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Stellingen 

1. De ruimtelijke verschilkansfunctie kan goed worden gebruikt voor het beschrij-
ven van de ruimtelijke structuur van kwantitatieve bodemvariabelen. 

Dit proefschrift 

2. Het berekenen van gemiddelden en varianties van nominale variablen, zoals 
uitgevoerd door o.a. Wilding & Drees (1978), Oliver & Webster (1987) en 
Agbu et al. (1990), is onjuist. 
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the Wyre Forest of the West Midlands, England. I. Multivariate 
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Agbu, P.A., D.J. Fehrenbacher & I.J. Jansen, 1990. Soil property 
relationships with SPOT satellite digital data in East Central 
Illinois. Soil Science Society America Journal 54:807-812. 

Dit proefschrift 

Het presenteren van bodemvariabelen in de vorm van de kans op overschrij-
ding van een bepaalde grenswaarde is voor een gebruiker relevant en dient 
meer te worden toegepast. 

Dit proefschrift 

De verandering van bodemvariabelen in de tijd krijgt binnen het bodem-
karteringsonderzoek te weinig aandacht. 

5. De indeling van bodemvariabelen in soil characteristics, soil properties, single 
land qualities en compound land qualities zoals beschreven door o.a. Bouma 
en Van Lanen (1987) is zeer moeilijk consequent toe te passen en werkt daar-
door niet verhelderend. 

Bouma, J. & H.A.J. Van Lanen, 1987. Transfer functions and 
threshold values: from soil characteristics to land qualities. In: 
Beek et al. (Eds.). ITC Publication No 6, Enschede.pp. 106-110. 
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6. Variabiliteit in bodemgegevens: voor de onderzoeker een lust, voor de gebrui-
ker een last. 

7. Bij het opzetten van geografische informatiesystemen wordt nog onvoldoende 
gebruik gemaakt van de gangbare informatica-methoden voor het ontwikkelen 
van informatiesystemen. 

8. Onzekerheid in bodemkundige gegevens vraagt 'zeker onderzoek'. 

9. Gezien het feit dat belangrijke wetenschappelijke ontdekkingen in een vak-
gebied soms door onderzoekers vanuit andere vakgebieden worden gedaan, 
zou bij het selecteren van wetenschappelijk personeel minder dan tot nu toe 
op een bij het vakgebied passende opleiding en ervaring moeten worden gelet. 

10. De richting van wetenschappelijk onderzoek wordt helaas te veel bepaald door 
onderwerpen die in de mode zijn. 

11. De stelling van Brunsson dat (top)managers van bedrijven wel besluiten kun-
nen nemen, maar dat ze niet moeten verwachten dat deze besluiten ook zo door 
de organisatie worden uitgevoerd, geldt in versterkte mate voor onderzoeks-
organisaties. 

Brunsson, N., 1991. The Organization ofhypocricy: talk, decisions 
and actions in organizations. John Wiley & Sons, Chichester. 
242 pp. 

12. De mat-stelling is zowel de beste als de slechtste stelling. 

Stellingen behorende bij het proefschrift van A.K. Bregt: Processing of soil survey 
data. 

Wageningen, 15 mei 1992. 
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Abstract 

Bregt, A.K., 1992. Processing of soil survey data. 
Doctoral thesis. Wageningen Agricultural University, Wageningen, 
The Netherlands, (X) + 167 pp. 

This thesis focuses on processing soil survey data into user-specific information. 
Within this process four steps are distinguished: collection, storage, analysis and 
presentation. A review of each step is given, and detailed research on important 
aspects of the steps are presented. 

Observation density, type of soil attributes and selection of observation sites 
are important aspects in the collection of soil data. The effect of observation 
density on the accuracy of spatial predictions was investigated in an acid sulphate 
soil area in Indonesia. It was found that a similar accuracy could be obtained with 
a marked reduction in observation density. 

Most attributes collected in soil survey are on an ordinal measurement scale. 
Commonly used statistics, such as mean, standard deviation and semivariance, and 
most spatial interpolation techniques are not permissible for this type of data. 
Ordinal data from a soil survey in Costa Rica are used to illustrate processing 
possibilities. For instance, the spatial-difference-probability function was proposed 
for describing the spatial structure of ordinal data. 

Over the past twenty years the storage of soil survey data in information 
systems has been receiving much attention. Digital storage is essential for rapid 
analysis of data. The soil information system of The Netherlands is described. 

Seven main categories of soil data analysis can be distinguished. Examples 
of some categories are presented. The differences between interpreted soil maps 
on scales of 1 : 10 000,1 : 25 000 and 1 : 50 000 for predicting moisture deficits 
and changes in crop yield were investigated. No differences in quality were found 
between the three maps when predicting average values for an area. The best 
predictions for point locations, however, were obtained with the 1 : 10 000 map. 

Also a comparison was made between a thematic map produced by spatial 
prediction from point data (kriging) and one derived from a general-purpose soil 
map. The thematic map contain attributes that are important for water movement 



in the soil. No significant difference in purity was found between the two maps. 
When combining soil data with other spatial data a vector to raster conversion of 
the soil map is often necessary. Several sheets of the soil map of The Netherlands 
1 : 50 000 of different complexity were investigated for the magnitude of the 
rasterizing error. The regression equations determined related map complexity to 
rasterizing error. The rasterizing error of a complex map may be as high as 20% 
for a raster cell size of 4 mm * 4 mm. 

Two display methods are introduced for the presentation of uncertainty in soil 
data. The first method yields an isoline map with empirical confidence limits based 
on the use of kriging and associated estimated kriging variance. The second 
method yields a map showing the probability that a certain threshold value is 
exceeded. When presenting soil data in the form of a map, the complexity of the 
map pattern has an important influence on its readability. Six complexity measures 
for maps were compared. The fragmentation index was selected as the best measure 
for evaluating map complexity. 

Additional index words: soil survey, ordinal soil data, observation density, spatial 
variability, uncertainty in soil data, kriging, spatial prediction, presentation of 
uncertainty, map complexity. 
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1 General Introduction 

Soil plays an important role in activities such as agriculture, land use planning, 
building, erosion control, environmental protection and nature conservation. All 
these activities require information about attributes of the soil and soil processes. 
Due to the different objectives of the activities, different information is required. 
For example, information is required for agricultural production about soil fertility 
and possibilities for crop production, whereas environmental protection requires 
information about the amount and behavior of pollutants in the soil. Contrastingly, 
nature conservation needs information about soil attributes that allow the 
development of certain vegetation types. As a result, soil is studied from several 
viewpoints: soil physics, soil chemistry, soil biology, soil tillage, soil survey. 

This thesis deals with soil survey, where the spatial distribution of soil on earth 
and its attributes are studied. The soil surveyor describes the spatial distribution 
of soils based on field observations and the use of landscape features, that are 
related to soil patterns. The obtained survey data, traditionally presented in the 
form of a soil map and soil survey report, however, does not always meet the 
requirements of the user. The 'language' spoken by the soil scientist is often not 
understood by, for instance, the landuse planner or the ecologist (Zinck, 1990). 
It is not easy for an outsider to know that the soil in The Netherlands with the 
code Mn25A-VI is suitable for arable farming, and that it is better not to use a 
soil with the code kVc-II for this purpose. The lack of understanding of the soil 
terminology by non-soil scientists has been realized for a long time. To bridge 
this gap, soil scientists have interpreted the soil data for a variety of purposes (e.g. 
Van Lanen, 1991). Initially, manual procedures are followed and interpretations 
are quite fixed. Currently, due to the introduction of the computer, more flexible 
interpretations are possible. 

The various steps in the process of transforming collected soil data to user-
specific information are presented in Figure 1. 



Fig. 1 Steps in the transformation of collected soil data to user-specific information 
(processing of soil survey data). 

The subject studied is the soil in the real world. In the first step, data about the 
real world are collected (collection). Up to now, the most widely used data 
collection procedure is the free survey but when quantitative information is 
required, probability sampling is becoming more popular. In the second step, the 
collected data are stored (storage), which can be done both on paper as well as 
in digital form. In this thesis the emphasis is on data storage in digital form. The 
stored data is analyzed (analysis) in the next step to derive the desired information. 
The term analysis is used in this context, in a broad sense. It includes both simple 
selection of data as well as the assessment of land suitability by dynamic 
simulation modelling. After analyzing the data, the resulting information presented 
(presentation) can be used to initiate certain actions (or not) which influence the 
real world such as, erosion control measures or the removal of pollutants. 

The user controls the process of data transformation to user-specific 
information. He asks certain questions and the soil scientist must be able to 
provide the answers. Certain changes have occurred in the demands. These current 



changes can be summarized into three main points as follows: 
- The demand for new types of information. The user is interested in other 

attributes and information about variability within mapping units and also in 
more information about the behavior of attributes in time. 

- The demand for quick information. 
- The demand for specification of the quality of information. 

These changes in demand have their impact on the way soil survey data are 
collected, stored, analyzed and presented. This thesis contributes towards new 
procedures for soil data processing to satisfy user demands. 

In Part I, Chapter 2, the various steps in the transformation of soil survey data 
to user-specific information are discussed in more detail. In Part II, papers which 
deal with aspects of the described procedures in more detail are presented, and 
Part III consists of concluding remarks and a summary in Dutch . 

REFERENCES 

Van Lanen, H.A.J., 1991. Qualitative and Quantitative physical land evaluation: 
an operational approach. PhD Thesis, Agricultural University, Wageningen. 

Zinck, J.A., 1990. Soil survey: epistemology of a vital discipline. ITC Journal 
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2 Processing of soil survey data: a review 

2.1 NATURE OF SOIL 

The nature of soil is extremely complex. McBratney (1991) describes it as follows: 
"In any small handful of soil there is a great complexity. Such a volume 
of soil consists of a framework of solid particles of various sizes and 
shapes aggregated in an intricate manner and enclosing complementary 
complex and tortuous cavities within which aqueous solutions and various 
gases flow and diffuse and in which lives a myriad of organisms. These 
solids, liquids and gases interact in many complicated ways and when 
one considers that the soil under a square kilometer of land may consist 
of several thousand millions of these handfuls then the inordinate 
complexity of soil is manifest" 

As well as being complex at the scale of one handful, soil vary in both space and 
time over larger distances. The variation in space may be quite different for the 
various soil attributes. In a certain area, for instance, although there may be hardly 
any variation in clay content, a considerable variation in stoniness may be found. 
Different levels of spatial variation of soil attributes have been observed by, for 
example, Burrough (1983) and Bouma (1989). When concentrating on a certain 
point in space there may be a considerable variation and different levels of 
variation in time for the soil attributes. Soil temperature, for example, has a daily 
and yearly fluctuation. More static attributes like clay content and organic matter 
content may not change so rapidly, but over longer periods changes will occur 
due to soil forming processes. 

It is this complex reality of many different soil attributes that we study to 
obtain the information we need for our activities. 

Models for describing soil 

The basic unit for describing soil are attribute values at a certain point (x, y, z) 
in time (Holmgren, 1988), in other words what (attribute) appears, where (space) 
and when (time). A complete description of reality can be obtained by recording 



all attribute values in all possible points in space and time. It is obvious that this 
it is impossible in practice. A complete description of the reality is also not 
necessary. For our purposes, building a model from reality that satisfies our 
information requirements is enough. 

There seems to be no general accepted classification for models. We devided 
on the following classification: 

- models describing attributes in space (spatial models); 
- models describing attributes in time (temporal models); 
- models describing attributes in space and time (spatio-temporal models). 

In this thesis, the emphasis is on spatial models that describe soil. In soil survey 
the spatial models that can be distinguished are: 

- discrete spatial model; 
- continuous spatial model. 

Discrete spatial model 

The discrete spatial model is the model most used in soil surveys. Other terms 
used for this model are choropleth map model (Burrough, 1986) and soil map 
model (Heuvelink & Bierkens, in prep.). The soil is divided into discrete horizons 
in the z direction (down the profile). In the x-y direction the soil is divided into 
a finite number of more or less homogeneous units, which are represented on a 
soil map as mapping units. In its simplest form, each unit is characterized by a 
representative profile in which one value is given for each soil attribute: 

*ij = rj (1) 
where z^ is the value of attribute Z at point /' in mapping unit j and r= is the 
representative value of attribute Z in mapping unit j . 

An extension of the model can be obtained by adding information about the 
variability within the map unit. This can be simply done by providing a 
representative profile for the dominant soil type, the associated soil type and the 
inclusions of each mapping unit. Another possibility is to add range indications 
to the attribute values. This last type of variability information is standardly 
provided for the soil survey of the Netherlands, scale 1 : 50 000 (e.g. Ebbers & 
Visschers, 1983). The variability within the map unit can also be characterized 
by the mean and variance of soil attributes: 



Zij = Mj + £j (2) 

where Zy is the value of attribute Z at point i in mapping unit j , \i: is the mean 
of Z in mapping unit j and £= is a random component with a mean of zero and 
variance a2, the within unit variance. Marsman & De Gruijter (1984), De Gruijter 
& Marsman (1985) and Visschers (1992) use additional sampling to obtain this 
type of information. 

Continuous spatial model 

Continuous spatial models for describing soil variation include trend surfaces, 
splines and the geostatistical model. The geostatistical model has become the most 
popular continuous spatial model for describing soil variation. It describes soil 
variability as a realization of a random function. The model is based on the 
regionalized variable theory developed by Matheron (1971). In its simplest form, 
the geostatistical model can be written as: 

Zj = \i + ej (3) 

where zi is the value of Z at any location i, (j. is the mean of Z and e{ is a spatially 
correlated random component whose variation is defined by the semivariogram. 

The first paper applying the geostatistical model for describing the spatial 
variability of soil attributes appeared in 1978 (Campbell, 1978). Later followed 
by publications in the United Kingdom (Burgess & Webster, 1980a,b; Webster 
& Burgess, 1980; Burgess et al., 1981; McBratney et al., 1982; McBratney & 
Webster, 1983, and in the USA (Gajem et al., 1981; Vieira et al., 1981). Since 
then, there has been a "boom" in publications on the use of geostatistics for 
describing soil variability. 

Combining both models 

Both the soil map and the geostatistical model involve approximations, assumptions 
and simplifications, and thus they disagree to some extent with reality. The soil 
map model disregards spatial correlation within and across map units, and ignores 
fuzziness of some of the unit boundaries. The geostatistical model does disregards 
sharp boundaries in soil variation. The dimension of time is not incorporated in 
either model. 

According to Bouma (1985) and Voltz and Webster (1990) there is a clear 



advantage in combining the two models. This has been done by Stein et al. (1988), 
Voltz & Webster (1990) and Heuvelink & Bierkens (in prep.). Stein et al. (1988) 
used the discrete model of the soil map to stratify the survey area. Within each 
stratum, the geostatistical model was assumed and a semivariogram was calculated 
for each stratum, after which predictions were made. Voltz & Webster (1990) 
followed a similar approach. However, instead of a semivariogram for each 
stratum, they used a pooled semivariogram which was assumed to be valid for 
all the strata. A disadvantage of the stratified procedure is that it only uses the 
map unit delineations of the soil map. 

2.2 COLLECTION 

Data collection is the first step in obtaining information about the soil for a certain 
area. Questions such as: "What model do I use for spatial variation "/'What data 
are already available for an area?","Which attributes need to be investigated?", 
"How many observations are required?" and "What survey or sampling method 
must I use?", need to be answered. The specific answers to these questions depend 
on the goal for which the soil information will be used. And as there is a great 
variety of goals, there can be no standardized data collection procedure to suit 
all possible requirements. Each time the procedure needs to be tailored to the 
requirements of a certain question. 

According to Domburg & De Gruijter (in prep.) questions concerning soil 
information can be divided in a 'what' question and a 'where' question. The 'what' 
question demands answers in the form of means, variances and proportions of 
attributes for a certain area (e.g. parcel, mapping unit). The 'where' question 
demands answers in the form of predictions of attribute values at certain locations. 
In practice, combinations of both types of questions are often found. To these two 
types of questions a third one can be added: the 'when' question. This question 
is related to the behavior of attributes in time, namely, when will the value of an 
attribute exceed a critical value? 

In the following sections attention will be paid to data the collection aspects: 
- attributes; 
- survey and sampling methods. 
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Attributes 

A great variety of soil attributes can be recorded. For example, the soil information 
system of the Netherlands (Bregtet al., 1987) stores about 285 different attributes. 
It is beyond the scope of this thesis to review all possible attributes. Detailed 
information on this point can be found in, for example, Soil Survey Staff (1975), 
FAO (1977), Hodgson (1978), Page et al. (1982), Klute (1986). 

Attributes are measured or described according to a certain measurement scale. 
Four different scales can be distinguished: nominal, ordinal, interval and ratio. 
The characteristics of each scale are presented in Table 1. Attributes recorded on 
a nominal and ordinal scale are qualitative data, and data on interval and ratio 
scale are quantitative data. As shown by Bregt et al. (1992b, Chapter 4) the 
majority of the recorded soil data in a standard soil survey is nominal or ordinal 
(qualitative). This must to be realized when an analysis of soil survey data is done. 

Table 1. Characteristics of measurement scales and useful summary statistics. 

Scale Description Useful summary statistics 

central tendency dispersion 

Nominal determination of equality; 
data can be placed into classes 

Ordinal determination of greater or 
less; data can be ranked 

Interval determination of equality of 
intervals or differences 

Ratio determination of equality of 
ratios; measurements have 
a true zero 

mode 

mode, median range 

mode, median, 
mean 
mode, median, 
mean 

range, standard 
deviation 
range, standard 
deviation, 
coefficient of 
variation 

Survey and sampling methods 

Beckett (1968) distinguished three main types of survey methods: physiographic 
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survey, free survey and grid survey. They differ in the extent to which the mapped 
boundaries are based on observations at sampling points, rather than on surface 
appearance of soil attributes as perceived on the ground, on air photos, or on 
topographic or geological maps. All three methods focus on the production of a 
soil map ('where' question). Over the past twenty years, however, probability 
sampling of the soil is being used more and more to obtain accurate information 
for attributes in an area ('what' question). The probability sampling can be in the 
form of a grid or another sampling scheme. In this section the following division 
of survey and sampling methods is used: 

- physiographic survey; 
- free survey; 
- probability sampling. 

Physiographic survey 
The physiographic survey yields a description of the soil in the form of a discrete 
spatial model (soil map model). In the physiographic survey, the mapped soil 
boundaries are based on external features of the soil and the landscape perceived 
by interpretation of air photos or other remote sensing imageries (Dent & Young, 
1981; Avery, 1987). Field observations are made to describe the soil within each 
map unit (representative profile). The physiographic survey produces a description 
of the soil in the form of the discrete spatial model without any information about 
the variation within the map unit (Eq. 1). The attributes are usually recorded on 
a nominal or ordinal measurement scale, and the survey costs per square km are 
relatively low. 

Free survey 
The free survey also yields a description of the soil in the form of a discrete spatial 
model. It is the most widely used survey method. According to this method the 
soil surveyor uses known or observed relationships between soil attributes and 
visual features of the landscape that can be seen in the field or on air photos. In 
this way, the surveyor builds a conceptual model about the soil behavior. Using 
the model he selects each observation point from where the most useful 
information is likely to be obtained. Soil boundaries are delineated during field 
work, which means that in contrast to the physiographic survey, field observations 
are made to locate boundaries. 
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The free survey yields soil information in the form of a soil map (discrete 
spatial model) and descriptions of soil profiles at points. Each mapping unit is 
characterized by a representative profile, which is used for the interpretation of 
the soil map. Generally more observations are available for a map unit, so some 
idea can be obtained about the variation within the unit (e.g. Bregt & Beemster, 
1989, Chapter 5). More detailed information is obtained by increasing the survey 
intensity which goes hand in hand with a narrower definition of the mapping units. 
In the free survey, describing the detailedness of the survey in terms of the scale 
of the published map is common practice. There is a direct relation between 
observation density and map scale, which is defined by a fixed number of 
observations per square cm of the final map. As a rule of thumb, Buringh et al. 
(1962) mentioned four observations, and Dent (1986), one observation per square 
cm of the final map. The recorded attributes in a free survey are mainly on a 
nominal or ordinal measurement scale, and the survey costs per square km are 
higher than those of the physiographic survey. Point observations which result from 
a free survey are also used for a continuous description of the soil. 

Probability sampling 
An essential feature of probability sampling is that the sampling locations are 
determined by a random procedure. This contrasts with the physiographic and free 
survey, where the sampling locations are chosen according to the judgement of 
the soil surveyor based on his experience about the relation between landscape 
and soil. A result of probability sampling is that statistical theory can be used for 
an unbiased estimation of, for instance, means and variances of attributes. The 
reasoning behind the great diversity of possible sampling schemes lies in the need 
to achieve maximum efficiency and accuracy within constrains such as cost, time, 
available facilities and so on. 

Three basic sampling schemes can be distinguished (Ripley, 1981; Webster 
& Oliver, 1990): 

- random; 
- systematic; 
- stratified. 

In the random scheme the sampling locations are chosen completely at random. 

Random sampling has some disadvantages. Firstly, the total number of observations 

13 



needed to obtain a certain precision in the statements is relatively high. Secondly, 
clustering of samples can take place, which leads to over- or undersampled areas. 

An even coverage of an area can be obtained by systematic sampling, in which 
points are located at regular intervals on a grid. The location of one grid point, 
however, must be chosen at random. Systematic sampling is easy to perform. If 
there are, however, periodicities in the soil population, the results can be biased. 

With stratified sampling the area is divided into different strata. Sample 
locations are chosen within the different strata according to a random (stratified 
random) or systematic (stratified systematic) procedure. 

For the selection of the final sampling scheme it is important to know the question 
that needs to be answered. Most probability sampling schemes concentrate on the 
'what' question. Marsman & De Gruijter (1984) use transect sampling to quantify 
map unit composition. If we want to answer the ' where' question, the scheme will 
be quite different. Using the geostatistical model for answering this question, 
sampling must be done in order to: 

- estimate the spatial structure of the attribute (semivariogram); 
- make predictions for locations. 

Sampling schemes for estimating the semivariogram are proposed by Russo (1984), 
Warrick & Myers (1987) and Pettitt & McBratney (1992). All three procedures 
proposed attempt to obtain short-range information as well as information over 
larger distances. Sampling schemes for spatial prediction using kriging have been 
evaluated by McBratney et al. (1981) and McBratney & Webster (1981). A 
triangular grid appeared to be the most efficient one. Square grids are nearly as 
efficient and have the additional advantage that they are easier to lay out in the 
field. 

2.3 STORAGE 

Traditionally the collected soil data were stored in archives in paper form. The 
accessibility of these archives is often quite limited, even by the survey 
organization themselves. For users outside the survey organization, the published 
profile descriptions and soil maps were often the only available soil data source. 
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Detailed descriptions of auger holes are not available or are very difficult to get 
hold of. At this moment, a lot of collected soil data in the world are still stored 
in paper archives. Obviously this method of storage does not allow rapid analysis 
of the data and, furthermore, even hampers its use. It is therefore not surprising 
that the storage of soil data in computerized information systems has received 
much attention during the last 20 years. 

From a data storage point of view it is useful to divide the collected soil data 
into point and area data. Point data are detailed soil profile descriptions in a pit, 
including chemical, physical and mechanical analysis and augerhole descriptions: 
In soil survey, what we consider to be point data is quite often a line description 
in the z dimension (profile). Soil maps and mapping unit descriptions are regarded 
as area data. 

Database management systems are frequently used for the storage of point data. 
On personal computers dBASE is quite popular (e.g. Van Waveren & Bos, 1988; 
Maggogo, 1989) and on mini-computers various software packages are used. 
Geographical information system (GIS) packages are often used for the storage 
of area data, where both vector and raster storage of area data are found. 

International development 

The first steps towards the establishment of soil information systems were made 
at the beginning of the seventies. On a national level, activities began in The 
Netherlands (Schelling, 1972), in Canada (Dumanski et al., 1975), in New Zealand 
(Lee et al., 1976) and in the USA (McCormack and Miller, 1977). At an 
international level, there have been recommendations for the development of an 
international soil information system (FAO, 1972). In 1974 an international 
working group on soil information systems was set up by the International Society 
of Soil Science (ISSS), and the first meeting of the working group was held in 
Wageningen, The Netherlands, in 1975 (Bie, 1975). The working group was very 
active and successive meetings followed in Canberra, Australia, in 1977 (Moore 
and Bie, 1977), Varna/Sofia, Bulgaria, in 1977 (Sadovski and Bie, 1978), Canberra, 
Australia, in 1980 (Moore et al., 1981), Paris, France, in 1981 (Girard, 1981) and 
Bolkesj0, Norway, in 1983 (Burrough and Bie, 1984). 

