complex system and its application to metal speciation 
[1,2]. As a further step, we want to extend the theory to the complete polarographic 
wave, which will enable us to employ both the current and the potential characteris
tics. The importance of this was indicated many years ago by Heyrovsky and Ilkovic" 
[3]. 

In 1951, DeFord and Hume presented their classical paper on the analysis of the 
half-wave potential shift in terms of the stability constants of the complex ions 
involved [4]. This treatment is limited to complexes which are in equilibrium with 
their components at any distance from the electrode surface, viz. to labile com-
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plexes. Current-potential relations for the limiting case with equal diffusion coeffi
cients of the species involved have been derived for expanding planar or spherical 
electrodes [5-9]. The result is given as an approximate analytical expression with 
relatively simple functions [5-7] or in terms of an involved series expansion [8,9]. 
For semi-infinite diffusion towards a planar electrode, Lovric" and Ruzic" [10] derived 
a relation which is restricted to large stability constants and not too different values 
of the diffusion coefficients of the species. 

In this paper, we derive an equation for the current-potential relation in the case 
of semi-infinite diffusion to a planar electrode which is valid for any set of values of 
the association and dissociation rate constants and diffusion coefficients of the 
species. The equation is formulated in the Laplace domain, and for some limiting 
cases, analytical inversion to the time domain will be attempted so that explicit 
operational equations for the half-wave potential can be given. Where analytical 
inversion failed, the half-wave potential was obtained from the general 
current-potential relation by a numerical procedure. 

FORMULATION OF THE PROBLEM 

Consider a system with an electroactive metal ion M and a ligand L which may 
form an electroinactive complex ML: 

M + L ^ M L (1) 

M + ne-*±M° (2) 

The charges of the ionic species are omitted for clarity. M° denotes the reduced 
metal. Assume that the preceding complexation reaction is pseudo-first order 
(excess of ligand) with the equilibrium constant: 

K' = c^/ct, = k'Jkd = kact/kd (3) 

where c* denotes the bulk concentration and k'a and kd denote the rate constants 
for association and dissociation, respectively. 

For semi-infinite diffusion of the species to/from a stationary planar electrode, 
the transport equations read: 

3CM/& = DM 92cM /9*2 ~ KcM + kdcML (4) 

9cML/3? = DML 82cML/9x2 + k'acM - kdcML (5) 

dcM./dt = DM*d2cM*/dx2 (6) 

with boundary conditions: 

<"MLAM = -K" (7a) 

\cM° = 0 (7b) 

t>0 x -*oo cM = c&, cML = cjJ,L, cM» = 0 (8) 
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At t = 0, the potential E is changed instantaneously to a value somewhere in the 
reduction wave. If it is assumed that the system is electrochemically reversible, so 
that cM« and cM at the electrode surface are related by Nernst's law, then the 
boundary conditions at the electrode surface are: 

(cM/cMo = 8 = exp[(nF/RT)(E-E°)] (9a) 

t>0, x = 0 !DM dcM/dx + DMo dcMo/dx = 0 (9b) 

\dcMl/dx = 0 (9c) 

This formulation of boundary conditions (8) and (9b) implies that the diffusion of 
M ° is directed into the solution. In the case of amalgam formation, M ° diffuses in 
the same direction as M, but the expressions are, of course, essentially the same. 

After transformation into the Laplace domain, the transport eqns. (4)-(6) read: 

(10) 

(11) 

(12) 

where s is the Laplace transform parameter and the overbar denotes a transformed 
variable. Using a linear combination of cM and cML according to d'Alembert's 
method, the simultaneous differential eqns. (10) and (11) can be solved [1]. 

We define 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

Equation (12) is solved straightforwardly to give 

cMo = B(s)exp[-(s/DM.?/2x] (19) 

d2cM s + A:*. kd _ 
2 ~ 7) CM D

 CML 
ax UM ^ M 

d2cML K - , s + kd 
, 2 ~ n CM ' n 

d x WML ^ M L 

d2cM° s _ 
, 2 n CM" dx WM° 

CM 

^ M 

CML 

#ML 

1*'± — C M L ± * ± C M 

with 

k± = d_±d, 

rf±-H(*Ad)(«"1±i) + «"1±*"] 

dt = {dl + K'rl)'/2 

where 

€ = DML/DM 

Then the solution to eqns. (10) and (11) reads: 

.,. cML + fc±ecM (r)rXTi 
(s + kd * ± *d \ 1 

" *M J ' ] 
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The unknowns A+(s), A_(s) and B(s) may be found by applying boundary 
conditions (9a)-(9c), e.g. in the form 

* ^ : * - ( 0 ) - i » w (20.) 

H^t),-*-0^3^'0 (20b) 

For calculation of the gradient (dcM/dx)x=0 it is sufficient to solve A_(s). The 
result is conveniently expressed as 

A_(s) = [A_(s)]l/X(s) (21) 

where 

c& {d- + dr + K'e'1) - {d_ -dr + K't-l)(d+ - dt)(d+ + dty
x 

U-{s% = 

(22) 

which is the A_(s) value found for limiting current conditions, as was extensively 
discussed before [1], and 

, * . . 2KkY*(dl-d*)l/2dt 
X(S)~ s^[(d. + dw)(d+ + dt)^-(d.-dt)(d+-dt)^\ { ) 

with 

i'(DM/DMof/2 

Now using the direct relation between (dcM/dx)x=0 and (d'ilr_/dx)x=0, finally we 
obtain for the gradient 

-(d.-dM^-d.y^+inkY'idi-d^d.y (24> 

where 

l-kd(l + K') (25) 

Analytical inversion of eqn. (24) to the time domain is possible only in some 
limiting cases. Therefore numerical inversion was carried out according to the 
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TABLE 1 

Calculated half-wave potential shifts ( — (nF/RT) A£1/2, /) (a) from digital simulation [14], using 
different step sizes, and (b) from inversion of eqn. (24). K' = 1, c = 0.1, kd =1 s_1 

t/s 

0.01 
0.125 
0.25 
0.5 
1 
2 
4 
8 

16 
32 
64 

128 

(a) 

10 3 steps 

0.00944 
0.00998 
0.17074 
0.26421 
0.36023 
0.42537 
0.43447 
0.41551 
0.40348 
0.39816 
0.39569 
0.39451 

1 0 4 steps 

0.00971 
0.10250 
0.17516 
0.27069 
0.36854 
0.43359 
0.43956 
0.41763 
0.40474 
0.39915 
0.39657 
0.39533 

10 5 steps 

0.00980 
0.10337 
0.17658 
0.27277 
0.37121 
0.43622 
0.44102 
0.41811 
0.40470 
0.39931 
0.39669 
0.39543 

(b) 

0.00977 
0.10364 
0.17703 
0.27339 
0.37249 
0.43742 
0.44165 
0.41828 
0.40504 
0.39935 
0.39759 
0.39550 

procedure described before [1]. The normalized current parameter <& is again 
defined as 

Q(E, f) = (»A*0 1/2 

-L-'{(dcM/dx)x=0) 

where c* = cj, + cZn and LTX denotes the inverse Laplace transform. 

r* 

-M -ML 

Using eqns. (24) and (26), E1/2 was calculated as a function of time from 

(26) 

(27) * ( £ 1 / 2 , r ) - i * i ( 0 = 0 

where 4>i(0 represents the normalized limiting current. The root of eqn. (27) was 
obtained using the Regula Falsi method, which is suitable for the present problem 
[11] and is available as the FORTRAN subroutine ZFALSE in the IMSL library 
[12]. 

In Table 1, some results are presented and compared with data obtained by 
calculations according to the explicit finite difference method [13,14]. The shift of 
El/2 is calculated with respect to E1/2 for M only, which is given by the well-known 
equation [15] 

E™2 = E°-(RT/nF) In £ (28) 

The agreement between the two approaches is satisfactory provided the time steps 
in the finite difference scheme are sufficiently small. It is obvious that with an 
increasing number of time steps in the finite difference calculation, the results 
approach the data obtained by numerical inversion of eqn. (24), which illustrates the 
correctness of the latter. The advantage of the numerical inversion procedure has 
already been outlined [1] and is even more severe in this case because the Regula 
Falsi routine requires several evaluations of $ ( £ , /) for solution of eqn. (27) with 
the desired accuracy. 
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Fig. 1. Half-wave potential shift A£, / 2 as a function of time for different values of t. K' =1, kd = 1 

In Figs. 1 and 2 the shift of El/2 is plotted as a function of time for various 
values of e and K', respectively. The similarities with the time dependence of <&, 
are striking. For very small values of t, &El/2 is practically zero. Here, the system is 
in the static regime, where only free M is involved [2]. For very large values of t, the 
specific examples of Figs. 1 and 2 correspond to labile behaviour. Then A£1/2 is 
independent of t, as will be discussed further below. 

The maximum in the A£1/2, t plots, typical for semi-dynamic behaviour and 
e < 1, is related to a discrepancy between the depletion layers of M and ML. As was 
pointed out in Part II [2], the depletion layer of ML develops more slowly than that 

K'=K) 

Fig. 2. AE1/2 as a function of time for different values of K'. t =10 4, kd =1 s 
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of M if € < 1, and consequently there exist local excesses of ML compared to the 
equilibrium values. The striking consequence is that, before reaching the final 
situation of a joint mean diffusion layer, E1/2 is shifted towards an even more 
negative value. 

