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Chapter 1 

General Introduction 

 

The current study was aimed at further delineating the regulatory principles of 

dormancy. The main focus was on a biophysical approach to study cellular 

properties that may reflect the seed’s dormancy status, including membrane 

properties, metabolic activity and dormancy-associated gene expression. We have 

employed Electron Paramagnetic Resonance (EPR) techniques and differential 

screening for gene expression. In this chapter, after a general physiological 

introduction to the dormancy phenomenon a short introduction will be given to EPR 

based research methods, as well as to differential gene expression.  Finally, the 

objectives and scope of this thesis are described. 

Dormancy and dormancy cycling 

The life cycle of most plants starts, and often ends, at the seed stage. In most 

species mature seeds are shed and dispersed. At this stage of its life cycle the 

seed may be dormant and will, by definition, not germinate under favourable 

conditions (Bewley, 1997). Nikolaeva (2004) formulated a dormancy classification 

system reflecting the fact that dormancy is determined by morphological and 

physiological properties, as well as ecological and geographical peculiarities. 

Based on this system Baskin and Baskin (2004) have proposed a classification 

system which includes 5 classes of seed dormancy: physiological, morphological, 

morphophysiological, physical and combinational dormancy. Physiological 

dormancy is divided in three levels: deep, intermediate and non-deep. Seeds with 

deep physiological dormancy require a prolonged cold or warm incubation in the 

imbibed state (stratification) before germination can take place. Seeds with non-
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deep physiological dormancy cannot germinate without either excision of the 

embryo, gibberellic acid, scarification, after-ripening, dry storage or a short warm or 

cold stratification. Morphological dormancy is characterised by an underdeveloped, 

but differentiated embryo. Embryos of morphologically dormant seeds need time 

and suitable temperatures to grow before germination can take place. 

Morphophysiological dormancy is characterised by an underdeveloped embryo that 

also has a physiological component to its dormancy. Physical dormancy is usually 

characterised by water-impermeable layers of palisade cells in the seed or fruit 

coat that control water uptake. Mechanical or chemical scarification can break 

physical dormancy. Combinational dormancy is characterised by both water 

impermeability and a physiological dormancy component.  

 Physiological dormancy is one of the most common forms of seed 

dormancy. In this thesis Arabidopsis thaliana and Sisymbrium officinale seeds 

were chosen, as their germination and dormancy behaviour is well described. 

Arabidopsis thaliana has well known advantages for molecular studies and in 

Sisymbrium officinale dormancy can be fully separated from the germination event 

(Hilhorst and Karssen, 1989).  

  Arabidopsis thaliana and Sisymbrium officinale seeds are classified as 

possessing non-deep physiological dormancy. Different states of physiological 

dormancy can be distinguished. Seeds may be primary dormant upon shedding, as 

at this stage the seeds are not sensitive to germination-inducing factors such as 

light or nitrate (Hilhorst, 1990 a, b). Primary dormancy is usually lost after 

(prolonged) dry storage; this is called after-ripening. Once this block of primary 

dormancy is removed, imbibed seeds are sub-dormant; they can start germination 

by exposure to light, or become secondary dormant if environmental conditions 

disfavour germination. Although secondary dormancy is similar in nature to primary 

dormancy, in Sisymbrium officinale there are differences, such as the sensitivity to 

dormancy breaking agents such as light, gibberellins and nitrate (Derkx and 

Karssen, 1993a; see below). In addition, Cadman et al. (2006) have found that in 

Arabidopsis thaliana, freshly imbibed primary dormant seeds showed a gene  



3 
 

 

Figure 1: Seeds are primary dormant upon shedding and require after-ripening or cold stratification to becom sub-
dormant. Sub-dormant seeds can germinate by exposure to light, nitrate and the right temperature, or become 
secondary dormant if environmental conditions disfavour germination. The cycling between sub-dormancy and 
secondary dormancy can occur several times 

 

expression pattern that was rather similar to the gene expression pattern of 

secondary dormant seeds but had generally lower expression levels of the 

dormancy-associated genes. Like primary dormant seeds, secondary dormant 

seeds placed under favourable conditions will not germinate unless dormancy is 

broken first. Repeated breaking and inducing of dormancy is called ‘dormancy 

cycling (Figure 1) and may occur many times until environmental conditions are 

favourable for the induction of germination (Taylorson, 1972; Bouwmeester and 

Karssen, 1993). By keeping their metabolism low, dormant seeds are potentially 

capable of surviving years of cycling in and out of dormancy, without loss of 

viability and thus increase their chances of successful regeneration (Derkx et al., 

1993; Chibani et al., 2006). 
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Temperature 

Temperature is one of the main environmental factors controlling dormancy and 

germination (Hilhorst, 1998). For example, germination in the field is restricted to a 

limited period of time when the field temperature overlaps with the temperature 

range in which germination can take place (Vleeshouwers et al., 1995), the 

‘germination temperature window’. Sub-dormant seeds exposed to light exhibit a 

broad window and they can germinate over a wide temperature range. Dormant 

seeds (exposed to light) exhibit a narrow window and germination can only take 

place within a small range of temperatures (Karssen, 1982; Bouwmeester and 

Karssen 1992). The temperature required for breaking of dormancy may differ from 

the temperature that is optimal for germination. While cold/heat shocks can break 

dormancy, prolonged periods of time at sub-optimal temperatures and in darkness 

can induce (secondary) dormancy (Kępczyński and Bihun, 2002). The induction of 

dormancy by a sub-optimal temperature treatment is more rapid at higher 

temperatures than at lower temperatures. 

Light and nitrate 

Sisymbrium officinale seeds are not only dependent on the right temperature for 

germination, they are also dependent on the simultaneous presence of light 

(through phytochrome) and nitrate (Hilhorst et al., 1986; Hilhorst, 1990a, b; Derkx 

and Karssen, 1993). In species such as Arabidopsis thaliana there is no need for 

the simultaneous presence of light and nitrate: its seeds can germinate in the 

presence of light only but the presence of nitrate may reduce the requirement for 

light (Batak, 2002). Dormancy cycling is dependent on the sensitivity to dormancy 

breaking factors, such as light and nitrate. Thus, this sensitivity may change over 

time (Hilhorst, 1990 a, b). The sensitivity/responsiveness to phytochrome and 

nitrate is thought to be regulated by the changes in the number of available 

phytochrome and nitrate receptors by variations in (seasonal) temperatures (Derkx 

and Karssen, 1993).  
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Phytochrome 

One of the most important environmental sensors in plants are the phytochromes. 

Phytochromes are biliproteins that are synthesised in the inactive red light 

absorbing (Pr) form (Casal and Sanchez, 1998) and red light converts them into 

bioactive far-red absorbing (Pfr) absorbing isomers (Whitelam and Devlin, 1997). 

Pfr converts back into Pr in the dark. In lower plants phytochromes are probably 

rigid cytosolic, probably plasma membrane-associated. Hilhorst (1998) 

hypothesized that in higher plants the phytochrome and nitrate receptors may also 

be (temporarily) associated with membranes.  But in higher plants there is a switch 

from primarily cytosolic towards a more dominating nuclear function (Nagy and 

Schäfer, 2000).  Phytochromes are known to regulate GA synthesis, which 

promotes germination (Hilhorst and Karssen 1998; Yamaguchi et al., 1998, 2004; 

Ogawa et al., 2003). As temperature has been shown to influence endogenous GA 

concentration in seeds (Derkx, Vermeer and Karssen, 1994; Yamaguchi et al., 

2004), and sensitivity to GA (Derkx and Karssen, 1993; Yamaguchi et al., 2004) 

phytochrome could also have a temperature dependent effect. The effect 

temperature has on phytochrome was further analysed by Donohue et al. (2007), 

who showed that phytochromes mediate dormancy and germination responses to 

seasonal cues that the seed experiences during maturation and after dispersal. 

Heschel et al. (2007) showed that in Arabidopsis thaliana 5 different phytochromes 

seem to be working at different temperatures, suggesting that phytochromes have 

a potential role in regulating seasonal timing of germination.  

Gibberellins (GAs) 

The need for light and nitrate in seed germination can be circumvented by 

application of gibberellins (GAs) to the seeds. It was hypothesized that nitrate can 

act as a cofactor to light and that light may induce the biosynthesis of gibberellins. 

Applying GAs can thus lead to completion of germination without application of 

light and nitrate (Hilhorst et al., 1986). It has indeed been shown that light 
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stimulates GA-biosynthesis, through a direct effect of phytochrome on the GA 3-

oxidase gene (Yamauchi et al., 2004). GAs are suggested to stimulate germination 

by 2 different actions directed at (1) the embryo, by promoting the growth potential, 

and (2) the surrounding tissues, particularly the endosperm. Seed germination may 

be prevented or delayed by the mechanical constraint of the seed coat that the 

embryo has to overcome before it can take up water and nutrients (Chen and 

Bradford, 2000; Leubner-Metzger, 2001; McIntyre, 1996). The strength of this 

barrier can be reduced by stimulating endosperm degradation. In gibberellin-

deficient seeds only exogenous GA4+7 or endosperm plus testa removal can induce 

germination, indicating that GA4+7 can induce endosperm weakening (Hilhorst and 

Karssen, 1992; Debeaujon and Koornneef, 2000). GA4+7 in the embryo is believed 

to migrate to the endosperm (Hilhorst and Karssen, 1992) where it induces 

expression of genes encoding enzymes that hydrolyze the endosperm cell walls 

(Debeaujon and Koornneef, 2000; Chen and Bradford 2000; Nonogaki et al., 2000; 

Manz et al., 2005). After endosperm weakening, the embryo can take up more 

water (Manz et al., 2005), metabolic activity of the embryo is promoted and an 

additional degree of cell turgor required for the elongation of the radicle is acquired. 

Membrane involvement in dormancy 

For the past 3 decades, based on a wealth of circumstantial evidence, membranes 

have been suggested to be involved in the regulation of dormancy. Hendricks and 

Taylorson (1976, 1978 and 1979) have shown that dormancy induction by higher 

temperatures is accompanied by an increased leakage of amino acids. The 

increased leakage was suggested to be linked to the membrane transition 

temperature and this transition was considered the main limiting factor in 

germination over a wider temperature range. The membrane transition is 

accompanied by a disordering of the membrane and changes in membrane order 

may influence phytochrome activity, as the phytochrome receptor (or steps in its 

signal transduction pathway) may be membrane-associated (Hendricks and 

Taylorson, 1978; Nagy and Schäfer, 2000). These changes in membrane  
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Figure 2: Model based on Hilhorst (1998). Nitrate receptors are suggested to occur in membranes. Under the 

influence of temperature and time the membrane fluidity changes, allowing the receptors to move to the membrane 

surface, where nitrate and phytochrome can bind and subsequently germination can take place. Xi and Xa are inactive 

and active (nitrate) receptors, respectively. Pr and Pfr are inactive and active forms of phytochrome, respectively. r is 

red light and fr is far red light.   

 

organisation are a possible explanation for changes in responsiveness to light and 

nitrate. A hypothesis was suggested by Hilhorst (1998) (Figure 2), in which the 

changes in responsiveness to light and nitrate were explained. Phytochrome and 

nitrate receptors may be associated with membranes. Temperature has a profound 

influence on membrane fluidity which, on its turn, may determine the magnitude of 

movement of the receptors within the membranes. In one fluidity conformation the 

receptors will be at the surface, available for nitrate and phytochrome to bind whilst 

in the other conformation the receptors are within the membrane and therefore not 

available for binding of nitrate and phytochrome. One aspect of temperature-

induced membrane changes is homeoviscous adaptation (Sinensky, 1974), the 

mechanism by which unsaturated fatty acids aid in maintaining membranes in a 
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fluid state, necessary for biological functioning (Cyril et al., 2002). A temperature 

induced increase or decrease in membrane fluidity can be counteracted by an 

increase in synthesis of de novo fatty acids or by desaturation of existing fatty 

acids (Sato and Murata, 1980), in order to maintain the fluidity. 

Electron Paramagnetic Spectroscopy (EPR) 

Spin label ESR is a non-destructive technique whereby a paramagnetic molecule 

(i.e. spin label) is used to tag macromolecules in specific regions. Using the EPR 

spectra, from the spin label, the type of environment in which the spin probe is 

located can be determined. 

EPR can be very useful in studying seed dormancy behaviour as it can thus give 

detailed information about the structural and dynamic properties of the cytoplasm 

or lipid fraction, including membranes, of the seed sample (Marsh,1981). The 

rotational correlation time (τR) of the spin probe in its local environment can be 

measured by EPR. The τR is defined as the time it takes for the spin probe to rotate 

one radian (~60°) around its axis. In other words, the shorter the τR, the faster the 

rotational motion of the spin probe. The choice of spin probe is important. 

Depending on the polarity of the spin probe, it will partition into the a-polar oil 

phase, the polar aqueous cytoplasm, and/or in the membrane, making it a useful 

tool to study different cellular properties of dormancy and germination, e.g. 

membrane fluidity and cytoplasmic viscosity. By measuring oxidation-reduction 

rates of the probe, metabolic activity can be investigated with these spin probes. In 

this thesis 3 different spin probes were used: 4-Oxo-2,2,6,6-tetramethyl-1-

piperidinyloxy (TEMPONE; Figure 3A), 3- carboxy-proxyl (Figure 3B) and a 

methyl ester of 5-doxyl stearic acid (Figure 3C).   

TEMPONE is a small (MW 168) molecule that is easily soluble in water but slightly 

apolar, making it also soluble in the lipid environment. Thus, TEMPONE can be 

found in both the aqueous cytoplasm and in lipid bodies. TEMPONE can give 

information based on the partitioning of this spin probe between the aqueous  
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Figure 3A: Structure of TEMPONE spin probe 

Figure 3B: Structure of 3-carboxy-proxyl spin probe 

Figure 3C: Structure of methyl ester of 5-doxyl stearic acid spin probe 

 

cytoplasm and oil bodies. TEMPONE can be used to study the cytoplasmic volume 

and cytoplasmic viscosity (Golovina and Hoekstra, 2002), but also the metabolic 

activity, as it can be reduced to non-paramagnetic species, depending on the 

reducing power of cells. This reduction can be used to study cellular metabolic 

rates (Jung et al., 1998).  

3-Carboxy-proxyl (CP) is also a relatively small (MW 186) spin probe that is easily 

soluble in water. CP is more polar than TEMPONE due to the presence of an OH 

group. This group increases the probability of these molecules to form hydrogen 

bonds, making it particular suitable to study cytoplasmic viscosity.  

5-Doxyl stearic acid is often used to study membrane fluidity (Benatti et al., 2001; 

Bianconi et al., 1988; Turchiello et al., 2000). The methyl ester of 5-doxyl stearic 
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acid is targeted to cellular membranes. This spin probe is weakly anchored in the 

head group area due to the high hydrophobicity of the methyl ester. As a result the 

methylated spin label is localized in a deeper position in the bilayer than its un-

methylated counterpart (Sanson et al., 1976).  

Seed dormancy and gene expression 

Several methods have been used to analyse the transcriptional differences 

between primary dormant and long term dormant seeds. Micro-array analysis is a 

much used technique and has been employed to study dormancy transitions in  

Arabidopsis thaliana (Cadman et al., 2006; Finch-Savage et al., 2007). Here the 

cDNA subtraction library of S. officinale was chosen over micro-array analysis. 

With a cDNA subtraction library the cDNA of interest is tagged and the cDNA you 

want to compare this with is subtracted from the tagged cDNA. The rationale for a 

cDNA subtraction library over micro-array analysis was to prevent cross-species 

hybridization difficulties. A major issue with cross-species hybridization is the effect 

of sequence divergence on probe affinity, which is not only a function of 

phylogenetic distance. Due to differences in sequence divergence rates, such 

effects are not uniform across all genes. At present it is difficult to correct for such 

effects during the analysis of micro-array data (Bar-Or et al., 2007). Subtraction 

libraries have been used to identify key genes and pathways in plants and 

seedlings (de los Reyes, 2003). cDNA subtraction libraries, however, pose a whole 

new set of difficulties; a large number of clones needs to be sequenced in order to 

obtain an overall impression of the transcriptome of a developmental state of the 

seed. Gene expression of most genes needs to be verified, as some of the genes 

picked up may appear in both the forward and reversed libraries. Primary dormant 

seeds and long-term primary dormant seeds were used, as compared to the 

primary dormant seeds and secondary dormant seeds used in other chapters. 

Primary and secondary dormant seeds are imbibed in different media, making 

comparison difficult. Long-term primary dormant seeds are seeds imbibed in water 

in the dark for 10 days, making the comparison with primary dormant seeds easier. 
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Long-term primary dormant seeds do not differ from secondary dormant seeds in 

gene expression patterns (Cadman et al., 2006). 

Objectives 

Over the past decades significant progress has been made in understanding seed 

dormancy. Although apparently similar in nature, some genuine differences have 

been found between primary and secondary dormancy, e.g. the sensitivity to 

dormancy breaking factors (Derkx and Karssen, 1993) or differences in expression 

intensity of dormancy related genes (Cadman et al., 2006). These differences may 

reflect the differences in depth of dormancy. The general aim of this thesis was to 

not only study the differences and similarities between primary and secondary 

dormancy, but also sub-dormancy and germination in Sisymbrium officinale and 

Arabidopsis thaliana in order to enlarge our understanding of this topic. More 

specifically, the objectives of this thesis were: 

To analyse membrane involvement in the regulation of dormancy;  

To analyse changes in metabolic activity and in cytoplasmic viscosity in dormancy 

cycling; 

To identify differences in gene expression between different dormancy states. 

Scope of the thesis 

Chapter 1: General Introduction 

A short introduction to dormancy, dormancy cycling, and the membrane 

involvement in dormancy regulation is presented as well as the research 

approaches in this thesis.  
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Chapter 2: Changes in metabolism in Sisymbrium officinale seeds 

during the transition between dormant and non-dormant states, as 

measured by electron paramagnetic resonance spectroscopy.  

The changes in dormancy and germination were linked to general seed 

metabolism in Sisymbrium officinale seeds. Low cytoplasmic volume and reduced 

metabolism were linked to dormancy, while germinating seeds exhibited a high 

cytoplasmic volume and metabolism. Sub-dormant seeds exhibited an intermediate 

metabolism. 

Chapter 3: Altered membrane properties are associated with 

dormancy transitions in seeds of Sisymbrium officinale 

The changes in dormancy and germination were linked to changes in membrane 

properties in Sisymbrium officinale. At low and high temperatures membrane 

fluidity could be linked to dormancy, particularly primary dormancy. However, these 

changes did not seem to be caused by (changes in) fatty acid unsaturation.  

Chapter 4: Altered cytoplasmic properties are associated with 

dormancy transitions in seeds of Sisymbrium officinale 

Cytoplasmic properties were studied using the spin probe 3-carboxyl-proxyl. The 

observed changes in cytoplasmic viscosity may be linked to changes in 

metabolism and the changes in vitrification temperature may be linked to changes 

in the content of high-molecular weight compounds.  

Chapter 5: Desaturases are associated with dormancy transitions in 

Arabidopsis thaliana seeds 

The effects of mutations in desaturases were assessed on the induction of 

dormancy and membrane fluidity in Arabidopsis thaliana seeds. The conversion of 
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linoleic acid (18:2) into linolenic acid (18:3), appeared to be the most important 

conversion associated with dormancy induction, especially in the fatty acid 

desaturases 3 (fad3) mutant. However, desaturases activity did not show any 

involvement in changes in membrane fluidity.  

Chapter 6:  Characterization of large scale differences in transcription 

between short term and long term primary dormant seeds 

Using a cDNA subtraction library differences in gene expression between primary 

dormant and long term primary dormant seeds were studied in Sisymbrium 

officinale and compared to Arabidopsis thaliana seeds. This yielded a set of 

conserved dormancy related genes. Candidate genes involved in dormancy are 

genes involved in maintaining the stability and integrity of cell compartments and 

macromolecules.  

Chapter 7: General Discussion 

All the results are combined to obtain a general picture of the molecular and 

biophysical changes taking place during transitions among dormancy states. 
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CHAPTER 2 

Changes in metabolic and redox 

activity in Sisymbrium officinale seeds 

during the transition between dormant 

and non-dormant states 

 

Susanne MC Claessens1,2, Elena A Golovina1, Mieke van Zeijl3, Bert 

van Duijn3, Folkert A Hoekstra1, Peter E Toorop2, Henk WM 

HiIlhorst1 

1Laboratory of Plant Physiology, Wageningen University, P.O. Box 658 

6700 AR, Wageningen, The Netherlands; 2Seed Conservation Dept., Royal 
Botanic Gardens Kew, Wakehurst Place, Ardingly, W Sussex, RH17 6TN, 
U.K.; 3Fytagoras BV / Leiden University, Institute Biology Leiden, P.O. Box 

546, 2300 AM Leiden, The Netherlands 

Abstract 

 

Physiological dormancy is reversible and this enables seeds to cycle in and out of 

dormancy until the conditions are favourable for germination. In this way seeds can 

survive in the soil for extended periods of time. It has been argued that dormancy 

cycling must be an energy-efficient process to explain long-term survival. In 

Sisymbrium officinale seeds, storage lipids are the main source of energy. 
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Mobilisation of these lipids is expected to occur if energy is required for dormancy 

cycling. As yet, there is no evidence that changes in respiration rate, respiratory 

pathways or their enzymes are essentially linked to the regulation of dormancy. 

EPR results with a TEMPONE spin probe showed that high R-values (water over 

lipid content ratio) were associated with the breaking of dormancy, indicating high 

cytoplasmic volume. When germination was inhibited and secondary dormancy 

induced, R-values and metabolic activity were reduced. Germinating seeds 

displayed a quick and substantial chemical reduction of the spin probe, leading to a 

decay of the EPR signal. In sub-dormant seeds the signal decay rate was not as 

high as that of germinating seeds, but much higher than that of dormant seeds. 

The oxygen consumption of primary dormant and secondary dormant seeds was 

very low (less than 0.5% of total oxygen content in 63 hours), but slightly faster in 

primary dormant than in secondary dormant seeds. In conclusion, germination was 

linked to a higher cytoplasmic volume and higher metabolic activity or higher 

capacity for reduction. When germination was inhibited and dormancy induced the 

cytoplasmic volume and metabolic activity were reduced. 

Introduction 

 

Dormancy is the failure of an intact viable seed to germinate under favourable 

conditions (Bewley, 1997). One of the most common forms of seed dormancy is 

called ‘physiological dormancy’. It is distinguished from other dormancy types by its 

reversible nature, allowing dormancy cycling (Taylorson, 1972; Bouwmeester and 

Karssen, 1993). Physiological dormancy may occur as primary dormancy or as 

secondary dormancy. Primary dormancy is acquired on the mother plant during 

maturation, and is observed in seeds upon shedding. Primary dormancy can be 

lost during dry storage, which is commonly referred to as dry after-ripening. Once 

primary dormancy is lost, imbibed seeds are sub-dormant; they are capable to 

complete germination provided that a final dormancy releasing factor, usually light, 
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is available, or become secondary dormant if environmental conditions disfavour 

germination. Like primary dormant seeds, secondary dormant seeds placed under 

favourable conditions will not complete germination unless dormancy is broken 

first. Upon breaking of dormancy, the right environmental cues trigger germination. 

Seeds can cycle in and out of dormancy repeatedly, if environmental conditions 

allow dormancy to be broken but are not favourable for germination (Taylorson, 

1972; Bouwmeester and Karssen, 1993). Although apparently similar in nature, 

genuine differences in primary and secondary dormancy have been observed. S. 

officinale seeds differ in their sensitivity to dormancy breaking factors such as 

gibberellic acid and nitrate (Derkx and Karssen, 1993a), with the lowest sensitivity 

in the seeds with secondary dormancy. This difference in sensitivity may reflect the 

difference in depth of dormancy.  

Mature dry seeds usually contain 5-10% water on a fresh weight basis (Hilhorst 

and Karssen, 1992). Under these conditions metabolic activity is virtually reduced 

to zero. Metabolic activity increases upon the uptake of water, which is a triphasic 

process. Rapid initial uptake (I) is followed by a plateau phase (II) and a further 

uptake (III) once germination is completed and radicle protrusion begins (Bewley, 

1997). One of the first changes upon imbibition is the resumption of respiratory 

activity. After a steep initial increase in oxygen consumption the rate declines until 

the radicle penetrates the surrounding structures. At this time, a second burst of 

respiratory activity occurs (Bewley, 1997). In dormant seeds it is likely that for 

successful survival the metabolic activity of the seeds is reduced to avoid untimely 

depletion of reserves. However, although reduction in O2 uptake has been 

demonstrated after dormancy induction in Sisymbrium (Derkx et al., 1993) and in 

lettuce (Powell et al., 1983) there was no correlation between O2 uptake and 

dormancy cycling (Derkx et al., 1993). Proteomic analysis of A. thaliana has shown 

that, upon imbibition, two different sets of enzymes controlling metabolism can 

accumulate, one set is up-regulated in both dormant and non-dormant seeds, while 

the other set is only up-regulated in non-dormant seeds (Chibani et al., 2006), 

implying that this additional metabolic activity, is only observed in non-dormant 



18 
 

seeds. Proteins up-regulated only in the non-dormant seeds include the 

neoglucogenesis enzymes 1,6-Fru bisphosphate aldolase and cytosolic isoforms of 

GAPDH, providing energy from stored lipids required for seedling establishment, 

and isocitrate lyase, an enzyme involved in storage lipid mobilization.  

There is no evidence that changes in respiration rate, respiratory pathways, or their 

enzymes are essentially linked to the regulation of dormancy (Bewley, 1997). Upon 

release from secondary dormancy, there is an increase in respiration, but this is 

slower than in seeds emerging from primary dormancy (Powell et al., 1984). These 

observations raise the question as to how much or how little of the respiration 

measured in primary dormant seeds is really essential for its maintenance, and 

how much is excess, resulting in a high background that masks any subtle 

metabolic changes taking place (Bewley, 1997; Powell et al., 1984).  