At the start the contributions were mainly focused on the technical and 
developmental aspects of soil information systems. Later the applications of soil 
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information systems began to receive more and more attention. Consequently, at 
the congress of the ISSS in Hamburg (1986) the working group on soil information 
systems joined the working group on land evaluation to become the working group 
on land evaluation information systems. The SOTER working group was also 
established at the Hamburg congress. This working group was assigned the task 
of developing a world SOils and TERrain database on a scale of 1 : 1 000 000 
(Baumgardner & Van de Weg, 1989). In 1991 databases were made available for 
three map sheets of different regions of 250 000 km . 

Soil information system of The Netherlands 

The first steps towards an integrated earth science information system in The 
Netherlands were taken in 1972. During the period 1972 until 1976, the WIA-
system (WIA = Werkgemeenschap Informatiesysteem Aardwetenschappen) was 
developed for the input, storage and retrieval of both soil and geological data (Bie 
& Schelling, 1978). Although parts of this system worked well, a complete 
integration of data was never achieved. This was chiefly due to the complexity 
and diversity of the data, the wide scope of the project and the state of the art in 
information technology and methodology at that time. Digitization of the soil maps 
of The Netherlands on a scale of 1 : 50 000 was done successfully within this 
project. 

In 1984 a new soil information system (BIS, bodemkundig informatiesysteem) 
for soil point data was developed. BIS was built using the relational database 
management system ORACLE. Prototyping was used as the developing 
methodology (Bregt, 1986). In 1988 the soil maps were converted to ARC/INFO, 
which was linked with ORACLE. The data stored in the soil information system 
of The Netherlands are as follows: 
- area data: 

. soil map of The Netherlands on a scale 1 : 250 000; 

. soil map of The Netherlands on a scale 1 : 50 000; 

. representative profile for mapping units soil map 1 : 50 000, including land 
qualities and suitability classes; 

- point data: 
. auger hole descriptions; 
. detailed profile descriptions, including data of chemical, physical and 

mechanical analysis. 
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The main function of the system is to store data. These data are analysed to answer 
a great variety of questions. 

2.4 ANALYSIS 

Soil data are seldom collected and stored in the proper form to answer the user's 
questions. Consequently, selection and transformation is necessary to yield the 
right information. All activities undertaken to transform the data in such a way 
that they become relevant for a user (become information) is called analysis. 

Classification of analysis methods 

In soil science literature, classification of analysis techniques are scarce, only 
Burrough (1989a) presented a possible classification. In the GIS literature, a 
classification of analysis methods can be found in Burrough (1986), Goodchild 
(1987), Van der Schans (1988), Aronoff (1989), and Burrough (1991). The most 
generic classification is presented by Van der Schans (1988). This classification 
is based on the three basic elements of spatial data (attribute, geometry (space), 
and time). Based on these three elements, seven major categories of analysis can 
be distinguished: 

- attribute analysis; 
- geometrical analysis; 
- temporal analysis; 
- attribute and geometrical analysis; 
- attribute and temporal analysis; 
- geometrical and temporal analysis; 
- attribute, geometrical and temporal analysis. 

In this thesis the classification of Van der Schans (1988) is used, as it is in line 
with the description of the soil presented before (see Section Models describing 
soil on page 7). Analysis on the basis of time alone and on geometry and time 
are not or seldom found in soil survey, so they will not be discussed in greater 
detail. 
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Attribute analysis 

Attribute analysis is important in soil science. Much soil research has been focused 
on the derivation of new attributes from existing ones. In its general form this can 
be written as: 

N = f(A£,C,...) (4) 

where N is the new attribute, AJi,C are attributes used to estimate N, and f(...) 
is a function used to estimate N. The function f(.„) can be: 

- logical; 
- arithmetical. 

Logical operations 
Logical operations calculate new attributes by evaluating the value of existing 
attributes. The existing variables are often, but not necessarily, classified data. For 
logical operations, Bouma & Van Lanen (1987) use the term class pedotransfer 
functions, and Burrough (1989b) the term threshold models. 
An example of such an operation is: 

if A = vl and B = v2 then N = v3 
where vl, v2, v3 are attribute values, and A, B, N are attribute names. 

Logical operations are particularly suitable for attributes on a qualitative 
measurement scale. Because a lot of soil survey data are available on this 
measurement scale (Bregt et al., 1992b), logical operations are quite popular to 
derive new attributes from existing ones. Most of the examples can probably be 
found in land evaluation (Van Lanen, 1991). To obtain new attributes (e.g. 
suitabilities), the land capability classification system for evaluating agricultural 
land (McRae & Burnham, 1981) and the land suitability evaluation method of the 
FAO (FAO, 1976) incorporate large numbers of logical operations on attributes. 
Many such operations are also included in the Dutch system for soil survey 
interpretation (Haans, 1979). 

Classification of a soil profile can also be considered as a logical evaluation 
of collected attributes, which yield a new attribute: the soil type. 

Arithmetical operations 
Arithmetical operations calculate new attributes as an arithmetical function(s) (+, 
-, /, *, logarithms, exponents, and all possible combinations thereof) of the existing 
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attributes. An example of such an operation is: 
N = 2.5A + B + 3C (5) 

where 2.5 and 3 are constants. Other terms used for these types of operations are 
continuous transfer functions (Bouma & Van Lanen, 1987) and regression models 
(Burrough, 1989b). The arithmetical operations can only be used for quantitative 
attributes. 

In the area of soil fertility, there are a lot of empirically defined arithmetical 
functions (parametric procedures) which relate crop yield to soil characteristics, 
such as clay content and organic matter (McRae & Burnham, 1981; Janssen et al., 
1989). In soil physics a number of functions have been defined which relate soil 
physical characteristics to soil survey attributes. (Ritchie & Crum, 1989; Van 
Genuchten et al., 1989; Vereecken et al., 1989; Wosten & Van Genuchten; 1988; 
Wosten, 1990). Examples of functions which relate soil chemical characteristics 
to soil attributes can be found in Breeuwsma et al. (1986). 

Geometrical analysis 

Geometrical analysis includes those activities that modify the geometry of soil 
data such as smoothing of map unit boundary lines, edge matching, change of map 
projection, map overlay and vector to raster or raster to vector conversion. 

Map overlay can be considered as a gemometrical analysis only when attributes 
of the individual maps are transferred to the resulting map without changes being 
made. An example is the overlay of the soil map of Europe with the agro-climatic 
map of Europe (Bulens et al., 1990). 

Vector to raster conversion of the soil map is commonly done. However, the 
error introduced as a result of this analysis can be quite large. Bregt et al. (1991a) 
showed that by a vector to raster conversion of the soil of The Netherlands even 
for a relatively small raster-cell size of 4 mm * 4 mm there could be an error of 
20% (Fig. 1). 

Attribute and geometrical analysis 

Attribute and geometrical analysis go frequently hand in hand. The types of 
analysis belonging to this category are spatial prediction and overlay. 
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Fig. 1 Relation between rasterizing error and boundary index for eleven map sheets for 

three raster cell sizes (Bregt et al., 1991) 

Spatial prediction 
Spatial prediction methods are used to predict the soil attributes at, usually, 
unvisited locations from point observations. A large number of possible techniques 
are available (Ripley, 1981; Lam, 1983; Burrough, 1986; Stein, 1991). Most 
techniques, such as kriging, trend surface analysis and inverse distance 
interpolation can only be applied to interval and ratio data. Spatial prediction with 
Thiessen polygons (Davis, 1986) can, however, also be applied to nominal and 
ordinal data. Kriging has become the most popular mathematical prediction 
technique in soil survey. It is based on the geostatistical model for soil variation. 

Studies comparing the accuracy of different methods for predicting soil 
attributes have been described by Van Kuilenburg et al. (1982), Bregt et al. (1987), 
Laslett et al. (1987) and Voltz & Webster (1990). Van Kuilenburg et al. (1982) 
and Bregt et al. (1987, Chapter 6) compared kriging with soil map predictions. 
In these case studies no difference was found in the accuracy. Laslett et al. (1987) 
compared thirteen different spatial prediction methods, all of which showed some 
deficiencies. Of all the methods investigated, Laplacian smoothing splines and 
kriging appeared to perform best. Voltz and Webster (1990) used four methods 

20 



to predict the clay content of the topsoil in two regions of contrasting 
physiography, which were: the mean of the mapped class, kriging, cubic spline 
and kriging within classes. In situations where some abrupt changes in the soil 
had occurred, the mapped classes performed best. In other situations, kriging and 
kriging within classes performed somewhat better. 

From the presented case studies about the experimental comparison of spatial 
prediction methods no preferance can be detected, of for example, the geostatistical 
model (kriging) preferable to the soil map model. 

Overlay 
Map overlay can also be both an attribute and geometrical analysis, as seen when 
new geometry and attributes are obtained by an overlay of maps together with an 
logical or arithmetical operation on the attributes (see Section Attrbiute analysis 
on page 18). 

Attribute and temporal analysis 

Attribute and temporal analysis are found in those situations where attribute values 
are analyzed in time, without taking into account the spatial interaction between 
attributes values. Typical data used for this type of analysis are time series 
collected in a monitoring program. Temporal models describe the behavior of 
attributes in time, examples of which are modelling soil compaction, change of 
organic matter content and crop growth. Temporal models are focussed on 
answering the 'when' question. 

In soil survey research on attribute analysis in time did not receive much 
attention. This will undoubtly change due to the increasing attention for sustainable 
land use, which asks questions about the behavior of attributes in time. 

Attribute, geometrical and temporal analysis 

This last category comprises the most complicated analysis. There is a spatial and 
temporal interaction between attribute values. Spatio-temporal models are 
frequently used to analyze and describe this interaction, and they are focussed on 
answering the 'when' and 'where' question. Two types of spatio-temporal models 
are distinguished: 
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- deterministic model; 
- stochastic model. 

Deterministic spatio-temporal models attempt to model the most important aspects 
of the processes in terms of well understood physical and chemical laws. Most 
models for describing the water-soil-plant interaction are of this type (e.g. 
WOFOST (Van Diepen et al., 1989), SWATRE (Feddes et al., 1978). These models 
generally model spatial interaction only in one dimension (down the profile). Most 
groundwater models are deterministic, they usually model space in three 
dimensions. 

Stochastic spatio-temporal models do not model the outcome of a single event 
but the average behavior of a large number of events. The output of the model 
does not describe an exact result but rather one possible realization within a whole 
range of results. The use of stochastic process models is still in an experimental 
phase. Up to now the main application field has been in hydrology and solute 
movement (Serrano et al., 1985a,b,c; Yeh et al., 1985; Jury & Gruber, 1989). They 
have hardly been used in crop production analysis. 

A combination of the stochastic and the deterministic approach is often found. 
For instance, the spatial variation of attributes is described by a stochastic model 
(geostatistical model) and the behavior of attributes in time is described by a 
deterministic model. An example has been presented by Stein et al. (1991). They 
described the spatial variability of soil attributes by the stochastic geostatistical 
model. Using the geostatistical model predictions were made for test locations, 
followed by deterministic simulation of the moisture deficit on the test locations. 

Combined analysis 

For answering a particular question, often a sequence of analysis is required. This 
will be illustrated by a study concerning crop production potentials for the 
European Community (Bulens et al., 1990; Van Lanen et al., 1992). In this study 
potential- and water limited production of some major crops were determined by 
the combined use of a geographical information system (GIS) and land evaluation 
models. The soil map of European Community on a scale of 1 : 1 000 000 (EC, 
1985) was used. The projection of the soil map was changed (geometrical analysis) 
and new attributes (rooting depth, drainage class and water retention data) were 
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derived for the dominant soil units (attribute analysis). The soil map was overlaid 
with the agro-climatic and an administrative unit map in order to obtain a land 
evaluation map (attribute and geometrical analysis). The units on the obtained map 
represent an unique combination of soil, agro-climatic zone and administrative 
regions. For the land evaluation units potential- and water limited production for 
some major crops was determined by the crop growth model WOFOST (Van 
Diepen et al., 1989) (attribute, geometrical and temporal analysis). 

2.5 PRESENTATION 

Results of an analysis must be presented to the user. Two basic forms can be 
distinguished: 

- text; 
- illustrations. 

Text 

The results of an analysis can be presented in the form of text. The term text is 
rather broadly defined in this context, and includes tables, formulas and written 
text. The advantage of the use of text for presentation is that the statements can 
be precise (e.g. numbers). Tables too form an effective way for the presentation 
of information for further computer processing of the obtained results. The 
disadvantage is that the human mind is not able to process text quickly. 
Illustrations are far more appreciated as means of communication: "pictures speak 
louder than words". 

Illustrations 

At present there is a growing interest in visualization of data for exploring data 
analysis. Computer workstations are now able to deliver the power to display and 
manipulate images at reasonable costs (Medyckyj-Scott, 1991). In the visualization 
of results a distinction can be made such as in graphs, maps and animations. 

23 



Graph 
A graph is used for visualization of attribute change in one dimension. This type 
of output is common when changes of attributes in time or in one dimensional 
space are presented (transect, profile). Line graphs can be used for quantitative 
data; for qualitative data, diagrams are useful. 

Map 
The most common way of presenting soil survey information is in the form of a 
map. There is a great diversity of map types (Ormeling & Kraak, 1990). The 
measurement scale of the data and the spatial model determine the possible types. 
Maps most used for presenting soil survey data are chorochromatic map, choropleth 
map and isoline map. 

A chorochromatic map is based on the discrete spatial model for soil variation 
and visualizes qualitative data. The general purpose soil map is a typical example 
of a chorochromatic map (Fig. 2). 

Fig. 2 Chorochromatic map. Fragment of the soil map of The Netherlands. 

A choropleth map is also based on the discrete spatial model for soil variation, 
but now quantitative data are presented. This type of map is often obtained by 
deriving a quantitative attribute from a soil map, or by classification of a 
continuous attribute (Fig. 3). 

An isoline map presents an attribute that varies continuously over an area 
(continuous spatial model), and where points of equal value are connected by lines 
(Dent, 1985). Results of spatial predictions are often presented as isoline maps 
(Fig. 4) 
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Fig. 3 Choropleth map obtained by classification ofhthe continuous attribute depth to the 
pyritic layer (Bregt et al., 1992a). 
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Fig. 4 Isoline map of the attribute moisture deficit (Bregt et al., 1991b). 

Three dimensional visualization (or 2.5D depending on one's view) is 
occasionally used for soil attributes which have only one value in the z direction 
(depth to groundwater, depth to pyritic layer, rooting depth) (Fig. 5). The most 
common 3D visualization is, however, a Digital Terrain Model (DTM). 

The presentation of uncertainty in data has long been a neglected item in map 
making. A chorochromatic soil map, for instance, suggests that we are dealing with 
homogeneous units without any impurities. Recently, the presentation of 
uncertainty has been receiving more and more attention. A NCGIA (National 
Center for Geographic Information and Analysis) research initiative about this topic 
was started in 1991 with a specialist meeting (Beard et al., 1991). New techniques 
have been developed. For instance, Fisher (1991) presented a computer program 
which visualizes the impurities of a soil map, and Bregt et al. (1991) (Chapter 8) 
presented a method for the construction of an isoline map with confidence limits 
(Fig. 6). Although some progress has been made this field, a lot of research is still 
needed. 
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Fig. 5 3D presentation of the attribute moisture deficit (Bregt et al., 1991b). 

Animation 
The term animation is used for visualization of spatial processes in time 
(Koussoulakou, 1990). A nice example of visualization of processes in time is 
given by Wesseling (in prep.). He developed the software programma BALANCE 
to show the terms of the soil-water balance on a graphic screen. Despite this 
example, animation is hardly used in soil science. But it is obvious that it has 
great potential. It is possible, for instance, to visualize alternative soil erosion 
scenario's by running an erosion simulation model in conjunction with a DTM, 
and to show where erosion and deposition will occur. And also the movement of 
water and pollutants in the soil can effectively be visualized by computer 
animation. The development of these techniques will be technology-driven. It is 
our task to select the appropriate techniques for our soil applications. 
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Fig. 6 Isoline map with confidence limits (Bregt et al., 1991b). 
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ABSTRACT 

In a study area of 410 ha (Conoco) located in an acid sulphate soil area in Indonesia, 820 
observation points were made in a regular grid. In addition, 75 test observations were 
made. To determine an optimum observation density in terms of prediction accuracy and 
costs the variable "depth to the pyritic layer" was used. The number of observations was 
reduced step-wise by a random procedure in order to obtain lower observation densities. 
Predictions were made for the test observations using the prediction techniques kriging, 
inverse distance, local mean and global mean. Prediction errors were calculated for all 
the step-wise reduced observation densities. No significant differences were found between 
kriging, local mean and inverse distance. The performance of the global mean was worse 
than the other techniques. A density of 22 observations per square kilometer was selected 
as the optimum for the conditions in the Conoco grid area. This density is equivalent to 
a map scale of 1 : 30 000. 

INTRODUCTION 

Soil surveys are carried out to obtain information about the distribution of soil 
characteristics within a given area. These data are presented in the form of soil 
maps and reports. The soil surveyor uses landscape features and augerings to 
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characterize the soil. In some areas, landscape features such as landform, 
topography, vegetation, land use and hydrology are a good indication of the nature 
of the soil and how and where it changes. In other areas, particularly in tidal 
coastal plains as dealt with here, the soil pattern cannot easily be discerned from 
the landscape features. In these situations the soil surveyor has to rely heavily on 
his augerings for the characterization of the area. (Janssen et al., 1990) 

If only field sampling is used for soil mapping, there is a direct relationship 
between observation density and map scale. This relationship is defined by a fixed 
number of observations per square cm of the ultimate map. As a rule of thumb 
Buringh et al. (1962) mentioned four observations and Dent (1986) one observation 
per square cm of the final map. 

The choice of a particular map scale, and related observation density is mostly 
made a priori. The general expectation is that the higher the observation density 
the more detailed and accurate the information. 

In most cases, however, there is no real basis for the assumption that the a 
priori choice is the most appropriate for an area. Under certain soil conditions a 
less dense observation net (implying lower costs) might still be appropriate for 
achieving a similar accuracy (Stein et al., 1988). In other situations, however, a 
denser observation net might be necessary for obtaining the desired information 
(Bos & Van Mensvoort, 1984). 

In the study presented, we investigated the relationship between observation 
density and the accuracy of the obtained information for mapping depth to the 
pyritic layer. The associated costs were also taken into account. Local mean, global 
mean, inverse distance and kriging were used as spatial prediction techniques. The 
study was carried out in an area of 410 ha containing acid sulphate soils located 
in Pulau Petak, South Kalimantan, Indonesia. 

MATERIALS AND METHODS 

Soil survey 

A detailed soil survey was carried out in the 410 ha sample area (Conoco) within 
Pulau Petak. Augerings were made in a regular grid of 75 * 75 m. Additional 
observations near some of the grid points were made at distances of 1,5, and 25 m 
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respectively to get an impression of the short-range variation. All these 
observations will be referred to in this article as observation points. Besides these 
observation points, 75 extra augerings were made to serve as a test set. These 
points were randomly distributed over the area and are referred to in this article 
as test points. 

At the observation and test points a number of soil characteristics was recorded 
and soil samples were taken for analysis in the laboratory. Analysis of the samples 
included the determining of potential and actual acidity (Konsten et al., 1988). 

From the data collected (both field and laboratory data) information was 
derived such as the depth to the pyritic layer, the maximum total acidity within 
50 cm depth, etc. In this study only the variable depth to the pyritic layer has been 
used. 

Survey accuracy 

In our study a complete relationship between map scale and observation 
density was assumed. For the purpose of our study a survey density of two 
observations per cm2 map was used. Table 1 shows the number of observations 
and associated map scales for the Conoco area. 

Table 1. Observation density (obs.km ), total 
number of observations and associated 
map scale for the Conoco study area (410 
ha). 

Observation 
density 
(obs.km"2) 

200 
89 
50 
32 
22 
16 
13 
10 
8 

Total number of 
observations 

820 
362 
205 
130 
91 
66 
51 
41 
32 

Map scale 

1 
1 
1 
1 
1 
1 
1 
1 
1 

10 000 
15 000 
20 000 
25 000 
30 000 
35 000 
40 000 
45 000 
50 000 
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Insight into the effect of observation density on the accuracy of the acquired 
information was obtained by predicting the value of the test points from the 
observation points. Lower densities were simulated by reducing the number of 
observation points. The comprehensive procedure for the determination of the 
relation between observation density and survey accuracy is presented in Figure 1. 

Reduction 
of N 

Measured 
test point 
values 

Observation 
points (N) 

Predicted 
test point 
values 

Comparison 

N = Number of observation points 

Graph 

Fig. 1 Procedure for the determination of the relationship between observation density 
and prediction accuracy (MSE = mean square error). 

The procedure necessitated choosing: 
- the soil variables to be studied; 
- the spatial prediction methods to be applied; 
- the calculation of the prediction error and; 
- the reductions of the observation points. 

Soil variables 

We selected the variable depth to the pyritic layer, as it is a significant variable 
in the characterization of acid sulphate soils, directly relevant to their agricultural 
use possibilities. 
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Spatial prediction 

Spatial prediction is the estimation of the value of a variable at a 
specific location from values at other locations: 

\ - E w A (i) 
i=l 

where: 
n = number of points involved in the prediction; 
Wj = weighing factor of point i; 
Zj = the value of the variable at point i; 
Zp = the predicted value of the variable at point p. 

There are several spatial prediction techniques available (Lam, 1983; Burrough, 
1986; Davis, 1986; Laslett et al., 1987). They differ in the number of observation 
points (n) used and in the way the weighing factor (W) is determined. We selected 
the local mean, global mean, inverse distance and kriging method for our study 
(Table 2). The semivariogram needed for the kriging methods was estimated from 
the 820 observation points. 

Table 2. Characteristics of selected prediction methods. 

Method Number of points Weighing factor 
used in prediction 

Local mean 
Global mean 
Inverse distance 
Kriging 

24 
all points 
24 
24 

1 
1 
1/distance* 
based on spatial structure* 

* Sum of the weights is equal to one. 

Prediction error 

An indication of the accuracy of the spatial prediction can be obtained by 
comparing the estimated values with the measured values at the test points. The 
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Mean Square Error (MSE) is often used for this comparison (Puente & Bras, 1986; 
Stein et al., 1988; Bregt & Beemster, 1989; Voltz & Webster, 1990). It is 
calculated according to: 

i " 
MSE = - V) (ZJ-ZJ)2 (2) 

where: 
n = the number of test points; 
Zj = is the predicted value for a test point; 
Zj = the measured value for a test point. 

Observation points 

The number of observation points was reduced by randomly extracting points from 
the initial 820 observation points. To estimate the MSE accurately for each new 
density, the extraction of points and the prediction to test points were repeated 
10 times. 

Survey costs 

Bie & Beckett (1971) and Dent & Young (1981) present general equations for the 
estimation of survey costs. They relate survey costs only to the effort of the soil 
surveyors. Soil sampling and analysis of the samples in the laboratory are omitted 
in their equations. In our study a cost equation was developed, more suited to our 
requirements. The costs of the survey for the different observation densities con­
sisted of three main components: 
- the first component (Cf) comprised costs that are independent from the 

observation density. They included the preparation for the field work, data pro­
cessing and reporting; 

- the second component (Cs) was the actual cost of the survey including the 
salaries and three field allowances for the survey teams (one team comprised 
two soil surveyors and one assistant) and cost of transport; 

- the third component (Ca) referred to the costs for soil analyses in the laboratory. 
The last two components were observation density dependent. The total costs 
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of a survey at a certain density were then calculated from: 

/N H \ 
Total costs = Cf + - ^ . C s + (N Ng.C.) (3) 

where: 
Cf = fixed costs; 
Cs = survey costs ; 
Ca = analysis costs ; 
N0 = the number of observations per hectare; 
H = the size the area in hectares; 
Nd = number of observations per day; 
N = number of profiles sampled; 
Ns = average number of samples per profile. 

