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Chapter 1 

1. INTRODUCTION 

1.1 STRUCTURE 

The term eudesm-ll-en-4-ol refers to a group of compounds with the 

common structure 1. These compounds belong to a subgroup of sesquiter

penes known as eudesmanes. 

Figure 1.1 

The first eudesm-ll-en-4-ol was isolated in 1963 from the steam volatile oil 

of the grass Bothriochloa intermedia.^ The authors assigned structure 2 to 

this compound, which they called (+)-intermedeol. The determination of the 

structure was based on chemical evidence and IR spectroscopy. However, 

when in 1967 the enantiomer of compound 2, (-)-selin-ll-en-4a-ol I, was 

isolated from the essential oil of Podocarpus dacrydioides,"2- it appeared that 

intermedeol was not enantiomeric. Therefore, the proposed structure 2, 

tentatively assigned to intermedeol, had to be revised. Synthetic studies 

showed that intermedeol is correctly represented by structure II.3 

Figure 1.2 

As part of a composition study of grapefruit oil, the isolation of another 

eudesm-ll-en-4-ol, (+)-paradisiol IV, was reported.4 Again, the structure 

assigned to paradisiol proved to be incorrect. The isolated compound was in 

fact intermedeol I I . 5 In 1979 the isolation of isointermedeol 3, the 
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enantiomer of (+)-intermedeol II, was mentioned.6 However, on the basis of 
spectral comparison and the small differences in the physical data, Huffman7 

concluded that the isolated isointermedeol was an impure sample of 
(+)-intermedeol II. 

Figure 1.3 

Until now, two more eudesm-ll-en-4-ols have been isolated and 
identified unequivocally. These are the frans-fused (+)-neointermedeol III, 
first found in Bothriochloa grasses,8 and the cis-fused (+)-amiteol V, isolated 
from the secretion of termite soldiers (Amitermes excellens).9 

Figure 1.4 

HO '-• 

1.2 OCCURRENCE AND BIOLOGICAL ACTIVITY 

1.2.1 Plant species 

Stereoisomers of eudesm-ll-en-4-ol have been found in a wide range of 
plant species. A selection of these species is shown in table 1.1. 

Intermedeol II and neointermedeol III have been isolated and identified 
from Bothriochloa grasses (Graminae).1'8 Many of these grasses are rich in 
essential oil, which imparts to the grass a pleasant smell and taste. These 
features make them particularly attractive to cattle as fodder. There is also 
evidence that these grasses are resistant to the ravages of some plaque insects 
such as the fall army worm (Spodoptera frugiperda)A0d The volatile oil of 
the Bothriochloa intermedia can contain up to 90% intermedeol II, while in 
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Table 1.1. Occurrence of Eudesm-ll-en-4-ols in Plant species 

Plant species 

compound (% in volatile oil) 

i n m 
Grasses: 

Bothriochloa glabra10 

B. intermedia (300754)1^10 

B. intermedia (5752)10 

B. bladhfi* 

B. insculpta10 

Cymbopogon flexuosus6 

+ 
90% 

+ 

12% 

+ 

51% 

80% 
-

68% 

4% 

+ 
-

Herbs: 

Humulus lupulus15 

Senecio amplexicaulus16 

Artemisia schmidtiana17 

Carthamus Lanatus'11 

1% 

11% 

16% 

2.4% 

Shrumbs and Trees: 

Podocarpus dacrydioides2 

Myrica gale12 

Euginia uniflora13 

Geigeria burkei18 

+ 

15% 

2% 
14% 

Fruits: 

Citrus paradisi swingle*'5 

Psidium guajava19 3.3% 

Liverwort: 

Riccardia jackii20 

Key: - = not detected or reported; + = reported, but no percentages were given 

other accessions100 neointermedeol III is the major compound.10 

Intermedeol II is also the major compound (51%) of the essential oil of 

the perrenial grass Cymbopogon flexuosus.6 This oil, having a scent of 

violets and lemon, is used in the soap industry. Furthermore, it was used by 

the Vietnamese for treating cholera and rheumatics. Also in the indian 
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safflower oil (Carthamus lanatus) intermedeol II is an essential 

component.11 

Beside intermedeol II and neointermedeol III, a third frans-fused 

eudesmane alcohol, selin-ll-en-4a-ol I, has been isolated from plant species. 

The essential oil of the leaves of Myrica gale contains for almost 15% selin-

ll-en-4oc-ol I.12 The leaves of this small shrub are considered to be aromatic 

and to have astringent properties. They are used in medicine for treating 

dysentry, and as an antiparaciticum especially against moths. As a traditional 

medicine they were used for treating skin diseases. Selin-ll-en-4a-ol I occurs 

also in the leave oil of Euginia uniflora,^ which again is used in medicine. 

The crushed pungent and scented leaves of this shrubby tree repel insects. 

1.2.2 Termites 

The most spectacular occurrence of eudesm-ll-en-4-ols is established in 

the secretion of termite soldiers (Table 1.2). The soldier caste has to defend 

the termite colony against predators, specially ants. These soldiers have 

provided a variety of morphological adaptions and chemical weapons.21 

Table 1.2. Occurrence of Eudesm-ll-en-4-ols in the Defensive Secretion of 

Termite Soldiers 

compounds (% in secretion) 

Termitidae (Isoptera) H ffl V 

Amitermes excellens - + 67% 

Subulitermes bailey - 10-40% 

Subulitermes oculatissimus - + -

Subulitermes parvellus sp A & B - + 

Velocitermes velox + - -

Key: - = not detected or reported; + = reported, but no percentages were given 

Three fundamental types of mechanisms are recognized22 (Figure 1.5): 

a. Daubing which involves application of a secretion from the frontal 

gland through an elongated labrum. 

b. Biting with simultaneous addition of a toxic substance from the frontal 

gland (Amitermes). 
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c. Squirting which involves ejection by the soldiers of a viscous, sticky 
secretion from a specialized elongated rostrum called the nasus. In this way 
physical contact between termite and enemy is avoided. The soldiers have 
even lost their mandibles through evolutionary processes, and are entirely 
committed to their chemical defence (Subulitermes, Nasutitermes). 

Figure 1.5 

(a) Daubing; (b) Biting; (c) Squirting. 

The chemical weapons, which consist of several terpenes, are employed 
as antihealants, repellents, glues, and irritants. Examination of the defence 
secretion of A. excellence revealed the presence of amiteol V (67%), 
neointermedeol III, and a closely related cis-fused eudesmane, the evuncifer 
ether 4.9 This ether is the major compound of the formidicially active 
secrections of A. evuncifer (90%) and A. messinae (90%).23 The irons-fused 
eudesmanes intermedeol II and neointermedeol III have been isolated from 
the secretion of S. bailey (10-40%)24 and Velocitermes velox (Nasutitermes),25 

respectively. 
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Chapter 2 

2. STRATEGIES USED IN THE SYNTHESIS OF THE EUDESMANES 

2.1 APPROACHES TO THE EUDESMANE SKELETON 

The object of this paragraph is to summarize the main approaches to the 

eudesmane skeleton. The methods reported are limited to those found in 

publications describing the total syntheses of eudesmanes. The discussion is 

centered around the key steps involved in the construction of the fused 

ringsystem. In some cases the synthesis of the precursor and its 

transformation to the eudesmanes will be described. The paragraph is 

organized in sections, each dealing with a number of methods under a 

common heading i.e. annulation, cycloaddition, intramolecular cyclization 

reactions, and transformations of natural sesquiterpenes. 

2.1.1 Annulation Reactions 

Prior to 1970 almost invariably the eudesmane skeletons were constructed 

involving the Robinson annulation reaction as key step.1 '2 '3 Because of the 

thermodynamic control, 2-substituted cyclohexanones invariably give 

angularly substituted decalin systems as major products. With 2,5-

dialkylcyclohexanones, the major products are those in which the two alkyl 

groups remain or become trans to each other, regardless of the initial ratio of 

isomers present in the cyclohexanones. 

Thus, (+)-dihydrocarvone 5 afforded 3% of (+)-oc-cyperone 6 and as main 

product (-)-7-epi-cyperone 7 in which the angular methyl group was trans to 

the (axial) 1-methylethenyl group.4 Also (-)-thujone 8 afforded a synthon 9 in 

which the angular methyl group was trans to the (axial) C-7 substituent5 

(Scheme 2.1). In this last procedure additional steps were necessary for the 

cleavage of the cyclopropane ring to obtain an eudesmane derivative. 

However, in many natural eudesmanes the equatorial C-7 substituent and 

the angular methyl group are cis to each other. An efficient approach to these 

P C-7 eudesmanes has been reported by Caine.6 Steric hindrance of the endo 

methyl of (-)-carone 10 ensured exclusive alkylation from the less hindered a 

face. Subsequent treatment of 11 with HC1 caused cyclopropane ring opening, 

aldolcondensation, and dehydration. Dehydrohalogenation of 12 gave (+)-a-

cyperone 6 in good yield (Scheme 2.2). 
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Scheme 2.1" 

* ;N (E t ) 2 L ^ 

(+)-5 

^N(Et)2 

J * r 
o ^ 0*0''-, r 

9 

" (a) NaNH2, ether; (b) KOH, EtOH, A. 

Scheme 2.2" 

*~6 

" (a) Ethyl vinyl ketone, KOH, EtOH, ether; (b) HCl-EtOH; (c) NaOAc, 

AcOH, 100 °C. 

Scheme 2.3" 

CI 

b,c 

(-)-5 14 

" (a) NaH, THF; (b) ozone, CH2C12, CH3OH; (c) HC1, AcOH. 

10 
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Scheme 2.1" 
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Scheme 2.2fl 

fl (a) Ethyl vinyl ketone, KOH, EtOH, ether; (b) HCl-EtOH; (c) NaOAc, 

AcOH, 100 °C. 
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Ando synthesized both a and (J C-7 substituted intermediates via the 

Robinson annulation reaction starting from (-)-dihydrocarvone 5.7 For the 

synthesis of the (3 C-7 compound 13, the Robinson annulation product 14 

was isolated in 51% based upon consumed 5. Ozonolysis of the double bond 

gave an a-acetyl group which was equilibrated in the dehydration reaction to 

the desired (3 position (Scheme 2.3). 

Other applications for the synthesis of eudesmanes were directed via 

intermediates in which the three-carbon side chain was introduced at a later 

s tage,1 '2-3 '8 with the possibility for C-7 equilibration to the more stable 

Scheme 2.4fl 

« (a) glycol, p-TsOH, toluene; (b) B2H6, THF; H 2 0 2 , NaOH; (c) Jones 

reagent, acetone; (d) NaOCH3, CH3OH (e) Ph3P=CH2, DMSO; (0 HC1, 

acetone/water; (g) UAIH4, ether; (h) p-TsCl, pyridine; (i) NaCN, N-

methyl-pyrrolidone; (j) CH3U, ether; (k) hydrolysis. 
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P configuration. An example of this approach has been described by 
Marshall9 (Scheme 2.4). In this approach the Robinson annulation product 
15 was converted into enone 17 in a six steps reaction sequence. The enone 
17 was reduced with UAIH4 and the resulting alcohol 18 was converted into 
the a nitril 20 via substitution of the P p-toluenesulfonate ester 19. The 
related P acetyl 21 was obtained through treatment of the a nitril 20 with 
CH3U and subsequent hydrolysis. Treatment of 21 with CH3Li gave P-
eudesmol 22, while Wittig olefination of 21 gave p-selinene 23. 

In our laboratory a more efficient transformation of 15 to 17 was 
developed,10 which will be discussed in chapter 4. 

Garratt and Porter reported an annulation reaction of the vicinal diester 24 
and ethyl 4-bromobutanoate to the decalin 2511 (Scheme 2.5). Removal 

aC 0 2 R a,b 

CO,R 

Scheme 2.5s 

C02R 

R02C 

24 

« (a) LDA, HMPA, THF, -78°C; (b) Br(CH2)3COOEt, THE 

of the C-5 ester group and conversion of the other one into an angular 
methyl substituent gave a carbon skeleton 26 suitable for elaboration into an 
eudesmane. The ethylene ketal can be converted into the exocyclic 
methylene group. The double bond provides a site for an indirect alkylation. 
In this way vetiselinene 27 was synthesized from 25 in an eleven steps 
reaction sequence in an overall yield of only 1.9 %. 

An annulation method via a consecutive acylation-cycloalkylation step 
has been used in the synthesis of neointermedeol HI (see paragraph 2.2.3). 

12 
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2.1.2 Cycloaddition Reactions 

2.1.2.1 [4+2]Cycloaddition Reactions 

The intermolecular Diels-Alder reaction for assembling angularly 

methylated decalins from substituted cyclohexenones has found limited 

application in the past. This is due to the known reluctance of a- and 

especially p-alkyl substituted cyclohexenones to react with dienes. The 

synthesis of (+)-a-cyperone 6 via an intermolecular Diels-Alder reaction as 

the key step has been provided by Haaksma12 (Scheme 2.6). The Lewis acid 

catalyzed Diels-Alder reaction between (+)-carvone 28 and the silyloxydiene 

29 followed by hydrolysis afforded the ds-fused decalin 30. Compound 30 was 

converted into 6 in a seven steps reaction sequence. The overall yield of (+)-

a-cyperone was 37% starting from (+)-carvone. 

Scheme 2.6s 

f 
T M S O x ^ | 

29 

« (a) EtAlCh, toluene; H+. 

On the other hand, the intramolecular Diels-Alder reaction for assembling 

the eudesmane skeleton has found increasing applications. It should be 

noted that the overall efficiency is somewhat overshadowed by the problems 

encountered in the synthesis of the required triene precursors. However, the 

benefits of the intramolecular Diels-Alder reaction are enormous. It effects 

an one step cyclization of an acyclic triene to a fused bicyclic system. It offers 

heightened reactivity of the substrates in comparison with the 

intermolecular reaction components as a consequence of entropic activation. 

Often the geometric constrains imposed on suchs systems cause the adoption 

of unusual transition states, and normally inaccesible stereoisomers may be 

produced. For example, triene 31 underwent smooth cyclization to a mixture 

13 
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of four stereoisomers with oc-eudesmol 32 as the major product13 (Scheme 

2.7). 

Scheme 2.7" 

32 

a (a) methylene blue, toluene, 195°. 

Another approach via an intramolecular Diels-Alder reaction was 

reported by Chou.14 The pyrolysis of the isoprenyl sulfone derivative 33 at 

350 °C yielded the triene 34. Diels-Alder reaction of triene 34 gave the trans

fused decalin 35, which was converted into oc-eudesmol 32 (Scheme 2.8). 

Scheme 2.8° 

a (a) 350°C; (b) toluene, sealed tube, 170°C; (c) CH3MgBr, THR 

Conjugated allenes may act as dienes, but the Diels-Alder reaction of such 

substrates has a drawback with respect to the stereoselectivity. The 

intramolecular Diels-Alder reaction of enone silyloxyvinylallene 36 afforded 

the enol silylether 37 as a 1:1 mixture of cis- and trons-isomers15 (Scheme 

2.9). The use of enantiomerically pure acyclic precursors in intramolecular 

Diels-Alder reactions was described by Caine and Stanhope.16 In this 

sequence (+)-carvone 28 was converted into a mixture of geometric isomers 

of oc-phenylsulphonyl-ketone 39 which underwent Diels-Alder reaction to a 

mixture of oxo-selinenes 40 (Scheme 2.10). A Wolff-Kishner reduction 

14 
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afforded a mixture of selinenes 41 which could be separated by preparative 

GC. 

Scheme 2.9" 

36 

OTBDMS 

37 38 

" (a) EtAlCl2, CH2C12. 

Scheme 2.10fl 

39 40 cis/trans = 1/2 

a (a) hydroquinone, toluene, sealed tube, 150°C; (b) triethylene glycol, 

N2H4, KOH. 

2.1.2.2 [3+2]Cycloaddition Reactions 

The [3+2]cycloadditions used for the construction of decalins, are 

dominated by the concerted 1,3-dipolar additions. The usefulness of these 

reactions is quite limited, since elimination of the heteroatom(s) must be 

accomplished afterward, and an intramolecular version is usually required. 

The serviceability of this reaction is the addition of nitrones to double bonds 

to yield isoxazolidines. The synthesis of a- and p-eudesmol 32 and 22, which 

have been synthesized from the nitrone 42 , 1 7 is an example of this 

[3+2]cycloaddition (Scheme 2.11). Intramolecular nitrone-olefin 

cycloaddition of 42 afforded a mixture of C-7 stereoisomers of isoxazolidine 

43, of which the major isomer via the oxazine intermediate 44 could be 
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converted into 32 and 22. Interesting was that the quaternization in 

anhydrous sulfolane and subsequent reduction led to mainly a-eudesmol 32. 

The same reaction sequence gave rise to |}-eudesmol 22 when the quaternary 

ammonium salt was formed in technical sulfolane. 

Scheme 2.11« 

42 

32 

43 

44 

12% 

22 

a (a) toluene, 90°C; (b) CH3I; NaOH, CH3OH; (c) anhydrous sulfolane, 

CH3I; Li, NH 3 ; (d) technical sulfolane, CH3I; Li, NH3. 

2.1.2.3 [2+2]Cydoaddition Reactions 

The facile manipulation of the cyclobutane ring has been originated 

several approaches in which the eudesmane skeleton has been constructed 

via an enone-alkene [2+2]photocycloaddition/ct-diol cleavage reaction 

sequence.18 '19 '20 

For the synthesis of (+)-balonitol 45,18 1,2-bistrimethylsilyloxycyclobutene 

46 was annulated to the optically active 3-methylcyclohex-2-enone derivative 

47 upon radiation at 350 nm to afford the adduct 48 (Scheme 2.12). Sequential 

reduction, desilylation, and cc-diol cleavage transformed 48 into the dione 49. 

A five steps reaction sequence was used to convert 49 into (+)-balonitol 45. 

16 



Scheme 2.12« 

Chapter 2 

OTMS 

a (a) h\), pentane; (b) LiAlHj, ether; (c) HC1, ether, water; (d) O2, CH3OH. 

2.1.3 Intramolecular Cyclization Reactions 

In this section several approaches via intramolecular cyclizations are 

described. Kawamata21 reported the intramolecular aldol condensation of 

acetal aldehyde 50. Subsequent cleavage of the benzyl ether afforded enone 51 

in only 28% yield (Scheme 2.13). The enone 51 was converted into ester 52, 

which was used as an intermediate in the synthesis of fJ-eudesmol 22.22 The 

possibility to convert (3-eudesmol 22 into neointermedeol III, as the authors 

suggest, is far from ideal (see paragraph 2.2.3). 

Scheme 2.13fl 

a,b 

°\ f O OCH2Ph O 

50 51 

O 
^ ^C02CH3 

52 

« (a) HC1, THF; (b) 10%-Pd/C, EtOH-EtOAc; (c) PCC, CH2C12; (d) Jones 

reagent, acetone; (e) CH2N2, ether. 
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The base catalyzed cyclization of ditosylate 53 afforded diastereo-selectively 

the P C-7 substituted ketone 5423 in 56% yield (Scheme 2.14). This compound 

was converted into keto acid 55, which was used in the synthesis of fJ-

eudesmol 22.22 

Scheme 2.14fl 

O OTs OTs 
53 

b,c 

OTs 

54 

COOH 

" (a) Na-f-pentoxide, benzene; (b) NaOAc, DMF, K 2C0 3 , CH3OH; (c) 

PDC,CH2C12. 

The cyclization of the ene adduct 56 from (-)-p-pinene and acryloyl 

chloride was mediated by an intramolecular ene reaction involving ketene 

57.24 The product 58, which had undergone conjugation, was used as a 

precursor for (+)-p-selinene 59. Thermolytic cleavage of 58 followed by 

Scheme 2.15fl 

(-)-p-pinene r®-c® 
- ^ C l 

56 

^O 

57 

c,d,e 

« (a) acryloyl chloride, 70°C; (b) Bu3N, 150 °C; (c) 265°C; (d) 

(CH3)2Li2Cu(I)I, ether; (e) Ph3P=CH2. 
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methyllithium cuprate addition and a Wittig reaction completed the 

reaction sequence (Scheme 2.15). Pure 59 could be isolated from the product 

mixture with preparative GC. 

2.1.4 Transformations of Natural Sesquiterpenes 

The eudesmanolides (-)-oc-santonin 60 and (-)-artemisin 61 have been used 

in the synthesis of several eudesmanes e.g. (+)-4-epi-aubergenone 62,2 5 

(+)-kudtriol 63,26 and the eudesmanolide (+)-yomogin 6427 (Scheme 2.16). 

Scheme 2.16 

Cyclization of germacrene derivatives offers an attractive method to 

construct the eudesmane skeleton. This method has found little application 

because of the scarcity of suitable germacrene derivatives. Isogermacrone 

Scheme 2.17fl 

« (a) BF3ether, etherate; (b) NaOEt. 
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epoxide 65 underwent acid- and base-induced transannular cyclization to 

yield the eudesmane compounds 66 and 67, respectively28 (Scheme 2.17). 

Reaction of germacrene-D 68 with H2SO4 afforded an eudesmane-4,6-diol 

cyclic sulfate 6929 in only 4.5% yield (Scheme 2.18). Treatment of 69 with 

alcoholic KOH gave junenol 70. 

