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STELLIHGEN 

1. 
De etmaaltemperatuur dient betrokken te worden bij de regeling van 
het kasklimaat (dit proefschrift). 

2. 
De tetnperatuursverdeling tussen dag en nacht beinvloedt de 
produktkwaliteit (dit proefschrift). 

3. 
Een hogere nacht- dan dagtemperatuur stimuleert de bloemknop-
vorming (dit proefschrift). 

4. 
Het trage uitlopen van okselknoppen is naast de vorming van loze 
scheuten, onder gegeven lichtomstandigheden, de grootste belemmering 
voor de winterproduktie van kasrozen in Nederland (dit proefschrift). 

5. 
Het inbrengen van daglengtegevoeligheld in de roos zou de teelt-
planning en de arbeidsproduktiviteit aanzienlijk verbeteren. 

6. 
De substraattemperatuur dient bij de kasklimaatregeling te worden 
betrokken. 

7. 
De teelt in kunstsubstraten is een fase tussen de teelt in de 
kasgrond en de teelt in voedingsfilm. 

Substraatteelt leidt via standaardisering en automatisering tot 
teeltvereenvoudiging. 

9. 
Bij de fytosanitaire eisen m.b.t. de export dient de eis „ vrij 
van schadelijke organisraen" vervangen te worden door de eis „ vrij 
van reproductieve schadelijke organismen". 

10. 
De z.g. "nultolerantie" leidt tot milieu-onvriendelijke 
produktiemethoden. 

11. 
Ter verhoging van de effectiviteit van de toepassing van gewas-
beschermingsmiddelen in de kasteelt dient de relatie tussen 
microklimaat en aktivitelt c.q. mobiliteit van het plaagorganisme 
te worden bestudeerd. 



12. 
Het opzetten en aktualiseren van een voor de teler, via een eigen 
terminal, direkt toegankelijke databank met teeltinformatie dient 
een belangrijk produkt te zijn van een moderne voorlichtings-
dienst. 

13. 
Hoewel individueel bedrijfsbezoek geen overheidstaak is, is 
individueel bedrijfsbezoek noodzakelijk voor een overheids-
voorlichter om goed te kunnen funktioneren. 

14. 
Voor het goed funktioneren van een Proefstation is evenwicht 
tussen fundamenteel gerichte en praktijk gerichte onderzoekers 
noodzakelijk. 

15. 
Stellingen zijn vaak net als degenen die ze maken, er zit van 
alles tussen. 

G.A. van den Berg 
Influence of temperature on bud break, shoot growth, flowerbud 
atrophy and winter production of glasshouse roses 
Wageningen, 4 maart 1987. 
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1. INTRODUCTION AND OBJECTIVES 

The glasshouse cut rose (Rosa hybrida) is the most important cut 

flower of the Dutch floricultural industry. In 1985 the total auction 

turnover was 483 million Dutch Guilders. The total glasshouse area 

planted with roses was 758 ha, spread over about 1000 nurseries (VBN 

1985). According to the auction turnover the 5 most important 

cultivars were: Motrea, Sweet Promise, Ruimeva, Merko and Varlon. In 

the Netherlands roses are commonly grown on root stock of Rosa canina 

selections and planted in glasshouse soil with a plant density of 6-9 

shrubs per gross meter glasshouse soil surface. In 1976 experiments 

to grow roses on own roots in a thin layer of rockwool were started 

at the the experimental station in Aalsmeer (Van den Berg 1978). 

Since then this method has been spreading gradually in commercial 

rose growing. At the start of 1986 about 20 ha of roses were grown in 

rockwool, for the greater part on their own roots. The switch from 

soil to rockwool is encouraged by the prevalence of soil diseases. 

The use of movable benches has opened up the possibility of 

increasing the net productive soil surface, automatically reducing 

fuel costs per rose (Van den Berg 1984). The use of thin layers of an 

artificial substrate enable more possibilities for control of the 

root environment, and attracts more and more attention. 

In the Netherlands cut roses are commonly produced all year 

round. If a cultivar is not adapted to this way of cultivation and 

produces flowers of a bad quality or too many flowerless ('blind') 

shoots in winter, the canopy is given a rest period of 4-6 weeks in 
o 

December and January at 2-5 C. 

The glasshouses are commonly heated by warm water via steel pipes 

with a diameter of 51 mm. Nowadays pipes with a smaller diameter made 

of steel or finned alluminium are also installed. Thin pipes have a 

lower water content which make them more suitable for climate 

control. The reaction time is much shorter than with thicker pipes 

with a larger water content and offer a more, stable temperature in 

the glasshouses, with less over and under shoot. 



Two thirds or more of the pipes are installed at or about 20 cm 

above soil level inside or alongside the beds. The rest of the pipes 

belong to a separate heating system and are situated above the crop. 

Soil heating is not usual for soil grown roses. For roses grown in 

rockwool, heating of the substrate is given more and more attention. 

This is due to the good results obtained in commercial glasshouses 

with substrate heating during last winter (Breuering 1986). 

Moveable thermal screens for the purpose of energy conservation are 

widely used in rose growing. For the same purpose tens of hectares of 

new glasshouses have been built with a double glass or acrylic cover. 
2 

The average energy use for Dutch glasshouse roses per gross m is 
3 

40-45 m natural gas. 

The glasshouse climate in modern glasshouses is controlled mainly by 

digital process computers. The introduction of the climate computer 

has widened the possibilities for climate control. Controlling on a 

basis of the mean daily temperature or on temperature sums has become 

a possibility. 

In mid-winter the low light intensities reduce production. 

Supplementary lighting to overcome this problem is not widely used in 

Dutch rose growing. The high cost of electricity make supplementary 

lighting hardly profitable. The use of total energy systems in 

combination with artificial substrates on movable benches might 

change this situation. The very high production of more than 400 
2 

blooms per m gross soil surface (Van den Berg 1984) may make 

supplementary lighting profitable. 

Glasshouse air temperature is a climate factor that can be 

relatively easily controlled by the grower. This factor has a direct 

influence on the development time of the rose and indirectly affects 

the amount of light a rose shoot receives during its growth. 

The object of the research covered by this thesis was to study the 

influence of temperature on production, quality and flower bud 

atrophy of cut roses during winter in Dutch glasshouses and to make 

this influence visible in graphs or simple 'models' which can be used 



for planning and decision making in rose growing. 

Special attention was paid to the influence of the distribution of 

temperature between day and night on production and quality. 

Thermal screens are usually closed at night; this means that heating 

in the night needs less energy than heating in the daytime when the 

screens are open. This makes it possible to save energy without 

further investments. 

The cultivars 'Sweet Promise' and 'Varlon' were chosen because these 

are widely used by the Duch growers. At the moment the research was 

started in 1976, these cultivars belonged to the leading ones and 

were expected to remain so for many years. These cultivars as 

required for the research can be produced all year round, and do not 

need a rest period during winter. 

In this thesis each result chapter ends with a discussion, which 

gives some advice for commercial rose growing. At the end of all 

result chapters a final discussion is given. 



2. MATERIALS, METHODS AND CONDITIONS 

2 . 1 . GENERAL 

In this chapter the different growth facilities, the plant materials 

and the climate conditions of the experiments are described. In the 

experiments different rose cultivars were used. The main cultivars 
R R 

however were Sweet promise (Sonia ) and Varlon -(Ilona ). In some 
R R 

experiments also the cultivars Merko (Mercedes ) and Motrea were 
used and in one experiment, dealing with the sprouting of the lateral 

R R 
buds, also the cultivars: Ruimeva (Madelon ), Tanatesil (Ilseta ), 

R R 
Jelparaco (Carte Rose ), Korenlo (Lorena ) and Jeldanira (Mimi 
Rose ). The experiments can be dividid into three groups: 

(1) Roses on rootstock in glasshouse soil under natural light 

conditions. 

(2) Roses on their own roots grown in containers filled with 

potting compost in the glasshouse under natural light 

conditions. 

(3) Roses on their own roots grown in containers filled with 

potting compost in growth rooms under artificial climate 

conditions. 

2.2. EXPERIMENTS WITH SOIL GROWN ROSES IN THE GLASSHOUSE 

These experiments are coded by: GSnr (Glasshouse Soil). 

For these experiments which formed the bulk of the research, the cvs. 

Sweet Promise and Varlon on the rootstock Rosa canina 'Inermis' were 

used. The rootstock 'Inermis' (Leemans and Laar 1977, Krussmann 1986) 

is widely used in the Netherlands. The experiments lasted 6 

continuous winter seasons. 

The roses were grown in glasshouse compartments of 12.0 by 9.6 



meters. These were part of a newly built glasshouse with 30 

compartments. The glasshouse climate was computer controlled by means 

of a Siemens 300-330 minicomputer system. This computer was also used 

for data logging and data processing. 

During the first three years of the research 9 compartments were in 

use for the experiments and during the last three years 4 

compartments. In each compartment 6 beds with three rows of grafts 

were planted in February 1977. The planting distance of the beds was: 

30 cm in the rows and 35 cm between the rows. This resulted in a 

planting density of 6.4 plants per gross square meter glasshouse soil 

surface. 

From the 6 beds only the center parts of the 4 middle beds, each part 

with a length of 6 meters, were used in the experiments. The two side 

beds and the front and back part of the middle beds had a fringe 

function and fell outside the experiments. The 4 middle beds were 

alternately planted with roses of the cv. Sweet Promise and Varlon. 

Thus in total there were 4 plots per compartment, two planted with 

'Sweet Promise' and two with 'Varlon'. The center of a plot was not 

automatically the center of the glasshouse compartment. 

A Chrysanthemum crop preceded the rose experiments. With this crop 

the most effective situation for the plots had been determined in 

such a way that the growth conditions of the plots in the nine 

compartments were as equal as possible. 

Each of the 4 plots per compartment held 63 shrubs (3*21). From these 

plots the roses were harvested 3-6 times a week depending on the 

weather. During all the experiments the roses were cut upward above 

the first five-leaflet leaf. The 'blind' shoots however were cut 

downward beneath the stem joint on a thicker stem to reduce the 

chance that the shoot of the next growth cycle would grow blind too. 

Of the cut roses, number, average length and fresh weight were 

measured. 

At the start of the experiments, from the 36 shrubs that formed the 

center of a plot, one shoot per shrub was selected for uniformity and 

labeled. These labeled shoots and their daughter shoots were 



monitored on a weekly basis during the whole experiment. During 

harvest the roses produced by these labeled shoots were segregated 

from the rest and measured individually. These measurements involved 

length, fresh weight, diameter of the stem at the cut and at the 

center of the neck, diameter of the ovary, fresh weight of the flower 

bud, the number of internodes and leaves. For some years length and 

width of the flower bud and length of the neck were also measured. 

In each compartment, in the centre of the four experimental 

plots, an isolated and ventilated psychometer box was placed 

containing a dry and a wet bulb temperature sensor (Pt 100). The 

sampling time was 1 minute. From these data the computer calculated 

the mean 24 hours temperature (from 00.00 hr-24.00 hrs), the mean 

daily irradlance and the relative air humidity. The irradiance was 

measured per compartment at shoot top level by means of a solarimeter 

(Kipp & Son), sensitive to radiation between 300-3000 nano meter. The 

sensors for radiation and temperature were calibrated before and 

during the experiments. The experiments started in the first or the 

second week of October and lasted until the first day of May the next 

year. 

From the first of May until the start of the next experiment in 

the autumn, the treatments in all compartments were the same and 

aimed at banishing any variation between the compartments. 

Out of the more than 90 rose cultivars sold at the Dutch auctions the 

cvs. Sweet Promise and Varlon were chosen for the experiments for the 

following reasons: 

- From experience in practice one could suppose that both cultivars 

show a difference in sensitivity to temperature. 'Sweet Promise' is 

grown at a lower temperature level than 'Varlon'. 

- The cultivars are usually kept in production during winter and do 

not need a rest period. 

- The cultivars belong to the most important cut roses produced in 

the Netherlands and are well known by all Dutch rose growers. 

The glasshouse compartments were heated by warm water via two pipe 



heating systems. One low laying system, a string of poly-ethelene 
o 

tubes with a cross-section of 17mm and restricted at 50 C, running 

over the beds at a height of 15 cm. The other system made of steel 
o 

pipes with a cross-section of 51 mm and restricted at 95 C, running 

over the canopy at a height of 240cm above soil level. If heating 

was necessary the lower heating system was used first. If this system 
o 

had reached its installed maximum temperature of 50 C and the air 

temperature was still below the setpoint, the upper heating system 

was also used. 

Irrigation of the crop was performed by a permanent line of low 

pressure sprinklers set at soil level in the middle of each bed, as 

is commonly used for rose growing in Dutch glasshouses. Adding 

fertilisers was applied according to the standard scheme used at the 

Experimental Station. The same can be said for pest and disease 

control. 

One of the problems encountered when starting the experiments with 

roses in the glasshouse soil was that it takes half a year from 

planting in February until a shrub of reasonable size has developped 

which is suitable for experiments. If an experiment stops in May, it 

is too late to replant in order to have a well developed shrub in 

October when the next experiment starts. The only way to avoid the 

situation that only one experiment per two years was possible in the 

same glasshouse, was to use the summer period to bring the shrubs in 

the different compartments back to the same conditions. This was done 

by pruning back to thick wood, that had been formed the year before 

in the same period under the same conditions. Of course this did not 

mean that this wood was physiologically totally identical in all 

plants, but it was the only way to deal with the problem. 

The summer cultural practices and those in preparation for the next 

experiment were similar for all years and for all compartments. 

After pruning, the temperature was kept at a moderate level; heating 
o o 

at 16 C and ventilating at 18 C for 5 months in all compartments. The 

first grown flush following pruning was left for flowering and cut 

downward afterwards to three, five-leaflet leaves. The next flush was 



soft topped on three five-leaflet leaves above the joint. At the 

start of the new experiments in October all compartments were 'on 

flush1. Most of the differences caused by experiments in the previous 

season had disappeared. For the remaining differences, correction 

factors concerning quantity and fresh weight, were calculated for 

each compartment. 

One can never be certain that these correction factors are one 

hundred percent accurate however. A small deviation remains a 

possibility. On logical grounds however, one may expect that if 

making corrections based on the differences present at the start of 

the experiments is omitted, an even bigger mistake is made when 

interpretating the results. 

During the experimental periods from October until May the daily 

average relative humidity was in the range: 70-90%. The daylength 

was the natural daylength of the latitude at which the Experimental 
o 

Station is located: 52 15' northern hemisphere. The main conditions 

of the experiments are given in underlying section. Where necessary 

extra information is given in the results section. 

GSl:From 1 October 1977 until 1 May 1978 

In use were 8 compartments in which 4 temperature treatments were 

performed, each in 2 replications. Cultivars: Sweet Promise and 

Varlon. 

Imposed treatments; setpoints for heating : 

1. night 12°C, day 20-22°C 

2 . 

3 . 

4 . 

II 

II 

I I 

15°C, 
0 

18 C, 
0 

21 C, 
Set points for day and night both 12 hours 'per 24 hours. The setpoint 

o 
for night started at sunset. The setpoint for ventilation was 1-2 C 

above that for heating. During the daytime CO was supplied up to a 

level of 1000-1200 vpm. If the window ventilators were opened more 

than 10 %, CO suppletion stopped. 



GS2: From 9 October 1978 until 1 May 1979 

In use were 9 compartments in which 9 temperature treatments were 

performed; 3 night temperatures, each combined with 3 day 

temperatures. Cultivars: Sweet Promise and Varlon. One of the 9 

compartments was planted with 'Sweet Promise' only. Imposed 

treatments, setpoints for heating: 

1,2,3. night 12°C day 18°C, 20°C, 22°C 

4,5,6. " 15°C " idem 

7,8,9. " 18°C " idem 

Further conditions: see GS1 

GS3: From 9 October 1979 until 1 May 1980 

In use were 9 compartments in which 7 temperature treatments were 

performed, one of them in 3 replications. Cultivars: Sweet Promise 

and Varlon. Imposed treatments, setpoints for heating: 

1. night 18°C, day 18 C 
o o 

2. " 17 C, " 19 C 

3. " 16°C, " 20°C 

4. " 6 hrs 18°C followed by 6 hrs 14°C, day 20°C 

5. " 15°C, day 21°C (3 replications) 

6. " 14°C, " 22°C 

7. " 6 hrs 16°C followed by 6 hrs 12°C, day 22°C. 
o 

Installed daily (mean) temperature 18 C for all treatments. 
Further conditions: see GS1. 

GS4: From 10 October 1980 until 1 May 1981 

In use were 4 compartments in which 4 temperature treatments were 

performed. Cultivars: Sweet Promise and Varlon. Imposed treatments, 

setpoints for heating: 

1. night 16°C, day 22°C 

2. " 18°C, " 20°C 

3. " 20°C, " 18°C 

4. " 22°C, " 16°C 

Installed daily (mean) temperature 19 C for all treatments. 



3 . 

4 . 

20 

18 

I I 

t t 

18.0°C 
0 

17.3 C 

I I 

II 

4 

6 

Further conditions: see GS1. 

GS5: From 5 October 1981 until 1 May 1982 

In use were 4 compartments in which 4 temperature treatments were 

realised. Cultivars: Sweet Promise and Varlon. Imposed treatments, 

setpoints for heating: 

1. 24 hours 19.0°C. 

2. 22 " 18.5°C and 2 hours 24°C (from 18.00h until 20.00h). 

( " 18.00h " 22.00h). 

( " 18.00h " 24.00h). 

Installed daily (mean) temperature 19 C for all treatments. 

Further conditions : see GS1. 

GS6: Fro* 10 October 1982 until 1 April 1<>83 

In use were 4 compartments in which 4 temperature treatments were 

realised. Cultivars: Sweet Promise and Varlon. Imposed treatments, 

setpoints for heating: 

(1). From 10 October until 4 January the same as in GS5 

(2). From 4 January until 1 April: 

18.3~C and 3 hours 24°C (from 18.00h until 21.00h). 

( " 18.00h " 24.00h). 

" ( " 18.00h " 03.00h). 
o 

Installed daily (mean) temperature 19 C for all treatments. 

Further conditions :see GS1 

GS7: From 1 September 1983 until 1 January 1984 

In use were 4 compartments in which 4 temperature treatments were 

performed. Cultivars: Sweet Promise, Ruimeva, Tanatesil, Jeldanira, 

Jelparaco and Korenlo. These cultivars had been planted in February 

1983. The treatments and other conditions were the same as in 

experiment:GS1. 

10 

1. 

2 . 

3 . 

4 . 

24 

21 

18 

15 

hours 
i i 

i i 

I I 

19.0°C. 

18.3°C and 3 

17.3°C " 6 

16.0°C " 9 



2.3. EXPERIMENTS WITH CONTAINER GROWN ROSES IN THE GLASSHOUSE 

These experiments are coded by:GCnr (Glasshouse Container) 

Cultivars: Sweet Promise, Motrea and Merko. 

In these experiments container grown roses on their own roots raised 

from cuttings were used. Working with containers made it possible to 

transfer the shrubs from one compartment to another in order to apply 

different temperature combinations depending on the stage of shoot 

development. Up to a maximum of 27 different combinations per 

experiment were used. 

The plastic containers with a volume of 6-8 liters were filled with 

standard 'Rhijnbeek' potting compost. The containers were planted 

with rooted cuttings, one plant per container. Shrubs of at least 

half a year old were used in the experiments. 20-25 containers were 

used per temperature treatment. At the start of an experiment the 

branches were upper cut at two five-leaflet leaves and visually 

uniform branches were labeled. The new shoots sprouting from the 

terminal buds of the labeled branches were used for performing 

measurements. 

The experiments took place in glasshouse compartments of 9.60m by 

6.00m, adjacent to the compartments with the soil-grown roses. 

Climate control and registration were performed with the same process 

computer. The containers were placed on the glasshouse soil and 

watered and fertilised by hand. 

Some experiments were done in small glasshouse compartments 

(5.00m by 3.00m) which were airconditioned. In these compartments the 

containers were placed on concrete tables. 

By using cuttings it was possible to produce year round plant 

material for the experiments. A large stock of sometimes more than a 

thousand containers with roses was continuously available. All 

experiments were done with 2-9 replications and most of them were 

repeated in time. 
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GC1: Fro* October 1980 until January 1981 

In the middle of October 675 containers planted with rose cv. Sweet 

Promise were upper cut at two five-leaflet leaves above the joint. 
o 

After bud break at a temperature of 20 C the containers were divided 

at random over 27 groups of 25 containers each. These groups were 

distributed equally over three compartments in which the following 

night/day-temperature treatments were imposed: 12/22, 15/22 and 18/22 

( C). The setpoints for night started at 18.00 hrs and lasted until 

06.00 hrs in the morning. At the start there were thus 3 treatments. 

When the sprouts in a compartment had reached a length of 4-5 cm 

(this is the stage just before the strong elongation growth) two lots 

with each 3 groups were transferred to the other two compartments. 

This means there were now 3*3=9 treatments. After a lot of three 

groups had ended elongation growth, the moment was taken on which the 

sepals just gave way, two of the groups were transferred to the other 

two compartments. Thus at the end there were 3*3*3=27 different 

temperature treatments, depending on the stage of development of the 
o 

shoot. The realised temperature range was: 16.2-19.6 C. 

GC2: From May 1981 until July 1981 

The setup was the same as for GCL, but .the experiment started in the 

first week of May. The imposed night/day-temperature treatments were: 

14/16, 18/20 and 22/24 ( C). The realised temperature range was: 18.3 

- 26.4 °C. 

GC3: From October 1981 until December 1981 

In the last week of October 250 containers were divided at random 

over two compartments after having been trimmed at two five-leaflet 

leaves above the stem joint. Visually uniform stems were labeled. In 

the compartments the next night/day-temperatures were imposed: 16/24 

and 24/16 ( C). The setpoints for night started at 18.00h and lasted 

until 06.00h in the morning. From the time of trimming until harvest 

of the new shoot from the uppermost lateral bud, 25 containers were 

transferred at 4 different times between the compartments. The 
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shoot-stages at which transfer took place were: 

1. terminal lateral buds just broken (=1 cm). 

2. new sprouts 4-5 cm long. 

3. flower buds clearly visible to the naked eye (2-3mm). 

4. sepals give way. 

Together with the two groups that were not transferred this means 10 

different temperature treatments depending on the stage of 

development of the shoots. 

The realised temperatures of the compartments were monitored daily 

and, if necessary, flower bud setpoints were adjusted to keep the 

temperature sum equal between^ the compartments. The realised 

temperatures for all 10 treatments fell within the range of: 

19.6-20.0 ( C). This experiment was repeted three times: 

GC4: In the period: December 1981 until March 1982. 

GC5: " " " : November 1982 " March 1983. 

GC6: " " " : February 1984 " April 1984. 

2.4. EXPERIMENTS WITH CONTAINER GROWN ROSES IN GROWTH ROOMS 

These experiments were performed in the growth rooms of the 

Phytotron of the Laboratory for Horticulture of the Agricultural 

University in Wageningen. Dimensions of the rooms 4m x 6m. 

Cultivar: Sweet Promise. 

In the Phytotron plants were grown under artificial climate 

conditions. In the growth rooms of the Phytotron temperatures could 

be reached that were not possible in the glasshouses. The roses grew 

under artificial light with an irradiance of 20000-35000 mW/m2 (5000 

-9000 lux) dependance of shoot heigth and shoot position (Philips 

TL 57 fluorescent tubes). The relative humidity was set at 70%. The 

plants used in these experiments originated from the 'plant stock' 

described earlier in 2.3. Twelve to fifteen containers were placed on 

one trolley. It was possible to make different temperature 

combinations by transferring the trolleys from one compartment to 

another. At the start of each experiment the branches of the rose 
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shrubs were upper cut at two five-leaflet leaves above the joint. The 

length of the light (day) and dark, (night) period in the fototron 

experiments were respectively 8 and 16 hours, unless others 

mentionned. 

More details of the individual experiments are given in the result 

sections of the next chapters. 

2.5. EXPERIMENTS WITH SOIL HEATING 

The influence of soil heating in relation to air temperature was 

studied during the first experimental year (1977-1978) for glasshouse 

grown roses cv. 'Sweet Promise'. 

In each of 3 compartments belonging to experiment GS1, 4 plots 

planted with roses of the cv. 'Sweet Promise' were extended. 
2 

A plot measured about 2m bed surface. In two of the four plots an 

electric soil heating system made of electric wires was installed. 

The wires lay on a depth of 15 and 30 cm below the soil surface. The 
o 

heating system was day and night controlled at 20 C by means of a 

thermostate. The sensor was installed about 10 cm below the soil 

surface. The plots made no part of the experiment GS1, nor influenced 

the soil temperature in these experiments. The last two plots served 

as control plots. 

The air temperature in the three compartments was controlled during 
o o o 

the night at 12 , 15 and 18 C, respectively. The day temperatures 
o o 

were controlled between 20 -22 C in all three compartments. The other 

circumstances were the same as those in experiment GS1. 

2.6. EXPERIMENTS WITH A 12% LIGHT REDUCTION WITH SOIL GROWN ROSES 

During two successive years the influence of a permanent 12% light 

reduction on production and quality of 'Sweet Promise' was studied. 

For this experiment one glasshouse compartment was glazed by special 

(so called ) coated glass. The metaloxide coating of this glass 

reduced light transmission by 12%. Another compartment, with standard 
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transparent glass, served for control. The two compartments belonged 
to the same complex as the compartments from the experiments coded by 

GSnr. In the first experiment the night/day temperatures were 

controlled at 15/18 C and in the second experiment on 15/21 C. The 

other conditions were the same as in the experiments coded by GSnr. 

2.7. LIST OF USED DEFINITIONS 

-Bud break (sprouting) is the process in which the inhibition 

preventing a lateral bud meristem from developing is removed 

causing the bud to grow out into a new shoot. A bud is considered 

being broken if it has reached a length of at least one cm and 

continues to grow. 

—Sprout or shoot: a broken bud with a length of at least 1 cm. 

-Week group: a collection of roses of which the lateral buds had 

broken in the same week. 

-Growth cycle: the period, in days, between two harvests and 

includes bud break and the development of the shoot until harvest. 

-Development time of a shoot (DT) = the time, in days, between bud 

break and harvest. 

-Middle time of a shoot (MT) = Time from bud break until the flower 

bud is clearly visible with the naked eye, without opening up the 

surrounding leaves. This is just halfway in the development time. 

-Daily (mean) temperature = average day and night temperature -

24 hours temperature is the arithmetic mean of 1440 temperature 

measurements (one per minute from OO.OOhr- 24.00hrs). 

-Mean (daily) temperature during a certain period is the arithmetic 

mean of the 24 hours temperatures during that period. 

—Phytotron = growth rooms with artificial climate conditions. 

2.8. LIST OF USED ABBREVIATIONS 

ABA = Abscisic acid. 

ADR = average daily irradiance inside the glasshouse at shoot top 

15 



- 2 _ 1 x level during the development of a shoot (Jem day ). 

BA = Benzyladenine. 

BL, = length of the flower bud exclusive the ovary (0.1 mm). 

BW = Width of the flower bud (0.1 mm). 

CCC = 2-chloroethyl trimethyl ammonium chloride 

cv. = cultivar 

DL = Average daylength during shoot development in minutes. 

DS = Diameter of the shoot at the cut (0.1 mm). 

DT = Development time from bud break until harvest (days). 

FBW = Fresh flower bud weight (0.1 g). 

FSW = Fresh shoot weight at harvest stage (g). 

GA = Gibberellins. 

GSnr= Code of the experiments with soil grown roses in glasshouses. 

GCnr= Code of experiments with container grown roses in glasshouses. 

IBA = Indole butyric acid. 

IAA = Auxin (Indole acetic acid). 

K = Cytokinins. 

PBA = Benzylamino tetrahydropyranyl purine. 

RH = Relative humidity of the air = (actuel VP/saturated VP)*100%. 
2 

R * = % variation accounted for by the regression equation. 

RSUM= radiation sum in the glasshouse during shoot development 
-2 -1 

Jem day 

SP = 'Sweet Promise'. 

SL = Total shoot length at harvest stage (mm). 

T = Mean temperature during shoot development ( C). 

TIBA= Trliodobenzoic acid. 

V = 'Varlon'. 

VP = Vapour pressure of the water in the air (0.1mm Hg). 

VPD = Vapour pressure deficit of the air (0.1mm Hg). 

WPS = Fresh weight of the parent shoot (0.1 g). 

a,b = Unlike letters indicate significant differences at the 5% level 

(Tukey's Yardstick). 