In our study, the following prices in Rupiah (Rp) were applied (price level 
1989/1990; 1700 Rupiah = 1 U.S. Dollar): fixed costs (Cf) 600,000 Rp, survey 
costs (Cs) 150 000 Rp per team per day, analysis costs (Ca) 5,500 Rp per sample 
(Muhrizal Sarwani et al., 1990). 

Table 3. Observation density, total number of obser­
vations and number of observations per day 
in the Conoco study area. 

Observation 

density 
(obs.km"2) 

200 

89 
50 
32 
22 

16 
13 
10 

8 

Total number of 
observations 
per day 

820 
362 

205 
130 
91 
66 
51 
41 

32 

Number of 
observations 

10 
10 
10 
9 

9 
9 
8 
8 

8 
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The number of observations (NQ.H) and the total number of observations per day 
for a given survey density (Nd) are presented in Table 3. The last naturally 
decreases with increasing distance between observation points. All profiles were 
sampled (N ) in our study averaging 3.5 samples per profile (Ns). 

Optimum observation density 

The optimum observation density of soil surveys is essentially related to the requi­
rements of the user. If a user is only interested in a general idea about the occur­
rence of acid sulphate soils in the world, then a soil map at a scale of 
1 : 5 000 000 might be adequate for his needs. For local and regional planning 
much more detailed information is needed. For our purposes it was assumed that 
the survey data were needed for the identification of settlement areas. Survey 
scales suitable for this purpose are in the order of 1 : 10 000 to 1 : 50 000 (Dent 
& Young, 1981). 

In this study the optimum observation density was defined as the lowest 
possible density, where the mean square error being minimal or not statistically 
different from the mean square error at higher densities. The differences between 
spatial prediction techniques at the same observation density were assessed with 
the Student test for paired observation (10 pairs in each comparison). To test the 
effects of observation density on prediction error for the same prediction technique 
the Student two sample test was used (10 observations per observation density) 
(Snedecor & Cochran, 1967). The last test was only performed with the kriging 
predictions. 

RESULTS AND DISCUSSION 

Accuracy of prediction 

Predictions were made of the depth to the pyritic layer at test points using four 
different methods. The mean square error (MSE) values of these predictions are 
presented as a function of observation density in Figure 2. 

All methods showed a decrease in MSE with increasing density. In most cases, 
the MSE for kriging was lower than the MSE for the other prediction methods. 
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Fig. 2 The Mean Square Error of the four prediction techniques versus observations 
density (obs.km ) for Conoco. 

Differences with local mean and inverse distance were small and not-significant 
(a = 0.05) across the whole range of observation densities. Differences between 
kriging and global mean, however, were significant (a = 0.05). Remarkably, the 
conceptually and operationally much more complicated kriging technique did not 
perform better than the simpler techniques of inverse distance and local mean. This 
can be explained by the high short-range variability of the variable depth to the 
pyritic layer. Due to this high short-range variation, the semivariogram (Fig. 3) 
showed a large 'nugget effect' (300 cm2). (A semivariogram characterizes the 
spatial structure of the variable and it is needed for the kriging prediction techni­
que). Besides, the slope of the semivariogram was quite flat. As a result of this 
type of semivariogram the weights in the spatial prediction (W; in Eq. 1) of each 
point became almost equal, and kriging tended towards a local mean prediction. 
This can also be seen in Figure 2: the kriging method and the local mean method 
produced almost the same line. In another study area in Pulau Petak (Bregt et al., 
in press) also a nugget effect of 300 cm was found. Similar large nugget effects 
of about 300 cm2-400 cm2 were also found by Bos and Van Mensvoort (1984) 
in the Mekong Delta, Vietnam. They calculated semivariograms for the depth to 
pyrite based on sampling in transects with a minimum spacing of 35 m. A nugget 
effect of about 300 cm seems to be normal for the depth to the pyritic layer. 
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Fig. 3 Semivariogram of the depth to the pyritic layer in Conoco. 

Costs 

The total costs of the surveys at the various observation densities are presented 
in Figure 4. 
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Fig. 4 Costs (in millions Rupiah) versus observation density (obs.km"2) in Conoco. Ct 

= total costs; Ca = analysis costs; Cs = survey costs; Cf = fixed costs. 
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The total costs decreased from about 29 million Rp for a density of 200 
observations per km2 (map scale 1 :10 000) to less than 2 million for a density 
of 8 observations per km2 (map scale of 1 : 50 000). This is quite a dramatic 
decrease in costs. 

In Figure 4 the three main cost components are presented separately. It shows 
that in this case the costs of the soil analysis in the laboratory Ca were slightly 
higher than the costs of field survey Cs. 

Optimum observation density 

The optimum observation density was determined by testing (a = 0.05) whether 
the MSEs of the different densities were significantly higher than the MSE for 
the largest density. The kriging predictions were used solely for this purpose. 
According to the test, the density of 22 observations per km (map scale 
1 : 30 000) appeared to be the optimum for the survey of the variable depth to 
the pyritic layer. For this density the total costs were 3.9 million Rp, which is 87% 
less than the costs at a density of 200 observation per km (map scale 1:10 000). 

For densities of 22 and less, the MSE is significantly increased. It is clear that 
the optimum is dependent on the users definition. If another confidence level (a) 
had been chosen for the test, e.g. 0.1 or 0.001, perhaps the optimum density might 
have been different. 

CONCLUSIONS 

Results of the study show that there was no significant difference in accuracy 
between the kriging, local mean and the inverse distance techniques, in predicting 
the depth to the pyritic layer in the Conoco study area. The global mean proved 
to be worse than the other techniques. 

The optimum density for mapping the depth to the pyritic layer was a density 
of 22 observations per km2. At this density an accuracy equal to the accuracy 
obtained at an observation density of 200 observations per km2 was achieved. The 
costs of the survey, however, were 87 % lower than in the last-mentioned case. 
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ABSTRACT 

In most soil surveys, and particularly those carried out in developing countries, the bulk 
of recorded soil data is on an ordinal measurement scale. This determines the type of 
statistics and techniques for data processing that can be used. For example, with ordinal 
data the mode, median and range can be used as summary statistics. For describing the 
spatial structure of ordinal data we propose the spatial-difference-probability function, 
which is comparable with the semivariogram. In this article, the discussion about ordinal 
soil data is illustrated with data from a soil survey in Costa Rica. From the same study 
area three different suitability maps for banana were produced according to a qualitative 
land evaluation procedure by: (1) interpreting the soil map 1 : 200 000, (2) interpreting 
the soil map 1 : 50 000, and (3) interpolating point data. The quality of these three maps 
was tested by looking at the reliability, relevance and presentation of information, using 
98 test borings. Reliability was characterized in terms of purity and range. The suitability 
map based on the soil map 1 : 200 000 was the most reliable one, with an overall purity 
of 49%. The suitability map produced by interpolating point data was the most relevant 
one, as defined in terms of the possibility to correctly identify potential locations for 
banana plantations from the map. Differences in presentation of information were 
evaluated by comparing the boundary indices of the different maps. The suitability map 
based on the soil map 1 : 50 000 was the most readable one. Map choice should be based 
on a consideration of the different quality criteria by the user. 
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INTRODUCTION 

Soil surveys are carried out all over the world, and data obtained are increasingly 
being stored in geographical information systems. Many of these soil surveys have 
a general-purpose character and, as a consequence, a great variety of soil variables 
are recorded in the field by the soil mapper. Continuous soil variables, such as 
texture and stoniness, are often recorded in classes (qualitative data) as defined 
by the Soil Survey Manual (Soil Survey Staff, 1951). Neither funds nor time are 
usually available to make many measurements of soil variables at quantitative 
levels, such as clay content instead of texture class. 

For the use of soil survey data in e.g. land use planning, environmental protec­
tion studies and agricultural planning, further processing and interpreting the basic 
soil survey data are necessary. In recent years, development and use of new proces­
sing and interpretation techniques have received much attention in soil science. 
Application of interpolation techniques and use of dynamic simulation models for 
quantitative land evaluation is being promoted by many researchers (Beek et al., 
1987; Bouma and Bregt, 1989). Almost all mathematical interpolation techniques, 
however, assume the presence of quantitative data. Such techniques cannot be used 
when only qualitative soil data are available. Dynamic simulation of soil water 
regimes and associated crop development require quantitative data as well. 

Land evaluation procedures such as those based on the framework for land 
evaluation (FAO, 1976), however, allow interpretation of qualitative data. Qualitati­
ve evaluations are useful to broadly identify areas of land that are relatively 
suitable for a particular type of land use. With increasing emphasis on quantitative 
simulation techniques, less attention is being paid in literature to such more quali­
tative interpretation procedures. This is unfortunate because the latter procedures 
are still very relevant in surveys where few quantitative data can be generated or 
where qualitative data are already available. 

In this study some implications of having only qualitative data available for 
processing and interpreting are discussed. The spatial-difference-probability 
function is proposed for describing the spatial structure of qualitative variables. 
As an illustration, data from a soil survey in the Atlantic Zone of Costa Rica were 
used. A suitability classification for banana was carried out, following qualitative 
land evaluation procedures (FAO, 1976; Soto, 1985). Three different suitability 
maps were produced: (1) by interpreting the representative profiles of the mapping 
units of a soil map 1 : 200 000, (2) by interpreting the representative profiles of 
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the mapping units of a soil map 1 : 50 000, and (3) by interpolating point observa­
tions. The quality of the maps obtained was compared in terms of reliabilty, rele­
vance and presentation. 

THEORY 

When processing recorded soil data, the scale on which the data have been mea­
sured is extremely important. Measurement is defined in this context as assigning 
values to variables. Therefore, both estimating texture in the field and determining 
it in the laboratory are considered to be measurements. Measurement scales are 
usually distinguished in terms of being qualitative or quantitative. Qualitative 
measurement involves naming or grouping of variables. Examples are horizon code 
and suitability class. Quantitative measurement involves assigning numerical 
values, which reflect magnitude or amount, to variables. Examples are values of 
organic-matter and water contents. 

Stevens (1946) presented a subdivision of the qualitative scale in terms of 
nominal and ordinal and of the quantitative scale in terms of interval and ratio. 
The characteristics of these four measurement scales are summarized in Table 1. 

Table 1. Characteristics of measurement scales. 

Scale 

nominal 

ordinal 

interval 

ratio 

Description 

determination of equality; 
data can be placed into classes 
determination of more or 
less; data can be ranked 
determination of equality of 
intervals or differences 
determination of equality 
of ratios; measurements have 
a true zero 

Useful summary 

Central 
tendency 

mode 

mode, median 

mode, median, 
mean 
mode, median, 
mean 

statistics 

Dispersion 

-

range 

range, standard 
deviation 
range, standard 
deviation, 
coefficient of 
variation 

The nominal scale is the lowest one. It involves only the classification or naming 
of observations. Examples are land use classification and soil classification. The 
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ordinal scale involves the ranking of observations against each other. Values of 
observations can be placed in an ordered list, but the distance between the values 
is without meaning. Examples are soil suitability classes and drainage classes. With 
the interval scale differences between values can be established. The data do not 
contain an absolute zero and negative values are possible. Examples are soil tempe­
rature and change in yield. Ratios between values of interval variables do not have 
a real meaning. For instance, 20 °C is not twice as warm as 10 °C, since 0 °C is 
an arbitrary baseline. The highest measurement scale is the ratio scale. The data 
on this scale have an absolute origin, negative data values are not possible. 
Examples are data from laboratory analyses like texture and iron content. Ratios 
between values of ratio variables have a real meaning. For instance, 200 K is twice 
as warm as 100 K. Most quantitative soil data are on a ratio scale. 

The scale of measurement of the data depends on the measurement method 
and the nature of the data. Some variables are ratio in nature, e.g. clay content, 
but they are recorded as ordinal variables due to the measurement equipment used. 
Less sophisticated measurement equipment generally yields data on a lower measu­
rement scale, as distinguished in Table 1. The scale of measurement partly 
determines the type of statistics and processing methods to be used for describing 
and analysing data. For example, calculation of mean and standard deviation is 
only meaningful for interval and ratio variables. The coefficient of variation is 
only meaningful for ratio variables. For ordinal variables the mode, median and 
range are useful summary statistics (Table 1). More information about appropriate 
techniques for analyzing data of different measurement scales can be found in 
Shaw and Wheeler (1985). 

For describing the spatial structure of soil variables the semivariogram is fre­
quently used (Webster, 1985). It can be applied to both interval and ratio data. 
For describing the spatial structure of ordinal and nominal data we propose the 
spatial-difference-probability function (s-d-p(h): 

N(h) 

s-d-p(h) = _ 1 _ y i(z(x:),h): (4) 
N(h) | t i J 

i(z(x:),h) = 0 if z(Xj) equals z(x=+h) 
i(z(Xj),h) = 1 if z(Xj) unequals z(x=+h) 
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Where N(h) is the number of pairs of points at distance h, z(x:) is the value of 
variable z at location X:, and z(x:+h) is the value of variable z at a distance h from 

Xj. 

The s-d-p function describes the probability of encountering different values be­
tween point observations at an increasing separation distance. It is estimated for 
every distance interval by comparing the value of pairs of observations at this 
distance interval. Like the semivariogram, this s-d-p function can be presented 
graphically. On the horizontal axis the distance is given, and on the vertical axis 
the estimated difference probability. The value of the difference probability ranges 
from 0 (all observations have the same value) to 1 (all observations have different 
values). The interpretation of this graph is comparable to the interpretation of a 
semivariogram. If a spatial structure is present, an increase in difference probability 
is expected with increasing distance between observation points. 

For spatial interpolation of point data, several techniques are available. A 
review was given by Lam (1983) and Burrough (1986). Most techniques, such as 
kriging, splines, trend surface analysis, Fourier models, and distance-weighting 
methods, can only be used with interval and ratio data. Spatial interpolation with 
Thiessen polygons (Davis, 1986) can be applied to nominal and ordinal data. 

Soil profile descriptions form the basis for currently available soil data. A 
widely used system for describing soil profiles is the one presented in the Soil 
Survey Manual (Soil Survey Staff, 1951). It has been adopted by soil surveys in 
numerous countries and many national soil survey handbooks have been derived 
from the Soil Survey Manual (Hodgson, 1978). In Table 2 the distribution of soil 
profile variables, as defined by the Soil Survey Manual, is presented for the diffe­
rent measurement scales. Most variables are on an ordinal scale. Only 7 of the 
61 variables are interval or ratio. Most data obtained from laboratory analyses of 
soil samples are, however, ratio variables. Despite the large amount of ordinal 
variables in a profile description, most soil variability studies published so far 
consider only quantitative variables (Beckett and Webster, 1971; Gajem et al., 
1981; Edmonds et al., 1982; Wang, 1982; Edmonds etal., 1985; Ogunkunle 1986). 
And when ordinal soil data are selected, they are sometimes incorrectly analysed. 
For instance, Wilding and Drees (1978) calculated coefficients of variation for 
an ordinal variable such as structure grade and even for a nominal variable such 
as structure class. Oliver and Webster (1987) calculated means and variances for 
several ordinal and even nominal soil variables. Agbu et al. (1990) calculated 
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coefficients of variation for the nominal variables landscape position and slope 
form. 

Table 2. Distribution of soil and related variables over the four measurement scales. 

Variables 
of: 

site description 

general soil 
description 

profile 
description 

Measurement 
scale 

nominal 

ordinal 
interval 
ratio 

nominal 

ordinal 
interval 
ratio 

nominal 

Number of Variables 
variables 

5 

1 
3 
0 

5 

4 
1 
2 

15 

landform, land use, climate, 
physiographic unit, position of site 
topography 
latitude, longitude, altitude 
-

temperature regime, classification, 
moisture regime, microrelief, parent 
material 
stoniness, rock outcrop, salt, drainage 
water-table 
soil depth, rooting depth 

horizon, structure type, kind of 
organic matter, type of mottles, 

ordinal 24 

interval 1 
ratio 0 

color (hue), pores (form, orientation, 
continuity, distribution), cutans (kind, 
location), pans (kind, continuity, 
structure), kind of biological activity 
texture, color (value, chroma), mottles 
(abundance, size, contrast, sharpness), 
structure (grade, size), consistence (dry, 
moist, wet), pores (size, quantity), 
porosity, roots (size, quantity), cutans 
(thickness), rock (size, quantity, degree 
of weathering), pans (cementation), 
biological activity (abundance), 
carbonates 
depth 
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MATERIALS AND METHODS 

Study area and survey data 

The study area (160 km2) is located in the cantons Guapiles and Guacimo in 
the Limon province in Costa Rica. It is situated in the transition zone from the 
central mountains to the coastal plain. The mean annual temperature in the Limon 
province is 25 °C, and the mean annual precipitation is 4400 mm. The major land 
use types are extensive grazing and a few banana plantations. In parts of the area, 
crop production is limited due to surface stoniness, poor drainage conditions, and 
steep slopes. 

Of the study area a soil map on a scale of 1 : 200 000 was made by interpre­
ting aerial photographs and some field checks. The mapping units were charac­
terized by a representative profile based on 2 or 3 borings per mapping unit. Of 
the same area also a soil map on a scale of 1 : 50 000 was made. The soils were 
classified according to Soil Taxonomy (Soil Survey Staff, 1975), mainly as 
Dystrandepts, Dystropepts and Troporthents. Mapping units of the soil map were 
delineated in the field by using soil borings and by interpreting landscape features. 
For each mapping unit a representative profile was defined by the soil mapper. 
For the 1 : 50 000 soil map 835 soil borings were made. 

Land evaluation and map interpretation 

One of the objectives of the soil survey was producing a suitability map for 
bananas, which is the most important crop in the area. The land evaluation proce­
dure used, was locally developed by Soto (1985). By this procedure the suitability 
is based on eight separate evaluations of ordinal soil and land characteristics. The 
soil or land characteristic in the lowest suitability class determines the final suita­
bility. Land evaluation criteria are presented in Table 3. 

Suitability maps of the area were made by three different procedures. The first 
map was produced by interpreting the 1 : 200 000 soil map. The data of the repre­
sentative profiles associated with the mapping units were evaluated and a suita­
bility map was produced (map I). The second map was produced by interpreting 
the soil map 1 : 50 000. The representative profiles of the soil units were eva-
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luated, and subsequently a suitability map was produced (map II). The third map 

Table 3. Land evaluation criteria for bananas (Soto, 1985). 

Soil and land 

characteristics 

Soil depth (cm) 

Texture ! ) at 15 
at 45 
at 75 

at 105 

Stoniness ) 
Slope 3) 

Drainage 4) 

cm 
cm 
cm 

cm 

Highly 

suitable 
1 

> 120 
3 , 4 , 5 
3 , 4 , 5 
3, 4, 5, 6, 
7 , 8 , 9 
3, 4, 5, 6, 
7, 8,9 

0 

0 ,1 
4 

Moderately 
suitable 
2 

90-120 
6, 7, 8, 9 
6, 7, 8, 9 
11 

I, 2, 10, 
I I , 12 

1 
-
3,5 

Marginally 
suitable 

3 

60-90 
11 
11 

1, 2, 10, 

-

2 
2 

2 

12 

Marginally 
not suitable 

4 

30-60 
2, 10, 12 
1, 2, 10, 12 

-

-

3 
-

1,6 

Not 
suitable 

5 

0-60 
1 
-

-

-

> 4 
> 3 

-

*) Texture 1: sand; 2: loamy sand; 3: sandy loam; 4: loam; 5: silty loam; 6: silt; 7: 
sandy clay loam; 8: clay loam; 9: silty clay loam; 10: sandy clay; 11: silty 
clay; 12: clay 

2) Stoniness 0: 0%; 1: 0-0.01%; 2: 0.01-0.1%; 3: 0.1-3%; 4: > 3% 
3) Slope 0: 0%; 1: 0-2%; 2: 2-5%; 3: > 5% 
) Drainage 1: poorly drained; 2: somewhat poorly drained; 3: moderately well drained; 

4: well drained; 5: somewhat excessively drained; 6: excessively drained 

was produced by interpolating point data. For all the individual soil borings the 
suitability was determined. Ninety-eight borings were selected at random from 
this data set to serve as a test set. The remaining 737 borings were transformed 
into a suitabilty map (map III) by interpolation via Thiessen polygons. Maps I and 
II were produced according to standard interpretation procedures in soil survey 
and land evaluation. Map I (scale 1 : 200 000) is meant for national planning. 
Maps II and III are meant for regional planning and identification of potential 
project areas (scale 1 : 50 000). The total costs for producing maps II and III are 
more or less the same. The total costs for producing map I are estimated to be 
a factor 16 lower than the costs for maps II and III. 
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Quality of the maps 

According to Western (1978), the quality of a map is a function of (i) the 
reliability of the information; (ii) the relevance of the information, and (iii) the 
presentation of the information. 

The reliability of the information on a map is characterized by the purity and 
the homogeneity (Beckett and Webster, 1971; Bie and Beckett, 1973; Marsman 
and De Gruijter, 1986; Bregt et al., 1987). The purity indicates the degree to which 
the (suitability) classes, as indicated on the map, agree with the suitability of loca­
tions in the field. It was estimated in this study by comparing the values for map­
ping units with the corresponding values of the 98 test borings within these map­
ping units. Purities were calculated for each individual suitability class and for 
the map as a whole. The homogeneity indicates how homogeneous the mapping 
units are with respect to the suitability class. For interval and ratio data the 
standard deviation within mapping units can be used as a measure for the homoge­
neity. For ordinal data the standard deviation cannot be used, but the range pro­
vides a good measure for homogeneity. The relevance of information as a quality 
component is very difficult to quantify for a general-purpose soil map. Quite often, 
only some qualitative indications can be given about the relevance of the 
information. In the case of a special-purpose map, quantification is easier, since 
we can test whether the map meets the demand. The objective of our map was 
to identify potential locations for banana plantations. In this study, we assumed 
that their establishment is potentially feasible in areas with suitability classes 1 
and 2. Detailed investigations must reveal the right locations. The map which iden­
tifies potential areas correctly and which, on the other hand, correctly eliminates 
unsuitable areas is considered to be a relevant one. Four situations can be distin­
guished: 

(1) the map indicates "suitable", and the area is "suitable" in reality; 
(2) the map indicates "suitable", but the area is "not suitable" in reality; 
(3) the map indicates "not suitable", but the area is "suitable" in reality; 
(4) the map indicates "not suitable", and the area is "not suitable" in reality. 
Situations one and four represent correct decisions. Situations two and three repre­
sent wrong decisions. Situation three is the worst one, because a suitable area will 
not be identified as such. In the case of situation two the potentially suitable area 
will be declared not suitable after detailed investigations. The map with the lowest 
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values for situations two and three is the most relevant one. The magnitude of the 
four situations were characterized for the three maps by using the 98 test borings. 

The quality of the information presentation is a function of the cartographic 
methods used and of the complexity of the map pattern. As indicated by 
Monmonier (1974) and Dent (1985), the complexity of the map pattern has a 
strong influence on the readability of the map. Various complexity measures were 
compared by Bregt and Wopereis (1990). From the measures presented, the boun­
dary index (Bregt et al., 1989) was used in this study to evaluate different types 
of cartographic presentations in a quantitative manner. The readability of the map 
increases if the boundary index decreases. 

RESULTS AND DISCUSSION 

Spatial structure 

In Fig. 1 the s-d-p graph for suitability classes is presented which is based on all 
borings. The estimated difference probability is almost constant with increasing 
distance, implying no spatial structure within the investigated distance range. The 
estimated difference probability of the shortest distance interval (250 m) is high 
(0.65), indicating a high short-range variability. A possible explanation for this 
high short-range variability can be found in the land evaluation procedure used. 
By this procedure eight separate evaluations of soil and land characteristics were 
performed (Table 3). The soil or land characteristic in the lowest suitability class 
determines the final suitability. 

Average distance (km) 

Fig. 1 Spatial-difference probability graph for suitability classes based on all borings. 
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In Fig. 2 the s-d-p graph for some soil and land characteristics are presented 
which are used in the land evaluation procedure. All the variables show a slight 
increase in difference probability at greater distance, indicating that observations 
farther away differ slightly more than nearby observations. The short-range varia­
tion of all the variables is quite large. For example, the probability of finding a 
different texture class at 15 cm depth at a distance of 250 m is more than 50%. 

0.60 

0.40 

0.20 

0.00 
0 1 2 3 4 

Average distance (km) 

a Texture at 15 cm 

A Slope 

o Drainage 

Fig. 2 Spatial-difference probability graph for some soil and land characteristics based 
on all borings. 

