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PROPOSITIONS 

1. Knowledge of variability in mosquito vector parameters is important in 
understanding malaria transmission. However, knowing the variability alone is 
not enough, but the relationship between parameters and how they vary and/or 
co-vary in relation to each other is essential. 

This thesis. 

2. The Anopheles gambiae s.L population in the Kilombero area maintains a body 
size range which ensures the survival of the species in this area. 

This thesis. 

3. The development rate of the aquatic stages of mosquitoes is so dependent on 
abiotic and biotic characteristics of the environment that the larvae occupy, 
that it is impossible to generalise, even within a confined geographic area. 

This thesis. 

4. The high pre-gravid rate found in Anopheles gambiae s.L makes it difficult to 
estimate the survival rate of the females of this species with precision because 
the pre-gravid females stay longer in the nulliparous state than the females that 
do not undergo a pre-gravid phase. 

This thesis. 

5. Anopheles gambiae s.l. appears to select oviposition sites randomly, but recent 
findings in several Culex species suggest that chemical cues may direct the 
gravid Anopheles female to specific sites. 

This thesis. 
Millar, J.G., Chaney, J.D. & Mulla, M.S. (1992) J. Am. Mosq. Control Assoc. 8: 11-17. 
Beehler, J.W., Millar, J.G. & Mulla, M.S. (1993) J. Chem. EcoL 19: 635-644. 

6. Arbitrary measures of heterogeneity are tempting and very popular, but their 
ability to reflect the relevant properties of the system of interest is unclear and 
questionable. 

Kolasa, J. & CD. Rollo (1991). The Heterogeneity of Heterogeneity: A Glossary, in 
Ecological Heterogeneity (J. Kolasa and S.T.A. Pickett, eds.), Ecological Studies 86, Springer-
Verlag New York Inc., New York. 

7. To say that a disease depends on certain factors is not to say much, until we 
can also form an estimate as to how largely each factor influences the whole 
result 

Ross, R. (1911). The prevention of malaria. Murray, London. Pg. 651. 

8. Overall development programmes can have an impact on transmission of 
malaria. A strong cross-sectoral approach is therefore required in order to 
lessen the potential burden of disease on the very people this development 
seeks to help. 

Gwadz, R.W. (1991). Malaria and development in Africa. A cross-sectoral approach. AAAS, 
Washington DC. 
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9. External support to health projects in developing countries often leads to 
problems once such support comes to an end, as most of these projects are not 
sustainable. 

10. There is nothing like 'a finger in the dyke' for malaria control in the sub-
Saharan Africa. What is needed are 'fingers'. 

11. It is too bad the mosquito is such a pain - (not to mention the itch) - its life 
cycle is quite fascinating. 

Barnard, B. (1991). Agricultural Research, USDA-ARS, Beltsville, MD. 

Propositions with the thesis "The bionomics of the malaria mosquito Anopheles 
gambiae sensu lato in Southeast Tanzania - adult size variation and its effect on 
female fecundity, survival and malaria transmission" by Edith O.K. Lyimo. 

Wageningen, December 1, 1993. 
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Foreword 

With the initiation of collaborative research between the Wageningen Agricultural 

University and the University of Nijmegen in The Netherlands, the Swiss Tropical Insitute, 

Basel and WHO-IRTC Diagoms Laboratory in Geneva, Switzerland and The National 

Institute for Medical Research and Ifakara Centre in Tanzania, a project on the 

epidemiology of malaria in the Kilombero district came into effect. The Kilombero 

Malaria Project (KMP) as it came to be known, was designed not only to look at the 

scientific aspects of malaria transmission but also to train Tanzanian cadre from the 

research and laboratory level. As such, I was able to join the project to assist in mosquito 

entomology as well as pursue a PhD programme within the set-up of the KMP. 

The work presented here was accomplished as a result of contributions from many 

people individually or as a team, as well as from National and International organisations 

and I would like to extend my sincere acknowledgment to them all. Nevertheless, some 

people deserve my special and heartfelt gratitudes, Prof. W. L. Kilama, the Director 

General of the National Institute for Medical Research, for his inititives, support and 

encouragement in securing the PhD studentship. Prof. Joop van Lenteren, for accepting to 

be my promoter and supervisor despite his already heavy schedule. His assistance is 

highly prized. Dr. ir. Willem Takken, apart from being co-promotor and immediate 

supervisor, made sure my stay in Wageningen was always pleasant. Your field visits to 

Tanzania though always short and very tightly programmed were of great help. To my 

field supervisor Dr. Derek Charlwood, I would like to say thank you very much for 

throwing me in at the deep end. Prof. Marcel Tanner, head Department of Epidemiology, 

at the Swiss Tropical Institute in Basel was a great help when I visited Basel. Your 

interest in my work, and the many discussions and critical comments did much to improve 

my work. Dr. C. F. Curtis, London School of Hygiene and Tropical Medicine and Dr. P. 

Billingsley, Imperial College London advised and made critical reviews of most of the 

chapters. Their comments were of great help in improving this work. 

At this point I would like to thank the administrative staff of the Entomology 

Department at Binnenhaven especially Mrs. Ineke Buunk and Ans Klunder for their 

practical help. Ineke, thank you so much for all the letters you typed for me and for being 

ready to listen when I came up with my sometimes trivial requests and questions. Your 

cheerfulness, competence and willingness to help will always be remembered. Gerard 

Pesch, Mrs. T de Vries, Irene van Nes-Keereweer and Otteline Crommelin, thank you for 

your help with correspondences, bits and pieces. The Binnenhaven librarians Mrs. J.H.D. 

Brouwer, Ina Otter-Beenen, Marian Roseboom de Vries, H.T. de Lange, J. Wolsing and 

Mr. J. Soolsma went a long way searching and providing my literature requests. I would 

like to thank all those people who helped with mosquito rearing in Wageningen, especially 

Leo Koopman and Frans van Aggelen for being so tolerant and understanding particularly 
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when I messed up and caused havok with the mosquito colonies. 

I am very much indebted to the Ifakara Centre management, the former director Dr. C. 

MacPherson and most of all his successor Dr. Thomas Teuscher, and the rest of his 

administration gave me the opportunity to work at their Centre and made my stay and 

working in Ifakara very pleasant indeed. Financial help provided by the Institute is highly 

acknowledged. The field team of the entomology section at the Ifakara Centre, without 

you I would not have managed. George Mwambeta thank you for helping me with the 

many trips to the villages, organising the many mosquito collections especially with the 

night bait catches even when lions were rampaging in the village. Stephen Ngatunga, 

Kebby Kembamba, Balbina Mariwa Seydina Bakari and Simon Sama thank you all for 

your support and the many dissections you did for me and the drivers who drove us up 

and down to Michenga and Namawala. I would like to acknowledge the villagers who 

invited me into their houses without even a question. Without your cooperation this work 

could never have being accomplished. The technicians Miraj Hussein and Honorary Urassa 

were of much help with the sporozoite ELISA technique. 

Special thanks are due to my colleague and friend Dr. Jacob Koella. You were a great 

help to me all the time, right from the very beginning especially when things were so 

difficult in the field and I was about to give up. You showed so much interest in my work 

all the time, advising, discussing and helping all along and thank you for allowing me to 

employ the malaria transmission model you developed. My many colleagues at Ifakara as 

well as at the Binnenhaven helped and encouraged me to push on. Bart Knols, you were 

always there to listen to my worries and to talk to. Thank you for teaching me the many 

graphical programmes and producing some of the figures presented in this thesis. Other 

colleagues helped in one way or other and are acknowledged, Theo Jetten and Ruurd de 

Jong in Wageningen, Peter Smith at STI in Basel, Peter Odi and Nicole Hurt at Ifakara. 

Francoise, Willem, Nicolas and Daniel made me feel welcome at your home. The 

moments we shared together (which were many) were a great boost to my sometimes 

dwindling spirit. Your concern for my well being is highly acknowledged. The UVV 

group in Wageningen advised me on how to live in Wageningen, where to shop and what 

to buy. Your concern and friendship is highly acknowledged. The Pastors for international 

students, Ben Verbene and Hinne Wagenaar and members of the Cross Roads group 

brought me into contact with other students and our discussion evenings provided an 

atmosphere of ease and friendship. Last but not least, I would like to thank my family, my 

parents, Martha and Onesmus and all my sisters, nieces and nephews for supporting me 

morally and spiritually during the whole period of my study. 

This work was made possible with financial support from the Directorate General for 

International Cooperation of The Netherlands, project number TZJiS/953, the Office for 

International Relations of the Wageningen Agricultural University and the Ifakara Centre, 

Tanzania. 
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Samenvatting 

De grootte van volwassen muggen kan zowel de populatie dynamiek van hen als de 

overdracht van ziekteverwekkers bei'nvloeden. De resultaten van studies aan dit onderwerp 

verschillen per soort. Bij enkele muggesoorten is gevonden dat de grotere individuen 

gekenmerkt worden door een hoge vruchtbaarheid en langere levensduur (Steinwascher, 

1982; Nasci, 1986a; 1986b; 1987) maar bij andere soorten leidt een grotere vorm niet tot 

een langere levensduur (Walker et al., 1987; Landry et al., 1988; Pumpuni & Walker, 

1989). Vergelijkbare gegevens zijn verkregen aangaande de transmissie van 

ziekteverwekkers. Enkele studies toonden aan dat kleinere muggen virussen zoals Japanse 

Encephalitis, West Nile en La Cross, efficienter overbrengen dan grotere individuen 

(Takahashi, 1976; Baqar et al., 1980; Grimstad & Haramis, 1984), terwijl andere studies 

geen verschil in de efficiency van virustransmissie konden aantonen tussen kleine en grote 

muggen (Kay et al. 1989). Bij Plasmodium parasieten vond Ichimori (1989) geen verband 

tussen de grootte van de mug Anopheles stephensi Liston en het aantal oocysten van P. 

yoelii nigeriensis dat tot ontwikkeling kwam, terwijl Kitthawee et al. (1990) aantoonden 

dat de grotere individuen van An. dirus Peyton and Harrison m66r P. falciparum oocysten 

ontwikkelden dan de kleinere muggen. 

De variatie in de grootte van muggen is geassocieerd met het type broedplaatsen 

dat een soort bezet. Muggen die tijdelijke broedplaatsen bezetten vertonen meer variatie in 

grootte dan muggen welke broeden in permanent aanwezige habitats (Haramis, 1983; 

1985; Fish, 1985; Nasci, 1987). An. gambiae Giles, het onderwerp van deze studie, broedt 

bij voorkeur in habitats gekenmerkt door hun tijdelijk karakter en vertoont onder de 

anophelinen van sub-Sahara Afrika de meeste variatie in grootte. Tot nu toe is de invloed 

van de grootte van deze mug op haar bionomie niet bestudeerd. Nadere kennis hierover 

kan helpen om de biologie van deze belangrijke muggesoort beter te begrijpen. 

Het onderzoek beschreven in dit proefschrift is uitgevoerd om de volgende 

algemene vragen te beantwoorden: (1) door welke factoren wordt de variatie in grootte 

van An. gambiae veroorzaakt en (2) op welke wijze bei'nvloedt de grootte van de mug 

belangrijke eigenschappen van het vrouwtje zoals reproduktie en levensduur alsmede de 

overdracht van de malariaparasiet. Specifieke doelstellingen waren: 

te bestuderen of temperatuur en larvale dichtheid een effect hebben op de 

ontwikkeling en overleving van onvolwassen stadia van An. gambiae en op de 

grootte van de adulten. 

te bestuderen of de grootte van de volwassen mug van invloed is op de 

voedselopname (bloedzuigen) en vruchtbaarheid. 

te bestuderen of de grootte van het volwassen muggevrouwtje van invloed is 

op haar levensduur. 

te onderzoeken of een verband bestaat tussen de grootte van de mug en haar 
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infecties met malariaparasieten. 
Tijdens het onderzoek zijn met verschillende vangmethoden 50.321 vrouwelijke An. 
gambiae gevangen en werden 11.097 vleugels gemeten. Vleugellengte is een algemeen 
aanvaarde maat voor de grootte (Christophers, 1960; Haramis, 1983). 

Factoren die de larvale ontwikkeling en de grootte van de volwassen mug bepalen 
zijn zowel in het laboratorium als in het veld bestudeerd. In het laboratorium zijn muggen 
gekweekt onder verschillende constante temperaturen en dichtheden (hoofdstuk 2). In het 
veld zijn muggen gekweekt onder constante dichtheden bij natuurlijke fluctuaties van de 
temperatuur (hoofdstuk 3). De ontwikkelingsduur en overleving van de onvolwassen stadia 
(larven en pop) werden gemeten alsmede de vleugellengten van de pas uitgekomen 
vrouwtjes. De interactie tussen dichtheid en temperatuur was bepalend voor de larvale 
ontwikkelingsduur en overleving alsmede de grootte van de volwassen mug. 

Ter bepaling van relatieve dichtheden en overleving van onvolwassen stadia 
werden natuurlijke broedplaatsen bestudeerd. De sterfte onder de onvolwassen stadia was 
hoog (gemiddeld 95%) en werd in hoofdzaak veroorzaakt door pathogenen en predatoren 
maar ook door weersomstandigheden. Grote, semi-permanente broedplaatsen produceerden 
grotere vrouwtjes dan kleine plasjes van een tijdelijk karakter (hoofdstuk 4). Verschillen in 
grootte van muggen gevangen op diverse lokaties en op verschillende tijdstippen van het 
jaar, werden 66k bestudeerd in veldpopulaties van An. gambiae s.L. Tussen populaties van 
verschillende lokaties werd een significant verschil in grootte gevonden, en ook tussen 
muggen gevangen op dezelfde lokatie maar op diverse tijdstippen over een periode van 
twee jaar, waarbij de grotere vrouwtjes gevonden werden tijdens de koelere maanden van 
het jaar (hoofdstuk 5). De dichtheid van vrouwtjes van An. gambiae in woningen bereikte 
een maximum tegen het einde van de regentijd in mei, wanneer ook het aantal infectieve 
beten per mens (Entomological Inoculation Rate) het hoogst was. Hieruit volgt dat de 
intensiteit van malariatransmissie het grootst was aan het einde van de regentijd (hoofdstuk 
6). 

De vraag of de grootte van de mug van invloed is op het zgn. "pre-zwangerschap" 
stadium en op de vruchtbaarheid is onderzocht bij binnenshuis gevangen volgezogen 
muggen en bij pas uitgekomen muggen welke in het laboratorium een bloedmaaltijd 
kregen. Vrouwtjes die eieren ontwikkelden na een bloedmaaltijd waren groter en 
produceerden m6er eieren per legsel dan die welke meer dan 66n bloedmaaltijd nodig 
hadden voor een eilegsel (hoofdstuk 7). Uit een vergelijking van de grootte van pas 
uitgekomen vrouwtjes afkomstig van in het veld verzamelde poppen met de grootte van 
gastheerzoekende vrouwtjes voor en na de eerste eileg, kon de overlevingsduur van 
volwassen muggen bestudeerd worden (hoofdstuk 8). Pas uitgekomen vrouwtjes waren, 
gemiddeld, significant kleiner dan de gastheerzoekende vrouwtjes. De gastheerzoekende 
vrouwtjes voor en na de eerste eileg verschilden daarentegen niet in grootte. Kleine 
vrouwtjes werden in dezelfde mate gei'nfecteerd tijdens het bloedzuigen als haar grotere 



soortgenoten, maar de grotere vrouwtjes produceerden meer oocysten. 
Het percentage muggen met sporozoieten was echter het hoogste bij vrouwtjes van 
gemiddelde grootte (hoofdstuk 9). In een afrondende studie is het effect van de 
muggengrootte op de malaria transmissie in haar geheel bestudeerd met behulp van een 
malaria-transmissiemodel zoals beschreven door Koella (1991) (hoofdstuk 10). Het model 
voorspelt dat muggengrootte een gering effect heeft op de transmissie van malaria. De 
mogelijke redenen hiervoor worden besproken. 

De conclusies van het onderzoek zijn: 
(1) Milieufactoren, met name de watertemperatuur, en de dichtheid van larven hebben 

een direct effect op de hoeveelheid voedsel beschikbaar voor de larven en 
beinvloeden de ontwikkelingssnelheid en overlevingskans van onvolwassen stadia 
zowel als de grootte van volwassen An. gambiae s.L. 

(2) De grootte van de volwassen mug is bepalend voor het tijdstip van het eerste 
eilegsel en de vruchtbaarheid van An. gambiae s.l. en derhalve ook van invloed op 
de "fitness" van ieder vrouwtje afzonderlijk. 

(3) Kleine muggen sterven reeds vroeg in het volwassen stadium en dragen niet veel 
bij aan de volgende generatie. 

(4) De relatief grote muggen produceren veel oocysten. Deze muggen overleven echter 
niet voldoende lang om de malariaparasiet over te brengen, vermoedelijk vanwege 
hun zware infectie met oocysten. 

(5) De grootte van de volwassen mug heeft een gering effect op malariatransmissie in 
haar geheel vanwege het effect van co-variatie bij de transmissieparameters. 



Summary 

Size of adult mosquitoes is known to affect both population dynamics as well as disease 

transmission. Studies devoted to this topic have given different results for different 

species. For example in some mosquito species, large size was found to be associated with 

high fecundity and longer survival (Steinwascher, 1982; Nasci, 1986a; 1986b; 1987) but in 

others large size did not result in longer survival (Walker et al., 1987; Landry et al., 1988; 

Pumpuni & Walker, 1989). Similar data were found for disease transmission. Some results 

indicated that smaller mosquitoes transmit Japanese Encephalitis, West Nile and La Cross 

viruses more efficiently than larger mosquitoes (Takahashi, 1976; Baqar et al., 1980; 

Grimstad & Haramis,'1984), while other results did not show any difference between 

small and larger mosquitoes in their ability to transmit viral diseases (Kay et al., 1989). 

With Plasmodium parasites, Ichimori (1989) did not find any relationship between 

Anopheles stephensi Liston female size and the number of P. yoelii nigeriensis oocysts 

developed, whereas Kitthawee et. al. (1990) showed that large An. dirus Peyton and 

Harrison developed more P. falciparum oocysts than small ones. 

Variation in mosquito adult size is associated with the type of breeding sites used by a 

species. Several studies have shown that temporary habitat breeders are more variable in 

size than permanent habitat breeders (Haramis, 1983; 1985; Fish, 1985; Nasci, 1987). An. 

gambiae Giles, the subject of this study, breeds preferably in temporary water bodies and 

is one of the most size variable anophelines in the sub-Saharan region. No work has 

previously been undertaken to study the effect of adult size on the bionomics of this 

mosquito, information which could elucidate our understanding of the biology of this 

important mosquito. 

The present research study was initiated in order to answer the following general 

questions: (1) what causes adult size variation in An. gambiae and (2) how does adult size 

affect important female characteristics such as reproduction, survival duration and malaria 

transmission. The specific aims of the study were: 

- to investigate the effects of temperature and larval density on development and 

survival of immature An. gambiae and on the size of adults. 

- to investigate the effects of adult size on blood feeding and on fecundity. 

- to investigate the effects of adult size on survival. 

- and to find out the relationship between adult size and malaria parasite 

infections. 

In the course of this research, a total of 50,321 female An. gambiae s. I. were caught using 

various sampling methods, and 11,097 wings were measured, wing length being an 

accepted measurement of body size (Christophers, 1960; Haramis, 1983). 

Factors affecting larval development and adult size were studied in the laboratory as 

well as in the field. Mosquitoes were reared in the laboratory under various constant 



temperatures and densities (chapter 2). In the field, larvae were reared at constant densities 
under natural fluctuating temperatures (chapter 3). Developmental times and survival rates 
of immatures under different conditions were monitored and the wing length of emerged 
females compared. Rate of larval development and immature survival as well as size of 
adults were determined by the interaction between density and temperature. 

Natural breeding sites were monitored to determine relative densities and survival of 
immature stages, and the size of emerging adults. Mortality of immatures was very high 
(on average 95%), caused mainly by pathogens and by predators, as well as weather 
conditions. Large, semi-permanent breeding sites produced larger sized females than the 
small temporary puddles (chapter 4). Spatial and temporal differences in adult size were 
investigated in field populations of An. gambiae s. I. There was a significant variation in 
adult size of populations from different localities, and also a seasonal variation in size of 
mosquitoes collected from the same locality over a two year period, with larger females 
being caught during the cooler months of the year (chapter 5). Density of female An. 
gambiae inside houses peaked towards the end of the rainy season in May, which was 
accompanied by an increase in entomological inoculation rates (the number of infective 
bites per person per night). Thus, the intensity of malaria transmission was higher towards 
the end of the rainy season (chapter 6). 

Effect of adult size on pre-gravidity and on fecundity was examined for blood fed 
indoor resting mosquitoes and for newly emerged wild females fed in the laboratory. 
Females which developed eggs after a single blood meal were larger than those which 
required more than one meal to produce one batch of eggs, and produced more eggs per 
batch (chapter 7). Survival of adults was investigated by comparing the size of newly 
emerged females from field collected pupae with that of nulliparous and parous host 
seeking females (chapter 8). Newly emerged females were significantly smaller than the 
host seeking females. There was no difference in mean size between nulliparous and 
parous host seeking mosquitoes. Small-sized females were equally likely to be infected 
during blood feeding as were large-sized females, but large females produced more 
oocysts. The proportion of mosquitoes with sporozoites, however, was highest in 
intermediate sized females (chapter 9). Finally, the effect of adult mosquito size on the 
overall malaria transmission was examined using a malaria transmission model described 
by Koella (1991), (chapter 10). The model predicts that mosquito size has little effect on 
malaria transmission. Possible reasons for this are discussed. 

The conclusions from these studies are: 
(1) Environmental factors, notably the temperature of breeding water, and the density 

of larvae directly affect the amount of food available to larvae and influence the 
development and survival of immatures and the size of adult An. gambiae s. I. 



(2) Adult size affects time of first reproduction and fecundity of An. gambiae s. I., 
hence fitness of individual females. 

(3) Small sized mosquitoes die early in adult life and do not contribute much to the 
bionomics of the species. 

(4) Large-sized mosquitoes produced many oocysts, but they did not survive well 
enough to transmit the parasites (probably due to their heavy oocyst infections). 

(5) The effect of adult size on the overall malaria transmission is negligible due to the 
effects of co-variation in the transmission parameters. 



Chapter 1. 

Introduction 

This thesis deals with the bionomics of the malaria vector, Anopheles gambiae sensu lato 

in southeast Tanzania. The main question concerns the effect of adult size on female 

reproduction, survival and disease transmission. Before discussing the details of this 

specific project, I will summarize malaria as a disease, give a brief biology of the An. 

gambiae group, the potential ways to control malaria and finally I will specify the research 

questions and aims of my study. 