* = if used below colums: treatments do not differ at the 0.05 

level of significance (Tukey's Yardstick). 
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3. BUD BREAK 

3.1. INTRODUCTION 

The growing apex of a rose shoot inhibits the outgrowth of the 

lateral axillary buds lower on the shoot and the subtending stems. 

This inhibition by the apex is under hormonal control and called 

apical dominance. For the hormonal background of apical dominance see 

Appendix 1. When a shoot approaches the flowering stage the activity 

of the apical merlstem decreases and so does the inhibition of the 

lateral buds. Depending on the cultivar and growth conditions, one or 

more of the uppermost lateral buds break and new sprouts are formed. 

In the practice of rose growing these sprouts are removed to ensure a 

maximal outgrowth of the top flower bud. 

After removing the apex by cutting the marketable flower or by 

decapitation or pinching of the shoot, the dominance of the apex over 

the remaining part of the shoot disappears. In general the lateral 

bud now in uppermost position breaks to form a new flowering shoot. 

If the bud does not break, the bud is called 'dormant'. If the 

conditions for growth are unfavourable it may take weeks or even 

months until dormancy is removed and the lateral bud breaks. The 

phenomenon of dormancy as it occurs in higher plants was among 

others reviewed by Doorenbos (1953), Vegis (1964) and by Lyons 

(1973). 

If after removing apical dominance more than one lateral bud 

breaks on the same stem, it is common that the sprout from the 

terminal bud, which mostly breaks first, shows the most vigorous 

growth and dominates over the lower one(s). This domination can be so 

severe that the lower sprouts stop growing, the flower bud atrophies 

or the lower sprouts even die. In our experiments this happened to 

most of the sprouts from the second uppermost buds when growing 

conditions were unfavourable in wintertime. In spring however, the 

growth of these lower sprouts was normally so strong that the 
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dominance of the uppermost one was unable to prevent the second 

sprout from reaching the flowering stage. Also, under the most 

favourable growing conditions in summer however, growth inhibition 

and flower bud atrophy of lower sprouts occurred and mostly of 

sprouts emerging from the third lateral bud. 

A weakening of the dominant apex reduces its inhibitory effect on 

lower buds. Such a weakening can be a slow-down of growth. This may 

be caused by bending a vertical growing shoot horizontally. This is 

a cultivation method often effectuated in practice to stimulate bud 

break of a low situated lateral bud on a thin stem without removing 

the top of the shoot. The advantage of this so called 'lay back' 

pruning over 'cut back' pruning (the method in which the top is 

removed) is that more stem and leaf area remain so that the plant has 

more reserves to draw from. The effect of horizontal bud orientation 

on bud break and growth was studied by different research workers 

(Wareing and Nasr 1961, Palmer 1964, Zieslin and Halevy 1978). 

The ageing of the apex also reduces its inhibitory effect. This may 

be related to flowering. Flowering shoots produce less inhibitory 

hormones than shoots with a strong vegetative growth (Laibach and 

Kribben 1953). 

The nutrient status of the plant also has its influence on bud 

break. Early investigators developed the 'nutritive theory', a 

hypothesis involving starvation of buds through the monopolisation 

of nutrients by the apical bud (see review by Phillips 1975). 

Although this theory has slipped into the background, nutrients and 

water status of the plant play a role by influencing the hormone 

levels and the total 'growth vigour' of the plant; many reports on 

this subject have been published (Mclntyre 1964,1971; Phillips 1964, 

Wakhloo 1970, Simpson and Saunders 1972, Hoad 1973, Hiron and Wright 

1973). 

Stimulating growth vigour in winter by supplementary lighting also 

results in better bud break (Carpenter and Anderson 1972, Vonk 

Noordegraaf 1976, Moe 1973, Cockshull 1975, Kosh-Khui and George 

1977). Growth vigour is a simple expression for a process with a very 



complicated physiological background and controlled by many factors 

in and around the plant. It may be considered as the fresh or dry 

weight production of a canopy per square meter per day. 

The properties of the substrate in which the roses grow and the 

type of roots of the plant, rootstock or own roots, may also 

influence bud break via the growth vigour. The positive production 

results, obtained during the last few years by growing in rockwool, 

may partly be explained by a quicker bud break as a result of the 

favourable root environment (Van den Berg 1984, 1986). 

One has also to consider the position of the terminal bud which is 

expected to break. A higher position on the shoot leads to a faster 

bud break (Moe 1973, Byrne and Doss 1981). Bud position inside the 

canopy determines the light level and the red light/far-red light 

ratio (Kaspenbauer 1971, Nederhoff 1984), which in its turn 

influences the hormone balance (Appendix 1). Also inhibition within 

the plant from already developing shoots on a recently terminated bud 

can delay bud break (this chapter). 

Daylength also has an influence on bud break of roses. A positive 

effect of short days was reported by Moe (1972) and Cockshull (1975). 

An effect of temperature on bud break is to be expected. All physical 

and biochemical processes in the plant are influenced by temperature. 

Rootzone warming in hydroponics are reported to stimulate bud break 

(Moss 1983, 1984, Moss and Daglesh 1984). Zeroni and Gale (1982) 

found for roses, an optimum soil temperature under their conditions 
o 

of 18 C. Air temperature has a strong influence on bud break (Van den 

Berg 1981). The air temperature inside the glasshouse is the climatic 

factor that can be influenced relatively easily by the grower. It 

gives the grower a tool to plan and control rose production. The 

influence of the air temperature on bud breakis the main subject of 

the research covered by following chapter. 

At last; it is a well known fact in the practice of rose growing that 

high (> 90%) air humidities stimulate bud break while low «60%) 

delay it. In former days, blowing steam into the glasshouse was a 

method to stimulate bud break. 
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3.2. MATERIALS AND METHODS 

3.2.1. EXPERIMENTS ON TEMPERATURE AND BDD BREAK 

Bud break of soil grown roses was monitored during 7 successive 

winter seasons in the glasshouse. 

In the experiments: GS1-GS6, the influence of the temperature on bud 

break, of 'Sweet Promise' and 'Varlon' roses was studied. An axillary 

bud was considered broken if it had a length of 1 cm and continued 

growing. This last provision is important as in the winter it often 

occurs at low temperatures, that a bud starts to break but stops when 

it has reached a length of about 1 cm. Then it goes into dormancy and 

remains dormant for weeks or even months before it definitely breaks 

and growths out in the spring. 

In order to collect information about more cultivars an experiment 

(GS7) was set up with the cultivars: Sweet Promise, Ruimeva, 

Tanatesil, Jelparaco, Jeldanira and Korenlo. 

Whether the daily distribution of the temperature at a given mean 

temperature had any influence on bud break, was studied in a the 

experiments GS3-GS6. These studies were performed with the cultivars: 

Sweet Promise and Varlon. At a constant daily mean temperature 

different combinations between day and night temperatures were made, 

even with higher night than day temperatures, which is a.reversal of 

the common situation. 

In experiments done in the Phytotron bud break of roses cv. Sweet 
o o 

Promise was studied in the temperature range 10 C through 25 C and a 

daily photoperiod of 8 hours. These experiments were repeated several 

times. 

3.2.2. BDD BREAK AND SHOOT COMPETITION WITHIN A PLANT 

To study shoot competition the influence of growing shoots on the 

breaking of the uppermost lateral bud of a neighbouring stem of the 
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same plant was examined. In this experiment container grown roses 

were used of the cultivars Sweet Promise and Merko (GC). 

Bud break was compared between uppermost buds of plants of which all 

shoots had been cut at the first five leaflet-leaf and plants of 

which only one shoot had been cut. 

Plant materials, methods, conditions, definitions, abbreviations 

and codes of the experiments have been described in chapter 2. If 

necessary supplementary information is given in the results section. 

3.3. RESULTS 

3.3.1. BUD BREAK AND THE MEAN DAILY TEMPERATURE 

In the experiments GS1 and GS2 the influence of the mean daily 

temperature on breaking of the uppermost lateral bud after cutting 

the previous flower was studied in the period October until March. 

The results are shown in Figure 1 for cv. Sweet Promise and in Figure 

2 for cv. Varlon. The vertical axis shows the percentage of broken 

buds and the horizontal axis the realised mean daily temperature 

during bud break. The different lines, lying above each other, 

represent the time in weeks after cutting. Both 'Sweet Promise' and 

'Varlon' show the same overall effect. The rate for 'Sweet Promise' 

is higher than for 'Varlon' . In the Figures 3 and 4 bud break is 

presented in another way. The vertical axis again represents the 

percentage of broken buds, but the horizontal axis shows the number 

of weeks after cutting. The seven lines represent seven temperature 

ranges. The lowest two lines for 'Sweet Promise' display another 

pattern than those for 'Varlon'. Bud break stops for some weeks for 

'Sweet Promise' while it continues for 'Varlon'. 

The influence of harvest time on bud break is shown in Figure 5 for 

the cv. Sweet Promise. This figure displays the percentage of the 

uppermost lateral buds broken three weeks after being cut in the 

period October until April, for 5 temperatures. Because in spring the 

lower temperatures could not be realised, the corresponding lines are 
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shorter than those of the higher temperatures. The lines are nearly 

horizontal with a slight drop in December. 'Varlon' reacts 

qualitatively in the same way as 'Sweet Promise ', and is not shown 

separately. 

3.3.2. BUD BREAK AND THE TEMPERATURE DISTRIBUTION BETWEEN DAT AND 

NIGHT 

In the experiments GS3-GS6, different combinations of day 
o o 

temperatures in the range 16 C to 24 C and night temperatures in the 
o o 

range 14 C to 24 C were given but the imposed daily mean temperature 

was the same for all treatments. No significant variations in rate of 

bud break were found at the .05 level of significance. Even reversing 

day and night temperature, resulting in a higher night than day 

temperature, did not influence bud break. 

3.3.3. BUD BREAK AND DIFFERENCES BETWEEN CULTIVARS 

In experiment GS7 the difference in bud break was studied for 6 

cultivars. 

The percentages of buds that had broken three weeks after cutting are 

given in Figure 6. Each line represents a cultivar. The line 

representing the cv. Varlon is taken from the experiments GS1 and 

GS2. On the vertical axis the percentage of buds is shown and on the 

horizontal axis the mean temperature. No differences were recorded in 
0 

the rate of bud break at temperatures above 21 C. If the temperature 

drops differences between the cultivars are clearly visible. 

3.3.4. BUD BREAK AND INTERSHOOT COMPETITION 

Intershoot competition and bud break was studied in an experiment 

with container grown roses cv. Sweet Promise. 

The percentage of uppermost lateral buds that had broken 2 and 4 

weeks after cutting, was calculated for buds on plants with only one 
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shoot cut, and for buds on plants of which all shoots had been cut at 
o 

the same time. The mean, temperature during bud break was 20 C. The 

results are listed in Table 1. 

Table 1. Container grown roses evs. Sweet Promise and Merko. 
Percentages of the terminated lateral buds broken 2 and 4 
weeks after cutting all shoots (a) or only one shoot (b) 
of the shrub. 

Percentage broken lateral buds 

'Sweet Promise' 

2 weeks 4 weeks 

'Merko' 

2 weeks 4 weeks 

a. All shoots cut 

b. One shoot cut 

87a 

46b 

93a 

46b 

97a 

42b 

97a 

42b 

The table clearly shows that if all shoots are cut, the lateral buds 

break sooner than when only one shoot is cut. This holds true for 

both cultivars. 

3.3.5. BOD BREAK IN GROWTH ROOMS 

Bud break of the cv. Sweet Promise was also studied in air 

conditioned growth rooms under artificial light conditions. The 
o o 

results recorded in the temperature range of 11 C to 25 C and a 

light period of 8 hours are shown in Figure 7. The results show a 

strong positive correlation between temperature and bud break. 
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3.4. DISCUSSION 

Bud break is positively correlated with the mean temperature in all 

experiments. This result could be expected because all processes 

involving bud break are sensitive to temperature. As soon as the 

inhibition of the apex over the lateral buds stops, the processes 

involving bud break start. If temperature is reduced bud break slows 

down until the buds go into dormancy. In this stage the buds can stay 

for weeks or months. With the exeption of some buds which stay 

dormant, even for years, all buds sprout in spring. 

For bud break is not important how the mean temperature is realised. 

Within the limits of the experiments it made no difference how 

temperature was distributed over the night and the day, only the mean 

daily temperature was important. This has a consequence for 

commercial rose growing. With respect to energy saving it is 

advisable to give the highest temperature during the night when the 

thermal screen(s) are closed. 

A subordinate effect of a closed screen is that the wanted air 

temperature can be realised with rather low pipe temperatures. This 

means that the relative air humidity stays on a higher level which 

improves bud break. Also the screen itself can, depending on its 

structure and material, attribute to a raise in air humidity. 

The response to air temperature is not equally strong for all 

cultivars. Under the same glasshouse conditions there are 

considerable differences in response (Figure 6 ) . Two groups can be 

distinguished: a fast and a slow group. The differences between these 

groups and also those within a group, can explain a large part of the 

variation in production as found in variety trials with these 

cultivars (Van Gelder 1984). 

The cultivars Sweet Promise and Varlon, both belonging to the slow 

group, show a difference in behaviour. Above 17 C 'Sweet Promise' 

shows a quicker bud break than 'Varlon'. If temperature decreases, 

the percentage of buds that break within 3 weeks after cut is higher 

for 'Sweet Promise' than for 'Varlon'. The lateral buds of 'Sweet 
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Promise' that do not break within 3 weeks are more inhibited than 

those of 'Varlon', however. While bud break of 'Varlon' continues at 

a reduced level, the 'Sweet Promise' buds go into dormancy for some 

weeks. The lateral buds of 'Varlon' that fall into dormancy however, 

remain much longer in this stage than the lateral buds of 'Sweet 

Promise1. It takes about 20 weeks for all 'Varlon' buds to break and 

about 14 weeks for all the 'Sweet Promise' buds. 

For 'Sweet Promise' one can speak about a 'critical' temperature for 
o o 

bud break at 17 C-18 C below which the buds go from a state of 

inhibition by apical dominance into a state of leaf imposed dormancy, 

as is normal for outdoor roses in autumn. This temperature is within 
o o 

the range of 16 C to 19 C maintained in commercial glasshouses with 

this cultivar ( Van Rijssel 1979). A reaction like that of 'Sweet 

Promise' has a practical implication. If a glasshouse is kept at the 

right temperature to secure a quick bud break and there are 

horizontal temperature differences in that glasshouse, there will be 

problems with bud break in the parts with a temperature below the 

critical value. Horizontal temperature differences are a common 

phenomenon in practice (Holsteijn and Vogel 1984, Holsteijn 1985, 

Koop 1984, Van den Berg 1986). 

Problems with bud break automatically lead to a lower production and 

an increase in fuel costs per produced rose. Another negative point 

is that it hampers good planning. 

The time of cutting showed no influence on the rate of bud break for 
o 

cv. Sweet Promise at temperatures higher than 19 C. At lower 

temperatures a slight drop around the shortest day could be seen 

(Figure 5 ) . The reaction of 'Varlon' was qualitatively the same as 

that of 'Sweet Promise' and is not shown separately. 

Such a drop in bud break is to be expected. In the middle of winter 

growth vigour is at its lowest point. The stimulating effect of short 

days on bud break as reported for roses by Moe (1972) and Cockshull 

(197 5), was probably not enough to offset the effect of this lack of 

growth vigour. 

High temperatures clearly stimulated breaking of the second upper bud 
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after January. Starting in February, 75% of the second buds of 'Sweet 
o 

Promise' broke if the temperature was higher than 20 C. If broken 

before March however, most of the sprouts from these second buds 

produced flowerless ('blind') shoots. Later on in the season these 

sprouts reached the flowering stage but their length and fresh weight 

were always less than those from shoots emerging from the uppermost 

bud. This inhibitory effect of shoots of the uppermost bud on those 

from lower buds is common in plant growth as was mentioned in the 

introduction. 

The inhibitory effect that growing shoots exercise on the 

terminal bud of a sister shoot on the same plant was clearly 

demonstrated for 'Sweet Promise' and 'Merko' (Table 1). This 

phenomenon may be an explanation for the fact that in all experiments 

performed in growth rooms (Phytotron), bud break was faster than for 

plants in full soil in the glasshouse at the same temperature. The 

reasoning may be that when all tops of the plants have been removed 

the whole production of inhibitors stops and the active sinks are 

gone until the new uppermost meristems become active. At the start of 

the experiments in the Phytotron we cut all shoots. In this way 

intershoot inhibition was prevented. Figure 7 shows the fast bud 

break in the Phytotron. Even at a temperature of about 12 C, 50 % of 

the buds had broken within two weeks. This implies that it is 

possible to reduce the time needed for bud break and as a 

consequence, the time between two growth cycles without using extra 

energy by raising temperature. 
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15 16 17 18 19 20 21 22 -c 
15 16 17 18 19 20 21 22 -c 

F l g . l 'Sweet Promise ' F ig .2 'Var lon ' 

F i g . 3 'Sweet Promise ' Fig.4 'Varlon' 

'Sweet Promise' and 'Varlon', grown in glasshouse soil. Percentage of 
uppermost lateral buds broken at different points of time (weeks) 
after cut of the previous flower, in relation to the mean air 
temperature (°C). Period: October untill May. 
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Fig.5 'Sweet Promise' 
grown in glasshouse soil. 
Percentage of uppermost 
lateral buds, broken 
three weeks after cut of 
the previous flower. For 
five temperature levels. 

Broken buds 
% 

1004. 
90. 
80i 
70 
80 
50. 

20*-21*C 
3l9'-20* 

17*-18* 18*-19" 

•16*-ir 

We No De Ja Fe Ma Ap 
Harvest date 

17 18 

Fig.6 Rate of bud break in 7 cultivars, grown in the glasshouse soil. 
Percentage of uppermost lateral buds, broken within three weeks after 
cut of the previous flower in relation to the air temperature. 
Tanatesi (1), Korenlo (2), Jelparaco (3), Jeldanira (4), Ruimeva (5), 
Sweet Promise (6), Varlon (7). 

Days until bud break. 

Fig. 7 'Sweet Promise', 
container grown in growth 
rooms. Number of days to 
bud break of the 
uppermost lateral bud 
after cut of the previous 
flower in relation to the 
mean temperature. 
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4. DEVELOPMENT TIME OF A SHOOT FROM BUD BREAK UNTIL HARVEST 

4.1. INTRODUCTION 

Relatively few papers have been published on the effect of 

temperature on the growth cycle of roses in glasshouses. The length 

of the growth cycle was studied in growth rooms by Moe and 

Kristofferson (1969), and Moe (1972a,b, 1973). De Vries and Smeets 

(1979) and De Vries (1982) studied the influence of temperature on 

rose seedlings in growth rooms as a part of his breeding work. 

The growth cycle in glasshouses was studied by Byrne (1978), Van den 

Berg (1980) and Schrock (1981). Van Rijssel followed the growth in 40 

commercial nurseries with roses cv. Sweet Promise and 40 nurseries 

with the cv. Motrea (Van Rijssel 1979, 1982). 

In general higher temperatures resulted in a shortening of the 

growth cycle, while lower temperatures led to the opposite. In the 

papers published on this subject the growth cycle from harvest to 

harvest is mostly taken as a unit and includes the time needed for 

bud break. In the present research the growth cycle was split into 

two parts. The first part included the time needed for bud break and 

the second part included the development time of the sprout from bud 

break (=1 cm long) until harvest. This split was made because it was 

observed in glasshouses that the time needed for bud break showed 

much more variation than the time for development from bud break 

until harvest. Taking the two parts as a unit made the whole subject 

more confusing than keeping them separate. 

In the preceding chapter bud break was discussed and the following 

chapter will deal with the time for development from bud break until 

harvest. The length of the latter period is important; together with 

the time needed for bud break it determines the length of the growth 
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cycle, which is the base of the yearly production. The aim of the 

study of the development time of the shoot was fourfold: 

(1) To study the relation between the daily mean temperature 

and the development time of a shoot. 

(2) To study if, and if so how, the temperature distribution 

between day and night influences the development time. 

(3) To study the interaction between temperature and stage 

of development of a shoot on its total development time. 

(4) To construct a 'model' that can be used for production 

planning. 

4.2. MATERIALS AND METHODS 

Plant materials, methods, conditions, definitions, abbreviations and 

codes of the experiments have been described in Chapter 2.If 

necessary supplementary information is given in the result section. 

4.2.1. EXPERIMENTS ON TEMPERATURE AND DEVELOPMENT TIME 

To acquire the basic material for a model on development time, the 

experiments GS1 and GS2 were performed. The influence of the daily 

temperature distribution on the development time was studied in the 

experiments: GS3,GS4,GS5 and GS6. Interaction between temperature and 

stage of shoot development with respect to the development time was 

studied in the experiments: GC1, GC2, GC3 and GC4. 

4.2.2. THE CONSTRUCTION OF A 'MODEL* FOR THE DEVELOPMEN TIME OF A 

SHOOT 

A description will now be given of the method used to construct the 

model for the development time of a shoot, which is shown in its end 

form for the cv. Sweet Promise in Figure 10 and for cv. Varlon in 

Figure 14. The same method as described for this 'model' was also 
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used for the other 'models' in this thesis. 
o o o o 

In experiment GS1 four night temperatures, 12 , 15 , 18 and 21 (C) 
o o 

were imposed combined with one day temperature of 20 C-22 C. Every 

treatment was replicated once. In each of the 8 compartments of both 

cultivars 72 labelled shoots were monitored cut after cut. The date 

of cut and bud break was monitored for each flower. The lateral buds 

that sprouted in the same week were taken as one group, called: 'week 

group'. Of these groups the median of the development time of the 

shoots was calculated. The smoothed medians from each of the four 

temperature treatments are shown in Figure 8. Smoothing was done by 

taking running medians of 3, followed by skip means and hanning as 

described by Tukey (1977) in his book Exploratory Data Analysis (See 

Appendix 2). 

The horizontal axis in Figure 8 shows the date of bud break. A 

lateral bud was considered having broken if its length was 1 cm and 

growth had continued. The vertical axis records the development time 

of the shoot from bud break until harvest in days. The four lines 

represent the four temperature treatments. The figure covers the 

period from August until April of the following year. From the four 

graphs we recorded for each week and for each treatment, the 

development time from bud break until harvest. As the computer 

registered daily the realised climate per treatment, it was possible 

to calculate for each 'week group1 the mean daily temperature during 

the growing period. This meant that for each point of the four lines 

three important data were known: 

(1) The date of bud break. 

(2) The development time in days. 

(3) The mean daily temperature during the growth period. 

These three data were combined in one figure. This is illustrated for 

the first day of the months of October, December and April in 

Figure 9. In this figure the horizontal axis shows the realised mean 

daily temperature during development time, and the vertical axis the 

development time in days. The abbreviations refer to the 
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corresponding months. The four different marks represent the four 

imposed temperature treatments. In this figure one can fit two groups 

of lines. First a group of four lines (broken) fitted through the 

sets of identical marks showing for each temperature treatment the 

realised temperature during the period under consideration and the 

corresponding development time. Second a group of 3 lines (solid) 

showing the relation between date of bud break on the first of the 

corresponding month and the development time in relation to the 

realised mean daily temperature. 

Figure 9 can be extended by adding more months and more points per 

month. For ease of survey this is not done here. From Figure 9 in an 

extended form to Figure 10 is a small step. This last figure 

presents on the horizontal axis the date of bud break and on the 

vertical axis the development time in days. The 8 isotherms show how 

this development time changes from September until April in relation 

to the mean temperature during growth. Figure 10 can be considered as 

being the 'model' we were looking for. It was constructed by using 

the data from the experiment GS1 and was verified and extended with 
o 

the isotherm of 15 C by data from experiment GS2. 

4.3. RESULTS 

4.3.1. DEVELOPMENT TIME AND THE MEAN DAILY TEMPERATURE. 

The influence of the mean daily temperature on the time a broken 

lateral bud needs to grow and develop until it is ready for harvest, 

is displayed in Figure 10 for the cv. Sweet Promise and in Figure 14 

for cv. Varlon. 

On the horizontal axis the date of bud break is shown, and on the 

vertical axis the development time in days. 

When looking at these figures, two things strike: 

(1) In the temperature range 22 C-17 C the distances between the 

isotherms are nearly the same, but at lower temperatures they 

increase. 
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(2) The isotherms are curved, but not fully symmetrical and 

follow the natural annual radiation cycle. 

If the data of the Figures 10 and 14 are analysed, with -the method of 

linear least square regression (see Appendix 3), the following 

regression equations, for abbreviations see 2.7., ensue: 

2 
•Sweet Promise': DT=103.74 -3.1992T -0.01224ADR. (R * = 97.7). 

2 
'Varlon': DT=144.63 -5.0268T -0.01398ADR (R * = 98.6). 

If Figure 10 is extended with another dimension, in such a way that 

the mean daily irradiance measured at shoot top level in the 

glasshouse during the development time is put on the horizontal axis, 

Figure 11 emerges. In this figure there are four dimensions: the 

three from Figure 3 and the irradiance inside the glasshouse. For 

ease of survey only four isotherms are shown. The letters alongside 

the isotherms refer to the first day of the corresponding month. They 

represent the day on which a bud had broken. The isotherms show a 

'hysteresis' effect: at the same mean irradiance and the same mean 

temperature the development period is shorter in autumn than in 
-2 -1 

spring. E.g., at a irradiance of 300 Jem day shoots develop about 

7% quicker in autumn than in spring. This hysteresis disappears if on 

the horizontal axis, the mean irradiance during the whole development 

time is replaced by the irradiance during the period from bud break 

until visible flowerbud. This moment was monitored and appeared to be 

in the middle of the developing period. It is called the 'Middle 

Time'. Figure 12 shows the result of this transformation for 'Sweet 
o o 

Promise. The figure displays all eight isotherms from 15 C to 22 C. 

The letters again refer to the corresponding months. Letters without 

a dot refer to the first day of the month and those with a dot to the 

middle of the month. The vertical axis shows the 'Middle Time'. 

Hysteresis has now disappeared and a linear relation emerges between 

the Middle Time - and of course also the Development Time- with the 

mean irradiance during the Middle Time. This result means that 
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hysteresis arises in the second half of the development period. In 

this period the visible flowerbud develops until it reaches the 

harvest stage. This is illustrated in Figure 13. The cv. Varlon 

behaves the same as 'Sweet Promise* and also shows hysteresis in the 

second half of the development time, which is not shown here 

separately. 

The mean deviation from the model was less than two days. From Figure 

12 it becomes also clear that if irradiance is more than circa 600 
-2 -1 

Jem day it no longer influences the development time. 

Figure 15 shows the percentage development time is shortened if 
o o o 

in the range 15 C to 21 C the air temperature is raised by 1 C. 
Figures 10 and 14 show that the relation between the development time 

o o 
and temperature is not linear in the range 15 C to 22 C. Especially 

in the lower temperature range the data point towards an exponential 

relationship. In the glasshouse experiments the temperature range was 
o o 

between 15 C and 22 C. So no information was obtained about the 

higher and lower temperatures. In experiments in growth rooms 
o 0 

however, a temperature range between 9 C and 25 C was realised. If 

the average development time in these experiments is put in a graph 

it gives insight into the course of the development time at lower and 

higher temperatures than realised in the glasshouse experiments. This 

course (drawn line) is shown in Figure 16. The broken line in this 

figure is the corresponding line from the glasshouse experiments with 

'Sweet Promise' taken from a period with about the same light level. 

The exponential curve in the figure fits the data rather well 
o o 

(r=0.986). If a linear line is fitted over the range 17 C to 25 C the 

best equation is: y= 54.94-0.94x (r=-0.969). This fit is not bad but 

less satisfactory than the exponential fit. 

4.3.2. DEVELOPMENT TIME AND TEMPERATURE DISTRIBUTION BETWEEN DAY AND 

NIGHT 

The 'models' representing the development time (Figure 10 and 14) 

appeared to be of value not only for the data from the two 
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experiments GS1 and GS2, but also for those from GS3,4,5, and GS6. 

It appeared in these experiments that at a given daily mean 

temperature, temperature distribution between day and night was not 

important for the development time within the limits of the 

experiments (P=0.05). Even when the night temperature was higher than 

the day temperature, development time was not affected. 

Regardless how the mean temperature was reached during the 

experiments, the models from Figure 10 and 14 held for all 6 

experimental years. 