Suitability maps 

The three procedures resulted in quite different maps. Map I, based on the soil 
map 1 : 200 000, is dominated strongly by suitability class 3, which occupies about 
60% of the map. It contains 5 different mapping units, and 17 mapping areas. Map 
II, based on the soil map 1 : 50 000, contains 5 different mapping units and 56 
mapping areas. As a result of the Thiessen interpolation of the borings, map III 
has quite a "blocky structure". It contains 5 different mapping units and 189 map­
ping areas. Fragments of the three maps produced are presented in Fig. 3. In Table 
4 some summary statistics for each mapping unit of the three maps are presented. 
These statistics were calculated by using the test data within the mapping units. 
For all the classes of map II the mode class, based on the test borings, does not 
correspond with the suitability class of the map. For map I this is the case for 
mapping units 2 and 5, and for map III for the units 1 and 5. In these situations 
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Highly suitable (class 1) 

Moderately suitable (class 2) 

Ovvvv l Marginally suitable (class 3) 

Y////A Marginally not suitable (class 4) 

K%%%| Not suitable (class 5) 

Fig. 3 Fragments of the three different suitability maps for bananas. 
I) Suitability map derived from soil map 1 : 200 000 

II) Suitability map derived from soil map 1 : 50 000 
III) Suitability map produced by interpolation of point data, schale 1 : 50 000 
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the suitability class of the mapping unit is not supported by the borings within 
the mapping unit. For almost all the units of the three maps the mode and median 
class are the same. 

Table 4. Summary statistics for mapping units of the three suitability maps based on 
suitabilities for 98 test borings. 

Summary Land unit map 
statistics (map I)* 

1 2 3 4 

Number of 1 8 59 18 

5 

12 

Soil map 
(map II)* 

1 2 3 

4 7 42 

4 

11 

5 

34 

Point observations 
(map III)* 

1 2 3 4 

3 7 50 23 

5 

15 

borings 
Mode 1 4 3 4 4 3 4 4 3 3 2 2 3 4 4 
Median 1 3 3 4 4 3 4 4 3 3 2 3 3 4 4 
Range 1 2-4 1-5 3-5 4-5 1-4 3-5 2-5 1-4 2-5 2-3 2-5 1-5 1-5 2-5 

*) Classes 1: highly suitable; 2: moderately suitable; 3: marginally suitable; 4: marginally 
not suitable; 5: not suitable 

Comparing the quality of the three maps 

The reliability of information on all the maps was characterized by the purity. 
In Table 5 both the purity for the individual mapping units and for the whole map 
are presented. The purities of all the mapping units are quite low. Extremely low 
purities were found for the mapping units 2, 4 and 5 of map II, and unit 1 of map 
III. The overall purity of map I has the largest value (49%). An extremely low 
overall purity (15%) was found for map II, the map based on the soil map 
1 : 50 000. An explanation for the low purities can be found in the high short-
range variability as indicated by the s-d-p function. Based on these results we 
conclude that the information on map I, the map based on the soil map 1 : 200 000, 
is more reliable than the information on maps II and III. This is surprising. A 
possible explanation might be the absence of a clear spatial structure in the data, 
as indicated by the s-d-p function, which made mapping of the data difficult. The 
homogeneity of the mapping units, indicated by the range (Table 4), does not show 
a clear difference between the three maps; all units are quite heterogeneous. 
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Table 5. Purity of individual mapping units for map I, II and III and overall purity for 
maps I, II and III. 

Purity (%) 

Mapping units Mapping units Mapping units Map I Map II Map III 
map I* map II* map III* 

2 3 4 5 1 2 3 4 5 1 2 3 4 5 

100 13 51 72 25 25 0 26 0 9 0 42 48 39 20 49 15 40 

*) Classes 1: highly suitable; 2: moderately suitable; 3: marginally suitable; 4: marginally 
not suitable; 5: not suitable 

The relevance of information on a map was characterized by the magnitude 
of areas incorrectly classified as "suitable" and "not suitable". The results are pre­
sented in Table 6. From Table 6 we see that the percentages "suitable" on the map 
and "not suitable" in reality, and "not suitable" on the map and "suitable" in reality 
are the smallest for map III, 5% and 10% respectively. This means that map III, 
produced by interpolating point data, is the most appropriate one for selecting 
potential sites for banana plantations. For all three maps the percentage of suitable 
areas not identified by the map is large compared with the area correctly identified 
as suitable. 

Table 6. Identification of comparison between suitability on map and suitability in reality. 

Map Identification (%) 

Suitable on map Suitable on map Not suitable on map Not suitable on map 
& suitable & not suitable & suitable in & not suitable 
in reality in reality reality in reality 

78 
75 
80 

I 
II 
III 

2 
1 

5 

7 
10 

5 

13 
14 

10 
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The presentation of information was evaluated by looking only at the boun­
dary index of the maps. Another important factor in the quality of presentation 
of information, namely the cartographic methods used, did not differ between the 
maps. The boundary index is 1.28 cm"1 (cm/cm2) for map I, 0.75 cm"1 for map 
II, and 1.12 cm"1 for map III. With respect to the presentation of information, map 
II, the one based on the soil map 1 : 50 000, is the best. 

CONCLUSIONS AND RECOMMENDATIONS 

Many soil variables are on an ordinal measurement scale. Commonly used statis­
tics, such as mean, standard deviation and semivariance, and most spatial interpola­
tion techniques are not useful for this type of data. When discussing future 
developments in the field of soil data processing, it is useful to focus not only 
on which data could or should be available, but also on which data are available. 
Quite often due to limited resources only ordinal soil data can be collected. 
Developing useful processing techniques for ordinal soil data should be encou­
raged. For example, in the area of spatial interpolation the usefulness of indicator 
kriging (Journel, 1983) needs to be investigated. Soil scientists have to realize, 
on the other hand, that most data processing techniques are available or are being 
developed for quantitative data. Within a standard soil survey, more quantitative 
data should be collected as is done at this moment. 

In the case study presented, the quality of three different suitability maps based 
on ordinal data was evaluated. The suitabilty map based on the soil map 
1 : 200 000 was the most reliable one. The suitability map produced by inter­
polating point data contained the most relevant information. The suitabilty map 
based on the soil map 1 : 50 000, however, was the most readable one. The choice 
to be made for a particular map depends on the relative importance which is assig­
ned to the various quality criteria by a particular user. 
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ABSTRACT 

Bregt, A.K. and Beemster, J.G.R., 1989. Accuracy in predicting moisture deficits and changes in 
yield from soil maps. Geoderma, 43: 301-310. 

In a survey area of 1435 ha, water-tables have been lowered as a result of water extraction for 
drinking water supplies. We simulated the change in grass yield in this area by comparing the 
former and present hydrological situations. A soil map on a scale of 1:10,000 of the area was used 
to derive soil maps on scales of 1:25,000 and 1:50,000. Representative profile descriptions from 
the mapping units of the three soil maps were physically interpreted and were used thereafter as 
a basis for simulating changes in yield. 

We wanted to know whether the quality of representative profile descriptions would permit 
correct predictions for the whole area and for specific locations within the area. Therefore, we 
compared the simulated values of the representative profile descriptions with simulated values of 
individual borings. Two attributes were investigated: the simulated change in yield due to extrac­
tion of water and the simulated average moisture deficit in a 30-year period under the present 
hydrological situation (after water extraction). 

For the whole area, the mean error was used as a quality measure. No differences in quality were 
found among representative profile descriptions for the three map scales. As quality measures for 
point predictions, the mean absolute error and the mean square error were used. The calculated 
errors are quite large. For instance, the error in the estimation of the moisture deficit is 50% or 
more for all three map scales. Spatial variability within a mapping unit forms a large proportion 
of this error. The best predictions at point locations were obtained with the representative profile 
descriptions for the 1:10,000 map. 

INTRODUCTION 

Soil maps are used and interpreted for a variety of purposes (Western, 1978). 
Soil surveys also form an important data source for land evaluation (Young, 
1980; Bouma et al., 1986; Beek et al., 1987). Traditionally, soil survey data are 
mainly interpreted for agricultural purposes. They are, however, being used 
increasingly for environmental and other interpretations as well. Breeuwsma 
et al. (1986) present examples of the use of soil maps for the estimation of 

77 



travel times of water in the unsaturated zone and of phosphate sorption ca­
pacity. Other examples of soil map interpretations in The Netherlands were 
reported by Wosten et al. (1987). 

Interpretations of soil maps are generally based on descriptions of repre­
sentative profiles made by soil surveyors for mapping units. The quality of 
these interpretations depends entirely on the quality of the representative pro­
file descriptions. A faulty representative profile description will automatically 
lead to wrong interpretations. Therefore, knowledge of the quality of these 
descriptions is important. In this study, we investigated the quality of repre­
sentative profile descriptions to see if they permitted correct predictions for 
an entire area or for specific locations within that area. The influence of map 
scale on the quality of the predictions was studied as well. 

The soil map interpretations were focused on predicting the sensitivity of 
soils to lowering of the water-table as a result of the extraction of water for 
domestic use. 

A previous study in the same area was carried out by Wosten et al. (1987). 
They investigated the influence of map scale on predictions of the changes in 
yield for the entire area and for individual fields. They concluded that for the 
area as a whole the average change in yield could be predicted correctly with 
the 1:50,000 map. Changes in yield for specific fields, however, could be pre­
dicted most accurately from maps with scales of 1:10,000. In their study, the 
representative profile descriptions for the 1:10,000 map were used as references 
for the less detailed scales. Thus, no information about the 'real' quality of 
representative profile descriptions was obtained. In our study, the interpreta­
tions of representative profile descriptions were compared with the interpre­
tations of data from borings. Thus, a more realistic estimate of the quality of 
the representative profile descriptions for interpretations was obtained. 

MATERIALS AND METHODS 

Study area 

Known as Mander, the study area of 1435 ha lies near Tubbergen in the 
eastern part of The Netherlands. A sample area of 404 ha from this study area 
was considered in our investigation. The principal soils of the sample area are 
classified according to Soil Taxonomy (Soil Survey Staff, 1975) as Typic Hap-
laquods, Typic Humaquepts and Plaggepts. These soils have been formed in a 
regolith consisting of aeolian sands and glacial drift, which rests in some parts 
on Tertiary clay. Depth to the Tertiary clay is 150 cm in the eastern part of the 
sample area. 
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TABLE I 

Number of mapping units used in the analysis and 
for the three scales 

Scale 

1:10,000 
1: 25,000 
1: 50,000 

Soil survey 

Number of 
borings 

410 
410 
410 

Number of 
mapping units 

83 
70 
41 

average number of borings 

Average area 
of mapping 
unit (ha) 

3.3 
4.0 
6.8 

per mapping unit 

Average number 
of borings per 
mapping unit 

4.9 
5.9 

10.0 

The soils were mapped at a scale of 1:10,000, with an average observation 
density of 1.5 borings per hectare (Stoffelsen and Van Hoist, 1985). In the 
whole area 2150 borings were made. The locations of the borings were selected 
by a soil surveyor. Borings extended to the upper surface of the Tertiary clay 
or to the mean lowest water-table (MLW), with a maximum depth of 3.2 m. 

For each mapping unit at the scale of 1:10,000 the soil surveyor prepared a 
representative profile description (RPD). This description contains the se­
quence of horizons in the mapping unit and the average value and range of 
properties within each horizon. The description is presented in the same form 
as for a profile. The RPD is an average characterization of the mapping unit 
and not of an existing profile. It is compiled by the soil surveyor on the basis 
of his experience and on data for borings in the mapping unit. 

From the soil map at a scale of 1:10,000 and its associated RPD's, a map at 
a scale of 1:25,000 with RPD's was derived through generalization without new 
fieldwork. In the same way, a soil map at a scale of 1:50,000 with RPD's was 
derived from the soil map at a scale of 1:25,000. Only one experienced soil 
surveyor was involved in delineating map units and in preparing representa­
tive profile descriptions. Thus, errors due to differences among surveyors did 
not occur. 

For statistical analysis of the data, only units of the 1:10,000 map with at 
least three borings were used. This meant that the effective study area was 
reduced from 404 ha to 278 ha. To permit comparison of the three maps, the 
same effective study area (278 ha) was used for the 1:25,000 and the 1:50,000 
map (Table I). 

Interpretations 

The soil map interpretations in this study were focused on the sensitivity of 
soils to drawdown of the water-table. The sensitivity was calculated with a 
simulation model developed by De Laat (1980). 
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As a first step, physical properties were assigned to individual horizons re­
corded in the representative profile descriptions (RPD's). In order to do so 
use was made of a translation set derived for soils in The Netherlands, which 
relates horizons to soil-physical properties (Wosten et al., 1987). Soil-physical 
properties in this context are water retention and hydraulic conductivity char­
acteristics. If adjacent horizons had the same physical properties, they were 
combined into one physical unit layer. These physical unit layers were used 
later in calculating water balances of the soils. 

To test the quality of each RPD for interpretations, the procedure for estab­
lishing physical unit layers was applied to all of the borings made within a map 
unit. 

The next step was to calculate with the simulation model the water balance 
of RPD's and borings for successive 10-day periods. The calculations were made 
for the period of 1956-1985. We assumed that the soils were under grass veg­
etation for a growing season of 180 days, viz., from April 1 to October 1. Mois­
ture deficits were calculated for two situations, one before and one after water 
extraction. These deficits were then transformed into relative yields on the 
basis of the relation between yield reduction per mm moisture deficit and po­
tential production, as reported by Van Bohemen (1981). The difference be­
tween relative yields in the former and present hydrological situations forms 
the yield reduction due to increased moisture deficit. Water extraction may, 
however, also lead to increases in yield. This occurs in soils that were initially 
too wet. Such changes were also calculated with standard tables relating the 
increase in yield to the water-table fluctuations. 

Final results are presented as an average, net change in yield per hectare, 
expressed in terms of a yearly percentage, due to drawdown of the water-table. 
Negative percentages indicate a net decrease in yield due to a lower water-table 
during the growing season. Positive percentages indicate a net increase in yield 
due to a lower water-table. 

In this study, two simulated attributes were selected for further investiga­
tion, namely the change in yield {% ha"1 y r 1 ) due to extraction and the aver­
age moisture deficit (mm) in a 30-year period under the present hydrological 
situation, which we refer to as the change in yield and the moisture deficit. 

Using the same model, other authors have validated the procedure described 
for a clay area (Bouma and De Laat, 1981) and for a sandy area (Wosten et 
al., 1985). 

STATISTICAL ANALYSIS 

The quality of a representative profile description (RPD) was estimated by 
comparing its value for a mapping unit with the values for the individual bor­
ings in that mapping unit. 

As a quality measure of the RPD for estimating an average value for the 
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total study area the mean error (ME) was used. The ME is of particular inter­
est for agencies interested in results for the total study area, e.g. water extrac­
tion companies and provincial water boards. They want to know the quality of 
the map for predicting a correct average value for the entire area. The ME was 
calculated according to: 

1 m k 

M E = - I X (rpdu-bui) (1) 
nu=i1=1 

where: ME = mean error; rpdu = value of representative profile of uth mapping 
unit; bui = value of ith boring in the uth mapping unit; n = total number of bor­
ings; m — number of mapping units; k = number of borings in the uth mapping 
unit. 

The ME can be zero, positive or negative. In the case of a zero ME the av­
erage prediction of the variable by the RPD for the entire area is perfect. A 
positive ME means an overestimation of the variable by the RPD. A negative 
ME means an underestimation of the variable by the RPD. 

As a quality measure of the RPD for estimating values at specific locations 
within the area, the mean absolute error (MAE) and the mean square error 
(MSE) were used. The value of MSE is more influenced by outliers in the data 
set. The MAE and MSE are of particular interest to the local user, e.g. the 
farmer. The MAE was calculated according to: 

1 m k 

MAE=- X X \rpdu-Kil (2) 
nu=i i = i 

where MAE = mean absolute error and the other symbols are the same as in 
eq. 1. 

The MSE was calculated according to: 

1 m k 

M S E = - X Z (rpdu-bm)2 (3) 
n u = \ i—i 

where MSE = mean square error and the other symbols are the same as in eq. 
1. 

Either large variations within mapping units or high errors in the repre­
sentative profile descriptions will lead to high MAE and MSE values (Fig. 1). 
Separation of these two effects is meaningful. This can be done by splitting the 
MSE into two parts (Bunke and Droge, 1984; Kempthorne and Allmaras, 1986): 

MSE = MSEs + MSEr (4) 

where: MSES = contribution in mean square error due to systematic errors; 
MSEr = contribution in mean square error due to random errors. 

The systematic error (MSES) is caused by the difference between the value 
of the RPD and the mean value of data from borings in the mapping unit and 
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value of attribute 

distance 

real variation of attribute value 

value of representative profile description 

• attribute value of boring 

Fig. 1. Conceptual examples of attribute variations in mapping units and values of associated 
representative profile descriptions (RPD): a) large variation and large error in RPD results in 
high MAE and MSE values; b) large variation and small error in RPD results in high MAE and 
MSE values; c) small variation and large error in RPD results in high MAE and MSE values; d) 
small variation and small error in RPD results in low MAE and MSE values. 

a systematic component in the measurement error. The random error (MSEr) 
is caused by variation within the mapping unit and a random component in 
the measurement error. The MSEr was estimated according to: 

MSEr 

1 m k 

n-m u=i ,=i 
(5) 

where &u=mean value of the borings in the uth mapping unit and the other 
symbols are the same as in eq. 1. 

The MSES was estimated according to: 

MSEs = MSE-MSEr 

RESULTS AND DISCUSSION 

In Table II the ME, MAE and MSE values are given for the moisture deficit 
calculated for the maps at scales of 1:10,000, 1:25,000 and 1:50,000. The esti­
mated mean value of the moisture deficit (M V) for the study area by averaging 
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TABLE II 

Mean error (ME), mean absolute error (MAE) and mean square error (MSE) values for the average 
moisture deficit (mm) in a 30-year period under the present hydrological situation for three map scales 
(the 95% confidence intervals for ME, MAE and MSE are given between brackets) 

Scale 1:. 

10,000 

25,000 

50,000 

. Mean 
value 
(MV) 
(mm) 

11.4 

11.4 

11.4 

Mean 

(ME) 
(mm) 

2.8 
(1.9-3.8) 
2.9 
(1.9-3.9) 
1.6 
(0.4-2.8) 

Mean 
absolute 
error 
(MAE) 

(mm) 

5.5 
(4.7-6.4) 
6.1 
(5.2-7.0) 
7.2 
(6.2-8.2) 

Mean square error 

total 
(MSE) 

(mm ) 

103 
( 74-132) 
120 
( 89-151) 
155 
(116-194) 

systematic 
component 

(MSE.) 
(mm2) 

13 

13 

65 

% of MSE 

13 

11 

42 

random 
component 

(MSE r) 
(mm") 

90 

107 

90 

% of MSE 

87 

89 

58 

all the borings is 11.4 mm. Because the borings are more or less evenly distrib­
uted over the area, this value is considered to be the best possible prediction of 
the average moisture deficit in the area. The mean error (ME) gives an indi­
cation of the quality of prediction of this value from the RPD. The ME ranges 
from 2.8 mm for the 1:10,000 map to 1.6 mm for the 1:50,000 map, indicating 
an overall overestimation of the average moisture deficit by the RPD from 
maps at all three scales. The scale of the map hardly influences the prediction 
of the average moisture deficit of the whole area. This means that someone 
who is only interested in an average value for the whole area can use the 1:50,000 
soil map. This conclusion corresponds with the one reached by Wosten et al. 
(1987). 

The MAE gives an indication of the quality of the RPD for making predic­
tions at specific locations. The MAE values range from 5.5 mm for the 1:10,000 
map to 7.2 mm for the 1:50,000 map. This means that from the 1:10,000 map 
predictions for a particular spot in the area based on representative profiles 
are on average 5.5 mm too low or too high, which is an error of 48%. With 
increasing map scale the MAE decreases. From the scale of 1:50,000 to 1:25,000 
the MAE decreases by 1.1 mm. From the scale of 1:25,000 to 1:10,000 the de­
crease in MAE is smaller. The transition from a scale of 1:25,000 to 1:10,000 
yields only a small benefit in decrease of the mean absolute error. The MSE 
has a pattern similar to the MAE. The transition from the scale of 1:25,000 to 
1:10,000 also yields only a small benefit in terms of decrease of the mean square 
error. An explanation for this is the small reduction in the number of mapping 
units, between the 1:10,000 and 1:25,000 maps (Table I). The random com­
ponent (MSEr) in the MSE is quite large for maps at all three scales. For the 
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1:50,000 map 58% of the MSE is caused by this error, which increases to about 
90% for the scales of 1:10,000 and 1:25,000. As shown by the MSES, the RPD 
performs better at a larger scale. 

In Table III the calculated ME, MAE and MSE values are given for the 
changes in yields for scales of 1:10,000, 1:25,000 and 1:50,000. The estimated 
mean value for the study area is 4.6% ha"1 yr"1. This means that drawdown of 
the water-table has a net positive effect on the yields in this area. The ME 
ranges from -1.4 for the 1:10,000 to -1.7 mm for the 1:50,000 soil map. A neg­
ative ME means an underestimation of the average change in yield on the basis 
of the RPD's. Again, differences in quality between the three scales are small. 

The total mean absolute error (MAE) ranges from 3.3 for the 1:10,000 map 
to 4.5 mm for the 1:50,000 map. The values for the 1:10,000 and the 1:25,000 
maps differ little. The MSE has a pattern similar to the MAE. For the 1:50,000 
map, 40% of the MSE is caused by the random error which increases to about 
70% for scales of 1:10,000 and 1:25,000. 

The MSES can be reduced by improving the quality of the RPD, e.g. by using 
better estimation procedures. With an improved RPD it is, for instance, pos­
sible to reduce the MAES on a map with a scale of 1:10,000 for the change of 
yield by 33% (Table III). The remaining>67% is a result of random errors and 
cannot be resolved by improvement of the RPD. For the scale of 1:50,000 im­
provement of the RPD would result in a possible reduction of the MSE by 60% 
(Table III). This means that improvement of the RPD is more effective at a 
1:50,000 scale. Also for a moisture deficit, improvement of the RPD will be 
most effective on the scale of 1:50,000 (Table II). 

Comparing Tables II and III we found that for all scales the contribution of 
the random component to the MSE is quite large. Due to this random com­
ponent, studies with very detailed simulations that are based on data for one 
point and that are extrapolated to a large area of land, have to be considered 
with great scepticism. Very large errors can be made. 

The individual farmer is less interested in the change in yield at a particular 
spot than for a field. In this study, we have no information about the 'real' 
change in yield values for fields to check the quality of the RPD on this point. 
We expect, however, that the error made in predicting the value for a field will 
be less than the error in predicting for points, because: (i) on all the scales a 
large proportion of the MSE is caused by random errors, of which soil varia­
bility forms a large component; for a field, the differences in change in yield 
due to spatial variability are likely to be averaged; (ii) the growth of crops need 
not reflect all the spatial variability observed in soils; the extent of the rooting 
system has the effect of averaging variability. 

CONCLUSIONS 

Representative profile descriptions (RPD) gave reasonable results in this 
study for predicting the average moisture deficit or the change in yield for the 
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total area. A map scale of 1:50,000 is sufficient for this purpose. When infor­
mation has to be provided for point locations within the area, however, large 
prediction errors are made. These errors decrease when maps with larger scales 
are used. The best prediction is obtained with a 1:10,000 map, but the error at 
this scale is still quite large. Only small reductions of this error are possible by 
improving the RPD because of the large random component in the error. 
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ABSTRACT 

Bregt, A.K., Bouma, J. and Jellinek, M., 1987. Comparison of thematic maps derived from a soil 
map and from kriging of point data. Geoderma, 39: 281-291. 

A general-purpose soil survey was carried out in the eastern part of The Netherlands. A thematic 
map was derived from the produced soil map, containing basic soil data that are important for 
soil-hydrological behaviour. A comparable map was obtained by interpolation of data obtained 
from the individual borings. The quality of both maps in terms of purity was tested by means of 
60 independent test borings. The purity of each of the maps was 77%, indicating no significant 
difference in quality. 