In this paper we tested the hypothesis that the metabolic rate of primary and 

secondary dormant seeds is lower than that of sub-dormant and germinating 

seeds. We used S. officinale (hedge mustard) as it has a well-described 

germination and dormancy behaviour, and the breaking of dormancy can be fully 

separated from the germination event (Hilhorst and Karssen, 1989). Electron 

paramagnetic resonance (EPR) was used to study changes in cytoplasmic volume 

and metabolic activity, measured as reducing power of cells, in dormant and sub-

dormant seeds. The metabolic activity was further characterised by measuring 

single seed oxygen consumption. 

Materials and Methods 

Germination 

Seeds of Sisymbrium officinale (L.) Scop. were collected in a field in the vicinity of 

Wageningen, The Netherlands in 2004. Seeds were cleaned, dried at 20ºC to 85 

mg water/g dry seed, and stored at 5 ºC until use (2005-2008). Prior to 
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germination, seeds were surface sterilized in 1% sodium hypochlorite for 1 minute 

and rinsed with demineralized water for 5 minutes. Triplicates of 30 seeds were 

sown in 5-cm Petri dishes on two layers of filter paper (Schleicher & Schuell No 

595), moistened with 1.5 ml of either water, 25 mM potassium nitrate (Fisher) or 

100 µM GA4+7 (Sigma). Seeds were imbibed for 1 or 10d in the dark at 25°C after 

which they were irradiated with a saturating red light (620-700nm, Philips) pulse for 

10 minutes, or kept in the dark (Hilhorst and Karssen, 1988). After irradiation, 

seeds were transferred back to the dark at 25ºC. Germination was scored every 

day after irradiation, for 1 month, under safe green light.  

 Germination tests in 96 wells plates, for concomitant oxygen 

measurements, were done in triplicate. To each well 2 filter papers were added 

(Schleicher & Schuell No 595), cut to the size of the wells. Filter papers were 

moistened with 20 µl H2O, 25 mM KNO3 or 100 μM GA4+7 before one seed per well 

was added. After 1 or 10d of imbibition in the dark at 25°C, seeds were irradiated 

for 10 minutes with a saturating red light (620-700 nm) pulse. Germination was 

scored every hour after irradiation.  

Water content 

Upon surface sterilization, imbibition and dark-incubation for 1 or 10 days, seeds 

were placed shortly in a 9-cm Petri dish filled with 2 filter papers and 3 ml H2O, to 

ensure that an equal amount of water was attached to the seeds’ surface of each 

replicate, making the standard error of each measurement comparable. Water 

content was assessed of 15 replicates of 10 seeds, by weighing before and after 

drying at 103ºC for 17 hours on a 7-decimal balance. Water content was expressed 

on a dry weight basis, in g H2O/ g dry weight. 
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EPR 

Seed coats of dry seeds were treated with sandpaper for 20 seconds resulting in a 

superficial bruising of the seed coat, before surface sterilization and imbibition, in 

order to facilitate entry of the spin probe into the seed. A parallel germination test 

showed no effect of this treatment on the germination behaviour. Seeds were 

imbibed for 1 or 10d in the dark. Seed samples were then incubated in 

perdeuterated 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPONE) spin probe 

and 120 mM potassium ferricyanide. Due to paramagnetic interactions, ferricyanide 

causes broadening of the TEMPONE signal to apparent invisibility. Because 

ferricyanide does not pass the plasma membrane, the non-broadened narrow lines 

in EPR spectra originate from the intracellular location of TEMPONE molecules 

(Golovina et al., 1997; Golovina et al., 2001). After 10 minutes of incubation the 

seed samples were loaded into a 2-mm capillary for spectra recording. 

Ferricyanide was not used in the experiments where the reduction rate of spin 

probe was determined. All seeds were kept in the dark and measurements were 

done under dimmed white light. EPR spectra were recorded using an X-band EPR 

spectrometer (Bruker Elexis E500 CW_EPR , Rheinstetten, Germany). To prevent 

overmodulation and saturation of the EPR signal, microwave power was limited to 

5 mW, the modulation amplitude was 0.3 Gauss (G) and the scan range was 100 

G. 

Oxygen uptake 

Following surface sterilization seeds were pre-incubated in the dark for 1 or 10d. 

After pre-incubation, seeds were irradiated with red light (620-700 nm) for 10 

minutes and kept in the dark for 5h, before transferring 64 seeds per treatment to a 

96-well plate, one seed per well, containing 2 filter papers (Schleicher & Schuell No 

595) moistened with 20 µl of solution. Oxygen uptake was measured using the Q2-

test (ASTEC Inc.; www.astec-global.com), which is a non-invasive method whereby 

oxygen levels in closed wells containing a single seed are determined using 
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fluorescence life-time properties of an oxygen sensitive dye. An air-tight 

transparent foil with dots of the fluorescent oxygen sensitive dye was placed on top 

of the plates and sealed to close every well individually. Complete darkness could 

not be guaranteed for all plates, and therefore all plates received a light pulse. As a 

control, the seal on one of the empty wells was pierced; scans were taken every 30 

min in the dark.  

Up to 32 wells were left empty in the 96-well plate. The O2 measurements of these 

wells were used for calibration of the data. After calibration, data were smoothed 

using 9-point symmetrical smoothing analysis (with a start and finish ramp). The 

differences in respiration rate can be analyzed by measuring differences in the 

slopes of the oxygen uptake. The differences in the slopes were measured by 

synchronization analysis, setting the steepest point in the oxygen consumption 

(15% oxygen levels) for both treatments at 45h, followed by a subsequent t-test of 

the whole process of oxygen uptake. 

Results 

 

In S.officinale seeds the different physiological states could be clearly distinguished 

and were easy to manipulate. Seeds imbibed in H2O that failed to germinate, both 

in the light and dark (Figure 1b, 1g), were considered primary dormant. Seeds 

imbibed in KNO3 solution (‘sub-dormant’) only required a light pulse (620-700 nm) 

of at least 10 minutes, to release (sub) dormancy and to complete germination 

(Fig.1a, 1f). The light pulse was required within a certain time window; when 

delivered after 10d of dark imbibition on KNO3, seeds had acquired secondary 

dormancy and the light pulse was not sufficient to induce germination (Fig. 1c). 

Seeds imbibed in 100 µm GA4+7 completed germination both in the light (Fig. 1d) 

and in the dark (Fig.1e), which indicates that the light requirement was bypassed. 

Seeds imbibed on GA4+7 in the light germinated faster than seeds imbibed on KNO3 

in the light and than GA treated seeds in the dark. We studied aspects of metabolic  
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Figure 1: Germination vs time curves of Sisymbrium officinale seeds after the following pre-treatments: 

a. 25mM KNO3 for 1d + light pulse (●; germinating);  

b. H2O for 1d in darkness (□; primary dormant, dark);  

c. 25 mM KNO3 for 10d in darkness + light pulse (♦; secondary dormant);  

d. 100 μM GA4+7 for 1d + light pulse (▲; germinating GA light); 

e. 100 μM GA4+7 for 1d in darkness (∆; germinating GA dark);  

f. 25 mM KNO3 for 1d in darkness (◊; sub-dormant, non-germinating). 

g. H2O for 1d + light pulse (■; primary dormant, light) 

Where applicable, the light pulse was given after 8h of imbibition, after which seeds were placed back in the dark 

 

activity in order to associate the different physiological states with different 

metabolic rates. To achieve this we used EPR spectroscopy to measure 

cytoplasmic and metabolic properties and the Q2-test to measure O2 uptake. 
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Figure 2. A. EPR spectra of 1 mM TEMPONE in seeds in different states of dormancy, in germinating 
Sisymbrium seeds and in seedlings.  (Sub-dormant seeds were imbibed in 25mm KNO3; Germinating seeds 
were imbibed in 100 μM GA4+7).  No radicle protrusion had occurred in any of the treatments, except of the 
seedlings. Seedlings were sampled after 7d of imbibition in GA4+7. 

Cytoplasmic volume changes and lipid mobilization in seeds of 

different dormancy states 

The EPR spectrum of perdeuterated TEMPONE from seeds is the superposition of 

spectra coming from the aqueous cytoplasm, oil bodies and the seed coat 

(Golovina and Hoekstra, 2002). The relatively broad component of the spectrum 

originates from the spin probe located in the seed coat and is not analyzed in this 

study. The spectra of TEMPONE located in the aqueous cytoplasm and lipid 

bodies each have 3 narrow lines due to fast rotation of the spin probe molecules 

(Figure 2A). However, these narrow line spectra differ in the distance between the 

lines. These distance is called the isotropic hyperfine splitting constant and 
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depends on the polarity of the environment. The spectra from TEMPONE in oil 

bodies have a smaller distance between the lines in comparison with the spectra 

originating from TEMPONE in aqueous cytoplasm. These two kinds of spectra are 

resolved in the high field (right-hand) region of the spectrum because of the 

combined effects of the changes in the g-value and the isotropic hyperfine-splitting 

constant in the peak position of both components (Golovina et al., 1997; Golovina 

and Hoekstra, 2002). The g-value is the most characteristic value that describes an 

EPR spectrum, and is a unitless measurement of the intrinsic magnetic moment of 

the electron. The g-value can give information about the paramagnetic center’s 

electronic structure. The g-value is strongly affected by the environment of the 

unpaired electron of the spin label. The g-value for a free electron, ge, is 

2.0023193. The value of g can vary, and can be calculated. The interaction of the 

unpaired electron with other electrons in the same atom is usually treated as a 

coupling of the unpaired electron spin with its orbital momentum. Such coupling 

produces a splitting of the signal into three separate transitions with characteristic 

g-values. The high-field region of the spectra consists of two peaks of which the left 

peak represents the lipid (L) component and the right peak (W) represents the 

water component (Figure 2A). At a first approximation the heights of the peaks are 

proportional to the number of TEMPONE molecules in each compartment, which, 

at a given partition coefficient depends on the volumes of these compartments. 

The changes in ratio (R) of W over L will indicate the changes in the cytoplasmic 

volume, or in lipid content, or both. Seedlings and germinating seeds imbibed in 

GA4+7 showed a high R-value (Figure 2B) in comparison with dormant and sub-

dormant seeds. This is indicative of cellular expansion or oil mobilization, or both. 

Sub-dormant and primary dormant seeds showed comparable R values, 0.93 and 

0.91, respectively, whereas secondary dormant seeds had a lower R value of 0.46. 

A low R value could also be an indication of water loss. However, the water content 

of the whole sub-dormant, primary dormant and secondary dormant seeds showed 

no significant differences among treatments (Table 1; P values of 0.07, 0.7 and 

0.06, respectively).  
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Treatment WC (g/g dry 
weight) 

Standard 
deviation 

Dry weight (g) Standard 
deviation 

GA4+7 1d, germinating 2.28 0.14 0.00297 0.00032 

KNO3 1d, sub-dormant 2.10 0.14 0.00284 0.00016 

H2O 1d primary dormant 2.02 0.10 0.00297 0.00018 

KNO3 10d, secondary dormant 2.12 0.029 0.00285 0.00016 

Table 1: Water content (WC) and dry weights of primary dormant (H2O 1d), secondary dormant (KNO3 10d), sub-

dormant (KNO3, 1d) and germinating seeds (GA4+7, 1d). Number of observations per average is 10. 

Reduction of the spin probe signal to measure rate of cellular 

metabolism 

Although spin probes are stable free radicals, they can be reduced to non-

paramagnetic species in living cells. Ferricyanide can rapidly reoxidize the reduced 

forms of spin labels even if the ferricyanide is located in the apoplast, due to fast 

exchange of spin probe molecules over the plasma membrane (Kaplan et al., 

1973). This allows the observation of the stable in time EPR signal from living 

material. However, the reduction of spin probe moleucules can also be used as a 

tool to study the rate of cellular metabolism. IN this case spin probes are used 

without ferricyanide and the decay rate of the EPR signal is indicative of the 

concentration of reducing agents inside the cells. Redox activity increases within 

germinating seeds, as a response to the oxidative burst that occurs upon 

resumption of metabolic activity.The oxidative burst may impose stress to the seed, 

thus influencing germination (Wojtyla et al., 2006). To scavenge the reactive 

oxygen species, antioxidants are produced. Antioxidants are necessary to re-

establish the reducing intra-cellular redox environment to prevent inhibition of 

protein synthesis (Wojtyla et al., 2006). Antioxidants, especially glutathione and 

ascorbic acid are very effective in reducing spin probes (Fuchs et al., 1997). 

Reduction of the spin probe can be also caused by activation of the electron  
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Figure 3. Decrease in the amplitude h0 of the central spectral line of the ESR spectra of TEMPONE with time as an 

estimation of the rate of cellular metabolism. Primary dormant (■), secondary dormant (♦), sub-dormant non-

germinating (●) and germinating (▼) Sisymbrium seeds were analyzed.  

 

transport chain (Chapman et al., 1985) The EPR signal intensity decay can 

therefore be used as a good measure of the redox activity and, hence, the 

metabolic activity in the seed (Jung et al., 1998).  

To study metabolic activity in S. officinale seeds in different physiological states, 

we labelled these in a solution of perdeuterated TEMPONE, without ferricyanide, 

and monitored the changes in the amplitude of the central spectral line in time. The 

height of the central component of the EPR spectra (h0) in this case is a good 

estimation of the total number of paramagnetic species in the sample.  

 Germinating seeds displayed a 38% reduction of the spin probe in 90 

minutes (Figure 3). In sub-dormant seeds primary dormancy is broken but light is 

still required to complete germination. The signal decay rate of these seeds was 
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not as high as that of germinating seeds, but much higher than that of primary 

dormant seeds. The signal decay rate of seeds with secondary dormancy was not 

as high as in sub-dormant seed, but much higher than that in seeds imbibed in H2O 

for 1 day that possess primary dormancy. 

Respiration 

With differences in the rate of the spin probe reduction we also expected 

differences in respiration rates because of the possible involvement of the electron 

transport chain. Therefore, O2 uptake was measured using the Q2-test. This test is 

a non-invasive method whereby fluorescence life-time properties of an oxygen 

sensitive dye are recorded. In the Q2-machine, single seed measurements were 

performed and a germination test under identical conditions was carried out 

alongside the Q2-test. As complete darkness could not be guaranteed in the Q2-

machine, oxygen measurements were only done on primary dormant, secondary 

dormant, KNO3-imbibed germinating and GA4+7-imbibed germinating seeds.   

 Figure 4A shows O2 uptake and germination percentages over time for all 

the different conditions. Both seeds imbibed in GA4+7 and in KNO3 in the light, 

reached almost 100% germination within 48 hours. The t50 values for germination 

were 25 and 29h, respectively, showing that half maximal germination was reached 

4h faster when seeds were imbibed in GA4+7. The t50 values for O2 uptake were 27h 

for seeds in GA4+7 and 34h for seeds imbibed in KNO3, showing that half maximal 

O2 uptake was reached 7h faster in seeds imbibed in GA4+7 as compared to seeds 

imbibed in KNO3. Figure 4B shows that oxygen uptake started earlier (P= 1.6*10-6) 

in GA4+7 imbibed seeds than in KNO3 imbibed seeds. Synchronization analysis, 

setting the steepest point in the oxygen consumption (15% oxygen levels for both 

treatments) for both treatments at 45 h, and subsequent t-tests of the whole 

process of oxygen uptake (Figure 5A) showed that the process of oxygen uptake 

for these 2 treatments was significantly different, within the 1% significance level, 

with seeds imbibed in KNO3 displaying slower O2 uptake. Primary and secondary  
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Figure 4. A. Maximum germination and O2 consumption of seeds over time. Measurements were started after 8h (T 0 
= 8), when seeds were transferred to the light. O2 measurements and germination assays were done in parallel, under 
similar conditions. O2 values are mean values as measured in 64 individual seeds.  

B. Magnification of the first 12h of O2 uptake of germinating seeds after an 8h pre-incubation, before the start of radicle 
protrusion. O2 values are mean values as measured in 64 individual seeds.  

C. Magnification of the O2 uptake of primary and secondary dormant seeds after an 8h pre-incubation. O2 values are 
mean values as measured in 64 individual seeds, excluding germinating seeds. 

 

dormant seeds showed a background germination of less than 5%, but higher in 

primary dormant seeds. Both treatments, excluding the germinating seeds, 

exhibited a very slow oxygen uptake (total 0.55% for secondary dormant and 

0.65% for primary dormant seeds in 63 hours) (Figure 4C) with a significantly 

higher rate in primary dormant, as compared to secondary dormant seeds between 

19 and 49 hours (Figure 5B). 
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Figure 5. A. P-values of synchronized O2 consumption measurements of germinating seeds imbibed in KNO3 and in 

GA4+7.  Synchronizing the oxygen consumption at its steepest point allowed analyzing differences in the process of 

oxygen uptake. As a consequence of the synchronization at 45 h the P-value is approximately 1.   

B. P-values of O2 consumption measurements of primary and secondary dormant seeds imbibed in H2O for 1 day and 

KNO3 for 10 days. Oxygen consumption measurements were not synchronized, as there is not a steepest point.  

In panels A and B, P-values below 0.01 are significantly different.  

Discussion 

Seeds imbibed in water for 1d (primary dormant) and seeds imbibed in KNO3 for 

10d (secondary dormant) did not complete germination in the light or dark, thus 

displaying a similar absence of the light response leading to visible germination 

(Figure 1). However, in the light, the sensitivity to the dormancy breaking factor 

nitrate differed, since primary dormant seeds responded to nitrate but secondary 

dormant seeds did not (Hilhorst, 1990b). Thus, secondary dormancy induced by 

prolonged darkness at the optimal germination temperature was different from 

primary dormancy in S. officinale. Dormancy induction was faster than in 
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Arabidopsis thaliana in which it took up to 80 days of dark incubation for seeds to 

lose their sensitivity to light and nitrate (Cadman et al., 2006).  

 Primary dormant and secondary dormant seeds displayed differences in 

the ratio between water and lipid components of the EPR spectra. Water content 

measurements (Table 1) showed that in both dormancy states amounts of water 

were not significantly different. Lipid mobilization is necessary for the transition 

from dormancy to germination and in seedling establishment in Arabidopsis 

thaliana, as was proven with the comatose mutants. However, lipid breakdown 

itself appeared not to be an important prerequisite for germination but rather 

functioned as a signal (Footitt et al., 2002, 2006). Here the seed dry weight of the 

dry, primary dormant and secondary dormant seeds did not differ significantly 

(Table 1), indicating that no significant lipid mobilization, degradation and utilization 

in energy metabolism had occurred. However, the dry weight measurements may 

not have been precise enough to determine small differences. Also the low R-

values for the dormant states suggest an absence of lipid mobilization and/or cell 

expansion (Figure 2). The differences in R-value could also be due to a change in 

lipid/water content locally. These small changes will be averaged out in the water 

content measurements as water content is measured of the whole seed. 

 For successful survival of seeds in the soil one would expect the metabolic 

activity of dormant states to be low, to prevent fast depletion of reserves. Metabolic 

activity, as measured by reducing capacity, of primary dormant seeds was hardly 

detectable (Figure 3), whereas metabolic activity but not oxygen consumption 

(Figure 4A, C) in the used measurement set-up, of the secondary dormant seeds 

was considerably higher. The primary dormant seeds had been imbibed in water 

whereas the secondary dormant seeds had been imbibed in nitrate. This suggests 

that nitrate had a stimulating effect on reducing activity without increasing 

respiration, even when the seeds were dormant. The dormant seed is known to 

have a restricted availability of metabolites and energy (Garciarrubio et al., 1997), 

due to presence of ABA. It is possible that nitrate treatment led to metabolic 

changes enabling the seed to overcome this inhibition (Matakiadis et al., 2009). 
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Although both types of seed were dormant the different imbibition medium could 

thus be responsible for changes in metabolism. The difference between primary 

and secondary dormancy in these seeds was very clear. However, as they had 

been imbibed in different media, comparisons are difficult to make. Comparing 

secondary dormant and sub-dormant nitrate-imbibed seeds is less complicated; 

both were imbibed in nitrate in the dark and differed only in incubation time. 

Secondary dormant seeds have passed through a phase of light-responsiveness 

that applies to the seeds in which dormancy is released by nitrate (Derkx & 

Karssen, 1993b). Metabolic activity (Figure 3) was considerably higher in sub-

dormant non-germinating seeds than in secondary dormant seeds, which shows 

that the initially high metabolic activity slows down when germination is not initiated 

and secondary dormancy is induced. This is in contrast with earlier findings, 

reporting that dormant and sub-dormant seeds do not differ appreciably in their 

metabolic activity (reviewed by Bewley, 1997). Reduction in metabolic activity 

observed in these secondary dormant seeds may conserve energy and 

presumably serves to prevent depletion of seed reserves and reduced viability 

during dormancy cycling in the soil (Derkx and Karssen, 1993a). We hypothesize 

that the metabolic rate slows down even further after longer incubation, to a similar 

level as in primary dormant seeds that were not exposed to nitrate.  

 Energy metabolism and oxygen consumption are expected to be related, 

thus, increased oxygen consumption was anticipated for secondary dormant 

seeds, as compared to primary dormant seeds. The oxygen consumption of 

primary dormant and secondary dormant seeds was very low (less than 0.5% in 63 

hours), but slightly slower in secondary dormant than in primary dormant seeds. 

This difference was significant between 16 and 50h of imbibition, and thus 

suggests that reducing capacity and oxygen consumption are not coupled. 

Dormant seeds have been shown to consume oxygen at very low rates (Derkx et 

al., 1993; Powell et al., 1984). In the study by Derkx et al (1993) on seeds of 

S.officinale it was shown that it took approximately 20d of induction of secondary 

dormancy at 24 °C to attain the minimum very low levels of oxygen consumption. 
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Thus, an alternative explanation for this discrepancy between oxygen consumption 

and metabolic activity is that secondary dormancy was not fully attained after 10d, 

despite the fact that germination did not occur.  

 Even though seeds imbibed both in nitrate and GA4+7 germinated to a high 

percentage in the light, seeds imbibed in GA4+7 circumvented the light requirement. 

It has been proposed that nitrate can act as a cofactor to light-induced biosynthesis 

of GAs and to subsequent completion of germination (Hilhorst et al., 1986). In 

Arabidopsis, light activates phytochrome via PHYB, an inducer of GA-3-oxidases 

(GA3OX1 and GA3OX2), which catalyse the final step in the synthesis of bioactive 

GAs, even if germination does not occur afterwards (Yamaguchi, et al., 1998; Oh 

et al., 2006). Thus, completion of germination can take place after imbibition in 

GA4+7 without light, but not on nitrate without light (Hilhorst et al., 1986). Light, 

however, may sensitize the seed to GA4+7, facilitating the germination process and 

resulting in faster germination (Figure 1; Hilhorst et al., 1986; Derkx and Karssen 

1993b).  

 Upon imbibition, seeds start taking up water which is sufficient for 

metabolic activity and oxygen consumption to resume. However, after a steep 

initial increase the oxygen uptake rate declines until the radicle penetrates the 

surrounding structures (Bewley, 1997).  Indeed, when seeds were non-dormant but 

had not received a light pulse (‘sub-dormant’), their water content did not appear to 

be different from that of their dormant counterparts (Table 1). When seeds were 

induced to germinate in GA4+7 the R-value was very high (Figure 2B), which could 

indicate an increase in cytoplasmic volume due to cell enlargement and/or oil body 

degradation, prior to radicle protrusion, however, the water content measurement 

of germinating seeds did not show this (Table 1). The difference in R-value could 

be due to a change in lipid/water content locally, which is averaged out in the 

whole seed water content measurements.  

 Nitrate and GA4+7 can both stimulate the growth potential of the embryo 

(McIntyre, 1996; Debeaujon and Koornneef, 2000; Alboresi, 2005). A possible 

explanation for the differences in the cytoplasmic volume could be that the seed 
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coat acts as a mechanical constraint that the embryo has to overcome before it can 

take up further water and nutrients (Chen & Bradford, 2000; Leubner-Metzger, 

2001; McIntyre, 1996). This barrier can be reduced in time by stimulating seed coat 

and endosperm degradation. For example, in gibberellin-deficient seeds of tomato 

or Arabidopsis only exogenous GA4+7 or endosperm and testa removal could 

induce germination (Hilhorst and Karssen, 1992; Debeaujon and Koornneef, 2000), 

indicating that GA4+7 can induce endosperm weakening. GA4+7 in the embryo is 

believed to migrate to the endosperm (Hilhorst and Karssen, 1992) where it 

induces expression of genes encoding for enzymes that hydrolyze the endosperm 

cell walls (Debeaujon and Koornneef, 2000; Chen and Bradford 2000; Nonogaki et 

al., 2000; Manz et al., 2005). Nitrate in combination with light can stimulate GA 

production which may result in seed coat degradation. However, when light is not 

supplied it cannot (Hilhorst et al., 1986). After endosperm weakening, the embryo 

can take up more water (Manz et al., 2005), metabolic activity of the embryo is 

promoted and an additional higher degree of cell turgor required for the elongation 

of the radicle is acquired. EPR results showed that seeds were metabolically active 

when imbibed in nitrate or GA4+7 (Figure 3), but the germinating seeds imbibed in 

GA4+7 were metabolically more active than the sub-dormant seeds imbibed in 

nitrate. Q2-tests were performed after a light pulse was given; therefore both KNO3- 

and GA4+7-imbibed seeds readily completed germination. O2 uptake was faster and 

started earlier in GA4+7 imbibed seeds, but this extra amount of O2 uptake did not 

seem necessary for germination, as both germinated to a similar high percentage. 