4.3.3. DEVELOPMENT TIME AND INTERACTION WITH SHOOT STAGE AND 

TEMPERATURE 

In the previous experiments given temperatures were not changed 

during the development of the shoots. To detect possible differences 

in sensitivity for temperature during shoot development, experiments 

were set up with container grown roses cv. Sweet Promise. (GC1,2,3 

and 4 ) . These roses were transferable, which made it possible to make 

different combinations between temperature and shoot stage. 

In the experiments GC1 and GC2 a total of 27 combinations were made. 

In these experiments the day temperature was always higher than the 

night temperature, as is the common situation in practice. The number 

of days between bud break and harvest was monitored and the mean 

daily temperature calculated. The results are shown in Figure 17. 

This figure presents two groups of data points, each with the 

corresponding fitted straight line. The highest group refers to 

experiment GC1, performed in wintertime, the lowest group to GC2 

performed in spring when temperatures and light intensities were much 

higher. The lines fit well. Some points can be considered as 

'outliers'. Removing them improves the fits. No relation was found 

between residuals and treatments. 

In each of the following experiments, GC3 and GC4, 10 

combinations were made. Five with a higher day than night temperature 

and five with a higher night than day temperature, a situation 
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reverse as in practice. The results of these experiments are listed 

in Table 2. No significant difference at the .05 level was found. The 

small differences in growth time are due to accidental deviations and 

to small (< 0.5 C) in realised temperatures. Also experiments with 

container grown roses performed for other purposes, never showed a 

reliable interaction between shoot stage and temperature. 

Table 2. Rose ov. Sweet Promise, container grown in the glasshouse. 
Development time in days from bud break until harvest for 
2 different 12 hrs night/12 hrs day temperatures, imposed 

during different stages of shoot development. Realised mean 
temperatures 19.6-20.0 (°C). 

Night/Day 

Temperature 

(°C) 

Given 

from 

harvest 

until: 

Night/Day 

Temperature 

during rest 

of the growth 

Development time in 

days from bud break 

until harvest 

GC3 GC4 average 

16/24 

24/16 

24/16 harvest 

sepals give way " 

flower bud visible " 

shoot elongation(4cm) " 

bud break " 

harvest 

sepals give way 

flower bud visible 

shoot elongation(4cm) 

bud break 

16/24 

38 

38 

38 

38 

38 

39-

38 

39 

38 

39 

* 

38 

39 

38 

40 

39 

39 

39 

39 

39 

39 

* 

38 

38.5 

38 

39 

38.5 

39 

38.5 

39 

38.5 

39 

* 
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4.4. DISCUSSION 

In the construction of the 'models' for the development time from bud 

break until harvest (Figure 10 and 14), the medians were used 

instead of the means. The reason was that some of the 'week groups', 

which formed the basis of the calculations, showed in the middle of 

winter at low temperatures sometimes 'outliers'. These were shoots 

with a very low growth rate. In most cases such an outlier did not 

strongly influence the mean of a week group, but in cases of a small 

week group it did. To keep a uniform data handling it was decided, 

instead of removing outliers, to take medians instead of means. 

In the 'models' some lines are partly dotted. These parts were 

obtained by extrapolation because of the absence of data. The reason 

was that the lowest temperatures could not always be realised because 

of the outside climate conditions. With some calculations the 

'models' can be transformed to show the date of harvest on the 

horizontal or on the vertical axis. This can be useful for commercial 

growers, but is not shown here. Because of the more than two 

dimensions (variables) in some of the figures, the figures can be 

transformed by placing other variables on the axis. This can 

sometimes give a better view on a specific variable. 

In summer all treatments were the same and all glasshouses were 

ventilated to the maximum. As a logic result the realised 
o o 

temperatures were nearly equal and fell in the range 19 C-21 C. 

Within this temperature range the isotherms ran horizontally in 

summer. 

The development time in the 'models' follows the annual natural 

radiation cycle. A clear relation between the annual radiation cycle 

and development time was o.a. demonstrated by Klapwijk and De Lint 

(1975) for tomato seedlings. Van der Hoeven and Groenewegen (1970) 

and Van Esch (1976) found also such a type of relation for lettuce 

from data sampled at commercial holdings. 

A linear relationship between the Middle Time and the mean daily 

irradiance was found. This is shown in Figure 12 for cv. Sweet 
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Promise. Because the Middle Time is just halfway of the development 

time, the last also shows a linear relation with the irradiance 

during the Middle Time. During the second half of the development 

time also a linear relation was found, but at a higher level in 

autumn than in spring, with a connection in November (Figure 13). The 

irradiance during the first half of the development determines the 

whole development time. This means that during -the second half of 

shoot development, the light intensity prevalent under natural light 

conditions does not influence development time. This phenomenon has 

also been reported by Pieters (1985) who worked with sunflower. 

Klapwijk (1979) plotted the crop cycle of lettuce from planting out 

until harvest against a date midway between sowing and planting out 

(middle date) and found that the longest time from planting to 

harvest practically coincides with the middle date on the shortest 

day. He also found no influence of the natural light level on 

development time between April and September. Treating our rose data 

on the same way, he got qualitatively the same results (Klapwijk 

1980). The graphs Klapwijk obtained look very much like those in 

Figure 12. 

Because light is the driving force of photosynthesis, which in 

itself is the basis of plantlife, a positive relation between 

irradiance and development time is to be expected. If the mean 
-2 -1 

irradiance inside the glasshouse rises above circa 600 Jem day for 
-2 -1 

cv. Sweet Promise and circa 500 Jem day for cv. Varlon, no further 

reduction in development time was found; the isotherms in Figure 12 
o 

run horizontally. In the Netherlands on a latitude of about 52 this 

light situation occurs in the glasshouse between April and September. 

In that period of the year light is no longer a restriction for 

development time of the individual shoot unless it is situated inside 

the canopy, shaded by other shoots. This means that the light level 

above which the development time is no longer reduced, can be higher 

for a crop as a whole, than for a individual shoot. 

Decreasing development time by increasing light intensity has also 

been found in experiments done in growth rooms (Moe 1972a, Moe and 
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Kristofferson 1969, De Vries and Smeets 1978, De Vries and Du Bois 

1982). A practical application is the use of supplementary lighting 

in winter. This method to reduce the development time has been 

reported by several authors (Carpenter and Anderson 1972, Wiseley and 

Lindstrom 1972, Khosh-khui and George 1977, Armitage and Tsujita 

1979). Because of the high electricity costs, supplementary lighting 

is only used on a small scale in the Netherlands. 

The relation between development time and temperature is 

exponential (Figure 16). In the most important temperature range 

(17 -21 C) for winter production in Dutch glasshouses it is very 

close to linearity, however. 

Within the limits of the experiments no significantly interaction was 

found between the development time with temperature and shoot stage. 

The mean daily temperature during the whole growth period accounts 

for about 99% of the variation in the data of the experiments done on 

this subject (Figure 17). This implies that it is possible to 

decrease the setpoint for heating at certain times, and compensate 

for this later on, to reach a predecided mean daily temperature or 

temperature sum during shoot growth, without delaying harvest time. 

This means that within certain limits, a period with a low 

temperature can be compensated by a period with a high temperature. 

The distribution of temperature over day and night did not 

influence growth time either. Such a reaction to temperature was also 

reported by Cockshull et al. (1982) for some Chrysanthemum species 

and by Hurd and Groves (1984) for tomatoes. 

Even a higher night than day temperature showed no effect on the 

development time. With respect to energy conservation this opens up 

the possibility to raise the night temperature when thermal screens 

are closed and decrease the setpoint for heating in daytime when the 

screens are open. The fuel saved in this way do not need extra 

investments. 
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Development time (days) 

6(1 

t t t t t t t t 
1/8 1/9 1/10 1/11 1/12 1/1 1/2 1/3 

Fig.8 'Sweet Promise', 
grown in glasshouse soil. 
Development time of 
broken lateral buds for 4 
night temperatures (12°, 
15°, 18° and 21°C) at one 
day temperature 20-22°C. 

Fig.9 'Sweet Promise', 
grown in glasshouse soil. 
Development time for 
lateral buds, broken on 
the first day of October, 
December and April; for 4 
night temperatures in 
relation to the mean 
temperature. 

Development time (days) 
55. 

12'C. night. 
i=15*C. night. 
a=18*C. night. 
»=21*C. night. 

21 22 *C 

mean temperature. 
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Development time (days) 

60 

15'C 

Fig.10 'Sweet Promise', 
grown in glasshouse soil. 
'Model* for the 
development time in days 
from bud break until 
harvest in relation to 
the mean temperature and 
the date of bud break. 

Fig.11 'Sweet Promise', 
grown in glasshouse soil. 
Development time in 
relation to the mean 
daily inside irradiance, 
date of bud break and the 
mean temperature. The 
capitals alongside the 
lines represent the first 
day of the corresponding 
month. 
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F i g . 12 
Sweet Promise, 
grown i n g l a s s 
-house s o i l . 
Middle time 
( see t e x t ) in 
r e l a t i o n t o 
the mean 
temperature 
and the mean 
d a i l y i n s ide 
i r r a d i a n c e . 
The c a p i t a l s 
r ep resen t the 
months of bud 
break: naked 
c a p i t a l s the 
f i r s t day of 
the month and 
c a p i t a l s with 
a dot the 
middle of the 
month. 

Middle Time 

30.. 

25 

20.. 

15 

300 400 500 600 700 800 

100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 G 0 8 0 0 9 0 0 

J c«"2dey"1 

-9 -1 
J cm "'day 

Fig.13 'Sweet Promise', 
grown in glasshouse soil. 
Time in days from the 
Middle Time until 
harvest in relation to 
the mean temperature and 
the mean daily inside 
irradiance. The capitals 
represent the date of bud 
break at the first day of 
the corresponding month. 
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Day* 
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Fig.14 'Var lon 1 , grown i n 
g lasshouse s o i l . 'Model' for 
the development time i n days 
from bud break u n t i l 
h a r v e s t , i n r e l a t i o n to the 
mean temperature and the 
da te of bud break. 

A u S a O c N o D e J a F e t a A p 

Date of bud break 

Shortening development time 
x 

20.. 

15.. 

10 

•VARLON" 

Fig.15 'Sweet Promise' 
(broken lines, small 
figures) and 'Varlon' (solid 
lines, large figures), grown 
in glasshouse soil. 
Shortening of the 
development time (%) if the 
mean air temperature is 
raised by 1°C in the range 
16°C-21°C, in relation to 
the date of bud break. 

18.17.16 

'Sweet promise* 

0c No De Ja Fe Ma Ap 

Date of bud break 
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Fig.16 'Sweet Promise', 
grown in glasshouse soil. 
Development time in days 
from bud break until harvest 
in relation to the mean air 
temperature. The solid line 
represents data from 
experiments with container 
grown roses in growth rooms 
and the broken line data 
from experiments/ with soil 
grown roses in the glass­
house. 
y=237.07e~*092x (r=-.987). 

Development time (days) 

Development time (days) 

50 

40 

30 

20 

y=115.94-3.82x (rz=.985> 

'10 15 20 25 *c 

mean temperature. 

GC2 

y=G3.52-1.59x (r=-99) 

MB 1*7 18 13 20 21 2'2 23 24 25 is tl *C 

mean temperature. 

Fig.17 'Sweet Promise', container grown in the glasshouse. 
Development time in days from bud break until harvest in relation to 
the mean temperature. The 27 dots per line originate from 27 
different combinations between temperature and stage of development. 
The two lines represent two experiments (GC1 and GC2, see text). 
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5. FRESH WEIGHT OF SHOOT AND FLOWER BUD 

5.1. INTRODUCTION 

In this chapter the influence of the temperature on fresh weight of 

shoot and flower bud is the subject. No special attention is paid to 

dry weight, which was between 25 % and 30 % of the fresh weight. 

Fresh weight is of direct importance to the grower with respect to 

the market value of the rose. Besides the climate factors irradiation 

and air temperature already mentioned in previous chapter, the factor 

air humidity, also plays a role. Air humidity directly influences 

transpiration of the plant and thus its water balance (Bierhuizen and 

Slatyer 1965, Kramer 1983). 

If it is assumed that the water potential at the evaporating surfaces 

in the leaves is zero, or close to zero, the transpiration flux of 

water vapour is proportional to the vapour pressure deficit (VPD) of 

the air outside the leaf at the same temperature (Kramer 1969, Aston 

1973, Bunce 1984), and inversely proportional to leaf and air 

diffusion resistance (Bierhuizen and Slatyer 1965, Kramer 1983). 

Transpiration influences the water potential of the plant (Elfving et 

al. 1972). A high water potential (close to zero) stimulates cell 

enlargement and thus leaf and stem growth (Slatyer 1967, Boyer 1968, 

1970) and, as a consequence, yield. This was reported for different 

plant species (Plant et al. 1974, Frenz and Lech 1981, Wiebe 1981.) 

The water potential of the leaves influences stomatal aperture which 

in its turn influences the carbon dioxide flux into the leaf, and 

successively photosynthesis and as a consequence growth and yield 

(Brix 1962, Boyer 1970, Morison 1983, Bunce 1984). Besides this 

indirect effect via the water balance, also a direct effect of air 

humidity on stomatal aperture has been reported for some species 

(Lange et al. 1971, Schulze et al. 1972, Sheriff et al. 1975). 

If a low air humidity causes too high a transpiration, the plant runs 
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into problems with water stress and many aspects of plant growth can 

be affected (Boyer 1970, Hsiao 1973, Kramer 1983). Irreversible 

reduction in growth as a result of low wafer potentials caused by low 

air humidities, was reported by Boyer (1970). Such a negative effect 

on growth can sometimes be offset by a very rapid growth if the water 

status of the plant is brought back, into balance (Gates 1955, Owen 

and Watson 1956). 

Although the influence of air humidity on growth is imminent, there 

are contradictory reports in literature (see review by O'leary 1975). 

In general, low air humidities and high VPD's result in a decrease in 

fresh and dry weight and a decrease in stem length and leaf area, 

while high humidities and low VPD's lead to the opposite reaction 

(Kristofferson 1963, Cotter 1967, Krizek et al. 1971, Ford and Thome 

1974, Swalls and O'leary 1975, Tibbit and Bottenberg 1976). Other 

research however showed no clear influence of air humidity on growth 

(Hughes 1965, Nonnecke et al. 1971, O'leary and Knecht 1971, 1972, 

Sanden 1985). 

If leaf and air temperature are close, the actual VPD between the 

saturated air at the intercellular evaporating surfaces inside the 

leaf and the surrounding air outside the leaf is close to the VPD of 

that outside air. Leaf and air temperature can differ however. This 

is especially the case in situations in which strong radiation from 

the sun or from heating pipes are involved, or in situations with 

strong leaf cooling by transpiration or heat losses by radiation to 

the cold glasshouse cover (Van den Berg 1986). 

5.2. MATERIALS AMD METHODS 

In chapter 4 a 'model' was developed for the development time of a 

shoot. That 'model' was based on data from labeled shoots which were 

monitored on a weekly base. The same method was used to construct a 

'model' on fresh shoot and flower bud weight at harvest. For the 

'model' on fresh shoot weight the weekly means of all roses harvested 
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in the experimental plots were used, the labeled as well as the 

unlabeled ones. For the 'model' on bud weight the mean of the week 

groups of the labeled shoots was used. The 'models' were also 

analysed with the method of linear least square regression (see 

Appendix 3). 

Plant materials, methods, conditions, definitions, abbreviations and 

codes of the experiments have been described in Chapter 2. 

5.3. RESULTS 

5.3.1. A 'MODEL' FOR FRESH SHOOT WEIGHT 

The 'model' for fresh shoot weight is shown in Figure 18 for 'Sweet 

Promise' and in Figure 19 for 'Varlon'. These figures show the date 

of bud break on the horizontal axis and total fresh shoot weight, 

including the part of the shoot that remains on the shrub on the 

vertical axis (right scale) and also the weight of the cut rose (left 

scale). The remaining part that left on the shrub after cut was at 

average 10% of the total shoot weight. If a linear regression is 

fitted for both 'models', the following equations are found: (For 

abbreviations see 2.8.). 

Sweet Promise: FSW = -9.76 + 0.0008962RSUM + 0.4372RH - 0.5450T 

(R2* = 96.7%). 

Varlon: FSW =-44.64 + 0.0004618RSUM + 0.7174RH + 0.5346T 

(R2* = 97.2%). 

The proportional decrease in fresh weight, at a temperature increase 
o o 

of 1 C, compared to a given mean temperature in the range 16 C 
o 

through 21 C, is shown in Figure 20. 

The figure makes it clear that the decrease in weight is stronger for 

'Sweet Promise' than for 'Varlon' and in midwinter it is bigger than 

in autumn and spring. 
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5.3.2. FRESH SHOOT HEIGHT AMD INTERACTION WITH SHOOT STAGE AND 

TEMPERATURE 

Interaction between temperature, stage of shoot development and shoot 

weight was studied for 'Sweet Promise' in the glasshouse. In this 

study, transferable container grown roses were used. 

In the experiments 27 different combinations of temperature and 

developmental stage were imposed (GC1,GC2). The result of experiment 

GC1 is shown in Figure 21. This figure shows a negative linear 

relationship between shoot weight and temperature during development 

time. The linear relation accounts for nearly 95% of the variance in 

the data. A further analysis of the residuals did not show any 

structure. The experiment was repeated in May of the same year and 

showed qualitatively the same results, which are not shown separately 

(GC2). No significant interaction was found between temperature and 

shoot stage on fresh shoot weight. 

5.3.3. FRESH SHOOT WEIGHT AND TEMPERATURE DISTRIBUTION BETWEEN DAT 

AND NIGHT 

The experiments on this subject are divided into two groups: 

5.3.3.1. DAY TEMPERATURE HIGHER THAN NIGHT TEMPERATURE 

In practice the temperature is commonly higher during the day than 

during the night. In experiment (GS3) the influence of the diurnal 

temperature distribution on fresh shoot weight was studied. In this 

experiment, 7 combinations of day and night temperatures were made 

around the same mean temperatt 

experiment are listed in Table 3. 

o 
around the same mean temperature of 18 C. The results of this 
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Table 3. Rose cvs. Sweet Promise and Varlon, grown in glasshouse 
soil. Average fresh shoot weight (g) at harvest for 7 
night/day temperature combinations at the same daily mean 
of 18°C. Period November until May. All temperatures were 
realised between 18.2°C to 18.7°C. Treatments with the same 
letter do not differ at the 0.05 level of significance 
(Tukey 's Yardstick). 

hrs night/hrs day ( C) 

Fresh shoot weight at harvest (g). 

* Sweet P.* 

16.7 a 

16.4 a 

16.9 a 

16.2 a 

17.0 a 

17.2 a 

16.8 a 

'Var lon ' 

23.7 ab 

21.9 a 

24.3 b 

22.5 ab 

24.7 b 

22.8 ab 

23.3 ab 

- 12 hrs 14 / 12 hrs 22 

- 6 hrs 16 followed by 6 hrs 12 and 12 hrs 22 

- 12 hrs 15 / 12 hrs 21 (3 replications) 

- 12 hrs 16 / 12 hrs 20 

- 6 hrs 18 followed by 6 hrs 14 and 12 hrs 20 

- 12 hrs 17 / 12 hrs 19 

- 24 hrs 18 

Table 3 shows the average fresh shoot weight of the cut roses. 

No reliable differences between the treatments were found for 'Sweet 

Promise'. The results for 'Varlon' show some differences, but a 

pattern is absent. The deviations must be due to chance. 

5.3.3.2. DAY TEMPERATURE LOWER THAN NIGHT TEMPERATURE 

Compared with the situation in the practice this is a reversed 

condition. In the first experiment on this subject (GS4), four 12 hrs 

night/12 hrs day temperature treatments were performed: 16/22, 18/20, 

20/18 and 22/16 ( C) respectively. The results are listed in Table 

4,A and in the Figures 22 and 23. 
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Table 4. Rose cvs. Sweet Promise and Varlon, grown in glasshouse 
soil. Average fresh shoot weight (g) during harvest. For 
three winter seasons and four temperature treatments per 
season with the same daily mean of 19°C. Treatments with 
different letters differ at the 0.05 level of significance 

(Tukey 's Yardstick). 

Fresh shoot weight during harvest (g) 

Treatmen 

1. 

2. 

3. 

4. 

'S 

A 

t GS4 

17.7 a 

15.8 b 

14.9 be 

14.2 c 

weet PromJ 

B 

GS5 

16.7 a 

17.8 b 

17.0 ab 

16.7 a 

Lse* 

C 

GS6 

17.5 a 

17.8 a 

16.9 b 

17.7 a 

A 

GS4 

19.5 a 

18.9 a 

17.5 b 

14.7 c 

•Varlon' 

B 

GS5 

20.2 a 

19.7 a 

20.8 a 

21.2 a 

C 

GS6 

20.4 a 

20.7 a 

20.1 a 

20.2 a 

Legend: 
A. (GS4) October 1980 until my 1981. 

12 hrs night/12 hrs day temperature (°C) 
Installed daily mean is 19°C for all treatments. 

1. = 16/22 
2. - 18/20 
3. - 20/18 
4. - 22/16 

B. (GS5) October 1981 until May 1982. 
Installed daily mean is 19°C for all treatments. 
1. - 24 hours 19°C 
2. - 22 " 18.5°C and 2 hours 24°C (from 18.00h until 20.00h). 
3. - 20 " 18.0°C " 4 " " ( " " " 22.00h). 
4.-18 " 17.3°C " 6 " " ( " " " 24.00h). 

C. (GS6) October 1982 until April 1983. 
Installed daily mean is 19°C for all treatments. 
From November through 15 January the same treatments as B. 
From 16 January 
1.-24 hours 19°C. 
2. - 21 " 18.3°C and 3 hours 24°C (from 18.00h until 21.00h). 
3. - 18 " 17.3°C " 6 " " ( " " " 24.00h). 
4. = 15 " 16.0°C " 9 " " ( " " " 03.00h), 
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Table and figures both show a tendency for the weight to decrease 

when, at a given mean temperature, day temperature decreases and 

night temperature increases. 

This effect of day and night temperature was studied further in 

airconditioned glasshouses with container grown roses cv. Sweet 

Promise (GC3 and GC4). 

These experiments started with two groups of roses of which the 

lateral buds had just broken (= 1 cm). One group was installed at a 
o o 

12 hrs 24 C night/12 hrs 16 C day temperature regime and the other 

group at the reversed temperature regime. Transferring containers 

between the two compartments resulted in 10 treatments. The growth 

cycle from cut to cut for all treatments was the same: 50 days. The 

influence on shoot weight is shown in Figure 24. 

In this figure the horizontal axis represents the treatments and the 

vertical axis shows the mean fresh shoot weight at harvest. In the 

figure, two parallel straight lines can be seen. The upper line 

represents the results from the treatments that started with a higher 

day than night temperature, the lower line the treatments that 

started with the reversed temperatures. The figure shows that the 

more nights with a higher night than day temperature, the lesser the 

weight. It also makes a difference whether shoot development starts 

at a high or at a low night temperature. This implies an interaction 

of temperature with the stage of shoot development. 

More experiments with higher night than day temperatures were 

performed in the Phytotron. In one experiment with a photoperiod of 8 

hours, 15 different temperature treatments were realised. The effect 

on fresh shoot weight is shown in Figure 25. This figure shows the 

mean temperature on the horizontal axis and fresh shoot weight on 

the vertical axis. The treatments are written next to the dots which 

represent the results of the experiment. 

The figure shows that: 

(1) If at a given day temperature, night temperature decreases 

resulting in a decrease of the mean temperature, fresh shoot 
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weight increases (solid lines). 

(2) If at a given night temperature, day temperature decreases 

resulting in a decrease of the mean temperature, fresh shoot 

weight decreases (broken lines "perpendicular" to the solid 

lines). 

(3) At a given mean temperature, a constant temperature during day 

and night results in the heaviest shoots (uppermost broken 

line). 

(4) At a given mean temperature, a bigger difference in temperature 

between day and night results in a lower shoot weight. 

5.3.4. FRESH SHOOT WEIGHT AND LENGTH OF A DIURNAL PERIOD WITH A 

HIGHER NIGHT THAN DAY TEMPERATURE 

Experiment GS4 showed that a 12 hours higher night than day 

temperature results in a decrease in shoot weight. The effect of a 

shorter night period with a higher than day temperature was studied 

in two experiments (GS5 and GS6). In these experiments 4 treatments 
o 

were given, one with a constant temperature of 19 C and three with a 
o 

night period of 24 C of different lengths. These periods with a high 
o 

temperature started at sunset. The daily mean temperature was 19 C 

for all treatments. The results of these two experiments are listed 

in Table 4B and 4C. This table shows no reliable difference between 

the treatments for the cv. Varlon (P=0.05). For the cv. Sweet Promise 

one of the four treatments differs significantly (P=0.05) in both 

years. A tendency cannot be seen in these differences, however. The 

deviations must be due to chance. 

5.3.5. FRESH WEIGHT OF THE FLOWER BUD AT HARVEST AND ITS FRACTION OF 

TOTAL SHOOT WEIGHT 

The relation between date of bud break and flower bud weight during 
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harvest is shown for 'Sweet Promise' in Figure 26 and for 'Varlon' in 

Figure 27. The corresponding linear regression equations are: (for 

abbreviations see 2.8.). 

'Sweet P.':FBW = 41.0- 3.29T + 0.0735DL + 0.26RH- 0.000266RSUM 

(R2*=92.4%) 

'Varlon*:FBW = 34.8 - 3.29T + 0.1143DL - 0.000310RSUM + 0.198RH 

(R2*=91.1%) 

The proportion of total fresh shoot weight belonging to the flower 

bud was calculated too and the results are shown in Figure 28 for 

'Sweet Promise' and in Figure 29 for 'Varlon'. In these figures the 

horizontal axis shows the date of bud break and the vertical axis the 

flower bud fraction in percentages. For both cultivars the isotherms 

show an optimum. The reaction to temperature during decreasing light 

intensities is opposite to that during increasing light intensities. 

On a distinct date of bud break a linear relation between the 

percentage of bud weight and temperature appears. Such a linear 

relation also appears in an experiment with 27 different temperature 
o o 

combinations (GC1) in the temperature range 16.2 C - 19.5 C (Figure 

30). An experiment with 25 temperature combinations, performed in 

the Phytotron, also showed a linear relation in the same temperature 

range (Figure 31). For temperatures lower than about 13 C, the flower 

bud fraction increases very quickly, however. 

If at a given daily mean temperature, night temperature increases 

and day temperature decreases, the flower bud fraction shows a 

tendency to increase slightly (Table 5). For 'Sweet Promise'this 

increase is not significant, however (P=0.05). 
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Table 5. Rose cvs. Sweet Promise and Varlon, grown in glasshouse 
soil. Flower bud fraction in percentages of total fresh 
shoot weight of the cut roses during harvest. Period 
November until May (GSZ). Daily mean temperature is 18°C 
for all treatments. Day and night temperature both 12 hours. 

Flower bud fraction of total fresh shoot weight (Z) 

Treatments 

Night/Day( C) 'Sweet Promise' 'Varlon' 

14/22 (mean of 2) 21.5 a 21.4 a 

15/21 (mean of 3) 21.6 a 22.0 a 

16/20 (mean of 2) 21.7 a 21.6 a 

17/19 22.5 a 23.4 b 

18/18 22.3 a 23.7 b 

If on a diurnal base the night temperature is 12 hours higher than 

the day temperature, the increase in bud fraction becomes more 

pronounced (Table 6A). If the high night temperature lasts no longer 

than 6-9 hours the effect does not clear appears (Table 6B,C). 

Table 6. Rose ovs. Sweet Promise and Varlon, grown in glasshouse 
soil. Flower bud fraction in percentages of total fresh shoot 
weight of the cut roses during harvest. Results from three 
experiments. 
Legend: see Table 4. 

Flower bud fraction of total fresh shoot weight (%) 

'Sweet Promise' 'Varlon' 

A B C A B C 

Treatment 6S4 GS5 GS6 GS4 GS5 GS6 

1. 

2. 

3. 

4. 

20.2 a 

21.8 b 

24.2 c 

24.2 c 

24.0 a 

23.6 a 

25.0 a 

24.3 a 

24.7 a 

24.2 ab 

22.8 be 

23.3 ab 

20.4 a 

21.4 ab 

23.2 b 

22.3 b 

21.6 a 

22.9 be 

22.7 be 

22.0 ac 

22.0 a 

23.8 abc 

21.4 ab 

24.2 c 

54 



In experiments with container grown roses in the glasshouse, which 

only lasted one flush, no clear influence of an increasing night 

temperature on the flower bud fraction could be seen. 