SCOPE OF THE STUDY 

Soil differs from place to place, both laterally and vertically. In normal soil 
survey the surveyor describes the vertical variation of the soil by distinguishing 
different soil horizons. The lateral variation is described by delineating bound­
aries of soil units in the field. The surveyor analyses borings and interprets 
landscape features such as relief and vegetation patterns. He classifies the soils 
according to a classification system, which uses a variety of basic soil proper­
ties. Such general-purpose classifications are most useful for resource inven­
tories and surveys for various types of land use. Various thematic and 
interpretative maps can be derived from a general-purpose soil map, e.g. maps 
showing the starting-depth of sand or boulder clay or maps showing suitabili­
ties for grazing or forestry. 

Soil variability can also be described by interpreting boring data by statis­
tical methods. A review of soil-variability studies following classical proce­
dures was presented by Beckett and Webster (1971). The use of classical 
statistics in describing soil variability neglects, however, the spatial depen­
dence between neighbouring observation points. In the last ten years, geosta-
tistical techniques were developed to define this spatial dependence using the 
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K(h)1=Co + a1\h\+a3\h\3 

K(/i)2 = Co + a i | / i | + a 3 | h | 3 + a 5 | / i | 5 (6) 

respectively, where K(h) = generalized covariance; Co = nugget variance; a0, 
au a3, a5 = coefficients to be determined. 

Kriging in the presence of drift is called universal kriging. More information 
about the kriging procedure and theory is given by Olea (1975), David (1977), 
Journel and Huijbregts (1978), and Kafritsas and Bras (1981). 

MATERIALS AND METHODS 

Study area and soil map 

The study was carried out on soil data collected in the survey area "Hupselse 
Beek", which covers an area of 650 ha. It is located in the eastern part of The 
Netherlands, near Groenlo. From this area, a sample area of 125 ha was con­
sidered for this study. The area consists of cover sand overlying miocene clay 
and boulder clay. The boulder clay (glacial till) was deposited in an Early 
Pleistocene period. A detailed soil map was made at a scale of 1:5000. The soils 
were classified according to Soil Taxonomy (Soil Survey Staff, 1975) mainly 
as Typic Haplaquods, Typic Haplaquepts, Plaggeptic Haplaquods and Typic 
Udipsamments (see also Wosten et al., 1985). Mapping units of the soil map 
were delineated in the field by using soil borings and by interpreting landscape 
features. For the soil map, 198 soil borings to a depth of 2 m were made. Profile 
data are field estimates of basic soil properties. 

The Dutch soil-classification system, normally used for detailed soil surveys, 
mainly reflects properties of the horizons near the soil surface. When the soil 
map has to be used for hydrological interpretations, it should, however, include 
additional data of subsurface soil horizons that are expected to be important 
for soil-physical properties. Therefore, additional observations were made of 
textures and structures of all horizons. Also, the starting-depths of gravel and 
boulder clay or miocene clay were recorded. The depth classifications for gravel 
and clay were adopted from existing mapping criteria, and they were presented 
as overlays on the soil map. 

In the sandy surface sediments various types of soils were formed, which 
differ mainly in thickness of the A horizon. These soils are underlain by a 
sequence of gravel and clay sediments starting at various depths. 

Thematic map derived from soil map 

From the general-purpose soil map, as discussed above, a thematic map was 
derived, containing soil data especially important for soil-hydrological behav-
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iour. Wosten et al. (1985) concluded that in this area differences in the thick­
ness of the A horizon and the starting-depths of gravel and boulder clay were 
mainly associated with differences in soil-hydrological characteristics. This 
was concluded on the basis of multiple measurements of hydraulic-conductiv­
ity and moisture-retention curves in the different soil horizons. 

In the context of this study, the legend of the original thematic map, as 
presented by Wosten et al. (1985), was somewhat simplified. The starting-
depths of boulder clay and miocene clay were combined into one diagnostic 
criterion. Instead of the thickness of the root zone, the thickness of the A hori­
zon was used here. 

Thematic map obtained by kriging of point data 

In this study, a thematic map was also obtained by kriging of soil data from 
individual borings, as described below. The values for the thickness of the A 
horizon and for the starting-depths of gravel and boulder clay were selected 
from the individual boring descriptions. The values for each soil property were 
interpolated to a regular grid of 20 by 25 points. Interpolation was carried out 
using the universal kriging program AKRIP (Kafritsas and Bras, 1981). For 
each property, the kriging procedure involved the following four steps: (1) 
identification of the order (k) of the intrinsic random function, which indi­
cates the order of the trend in the data; (2) determination of the coefficients 
of the generalized covariance models appropriate for the pre-determined order 
of the intrinsic random function; (3) selection of the best generalized covari­
ance model; (4) application of point kriging. 

This procedure yielded an estimated value for the three soil properties for 
every grid point. Next, the estimated values of properties at each grid point 
were classified and combined with the same criteria as used for the thematic 
map derived from soil map. The resulting grid map was transformed into a 
polygon map using a grid-polygon conversion algorithm. 

Validation procedure 

The quality of both maps was tested by calculating the purity of these maps. 
The purity, in terms of percentages, indicates agreement between test-boring 
data and data according to the legends of both maps. Sixty test borings were 
made for calculating the purity. The locations of these test borings were chosen 
according to a procedure described by De Gruijter and Marsman (1985). By 
this procedure, the study area was divided into 20 blocks of 250 m by 250 m. 
Twelve blocks were selected randomly with replacement. In each selected block, 
a transect was located by determining a random starting-point. The direction 
of the transect was selected at random from two alternatives: east-west and 
north-south. The distance between the test points within the transect was 
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50 m. From the sixty test locations selected this way, one was located on a road 
and was dropped. 

For both maps, two types of purity measures were calculated, namely partial 
purity and average purity. Partial purity is defined as the percentage agree­
ment between one classification criterion of the map and the corresponding 
property of the test borings. Average purity is defined as the arithmetic mean 
of all the partial purities (Marsman and De Gruijter, 1986). Three partial 
purities and one average purity were calculated for each map. 

Calculations of map purity can be performed quickly and easily. A disadvan­
tage is that all deviations from the legend are equally weighted as they are 
independent of the magnitude of the deviation. 

RESULTS AND DISCUSSION 

Thematic map derived from soil map 

The thematic map derived from the soil map (map 1) is shown in Fig. 1 and 
the corresponding legend is presented in Table I. In total, 15 different mapping 
units were distinguished. The mapping units 15 and 16 covered large areas on 
this map. Map 1 contains 41 delineated areas compared with 110 on the detailed 
soil map. Various areas on the soil map were combined because they did not 
differ from a soil-physical point of view (Wosten et al., 1985). When a the­
matic map is made from a general-purpose soil map, the number of delineated 
areas can often be reduced. 

Thematic map obtained by kriging of point data 

For every selected soil property, calculations were made for the order of the 
intrinsic random function (IRF) and the generalized covariance that best 
describes the data (Table II). The thickness of the A horizon and the starting 
depth of gravel show no trend in the data (k=0) . The generalized covariances 
(K(h)) of these properties are constant, which implies the occurrence of a 
100% nugget variance. This, in return, means that no spatial structure in the 
data is shown. Lack of spatial structure does not imply that kriging should not 
be used. The AKRIP program will calculate unweighed average values based 
on a limited number of surrounding points. This represents an optimal inter­
polation procedure when no spatial structure is present. Nugget effects are 
caused by measuring errors and variation of a soil property within the shortest 
sampling interval. In this study we are dealing with estimated soil properties, 
and measuring errors are expected to be considerable. These errors are prob­
ably the main cause for the observed 100% nugget variance. Similar high nug­
get variances are reported by Burrough (1983) and Bregt (1985) when 
describing the spatial variability of soil properties. 
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Fig. 1. Thematic map derived from the soil map (map 1) of the study area of 125 ha (legend in 
Table I); the locations of the 60 test borings are indicated. 

The single soil properties were interpolated to a regular grid. Through the 
use of an allocation algorithm, results were combined into a grid map using 
classification criteria identical to the ones used for map 1. The resulting grid 
map was transformed into a polygon map. The latter map is shown in Fig. 2 
and the corresponding legend is presented in Table I. Henceforth, this map 
will be referred to as map 2. Map 2 contains 63 delineated areas, compared with 
41 on map 1. The difference is caused by small areas, covering a single grid cell. 

Comparing both maps 

The partial purity and the average purity were calculated for maps 1 and 2 
(Table III). Consideration of all properties together resulted in 77% average 
purity for both maps. These results show that the quality of map 1 does not 
differ significantly from map 2. 

The partial purity of the starting-depth of boulder clay was significantly 
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TABLE I 

Characteristics of 21 units distinguished on one of the two or on both thematic maps 

. , . , , . Thickness of Starting-depth (cm below 

derived from 
soil map 

1 
-
-
4 

_ 
6 
7 
8 

-
10 
-
12 
13 
14 
15 
16 
17 

18 
19 
-
21 

kriged 

1 
2 
3 

-

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

_ 
19 
20 
21 

A horizon 
(cm) 

<25 
<25 
<25 
<25 

25-35 
25-35 
25-35 
25-35 
25-35 
25-35 
25-35 
25-35 
25-35 
25-35 
25-35 
25-35 
25-35 

>35 
>35 
>35 
>35 

surface) 

gravel 

* 
* 
* 

120-

< 40 
< 40 
< 40 

40-
40-
40-
80-
80-
80-

* 
* 
* 
* 

80-
* 
* 
* 

200 

80 
80 
80 

120 
120 
120 

120 

boulder/miocene 
clay 

40-
120-

4 

* 

< 40 
40-

* 
40-

120-
* 

40-
120-

* 
< 40 

40-
120-

* 

» 
40-

120-
* 

120 
200 

120 

-120 
•200 

120 
-200 

120 
-200 

-120 
-200 

* = > 200 or absent; - = unit not present on map. 

lower on both maps than the partial purities of the thickness of the A horizon 
and the starting-depth of gravel. For map 1 this can be explained by local soil 
conditions. The topography of the surface of the boulder clay is independent 

TABLE II 

Selected intrinsic random functions (IRF) for the three properties 

Property Order of Generalized covariance 
IRF 

Thickness A horizon 0 
Starting-depth gravel 0 
Starting-depth boulder clay 1 

K(h)0 = 63A 
K(h)0= 9 
K(h),= 0.1+45|/i|3 
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0 60 100 250 m 
—1 

Fig. 2. Kriged thematic map (map2) of the study area of 125 ha (legend in Table I) . 

TABLE III 

Validation of the thematic map derived from the soil map and the kriged thematic map, based on 
comparison between data from 60 independent borings (locations indicated in Fig. 1) and the 
corresponding units of the two maps (the 90% confidence interval is given in brackets) 

Purity measure Thematic map 

derived from kriged 
soil map 

Partial purity: thickness A horizon (%) 80 (68-92) 83 (71 -95) 
Partial purity: starting-depth of gravel (%) 83 (77-89) 86 (75-97) 
Partial purity: starting-depth of boulder clay (%) 68(57-79) 61(51-71) 
Average purity: all data (%) 77 (72-82) 77 (69-85) 
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of patterns formed by various soils in the sandy surface layers and is therefore 
difficult to predict from landscape patterns. The soil surveyor has to rely mainly 
on his limited number of borings when delineating boundaries of the boulder-
clay surface. This may be expected to result in a lower purity for this property. 
The purity of the starting-depth of boulder clay is, however, even lower for 
map 2. This is surprising because the intrinsic random function shows a clear 
spatial structure, and one would therefore expect a better prediction by the 
kriging method. 

The results were based on the use of an empirically determined classification 
of the thickness of each horizon in each mapping unit. In retrospect, the 
obtained purity of approximately 80% is indicative for what turned out to be a 
satisfactory legend, because this purity is commonly used as a guideline. For 
example, soil survey in The Netherlands attempts to achieve a purity of at least 
70% (Buringh et al., 1962). Comparable USDA values range from 80 to 90% 
(Soil Survey Staff, 1951). 

CONCLUSIONS 

No significant difference in quality in terms of purity was found between a 
large-scale thematic map derived from a general-purpose soil map as compared 
with a similar map obtained by kriging of point data. 

Good results obtained in this study by interpreting soil maps are encouraging 
for their future use, because they form a widely available soil-data base. 
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Abstract. The digital soil map of The Netherlands (scale 1:50000) in vector form 
was rasterized using three sizes of raster cell and two different rasterizing methods. 
The rasterizing errors were estimated for several map sheets of different complexity 
using the double-conversion method, the Switzer method and the Goodchild 
method. The relationship between the complexity of the maps, indicated by the 
boundary index, and the rasterizing error is presented as a regression equation. The 
double-conversion method provided a better estimation of the rasterizing error 
than the other two methods. Differences of less than 1 per cent were found between 
the rasterizing methods used. 

1. Introduction 
In vector to raster conversion an error is introduced, the rasterizing error. The 

influence of rasterizing method, size of raster cell and map complexity on this error 
have been studied, and the purpose of this paper is to report the results of a case study of 
the soil map of The Netherlands. 

At the Winand Staring Centre a geographical information system with mainly soil 
data has been established during the past ten years. One part of the system consists of 
the soil map of The Netherlands at a scale of 1:50000, digitization of which in vector 
form began ir 1976. All the map sheets (75) have now been digitized and were recently 
rasterized, mainly to combine soil data with other geographical data. For example, in 
the landscape ecological mapping project of The Netherlands (Canters et al. 1991), soil 
data were linked with flora and fauna data in raster form. Organizations in The 
Netherlands also require a rasterized version of the soil map to be used within their own 
systems. 

2. Map rasterization and rasterizing error 
When rasterizing a soil map it is necessary to select the orientation of the raster, the 

size of raster cell and the rasterizing method. In this study the orientation of the raster 
was chosen to be parallel to the co-ordinate lines of the topographical map. Both size of 
cell and method of rasterizing are important factors influencing the rasterizing error, 
which is also affected by the complexity of the map pattern. 

2.1. Rasterizing methods and rasterizing error 
Raster to vector conversion and the resulting errors arising from these processes are 

illustrated in figure 1. In figure la a fragment of the soil map in vector form is presented 
with two units A and B on which a raster with 16 cells has been superimposed 
(figure lb). For rasterizing the vector map two methods were used: central point and 
dominant unit rasterization (Wehde et al. 1980). With central point rasterization the 
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Figure 1. Fragment of soil map. A and B are arbitrary soil units, (a) Soil map in vector form; (b) 
soil map in vector form with raster superimposed; (c) soil map in raster form by central 
point rasterizing of the original vector map; (d) rasterizing error by central point 
rasterizing (shaded) (1... .16 are cell numbers); (e) soil map in raster form by dominant unit 
rasterizing of the original vector map; and (f) rasterizing error by dominant unit rasterizing 
(shaded) (1....16 are cell numbers). 

soil unit on the vector map which is located at the central point of each raster cell is 
considered to be representative of the whole cell (figure lc). With dominant unit 
rasterization it is the soil unit occupying the largest area of each raster cell which is 
considered to be representative (figure le). When more than one soil unit occurs in a 
raster cell, an error appears. For example, in cell 2 (figure Id), the shaded area is 
incorrectly considered to be part of unit A, as it is in cells 3,5,8,9 and 12. There are also 
cells (6,7,10,11 and 14) where parts are incorrectly considered to be part of unit B. The 
difference between cell 14 in figure Id and that in figure If is caused by the difference in 
rasterizing method. The shaded area in figure Id and If is the total area incorrectly 
classified by the rasterizing process. This area (the mis-match area), expressed as a 
percentage of the total area, forms the rasterizing error, which will be referred to in this 
paper as 'the error'. 

2.2. Raster cell size 
The relationship between size of raster cell and error has been discussed by Miiller 

(1977) and Burrough (1986), who state that smaller raster cell sizes will result in smaller 
errors. There are therefore advantages in making the raster cell as small as possible, on 
the other hand, with smaller cells, the conversion time and the necessary storage 
capacity increase rapidly. A size of raster cell should therefore be chosen where both the 
conversion time and the error are acceptable. In this study the error was evaluated for 
three sizes of cell, 1 x 1 mm, 2 x 2 mm and 4 x 4 mm. 

104 



2.3. Complexity of the map pattern 
According to Switzer (1975) a relationship exists between the error and complexity 

of the map and the boundary index (BI) was used in this study as a measure of that 
complexity (Bregt and Wopereis 1990). The BI is defined as the boundary length in 
centimetres per square centimetre of the map and is calculated by dividing the total 
length of the polygon boundaries by the surface of the map sheet. 

The error was calculated for 11 of the 75 soil map sheets of The Netherlands, each of 
which has a surface area of 2000 cm2, except sheet B (which covers 2750 cm2). The 
complexity of the map sheets chosen varies considerably, and the BI ranges from 0-2 for 
sheet A to 2-2 for sheet K. The boundary indices of the remaining soil maps of The 
Netherlands fall within this range. 

2.4. Measurements of the error 
For the determination of the error, three different methods were used, two of which 

were adapted from the literature and the third was developed by the authors. 
The first method is described by Switzer (1975). According to Switzer (1975), the 

error between two map units i and j can be estimated by 

f.. = 0-76i>lij/iVl -0-19P2JJ/JV2 (1) 

where: F^ = that part of the map that belongs to map unit i but is represented as map 
unit j ; Piij = the number of cell pairs (horizontal and vertical) that lie in the different 
map units i and j at a distance of one cell width; N1 = the total number of cell pairs at a 
distance of one cell width: N\=4{XY) — 2(X +Y), where X = number of columns, 
Y= number of rows; P2 i j = the number of cell pairs (horizontal and vertical) that lie in 
the different map units i and j at a distance of two cell widths; JV2 = the total number of 
cell pairs at a distance of two cell widths; N2 = 4{X Y) — 4(X + Y), where X = number of 
columns, Y= number of rows. 

The total error, F;, of map unit i is given by 

Fi= Infixed) (2) 

The total error, F, for the entire map is given by 

F=t'Fi (3) 
>-i 

where k = number of map units. 
The second method is that described by Goodchild (1980), based on the concept of 

fractals. Goodchild (1980) changed the parameters in equation (1) to 

F i j = 0-60Pl i j/JVl-0-llP2 i j/N2 (4) 

The next steps are similar to those described by the Switzer [equations (2) and (3)]. 
The third method is the double-conversion method, according to which a map sheet 

is rasterized twice. First, a normal vector to raster conversion is undertaken (1 x 1 mm, 
2 x 2 mm, or 4 x 4 mm, see figure 2b), the product of which is called the base raster. The 
map sheet is then rasterized again, but with a much smaller raster cell size (e.g. 
01 x 0-1 mm) to produce the fine raster (figure 2d). Subsequently, the map unit of the 
fine raster is compared with the cell of the base raster. If they differ, that part of the base 
raster occupied by a cell of the fine raster has been incorrectly coded. The total error is 
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Figure 2. Calculation of the error using the double-conversion method, (a) Fragment of soil 
map with units A and B; (b) rasterizing to 'base raster'; (c) rasterizing error (shaded); 
(d) rasterizing to 'fine raster'; and (e) estimation of the error by comparing the fine raster 
with the base raster. 

the sum of all cells in the fine raster with a code that differs from the base raster 
(figure 2e). 

Using the double-conversion method it is possible to calculate the error with any 
desired accuracy. It was found that a fine raster of 0-02 x 0-02 mm, 0-1 x 0-1 mm, or 
0-2 x 0-2 mm influences the error only in the second decimal place, and to limit 
processing time, a fine raster of 01 x 01 mm was chosen for further studies. 

3. Results and discussion 
The errors for the 11 map sheets using the double-conversion method are given in 

table 1. The error for a raster cell of 4 x 4 mm increased to 20 per cent for a complex map 
(K), twice that for a raster cell size of 2 x 2 mm (which in turn was almost twice the error 
for a raster cell size of 1 x 1 mm). 

From table 1 it can be seen that a relationship exists between map complexity and 
error, the latter increasing with an increasing value of BI. The relationship between the 
BI and the error is presented in figure 3, which shows a linear relationship between the 
two values. The calculated regression equations are given in table 2. The percentage 
variance explained by the regression equations was large, indicating a good fit, so that 
when the boundary index is known for a map sheet, the error can be predicted using 
these equations. 

Table 1 shows that for raster cells of sizes l x l mm and 2 x 2 mm the difference in 
error between central point and dominant unit rasterization is very small. For a cell size 
of 4 x 4 mm, the difference was approximately 0-5 per cent (with one exception for map 
sheet J, where the difference was 0-9 per cent). For larger cell sizes dominant unit 
rasterization gave a smaller error than central point rasterization. The difference in 
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Table 1. Rasterizing error of 11 map sheets for three raster cell sizes and two rasterizing methods, calculated 
using the double-conversion method. 

Map 
sheet 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 

BI 
(cm"') 

0-20 
0-91 
111 
131 
1-42 
1-47 
1-85 
1-94 
1-97 
201 
2-17 

Cent. 

0-5 
2-2 
2-6 
31 
3-4 
3-5 
4-3 
4-6 
4-7 
4-8 
5-3 

1mm x1 mm 

Dom. 

0-5 
2-2 
2-6 
31 
3-4 
3-5 
4-3 
4-6 
4-7 
4-7 
5-3 

Diff. 

00 
00 
00 
0 0 
0 0 
00 
00 
00 
0 0 
0-1 
0 0 

Error for raster cell 

2 

Cent. 

0-9 
4-3 
5-2 
6-2 
6-7 
6-9 
8-5 
9-2 
9-3 
9-4 

10-5 

mm x 2 mm 

Dom. 

0-9 
4-3 
51 
61 
6-6 
6-8 
8-3 
91 
9-2 
9-2 

10-3 

sizes (%) 

Diff. 

0 0 
0 0 
0-1 
01 
01 
01 
0-2 
01 
01 
0-2 
0-2 

4 

Cent. 

1-7 
8-3 
9-7 
11-6 
12-8 
13-6 
160 
17-8 
180 
17-4 
20-2 

mm x4mm 

Dom. 

1-7 
80 
9-2 
111 
12-2 
13-3 
15-6 
17-4 
17-4 
16-5 
19-7 

Diff. 

00 
0-3 
0-5 
0-5 
0-6 
0-3 
0-4 
0-4 
0-6 
0-9 
0-5 

BI = Boundary index; Cent. = central point rasterizing; Dom. = dominant unit rasterizing; Diff. = dif­
ferences in error between Cent, and Dom. 

20 

15 

0) 

o> 10 

5 -

Raster cell size 

o 4mm x 4mm 

• 2mm x 2mm 

A 1mmx1mm 

Boundary index (cm . cm ) 

Figure 3. Relationship between rasterizing error (central point rasterizing) and BI for 11 map 
sheets three raster cell sizes. 
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Table 2. Relationship between rasterizing error, calculated using the double-conversion 
method, and the BI for three raster cell sizes and two rasterizing methods for the 11 map 
sheets. 

Rasterizing 
method 

Central 
Dominant 
Central 
Dominant 
Central 
Dominant 

Raster cell 
size (mm) 

l x l 
l x l 
2 x 2 
2 x 2 
4 x 4 
4 x 4 

Regression 
equation 

E = 24BI 
E = 2 4BI 
E = 4 7BI 
E = 4-6BI 
E = 90BI 
E = 8 7BI 

Explained 
variance (%) 

99-8 
99-8 
99-8 
99-8 
99-4 
990 

E = Rasterizing error (%); BI = boundary index (cm/cm2 = cm '). 

Table 3. Comparison between rasterizing error (central point rasterizing), using the double-
conversion method (DCM), and the calculated error using the Switzer (1975) and 
Goodchild (1980) equations for a raster cell size of 2 x 2 mm. 

Map 
sheet 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 

Error 
DCM 

(%) 

0-9 
4-3 
5-2 
6-2 
6-7 
6-9 
8-5 
9-2 
9-3 
9-4 

105 

Error 
(%) 

10 
50 
5-6 
6-9 
7-9 
11 
9-4 

10-8 
10-5 
117 
12-3 

Switzer 
(1975) 

Difference with 
DCM 

01 
07 
0-4 
07 
1-2 
08 
09 
1-6 
1-2 
2-3 
1-8 

Error 
(%) 

10 
4-6 
5-2 
6-4 
7-2 
7-3 
8-8 
9-9 
9-8 

103 
11-3 

Goodchild 
(1980) 

Difference with 
DCM 

01 
03 
00 
02 
05 
04 
03 
07 
05 
09 
08 

error between the two methods did not increase with an increase in the boundary index; 
map complexity seems to influence the error equally for both methods. 

