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Chapter 1 

General Introduction 



GENERAL INTRODUCTION 

Preview 

In this chapter the reader will be introduced 

to the main aspects of the methane 

formation from acetate. In the first part the 

position of methanogenesis in the anaerobic 

degradation of organic matter is described. 

Thereafter a brief summary of the main 

characteristics of the methane bacteria will 

be given. This summary is followed by a 

historical overview of methanogenesis from 

acetate. Then an overview of the physiology 

and biochemistry of the acetoclastic methan

ogenesis is given. At the end of the intro

duction a short summary of the data availa

ble on the molecular biology of Methanothrix 

and an outline of this thesis are presented. 

Methanogenesis 

Microorganisms play an important role in 

the conversion of organic and inorganic 

matter [1]. Under anaerobic conditions 

organic matter is degraded by the 

cooperative interaction of several different 

physiological groups of micro-organisms 

[2-4]. A schematic presentation of the 

anaerobic degradation under methanogenic 

conditions is depicted in Fig. 1. The 

anaerobic degradation of organic matter 

starts with the hydrolysis of complex 

biopolymers into the corresponding 

monomers by fermentative bacteria [5,6]. 

These monomeric products (sugars, fatty 

acids and amino acids) are converted by 

fermentative bacteria to intermediate 

products like, acetate, propionate, butyrate, 

lactate and alcohols [7]. Most of these com

pounds are oxidized by obligate proton-

reducing acetogenic bacteria to acetate, 

hydrogen and C0 2 [7]. 

In the absence of light or electron acceptors 

as nitrate or sulfate terminal degradation 

steps are performed by the methane bacteria 

[8]. In this step the methane bacteria con

vert Hj/C02 and acetate to methane [1,8]. 

The methane bacteria play an important 

regulatory role in the proton and electron 

flow during the anaerobic degradation of 

organic matter [7,8]. The comsumption of 

hydrogen provides a low partial hydrogen 

pressure. This enables the obligate proton-

reducing bacteria to degrade the organic 

acids, which are thermodynamically very un

favourable reactions [7-10]. The com

sumption of acetate by the acetoclastic 

methanogens prevents acidification of the 

anaerobic ecosystem [11]. 

Acetate is quantitatively the most important 

intermediate in the anaerobic degradation of 

organic matter [11,12]. It is the most abun

dant precursor of methane formation. 

Seventy precent of the methane in anaerobic 

digestors is derived from acetate [13]. In 

sediments, flooded soils and rice-fields also 

60-80 % of the methane is formed from 

acetate [3,14-17]. Further the conversion 

rate of acetate by methanogenic bacteria is 

proposed to be the rate limiting step in the 

degradation of soluble organic matter under 

anaerobic conditions [18]. The study of 

acetoclastic methanogens, therefore, is of 

relevance to our understanding of anaerobic 

processes and their optimal application in 

treatment of waste water from various 

sources. 

Methanogenic bacteria 

Methanogenic bacteria have been isolated 

from nearly every habitat in which anaerobic 

degradation of organic material takes place, 

such as waste water digestors, fresh water 

and marine sediments, and intestinal tracts 
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of man and animals [20-24]. 

axonomically, methane bacteria comprise of 

a rather diverse group. Balch et al. proposed 

classification into three orders and six fami

lies on the basis of morphological differen

ces : Methanobacteriales (Methanobacteria-

ceae and Methanothermoceae), Methano-

coccales (Methanococceae) and Methano-

microb ia les (Me thanomic rob i a c eae , 

Methanosarcinaceae and Methanopla-

naceae) [25]. Although, taxonomically rather 

diverse, the methane bacteria were 

reorganized in a coherent group on the basis 

of their physiological similarities [26,27]. 

Methane bacteria produce methane from a 

limited number of compounds. The classical 

one- and two-carbon compounds are listed 

in Table I. Nearly all methanogenic bacteria 

use H2/C02, whereas many species are also 

able to utilize formate [28]. Until now only 

two genera of methane bacteria are descri

bed which can use acetate as carbon and 

energy source : Methanosarcina and 

Methanothrix [28]. Very recently it was 

shown that some methane bacteria are also 

able to use primary and secondary alcohols 

[29,30]. 

Methanogenic bacter ia show clear 

differences by comparison with other proca-

ryotes [25]. The cell wall consists of pro

teins, glycoproteins or contains pseudo-

murein instead of murein [31,32]. The mem

branes do not contain glycerol-esters of fatty 

acids, but are composed of the glycerol-

ethers of squalens or other isoprenoid hy

drocarbons [33,34]. Methane bacteria use a 

number of unique coenzymes in their 

metabolism [35,36]. Further differences were 

observed in the nucleotide patterns of the 

16S rRNA, the base composition of the 

tRNA and the length of the genome [37-39]. 

On the basis of all these differences Woese 

et al. classified the methane bacteria to the 

domain of the archae [40]. In the next 

section an overview is presented of the 

history of methane formation from acetate. 

Historic overview of the methane formation 

from acetate 

After the discovery of methane (aria 

infiammabile) by A. Volta in 1776, it took 

another century before the microbial origin 

of t he me t h an e fo rmat ion from 

d e compos i ng p l a n t m a t e r i a l was 

demonstrated by Bechamp (1868) and 

Popoff (1873) [41-43]. The methane 

production from acetate was firstly described 

by Hoppe-Seyler in 1876 [44]. Even before 

the classical thermodynamical concepts were 

totally formulated, he noticed the difficulties 

of the energy conservation in acetoclastic 

methanogenesis. Extensive description of 

acetoclastic methanogenic bacteria occurred 

in the first decade of this century by 

Sohngen (1906) [45]. He described two 

different organisms from enrichment cultu

res on acetate; a gram-negative sarcina and 

a non-motile rod shaped bacterium which 

often formed long filaments [46]. His cul

tures were lost after the end of his work. 

Barker conducted in 1936 further studies 

and got again enrichments of the bacteria 

described by Sohngen [47]. He named them 

Methanosarcina methanica and Methanobac-

terium soehngenii [48]. Barker was not able 

to obtain these bacteria in pure culture. It 

was Schnellen in 1947, who isolated the first 

methanogen in pure culture : Methanosar

cina barken [49]. However, after some 

taxonomic studies the sarcina was lost. New 

isolates of Methanosarcina were obtained 

and described from 1974 on [50,51]. 

The non-motile rod "Methanobacterium 

soehngenii" was described in various 

enrichment cultures on butyrate, benzoate 

and lignin [10,52-54]. But it lasted untill 

1980 before the bacterium was obtained in 

pure culture by Zehnder and coworkers [55]. 

They renamed the bacterium Methanothrix 

soehngenii, with as type strain, strain Opfi-

kon [56,57]. Thereafter several Methanothrix 

strains have described including the 



Table I : Substrates used by methanogenic bacteria 

AG'Q (kJ/mol CH„) 

4 HCOOH 
4 CO + 2 H P 
CHjCOOH 
CH3OH + H2 

4 CH3OH 

... > 

... > 

... > 

... > 

... > 
—> 
—> 

CH4 + 3 C0 2 + 2H20 
CH4 + 3 C0 2 

CH4 + C0 2 

CH4 + H 20 
3 CH4 + C0 2 + 2H20 
3 CH„ + C0 2 + 4 NH3 

-130 
-120 
-186 
-32 
-113 
-103 
- 74 

AG'0 = Gibbs free energy at pH 7, 25 °C, 1 atm and 1 M concentration. 

Table II : Comparison of the physiological parameters of Methanosarcina spp. and Methanothrix spp. 

Organism Methanosarcina Methanothrix 

Morphology 

Physiology 

Substrates 

Sarcina-type 

Clumps 

Rod-shaped 

Long filaments 

Generalist Specialist 

Hydrogen, Methanol Acetate 
Methylamines, Acetate 

I W (days)"1 0.3 

doubling time (days) 0.5-2 

Yield (g dw/mol Ac) 2.1 

K, (mM) 3.0 

Threshold (mM) 0.2 - 1.2 

0.1 

1-12 

1.4 

0.5 

0.007 - 0.07 



mesophilic Methanothrix soehngenii strain 

FE, and Methanothrix concilii GP-6 and the 

thermophilic strains Methanothrix CALS-1 

and Methanothrix thermoacetophila [58-61]. 

Although immunological studies with antjse-

ra showed only a weak relationship between 

the different Methanothrix species, Touzel 

unified the strains Opfikon, FE and GP-6 

into one species, Methanothrix soehngenii, on 

the basis DNA-DNA hybridization studies 

[58,62]. However, recently it has been pro

posed that these three Methanothrix species 

should be included in the genus 

Methanosaeta [63]. Since the discussion to 

maintain the name of Methanothrix is still in 

progress, throughout this thesis the name 

Methanothrix soehngenii will be used to avoid 

any confusion. 

Physiology and biochemistry of acetoclastic 

methanogenesis 

Only two genera of methane bacteria are 

known which degrade acetate; Methano-

sarcina and Methanothrix, The acetoclastic 

metabolism of Methanosarcina recieved 

considerable attention in the past decade, 

but hardly any atttention was paid to the 

enzymology a nd b i o chemi s t r y of 

Methanothrix [64]. In next part of the intro

duction the relevant knowledge about the 

acetoclastic methanogenesis is summarized. 

Physiology 

In Table II an overview is presented of the 

physiological properties of both Methanosar

cina and Methanothrix. Although not strictly 

a physiological property the table starts with 

the comparison of the morphological diffe

rences between the two genera [31,32,54-

62,65,66]. The two acetoclastic methane bac

teria have developped different strategies 

for growth on acetate. Methanosarcina is 

metabolically versatile [64]. It appears to be 

a generalist, capable of growing on several 

different substrates including, HJ /COJ , 

methanol, methylamines and acetate [13,67]. 

The bacterium grows on acetate as sole 

energy source with a doubling time of about 

one day and a growth yield of 2 g dry weight 

/ mol acetate. Its affinity for acetate is 

rather low (K, = 3-5 mM) [13,67]. 

Methanothrix species differ from Methanosar

cina species in that they use only acetate as 

energy source. The growth rate is low 

(doubling time 2-12 days) and the growth 

yield is low (1.4 g dry weight / mol acetate) 

[54,55]. However, its affinity for acetate is 

rather high (K, = 0.5 mM) [55]. 

The minimum threshold concentration of 

acetate utilization of Methanosarcina and 

Methanothrix was investigated by several 

research goups [68,69]. It was shown that 

Methanothrix reached lowest acetate concen

trations (<10 juM), where Methanosarcina 

did not consume acetate under con

centrations of 0.2-1.2 mM. The kinetic 

parameters ( / ^ , K, and threshold) of 

Methanothrix and Methanosarcina are depic

ted in Fig. 2. From this figure it can be seen 

that Methanothrix is favoured in ecosystems 

with acetate concentrations between 0 and 1 

mM [4,68,69]. 

Biochemistry 

Although Methanothrix and Methanosarcina 

produce methane from acetate their meta

bolism shows some differences [64], The 

general scheme of the acetoclastic pathway 

is depicted in Fig. 3. The conversion of 

acetate starts with the activation of acetate 

to acetyl-CoA [64,70,71]. Since both 

organisms have different kinetic parameters 

for growth on acetate, it is not surprising 

that they have developped different 

mechanisms for the activation of acetate 

[64]. In Methanothrix acetate is activated by 

the enzyme acetyl-CoA synthetase [70]. The 

enzyme activates acetate to acetyl-CoA, with 
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concomitant hydrolysis of one ATP to AMP 

and PPj. Methanosarcina uses acetate kinase 

and phosphotransacetylase to activate aceta

te [71]. Via acetyl-phosphate, acetyl-CoA is 

formed at the expense of one ATP, which is 

hydrolyzed to ADP and Pt. Both enzyme sys

tems have been purified from the respective 

organisms [72-74]. The properties of the 

Acetyl-CoA synthetase are described in 

chapter 3 and are compared with those of 

the acetate kinase and phosphotrans

acetylase of Methanosarcina. The kinetic 

properties of both enzyme systems support 

again the hypothesis that Methanosarcina 

predominates in systems with high acetate 

concentrations, whereas Methanothrix is do

minant in environments with low acetate 

concentrations [4,68,69,75]. 

In the acetate activation to acetyl-CoA by 

Methanothrix one ATP is cleaved to AMP 

and PPj. The AMP is converted to ADP at 

the expense of one other ATP by the 

enzyme adenylate kinase [74]. The PP, for

med is hydrolyzed to two Pj by the action of 

an inorganic pyrophosphatase. A sum of 

these reactions leads to the suggestion that 

for acetate activation in Methanothrix two 

ATP are needed [64]. The possible result of 

this high energy input to activate its 

substrate, may be the relatively low growth 

yield and growth rate of Methanothrix 

compared to Methanosarcina, who only 

invests one ATP in acetate activation. Since 

it is believed that methane formation from 

acetate can only yield one ATP, it is difficult 

to envisage how Methanothrix is able to grow 

at all [64]. One possible site of energy 

conservation may be coupled to the 

hydrolysis of pyrophosphate. To investigate 

the possibility that the energy of the PPj 

bound could be used to drive endergonic 

reactions, the pyrophosphatase was isolated 

from Methanothrix. The properties and 

purification of the pyrophosphatase from 

Methanothrix are described in chapter 4. 

In chapter 5 the interconversion of adenine 

nucleotides by Methanothrix during acetate 

consumption is described and compared to 

results obtained from experiments with 

other (methane) bacteria. 

After acetate activation, the formed acetyl-

CoA is supposed to be cleaved into C,-units, 

one at the oxidation level of methanol 

(methyl-group), the other at the oxidation 

level of CO (carbonyl-group) [64]. The 

methyl-group is reduced to methane, the 

electrons for the reduction are derived from 

the oxidation of CO-moiety [76-79]. The 

carbon-carbon cleavage and the oxidation of 

the carbonyl-group are probably catalyzed 

by the same enzyme: CO dehydrogenase 

(CDH) [80,81]. CDH is present in both 

Methanosarcina and Methanothrix and consti

tutes up to 5 % of the soluble cell protein 

of these bacteria [82-86]. The enzymes have 

similar subunit composition (<xB)2 and mole

cular masses (200 kDa) [82-86]. The enzyme 

contains Ni and Fe/S clusters [82-86]. 

The COimethylviologen oxidoreductase 

activity of Methanothrix was found to be 

insensitive to oxygen, whereas other CDH's 

from anaerobic bacter ia including 

Methanosarcina are inactivated by traces of 

oxygen [70,86]. The properties of this oxygen 

stable CDH are described in chapter 6. 

Since the enzyme contained Ni, Fe and acid-

labile sulfur, the presence of paramagnetic 

centers were investigated by EPR spectros

copy. The actual acetyl-CoA cleavage func

tion of the enzyme is difficult to 

demonstrate, since the functional acceptors 

of the cleavage products have to be 

available [87,88]. As an alternative for the 

cleavage function, the exchange reaction be

tween the carboxyl-group of acetyl-CoA and 

CO can be studied in absence of a 

functional methyl-acceptor [87-90]. The 

acetyl-CoA/CO exchange activity of the 

CDH and the paramagnetic centers of the 

anaerobically purified CDH are presented in 

chapter 7. In order to characterize the 
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possible Ni site and some unusual clusters in 

the CDH, the enzyme was isolated from 

Methanothrix grown in the presence of 61Ni. 

The EPR properties of these unusual 

clusters are presented in chapter 8. 

The methyl-group of acetyl-CoA is ultimate

ly transferred to coenzyme M by several 

methyltransferases [64,91-95]. In Methano-

sarcina tetrahydromethanopterin and corri-

noid containing proteins are involved in this 

transfer [91-95]. For Methanothrix this 

transfer proces is not yet studied, but the 

presence of both tetrahydromethanopterin 

and corrinoids in Methanothrix indicates that 

similar processes could be envisaged in this 

organism [96,97]. The last step in 

methanogenesis is reduction of methyl-

coenzyme M to methane [98]. This reaction 

is catalyzed by the methyl-CoM reductase. 

In chapter 9 of this thesis some of the pro

perties of the methyl-CoM reductase from 

Methanothrix are presented and compared 

with data from other methyl-CoM 

reductases. 

The direct electron donor for methyl-CoM 

reduction has been shown to be 7-mercapto-

heptanoyl-threoninephosphate (HS-HTP) 

[99]. HS-HTP and HS-CoM are regenerated 

by the reduction of the mixed heterodisul-

fide (CoM-S-S-HTP, HDS). This reaction is 

catalyzed by the heterodisulfide reductase 

(HDR) [100, 101]. HDR activity was also 

observed in cell extracts of Methanothrix 

[102]. The electrons necessary for reduction 

of HDS are probably derived from the oxi

dation of the CO-group by the CDH [64]. 

The exact mechanism and electron carriers 

involved in this proces in Methanothrix are 

not known. In Methanosarcina evidence was 

presented that a ferredoxin is involved in 

the transfer of electrons from the CDH to a 

membrane bound hydrogenase (electron 

transport chain) [103-105]. The coupling of 

electron flow to heterodisulfide reductase 

was studied in membrane vesicles of a 

sarcina like methanebacterium G6I [106-

110]. For this bacterium it was demonstrated 

that proton extrusion during HDS reduction 

could be used to drive ATP synthesis [106]. 

A similar mechanism may operate in 

Methanothrix, where 20 % of the HDR is 

membrane associated [102]. 

Molecular biology of Methanothrix 

Most of our knowledge about the molecular 

biology of Methanothrix is obtained from 

studies by Eggen et al., who recently 

reviewed their work [111-113]. Their results 

on the genes encoding for acetyl-CoA 

syn the ta se and c a rbon monox ide 

dehydrogenase are summarised here. 

The gene encoding for ACS was isolated 

from a genomic library in E. coli using poly

clonal antibodies raised against the purified 

ACS. After the gene was introduced in E. 

coli a major immunoreactive polypeptide 

was produced, which made up to 5 % of the 

cellular protein with a slightly smaller 

molecular mass than AGs purified from 

Methanothrix. Despite the difference in 

molecular mass, ACS activity could be 

detected in cell free extracts of E. coli, with 

even higher specific activities (11.2 (imol-

.min'1.mg"1) than measured in Methanothrix 

extracts. This indicated that functionally 

active ACS is efficiently produced by E. coli. 

Data base searches showed that the deduced 

amino acid sequence of Methanothrix ACS is 

homologous to that of proteins with similar 

functions found both in bacterial and 

eucaryal species. In addition, 2 putative ATP 

binding sequences could be deduced. 

The Methanothrix cdhA and cdhB genes that 

code for the large and the small subunit of 

CDH respectively, were also isolated from a 

genomic library using polyclonal antibodies 

raised against purified CDH. Subcloning of 

these genes into E. coli resulted in the pro

duction of two immunoreactive polypep

tides, which corresponded in size to the 

11 



purified CDH subunits. The CDH oxido-

reductase activity could not be observed in 

extracts of E. coli containing the cdh genes. 

The Methanothrix cdh genes are organized in 

an operon-like structure with the order 

cdhA - cdhB. Database searches showed 

that cdhA contained a strech of 110 amino 

acids, with 24 % identity to acyl-CoA 

oxidase from C. tropicalis. This is compatible 

with the acetyl-CoA cleavage function of the 

CDH. Another region consisting of 64 re

sidues could be identified as a ferredoxin 

domain, similar with archaeal type ferredox-

ins. This confirms the functions of the CDH 

as an electron carrier. The ferredoxin do

main contained 8 cysteine residues per cdhA 

molecule which could bind two [4Fe-4S] 

clusters. In the NH2 - terminal region of the 

cdhA another possible fixation site of sever

al cysteine residues for a iron-sulfur cluster 

was found. 

adenine nucleotides during acetate 

degradation by Methanothrix. 

The enzyme responsible for both the clea

vage of acetyl-CoA (into a methyl and 

carbonyl moiety) and the oxidation of the 

carbonyl-group in Methanothrix is CO 

dehydrogenase. In chapter 6 the oxygen 

stable CO oxidation activity of the enzyme is 

described. The paramagnetic centers and the 

acetyl-CoA/CO exchange activity of the 

enzyme are discussed in chapter 7. A more 

detailed description of a high spin system in 

the CDH is presented in chapter 8. In 

chapter 9 some of the properties of the 

methyl-CoM reductase, which catalyzes the 

common termimal step in all methanogenic 

bacteria, are presented. Finally in chapter 

10 some aspects of the preceeding chapters 

are discussed and summarized. 
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1. SUMMARY 

The minimum threshold concentrations of 
acetate utilization and the enzymes responsible for 
acetate activation of several methanogenic bacteria 
were investigated and compared with literature 
data. The minimum acetate concentrations re
ached by hydrogenotrophic methane bacteria, 
which require acetate as carbon source, were be
tween 0.4 and 0.6 mM. The acetoclastic Methano
sarcina achieves acetate concentrations between 
0.2 and 1.2 mM and Methanothrix between 7 and 
70 /iM. For the activation of acetate most of the 
hydrogenotrophic methane bacteria investigated 
use an acetyl-CoA synthetase with a relatively low 
Km (40-90 iiM) for acetate. Although the affinity 
for acetate was high, the hydrogenotrophic 
methane bacteria were not able to remove acetate 
to lower concentrations than the acetoclastic 
methane bacteria, neither in pure cultures nor in 
anaerobic granular sludge samples. Based on these 
observations, it is not likely that hydrogenotrophic 

Correspondence to: M.S.M. Jetten, Department of Microbi
ology, Agricultural University Wageningen, Hesselink van 
Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands. 

methanogens compete strongly for acetate with 
the acetoclastic methane bacteria. 

2. INTRODUCTION 

The conversion of H 2 /C0 2 or acetate by 
methanogens is the terminal step in the degrada
tion of organic matter under methanogenic condi
tions [1]. Only two genera of methanogenic 
bacteria, Methanosarcina and Methanotrix, are 
described which are capable of metabolizing 
acetate to methane. However, many hydro
genotrophic methane bacteria require acetate as a 
carbon source [2,3]. Acetate is assimilated via 
acetyl-CoA, which is the central metabolite for 
cell synthesis [4]. Autotrophic methanogens syn
thesize acetyl-CoA from one-carbon substrates, 
via the acetyl-CoA pathway [5]. Methanogenic 
bacteria, which require acetate for cell synthesis, 
lack this ability. Therefore, they must posses a 
similar mechanism of acetyl-CoA synthesis as the 
acetoclastic methanogens which activate acetate 
via an acetate kinase or an acetyl-CoA synthetase 
[6,7]. Since both hydrogenotrophic and acetoclas
tic methanogens use acetate for growth, competi-

0168-6496/90/S03.50 © 1990 Federation of European Microbiological Societies 
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tion for this substrate could occur in ecosystems 
where both types are present [8]. 

The aim of the present study was to examine 
the capability of hydrogenotrophic methanogens 
to use acetate and to investigate their acetate 
activating enzymes. The threshold values for 
acetate and the enzyme activities were compared 
with the data obtained for the acetoclastic methane 
bacteria. Further, the contribution of the hydro
genotrophic methane bacteria to the removal of 
acetate in methanogenic granular sludge was 
studied. 

3. MATERIAL AND METHODS 

3.1. Chemicals and gases 
All chemicals were at least of reagent grade and 

were obtained from Merck (Darmstadt, F.R.G.). 
Biochemicals were from Boehringer Mannheim 
(Almere, The Netherlands). Gases and gas mix
tures were supplied by Hoekloos (Schiedam, The 
Netherlands). Platinum catalyst was a gift of BASF 
(Arnhem, The Netherlands). [2-14C] sodium 
acetate (58 mCi/mmol) was purchased from 
Amersham (Houten, The Netherlands). Aqualuma 
scintillation cocktail was obtained from Lumac 
(Schaesberg, The Netherlands). 

3.2. Bacterial strains and culture media 
Methanobacterium thermoautotrophicum strain 

Marburg (DSM 2133), Methanobrevibacter arbori-
philus strain AZ (DSM 744), and Methanospiril-
lum hungatei strains JF-1 (DSM 864) and GP-1 
(DSM 1101) were from the German Culture Col
lection (Braunschweig, F.R.G.). Methanosarcina 
barkeri strain Fusaro (DSM 804) was a gift of Dr. 
C. van der Drift (Nijmegen, The Netherlands) and 
Methanothrix soehngenii strain Opfikon (DSM 
2139) was from our own collection. All strains, 
except M. barkeri, were cultivated on a mineral 
medium described by Huser et al. [9], For M. 
thermoautotrophicum and M. arboriphilus 0.2 g of 
yeast extract and 0.5 g of cysteine-HCl were added 
per liter, and for M. hungatei JF-1 and GP-1 0.1 g 
of yeast extract, 0.1 g trypticase and 0.5 g of 
cysteine-HCl were added per liter medium. M. 

barkeri was grown in an imidazole-buffered 
medium [10]. 

The bacteria were grown in 1-liter serum vials 
containing 300 ml of medium, supplemented with 
1.5 or 20 mmol of sodium acetate per liter. The 
gas phase was either H 2 / C 0 2 ( 8 :2) or N 2 / C 0 2 

(8 :2 ) . Growth was monitored by measuring 
methane production and acetate consumption. 

Methanogenic granular sludge was obtained 
from the Centrale Suiker Maatschappij (CSM) 
sugar factory at Breda, The Netherlands [11]. The 
sludge contained 2.1 • 1012 microorganisms per ml. 
Methanothrix constituted about 20%, Methano
sarcina about 10% and the hydrogenotrophic 
methanogens about 15% of the total bacterial 
population. The organic content expressed as VSS 
(Volatile Suspended Solids) was 0.7 g per g dry 
weight. 

3.3. Analytical procedures 
Methane was measured with a Packard-Becker 

417 gaschromatograph equipped with a molecular 
sieve column (60-80 mesh). The carrier gas was 
Argon at a flow rate of 20 ml m in" ' . Acetate was 
determined either by gaschromatography or by 
HPLC. A Varian 2400 gaschromatograph equipped 
with a chromosorb 101 column (80-100 mesh) 
and a F ID detector was used at 150°C. Carrier 
gas was N2 saturated with formic acid at a flow 
rate of 30 ml m i n ' . Prior to injection the samples 
were acidified with amberlite anion exchange resin 
(H + ). The detection limit of acetate by 
gaschromatography was about 10 fiM. A Chrom-
pack organic acids column (Chrompack, Middel-
burg. The Netherlands) run at 60 °C was used in 
the HPLC analysis. Acetate was determined by a 
2142 refractive index detector (LKB, Woerden, 
The Netherlands). The mobile phase was 5 mM 

3.4. Preparations of cell extract 
All operations were performed at room temper

ature (19°C) under strictly anaerobic conditions 
in an anaerobic chamber with N , / H 2 (95 : 5) gas 
phase; traces of oxygen were removed by a 
platinum catalyst. Cells (300 ml cultures) were 
harvested at the late log phase by centrifugation at 
20 000 x g for 30 min, washed twice in 50 mM 
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Tris-HCl pH 7.5, 5 mM MgCl2 and 1 mM DTT, 
and resuspended in 5 ml of the same buffer. Cell 
extracts were prepared by passing the cell suspen
sions through a French pressure cell at 130 MPa. 
The cell debris was removed by centrifugation at 
8 000 X g for 15 min. The protein content was 
determined according to Bradford [12]. 

3.5. Enzyme activity determinations 
Acetate kinase and Acetyl-CoA synthetase ac

tivities were determined as described previously 
[7]. 

3.6. [,4C] acetate measurements 
Since the detection of acetate concentrations 

below 10 juM was not accurate by gaschromato-
graphy, acetate removal by Methanothrix and 
methanogenic granular sludge was measured ra-
diometrically with [2-14C] sodium acetate (58 
mCi/mmol) as substrate. Concentrated cell sus
pensions of Methanothrix or washed sludge were 
incubated at 37 ° C in a mineral medium under an 
atmosphere of N 2 / C 0 2 (8 :2) [7]. The initial 
acetate concentration was 5 mM. 20 juCi of [2-
14C]sodium acetate were added when the acetate 

concentration had decreased to 50 fiM. At ap
propriate time intervals, 1-ml samples were re
moved and centrifuged at 10 000 x g. The super
natant of representative samples was separated on 
HPLC after 10 mM of carrier acetate was added. 
The acetate fractions were pooled and the radioac
tivity was quantified by counting 100-jul samples 
in 4 ml of aqualuma scintillation cocktail in a 
LKB Wallac scintillation counter (Pharmacia/ 
LKB, Woerden, The Netherlands). 

When the radioactivity did not decrease any 
further, 50 juM of non-labelled acetate was added, 
and radioactivity was monitored to confirm that 
the decline in radioactivity was caused by acetate 
consumption. 