However, it did result in faster germination. 

 In conclusion, germination was linked to a higher cytoplasmic volume 

locally and higher metabolic activity or higher capacity for reduction. When 

germination was prevented, dormancy was induced and the cytoplasmic volume 

and metabolic activity did not increase. The use of non-destructive spin-label EPR 

spectroscopy to measure changes in cytoplasmic volume and lipid mobilization has 

proven to be a unique tool to monitor germination related phenomena in time in 

living seeds 
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Abstract 

 

Temperature is the main environmental factor involved in the regulation of seed 

dormancy. As membranes are often considered the primary target for temperature 

perception they have been implicated in the regulation of dormancy. Membrane 

properties may be altered to adapt to the temperature. One way of achieving this is 

by homeoviscous adaptation, the mechanism by which unsaturated fatty acids aid 

in maintaining the membranes in a fluid state. Here we tested the hypothesis that 

changes in dormancy and germination concur with changes in some membrane 

properties. At low and high temperatures the membrane fluidity could indeed be 

linked to dormancy, especially primary dormancy. Breaking of dormancy induced 

the membranes to become more fluid, whereas membrane rigidity was partially 

restored in secondary dormant seeds. The changes in fluidity were not related with 

changes in glutathione levels. The changes in membrane fluidity did not appear to 
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be caused by changes in unsaturation. At temperatures that are physiologically 

relevant for germination the fluidity of membranes did not differ between different 

dormancy states.  

Introduction 

 

Temperature is the principal environmental factor involved in the (seasonal) control 

of dormancy and plays a decisive role in the regulation of both dormancy and 

germination (Hilhorst 1998). Seasonal changes in temperature determine the 

responsiveness of seeds in the soil seed bank to factors that further break 

dormancy and induce germination, including light and nitrate. In addition, the 

prevailing field temperature has to overlap with a permissive range of germination 

temperatures (determined by the dormancy status of the seeds) before germination 

can take place, which illustrates the dual role of temperature in seasonal flushes of 

seedling emergence (Karssen, 1982; Bouwmeester and Karssen, 1992). 

 Membranes have often been implicated in the regulation of dormancy in 

seeds, as these are considered the primary target of temperature perception at the 

cellular level (Minorsky, 1989; Murata and Los, 1997, Penfield 2008).  However, 

the principles of temperature perception, as well as how thermal history is 

remembered are not yet understood. Membranes are capable of altering their 

properties in order to adapt to changes in environmental temperature. One aspect 

of these changes is homeoviscous adaptation (Sinensky, 1974), the mechanism by 

which unsaturated fatty acids aid in maintaining membranes in a fluid state 

necessary for biological functioning (Sato and Murata, 1980; de Vivrille et al., 

2002). When the temperature increases, membranes become more fluid because 

of an increased rotational and lateral movement of membrane lipids. To counteract 

this increase in fluidity, the amount of unsaturated fatty acids is decreased by 

suppression of desaturation of fatty acids and acceleration of de novo synthesis of 

saturated fatty acids. When the temperature decreases, synthesis of saturated fatty 



37 
 

acids ceases and existing fatty acids are desaturated to counteract the decrease in 

membrane fluidity (Sato and Murata, 1980). Membrane fluidity influences general 

membrane properties, such as membrane permeability, for amino acids, and the 

movement or orientation of molecules associated with or incorporated in the 

membrane (Hilhorst, 1998).  

 Based on a wealth of circumstantial evidence Hilhorst (1998) has proposed 

a model in which temperature alters membrane fluidity, which in turn would result 

in altered conformation of membrane proteins (e.g. receptors) and/or membrane 

permeability, and ultimately in a change in dormancy status (cf. chapter 1). The 

level of unsaturation of the membrane phospholipids would function as 

‘temperature memory’. Changes in dormancy coincide with changes in sensitivity 

and responsiveness to naturally occurring factors such as light and nitrate 

(Hilhorst, 1990a, b). The model suggests that the availability of the receptor sites 

for light and nitrate depends on their synthesis and accessibility. The accessibility 

of the receptor may be a function of membrane fluidity. With the increase of 

membrane fluidity the receptor protein moves to the membrane surface and 

becomes available for perception of phytochrome and nitrate signals. 

 Here we test the hypothesis that changes in dormancy and germination 

concur with changes in membrane properties. Membrane fluidity was studied with 

electron paramagnetic resonance (EPR) spectroscopy. This technique allows the 

study of the physical properties of an (membrane) environment where a spin probe 

is embedded. The motion characteristics of the probe derived from the shape of 

EPR spectra are used as a measure of the fluidity of the membrane. 

 Spin probe approach can also be used to determine the redox status of the 

environment. Nitroxide radicals can be reduced to non-paramagnetic 

hydroxylamines by reducing agents. Reduced forms of spin labels can be 

reoxidized to paramagnetic forms (Swartz, 1987). The observed intensity of the 

EPR spectrum relates to the equilibrium state between these reactions. Any shift in 

equilibrium between reduction of the spin probe molecules and re-oxidation of their 

reduced forms will change the spectral intensity.  Redox status of the seed has 
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been suggested to play a role in dormancy and germination: not only does it 

change in response to biotic and abiotic stress but it can also interplay with 

hormonal signalling (Bailly et al., 2008). Glutathione is an essential component of 

the redox status, and is capable of reducing spin probes (Bobko et al., 2007). Here 

changes in the intensity of  EPR spectra due to reduction of the spin probe were 

further analysed by measuring oxidised and reduced glutathione content of the 

seed. Desaturase involvement in membrane fluidity changes was characterised by 

NMR. Sisymbrium officinale (Hedge mustard) seeds were used, as this species 

has a well-described germination and dormancy behaviour, and the breaking of 

dormancy can be fully separated from the actual germination event (Hilhorst and 

Karssen, 1989).  

Materials and Methods 

Germination 

Seeds of Sisymbrium officinale (L.) Scop. were collected in a field in the vicinity of 

Wageningen, The Netherlands in 2004. Seeds were cleaned, dried at 20ºC to 85 

mg water/g dry seed, and hermetically stored at 5ºC until use (2005-2008). Prior to 

germination, seeds were surface sterilized in 1% sodium hypochlorite for 1 minute 

and rinsed with demineralized water for 5 minutes. Triplicates of 30 seeds were 

sown in 5-cm Petri dishes on two layers of filter paper (Schleicher & Schuell No 

595), moistened with 1.5 ml of either demineralised water or 25 mM potassium 

nitrate (Fisher). Seeds were imbibed for 1 or 10 days in the dark at 25°C after 

which they were irradiated with a saturating red light (620-700nm, Phillips) pulse 

for 10 minutes or kept in the dark (Hilhorst and Karssen, 1989). After irradiation, 

seeds were transferred back to the dark at 25ºC. Germination was scored daily 

after irradiation, for 1 month under safe green light.  
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EPR 

The methyl ester of 5 doxyl stearic acid (5-mDS(A)) was used as a spin probe. This 

spin probe is only weakly anchored in the phospholipid head group area due to the 

high hydrophobicity of the methyl ester. As a result, the methylated spin label is 

localized in a deeper position in the membrane bilayer than its unmethylated 

counterpart (5-DS(A)) (Sanson et al., 1976). 5-mDS(A) has often been used to 

study membrane fluidity (Benatti et al., 2001; Bianconi et al., 1988; Turchiello et al., 

2000).  

 Seeds were imbibed in water or 25 mM potassium nitrate for 8 hours or 

10d in the dark. Medium attached to the surface of the seed was removed with 

filter paper before seed coats were removed using tweezers, after which seeds 

were dried at room temperature. Dry seeds were placed in a 1mM solution of 

membrane spin probe in hexane. After 1d the spin probe solution was removed, 

seeds were washed twice with hexane and placed at 3% RH for 3-4 days to 

remove the remaining hexane from the seeds. Seeds were re-hydrated by 

humidification for 3 hours at 100% RH. EPR spectra were recorded with an X-band 

EPR spectrometer (Bruker model 300E Analytik, Rheinstetten, Germany). To 

prevent over-modulation and saturation of the EPR signal, microwave power was 

limited to 5 mW and modulation amplitude of 3G for solid-state and 1G for fluid 

type spectra was used. In the case of 2-component spectra the lowest modulation 

amplitude of 1G was used. Field scan widths of 100G were used. 

Nuclear Magnetic Resonance Spectroscopy (NMR) 

The NMR spectra were recorded on an Avance II spectrometer (Bruker, 

Rheinstetten, Germany), operating at 300.13 MHz for protons and at 75.47 MHz for 

carbons, and equipped with a solid-state magic angle spinning (MAS) probe. Dry 

Sisymbrium officinale samples with seed coats and without additional treatments 

were packed into a 7 mm Zirconia rotor and spun under a magic angle at a 

spinning speed of 5 kHz. 13C MAS single-pulse excitation spectra were obtained 



40 
 

with 20-30 K scans, using a recycle delay of 2s, 200 kHz spectral width, 8k data 

points and under low-power decoupling. The 13C 90°C pulse width was 5 μs. 13C 

NMR chemical shifts were assigned according to the literature (Gunstone, 1993; 

Fan, 1996; Jie and Mustafa, 1997).  

Single-pulse 13C NMR MAS (magic angle spinning) was used for analyses of the 

fatty acid (FA) composition of lipids in seeds of different physiological states. By 

spinning the sample under the magic angle θm (ca. 54.74°, where cos2θm=1/3) with 

respect to the direction of the magnetic field, the normally broad lines become 

narrower, increasing the resolution for better identification and analysis of the 

spectrum. Since magic angle sample spinning eliminates line broadening arising 

from differences in magnetic susceptibility, it significantly improves NMR 

spectroscopy of liquids that are found in an inhomogeneous environment. The use 

of this technique facilitates nondestructive measurements of oil composition in 

viable plant seeds (Rutar, 1989). The cellular components, which are in a solid 

state in dry seeds (proteins and carbohydrates) were present as very broad lines in 

the 13C spectra in our experiments and were treated as a base line. 

The area between 127-132 ppm is derived from olefin carbon atoms of fatty acids 

(http://lipidlibrary.aocs.org/nmr/nmr.html; Table 1). 

The fatty acids with one, two and three double bonds can be identified in 13C NMR 

MAS spectra of all Sisymbrium samples (Figure 1). We attributed the shifts in the 

spectra to fatty acids commonly present in seeds: oleic acid (18:1), linoleic acid 

(18:2) and α-linolenic acid (18:3) (http://lipidlibrary.aocs.org/nmr/nmr.html; Table 1). 

The peak at ≈14 ppm is characteristic of the terminal methyl (CH3) group in all 

types of fatty acids 
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Fatty acid Double bonds Chemical shift (ppm) 

Oleic (18:1) -C9=C10- ≈130 (9, 10) 

linoleic acid (18:2)  -C9=C10-C-C12=C13- ≈130 (9, 13); ≈128(10, 12)  

α-linolenic acid (18:3) C9=C10-C-C12=C13-C-C15=C16- ≈130 (9); ≈128 (10, 12, 13); 
≈127(15); ≈132(16) 

All fatty acids -C18H3 ≈14(18) 

Table 1:. NMR spectroscopy of fatty acids and their derivates. Results are shown for primary dormant, sub-dormant 
and germinating seeds of Sisymbrium officinale. For attributing shifts to specific fatty acids see table 1 and   
http://lipidlibrary.aocs.org/nmr/nmr.html 

 

Figure 1. NMR spectroscopy of fatty acids and their derivates. Results are shown for primary dormant, sub-dormant 
and germinating seeds of Sisymbrium officinale.  

 

 The integrated area under the peak is proportional to the number of 

carbons participating in double bonds. Taking into account the data presented in 

Table 1, the fatty acid composition of seed lipids was calculated as follows: 
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I is the integrated area under a specific peak 

 

FA content was also used to calculate a double bound index (DBI), which shows 

the average number of double bonds per fatty acid. The DBI was calculated by the 

formula: DBI = [1x(18:1) + 2x(18:2) + 3x(18:3)]. 

HPLC 

Glutathione (GSH) and glutathione disulphide (GSSG) were extracted from dry 

seeds, seeds imbibed for 8h in the dark in water or KNO3 and seeds imbibed in 

KNO3 for 10d in the dark. GSH and GSSG were extracted on ice in 0.1 M HCl from 

freeze-dried, finely ground seed according to Kranner (1998).  Briefly, this assay 

uses fluorescence labeling of thiols with monobromobimane (mBBR). Total 

glutathione was determined after reduction of disulfides by dithiothreitol [DTT (pH 

8-8.3)]. For oxidized glutathione measurements, thiols were blocked with N-

ethylmaleimide (NEM). After removal of NEM, the remaining disulfides were 

reduced with DTT and labeled with mBBR. All extractions were done from 6 

biological replicates and the results were subjected to a t-test (p=0.001).  

(18:3) =  
I131.6 

I14.1 

(18:2) =  1 

2 

I128 
I14.1 

- 3 (18:3) 

(18:1) =  
I14.1 

I129.7 -2(18:2)-(18:3) 1 

2 
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Results 

Germination 

In S.officinale the different dormancy states could be clearly distinguished and 

were easy to manipulate (see Chapter 2, Figure 1). Seeds that failed to germinate 

in H2O were considered primary dormant. Seeds required a combination of KNO3, 

to alleviate dormancy, and a light pulse (620-700 nm) of at least 10 minutes to 

complete germination. The light pulse was required within a certain time window; 

when delivered after 10d of imbibition on KNO3, seeds had become secondary 

dormant and the light pulse was not sufficient to induce germination, and other 

methods were needed to break dormancy. The primary dormant, secondary 

dormant and sub-dormant states were used to study membrane fluidity by using 

the EPR spin probe technique. 

Membrane fluidity 

A methyl ester of 5 doxyl stearic acid (5-mDS(A)) was used as a spin probe. The 

location of the spin probe is relatively deep in the phospholipid bilayer, so that the 

spectra of 5-mDS(A) give information about the average fluidity of the membranes 

(Benatti et al., 2001; Bianconi et al.,1988; Turchiello et al., 2000). At 220K the 5-

mDS(A) spectrum in hydrated Sisymbrium seed membranes is of the ‘powder’ type 

(Figure 2). A powder type spectrum originates from randomly orientated completely 

immobilized spin label molecules (Marsh, 1981). Increasing the temperature up to 

260 K gradually increases the motional freedom of the spin probe without changing 

the anisotropic character of the spectra. This increase in motional freedom of spin 

probe within the ordered spectra is characterized by a decrease of the distance 

between the outermost extremes, 2Amax, of the spectra, and narrowing of the 

spectral lines (figure 2). 2Amax can be used to characterize the degree of 

membrane ordering at low temperatures. An increase in this parameter  
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Figure 2. EPR spectra of 5-mDS(A) in primary dormant Sisymbrium officinale seeds. Spectra were recorded at 220K 
(top) and 260K (bottom). The distance between the outermost extremes, 2Amax, is indicated by the arrow. 2Amax 

decreases with increasing temperature.  
 
corresponds to an increased ordering of spin label in the membrane environment 

(Golovina and Hoekstra, 2003). In Sisymbrium seeds 2Amax decreased with 

increasing temperature due to temperature induced membrane disordering (Figure 

3). The decrease in  2Amax started later in primary dormant seeds than in 

secondary dormant and sub-dormant seeds. This indicates that spin probe 

molecules are more immobilized in membranes of primary dormant seeds. 

The changes in the spectral shape at temperatures above 270K indicate the 

appearance of a mobile component along with the immobile component (Golovina 

and Hoekstra 2002, 2003; Figure 4A). 2Amax for the immobile component could not 

be determined precisely anymore. There was not much difference in temperature 

of appearance of the mobile component between the different dormancy states,  
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Figure 3. 2Amax for primary dormant (■), secondary dormant (♦) and sub-dormant (●) seeds of Sisymbrium officinale 
plotted against the temperature. The position of the Y-axis was not the same for all treatments, as the starting point 
was sometimes different; the scale, however, was the same.  
The left Y-axis is for primary dormant seeds, the right Y-axis is for secondary and sub-dormant seeds 

 

although the appearance seems more pronounced in primary and secondary 

dormant seeds at 290/295K, shown by the slightly larger mobile component, as 

compared to the immobile component. From 295K onwards, the mobile component 

is clearly higher than the immobile components (Figure 4B). The two components 

of the spectra indicate the presence of two types of domains within the 

membranes: a fluid (mobile) and a solid (immobile) one. Mobility of the spin probe 

in each domain continued to increase with temperature. Besides that, the 

population of spin probes in the solid domain gradually decreased. 

At 305K the fluid component dominated the spectrum (Figure 5, insert). Although 

not apparent, there is still an immobile component present. The immobile 

component did not overlap with the low-field (h+1) and the high-field (h-1) lines of the  
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Figure 4 The changes of the spectral shape of the 5-mDS(A) spin probe with an increase in temperature. A. The 
transition from a one-component spectrum to a two-component spectrum occurred within the range of temperatures 
from 270K to 295 K.  
B. Increasing the temperature above 295 K reduced the immobile component whereas the mobile component 
increased in the range between 300K and 330K.  

Results are shown for primary dormant, sub-dormant and secondary dormant seeds of Sisymbrium officinale. 
 

mobile component, and the broadening of these lines, originating from rotational 

motion of the spin probe, is different for the low-field (h+1) and the high-field (h-1) 

lines. The high-field and low-field lines can be used to calculate the viscosity in the 

fluid domains in the membranes (Golovina and Hoekstra, 2002). For that we used 

the ratio between the low-field and high-field lines as the empirical parameter, 

which is proportional to viscosity (Kuznetzov et al., 1971). The fluid domains in  
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Figure 5: Changes in the ratio of the low-field (h+1) and high-field (h-1) signals (see insert, spectrum at 305K) of the 

mobile component of 5MESL spectra in seeds with temperature. This ratio is an indicator of the viscosity of the spin 

probe environment in membranes. Results are shown for primary dormant, sub-dormant and secondary dormant 

seeds of Sisymbrium officinale. 

 primary dormant seed membranes had the highest viscosity, while in sub-dormant 

seed membranes the viscosity was the lowest (Figure 5). The viscosity of the 

membranes of secondary dormant seeds was the same as that of primary dormant 

seeds at 310 K, however it decreased quicker with temperature but not to the same 

degree as that of sub-dormant seeds.   

The spectra recorded from labelled seeds are the superposition of all spectra from 

different membranes of different cells within the seeds. If only a small amount of all 

the cellular membranes is involved in seed dormancy, the dynamic parameters 

obtained from EPR spectra will not show this because of averaging of the signal. 

The indirect approach to study the changes taking place in parts of the membrane 

is to analyze changes in the integrated intensity of the EPR spectrum. This will 

show the total number of paramagnetic centres responsible for the spectrum.  
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Figure 6: The integrated intensity of the EPR spectra plotted against the temperature. Note that the y-axes of all 
treatments are on a different scale for easy comparison of the curves.   

Results are shown for primary dormant, sub-dormant and secondary dormant seeds of Sisymbrium officinale. 

 

Integrated intensity of the spectrum is a cumulative parameter, which is sensitive to 

changes even in small amounts of cellular membranes (Golovina, et al., 2010). 

The intensity of the EPR spectrum is determined by the number of nitroxide 

radicals in the sample. The intensity of the spectrum can decrease or increase with 

temperature. The decrease of the signal is caused by chemical reduction of spin 

label and the increase of the signal is caused by re-oxidation of the reduced forms 

of spin labelled molecules. At lower temperatures the oxidation is the dominating 

reaction and at higher temperature the reduction is dominating (E. Golovina, 

personal communication). The oxidation of the spin label is possibly related to the 

diffusion of oxygen (Chen and Swartz, 1988). The reduction of the spin label 

depends on the presence of reducing molecules and on the molecular mobility in 

the system, which allows molecular diffusion. The integrated intensity of the EPR  



49 
 

 

Figure 7: The integrated intensity of EPR spectra plotted against the temperature. Both samples represent primary 

dormant seeds but dormant 1 are partially hydrated seeds and dormant 2 are excessively hydrated seeds, showing 

that when bulk water is present there is a sharp decrease in the integrated intensity at 273 K 

 

spectra was plotted against the temperature (Figure 6) and showed that the 

temperature at which domination of the oxidation of the spin label switched to 

domination of the reduction of the spin label was at 245K in sub-dormant and 250K 

in secondary dormant seeds. However, in primary dormant seeds the switch 

occurred at a higher temperature (260K). Due to this shift the level of the spectral 

intensity at higher temperatures was higher for primary dormant seeds than for 

secondary dormant and sub-dormant seeds. 

When bulk water is present a sharp decrease in integrated intensity can be 

observed at the temperature of water melting at around 273K (Figure 7), which is 

caused by the absorption of energy by free water present in the cavities and not by  
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Figure 8: Contents (nmol/g dry weight) of oxidized and total glutathione in primary dormant, sub-dormant, secondary 

dormant seeds and dormant non pre-imbibed seeds (dry dormant), as measured with HLPC. Error bars indicate 

standard deviation (n=6).  Letters above columns represent significance differences as calculated with t-test. 

 

a sharp reduction of the spin probe. This relates to the deterioration of the Quality 

factor (Q-factor) of the cavity, which is related to the proportion of energy stored 

and dissipated within the cavity. We could not detect a sharp decrease in 

integrated intensity (Figure 6) and therefore we can conclude that there was no 

bulk water present in the seed samples. 

Spin probes can be reduced by different metabolites, including glutathione (Bobko 

et al., 2007), which is an essential component of the redox status of living cells. 

Upon imbibition, total and oxidised glutathione contents rose significantly (Figure 

8). Primary dormant, sub-dormant and secondary dormant seeds contained similar 

total glutathione contents. However, oxidised glutathione levels increased from  
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Table 2: Relative content (percentage of total) of unsaturated fatty acid and double bond index (DBI) for Sisymbrium 
officinale seeds in different physiological states, as calculated from 13C NMR MAS spectra 

 
primary dormant (350 nmol/g dry weight (DW)) to sub-dormant (370 nmol/g DW) to 

secondary dormant (384 nmol/g DW) seeds, with a significant difference between 

primary dormant and secondary dormant seeds (p= 0.001). 

Fatty acid composition 

Membrane fluidity can be adjusted by introducing or reducing the number of double 

bonds in the fatty-acyl chains of the membrane lipids, making the membrane more 

or less fluid (Los and Murata, 2004; Sato and Murata, 1980). The unsaturated fatty 

acid percentage and the double bond index of total fatty acids of primary dormant, 

sub-dormant and germinating seeds were measured by NMR and calculated. The 

percentage of 18:1 appeared slightly reduced in primary dormant seeds, while the 

percentage of 18:2 was slightly elevated when compared with sub-dormant and 

germinating seeds (Table 2). Percentages 18:3 and DBI did not differ among 

dormancy states. Because these data are obtained for bulk lipids, i.e. including oil, 

care has to be taken when membrane fluidity is discussed. Membranes might have 

fatty acid composition different from oil (Sheffer et al., 1986; Millar et al., 2000; 

Voelker, 2001). Membrane fluidity can be also modified by sterols and other 

compounds or membrane-editing by corresponding enzymes (Millar et al., 2000).   

  

Sisymbrium 18:1 18:2 18:3 DBI 

Primary dormant 32.0 28.3 39.7 2.03 

Sub-dormant 34.6 24.5 40.9 2.01 

Germinating 34.0 25.2 
40.8 2.05 
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Discussion 

 

Membranes have been suggested to be the primary target for temperature 

perception (Murata and Los, 1997) and membranes and membrane fluidity have 

often been implicated in the regulation of dormancy and germination (Hilhorst, 

1998). Temperature induced changes in membrane fluidity have been proposed to 

be the primary temperature sensing event (Murata and Los, 1997). However, the 

non-specific effects of membrane-altering agents used in experiments testing this, 

coupled with a lack of any evidence for defects in temperature-regulated gene 

expression in Arabidopsis desaturase mutants, have lead to skepticism that this 

could be a possible temperature sensing system in plants (Penfield, 2008; 

Somerville and Browse, 1996).  

 We determined changes in membrane fluidity in the different physiological 

states of S.officinale seeds. Seeds of this species require a combination of light 

and nitrate for germination to take place. If the light pulse is not given within a 

certain time window, seeds become secondary dormant, and will not germinate. 

The light and nitrate pulses alone cannot break dormancy and induce germination; 

the seed will need these triggers within a certain temperature window (Karssen, 

1982). The present EPR measurements clearly show that primary dormant seeds 

contained less-fluid membranes than secondary dormant and sub-dormant seeds 

at low temperatures (Figure 3). When the temperature was increased to 270 K a 

relatively mobile component appeared in the EPR spectrum, together with the 

already present immobile component (Figure 4A). In this temperature range 

membrane fluidity can be estimated by the proportion of mobile and immobile 

components. The characteristics of the mobile component cannot be properly 

calculated due to overlapping of the spectra. This proportion seems to be similar 

for all dormancy types, indicating that at physiological temperatures that are 

suitable for germination, the membranes for all dormancy types are equally fluid. At 

temperatures above 300K (Figure 4B) the mobile component becomes the main 

component in the ESR spectrum. Although these high temperatures are not 
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physiologically relevant for the seed they might show underlying differences 

between the dormancy states. At T>300K membrane fluidity can be calculated 

from the shape of the narrow-line spectrum. (Figure 5, inset).  The ratio between 

the low-field peak and the high-field peak was calculated as a parameter, which 

relates to the viscosity of the spin label environment. The lesser values of this ratio 

in the whole range of temperatures above room temperature in sub-dormant seeds 

suggests that during the transition from the primary dormant to the sub-dormant 

state, viscosity decreased and, hence, membrane fluidity increased notably. When 

secondary dormancy was induced membranes became more rigid again at high 

temperatures. At 310K primary dormant and secondary dormant seeds showed a 

similar fluidity but at higher temperatures the membranes of secondary dormant 

seeds remained more fluid than those of the primary dormant seeds. Primary 

dormant seeds had been imbibed on water for 1d in the dark, while sub-dormant 

seeds had been imbibed in nitrate for 1d in the dark. The difference in membrane 

fluidity could thus be an effect of the imbibition medium rather than the different 

dormancy states. However, secondary dormant seeds appeared to have a less 

fluid membrane than sub-dormant seeds, while both had been imbibed on nitrate. 