In the results presented so far the double-conversion method was used for 
calculating the error. For a raster cell of 2 x 2 mm a comparison was made between this 
method and the methods adapted from the literature (Switzer 1975, Goodchild 1980). 
These results are presented in table 3. In all situations the latter methods overestimate 
the error, although Goodchild's equation gives a closer estimate than that of Switzer. 

Although the soil map of The Netherlands at a scale of 1:50000 was used in this 
study for the estimation of the regression equations, the use of the equations obtained is 
not restricted to this particular map. The BI is presented in map co-ordinates, which 
makes the equations independent of map scale, so that they can be applied to other 
vectors maps if raster cells of 1 x 1 mm, 2 x 2 mm, or 4 x 4 mm are used. 
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The advantages of using these regression equations are that they provide better 
estimate of the rasterizing error than do the Switzer (1975) and Goodchild (1980) 
methods; they can easily be applied, since only calculation of the BI is required; and the 
rasterizing error can be estimated before rasterizing the map. The disadvantage is that 
their scope is limited in possible sizes of raster cells and BI interval, whereas the Switzer 
(1975) and Goodchild (1980) methods can be applied in all possible situations. 

4. Conclusions 
When a vector map has to be converted into a raster map with cells of 1 x 1 mm, 

2 x 2 mm or 4 x 4 mm, the rasterizing error can be estimated simply by calculating the 
BI and using the regression equations calculated in this study (Table 2). 

The difference in rasterizing error between central point and dominant unit 
rasterization is very small, especially for raster cells, of 1 x 1 mm and 2 x 2 mm. For a 
cell of 4 x 4 mm dominant unit rasterization gives a smaller rasterizing error than 
central point rasterization. Map complexity influences the rasterizing error equally for 
both methods. The double-conversion method provides a better estimate of the 
rasterizing error than the equations proposed by Switzer (1975) and Goodchild (1980). 
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Construction of Isolinear Maps of Soil Attributes with Empirical Confidence Limits 

A. K. Bregt,* A. B. McBratney, and M. C. S. Wopereis 

ABSTRACT 
Moisture-deficit data were obtained at 398 point locations in the 

Mander area in the Netherlands by simulation using soil-profile 
attributes. From this data set, a test subset of 75 points was selected 
at random. The test set was used to select the best of four prediction 
procedures: ordinary and universal kriging with the original data set, 
and ordinary and universal kriging with a log-transformed data set. 
The mean square error of prediction (MSEP) was used to evaluate 
prediction quality. The lowest MSEP of prediction was obtained 
using ordinary kriging of the untransformed data. Ordinary kriging 
was then used to predict moisture deficits and estimate their asso­
ciated kriging variances at points on a 50 by 50 m grid. The average 
ratio of actual square errors of prediction to the estimated kriging 
variances at the 75 test locations was used to adjust the kriging 
variance estimates on the regular grid to get more realistic estimates. 
These empirically derived, more realistic estimated kriging variances 
were then used to construct an isolinear map of moisture deficit with 
confidence limits. The resulting map showed that, in most of the 
region under study, the 90% confidence interval for moisture deficit 
contains 15 mm. This type of map allows the user to obtain confi­
dence limits as well as the predicted value for any point on the map. 

AN ISOLINEAR OR ISARITHMIC MAP is a planimetric 
graphic representation of a three-dimensional 

volume (Dent, 1985). The lines on an isolinear map 
connect points with equal value. There are a large 
number of named isolines, e.g., isohypse or contour 
for elevation, isobar for atmospheric pressure, iso­
therm for temperature, and isobront for occurrence of 
thunderstorms (Thrower, 1972). 

In soil science, isolinear maps have been used by 
various authors for the presentation of continuous soil 
attributes; they have not yet obtained wide recogni­
tion, however, and are not used routinely. These maps 
are usually constructed from soil punctual data in two 
steps. In the first step, a grid is produced from point 
observations by interpolation. This can be termed pri­
mary interpolation. For this primary interpolation, 
many different techniques may be used, e.g., inverse 
squared distance interpolation, Akima's interpolation, 
Laplacian smoothing splines, and kriging (Laslett et 
al., 1987). The next or secondary interpolation stage 
positions the isolines with respect to the grid. Gen­
erally, linear interpolation is used, as it is assumed 
that the grid in the primary interpolation stage is fine 
enough for this to be adequate. Kriging has become 
popular in soil science as the primary interpolation 
technique. This popularity is partly due to the fact that, 
besides a prediction grid, a measure of the predictor's 
precision (estimated kriging variance) is also obtained 
for every grid point. 

A.K. Bregt and M.C.S. Wopereis. Winand Staring Centre for Inte­
grated Land. Soil, and Water Research. P.O. Box 125. 6700 AC 
Wageningen. the Netherlands: A.B. McBratney. School of Crop Sci­
ences. Univ. of Sydney. New South Wales 2006. Australia. Contri­
bution from the Winand Staring Centre for Integrated Land. Soil, 
and Water Research. Received 25 Aug. 1989. "Corresponding au­
thor. 

Published in Soil Sci. Soc. Am. J. 55:14-19 (1991). 

Isolinear maps of soil attributes produced by kriging 
and associated estimated kriging variance maps have 
been published by, among others, Burgess and Webster 
(1980a,b), Byers and Stephens (1983), Dubrule (1984), 
McBratney et al. (1982), Royle et al. (1981), Webster 
and McBratney (1987), Webster and Burgess (1980), 
and Yost et al. (1982). They all present the estimated 
kriging variances on a separate map. These maps can 
be used to identify sparsely sampled areas. 

Some authors (Philip and Watson, 1986; Srivastava, 
1986; Henley, 1987) doubt the value of the estimated 
kriging variance. Laslett et al. (1987) showed that the 
sum of the estimated kriging variances at 64 test sites 
for soil pH (H20 and CaCl2) was considerably lower 
than the sum of squared differences between observed 
values at these 64 test sites and their values predicted 
from grid points. 

The purpose of this study was to develop procedures 
for obtaining an empirically derived, more realistic 
estimation of the kriging variance and for the con­
struction of isolinear maps with confidence limits. The 
kriging technique that was used was selected by com­
paring the influence of stationary and nonstationary 
conditions on the kriged predictions. 

THEORY 
Kriging was used in this study as the primary interpolation 

or spatial-prediction technique. The technique is based on 
the theory of regionalized variables (Matheron, 1965, 1971, 
1973; Journel and Huijbregts, 1978). Any variable, distrib­
uted in space, is by definition regionalized. Examples are 
geological, hydrological, ecological, and pedological data. 

Kriging is carried out in two steps. The first step involves 
modeling the spatial structure of the regionalized variable. 
The spatial structure can be described by the semivariogram, 
in the case of stationary conditions, and by the order of the 
drift and the generalized covariance function, in the case of 
nonstationary conditions. In the second step of the kriging 
procedure, the selected model for the spatial structure is ap­
plied to the data set to predict values at desired and (usually) 
unmeasured locations. 

The value i(x) at a point x is predicted by a linear com­
bination of the values of n surrounding data points: 

s(*o) = ^,s(x,) [1] 

where \, is the weight of the t'th neighboring value, s(x0) is 
the predicted value, and s(.x,) is an observed value. Kriging 
is optimal in the sense that it is the best linear unbiased 
estimator (BLUE) of s(.v0): 

E[f(x0) - s(x0)] = 0 [2] 

var [s(.r0) — s(.x0)] is a minimum [3] 

An interesting by-product of kriging is the estimated kriging 
variance. This variance is generally used as a measure of the 
goodness dt prediction, it depends on the data configuration 
and the model 6t the spatial structure of the data and is not 
related to the value of the data points directly (Journel, 
1986). 
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MATERIALS AND METHODS 

The Data 

The data used in this study were obtained from the Man-
der area in the eastern part of the Netherlands. In this area, 
water tables are lowered as a result of groundwater extraction 
for the drinking-water supply. The necessary data for pre­
dicting the influence of groundwater extraction on the pro­
duction of grassland were obtained by a detailed soil survey 
in 1985 (Bregt and Beemster, 1989; Wosten et al., 1987). In 
the Mander area of 404 ha, 528 soil borings were made. The 
separate soil horizons described from each boring were al­
located to various soil physical horizon classes with known 
physical attributes (Wosten et al., 1985). Using these attri­
butes as input data, the sensitivity of the soil to lowering of 
the water table was estimated by the dynamic simulation 
model proposed by De Laat (1980). A water balance was 
estimated for each boring for successive 10-d periods for a 
30-yr period. Moisture deficits were calculated for two hy-
drological situations, one before water extraction and one 
after water extraction. For this study, attention was focused 
on the moisture deficit in millimeters for the 30-yr period 
after water extraction, which, for the sake of brevity, we refer 
to here as the moisture deficit. 

A rectangular subarea of 270 ha was selected out of the 
irregularly shaped 404 ha. This subarea contained 330 bor­
ings but, to limit the boundary effect in the kriging procedure, 
an additional 68 points were used outside the subarea for 
kriging (Fig. 1). For the evaluation of the quality of kriging 
predictions, 75 borings were selected at random from the 
data set within the subarea to serve as a test set (Fig. 1). The 
moisture-deficit data without the test points have a mean of 
10.5 mm and a standard deviation of 15.5 mm. A stem-and-
leaf diagram of the moisture-deficit data without the test 
points is presented in Figure 2. 

Statistical Procedures 

Recently, Hamlett et al. (1986) stated that nonstationarity 
should always be considered when analyzing the spatial var­
iability of soil properties. In our case, there was indeed some 
reason to suspect a trend in the data (Stoffelsen and van 
Hoist, 1985). Moreover, because of the skewness of the orig­
inal data set, the possibility of transformation to approxi-

250 5 251 0 251 5 

o data points used in the kriging procedure 

* test point 

Fig. I . M a p with locations of borings. 

2520 
x coordinate 

mate normality also had to be considered. Bearing these two 
factors in mind, we carried out four sets of structural anal­
ysis: two for the untransformed dat and two for log-trans­
formed data. Data were transformed by z(x) = log[?M + 
0.05]. The small constant 0.05 was added because the min­
imum of the data set was 0. For each of the untransformed 
and log-transformed data sets (323 observations), structural 
analyses were performed by (i) estimating the semivariogram 
using the method described by McBratney and Webster 
(1986) (assuming stationarity), and (ii) estimating the order 
of the drift, k, and the generalized covariance function by 
the jackknifing procedure of Delfiner (1976) (assuming non­
stationarity). 

After having found the four possible structural models, 
spatial prediction at each of the 75 test locations was per­
formed by ordinary kriging in the case of a semivariogram 
and by universal kriging in the case of a drift and a gener­
alized covariance function. Ordinary kriging was carried out 
by a kriging program developed by McBratney (1984); uni­
versal kriging was carried out by AKRIP (Kafritsas and Bras, 
1981). 

A consequence of kriging on log-transformed data (Journel 
and Huijbregts, 1978) is the need for back-transformation 
of the resulting predictions. Journel and Huijbregts (1978, p 
572) give the following solution: 

10**' * *P - 0.05 six) [4] 
where z(x) is the predicted value and s2

k is the estimated 
kriging variance of the log-transformed data. 

Decimal point is at the colon 

0: 00001 till 2223333444555666666777889 

1 000011222222223333333344455556666666666788999999 

2 0000122222223334444444445556677788888 
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4:0112344455566677777788889 
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H igh: 41 .6 42 7 43 .9 4 4 44.2 45.3 45 .4 45.5 48.9 53 7 
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Fig. 2. Stem-and-leaf diagram of the moisture-deficit data (mm) used 
in the kriging procedure. 
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Fig. 4. Isolinear map of kriging variance (mm2) estimated on a 50 
by 50 m grid by ordinary point kriging. 
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Fig. 5. Isolinear map of moisture deficit (mm) estimated on a 50 by 
50 m grid by ordinary point kriging. 

underestimation probably arises because kriging as­
sumes the semivariogram or generalized covariance 
function to be known without error. Clearly, this is 
not the case and the lack of uncertainty in the semi­
variogram leads to a marked deflation of the estimated 
kriging variance relative to the true variance. 

An isolinear map of moisture deficit is presented in 
Fig. 5. The variable shows very little variation over 
the area studied, except in the upper right corner. In 
this part of the region, the highest moisture deficits 
are reached. This is also evident from the perspective 
view given in Fig. 6. Referring back to Fig. 1, we see 
that there were only a few test points in this area; this 
might explain the good performance of ordinary, rel­
ative to universal, kriging. In Fig. 7, empirical confi­
dence limits were added to the map as short dashed 
lines for the lower confidence limits corresponding to 
the 90% confidence interval, and unevenly dashed 
lines for the upper confidence limits corresponding to 

49d 5 250 5 

Fig. 6. Perspective view of kriged moisture deficits. 

2520 
x coordinate 

isoline 
upper confidence limit of the 90% confidence interval 
lower confidence limit of the 90% confidence interval 

Fig. 7. Isolinear map of moisture deficit (mm) with empirical con­
fidence limits. 

the 90% confidence interval. This type of map allows 
the user to obtain confidence limits, as well as the 
predicted value, for any point on the map. For ex­
ample, in Fig. 7, if we look at the point x = 252.0 and 
y = 495.6, we can, by visual linear interpolation, ob­
tain a predicted value of 37 by concentrating on the 
solid isolines only, and values of 14 and 57 for the 
lower and upper 90% confidence limits by referring to 
the short and unevenly dashed isolines, respectively. 
As a check, we see that the confidence limits are ap­
proximately symmetric about the predicted value, 
which they should be using the normal distribution. 
It can be seen from this map that the 90% confidence 
interval for moisture-deficit predictions contains 15 
mm for almost the complete region under study. This 
is illustrated in Fig. 8, where this area is shaded. Figure 
9 shows the area where the 90% confidence interval 
for moisture-deficit predictions contains 30 mm. 

These results have a great impact on the financial 
consequences of water extraction. The resulting mois­
ture deficits are translated into yield changes and fi­
nally, in practice, into a financial cost to farmers 
(Wosten et al., 1987). The results show that an accurate 
estimation of costs is not easily made. 
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In order to determine the best of the four prediction pro­
cedures in practice, we used the statistical relation (Kempth-
orne and Allmaras, 1986): 

Table 1. Selected models for original and log-transformed data using 
ordinary and universal kriging. The variable h is the distance in 
km between two points. [S(k) = 1, if |* >0, otherwise, 5(A) - 0] 

MSEP = variance + (bias)2 

The MSEP measure was estimated by 

MSEP £lM*,) s'(x,)]2 

[5] 

[6] 

where s(x,) and s(x,) represent actual and predicted values, 
respectively, at the 75 test locations. 

The kriging technique and data set that gave the lowest 
MSEP value was selected. With the selected technique, mois­
ture deficits were predicted and associated kriging variances 
were estimated at points on a 50 by 50 m grid. 

We calculated the ratio of actual MSEP to average esti­
mated kriging variance at the 75 test locations. The esti­
mated kriging variances on the 50 by 50 m grid were 
multiplied by this ratio to give more realistic estimates. 

The adjusted kriging-variance estimates were used to de­
termine confidence intervals for each point predictor on the 
50 by 50 m grid. For the calculation of a confidence interval, 
a distribution function was also needed. Journel and Hu-
ijbregts (1978, p. 15) advised use of the standard Gaussian 
distribution. In our study, 90% Gaussian confidence inter­
vals (± 1.655R, where sR is the realistic estimated kriging 
standard deviation) were calculated. 

Mapping 

Once predictions on a regular grid are obtained (at the 
primary interpolation stage), the position of isolines on the 
map can be determined (at the secondary interpolation 
stage). In our study, the location of the isolines was calcu­
lated by linear interpolation of adjacent grid points. Reem-
phasizing the point made above, liner interpolation was only 
used in the secondary interpolation stage because the grid 
from the primary interpolation was fine enough to define a 
prediction surface for which linear interpolation is adequate. 
Separate maps for predicted moisture deficits, upper confi­
dence limits, and lower confidence limits were plotted. By 
overlaying and omitting upper- and lower-confidence iso­
lines outside the range of the predicted values, an isolinear 
map of moisture deficit with empirical confidence limits was 
obtained. 

RESULTS AND DISCUSSION 

The structural models for the four prediction pro­
cedures are presented in Table 1. Log transformation 
had little effect on the form of the models. Linear semi-
variograms with large nugget effects were selected for 
ordinary kriging for both data sets. For nonstationary 
kriging, drifts of Order 1 were found with associated 
generalized covariance functions showing pure nugget 
effects. Both approaches, i.e., semivariogram and gen­
eralized covariance function, suggest a similar model 
for the data: a gently sloping planar trend across the 
study area with a large-amplitude short-distance ran­
dom component. 

Estimates of the MSEP of the four kriging proce­
dures are presented in Table 2. Ordinary kriging on 
the original data gives the lowest MSEP value, fol­
lowed by universal kriging on the original data. 

Log transformation of the data produced higher 
MSEP values, which perhaps agrees with Puente and 
Bras' (1986) findings concerning nonlinear estimators. 
Ordinary kriging performed quite well, although there 

Data 
transformation 

None 
None 
Log 
Log 

Order 
of trend 

0 
1 
0 
1 

Form of 
kriging 

Ordinary 
Universal 
Ordinary 
Universal 

Fitted model for generalized 
covariance function K(k) or 
semivariogram 7(A) 

y(h) = 71 6(A) + 138.2A 
K(h) - 81.6 5(A) 
y(h) = 0.172 5(A) + 0.296A 
K(A) = 0.203 6(A) 

Table 2. Mean square error of prediction (MSEP) of the four kriging 
procedures. 

Form of 
kriging 

Ordinary 
Universal 
Ordinary 
Universal 

Data 
transformation MSEP 

None 
None 
Log 
Log 

mm2 

151 
156 
176 
196 

g 200 

3 150 
z 
E 100 

< 
> 
2 50 
LU 
CO 

0 
0.00 1.00 0.25 0 5 0 0.75 

DISTANCE (KM) 

Fig. 3. Semivariogram of moisture deficit used in the selected kriging 
procedure. 

was a significant trend in the data. Similar results were 
reported by Yost et al. (1982), who stated that ordinary 
kriging seems to be quite robust to certain degrees of 
nonstationarity. The predictions on a 50 by 50 m grid 
were, therefore, made using the simplest method, i.e., 
ordinary kriging with the original data set. The semi­
variogram used in the kriging procedure is presented 
in Fig. 3. A map of the resulting estimated kriging 
variances is presented in Fig. 4. The variance estimates 
range from 83 to 106 mm 2 . The largest values are 
found on the right of the map, which is the result of 
the lower density of data points in this area (Fig. 1). 

The mean estimated kriging variance (MKV) at the 
75 test locations using ordinary kriging was 89 mm2 . 
This value clearly underestimates the MSEP (Table 2): 
151 mm 2 . Laslett et al. (1987) calculated the percentage 
underestimation (U) of the estimated kriging variances 
at 64 test sites predicting soil pH (H zO and CaCl2) 
using different kriging techniques. The values for U 
ranged from 22 to 77%. In this study, U has a value 
of 70%. We decided to adjust the variances on the 50 
by 50 m grid by a factor MSEP/MKV = 151/89 to 
get more realistic kriging-variance estimates. By doing 
this, we assumed that the kriging predictions were un­
biased (bias = 0 in Eq. [5]). 

The underestimation of the true kriging variance 
may arise for several reasons, one of which is the mis-
specification of the model. We believe, however, the 
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Fig. 8. Map showing the set of all the locations x (shaded) for which 
the 90% confidence interval for moisture deficit contains 15 mm. 

isoline 
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tower confidence 

2515 2520 
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imit of the 90% confidence interval 
imit of the 90% confidence interval 

Fig. 9. Map showing the set of all the locations x (shaded) for which 
the 90% confidence interval for moisture deficit contains 30 mm. 

CONCLUSIONS 
Moisture deficits of the Mander area in the Neth­

erlands were predicted on a 50 by 50 m grid using 
ordinary kriging. Universal kriging or log-transfor­
mation of the data did not reduce the mean square 
error of prediction obtained by ordinary kriging at test 
locations, in spite of a significant trend in the data and 
the skewness of the distribution. It is salutary to note 
that the simplest model gave the best predictions, sug­
gesting we should apply Occam's razor even when 
more complex methods seem appropriate. The ratio 
of mean square error of prediction to the average es­
timated kriging variance at the test locations was used 
to upgrade the kriging variances on the predicted grid 
to obtain more realistic estimates. We expect that 
more realistic kriging-variance estimates can be ob­
tained in the future by an iterative procedure in which 
our modification of using a ratio of square errors is 
only the first step. Where estimates of kriging vari­
ances are required to obtain realistic uncertainty in­
formation on predictions, we suggest following a 
procedure such as the one presented here, at least until 
further theoretical advances can be made. The realistic 
kriging-variance estimates were used to construct an 
isolinear map with 90% confidence limits, assuming a 
normal distribution of the experimental errors. This 
type of map has great value in showing the uncertainty 
in the mapped attribute, allowing users to obtain the 
predicted moisture deficit, along with its 90% confi­
dence limits, at any point in the region. In our ex­
ample, the resulting map shows that the 90% 
confidence interval for moisture deficit contains 15 
mm for almost the complete region under study. To 
obtain a more realistic picture of any mapped attri­
bute, construction of isolinear maps including confi­
dence limits is strongly recommended. 
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ABSTRACT 

In a study area of 410 ha, located in a region with acid sulphate soils in Indonesia, 790 
soil observations were made at a regular grid of 75 x 75 m. Additionally, 74 test obser­
vations were made, randomly distributed over the area. The variable "depth to the pyritic 
layer" was selected for this study. 

Two different methods were presented for the production of conditional probability 
maps of this variable. The first method is based on the use of kriging. The second is based 
on the use of the inverse distance spatial prediction technique and test points. Both tech­
niques were used to predict values of the variable for a grid of 25 x 25 m. Besides 
predicted values for every grid point, an estimation of the prediction error, expressed as 
the standard deviation, was also made. Kriging produces this standard deviation automati­
cally. With the inverse distance technique the standard deviation was estimated using test 
borings. The standard deviations obtained were used to calculate confidence intervals for 
each grid point. 

Results are presented in maps showing the probability that the depth to the pyritic 
layer exceeds 50 cm. Only small differences were found between the probability maps 
produced using the two procedures. 

INTRODUCTION 

In soil science, maps are generally used to present the spatial distribution of 
soil variables. These maps are produced either by the soil surveyor delineating 

121 



areas in the field or by spatial prediction from point observations, using a 
mathematical prediction technique (Bregt et al., 1987; Laslett et al., 1987; Bouma, 
1989). Choropleth and isolinear maps are quite popular as map forms. On 
choropleth maps, areas with equal values for a quantitative variable are separated 
by boundaries. On isolinear maps points of equal value are connected by lines 
(Dent, 1985). 

When using spatial prediction to produce a map from point observations 
prediction errors occur. These errors, however, are not presented on the map. The 
maps produced suggest that the actual situation is being presented, which could 
be misleading for a map user. The uncertainty in the information should, therefore, 
be made visible. This would enable land-use planners to take into account the 
uncertainty of the provided information in the planning process. 

Recently, Bregt et al. (1991) and Webster and Oliver (1989) presented methods 
to incorporate the prediction uncertainty in the map itself. Bregt et al. (1991) 
constructed isolinear maps with confidence limits using kriging. One disadvantage 
of their method is that the readability of the map decreases due to the increasing 
number of lines. Webster and Oliver (1989) use disjunctive kriging to delineate 
areas where predicted values exceed a threshold and represent this probability on 
the same map. Using the disjunctive kriging technique the original data is trans­
formed. 

In this paper two procedures for producing probability maps are presented. 
The first uses the simple inverse distance spatial prediction method, however, any 
other spatial prediction technique could have been used. The second uses the con-
ceptional, more complicated kriging technique without data transformation. The 
results of both procedures are compared. 

