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Stellingen 

behorende bij het proefschrift 

Predictability in Models 

of the Atmospheric Circulation 

1. De onvoorspelbaarheid van het weer is ten dele voorspelbaar. 

2. Voor het experimenteel vaststellen, met 95 % zekerheid, dat een perfect werkende 
betrouwbaarheidsverwachting voor de twee-daagse weersvoorspelling inderdaad enige 
kwaliteit heeft moet de fout in minstens ongeveer 150 voorspellingen vergeleken wor-
den met de corresponderende betrouwbaarheidsverwachting. 

3. Het toepassen van de in dit proefschrift behandelde methoden op modellen voor de 
foutengroei met een hogere resolutie of met een betere representatie van de fysica 
hoeft geen betere resultaten te geven. 

4. De "Lagged Average Method" heeft geen wetenschappelijke basis en dient daarom 
verworpen te worden. 

5. De beschrijving van modelfouten zoals gebruikt in hoofdstuk 4 van dit proefschrift 
kan verbeterd worden met de "maximum likelihood" methode. 

6. Een goed uitgevoerde bifurcatieanalyse hoeft niet te leiden tot een volledig beeld van 
alle aantrekkers in de faseruimte. 

P. Houtekamer, An analysis of the Lorenz-1984 equations, Afd. Wiskunde, Rijks-
universiteit Utrecht, Preprint 563, 1989 

7. Een punt dat met homogene waarschijnlijkheid willekeurig geplaatst is in een n-
dimensionale kubus ligt met de zeer kleine kans 2 1 _ n W 2 / nT (n /2 ) in de grootst mo-
gelijke door de kubus omsloten bol. Voor het homogeen willekeurig plaatsen van een 
punt in een bol is het daarom aan te bevelen eerst een willekeurige richting te bepalen 
met normaal verdeelde getallen. 



8. Bij de beschrijving van interakties tussen vier zwaartegolven in een systeem met 
periodieke randvoorwaarden en met dispersie van de vorm: 

w oc (n2 + m2)1'4 

treedt het volgende stelsel vergelijkingen op: 

(*) 

rJ / 4 + r ^ = r 1 / 4 J, r 1 / 4 r3 + r4 
rz ^ n ^ r4 

r, = n2 + m2 , * = 1, - - - ,4 
Hi + n2 = n3 + n4 

mi + m2 = m 3 + m4 

rii,mi £ N 
ni,m.i < M e N 

Het stelsel (*) heeft de eerste oplossing voor M = 495: 

nx = 495, n2 = 64, n3 = 359, n4 = 200 
mi = 90, m2 = 128, m3 = 118, m4 = 100 

Deze oplossing is niet relevant voor het achterliggende fysische probleem. 

Het stelsel (*) heeft een benaderende oplossing: 

ni — 23, n2 

mi = 26, m2 

25, n3 = 24, n4 = 24 
24, m 3 = 28, m4 = 22 

Zowel met wiskundige als met numerieke methoden kan aangetoond worden dat dit 
slechts een benaderende oplossing is. Wellicht heeft deze oplossing fysische relevantie. 

9. Het aantal proefschriften dat gedrukt is op kringlooppapier is veel kleiner dan het 
aantal stellingen over het milieu. 

10. Omdat niet iedere automobilist groot licht dimt voor iietsers verdient het aanbeveling 
ieder fietspad te voorzien van witte reflecterende strepen. 

P. Houtekamer Wageningen, 9 September 1992 
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Chapter 1 

Introduction 

Weather forecasts contain relevant information for a relatively short period 
of time only. After a few days the correspondence between the forecast and 
the observed weather phenomena decreases rapidly. The eventual failure 
of a forecast may point to a failure of atmospheric scientists to properly 
simulate the atmospheric evolution with their models. However, this is 
not a priori clear. It may very well be that the atmosphere is so sensitive 
to small and unavoidable differences in the description of the initial state 
of the atmospheric circulation that today the accuracy of the forecasts is 
close to the theoretical limits. Scientists are forced to ask the question: is 
it still possible to significantly improve the daily weather forecast or are 
we close to reaching perfection? 

Models combine the scattered information from past and present ob­
servations into one complete picture of the atmosphere. The quality of 
this picture is so high that it is used as a faithful description of the large 
scale atmospheric circulation. This description is then used as if it were 
the actual state of the atmosphere. For example if one would be inter­
ested in the average temperature at 700 mb during winter, one would use 
the numerical weather prediction (NWP) archives containing the winter 
states. Nobody would consider obtaining these values from, for instance, 
radiosonde measurements. 

The fundamental laws of motion which apply to the atmosphere are 
well known. It is in general not known how these laws can faithfully be 
represented in a model. It is for instance still not clear how to adequately 
represent the effect of mountains on the atmospheric circulation. Scientists 
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have to design some kind of parametrization instead. An improvement of 
the parametrization leads to an improvement of the model results. With 
forecasts of the quality of a forecast, so called skill forecasts, one has to deal 
with a similar situation. It is known how the evolution of error statistics 
can be described. However, a direct implementation of this knowledge 
causes insurmountable computational difficulties, such as the treatment 
of an infinite series of moments. Thus numerical methods have to be 
developed which approximate the knowledge of error growth processes in 
such a way that the skill forecast is both computationally feasible and of 
relevance to forecasters. The development of methods to forecasts the skill 
is the subject of this thesis. 

In this thesis errors in the prediction are assumed to be caused only 
by errors in the initial state. Initial errors are unavoidable because it will 
never be possible to measure the atmosphere in all detail without errors. 
The evolution of the errors is described with the model that is assumed 
to be perfect. This approach may certainly be criticized. The atmosphere 
may have a sensitivity to errors which is different from the sensitivity of 
the model to errors and the model trajectory may systematically diverge 
from the atmosphere due to model errors. However, if models will continue 
to improve, the assumption of a perfect model will become less serious. 

In this thesis attention is restricted to the quality of the forecast during 
the first four days of the forecast. The restriction to four days makes it 
possible to use linear theory for the evolution of initially small errors. A 
skill forecast is obtained using the forecast for the atmospheric circula­
tion as a reference orbit in phase space around which a simple model is 
linearised. 

The introduction starts with a description of fundamental limits to the 
predictability. It will appear that the present and past states of the at­
mosphere and its environment do not uniquely determine the state at all 
future times (Lorenz 1965). Less fundamental, but quite significant, are 
the limits imposed by the deficiencies of models. The introduction con­
tinues with an overview of current methods to produce error statistics. 
In this thesis adjoint models are used. A short overview of their applica­
tions is given. As a final point the assimilation of data is treated. Data 
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assimilation provides an estimate of the current state of the atmospheric 
circulation (the analysis) and its error statistics. With a skill forecast the 
time evolution of these error statistics is estimated. 

1.1 Fundamental limits 

The predictability of a system can be classified into three categories, ac­
cording to the general evolution of initially small errors (Lorenz 1969): 

1 At all future times the error remains comparable to or smaller than 
the initial error. The error may be kept arbitrarily small by making 
the initial error sufficiently small. 

2 The error eventually becomes much larger than the initial error. At 
any particular future time the error may be made arbitrarily small by 
making the initial error sufficiently small, but, no matter how small 
the initial error (if not zero), the error becomes large in the sufficiently 
distant future. 

3 The error eventually becomes much larger than the initial error. For 
any particular future time there is a limit below which the error cannot 
be reduced, no matter how small the initial error (if not zero) is made. 

Systems in the first category in general show either periodic or constant 
behavior. Sofar nobody has produced evidence that the atmosphere is in 
the first category. 

An example of a system in the second category is Lorenz's famous model 
for convection (Lorenz 1963). This model, which has three components, 
shows a non-periodic solution. Initially nearby solutions diverge until 
eventually their distance is comparable to the distance of two randomly 
chosen states. Many, if not all, of the current models for the atmospheric 
circulation fall into this second category. If the required calculations are 
performed with a sufficiently high precision and if the forecast error is 
small, then a reduction of the initial error appears to lead to a proportional 
reduction in the forecast error. It will then take at least a fixed finite time 
before the forecast error appears to reach its old level. The fixed finite time 
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is determined by the maximum rate of divergence of the model. Thus, for 
a system in the second category, it is useful to reduce the size of the initial 
error until eventually it is infinitesimally small. 

This is not true for a system in the third category. Here the forecast 
quality is limited independent of the size (if not zero) of the initial er­
ror. A suggestion that the atmosphere behaves in this way comes from 
the following sequence of historic estimates of the error doubling time 
in ever more complex models. With a two-layer model for the northern 
hemisphere Smagorinsky estimated that errors double in about 8 days 
(Charney et al. 1966). A more advanced and global model of Mintz and 
Arakawa gave an error doubling time of 5 days (Charney et al. 1966). 
With a nine-level primitive equation model Smagorinsky (1969) obtained 
a 3 day doubling time. In 1982 Lorenz obtained a doubling time of 2.1 
days with the then current version of the ECMWF operational model. In 
this sequence the doubling time refers to the initial growth rate of errors 
present at the synoptic scales. The growth rate of errors increases if one 
goes from a certain atmospheric model to a similar model with a higher 
resolution. One may fear that the atmosphere itself will display very short 
error doubling times at its smallest scales. Using turbulence theory, which 
extends the estimates to sub-synoptic scales, it is indeed argued that the 
atmosphere itself is a system in the third category. For small scales one 
may try to get estimates of the predictability with limited-area models 
with a very high spatial resolution. For the larger scales it is possible to 
use the Global Circulation Models (GCM's) which are the basis of the 
daily weather forecast. In this section the three different approaches are 
discussed and combined. The result is a statement on the performance of 
a hypothetical perfect weather forecasting model. 

1.1.1 Turbulence theory 

Lorenz (1969) uses a simple mathematical model to argue that the pre­
dictability of the atmosphere is limited in the sense of the third category 
above. An equation whose dependent variables are ensemble averages of 
the "error energy" in separate scales of motion is derived from the vor-
ticity equation for two-dimensional flow. Solutions of the equation are 
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determined for cases where the horizontal extent and total energy of the 
system are comparable to those of the earth's atmosphere. 

It is found that each scale of motion possesses an intrinsic finite range 
of predictability, provided that the total energy of the system does not fall 
off too rapidly with decreasing wavelength. For the smallest scale in the 
model, which is 40 meters, it appears that a non-zero initial error grows 
to saturation in 1.8 minutes or less. For a scale of 625 km this time is 0.65 
days and for global errors it is 16.7 days. Thus, the atmosphere, which is 
formally a deterministic system, is observationally indistinguishable from 
an indeterministic system. Two states of the atmosphere differing initially 
by a small observational error will eventually evolve into two states differ­
ing as greatly as two randomly chosen states. This occurs within a fixed 
time no matter how small the non-zero initial error may be made. This 
is known as the "butterfly" effect. If at some part of the world a butter­
fly decides to follow a different course this may in a few weeks cause a 
completely different evolution of the global weather. 

Lorenz based his computations on a rather speculative energy spec­
trum. Different estimates were obtained by Leith (1971) and Leith and 
Kraichnan (1972). Their energy spectra have less energy at the smallest 
scales. In addition they used an eddy-damped Markovian approximation 
for the closure problem while Lorenz used a modified quasi-normal ap­
proximation. Unfortunately a fundamental theory does not exist and the 
closure has to be made on phenomenological grounds. This makes it dif­
ficult to say which form of closure is the best one. Although qualitatively 
the results are similar the latter authors obtained predictability durations 
several times longer than Lorenz's. Lorenz's postulated energy spectrum 
has been confirmed by observations (e.g. Lilly and Peterson 1983). At 
large scales the atmosphere has an energy spectrum which follows the -3 
power law of 2 dimensional turbulence. At small scales it has the -5/3 
power law corresponding to 3 dimensional turbulence. The general ap­
plicability of turbulence theory to the predictability at small scales has 
been questioned because of the highly intermittent nature of small-scale 
weather events (e.g. Lilly 1985). Because of the uncertainty in Lorenz's 
results one may decide to follow an entirely different method. One may use 



CHAPTER 1. INTRODUCTION 

a weather model that has been explicitly designed to describe small-scale 
weather events. 

1.1.2 Limited-area models 

As an alternative, to the results from turbulence theory, it has been at­
tempted (e.g. Anthes et al. 1985) to estimate predictability on small scales 
(100 to 1000 km) using a limited-area mesoscale model with prescribed 
boundaries. Anthes et al. found little or no error growth, as measured 
in a root mean square sense, during 72-hour forecast periods. This is dis­
tinctly different from what turbulence theory predicts. The explanation 
is to be found in artificial factors which are present in limited-area mod­
els. An example is the existence of a prescribed lateral boundary which 
is assumed to be accurate (e.g. Errico and Baumhefner 1987). If the lat­
eral boundaries are identical for the control and the perturbed forecast, 
the growth of differences between the forecasts is artificially limited. In 
practice lateral boundary perturbations contaminate the solution in the 
interior within three to six hours. This suggests that medium-range fore­
casts with limited-area models will not be better than the same forecasts 
performed with global models. A review of predictability studies based 
on limited-area models is given by Vukicevic and Errico (1990). They 
show that predictability of synoptic and large scale flow increases with a 
better representation of topography. This happens because surface inho-
mogeneities, if correctly incorporated in numerical models, may correctly 
induce small scale events (such as mountain waves). On the predictability 
at short scales (scales shorter than 200 km) they conclude that a more 
careful treatment of the short-scale dynamics than presently available in 
numerical weather prediction (NWP) models is needed. 

In view of these problems with limited-area models the result from 
turbulence theory is accepted that, however accurate the initial state may 
be, the synoptic scales will always be contaminated by errors after about 
0.65 days. 
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1.1.3 Global Circulation Models 

For the predictability at larger scales it is possible to use results from 
Global Circulation Models (GCM's). One may obtain both a lower and 
an upper limit for the average atmospheric predictability. The lower limit 
is simply given by the present performance of the NWP models. The 
upper limit is directly obtained from the NWP models by computing the 
divergence of two initial states that are slightly different. This was first 
done by Lorenz (1982). At that time the model of the European Centre 
for Medium-Range Weather Forecasts (ECMWF) had obtained such a 
quality that the errors in the one day forecast could be considered as 
small perturbations to the true state one day later. In his study Lorenz 
assumes that the growth rate of errors in models is characteristic for the 
growth rate of errors in the real atmosphere. This is optimistic because in 
the atmosphere, which contains all scales, errors are likely to grow faster 
than in a model. Lorenz's estimates of the predictability were based on a 
hundred day dataset, starting at December 1 1980. It appears that, if a 
root mean square error of 60 meters for the geopotential height of the 500 
mb level is taken as a limit to a useful forecast, this limit is reached after 
3.5 days. Looking at the divergence between two successive model runs 
this limit is reached after 6 days. Thus in theory one might gain 2.5 days 
when a perfect model is available. 

Recently Lorenz (1990) has repeated his analysis. This time data are 
for the 100-day period beginning on 1 December 1986. Internal divergence 
gives an error of 60 meters after 7 days. In reality the forecast becomes in­
valid after 4.5 days. Thus although the forecast has improved by as much 
as one day the potential for improvement is still 2.5 days. The explanation 
for this strange result is that the analysis error has decreased considerably 
in the same period. The data from 1987 and 1988 indicate that the po­
tential for improvement now has decreased to 1.25 days (Lorenz 1990). 
If one accepts Lorenz's (1969) conclusion that a small but significant er­
ror in the synoptic scales will always be reached within about 0.65 days, 
one comes to the conclusion that the ultimate weather forecasting system, 
which starts from a vanishingly small but non-zero error in the smallest 
scales of motion and which perfectly represents all processes of relevance 
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for the atmosphere, will on average be valid for two days more than at 
present. 

1.2 Deficiencies of models 

The quality of atmospheric models is, on average, increasing as a result of 
modifications in their formulation. Nevertheless the deficiencies of present 
models are such that they make the above discussion on fundamental limits 
largely academic. Even if the analysis error could be made zero, model 
deficiencies would introduce errors at the largest scales during the first 
few days of the forecast (Boer 1984). This implies that skill predictions 
should be based on a study of both internal errors and of model errors. 

In practice it is not easy to distinguish model errors and internal errors 
(Tribbia and Baumhefher 1988). From the point of view of model design 
this is disturbing. If the model errors are much smaller than the internal 
errors it may no longer be possible to distinguish them without having a 
large dataset available. Likewise if the effect of internal errors becomes 
small relative to the effect of model errors there is no point in further 
improving the observing system. From this it appears logical that model 
errors and internal errors are removed simultaneously where at each time 
most attention is given to the then weakest part of the prediction system. 

Studies by Lorenz (1982, 1990) indicate that between 1981 and 1987 
the quality of the analysis and the quality of the model improved simul­
taneously. Between 1987 and 1989 the principal improvements were in 
the model. One would expect this trend to continue. The quality of a 
one day forecast has an upper limit, due to the rapid spectral cascade of 
small scale errors towards the synoptic scales. Thus after one day there 
is always a certain minimum error which starts to grow due to the inter­
nal dynamics. The superimposed effect of model errors becomes smaller 
with every improvement of the model. At some point model errors, or 
model improvements, will cease to have a detectable effect on the quality 
of short- and medium-range forecasts. 

One may distinguish a systematic and a random component of the 
model error. The systematic model errors are studied mainly from a diag-
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nostic point of view. That is one runs a model for some time, say 10 days, 
and one observes that the final flow is not atmospheric in some sense. So, 
with a certain atmospheric model, it might appear that the troposphere is 
always cooling down slowly. One may then adapt the model such that this 
problem no longer occurs. Because systematic model errors are difficult to 
detect in present models, research is now going into methods to quantify 
model performance with methods that are independent of observational 
errors (Lions 1990). Such methods can lead to optimal estimates of model 
parameters. In a skill forecast these estimates can be treated in the same 
way as estimates of the initial states. Methods developed to quantify the 
effect of the internal errors on the forecast can also be used to quantify 
the effect of model errors. 

The model error may also have a random component. In Thiebaux and 
Morone (1990) it was demonstrated that the short-term forecast error has 
a fluctuating component with a time scale of about 10 days. Because 
they studied forecast errors with a range of 1 day or less, which is much 
less than the time scale of the detected random error, this component of 
the random error could be estimated and removed. The random forecast 
error may well have components with shorter time scales. One may even 
assume that successive forecasts have independent random model errors. 
Methods for estimating such random model errors are given by Belanger 
(1974). A more efficient version of this method appeared in Dee et al. 
(1985a, 1985b). A possible cause of random model errors with a short 
time scale are truncation errors. These errors give random contributions 
during the forecast run. Parametrizations may cause random errors with 
a longer time scale. Depending on the flow situation a parameter value 
may be either too low or too high. Such random model errors will have 
the time scales of the flow features which cause them. 

In this thesis model errors will be neglected because model errors can 
only be studied usefully in the context of operational models. One needs 
to compare actual predictions with actual observations to diagnose model 
errors. For the simple 30 component model, which is used in the first part 
of this thesis, a study of its model errors is not relevant. 
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1.3 Evolution of error statistics 

Lorenz (1965) was the first to study the variability of atmospheric pre­
dictability. He used an atmospheric model with 28 variables and linearized 
the equations for the evolution of errors around a reference solution. The 
average forecast error was obtained from the spectrum of eigenvalues of 
the covariance matrix of the forecast error. This matrix is symmetric and 
can have only positive eigenvalues. These two properties make it easy to 
study this matrix numerically. 

He observed that the time required for small initial errors to grow to 
intolerable size is strongly dependent upon the circulation pattern, and 
varies from a few days to a few weeks. His model has a variable, related to 
the position of the jet stream, with a much better predictability than other 
variables. This is an indication that specific skill forecasts may be needed 
for specific variables. It is not sufficient to give a probability distribution 
for one global measure of the error. 

The variability in the success of forecasts is now well known. It is 
generally felt that we should try to predict the skill. Tennekes et al. 
(1986) stress the need for objective methods. They suggest to give a skill 
forecast in a geographically differentiated way, because predictability is a 
local variable. 

Lorenz (1965) noted that his methods are not immediately applicable 
to more realistic models for computational reasons. He mentioned a prim­
itive equation model (Smagorinsky 1963) with 5184 variables which was 
the current state of the art. A repetition of Lorenz's study for this model 
would require 5184 separate numerical integrations, each with a set of 
initial conditions differing from a basic set in only one variable. On the 
then current computers this was out of the question. In a sense this prob­
lem has only become worse; the complexity of weather forecasting models 
is keeping up with the rapidly increasing performance of computational 
facilities. 

The ideas of Lorenz (1965) have also appeared in dynamical system 
theory (Goldhirsch et al. 1987). The eigenvalues of the covariance matrix 
for the forecast error were shown to be related to so called time-dependent 
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Lyapunov exponents. In a finite dimensional system and in the limit of 
infinite time the time-dependent Lyapunov exponents become equal to 
the Lyapunov exponents. Lyapunov exponents are global properties of an 
attractor and are related to other global properties such as the dimension 
of the attractor (Kaplan and Yorke 1979). Unfortunately there is little 
evidence that the atmosphere behaves like a finite dimensional system in 
which Lyapunov exponents have a well defined meaning. Recently the 
concept of time-dependent Lyapunov exponents is being reconsidered in 
atmospheric sciences as well. This time the name of the method is optimal 
perturbation analysis (Farrell 1989, 1990) or finite-time Lyapunov stability 
analysis (Yoden et al. 1992). In this thesis it is discussed how optimal 
perturbations can efficiently be determined with methods which are based 
on the use of adjoint models. 

1.3.1 Stochastic dynamic prediction 

Prom a mathematical point of view the description of the evolution of the 
error statistics is straightforward. One can use a continuity equation for 
the evolution of the probability density in the same way as one uses a 
continuity equation for the evolution of the mass density (Epstein, 1969). 
Unfortunately the evolution equation for the first order moments includes 
terms of second order moments. The equation for the second order mo­
ments requires third order moments and so on. It was shown by Freiberger 
and Grenander (1965) that as long as the deterministic prognostic equa­
tions are nonlinear it is impossible to write a closed finite set of prognostic 
equations for the moments. This means that it is impossible to predict 
exactly the future behavior of even the mean of the distribution because 
for this all moments of the distribution must be predicted as well. Epstein 
concludes that the series of equations must be truncated after the second 
order terms. It is assumed that terms of third and higher order have only 
a small contribution. This assumption is reasonable for a short time if 
the initial error is sufficiently small. Unfortunately models have grown 
beyond the complexity foreseen by Epstein. Pitcher (1977) integrated the 
moment equations with second moment closure. According to Pitcher 
the computational cost is excessive. Fleming (1971) did experiments with 
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third moment closure. He remarks that the volume of computation is 
monumental but finite. Simplified schemes are proposed by Thompson 
(1985, 1986). 