In a considerable part of the semi-dynamic regime, A£ J / 2 is hardly influenced by 
£. Here, cM close to the electrode is determined mainly by diffusion of M and 
dissociation of ML, association of M with L and diffusion of ML still being of 
minor importance [2]. 

SOME LIMITING CASES 

(1) The short time limit (s -* oô ) 

If s is so large that 

f , f » l (29) 

then the system behaves statically [2] and eqn. (24) simplifies to 

(dcM /dx)x_0 = C £ , / ( £ M * ) V 2 ( 1 + H) (30) 
which leads to the well-known diffusion-controlled current-potential relation for M 
unperturbed by chemical kinetics: 

i(t)/nF = D^ctiA^'il + **) (31) 

where / is the current density. 

(2) The long time limit (s -> 0) 

If 5 is so small that: 

f , f«l (32) 
"•a " d 

then the system behaves dynamically and eqn. (24) reduces to 

m, (33) 
'x-o D\£K' S1/2[S1/2 + (1 + P)A] 

where 

P = 0Z[(l + tK')(l + K')]1/2 (34) 

and 

A = &d/2€-V2(£-i + K')/K'{i +K')1/2 (35) 

After transformation to the time domain, this yields the current-potential relation 
for a dynamic system: 

HE, 0 = iWk'tl"£**')i/2 «P[(1 + ' ) 2 A 2 ' ] erfc[(l + P)At*»] (36) 
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To obtain E1/2 for this type of system, eqn. (36) is substituted into eqn. (27) 
which yields 

exp[(l + P1/2)
2A2t\ erfc[(l + P1/2)Af1/2] = \ exp[A2f ] erfc[At1/2] (37) 

Using the approximated inverse function of itx/2y exp(y2) erfc(j>) derived by 
Oldham and Parry [16]: 

y = 
* 3(7 + 4<fr2) 

1 - * 

1/2 

(38) 

% V 6 3 j r ^ V 
16 163 

1/2 

where <f> = <nx/2y exp(^2) erfc(.y), eqn. (37) can be rearranged to a quadratic equa
tion in Pl/2 with the root 

Pi/i= - ( 1 + *) + | {4 (1 + g ) 2 - 4 1 + 2g 

where 

g = 162 /( l2ir3 'VA/1 / 2) 

and 

Y = exp(A20erfc(A/1/2) 

The shift of E1/2 with respect to £^2 is now 

(nF/Hr) A£1/2 

= - ln(#/Z>M ) 1 / 2 - ln( l + tf') 

(39) 

(40) 

(41) 

-In - ( l + g ) + i (4( l + g ) 2 - 4 | l + 2 g -
37Tg2

Y
2 63ir2gV 

16 163 

1/2' 

(42) 

where D is the mean diffusion coefficient defined as 

D = DM(l+tK')/(l + K') (43) 

Both eqns. (36) and (42) can be considerably simplified under conditions of lability 
or non-lability, as will be discussed below. 

(2a) The labile case (Atl/2 :» 1) 

If Af1/2 » 1, then 

exp[(l + i>)2A2f ] erfc[(l + P)A/1 /2] ~ [w1/2(l + P)Ktl/1] _ 1 

so that eqn. (36) reduces to 

*y 2 (e- 1 + A")V2 

* ( £ , 0 - K'(1 + K')(1 + P)A 

(44) 

(45) 
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which can also be written as 

* ( £ , 0 - » i ( 0 / ( l + ^ ) (46) 

Now A£1/2 due to complexation is easily found to be 

(nF/RT) A£1/2 = -ln(D/DM)l/2 - ln(l + K') (47) 

This result was also obtained by Guidelli and Cozzi [17]. For tK'» 1, eqn. (47) 
reduces to the well-known DeFord-Hume equation [4]. 

(2b) The non-labile case (At'/2 «: 1) 

If At1/2 is so small that 

(l + i>) 2A 2 /» l (48) 

then the experfc function may be approximated by 

exp[(l + P)2A2t] erfc[(l + P)A/1/2] - 1 - 2 ( 1 + ^ ^ (49) 

so that eqn. (36) reduces to 

K j O V ^ J 2(1 + />)A,V2\ 

and the solution of eqn. (37) becomes 

P1/2=-i+ir1/2/Mt1/2 (51) 

from which A£1/2 is found to be 

(nF/RT) A£1/2 = -\n(~D/DM)l/2 - ln(l + A") + l n ( - } + w1/2/4Ar1/2) (52) 

In the case where DML = Z)M = D, eqn. (24) simplifies to 

/ d c M \ (l + A-')c& (s + l)1/2
 ( 5 3 ) 

\dxjx=0 pi/2 s1'2[K'sl'2+(l+P)(s + l)1/2] 
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Using the procedure outlined in Appendix C of Part I, $ (£ , t) is found to be 

*(£, o - ("01 

K"-(\ + py 

i+i\\Z UC+Ol JT(2j + iyj-l/2 

T(2+j+l)(j\)2 rM¥-)£ 
x 

+ 

{-^K^-^.) 
--^W^™^ 4(2y + 5/2)(2y + 3/2) 

(1 + f ) 
rV2 

( r 1 / 2 + 2/r1/2)1JF1(l;3/2; / ' / ) 

4 /V / 2 

+ ^ — ,/ :i(2; 5/2; / ' 0 

where / ' is now defined as 

l' = l/(K'2-(l+P)2) 

(54) 

(55) 

The complexity of eqn. (54) makes it impossible to derive an analytical expression 
for £1 /2 in this case. However, the evaluation of A£1/2 is easily performed with the 
aid of a simple numerical procedure, as discussed before. 
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CHAPTER 5 

PULSE POLAROGRAPHIC SPKCIATION OF HEAVY METAL/POLTELECTROLTTK SYSTEMS 

INTRODUCTION 

In the preceding chapters a theoretical treatment for the voltammetry of 

complex systems of species with different diffusion coefficients was given. 

Equations for the limiting current and the half-wave potential could be de

rived in the Laplace domain. These equations are rigorous with respect to the 

values of the diffusion coefficients of the species and the values of the com

plex association/dissociation rate constants. The equations are valid for a 

stationary planar electrode and an excess of ligand. In principle these equa

tions are the basic tools to solve voltammetric speciation problems. 

In earlier work [1] we analyzed voltammetric data of heavy metal/poly-

electrolyte systems using the mean diffusion coefficient concept, assuming 

labile behaviour of the complexes involved. This assumption was Justified by 

the observation that for systems for which the current transient was measured, 

the Cottrell plots were linear and the half-wave potential was independent of 

time. However, in certain cases there was a pronounced difference between 

stability constants calculated from limiting current data and that from half-

wave potential shifts. Furthermore, the calculation of stability constants 

under the assumption of lability completely failed for the Pb/PAA system [2]. 

A general problem in the exploitation of most of the existing experimental 

data is that the condition of large excess of ligand, as required by the 

present theory, is not fulfilled. The magnitude of the ensuing error in the 

evaluation of the complex stability constant is completely unknown. 

The aim of this chapter is to reconsider the treatment of earlier data in 

order to assess the correctness of the evaluations and where necessary to 

extend or modify the interpretation of these data using the newly developed 

theory. 

PROCEDURE 

The theory developed in the preceding chapters was concerned with a 

simple complexatlon scheme in which the free metal ion (M) associates with the 

ligand (L) to form the complex (ML) 
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k 
a 

M + L ^ T ML (1) 
k. 

with 

where c ^ C w and CT denote the concentrations of M,ML and L respectively and 

ka and k^ are the association and dissociation rate constants. When a large 

excess of ligand is present, the association reaction becomes pseudo first-

order with rate constant 

k a " kacL (3) 

and the corresponding stability constant then is 

K' = k > d (4) 

In chapter 3, the speciation of labile and inert metal complex systems 

was explained and shown to be straightforwardly. If the system is neither 

labile nor inert one is faced with determining k' and kj in order to solve the 

speciation problem. A possible practical procedure would be to record voltam-

mograms of solutions with and without L and to determine the values of $«, the 

normalized limiting current, and AEL, the half-wave potential shift. The 

limiting current is normalized in such a way that it equals 1 if all of the 

present metal diffuses to the electrode with a diffusion coefficient equal to 

that of M (chapter 2). The half-wave potential shift is measured relative to 

the half-wave potential of pure M (chapter 4). Now with the experimental 

values of *^ and AEL, denoted as *»(exp) and AEi(exp) respectively, a set of 

two simultaneous equations can be constructed 

^(K'jk^ejt) - «A(exp) = 0 (5) 

^ ( K ' ^ e j t ) - AE^(exp) - 0 (6) 

where *»(K';k,j; e; t) is the theoretical function described by eqn. (18) of 
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chapter 2, AEi(K';kd; e; t) is the root of eqn. (27) of chapter 4, e is the 

ratio of the diffusion coefficients of ML and M (see chapter 2) and t is the 

pulse time. In order to solve this set of equations a FORTRAN program was 

developed. It uses K',k^,e and t as input parameters. The values of e and t 

are usually known, K' and kj must be guessed. The program contains the subrou

tine ZCNT from the IMSL library [3] and this enables the solution of the two 

non-linear equations for K' and kj by an iterative procedure which uses the 

guessed values of both parameters as starting values. The program also incor

porates the subroutine FLINV, again from the IMSL library [3], which enables 

inversion of Laplace transformed functions to the time domain. Here it is used 

to calculate the current from eqn. (24) of chapter 4 as a function of 

K'.kj.e.t and the applied potential. 