Scheme 2.18" 

" (a) coned. H2S04 , ether, 5°C; (b) 10% KOH, EtOH. 
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2.2 REPORTED SYNTHESIS OF EUDESM-ll-EN-4-OLS 

2.2.1 Total Synthesis of Intermedeol II 

Two different research groups have synthesized intermedeol II at about 

the same time in almost the same way. Both groups started with (-)-7-epi-

cyperone 7 which was synthesized from (-)-carvone. In the first approach a 

Wolff-Kishner reduction of 7 gave a mixture of the dienes 71, 72, and 73 3 0 

(Scheme 2.19). The diene 71, necessary for the synthesis of II, could be 

isolated from this mixture in only 13% yield. Epoxidation of 71 followed by 

reduction gave a mixture of alcohols from which an analytical sample of II 

could be isolated after preparative GC. Huffman et al.31 synthesized 71 

starting from 7 in a more convenient way (Scheme 2.20), but again the 

conversion of 71 into intermedeol II was very problematic. 

A second approach tried by both groups ended with ketone 75. All efforts 

to remove the carbonyl group of 75 led to decomposition (Scheme 2.19). 

Scheme 2.19" 

d,b,c b,c 

~/S+ 

a (a) triethylene glycol, N 2H 4 , KOH; (b) m-CPBA, CH2C12; (c) UAIH4, 
THF; (d) Li, NH3, f-BuOH, Ac20. 
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Scheme 2.20" 

« (a) Li, NH3 , ether; (EtO)2P(0)Cl; (b) Na, NH3 / f-BuOH. 

A third method, reported by Huffman,31 started from cc-agarofuran 76 

(Scheme 2.21). The reaction sequence involved conversion of 76 into the 

epoxide 77. Reduction of 77 with UAIH4 gave the alcohol 78. The latter 

compound afforded diol 79 after reduction with Li in EtNH2- Partial 

dehydration of 79 gave a mixture of five compounds from which an 

analytical sample of II could be isolated after preparative GC in poor yield. 

Scheme 2.21" 

HO '-

HO '- HO '-
II 

« (a) m-CPBA, CH2C12; (b) LiAlH4, ether; (c) Li, EtNH2; (d) 2% quinoline 

on Al, 192°C. 

2.2.2 Total Synthesis of Paradisiol IV 

(-)-7-epf-Cyperone 7 has also been used in the synthesis of paradisiol IV.31 

In a three steps reaction sequence 7 was converted into a ca. 1:1 mixture of 

the dienes 71 and 80. After separation, 80 was converted via the epoxide 81 

into paradisiol IV in 33% overall yield (Scheme 2.22). 

22 



Scheme 2.22s 

Chapter 2 

a,b,c 

« (a) UAIH4, THF; (b) AC2O, pyridine; (c) Li, NH3, ether; (d) m-CPBA, 

CH2C12. 

2.2.3 Total Synthesis of Neointermedeol III 

An original annulation method used in the synthesis of eudesmanes is 

reported by MacKenzie32 (Scheme 2.23). Condensation of vinylacetylchloride 

82 with (+)-9-chloro-l-p-menthene 83, followed by distillation and 

chromatography, gave the enones 84 (38%) and 85 (33%). Catalytic 

hydrogenation of 84 followed by ketalization, dehydrohalogenation, and 

hydrolysis afforded ketone 87. (-)-Neointermedeol III was obtained from 87 

upon treatment with CH3MgI in an overall yield of 29% from 84. 

Another synthesis of III started with p-eudesmol 22 3 3 (Scheme 2.24). 

Ozonolysis of 22 afforded the ketone 88 which was converted into the acetate 

89. Pyrolysis of the acetate 89 at 400 °C gave the ketone 87 which upon 

treatment with CH3MgCl produced III. No yields and reaction conditions 

were reported in this article. 
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Scheme 2.23fl 

" (a) AICI3, CH3NO2; (b) H2/Pt, AcOH; (c) glycol, benzene, H+; (d) 
f-BuOK, DMSO; (e) H+, H20, dioxane; (f) CH3MgI, ether. 

Scheme 2.24 

OAc 

2.2.4 Total Synthesis of 5-ep/-Paradisiol VIII 

In an attempt to synthesize amiteol V, Baker et al.34 reported the synthesis 
of 5-epi-paradisiol VIII (Scheme 2.25). In an eight steps reaction sequence (+)-
dihydrocarvone 5 was converted into a 2:1 mixture of ketones 93 and 94, 
respectively, in an overall yield of 3.5%. After separation by means of 
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preparative HPLC, a Grignard reaction of ketone 87 with CHsMgl gave VIII 

in 33% yield, beside 52% of the starting material. 

Scheme 2.25« 

(+)-5 

a.b.c^ 

90 91 

f-g 

94 (17%) 

(-)-VIII 

« (a) NaNH2 , CICH2CH2COCH3, THF; coned HC1, EtOH; (b) m-CPBA, 

CH2C12; (c) UAIH4, ether; (d) Ac2C>, pyridine; (e) Li, NH3; (f) B2H6, THF; 

H 2 0 2 , NaOH; (g) PCC, CH2C12; (h) SOCl2, pyridine, 0°C; (i) CH3MgI. 
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3. SCOPE OF THIS THESIS 

The existing confusion around the structure elucidation of the natural 

stereoisomers of eudesm-ll-en-4-ol, the poor availability of physical and 

spectral data, and their interesting biological activities have been among the 

reasons to initiate a synthetic program to all stereoisomers of eudesm-11-en-

4-ol. This program includes the synthesis of the unnatural ds-fused 7-epi-

amiteol VI, 5-epi-neointermedeol VII, and 5-ep/-paradisiol VIII (Figure 3.1). 

HO 
VIII 

Most of the reported total syntheses of eudesm-ll-en-4-ols proceed in low 

overall yields (see paragraph 2.2). Therefore, a general and more efficient 

synthesis of the eudesm-ll-en-4-ols is desirable. 

At our laboratory an easy synthesis of the trans- and as-fused diones 95 

and 96, respectively, has been developed. These diones are attractive starting 

materials in the synthesis of all eight stereoisomers of eudesm-ll-en-4-ol. 

The strategy for their synthesis is outlined in scheme 3.1, which is also given 

on a supplementary sheet at the end of this thesis. The synthesis starts from 

enone 101. A large scale synthesis of the diones 95 and 96, and the 

stereocontrol on the C-5 bridgehead center is described in chapter 4. The C-7 

carbonyl group in both diones can be selectively protected, and this feature 

allows a stereoselective introduction of the methylgroup at C-4 (Chapter 5). 

Well-established procedures are available for the introduction of a 

thermodynamically more stable equatorial 1-methylethenyl group in the 

trans- and cis-fused hydroxy ketones 97-100. The solution for the problem 

expected for the introduction of an axial 1-methylethenyl group in these 

compounds, especially in the c/s-fused hydroxy ketones 99 and 100, is given 

in chapter 6. NMR and MM2 studies of the conformational behavior of the 

ds-fused compounds V, VI, VII, and VIII are described in chapter 7. In 

chapter 8 all spectral and physical data of the eudesm-ll-en-4-ols are 

collected. 
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Scheme 3.1 

O 
95 
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/ 
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O * ^ 

II 

H O '* 
The structure depicted here is the enantiomer of the natural form. V I I I 
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4. SYNTHESIS OF THE TRANS- AND CIS-FUSED HEXAHYDRO-4a-

METHYL-l(2H),7(8H)-NAPHTHALENEDIONES 

A general and efficient method for the stereoselective synthesis of the 

trans- and cis-fused diones 95 and 96 has been developed.1 These diones are 

used as starting materials in the synthesis of all stereoisomers of eudesm-11-

en-4-ol. 

4.1 STEREOSELECTIVE SYNTHESIS OF THE TRANS- AND CIS-FUSED 

DIONES 

The easily accessible enone 101 was prepared according to the alkaline 

Robinson annulation from 2-methylcyclohexanone and methyl vinyl 

ke tone. 2 Treatment of 101 with acetic anhydride, Nal, and (CH3)3SiCl 

afforded dienol acetate 1023 which was oxidized with Oxone in a mixture of 

methanol and water, buffered with NaHC03.4 The resulting mixture of a 
and (i alcohols was isomerized with HBr in ether (Scheme 4.1). Flash 

chromatography gave the frans-fused dione 95 and cis-fused dione 96 in 42% 

and 18% overall yield, respectively. This reaction sequence was performed on 

0.5 mol scale. 

Scheme 4.1" 

101 

OAc 

102 

! 

O 
96 

103 

° * ^P*° 
« (a) Nal, (CH3)3SiCl, Ac20; (b) Oxone, NaHC03 , H 2 0 , CH3OH; (c) HBr, 
ether. 
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Treatment of a mixture of 95 and 96 with trimethyl orthoformate in ether 
in the presence of a catalytic amount of acid gave a selective C-7 acetalization 
of both compounds. Subsequent epimerization with base afforded 
exclusively the C-7 monoacetalized (raws-fused dione 104la (Scheme 4.2). 
This dione was used in the synthesis of the trans-fused eudesm-ll-en-4-ols. 

Scheme 4.2s 

a,b 

i l p O C H 3 

A H OCH3 
H3C0 0CH3 

105 

104 

o 

96 

« (a) (CH30)3CH, p-TsOH, ether; (b) NaOCH3/ CH3OH; (c) (CH3CO3CH, 
H2S04, CH3OH; (d) PPTS, acetone, H2O. 

Treatment of the frans-fused dione 95 with trimethyl orthoformate in 
methanol in the presence of a catalytic amount of acid at room temperature 
for 3-5 days gave exclusively the cis-fused tetramethyl diacetal 105 in 70% 
yield (Scheme 4.2). Mild hydrolysis of 105 with PPTS in aqueous acetone for 1 
h afforded the as-fused dione 96 in quantitative yield. In this way the 
thermodynamically stable trans-fused dione 95 was transformed to the less 
favorable cis-fused dione 96. 

A further investigation of the cis-fused tetramethyl diacetal 105 was 
necessary to find an explanation for this transformation. It is well established 
that c/s-fused decalin systems can occur in either the steroid 106a or the 
nonsteroid 106b conformation, or as an equilibrium mixture between both 
conformations.5 Substituents which have the equatorial position in the 
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steroid conformer 106a, are axially positioned in the nonsteroid conformer 

106b, and vice versa (Chart 4.1). 

Chart 4.1 

" ^ T 
106 a (steroid) 
105 a :A,B, C, D = OCH3 

106 b ( non-steroid ) 
105 b:A, B,C, D = OCH3 

The determination of the conformation of 105 with NMR was very 

difficult. However,force valence field calculations (MM2)6 showed a 

conformational energy difference of 28 kj /mol in favor of the steroid 

conformer 105a. This means that the population of the nonsteroid 

conformer 105b is reduced to less than 0.1% (Chart 4.1). 

The C-l substituted analogue of 105, the acetate 107, was synthesized to 

obtain additional support for these calculations. The couplings of 4.3 Hz and 

11.9 Hz at 8 5.50 measured for the C-l proton of 107 proves that this proton 

possesses the axial position. These observations correspond with the steroid 

conformation of 107 (Figure 4.1). 

Figure 4.1 

AcO 

-OCH3 = 

H3 
C 

A H 0CH3 
H,CO OCH, 

107 

Also the fact that fraws-fused cholestane-3,6-dione 108 could be 

transformed under the same reaction conditions to n's-fused dione 109, 
which can only exist in the steroid conformation,7 supports the MM2 

31 



R.P.W. Kesselmans 

calculations. On account of these data, it is reasonable to assume that 105 
occurs in the steroid conformation. 

Figure 4.2 

?8H17 

108 

C«H 8n17 

109 

Somewhat surprisingly was that the calculated free energy difference 

between the trans-fused tetramethyl diacetal 110 and 105a amounted 8 

kj/mol in favor of 105a. When the methoxy groups in the MM2 calculations 

in 105a and 110 were replaced by ethyl groups the trans-fused system was 

favored by 16 kj/mol. These remarkable differences must be due to the 

anomeric effect of the C-4 dimethyl acetal function. 

In general, the origin of the anomeric effect can be considered as 

stabilizing or destabilizing.8'9 The dimethyl acetal group can take three basic 

staggered conformations i-iii (Figure 4.3). The stabilizing electronic effect of a 

dimethyl acetal group occurs when an electron pair of an oxygen atom has an 

antiperiplanar orientation toward the other methoxy group as depicted in 

conformer i. Stabilization will then be gained by partial transfer of an 

electron pair of one oxygen to the other, as shown by the arrows in i. The 

destabilizing electronic effect is due to repulsion by electron pair - electron 

pair interactions which is represented by the arrows in the conformers ii and 

iii. The conformation i has two stabilizing anomeric effects. Newman-

projections across the 1,2- and 3,2-axis show antiperiplanarity between both 

the methoxy groups and electron pairs. As a result, the CHaC^-CZ-O3 and 

Cr^OS-C^O1 torsial angles are both 60°. 

The conformation ii has one stabilizing and one destabilizing anomeric 

effect. The stabilizing anomeric effect is shown by the Newman-projection 

across the 1,2-axis with a CHsC^-C2-©3 torsial angle of 60 °C. The destabilizing 

effect is due to electron pair - electron pair repulsion as represented by the 

arrow. The Newman-projection across the 3,2-axis shows the lack of 
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antiperiplanarity between the methoxy group and an electron pair of 0-3. As 
a consequence, this CH303-C2-01 torsial angle is 180°. Conformation iii 
possesses two electron pair - electron pair repulsions, thus two destabilizing 
effects. The Newman-projections across the 1,2- and 3,2-axis show that both 
torsial angles are 180°. 

MM2 calculations reveal that 110a is the most stable conformation of 110. 
In this calculated conformation 110a the dimethyldiacetal group at C-4 has 
torsial angles of 66° (stabilizing) and 173° (destabilizing) (Figure 4.4). This 
means that its conformation corresponds with conformer ii. The two other 
possible conformations 110b and 110c which both correspond with the 
electronically more favorable conformer i, show van der Waals repulsions 
between the a C-4 methoxy group and the a C-6 proton (110b) and between 
the p C-4 methoxy group and the p C-6 proton (110c) (Figure 4.4). These steric 
effects make 110b and 110c less favorable. 

Figure 4.4 

H3CO OCH3 

110 

CL 

110 a 

O o 

110 b 110 c 

In contrast, the C-4 dimethyl acetal group in 105a is not hindered by C-6 
protons. Both methoxy groups can adopt the ideal conformation as depicted 
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in conformer i. The calculated torsial angles are 65° and 58° (both stabilizing) 

(Figure 4.5). 

Figure 4.5 

Q 

105 a 

A kinetic effect can also play an important role in the transformation of 

95 into 96. The formation of 105a can be explained in terms of an 

elimination-addition mechanism. l c The frans-fused 110 is equilibrated to 

105a via an acid-catalyzed anti elimination of the a C-5 proton and the P C-4 

methoxy group (110 to 111) and renewed addition of methanol (111 to 105a). 
In the latter compound 105a the P C-5 proton and the methoxy groups at C-4 

lack the antiperiplanar orientation, which will decrease the rate of 

elimination of the reverse reaction (Scheme 4.3). 

Further investigation will be necessary to establish whether the dynamic 

or kinetic effect, or a combination of both, is responsible for this trans-cis 

transformation. 

Scheme 4.3 
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In these reaction sequences the stereoselective synthesis of trans- and cis-

fused diones 95 and 96 are described. These compounds are ideal 

intermediates in the synthesis of all stereoisomers of eudesm-ll-en-4-ol 

because of the differences in reactivity between the C-l and C-7 carbonyl 

group (vide supra). 

4.2 EXPERIMENTAL SECTION 

NMR spectra were recorded on a Varian EM-390 at 90 MHz ( JH). 

Chemical shifts are reported in parts per million (8) relative to 

tetramethylsilane (8 0.0). NMR multiplicities are recorded by use of the 

following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet, m, 

multiple:; br, broad; J, coupling constant; Hz, hertz. Mass spectral data were 

determined on an AEI MS 902 spectrometer. Gas-liquid chromatography (GC) 

analyses were carried out on a Varian Vista 6000 gaschromatograph with a 

flame ionization detector and a DB-17 fused silica capillary column, 30 m x 

0.25 mm i.d., film thickness 0.25 um. Peak areas were integrated electronically 

with a Spectra-Physics integrator SP 4290. Column chromatography was 

performed using ICN alumina B-Super I. Flash chromatography was 

performed using Merck silica gel 60 (230-400 mesh). Solvents were dried and 

distilled fresh by common practice. Product solutions were dried over 

anhydrous sodium sulfate, unless otherwise noted, prior to evaporation of 

the solvent under reduced pressure by using a rotary evaporator. 

(4aa,8ap>(±)-Hexahydro-4a-methyl-l(2H),7(8H)-naphthalenedione (95) 

and (4aa,8aa)-(±)-Hexahydro-4a-methyl-l(2H),7(8H)-naphthalenedione (96). 

To a stirred mixture of 68.66 g (0.42 mol) of enone 1012 and 250 g (1.67 mol) of 

Nal in 600 mL of acetic anhydride, cooled to 0 °C, was added dropwise 208 mL 

(1.63 mol) of (CH3)3SiCl. The reaction mixture was stirred at 0 °C for 1 h, after 

which time the solvents were evaporated under reduced pressure. The 

remaining residue was taken up in 500 mL of saturated aqueous NaHCC*3, 

cooled to 0 °C, and 120 g of Na2S2C>3 was added. The mixture was allowed to 

stir at 0 °C for 1 h, after which time the evolution of carbon dioxide had 

ceased. The aqueous mixture was extracted with three 500-mL portions of 

EtOAc. The combined organic layers were dried and evaporated under 

reduced pressure to give 69 g of dienol acetate 102 OH NMR (CDCI3, 90 MHz) 

8 1.00-2.60 (m, 10 H), 1.10 (s, 3 H), 2.15 (s, 3 H), 5.41 (t, 1 H), 5.70 (s, 1 H)). The 

crude 102 was taken up in a mixture of 900 mL of CH3OH, and then 90.0 g 
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(1.07 mol) of NaHC03 was added. The reaction mixture was cooled to 0 °C, 
and then a solution of 430 g of Oxone in 1300 mL of water was added 
dropwise. After stirring at room temperature for 1 h, the reaction mixture 
was filtered, and the CH3OH was evaporated under reduced pressure. The 
remaining aqueous mixture was extracted with five 250-mL portions of 
CH2C12- The combined organic layers were dried and evaporated under 
reduced pressure to give 69 g of a mixture of the a and P alcohols 103 (a 
alcohol: *H NMR (CDCI3, 90 MHz) (major peaks) 8 1.23 (s, 3 H), 4.33 (m, 1 H); 
P alcohol: *H NMR (CDCI3, 90 MHz) (major peaks) 8 1.47 (s, 3 H), 5.80 (s, 1 
H)). The crude mixture 103 was taken up in 500 mL of ether, and 2.0 mL of 
coned HBr was added. The reaction mixture was stirred at room temperature 
for 2 h, and then diluted with 500 mL of saturated aqueous NaHCC>3. The 
two-phase mixture was separated, and the aqueous layer was extracted with 
three 300-mL portions of CH2CI2. The combined organic layers were washed 
with 250 mL of brine, dried, and evaporated under reduced pressure. The 
remaining residue was flash chromatographed on silica gel (10:1 - 1:1 
petroleum ether (bp 40-60 °C)/EtOAc) to give, in order of elution, 32.04 g 
(42%) of frans-fused dione 95 and 13.32 g (18%) of cfs-fused dione 96. 
Spectroscopic data of 95 and 96 are shown below. 

95: *H NMR (CDCI3, 90 MHz) 8 1.04 (s, 3 H), 1.15-2.79 (m, 13 H); mass 
spectrum m/e (relative intensity) 180 (M+, 52), 151 (100), 123 (48), 97 (22), 67 
(28), 55 (23), 41 (27). 

96: *H NMR (CDCI3, 90 MHz) 8 1.33 (s, 3 H), 1.34-2.87 (m, 13 H); mass 
spectrum m/e (relative intensity) 180 (M+, 100), 110 (45), 97 (73), 82 (40), 81 
(27), 67 (37), 55 (53), 41 (38). 

(4aa,8aP)-(±)-Hexahydro-7,7-dimethoxy-4a-methyl-l(2H)-naphtalenone 
(104). The frans-fused dimethyl acetal 104 was synthesized from either a 
mixture of 95 and 96 or pure 95 as described.13 

Transformation of 95 into 96. To a stirred solution of 6.21 g (34.5 mmol) of 
frans-fused dione 95 in 30 mL of CH3OH and 8 mL of trimethyl 
orthoformate, cooled to 0 °C, was added dropwise a solution of 0.15 mL (2.7 
mmol) of coned H2SO4 in 10 mL of CH3OH. After the solution was stirred at 
room temperature for 6 days, 0.58 mL (7.2 mmol) of pyridine was added. The 
reaction mixture was allowed to stir for 30 min, concentrated under reduced 
pressure, and then diluted with 200 mL of water. The aqueous solution was 
extracted with three 250-mL portions of CH2CI2. The combined organic layers 
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were dried over K2CO3 and evaporated. The remaining residue was 
chromatographed on basic alumina (activity IV) (10:1 petroleum ether (bp 40-
60 °C)/EtOAc) to give 6.85 g of the corresponding ris-fused tetramethyl 
diacetal 105 (*H NMR (CDC13/ 90 MHz) 8 0.73-2.67 (m, 13 H), 1.08 (s, 3 H), 3.14 
(s, 3 H), 3.18 (s, 6 H), 3.22 (s, 3 H)). The so-obtained diacetal 105 was taken up 
in 200 mL of acetone, and 20 mL of water and 0.500 g (2.0 mmol) of PPTS 
were added. The reaction mixture was stirred at room temperature for 20 h 
and then diluted with 200 mL of saturated aqueous NaHCC>3. After 
evaporation of the acetone under reduced pressure, the remaining aqueous 
solution was extracted with three 250-mL portions of CH2CI2. The organic 
layers were washed with brine and dried over a 1:1 mixture of Na2S04 and 
K2CO3. Evaporation afforded 4.32 g (70%) of the ris-fused dione 96, which was 
used without further purification for the next reactions. 
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5. STEREOSPECIFIC SYNTHESIS OF THE TRANS- AND CIS-FUSED 
OCTAHYDRO-8-HYDROXY-4a,8-DIMETHYL-2(lH)-NAPHTHALENONES. 
CONFORMATIONAL ANALYSIS OF THE CIS-FUSED COMPOUNDS 

In this chapter the conversion of the diones 95 and 96 into the 

corresponding hydroxy ketones 97,98 and 99,100, respectively, is described. 