5.3.6. AVERAGE INCREASE IN FRESH WEIGHT PER SHOOT PER DAY 

The average daily increase in fresh weight of the shoot during its 

development can be taken as a measure for growth vigour or 

productivity. It was calculated by dividing total fresh shoot weight 

at harvest by its development time. The results are displayed in 

Figure 32 for 'Sweet Promise'and in Figure 33 for 'Varlon' . These 

figures show the date of bud break on the horizontal axis and the 

average daily increase in fresh weight per shoot on the vertical 

axis. 

In the figure for 'Sweet Promise' (32) two turning-points appear. In 

the figure for 'Varlon' (33), this is not the case. During the whole 

period 'Varlon' shows a higher increase in fresh weight at a higher 

temperature. 

5.3.7. MEAN IRRADIANCE DURING THE PRODUCTION OF ONE GRAN 

FRESH SHOOT HEIGHT 

The mean irradiance inside the glasshouse during the production of 

one gram of fresh shoot weight was calculated by dividing the mean 

irradiance during shoot growth by the average shoot weight. For 

'Sweet Promise' and 'Varlon' this level is shown in Figure 34 and 35 

respectively. In these figures the horizontal axis shows the date of 

bud break and the vertical axis the mean daily irradiance in the 

glasshouse. The figure for 'Sweet Promise' (34) shows two 

turning-points which are missing in the figure for 'Varlon' (35). 

Both figures show that if the irradiance in the glasshouse decreases, 

less irradiance is needed to produce one gram of fresh weight. 
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If the mean daily irradiance inside the glasshouse during development 

is placed on the horizontal axis, a hysteresis effect emerges (Figure 

36). At the same average light level, a higher efficiency appears in 

autumn under decreasing rather than in spring under increasing light 

conditions. The turning point lies in December. 

A hysteresis effect also appears in the relation between fresh shoot 

weight and the mean daily irradiance inside the glasshouse (Figure 

37). A similar graph for fresh weight of the flower bud however shows 

no hysteresis (Figure 38). 

5.4. DISCUSSION 

Between the mean temperature during development time and fresh shoot 

weight a negative linear relation exists (Figures 18 and 19). Such a 

negative relation for roses was reported earlier by Moe (1969), De 

Vrles an Smeets (1979) and Van den Berg (1980). Shoot weight follows 

the natural radiation cycle. The lightest shoots emerge from lateral 

buds broken in December. If light conditions during shoot growth 

increase, shoot weight increases too. Both cultivars show 

qualitatively the same reaction. A positive reaction of shoot weight 

to light has been reported earlier by several authors (Chandler 1954, 

Carpenter 1972, White 1973, Armitage 1979). The average fresh weight 

production per shoot per day during shoot development shows 

differences between both cultivars. For 'Varlon' the average fresh 

weight production per shoot per day is positively correlated with 

temperature during the whole period from October until following May 

(Figure 33). 'Sweet Promise', however, shows two turning-points in 

its graphs (Figure 32). This difference in behaviour is due to the 

fact that shoot weight of 'Sweet Promise1 shows a stronger decrease 

at higher temperatures and low light intensities than shoot weight 

of 'Varlon' (Figure 20). This results in thinner shoots with little 

growth vigour in winter and a low average daily fresh weight 

production. When growth increases in spring, average daily fresh 
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weight production is again positively correlated with temperature. 

Final shoot weight is determined by the effect of temperature on 

the development time and on the average daily fresh weight 

production. As the effect of a higher temperature on the increase in 

the average daily fresh weight production is less than on the 

reduction in development time, shoots grow lighter. 

The mean light level inside the glasshouse under which one gram of 

fresh shoot weight is produced shows, of course, the reversed view 

(Figure 34 and 35). At a lower light level less light is needed to 

produce one gram of fresh shoot weight, so 'light efficiency1 becomes 

higher. This reaction to light can be explained by the course of the 

photosynthetic rate at increasing irradiance (Gaastra 1959, Incoll 

1976). 

If a linear regression equation is fit for shoot weight, up to about 

97% of the variation in the 'models' can be explained in using the 

explanatory variables: total irradiation, relative humidity (RH) and 

mean temperature. Compared with the equation for the development time 

of a shoot this means one extra climate factor: the relative humidity 

of the air. Instead of the RH, the Vapor Pressure Deficit of the air 

(VPD) was also used in the regression equations. The percentages 

variation accounted for scarcely changed; only the coefficients did. 

The three variables in the equations are not independent from each 

other and it is also well thinkable that the variables (RH) and (T) 

are highly correlated with an unknown variable which in its turn is 

highly correlated with fresh shoot weight. In this last situation 

(RH) and (T) are 'proxies' ( see Appendix 3 ) . 

For these reasons the coefficients are likely to be unreliable 

indicators of the importance of the corresponding variable apart from 

the other ones and one can not use the equations to predict what will 

happen to fresh weight if one of the variables is changed neglecting 

the others. The method of linear least square regression was used for 

analysing and not for predicting the data. It shows that the three 

variables: RSUM, RH and T together, account for nearly 97% of the 

variation in the 'models' on fresh shoot weight, but says nothing 

57 



about the importance of each of them individualy. 

A possible unknown variable correlated with RH and T may be the water 

potential of the shoot or its turgor. These entities influence cell 

volume and consequently fresh shoot weight. 

In the experiments the average VPD was in the range of 1.36 -

5.82(mm Hg), corresponding to a relative humidity of 70% - 90% in a 
o o 

temperature range of 16 C - 22 C. According to literature, it is not 

to be expected that in this range there is a great influence on 

growth. Mortenson (1984) did not find any influence on fresh weight 

in this range for roses. During freezing weather however, when 

heating pipes were hot, low humidities at a level that can influence 

growth occured from time to time. Daily humidities as low as 40% were 

measured under those circumstances. 

In six experiments performed in the Phytotron with the cv. Sweet 

Promise a negative 'Thermoperiodicity' on shoot weight was found. 

This means less growth under a diurnal change in temperature in 

comparison with the growth measured under constant temperature 

conditions with the same mean (Figure 25). The term 

'Thermoperiodicity' was introduced by Went (1944) and is used for 

'responses of plants to cyclic temperature variations' (Went 1953). 

The results for roses agree with reports on dry weight production of 

other species: beans (Dale 1964), tomatoes (Hussey 1965, Friend and 

Helson 1976), wheat, oats, corn, pea and cucumber (Friend and Helson 

1976). Warrington et al.(1977) found a positive thermoperiodicity 

for dry weight production of Soybeans, however. 

In the Phytotron experiments with 'Sweet Promise', shoot weight 

was on average 10% lower, compared with shoot weight at constant 

temperature, if day temperature was higher than night temperature. If 

night temperature was higher than day temperature this difference 

increased to about 30%. The deleterious effect of a higher night 

than day temperature is clearly demonstrated by Figure 25. 

In the glasshouse experiments with soil-grown roses we only 

found a clear negative thermoperiodicity for shoot weight when night 

temperature was higher than day temperature during 12 hours at a 
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diurnal basis, but not if night temperature was lower than day 

temperature (Table 3 ) . These results from soil grown roses in the 

glasshouse are contradictory to the results acquired in the 

Phytotron. The difference is probably caused by the fact that in the 

experiments with soil grown roses, average root temperatures were 

scarcely influenced by the diurnal switch between day and night 

temperature, but in the experiments in the Phytotron they were 

strongly influenced. Depending on the imposed night/day temperature 
o o 

combination, root temperatures decreased until 13 C or even 9 C. Such 

low root temperatures influence the water balance of the plants by 

enhancing the flow resistance for water in the roots (Kramer 1940, 

Cameron 1941, Kuiper 1964). If the plants are transferred from low to 

high temperature, the warming up of the roots stays behind the shoot. 

The transpiration suddenly increases and the high root resistance 

results in a low water potential and a stress situation of the shoot, 

which decreases growth. A decreasing effect of low root temperatures 

on shoot growth was reported a.o. by Abd el Rahman et al. (1959) for 

tomatoes, by Brouwer (1964) for beans and by Kleinendorst and Brouwer 

(1970, 1972) for maize. Cooper 1973 reviewed this subject. The effect 

of the higher night than day temperature on growth can be explained 

by the phenomenon that at night, growth in fresh weight is reported 

to be higher than at daytime (Kleinendorst and Brouwer 1970, Challa 

1976). This can be explained by the generally high water potential at 

night, when transpiration is lower than in daytime. This high water 

potential makes it possible for the plant to reach a turgor far above 

the threshold value for cell elongation (Boyer 1968). 

A reversed temperature regime resulting in a lower water potential at 

night might reduce growth in such a situation. 

The graphs for shoot weight show a negative linear relation with the 

mean daily temperature (Figures 18, 19 and 21). A clear interaction 

between temperature, development stage of the shoot and shoot weight 

was only found when night temperature was higher than day 

temperature. When imposed directly after bud break, such a regime led 

to shoots of less weight than when imposed in a later stage of shoot 
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development (Figure 24). During the winter season, flower bud weight 

shows the same behaviour as shoot weight. The linear regression 

equation accounts for about 92% of the variation in the 'models'. In 

the equation daylength appears as a significant explanatory variable. 

Daylength influences the weight of the flower bud. The bud fraction 

moves opposite to total shoot weight and opposite to the natural 

radiation cycle. In autumn the flower bud fraction is negatively 

correlated with temperature, but in spring the correlation is 

positive. This behaviour of the flower bud was caused by the fact 

that the weight of the vegetative part of the shoot was more strongly 

influenced by the natural radiation cycle than the generative part, 

to which the flower bud belongs. This may be caused by a relatively 

stronger sink, position of the flower bud during shortening days, 

compared to the leaves. 

The bud fraction is mainly determined by the mean temperature and 

not clearly influenced by the temperature distribution during the 

development of the shoot (Figure 30) or by the diurnal temperature 

distribution (Figure 31). Very low temperatures, below 13 C, strongly 

increase the flower bud fraction. Flower bud growth is less 

restrained at these temperatures than stem and leaf growth. 

The difference in growth behaviour between flower bud and the 

generative part of the shoot is also clearly demonstrated by the 

relation between the flower bud and total shoot weight with the mean 

irradiance during shoot growth. Total shoot weight shows hysteresis 

with the time of the year (Figure 37), but the weight of the flower 

bud does not (Figure 38). Because the flower bud surface per gram is 

much lower than for the rest of the shoot, this difference in 

behaviour may be partly caused by a difference in evaporation in 

relation to air humidity. 

At the same temperature and irradiance the average fresh weight 

production per shoot per day is higher in October/November than in 

January/February (Figure 36). This can be partly caused by a 

difference in the humidity of the air, which was higher in the first 

period. However internal factors in the plant, e.g. 'growth vigour' 
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may also play a role. In autumn reserves in the plant are higher than 

in the beginning of the year. 
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Fig .18 (1) 'Sweet promise ' and F ig .19 ( r ) ' V a r l on ' , grown in 
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Fig.20 'Sweet Promise' (broken line) and 'Varlon' (solid line), grown 
in glasshouse soil. Change in fresh weight if the mean temperature is 
raised by 1°C on the temperature range 16°C - 21°C, in relation to 
the date of bud break 
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Shoot welght(g) 
i7.a| 

y=31.25-0.96x <r=-.949) 
Fig.21 'Sweet Promise', 
container grown in 
glasshouse. Fresh shoot 
weight in relation to the 
mean temperature, for 27 
temperature treatments 
depending on shoot stage 
(see text). 

Fig.22 'Sweet Promise', 
grown in glasshouse soil. 
Fresh shoot weight of cut 
roses for four night/day 
temperature treatments at 
one daily mean of 19°C. 
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Fig.23 'Varlon*, 
grown in glasshouse soil. 
Fresh shoot weight of cut 
roses for four night/day 
temperature treatments at 
one daily mean of 19°C. 
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Shoot welght(g) 
17.01 

N 24/D 16 1 J l i l S I J l JQ days " f2. " J? 
50 40 30 20 10 0 J N 16 /D 24 

Fig.24 'Sweet Promise', container grown in the glasshouse. Relation 
between fresh shoot weight and number of nights with a higher (24°C) 
than day temperature (16°C). Daily mean is 20°C for all treatments. 
Growth cycle is 50 days for all combinations. 
line 1. Shoots started after bud break with a lower night than day 
temperature, followed by nights with a higher than day temperature. 
line 2. Shoots started after bud break with a higher night than day 
temperature, followed by nights with a lower than day temperature. 

Shoot woLght(g) 
15 

• l 3 / 1 3 17/13 
Night/Day (*C) 

21/21 

17v25/25 

9 
13 15 17 19 2'1 23 25 «c 

Fig.25 'Sweet Promise', container grown in growth rooms. Fresh shoot 
weight in re la t ion to the mean temperature, for 15 different 16hrs 
dark/8hrs l ight temperature combinations. 
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Date of bud break 
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Fig.26 (1) 'Sweet Promise' and Fig.27 (r) 'Varlon', grown in 
glasshouse soil. 'Model' for fresh flower bud weight (g) during 
harvest in relation to date of bud break, and the mean temperature. 
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Fig.28 (1) 'Sweet Promise* and Fig.29 (r) 'Varlon', grown in 
glasshouse soil. Flower bud as fraction of total fresh shoot weight, 
in relation to date of bud break and the mean temperature. 
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Bud fraction. (») 
28 

f ract ion. (*) 

y=100.65o <r=-.945>(9<x<25> 

y=65.11-1.78x( r=-.970 X11<x<25). 

Flg.30 'Sweet Promise*, 
container grown in the 
glasshouse. Flower bud as 
fraction of fresh shoot weight 
in relation to temperature. 

Fig.31 'Sweet Promise', 
container grown in growth 
rooms. Flower bud as fraction 
of fresh shoot weight, in 
relation to temperature. 
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DaU of bud brook 

Oc No 0 * Jo Fo Ma Ap 
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Fig-. 32 (1) »Sweet Promise" and Fig.33 (r) 'Varlon', grown in 
glasshouse soil. Relation between average daily increase in fresh 
weight per shoot with day of bud break and the mean temperature. 
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200 

Turning point 

No D» Ja F» Ma Ap 
Date of bud b r a k 

-9 -1 J cm *doy 
1000| 16 <*C) 

0c No De Ja Fe Ma Ap 
Date of bud break 

Fig .34 (1) 'Sweet Promise' and F ig .35 ( r ) ' V a r l on ' , grown i n 
g lasshouse s o i l . Re la t ion between average i n s i de i r r a d i ance dur ing 
the p roduct ion of one gram of f resh shoot weight with da te of bud 
break and the mean t empera ture . 

100 2 0 0 3 0 0 4 0 0 3 0 0 6 0 0 7 0 0 8 0 0 
J en"2 doy-1 

Fig.36 'Sweet Promise' 
and 'Varlon', grown in 
glasshouse soil. Relation 
between the fresh weight 
production in grams per 
shoot per day and 
mean daily inside 
irradiance. Naked 
capitals refer to 
date of bud break on 
first day of the 
corresponding month and 
capitals with a dot to 
the middle of the month. 
Mean temperature 18°C. 
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the 
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Shoot weight (g) 

30.0. 

20.0. N, 

10.Q 

Varlon' 

M 

Sweet Promise' 

-H 1-

100 200 300 400 500 GOO 700 800 
-2 -1 

J cm day 

Fig.37 'Sweet Promise' and 'Varlon', grown in glasshouse soil. 
Relation between fresh shoot weight and the mean inside irradiance. 
For capitals:see Fig.36. Mean temperature 20°C. 

100 200 300 400 500 600 700 800 
-2 -1 

J cm day 

Fig.38 'Sweet Promise' and 'Varlon', grown in glasshouse soil. 
Relation between fresh flower bud weight and the mean inside 
irradiance. Capitals: see Fig.36. Mean temperature 20 C. 
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6. MEASUREMENTS OF THE SHOOT 

6.1. INTRODUCTION 

This chapter deals with the measurements of the rose shoot. Together 

with fresh weight, shoot size determines the market value of the 

rose. At the auction, long thick, stems with big flower buds are 

considered being top quality. 

The influence of the climate factors: temperature, irradiation and 

daylength on shoot length has been studied by several research 

workers. A decrease in shoot length if temperature increases was 

reported by a.o.: Moe and Kristofferson (1969), Moe (1972a,1973), De 

Vries et al. (1980,1982) and by Brown and Omrod (1980). In some 

experiments an optimum temperature for shoot length was found (Byrne 

et al.1978, Van den 3erg 1981). 

At low air temperatures, rootzone warming increased shoot length 

of soil grown roses (Brown and Omrod 1980), container grown roses 

(Zeroni and Gale 1982) and roses grown in nutrient film (Moss 1983, 

1984, Moss and Dalgleish 1984). 

A decrease in shoot length caused by short days was reported by 

Moe (1972a) for roses in growth rooms, and by Carpenter et al. (1972) 

for glasshouse roses. This reaction to daylength is not uncommon for 

woody plants. It was a.o. reported by Barrick et al. (1973) for 

Rhododendron. 

Reports on the effect of the irradiance on shoot length are not 

unequivocal. In experiments in growth rooms, De Vries and Smeets 

(1978) and De Vries et al. (1982) found longer stems at higher 

irradiance. Moe (1972a) however, found a shortening effect of an 

increase in irradiance. Tsujita and Dutton (1983) found a 

lengthening effect of supplementary lighting in greenhouses in 

winter. Carpenter et al. (1972) and Cockshull (1975) however, 

reported a shortening effect. 

Several authors found no significant effect of supplementary lighting 

on shoot length (Wiseley and Lindstrom 1972, White and Richter 1973, 



Armitage and Tsujita 1979). 

These sometimes contradictory results may partly be accounted for by 

a phenomenon reported by Carpenter and Rodriguez (1971b), who found 

that supplementary lighting reduced the formation of non flowering 

'blind' shoots. This resulted in a higher number of small flowering 

shoots, that otherwise would have grown blind. These small shoots 

reduce average shoot length. Apart from this, the experiments 

reported in the literature were performed with different cultivars 

and plant material under different conditions, which may have 

influenced shoot length strongly. 

Not only climate factors, but also the plant, or more precisely 

the subtending or parent shoot, is reported to have a clear influence 

on shoot length. Byrne and Doss (1981) reported that thicker parent 

shoots produced longer daughter shoots. 

The subject of this chapter is not only shoot length, but also 

discussed are: neck length, the length and width of the flower bud, 

the diameter of shoot and neck and the number of leaves on the shoot. 

Their relation with temperature under natural light conditions was 

studied for soil grown roses of the cvs. Sweet Promise and Varlon 

sprouted in the glasshouse in the period October until April. 

Supplementary studies were performed with container grown 'Sweet 

Promise' roses in the glasshouse and in growth rooms (Phytotron). 

6.2. MATERIALS AND METHODS 

The methods used in this chapter do not deviate from those in the 

previous chapters. The 'models' of shoot length were based on the 

means of the weekgroups, which included all the roses harvested in an 

experimental plot, labeled and unlabeled ones. The 'models' on neck 

length, flower bud length and width, diameter of the shoot at the cut 

and at the middle of the neck and number of leaves of the cut roses 

were based on weekly means of the labeled shoots. The 'models' were 

also analysed by the method of linear least square regression (see 

Appendix 3 ) . 
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Plant material, methods, conditions, definitions, abbreviations and 

codes of the experiments have been discussed in Chapter 2. 

6.3. RESULTS 

6.3.1. A 'MODEL' FOR SHOOT LENGTH 

The 'models' for shoot length are shown in the Figures 39 and 40 for 

the cvs. Sweet Promise and Varlon respectively. On the horizontal 

axis the figures show the date of bud break and on the vertical axis 

total shoot length at harvest stage, measured from the joint. The 

shoot fraction that remained on the shrub after cut was known from 

the labeled ones. This information was used to calculate also for the 

non labeled shoot total shoot length. The regression equations that 

fit closest are for: (for abbreviations see 2.8.). 

2 
'Sweet P.': SL= -879 + 0.680WPS + 121.6T - 2.9T + 0.0696ADR + 2.66RH 

(R2*= 86.2%). 
2 

'Varlon': SL= -1478 + 0.969WPS + 223.7T - 6.0T + 0.0460ADR 

(R2*= 88.2%). 

Figures 39 and 40 show an optimum temperature for shoot length for 

'Sweet Promise' between 18 C and 19 C and for 'Varlon' between 17 C 

and 18°C. 

6.3.2. SHOOT LENGTH AND INTERACTION WITH SHOOT STAGE AND 

TEMPERATURE 

In two experiments each with 27 combinations between temperature and 

development stage of the shoot, interaction was studied for 'Sweet 

Promise' (GC1, GC2). When shoot length was plotted against the mean 

daily temperature during shoot growth, a negative correlation 

appeared (Figure 41). All shoots fell in the relatively small range 
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from 56.6 - 63.6 cm. No clear interaction with the stage of shoot 

development could be detected. 

6.3.3. SHOOT LENGTH AND DISTRIBUTION OF TEMPERATURE BETWEEN DAY AND 

NIGHT 

The experiments on this subject are divided into two groups: 

6.3.3.1. DAY TEMPERATURE HIGHER THAN NIGHT TEMPERATURE 

The influence of the common diurnal temperature distribution, with a 

higher day than night temperature on shoot length in the glasshouse 

is shown in Figure 42 for 'Sweet Promise' and in Figure 43 for 

'Varlon' (GS3). These figures shows the harvest date on the 

horizontal axis and the average shoot length of the cut roses on the 

vertical axis. The roses were cut at the first five-leaflet leaf 

above the joint. The figures show an optimum night/day temperature 

combination for cv. Sweet Promise at 15/21( C) and for 'Varlon' at 

15-16/20-21(°C). 

6.3.3.2. DAY TEMPERATURE LOWER THAN NIGHT TEMPERATURE 

In three successive winter seasons experiments were performed on this 

subject with 'Sweet Promise' and 'Varlon' in the glasshouse. In the 

first experiment (GS4) four different night/day temperature 
o 

combinations were made at one daily mean temperature of 19 C. Two of 

the combinations had a higher night temperature than day temperature. 

Day and night temperature both lasted 12 hours per 24 hours. The 

results of these treatments on the length of the roses, cut at the 

first five-leaflet leaf, are shown in Figure 44 for 'Sweet Promise' 

and in Figure 45 for 'Varlon'. These two figures demonstrate that at 

the same daily mean temperature, an increase in night temperature 

results in a decrease in shoot length. The average length of all 

roses cut during the period November until May is shown in Table 7A. 

The results show the same tendency as in the former experiment (GS3); 
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an increase in night temperature, above the optimum, leads to a 

decrease in shoot length. 

Table 7. Rose evs. Sweet Promise (SP) and Varlon (V), grown in 
glasshouse soil. Average total shoot length (cm) of out 
roses from three experiments with each four different 
temperature treatments. 
Legend: see Table 4. 

Treatment SP 

1. 62.1 a 

2. 57.8 b 

3. 53.4 c 

4. 52.3 c 

A 

GS4 

V 

64.0 a 

60.5 a 

56.1 b 

56.1 b 

Total 

SP 

58.7 a 

58.8 a 

58.2 at 

56.4 b 

shoot length (cm) 

B 

GS5 

V 

65.0 a 

65.7 a 

62.6 a 

64.0 a 

C 

GS6 

SP 

63.0 a 

61.2 a 

62.6 a 

59.6 b 

V 

66.8 

65.9 

67.1 

64.8 

a 

a 

a 

a 

For 'Sweet Promise' the effect of a higher night than day temperature 

on shoot length was studied in the phytotron too. The results of 25 

temperature combinations, ten of which with a higher night than day 

temperature and a diurnal photoperiod of 8 hours, are shown in Figure 

46. In this figure the horizontal axis shows the mean temperature 

during the experiment and the vertical axis shoot length measured 

from the joint to the ovary, thus with the exclusion of the flower 

bud. A line is drawn throught the data points (dots) which belong to 

the combinations with a lower night than day temperature, the common 
o 

situation in practice. The line shows an optimum at about 18 C. The 

treatments are written near the data points. The data points from the 

treatments with a higher night than day temperature all lie below the 

drawn line. These points deviate more from the line if the difference 

in temperature between night and day temperature increases. Figure 46 
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shows that: 

(1) If at a given day temperature, night temperature decreases 

resulting in a decrease in the daily mean temperature, shoot 

length responds with an optimum curve with an optimum at about 

18°C. 

(2) If at a given night temperature, day temperature decreases 

resulting in a decrease in the daily mean temperature, shoot 

length decreases. 

(3) At a given mean temperature an increase in night temperature 

combined with a decrease in day temperature, results in shorter 

shoots. 

(4) At a certain mean temperature a constant temperature during day 

and night gives the longest shoots. 

6.3.4. SHOOT LENGTH AND THE LENGTH OF A DIURNAL PERIOD WITH A HIGHER 

NIGHT THAN DAY TEMPERATURE 

The length of the diurnal period with a higher night than day 

temperature necessary to decrease shoot length, was studied in two 

experiments (GS5 and GS6). In these experiments day and night 
o 

temperatures were constant with the exception of a period of 24 C 
o 

beginning at sunset. The daily mean temperature was 19 C for all 

treatments. 

The results of these two experiments are listed in Table 7B and 7C. 

In both experiments, treatment number 4 shows the shortest roses for 

'Sweet Promise'. This treatment differs significantly from the other 

one (P=0.05). The cv. Varlon however, shows no reliable differences. 

6.3.5. SHOOT LENGTH AND THE NUMBER OF NIGHTS WITH A HIGHER THAN DAY 

TEMPERATURE 
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This study was performed in airconditioned glasshouse compartments 

with container grown roses cv. Sweet Promise. During shoot 

development, containers were transferred from a compartment with a 
o o 

high day (12 hrs 24 C) and a low night (12 hrs 16 C) temperature, to 

a compartment with the reversed temperature combination. This 

resulted in 8 different treatments with the same development time 

from bud break, until harvest of 40 days, in which the number of 

nights with a higher night than day temperature increased from 0 

until 40. The results from this experiment are shown in Figure 47. In 

this figure the horizontal axis shows the number of nights with a 

higher temperature than in day time and the vertical axis shoot 

length from joint to ovary. The graph shows a negative linear 

relation between shoot length and the number of nights with a higher 

than day temperature. 

6.3.6. LENGTH GROWTH 

The growth in length of the shoot from bud break until harvest was 

studied for the cv. Sweet Promise in the phytotron and also in the 

glasshouse. In the phytotron the length from joint to ovary was 

measured every second day. In the glasshouse, measurements were 

performed once a week. 

The results from 11 different 8 hrs light/12 hrs dark temperature 

combinations are shown in Figure 48. 

In this figure the horizontal axis shows the time in days after cut, 

and the vertical axis shoot length in em's. The Figure shows that 

shoot elongation is nearly linear during the greater part of the 

developing period. Only the first part of the curve until a length of 

about 4 cm has been reached, and during the last week before harvest 

the lines differ from a straight one. The tops of the curves form a 

bell-shape with a maximum at about 18 C. Curve "i" totally differs 

from the other ones. This last curve originates from a treatment with 

a higher night than day temperature! 
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If the mean temperature decreases, the growth rate (the tangent of 

the angle between the straight part of a curve with the horizontal 

axis) decreases too. 

When the average daily increase in length during the development time 

is calculated and plotted agaist the mean daily temperature, a 

positive linear relationship appears (Figure 49). This figure is the 

mean of two experiments in the Phytotron. 

In the glasshouse experiments growth curves were made too, both 

for 'Sweet Promise' and 'Varlon'. The shape of these curves was the 

same as those in the phytotron experiment and are not shown 

separately. The average daily increase in length during the 

development is shown in the Figures 50 and 51 for 'Sweet Promise' and 

'Varlon', respectively. In these figures the mean temperature is 

shown on the horizontal axis and the average increase in length on 

the vertical axis. The lines refer to shoots which had been broken on 

the first day of the corresponding month and show a linear relation 

between the average daily length growth and temperature. 

Dividing shoot weight of the cut roses by their length gives 

fresh weight per cm, a quantity that can be considered as a measure 

for firmness (Figure 52 and 53). The figures show a decrease in 

firmness if the temperature increases. A difference between 'Sweet 

Promise' and 'Varlon' appears in the period October until December. 

In this period firmness for 'Sweet Promise' decreases at an 

increasing temperature but not for 'Varlon'. 