EXPERIMENTAL 

The polyelectrolytes employed were polyacrylicacid (PAA) and polymetha-

crylic acid (PMA). These polyacids are fairly well-behaved in aqueous solution 

and their metal-binding properties are appropriate for the present purposes. 

They were obtained from Polysciences and BDH, respectively. Average molar 

masses were 26,000 g for the PMA and 50,000 g for the PAA sample used. Experi

ments were carried out at a concentration level of about 2.5 mM acidic groups. 

The exact concentrations of the polyacid solutions were determined by conduc-

tometric titration. The charge of the polyacid species is related to the 

degree of neutralization (<%), a parameter determined by the number of car-

boxy lie groups which have been deprotonated (by adding K0H). Cadmium(II) 

nitrate (Baker), zinc(II) nitrate (Baker), lead(II)nitrate (BDH) and potassium 

nitrate (Baker) were of p.a. quality. All the experiments were carried out at 

25 *C. 

The polarograms were obtained using a modified PAR 174A polarograph in 

the normal pulse mode. The modification allows variation of the effective 

pulse duration t. The applied t values ranged from 14.5 ms to 175 ms. The 

PAR/EG&G model 303, in the repeating mode, served as the indicator electrode. 

Unless indicated otherwise, the drop period was 1 s. Potentials are referred 

to the Ag/AgCl/KClsat electrode. Traces of oxygen were removed from the pola-

rographic cell by passing purified N2 through the solution for about 10 min. 
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FIGURE 2 : Experimental results for the Cd/PMA 

system as a function of a,, a. tg(exp); b. 

AE^(exp). [Cd]/[polyacid]-0.2; [KN03]-5xl0-2 M; 

E^-500 mV; t-0.175 s (from ref. 1). 

The Zn/PMA system 

In Fig.l *^(exp) and AEi(exp) are plotted as a function of the degree of 

neutralization for the Zn/PMA system. Measurements of complete transients 

revealed that the limiting current varies linearly with t~* and the half-wave 

potential shift is independent of the pulse time. These observations indicate 

labile behaviour of this system under the present conditions. Calculation of K 

values from limiting current and potential data using the equations for the 

labile limit (e.g. eqn. (16) of ch.3 and eqn.(47) of ch. 4) yielded consistent 

results (see Fig.3). 

The lability criterion which is extensively discussed in chapter 3 reads 

Azt » 1 (7) 

where 

kj e~* (e-1 + K') 

K'(l + K«) * 
(8) 

For the present system and the given experimental conditions e,t and K' were 

of the order of magnitude of 10 S I O s and 10 respectively. This yields for 

inequality (7) : kd » 10~2 s - 1 . For the given pulse time, this condition is 

less severe than the requirements for dynamic behaviour,i.e. kat and k^t » 1. 
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FIGURE 3 : Dependence of log K on aeti for the FIGURE 4 : Dependence of log K on oeff for the 

Zn/PMA system (details see Fig. 1). Curves : Cd/PMA system (details see Fig 3). Curves : fron 

from tj(exp) data; open symbols : from AEi(exp) t.(exp) data; open symbols : from AEi(exp) data. 

data. 

It means that for this set of values fulfillment of the dynamic conditions 

immediately implies lability and consequently that this system cannot be non-

labile. In order to estimate a lower limit of kj, $g(exp) and AEi(exp) are 

compared with the theoretical values of table I which were obtained by the 

numerical procedures outlined in the chapters 2 and 4. As a result kj is found 

to be at least 10 s thus proving the labile behaviour of the Zn/PMA system 

at the present experimental time scale. It further follows that k' is at least 
3 —1 10 s , a value which is in line with the suggestion that the rates of com-

plexation reactions of transititon metal ions are probably determined by the 

dehydration step for which rate constants in the order of 10 s- 1 may be 

expected [4,5]. 

In Fig. 1 one observes unusually strong dependencies of *j(exp) and 

AE^(exp) on c^. This is due to an increase of K with increasing o^, a phenom

enon which is typical for polyionic ligands. Due to the increasing charge 

density on the polyion, the electrostatic contribution to the overall Gibbs 

free energy of binding increases. The dependence of K on the average spacing 

between the charged groups on the polyion may be further demonstrated 
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Table I : *4 and AE^ as a function of kd. K'-IO; e=0.01; t=0.1 s. 

kd < s _ 1 ) -nFAE^/RT 

0.1 

1 

10 

100 

1000 

10000 

0.09979 

0.1644 

0.3432 

0.3260 

0.3171 

0.3163 

0.09043 

0.5072 

1.225 

1.278 

1.249 

1.247 

by plotting K vs. aeff, the free llgand fraction (see Fig. 3). Satisfactory 

explanations for these results have been given [2,6,7]. 

The Cd/PMA system 

In Fig. 2 $^(exp) and AEL(exp) are plotted as a function of OL, for the 

Cd/PMA system. Analysis of these data assuming lability yielded sets of K 

values that differed significantly at the higher values of <xeff (see Fig. 4). 

The K values obtained from the half-wave potential data are appreciably higher 

than those from the limiting current data. For systems which are not labile 

i.e. dynamic or semi-dynamic, analysis of *» and AEL data assuming labile 

behaviour yields just the opposite picture. To illustrate this *j and AEL data 

are calculated for a semi-dynamic system according to the numerical procedures 

outlined in chapter 2 and 4 and subsequently analyzed as if it were a labile 

system. The results of this exercise are presented in table II. Clearly, the 

K' values obtained from AEi. are much lower than those evaluated from *. In 

both cases the K' values strongly differ from the correct value. These find

ings suggest that for the Cd/PMA system the homogeneous chemical reaction 

kinetics cannot account for the observed differences in K' values from AEL and 

*£ data, the more so since the simultaneous eqns. (5) and (6) could not be 

solved for this system. 

More detailed experimental work [8] showed a dependence of $» on the 

initial potential. This strongly indicates adsorption of the metal ion induced 
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Table II : Calculated $g and A E L data for a semi-dynamic system 

and analysis of these data assuming labile behaviour, e-0.01; 

t=0.1 s; k^-l 8 -1 

exact parameters 

-nFAE^/RT 

results of analysis (incorrectly) 

assuming lability 

K'(from «4) K'(from AE^) 

5 

10 

15 

20 

25 

0.239 

0.164 

0.134 

0.116 

0.104 

0.324 

0.507 

0.636 

0.736 

0.819 

20 

58 

1.2xl02 

2.9xl02 

1.2xl03 

0.89 

1.7 

2.5 

3.2 

4.0 

by adsorption of the polymethacrylate in the period prior to pulse application 

[9]. Adsorption of polymethacrylate complexes occurs especially in the poten

tial region around the potential of zero charge. For Cd(II), with Ei near -0.6 

V, initial potentials are chosen somewhere in this region. In the case of the 

Zn/PMA system the initial potential was -900 mV. At this potential the elec

trode carries such a negative charge that polmethacrylate adsorption is pre

vented by electrostatic repulsion and therefore the data for this system can 

be consistently analyzed by taking into account homogeneous chemical kinetics 

only. 

The Pb/PAA system 

In Fig. 5 *jj(exp) and AEi(exp) are presented as a function of « for the 

Pb/PAA system. These data could not be analyzed on the basis of the assumption 

of labile behaviour. For example computations with limiting current data 

yielded negative values for K. By contrast, using the given values for e and t 

of 0.023 [2] and 0.175 s respectively, eqns. (5) and (6) could be solved 

without any problem. For K' and kd values were found to be of the order of 10^ 
2 —1 

and 10 s respectively for the system with 0.6<an<0.8. Thus this particular 

system seems to have a dynamic nature because kat=2xl05 and k<jt=2xl01. The 
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FIGURE 5 : Experimental results for the Pb/PAA 

system as a function of aef£ a. ^(exp); b. 

4E^(exp). [Pb]/[polyacld]-0.2; (KN03]«5X10~2 M; 

Ej—250 mV; t-0.175 s (from ref. 2). 

lability parameter At* can be calculated to be of the order of 10"1 which 

indicates that the Pb/PAA system under the given conditions Is an example of a 

system which is dynamic but not labile. This means that the measured currents 

are strongly influenced by the association/dissociation kinetics in the solu

tion. In order to determine the kinetic parameters more accurately, additional 

experiments - such as recording complete transients - would be necessary. 

Furthermore, some reservation should be made because sometimes the lead/poly-

acrylate system tends to flocculate/precipitate and at the initial potential 

of -250 mV induced adsorption of the metal ion may also play a role. These 

aspects would need some more careful experimental verification. 