An overview of malaria as a disease 

Malaria is an infectious parasitic disease of man, transmitted from infected to non-infected 

individuals by anopheline mosquitoes. The disease occurs in most tropical areas of the 

world, notably in Africa, Asia and Latin America (Bruce-Chwatt, 1987). The World 

Health Organization estimates that over 40% of the world's population in more than 100 

countries is at risk from the disease (Figure 1). At least 110 million cases occur annually 

worldwide of which 90 million are in tropical Africa. Deaths due to malaria are estimated 

at about 1 million a year worldwide (WHO, 1990). Despite the fact that in the 1950's and 

1960's malaria was eradicated from over 30 countries and significantly reduced by control 

measures in much of Asia and South America, malaria is presently on the increase (WHO, 

1992). This is due to the increasing drug resistance of the parasite and insecticide 

resistance of the vector, and is exacerbated by a failure to develop adequate alternative 

intervention methods. As a result malaria remains a major public health problem and an 

obstacle to socioeconomic development. 

Malaria is caused by protozoan parasites of the Plasmodium group. There are four 

Plasmodium species which cause malaria in humans; P. falciparum Welch, 1897, P. 

malariae Laveran, 1881, P. vivax Grassi and Feletti, 1890, and P. ovale Stephens,1922. In 

tropical Africa P. falciparum is the most prevalent parasite, it is also the most malignant 

form of the disease. In some parts of East Africa P. falciparum accounts for more than 

90% of all infections. In Tanzania it accounts for 95-98% of all malaria cases (Clyde, 

1967; Kilimali & Mkufya, 1985; Amani Medical Research Centre annual report, 1980). 

The life cycle of the parasite is summarized in Figure 2. Parasites in the form of 

sporozoites are injected into the human body by the bite of the female Anopheles mosquito 

when feeding. Injected sporozoites pass to the liver where, after about 12 days, they 

develop into merozoites. 
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The merozoites are released back into the blood stream and invade the red blood cells 

where they multiply to give rise to more merozoites. Invaded red cells rupture to release 

the merozoites which in turn invade more red blood cells. The intermittent rupture of the 

parasitised cells give rise to the periodic fevers and the symptoms characteristic of malaria 

episodes. Some merozoites however differentiate into sexual stages, the female (macro-) 

and male (micro-) gametocytes. A mosquito ingesting blood containing male and female 

gametocytes can become infected. The male gametocytes exflagellate in the mosquito and 

fertilize the female gametocyte to form a zygote. This transforms into an ookinete which 

migrates through the midgut wall and rests on the outer wall where it develops into an 

oocyst. After 8 to 10 days depending on temperature, mature oocysts burst to release 

sporozoites which migrate to the salivary glands. Sporozoites are injected into a new host 

blood stream when the mosquito feeds, thus completing and continuing the cycle. 

blood 

Fig. 2. Life cycle and transmission of the malaria parasite Plasmodium falciparum. 
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In many areas of sub-Saharan Africa malaria is one of the most important causes of 

morbidity and mortality, especially among children and pregnant women. It has been 

estimated that about 5% of children die directly or indirectly due to malaria before the age 

of five years. In pregnant women malaria causes anaemia, miscarriage, low birth weight 

and other complications (Janssens & Wery, 1987; Warren et al., 1990; Paluku, 1991). 

The pattern of malaria transmission in sub-Saharan Africa is very variable, from 

unstable malaria with cyclical epidemics in some areas to a stable condition with varying 

degrees of endemicity in others. In some parts of the region, transmission is intensive and 

people receive up to 300 infective bites per person per year (Molyneaux & Gramiccia, 

1980; Beier et al., 1990; Paluku, 1991). The transmission pattern depends principally on 

eco-geographic features, which differ from the forested areas in the south to the Sahara in 

the north. 

In Tanzania the problem of malaria remains one of the most challenging of health 

problems (Kilama, 1985; UNICEF, 1985), threatening 70% of the population of about 23 

million people. The Tanzanian ministry of health reports estimate that about 4.5 million 

cases are reported annually and of these 3500 die from the disease, mostly young children 

below the age of five years. This is most likely an underestimation as not all hospitals file 

their reports with the ministry and most of these reports are incomplete. Clyde (1967) 

described the endemicity of malaria in Tanzania, dividing the country from meso-endemic, 

hyper-endemic to holoendemic areas, depending on the duration of the transmission 

season. However, the transmission patterns may have changed since his studies. For 

example, transmission has intensified and stabilized in areas previously classified as 

having low transmission. Additionally, the disease has spread to areas which were 

previously free from malaria, such as highland areas and the islands. These changes have 

been brought about by environmental changes which favor breeding and survival of the 

vectors, such as cutting down of forests to give way to farm lands. Changes in agricultural 

practice have stimulated vector development as well, for example the growing of irrigated 

rice in areas where rice growing was only seasonal (Khatibu, 1991). Furthermore, the 

parasite has been spread by the movement of infected people from malarious areas to non-

malarious areas introducing the parasites into these previously malaria-free areas. The 

movement of non-immune people from non-endemic areas into areas where malaria is 

endemic, due to population and economic pressures (such as in the Moshi area), is also 

increasing the incidence of the disease (Rita Njau, personnal communication). Resistance 

of the parasites to drugs, and of the vectors to insecticides have also contributed to this 

intensification of malaria transmission. 

The anopheline mosquito vectors in Africa 

The main vectors of malaria in tropical Africa are members of the two sibling groups 
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Anopheles gambiae Giles, 1902 and An. funestus Giles, 1900. Minor vectors include An. 

nili Theobald, 1904, An. pharoensis Theobald, 1901 and An. squamosus Theobald, 1901. 

Gillies and De Meillon (1968) listed about a dozen incidental vectors whose status remains 

unclear. The An. gambiae group is a complex of three fresh water species: An. gambiae 

s.s, An. arabiensis Patton, 1905 and An. quadriannulatus Theobald, 1911; one mineral 

water species, An. bwambae White, 1985; and two salt-water species, An. merits Donitz 

1902 and An. melas Theobald, 1903 (White, 1985). The species are genetically different 

but morphologically indistinguishable. As such, the best way of identifying them is by 

species-specific chromosomal inversions (Coluzzi, 1984) or more recently by DNA probes 

(Gale & Crampton, 1987; Hill, et al. 1991). 

Four members of the complex have been described in Tanzania: An. gambiae s.s, An. 

arabiensis, An. merus and An. quadriannulatus (White, 1974; Bushrod, 1978). An. 

gambiae s.s and An. arabiensis occur sympatrically as is the case in many other parts of 

continental Africa. The proportion of the two species varies according to ecological 

features. Thus, the ratio of gambiae .arabiensis decreases from the humid coastal and 

humid lacustrine areas towards the more semi-arid and dry areas. An. merus is found along 

the coast where it co-exists with An. gambiae s.s (Marchand & Mnzava, 1985; Mnzava & 

Kilama, 1986) and An. quadriannulatus has only been reported from Zanzibar (Odetoyinbo 

& Davidson, 1968). In the Kilombero area, Mnzava and Kilama (1986) and Biro (1987) 

reported a distribution of 98% An. gambiae and 2% An. arabiensis during the rainy 

season. However, recent information based on species specific DNA-probes reveals that 

this ratio may be close to 70:30 (Dr. S. Hill, personal communication.). 

Biology of the An. gambiae complex 

Immature stages 

Studies conducted on the breeding behaviour of the An. gambiae group seem to show that 

the fresh water species prefer to colonise transient rain pools, and there is no major 

difference between the sibling species in selection of these habitats (Chinery, 1970; 

Surtees et al., 1970; Service, 1970b, 1977; White et al., 1972). The female mosquitoes lay 

their eggs in a variety of habitats, but mostly in shallow open sunlit pools resulting from 

rain and seepage water. Such types include borrow-pits, drains, brick-pits, car-tracks, foot 

and hoof-prints around ponds and water-holes, and rainwater collecting in natural 

depressions. 

Eggs are laid singly on the water surface or on wet mud at the edges very close to the 

water. The eggs cannot survive desiccation and die quickly if dry. Eggs hatch within one 

to two days into first instar larvae. There are four immature stages through which larvae 

feed and grow before pupation. Larvae spend most of their time at the surface where they 

feed and breath like most Culicidae. Larvae are filter feeders, feeding on organic material 
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suspended in the water. Pupae are very active but do not feed. 
Most breeding sites are temporary or semi-permanent in nature, and in some areas 

breeding is highly seasonal, following the rainfall pattern of that particular area. Since An. 
gambiae exploit these freshly formed rain pools well ahead of the other aquatic insects, 
they tend to escape predation and possible inter-specific competition. As a result, breeding 
is prolific during the peak rainy season. In the dry season breeding shifts to more 
permanent habitats such as wells, edges of permanent swamps or drying river beds (Gillies 
& Coetzee, 1987). In West Africa, An. gambiae has been reported breeding in domestic 
clay pots (Bruce-Chwatt, 1957; Chinery, 1984) and in Madagascar, Subra et al. (1975) 
reported breeding of An. arabiensis in open water storage tanks. Irrigated rice fields are 
also favourable habitats of the fresh water breeding An. gambiae s.l. The salt water 
breeding sibling species of the complex prefer brackish ponds along the coast where 
salinity is high. Breeding of these species inland occurs in association with salt treatment 
pans (Cross & Theron, 1983 quoted by Gillies & Coetzee, 1987). 

Immature development can be rapid, and is temperature dependent. The egg to adult 
cycle takes 6-10 days (Jepson et al, 1947; Gillies & Shute, 1954; Service, 1977). The 
mortality of immature stages of An. gambiae s.l. in nature is very high. Service (1971, 
1973, 1977) estimated about 93% mortality from egg-hatch to adult emergence. Parasitism 
and predation are the main causes of mortality. Other factors such as lack of food and 
unsuitable breeding conditions, e.g. drying of sites and pollution, may also contribute to 
mortality of immatures. 

Adult stages 
Adult emergence takes place in the early evening. Males and females rest for a short 
period of time and, depending on the time of emergence, mating may take place the same 
night. Males form swarms in the twilight and females fly into these swarms and are mated 
(Charlwood et al, 1980). Males feed entirely on plant sugars and most females take a 
plant sugar meal before a blood meal. Dispersal from breeding sites to feeding areas 
depends on the local topography and availability of host. In open and sparsely populated 
areas flight range is greater than in well vegetated and densely populated areas. Gillies 
(1961) estimated a range of between 1 to 1.5 kilometers in coastal Tanzania, while records 
of flight range of 3 to 6.5 kilometers have been observed in Zambia (Gillies & De 
Meillon, 1968). 

Female members of the An. gambiae complex feed and rest readily both indoors 
(endophagic and endophilic) or outdoors (exophagic and exophilic). None of the species of 
the complex are exclusively exophagic, endophagic, exophilic or endophilic. All species 
exhibit a mixture of these extremes of behaviour. (For example, An. arabiensis often 
prefer to feed indoors but rest outdoors, whereas An. gambiae favour indoor feeding and 
resting (Molineaux & Gramiccia, 1980; Service et al, 1978; Clarke et al, 1980). 
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Similarly, host choice is not obligate and some members tend to feed on both humans and 
non-humans. However the degree of anthropophagism and zoophagism varies according to 
species. For example, An. arabiensis commonly feeds on cattle as well as on man, 
whereas An. gambiae feeds principally on man (Gillies & Coetzee, 1987). These 
behaviours are very important in the epidemiology of malaria since an anthropophilic 
member of the complex is likely to be a better vector of malaria than is a zoophilic one. 

The biting cycle of the members of the An. gambiae complex has been studied in 
many parts of sub-Saharan Africa (Gillies & Coetzee, 1987). Principally there is very low 
activity up to 21.00-22.00 hours, followed with an increase in feeding activity to a peak 
between midnight and 04.00 hours, and decreasing again to shortly before dawn (Gillies, 
1957). Exceptions may be found in densely forested areas where females feed readily 
during the day (Haddow, et al„ 1946). Various factors, including environmental, 
physiological and genetic act together to determine the biting cycle, and this may vary 
from place to place. 

Mosquito densities inside houses differ extensively depending on the season and 
location. The abundance of An. gambiae s.l. adults tends to follow the seasonal pattern of 
rainfall. In areas with two wet seasons mosquito populations have two annual peaks, 
whereas only one peak occurs in areas with a single wet season (Gillies, 1954a; Service, 
1963). However, local and seasonal factors also affect breeding and modify these patterns, 
thus it is difficult to generalize. In areas with a prolonged dry season most breeding sites 
disappear during the dry period. At these times An. gambiae s. I. breeds in less suitable 
habitats such as large ponds and marshes, where mortality is high and adult numbers drop 
(Christie, 1959; White & Rosen, 1973). In areas with an extreme dry seasons, individuals 
survive dry periods as adults, resting in shaded areas. Omer and Cloudsley-Thompson 
(1968; 1970) found that in the Sudan An. gambiae s. I. (probably An. arabiensis) survived 
the 9 month dry season as adults, taking small blood meals and not developing eggs, thus 
undergoing a period of quiescence. 

Longevity of the An. gambiae complex has been studied mainly in terms of the 
proportion parous, which by itself does not give accurate estimates of longevity. The 
limited data available suggest a longevity of 1 to 5 weeks (Gillies & Wilkes, 1965). Daily 
survival rates of between 0.75 to 0.94 have been reported in many parts of Africa 
(Krafsur, 1970; White, 1972; Molineaux & Gramiccia, 1980). Re-analysis of published 
data on survivorship of several vectors by Clements and Paterson (1981) showed that 
mortality increased with age of the females. Using cross-correlation analysis, Mutero and 
Birley (1987) demonstrated that in the coastal area of East Africa, An. gambiae s.s. and 
An. merus survived longer than An. arabiensis. 
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Control of malaria parasites and vectors 

Malaria control aims at interrupting transmission, either by attacking the parasite in the 
human host, or by attacking the mosquito vector at its various stages. Usually a 
combination of various methods, integrated to suit local conditions, needs, and available 
resources is the most effective, but also the most difficult to apply. In some areas of the 
world, such as the United States of America, and parts of Europe, e.g Italy, Greece and 
The Netherlands, malaria has been eliminated. This has been accomplished either by 
changes in socioeconomy or by eradication programmes. In these areas extensive residual 
spraying and larviciding with DDT, coupled with land drainage and better land 
management to eliminate breeding sites, substantially reduced, or completely eliminated 
the mosquito vectors (Russell, 1955; Bruce-Chwatt & Zulueta, 1980; Bruce-Chwatt, 1987). 
Coupled with vector control, active case detection and extensive chemotherapy eliminated 
the parasite in the human host. 

In sub-Saharan Africa and other tropical countries, however, the problem has 
intensified after an initial reduction in the 1950's and 1960's. This is due to many factors 
including socioeconomic conditions as well as the complex relationship between the 
parasites, the vectors and the human hosts. The parasites are now extensively resistant to 
the cheap and easy to use antimalarial drugs (Peters, 1990). In Tanzania for example, 
chloroquine which is the first line drug is no longer effective in more than 40% of cases 
(Mutabingwa et.al, 1985). Evidence of resistance to fansidar (a combination of 
sulpadoxine and pyrimethamine) is also available (Kilimali & Mkufya 1985). The problem 
of drug resistance and the absence of a malaria vaccine available for use in the tropics in 
the near future, calls for increased emphasis on vector control strategies in the control of 
malaria (WHO, 1992). 

Vector control 

Vector control methods aim at reducing the vector population and are directed towards 
either the larval or adult stages. Larval control may be achieved by applying chemical 
larvicides, introducing biological agents in breeding habitats or implementing 
environmental management operations (Service, 1985b). Adult control operations aim at 
reducing mosquito longevity so that they die before they can transmit the disease. 
However, adult control methods which depend on the behaviour of the females are more 
selective against that proportion of the mosquito population which enters houses, feeds and 
rests indoors. Available vector control methods can be classified as either chemical, 
mechanical, biological or environmental. 
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Chemical and Mechanical methods 

Chemical control with insecticides gained momentum with the advent of DDT and other 
organochlorines in the 1940s, prompting the worldwide malaria eradication programme of 
the fifties. Chemical insecticides can be applied as:-
-Larval spraying: this method is directed against the larval stages. Earlier chemicals used 
in larviciding included crude oils and Paris green. After the second world war, new and 
more effective larvicides with low mammalian and fish toxicity replaced the old 
chemicals. Organophosphorous compounds such as temephos, chlorpyriphos and fenthion 
are among the chemicals used for larviciding. Larviciding has limited application when 
used against An. gambiae, due to the fact that they breed in temporary habitats most of 
which are difficult to locate and treat. Also, during the rainy season when mosquitoes are 
at their highest densities there is extensive breeding. Control operations become 
logistically difficult during this period. 

-Residual spraying: this method is still the most effective and feasible for chemical 
control of mosquito vectors. The technique consists of spraying insecticides with a 
persistent effect on all surfaces where mosquitoes are likely to rest. Directed against 
endophilic mosquito vectors, the technique relies on the mosquitoes resting on the sprayed 
surfaces and picking up enough chemical to be killed. The residual effect of the 
insecticide depends on the type of the compound, its formulation, dosage applied and the 
surfaces sprayed, and varies from a few weeks to several months. Chemicals available for 
residual spraying are organochlorines (DDT, dieldrin and HCH), organophosphates 
(malathion, fenitrothion), and carbamate compounds (propoxur). These compounds were 
used with success in many malaria control programmes including the WHO malaria 
eradication campaigns of the 1950s. Resistance of mosquito vectors to these compounds 
however has reduced their effectiveness. Also, there is an increased concern about the 
environmental and human effects of these highly toxic substances. A new pyrethroid 
insecticide, lambdacyhalothrin (Icon), a synthetic compound which resembles natural 
pyrethrins gave promising results in trials in Tanzania (Matola et al., 1990, unpublished 
report). 

-Space spraying: atomized insecticide droplets are applied indoors against adult 
mosquitoes. The mist produced contains droplets that remain airborne for periods of up to 
six hours and kill flying mosquitoes. Pyrethrum, synthetic pyrethroids and 
organophosphorus compounds are widely used in aerosols. Techniques for open space 
spraying have been developed such as the ULV technique. However, they require 
sophisticated equipment and trained manpower. Their high operational costs preclude the 
routine use of these techniques. This method has not been used extensively in Africa 
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because in most places the house structure is unsuitable for its use. Either houses do not 
have enough openings to allow the insecticide to penetrate indoors or they are too open to 
prevent the insecticide from being blown off by winds. 

-Personal protection: although they are used mainly to avoid the nuisance of biting 
insects, personal protection methods, when effective, also reduce vector borne diseases. 
Methods include putting wire mesh on windows and doors or around eaves, and sleeping 
under bednets. Recently, pyrethroid impregnated fabrics such as bed nets and window or 
bed curtains have been shown to have a major impact on malaria transmission. In many 
parts of Africa and Asia trials with treated nets and curtains have been very encouraging 
(Lindsay et al., 1988; Lyimo et al., 1991; Magesa et al., 1991). Personal protection 
methods are becoming increasingly popular due to their effectiveness and easy application. 
Community use of treated bednets extensively reduces vector population size and 
longevity (Curtis, 1992). Treated nets can also be used outside without losing their 
effectiveness. In addition, treating nets uses relatively less insecticide than spraying walls. 

Biological methods 

Biological control of mosquitoes consists of the utilization of natural enemies and 
biological toxins. These are directed against the aquatic stages. Natural enemies include 
larvivorous fish (for example Gambusia affinis) and other mosquito fishes. Gambusia 
affinis has been tested in paddy fields in the USA and showed mass reduction of 
mosquito larvae (Hoy & Reed, 1971; Hoy et al., 1971). A very successful operation 
involving the use of mosquitofish in mosquito control was done in Somalia, where Tilapia 
spilurus spilurus was used to stock underground water tanks, the only available breeding 
habitats for An. gambiae during the dry season. There was a sharp reduction of larvae as 
well as adults in treated villages (Alio et al, 1985). Other species of mosquitofish have 
been used in China, Korea and Russia (Curtis, 1991). 

Invertebrate predators such as Toxorhynchites and other insects, nematodes, protozoa 
and fungi are also used in control of mosquitoes. The spore-forming bacteria Bacillus 
thuringiensis israelensis and B. sphaericus are highly toxic to mosquito larvae and are the 
most used biological larvicides for mosquitoes as well as for blackflies. However, these 
bacteria are more effective in Culex than in Anopheles larvae control because they 
normally settle within minutes of application and are not available in the feeding zones of 
larvae which feed at the air-water interface (Kramer, 1984). When incorporated in surface-
bound particles the bacteria have shown to be effective in controlling Culex mosquitoes in 
India and in the USA (Curtis, 1991). 

For An. gambiae application of biological agents is impossible in most cases because 
breeding habits of the species are so diverse and it is not possible to achieve the necessary 
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wide coverage of breeding sites. Also it is often difficult to predict performance of 

biological control agents, as this may be affected by the presence of alternative prey other 

than the mosquito larvae and by weather conditions. Further, logistic problems such as 

mass rearing, maintenance, storage and transportation, limit the value of manipulative 

types of biological control. 

Environmental management 

Environmental management for mosquito control covers a wide range of operations which 

can be classified under: 

Environmental modification: permanent physical transformation of land, water and 

vegetation to eliminate vector breeding habitats, for example drainage, filling, land 

levelling and transformation of impoundment margins (Service, 1989). 

Environmental manipulation: activities aimed at producing temporary conditions 

unfavourable for the breeding of vectors. These include stream flushing and other 

physical changes of the habitats. 

Modification of human habitats and/or behaviour: this form of environmental 

management aims at reducing man-vector contact. Examples of this kind of 

approach are mosquito proofing of houses, siting of settlements away from 

breeding sites and personal protection. 

Practical problems with vector control 

In Tanzania, as in most tropical areas where malaria is a problem, the control methods are 

faced with several set-backs. These include resistance of vectors to most of the common 

insecticides, lack of managerial and logistic support, and high cost. Most of the newly 

developed insecticides are expensive. Behavioural changes of vectors as a result of control 

activities such as avoidance of treated surfaces or shifting of biting time, are also posing 

problems. Human behaviour and beliefs, and low socioeconomic status result in poorly 

constructed dwellings which cannot keep out the mosquitoes. Inadequate research support 

towards malaria control also contributes to the problem. No single control method can be 

successfully applied and integrated control, which combines the available methods against 

both the vectors as well as the parasites, is the advocated approach. Several methods need 

to be employed which are proving more demanding in terms of resources and knowledge. 

In order to develop an integrated control programme, more information is needed on the 

biology, ecology and behaviour of the vectors. 
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The problem and aims of the study 

An. gambiae s. I. is the most important mosquito species transmitting malaria in Africa. 

Because of its significance it is also the most studied. Nevertheless, aspects concerning the 

ecology of this vector remain unanswered. It is often speculated that adult mosquito 

female size has a strong effect on both population dynamics and the probability of 

transmission of malaria. As earlier published reports were inconsistent or conflicting, I 

have concentrated on the effect of female size on the population dynamics and on the 

transmission of malaria. 

A number of recent studies indicate that the nature of variation in the size of 

mosquitoes may reflect larval conditions and that large individuals survive longer than 

their smaller (and therefore probably less well nourished) siblings (Reisen et al., 1984; 

Fish, 1985; Haramis, 1985; Nasci, 1986b). The nature and extent of the variation 

apparently depend on the type of larval habitat that the mosquitoes occupy. In general, 

those which breed in temporary habitats are subject to greater stress resulting from 

crowding, insufficient food and relatively high temperatures, and thus show a larger 

amount of variation in adult size than insects occupying more permanent habitats 

(Haramis, 1983; 1985; Fish, 1985; Nasci, 1987). An. gambiae is the temporary pool 

breeder par excellence. The reported range in wing size (itself a measure of overall size) 

of 2.8-4.4mm by Gillies and De Meillon (1968) for this species is one of the largest 

among the sub-Saharan anopheline. Nothing, however, is known about the effect that size 

has on the survival and consequent vectorial capacity of An. gambiae. Could it be that 

larger individuals live longer and therefore are more likely to transmit malaria parasites 

than their small siblings? 