Thompson (1986) proposed a simple approximate method which is 
based on strong assumptions on the statistics of the initial errors. In 
particular he supposed that the ensemble of initial error fields is statis­
tically isotropic and homogeneous, in the sense that the autocorrelation 
function of any particular velocity component is independent of the direc­
tion of that component. He showed that the local growth or decay of error 
variance depends primarily on the detailed structure of the vorticity field; 
in general, the most rapid error growth can be expected in concentrated 
regions of strong vorticity gradient. Although his approximate method 
requires only a marginal increase of the computations needed for a de­
terministic prediction, it has not yet been applied to actual short-range 
predictions. 

1.3.2 Monte Carlo forecasts 

Lorenz (1965) suggested to perform a Monte Carlo experiment in a model 
of reasonable complexity. In this an ensemble of error fields is added to 
the analysis. The error fields are chosen by a random process such that 
the likelihood of selecting any given error field is proportional to the initial 
probability density. Means and variances are determined for the ensemble. 
Leith (1974) states that a small ensemble with only about 10 members 
may be sufficient to get results comparable with a stochastic dynamic 
technique. The big advantage of the Monte Carlo method is that it gives 
unbiased results which converge to the true values when the number of 
ensemble members approaches infinity. Imperfections of the model can, 
if the corresponding statistics are known, also be sampled with a Monte 
Carlo process. 

A technique to accelerate the convergence of the obtained statistics is 
stratified sampling (Kleijnen 1974; Balgovind et al. 1983). This sampling 
technique makes the ensemble more "representative" using a division of 
the initial state into equally likely classes. For instance if the initial state 
is defined by a scalar value between 0.0 and 1.0, one may generate a strati-
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fied ensemble of 10 members by drawing the first random number between 
0.0 and 0.1, the second random number between 0.1 and 0.2 and so on. A 
stratified sampling technique for random vectors of moderate dimension 
is Latin Hypercube sampling (McKay et al. 1979). Unfortunately these 
techniques are an improvement only when the ensemble size is large in 
comparison with the length of the random vector (Stein 1987). It is not 
a priori clear that in the case of atmospheric predictability the number of 
important initial error directions is small. If it is small then an equally 
small number of random numbers defines a member of the ensemble. A 
combination of stratified sampling methods with Lagged average meth­
ods, which are discussed later, would appear rational, because the Lagged 
average method is based on the assumption that the number of relevant 
initial error directions is very limited. 

An example of a Monte Carlo experiment is the study by Kalnay and 
Dalcher (1987). For the period 7 January to 2 February 1979 14 forecasts 
were made. Both the sea-level pressure and the height of the 500 mb 
level were predicted. This gave a total of 28 global forecasts for which a 
Monte Carlo experiment could be performed. For each forecast a total of 
5 ensemble members was generated using different sets of observations for 
the data assimilation. The first ensemble member used all observations. 
The second member did not use satellite data. The third, fourth and 
fifth member did not use temperatures, winds and cloud-tracked winds 
respectively. It is not clear that the removal of groups of measurements 
is a good strategy to simulate random observational errors, but it was 
assumed that the 5 ensemble members form a representative ensemble. 
It was attempted to predict the moment at which the forecast breaks 
down. This is the moment at which the correlation between the forecast 
and the subsequent analysis, computed relative to the climate, becomes 
less than 0.6. Usually this will happen after about 6 days. Because in 
this study the forecasts were only 5 days long, most of them remained 
skillful till the end of the forecast period. However about 20 % of the 
forecasts broke down before five days. A prediction of the quality of the 
forecasts was made on the basis of the spread of the ensemble. Contingency 
tables were constructed to validate the skill prediction. When the northern 
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hemisphere was used as a verification region, the prediction of the skill 
was rather poor. For the individually verified regions of North America, 
Europe, the North Atlantic and the North Pacific the skill forecast showed 
a highly significant performance. In view of this success it is unfortunate 
that no follow-up experiment has appeared in the literature. 

1.3.3 Lagged average forecasts 

As an alternative to Monte Carlo forecasting Hoffman and Kalnay (1983) 
introduced the Lagged Average Forecasting (LAF) technique. In a Lagged 
average forecast, just as in a Monte Carlo forecast, sample statistics are 
calculated from an ensemble of forecasts. Each ensemble member is an 
ordinary operational forecast, but they start from initial conditions that 
are for instance one day apart. So an ensemble at day five consists of the 
present forecast for day five and yesterday's forecast for day six and the 
seventh day forecast starting from the day before yesterday and so on. 
The forecasts are averaged at their proper verification times to obtain a 
lagged average forecast. If the spread in the ensemble is large the forecast 
is assumed to be poor. The LAF method is operationally feasible since 
the ensemble members are produced during the normal operational cycle. 
In fact the LAF method - the a priori prediction of forecast skill on a case 
by case basis - has been qualitatively used since the start of the numerical 
prediction of the weather. Forecasters have always had more confidence in 
a numerical prognosis when it was similar to older forecasts for the same 
verification time. A sceptic might argue that this tells us more about the 
quality of the old forecast than about the quality of the new forecast. In 
general one should not use a high quality forecast to predict the skill of a 
low quality forecast. It leads only to a good skill forecast for a low quality 
forecast which one does not intend to use (Palmer and Tibaldi 1988). 

Recently the LAF method has been applied to operational models by 
Brankovic et al. (1990) and by Tracton et al. (1989). These studies aim 
at numerical weather prediction beyond the limit of instantaneous deter­
ministic predictability. The peculiar construction of the LAF ensemble 
poses an upper limit to the number of ensemble members. For example 
Brankovic et al. use 30-day integrations which start from 9 consecutive 



1.4. ADJOINT MODELS 15 

6-hourly analyses. It is not clear why this ensemble should be representa­
tive, but usually it is assumed that the ensemble properties become better 
with increasing forecast time. The general idea is that an extended range 
prediction can be issued if the spread within the ensemble is small. So far 
the obtained correlations between skill and ensemble spread have not been 
very high. This may be due to the working hypothesis of a perfect model, 
to the sampling strategy or also to the general difficulty of verifying a 
property of a probability distribution (spread) with a property of a single 
forecast (skill). Even if one computes correct probability distributions the 
subsequently observed correlation between spread and skill may be quite 
low. The conclusion that must be drawn is that the LAF method has not 
yet reached the quality which is necessary for extended range forecasts. 

1.4 Adjoint models 

A major development in meteorology is the introduction of adjoint mod­
els (Marchuk 1974). Using adjoint models one can compute gradients of 
functionals. Thus traditional trial and error methods can be replaced by 
mathematically more advanced schemes. A mathematical description of 
adjoint methods is given by Cacuci (1981). This paper contains references 
to the first uses of adjoints in nuclear physics in the 1940's. 

The adjoint method starts by expressing a result as a functional, cus­
tomarily called the response or the cost function, of the model variables. 
The sensitivity of this response is defined in terms of a functional deriva­
tive. A system of adjoint equations is developed from a differentiated form 
of the original equations. A single integration of the adjoint model suffices 
to obtain the sensitivity to all parameters of interest. An early example, 
in atmospheric science, is a sensitivity analysis of a radiative convective 
model by Hall et al. (1982). In this the sensitivity of the surface air 
temperature to all 312 parameters of the model is computed. A physical 
interpretation of their adjoint functions is given in Hall and Cacuci (1983). 
A slightly different application is the computation of the sensitivity of one 
aspect of the forecast to the uncertainties in the initial conditions. This is 
done for a short-range weather forecast by Errico and Vukicevic (1992). 
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Le Dimet and Talagrand (1986) compare different variational algo­
rithms for the assimilation of meteorological observations into a coherent 
estimate of the state of the atmosphere. Using a simple example they 
demonstrate the possible use of the adjoint method. A more detailed de­
scription is given in Talagrand and Courtier (1987). This paper is highly 
recommended as a general introduction to the methods based on the use of 
adjoint equations. In a subsequent paper Courtier and Talagrand (1987) 
show in a more realistic case how with adjoint models the information 
in the observations and the dynamics of the atmospheric models, can be 
combined to obtain an optimal initial state. 

Yet another application of adjoint methods is the tuning of model pa­
rameters. In problems which are characterized by diverging trajectories 
and many approximately known parameters it is convenient to have a 
strategy to tune the model. Sentinel functions are functionals which, at 
first order, depend only on the parameters of the model. In particular 
they do not depend on the initial conditions. Their use is discussed and 
advocated in a rather technical paper by Lions (1990). This paper con­
tains references to somewhat earlier papers which are mostly in French. A 
general description of the applications of adjoint equations in meteorology 
is to be found in Grasman and Houtekamer (1991). 

In predictability research adjoint methods are applied because they 
provide an alternative to the computational problems (Lorenz 1965) of 
methods based on the brute force integration of error statistics. Lorenz 
had to integrate a model once for perturbations in all coordinates. As a 
result of the computation one gets all eigenvalues and eigenvectors which 
are necessary to describe the error at the time of a forecast. Lacarra and 
Talagrand (1988) proposed the use of adjoint methods for the description 
of the short-range evolution of forecast errors. They use a Lanczos algo­
rithm (e.g. Parlett 1980) to find the few largest eigenvalues at a greatly 
reduced computational cost. Houtekamer (1991) proposed to use such an 
algorithm to actually produce a skill forecast. A problem with the Lanc­
zos algorithm is that in the case of high dimensional space of the forecast 
error many iterations are needed to find all the relevant eigenvalues and 
eigenvectors. Houtekamer (1991) and Barkmeijer (1992) proposed using 
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adjoint methods for the description of geographically local errors. A limi­
tation of the skill forecast to only some local aspects reduces the dimension 
of the errors. 

The use of adjoint methods in general depends on the validity of the 
assumption of linear error growth. According to Lacarra and Talagrand 
(1988) this assumption is valid for two days. In three case-studies with 
a state of the art primitive equation limited-area model Vukicevic (1991) 
showed that the linear theory gives a good approximation of the evolution 
of initial errors during the first 36 hours of a forecast. It appears from the 
experiments by Barkmeijer and Opsteegh (1992) that the adjoint method 
gives useful information on the local forecast error in the streamfunction 
at 500 mb during the first three days of a forecast. It is an entirely 
different problem to predict the skill of for instance the rainfall prediction. 
In the case of rainfall prediction the non-linearity will pose a much more 
serious problems also at a conceptual level. It is clear that adjoint methods 
break down when the errors become comparable in size to the size of the 
atmospheric attractor. 

1.5 Data assimilation 

The above text concentrates mainly on what happens during the forecast 
run. A skill forecast must clearly take account of this. However it is only 
part of the problem. A forecast starts from an analysis. The analysis is 
based on a numerical model of atmospheric processes, on a prior estimate 
of the state of the atmosphere and on recent observations. The process 
of computing an initial state is called data assimilation. To get error 
statitistics of the analysis one needs to study the sensitivity of the analysis 
to errors in its input. These statistics then serve as a starting point of the 
skill forecast. An excellent introduction to data assimilation is given in 
the book by Daley (1991). 

If it is assumed that all the observations have Gaussian error statis­
tics the most likely solution is given by a least squares fit of the model 
to the data. This well known method was developed by Gauss in the 
eighteenth century. Thacker (1989) explains that data assimilation with a 
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cost function, which is also called variational data assimilation, is in fact 
an application of the least squares method. From the Hessian matrix of 
second derivates of the cost function the statistics of the analysis error can 
be obtained. Work on variational data assimilation often assumes that a 
perfect model is available to combine measurements with prior knowledge. 
If this is not the case this assumption acts to distribute the model errors 
evenly over the entire domain, thus leading to considerable errors even 
in data-rich areas. A time dependent weighting of the observations only 
marginally improves the situation (Wergen 1992). A descent algorithm, 
which minimizes the cost function, must be used to find the best fit of 
the model to the data. Such algorithms are expensive and consequently 
much research is going into the development of minimization algorithms. 
Typical results show that at least 10 integrations with the adjoint model 
are necessary to obtain, with sufficient accuracy, the model trajectory 
which minimizes the costfunction. In some cases (Gauthier 1992) several 
local minima exist. In this case the assimilation may select any of these 
local minima. Though variational data assimilation is an area of active 
research it is not currently used by operational centers. The difficulties 
in coding the adjoint of a complete general circulation model, as well as 
the presence of significant model errors, have so far prohibited realistic 
competitive applications. 

A slightly different approach is based on the Kalman filter (Kalman 
1960; Kalman and Bucy 1961; Ghil et al. 1981). Theoretically the Kalman 
filter method gives the same results as the variational assimilation method. 
In general a Kalman filter allows for a more convenient treatment of model 
errors. In fact it is not at all clear how to incorporate the effect of model 
errors into the variational assimilation process (Derber 1989; Ghil et al. 
1991 and Wergen 1992). The variational method is more convenient if it is 
decided not to integrate the error statistics. In this case it is a suboptimal 
version of the Kalman filter. The evolution of error statistics with the 
Kalman filter is not currently feasible with a general circulation model. 

Though data assimilation methods have different origins and different 
proponents they can all be put in one common framework (Lorenc 1986). 
Most weather forecasting centers have adopted some kind of Optimal In-
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terpolation (01) technique (e.g: Kolmogorov 1941; Gandin 1963; Bergman 
1979). Because the OI-technique uses simple rules for the evolution of error 
statistics it provides a feasible assimilation technique. The use of simple 
rules may well be preferable above the use of strong constraints, such as 
the perfect model assumption, which lack justification (Wergen 1992). In 
practice 0 1 is rarely optimal and Daley (1991) suggested that statistical 
interpolation is a more appropriate term. From the point of view of a 
skill forecaster this use of 0 1 is unfortunate. It is not clear to what extent 
01-statistics are correct. This implies that a skill forecast has to start 
from statistics of unknown quality. 

1.6 Outline of this thesis 

It will be clear from the above discussions that skill forecasts are still 
in their infancy. Operational skill predictions do not exist. One is still 
struggling to prove that skill predictions, at any range, have any quality 
at all. It is not clear what the statistics of the analysis error are. The 
statistics of the model errors are not known and finally it is not clear how 
to efficiently evolve the error statistics to the time of the forecast. 

In chapter 2 methods are developed to determine the variability of 
the predictability. The study is similar to the one by Lorenz (1965). 
The present atmospheric model, with 30 variables rather than 28, is only 
slightly larger than Lorenz's model. The main difference is in the use 
of methods. Adjoint models are used to find the most important error 
structures. These methods can be transported to state of the art models. 
Chapter 2 has appeared as a paper in Tellus (Houtekamer 1991). 

In chapter 3, the method is extended. A simple inhomogeneous ob­
serving network is used to obtain an inhomogeneous distribution for the 
analysis error. It is shown that ignoring this\inhomogeneity will lead to 
a skill forecast of low quality. Thus skill forecasters have to use the error 
statistics which are obtained during the data assimilation process. If one 
uses an average distribution to describe the analysis error one may al­
ready obtain a reasonable skill forecast. Chapter 3 will appear in Monthly 
Weather Review (Houtekamer 1992). 
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In chapter 4 a much more advanced model is used. It has 1449 vari­
ables. It is used in conjunction with the state of the art ECMWF model. 
The usefulness of the methods developed in chapter 2 and 3 is tested in 
a realistic context. It appears that the global forecast error cannot ef­
ficiently be described with adjoint methods. Global forecast errors can 
better be predicted with a Monte Carlo method. Weather forecasts usu­
ally have a local nature. For the description of local forecast errors adjoint 
methods are feasible. It appears that the distribution of the analysis er­
ror is less variable as expected from chapter 3. The observing network, 
which is almost time independent, determines the main structures of the 
distribution of the analysis error. Because the properties of the analysis 
error are almost constant they need to be determined only once. This 
reduces the computational cost of a skill forecast enormously. This chap­
ter is concluded with a discussion of the possible impact of a high quality 
skill forecast. It may increase or decrease the length of a forecast with 
about one day. This is significant compared to the effect of other possible 
improvements to the forecasting system. Chapter 4 has been submitted 
to Monthly Weather Review. 
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Chapter 2 

Variation of the predictability 

Abstract 

Temporal variations in the predictability of a simple atmospheric model 
are studied. It is a spectral two-layer quasi-geostrophic hemispheric model 
and it is truncated at T5. The model has chaotic properties which is illus­
trated by four positive Lyapunov exponents and a smooth power spectrum 
of the first Empirical Orthogonal Function (EOF). This chaotic behaviour 
is responsible for the eventual separation of initially nearby phase points. 

The adjoint of the tangent linear equations is used to obtain the few 
directions in which errors grow most rapidly. The distribution function 
for the errors can be estimated with the growth rates in these directions. 
Comparison with a Monte Carlo method shows satisfactory agreement. 
With a 100-day run it is shown how the predictability varies over the 
attractor. 

It is discussed how, and under what conditions, the method can be used 
in a Global Circulation Model (GCM). An estimate for the dimension of 
error growth is obtained from a dimension derived from an EOF analysis. 
This estimate implies that information on the probability distribution of 
errors can be obtained at about 150 times the computational cost of a 
single model run. 
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2.1 Introduction 

Weather forecasts tend to go wrong after some time. There is a consensus 
that detailed deterministic predictions are limited to a range of about 10 
days. One reason is the presence of systematic errors that are introduced 
by imperfections of the forecast model. Another more fundamental reason 
is the intrinsic deterministic growth of errors. The growth of systematic 
and intrinsic errors makes the predicted weather gradually diverge from 
the subsequently observed weather. In general systematic errors can be 
reduced by improving the physical description which is used for the model. 
Systematic errors with a low frequency can be reduced by post-processing 
of model output (Thiebaux and Morone 1990). Intrinsic errors are caused 
by the unavoidable sensitivity of the model to small errors in the ini­
tial conditions. Their possible importance was first discussed by Lorenz 
(1963). This chapter deals with intrinsic errors. 

Some predictions have a higher quality than others. To make effective 
use of high quality forecasts and to be able to warn against low quality 
forecasts a measure for the temporal predictability is needed. Stochastic 
dynamic predictions (Epstein 1969) require the integration of the mean 
values of the model variables and of the corresponding covariance ma­
trix. Because in addition to the N equations for the mean field, there 
are N(N + l ) / 2 equations for the evolution of the second moments, this 
method may not be feasible in practice. Because only the first and second 
moments are considered the method can only be applied to the short range 
evolution of initially small errors. A probably less expensive method to 
study variations in the predictability of the atmosphere would be to take a 
sufficiently large ensemble with perturbed initial conditions (Leith 1974). 
The divergence of the ensemble is a measure of the quality of the forecast. 
This method should work, even in the regime of non-linear error growth. 
A review of methods to estimate the predictability of forecasts in the 5 to 
10 days range, where non-linearity is important, is given by Palmer and 
Tibaldi (1988). 

It is shown in a study by Lacarra and Talagrand (1988) with an f-
plane shallow-water model that the linear approximation for error growth 
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can be valid for ranges up to about 48 hours in meteorologically realistic 
situations. The linear approximation greatly simplifies the analysis. If the 
evolution of the errors is linear it is possible to make use of the adjoint 
of the tangent linear equations. Le Dimet and Talagrand (1986) have 
given a rather general presentation of the use of adjoint equations in the 
context of data assimilation. An example of a minimization of a distance 
function using the adjoint is given by Courtier and Talagrand (1987). 
Their model contains 231 independent degrees of freedom and is integrated 
for 24 hours. Their distance function is a measure for the agreement 
between a model-run and a set of verifying observations. They find strong 
indications that their distance function varies quadratically with respect 
to the initial conditions, implying that the tangent linear equations of their 
model are indeed sufficient to describe the 24-hour evolution of forecast 
errors. Consequently the minimization leads to the trajectory which shows 
the best agreement with the available observations. Thus, the adjoint 
equations can be used both for data assimilation and for error growth 
studies. 

The present goal is to determine confidence limits for short range nu­
merical forecasts. The probability distribution of the errors in an ensemble 
is obtained with a Monte Carlo method. This brute-force experiment is 
done in a 30-dimensional baroclinic model. It is attempted to reproduce 
the probability distribution with less time consuming methods. The error 
growth is described with the tangent linear equations. Because the model 
is small all growth rates can be computed rigorously. The growth rates 
have a very steep spectrum. This makes it possible to approximate the 
probability distribution for the errors with only the few dominating growth 
rates. The dominating growth rates correspond to the largest eigenvalues 
of a symmetric matrix. A Lanczos algorithm (see e.g. Parlett 1980) is 
used to estimate these eigenvalues. A Lanczos algorithm requires only 
a few matrix vector multiplications. Individual multiplications are done 
using both the tangent linear equations and the adjoint of the tangent 
linear equations. The applicability of the Lanczos algorithm depends on 
the number of relevant eigenvalues or, putting it in other words, on the 
dimensionality of the errors. A relationship between the dimensionality 
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of the instantaneous circulation and the dimensionality of the errors is 
given. If the same relationship holds for a GCM then the algorithm can 
be applied to it. 