In the data analysis given so far a large excess of ligand was tacitly 

implied. Actually in the experiments performed here, the largest excess of 

ligands (-C0CT groups) was about 4 times t;he total metal concentration. As a 

first step in tackling this problem, we carried out some digital simulations 

of the metal flux at the electrode surface taking into account the influence 

of the actual ligand concentration. As a typical result it was found that even 

at the lowest metal-to-ligand ratio in the above mentioned experimental data, 

disregarding the flux of ligands leads to an underestimation of the value of 

K' by almost 20 %. This clearly demonstrates the approximate character of the 

results obtained so far and the need of further developing the theoretical 

investigations to include ligand transport. 
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CONCLUSIONS 

Under the conditions outlined in the experimental section the Zn/PMA 

system is labile. The K values as evaluated from limiting current and half-

wave potential data using the mean diffusion coefficient concept are consis

tent. For the Cd/PMA system the data analysis using the theory for homogeneous 

first-order complexation kinetics seems to be disturbed by adsorption of the 

complex. The Pb/PAA system seems to be dynamic and not labile under the condi

tions given in the experimental section. In order to solve the remaining 

problems, experimental work on the time dependence of both the limiting cur

rent and the half-wave potential shift shows the best perspective. In this, it 

could be useful to Include reverse pulse polarography in order to eliminate 

adsorption effects. Theoretical efforts are necessary in the analysis of 

systems in which there is no excess of ligand. Work in this field is also very 

Important for a correct interpretation of voltammetric metal titrations of 

environmental samples. Extension of the new rigorous theory to more sensitive 

methods such as differential pulse polarography and anodic stripping voltam

metric techniques is necessary to be able to deal with the low concentration 

levels of heavy metals encountered in natural samples. 
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A procedure is described for the analysis of the conductivity of solutions of anionic polyelectrolytes in which both mono- and 
divalent counterions are present. The method is based on analysis of the relation between the overall conductivity of the system and 
the conductivity of the individual monovalent cations which are only electrostatically (non-specifically) bound. The system is 
described in terms of the two-state approach, implying that the counterions are considered to be either fully bound to the polyion or 
completely free. The potentialities of the proposed method are explored by studying solutions of alkali polyacrylates with and 
without added zinc nitrate at several alkali nitrate concentrations. The results give a picture of the composition of the counterionic 
atmosphere around the polyion in systems with both mono- and divalent counterions present. To a certain degree, the divalent ion 
Zn(ll) was found to be bound quantitatively by the polyion. The composition of the counterionic atmosphere around the polyion was 
largely independent of alkali nitrate concentration when the latter was present in not too large an excess with respect to both Zn(II) 

and the charged monomers. 

1. Introduction 

Conductometry has become an important tool 
in the analysis of properties of polyelectrolyte 
solutions [1-5]. The properties which have been 
studied thus far are the concentration dependence 
of the conductivity of polycarboxylates [1] and 
polystyrenesulfonates [2], the temperature depen
dence of the conductivity of alkali polycarboxy
lates and the influence of the degree of neutraliza
tion [1]. Furthermore, the influence of the nature 
of the counterion on the conductivity of polyelec
trolyte solutions has been studied [1,3,5] and a 
detailed investigation of the conductivity of alkali 
polymethacrylates in the presence of the corre
sponding alkali bromide has been performed [3]. 

Correspondence address: H.G. de Jong, Laboratory for Physi
cal and Colloid Chemistry, Agricultural University, De Dreijen 
6, 6703 BC Wageningen, The Netherlands. 

Recently, conductometric titration was sug
gested as a tool for investigating the interaction of 
polyelectrolytes with heavy metals [4,6]. Such an 
approach is promising because of the fairly easy 
way in which the automation of equipment is 
achieved. Furthermore, the transport properties of 
polyelectrolyte solutions are more sensitive to the 
polymer configuration than the equilibrium prop
erties [2], which means that in principle more 
information can be obtained from measurements 
of transport properties than those of equilibrium. 
In the analysis of Cleven [4], the interpretation 
remained more or less qualitative. 

In another study, calculations of the overall 
conductivity were given for polysulfonic acids 
partly neutralized by Mg2+ [7]. However, competi
tion between monovalent and divalent counterions 
in their interaction with the poly acids has not yet 
been assessed conductometrically nor was the be
havior of the bound fractions of the two types of 

C 1987 Elsevier Science Publishers B.V. (Biomedical Division) 
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counterions involved. The present work is aimed 
at a systematic analysis of the conductivity of 
mixed-valency counterion-polyelectrolyte systems. 
This involves the quantification of bound (or free) 
fractions of the counterions involved, including 
competition in their interaction with the polyion. 
Such an analysis is a basic step in the further 
investigation of these complex systems. The analy
sis is based on the two-state approach, i.e., 
counterions are assumed to be found either in 
some kind of bound state or are entirely free, in 
the sense that they are not at all influenced by the 
electric field around the polyion. Such a two-state 
approach is common in polyelectrolyte theory 
[7-9]. In this study alkali polyacrylates are chosen 
as the model systems. They are titrated with zinc 
nitrate. The results are compared with radioactive 
counterion tracer diffusion data. 

2. Theory 

In this section the interpretation of the con-
ductometric titrations of an aqueous polyelectro
lyte solution with a solution of a divalent metal 
salt in systems with or without added 1:1 salt is 
described. First, the case in the absence of added 
1:1 salt will be treated. 

2.1. Conductivity of mixed-valency counterion-poly
electrolyte solutions 

According to the two-state approximation [8], 
the specific conductivity of a polyelectrolyte solu
tion, which consists of negatively charged polyions 
together with several types of counterions and 
co-ions, may be written as: 

«=L/A°c,+i:(x_)y(c_)/+/pApcp (1) 
' j 

where 

Cjf Cp and (C_)y denote the total concentrations 
of counterions of type i, deprotonated groups on 
the polyion and co-ions of type j , respectively; 
X° the molar conductivity of counterions of type i 
in pure solvent; 
Xp and (X_)y the molar conductivities of the poly

ion (per mol deprotonated monomers) and co-ions 
of type j , respectively; 
ft and /p the fractions of conductometrically free 
counterions [6,10] of type i and deprotonated 
groups, respectively; and 
/)X°C, and (X_)y(C_)y the contributions to the 
total conductivity of counterions of type / and 
co-ions of type j , respectively. 

Bound ions are defined as ions having the same 
mobility as the polyion. Upon binding of a coun
terion, the contributions to the overall conductiv
ity of both the bound ion and an electrically 
equivalent amount of deprotonated monomers are 
annihilated. 

The relation between 0„ the number of bound 
counterions per deprotonated monomer, and / 
reads: 

e,= * , ( W i ) Q 

and / is then written as: 

(2) 

(3) 

Applying eqs. 1-3 to the titration of a salt-free 
polyelectrolyte solution with a 2 :1 salt, the specific 
conductivity of the mixture may, for any stage of 
the titration, be written as: 

<c(C2)=/1(X?+Xp)C1 + [ / 2 X° 2 -2 ( l - / 2 )X p ] c 2 

+ X_CL (4) 

The subscripts 1 and 2 refer to monovalent and 
divalent counterions, respectively. Note that in the 
salt-free case C = Cx. The contributions of H+ 

and OH" to the total conductivity are ignored, 
because under the conditions of our experiments 
with poly (acrylic acid), (PAA) their concentra
tions were negligible. The molar conductivity of 
the solution may be represented as: 

A = K(C2)/(CP + C_) 

2.2. The conductivity excess function 

(5) 

The conductivity excess was shown to be a 
suitable parameter for representing conductomet-
ric titration data [4]. It is defined as the difference 
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between the specific conductivity of a metal/poly-
electrolyte system and the sum of the conductivi
ties of the metal salt and polyelectrolyte solution 
before mixing. For the case of titration with a 
divalent electrolyte: 

4 K T = - { K ( C 2 ) - [ K ( C 2 = 0) + Kbl(C2)]} (6) 

The sign is chosen for convenience such that as
sociation phenomena give rise to a positive AKT. 
Here, Kb](C2) is the specific conductivity of a 
solution of the 2:1 salt: 

K W ( C 2 ) = X ° C 2 + X ° C _ (7) 

In eq. 6, K(C2 = 0) represents the specific conduc
tivity of the polyelectrolyte solution without ad
ded 2 :1 salt. It is equal to: 

K(C2 = 0 )=/ ] , 0(X?+X p)C 1 (8) 

where / ) 0 is the fraction of conductometrically 
free monovalent counterions in the polyelectrolyte 
solution without added 2:1 salt. To a good ap
proximation X_ is not influenced by the electric 
field around the polyion [3]. Combination of eqs. 
4 and 6-8 yields: 

+ (X° + 2X p ) ( l - / 2 )C 2 (9) 

Generally, polyanions prefer binding of divalent 
over monovalent counterions [11]. This allows one 
to interpret the first term on the right-hand side of 
eq. 9 as the conductivity gain due to the release of 
bound monovalent ions by binding of divalent 
ions. The second term represents the conductivity 
loss due to divalent counterion binding. It is obvi
ous that the parameter / , depends on C2. For a 
complete analysis of the titration data in terms of 
conductivity excesses, it is necessary to determine 
the relationship between these two parameters. 
Furthermore, at every point of the titration Xp 

must be known. 

lyte and X° if fl0 is a constant. This is the case if, 
upon a change in the nature of the monovalent 
cation, its extent of binding remains unaltered. 
This situation is expected to occur if the counter
ions are purely electrostatically (i.e., non-specifi-
cally) bound. The linearity sought has been shown 
to apply for Li, Na and K polyacrylates at the 
millimolar level [3]. Therefore, in that case it is 
possible to evaluate / 1 0 together with Xp from a 
plot of A vs. X° for Li, Na and K polycarboxylate 
solutions. The slope and intercept of the straight 
line obtained in this way equal / 1 0 and /ii0Xp, 
respectively. 