Secondary dormant seeds have been sub-dormant before becoming secondary 

dormant due to absence of a light pulse within the required time (Derkx & Karssen, 

1993a). This suggests that secondary dormant seeds had a more fluid membrane 

after 1d when seeds were sub-dormant, but with induction of secondary dormancy 

the membranes became more rigid again. These results support the membrane 

hypothesis, which suggests that the changing responsiveness to naturally 

occurring factors like light and nitrate (Hilhorst, 1990a,b) may indeed be a function 

of membrane fluidity (Hilhorst, 1998).  

 The changes in integrated intensity with temperature (Figure 6) give more 

information about the changes of the spin label within the seeds with temperature 

that are not visible in the shape of the EPR spectra. The spin label reduction in 

primary dormant seeds started at a higher temperature than in sub-dormant and 

secondary dormant seeds.  Although the temperatures at which the changes take 
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place are not physiologically relevant for dormancy and germination they do show 

the possible differences between the dormancy states.  

 The reducing reaction depends on the presence and mobility of reducing 

molecules. Glutathione is assumed to be the main redox compound for most living 

cells (Gilbert, 1995). A central role for oxidized glutathione in overcoming seed 

dormancy stages was suggested (Kranner and Grill 1996), as oxidized glutathione 

accumulation could serve in protecting thiol groups from desiccation induced 

oxidative injury; desiccation is one of the later developmental stages and may be 

associated with dormancy. However, the role for glutathione in dormancy 

alleviation has not been confirmed (Bahin et al., 2011).   

Differences in oxidized glutathione levels were small but significant between 

primary dormant and secondary dormant seeds and could be a sign of a local 

effect. There were no differences between primary dormant and sub-dormant 

seeds, indicating that glutathione was not the (only) cause of the reducing reaction 

within the EPR spectra. This is in contrast with results of Wang and Faust (1994) 

and Fontain et al. (1995) who found that the breaking of dormancy in barley seeds 

and apple buds was closely related to an increase in reduced glutathione levels; 

other people, however, were also not able to confirm a role for glutathione in 

dormancy alleviation (Bahin et al., 2011). Glutathione levels were all measured at 

room temperature, which is above the temperature where the switch from oxidation 

to reduction of spin label takes place in primary dormant, as well as secondary 

dormant and sub-dormant seeds. The location of glutathione (cytoplasm) 

compared to the location of the 5-mDS(A) spin probe (membrane core) makes 

glutathione a very unlikely candidate for the reducing reaction. In addition to that, in 

a dry system with high molecular immobilization the reaction between the two is 

hardly possible, and there is little to no metabolism at this temperature. 

Glutathione, or other reducing factors, could still be present in the same amounts in 

primary dormant, secondary dormant and sub-dormant seeds but in a more 

immobile state and thus less accessible at a higher temperature in dormant seeds. 
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These data coincide with the lesser mobility of the spin probe molecules in 

membranes in dormant seeds at higher temperatures (Figure 5).  

Desaturases have often been implicated in membrane fluidity (Sato and Murata, 

1980; Cyril et al., 2002)   Based on 13C NMR spectra, we found slight differences in 

18:1 and 18:2 fatty acids content of lipids between dormant and sub-

dormant/germinating seeds. It is possible that the total signal masks the 

differences in fatty acid composition and double bond index of membrane lipids. 

The desaturation of fatty acids counteracts the decrease in membrane fluidity (Sato 

and Murata, 1980). According to the spin-label data, sub-dormant seeds have 

more fluid membranes in comparison with primary dormant seeds, and therefore 

an increased DBI of membrane lipids should be expected for these seeds. 

However, the small differences found in 13C NMR spectra do not support this 

expectation. Two reasons of such discrepancy can be mentioned. First, the FA 

composition of (some) seed membranes might be different from that determined for 

bulk lipids from 13C NMR spectra (Sheffer et al., 1986). Second, other than DBI 

factors might modify membrane fluidity, such as sterols, flavanoids and other 

amphiphiles. 

   

In conclusion, particularly primary dormancy was linked to more rigid membranes 

at low and high temperatures. Membranes became more fluid upon breaking of 

dormancy. When secondary dormancy was induced, membranes became more 

rigid at high temperatures but the membrane rigidity of primary dormant seeds was 

not restored completely. At temperatures relevant for germination the fluidity of 

membranes does not differ between different physiological states. Desaturation of 

fatty acids of membrane lipids could be involved in membrane fluidity but changes 

in desaturation of bulk lipids were so small that they cannot prove this mechanism.  

The increased fluidity of membranes of sub-dormant seeds may allow the 

receptors for nitrate and light to become available for binding and allow 

germination to take place (Hilhorst, 1998), however, at physiological optimal 

temperatures for germination no major differences in membrane fluidity were 
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found. As some changes in membrane fluidity are seen at temperatures not 

relevant for germination the membrane hypothesis described in chapter 1 cannot 

be completely discarded, however, it is not likely to be the main temperature 

sensing event that leads to germination. A suggestion how temperature sensing 

works and eventually leads to germination could be the circadian clock (Penfield, 

2008). The circadian clock consists of at least three interlocking transcriptional 

feedback loops. One of the key features of the circadian clock is their ability to 

perform robustly across a wide range of temperature regimes. Several genes 

involved in the circadian clock have also been shown to play a role in promotion of 

seed germination (Penfield and Hall, 2009).  
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Chapter 4 

Dormancy transitions correlate with 

altered cytoplasmic properties in 

seeds of Sisymbrium officinale 
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Kew, Wakehurst Place, Ardingly, W Sussex, RH17 6TN, U.K. 

Abstract 

 

The regulation of seed dormancy is tightly linked with abiotic stress factors from the 

environment. Seeds may anticipate a period of adverse conditions by shutting 

down their metabolism and engaging a stress response in order to protect cellular 

constituents from irreversible damage. The regulation of dormancy and survival of 

seeds under conditions that mimic storage in the soil are largely dependent on the 

composition of the cytoplasm. In this study the colligative properties of cytoplasmic 

water were attempted to be linked to physiological dormancy states of Sisymbrium 

officinale seeds. Cytoplasmic properties were studied using the spin probe 3-

carboxyl-proxyl. Tests on PEG, an osmoticum, showed that primary and secondary 

dormant embryos did not grow as well as sub-dormant and germinating embryos 

on higher concentrations of PEG and were, thus, less tolerant  to osmotic stress. 
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Therefore, we conclude that dormancy of S. officinale seeds is also, at least 

partially, located in the embryo. 

The ‘ease’ at which vitrified water melts and the viscosity of the cytoplasm show 

that dormant and sub-dormant seeds possessed a higher viscosity than the 

germinating seeds. The viscosity of secondary seeds appeared to be intermediate, 

but the ‘ease’ at which the vitrified water melted was similar to that of primary 

dormant seeds.The higher viscosity of the dormant and non-dormant seed may be 

a way of the seed to survive prolonged periods in the hydrated state. As a result of 

the changes in viscosity the temperature of vitrified water melting was lower (265K) 

for germinating seeds than for primary, sub- and secondary dormant seeds (280K). 

In conclusion, we have shown, for the first time, that cytoplasmic viscosity may 

increase upon the induction of dormancy. The observed changes in cytoplasmic 

viscosity may be linked to changes in metabolism and the changes in vitrification 

temperature may be linked to changes in the content of high-molecular weight 

compounds.  

Introduction 

 

For a seed to germinate under a range of conditions, or withstand extended 

periods of drought, excessive heat and frost, it needs to be able to adapt quickly to 

the environment. Seeds that have already initiated germination cannot stop this 

process anymore. Therefore, these seeds need to be able to continue germination 

during changes in temperature, water availability, salinity, etc. For example, a seed 

can only cope with changes in osmotic potential of the environment if it maintains 

its ability to take up water and nutrients from the environment. In order to take up 

water from an environment with low osmotic potential, the water potential of seed 

cells and tissues has to be even lower (more negative).  

For a dormant seed the main environmental changes that take place when buried 

in the soil are changes in temperature and changes in its water content 
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(hydration/dehydration cycles). Changes in temperature have a profound influence 

on the lipid and cytoplasmic properties of the (dry) seed. In general, higher 

temperature will increase molecular mobility and, therefore, also the 2 or 3 

dimensional diffusion of compounds in both membranes and the cytoplasm, at 

least of the dry seed (Buitink et al., 2000a/b; Chapter 3).   

By seasonal sensing, seeds are known to anticipate a stressful period by shutting 

down their metabolism and engaging a stress response. One of the possible stress 

responses in seeds is the loss of water from dormant tissue (Pnueli et al., 2002). At 

reduced water content, many reactions that may have had the potential to damage 

cells and cell constituents under such adverse physical conditions are suppressed. 

The stress response, e.g. dehydration, may induce the synthesis of compounds 

that protect the cells against dehydration damage, such as late embryogenesis-

abundant (LEA) proteins (Ingram and Bartels, 1996) and anti-oxidants. The LEA 

proteins are implicated in stabilizing and protecting cellular structures (Shinozaki et 

al., 1999) and may also protect cells during the course of de/rehydration (Pneuli et 

al., 2002). The mechanism of dehydration and concomitant synthesis of protective 

compounds to cope with adverse conditions has been described for buds (Rohde 

and Bhalerao, 2007), but has been studied mainly in micro-organisms, such as 

bacteria (Potts, 1994) and yeast (Hohmann, 2002), as well as invertebrates, such 

as tardigrades and rotifers (Danks, 2000). The link between dormancy and stress 

has hardly been studied in seeds, although Cadman et al. (2006) have shown that 

the dormancy and stress responses in seeds of Arabidopsis thaliana are intimately 

associated at the level of gene expression.  

Although intermediate water content may reduce seed longevity (Roberts and Ellis, 

1989) another possible survival strategy under frost conditions could be not the 

loss of water, but vitrification, as opposed to crystallisation of water components 

(Langis and Steponkus 1990). Vitrification of living tissue, or intracellular glass 

formation, is generally induced by rapid cooling of cells. However, in seeds 

intracellular glasses can be formed simply by drying to 10% moisture content, or 

less (Leopold et al., 1994). It is not clear if we can compare these two forms of 
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vitrification, as one is a ‘water’-glass and the other is a ‘non-water’-glass. The 

complex chemical matrix of seeds prevents crystallization. Raffinose 

oligosaccharides and late embryogenesis abundant (LEA) proteins appear to be 

decisive for the occurrence of glass formation rather than crystallization and play a 

role in glass stabilization (Buitink et al., 2000b). A high viscosity glass can inhibit 

protein unfolding and denaturation and provide protection against heat stress by 

counteracting the effect of elevated temperature on diffusion in the cytoplasm and 

protein unfolding (Klimov and Thirumalai; 1997). Vitrification may be necessary but 

is not sufficient to protect the biological system during desiccation as the glass 

transition behaviour appears to be identical in desiccation tolerant and desiccation 

sensitive seeds and pollen and it is assumed that other factors are involved (Sun et 

al., 1994; Buitink et al., 1996; Sun and Leopold 1997). So far, it is not clear if 

vitrification is important for the regulation of dormancy. 

In this study we have attempted to monitor the physical properties of the cytoplasm 

in hydrated seeds to link these to the physiological dormancy states. Sisymbrium 

officinale seeds were used, as their dormancy states are clearly distinguishable 

and easy to manipulate (Hilhorst and Karssen, 1989). The cytoplasmic viscosity 

and vitrification temperatures of the different dormancy states of the seeds were 

analysed using Electron Paramagnetic Resonance (EPR). 3-Carboxyl-proxyl (CP) 

was used as spin probe. CP is a polar molecule which resides mainly in the 

aqueous environment.  

Materials and Methods 

Germination 

Seeds from Sisymbrium officinale were collected in a field in the vicinity of 

Wageningen, The Netherlands in 2004. Seeds were cleaned, dried at 20ºC to 85 

mg water/g dry seed, and stored at 5ºC. Prior to germination, seeds were surface 
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sterilized in 1% sodium hypochlorite for 1 minute and rinsed with demineralized 

water for 5 minutes. Triplicates of 30 seeds were sown in 5-cm Petri dishes on two 

layers of filter paper (Schleicher & Schuell No 595), moistened with 1.5 ml of either 

water, 25 mM KNO3 ,or 100 µM GA4+7 (Sigma-Aldrich, Zwijndrecht, The 

Netherlands). Seeds were imbibed for 1 or 10d in the dark at 25°C after which they 

were irradiated with a saturating red light (620-700nm, Phillips) pulse for 10 

minutes or kept in the dark (Hilhorst and Karssen, 1988). After irradiation, seeds 

were transferred back to the dark at 25ºC. Germination was scored every day after 

irradiation, for 1 month under green ‘safe’ light. 

Germination on PEG 

Seeds were sown on Petri dishes on two layers of filter paper (Schleicher & 

Schuell No 595), moistened with 1.5 ml of either water, 25 mM KNO3, or 100 µM 

GA4+7 (Sigma-Aldrich, Zwijndrecht, The Netherlands). Seeds were imbibed for 1 or 

10 days in the dark at 25°C. After this pre-incubation the seed coat and endosperm 

were removed with tweezers and intact embryos were imbibed in different 

concentrations of polyethylene glycol (PEG) in triplicate, at 25°C with an 8/16h 

light/dark regime. The growth potential was assessed by measuring the length of 

isolated embryos daily for 10d. 

EPR 

Seeds were imbibed in water, 25 mM KNO3, or 100 µM GA4+7 (Sigma-Aldrich, 

Zwijndrecht, The Netherlands), for 1 or 10 d in the dark. Seed coats were removed 

and seeds/embryos were then dried at 25°C. Embryo samples were then incubated 

in 1 mM perdeuterated 3-carboxy-proxyl (CP) spin probe, with ferricyanide unless 

measuring changes in signal intensity, for 10 minutes, hydrating the seeds 

completely. After 10 minutes of incubation the embryo samples were removed from 

the solution, blotted with filter paper and loaded into a 2-mm capillary for spectra 

recording. EPR spectra were recorded using an X-band EPR spectrometer (Bruker 
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E500 Elexys CW, Rheinstetten, Germany). To prevent overmodulation and 

saturation of the EPR signal, microwave power was limited to 5 mW, the 

modulation amplitude was less than the width of the narrowest lines in the spectra, 

and the scan range was 100 G. The first spectrum was recorded at room 

temperature (not shown), after which the CP samples were cooled to 220 K. From 

then onwards, the temperature was slowly increased. The spectra were recorded 

at temperatures between 220 and 305 K (+/- 1K) at increments of 5 degrees.  

Results 

Germination 

In S.officinale the different dormancy states could be clearly distinguished and 

were easy to manipulate (see Chapter 2, Figure 1). Seeds imbibed in H2O failed to 

germinate both in the light and dark, indicating that these seeds were primary 

dormant. Seeds required KNO3 to become sub-dormant, and a light pulse (620-700 

nm) of at least 10 minutes to complete germination. The light pulse was required 

within a certain time window; when applied after 10 days of imbibition in KNO3, 

seeds had become secondary dormant and the light pulse was not sufficient to 

induce germination. Seeds imbibed in 100 µM GA4+7 completed germination both in 

the light and in the dark, which indicates that the light requirement was bypassed. 

The cytoplasmic properties of seeds of all four dormancy states were studied by 

EPR, with 3-carboxy-proxyl (CP) as probe. 

Germination on PEG 

Decoated embryos of primary dormant, secondary dormant, sub-dormant and 

germinating seeds all showed the same growth in water (Figure 1). However, 

growth of these embryos on different concentrations of PEG revealed that at more 

negative osmotic potentials of PEG, primary dormant and secondary dormant  
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Figure 1: Length (mm) of embryos after incubation for 144h in PEG solutions of different osmotic strength. Seeds were 

pre-incubated in the dark on 25mM KNO3 for 1 day (●)(sub-dormant), H2O for 1 day (■)(primary dormant), 25 mM 
KNO3 for 10 days (♦)(secondary dormant) and GA4+7 for 1 day (▲)(germinating), before seed coats were removed and 
seeds were transferred to the PEG medium. Error bars represent standard deviation. 

 

seeds were less resistant to the inhibitory action of PEG than germinating and sub-

dormant seeds (Figure 1). 

EPR Measurements 

3-Carboxy-proxyl spectra 

For characterization of the water fraction in hydrated seeds in different 

physiological states, seeds were labelled with perdeuterated 3-carboxyl-proxyl 

(CP). CP is a relatively small (MW 186) molecule that is easily soluble in water. It is 

a polar molecule, due to its OH group. This group increases the probability to form 

hydrogen bonds and, thus, CP resides mainly in the aqueous cytoplasm. All seed  
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Figure 2: CP Spectra of Sisymbrium officinale seeds in different dormancy states. Seed samples are slowly heated 

from 220 K to 300K. The melting of vitrified water occurred at 280 K in dormant, seco. ndary dormant and sub-dormant 

seeds. Vitrified water melted at 265 K in germinating seeds 

 

samples were cooled to 200 K and then slowly heated. The spectra were recorded 

from 220 K to 305 K with 5-degree steps. 

 At low temperatures all the spectra showed vitrified water. Above 260 K 

(germinating seeds) or 275 K (dormant and sub-dormant seeds) part of the water 

appears in a liquid state as can be seen by the appearance of narrow-line spectra 

(Figure 2). Complete melting of vitrified water occurred at about 280 K, in dormant, 

secondary dormant and sub-dormant seeds; in germinating seeds melting of 

vitrified water occurred at around 265 K. The narrow component in the spectra of 

germinating seeds below 265 K originates from CP in oil (Figure 2). This can be 

concluded from the distance between narrow lines, which are typical for 

hydrophobic environment. 
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Figure 3: Changes of the distance between the outermost extremes, 2Amax, of the immobile (solid-like) component of 
CP spectra in Sisymbrium officinale seeds in different dormancy states, with temperature. Breaking points of curves 

are indicated by the dotted lines. 

  

Motional freedom, within the solid-like spectra, as measured by the distance 

between the outermost extremes (2Amax) can be used as a tool to measure the 

‘ease’ at which  vitrified water melts (Kumler and Boyer, 1976) (2Amax is determined 

only for solid-like spectra; see chapter 3). Plotting 2Amax against temperature will 

show a linear temperature dependency of 2Amax due to increase of the motional 

freedom. However, at a certain temperature, there is a break in the temperature 

dependency, as from this break the rate of changes of the motional freedom with 

temperature increases (Kumler and Boyer, 1976; Buitink et al, 1998; Buitink et al, 

2000). The break occurred at 270K for primary and secondary dormant seeds, at 

255Kfor sub-dormant seeds and at 250K for germinating seeds. Figure 3 shows 

that vitrified water melted much easier in germinating seeds than in any other 

seeds. 
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Figure 4: Rotational correlation time of CP in the cytoplasm of Sisymbrium officinale seeds in different dormancy 
states at different temperatures 

 

The narrow line spectra of CP in aqueous cytoplasm can be used to calculate the 

rotational correlation time for CP molecules according to the formula: 
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ΤR = 6.5 x 10-10 ∆W0 ((h0/h-1)
 1/2-1) 

in which h0 and h-1 are the heights of the central and high-field lines (Figure 4A) 

and ∆W0  is the peak-to-peak width of the central line. The rotational correlation 

time is proportional to the viscosity (Keith and Snipes, 1974). In Figure 4 the 

rotational correlation time of CP in the cytoplasm at temperatures above the 

melting temperature for all 4 seed samples is shown. The τR and, thus, cytoplasmic 

viscosity were high in primary dormant and sub-dormant seeds, and low in 

germinating seeds. In the secondary dormant seeds the viscosity had intermediate 

values. 

Discussion 

 

3-Carboxy-proxyl (CP) was used in an EPR study to investigate the colligative 

properties of cytoplasm water in seeds in different dormancy states, as it can give 

information about how seeds adapt their cytoplasmic properties to periods of 

dormancy. Sisymbrium officinale seeds were used for this, as their dormancy 

states are clearly distinguished and easy to manipulate (Hilhorst and Karssen, 

1989). Dormancy can be broken by supplying the seeds with nitrate and a light 

pulse within a certain time frame. When the light pulse is suspended, seeds 

become secondary dormant and will not germinate. When the seed coat (and 

endosperm) is removed, embryos will grow on water, even when pre-incubated to 

be dormant. This could be an indication that Sisymbrium officinale seeds have a 

seed coat/endosperm imposed dormancy (Bewley, 1997). However, tests on PEG, 

an osmoticum, showed that primary and secondary dormant embryos did not grow 

as well as sub-dormant and germinating embryos on higher concentrations of PEG 

(Figure 1) and were, thus, less tolerant  to osmotic stress. Therefore, we conclude 

that dormancy of S. officinale seeds is also, at least partially, located in the 

embryo. This is the result of differences in the base water potential for germination, 

which is higher (less negative) in dormant seeds, as compared to non-dormant 
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seeds (Bradford, 2005). This implies that the seed coat/endosperm imposes a 

restriction on embryo growth, and the dormant embryo itself cannot gain sufficient 

force to overcome this restriction. To enable the seed to germinate and grow in an 

environment with a low osmotic potential (more negative) it needs to enhance the 

water potential of lots of cells to be able to take up water. It was suggested by 

Nabors and Lang (1971) that germination stimulating factors cause an increase of 

the osmotic potential of the embryonic axis, and therefore increase the water-

absorbing capacity of the seed. The osmotic potential of the embryonic axis could 

decrease by an increase in the concentration of low-molecular weight substances. 

The low molecular weight substances will decrease the viscosity of the cytoplasm 

and the temperature of water vitrification. Here we studied the viscosity of the 

cytoplasm and the vitrification temperature of the seed, at different states of 

physiological dormancy.  

The ‘ease’ at which vitrified water melts (Figure 3) and the viscosity of the 

cytoplasm (Figure 4) show that dormant and sub-dormant seeds possesed a 

higher viscosity than the germinating seeds. The viscosity of secondary seeds 

appeared to be intermediate, but the ‘ease’ at which the vitrified water melted was 

similar to that of primary dormant seeds. This difference in cytoplasmic viscosity 

could be caused by a change in presence of high-molecular weight substances. 

Cytoplasmic viscosity could be of importance in the dormancy of the seed. At high 

viscosity the seed is protected against protein unfolding (Klimov and Thirumalai, 

1997) and heat stress due to reduced diffusion within the cytoplasm. The higher 

viscosity of the dormant and non-dormant seed may be a way of the seed to 

survive prolonged periods in the hydrated state. The high viscosity in the dormant 

state was also found by Dijksterhuis et al. (2007), who studied fungal spores. 

However, they came to the conclusion that the higher viscosity was not mainly 

caused by a high concentration of solutes but by the high proportion of ordered 

spin probe molecules in the vicinity of macro-structures. Sun (2000) linked reduced 

metabolism in red oak seeds to an increased viscosity. In Chapter 2 we found a 
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reduction in metabolic activity for dormant and non-dormant seeds, as compared to 

germinating seeds, which may be linked to the increased viscosity found here.   

 As a result of the changes in viscosity the temperature of vitrified water 

melting was lower (265K) for germinating seeds than for primary, sub- and 

secondary dormant seeds (280K) (Figure 2). The lower vitrification and melting 

temperatures for germinating seeds could be due to the presence of higher 

concentrations of low-molecular weight substances, as these are known to lower 

the vitrification temperature (Wolfe and Bryant 1999). The low-molecular weight 

substances could originate from the mobilisation of storage metabolites. While in 

non-dormant and dormant seeds the higher molecular weight substances (e.g.  

raffinose family of oligosacharides, sucrose, trehalose etc.) are more dominant 

(Kou et al, 1988; Downie and Bewley, 2000) in germinating seeds high molecular 

weight substances are hydrolysed into more low-molecular weight substances (e.g. 

glucose, fructose) (Downie and Bewley, 2000). These low-molecular weight 

substances increase the osmotic potential (make it more negative) and, therefore, 

the water absorbing capacity of the seed (Nabors and Lang, 1971). 

 

In conclusion, we have shown, for the first time, that cytoplasmic viscosity may 

increase upon the induction of dormancy. The better water absorbing capacity of 

germinating seeds may be caused by hydrolysis of storage metabolites into low 

molecular weight compounds which will then cause a decrease in vitrification 

temperature. Even though it is not clear if this is the main cause for a change in 

viscosity of the cytoplasm, the increased cytoplasmic viscosity in the dormant state 

may contribute to a long-term maintenance of seed viability. However, it is not clear 

yet if the increase in cytoplasmic viscosity is the result or the cause of reduced 

metabolic activity within the seed. 
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Abstract 

 

Dormancy cycling in seeds depends on changes in sensitivity or responsiveness to 

naturally occurring factors that are known to break dormancy or stimulate 

germination. Receptors for these factors are likely to occur in membranes and 

based on that, a model was proposed in which regulation of dormancy depends on 

accessibility of membrane-bound receptors. Accessibility of membrane-bound 

receptors can change by changing the membrane fluidity. Membrane fluidity is 

largely determined by composition of unsaturated fatty acids in the membrane 

phospholipids, which is a function of temperature and activity of desaturases. Here 

we tested the hypothesis that unsaturated fatty acids and desaturase gene activity 
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are involved in the induction of secondary dormancy by changing membrane 

fluidity. To test this hypothesis Arabidopsis thaliana desaturase mutants fad3, fad7, 

fad8, ads1 and ads2 and wild type seeds were used. All mutants were 

characterised in their dormancy phenotype. Membrane fluidity and fatty acid 

composition were analysed when enough seeds where present, whilst the 

expression of desaturase genes was analysed in wild type seeds.  