2.2 Description of t he model 

The model is a highly tnmcated two-layer hemispheric spectral model. 
Both layers have 3 zonal and 6 wave modes. It is comparable with the 
highly truncated two-layer spectral channel model of Reinhold and Pier-
rehumbert (1982) and the standard two layer model discussed by Holton 
(1979). The notation introduced by Lorenz (1960) is used: ij)\ is the 250-
mb streamfunction, ip$ is the 750-mb streamfunction, rp = (ipi + ^3)/2 is 
the interpolated 500-mb streamfunction and T = (V»i — •03)/2 is the 250-750 
mb thickness. The set of equations is: 

9 A / 

9 A ; 

dt 
2r 

= - J ( ^ , A V > l + / ) + ^ 2 

-foJ(rl>3th)-CAty3-ii,*3) 

= -J(^,2T) + ^-UJ2 + 2Q(T* 
h 

r) 

Where J(A, B) denotes the jacobian operator: 

dAdB_, 
dfid\} 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Here A is the geographic longitude, [i is the sine of the geographic latitude 
and a is the radius of the earth. The Eqs. (2.1)-(2.4) are nondimension-
alized using the radius a as unit of length and the inverse of the angular 
speed of rotation of the earth as unit of time. The Coriolis parameter is 
/ . Its value at a latitude of 45° is /o. The Ekman damping coefficient is 
C. The Ekman damping is towards the 750 mb-streamfunction ^ 3 , which 
corresponds to a zonal westerly wind in the lower layer. A 250-750 mb 
thickness is enforced with the function r*. The function r* corresponds to 
a meridional temperature gradient, and Q is the coefficient for the cooling 
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towards this gradient. The mountain height is given by the function h. 
The static stability parameter is a. The pressure difference Ap between 
the two layers is 500 mb. The vertical motion dp/dt at the 500 mb-level 
is u>2- Eqs. (2.1) and (2.2) are the vorticity equations for respectively the 
250-mb and the 750-mb layer. Eq. (2.3) is the thermodynamic energy 
equation. The radius of deformation A - 1 is defined by: 

A2 = /o2 

a(Apf ( 2 - 5 ) 

After the elimination of U2 from the Eqs (2.1), (2.2) and (2.3) one obtains: 

-Arf> = - J ( ^ A ^ ) - J ( r , A r ) - J ( ^ , / ) + 

/o J(T - tl>, h)/2 + CA(T - rj> + ^3*)/2 (2.6) 

( A - 2 A 2 ) r = - J ( ^ , A T ) - J ( T , A 0 ) - J ( T , / ) + 

/o J(tj> - r , h)/2 + C A ( ^ - r - rPD/2 + 

2A2 J(V>, r ) - 2A2Q(T* - r ) (2.7) 

dt 

The streamfunctions are projected on a basis of eigenfunctions of the 
Laplace operator A. These eigenfunctions are: 

ym,B(A,/x) = P|ra|>B(Ai)e,'mA (2.8) 

Here | • | denotes the absolute value and Pm„(/x) denotes associated Leg-
endre functions of the first kind, which are defined by: 

PmAf1) = 
(2n + l ) (n - m)! \ ' (1 - y2)"1'2 dm+n 

(n + m)\ J 2nn\ dym+ 

The streamfunction is approximated as follows: 

- ( ^ - 1)" (2.9) 

t}>(\,ii,t) = Yl 
7 1 = 1 

+n 

E 
m = — n 

m + n — odd 

4>m,n(t)Ym<n{\ H) (2.10) 

The restriction to modes with m + n odd excludes currents across the 
equator. It makes the model hemispheric. The truncation at n = 5 is 
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called a triangular T5 truncation. The three modes with m equal to zero 
are the zonal modes. They are a function of only the geographic latitude. 
The coefficient iftoin(t) have only a real part. The remaining six wave-
modes have a real and an imaginary part. Consequently 15 coefficients are 
needed to describe the 500-mb streamfunction and another 15 coefficients 
to describe the 250 - 750 mb shear streamfunction, making the total system 
30 dimensional. The moderate number of modes is a compromise between 
a completely unrealistic low dimensional model, which can be handled 
by any computational method, and a higher dimensional model in which 
rigorous testing becomes computationally expensive. 

A Galerkin projection of Eqs. (2.6) and (2.7) on these eigenfunctions 
gives a system of 30 coupled non-linear ordinary differential equations. 
The right hand side of this equation is evaluated using the interaction 
coefficient method (Platzman 1960). The interaction coefficients are com­
puted with the analytical expressions given by Silberman (1954). An 
alternative method is the transform method (Orszag 1970). This method 
becomes more efficient if the truncation is made less severe (Bourke et al. 
1977). 

The Ekman damping coefficient C and the cooling coefficient Q are 
given a value of 27r/100 a day. Thus the e-folding time for both effects 
is about 16 days. These unrealistically low values of C and Q make the 
circulation attractor high dimensional. If they are chosen equal to zero the 
circulation is no longer attracted towards realistic patterns and spreads 
out in the 30 dimensional phase space. 

The forcings are in the Y$\ mode only. The strength of r* corresponds 
to a westerly thermal wind of 28 m/s and ^3 corresponds to a lower layer 
westerly wind of 5 m/s . The forcing $5 can be considered to reproduce the 
effect of surface baroclinicity. Without this forcing the 750-mb westerlies 
are very weak. Due to the effects of the topography and the baroclinicity 
the enforced westerly winds become unstable. 

The radius of deformation A - 1 is 667 km. The model is not very sen­
sitive to the exact value of this parameter. 

The topography is described with the Y2,3 mode. It stands for the influ­
ence of the Rocky Mountains and the Tibetan plateau. The topography 
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Figure 2.1: (a) Contours of the topography. The projection is area preserving. The 
vertical coordinate has been scaled with the sine of the geographic latitude. The horizontal 
coordinate is the geographic longitude. Negative heights are indicated with dashed lines. 
The contour interval is 250 meters, (b) Contours of the geopotential height at 500mb for 
the 30-year climate. The contour interval is 300 meters. Projection as in (a). 

serves both to destabilize the enforced zonal flow and to locate preferential 
circulation patterns at fixed geographical positions. The amplitude of the 
mountain height is 1.56 km. In figure 2.1 both the topography and the 
barotropic component of the climate are shown. The climate is computed 
with a 30-year run. Since the thermal forcing is in the YQ^ mode and the 
topographic forcing is in the Y%$ mode it is possible, as is observed in 
figure 2.1, to have a model climate which is 7r-periodic in longitude. Such 
a climate is restricted to the 2 * (3 + 2 * 3) = 18 dimensional subspace (m 
even, m + n odd ) of the 2 * (3 + 2 * 6) = 30 dimensional space (m -f- n 
odd ) of the model. Because the symmetry is broken in the specification 
of the initial state the dynamics themselves are not confined to the 18 
dimensional subspace. 
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The most significant component of the model circulation is an eastwards 
moving I45 wave. The wave is accelerated and decelerated by the varying 
intensity of the zonal wind. During short time intervals it may move 
westwards. All other waves continuously move westwards. The influence of 
the zonal wind is insufficient to keep them at fixed geographical longitude. 

Figure 2.2 shows the power spectrum of the first EOF. In section 2.5 
it is explained how the EOFs are determined. A power spectrum shows 
how the energy of a signal is distributed as a function of frequency. A pe­
riodic signal shows only isolated peaks in its power spectrum. A chaotic 
signal shows a much smoother spectrum (Schuster 1988). Figure 2.2 was 
obtained from four 2048-day integrations. The power spectrum contains 
most energy on periods between 9 and 30 days. This is a first indication 
that the model shows chaotic behaviour. The second EOF has an al­
most identical power spectrum. The first and second EOF approximately 
describe the travelling I45 wave. 

A chaotic trajectory is, by definition, not periodic. It is verified numer­
ically that solutions do not return negligibly close to previously visited 
phase points within a short time. This behaviour suggests that the asymp­
totic orbit defines a strange attractor. A strange attractor is characterized 
by a number of growth directions for errors, at least one neutral direction 
in which errors neither grow nor shrink and a number of directions with 
negative growth. 

All 30 Lyapunov exponents are computed with the algorithm given by 
Wolf et al (1985). A basis of 30 orthonormal vectors is integrated forward 
with the tangent linear equations. After every 1.6 days a Gram-Schmidt 
orthonormalisation is applied. The change in length of the vectors fixes the 
Lyapunov exponents. After a model integration of 3.5 years four positive 
Lyapunov exponents, one exponent zero and 25 negative exponents have 
appeared. 

Kaplan and Yorke (1979) conjectured the following general formula for 
the dimension of arbitrary strange attractors: 

DKY = j + (2.11) 
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Power spectrum of the first EOF 

Period [days] 

Figure 2.2: Powerspectrum of the first EOF. Vertical units are arbitrary. The area under 
the curve is a measure of the amount of energy contained in that part of the spectrum. 

Here the Lyapunov exponents are ordered a\ > a% > . . . > 030, j is the 
largest integer for which Ef=i otj > 0 and DRY iS, i n almost all cases, equal 
to the information dimension. In some cases DKY is indeed shown to be 
equal to the information dimension within the precision of the estimate. In 
other non-generic cases the conjecture does not hold. The dimesion DKY 
is called the Kaplan-Yorke dimension. For the present model a Kaplan-
Yorke dimension of 10.7 ± 0.2 is found. Due to these observations it is 
assumed that the asymptotic dynamics of the system is characterized by 
a strange attractor and consequently complex unpredictable behaviour is 
expected to appear. 
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2.3 Determination of growth rates 

It is assumed that errors in the initial conditions are small. As a conse­
quence the initial evolution of errors can be described by a linearization 
of Eqs. (2.6) and (2.7) with respect to the unperturbed solution. Two 
methods for the computation of the growth rates of the errors are given. 
The first method uses the tangent linear equations and gives all 30 growth 
rates. The second method uses both the tangent linear equations and their 
adjoint. It gives only the largest growth rates, but requires less compu­
tations. The latter method can also be applied to a larger model. The 
tangent linear equations can be written as: 

d ( SAiP \ _ c_l r / SAtP \ 
dt [ 8 AT 

S~lL 
\ 8AT / 

s-1 = 

The operators S l and L are: 

' / 0 
0 A ( A - 2 A 2 ) - X 

/ SAij> \ ( -J(6*l>, Ar/>) - J ( ^ , 8A^) - J(6T, AT) \ 
\6AT) ~ {-J(6rl>,AT)-J(^,SAT)-J(8T,A^)j 

(2.12) 

(2.13) 

+ 
-J(T,8AT)-JWJ) 

-J(T,8Ai>)-J(8T,f) 

j -(fQ/2)J(6ij> - ST, h) + (C/2)(8AT - SAiJi) \ 
+ \ + ( / 0 / 2 ) J(«ty - ST, h) - (C/2)(8AT - 8A^) j 

+2A2 0 
J(SII>,T)-J(6T,I/>) + QST 

(2.14) 

For the development of the adjoint model distances are computed with a 
kinetic energy norm. The kinetic energy of a field is given by: 

K = j (VV> • V 0 + V r • Vr )dE 

n(n + l){|^m ,„(<)|2 + |Tm,n(#)|2} 
5 

£ 
n=l 

m 
m 

+ 

+n 

E 
= -

n = 
-n 
odd 
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The factor n(n + 1) in this expression is removed with the rescaling: 

</V„(*) = (n(n + l^/Vm.nC*) (2.15) 

fm,n(*) = (n(n + l))1/2rm,„(*) (2.16) 

The real and imaginary parts of i^m,n and fmn form one single real valued 
vector q (of length 30). The vector q contains the coeffients q; of the 
state vector with respect to a 30-dimensional basis {e i ,e2, . . . ,e3o} which 
is orthonormal with respect to the kinetic energy inner product: 

(e,-,ei) = ^ (2-17) 

The kinetic energy or length squared associated with the vector q becomes: 

(2.18) 
30 

fl2 = £q* = (q,q) 
2 = 1 

In the rest of this chapter the kinetic energy inner product is used to define 
lengths or error-magnitudes. 

An initial error vector u(0) is integrated forward with the tangent linear 
equations to give a vector u(i). If an ensemble with more than 30 initial 
vectors is to be integrated then it is more efficient to compute the 30 x 
30 matrix A defined by: 

u(«) = Au(0) (2.19) 

The matrix A is time dependent. For convenience of notation A is written 
rather than A(t). The columns of A follow from the forward integration of 
the unit-vectors of the basis. To compute column i one starts with a unit 
vector e,. This vector is transformed to streamfunction coefficients using 
Eqs. (2.15), (2.16), (2.17) and (2.18). It is integrated with Eq. (2.12) 
and finally it is transformed back to the basis {e i , e2 , . . . , e3o}. The kinetic 
energy of the error at time t is given by: 

(u(«), u(t)) = (Au(0), Au(0)) = (A*Au(0), u(0)) (2.20) 

A* is the adjoint matrix of A, which is just the transpose matrix: 

A* = AT (2.21) 
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The eigenvalues of A*A are all positive. In order of decreasing magni­
tude they are called: X\, \%,..., A^. The eigenvectors of A*A are orthogo­
nal. Once the eigenvalues and eigenvectors of A*A have been obtained the 
statistics for the error at time t can be determined. If for instance, one 
starts with an ensemble of random initial error vectors of unit length, the 
average error kinetic energy after time t is given by (Lorenz 1985): 

(u(*),u(*)) 
30 \2 

fri30 
(2.22) 

The model analysed in the present chapter is sufficiently small so that the 
above formulation can be applied. This is not the case for models with 
a larger number of degrees of freedom. In the following paragraphs an 
alternative method is sketched, which does not require the computation 
of the entire matrix A and which makes use of the adjoint equations. Basic 
facts about adjoint operators and a specific example with the adjoint of the 
vorticity equation can be found in Talagrand and Courtier (1987). Because 
the same inner product is used the present adjoint model is comparable 
to theirs. 

The adjoint of the tangent linear equation (Eq. (2.12)) can be written 
as: 

£ (&) —<-•)•( 
8A^ 
6 AT 

(S *)* and L* are the adjoints of the operators S 
(2.13) and (2.14). The adjoint operators read: 

(2.23) 

and L given in Eqs. 

/ SAiP" 
6 AT" 

( 8A^" 
L 6 AT" 

~ {b } [ 8AT 

I 0 
0 ( A - 2 A 2 ) - J A I 8AT 

(2.24) 

2A2 J(T,6T") 

-J(6^,T") + QST" 

+ 
-J(AiP,8i/>") + AJ(^,8^") - J(AT,8T") 

-J(AT, 6rl>") + AJ(T, SrP") - J(A^», ST") 
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( AJ(r,6r")-J(f,Sr) 

+ 
- ( / o / 2 ) J ( M t f " - ST") + (C/2){8Ar" - 8Aij>") 
(fo/2)J(h,8ij>" - ST") - (C/2)(8AT" - SAxfr") 

(2.25) 

It can be seen from Eqs. (2.24) and (2.25) that the complexity of the 
adjoint model is comparable to the complexity of the tangent linear model 
(Eqs. (2.13) and (2.14)). Backward integration with the adjoint model 
replaces the multiplication with the matrix A* in the same way as forward 
integration with the tangent linear equations replaces the multiplication 
with the matrix A. For a large model this provides a practical tool for 
obtaining the largest eigenvalues of the matrix A*A. 

A Lanczos algorithm with orthogonalization (see e.g. Parlett 1980) is 
used to find the largest eigenvalues of A*A. A description of the Lanc­
zos algorithm is given below. In a series of j iterative steps a basis 
{Ai, A2 , . . •, Aj} is produced. This basis approximates the basis of eigen­
vectors {vi, V2, . . . , VJ} . The iteration starts with a random direction vec­
tor Ai of unit length: 

30 30 

Ai = Yl b*Vifc = Y a*e* 
*=i fc=i 

(Ai.Ax) = 1 

(2.26) 

Notice that at this point the coefficients bjt in Eq. (2.26) are still not 
known. The coeffients a^ give the random direction. If the operator A*A is 
applied to the vector Ai the coefficient for the k 'th vector increases with 
A2-
A t . 

30 

A*AAi = Y b*A£vfc (2.27) 

This property suggests using the matrix A*A for getting the new direction 
A2 and subsequent new directions A,-+i. A Gram-Schmidt orthonormali-
sation is used to make a new direction A,+i orthonormal to the previous 
directions Ai , A 2 , . . . , At-: 

A|.+1 = A*AA,--£(A*AA,-,A t)A t 
/t=i 

(2.28) 
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Ai+1 = ( A ; + , X ) " 2 (2'29) 
After every iteration step the eigenvalues of A*A can be estimated with the 
eigenvalues of the tridiagonal j x j -matr ix EJE;-. 

Ei = [AAi,AA2 , . . . ,AA i] (2.30) 

The estimate is exact if the eigenvalues A ,̂ A j + 1 , . . . , A|0 are equal to zero. 
The largest eigenvalue is estimated most accurately. In a typical case 4 
iterations are needed to find the largest eigenvalue. Three additional iter­
ations suffice to find the second largest eigenvalue. Successive iterations 
give one more accurate estimate per iteration. The maximum number of 
30 iteration steps gives all 30 eigenvalues. 

The only time consuming step in the iteration procedure is the compu­
tation of A*A A,-. The computation of A A, is just as expensive as one model 
integration. The subsequent computation of A*(AA;) is roughly twice as 
expensive as one model integration because differentiation doubles the 
number of quadratic terms. This makes one iteration step three times as 
expensive as a single model run. It follows that the explicit computation 
of A, which requires 30 model integrations, is as expensive as 10 iteration 
steps. So the computation of the matrices Eio, E n , . . . , E30 is no longer an 
efficient strategy for the computation of the largest eigenvalues. If such a 
large number of eigenvalues is needed it is cheaper to compute A explicitly 
and to compute the full set of 30 eigenvalues. 

The method using the adjoint may be applied to a model with many 
degrees of freedom. In the remaining sections it is explained how the 
growth rates can be used to compute the probability distribution for the 
error and why a limited number of iterations should also be sufficient in 
a realistic model. 

2.4 Probability distribution of errors 

In this section the above iterative procedure is used to estimate the largest 
eigenvalues and it is demonstrated how these eigenvalues can be used to 
establish an estimate of temporal predictability. The integration time is 4 
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days rather than 2 days as suggested in the introduction, because the error 
growth in the model is slower than the error growth in the atmosphere. 
In the model errors grow with a factor of 2.5 in 4 days. 

A Monte Carlo method is used to determine the temporal probability 
distribution of the errors. An ensemble of 40000 random errors is inte­
grated with the tangent linear equations. All errors initially have length 
one. All errors are added to the same starting point on the attractor. 
After four days their length R is given by: 

i? = (u(* = 4),u(* = 4))1 /2 (2.31) 

The probability distribution of this radius is considered to be a perfect 
measure of the temporal predictability. It will be shown how this distri­
bution can be approximated using the largest eigenvalues of A*A. 

The matrix E^Es is computed in order to estimate the 5 dominant eigen­
values. In the following paragraphs the method to derive an error distri­
bution function on the basis of a number of eigenvalues is given. Then 
this method is applied to the example with the 5 eigenvalues. Compari­
son with the Monte Carlo result indicates that 3 more iteration steps are 
needed. 

First a reference distribution function / r e / is needed for the square root 
of the fraction of the kinetic energy of a unit-vector with random direction 
which projects on a coordinate axis. This distribution is identical for 
every possible coordinate axis. A Monte Carlo experiment is performed 
to obtain this distribution function. The function fref can be used for 
the projection of an initial error vector of unit length on vector v,-. The 
distribution function /$ for the square root of the error energy, which after 
an integration of four days, projects on the coordinate axis spanned by 
Av; is: 

m r 1 
(2.32) 

In other words, the reference distribution function fref is stretched by a 
factor A,-. Consequently it must also be divided by A;, as the integrated 
probability must remain 1. Taking successive convolutions of the individ­
ual functions /,- with i = 1 ,2, . . . ,j the distribution function for the error 
becomes: 
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/ i , s ( r ) = / i ( r ) 

W ( r ) = / ; = 0 A S ( ( r 2 - a 2 ) ^ ) / i + 1 ( C T ) 

f(R = r ) « /30,sO) « /,-,E(r) 

2 2 
C?<7 

(2.33) 

(2.34) 

(2.35) 

The functions fop give the distribution for the contribution of the first 
i eigenvalues to the error. So, Eq. (2.33) is satisfied by definition. The 
function fo+ip is computed with the approximation that the distribution 
of the energy on axis Av,+i is independent of the distribution of the energy 
on the axes {Avi, Av2, . . . , Av,-}. The integral is over all possible states with 
energy r on the first i -\- 1 axes. Differentiation of the argument of fop 
gives the geometry factor in Eq. (2.34): 

A / 2 \ 1/2 
(2.36) 

The real error distribution is given by f(R). The first approximation sign 
in Eq. (2.35) is due to the assumed independence of the functions /,-. 
This approximation is reasonable for the first few convolutions because 
a rather large number of 30 dimensions is used. At the last possible 
convolution to obtain faop from fogp and /30 the approximation would 
break down completely. However, because A|0 is negligibly small this 
convolution does not need to be performed. In fact it will appear that it 
is not necessary to go beyond the convolution of fop and fo. As long as 
j is much smaller than 30 the most significant error is the one indicated 
with the second approximation sign, which is caused by taking only j 
distribution functions. 

Figure 2.3a compares the distribution fop which is based on 5 eigenval­
ues with the Monte Carlo result. The tail of the distribution is estimated 
accurately. At lower lengths there is a systematic error. Here the error 
growth is significantly underestimated because 25 eigenvalues are assumed 
to be zero. One might correct for this statistically. An alternative is to do 
a few more iterations. Figure 2.3b compares the distribution fop which 
is based on 8 eigenvalues with the Monte Carlo result. It is concluded 
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that the temporal distribution function for the forecast error can be re­
produced reasonably accurate on the basis of 8 eigenvalues. This does not 
mean that it can be predicted whether one particular forecast will have a 
large error or not. Indeed, from the Monte Carlo result it is observed that 
the error in the forecast depends heavily on the stochastic direction of the 
initial perturbation. It does mean that one can say how a large ensemble 
of equally likely initial perturbations will spread out in space. 

To analyse the variability of the temporal predictability over the attrac-
tor a series of error distribution functions for 4-day integrations starting 
at 100 consecutive days is computed. Thus consecutive integrations have 
3 days in common. The probabilities P(R < 2), P(R < 3) and P(R < 4) 
are computed for every distribution. The first probability gives the proba­
bility of a high quality forecast. The second one gives the probability that 
a forecast is at least of moderate quality. 1 — P(R < 4) is the probability 
of a low quality forecast. The three probabilities are plotted in figure 2.4. 
One observes that the probability that a forecast is of low quality may vary 
between 10 and 25 %. It is concluded that there is a considerable variation 
in the predictability as a function of the position on the attractor. 