When the competition between the alkali metal 
counterions and the divalent counterion is not 
specific and X remains unaltered (see section 
4.2), the plot of A vs. X° will remain linear as in 
the absence of the divalent counterion. Therefore, 
the procedure described above remains applicable 
and /j can be determined from the slope of the 
plot of A vs. X°. 

In the presence of an added 1:1 salt essentially 
the same procedure can be used when the additiv-
ity rule applies. According to this rule, the overall 
specific conductivity of a polyelectrolyte solution 
may be written as the sum of independent contri
butions of the specific conductivities of the added 
1:1 salt and the polyelectrolyte system [3]. The 
additivity rule was found to be valid for several 
properties of polyelectrolyte solutions [3,12,13]. 
The specific conductivity of the polyelectrolyte 
system is then: 

K = «total - Ka (10) 

where Ka is the specific conductivity of the added 
1:1 salt. From K, the molar conductivity of the 
polyelectrolyte system is easily calculated and the 
relation between A and X° is analyzed. In this 
case the slope is equal to (1 — 0,) rather than to / , . 
For a salt-free system (1 — 0,) is of course equal to 
/ , according to eq. 3. 

2.3. Determination off, and \p in systems with and 
without added 1:1 salt 

From eq. 8 a linear relationship is expected 
between the molar conductivity of a polyelectro-

3. Experimental 

Conductivity measurements were performed 
with a Wayne Kerr B 905 automatic precision 
bridge, equipped with and IEEE interface allow-



62 

ing computer control. The conductometric cell 
was a WTW model LTA 01 with a cell constant of 
0.109 cm"1. The cell constant was periodically 
calibrated. All conductivity measurements were 
performed at a frequency of 10 kHz. A Metrohm 
type 655 automatic buret was used to add 50- or 
100-/il aliquots of 0.05 M Zn(N03)2 solution to 
50 ml of sample solution. The titration was con
trolled by an HP 85 A (Hewlett Packard) personal 
computer programmed with BASIC. The tempera
ture inside the titration vessel was maintained at 
25.00 ± 0.02° C by a Julabo F10 thermostat. The 
automatic buret and titration vessel were kept in 
an air temperature controlled environment main
tained at 25.0 ± 0.5 ° C with a home-made air ther
mostat. Prior to measurements, samples were 
stirred for about 1 h to achieve thermal equi
librium, while purging with C02-free, water-
saturated N2 at 25 °C. After every addition the 

sample was stirred and purged with N2 for about 
5 min. During the actual measurement N2 was 
passed over the solution. All samples were pre
pared using demineralized tap water, produced by 
a Millipore Super-Q reverse osmosis system. After 
removing C02 , the conductivity of this water never 
exceeded 0.6 /iS cm - 1 . 

All chemicals used were of analytical grade. 
Polyacrylic acid (PAA, average molecular mass 
230 kDa) was obtained from BDH Chemicals and 
used without further treatment. 

For fully deprotonated PAA, the structural 
charge density parameter £, which is defined as 
the ratio between the Bjerrum length (/B) and the 
average distance between the charged monomers 
b, under the present experimental conditions is 
£ = lh/b = 2.85. For a particular degree of neu
tralization <*„, £ becomes a„lh/b. 

Solutions of alkali polyacrylates were prepared 

CONDUCTOMETRIC 
CELL 

Fig. 1. (a) Block diagram of the experimental set-up. (b) Close-up of the titration vessel. 1, nitrogen valve; 2, nitrogen outlets; 3, 
conductometric cell; 4, thermostat connections; 5, stirrer; 6, injection needle; 7, drop-knocker; 8, inlet titration solution. 
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by neutralizing the poly acid with the appropriate 
hydroxide solution to the desired degree of neu
tralization. 

The set-up is shown schematically in fig. la and 
b. The precision of the measured conductivity 
steps achieved with this system was typically 0.2% 
for 50- and 100-jul additions of 0.05 M Zn(N03)2 

to water on two consecutive days. 

4. Results and discussion 

4.1. Conductance of alkali polyacrylate solutions 

In fig. 2 plots are shown of the molar conduc
tivity of several alkali polyacrylates vs. that of the 
alkali ions in pure solvent at different concentra
tions of Zn(II). The linear relationship between A 
and \° is obvious at all Zn(II) concentrations. 
This means that the non-specific nature of the 
interaction of alkali metal ions and the poly
acrylate anion, as previously found by Eisenberg 
[1] and Van der Drift [3] for the polymethacry-
lates, persists during their competition with Zn2 + 

for binding by the polyion. Using eq. 5 this result 
enables one to calculate / , at any stage of titra
tion of alkali polyacrylate solutions with a zinc 
salt solution. The / , value in blank alkali poly
acrylate solution, with [PAA] = 2.50 mM and a„ 
= 0.8 was found to be 0.47 ± 0.02 which is in 

_ [PAA] = 2.50 mM 

<xo = 0.8 

.1 

Q^ 1.5 mM 

ry. 1.0 mM 

^ ^ ^ ' 0.5 mM 

^ 0 mM 

i 

t 50 
I 

\ , (S.cm m o l ) 

Fig. 2. Plot of the molar conductivity of alkali polyacrylate 
solutions at the indicated zinc concentrations vs. molar con

ductivity of the corresponding monovalent counterion. 

excellent agreement with the results obtained from 
radioactive tracer diffusion measurements, per
formed by Ander and Kardan [13]. These results 
are in accordance with theoretical expectations 
[7,8]. It may be noted that with this fx value the 
net charge density parameter £net is not far from 
unity, in accordance with Manning's predictions 
[11]. 

As outlined in section 2, Xp can be evaluated 
from the A vs. X° plot. This procedure yields 
Xp = 30±5 S cm2 mol - 1 for a solution with 
[PAA] = 2.50 mM and a„ = 0.8. Anticipating the 
analysis of the relationship between fx and C-JCX 

it was found that an alternative procedure is avail
able, yielding a more precise value for Xp: ex
trapolation of / , vs. Ci/Cx (fig. 4) to zero yielded 
fx 0 = 0.469 ±0.005. Using this value, Xp was 
calculated from the molar conductivity of Li, Na 
and K polyacrylate solutions. An average value of 
31.1 ± 0.8 S cm2 mol"1 was obtained. This proce
dure was used in all other evaluations of A„. 

4.2. Behavior of \p 

In table 1, Xp values are listed for different 
degrees of neutralization. An increase in \ p with 
decreasing o, is observed. Qualitatively the same 
behavior was found for polymethacrylates [3] and 
carboxymethylated hydroxyethylcellulose [14]. At 
relatively high salt concentrations (0.1 M NaCl) 
this trend was reversed for sodium polyacrylate as 

~ 80 

E 
u 
>" 6 0 

* 
< 40 

20 

[PAA] = 2.50 mM 
a n =0.8 -*—«— Li 

-o—o— Na 

f o ' a— °— °—o—o—o— K 

^ 
0.5 1.0 1.5 

Fig. 3. Conductivity excess curves of three alkali polyacrylate 
solutions as a function of the concentration of Zn(II). Standard 

deviation of AKT values was typically about 0.4 pS cm - 1 . 
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reported by Noda et al. [15]. Probably conforma
tional aspects play a role in this matter in the 
sense that the frictional coefficient of the polyion 
is dependent on the charge density. In the salt-free 
case, highly charged polyions may have a cylin
drical shape, whereas lower charged polyions have 
a more compact worm-like chain conformation 
[16] with a lower frictional coefficient. The Xp 

data in table 1, which will be further discussed 
below, suggest that the change in frictional drag 
dominates the change in electrical force on the 
polyion when changing the charge density. When 
a large amount of a 1:1 salt is added, the dimen
sions of the polyion become smaller [16] and 
variation in frictional drag is not as important as 
in the salt-free case, which probably accounts for 
the observed differences. For a„ = 0.8, the depen
dence of \ p on concentration of added 1:1 salt is 
presented in table 2. A large decrease in Xp with 
increasing concentration of added 1: l sa l t is ob
served. The same trend, although less dramati
cally, was found for alkali polymethacrylates [3]. 