The stereochemistry and conformational analysis of the ds-fused hydroxy 

ketones 99 and 100 was determined by high-field NMR spectroscopy in 

combination with molecular mechanics calculations. 

5.1 PREPARATION OF THE TR/INS-FUSED HYDROXY KETONES 

The carbonyl function at C-7 of the trans-fused dione 95 could be 

selectively protected with trimethyl orthoformate in the presence of p-TsOH 

at room temperature in ether as a solvent to give the frans-fused dimethyl 

Scheme 5.1" 

d,c 

H 

112 

O 

« (a) (CH30)3CH, p -TsOH, CH2C12; (b) CH3MgI, ether; (c) HC1, acetone, 

H 2 0 ; (d) Ph3P=CH2 , DMSO; (e) (CH30)3CH, p -TsOH, CH3OH, then 

MMPP; (f) LiAlH4, THF. 
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acetal 104.1'2 Treatment of 104 with CH3MgI and subsequent hydrolysis of the 

acetal function afforded the fi-hydroxy ketone 98 in 80% yield as the sole 

product (Scheme 5.1). It is obvious that steric hindrance of the angular 

methyl group at C-10 prevents a P-attack of the Grignard reagent. 

For the synthesis of the a-hydroxy ketone 97 the traws-fused dimethyl 

acetal 104 was treated with Ph3P=CH2 in DMSO. Isolation of a pure product 

was only possible after hydrolysis of the acetal function and in this way the 

olefinic ketone 112 was obtained.3 A solution of 112 in CH3OH was treated 

with MMPP in the presence of trimethyl orthoformate and a catalytic 

amount of acid to prevent a Baeyer-Villiger oxidation. The so-obtained crude 

epoxy acetal 113 was reduced with LiAlH4, and after hydrolysis of the acetal 

function 97 was isolated in an overall yield of 69%. 

5.2 PREPARATION OF THE CIS-FUSED HYDROXY KETONES 

The ci's-fused dione 96 could be selectively protected with trimethyl 

orthoformate or 2-butanone dioxolane (MED) to afford 114 or 115, 
respectively. When the dimethyl acetal 114 was treated with CH3MgI in ether 

as a solvent at room temperature, no addition products could be detected. 

Only partial epimerization at C-5 was observed. Probably, the carbonyl group 

in 114 was converted into its enolate which upon hydrolysis gave the 

original ketone 114 together with its 5-epimer 95. On the other hand, 

treatment of 114 with CH3Li in THF as a solvent at -78 °C, under which 

conditions enolization is much less important,4 followed by hydrolysis of the 

acetal function afforded exclusively the ris-fused fi-hydroxy ketone 100 in 

81% yield (Scheme 5.2). Treatment of the ethylene acetal 115 with CH3Li in 

ether at room temperature gave, after hydrolysis, a 1:3 mixture of 99 and 100, 
respectively. An almost complete reversal of the stereochemistry at C-4 was 

observed when 115 was treated with CH3MgI in ether at room temperature. 

Hydrolysis of the ethylene acetal function gave the cfs-fused a -hydroxy 

ketone 99 in 78% yield together with a small quantity (10%) of 100. 

In order to explain these results, we assume that the conformational 

equilibrium A (steroid) - B (nonsteroid), as depicted in Chart 5.1, plays 

an important role in the selectivity of the addition reaction to 114 and 115. 

The more bulky dimethyl acetal group in 114 forces this compound into 

its steroid conformation 114A. The ethylene acetal group in 115 exerts a 

lesser destabilizing effect on the nonsteroid conformation 115B, as a result of 
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Scheme 5.2" 

Y H O C I OCH, 

99 

a (a) (CH30)3CH, p -TsOH, CH2C12; (b) CH3Li, THF, -78 °C; (c) HC1, 

acetone, H 20; (d) MED, p -TsOH, CH2C12; (e) CH3MgI, ether. 

Chart 5.1 

O 
OR2 

OR1 
OR2 

A (steroid) B (nonsteroid) 

114:R1 = R2 = CH3 
115:R1+R2 = CH2-CH2 
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which 115 can exist as the equilibrium mixture 115A — 115B at room 
temperature.5 The selective formation of 100, starting from 114, must arise 

from an a attack of CH3Li on the steroid conformer 114A. This result 

indicates that the methyl group at C-10 controls the approach to the carbonyl 

group. Similar arguments can be used for the predominant formation of 100 
starting from 115. Treatment of 114 with CH3MgI in ether at room 

temperature does not give any addition products, which leads to the 

conclusion that the carbonyl function in 114A is too sterically hindered for 

reaction with the lesser nucleophilic and more bulky CH3MgI. The 

observation that the as-fused ethylene acetal 115 upon treatment with 

CH3MgI under the same circumstances gives preferably the formation of 99 

indicates that the addition of CH3MgI must proceed from the p* face of the 

nonsteroid conformer 115BA7 

5.3 CONFORMATIONAL ANALYSIS OF THE CIS-FUSED HYDROXY 
KETONES 

For the structure elucidation of the ds-fused hydroxy ketones 99 and 100 
two issues were important. Firstly, the configuration of the methyl and 

hydroxy group around C-4 had to be established. Secondly, since most 

ds-decalins are conformationally mobile,8 the conformation of 99 and 100 
had to be determined (A (steroid) or B (nonsteroid), see Chart 5.2). In order to 

solve these problems, the relevant *H and 13C resonances of 99 and 100 were 

assigned using 1-D and 2-D NMR methods. Thus, *H assignments were 

established via *H - 1 H COSY measurements. The results are listed in Table 

5.1. 

Chart 5.2 

A (steroid) B (nonsteroid) 

99 :R1 = CH3,R2 = OH 
100:R1 = OH, R2=CH3 
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Table 5.1. *H NMR Data (400 MHz) for Compounds 99 and 100" 

proton on 

carbon no.fc 

le 

2 

3« 

5 

6 

8 

9 

CH3(10) 

CH3(4) 

OH 

lOtK 

1.6, m 

1.2, m 
1.65, m, 

1.45, m, 

1.60, m 

1.35, m 

1.72, dd 

2.45, dd 

2.36, dd 

2.36, m 

1.90, m, 

1.45, m, 

1.10, s 

1.25, s 

J 

Hax 
Heq 

Hax 
Heq 

99c 

1.57, m 

1.35, m 
1.80, m, 

1.35, m, 

1.57, m 

1.35, m 

1.53, dd 

2.51, m 

2.42, m 

2.30, m 

2.65, m, 

1.25, m, 

1.17, s 

1.22 s 

0.87, brs 

H ax 
H eq 

H ax 
Heq 

99d 

1.52, m 

1.20, m 
2.03, m, H a x 

1.39, m, Heq 

1.52, m 

1.20, m 

1.26, dd (7 = 1.8,6.6 Hz) 

2.67, dd (/ = 1.8,15.8 Hz) 

2.36, dd (7 = 6.6,15.8 Hz) 

2.62, m(7= 1.9,5.7, 

15.5 Hz) 

2.39, m (7 = 7.3,13.0, 

15.5 Hz) 
2.94, m, H a x 

1.16, m, Heq 

1.05, s« 

1.06, s« 

0.76, br s 

" Chemical shifts in ppm relative to the CDC13 singlet (8 7.23) or C6D6 

singlet (8 7.40). b See Chart II. c Recorded in CDC13.
 d Recorded in C6D6. « 

Assignments for these protons are interchangeable. / Obscured by other 
resonances. 

In principle, the conformation of 99 and 100 can be determined from the 
coupling constants JH(5)H(6ax) anc* JH(5)H(6eq)' t n a t *s' ^ these compounds 
have one rigid conformation. As can be seen in Table 5.1, even at 400 MHz 
no coupling constant could be determined due to chemical shift equivalency 
of H(6) and H(8), except for 99 in CgD6. From these coupling constants, it can 
be estimated that 99 must possess the nonsteroid conformation B since the 
steroid conformation A requires a 180° angle between H(5) and H(6ax). This 
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would result in a coupling constant of at least 9 Hz, whereas the largest 
coupling constant measured is 6.6 Hz. 

The nonsteroid conformation B for 99 is supported by three other facts: (i) 
Low-temperature 13C measurements show that this compound exists 
essentially in one conformation (vide infra), which is a prerequisite for 
conformational analysis by coupling constants, (ii) A NOE-effect between 
H(2ax) and H(9ax) was observed, which is only possible in the nonsteroid 
conformation, (iii) Molecular mechanics calculations of the conformational 
equilibrium [A - B], using the consistent valence force field,9 showed a 
free energy difference of 18 kj/mol for 99 (99(B) being the more stable 
conformer), and 4 kj/mol for 100 in favor of 100(A) as the stable conformer. 
In terms of conformational equilibria this means that the population of 
99(A) is reduced to less than 0.1%, rendering it essentially unobservable by 
13C NMR. The population of 100(A) is approximately 80-90% depending 
upon the accuracy of the calculations. 

Table 5.2. 1 3C NMR Data (100 MHz) for Compounds 99 and 100 in CDCl3
fl 

carbon no. b 9& 100<- 100 (major)** 100 (minor)** 

19.2 17.9 

1* 
2 

3e 

4 

5 

6 

7 

8 

9 

10 
CH3(10) 

CH3(4) 

39.8 

17.3 

40.8 

71.9 

51.8 

38.0 

213.0 

37.4 

32.1 

32.5 
29.0 

30.4 

35.4 

18.8 

38.8 

73.0 

52.5 

39.3 

212.9 

37.1 

36.1 

33.3 
29.3 

26.9 

52.5 51.4 

23.6 30.5 

a Chemical shifts in p p m relative to the CDC13 t riplet a t 8 77.0. b See Char t 

n . c At 298 K. d At 221 K. e Assignments are interchangeable. 

The results of t he calculations are suppor ted by 1 3C NMR measurements . 

The a s s ignment s we r e es tabl ished by 2-D NMR ! H - 1 3 C chemical shift 

44 



Chapter 5 

correlation measurements, and the results are listed in Table 5.2. 

Comparison of the data in Table 5.2 with those for two similar compounds 

(which only lack the hydroxy group at C-4) shows a good overall 

agreement.10 

As expected, the measurements at lower temperatures (298 K down to 

221 K) showed that the spectrum of 99 was essentially temperature 

independent, whereas for 100 exchange phenomena were observed. At 221 K, 

a major and minor form were seen (approximately 4:1). Comparison of the 

chemical shifts of the minor form with those for 99 shows that it has the 

nonsteroid conformation. Thus 100 preferentially adopts the steroid 

conformation A, in accordance with the calculations. 

This left only the configuration around C-4 to be established. This was 

accomplished by NOE difference measurements with multiple irradiation.11 

Since 100 is in conformational equilibrium at room temperature, NOE data 

for this compound are hard to interpret because it would remain uncertain 

from which form the NOE effect originated.12 Therefore, NOE difference 

measurements were only performed for 99. Once the configuration around 

C-4 for this compound is known, it is assumed that, because of the chemical 

history of 99 and 100, the other configuration can be assigned to 100. 

Irradiation of the C-6 protons of 99 at 8 2.51 gives NOEs with both methyl 

groups at C-10 and C-4, as well as with H(5). Irradiation of H(9ax) at 8 2.65 

gives NOEs with H(9eq), H(8eq), the hydroxyl proton, and with H(2ax). These 

data confirm that 99 exists in the nonsteroid conformation B, and are 

consistent with the assignment R1 = CH3, R2 = OH for 99. This leaves 

R1 = OH, R2 = CH3 for compound 100. 

In this chapter we have shown that stereocontrol on the C-4 

stereoisomeric center in the trans- and cis-fused hydroxy ketones can be 

achieved. The conversion of the hydroxy ketones into the corresponding 

eudesm-ll-en-4-ols will be described in the next chapter. 

5.4 EXPERIMENTAL SECTION 

Melting points were determined on an Olympus HSA melting point 

apparatus and are uncorrected. Infrared (IR) spectra were recorded on a 

Philips PU 9706 infrared spectrophotometer, and peak positions are 

expressed in cm-1. NMR spectra were recorded on a Varian EM-390 at 90 

MHz OH), a Bruker 200 E at 200 MHz OH) and at 50 MHz 03Q, and a Bruker 

AM-400 at 400 MHz (*H) and at 100 MHz (13C). Chemical shifts are reported 
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in parts per million (8) relative to tetramethylsilane (8 0.0). NMR 

multiplicities are recorded by use of the following abbreviations: s, singlet; d, 

doublet; t, triplet; q, quartet, m, multiple:; br, broad; /, coupling constant; Hz, 

hertz. COSY, 1H-13C correlation and NOE experiments were carried out on a 

Bruker AM-400. Typical parameters for the COSY-45 experiments are as 

follows: 90° pulse = 6 us (5 mm selective probe), a spectral width of 900 Hz in 

tj and t2 was used, and 128 experiments with 8 transients each were done. 

Before fourier transformation, zero filling was used once, and no window 

functions were applied. For the JH- 1 3C heteronuclear shift correlation 

spectra: 90° carbon pulse = 6 us, 90° proton pulse = 11 us (5 mm dual probe). 

Spectral width in t^ = 800 Hz, in t2 = 3787.9 Hz with a size of 256-1 K. A total of 

128 experiments with 128 transients each were done. Delays used in the pulse 

sequence were 3.3 and 2.2 ms. Sine-bell window functions without phase 

shift were used for the fourier transformation. Mass spectral data were 

determined on either an AEI MS 902 spectrometer or a VG Micromass 7070 F 

spectrometer at 70 eV. Elemental analyses were determined on a Carlo Erba 

elemental analyzer 1106. Gas-liquid chromatography (GC) analyses were 

carried out on a Varian Vista 6000 gaschromatograph with a flame 

ionization detector and a DB-17 fused silica capillary column, 30 m x 0.25 

mm i.d., film thickness 0.25 um. Peak areas were integrated electronically 

with a Spectra-Physics integrator SP 4290. Column chromatography was 

performed using ICN alumina B-Super I or ICN alumina N-super I. Flash 

chromatography was performed using Merck silica gel 60 (230-400 mesh). 

Solvents were dried and distilled fresh by common practice. For all dry 

reactions, flasks were dried at 150 °C and flushed with dry nitrogen just 

before use, and reactions were carried out under an atmosphere of dry 

nitrogen. Product solutions were dried over anhydrous sodium sulfate, 

unless otherwise noted, prior to evaporation of the solvent under reduced 

pressure by using a rotary evaporator. 2-Butanone dioxolane (MED) was 

prepared from 2-butanone as reported.13 

(4aa,8a,8aP)-(±)-Octahydro-8-hydroxy-4a,8-dimethyl-2(lH)-naphthalenone 

(98). To 200 mL of 0.6 M CH3MgI in ether was added dropwise a solution of 

7.51 g (33.2 mmol) of dimethyl acetal 104 in 100 mL of dry ether. The reaction 

mixture was allowed to stir at room temperature for 1 h. The excess CH3MgI 

was then quenched by the careful addition of saturated aqueous NH4CI. After 

addition of 150 mL of water, the two-phase mixture was separated and the 

aqueous layer was extracted with three 100-mL portions of ether. The 
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combined organic layers were washed with brine, dried, and evaporated. The 

remaining residue was taken up in a mixture of 100 mL of acetone, and 4 mL 

of 5% aqueous HC1 was added. The reaction mixture was stirred at room 

temperature for 45 min and diluted with 100 mL of saturated aqueous 

NaHCC>3. After evaporation of the acetone under reduced pressure, the 

remaining aqueous solution was extracted with three 100-mL portions of 

CH2CI2. The combined organic layers were washed with brine, dried, and 

evaporated. The remaining residue was flash chromatographed (3:1 

petroleum ether (bp 40-60 °C)/EtOAc) to give 5.90 g (80%) of 98: mp 130-131 

°C (from diisopropyl ether); *H NMR (CDCI3,200 MHz) 5 0.90-2.00 (m, 10 H), 

1.06 (s, 3 H), 1.15 (s, 3 H), 2.10-2.60 (m, 4 H); 13C NMR (CDC13, 50 MHz) 8 17.75 

(q), 17.75 (t), 29.69 (q), 33.29 (s), 37.90 (t), 38.01 (t), 40.38 (t), 40.66 (t), 42.12 (t), 

50.49 (d), 71.25 (s), 213.03 (s); mass spectrum m/e (relative intensity) 196 (M+, 

84), 181 (30), 178 (16), 167 (37), 164 (21), 153 (49), 148 (100), 138 (47), 111 (81), 109 

(74); calcd for C12H2o02 (M+) m/e 196.1463, found 196.1460. Anal. Calcd for 

C12H20O2: C, 73.42; H, 10.27. Found: C, 73.69; H, 10.27. 

(4aa,8aP)-(±)-Octahydro-4a-methyl-8-methylene-2(lH)-naphthalenone 
(112). The enone 112 was prepared from 95 as desribed.2a 

(la,4ap,8aa)-(±)-Octahydro-7,7-dimethoxy-4a-methylspiro[naphthalen-
l(2H),2'-oxirane] (113). To a stirred solution of 6.41 g (36.0 mmol) of 

methylene ketone 112 in 200 mL of CH3OH were added 20 mL of trimethyl 

orthoformate and 0.222 g (1.13 mmol) of p-TsOH. The solution was allowed 

to stir at room temperature for 30 min, and then 20.2 g (40.8 mmol) of MMPP 

(magnesium monoperoxyphthalate) was added. The reaction mixture was 

stirred at room temperature for an additional 17 h, after which time 350 mL 

of 10% aqueous Na2S2C>3 and 200 mL of saturated aqueous NaHCC>3 were 

added. The aqueous solution was extracted with five 200-mL portions of 

CH2C12. The combined organic layers were washed with brine, dried over a 

1:1 mixture of Na2S04 and K2CC>3, and evaporated. The crude epoxide 113 
(8.00 g) (lH NMR (CDCI3,90 MHz) 8 0.70-2.10 (m, 13 H), 0.87 (s, 3 H), 2.57 (m, 2 

H), 3.10 (s, 3 H), 3.16 (s, 3 H)) was used without further purification for the 

next reaction. 

(4aa,8P,8ap)-(±)-Octahydro-8-hydroxy-4a,8-dimethyl-2(lH)-naphthalenone 

(97). To a stirred suspension of 2.94 g (77.0 mmol) of LiAlH4 in 150 mL of dry 

THF, cooled to 0 °C, was added dropwise a solution of 8.00 g of crude epoxide 
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113 in 100 mL of dry THF. The reaction mixture was allowed to stir at room 
temperature for 24 h and then heated at reflux for 11 h. The excess UAIH4 
was quenched at 0 °C by the careful addition of saturated aqueous Na2SC»4. 
After addition of 300 mL of water, the two-phase mixture was separated, and 
the aqueous layer was extracted with four 150-mL portions of EtOAc. The 
combined organic layers were washed with brine, dried, and evaporated. The 
remaining residue (8.91 g) was hydrolyzed as described for the synthesis of 97. 
The workup and flash chromatography (4:1 - 2:1 petroleum ether (bp 40-60 
°C)/EtOAc) gave 4.80 g (69% overall from 112) of 97: mp 55-56.5 °C (lit.14 mp 
57-58.5 °C); »H NMR (CDC13, 200 MHz) 8 1.00-1.90 (m, 10 H), 1.06 (s, 3 H), 1.11 
(s, 3 H), 2.05-2.65 (m, 4 H); 13c NMR (CDCI3, 50 MHz) 8 17.72 (q), 20.03 (t), 
21.83 (q), 34.28 (s), 37.74 (t), 38.04 (t), 39.93 (t), 42.66 (t), 43.32 (t), 53.76 (d), 71.61 
(s), 212.03 (s); mass spectrum m/e (relative intensity) 196 (M+, 100), 181 (21), 
178 (23), 167 (38), 163 (19,153 (53), 138 (56), 111 (98), 109 (96); calcd for C12H2o02 

(M+) m/e 196.1463, found 196.1465. 

(4aa,8aa)-(±)-Octahydro-7,7-dimethoxy-4a-methyl-l(2H)-naphthalenone 
(114). To a stirred solution of 6.23 g (34,6 mmol) of ci's-fused dione 96 in 
100 mL of CH2C12 were added 10 mL of trimethyl orthoformate and 0.340 g 
(1.78 mmol) of p-TsOH. The reaction mixture was stirred at room 
temperature for 45 min, after which time 0.160 g (2.35 mmol) of imidazole 
was added. The reaction mixture was allowed to stir for an additional 10 min 
and then concentrated under reduced pressure. The remaining residue was 
chromatographed on neutral alumina (activity II) (10:1 petroleum ether 
(bp 40-60 °C)/EtOAc) to give 7.47 g (96%) of 114: *H NMR (CDCI3, 90 MHz) 
8 0.77-2.67 (m, 13 H), 0.97 (s, 3 H), 3.17 (s, 3 H), 3.22 (s, 3 H). This material was 
sensitive to atmospheric moisture, and satisfactory analytical values could 
not be obtained. 