4. RESULTS AND DISCUSSION 

4.1. Acetate threshold values 
The acetate thresholds of several methanogenic 

bacteria are summarized in Table 1. The thresholds 
obtained for the hydrogenotrophic methane 
bacteria under non-energy-limiting conditions 
were between 0.4 and 0.6 mM. Methanobrevibacter 

Table 1 

Lowest measured concentrations of acetate in pure cultures of methanogenic bacteria 

Species 

Methanothrix 
soehngenu 

Methanosarcina 
barkeri 

Methanohacterium 
thermoaulotrophicum 

Methanospiril/um 
hungatei 

Methanobrevibacter 
arboriphilus 

Strain 

Opfikon 
Opfikon 
Opfikon 
Sp. 
CALS-1 
Fusaro 
Fusaro 
CALS 
227 
mazei 
Marburg 

GP-1 
JF-1 

AZ 

Initial 
concentration 
(mmol/1) 

20 
2 
4.6 
3.5 
1.0 
20 
40 
10 
10 
10 
1.3 
5 
1.2 
1.4 

1.4 

End 
concentration 
(Mmol/1) 

<10 
<10 

7 
69 
12 

244 
200 
190 

1 180 
397 
345 
500 
560 
590 

1530 

References 

This study 
This study 
This study a 

13 
14 
This study 
9 

14 
13 
13 
This study 
15 
This study 
This study 

This study b 

Determined radiometrically. 
Strain AZ is able to convert cysteine to acetate and propionate. 
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Table 2 

Acetate activating enzymes in methanogens 

Species 

Methanothrix 
soehngenii 

Methanosarcina 
barkeri 

Methanobacterium 
thermoautotrophicum 

Methanospirillum 
hungatei 

Methanococcus 
marispaludis 

Methanococcus 

Methanobrevibacter 
arboriphilus 

Strain 

Opfikon 
MS 
Fusaro 

thermo-
phila 

227 

Marburg 
GP-1 
JF-1 

A3 

AZ 

Enzyme a 

ACS 
AK 
AK 

AK 
AK 

ACS 
ACS 
ACS 

ACS 
ACS 
AK 
AK 

Activity 
(nmol min ~ l 

mg_ 1 protein) 

2 700 
560 

9 000 

6 400 
319 

60 
97 
44 

425 
5 

757 
264 

(CM) 

860 
3 000 
7 000 

22 000 
N.D. b 

40 
78 
90 

90 
N.D. 

250 
280 

References 

This study 
1 
17 

6 
18 

15 
This study 
This study 

19 
19 
19 
This study 

ACS, Acetyl-CoA synthetase; AK, Acetate kinase. 
N.D. = not determined. 

arboriphilus did not use any acetate. Instead, it 
produced some acetate and propionate from cy
steine. For Methanosarcina barkeri strain Fusaro a 
threshold value of 0.244 mM was found, which 
was in the same range (0.2 mM to 1.2 mM) as 
observed by other authors [10,13,14]. Methanoth
rix reached the lowest acetate concentration (< 10 
/iM). This is in good agreement with the data 
reported [13,14]. The threshold value for 
Methanothrix was also determined radiometrically 
in cell suspensions. A representative acetate de
gradation curve is depicted in Fig. 1. After a brief 
lag, acetate was utilized at a rate of 60 nmol 
min"1 mg_1 of protein. The acetate consumption 
was linear until acetate concentration reached 
about 0.2 mM. Subsequently the rate levelled off 
very rapidly, attaining a threshold value of 7 + 2 
juM. Hang Min and Zinder observed similar curves 
for the acetate consumption by Methanothrix 
CALS-1 and Methanosarcina CALS-1 [14]. Their 
data as well as ours could not be to fitted to 
Michaelis-Menten kinetics, unless a high degree of 
cooperativity was invoked. The rapid decrease of 
the acetate consumption rate in the threshold range 
indicates that ATP generation in this range limits 

substrate activation or substrate transport. This is 
in good agreement with the weak sigmodial kinet
ics of the purified acetyl-CoA synthetase of 

u • 
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\ . 
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f * \ — * — 
600 

Time (min) 

Fig. 1. Acetate utilization by washed and concentrated cell 
suspensions of Methanothrix soehngenii strain Opfikon. Two 
different 500-ml cultures (•, A) were washed and each resus-
pended in 40 ml medium (400 mg protein per liter). Acetate 
was added to an initial concentration of 5 mM. At appropriate 
time intervals 1-ml samples were removed and analysed for 
acetate by HPLC. When the acetate concentration had de
creased to 50 iiM, 20 /iCi of [2-14C] sodium acetate were added 
and the acetate concentration was determined radiometrically. 
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Methanothrix soehngenii which are observed with 
varying amounts of ATP. This enzyme, however, 
followed simple Michaelis-Menten kinetics with 
varying concentrations of acetate at high con
centrations of ATP [7]. 

4.2. Acetate activating enzymes 
All the investigated methanogenic bacteria were 

able to activate acetate to acetyl-CoA. The two 
enzyme systems for acetate activation, acetate 
kinase and acetyl-CoA synthetase, were found in 
both hydrogenotrophic and acetoclastic methano-
gens (Table 2). The difference in Km value for 
acetate of the acetate kinase of Methanosarcina 
and of the acetyl-CoA synthetase of Methanothrix 
are consistent with the general model by which 
Methanosarcina dominates in environments with 
high acetate concentrations while low acetate con
centrations favour Methanothrix [7,14], Meth-
anobacterium thermoautotrophicum, Methano-
spirillum hungatei and Methanococcus marispaludis 
had an acetyl-CoA synthetase with a very low Km 

value (40-90 (iM) for acetate as compared to the 
Km (860-22 000 juM) for the acetate-activating 
enzymes of Methanothrix and Methanosarcina. 
Although the Km of the acetate activating en
zymes of the hydrogenotrophic methanogens was 
very low, these bacteria in pure culture were not 
able to remove acetate to lower concentrations 
than Methanothrix did (Table 1). 

300 1400 2800 200 

Time (mm) 

Fig. 2. Acetate utilization and influence of hydrogen on acetate 
degradation in methanogenic granular sludge. Two portions of 
25 ml methanogenic granular sludge (•, A) were washed and 
resuspended in 25 ml of medium. Acetate was added to an 
initial concentration of 5 mM. At appropriate time intervals 
1-ml samples were removed and analysed for acetate by gas 
chromatography. When the acetate concentration had de
creased to 50 /iM, 20 ^iCi of [2-14C] sodium acetate were added 
and the acetate concentration was determined radiometrically. 
When the acetate concentration did not decrease further, the 
gas phase was changed from N 2 / C 0 2 (8:2) to H 2 / C 0 2 (8:2) 

and acetate was monitored. 

not likely that the hydrogenotrophic methane 
bacteria significantly compete with the acetoclas
tic methanogens for acetate in natural environ
ments. 

4.3. Acetate removal in methanogenic granular 
sludge 

The contribution of the hydrogenotrophic 
methane bacteria to acetate utilization was studied 
in methanogenic granular sludge where both types 
of bacteria were present. Acetate degradation in 
the sludge is depicted in Fig. 2. The acetate con
centration decreased rapidly and a threshold value 
of 4.1 /iM was obtained. This is in the same range 
(2.7-4.5 jiM) as observed for lake sediments [20]. 
When the threshold was reached, the gas phase 
was changed to H 2 / C 0 2 (8 :2) and acetate was 
monitored further (Fig. 2). No significant decrease 
in acetate concentrations was found thereafter, 
indicating that the hydrogenotrophic methane 
bacteria were not able to use acetate at very low 
concentrations. Based on these observations it is 
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In Methanothrix soehngenii, acetate is activated to acetyl-coenzyme A (acetyl-CoA) by an acetyl-CoA 
synthetase. Cell extracts contained high activities of adenylate kinase and pyrophosphatase, but no activities of 
a pyrophosphate:AMP and pyrophosphate:ADP phosphotransferase, indicating that the activation of 1 acetate 
in Methanothrix requires 2 ATP. Acetyl-CoA synthetase was purified 22-fold in four steps to apparent 
homogeneity. The native molecular mass of the enzyme from M. soehngenii estimated by gel filtration was 148 
kilodaltons (kDa). The enzyme was composed of two subunits with a molecular mass of 73 kDa in an et2 

oligomeric structure. The acetyl-CoA synthetase constituted up to 4% of the soluble cell protein. At the 
optimum pH of 8.5, the Vmm% was 55 pniol of acetyl-CoA formed per min per mg of protein. Analysis of enzyme 
kinetic properties revealed a Km of 0.86 mM for acetate and 48 p-M for coenzyme A. With varying amounts of 
ATP, weak sigmoidal kinetic was observed. The Hill plot gave a slope of 1.58 ± 0.12, suggesting two interacting 
substrate sites for the ATP. The kinetic properties of the acetyl-CoA synthetase can explain the high affinity for 
acetate of Methanothrix soehngenii. 

The terminal step in the breakdown of organic polymers 
under methanogenic conditions is the conversion of H2/C02 

or acetate by methanogens (9). The most abundant methano
genic substrate under these conditions is acetate (9, 33). 
Only two genera of methanogenic bacteria, Methanosarcina 
and Methanothrix, are capable of metabolizing acetate to 
methane. Methanosarcina spp., the most versatile methane 
bacteria, can use several compounds (H2/C02, methanol, 
methylamines, and acetate) as growth substrates (11,15, 18, 
32). Its affinity for acetate is rather low (/(,, 5 mM), the 
growth yield is 2.1 g (dry weight) per mol of acetate, and the 
doubling time is 2 days (11, 32). Methanothrix can use 
acetate as a sole growth substrate. The growth yield (1.4 
g/mol of acetate) and the growth rate (doubling time, 7 days) 
are low, but its affinity for acetate is high (K„ 0.5 mM) (10, 
40). 

The pathway for acetate degradation involves transfer of 
the methyl group of acetate to coenzyme M, forming methyl-
coenzyme M (methyl-CoM), which is then reductively de-
methylated to methane (6, 7, 19, 21, 22, 24, 37). The actual 
cleavage of the carbon-carbon bond in acetate is proposed to 
be catalyzed by carbon monoxide dehydrogenase (1, 5, 8, 
28). High activities of carbon monoxide dehydrogenase were 
found in both Methanosarcina and Methanothrix spp. grown 
on acetate (8, 12, 16, 17, 35). Prior to the cleavage of the 
carbon-carbon bond, acetate is proposed to be activated to 
acetyl-coenzyme A (acetyl-CoA) (1, 6, 34). Different mech
anisms of acetate activation were found in the two aceto-
clastic methanogens. For Methanosarcina spp., high activi
ties of acetate kinase (EC 2.7.2.1) and phosphate 
acetyltransferase (EC 2.3.1.8) were reported (1, 6, 34, 36). In 
Methanothrix spp., only an acetyl-CoA synthetase (acetate: 
CoA ligase [AMP forming], EC 6.2.1.1) was present (16, 26). 
Recently, the purification and properties of the acetate 
kinase of Methanosarcina thermophila were described (1). 
This report summarizes the purification and characterization 
of the acetyl-CoA synthetase from Methanothrix soehngenii 

* Corresponding author. 

and a comparison is made between the acetate-activating 
systems of Methanosarcina and Methanothrix spp. 

MATERIALS AND METHODS 

Organism and cultivation. Methanothrix soehngenii (DMS 
2139) was the Opfikon strain isolated by Huser et al. (10). 
The organism was mass cultured on 80 mM sodium acetate 
in 25-liter carboys containing 20 liters of the medium de
scribed previously (12). Cultures were incubated without 
stirring at 35°C in the dark under an 80% N2-20% C0 2 gas 
phase. Cells were harvested at the late log phase by contin
uous centrifugation (Carl Padberg Zentrifugenbau GmbH, 
Lahr/Schwarzwald, Federal Republic of Germany), washed 
in 50 mM Tris hydrochloride (Tris-HCl) (pH 8.0), and stored 
under N2 at -20°C. 

Chemicals. All chemicals were at least of analytical grade. 
Acetyl-CoA and P1,P5-di(adenosine-5')-pentaphosphate 
were purchased from Sigma Chemical Co. (Amsterdam). All 
other biochemicals were obtained from Boehringer Mann
heim (Almere, The Netherlands). Sodium dodecyl sulfate 
(SDS) and acrylamide were from Bio-Rad Laboratories 
(Utrecht, The Netherlands). Gases were purchased from 
Hoekloos (Schiedam, The Netherlands). Platina catalyst was 
a gift of BASF (Arnhem, The Netherlands). Mono-Q HR 5/5, 
Q-Sepharose, Phenyl Superose HR 5/5, Superose 6 HR 
10/30, and molecular mass standards for gel filtration and 
polyacrylamide gel electrophoresis (PAGE) were obtained 
from Pharmacia Fine Chemicals (Woerden, The Nether
lands). 

Analytical methods. Protein was determined with 
Coomassie brilliant blue G250 as described by Bradford (2). 
Bovine serum albumin was used as the standard. The purity 
of the enzyme after various chromatographic steps was 
determined by SDS-PAGE following the method of Laemmli 
(20). Molecular mass standards were a-lactalbumin, 14.4 
kilodaltons (kDa); trypsin inhibitor, 20.1 kDa; carbonic 
anhydrase, 30 kDa; ovalbumin, 43 kDa; bovine serum albu
min, 67 kDa; and phosphorylase B, 94 kDa. Gels were 
stained with Coomassie brilliant blue R250. Native enzyme 
molecular mass was determined on Superose 6 HR 10/30 
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equilibrated with 50 mM Tris-HCl (pH 8.0) with thyreoglob
ulin (669,000 Da), ferritin (445,000 Da), catalase (232,000 
Da), and aldolase (158,000 Da) as standards. 

Enzyme purification. The purification of the acetyl-CoA 
synthetase was regularly performed within 1 day. Unless 
indicated otherwise, all procedures were carried out aerobi-
cally at room temperature (± 19°C). A frozen cell paste was 
thawed, diluted with 50 mM Tris-HCl (pH 8.0) in a 1:3 ratio, 
disrupted by passing through a French pressure cell at 135 
MPa, and centrifuged for 30 min at 30,000 x g. The super
natant contained about 20 mg of protein per ml and is 
referred to as the crude extract. Membrane fractions were 
prepared by centrifugation of the crude extract at 110,000 x 
g for 75 min. The crude extract (25 ml) was applied to a 
column (3.3 by 10 cm) of Q-Sepharose (fast flow) equili
brated with 50 mM Tris-HCl (pH 8.0) (buffer A). After the 
column was washed with 40 ml of buffer A, the adsorbed 
protein was eluted in a 500-ml linear gradient of 1 M NaCl in 
buffer A. The flow rate was 4 ml/min. Fractions (10 ml) were 
collected and analyzed for acetyl-CoA synthetase activity. 
The acetyl-CoA synthetase eluted at 0.15 M NaCl. Fractions 
with activities higher than 2 U/mg were pooled and desalted 
in an Amicon ultrafiltration cell (Grace, Rotterdam, The 
Netherlands) with a PM 30 filter. The remaining steps in the 
purification were performed with a high-resolution fast pro
tein liquid chromatography (FPLC) system (Pharmacia/ 
LKB, Woerden, The Netherlands) equipped with a model 
2152 LC controller. Repetitively, four samples of 5 ml of the 
concentrated desalted enzyme solution were injected onto a 
Mono-Q HR 5/5 anion-exchange column equilibrated with 
Tris-HCl, pH 9.0. A 12-ml linear gradient from 0 to 0.4 M of 
NaCl in Tris-HCl, pH 9.0, was applied at a flow rate of 1.0 
ml/min. Fractions with acetyl-CoA synthetase activity were 
concentrated to 2.0 ml in a Centricon PM 30 (Grace, Rotter
dam, The Netherlands). The enzyme solutions of four runs 
were combined and mixed in a 1:1 ratio with 2 M (NH4)2S04 

in buffer A and applied to a Phenyl Superose HR 5/5 column. 
A 20-ml linear gradient from 1 to 0 M (NH4)2S04 in buffer A 
was applied at a flow rate of 0.5 ml/min. Fractions with 
acetyl-CoA synthase activity were concentrated to 2.0 ml in 
a Centricon PM 30. The concentrated enzyme solution was 
injected on a Superose 6 HR 10/30 gel filter equilibrated with 
buffer A. The column was developed at a flow rate of 0.5 
ml/min. Purified acetyl-CoA synthetase was collected, con
centrated in Centricon PM 30, frozen in liquid N2 , and stored 
at -80°C until use. 

Assays. Acetyl-CoA synthetase (EC 6.2.1.1) was assayed 
either by following the formation of acetyl-CoA as hydrox-
amate from acetate, HSCoA, and ATP or by coupling the 
acetyl-CoA synthetase reaction with adenylate kinase, pyru
vate kinase, and lactate dehydrogenase (25, 39). In the first 
assay, the standard reaction mixture included the following 
compounds (in micromoles per milliliter): ATP, 2; sodium 
acetate, 10; MgCl2, 2; glutathione, 2; Tris-HCl (pH 8.5), 100; 
neutralized NH2OH, 600; coenzyme A, 0.2; and enzyme. 
Acetyl-CoA was determined as the hydroxamate by the 
method of Rose et al. (27). For the second assay, the 
reaction mixture contained (in micromoles per milliliter): 
Tricine-KOH (pH 8.5), 100; MgCl24; phosphoenolpyruvate, 
2; NADH, 0.4; ATP, 2; sodium acetate, 10; coenzyme A, 
0.2; glutathione, 2.0; plus adenylate kinase, 1 U; pyruvate 
kinase, 0.8 U; lactate dehydrogenase, 3 U; and enzyme. The 
rate of NADH oxidation was followed continuously at 340 
nm in an LKB/Biochrom Ultrospec K spectrophotometer. 
All incubations were done at 35°C. One unit of enzyme is 

defined as the amount which catalyzes the formation of 1 
umol of acetyl-CoA per min. 

Acetate kinase (EC 2.7.2.1) and phosphate acetyltransfer-
ase (EC 2.3.1.8) concentrations were determined as de
scribed by Aceti and Ferry (1). 

Adenylate kinase (EC 2.7.4.3) was measured photometri
cally by following the formation of ADP from AMP and ATP 
at 340 nm by coupling the reaction to the oxidation of NADH 
via pyruvate kinase and lactate dehydrogenase or by follow
ing the formation of ATP from ADP at 340 nm by coupling 
the reaction to the reduction of NADP+ via hexokinase and 
glucose-6-phosphate dehydrogenase (25). The reaction mix
ture for the formation of ADP contained (in micromoles per 
milliliter): Tricine-KOH (pH 8.2), 100; MgCl2 4; phosphoe
nolpyruvate, 2; NADH, 0.4; ATP, 2; AMP, 2; glutathione, 
2.0; plus pyruvate kinase, 0.8 U; and lactate dehydrogenase, 
3 U. The reaction mixture for the formation of ATP con
tained (in micromoles per milliliter): Tricine-KOH (pH 8.2), 
100; MgCl2, 4; ADP, 4; glutathione, 2.0; NADP+ , 0.4; 
D-glucose, 100; plus glucose-6-phosphate dehydrogenase, 
0.7 U; and hexokinase, 0.7 U. 

Inorganic pyrophosphatase (EC 3.6.1.1) was measured by 
following the formation of P; (14). The reaction mixture 
contained (in micromoles per milliliter): Tricine-KOH (pH 
8.2), 100; MgCl2, 4; sodium pyrophosphate, 5; and glutathi
one, 2. Samples (200 |xl) were taken at 1-min time intervals 
and added to 100 p.1 of 5 M H 2S0 4 to stop the reaction. The 
precipitated protein was removed by centrifugation, and 
phosphate content was determined in the supernatant by the 
modified method of Fiske-SubbaRow as described by Josse 
(14). 

Pyrophosphate:AMP phosphotransferase was measured 
by following the formation of ADP from AMP and PPj by 
coupling the reaction to the reduction of NADP+ via ade
nylate kinase, hexokinase, and glucose-6-phosphate dehy
drogenase (38). The reaction mixture contained (in micro
moles per milliliter): Tricine-KOH (pH 8.2), 100; MgCl2, 4; 
PPi, 20; NADP+ , 0.4; AMP, 4; D-glucose, 100; glutathione, 
2.0; plus adenylate kinase, 1 U; hexokinase, 0.7 U; and 
glucose-6-phosphate dehydrogenase, 0.7 U. 

Pyrophosphate:ADP phosphotransferase was measured 
by following the formation of ATP from ADP and PPS by 
coupling the reaction to the reduction of NADP+ via hex
okinase and glucose-6-phosphate dehydrogenase. Adenylate 
kinase was inhibited by Ap5A [P^Pj-dKadenosine-S'J-pen-
taphosphate). The reaction mixture contained (in micro
moles per milliliter): Tricine-KOH (pH 8.2), 100; MgCl2, 4; 
PP;, 20; NADP+ , 0.4; AMP, 4; D-glucose, 100; glutathione, 
2.0; Ap5A, 0.2; plus hexokinase, 0.7 U; and glucose-6-
phosphate dehydrogenase, 0.7 U (25). 

ATPase (EC 3.6.1.3) content was determined by following 
formation of P, from ATP. The reaction mixture contained 
(in micromoles per milliliter): Tricine-KOH (pH 8.2), 100; 
MgCl2, 4; and sodium ATP, 5. Samples (200 |xl) were taken 
at 1-min time intervals. The reaction was stopped by the 
addition of 100 uj of 5 M H 2S0 4 . The precipitated protein 
was removed by centrifugation, and phosphate content was 
determined as described by Skrabanja et al. (31). 

In all assays, an appropriate amount of cell extract was 
used. The reactions were started by the addition of cell 
extract or substrate. 

The assays were performed under both strict anaerobic 
and aerobic conditions. Since no difference in activity was 
found under either condition, assays were routinely per
formed aerobically. 

Kinetic analysis. The kinetic parameters of acetyl-CoA 
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TABLE 1. Enzyme activities in cell extract of 
Methanothrix soehngenii" 

Enzyme 

Acetyl-CoA synthetase 
Adenylate kinase 
Pyrophosphatase 
ATPase 
Acetate kinase 
Phosphate acyltransferase 
PPjiAMP phosphotransferase 
PPjiADP phosphotransferase 

EC no. 

6.2.1.1 
2.7.4.3 
3.6.1.1 
3.6.1.3 
2.7.2.1 
2.3.1.8 

Sp act 
(H-mol/min per tng) 

2.7 ± 0.6 
4.2 ± 0.7 

0.92 ± 0.1 
0.041 ± 0.005 

ND* 
ND 
ND 
ND 

" The values represent mean activities of at least four extract preparations. 
Enzymatic activity for each extract was the average of five determinations. 

b ND, Not detected. 

synthetase were determined at 35°C and pH 8.5. The con
tinuous assay was used for the determination of the Km and 
V „ „ for acetate and coenzyme A. The Km for ATP was 
determined with the discontinuous assay. The inhibitory 
effects of AMP and PP; on the acetyl-CoA synthetase were 
tested with the discontinuous assay at different AMP, PPf, 
and ATP concentrations. 

RESULTS 

Acetate activation. Activities of enzymes possibly involved 
in the activation of acetate in Methanothrix soehngenii are 
summarized in Table 1. None of the enzyme activities was 
influenced by oxygen. A high activity of an acetyl-CoA 
synthetase and no acetate kinase activity were detected in 
cell extracts. Enzymes necessary for the conversion of AMP 
and PPi, which are formed in the acetyl-CoA synthetase 
reaction, were also present in high levels. This confirms 
earlier findings made by Kohler and Zehnder (16). After 
ultracentrifugation, these enzymes were found in the soluble 
fraction, whereas the control enzyme ATPase was com
pletely recovered in the particulate fraction. Since the en
ergy in the PP, represents metabolically useful energy, cell 
extracts were tested for the most obvious PPj-dependent 
enzymes. No PP^AMP or PP,:ADP phosphotransferase ac
tivities were found. 

Enzyme purification. The acetate-activating enzymes in 
Methanosarcina and Methanothrix spp. were reported to be 
insensitive to molecular oxygen (1, 15, 16). The purification 
of the acetyl-CoA synthetase therefore required no strict 
anaerobic conditions. The purification was carried out at 
room temperature and generally took only 1 day. In four 
steps, a 22-fold-purified enzyme was obtained (Table 2). 
Q-Sepharose chromatography proved to be an effective first 
step in the purification of the acetyl-CoA synthetase, since 
the enzyme was one of the first proteins to elute from the 

TABLE 2. Purification of acetyl-CoA synthetase 
of Methanothrix soehngenii 

Step 

Crude extract 
Q-Sepharose 
Mono-Q 
Phenyl-Superose 
Superose 

Protein 
(mg) 

400 
40 
16 
8 
1 

Activity 
(U) 

880 
392 
272 
192 
50 

Sp act" 
(U/mg) 

2.2 
9.8 

17.2 
24.1 
48.3 

Purification 
(fold) 

1 
5 
8 

11 
22 

Yield 

(%) 
100 
45 
30 
22 
6 

. 
1 Acetyl- CoA synthetase 

\ 

1 Micromoles of acetyl-CoA formed per minute per milligram of protein. 

0.5 

0.4 

0.3 

0.2 

0.1 

50 52 5A 5.6 5.8 6.0 

LOG MOLECULAR WEIGHT 
FIG. 1. Molecular mass estimation of the native acetyl-CoA 

synthetase on Superose 6 HR 10/30. Standards were aldolase (158 
kDa, 1); catalase (232 kDa, 2); ferritin (446 kDa, 3); and thyroglob-
ulin (669 kDa, 4). The position of acetyl-CoA synthetase is indicated 
by the arrow. 

column after application of the NaCl gradient. After concen
tration and desalting, the enzyme preparation was injected 
onto an FPLC system and purified to homogeneity. The loss 
in total activity as given in Table 2 mainly occurred because 
only those fractions with high specific activities were pooled 
in each purification step. 

Characterization of the purified enzyme. The molecular 
mass of the native acetyl-CoA synthetase was estimated by 
gel filtration on Superose 6 HR 10/30 and appeared to be 148 
kDa, compared with standards of known molecular mass 
(Fig. 1). SDS-PAGE of the purified enzyme revealed one 
subunit with relative molecular mass equal to 73 kDa, which 
suggests an a2 subunit stoichiometry for the native enzyme 
(Fig. 2). The activity of the purified enzyme did not decrease 
significantly in the presence of air. The enzyme could be 
stored at - 20 or —70°C without any loss of activity for at 
least 2 months. When the enzyme was kept at 4°C, aerobi-
cally or anaerobically, 50% of the activity was lost within 72 
h. 

Substrate specificity. In addition to acetate, a coenzyme 
A-dependent activation of some other organic acids was 
catalyzed to some extent by the purified enzyme (Table 3). 

Kinetic properties. The reaction rate at different acetate 
and coenzyme A concentrations followed Michaelis-Menten 
kinetics. Half-maximal rates were obtained at 0.86 mM 
acetate and at 48 u,M coenzyme A. The Vmax, at the optimal 
pH of 8.5 (100 mM Tricine-KOH) and at 35°C, was 55 u.mol 
of acetyl-CoA formed per min per mg of protein. With ATP, 
however, a weak sigmoidal velocity curve was found. The 
concentration of ATP which gave half-maximal rates was 
obtained from the double-reciprocal plot and appeared to be 
1 mM. These data suggest cooperative binding of ATP, as 
reported for the acetate kinase of Clostridium thermoaceti-
cum (29). A Hill plot of the data resulted in a Hill coefficient 
of 1.58 ± 0.12, suggesting two interacting substrate sites 
(Fig. 3) (29). 

Inhibition studies. Acetyl-CoA synthetase was inhibited by 
the end products AMP and PPj. When the activities at 
various concentrations of AMP, PPh and ATP were plotted 
by the method of Dixon (4), la K, of 4 and 6.5 mM was 
determined for AMP and PP,, respectively (Fig. 4A and B). 
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FIG. 2. SDS-PAGE of the different steps in the purification 
procedure. Lane 1, Molecular mass markers; lane 2, crude extract 
(80 u.g); lane 3, pooled fractions from phenyl-Superose (30 u.g); lane 
4, pooled fractions from Superose 6 HR 10/30 (50 u.g). 

DISCUSSION 

Methanosarcina and Methanothrix spp. have different 
enzyme systems for the activation of acetate. An acetate 
kinase and a phosphate acyltransferase convert acetate to 
acetyl-CoA in Methanosarcina spp., whereas this conver
sion is catalyzed by an acetyl-CoA synthetase in Methano
thrix spp. (1, 16). The acetate kinase of Methanosarcina 
thermophila and the acetyl-CoA synthetase of Methanothrix 
spp. have now been purified, and their properties can be 
compared. Acetyl-CoA synthetase is an abundant protein of 
Methanothrix soehngenii. From the increase in specific 
activity upon purification and from the 6% recovery, it can 
be calculated that up to 4% of the soluble cell protein of 
Methanothrix soehngenii is acetyl-CoA synthetase. This 
level is somewhat higher than the 1% acetate kinase that can 
be calculated for Methanosarcina thermophila (1). The 
acetyl-CoA synthetase has a homodimeric subunit composi
tion similar to that of the acetate kinase of Methanosarcina, 

TABLE 3. Substrate specificity of the purified 
acetyl-CoA synthetase 

Substrate- J ^ f ' ^ 
activity0 (%) 

Acetate 100 
Propionate 5 
Butyrate 1.6 
Benzoate 0.6 
Valerate 0.3 
Formate 0 
Succinate 0 

" 10 mM sodium salt was used in the assay. 
* Relative to activity with acetate (100%; 54 (xmol of acetyl-CoA formed per 

min per mg of protein). 

e 

H 

f 
C 

60 

Ml 

40 

3 10 

"7" 

7-: 
LOG [ATP] 

< 0 2 U C 8 10 12 14 16 18 20 

[ATP] (mM) 

FIG. 3. Relationship between ATP concentration and activity of 
the purified acetyl-CoA synthetase. Conditions and calculations are 
described in Materials and Methods. Inset: Hill plot of the same 
data. 

but the size of the subunits is somewhat larger, 73 versus 58 
kDa (1). Both enzymes exhibit the same temperature stabil
ity and are not sensitive to oxygen (1). Both enzymes are 
capable of activating some other fatty acids, like propionate 
(1). The rate of these conversions, however, is very low. The 

-i* - 2 0 2 4 6 

[AMP] (mM) 

o.w-

012 

010 

5 0.06 
E 

| 0.06 

1 0.0V 

~ 0.02 

B 

T 

/ yi-
K, = 6.5mM 

,—•— 

r / 

m 

. ' 

^^ 

-8 -6 -4 -2 0 2 I 6 8 10 
[PPi] (mM) 

FIG. 4. Inhibition of acetyl-CoA synthetase by AMP (A) and PP; 
(B). The data are plotted by the method of Dixon (4). ATP 
concentration: # , 1 mM; A, 2 mM; • , 5 mM. 
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major differences b e tween the e nzymes are the kinetic 
p roper t ies . The ace ta te k inase of Methanosarcina thermo-
phila has a high V m a x (660 U/mg) , bu t a low affinity for 
a ce ta te (K„„ 22 mM) (1). The ace ty l -CoA syn the tase of 
Methanothrix soehngenii h a s a high affinity for a ce ta te (K„„ 
0.8 mM) , bu t has a l ower V m a x (55 U/mg) . The ace ta te k inase 
exhibi ts normal Michae l i s -Menten kinet ics t owards ace ta te 
and A T P . The ace ty l -CoA syn the ta se , howeve r , shows a 
weak sigmoidal velocity cu rve with varying amoun t s of 
A T P , which indicates the coopera t ive binding of A T P to the 
e n zyme . The Hill plot gave a s lope of 1.58, which suggests 
two in teract ing b inding sites for ATP . This might enable the 
cell t o r egula te the a ce ta te ac t ivat ion (30). 