Fig. 3 shows some typical conductivity excess 
curves for alkali polyacrylates with a highly 
charged polyion. It appears to be a general experi
ence that the first data points of the conductivity 
excess curves form a straight line (statistics for Li 
polyacrylate, first five data points R2 = 1.000; F 
= 10 899). The same is true for certain data points 
for higher concentrations of added zinc nitrate 
(statistical data for Li polyacrylate, next four data 
points R2 = 1.000; F=6485. Finally, the curves 
become horizontal. The linear dependence of the 
conductivity excess on C2 implies that AKT is 
independent of X . There are two circumstances 
in which this independence could be established. 
The first is if (/,_„ - / , ) C , = -2(1 - / 2 )C 2 , which 
is the case when, upon binding of one Zn2+, two 
bound monovalent ions are released. The second 
option is that X is constant during titration. 
Analysis of data on the basis of the first assump
tion yields values for 1 — f2 that systematically 
were in the range 1.2-1.5, which is clearly impos
sible. Therefore, it is concluded that Xp is essen
tially constant during titration. It is well known 
from theory that Xp may be dependent on X° 
[17,18]. From the expression for the electric mobil
ity of a polyion derived by Imai and Iwasa [18], 

using a value of the order of 1012 kg mol - 1 s _ 1 

for the frictional coefficients of counterions 
(calculated from diffusion coefficients [19]) and a 
frictional coefficient of the uncharged polyion 
within the range 1014-1015 kg mol"1 s"1 (ref. 14 
and unpublished results of this laboratory), the 
electric mobility of the polyion is indeed found to 
be essentially independent of the type of counter-
ion. 

If it is true that in the course of the titration 
under the present experimental conditions no 
change in dimensions occurs, the contribution to 
the electric mobility of an individual charged group 
on the polyion should not be affected by addition 
of Zn2+. Thus, if the solvent properties do not 
change during the titration, the only parameter 
left to affect the net conductivity of the polyion is 
its apparent charge. Hence, its net conductivity for 
any point during the titration is /p times the Xp 

found in blank polyelectrolyte solutions. There
fore, X in eqs. 2,4 and 9 is the X calculated from 
blank polyelectrolyte solutions. This reasoning is 
supported by dynamic light scattering experiments 
performed by Magdelenat et al. [20] who found a 
linear decrease in overall mobility of the polyionic 
species, when titrating Na chondroitin sulfate with 
Ca2+. This linear decrease indicates that the mo
bility of the polyionic species is, at least in part of 
the titration, only dependent on its apparent 
charge. The same type of behavior of Xp was 
tacitly implied by Thibault and Rinaudo [21] in 
their calculations concerning conductivity data of 
a polyelectrolyte solution with only divalent coun
terions present. 

Finally, from fig. 3 it is clear that the AKT 

curves show a small intercept. Strictly they should 
pass through the origin. This observation may 
suggest that during the titration Xp may be a 
constant, which is different from the initial value. 
However, analysis of the intercept in terms of this 
concept yields a X value which is not signifi
cantly different from the starting value. Further
more, calculation of 1 — f2 from the slope of the 
linear parts of the conductivity excess curves yields 
the same value as obtained by calculation using 
the AKT values point by point. This suggests that 
the observed intercepts are of incidental nature 
and do not seriously affect the analysis. 
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4.3. Analysis of conductivity excess curves 

As demonstrated in fig. 3, the conductivity 
excess curves of the alkali polyacrylates show simi
lar shapes. Using the dependence of / , on C2 as 
derived from A, \° plots and taking for \ p its 
value in blank polyelectrolyte solutions, the frac
tion of bound Zn2+ can be calculated from the 
conductivity excess. In fig. 4 the resulting / , and 
f2 values are shown for different C2/C, ratios. 
The f2 values were calculated using eq. 9 and are 
average values for the three alkali polyacrylate 
solutions. Error bars indicate the standard errors. 
As is inferred from fig. 4 f2 is practically zero up 
to C2/Cx = 0.45, or in other words, the added 
Zn2+ is practically quantitatively bound over the 
major part of the titration. Similarly to the con
ductivity excess curves, the plot of fx vs. C2/C, 
shows two linear parts and a more or less horizon
tal part. The first linear part is between C2/C} = 0 
and 0.25 (with statistics: n = 6, R2 = 0.999, F = 
4000) and the second between Q / C , = 0.30 and 
0.50 (n = 5, R2 = 0.998, F=951). The intersec
tion of these two linear parts coincides, within 1%, 
with that of the corresponding part of the conduc
tivity excess curve (fig. 3). At this stage of titration 
| n e , ( = / p l ) is about 0.5. It should be noted that 
the monovalent ions are not completely free at 
this stage. In the region around C2/Ct = 0.50 the 
behavior of the polyelectrolyte system is less clear-
cut. Here, the conductivity excess curves are not 
linear and changes in the dimensions of the poly-

I, a n=0.6 

- /T 

-1=1—1—1—1-

f2 a „ = 0.8 

0.2 
4 = ^ 
0.4 0.6 0.8 

C2 / C , 

Fig. 4. Plots of / , and f2 vs. the ratio C j / Q for the alkali 
polyacrylate of fig. 3. Typical standard deviation in fx values 

is 0.01 and in / 2 values 0.04. 

ion may occur, implying a change in Xp. Conse
quently, beyond C2/Cx ~ 0.50 the fraction of free 
divalent ions cannot be calculated exactly. The 
two dashed parts of the f2 curve represent two 
extremes: the upper curve is calculated neglecting 
any additional binding of Zn2+, whereas the lower 
one is calculated assuming a constant A The first 
approach may overestimate f2, while the second is 
an underestimation. However, it is obvious that 
both curves approach each other. Furthermore, 
for C2/Cx > 0.55, /j becomes independent of 
C2/Cx. The observation suggests that binding of 
Zn2+ ceases beyond C2/Cl =0.55. In this region 
£„„,, like /2, cannot be calculated exactly; estima
tions on the basis of limiting cases yield a value 
between 0.05 and 0.16. The general conclusion is 

a [PAA] = 2.50 mM 
a n = 05 

. / > -

/ : 
/y 

\i V 
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Fig. 5. Conductivity excess curves of alkali polyacrylate solu
tions as a function of the concentration of Zn(II). Standard 

deviations; see fig. 3. 



66 

that Zn2+ is completely bound at charge densities 
below 0.5. 

In fig. 5 conductivity excess curves are shown 
for an = 0.3 and a„ = 0.5. As compared to the 
corresponding curves obtained for a„ = 0.8 the 
kinks in the rising part are absent. In the curved 
parts of the plots, calculation of f2 - using the 
value for Xp obtained by conductance measure
ments in blank polyelectrolyte solutions - led to 
inconsistent results. This suggests that changes in 
the dimensions of the polyion, affecting its molar 
conductivity, may occur in the curved regions. 
Without knowledge of A in these regions, con
ductivity data cannot be interpreted quantita
tively. Here additional experiments are necessary 
to obtain Xp. Generally, it appears that only the 
linear parts of the conductivity excess curves may 
be analyzed successfully. 

In fig. 6, 0, and 62 are plotted vs. the ratio 
C2/Ci for a„ = 0.3, 0.5 and 0.8. Taking into 
account an experimental error of typically 0.04, 
the bound fraction of Zn(II) does not vary signifi
cantly with the degree of neutralization. Under the 
present conditions, all added Zn2+ is quantita
tively bound at any degree of neutralization of the 
polyion. 

4.4. Competition between monovalent and divalent 
countehons 

According to Poisson-Boltzmann calculations a 
1:1 exchange of bound monovalent counterions 

[PAA] = 2.50 mM 

against added divalent counterions should be ex
pected for titration of a polyelectrolyte solution 
with a divalent salt [22]. The same was predicted 
by Miyamoto and Imai [23], who gave an analysis 
of the competition between mono- and divalent 
counterions based on the Poisson and Fokker-
Planck equations. Condensation theory predicts 
that two bound monovalent counterions will be 
exchanged for one added divalent counterion 
[13,24]. In the first part of the titration, i.e., 0 < 
C2/Ct < 0.25, the exchange ratio r = - d 0 , / d ( l -
f2)C2 was 1.13 ±0.04 for a„ = 0.8, which is not 
too far from a 1:1 exchange. In the second part of 
the titration, i.e., 0.30 < C2/Cx < 0.45, fewer 
bound monovalent counterions are displaced per 
bound divalent ion. Here, r — 0.64 ± 0.05. Possi
bly in the first part of the titration counterfort 
exchange takes place in the immediate vicinity of 
the polyion, which is the case that Gueron and 
Weisbuch [22,25] dealt with, whereas in the second 
part exchange occurs in a region where the mono
valent counterions are not too close to the poly
ion, but are nevertheless restricted in mobility. 
The existence of such a region of restricted mobil
ity, together with one close to the polyion and 
another in which the counterions are not in
fluenced by the electric field of the polyion has 
been advocated by Magdelenat et al. [20]. 

For a„ = 0.5 a 1:1 exchange for bound mono
valent counterions and added divalent counterions 
is found over the entire accessible range. The same 
results were obtained for Ca2 + /Na+ competition 
in aqueous solutions of a maleic acid copolymer 
studied by potentiometry [26]. At an = 0.3, how-
Table l 

Bound fractions and conductivity data of alkali polyacrylate 
solutions at different degrees of neutralization 

[PAA] - 2.50 mM in the presence of Zn(N03)2. 