(4aa,8a,8aa)-(±)-Octahydro-8-hydroxy-4a, 8-dimethyl-2(lH)-naphthaleno-
ne (100). To a stirred solution of 40 mL (64.0 mmol) of CH3Li (1.6 M in ether), 
cooled to -78 °C, was added dropwise over a period of 30 min a solution of 
2.25 g (10.0 mmol) of crude 114 in 100 mL of dry THF. When the addition was 
complete, the reaction mixture was allowed to stir at -78 °C for an additional 
30 min. The excess O^Li was then quenched by careful addition of saturated 
aqueous NH4CI. After addition of 100 mL of water, the two-phase mixture 
was separated, and the aqueous layer was extracted with three 100-mL 
portions of EtOAc. The combined organic layers were washed with brine, 
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dried, and evaporated. The crude product OH NMR (CDC13, 90 MHz) 5 0.65-

2.10 (m, 14 H), 1.16 (s, 3 H), 1.20 (s, 3 H), 3.15 (s, 3 H), 3.20 (s, 3 H)) was 

hydrolyzed as described for the synthesis of 98. The workup and flash 

chromatography (3:1 petroleum ether (bp 40-60 °C)/EtOAc) gave 1.59 g (81%) 

of 100: lH NMR, see Table 5.1; 13C NMR, see Table 5.2; mass spectrum m/e 

(relative intensity) 196 (M+, 81), 181 (26), 178 (22), 167 (28), 161 (14), 154 (53), 

138 (48), 111 (100), 109 (94); calcd for C 1 2H 2 0O 2 (M+) m/e 196.1463, found 

196.1464. Anal. Calcd for C12H2o02: C, 73.42; H, 10.27. Found: C, 73,61; H, 10.08. 

(4,aa,8'aa)-(±)-Octahydro-4,a-methylspiro[l,3-dioxolane-2,2*(8'H)-naph-
thalen]-8'-one (115). To a stirred solution of 5.57 g (30.9 mmol) of ris-fused 

dione 96 in 100 mL of CH2C12 were added 20 mL of MED, a catalytic amount 

of ethylene glycol, and 0.160 g (0.84 mmol) of p-TsOH. The reaction mixture 

was stirred at room temperature for 45 min, after which time 0.078 g (1.15 

mmol) of imidazole was added. The reaction mixture was allowed to stir for 

an additional 10 min and then concentrated under reduced pressure. The 

remaining residue was flash chromatographed (5:1 - 2:1 petroleum ether 

(bp 40-60 °C)/EtOAc) to give, in order of elution, 4.79 g (69%) of 115 and 0.58 g 

(10%) of the starting material 96. The compound 115 had spectral 

characteristics identical with those reported in the literature.15 

(4aa,8P,8aa)-(±)-Octahydro-8-hydroxy-4a,8-dimethyl-2(lH)-naphthalenone 

(99). The ethylene acetal 115 (4.79 g, 21.4 mmol) was treated with CH3MgI for 

3 h as described for the synthesis of 98. After the workup, the crude reaction 

product OH NMR (CDCI3,90 MHz) 8 0.80-2.70 (m, 14 H), 0.98 (s, 3 H), 1.17 (s, 3 

H), 3.95 (m, 4 H)) was hydrolyzed for 18 h as described for the synthesis of 98. 

The workup and flash chromatography (5:1 petroleum ether (bp 40-60 

°C)/EtOAc) afforded 3.25 g (78%) of 99 along with 0.42 g (10%) of 100. 
99: mp 117-119 °C (from diisopropyl ether); IR (CCI4)16 3620, 3600, 1710 

cm -1; *H NMR, see Table 5.1; 13C NMR, see Table 5.2; mass spectrum m/e 

(relative intensity) 196 (M+, 100), 181 (17), 178 (22), 167 (24), 163 (12), 154 (52), 

138 (46), 111 (98), 109 (89); calcd for C 1 2 H 2 0 O 2 (M+) m/e 196.1463, found 

196.1463. Anal. Calcd for C12H20O2: C, 73.42; H, 10.27. Found: C, 73.25; H, 10.43. 
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6. TOTAL SYNTHESIS OF THE EUDEM-ll-EN-4-OLS I-VIII. FIRST TOTAL 
SYNTHESIS OF AMITEOL 

In this chapter, the total synthesis of all stereoisomers I-VIII of eudesm-

ll-en-4-ol starting from the hydroxy ketones 97-100 is described. In the 

synthesis of the frans-fused decalins I-IV it was anticipated that the 

conversion of the carbonyl group of the hydroxy ketones 97 and 98 into the 

eudesmanes II and IV with a less favorably orientated 1-methylethenyl 

substituent could lead to some difficulties. The conformational mobility of 

the cfs-fused decalin structure makes the stereochemical outcome difficult to 

predict for the eudesmanes V-VIII. 

6.1 SYNTHESIS OF THE TRANS-FUSED EUDESM-ll-EN-4-OLS I-IV 

For conformationally fixed frans-fused compounds an elegant solution to 

the problem of producing an axial 1-methylethenyl group has been 

reported.1 This method could not be applied in our approach because the 

strongly acidic conditions in this reaction led to dehydration of the tertiary 

alcohol group. Therefore, the introduction of the axial alkenyl group via a 

stereoelectronic controlled 1,4-addition of a cuprate reagent to the 

<x,p-unsaturated ketones 116 and 117 was investigated (Scheme 6.1). These 

compounds were prepared from the corresponding hydroxy ketones via 

reported methods.2 Conjugate addition of Li20'-C3H5)2Cu(I)CN3 to 116 gave 

118 as a single stereoisomer. Two methods were employed for the 

conversion of 118 into IV. 

A Wolff-Kishner reduction gave IV in low yield. The other method 

involved the reduction of the carbonyl group to an alcohol followed by a 

deoxygenat ion react ion.4 The disadvantage of this method is the 

nonselective reduction of the carbonyl group which gave almost equal 

amounts of the a- and p-alcohols. The a-alcohol could not be converted into 

the corresponding xanthate in the deoxygenation reaction, while the 

application of this reaction to the p-alcohol gave IV in poor yield. 

The conversion of 117 into II was even less satisfactory. With the 

unprotected tertiary alcohol group in 117, the cuprate addition proceeded 

only when forced reaction conditions were applied and the ketone 119, with 

an equatorial p 1-methylethenyl group, was isolated as the reaction product. 
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Scheme 6.1 

98: R1 = OH;R2 = CH, 

97: R1 = CH3;R2 = OH 
116:R1 = OH;R2=CH3 
117:R1 = CH3;R2 = OH 

118:R1 = OH;R2=CH3; 
a-alkenyl 

119:R1 = CH3;R2 = OH; 
fj-alkenyl 

II : R1 = CH3;R2 = OH 

Protection of the tertiary alcohol group in 117 as its TMS ether successively 
followed by cuprate addition, reduction, deoxygenation, and deprotection 
finally did give II, but again in a low yield. 

On the other hand, a well-established procedure is available for the 
introduction of a thermodynamically more stable equatorial 1-methyl-
ethenyl substituent starting from the carbonyl group in trans- and ci's-fused 
decalones.5'6 This synthetic sequence is exemplified in Scheme 6.2 and 
involves the conversion of a carbonyl group into an ethylidene substituent, 
oxidative hydroboration, oxidation, and a base-catalyzed equilibration, 
resulting in an equatorially orientated acetyl substituent. A subsequent 
Wittig olefination then generates the desired 1-methylethenyl group. This 
reaction sequence was successfully employed in the synthesis of the 
eudesmane alcohols I, HI, V, and VIII. During the synthesis of I we noticed 
that the oxidative hydroboration of the olefin 120a gave an adduct with an 
axial substituent at C-7 as the main product, probably as a result of the 
preferentially equatorial attack of the BH3 reagent.7 This selectivity can be 
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used in a straightforward route to the remaining eudesmane alcohols II, IV, 

VI, and VII, as is demonstrated in this chapter. 

For the synthesis of I and II the frans-fused hydroxy ketone 97 was the 

starting material (Scheme 6.2). Treatment of 97 with Ph3P=CHCH3 in DMSO 

yielded 120a as a 1:1 mixture of geometric isomers. Oxidative hydroboration 

(BH3THF; NaOH, H2O2) of 120a, directly followed by oxidation with PDC in 

CH2CI2 gave a 1:2.3 mixture of 121a and 122a, respectively.8 Equilibration of 

this mixture with KOH in CH3OH afforded 121a as the sole product. From 

these results it was concluded that BH3 attacks 120a preferentially from the 

p side. Pure I was obtained upon treatment of 121a with Ph3P=CH2 in DMSO 

in an overall yield of 53% starting from 97. For the preparation of II, the 

original 1:2.3 mixture of 121a and 122a was subjected to silyl-Wittig 

olefination reaction conditions ((CH3)3SiCH2Li, THF; KH, THF)9 to afford a 

1:2.3 mixture of I and II, respectively. It is obvious that during this reaction 

no epimerization occurs.10 Although the separation of I and II was not easy 

to perform, careful chromatography gave pure II in an overall yield of 39% 

from 97. 

Scheme 6.2" 

HO 
121 a:f5-acetyl 
122 a:a-acetyl 

« (a) Ph3P=CHCH3, DMSO; (b) BH3THF; H 2 0 2 , NaOH; (c) PDC, CH2C12; 

(d) KOH, CH3OH; (e) Ph3P=CH2, DMSO; (f) (CH3)3SiCH2Li, THF; KH, 

THF. 
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Starting from the hydroxy ketone 98, the procedure outlined above, i.e., 

98 — - 120b — 121b + 122b (ratio 1.3:l),n followed by equilibration and a 

Wittig reaction afforded HI in an overall yield of 58%. Without the interim 

equilibration step an 1.3:1 mixture of HI and IV, respectively, was obtained 

after the silyl-Wittig reaction. This mixture could be separated and IV was 

isolated in an overall yield of 33% from 98 (Scheme 6.3). 

Scheme 6.3« 

HO '* 

HO '-
III 

HO '-
121 b:f>acetyl 
122 b:a-acetyl 

« (a) Ph3P=CHCH3, DMSO; (b) BH3THF; H 2 0 2 , NaOH; (c) PDC, CH2C12; 

(d) KOH, CH3OH; (e) Ph3P=CH2, DMSO; (f) (CH3)3SiCH2Li, THF; KH, 

THF. 

6.2 SYNTHESIS OF THE CJS-FUSED EUDEM-ll-EN-4-OLS V-VHI 

In a similar reaction sequence as applied to the synthesis of I-IV, the 

c/s-eudesmane alcohols V-VIII could be prepared from the hydroxy ketones 

99 and 100. Treatment of 99 with Ph3P=CHCH3 in DMSO afforded 123 as a 

1:1 mixture of geometric isomers. The oxidative hydroboration (BH3THF; 

NaOH, H 2 0 2 ) of the olefinic alcohol 123 provided a diastereomeric 1:1 

mixture of only two diols to which structure 124 was assigned (Scheme 6.4). 
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Scheme 6.4« 

a (a) Ph 3P=CHCH 3 , DMSO; (b) BH3THF; H 2 0 2 , NaOH; (c) NDC, 

pyridine, CH2C12; (d) (CH3)3SiCH2Li, THF; KH, THF; (g) (e) t-BuOK, 

DMSO; (f) Zn, CH2I2, TiCU, THF; (g) BF30(C2H5)2 , (CH3)2Li2Cu(I)CN, 

ether. 

Since we assume that 123 consists in the nonsteroid conformation, just as 

99,12 one would expect the borane reagent to approach the double bond in 

123 from the more open convex face of the molecule. This can explain the 

selective formation of 124. The structure of 124 was further confirmed after 

treatment with NDC and pyridine in CH2C12,13 which gave the crystalline 

lactol 125 in 90% yield. Furthermore, the IR, lH NMR, and 13C NMR spectral 

data of 125 show the presence of the a-acetyl alcohol 126 in about 20%. Thus, 

in solution the lactol 125 exists in equilibrium with its open form 126. This 

observation led us to examine the base-catalyzed equilibration of the lactol 

55 



R.P.W. Kesselmans 

125 in order to prepare a suitable intermediate for the synthesis of V. The 

best result was obtained when 125 was treated with 2 equiv of t-BuOK in 

DMSO at room temperature for a short period (1 min). In this way an easily 

separable mixture of the fi-acetyl alcohol 127 (59%) and 125 (25%) was 

produced. Longer reaction times gave lower yields of 127, probably as a result 

of aldol condensation reactions.14 Treatment of 127 with zinc powder and 

CH2I2 under the influence of titanium(IV) chloride in dry THF15 gave (±)-V 

as the sole product in 74% yield (27% overall from 99).16 Reaction of 125 with 

4 equiv of Ph3P=CH2 in DMSO also afforded (±)-V, but now together with its 

C-7 epimer VI in isolated yields of 45 and 42%, respectively. Clearly, during 

this Wittig reaction partial epimerization at the C-7 position of 126 had 

occurred. On the the other hand, after a silyl-Wittig olefination reaction of 

the lactol 125 no epimerization at all was observed and VI was produced in 

an overall yield of 61% starting from 99. 

The lactol 125 is also a highly suitable intermediate for the synthesis of 

the (±)-evuncifer ether (128), the main component of the defensive secretion 

of Armitermes evunciferA7 Recently, a method has been reported in which a 

direct reaction of 8-lactols with modestly nucleophilic organometals in the 

presence of a Lewis acid provided substituted tetrahydropyrans.18 The 

application of a modified version of this method to 12 5, using 

Li2(CH3)2Cu(I)CN in place of dimethylzinc, afforded 128 in 64% yield19 (39% 

overall from 99). 

The unnatural ds-fused eudesmane alcohols, VII and VIII, were prepared 

from the hydroxy ketone 100 in a similar fashion as described for the 

synthesis of V and VI starting from 99 (Scheme 6.5). When 100 was subjected 

to a Wittig reaction with Ph3P=CHCH3 in DMSO the olefinic alcohol 129 was 

produced as a 3:1 mixture of geometric isomers. The oxidative hydroboration 

of 129 , which is thought to exist predominantly in the steroid 

conformation,12 gave a mixture of at least three diols, which without further 

purification was oxidized with PDC to afford an inseparable mixture of the 

epimeric acetyl compounds 130 and 131 in a ratio of 1:2.3, respectively. It is 

obvious that the conformation of the cis-fused compounds 123 and 129 plays 

an important role in directing the incoming hydroborating reagent. The 

hydroboration of 123 (nonsteroid) proceeds stereoselectively from the p side. 

On the other hand, in the hydroboration of 129 (predominantly steroid) the 

favored attack is from the a side (Figure 6.1). 
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HO '-
VIII 

Scheme 6.5" 

HO 
130 :a-acetyl 
131 : p-acetyl HO '-

VII 

« (a) Ph3P=CHCH3/ DMSO; (b) BH3THF; H 2 0 2 , NaOH; (c) PDC, CH2C12; 

(d) KOH, CH3OH; (e) Ph3P=CH2, DMSO; (f) (CH3)3SiCH2Li, THF; KH, 

THF. 

Figure 6.1 

123 129 

The 1:2.3 mixture of 130 and 131 was equilibrated with KOH in CH3OH to 

a 19:1 mixture. Treatment of this 19:1 mixture with Ph3P=CH2 in DMSO and 

recrystallization of the resulting product gave pure VIII in an overall yield of 

52% from 100. The spectroscopic data of VIII were identical with those of a 

cis-fused eudesmane alcohol synthesized previously.20 The structure of this 

latter product has been determined by X-ray crystallography thus supporting 
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the stereochemical assignments of the epimeric acetyl alcohols 130 and 131 
(vide supra). 

. . > • • • 

(-)-eo b 

Scheme 6.6« 

o^A 
a f 1 3 2 

" -^133 

' T / V S S I b 

^ 

X 
R = 

R = 

,c,d 

COOR 
H 

•CH3 

-*-

H 

134 
COOCH3 

E; 138:R = OH 

39: R = OMs 

140: R = I 

(+)-v 

«(a) (CH3)3SiCl, CH3OH; (b) Oxone, acetone, 10-crown-67 NaHC03, H20, 
CH2CI2; (c) UAIH4, THF; (d) separation; (e) MsCl, pyridine; (f) Nal, 
acetone; (g) t-BuOK, f-BuOH. 
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For the preparation of VII, the original 1:2.3 mixture of 130 and 131 was 

subjected to silyl-Wittig olefination reaction conditions to afford a mixture of 

VII and VIII in high yield. According to GC and *H NMR analysis, this 

mixture consisted of 70% of VII as the main product and 30% of VIII . 

Unfortunately, VII was separated only with difficulty from the minor 

product VIII. After careful chromatography a sample of 93% pure (±)-VII 

could be obtained in a moderate yield of 55%. To prepare pure VII, we 

examined a more effective synthesis starting from the commercially 

available (-)-a-santonin. Via a slightly modified version of a known 

procedure21 (-)-a-santonin was converted into the cis-fused olefinic ester 134, 

i.e., (-)-a-santonin —»-132 —»-133 —»- 134 (Scheme 6.6). Epoxidation of 134 

with in situ generated dimethyldioxirane22 and subsequent reduction with 

LiAlH4 led to a mixture of diols which could be readily separated. The major 

diol 135, isolated in 70% yield, was converted into the corresponding iodide 

137 via its monomesylate 136. The iodide 137 could be dehydrohalogenated 

with f-BuOK in refluxing f-BuOH to afford the desired optically active 

unnatural (+)-VII in an overall yield of 75% from diol 135. In an analogous 

fashion, i.e., 138 — - 139 — - 140 — - V, the minor diol 138 gave natural 

(+)-V in an overall yield of 58%. 

6.3 EXPERIMENTAL SECTION 

Melting points were determined on an Olympus HSA melting point 

apparatus and are uncorrected. Infrared (IR) spectra were recorded on a 

Philips PU 9706 infrared spectrophotometer, and peak positions are 

expressed in cm"1. NMR spectra were recorded on a Varian EM-390 at 

90 MHz OH), and a Bruker 200 E at 200 MHz OH) and at 50 MHz ( "C) . 

Chemical shifts are reported in parts per million (8) relative to 

tetramethylsilane (8 0.0). NMR multiplicities are recorded by use of the 

following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet, m, 

multiplet; br, broad; /, coupling constant; Hz, hertz. Mass spectral data were 

determined on either an AEI MS 902 spectrometer or a Hewlett Packard 

5970B series MSD coupled with a Hewlett Packard 5890A gas chromatograph 

with a DB-17 fused silica capillary column, 30 m x 0.25 mm i.d., film 

thickness 0.25 urn. Elemental analyses were determined on a Carlo Erba 

elemental analyzer 1106. Gas-liquid chromatography (GC) analyses were 

carried out on a Varian Vista 6000 gas chromatograph with a flame 

ionization detector and a DB-17 fused silica capillary column, 30 m x 0.25 
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mm i.d., film thickness 0.25 urn. Peak areas were integrated electronically 

with a Spectra-Physics integrator SP 4290. Flash chromatography was 

performed using Merck silica gel 60 (230-400 mesh). 

Solvents were dried and distilled fresh by common practice. For all dry 

reactions, flasks were dried at 150 °C and flushed with dry nitrogen just 

before use, and reactions were carried out under an atmosphere of dry 

nitrogen. Product solutions were dried over anhydrous MgSC>4, unless 

otherwise noted, prior to evaporation of the solvent under reduced pressure 

by using a rotary evaporator. 

(la,4ap,8aa)-(±)-Decahydro-7-ethylidene-l,4a-dimethyl-l-naphthalenol 
(120a). To a stirred solution of 75 mL of 0.44 M (dimethylsulfinyl)sodium in 

dry DMSO at room temperature was added 12.5 g (33.0 mmol) of 

Ph3PCH2CH3Br. After the solution was stirred at room temperature for 

30 min, a solution of 2.06 g (10.5 mmol) of hydroxy ketone 97 in 25 mL of dry 

DMSO was added dropwise. The reaction mixture was stirred at room 

temperature for 15 h and then poured into 400 mL of water. The aqueous 

solution was extracted with eight 100-mL portions of EtOAc. The combined 

organic layers were washed with 200 mL of brine, dried, and evaporated. The 

remaining residue was flash chromatographed (10:1 petroleum ether 

(bp 40-60 °C)/EtOAc) to give 1.98 g (91%) of 120a, which was a mixture of two 

geometric isomers in a ratio of 1:1, according to GCMS and *H NMR analysis: 
JH NMR (CDC13, 90 MHz) ( major peaks) 8 0.96 (s, 3 H), 1.14 (s, 3 H), 5.19 (m, 

1 H); mass spectrum (first isomer) m/e (relative intensity) 208 (M+, 23), 190 

(39), 175 (32), 121 (38), 93 (28), 81 (30), 67 (30), 43 (100); mass spectrum (second 

isomer) m/e , (relative intensity) 208 (M+, 20), 190 (37), 175 (30), 121 (37), 93 

(28), 81 (29), 67 (30), 43 (100). 

(2a,4aa,8|i^aP)-(±)-l-(Decahydro-8-hydroxy-4a,8-dimethyl-2-naphthalen-
yDethanone (121a) and (2a,4aP,8a,8aa)-(+)-l-(Decahydro-8-hydroxy-4a,8-di-
methyl-2-naphthalenyl)ethanone (122a). To a stirred solution of 1.85 g (8.9 

mmol) of olefin 120a in 75 mL of dry THF, cooled to 0 °C, was added 

dropwise 35 mL (35 mmol) of BH3THF (1.0 M in THF). The reaction mixture 

was stirred at room temperature for 21 h, and then heated at reflux for lh . 