2.5 Dimensionality of the error growth 

In this section the dimensionality derived from the error growth analysis 
is compared with the dimensionality which can be derived from an EOF 
analysis. EOF analysis is a well known technique (see e.g. Preisendorfer 
1988) that is often applied to meteorological data. It is first applied to a 
30 year model data set to estimate the dimension of the model attractor. 
Then it is studied to what extent this information on the dimension of 
the model can be used to estimate the dimension of the error growth. 
The assumption is that the dimension of error growth will be of the order 
of the dimension of the model attractor. If this appears to be true the 
dimension of error growth in the real atmosphere can be estimated with 
the help of an EOF analysis of the atmospheric circulation. This then 
gives information on the number of eigenvalues of A*A that have to be 
computed in a realistic atmospheric model with many degrees of freedom. 
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Figure 2.3: (a) Comparison of the error size distribution obtained from 40000 Monte Carlo 
integrations and the profile based on E5. The iteration result is marked with squares; 
the Monte Carlo curve with circles; the difference between the two curves with triangles, 
(b) Comparison of the error size distribution with the profile based on E8 instead of E5. 
Otherwise it is the same as (a) 



2.5. DIMENSIONALITY OF THE ERROR GROWTH 45 

n 

P 

Variability of the predictability 

1 

.9 

.6 

.5-

.4-

.3 

.2-

. 1 -

0 

P(R<2) O 
P(R<3) D 
P(R<4) A 

10 
I 

20 
I 

30 
I 

40 50 

Day number 

i 
60 

~ l -

70 
1— 
80 

~r~ 
90 100 

Figure 2.4: Variations in time of the probabilities P(R < 2),P(R < 3) and P(R < 4) 
during a 100 day integration. P(R < 2) is indicated with circles; P(R < 3) with squares; 
P(R < 4) with triangles. 

The argument for making the assumption on the dimension of error growth 
is that a model with a perturbed initial condition will rapidly converge to 
the model attractor in the first few hours of the integration. So after some 
time both the perturbed and the reference run can be described with the 
same EOF basis. As time progresses, the EOF basis will then also become 
an appropriate basis for the errors. 

A 30 x 30 symmetric scatter matrix F is defined by: 

F = E q(*)qT(*) 
< = 1 

(2.37) 

Here the vector q(i) is the state vector at time t. It is defined by Eqs. 
(2.15), (2.16), (2.17) an (2.18). The summation is over a 30-year run. 
Successive values of t are one day apart. The matrix F has a set of 30 
orthonormal eigenvectors (i.e. orthonormal with respect to the kinetic 
energy inner product). These eigenvectors are the "Empirical Orthogonal 
Functions (EOFs)". The eigenvalues 1,- of F are in descending order. They 
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Comparing circulation and errors 
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Figure 2.5: Logarithmic eigenvalue graph for the instantaneous circulation and for the 
errors. The squares give the variance of the instantaneous circulation described with the 
EOFs. The crosses give the variance of the errors described with the basis-vectors for the 
errors. 

are scaled such that their sum equals 100: 

li > 12 > . . . > 130 > 0 
30 

L b = 100 
i=l 

The individual 1,- give the percentage of the variance described by their cor­
responding eigenvector. If the 1,- decrease sharply towards 0, as a function 
of index number i, then only a few EOFs are needed to describe most of 
the variance of the system. The system is then low dimensional. The loga­
rithms of the eigenvalues 1,- are plotted against index number in figure 2.5. 
With the eigenvectors 1 ,2 , . . . , 9 97 % of the variance can be explained. 
To explain the entire 100 % of the variance the maximum number of 30 
EOFs is necessary. 

Something similar can be done for the error variance with the eigenval­
ues of A*A. The i-th eigenvalue Af gives the average error energy projecting 
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on Av,- after four days of integration. For a total of 100 different initial po­
sitions on the attractor the eigenvalues Af, A|, • • •, A|0 are computed. After 
averaging and scaling a set of numbers mt- is obtained, which is comparable 
to the L for the EOF analysis: 

A? 
m.- 100-

v-30 \ 2 

mi > ni2 > . . . > m30 > 0 
30 

100 
»=i 

The logarithms of the m,- are shown in figure 2.5. The first nine vectors 
again explain 97 % of the variance of the errors. 

Comparing the eigenvalues of the scatter matrix with the eigenvalues of 
A*A it is observed that the errors project a higher percentage of their energy 
on the first vector. This difference is compensated with lower percentages 
at the next three vectors. The remaining 26 eigenvalues have comparable 
percentages. It is concluded that the dimensionality of the error vectors is 
only slightly lower than the dimensionality of the instantaneous circulation 
patterns. So, the a priori assumption has now been validated for the 30-
dimensional model. 

To verify the argument for the assumption the same set of 100 initial 
positions on the attractor is used and from each point 100 integrations are 
done with a random initial error. According to the argument the EOF 
basis will become an appropriate basis for these errors as time progresses. 
In figure 2.6 the errors after four days of integration are projected on the 
EOF basis. As a reference the information on the logarithms of the 1; 
from the previous figure is included. It is clear that the EOF basis is more 
efficient for the description of the state vectors than for the error vectors. 
However, considering the random initial error direction, it is observed that 
the tangent linear equations are quite efficient in pushing a perturbed 
initial point towards the attractor. Combining this with the fact that the 
basis of A*A is optimum for the errors, it is concluded that, in general, 
one may expect the dimensionality of the errors to be comparable to the 
dimensionality of instantaneous circulation patterns. The same reasoning 
will now be applied to a GCM. 
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Figure 2.6: Logarithmic eigenvalue graph for the instantaneous circulation and for the 
errors. The squares give the variance of the instantaneous circulation described with the 
EOFs. The crosses give the variance of the errors described with the EOFs. 

Rinne and Karhila (1979) and Rinne and Jarvenoja (1979) give EOFs 
of the 500 nib instantaneous height field in the northern hemisphere based 
on a large data sample. They show that 25 EOFs suffice to describe 86 
% of the variance. Doubling the number of EOFs to 50 increases the 
described variance to 94 %. It is assumed that a 2-day error projects as 
efficiently on the basis of EOFs as an instantaneous field. This means that 
a 50 dimensional EOF basis suffices to describe 94 % of the mean square 
error field. In the previous section it appeared that this assumption is 
optimistic. A projection matrix D is used to project the final error field 
on the EOF basis. The truncated mean square error R2

D becomes: 

R2
D = (DAu(i = 0),DAu(i = 0)) 

= (A*D*DAu(/ = 0) ,u(i = 0)) (2.38) 

This equation is almost identical to equation 2.20. The matrix D*D has 
50 eigenvalues with value 1.0. Its other eigenvalues are zero. The matrix 
A*D*DA has 50 non zero eigenvalues. All of them can be found with 51 
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iterations. So, for 94 % accuracy it is sufficient to do 51 iterations. Having 
noticed this the projection D can be removed. The iterative procedure is 
applied. This procedure determines its own optimum basis for the errors. 
Finally the eigenvalues of the complete system are estimated. Obviously, 
using a more relevant basis, less than 51 iterations are needed to arrive 
at the same percentage of described variance. This may compensate for 
the optimistic assumption at the beginning as it did in the 30-dimensional 
model. The total computional cost of 51 iterations is roughly the same as 
the cost of 153 model runs. 

The above numbers can be improved if one is interested in geographi­
cally localized rather than global predictability. Peagle and Haslam (1982) 
give an EOF analysis of seven years of winter data over a portion of the 
Northern Hemisphere centered over the western United States. They find 
that only 18 EOFs are needed to describe 94 % of the variance. This 
reduces the dimension and thus also the number of iterations by a factor 
of 3. 

The analyses started with a homogeneous random initial error field. 
This simplified the exposition of the problem but is not realistic. The 
errors in the observations can be described by means of a vector w such 
that: 

u(0) = 

(w,-,Wj-) = 

(w,w) = 

Mw 

Nobs 

1 

(2.39) 

(2.40) 

(2.41) 

Eq. (2.39) relates the vector w of observation errors with an initial error 
field u(0). If the measurement errors are small M is a linear operator. In 
general because of the complexity of assimilation methods the operator M 
may be cumbersome to evaluate. Eq. (2.40) states that all N0i,s observa­
tions are independent. Eq. (2.41) assigns unit length to the error vector. 
The adapted equation for the error energy at time t now becomes: 

R2
DM = (DAMw, DAMw) = (M*A*D*DAMw, w) (2.42) 

Because the dimension of the problem is already constrained by the 
matrix D*D the basis for the initial error can be made as large as the basis 
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of u(0) without causing significant computational problems. In practice, 
though, the number of observations may be much smaller than the number 
of model variables. Thus, the model matrix A, the projection matrix D, 
the assimilation matrix M and the maximization procedure in general all 
have the effect of rapidly eliminating irrelevant initialization directions. 

2.6 Discussion and conclusions 

In this chapter variations in the deterministic error growth have been 
studied in a low order spectral model. Only short range error growth 
has been studied. This allowed the use the tangent linear equations for 
the evolution of the errors. With these equations and their adjoint the 
directions with large error growth have been computed. From the growth 
rates in these directions a probability distribution for the errors could be 
established. Parameters for the skill of a forecast were obtained from this 
distribution. 

It would be of value to know whether the above method can be applied 
to a large model. The hypothesis was made that the dimension of the error 
growth is of the order of the dimension of the instantaneous circulation 
patterns. The hypothesis has been tested in the low order model, where 
indeed the number of relevant error growth directions happened to be 
almost identical to the number of relevant EOFs. This is a plausible 
result because a run with small initial error will converge to the model 
attractor. From an analysis of the real atmospheric circulation a number 
of 50 relevant EOFs can be obtained. According to the hypothesis this 
is equivalent to 50 relevant error growth directions. Computing these 
directions is as expensive as about 150 model runs. With these directions 
and the corresponding growth rates one can get parameters for the skill. 

The above methods may still be judged prohibitively expensive. A re­
duction in the cost may be obtained by choosing a regional instead of a 
global error norm and by relaxed requirements on the numerical preci­
sion of the skill forecast. All of this depends on the yet to be determined 
spectrum of eigenvalues which might be different from its hypothesized 
shape. To get a useful estimate of the skill one should use an inhomoge-
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neous initial error field which is consistent with errors in the observations. 
Formally this can be done with the operator M, which transforms a vec­
tor with measurement errors into an initial error field. Non-linear error 
growth is not discussed in this chapter. It limits the applicability of the 
above method to short-range predictions. 
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Chapter 3 

The quality of skill forecasts 

Abstract 

A skill forecast gives the probability distribution for the error in the fore­
cast. The purpose of this chapter is to develop a skill-forecasting method. 
The method is applied to an atmospheric model. It is a spectral two-layer 
quasi-geostrophic model with a triangular truncation at wavenumber 5. 
The analysis is restricted to internal error growth. It is investigated how 
observational errors lead to errors in the analysis. It appears that clima-
tological distributions can be used for the errors in the analysis. In the 
forecast run the evolution of these distributions is computed. For that 
purpose the tangent linear equations for the errors are used. Because of 
this linearization the results are valid for short-range skill forecasts only. 
The Lanczos algorithm is used to find the structures that dominate the 
forecast error. This algorithm is intended to be applicable in a realistic 
model. 

3.1 Introduction 

Some weather forecasts are more successful than others. The quality of 
forecasts depends on the accuracy of the initial state and on the sensitiv­
ity of the atmosphere to small differences in the initial state. With a skill 
forecast one predicts the quality of a forecast. Because the forecast error 
is stochastic a skill forecast must be given in terms of a probability dis­
tribution. It allows a forecaster to make a selective use of the predictions 
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issued by an operational center. In order to compute this distribution it 
is studied how stochastic errors in the observations cause stochastic errors 
in the forecast. The first problem is how errors in the observations enter 
the analysis. The second problem is how these errors propagate during 
the forecast run. In this chapter errors due to imperfections of the model 
are neglected. 

A forecast starts with a data-assimilation process. Data assimilation 
updates an old estimate of the state of the atmosphere with new obser­
vations. The resulting estimate is called the analysis. The next data 
assimilation uses this analysis, which is then called the previous analysis, 
as an old estimate of the state of the atmosphere. In meteorology the 
analysis is usually obtained via Optimal Interpolation (OI)(Gandin 1963; 
Bergman 1979). Optimal interpolation uses approximate rules for the evo­
lution of the statistics of the error. The resulting analysis is not optimal 
because a valid evolution of the statistics of the error would give a more 
likely analysis. 

An optimal estimate may be obtained with a Kalman filter (Kalman 
1960; Ghil et al. 1981; Cohn and Parrish 1991). The computational cost 
of the Kalman filter has prohibited its operational use. An alternative 
analysis method uses the adjoint of the tangent linear model (Marchuk 
1974) to minimize a cost function. An extensive discussion on data assim­
ilation with an adjoint model is given by Courtier and Talagrand (1987) 
and by Talagrand and Courtier (1987). Thacker (1989) gives a description 
of the adjoint method which incorporates the error statistics of the previ­
ous analysis. Thacker (1989) suggests the name "least squares method" 
instead of "adjoint method" because this emphasizes the connection to re-
gressian analysis (see e.g. Draper and Smith 1966). The adjoint method 
has a computational cost comparable to the cost of the Kalman-filter if 
the evolution of the error statistics is computed. If the errors in the ob­
servations are sufficiently small, and if the model is perfect, then both 
methods are optimal. A comparison of a Kalman filter and the adjoint 
method is given by Lorenc (1986) and more recently in the review paper 
by Ghil and Malanotte-Rizzoli (1991). In the present chapter the adjoint 
equation method is used because it is conceptually easier to understand. 
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A skill forecast may be obtained from the subsequent evolution of the 
error. Because a rigorous computation is very expensive approximating 
methods are proposed in this chapter. A brute force method is still needed 
to test the validity of the approximations. Computational reasons make 
the use of a simple atmospheric model necessary, but at the same time it 
is assumed that this model is perfect. This is done because the simplicity 
of the model precludes a useful study of model error. To study model 
errors one must compare operational forecasts with observations. This 
will remain out of the scope of this chapter (see e.g. Dee et al. 1985). 
Only the sensitivity of the forecast to errors in the observations is studied. 
For a short range forecast, which has only small errors, "model errors" and 
"predictability errors" can be treated independently. It is only after some 
time that the different error terms start to interact non-linearly. Also it 
is both instructive and convenient to study "predictability errors" in a 
simple environment before applying the ideas in operational models. 

Thus one has to assume that the error growth is linear. This assumption 
breaks down after about 48 hours (Lacarra and Talagrand 1988). Conse­
quently one is limited to short range skill forecasts. This limitation makes 
it possible to compute the covariance matrix of the error. To obtain the 
full matrix the tangent linear equations are integrated once for all coordi­
nates in phase space. The two-layer quasi-geostrophic hemispheric model 
discussed in Houtekamer (1991)(hereafter referred to as PH) is used. This 
model, which is truncated at T5, has a 30-dimensional phase space. The 
tangent linear model, which describes the evolution of small errors, and 
the adjoint of the tangent linear model are given in PH. 

This chapter starts with a description of the observational network 
and the data-assimilation procedure. The data assimilation is performed 
by minimizing a quadratic function of the differences between the data 
and their model counterparts. The Hessian matrix, which contains the 
second derivatives of this quadratic function, is computed. The inverse of 
the Hessian is the covariance matrix that establishes to which accuracy 
the model state is determined by the data (Thacker 1989). A series of 
brute force computations of the forecast error distributions is performed. 
The resulting rigorous skill forecasts serve as a standard against which 
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approximating methods are compared. 
As a first test these rigorous skill forecasts that start from the covari-

ance matrix for the error in the previous analysis are compared with skill 
forecasts that start from a climatological covariance matrix. This first 
test quantifies the degradation of the skill forecast which must occur if a 
climatological error-distribution is used for the previous analysis. 

Prom an economical point of view one would like to move the climatol­
ogy assumption from the previous analysis to the present analysis. Thus 
information on error growth, that might have been gathered during the 
data assimilation, is ignored. The second test quantifies the consequences 
of ignoring this information. 

The third simplifying step is a limitation to a small number of error 
growth directions. As suggested by Lacarra and Talagrand (1988) a Lanc-
zos algorithm (see e.g. Parlett 1980) is used to find these few important 
error growth directions. Using the climatological covariance matrix for 
the error in the analysis and using the Lanczos algorithm a method is ob­
tained that can be applied to a realistic model. Again it is tested against 
the rigorous skill forecast. 

In a final test the error in the analysis has a simple equipartition energy 
spectrum. The results show that the inhomogeneity of the errors in the 
analysis cannot be ignored. The chapter is concluded with a discussion on 
the relevance of this work for error growth in more realistic models. 

3.2 The data assimilation 

The objective of this chapter is to analyse the influence of an inhomoge-
neous distribution for the analysis error on the accuracy of the resulting 
forecast. Such inhomogeneous error distributions are simulated with a 
realistic data-assimilation process. The data assimilation consists of a 
least squares fit of a model to data. A general description of the least 
squares method is given by Draper and Smith (1966). An application to 
an oceanographic model is given by Thacker (1989). 

This section first describes the observational network. It proceeds with 
a discussion on the least squares method. This method gives the analysis 
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The observational network 

latitude 

0° 360° 
longitude 

Figure 3.1: The observational network. The horizontal coordinate is the geographical 
longitude of the observing station. The vertical coordinate is for the geographical latitude. 
The scales are in degrees. The observing stations are indicated with plus signs. 

and the covariance matrix of its error using as input the previous analysis, 
the observations and the covariance matrices for the error in the previous 
analysis and for the observational error. 

The observational network has a total of 10 observing stations. Their 
locations are shown in fig. 3.1. The locations are chosen with a random 
number generator. Due to the limited number of observing stations the 
inhomogeneity of the network comes as a natural property. At the 10 
stations independent measurements of the barotropic and the baroclinic 
values of the streamfunction are simulated at times 12 UT and 24 UT. 
The errors in the observations have independent normal distributions with 
variance a2. In reality observations may contain gross errors. This causes 
more excessively large errors than expected from a normal distribution. A 
quality control is needed to identify and remove such gross errors (Lorenc 
1984). The distribution after quality control may be considered to be 
normal. Note that in the T5 model 30 numbers are enough to define the 
analysis. The previous analysis and the set of observations consists of 
a total of 70 numbers so the assimilation problem is overdetermined. It 
needs to be overdetermined to guarantee a unique and reliable solution. 

Before proceeding with a description of the assimilation method some 
notations for relevant quantities are given. The true state vector for the 
model atmosphere is qm(<), with t = —24 hours at the beginning of the 
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assimilation, t = 0 at the analysis time and t = tf at the time of the 
forecast. The observations at -12 and 0 are used for the assimilation. Un­
less stated otherwise tf equals 52 hours. The previous analysis is q(—24). 
The best fit to the data is q(—24). Its forward integration is q(t). The 
corresponding error vector is u(<): 

q(0 = q»»(*) + u(*)- (3-1) 

In the following the differences between the previous analysis, the best 
fit and the true atmospheric state are assumed to be small. Also the 
measurement errors are taken to be small. These assumptions allow the 
linearization of operators about the previous analysis rather then about 
the unknown true atmospheric state. The errors in these approximations 
appear as higher order terms which are systematically neglected. Because 
all operators are linear and all errors in the observations have normal 
distributions the computed error distributions will also be normal (e.g. 
Example 11.2 in Kendall et al. 1986). 

The least squares fit of a model to data is determined by the minimum 
of a cost function J (x) that is quadratic in the differences between the 
data d and their modelcounterparts m(x), where x denotes the starting 
value of the model at t = —24: 

J (x) = - ( d - m ( x ) f S(d - m(x)). (3.2) 

The data, which consists of both the previous analysis and the new obser­
vations, are represented as elements of a column vector d. The matrix S 
reflects the relative precision of the data. It is the inverse of the covariance 
matrix for the error in the data: 

S-1 = (d - m(qm ( -24))) (d - m (q m ( - 24 ) ) f , (3.3) 

where the overbar denotes expectation value. This matrix S can be written 
as: 

Q - 1 

0 
0 

<7" 2 | 
(3.4) 
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where Q is the covariance matrix for the error in the previous analysis, <r2 

is the variance of the measurement errors and I is the identity matrix. 
The minimization of Eq. (3.2) is performed using the Hessian matrix 

H of second derivatives of the cost function: 

,dm r dm, 

dx~j l "fe 

where dm/dx represents the Jacobian matrix. To compute the Jacobian, 
one row at a time, the tangent linear equations are integrated once for unit 
perturbations in all model coordinates. Finally the best fit is computed 
as a correction to the previous analysis (Thacker 1989): 

H = 0 T SO, (3.5) 

q(-24) = q(-24) + H~\^fs(d - m(q(-24))), (3.6) 

where one notices that only the information in the new observations is 
used to update the previous analysis. 

After the assimilation of the state vector the error statistics of the best 
fit can be computed. It will appear that most of the necessary work is done 
already. The accuracy of the best fit can be described with a covariance 
matrix Q(—24): 

(3.7) 

(3.8) 

Q(-24) = u ( -24 )u T ( -24 ) . 

The error in the best fit u(—24) is: 

u ( - 24 ) = H " 1 ( ^ f s ( d - m(qm ( -24)) ) . 

This may not appear convenient because the true atmospheric state qm is 
not known. However for the present purpose it is sufficient to know the 
statistics of the error. These statistics are given by Eq. (3.3). Using Eq 
(3.3), (3.5), (3.7) and (3.8) one obtains for the covariance matrix: 

/ ~.x i , d m , r i rdxa _ i r i 
Q(-24) = H - ' h r - f S S - ' S -5-H 1T = H"1. 

It remains to integrate the covariance matrix Q(—24) to the time of the 
analysis: 

Q(0) = R(0, -24)Q(-24)R r (0 , - 24 ) , (3.10) 
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where R(ii,^2) is the resolvent operator between times t\ and £2- It rep­
resents the integration of a small perturbation with the tangent linear 
model from time ty until time t\. The matrix R(0, — 24) is a by-product 
of the computation of the Jacobian dm/dx. The symbol R is used for the 
mapping of an analysis error to a forecast error: 

u(*/) = Ru(0). 

The covariance matrix for the forecast error becomes: 

Q(*/) = RQ(0)RT. 

(3.11) 

(3.12) 

For the next data assimilation q(0) can be used as the previous analysis 
and Q(0) as its covariance matrix. Thus the statistics for the analysis error 

, and for the forecast error can be derived from statistics of the error in the 
previous analysis and of the measurements error. In the next section some 
modifications are given to make the assimilation feasible with realistic 
models. 

3.3 A feasible assimilation method 

The observational network, the data-assimilation method and the method 
to compute the relevant covariance matrices have been discussed. This 
gives in principle the necessary tools for a skill forecast. However, because 
it is intended to analyse the feasibility of actual skill forecasts, two modi­
fications to the above scheme are made. The modifications are necessary 
because in practice the model is not perfect and the restricted computer 
power does not allow the computation of the full covariance matrix. 