The differences in V m a x and Km value for ace ta te of the 
two ace ta te ac t ivat ing e n zymes may explain the differences 
in the physiological p roper t ies and the ecological d istr ibution 
of t he two types of ace toc las t ic me thanogens in na tu re . 
Methanosarcina s pp . , which have a high maximal specific 
g rowth ra te and a low affinity for a ce ta t e , a re dominant in 
e nv i ronmen t s with high ace ta te concen t ra t ions , whe reas 
Methanothrix s pp . , which have the r everse p roper t ies , a re 
mos t abundan t in e nv i ronmen t s with low ace ta te concen t ra 
t ions (9, 33). It c anno t , howeve r , be exc luded that t he 
favorable surface-volume ratio of Methanothrix s pp . and 
differences in ace ta te up t ake sys tems are addit ional factors 
of impor tance in the affinity for ace ta te (23). The two sets of 
ace ta te-act ivat ing e n zymes were a lso found in Escherichia 
coli and function at different ace ta te concen t ra t ion . At high 
ace ta te concen t r a t ions , a ce ta te is ac t ivated with an ace ta te 
k inase -phospha te acyl t ransferase sy s t em, whe reas s tudies 
with mu tan t s showed tha t at low ace ta te concen t ra t ions , an 
ace ty l -CoA syn the tase activity is d isplayed (3 , 36). 

The p r e sence of t he a ce ty l -CoA synthe tase-adenyla te ki
nase -pyrophospha ta se sys t em in Methanothrix soehngenii 
implies that 2 A T P molecules a re required for the act ivat ion 
of 1 molecule of a ce t a t e . N o e n zymes we r e de tec ted which 
make use of t he energy p re sen t in the PPj bond . It is possible 
that t hese e nzymes we re inact ivated or tha t t he hydrolysis of 
PP; is j u s t needed to pull the act ivat ion p rocess at low 
ace ta te concen t ra t ions . It is r a ther intriguing how Methano
thrix is able to genera te metabol ic energy for g rowth , e spe
cially b ecause it was pos tula ted that the acetoclast ic cleav
age only yields 1 A T P (6, 36, 37). It has to be ensured , 
therefore , tha t t he t ransfer of e lec t rons formed in the oxida
tion of t he e nzyme-bound carbonyl moiety to the methyl-
C o M reduc tase forms an e lec t rochemical gradient which is 
high enough to enable the synthes is of more than 2 ATP . 
Fu tu re r e sea rch is c oncen t r a t ed on the e lucidation of t he 
e lec t ron t ransfer p rocesses in Methanothrix soehngenii. 
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A fluoride-insensitive inorganic pyrophosphatase 
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Department of Microbiology, Wageningen Agricultural University, Wageningen, The Netherlands. 

An inorganic pyrophosphatase [E.C. 3.6.1.1] was isolated from Methanothrix soehngenii. In three steps the 
enzyme was purified 400-fold to apparent homogeneity. The molecular mass estimated by gelfiltration was 
139 ± 7 kDa . SDS-PAGE indicated that the enzyme is composed of subunits with molecular masses of 35 
and 33 kDa in an aji2 oligomeric structure. The enzyme catalyzed the hydrolysis of inorganic pyrophos
phate, tri- and tetrapolyphosphate, but no activity was observed with a variety of other phosphate esters. 
The cation Mg2* was required for activity. With Mn2+ and Co2+ (1 mM) activities were 160 % and 24 % of 
the activity with 1 mM Mg2+ at 1 mM PP, , respectively. The pH optimum was 8 at 1 mM PP, and 5 mM 
Mg2+. The enzyme was heat-stable, insensitive to molecular oxygen and not inhibited by fluoride. Analysis 
of the kinetic properties revealed an apparent K„ for PP, of 0.1 mM in the presence of 5 mM Mg2+. The 
Vm„ was 590 jumol of pyrophosphate hydrolyzed per min per mg protein, which corresponds to a K„t of 
1400 per second. The enzyme was found in the soluble enzyme fraction after ultracentrifugation, when 
cells were disrupted by French Press. Upto 5 % of the pyrophosphatase was associated with the membrane 
fraction, when gentle lysis procedures were applied. 

Methanothrix soehngenii is an anaerobic 

archaebacterium, which solely uses acetate' as 

carbon and energy source (7,29). The growth 

yield (1.4 g/mol acetate) and the growth rate 

(average doubling time of 7 days) are low, but 

the affinity (K, = 0.5 mM) for acetate of M. 

soehngenii is high (7,11). In M. soehngenii 

acetate is activated to acetyl-CoA by acetyl-

CoA synthetase [1] (9). The formed AMP is 

converted to ADP by adenylate kinase [2] and 

pyrophosphate is hydrolyzed by pyrophos

phatase [3] (9). The sum of these reactions [4] 

indicates that acetate in M. soehngenii is acti

vated to acetyl-CoA at the expense of two 

energy rich phosphate-bonds (9). 

Ac + ATP + HSCoA 

AMP + ATP 

PP, + H.O 

Ac + 2 ATP + HSCcA 

> Ac-SCoA + AMP + PP, 

> 2 ADP 

> 2 P, 

—--> Ac-SCoA + 2 ADP + 2P, 

[11 
PI 
PI 

HI 

Because conversion of acetate to methane is 

supposed to yield only one ATP, it is not 

likely that Methanothrix will just hydrolyze 

pyrophosphate (24). For a favourable energy 

balance the energy from the pyrophosphate 

bond has to be conserved. Therefore, the 

inorganic pyrophosphatase of M. soehngenii 

was investigated. 

Enzymes relatively specific to the hydrolysis of 

inorganic pyrophosphate are widely distri

buted in nature. Inorganic pyrophosphatases 

have been purified from heterotrophic, 

chemolithoautotrophic, sulfate reducing and 

phototrophic bacteria and from yeasts (6,12-

16,18,19,21,25-27). The isolation and characte

rization of this enzyme from an archaebac

terium is not yet reported. The purification 

and some of the properties of inorganic 

pyrophosphatase from M. soehngenii are 

described here. 

MATERIALS AND METHODS 

Organism and cultivation. Methanothrix 

soehngenii was the Opfikon strain isolated by 
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TABLE 1: Purification of pyrophosphatase from Methanothrix soehngenii. 

step protein 

mg 

224 

2,5 

0,8 

0,3 

units 

291 

292 

180 

155 

Sp. Act. * 

U/mg 

1,3 

117 

225 

515 

purification 

fold 

1 

90 

173 

396 

recovery 

% 

100 

100 

62 

53 

Crude extract 

Q-sepharose 

Hydroxylapatite 

Phenyl-superose 

* micromoles of pyrophosphate hydrolyzed per minute per mg protein 

TABLE 2 : Inhibition of pyrophosphatase 

Inhibitor Relative activity * 

none 100b 

KF 82 

p-Q-Hg-benzoate 82 

Titanium citrate 78 

NaN3 74 

Sodium dithionite 71 

Iodoacetamide 70 

KCN 60 

ATP 38 

ATP + 10 mM Mg2* 87 

EDTA 35 

EDTA + 10 mM Mg2* 83 

* Pyrophosphatase (10 /ig) was preincubated 30 min at 35°C in 50 mM Tris-HQ, 
10 mM MgClj, pH 8.0 and 5 mM inhibitor. Thereafter 1 mM pyrophosphate was 
added and the activity determined as described in Material and Methods. 

b 100 % activity is 278 /zmol PP, hydrolyzed per min per mg protein. 
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Huser et al. and provided by AJ.B. Zehnder 

(7,29). The organism was mass cultured on 80 

mM sodium acetate in 25 1 carboys with a 

sterile gas outlet, containing 20 1 of the 

medium as described previously (7). Cultures 

were incubated without stirring at 35 °C in the 

dark under a N2/C02 (80/20 %) gas phase. 

Cells were harvested after 6 weeks at the late 

log phase by continuous centrifugation 

(Heraeus Sepatech, Osterode, FRG), washed 

in 50 mM anaerobic Tris-HCl pH 8.0, frozen 

in liquid nitrogen and stored at -20 °C under 

NJ /HJ (96:4). The yield was about 1 g wet 

weight per liter. 

Chemicals. All chemicals were at least of 

analytical grade. Tris(hydroxymethyi)amino-

methane, tri- and tetrapolyphosphate were 

purchased from Sigma (Amsterdam). Tetraso-

dium pyrophosphate was from Janssen 

(Beerse, Belgium). All other chemiclas were 

from Merck (Darmstadt, FRG). Biochemicals 

were obtained from Boehringer Mannheim 

(Almere , the Ne ther lands ) . Sodium 

dodecylsulfate, acrylamide and hydroxylapatite 

were from Biorad (Utrecht, the Netherlands). 

Q-Sepharose, Phenyl Superose HR 5/5, 

Superose 6 HR 10/30 and molecular mass 

standards for gelfiltration and SDS-PAGE 

were obtained from Pharmacia Fine 

Chemicals (Woerden, the Netherlands). 

Ti(III)citrate (100 mM) was prepared by 

adding 5 ml 1 M Ti(III)chloride to 40 ml of 

anaerobic 0.2 M sodium citrate solution, pH 

was adjusted with 2 M Tris to 7.5. 

Analytical methods. Protein was estimated 

with Coomassie brillant blue G250 as descri

bed by Bradford (4). Bovine serum albumin 

was used as standard. The purity of the 

enzyme after various chromatographic steps 

was determined by SDS-PAGE according to 

the method of Laemmli (17). The following 

molecular mass standards were used : trypsin 

inhibitor, 20.1 kDa; carbonic anhydrase, 30 

kDa; ovalbumin, 43 kDa; bovine serum albu-

mine, 67 kDa; and phosphorylase b, 94 kDa. 

Gels were silver stained as described by Wray 

et al. (28). Native PAGE and activity staining 

of the pyrophosphatase were performed as 

described (2). Native enzyme molecular mass 

was determined on Superose 6 HR 10/30 

equilibrated with 50 mM Tris-HCl pH 8.0 

containing 150 mM NaCl, using catalase 

(232), aldolase (158) and bovine serum al-

bumine (dimer 134 and monomer 67 kDa) as 

standards. The column was developed at a 

flow rate of 0.3 ml/min. 

Enzyme purification. The purification of the 

pyrophosphatase was regularly performed 

within one day. Unless indicated otherwise all 

procedures were carried out aerobically at 

room temperature (± 19 °C). A frozen cell 

paste was thawed, diluted with 50 mM 

Tris-HCl pH 8.0 (Buffer A) in a 1:3 ratio, 

sonified 5 times 30 seconds and disrupted by 

passing twice through a French pressure cell 

at 135 MPa and centrifuged 10 min at 10,000 

x g. In this way 90-95 % of the cells were 

disrupted. The supernatant was centrifuged 

150 min at 110,000 x g. The supernatant after 

ultracentrifugation contained about 10 mg of 

protein per ml and is referred to as crude 

extract. When membrane association was 

studied, cells were lyzed more gentle. One 

gram of freshly haversted cells were 

resuspended in 10 ml 20 mM Tricine-KOH 

pH 7.5, 10 mM MgS04 and 0.4 M sucrose 

(buffer B). The suspension was sonified 20 

times one second to break the long filaments. 

The homogeneous suspension was centrifuged 

20 min 15,000 x g and the pellet was 

resuspended in 20 ml of buffer B, containing 

0.5 mM phenylmethylsulfonyl fluoride 

(PMSF). The cells were lyzed by passage 

through a French pressure cell at 65 Mpa and 

thereafter centrifuged 15 min at 12,000 x g to 

remove unbroken cells. This gentle method 

disrupted 40-50 % of the cells. The superna

tant was ultracentrifuged one hour at 300,000 

x g and the pellet was washed three times 

with buffer B, containing 0.5 mM PMSF. The 

obtained membrane fraction was assayed 

immediately for pyrophosphatase, acetyl-
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Fig. 1. Molecular mass determination of 
purified pyrophosphatase on 
Superose 6 HR 10/30. 

Standards (A) were Bovine Serum Al-
bumine (Monomer, 67 kDa, [1] and Dimer, 
134 kDa, [2]), Aldolase (152 kDa, [3]) and 
Catalase (232 kDa, [4]). The purified pyro
phosphatase is marked by • 
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Fig. 2. Native PAGE of purified pyrophosphatase 

Lane 1: 10 u.g pyrophospatase stained 
with Coomassie R 250. 

Lane 2: 0.5 jug pyrophosphatase stained 
for accumulated phosphate after 
1 min incubation in the standard 
assay mixture. 
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Fig. 3. SDS-PAGE of purified pyrophos
phatase. 

Lane 1: Molecular mass markers. 
Lane 2: 5 /xg pyrophosphatase. 
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coenzyme A synthetase and ATP-ase activity 

in the standard assays. 

The crude extract (20 ml) was applied to a 

column (3.3 by 10 cm) of Q-Sepharose (fast 

flow) equilibrated with buffer A. The column 

was washed with 150 ml of buffer A. The 

inorganic pyrophosphatase was collected just 

after the void volume. The rest of the ad

sorbed protein was washed from the column 

in a 200 ml linear gradient of 1 M NaCl in 

buffer A. The flow rate was 3 ml/min. Frac

tions (12 ml) were collected and analysed for 

pyrophosphatase activity. Fractions with pyro

phosphatase activity were pooled and con

centrated in an Amicon ultrafiltration cell 

(Grace, Rotterdam, the Netherlands) with a 

PM 30 filter. The concentrated enzyme 

solution was applied to a hydroxylapatite 

column (1 by 6 cm) equilibrated with buffer 

A. The adsorbed protein was eluted from the 

column in a 120 ml linear gradient of 1.7 M 

(NH4)2S04 in buffer A. Fractions of 6 ml were 

collected at a flow rate of 2 ml/min. The 

inorganic pyrophosphatase was eluted at 0.7 

M (NH4)2S04. Fractions with pyrophospha

tase activity were pooled and concentrated in 

an Amicon ultrafiltration cell with a PM 30 

filter. 

The remaining step in the purification was 

performed with a high resolution fast protein 

liquid chromatography (FPLC) system 

(Pharmacia / LKB, Woerden, the Nether

lands) equipped with a model 2152 LC 

controller. The enzyme solution was mixed in 

a 1:1 ratio with 4 M (NH4)2S04 in buffer A 

and applied to a Phenyl Superose HR 5/5 

column. The column was washed with 5 ml of 

2 M (NH4)2S04 in buffer A at a flow rate of 

0.5 ml/min and then a 15 ml gradient from 2 

M to 0 M (NH4)2S04 in buffer A was applied. 

Pyrophosphatase was collected at 0.05 M 

(NH4)2S04. Fractions with pyrophosphatase 

activity were concentrated to 0.3 ml in a 

Centricon PM 30 and frozen in liquid nitro

gen and stored at -80 °C until use. 

Assay. Inorganic pyrophosphatase (E.C. 

3.6.1.1) was measured by following the for

mation of inorganic phosphate. The reaction 

mixture contained (in |imoles per ml) : Tris-

HC1 (pH 8.0), 40 ; MgClj, 5 and sodium pyro

phosphate, 1 . Samples of 100 (il were taken 

in 0.5 min time intervals and added to 2 ml of 

stop reagent (4 mM ammoniumheptamolyb-

date, 0.7 mM potassium antimony(III)oxide 

tartrate and 27 mM L-ascorbic acid in 1 M 

H2S04). Phosphate was determined as a re

duced molybdenium blue at 690 nm after the 

addition of 8 ml of distilled water to the stop 

reagent. 

ATP-ase (E.C. 3.6.1.3) was measured by fol

lowing the formation of inorganic phosphate 

from ATP. The standard reaction mixture was 

the same as for the pyrophosphatase assay, 

except that PPj was replaced by 2 mM of 

ATP. Acetyl-coenzyme A synthetase was 

assayed as described (9). 

In all assays an appropriate amount of 

enzyme was used. The reactions were started 

by the addition of enzyme or substrate. The 

assays were performed under both strict an

aerobic (flushed assay mixtures, 0.1 mM 

Ti(IH)citrate, N2 as gas phase) and aerobic 

conditions. Since no difference in activity was 

found with the purified enzyme under either 

condition, assays were routinely performed 

aerobically. 

The heat stability was investigated by heating 

samples of 1 ml pyrophosphatase (10 jug 

protein) in 50 mM Tris-HCl pH 8.0 and 10 

mM MgC^ in eppendorf cups for 10 min at 

several temperatures. After cooling to 35 °C, 

1 mM of pyrophosphate was added and the 

activity determined with the standard assay. 

The substrate specificity of the enzyme was 

determined by replacing 1 mM pyrophosphate 

in the standard assay for 1 mM of various 

other phosphate-esters. Several compounds 

were tested for their ability to inhibit 

p y r ophospha t a s e . The enzyme was 

preincubated 30 min at 35 °C with 5 mM 

inhibitor in 50 mM Tris-HCl pH 8.0, 5 mM 

Mg2+. Thereafter 1 mM PP; was added and 
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Fig. 4. Heat stability of the pyrophosphatase. 

Samples of 1 ml pyrophosphatase (10 /ng 
protein) were heated for 10 min at the tem
peratures indicated. After cooling to 35 °C, 
the activity was determined as described in 
material and methods. 

600 

0 5 10 15 20 

Concentration PPi ( mM ) 

Fig. 5. Relation between pyrophosphate 
concentration and specific activity of 
pyrophosphatase. 

Samples of 1 ml pyrophosphatase (5 /xg pro
tein) in 50 mM Tris-HCl, pH 8.0, and 5 mM 
MgClj were incubated in eppendorf cups for 
10 min at 35 °C. Then the indicated amounts 
of pyrophosphate were added and the activity 
determined as described in material and 
methods. 
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the activity determined with the standard 

assay. 

RESULTS 

Localization. When the bacterial cells were 

rigorously disrupted by prolonged sonification 

and two passages through a French pressure 

cell at 135 MPa, the pyrophosphatase was 

found in the soluble fraction after ultracentri-

fugation. However, when gentle lysis condi

tions were applied in the presence of 0.5 mM 

of the protease inhibitor Phenylmethylsulfonyl 

fluoride (PMSF), up to 5 % of the pyropho-

phatase activity was associated with the mem

brane fraction, while the acetyl-coenzyme A 

synthetase was exclusively found in the cyto

plasmic fraction. The control enzyme ATPase 

was completely recovered in the membrane 

fraction. 

Enzyme purification. The purification of 

pyrophosphatase required no strict anaerobic 

conditions. The purification was carried out at 

room temperature. In three steps a 400 fold 

purified enzyme was obtained (Table 1). 

Q-Sepharose chromatography proved to be an 

effective first step in the purification of pyro

phosphatase, since the enzyme was one of the 

first proteins to elute from the column after 

the void volume. Hydroxylapatite was used to 

separate pyrophosphatase from interfering 

acetyl-CoA synthetase. Phenyl-superose re

moved the last contaminating proteins from 

the pyrophosphatase. 

Characterization of the purified enzyme. The 

molecular mass of the native pyrophosphatase 

was estimated by gelfiltration on Superose 6 

HR 10/30 and appeared to be 139 ± 7 kDa, 

when compared with standards of known 

molecular mass (Figure 1). Native PAGE 

revealed one band when stained with coomas-

sie brillant blue R 250. When the native gels 

were incubated 1-2 min in pyrophosphatase 

assay mixture and stained with ammonium-

heptamolybdate and methylgreen in 1 M 

H2S04, this band showed a strong ac

cumulation of released phosphate (Figure 2). 

Sodium dodecyl sulfate gel electrophoresis of 

the purified enzyme revealed two subunits 

with relative molecular mass equal to 35 and 

33 kDa of equal intesity, which suggests an 

a$2 subunit stoichiometry for the native en

zyme (Figure 3). 

Stability. The activity of the purified enzyme 

did not decrease significantly in the presence 

of air. The enzyme could be stored at +4°C 

for at least one week without appreciable loss 

of activity . When the enzyme was kept at -20 

°C, aerobically or anaerobically, 50 % of the 

activity was lost within 24 hours. However, 

when the enzyme was frozen in liquid nitro

gen, it could be stored for at least two months 

at -80 °C without loss of activity. The enzyme 

was relatively thermostable in the presence of 

0.01 M Mg2*. Heating for 10 min at 60 °C 

resulted only in a loss of activity of 15 %. 

Complete inactivation occurred after heating 

at 90 °C (Figure 4). 

Substrate specificity. In addition to pyro

phosphate, a Mg2+ dependent hydrolysis of 

tri- and tetrapolyphosphates was catalysed by 

the purified enzyme at 44 % and 8 % of the 

PPi hydrolysis rate, respectively. Organic phos

phates at 5 mM (ATP, ADP, AMP, Phos-

phoenol pyruvate, Thiamine pyrophosphate, 

Acetylphosphate , Glucose-1-phosphate , 

Glucose-6-phosphate and Paranitrophenyl 

phosphate) were not hydrolyzed by the enzy

me. Mn2+ and Co2+ could replace Mg2* as 

cation . With these cations 160 % and 24 % 

of the activity of Mg2+ at 1 mM was found, 

respectively. At concentrations higher than 1 

mM Mn2+ and Co2+ precipitation of 

pyrophosphate occurred. Ca2+ did not 

promote the pyrophosphatase activity. 

Kinetic properties. The reaction rate at dif

ferent pyrophosphate and Mg2+ con

centrations did not follow Michaelis-Menten 

kinetics. Half maximal rates were obtained at 

0.1 mM PPi at 5 mM Mg2+. High con

centrations of pyrophosphate inhibited the 
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pyrophosphatase (Figure 5). The optimal 

Mg2* to pyrophosphatse ratio was 5. The 

V,^,, at the optimal pH of 8 (50 mM Tris-

HQ) and at 35 °C, was 590 pinoles of pyro

phosphate hydrolyzed per min per mg protein, 

which corresponded to a K,,, of 1400 per 

second. 

Inhibition studies. Pyrophosphatase was in

hibited for more than 40 % by KCN , ATP 

and EDTA (table 2). ATP and EDTA inhi

bited the enzyme, probably by competition for 

magnesium. The inhibition could be reversed 

by addition of extra (10 mM) Mg2*. The 

enzyme was not inhibited by fluoride, which is 

an potent inhibitor of the pyrophosphatases of 

E.coli (90 %, 1 mM), yeast (50 %, 6.7 /xM) 

and ThiobacMus (89 %, 0.1 mM) (13,20,21, 

24). Reducing agents (titanium citrate, sodium 

dithionite) stimulated the activity of pyrop

hosphatase in crude extract 2 to 5 fold (data 

not shown). The purified enzyme, however, 

was not stimulated by reducing agents, it was 

slightly inhibited (Table 2). 

DISCUSSION 

Together with the acetyl-CoA synthetase and 

adenylate kinase, the inorganic pyrophospha

tase plays an important role in the acetate 

activation of M.soehngenii (9). From the incre

ase in specific activity upon purification and 

from the 50 % recovery, it can be calculated 

that about 0.2 % of the soluble cell protein of 

M. soehngenii is pyrophosphatase. This is 

somewhat lower than the value of other 

important proteins involved in the acetate 

metabolism of M. soehngenii (8-10). 

The purified pyrophosphatase of the ar-

chaebacterium Methanothrix soehngenii shows 

some marked differences with enzymes isola

ted from eubacteria and eukaryotes. The 

apparent molecular mass of the enzyme was 

estimated to be 139 kDa. This value is dif

ferent from molecular masses reported for 

pyrophosphatases from E. coli (120 kDa), 

ThiobacMus (80 kDa) Rhodosprillum (100 

kDa), Streptococcus (128 kDa), Bacillus (122 

kDa), Desulfovibrio (42 kDa) and yeast (60 

kDa) (6,14-16,19,25-27). Electrophoresis on 

SDS-PAGE indicated that inorganic pyrop

hosphatase from Methanothrix is composed of 

subunits with molecular masses of 35 and 33 

kDa arranged in a$z oligomeric structure. 

This subunit structure is different from those 

described for other microorganisms. The yeast 

enzyme consists of two identical subunits of 

30 kDa, the Bacillus enzyme of two subunits 

of 70 kDa, while the Desulfovibrio enzyme 

consisted of only one subunit of 42 kDa (6,16, 

26). The enzyme from Thiobacillus was com

posed of 4 identical subunits of 20 kDa, and 

the Streptococcus enzyme of four subunits of 

32.5 kDa (19,25). The enzyme of E. coli has 

six identical subunits with molecular mass of 

20 kDa (14,27) 

The enzyme required magnesium for full 

activity; manganese and cobalt could replace 

magnesium. The effectiveness of manganese 

and cobalt as cation for the hydrolysis of 

pyrophosphate is limited to a narrow range of 

concentration of these ions. Manganese- or 

cobalt- pyrophosphate salts are poorly soluble 

as compared to magnesium pyrophosphate 

(16). A similar cation specificity is reported 

for other pyrophosphatases, although the 

stimulation by manganese is relatively high for 

the enzyme in Methanothrix (14,18,25). 

The relationship of magnesium and pyrophos

phate concentration relative to the pyrophos

phatase activity was studied extensively with 

the E.coli and yeast enzyme (1,13,18,23). As 

the actual subtrate a stoichiometric complex, 

MgPPi", is proposed (13,18). For the Methano

thrix enzyme a magnesium to pyrophosphate 

ratio of 5 was found to be optimal. As ob

served for the enzymes of E.coli and yeast, 

high concentrations of free pyrophosphate 

inhibited the pyrophosphatase of Methanothrix 

(18). 

The enzyme of Methanothrix was not inhibited 

by fluoride, which is an potent inhibitor of the 
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pyrophosphatases of E.coli (90 %, 1 mM), 

yeast (50 %, 6.7 /xM) and Thiobacillus (89 %, 

0.1 mM) (14,22,25). Sofar only the enzyme of 

Streptococcus is reported not to be inhibited 

by fluoride (19). However, this enzyme exists 

in two conformation, with different activity 

and stability. The pyrophoshatase found in 

cell extracts of Ureoplasma was also not in

hibited by fluoride (5). The inhibition by 

fluoride is extensively studied with the yeast 

enzyme (22,23). It was proposed that fluoride 

strenghtens the binding of the enzyme to the 

magnesium pyrophosphate complex. The 

fluoride insensitivity of the Methanothrix en

zyme could indicate that this enzyme has an 

altered active site in which fluoride is not able 

to covalently bind the magnesium pyrophos

phate to the magnesium enzym complex. As 

decribed for several other pyrophosphatases, 

the enzyme of Methanothrix was also not 

inhibited by sulfhydryl-reagents, which indi

cates that cysteine residues do not play an 

important role in the PP; hydrolysis (14,18, 

19,25). 

As reported for many pyrophosphatases of 

gram-negative bacteria, the enzyme of Metha

nothrix is also remarkably heat-resistent in the 

presence of magnesium (3,18,25). The enzyme 

was highly specific for pyrophosphate, al

though it hydrolyzed tri- and tetrapolypho-

sphate to some extent. No other phosphate 

esters were hydrolyzed by the enzyme. This 

reflects the high specificity reported for other 

pyrophophatases (12,14,19,25). 

When rather rigorous methods were used to 

disrupt the cells, 99 % of the enzyme activity 

of the cell extract was present in the 110,000 

g supernatant, which suggests that this enzyme 

is present in the cell cytoplasm, like enzymes 

of E.coli, Bacillus, Streptococcus, Thiobacillus 

and yeast (6,14,15,19,25). However, when 

gentle lysis procedures in the presence of the 

serine protease inhibitor, Phenylmethylsul-

fonyl fluoride (PMSF), were applied up to 5 

% of the pyrophosphatase activity was associ

ated with the membrane fraction. This mem

brane association could indicate that hydro

lysis of the pyrophosphate, which is formed 

during acetate activation, is not solely used to 

displace the equilibrium of the acetate ac

tivation. In the chromatophores of photothr-

ophic bacteria a proton translocating pyro

phosphatase has been observed (15,20,21). 