0.3 0.5 0.8 

Fig. 6. Plots of 0, and 92 vs. the ratio C2/C, for several 
degrees of neutralization. Typical standard deviation in 0, 

values is 0.01 and in 62 values 0.04. 

! - / i , o O.305±0.005 0.429±0.003 0.531±0.O05 
l - / 2 ' 1.09 ±0.04 1.09 ±0.05 0.99 ±0.02 
r 0.74 ±0.05 1.01 ±0.07 1.13 ±0.04* 

0.64 ±0.04" 
Ap(Scm2 

mor 1 ) 45.6 ±0.8 39.8 ±0.7 31.1 ±0.9 

" See text. 
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Table 2 

Bound fractions and conductivity data of alkali polyacrylate 
solutions at different concentrations of added ajkali nitrate 

(Non. 
(PAA] = 2.50 mM and a„ = 0.8 in the presence of Zn(N03)2. 

C , [ m M ) 

Fig. 7. Conductivity excess curves of potassium polyacrylate 
solutions for the indicated potassium nitrate concentrations, as 
a function of the concentration of Zn(II). In the worst case (10 
mM KN03) the standard deviation of AKT values was typi

cally about 1 fiS cm - 1 . 

ever, more Zn2+ needs to be bound to release the 
same amount of bound monovalent ions. The 
results of the analysis given so far are summarized 
in table 1. 

4.5. The case with an added 1:1 salt 

In fig. 7 the conductivity excess curves for 
potassium polyacrylate at several KN03 con
centrations are shown. Up to 5 mM KN03 the 
shapes of the conductivity excess curves are simi
lar. From about 10 mM, significant deviations 
from this shape are observed. At this KNO3 con
centration the conductivity excess curves were not 
easy to interpret and evaluation as outlined in 
section 2 led to inconsistent results. Nevertheless, 
it appears that in the beginning of the titration the 
added Zn2+ is not completely bound in contrast to 
the case for a low concentration of 1:1 electro
lyte. Perhaps, at the high salt concentrations bind
ing of monovalent counterions is favored by their 
excess. This behavior was also reported by Mag-
delenat et al. [27] and Ishikawa [28]. 

In table 2 results for alkali polyacrylates with a 
degree of neutralization of 0.8 at several salt con
centrations below 10 mM are summarized. It can 
be seen that the composition of the counter charge 
around the polyion is not influenced by the alkali 
nitrate concentration provided it remains below 5 
mM. The internal consistency of the results for 
(1 — 0,0) is confirmed by the very good agreement 

*1,0 
1 - / 2 
r 

Xp(Scm2 

mol - 1 ) 

{NO,-]. (mM) 

0 

0.531 ±0.005 
0.99 ±0.02 
1.13 ±0.04 
0.64 ±0.04 

31.1 ±0.9 

2 

0.510±0.006 
0.94 ±0.06 
1.21 ±0.08 
0.67 ±0.05 

17 ±2 

5 

0.504 ±0.008 
0.95 ±0.05 
1.19 ±0.09 
0.63 ±0.08 

11 ±2 

with the results obtained from radioactive diffu
sion measurements by Ander et al. [29]. These 
findings further support the assumed additivity 
rule for the conductivity of polyelectrolyte solu
tions. The insensitivity of the fraction of bound 
divalent counterions for a limited excess of added 
1:1 salt was also found by Magdelenat for Sr2+ in 
a solution of Na chondroitin sulfate and NaCl 
using radioactive tracer diffusion measurements 
[27]. 

For the case of an excess of 1:1 salt, the 
Poisson-Boltzmann equation was numerically in
tegrated. The exchange ratio r was found to be 0.8 
for a cylindrical charge distribution with a charge 
density corresponding to PAA with an — 0.8. For 
low charge densities the calculated r decreases to 
about 0.7. These preliminary computations are in 
qualitative agreement with the observed tendency 
of r to decrease with decreasing charge density 
(see table 2). It is curious in this respect that, in 
the conductometric part of their study on the 
binding of Zn2+ to polymethacrylate anions in 10 
mM KNO3, Kolawole and Olayemi [6] paid no 
attention at all to the release of bound monova
lent counterions upon addition of divalent coun
terions. 

5. Conclusion 

Conductometry is a valuable tool in the analy
sis of ion distributions in metal/polyelectrolyte 
systems. For the zinc/polyacrylate systems in 
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LiN03, NaN03 and KN03 solutions, the relation
ship between A and X° as well as that between 
the conductivity excess and C2 was linear. This 
allows the computation of the bound fractions of 
both the monovalent and divalent counterions. Up 
to a certain concentration level, the composition 
of the counterionic atmosphere around the poly-
ion was insensitive to the added alkali nitrate. The 
M + /M 2 + exchange ratio r shows a discrete be
havior and it was found to be dependent on both 
the degree of neutralization of poly(acrylic acid) 
and the amount of bound divalent counterions. 
For high an, r is close to unity over a particular 
range of M + /M 2 + ratios. 
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SUMMARY 

The present study is concerned with the electroanalytical chemistry of 

complexes of metals with large ligands. The main purpose was to develop quan

titative descriptions of the voltammetric current-potential relation of metal 

complex systems with different diffusion coefficients of the species involved 

and of the conductometric response of metal/polyelectrolyte systems at various 

metal-to-ligand ratios. A further goal was to illustrate the theoretical 

treatments with some experiments on model systems. 

In chapter 1 the general background of this study is discussed. After a 

brief review of some environmental aspects of heavy metals, the importance of 

reliable analytical techniques for their speciation is advanced. The particu

lar potentialities of electroanalytical techniques in this field are outlined. 

In chapter 2 a rigorous theoretical treatment is given of the voltam

metric limiting current for metal complex systems in which the diffusion 

coefficents of the species involved are different. The equation for the lim

iting current is formulated in the Laplace domain and is rigorous with respect 

to the values of the association and dissociation rate constants as well as to 

the ratio of the diffusion coefficients of the species. It is valid for an 

excess of ligand and a stationary planar electrode. In some limiting cases 

analytical expressions in the time domain have been obtained. In the degener

ate case of equal diffusion coefficients the limiting current can be described 

by a series expansion of confluent hypergeometric functions. Another limiting 

case is the situation where the diffusion coefficient of the ligand is in

finitely small. Here, the use of a perturbation technique leads to a satisfac

tory approximation in the form of a series of confluent hypergeometric func

tions, for the case where the diffusion coefficient of the ligand is at least 

one order of magnitude smaller than that of the uncomplexed metal ion. Where 

analytical inversion of the Laplace transformed limiting current expression 

fails, transients are obtained by a numerical procedure. The results are 

identical with what may be obtained from the time-consuming fully numerical 

solution of the differential equations using the explicit finite difference 

algorithm. 

In chapter 3 the behaviour of the limiting current is investigated as a 

function of the electrolysis time, the ratio of the diffusion coefficients of 

the species and the association/dissociation rate constants. New qualifica

tions to specify the voltammetric behaviour of metal complex systems are 
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introduced. Depending on the mean life-times of the species, the system can be 

static, semi-dynamic and dynamic. When the mean life-times are large compared 

to the electrolysis time, the system is static and the limiting current is 

proportional to the concentration of uncomplexed metal. In the opposite case 

where the life-times are small compared to the electrolysis time, the system 

is dynamic. A dynamic system can be further subdivided in labile and non-

labile. The lability concept unambiguously follows from considering the lim

iting cases in the theory. A new lability criterion is formulated, which is, 

compared to earlier tentative formulations, generalized to the metal complex 

system as a whole. In the non-labile regime the limiting current is found to 

follow exactly the classical reaction layer model, provided there is a large 

excess of complex over free metal. In order to facilitate practical use of the 

various results, some Cottrell plots and working curves are given. 

In chapter 4 a rigorous treatment of the complete current-potential 

relation of the metal complex systems from the previous chapters is given. The 

general relation is again formulated in the Laplace domain. Besides its lim

itation to reversible electrode processes, it has the same range of validity 

as the limiting current equation of chapter 2. The half-wave potential is 

obtained numerically from the general current-potential relation and its 

dependence on the electrolysis time, the ratio of the diffusion coefficients 

of the species and the association/dissociation rate constants is discussed. 

In the case of equal diffusion coefficients of the species, the current-po

tential relation can be analytically transformed from the Laplace- to the time 

domain. The result is given as a series expansion of confluent hypergeometric 

functions. In the dynamic regime the current-potential relation is described 

by an experfc type of function. An analytical expression for the half-wave 

potential is then obtained. In the case of a labile system and a large excess 

of complex this expression reduces to the well-known DeFord-Hume equation. 

In chapter 5 experimental data from earlier work on the voltammetry of 

heavy metal/polyelectrolyte systems are reconsidered. A procedure for solving 

a voltammetric speciation problem for a given set of values of the electro

lysis time and the ratio of the diffusion coefficients is presented. Under the 

given experimental conditions the Zn/PMA system was found to be labile. Here 

the speciation is straightforwardly performed using the mean diffusion coeffi

cient concept. The Cd/PMA data are substantially affected by induced adsorp

tion of the metal ion. Until this is eliminated, interpretation is not possi

ble. The Pb/PAA system seems to be dynamic and not labile. Here, the specia-
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tion is involved and performed by fitting the experimental data to the rigor

ous equations of the chapters 2 and 4 and as a result the order of magnitude 

of both the stability constant and the dissociation rate constant are ob

tained. Anticipating future presentations the correctness of the stability 

constant evaluated under the assumption of an excess of ligand, is estimated. 