The reaction mixture was cooled to 0 °C, after which a mixture of 

35 mL of THF and 3.5 mL of water was added dropwise, immediately 

followed by addition of 21 mL of 3 N NaOH in water and 21 mL of 30% H2O2. 

The reaction mixture was stirred at room temperature for 15 h and then 
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heated at reflux for 1 h. The reaction mixture was allowed to come to room 

temperature and poured into 200 mL of brine. The two-phase mixture was 

separated, and the aqueous layer was extracted with four 100-mL portions of 

CH2Cl2. The combined organic layers were dried and evaporated. The 

resulting oil was dissolved in 250 mL of CH2C12, and then 10.3 g (27.4 mmol) 

of PDC was added. The reaction mixture was allowed to stir at room 

temperature for 20 h and filtered through Celite, and the filter cake was 

washed with two 100-mL portions of CH2Cl2. The solvent was evaporated 

under reduced pressure, and the result ing residue was f l a s h 

chromatographed (5:1 petroleum ether (bp 40-60 °C)/EtOAc) to give 1.59 g 

(80%) of a mixture of 121a and 122a in a ratio of 1:2.3, respectively, according 

to GCMS and *H NMR analysis: J H NMR (CDC13, 90 MHz) (major peaks) 

8 0.89 (s, 3 H), 1.07 (s, 3 H), 2.16 (s, 3 H), 2.68 (m, Wy2 = 12 Hz, 1 H). 121a: mass 

spectrum mje (relative intensity) 224 (M+, 6), 206 (14), 191 (7), 163 (11), 137 

(16), 121 (10), 95 (10), 71 (23), 43 (100). 122a: mass spectrum m/e (relative 

intensity) 206 (M+ -18,33), 191 (30), 163 (11), 147 (13), 121 (7), 81 (19), 71 (18), 43 

(100), 41 (20). 

(±) Selin-ll-en-4a-ol (I). To a stirred solution of 0.76 g (3.4 mmol) of a 

1:2.3 mixture of 121a and 122a in 150 mL of absolute CH3OH was added 2.0 g 

(36 mmol) of KOH. The reaction mixture was stirred at room temperature 

for 41 h and then poured into 200 mL of brine. After evaporation of CH3OH 

under reduced pressure, the remaining aqueous solution was extracted with 

five 100-mL portions of EtOAc. The combined organic layers were dried and 

evaporated. The remaining residue was flash chromatographed (4:1 - 1:1 

petroleum ether (bp 40-60 °C)/EtOAc) to give 0.59 g (78%) of pure 121a: 
mp 86-87 °C (from diisopropyl ether); *H NMR (CDCI3, 90 MHz) 8 0.75-2.60 

(m, 15 H), 0.87 (s, 3 H), 1.09 (s, 3 H), 2.13 (s, 3 H); " C NMR (CDCI3, 50 MHz) 

8 18.41 (q), 19.94 (t), 22.63 (q), 22.80 (t), 23.50 (t), 28.23 (q), 34.39 (s), 40.78 (t), 43.27 

(t), 43.72 (t), 52.19 (d), 53.96 (d), 71.99 (s), 212.08 (s); calcd for C 1 4 H 2 4 0 2 (M+) 

m/e 224.1776, found 224.1773. Anal. Calcd for C 1 4 H 2 4 0 2 : C, 74.95; H, 10.78. 

Found: C, 74.66; H, 10.88. The procedure described for the synthesis of 120a 
was employed by using 50 mL of 0.26 M (dimethylsulfinyl)sodium in dry 

DMSO, 4.64 g (13.0 mmol) of Ph3PCH3Br, and 0.59 g (2.6 mmol) of 121a in 

25 mL of dry DMSO. After stirring at 50 °C for 7 h, the workup and flash 

chromatography (25:1 petroleum ether (bp 40-60 °C)/EtOAc) gave 0.55 g (94%) 

of I: mp 61-62 °C (from diisopropyl ether); ^H NMR (CDCI3, 200 MHz) 8 0.75-

2.00 (m, 15 H), 0.83 (s, 3 H), 1.06 (s, 3 H), 1.68 (br s, 3 H), 4.65 (br s, 2 H); 
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13C NMR (CDC13/ 50 MHz) 8 18.61 (q), 20.03 (t), 21.00 (q), 22.58 (q), 25.89 (t), 

26.74 (t), 34.49 (s), 40.96 (t), 43,23 (t), 44.55 (t), 46.19 (d), 54.69 (d), 72.10 (s), 108.06 

(t), 150.49 (s); mass spectrum m/e (relative intensity) 222 (M+, 31), 204 (100), 

189 (43), 137 (54), 135 (85), 109 (49), 81 (64), 71 (54), 43 (50); calcd for C 1 5H 2 60 

(M+) m/e 222.1984, found 222.1984. Anal. Calcd for C 1 5 H 2 6 0 : C, 81.08; H, 

11.78. Found: C, 80.71; H, 11.72. Our synthetic (±)-I exhibited spectra identical 

with those of (-)-selin-ll-en-4cc-ol.23 

(±) - In termedeol (II). To a stirred solution of 10 mL of 0.5 M 

(CH3)3SiCH2Li in 1:1 pentane/THF, cooled to -78 °C, was added dropwise a 

solution of 0.061 g (0.27 mmol) of a 1:2.3 mixture of 121a and 122a in 15 mL of 

dry THF. When the addition was complete, the reaction mixture was 

allowed to stir for 30 min at -78 °C. The excess (CH3)3SiCH2Li was then 

quenched by the careful addition of saturated aqueous NH4CI. After addition 

of 25 mL of water, the two-phase mixture was separated, and the aqueous 

layer was extracted with three 20-mL portions of EtOAc. The combined 

organic layers were washed with brine, dried, and evaporated. The 

remaining residue was taken up in 15 mL of dry THF and added dropwise to 

a suspension of 0.090 g (2.25 mmol) KH in 10 mL of dry THF. The reaction 

mixture was stirred at room temperature for 30 min and then diluted with 

25 mL of water. The two-phase mixture was separated, and the aqueous layer 

was extracted with three 20-mL portions of EtOAc. The combined orgxanic 

layers were washed with brine, dried, and evaporated. The remaining 

mixture was flash chromatographed (20:1 petroleum ether (bp 40-60 

°C)/EtOAc) to give, in order of elution, 0.032 g (53%) of pure II and 0.028 g 

(46%) of a 2:1 mixture of I and II, respectively. 

II: JH NMR (CDCI3, 200 MHz) 8 0.80-1.89 (m, 13 H), 0.90 (s, 3 H), 1.06 (s, 

3 H), 1.72 (br s, 3 H), 2.03 (m, 1 H), 2.40 (m, 1 H), 4.84 (br s, 1 H), 4.88 (br s, 1 H); 

13C NMR (CDCI3, 50 MHz) 8 18.38 (q), 20.06 (t), 22.21 (q), 22.65 (q), 22.65 (t), 

23.40 (t), 35.21 (s), 39.25 (d), 40.24 (t), 41.25 (t), 43.42 (t), 49.08 (d), 72.01 (s), 110.72 

(t), 146.61 (s); mass spectrum m/e (relative intensity) 222 (M+, 1), 207 (13), 204 

(77), 189 (70), 174 (13), 167 (33), 161 (100), 147 (23), 133 (29), 122 (53), 105 (27); 

calcd for C 1 5 H 2 6 0 (M+) m/e 222.1984, found 222.1984. Our synthetic (±)-II 

exhibited spectra identical with those of (+)-intermedeol.24 

(la,4aa,8aP)-(±)-Decahydro-7-ethylidene-l,4a-dimethyl-l-naphthalenol 

(120b). The olefin 120b was prepared in 86% yield from the hydroxy ketone 98 

(3.00 g, 15.3 mmol) as described for the synthesis of 120a. According to GCMS 
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and J H NMR analysis, 120b was a mixture of two geometric isomers in a 

ratio of 7:3: J H NMR (CDC13, 90 MHz) ( major peaks) 8 1.11 (s, 3 H), 1.19 (s, 3 

H), 5.18 (m, 1 H); mass spectrum (major isomer) m/e (relative intensity) 208 

(M+, 1.5), 190 (60), 175 (51), 161 (21), 147 (17), 134 (17), 119 (35), 108 (24), 93 (26), 

67 (27), 43 (100); mass spectrum (minor isomer) m/e (relative intensity) 208 

(M+, 2.1), 190 (53), 175 (46), 161 (20), 147 (16), 134 (16), 119 (32), 108 (23), 93 (24), 

67 (28), 43 (100). 

(2a,4aa,8a,8a|3)-(±)-l-(Decahydro-8-hydroxy-4a,8-dimethyl-2-naphthalen-
yDethanone (121b) and (2cc,4a|},8f},8aaM±)-l-(Decahydro-8-hydroxy-4a,8-di-
methyl-2-naphthalenyl)ethanone (122b). An inseparable mixture of 121b and 

122b was prepared in 90% yield from the olefin 120b (2.62 g, 12.6 mmol) as 

described for the oxidative hydroboration and subsequent oxidation of 120a. 
According to GCMS and a H NMR analysis, the ratio of 121b and 122b was 

1.3:1, respectively: *H NMR (CDC13, 90 MHz) (major peaks) 8 1.09 (s, 3 H), 

1.18, 1.26 (s, 3 H), 2.20 (s, 3 H). 121b: mass spectrum m/e (relative intensity) 

224 (M+, 0.1), 209 (9), 206 (26), 191 (15), 181 (2), 163 (9), 147 (9), 71 (20), 43 (100). 

122b: mass spectrum m/e (relative intensity) 224 (M+, 4), 209 (18), 206 (7), 191 

(6), 181 (8), 163 (10), 137 (11), 71 (21), 43 (100). 

(±)-Neointermedeol (III). A sample of the 1.3:1 mixture of alcohol 121b 
and 122b (2.00 g, 8.93 mmol) was equilibrated and treated with Ph3P=CH2 as 

described for the synthesis of I to give 1.49 g (75%) of III: ^H NMR (CDC13, 

200 MHz) 8 0.95-2.05 (m, 15 H), 1.03 (s, 3 H), 1.12 (s, 3 H), 1.71 (br s, 3 H), 4.66 

(m, 1 H), 4.69 (m, 1 H); ^ c NMR (CDC13, 50 MHz) 8 18.03 (t), 18.66 (q), 20.69 

(q), 25.76 (t), 26.81 (t), 30.23 (q), 33.66 (s), 41.24 (t), 41.56 (t), 43.85 (t), 46.67 (d), 

51.84 (d), 71.92 (s), 108.31 (t), 150.75 (s); mass spectrum m/e (relative 

intensity) 222 (M+, 16), 207 (82), 204 (100), 188 (54), 171 (29), 145 (61), 105 (91), 

81 (51), 71 (41), 43 (49); calcd for C 1 5H 2 60 (M+) m/e 222.1984, found 222.1989. 

Anal. Calcd for C 1 5H 2 60: C, 81.01; H, 11.78. Found: C, 80.76; H, 11.82. Our 

synthet ic (±)-III exhibited spectra identical with those of (+)-

neointermedeol.25 

(±)-Paradisiol (IV). A sample of the 1.3:1 mixture of 121b and 122b (0.072 g, 

0.32 mmol) was treated with (CH3)3SiCH2Li and KH as described for the 

synthesis of II. The workup and flash chromatography (20:1 petroleum ether 

(bp 40-60 °C)/EtOAc) gave, in order of elution, 0.036 g (53%) of III and 0.030 g 

(42%) of IV. 
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IV: *H NMR (CDC13, 200 MHz) 8 0.80-2.00 (m, 15 H), 1.06 (s, 3 H), 1.13 (s, 

3 H), 1.71 (br s, 3 H), 4.78 (br s, 1 H), 4.88 (br s, 1 H); 13C NMR (CDC13,50 MHz) 

8 17.81 (t), 18.31 (q), 22.38 (t), 22.59 (q), 23.13 (t), 29.78 (q), 34.14 (s), 39.13 (d), 

39.38 (t), 41.01 (t), 41.61 (t), 45.82 (d), 71.83 (s), 110.37 (t), 146.90 (s); mass 

spectrum m/e (relative intensity) 222 (M+, 8), 207 (14), 204 (26), 189 (20), 161 

(23), 135 (16), 123 (21), 109 (23), 81 (47), 43 (100); calcd for C 1 5 H 2 6 0 (M+) m/e 

222.1984, found 222.1986. Our synthetic (±)-IV exhibited spectra identical with 

those of (+)-paradisiol.24 

(la,4aP,8ap)-(±)-Decahydro-7-ethylidene-l,4a-dimethyl-l-naphthalenol 

(123). The olefin 123 was prepared in 86% yield from the hydroxy ketone 99 

(6.00 g, 30.6 mmol) as described for the synthesis of 120a. According to GCMS 

and J H NMR analysis, 123 was a mixture of two geometric isomers in a ratio 

of 1:1: *H NMR (CDC13, 90 MHz) (major peaks) 8 1.03 (s, 3 H), 1.20,1.23 (s, s, 

1:1 ratio, 3 H), 5.28 (m, 1 H); mass spectrum (first isomer) m/e (relative 

intensity) 208 (M+, 0.4), 193 (7), 190 (85), 175 (61), 161 (35), 147 (26), 133 (34), 119 

(60), 93 (50), 43 (100); mass spectrum (second isomer) m/e (relative intensity) 

208 (M+, 0.4), 193 (7), 190 (82), 175 (60), 161 (35), 147 (25), 133 (35), 119 (61), 93 

(51), 43 (100). 

(2a,4aP^a,8afi)-(±)-l-(Decahydro-8-hydroxy-4a,8-dimethyl-2-naphthalen-

yDethanol (124). The diol 124 was prepared in 79% yield from 123 (5.49 g, 24.3 

mmol) as described for the oxidative hydroboration of 120a. According to 

GCMS and *H NMR analysis, 124 was a 1:1 mixture of two diastereoisomers. 

Pure samples of the two diastereoisomers were obtained after flash 

chromatography (2:1 petroleum ether (bp 40-60 °C)/EtOAc). 

124 (first diastereoisomer): mp 143-144 °C (from diisopropyl ether); IR 

(CHCI3) 3670, 3600, 3400 cm"1; *H NMR (CDCI3, 200 MHz) 8 0.73-1.89 (m, 16 

H), 0.98 (s, 3 H), 1.15 (d, / = 6 Hz, 3 H), 1.39 (s, 3 H), 3.56 (m, W1/2 = 16 Hz, 1 H); 

13C NMR (CDCI3, 50 MHz) 8 20.04 (t), 20.37 (q), 23.12 (t), 26.00 (t), 29.13 (t), 

30.29 (q), 31.03 (q), 33.97 (s), 34.98 (t), 42.35 (t), 44.80 (d), 52.51 (d), 71.81 (d), 72.71 

(s); mass spectrum m/e (relative intensity) 190 (M+ - 36, 27), 175 (12), 161 (13), 

150 (15), 123 (43), 121 (26), 95 (29), 81 (45), 71 (37), 67 (32), 43 (100). 

124 (second diastereoisomer): mp 147-149 °C (from diisopropyl ether); IR 

(CHCI3) 3670, 3600, 3400 cm"1; *H NMR (CDCI3, 200 MHz) 8 0.73-1.89 (m, 16 

H), 0.98 (s, 3 H), 1.14 (d, / = 6 Hz, 3 H), 1.39 (s, 3 H), 3.56 (m, W1/2 = 16 Hz, 1 H); 

13c NMR (CDCI3, 50 MHz) 8 20.18 (t), 20.48 (q), 23.28 (t), 26.12 (t), 29.28 (t), 

30.44 (q), 31.16 (q), 34.11 (s), 35.12 (t), 42.51 (t), 44.94 (d), 52.65 (d), 71.92 (d), 72.84 
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(s); mass spectrum m/e (relative intensity) 190 (M+ - 36, 27), 175 (16), 161 (22), 

150 (21), 133 (17), 123 (48), 121 (34), 95 (27), 81 (58), 71 (46), 67 (41), 43 (100). 

(±M3a,4a|3,5a,8aa)-Octahydro-2-hydroxy-2,5,8a-trimethyl-3,5-ethano-2H-
1-benzopyran (125). To a stirred solution of 4.21 g (18.6 mmol) of diol 124 in 

150 mL of CH2C12 was added 11.6 g (24 mmol) of NDC and 20.8 mL 

(240 mmol) of pyridine. The reaction mixture was stirred at room 

temperature for 70 min, after which time the mixture was filtered through 

Celite. The filter cake was washed with two 100-mL portions of CH2Cl2. The 

combined organic layers were washed successively with 75 mL of 10% 

aqueous HC1 and 100 mL of a saturated aqueous NaHCC>3, dried, and 

evaporated. The remaining residue was flash chromatographed (10:1 petro

leum ether (bp 40-60 °C)/EtOAc) to give 3.78 g (90%) of 125: mp 101-102 °C 

(from diisopropyl ether); mass spectrum m / e (relative intensity) 224 (M+, 2), 

209 (21), 206 (15), 191 (11), 164 (34), 149 (35), 109 (100); calcd for C 1 4H 2 40 2 (M+) 

m/e 224.1776, found 224.1778. Anal. Calcd for C14H2402: C, 74.95; H, 10.78. 

Found: C, 74.91; H, 11.06. The IR, *H NMR, and 13C NMR spectra of 125 
revealed the presence of 126 in about 20%. 

125: IR (CCI4) 3600 cm"1; lH NMR (CDC13, 200 MHz) 8 0.68-2.37 (m, 15 H), 

0.93 (s, 3 H), 1.32 (s, 6 H); ^ c NMR (CDC13,50 MHz) 8 17.52 (t), 21.11 (t), 24.84 

(t), 28.23 (t), 28.77 (q), 29.17 (q), 29.74 (q), 32.42 (s), 34.54 (d), 40.55 (t), 41.21 (t), 

42.78 (d), 73.91 (s), 99.26(s). 

126: IR (CCI4) 1710 cm"1; J H NMR (main peaks) (CDCI3, 200 MHz) 8 0.97 

(s), 1.37 (s), 2.09 (s); « C NMR (main peaks) (CDC13, 50 MHz) 8 20.02 (t), 23.91 

(t), 25.64 (t), 30.29 (q), 31.21 (q), 33.84 (s), 35.41 (t), 41.51 (t), 51.32 (d), 52.10 (d), 

72.67 (s), 212.51 (s). 

(±)-7-epi-Amiteol (VI). This compound was prepared from the lactol 125 
(0.046 g, 0.21 mmol) as described for the synthesis of II. The workup and flash 

chromatography (20:1 petroleum ether (bp 40-60 °C)/EtOAc) afforded 0.045 g 

(99%) of VI: mp 112-113 °C (from diisopropyl ether); *H NMR (CDC13, 

200 MHz) 8 0.73-2.03 (m, 15 H), 0.99 (s, 3 H), 1.39 (s, 3 H), 1.69 (br s, 3 H), 4.65 

(br s, 2 H); 13C NMR (CDC13, 50 MHz) 8 20.26 (t), 21.09 (q), 27.18 (t), 29.40 (t), 

29.40 (t), 30.50 (q), 31.15 (q), 33.99 (s), 35.25 (t) 42.96 (t), 45.32 (d), 53.03 (d), 72.81 

(s), 108.02 (t), 150.82 (s); mass spectrum m/e (relative intensity) 222 (M+, 15), 

207 (9), 204 (96), 189 (51), 161 (47), 137 (71), 135 (62), 109 (60), 95 (60), 81 (100); 

calcd for C 1 5H 2 60 (M+) m/e 222.1984, found 222.1986. 
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(2a,4aa^P,8aa)-(±)-l-(Decahydro-8-hydroxy-4a,8-dimethyl-2-naphthalen-
yDethanone (127). To a stirred solution of 0.224 g (2.00 mmol) of f-BuOK in 

5 mL of dry DMSO was added at once a solution of 0.203 g (0.91 mmol) of 125 
in 5 mL of dry DMSO. The reaction mixture was stirred at room temperature 

for 1 min and then quenched by the addition of 0.13 mL of AcOH. The 

reaction mixture was poured into 50 mL of water. The aqueous layer was 

extracted with eight 15-mL portions of EtOAc. The combined organic layers 

were washed with brine, dried, and evaporated. The remaining residue was 

flash chromatographed (10:1 petroleum ether (bp 40-60 °C)/EtOAc) to give, in 

order of elution, 0.051 g (25%) 125 and 0.119 g (59%) of 127. 
127: mp 110-111 °C (from diisopropyl ether); J H NMR (CDC13, 200 MHz) 

5 0.85-2.20 (m, 14 H), 0.85 (s, 3 H), 1.16 (s, 3 H), 2.04 (s, 3 H), 3.16 (dddd, / = 4,4, 

13,13 Hz, 1 H); " c NMR (CDC13, 50 MHz) 8 17.28 (t), 23.04 (t), 23.67 (t), 28.12 

(q), 29.09 (q), 31.16 (q), 31.61 (t), 32.56 (s), 41.46 (t), 42.51 (t), 46.46 (d), 46.86 (d), 

73.27 (s), 213.79 (s); mass spectrum m/e (relative intensity) 224 (M+, 8), 209 

(4), 206 (82), 191 (19), 163 (31), 148 (5), 137 (24), 121 (16), 109 (40), 95 (20), 81 (32), 

71 (40), 43 (100); calcd for C14H2402 (M+) m/e 224.1776, found 224.1771. 