The main task of this integral-membrane 

enzyme is to maintain a substantial proton-

motive force under circumstances of low 

energy (20). A similar function of the mem

brane associated pyrophosphatase of Metha

nothrix could be envisaged. Future research 

therefore will deal with the study of the ener

gy in- and output of Methanothrix during 

acetate fermentation. 
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1. Summary 

The interconversion of adenine nucleotides 

during acetate fermentation was investigated 

with concentrated cell suspensions of Metha

nothrix soehngenii. Starved cells contained 

high levels of AMP (2.2 nmol/mg protein), 

but had hardly any ADP or ATP. The Energy 

Charge (EC) of these cells was 0.1. Immedi

ately after the addition of the substrate acet

ate, the level of ATP increased, reaching a 

maximum of 1.4 nmol/mg protein, correspon

ding to an EC of 0.7 when half of the acetate 

was consumed. Once the acetate was 

depleted, the ATP concentration decreased to 

its original level of 0.1 nmol/mg protein. Since 

M. soehngenii contained relatively high 

amounts of AMP, the luciferase system for 

the determination of ATP gave not always 

satisfactory results. Therefore a reliable 

method based on the separation of adenine 

nucleotides by anion exchange HPLC was 

used. 

are low, but the affinity for acetate (K, = 0.5 

mM, threshold concentration < 10 fiM) of M. 

soehngenii is high (1-4). In M. soehngenii 

acetate is activated to acetyl-CoA by acetyl-

CoA synthetase (5). The energy for this acti

vation is supplied by hydrolysis of ATP to 

AMP and pyrophosphate (5). The formed 

AMP is converted to ADP by adenylate 

kinase at the expense of another ATP, and 

pyrophosphate is hydrolyzed by pyrophospha

tase to two orthophosphate (5,6). The sum of 

these reactions indicates that acetate in M. -

soehngenii is activated to acetyl-CoA at the 

expense of two energy rich phosphate-bonds 

(5-7). Because conversion of acetate to meth

ane is supposed to yield only one ATP, it is 

difficult to concieve how M. soehngenii 

conserves energy for growth (7,8). The aim of 

the present study was to examine the size of 

the different adenine nucleotide pools in M. 

soehngenii during acetate fermentation. 

3. Material and Methods 

2. Introduction 

Methanothrix soehngenii is an anaerobic ar-

chaebacterium, which is specialized in the use 

of acetate as sole energy source (1-3). The 

growth yield (1.4 g/mol acetate) and the 

growth rate (average doubling time of 7 days) 

3.1 Chemicals and gases. All chemicals were at 

least of reagent grade and were obtained 

from Merck (Darmstadt, F.R.G.). Bioche-

micals and ATP bioluminescence CLS kit 

were from Boehringer Mannheim (Almere, 

NL). Gases and gas mixtures were supplied by 

Hoekloos (Schiedam, NL). Palladium catalyst 
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Fig. 1. HPLC chromatogram of perchloric extract of Methanothrix soehngenii. 

(A) 0.5 ml cell suspension (1 mg protein) was extracted with perchloric acid and 
analyzed for adenine nucleotides on HPLC as described in Material and 
Methods. 

(B) 0.5 ml adenine nucleotide mix (AMP, ADP and ATP, each 0.5 mM) was 
treated in the same way as a cell suspension and analyzed on HPLC. 
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was a gift of BASF (Arnhem, NL). Ti-

(Ill)citrate (100 mM) was prepared by adding 

5 ml 1 M Ti(III)chloride to 40 ml of an 

anaerobic 0.2 M sodium citrate solution, pH 

was adjusted with 2 M Tris to 7.5. 

3.2 Organism and cultivation. Methanothrix 

soehngenii was the Opfikon strain isolated by 

Huser et al. and provided by A.J.B. Zehnder 

(3). M. soehngenii was cultivated in a mineral 

medium containing 40 mM NaHC03, 3 mM 

Na2HP04> 3 mM KH2P04) 5 mM NaCl, 0.5 

mM MgCl2, 0.7 mM CaCl2, 6 mM NH4C1, 

1 mM NajS, vitamins and trace elements 

according to (3). The bacteria were grown in 

three liter serum bottles containing 2 1 of 

medium, supplemented with 80 mmol of 

sodium acetate per liter. The gas phase was 

N J /COJ (8:2) giving a final pH of 7.2. Growth 

was monitored by measuring methane produc

tion and acetate consumption. 

3.3 Preparations of cell suspensions. All oper

ations were performed at room temperature 

(19 °C) under strictly anaerobic conditions in 

a chamber with a N2/H2 (95:5) gas phase; 

traces of oxygen were removed by a palladium 

catalyst. Cells (2 1 cultures) were harvested at 

the late log phase. Two days before har

vesting, the serum bottles were turned upside 

down, so that the large cell-aggregates could 

settle just on top of the rubber septa. The 

aggregates were removed with a 50 ml 

syringe, centrifuged 15 min at 5000 x g, and 

washed once in medium without phosphate, 

vitamins and sodium sulfide, but reduced with 

0.5 mM Ti(III)citrate. The cells were resus-

pended in 10 ml of the same medium, giving 

a concentration of 1-2 mg protein per ml. 

3.4 Adenine nucleotide extraction. Concentrated 

cell suspensions of M. soehngenii were incu

bated at 37 °C under an atmosphere of N2 / 

C0 2 (8:2). Acetate was added to a 

concentration of 8 mM. Acetate comsumption 

and methane production were followed gas-

chromatographically as described in (4). At 

appropriate time intervals, 0.5-ml samples 

were removed and immediately added to 0.2 

ml of ice-cold 3 M perchloric acid (9). The 

samples were kept on ice for 2 h. Then, the 

pH was brought to 6.5 by the addition of 0.2 

ml 3 M KOH and 0.1 ml 0.1 M KH2P04 

buffer. The formed KC104 was removed by 

centrifugation and supernatants were kept on 

ice. 

3.5 Analytical procedures. The adenine 

nucleotide content of the perchloric extracts 

was determined with a LKB-HPLC system 

(Pharmacia/LKB, Woerden, NL) equipped 

with two high performance (2150) pumps and 

a high pressure gradient mixer. The perchloric 

extract (20 /A!) was applied to an ionoSpher A 

column of 20 by 0.3 cm (Chrompack, Middel-

burg, NL) equilibrated with 10 mM KH2PO„ 

pH 6.5 (flow rate 0.8 rnl.min'1). The adenine 

nucleotides were separated in a 16 ml linear 

gradient of 0.5 M NaCl in 10 mM KH2P04 

pH 6.5, collected in 1 ml fractions and 

detected at 254 nm. The nucleotides were 

quantified by relating peak areas to standard 

curves using a Shimadzu C-R5A integrator 

(Shimadzu Analytical Instruments, Kyoto, 

Japan). The adenine nucleotide content was 

linear with the peak areas between 2 and 2000 

pmol of the respective nucleotides. The ATP 

content of representative samples was 

checked by the luciferin/luciferase method (9). 

Ten ju.1 of perchloric extract or of collected 

HPLC fractions were transferred to 4 ml 

counting vials containing 0.7 ml assay buffer 

(20 mM glycylglycine, 5 mM sodium arsenate, 

and 4 mM MgS04, pH 7.9). The reaction was 

started by the addition of 20 /xl of ATP 

bioluminescence CLS-kit (15 mg/ml). The vial 

was rapidly closed, shaken and introduced 

into the counting chamber of a LKB-Wallac 

scintillation counter. 10 s after the start of the 

reaction the light flashes were counted for 10 

to 30 s. For calibration of the system samples 

were spiked with known concentrations of 
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Fig. 2. Effect of the addition of acetate on the Energy Charge and adenine nucleotide 
content of M. soehngenii. 

The cell suspension of 10 ml under N^CC^ (8:2) had a protein content of 2 mg/ml. 
At time zero acetate was added to final concentration of 8 mM. 

(A) Acetate (A) and methane (•) were determined as described in Material and 
Methods. Energy charge (•) was calculated with the data from Fig 2B. 

(B) AMP ( •) , ADP (A) and ATP (•) were determined as described in Material 
and Methods. Total adenylates (O) are the sum of AMP, ADP and ATP. 
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ATP. Under the conditions employed the 

ATP content was linearly related to the 

counts between 0.5 and 10 pmol of ATP. 

4. Results and Discussion 

4.1 Detection and quantification of 

adenine nucleotides 

The use of the luciferin/luciferase enzyme 

system for the detection of picomole amounts 

of ATP has been well established and 

documented (10). Initial attempts to 

determine the ATP content of perchloric 

extracts of M. soehngenii showed very small 

amounts of ATP. Because also the spiking 

with external ATP gave considerable 

underestimation of the ATP content in the 

samples, an alternative quantification method 

was used. Satisfactory and reproducible results 

were obtained when the different nucleotides 

were separated by anion exchange HPLC and 

quantified by relating peak areas. A 

representative chromatogram of an perchloric 

extract of M. soehngenii is shown in Fig. 1A. 

The chromatogram of a standard sample, 

containing 0.5 mM of different adenine 

nucleotides each in perchloric acid, treated in 

the same way as cell extracts is shown in Fig. 

IB. 

These chromatograms show that all three 

adenine nucleotides can be quantified in one 

determination by separation of perchloric acid 

extracts on HPLC. Difficult and often in

complete enzymatic conversion of AMP and 

ADP are circumvented by this method. Also 

the quenching effect of large amounts of 

AMP on the luciferase system are overcome. 

The detection method used is not as sensitive 

as the luciferase system. However, when the 

HPLC system is extended to semi-preparative 

columns on which larger (1-2 ml) samples can 

be applied the sensitivity of the method will 

be increased considerably. 

4.2 Energy Charge and adenine 

nucleotide content 

Washed and concentrated cell suspensions of 

M. soehngenii were incubated at 37 °C under 

N/CC^ (8:2). Immediately after the addition 

of the substrate acetate, methane production 

and acetate consumption started (Fig. 2A). 

The rate of methane production and acetate 

consumption were about 40 nmol.min'.mg"1 of 

protein. At appropriate time intervals samples 

were analyzed for adenine nucleotides (Fig. 

2B). Before the addition of substrate, cells 

contained high levels of AMP ( 2.2 nmol/mg 

of protein) and low levels of ADP and ATP 

(0.1 nmol/mg of protein), resulting in a very 

low Energy Charge of 0.1 (Fig. 2 A and B). 

After the addition of acetate the levels of 

ATP and ADP started to increase and 

consequently AMP decreased. ADP reached a 

more or less constant level of 0.4 nmol/mg 

protein, while the ATP level was maximal (1.4 

nmol/mg of protein) and AMP minimal (0.6 

nmol/mg protein) when half of the acetate 

was consumed. The Energy Charge at that 

time was 0.7 (Fig. 2A). Once the acetate was 

depleted, the levels of ATP and ADP began 

to decrease until their original levels of about 

0.2 nmol/mg of protein were reached, while 

the AMP level increased to 2 nmol/mg of 

protein. The Energy Charge dropped to 0.2. 

The amount of adenine nucleotides (2.5 nmol/ 

mg protein) in M. soehngenii is relatively low 

compared to the amounts found in the 

acetoclastic methane bacterium Methano-

sarcina barken (10 nmol/mg protein) (9). The 

amounts found in (eu)bacteria vary between 6 

and 14 nmol/mg protein (11). The low 

amount of adenine nucleotides in M. soehn

genii is not very surprising, since this organism 

has also the lowest levels of typical methano-

genic cofactors (12). 

The extremely low Energy Charge of 0.1 in 

starved cells of M. soehngenii resembles the 

low values of bacterial spores or of dry 

mature plant seeds (13). As observed for 
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germinating spores or seeds, the Energy 

Charge of M. soehngenii reaches more or less [8] 

normal values after the addition of substrate 

(13). The maximum energy charge of 0.7, [9] 

observed for M. soehngenii is low, since an 

Energy Charge between 0.85 and 0.9 is [10] 

thought to be necessary for maintaining a 

metabolic stability (13). A mechanism by [11] 

which a high Energy Charge is maintained by 

excretion or breakdown of AMP seems not to 

be present in M. soehngenii (13,14). However, [12] 

a possible advantage of a low Energy Charge 

for this organism is that the free energy 

needed to form ATP out of ADP and P, will 

be considerably lower than under conditions 

of high energy charge. Although the exact [13] 

mechanism of energy generation for 

acetoclastic methanogens is not known, this 

paper shows that the breakdown of acetate by [14] 

M. soehngenii yields enough energy to build 

up an ATP pool. 
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Carbon monoxide dehydrogenase was purified to apparent homogeneity from Methanothrix soehngenii. In 
contrast with the carbon monoxide dehydrogenases from most other anaerobic bacteria, the purified enzyme of 
Methanothrix soehngenii was remarkably stable towards oxygen and it was only slightly inhibited by cyanide. 

The native molecular mass of the carbon monoxide dehydrogenase of Methanothrix soehngenii determined by 
gel filtration was 190 kDa. The enzyme is composed of subunits with molecular mass of 79.4 kDa and 19.4 kDa 
in an ot2fi2 oligomeric structure. The enzyme contains 1.9 + 0.2 (n = 3) mol Ni/mol and 19 + 3 (« = 3) mol Fe/ 
mol and it constitutes 4% of the soluble cell protein. Analysis of enzyme kinetic properties revealed a Km of 
0.7 mM for CO and of 65 uM for methyl viologen. At the optimum pH of 9.0 the Km„ was 140 ".mol of CO 
oxidized min ~ ' mg protein ~ ' . The enzyme showed a high degree of thermostability. 

Acetate is the most abundant methanogenic substrate in 
anaerobic ecosystems [1, 2], The most important acetoclastic 
methanogens are Methanosarcina and Methanothrix. Due to 
its high affinity for acetate, Methanothrix is the predominant 
acetoclastic bacterium in applied methanogenic systems such 
as waste-water-treatment plants [2 — 4]. Because of its very 
low growth rate (doubling time is 5 —14 days), it can only be 
isolated by continuous enrichment at low acetate concen
trations [5, 6]. 

Methanogenesis from acetate proceeds via reaction (1). 

CH3COOH -• CH4 + C 0 2 AG'0 = - 31 kj/mol. (1) 

The methane originates predominantly from the methyl group 
and carbon dioxide from the carboxyl group of acetate [6, 7]. 
The enzymatic steps involved in this cleavage still have to be 
identified in detail. It was postulated that, in acetate-adapted 
Methanosarcina, CO dehydrogenase may participate in the 
cleavage of acetate [8], a sort of a reversed reaction of the CO-
dehydrogenase-dependent acetate formation in acetogens, 
autotrophic methanogens and some sulfate-reducing bacteria 
[9, 10]. 

The CO dehydrogenases of the acetogenic bacteria 
Clostridium and Acetobacterium have been isolated and char
acterized in detail [10—13]. Recently the CO dehydrogenases 
of the methanogenic bacteria Methanosarcina, Methanococcus 
and Methanobrevibacter were purified and some of their prop
erties were described [14 — 19]. 

The CO dehydrogenase of Methanothrix has not been 
isolated and characterized before. In contrast to the other 
CO dehydrogenases of anaerobic bacteria, its activity in cell 
extracts was reported to be stable towards molecular oxygen 
[20, 21]. The aerobic purification procedure, together with a 
number of physicochemical and catalytic properties of the 
highly purified CO dehydrogenase of Methanothrix soehn
genii, are described here. 

Correspondence to A. 3. B. Zehnder, Department of Microbiology, 
Agricultural University Wageningen, Hesselink van Suchtelenweg 4, 
NL-6703 CT Wageningen, The Netherlands 

Enzyme. Carbon monoxide dehydrogenase (EC 1.2.99.2). 

MATERIALS AND METHODS 

Materials 

Tris, dithioerythritol and methyl viologen were obtained 
from Janssen Chimica (Beerse, Belgium). SDS and acrylamide 
were from Bio-Rad (Utrecht, NL). Gases were purchased 
from Hoekloos (Schiedam, NL). Platina catalyst was a gift of 
BASF (Arnhem, NL). Mono-Q HR 5/5, Q-Sepharose, 
Superose 6 H 10/30 and molecular mass standards for gel 
filtration and PAGE were obtained from Pharmacia Fine 
Chemicals (Woerden, NL). Methanothrix soehngenii (DSM 
2139) was the Opfikon strain isolated by Huser et al. [5]. 
Coenzyme F 4 2 0 isolated from Methanobacterium thermo-
autolrophkum was a generous gift of Dr B. Gruson and Dr 
Ph. Debeire (INRA, Villeneuve d'Asq, France). 

Cultivation of Methanothrix 

Methanothrix was mass cultured on 80 mM sodium ace
tate in 25-1 carboys, containing 20 1 of the phosphate/bicar
bonate buffered medium described by Huser et al. [5]. Cultures 
were incubated without stirring at 35 °C in the dark under an 
N2/CO2 (80/20%) gas phase. Cells were harvested at the late 
log phase by continuous centrifugation (Carl Padberg Zentri-
fugenbau GmbH, Lahr/Schwarzwald, FRG), washed in 
50 mM Tris/HCl pH 8.0 and stored under N2 at - 2 0 °C until 
use. • 

Preparation of cell extract and protein purification 

The purification procedure was performed within one day. 
Unless indicated otherwise all procedures were carried out 
aerobically at room temperature (19°C). A frozen cell paste 
was thawed, diluted with 50mM Tris/HCl pH 8.0 in a 1:3 
ratio, disrupted by passing through a French pressure cell at 
135 MPa and centrifuged 30 min at 35,000 xg. The super
natant contained 20 mg protein/ml and is referred to as crude 
extract. 
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The crude extract (10 ml) was applied to a column (3.3 by 
10 cm) of Q-Sepharose (fast flow) equilibrated with 50 mM 
Tris/HCl pH 8.0 (buffer A). After the column was washed 
with 40 ml of buffer A, the adsorbed CO dehydrogenase was 
eluted at 0.23 M NaCl in a 180-ml discontinuous linear gradi
ent of 1 M NaCl in buffer A. The flow rate was 4 ml/min. 
Individual fractions were collected and analysed for CO 
dehydrogenase activity. Fractions with activity higher than 
5 U/mg were pooled and desalted in an Amicon ultrafiltration 
cell (Grace, Rotterdam, NL) with a PM10 filter. The remain
ing steps in the purification were performed with a high-
resolution fast protein liquid chromatography (FPLC) system 
(Pharmacia/LKB, Woerden, NL) equipped with a model 2152 
LC controller. A sample of 5 ml of the concentrated desalted 
enzyme solution was injected onto a Mono-Q HR 5/5 anion-
exchange column equilibrated with buffer A. A linear gradient 
of 0 — 0.3 M NaCl in buffer A was applied at a flow rate of 
1.0 ml/min. Fractions with CO dehydrogenase activity were 
concentrated to 0.2 ml in a Centricon PM10 (Grace, 
Rotterdam, NL) and injected on a Superose 6 HR 10/30 gel 
filter equilibrated with buffer A. The column was developed 
at a flow rate of 0.5 ml/min. Purified CO dehydrogenase was 
collected, concentrated in Centricon PM10, frozen in liquid 
N2 and stored at —80°C until use. 

Enzyme assay 

The standard assay for CO dehydrogenase was performed 
by following the reduction of methyl viologen (£57gnn, = 
9.7 m M " 1 • cm"1) with a Biochrom/LKB Ultrospec K 
spectrophotometer (LKB, Woerden, NL). The standard reac
tion mixture contained 50 mM Tris/HCl pH 8.9,1 mM methyl 
viologen and 0.1 mM dithioerythritol. The reaction mixture 
was equilibrated with CO for the test assay and with N2 for 
the control assay; 1 ml of the mixture was added to stoppered 
cuvettes (1.4 ml) filled with CO or N2 respectively. The reac
tion was initiated by the addition of enzyme. NAD (20 uM), 
FAD (20 uM), FMN (20 uM) and coenzyme F 4 2 0 were also 
tested as electron acceptors. The following absorption coef
ficients were used: NADH, £340nffl = 6.2 mM" 1 • cm" 1 ; 
FAD, e450nm = 11.3 mM" 1 • cm" 1 ; FMN, E 4 5 0 „ = 
12.2 mM" 1 • cm" 1 ; coenzyme F 4 2 0 , s42onn. = 41.4 mM" 1 • 
cm"1 . One unit of enzyme activity is defined as the amount 
of enzyme that catalyzes the oxidation of 1 umol of CO/ 
min. The Km of the purified CO dehydrogenase for CO was 
determined in cuvettes containing 1 mM methyl viologen. 
Different concentrations of CO were established by changing 
the partial pressure of CO in the gas phase. The concentration 
of CO in the liquid phase was calculated as described by 
Kohler et al. [20]. The Km for methyl viologen was determined 
under 1 atm 100% CO. All assays were performed at 35°C. 

Electrophoresis and molecular mass determination 

The purity of the enzyme after various chromatographic 
steps was determined electrophoretically following the 
method of Laemmli [22] by SDS/PAGE. Molecular mass stan
dards (a-lactalbumin-14.4 kDa, trypsin inhibitor 20.1 kDa, 
carbonic anhydrase 30 kDa, ovalbumin 43 kDa, bovine serum 
albumin 67 kDa and phosphorylase b 94 kDa) were used to 
calibrate the SDS gels. Gels were stained with Coomassie 
brillant blue G250. Native enzyme molecular mass was deter
mined on Superose 6 HR 10/30 equilibrated with buffer A: 
200 ul purified CO dehydrogenase (1 mg/ml) or standards 
(thyroglobulin 669 kDa, ferritin 445 kDa, catalase 232 kDa 

Table 1. Purification of CO dehydrogenase o/Methanothrix soehngenii 
One unit (U) is the amount catalyzing the oxidation of 1 umol CO/ 

Fraction 

Crude extract 
Q Sepharose 
Mono Q 
Superose 6 

Vol
ume 

ml 

10 
40 
4 
8 

Pro
tein 

mg 

220 
18 
9 
5 

Activ
ity 

U 

990 
780 
740 
580 

Specific 
activity 

U/mg 

4.5 
43.1 
82.2 

117 

Purifi
cation 

-fold 

1 
10 
18 
26 

Yield 

% 
100 
79 
75 
59 

and aldolase 158 kDa) were injected onto the FPLC system 
and eluted with buffer A. 

Determinations 

Protein was determined with Coomassie brillant blue 
G250 by the method of Bradford [23]. Bovine serum albumin 
was used as standard. Metals were analysed with an atomic 
absorption spectrometer equipped with a graphite furnace 
atomizer HGA 76B (Perkin Elmer, Ridgefield, USA). Ultra
violet/visible spectra were recorded with a Beckman model 25 
spectrophotometer (Beckman, Amsterdam, NL). 

RESULTS 

Purification 

Initial experiments with cell-free extracts showed that CO 
dehydrogenase of Methanothrix was not inactivated by molec
ular oxygen. This property, which had already been observed 
by Kohler [21], allowed an aerobic purification of the CO 
dehydrogenase, in contrast to the purification of CO dehydro
genases of other anaerobic bacteria which required strict an
aerobic conditions [10 — 19]. The purification was carried out 
at room temperature and generally took only one day. In three 
steps a 26-fold purified enzyme was obtained (Table 1). 

The CO dehydrogenase could be precipitated with am
monium sulfate (47 — 54%), but due to an unsatisfactory en
zyme recovery (less than 20%) this method was not used for 
primary purification. Q-Sepharose chromatography proved 
to be an effective first step for the isolation of the CO dehydro
genase. A good separation between the CO dehydrogenase 
and a broad protein band with a strong fluorescence at 420/ 
430 nm (probably component C of the methyl-CoM re
ductase) was achieved, especially when a plateau of 0.23 M 
NaCl was introduced in the linear gradient. A representative 
elution pattern is depicted in Fig. 1. After concentrating and 
desalting, the enzyme preparation was injected onto a FPLC 
system and purified to homogeneity. 

Composition and stability 

The CO dehydrogenase was eluted from the Superose 6 
HR 10/30 column at a volume indicating molecular mass of 
190 kDa, as compared to standards of known molecular mass 
(Fig. 2). SDS/polyacrylamide gel electrophoresis of the 
purified CO dehydrogenase revealed two subunits with molec
ular mass equal to 79.4 and 19.4 kDa (Fig. 3), which suggests 
an a2/?2 subunit stoichiometry for the native enzyme. 
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Fraction Number 

Fig. 1. Elution pattern of a Q-Sepharose anion-exchange column (fast flow) of a cell extract from acetate-grown Methanothrix. Cell extract 
(10 ml) containing 22 mg of protein/ml was applied to a the column (3.3 x 10 cm), equilibrated with 50 mM Tris/HCl pH 8.0 and developed 
with a gradient of NaCl ( ) at 4.0 ml/min. Absorbance was recorded at 280 nm (——). CO dehydrogenase activity was determined in 
the standard assay ( • • ) 

0.5 

0.2. 

03 

02 

0.1 

i CO dehydrogenase 

\ 2 

\ 

2 3 4 5 

5.0 

Log M r 

Fig. 2. Molecular mass determination of the native CO dehydrogenase 
on Suparose 6 HR 10/30. Standards were aldolase (158 kDa, 1); 
catalase (232 kDa, 2); ferritin (446 kDa, 3) and thyroglobulin 
(669 kDa, 4). The position of CO dehydrogenase is indicated by the 

The spectral characteristics of the CO dehydrogenase are 
illustrated in Fig. 4. The enzyme displayed a peak at 280 nm 
and a very broad shoulder over 380—480 nm, a region which 
is characteristic for Fe-S proteins. The absorbance of this 
broad shoulder decreased upon incubation with CO, in
dicating that iron-sulfur clusters play a role in the catalytic 
center. Atomic absorption analysis revealed 1.9 ± 0.2(« = 3) 
mol Ni/mol and 19 ± 3 (« = 3) mol Fe/mol. 

The activity of the enzyme did not decrease significantly 
in the presence of air. After a 72 h exposure to air at 4°C, the 
activity decreased in crude extracts from 4.5 to 4.1 U/mg and 
of the purified enzyme from 115 to 104 U/mg. The enzyme 
was highly thermostable. Heating for 10 min at 60°C resulted 
only in a loss of activity of about 10%. Complete inactivation 
occurred after heating at 72 °C (Fig. 5). 

Kinetics 

The purified enzyme exhibited a high Km for CO. It was 
not possible to demonstrate saturation kinetics for CO at 

front 

Fig. 3. Analysis of purity by SDS/PAGE. Lane 1, pooled fractions 
from Superose 6 HR 10/30 (50 ug); lane 2, molecular mass.markers: 
phosphorylase b (94 kDa), bovine serum albumin (66 kDa), 
ovalbumin (45 kDa), carbonic anhydrase (30 kDa), trypsin inhibitor 
(20.1 kDa) and a-lactalbumin (14.4 kDa); lane 3, crude extract 
(80 jig); lane 4, pooled fractions from Q-Sepharose (80 ug); lane 5, 
pooled fractions from Mono-Q (80 ug) 

35 °C with 1 mM methyl viologen and 2 atm CO. Extrapola
tion in the Lineweaver-Burke plot gave an estimation of an 
the Km for dissolved CO of 0.7 mM and a Km„ of 140 U/mg 
(Fig. 6). The Km for methyl viologen was 65 uM. In 50 mM 
Tris/HCl the enzyme showed an optimum at pH 9. The CO 
dehydrogenase reduced coenzyme F 4 2 0 at 1.5%, FMN at 
0.6% and FAD at 0.3% of the specific activity in the standard 
assay with methylviologen. NAD was not reduced. 
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Fig. 4. Spectral analysis of the purified CO dehydrogenase. Spectra 
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Fig. 5. Heat denaturation of purified CO dehydrogenase. Samples of 
100 ul CO dehydrogenase (0.1 mg/ml) in 50 mM Tris/HCl pH 8.0 
were heated in Eppendorf cups for 10 min at the temperatures indi
cated. After cooling to room temperature (19°C) aliquots were with
drawn and the activity was assayed by the standard method 

Inhibition 

When the enzyme was incubated in either an atmosphere 
of air, CO or N2 and in the presence of 0.2 mM KCN, the 
CO dehydrogenase activity was initially reduced by 17% in 
the presence of air, 32% in the presence of CO and 69% in 
the presence of N2 . Under an air or CO atmosphere this 
inhibition disappeared with time (Fig. 7). The time-dependent 
inhibition could only be observed when 0.2 mM KCN was 
directly added to the assay mixture in which the enzyme ac
tivity was determined. If the enzyme was exposed to 0.2 mM 
KCN, but assayed in the standard mixture without KCN an 
average activity of 81.4 + 3.2 (n = 12) ^mol CO oxidized 
m g - 1 min"1 was found for all different incubations. These 
experiments show that the inhibition by KCN can be removed 
by both oxygen and CO gas. 