Whilst ADS2 seems to have an influence on membrane fluidity and is expressed in 

non-dormant seeds, it does not show any changes in dormancy phenotype; this 

may be due to functional redundancy. FAD3 activity shows changes in relation to 

dormancy and germination but it is not involved in changes in membrane fluidity. 

Although desaturase activity may change the membrane fluidity or influence the 

germination/dormancy phenotype, the two are not linked, unless the effects of 

these enzymes are very localised within the seeds.  

Introduction 

 

Dormancy cycling in seeds of Arabidopsis thaliana and Sisymbrium officinale 

depends on changes in sensitivity or responsiveness to naturally occurring factors 

that are known to break dormancy or stimulate germination, such as light and 

nitrate (Hilhorst, 1990 a/b).  Sisymbrium officinale seeds have an absolute 

dependency on a combination of light and nitrate to terminate dormancy and 

initiate germination (Hilhorst et al., 1986, Hilhorst, 1990a, b).  In Arabidopsis 

thaliana light, but not nitrate, is an absolute requirement for germination (Derkx and 

Karssen, 1994). There are several possible mechanisms that explain how 

responsiveness to light and nitrate can change; two possible explanations suggest 

that (1) either the amount of active receptors or (2) the accessibility of their ligands 

changes with the induction and relief of dormancy (Raison et al., 1980; Di Nola and 

Mayer, 1986; Hilhorst, 1998). Receptors for light (through phytochrome) and nitrate 

are likely to occur in membranes and with that in mind Hilhorst (1998) proposed a 
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model in which regulation of dormancy cycling depends on accessibility of 

membrane-bound receptors (chapter 1). In this model the magnitude of movement 

of receptor proteins within the membrane depends on membrane fluidity. A higher 

fluidity may cause the receptor to move to the membrane surface, where it then 

becomes accessible for nitrate and phytochrome. Membrane fluidity is largely 

determined by the content of unsaturated fatty acids in the membrane 

phospholipids, which on its turn is a function of temperature and activity of 

desaturases. Thus, the breaking and inducing of dormancy may be achieved by 

changes in temperature that induce an increase or decrease of fatty acid 

unsaturation. 

 A downward shift in temperature results in a decrease in membrane 

fluidity, whereas an upward shift may cause fluidization of the membrane (Los and 

Murata, 2004; Vigh, 1998). Decreased/increased membrane fluidity can cause 

extensive damage to the membranes; therefore membranes are able to adjust to 

the new conditions to maintain their fluidity. This is called homeoviscous adaptation 

(Sinensky, 1974). Membrane fluidity can be adjusted at low temperature by 

introducing double bonds into the fatty-acyl chains of membrane lipids, making the 

fatty acids more unsaturated and, hence, the membrane more fluid (Los and 

Muratta, 2004). The introduction of double bonds in fatty acids is mediated by 

desaturases. Following an upward shift in temperature, the degree of unsaturation 

of fatty acids of membrane phospholipids may again decrease, by suppression of 

the desaturation of fatty acids and acceleration of de novo synthesis of saturated 

fatty acids, thereby diluting the unsaturated fatty acids (Sato and Murata, 1980). 

 There are three types of desaturases: Acyl-CoA desaturases, Acyl-ACP 

desaturases and Acyl-lipid desaturases (Murata and Wada, 1995). Acyl-CoA 

desaturases introduce double bonds into fatty acids that are bound to Coenzyme 

A, and are only found in animal, fungal and yeast cells. Acyl-ACP desaturases can 

introduce the first double bond into plant fatty acids that are bound to an Acyl-

carrier protein (ACP), a reaction which occurs in the plastids of plant cells (Murata 

and Wada, 1995). All double bonds can be introduced by Acyl-lipid-desaturases 
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into fatty acids that have been esterified to glycerolipids, bound to the 

endoplasmatic reticulum or chloroplast membrane (Murata and Wada, 1995). 

Since the Acyl-lipid desaturases introduce double bonds directly into the fatty acids 

of membrane lipids they are most efficient in regulating unsaturation in response to 

temperature changes (Murata and Wada, 1995). Acyl-lipid desaturases introduce 

double bonds at specific sites within the carbon chains. The order in which these 

desaturases operate is very strictly determined: the first double bond is introduced 

by the ∆9 desaturase (an Acyl-ACP- or Acyl-lipid-desaturase), introducing a double 

bond in the 9th position of a C18, fatty acid converting stearic acid (18:0) into oleic 

acid (18:1) (Murata and Wada, 1995). The second double bond is introduced by a 

∆12 or ∆6 desaturase (Acyl-lipid-desaturases), introducing a double bond in the 

12th position of oleic acid (18:1) converting it into linoleic acid (18:2). This double 

bond is only introduced into fatty acids that have a double bond at the ∆9 position. 

The third and last double bond is introduced by an ω3 or ∆15 desaturase (Acyl-

lipid-desaturases), converting linoleic acid (18:2) into linolenic acid (18:3) (Matos et 

al., 2007). This desaturase only introduces double bonds into fatty acids that have 

a double bond at the ∆12 position (Hagashi and Murata, 1993). 

 The aim of the present work was to assess the effects of mutations in 

desaturase genes on the induction of secondary dormancy. To test the hypothesis 

that membrane desaturases are involved in the induction of secondary dormancy, 

we used Arabidopsis thaliana fatty acid desaturase (FAD) mutants and wild type 

seeds as control. Here we used the fad3, fad7, fad8, ads1 and ads2 mutants. The 

fad3, fad7 and fad8 mutants are mutated in the ω3 desaturase genes (Murata and 

Wada, 1995), whereas ads1 and ads2 are mutated in a ∆9 desaturase gene 

(Murata and Wada, 1995). The fad3, fad7, fad8, ads1 and ads2 mutants were 

characterised in their dormancy phenotype whilst the expression of desaturase 

genes was analysed in wild type seeds.  
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Materials and Methods 

Seed germination and plant growth to obtain higher quantity of 

seeds 

Seeds were obtained from the Arabidopsis Biological Resource Centre (ABRC). 

Wild-type and fad3, fad7, fad8, ads1, ads2 mutants were all from the Columbia 

genetic background. Of all seeds 2 different mutant lines in the same gene were 

ordered, if available. Seeds were sterilized for 1h using a gas sterilizer containing 

bleach and 1.2% HCl. Seeds were sown on 0.5 MS medium containing 2.3 g /l 

vitamins, 0.8 % purified agar (Duchefa) pH = 6.0, 1.95 g/l MES hydrate (Sigma) 

and 10 mg/l kanamycin. Petri dishes containing medium with seeds were kept at 

4°C for 3 days. After 3 days dishes were transferred to 24°C under a 16h/8h 

light/dark regime. After seeds had germinated and plants were big enough they 

were transferred to the ARASYSTEM (www.arasystem.com) and kept at 24°C 

(16h/8h, light/dark). 

Seed germination  

Freshly harvested wild type and mutant seeds were stratified at 4°C for 3 days to 

break any dormancy present. After stratification seeds were irradiated with red light 

for two hours and transferred back to the dark, at 5, 15, 20 and 25°C. Secondary 

dormancy was induced after stratification at 4°C by incubating the seeds in the 

dark for 10 days at a range of temperatures, before the light pulse was given and 

seeds were germinated at the same temperature. 

Isolation of genomic DNA 

100-200 mg young leaves were collected in an Eppendorf tube and frozen in liquid 

nitrogen. Leaf material was ground to a fine powder. DNA extraction buffer (0.3 M 
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NaCl, 50 mM Tris (pH 7.5), 20 mM EDTA, 2% Sarkosyl, 0.5% SDS, 5 M Urea and 

5% (v/v) Phenol pH 7.5) was added and samples were refrozen and ground again. 

A phenol/chloroform extraction was performed; samples were mixed gently and 

spun at 12.000 rpm for 5 minutes. DNA was precipitated with iso-propanol and kept 

at room temperature for 5 minutes, then washed with 70% ethanol and dried 

briefly. DNA pellets were dissolved in TE buffer containing 10 μg/ml RNAse and 

stored at 4°C. 

RNA isolation from mutant seed material and gene expression 

analysis for detection of homozygous plants 

30 mg of seed material was collected per sample and RNA was isolated using the 

SV Total RNA isolation system (Promega) according to the manufacturer’s 

instructions. cDNA was synthesized, using iScripttm (Biorad), from 1 µg total RNA, 

in a mixture containing RNase H+ iScript reverse transcriptase, RNase inhibitor, 

oligo (dT) and random hexamers (used as random primers). The reaction protocol 

was 5 min at 25ºC, 30 min at 42ºC followed by 5 min at 85ºC and hold at 4ºC. For 

detection of homozygous mutant plants and gene expression analysis of mutant 

plants quantitative real time PCR (QRT-PCR) was performed using the Bio-Rad 

system (iCycler iQ Real Time PCR detection device). The iQ Sybr Green Supermix 

(BioRad) was used, containing SYBR green I dye, hot-start iTaq DNA polymerase, 

buffer and dNTPs qualified for quantitative PCR. The Supermix also contained 

fluorescein used for the correction of the readings and 5 μl of cDNA. Primers used 

are listed in Table 1 (for detection of homozygous plants) and Table 2 (for 

expression analysis). The standard thermal profile used was 3 min at 95ºC, 

followed by 45 cycles of 15s at 95ºC, 1s at 60ºC and 2 min at 72ºC.  
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Gene 
symbo 

AGI ID T-DNA line Forward (5’3’)

Reverse (3’ 5’)

FAD3 AT2G29980 SALK_042036 AATTATACCAGTCGTGGCCG 

   TTTTTCTTTTATTGCGAGTTTGTC 

FAD7 AT3G11170 SALK_049635 AACAGTGGAGCAAGAGTCAGG 

   ACAGAACTCACCACCAGAACC 

  SALK_096415 CAAAGACGATAGCGACGTCT 

   TGGT CAACTAGTTGGGTTTG 

FAD8 AT5G05580 SALK_137876 GGAAGGTTTAGCACACCATATTG 

   AGAATGACGAATCATGGCATC 

  SALK_093590 GTAGGCAGATGAAGCATGAGG 

   GACCAAAGAGAGCAACCCTTC 

ADS1 AT1G06080 SALK_044895 TTCAAAGGGACATCGTCAATC 

   GGCAGTTGGTTCAGGTACCTC 

  SALK_069299 CCACATTTGTCCTTCTTCCAC 

   TTAAGAGTCGCCCTCATTGTC  

ADS2 AT2G31360 SALK_016783 AGTGTGGAAGAAGAGCAAACG 

   TTTCTTCTTTTATCGTAAACGACG 

  SALK_079963 GAGCTGTCTCCAATTCATGTG 

   TCATTCTCTTGCTCTCTTGGC 

Table 1: Primers used for detection of genomic DNA 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2: Primers used for gene expression analysis 

Gene symbol 
Forward (5’ 3’) 

Reverse (3’ 5’)

FAD3 AAGAAGAAAGGTTTGATCCGAGTGC 

 TGGCCCAGAAAAGTGTTCCTTGG 

FAD7 TGAACAGTGTGGTCGGTCAT 

 GCATCACGAGAGGCAGTGTA 

FAD8 CTGAGAGGAGGGCTCACAAC 

 GAAGTGGCAGAGGTCCAGAG 

ADS1 GGAGAATAACAAGAAAATGGCAGCG 

 TTCGGTGGTAAGAGACGGTGATACC 

ADS2 TTCATT TCTTGCTCTCTTGGCTCC 

 TCAATCGGATCTCCCTGAATAGCG 
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RNA isolation from wild type seeds for analysis of fatty acid 

desaturase gene expression 

Following treatment, seeds were stored in 2-ml tubes at -80°C. Total RNA was 

extracted using a hot borate method (modified from Wan and Wilkins, 1994). 

Seeds were ground with mortar and pestle, submerging the mortar and pestle in 

liquid nitrogen before grinding. Ground seeds were kept submerged in liquid 

nitrogen prior to RNA extraction. Ground seeds were re-suspended in 700 µl 

extraction buffer [(0.2M sodium tetraborate decahydrate, 30 mM EGTA, 1% w/v 

SDS, 1% w/v sodium deoxycholate, pH 9.0) containing 14 mg polyvinylpyrolidone 

and 1.1 mg dithiothreitol], which had been heated to 80°C. The seed suspension 

was added to 0.35 mg proteinase K in a 2 ml round-bottomed tube and incubated 

at 42°C for 90 min. 56µl 2M KCL was then added and samples incubated on ice for 

1h. Samples were centrifuged at 16000 g at 4°C, after which the supernatant was 

transferred to a new tube and its volume determined. A one-third volume of 8M 

LiCl (to give a final 2M LiCl concentration) was added and samples were incubated 

overnight at 4°C. Samples were centrifuged, and pellets washed by vortexing in 2M 

LiCl until the supernatant remained colourless. Pellets were re-suspended in 300 µl 

diethylpolycarbonate (DEPC) treated water, and RNA precipitated by the addition 

of 30 µl 2M potassium acetate and 990 µl ice-cold 100% ethanol, and incubation 

overnight at -80°C. RNA was pelleted by centrifugation at 16000 g for 30 min at 

4°C, followed by a wash with 70% ethanol. Partially dried pellets were re-

suspended in 50µl DEPC-treated water. RNA concentration and quality were 

determined using a WPA lightwave s2000 UV/Vis spectrophotometer. 

QRT-PCR of wild type seeds 

Total RNA from 3 biological replicates per treatment were used. cDNA was 

synthesized using a transcriptor first strand cDNA synthesis kit (Roche), according 

to the manufacturer’s instructions. Primers were used as described in Table 2. 

PCR reactions were performed using LightCycler FastStart DNA master SYBR 
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green I (Roche), in a mixture containing 5 µl cDNA in a volume of 25 µl. The 

thermal profile used was 10 min at 95ºC, followed by 45 cycles of 1 min at 95ºC, 2 

min at 60ºC and 1 min at 72ºC. Comparative Ct values were calculated and 

ANOVA tests were used to statistically analyse the data. 

Nuclear Magnetic Resonance Spectroscopy (NMR) 

The NMR spectra were recorded on an Avance II spectrometer (Bruker, 

Rheinstetten, Germany), as described in chapter 3. Dry Arabidopsis thaliana seeds 

with seed coats and without additional treatments were packed into a 7 mm 

Zirconia rotor and spun under a magic angle at spinning speed of 5 kHz. 1H MAS 

spectra were recorded at room temperature with a spectral width of 6 kHz applying 

single-pulse sequences with a 10 μs rf pulse and 5 s repetition delay between 

scans. Time domain size of the spectra was 8 k with a number of accumulations of 

32. The narrow range of proton chemical shifts makes it difficult to identify 

individual fatty acids.  

13C MAS single-pulse excitation spectra were obtained and analysed as described 

in chapter 3, and was used for analyses of the fatty acid (FA) composition of the 

mutants and wild type. 

Electron Paramagnetic Resonance 

The methyl ester of 5 doxyl stearic acid (5-mDS(A)) was used as a spin probe. This 

spin probe is weakly anchored in the phospholipid head group area due to the high 

hydrophobicity of the methyl ester. As a result, methylated spin label is localized in 

a deeper position in the membrane bilayer than its un-methylated counterpart (5-

DS(A)) (Sanson et al., 1976). 5-mDS(A) is often used to study membrane fluidity 

(Benatti et al., 2001; Bianconi et al., 1988; Turchiello et al., 2000; chapter 3). 

Arabidopsis seeds were imbibed in water for 8h in the dark. Medium attached to 

the surface of the seed was removed with filter paper before seed coats were 
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removed using tweezers, after which seeds were dried at room temperature. Dry 

seeds were placed in a 1mM solution of membrane spin probe in hexane. After 1d 

the spin probe solution was removed, seeds were washed twice with hexane and 

placed at 30% RH for 24 hours to remove the remaining hexane from the seeds. 

Seeds were re-hydrated by humidification for 3h at 100% RH.  

EPR spectra were recorded with an X-band EPR spectrometer (Bruker E500 

Elexys CW, Rheinstetten, Germany). To prevent over-modulation and saturation of 

the EPR signal, microwave power was limited to 5 mW, the modulation amplitude 

3G for solid-state and 1G for fluid type spectra. In the case of 2-component spectra 

the lowest modulation amplitude of 1G was used. Field scan widths of 100G were 

used. 

Results 

Identification of homozygous T-DNA insertion mutants 

Nine SALK T-DNA lines (Alonso et al., 2003) representing T-DNA insertions in 5 

desaturase genes were obtained from the ABRC (Table 1). Seeds from the 

homozygous mutant plants were tested for expression of the desaturase genes 

using qRT-PCR, and none showed significant expression (data not shown).  

 

Phenotypic analysis 

Phenotypic analysis did not show appreciable differences between wild type and 

most mutant plants. However, the fatty acid desaturase 7 mutants (fad7; 

Salk_096415) showed slow growth. Plants were lagging 2 weeks behind in 

development and flowering. No differences in seed and seed coat structure could 

be observed. 
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Arabidopsis 
thaliana 

18:1 

% 

18:2

% 

18:3

% 

DBI 

Wild type 39,3 41,3 19,4 1,68 

ads1 43,9 36,1 20,1 1,73 

ads2 38,1 43,9 18,0 1,67 

fad3 41,6 51,9 6,5 1,51 

Table 3: Relative unsaturated fatty acid composition and double bond index for Arabidopsis thaliana wild type and 
mutant seeds as calculated from 13C NMR MAS spectra 

Fatty acid composition 

The fatty acid composition (of the seed oil) of wild type and of the ads2 and ads1 

mutants was comparable (Table 3). However, the fad3 mutants [lacking the ω3 

desaturase, responsible for converting linoleic acid (18:2) into linolenic acid (18:3)] 

showed a reduced 18:3 percentage and, likely as a consequence, an increased 

18:2 content, resulting in a reduced double bond index of fad3. Fatty acid contents 

of fad7 and fad8 mutants could not be established due to seed shortage. 

Membrane fluidity 

A methyl ester of 5 doxyl stearic acid (5MESL) was used as a spin probe to give 

information about the average fluidity of the membranes (Benatti et al., 2001; 

Bianconi et al., 1988; Turchiello et al., 2000). The 5-mDS(A) spectra in 

Arabidopsis, at lower temperature (T<270 K), showed that the membranes were in 

the solid state. The mobility of the label in the solid membrane matrix can be 

characterized by 2Amax (Chapter 3, this thesis). The decrease of 2Amax with 

increasing temperature is caused by the increase of label mobility (Figure 1). Wild 

type seeds and fad3 mutant seeds showed the same temperature dependence of 

2Amax despite the fact that the fatty acid composition differed most between these 

two samples. Membrane fluidity of ads 1 was the highest and of ads 2 was the 

lowest in spite of roughly similar to the wild type FA composition and DBI (Table 3).  
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Figure 1: The temperature dependence of 2Amax values of 5-mDS(A)spectra from hydrated de-coated wild type, ads1, 
ads2 and fad3 seeds. 2Amax is a measure for membrane ordering. With increasing temperature the membrane 
ordering will be less and, hence, 2Amax becomes lower. ads1 mutant shows the highest membrane ordering and  
ads2 mutant shows the least membrane ordering. The degrees of membrane ordering in wild type and fad3 mutant are 

intermediate and do not significantly differ from each other. 

 

At higher temperatures the ratio between h0 and h-1 can be used as an estimate of 

the membrane viscosity (Golovina and Hoekstra, 2002; insert Figure 2). Here we 

observed again that wild type and fad3 mutant seeds had a comparable viscosity, 

even though the fatty acid composition differed. The ads2 mutant seeds had a 

much lower viscosity than all other seeds (Figure 2). The ads1 mutant seeds 

showed an intermediate viscosity to wild type and ads2 mutant seeds. The fad7 

and fad8 mutants were not analysed by EPR due to shortage of seeds. 
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Figure 2: The temperature induced changes in membrane fluidity of hydrated wild type and mutants ads1, ads2 and 
fad3. Membrane fluidity is expressed as the ratio of the central line height (h0) to the low-field (h-1) line height of 5-
mDS(A) spectra (insert).  The fad3 and wild type seeds show a comparable viscosity, ads2 mutants show a much 
lower viscosity, while ads1 mutant seeds show an intermediate viscosity 

Germination 

Freshly harvested wild type Columbia seeds were pre-incubated at 4°C for 3 days 

to break any dormancy present. After pre-incubation seeds were irradiated with red 

light for two hours and transferred back to the dark, at 5, 15, 20 and 25°C. Wild 

type seeds germinated up to 100% (Figure 3A) at all temperatures. From the t50 

values (Figure 3B) it can be seen that seeds reached half maximum germination 

significantly earlier, as confirmed by t-test, at 20 and 25°C than at 5 and 15 °C (p-

value: 0.0000008 and 0.009), implying that 20 and 25°C are the more optimal 

temperatures for germination than 5 and 15°C for this Arabidopsis accession. At 

5°C maximum germination was achieved only after 24d, at the other temperatures  
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Figure 3: A. Total germination and B. time to half-maximal germination (t50) of wild type, ads1 and ads2 seeds. A and 
B in mutant names indicate different sites of the mutation in the same gene. A and B in wild type indicate replicates 
coming from different seed batches. Seeds were imbibed in water at 4°C for 3d before being transferred to the light 
(left) or kept in the dark for 10 d (right) before being transferred to the light. 3 replicates were used. Vertical bars 
represent standard deviation 

 
maximum germination was achieved within 4d. All mutants reached similar levels 

of germination (Figures 3 and 4), apart from the ads1A mutants. The ads1A mutant 

germinated only for 55% at 5°C; however, the ads1B mutant germinated for 100% 

at 5°C. The difference between A and B is caused by a different site of the 

mutation in the same gene. 
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Figure 4: A. Total germination and B. time to half-maximal germination (t50) of  fad3, fad7 and fad8 seeds. A and B in 
mutant names indicate different sites of the mutation in the same gene. Seeds were imbibed in water at 4°C for 3d 
before being transferred to the light (left) or kept in the dark for 10 d (right) before being transferred to the light. 3 
replicates were used. Vertical bars represent standard deviation 

 

Induction of secondary dormancy  

After pre-incubation at 4°C, seeds were incubated in the dark for 10 days at a 

range of temperatures to induce secondary dormancy, before the light pulse was 

given and seeds were germinated at the same temperature. Germination of wild 

type seeds at 20 and 25°C reached 80% or more, at 15°C germination only 

attained 67% (Figure 3A). The t50 values differed significantly among all these three 

temperatures, as tested by t-test, (Figure 3B; p-values, 0.00000047, 0.000000016, 

and 0.0008), showing that seeds incubated at 25°C reached their optimum 

germination faster than seeds imbibed at a lower temperature. In none of the 

genotypes incubated at 5°C was germination initiated within 24d. At 20°C all the 

mutants germinated to a level very close to wild type seeds, with the exception of 
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the ads1A mutant which germinated for only 60%. The greatest variation in 

germination was observed at 15°C. Only the ads1B mutant germinated to the same 

percentage as the wild type (65%). Of the other genotypes fad7A, fad7B 

germinated at 15 C to a higher level (90%) than the wild type, whereas the rest 

showed germination below that of the wild type of which the ads1A mutant showed 

only 10% germination. The fad3 mutants showed wild type germination levels at 

20°C, but was the only genotype that displayed lower germination (50%) at 25°C. 

The t50 for all mutants was comparable with the wild type, with only the fad7 

mutants showing a somewhat lower t50 (70 vs 80h at 15°C).  

Fatty acid desaturase gene expression in wild type Arabidopsis 

thaliana seeds 

Desaturases were further analysed by studying their transcript abundance in wild 

type seeds that were imbibed for 1 or 10 days at 15 or 25°C, to characterize 

optimal and suboptimal conditions for germination. Although germination reached 

comparable levels at both temperatures there is a difference in the t50 between the 

two temperatures (figure 3).Gene expression analysis was done on seeds that 

were pre-incubated for 1 day at 4 °C and were subsequently incubated in the dark 

or in the light; seeds imbibed for 10 days were incubated for 10 days in the dark 

before transferring them to either the light or keeping them in the dark for 8 hours. 

Seeds imbibed in the dark do not germinate at all, seeds imbibed for 10 days in the 

dark before transferring them to the light, do germinate (Figure 3), however, to a 

lesser value than seeds not imbibed in the dark for 10 days. Gene expression was 

analysed by the comparative Ct method and further analysed by t-test (p=0.05).  

FAD3 gene expression (Figure 5) was significantly higher in the least dormant 

seeds at 15 and 25°C.  When seeds were light irradiated during imbibition for 1 

day, gene expression was higher than when kept in the dark for 10 days at optimal 

germination temperatures. There was no effect of the temperature on transcript 

abundance which corresponds with comparable germination at 15 and 25°C, albeit  
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Figure 5: Relative transcript abundance of FAD3, FAD7, FAD8, ADS1 and ADS2 genes in wild type seeds. Seeds 
were imbibed at 15 or 25°C, for 1 (1d) or 10 (10d) days, after which they were transferred to the light (L) or kept in the 
dark (D). 5 replicates were used per sample. Gene expression was analysed with the comparative Ct method and 
further analysed with ANOVA, standard deviations are given.  Germination status of the seeds is given, - stands for no 
germination; + for some germination; ++ for up to 100% germination. 