(+)-Amiteol (V). A solution of 1.57 mL (1.57 mmol) of titanium(IV) 

chloride (1.0 M in THF) was added dropwise to a mixture of zinc dust (0.96 g, 

14.7 mmol) and CH2I2 (0.64 mL, 7.95 mmol) in 20 mL of dry THF (argon 

atmosphere) at 0 °C. The resulting mixture was stirred at room temperature 

for 30 min, and then a solution of 0.086 g (0.38 mmol) of 127 in 5 mL of dry 

THF was added dropwise. The reaction mixture was stirred at room 

temperature for 3.5 h, heated at reflux for 1 h, and then allowed to come to 

room temperature. Stirring was continued for an additional 17 h, after which 

time the reaction mixture was diluted with 50 mL of 5% aqueous HC1. The 

two-phase mixture was separated, and the aqueous layer was extracted with 

three 25-mL portions of EtOAc. The combined organic layers were washed 

with brine, dried, and evaporated. The remaining residue was flash 

chromatographed (20:1 petroleum ether (bp 40-60 °C)/EtOAc) to afford 0.062 g 

(74%) of V: lH NMR (CDCI3, 200 MHz) 8 0.94 (s, 3 H), 0.96-2.09 (m, 14 H), 1.22 

(s, 3 H), 1.72 (br s, 3 H), 2.64 (ddddd / = 13,13, 3, 3,1 Hz, 1 H), 4.66 (br s, 1 H), 

4.68 (br s, 1 H); " c NMR (CDCI3, 50 MHz) 8 17.39 (t), 20.92 (q), 26.50 (t), 26.60 

(t), 29.49 (q), 31.23 (q), 32.47 (t), 32.79 (s), 39.62 (d), 41.76 (t), 42.57 (t), 47.66 (d), 

73.46 (s), 107.56 (t), 151.75 (s); mass spectrum m/e (relative intensity) 204 

(M+-18, 65), 179 (27), 175 (8), 161 (26), 147 (28), 133 (14), 121 (29), 109 (100), 97 
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(25); calcd for C15H26O (M+ -18) m/e 204.1878, found 204.1874. Our synthetic 

(+)-V exhibited spectra identical with those of (+)-amiteol.26 

(+)-Evuncifer ether (128). To a stirred solution of 8.3 mL (13.28 mmol) of 

CH3Li (1.6 M in ether), cooled to 0 °C, was added 0.630 g (7 mmol) of CuCN. 

The mixture was allowed to stir at 0 °C for 1 h, after which time it was cooled 

to -78 °C. To a solution of 0.152 g (0.68 mmol) of lactol 125 in 25 mL of dry 

ether was added 0.410 mL (3.3 mmol) of freshly distillated boron trifluoride 

etherate. This mixture was allowed to stand at room temperature for 2 min, 

and then added at once to the stirred cuprate mixture at -78 °C. The reaction 

mixture was allowed to stir for 3 min, and then quenched with saturated 

aqueous NH4C1. After addition of 50 mL of water, the two-phase mixture was 

separated, and the aqueous layer was extracted with two 25-mL portions of 

EtOAc. The combined organic layers were washed with brine, dried, and 

evaporated. The remaining residue was flash chromatographed (5:1 

pentane/CH2Cl2) to give 0.096 g (64%)19 of 128: J H NMR (CDC13, 200 MHz) 

8 0.65-1.16 (m, 8 H), 1.00 (s, 3 H), 1.23-1.60 (m, 2 H), 1.23 (s, 3 H), 1.28 (s, 3 H), 

1.33 (s, 3 H) 1.74-1.95 (m, 4 H); " c NMR (CDC13, 50 MHz) 5 17.68 (t), 22.16 (t), 

25.25 (t), 29.07 (q), 29.07 (q), 29.33 (t), 29.67 (q), 31.02 (q), 32.62 (s), 34.84 (d), 41.05 

(t), 42.21 (t), 42.83 (d), 72.88 (s), 74.58 (s); mass spectrum m/e (relative 

intensity) 222 (M+, 0.3), 207 (100), 189 (28), 164 (7), 149 (27), 133 (11), 123 (13), 

109 (80), 93 (18), 81 (23), 43 (60); calcd for C 1 5H 2 60 (M+) m/e 222.1984, found 

222.1996. Our synthetic (±)-128 exhibited spectra identical with those of 

(-)-evuncifer ether.17 

(la,4aa,8aa)-(±)-Decahydro-7-ethylidene-l,4a-dimethyl-l-naphthalenol 

(129). The olefin 129 was prepared in 88% yield from the hydroxy ketone 100 
(1.59 g, 8.1 mmol) as described for the synthesis of 120a. According to GCMS 

and *H NMR analysis, 129 was a 3:1 mixture of two geometric isomers: *H 

NMR (CDC13, 90 MHz) (major peaks) 5 1.19 (s, 6 H), 5.14 (m, 1 H); mass 

spectrum (major isomer) m/e (relative intensity) 208 (M+, 4), 190 (31), 175 

(15), 161 (13), 150 (8), 133 (11), 121 (42), 107 (14), 93 (29), 81 (31), 43 (100); mass 

spectrum (minor isomer) m/e (relative intensity) 208 (M+ , 6), 190 (31), 175 

(19), 161 (6), 150 (9), 133 (6), 121 (28), 107 (19), 93 (25), 79 (31), 43 (100). 

(2a,4aP,8P,8aP)-(±)-l-(Decahydro-8-hydroxy-4a,8-dimethyl-2-naphthalen-
yDethanone (130), and (2a,4aa,8a,8acx)-(±)-l-(Decahydro-8-hydroxy-4a,8-di-
methyl-2-naphthalenyl)ethanone (131). An inseparable mixture of 130 and 
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131 was prepared in 87% yield from the olefin 129 (1.39 g, 6.8 mmol) as 

described for the oxidative hydroboration and subsequent oxidation of 120a. 
According to GCMS and *H NMR analysis, the ratio of 130 and 131 was 1:2.3, 

respectively: J H NMR (CDC13, 90 MHz) (major peaks) 8 1.18 (s, 3 H), 1.24 (s, 

3 H), 2.16 (s, 3 H). 130: mass spectrum m/e (relative intensity) 224 (M+, 1.4), 

209 (1.6), 206 (22), 191 (11), 163 (9), 137 (13), 121 (9), 95 (11), 81 (13), 71 (25), 43 

(100). 131: mass spectrum m/e (relative intensity) 209 (M+ - 15, 14), 206 (8), 

167 (6), 163 (7), 149 (6), 139 (8), 121 (8), 95 (12), 81 (12), 71 (24), 43 (100). 

(±)-5-epi'-Paradisiol (VIII). This compound was prepared from the 1:2.3 

mixture of 130 and 131 as described for the synthesis of I. After equilibration a 

19:1 mixture (1.24 g) of 130 and 131, respectively, was obtained. Treatment of 

this 19:1 mixture with Ph3P = CH2 gave, after chromatography and 

recrystallization from diisopropyl ether, 0.897 g (68%) of VIII: mp 83-84 °C 

(lit.20 mp 77 °C); JH NMR (CDC13, 200 MHz) 5 0.80-2.00 (m, 15 H), 1.12 (s, 3 H), 

1.17 (s, 3 H), 1.69 (br s, 3 H), 4.65 (br s, 2 H); 13c NMR (CDC13, 50 MHz) 8 18.21 

(t), 20.73 (q), 26.60 (t), 29.66 (t), 30.65 (q), 31.20 (q), 31.20 (t), 33.04 (s), 34.17 (t), 

42.73 (t), 45.49 (d), 51.91 (d), 74.01 (s), 107.92 (t), 150.59 (s); mass spectrum m/e 

(relative intensity) 222 (M+, 5), 204 (32), 189 (19), 161 (30), 135 (43), 121 (25), 109 

(34), 81 (65), 43 (100); calcd for C 1 5H 2 60 (M+) m/e 222.1984, found 222.1986. 

Anal. Calcd for C 1 5 H 2 6 0: C, 81.01; H, 11.78. Found: C, 80.85; H, 11.81. Our 

synthetic (+)-VIII exhibited spectra identical with those of synthetic (-)-VIII.20 

(±)-5-epi-Neointermedeol (VII). A sample of the 1:2.3 mixture of 130 and 

131 (0.061 g, 0.27 mmol) was treated with (CH3)3SiCH2Li and KH as described 

for the synthesis of II. The workup and flash chromatography (20:1 

petroleum ether (bp 40-60 °C)/EtOAc) gave, in order of elution, 0.011 g (18%) 

of VIII, 0.009 g (15%) of a 2:1 mixture of VII and VIII, respectively, and 0.033 g 

(55%) of VII with a purity of 93% according to GC analysis. The spectroscopic 

data of this (+)-VII were identical with those of (+)-VII (vide infra). 

pR-lIatS'^aa^aaJl-lAS^a^e^a-Octahydro-a^a^trimethyl-methyl 
Ester, 2-Naphthaleneacetic Acid (134). The keto acid 132 (5.16 g, 20.7 mmol), 

prepared from commercially available (-)-oc-santonin as described,213 was 

dissolved in 400 mL of CH3OH and (CHs^SiCl (6.0 mL, 47 mmol) was added. 

The mixture was stirred at room temperature for 46 h, and then diluted with 

250 mL of saturated aqueous NaHCC>3. After removal of CH3OH under 

reduced pressure, the remaining aqueous solution was extracted with three 
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150-mL portions of EtOAc. The combined organic layers were dried, and 

evaporated. The resulting residue was flash chromatographed (4:1 petroleum 

ether (bp 40-60 °C)/EtOAc) to give 4.68 g (86%) of keto ester 133. The 

spectroscopic data of 133 were identical with those in the literature.21b A 

sample of 133 (2.38 g, 9.02 mmol) was converted into the c/s-fused olefinic 

ester 134 in 79% yield as described.210 

[2R-[2a(S*),4aa,8a^aa)]]-2-(Decahydro-8-hydroxy-a,4a,8-trimethyl-2-
naphthalenyDethanol (135) and [2R-[2oc(S*),4aa,8P,8aa)]]-2-(Decahydro-8-
hydroxy-a,4a,8-trimethyl-2-naphthalenyl)ethanol (138). To a stirred solution 

of 0.935 g (3.74 mmol) of ester 134 in 50 mL of CH2C12 were added 

subsequently 50 mL of acetone, 0.081 g (0.31 mmol) of 18-crown-6, and a 

solution of 1.42 g (16.9 mmol) of NaHCC>3 in 50 mL of water. The two-phase 

mixture was cooled to 0 °C, and then a solution of 2.88 g (4.68 mmol) of 

Oxone in 16 mL of water was added dropwise. The reaction mixture was 

allowed to stir at 0 °C for 3.5 h, after which time 50 mL of saturated aqueous 

Na2S2C>3 and 100 mL of saturated aqueous NaHCC>3 were added. The two-

phase mixture was separated, and the aqueous layer was extracted with five 

50-mL portions of CH2CI2. The combined organic layers were dried and 

evaporated. The remaining residue was flash chromatographed (20:1 

petroleum ether (bp 40-60 °C)/EtOAc) to give 0.760 g (76%) of a 1:4 mixture of 

two epoxides, according to GCMS analysis: mass spectrum (major 

compound) m/e (relative intensity) 266 (M+, 18), 251 (81), 178 (33), 163 (29), 

135 (24), 121 (26), 107 (40), 88 (38), 55 (50), 43 (100); mass spectrum (minor 

compound) m/e (relative intensity) 266 (M+, 26), 251 (89), 248 (5), 178 (38), 

161 (38), 149 (44), 135 (28), 125 (36), 112 (42), 88 (64), 55 (63), 43 (100). To a 

solution of this epoxide mixture in 50 mL of dry THF was added 0.430 g (11.3 

mmol) of LiAlH4. The reaction mixture was heated at reflux for 20 h and, 

after cooling to 0 °C, quenched with saturated aqueous Na2SC>4. After 

addition of 100 mL of water, the reaction mixture was extracted with five 

50-mL portion of EtOAc. The combined organic layers were dried and 

evaporated. The remaining residue was flash chromatographed (2:1 - 1:1 

petroleum ether (bp 40-60 °C)/EtOAc) to give, in order of elution, 0.139 g 

(20%) of 138 and 0.481 g (70%) of 135. Physical and spectroscopic data of 135 
and 138 are shown below. 

135: *H NMR (CDCI3, 200 MHz) 5 0.91 (d, / = 6 Hz, 3 H), 1.00-2.20 (m, 

17 H), 1.03 (s, 3 H), 1.20 (s, 3 H), 3.55 (m, 2 H); " C NMR (CDC13, 50 MHz)27 

8 14.67 (q), 19.22 (t), 23.60 (t), 26.05 (t), 29.05 (q), 30.44 (q), 33.65 (s), 34.27 (t), 34.27 
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(d), 36.53 (t)*, 37.67 (d)*, 39.84 ft)*, 49.17 (d), 65.89 (t), 74.14 (s); mass spectrum 

m/e (relative intensity) 225 (M+ - 15, 3), 222 (27), 207 (41), 204 (19), 189 (25), 

163 (85), 137 (40), 121 (28), 109 (72), 81 (100); calcd for Q4H25O2 (M+ - 15) m/e 

225.1854, found 225.1845. Anal. Calcd for C1 5H2 802 : C, 74.94; H, 11.74. Found: 

C, 74.92; H, 11.82. 

138 :^ NMR (CDCI3,200 MHz) 8 0.65-2.40 (m, 17 H), 0.86 (d, / = 7 Hz, 3 H), 

0.90 (s, 3 H), 1.21 (s, 3 H), 3.53 (m, 2 H); 13c NMR (CDCI3, 50 MHz) 8 12.83 (q), 

17.20 (t), 22.91 (t), 26.07 (t), 29.26 (q), 29.41 (s), 30.95 (q), 32.18 (t), 32.78 (d), 40.94 

(d), 41.51 (t), 42.10 (t), 47.54 (d), 65.99 (t), 73.29 (s); mass spectrum m/e 

(relative intensity) 222 (M+ - 18, 17), 207 (27), 204 (15), 189 (16), 163 (81), 137 

(30), 121 (26), 109 (100), 81 (49); calcd for C 1 5 H 2 6 0 (M+ - 18) m/e 222.1983, 

found 222.1993. 

[7R-[la,4aa,7a(S*),8aa)]]-Decahydro-l-hydroxy-l,4a-dimethyl-7-[l-methyl-
2-[(methylsulfonyl)oxy]ethyl]naphthalene (136). To a stirred solution of 0.412 

g (1.72 mmol) of diol 135 in 20 mL of pyridine was added 0.444 g (3.88 mmol) 

of MsCl. The reaction mixture was stirred at 40 °C for 40 min and then 

concentrated under reduced pressure. The resulting residue was taken up in 

50 mL of EtOAc and washed successively with 25 mL of 10% aqueous H2SO4, 

50 mL of saturated aqueous NaHCC>3, and brine. The organic layer was dried 

and evaporated. The crude product was flash chromatographed (3:1 - 2:1 

petroleum ether (bp 40-60 °C)/EtOAc) to give 0.474 g (87%) of 136: *H NMR 

(CDCI3, 200 MHz) 8 0.90-1.90 (m, 16 H), 0.95 (d, / = 7 Hz, 3 H), 1.02 (s, 3 H), 1.17 

(s, 3 H), 2.96 (s, 3 H), 4.06 (dd, / = 9.5,6.2 Hz, 1 H), 4.17 (dd, / = 9.5,4.2 Hz, 1 H); 

" C NMR (CDCI3, 50 MHz)27 8 14.50 (q), 19.12 (t), 23.24 (t), 25.86 (t), 29.24 (q), 

30.41 (q), 33.57 (s), 34.32 (d), 34.32 (t), 34.94 (d)*, 36.53 ft)*, 37.14 (q), 39.87 ft)*, 

48.78 (d), 73.38 (t), 73.80 (s); mass spectrum m/e (relative intensity) 303 

(M+ - 15, 3), 300 (13), 285 (29), 207 (16), 204 (70), 189 (47), 137 (44), 109 (72), 95 

(65), 81 (100); calcd for C15H2704S (M+ -15) m/e 303.1630, found 303.1631. 

[7R-[la,4aa,7a(S*),8aa)]]-Decahydro-l-hydroxy-l,4a-dimethyl-7-(l-
methyl-2-iodoethyl)naphthalene (137). To a stirred solution of 0.441 g (1.39 

mmol) of mesylate 136 in 20 mL of acetone was added 0.397 g (2.65 mmol) of 

Nal. The reaction mixture was heated at reflux for 48 h, allowed to come to 

room temperature, and then poured into 100 mL of water. The acetone was 

evaporated under reduced pressure, and the remaining aqueous layer was 

extracted with three 50-mL portions of EtOAc. The combined organic layers 

were dried and evaporated. The remaining residue was flash 
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chromatographed (10:1 petroleum ether (bp 40-60 °C)/EtOAc) to give 0.432 g 

(88%) of 137: *H NMR (CDC13, 200 MHz) 8 0.86 (d, / = 6 Hz, 3 H), 0.90-1.80 (m, 

16 H), 0.98 (s, 3 H), 1.18 (s, 3 H), 3.21 (m, 2 H); " c NMR (CDC13, 50 MHz)27 

518.46 (t), 18.56 (q), 19.14 (t), 23.25 (t), 25.83 (t), 29.38 (q), 30.45 (q), 33.53 (s), 34.75 

(t), 35.92 (t)*, 37.16 (d), 37.16 (d), 39.53 (t)*, 48.66 (d), 73,87 (s); mass spectrum 

m/e (relative intensity) 335 (M+ - 15, 3), 332 (11), 317 (19), 205 (50), 163 (79), 

123 (21), 109 (43), 95 (49), 81 (74), 71 (100); calcd for C14H24OI (M+-15) m/e 

335.0871, found 335.0867. 

(+)-5-epi-Neointermedeol (VII). To a stirred solution of 0.232 g 

(0.66 mmol) of iodide 137 in 20 mL of dry f-BuOH was added 1.00 g (8.91 

mmol) of t-BuOK. The reaction mixture was heated at reflux for 9 h, allowed 

to come to room temperature, and then diluted with 100 mL of saturated 

aqueous NH4C1. The aqueous solution was extracted with three 50-mL 

portions of EtOAc. The combined organic layers were dried and evaporated. 

The remaining residue was flash chromatographed (15:1 petroleum ether (bp 

40-60 °C)/EtOAc) to give 0.144 g (98%) of VII: [a]D= +30.2 ± 0.1° (c = 1.5, 

CHC13); *H NMR (CDCI3, 200 MHz) 8 1.05 (s, 3 H), 1.00-1.80 (m, 14 H), 1.23 (s, 

3 H), 1.69 (d, / = 0.5 Hz, 3 H), 2.26 (m, 1 H), 4.73 (br s, 2 H); « c NMR (CDC13, 

50 MHz)27 8 19.08 (t), 21.29 (q), 24.52 (t), 26.35 (t), 28.91 (q), 30.30 (q), 33.50 (s), 

34.45 (t), 36.65 (t)*, 39.31 (d), 39.97 (t)*, 49.01 (d), 73.83 (s), 109.10 (t), 148.74 (s); 

mass spectrum m/e (relative intensity) 222 (M+, 11), 207 (3), 204 (82), 189 

(100), 175 (11), 161 (68), 147 (36), 135 (71), 121 (39), 109 (74), 95 (58), 81 (88), 71 

(44); calcd for C 1 5H 2 60 (M+) m/e 222.1984, found 222.1994. 

(+)-Amiteol (V). The same procedure was followed as described for the 

synthesis of (+)-VII. The diol 138 (0.132 g, 0.55 mmol) gave, via its mesylate 

139 and iodide 140, (+)-V in 58% overall yield. The physical and spectroscopic 

data of 139,140, and (+)-V are shown below. 

139: *H NMR (CDCI3, 200 MHz) 8 0.88 (s, 3 H), 0.93 (d, / = 7 Hz, 3 H), 

1.00-2.20 (m, 16 H), 1.19 (s, 3 H), 2.96 (s, 3 H), 4.14 (d, / = 6 Hz, 2 H); " c NMR 

(CDCI3,50 MHz) 8 13.39 (q), 17.34 (t), 23.76 (t), 25.99 (t), 29.31 (q), 31.19 (q), 32.07 

(t), 32.76 (s), 33.30 (d), 37.25 (q), 38.58 (d), 41.60 (t), 42.39 (t), 47.59 (d), 73.19 (s), 

73.58 (t); mass spectrum m/e (relative intensity) 300 (M+ -18, 6), 285 (11), 205 

(17), 189 (30), 163 (22), 137 (44), 121 (24), 109 (22), 95 (60), 81 (100); calcd for 

C16H28O3S (M+-18) m/e 300.1759, found 300.1748. 

140: *H NMR (CDC13, 200 MHz) 8 0.70-2.20 (m, 16 H), 0.88 (s, 3 H), 0.94 (m, 

3 H), 1.26 (s, 3 H), 3.29 (m, 2 H); ™C NMR (CDC13,50 MHz) 8 17.26 (t), 17.66 (q), 
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18.66 (t), 23.95 (t), 25.61 (t), 29.14 (q), 31.30 (q), 31.87 (t), 32.52 (s), 37.08 (d), 39.98 

(d), 41.48 (t), 42.08 (t), 47.46 (d), 73.17 (s); mass spectrum tn/e (relative 

intensity) 332 (M+ - 18, 13), 317 (10), 205 (42), 163 (100), 135 (15), 123 (24), 109 

(72), 95 (47), 81 (88), 71 (83); calcd for C15H25I (M+ -18) m/e 332.1001, found 

332.0984. 