3.3.1 Correction for model error 

As discussed in PH the dynamics of the model is chaotic. This has con­
sequences for the evolution of the covariance matrix. An initially spher­
ical distribution of errors will expand in unstable directions and shrink 
in stable directions. The growing error fields are eventually checked by 
new observations. In the stable directions the accuracy becomes infinitely 
high. New unbiased observations can only increase the accuracy in these 
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directions even further. This is realistic in a perfect model but not in a 
model that is only an approximation to reality. For this reason errors are 
not allowed to be much smaller than the errors in the verifying observa­
tions. This intuitive notion is incorporated by changing the covariance 
matrix Q of the error in the previous analysis. Any eigenvalue of Q less 
than a certain ad hoc value S, which reflects in some way the accuracy of 
the model, is replaced by the value 6. 

3.3.2 A climatological covariance matrix 

The assimilation procedure requires the covariances Q for the error in the 
previous analysis. To compute these covariances the model is integrated 
once for all model coordinates. In practice this will never be feasible for a 
realistic model. So, instead, climatological covariances are used to assim­
ilate the state vector. This leads to a data assimilation technique which 
is not optimal but which is applicable to a realistic model. Consequently, 
for the present experiments, a non-perfect but realistic method is used to 
assimilate the state vector. 

The climatological covariance matrix is obtained in the following way. 
A model run is started somewhere on the attractor. The covariance ma­
trix Q(0) for the first analysis is computed using only the statistics of 
the observations. For subsequent assimilations a previous analysis with 
a covariance matrix for its errors can be used. Eigenvalues of Q(0) less 
than 6 are replaced by eigenvalues 6 and the adapted matrix Q*(0) is used 
as covariance matrix Q for the error in the previous analysis in the next 
data assimilation step. This process is continued for 20 days, after which 
the spin-up of the covariance matrix Q has ended. The next 40 assimi­
lations are used to compute successively better approximations (J,- of the 
climatological covariance matrix (J. 

_ 1 20+i 

Qi = - E Q 
1 day=21 
1 19+» 

= - E Q«(0), 
1 day-20 

§ = §40-

i = 1 , . . . ,40 (3.13) 

(3.14) 
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During the 40 day experiment the actual estimate Qt- of the climato-
logical covariance matrix is used in the data assimilation. This makes 
the data assimilation non-perfect. A perfect data assimilation uses actual 
covariances Q. It will be shown how the actual covariances Q for the er­
ror in the previous analysis and the non-perfect data-assimilation lead to 
covariances Q^(0) in the analysis. This derivation is needed for the de­
termination of the climatological covariance matrix with Eq. (3.13) and 
for the rigorous verfications of skill forecasts performed with more simple 
methods. 

The evolution of covariances Q needs to be followed under a data as­
similation which uses climatological covariances Q. Thus the equivalents 
of Eqs. (3.4), (3.5) and (3.8) become: 

Sir = 

HF = ( 

0 
<T~2\ 

5 - 1 

0 
dm r 3m 

ax~} S F ( ax -) ' 
,5mN 

dx~ 
u ( -24 ) = H-A^f SF(d - m(qm ( -24) ) ) , 

(3.15) 

(3.16) 

(3.17) 

where the subscript F indicates the use of a climatological covariance 
matrix by the data assimilation. To obtain the actual covariances Eq. 
(3.3), (3.7) and (3.17) are combined: 

Q(-24) = H ^ f SF S _ i c r d m i r 

ax"H" ^F~5—^F (3.18) 

These covariances are integrated to the time of the analysis using Eq. 
(3.10). The matrix Q(0) is then modified to give Q^(0) which completes 
the algorithm to update the covariance matrix in the case of a non-perfect 
data-assimilation. In the following experiments the climatological covari­
ances Q are used to assimilate the state vector. If the minimization of 
the cost function is done using adjoint equations the assimilation is also 
feasible for more realistic models. In this case one does not obtain actual 
covariances for the analysis error, but it will be shown that a skill forecast 
can be based on climatological covariances for the analysis error. 
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3.4 The experiments 

In this section actual distributions for the forecast error are compared with 
some approximate distributions. The actual distribution of the forecast 
error is obtained from the actual covariances for the error in the fore­
cast. The covariances will be computed rigorously by starting from actual 
covariances of the error in the previous analysis. The non-perfect data as­
similation, which is based on climatological covariances for the error in the 
previous analysis, is used to obtain covariances for the analysis error. Next 
the tangent linear model is used for the evolution of the covariances to the 
forecast time. Then finally the distribution for the kinetic energy of the 
forecast error can be computed. This provides the reference distribution 
against which more feasible skill-forecasting methods are tested. 

As a first approximation climatological covariances are used at the time 
of the previous analysis. So the climatological covariances of the error in 
the previous analysis are mapped with the non-perfect data assimilation 
and the tangent linear model to the covariances of the analysis error and of 
the forecast error. This makes the data assimilation and the skill forecast 
a consistent pair based on the same information. 

In a second approximation the skill forecast is started from climato­
logical covariances for the analysis error. These covariances are identical 
to the climatological covariances of the error in the previous analysis. In 
doing so the error information which might have been collected during the 
data assimilation is neglected. 

As a third approximation a Lanczos algorithm is used to find the few 
dominating error growth structures. This approximation makes the skill 
forecast computationally feasible when using a realistic forecast model. 

A final approximation uses a homogeneous distribution for the analysis 
errors. In this way information on the distribution of initial errors is 
ignored. The approximations are tested against the rigorous skill forecast. 

3.4.1 The reference distribution 

During a 1600-day run the covariance matrix Q(tf) is computed for each 
successive day. It is shown how the probability distributions for the kinetic 
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energy K of the forecast error can be computed from the covariance matrix 
Q(tf). For the error energy one can write: 

K = uT(tf)u(tf) = (u(tf),u(tf)), (3.19) 

where the brackets {,) denote an inner product proportional to kinetic 
energy. Equation (3.19) requires a proper scaling of the coordinates for 
u. The probability distribution for the error energy K can be obtained 
from an eigenvector analysis of Q(tf). The vectors {qi,i = 1,- • • ,30} are 
the eigenvectors of Q(i/) at eigenvalues \Xj,i = 1,- • • ,30}. The forecast 
error n(tf) can be written in a basis spanned by the eigenvectors: 

30 
u(*/) = J2 diXtqi, (3.20) 

where the projection coefficients {</,-, i = 1, • • •, 30} have independent nor­
mal distributions with zero mean and unit variance. For the energy K of 
the forecast error one has: 

30 30 30 
K = <E diA.-q,-, YJ diXtqi) = £ d-A-. 

i = l i= l i = l 
(3.21) 

table 3.1: quality of the approximations tf=52 

K1 

Rp 
RA 

R\ 
R] 

correlation with K 

16% 
1.00 
0.77 
0.63 
0.58 
0.56 

50% 
1.00 
0.78 
0.60 
0.60 
0.48 

84% 
1.00 
0.80 
0.60 
0.60 
0.42 

average values 
16% 

5.7 
6.0 
6.7 
4.4 

12.4 

a 
0.5 
0.4 
0.4 
0.4 

0.5 

50% 
11.6 
11.7 
12.4 
9.9 

22.4 

a 
1.5 
1.2 
1.1 
1.1 
1.1 

84% 
24.6 
23.7 
23.4 
20.9 
42.8 

a 
4.4 
3.3 
2.6 
2.7 
2.8 

With a random number generator 4000 random sets of projection coef­
ficients are generated. The resulting 4000 values of K give a Monte Carlo 
estimate of the probability distribution. The values of K below which one 
has 16 %, 50 % and 84 % of all realizations are computed. The value 
below which one has 50 % of the points is the median. Fig. 3.2 displays 
the 16 % point, the median and the 84 % point during the first 100 days 
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Figure 3.2: The actual error distribution. The horizontal coordinate gives the day from 
which the forecast was made. The vertical coordinate gives the forecast error energy below 
which the forecast is expected with 16 % probability (dotted line), 50 % probability (dashed 
line) and 84 % probability (solid line). 

of the 1600-day run. It is noted that the predictability is quite variable. 
Observe for example that the prediction starting at day 38 has an er­
ror variance which is almost twice as large as the error variance for the 
prediction starting at day 40. Fig. 3.2 can be considered to display the 
true probability distribution of the errors. The curve connecting the 84 % 
points, provides the reference against which approximations can be tested. 
To diagnose systematic errors table 3.1 displays the average energy of the 
error at the 16 % point, the median and the 84 % point. As a measure for 
the variability of the predictability the root mean square of the day-to-day 
variations in these values is given. Random errors are identified by the 
computed correlations. 

3.4.2 Cl imatology at the previous analysis 

As a first approximation it is assumed that the covariances of the error 
in the previous analysis take their climatological values. The estimated 
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covariances at the time of the analysis and at the time of the forecast are 
respectively: 

QF(0) = R (0 , -24)H^RT (0 , -24) 

QF(tf) = RQF(0 )R T . 

(3.22) 

(3.23) 

The above method is used to derive a skill forecast based on QF(*/)• 
The location of the 84 % point is shown in fig. 3.3b. Although the position 
of most of the peaks is the same, substantial differences do exist between 
the figures 3.3a and 3.3b. For instance, at day 32, a favourable probability 
distribution is predicted. This conflicts with the model's reality. A priori 
the variability of the predictability is expected to decrease, because taking 
a climatological covariance matrix is bound to smooth the errors. Indeed, 
in table 3.1, the root mean square of the energy for the 84 % point has 
decreased from 4.4 to 3.3. The correlation coefficients of the 16 % point, 
the median and the 84 % point between K and Kp are 0.77, 0.78 and 
0.80. These correlations are computed from the full 1600-day run. The 
correlation coefficients are collected in table 3.1. Table 3.1 contains the 
same information on the next three approximations. To get a feeling 
for the accuracy of the estimated correlations it may be assumed that 
the percentage points and the median have normal distributions. If two 
normal distributions have correlation p, an estimate p of p based on n 
pairs has variance (Kendall et al. 1986): 

x2\2 (P - PY = ̂ (i - Py » ^(i - ?) (3.24) 

Substitution of n = 1600 and the values of table 3.1 into Eq. (3.24) shows 
that the root mean-square error in the correlation is 0.02 in the worst case 
(p = 0.42) and 0.009 in the best case (p = 0.80). For the present purposes 
the estimated correlation coefficients are sufficiently reliable. 

If a climatological approximation 5 is taken for the covariance matrix 
Q of the error in the previous analysis the skill forecast is far from being 
perfect. 
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Figure 3.3: Actual and predicted variation of the 84 % point. The horizontal coordinate 
gives the day from which the forecast was made. The vertical coordinate gives the forecast 
error energy below which the forecast is expected with 84 % probability. Different predic­
tions are separated with arbitrary vertical displacements. Shown are the 84 % points for: 
(a) reality, (b) a skill forecast starting from a climatological covariance for the previous 
analysis, (c) a skill forecast starting from a climatological covariance for the analysis, (d) 
a skill forecast as (c), but using a Lanczos algorithm, (e) a skill forecast starting from an 
equipartition distribution for the error in the analysis. 
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3.4.3 Analysis c l imatology 

In a second approximation the climatological covariance matrix (!) is used 
for the error in the analysis. An average assimilation operator B is com­
puted from the eigenvectors of U: 

BBJ (3.25) 

Thus the columns of B contain the eigenvectors times the root of the 
eigenvalues. Because B is a climatological operator it has to be determined 
only once. The subscript A denotes quantities based on this assumption. 
The new estimate for the covariance matrix of the forecast error becomes: 

QA(tf) = RBB^ FT = RBB*R*, (3.26) 

where the asterisk denotes adjoint. With euclidian innerproducts, which 
are used in this chapter, adjoint operators are identical to transpose op­
erators. The application of R* to a vector requires either the backward 
integration of the homogeneous adjoint of the tangent linear model (PH) 
or the computation of the full matrix R and its transpose. The spectrum 
of eigenvalues has the property: 

<r(QA(tf)) = <r(B*R*RB). (3.27) 

This general property is used in the next section by the Lanczos algorithm. 
For a skill forecast based on QA(tf) the position of the 84 % point 

varies as shown in fig. 3.3c. A comparison with fig. 3.3b suggests that the 
variability is less chaotic and more periodic. As would be expected the 
variability of the predictability has decreased even further. The correlation 
coefficients of the 16 % point, the median and the 84 % point for K and 
KA have dropped to 0.63, 0.60 and 0.60. 

3.4.4 Reduct ion of error space 

The third approximation, and the last step towards a "feasible" skill fore­
cast, is the use of a Lanczos algorithm. It is feasible because it no longer 
requires perturbations in all model coordinates. The Lanczos algorithm 
gives estimates for the j largest eigenvalues of the matrix B*R*RB. The 
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algorithm is analogous to the one used in PH. The operator RB takes the 
role of his operator A. For completeness the new algorithm is given. 

In a series of j iterative steps a basis {Ai, A2,- • •, Aj} is constructed 
which is an approximation to the basis for the j most important eigen­
vectors of B*R*RB. The first vector Aj , which is of length one, is chosen 
at random. New directions are obtained with the operator B*R*RB. They 
are made orthonormal to the previous directions with a Gram-Schmidt 
procedure: 

A i + 1 = B*R*RBA,-- £(B*R*RBAt-,Afc)Afc, 

A,-+i = 
A: «+I 

( A ; + 1 , A ; + 1 ) V 2 -

(3.28) 

(3.29) 

After every iteration step the j largest eigenvalues of the operator B*R*RB 
are estimated with the eigenvalues of the tridiagonal j x j -matrix EjEj. 

EJ = [RBAi, RBA2, • • •, RBAj]. (3.30) 

Figure 3.4 shows the average percentage of the sum of the eigenvalues 
of B*R*RB obtained from the sum of the eigenvalues of EjEj as a function 
of j . The Lanczos algorithm starts from a random initial vector Ai . This 
makes the matrix EjEj and the estimate of its eigenvalues a stochastic pro­
cess. The performance will also depend on the spectrum of eigenvalues of 
B*R*RB. These two effects make it necessary to average over a number of 
cases. The averaging is over the 100 sets of percentages obtained from the 
first 100 cases provided by the experiment. With the Lanczos algorithm 
the error growth is underestimated, because only j eigenvalues are esti­
mated on a total of 30. There is no computational reason to do more than 
10 iteration steps. After 10 iteration steps a brute-force determination of 
R becomes cheaper. From fig. 3.4 a suitable value of j is selected. With 
j ' = 8 about 84 % of the variance is explained on average. Also indicated 
in this figure is the error energy described with the j most rapidly growing 
eigenvectors. This shows the steepness of the spectrum of eigenvalues of 
the matrix Q^(i/). This spectrum is only approximated by the eigenvalues 
of EjEj. The 8 most rapidly growing eigenvectors of Qx(*/) explain 91 % 
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Figure 3.4: The efficiency of the Lanczos algorithm. The horizontal coordinate is the 
number of iteration steps. The squares give the average percentage of the error variance 
captured with a Lanczos procedure. Due to numerical errors this percentage may become 
larger than 100 %. The circles give the percentage of error energy described by the most 
rapidly growing vectors. 

of the variance. The 84 % level is reached with only 6 eigenvectors. Thus, 
due to the approximate character of the Lanczos algorithm, 8 rather than 
6 iteration steps are needed to capture 84 % of the error energy. 

The subscript L denotes quantities based on the Lanczos algorithm and 
the operator B*R*RB. The location of the 84 % point for Ki is shown in 
fig. 3.3d. As a comparison of fig. 3.3c and fig. 3.3d shows, the Lanc­
zos algorithm leads to almost perfect predictions of the variations of the 
probability distribution. The median and the 84 % point, which were com­
puted with the Lanczos algorithm, give the same correlations with reality 
as the values from the algorithm which produces 30 eigenvalues. However 
the correlation for the 16 % point has dropped significantly. As explained 
by PH this is because 22 eigenvalues are taken to be zero. The Lanczos al­
gorithm is only practical for estimating the dominant error structures. In 
addition, as can be deduced from table 3.1, the Lanczos algorithm causes 
a systematic underestimation of the error. The correlation coefficients are 
insensitive to this systematic error. Comparing reality, as plotted in fig. 
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3.3a, with the feasible forecast, as plotted in fig. 3.3d it is observed that 
the skill forecast carries information on the quality of the forecast. 

3.4.5 Initial unit error sphere 

As a final approximation the inhomogeneity of the error in the analysis is 
ignored. The distribution of the forecast errors is determined completely 
by the stability of the flow during the forecast run. The analysis error 
covariances are taken proportional to the Identity matrix: 

Q/(0) = 

a = 

a 

301' 
30 

£ A?0D, 

(3.31) 

(3.32) 

where the subscript I denotes this approximation. The A|(Q) are the 
eigenvalues of Q. The estimated covariance matrix the forecast error is: 

a 
Q/(*/) = ^ (3.33) 

The forecast of the 84 % point based on Qi(tf) is shown in fig. 3.3e. 

Comparing fig. 3.3a and fig. 3.3e and using table 3.1 the following 
shortcomings of the estimate Kj are noted. The range of values of K is 
larger than the range of K\ (a factor 4.4/24.6 against a factor 2.8/42.8). 
Thus, with Ki, the variability of the predictability is underestimated. On 
the basis of the limited variability in the distribution for Kj one might 
conclude that skill forecasts have little practical value. With each subse­
quent approximation in the skill prediction method the variations in the 
predicted probability distribution have been reduced. Thus skill forecasts 
appear less interesting than they really are. The last skill forecast shows 
the remarkably poor correlation coefficients: 0.56, 0.48 and 0.42. Finally 
it is remarked that Kj gives a significant overestimate of the error. Thus 
ignoring the data assimilation leads to almost useless skill forecasts. 
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table 3.2: quality of the approximations tf—95 

R'2 

Rp 
RA 

Rl 
R] 

correlation with K 
16% 
1.00 
0.84 
0.76 
0.71 
0.68 

50% 
1.00 
0.82 
0.73 
0.72 
0.66 

84% 
1.00 
0.78 
0.68 
0.68 
0.55 

average values 
16% 
8.2 
8.5 
9.6 
7.4 

19.3 

a 
0.9 
0.9 
0.9 
0.9 
1.4 

50% 
18.8 
19.0 
21.0 
18.7 
44.0 

a 
2.8 
2.9 
3.0 
2.9 
3.6 

84% 
45.0 
43.6 
47.5 
45.2 

107.6 

<7 

8.8 
8.5 
9.0 
8.9 

11.3 

In validating the skill forecast one needs to realize that at the time of 
the analysis the climatological covariance matrix Q has, by definition, no 
predictive value for Q(0). During the forecast integrations are done with 
the tangent linear equations. This adds relevant temporal information to 
the initially climatological error distribution. Consequently the predictive 
value of the error distribution increases during the course of the integra­
tion until after some time the linearity assumption breaks down. Using a 
linearity assumption both for the errors and for their validation , as done 
in this chapter, a constantly improving skill forecast is to be expected. For 
tf — 95, which is the integration length used by PH, the experiment has 
been repeated. The quality information is given in table 3.2. As antici­
pated the quality of the skill forecasts has increased compared to the case 
with tj = 52. The correlations for K\ are 0.68, 0.66 and 0.55. This char­
acterizes the quality of the skill forecasts obtained by PH. Comparing Kj 
and Ki in table 3.2 the figures show that the Lanczos algorithm and the 
climatology assumption lead to an improved prediction, especially in the 
tail of the distribution. Moreover, the systematic errors in the prediction 
are considerably reduced. 

3.5 Discussion 

Skill forecasts for a low order T5 model are presented. The skill forecasts 
show obvious skill. However, one has to be cautious in interpreting the 
results to skill forecasts for realistic models. 
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In the T5 model environment the use of climatological covariances for 
the analysis error has a big negative impact on the quality of the skill 
forecast. No problem of similar magnitude occurs during the forecast 
run. So, in the environment of the T5 model, these results suggest the 
development of an updating strategy for these covariances. Because of the 
assumed near perfection of the model (only the confidence in decreasing 
error directions was limited) it takes a long time before old observations 
lose their value, and thus it pays to look far back in time. In this the T5 
model may differ from a realistic model. 

In a realistic experiment a few additional problems have to be faced. A 
discussion of some of them is given by Farrell (1990). The starting point, 
the determination of a climatological covariance matrix, requires a major 
effort. Both local and global information on the covariances of analysis 
errors is needed. In data-rich areas, such as the area above the United 
States, existing diagnostics of the analysis system performance could be 
used to get climatological covariances (Hollingsworth and Lonnberg 1989). 
For the determination of global errorfields and errorfields above data-void 
areas one probably has to perform an Observation System Simulation 
Experiment. Such an experiment involves the generation of a number 
of independent analyses. From the differences between analyses one gets 
statistical information on the analysis error. An example is the work by 
Daley and Mayer (1986). 

Once a reliable climatological covariance matrix has been obtained one 
would like to have un updating strategy for the most energetic components 
of the analysis error. Courtier and Talagrand (1990) state that information 
gathered during the data assimilation may be useful to determine the 
covariance matrix for the analysis. 

It is not clear at what rate information from old observations becomes 
irrelevant in a realistic model. Due to model errors this will be much 
faster than suggested by the present study. In fact Courtier and Talagrand 
(1987) do a data assimilation, where the previous analysis is not used in 
the cost function. It still appears to provide a reasonable analysis. Over 
the eastern Pacific Ocean they doubt the quality of the analysis because 
of the lack of observations in that region or upstream of it. In this area 
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the use of a previous analysis could have been helpful. If information on 
the covariances of the errors in the analysis would be available, one would 
surely be tempted to use it, both for the next data assimilation and for 
the actual skill forecast. 

During the forecast run the imperfections of the model increase the 
error. The present method ignores these imperfections. An independent 
estimate of the contribution of the model errors needs to be added to the 
estimated forecast error. Due to the limited knowledge of the structure 
of model errors this will make the predicted probability distributions less 
variable in space and time. 

For the computational cost the spectrum of eigenvalues, i.e. the number 
of dominating growth directions, is the key factor. This spectrum trans­
lates into a number of required iterations with the Lanczos algorithm. 
Spectra for eigenvalues are given by Farrell (1990). In a case with un­
damped baroclinic shear he finds a good separation of the eigenvalues. In 
a case with a barotropic jet the separation is less convincing. Based on 
an EOF analysis, a linearity assumption and results from the T5 model, 
PH gives an estimate for the dimension of the errorspace (i.e. for the 
separation of the eigenvalues). It is not clear to what extent this estimate 
relies on the linearity assumption or on the T5 model. One may have to 
wait for a spectrum of eigenvalues determined for a realistic model to get 
an impression of the feasability of global skill forecasts. 