DISCUSSION 

Carbon monoxide dehydrogenase is an abundant protein 
of Methanothrix. From the increase of the specific activity 
upon purification and from the 60% recovery, it can be calcu-
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Fig. 6. Relationship between CO concentration and specific activity 
of the purified CO dehydrogenase. Conditions and calculations are 
described in Material and Methods. Inset is a Lineweaver-Burke plot 
of the same data 
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Fig. 7. Time-dependent inhibition of CO dehydrogenase by potassium 
cyanide. Enzyme samples (100 ul;0.1 mg/ml) were incubated in 2.2-ml 
stoppered serum vials with an air, N2 or CO atmosphere. KCN was 
added to a final concentration of 200 uM. Samples of 10 ul were 
withdrawn and the activity was measured immediately according to 
the standard assay, except that 200 uM of KCN was present in the 
assay mixture. ( • ) Incubation without KCN (mean of air, N2 or 
CO); incubation with 200 uM KCN, in (V) air, in (A) CO and in 
(D)N2 

lated that up to 4% of the soluble cell protein of Methanothrix 
is CO dehydrogenase. This lies in the same range as that 
described for acetate grown Methanosarcina [15,18]. CO de
hydrogenase of Methanothrix also has the same subunit com
position, molecular mass and metal composition as the 
Methanosarcina enzyme [15, 18], The catalytic properties of 
the CO dehydrogenase of Methanothrix resemble those of 
Methanosarcina, since both enzymes have the same high Km 

for CO. This suggests that a similar CO dehydrogenase func
tions in the acetate metabolism of the different types of 
acetoclastic methanogens. The enzyme is involved in the cleav
age of an activated form of acetate. The methyl group is 
transferred to a C t carrier and the carbonyl to the nickel site, 
forming a nickel-iron-carbon center. A corrinoid which was 
found in the CO dehydrogenase complex of Methanosarcina 
thermophila could actually be the proposed d carrier [17]. 
EPR studies of Therlesky et al. [24] showed that acetyl 
coenzyme A binds to the enzyme of Methanosarcina 
thermophila and induces a change in the nickel-iron-carbon 
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center. The act ivated form of acetate might be acetyl coenzyme 
A because high activities of acetate k inase and p ho spho -
transacetylase are present in Methanosarcina a nd h igh activi
ties of an acetate th iokinase are present in Methanothrix [15, 
1 7 , 2 0 , 2 1 , 2 4 ] . 

Wi th respect to the oxygen sensitivity, the C O dehydrogen
ase of Methanothrix differs marked ly f rom C O dehydrogen
ases of mos t o ther anaerob ic bacteria, including Methano
sarcina. The purified enzyme of Methanothrix a ppea r s to be 
completely insensitive to molecular oxygen and it is only 
slightly inhibited by cyanide. This is in cont ras t with C O 
dehydrogenases of o the r anaerob ic bacter ia , which are 
irreversibly inact ivated by t races of oxygen ( < 5 ppm) and are 
competi t ively inhibited by small amoun t s of cyanide 
( < 10 uM) [15, 17, 25]. So far only the enzymes of Desulfo-
vibrio desulfuricans a nd of Desulfobacterium autotrophicum 
were repor ted to be insensitive to oxygen [26, 27]. A t present 
no d a t a on the kinetic p roper t ies are avai lable to make a 
compar i son between these C O dehydrogenases and the C O 
dehydrogenase of Methanothrix. T h e catalytic center has to 
be s tudied in more detail on a b iochemical a nd a genetic level 
to ob ta in in format ion concerning the different propert ies of 
the C O dehydrogenases t owards oxygen. 
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Carbon monoxide (CO) dehydrogenase was purified, both aerobically and anaerobically, to apparent homogen
eity from Methanothrix soehngenii. The enzyme contained 18 + 2 (n = 6) mol Fe/mol and 2.0 ± 0.1 (n = 6) mol 
Ni/mol. Electron paramagnetic resonance (EPR) spectra of the aerobically purified CO dehydrogenase showed 
one sharp EPR signal at g = 2.014 with several characteristics of a [3Fe-4S] + cluster. The integrated intensity of 
this signal was low, 0.03 S = 1/2 spin/a/S dimer. The 3Fe spectrum was not affected by incubation with CO or 
acetyl-coenzyme A, but could be reduced by dithionite. The spectrum of the reduced, aerobically purified enzyme 
showed complex EPR spectra, which had several properties typical of two [4Fe-4S]1+ clusters, whose S = 1/2 
spins weakly interacted by dipolar coupling. The integrated intensity was 0.1—0.2 spin/a/? dimer. The anaerobically 
isolated enzyme showed EPR spectra different from the reduced aerobically purified enzyme. Two major signals 
were apparent. One with g values of 2.05, 1.93 and 1.865, and an Eml 5 of —410 mV, which quantified to 0.9 
S = 1/2 spin/a/; dimer. The other signal with g values of 1.997, 1.886 and 1.725, and an £ „ , , , of - 230 mV gave 
0.1 spin/a/? dimer. When the enzyme was incubated with its physiological substrate acetyl-coenzyme A, these 
two major signals disappeared. Incubation of the enzyme under CO atmosphere resulted in a partial disappearance 
of the spectral component with g = 1.997, 1.886, 1.725. Acetyl-coenzyme A/CO exchange activity, 
35 nmol • min~' • mg~' protein, which corresponded to 7 mol CO exchanged m i n - ' mo l - 1 enzyme, could be 
detected in anaerobic enzyme preparations, but was absent in aerobic preparations. Carbon dioxide also exchanged 
with C-l of acetyl-coenzyme A, but at a much lower rate than CO and to a much lower extent. 

Autotrophic methanogenic, acetogenic and sulfate-reduc-
ing bacteria, which use the Wood pathway for C 0 2 fixation, 
contain carbon monoxide (CO) dehydrogenase, which 
catalyzes the formation of acetyl coenzyme A (acetyl-CoA) 
from a methyl donor and an enzyme-bound carbonyl moiety 
[1 —8]. A reversed Wood pathway is operative in those meth
ane bacteria, Methanosarcina and Methanothrix, which are 
known to degrade acetate to CH4 and C 0 2 [3, 8]. In this 
reversed acetyl-CoA pathway, CO dehydrogenase has been 
suggested to play a pivotal role in the cleavage of the C-C 
bond of acetate [9]. Prior to the cleavage, acetate is activated 
to acetyl-CoA by an acetyl-CoA synthetase in Methanothrix 
or by an acetate kinase and phosphotransacetylase in 
Methanosarcina [10, 11], 

CO dehydrogenase is present in both Methanothrix and 
Methanosarcina and constitutes up to 5% of the soluble cell 
protein of these bacteria. The enzyme has been isolated from 
Methanothrix and Methanosarcina [9, 12 — 14]. The enzyme 
has an a2/?2 subunit structure, with subunits of approximately 
90 and 20 kDa and contains iron and nickel. 

Most of the knowledge about the catalytic properties of 
the CO dehydrogenase has been obtained from the studies of 
Ragsdale and Wood, who investigated the CO dehydrogenase 
of Clostridium thermoaceticum in detail [4, 5, 15, 16]. This 
enzyme has been shown to catalyze five reactions: the oxi-

Correspondence to A. J. M. Stams, Department of Microbiology, 
Wageningen Agricultural University, P. O. Box 8033, NL-6700 EJ 
Wageningen, The Netherlands 

Enzyme. Carbon monoxide dehydrogenase (EC 1.2.99.2). 

dation of CO to C 0 2 or the reduction of C 0 2 to CO (I) [15], 
the exchange between CO and the carbonyl of acetyl-CoA (II) 
[16, 17], the exchange between CoA and the CoA moiety of 
acetyl-CoA (III) [18], the methyl exchange between methyl
ated CO dehydrogenase and methylated corrinoid-Fe/S pro
tein (IV) [19], and the condensation of a methyl group bound 
to CO dehydrogenase with CO and CoA to acetyl-CoA (V) 
[19,20]. 

CO ~ [enz-CO] <- C 0 2 + 2e " + 2H + (I) 

CH3-
14CO-SCoA + CO~CH3-CO-SCoA + 14CO (II) 

CH3-CO-32S-CoA + HSCoA<->CH3-CO-SCoA 

+ H"S-CoA (III) 

C3H3-[Co-Fe/S]enJ +
 14CH3-codh<-14CHj-[Co-Fe/S] tn i 

+ C3H3-codh (IV) 
14CH3-codh + CO + HSCoA - 14CH3-CO-SCoA + codh (V) 

where [enz-CO] = enzyme-bound carbonyl group, codh = 
carbon monoxide dehydrogenase, C3H3-codh = methylated 
carbon monoxide dehydrogenase, [Co-Fe/S]enz = methyl-ac
ceptor protein, containing a corrinoid and an iron-sulfur 
cluster. 

So far only the CO: methylviologen oxidoreductase ac
tivity (I) could be demonstrated for the methanogenic CO 
dehydrogenases [9, 12 — 14]. It was found that the oxido
reductase activity of the Methanothrix enzyme is stable 
towards oxygen, whereas the CO dehydrogenase of Methano
sarcina and of most other anaerobic bacteria is inactivated by 
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traces of oxygen [9, 14]. Fisher and Thauer recently reported 
the presence of C02/acetyl-CoA exchange activity in crude 
extracts of Methanosarcina barkeri [21]. 

All the reported CO dehydrogenases from anaerobic bac
teria contain iron and nickel. Core extrusion experiments with 
the CO dehydrogenase of Methanosarcina barkeri were inter
preted to indicate the presence of six [4Fe-4S] clusters [22]. 
One of these clusters was detected by EPR spectroscopy and 
gave g values of 2.05, 1.94 and 1.90. The £m 9 2 was - 390 mV. 
The CO dehydrogenase of Methanosarcina barkeri showed a 
second EPR signal with g values 1.91 and 1.76 and a g value 
around the ge of 2.002, which was estimated to be 2.005. This 
cluster had an Em9.2 of — 35 mV, which according to the 
authors possibly played a. non-redox catalytic role. The spin 
yield was about 1.1 S = 1/2 spin/a/? dimer [22]. The CO de
hydrogenase complex of Methanosarcina thermophila gave 
complex EPR spectra comprised of two paramagnetic species, 
only when the enzyme was reduced with CO [23]. Isotope 
substitution with 61Ni, 57Fe and 13CO resulted in broaden
ing of the EPR spectra of both the Clostridium and 
Methanosarcina enzyme, indicating an Ni-Fe-C spin-coupled 
complex [23, 24]. The EPR spectrum of both enzymes is also 
markedly changed by binding of acetyl-CoA [23, 24]. 

EPR spectroscopy of the enzyme from Clostridium 
thermoaceticum has detected a signal typical of a [4Fe-4S] 
cluster together with a novel signal with apparent g values of 
1.86, 1.75 and a g value around the ge of 2.002, which was 
estimated to be 2.01 [25]. Very recently electrochemical studies 
were performed with the clostridial enzyme [26]. Controlled 
potential coulometric reductive titrations under argon re
vealed four distinct EPR signals: one with gav = 1.82 (2.01, 
1.81 and 1.62) and an Em as - 2 20mV (I); two signals with 
g„ = 1.94 (2.04, 1.94 and 1.90) and an Em x - 4 40 mV (Ha/ 
b); and one signal with g„ = 1.86(1.97, 1.87 and 1.75) and an 
£m as - 5 30 mV (III). All these S= 1/2 signals had low spin 
concentration, 0.2 — 0.3 spin/a/S dimer [26]. Features between 
g = 6 — 4 were also observed. 

Mossbauer spectroscopy of the metal clusters of the CO 
dehydrogenase of Clostridium thermoaceticum demonstrated 
a variety of components at low potential (< — 400 mV) [27]; 
40% of the Fe belonged to a [FeiS^1 + cluster, most probably 
EPR signals (Ila/b). EPR signal (I) yielded 18% of the Fe, 
while 9% of the Fe was present in a doublet with AEQ = 
2.90 mm/s and <5 = 0.7 mm/s, typical of a ferrous FeS4 com
plex. The Ni-Fe-C complex contributed up to 20% of the 
Mossbauer absorption. The complexity of the EPR and 
Mossbauer data forced the authors to conclude that the en
zyme preparations were spectroscopically heterogeneous and 
therefore made assignment of the cluster types and compo
sition premature. 

Here we report on the paramagnetic centers of the 
aerobically and anaerobically purified CO dehydrogenase of 
Methanothrix. The EPR data of the Methanothrix enzyme are 
compared to those of the Methanosarcina and Clostridium CO 
dehydrogenase. Further, the acetyl-CoA exchange activity of 
the anaerobically purified CO dehydrogenase of Methanothrix 
soehngenii is demonstrated. 

MATERIALS AND METHODS 

Organism and cultivation 

Methanothrix soehngenii (DSM 2139) was cultured on 
80 mM sodium acetate as described previously [28]. Cells were 
harvested at the late-log phase by continuous centrifugation. 

washed in 50 mM anaerobic Tris/HCl pH 7.6, 0.5 mM titan-
ous [Ti(III)] citrate and frozen in liquid N2 . They were stored 
under N2 /H2 (96:4) at - 20°C . 

Purification procedure 

The aerobic purification procedure was carried out as de
scribed previously [14]. The anaerobic purifications were car
ried out under strict anaerobic conditions in an anaerobic 
chamber with N2 /H2 (96:4) as gas phase, traces of oxygen 
were removed by a platinum catalyst. All buffers contained 
0.5 mM titanous citrate or 0.5 mM sodium dithionite as re
ducing agent to prevent inactivation by oxygen. Cells were 
suspended (25%, mass/vol.) in 50 mM Tris/HCl pH 7.6. The 
cell suspension was disrupted by passing through a French 
pressure cell at 135 MPa. Cell debris was removed by 
centrifugation for 30 min at 35000 xg and the supernatant 
was used as crude extract. The crude extract (20 — 40 ml) was 
applied to a Q-Sepharose (fast flow) column (2.2x8 cm) equi
librated with 50 mM Tris/HCl pH 7.6 (buffer A). After the 
column was washed with 60 ml buffer A, the CO dehydrogen
ase was eluted at 230 mM NaCl in a discontinuous gradient 
of 250 ml 1 M NaCl at 4 ml/min as described in [14]. The 
fractions with CO dehydrogenase activity were combined and 
concentrated to 5 ml in an Amicon Diaflo ultrafiltration cell 
equipped with a PM 30 filter. The concentrated enzyme prep
aration was diluted 1:1 with 2 M sodium chloride in buffer 
A. The protein solution was then applied to a Phenyl-
Sepharose CL-4B column (2.2 x 6 cm) equilibrated with 2 M 
NaCl in buffer A. Impurities of methyl-CoM reductase did 
not bind to the column and were collected in the void volume. 
After the methyl-CoM reductase was washed off the column 
with 20 ml 2 M NaCl in buffer A, a 60-ml linear gradient of 
2 —0 M NaCl in buffer A was applied at a flow rate of 1 ml/ 
min. The CO dehydrogenase was washed off the column in a 
60-ml linear gradient of 50% ethyleneglycol in buffer A at 
10% ethyleneglycol. Fractions with CO dehydrogenase were 
combined and concentrated to 2 ml in a PM 30 centricon unit. 
The concentrated protein solution was applied to Superose 6 
HR 10/30 column equilibrated with 10% ethyleneglycol in 
buffer A. The CO dehydrogenase was eluted after 14.5 ml at 
0.5 ml/min. The active fractions of several runs were concen
trated to 1 ml with a PM 30 centricon unit. The enzyme was 
either used immediately for activity determinations or frozen 
in liquid N2 and stored at —80"C under N2 until use. 

Activity determination 

The CO:methylviologen oxidoreductase activity was de
termined by following the reduction of methylviologen as 
described previously [14]. The acetyl-coenzyme A/CO ex
change activity was determined according to Raybuck et al. 
[17]. The assay mixture contained 0.78 ml 100 mM Tris/ 
HC1 + 1 mM dithiothreitol pH 7.5, 0.2 mM methylviologen, 
5 nmol[l-14C]acetyl-coenzyme A (specific activity 59 Ci/mol), 
195 nmol acetyl-coenzyme A and 0.15 mg CO dehydrogenase. 
The assay was performed at 35 °C in 8-ml serum vials and an 
appropriate gas phase. At regular intervals, 100-ul aliquots 
were taken, mixed with 50 ul 0.1 M H 2 S0 4 and flushed to 
remove labeled gas. The extent of exchange was calculated 
from the difference in the amount of radioactivity remaining 
in the aqueous phase. Label in CO was determined after re
moval of C 0 2 as described by Ragsdale and Wood [16]. 
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Analytical determinations 

The nickel content of the enzyme was analyzed with an 
atomic absorption spectrometer (ICP 5500, Perkin-Elmer) 
equipped with an HG-400A graphite furnace atomizer 
(Perkin-Elmer). The iron content was determined by atomic 
absorption spectrometry for the aerobically purified protein 
preparations and photometrically with bathophenanthroline 
disulfonate [29] for the anaerobically purified samples. Protein 
was routinely estimated according to Bradford [30]. For more 
accurate determinations, a modified procedure of the 
microbiuret method was used [31]. 

The molecular mass of the protein was calculated from the 
amino acid composition determined by sequence analysis of 
the CO dehydrogenase gene (unpublished results). The molec
ular mass of the a subunit is 89461 Da, of the /? subunit 
21008 Da. 

Electron paramagnetic resonance spectroscopy 

Electron paramagnetic resonance (EPR) spectra were 
obtained with a Bruker ER-200 D spectrometer. Sample 
cooling was with a home-built helium-flow cryostat. The tem
perature was calibrated with a dummy sample containing two 
5-kQ Allen-Bradley carbon resistors just below and above the 
1.5-cm measuring area of the standard rectangular cavity. 
The spectrometer was interfaced to an Olivetti M24 PC with 
software written in Asyst for data acquisition, correction of 
background signals, double integration procedures and g 
value determinations. Spin quantification used 10 mM CuS0 4 

in 10 mM HC1/2 M NaC104 as a standard. Anaerobic re
duction and oxidation of the protein samples was carried 
out in EPR tubes connected to a scrubbed argon/vacuum 
manifold as previously described [32]. Redox potentiometry 
followed the method of Dutton and used 40 JIM end concen
tration of each of the following redox mediators: methyl and 
benzyl viologen, neutral red, safranine-T, phenosafranine, 2-
hydroxy-1,4-naphthoquinone and anthraquinone 2-sulfonate, 
indigo disulfononic acid, resorufin, methylene blue, phenazine 
ethosulfate and 2,6-dichloroindophenol [33]. Prior to titration 
titanous citrate was removed by ultrafiltration with 50 mM 
Tris/HCl pH 7.5, 20% ethyleneglycol in a PM 30 Centricon 
unit. The enzyme was diluted to 6.8 mg protein m l ' 1 and 
mixed in an 1:1 ratio with redox mediators. Reducing ti
trations used 5 mM dithionite in 0.5 M Tris/HCl pH 7.5 as 
titrant. Oxidizing titrations used 50 mM potassium ferricya-
nide in 0.5 M Tris/HCl pH 7.5 as titrant. 

Chemicals 

All chemicals were at least of analytical grade. Di-
thiothreitol and methylviologen were obtained from Janssen 
Chimica (Beerse, Belgium). Acetyl-coenzyme A was pur
chased from Sigma Chemical Co. (Amsterdam). [l-14C]Ace-
tyl-coenzyme A (59 Ci/mol) was obtained from Amersham 
(Houten, NL). Gases were purchased from Hoekloos 
(Schiedam, NL). Platinum catalyst was a gift of BASF 
(Arnhem, NL). Q-Sepharose (fast flow), Phenyl-Sepharose 
CL-4B and Superose 6 HR 10/30 were obtained from Phar
macia Fine Chemicals (Woerden, NL). Titanium(III) (titan
ous) citrate was prepared from TiCl3 and sodium citrate as 
described in [34]. 

Table 1. Anaerobic purification of CO dehydrogenase of Methanothrix 
soehngenii 
One unit (U) is the amount of enzyme catalyzing the oxidation of 
1 umol CO/min 

Step 

Crude extract 
Q Sepharose 
Phenyl 
Sepharose 
Superose 

Vol
ume 

ml 

38 
40 
10 

1 

Pro
tein 

mg 

1024 
128 
45 

28 

Activ
ity 

U 

5230 
4736 
4184 

3670 

Specific 
activity 

U/mg 

5.1 
37 
92 

131 

Purifi
cation 

-fold 

1 
7 

18 

26 

Yield 

% 
100 
90 
80 

70 

RESULTS AND DISCUSSION 

Enzyme purification 

The results of a typical anaerobic purification are 
summarized in Table 1. In three steps a 26-fold purified protein 
was obtained with 70% recovery. The final CO:methyl
viologen oxidoreductase activity was 130 umol CO oxidiz
ed • mg protein"1 • min~'. The purification, recovery and fi
nal activity were in the same range as in the aerobic procedure. 
The only modification in the anaerobic procedure was the 
introduction of a Phenyl-Sepharose step, which was very effec
tive in the removal of contaminating methyl-CoM reductase. 

Metal analysis 

The metal content of the CO dehydrogenase was deter
mined either by graphite furnace atomic absorption spec
trometry for nickel and also for iron in the aerobic samples 
or photometrically with bathophenanthroline disulfonate for 
iron in the anaerobic samples. The aerobically purified protein 
contained 1.9 ± 0.1 (n = 3) mol Ni/mol a2;62 and 19 ± 3 (n = 3) 
mol Fe/mol a2/?2- The metal content of the anaerobic enzyme 
preparations was 2.0 ± 0.1 (n = 3) mol Ni/mol a2/?2 and 18 + 2 
(n — 3) mol Fe/mol a2/)2, which is in good agreement with 
metal content of the aerobically purified samples. 

EPR spectroscopy 

EPR spectra of the aerobically purified CO dehydrogenase 
are presented in Fig. 1. The protein as isolated exhibited a 
sharp signal (cf. Fig. 1 A) with several characteristics that are 
typical for spectra from the [3Fe-4S]1+ cluster. There was a 
small g anisotropy around the free electron value. The signal 
peaked at g = 2.014 and had a zero crossing at g zs 1.99. Spin-
lattice relaxation was relatively fast: the onset of saturation 
was above a microwave power of 8 mW at 12 K. The signal 
rapidly broadened above 12 K and became undetectable at 
40 K. Double integration at low temperature yielded 0.03 — 
0.04 S = 1/2 spin/half-protein molecule (i.e. per a/} unit). Thus 
the signal represented a minor component, possibly created 
by oxidative damage of another Fe/S structure. In the thionin-
oxidized CO dehydrogenase of Methanosarcina barkeri a simi
lar signal with g = 2.016 was observed, which was also not 
detectable above 20 K. Because the integration of the entire 
spectrum indicated a total of 1.1 spin/enzyme molecule, the 
signal represented a major oxidized component of that en
zyme. The 3Fe spectrum of the Methanothrix enzyme was 
unaffected by anaerobic incubation of the enzyme with either 
CO (101 kPa) or acetyl-CoA (5 mM). Reduction with 
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Fig. 1. EPR spectrum of aerobically purified CO dehydrogenase. EPR 
conditions: microwave frequency, 9.33 GHz; modulation frequency, 
100 kHz; modulation amplitude, 0.8 mT; microwave power, 8 mW; 
temperature, 11.5 K. Trace A, enzyme as isolated (23.4mg/ml, 
0.22 mM a/? dimer). Trace B, enzyme reduced by dithionite 

dithionite resulted in the spectrum given in Fig. 1 B. The fol
lowing characteristics were observed; the spectrum exhibited 
multiple features, notably more than the three expected for a 
single, rhombic g tensor; there were broad low-intensity wings; 
the zero-crossing was at g x 1.925; broadening of the individ
ual features set in at T a 20 K., the spectrum collapsed into a 
single, broad line at T a 40 K and broadened beyond detect-
ability above Tx 50 K. These properties taken together are 
reminiscent of the EPR from reduced bacterial eight-iron 
ferredoxins, i.e. two [4F6-4S]1 + cubanes whose individual S = 
1/2 spins weakly interact by dipolar coupling, as they are 
separated by a distance through space of typically a 1 nm. 
Quantification of two fully developed 4Fe/S spectra is expect
ed to give a stoichiometry of two 5 = 1/2 systems/protein unit. 
The actually observed spin intensities were considerably lower 
than the expected value of 2.0, namely, 0.11—0.16 spin/x/? 
dimer, even though these aerobically isolated preparations 
contained more than enough iron to accommodate two 
cubanes/dimer. 

When the isolation and purification were carried out under 
strict anaerobic conditions, the CO dehydrogenase as isolated 
was in the reduced state. The EPR spectrum (Fig. 2, trace 
A) was very different from that of the dithionite-reduced, 
aerobically isolated protein. Two major signals were apparent: 
one with g values of 2.05, 1.93, 1.865 and the other which is 
recognizable from the feature with apparent g value of 1.73. 
The spectrum (i.e. shape and intensity) was consistently that 
of Fig. 2, trace A, irrespective of whether the reductant was 
titanous citrate or sodium dithionite. The spectrum in Fig. 2 
was taken after the removal of the Ti3 + , 4 + solution because 
the titanous [Ti(III)] citrate is paramagnetic (d1; S = 1/2) and 
its EPR spectrum (g= 1.967, 1.941, 1.874; not shown) 
seriously interferes with that of the enzyme. 

Part of the spectrum was responsive to incubation with 
CO. Under 101 kPa of CO, a spectral component with 
g x 1.99, 1.89, 1.73 partly disappeared (cf. Fig. 2B and C). 
The Km for CO of the enzyme was previously established to 

Fig. 2. EPR spectrum of anaerobically purified CO dehydrogenase. 
EPR conditions: microwave frequency, 9.33 GHz; modulation fre
quency, 100 kHz; modulation amplitude, 0.8 mT; microwave power, 
8 mW; temperature, 13 K. Trace A. enzyme (9 mg/ml, 0.085 mM a/J 
dimer) as prepared [after removal of 0.5 mM Ti(III) citrate and ad
dition of 0.5 mM dithionite]. Trace B, enzyme under CO atmosphere. 
Trace C. difference spectrum of A minus B. Trace D, enzyme incu
bated with 5 mM acetyl-CoA 

be 0.7 mM and an aqueous solution equilibrated with 101 kPa 
of CO contained about 0.8 mM CO [14]. This may explain 
why the CO-sensitive spectral component did not disappear 
quantitatively, i.e. its partial disappearance reflects the extent 
of binding of CO. 

Krzycki et al. reported that the EPR spectrum of the 
Methanosarcina CO dehydrogenase broadened by incubation 
of the enzyme with CO. Another effect of the addition of CO 
to the reduced enzyme was the substantial shifts of the g = 
1.76 log = 1.73 and of theg = 1.90 feature tog = 1.89. How
ever, the g=1 .76 feature did not disappear [22]. When the 
enzyme of Clostridium thermuaceticum was incubated under 
CO, a new intense signal appeared with g values of 2.07 and 
2.02, which was assigned as an Fe-Ni-C center. However, the 
feature at g = 1.75 disappeared partially under a CO atmos
phere [25]. 

In trace D of Fig. 2 it is shown that reacting the 
Methanothrix enzyme with acetyl-CoA (5 mM) diminished 
the CO-dependent spectral component to the same extent 
as with CO itself. In addition, however, the other spectral 
component, with main features at g a 2.05, 1.93,1.865 disap
peared completely. The g values of this component are usual 
for the [2Fe-2S]l+ or [4Fe-4S]1+ structure. As no signal was 
observed at liquid nitrogen temperatures, it is likely that we are 
dealing with the relatively faster relaxing [4Fe-4S]1+ cubane. 
However, the spectrum differed considerably from that of the 
aerobically isolated enzyme in that no apparent broadenings 
and splittings from dipolar interaction were detected. In other 
words, the signal appears to come from magnetically isolated 
cubane(s). 
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Fig. 3. EPR spectrum of partially reduced CO dehydrogenase. EPR 
conditions: microwave frequency, 9.33 GHz; modulation frequency, 
100 kHz; modulation amplitude, 0.8 mT; microwave power, 8 mW; 
temperature, 13 K. Enzyme concentration 34 mg/ml (0.3 mM ajl 
dimer) 

Double integration of the spectrum from Ti(III)-reduced 
enzyme (Fig. 2, trace A) gave 0.96 S = 1/2 spin/cc/J dimer. 
About 10% of this intensity was from the CO-sensitive 
component. Thus, we observe EPR from a 0.9 cubane/tx/j 
dimer (2.0 expected) and « 0.1/a/j dimer of a second as yet 
unassigned component. 

The same major paramagnetic species were also observed 
in the reduced CO dehydrogenase from Methanosarcina 
barkeri and Clostridium thermoaceticum [22, 25]. Incubation 
of the clostridial enzyme with acetyl-CoA"or HSCoA under 
N2 made the enzyme EPR-silent. An effect of acetyl-CoA on 
the EPR spectrum of the CO dehydrogenase was only ob
served under a CO atmosphere. Under these circumstances, 
two signals were found; (SI) with g = 2.074, 2.028 and (S2) 
with g = 2.062, 2.047, 2.028, which only could be observed by 
EPR simulation. The EPR spectrum of the CO-reduced CO 
dehydrogenase of Methanosarcina thermophila was only influ
enced by acetyl-CoA under a N2 atmosphere. In this case one 
signal was found in the spectrum with g = 2.057, 2.049, 2.027. 

A particularly intriguing facet of the signal from the CO-
sensitive component of the Methanothrix enzyme was that all 
three g values appeared to be less than the free electron value. 
This fact was more firmly established from the isolated spec
trum of this component as given in Fig. 3. The spectrum is 
from enzyme 'as isolated' in the presence of 0.5 mM dithionite. 
Apparently, the nominally present amount of dithionite result
ed in a redox potential not low enough to reduce the cubane 
center also. Incubation with 5 mM dithionite at ambient tem
perature for 2 — 3 min resulted in a reduced spectrum as in 
Fig. 2 A. Double integration of the spectrum in Fig. 3 again 
gave 0.1 spin/a/? dimer. 