Previous studies on other mosquito species have indicated that large individuals 

survive longer (Steinwascher, 1982; Reisen et al., 1984; Hawley, 1985b; Nasci, 1986a; 

1986b; Nasci, 1987; Packer & Corbet, 1989), were more successful in obtaining a blood 

meal (Nasci, 1987; Packer & Corbet, 1989), and produced more offspring, (Steinwascher, 

1982, Nasci, 1986a, Packer & Corbet, 1989) than small ones. Nevertheless, Landry et al. 

(1988) correlated the body size of adult Ae. triseriatus collected from host baits and from 

oviposition traps with age, and found no strong evidence that size was advantageous to 

survival. In other studies with the same mosquito (Walker et al., 1987; Pumpuni & 

Walker, 1989), mark-recapture methods could not detect any differences in survival 

between large and small mosquitoes. 

Studies on the effects of female size on the transmission of mosquito-borne diseases 

have given variable results. Takahashi (1976) and Baqar et al. (1980) showed that smaller 

Culex tritaeniorynchus were more efficient in transmitting Japanese Encephalitis and West 

Nile viruses. Grimstad and Haramis (1984) obtained the same results for La Cross virus in 

Ae. triseriatus. On the other hand, Kay et al. (1989) found no difference in the ability of 
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large and small individuals of Culex annulirostris to acquire and transmit Murray Valley 
Encephalitis virus. As for protozoa, Kitthawee et al. (1990) showed in laboratory reared 
An. dirus infected with Plasmodium falciparum, that large females developed more 
oocysts. Ichimori (1989) found no relationship between An. stephensi female size and the 
number of oocysts of the parasite P. (yoelii) nigeriensis. 

These studies demonstrate that mosquito female size may affect population as well as 
disease transmission parameters. The probability of a mosquito picking up and transmitting 
the pathogen depends on its feeding behaviour as well as its survival. A proportion of An. 
gambiae females require two blood meals for the completion of their first gonotrophic 
cycle, perhaps as a result of deficient larval nutrition. The proportion of so called pre-
gravid females in a population varies between season and locality according to the 
availability of breeding sites (Gillies & Wilkes, 1965). Despite the increased chance of 
pre-gravid females acquiring the malaria parasite because of their double feeding, nothing 
is known about their subsequent chances of transmitting it, which depends on the insect's 
survival. This is because a suitable marker, identifying previously pre-gravid females once 
they have become parous, has hitherto not been available. Adult size may be a suitable 
marker for this. Since this was a poorly studied area, it seemed appropriate to investigate 
the biological and ecological factors that determine mosquito size, as well as the role of 
adult size in survival and malaria transmission. Such studies could give more information 
on the ecology of An. gambiae, and if found useful such information could be used in the 
planning of control strategies, such as manipulation of breeding sites, or the timing of 
pesticide application so as to achieve maximum impact. 

In this thesis the variation in size of females of the Anopheles gambiae complex 
causes of this variation and its effect on female characteristics were 
investigated. The specific aims of the study were: 
(1) to investigate the effects of temperature, larval density and nutrition on the 
development rate and survival of immature stages, and on the size of adult 
mosquitoes in the laboratory and in the field. 
(2) to study the effect of adult size on blood feeding and fecundity. 
(3) to study the effect of adult size on survival of adult females. 
(4) to investigate the relationship between adult size and malaria parasite 
acquisition and transmission. 

The laboratory studies were undertaken at the Wageningen Agricultural University, 
Department of Entomology and the field studies were conducted in Michenga village near 
Ifakara, southeastern Tanzania and the Ifakara Centre laboratories. 
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Part I. FACTORS AFFECTING ADULT SIZE IN ANOPHELES GAMBIAE S. L. 
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Chapter 2. 

Effect of rearing temperature and larval density on larval survival, 
age at pupation and adult size of Anopheles gambiae 

Abstract 

The effects of temperature and larval density on survival of larvae, growth rate, age at pupation, and adult 

size (measured as wing length and dry weight) of laboratory-reared Anopheles gambiae (Diptera: Culicidae) 

were studied. Larvae were reared at three temperatures (24, 27 and 30°C) and three densities (0.5, 1, and 2 

larvae/cm2). The effects of density and temperature strongly interacted to determine the mosquitoes' life-

history parameters. Survival was highest at the intermediate temperature of 27°C. The differences between 

the temperatures increased with increasing density. At 30°C survival decreased as density increased, but at 

27°C increasing density led to higher survival. Age at pupation increased as temperature decreased from 30°C 

to 24°C and as density decreased from 2 to 0.5 larvae/cm2. Adult size also increased as temperature 

decreased, but showed a negative correlation with density only at 27°C. In contrast, at 24°C and 3 0 ^ a 

decrease in density led to a decrease in adult size. Growth rate showed a similar pattern. At 27°C growth rate 

decreased as density increased, but at other temperatures the opposite trend was observed. 

Introduction 

Anopheles gambiae may, with some justification, be called the most important mosquito 
species for humans in Africa because of its role in the transmission of malaria, killing 
about one million children every year (WHO, 1990). In spite of the significance of An. 
gambiae as a vector, many aspects of its population dynamics are not yet understood. 
However, an understanding of the dynamics and of the processes that govern the dynamics 
may be helpful in controlling the mosquito population densities and thus malaria 
transmission. 

Any explanation of mosquito population dynamics must include the mechanisms that 
form the life-history traits (Stearns, 1976; Istock, 1985), which directly affect the rate of 
population growth. For many mosquito species, two of the traits that have the greatest 
influence on population growth are age at pupation and adult body size. Age at pupation is 
strongly correlated with age at maturity, which in turn is the one trait that has the largest 
effect on any organism's population growth (Charlesworth, 1980). Adult size influences 
population growth because, in general, large mosquitoes produce more offspring 

This article was published with minor modifications as: E.O. Lyimo, W. Takken and J.C. Koella, Entomol. 

exp. appl. 63: 265-271, 1992 
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(Steinwascher, 1982; Nasci, 1986; Packer & Corbet, 1989) and survive longer 
(Steinwascher, 1982; Reisen et al, 1984; Hawley, 1985a; Packer & Corbet, 1989) than 
small individuals. A positive correlation between body size and fecundity has also been 
observed for various Anopheles species (Briegel, 1990), and seems to be particularly 
marked after the first blood meal. 

A number of recent studies have shown that age at pupation and adult size of various 
mosquito species may reflect the environmental conditions during growth of the larval 
stages (Reisen et al., 1984; Fish, 1985; Haramis, 1985). In general, species that breed in 
temporary habitats are subject to greater stress, such as crowding, insufficient food or 
relatively high temperatures, and show greater variation in adult size than species that 
breed in permanent habitats (Haramis 1985; Hawley 1985b; Fish, 1985; Nasci, 1987). 
Laboratory studies have shown that larvae reared at high temperatures and under food 
stress develop into small adults and experience high mortality (Siddiqui et al., 1976; 
Reisen et ah, 1984; Nayar, 1969). As temperature increases, growth rate generally 
increases and age at pupation decreases (Brust, 1967; Hagstrum & Workman, 1971). 

Such studies are largely lacking for An. gambiae. Although considerable variability in 
adult size has been observed (Gillies & De Meillon, 1968), it is not known what controls 
this size variation. Variation of other life-history traits or the effect of the environment on 
life-history traits have yet to be studied. 
This study considers how larval survival, age at pupation and adult size of An. gambiae 
are affected in the laboratory by the temperature and the density at which larvae are 
raised. 

Materials and methods 

Experiments were performed at Wageningen Agricultural University, where the 'Galisua' 
strain of An. gambiae sensu strictu from Liberia (courtesy Prof. Colluzzi, Rome) had been 
reared for 19 generations. Mosquito larvae were reared at three temperatures (24±0.5°C, 
27±0.3°C and 30±0.5°C) and at three densities (100, 200, and 400 larvae per liter), which 
resulted in nine treatments. Each treatment was replicated four times. 

First instar larvae were added to one liter of demineralized water in 20x10.5x8 cm 
plastic pans, yielding approximately 0.5, 1 and 2 larvae per cm2 of surface area. 0.2mg of 
fish food (Tetramin) per surviving larva was added daily until all larvae had pupated. 
Water was added as necessary to compensate for evaporation. Pans were checked daily, 
and dead larvae or pupae were removed. Age at pupation was recorded to the nearest 24 
hours, and pupae were put into separate cages. Twenty four hours after emergence, adults 
were killed, put individually into gelatin capsules, and dried for 48 hours at 40°C. Then 
they were weighed with a Cahn electrobalance to the nearest 0.001 mg. One wing of each 
weighed mosquito was glued onto a slide, and its length was measured with an ocular 
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micrometer from the distal end of the alula to the tip, excluding the fringe scales, to the 

nearest 0.03mm. 

Growth rate of individual mosquitoes was estimated as weight at emergence divided 

by the age at pupation, and thus indicated the average increase of weight per day 

throughout the larval period. Survival rate, S, was calculated as the proportion of larvae 

that survived for ten days by the equation S = pm, where p is the proportion of larvae that 

survive to pupation, and t is the mean age at pupation within the treatment. The effects of 

temperature and of density on wing length, weight, growth rate, and age at pupation were 

evaluated with an analysis of variance (Sokal & Rohlf, 1981), taking account of replicates 

and of interactions between temperature and density. For the evaluation of survival the 

mosquitoes within each treatment were pooled over all replicates. The differences between 

survival rates were then compared to the confidence interval for the difference of two 

proportions (Fleiss, 1981). 
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Fig. 1. Mean survival rates of larvae reared at different densities and temperatures. The vertical bars 

denote 95% confidence intervals. Circles represent larvae reared at 24°C, diamonds represent 27°C, 

and squares represent 30°C. 
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Results 

For all treatments combined survival was 83.4%. Age at pupation ranged from 6 to 17 
days with an average of 9.79 days. Adult dry weight at emergence was between 0.12 and 
0.5mg with a mean of 0.25mg, and wing length was between 2.17 and 4.14mm with a 
mean of 2.83mm. Growth rate was between 0.011 and 0.055mg/day with a mean 
0.026mg/day. 

Survival was higher at 27°C than at the lower and higher temperatures (Fig. 1), though 
the differences were significant only at the two higher densities. The effect of density on 
survival depended on the temperature. Whereas at 30°C survival decreased as density 
increased, no significant differences could be detected at 24°C, and at 27°C survival 
peaked at the intermediate density. 

Age at pupation decreased as temperature or density increased (Fig. 2). 
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Fig. 2. Mean age at pupation of mosquitoes reared at different densities and temperatures. The 

vertical bars denote 95% confidence intervals of the means. Regression lines of age at pupation on 

density of larvae are shown for each temperature. Circles represent larvae reared at 24°C 

(regression: solid line), diamonds represent 27°C (regression: dotted line), and squares represent 

30°C (regression: dashed line). 
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Table 1. Analysis of variance table for age at pupation 

Source 

Replicate 

Density 

Temperature 

Density x 

Error 

temperature 

DF 

3 

2 

2 

4 

1687 

Sum of squares 

18.716 

141.652 

811.281 

70.992 

4116.150 

F ratio 

2.557 

29.027 

166.244 

7.274 

P 

0.0538 

<0.0001 

<0.0001 

<0.0001 

Table 2. Analysis of variance tables for adult size 

(a) Wing length 

Source 

Replicate 

Density 

Temperature 

Density x 

Error 

temperature 

DF 

3 

2 

2 

4 

1687 

Sum of squares 

0.6922 

1.4355 

2.7661 

1.5118 

25.6188 

F ratio 

15.194 

47.264 

91.077 

24.888 

P 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

(b) Dry weight 

Source 

Replicate 

Density 

Temperature 

Density x 

Error 

temperature 

DF 

3 

2 

2 

4 

1687 

Sum of 

0.4418 

0.0036 

0.3361 

0.1807 

4.8037 

squares F ratio 

51.713 

0.621 

59.081 

15.865 

P 

<0.0001 

0.5377 

<0.0001 

<0.0001 
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Table 3. Analysis of variance table for growth rate 

Source 

Replicate 

Density 

Temperature 

Density x 

Error 

temperature 

DF 

3 

2 

2 

4 

1687 

Sum of squares 

0.00870 

0.00038 

0.00075 

0.00384 

0.05238 

F ratio 

93.393 

6.124 

12.050 

30.918 

P 

<0.0001 

0.0023 

<0.0001 

<0.0001 

Mean age at pupation decreased from 13 days at 24° and a density of 100 mosquitoes to 

7.7 days at 30°C and 400 mosquitoes. The effect of density was strongest at 24°C and 

weakest at 27°C, and the effect of temperature was strongest at 100 larvae and weakest at 

200 larvae. The effects of density and temperature and their interaction were statistically 

significant (Table 1). 

Temperature and density interacted strongly to determine adult size (Table 2). At 24°C 

and 30°C wing length (Fig. 3a) and weight (Fig. 3b) increased as larval density increased, 

but at 27°C higher larval densities tended to lead to smaller adults. At all densities 

mosquitoes were smallest at 30°C, but at the lowest density differences between 24°C and 

27°C were not significant. 

A similar pattern was observed for growth rate (Fig. 4, Table 3). At 24°C and 30°C 

growth rate increased as larval density increased, but at 27CC higher larval densities led to 

slower growth. At a density of 400 larvae growth rate increased as temperature increased, 

but at lower densities growth rate was highest at 27°C. 

Female wing length was positively correlated with dry weight (r2 = 0.71, df^, 

F=634.49). Mosquito dry weight could be predicated from the regression equation: weight 

= 0.352 x wing length - 0.73. 

Discussion 

Rearing conditions had a clear effect on several life-history traits of Anopheles gambiae. 

Survival was highest at 27°C, which suggests that in the laboratory 27°C was close to the 

optimal rearing temperature for larval growth. As temperature increased from 24°C to 

30°C, mean age at pupation decreased by about three days (30%), adult dry weight 

decreased by about 0.055mg (20%), and wing length decreased by about 2.5mm (10%). 
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Fig. 3. Mean wing length (a) and dry weight (b) of adults reared at different densities and 

temperatures. The vertical bars denote 95% confidence intervals of the means. Regression lines of 

size on density of larvae are shown for each temperature. Circles represent larvae reared at 24°C 

(regression: solid line), diamonds represent 27°C (regression: dotted line), and squares represent 

30°C (regression: dashed line). 

These changes were accompanied by an increase in larval growth rate, in particular at high 
densities. Such a pattern is generally observed in the development of mosquitoes, e.g. 
Aedes vexans and Ae. nigromaculis (Brust, 1967), Culex tritaeniorhynchus (Baqar et al, 

1980), Cx. tarsalis (Hagstrum & Workman, 1971; Bock & Milby, 1981; Reisen et al, 

1984), and Cx. nigripalpus (Day et al, 1990). 

As density increased from 100 to 400 larvae per liter, age at pupation decreased by 

1.7 days (13%) at 24°C, by 0.5 days (5%) at 27°C, and by 0.6 days (7%) at 30°C. Such a 

decrease in developmental time has been reported for other mosquito species, 
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Fig. 4. Mean growth rates of mosquitoes reared at different densities and temperatures. The vertical 

bars denote 95% confidence intervals of the means. Regression lines of growth rate on density of 

larvae are shown for each temperature. Circles represent larvae reared at 24°C (regression: solid 

line), diamonds represent 27°C (regression: dotted line), and squares represent 30°C (regression: 

dashed line). 

e.g. Cx. tritaeniorhynchus (Siddiqui et al., 1976), and may reflect an accumulation of 
various nutrients from food or larval metabolites, as suggested by Reisen (1975). Because 
the amount of food each larva received was kept constant in this study, the observed 
effects of density were apparently due to larval rearing space, in contrast to Suleman's 
(1982) study on Cx. quinquefasciatus, in which development was most influenced by 
amount of available food per larva.Perhaps the most intriguing aspect of the present study 
was the strong interaction between temperature and density on larval development. At 
27°C wing length, dry weight, and larval growth rate decreased as density increased. This 
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pattern is expected if high density leads to increased competition. In contrast, at 24°C and 
30°C as density increased wing length, weight and growth rate increased. An explanation 
for this opposing pattern is not apparent, but might be based on the assumption that large, 
rapidly growing larvae have a competitive advantage over small, slow ones only when 
conditions are limiting. Therefore, at the extreme temperatures and high densities only the 
large larvae survive, so that surviving adults are on average large. In contrast at lower 
densities a mixture of large and small larvae survive, so that surviving adults are on 
average smaller. The observed relationship between temperature, density and survival 
lends weight to this possibility, though we have no data on size-specific survival within 
treatments. 

The range of wing lengths reported in the present study was comparable to the range 
collected in a natural population in Tanzania (chapter 4 in this thesis), where wing lengths 
between 2.3 and 3.5mm, with a mean of close to 3mm, were measured. In the same 
environment, temperatures of breeding sites fluctuated between about 25°C in the cool dry 
season and 35°C in the hot rainy season (Lyimo, unpublished data). Therefore seasonal 
variation in body sizes, as shown for other species such as Cx. nigripalpus (Day et ah, 
1990) and Anopheles merus (Le Sueur & Sharp, 1991), and in age at pupation are 
expected. Because of the correlations of body size with fecundity and of age at pupation 
with generation time, this variation could in turn lead to considerable differences in rate of 
population growth. 

The presented study shows that the environment can have a considerable effect on 
various life-history traits of An. gambiae. Perhaps more importantly, it shows that 
environmental parameters interact to influence larval development, so that we cannot 
understand the life-history by considering the effect of one environmental parameter in 
isolation. The way in which the environment modifies the life-history traits is not yet 
clear. Much work is still required if we want to untangle the complex relationships 
between the environment and the life-history traits and to understand the population 
dynamics of An. gambiae. 
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Chapter 3. 

The effects of constant versus fluctuating temperature and of 
predators on the larval development of Anopheles gambiae sensu lato 

Abstract 

Larval development and survival of An. gambiae s.l. reared in water with constant or fluctuating 

temperatures and at different densities were studied in the laboratory and in the field with or without 

predators. Larvae were reared at four different densities (0.03, 0.06, 0.25 and 0.5 larvae/cm2). Mean age at 

pupation increased with increasing density of larvae. At constant temperature (27 + 0.5 °C) development was 

faster at the lower densities, whereas at diurnal fluctuating temperatures (range 19.5-40.5 °C), development 

was faster at the higher density tested. Survival of larvae was higher in the laboratory than in the field, and 

in both field and laboratory treatments larval survival decreased with increasing density. In the field 

predators caused larval mortality but non-predatory factors seemed to have higher effects on survival than 

predation. 

Introduction 

A number of studies have examined the influence of the environment and other factors on 

development of the aquatic stages of several mosquitoes species. Water temperature and 

density of larvae were found to affect development and survival of immature stages as 

well as the size of the resultant adult mosquitoes (Brust, 1967; Hagstrum & Workman, 

1971; Reisen et al., 1984; Haramis, 1985; Hawley, 1985). Laboratory studies with An. 

gambiae s.s. showed that larval density and temperature interacted strongly in their 

influence on the development of immatures. At high temperature and high density 

development was faster than at low temperature or low density (Lyimo et al., 1992). An. 

gambiae s.l. breeds in a variety of habitats which may differ significantly in their ecology. 

Service (1971, 1973, 1977) studied An. gambiae immature development and survival in 

some of these habitats and observed different survival patterns for different habitats. His 

studies however, investigated the role of biotic factors e.g. predators and parasites only. So 

far, no studies have attempted to look at the effects of the physical environment on the 

development of immature An.gambiae. 

The aims of this study were to investigate the effect of predators on survival of 

immatures in the field and to examine the effects of larval density and constant or 

fluctuating breeding water temperatures on immature development, survival and on adult 

size. 
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Materials and Methods 

Field experiments were conducted in Michenga village, Kilombero district, southeastern 

Tanzania. The area is described in detail in chapter 4 of this thesis. The laboratory 

experiments were done at the Department of Entomology, Wageningen Agricultural 

University. Six pairs of small rectangular pits measuring 40x40x40 cm were dug near the 

edge of a large swamp and allowed to fill with seepage water to about 15-20 cm deep. 

The pits were seeded with 6-12 hours old first stage larvae hatched from eggs of wild 

caught females of An. gambiae s. I. Fifty, 100, 400 or 800 larvae were added to the pits, 

resulting in densities of 0.03, 0.06, 0.25, and 0.5 larvae per square centimeter respectively. 

One pit in each pair was covered by a plastic mesh screen to prevent oviposition by other 

wild mosquito or access by predators. The other pit in each pair was left uncovered. Three 

replicates were performed for each treatment. Predators, previously identified as natural 

enemies of mosquito larvae (Jenkins, 1964; Service, 1973), or by direct observation were 

identified daily. Immature development was monitored daily until pupation, and all pupae 

were collected in small test tubes and allowed to emerge in the laboratory at the Ifakara 

Centre. Wing lengths of emerging females were measured as described by Lyimo et al. 

(1992). 

For the second experiment, the same pits and same mosquito densities as in the first 

experiment were used, but all pits were covered to exclude predation. Daily early morning 

(7.00-8.00 hours) and mid afternoon (14.00-15.00 hours) temperatures of the breeding 

water were recorded with a normal mercury thermometer at a depth of 5 cm. Larval 

development was monitored daily until pupation. Pupae were collected and allowed to 

emerge at the Ifakara laboratory and female wing lengths were measured as in the first 

experiment. The laboratory cohort were reared in plastic pans measuring 26x12x8 cm. 

Larvae were added at a density of 10, 19, 78 and 156 larvae to give the same densities per 

square centimeter of 0.03, 0.06, 0.25 and 0.5 larvae. Three replicates were done for each 

density. Cultures were kept in the insectary at a constant temperature of 27° C, and 0.1 mg 

fish food (Tetramin) was added to the trays daily until pupation started after which food 

was added every other day. Water temperatures were recorded each afternoon. Larval 

development was monitored up to pupation. Pupae were allowed to emerge and female 

wing lengths were measured as mentioned above. 

Differences in survival rates, developmental time and wing lengths between the 

different treatments were compared by analysis of variance and by paired t-tests. 

Results 

A number of predatory insects were present during the experiment, notably Culex tigripes 

larvae, a number of water beetles and adults of Dolichopodidae flies. Two to three days 

36 



after the start of the experiment, first stage larvae of Culex tigripes were observed in all 
uncovered pits. The number of these predatory larvae varied from 14 to 83 per pit at the 
early stages but decreased as the experiment progressed, and in most cases only one or 
two larvae pupated. In addition, hundreds of other Culex spp. larvae and pupae were 
present. The mean survival rate of immature An. gambiae s.l. was 0.20 in the absence of 
predators and 0.01 in the presence of predators. For the predator free treatment, the mean 
wing length of females decreased as density increased (F(df333) = 57.91; p < 0.001, 
ANOVA test). Too few females emerged from the pits which were open to predation to 
allow for density group comparison of wing sizes. However, the mean wing length of 
females subjected to predation was significantly shorter than those from covered, predator 
free pits (F(dn46) = 202.286; p < 0.001, t-test) (Table 1). 

