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1. INTRODUCTION 

Microscopic models on nutrient and water transport in the soil and on 

uptake by the roots deal with gradients in the immediate vicinity of a 

single root, i.e. with transport distances of a few millimeters or less. 

Most of such models only consider transport in a horizontal direction, 

transport being described in a fundamental way using Fick's and Darcy's 

laws. 

In macroscopic models (like crop growth models), on the other hand, the 

scale is of the order of 10 cm or more and interest is focused on uptake 

behaviour of a root system rather than that of a single root. Usually 

transport in vertical direction is considered only, and fluxes of water are 

calculated approximately, except where interest is in dynamics of water 

flow per se. 

Ideally, the description of uptake by a root system in a macroscopic 

model should be based on the description of the uptake of a microscopic 

model. More often than not, however, the macroscopic uptake models 

(implicitly) lump effects of physical and physiological properties of soil 

and roots into one or two parameters, of which it is often difficult to 

comprehend how they quantatatively relate to the microscopic properties 

they supposedly embrace. 

The first goal of this report is to discuss how results of uptake models 

on a microscopic scale can lead to a description of uptake on a macroscopic 

scale consistent with the former. A second goal is to present a 

documentation on the computer programs pertaining to the models discussed. 
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2. MICROSCOPIC MODEL OF UPTAKE OF NUTRIENTS AND WATER 

2.1. Basic assumptions 

For the microscopic model we start by considering a vertical cylindrical 

root. The root is situated within a cylinder of soil. Over the outer 

boundary of this cylinder no transport will take place. Such a root can be 

thought of as belonging to a set of uniformly distributed roots all equally 

active and of the same length. 

The uptake rate is assumed to be constant and independent of the nutrient 

concentration (water content or matric potential in case of water uptake) 

as long as the latter exceeds a certain limiting value. This approach is 

different from that of other workers in this field (Nye and Tinker, 1977; 

Barber, 1984) who put most emphasis on the uptake-determining role of the 

concentration. 

Whenever the concentration (water content, matric potential) at the root 

surface reaches its limiting value the uptake rate equals the rate of 

arrival of the nutrient (water) at the root surface, i.e. the concentration 

(water content) there will be maintained at the limiting value. In case of 

the important nutrients N and K the limiting value can be safely set at 

zero. 

2.2 Nutrients 

Analytical solutions 

The system described in the foregoing paragraph can be formulated 

mathematically by a partial differential equation, describing transport by 

massflow and diffusion in a hollow cylinder, together with initial and 

boundary conditions. The boundary condition at the inner cylinder (the 

root) is either that of constant uptake or of zero-concentration. 

De Willigen and van Noordwijk (1987) presented an analytical solution 

when uptake is constant and the initial concentration is uniform. It reads 

in dimensionless units (Table 1 explains the symbols): 



TABLE 1. List of symbols. 

Symbol 

Ro 
D 

T 

Tc 

To, max 

R 

Ri 
H 

S 

Si 
A 

<t> 
c,-
c 
0\ 
e 
Ka 

op 
Ui 

Name 

root radius 

diffusion coefficient 

time 

period of 

maximum T c 

radial coordinate 

radius soil cylinder 

root length 

available amount of nutrient 

initial value of S 

uptake rate 

supply/demand parameter 

initial nutrient concentration 

nutrient concentration 

initial watercontent 

water content 

adsorption constant 

buffer capacity 

flow of water over the 

Dimension 

cm 

cm2/day 

day 

day 

day 

cm 

cm 

cm 

mg/cm3 

mg/cm3 

mg/(cm2.day) 

-

mg/ml 

mg/ml 

ml/cm3 

ml/cm3 

ml/cm3 

ml/cm3 

cm/day 

Dimensionless 

symbol 

-

t - DT/R0 

tc 

t-c.max 

r = R/R0 

P - Ri/Ro 

1 = H/R0 

s - S/Sj 

w - -p26p/{24>r,) 

<f> - DS,V(AR0) 