6.3.7. NECK LENGTH 

The relation between temperature and neck length is shown in Figure 

54 for 'Sweet Promise'. In the figure two lines are to be seen. The 

long one shows the results from phytotron experiments with a diurnal 

light period of 8 hours. The short line is from an experiment with 

soil grown roses in the glasshouse and gives the average neck length 

over the period November until May (GS2). Both curves show an optimum 
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o 
at about 19 C. The optimum for the short line is less pronounced than 

for the long one, however. If at a given 24 hours temperature night 

temperature increases, neck length decreases (Table 8A). 

Table 8. Rose ovs. Sweet Promise (S) and Varlon (V), grown in 
glasshouse soil. Average neak length (mm) and ratio 
neck/total shoot length, of out roses (%), for three 
experimental years with each four treatments. 
Legend: see Table 4. 

1 

2 

3 

4 

A 

GS4 

neck 

(mm) 

S V 

100a 76a 

92ab 74a 

87bc 69b 

86c 67b 

neck/i 

S 

.15 

.14 

.16 

.16 

* 

shoot 

V 

.11 

.11 

.11 

.11 

* 

B 

GS5 

neck 

(mm) 

S 

140 

138 

139 

135 

* 

V 

127 

130 

126 

135 

* 

i ieck/ 

S 

.22 

.21 

.22 

.22 

* 

shoot 

V 

.18 

.18 

.19 

.19 

* 

ne 

C 

6S6 

ck 

(mm) 

S 

139 

141 

142 

142 

* 

V 

116 

119 

118 

117 

* 

neck/shoot 

S 

.21 

.21 

.21 

.22 

* 

V 

.16 

.16 

.16 

.17 

* 

Experiments in the phytotron showed that the rate between neck length 

and total shoot length is not influenced by temperature in the range 
o o o 

of 15 C until 25 C (Figure 55). Temperatures lower than 13 C showed a 

strong increase in this ratio, however. 

The temperature distribution between day and night did not reliably 

influence the neck/shoot ratio. Also a higher night than day 

temperature did not affect it (Table 8B and 8C). 

6.3.8. LENGTH, WIDTH AND VOLUME OF THE FLOWER BUD AT HARVEST 

The length and the width of the flower bud were measured during the 

first experiment with soil grown roses (GS1). The measurements were 
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performed at harvest stage. The length was measured from the 

receptacle until the tip of the petals; thus with the exclusion of 

the ovary. The Figures 56 and 57 show the 'models' for flower bud 

length for 'Sweet Promise' and 'Varlon', respectively. The 

corresponding linear regression equations are: (for abbreviations see 

2.8.). 

'Sweet P' BL= -332 + 0.1127ADR - 0.377WPS + 4.59EH + 50.4T- 1.68T 

(R2*«91.9%). 

.'Varlon' BL=229 + 0.0959ADR - 6.84T + 2.47BH - 0.0878WPS 

(R2*= 96.8%). 

the 'models' for the width of the flower bud measured at the height 

of the receptacle are shown in Figure 58 for 'Sweet Promise' and in 

Figure 59 for 'Varlon'. The corresponding linear regression equations 

vfbr the figures are: (for abbreviations see 2.8.). 

•Sweet P' B»=39.2 - 5.53T + 0.3673DL - 0.1363ADR + 0.66RH 

(R2*= 94.0%). 

•Varlon' Btt= -1.5 + 0.1270DL + 2.702RH - 4.499T (R *= 92.3%). 

' -In the figures the horizontal axis represents the date of bud break 

and the vertical axis the length and width of the flower bud, 

respectively. The figures show a decrease in bud length and bud width 

(luring autumn followed by an increase in spring; a lower temperature 

leads to longer and broader flower buds. 

If the flower bud is considered as a cylinder, which is close to 

reality at the moment it opens, it is simple to calculate its volume. 

The results of this calculation are shown in Figure 60 for 'Sweet 

Promise' and in Figure 61 for 'Varlon'. 
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6.3.9. DIAMETER OF THE STEM 

The diameter, measured at the cut, is shown in Figure 62 for 'Sweet 

Promise' and in Figure 63 for 'Varlon'. The horizontal axis shows the 

date of bud break and the vertical axis the diameter. These figures 

clearly show that lower temperatures lead to thicker stems, and that 

lateral buds that break in the depth of winter produce the thinnest 

shoots. The influence of the temperature distribution between day and 

night at a given mean temperature on the diameter was also studied. 

Night temperatures in the range from 14 C until 18 C combined with 
o o 

day temperatures in the range of 18 C until 22 C, did not show a 
reliable influence on the diameter (Table 9). 

Table 9. Rose avs. Sweet Promise and Varlon, grown in glasshouse 
soil. Diameter of the shoot at the cut (0.1mm), diameter 
of the middle of the neck (0.1mm) and the ratio between 
both, for five 12hrs night/12hrs day temperature treatments. 
Period November until May (GS3). 

GS3 'Sweet Promise1 

Treatment Diameter(O.lmm) 

N/D ( C) shoot neck ratio 

•Varlon' 

Diameter(0.1mm) 

shoot neck ratio 

1. 

2. 

3. 

4. 

5. 

14/22 

15/21 

16/20 

17/19 

18/18 

43 

44 

43 

44 

46 

* 

29 

30 

29 

29 

30 

* 

.67 

.68 

.67 

.68 

.65 

* 

55 

55 

56 

54 

56 

* 

33 

33 

33 

32 

33 

* 

.60 

.60 

.59 

.59 

.59 

* 

If, however, the installed night temperature rises above the day 

temperature for 12 hours on a diurnal base, the diameter decreases 

reliably as is shown in Table 10. 
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Table 10. Rose avs. Sweet Promise and Varlon, grown in glasshouse 
soil. Diameter of the shoot at the out (0.1mm), diameter 
at the middle of the neck (0.1mm) and the ratio between 
both, for four 12hrs night/12hrs day temperature treatments. 
Period November until May (GS4). 

GS4 

Treatment 

N/D (°C) 

1. 16/22 

2. 18/20 

3. 20/18 

4. 22/16 

'Sweet Promise 

Diameter(O.lmm) 

shoot 

50 a 

49 a 

46 b 

45 b 

neck 

33 a 

31 b 

30 be 

29 c 

ratio 

.66 a 

.63 a 

.65 a 

.64 a 

•Varlon' 

Diamet 

shoot 

51 a 

51 a 

49 b 

48 b 

er (0.1mm) 

neck. 

31 a 

30 b 

30 ab 

29 b 

ratio 

.61 a 

.59 a 

.61 a 

.60 a 

If the period with the higher night than day temperature lasts no 

longer than 6-9 hours per 24 hours the diameter is not influenced 

(Table 11 and 12). 

Table 11. Rose avs. Sweet Promise and Varlon, grown in glasshouse 
soil. Diameter of the shoot at the out (0.1mm), diameter at 
the middle of the neok (0.1mm) and the ratio between both, 
for four night/day temperature treatments. 
Period November until May (GS5). 
For treatments see also: Table 4B. 

GS5 

Treatment 

Night/Day ( C) 

1. 19/19 

2. 2 hrs 24/18.5 

3. 4 hrs 24/18.0 

4. 6 hrs 24/17.3 

• Sweet Promise' 

Diameter(0 

shoot 

45 

47 

45 

44 

* 

neck 

30 

32 

30 

29 

* 

. 1mm) 

ratio 

.67 

.68 

.67 

.66 

* 

•Varlon' 

Diameter(0. 

shoot 

55 

56 

51 

57 

* 

neck 

33 

33 

31 

33 

* 

1mm) 

ratio 

.60 

.59 

.61 

.58 

* 
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Table 12. Rose ovs. Sweet Promise and Varlon, grown in glasshouse 
soil. Diameter of the shoot at the out (0.1mm), diameter 
at the middle of the neck (0.1mm) and the ratio between both, 
for four night/day temperature treatments. 
Period November until April (GS6). 
For treatments see also Table 4C. 

GS6 

Treatment 

Night/day (°C) 

'Sweet Promise* 

Diameter(O.lmm) 

shoot neck ratio 

•Varlon' 

Diameter(0.1mm) 

shoot neck ratio 

1. 19/19 49 

2. 2-3 hrs 24/18.3 51 

3. 3-6 hrs 24/17.3 49 

4. 6-9 hrs 24/16.0 49 

32 

33 

32 

33 

* 

.65 

.65 

.65 

.65 

* 

56 

59 

54 

54 

* 

33 

33 

32 

32 

* 

.59 

.56 

.59 

.59 

* 

The regression equations for the diameter of the shoot are: (for 

abbreviations see 2.8.). 

'Sweet P.' DS= 12.0 + 0.2985ADR - 16.36T + 8.80RH + 0.1234MPS 

(R2* =92.8%). 
2 

'Varlon' DS=-307.2 + 0.2144ADR + 9.09RH + 0.3866WPS (R * =93.8.9%), 

6.3.10. DIAMETER OF THE NECK 

In the experiments GS2 until GS6 the diameter was measured in the 

middle of the neck. The 'models' are shown respectively in Figures 64 

and 65 for 'Sweet Promise' and 'Varlon'. The diameter of the neck 

responds to the distribution of temperature between day and night in 

the same way as the diameter of the shoot does (Tables 9-12). 

The ratio between the diameter of the neck and the stem is shown in 

Figure 66. This figure shows the mean temperature on the horizontal 



axis and the ratio on the vertical axis. In the figure three lines 

are to be seen. The two short lines represent the ratio of the two 

cvs. in glasshouse soil (GS2), the long one, the results of 'Sweet 

Promise' in the phytotron on a much wider temperature range. The 

figure shows an increase in ratio if temperature decreases below 
o 

about 17 C. 

Between 17 C and 21 C the line is nearly parallel to the x-axis. The 

experiments with different distributions of the temperature over the 

24 hours of the day at a given daily mean temperature did not show a 

reliable influence on the ratio (Table 9-12). 

6.3.11. DIAMETER OF THE OVARY 

The course of the diameter of the ovary during the winter season was 

comparable to the behaviour of the diameter of stem and neck. Roses 

harvested in February showed the smallest diameter. In the 

experiments with different temperature distribution between day and 

night, no reliable influence was found on the diameter of the ovary 

(Table 13). 

Table IS. Roses avs. Sweet Promise (S) and Varlon (V), grown in 
glasshouse soil. Average diameter of the ovary (0.1mm). 
For three winter seasons with each for temperature 
treatments. 
Legend: see Table 4. 

Diameter of the ovary (O.lnn) 

Treatment 

1. 

2. 

3. 

4. 

S 

87 

88 

88 

86 

* 

A 

GS4 

V 

85 

84 

87 

85 

* 

S 

84 

89 

83 

83 

* 

B 

6S5 

V 

86 

88 

84 

85 

* 

S 

89 

93 

87 

89 

* 

C 

GS6 

V 

89 

89 

86 

88 

* 
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6.3.12. NUMBER OF LEAVES 

During the experiments the roses were cut on the first five 

leaflet-leaf above the joint. The number of leaves was monitored. la 

the first experiment (GS1), a distinction was made between leaves 

with three or more leaflets and leaves with less than three leaflets. 

The total number of leaves was not effected by temperature. The first 

and second highest leaf of shoots harvested in January and February 

however showed less leaflets if grown at a high temperature level 

than if grown at a low temperature level. The distribution of 

temperature over the 24 hours of the day did not reliably influence 

the total number of leaves. Also a higher night than day temperature 

did not influence it (Table 14). 

Table 14. Roses avs. Sweet Promise (S) and Varlon (V), grown in 
glasshouse soil. Average number of leaves of the out roses 
for three winter seasons with each four temperature treatments. 
Legend: see Table 4. 

Number of leaves 

Treatment 

1. 

2 . 

3 . 

4 . 

S 

10.1 

10.1 

9 . 5 

9 . 5 

* 

A 

GS4 \ 

V 

11.0 

11.1 

11.0 

11.1 

* 

s 

9 .6 

9 . 5 

9 . 5 

9 . 4 

* 

B 

GS5 

V 

10.1 

10.0 

9 . 5 

10.4 

* 

S 

9 . 4 

9 . 6 

9 . 9 

9 . 4 

* 

C 

GS6 

V 

10.2 

10.3 

10.1 

10.1 

* 

83 



6.4. DISCUSSION 

To account for the variation in the 'models' on shoot measurements, 

more explanatory variables are necessary than for the models on 

development time and fresh weight. Besides the variables: 

temperature, irradiance and relative humidity in a linear form, also 

the quadratic form of the temperature appears. A new variable is also 

the 'plant factor' (WPS), being the fresh weight of the parent 

shoot. But even with all those variables in the equation, no more 

than 86%-88% of the variation in shoot length can be accounted for. 

This means that more and unknown variables are involved, or that the 

influence of the variables already in the equation is more intricate 

than supposed. This last statement is certainly a fact. Shoot length 

is influenced by the distribution of temperature between day and 

night, but for the construction of the models only the mean 

temperature was used. A higher percentage of the the variation can 

also be accounted for if all variables are inserted in the quadratic 

form too. The equation then becomes less understandable however, and 

the Cp-value of Mallow (see Appendix 3) shows a big bias, which means 

an inadequate fit. The equations for the two cultivars do not always 

show the same variables nor are the variables always in the same 

sequence. Only the variables which significantly reduce the residual 

sum of squares are inserted. The sequence of the variables is 

according to their importance. The difference in growth behaviour 

between the two cultivars during winter as mentionned in the previous 

chapter appears in the difference in variables in the equations too. 

Moe (1972a,b) mentioned that in his experiments daylength also was 

a factor that influenced shoot length. In the present experiments the 

natural radiation cycle was used so daylength was coupled with 

irradiance. Inserting daylength as an extra variable did not 

significantly improve the fit. 

Both cvs. Sweet Promise and Varlon show an optimum temperature 

for shoot length at a mean of about 18 C in the glasshouse. In the 

Phytotron experiments with 'Sweet Promise' the same optimum was found 
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(Figure 46). 

No reliable interaction was found between temperature and stage 

of shoot development on shoot length. This does not mean however that 

such an interaction does not exist for temperatures or growth 

circumstances different from our experiments; but for the moment this 

is a matter of speculation. 

The average daily shoot growth or average shoot extension rate 

(cm/day) during the development of a shoot shows a positive linear 

correlation with the air temperature (Figure 49-51). The difference 

between both cultivars is very small. Such a linear correlation has 

also been reported for other species, e.g. cucumber (Hey 1980) and 

for stem segments of Avena sativa (Jusaitis et al. 1982). Linear 

responses in relation to air temperature have been observed also for 

other plant parts, e.g. for barley leaves (Blscoe and Gallagher 

1977). 

The length growth rate also depends on the time of the year (Figure 

50 and 51). In autumn this rate is higher than under the same 

irradlance and temperature conditions in early spring (Figure 67). 

This may be partly due to the higher relative humidity measured in 

autumn, but it can also be connected with the difference in growth 

vigour of the plant which is higher in autumn at decreasing light 

conditions than in the beginning of the year under increasing light 

conditions. The rate of growth in length and the rate of development 

both determine final shoot length. Because at higher temperatures the 

rate of development is promoted more strongly than the rate in length 

growth, shoots remain shorter. 

The temperature distribution between day and night also 

influences shoot length. The optimum night temperature at a daily 

mean of 18-19( C) lies at about 15 C for both 'Sweet Promise' and 

'Varlon' (Figure 42 and 43). This agrees well with the average 

temperature in practice. A higher night than day temperature clearly 

reduces shoot length (Figure 44-46, Table 7), an effect that was 

also reported for peas by Monselise and Went (1958) and for roses by 

Hendriks (1984). The greater the number of nights with a higher night 
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than day temperature, the shorter the shoot (Figure 47). If the 

diurnal period with a higher night than day temperature beginning at 

dawn is not longer than 6 hours however, no significant reduction in 

length appears (Table 7). The fact that night temperature has a 

strong influence on growth was already mentioned in the previous 

chapter and has been reported for other species. Boyer (1968) showed 

that leaf enlargment was stronger at night than in daytime because of 

a higher water potential during the night. Also results of Biscoe and 

Callagher (1976) point into that direction. 

Neck length shows a similar reaction to temperature as shoot 

length. This was also reported for rose seedlings by De Vries and 

Smeets (1979). 

The length and width of the flower bud shows a comparable reaction to 

temperature and irradiance as length and width of the petals, as 

reported by Moe and Kristofferson (1969). No significant influence of 

temperature on total leaf number was found. Only flowerless shoots 

had less leaves than flowering ones; a result that confirms the 

findings of Moe and Kristofferson (1969) and of De Vries and Smeets 

(1979). 

An optimum temperature for neck length of 'Sweet Promise' was found 

at about 18 C (Figure 54), the same temperature as for the optimum 

for shoot length. For 'Varlon' no clear optimum was found in the 
o o 

temperature range 16 C -22 C, however. The ratio between neck and 
o o 

shoot length is constant on the temperature range 13 C to 25 C, 

according to the results from experiments performed in the phytotron. 

At lower temperatures however, this ratio strongly increases because 

of a sharp decrease in development of the vegetative part of the 

shoot (Figure 55). The ratio between the diameter of the middle of 

the neck and the shoot at the place of cut shows the same tendency 

and this can also be said for the ratio: flower bud weight/total 

shoot weight. Flower bud and neck both belong to the generative part 

of the shoot and show a different reaction to temperature then the 

vegetative part. A more detailled study in growth rooms was performed 

on leaves. In this study all leaves were graded according the number 
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o o 
of leaflets. The results showed that on the range 25 C to 17 C a 

decrease in temperature resulted in a decrease in the number of 

leaflets of the two leaves closest to the flower bud. The other 

leaves were not affected nor was the total number of leaves. As a 

consequence differences in shoot length were due to differences in 

the average internode length. These results were in harmony with 

those from the experiments with soil grown roses in glasshouses. 
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shoot Length (cm). 
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65 

0c No De Ja Fe Ma Ap 
Dote of bud break 

0c No De Ja Fe Ma Ap 

Date of bud break 

Fig.39 'Sweet Promise', 
grown in glasshouse soil. 
'Model' for total shoot 
length at harvest stage 
in relation to the date 
of bud break and the mean 
temperature. 

Fig.40 'Varlon', grown in 
glasshouse soil. 'Model' 
for total shoot length at 
harvest stage in relation 
to the date of bud break 
and the mean temperature. 
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Fig.41 'Sweet Promise1, 
container grown in the 
glasshouse. Relation 
between shoot length and 
the mean temperature, for 
27 temperature treatments 
depending on shoot stage 
(see text). 
Y=70.4-0.56X(r=-.29) 

16.0 17.0 18.0 19.0 *c 

Fig.42 'Sweet Promise' 
grown in glasshouse s o i l . 
Shoot length of cut roses 
for four night/day 
temperature treatments. 
Daily mean i s 18°C for 
a l l treatments. 
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Fig.43 'Varlon* grown in 
glasshouse s o i l . Shoot 
length of cut roses for 
for night/day temperature 
treatments. Daily mean i s 
18°C for a l l treatments. 
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Fig.44 (1) 'Sweet Promise' and Fig.45 (r) 'Varlon', grown in 
glasshouse soil. Shoot length of cut roses for four 12hrs night/12hrs 
day temperature treatments. Daily mean is 19°C for all treatments. 
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Fig.46 'Sweet Promise', 
container grown in growth 
rooms. Shoot length of cut 
roses in relation to the mean 
temperature, 25 combinations, 
16hrs dark/8hrs light (°C). 

Fig.47 'Sweet Promise', container 
grown in the glasshouse. Relation 
between shoot length and number 
of nights with a higher (12 hrs 
24°C) than day temperature (12 
hrs 16°C). 
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Length (cm) 

Night/Day mean (°C) 

A 25/25 
B 21/25 
C 17/25 
D 17/21 
E 13/25 
F 13/21 
G 13/17 
H 9/21 
I 25/21 
K 17/17 
L 9/17 

25.0 
22.3 
19.7 
18.3 
17.0 
15.7 
14.3 
13.0 
23.7 
17.0 
11.7 

5 13 21 29 37 45 53 61 69 77 Days. 

Fig.48 'Sweet Promise', container grown in growth rooms. Length 
growth of daughter shoot after cut of the parent shoot at day 0, for 
different 16hrs night/8hrs day temperatures (°C). 

cm day 
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1.00 

0.50 

-1 

0.0Q 

y=-0.497+0.078x (r=.982) Fig.49 'Sweet Promise*, 
container grown in growth 
rooms. Relation between 
the average shoot growth 
per day (cm) and the mean 
temperature. 
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16 17 18 19 20 21 22 C 16 17 18 19 20 21 22"C 

Fig.50 (1) 'Sweet Promise' and Fig.51 (r) 'Varlon', grown in 
glasshouse soil. Relation between the average shoot growth per day 
(cm), the mean temperature and the date of bud break on the first day 
of the corresponding month. 
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Fig.52 (1) 'Sweet promise' and Fig.53 (r) 'Varlon1, grown in 
glasshouse soil. Relation between fresh shoot weight per cm, the date 
of bud break and the mean temperature. 
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Neck Length (cm) 
13.0 

Neck Length/Shoot Length. 
1.0 

.50 
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10 12 14 16 18 20 22 24 v 

Fig.54 'Sweet Promise', container 
grown in growth rooms (dots) and 
grown in glasshouse soil 
(asterixes). Relation between the 
length of the neck and the mean 
temperature. 

Fig.55 'Sweet Promise', container 
grown in growth rooms. Neck 
length as fraction of total shoot 
length, in relation to the mean 
temperature. 
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Fig.56 (1) 'Sweet Promise' and Fig.57 (r) 'Varlon', soil grown in the 
glasshouse. 'Model' for flower bud length (cm) during harvest in 
relation to the date of bud break and the mean temperature. 
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Fig.58 (1) 'Sweet Promise' and Fig.59 (r) 'varlon*, soil grown in the 
glasshouse. 'Model' for flower bud width (cm) during harvest in 
relation to the date of bud break and the mean temperature. 
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Fig.60 (1) 'Sweet Promise' and Fig.61 (r) 'Varlon', soil grown in the 
glasshouse. 'Model' for flower bud volume (cm3) during harvest in 
relation to the date of bud break and the mean temperature. 
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Fig .62 (1) 'Sweet Promise' and F ig .63 ( r ) ' V a r l on ' , s o i l grown i n the 
g l a s shouse . 'Model' for shoot diameter (mm) dur ing ha rves t i n 
r e l a t i o n to the da te of bud break and the mean t empera ture . 
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Fig.64 (1) 'Sweet Promise' and Fig.65 (r), 'Varlon' soil grown in the 
glasshouse. 'Model' for neck diameter (mm) during harvest in relation 
to the date of bud break and the mean temperature. 
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Fig.66 Relation between the ratio: diameter neck/diameter shoot and 
the mean temperature. For 'Sweet Promise', container grown in growth 
rooms (dots), soil grown in the glasshouse (asterixes) and for 
'Varlon', soil grown in the glasshouse (Squares). 
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Fig.67 'Sweet Promise' and 'Varlon', grown in glasshouse soil. 
Relation between the average daily shoot growth (cm d a y - 1 ) , the mean 
inside irradiance and the date of bud break. Naked capitals refer to 
bud break at the first day of the corresponding month, capitals with 
a dot refer to the middle of the month. 
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7. FLOWERLESS ROSE SHOOTS ('BLIND SHOOTS') 

7.1. INTRODUCTION 

As a result of self-induction differentiation flower organs start in 

all extending rose shoots (Halevy 1985). If flower development is not 

completed the flower atrophies, aborts and the shoot fails to 

flower. This phenomenon called 'blindness' ('blind shoot') has been a 

problem as long as roses have been cultivated. The morphology of 

'blind shoots' in relation to its anatomy and the stage of floral 

development has been studied and described by several authors 

(Hubbell 1934a, Lindstrom 1956, Moe and Kristofferson 1969, Moe 

1971b, Horridge and Cockshull 1974, Zleslin and Halevy 1975a, Nell 

and Rasmussen 1979b, Van Hove 1980, De Vries et al. 1981). Apart from 

the problem of 'blindness' Laurie and Bobula (1938) and Lindebaum and 

Ginzburg 1975 studied the anatomy of the apex during its change from 

vegetative to generative. 

On the basis of anatomic research Hubbell (1934) concluded that 

the formation of 'blind' shoots is a result of the shedding of the 

flower bud at an early stage of its development. This phenomenom is 

commonly called flower bud abortion. Lindstrom (1956) confirmed 

Hubbell's view in his thesis. He found that the first signs of flower 

bud abortion occurred when the petal primordia started to develop. 

Cell disintegration could be seen beginning in the epidermal layers 

of the sepals. This disintegration progressed into the bud below the 

apical meristem. After the appearance of a necrotic band an 

abscission layer appeared and the flower bud died. The formation of 

'blindness' could take place any time from petal through pistal 

formation. Van Hove (1980) confirmed these results for 'Sweet 

Promise'. De Vries et al. (1981), who worked with seedlings of Hybrid 

Tea roses, distinguished between early abortion which also results in 

the absence of the upper leaf and occurs without an abscission zone 

97 



in the flowerstalk, and late abortion including an abscission zone. 

The abortion of completed flower buds is also possible (Halevy 1985, 

De Haas 1985). Shedding of plant parts is, by the way, not an 

uncommon phenomenon in plant life and can be caused by different 

circumstances (Kozlowski 1973). The phenomenon that 'blind' shoots 

form less leaves and are shorter, thinner and lighter of color than 

flowering shoots is well known and can be seen in all rose canopies. 

It was reported by a.o.: Moe (1971a,b), Zieslin and Halevy (1975a,b), 

Nell and Rasmussen (1979a), Van Hove 1980, De Vries et al. (1981), 

and was also evident in the present experiments with 'Sweet Promise' 

and 'Varlon' roses. 

To explain the formation of 'blind' shoots several theories have 

been advanced. Corbett (1902) stated that heredity was an important 

aspect. Hubbell (1934b) however, concluded that sensitivity to 

'blindness' is not inherited but is a physiological phenomenon caused 

by low growth vigour of the stock. He stated that an improper balance 

of nutrients was at the basis of blindness. De Vries et al. (1978) 

showed that within a population of seedlings it is possible to select 

on sensitivity to blindness. 

In experiments with nitrate and potassium levels, Lindstrom and 

Kiplinger (1955) found no effect on 'blindness' in 'Better Times' 

roses. Lindstrom (1956) mentioned results from several unpublished 

M.Sc. theses on nutrients in relation to 'blindness' in roses which 

do not support Hubbells statement. Results from some experiments 

pointed in the direction of a perhaps indirect effect of nutrients on 

'blindness' via the growth vigour of the shrub, however. 

Zieslin and Halevy (1975a,b) reported an increase in 'blindness' if 
o 

soil temperature decreased until 15 C, which they ascribe to changes 

in the metabolic activity of the roots. Besides the role roots have 

in the uptake of water and minerals, they are also an important 

production site for some fytohormones (Appendix 1). 

Moe (1971) reported that hormones may play a role in the formation of 

'blind' shoots. A low auxin level in the shoots promoted blindness. 

Hanisch ten Cate (1974) demonstrated that this hormone plays an 



important role in the prevention of flower bud abscission in Begonia. 

Low levels of some growth substances in roses are reported to 

correlate with a high percentage of 'blind' shoots (Zieslin and 

Halevy 1975a,b, 1976b). These authors studied the content of various 

growth substances in flowering and in non-flowering shoots at 

different stages of shoot development. They found a higher level of 

gibberellins, auxins and cytokinins in flowering shoots. 

Non-flowering shoots had a higher level of inhibitors, among which 

abscisic acid (Zieslin and Halevy 1976b). One may ask however what is 

cause and what is result. 

Gibberellins are produced in the roots, in the young leaves and 

in the stamen too (Graebe and Ropers 1978, Hormonal regulation 1984). 

In the period between bud break and the start of the own gibberellin 

production the new shoot is sensitive to gibberellin shortage, which 

can lead to flower bud atrophy and blindness. 

Zieslin and Halevy found a reduction in the gibberellin content if 

light intensity decreased. 

The external addition of gibberellins and CCC can reduce 

'blindness' (Zieslin and Halevy 1976c, Mor and Halevy 1984). This may 

be a direct effect on flower bud initiation and development or an 

indirect effect via influencing the assimilate supply to the apical 

meristematic regions (Sachs and Hackett 1977). The gibberellin level 

inside the plant can be reduced by applying cytokinins (Mclhniewicz 

and Kamienska 1967, Sebanek 1966, Jackson and Field 1971). 