A practical method to limit the number of eigenvalues is the projection 
of the forecast error on a limited number of localized forecast parameters. 
This is discussed in a recent paper by Barkmeijer (1992). 

Summarizing the present analysis of error growth in a low-order model, 
it is concluded that short-range skill-forecasts with large operational mod­
els are useless, if no attention is paid to the initial distribution of errors. 
The obvious way to make this feasible is the use of climatological covari­
ances for the analysis error. 
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Chapter 4 

Global and local skill forecasts 

Abstract 

A skill forecast gives the probability distribution for the error in a forecast. 
Statistically well founded skill forecasting methods have so far only been 
applied within the context of simple models. In this chapter, the growth 
of internal errors is studied. This means that errors, which are already 
present in the estimate of the initial state, can grow only in accordance 
with the dynamics of a model. Errors in the description of the model 
itself are neglected. A three level quasi-geostrophic spectral model of the 
atmospheric circulation is used. It is trunctated at T21. It is shown, that 
a linear theory for the evolution of errors can be used for the first four 
days of a forecast. For the description of the global error, Monte Carlo 
methods are more efficient than methods based on the use of the adjoint 
of the tangent linear equations. The limitation to spatially local errors 
dramatically reduces the dimension of the error vectors. In that case, 
adjoint methods are the most efficient ones. Local skill forecasts for three 
days ahead are computed for a period of 24 consecutive days, using the T21 
model and the adjoint of its tangent linear equations. The variability in 
the predicted distributions for the local errors is fitted with a 2 parameter 
stochastic model. Within the context of a perfect model assumption, 
providing perfect skill forecasts, the variability in the distribution of the 
error at day three is such that for equal quality forecasts the maximum 
extension of the forecast length is two days. 
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4.1 Introduction 

Recently, skill forecasting techniques that are based on the use of the 
tangent linear model have been developed (Lacarra and Talagrand 1988; 
Barkmeijer 1992; Houtekamer 1991, 1992). Because the techniques as­
sume linear error growth, and because they do not consider the effect of 
model errors, they may be applied only to short-range weather forecasts. 
The idea is to search, with a Lanczos algorithm, for the few directions 
in which the forecast is sensitive to errors (Lacarra and Talagrand 1988; 
Houtekamer 1991). The number of relevant error directions can be small 
as a consequence of the specific formulation of the problem (Barkmeijer 
1992). In this case, which occurs naturally for local skill forecasts, it is 
not necessary to use a Lanczos algorithm. 

The author has used a simple quasi-geostrophic 2-level model with a 
triangular truncation at T5, to propagate the use of a Lanczos algorithm 
(Houtekamer 1991), and to stress the importance of accurate probability 
distributions for the initial error (Houtekamer 1992). The conclusions 
may depend on the order of the model, which has only 30 components, 
and consequently some work is needed before the methods and conclusions 
can be applied to state-of-the-art models. 

In this chapter, the relevance of methods based on the use of an adjoint 
is studied for a model with a resolution that is sufficient to describe the 
large scale circulation in the atmosphere. It is a quasi-geostrophic T21 
model with three levels. The model has been developed at the European 
Centre for Medium-Range Weather Forecasts (ECMWF) by F. Molteni 
(Marshall and Molteni 1992). It is still simple enough to allow thousands 
of short term integrations. 

In section 4.2, the data assimilation technique (Thacker 1989; Houteka­
mer 1992) is discussed briefly. The covariance matrix for the initial errors 
is obtained from this method. This matrix forms the starting point of the 
actual error growth analysis. The method is not feasible with state-of-
the-art primitive equation models. A possibly feasible method based on a 
simplification of the Kalman filter was recently discussed by Dee (1991). 

In section 4.3, a Monte Carlo technique is used to validate the assump-
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tion of linear error growth. An ensemble of initial states is integrated both 
with the tangent linear model and with the full non-linear model. The dif­
ferences are a measure for the degree of nonlinearity in the evolution of 
the ensemble. 

It has been argued (Phillips 1986) that the dimension of the error vec­
tors decreases as the length of the forecast period increases. In section 4.4, 
a Lanczos algorithm is used to estimate the dimension of the global error as 
a function of forecast time. This information is the basis of a comparison 
of the convergence of a Lanczos algorithm and a Monte Carlo algorithm. 
It will appear that, due to the high dimension of the global error, Monte 
Carlo methods are more efficient. In section 4.5, the same comparison 
is made for local skill forecasts, where probability distributions for only 
a few specific local forecast parameters at one specific forecast time are 
needed. In this case, a method using the adjoint equations proves to be 
more efficient than the Monte Carlo technique. 

Skill forecasts are useful if the day to day variability of the width of the 
probability distributions is comparable to the width of the daily distribu­
tions. If this is not so, a climatology skill forecast is sufficient. In section 
4.6, the day to day variability is quantified for a local skill forecast. Finally 
in section 4.7, the use of skill forecasts, under such variable conditions, is 
discussed. 

In the discussion, an account of the current state-of-the-art with respect 
to skill forecasts is presented. Although the effect of model errors has 
largely been ignored one is now in the position to validate the proposed 
methods. 

4.2 The data assimilation 

Skill forecasts start from a covariance matrix for the error in the analysis. 
This matrix can be obtained as a by-product of the data assimilation. In 
this chapter, it is computed during a data assimilation based on a mini­
mization of a quadratic cost function (Thacker 1989; Houtekamer 1992). 
For the analysis itself the estimate of the ECMWF is used. The error 
statistics for the observations and the covariance matrix of the previous 
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analysis field are used to compute the covariances for the analysis error. 
In this section, the error statistics for the observations are discussed. Next 
the data assimilation and the assumptions on model error are described. 
Finally some statistics on the analysis error are given. 

4.2.1 The observations 

The available radiosonde measurements of February 24, 1990 are taken 
to be representative for the observing network. All other measurements 
such as surface reports, aircraft reports and wind measurements are ne­
glected. Because, for the present purpose, only error statistics need to be 
computed, only the error statistics of the geopotential height observations 
of the radiosondes are required. The observed values themselves are not 
necessary. 

The assimilation period is 24 hours and starts at 12 GMT. The total 
number of radiosonde-observations, of which the statistics are used for one 
assimilation, is 3969. The spatially inhomogeneous radiosonde observing 
network will lead to a spatially inhomogeneous distribution for the analysis 
error. 

Error statistics for a set of 3 observations from one radiosonde can be 
obtained from Lonnberg and Hollingsworth (1986). The root mean square 
(rms) errors <T2oo, C500 a n d ^soo of the geopotential heights $200, $500 a n < i 
$800 m meters at the model levels 200 mb, 500 mb and 800 mb are: 

0-2oo = l o m > °500 = 1 0 m > °"80o = 5m. (4.1) 

The correlations p of the errors 6200, £500 a n d 8̂00 a r e : 

Ke200, esoo) = 0.35, /9(e200, e50o) = °-50> K^oo, esoo) = 0.50. (4.2) 

These statistics are for the North-American radiosonde network. For sim­
plicity, it is assumed that all observations have the same quality. Different 
radiosondes give independent errors. Thus the covariance matrix for the 
observational errors can be written as a matrix with at its diagonal three 
by three matrices for the covariances of the errors in the three measure­
ments by one individual radiosonde. It is assumed that the observations 
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have Gaussian error statistics. This implies that stochastic variables which 
depend linearly on measurements will also have Gaussian distributions. 

With the above error statistics the covariance matrix W expressed in 
m2 for one radiosonde becomes: 

W = (6200, e500, C800)(e200, ^500, egoo) T _ 
' 225 

75 
^ 26.25 

75 
100 
25 

26.25 N 

25 
25 , 

(4.3) 

To get an impression of the vertical structure of the error introduced by 
the set of three measurements, an eigenvector analysis of the matrix W 
is performed. The eigenvectors of W are multiplied with the root of the 
eigenvalues to get three independent vectors in meters: 

wi 

( -o.i \ 
- 1 . 1 

4.0 , 
w-i 

( - 3 . 7 \ 
7.1 
1.9 

w3 

I 

' 14.5 N 

7.0 

V 2.3 ) 
(4.4) 

The projections of an ensemble of measurement errors on these vectors 
have standard normal probability distributions. In the following the no­
tation iV(0,1) is used for a standard normal distribution with expectation 
zero and unit variance. The vertical structure of the vector w3y which 
has the highest amplitude, is equivalent barotropic. The term "equivalent 
barotropic" refers to the observation that it has the highest amplitude at 
the highest level, that its amplitude increases with height and that it has 
the same sign at the 3 levels of the model. The vectors w\ and wi peak at 
respectively the 800 mb and 500 mb level. Thus the structure of errors in 
radiosonde measurements is mainly equivalent barotropic. 

4.2.2 Least squares fitting 

The model is fitted to the data from the previous analysis and the obser­
vations with a least squares method (Thacker 1989; Houtekamer 1992). 
The least squares fit is determined by the minimum of a costfunction J (x) 
that is quadratic in the differences between the data d and their model 
counterpart m(x), where x is the value of the state vector at the beginning 
of the assimilation: 
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J(x) = 0.5(d - m(x))TS(d - m(x)). (4.5) 

Here the vector d consists of both the radiosonde observations and the 
previous analysis. The previous analysis is the analysis which was deter­
mined during the previous data assimilation. Thus, it is at the beginning 
of the present assimilation period. The vector d — m(x) gives the differ­
ence between the model run and the data. The matrix S is the inverse of 
the covariance matrix for the errors in the data. It is constructed from a 
submatrix for the measurement errors, which has been discussed already, 
and a submatrix for the error in the previous analysis, which is output 
from the previous data assimilation as is shown below. 

The accuracy of the least squares fit is given by the inverse of the Hes­
sian matrix H which consists of the second derivatives of the cost function: 

fdm\T fdm\ 

where dm/dx is the Jacobian matrix. To compute the Jacobian, one row at 
a time, the tangent linear equations are integrated once for perturbations 
in all model coordinates. To compute model counterparts of the data, 
streamfunction fields have to be transformed to geopotential height fields. 
For this the linear balance equation is used. This approach is not allowed 
near the equator (Daley 1983). It appears that no easy solution exists 
for this problem (Daley 1978; Tribbia 1981), because any mass-wind law 
is inaccurate near the equator. Consequently, the skill forecast, which is 
produced, will have a low quality near the equator. 

The inverse of the Hessian matrix gives the covariances at the begin­
ning, at time to, of the assimilation period. They are integrated to the 
time <i of the analysis: 

Q = R(*i,*o)H-1RJ(«i,*o), (4.7) 

where R(*i,<o) is the resolvent operator of the tangent linear equation be­
tween times £i and <o- It represents the integration of a small perturbation 
with the tangent linear equations from time to until t\. The matrix R(#i, <o) 
is a by-product of the computation of the Jacobian. 

It has been shown that, the covariance matrix for the error in the anal­
ysis can be computed from measurements and a previous analysis, both 
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with complete error statistics. This covariance matrix and the ECMWF-
analysis provide the required data for the skill forecast. Before the covari­
ance matrix is used in the next assimilation, a correction for the model 
errors is added. This is discussed in the next subsection. 

4.2.3 Model Errors 

In the data assimilation, the model is assumed to be perfect. However, 
due to model errors, the previous analysis will not be as accurate as antic­
ipated. During the previous data assimilation, a covariance matrix Q was 
computed for the then actual analysis errors. This matrix now serves as a 
covariance matrix for the error in the previous analysis, where the previous 
analysis is now defined to be at the initial time of the present assimilation 
period. A matrix M for the model error is added to the covariance matrix 
for the error in the previous analysis: 

Q« = Q + M (4.8) 

This matrix Q$ is subsequently inverted to get the part of the matrix 
S for the accuracy of the previous analysis. Little is known about the 
model error. Dee et al (1985a, 1985b) propose a method, which is based 
on an extension of the Kalman filter, to estimate the structure of the 
model error. Due to the computational cost of their filter, it has not yet 
been put to practice. One can assume that the model error is randomly 
distributed over all modes. Thus the model error is of white noise type 
(Phillips 1986; Cohn and Parrish 1991). In a large model, one has to limit 
the model error which is assumed to be present at modes with a large 
two dimensional wavenumber n (Bennet and Budgell 1987). This problem 
does not yet occur at n — 21. In fact, due to the strong damping at 
the smallest scales of the model, an extra source of model errors is added 
for waves that are close to the truncation limit (n > 19). The following 
expression is introduced for the model error: 

M; 

h(n) = 

0 . 5^ (1 - h(rii))10-

0 n < 19 
1 n > 19 ' 

+ 0.5fc(n,-)fc(n,-)Vy (4.9) 

(4.10) 
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where n,- and rij are the two-dimensional wavenumbers corresponding to 
mode number i and j . The number of modes in the model is 1449. The 
stepfunction h is used to select the highest three wavenumbers. The matrix 
V for the variability is obtained from observational data: 

1 248 

(4.11) 

where the vectors {x,-,i = l , - - - ,248} are the ECMWF analyses of the 
periods December 1, 1989 - January 31, 1990 and December 1, 1990 -
January 31 ,1991. The ECMWF-analysis at 200 mb, 500 mb, 700 mb and 
850 mb is used. The values at the 800 mb model level are obtained from 
a linear interpolation. Successive ECMWF analyses are 12 hours apart. 

The low-wavenumber part of Eq. (4.9) corresponds to white noise. To 
each individual mode the same amount of error kinetic energy is added. 
The constant 0.5 • 10~9 implies a rms geopotential height error from 1 
meter at the equator to 7 meters at the poles. 

The high-wavenumber part of Eq. (4.9) acts as a source of errors at 
the smallest scales. The added uncertainty is 50 % of the variability V at 
these scales. So this added source term becomes smaller at smaller scales 
(Farrell 1990). 

Figure 4.1 gives the distribution of the kinetic energy at 200 mb as 
a function of two dimensional wavenumber n. At each value of n the 
energy, in the corresponding In -j-1 modes with zonal wavenumber between 
—n and n, is added. The figure displays the energy distribution for the 
atmosphere, for the variability in the atmosphere, for the model error 
and for the analysis error. The distributions at 500 mb and 800 mb (not 
shown) are similar though they have less kinetic energy. The variability 
(transient energy) is maximal at n = 8. Beyond n = 10 almost all energy 
is in the variability (e.g. Daley and Mayer 1986). The white noise part 
of the model error increases linearly, with the number of modes, below 
n = 19. At n = 19 the energy of the model error jumps to 50 % of the 
energy of the variability. The curve for the analysis error is discussed in 
the next section. 
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Figure 4.1: The kinetic energy distribution at 200 mb as a function of two dimensional 
wavenumber N. Shown are the energy distributions for the analysis (circles), the vari­
ability (squares), the model error (triangles) and the analysis error at Dec 8, 12 GMT 
(diamonds). 

4.2.4 Structure of the analysis error 

The data-assimilation starts at December 1, 12 GMT 1989. The ECMWF 
analysis for this date is the starting point of a 24 hour reference run. These 
24 hours form the first assimilation period. To start the assimilation cycle 
one can initially take the diagonal of the matrix V for the variability as 
the covariance matrix for the error in the "previous analysis": 

y»j — ojjVjj (4.12) 

The assimilation is then performed with as result the covariance matrix 
Q for the error in the analysis of December 2, 12 GMT. The matrix Q is 
updated for model errors with Eq. (4.8). For the next assimilation period 
the ECMWF analysis for December 2, 12 GMT and the matrix Q̂  can be 
used. This assimilation-cycle is repeated for a total of 7 days after which 
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the covariance matrix Qs describes reasonable values and structures. Start­
ing from December 8, the covariance matrix can be used for predictability 
experiments. Before reporting on these experiments, a description of the 
spectrum, the vertical structure and the horizontal structure of the anal­
ysis error at December 8 is given. These properties are studied with an 
ensemble of random analysis errors, which is generated as follows. 

As a preliminary step an eigenvector analysis of the matrix Q has to 
be done. This gives a set of eigenvectors {q;, i = 1, • • • ,N} and eigen­
values {Afo? i = 1, • • •, N}. The number N of model coordinates is 1449 
for the T21 model. The subscript 0 refers to the initial time. Members 
of an ensemble of initial perturbations have independent random projec­
tions {c?j, i = 1, • • •, N}, with iV(0,1) distribution, on the vectors {A^oq,-, 
i = 1, • • •, N}. Thus a random initial perturbation e(*i) is obtained using: 

N 
(4.13) 

Writing d for the vector with random coeffients and writing B for the 
matrix which has in its columns the products of the roots of the eigenvalues 
with the corresponding eigenvectors one obtains the equivalent expression: 

e(ti) = Bd. (4.14) 

An ensemble is generated from successive sets of N random numbers. In 
the limit of an infinite number of ensemble members the covariance matrix 
Q can be reconstructed from the ensemble statistics: 

Q = BddTBT = BBT. (4.15) 

An ensemble, generated with Eq. (4.14), is used to study properties 
of the analysis error. First, in figure 4.1, the analysis error is given as 
a function of two-dimensional wavenumber n. For n is 1 to 8, the error 
energy is about 1 % of the transient energy. The fractional magnitude of 
the errors then starts to increase, until it is about 10 % of the transient 
energy at n = 21. 

To get an impression of the vertical structure of the analysis error, a 
(3 X 3) covariance matrix is computed. The element at column i and row j 
is proportional to the covariance between the error at level i and the error 
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at level j . Here an inner product for kinetic energy is used to compute 
covariances. The eigenvectors zi, z2 and Z3 of the covariance matrix are: 

zi 
( °-2) 

-2.3 

I 5.2 J 
, z 2 = 

f "4-9 1 
7.6 

I 3.6 J 
, Z 3 = 

f 14'5 "l 
7.8 

{ 3.1 j 
(4.16) 

where the eigenvectors are scaled such that the projections on them have 
equal probability distributions and such that the maximum number in 
Eq. (4.16) is equal to the maximum number in Eq. (4.4). Comparing the 
two equations, it can be seen that the eigenvectors are very similar. As 
expected, most of the error is in the equivalent barotropic mode Z3. The 
two baroclinic modes carry less energy. It may be concluded that , the 
vertical structure of the observational errors is still present in the vertical 
structure of the analysis error. 

The rms error of the 500 mb analysis, for the Northern Atlantic ocean 
and Europe is shown in figure 4.2. The maximum amplitude of 8.8 me­
ters is above the Atlantic. The minimum of 2.2 meters is over Europe, 
where one has many observing stations. The exact structure of the rms-
field above the oceans changes slightly from one analysis to the next (not 
shown), because the advection of information depends on the flow. The 
constant radiosonde network inserts information at fixed times and places 
and this restricts variability that can occur in the distribution for the anal­
ysis error. This is a first suggestion, that a climatology approximation for 
the analysis error may indeed be reasonable (Houtekamer 1992). The con­
sequences of such an approximation are quantified, in the section on the 
variability of the local spread. A comparison with Daley and Mayer (1986) 
shows that, their estimate of error amplitudes is roughly twice as large as 
the present one. The cause of the underestimation is probably to be found 
in the hypothesis on model errors and in the insufficient resolution of the 
T21-model. Working with a T21-model, the error of representativeness 
should be taken larger than computed by Lonnberg and Hollingsworth 
(1986). To take this type of error properly into account, one has to study 
the effect of the unresolved scales. The error of representativeness at 
nearby observing stations will be correlated and thus the covariance ma­
trix for the observational error will loose its very simple structure. In the 
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Figure 4.2: The rms geopotential height error at the 500 mb level for December 8, 12 GMT. 
Only the Northern Atlantic and Europe are shown 

following experiments the analysis error is simply multiplied with a factor 
of 2 before a skill forecast is performed. Thus the general spatial and 
spectral characteristics of the error field are maintained. This ensures 
that no problem with transient dynamics (spin-up) will occur. It is not 
expected that the conclusions are influenced by these choices because, 
as will be demonstrated, the results are not very sensitive to the exact 
specification of the covariances for the analysis error. 

4.3 Linear error growth 

After some forecast period the linearity assumption for the evolution of 
errors does not hold anymore. According to Lacarra and Talagrand (1988) 
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the linearity assumption is valid for at least two days. Vukicevic (1991) 
performed three case studies with a state-of-the-art primitive equation 
limited-area model. Her conclusion is that the linear theory gives a good 
representation of errors for a 36 hour forecast. In this section, the length of 
the time domain over which the linear approximations are valid is studied 
more precisely, because skill forecasts will be most useful near the ultimate 
range of their validity. 

Predictability is a scale and frequency dependent property (e.g: Boer 
1984; Lacarra and Talagrand 1988; Van den Dool and Saha 1990). Dif­
ferent aspects of the forecast error may become non-linear at a different 
time. In this section, the forecast time is estimated at which the effect of 
non-linearity becomes evident, in the kinetic energy of the global error. 

A Monte Carlo experiment is performed with an ensemble of 200 ran­
dom initial perturbations to the analysis of December 8, 12 GMT, 1989. 
The ensemble of analysis errors is generated using Eq. (4.14) and a set of 
random vectors. From all perturbations two model runs are started. One 
uses the full non-linear 3 level T21 model. The other uses the tangent 
linear version of the T21 model to integrate the perturbation to the time 
of the forecast. The reference orbit itself is computed from an integration 
of the ECMWF analysis with the T21 model. The forward integration of 
the ensemble provides information on the nonlinearity of error growth. To 
study the nonlinearity the following vector is defined: 

6(t) = e(t) - eNL(t) (4.17) 

where e(t) is found from the forward integration with the tangent linear 
model and e^i(t) from the forward integration with the full non-linear 
model. Initially the two errorvectors are identical: 

eNL(ti) = e(*i) (4.18) 

To measure distance a norm || • || is used which is proportional to the root 
of the kinetic energy. Thus || 6(t) ||2 is a measure for the difference in 
kinetic energy between the linear and the non-linear run. 