 

 

with different t50.  Although without prolonged dark imbibition fad3 mutants showed 

100 % germination, they showed the most dormant phenotype after 10 days dark 

pre-incubation at suboptimal temperatures (Figure 4A) suggesting that FAD3 gene 

expression may be associated with optimal conditions for breaking dormancy and 
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inducing germination. FAD7 gene expression (Figure 5) was significantly higher in 

seeds imbibed in the light for 1 day, at 15 and 25°C than in all other treatments, so 

FAD7 seems to be associated with induction of germination too. FAD8 gene 

expression (Figure 5) was significantly higher for 1 day imbibed seeds at 25°C as 

compared with all other treatments. Both these 1-d imbibed seeds and 1-d imbibed 

seeds at 15°C had their dormancy broken, however only 1-d imbibed seeds at 

25°C showed higher FAD8 gene expression. ADS1 and ADS2 gene expression 

(Figure 5) did not show a pattern that could be clearly related to dormancy, 

although the abundance of ADS1 and ADS2 transcripts was significantly different 

between the different treatments (e.g. ADS2 gene expression being significantly 

higher for 1-d imbibed seeds in the light than for 10-d imbibed seeds 

Discussion 

 

The aim of this work was to determine the relation between desaturase activity and 

seed dormancy. Arabidopsis thaliana Columbia wild type plants and fad3, fad7, 

fad8, ads1 and ads2 mutant plants in a Columbia back ground were used. The 

ads1 and ads2 mutants are mutated in a ∆9 desaturase. The ∆9 desaturases 

introduce a double bond in the 9th position of the C18, converting stearic acid to oleic 

acid (Murata and Wada, 1995).The fad3, fad7 and fad8 mutants are mutated in ω3 

desaturase and therefore are not capable of forming double bonds at the ∆15 

position of the C18 acids (Murata and Wada, 1995), converting linoleic acid (18:2) to 

linolenic acid (18:3) (Matos et al., 2007).  

NMR data showed that the FA composition of ads1 and ads2 mutants did not differ 

much from wild type seeds.  

 ads1 and ads2 Mutant and wild type seeds both are able to germinate  up 

to 100% in the light at temperatures ranging from 5 to 25 °C after a short cold 

imbibition at 4 °C (Figure 3), showing that both wild type and mutant seeds 

exhibited similar vigour. A shift from 4°C to higher temperatures, such as 25°C 
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generally increases membrane fluidity. As ads1 and ads2 mutants did not show 

any differences in FA composition, no differences in germination pattern were 

expected. Imbibition of WT seeds for 10 days in the dark before they are 

transferred to the light should induce secondary dormancy as in e.g. Sisymbrium 

officinale seeds (Derkx et al., 1993; Hilhorst, 1990a/b; Chapter 2 of this thesis). 

However, in Arabidopsis seeds induction of secondary dormancy has been shown 

to take longer in the Cvi ecotype (Cadman et al., 2006). In Figure 3A we see that 

after 10 day pre-incubation wild type seeds  did not longer germinate at 5°C, but 

still germinated up to a high percentage at 20-25°C, at 15 C germination 

percentage was somewhat less than at 20 – 25 C (Figure 3A). After 10 days of 

dark incubation, seeds completed germination faster when imbibed at 25°C (Figure 

3B), making this the more optimal temperature for germination. Apparently, the 10 

day pre-incubation had made the germination temperature window narrower, and 

germination was reduced outside this window. Thus, Arabidopsis seeds acquire 

secondary dormancy at low temperatures, which underlines the winter annual 

properties of the Columbia accession (Cadman et al., 2006).   

 The germination pattern was similar for ads1B and ads2A and B  mutants 

but the ads1A mutant showed significantly reduced germination at 5 °C (without 

dark imbibition) and at 15°C (after 10 days of dark pre-incubation ) as compared 

with wild type (Figure 3A). The abundance of ADS1 and ADS2 transcripts was 

significantly different between the different treatments. ADS2 gene expression was 

significantly higher for 1-d imbibed seeds in the light than for 10-d imbibed seeds.  

The fatty acid composition of ads1 and ads2 mutants was comparable to wild type 

seeds but the membranes of ads2 mutants were more fluid and of lower viscosity 

than that of ads1 and wild type seeds (Figs. 2, 3). Thus, although ads1A mutants 

show a different germination pattern than wild type seeds, the germination pattern 

results of the ads1B combined with the membrane fluidity, FA composition and 

gene expression levels lead to the conclusion that ADS1 genes are not involved in 

dormancy and germination. ADS2 gene activity did not seem to show a clear 

relation with germination and dormancy (Figure 5; compare the results for the ads2 
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mutants), nor with the fatty acid composition, but it had the most profoundly 

changed membrane fluidity and viscosity.  ADS1 and ADS2 are both 

endoplasmatic reticulum based desaturases that catalyze the formation of the first 

double bond in the FA, and if this double bond is not formed no other double bonds 

are formed (Murata and Wada, 1995). Thus, it is very likely that these mutants 

show functional redundancy since membranes cannot exist if only saturated fatty 

acids are present (Stubbs and Smith, 1984; Los and Murata, 1998). ADS2, 

however, has been shown to be able to change membrane fluidity whereas ADS1 

is not (Fukuchi-Muzutani et al., 1998).  This is in agreement with our results. So 

while some functions of ADS1 and ADS2 might be interchangeable, not all 

functions are. The fatty acid content obtained here is the content for bulk lipids, i.e. 

oil and membranes. Membranes might have fatty acid composition different from 

oil (Sheffer et al., 1986; Millar et al., 2000; Voelker, 2001). Therefore changes 

found in membrane fluidity but not in fatty acid content might not mean that fatty 

acids and desaturases are not the cause of the change in fluidity. However, 

membrane fluidity can be also modified by sterols, flavonoids and other 

compounds.  Testing of ads1/ads2 double mutants would be a next step in 

analyzing the functions; however, ADS1, ADS2 and ADS3 are known to be able to 

switch regiospecificity (Heillman et al., 2004) making analysis more difficult. 

 NMR data confirmed that the fad3 mutant is impaired in the conversion of 

linoleic acid to linolenic acid, although still one third of the linolenic acid is present 

(Table 3). Mutant and wild type seeds both germinated up to 100% at temperatures 

ranging from 5 to 25 °C after a short cold imbibition (Figure 3A, 4A), showing that 

both wild type and mutant seeds exhibited similar vigour. A shift from 4°C to higher 

temperatures, such as 25°C generally increases membrane fluidity. The fluidity is 

maintained by decreasing the degree of unsaturation of fatty acids of membrane 

lipids, which is achieved by acceleration of de novo synthesis of saturated fatty 

acids, as this dilutes the unsaturated fatty acids (Sato and Murata, 1980).  As this 

process does not involve the action of desaturases itself, mutants were not 

expected to exhibit a germination pattern different from wild type seeds. 
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 The fad3 mutants showed increased dormancy after 10 day pre-incubation 

at 25°C, as compared to wild type seeds, with clearly narrowed germination 

temperature window. However, at 20°C, the germination percentages of fad3 

mutants and wild type seeds are high and both up to 100 %. At 25°C wild type 

seeds showed a high percentage of germination but this was not seen in the fad3 

mutant seeds where germination was reduced to 50%. At 15°C the germination of 

fad3 mutants seems slightly reduced after 10 day pre-incubation compared to wild 

type seeds, however, this is not significant.  

Even though desaturases are known to introduce double bonds at low 

temperatures and not at high temperatures (Los and Murata, 2004), FAD3 was 

expressed to similar levels at both 25 and 15°C (Figure 5). In fad3 seeds 18:3 

production is reduced (Table 3; Nishida and Murata, 1996; Horiguchi et al., 2000; 

Matos et al., 2007), thus an increase in 18:3 level, mediated by FAD3, could be 

necessary to keep the membranes fluid enough for dormancy breaking (Hilhorst, 

1998). Nevertheless, EPR measurements did not show appreciable differences in 

membrane fluidity between wild type and fad3 mutants (Figure 1 and 2). However, 

measurements were done after 1d, when there is also no difference in germination 

between the two treatments. The expectation would be that after a 10-d pre-

incubation, when there is a clear difference in dormancy and germination pattern 

between genotypes, there would be a difference in membrane fluidity; 

unfortunately this could not be measured here, due to a shortage of seeds.  

Previously, we have found that secondary dormancy induction is accompanied by 

membranes becoming less fluid (This thesis, Chapter 3). In fad3 mutant seeds 

membranes can only become slightly more fluid and at higher temperatures (10d at 

25°C) a much higher fluidity might be needed to keep seeds non-dormant. The 

lower fluidity of fad3 mutants compared to wild type seeds at higher temperatures 

might be the reason for partial induction of secondary dormancy at 25°C which did 

not occur in wild type seeds. The FAD3 gene expression pattern found here is 

similar to that found by Finch-Savage et al. (2007) in the Cvi accession of A. 

thaliana. The present results combined with those of Finch-Savage et al. (2007) 
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show that expression of FAD3 is low in dormant seeds and higher when dormant 

seeds are exposed to cold or light. It is interesting to see that in wild type seeds 

that germinated after a 10-d pre-incubation, there was no FAD3 expression. FAD3 

is post-transcriptionally controlled by temperature (Collados et al., 2006) but 

transcriptionally by light (Collados et al., 2006). The light induced transcription 

combined with the reduced sensitivity to light (Hilhorst 1990a/b) after prolonged 

incubation might explain why there is no FAD3 expression after 10 days. 

 The fad8 mutant seeds showed a similar germination pattern as wild type 

seeds. However, at 15°C, germination only reached a maximum of 55% after a 10 

day pre-incubation (Figure 3, 4), suggesting that the germination window had 

narrowed. Gibson et al (1994) reported that FAD8 transcript levels may increase at 

low temperature, making the membrane more fluid. This could be the cause of 

changes in germination induction at low temperature as seen here. However, 

FAD8 gene expression increases when dormancy is broken and/or germination is 

induced, but only at 25°C (Figure 5). This is in disagreement with results in the eFP 

browser that showed higher FAD8 expression levels when dormancy is broken and 

germination is induced and where no differences in expression between cold 

imbibition or imbibition at 22°C were found. The reason for the discrepancy 

between Gibson et al (1994) and eFP browser is unknown.  

 FAD7 is a chloroplast based light-induced desaturase (Los and Murata, 

1998). The gene expression results (Figure 5) show a light dependency for 1-d 

imbibed seeds. After 10d of pre-incubation, however, the FAD7 gene was not up-

regulated by light anymore. After secondary dormancy is induced seeds become 

less responsive to light (Hilhorst, 1990a/b) and this coincides with FAD7 not being 

up-regulated. Although the expression pattern suggests FAD7 to be involved in 

germination, the mutant germination pattern did not confirm this. This could be due 

to functional redundancy, as there are more ω3 desaturases and fad7 mutants only 

show the mutant phenotype under certain conditions, as other ω3 desaturases 

may take over its role (Gibson et al., 1994). As FAD7 protein is mainly present in 

the thylakoid membrane of chloroplasts (Poghosyan et  al., 1999) gene expression 
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will not lead to functional proteins within the seed and therefore FAD7 is unlikely to 

be involved in germination itself. 

 Some but not all desaturases are shown here to change in relation to 

dormancy and germination. FAD3, FAD7 and FAD8 all catalyze the conversion of 

linoleic acid (18:2) to linolenic acid (18:3) (Matos et al., 2007). From the present 

results we can conclude that this is an important conversion and is likely to be 

involved in dormancy and germination. Although all three FADs catalyze the same 

conversion, their functions in dormancy and germination appear to be different. 

Especially FAD3 is shown to have a relation with dormancy and germination. 

However, FAD3 involvement was not supported by measurements of membrane 

fluidity. This could indicate that desaturases may influence the 

germination/dormancy phenotype of Arabidopsis seeds but, possibly not via 

changes in membrane fluidity unless effects of these enzymes are very localized 

within the seed, e.g. in the radicle.  

Therefore the question remains how in seed germination responsiveness to light 

and nitrate can change; this probably cannot be explained by changes of 

membrane fluidity due to desaturase activity leading to changes in accessibility of 

ligands. 
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Chapter 6 

Characterization of dormancy related 

genes in Sisymbrium officinale (L.) 

Scop. using a cDNA subtraction 

library 
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Abstract 

 

Dormancy depth of imbibed seeds changes continuously in response to the 

environment. These changes in dormancy depth might be the result of differences 

in sensitivity to dormancy breaking factors. Sisymbrium officinale seeds show 

reduced sensitivity to nitrate after long imbibition in the dark. Transcriptional 

differences between primary and long-term primary dormant seeds (seeds imbibed 

for 1 and 10 days in water, respectively, before application of light) of S. officinale 

were analysed using two cDNA subtraction libraries and compared to Arabidopsis 

thaliana. Several genes were differentially expressed between dormancy states, in 

S. officinale as well as A. thaliana, however, a large amount of genes found in S. 

officinale were differently expressed in A. thaliana in similar dormancy states. The 



96 
 

genes found in the subtraction libraries were classified using FunCat and TAGGIT 

classification. A large set of genes found were stress related genes which might be 

the seeds strategy to cope with the adverse conditions met during dormancy. 

However, the exact role of these genes in the regulation of primary and long term 

primary dormancy can only be verified by functional analysis, e.g. by reverse 

genetics. 

Introduction 

 

Seeds are equipped to survive extended periods of unfavourable conditions before 

germination and plant establishment take place under more favourable conditions. 

The absence of germination under favourable conditions for germination is called 

dormancy. One of the most widely occurring types of seed dormancy is 

physiological dormancy. Physiological dormancy acquired during maturation on the 

mother plant, is called primary dormancy and is observed in seeds upon shedding. 

Primary dormancy in Arabidopsis can be removed during dry storage (after-

ripening) and/or cold stratification (pre-chilling). After removal of these blocks to 

germination seeds are capable of completing germination if environmental 

conditions are favourable; if environmental conditions are not favourable for 

germination, seeds may become secondary dormant. Seeds can cycle in and out 

of dormancy repeatedly; this is called dormancy cycling (Taylorson, 1972; 

Bouwmeester and Karssen, 1993).  

 The depth of the dormancy of imbibed seeds changes continuously in 

response to the environment (Finch-Savage et al., 2007). After-ripened or pre-

chilled seeds may respond to dormancy breaking factors such as light and nitrate 

and start germination. However, when primary dormant seeds are imbibed for a 

long time (long term primary dormant) or when seeds are secondary dormant, they 

become less responsive to these dormancy breaking factors (Derkx and Karssen, 

1993a), especially nitrate. The difference in sensitivity may reflect the difference in 
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depth of dormancy. Several methods have been used to analyse the transcriptional 

differences between primary dormant and long-term primary dormant seeds. Micro-

array analysis of dormancy states in Arabidopsis thaliana has shown that genes 

expressed in long-term primary dormant seeds group away from genes expressed 

in primary dormant seeds in a principal component analysis (Cadman et al., 2006). 

It was confirmed that long term primary dormancy is a deeper dormancy than 

primary dormancy. To analyse transcriptional differences between the primary 

dormant and long term primary dormant seeds of Sisymbrium officinale, cDNA 

subtraction libraries were generated. Although cDNA subtraction library analysis is 

very labour intensive it was chosen over micro-array analysis to prevent cross-

species hybridization difficulties. Genes found in the libraries were compared to 

gene expression in Arabidopsis thaliana using the eFP browser and classified 

using FunCat and TAGGIT classification systems. A stress response is thought to 

be the seeds way of coping with adverse conditions met during dormancy; 

dormancy and stress responses are strongly linked and largely overlapping 

(Cadman et al., 2006; Hilhorst, 1995), therefore the genes found in the subtraction 

libraries were compared to known stress related genes. 

 

Material and Methods 

Plant material, germination conditions 

Seeds of Sisymbrium officinale (L.) Scop. were collected in a field in the vicinity of 

Wageningen, The Netherlands in 2004. Seeds were cleaned, dried at 20ºC to 85 

mg water/g dry seed, and stored at 5ºC until use (2005-2008). Prior to germination, 

seeds were surface sterilized in 1% sodium hypochlorite for 1 minute and rinsed 

with demineralized water for 5 minutes. Triplicates of 30 seeds were sown in 5-cm 

Petri dishes on two layers of filter paper (Schleicher & Schuell No 595), moistened 

with 1.5 ml of either demineralised water or 25 mM potassium nitrate (Fisher). 

Seeds were imbibed for 1 (primary dormant, water; non-dormant, potassium 
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nitrate) or 10 (long term primary dormant, water; secondary dormant, potassium 

nitrate)) days in the dark at 25°C after which they were irradiated with a saturating 

red light (620-700nm, Phillips) pulse for 10 minutes or kept in the dark (Hilhorst and 

Karssen, 1989). After irradiation, seeds were transferred back to the dark at 25ºC. 

Germination was scored every day after irradiation, for 1 month under safe green 

light.  

Total RNA isolation from seeds 

Following treatment, seeds were frozen in liquid nitrogen and stored in 2-ml tubes 

at -80°C. Total RNA was extracted using a hot borate method (modified from Wan 

and Wilkins, 1994). Seeds were ground with mortar and pestle, submerging the 

mortar and pestle in liquid nitrogen before grinding. Ground seeds were kept 

submerged in liquid nitrogen prior to RNA extraction. Ground seeds were re-

suspended in 700 µl extraction buffer [(0.2 M sodium tetraborate decahydrate, 30 

mM EDTA, 1% w/v SDS, 1% w/v sodium deoxycholate, pH 9.0) containing 14 mg 

polyvinylpyrrolidone and 1.1 mg dithiothreitol], which had been heated to 80°C. The 

seed suspension was added to 0.35 mg proteinase K in a 2 ml round-bottomed 

tube and incubated at 42°C for 90 minutes. 56µl 2M KCL was then added and 

samples incubated on ice for 1h. Samples were centrifuged at 16000 g at 4°C, 

after which the supernatant was moved to a new tube and its volume determined. 

A one-third volume of 8M LiCl (to give a final 2M LiCl concentration) was added 

and samples were incubated at 4°C overnight. Samples were centrifuged, and 

pellets washed by vortexing in 2M LiCl until the supernatant remained colourless. 

Pellets were re-suspended in 300 µl diethylpolycarbonate (DEPC) treated water to 

inactivate RNAses, and RNA precipitated by the addition of 30 µl 2M potassium 

acetate and 990 µl ice-cold 100% ethanol, and incubation at -80°C overnight. RNA 

was pelleted by centrifugation at 16000 g for 30 min at 4°C, followed by a wash 

with 70% ethanol. Dried pellets were re-suspended in 50-µl DEPC-treated water.  
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Gene Forward (5’--> 3) 

 Reverse (3’--> 5) 

XERO1 AGAAGAAGGGAATTACGGAGAAAA 

 CCGGGCAGGTACGCAAACAAGT 

LEA CCTGGTGGGATCGCCGGTTCA 

 CTT CCCGTCGCACCCGTCAAAAC 

AVP1 TGGCAAAGAAGGGAGCGAAGA 

 ACTGGTGGTGCCTGGGACAAC 

ANACO60 GCGGCCGAGGTTTCTAGGGATACA 

 GGGGATACTTCTTACCACGAGCAC 

FAD2 TTGATAATCGGAAAAGGCGTGGTG 

 CGCTCAATCCCTCGCTCTTTCC 

RIN2 AGGTGCTGGTGGAAGGA 

 GAGAGCAATGAACAGAAGC 

Table 1: Primers used for expression analysis of Dehydrin XERO1 (XERO1), Late embryogenesis abundant domain 
containing protein (LEA), Vacuolar-type H+-pumping pyrophosphatase (AVP1), NAC domain containing protein 60 
(ANACO60), Delta-12-fatty acid dehydrogenasse (FAD2), and RPM1 interacting protein 2 (RIN2) genes 

 

RNA concentration was determined using a WPA light wave s2000 UV/Vis 

spectrophotometer. 

cDNA subtraction libraries 

The cDNA subtraction libraries were constructed using the PCR-select cDNA 

subtraction kit (CLONTECH). cDNAs of 1-day H2O imbibed seeds (primary 

dormant) and of 10-day H2O imbibed seeds (long-term primary dormant) were 

used as tester and driver. Fragments of the forward and reverse subtraction 

libraries were cloned into E. coli competent cells (Promega) and plated on LB agar 

plates supplemented with ampicillin (0.1 mg/ml) and grown overnight at 37°C. 

Plasmids were isolated using the High Pure Plasmid Isolation Kit (Roche). A 
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minimum insert size of 200bp was set as criterion for further investigation, to avoid 

difficulties with finding homologue genes in the NCBI database. Sequencing was 

performed at the Wolfson Institute for Biomedical Research (UCL) using AB 

sequencing technology.  

qRT PCR validation of subtraction library data 

The expression of selected genes was quantified by qRT-PCR. Total RNA from 3 

biological replicates per treatment was used. cDNA was synthesized using a 

transcriptor first strand cDNA synthesis kit (Roche), according to the 

manufacturer’s instructions. Primers for real-time PCR were generated using 

DNAstar software PrimerSelect 5.01 with the sequences obtained in the 

subtraction library. Gene specific primer sequences are given in Table 1. Genes 

chosen for validation were normalized with 18S rRNA. PCR reactions were 

performed using LightCycler FastStart DNA master SYBR green I (Roche). 

Reactions were performed in triplicate for each biological replicate, in a mixture 

containing 5μl of first-strand cDNA in a volume of 20μl. The standard thermal 

profile used was 10 min at 95 °C followed by 45 cycles of 10 sec at 95C°, 20 sec at 

60°C and 10 sec at 72 °C. Comparative Ct values were calculated and ANOVA 

tests were used to statistically analyse the data.  

Results and Discussion 

Germination  

In S. officinale different dormancy levels can be distinguished which are easy to 

manipulate. After-ripened seeds imbibed in H2O failed to germinate in the dark and  
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Figure 1: Germination of Sisymbrium officinale seeds after pre-treatment in 25mM KNO3 for 1 day, germinating (light) 

(■), H2O for 1 day, primary dormant (♦), H2O for 10 days, long term primary dormant (●), 25 mM KNO3 without a 
subsequent light-pulse, sub-dormant (dark) (▲). A light pulse was given after 8 hours of imbibition, except for 
treatments labeled ‘dark’, and seeds were placed back in the dark. 

 

in the light and were, thus, considered primary dormant (Figure 1). Seeds required 

both KNO3 and light to break dormancy and initiate germination. When H2O 

imbibed seeds are not given KNO3 and light within a certain time frame (10 days) 

seeds will not respond to KNO3 and light anymore because they have become 

long- term primary dormant. Other factors e.g. chilling or nitrate/light at higher 

concentrations/intensities may be required to relieve dormancy, making long-term 

primary dormancy a deeper dormancy than primary dormancy. To find possible 

differences between primary dormant and long-term primary dormant seeds, a 

cDNA subtraction library of primary dormant vs. long-term primary dormant seeds 

was constructed. In previous chapters of this thesis differences between primary 

and secondary dormancy were sought after. However, the primary and secondary 
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dormancy phenotypes not only differed in time of imbibition, but also in imbibition 

medium (water versus nitrate). If these were used for the subtraction library, not 

only differences in dept of dormancy would be found but also differences in 

response to water and nitrate. Therefore primary dormant and long-term primary 

dormant seeds were used here, as these only differed in imbibition time (1d vs. 

10d).  

cDNA subtraction library construction and sequence selection 

Two reciprocal cDNA subtraction libraries were constructed, one enriched for rare 

messages in primary dormant seeds; and the other one enriched for rare 

messages in long term primary dormant seeds. One tenth of the subtraction library 

was cloned into E. coli. Fifty percent of the colonies contained plasmid with a single 

insert of sufficient size (above 200bp) for sequencing and analysis. Of each library, 

50 genes were sequenced. We found at least 12 sequences per library appearing 

more than once in, mainly, identical fragments. All sequences showed Arabidopsis 

thaliana orthologs with BLASTN, only e-values of 2E-09 or better were accepted. In 

Table 2 the gene lists are given for all the genes that were differentially expressed 

in the subtraction library enriched for primary dormant (Table 2a) and long term 

primary dormant (Table 2b) seeds. The Arabidopsis thaliana orthologs, functional 

description, cDNA length, query coverage, e-value and FunCat MIPS classification, 

expression levels as found on the eFP browser and the ratio between the 

expression levels are given. Sequences that were found more than once are only 

mentioned once. 