Zieslin and Halevy (1976d) found no influence of applying cytokinins 

direct to the apex, however. If sprayed on individual branches, 

cytokinin resulted in an increase of the number of sprouting lateral 

buds of which, probably due to competition, a high percentage grew 

blind. CCC is reported to reduce the gibberellin level in plant 

tissue (e.g. Lang 1970), but is also reported to increase the 

gibberellin level (Jones and Philips 1967, Van Bragt 1969, Halevy and 

Shilo 1970, Reid and Crozier 1972). Adding CCC together with 

cytokinins to lateral buds reduced the high percentage 'blindness' in 

shoots which were forced to sprout by the application of cytokinin 
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(Zieslin and Halevy 1975c, 1976c). 

Tukey (1985) mentioned work of Chinese research workers, who 

found that in grapes a high concentration of cytokinins in the 

bleeding sap of rootstocks promotes inflorescence formation. 

Halevy (1974) pointed out the possibility that the internal level 

of growth substances may play a role by influencing the mobilisation 

and the direction of assimilates. In a review on this subject, Weaver 

and Johnson (1984) give many articles that can back this view point. 

Goren (1983) who worked with citrus mentioned that hormones can act 

direct on the formation of abscission layers or indirectly by 

influencing the sink competition in plants. This may also be the case 

in flower bud abortion. Although 'blind' shoots appear all year round 

(own experience), the bulk of them are formed in winter (Zieslin and 

Halevy 1975a, Moe and Kristofferson 1969). Especially those shoots 

which develop around the shortest day are sensitive to blindness. In 

this part of the year the production of assimilates is very low 

because of the low light level and much of the reserves have already 

been used. 

The sensitivity for 'blindness' also depends on the cultivar, on the 

growth vigour of the branch from which the shoot develops (present 

experiments) and on the location of the lateral bud on that branch 

(Zieslin and halevy 1976a, present experiments). 

An increase in light intensity, either natural or artificial, 

reduces flower abortion and the formation of 'blind' shoots (Moe and 

Kristofferson 1969, Moe 1971b, Carpenter and Rodriguez 1971b, 

Carpenter and Anderson 1972, Cockshull 1975, Zieslin and Halevy 

1975b, Kosh-Khui and George 1977, De Vries and Smeets 1979, Nell and 

Rasmussen 1979b, Van Hove 1980, De Vries et al. 1982). This effect of 

light is also known for other species e.g. lilies (Kamerbeek and 

Durieux 1971, Durieux 1974) and tomatoes (Atherton and Othman 1983). 

Mortensen and Moe (1983) found a decrease in 'blindness' as a result 

of raising the CO concentration. A reasonable explanation is that an 

increased level of light and/or CO enhances the production of 

assimilates and by this way reduces the change of starvation of the 
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flower bud. 

An effect of daylength on the formation of 'blind' shoots was not 

found (Zieslin and Halevy 1975b). 

Reports on the influence of temperature on 'blind' shoot 

formation are less similar than those on light intensity. In 

experiments with 'Baccara ', cut back, in February and March, Moe and 

Kristofferson (1969) found a decrease in 'blindness' if temperature 

increased. If the roses were cut back in January however, an increase 

in temperature led to an increase in blindness (Moe 1971b). De Vries 

and Smeets (1979), found no influence of temperature in the range 
o o 

10 C - 26 C on 'blindness' in rose seedlings in growth rooms. They 

stated that: " given sufficient light energy, flower bud formation is 

not affected by temperature". This view can be backed by results from 

Zieslin and Halevy (1976d), which showed a decrease in the 

gibberellin content at low temperatures but an increase at high light 

i n t e n s i t i e s . 

In the present study the influence of temperature on the formation of 

'blind' shoots received special attention because of its importance 

to the grower, and the danger that in using unorthodox temperature 

regimes, 'blindness' might become an even bigger problem than it 

already is at the moment. 

7.2. MATERIALS AND METHODS 

Preliminary to the experiments with the rose cvs. Sweet Promise and 

Varlon in glasshouse soil, shoots were labeled and were monitored 

flush after flush. The percentage of 'blind' shoots was calculated. 

During the experiments groups of shoots outside the experimental 

plots were regulary labeled and the blind shoots counted. The 

influence of the temperature distribution between day and night on 

'blindness' was studied with container grown roses of the cv. Sweet 

Promise in the glasshouse. Plant materials, methods, conditions, 

definitions, abbreviations and codes of the experiments have been 

described in chapter 2. 
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7.3. RESULTS 

7.3.1. 'BLINDNESS' AND MEAN TEMPERATURE 

In the first experiment (GS1), a constant day temperature was 

combined with four different night temperatures. The percentage of 

'blind' shoots of roses grown in the period November until May was 8% 

for the cv. Sweet Promise and 4% for 'Varlon'. The differences in 

the formation of 'blind' shoots between the four treatments were not 

significant. 

In the second experiment (GS2), each of three night' temperatures was 

combined with three day temperatures. The percentage of 'blind' 

increased if the mean daily temperature increased too (Figure 68). 

This figure shows the mean daily temperature during shoot growth on 

the horizontal axis and the percentage of 'blind' shoots on the 

vertical axis. The lines A and B refer to the cvs. Sweet Promise and 

Varlon in the period November until May, and the line C refers to 

'Sweet Promise' in the period March until May. In this last period 

the percentage of 'blind' shoots for 'Varlon' was less than one per 

cent and is not shown in the figure. 

7.3.2. 'BLINDNESS' AND THE DISTRIBUTION OF TEMPERATURE BETWEEN DAY 

AND NIGHT 

The influence of the temperature distribution between day and night 

on the formation of 'blind* shoots was studied in experiment GS3. In 

this experiment 5 different night/day temperature combinations were 

made at one given temperature. From this experiment emerged the 

fact, that if at a given temperature the night temperature 

increases, the percentage of 'blind' shoots decreases (Figure 69). In 

this figure the horizontal axis shows the average night temperature 

and on the vertical axis the percentage of 'blind' shoots for 'Sweet 
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Promise' in the period November until May. 

As the cv. Varlon only showed some percents of 'blind' shoots with no 

significant differences between the treatments during the experiments 

GS3 until GS6, this cv. is further omitted in this chapter. 

The influence of a higher night than day temperature on the formation 

of 'blind' shoots was studied in the experiments GS4, GS5 and GS6. 

During these experiments, each fortnight groups of 16 roses of the 

cv. Sweet Promise were selected at harvest stage, cut at the first 

five-leaflet leaf above the joint and labeled. These groups of roses 

were outside the experimental plots so they did not influence the 

main experiment. The percentages of 'blind' shoots that emerged in 

the three successive years from the uppermost lateral bud were 

calculated and are listed in Table 15. Because of the reason that 

outside the experimental plots only shrubs of the cv. Sweet Promise 

had been planted, no data of the cv. Varlon are available. 

Table IS. Rose cv. Sweet Promise, grown in glasshouse soil. 
Percentages of 'blind' daughter shoots from labelled parent 
shoots (see text). 
Legend: see Table 4. 

•Blind shoots' (Z) 

A B C 

Treatment 

1 . 

2 . 

3 . 

4 . 

GS4 

11 

10 

5 

2 

GS5 

15 

9 

6 

5 

GS6 

8 

6 

4 

3 

The results from experiment GS4 clearly show that if night 
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temperature is higher than day temperature (treatments 3 and 4 ) , less 

'blind' shoots are formed than in the opposite situation (treatments 

1 and 2 ) . The results from GS5 and GS6 show that if the period with a 

high temperature during the night increases, the percentage of 

'blind' shoots shows a tendency to decrease. 

7.3.3. 'BLINDNESS* AND INTERACTION WITH SHOOT STAGE AND TEMPERATURE 

A closer examination of the formation of 'blind' shoots was made in 

experiments with container grown roses of the cv. Sweet Promise. 

The containers made it possible to realise many combinations between 

temperature and development stage of the shoot, by simply 

transferring the containers between compartments with different 

temperature regimes. 

The experiment were performed to detect the most sensitive stage for 

'blindness' in the development of the shoot. 

The first two experiments (GC1 and GC2) included 27 different 

temperature treatments. The results were split into three groups 

which had the same realised mean temperature during the whole 

development time from bud break until harvest, but different 

temperatures during the period from bud break until stem elongation. 

It became clear that during this period the bud is very sensitive to 

temperature in relation to 'blindness' (Table 16). 
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Table 16. Rose cv. Sweet Promise, container grown. 
Percentages of 'blind' shoots from two experiments, one 
started in November and the other in May, in relation to 
3, 12hrs night/12 hrs day temperature (°C) treatments 
during the development from bud break until stem 
elongation (= 4 cm). The mean temperature during the 
whole shoot development was the same for all treatments: 
18°C in GC1 and 22°C in GC2. 

'Blind' shoots (Z) 

November (GC1) 

night/day C 

Average 41a 

May (GC2) 

night/day C 

16.3b 

average 

1. 

2. 

3. 

18/22 

15/22 

12/22 

47a 

37b 

39b 

22/24 

18/20 

14/16 

27a 

12b 

10b 

37.0a 

24.5b 

24.5b 

The table shows, that a higher daily mean, In the period from bud 

break until stem elongation, stimulates blindness. It is also clear 

that the percentage of 'blind' shoots is higher for shoots that 

develop during winter (GC1) than for shoots that develop in summer 

(GC2). In the following experiment (GC3), 9 different temperature 

combinations were made at a given daily mean of 20 C. In this 

experiment higher night than day temperatures were involved. The 

results of this experiment are listed in Table 17. 
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Table 17. Percentage of 'blind' shoots in relation to 3 different 
12 hrs night/12 hrs day temperature (°C) treatments, and 
2 development stages of the shoot: (I) from bud break 
until elongation growth and (2) from elongation growth 
until harvest. Daily mean 20°C for all treatments. 

Night/Day ( C) 

Night/Day ( C ) . 

From elongation growth until harvest 

24/16 20/20 16/24 average 

From bud break 24/16 

until 20/20 

elongation growth 16/24 

15 

10 

8 

36 

18 

13 

35 

31 

22 

28.6 

19.6 

14.3 

average 11 22.3 29.3 

Table 17 shows a clear interaction between shoot stage and the 

night/day temperature combination. The distribution of temperature 

between day and night influences the formation of 'blind' shoots in 

two ways. In the period from bud break until stem elongation a higher 

night than day temperature stimulates the formation of 'blind' 

shoots, but in the following period it decreases it. 

The influence of the higher night than day temperature was 

studied further in the experiments: GC3, GC4, GC5 and GC6. In these 

experiments, roses were transferred from a high night/low day to a 

low night/high day temperature regime and also the other way around 

at three stages of the development of the shoot: (1), when the 

lateral buds had just broken (=lcm); (2), at the start of stem 

elongation(= 4cm); (3), when the flower bud was visible to the naked 

eye (diameter 2-3mm). This resulted in a total of 8 different 

combinations (Table 18). In this table the results of these 

experiments are listed. 

The table shows that the treatments 3-5 (underlined) show a 
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remarkable, significant low percentage of 'blind' shoots if compared 

with the other treatments. 

It is clear that a constant high night/low day temperature regime 

(treatment 5) leads to less 'blind' shoots than the opposite 

combination, a low night/high day temperature (treatment 1). This 

last situation is common in commercial rose growing. The lowest 

percentage of 'blind' shoots appears in the treatments 3 and 4. These 

are the treatments in which a low night/high day temperature in the 

period from cut until bud break or stem elongation is followed by a 

high night/low day temperature regime. In the opposite temperature 

combinations, the treatments 7 and 6, there is a very high percentage 

of 'blind' shoots. 

Table 18. Influence of two (00, XX) opposite night/day temperature ^ 
combinations on the formation of 'blind' shoots in relation 
to 4 (I, . . . , IV) stages of shoot development. Averages of 
4 experiments (a), diameter of the parent shoot (b, c) and 
position of the lateral bud on the parent shoot (d, e, f). 

Legend: Temperature distribution between day and night: 

00 12 hrs 16°C night/12 hrs 24°C day temperature. 
XX 12 hrs 24°C night/12 hrs 16°C day temperature. 

Development stage of the shoot: 

1 From cut until bud break (= 1 cm). 
II Next until elongation growth (= 4 cm). 

Ill Next until flower bud 2-3 mm. 
IV Next until cut. 

a Average from 4 experiments (GC3-GC6). 

b,c Diameter of the parent shoots: 

b more than 4mm at place of cut. 
c less " 4mm " " " " . 

d,e,f Bud position: 

d uppermost bud, closest to place of cut. 
e second bud, counted downward from the place of cut. 
f third " , " " " " " " " . 
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Shoot stage 'blind' shoots (%) 

I II III IV a b c d e 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

00 

00 

00 

00 

XX 

XX 

XX 

XX 

00 

00 

00 

XX 

XX 

XX 

XX 

00 

00 

00 

XX 

XX 

XX 

XX 

00 

00 

00 

XX 

XX 

XX 

XX 

00 

00 

00 

35 

31 

14 

16 

22 

44 

46 

46 

18 

26 

3 

8 

7 

21 

25 

31 

100 

81 

35 

22 

41 

100 

100 

100 

47 

40 

13 

13 

16 

45 

46 

48 

93 

87 

71 

75 

80 

87 

100 

91 

100 

100 

100 

100 

100 

100 

100 

100 

Average 32 17 70 34 86 100 

7.3.4. 'BLINDNESS' AND THICKNESS OF PARENT SHOOT AND BUD POSITION 

The influence of the thickness of the parent shoot on the percentage 

'blind' daughter shoots and the influence of the bud position on the 

parent shoot on 'blindness' was studied for container grown roses cv. 

'Sweet Promise. The lower buds were only taken into account if the 

higher bud produced a flowering shoot. If the higher bud produced a 

flowerless shoot, the buds situated lower on the parent shoot always 

produced 'blind' shoots too. The results are listed in Table 18. 

Table 18 shows that: 

- Shoots emerging from lateral buds on thick parent shoots (b) are 

less sensitive to 'blindness' than shoots emerging from thin 

parent shoots (c). 

- Counted downwards from the place of cut, the second bud (e) is 

much more sensitive to 'blindness1 than the first and upper one 

(d). The third bud (f) always formed 'blind' shoots in the 

experiments. 

- In column (a) are the averages given of four experiments performed 

during two years. The figures refers to the terminal bud of shoots 
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cut back at the first five leaflet-leaf. 

The difference in propensity to the formation of 'blind' shoots 

between thick and thin parent shoots was further studied in an 

experiment with roses of the cvs. 'Sweet Promise' and 'Merko'. Parent 

shoots were divided into two groups, one group with a diameter of 

more than 4mm and one group with a diameter less than 4 mm. Both 

groups were cut at the first five-leaflet leaf above the joint and 

the daughter shoots were followed during their development. The 
o 

temperature during bud break and shoot growth was kept at 20 C in 

airconditioned glasshouse compartments. The percentage of 'blind' 

shoots was calculated. The results are listed in Table 19. 

Table 19. Rose cvs. Sweet Promise and Merko, container grown in 
glasshouses. Percentage of 'blind1 daughter shoots from 
thick and thin parent shoots. 

'Blind' shoots (Z) 

Cultivar 

Diameter of the parent shoot 

thin (< 4mm) thick (> 4mm) 

Merko 

Sweet Promise 

48a 

43a 

19b 

28b 

Table 19 shows that the thickness of the parent shoot has a strong 

influence on the formation of 'blindness' in the daughter shoots. On 

thick parent shoots less 'blind' daughter shoots are formed than on 

thin ones. 
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7.4. DISCUSSION 

The results from the experiments with soil grown roses of the cvs. 

Sweet Promise and Varlon refer to selected and labeled shoots (see 

chapter 2 ) . Compared to the container grown roses, the percentage of 

'blind' shoots is low. These low figures can be explained by the 

larger diameter of the shoots of the soil grown roses. Thick, 

vigorous, shoots are less vulnerable to 'blindness' than thin, weak, 

ones (Table 18 and 19). As the labeled shoots formed a positive 

selection of all shoots in an experimental plot, this meant that the 

average diameter of all shoots was lower than that of the labeled 

ones and as a logical result the percentage of 'blind' shoots of all 

shoots in a plot was higher too. 

The positive linear relation between the percentage of 'blind' 

shoots and temperature during the period November until May (Figure 

68, line A and B) can be explained by the fact that higher 

temperatures result in thinner shoots (chapter 5), which are more 

vulnerable to blindness. If we consider the shoots grown in March and 

April apart from the others, a negative linear relation with 

temperature appears (Figure 68, line C ) . This indicates an 

interaction between the period in which a shoot grows and temperature 

in relation to blindness. Such a reaction was also reported by Moe 

(1971b). An increase in temperature influences 'blind' shoot 

formation in two different ways. (1) It has a direct, reducing 

effect, on blindness. (2) It has an indirect, stimulating effect, on 

'blindness' because it leads to thinner shoots which are more 

propensive to 'blindness' than thick ones. In a period with a low 

light intensity the first effect is overuled by the second, resulting 

in more 'blindness'. In a period with more light the second effect of 

temperature increase is not strong enough and less 'blind' shoots are 

formed. Calculations for the whole period November until May show an 

increase in 'blindness' at an increase in temperature (Figure 68A,B). 

An explanation of this difference in 'blind' formation in relation to 

the growth period, may be that a smaller quantity of assimilates is 
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available in winter than in spring. According to several authors 

(Hale 1960, May 1965, Wardland 1968, Halevy 1972) it is stated that a 

developing flower bud is until the stage of anthesis a relatively 

weak sink, and because the development rate is high, which means a 

high use of assimilates, the flower bud dies of starvation. 

At a given 24 hours temperature an increase in night temperature, 

which of course means a proportional decrease in day temperature, 

resulted in less 'blind' shoots (Figure 69). This effect has also 

been reported by Zieslin and Halevy (1975b). 

If the night temperature is higher than the day temperature this 

effect (fewer 'blind' shoots) holds true even if extreme temperature 

combinations are imposed. In an experiment in the phytotron a 16 
o 

hours dark period at 25 C was combined with a 8 hours light period at 
o 

9 C. In that situation nearly all shoots came into flower, although 

the shoots were very short and thin and completely white 

(chlorofyllless). The leaves soon became necrotic and dropped 

spontanously. As in this situation the new shoots could not or 

scarcely produce assimilates and hormones, these substances must have 

been mobilised and transported from the parent shoots which had 

developped under normal temperature conditions and had green leaves. 

It looks that in this situation the flower bud is a stronger sink 

than the leaves; at least it attracts enough assimilates to develop 

while the leaves drop. This result also strengthens the idea that 

lack of nutrients and/or hormones during a sensitive stage of floral 

development leads to 'blind' shoots. This explanation also makes it 

understandable that in case of a multiple break, the shoots lower on 

the parent shoot are more sensitive to 'blindness' than the upper 

one. The higher bud generally breaks earlier and its emerging shoot 

then becomes a strong sink that competes for nutrients and hormones 

with the lower shoots. If in spring enough assimilates are available 

to bring both shoots to flower, a difference in shoot length and 

fresh shoot weight are measured at harvest. The higher shoot is 

heavier and longer. In winter when there is a lack of assimilates 

only the highest and most competative shoot flowers. The other ones 

111 



grow 'blind' because they are 'deprived' by nutrients and may be 

hormones by the higher stronger shoot. A similar reaction can be seen 

in summer if more than two lateral buds break on the same branch. 

The reducing effect of a higher night than day temperature on 'blind' 

formation already becomes evident when the high night temperature, 

given at sunset lasts 2-3 hours (Table 15B,C). 

The most vulnerable period for a developing shoot to go 'blind' 

is from bud break until the flower bud is visible with the naked eye. 

In this period the reaction to temperature however is not constant. 

In the first part from cut until stem elongation a high night 

temperature improves blindness, while in the second part until 

harvest it reduces 'blindness' (Table 18). At the start of the 

elongation growth the flower bud has developed sepals and petals but 

not yet the stamen, pistils and carpels. This is stage 4 in the 

diagram of Moe and Kristof f erson (1969) and stage 7 in that of 

Horridge and Cockshull (1974). This stage is very vulnerable to 

flower bud abortion (Hubbell 1934a, Van Hove 1980). If the stamen are 

developped they produce GA, which enhances the sink-activity of the 

developing flower bud and make it less vulnerable to abortion. 

Although it was not possible to determine the exact stage of each 

bud, without destroying the flower, it was intended to transfer all 

the plants in the container experiments in this vulnerable stage. 

This may have resulted in less pronounced results! 

In the experiments in which also the second and the third lateral bud 

were considered, those buds were of course in development behind the 

first and higher bud. Because the plants were transferred when the 

uppermost bud was in the desired stage this may have influenced the 

results. The effect of a high night temperature combined with a low 

day temperature on 'blindness' may be that the relative sink strength 

of the flower bud is higher at night than in daytime when the 

developing leaves form a stronger sink. Because the low day 

temperature does not affect photosynthesis very much but reduces the 

use of the assimilates at daytime, at night more assimilates are 

available for the flower bud. It seem that the temperature 
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distribution between day and night is a tool to direct the assimilate 

stream. This tool can be used by the grower and probably not only for 

roses. In this respect results of Hori and Shishido (1978) who worked 

with tomato plants are interesting. They found that night temperature 

affects the distribution pattern of C-asslmilates. The higher the 

night temperature the lower the percentage distribution to the lower 

parts including the roots, and the higher the percentage to the upper 

parts including the inflorescence. 

The above mentioned hypothesis can be considered a so called 

'nutrient diversion hypothesis'. The core of this hypothesis is that 

the genetic information, in this case for flower initiation and 

development, can only be expressed if enough nutrients are available 

at the site were they are needed. If nutrient levels are too low 

because of action of competing sinks or inadequate supply by 

photosynthetic tissue, the information is not expressed and the 

flower bud atrophies (see also Appendix 1). 
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Mean temperature 

Fig.68 'Sweet Promise' and 'Varlon', grown in glasshouse soil. 
Percentage of 'blind' shoots in relation to the mean temperature and 
the harvest period. Line A: 'Sweet Promise1, November until May: 
Y=-23.19+1.83X (r=.83). Line B: 'Varlon', November until May: 
Y=-19.52+1.30X (r=.80). Line C: 'Sweet Promise*, March until May: 
Y=15.31-0.70X (r=-.56). 
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Fig.69 'Sweet Promise', grown in glasshouse soil. Percentage of 
'blind' shoots in relation to the night temperature at a daily mean 
of 18°C. Y=21.49-1.02X (r=-.98) 
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8. FLOWER AND FRESH WEIGHT PRODUCTION 

8.1. INTRODUCTION 

Previous chapters dealt with consecutively, the influence of 

temperature on bud break, development time, fresh shoot weight, 

measurements of the shoot and formation of 'blind' shoots. In this 

chapter the effect of temperature on the number of roses harvested 

and total fresh weight production per shrub is the subject. The 

patterns of bud break and subsequent harvest are presented as they 

appeared in the experiments with the rose cultivars Sweet Promise and 

Varlon, grown in glasshouse soil. The effect of soil heating and of a 

12% reduction in light on glasshouse grown 'Sweet Promise' is 

discussed too. 

8.2. MATERIALS AND METHODS 

This chapter deals with rose production in the experimental plots of 

the experiments GS1 to GS6 (See chapter 2 ) . The production is 

calculated as number of roses harvested per shrub. The plant density 

is 6.4 shrubs per square meter gross glasshouse soil surface. 

The production within the plots was not influenced by any other 

factor than the glasshouse climate and the normal harvest operations. 

Extra samples of rose shoots used for studies on bud break or the 

formation of 'blind' shoots were not taken out of these plots. At the 

start of the experiments 72 shoots were selected for each treatment 

and each cultivar. These labeled shoots within the plots were cut in 

the same way as the other shoots in a plot and no destructive 

measurements were performed on the plants. These selected shoots were 

cut back to the first five leaflet-leaf. The course of bud break, 

growth and harvest of the daughter shoots was monitored for each 

labeled shoot. 

The influence of soil heating on 'Sweet Promise' was studied in 
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plots with electric soil heating at 3 air temperatures (see 2.5.). 

The influence of a 12 percent reduction in light was studied in a 

glasshouse compartment with special glazing (see 2.6.)• 

Plant materials, methods, conditions, definitions, abbreviations 

and codes of the experiments have been described in chapter 2. 

8.3. RESULTS 

8.3.1. COURSE OF BUD BREAK AMD PRODUCTION 

In experiment GS2 nine temperature combinations were applied. The 

course of bud break of the daughter shoots from the labeled shoots is 

shown in Figure 70 for 'Sweet Promise' and in Figure 71 for 'Varlon'. 

Each figure is subdivided in histograms, which refer to the 

treatments. The imposed night/day temperatures are written above the 

histograms. The experiment started in the second week of October. 

Until this week all temperature regimes had been the same for all 

treatments. On the horizontal axis the figures show the number of the 

week in which a lateral bud had broken and on the vertical axis the 

number of broken buds. The histogram shows that a lower temperature 

results in delayed bud break. At the start of the experiment (arrow) 

the roses in a plot were 'on flush'. The course of bud break 

influences the course of harvest as is shown in the Figures 72 and 73 

for the cultivars Sweet Promise and Varlon respectively. 

In these two figures the weekly harvest from the whole plot is given, 

including labeled as well as non labeled shoots. The figures show 

that a Lower temperature results in a delayed and lower production. 

The 'on flush' structure of the production gradually disappears. 

8.3.2. PRODUCTION PER SHRUB 

The total production per shrub during the experiment GS1 and GS2 is 

plotted against the harvest date in Figures 74 for both cultivars. A 
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positive linear relationship with the mean temperature appears. Total 

fresh weight production per shrub in relation to temperature is shown 

in Figure 75. The figure shows a higher production for 'Sweet 

Promise1 than for 'Varlon'. Both cultivars show an increase in fresh 

weight production if the temperature increases. In experiment GS3 

different night/day temperature combinations were imposed at a given 
o 

daily mean temperature of 18 C. At the start of the experiment all 

treatments were 'on flush'. The tops of the production flushes (weeks 

in which the flushes culminate) during the experiment are shown in 

table 20. 

Table 20. Rose cvs. Sweet Promise and Varlon, grown in glasshouse 
soil. Week numbers in which the production 'flushes' 
culminated, for 5 night/day temperature combinations with 
the same daily mean of 18°C. 
The experiment started in week 40. 

Top of the production flushes 

N/D 

(°C) 

14/22 

15/21 

16/20 

17/19 

18/18 

1 

33 

33 

33 

33 

33 

2 

40 

40 

40 

40 

40 

'Sweet 

Flush 

3 

48 

49 

49 

49 

48. 

Promise' 

number: 

4 

5 

5.5 

5.5 

5.5 

5 5 

5 

12 

12 

12 

12 

12.5 

6 

18 

18 

18 

18 

18.5 

1 

34 

34 

34 

34 

34 

'Varlon' 

Flush number: 

2 

42 

42 

42 

42 

42 

3 4 

52 12 

52 12 

52 12 

52 12 

52 12 

The table makes it clear that the production pattern of the different 

treatments is synchronous during the whole experiment. The average 

production per shrub during the period November until May, is shown 

in Table 21 for both cultivars. 
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Table 21. Rose ovs. Sweet Promise and Varlon, grown in glasshouse 
soil. The production of roses per shrub in the period 
November until May, for five night/day temperature 
treatments at a given mean temperature of 18°C. 
Plant density 6.4 shrubs per gross m2. 

Flower production per shrub 

Treatment 

Night/Day (°C) omi s e ' 

11.4 

12.0 

12.5 

12.4 

12.3 

* 

*Va r l o n ' 

4 .6 

5 . 3 

5 . 9 

5 . 3 

5 .3 

* 

1. 18/18 

2. 17/19 

3. 16/20 (mean of 2) 

4. 15/21 (mean of 3) 

5. 14/22 (mean of 2) 

Table 21 supports the idea that the production responds to night 

temperature with an optimum curve. The differences between the 

treatments are not significant, however. 

In the forth (GS4), fifth (GS5) and sixth (GS6) experiment in the 

glasshouse soil higher night than day temperatures were involved at a 
o 

given daily mean temperature of 19 C for all treatments. The 

production per shrub in these experiments is listed in Table 22. 
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Table 22. Rose aultivars Sweet Promise and Varlon, grown in 
glasshouse soil. Production of roses during three 
experiments, GS4, GS5 and GS6. 
Legend: see Table 4. 

Flower production per shrub 

Treatment 

1. 

2. 

3. 

4. 