The data used in this study were obtained from a survey in an area with acid 
sulphate soils in Indonesia (South Kalimantan). The variable depth to the pyritic 
layer was used. The presented study focused on the presentation of this variable 
in the form of conditional probabilities. Research on the optimum observation 
density for mapping depth to the pyritic layer is reported by Bregt et al. (1990). 
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MATERIALS AND METHODS 

Study area 

The study was made in the Pulau Petak region in Southern Kalimantan, Indonesia. 
Pulau Petak is located west of the town of Banjarmasin, between the rivers Barito 
and Kapuas Murung. The Pulau Petak region is about 210 000 ha; 90 km long 
and 20-30 km wide. The area is part of a coastal plain in which physiographic 
units such as alluvio-marine plains, levees, coastal ridges, old river beds and peat 
domes can be distinguished (Janssen et al., 1990). 

The area is situated in a wet tropical climate, with an average annual tempera­
ture of 27 °C and an average annual precipitation of 2200 mm. The climax vege­
tation is fresh water swamp and peat forest, with riverine forest on the levees and 
salt and brackish water vegetation along the coast. Due to human activities most 
of the natural vegetation has disappeared. In the present situation, reclaimed areas 
with rice fields, abandoned rice fields and secondary, acid tolerant vegetation can 
be found. 

The conditions along the coast, with mangrove vegetation and continuous 
marine sedimentation are typical for the formation of pyrite (Pons and Van 
Breemen, 1982; Dent, 1986). As a result, the soils in the Pulau Petak region are 
dominated by potential and, after drainage, actual acid sulphate soils. 

Soil survey 

Within the Pulau Petak region a detailed soil survey was made in a study area of 
410 ha (the Belawang area) located in an alluvio-marine plain. In the study area, 
soil patterns cannot be revealed from landscape features, so the soil surveyor must 
rely mainly on his soil profile observations. Auger borings were made in a regular 
grid of 75 x 75 m. To get an impression of the short range variation, additional 
observations near some of the grid points were made at distances of 1, 5 and 25 
m. In total 790 borings were made, which in this article are referred to as "obser-
vation points" (193 observations/km ). Besides the observation points, 74 extra 
borings were made to serve as a test set (test points). The locations of the test 
points were selected by a random procedure. 

At the observation and test points several soil characteristics were recorded 
in the field and soil samples were taken for analysis in the laboratory. Potential 
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and actual acidity were determined for each sample, using the method described 
by Konsten et al. (1988). 

In this study the depth from the surface to the pyritic layer is the main variable 
of interest. This variable determines to a large extent the agricultural possibilities 
of the soil. The presence of pyritic material in the rooting zone may, after drainage, 
cause severe acidification which restricts the development of plant roots. 

The following operational definition for the variable depth to the pyritic layer 
was used: 

"If in a soil horizon the potential acidity exceeds 32 mmol H+ per 100 g soil, 
the depth from the surface to the top of this horizon is considered to be the 
depth to the pyritic layer." 
The value of 32 mmol H+ per 100 g soil is the equivalent of 0.75% total S, 

used as a criterion for pyritic materials in Soil Taxonomy (Soil Survey Staff, 
1975). 

Spatial prediction and prediction error 

The values of the variable at the observation points were used to predict the value 
of the variable at unknown points in a grid (25 x 25 m), using kriging and the 
inverse distance method. Spatial prediction can be described as: 

(1) 

A 

Where: Zp = Predicted value of variable Z at point p; 
Wj = Weighting factor assigned to point i; 
Zj = Measured value of variable Z at observation point i; 
n = Number of observation points used in the prediction. 

A 

The predicted value Z at point p is a weighted average of the values of variable 
Z at n surrounding observation points. In both prediction methods, the 24 closest 
observation points were used to predict points. The two methods differ in the way 
the weighting factors are determined. 

The predicted value at a point will differ from the true value: the prediction 
error. The prediction is unbiased if the average prediction error is zero. However, 
predictions may be scattered widely around the true values. This scatter can be 
expressed as the prediction error variance SE

2 (Davis 1986): 
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s.»-±i:fc-V (2) 
n p = i 

Where: Z = Measured value of variable Z at test point p. 

This prediction error variance is unknown and must be estimated. This was 
done differently for the two spatial prediction methods. 

Inverse distance 

The inverse distance method is based on the assumption that the value Z, at a point 
p that is to be predicted, is more similar to nearby points. The calculation of the 
weights is based on the distance between the points to be predicted and the obser­
vation points (Ripley, 1981). 

The inverse distance method provides no information about the prediction 
error. We used the test points to estimate the prediction error variance. Inverse 
distance prediction to the test points was made. For each test point the difference 
between the measured value and the predicted value was calculated to give the 
prediction error. The distribution of prediction errors of the test points was used 
to estimate prediction error variance, assumed to be valid for the whole area. This 
assumption is defensible in a situation with a regular observation grid together 
with only slight differences in soil variation in the area. Both requirements were 
met in this study. 

The described procedure for obtaining uncertainty estimates is not restricted 
to the inverse distance method any other spatial prediction technique can be used. 

Kriging 

In this study ordinary kriging was used. In the kriging procedure the weights to 
be used in the prediction (see Eq. (1)) are calculated using semivariances (Journel 
and Huijbregts, 1978; Webster, 1985; Cressie, 1989). The semivariance is a mea­
sure of the degree of spatial dependence between observation points at a certain 
distance h. The sample semivariogram was calculated using the observation points. 

In a sample semivariogram, semivariance is known only at discrete points at 
distance intervals h. The kriging procedure requires semivariances for any distance. 
For this reason the discrete sample semivariogram must be modelled by a 
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continuous function. Journel and Huijbregts (1978), Cressie (1985) and McBratney 
and Webster (1986) describe several possible semivariogram models. 

In Eq. (1) an infinite number of possible combinations of weights exist, each 
of which will give a different prediction and a different prediction error. However, 
only one combination will give a minimum prediction error. This unique combi­
nation of weights is calculated in the kriging procedure. If the model assumptions 
are correct, kriging produces predictions that have the smallest possible error. At 
the same time, kriging produces an explicit statement of the magnitude of this error 
in the form of estimated kriging standard deviation (KSD) for every predicted 
location. 

i The semivariogram is of major importance in the kriging procedure. Errors 
\/ J in the semivariogram model not only influence the predicted value itself but also 

the estimated KSD. 

Prediction intervals and mapping 

Using the distribution of the prediction error, a confidence interval around the 
predicted value can be determined for each grid point, within which the true value 
will fall with a pre-specified probability. The probability of the true value of a 
grid point falling within a pre-specified interval can also be calculated. 

Assuming the prediction error is normally distributed, the standard deviation 
of the prediction error can be used to calculate prediction intervals (Journel & 
Huijbregts, 1978; Davis, 1986; Bregt, 1991): 

P (Zj " S4 * zal2 <Z, <Z, - S, * za/2) = 1 - a ( 3 ) 

Where: P = The probability of the true value Z; falling between the stated limits; 
Zj = The true but unknown value of variable Z at point i; 
A 

Zj = The predicted value at point i; 
S; = The standard deviation of the prediction error at point i; 
zaj2 - The z-score derived from the standard normal distribution, corres­

ponding to significance level a/2. 
Or, if one-sided probabilities need to be calculated: 

P (Z, >Z, - S, * z j = 1 - o ( 4 ) 
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and 

P (Z, <Zi + S, * za) = 1 - o (5) 

Now, for each grid point the condition of whether the true value of variable 
Z - with a certain value of the significance level a - will exceed a certain threshold 
value or not ("true or false") can be tested. The desired probability, as well as the 
threshold value, can be varied (Fig. 1). 

If in Figure 1, for a given value of a, the minimum value of the prediction 
A 

of the prediction interval (Zj - S; * za) exceeds the threshold value T, the true 
value of variable Z at point i will - with a probability of (1-oc) * 100% - exceed 
the threshold value. In Figure 1 this condition is true for grid point B and false 
for grid point A. 

Grid point A 

Z - S * z 

Grid point B 

Fig. 1. Testing the condition that the true value (Zj) of a variable will exceed a threshold 
value (T). 
A 

Zj = Predicted value of variable Z at point i; 
Sj = Standard deviation of the prediction error at point i; 
za = z-score derived from standard normal distribution for significance level a; 
T = Threshold value. 

127 



When presenting information one must choose between varying the probability 
(threshold value fixed) and varying the threshold (probability fixed). We carried 
out the procedure for the first possibility: the probability (1-a) was varied, the 
threshold value was kept constant. This resulted in a map with delineated areas 
where, with increasing probability, the true value of the variable exceeded the 
threshold value. As a threshold value for depth to the pyritic layer 50 cm was 
chosen. For soil classification purposes this value is relevant (Soil Survey Staff, 
1975). 

Using the results of both prediction methods, the grid points were mapped for 
five different values of a. The differences between both methods were evaluated 
by calculating the number of grid points differently classified in probability 
classes. The operations needed to derive the maps were made using with the GIS-
package ARC/INFO (ESRI, 1989). 

RESULTS AND DISCUSSION 

Spatial variability of depth to the pyritic layer 

The semivariogram of the variable depth to the pyritic layer is presented in Figure 
2. A linear model with parameters C0 (nugget variance) and C/a (slope) was fitted 

200 400 600 800 1000 1200 1400 1600 

h(m) 

Fig. 2. Semivariogram of depth to the pyritic layer in the study area. Nugget variance 
(C0) = 311 cm2; slope (C/a) = 325. 
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through the sample semivariances. Several interval sizes and directions were 
examined. In all cases the linear model showed a good fit for distances of less 
than 500 m. The large nugget variance indicates measurement errors and/or 
variation of the variable within the shortest observation distance. The magnitude 
of the short range variation is illustrated in Figure 3. Differences of more than 
50 cm in the depth to the pyritic layer can be found within 25 m. Such high short-
range variability is often found in acid sulphate soils due to the genesis of such 
soils (accumulation of secondary pyrite along root channels) and/or partial oxi­
dation of pyrite along the root system or structure elements (Dent, 1986). 

100 -, 

100 

Value first point in pair (cm) 

Fig. 3. Scatter diagram of depth to the pyritic layer in the study area for pairs of obser­
vation points with a mutual distance of less than 25 m. 

Predicted values for grid points 

Predictions were made for grid points using kriging and the inverse distance 
method. Distribution of the differences in predicted values produced by the two 
prediction procedures is presented in Figure 4. The differences prove to be rather 
small: in only 3% of the points did the difference exceed 10 cm, and 86% had 
a difference of less than 2.5 cm. Taking soil description accuracy into account 
these differences can be neglected. The map with the values obtained by kriging 
and classified in intervals of 10 cm is presented in Figure 5. A choropleth map 
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is normally used to present quantitative variables and provides no information 
about the reliability of the presented data. 

3200 

2400 

1600 -

800 

-10 0 10 

Difference (cm) 

20 

Fig. 4. Distribution of the differences in predicted values of starting depth of the pyritic 
layer for grid points obtained with kriging and the inverse distance method. 

Prediction error 

The kriging procedure produces a kriging standard deviation (KSD) for every pre­
dicted grid point. The KSD varies with observation density. For the Belawang area 
with its regular pattern of observation points it was not surprising that the KSD 
shows little variation, as can be seen in Figure 6. The KSD itself had a standard 
deviation of a few millimetres. The mean KSD was slightly less than 19 cm, a 
rather high value. 

The results of inverse distance prediction to test points are presented in Figure 
7. As mentioned in the previous section it must be assumed that this distribution 
is valid for the whole area. For a number of reasons this assumption seems accep­
table for this data set. First, the mean error of the inverse distance prediction to 
test points was about zero (Fig. 7). Second, the mean KSD almost equalled the 
standard deviation of the prediction error resulting from the inverse distance pre­
diction to test points. Third, the KSD hardly varied over the area. 
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Fig. 5. Map showing the depth to the pyritic layer in the study area, predicted by kriging. 
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Fig. 6. Distribution of the estimated kriging standard deviation (KSD) for the study area. 
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Fig. 7. Distribution of the prediction errors, calculated with inverse distance prediction 
to measured test points. The distribution has a mean of 0.06 cm and a standard 
deviation of 18.06 cm. 
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Mapping conditional probabilities 

In Figure 8, the condition of whether or not the true value of the variable with 
a probability of 80% (a = 0.2) will exceed 50 cm is evaluated for two grid points. 
If 80% of the area under the curve lies to the right of the threshold value it is true 
(grid point B), otherwise the condition is false (grid point A). 

This condition tested for each grid point and the procedure repeated for several 
values of a, leads, after classification, to the maps shown in Figures 9 and 10. 
The kriging procedure produced a more smoothed map. In general, both maps give 
similar information about the variable. 

The area on the maps in Figures 9 and 10 where the actual depth to the pyritic 
layer with a probability of 80 % will exceed 50 cm, is much smaller than the area 

Grid point A 

Z.- S • 2, = 45 cm 
A A (<x=0.2) 

Grid point B 

ZB-SB* 2 (a=0.2)= 6 0 c m 

Sg = 18 cm 

Zg = 75 cm 

T = 50 cm 

Fig. 8. Testing the condition of whether or not the true value of the variable at a grid 
point with a probability of 80% will exceed the threshold value of 50 cm. 

Predicted value for grid points A and B; 
Standard deviation of the prediction error for grid points A and B; 
z-score of the standard normal distribution for a significance level 
a = 0.2. 

A A 

ZA and Zg 
SA and Sg 
z(a=0.2) 
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Fig. 9. Map showing probability on depth to the pyritic layer > 50 cm, based on 
predictions by kriging and the estimated Kriging Standard Deviation (KSD). 
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Fig. 10. Map showing probability on depth to the pyritic layer > 50 cm, based on 
predictions using the inverse distance method and the standard deviation of the 
prediction errors, calculated using the test points. 
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mapped on the map in Figure 5 having a depth greater than 50 cm. The conclusion 
must be that the boundaries on a map based only on predicted values (Fig. 5) are 
not very reliable, especially when the prediction error is high. This could lead to 
wrong interpretations by map users. 

A possible difficulty in interpreting the maps in Figures 9 and 10 should be 
mentioned. For instance, in the 80-90% probability class on those maps, the proba­
bility of the true value of the variable exceeding the threshold is 80-90% for each 
separate point. When joining points to areas, the expected value of the area fraction 
where the true value exceeded the threshold value was also 80-90%. In practice 
severe deviations from the expected value may occur. A measure of this deviation 
is the variance of the area fraction exceeding a threshold value. When the indivi­
dual grid points are dependent, the variance is greater than in the situation where 
the grid points are independent. The dependent situation occurred in our study. 

CONCLUSIONS 

The variable depth to the pyritic layer shows a strong variation in space. The boun­
daries on a map based only on predicted values are not very reliable, especially 
when the prediction error is high. Mapping this variable in the form of conditional 
probabilities gives a better picture of the real nature of this variable, which is 
important for a proper use of the soil data. 

Only slight differences for mapping uncertainty were found between kriging 
and the procedure based on the use of test points and the inverse distance method. 
In the case of many, regularly distributed, observation points and a rather constant 
spatial variation of the variable of interest, the proposed procedure can be used 
as it is cheap and efficient. In other cases, however, the more sophisticated kriging 
procedure is preferable. 
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P.O. Box 125, 6700 AC Wageningen, The Netherlands 

ABSTRACT 

The complexity of a choropleth map has an important influence on its readability. 
Six map complexity measures (aggregation index, compactness index, boundary contrast 
index, fragmentation index, boundary index, size disparity index) described in literature 
are presented in this study. Correlation coefficients between these indices are calculated, 
using 90 different maps. It is shown that most of the measures are highly correlated and 
therefore redundant. 

Visual judgement of 13 maps by 28 subjects shows that four indices (aggregation 
index, compactness index, fragmentation index, boundary index) can serve as reliable 
indicators of map complexity. As a result, each of these measures can be used to compare 
pattern complexity among different maps. The fragmentation index seems to be the best 
choice in view of its simplicity and calculation ease. 

INTRODUCTION 

Choropleth maps are often used in cartography for presenting spatial information. 
For the production of a choropleth map, grouping of data into classes is often 
necessary, although some authors (Tobler, 1973; Peterson, 1979) have proposed 
the use of classless choropleth maps. Classification has a great impact on the 
ultimate map. Even with the same number of classes two different classification 
methods can yield completely different maps. Various methods for data classifica­
tion in choropleth mapping are presented by e.g. Evans, 1977; Jenks, 1977 and 
Stevanovic and Vries-Baayens, 1984. It is important to choose a method which 
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yields on the one hand a map containing relevant information for the user and on 
the other hand a map which is easy readable. The readability of a map is a 
function of: 
- the presentation quality; 
- the map reader's experience with cartographic materials and; 
- the complexity of the map pattern (Monmonier, 1974; Dent, 

1985). 
This study is focused on the complexity of the map pattern. The readability 

of a map decreases with increasing complexity of the map pattern. Complexity 
is related to the number, size and distribution of delineated areas on the map. In 
literature, various measures for map complexity are described. In the study 
presented here some of these measures are compared in order to select a reliable 
measure for map complexity. 

MEASURES OF MAP COMPLEXITY 

Map complexity has been studied by several cartographic researchers (Olson, 1972; 
Monmonier, 1974; Miiller, 1975 and 1976; Chang, 1978; MacEachren, 1982) and 
various measures of map complexity have been defined, six of which were selected 
in this study. These six complexity measures are described in detail below. All 
measures can be used if the individual base enumeration units that compose the 
choropleth map are known. For raster maps these units are rectangular and of equal 
size. Only two of the six complexity measures (boundary index and size disparity 
index) can be used without knowing the base enumeration units of a choropleth 
map. 

We designed six map fragments of 4 by 5 grid cells (MF1 to MF6) to compare 
the impact of different map patterns on the selected measures (Figure 1). 

Cells with the same class that touch each other in a corner point are considered 
to represent different polygons, unless a mutually adjacent cell also falls in that 
class. For each map fragment, values of the six complexity measures are calculated 
(Figure 2). 
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Fig. 1 Six map fragments (MF1 to MF6) of twenty grid cells with different complexities. 

Aggregation index 

A map pattern looks 'aggregated' if a group of adjacent enumeration units belongs 
to the same class. Miiller (1975) defined the aggregation index (AG) as: 

n n n n 
AG = Z E ab-J I I a--

i= l j= i y i= i j= i y 
(1) 

where n = number of enumeration units; a- = 1 if cells i and j are adjacent, ay 
= 0 when otherwise and when i = j ; aby = 1 if cells i and j are adjacent and belong 
to the same class; aby = 0 otherwise and when i = j . 
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Fig. 2 Histograms of the six complexity measures. Each histogram shows values for one 
complexity index, calculated for the six map fragments of Figure 1. 
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The aggregation index ranges between 0 and 1. High values of this index indicate 
a low complexity of the map pattern. 

For MF1 in Figure 2 the maximum value of the aggregation index is reached 
because all grid cells belong to the same class. Most cells of MF6 fall in one class, 
which results in a high index value. All cells in MF5 are different and the 
aggregation index is therefore 0. The indices of MF2 and MF3 are not the same, 
in spite of the equal distribution of grid cells over the two classes. The aggregation 
index of the 'chess board pattern' MF2 is lower than the index of MF3 because 
of the higher amount of contiguous grid cells. 

Compactness index 

A map can be considered compact if the map pattern consists of clustered regions 
of three or more enumeration units belonging to the same class. Compactness is 
a special case of aggregation and is determined by the number and size of clustered 
regions. A group of i cells belonging to the same class is compact if i - 1 cells 
are all adjacent to another similar cell and at least i - 2 pairs of those i - 1 sur­
rounding cells are adjacent to each other (Miiller, 1975). 

We computed the total number of compact regions of three up to and including 
nine enumeration units. The total compactness (TCP) can then be calculated as: 

g 
TCP = I W(i)*E(i) (2) 

i=3 
where W(i) = total number of cells in compact region and 
E(i) = total number of compact regions of i cells. 

In this study, a TCP-value is divided by the maximum value of TCP to derive the 
compactness index (CP), which ranges between 0 and 1. High values of this index 
indicate a low complexity of the map pattern. 

All the 20 grid cells of MF1 belong to the same class: the compactness index 
is maximal. MF2 and MF5 both have no group of at least three compact cells and 
the index is therefore 0. MF6 is very compact, which results in a high compactness 
index. 
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Boundary contrast index 

Miiller (1975) defined map complexity as the total amount of three mutually adja­
cent enumeration units belonging to three different classes. In this study, this value 
is divided by its maximum value for a map to derive the boundary contrast index 
(BC). This index ranges between 0 and 1. High values indicate a high complexity 
of the map pattern. 

MF1, MF2, MF3 and MF6 have only one or two classes and the index value 
is therefore 0. The maximum value is reached for MF5 because all the 20 grid 
cells belong to different classes. 

Fragmentation index 

A map pattern looks fragmented if it consists of a large number of small polygons. 
The fragmentation index (FI) is a standardized measure of this number of polygons 
and is described by Monmonier (1974): 

FI = (M- \)/(N - 1) (3) 
where M = number of polygons and N = number of enumeration units. 

FI varies from 0 to 1. High values indicate a high complexity of the map pattern. 
The fragmentation index of MF2 and MF5 is maximal because in these map 

fragments each grid cell forms one small polygon. 
MF1 consists of only one polygon; the index value is therefore 0. The increasing 
amounts of polygons in MF3, MF6 and MF4 result in increasing values of the 
fragmentation index. 

Boundary index 

Bregt et al. (1988) defined the boundary index (BI) as the total length of boundary 
lines between polygons divided by the total area of the map. The index has a mini­
mum of 0 and no specific maximum value. High index values indicate a high com­
plexity of the map pattern. 

MF1 has no boundaries and the index is therefore 0. The highest boundary 
indices are found for MF2 and MF5, which both consist of 20 individual polygons. 
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Size disparity index 

The disparity index, also described by Monmonier (1974), is a measure of areal 
inequality of polygons, based on the Lorenz curve (Yeates, 1968, pp. 90-92). First, 
the area of each polygon is determined. These areas are divided by the total area 
of the map, so that their sum is 1.0. Next, these proportionate areas are rank-
ordered from lowest to highest. A vector of cumulative proportionate areas is 
obtained. These cumulative proportionate areas are plotted against the ranks. If 
all the polygons are equal in size, a straight line (diagional) will be the result. If 
this is not the case, the line will be a curve under the diagonal. The area between 
diagonal and line is the size disparity index (SD). The index ranges from 0 for 
polygons of uniform size to almost 0.5 in case of maximum areal inequality of 
polygons. High values usually indicate a low complexity of the map pattern. 

MF1, MF2, MF3 and MF5 all have polygons of the same size and their size 
disparity indices are therefore 0. The differences in size are especially pronounced 
in case of MF6, which is indicated by its high index value. 

EXPERIMENTAL DESIGN 

To compare the different complexity measures, data from a study area in the 
eastern part of The Netherlands were used. In this area water-tables have been 
lowered as a result of water extraction for drinking water supplies. For 410 dif­
ferent locations the average moisture deficit for grass under the present hydrologi-
cal situation (variable A) and the change in grass yield due to water extraction 
(variable B) were determined (Bregt and Beemster, 1989). With the interpolation 
method kriging predictions were made on a raster of 31 by 37 raster cells of 50 
m x 50 m for both variables. The resulting data were grouped into a maximum 
often classes using different classification techniques. A total of 90 classifications 
were carried out, resulting in 90 different maps. For each map, the values of the 
selected six complexity measures were computed. Finally, correlation coefficients 
between these indices were calculated. 

An experiment was conducted to select the best indicator of map complexity. 
Twenty-eight subjects (most of them without significant knowledge of cartography) 
were asked to participate in a test on complexity of map patterns. Six four-class 
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maps of data set A (test set A) and seven four-class maps of data set B (test set 
B) were used. Both test sets were presented to each subject, one at a time. Each 
subject was first informed of the nature of the experiment and was then asked the 
following question: "Please arrange these two sets of four class maps from low 
to high complexity. A map is considered to be complex if the pattern looks intri­
cate or involved. You have approximately five minutes for this task. Maps that 
in your opinion do not differ in complexity may have the same order." 

Finally, the six measures of pattern complexity were computed and rank-
ordered for each test set. The ranked data given by the subjects were compared 
with the rank orders of each complexity index to select the best indicator of pattern 
complexity. 

STATISTICAL COMPARISON 

The correlation coefficients between the six complexity measures of the 90 maps 
are presented in Table 1. High absolute values indicate a strong correlation. All 

Table 1. Correlation coefficients between the various 
complexity indices. AG: aggregation index; CP: 
compactness index; BC: boundary contrast 
index; FI: fragmentation index; BI: boundary 
index; SD: size disparity index. 