The shape of the spectrum in Fig. 3 is very similar to that 
reported for CO dehydrogenase from Methanosarcina barkeri 
obtained after 'exchanged into' dithionite-free buffer and in
cubated for 48 h [22]. In the EPR spectrum of CO dehydrogen
ase of Clostridium thermoaceticum a similar feature appeared 
under an CO atmosphere with g = 2.01, 1.86 and 1.75 [25]. 
An essential difference, however, was observed in the g values: 
where as Krzycki et al. reported g = 2.01, 1.91, 1.76 (i.e. one 
g value >ge), we find g = 1.997, 1.886, 1.725 (i.e. all g-
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Fig. 4. Redox titration of carbon monoxide dehydrogenase. The lines 
drawn through the points are Nernst n = 1 curves. Signal I (Fig. 2 A) 
was monitored at g = 2.05 ( x ) and signal II (Fig. 3) at g= 1.73 ( • ) . 
The intensities are given as percentage of the maximal intensity. The 
potential axis is defined versus the normal hydrogen electrode (NHE) 

values < ge). A feature was very recently described for the 
clostridial enzyme also with all g values <ge [26]. Similar 
signals were also reported for Rhodospirillum rubrum CO de
hydrogenase after depletion of nickel or after cyanide treat
ment [35]. Isolated low-spin nickel (d7 or d9) has all g 
values > gQ because the d shell is more than half filled. The 
EPR spectrum observed for an NiFe-containing cluster of 
unknown structure in CO dehydrogenase of Clostridium 
thermoaceticum and Methanosarcina thermophila is also 
characterized by all g values > ge [23, 24]. On the other hand, 
spectra with all g values < ge are very unusual for iron-sulfur 
clusters. We have recently reported the first example of such 
a spectrum from a 6Fe-containing protein and we tentatively 
assigned the signal to a [6Fe-6S]5+ prismane cluster [32]. In 
this latter protein the intensity of the signal with all g 
values < ge was also 0.1 5 = 1 /2/molecule. Very recently we 
have found the balance of the spin intensity in the 6Fe protein 
in the form of an 5 = 9/2 system with characteristic lines at 
low magnetic field (unpublished results). We have therefore 
scrutinized the EPR of Methanothrix CO dehydrogenase 
taken under the conditions appropriate for the detection of 
high-spin systems (i.e. low magnetic field, high microwave 
power, T=4 — 60 K). We have not detected any high-spin 
signals in CO dehydrogenase. 

An EPR-redox titration was carried out on titanous cit
rate-free enzyme in the presence of a mixture of mediators. No 
signals other than the ones present in Fig. 2 A were observed in 
the potential range + 400 mV to —500 mV. The cubane was 
monitored at g = 2.05 and the second center at g = 1.73. These 
intensities are given in Fig. 4 as percentage of maximal inten
sity. Thus, the 100% of the g = 2.05 signal corresponds to 0.9 
spin and 100% of the g = 1.73 signal is 0.1 spin. The cubane 
signal titrated with a midpoint potential £ m 7 5 = —410 mV. 
This number is similar to the Em92 = — 390 mV reported for 
the corresponding signal in the Methanosarcina CO dehydro
genase. Since the Ei of the CO/C0 2 couple is - 520 mV, it is 
likely that this cluster accepts the electrons from the oxidation 
of CO. The corresponding signal of the clostridial enzyme S 
Ha/b g = 1.94 (2.04, 1.94, 1.90) had an £m of % - 440 mV, 
which is also in the same range. 

For the second species of the Methanosarcina enzyme, a 
midpoint potential Em92 = — 35 mV is reported. For the 
Methanothrix enzyme, we find a significantly different value 
of £ m 7 5 = —230 mV. The EPR signal associated with the 
reduced site of this transition proved to be sensitive to incu
bation with CO (i.e. it partially disappeared). The redox center 
is subject to two redox transitions. The first reducing 
equivalent can be provided by Ti(III) or by dithionite and this 

67 



390 

Table 2. Acetyl-CoAjCO exchange activity of carbon monoxide dehydrogenase 0/Methanothrix soehngenii 
The assay mixture consisted of 0.78 ml 100 mM Tris/HCI + 1 mM dithiothreitol pH 7.5, 0.01 ml purified CO dehydrogenase (0.15 mg) and 
0.02 ml acetyl-CoA (200 nmol, 10912 Bq) in 8-ml serum vials. MV = methyl viologen 

Gas phase Addition Specific activity [l- , 4C]Acetyl-CoA:CO CO formed 
isotope exchanged 

C 0 2 formed 

c o 100% 

N 2 100% 
C 0 2 5% 
C 0 2 5% 
CO 5% 
CO 5% 
CO 100% 

0.2 mM MV 
no CO-dehydrogenase 
none 
none 
0.2 mM MV 
none 
0.2 mM MV 
0.2 mM MV 

nmol • min 

0 

1.3 
3.7 
6.9 

10.6 
23.7 
35.4 

• mg ' nmo 

0.2 

4.3 
10.1 
28.9 
38.7 
56.4 
74.8 

<0 .1 

2.8 
8.3 

18.7 
30.3 
44.2 
58.3 

<0 .1 
<0 .1 

4.2 
<0 .1 

0.4 
1.4 

p roduces the in termedia te , p a ramagne t i c s tate, which is 1 0% 
S = 1/2 (with all g values < ge). Addi t iona l low-potential re
ducing equivalent(s) can be conveyed by C O and this results 
in a s tate for which we have no t yet found an E P R s i gna l 
No t e t ha t also in the pu ta t ive biological [6Fe-6S] cluster, the 
5 = 1 / 2 signal (with 1 0% spin intensity and with all g 
values < g e) does exhibit two redox t rans i t ions with the p a r a 
magnet ic 5 = 1/2 s tate being the in termedia te s tate [32]. 
Krzycki et al. suggest tha t the cluster with £ m 9 . 2 = — 35 mV 
plays a non redox catalyt ic role, as has been repor ted for c i trate 
b inding to aconi tase [22]. In the clostridial enzyme an even 
more negative po tent ia l is r epor ted for the gav — 1.86 (1.97, 
1.87,1.75) signal Em & —530 m V ; the redox propert ies of this 
complex can no t be explained easily. 

The midpoin t potent ia l of the N i -Fe -C cluster of the 
clostridial enzyme was difficult to ob ta in , since the t i t rat ion 
d a t a reflect the r edox s tate of the cluster dur ing catalytic tu rn 
over. The Em was es t imated between — 350 mV and — 520 m V. 

Acetyl-coenzyme AjCO exchange activity 

The C O : methylviologen ox idoreductase activity of C O 
dehydrogenase from Methanothrix does no t require strict an 
aerobic condi t ions for purif ication [14]. However , the acetyl-
C o A / C O exchange activity, as assayed by the decar-
bonyla t ion / recarbonyla t ion of [ l - 1 4 C]ace ty l -CoA in the pres
ence of C O , was extremely sensitive to oxygen a nd was 
s trongly inhibited by d i thioni te . An enzyme p r epa ra t ion an-
aerobically purified in the presence of 0.5 m M t i tanous c i trate 
as reducing agent showed an a ce ty l -CoA/CO exchange ac
tivity of 35 nmol • m i n " 1 • m g " 1 p ro te in , equivalent to 7 mol 
C O exchanged • m i n " 1 • m o l " 1 enzyme), which was approx i 
mately 4000-fold lower t han the convers ion of C O to C 0 2 w i th 
reduct ion of the artificial e lectron acceptor methylviologen. 
W h e n 5 % C O was replaced with 5 % C 0 2 a s t he gas phase in 
the exchange react ion, 28.9 nmol ace ty l -CoA was exchanged 
as compared to 56.4 nmol with 5 % C O as gas phase . When 
1 00% N 2 was the gas phase , 2 % of the radioact ivi ty was lost 
f rom the C- l du r ing the react ion (Table 2). Methylviologen 
s t imulated the exchange react ion between [ l - 1 4 C]ace ty l -CoA 
and C O and between [ l - 1 4C]ace ty l -CoA and C 0 2 . These re
sults indicate tha t C O and C 0 2 u ndergo exchange with the C-
1 of ace ty l -CoA and t ha t the role of the low-potential e lectron 
carr iers was to s t imulate an internal e lectron transfer tha t 
occurs du r ing the c leavage and resynthesis of ace tyl -CoA. 

C O N C L U D I N G R E M A R K S 

The C O dehydrogenase of Methanothrix soehngenii is an 
example of a C O dehydrogenase tha t exhibits significant 
C O : methylviologen oxidoreductase activity after aerobic 
purification [14]. However, we have shown here tha t the acetyl-
C o A / C O exchange activity for this enzyme is very sensitive to 
oxygen. We have also found considerable differences in E P R 
propert ies between aerobically and anaerobical ly isolated and 
purified enzyme. One impor tan t conclusion from these obser
vat ions is tha t detect ion of a high C O : methylviologen 
oxidoreductase activity bears no direct relevance to the identi
fication of this enzyme's full integrity. 

Ou r reading of the combined E P R measurements on the 
aerobic and anaerob ic p repara t ions leads us to p ropose the 
following work ing hypothesis for the prosthet ic g roups in this 
C O dehydrogenase : the a.fi d imer unit conta ins one or two 
ferredoxin-type cubanes , which are expected to function in 
single-electron transfer. In addi t ion , there is a th i rd Fe /S clus
ter, whose 0 2 - sens i t ive s t ructure is no t yet established but 
which has some electronic and magnet ic p roper t ies s imilar to 
those of the pu ta t ive [6Fe-6S] p r i smane cluster [32]. Non -
biological [6Fe-6S] model clusters can be combined with an 
ion of a different metal wi thout affecting the magnet ic p roper 
ties of the cluster [36]. Analogously, one could envisage the 
single nickel ion/a/j d imer to be associated with a s imilar F e / 
S, forming the CO-act iva t ing site. 
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Enzymes: Carbon monoxide dehydrogenase (E.C. 1.2.99.2) ; Methyl-coenzyme M reductase (E.C. 1.8.99.- ) 

Carbon monoxide dehydrogenase and methyl-coenzyme M reductase were purified from aNi-enriched and 
natural abundance Ni grown cells of the methanogenic archae Methanothrix soehngenii. The nickel EPR 
signal from cofactor F-430 in methyl-CoM reductase was of substoichiometric intensity and exhibited near-
axial symmetry with g = 2.153, 2.221 and resolved porphinoid nitrogen superhyperfine splittings of ~ 1 
mT. In the spectrum from 61Ni-enriched enzyme a well-resolved parallel 1 = 3/2 nickel hyperfine splitting 
was observed, A | | = 4.4 mT. From a computer simulation of this spectrum the final enrichment in "Ni 
was estimated to be 69%, while the original enrichment of the nickel metal was 87%. CO dehydrogenase 
isolated from the same batch exhibited four different EPR spectra, however, in none of these signals any 
splitting or broadening from aNi could be detected. Also, the characteristic "g = 2.08" EPR signal found 
in some other CO dehydrogenases, and ascribed to a Ni-Fe-C complex, was never observed by us under 
any condition of detection (4 to 100 K) and incubation in the presence of ferricyanide, dithionite, CO, 
coenzyme A, or acetyl-coenzyme A. Novel, high-spin EPR was found in the oxidized enzyme with effective 
g-values at g = 14.5, 9.6, 5.5, 4.6, 4.2, 3.8. The lines at g = 14.5 and 5.5 were tentatively ascribed to an S 
= 9/2 system (~ 0.3 spins per ap) with rhombicity E/D = 0.047 and D < 0. The other signals were 
assigned to an S = 5/2 system (0.1 spins per a/3) with E/D = 0.27. Both sets of signals disappear upon 
reduction with E„i75 = -280 mV. With a very similar reduction potential, E^,.; = -261 mV, an S = 1/2 
signal (0.1 spins per a/3) appears with the unusual g-tensor 2.005, 1.894, 1.733. Upon further lowering of 
the potential also the putative double cubane signal appears. At a potential E = -320 mV the double 
cubane is only a few percent reduced and this allows for the detection of individual cubane EPR not 
subjected to dipolar interaction: a single spectral component is observed with g-tensor 2.048, 1.943, 1.894. 

Carbon monoxide dehydrogenase (CDH) is 
the central enzyme in the Wood pathway for 
autotrophic acetyl-coenzyme A (Ac-SCoA) 
synthesis by homoacetogenic bacteria [1-3]. In 
these bacteria the enzyme catalyses several 
reactions, the most important being the re
duction of C0 2 to CO and the condensation 
of a methyl group bound to CDH with CO 
and Co ASH to Ac-SCoA [4-6], CDH also 
plays an important role in the acetate degra
dation by methanogenic archae, where the 
enzyme catalyses the oxidation of CO to C0 2 

and the cleavage of Ac-SCoA to a methyl-, 
carbonyl- and Co ASH moiety [7-10]. 
Although the CDH activity has opposite func
tions in the metabolisms of these two microbi
al groups, on the molecular level the enzymes 
have several properties in common. CDH 

constitutes up to 2-5 % of the soluble protein, 
and this reflects its metabolic importance. The 
enzyme has a tetrameric structure (afi)2, but it 
can be part of a complex [4,7-10]. The size of 
the subunits is about 90 + 20 kDa in the 
methanogens and 78 + 72 kDa in the homo
acetogenic bacteria [4,7-10]. The genes for the 
subunits are clustered in an operon-like struc
ture and contain several conserved cysteine 
residues [11,12], In addition all the CDH's 
contain several Fe and acid-labile sulfur and 
2 4 Ni per enzyme. These atoms are arranged 
into several complexes, which can be studied 
by electron paramagnetic resonance (EPR) 
spectroscopy. 
In all these CDH's at least one, sometimes 
more [4Fe-4S]2*"+ cubane structures, with 
typical g= 2.05, 1.93 and 1.87 values, have 
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Fig.l. Nickel EPR spectra of factor F-430 in anaerobically purified M. soehngenii methyl-
coenzyme M reductase. 

Trace A, enzyme (90 mg/ml) as isolated, with natural abundance nickel; trace B, 
computer simulation on the basis of 160 orientations in axial symmetry with para
meters: g| , = 2.2214, g_L = 2.1525, linewidth W, , =5.5 mT, W^ = 8 rnT, nitrogen 
hyperfine splitting A, , = 0.87 mT, A_i_ = 1.05 mT.; Trace C; MNi-enriched enzyme 
(70 mg/ml); Trace D, simulation with the same parameters as in trace B, but now 
including an enrichment of 69% in 61Ni with 1 = 3/2 and A| , =4.4 mT, A±. = 12 
mT. Experimental EPR conditions; microwave frequency, 9.30 GHz; modulation fre
quency, 100 KHz; modulation amplitude, 0.4 mT; microwave power, 2 mW; 
temperature, 68 K. 
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been detected [13-16]. The Em of this cluster 
varied between -440 and -390 mV over the 
different species. It is likely that the cluster 
functions as an e-acceptor in the oxidation of 
CO or as an e-donor in the reduction of C0 2 

[13-16]. In the CDH of Clostridium thermo-
aceticwn (C. thermoaceticuni) and Methano-
sarcina thermophila (M. thermophila) a very 
characteristic EPR spectrum is observed with 
g= 2.08, 2.05 and 2.03 values, when the 
enzyme is incubated with CO [14,17]. Isotope 
substitution with 61Ni, 57Fe or "CO each 
resulted in broadening of the signal from 
CDH of both microorganisms, indicating an 
Ni-Fe-C spin coupled complex [17,18]. A 
N i jFe^S^Q stoichiometry has been proposed 
for the complex in the enzyme of C. thermo
aceticuni on the basis of Q-band Electron 
Nuclear Double Resonance (ENDOR) 
spectroscopy [19]. 

This characteristic spin coupled EPR signal 
has not been observed in spectra of the CO 
reduced enzyme from Methanosarcina barkeri 
(M. barkeri) and Methanothrix soehngenii (M. 
soehngenii) [13,16]. The EPR signal, which 
most notably changed (mainly reduced in 
intensity) upon incubation with CO of the 
enzyme of these two archae was a feature 
with g„m « 1.87 (2.00, 1.89 and 1.73) [13,16]. 
Interestingly, a similar signal with gav6 ~ 1.86 
(1.97, 1.87 and 1.75) was also observed in the 
reduced enzyme of C. thermoaceticum, in 
addition to the Ni-Fe-C spin-coupled complex 
[15]. However, the Em and the spin intensity 
of these signals varied considerably in the 3 
species: -35 mV (pH 9.2), 1.1 spins / (a6)2 for 
M. barkeri, -230 mV (pH 7.5) 0.1 spins/(aJ3) 
for M.soehngenii and 530 mV (pH 7.2), 0.3 
spins /(aB) for C. thermoaceticum [13,15,16]. 
The biological function of the cluster that 
gives rise to this signal is not clear. It has 
been suggested that it could play a non-redox, 
catalytic role in substrate binding [13]. 
Spectra with all g-values < gs are very unusual 
for iron-sulfur clusters. Recently, an example 
of such a spectrum was reported and tentati
vely assigned to a [6Fe-6S]5+ prismane cluster 
[20]. Also in this case the spin intensity was 
substoichiometric. Very recently the balance 
of the spin intensity was found in the form of 
an S = 9/2 system with characteristic lines at 

low magnetic field [21]. 
In order to determine whether this "low-
spin/very high-spin" description would also 
apply to the unusual CDH cluster, concentra
ted samples of CDH from M. soehngenii were 
prepared and analyzed by EPR spectroscopy 
under the appropriate conditions for the 
detection of very high spin systems [21]. In 
this paper we report on the detection of such 
a high spin system in the CDH of M. s-
oehngenii and we describe the redox behav
iour of this spin system together with the gm 

~ 1.87 signal in oxidizing and reducing titra
tions. The characteristics of this high spin 
system are compared to other recently 
described systems. In addition, we report on 
the complete absence of characteristic EPR 
signals from Ni-Fe-C spin complex in 61Ni 
enriched, CO reduced CDH preparations. 

MATERIALS AND METHODS 

Organism and cultivation 
Methanothrix soehngenii was the Opfikon 
strain isolated by Huser et al. [22]. It was 
cultured on 80 mM sodium acetate as 
described previously [22]. For growth on 
acetate in the presence of 61Ni, trace element 
solutions were prepared without NiCl2.6H20. 
Nickel oxide (87% enriched in 61Ni) was dis
solved in concentrated HC1 and added to a 
final concentration of 2 u.M Ni. Cells were 
harvested anaerobically under a stream of N2 

at the late log phase by continuous centrifu-
gation (Heraeus Sepatech, Osterode, FRG), 
washed in 50 mM anaerobic Tris-HCl pH 7.6, 
0.5 mM Ti(III)citrate and frozen in liquid N2. 
The cells were stored under H/Hj (96:4) at -
20 °C. 

Purification procedure 
The purifications were carried out under strict 
anaerobic conditions in a glove box with 
N2/H2 (96:4) as the gas phase. Traces of 
oxygen were removed by a palladium catalyst. 
All buffers contained 0.5 mM Ti(III)citrate as 
the reducing agent to prevent any damage by 
oxygen. Cells were suspended (25% w/v) in 50 
mM Tris-HCl, pH 7.6. The cell suspension 
was disrupted by passing it twice through a 
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Fig. 2. High-spin EPR signals in "Ni-enriched and natural CO dehydrogenase. 

Trace A, 61Ni-enriched enzyme (10 mg/ml); trace B, natural abundance enzyme (31 
mg/ml). The two traces have been normalized with respect to protein concentration. 
EPR conditions; microwave frequency, 9.30 GHz; modulation frequency, 100 kHz; 
modulation amplitude, 1.6 mT; microwave power, 200 mW; temperature, 4.2 K. 
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French pressure cell at 135 MPa. Cell debris 
was removed by centrifugation for 90 min at 
120,000 x g and the supernatant was used as 
crude extract. The CDH was purified 25-fold 
to apparent homogeneity using anion 
exchange chromatography, hydrophobic 
interaction and gel filtration as described 
previously [16]. Before the enzyme was frozen 
in liquid nitrogen, the Ti(III)citrate was 
removed by dialysis in an PM30 centricon unit 
(Grace, Rotterdam, NL) with 50 mM Tris-
HC1 pH 7.5 in 5% ethylene glycol. The 
CO:methylviologen oxidoreductase activity 
was determined from the rate of methyl-
viologen reduction as described previously 
[10]. 
From the crude extracts also the methyl-
coenzyme M reductase was purified as previ
ously described [23], and these preparations 
were used to determine the 61Ni enrichment 
in the CDH enzyme preparations by a novel 
method described below in the RESULTS 
section. 

Analytical determinations 
The nickel content of the enzyme was 
analyzed with an atomic absorption 
spectrometer (ICP 5500, Perkin-Elmer) 
equipped with a HG-400A graphite furnace 
atomizer (Perkin-Elmer). The iron content 
was determined photometrically with ferene 
[24]. Acid-labile sulfur was determined as 
described in [25]. Protein was routinely esti
mated according to Bradford [26]. For more 
accurate determinations a modified procedure 
of the microbiuret method was used [27]. 
The molecular mass of the protein was calcu
lated from the amino acid composition deter
mined by sequence analysis of the CO 
dehydrogenase gene [11]. The molecular mass 
of the a subunit is 89,461 Da, of the B subunit 
21,008 Da. 

Electron paramagnetic resonance spectroscopy 
X-band EPR data were taken on a Bruker 
ER-200 D spectrometer with peripheral eq
uipment and data acquisition as in [21]. 
Redox potentiometry was done according to 
[28] at 22 °C in an anaerobic cell under 
purified argon with the bulk potential of the 
stirred solution measured at a Radiometer P-

1312 micro-platinum electrode with respect to 
the potential of a Radiometer K-401 satu
rated calomel electrode. Reported potentials 
were recalculated with respect to the normal 
hydrogen electrode (NHE). The following 
redox mediators were used at 40 fiM end con
centration : methyl and benzylviologen, neu
tral red, phenosafranin, safranin O, anthra-
quinone disulfonate, 2-hydroxy-l,4-naphtoqu-
inone, indigo disulfonic acid, resorufin, 
methylene blue, phenazine ethosulfate and 
2,6-dichlorophenol indo-o-chlorophenol and 
N,N,N',N'tetramethyl-p-phenylenediamine. 
Samples were drawn and transferred to EPR 
tubes under a slight overpressure of nitrogen, 
and directly frozen in liquid nitrogen. Oxidiz
ing titrations were done with 5 mM potassium 
ferricyanide as the titrant in 0.5 M Tris-HCl, 
pH 7.5. Reducing titrations used 5 mM 
sodium dithionite in 0.5 M Tris-HCl, pH 7.5. 

Chemicals 
All chemicals were at least of analytical grade 
and purchased from Janssen Chimica 
(Beerse, Belgium) or Merck (Darmstadt, 
FRG). Acetyl-Coenzyme A and coenzyme A 
were from Boehringer Mannheim (Almere, 
the Netherlands). 61NiO was obtained from 
the USSR via Intersales (Hengelo, the Neth
erlands). Gases were purchased from 
Hoekloos (Schiedam, the Netherlands). 
Palladium catalyst was a gift of BASF 
(Arnhem, the Netherlands). Titanium(III)-
citrate was prepared from TiCl3 and sodium 
citrate as described in [29]. 

RESULTS 

Elemental analyses and isotope enrichment 
determination 
The Ni and Fe content of the CDH were 
previously established to be 2.0 ± 0.1 mol 
Ni/(afi)2 and 9 ± 2 mol Fe/(<*6) [16]. The 
samples used in this study also contained 2.0 
± 0.1 (n=4) mol Ni/(aB)2; the iron content 
determined with the more sensitive ferene 
method was 12.5 ± 2.2 (n = 8) mol Fe/(aB). In 
addition, also the acid-labile sulfur content 
was determined colorimetrically to be 11.8 ± 
1.7 (n=4) mol S27(a:B). 
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Table 1. E P R detectable components in M . soehngenii CO dehydrogenase. 

The effective g-values in parentheses are calculated values assuming a real g-value of 2.00 and a 

rhombicity of E /D = 0.27 (for S = 5/2) or E /D = 0.047 for S = 9/2). The spin intensity is expressed 

as s toichiometry with respect to t he a$-d imer . Abbreviations: ox, oxidized; red, reduced; nd, not 

detected. 

system doublet spin 

spin | ± m ,> g2 g, g , intensity (mV) form 

S = 5/2 | ± 3 / 2 > 4.60 3.85 4.20 =0.1 -280 ox 

(4.64) (3.90) (4.17) 

| ± l/2> nd 9.6 nd 

(0.84) (9.49) (1.28) 

S = 9/2 | ± 3/2> 5.5 nd nd =0.3 -280 ox 

(5.49) (4.77) (4.83) 

| ± l/2> nd 14.5 nd 

(1.54) (14.5) (4.86) 

S = 1/2 2.005 1.894 1.733 0.1 -261 red 

S = 1/2 2.048 1.943 1.894 0.9 -410 red 
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The study of hyperfine interactions in EPR 
spectra from isotopically enriched prepara
tions can be a useful approach to cluster 
classification. A meaningful analysis, however, 
requires some way of determining the final 
enrichment at the time of cell harvesting. This 
is especially important for trace elements that 
are commonly present as contaminants of 
mineral salts in the growth medium and/or in 
parts of the reactor, e.g., nickel. 
The percentage of 61Ni enrichment in the 
enzyme preparations was determined by com
puter simulation of EPR spectra from methyl-
coenzyme M reductase, purified from the 
same extracts as CDH. The methyl-CoM 
reductase contains per (aRy)2 two tightly 
bound cofactors F-430, which carry one Ni 
each [30]. The spectrum plus simulation (as
suming axial symmetry) of the Ni-related 
signal form M. soehngenii Methyl-CoM 
reductase, purified from ""Ni-grown cells, are 
presented in Fig 1, traces A and B. The spec
trum is virtually identical to that published by 
Albracht et al. for the enzyme from Methano-
bacterium thermoautothrophicum [31,32]. As 
with the previous work on M. thermoau
tothrophicum, also here the activity of the 
purified enzyme is low, and the integrated 
intensity of this S = 1/2 signal is substoichi-
ometric. Therefore, the relevance of this EPR 
signal to the study of the enzyme Methyl-
CoM reductase is questionable. The signal is, 
however, a good means to determine MNi 
e n r i c h m e n t in p r e p a r a t i o n s f rom 
methanogens. 

Trace C of Fig. 1 is the spectrum form M. 
soehngenii Methyl-CoM reductase purified 
from 61Ni cells. The sum-simulation, trace D, 
was obtained on the basis of identical para
meters as used for trace B, except for the 
inclusion of an axial 61Ni hyperfine tensor 
(A | | = 4.4 mT; A _̂ = 1.2 mT) and a "NiA 
natNi ratio. From this latter fitting parameter 
the percentage enrichment in 61Ni was found 
to be 69%. This final benchmark is a very 
reasonable one in view of the original 87% 
enrichment in 61Ni of the nickel metal that 
was dissolved and added to the growth 
medium. 

High spin EPR signals in oxidized CDH 
We have previously reported on two S = 1/2 
signals in (partially) reduced CDH [16]. We 
have now found a set of high-spin signals at 
low temperature in concentrated samples of 
anaerobically purified CDH, which were rig
orously freed from Ti(III)citrate. Overview 
spectra at T = 4.2 K are presented in Fig 2 
for both 61Ni-enriched and natural abundance 
enzyme. Several high-spin components are 
observed. 
The most prominent feature is a set of lines 
at g = 3.8 to 4.6. A very similar spectrum has 
thus far once been reported - and not further 
commented on - in the single subunit CDH 
from the photosynfhetic Rhodospirillum rub-
rum [33]. The spectrum is typical that from 
the middle doublet, | ± 3/2>, of an S = 5/2 
multiplet of intermediate to high rhombicity. 
The low-field peak from the | ± l/2> doublet 
spectrum is also observed at g ~ 9.6. The | ± 
3/2 > spectrum is slightly disturbed by the 
weak, sharp g = 4.3 line from a trace of ad
ventitious iron. The effective g-values of the S 
= 5/2 spectrum are readily fit, under the 
"weak-field assumption" [21], to the usual spin 
Hamiltonian (1) with g = 2.00 and E/D = 
0.27 (see Table 1). 

H = g /3 BS + D[S,2 - S (S+l) /3] + E(S,2 -S,2) [1] 

A peak at g-effective « 6.8 is visible in one of 
the traces of Fig. 2 but not in the other. We 
found this line to vary from preparation to 
preparation. All the other lines visible in Fig. 
2 were, within experimental error, found 
proportional to CDH concentration. We have 
not assigned the g = 6.8 line. 
There is a weak, but distinct peak at the 
effective g = 14.5. Under the assumption that 
the spin system is half-integer, an effective g-
value > 14 indicates S = 9/2 [21]. The above 
spin Hamiltonian would fit with an effective g 
= 14.5 and S = 9/2 for a rhombicity of E/D 
= 0.047. Under this model the g = 14.5 line 
stems from the | ± l/2> doublet. The rho
mbicity fit properly predicts a line at g = 5.5 
from the | ± 3/2 > doublet as the most promi
nent feature (see Table 1), other potentially 
observable lines being overshadowed by the S 
= 5/2 spectrum. 
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Kg. 3. Temperature dependence of S = 5/2 and S = 9/2 signals in M. soehngenii CO 
dehydrogenase. 