In chapter 6 a procedure is described for the analysis of the conducti

vity of solutions of polyions in which both mono- and divalent counterions are 

present. The method is based on analysis of the relation between the overall 

conductivity of the system and the conductivity of the monovalent cations and 

assumes that the latter are electrostatically bound. The system is described 

in terms of the two state approach, implying that the counterions are consi

dered to be either in some kind of bound state or are completely free. The 

potentialities of the proposed method are explored by studying solutions of 

alkali polyacrylates with and without added zinc nitrate at several alkali 

nitrate concentrations The results give a picture of the composition of the 

counterionic atmosphere around the polyion. Up to a certain Zn/polyacrylate 

ratio, the zinc ions were found to be bound quantitatively by the polyion. The 

composition of the counterionc atmosphere was largely independent of the 

alkali nitrate concentration if the latter was not in too large excess with 

respect to both the zinc ions and the charged monomers. 
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ELECTROCHEMISCHE ANALYSE VAN ZHAAR tETAAL COMPLEXEN 

SAMENVATTING 

Al eeuwen lang maakt de mens gebruik van metalen. In prehistorische 

tijden was hij reeds In staat bronzen en ijzeren werktuigen te vervaardigen. 

Geleidelijk aan vonden ook zouten van metalen hun toepassing. Zo werd enkele 

honderden jaren geleden kopersulfaat toegepast als algenverdelger. Na de 

industrie°le revolutie bleef de productivitelt stijgen. Tegelijk hiermee stegen 

ook de concentraties (zware) metalen in ons milieu. Tegenwoordig zijn metalen 

niet meer weg te denken. Er is een enorme verscheidenheid aan legeringen 

ontwikkeld, ieder met hun specifieke eigenschappen en toepassingen. Behalve in 

duidelijk herkenbare vormen, komen metalen en i.h.b. zware metalen (dat zijn 

b.v. cadmium, chroom, koper, lood, ijzer en zink) ook verstopt in allerlei 

alledaagse produkten voor, Zo zijn bepaalde soorten verf- en kleurstoffen 

gebaseerd op lood- of cadmiumverbindingen. In vele soorten batterijen bevinden 

zich zware metalen : lood in autoaccu's, cadmium en nikkel in oplaadbare 

batterijen, zink in gewone wegwerpbatterijen en kwik in de 'knoopcellen' voor 

b.v. digitale horloges. Zware metalen komen in het milieu o.a. via : de 

uitstoot van smeltovens en voor velen heel wat dichterbij huis, uitlaatgassen 

van auto's met benzinemotoren. Wat betreft het laatste, aan benzine wordt een 

loodverbinding, terta-ethyllood, toegevoegd om de verbranding te verbeteren. 

Hoewel de giftigheid van zware metalen reeds lang bekend is, heeft men 

zich tot halverwege onze eeuw nauwelijks zorgen gemaakt over het gebruik van 

deze stoffen en zeker niet over de verspreiding daarvan in het milieu. In het 

begin van de 70'er jaren, toen er in Japan ongeveer 50 mensen overleden en 150 

blijvend letsel opliepen na het eten van met kwik vergiftigde vis, drong de 

problematiek rond zware metalen in het milieu pas goed door. 

De giftigheid van zware metalen wordt hoofdzakelljk bepaald door : (i) de 

aard van het zwaar metaal, zo is b.v. kwik giftiger dan zink en (ii) door de 

chemische verschijningsvorm, zo is koper gebonden aan slib veel minder giftig 

dan vrij koper. De giftigheid van zware metalen wordt veroorzaakt doordat zij 

gemakkelijk met eiwitten binden (complexeren). Zware metalen kunnen door 

binding met enzymen - stoffen die nodig zijn om biologisch belangrijke 

processen zoals het verteren van voedsel, de energie huishouding enz. gaande 

te houden - een ziekmakend effect hebben. Door complexering met DNA, de drager 
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van erfelijke informatie, kunnen zware metalen kankerverwekkend zijn 

(carcinogeen effect) en (cel)groei processen vervormen (mutageen effect). Nu 

hebben zware metalen natuurlijk niet altijd en onmiddellijk dergelijke 

kwalijke gevolgen, veel hangt af van de dosis en tijdsbestek waarover men die 

binnen krijgt. Sommige zware metalen zoals chroom, koper, molybdeen, tin, 

ijzer en zink zljn essentleel voor dlerlijk leven. Bij de mens kent men, 

behalve problemen met te grote hoeveelheden zware metalen, ziektebeelden voor 

een tekort aan Ijzer (bloedarmoede), koper en zink. 

Het zal nu wel duidelijk zijn dat er betrouwbare analyse technieken nodig 

zijn om zwaar metaal concentraties in milieu en medisch relevante monsters te 

kunnen bepalen. Dergelijke technieken, liefst gemakkelijk te automatiseren, 

moeten in het ideale geval niet alleen buitengewoon lage concentraties kunnen 

meten, maar ook nog onderscheid kunnen maken naar de chemische ver-

schijningsvorm. (Is het aanwezige koper gebonden aan slib of is het helemaal 

vrij ?) Het specificeren van de verschillende chemische verschijningsvormen 

noemt men speciatie. Technieken die het geschetste probleem volledig aankunnen 

zijn er nog niet. Een van de meest veelbelovende in dit verband is de 

voltammetrie, een electroanalytische methodiek waarbij de concentratie van een 

stof wordt bepaald door deze aan een geschikte electrode een reactie te laten 

ondergaan. De hierbij optredende electrische stroom is een maat voor de 

concentratie van die stof. Nu komen in de natuur allerlei stoffen voor waarmee 

zware metalen complexeren ('binden'). Veel van die stoffen bestaan uit 

deeltjes die veel groter zijn dan het metaal deeltje zelf. Een complex 

('verbinding') van beide zal daarom in een stilstaande vloeistof veel 

langzamer bewegen. In de voltammetrie wordt het signaal bepaald door de 

toevoer van materiaal, hier : het metaal deeltje en het complex, naar de 

electrode en daarom is de grootte van het complex van groot belang voor het 

signaal. Aan dit aspect is in de electrochemische literatuur nog maar heel 

weinig aandacht besteed. 

Het voornaamste deel van dit proefschrift handelt over de theorie van 

voltammetrie van metaal complex systemen waarin de grootte van het complex en 

het metaal deeltje verschillend zijn. (Hoofdstuk 2, 3 en 4). Er zijn in een 

speciale wiskundige ruimte vergelijkingen voor de stroom ('het signaal') en 

voor het verband tussen de gemeten stroom en de aangelegde spanning afgeleid. 

Aangezien deze wiskundige ruimte geen directe natuurkundige betekenis heeft, 

men kan er geen metingen in verrichten, moeten de vergelijkingen naar een wel 

toegankelijke ruimte, onze natuurkundige tijd-ruimte worden overgebracht. Dit 
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is analytisch (d.w.z. in wiskundige formule vorm) alleen in enkele meer en 

minder eenvoudige randgevallen mogelijk. Voor het overige is gebruik gemaakt 

van een numerieke methode, d.w.z. de oplossing wordt in de vorm van getallen-

reeksen verkregen die m.b.v. een computer zijn berekend. Op basis van theore-

tische beschouwingen zijn een aantal nieuwe kwalificaties getntroduceerd om 

het gedrag van metaal complex systemen te beschrijven. 

Met de theorie in de hand zijn een aantal experimenten uit vroeger werk 

opnieuw bekeken (hoofdstuk 5). Er is gekozen voor experimenten aan modelsys-

temen, met als complexvormers, polyzuren, die kwa eigenschappen sterk lijken 

op in de natuur voorkomende complexvormers (fulvo- en humuszuren), maar waar-

van de chemische structuur exact bekend is. De experimenten zijn uitgevoerd 

met cadmium, lood en zink. Afgezien van de meetresultaten voor cadmium, waar 

adsorptie als extra complicatie optreedt, lijkt de nieuw ontwikkelde theorie 

de voltammetrische speciatie een stap vooruit te brengen. 

Naast voltammetrie wordt bij de bestudering van complexen vaak nog con-

ductometrie gebruikt. Hierbij wordt de electrische geleiding van de oplossing 

gemeten. Deze techniek is vanwege de bescheiden detectiegrens niet zo zeer ge-

schikt voor de analyse van milieu monsters maar kan gegevens opleveren die 

inzicht verschaffen in de mate waarin metalen complexeren. Uitgaande van de 

bestaande theorie, is een analyse procedure ontwikkeld en getest op een model-

systeem t.w. zink en een synthetische complexvormer (polyacrylzuur). De resul-

taten geven een kwantitatief beeld van de wisselwerking tussen het zwaar 

metaal en de complexvormer. 
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