-

c = C/Cf 

-

-

-

P=(Ka+$)/0 

-

u2 

E 

V 

P 

Dw 

K 

$ 

$ rs 

root surface 

flow of water from bulk 

soil to root surface 

transpiration rate 

flux of water 

pressure head 

diffusivity 

conductivity 

matric flux potential 

matric flux potential 

at root surface 

cm/day 

cm/day 

cm 

cm 2 /day 

cm/day 

cm 2 /day 

cm 2 /day 

2i/ = RV/D 
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Where J„(x), Y„(x) denote the Bessel function of the first kind, order v 

and argument x and the modified Bessel function of the first kind order u 

and argument x respectively. Eventually the series part (lc-d) will vanish 

and a steady-rate situation, where concentration is a linear function of 

time, will develop given by (la-lb). The uptake potential of the system can 

be characterized by a characteristic time constant tu, called the period of 

unconstrained uptake, denoting the period during which the concentration at 

the root surface exceeds zero. If the concentration at the root surface 

reaches its limiting zero-value in the steady-rate situation, at time t -

tu, the concentration profile can be given by: 

f r 2 v 2 

[2(p2"*2-l 
r2"(i/V*2) 

) 2u(p Zi/-Z. 1) 
P2-2 1 

lv{p2»*2-l)\ 
(2) 

If after t - tu the concentration at the root surface is constant (zero), 

i.e. the root behaves as a zero-sink, the concentration distribution for t 

> tu is given by (De Willigen and Van Noordwijk in prep.): 



«n<t-tu) 
(3) 

where 

Cv(ra) - Y^r^J^pa) - Jv(ra)Yvtl(pa) 

and an now is the n-th root of Cu(a) - 0. 

From (3) the uptake rate can be derived as the gradient of the 

concentration c at the root surface (where r-1): 

facl -4(t/+l)h> A JJi(pa) 
*2<t-i 

(4) 

From (4) the time-integrated uptake after the period of unconstrained 

uptake is found as: 

2 , v -«£(t-tu> 
fW dt- - M ^ l ) ^ V* •Jy.liP") {1 - W P Q ) d _ e W } 

(5) 

It now appears (De Willigen and Van Noordwijk 1987) that (4) can be 

approximated very well by a much simpler equation viz. a steady-rate 

equation like (2), but with time-dependent uptake rate wt, which is given 

by: 

(6) 

A consequence of the assumption of the concentration being given by (2) 

with o>t instead of u> is that the former is proportional to the average 

concentration: 

_ _ (P2-Dc 

(7) 

where the function G(p,v) is given by: 
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and c denotes the average concentration in the soil solution. 

The above solutions (i.e. (3), (4), (5) and the approximation (6)) pertain 

to the situation where a steady-rate concentration profile (2) has 

developed before the concentration at the root surface reaches zero. When 

the concentration at the root surface drops to zero before the steady-rate 

situation has been reached -thus before the terms (lc) and (Id) can be 

neglected - it is assumed that the root behaves as a zero-sink from the 

beginning. The exact solution for the concentration is now given by (De 

Willigen and Van Noordwijk, unpublished): 

a2t 

c . ^ y 2vj2Aa n) - ̂ "^(ttJ-Wttn) r"C„(ran) ^ 
n-0 4(an) -Jl,(pan) P

v*l*n ' (8) 

and that for uptake by : 
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-St 

(9) 

whereas the time-integrated uptake now is given by: 

i n-o oAjl(a) - J 2 , (pa)) °ij2A«) - JUP«))
 ( 1 0 ) 

Here it also appeared that the the complicated expression for uptake (9) 

can be very well approximated by an equation like (7). 

Figure 1 shows the cumulative uptake in the zero-sink situation for the 

exact solutions and the approximation. Details about the calculation 

procedure are found in Appendix I. The approximation is shown to be quite 

good, so it will be used in formulating uptake in the macroscopic model to 

be discussed in section 3.1. 



uptake (kg/ha) 
400 

200 250 

time (days) 

Figure 1. Cumulative uptake calculated with the exact solution (6) and the 
steady-rate approximation. Parameters: available amount 400 kg/ha, required 
uptake rate 2 kg/(ha.day), root length 20 cm, root radius 0.02 cm, 
transpiration 0.5 cm/day, diffusion coefficient 0.028 cm2/day, adsorption 
constant 20 ml/cm3. The lines give the exact solution; the points the 
steady-rate approximation. The figures at the curves denote the root length 
density in cm/cm3. 