(+)-V: [a]D= +17.7 ± 0.1°, [a]365 = +60.3 ± 0.1° (c = 1.2, CHC13) (lit.
2* 

[ata65 = +8° (CHCI3)). The spectroscopic data of (+)-V were identical with 

those of (±)-V. 
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7. CONFORMATIONAL ANALYSIS OF THE CIS-FUSED EUDESM-11-EN-

4-OLS 

It is already mentioned in chapter 4 that ris-fused decalins can occur in 

the steroid conformation, the nonsteroid conformation, or as an equilibrium 

mixture of these conformations1 (Chart 7.1). In this equilibrium axial 

substituents shift to the equatorial positions and vice versa. 

This chapter deals with the conformational analysis using NMR 

spectroscopy and MM2 calculations of the cis-fused eudesm-ll-en-4-ols V -

VIII. In addition, the conformational behavior of the cis-fused intermediates 

in the total synthesis of amiteol V and 7-epi-amiteol VI is studied to 

understand the stereochemical outcome of the reactions of these 

intermediates.2 

Chart 7.1 

A (steroid) 

H i 

.14 
R,R'= OH01-H3C 

X ,Y = Hor — ^ 

12 

B ( nonsteroid 

13 

7.1. CONFORMATIONAL ANALYSIS USING NMR 

The first part of this paragraph describes the NMR method used during 

the conformational analysis. The second section deals with the 

conformational analysis of most of the cis-fused intermediates in the 
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synthesis of amiteol V and 7-epf-amiteol VI. The conformational analyses of 

amiteol V4 and 7-epi-amiteol VI are given in the third and fourth section, 

respectively. The conformational behavior of 5-epi-paradisiol VIII and 5-epi-

neointermedeol VII is described in the next two sections.5 The last section of 

this paragraph deals with some final conclusions. 

In principle, *H NMR spectroscopy can be used to distinguish between 

the two conformations. In the steroid conformation A the bridgehead proton 

at C-5 will have a large and a small coupling owing to an axial-axial and an 

axial-equatorial coupling with the a and P proton at C-6, respectively. In the 

nonsteroid conformer B these couplings are both small as a result of an 

equatorial-equatorial (with the a C-6 proton) and an equatorial-axial (with 

the p C-6 proton) coupling (Chart 7.1). 

Additional information about the conformation of this type of ci's-fused 

compounds can be obtained from the line width at half height of the C-7 

proton (VV2/2)-3 When the W1/2 is relatively small (± 15 Hz), as a result of 

two equatorial-axial and two equatorial-equatorial couplings, the C-7 

substituent possesses an axial position. On the contrary, a relatively large 

W2/2 (± 35 Hz) due to two axial-axial and two axial-equatorial couplings is 

consistent with an equatorial C-7 substituent. 

In order to determine the conformation of the ci's-fused decalins with 

NMR spectroscopy, the lH resonances have to be assigned. A problem is that 

the !H NMR spectra of the compounds investigated are complicated by 

extensive interproton coupling and by overlap of multiplet signals. This 

makes the full assignment of the *H NMR spectra using a 200 MHz 

spectrometer very difficult. However, in most compounds the protons at C-5 

and C-7, which are very useful in determining the conformation, can be 

assigned using a combination of the following NMR techniques: two 

dimensional homonuclear correlation spectroscopy (COSY), two 

dimensional 1 H- 1 3 C heteronuclear correlation spectroscopy 0 H - 1 3 C ) , 

including the (13C) cross-sections, and NOE-difference. 

The procedure used in the NMR analyses of these ci's-fused decalins 

started with recording the recording of the 2D COSY spectrum. In this 

spectrum the C-7 proton could be located because of a long range coupling 

with the geminal protons at C-12 (Chart 7.1). Via the !H-13C spectrum the C-7 

carbon (CH signal) was assigned. Consequently, the remaining CH signal in 

the 13C spectum was identified as the C-5 carbon. Now, the C-5 proton could 

be located via the JH-13C spectrum. In case of overlap of the multiplet signals 

of the C-5 and C-7 proton in the *H spectrum, cross-sections from the JH-13C 
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spectrum gave the Wj/2 values and the (large) couplings. In some cases, the 

C-5 and C-7 proton signals appeared without overlap and the couplings 

could be measured directly in the lH NMR spectrum. The couplings (/) and 

the W1/2 values measured for the C-5 and C-7 proton of the cis-fused 

eudesm-ll-en-4-ols are listed in Table 7.1. The procedure, outlined above 

could not be used for 5-epi-neointermedeol VII because of coalesence effects 

(See paragraph 7.1.5). 

Table 7.1. Chemical shifts for the C-5 and C-7 Protons0'*' 

compound 

amiteol V 

7-epi-amiteol VI 
5-epi-neointermedeol VIId 

5-epi-paradisiol VIII 

8 
1.13 

1.40 

-

1.23 

HC-5 
/(Hz) 

6,3 

16,±3C 

-

14,5 

5 

2.62 

1.82 

2.26 

1.79 

Hc-7 
Wj/2 (Hz) 

31 

35 

-

37 

a Chemical shifts in ppm relative to the CHCI3 singlet (5 7.23). 
b For full *H NMR spectra, see chapter 6 and 8 
c Exact measurement of the small couplings was not possible. 
d Coalesence effects. 

7.1.1 Conformational analyses of intermediates in the synthesis of V and VI 

The nonsteroid conformation of the hydroxy ketone 99, which was used 

as the starting material in the synthesis of V and VI, has already been 

detemined in previous chapters.6 '7 The ketone 99 was converted via a Wittig 

reaction and an oxidative hydroboration into the diol 124. The *H NMR 

spectrum of 124 shows two couplings of 14 and 2 Hz for the C-5 proton at 8 

1.31 ppm. These values imply the steroid conformation for 124.8 This 

conformation is supported by a NOE between the C-10 methyl group at 8 0.98 

ppm and the C-4 methyl group at 8 1.39 ppm. Furthermore, the Wj/2 value 

of 41 Hz of the C-7 proton indicates that the C-7 substituent of 124 possesses 

the equatorial position (Scheme 7.1). These data mean that during the 

conversion of ketone 99 into diol 124 a conformational inversion has 

occurred. 
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Scheme 7.1 

VI 

Oxidation of diol 124 gave the cyclic lactol 125. The formation of 125 
required again a conformational inversion. In solution the lactol 125 is in 
equilibrium with its open form 126. For this reason, it is difficult to establish 
the conformation of 126. Because of the structural similarities, it is likely that 
126 must have the same conformation as Vp (See paragraph 7.1.3). 

A short treatment of lactol 125 with a strong base gave 127, which was 
converted into V. In the *H NMR spectrum the a C-7 proton of 127 appears 
at 5 3.16 ppm with two large couplings of 13 Hz. As a consequence, this 
proton must have the axial position. Normally, protons a to a carbonyl 
group appear at ± 2 ppm.2 The deshielding of the a C-7 proton of 127 with ca. 
1 ppm results from the anisotropy of the tertiary hydroxyl group. Such an 
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interaction is only possible when 127 possesses the nonsteroid conformation 

(Figure 7.1). 

Figure 7.1 

7.1.2 Conformational analysis of Amiteol V 

The conformation of amiteol V is easy to determine with NMR, because 

the C-5 and C-7 proton both appear separately. The C-5 proton is located at 8 

1.13 ppm with small couplings of 3 and 6 Hz. The C-7 proton appears at 8 2.62 

ppm with a VV2/2 value of 31 Hz. The low field location of the C-7 proton can 

be explained in a similar way as for the C-7 proton of the acetyl compound 

127. These data found for amiteol V are consistent with the nonsteroid 

conformation (Scheme 7.1). Further evidence was gained upon irradiation of 

the C-10 methyl group at 8 0.94 ppm, which yielded no NOE of the C-4 

methyl group at 8 1.22 ppm. Prestwich, who studied natural amiteol V using 

a 360 MHz spectrometer, also came to the nonsteroid conformation for V.4 

7.1.3 Conformational analysis of 7-epi-Amiteol VI 

The conformation of 7-ep/-amiteol VI is more difficult to determine. The 

protons at C-5 and C-7 give rise to overlapped signals in the *H NMR 

spectrum. However, the assignment of these protons is easy using the cross-

sections from the !H-13C spectrum. The C-5 proton appears at 8 1.40 ppm 

with a large coupling of 16 Hz and a small coupling of about 3 Hz. The C-7 

proton is located at 8 1.82 ppm with a Wj/2 value of 35 Hz. Further 

information was obtained by irradiation of the C-10 methyl group at 8 0.99 

ppm which gave a large NOE on the C-4 methyl group at 8 1.39 ppm. These 
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observations lead to the conclusion that VI exists in the steroid 
conformation (Scheme 7.1). 

7.1.4 Conformational analysis of 5-epi-Paradisiol VIII 

In the *H NMR spectrum of 5-epi-paradisiol VIII both the C-5 and the C-7 
proton signals are overlapped by other multiplets. Again, the cross-sections 
of C-5 and C-7 carbons can be used for the conformational analysis. The C-5 
proton is located at 8 1.23 ppm with couplings of 5 and 14 Hz. The C-7 proton 
appears at 8 1.79 ppm with a W2/2 value of 37 Hz. These data are in 
agreement with the steroid conformation for VIII (Figure 7.2). The steroid 
conformation of VIII has been confirmed by a single-crystal X-Ray analysis.10 

Figure 7.2 

HOI 

VIII 

7.1.5 Conformational analysis of 5-ep/-Neointermedeol VII 

The conformational behavior of 5-epi-neointermedeol VII is different 
from that of the other cis-fused eudesm-ll-en-4-ols. In the 13C and 1H NMR 
spectra exchange phenomena are observed at room temperature. Two 13C 
signals show coalescense effects. By increasing the temperature to 55 °C these 
effects disappear. Decreasing the temperature to -43 °C gives an almost 
complete redoubling of the number of 13C peaks. At lower temperature the 
aH NMR spectrum in CDCI3 does not show sharpening of the signals. As a 
consequence, it is not possible to use 2D NMR techniques. These coalescense 
effects are attributed to the existence of an equilibrium mixture of two 
conformers. 

Comparison of the peak areas of the 13C signals11 of VII at -43 °C reveals 
that the quaternary C-ll signal at 8 151.03 ppm and the CH signals at 8 46.10 
and 38.26 ppm belong to the conformer, present in minor quantity 
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(minor conformer). The C-ll signal at 8 146.16 ppm and the CH signals at 8 
50.14 and 39.67 ppm are assigned to the conformer, present in major quantity 
(major conformer). Comparison of the C-ll shifts of the eudesm-ll-en-4-ols 
(Table 7.2) learns that these signals appear in the range of 8 150-152 ppm 
when the 1-methylethenyl group has an equatorial position (I, HI, V, VI, and 
VIII). In case of an axially orientated 1-methylethenyl group, such as in II and 
IV, the C-ll signals appear at about 8 146 ppm. 

Comparing these values with the chemical shifts of the two C-ll signals 
observed in the 13C NMR spectrum of VII at -43 °C, lead to the conclusion 
that the 1-methylethenyl group is equatorially orientated in the minor 
conformer, and axially in the major conformer. 

Comparison of the CH signals of the minor conformer (8 38.26 and 46.10 
ppm) with those of amiteol V (8 39.62 and 47.66 ppm), which exists in the 
nonsteroid conformation, shows that the chemical shifts of these signals do 
not differ very much. From this similarity, it is concluded that the minor 
conformer VIIB is the nonsteroid conformation with an equatorial 1-
methylethenyl group (Figure 7.3). As a consequence, the major conformer 
VIIA is the steroid conformation (Figure 7.3). 

Figure 7.3 

VIIA (major) VIIB(minor) 

7.1.5.1 Dynamic NMR Investigation 

The redoubling of the 13C signals in the spectrum of VII at lower 
temperature allows the calculation of the conformational inversion barrier 
and the conformational energy difference between VIIA and VHB. 

The conformational inversion barrier (AGact) can be calculated using the 
Eyring-equation:12 
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AGact = 19.12TC (9.97 + log Tc/8u) (J/mol) (eq 1) 

Tc is the temperature in K at which two signals of a 13C nucleus 

are just separated from each other, and 8i) is the difference in 

resonance frequency in Hz of this 13C nucleus in the steroid and 

the nonsteroid conformation. 

The coalescenced 13C signal of C-12 is used for the calculation of AGact-

This isolated signal at 8 109 ppm is just separated at -18 °C (Tc = 255 K). In the 
13C NMR spectrum at - 43 °C the 8\) of 146.5 Hz could be measured. Using 

these data in eq 1 gives a AGact of 50 kj/mol. This value is in good agreement 

with the value determined for ris-decalin (52 kJ/mol). l b 

The calculation of the conformational energy difference (AG) between 

VIIA and VHB can be achieved using the 13C NMR spectrum at -43 °C. It was 

assumed that in the Gibbs-Helmholtz equation (AG = AH - TAS) AG is 

independent of temperature, because the difference in entropy (AS) and in 

heat capacity (ACp)
13 between the two conformers are both small or zero. The 

AG can then be calculated using the following formula: 

AG = -R.T.ln Kgq (eq 2) 

Keq is the equilibrium constant, which can be gained upon 

measuring the ratio of the peak areas of signals of a 13C nucleus 

in the steroid and nonsteroid conformation, T is the 

temperature in K at which Keq is determined, and R is the gas 

constant. 

At -43 °C (T = 230 K) a ratio of 1:2.7 (Keq = 1/2.7) between the two peak 

areas of the C-12 signals could be measured. Using these data in the formula, 

a AG value of 2 kj/mol is found. 

7.1.6 Conclusions 

It has become clear that the compounds V, VI , and VIII adopt a 

conformation in which the relatively large 1-methylethenyl group possesses 

an equatorial position. The orientation of the methyl group at C-4 in these 

compounds seems to be less important. The conformational inversions 

observed during the syntheses of V and VI can be explained in a similar way. 
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However, in the nonsteroid conformer VIIB with an equatorial 1-

methylethenyl group the axial orientated C-4 methyl group is subjected to 

severe compression by the ajoining ring. This compression is thought to be 

nearly equivalent in magnitude with the 1,3-diaxial interactions of the C-4 

hydroxyl and the C-7 1-methylethenyl group in the steroid conformer VIIA. 

This counterbalance in combination with the calculated energy barrier of 

50 kj/mol, explains the observed conformational equilibrium of VII. 

7.2 CONFORMATIONAL ANALYSIS USING MOLECULAR MECHANICS 

CALCULATION (MM2) 

The conformational behavior of the eudesm-ll-en-4-ols determined in 

the foregoing paragraph was simulated with molecular mechanics 

calculations using the MM2(87) force field valence program.14 The procedure 

used was as follows: Both the steroid and the nonsteroid conformations of V 
- VIII were optimized by energy minimization with the MM2 program. 

During the minimization the stretch, bending, stretch bending, torsional, 

dipolar, and van der Waals contributions were taken into account. The 

difference in the calculated energies between the nonsteroid and the steroid 

conformer (AG = Gnonst - Gst) was appointed. 

The entropy difference between the nonsteroid and steroid conformers 

(AS) is assumed to be negligibly small. The equilibrium constant (Keq) can 

then be calculated from AG using equation 2. The fraction X of the 

nonsteroid conformer in the equilibrium mixture can be calculated using 

equation 3: 

Keq = X/( l-X) (eq3) 

In most cases the results of the MM2 calculations were consistent with 

those obtained from the NMR experiments. However, for the nonsteroid 

conformation of 7-epi-amiteol VI an intramolecular H-bonding between the 

tertiary alcohol at C-4 and the double bond was found. Not any experimental 

evidence was found to support this intramolecular H-bonding.15 Therefore, 

the H-bonding energy terms were omitted in the MM2 program.16 In this 

way, the energy of the nonsteroid conformation of VI agrees with the 

experimental data. The energies of the other compounds are not affected. 

The calculated data are shown in Table 7.3.17 
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Table 7.3. Free Energy Calculations of the Steroid and Nonsteroid 
Conformers of the Ci's-fused Eudesm-ll-en-4-ols 

compound 

V 
VI 
VII 
VIII 

calculated results 

Enerev (kT/mol) 

steroid nonsteroid 

conformer conformer 

125 

114 

116 
104 

107 

124 

118 

140 

AG 

-18 

+10 

+2 

+36 

% non

steroid 

» 9 9 

~1 

26 

« 1 

experimental 

results 

% non

steroid 

>97 

<3 

27 

<3 

The percentages of the nonsteroid conformer found with NMR are also 

listed in Table 7.3. Comparison of these results with those obtained from the 

MM2 calculations show that the outcome of both methods (NMR and MM2) 

fits very well. So MM2 calculations make a reliable prediction of the 

conformational behavior of eudesm-ll-en-4-ols possible. 

7.3 EXPERIMENTAL SECTION 

NMR spectra were recorded on a Bruker 200 E at 200 MHz OH) and at 50 

MHz (13C). Chemical shifts are reported in parts per million (8) relative to 

tetramethylsilane (5 0.0). NMR multiplicities are recorded by use of the 

following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet, m, 

multiplet; br, broad; /, coupling constant; Wj/2, line width at half height; Hz, 

hertz. Typical parameters for the COSY-45 experiments are as follows: 90° 

pulse = 6 us (5 mm selective probe), a spectral width of 900 Hz in tj and t2 

was used, and 128 experiments with 8 transients each were done. Before 

Fourier transformation, zero filling was used once, and no window 

functions were applied. For the 1 H- 1 3 C heteronuclear shift correlation 

spectra: 90° carbon pulse = 6 us, 90° proton pulse = 11 us (5 mm dual probe). 

Spectral width in tj = 800 Hz, in t2 = 3787.9 Hz with a size of 256-1 K. A total of 

128 experiments with 128 transients each were performed. Delays used in the 

pulse sequence were 3.3 and 2.2 ms. Sine-bell window functions without 

phase shift were used for the fourier transformation. MM2(87) calculations 

were performed in SiliconGraphics Personal IRIS 4D/25 computer. 
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!3C NMR spectra of 5-epi-neointermedeol VII. 13C NMR (CDC13, 50 MHz, 

room temperature) 8 19.08 (t), 21.29 (q), 24.52 (t), 26.35 (t), 28.91 (q), 30.30 (q), 

33.50 (s), 34.45 (t), 36.65 (t)18, 39.31 (d), 39.97 (t)18, 49.01 (d), 73.83 (s), 109.10 (t), 

148.74 (s); 13C NMR (CDCI3,50 MHz, 55 °C) 8 19.06 (t), 21.06 (q), 24.63 (t), 26.46 

(t), 28.84 (q), 30.22 (q), 33.48 (s), 34.62 (t), 36.77 (t), 39.45 (d), 40.03 (t), 49.15 (d), 

73.59 (s), 108.98 (t), 148.67 (s); 13C NMR (CDCI3, 50 MHz, -43 °C) 8 18.14 (t), 

19.67 (t), 20.85 (q), 22.72 (t), 25.29 (t), 25.51 (t), 27.04 (t), 27.32 (q), 29.24 (t), 29.90 

(q), 31.11 (q), 32.30 (t), 33.50 (t), 33.59 (s), 36.80 (t), 38.26 (d), 39.67 (d), 41.59 (t), 

44.14 (t), 46.10 (d), 50.14 (d), 73.79 (s), 108.01 (t), 110.94 (t), 146.16 (s), 151.03 (s). 

7.4 REFERENCES AND NOTES 
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(b) Browne, L. M.; Klinck, R. E.; Stothers, J. B. Org. Magn. Reson. 1979, 
12, 561. (c) Dalling, D. K.; Grant, D. M.; Johnson, L. F. /. Am. Chem. Soc. 

1971,93,3678. (d) see chapter 4. 
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(7) See chapter 5. 

(8) The diastereoisomeric mixture of 124 was separated after carefull 

column chromatography. Both diastereoisomers must have the same 

conformation because of the small differences in chemical shifts and 

couplings. 

(9) This assumption is supported by MM2 calculations. A AG = 2 kj/mol in 

favor of the steroid conformer was found. 
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(11) The difference in peak areas of two 13C signals, which interchange 
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relative quantity between the two conformations when the assumption 
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8. CHROMATOGRAPHIC AND SPECTROSCOPIC DATA OF ALL 

STEREOISOMERS OF EUDESM-ll-EN-4-OL 

Since all eight stereoisomers of eudesm-ll-en-4-ol were available in pure 

form and in sufficient amounts it was considered worthwhile to record for 

all of them - under identical conditions - the retention on two different 

capillary GC columns and the mass-, FTIR-, *H NMR-, and 13C NMR spectra 

and to publish these data. Thus others may be able to identify these common 

essential oil constituents more reliably in future, either without isolating 

them (by Kovats indices, GC/MS, and GC/FTIR) or after isolation (by NMR). 

In this chapter these data are presented and discussed shortly. 

8.1 MASS SPECTRA 

The MS spectra are shown in the Figures 8.1a-h. Only neointermedeol III, 
paradisiol IV, and amiteol V can be clearly distinguished. Amiteol V has its 

base peak at m/z 109, while all the others show their base peak at m/z 43. 