 

Table 2: List of genes found in the primary dormant (2A) and long term primary dormant (2B) libraries. The primary 
dormant library is the subtraction library enriched for primary dormant genes while the long term primary dormant 
library is enriched for long term primary dormant genes. The Arabidopsis thaliana orthologs, functional description, 
cDNA length, query coverage, e-value and FunCat MIPS classification, expression values, as found with the eFP 
browser, and the ratio between the expression values are given. Sequences that were found more than once are only 
mentioned once. Comparison with the eFP browser was done by using 24 hour water imbibed Arabidopsis thaliana 
seeds as a comparison for primary dormant seeds in Sisymbrium officinale (PD24h) and 30 day water imbibed 
Arabidopsis thaliana seeds were used as a comparison for long term primary dormant seeds in Sisymbrium officinale 
(PD30d). 
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Arabidopsis 
thaliana 
orthologue 

Gene description 
 
                                               

cDNA length 
(bp) 

% query 
coverage 

e- value MIPS 
classification 
Class 

MIPS 
subclass 

PD24h PD30d Ratio 

AT1G01930 Zinc finger protein-related, 
mRNA 749 64 0.0E+00 99 

 
860.02 196.65 4.4 

AT1G07920 Elongation factor 1-
alpha/EF-1-alpha 776 76 1.0E-67 12, 16, 70 

16.01 
70.16 4328.92 2525.2 1.7 

AT1G13690 ATPase E1; nucleic acid 
binding (ATE1) 235 83 1.0E-113 16 

16.03 
317.37 522.61 0.6 

AT1G30880 
Unknown protein, mRNA 855 42 4.0E-142 70 

70.16 
1221.25 2372.9 0.5 

AT1G35190 Oxidoreductase, 2OG-
Fe(II) oxygenase family 
protein mRNA, complete 
cds 628 58 3.0E-80 1 

1.20 

604.95 725.49 0.8 
AT1G51200 Zinc finger (AN1-like) 

family protien 587 78 3.0E-112 16 
16.03 
16.17 1844.52 3978.8 0.5 

AT1G68790 LINC3 (Little 
nuclei13)(LINC3) mRNA 673 57 0.0E+00 99 

 
300.37 314.96 1 

AT1G79920 Heat shock protein 70, 
putative/HSP70 558 94 8.0E-69 16 

16.19 
251.8 468.97 0.5 

AT2G16590 
FIP15.3 mFRNA 

214 81 6.0E-137  Not found 
  Not 

present 
Not 
present   - 

AT2G36460 Fructose-biphosphate 
aldolase 275 94 4.0E-63 1, 2, 70 

1.05 
70.16 1419.65 1419.4 1 

AT2G38530 LIPID TRANSFER 
PROTEIN 2 (LTP2); lipid 
binding 380 85 2.0E-129 16, 20 42 

16.09 

6279.95 3188.1 2 
AT3G04120 Glyceraldehyde-3-

phosphate dehydrogenase 
C subunit (GAPC)  366 91 2.0E-78 1, 2, 32, 34, 70 

1.05, 32.01 
70.03, 
70.16 477.22 195.95 2.4 

AT3G12120 Delta-12-fatty acid 
dehydrogenase (FAD2) 
mRNA 241 94 3.0E-144 1, 70 

1.06 
70.07 

291.6 370.04 0.8 
AT3G22490 Late embryogenesis 

abundant protein, putative 
LEA protein, putative 
mRNA 636 71 2.0E-121 41 

 

2725 2648.6 1 
AT4G22640 Cupin family protein 

mRNA 617 83 6.0E-149 4 
 

7250.82 641.32 11.3 
AT3G41768 Cytosolic small ribosomal 

subunit 335 89 0.0E+00 12, 16, 70 
 
      70.03 

 Not 
present 

Not 
present - 

AT3G44110 
DnaJ homologue 3 (ATJ3) 

541 79 1.0E-129 14, 16 
16.01 
 1376.67 1788.9 0.8 

AT3G44290 NAC domain containing 
protein 60; transcription 
factor (ANACO60) mRNA 549 70 0.0E+00 11, 41 

 
 Not 
present 

Not 
present - 

AT3G54860 Vacuolar protein sorting 
33; protein transporter 
(ATVPS33) mRNA 612 95 8.0E-65 14, 20, 42 

 

209.3 289.56 0.7 
AT4G00810 60S acidic ribosomal 

protein P1 (RPP1B) 300 75 2.0E-100 12, 70 
70.03 

481.37 199.22 2.4 
AT4G13200 Unknown protein mRNA 411 78 9.0E-50 99  484.37 135.34 3.6 
AT4G16150 Calmodulin-binding protein 

mRNA 718 24 1.0E-179 11, 16 
      16.01 
 

 Not 
present 

Not 
present - 

AT4G25230 RPM1 interacting protein 
2; proteinbinding/ zinc ion 
binding (RIN2) mRNA 534 93 2.0E-126 14, 16, 40, 70 

16.01,16.17 
16.19,70.02 

161.57 141.22 1.1 
AT4G28520 Cruciferin 3; nutrient 

reservoir (CRU3) 470 95 9.0E-82 4, 41 
 

7119.2 6988.3 1 
AT4G34660 AME3; kinase (AME3) 

mRNA 247 86 2.0E-57 14, 70 
70.16 

49.3 44.3 1.1 
AT4G40030 

Histone H3.2 mRNA 
195 80 4.0E-116 16, 42, 70 

16.03,70.10   
      70.26 2487 3888.7 0.6 

AT5G22290 NAC domain containing 
protein 89; transcription 
factor (ANACO89) mRNA 549 75 1.0E-139 11, 41 

 

283.37 335.57 0.8 
AT5G24350 Unknown protein mRNA 374 92   99  185.12 214.37 0.9 
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Arabidopsis 
thaliana 
orthologue 

Gene description                  cDNA length 
(bp) 

% query 
coverage 

e- value MIPS 
classification 

class 

MIPS

Sub-class 

PD24h PD30d ratio

AT1G08060 Maintenance of  
Methylation (MOM) 

262 77 3.0E-18 1, 10, 11, 42, 
70 

70.10 142.7 232.7 0.6 

AT1G08420 Kelch repeat-containing 
protein/ serine/threonine 
phosphoesterase family 
protein 

352 87 1.0E-106 14  118.2 152.6 0.8 

AT1G15280 Glycine-rich protein 214 87 4.0E-28 99  175.9 302.3 0.6 

AT1G15690 AVP1 (vacuolar-type H+- 
pumping pyrophospahtase 

535 82 0.0E+00 1, 14, 20, 32, 
34, 70 

1.04,32.01, 
70.02,70.16, 
70.22 

1491 1469.7 1 

AT1G23290 Ribosomal protein L27A 529 38 2.0E-76 12, 14, 70 70.03 1662.3 657.7 2.5 

AT1G67430 60S ribosomal protein L17 684 38 0.0E+00 12, 14, 70 70.03 2027.2 709.1 2.9 

AT1G75830 Low-molecular-weight 
cysteine-rich 67 
(LCR67/PDF1.1) mRNA 

371 72 1.0E-57 32, 70 32.05,70.011 5035.3 4517.1 1.1 

AT1G79260 Unknown protein mRNA 183 87 8.0E-37 99  30.8 20.2 1.5 

AT2G04270 Glycoside hydrolase 
starch-binding domain 
containing protein mRNA 

359 80 1.0E-121 1, 11, 70 1.03, 1.05, 
70.03,70.16,7
0.26 

54.9 76.7 0.7 

AT2G23110 Unknown protein mRNA 125 88 2.0E-09 99  975.7 1032.3 0.9 

AT3G01650 RING domain ligase1 
protein binding, zinc ion 
binding (RGLG1) mRNA 

214 64 2.0E-65 14  209.5 374.4 0.6 

AT3G11830 Chaperonin, putative mRNA 397 81 1.0E-12 14, 16 16.01,16.19 380.8 1104.2 0.3 

AT3G13330 Binding mRNA 289 49 1.0E-100 99  289.7 281.8 1 

AT3G43520 Unknown protein  372 86 3.0E-109 70 70.26 945 787.4 1.2 

AT3G50980 Dehydrin XERO1 mRNA 410 91 2.0E-75 32, 34 32.01 4399.6 3708.7 1.2 

AT3G55010 Phosphoribosylformylglyci
namidinecyc-loligase 
(ATPURM/PUR5) mRNA 

397 72 4.0E-95 1, 70 1.03,70.03, 
70.26 

123.3 131.3 0.9 

AT3G56340 40S ribosomal protein S26  559 90 8.0E-24 12, 16, 70 70.03 469.8 162.8 2.9 

AT3G56350 Superoxide dismutase 
(Mn), putative/manganese 
superoxide dismutase, 
putative mRNA 

450 37 5.0E-165 32, 70 70.16 2273.1 1697.4 1.3 

AT4G21020 Late embryogenesis 
abundant domain 
containing protein/ LEA 
domain-containing protein 
mRNA 

615 90 4.0E-54 41, 70 70.16 1454.9 2019.1 0.7 

AT4G24690 Ubiquitin-associated 
(UBA)/TS-N domain-
containing 
protein/octicosapeptide/Ph
ox/Bemp1 mRNA 

374 52 1.0E-95 16, 70 16.17, 70.03 13.4 36.4 0.4 

AT5G11710 (EPSIN1); binding mRNA 475 87 3.0E-161 14, 16, 20, 70 16, 70.04, 
70.08 

102.5 58.6 1.8 

AT5G35180 Unknown protein mRNA 576 89 0.0E+00 99  142.7 232.7 0.6 

AT5G35430 Binding mRNA 211 92 6.0E-45 99  118.2 152.6 0.8 

AT5G35440 MOK9_2 mRNA 211 88 7.0E-45 70  175.9 302.3 0.6 

AT5G44430 PDF1.2c 291 84 5.0E-73 32  1491 1469.7 1 

AT5G60980 Nuclear transport factor 2 
(NTF2) (RRM)-containing 
protein 

306 84 5.0E-99 16, 20 16.03 1662.3 657.7 2.5 

AT5G64840 General control non-
repressible 5 (ATGCN5) 

310 87 2.0E-117 20, 34, 70 70.26 2027.2 709.1 2.9 

AT5G66120 3-Dehydroquinate 
synthase, putative 

241 89 2.0E-70 1, 70 1.01, 1.04 
1.05, 1.20 
70.16,70.26 

5035.3 4517.1 1.1 
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eFP browser 

Both the primary dormant and the long term primary dormant libraries were 

compared with (microarray) expression data from Arabidopsis, using the eFP 

browser (www.bar.utoronto.ca; Geisler-Lee et al., 2007; Winter et al., 2007) (Table 

2). The PD24h and PD30d treatments were used for comparison; PD24h are 

Arabidopsis seeds imbibed for 24 hours in water in the dark, these seeds require 

light for germination. PD30d are Arabidopsis seeds imbibed for 30 days in water in 

the dark. These seeds also require light for germination but have been shown to 

possess a deeper dormancy (Cadman et al., 2006), and this is the best 

comparable treatment to long term primary dormant Sisymbrium seeds. 

Normalized expression levels are given in Table 2. The ratios between PD24h and 

PD30d are expected to be above 1 in the primary dormant Sisymbrium library and 

below 1 in the long-term primary dormant library. Of the primary dormant library 

(Table 2a) 43% showed the expected gene expression pattern of up-regulated 

genes of PD24h as compared to PD30d. 46% showed a gene expression pattern 

completely opposite to what we expected and for 11% the PD24h and PD30d 

treatments did not differ in gene expression. Of the long term primary dormant 

library (Table 2b) 46% showed a gene expression pattern with up-regulated 

expression for PD30d as compared to PD24h, as expected; 37% showed a 

completely opposite expression pattern from what was expected and for 17% 

expression of both PD24h and PD30d did not differ. The 4 genes that did not 

appear in the eFP browser are disregarded here. The subtraction library was 

generated from Sisymbrium officinale seeds whereas the Cadman (2006) and 

Finch-Savage (2007) gene sets and the eFP browser gene sets were all generated 

from Arabidopsis thaliana. The genes that were expressed in a similar fashion in 

seeds from both species are the more conserved genes. In Arabidopsis genes 

related to metabolism and energy are more highly expressed during early 

imbibition of primary dormant seeds, as compared with the long-term dormant 

states (Cadman et al., 2006). In contrast, the long-term dormancy states contain a 

greater representation in the transcription, cell cycle and DNA processing 
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functional groups (Cadman et al., 2006). The gene expression differences between 

the Sisymbrium subtraction library and the analysed Arabidopsis gene sets could 

suggest that the subtraction library was not 100% accurate. However, since two 

different species are compared, the genes found differentially expressed between 

subtraction library and Arabidopsis gene set could also be species-specific, 

dormancy-associated genes.  

Functional Classification (FunCat)  

Arabidopsis thaliana orthologs were classified according to the Functional 

Catalogue (FunCat) of the Munich Information Centre for Protein Sequences 

(MIPS) (Figure 2, Table 2). FunCat enables the assignment of multiple categories 

to a single gene (Ruepp et al., 2004). Figure 2 shows a chart with the functional 

classification of genes differentially expressed in the primary dormant (A) and long-

term primary dormant (B) subtraction libraries. Classification categories for both 

dormancy types were very different, most notable differences were in protein with 

binding function or co-factor requirement (16), that had a larger representation in 

the long term primary dormant category (19% vs. 9%), while the cell rescue, 

defence and virulence category (32) displayed a greater representation of genes in 

primary dormant (8.7%) than long term primary dormant library (1.9%). Also the 

sub-cellular localization functional category (70) displayed a greater representation 

of genes in the primary dormant (26%) than in the long term primary dormant 

library (17%). These classes were further sub-classified to display the differences 

between the two libraries in more detail (Figure 2 A, B). In class 16 5 genes were 

found in the primary dormant library compared to 10 in the long-term primary 

dormant library (Table 2A/2B). 3 genes of the long term primary dormant library 

classified in more than 1 sub-class. One gene of the long term primary dormant 

library was classified in the lipid binding (16.09) sub-class, compared to 0 in the 

primary dormant library. The cell rescue, defence and virulence (32) class showed 

5 genes in the primary dormant library compared to 1 in the long term primary  
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Figure 2: MIPS classification of genes found in primary dormant and long-term dormant subtraction libraries. The main 
MIPS classifications are shown by the larger bars. The metabolism class (1), the protein with binding function or 
cofactor requirement (16), the cell rescue, defence and virulence category (32) and the sub-cellular localization class 
(70) are sub-divided and shown on the sides 
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dormant library (Table 2A/2B). For the subcellular localization class (70) 16 genes 

were found in the primary dormant library while 10 were found in the long term 

primary dormant library (Table 2A/2B). Sub-dividing this class shows that genes 

present in both libraries classify for more than one sub-class. The primary dormant 

library had a greater representation in cytoplasm (70.03) (6 versus 3) and plastids 

(70.26) (5 versus 1).  

 Cadman et al. (2006) have shown that the metabolism class (1) exhibited 

major differences between primary dormant and long term primary dormant seeds, 

which is in contrast to what was found here. The metabolism class was further 

subdivided (Figure 2) to display possible differences between the two dormancy 

types. Even though both libraries show almost the same number of genes in the 

metabolism class (i.e. 5 and 4, see Table 2A and 2B), subdividing this class shows 

that genes present in the primary dormant library classify in more than one sub-

class, while genes present in the long term primary dormant library are only 

present in one subdivision each (Figure 2). Primary dormant seeds show more 

genes in nucleotide/nucleoside/nucleobase metabolism (2 versus 0; cat. 1.03) and 

phosphate metabolism (2 versus 0; cat. 1.04) (Figure 2). The long-term primary 

dormant library shows one gene present in the sub-class of lipid/fatty 

acid/isoprenoid metabolism (cat. 1.06) where no genes of the primary dormant 

library are present. Only one tenth of the subtraction library was analysed, this 

should be an appropriate amount to give a rough estimate of the genes 

represented in each class and subclass; however, analysing more genes will give a 

much more representable classification. 

TAGGIT classification 

MIPS classification can be unsatisfactory because the classification system does 

not reflect specific processes previously shown to be important for seed biology 

(Carrera et al., 2007). To distinguish genes encoding proteins related to seed  
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dormancy, development and germination, we analysed the Arabidopsis thaliana 

orthologs of genes differentially expressed in the subtraction libraries with the 

TAGGIT workflow. The TAGGIT workflow re-annotates gene lists according to 

defined functions and provides more useful information related to seed biology 

(Carrera et al., 2007), giving an indication of the developmental status of the seed. 

However, only 4 genes of each subtraction library could be assigned to a category 

in the TAGGIT classification. This could be due to the still small number of 

genespresent in the TAGGIT workflow, the small number of genes present in the 

subtraction libraries or to the fact that the genes present in the subtraction libraries 

may not be seed specific. The newly assigned genes were found in the dormancy 

category (AT3G50980, a dehydrin, in the primary dormant library), the translation 

category (AT1G23290 and AT1G67430, both encoding for ribosomal proteins, in 

the primary dormant library and AT1G07920 and AT4G00810, an elongation factor 

and a ribosomal protein, respectively, in the long term primary dormant library) and 

in the seed storage proteins/late embryogenesis abundant category (AT4G21020, 

a LEA protein in the primary dormant and AT3G22490 and AT4G28520, a LEA 

protein and cruciferin, respectively, in the long term primary dormant library 

Stress related gene expression 

In many organisms the regulation of dormancy is associated with abiotic stress 

responses. The combination of metabolic/developmental arrest and stress 

resistance/tolerance is a powerful strategy for the (long-term) survival of organisms 

under adverse conditions (Lubzens et al., 2010). At the level of gene expression, 

dormancy and stress responses are strongly linked and largely overlapping 

(Cadman et al., 2006; Hilhorst, 1995). In general, competent organisms anticipate 

a stressful period by shutting down their metabolism and engaging in a stress 

response. One key method to resist stress is the expelling of water from dormant 

tissue (Pnueli et al., 2002), as water has a potential to damage cells under adverse 

physical conditions, e.g. freezing. Thus, the stress response may include 
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dehydration, but also the generation of protective compounds such as late 

embryogenesis-abundant (LEA) proteins and anti-oxidants (Ingram and Bartels, 

1996; Raynal, 1999; Singh, 2007). Other stress responses are engaged to harden 

the seed against cold, salinity stress or pathogen attacks. In the subtraction library 

a large group of stress related genes was found (Table 2A,B); in the primary 

dormant library (Table 2A) one LEA gene was found (ortholog to AT4G21020), a 

water and, consequently, freezing related stress gene Dehydrin XERO1 (ortholog 

to AT3G50980), a salinity stress related gene, AVP1 (ortholog to AT1G15690) and 

two pathogen related genes (orthologs to AT1G75830, LCR67/PDF1.1 and 

AT5G44430, PDF1.2c). In the long term primary dormant library (Table 2B) one 

LEA (ortholog to AT3G22490), one cold stress related gene FAD2 (ortholog to 

AT3G12120), 2 heat-shock related genes (orthologs to AT1G07920, an elongation 

factor, and AT3G44110, a DnaJ homologue 3/heat shock protein) and one 

pathogen attack related RIN2 (ortholog to AT4G25230) were found.  

Expression of randomly chosen stress related genes was analysed by qRT-PCR 

under different dormancy conditions. Gene expression was analysed for primary 

dormant seeds in the dark and in the light, long term primary dormant seeds in the 

dark, secondary dormant seeds in the dark, sub-dormant seeds in the dark and in 

the light.  Secondary dormancy was included here, to analyse differences between 

two varieties of deep dormancy; both are induced by a long imbibition time, but for 

secondary dormant seeds nitrate was the imbibition medium. This would disclose 

the effect that nitrate may have on gene expression associated with germination 

and dormancy. Dormancy conditions were obtained in the same seed batch as in 

which the subtraction library was made, apart from primary dormant 1dH(D) and 

long term-primary dormant 10dH(D). 

The LEA proteins are implicated in stabilizing and protecting cellular structures 

(Shinozaki et al., 1999) and may also protect cells during the course of 

de/rehydration (Pnueli et al., 2002). LEA are found in the primary dormant and 

long-term primary dormant library and therefore are an interesting gene to 

analyse.The LEA (ortholog to AT4G21020) found in the primary dormant 
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subtraction library and expressed higher in PD30d seeds of Arabidopsis, 

(http://bar.utoronto.ca) with a ratio of PD24h vs. PD30d of 0.7 (Table 2A), 

appeared to be constitutively expressed at low levels in Sisymbrium and did not 

show significant expression differences between treatments (Figure 3). The water 

and freezing stress tolerance related gene dehydrin XERO1 (Roberton and 

Chandler, 1992) (ortholog to AT3G50980) has been proposed to contribute to 

freezing tolerance by its protective effect on membranes (Puhakainen et al., 2004). 

Dehydration related genes are also expressed during late embryogenesis when 

plants naturally lose water, and ABA is thought to be involved in the expression of 

deydrins (Roberton and Chandler, 1992). XERO1 was found in the primary 

dormant library and qRT-PCR analysis showed that seeds imbibed in water for 1 

day, light or dark (1dH (L) and 1dH(D)), exhibited higher transcript abundance than 

the long term primary dormant and non-dormant seeds (10A, 10dN(D), 10dH(D) 

and 1dN(L), 1dN(D)) (Figure 3). This could indicate that XERO1 expression levels 

drop with increasing depth of dormancy or disappearance of dormancy. However, 

the transcript abundance of 1A is not significantly different from 10A, as standard 

errors are too big, showing there is no clear link between dormancy depth and 

XERO1 expression levels. In Arabidopsis the ratio between PD24h and PD30d 

was 1.2.  

The salinity stress related gene AVP1 (ortholog to AT1G15690) is a vacuolar 

proton pump that increases salt and drought tolerance of higher plants, by 

increasing cation uptake and retaining water (Gaxiola et al., 2001). Salt and 

drought tolerance are important for non-dormant and germinating seeds when 

seedlings have to establish themselves under stress conditions. Expression of this 

gene was reported to increase sharply in 10-d old seedlings of Arabidopsis when 

exposed to various kinds of stress, including cold, osmotic, salt and heat, as well 

as to ABA (Zeller et al., 2009). Thus, it is not surprising that, in anticipation of 

transition to the seedling stage, the increased expression of AVP1 in primary 

dormant seeds increased even further in non-dormant/germinating seeds, and  
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Figure 3: Expression of 3 genes selected from the primary-dormant subtraction library: Dehydrin XERO1 (XERO1) 
 and Late embryogenesis abundant domain containing protein (LEA) and  Vacuolar-type H+-pumping pyrophosphatase 
(AVP1), Eight treatments are shown: 1A: primary dormant seeds used in library, 10A: long-term dormant seeds used in 
library, 1d N(L): seeds imbibed for 1 day in KNO3 in the light (germinate),1dN (D): seeds imbibed for 1 day in KNO3 in 
the dark (do not germinate; need light), 1dH (L): seeds imbibed in water for 1 day in the light (do not germinate; need 
nitrate), 1dH (D): seeds imbibed in water for 1 day in the dark (do not germinate; need light and nitrate), 10dN (D): 
seeds imbibed in KNO3 for 10 days in the dark (do not germinate), 10dH (D): seeds imbibed in water for 10 days in the 
dark (do not germinate).  Error bars represent standard deviations. a, b, c and d represent significant differences 
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Figure 4: Gene expression of 3 genes selected from the long-term primary dormant subtraction library: NAC domain 
containing protein 60 (ANACO60), Delta-12-fatty acid dehydrogenasse (FAD2), and RPM1 interacting protein 2 (RIN2). 
Treatments as in Fig. 3.  Error bars represent standard deviations. a, b, c, and d represent the significant differences. 

 

appeared to be under the control of light (Fig. 3). The ratio between 1A and 10A 

was 2.95 and significant. Cadman et al. (2006) found a ratio of 1 for Arabidopsis.  

Gene expression of some of the stress–associated genes in the long-term primary 

dormant library was also analysed. Fatty acid desaturases aid in adjusting 

membrane fluidity in response to temperature changes (Los and Murata, 1998; 

Chapter 5). The ortholog to the FAD2 (AT3G12120) gene is involved in cold stress 
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tolerance in plants (Matos et al., 2007).  FAD2 is a fatty acid desaturase 2 involved 

the conversion of 18:1 to 18:2 fatty acids, allowing changes in temperature.  

Although the Arabidopsis gene sets of Cadman et al., (2006) and Finch-Savage et 

al., (2007) showed that PD30d seeds exhibitied a higher expression of FAD2 than 

PD24h seeds (Table 2b) with a ratio of 0.8, qRT-PCR analysis showed no 

differences in the FAD2 expression pattern between short and long term incubation 

(Fig. 4) with a non-significant ratio between 1A and 10A of 0.57, however, it is a 

similar type of response. Apart from 1A, expression seemed to be somewhat 

higher in the 1d treatments but this was not significant. Interestingly 1A -1dH(D)  

and 10A -10dH(D) have received a similar treatment, however expression of FAD2 

is not comparable. Dormancy states have been obtained using different seed 

batches for these treatments, and this might explain the difference in expression 

levels. Standard deviation for 1dH(D) is very large and makes the results difficult to 

interpret.   

RPM1 interacting protein RIN2 (ortholog to AT4G25230) is involved in the 

hypersensitive response to pathogens e.g. Pseudomonas syringae. RIN2 is 

predominantly located in the plasma membrane where it contributes to the RPM1  

hypersensitive response (Kawasaki et al., 2005). RIN2 was found in the long-term 

primary dormant library. The analysed gene sets did not show differences in 

expression of RIN2 between short and long term dormancy states (Figure 4). The 

ratio between 1A and 10A was 0.67, and was not significant. The ratio found for 

Arabidopsis was 1.1 (http://bar.utoronto.ca; table 2B). In the long-term primary 

dormant library AT3G44290, a NAC domain containing protein 60, ANACO60, was 

found. ANACO60 encodes for a plant-specific transcriptional regulator, expressed 

in developmental stages (Ooka et al., 2003). qRT-PCR analysis (Figure 4) showed 

that ANACO60 was not significantly differentially expressed between primary 

dormant and long term primary dormant seeds, displaying a ratio of 0.4 (not 

significant). This gene showed high expression in 4-d old seedlings of 5 out of 34 

Arabidopsis accessions and may be related to their specific stress phenotypes 

(Lempe et al., 2005). The qRT-PCR results showed that although stress responses 
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are involved in dormancy control, the genes selected from the subtraction library 

were often not differentially expressed between treatments.  

Conclusions 

 

The cDNA subtraction library was chosen, over micro-array analysis, as the 

preferred method to find transcriptional differences between primary dormant and 

long term primary dormant seeds of Sisymbrium officinale. The rationale for this 

choice was the prevention of cross-species hybridization difficulties. A major issue 

with cross-species microarray hybridization is the effect of sequence divergence on 

probe affinity, which is not only a function of phylogenetic distance. Due to 

differences in sequence divergence rates, such effects are not uniform across all 

genes. At present it is difficult to correct for such effects during the analysis of 

microarray data (Bar-Or et al., 2007).  

A cDNA subtraction library, however, poses a whole new set of difficulties; a large 

number of clones needs to be sequenced in order to obtain an overall impression 

of the transcriptome of a certain developmental state of the seed. Gene expression 

of most genes needs to be verified, as some of the genes picked up may appear in 

both the forward and reversed libraries. Not all genes picked up in one library were 

found to be expressed differentially by qRT-PCR. This could be due to the 

sensitivity of the method, or the genes may have been selected erroneously.  