Table 1. Mean comparison of developmental time and survival rates of immature An. gambiae s. I. 

and of female wing lengths in the presence or absence of predation. 

Parameter 

Developmental time (days) 

Survival rate 

Mean wing length (mm) 

Predators 

Covered pits 

8.6 

0.193 

3.24 ± 0.01 (n=37) 

absent 

Uncovered pits 

8.9 

0.007 

2.44 ± 0.03 (n=13) 

present -Cx. tigripes 

-Dolichopodidae adults 

-water beetles 

In the field experiment, measured diurnal water temperatures fluctuated from 19.5 °C to 
40.5 °C, with an average of 28.7 °C. Temperature in the laboratory was 27.5 ± 0.5 °C. Age 
at pupation ranged from 6 to 14 days with an average of 8.9 days for mosquitoes reared in 
the field, and from 6 to 19 days with an average of 9.9 days for the laboratory group. For 
both groups, age at pupation increased with increasing larval densities (Fig. 1). Mean age 
at pupation increased from 6.5 days at 0.03 larvae per cm2 to 11.5 at 0.5 larvae per cm2 in 
the laboratory. The increase in the field group was from 6.8 days at the lower density to 
10.4 at the higher density tested. At comparable densities, mean age at pupation was 
significantly lower in the laboratory group at the densities of 0.03 and 0.25 larvae per cm2 
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Fig. 1. Mean age at pupation of larvae reared at different densities and either at constant 

temperature in the laboratory (closed circlesj-egression solid line) or at fluctuating temperature in the 

field (diamonds, regression dotted line). The vertical bars denote 95% confidence intervals. 

(F-value = 12.36, df(178); p< 0.05), but at the higher density of 0.5 larvae per cm2 

development was faster in the field reared mosquitoes (F-value = 39.26, df(1488); p< 0.001, 
ANOVA test). There was no significant difference in mean age at pupation at the 0.06 
larvae per cm2. Analysis of covariance was then performed to compare the mean age at 
pupation between the laboratory and the field reared mosquitoes, with mean temperatures 
as covariable. There was a significant decrease in age at pupation in the field reared 
mosquitoes and a significant increase in age at pupation at high densities. The interactions 
between the treatments and mean temperature, and treatment and density were also 
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significant (Table 2). 

Survival of the immatures, calculated as S-p10", where p is the proportion of larvae 

surviving to pupation, and t is the mean age at pupation within the treatment (Lyimo, et 

al., 1992), decreased with increasing density (Fig. 2). Survival was significantly higher in 

the laboratory than in the field. Mean wing lengths of females decreased with increasing 

density (Fig. 3). In the laboratory, the mean wing lengths of females from the two lower 

densities were not significantly different, but the two higher densities were significantly 

different from each other. 
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Figure 2. Mean survival rales of larvae reared in the laboratory under constant temperature (closed 

circles, regression solid line) or in the field at fluctuating temperature (diamonds, regression dotted 

line). The vertical bars denotes 95% confidence intervals. 
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The field cohort however, showed an opposing pattern with mean wing length of the two 
lower densities significantly different while at the higher densities they were not 
significantly different. Mean wing lengths of females from the field group were 
significantly larger than those from the laboratory group (F(dn nM) = 9.07; P = 0.01, 
ANOVA-test). 

Table 2. Summary results of the analysis of covariance for developmental time of laboratory and 

field reared cohorts of An. gambiae. 

Source of 

variation 

Treatment 

Density 

Treat x density 

mean temp. 

Treat x mean temp 

error 

sum of 

squares 

19.71 

496.77 

47.13 

31.00 

22.90 

2748.10 

degree of 

freedom 

1 

1 

1 

1 

1 

1184 

F-ratio 

8.50 

213.13 

20.19 

13.31 

9.82 

significance 

0.0036 

<0.0001 

<0.0001 

0.0003 

0.0018 

Discussion 

Small collections of water such as the pits used in the present studies are generally 
considered to be predator free (Christie, 1958). However, as Service (1973) noted and 
from the present study, this is not so. The pits used in this study were freshly dug, and 
free of any predators, but colonization by Culex tigripes was very rapid. Larvae of this 
predator were found in pits two days after the pits were dug. These larvae preyed 
voraciously on all stages of An. gambiae larvae. Dolichopodidae adults were also observed 
taking larvae from pits. However, no distinction was made between aquatic and surface 
predators on their contribution to larval mortality. Pits open to predation produced fewer 
adults and smaller females. With predation, one would expect these pits to produce larger 
females because of reduced density of competing larvae. However, open pits attracted 
other mosquitoes, mostly Culex spp. 
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Fig. 3. Mean wing length of females reared in the laboratory under constant temperature (closed 

circles, regression solid line) or in the field at fluctuating temperature (diamonds, regression dotted 

line). The vertical bars denotes 95% confidence intervals. 

The presence of these other mosquito larvae may have affected the An. gambiae larvae, 

either by direct competition for nutrients, or by other interference mechanisms such as 

growth retardant factors (Suleman, 1982). Another possibility is that predators might have 

selected for the larger, faster growing larvae and only the smaller ones survived to pupation. 
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Although predators contributed to mortality of immature An. gambiae, other mortality 

factors were also responsible, and these other factors seemed to be more important. In the 

present study for example, 80% mortality was recorded in predator-free treatments. 

Assuming that the same was true for the pits which were open to predation then overall 

mortality due to predators was less than 20%, meaning that predation was not the main 

cause of mortality in immature An. gambiae. The actual causes of mortality in the 

predator-free pits were not investigated but several groups of fungi such as Coelomomyces 

spp, microsporidia and other entomopathogenic fungi are known to cause mortality in An. 

gambiae (Service, 1973; Jenkins, 1964; Fox & Weiser, 1959). Larvae collected in a ditch 

near our experimental pits were found infected with Coelomomyces. These pathogens may 

have been responsible for the observed mortality of immatures in our experimental pits. 

Initial density of larvae affected survival of immatures. In the second experiment, 

survival decreased with an increase in density both in the laboratory and in the field. 

Previous studies of a laboratory colony of An. gambiae s.s. by Lyimo et al. (1992) showed 

similar results. The laboratory cohort showed much higher survival rates than the field 

cohort chiefly because no mortality factors other than competition for food and space were 

acting upon them. The field cohort might have been affected by pathogens, as was 

observed in the first experiment. No attempts were made to quantify total nutrients in the 

field pits but as all were within half a meter of each other, it was assumed that nutrients 

did not vary much between the pits. Although the laboratory cohort was offered 0.1 mg of 

food daily, there was less mortality of larvae which meant less food per larvae, as 

compared to the field cohort which had higher mortalities and may have had less 

competition. This may be the reason for the observed large adults emerged from the field 

mosquitoes. 

Age at pupation increased with increasing density both at constant and fluctuating 

temperatures. However, the developmental pattern was not consistent. At the higher 

densities pupation was faster at fluctuating temperatures while at the lower densities 

pupation was faster at constant temperature. These differences were probably caused by 

the interaction between high density of larvae and temperature. The field temperature 

fluctuations resulted in higher mean temperatures which on interacting with the density 

acted as a stress factor, thus modifying the developmental process. Such a phenomenon 

was observed by Lyimo, et al. (1992) in the laboratory for An. gambiae s.s. and also by 

Reisen (1975) in An. stephensi who found that density and temperature interacted strongly 

in determining larval development. 

The results of this study support previous laboratory studies (Lyimo et al., 1992) by 

showing that the interaction between rearing water temperatures and density of larvae is 

important in modifying immature development as well as size of An. gambiae s. I. The 

mechanism of the interaction is still not clear, but as suggested by Hagstrum and 

Workman (1971), this interaction may alter feeding rates of the larvae, thus affecting their 
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development. Non-predatory factors, such as entomopathogenic fungi are probably more 
important as causes of mortality in An. gambiae immatures in small breeding sites than 
predators. 
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Part II. ECOLOGICAL ASPECTS OF ANOPHELES GAMBIAE S. L. IN 
SOUTHEAST TANZANIA 
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Chapter 4. 

Life history aspects of Anopheles gambiae s. I. immature stages: 
Breeding activity, density and survival. 

Abstract 

Breeding of Anopheles gambiae s.l. in Michenga village in South East Tanzania was monitored during the 

main rainy season of 1991, by daily surveillance of breeding sites. Several categories of breeding sites were 

identified which included rice fields, water holes, rain pools, ditches, borrow pits, puddles and footprints. All 

breeding sites had prolific larvae but were not equally productive of pupae. Life tables were constructed from 

age distribution histograms and instar mortalities estimated. Overall mortality of immatures was estimated to 

be at least 94.6% and was mainly due to predauon and parasitism. Drying up of breeding sites also 

contributed to mortality of immatures. Mean wing lengths of females collected from water holes and rain 

pools were significantly longer than of those females collected from puddles and footprints. Temperature of 

the breeding water and crowding of larvae could be the explanation for this observation. 

Introduction 

Understanding the ecology of vectors is important in explaining population dynamics and 

disease transmission. Different populations of the same species may have subtle ecological 

differences, which could prove important in the interaction of that species with its 

environment. The affluence of Anopheles gambiae s. I. for example, may be due partly to 

the genetic complexity of the species, and partly to its ability to use a variety of breeding 

habitats. The population dynamics of An. gambiae is associated with the availability of 

breeding sites and adult densities fluctuate seasonally depending on the pattern of rainfall 

(Gillies & De Meillon, 1968; Krafsur, 1977; White et al., 1972). Rainfall creates 

temporary breeding sites such as shallow pools and foot prints, and replenishes permanent 

sites such as swamps. Because of its breeding habits An. gambiae quickly colonises these 

newly formed temporary rain fed water bodies ahead of other aquatic fauna (Christie, 

1959). In the Kilombero area of Tanzania, Freyvogel & Kihaule (1968) and Biro (1987) 

showed that An. gambiae densities peaked during the rainy season and dropped during the 

dry season. 

In this study, immature of An. gambiae were monitored until emergence, as part of a 

study of the population dynamics of this mosquito in a Michenga village. We examined 

breeding site characteristics, the development and survival of immature stages of An. 

gambiae, and the size of adult An. gambiae females emerging from different sites. 
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Materials and Methods 

Study area 

These studies were conducted in Michenga village, Kilombero district, in southeastern 

Tanzania (Fig. 1). The Kilombero district lies in the Kilombero valley and covers an area 

of 250 kms southwest-northeast and 60 kms east-west. The altitude averages 270 m and is 

approximately 240 at Michenga. To the north the district is bordered by the foothills of 

the Udekwa mountains with savanna type of Brachystegia vegetation. Michenga village is 

a rural community about 5 kilometers west of Ifakara town. The Lumemo river, a tributary 

of the Kilombero river, originates from the Udekwa mountains and runs along the western 

border of the village. The village is very flat with several semi-permanent ponds scattered 

within the village. Open water holes are the main source of domestic water in addition to 

a few hand pumped shallow wells. Some of these water holes have water throughout the 

year. During the rainy season, the village is flooded and many temporary water bodies are 

present. 

The seasons vary from a hot and humid period in December through May, a cool and 

dry period in June through August and a hot dry period in September through November. 

The rainy season starts in November/December and extends through May, with a peak in 

April. However, monthly precipitation varies considerably from year to year. The annual 

rainfall varies from 1200 mm in the plain to over 1800 mm on the mountain range. The 

mean temperature is 26 °C, with a minimum of 16°C and a maximum of 37 °C. Relative 

humidity fluctuates from 50% to over 95% (Fig. 2). 

The Kilombero valley consists of grassland in the plains and Brachystegia woodland 

(Miombo woodland) on the terraces and the foothills. People engage in subsistence 

agriculture and grow mostly rice and maize. Cassava and bananas are the semi-permanent 

crops. Rice is grown on ridges or flat plots and no irrigation is practiced in this area. The 

Michenga village has a total of 2485 inhabitants in 442 households. The average number 

of persons per household is 4.2. The age distribution forms a 14:33:53 ratio of under 

fives:schoolchildren:adults (1989 census, Kilombero Malaria Project report). Houses are 

mostly made of mud bricks with palm leaf thatch. A few houses are of burnt bricks with 

corrugated iron roof. The most common animals in the village are dogs. Other large 

animals include some cows and goats. Almost every household keeps chickens or ducks 

for eggs and meat. 
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Fig. 1. A sketch map of Tanzania showing (a) Kilombero district (shaded area) in Morogoro region 

and (b) Ifakara agglomeration and the study village. 
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Sampling of immatures 

Standardised sampling of An. gambiae immatures is difficult because of the diversity and 

complexity of the immatures' habitats. There is continual variation in both the size and the 

number of habitats, such that quantitative estimates of either larval density or population 

size are subject to sampling errors. Of the many available larval sampling techniques, 

dipping is the most commonly used method. Dippers may vary in size and shape to suit 

the local needs and availability. Service (1976) gave a list of dippers developed and used 

in the field, with their advantages and disadvantages. The advantage of using a dipper is 

that it is easy to standardize the sampling procedure, for example the number of dips per 

site. The disadvantage of dipping is that larvae and pupae react to any movement or 

shadow on the water surface by diving and some mosquito larvae spend a long time 

submerged, and may be missed during sampling. Also in shallow sites dipping is difficult 

and may result in biased sampling. 

The distribution of mosquito immatures in their breeding habitats is highly aggregated. 

Service (1976; 1985a) reported that in An. gambiae s. I. the spatial aggregation of 

immatures differs between instar stages. Because of this difference there are often large 

variations between the number of immatures caught in different samples. In view of this 

variability, large numbers of dips are taken in order to estimate the density of immatures 

per dip. In the present study standard dippers (or ladles) with a capacity of 125 ml and 

diameter of 8 cm were used. 

Habitat characteristics and general breeding activity 

From April to June 1991, water bodies within Michenga village were surveyed and 

probable An. gambiae breeding sites identified. Figure 3 shows a sketch map of Michenga 

village with the surveyed breeding sites. The sites varied in size and appearance and could 

be grouped into five categories, namely: 

- Rice fields: rice fields flooded with rain water. 

- Water holes: these were hand dug pits containing stagnant ground water for domestic 

use. Normally the water was clear and there was no emergent vegetation although 

some had hanging grass. 

- Rain pools: temporary to semi-permanent, both natural or modified by man, filled with 

rain or seepage water. 

- Borrow pits and ditches: borrow pits filled with rain water and natural or man-made 

ditches. 

- Puddles and footprints: small water bodies formed as a result of human activities, for 

example puddles in maize farms and paths in swampy areas. (Sometimes there was 

overlap between puddle/footprint and the borrow pit/ditch types of breeding sites, 
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especially when the types were in the process of drying up, making it difficult to 
separate the two). 

A total of 43 sites was visited daily over the sampling period, and sampled for the 
presence/absence of immatures. A team of two people with dippers plus trays measuring 
24 x 18 x 6 cm., collected larvae and pupae for 10 minutes at each site. The number of 
anopheline larvae (irrespective of instar stage) and pupae was recorded. After counting, 
larvae were returned to the site and attempts were made to collect all the remaining pupae 
by taking a second round of checks after the normal sampling procedure to get an estimate 
of the total pupae production. Dipping for pupae continued until no pupae could be found. 
All pupae were brought back to the laboratory, allowed to emerge and adults were 
identified to species. Presence of culicine larvae and any other animals were also recorded. 
The water temperature of each site was measured with a mercury thermometer at a depth 
of 5 cm, daily in the morning (between 08.00 and 09.00 hours) and in the afternoon 
(between 14.00 and 15.00 hours). Each site was monitored as long as larvae or pupae were 
found, which was between 6 and 10 weeks. Wing lengths of emerged adult females were 
measured as described by Lyimo et al. (1992). 

Immature development and survival 
From the 43 water bodies surveyed, six breeding sites were selected for detailed studies. 
These sites consisted of one water hole, one rain pool, one borrow pit, two large ditches 
and one puddle. Dipping was done daily for a period of two weeks from April 26 to May 
10, 1991. At each site ten dips were done with an interval of five minutes between dips, 
using the standard dipper. The number of larvae and pupae were counted separately for 
each stage in each dip. In order to estimate instar duration, wild females were allowed to 
lay eggs in the laboratory and newly hatched first instar larvae were introduced into plastic 
trays floated at one of the breeding sites (a large ditch). The trays (25 x 16 x 6 cm) had 
the bottoms cut out and replaced with a fine cotton cloth. Four replicates were set up with 

25 larvae each. The trays were checked daily and larval counts and developmental stages 
recorded until all larvae had pupated. Survivorship of immature stages was estimated as 
described by Service (1973; 1977). In short, age distribution graphs were constructed by 
dividing the total number of each instar counted over the ten day period, by the instar 
duration and plotting the values against the median age in days of each stage. Survivorship 
curves were then fitted through the mid points of the histograms. 
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From the curves, life tables were then constructed and mortality of immatures estimated. 
For the construction of such tables it is assumed that the population size at the time of 
sampling is at equilibrium with the number of oviposition balancing eclosions and deaths 
in all stages. 

Sibling species identification 
The An. gambiae group was identified to sibling species level by the DNA probe 
technique. In brief, squash blots of males emerged from field collected pupae were 
analysed using synthetic DNA probes as described by Hill et al. (1991) 

Results 

The number of sites sampled and their distribution among the five categories is presented 
in Table 1. Also shown is the number of larvae and pupae collected. Seven sites out of 43 
(16%) did not yield any larvae during the study period. These included 2 rice fields, 3 
water holes and 2 rain pools. Both culicine and anopheline larvae occurred together in 22 
sites, and 14 sites had anopheline larvae only. 

Table 1: Type and number of breeding sites surveyed and the number of An. gambiae 

immatures collected 

category 

Rice fields 

Water holes 

Rain pools 

Ditches/borrow pits 

Puddles/foot prints 

number 

surveyed 

4 

8 

6 

13 

12 

number 

with larvae 

2 

7 

4 

13 

12 

number1 

of larvae 

667 

4792 

3762 

6812 

6024 

number1 

of pupae 

13 

47 

251 

458 

325 

1 Total number of larvae and pupae collected during the standardised sampling procedure. 
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Table 2: DNA probe results of adult males collected from different sites between April and June 

1991. 

Site 

1 

4 

5 

6 

7 

8 

9 

12 

13 

16 

20 

21 

25 

26 

29 

31 

32 

33 

37 

39 

Total 

No. tested 

6 

17 

13 

30 

3 

14 

7 

6 

4 

3 

1 

39 

21 

6 

6 

1 

3 

3 

1 

2 

186 

No. 

gambiae 

5 

9 

7 

24 

2 

11 

5 

4 

2 

1 

0 

32 

14 

6 

4 

0 

1 

1 

1 

2 

131 

positive for 

arabiensis 

1 

8 

3 

5 

0 

2 

2 

2 

1 

1 

0 

5 

7 

0 

2 

1 

2 

2 

0 

0 

44 

Not determined 

0 

0 

3 

1 

1 

1 

0 

0 

1 

1 

1 

2 

0 

0 

0 

0 

0 

0 

0 

0 

11 

Mixing of the two subfamilies was observed in the larger breeding sites such as the 
water holes and the rain pools and occasionally in the smaller, very transient puddles and 
foot prints. Almost all anopheline pupae collected during the study period were of the An. 
gambiae complex. However, one An. squamosus Theobald and two An. funestus pupae 
were collected. The DNA probe analysis revealed that the ratio of An. gambiae s.s Giles 
and An. arabiensis Patton was approximately 75:25 and was consistent throughout the 
study period. The two sibling species occurred together in 18 out of 20 breeding sites 
where pupae were collected (Table 2). 
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Borrow pits and ditches formed the largest proportion of breeding sites, followed by 

puddles and foot-prints, water holes, rain pools and rice fields. There were abundant larvae 

in all sites positive for larvae. However, not all of them produced large numbers of pupae. 

Table 3 shows the final number of pupae collected i.e total pupae production. The rain 

pools produced on average the highest number of pupae per breeding site, followed by 

ditches/borrow pits, puddles/foot prints and rice fields . However, the ditches and borrow 

pits produced the highest proportion (52.5%) of the total pupae collected. In the first six 

weeks of the survey all sites contained immatures (Fig. 4). After ten weeks all other sites 

had dried out except the water holes, which continued to have larvae but no pupae of An. 

gambiae. 

Table 3: Total pupal production of each type of breeding habitat. 

category 

Rice fields 

Water holes 

Rain pools 

Ditches/borrow pits 

Puddles/foot prints 

Total 

number of pupae 

17 (0.9) 

60 (3.3) 

347 (19.0) 

961 (52.5) 

445 (24.3) 

1830 (100) 

(%) average/site 

9 

12 

116 

64 

37 

A total of 1830 An. gambiae s. I. pupae were collected and, 358 female wing 

measurements were obtained from the emerged adults. No wing measurements could be 

made for females from the rice fields because of practical problems. The mean wing 

length of females collected from the water holes was not significantly different from those 

collected in rain pools. Females from these two categories had significantly longer wings 

than those from borrow pits/ditches and puddles/foot prints, which were different from 

each other (Table 4). 
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Fig. 4. Proportion of breeding sites by category found with larvae during the survey period. Also 
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Correlation analysis of mean wing length with mean water temperatures gave a small but 
significant negative correlation coefficient (r = -0.397), df(2), P<0.05). 

Natural densities 
The simplified Mosquito Breeding Index (BI), Service (1976), was applied to the total 
immature counts, to compare population sizes between the six sites selected for detailed 
study. 
The breeding index is given by: 

BI = SA x PD x TLP 
(ND)2 

where SA = surface area in square meters, PD = number of positive dips, TLP = logarithm 
of total number of immatures caught, and ND = total number of dips. 

The two ditches and the rain pool had higher breeding indices, indicating that these 
sites had higher population densities (Table 5). 

Table 4: Mean water temperature and mean wing length of female An. gambiae from different 

groups. Values in the same column with different letters are significantly different at P<0.001 

category mean temperature °C no. of mean wing length(mm) ± SD 

(range) measurements 

Water holes 29.9 (27.0-36.0) 39 2.99 ± 0.209a 

Rain pools 30.5 (24.0-38.0) 87 2.89 ± 0.189a 

Ditches/burrow pits 30.5 (24.0-40.0) 140 2.80 ± 0.180b 

Puddles/foot prints 31.5 (23.6-40.0) 92 2.65 ± 0.159c 

58 



Table 5: Characteristics of breeding sites selected for detailed studies. 