Sweet 

9.2 

10.2 

11.4 

13.1 

P 

A 

GS4 

Varlon 

3.9 

4.9 

5.1 

5.7 

Sweet 

9.0 

9.3 

9.7 

12.4 

B 

GS5 

P. Varlon 

5.2 

4.8 

5.4 

5.6 

Sweet 

8.4 

8.5 

9.2 

11.0 

C 

GS6 

P. Varlon 

4.4 

3.7 

5.0 

5.4 

The results from the experiments show for both cultivars an increase 

in production, if at a given daily mean, night temperature increases 

and day temperature decreases. The course of the production of 'Sweet 

Promise1 and 'Varlon' in experiment GS4 is shown in Figure 76 for two 

reversed night/day temperature treatments: 16/22 C and 22/16 C. 

Table 22 and Figure 76 make it clear that at a given daily mean 

temperature an increase in night temperature results in a higher 

production. 

8.3.3. PRODUCTION AMD SOIL HEATING 

The results from the experiment on soil heating with 'Sweet Promise' 

are listed in Table 23. The heating was only in action in the 
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o o 
treatments with an imposed night temperature of 12 C and 15 C. In the 

o 
other treatment with an imposed night temperature of 18 C, soil 

o 
temperature at a depth of 10 cm hardly ever dropped below 20 C, which 

was the setpoint for soil heating. The table shows no significant 

differences between plots with, and plots without soil heating. 

Table 23. Rose cv. Sweet Promise, grown in glasshouse soil. 
Influence of soil heating '+' (setpoint 20°C) or non 
heated soil '-', in combination with three air temperatures: 
12, IS and 18 (°C) at night at one 20-22°C day temperature, 
on flower production per plant, on average fresh shoot 
weight and on average shoot length of cut roses. Period 
November until May. 

Night 

12 

15 

18 

mean 

<uO 
Flowers 

+ 

9.6 

10.0 

14.0 

11.2 

a 

per plant 

— 

9.2 

10.0 

14.4 

11.2 

a 

Shoot 

+ 

22.0 

22.6 

20.1 

21.6 

b 

weight 

-

22.7 

21.2 

19.8 

21.2 

b 

Shoot 

+ 

66.0 

67.5 

64.7 

66.1 

c 

length 

-

66.8 

67.7 

64.8 

66.4 

c 

8.3-4. INFLUENCE OF PARENT SHOOT ON FRESH WEIGHT OF DAUGHTER SHOOTS 

The labeled shoots selected before the start of the experiments, 

formed a positive mass selection of all shoots in a plot. During the 

October flush the weight of the labeled shoots was on average 23 

percent higher than that of the other shoots in an experimental plot. 

In the 6 years with experiments with soil grown roses in glasshouses 
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(GS1 to GS6) was determined whether this difference in favour of the 

labeled shoots was maintained during winter and spring. The results 

are given in Figure 77. In this figure, averages of six years of the 

ratio between the 'heavy' (labeled) and the 'light' (unlabeled) 

shoots are shown on the vertical axis, the harvest date is shown on 

the horizontal axis. The figure shows, that the large difference in 

weight in favour of the labeled shoots sharply decreases but does not 

fully disappear during winter, and increases again in spring. 

8.3.5. INFLUENCE OF A 12Z LIGHT REDUCTION ON PRODUCTION-AND QUALITY 

During the experimental years 1979-'80 and 1980-'81 the influence of 

a 12 percent reduction in light was studied on the production and 

quality of the cv. Sweet Promise. For materials and methods see 

chapter 2.6. The results of the experiments are presented in Table 24 

and in Figure 78. 

Table 24. Rose cv. Sweet Promise, soil grown in the glasshouse. 
The influence of a 12% reduction in light (coated glass) 
compared with the normal light level (clear glass) on the 
flower -production per shrub, the average fresh shoot weight 
(g), the average shoot length (cm) and the average fresh 
weight per am, of the cut roses, for two successive winter 
periods: October until May. 

Period 1 
0 . o 

15 C Night/18 C Day 

clear coated 

Period 2 

15°C Night/ 21°C Day 

clear coated 

Flowers per shrub 

Fresh shoot weight (g) 

Shoot length (cm) 

Shoot weight (g) per cm 

8 .2 

5 .4 

1 

.42 

7 .6 

23.4 

62 

. 38 

13.6 

18.2 

60 

.30 

12.6 

15.9 

58 

.27 
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Table 24 shows a tendency for a decrease in production and in 

quality, expressed as fresh weight per rose and per cm shoot length, 

if the light level is reduced by 12%. Figure 78 gives a clear view of 

the decrease in fresh weight during the season. 

8.4. DISCUSSION 

The course of bud break and harvest under different temperature 

conditions supports the effects discussed in the previous chapters. 

Lower mean temperatures result in a delayed bud break (Figures 70, 

71) and production (Figures 72, 73). At a given mean temperature the 

production pattern is not influenced by the temperature distribution 

between day and night (Figure 76, Table 20). If night temperature is 

lower than day temperature the production shows a linear positive 

correlation to the mean temperature (Figure 74). The reaction to 

temperature is caused by: 

(1). Quicker bud break (chapter 3 ) . 

(2). Shorter development time (chapter 4 ) . 

(3). Less 'blind' shoots in spring (chapter 7 ) . 

At a given mean, a higher night than day temperature of 12 hours on a 

diurnal base clearly results in a higher production (Table 22A). A 
o 

diurnal period of at least 4 hours with a temperature of 24 C 

starting at sunset already shows a positive effect on production. The 

longer the period of 24 C per night, the higher the production (Table 

22B,C). This effect must be ascribed to a reduction in the formation 

of 'blind' shoots, although incidently a stimulation of bud break by 

a higher night than day temperature was observed. The effect on 

'Varlon' is less pronounced then on 'Sweet Promise'. This last 

cultivar is more sensitive to blindness than the first one (see 

chapter 7 ) . 
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Total fresh weight production is higher for 'Sweet Promise' than 

for 'Varlon' and increases with temperature (Figure 75). A maximum 
o 

for temperature was not reached, so this must be higher than 20.5 C. 

The lower production for 'Varlon' was due to the lower number of 

structural branches compared to 'Sweet Promise' and not to a lower 

fresh weight production per shoot per day (see chapter 5) or to a 

higher percentage of 'blind' shoots (see chapter 7 ) . Improving the 

architecture of the shrub by stimulation of the formation of 'bottom 

breaks' may be a possibility to increase the production of 'Varlon' 

and other cultivars with few structural branches. Producing plants by 

tissue culture may be a method for this as plants propagated in this 

way form more structural branches (Van den Berg 1986). 

No influence of soil heating on production was found. This 

result is contrary to expectation. For many species a clear reaction 

of shoot growth to root temperature has been reported (Reviewed by 

Cooper 1973). An explanation is that due to the low lying 

poly-ethylene heating pipes, soil temperature at the depth of the 

temperature sensors (10 cm below soil surface) in the plots with soil 

heating was only a few degrees above the non-heated plots. These 

differences appeared to be too small to have a distinct influence on 

production. Momentary temperatures in the non heated plots were never 
o 

lower than 15 C. In commercial glasshouses, mostly two thirds or 

more of the heating pipes are installed at or just above soil level. 

In this situation soil heating is not expected to have a positive 

influence on production. If roses are grown in less voluminous 

substrates like rockwool slabs laid on the glasshouse soil or on 

movable benches, root temperature follows air temperature closer than 

in soil grown plants. In this last situation a positive effect on the 

production by substrate heating can be expected. 

At a constant daily mean temperature, an increase in night 

temperature combined with a decrease in day temperature brought about 

in such a way that the realised night temperature stayed lower than 

the realised day temperature, had no reliable influence on production 

(Table 21). This is contrary expectation. In such a situation a 
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reduction in 'blind' shoot formation should result in an increase in 

production (See chapter 7 ) . This was not found in the experiments, 

however. The reason might be, that to realise the low day 

temperatures, the ventilators were opened wider and more often than 

in the treatments with a higher setpoint. This resulted in a lower 

CO level in the glasshouse, which has a negative influence on 

production (Hand and Cockshull 1975, Mortensen and Moe 1983). In a 

practical situation this can be avoided by maintaining a larger 

distance between the setpoints for heating and ventilation than in 
o 

the present experiment, in which it was only 1 C. 

The lead in fresh weight gained by daughter shoots of heavy parent 

shoots over daughter shoots of lighter parent shoots, strongly 

decreases during winter, but does not disappears completely. In 

spring the lead increases again (Figure 77). The positive influence 

of a heavy, vigorous parent shoot only comes into its full expression 

if light is not at a minimum. 

A better access to the supply of nutrients via the root system, or to 

reserve nutrients in the lower branches which probably lies at the 

base of the vigorous growth of heavy shoots, is only fully effective 

if assimilates are not limited. 

The results from the experiments with a 12% reduction in light show a 

reduction in production and fresh weight. Although the experiments 

were done without simultanous replications, which make it impossible 

to speak in terms of statistical significance, the trend is clear and 

seen in the light of the previous chapters, is as could be expected. 

Light loss results in losses in production and quality. For this 

reason the maximum possible light level inside the glasshouse must 

have full priority in glasshouse construction. Light is the basis of 

production but also the production factor most expensive to supply 

artificially. 
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Yield In number/shrub 
16-

*S.P% 

Ion' 

21 *C 
Mean temperature 

Fig.74 'Sweet Promise' and 
'Varlon', grown in glass­
house soil. Relation 
between flower production 
per shrub and mean 
temperature in the period 
November until May. 
*SP' :Y=-24.15+1.89X (r=.97) 

'V':Y=-12.88+1.11X (r=.96) 

Fig.75 'Sweet Promise' 
and 'Varlon', grown in 
glasshouse soil. Relation 
between fresh weight 
production per shrub and 
mean temperature. Period 
November until May. 
'SP': Y=-14.42+14.03X 

(r=.97) 
*V: Y=-51.07+13.37X 

(r=.99) 

Roses per plot 

Fresh 
270 

250 

230 

210 

190 

170 

weight per shrub (g) 

* Sweet Promise!. 

SP>16/22 

1G 17 18 19 20 

\N/D C 

SP.122/18 

21 *C 

^22/18 

1B/22 

10 15 20 
Week number. 

Fig.76 'Sweet Promise' 
and' Varlon', grown in 
glasshouse soil. 
Course of the harvest 
for two imposed 
opposite night/day 
temperature 
treatments at one. 
daily mean temperature 
of 19°C. 
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Fig.77 'Sweet Promise1 and 'Varlon', grown in glasshouse soil. 
Course of the fresh weight ratio between daughter shoots of 'heavy' 
and of 'light' parent shoots during winter. Averages from 6 years. 

Shoot weight (g) 
40.. 

30.. 

2Q. 

1Q. 
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79-80* 

• - * . _ _ • * - - -

0c No De Ja Fe Ha Ap 

Harvest Date. 

Fig.78 'Sweet Promise', grown in glasshouse soil. Average fresh 
weight per cut rose for roses grown under natural (solid line) and 
under a 12% reduced light level (broken line), for two winter 
seasons. 
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9. FINAL DISCUSSION 

In this concluding chapter a condensed review of the work reported in 

this thesis is offered. The results and conclusions are discussed and 

some suggestions for commercial rose growing are made. 

This thesis deals with the influence of temperature under natural 

light conditions on growth and production of grafted soil-grown 

glasshouse roses of the cultivars Sweet Promise and Varlon. Insight 

into shoot growth was widened by experiments with container grown 

bushes of the cultivar Sweet Promise in glasshouses and in growth 

rooms. 

For common glasshouse conditions with a night temperature equal to or 

lower than the day temperature, 'models' were constructed for the 

time a terminated lateral bud needs to break (Fig. 1-4), the 

development time of the shoot from bud break until harvest (Fig. 10, 

14), shoot weight (Fig. 18, 19), flower bud weight (Fig. 26, 27), 

shoot length (Fig. 39, 40), length (Fig. 56, 57) and width (Fig. 58, 

59) and volume (Fig. 60, 61) of the flower bud, diameter of the shoot 

(Fig. 62, 63) and diameter of the neck (Fig. 64, 65). The 'models' 

demonstrate how these entities behave for shoots of lateral buds 

broken during the period October until April in relation to the mean 
o o 

air temperature in the range 16 C-22 C. The 'models' can be used for 

production and quality planning. Even more interesting than the 

absolute levels of the entities which may vary from nursery to 

nursery, are the relative differences between the levels in the 

'models', or the percentueel effect of changing the temperature by 

one or more degrees centigrade (e.g. Fig. 15,20). These relative 

effects can considered being more stable than the absolute effects 

and can be used for all nurseries. The 'models' are constructed with 

the date of bud break on the horizontal axis. Some calculating using 

the development time (Fig. 10, 14) can transform the 'models' to show 

the harvest date on this axis, which is not shown separately. The 
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'models' open the possibility of predicting what can be expected if 

temperature is manipulated in a certain way. The 'models' can be used 

in combination with the price expectation of roses and e.g. the 

energy price so as to develop an 'optimization program' for control 

of the glasshouse temperature in a more sophisticated way than at 

present. Such an optimization strategy has been developed by Challa 

et al. for cucumber (1980). The 'models' can be used as a source for 

a computer program or for making calculations by hand, and give the 

user insight into the possiblities that manupulation of the air 

temperature offers for control of production and quality. The method 

as described in these thesis for making a 'model' can probably also 

be used for other crops. 

The reaction of the shoot properties to the distribution of 

temperature between day and night determines the limits for 

temperature control without losing quality. If at dusk a period with 

a temperature higher than during daytime is given for no longer than 

6 hours, the 'models' are hardly affected. A temperature difference 
o 

between night and day of 5 C or more in the advantage to the night as 

used in the experiments with soil grown roses is extreme, however. 

Smaller differences will undoubtedly be usable without any problem. 

Differences in reaction strength between cultivars is possible, of 

course. In this context it is also important to know the price 

elasticity of a cultivar in relation to fresh shoot weight and shoot 

length. This knowledge can be used to attain maximum profit of a 

thermal screen. Less energy is needed to maintain a high temperature 

at night when the screen is closed than in daytime when it is open. 

At a given daily mean temperature an increase in night temperature 

combined with a proportional decrease in day temperature gives an 

extra energy saving, which can add up to more than 10 percent on an 

annual basis. This way of energy conservation requires no extra 

investments if a thermal screen has already been installed, and 

enhances the profit of the screen. 

Although a decrease in shoot length as caused by a higher night than 
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day temperature is unwanted for roses such an effect can be 

considered positive for those cutflowers and potplants which need 

length control by means of growth retardents. 

Within the limits of the experiments only a small or no interaction 

was found between temperature and stage of the shoot with development 

time, fresh shoot weight and shoot length. The plant seems to 

integrate temperature more or less. This result implies that it must 

be possible to control air temperature during shoot growth on a 

basis of a mean daily (average day and night) temperature or 

temperature sum, instead of trying to secure a previously fixed day 

and night temperature. The practical consequence of this is that 

there is no need for heating systems designed for the realisation of 

any inside temperature at any moment, whatever the outside conditions 

are. This also has consequences for the use of heating systems with a 

slow response to changes in setpoint, like heated concrete floors. 

Overshoot and undershoot of the set temperature does more harm to the 

controlling technician than to the plant. Days with a lower 

temperature than the wanted mean can be compensated by days with a 

higher temperature without disturbing crop planning and quality. This 

does not mean of course, that extreme temperatures cannot disturb 

growth. Setting the limits and quantification of the effects of the 

'border region' on growth must have attention in order to develop 

reliable optimization programs for climate control. Such programs for 

heating glasshouses, based on temperature sums instead of fixed day 

and night temperatures need more attention in research, and not only 

for floriculture. They will be importent for the way in which among 

others low temperature heating systems can be made usable for heating 

glasshouses. Together with what has been said about temperature 

distribution between day and night, a change in heating strategy will 

be the necessary consequence. It will be evident that in commercial 

glasshouses the results of such a heating strategy will only come to 

its full deployment if temperature distribution inside the glasshouse 

is homogenous. 

The decrease in the formation of blind shoots is a welcome side 
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effect of a high night temperature regime. It directly results in an 

increase of production in the winter period when rose prices are 

highest. As thin shoots are especially vulnerable to blindness, the 

increase in production is mainly a result of these thin shoots. These 

shoots will probably not produce roses of the highest grade but this 

is not such a disadvantage, however. A lower graded rose is better 

than no rose at all. 

A practical and positive consequence of a high night temperature 

underneath a closed thermal screen is that, because of the lower pipe 

temperatures, the relative air humidity does not drop as much as 

without a screen. This has a positive effect on bud break. 

The method of linear least square analysis was used to analyse the 

'models'. The equations cannot be used to predict what will happen to 

the dependent variable if only one of the carrier variables is 

changed. Because of correlation a change in one of them also changes 

the other ones. 

The development time of a shoot can be explained almost completely by 

the two climate variables, air temperature and irradiance. These 

variables account for 98 percent of the variation in the 'models'. 

To account for 97 percent in the 'models' on fresh shoot weight the 

variable relative humidity is also needed in the regression equation. 

Flower bud weight can for 91 percent be accounted for by adding 'day 

length' as a fourth variable. Although irradiance and daylength were 

not independent we can assume that, according to work of a.o. Cathey 

et al. (1981), growth response like development time and total weight 

are more related to total irradiance as to daylength. The 

distribution of fresh weight over flower bud and stem was influenced 

by daylength, however. 

Concerning shoot length, five variables are needed: temperature, 

temperature squared, irradiance, relative humidity and the fresh 

weight of the parent shoot. These five variables together account for 

86 percent of the variation in the 'models'. This percentage is lower 

than the others. This means that the variables work in a mor<> 
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intricate way than supposed or that other unknown factors are 

involved. In the equations, the variable 'Weight of the Parent Shoot' 

(WPS) indicates that internal plant factors influence shoot length. 

The variable WPS is also significant in the regression equation on 

flower bud length and on the diameter of the shoot. The variable WPS 

itself is mainly determined by the climate conditions during its own 

development. It appears that shoot growth can be explained with only 

a handfull of variables. Of these variables, temperature is 

relatively easy and 'cheap' to control. Because of the high 

electricity costs, increasing the irradiance inside the glasshouse by 

supplementary lighting is in most situations too expensive. 

Improvement of the irradiation level must for this reason be a 

primary factor in the construction of the glasshouse and in the 

covering material. The negative effect on production and quality of a 

decrease in light has been clearly demonstrated in Table 24 and in 

Figure 78. 

The appearence of hysteresis in the average daily fresh weight 

production per shoot (Figure 36) and in the average daily shoot 

lengthening (Figure 67) may partly be due to differences in air 

humidity, but also supports the idea of a role of internal factors. 

Shoots that develop in autumn grow on plants with a well developed 

active root system. The plants gradually pass from conditions 

promotive to growth to conditions which are much less favourable. 

These plants can probably easily meet the need for nutrients from 

reserves built up in summer. These reserves will gradually be 

exhausted, so that few or no reserves are available in the second 

part of winter. Shoots which then develop grow on weakened plants 

although in improving growing conditions. This means that the shoots 

demand gradually more supplies from the root system. To meet this 

increasing demand for minerals, water and hormones, the root system 

must expand its capacity. For this expansion assimilates synthesised 

by the shoots are needed. Compared to autumn the situation is now 

reversed. 
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In experiments performed in the glasshouses under natural light 

conditions the mean irradiance and the mean daylength during shoot 

growth are not independent from the air temperature. A change in the 

air temperature automatically resulted in a change in the other 

variables. Temperature determines the development time of a shoot. If 

temperature decreases, the development time increases and the shoots 

stay longer on the plant. As a result, the shoots receive more light, 

grow taller until a maximum is reached and also become heavier. The 

Figures 79 and 80 show development time, fresh shoot weight and shoot 

length for the lateral buds broken on the first day of the months 

October until April. Each line in the figure represents the first 

day of the relevant month. The seven data points per line from left 
o o 

to right represent seven mean temperatures 22 C to 16 C. The line for 

the first of March makes this clear. The figures above the data 

points mention the development time of the shoot. 

During shortening days, an increase in development time results 

in a raise in the irradiation sum for the shoot, and a decrease in 

the average daily irradiance, which results in an increase in light 

efficiency (Fig. 34,35) for fresh weight production. The relation 

between development time and fresh shoot weight is a nearly straight 

one (Figure 81). On the horizontal axis this figure shows the 

development time in days and on the vertical axis fresh shoot weight 

in grams. The figures near the data points mention the mean 

temperature. The lines belonging to the first of the months April and 

December make this clear. 

If growth takes place during lengthening days, average and total 

irradiation both increase, but the light efficiency decreases. The 

effect of the development time on shoot weight is lower under 

decreasing light intensities in autumn, than under increasing light 

intensities in spring, when the irradiation sum increases much more. 

The line from December and partly the line from February which 

represent 'Sweet Promise', lies lower than the lines for 'Varlon'. 

The first cultivar is weakened more by a higher temperature than the 

second one. A weakened shoot needs more light to produce one gram of 
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fresh weight than a stronger shoot. For efficient light use, a weak 

crop must be prevented. The practical consequence is that 'Sweet 

Promise' cannot be heated as high as 'Varlon' in wintertime, without 

becoming less efficient with light. 

The phenomenon that flower (Figure 74) and fresh weight (Figure 75) 

production per shrub is lower for 'Varlon' than for 'Sweet Promise1 

is caused in the first place by the quicker bud break of 'Sweet 

Promise' (Chapter 1). As a consequence a shrub of 'Varlon' has on 

average less stems and a lower Leaf Area Index (LAI) with productive 

leaves than a shrub of 'Sweet Promise'. For this reason a canopy of 

'Sweet Promise' catches more of the available light than a canopy of 

'Varlon' with the same plant density. Improving the LAI by increasing 

the number of stems per shrub is important to raise winter production 

of 'Varlon' and of course also of cultivars that behave in the same 

way. All light that does not fall on productive green leaves must be 

considered as being lost which means that the maximum possible 

production at the actual light level is not reached. In research, 

methods and techniques to obtain a year round high LAI with 

productive leaves must have a high priority. Improving the 

architecture of the shrub by in-vitro propagation of plants might be 

a possibility (Van den Berg 1986). 

In the experiments all shoots, with the exception of the 'blind' 

ones, were upper cut, i.e. cut above the node. In commercial rose 

growing, some rose flushes are cut below the node (under cut) in the 

period October/November until February/March (Rozenbrochure 1984). 

From the point of view of light efficiency, to under cut is a bad 

method, especially in winter time. It reduces the LAI and all the 

young most productive leaves are removed. According to research from 

Aikin (1974a,b) these young rose leaves are fotosyntheticaly most 

active, (see also Ticha et al. 1984). The older and lower leaves were 

formed under different light conditions than to which they are 

exposed after under cut. This may influence their photosynthetic 

efficiency with a lower productivity as a consequence. Withers et al. 
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(1983) have demonstrated this for tomato leaves. The light level 

under which leaves develop influence, according to a.o. Lichtenthaler 

(1984), the photosynthetic apparatus and in this way the 

photosynthetic capacity of a leaf. 

The reason that growers under cut is to let buds on lower and thicker 

stems break, which results in heavier daughter shoots. Such shoots 

are less susceptible to flower bud atrophy (Table 18b,c, 19). At 

the start of the experiments the roses in the glasshouse compartments 

were 'on flush', which means that most of the shoots were in the same 

development stage. For harvest planning this has advantages. It makes 

it easier to manipulate air temperature in dependence of the 

development stage of the shoot. 

A negative aspect of growing 'on flush' is that nearly all shoots are 

harvested within a very short time. This means the removal of the 

most photosynthetic productive leaves and hormone producing shoot 

meristems. Until new shoots develop, the light is less efficient 

used. It also causes a strong disturbance in the shoot/root ratio. 

Experiences in wintertime showed that especially for roses grown in 

rockwool this has a negative effect on growth and production (Van den 

Berg 1986). If it is possible to prevent this negative effect, year 

round growing 'on flush' can improve planning, labour productivity 

and mechanisation. Stimulation of root development by the application 

of growth substances might be a possiblity for roses grown in less 

voluminous artificially substrates. 

If no special measures are taken, the 'on flush' situation gradually 

disappears. This happens most rapidly at lower temperatures (Fig. 72 

and 73) and is mainly caused by the big variation in bud break at low 

temperatures (Fig. 70 and 71). 

During the experiments attention was also paid to the quality of the 

roses. Quality is a resultant of good and bad points of the rose such 

as grade, shoot measurements, shoot and flower bud weight, firmness, 

colour, the expected vase life and the presence of damage from any 

source. The 'models' give insight into the effect of temperature on a 
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number of these factors. The 'models' give no information about the 

colour of the flower bud and the leaves. In the experiments a higher 

temperature generally resulted in a lighter colour of leaves and 

flower bud. At a given daily mean temperature an increase in night 

temperature led to lighter colours. The bigger the difference between 

night and day temperature and the longer the period with a higher 

night than day temperature the lighter the colours. Experiments in 
o 

growth rooms with a night temperature of 25 C during 16 hours, 
o 

combined with a day temperature of 9 C during 8 hours led to 

yellowish-white, thin, short shoots with necrotic leaves and light 

reddish flowers. In this experiment only some shoots grew blind, 

however. This result triggered the experiments with container grown 

roses on the formation of blind shoots as described in Chapter 7. The 

strength of change in colour differed between the cultivars. The 

colour of 'Sweet Promise' decreased more than that of 'Varlon'. 

During the experiments vase life of the flowers was tested from time 

to time. Higher temperature did not influence vase life directly, but 

reduced firmness and led to slacker roses. High temperatures can 

reduce in this way the sales value of the roses and the vase life. 

The translation of the results from container grown experiments to 

soil grown roses often appeared to be good feasible. However, big 

differences between day and night temperatures can lead to mistakes 

because of big differences in root and shoot temperature. These can 

have a negative influence on rose growth. In less voluminous 

substrrtes root temperature follows air temperature closely, but in 

soil the average temperature of the whole root system scarcely 

changes between day and night. For this reason for roses grown in 

less voluminous substrates, 'root' warming must have attention. 
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Fig.81 'Sweet Promise' (solid line) and 'Varlon' (broken line), grown 
in glasshouse soil. Relation between fresh shoot weight at harvest 
and the development time, for 4 dates of bud break. The 7 points per 
line refer from left to right to 7 mean temperatures: 22°C-16°C 
(example: see 1 April and 1 December). 

139 



10. SUMMARY 

o 
The influence of temperature in the range 15-22 C on growth, 

production, quality and flower bud atrophy ('blindness') of the rose 

cultivars Sweet Promise and Varlon was studied. The roses were grown 

in Dutch glasshouse soil under natural light conditions and studied 

from October until May during 7 successive years. The influence of 

the distribution of the air temperature between day and night was 

studied. Besides the usual nlght-lower-than- day-temperature regime, 

also the reverse situation was studied. 'Models' were constructed 

for: bud break, development time from bud break until harvest, shoot 

and flower bud weight, shoot length, the length, width, volume and 

freshweight of the flower bud during harvest and the diameter of 

shoot and neck, in relation to date of bud break and mean daily 

temperature during shoot growth. 

Complementary studies including roses of the cv. Sweet Promise 

grown in transferable containers were performed in glasshouses and in 

growth rooms (Phytotron). In these experiments the interaction of 

temperature and shoot stage with the development time of a shoot, 

with shoot weight and with shoot length was studied. Shoot weight 

showed a clear interaction with temperature if night temperature was 

higher than day temperature. Various shoot stages showed a different 

sensitivity to temperature with respect to the formation of 

flowerless ('blind') shoots. A low night temperature during the 

period cut until shoot elongation (=4cm) decreased blindness, but 

increased blindness when given in the next period until the flower 

bud is clearly visible. Higher night temperatures than those commonly 

used increased production by decreasing the percentage of blind 

shoots. 

At a given daily mean temperature an increase in night 

temperature showed no significant influence on bud break and 

development time of a shoot but fresh shoot weight and shoot length 

are significantly reduced, if night temperature increases above day 

temperature. The mean temperature and the mean irradiance during 

140 



shoot growth could account for 98 % of the variation in the relevant 

'models' when analysed by linear regression analysis. Adding the 

variable 'relative humidity' to the regression equation explained 97 

% of the variation in shoot weight. To explain 87 % of shoot length 

the variable 'Weight of the Parent shoot' and the square of the 

temperature had also to be introduced. 

Heavy parent shoots produced heavier daughter shoots than light 

parent shoots. The difference in fresh weight for daughters of heavy 

parent shoots compared to those of light shoots decreased in autumn 

and increased again in spring. If light intensity decreased in 

autumn, less light was used to produce one gram fresh shoot weight, 

while under increasing light intensities more light was used. 