Spectra of CO dehydrogenase (31 mg/ml) were taken at temperatures of 4.2 and 15 K, 
conditions otherwise being as in Fig. 2. The intensity of the T = 15 K spectrum has 
been multiplied by a factor of (15/4.2) with respect to the T = 4.2 K spectrum. 
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The putative S = 5/2 and S = 9/2 lines in the 
spectra of concentrated CDH can be seen in 
Fig. 2 to have line widths independent of 
whether or not the protein is 69% enriched in 
61Ni. This means that either nickel is not part 
of the structure(s) giving rise to these signals, 
or the 61-nickel hyperfine splitting is smaller 
than the line width. 
Fig. 3 illustrates the Boltzmann redistribution 
effect of raising the temperature to 15 K on 
the low-field lines. The amplitude of the two 
traces has been corrected for the 1/T Curie-
law dependence. Under this correction the 
spectrum from an isolated ground state 
should exhibit constant intensity. Increasing 
intensity with temperature is observed for 
low-lying excited states, decreasing intensity is 
observed for ground states within a closely 
spaced spin multiplet. 
The g = 9.6 line is seen to slightly decrease in 
intensity, which identifies it (consistent with 
the g-value analysis of Table 1) as a ground 
state resonance in a multiplet with zero-field 
splittings of a few wavenumbers. The decrease 
is consistent with D = + 2 cm"1. 
The intensity of the lines at g = 14.5 and at g 
= 5.5 slightly increase with increasing tem
perature. Under the model of S = 9/2 this 
points to a small, negative D-value, with the 
| ± 1/2 > doublet being the highest in energy. 
From the increase with temperature of the g 
= 14.5 line from this doublet we can estimate 
D « -0.4 cm1. 

We can now determine the stoichiometry of 
the two high-spin systems by integration of 
the isolated peaks at g = 14.5 and at g = 9.6, 
using the estimated zero-field parameters to 
correct for the fractional population of the 
relevant doublets. The S = 5/2 system repre
sents ~ 0.1 spin per aji dimer of CDH as it is 
isolated. The S = 9/2 spectrum corresponds 
to ~ 0.3 spins per ali dimer. 

Redox titrations 
An EPR redox titration was carried out on 
Ti(III)citrate free enzyme in the presence of a 
mixture of mediators. The S = 5/2 system was 
monitored at g = 4.6 and g = 9.6, the S = 
9/2 was detected at g = 5.5. In the same 
series of experiments we also monitored the S 
= 1/2 system with gave = 1.87 by the 

amplitude of its low-field peak at g = 1.73. 
For this latter component we have previously 
determined a reduction potential E^7 J = -230 
mV [16]. 
The intensities in Fig. 4 are presented as 
fractions of the maximal signal amplitude. 
The disappearance of the S = 5/2 signals 
upon reduction indicated an n = 1 acceptor 
with Enls = -280 mV. The S = 9/2 signal at g 
= 5.6 also titrated with an E ^ j of -280 mV, 
however, the apparent n value was =0.6. The 
S = 1/2 signal at g = 1.73 appeared upon 
reduction with an n « 0.5 and with a 
midpoint potential E„^7J of -261 mV. This 
latter value is some 30 mV more negative 
than our previously reported number [16]. 

S = 1/2 EPR signals from "Ni-enriched CDH 
In the course of the redox titration spectrally 
rather well isolated signals from the S = 1/2 
component with gave ~ 1.87 were observed at 
low potentials. An example is the spectrum in 
Fig. 5, trace B from a 6INi-enriched sample 
poised at E = -280 mV. By comparison of 
this spectrum with that of °a'Ni samples (cf. 
Fig. 3 in ref. [16]) no line-broadening contri
bution whatsoever from nickel to this signal 
was indicated. 

Due to a slight error of calibration in our 
previous work [16] we must upwardly correct 
the three g-values of this signal with an 
amount of = 0.008 to 2.005, 1.894, 1.733. It is 
possible that this small correction is of theor
etical importance, because it makes one of 
the g-values just greater than the free electron 
value. 
The spectrum in trace A of Fig. 5 was 
obtained from a sample poised at a potential 
some 40 mV more negative than that of trace 
B. Extra peaks are observed signalling the 
onset of reduction of the "regular" (i.e. ac
cording to the sequence data [11]) cubanes. 
We have previously assigned the bulk of the 
EPR intensity in the dithionite and/or CO 
reduced enzyme to two cubanes separated by 
the typical distance of 10-15 A as to make 
them subject to weak dipolar electron spin 
interaction [16]. When the two individual clu
sters in such a double cubane have approxi
mately the same reduction potential, and 
when they do not experience significant 
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Fig. 4. Redox titration of M. soehngenii CO dehydrogenase. 

The S = 5/2 system was monitored at g = 9.6 (•) g = 4.6 (o), the S = 9/2 system at g 
= 5.5 (x) and the S = 1/2 system (with g^ ~ 1.87) at g = 1.733 (A). The intensities 
are given as fraction of the maximal intensity. The potential axis is defined versus the 
Normal Hydrogen Electrode. The solid lines corresponds to the Nernstian n = 1 
curves. 
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mutual redox interaction than in the early 
stages of the reduction, the situation with a 
single cluster reduced per protein unit (a/3 
dimer) is statistically favoured over the situ
ation with two reduced and dipolarly interact
ing, clusters. This situation is illustrated in 
Fig. 5 in which the spectrum of the individual 
cubane in trace C as the difference between 
traces A and B is given. Indeed, the spectrum 
is that of a regular ferredoxin-like [4Fe-4S]1 + 

cluster with g-values 2.048, 1.943, 1.894. 
In a series of attempts to detect a Ni-Fe-C 
center in the CDH from M. soehngenii both 
natural and 61Ni-enriched preparations were 
incubated with CO in the presence or absence 
of CoASH or Ac-ScoA. Under no circum
stances a Ni-Fe-C like signal was observed as 
reported for the CDH of C. thermoaceticum 
or M. thermophila [15,17]. CoASH additions 
had no significant effect on any spectrum, 
while incubation with Ac-SCoA perturbed the 
spectrum of the reduced enzyme completely 
as previously reported [16]. In none of these 
spectra any broadening from 61Ni was 
detectable. 

DISCUSSION 

In the CO dehydrogenase from anaerobic 
microorganisms at least one putative [4Fe-4S] 
cubane structure has been detected by EPR 
spectroscopy [13,14-17,33]. It is likely that this 
cluster with an Em around -400 mV functions 
as an e-acceptor in the oxidation of CO [7-
10]. In addition to this cubane signal, a very 
unusual EPR signal has been observed in the 
spectra of CDH from several anaerobic mi
croorganisms [13,15,16,32]. This latter signal 
represents substoichiometric amounts; it has 
all g-values < the free electron value [15,16]. 
Recently, another example of an Fe/S 
spectrum with all g-values < ge was reported 
and tentatively assigned to an [6Fe-6S] pris-
mane cluster [20]. The balance of the spin 
intensity was found in the form of a S=9/2 
system [21]. Because of this striking similarity, 
new studies have been initiated to determine 
whether this "low spin / very-high spin" des
cription would also apply to the unusual clus
ter of the CDH from M. soehngenii. Under 

the appropriate conditions for the detection 
of high spin signals with low intensity (i.e. 
high microwave power and low temperatures), 
several high spin components were found in 
the enzyme from M. soehngenii. 
The most prominent high spin feature was a 
spectrum typically from the middle doublet of 
an S = 5/2 multiplet. This signal with lines at 
g = 3.8 to 4.6 has also been reported for the 
CDH of R. rubrum [33]. In that work the sig
nal was only observed in methylviologen oxi
dized holo-CDH, but not in the oxidized apo-
enzyme, which lacks Ni. Although the authors 
carried out 61Ni isotope substitution experi
ments, they did not report that the g = 4 
signal was broadened by hyperfine splitting, 
nor did they mention the spin intensity of this 
feature [33]. In our 69% 61Ni- enriched CDH 
preparations of M. soehngenii no broadening 
of this S = 5/2 feature was observed, which 
argues against assignment of this signal to a 
Ni containing cluster. Another, less pro
nounced, high spin feature was observed at g 
= 14.5 and g = 5.5. We assign this set of 
signals to a putative S = 9/2 system on the 
basis of the following arguments: i) one of the 
effective g-values is > 14, which excludes half-
integer spins up to S = 7/2; ii) the second 
observed g-value is consistent with the rhom-
bicity, E/D, determined from the first one; iii) 
all other lines of the subspectra within the 
five Kramers doublets of the S = 9/2 system 
are likely to be more difficult to detect 
because of their low transition probability (cf. 
[21]) and/or their being overshadowed by the 
S = 5/2 spectrum; iv) the spectrum titrating in 
concert with the S = 5/2 spectrum indicates 
the spin to be half integer; v) we fail to envis
age any other reasonable explanation. If the 
above assignment is correct, then we have 
found the third (cf. [21]) S = 9/2 system in a 
metalloprotein. All these "superspin" proteins 
share other properties as well: a) they are 
catalysts of reactions involving multiple elec
tron transfer; b) they are Fe/S proteins with 
unusually high Fe and acid-labile S content. 
These ions are possibly arranged in "super-
clusters", i.e. clusters larger than the common 
[4Fe-4S] cubane [20, 21]. 
We set out to determine whether the unusual 
S = 1/2 signal is part of a low spin/high spin 
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Fig. 5. S = 1/2 EPR signals in M. soehngenii CO dehydrogenase poised at intermediate redox 
potentials. 

The enzyme was 14 mg/ml (0.15 Mm aB-dimer) in 50 mM Tris-HCl buffer, pH 7.5 in 
the presence of 40 /xM each of the redox mediators specified in the experimental sec
tion. Trace A, potential poised at E = -322 mV ; Trace B, E = -280 mV; Trace C, 
difference spectrum of A-B. The bar symbols on top of the figure indicate the g-values 
of magnetically-isolated [4Fe-4S]1+ cubane (2.048, 1.943, 1.894), and of the g,„e = 1.87, 
S = 1/2 system (2.005, 1.894, 1.733), respectively. EPR conditions; microwave 
frequency, 9.32 GHz; modulation frequency, 100 kHz; modulation amplitude, 0.8 mT; 
microwave power, 20 mW; temperature, 17 K. 
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system. To this goal the two high spin systems 
were monitored in EPR redox titrations 
together with the S=l/2 system. The high spin 
signals disappeared upon reduction with an 
E W J of -280 mV. The low spin system 
appeared upon reduction with an E , ^ of -
261 mV. This near crossover of the low and 
high spin system(s) could reflect a redox 
transition within a single paramagnetic center. 
However, as all spin systems involved are 
half-integer, the redox transition would have 
to involve two electrons. The observed appar
ent values of n < 1 argue against this inter
pretation. Alternatively, the S = 1/2, gave ~ 
1.87 system and the high-spin system (S = 5/2 
and 9/2) may belong to two different redox 
centers, which happen to have similar reduc
tion potentials, and possibly even exhibit 
mutual redox interaction. A third explanation 
would be that the low-spin / high-spin 
crossover does not represents a redox transi
tion per se, but rather a conformational 
change induced by a redox event somewhere 
else in the protein. One of the more pressing 
problems hampering a decision on these 
models, is the substoichiometric spin intensity 
of the different EPR signals, which we have 
found here and in our previous work on M. 
soehngenii CO dehydrogenase [16] and others 
have found for other CO dehydrogenases 
[5,13,15]. 
An characteristic EPR signal at g values of 
2.08, 2.05 and 2.03, is also observed in sub-
stiochiometric amounts, when the CDH from 
C. thermoaceticum and M. thermophila is 
incubated with CO [15,17]. This signal can be 
observed at liquid nitrogen temperatures and 
is broadened by unresolved 61Ni hyperfine 
splitting. In order to determine the Ni site in 
the M. soehngenii CDH, 61Ni enriched pre
parations reduced with CO were subjected to 
EPR spectroscopy. However, no broadening 
or hyperfine splitting could be observed in 
any of the low or high spin EPR signals. 
Thus, there is no evidence for a Ni-Fe-C 
center in the CDH of M. soehngenii, although 
the enzyme unambiguously contains Ni. Also, 
no isolated Ni(III) or Ni(I) signals are 
observed. This indicates that either the Ni is 
not related to the observed signals or that the 
clusters have structures in which the 61Ni 

hyperfine splitting is significantly smaller than 
the inhomogeneous line width. The magnetic 
properties of non-biological [6Fe-6S] model 
clusters are not drastically affected, when they 
are combined with an ion of a different metal 
[34]. Analogously, one could envisage the 
nickel ion in CO dehydrogenase to be associ
ated in a similar manner with an Fe/S super-
cluster. In addition to CO reduction the CDH 
of acetoclastic methanogens is involved in the 
catalysis of the acetyl-CoA cleavage [7-10]. 
Therefore, also the influence of Ac-ScoA and 
CoASH binding on the paramagnetic centers 
was studied. The EPR spectrum of the 
reduced enzyme was not significantly altered 
by incubation with CoASH, which was also 
observed for the enzyme from M. thermophila 
[17]. This is in sharp contrast to observations 
made with the clostridial enzyme, where 
CoASH induced a change in the Ni-Fe-C spin 
coupled complex [4]. This difference may 
reflect the ability of the enzymes to catalyze 
similar reactions, albeit in opposite directions. 
However, when the CDH of M. soehngenii 
was incubated with Ac-ScoA the EPR spec
trum was completely perturbed. This is in 
sharp contrast to enzymes of C. thermoace
ticum and M. thermophila, which form an 
g=2.08, 2.05 and 2.03 signal upon incubation 
with Ac-ScoA [4,17]. The perturbation of the 
EPR signal by Ac-ScoA indicates that the 
binding of the biological substrate causes 
either an oxidation of the reduced clusters or 
induces a conformational change, which ren
ders the enzyme completely EPR silent. 
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1. SUMMARY 

The methyl-CoM reductase from Methanothrix 
soehngenii was purified 18-fold to apparent homo
geneity with 50% recovery in three steps. The 
native molecular mass of the enzyme estimated by 
gel-filtration was 280 kDa. SDS-polyacrylamide 
gel electrophoresis revealed three protein bands 
corresponding to M r 63 900, 41700 and 30400 Da. 
The methyl-coenzyme M reductase constitutes up 
to 10% of the soluble cell protein. The enzyme has 
Km apparent values of 23 fiM and 2 mM for 
A'-7-mercaptoheptanoylthreonine phosphate (HS-
HTP = component B) and methyl-coenzyme M 
(CH3-C0M) respectively. At the optimum pH of 
7.0 60 nmol of methane were formed per min per 
mg protein. 

2. INTRODUCTION 

Acetate has been shown to be the precursor of 
70% of the methane in anaerobic digestors [1,2]. 

Correspondence to: M.S.M. Jetten, Department of Microbi
ology. Agricultural University Wageningen, Wageningen NL-
6703 CT, The Netherlands. 

Two genera of methanogenic bacteria, Methano-
sarcina and Methanothrix, are known to degrade 
acetate to CH 4 and C 0 2 [3]. In these bacteria 
acetate is metabolized via acetyl-coenzyme A, 
which is supposed to be cleaved by the carbon 
monoxide dehydrogenase [4-6]. The carbonyl-
moiety is further oxidized to C 0 2 to generate 
reducing equivalents and the methylgroup is trans
ferred to coenzyme M [7-11]. The reductive de-
methylation of methyl-coenzyme M to methane is 
a common step in all methanogenic bacteria 
[12-15]. This reaction, which has been studied in 
detail in Methanobacterium thermoautotrophicum, 
is catalyzed by a complex enzymatic system 
[16-18]. Component C of this system has earlier 
been suggested to be the methyl-CoM reductase 
per se [19]. The enzyme has been found to contain 
coenzyme M, component B and two tightly bound 
molecules of coenzyme F430 [20-22]. Evidence 
has been presented that /V-7-mercaptoheptanoyl-
threonine phosphate (HS-HTP = component B) 
functions as an electron-carrier in the methyl-CoM 
reduction to methane [23-26]. This report sum
marizes the purification and some properties of 
the methyl-CoM reductase from Methanothrix 
soehngenii. 

0378-1097/89/S03.50 © 1989 Federation of European Microbiological Societies 
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3. MATERIAL AND METHODS 

3.1. Organism and cultivation 
Methanothrix soehngenii (DSM 2139) was cul

tured on 80 mM sodium acetate as described 
previously [27]. Cells were harvested at the late 
logphase by continuous centrifugation, washed in 
50 mM anaerobic Tris-HCl pH 7.6, 0.15 M NaCl 
and 1 mM Ti(III) citrate and stored under N2 at 
- 2 0 ° C . 

The following procedures were carried out un
der strict anaerobic conditions in anaerobic cham
ber with 95% N 2 / 5 % H 2 as gas phase, traces of 
oxygen were removed by a platina catalyst. 

3.2. Preparation of cell-free extract 
Cells were suspended 25% (w/v) in 50 mM 

Tris-HCl pH 7.6 containing 0.15 M NaCl and 1 
mM Ti(III)citrate. The cell suspension was dis
rupted by sonication for 10 X 30 s alternating with 
30 s cooling periods. Cell debris was removed by 
centrifugation at 8 000 X g and the supernatant 
was used as crude extract. 

3.3. Enzyme assay 
All enzyme activities were measured at 37 °C 

by following the methane production from 
methyl-coenzyme M gas-chromatographically [26]. 
The assays were performed in 8-ml serum vials 
containing 0.4 ml assay mixture (1-5 mg protein, 
50 mM KH 2 P0 4 , pH 7.0, 6.25 mM CH3-CoM, 0.2 
mM H-S-HTP, 10 mM DTT, 0.1 mM aquo-B12 

and 1.2 mM Ti(III)citrate). Samples of 0.2 ml of 
the headspace were removed and analyzed for 
methane on a Becker gaschromatograph model 
417 equiped with FID detector. Methane was 
quantified by relating peak height to a standard 
curve. One unit of methyl-CoM reductase activity 
is the amount catalyzing the production of 1 jitmol 
of methane per min at 37 ° C. 

3.4. Protein determination 
Protein was measured with Coomassie brillant 

blue G250 as described by Bradford [28]. Bovine 
serum albumin was used as standard. 

3.5. Enzyme purification 
The crude extract (20 ml) was applied to a 

Q-Sepharose (fast flow) column (2.2 X 8 cm) equi

librated with 50 mM Tris-HCl pH 7.6, 0.15 M 
NaCl. The Methyl-CoM reductase was eluted at 
300 mM NaCl in a linear gradient of 250 ml 
(0.15-0.5 M NaCl) at 4 m l /min . The fractions 
with methyl-CoM reductase activity were com
bined and concentrated to 5 ml in an Amicon 
Diaflo ultrafiltration cell equipped with a PM 30 
filter. The concentrated enzyme preparation was 
diluted 1:1 with 2 M potassium acetate in 50 mM 
K H 2 P 0 4 pH 6.9. The protein solution was then 
applied to a Phenyl-Superose HR 5 / 5 column 
equilibrated with 25 mM K H 2 P 0 4 pH 6.9 and 1 
M potassium acetate at 0.5 m l /min . The methyl-
CoM reductase was not retarded and collected in 
the void volume. The void volumes of several runs 
were combined and concentrated to 1 ml in a PM 
30 centricon unit. The concentrated protein solu
tion was applied to Superose 6 HR 10/30 column 
equilibrated with 50 mM Tris-HCl pH 7.6 and 150 
mM NaCl. The methyl-CoM reductase was eluted 
after 13.5 ml at 0.5 m l /min . The active fractions 
were combined and concentrated to 200 fil with a 
PM 30 centricon unit, and stored at 4 ° C until use. 

3.6. Electrophoresis 
Polyacrylamide gel electrophoresis was carried 

out on 15% polyacrylamide gel at pH 8.3 accord
ing to the method of Laemmli [29]. 

3.7. Chemicals 
All chemicals were at least of analytical grade. 

Sodium dodecyl-sulfate and acrylamide were from 
Biorad (Utrecht, The Netherlands). Aquo-vitamin 
B12 was purchased from Hicol (Oud Beijerland, 
The Netherlands). Gases were purchased from 
Hoekloos (Schiedam, The Netherlands). Platina 
catalyst was a gift of BASF (Arnhem, The Nether
lands). Q-Sepharose (fast flow), Phenyl-Superose 
HR 5 /5 , Superose 6 HR 10/30 and molecular 
mass standards for gel-filtration and PAGE were 
obtained from Pharmacia Fine Chemicals (Woer-
den, The Netherlands). Titanium(III)citrate was 
prepared from TiCl3 and sodium citrate as 
described by Zehnder [30]. ./V-7-mercaptohepta-
noylthreonine phosphate (HS-HTP) and methyl-
coenzyme M (CH3-CoM) were generous gifts from 
Dr. J.T. Keltjens (Department of Microbiology, 
University Nijmegen, The Netherlands). 
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4. RESULTS 

4.1. Enzyme purification 
The results of a typical enzyme purification are 

summarized in Table 1. A 18-fold purification was 
achieved in three steps with a recovery of 50%. 
The final specific activity was 50 nmol of Ch4 • 
min~ • mg"1. Chromatography and fraction collec
tion were performed in an anaerobic chamber 
with 95% N2 /5% H2 as gas phase. All the buffers 
used were supplied with 1 mM Ti(III)citrate to 
prevent enzyme inactivation by oxygen. 

4.2. Molecular mass estimates 
The native enzyme A/r was determined by gel-

filtration on Superose 6 HR 10/30 and appeared 
to be 280 kDa, when compared with standards of 
known molecular mass. SDS-polyacrylamide gel 
electrophoresis of the purified enzyme revealed 
the presence of three major protein bands (Fig. 1). 
These protein bands represent the a, fi and y 
subunits of the methyl-CoM reductase with 
molecular masses of 63.7, 41.7 and 30.4 kDa, 
respectively. 

4.3. Kinetic properties 
Recently it was shown that HS-HTP acted as 

an electron donor in the reduction of methyl-CoM 
to CH4 by the methyl-CoM reductase [24-26]. 
Ellerman et al. showed that methane and the 
heterodisulfide (CoM-S-S-HTP) of HS-CoM and 
HS-HTP were the products of the reaction [26]. 
The reaction rate at different HS-HTP and CH3-
CoM concentrations followed Michaelis-Menten 

Table 1 

Purification of Methyl-CoM reductase of Methanothrix soehn-
genii 

kDa 1 2 top 

9 4 -

crude extract 
Q-Sepharose 
Phenyl-
-superose 
Superose 

protein 
(mg) 

280 
58 
24 

11 

units 
(mU) 

750 
752 
610 

408 

sp. 
(m 

3 
13 
29 

51 

act. 
U/mg) 

purifi
cation 
fold 

1 
4 

10 

18 

yield 

(%) 

100 
100 
77 

54 

67-

45-

30-

20-

•*-cc 

- P 

« - * 

= nmol CH4 formed per min per mg protein. 

front 
Fig. 1. SDS-polyacrylamide gel electrophoresis of methyl-CoM 
reductase. 40 /ig of methyl-CoM reductase were separated on 
15% acrylamide gels by SDS-PAGE and stained with Coomas-
sie blue (lane 2). The Mr of the subunits were calculated using 
trypsin inhibitor (M r 20100). carbonic anhydrase (Afr 30000), 
ovalbumin (M, 45000), bovine serum albumine (M, 67000) 
and phosphorylase b (M r 94000) as calibration proteins (lane 

! ) • 

kinetics. Half maximal rates were obtained at 2 
mM CH rCoM and at 23 /iM HS-HTP. At pH 7.0 
the maximal rate of methane formation from 
methyl-coenzyme M was 60 nmol • min"1 • mg - 1 . 

5. DISCUSSION 

Methyl-CoM reductase is an abundant protein 
of Methanothrix. From the increase of the specific 
activity upon purification and from the 50% re
covery it can be calculated that up to 10% of the 
soluble cell protein of Methanothrix is methyl-
CoM reductase. This is within the same range as 
described for other methanogens [12-15]. Methyl-
CoM reductase of Methanothrix has also the same 
subunit composition and molecular mass as the 
enzymes of other methanogenic bacteria [31]. The 
methyl-CoM reductase of Methanothrix has about 
the same apparent Km for methyl-CoM and HS-
HTP as the enzyme of Methanobacterium thermo-
autotrophicum. The methane formation rate 
observed in cell suspensions of Methanothrix is 70 
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nmol • min"1 • mg_1 [27]. Since 10% of the soluble 
cell protein consists of methyl-CoM reductase, a 
maximum specific activity of 700 nmol • min ~ • 
mg_1 would be expected for the purified enzyme. 
The maximal observed rate is only 6-8% of this 
value. The same decrease in activity has been 
observed for the enzyme of Methanobacterium [26]. 
This indicates that either the structural arrange
ment of the enzyme is destroyed upon breakage of 
the cells or that the proper assay conditions have 
not yet been found. 

The methyl-CoM reductase catalyses the for
mation of CH4 and CoM-S-S-HTP from methyl-
CoM and HS-HTP. The heterodisulfide is most 
probably reduced by the reducing equivalents gen
erated in the oxidation of the carbonyl-moiety to 
C02 . Future research is in progress to study the 
electron transport processes in Methanothrix. 
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DISCUSSION and SUMMARY 

Acetate is quantitatively the most important 
intermediate in the anaerobic degradation of 
soluble organic matter. The conversion rate of 
acetate by methanogenic bacteria is proposed 
to be the rate limiting step in this degradation 
The study of acetoclastic methanogens, there
fore is of relevance to our understanding of 
anaerobic processes and their optimal appli
cation in treatment of waste water from 
various sources. 
Until now only two genera of methane 
bacteria have been described which are able to 
use acetate as sole energy source: 
Methanosarcina and Methanothrix. Because 
Methanothrix has a long generation time and 
low growth yield, most of the research on 
acetoclastic methanogenesis was done with 
Methanosarcina until now. The aim of this 
work was to extend the knowledge of the ace
tate metabolism in Methanothrix and to com
pare the results with the knowledge about 
Methanosarcina. 
The study of the acetate metabolism in 
Methanothrix soehngenii was concentrated 
around three major subjects: 
- Acetate activation to acetyl-coenzyme A 

by acetyl-coenzyme A synthetase and 
the energetic consequence of this 
activation mechanism (Chapters 2-5). 

- Cleavage of acetyl-coenzyme A in to a 
methyl-, carbonyl- and coenzyme A 
moiety by the enzyme carbon monoxide 
dehydrogenase and concomitant 
oxidation of the CO group to C02 by 
the same enzyme (Chapters 6-8). 

- Reduction of the methyl group to 
methane (Chapter 9). 

Chapters 2 to 5 deal with several aspects of 
the acetate degradation and acetate activation 
in Methanothrix. In chapter 2 the threshold 
concentrations of acetate utilization and the 
enzymes responsible for acetate activation of 

several methanogenic bacteria, including 
Methanothrix and Methanosarcina, are 
presented and compared with literature data. 
The minimum acetate concentrations reached 
by the acetoclastic Methanosarcina are between 
0.2 and 1.2 mM and by Methanothrix between 
7 and 70 (iM, whereas the hydrogenotrophic 
methane bacteria, which can use acetate as an 
additional carbon source, achieve acetate 
concentrations between 0.4 and 0.6 mM. 
Methanosarcina uses an acetate kinase / 
phosphotransacetylase system to activate 
acetate with high V^,, but low affinity. 
Methanothrix and most hydrogenotrophic 
methane bacteria have an acetyl-CoA 
synthetase to activate acetate with relatively 
high affinity for acetate. The difference in 
affinity for acetate of Methanosarcina and 
Methanothrix are consistent with the general 
model by which Methanosarcina dominates in 
environments with high acetate concentrations 
while low acetate concentrations favour 
Methanothrix. Although the affinity for acetate 
of the hydrogenotrophic methane bacteria was 
high, these methanogens were not able to 
remove acetate to lower concentrations than 
the acetoclastic methane bacteria. Therefore it 
is not likely that these hydrogenotrophic 
methanogens compete strongly for acetate with 
the acetoclastic methanogens. 
In chapter 3 the purification procedure and 
properties of the acetate activating enzyme of 
Methanothrix, acetyl-coenzyme A synthetase 
(ACS), are presented and compared to the 
acetate activating system of Methanosarcina. 
ACS activates acetate to acetyl-coenzyme A. 
ACS is a homodimeric (a,) enzyme with 
molecular mass of 148 kDa and constitutes up 
to 4 % of the soluble cell protein. Comparison 
of the kinetic properties of the ACS from 
Methanothrix (V,^ = 55 U/mg, appK^ for 
acetate = 0.86 mM) with the properties of the 
acetate activating system of Methanosarcina 
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(vn»> = 6 6 ° u /nig, appKn for acetate = 22 

mM) confirmed again the hypothesis that 

Methanothrix dominates in environments with 

low acetate concentrations while high acetate 

concentrations favour Methanosarcina. 

With varying amounts of ATP weak sigmoidal 

kinetics were observed for the ACS system of 

Methanothrix. The Hill-plot gave a slope of 

1.58 ± 0.12, suggesting two interacting 

substrates sites for the ATP. The possible 

presence of different ATP binding sites was 

later confirmed by analysis of the deduced 

amino acid sequence of the ACSa gene. 

The energy for the activation of acetate by 

ACS is provided by the hydrolysis of ATP to 

AMP and PP,. In Methanothrix the conversion 

of AMP to ADP and the hydrolysis of PP, to 2 

Pi are catalyzed by an adenylate kinase and 

inorganic pyrophosphatase, respectively. 

A sum of these reactions leads to the 

suggestion that for acetate activation in Meth

anothrix two ATP are needed. Since it is 

believed that methane formation from acetate 

can only yield one ATP, it is difficult to 

envisage how Methanothrix is able to grow at 

all. One possible site of energy conservation 

may be coupled to the hydrolysis of 

pyrophosphate. To investigate the possibility 

that the energy of the PPj bound could be 

used to drive endergonic reactions, the py

rophosphatase was isolated from Methanothrix. 