Site Type/size(cm) Characteristics Predators BI1 (all instars) BI (pupae only) 

water hole 

diam. 150 

depth 95-145 

puddle 

length 160-560 

manmade 

no emerging veg. 

hanging grass 

open-sunlight 

clay/sandy soil 

tyre depression 

no grass 

tadpoles 

Cx. tigripes 

water beetles 

tadpoles 

Cx. spp. 

width 45-160 some debris 

depth 1-15 clay/sandy soil 

open-sunlight 

0.05 0.02 

0.05 0.03 

21 large ditch natural depression tadpoles 

length 210-1000 modified by cars Odonata spp 

width 95-450 grass at edges Dolichopodidae 

depth 10-100 sandy soil adults 

open-sunlight 

0.26 0.17 

22 borrow pit man made Cx. tigripes 

diam. 110-190 no vegetation Odonata spp 

depth 5-30 sandy soil tadpoles 

open sunlight 

0.04 0.02 

23 rain pool natural depression 

diam. 210-300 no vegetation 

depth 10-40 clay soil 

open sunlight 

tadpoles 

Cx. tigripes. 

Odonata spp 

Dolichopodidae 

adults 

0.16 0.09 

34 large ditch natural depression 

length 200-635 modified (path) 

width 91-250 grass at edges 

depth 3-30 clay/cotton soil 

1 breeding index (for explanation see text) 

tadpoles 

Cx. tigripes. 

Odonata spp 

Dolichopodidae 

adults 

0.16 0.06 
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Table 6 shows the total number of immatures collected from the different sites during the 
two week period. Data from site number 6 (a puddle) and 34 (a ditch) were inconsistent 
and could not be analyzed further. The field experiments with floating trays gave instar 
durations of 1.2, 1.8, 1.5, 2.2, and 1.0 days for first, second, third, and fourth instars and 
pupae, respectively. The average duration from larval stage I to adult was 7.7 days. These 
values were assumed to represent those for wild mosquitoes in natural habitats and were 
used to obtain the age distribution graphs for all the other sites (Fig. 5a-d). From the 
distribution curves, mortality per instar was estimated following the procedure outlined by 
Service (1976) (Table 7 a-d). In the water hole and the rain pool sites, immatures suffered 
the highest mortalities at larval stage IV. The ditch site No. 21 showed a gradual increase 
in immature mortality reaching a maximum at the pupal stage, and only the borrow pit 
showed a higher mortality of larvae at stage II. 

Table 6: Number of immature stages of An. gambiae counted in 100 dips in six selected sites 

Site No. Instar I Instar II Instar HI Instar IV Pupae 

4 

6 

21 

22 

23 

34 

1400 

483 

1385 

389 

424 

71 

738 

1018 

1421 

280 

301 

423 

287 

310 

549 

80 

191 

261 

75 

155 

61 

37 

70 

37 

28 

93 

1 

14 

30 

5 

Discussion 

The proportion of sites within a category found with or without larvae suggests that for 
oviposition, females seem to select equally the smaller puddles and foot prints and the 
larger rain pools. The rain pools produced on average the highest number of pupae per 
site, but since only a few of these pools were present in the study area, they contributed 
less to the overall pupae production. The ditches and borrow pits contributed more to the 
overall production because a large number of these sites were found in the village and all 
of them contained larvae and pupae. The same applied to the puddles and footprints. Rice 
fields were the least productive. 
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Fig. 5. Age distribution and survivorship curves for the immature stages of An. gambiae s.l. (a)water 

hole No.4, (b) ditch No.21, (c) borrow pit No.22, (d) rain pool No.23 
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Unlike studies elsewhere (Ejiofor & Okafor, 1985; Mukiama & Mwangi, 1989), in the 
Kilombero area, especially in Michenga village, there is no irrigation and the rice crop 
depends entirely on rainfall. Fields are planted early in the season and by the time they are 
flooded the rice has grown tall enough for the fields to be unsuitable for An. gambiae 
breeding. Chandler & Highton (1976) showed that An. gambiae does not breed in fields 
where the rice was more than 100 centimeters tall. For the few fields which could support 
breeding, mostly at the edges, larvae were probably more likely to suffer predation than in 
the other sites because of the diversity of aquatic fauna found in these fields, and therefore 
few pupae were produced. Thus, although the larger rain pools seemed to be the ideal 
breeding sites for An. gambiae, the smaller but more numerous breeding sites contributed 
more to the mosquito population in this area. It can be concluded that the transient water 
bodies such as ditches, borrow pits, puddles and footprints were the main An. gambiae 
breeding habitats in Michenga. This was also reflected in the seasonal fluctuations of adult 
mosquito densities in houses in this village. Higher densities occurred during the rainy 
season when temporary water bodies were in abundance. These results agree with those of 
a parallel study done in Namawala, another village in the Kilombero area (Jeroen Sytsma, 
MSc report, Wageningen University) and also with those of Biro (1987), who showed that 
temporary water bodies were more important An. gambiae s. I. breeding sites than rice 
fields and the larger, permanent water bodies. 

It is well documented (Service, 1971; 1977; 1985a) that the immatures of An. gambiae 
are highly aggregated in their breeding sites and this may result in unequal sampling of 
instars. In the sites with gently sloping edges, for example the two ditches and the puddle 
(Table 5), proportionally more second than first instars were collected (Table 6). It may be 
that the first instars, being very small, tend to aggregate in relatively shallow areas along 
the edges where there is little likelihood of their being picked up by a ladle. In addition, 
the very short instar duration implies that they are present only briefly and are thus liable 
to be missed on sampling occasions. The mortality of immatures varied between stages 
and in different sites. On average, mortality was highest in the fourth stage, except in the 
borrow pit where mortality of young instars was highest. As observed in chapter 3 of this 
thesis, a combination of parasitism and predation may have contributed to the observed 
survivorship of the immatures. It is possible that whereas aquatic predators may kill all 
instars equally, surface predators which pick their prey from the surface of the water may 
select the older larger instars. An example of these are the dolichopodidae adults which 
were numerous in some sites in the present study. The parasites identified in dead larvae 
collected in one of the sites were the entomopathogenic fungi of the genus Coelomomyces, 
which normally kills older larvae and pupae (Federici, 1981). The estimated mortality of 
immatures in different sites was between 95% and 99%, which is similar to the range 
obtained in other studies for the An. gambiae complex in East Africa for the same types of 
breeding sites (Service, 1971; 1973; 1977). 
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Table 7: Instar mortalities of An. gambiae s. I. in Michenga 

Water hole No.4 

Instar ti-1 Sti-1 Di Di_ 1 - (Sti/Sti-l)1/d 

Sti-1 

I 0 
II 1.2 
III 3.0 
IV 4.5 
Pupae 6.7 
Adults 7.7 

1175 
952 
381 
175 
41 
32 

Rain pool No.23 

I 0 
II 1.2 
III 3.0 
IV 4.5 
Pupae 6.7 
Adults 7.7 

Borrow pit No. 

I 0 
II 1.2 
III 3.0 
IV 4.5 
Pupae 6.7 
Adults 7.7 

Ditch No. 21 

I 0 
II 1.2 
III 3.0 
IV 4.5 
Pupae 6.7 
Adults 7.7 

404 
258 
140 
90 
20 
18 

22 
• 

373 
310 
103 
67 
27 
20 

1397 
1098 
635 
278 
20 
0 

223 
571 
206 
134 
9 

146 
118 
50 
70 
2 

63 
207 
36 
40 
7 

299 
463 
357 
258 
20 

0.190 
0.560 
0.541 
0.766 
0.220 

0.361 
0.457 
0.357 
0.778 
0.100 

0.169 
0.668 
0.350 
0.597 
0.259 

0.214 
0.422 
0.562 
0.928 
1.000 

0.161 
0.399 
0.405 
0.483 
0.220 

0.312 
0.288 
0.255 
0.495 
0.100 

0.143 
0.458 
0.249 
0.338 
0.259 

0.182 
0.416 
0.423 
0.698 
1.000 

Legend: ti-l=age in days at beginning of instar, 
Sti-1= No.entering instar, Di=deaths in instar, 
Di/Sti-1= relative proportion dying in instar, 
l-(Sti/Sti-l)1/d =proportion dying daily in instars 
d*=instar duration in days (After Service, 1986) 
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Parasitism with Coelomomyces and other fungi, nematodes, and predation by adult 

dipteran, and coleopteran larvae been cited as the most important mortality factors. In the 

present study, dragonfly larvae, coleoptera, Culex tigripes larvae and dolichopodidae adults 

were found preying on immature mosquitoes. 

Females breeding in large water bodies, for example in water holes and rain pools, 

had on average longer wings than those breeding in puddles or foot-prints. Several factors 

may have contributed to the observed differences. The water holes were deeper than the 

other sites (between 1-2 meters), and temperature fluctuations were more moderate than in 

the smaller bodies of water (Table 4). As a result of higher diurnal temperatures and wider 

fluctuations in the smaller types of breeding sites, larvae developed faster and eclose as 

small adults. The same effect of temperature on the wing length of adult mosquitoes has 

been reported both from laboratory studies (Hagstrum & Workman, 1971; Lyimo et ah, 

1992) and in the field (Le Sueur & Sharp, 1991). Although temperature in the rain pools 

were equal to those in ditches, females emerging from the rain pools had larger wings. 

Rain pools with larger surface areas experienced less crowding , therefore competition for 

space as well as nutrients was reduced. In the puddles and footprints, crowding of 

immatures and competition for available food resources coupled with the high 

temperatures contributed to the observed smaller size of females emerging from these 

sites. No attempt was made to quantify the nutrient content of the breeding sites which 

might have affected immature development as well as size of the adults. 

It is evident from this study that in the Kilombero area, the small but numerous 

temporary rain-fed water bodies are the main An. gambiae breeding sites, despite the fact 

that immature stages suffer high mortalities. The presence of such sites in large numbers 

during the rainy season ensured prolific breeding of the species. These sites also produced 

smaller females due to the high temperatures and crowding experienced in these sites. 
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Chapter 5. 

Some aspects of the adult bionomics of Anopheles gambiae s.l. in 
relation to malaria transmission in southeastern Tanzania. 

Abstract 

Adult females of the malaria vector An. gambiae s.l. were monitored for two years in a village setting. 

Density of females caught in light traps increased with the onset of the rainy season. The highest average 

number of females per light trap occurred towards the end of the rainy season in May. The females exhibited 

a nocturnal biting behaviour with peak biting occurring shortly after midnight and much earlier than 

previously described. Daily survival rate, estimated from the mean parous rate, was 0.84. The sporozoite rate 

was highest during the dry season. Entomological inoculation rate peaked at the same time as the peak 

mosquito density and the mean annual number of infective bites per person was estimated to be 548. 

Introduction 

The main vectors of malaria in Tanzania are species of the Anopheles gambiae complex 

and An. funestus (White ex al., 1972; Mnzava et al., 1989). In the humid coastal and 

lacustrine areas the predominant vectors are An. gambiae s.s. and An. funestus, and malaria 

is holoendemic. In the dry and semi-arid areas, An. arabiensis predominates and malaria 

ranges from epidemic to hyperendemic (Mnzava & Kilama, 1986). 

In the Kilombero area, southeastern part of the country, malaria is highly endemic 

(Freyvogel & Kihaule, 1968; Tanner, et al. 1986; Biro, 1987). A malaria study is being 

conducted in this area, aimed at defining markers for malaria transmission. Knowledge of 

the local malaria vectors was therefore required. The present study was undertaken as part 

of the major Kilombero Malaria Project to study the bionomics of malaria vectors in the 

area. In particular, the present study aimed at monitoring the seasonal densities, biting 

cycle, survival rate and sporozoite rate of An. gambiae s.l. in Michenga. 

Materials and Methods 

Study area. 

The study was conducted in Michenga village, Kilombero district, southeast Tanzania. The 

area and its climatological features are described in detail in chapter 4 of this thesis. 

Mosquito collection and processing. 

Mosquito densities were monitored with standard CDC light traps hung inside bedrooms 

near people sleeping under bednets. The traps were run every two weeks in 38 houses 

from January 1990 to December 1991. All mosquitoes caught were brought back to the 
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Ifakara Centre laboratory, killed, sorted by species and counted. The An. gambiae s. I. 

females were kept dry on silica gel and stored at -20 °C until required for sporozoite 

determination. 

From February to August 1991, sub-samples of the An. gambiae females from the 

fortnightly light trap catches were dissected and their parity determined by the coiling or 

uncoiling of their ovarian tracheoles, as described by Detinova (1962). The most straight

forward method of determining mosquito survival is by the mean parous rate (Davidson, 

1955), i.e. the proportion of the females which have laid eggs at least once. The total 

number of parous females collected over several sampling occasions is divided by the total 

number of parous and nulliparous females in the sample to give the mean parous rate. 

This value then provides an estimate of the average survival rate per oviposition cycle. 

The method assumes that survival rate is independent of age and that all age classes are 

sampled equally in proportion to their relative density in the population. It is also assumed 

that recruitment to the population is constant, which is rarely the case. 

An improved method for survival rate estimation was proposed by Birley and 

Rajagopalan (1981) and by Birley and Boorman (1982). The method makes the same 

assumptions as does the mean parous method, but in addition it assumes that daily 

variations in sample size are proportional to variation in the population density. The 

number of parous mosquitoes (P) in the population on any particular day t is equal to the 

total of nulliparous plus parous mosquitoes sampled one oviposition earlier, i.e T(,.J, 

multiplied by the survival rate S, where u is the duration of the oviposition cycle. Thus, 

Pft) = S . Tu.u). 

By treating the above equation as a linear regression through the origin, the survival rate S 

can be estimated. As the duration of the oviposition cycle is unknown calculations are 

repeated for several values of u. For each value, the residual sum of squares are calculated 

and presented as correlation index Rfu). The R(u) ranges from 0 to 1 with maximum at u = 

0, and decreases with increasing values of u. The second peak obtained across the range of 

values is taken as an estimate of the oviposition cycle length. Daily dissections for at least 

30 days are sufficient for estimation of survival rate by this time series method. For the 

purpose of this study, dissections were done from 16 April to 15 May, 1991. 

The biting cycle was investigated by all-night landing catches. Two huts, built about 

half a kilometre apart within the village, were used as catching stations. Two teams of two 

people each collected mosquitoes coming to bite inside the huts from 1800 to 0600 hours. 

Collections were done twice per week during the wet season, from March to June, 1991. 

Mosquitoes caught in each hour were kept separately in paper cups and brought back to 

the laboratory. The number of female An. gambiae s.l. caught each hour was recorded 

and dissected for parity. Wing lengths of the dissected females were measured as 

described by Lyimo et al. (1992). 
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Sporozoite detection in mosquitoes. 
Heads and thoraxes of mosquitoes caught in the light traps were subjected to an ELISA 
specific for the (NANP)40 repeat region of the circumsporozoite protein of P. falciparum 
(Campbell et al., 1987). Positive controls of 1000, 500, 250, and 125 sporozoites were 
duplicated on the same plates, and the cut off point separating infected from uninfected 
samples was taken at 500 sporozoites. 

Entomological inoculation rate 
The entomological inoculation rate (EIR), which is the number of infective bites per man 
per night, was estimated as, 

EIR = (ma) x (sr), 
where m is the relative density of vectors, a is the human biting habit, and sr is the 
sporozoite rate. The product ma was estimated from light trap catches. Lines et al. (1991) 
showed that light trap catches could be transformed to equivalent biting catches by 
multiplication by a factor of 1.5. In the Kilombero area the same relationship has been 
observed (Kilombero Malaria Project, unpublished). Therefore, the average number of 
mosquitoes per light trap was multiplied by a factor of 1.5 to give an equivalent man 
biting rate from which inoculation rates were calculated. 

Results 

Seasonal fluctuations 
The most important man biting mosquitoes found in the area included An. gambiae s.L, 
An. funestus and Culex quinquefasciatus. Other mosquito species caught were An. 
coustani, An. squamosus, An. pharoensis, An. ziemanni, and a number of Aedes spp and 
other Culex spp. 

A total of 18,774 and 28,641 female An. gambiae s. I. were collected in 1990 and 
1991 respectively. The monthly mean number of females per light trap, monthly total 
rainfall, and mean monthly minimum and maximum temperatures are given in Fig. 1. The 
number of females increased slowly at the onset of the wet season in January through 
March and then increased sharply to a major peak towards the end of the rainy season in 
May. During the dry season between June and December, the population remained at low 
densities. 

The biting cycle 
An. gambiae s. I. females started biting at 19.00 hours, and increased gradually to attain a 
peak between 23.00 and 02.00 hours. The largest hourly proportion of females biting was 
between 01.00 and 02.00 hours. Afterwards, the number of females biting decreased 
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Fig. 1. Monthly mean numbers of An. gambiae s. I. females collected per light trap (log scale) in 

Michenga. Also shown is the monthly total rainfall, monthly minimum and maximum temperature. 
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Fig. 2. Hourly biting activity of An. gambiae s. I. (a) total females (b) nulliparous (dashed line) and 

parous (solid line). 

69 



steadily to a minimum at sunrise approximately 06.00 hours (Figure 2a). When females 
were separated according parity, a slightly different pattern was noted. The young 
nulliparous females showed a low peak at 19.00 hours and two higher peaks between 
23.00 and 3.00 hours. The first of the larger peaks occurred at midnight followed by a 
drop one hour later, and the second peak was observed at 2.00 hours. Biting activity of the 
parous females showed a steady increase with a peak at 1.00 hours (Figure 2b). There was 
no difference in the wing lengths of females caught hourly (analysis of variance, F-value = 
15.53,(df=ll)P>0.05). 

Table 1. Estimates of survival rate from time series for An. gambiae s.l. 

Time delay 

in days (u) 

0 

1 

2 

3 

4 

5 

6 

Survival rate 

(s) 

0.42 

0.42 

0.41 

0.41 

0.41 

0.40 

0.40 

Correlation index 

(RJ 

0.83 

0.59 

0.56 

0.52 

0.45 

0.29 

0.37 

Survival rate estimations 
Dissection for parity of 2810 An. gambiae females was done during the 1991 wet season, 
and fortnightly parous rates determined (Fig. 3). The parous rate fluctuated throughout the 
season, but parity was notably lower at the peak of the rainy season. The mean parous rate 
during the period of observation was 0.49. 

Estimated survival values and cross correlations calculated for time-lag of 0-6 days are 
presented in Table 1. Significant cross correlation values were evident from day 1 to day 4 
but no major peak could be identified from the series. As a result, the length of the 
oviposition cycle could not be estimated. Provisionally, survival rate per oviposition cycle 
was estimated assuming a 3-day oviposition cycle (Gillies & Wilkes, 1965), and from the 

70 



mean parous rate (0.49). The daily survival rate was therefore estimated to be 0.836. From 
the daily survival rate the expectation of infective life of the vector v could be estimated 
as: 

v = pn = 0.836 10 = 0.93 days, 

-loge 0.836 

where n is duration of the extrinsic cycle of the parasite, and is taken as 10 days for 
Plasmodium falciparum (Molineaux & Gramiccia, 1980), and/? is the survival rate per day 
(Macdonald, 1952). 
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Fig. 3. Parous rates of female An. gambiae s. I. in Michenga. Values represent fortnightly means 

with standard deviations (vertical bars). 
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The sporozoite rate 

A total of 2868 and 3200 An. gambiae females were processed for sporozoite 

determination in 1990 and 1991 respectively. The data from the two years were 

pooled together and the monthly sporozoite rates are shown in figure 4a. Few mosquitoes 

were positive for sporozoites in the first half of the year. The highest number of 

sporozoite positive females was observed in July and rates remained high during the dry 

season between July and December. The sporozoite data were analysed further to look at 

the seasonal relationship between sporozoite rate and mosquito density. The data were 

grouped into four seasons, January-March, April-June, July-September and October-

December, and analysed using a logistic regression method. The sporozoite rates increased 

as density of mosquitoes decreased, resulting in high sporozoite rates during the dry 

season. The rate of increase in mosquito density also had a negative effect on the 

sporozoite rate (Table 2). 

Table 2. Analysis of regression table for seasonal relationship between female mosquito density and 

sporozoite rates in An. gambiae s.l. 

Source Df Chi-square Prob. Estimate 

Intercept 

Density 

Rate of Increase 

Season 

1 

1 

1 

3 

1107.89 

12.64 

589.02 

485.22 

<0.00001 

<0.00001 

<0.00001 

<0.00001 

-2.8045 

-0.0006 

-1.6747 

Monthly entomological inoculation rates by An. gambiae s. I. (Fig. 4b), showed two 

peaks, an early peak in January and a major extended peak between April and July. The 

mean annual entomological inoculation rate for the area was estimated at 548 infective 

bites per person. 
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Fig. 4. The sporozoite rates (a) and entomological inoculation rates (b) in An. gambiae s. L in 
Michenga. Value are monthly means over two years. In (a), the vertical bars denote S.E. of the 
means. 
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Discussion 

Seasonal variation in density of An gambiae s. I. followed the rainfall pattern of the area; 

the short rains in November/December were followed by a small peak in density of 

females caught in light traps later in January, and highest densities were caught during the 

main peak of rainfall in May. The delay in population build up was caused solely by the 

instability of the breeding sites created at the onset of the rains. Because of the dryness of 

the soil and the irregular torrential rainfall, these sites tended to dry up before the larvae 

managed to complete their development, and were sometimes washed away by the 

rainstorms. Later in the season the soil was saturated as a result of continuous rainfall and 

the favoured breeding sites of the species became abundant and stable. This resulted in 

high numbers of emerging mosquitoes as was evident from the decrease in parous rates 

(Fig. 3). Density decreased sharply after the rainy season, probably due to 1) decreased 

emergence as temporary sites dry up, killing the immatures, and 2) a decrease in general 

breeding. The 'classical' density pattern observed in the present study was similar to that 

observed by other workers in areas free from irrigation (Haddow, 1942; White, 1974; 

Joshi et al., 1975; Aniedu, 1992). Because An. gambiae is almost entirely a temporary 

rain-pool breeder, it depends on the local pattern of rainfall for breeding. During the dry 

season the population was maintained at lower densities mainly because breeding was 

limited to the large permanent bodies of water such as water holes and small sites created 

around swamps. These types of breeding sites are known to be less favourable sites for 

An. gambiae and survival of immatures is reduced (Christie, 1959). 

Studies on the biting activity of An. gambiae females showed that this mosquito is a 

nocturnal feeder, and any biting before sunset and after sunrise was negligible (Haddow & 

Ssenkubuge, 1973). The peak biting time varied widely and sometimes different patterns 

were observed on subsequent nights. The findings of the present study agree with other 

studies conducted in East Africa which showed that biting was intense in the hours after 

midnight (Gillies, 1957; Smith, 1961; Chandler et al., 1975). However, the peak time of 

biting was much earlier than previously described. Previous studies, except those of 

Gillies, involved other members of the complex, probably An. quadriannulatus and An. 

arabiensis (Zahar, 1985), and these members may differ in their biting activity. However, 

as the present study collected data during a single season, the observed activity should not 

be regarded as the 'typical' pattern and more intensive studies with collections done both 

indoors and outdoors should be undertaken. Moreover, the exact knowledge of the biting 

period is of interest especially now that the area is planned for control trials using 

insecticide impregnated bednets, which aim at protecting people while sleeping. The 

pattern observed between nulliparous and parous females is of interest and needs further 

investigation. We speculate that the different biting pattern between nulliparous and the 

parous females is caused by part of the nulliparous females resting indoors, (which include 
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those failing to feed the previous night and the pre-gravid proportion taking a second 

meal). These constitute the early biting peak of the nulliparous, whereas the later peak is 

from those emigrating from outdoors. The parous females do not show this early peak 

because they enter the houses later, i.e. after oviposition. 