Table 4.1 summarizes, in arbitrary units, the results of a 5-day Monte 
Carlo run starting at December 8, 12 GMT. Ensemble averages are given 
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day 
0 
1 
2 
3 
4 
5 

Table 4.1: L inearity of global errors 
Non-linear 

W'NL * 
57 
73 

100 
140 
207 
304 

a 
6 
9 

15 
24 
40 
61 

Linear 

« 1 
57 
73 

104 
156 
260 
447 

a 
6 
9 

16 
33 
74 

137 

II * I I 2 

0 
4 

20 
58 

151 
362 

as well as the rms differences with the average values. The energy of e(t) 
is too high on average. This overestimation occurs especially for large 
errors. At day five it is already 47 %. Apparently an important property 
of nonlinearity is to damp errors. This occurs because non-linear error 
growth is bounded by the size and shape of the attractor. With small 
errors nonlinearities may lead both to larger and to smaller errors. In 
this respect, the observation by Vukicevic (1991) is mentioned that the 
pattern similarity between e(t) and CJVLW *S greater than the similarity in 
amplitudes. This suggests that a skill forecast, based on linear theory, will 
show better performance in terms of anomaly correlations than in terms 
of rms errors. 

As one can see, from the values of || 6 ||2 in table 4.1, the error growth is 
essentially linear upto day 2. Between day 3 and day 5, the error growth 
becomes non-linear. At day 5 the distance, between the linear and the 
non-linear errorvector, is comparable to the length of the individual error 
vectors. Linear errorgrowth methods should not be used beyond day four. 
Non-linear estimates of errorgrowth may be valid beyond day four. Their 
validity will eventually be limited by the non-linear interaction of model 
errors with internal errors. 

4.4 Dimension of the global forecast e rrors 

The dimension of the analysis error is quite high. Independent observa­
tional errors are made everywhere. As time evolves the errors organize 
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in patterns. When the forecast provides no longer information, the error 
vector is like a random state vector. Thus the dimension of the error vec­
tors must be identical to the dimension of the state vectors. Houtekamer 
(1991) proposed to use a Lanczos algorithm for the computation of the 
preferential error directions in short-range forecasts. For this method to be 
efficient, the number of important error growth directions must be small. 
To get relevant results from the algorithm, the error growth must be pre­
dominantly linear. It is not a priori clear that, the required reduction in 
dimension is obtained within the first four days of linear error growth. A 
Lanczos algorithm is used, and its rate of convergence is determined, for 
short-range skill forecasts starting from the ECMWF analysis for Dec 8, 12 
GMT, 1989. More specifically, the largest eigenvalues of the matrix RQRT 

are estimated. The matrix R is the resolvent of the integration, with the 
tangent linear model, to the time of the forecast. The matrix Q consists 
of the covariances for the analysis error. The coordinates are chosen such 
that adjoint operators are identical to transpose operators. This means 
that an innerproduct of two vectors is simply the sum of their multiplied 
coefficients. In principle one may also use a standard coordinate system. 
The transformation of adjoint to transpose operators or vice versa is then 
given by an additional linear operator. 

From the Monte Carlo result (table 4.1), one has an unbiased estimate 
of the kinetic energy in the forecast error. From 200 iterations with the 
Lanczos algorithm, an alternative estimate of the kinetic energy in the 
forecast error is obtained. After every iteration, the explained variance is 
computed and scaled with the Monte Carlo estimate. The result is shown 
in figure 4.3. Looking at the day 1 forecast, a rather slow convergence is 
observed. One needs 72 iterations to explain 50 % of the global error. For 
a two day forecast, 44 iterations are needed to obtain the same percentage. 
A three day forecast requires 28 iterations and a four day forecast requires 
18 iterations. It is concluded that , the dimension of the forecast error 
shrinks rapidly when the forecast time increases. 

It is not clear how many iterations are acceptable in the operational 
practice. At this time it is simply demanded that the proposed method is 
more efficient than a Monte Carlo experiment. To estimate the random 
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Dimension reduction 
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Figure 4.3: Dimension reduction. The horizontal coordinate is the number of iterations 
used by the Lanczos algorithm. The vertical coordinate displays the cumulative variance. 
Results are show for a 1-day, 2-day, 3-day and a 4-day forecast. 

error in the four day forecast with a Monte Carlo technique the spectrum 
of 200 eigenvalues that has been obtained from the Lanczos algorithm can 
be used. The average forecast error energy K is: 

200 

tf = EA?4, (4.19) 
i=l 

where the {A?4, i = 1, • • • ,200} are the estimated eigenvalues of the co-
variance matrix at day 4. A Monte Carlo run, which starts from a random 
perturbation as obtained from Eq. (4.14), has random projections, with 
N(0,1) distributions, on the eigenvectors of the covariance matrix for the 
forecast error. The forecast error energy K associated with one run is 
simulated with: 

200 

K = E *yi (4-20) 

where the {rf,-, i = l , - - - ,200} are a new set of random numbers with 
independent iV(0,1) distributions. An ensemble with NMC se^s of random 
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numbers is constructed. The average forecast error energy K is estimated, 
with the average value K of K in the ensemble. To obtain the rms error 
(T(K) in the Monte Carlo estimate K of K, several such experiments are 
performed. One obtains: 

a(K) 0.25NM¥K. (4.21) 

The dependence on the root of NMC is accurate for large values of NMC 
as one expects from the Central Limit theorem (e.g. Kendall et al. 1986). 
The constant 0.25 was obtained from the experiment. Equation (4.21) 
implies that, after one run, the fractional uncertainty, in the estimate of the 
average error energy, is only about 25 %. This implies that , the probability 
distribution for the global forecast error energy is narrow. After 25 Monte 
Carlo computations, the average forecast error energy is estimated with 5 
% rms error and no bias. If a simplified tangent linear model is used for 
the Monte Carlo experiment then 2 Monte Carlo integrations can be done 
at the cost of 1 iteration with the Lanczos algorithm. So 12 iterations 
are about as expensive as 25 Monte Carlo runs. After 12 iterations, see 
figure 4.3, the Lanczos algorithm still has a systematic error of 59 %. In 
addition, it is remarked that a Monte Carlo integration up to four days 
supplies as a by-product information on the error at day 1,2 and 3, whereas 
the Lanczos algorithm gives only results for the forecast error at day 4. 
As has been seen, the Lanczos algorithm converges most rapidly at day 
4. This is due to the steepness of the spectrum of eigenvalues. A Monte 
Carlo estimate performs better with a flat spectrum. It must be concluded 
that the Lanczos algorithm, even when it is applied for its most favourable 
forecast period, is inferior to the Monte Carlo technique if one wishes to 
estimate global forecast errors. 

4.5 Local forecast errors 

In this section local error growth is considered. In this case one is inter­
ested only in the probability distribution of some local properties. This 
reduces the dimension of the problem. Attention is restricted to the geopo-
tential height errors 77,- at 500 mb at nine locations {L,-, i — 1,2, • • • ,9} 
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Table 4.2: Linearity of local errors 

day 
0 
1 
2 
3 
4 
5 

Non-linear 

II ZNL \L 

625 
1659 
4835 

12310 
23031 
37882 

a 
305 
893 

2912 

9208 
17789 
28087 

Linear 

II e ||i 
625 

1651 

4900 
13389 
27142 
41921 

a 
305 
881 

3087 
10350 
20397 
32529 

II 6 H I 
0 

40 
365 

2092 

9643 
30677 

above the Northern Atlantic and above Europe. The coordinates are: 
Li : ( - l l ° .3£ ,36 o . 0 iV) L2 : (-16°.9£,52°.6iV) L3 : (-28°.LE,69°.2iV) 

L4 : (+5°.6E, 36°.ON) L5 : (+5°.6E, 52°.6N) L6 : (+5°.6E, 69°.2N) 
L7:(+22°.5E,36°.0N) L% : (+28°.1E,52°.6N) L9 : (+39°.4£,69°.2iV) 

The locations are chosen at points on the Gaussian grid. The nine points 
are chosen far apart, with the objective to get nine rather independent 
local errors. The errors {rji, i = 1, • • •, 9} in the geopotential height are 
computed from the global error e(tf) in the forecast at time tf with a 
projection operator P: 

77 = Pe(tf), (4.22) 

where rj is expressed in meters. The cost-function Hpc f ° r the local quality 
of the forecast is: 

HFC = (Pe(T),Pe(T)) = j:rl?=\\e(T)\\] (4.23) 
t = i 

The subscript L refers to a local norm based on the error in geopotential 
at 9 points. Table 4.2 gives an analysis of the nonlinearity of the local error. 
Again this result is for the forecast starting on December 8, 12 GMT. The 
units in this table are m2. The results, definitions and conclusions are 
similar to the ones for the global error growth. One should not use linear 
methods for the prediction of the local error beyond day 4. In the following 
only 3-day forecasts are discussed. Writing the cost function in terms of 
the analysis errors gives: 
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HFC = (PRBd,PRBd) = (B*R*P*PRBd,d) (4.24) 

Again, all coordinates are chosen such that adjoint operators corre­
spond to transpose operators thus one has for instance: 

PRB = (B rRTP r)T = (B*R*P*)r (4.25) 

The projection, to a nine dimensional space, reduces the number of non­
zero eigenvalues of the (1449 x 1449) matrix B*R*P*PRB to nine. These 
nine eigenvalues are identical to the eigenvalues of the (9 x 9) covariance 
matrix PRQR*P* for the local forecast errors. It follows that, the eigenvalue 
problem can be solved using only the application of the operator B*R*P* 
to the nine unit vectors of the low dimensional phase space. The operator 
PRB follows from a transposition using Eq. (4.25). If B is known already, 
the computational cost is dominated by the nine backward integrations 
with the adjoint model. For the 3-day forecast starting December 8, 12 
GMT, the eigenvalues {^2, i = l , - - - , 9} of the local covariance matrix 
PRQR*P* are: 6600m2, 3328m2, 1444m2, 1168m2, 720m2, 628m2, 340m2, 
184m2 and 148m2. The first eigenvalue explains 45 % of the variance. 
This can happen because the errors in the 9 points are correlated. Error 
patterns have structures which, in spite of the significant distance between 
grid points, extend over several points on the Gaussian grid. 

The eigenvalues {//?, i — 1, • • •, 9} correspond to the eigenvectors {v,-, 
i = 1, • • •, 9} of the matrix B T R T P T PRB. The vectors {Bv,-, i = 1, • • •, 9} 
give the initial perturbation fields which cause the forecast errors {PRBv,-, 
ii = 1, • • •, 9}. For a random initial perturbation e(0), the projections on 
the modes {Bv,-, i = l , - - - , 9} have expectation zero and unit-variance. 
Inspection of these fields would show which initial features are critical for 
the forecast. Such studies have been advocated by Errico and Vukicevic 
(1992). Of use to the forecaster are the fields {PRBv,-, i = 1, • • •, 9}, which 
give the structure of the forecast error. 

The fact that 45% of the local forecast error may come from one sin­
gle mode has consequences for a Monte Carlo experiment. If, like in the 
previous case of global errors, one has many relevant modes then an ac­
cidentally small projection on one mode may be "compensated" by an 
accidentaly large projection on another. In the present case, much more 
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runs are needed to get the same fractional accuracy. Using the eigenvalues 
for December 8, 12 GMT, the rms error <T(HFC)

 m the estimate Hpc of 
the ensemble average Hpc of the local cost function Hpc becomes: 

1/2! a{HFC) « 0.78NM1^HFC (4.26) 

Thus after 9 Monte Carlo runs, which corresponds in cost to the Ad­
joint Equation algorithm, the fractional error is 26 %. Thus, the Adjoint 
Equation algorithm is more efficient for the determination of local error 
distributions. The high number of required Monte Carlo runs indicates 
that Hpc has a broad probability distribution. This implies that random 
effects, as opposed to dynamical effects, have a strong influence on the 
success of the local forecast. The dynamical effects, as quantified by the 
variations in the distributions, must be large for a skill forecast to provide 
useful information. 

4.6 Variability of the local spread 

This section deals with the temporal variability in the rms value of the 
probability distribution for the local error in geopotential height. This rms 
value is called the spread. It can be used by forecasters to assess the reli­
ability of their product. For a useful application, the skill forecast should 
add information to the experience of the forecaster. It will do so only if it 
shows significant variability in time. To validate a skill forecast, one should 
perform a large number of computations of the spread and compare these 
values with the forecast errors that have actually occurred. From this 
comparison, one obtains information on the quality of the skill forecast, 
because the spread must show a correlation with the forecast error. This 
correlation will be less than unity because the spread of a distribution does 
not uniquely determine an individual realization. Therefore, before such 
an experiment is done, one would like to quantify the amount of success 
that can be expected. For this purpose, local skill forecasts for the 3-day 
forecast are made during a period of 24 days. This information is used to 
quantify the temporal variability in the local spread with a two-parameter 
stochastic model. The two parameters are fitted to the 24 local values of 
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the spread. In the next section, this two-parameter model will actually 
be used to generate a hypothetical large experiment with 4 x 106 forecasts 
of the spread and corresponding forecast errors. This will then provide a 
preliminary view on the use of actual skill forecasts which are based on 
an analysis of the stability of the flow against perturbations. 

For each of the 24 days the 9 x 9 local covariance matrix r)r)T is com­
puted: 

rjrf = PRQR*P*. (4.27) 

The mean square value 5(z)2 of the geopotential height error rj, at location 
Lj is at diagonal element i of this matrix r)r)T. For the 9 points L, the rms 
value S(i) is given in table 4.3. The overall magnitude of the spread 
agrees with observed errors in operational forecasts (e.g: ECMWF 1990). 
Apparently, after the multiplication of the analysis error with a factor of 
2, a reasonable estimate of the forecast errors can be obtained. 

The variability of the spread is quantified with a model which is similar 
to the one introduced by Kruizinga and Kok (1988). In fact results from 
the present work, which are based on considerations of internal dynamics, 
will be compared with their purely statistical analysis of data. The value 
S(i) for the spread of the error at grid point i is modelled by: 

S(i) = Sm(i)exp(pidu), (4.28) 

where /?, is a measure for the day to day variability of the spread at point i. 
The number du represents a daily draw from a N(0,1) distribution. The 
amplitude of the error is scaled with Sm(i) . Thus the spread S(i) of the 
distribution at point i is modelled with a stochastic variable. A negative 
random number du corresponds to a small spread. For du = 0 the spread 
assumes its median value Sm(i). With a skill forecast, one does actually 
compute the variation in the spread S(i) based on the stability properties 
of the flow. For the hypothetical large experiment, the stochastic model 
is used to simulate such a computation. 
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The parameters Sm(i) and $ are estimated, with the maximum likeli­
hood method, from the 24 daily rms values at the 9 points in table 4.3. 
That is, for the 24 values of the spread the natural logarithm of Eq. (4.28) 
is taken. The maximum likelihood estimate of the constants log Sm(i) and 
A- is: 

logSmO') = log 5(i) 

$ = (logS(i) -log Sm(i)f. 

(4.29) 

(4.30) 

The bottom lines of table 4.3 show the 9 fitted pairs of parameters. The 
values of /3 are around 0.35. This is higher than the observational estimate 
0 — 0.2 of Kruizinga and Kok (1988). In part this may be due to minor 
differences in the design of the experiment. However, the present study 
cannot support the assumption, made by Kruizinga and Kok, that values 
of the spread at grid points as far apart as the points L\, • • •, L$ have a 
strong positive correlation. For the 12 pairs of neighbouring points, one 
finds 7 negative and 5 positive correlations between the sets of 24 values of 
the spread. From this it is concluded that the correlations are significantly 
less than plus one. This may be the explanation for the apparently lower 
variability in their study. 

To quantify the influence of the inhomogeneous statistics of the analy­
sis error, additional skill forecasts are made, based on the assumption of 
white noise statistics of the analysis error. In this case, PRR*P* is the local 
covariance matrix. A table similar to table 4.3 is computed (not shown). 
The 9 correlations between the corresponding columns of the two exper­
iments are: 0.93, 0.95, 0.96, 0.97, 0.98, 0.93, 0.91, 0.97 and 0.94. The 
estimation error in the individual correlations is about 0.02. Assuming 
that the spread values predicted with the inhomegeneous statistics for the 
analysis error are correct, it is concluded that still about 90 % of the vari­
ance in the spread can be predicted with homogeneous statistics for the 
analysis error. Next skill predictions starting from a constant inhomoge­
neous covariance matrix are checked against those starting from variable 
covariances. The covariance matrix for the analysis error at December 
8, 12 GMT is the constant matrix. The 9 correlations between the two 
sets of numbers are: 0.99, 0.96, 0.99, 0.99 0.98, 0.97, 0.96, 0.99 and 0.98. 
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Table 4.3: Variability 
geopotential height at 

of the local spread of the 3-day forecast error. Units are meters of 
500 mb. 

initial 

day 

Dec 8 

Dec 9 
Dec 10 
Dec 11 
Dec 12 
Dec 13 
Dec 14 
Dec 15 
Dec 16 
Dec 17 
Dec 18 
Dec 19 
Dec 20 
Dec 21 
Dec 22 
Dec 23 
Dec 24 
Dec 25 
Dec 26 
Dec 27 
Dec 28 
Dec 29 
Dec 30 
Dec 31 
Sm(i) 
fr 

Local s 

5(1) 

59 
47 
43 
65 
49 
59 
59 
53 
54 
61 
47 
27 
28 
64 
42 
84 
63 
23 
32 
29 
34 
56 
38 
27 
45 

0.35 

5(2) 

60 
69 
52 
36 
52 
59 
44 
39 
42 
34 
29 
65 
94 
44 
32 
73 
38 
74 
55 
43 
47 
44 
27 
58 
48 

0.32 

5(3) 

46 
47 
44 
47 
43 
37 
30 
27 
25 
20 
27 
33 
37 
38 
30 
46 
66 
67 
78 
46 
55 
78 
51 
36 
41 

0.36 

Dread values at 9 locations 

5(4) 

37 
52 
27 
53 
50 
48 
67 
42 
36 
38 
33 
36 
28 
22 
26 
23 
44 
32 
32 
25 
26 
32 
28 
40 
35 

0.29 

5(5) 

34 
33 
75 
46 
52 
44 
29 
27 
42 
57 
72 
31 
36 
71 
74 
72 
45 
29 
26 
32 
26 
27 
20 
33 
39 

0.40 

5(6) 

29 
33 
37 
51 
44 
31 
41 
38 
28 
23 
30 
29 
33 
45 
59 
41 
84 
53 
39 
74 
46 
37 
58 
40 
41 

0.31 

5(7) 

28 
27 
21 
21 
25 
28 
36 
33 
43 
23 
20 
37 
29 
25 
25 
34 
30 
32 
42 
50 
35 
21 
23 
35 
29 

0.25 

5(8) 

28 
33 
26 
34 
39 
50 

110 
91 
55 
32 
48 
78 
48 
34 
36 
27 
38 
27 
21 
25 
20 
22 
26 
33 
36 

0.46 

5(9) 

18 
15 
20 
29 
29 
28 
35 
44 
32 
30 
26 
28 
25 
28 
60 
60 
43 
37 
44 
58 
29 
25 
36 
27 
32 

0.35 



104 CHAPTER 4. GLOBAL AND LOCAL SKILL FORECASTS 

An impressive 96 % of the variability of the local spread values can be 
explained with time independent covariances for the analysis error. This 
observation suggests an enormous simplication of the computations for a 
skill forecast. It does not support the earlier conclusion of Houtekamer 
(1992), based on the results from a low order model, that proper attention 
needs to be paid to the initial distribution of errors. 

4.7 Using the local skill prediction 

The prediction of the spread can be used as a measure for the expected 
quality of the forecast. As was mentioned already, a skill forecast is useful 
if the temporal variability of the spread is large. This section discusses a 
few hypothetical large experiments which quantify the use of skill forecasts, 
done for the geopotential error at one grid point, under different conditions 
of variability. A stochastic model, with 2 random variables, is used to 
model the forecast error and the forecast of the spread: 

SM = exp(/3Mdi) (4.31) 

(4.32) 

where d\ and di are independent random variables. The temporal vari­
ability of the spread is determined by the parameter AM- The subscript 
M denotes the use of a stochastic model. The modelled value of the local 
spread is SM- The realization of the local forecast error is TJM- The median 
of the spread is taken to be unity. This does not influence the correlation 
between spread and skill, because both are proportional to the choice for 
the median. 

The hypothesis is made that the skill forecast is perfect. This means 
that the probability distribution of the forecast error, and thus the spread 
of the ensemble, are assumed to be known without error. In this section 
this "knowledge" is simulated with the draw d\ from a iV(0,1) distribution. 
The forecast error TJM is determined by SM and the random variable d<i. 
In the first experiments d<i is drawn from a N(0,1) distribution. This is 
consistent with Gaussian errors in the observations. The sensitivity to the 
choice for the distribution will be investigated later. 
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A large ensemble of SM and T\M is obtained from Eq. (4.31) and (4.32) 
with 4 • 106 random numbers d\ and di. The experiment is repeated for 
fixed values of /9M between 0.001 and 4.0. The correlation P(SM, | f]M |) 
between SM and | rjM | is a usual measure for the performance of a skill 
forecast. It may be obtained from the above data or from the expression 
(A. Otten, private communication): 

p2(SM, I r)M | ) = 
2 l - e x p ( - / 9 M ) 

(4.33) 
7 r l -2exp ( - / 3 M ) / 7 r 

In addition the probablity Pu , that the forecast is unsuccessful under the 
condition that the spread of the ensemble is large, is computed: 

PU(PM) = P(\rjM \>\ T)M \m \SM > 1), (4.34) 

where the subscript m denotes the median value. The median of the spread 
is one in this experiment. In practice, a skill forecaster has a computed 
value of spread. If this value is above the median, he states that the 
spread is larger than usual. After such a statement, the probability of 
a bad forecast is given by Pu. The deviation of Pu from 0.5 shows the 
value of the skill forecast in warning against bad forecasts. Similarly Ps is 
the probability that a forecast is successful under the condition that the 
spread is small: 

PS{PM) = P(\r)M \<\VM \m \SM < ! )• (4.35) 

The deviation of Ps from 0.5 gives a measure of the confidence in the fore­
cast which one may have after a positive statement by the skill forecaster. 
Because both | TJM \ and SM are compared with their median value, it can 
be shown that the probabilities Pu and Ps are equal. 

Table 4.4 gives the result of the experiment. In the case of vanishing 
variability of the spread, its prediction is not needed. When the variability 
increases the skill forecast becomes useful. As stated above, realistic values 
for the parameter 0M are between 0.3 and 0.4. Having a look at the 
numbers, one may not be impressed by the success of the perfect skill 
forecast. Even in the case of extreme variability of the spread (/9A/ = 4) 
the correlation is only 0.79. 
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Table 4.4: Performance of a perfect local skill forecast. 0M measures the temporal vari­
ability, p is the correlation between spread and skill. Pu measures the success in warning 
against a bad forecast. 