2.3. Water 

Mathematical formulation 
The partial differential equation describing transport of water in 
the soil (Richards equation) is strongly nonlinear, which makes the finding 
of analytical solutions generally very difficult. We had to resort to 
numerical techniques to obtain a solution (see Appendix I I ) . 

As shown earlier (De Willigen and Van Noordwijk, 1987) the numerical 
solution can be very well approximated by a steady-rate approximation 
similar to that given in (2), be it that it should be written in terms of 
the matric flux potential, which is defined as: 

9sat 

<*> f D„d8 - fadP 

(11) 



and that the limit for v — > 0 of (2) should be taken. The steady-rate 
solution in terms of the matric flux potential reads: 

~2~n 
r2-l _ P

2lnr 
2(P2-1) J*"-! (12) 

where $rs is the matric flux potential at the root surface. The flow of 
water towards the root is then given as: 

"''fr^A (13) 

where G(p,0) is the function G(p,v) given earlier for v — > 0. 
Figure 2 shows the time course of water uptake in case of constant water 

uptake until Prs, the pressure head at the root surface, equals 0.5 MPa, 
whereas thereafter Prs is kept constant at 0.5 MPa, calculated with the 
numerical model and with the steady-rate approximation (13). The 
approximation is shown to be quite satisfactory. 

transpiration (cm) 
30 

10 

time (days) 

Figure 2. Cumulative transpiration calculated with the numerical model 
(lines) and with the steady-rate approximation (points). Transpiration was 
set constant at 0.5 cm/day, until the pressure head at the root surface 
reaches 5000 cm. Thereafter the pressure head is kept constant at 5000 cm. 
The figures at the curves denote the root length density in cm/cm3. 
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3. DESCRIPTION OF UPTAKE IN A MACROSCOPIC MODEL 

3.1. Nutrients 

The findings discussed in 2.2 can be used to describe uptake in a 

macroscopic model, i.e. a model which deals with average values of 

concentration and root density in horizontal layers. We first consider a 

single layer with uniformly distributed roots. The potential uptake rate 

from this layer is given by (7), i.e. the uptake rate in the zero-sink 

situation. As long as this potential uptake rate exceeds the required 

uptake rate the actual uptake rate equals the required uptake rate. When 

the potential uptake rate is lower than the required uptake rate, actual 

uptake rate equals potential uptake rate. The actual uptake rate is thus 

the minimum of the required and the potential uptake rate. The total uptake 

then simply is the sum of the uptake of the individual roots. 

When different horizontal layers in the root zone are distinguished, 

each with its own root density and nutrient concentration the situation is 

more complicated. It is conceivable, as indeed is often found, that roots 

in favourable position can compensate for roots in less favourable position 

(De Jager, 1985). It is assumed therefore that the uptake rate of roots in 

a certain layer depends on the uptake potential of roots in other layers. 

Uptake now is calculated in an iterative way. First (step 1) the 

nutrient demand is divided by the total root length to obtain the required 

uptake per unit root length. Multiplying this by the root length in a given 

layer yields the required uptake from that layer. If the potential uptake 

rate exceeds the required uptake rate, uptake from this layer equals the 

required uptake. If the potential uptake rate is less than the required 

uptake rate, uptake from this layer equals the potential uptake rate. For 

convenience, those layers where actual uptake equals potential uptake will 

be indicated as layers of category 1. 

The total uptake by the root system is the sum of the uptake rates of 

the individual layers. If the uptake in each layer can proceed at the 

required rate, total uptake equals nitrogen demand and no iteration is 

required. If total uptake is less than nitrogen demand, it is checked 

whether uptake from those layers where the concentration was sufficiently 

high to meet the original demand (for that particular layer) can be raised 

to increase total uptake, possibly enough to meet the total demand. 