The data collected for time series analysis were incoherent, indicating that the 

population at the time of sampling was unstable. This discrepancy was probably due to a 

number of reasons. The population could have been dominated by day to day disturbances 

with variable recruitment. Our sampling method could have introduced a sampling bias. 

For example trap position could result in samples of different age structure depending on 

whether they were close to or far from a breeding site (Chartwood et al. 1985). It is 

possible that our samples had a deficit of parous females thus giving a low estimate of the 

survival rate. The pre-gravid individuals could not be distinguished by the method used to 

determine parity. These were included in the nulliparous group. Differential dispersal in 

different age groups could also be a source of error. 

The mean parous rate method is often claimed to be inadequate in estimating the 

survival rate because it assumes constant recruitment. Normally there are considerable 

fluctuations in recruitment, and the mean parous rate therefore overestimates the survival 

rate. However, as sampling was extended through the season, the mean parous rate was 

found sufficient for estimating the survival rate in this study. The daily survival rate 

obtained here was much lower than those reported for An. gambiae in the dry season by 

other workers in Tanzania (Gillies & Wilkes, 1965; Garrett-Jones et al., 1972). Possibly, 

survival of An. gambiae may differ between the dry and the wet season. The parous rates 

(Fig. 3) suggest such a possibility, being higher in the dry season. Nevertheless, 

confirmation of this phenomenon is necessary. 

There was a strong seasonal effect on sporozoite rates, with highest sporozoite rates 

being observed during the dry season. This difference was caused by the difference in 

growth rates of the population. During the wet season, the population was composed of 

young females which were more likely to be sporozoite negative, whereas the dry season 

population had older females with higher possibility of being infected. This concept is also 

supported by the observed effects of density of females as well as the growth rate of the 

population, as sporozoite rates decreased with increased density or increased growth rate 

of the population. However, the presence of infected mosquitoes throughout the year 

means that in this area An. gambiae maintains perennial transmission of malaria parasites 

(Fig. 4) 

Although higher sporozoite rates were observed during the dry season, the EIR did not 

follow the same pattern. The probability of getting infective bites was higher towards the 

end of the rainy season in May and June. This was caused by the large numbers of 

females biting during this time of the year. In Michenga village, the maximum number of 

bites per person per night remains above 100 during the rainy season, thus the chances of 
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being infected were higher compared to the dry season. No data on survival of An. 
gambiae s.l. were available for the dry season, but the persistence of the vector throughout 
the year and the high inoculation rate observed may account for the non-seasonality and 
high endemicity of malaria in the area. 
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Chapter 6. 

Seasonal variation in adult wing length of Anopheles gambiae s.l. 

Abstract 

Populations of Anopheles gambiae s.l. from three localities in two districts in Tanzania were studied to 

determine the extent of size variation in adult females. The mean wing lengths between the three populations 

were significantly different and showed a high degree of variation with coefficients of variation between 18% 

and 30%. In the two localities where seasonal changes were studied, the mean wing lengths varied seasonally 

and were negatively correlated with air temperature. 

Introduction 

Many species of mosquito show considerable variation in adult size. This variation may 

reflect larval conditions during development, which depends on the type of larval habitat 

of the mosquitoes (Reisen et al., 1984; Fish, 1985; Haramis, 1985; Nasci, 1986b). In 

general those that breed in temporary habitats are subject to greater stress such as 

crowding, insufficient food and relatively high temperatures, and show a larger amount of 

variation in adult size than insects occupying more permanent habitats (Haramis, 1983; 

1985; Fish, 1985; Nasci, 1987). 

Members of the Anopheles gambiae complex, the malaria vector in most of sub-

Saharan Africa, breed in different kinds of habitat, but mostly in temporary small pools. 

For such a mosquito a wide variation in adult size is expected, and Gillies and De Meillon 

(1968) reported the range of wing length for this species to be 2.8-4.4 mm. Since their 

time no studies have looked at size variation in this mosquito. Recently, Lyimo et al. 

(1992) showed that in a laboratory colony the adult body size of An. gambiae was affected 

by the temperature and density at which the larvae were reared. In the field, An. gambiae 

s. I. breeding sites change seasonally depending on the rainfall (Aniedu, 1992; chapter 4 of 

this thesis). This means, therefore, that different populations experience diverse 

environmental constraints and might show variation in adult size. For this reason and for 

the purpose of the present thesis, this study was carried out to examine the extent and 

pattern of adult size variation in field populations of An. gambiae s. I. 

Materials and Methods 

Mosquitoes were collected from three villages in two districts of mainland Tanzania. The 

main part of the study was carried out in Michenga and Namawala villages, (about 36 km 

apart) in Kilombero district, south eastern Tanzania. Here, the main rainy season extends 

from March to May and the lesser one from November to December. The mean annual 
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temperature is 26°C, with cooler months between June and September and warmer months 

between October and May. Meteorological data for Kilombero were obtained from the 

Kilombero Agricultural Training Institute, which is situated adjacent to Michenga village. 

Additional mosquitoes were collected from Kisiwani village in Muheza district. 

Muheza is about 600 km from Ifakara town in north eastern Tanzania. This area 

experiences similar weather conditions with mean temperature of 26 °C and annual rainfall 

of 925 mm, with a perennial high humidity. The rainy season extends from December to 

May (White et ai, 1972). 

Host seeking females were collected by light-traps inside houses from January to 

December 1990 in Namawala and from January 1990 to December 1991 in Michenga. 

Catches were made every two weeks in 30 houses in each village from 22.00 to 02.00 h 

for the first six months. In later collections 10 houses were sampled from 20.00 to 06.00 h 

fortnightly. At Kisiwani, single collections were carried out in 10 houses between April 15 

and 21, 1990. The mosquitoes were sorted to species and stored on silica gel until required 

for measurement. From the monthly catches, 100 An.gambiae s. I. females were randomly 

sub-sampled when mosquito densities were high or all An. gambiae females were 

processed when mosquito densities were low. One wing of each specimen was removed 

and mounted onto a clean glass slide. The wing length was then measured from the distal 

end of the alula to the tip, excluding the fringe scales, using a dissecting microscope fitted 

with a camera lucida. Wing length was chosen as a unit of comparison because wing 

length correlates positively with dry body weight in many mosquitoes including An. 

gambiae (Christophers, 1960; Haramis, 1983; chapter 2 of this thesis). 

Analysis of variance (ANOVA) was used to detect differences in mean wing lengths 

among populations. Size variation between populations were compared by coefficient of 

variation (CV) and Gj, (a measure of skewness) was used to detect any departure from 

normality within the populations. Collections from the month of April 1990 were used for 

spacial size comparison of the three populations, while seasonal variations were analysed 

for Namawala and Michenga populations only. 
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Figure 1. Wing length frequency distributions for female An. gambiae s.l. collected from three 

different localities between 15 and 21 April, 1990. Arrows indicate location of the mean. 
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Results 

The wing lengths of the females ranged from 2.17 mm to 3.68 mm with means between 
2.70 mm and 2.98 mm. The mean wing lengths of females collected at the same period in 
April from the three different localities were significantly different (ANOVA test, F = 
48.63, P<0.0001) (Fig. 1, Table 1). Females collected in Muheza were smaller and more 
variable than those collected in the two villages in Kilombero. The coefficients of 
variation for the three populations were high. The wing size distribution of mosquitoes 
collected in Muheza was positively skewed, while that of Michenga and Namawala 
showed a negative skewness. However, the G1 values of the three populations were not 
significant. Females collected from Michenga in April 1990 were not significantly 
different in wing size from those collected the same month in 1991. 

Table 1: Summary of ANOVA for size of female An. gambiae s. I. collected in April, 1990 from 

three different localities. ' Gj not significant at P=0.05. Column figures with different letters are 

significantly different (P<0.001) 

Locality/year N 

Muheza/ 1990 100 

Namawala/1990 100 

Michenga/1990 100 

Michenga/1991 100 

winglength (mm) 

mean ± SD 

2.70 + 0.20a 

2.84 + 0.18b 

2.93 + 0.17c 

2.98 + 0.16c 

Coefficient 

of variation 

30.57 

23.53 

21.31 

18.16 

Gi 

0.1613 ns1 

-0.1135 ns 

-0.1879 ns 

-0.2417 ns 

Table 2 summarises the monthly variations in wing sizes for Michenga and Namawala 
populations. The monthly mean wing lengths of the females showed minor fluctuations 
from January to June, increased to a maximum in August and decreased again from 
September to December, and were negatively correlated to the monthly minimum and 
maximum air temperatures (Fig. 2, Table 3). Rainfall seems to have no apparent effect on 
the size of the mosquitoes. 
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Table 2. Summary of the variation in monthly mean wing lengths for An. gambiae s. 1. collected in 
two villages in Kilombero district. 

Village 

Namawala 

Michenga 

Month/year 

January/90 

February/90 

March/90 

April/90 

May/90 

June/90 

July/90 

August/90 

September/90 

October/90 

November/90 

December/90 

January/90 

February /90 

March/90 

April/90 

May/90 

June/90 

July/90 

August/90 

October/90 

November/90 

December/90 

January /91 

February/91 

March/91 

April/91 

May/91 

June/91 

July/91 

August/91 

September/91 

October/91 

November/91 

December/91 

n 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

70 

100 

100 

58 

100 

100 

72 

100 

100 

27 

100 

100 

100 

100 

100 

100 

100 

100 

20 

17 

14 

9 

wing length ± sd (mm) 

2.91 ± 0.27 

2.83 ± 0.31 

2.90 1 0.24 

2.84 ± 0.18 

2.90 ± 0.42 

2.93 ± 0.35 

2.97 1 0.35 

3.04 ± 0.31 

2.97 1 0.27 

2.90 ± 0.30 

2.93 ± 0.34 

2.91 ± 0.34 

2.95 10.18 

2.91 ± 0.38 

2.87 ± 0.17 

2.93 ± 0.17 

2.92 ± 0.46 

2.82 ± 0.20 

2.89 ± 0.46 

3.02 ± 0.23 

2.83 ± 0.30 

2.86 1 0.31 

2.78 10.16 

2.8910.17 

2.9210.19 

2.73 1 0.16 

2.98 1 0.16 

2.97 1 0.17 

2.90 1 0.31 

2.96 + 0.21 

3.08 1 0.20 

2.89 ± 0.12 

2.80 1 0.17 

2.83 + 0.12 

2.93 1 0.02 

C.V 

22.58 

23.35 

18.84 

23.53 

24.84 

22.45 

21.12 

18.38 

18.63 

21.31 

22.92 

22.46 

21.29 

20.94 

22.23 

21.31 

19.30 

26.66 

21.20 

25.84 

22.24 

24.49 

22.46 

21.84 

22.40 

24.67 

18.16 

19.08 

22.22 

23.95 

20.49 

21.43 

nd 

nd 

nd 

Gi 

-0.934 

0.012 

-0.211 

0.114 

-0.107 

0.207 

0.106 

-0.210 

-0.247 

-0.370 

0.018 

-0.047 

-0.257 

-0.251 

-0.158 

-0.188 

-0.059 

0.413 

0.033 

-0.306 

0.368 

-0.367 

0.602 

-0.309 

-0.180 

-0.444 

-0.242 

0.187 

-0.169 

-0.091 

-0.091 

-1.106 

nd 

nd 

nd 

nd = not done (sample too small) 
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Fig. 2. Relationship between monthly mean wing lengths of female An. gambiae s.l. and monthly 

mean air temperatures for (a) Namawala, January through December 1990 and (b) Michenga, 

January 1990 through December 1991. 
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Table 3. Summary of the correlation analysis of monthly minimum and maximum temperatures and 

rainfall on monthly mean wing lengths 

Source df sum of squares F ratio Prob>F Slope 

Min.temp. 

max.temp 

mean rain 

1 

1 

1 

0.2291 

0.9035 

0.0598 

5.412 

21.339 

1.411 

0.0201 

<0.0001 

0.2350 

-0.008 

-0.026 

-0.002 

Discussion 

The adult females collected from the three different localities varied significantly in size. 

In all three localities the coefficient of variation was high, between 18% and 30%. This 

was as expected for a species like An. gambiae which breeds in a variety of habitats, and 

is therefore subjected to different stress conditions during its development. The April 

populations from the three localities showed a nonsignificant degree of departure from 

normality. However, the observed trends could vary from time to time as was observed in 

the monthly variations for the Michenga and Namawala populations. As An. gambiae s.l. 

breeds in temporary rain pools as well as in larger habitats such as water holes and ponds 

(Service, 1976; Gillies & Coetzee, 1987; chapter 4 in this thesis), wide variations in 

microhabitats of the immatures is expected, which in turn result in diverse adult 

populations as was observed in the present study. 

The monthly mean wing lengths of female An. gambiae varied with air temperatures 

and were negatively correlated. The association observed between mean wing length and 

temperature in the present study was similar to that observed by Le Sueur and Sharp 

(1991) in A/t merus and by Bock and Milby (1981) in Cx. tarsalis as well as Day et al. 

(1990) in Cx. nigripalpus, who showed that wing size decreased with increasing 

temperatures. This is probably caused by increased metabolic requirement over food 

procurement by the larvae during the hot months. Among other things, the size of an 

emerging adult depends on the amount and quality of food (Carpenter, 1983). Food 

availability and acquisition may vary in different habitats depending on the degree of 

competition. As An. gambiae breeds mostly in temporary rain pools, these habitats tend to 

dry quickly and concentrate mosquito larvae. The intense competition for food and space 

resulting from this concentration leads to emergence of individually variable adults (Day et 

al, 1990). 
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The mean wing lengths of females collected from the two Kilombero villages 
fluctuated widely during the rainy season, although rain itself seemed to have no effect on 
the mean size of the mosquitoes. At most, the rain affected the size of the adults indirectly 
by creating variable breeding sites, and as was observed in chapter 4 of the present thesis, 
these different sites produce differently sized females. During the rainy season small as 
well as large breeding sites are available and as a result there is more variation in adult 
size, but on the average females are smaller. Whereas, in the dry season most adults 
emerge from larger sites, and the lower water temperature during this time reduces larval 
developmental time. This means more time for feeding. Survival of mosquito immatures in 
the larger sites is low (Christie, 1959), so few larvae with less competition, which give 
rise to larger adults. These studies show that there is a wide variation in adult size in An. 
gambiae and that this variation is caused by different enviromental factors experienced by 
the immature stages during development. Temperature, and competition for nutrients and 
space may be the main contributors to this variability. 
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Part III. EFFECTS OF ADULT SIZE ON FEMALE CHARACTERISTICS 
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Chapter 7. 

Effects of adult body size on fecundity and the pre-gravid rate of 
Anopheles gambiae s. I. females in Tanzania. 

Abstract 

The influence of adult body size on the pre-gravid state and fecundity was studied in Anopheles gambiae 

females hand caught inside houses and virgin females collected as pupae. Blood fed mosquitoes were kept 

for two to three days before dissection. Those females which did not develop eggs were classified as pre-

gravid, and examined for insemination. The number of mature eggs in those mosquitoes which became 

gravid were counted. Virgin females were blood fed and kept for egg maturation in the laboratory. Wing 

lengths of females were measured to determine the size of the mosquitoes. The overall pre-gravid rate in the 

resting An. gambiae population was found to be 21% and, of these, 66% had been inseminated. In the newly 

emerged females pre-gravid rate was 92.6%. The mean wing length of wild females which became gravid 

was significantly larger than those which remained pre-gravid. There was a positive correlation between 

fecundity and wing length. Smaller females tended to require two or three blood meals to facilitate 

completion of the first gonotrophic cycle. The critical size permitting oviposition from the first bloodmeal 

was a wing length of 3.00 mm. 

Introduction 

The tendency for part of mosquito populations of different species to take more than one 

blood meal in their first oviposition cycle has been reported by many workers. The cause 

of this tendency has not been well established and is believed to be associated with non-

insemination of the females (Roy, 1940; Rao, 1947; Jaswant & Mohan, 1951). Gillies 

(1954a) termed this condition 'pre-gravid' and the proportion of such females in a 

population, the pre-gravid rate. 

As regards members of the An. gambiae complex in Africa, Muirhead-Thomson 

(1948) found that a single bloodmeal was sufficient for egg maturation in all fertilised An. 

melas Theobald around Lagos, Nigeria. Gillies (1954b, 1955) working in Muheza, 

Tanzania, observed that a proportion of the blood fed An. gambiae females could not 

produce mature eggs after a single meal, and of this proportion, 26% were fertilised. 

Similarly in Burkina Faso, Adam et al. (1960) found that the majority of pre-gravid 

anophelines were not inseminated. In contrast, Hocking & Maclnnes (1948) mentioned a 

tendency for fertilised female An. gambiae and An. funestus Giles to take multiple blood 

meals before they could produce their first batch of mature eggs. 

This article has been accepted for publication with minor modification as: E. O. Lyimo and W. Takken, 

Medical and Veterinary Entomology, in press. 
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It seems unlikely, therefore, that non-insemination is the only explanation of pre-

gravidness. Reasons why some inseminated female mosquitoes ingest multiple bloodmeals 

in a single gonotrophic cycle must be attributed to other factors. 

Laboratory studies have shown that small adult female mosquitoes from larvae 

stressed during development may not develop eggs after their first bloodmeal (Reisen, 

1975). Briegel (1990) working with four Anopheles species including An. gambiae, 

observed that there was a threshold of about 1.5 calories of ingested blood needed for 

initiation of oogenesis. He also noted in An. albimanus Wiedemann and An. gambiae, that 

females which started egg maturation after one bloodmeal were significantly larger than 

those which did not. 

A number of studies have shown that the number of eggs produced by a female 

mosquito is related to its size (Bock & Milby, 1981; Steinwascher, 1982; Packer & 

Corbet, 1989). Reisen (1975) compared An. stephensi Liston adults from larvae cultured at 

different densities, and found that larger females produced more eggs. Also in the 

laboratory, Briegel (1990) reported a positive correlation of female size with fecundity of 

Anopheles spp. and Akoh et al. (1992) found the same for Culex quinquefasciatus Say. 

This paper reports the results of laboratory studies on the relationships between female 

adult body size and the tendency to take multiple bloodmeals before the first oviposition. 

We have also investigated the relationship between body size and fecundity in a natural 

population of An. gambiae s. I. in rural Tanzania. 

Materials and Methods 

Study area. 

The study was carried out in Michenga village, Kilombero district, southeastern Tanzania. 

The village lies in the Kilombero river plain at an average altitude of 270m. The area has 

two rainy seasons, the main season extending from March through May and the lesser one 

occurring in November. Annual rainfall averages 1200 mm with an average temperature of 

26 °C. During the main rainy seasons much of the village is flooded, providing ample 

breeding sites for An. gambiae and An. funestus, the important malaria vectors. 

Consequently malaria is holoendemic, the prevalence of parasitaemia in 0-4 year olds 

being around 80%. 

Mosquito collection and processing 

Indoor resting mosquitoes 

Blood fed mosquitoes were collected by hand inside houses using aspirators and torches. 

Weekly collections were conducted from 28th January to 6th March and 24th April to 

26th June 1991. Mosquitoes were brought back to the laboratory, immobilised by cooling, 
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sorted by species and their abdominal condition noted. Only fully bloodfed An. gambiae s. 

I. females were selected for further processing. These females were kept individually in 

vials (6 cm x 2 cm diameter) with a wet filter paper at the bottom of the vial to facilitate 

oviposition and a cotton wick soaked in 10% glucose as the sugar source at the top. Vials 

were kept in a constant temperature chamber at 27°C and relative humidity of 90% for 2 

days. Eggs laid during this period were counted under a dissecting microscope. All the 

females were dissected on the third day and any retained eggs were also counted. Those 

females which did not develop eggs, and were found to be nulliparous on dissection, were 

classified as pre-gravid and the stage of follicle development was noted. The spermatheca 

of each female mosquito was examined for insemination. One wing of each An. gambiae 

s. I. female was glued onto a glass slide and the length measured from the distal end of 

the allula to the wing tip, excluding the fringe scales, using a dissecting microscope fitted 

with a camera lucida. 

Newly emerged female mosquitoes 

Pupae were collected from field sites over a period of three weeks towards the end of the 

main rainy season. The adult mosquitoes were allowed to emerge in the laboratory at the 

Ifakara Centre and the virgin females were offered a human bloodmeal on the second day 

after emergence. Fully fed An. gambiae s. 1. females were kept individually as in the first 

study. After two days gravid females were dissected and the number of mature eggs 

counted. The non-gravid females were offered a second bloodmeal and kept for another 

two days. The same procedure was repeated for the third meal. Female wing lengths were 

measured as described above. 

Results 

The indoor resting mosquitoes. 

For the 852 indoor-resting An. gambiae s. I. females assessed, the mean wing length was 

2.92 mm (SD=0.006), range 2.34 mm - 3.62 mm. The proportion of females which 

became gravid after blood feeding was 78.7%, leaving the overall pre-gravid rate as 

21.3%. The proportion of pre-gravid females fluctuated widely over the study period with 

relatively high pre-gravid rates during April-June after the onset of the main rainy season 

in March (Table 1). However, the pre-gravid rate and total rainfall the same week or one 

week before were not significantly correlated. 
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Table 1: Rainfall and weekly catches of blood fed An.gambiae s.l collected resting 
indoors in Michenga. Also shown are the proportions which became gravid and 
those remaining pre-gravid 

Week after 
January 1 

Weekly 

rainfall(mm) 

52.6 

117.2 

5.4 

5.8 

40.1 

0.0 

17.3 

137.5 
96.2 

84.3 

60.5 

0.0 

0.0 

0.0 

0.0 

Number 

collected 

122 

38 

58 

69 

35 

24 

69 

33 
142 

51 

48 

49 

57 

36 

30 

Number 

gravid (%) 

115 (94.3) 

32 (84.2) 

54 (93.1) 

64 (92.8) 
32 (91.4) 

24 (100.0) 

50 (72.5) 

31 (93.9) 

45 (31.7) 
42 (82.4) 

38 (79.2) 

39 (79.6) 

47 (82.5) 

35 (97.2) 

30 (100.0) 

Number 

pre-gravid (%) 

7 (5.7) 

6 (15.8) 

4 (6.9) 

5 (7.2) 
3 (8.6) 

0 (0.0) 

19 (27.5) 

2 (6.1) 
97 (68.3) 

9 (17.6) 

10 (20.8) 
10 (20.4) 

10 (17.5) 

1 (2.8) 

0 (0.0) 

5 (January) 
6 (February) 
7 
8 
9 
10 (March) 
17 (April) 
18 (May) 
19 
20 
21 
22 
23 (June) 
25 
26 

Total 529.9 861 678 183 

The wing lengths were classified into 10 size classes and the proportional distributions of 
the gravid and the pre-gravid females are presented in Figure 1. The mean wing length of 
females which became gravid was significantly larger (2.93 mm, S.E.= 0.007) than that of 
the pre-gravid females (2.87 mm, S.E.=0.0.013); t = 16.05, P<0.001, 850 d.f. (Table 2). 
Variations in wing length over the weeks followed the same pattern, with pre-gravids 
having consistently shorter wings than the gravids (Figure 2). 