Fresh weight production per shoot per day increased with 

temperature for the cultivar Varlon and as a consequence, the amount 

of light needed per gram fresh weight decreased. In the period 

December until the middle of March 'Sweet Promise' showed another, 

reversed, situation: fresh weight production decreased with 

temperature. This was caused by the fact that 'Sweet Promise' was 

weakened more by a raise in temperature than 'Varlon'. Production in 

number of flowers and in grams fresh weight per shrub showed a 

positive linear correlation with temperature for both cultivars. 

The course of bud break, and harvest was studied for 9 night/day 

temperature combination. A lower temperature resulted in delayed bud 

break and production. 

The research made it clear that it is possible and profitable to 

control temperature on the basis of the daily mean temperature or the 

temperature sum during bud break and shoot growth, instead of in the 

orthodox way with a fixed night-lower-than-day temperature regime. 

Practical applications of the results are given for commercial rose 

growing. Heating glasshouses on a basis of a daily mean temperature 

or temperature sum instead of a given day and night temperature is a 

possibility of saving energy, as also is the maintaining of a diurnal 

period of up till 6 hours with a higher night than day temperature 

beginning at sunset when the thermal screens are closed. 
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o 
Soil heating until 20 C did not influence production and quality, 

whilst a 12% reduction in light had a negative effect on both. 

11. SAMENVATTING 

o 
De invloed van de kasluchttemperatuur op het traject 15-22 C werd 

bestudeerd op de groei, de productle, de kwaliteit en de loosvorming 
R R 

van de rozencultivars 'Sweet Promise' (Sonia ) en 'Varlon' (Ilona ) 

in de periode oktober tot mei in 6 achtereen volgende jaren. De rozen 

werden geteeld in de kasgrond onder natuurlijke licht omstandigheden. 

Naast de invloed van de gemiddelde etmaaltemperatuur tijdens de groei 

werd ook de invloed van de temperatuurverdeling tussen dag en nacht 

bestudeerd. Behalve de gebruikelijke situatie met een lagere nacht-

dan dag temperatuur werd ook de tegenovergestelde situatie met een 

hogere nacht dan dagtemperatuur bestudeerd. 'Modellen' werden 

geconstrueerd voor de ontwikkelingsduur van een scheut, het 

versgewicht van de scheut en van de bloemknop, de scheutlengte, de 

diameter van de scheut en de nek, de lengte, de breedte en het volume 

van de bloemknop tijdens de oogst. Al deze facetten in relatle tot de 

uitloopdatum en de gemiddelde etmaaltemperatuur tijdens de groei. 

Aanvullend onderzoek met in containers gekweekte rozen van de 

cultivar 'Sweet Promise' werd verricht in zowel de kas als in 

groeikamers (Fytotron). In die experimenten werd de interactie 

bestudeerd tussen de temperatuur en het ontwikkelingsstadium van de 

scheut met de ontwikkelingsduur, het vers scheutgewicht en de 

scheutlengte. Als de nachttemperatuur lager of gelijk aan de 

dagtemperatuur was werd er geen duldelijke interactie waargenomen. 

Als de nachttemperatuur hoger steeg dan de dagtemperatuur vertoonde 

het vers scheutgewicht wel een duidelijke interactie. Een hogere 

nacht dan dagtemperatuur in het begin van de groeicyclus van een 

scheut resulteerde in rozen met een geringer gewlcht dan gegeven in 

een latere groeifase. 
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De verschillende ontwikkelinsstadia van de scheut vertoonden een 

duidelijk verschil in temperatuurgevoeligheid met betrekking tot de 

vorming vorming van bloemloze ('blinde') scheuten. Een lage 

nachttemperatuur gegeven in de periode van snijden tot aan de 

strekkinsgroei (ca. 4cm) verminderde de loosvorming, maar indien 

gegeven in de periode vanaf de strekkingsgroei tot aan het stadium 

waarin de bloemknop duidelijk zichtbaar is met het ongewapend oog, 

vermeerderde het juist de loosvorming. 

Bij een constante etmaaltemperatuur had een verhoging van de 

nachttemperatuur bij een evenredige verlaging van de dagtemperatuur 

geen betrouwbare invloed op de uitloopsnelheid of op het 

uitlooppercentage en de ontwikkelingsduur van de scheut maar 

verminderde het versgewicht en de scheutlengte; met name bij een 

hogere nacht dan dagtemperatuur. De gemiddelde etmaaltemperatuur en 

het gemiddelde verlichtingsniveau verklaarden tesamen 98% van de 

variatie in de 'modellen' voor scheutgroei (lineaire regressie 

analyse). Toevoeging van de variabele 'relatieve luchtvochtigheid' 

aan de regressie vergelijking kon 97% van de variatie in vers 

scheutgewicht verklaren. Om 87% van de variatie in de scheutlengte te 

verklaren moesten ook de variabelen 'Gewicht van de ouderscheut' en 

het 'Kwadraat van de luchttemperatuur' worden toegevoegd. Dikke 

(zware) ouderscheuten produceerden gedurende de gehele winter dikkere 

dochterscheuten dan dunne (lichte) ouderscheuten. Het verschil in 

versgewicht ten gunste van dochterscheuten afkomstig van dikke 

ouderscheuten t.o.v. dochterscheuten van dunne ouderscheuten nam in 

het najaar af en gedurende het voorjaar weer toe. Bij een afnemend 

lichtniveau (najaar) was het gemiddeld lichtniveau waaronder 1 gram 

vers scheutgewicht werd geproduceerd minder dan onder een toenemend 

lichtniveau (voorjaar). 

De gemiddelde versgewicht productie per scheut per dag nam toe 

met de temperatuur voor 'Varlon', met als logisch gevolg een afname 

van het benodigde lichtniveau voor de productie van 1 gram 

versgewicht. Tot december en vanaf maart was het beeld voor 'Sweet 

Promise' gelijk aan dat voor 'Varlon'. In de periode vanaf december 
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tot en met maart vertoonde 'Sweet Promise' echter het tegengestelde 

beeld. Dit werd veroorzaakt door het feit dat 'Sweet Promise' meer 

verzwakte bij een hogere temperatuur dan 'Varlon'. 

De productie van het aantal bloemen per struik en de versgewicht 

produktie per struik vertoonden voor beide cultivars een positieve 

lineaire relatie met de gemiddelde etmaal temperatuur gedurende de 

teelt. De productie in stuks en in versgewicht van een struik 'Sweet 

Promise' lag duidelijk boven die van een struik 'Varlon'. Een 

verlaging van de kasluchttemperatuur leidde tot een vertraagd 

uitlopen gevolgd door een vertraagde groei. 

Het onderzoek maakt het duidelijk dat het mogelijk en uit het 

oogpunt van efficient energiegebruik profijtelijk is de temperatuur 

te regelen op basis van de gemiddelde etmaal temperatuur of de 

temperatuursom gedurend de ontwikkeling van een scheut in plaats van 

op een van te voren ingestelde vaste nacht/dag temperatuur, hetgeen 

de traditionele manler is. Hetzelfde geldt met betrekking tot het 

handhaven van dagelijkse periode met een hogere nacht dan dag 

temperatuur van 6-9 uur beginnende bij zonsondergang. Grondverwarming 
o 

tot 20 C had geen invloed op de productie in vergelijking tot geen 

grondverwarming. Een lichtvermindering van 12%, gerealiseerd door 

gebruik te maken van z.g. gecoat glas had op zowel de kwaliteit als 

de kwantiteit een negatief effect. 

Voor de praktische rozenteler worden een aantal mogelijke 

toepassingen van de onderzoeksresultaten gegeven. 
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12. APPENDIXES 

1 2 . 1 . APPENDIX 1 

HORMONAL BACKGROUND OF BUD BREAK 

The apex of a growing shoot inhibits the lower lateral buds from 

growing out. The way in which the inhibitory influence from the apex 

is transmitted and the factors that are involved have already been 

the subject of study for more than half a century. In a review 

article Phillips (1975) gives 201 references on this subject; a 

number that has steadily increased since that date. 

Endogenous growth substances (fytohormones) play an important role in 

apical dominance, but also the nutrient condition of the plant, its 

water balance and the environment of root and shoot are involved. 

The five principal fytohormone groups connected with apical dominance 

are: 

(1). Auxins, synthesised in the young top leaves. 

(2). Cytokinins, synthesised in root tips. 

(3). Gibberellins, synthesised in root tips, stamen and in young 

leaves. 

(4). Abscisins (ABA), synthesised in root tips and in older leaves. 

(5). Ethylene, synthesised especially in senescent or immature 

dividing or expanding tissues, although tissues of all ages 

possess the capacity. 'Wound' ethylene is formed after cut. 

(Hormonal Regulation of Development 1984) 

The first four groups contain many different members. For 

gibberellins for example more than 60 forms are known. This large 

number makes it difficult to get a detailed insight into what is 

happening inside the plant and to be able to draw the right 

conclusions from experiments. 

One of the problems one faces if interpretating the found endogenous 
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hormone levels in plant tissue extracts is that the hormones can be 

compartimentalised and are in that situation inactive. The in vivo 

active concentration then may be much lower than the extracted one 

(Bruinsma 1980). 

It has been known for a long time that apical dominance is 

mediated by auxins (e.g. Thiman 1939). By girdling the stem it can be 

shown that the inhibition of the lateral buds in plants may be 

attributed to the downward movement through the adjacent cells of the 

phloem-elements of an agent originated in the apex (Thimann 1977). 

Rudded and Pharis (1966) showed that gibberellins participate with 

auxins in apical dominance. 

Skoog and Tsui (1948) reported that cytokinins play an important role 

in the control of bud formation in plant tissue cultures. Miller and 

co-workers found that cytokinins are involved in bud initiation 

(Miller et al. 1955). It soon became clear that cytokinins are 

involved in the release of inhibited buds too (Skoog and Miller 

1957). Wickson and Thimann (1958) showed the existence of an 

antagonism between auxins and cytokinins in apical dominance. Buds of 

pea stem sections inhibited by auxins could be released by adding 

cytokinins and then sprouted. These investigators also found that 

gibberellins promote bud elongation after the inhibition of buds has 

already been released. Results from Sachs and Thimann (1964) 

confirmed this view. They found that bud break is initiated by 

cytokinins while gibberellins only act subsequent to the release. 

These authors reported that auxins counteract at least one component 

of apical dominance, namely the elongation of the internodes (Sachs 

and Thimann 1967). Buds however, already released from apical 

dominance by cytokinins which did not elongate as strong as control 

buds, could be elongated normally by the application of auxins 

locally to their apices. This indicates that in the processes 

involved in inhibition and release from it, the same hormones do play 

a different role. 

Van Staden and co-workers studied the level of endogenous 

cytokinins in roses and their relation to lateral bud growth. They 
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found in buds of intact rose shoots a gradient of endogenous 

cytokinins. In the upper buds little or no cytokinins could be 

detected while the lower and more inhibited buds contained high 

levels of them (Van Staden et al. 1981). They suggested that a low 

level of endogenous cytokinins within the buds indicates that they 

are ready to break. This was reported earlier for other plants and 

may be an indication that the cytokinins are utilised prior to bud 

breaking (Tucker and Mansfield 1972,1973; Van Staden and Brown 1978, 

Van Staden and Dimalla 1978). 

An endogenous growth regulator with a strong inhibitory effect on bud 

growth is Abscisic acid (ABA), (Dorffling 1964, Tucker and Mansfield 

1972, 1973, Bellandi and Dorffling 1974, Praeger 1983). Zieslin and 

co-workers extracted abscisics from rose shoots and found a higher 

level in the lower part than in the upper part (Zieslin et al. 1978). 

Abscisins were also found in the bark tissue near the base of the 

plant. After removal of the top, the concentration decreased sharply 

(Zieslin and Khayat 1983). Van Onckele (1980) found the same for 

beans. The Abscisic acid concentration in the leaves adjacent to 

inhibited buds appeared to be very high. As abscisins are especially 

synthesised in older leaves, from which they are transported to the 

axillary buds, removal of the subtending leaf stimulates bud break 

(Durkin 1965). Removing this leaf or breaking the vascular strand 

which connects the leaf with the stem is a method used by growers to 

stimulate bud break. This method is not always effective, however. 

Especially late in autumn the results can be disappointing (Van den 

Berg 1986). Also spontanous leaf shedding did not improve bud break 

(Present experiments). An explanation can be found in work of Tinklin 

and Schwabe (1970), who worked with Ribes nigrum. These authors 

demonstrated that leaf-produced inhibitors accumulate also in the bud 

scales (see also Addicott 1983). If the concentration in the scales 

has risen high enough, removal of the subtending leaf did no longer 

influence bud break. They also demonstrated that in Ribes nigrum the 

inhibitory effect on bud break is not restricted to the bud subtended 
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by the leaf. The effect is translocatable. A period with a low or a 

high temperature decreased the concentration of inhibitors inside the 

bud and resulted in bud break. Benzioni and Dunstone (1985) showed 

for Jojoba that low temperatures decreased the ABA level in the 

flower buds and led to flowering. 

ABA can occur in the tissue as 'free' ABA, or bound to glucose as 

'bound' ABA. The last form is not transportable. The ratio free/bound 

changes during the year. 

'Free' ABA has two forms, the in vivo active cis-form and the 

inactive trans-form. The synthesis of the active cis-ABA is 

stimulated by auxins. In this way auxins may be involved in the 

inhibition of bud break. 

Cytokinins are reported to promote the conversion of ABA into bound 

forms (Even Cheu and Itai 1975) and in this way may change the ratio 

between growth promotors like gibberellins and cytokinins and growth 

inhibitors like abscisic acid. Depending on the actual hormonal 

situation inside the plant a change in this ratio may tip the ratio 

towards inhibition or release. 

It must not be excluded that more, still unknown, growth 

substances may be involved in bud inhibition and bud break (Addicott 

1983, Naylor 1985). Nishitani and Hasegawa (1985) found in pea 

seedlings that IAA exerts its effect by increasing an inhibitor 

different from ABA. 

There are indications that the hormones actually function by 

activating special enzymes which release more specific chemical 

messengers (Oligosaccharins) from the cell walls. Each of these 

messengers on its turn should regulate a particular function ( 

Albersheim 1976, Albersheim and Darvil 1985). These oligosaccharins 

are active in concentrations of less than 100 to 1000 times the 

amount of fytohormones and may represent a tier in a hierarchical 

hormone system 

Against this background one may say that the afore mentioned 

fytohormones are not control factors which control a reaction by 

change of their concentrations. They are growth substances essential 
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for the various development steps (See Trewavas 1980). The 

oligosaccharins then can be considered the real control factors. 

Hormones can Interact in different ways. Leopold and Nooden 

(1985) mentioned in a review four types of interaction. Regulation 

processes may be controlled by: (1) a balance ratio between hormones, 

(2) by opposing effects, (3) by alterating the effective 

concentrations of one hormone by another and (4) by sequential action 

of differential hormones. 

This mutual influence of hormones makes it difficult to elucidate 

fully the actual regulation of bud inhibition, bud release and 

development of the sprout by growth regulators. 

Beside the fytohormones, specific hormone-binding proteins 

(receptors), who recognize the hormones may be very important. Any 

change in availability of the corresponding receptor will influence 

hormone turn over rate apart from the concentration of the hormone 

under consider. Bruinsma (1980) mentions that the endogenous level 

itself is not always a reliable indicator for its physiological 

importance. Its turnover rate may be far more relevant. 

The breaking bud is made up from different cell types, which make 

it feasible that various hormone control systems are active in the 

bud at one time. Plant extracts as used in hormone experiments 

contain hormones from different cell types and possibly from 

different compartments within a cell, which makes it difficult to 

draw the right conclusions about what actually happens inside the 

plant and inside the breaking lateral bud. 

Last but not least, hormones or their precursors must if their 

site of production is different from their site of action be 

transferred, which can be located in another part of the plant. There 

are five possible paths by which this transport can take place: via 

the (1) xylem, (2) phloem, (3) cellwalls, (4) symplast and the (5) 

intercellulair air spaces. It will be clear that any factor, 

chemically as well as physically that influences hormone transport, 

influences the hormonal balance at site of action and in this way the 

hormonal controlled processes. 
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More chemicals with effects on bud break were discovered. External 

application of TIBA, PBA, BA, and ethanol but also of ethylene which 

is also an internal produced growth substance, could stimulate bud 

break in several plant species (Asen 1954, Morgan and Gausman 1966, 

Skoog and Armstrong 1970, Carpenter and Rodriguez 1971, Masuda and 

Ashira 1980, Hosaki 1983). 

The working of these chemicals may be via influencing the production 

and/or the transfer of the fytohormones. TIBA for example, inhibits 

the basipetal polar transport of auxins (Schneider and Wightman 

1978), while ethylene decreases auxin synthesis and transport 

(Lurssen 1981). Auxin influences also the endogenous production of 

ethylene and via ethylene probably the concentration of ABA. 

External application of hormones seemed to be a possibility for the 

stimulation of bud break. A big disadvantage of the external supply 

of hormones however, was that most of the sprouts from buds forced to 

break stopped growth, died or formed flowerless buds ('blindness'). 

This negative side-effect of chemically stimulated bud break was also 

reported for roses (Zieslin and Halevy 1975c, 1976c, Faber and White 

1977). 

If beside terminal buds also subterminal buds were forced to break at 

high temperatures the same negative effect could be seen for the 

subterminal buds, especially in winter time (Present experiences). A 

strong competition between the sprouts for nutrients may be the 

reason for this phenomenon. 

Drawing conclusions from exogenously applicated hormones must be done 

very carefully. Bruinsma (1980) mentioned that because of 

compartimentalisation it is possible that exogenous applied hormones 

do not or only for a part arrive at the action site where they should 

play their role. The transport of exogenous hormones differs strongly 

from endogenous hormones. This means that exogenous hormones may 

arrive at another site than the endogenous hormones and function in a 

different way. 

The first step that triggers bud release is not yet exactly 
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known. After a bud has been released from inhibition and breaks, it 

does not necessarily mean that the new sprout continues growth and 

will reach the flowering stage. Things may still go wrong. Parallel 

to the growth out of a bud, the bud xylem providing the new sprout 

with water, nutrients and hormones from elsewhere in the plant, has 

to be connected with the xylem of the subtending shoot. Xylem 

connections were studied by Sokorlm and Thimann (1964). The 

movements of nutrients towards the breaking lateral bud, which has 

become a sink for metabolites, are also influenced by hormones (Booth 

and Moorby 1962, Bowen and Wareing 1971,). Hundreds of articles have 

been written on transport of hormones and nutrients in plants (see 

Hormonal Regulation 1984). A main conclusion is that hormones have 

the potential to direct assimilate movement to sinks, namely, spots 

with a high metabolic activity (e.g. Patrick and Wareing 1980). 

Hormones can act on sink activity and/or sink size and play a role in 

the uptake from nutrients by the sink (phloem unloading). Auxins 

produced by the shoot top faciliate transfer of assimilates through 

the phloem and also stimulate vascular differentation (Shinlger 

1979). The effect of sink-produced hormones could be amplified by 

attracting root-produced cytokinins and gibberellins swept along in 

the assimilate stream (Patrick and Wareing 1980). 

If nutrient or hormone supply is insufficient the flower bud starves, 

aborts and the shoot grows blind or even dies. This could be 

demonstrated with rose cuttings in rockwool if the axillary bud of 

the cutting sprouted before roots had developped (Van den Berg 1986). 

This phenomenon was reported earlier by Moe (1973). The nutrient 

state of the plant influences the level of root derived cytokinins 

and consequently shoot development. The effect may be partly due to 

root growth, which in its turn may be due to the supply of 

assimilates by the shoot. In this way nutrients may indirectly 

influence bud break (Goodrich et al. 1978). The stimulating effect of 

substrate heating on bud break as reported by Moss (1984) may also be 

due to enhanced root activity and cytokinin production. 

Production and translocation of hormones or their precursers and 
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the combined action of the hormones is influenced by climate 

conditions. Low temperatures are reported to stimulate in some cases 

gibberellin synthesis or a GA-producing system that becomes active if 

temperature increases (Graebe and Ropers 1978). In this way a cold 

period followed by a higher temperature might promote bud break, an 

effect well known in rose growing. In Phaseolus leaves such a change 

in temperature is reported to stimulate the formation of ethylene 

(Osborne 1978). The same reaction is reported for cytokinins (Lethan 

1978). Stress situations, for example water stress, also stimulate 

the synthesis of ethylene and ABA and in this way may influence bud 

break. Also the formation of wound ethylene after cut may influence 

bud break. Ethylene probably plays its role in bud release via 

influencing the concentration of ABA. 

Of special interest is the Red/Far red ratio of light reaching 

the leaves. Red light stimulates the synthesis of gibberellins and 

auxins and reduces the endogenous ABA content, but far red stimulates 

the synthesis of abscisins and in that way enhances bud inhibition 

(Kaspenbauer 1971, Tucker and Mansfield 1972, Tucker 1976, Heins and 

Wilkins 1979, Tillberg (1985). This effect was also reported for 

roses by Mor and Halevy (1984). 

To complicate the issue of bud break even more, one has to keep in 

mind the possibility that different control mechanisms are operating 

during the early stages of bud release and the subsequent outgrowth 

of the bud. In the consecutive processes the individual hormones can 

play different roles depending on the state of bud release. 

From the many factors that influence lateral bud break a 'red 

line' can be distinguished. If one consider shoots with (before cut) 

and without (after cut) an active top meristem, the following line 

can be seen. 

(1) Shoot with an active top meristem. 

- The apex is a strong sink for metabolites, hormones and minerals. 

- This sink is a strong competitor for the lateral buds. 

- The top meristem produces auxins which convert the inactive 
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trans-ABA in the active cis-ABA (and keeps a non-ABA inhibitor on 

a high level), which in its turn inhibits bud break. 

- All factors together prevent sprouting of the lateral buds. 

(2) Shoots without an active top meristem (after cut or pinch). 

- The apex is no longer a sink. 

- The apex is no longer a competitor for the lateral buds. 

- Auxins are no longer produced and the active cis-ABA is 

transformed in the inactive trans-ABA (and a non-ABA inhibitor 

decreases). Wound ethylene is produced. 

- The inhibition decreases. The cytokinin/auxin ratio increases and 

the lateral bud releases unless the gibberellin concentration is 

too low. 

As soon as the new top meristem of the released bud becomes active 

situation (1) is reinstalled. 

If the supply of nutrients and hormones from the roots and 

assimilates from the leaves of the parent shoot or from stored 

reserves is sufficient, new apex develops leaves and flower buds. The 

most critical period is when the young leaves and the stamen do not 

yet produce fyto hormones by themselves and are still relatively weak 

sinks. In that period flower bud atrophy which results in flowerless 

or blind shoots is a major danger. 
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12. APPENDIX 2 

SMOOTHING 

According to Tukey (Exploratory Data Analyse 1977). 

The following example shows the way in which the rough data were 

smoothed to get Figure 8. The data in the example have no connection 

with the experiments. 

Explanation of the columns: 

1= rough values, these are 

the medians of the week 

groups. 

2= running medians of 3 

3= skip means of 2, example 

5=(4+6)/2, 6=(4+8)/2 

4= line means of colums 2 

and 3 example: 5=(4+5)/2 

rounded, 6=(6+6)/2 

The name 'Hanning' is after 

Julius von Hann, who used 

this smoothing method for 

weather information. 

The data from column 4 are used for the graph. 

1 

Rough 

values 

4 

6 

3 

8 

9 

10 

12 

15 

16 

14 

10 

6 

9 

8 

2 

Medians 

of 3 

4 

4 

6 

8 

9 

10 

12.5 

15 

15 

14 

10 

9 

8 

8 

3 

Skip 

means 

4 

5 

6 

7.5 

9 

10.5 

12 

13.5 

14.5 

12.5 

11.5 

9 

8.5 

8 

4 

"Hanning" 

4 (copied) 

5 

6 

8 

9 

10 

12 

14 

15 

13 

11 

9 

8 

8 (copied) 
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12.3. Appendix 3 

REGRESSION ANALYSIS 

To analyse the data from the experiments the technique of linear 

regression was used (Daniel and Wood 1971, Mosteller and Tukey 1977, 

Draper and Smith 1981). 

Analyses were performed with the computer program " A GENERAL 

STATISTICAL PROGRAM" (GENSTAT), release 4.04B, from the Statistical 

Department Rothamsted Experimental Station. 

This program is implemented in the VAX-750 computer system at the 

Experimental Station in Aalsmeer. 

The least-square method says: "Find the values of the constants (the 

regression coefficients) in the chosen equation that minimize the sum 

of the squared deviations of the observed values from those predicted 

by the equation" (Daniel and Wood, 1971). 

Linear Least Square Estimation partitions the total variation in the 

dependent variable, expressed as the Total Sum of Squares about the 

mean (TSS), into two parts: 

1. The Sum of Squares due to the fitted equation, or the sum of 

squares due to regression (SS). 

2. The Residual Sum of Squares or the sum of squares about 

regression (RSS). 

Divided by its corresponding degrees of freedom, the total sum of 

squares gives the Total Mean Square (TMS) and the regression sum of 

squares gives the Regression Mean Square (RMS). 

If the fitted equation contains no bias, this RMS is the estimated 
2 

Variance (s y) of the dependent Y-variable. 

The percentage variation in the data about the average accounted for 
2 

by the regression is: 100*(TMS-RMS)/TMS, and is expressed as R * in 

this booklet. 
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This percentage makes part of the standard output of the GENSTAT 

program and should not be confused with the statistic R-squared or 
2 

Multiple Correlation Coefficient Squared (R ), which is calculated as 
2 

R *, but with the TSS and the RSS instead of the TMS and the RMS. The 

advantage of using percentage variation is that it takes into account 

the number of parameters fitted in the model. 

Due to the fact that the regression coefficients change depending on 

which explanatory variables are present and because too many 

variables make the regression less transparant and understandable, it 

was necessary to differentiate among the following possible 

variables: irradiation sum or average irradiation during different 

parts of shoot development, temperature sum or average temperature 

during shoot development, vapour pressure deficit, relative humidity, 

daylength, and weight of the parent shoot, which gives a relation to 

the previous growth cycle. These variables could also appear in the 

regression in their plain or in a re-expressed e.g. squared form. 

To avoid unnecessary large stocks of explanatory variables (over 

fitting), the number of variables was chosen by using the criteria: 
2 

- The value of R * 
- Mallow's Cp statistic. 

2 
- The value of s , the residual mean square. 

In the regression equations the variable that, alone, accounts for 

the biggest part of the variation, is introduced first into the 

equation and is followed by the variable that has the next biggest 

effect after the variable that is already in, and so on. 

As much variation as possible was tried to account for with variables 

representing the climate factors: irradiation inside the glasshouse, 

air temperature and relative humidity of the air. These are factors 

with can 'easily' be related to plant growth and have meaning to the 

growers. 

Because the inside and outside irradiation were highly correlated 
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2 
(r=.99), both gave nearly the same R * in the regression equations. 

Under the natural light conditions of the experiments, irradiation 

itself was highly correlated with length of day, which on its turn 

was correlated with the date of bud break. This means that 

irradiation, length of day and date of bud break can substitute for 

each other for a large part in the regression equations, and all give 
2 

a high R *. 

Because the variables are highly correlated, it is dangerous to 

change just one of them and predict what the response of the 

dependent variable will be. In the glasshouse situation from which 

the data originated no variable changes without affecting the others. 

A danger of regression is always the chance of channeling through a 

proxy, or like Mosteller and Tukey write in their book: "if A and B 

are closely correlated, if A is not related to what we are studying, 

if B is quite strongly related, if A is in the regression but B is 

NOT in, then we are likely to find A carrying a appreciable part of 

our regression. When this happens, we are tempted to believe that A 

is "relevant", but a more appropriate interpretation would be that " 

A appears relevant because it is a proxy for B, which I am sure ought 

to be relevant because " (Mosteller and Tukey 1977: page 317). 
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Tuinbouwplantenteelt, met als bijvakken Fytopathologie (verzwaard) en 

Plantenveredeling. 

Hierna volgde een tijdelijke werkkring bij het Proefstation voor 

Tuinbouw Onder Glas te Naaldwijk, waar hij in opdracht van de 

Coordinatiecommissie Onderzoek Bodempathogenen van de Nationale Raad 

voor Landbouwkundig Onderzoek TNO onderzoek deed aan de invloed van 

selectieve warmtebehandeling op enige biologische processen in 

kasgrond. Vanaf novenber 1973 is hij werkzaam bij het Proefstation 

voor de Bloemisterij in Nederland te Aalmeer, sinds oktober 1986 als 

hoofd van de afdeling Teelt. 
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