This is achieved as follows. In step 2, first the difference between 

demand and total uptake, as calculated in step 1, is divided by the total 

root length of those layers (category 2) that were able to satisfy the 

required uptake rate of step 1. This yields an additional uptake rate. The 
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required uptake rate for layers of category 2, in step 2, now equals the 

required uptake rate of step 1, augmented with the additional uptake rate. 

It now is examined if the layer can satisfy the required uptake, i.e. if 

its potential uptake rate still exceeds the new value of the required 

uptake rate. If not, uptake rate from this layer equals potential uptake 

rate. If all layers of category 2 can satisfy the required uptake of step 

2, total uptake equals demand and the iteration ends. If none of the layers 

of category 2 can satisfy the required uptake of step 2, i.e. if in all 

layers of category 1 and 2 zero-sink uptake occurs, the iteration also 

ends. If only a part of the layers of category 2 can satisfy the required 

uptake of step 2, iteration proceeds to step 3, etc. Appendix III describes 

the computerprogram of this procedure in detail. 

This calculation procedure implies that roots growing under favourable 

conditions will compensate as much as possible for roots growing under less 

favourable conditions. It is thus assumed that information about the 

necessary behavior, as far as uptake is concerned, is instantaneously 

available throughout the complete root system. 

The procedure described above can also be applied when roots within a 

horizontal layer are not distributed uniformly. The layer then is divided 

over a number of compartments within which root distribution can be assumed 

uniform. 

3.2 Water 

As in 3.1 we start with considering a single layer of soil containing 

vertical and uniformly distributed roots. The flow of water over the root 

surface is supposed to be linearly related to the difference between the 

plant water potential and the pressure head of the soil water at the root 

surface (De Willigen and Van Noordwijk, 1987): 

FH - kt (Prs-Pp) + k2 
(14) 

where FM is the flux of water in cm3/(cm root.day), Prs is the pressure head 

in the soil at the root surface in cm, Pp is the plant water potential in 

cm, and kx in cm/day and k2 in cm3/(cm root.day) are coefficients related to 

the root conductivity. 

If the thickness of the soil layer is Ax cm and the root length density 

Lrv cm/cm3 , the uptake Ux in cm3 water per cm2 soil surface per day is 

given by: 

Ux - Lrv Ax FM - q(Prs - Pp) + v (15) 
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where 

q - Lrv Ax k1( and v - Lrv Ax k2 

We assume that no water can accumulate at the root surface, so that U: 

equals the supply of water at the root surface. The flow from the bulk soil 

in the layer with matric flux potential $ towards the rootsurface where the 

matric flux potential is $rs is given by (cf (13)): 

U2 - s(*rs - *) (16) 

where 

Ax (p2 - 1) 

whereas there exists a functional relationship between $ and P (see 

definition of * in (11)). 

If the required uptake is given as Eact (the transpiration rate in 

cm/day) the right hand side of (16) should equal Eact, and the resulting 

equation can simply be solved for $rs. Using the inverse of (11) then Prs is 

calculated. Finally because: 

Ui - U2 - Eact 

the plant water potential can be computed from (15) as: 

Pp " Prs " (Eact " v)/q (17) 

The situation is in fact more complicated because the actual transpiration 

rate is a function of the plant water potential: 

Eact " f(Pp) Epot (18) 

where f(Pp) is a factor by which the potential transpiration Ep<jt has to be 

reduced. As f(Pp) is a non-linear function of Pp, Eact and Prs have to be 

found by iteration. 