The insemination rate of the pregravid females of An. gambiae s. I., assessed by 
examination of the spermathecae for the presence of sperm, was 73/111 (63.7%) 
inseminated. All pre-gravid females had follicles at the resting stage, with a few yolk 
granules deposited around the oocyte nucleus i.e Christophers' stage lib (Clements, 1963). 
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Fig. 1. Frequency distribution of wing size classes for the gravid and pre-gravid females of the 

indoor resting population of Anopheles gambiae s.l. 

Table 2: Mean wing length of gravid and pre-gravid An. gambiae s.l. in the resting 

and emerging populations. Different letters in the same column designate 

significant differences (P<0.01; t-test) 

Resting population Emerging population 

State wing length(mm) n 

mean ± S.E 

wing length(mm) 

mean ± S.E 

Gravid 
Pregravid 

Total 

672 
180 

852 

2.93 ± 0.007a 
2.87 ± 0.013b 

6 
72 

78 

3.18 ± 0.051a 
2.83 ± 0.025b 
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Among the An. gambiae s. I. collected from indoor resting sites, the mean number of 
mature eggs per gravid female was 150 (range 66 - 290). Spearman rank correlation 
analysis between the number of mature eggs and the wing length of the females showed a 
significant positive relationship, with a correlation coefficient r = 0.518, (F-value =143.09, 
P<0.0001). The regression equation is Y = 113.93X-187 (Figure 3). 

The newly emerged mosquitoes. 
A total of 136 females of An. gambiae s. I. emerged successfully from 264 pupae 
collected. Their mean wing length was 2.84 ± 0.013 mm and, after blood feeding, the 
overall pre-gravid rate was 92%. As shown in Table 2, the mean wing length of the 
females which became gravid after one bloodmeal was significantly larger than of those 
which did not (t = 10.24, p<0.001,76 d.f.). The mean number of mature eggs per gravid 
female was 111 (range 48-178). 
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Fig. 2. Weekly mean wing length of gravid and pre-gravid females of Anopheles gambiae s.l. caught 

resting indoors. Vertical bars denote the standard error of the means. 
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Table 3 shows the number of females requiring one, two or three bloodmeals in order to 

develop mature eggs, the mean wing lengths of the three groups and their mean number of 

mature eggs. An. gambiae females which produced eggs after only one bloodmeal had 

wings longer than or equal to 3.00 mm. 

Females requiring three bloodmeals had the smallest wing length, but these were not 

significantly different from those requiring two bloodmeals (t = 0.946, p>0.1, 25 d.f.) for 

completion of the first gonotrophic cycle. Females that required two or three bloodmeals 

to produce eggs, were of lower fecundity. A Spearman rank correlation analysis of wing 

lengths with the size of egg batch showed a significantly positive correlation (R=0.602, F-

value = 12.91, P<0.01). (Fig. 3). 

Table 3: Mean wing length of females laying eggs after one, two or three meals. 

Different letters in the same column designate significant differences ( P<0.05; 

t-test) 

Number 

of meals 

One 

Two 

Three 

Total 

fed 

78 

51 

10 

Number which 

became gravid 

6(7.7%) 

22(43.1%) 

5(50.0%) 

Mean number 

mature eggs 

± s.e. 

122 ± 8.8a 

109 ± 7.7ab 

91 ± 6.0b 

Mean wing length (mm) 

± s.e. 

3.18 ± 0.051a 

2.89 ± 0.035b 

2.82 ± 0.066b 

Discussion 

Although the pre-gravid rates increased during the long rains when more breeding sites 

were available, there was no significant relationship between rainfall and pre-gravid rate. 

The insemination rate in the pre-gravid group was high, indicating that non-fertilisation 

was not the main cause of the pre-gravid state. 

The mean wing length of the pre-gravid females was smaller than that of those which 

became gravid. Some of the collected adult mosquitoes which became gravid had no doubt 

been through a pre-gravid state and were caught after their second blood meal. Such 

individuals could not be distinguished by the methods used in the first study. This would 

explain the larger difference between wing length of gravid and pre-gravid females 
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observed in the newly emerged females and the greater pre-gravid rate among the latter. 

Laboratory studies have shown that in some mosquito species, females with a wing length 

of less than 2.90 mm cannot develop eggs on their first blood meal, but those with a mean 

size equal to or larger than 3.03 mm can (Briegel, 1990). Results from the present study 

agree with those of the laboratory study. Considering the results from the newly emerged 

group it is evident that most of the field mosquitoes need two to three meals before they 

are able to produce their first mature egg batch, the earlier meals being used for maternal 

energy supplementation. 
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Fig. 3. Scatter diagram of the number of mature eggs in relation to wing length: circles represent the 

resting females, and triangles represent virgin females emerged from wild collected pupae. 
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The number of eggs developed was positively correlated with wing length. Various 

studies have shown the same relationship in other anophelines (Reisen, 1975; Briegel, 

1990) and in culicines (Colless & Chellaphah, 1960; Bock & Milby, 1981; Steinwascher, 

1982; Packer & Corbet, 1989; Akoh et ah, 1992). Many factors are known to influence 

the number of eggs developed by female mosquitoes. The quality of a blood meal may 

result in development of few follicles, and the age of the female is also important 

(Clements, 1963; Akoh et al., 1992). These factors were not investigated in the present 

study. 

In conclusion, this study showed that the size of adult females influences the number 

of blood meals required to complete the first gonotrophic cycle and the number of eggs 

which will mature. These findings are important in the population dynamics of this 

mosquito and in its role as a disease vector. Smaller females take longer to start 

reproduction and also produce fewer offspring. The smaller females, with a more frequent 

blood feeding behaviour, will most likely have a greater chance of picking up the malaria 

parasite at an early age. But they also run a greater risk of being killed by any mosquito 

control measures being used in houses, including self protective activities by the host due 

to their frequent host seeking behaviour. 
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Chapter 8. 

Relationship between adult body size and survival as measured by 
parity in field populations of Anopheles gambiae sensu lato. 

Abstract 

Newly emerged and host seeking female Anopheles gambiae Giles were studied in Michenga village in south 

east Tanzania to find out the relationship between size and parity. The host seeking females were dissected 

for parity by the observation of the ovarian tracheole condition and wing lengths were measured in both 

populations. Newly emerged females from field collected pupae had significantly shorter wings than the host 

seeking mosquitoes. There was no difference in mean wing size between the host seeking nulliparous and 

parous females. Results presented in this paper indicate that females with shorter wings die early in adult 

life. 

Introduction 

Body size in adult mosquitoes varies greatly within populations (Feinsod & Spielman, 

1980; Bock & Milby, 1981; Haramis, 1985; Fish, 1985). Variation in body size influences 

parameters such as reproduction and survival that are important for the success of the 

mosquitoes (Steinwascher, 1982; Siddiqui et al., 1976). Body size may also affect the 

ability of a vector to transmit diseases (Takahashi, 1976; Grimstad & Haramis, 1984; 

Lyimo & Koella, 1992). For many mosquito species, and in particular for the well-studied 

genus Aedes, it was found that mean parity rates among large individuals were higher than 

among the smaller ones and larger individuals were thought to be more successful in 

obtaining blood meals and survived longer (Haramis, 1983; Nasci, 1986a; 1986b; 1987). 

Other studies, however, failed to demonstrate the advantage of large size. For example, 

Hawley (1985) found that in Aedes sierrensis above a certain optimal size there was a 

negative correlation between adult size and survivorship. On the other hand, Walker et al., 

(1987) showed that size has no effect on survival of Ae. triseriatus and Ae. hendersoni as 

measured in a mark-release-recapture study. Further, Landry et al. (1988) did not find that 

increased size was advantageous to survival in Ae. triseriatus. Within the anophelines, 

Kitthawee et al. (1990) showed that in laboratory reared An. dims, larger females survived 

longer than smaller ones, and Kittayapong et al. (1992) found that host seeking parous 

Anopheles maculatus had significantly longer wings than nulliparous ones. By using parity 

as a measure of age, they concluded that larger females survived longer than smaller ones. 

Nasci (1987) reported significantly higher parous rates in the largest size class in An. 

crucians. 

An. gambiae breeds in temporary habitats and exhibits a wide range of body sizes 

(Gillies & De Meillon, 1968; chapter 5 in this thesis). However, it is not known if this 
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variation in adult size influences characteristics that affect disease transmission of this 
vector, such as blood feeding success and survival through the sporogonic cycle of the 
Plasmodium parasites. To become parous, a mosquito must survive long enough to find at 
least one bloodmeal and to lay eggs: parity rates are therefore used as a measure of 
survival and/or feeding success (Garrett-Jones, 1964; Service, 1976). The objective of this 
study was to determine the relationship between body size and parity in field populations 
of the An. gambiae s. I. and relate this to survival. 

Materials and Methods 

Study area 
The study site, Michenga village, is situated near Ifakara town (8° 10'S, 36° 38'E) in the 
Kilombero valley in southeastern Tanzania. The village lies on the Kilombero river plain 
at an altitude of 270m. The area experiences two rainy seasons, the main rains extending 
from March through May and the shorter rains occurring in November. The annual rainfall 
averages 1200 mm and the average temperature is around 26 °C. The area is holoendemic 
for malaria, and the main vectors are An. gambiae s. I. and An. funestus. 

Mosquito collection and processing 
Host seeking mosquitoes were collected by light traps placed inside houses near people 
sleeping under bednets (Lines et al., 1991). Mosquitoes were collected from 20.00 to 
02.00 hours daily from April 16 to June 5, 1991 and then once a week from June 28 to 
August 15, 1991. Collections were brought back to the laboratory and sorted by species. 
Female An. gambiae s. I. were dissected and their parity was determined by the state of 
their ovarian tracheoles as described by Detinova (1962). One wing of each female was 
mounted on a glass slide and the length measured from the distal end of the alula to the 
tip, excluding the scales, using a dissecting microscope fitted with a camera lucida. 

A daily census of 43 breeding sites was carried out from April 24 to July 11, 1991 
(chapter 4). Two collectors searched for pupae in these sites and all pupae found were 
collected, brought back to the laboratory and allowed to emerge at a normal room 
temperature. One day after they had emerged, adults were killed and sorted by species and 
sex. An. gambiae females were selected for further processing. The wing length of each 
female was measured by the same method as for the host seeking females. 
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Results 

A total of 1830 pupae were collected and from the emerged 1380 adults, 358 female wings 
were measured. The wing lengths of 2272 host-seeking females were measured. Wing lengths 
of the newly emerged females was 2.28-3.44 mm (mean = 2.80, S.E = 0.005) and of host 
seeking females from 2.38-3.68 mm (mean = 2.97, S.E = 0.005 for the nulliparous and 2.98, 
S.E = 0.006 for the parous mosquitoes). The wing lengths were grouped into 11 size classes 
by steps of 0.10 mm, starting with 2.28 mm. and the wing length proportional distribution of 
the newly emerged and host seeking nulliparous and parous females examined (Fig. 1). 

Emerged Nulliparous Parous 

30 

20 -

10 -

5 6 7 
SIZE-CLASS 

10 11 

Fig. 1: Frequency distribution of wing size for the newly emerged, nulliparous and parous female 

Anopheles gambiae s. I. Size classes are in steps of 0.10 mm, starting with 2.28mm. 
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The distributions shifted from a positive skewness for the newly emerged females (Gx = 

0.317, P< 0.05, n=358) to a negative skewness for the two groups of host seeking females 

(G, = -0.192, P>0.05, n=350; and G, = -0.277, P<0.05, n=350) for the nulliparous and the 

parous females respectively. There was an increase in wing length over time for the host 

seeking nulliparous and parous females (Fig. 2). Analysis of covariance was performed 

with week as a covariant to determine differences between the three age groups. The 

increase in wing size with time was significant and the differences between the groups 

were also significant (Table 1). However, the difference between groups was due to the 

difference between the newly emerged population and the host seeking populations. 

Therefore, comparisons were performed between mean wing lengths of the newly emerged 

and host seeking females, and between nulliparous and parous females. The mean wing 

length of the newly emerged females was significantly smaller than that of the host 

seeking females (t= 216, p<0.0001). There was no significant difference in mean wing 

length between the nulliparous and the parous females in the host seeking population (t= 

0.259, p>0.10). 

Table 1: Analysis of covariance results for the emerged, nulliparous and parous 

female An. gambiae s.l. 

Source DF Sum of squares F ratio 

week 

parity group 

error 

1 
2 

2627 

5.3822 

10.4983 

82.0130 

173.3843 <0.0001 

169.0984 <0.0001 

Based on other results (chapter 7 of this thesis), it was concluded that the first 

gonotrophic cycle of most females of An. gambiae in Michenga lasts for at least 4 - 5 

days. It was assumed therefore, that parous females caught at a particular time represented 

to a large extent the nulliparous females of the previous week. Based on this assumption, 

mean wing length of nulliparous females of each week was compared with the mean wing 

length of parous females one week later. Table 2 shows the results of these comparisons, 

indicating that the size of the weekly 'cohorts' was not significantly different. 
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There was an increase in wing size of parous females towards the end of the sampling 

period, but this increase was not statistically significant. 

Discussion 

The mean wing length of the newly emerged females was significantly smaller than that of 

the host seeking females. These results agree with those of Nasci (1986b) who found 

in Ae. aegypti, that adults emerged from field collected pupae had shorter wings compared 

to the host seeking females. The different pattern in wing size distribution between the 
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newly emerged females and the host seeking females in the present study is caused by a 
deficit of small individuals in the latter group. 

Table 2: Difference between mean wing lengths of An. gambiae nulliparous 
females and that of parous females one week later. 

Weeks 
compared Difference(mm) P-value 

1-2 

2-3 

3-4 

5-6 

6-7 

7-8 

8-9 

9-10 

10-11 
11-12 

0.00 

0.03 

-0.04 

-0.02 

0.03 

-0.05 

-0.07 

-0.06 
-0.13 

-0.16 

0.93 

0.10 

0.14 

0.51 

0.58 
0.12 

0.11 

0.16 
0.04 

0.12 

It means, therefore, that the mortality of smaller individuals was taking place early after 
emergence. Possibly the smaller females with insufficient energy reserves were unable to 
fly from their breeding sites to the feeding grounds. Such an effect of size was shown by 
Terzian & Stahler (1949) in An. quadrimaculatus and also by Klowden et al. (1988) in Ae. 
aegypti. The first sugar or blood meal is very important for mosquito survival. In Ae. 
communis, small females which emerged from field pupae had a reduced survival, 
especially when they were unable to get an early sugar meal (Andersson, 1992). 

The present study did not demonstrate any difference between average wing size of 
nulliparous and parous females in the host seeking population. Other studies of host 
seeking populations of different species have shown different results. For example, Nasci 
(1986a) found in 2 of 4 species examined that parous females had significantly longer 
wing lengths than nulliparous females, but not in the other two. Kitthawee et al. (1990) 
showed increased survival in larger females of laboratory reared An. dirus, but could not 
show the same relationship in host seeking females of that species (Kitthawee, et al. 
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1992), possibly because newly emerged individuals were not included in the study. 
A better method of looking at size-survivorship relationship is by mark-release-

recapture studies of different sized mosquitoes of known age. Such a study was not 
possible during the present project because of time limitations and mosquito breeding 
problems. Normally a large number of mosquitoes needs to be released to obtain 
meaningful results, which was not possible. Nevertheless, the results of this study indicate 
that smaller mosquitoes may have a decreased survival and/or blood feeding success, and 
that looking at the question of size-survivorship relationship by examination of the host 
seeking population alone might overlook the effect of size on longevity of mosquitoes, 
especially for the tropical species which have a much shorter nulliparous phase than those 
of temperate zones. 
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Chapter 9. 

Relationship between body size of adult Anopheles gambiae s.l. 
and infection with the malaria parasite Plasmodium falciparum 

Abstract 

The influence of adult female body size of Anopheles gambiae s. I. on development of midgut and salivary 

gland infections by the parasite Plasmodium falciparum was investigated in a field study carried out in 

Tanzania. The proportion of mosquitoes infected during a blood meal was independent of size. However, the 

number of oocysts harbored by infected mosquitoes increased with size of the mosquito. The proportion of 

mosquitoes with sporozoites, and thus potentially infective to humans, was highest in intermediate-sized 

mosquitoes, whereas the largest and smallest mosquitoes were less likely to have sporozoites. This pattern is 

interpreted as a combination of high survival rate of large, uninfected mosquitoes and of low survival rate of 

mosquitoes infected with many oocysts. 

Introduction 

Variability within mosquito populations of factors affecting malaria transmission has 

received only little attention, although theoretical studies have shown that it affects the 

pattern of transmission (Dye & Hasibeder, 1986; Kingsolver, 1987; Koella, 1991). One of 

the factors contributing to variability in transmission may be body size of the mosquito 

vector. Considerable variation in body size within populations has been observed for many 

mosquito species (Fish, 1985), including Anopheles gambiae (Gillies & De Meillon, 1968), 

the main vector of malaria in Africa. In addition, body size has been found to affect 

transmission of several viral diseases. Small individuals of Culex tritaeniorhynchus 

transmit Japanese encephalitis virus (Takahashi, 1976) and West Nile virus (Baqar et al., 

1980) at higher rates than larger individuals. Grimstad & Haramis (1984) have shown that 

nutritionally deprived larvae of Aedes triseriatus developed into small adults that 

transmitted La Crosse virus at higher rates than larger, well-nourished individuals. 

The effect of body size on malaria transmission has only rarely been studied. 

Kitthawee et al. (1990) artificially fed four size classes of laboratory reared Anopheles 

dims with Plasmodium falciparum and showed that the largest size class developed the 

highest number of oocysts, though the proportion of infected mosquitoes was independent 

of size. In contrast, two earlier studies found no relationship between body weight of 

Aedes aegypti and susceptibility to Plasmodium gallinaceum (Hovanitz, 1947) or between 

This article was published with minor modifications as: Lyimo, E. O. and Koella, J. C , Parasitology 104: 

233-237, 1992. 
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wing length of Anopheles stephensi and the number of oocysts of Plasmodium yoelii 
nigeriensis (Ichimori, 1989). 
In the present study, we examine the relationship between adult size of the vector An. 
gambiae and natural infections with P. falciparum. We examine oocysts as a measure of 
infection from humans to mosquitoes as well as sporozoites as a measure of infection from 
mosquitoes to humans. 

Material and Methods 

The study was carried out in Michenga, Kilombero District, southeastern Tanzania. The 
area is holo- to hyperendemic for malaria with peak transmission in June and July. The 
main malaria species is P. falciparum, occurring in about 95% of all infections, and its 
main vectors are An. gambiae and An. funestus. The study area is described in detail by 
Tanner et al. (1987) and Biro (1987). 

An. gambiae s. I. were sampled from five houses in July and the beginning of August, 
1990. Female mosquitoes were caught as they were resting on the walls inside houses in 
the early morning. We assumed that blood-fed mosquitoes had fed only on humans 
because no animals were kept in the houses. 
For oocyst detection freshly fed female mosquitoes were selected. They were fed on a 
10% glucose solution for five days, then their midguts were dissected and examined for 
oocysts. For sporozoite detection mosquitoes were killed immediately after capture. Their 
heads and thoraxes were investigated with an ELISA specific for the (NANP)^ repeat 
region of the circumsporozoite protein of Plasmodium falciparum (Campbell et ah, 1987). 
The cut-off value for the optical density separating infected from uninfected mosquitoes 
was set to the optical density of a control well on the same plate containing 500 
sporozoites, which allows a compromise between the number of false positives and false 
negatives (N. Weiss, unpublished data). 

The size of a mosquito was measured as the length of its wing, which correlated with dry 
weight (E. Lyimo, unpublished data). Wings were measured to the nearest 0.01mm from 
the distal end of the alula to the tip, excluding the fringe scales using an ocular 
micrometer. 

For the analysis of the proportions of mosquitoes with oocysts and with sporozoites, 
the wing lengths were grouped into eight size classes. The cut-off values between classes 
were determined so that the number of mosquitoes in each class was similar. The 
proportions of infected mosquitoes in each size class were compared to a uniform 
distribution with a chi-square analysis. 

106 



160-

140-

120-

g* 100-1 

I 80-
cr 
0) 
£ 60H 

40-

20-

0- J l n _ 
2.45 2.55 2.65 2.75 2.85 2.95 3.05 3.15 3.25 3.35 3.45 3.55 

Wing length [mm] 

2 3 4 5 6 7 8 9 10 
Number of oocysts 

>10 

Fig. 1. Frequency distributions of (a) wing lengths and (b) of oocyst numbers in infected 
mosquitoes. In (a) the wing lengths are grouped into 0.1mm intervals and each interval is 
labelled with its midpoint 
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Because the distribution of oocysts was non-Gaussian, the relationship between number of 
oocysts and wing length was analysed with a chi-square analysis of trend (Fleiss51981). 
Only infected mosquitoes were used for this analysis. So that size classes had a sufficient 
number of mosquitoes, four new size classes were formed by combining adjacent classes 
mentioned above. Because of the procedures described above, oocyst infection was 
measured as an incidence, i.e. as the proportion of mosquitoes that acquired a new 
infection during a blood meal, whereas sporozoite infection was measured as a prevalence, 
i.e. the proportion of mosquitoes that harbored sporozoites at a given time. Thus the two 
proportions are not directly comparable. 

Results 

A total of 324 mosquitoes were dissected for oocysts and 425 investigated for sporozoites. 
The wing lengths varied from 2.41 to 3.52 mm (Fig. la) with a mean of 2.92 mm and a 
standard deviation of 0.175mm. 18.2% of the mosquitoes were infected with oocysts and 
in the infected mosquitoes the number of oocysts ranged from 1 to 49 (Fig. lb) with a 
mean of 5.3 and a median of 2.5. Of the infected mosquitoes 38.9% had only one oocyst. 
The proportion of mosquitoes with sporozoites was 28.1%. 

The proportion of infected mosquitoes was independent of size (Fig. 2a; Chi-square = 
5.355, df=7, p>0.5). In contrast, the proportion of infected mosquitoes with two or more 
oocysts increased with wing length (Fig. 2b). Whereas only 37.5% of the mosquitoes in 
the smallest size-class had more than one oocyst, 88.9% of mosquitoes in the largest size-
class did. For every 0.1mm of increase in wing length, an increase of 11% in infection 
rate was observed (Chi square = 6.858, df=l, p<0.01) with no indication of non-linearity 
(Chi square = 0.204, df=2, p>0.5). 

The proportion of mosquitoes with sporozoites increased from 19.5% in the smallest 
mosquitoes to 41.1% in intermediate size-classes and dropped again to 7.1% in the largest 
mosquitoes (Fig. 3). The differences in sporozoite infection rates between size-classes 
were statistically significant (Chi square = 22.6; df=7; p<0.01). 
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Fig. 2. Association between infection with oocysts and wing length. The x-axis is labelled with the 

mean wing length or the mosquitoes in each category, (a) Proportions of mosquitoes infected in 

eight size classes. The vertical lines denote 95% confidence intervals. The horizontal, dashed line 

denotes the overall proportion of infected mosquitoes, (b) Proportions of the infected mosquitoes 

with two or more oocysts in four size classes. The measured proportions are shown as bars, the 95% 

confidence intervals as vertical lines. The proportions predicted by an analysis of trend are shown as 

connected points. 
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Discussion 

Adult size of An. gambiae affected key factors of transmission of the malaria parasite P. 

falciparum. Although the risk of becoming infected during a bloodmeal was independent 

of size, mosquitoes tended to develop many oocysts only if they were large. This pattern 

is similar to that observed in laboratory-reared mosquitoes (Kitthawee et al., 1990) and 

might be due to differences in size of the bloodmeal. Size of the bloodmeal is positively 

correlated with body size in several mosquito species (Reisen, 1975; Ichimori, 1989; 

Kitthawee et al., 1990), including An. gambiae (P. Billingsley, unpublished data). For the 

low gametocyte densities encountered in human infections this leads to positive 

correlations between size of the mosquito, number of ingested gametocytes and number of 

oocysts (Carter & Graves, 1988; T. Ponnudurai, pers. comm.). 