The properties of the purified inorganic 

pyrophosphatase are described in Chapter 4. 

The enzyme is composed of subunits with 

molecular masses of 35 and 33 kDa in an aji2 

oligomeric structure, giving a molecular mass 

of 139 ± 7 kDa for the native enzyme. The 

enzyme catalyzed the hydrolysis of inorganic 

pyrophosphate, tri- and tetrapolyphosphate, 

but no activity was observed with a variety of 

other phosphate esters. The cation Mg2+ was 

required for activity. The enzyme was heat-

stable, insensitive to molecular oxygen, not 

inhibited by fluoride and constituted upto 0.2 

% of the soluble protein. When cells were 

rigorously disrupted in a Freeh Pressure cell, 

the inorganic pyrophosphatase was found in 

the soluble cell fraction. However, when gentle 

lysis procedures were applied up to 5 % of the 

indrganic pyrophosphatase was associated with 

the membrane fraction. This membrane 

association could indicate that hydrolysis of of 

the pyrophosphate is not solely used to 

displace the equilibrium of acetate activation. 

In analogy with the proton translocating 

inorganic pyrophosphatase of plant vacuoles 

and phototrophic bacteria, one could envisage 

a similar proton translocation function for the 

enzyme in Methanothrix. 

Since the energetic aspects formed an 

intriuging facet of the acetate metabolism in 

Methanothrix, the interconversion of adenine 

nucleotides during acetate fermentation in 

concentrated cell suspensions of Methanothrix 

soehngenii were investigated and described in 

chapter 5. Starved cells of Methanothrix 

contained high levels of AMP (2.2 nmol/mg 

protein), but had hardly any ADP or ATP. 

The Energy Charge (EC) of these cells was 

0.1. Immediately after the addition of the 

substrate acetate, the level of ATP started to 

increase, reaching a maximum of 1.4 nmol/mg 

protein, corresponding to an EC of 0.7 when 

half of the acetate had been consumed. Once 

the acetate was depleted, the ATP 

concentration decreased to its original level of 

0.1 nmol/mg protein, (EC = 0.1). These results 

showed that although the free energy gain on 

acetate is very low, Methanothrix is able to 

conserve some of this free energy in net ATP 

synthesis. 

In chapters 6 to 8 several aspects of the 

central enzyme in the acetate metabolism of 

Methanothrix soehngenii, the carbon monoxide 

dehydrogenase (CDH) are presented. 

Chapter 6 decribes the aerobic purification 

procedure together with several kinetic 

properties of the CDH. In contrast with the 

CDH's from most other anaerobic bacteria, 

the CO oxidizing activity of the purified 

enzyme of Methanothrix soehngenii was 

96 



remarkably stable towards oxygen and it was 

only slightly inhibited by cyanide. The enzyme 

constitutes 4 % of the soluble cell protein and 

showed a high degree of thermostability. 

Analysis of enzyme kinetic properties revealed 

a K , o f 0.7 mM for CO and of 65 |iM for 

methylviologen. At the optimum pH of 9.0 the 

Vmax was 140 (imol of CO oxidized per min 

per mg protein. Acetyl-coenzyme A / CO 

exchange activity, 35 nmol.min'.mg'1 of 

protein, could be detected in anaerobic 

enzyme preparations, but was absent in 

aerobic preparations. The enzyme has a 

tetrameric (afi)2 subunit structure. The Mr of 

the a subunit is about 89 kDa and of the B 

subunit about 20 kDa. The enzyme contained 

about 12 Fe, 12 acid-labile sulfur and 1 Ni per 

oJ3-dimer, which are present in clusters. These 

iron-sulfur clusters can be studied by Electron 

Paramagnetic Resonance (EPR) spectroscopy. 

In chapter 7 the paramagnetic iron-sulfur 

centers of purified CDH are described. In 

EPR spectra of the anaerobically isolated 

enzyme two major signals were apparent. One 

with g-values of 2.05, 1.93 and 1.865, and an 

Em7j of -410 mV, which quantified to 0.9 

S=l/2 spins per a(3-dimer. This signal 

resembles EPR spectra of two dipolarly 

interacting, ferredoxin-like [4Fe-4S] clusters. 

Analysis of the deduced amino acid sequence 

of the CDHa gene confirmed that there is a 

strech of 64 amino acids, which could be 

identified as a ferredoxin domain of the 

archaebacterial type. Taken together the low 

redox potential and the ferredoxin like 

sructure of this cluster, it is likely that this 

center function as electron acceptor in the 

oxidation of the CO group. The other signal 

with g-values of 1.997, 1,886 and 1.725, and an 

E , ^ of -230 mV, gave 0.1 spin per afi-dimer. 

Until now no structure could be assigned to 

this unusual signal, although it resembles in 

some aspects the putative [6Fe-6S] prismane 

clusters. When the enzyme was incubated with 

its physiological substrate acetyl-CoA, these 

two major signals disappeared. Incubation of 

the enzyme under CO atmosphere resulted in 

a partial disappearance of the spectral 

component with g = 1.997, 1.886, 1.725. 

In chapter 8 a novel high-spin EPR signal in 

the oxidized CDH with effective g-values at g 

= 14.5, 9.6, 5.5, 4.6, 4.2, 3.8 is described. The 

lines at g = 14.5 and 5.5 were tentatively 

ascribed to a S = 9/2 system with about 0.3 

spins per a/3-dimer. The other signals were 

assigned to a S = 5/2 system with 0.1 spins per 

ajS-dimer. Both sets of signals disappear upon 

reduction with E^,^ = -280 mV. With a very 

similar reduction potential, E,^,^ = -261 mV, 

an S = 1/2 signal (0.1 spins per afi) appears 

with the unusual g-tensor 2.005, 1.894, 1.733. 

Whether these signals belong to the same 

paramagnetic center exhibiting different spin 

states is not yet clear. CO dehydrogenase, 69 

% enriched in MNi, showed the same EPR 

signals as enzyme preparations isolated from 

cells grown in media with native Ni. In none 

of these signals any splitting or broadening 

from 61Ni could be detected. Also, the 

characteristic "g = 2.08" EPR signal found in 

some other CO dehydrogenases, and ascribed 

to a Ni-Fe-C complex, was never observed 

under any condition of detection (4 to 100 K) 

and incubation (ferricyanide, dithionite, CO, 

coenzyme A, acetyl-CoA). 

Chapter 9 describes the purification and some 

properties of the methyl-CoM reductase from 

Methanothrix soehngenii. The enzyme catalyzes 

the final step in the conversion of acetate: the 

reduction of methyl-coenzyme M to methane. 

The enzyme had a native molecular mass of 

280 kDa in a (aRy)2 subunit structure. The 

methyl-coenzyme M reductase constituted upto 

10 % of the soluble cell protein. The enzyme 

has K^ apparent values of 23 \xM and 2 mM 

for N-7-mercaptoheptanoyl t h reon ine 

phosphate (HS-HTP) and methyl-coenzyme M, 

respectively. At the optimum pH of 7.0, 60 

nmol of methane were formed per min per mg 

protein. These properties are comparable to 

those of methyl-CoM reductase of other 
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methanogenic bacteria, although the specific 

activity is relatively low. 

Concluding remarks 

This thesis clearly showed that the acetate 

metabolism of the specialist Methanothrix 

soehngenii has peculiar features. The high 

energy input in the activation of acetate by an 

acetyl-CoA synthetase results in a high affinity 

and a low threshold value, which makes 

Methanothrix the dominant acetoclastic 

methanogen in anaerobic ecosystems with low 

a c e t a t e c o n c e n t r a t i o n s . T h e o t h e r 

consequences of the energy input are the low 

growth yield and long generation time, which 

causes an outcompetition by Methanosarcina in 

systems with high acetate concentrations. 

Although the energy input is quite clear, the 

energy conservation is not yet well understood. 

The reduction of the heterodisulfide between 

coenzyme M and mercaptoheptanoyl threonine 

phosphate is proposed to be the common site 

for energy conservation in all methanogens. 

The high activity of heterodisulfide reductase 

in cell extracts of Methanothrix indicates that 

this site is also operative in M. soehngenii. 

Methanothrix, however, needs additional sites 

of energy conservation to compensate for its 

high input. One possible site could be the 

oxidation of CO to C02 , another site could be 

formed by the partially membrane associated 

pyrophosphatase. 

The central enzyme in the acetate metabolism 

of Methanothrix is Carbon monoxide 

dehydrogenase. This enzyme showed several 

surprising and novel characteristics: The CO-

oxidizing activity appeared to be insensitive 

towards oxygen, the anaerobically purified 

enzyme was able, although at low activity, to 

exchange the carbonyl group of acetyl-CoA 

with CO and EPR spectroscopy indicated the 

presence of an unusual iron-sulfur center. 

De oxygen-insensitivity is recently observed for 

the CDH of some sulfate-reducing bacteria 

which also use a reversed acetyl-CoA pathway 

for the degradation of acetate. The reason for 

this insensitivity is not yet clear. The exchange 

reaction between CO and the carbonylgroup of 

acetyl-CoA was recently described for the 

enzyme isolated from Methanosarcina 

thermophila. This enzyme had also low activity, 

which indicates that either the right assay 

conditions are not yet found or that this 

activity is extremely instable. 

Concerning the iron-sulfur centers there are 

little similarities between the enzymes of the 

different anaerobic bacteria. One reason why 

the research to the clusters of CDH of 

anaerobic bacteria is hampered at the moment 

is the low spin recovery of the different 

centers. This makes statements about structure 

and function difficult. There are good 

indications that at least one and possibly two 

ferredoxin-like [4Fe-4S] clusters are present, 

which play a role in the electron transfer of 

the CO oxidation. For the presence of a Ni-

Fe-C complex in the CDH of Clostridium 

thermoaceticum and Methanosarcina 
thermophila, there also good spectroscopic 

indications. This complex has until now not 

been observed in the CDH of Methanothrix. 

The CDH of Methanothrix and also of 

Clostridium thermoaceticum show in EPR 

spectroscopy another unusual signal. This 

signal could be assigned to a putative [6Fe-6S] 

prismane cluster, which could function in 

multi-electron transfer or in substrate binding. 

More clear indications are necessary to 

identify the structure and function of this 

cluster. 
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DISCUSSIE en SAMENVATTING 

Acetaat is kwantitatief het belangrijkste inter-

mediair in de anaerobe afbraak van oplosbaar 

organisch materiaal. De omzettingssnelheid 

van acetaat door methanogene bacterien 

wordt verondersteld de snelheidsbepalende 

stap in deze afbraak te zijn. Het onderzoek 

naar acetoclastische methanogenen is daarom 

van belang voor een begrip van anaerobe 

processen en hun optimale toepassing in de 

behandel ing van verschil lende types 

afvalwater. 

Tot nu toe zijn er echter slechts twee 

methaanbacterien beschreven, die in staat zijn 

acetaat als enige energiebron te gebruiken: 

Methanosarcina and Methanothrix. Omdat 

Methanothrix een lange generatie tijd en lage 

groei opbrengst heeft, zijn de meeste onder-

zoeken tot nu toe uitgevoerd met Methanosar

cina. Het doel van deze studie was het uit-

breiden van de kennis van het acetaat 

metabolisme in Methanothrix en het 

vergelijken van de resultaten van die studie 

met de gegevens over het acetaatmetabolisme 

van Methanosarcina. 

Het onderzoek naar het acetaatmetabolisme 

van Methanothrix soehngenii was gecon-

centreerd rond drie thema's: 

- Acetaat activatie tot acetyl-CoA door 

acetyl-CoA synthetase en de energe-

tische consequenties van dit activatie 

mechanisme (Hoofdstukken 2-5). 

Splitsing van acetyl-coenzym A in een 

methyl-, carbonyl- en coenzym A groep 

door het enzym koolmonoxide dehy

drogenase en de daarop volgende oxi-

datie van de CO groep tot C0 2 door 

het zelfde enzym (Hoofdstukken 6-8). 

- Reductie van de methyl groep tot me-

thaan (Hoofdstuk 9). 

De hoofdstukken 2 tot 5 beschrijven verschil

lende aspecten van de acetaat afbraak en 

acetaat activatie in Methanothrix. In hoofdstuk 

2 worden de "threshold" concentratie voor 

acetaat gebruik en de enzymen, die verant-

woordelijk zijn voor acetaat activatie van 

verschillende methanogene bacterien, inclusief 

Methanothrix and Methanosarcina, beschreven 

en vergeleken met literatuur gegevens. De 

minimum acetaat concentratie voor Methano

sarcina ligt tussen 0.2 en 1.2 mM, die voor 

Methanothrix tussen 7 en 70 u.M, terwijl de 

hydrogenotrofe methaanbacterien, die acetaat 

als additionele koolstofbron kunnen 

gebruiken, acetaat concentraties tussen 0.4 en 

0.6 mM bereiken. Methanosarcina bezit een 

acetaat kinase / phosphotransacetylase sys-

teem om acetaat te activeren met een hoge 

V^p maar een lage affiniteit. Methanothrix en 

de meeste hydrogenotrofe methaan bacterien 

hebben een acetyl-CoA synthetase om acetaat 

te activeren met een relatief hoge affiniteit 

voor acetaat. Het verschil in affiniteit voor 

acetaat van Methanosarcina en Methanothrix 

voldoet aan het algemene model, waarin 

Methanosarcina domineert in milieus met 

hoge acetaat concentraties, terwijl lage acetaat 

concentraties Methanothrix begunstigen. 

Ofschoon de affiniteit voor acetaat van de 

hydrogenotrofe methaanbacterien hoog was, 

waren deze methanogenen niet in staat om 

acetaat te verwijderen tot lagere concentraties 

dan de acetoclastische methaanbacterien. 

Daarom is het niet waarschijnlijk dat deze 

hydrogenotrofe methanogenen sterk zullen 

c ompe t e r en voor a c e t a a t met de 

acetoclastische methanogenen. 

In hoofdstuk 3 worden de zuiveringsprocedure 

en de eigenschappen van het acetaat ac-

tiverende enzym van Methanothrix, acetyl-

coenzym A synthetase (ACS), gepresenteerd 

en vergeleken met het acetaat-activerende 

systeem van Methanosarcina. ACS activeert 

acetaat tot acetyl-coenzym A. ACS is een 

homodimeer (a2) enzym met een moleculaire 

massa van 148 kDa. Vier procent van het 

oplosbare eel eiwit is ACS. Vergelijking van 

de kinetische eigenschappen van het ACS uit 
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Methanothrix (Vmax = 55 U/mg, appY^ voor 

acetaat = 0.86 mM) met de eigenschappen 

van het acetaat activerende systeem van 

Methanosarcina (Vmax = 660 U/mg, appK^ 

voor acetaat = 22 mM) bevestigen opnieuw 

de hypothese dat Methanothrix domineert in 

milieus met lage acetaat concentraties terwijl 

hoge acetaat concentraties Methanosarcina 

bevoordelen. Het ACS vertoonde met var-

ierende hoeveelheden ATP zwak sigmoidale 

kinetiek. De Hill-plot had een helling van 1.58 

± 0.12, dit suggereert dat ACS twee interac-

tieve substraatbindingsplaatsen voor ATP 

bezit. De mogelijke aanwezigheid van ver-

schillende ATP bindingsplaatsen werd later 

bevestigd door analyse van de uit het ACSa 

gen afgeleide aminozuurvolgorde. 

De energie voor de activatie van acetaat door 

ACS wordt geleverd door de hydrolyse van 

ATP tot AMP en PPi. In Methanothrix wordt 

de omzetting van AMP tot ADP en de hydro

lyse van PP; tot 2 P; gekatalyseerd door res-

pectievelijk een adenylaat kinase en een anor-

ganisch pyrofosfatase. 

De som van deze readies leidt tot de 

suggestie dat voor acetaat activatie in 

Methanothrix twee ATP nodig zijn. Omdat 

wordt verondersteld dat methaanvorming uit 

acetaat slechts een ATP kan opleveren, is het 

moeilijk voor te stellen hoe Methanothrix 

iiberhaupt in staat is te groeien. Een 

mogelijke plaats van energieconservering zou 

gekoppeld kunnen zijn aan de hydrolyse van 

pyrofosfaat. Om de mogelijkheid te 

onderzoeken of de energie uit de PP; binding 

gebruikt zou kunnen worden om endergone 

readies te drijven, werd het anorganisch py

rofosfatase geisoleerd uit Methanothrix. De 

eigenschappen van het gezuiverde anorganisch 

pyrofosfatase zijn beschreven in Hoofdstuk 4. 

Het enzym is samengesteld uit subunits met 

moleculaire massa's van 35 en 33 kDa in een 

a262 oligomere structuur. De molecuul massa 

van het natieve eiwit is 139 ± 7 kDa. Het 

enzym katalyseert de hydrolyse van anorg

anisch pyrofosfaat, tri- en tetrapolyfosfaat, 

maar er werd geen activiteit waargenomen 

met andere organische fosfaatesters. Het 

kation Mg2+ was nodig voor volledige 

activiteit van het enzym. Het enzym was hitte-

stabiel, ongevoelig voor zuurstof, werd niet 

geremd door fluoride en maakte 02 % van 

het oplosbare eiwit uit. Wanneer de cellen 

werden opengebroken met behulp van een 

"French Press", werd het anorganisch 

pyrofosfatase aangetroffen in de oplosbare 

celfractie. Echter wanneer een milde lysis-

procedure werd toegepast, was 5 % van het 

anorganisch pyrofosfatase geassocieerd met de 

membraanfractie. Deze membraan associatie 

duidt aan dat de hydrolyse van het pyrofosfaat 

niet alleen gebruikt kan worden om het even-

wicht van de acetaat activatie te verschuiven. 

In analogie met het proton-translocerend 

anorganisch pyrofosfatase van plantvacuoles 

en fototrofe bacterien, kan men zich een 

proton-translocerende functie voor het enzym 

in Methanothrix voorstellen . 

Omdat de energetische aspecten een intri-

gerend facet vormden van het acetaat meta-

bolisme in Methanothrix, werd de omzetting 

van adenine nucleotiden gedurende acetaat 

fermentatie in geconcentreerde celsuspensies 

van Methanothrix soehngenii onderzocht en 

beschreven in hoofdstuk 5. Uitgehongerde 

cellen van Methanothrix hadden hoge niveaus 

aan AMP (2.2 nmol/mg eiwit), maar bevatten 

nauwelijks enig ADP of ATP. De Energy 

Charge (EC) van deze cellen bedroeg 0.1. 

Onmiddellijk na de toevoeging van acetaat 

steeg het niveau van ATP tot 1.4 nmol/mg 

eiwit, overeenkomend met een EC van 0.7. 

Wanneer de acetaat was opgebruikt, daalde 

de ATP concentratie tot het begin niveau van 

0.1 nmol/mg eiwit (EC = 0.1). Deze 

resultaten toonden aan dat, ofschoon de 

Gibb's vrije energiewinst op acetaat erg klein 

is, Methanothrix toch in staat is een gedeelte 

van deze energie te gebruiken voor de 

vorming van ATP. 
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In hoofdstukken 6 tot 8 worden verschillende 

aspecten van het centraal enzym in het 

ace taa tmetabol i sme van Methanothrix 

soehngenii, het koolmonoxide dehydrogenase 

(CDH) gepresenteerd. 

Hoofdstuk 6 beschrijft de aerobe zuiverings-

procedure samen met verschillende kinetische 

eigenschappen van het CDH. In tegenstelling 

met de CDH's uit de meeste andere anaerobe 

bacterien, is de CO- oxiderende activiteit van 

de gezuiverde enzymen van Methanothrix 

soehngenii redelijk stabiel ten opzichte van 

zuurstof en het werd slechts licht geremd 

door cyanide. Het enzym maakt 4 % van de 

oplosbare celeiwit uit en toont een hoge mate 

van thermostabiliteit. Analyse van de 

kinetische eigenschappen leverden een K^ van 

0.7 mM voor CO en van 65 ^M voor methyl-

viologen op. Bij de optimum pH van 9.0 was 

de Vmajl 140 |amol CO geoxideerd per min 

per mg eiwit. De Acetyl-CoA / CO uitwis-

selingsactiviteit van 35 nmol.min'.mg"1 eiwit, 

werd waargenomen in anaerobe en-

zympreparaten, maar was afwezig in aerobe 

preparaten. Het enzym had een tetramere 

(aB)2 subunit structuur. De Mr van de a sub-

unit was ongeveer 89 kDa, van de 13 subunit 

ongeveer 20 kDa. Het enzym bevatte on

geveer 12 Fe, 12 zuur-labiele zwavel en 1 Ni 

per afi-dimeer, die gerangschikt zijn in 

clusters. Deze ijzer-zwavel clusters kunnen 

bestudeerd worden met behulp van Electron 

P a r amagne t i s che Re sonan t i e (EPR) 

spectroscopic. 

In hoofdstuk 7 worden de paramagnetische 

ijzer-zwavel centra van het gezuiverde CDH 

beschreven. In de EPR spectra van het an-

aeroob geisoleerde enzym zijn er twee hoofd-

signalen zichtbaar. E6n met g-waarden van 

2.05, 1.93 en 1.865, en een Em7J van -410 mV, 

die integreerde tot 0.9 S=l/2 spins per aB-

dimeer. Dit signaal leek op EPR spectra van 

twee middels dipool interacterende, fer-

redoxine-achtige [4Fe-4S] clusters. De analyse 

van de uit het CDHa gen afgeleide aminozuur 

volgorde bevestigde, dat er in het eiwit 64 

opeenvolgende aminozuren zijn, die gei'den-

tificeerd kunnen worden als een ferredoxine 

domein van het archaebacteriele type. De 

lage redoxpotentiaal en het ferredoxine ach-

tige van dit cluster, maken het aannemelijk 

dat dit centrum functioneert als electron 

acceptor in de oxidatie van de CO groep. Het 

andere signaal met g-waarden van 1.997, 1.886 

en 1.725, en een Emis van -230 mV, gaf 0.1 

spins per afi-dimeer. Tot nu toe kon er geen 

structuur worden toegekend aan dit on-

gebruikehjke signaal, ofschoon het in som-

mige aspecten lijkt op vermeende [6Fe-6S] 

prismaan clusters. Wanneer het enzym wordt 

geincubeerd met het fysiologische substraat 

acetyl-CoA, verdwijnen deze twee signalen. 

Incubatie van het enzym onder een CO at-

mosfeer resulteerde in een partiele verdwij-

ning van de spectrale component met g = 

1.997, 1.886, 1.725. 

In hoofdstuk 8 wordt een nieuw "high-spin" 

EPR signaal in het geoxideerde CDH met 

effectieve g-waarden van g = 14.5, 9.6, 5.5, 

4.6, 4.2, 3.8 beschreven. De lijnen bij g = 14.5 

en 5.5 werden voorlopig toegeschreven aan 

een S = 9/2 systeem met ongeveer 0.3 spins 

per a/3-dimeer. De andere signalen werden 

toegeschreven aan een S = 5/2 systeem met 

0.1 spins per a/3-dimeer. Beide signalen 

verdwenen bij reductie met Em7S = -280 mV. 

Met een vergelijkbare redoxpotentiaal, E^,^ 

= -261 mV, verscheen het S = 1/2 signaal 

(0.1 spins per a/3) met de ongebruikelijke g-

waarden van 2.005, 1.894, 1.733. Of deze 

s i g n a l e n b e h o r e n t o t h e t z e l f d e 

paramagnetische centrum, dat verschillende 

spin toestanden vertoont, is nog niet geheel 

duidelijk. CO dehydrogenase, 69 % verrijkt 

met 61Ni, vertoont dezelfde EPR signalen als 

enzympreparaten geisoleerd uit cellen 

gekweekt in medium met natief Ni. In geen 

van deze signalen kon enige splitsing of 

verbreding van 61Ni worden waargenomen. 

Eveneens werd het karakteristieke "g = 2.08" 

EPR signaal, wat in sommige andere CO 

dehydrogenases aanwezig is, en wordt toege-
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schreven aan een Ni-Fe-C complex, nooit 

waargenomen onder welke detectieconditie (4 

to 100 K) en incubatieconditie (ferricyanide, 

dithioniet, CO, coenzyme A, acetyl-CoA) dan 

ook. 

Hoofdstuk 9 beschrijft de zuivering en enkele 

eigenschappen van net methyl-Coenzym M 

reductase uit Methanothrix soehngenii. Dit 

enzym katalyseerd de laatste stap in de 

omzetting van acetaat: de reductie van 

methyl-CoM tot methaan. Het enzym heeft 

een natieve molecuul massa van 280 kDa in 

een («6Y)2 subunit structuur. Het methyl-

coenzym M reductase maakt 10 % uit va het 

oplosbare eel eiwit. Het enzym heeft een 

appKn waarde van 23 |iM voor N-7-

mercaptoheptanoyl threonine fosfaat (HS-

HTP) en van 2 mM voor methyl-coenzym M. 

Bij de optimum pH van 7.0 wordt 60 nmol 

methaan gevormd per min per mg eiwit. Deze 

eigenschappen zijn vergelijkbaar met die van 

methyl-CoM reductases van andere 

methanogene bacterien, ofschoon de 

specifieke activiteit relatief laag is. 

Conclusies 

Deze dissertatie heeft duidelijk aangetoond 

dat het acetaat metabolisme van de specialist 

Methanothrix soehngenii bijzondere 
karakteristieken vertoond. De hoge energie 

investering in de activatie van acetaat door 

acetyl-CoA synthetase resulteert in een hoge 

affiniteit en lage "threshold" waarde voor 

acetaat, dit maakt Methanothrix tot de domi-

nante acetoclastische methanogeen in 

anaerobe ecosystemen met lage acetaat con-

centraties. De andere consequenties van de 

hoge energie investering zijn de lage groei 

opbrengst en de lange generatietijd, dit zorgt 

ervoor dat Methanosarcina in systemen met 

hogere acetaat concentraties de overhand 

krijgt. Ofschoon de energie investering van 

Methanothrix redelijk duidelijk is, wordt de 

manier van energieconservering nog niet 

geheel begrepen. De reductie van het he-

terodisulfide tussen coenzym M en mercap-

toheptanoyl threonine fosfaat wordt veronder-

steld de gemeenschappelijke plaats voor ener

gieconservering van alle methanogenen te 

zijn. De hoge activiteit van het heterodlsulfide 

reductase in celextracten van Methanothrix 

duidt erop dat deze conserveringsplaats ook 

werkzaam is in M. soehngenii. Methanothrix 

heeft echter additionele plaatsen van energie 

conservering nodig ter compensate van zijn 

hoge energie investering. Een mogelijke plaats 

zou de oxidatie van CO tot C0 2 kunnen zijn, 

een andere plaats zou gevormd kunnen wor-

den door het partieel membraan ge-

associeerde pyrofosfatase. 

Het centrale enzym in het acetaat metabo

lisme van Methanothrix is koolmonoxide 

dehydrogenase. Dit enzym vertoonde verschil-

lende verrassende en nieuwe eigenschappen. 

De CO-oxiderende activiteit bleek ongevoelig 

voor zuurstof, het anaeroob gezuiverde enzym 

was instaat, ofschoon met lage activiteit, de 

uitwisselingsreactie tussen de carbonylgroep 

van acetyl-CoA en CO te katalyseren en EPR 

spectroscopic gaf aanwijzingen voor de aan-

wezigheid van ongebruikelijke ijzer-zwavel 

centra. 

De zuurstofongevoeligheid is recent ook 

waargenomen voor het CDH van enkele 

sulfaatreducerende bacterien, die eveneens de 

ongekeerde acetyl-CoA route bezitten om 

acetaat af te breken. De reden van deze 

ongevoeligheid is echter nog niet bekend. 

De uitwisselingsreactie tussen CO en de 

carbonylgroep van acetyl-CoA is inmiddels 

ook beschreven voor het enzym geisoleerd uit 

Methanosarcina thermophila. Dit enzym heeft 

eveneens een lage activiteit, wat erop duidt 

dat 6f de juiste assay condities nog niet 

gevonden zijn of dat deze activiteit zeer 

instabiel is. 

Wat betreft de ijzer-zwavel centra zijn er op 

dit moment weinig paralellen te trekken. Een 
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reden waardoor het onderzoek naar de 

clusters in de CDH's van alle anaerobe 

bacterien wordt beperkt, is de lage 

spinopbrengsten van de verschillende centra. 

Dit maakt gegronde uitspraken over de struc-

tuur moeilijk. Er zijn voldoende aanwijzingen, 

die de aanwezigheid van tenminste 6en en 

mogelijk twee ferredoxine achtige [4Fe-4S] 

clusters, welke een rol spelen in de electron 

overdracht bij de CO oxidatie, aannemelijk 

maken. Voor de aanwezigheid van een Ni-Fe-

C complex in het CDH van Clostridium ther-

moaceticum en Methanosarcina thermophila 

zijn verschillende spectroscopische indicaties. 

Dit complex is tot nu toe in het CDH van 

Methanothrix niet waargenomen. Het CDH 

van Methanothrix en ook van Clostridium 

thermoaceticum vertonen in EPR spectro

scopic echter een ander ongewoon signaal. 

Dit signaal is mogelijk afkomstig van een ver-

meend [6Fe-6S] prismaan cluster, dat zou 

kunnen functioneren in multi-electron over

dracht of substraat-binding. Meer eenduidige 

aanwijzingen zijn echter noodzakelijk om de 

structuur en functie van dit cluster op te 

helderen. 
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