Despite these methodological problems, several genes (in the primary dormant 

subtraction library orthologs AT1G75830, AT1G79260, AT3G43520, AT3G60980, 

AT3G56340, AT3G56350, AT5G11710, AT5G60980, AT5G64840 and 

AT5G66120, in the long term primary dormant subtraction library orthologs 

AT1G13690, AT1G30880, AT1G35190, AT1G51200, AT1G79920, AT3G12120, 

AT3G44290, AT3G54860, AT4G40030, AT5G22290 and AT5G24350) were 

identified that are similarly expressed in Sisymbrium and Arabidopsis, although not 

verified by PCR. The exact role of these genes in the regulation of primary and 
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long term primary dormancy can only be verified by functional analysis, e.g. by 

reverse genetics. 
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Chapter 7 

Summarizing Discussion 

 

Dormancy, diapause, rest and quiescence are all terms that are in use to indicate a 

state of (temporary) lowered metabolic activity (‘hypometabolic state’) in living 

organisms. Dormancy occurs in many organisms from all kingdoms, ranging from 

bears to mice and frogs, from fish to buds and seeds, and from crustaceans to 

yeast and bacteria (Lubzens et al., 2010). Dormancy and stress responses are 

closely associated. Many of the above organisms become dormant before they are 

exposed to stress conditions. The timing of this may depend on developmental 

phase (e.g. sexual versus asexual), seasonal rhythms, environmental cues and 

food supply, among others. The common denominators appear to be controlled 

reduction of metabolic activity, arrest of the cell cycle and the initiation of protective 

mechanisms.  

However, whether the underlying mechanisms are similar between different 

organisms is a question yet to be answered. The first comparisons indicate 

remarkable similarities (Hilhorst, 2008). Some of the similarities are metabolic 

control mediated by AMP-activated protein kinase and the induction of protective 

late embryogenesis abundant (LEA) and heat-shock (HSP) proteins (Hilhorst, 

2008).  

Seasonal dormancy cycling is a characteristic, so far, only found in seeds. Being 

able to cycle in and out of dormancy allows the seed to survive decades or even 

centuries in the soil, allowing germination to be spread over time but only when 

optimal conditions are available, not only for germination but also for seedling 

establishment. The ecological significance of dormancy cycling has long been 

established (Karssen, 1982; Bouwmeester, 1990) but the physiological and 

molecular mechanisms behind it have only been studied in recent years. In this 
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thesis we have attempted to further elucidate the mechanisms behind dormancy, 

germination and dormancy cycling in seeds. 

 

Germination stimulatory factors: light, nitrate and gibberellic 

acid (GA) 

Sisymbrium officinale seeds do not complete germination after imibibition in water 

or nitrate when no light pulse has been given. The seeds need nitrate to become 

non-dormant and light to start germination (Chapters 2, 3, 5, 6). Nitrate acts in part 

by reducing the abscisic acid levels (Matakiadis et al., 2009), which at high levels 

promote dormancy. If the light pulse is not given within a certain time frame, seeds 

will become secondary dormant and the seed is not sensitive to light and nitrate 

anymore. Other methods are then needed to break the dormancy (Derkx and 

Karssen, 1993).  

 GAs can be used to circumvent the light and nitrate requirement for 

germination (Chapter 6). GA biosynthesis has been suggested to be mediated by 

light and nitrate as a cofactor (Hilhorst et al., 1986). Light both induces 

Phytochrome B (PHYB) expression and activates the resulting PhyB protein. The 

active PHYB protein reduces phytochrome-interacting factor 3-like 5 (PIL5) protein 

levels. PIL5 suppresses the AtGA3ox1 and AtGA3ox2 and activates AtGA2ox2. 

Reduction of PIL5 allows up-regulation of AtGA3ox1 and AtGA3ox2 and down-

regulation of AtGA2ox2 (Yamaguchi, 2008), although PIL5 does not bind 

AtGA3ox1, AtGA3ox2 or AtGA2ox2 genes (Yamaguchi, 2008), suggesting that 

additional components are required.  ATGA3OX1 and ATGA3OX2 catalyse the 

final step in the production of bioactive GAs, even without germination taking place 

afterwards (Yamaguchi et al., 1998; Oh et al., 2006). Sisymbrium officinale seeds 

are thought to possess seed coat imposed dormancy but we found that embryos of 

dormant seeds lack growth force to overcome these restrictions (Chapter 3). It was 

therefore concluded that dormancy of this species is also located in the embryo. 
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GAs are capable of inducing enzymes that hydrolyze the endosperm cell walls 

(Debeaujon and Koornneef, 2000; Chen and Bradford, 2000; Nonogaki et al., 

2000; Manz et al., 2005) and in this way GAs could be involved in overcoming 

restrictions imposed by the seed coat. On the other hand, GAs may also increase 

the embryo growth potential. 

Metabolism and respiratory activity during changes in 

dormancy 

For successful survival of the dormant seed, metabolic activity is reduced (see 

above), to avoid rapid depletion of reserves. The metabolic state of the seed was 

measured using electron paramagnetic resonance (EPR), with TEMPONE as a 

spin probe, and the respiratory activity was measured with the Q2-test (Chapter 2). 

Primary dormant seeds of Sisymbrium officinale showed hardly any metabolic or 

respiratory activity, but this was increased considerably when dormancy was 

broken by nitrate. However, when the light pulse was not given and the seeds had 

become secondary dormant the metabolic activity slowed down. The reduction of 

metabolism and respiratory activity in secondary dormant seeds did not reach the 

same low activity of metabolism of primary dormant seeds. However, we propose 

that after longer induction of secondary dormancy the metabolic activity and 

respiratory activity will slow down even further, eventually likely to a similar level as 

in primary dormant seeds.  

Cytoplasmic changes during dormancy cycling 

Dormancy has often been linked to the survival of the seed during periods of 

abiotic stress. In order to survive the stress periods seeds may adapt their 

cytoplasmic properties to the changing environment (Chapter 4). We tested this by 

EPR, using carboxyl-proxyl (CP) spin probe. Vitrification temperatures for 

cytoplasmic water were higher for dormant than for germinating seeds. The 
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vitrification temperature depends on the composition of the cytoplasm. In 

germinating seeds the storage reserve mobilization has started, allowing more low-

molecular weight compounds in the cytoplasm. This causes a lower vitrification 

temperature. Also, the germinating seeds had a less viscous cytoplasm than the 

dormant seeds. The dormant seeds possess higher quantities of high-molecular 

weight compounds in their cytoplasm than germinating seeds in which these have 

been metabolized. The high molecular weight compounds have a greater influence 

on the viscosity than the low-molecular weight compounds. However, the 

differences in quantity of high and low-molecular weight compounds might not be 

the main cause for differences in viscosity. Dijksterhuis (et al., 2007) also found 

changes in cytoplasmic viscosity, in their research on fungal spores but they came 

to the conclusion that the higher viscosity was not mainly caused by a high 

concentration of solutes but by the high proportion of ordered PDT molecules in the 

vicinity of macro-structures. Sun (2000) linked increased viscosity to reduced 

metabolism of red oak seeds. We also found reduced metabolism in dormant 

seeds (Chapter 2). A more viscous cytoplasm could protect dormant seed, making 

them capable of surviving longer periods under abiotic stress, e.g. by protecting 

cellular structures (Shinozaki et al, 1999) and preventing de/rehydration (Pneuli et 

al, 2002). 

The membrane hypothesis analyzed 

Membranes have been implicated in dormancy over the past decades, as 

membranes are the primary target for temperature perception (Hilhorst, 1998). A 

hypothesis was put forward in which changes in responsiveness to naturally 

occurring dormancy breaking factors like light and nitrate was a function of 

membrane fluidity (Hilhorst, 1998).  In Chapter 3 we showed that dormancy is 

indeed a function of membrane fluidity. Primary dormant seeds of Sisymbrium 

officinale appeared to have very rigid membranes, whereas breaking dormancy 

increased membrane fluidity considerably. However, when non-dormant seeds 
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became secondary dormant membrane fluidity decreased again, but not to the 

rigidity seen in primary dormant seeds.  A more viscous membrane could affect the 

functions of membrane proteins and could either be a response to stress, e.g. 

because of the lipid-/protein-mediated activation of a signal pathway, or play a role 

in cell injury, e.g. because some proteins such as respiratory and transport proteins 

only function in a fluid membrane (Beney and Gervais, 2001).   

Membranes are known to be able to adapt to changes in temperature by 

homeoviscous adaptation (Sinesky, 1974), the mechanism whereby unsaturated 

fatty acids aid in maintaining the membranes in a fluid state necessary for 

biological functioning (Cyril et al., 2002). The introduction of double bonds into the 

fatty acids is catalyzed by desaturases (Los and Murata, 1998). Desaturase 

involvement in changes in membrane fluidity due to changes in dormancy was 

tested in Chapter 3 (using Sisymbrium officinale) and Chapter 5 (using Arabidopsis 

thaliana). Although FAD3, involved in the conversion of linoleic acid to linolenic 

acid (Matos et al., 2005) could be related to dormancy and germination (Chapter 

5), it was not found to be related to membrane fluidity in Arabidopsis thaliana 

(Chapter 5). The ADS2 mutant, normally involved in the conversion of stearic acid 

into oleic acid (Murata and Wada, 1995), on the other hand, did not show changes 

in fatty acid composition, or a different germination phenotype, but it did show a 

gene expression pattern with high expression in non-dormant seeds, enhanced by 

light, and increased membrane fluidity (Chapter 5). In Sisymbrium officinale there 

was no difference in fatty acid composition between different dormancy types, 

indicating no involvement of desaturases in changes in membrane fluidity.  

Although desaturase mutants seem to change germination behaviour and/or 

membrane fluidity, desaturases are not the cause of these changes in wild type 

seeds. Likely candidates for changing membrane fluidity are changes in the acyl 

chain length (Ohlrogge and Browse, 1995) or lipid-protein interactions (Yeagle, 

1989). The transition from the dormant to the non-dormant state is marked by 

changes in the composition of membrane-associated proteins, mainly in the 

plasma membrane enriched fractions (DiNola et al., 1989).   



122 
 

‘Old’ model, new perspective 

In the Membrane hypothesis, as formulated by Hilhorst (1998), phytochrome 

receptors may be (temporarily) associated with membranes. Temperature has a 

profound influence on membrane fluidity which, on its turn, may determine the 

magnitude of movement of receptors within the membranes. In one conformation 

the receptors will be at the surface, available for nitrate and phytochrome to bind 

whilst in the other conformation the receptors are within the membrane and 

therefore not available for binding of nitrate and phytochrome. Homeoviscous 

adaptation might be responsible for the changes in membrane fluidity (Chapter 1). 

However, continuing research on various aspects of this hypothesis has altered 

this view. Below the new findings will be discussed and a new hypothesis will be 

put forward. 

 The phytochromes that are thought to be involved in germination are PhyA, 

PhyB and PhyE (Nagy, 2000). PhyB is active over a range of temperatures and is 

induced by red/far red light (Nagy, 2000), which makes it the most likely candidate 

in our model. However, there is no evidence of membrane association for 

phytochrome. Studies have shown that on photoconversion of Pr to Pfr  the 

phytochromes are translocated from the cytoplasm into the nucleus where they 

form intranuclear bodies of various sizes in light quality dependent and light 

quantity dependent fashion (Yamaguchi, 1999; Kircher, 1999/2002). However, a 

significant portion of the phytochrome remains cytosolic (Nagy, 2000). The active 

phytochrome protein reduces phytochrome-interacting factor 3-like 5 (PIL5) protein 

levels. Reduction of PIL5 allows up-regulation of GIBBERELLIN 3-OXIDASE 1, 

AtGA3ox1, and GIBBERELLIN 2-OXIDASE 2, AtGA3ox2 and down-regulation of 

AtGA2ox2 (Yamaguchi, 2008). ATGA3OX1 and ATGA3OX2 catalyse the final step 

in the production of bioactive GAs, even without germination taking place 

afterwards, whereas AtGA2ox2 is a key gene in the degradation of GAs 

(Yamaguchi et al., 1998; Oh et al., 2006). 

  In Arabidopsis high affinity nitrate transporter 2.7 (NRT2.7) has been 

found to be the primary nitrate transporter (Chopin et al., 2007) and the dual affinity 
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nitrate transporter CHL1 has been reported to act as a sensor for nitrate (Ho et al., 

2009).  Within the seed nitrate enhances the degradation of  ABA via the 

cytocrhome P450 8'-hydroxylase for ABA (CYP707A2: Matakiadis et al, 2009). The 

nitrate and GA pathways are loosely linked by ABA. ABA and GA metabolism are 

linked during seed germination, as seen by the increased GA biosynthesis in the 

aba2-2 mutant and the suppression of GA biosynthesis by ABA during seed 

germination (Seo et al., 2006). The reduction of ABA by nitrate allows the 

biosynthesis of GA.  

In Chapter 3 we found that membrane fluidity is indeed linked to dormancy and 

germination, however, not via the saturation and un-saturation of fatty acids.  

These data together lead to the conclusion that the membrane hypothesis, as it 

exists, needs to be revised. Although membrane fluidity is involved in the 

dormancy/germination process, phytochrome light receptors are not located within 

the membrane. The nitrate transporter is located in the membrane, and changes in 

membrane fluidity could thus alter the accessibility of the nitrate transporter. 

However, as nitrate is not only a signal in the breaking of dormancy but also a 

nutrient for plant growth and development (Crawford, 1995) this is an unlikely 

option. So nitrate and light probably affect germination without a direct involvement 

of membranes. 

Other factors related (changes in) cell membranes might be involved that lead to 

changes in dormancy and germination. Another gene involved in dormancy 

regulation and containing transmembranes domain is DELAY OF GERMINATION 

(DOG1) (Bentsink 2006). DOG1 accounts for genetic variation in natural 

populations and has been characterized at the molecular level. DOG1, encodes a 

novel plant-specific protein of unknown mode of action.DOG1 is functionally related 

to primary dormancy in Arabidopsis Cvi. Its expression decreased with after-

ripening and during imbibition, which led to the conclusion that the gene is related 

to dormancy induction during seed development (Bentsink, 2006). However, DOG1 

expression may increase again upon induction of secondary dormancy, as was 

shown in Arabidopsis Cvi (Finch-Savage et al., 2007). Because of the presence of  
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Figure 1: Model for the induction of germination. Under the influence of temperature (and with changes in dormancy) 
the membrane fluidity changes. The changes in membrane fluidity allow the (proteolytical) activation of a membrane 
anchored dormancy related transcription factor. The transcription factor (Tf) is transported to the nucleus where it 
activates the germination process. The germination process starts with an increase in metabolism, respiration and the 
mobilization of storage reserves. The effects of nitrate and light on dormancy and germination take place without 
membrane involvement and therefore are not included in this model 
 

 

a transmembrane domain. DOG1 might be the link between the changes in 

dormancy and membrane fluidity we found in this thesis. DOG1 could be 

proteolytically activated by remodeling the membrane fluidity. 

Seo et al. (2010) proposed a model whereby the membrane bound transcription 

factor NTL6 is proteolytically activated by remodeling of the membrane fluidity. 

NTL6 plays a role in cold-induced pathogen resistance. They found that the 

regulation by NTL6 changes with changes in membrane fluidity and their 

suggestion is that a cold-regulated membrane-associated metalloprotease may 

serve as a primary regulator for NTL6-mediated cold signaling. The 
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transcriptionally active NTL6 form is translocated from the plasma membrane to the 

nucleus where it triggers a pathogen resistance response.  

Our suggestion is that a similar process may be present here (Figure 1). A 

membrane anchored dormancy related protein/transcription factor, e. g. DOG1, is 

activated by increasing the membrane fluidity. The activation of the transcription 

factor can be proteolytcally or by releasing the whole transcription factor from the 

membrane. In our findings the membrane fluidity was increased at extreme 

temperatures (chapter 3) which makes proteolytical activation less likely than 

activation by releasing the whole transcription factor.  The activated form is 

transported to the nucleus where it activates the germination process. The 

germination process includes the increase in metabolism (Chapter 2) and 

respiration (Chapter 2) and the mobilization of storage reserves (Chapter 2). 

Mobilization of storage reserves leads to a decrease in cytoplasmic viscosity as 

found here in Chapter 4.  
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Summary 

 

The life cycle of most plants starts, and ends, at the seed stage. In most species 

mature seeds are shed and dispersed on the ground. At this stage of its life cycle 

the seed may be dormant and will, by definition, not germinate under favourable 

conditions (Bewley, 1997).  

Seasonal dormancy cycling is a characteristic found in plant seeds. Being able to 

cycle in and out of dormancy allows the seed to survive decades or even centuries, 

allowing germination to be spread over time, but only when optimal conditions are 

available, not only for germination but especially for seedling establishment. In this 

thesis we have attempted to further elucidate the mechanisms behind dormancy, 

germination and dormancy cycling. 

 Sisymbrium officinale seeds need nitrate and light to start germination (Chapter 2, 

3, 4, 6). Nitrate acts in part by reducing the abscisic acid (ABA) levels (a plant 

hormone that elevates dormancy levels). The action of light and nitrate can also be 

reached by applying gibberellins (GAs) to the seeds (Chapter 2, 3, 4, 6). GAs are 

capable of inducing enzymes that hydrolyze the ensdosperm walls (Debeaujon and 

Koornneef, 2000; Chen and Bradford, 2000; Nonogaki et al., 2000; Manz et al., 

2005) In  this way GAs could be involved in lowering the physical restrictions 

imposed by the resistance of the seed coat and the endosperm. On the other hand, 

GAs may also increase the embryo growth potential. 

 For successful survival of the dormant seed, metabolic activity is reduced to avoid 

rapid depletion of reserves. The metabolic activity of the seed was measured using 

electron paramagnetic resonance (EPR), with TEMPONE as a spin probe, and the 

respiratory activity was measured with the Q2-test (Chapter 2).We showed that 

primary dormancy was accompanied by hardly any metabolic or respiratory activity, 

and this increased considerably when dormancy was broken by nitrate. However, 
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when the light pulse was not given and the seeds had become secondary dormant 

the metabolic activity slowed down. 

Regulation of dormancy is tightly linked with abiotic stress factors from the 

environment. The regulation and survival of the seed under stress conditions is 

largely dependent on the composition of the cytoplasm. We tested this by EPR, 

using carboxyl-proxyl (CP) spin probe (Chapter 4). The primary dormant and sub-

dormant seeds possessed a higher viscosity than the germinating seeds. The 

viscosity of secondary dormant seeds appeared intermediate; however, the ease at 

which the vitrified water melted was similar to that of primary dormant seeds. As a 

result of the differences in viscosity, the temperature of vitrified water melting 

differed between the different dormancy states. The changes in cytoplasmic 

viscosity and vitrified water melting may be linked to changes in metabolism and 

the content of high molecular weight compounds. 

As membranes are the primary target for temperature perception, they are often 

implicated in regulating dormancy. Therefore, Hilhorst (1998) put forward a 

hypothesis in which changes in responsiveness to dormancy breaking factors like 

nitrate and light was a function of cellular membrane fluidity. In Chapter 3 we 

indeed showed that dormancy is a function of membrane fluidity. Primary dormant 

seeds of Sisymbrium officinale appeared to have very rigid membranes, whereas 

breaking dormancy increased membrane fluidity considerably. However, when 

sub-dormant seeds became secondary dormant membrane fluidity decreased 

again, but not to the rigidity seen in primary dormant seeds. One of the most 

common ways in which cells control membrane fluidity is by homeoviscous 

adaptation with the help of desaturases. Desaturase involvement in changes in 

membrane fluidity due to changes in dormancy was tested in Chapter 3 (using 

Sisymbrium officinale) and Chapter 5 (using Arabidopsis thaliana). Here we found 

that although desaturase activity may change the membrane fluidity or influence 

the germination/dormancy phenotype, the two are not linked, unless the effects of 

these enzymes are very local within the seed. Finally, in Chapter 7, we presented a 

new model in which a membrane anchored dormancy related protein/transcription 
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factor is activated by changes in membrane fluidity. The activated form is 

transported to the nucleus, where it starts the germination process, which includes 

changes in metabolism and mobilization of storage reserves.  
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Samenvatting 

 

De levenscyclus van de meeste planten begint en eindigt als zaad. Meestal vallen 

de rijpe zaden van de moederplant en komen dan verspreid op en in de grond 

terecht. In dit stadium van de levens-cyclus kan het zaad dormant zijn en zal dan - 

ook onder gunstige omstandigheden - niet kiemen(Bewley, 1997).  

De seizoengebonden dormantie-cyclus is eigen aan planten. Het in en uit kiemrust 

kunnen komen zorgt er voor dat het zaad decennia- of zelfs eeuwenlang kan 

overleven, waardoor kieming zich over de tijd kan spreiden en alleen dan optreden 

als de optimale condities - voor kieming maar vooral ook voor overleving van de 

zaailing - zich voordoen. In dit proefschrift hebben we het dormantiemechanisme 

en de dormantie-cyclus verder onderzocht.  

Sisymbrium officinale zaden hebben nitraat en licht nodig om te kiemen (Hoofdstuk 

2, 3, 4, 6). Nitraat zorgt, gedeeltelijk, voor een vermindering van het gehalte aan 

abscisinezuur (ABA), een plantenhormoon dat de kiemrust bevordert. Het effect 

van licht en nitraat kan ook worden bewerkstelligd door aan zaden gibberellines 

(GAs) toe te voegen (Hoofdstuk 2, 3, 4,6). GAs kunnen enzymen induceren die de 

celwanden van het endosperm hydrolyseren (Debeaujon and Koornneef, 2000; 

Chen and Bradford, 2000; Nonogaki et al., 2000; Manz et al., 2005). Op deze 

manier zouden GAs betrokken kunnen zijn bij het verminderen van de fysieke 

beperkingen die worden veroorzaakt door de weerstand van zaadhuid en 

endosperm. Daarnaast kunnen GAs ook de groeipotentiaal van het embryo 

verhogen. 

Voor succesvol overleven van het dormante zaad moet metabolische activiteit 

worden gereduceerd om ervoor te zorgen dat reserves niet worden uitgeput. 

Metabolische activiteit van het zaad is gemeten met de elektron paramagnetisch 

resonantie techniek (EPR), met TEMPONE als spin probe. De 

ademhalingsactiviteit is gemeten met de Q2 –test (Hoofdstuk 2). We hebben laten 
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zien dat primair dormante zaden bijna geen metabolische- en ademhalings-

activiteit vertonen. De metabolische- en ademhalings-activiteit nam aanzienlijk toe 

als dormantie werd gebroken met nitraat. Zonder een lichtpuls werden de zaden 

echter secundair dormant en nam de metabolische activiteit af.  

De regulatie van kiemrust is nauw verbonden met stressfactoren uit de omgeving. 

Regulatie en overleving van het zaad onder stress condities hangt in belangrijke 

mate af van de compositie van het cytoplasma. We hebben dit getest met behulp 

van EPR, met carboxyl-proxyl (CP) als spin probe (Hoofdstuk 4). De primair 

dormante en sub-dormante zaden vertonen een hogere viscositeit dan de 

kiemende zaden. De viscositeit van secundair dormante zaden leek intermediair. 

Het gevitrificeerde water smolt echter op ongeveer dezelfde wijze als bij primair 

dormante zaden. Als gevolg van het verschil in viscositeit smolt het gevitrificeerde 

water in de verschillende kiemruststadia bij verschillende temperaturen. De 

veranderingen in cytoplasmatische viscositeit en de verschillende temperaturen 

waarbij gevitrificeerd water smolt kon worden gekoppeld aan veranderingen in 

metabolisme en aan het gehalte van verbindingen met een hoog moleculair 

gewicht. 

Aangezien membranen de eerste barrière zijn voor het “waarnemen” van 

temperatuur, wordt verwacht dat ze betrokken zijn bij de regulatie van kiemrust. In 

dat kader heeft Hilhorst (1998) een hypothese opgesteld waarin de veranderingen 

in reactie op kiemrustbrekende factoren, zoals nitraat en licht, afhangen van de 

vloeibaarheid van cellulaire membranen. In Hoofdstuk 3 hebben we laten zien dat 

dormantie inderdaad afhangt van de vloeibaarheid van het membraan. Primair 

dormante zaden van Sisymbrium officinale  hadden erg rigide membranen, terwijl 

het breken van dormantie de membraanvloeibaarheid aanzienlijk verhoogde. 

Echter, als sub-dormante zaden secundair dormant werden, nam de vloeibaarheid 

weer af, maar niet tot dezelfde stijfheid als bij primair dormante zaden. Een van de 

meest voorkomende manieren om membraanvloeibaarheid te veranderen is door 

homeovisceuze adaptatie met behulp van desaturases. De rol van desaturases in 

veranderingen van membraanvloeibaarheid hebben we getest in Hoofstuk 3 
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(Sisymbrium officinale) en Hoofdstuk 5 (Arabidopsis thaliana). Hier hebben we 

gevonden dat, alhoewel desaturase activiteit membraanvloeibaarheid kan 

veranderen of betrokken kan zijn bij veranderingen in het kiemings/dormantie 

fenotype, de twee niet aan elkaar gekoppeld zijn, behalve als het enzym een erg 

lokaal effect zou hebben in het zaad. 

In hoofdstuk 7 presenteren we een nieuw model, waarin een - in het membraan 

verankerde dormantie gerelateerd eiwit/transcriptie factor - wordt geactiveerd door 

veranderingen in membraanvloeibaarheid. De geactiveerde vorm wordt naar de 

kern getransporteerd en start daar het kiemproces, en daarmee de veranderingen 

in het metabolisme en de mobilisatie van opslagreserves.  
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