2-62 2-76 2-84 2-91 2-99 304 3-12 3-25 

Wing length (mm) 

Fig. 3. Proportion of mosquitoes infected with sporozoile in eight size classes. The x-axis is labelled 

with the mean wing length of the mosquitoes in each category. The vertical lines denote 95% 

confidence intervals. The horizontal, dashed line denotes the overall proportion of infected 

mosquitoes. 
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Intermediate-sized mosquitoes were most likely to harbor sporozoites. This result is 
contrary to the expectation. Because adult survival generally increases with body size 
(Nasci, 1986; Packer & Corbet, 1989; Landry et al., 1988; Haramis, 1985), the proportion 
of mosquitoes surviving the parasite's incubation period is expected to be highest in the 
largest mosquitoes, which would lead to the highest prevalence of sporozoites in the 
largest mosquitoes (Macdonald, 1958). The fact that prevalence decreased in the largest 
mosquitoes thus implies increased mortality in large mosquitoes. We could speculate that 
this increased mortality was due to the large number of oocysts found in the large 
mosquitoes. Although investigations of the pathogenicity of malaria parasites in 
mosquitoes are not conclusive, studies by Gad et al., (1979) and by Klein et a/.,(1982) 
have shown that survival is lowered in infected mosquitoes, in particular in those 
mosquitoes harboring more than ten oocysts (Klein et al., 1986). 

Whatever the processes leading to the observed patterns, mosquito size has a strong 
effect on the number of gametocytes that develop into oocysts and sporozoites. Thus, 
mosquito size might influence the rate at which malaria parasites are transmitted. 
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Chapter 10. 

General discussion and conclusions 

The various aspect of my studies have been discussed in detail in the previous chapters. In 

this chapter only the main findings of my studies in relation to the biology of An. gambiae 

s. I. and malaria transmission will be discussed. A simplified flow of events throughout 

the life cycle of an anopheline mosquito is illustrated in Fig. 1. 

Factors affecting larval development and size of adults 

Larval density and temperature were identified as the major factors affecting larval 

development and eventually the size of adults. Temperature is known to affect 

development by accordingly increasing or decreasing metabolic rates of larvae (Hagstrum 

& Workman, 1971). Larval density affects development rate by causing competition for 

nutrients, space and sometimes by production of growth retardant factors (Dye, 1984; 

Carpenter, 1983; Suleman, 1982). In the present studies (chapters 2 and 3), rearing larvae 

at high temperatures increased larval development rate and resulted in small adults, while 

low temperatures gave the opposite results. High larval densities as opposed to low or 

medium densities also increased development rate and decreased adult size (Fig. 1). 

The interaction between larval density and temperature modified developmental 

processes differently at various temperatures. In chapter 2, for example, when food was in 

ample supply, low (24 °C) or high (30 CC) temperatures with higher density of larvae led 

to an increased growth rate, wing length and dry weight of adults, but at the intermediate 

temperature growth rate of larvae, adult wing length and dry weight decreased with an 

increase in density of larvae. If high density leads to increased competition, the pattern 

observed at the intermediate temperature (27°C) is expected. An explanation for the 

opposing pattern observed at lower and higher temperatures is not apparent. It may be 

assumed that, at limiting conditions, large rapidly growing larvae have a competitive 

advantage over small, slow growing ones. The high mortality of larvae reduce competition 

for nutrients, consequently, surviving larvae develop fast and emerging adults are large. In 

contrast, at lower density small and large larvae survive and the emerging adults are 

mixed or small. At limited food supply (chapter 3) any increase in larval density decreased 

larval development rate, survival and size of adults (refer Fig. 1, left side). 

In the field however, the situation was more complex. Temperatures varied between 

daytime and nighttime and from day to day. Larval densities also vary substantially. An. 

gambiae s. I. was found breeding in a variety of habitats, ranging from very small foot 
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prints to large rain pools and water holes (chapter 4). The nature of these habitats differed 
in terms of the density of larvae present and temperature fluctuations experienced. 
The larger breeding sites experienced less temperature fluctuations with lower mean 
temperatures, less crowding and therefore less competition, and so produced on the 
average large adults. In contrast, the small breeding sites had smaller surface areas, 
experienced wider temperature fluctuations with high mean temperatures and produced 6n 
the average smaller mosquitoes. Nevertheless, between the two extremes there was a range 
of intermediate events, consequently the adult population was composed of individuals 
from the whole range of different sites. The seasonal variation in size of females observed 
in this species was probably caused by the diversity of breeding sites available at different 
seasons coupled with changes in temperature. Temporary small bodies of water were 
abundant during the rainy season and temperatures were high, so breeding of An. gambiae 
was prolific. At the end of the rainy season mostly larger breeding sites such as water 
holes were available. The drop in temperature between June and August (the cool dry 
season) meant cooler breeding sites, with a relatively slow growth of larvae resulting in 
larger mosquitoes. During the hot dry season (September to November) breeding of An. 
gambiae is very limited and restricted to isolated small sites created mainly by human 
activities near streams and swamps and these sites experience high temperatures. 

Effect of size on adult female characteristics 

Small females required two or more blood meals to mature their first batch of eggs. Field 
observations (Boreham & Garret-Jones, 1973; Burkot et al., 1988) as well as laboratory 
studies (Briegel, 1990) have shown that female Anopheles take multiple blood meals. 
Possibly Anopheles gambiae is no exception, especially as this mosquito has the ability to 
eclose as small undernourished adults. The need for multiple blood meals, as was observed 
in chapter 7, shows that smaller females delayed initiation of reproduction. These females 
also had a low fecundity, which resulted in a low reproductive efficiency. 

Although it was difficult to show a size-survivorship relationship among the host-
seeking population, the observed differences between the newly emerged population and 
the host-seeking population indicated that survivorship of small females was relatively less 
compared to larger females. The combination of low fecundity and low survivorship 
demonstrates decreased fitness of the smaller mosquitoes. 

Considering the seasonal variations in female size found in chapter 6, and the 
differences in fecundity and survival resulting from size variations (chapters 7 and 8), the 
An. gambiae population will be expected to exhibit seasonal differences in survival and 
fecundity. Whether this was true in the present study, is difficult to tell because it was not 
possible to follow cohorts of newly emerged females in the field. Nevertheless, from the 
parity rate measurements (chapter 5), increased survival rate in July and August 
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accompanied the increase in mean wing size of the females. Possibly, these females were 
responsible for maintaining the population through the dry season. In order to confirm this 
event, a more detailed study extended over the four seasons will be necessary. 

The risk of infection with malaria parasites during a bloodmeal was independent of 
mosquito size, that is, a mosquito feeding on an infective host was equally likely to pick 
up infection regardless of its size. Yet, large females developed more oocysts than the 
smaller ones (chapter 9). As survival increases with size one would expect the prevalence 
of females with sporozoites to be higher in large sized females. Contrary to this, the 
intermediate sized group had the highest proportion of sporozoite positive females. This 
observation is puzzling. My speculations are that larger infected females were not 
surviving long enough for the parasite to complete its development, probably due to the 
higher load of oocysts developed in this group. There is as yet no direct evidence that high 
parasite load is detrimental to survival but the present results indicate that this might be 
the case. Alternatively, the larger and more robust females were able to arrest development 
of the oocysts to sporozoites, thus, not all oocyst infections resulted into sporozoite gland 
infections. 

Effect of female size on malaria transmission 

The transmission of malaria is governed by the course of infection in the human host and 
the mosquito vector. For a mosquito to be able to transmit malaria, it needs to bite at least 
twice, first to pick up an infection, and second to pass the infection to another human 
host. Also it needs to survive long enough for the parasite to complete development in the 
vector (10-12 days in the case of P. falciparum). Thus, the basic model of malaria 
transmission, the Ross-Macdonald model (Macdonald, 1957) describes the basic 
reproductive number R„, the number of secondary infections resulting from a single case 

as mazb,b2e*T 

Ho = -

where m = the number of mosquitoes per human host 
a = the biting rate of the mosquitoes on the human host 
b,= the infectiousness of human hosts to the mosquitoes 
b2= the susceptibility of the humans 
(j. = the mortality of adult mosquitoes 
T = the incubation period of the parasite in the mosquito 
r = the rate of recovery of infected humans. 

In this model transmission of malaria is favoured by a high density of mosquitoes, high 
biting rates, and highly susceptible human hosts and mosquito vectors. Transmission is 
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hindered by high mortality of mosquito vectors and quick recovery of the human host. 

Following from the above equation, the inoculation rate (h) of the vector can be 

summarised as 
h = msPe-»T ^ 

\i + ay 

where y is the prevalence of malaria in the human population and the other parameters are 

as described above. Therefore, a good vector will be present in high densities, bite 

frequently and most important, live long enough after being infected for the parasite to 

develop in the vector and be transmitted to a new host. 

Results of my study showed that small sized females take extra blood meals to 

produce mature eggs. This tendency subjects them to frequent contacts with their host thus 

increasing their biting activity and also their chances of picking up malaria parasites. But 

these mosquitoes have lower chances of survival, which reduces their probability of 

transmitting the parasite to another host. From chapter 9, it was inferred that parasite 

'induced' mortality increased with increasing size. Consequently, these opposing processes 

will tend to eliminate the smaller females as well as the larger females. Although these 

variations in individual parameters in relation to size will tend to modify the inoculation 

rate accordingly, however, in both parameters i.e biting and mortality rates, size dependent 

effects seem important only at the extremes of the size distribution. These extremely large 

or small females form a very small proportion of the mosquito population. Therefore, the 

effects of adult mosquito size on the overall transmission of malaria will be negligible. 

Below, a theoretical model is described which supports this hypothesis. 

Simulation of the results 

In order to check the assumption that the effect of mosquito adult size on malaria 

transmission is negligible, an attempt was made to simulate the malaria transmission with 

the model of Koella (1991), which is a modification of the Ross-Macdonald model. It is 

modified to incorporate variability in biting and survival rates in relation to mosquito size 

and illustrated in appendix 1. I looked at the contribution of individual size classes to 

transmission, and the total transmission as a function of size. 

The functions I chose were: 

(i) size distribution O(s) of mosquitoes, Gaussian with mean s and variance a 

<|>(s) = _ ^ e x p [- ± 5 (1) 
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(ii) biting rate a, decreases with increasing size 

a(s) = a, - -fllff- (2) 
1+[ - ] n 

s 

where a„ and a, are the lower and upper biting rate values, n in the number of mosquitoes 
and s is size of females. 

(iii) natural mortality |X decreases with increasing size 

H(s) = \L0 + (m - \ij exp{-ln(2)±fl) (3) 
S 1 " S 0 

where Hfl and n, are the lower and upper mortality values, s„ and s, are the lower and 
higher size limits. 

(iv) parasite induced mortality a increases with increasing size 

a(s) = 0, when s<s, 
a(s) = p(s-S!)k,when s>S! (4) 

where p is the survival probability within a size class 
Fig. 2 represents the functions chosen, and their variation in relation to size as postulated 
in my study population. The parameters were estimated to include values observed from 
the field, thus female size was assumed to vary from 2.0 to 4.0 mm, biting rate between 
0.5 and 1.5 and daily mortality rate between 0.1 and 0.2. Adding these functions to the 
Ross-Macdonald equation gives the inoculation rate h for a given size class as, 

h(s) = maze-^a)T t (5) 
|i+a+ay 

where y is the prevalence of malaria infection in the human population 

The total inoculation rate H is the sum of the individual h's, weighted by the frequency of 
the respective size class: 

H = fo(s)h(s)ds (6) 
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size 

Fig. 2. Variation in biting rale, natural mortality and parasite induced mortality in relation to size of 

mosquitoes 

Since H depends on the prevalence y, and y in turn is calculated from Ross-Macdonald 
equation as, 

y - - A , (7) r + H 

and thus depends on H, I found the inoculation rate interactively by repeatedly utilising 
equation 6 and 7 until an equilibrium was reached. 

Fig. 3 shows the solution of the standard Ross-Macdonald equations where all 
parameters are independent of size. The total transmission as a function of size follows a 
Gaussian distribution. Figures 4a-c show the solutions of the Ross-Macdonald equations 
modified to account for biting rates (according to equation 2), natural mortality (equation 
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3) and induced mortality (equation 4) respectively. Increased biting rate by small 

mosquitoes results in an increased inoculation rate of the smaller mosquitoes (Fig. 4a). 

Increased natural mortality of smaller mosquitoes, results in a decreased inoculation rate of 

smaller mosquitoes (Fig. 4b) and, increased parasite induced mortality results in decreased 

Fig. 3. Solution of the Ross-Macdonald equations. The solid line shows that the inoculation rate h(s) 

is independent of any given size while the dotted line shows the frequency distribution of 

inoculation rates, h(s)*(s), i.e. the contribution of mosquitoes of a given size to total transmission. 

The parameters are a=1.2, u=0.1, and a=0. 

inoculation rates of the larger mosquitoes (Fig. 4c). The contribution of each size class to 

total transmission shows a slight difference from the original distribution. Figure 4d shows 

the solution of the equations taking into account the effect of size on all parameters. 

Inoculation rate as a function of size seems higher in smaller mosquitoes. Each individual 

parameter has a large effect on the inoculation rate of mosquitoes within a given size, h(s). 
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size 

Fig.4. Solution of the Ross-Macdonald equations, modified to take account of an association 

between (a) biting rate of the mosquitoes and their size according to equation (2). The dashed line 

shows the biting rate as a function of size, a(s). Parameters a„=1.0, a,=1.5, s,= 2.75, n=10. The solid 

line shows inoculation rate as a function of size, h(s), and the dotted line shows the contribution of 

each size to total transmission, h(s)<t>(s). Mortality is constant, with n=0.1 and oc=0. (b) natural 

mortality of the mosquitoes and their size according to equation (3). The dash-dotted line shows 

mortality as a function of size, |i(s). Parameters |i„=0.1, H,=0.2, s„=2, s'=3. The solid line shows 

inoculation rate as a function of size, h(s), and the dotted line shows the contribution of each size to 

total transmission, h(s)0(s). Biting rate is constant with a=l, and a=0. 
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size 

Fig 4 continued..(c) induced mortality by the parasite, with additional assumption that large mosquitoes are 

harmed more than small mosquitoes. The dash-dotted line shows the induced mortality as a function of size, 

a(s). Parameters p=0.05, s,=2, sc=2, k=2. The solid line shows inoculation rate as a function of size, h(s), 

and the dotted line shows the contribution of each size to total transmission, h(s)<t>(s). Biting rate is constant 

with a=l, and u=0.1. (d) an association between size and the interaction between all parameters. The dash-

dotted line shows the mortality as a function of size, p.(s) + a(s), and the dashed line shows the biting rate 

as a function of size. The parameters are chosen as in the previous graphs. The solid line shows inoculation 

rale as a function of size, h(s), and the dotted line shows the contribution of each size to total transmission, 

h(s)<J>(s). 
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Nevertheless, the effects of 'natural' mortality and 'induced' mortality act on the opposite 
ends of the distribution, resulting in intermediate sized mosquitoes contributing most to 
total inoculation rates. Because most of the effects are at the tail ends of the size 
distribution, and these form only a small proportion of the population, the contributions of 
the individual inoculation rates as a function of size, h(s) <X>(s), of mosquitoes to 
transmission remains more or less Gaussian distributed. Thus, in the field normally 
occurring variations in mosquito size seem to have no effect on the overall transmission of 
malaria. 

Conclusions 

The An. gambiae population in the study area experiences relatively large size variations 
caused by environmental conditions. Climate (rainfall and temperature) and nutritional 
factors each contribute to these variations. From my studies, it emerged that the smaller 
individuals of the adult population die early in adult life, probably due to nutritional stress. 
Of the surviving adults, the smaller females need two or more blood meals to complete 
the first gonotrophic cycle. This increases the biting rates and probably their chances of 
becoming infected by malaria parasites. These mosquitoes, however, develop fewer 
oocysts than the larger ones. The larger mosquitoes seem to suffer from the high parasite 
load, and as shown by the model above, the smaller and larger females contribute 
relatively less to malaria transmission because of their small number in the total vector 
population. 
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Appendix I. 

Malaria transmission model of Koella (1991) 

The standard Ross-Macdonald model of malaria transmission, (which is the commonly 
used model in malaria epidemiology),was modified to allow for different mosquito 
parameters in this case, biting and mortality rates depending on their size. This is a slight 
modification of the model incorporating variability described by Koella (1991). 
With the subscript i to donate mosquitoes belonging to the same size class and with the 

mosquito dynamics assumed to be at equilibrium, the model can be written as 

y = 0 - y ) E mi ai wi b2 - *y 

* = a, fc, y (1 - v, - i^(1 - e^T)-vL,v = 0 

w = a, b, y (1 - v, - w)e>llT-[iiw = 0 

where, y is the prevalence of infection in human population, a is the biting rate of the 
mosquito vector and b2 is the infectiousness of the mosquitoes to humans, v is the 
proportion of mosquitoes which are infected but not infective, bt is the infectiousness of 
humans to mosquitoes, w is the proportion of infective mosquitoes, (J. is the mortality rate 
of mosquitoes, and T the incubation period of the parasite in mosquitoes. By manipulation 
of the second and third equations the proportion of infective mosquitoes in a given size 
class can be written as 

ay b, y e-"'r 
W: 

V-i + a, b, y 

To estimate the function of size variability on the basic reproductive number RQ, it was 
assumed that the variations in biting rate and in mortality were small and were wrote as 

H(s) = [i + 8(S) 

and 

a(s) = a + e(s) 
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This allows the terms exp(-|x(s)T) to be approximated as 

QMT = e^r ! _ 7 5 + ( J ! ) 52 
2 

and the term in the denominator to be approximated as 

1 1 5+ eb,y 8+ tb,y „ 1 l 1 - ! l + ( !L)2 

u(s) + a(s)b{y u + abty u+ abty u+ ab^y 

Combining these approximations together with the definition of variance and covariance 

allow the total inoculation rate to be calculated as 

l + V [ i - _ ^ _ ] 2
 + 

"a u + abty 

,T 1 „ T 
(m(s) a(s) w(s) b0ds= ma2b,b.e-'T I Vu(±. + 1__)2 + -L_ + 
J 2 1 2 u + abxy 2 u + a^y 4 

^i^ 2 1 
Cov . L — - - T+

 l 

u + ab^y a u + abxy 

where Va and V denotes the variance of a and \i, and COVa|1 denote the covariance 

between a and (X. 

The basic reproductive value is obtained by introducing this equation into the first 

equation and calculating the condition under which a small prevalence 8y will increase in 

frequency. This leads to 

V V (uD2 COV 

a1 u1 2 au 

where 
- ma2b,b,e"T 

Rn= — 

is the basic reproductive rate calculated with the mean parameter values. 

These equations show that , if biting rate and mortality rate vary independently with 

size, the variability in female size will increase the endemicity and stability of malaria. If 

the parameters covary, which will be the case if, for example, biting is risky and higher 

biting rates leads to higher mortality, the effects of inpreasing variability are lower and 

might even be cancelled out by the covariance between the parameters. 
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Appendix II 

Glossary of some mosquito entomological terms used in this thesis 

Endophilic: Indoor liking- mosquitoes which prefer human dwellings than outdoor for 
resting. 

Exophilic: Outdoor liking- mosquitoes which prefer outdoor shelters as opposed to indoor 
habitats. 

Endophagic: Indoor feeding- mosquitoes which prefer to feed inside houses especially at 
night. 

Exophagic: Outdoor feeding- mosquitoes which prefer to feed out of doors. 

Pre-gravid: a pregravid mosquito is the one which fails to develop eggs after its first blood 
meal. 

Pre-gravid rate: This is the proportion of individuals in a population which fail to develop 
eggs on their first blood meal. 

Indoor resting mosquitoes: Population of mosquitoes attracted indoors for feeding and rests 
indoors for blood digestion. 

Host seeking mosquitoes: is the population of hungry mosquitoes activily searching for a 
host to get a blood meal. 
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PROPOSITIONS 

Knowledge of variability in mosquito vector parameters is important in 
understanding malaria transmission. However, knowing the variability alone is 
not enough, but the relationship between parameters and how they vary and/or 
co-vary in relation to each other is essential. 

This thesis. 

The Anopheles gambiae s.l population in the Kilombero area maintains a body 
size range which ensures the survival of the species in this area. 

This thesis. 

The development rate of the aquatic stages of mosquitoes is so dependent on 
abiotic and biotic characteristics of the environment that the larvae occupy, 
that it is impossible to generalise, even within a confined geographic area. 

This thesis. 

The high pre-gravid rate found in Anopheles gambiae s.l. makes it difficult to 
estimate the survival rate of the females of this species with precision because 
the pre-gravid females stay longer in the nulliparous state than the females that 
do not undergo a pre-gravid phase. 

This thesis. 

Anopheles gambiae s.L appears to select oviposition sites randomly, but recent 
findings in several Culex species suggest that chemical cues may direct the 
gravid Anopheles female to specific sites. 

This thesis. 
Millar, J.G., Chaney, J.D. & Mulla, M.S. (1992) J. Am. Mosq. Control Assoc. 8: 11-17. 
Beehler, J.W., Millar, J.G. & Mulla, M.S. (1993) J. Chem. EcoL 19: 635-644. 

Arbitrary measures of heterogeneity are tempting and very popular, but their 
ability to reflect the relevant properties of the system of interest is unclear and 
questionable. 

Kolasa, J. & CD. Rollo (1991). The Heterogeneity of Heterogeneity: A Glossary, in 
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Verlag New York Inc., New York. 

To say that a disease depends on certain factors is not to say much, until we 
can also form an estimate as to how largely each factor influences the whole 
result. 

Ross, R. (1911). The prevention of malaria. Murray, London. Pg. 651. 

Overall development programmes can have an impact on transmission of 
malaria. A strong cross-sectoral approach is therefore required in order to 
lessen the potential burden of disease on the very people this development 
seeks to help. 

Gwadz, R.W. (1991). Malaria and development in Africa. A cross-sectoral approach. AAAS, 
Washington DC. 
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9. External support to health projects in developing countries often leads to 
problems once such support comes to an end, as most of these projects are not 
sustainable. 

10. There is nothing like 'a finger in the dyke' for malaria control in the sub-
Saharan Africa. What is needed are 'fingers'. 

11. It is too bad the mosquito is such a pain - (not to mention the itch) - its life 
cycle is quite fascinating. 

Barnard, B. (1991). Agricultural Research, USDA-ARS, Beltsvffle, MD. 
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