Neointermedeol III and paradisiol IV, which both possess an equatorial 

methyl group at C-4, show a significant peak at m/z 207 corresponding with 

the loss of a methyl group [M-15]+. Distinction between these two 

compounds, which only differ in the stereochemistry at C-7, is possible by 

comparing the ratio between the peaks at m/z 135 and 125 and between m/z 

135 and 151. For neointermedeol III these ratio's are 10.7 and 13.9, 

respectively, while for paradisiol IV values of 1.4 and 1.6 are observed. The 

same ratio's can be used to distinguish between the two other trans-fused C-7 

epimers selin-ll-en-4oc-ol I and intermedeol II (9.9 and 18.2 for selin-11-en-

4cc-ol; 0.60 and 3.7 for intermedeol). Apart from the low m/z 135 to 125 ratio, 

intermedeol I may be further recognized by a high m/z 204 to 81 ratio. 

However, the spectra of selin-ll-en-4a-ol I and 5-ep/-neointermedeol VII are 

nearly fingerprint identical. The only significant difference lies in the m/z 

123 to 125 ratio (4.3 and 1.9, respectively). As a pair these compounds can be 

distinguished from the ds-fused eudesmanes VI and VIII by their different 

m/z 135 to 137 ratio. For the compounds VI and VIII this ratio is 1.0, while a 

value of ca. 1.9 is found for the first pair. The spectra of 7-epf-amiteol VI and 

5-epf-paradisiol VIII are also very similar. A small difference can be found in 

the ratio between the peaks at m/z 189 and 222 (parent peak), 9.3 and 2.5, 

respectively. No detailed mass spectral studies have been carried out to 

explain the above observed empirical differences. Without the exact spectra 
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Figure 8.1a: Mass spectrum of selin-ll-en-4a-ol I. 

Figure 8.1b: Mass spectrum of intermedeol II. 
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Figure 8.1c: Mass spectrum of neointermedeol HI. 
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Figure 8.1d: Mass spectrum of paradisiol IV. 
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Figure 8.1e: Mass spectrum of amiteol V. 
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Figure 8.1f: Mass spectrum of 7-epi-amiteol VI. 
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Figure 8.1g: Mass spectrum of 5-epi-neointermedeol VII. 
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Figure 8.1h: Mass spectrum of 5-epf-paradisiol VIII. 
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as presented in Fig. 8.1a-h a distinction between selin-ll-en-4a-ol I and the 

cis-fused compounds VI-VIII will be hard to make. 

8.2 RETENTION INDICES 

Retention indices for all eight stereoisomers on both the apolar and polar 

column are given in Table 8.1. As a further characteristic of each compound 

the difference in retention index (A RI) on the two columns is presented as 

well. 

Table 8.1. Retention Indices of the Eudesm-ll-en-4-ol Stereoisomers I-VIII 

compound 

selin-ll-en-4a-ol I 

intermedeol II 

neointermedeol HI 
paradisiol IV 

amiteol V 

7-epi-amiteol VI 

5-epi-neointermedeol VII 

5-epi-paradisiol VIII 

P-eudesmol 22 

DB-1 

1641 

1647 

1602 

1627 

1587 

1646 

1637 

1600 

1638 

Retention indices 

DB-Wax 

2264 

2247 

2148 

2182 

2122 

2264 

2245 

2154 

2242 

DRI 

623 

600 

546 

555 

535 

618 

608 

554 

-

For comparison the retention index obtained under identical conditions 

of the frequently occurring sesquiterpene alcohol P-eudesmol 221 is also 

given. On the apolar methyl silicone column a clear distinction by means of 

retention indices can be made between selin-ll-en-4a-ol I, paradisiol IV, 

amiteol V, and 5-epi-neointermedeol VII. The two pairs which are poorly 

separated on this column, namely intermedeol II/7-epj-amiteol VI and 

neointermedeol III/5-epi-paradisiol VIII can be separated on the polar 

polyethylene glycol column. The order of elution on the apolar column is 

based on the availability of the apolar groups for van der Waals interaction 

with each other and with the stationairy phase. The order on the polar 

column is determined by the relative availability of the polar hydroxyl 

function for polar interactions with the stationary phase. The more exposed 

this group is, the stronger the retention. In amiteol V2 the hydroxyl group is 
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effectively screened by the C-4 methyl group and the a-protons at C-2, C-7, 

and C-9. Thus it has the lowest retention index on the polar column. In 

neointermedeol HI, paradisiol IV and 5-epi-paradisiol VIII 3 the hydroxyl 

group is hindered by two methyl groups of which the C-10 methyl group is 

in a 1,3-diaxial position to the C-4 hydroxyl group. This hindrance is nicely 

illustrated by the relatively small difference in retention index between the 

apolar and polar column (average A RI = 552). In the remaining four 

eudesmanes the hydroxyl group is only hindered by the methyl group on the 

same carbon and is thus more available for interactions with the stationary 

phase. This causes a significantly higher difference in retention index 

(average A RI = 612). 

8.3 13C AND !H NMR SPECTRA 

The 13C NMR data are given in Table 8.2, and the a H NMR spectra are 

shown in the Figures 8.2a-h. The distinction between the eight eudesmane 

alcohols is easy by means of 13C NMR. 

The resonances attributed to C-15 are diagnostic for the stereochemistry at 

C-5. In the cis-fused compounds V-VIII the C-15 signals resonate in the range 

of 8 28.9-30.7 ppm, while the corresponding resonances in the trans-fused 

compounds I-IV are found at about 8 18.5 ppm. The shifts of the C-14 carbons 

in these trans-fused compounds correlate well with the stereochemistry at 

C-4. When C-14 is (i-oriented, as in neointermedeol HI and paradisiol IV, the 

signals appear approximately at 8 22.5 ppm. In contrast, the downfield 

signals of C-14 at about 8 30.0 ppm in the spectra of intermedeol II and 

selin-ll-en-4cc-ol I are indicative of an a-orientation of this methyl group. 

Distinction between neointermedeol III with an equatorial substituent at C-7 

and paradisiol IV with an axial substituent at the same carbon can be made 

by comparing the methine signals which appear at 8 54.69 and 46.19 ppm for 

neointermedeol HI, and at 8 49.08 and 39.25 ppm for paradisiol IV. Similar 

differences are observed between selin-ll-en-4oc-ol I and intermedeol II. The 

distinction between the cis-fused compounds V-VIII is less clear. Although 

significant differences between amiteol V and 5-epi-neointermedeol VII on 

the one hand, and 7-epi-amiteol VI and 5-epi-paradisiol VIII on the other are 

observed for the methine signals, no further simple distinction by means of 

a single characteristic absorption can be made. For instance, the C-14 signals 

all have about the same shift (ca. 8 31.0 ppm). Nevertheless, by comparison 

of the shifts of the methylene carbons the cis-fused compounds V-VIII can be 
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Chapter 8 

Figure 8.2a: *H NMR spectrum of selin-ll-en-4oc-ol I. 
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Figure 8.2b: *H NMR spectrum of intermedeol II. 
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Figure 8.2c: *H NMR spectrum of neointermedeol HI. 
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Figure 8.2d: *H NMR spectrum of paradisiol IV. 
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Figure 8.2e: 1H NMR spectrum of amiteol V. 
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Figure 8.2f: lH NMR spectrum of 7-epz'-amiteol VI. 
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Figure 8.2g: ̂ H NMR spectrum of 5-epi-neointermedeol VII. 
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Figure 8.2h: ^H NMR spectrum of 5-epi-paradisiol VIII. 
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Chapter 8 

reliably identified. With iH NMR, however, distinction between these 

compounds is much easier. The *H NMR spectrum of amiteol V 

shows a multiplet at 8 2.64 ppm, while the corresponding signal in 

5-epj-neointermedeol VII appears at 8 2.26 ppm. The difference in chemical 

shift between the methyl groups at C-4 and C-10, 0.40 and 0.05 ppm for 

7-epi-amiteol VI and 5-epi-paradisiol VI I I , respectively, is useful in 

distinguishing between these two compounds. 

8.4 FTTR SPECTRA 

All the FTTR spectra of the eight stereoisomers of eudesm-ll-en-4-ol are 

slightly different in the fingerprint area. However, it was not possible 

to correlate these differences with the stereochemistry of the 

eudesm-ll-en-4-ols. Nevertheless the FTIR spectra are given for comparison 

(Figure 8.3a-h). 

8.5 CONCLUSION 

In conclusion is it possible to identify all eight stereoisomers of eudesm-

ll-en-4-ol by any of the five techniques discussed above. If the compounds 

have to be detected in mixtures (e.g. essential oils) the most reliable method 

is a combination of GC/MS, GC/FTIR, and capillary GC on two different 

columns. After isolation and purification further confirmation can be 

obtained with either *H NMR or 13C NMR. 

8.6 EXPERIMENTAL 

The eight possible stereoisomers of eudesm-ll-en-4-ol, namely 

selin-ll-en-4a-ol I, intermedeol II, neointermedeol III, paradisiol IV, amiteol 

V, 7-epi-amiteol VI, 5-epi-neointermedeol VII, and 5-epi-paradisiol VIII have 

been synthesized as described (vide infra).4-5'6 

GC/MS was performed at 70 eV on a Hewlett Packard 5970 B series Mass 

Selective Detector, coupled with a J & W DB-17 fused silica capillary column, 

30 m x 0.25 mm i.d. and 0.25 urn film thickness in a Hewlett Packard 5890 A 

Gas Chromatograph; carrier gas He.GC was performed on a Hewlett Packard 

5890 A gas chromatograph equipped with one split/splitless injection 

system, a 1:1 inlet splitter, two columns and two FI detectors. The two 

columns were 
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Figure 8.3a: FTIR spectrum of selin-ll-en-4a-ol I. 
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Figure 8.3b: FTIR spectrum of intermedeol II. 
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Figure 8.3c: FTIS spectrum of neointermedeol I I I . 
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Figure 8.3d: FTIR spectrum of paradisioi 
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Figure 8.3e: FUR spectrum of amiteol V. 
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Figure 8.3f: FTIR spectrum of 7-epi-amiteol VI. 
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Figure 8.3g: FTIR spectrum of 5-epi-neointermedeol VII. 
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Figure 8.3h: FTIR spectrum of 5-epi-paradisiol VIII. 
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i.d. and 0.25 urn film thickness, respectively. Split ratio 1:100, carrier gas H2, 

inlet pressure 20 psi, linear velocity 35 cm/s; temp. prog. 50°C (0 min hold) to 

238°C (8 min hold) at 4° /min; inj. temp. 220°C; det. temp. 260°C. 

Retention indices are Kovats indices. They were calculated by comparing 

the retention times of the compounds of interest with those of the C7-C23 

alkanes. 

NMR spectra were recorded on a Bruker 200 E at 200 MHz OH) and at 

50 MHz (13C) in CDCI3 at room temperature. Chemical shifts are reported in 

parts per million (8) relative to tetramethylsilane (8 = 0.00 ppm). 
13C multiplicities were obtained from DEPT experiments. Assignments 

based on normal chemical shift rules and reference compounds were 

confirmed by means of COSY- and !H-13C heteronuclear shift correlation 

spectra. 

FTIR was performed on a Hewlett Packard 5965B Infra-Red Detector 

(Fourier Transform mode) coupled with a CP Sil-5 (Chrompack) fused silica 

column coated with methylsilicon, in a Hewlett Packard 5890 gas 

chromatograph. Conditions: "light-pipe" length: 100 mm x 1 mm i.d., 

maintained at 250 °C; transfer lines: 250 °C; injector temperature: 250 °C; 

oven temperature program: 60 CC to 250 °C, rate: 2 °C/min. 
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9. ABSTRACT & SAMENVATTING 

9.1 ABSTRACT 

In this thesis the total synthesis of all stereoisomers of eudesm-ll-en-4-ol 

e.g. selin-ll-en-4oc-ol I, intermedeol II, neointermedeol III, paradisiol IV, 
amiteol V, 7-epi-amiteol VI, 5-epi-neointermedeol VII, and 5-epi-paradisiol 

VIII is described. 

The natural occurrences and the difficulties encountered in the structural 

elucidation of these eudesmanes are described in chapter 1. The eudesm-11-

en-4-ols occur in a wide range of plant species, some of which are used in 

medicine, or as insect repellent. However, the most spectacular occurrence of 

eudesm-ll-en-4-ols is established in the secretion of termite soldiers. These 

secretions are used as chemical weapons to defend the termite colony. 

In chapter 2 the strategies used in eudesmane syntheses are reported. The 

first part of this chapter deals with general approaches to the eudesmane 

skeleton. This part is organized in sections, each dealing with a number of 

methods under a common heading i.e. annulation, cycloaddition, 

intramolecular cyclization reactions, and transformations of natural 

sesquiterpenes. The second part of the chapter describes the reported total 

syntheses of intermedeol I, neointermedeol III, paradisiol IV, and 5-epj-

paradisiol VIII. These syntheses proceed in low overall yields because of the 

occurrance of complex product mixtures. 

The lack of spectroscopic and chromatographic data for identification, the 

interesting biological properties, and the availability of a good synthetic plan 

has been the reason for this investigation (Chapter 3). Starting from enone 

101, a large scale synthesis of the diones 95 and 96 has been developed as is 

described in chapter 4. The trans-fused dione 95 was transformed into the cis-

fused dione 96 by treatment with trimethyl orthoformate and a catalytical 

amount of acid in CH3OH. This transformation allows full stereocontrol on 

the C-5 bridgehead position. 

An efficient method for the synthesis of the octahydro-8-hydroxy-4a,8-

dimethyl-2(lH)-naphthalenones 97-100, which are suitable intermediates in 

the total synthesis of trans- and cfs-fused 4 - hyd roxyeude smane 

sesquiterpenes is reported in chapter 5. Starting from the trans-fused dione 

95 the corresponding hydroxy ketones 97 and 98 could be easily prepared. The 

cis-fused hydroxy ketones 99 and 100 were synthesized starting from the 

dione 96. Protection of the C-7 carbonyl function of 96 as its dimethyl acetal 
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followed by treatment with CH3U gave the hydroxy ketone 100. On the other 

hand, protection of the C-7 carbonyl function of 96 as its ethylene acetal and 

subsequent treatment with CH3MgI afforded the hydroxy ketone 99 as the 

main product. NMR studies revealed that 100 exists predominantly in the 

steroid conformation and that 99 exists exclusively in the nonsteroid 

conformation. 

The syntheses of the natural occurring (±)-selin-ll-en-4a-ol I, (±)-

intermedeol II, (±)-neointermedeol III, (±)-amiteol V , and the four 

remaining stereoisomers (±)-paradisiol IV, (±)-7-epi'-amiteol VI, (±)-5-epi-

neointermedeol VII, (±)-5-epi-paradisiol VIII, which not yet have been 

discovered in nature, are described in chapter 6. In addition the related (±)-

evuncifer ether 128 has been prepared. The syntheses in this chapter started 

from the hydroxy ketones 97-100. The reaction sequence employed for the 

synthesis of I, III, V, and VIII involved Wittig reaction, oxidative 

hydroboration, oxidation, equilibration, and olefination. For the synthesis of 

II, IV, VI, and VII the interim equilibration step was omitted. The oxidative 

hydroboration was the key step in these syntheses. 

The conformational behavior of the cis-fused stereoisomers of eudesm-

ll-en-4-ol has been investigated using NMR and conformational energy 

calculations (MM2) and is reported in chapter 7. In addition, the 

conformational analysis of most cis-fused intermediates in the synthesis to V 

and VI are studied. 

Kovats indices and mass-, GC/FTIR-, JH NMR-, and 13C NMR data were 

collected for all eight stereoisomers of eudesm-ll-en-4-ol in chapter 8. 

Differences in Kovats indices, mass spectral data, and GC/FTIR of the 

various isomers on one side, and *H NMR and 13C NMR on the other, are 

shortly discussed. In this way other investigators may be able to identify 

these common essential oil constituents more reliably in future, either 

without isolating them (by Kovats indices, GC/MS, and GC/FTIR) or after 

isolation (by NMR). 
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9.2 SAMENVATTING 

Deze dissertatie is gewijd aan de totaal-synthese van alle mogelijke 

stereoisomeren van eudesm-ll-en-4-ol (selin-ll-en-4a-ol I, intermedeol II, 

neointermedeol I II , paradisiol IV, amiteol V , 7-epi-amiteol VI , 5-epi-

neointermedeol VII en 5-epi-paradisiol VII). 

Hun natuurlijk voorkomen en de moeilijkheden bij de struktuur 

toekenning worden beschreven in hoofdstuk 1. De eudesm-ll-en-4-olen 

komen in veel plantensoorten voor. Sommige ervan worden als medicijn of 

als insekt verjagend middel gebruikt. Maar het meest verrassende is dat de 

eudesm-ll-en-4-olen te vinden zijn in de secretie-vloeistof van termieten 

soldaten. Zij gebruiken deze secreties om hun kolonie te verdedigen. 

In hoofdstuk 2 worden de strategieen beschreven die tot dusver werden 

gebruikt in de synthesen van eudesmanen. In het eerste deel van dit 

hoofdstuk worden de algemene synthetische benaderingen die leiden tot een 

eudesmaan skelet besproken. Het is onderverdeeld in paragrafen, waarin een 

aantal methoden aan de orde komt die zijn samengevat onder een algemene 

term, zoals annelerings-, cycloadditie-, intramoleculaire cyclizatie-reacties en 

omzettingen van natuurlijke sesquiterpenen. Het tweede deel van 

hoofdstuk 2 beschrijft de gepubliceerde totaal-synthesen van intermedeol I, 

neointermedeol III, paradisiol IV en 5-epi-paradisiol VIII. Deze synthesen 

gaven lage totaalopbrengsten, die meestal veroorzaakt werden door 

complexe produktmengsels. 

Het gebrek aan spectroscopische en chromatografische gegevens voor 

identificatie, de interessante biologische eigenschappen en de aanwezigheid 

van een goed synthetisch plan liggen ten grondslag aan dit onderzoek 

(hoofdstuk 3). In hoofdstuk 4 wordt de synthese op grote schaal van de 

dionen 95 en 96 uitgaande van enon 101 beschreven. Het frans-verknoopte 

dion 95 kon in het cis-verknoopte dion 96 worden omgezet door 

behandeling met trimethyl orthoformaat en een katalytische hoeveelheid 

zuur in methanol. Anomere en kinetische effecten maakten deze 

transformatie mogelijk en dat leidde tot volledige stereocontrole op het C-5 

bruggehoofd. 

Een efficiente methode voor de synthese van octahydro-8-hydroxy-4a,8-

dimethyl-2(lH)-naftalenonen 97-100, die als intermediairen kunnen dienen 

in de totaal-synthesen van trans- en cis-verknoopte 4-hydroxyeudesmanen, 

wordt in hoofdstuk 5 uitgewerkt. De overeenkomstige hydroxy ketonen 97 

en 98 werden eenvoudig gesynthetiseerd uitgaande van het fraws-verknoopt 
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dion 95. Bij de synthesen van de ds-verknoopte hydroxy ketonen 99 en 100 
diende het ris-verknoopte dion 96 als uitgangsstof. Bescherming van de C-7 

carbonyl-groep van 96 als dimethyl acetaal gevolgd door behandeling met 

CH3U leidde tot hydroxy keton 100, terwijl bescherming van de C-7 carbonyl-

groep als ethyleen ketaal gevolgd door behandeling met CH3MgI 

voornamelijk de vorming van hydroxy keton 99 tot gevolg had. Uit NMR-

onderzoek bleek dat 100 voornamelijk voorkomt in de steroid conformatie. 

Hydroxy keton 99 bestaat uitsluitend als nonsteroid conformeer. 

De synthesen van de natuurlijk voorkomende (±)-selin-ll-en-4oc-ol I, (±)-

intermedeol II, (±)-neointermedeol III en (±)-amiteol V en de resterende, 

(nog) niet in de natuur gevonden, stereoisomeren (±)-paradisiol IV, (±)-7-

epi-amiteol VI, (±)-5epi'-neointermedeol VII en (±)-5-epi'-paradisiol VIII 
vinden hun weerslag in hoofdstuk 6. Daarnaast werd de aan VI gerelateerde 

(±)-evuncifer ether 128 gesynthetiseerd. De synthesen in dit hoofdstuk 

beginnen met de hydroxy ketonen 97-100. De toegepaste reactie-volgorde in 

de synthese van I, III, V en VIII is achtereenvolgens een Wittig reaktie, 

oxidatieve hydroborering, oxidatie, isomerisatie en olefinatie. De 

isomerisatie-stap in deze reeks werd weggelaten in de synthese van II, IV, VI 
en VIII. De oxidatieve hydroborering is de belangrijkste reactie in deze 

synthesen. 

De conformaties van de ds-verknoopte eudesm-ll-en-4-olen V, VI, VII 
en VIII werden bepaald met behulp van NMR-studies en conformatie 

energie berekeningen (MM2), zoals beschreven is in hoofdstuk 7. Ook de 

conformaties van de meeste ds-verknoopte intermediairen in de synthese 

van V and VI werden onderzocht. 

Kovats indices, massa- en GC/FTIR-, J H NMR- en ^ C NMR-data werden 

voor alle stereoisomeren van eudesm-ll-en-4-ol verzameld in hoofdstuk 8. 

Verschillen in de Kovats indices en in de massa en FTIR-spectra aan de ene 

en !H NMR- en 1 3C NMR-spectra aan de andere kant worden kort 

beschreven. Op deze manier is het voor anderen mogelijk om deze 

componenten in vluchtige olien op betrouwbare wijze te bepalen zonder 

(Kovats indices, GC/MS en GC/FTIR) of na isolatie (NMR). 
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beschreven onderzoek onder leiding van dr. J.B.P.A. Wijnberg en prof. dr. 
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The structure depicted here is the enantiomer of the natural form. V I I I 