PM 
0.001 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.8 
1.0 
2.0 
4.0 

P(SM, 1 f)M I) 
0.02 
0.13 
0.26 
0.36 
0.46 
0.53 
0.59 
0.68 
0.73 
0.78 
0.79 

Pu 
0.50 
0.53 
0.57 
0.60 
0.63 
0.66 
0.68 
0.72 
0.76 
0.85 
0.92 

Table 4.5: Local contingency table for a 3-day forecast. The skill has a Gaussian distribu­
tion. 

skill 

0 - 25 % 
25 - 50 % 
50 - 75 % 
75 -100 % 

spread of the ensemble 
0- 25 % 

0.367 
0.322 
0.234 
0.074 

25 - 50 % 
0.267 
0.272 
0.276 
0.187 

50 - 75 % 
0.214 
0.228 
0.266 
0.290 

75-• 100 % 
0.156 
0.172 
0.227 
0.448 

For a typical value of /3M = 0.35 a more detailed skill prediction is 
performed. Both the spread and the skill are divided into four classes with 
25 % of the points, rather than into two classes each with 50 % of the points 
as in the previous experiment. The spread increases with the number of 
the class. The skill (or the success) of a forecast decreases with the number 
of the class. The probability that the skill is in a particular class under 
the condition that the spread is in a particular class is computed. In the 
case of vanishing variability of the spread or vanishing quality of the skill 
forecast all probabilities are 0.25. For the present case (/3M = 0.35) results 
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Table 4.6: Local contingency table. The skill has a Cauchy distribution 
skill 

0 - 25 % 
25 - 50 % 
50 - 75 % 
75 -100 % 

location of the first quart ile. 
0- 25 % 

0.355 
0.282 
0.205 
0.159 

25 - 50 % 
0.267 
0.270 
0.245 
0.218 

50 - 75 % 
0.216 
0.245 
0.271 
0.268 

75 - 100 % 
0.162 
0.203 
0.280 
0.355 

are given in table 4.5. The rows give the same class of skill. The columns 
give the same class of spread. Especially in the corners of the table the 
deviation from 0.25 is large. Therefore it is in the prediction of extreme 
cases that a skill forecast is most useful and easiest to validate. If for 
instance the spread is very small, the probability of a very low skill is 
only 0.074. If on the other hand the spread is very large this probability 
is about six times higher. It must be emphasized that a large number of 
data points is needed to get accurate statistics for the contingency table. 

There is some evidence that observations have, after quality control, 
Gaussian error statistics (Lorenc, 1984). The Gaussian distribution is sta­
ble. This means that the sum of 2 Gaussian variables has a Gaussian 
distribution. In particular, the linearity of all operators implies Gaussian 
statistics of the forecast error. In the previous experiments, this is re­
flected in the choice of a N(0,1) distribution for the random variable d<i. 
One might instead assume that the errors in observations have a Cauchy 
distribution (e.g. Holt and Crow 1973). A Cauchy distribution is also sta­
ble. Consequently, in this case the forecast error will also have a Cauchy 
distribution. A Cauchy distribution has much more points far away in the 
tail of the distribution than a Gaussian distribution. These points would 
correspond to gross errors in the observations. In fact the higher moments 
of this distribution do not exist (e.g. Kendall et al. 1986). The results 
for this experiment, which is again done with /3M — 0.35, are given in 
table 4.6. Because the second moment of the distribution does not exist, 
SM is now identified with the location of the first quartile. At the first 
quartile 25% of the cases have occurred. It is a measure of the width of a 
distribution which is defined for a Cauchy distribution. Comparing with 
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skill 

0 - 25 % 
25 - 50 % 
50 - 75 % 
75 -100 % 

spread of the ensemble 
0- 25 % 

0.373 
0.368 
0.254 
0.004 

25 - 50 % 
0.264 
0.267 
0.310 
0.158 

50 - 75 % 
0.209 
0.211 
0.253 
0.327 

75- 100% 
0.154 
0.153 
0.182 
0.511 

table 4.5, one observes that the main difference is in the lower left-hand 
corner. This is to be expected. Due to the large number of points in the 
tail of the distribution for di a stable flow does not imply a small error in 
the forecast. 

Alternatively, one might reason that nonlinear effects tend to reduce 
the number of cases with a large forecast error. In the most extreme case, 
with no tail at all, the forecast error is modelled with a homogeneous 
distribution for d<i. The homogeneous distribution is not stable. It is 
selected on the basis of heuristic arguments on nonlinear dynamics and 
not on statistical theory. Comparing the result with 4.5 one observes the 
opposite effect as before. The number of points in the lower left corner 
has become much smaller. This happens because a low value of the spread 
and a homogeneous distribution exclude the possibility of a large forecast 
error. 

As has been shown, the results of the experiment depend on the as­
sumptions for the stochastic model. In an actual large experiment, one 
may use the computed set of values for the spread as a definition of a 
probability distribution function. For each value of the spread, one may 
simulate a number of realizations with a Gaussian probability distribution 
function. Unexpected results may possibly have to be explained in terms 
of deviations from a Gaussian. 

The skill forecast could be used to extend or limit the range of a forecast. 
At day 3, the rms value of the local forecast error increases with 40 % a 
day. With values of AM of about 0.35, this implies that with perfect 
knowledge of the spread, a forecaster has the possibility to extend or limit 
the forecast time with about one day. Or alternatively if a forecaster gave 
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only high quality forecasts, by a limitation of the forecast time, he may 
extend the forecast time with one day in an average case and two days in 
a reliable case. 

In reality a skill forecast will not be perfect and it will show less per­
formance. In view of the statistical problems with the validation of the 
quality of skill forecasts, it may prove to be difficult to convince forecasters 
to use skill forecasts to their full potential. For the time being, forecasters 
are likely to make a more cautious use of skill predictions. At the same 
time, skill forecasters should be careful in rejecting their methods on the 
basis of a low correlation between a limited number of values of spread 
and skill (e.g. Brankovic et al. 1990). 

4.8 Discussion 

An environment is created which contains the most essential properties of 
a forecasting system. The response of a data assimilation system to errors 
in the measurements of the geopotential heights is studied. With a 3 level 
quasi-geostrophic atmospheric model, the analysis errors are integrated to 
the time of the forecast. The predictability of the forecast error and more 
in particular methods to estimate temporal and spatial variations in the 
predictability have been studied. 

It appears that linear methods, for instance methods using adjoint equa­
tions, are useful for the first four days of a skill forecast. After four days 
non-linear errorgrowth and the interaction between model errors and in­
ternal errors become important. 

The global forecast error has a complex structure during the regime of 
linear error growth. As a consequence, a Lanczos algorithm as proposed 
by Houtekamer (1991) does not efficiently lead to a skill forecast. For 
global errors a Monte Carlo method is superior. 

More useful results are obtained in the case of local error growth. Here 
the dimension of the errorspace is low by definition. The adjoint method 
gives results of infinite precision, at least within the assumption of linear 
errorgrowth, and is thus to be preferred over a Monte Carlo method. 

The variability of the spread is quantified using 24 3-day local skill 
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forecasts. It appears that due to this variability the length of the useful 
forecast period varies with about two days. Based on the 24 skill forecasts, 
on some assumptions on the statistical properties of temporal variability 
of the spread, and on an assumed distribution to couple spread and skill, 
a 2-parameter stochastic model is fitted to the data. This model is used 
to evaluate the use of a hypothetical perfect skill forecast. It appears 
that skill forecasts are difficult to validate. It is recommended, for future 
validations, that the temporal variability of the computed spread values 
is combined with a statistical model of the forecast error to estimate the 
performance of a hypothetical perfect skill forecast, before conclusions are 
drawn on the quality of the skill forecasting procedure. 

Part of the experiment was repeated with very simple assumptions on 
the analysis error. The use of white noise statistics for the analysis error 
led to almost the same skill predictions. Thus error statistics, which are 
obviously different at the time of the analysis, may be very similar at the 
time of the forecast. This may happen because unrealistic initial states 
rapidly converge to atmospheric states. This insensitivity towards the 
initial error statistics may explain the success of the skill forecasts by 
Barkmeijer and Opsteegh (1992), who use a white noise formulation of 
the analysis error statistics. 

Following the suggestion of Houtekamer (1992), a constant inhomoge-
neous covariance matrix was used for the statistics of the analysis error. 
This showed an even closer agreement with the reference result. It is con­
cluded that, the variability of the flow during the assimilation period is 
hardly relevant for the statistics of the forecast error at a forecast period 
of three days. In principle, variations due to changes in the observing 
network may still be important. One should expect that the sensitivity 
of the forecast error to the structure of the analysis error increases with 
decreasing forecast period. 

This study neglects the effect of model errors. This causes an underesti­
mation of the forecast error (e.g. Brankovic et al. 1990). This assumption 
probably causes a decrease in the correlation between the observed skill 
and the predicted spread. A consistent method to account for model error 
is beyond the scope of this chapter. The only purpose is to demonstrate 
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the feasibility of skill forecasting methods. The study indicates that the 
problem is easier than expected on the basis of studies with a simple model 
(Houtekamer 1991, 1992). The computational costs are small, because a 
simple 3 level quasi-geostrophic T21 model is used for evolution of the er-
rorfields. In fact the cost of the proposed methods is negligible compared 
to the cost of obtaining a reference forecast. It would seem that time is 
ready for a validation with real data. 
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Samenvatting 

Voorspelbaarheid in modellen van de atmosferische circulatie 

In de weersvoorspellingen is de laatste dertig jaar veel vooruitgang 
geboekt. De gebruikte modellen hebben een hoge graad van perfektie 
bereikt. Het wordt dan ook steeds moeilijker om zinvolle verbeteringen 
in de modellen aan te brengen. Desondanks komt het regelmatig voor 
dat een weersvoorspelling niet goed uitkomt. Voor een deel is dit mis-
lopen van een voorspelling een voorspelbaar verschijnsel. Wanneer het 
weer slechts langzaam van karakter verandert kan men denken dat het 
weerbericht relatief betrouwbaar zal zijn. In de winter kan bijvoorbeeld 
een lang aanhoudende vorstperiode optreden. Omdat er weinig veran­
dert lijkt het makkelijk om een weerbericht te maken. In andere gevallen, 
bijvoorbeeld als depressies in hoog tempo over de oceaan in de richting 
van Nederland trekken, lijken de voorspellingen veel moeilijker. Het liefst 
heeft men natuurlijk in alle gevallen een duidelijke uitspraak over de be-
trouwbaarheid van het weerbericht en niet alleen als bepaalde vuistregels 
toepasbaar zijn. Een dergelijke uitspraak is nuttig omdat in het geval van 
een goed te vertrouwen voorspelling besloten kan worden het weerbericht 
met een aantal dagen te verlengen. In een wat onduidelijker situatie kan 
de voorspeltermijn juist verkort worden. 

In dit proefschrift worden methoden ontwikkeld om iets te zeggen over 
de betrouwbaarheid van het weerbericht. Hiertoe wordt het ontstaan en 
het groeien van fouten onderzocht. Fouten ontstaan direkt op het mo­
ment van het meten. De meetfout wordt niet met opzet gemaakt en is 
onbekend. Het gevolg van de meetfout is dat niet precies bekend is vanuit 
welke toestand men de berekeningen moet starten. De onbekende begin-
fout zal gaan groeien totdat zij, hoewel nog steeds onbekend, uiteindelijk 
ontoelaatbaar groot is. Het weerbericht heeft zijn waarde dan verloren. 
Van de onbekende meetfout is wel iets te zeggen. Van meetinstrumenten 
is meestal bekend hoe nauwkeurig ze zijn. Men kan bijvoorbeeld een ther­
mometer hebben waarmee op 0.5 graden nauwkeurig kan worden afgelezen. 
Dit vertaalt zich in het drie-daagse weerbericht dan bijvoorbeeld in een 
onzekerheid van 2 graden in het geval van een stabiele situatie en een 
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onzekerheid van 4 graden in het geval van een onstabiele situatie. In beide 
gevallen kan men geluk hebben en zowel een meetfout als een voorspelfout 
van 0.0 graden hebben. Van te voren kan men zeggen dat de voorspelling 
in het stabiele geval het betrouwbaarste is. Men moet er echter rekening 
mee houden dat een weersvoorspelling voor een deel een kansproces is. 
Het zal altijd een verrassing blijven hoe goed een voorspelling uitkomt. 
Vanwege dit altijd aanwezige toevalselement worden uitspraken over de 
betrouwbaarheid van het weerbericht kansverwachtingen genoemd. 

De basisgedachte achter het maken van kansverwachtingen is eenvoudig. 
Men kan net doen alsof ergens een meetfout gemaakt is. Deze fout wordt 
nu met opzet aangebracht. Vervolgens doet men opnieuw alle dingen die 
nodig zijn om een weerbericht te maken. De verandering die hierdoor 
optreedt in het weerbericht geeft aan hoe groot het effekt van de aange-
brachte meetfout is. Voor de genoemde verandering maakt het geen ver-
schil of de meetfout met opzet geintroduceerd is, zoals in dit experiment, 
of toevallig gemaakt is, wat in werkelijkheid gebeurt. Als meetfouten 
aangebracht worden in alle metingen tegelijkertijd, ontstaat een indruk 
van de gevoeligheid van het weerbericht voor deze set meetfouten. Om 
een goede kansverwachting te maken moet het effekt van meerdere sets 
van meetfouten doorgerekend worden. Deze methode van werken wordt de 
Monte-Carlo methode genoemd. Theoretisch gezien heeft de Monte-Carlo 
methode geen beperkingen. In de praktijk is de methode niet haalbaar 
omdat ze teveel rekenwerk vereist. Het weerbericht is dan al achterhaald 
voordat de kansverwachting beschikbaar komt. 

Om toch een kansverwachting te maken moet men zich twee beper­
kingen opleggen. Een eerste beperking is de veronderstelling dat de fout 
in het weerbericht klein is. In de praktijk betekent dit dat alleen uit­
spraken gedaan kunnen worden over de eerste drie of vier dagen van een 
voorspelling. Deze veronderstelling houdt in dat de fouten beschouwd 
kunnen worden als kleine afwijkingen op een redelijk goed uitkomende 
voorspelling. Voor de beschrijving van de ontwikkeling van deze afwij­
kingen kan een eenvoudig model gebruikt worden. Voor de redelijk goed 
uitkomende voorspelling kan de al beschikbare voorspelling van het meest 
succesvolle en vaak ook meest ingewikkelde weermodel overgenomen wor-
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den. Het gebruik van een eenvoudig model verhoogt de haalbaarheid van 
kansverwachtingen doordat de benodigde rekentijd belangrijk gereduceerd 
wordt. 

Ten tweede wordt de kansverwachting geografisch beperkt. Aangeno-
men wordt dat alleen de betrouwbaarheid van het lokale weerbericht inte-
ressant gevonden wordt. Voor het Nederlandse publiek is het in het alge-
meen niet interessant hoe betrouwbaar de verwachting voor bijvoorbeeld 
IJsland is. Deze tweede veronderstelling kan gebruikt worden om de aan-
pak van het probleem om te draaien. Bij de Monte-Carlo methode wordt 
steeds gekeken hoe een set meetfouten doorwerkt in het tot ale weerbericht. 
Er kan voor een soort voorspelfout echter ook selektief gekeken worden 
naar de meetfouten die deze fout kunnen veroorzaken. Door de beperking 
tot een lokale kansverwachting is het aantal soorten voorspelfouten waar 
men in gei'nteresseerd is klein. Men kan zich bijvoorbeeld afvragen hoe 
gevoelig de driedaagse temperatuur- en windvoorspelling voor De Bilt is 
voor fouten in alle afzonderlijke meetstations. Voor de beantwoording van 
deze vraag is een techniek ontwikkeld door Russische en Franse meteorolo-
gen. Na een aantal wiskundige manipulaties wordt van het simpele model 
de "toegevoegde" versie verkregen. Dit toegevoegde model wordt gebruikt 
om de genoemde voorspelfouten terug te ontwikkelen in de tijd van het 
tijdstip waarvoor de voorspelling gedaan wordt naar het tijdstip waarop 
de voorspelling uitgegeven wordt. Als men slechts gei'nteresseerd is in de 
betrouwbaarheid van een beperkt aantal onderdelen van de voorspelling 
kan volstaan worden met een even beperkt aantal terugontwikkelingen met 
het toegevoegde model. Omdat het toegevoegde model is afgeleid van een 
simpel model kost de hele procedure erg weinig rekentijd. 

In dit proefschrift wordt uitgelegd waarom en hoe technieken op basis 
van toegevoegde modellen gebruikt kunnen worden voor het maken van 
kansverwachtingen. In eerste instantie worden methoden ontwikkeld bin-
nen de context van een simpel model. Het model beschrijft het weer op het 
noordelijk halfrond met slechts dertig getallen. Net als in meer complexe 
en meer realistische modellen van de atmosfeer kunnen kleine beginfouten 
in dit simpele model snel groeien. De eenvoud van het model maakt het 
echter mogelijk om de voorgestelde methoden goed uit te testen. Dit is be-
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langrijk omdat experimenten met realistische modellen, zoals in het laatste 
hoofdstuk van dit proefschrift, vaak ingewikkeld en duur zijn. Men moet 
dan van te voren goed weten wat men gaat doen. In hoofdstuk 2 wordt een 
rekenwijze gepresenteerd waarmee gezocht kan worden naar die elementen 
van een globale of lokale voorspelling die het gevoeligst zijn voor fouten in 
de begintoestand. De methode maakt gebruik van toegevoegde modellen 
en zal verder "Lanczos-algoritme" genoemd worden naar de ontwerper van 
het zoekalgoritme. 

Voor de berekeningen van een weerbericht kunnen starten, moeten eerst 
de metingen verzameld worden. De computer voert berekeningen uit met 
behulp van een rooster met punten. Op iedere punt van het rooster is ken-
nis van, onder andere, de temperatuur, de luchtdruk en de windsnelheid 
noodzakelijk. De waarneemstations liggen als regel niet op de roosterpun-
ten. Sommige roosterpunten, zoals op de oceanen, zijn ver verwijderd van 
waarneemstations. De manier waarop de her en der gedane waarnemingen 
omgezet worden naar een vorm waar de computer mee kan gaan rekenen 
wordt in hoofdstuk 3 besproken. Er wordt een verband gelegd tussen 
fouten in metingen of zelfs het geheel ontbreken van metingen en fouten 
in de begintoestand van een voorspelling. Ruwweg kan gezegd worden dat 
de begintoestand altijd het minst nauwkeurig is boven de oceanen waar 
weinig metingen gedaan worden. Aangetoond wordt dat een goede statis-
tische beschrijving van de fouten in de begintoestand een noodzakelijke 
voorwaarde is voor het maken van een kansverwachting. Het verkrijgen 
van zo'n beschrijving is erg duur. Men wil daarom zoveel mogelijk vereen-
voudigingen aanbrengen. Men kan er bijvoorbeeld van uitgaan dat de 
fouten in de begintoestand iedere dag dezelfde statistische eigenschappen 
hebben. Deze eigenschappen hoeven maar eenmaal bepaald te worden en 
het blijkt dat er nog steeds een redelijk goede kansverwachting gegeven 
kan worden. 

In hoofdstuk 4 worden de mogelijkheden voor een toepassing in de 
praktijk besproken. Hiertoe dienen zowel de normale weersvoorspelling 
als een redelijk simpel model gebruikt te worden. Het blijkt dat in een 
globaal weerbericht veel verschillende foutenpatronen kunnen optreden. 
Een Lanczos-algoritme heeft veel rekentijd nodig om al deze patronen 



118 

vinden. Het algorithme heeft zelfs meer rekentijd nodig als een, ook al 
onhaalbare, Monte-Carlo methode. Voor lokale kansverwachtingen zijn 
methoden die toegevoegde modellen gebruiken het meest efficient. Aange-
toond wordt dat gedurende ongeveer vier dagen de fouten zo klein zijn dat 
het gebruik van de methode te rechtvaardigen is. Met betrekking tot de 
resultaten van hoofdstuk 3 kan een zeer hoopvolle conclusie getrokken wor-
den. De gesuggereerde vereenvoudiging: "de begintoestand van de voor-
spelling is iedere dag even betrouwbaar" geeft veel betere resultaten als 
op grond van hoofdstuk 3 verwacht mocht worden. Voor de kansverwach­
tingen echt gebruikt kunnen gaan worden moet hun kwaliteit eerst getest 
worden. Door het al genoemde kanselement is het moeilijk te bewijzen dat 
een kansverwachting te vertrouwen is. Er zijn heel veel kansverwachtingen 
en mislopende voorspellingen nodig voor men weet of de kansverwach­
tingen goed werken. Gelukkig zijn de voorgestelde methoden zo goedkoop 
dat snel voor een groot aantal oude weersvoorspellingen alsnog een kans­
verwachting gemaakt kan worden. Als de methode werkt voor historische 
weersvoorspellingen kan men vertrouwen hebben dat ze ook voor nieuwe 
voorspellingen zal werken. In de huidige voorspelpraktijk is men meestal 
voorzichtig. Er wordt altijd rekening gehouden met een slecht uitkomende 
voorspelling. Als men echter over een goede kansverwachting beschikt, 
dan kan men besluiten de weersverwachting in stabiele situaties met een 
of twee dagen te verlengen. 



119 

Curriculum Vitae 

Peter Houtekamer is in 1962 geboren in de gemeente Noordoostpolder. 
Het diploma VWO behaalde hij in 1981 aan het Christelijk Lyceum voor 
Zeeland te Goes. Daarna studeerde hij sterrenkunde aan de Rijksuni-
versiteit te Leiden. In 1984 behaalde hij het kandidaatsexamen met als 
hoofdvakken sterrenkunde en natuurkunde en als bijvak wiskunde. Het 
doctoraalexamen haalde hij in 1987 met als hoofdvak sterrenkunde en als 
bijvak wiskunde. 

In 1988 trad hij in dienst als Onderzoeker In Opleiding bij de werkge-
meenschap Meteorologie en Fysische Oceanografie van de Nederlandse Or-
ganisatie voor Wetenschappelijk Onderzoek. Het eerste jaar werkte hij 
vier dagen per week op het Mathematisch Instituut van de Rijksuniver-
siteit te Utrecht en een dag per week op het Instituut voor Meteorologie 
en Oceanografie dat eveneens tot de Rijksuniversiteit te Utrecht behoort. 
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