AG 
CP 

BC 
FI 

BI 
SD 

AG 

1.00 
0.98 

-0.82 

-0.90 

-1.00 
0.07 

CP 

0.98 
1.00 

-0.69 

-0.79 

-0.97 
-0.04 

BC 

-0.82 
-0.69 

1.00 

0.98 

0.83 
-0.29 

FI 

-0.90 
-0.79 

0.98 

1.00 

0.91 
-0.24 

BI 

-1.00 
-0.97 

0.83 
0.91 

1.00 
-0.08 

SD 

0.07 
-0.04 

-0.29 
-0.24 

-0.08 
1.00 
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the indices, except the size disparity index, are highly correlated. Simultaneous 
calculation of all of these indices as measures for map complexity is not very 
reasonable. 

The size disparity index clearly represents another aspect of the map pattern 
than the other selected measures. 

RELATIONS BETWEEN VISUAL JUDGEMENT AND COMPLEXITY 
MEASURES 

The results of the complexity judgement of the two test sets by 28 subjects are 
presented in Tables 2 and 3. The maps in these tables are ordered according to 
their average ranks (Cm). This value is calculated according to: 

n 
Cm = 1/28 Z Ci*P\ (4) 

where n = number of maps in test set; Ci = place in complexity order and Pi = 
number of subjects assigning a particular map to place Ci. 

Table 2. Number of subjects assigning a place in the 
complexity order (1 to 6) to a particular map 
for test set A; Cm = mean complexity order 
(see text). 

Map 

Al 
A2 

A3 
A4 
A5 
A6 

1 

28 
6 

0 
0 
0 
0 

2 

0 
22 

0 
0 
0 
0 

3 

0 
0 

27 
1 
0 
0 

4 

0 
0 
1 

15 
12 

0 

5 

0 
0 

0 
9 

14 

5 

6 

0 
0 

0 
3 
2 

23 

Cm 

1.0 
1.8 

3.0 
4.5 
4.6 
5.8 

Al and B2 are the least complex maps (lowest Cm) and A6 and B7 are the 
most complex maps (highest Cm). In test set A, map Al was clearly the least 
complex one. All the subjects agreed on this, although six persons did not see any 
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difference with map A2. The differences between maps A4 and A5, and between 
B4 and B5 are small. Most subjects found ordering of test set B more difficult 
than test set A: this can also be concluded from the larger spread of the subjects 
over the complexity classes. As an illustration two maps of test set A are presented 
in Figure 3. 

Table 3. Number of subjects assigning a place in the 
complexity order (1 to 7) to a particular map for test 
set B; Cm = mean complexity order (see text). 

Map 

Bl 
B2 

B3 
B4 
B5 
B6 
B7 

1 

22 
7 
0 
0 
0 
0 
0 

2 

6 
21 

0 
0 
0 
0 
0 

3 

0 
0 

26 
6 
5 
4 
3 

4 

0 
0 
1 

10 
11 
8 
2 

5 

0 
0 
0 
7 
6 
5 
7 

6 

0 
0 

0 
5 
6 
8 
6 

7 

0 
0 
1 

0 
0 
3 

10 

Cm 

1.2 
1.8 
3.2 
4.4 
4.5 
4.9 
5.6 

In Table 4 the values of the complexity indices for the 6 maps of test set A 
are given. The maps in this table are ordered according to increasing complexity, 
as experienced by the subjects. Al is the least complex map and A6 the most 
complex. The ordering of the calculated complexity indices according to increasing 
complexity is presented in brackets. The lowest complexity is indicated by 1. 
Similar ordering of calculated measures and maps indicates a correct prediction 
of the experienced complexity by the complexity measures. This is the case with 
the aggregation index, compactness index, fragmentation index and the boundary 
index. The boundary contrast index has a value of 0 for four of the six maps. 
Therefore, this measure is not very useful, especially not for the least complex 
maps. The size disparity index does not show a clear relationship with the map 
sequence. 

In Table 5 the values of the complexity indices for the seven maps of test set 
B are given. The complexities of the maps Bl, B2 and B3 are very well estimated 
by the aggregation index, compactness index, fragmentation index and the boundary 
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Fig. 3 a) Map of test set A (Al): this map is considered to be least complex by the 
subjects, 

b) Map of test set A (A6): this map is considered to be most complex by the sub­
jects. 
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index. The complexities of B4 and B5, however, are confused. This is under­

standable because the average ranks (Cm) of B4 and B5 are almost equal. The 

two most complex maps are ordered correctly by the fragmentation index and 

boundary contrast index only. The complexity sequence given by the size disparity 

index again differs clearly from that given by the subjects. 

Table 4. Complexity indices computed for the test maps Al to A6. The 
subjects considered A1 as the least, and A6 as most the complex 
map. Each index is ordered according to increasing computed 
complexity. For each index the place of each map in this order 
is given in brackets. AG: aggregation index; CP: compactness 
index; BC: boundary contrast index; FI: fragmentation index; 
BI: boundary index; SD: size disparity index. 

Map AG CP BC FI BI SD 

Al 0.937 (1) 0.842 (1) 0 (1) 0.003 (1) 2.061 (1) 0.325 (6) 
A2 0.928 (2) 0.815 (2) 0 (1) 0.004 (2) 2.342 (2) 0.342 (5) 
A3 0.868 (3) 0.684 (3) 0 (1) 0.012 (3) 4.309 (3) 0.404 (3) 
A4 0.852 (4) 0.639 (4) 0 (1) 0.019 (4) 5.089 (4) 0.423 (1) 
A5 0.802 (5) 0.529 (5) 0.004 (2) 0.020 (5) 6.681 (5) 0.380 (4) 
A6 0.751 (6) 0.451 (6) 0.020 (3) 0.043 (6) 8.511 (6) 0.406 (2) 

Table 5. Complexity indices computed for the test maps BI to B7. The 
subjects considered BI as the least, and B7 as most the complex 
map. Each index is ordered according to increasing computed 
complexity. For each index the place of each map in this order 
is given in brackets. AG: aggregation index; CP: compactness 
index; BC: boundary contrast index; FI: fragmentation index; 
BI: boundary index; SD: size disparity index. 

Map AG CP BC FI BI SD 

BI 0.832 (1) 0.591 (1) 0 (1) 0.018 (1) 5.771 (1) 0.412 (1) 
B2 0.827 (2) 0.569 (2) 0 (1) 0.019 (2) 5.836 (2) 0.411 (2) 
B3 0.779 (3) 0.477 (3) 0.003 (2) 0.024 (3) 7.464 (3) 0.384 (5) 
B4 0.749 (5) 0.444 (4) 0.012 (4) 0.034 (5) 8.612 (5) 0.383 (6) 
B5 0.753 (4) 0.444 (4) 0.008 (3) 0.031 (4) 8.487 (4) 0.373 (7) 
B6 0.732 (7) 0.425 (6) 0.015 (5) 0.042 (6) 9.261 (6) 0.393 (3) 
B7 0.735 (6) 0.438 (5) 0.020 (6) 0.052 (7) 9.261 (6) 0.390 (4) 
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Combining the results of Tables 4 and 5, it is clear that aggregation index, 
compactness index, fragmentation index and boundary index are good indicators 
for the experienced complexity by the subjects. Between these four measures also 
a strong correlation exists, as is indicated by the calculated correlation coefficients 
(Table 1). As a result of this strong correlation, calculation of one measure is 
enough for characterizing the complexity of the map pattern. The fragmentation 
index appears to be the best choice in view of its simplicity and ease of 
calculation. 

Sometimes the total number of base enumeration units in a choropleth map 
is unknown. In this case, neither the fragmentation index nor the aggregation index 
nor the compactness index can be calculated. Then, the complexity of the map 
pattern can be described by the boundary index, because this measure is not based 
on the original individual enumeration units. 

CONCLUSIONS 

When producing a choropleth map it is important to pay attention to its readability. 
One way of increasing the readability of the map is to limit the complexity of the 
map pattern, which can be quantified by a complexity measure. The fragmentation 
index is the most suitable measure. 

One has to be aware that a too strong simplification of the map pattern might 
result in the loss of valuable information for the map reader. The challenge is to 
produce a readable map, which contains the desired information. Evaluation of 
a complexity measure during the process of map design is strongly recommended. 
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11 Concluding remarks 

The reason of existence of soil survey is its recognized ability to provide relevant 
soil information to users. As the questions change soil survey must also react 
accordingly to provide the right answers to the questions raised. The present 
changes in demand can be summarized in the following three points: 

- new information; 
- rapid production of information; 
- quality of information. 

New information 

The traditional soil survey products in The Netherlands mainly focus on answering 
agricultural questions. Most soil classification systems are designed for this 
purpose. Although the agricultural questions remain relevant, new questions are 
raised as a result of environmental problems. For instance, questions about the 
behavior of pollutants in the soil and the behavior of soil attributes (e.g. organic 
matter, soil structure) in time in relation to sustainable land use. Soil survey data 
is also increasingly being used as input data for simulation models. These models 
generally require quantitative data and information on variability. To sum up, we 
can say that there is a demand for information about new attributes, attributes 
measured at a quantitative scale, variability of attributes and behavior of attributes 
in time. 

For the derivation of new attributes many pedotransfer functions have been 
established (e.g. Breeuwsmaet al., 1986; Wosten, 1990). Most attributes collected 
in soil surveys in the world are recorded on a qualitative measurement level (see 
Chapter 3). Commonly used statistics, such as mean, standard deviation and 
semivariance, and most spatial interpolation techniques are not permissible for 
this data type. In soil survey it must be realized that increasingly more questions 
raised require answers in quantitative terms, and also that for quantitative data, 
processing techniques are available or are being developed. Within a standard soil 
survey, more quantitative data should be collected as is done at this moment. 
Although it is useful to focus not only on which data should be available, but also 
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on which data are available. The development of useful processing techniques of 
qualitative data should be encouraged. Or to cite Hillel (1991): 

"The utility of soil physics in the solution of many environmental problems 

is thwarted by the absence of a comprehensive and readily accessible data 
bank in which all sound measurements of soil properties and processes 
are recorded and correlated. To be useful, such data must be quantitative 
and fully specified. The acquisition of such data should be an integral 
activity of national and of international soil surveys that at present are 
still too qualitative and in some cases subjective. Rather than merely 
criticize such surveys, soil physicists should seek to participate in their 
work and contribute to their improvement." 

The variability of soil attributes within mapping units or small areas has been 
studied in many case studies (e.g. see Chapter 5; Marsman & De Gruijter, 1984), 
but has not yet yielded an approach which is incorporated in standard soil surveys. 
The most common model for describing soil variation is still the discrete spatial 
model without variability within the mapping units. 

The behavior of soil attributes in time did not receive much attention in soil 
survey. Up to now most recorded soil attributes are considered to be constant in 
time. We know that this is not true when longer time intervals are involved. In 
The Netherlands we have, for instance, a decrease in the thickness of peat layers 
and changes in density and organic matter contents of the soil. The dimension of 
time can no longer be ignored in soil survey. We must consider soil survey more 
as a "monitoring" activity, with monitoring intervals of 10-20 years. As present 
technology (soil information systems) makes this new attitude possible, it is time 
to change our mental concepts about soil survey. 

Rapid production of information 

When soil survey data are needed for policy support studies the time available 
for answering questions is often limited. For instance, there is no time to spend 
three years on data collection to get an answer. We must be prepared to rapidly 
analyze effects of different scenarios. In order to produce information fast, 
computer storage, analysis and presentation is necessary. In most countries soil-
and geographical information systems have been implemented, which produce 
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information rapidly. The implementation of automated analysis techniques is less 
far developed than the storage of data alone. 

Quality of information 

Product specifications and usually provided with industrial products such as chips, 
electronic components and cars. These specifications also include an indication 
of the quality of the product. The user decides which product suits his 
requirements, based on the quality and the price. A similar tendency can be found 
in the use of soil data. Providing soil information alone is not enough; the user 
also wants information about the quality of the information. Based on the 
specifications, he can decide if the information provided meets his needs. It might 
be possible that less, or more information is needed. To satisfy the demands of 
the users we must provide them with the necessary parameters by which they can 
make their judgements. 

For a long time the only statement about quality of soil information has been 
the purity of the soil map, which was assumed to be constant for all units. In a 
standard soil survey no check on the validity of the assumed purity was done. It 
is obvious that this is not very reliable as a measure of quality. Providing 
information about the means and variances of attributes in mapping units as 
demonstrated by Visschers (1992) are essential parameters in the future. 
Furthermore, the quality of data should be made visible in our presentations (see 
e.g. Chapter 8 and 9). 

We are facing an interesting period in soil survey. A period in which, as a 
result of the changing demand, traditional procedures are no longer able to answer 
all questions raised. It is a challenge for soil survey to develop and adopt new 
strategies in the years to come. 
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12 Samenvatting 

Verwerking van gekarteerde bodemgegevens 

De bodem speelt een belangrijke rol in de landbouw, de landgebruiksplanning en 
de milieu- en natuurbescherming. Al deze activiteiten vragen informatie over de 
bodemsamenstelling en over bodemprocessen. Er is behoefte aan een grote 
verscheidenheid aan informatie, die tot gevolg heeft dat de bodem vanuit diverse 
invalshoeken bestudeerd wordt, onder andere de bodemchemie, de bodemfysica, 
de bodembiologie en de bodemkartering. Bodemkartering is de studie van de ruim-
telijke verbreiding en de eigenschappen van bodems. 

In het omzetten van de verzamelde basisgegevens naar voor een gebruiker 
relevante informatie kunnen de stappen verzamelen, opslaan, analyseren en presen-
teren worden onderscheiden (bodemkundige gegevensverwerking). Hoe het proces 
van gegevens verzamelen tot en met het presenteren van informatie verloopt hangt 
af van de vraag. De vraag bepaalt uiteindelijk welke gegevens er verzameld en 
hoe ze verwerkt moeten worden. Aan de vraagkant naar bodemkundige informatie 
zijn drie ontwikkelingen te noemen: 

Ten eerste is er vraag naar nieuwe informatie. Dit is een gevolg van de sterk 
toegenomen aandacht voor milieu en duurzaam landgebruik. In bodemkundige 
termen vertaald betekent dit een vraag naar andere bodemeigenschappen en het 
gedrag hiervan in de tijd. 

Ten tweede is een snelle levering van informatie ook gewenst. Bepaalde 
beleidsvragen staan niet toe dat er bijvoorbeeld eerst twee jaar onderzoek nodig 
is om een antwoord te kunnen geven. Het gebruik van informatiesystemen en ge-
automatiseerde analysemogelijkheden speelt bij het snel beantwoorden van een 
vraag een belangrijke rol. 

Ten derde neemt de vraag naar de kwaliteit van de geleverde informatie toe. 
De bovengenoemde ontwikkelingen aan de vraagkant zijn niet van de ene op de 
andere dag ontstaan, maar voltrekken zich langzaam. Dit proefschrift levert een 
bijdrage aan procedures om met bodemkartering beter op de veranderende vraag 
van gebruikers te kunnen inspelen. 
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Hoofdstuk 2 gaat dieper in op de verschillende stappen die nodig zijn om 
bodemkundige basisgegevens om te zetten in informatie die voor een gebruiker 
relevant is. Allereerst ga ik in op modellen voor het beschrijven van de bodem. 
Hierbij is onderscheid gemaakt tussen ruimtelijke modellen, modellen in de tijd 
en ruimte en tijdmodellen. In dit proefschrift ligt het accent op het beschrijven 
van de bodem met ruimtelijke modellen. 

De ruimtelijke modellen zijn ingedeeld in discrete en continue modellen. Een 
beschrijving van de bodem in de vorm van een bodemkaart is een voorbeeld van 
een discreet ruimtelijk model, geostatistische technieken daarentegen leveren een 
continue beschrijving van de bodem op. Om de bodem te beschrijven in de vorm 
van het discrete ruimtelijk model wordt de physiografische en de vrije kartering 
gebruikt. Grenzen tussen bodemeenheden zijn tijdens de kartering bepaald. Het 
continue model heeft waarnemingen uitgevoerd op puntlokaties nodig. De keuze 
voor de ligging van de puntlokaties kan zowel select als aselect zijn. 

De laatste 20 jaar is opslag van verzamelde gegevens in informatiesystemen 
sterk in opkomst om snel analyses van de gegevens te kunnen uitvoeren. We kun-
nen acht categorieen van mogelijke analyses onderscheiden. Na een analyse volgt 
de presentatie van de resultaten. Dit kan zowel in tekst als in beeld. De meest 
gebruikelijke beeldvorm is de kaart: chorochromatische (= vlakkenkaart voor het 
weergeven van kwalitatieve verschillen) en choroplethkaarten (= vlakkenkaart voor 
het weergeven van kwantitatieve verschillen) voor discrete ruimtelijke gegevens 
en isolijnkaarten (= kaart met lijnen die punten met gelijke waarden van een 
continu veranderend verschijnsel met elkaar verbindt) voor continue ruimtelijke 
gegevens. De laatste tijd zien we steeds vaker animaties die veranderingen van 
bodemgegevens in ruimte en tijd presenteren. 

In het tweede gedeelte van dit proefschrift, de hoofdstukken 3 t/m 10, worden 
onderdelen van het proces van bodemkundige gegevensverwerking beschreven. 

Hoofdstuk 3 gaat in op het effect van de waarnemingsdichtheid op de nauw-
keurigheid van ruimtelijke voorspellingen. In een studiegebied in Indonesie zijn 
voor verscheidene waarnemingsdichtheden voorspellingen uitgevoerd naar test-
punten met vier verschillende voorspellingstechnieken (kriging, inverse afstand, 
lokaal gemiddelde en gebiedsgemiddelde). Uit de berekende fouten blijkt er geen 
verschil te zijn in nauwkeurigheid tussen de kriging, inverse afstand en het lokale 
gemiddelde als voorspeltechniek. Het gebiedsgemiddelde als ruimtelijke voorspeller 
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presteert duidelijk minder. De nauwkeurigheid van de voorspellingen en de kosten 
per waarnemingsdichtheid zijn gebruikt om een optimale waarnemingsdichtheid 
vast te stellen. 

Hoofdstuk 4 beschrijft de aard van bodemgegevens verzameld in het veld. De 
opname van de meeste bodemvariabelen blijkt op een ordinate meetschaal te 
gebeuren. Bij ordinale variabelen is het niet mogelijk beschrijvende statistische 
grootheden zoals gemiddelde, standaard afwijking en semivariantie en de meeste 
ruimtelijke voorspeltechnieken te gebruiken. Aan de hand van gegevens uit een 
kartering in Costa Rica zijn verwerkingsmogelijkheden van ordinale gegevens 
behandeld. De voorgestelde ruimtelijke verschilkansfunctie is gebruikt om de ruim­
telijke variabiliteit van ordinale variabelen te karakteriseren. 

Hoofdstuk 5 handelt over de bruikbaarheid van bodemkundige gegevens ver­
zameld op verschillende schalen voor het voorspellen van vochttekorten en 
opbrengstveranderingen. In een studiegebied van 1435 ha zijn de grondwater-
standen verlaagd als gevolg van wateronttrekking voor drinkwaterwinning. Om 
het effect van deze onttrekking op de grasproduktie te berekenen, is de huidige 
toestand (na onttrekking) vergeleken met de voormalige toestand (voor onttrek­
king). Als basisgegevens hiervoor zijn een bodemkaart op schaal 1 : 10 000, 
1 : 25 000 en 1 : 50 000 gebruikt. De kaarteenheden van de verschillende bodem-
kaarten zijn bodemfysisch gei'nterpreteerd. Met een simulatiemodel zijn vocht­
tekorten en opbrengstveranderingen berekend. Om de kwaliteit van de drie bodem-
kaarten voor deze toepassingen te kunnen vaststellen, zijn er ook simulatie-
berekeningen voor een groot aantal puntlokaties uitgevoerd. De drie bodemkaarten 
verschillen niet in kwaliteit als het gaat om het vaststellen van gebiedsgemiddelden 
voor het vochttekort en verandering in opbrengst. De bodemkaart schaal 1 :10 000 
levert de beste voorspellingen van puntlokaties op. 

In hoofjdsluk6 wordt een vergelijking gemaakt tussen een kaart afgeleid van 
een bodemkaart en een kaart vervaardigd via ruimtelijke voorspelling vanuit punt-
gegevens. De gebruikte ruimtelijke voorspellingsmethode is kriging. De geprodu-
ceerde kaarten beschrijven bodemvariabelen die voor het transport van water in 
de bodem van belang zijn. De zuiverheid van beide kaarten is bepaald met 60 
onafhankelijke testboringen. Tussen beide kaarten blijkt geen verschil in zuiverheid 
te bestaan. 

Hoofdstuk 7 gaat in op de fout die optreedt bij het omzetten van een vector-
kaart in rastervorm. Elf vectorkaartbladen van de 'Bodemkaart van Nederland 
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schaal 1 : 50 000' zijn omgezet in rastervorm voor rastercel grootten van 1 mm 
x 1 mm, 2 mm x 2 mm en 4 mm x 4 mm en twee verschillende verrastertechnieken 
(centraal punt en dominante eenheid). De verrasterfout is bepaald met de Switzer-
methode, Goodchildmethode en de zelf ontwikkelde dubbele-conversiemethode. 
Uit het onderzoek bleek dat er een sterk verband bestaat tussen de complexiteit 
van de kaart en de verrasterfout. Voor dit verband zijn regressievergelijkingen 
opgesteld. Deze regressievergelijkingen kunnen gebruikt worden voor het voorspel-
len van de verrasterfout van een nieuw te verrasteren kaart voordat tot verrasteren 
wordt overgegaan. Uit het onderzoek bleek ook dat de dubbele-conversiemethode 
de verrasterfout weer beter voorspelde dan de Goodchild- en Switzermethode. De 
Goodchildmethode voorspelde de verrasterfout beter dan de Switzermethode. De 
gehanteerde verrastertechniek bleek slechts een gering effect op de optredende 
fout te hebben. 

Hoofdstuk 8 beschrijft een procedure om isolijnkaarten met betrouwbaarheids-
intervallen te vervaardigen. De procedure is gebaseerd op het gebruik van de ruim-
telijke voorspellingsmethode kriging. Kriging levert naast een voorspelling van 
de waarde op een punt ook informatie over de nauwkeurigheid van de voorspelling 
in de vorm van de kriging-variantie. Kriging-variantie en voorspelde waarde zijn 
gebruikt om per punt de 90% betrouwbaarheidsboven- en -ondergrens te berekenen. 
Deze berekeningen zijn uitgevoerd voor punten op regelmatig raster. Vervolgens 
zijn voor bepaalde waarden de betrouwbaarheidsboven- en betrouwbaarheids-
ondergrens met lijnen aan elkaar verbonden. Deze lijnen gecombineerd met de 
isolijnkaart met voorspelde waarden leverde de isolijnkaart met betrouwbaarheids-
intervallen. De kaart geeft de gebruiker een veel beter inzicht in de onzekerheid 
van de gepresenteerde gegevens. Ook de juistheid van de berekende kriging-varian-
ties is nagegaan. Het blijkt dat deze de werkelijkheid aanzienlijk onderschatte. In 
de procedure voor het vervaardigen van de isolijnkaart zijn hiervoor correcties 
uitgevoerd. 

Ook hoofdstuk 9 gaat in op het presenteren van onzekerheid. Twee procedures 
worden behandeld voor het vervaardigen van kaarten die de kans op overschrijding 
van een bepaalde grenswaarde aangeven. De procedures zijn vergeleken aan de 
hand van gegevens uit een bodemkartering in Indonesie. De geproduceerde kaarten 
geven de kans aan dat de pyriethoudende laag dieper zit dan 50 cm beneden het 
bodemoppervlak. Deze presentatievorm stelt de gebruiker in staat om bijvoorbeeld 
zoals in Indonesie bij het inrichten van een gebied voor rijstteelt rekening te hou-
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den met onzekerheid in de gegevens. 
Hoofdstuk 10 ten slotte gaat in op de complexiteit van kaarten. De complexiteit 

van kaarten blijkt een grote invloed te hebben op de leesbaarheid. Voor het evalu-
eren van de complexiteit bestaan complexiteitsmaten. Zes van deze maten zijn met 
elkaar vergeleken. De fragmentatie-index is het meest geschikt voor het evalueren 
van de kaartcomplexiteit. 
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