When the root system is distributed over n different layers, but roots 

can be assumed to be distributed uniformly within a layer, for each layer 

equations like (15) and (16) can be formulated. Equating these equations 

one finds for the i-th layer: 
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qi(Prs,i " V + Vj - Sj($rsi - *,) (19) 

It is assumed that the plant water potential Pp is identical everywhere in 

the root system. In total then one obtains n equations of the form of (19), 

and n+1 unknowns i.e. Prsl - Prsn (where again (11) can be used to 

calculate * from P or vice-versa) and Pp. When the uptake rate Eact is known 

an additional equation states that the sum of the flows over the 

rootsurface in each layer from the root zone equals Eact: 

n 

(20) 

When one takes into account the relation between plant water potential and 

uptake rate equation (18) has to be used. Because of the non-linearity of 

(11) and (18) the solution has to be found by iteration. Appendix IV gives 

the details. 
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4. PROGRAMS 

Calculations were performed with the computerprograms shown in appendices 

I-IV. All programs are written in Fortran. The programs consist of a number 

of subprograms (Fortran subroutines and functions), each dealing with a 

specific part of the calculations. The programs are organized and 

documented according to recommendations of Van Kraalingen and Rappoldt 

(1989). 
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5. EXAMPLES 

5.1 Water uptake 

As an example results of Sharp and Davies (1985) will be used. They 

performed an experiment on water uptake and root growth of maize plants. 

Individual plants were grown in soil columns of 80 cm height. After a 

preliminary growth period of two weeks the plants were subjected to two 

treatments. Half of the plants were watered daily, where care was taken 

that the soil water was replenished up to field capacity, the other half 

did not get any water at all for the 18 day experimental period. Every 

three days some columns were harvested and soil water content, root length 

distribution, total dry matter and its distribution were measured, as well 

as, prior to harvesting, the leaf water potential. Soil water depletion 

rates were calculated from the changes in soil water content between 

successive sampling days. 

No data on diffusivity as a function of water content are given, and the 

information about the moisture retention curve is rather incomplete. 

Nevertheless, the data can be used to illustrate the performance of the 

model. To this end the model was run with data on hydraulic properties of 

matric potential (cm) diffusivity (cm2/day) 
l.Ut + U/ 
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N ^ ' ' ' 

« ^ ^ 

/ 

." 

— matric potential 

_...••*" 

,..•"* 

i ' 

0.2 0.4 

1.0E+04 
1.0E+03 
1.0E+02 
1.0E+01 
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1.0E-01 
1.0E-02 
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1.0E-04 
1.0E-05 
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1 .OE-07 
1 .OE-08 
1 .OE-09 
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1.0E-11 
1.0E-12 

0.6 0.8 

water content 

Figure 3. Relation between matric potential, diffusivity and water content 
for a peat soil (no B16 in the Staring Series (Wosten, 1987). 
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matric potential (cm) 
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1.0E+02 
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diffusivity (cm2/day) 
1.0E+04 

matric potential diffusivity 

j L 
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1.0E+02 

1.0E+01 

1.0E+00 

1.0E-01 

1.0E-02 

1.0E-03 

1.0E-04 

1.0E-05 
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water content 

Figure 4. Relation between matric potential, diffusivity and water content 
for a sandy loam (Lovl2c data from Boekhold, 1987). 

two soils: one a sandy loam (Lovl2c; Boekhold, 1987) the other a peaty soil 

(B16; Wosten, 1987). Figures 3 and 4 depict the relation between water 

content, pressure head and diffusivity of these two soils. 

Figures 5 and 6 give the results for day 15 for the two treatments. In 

the treatment where the soil was kept at field capacity (figure 5) 

distribution of uptake with depth was similar to the root density 

distribution. In the calculations it was assumed that soil water was in 

equilibrium with a groundwater table at a depth of 80 cm, the length of the 

soil tube. According to the calculations at every depth in the transport 

chain: bulk soil > root surface > root, the highest resistance was 

experienced by the transport over the root wall. The overall resistance was 

therefore lowest where root density was highest, which results in uptake 

being more or less proportional to root density. Because of the dominance 

of the root resistance the results for the two soils were practical 

identical, differences in calculated uptake being less than 0.01%. 

The results for the unwatered treatment are given in figure 6. The 

pressure head at every depth was estimated from the reported water content. 

Now the soil resistance is, except for the deepest layer, higher than the 

root resistance, so distribution of uptake is quite different from root 

density distribution. Moreover, the results for the two soils now clearly 
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depth (cm) 0 

o 

root density (cm/cm3) 

70 

calculated lovl 2c — — measured root density 

0.1 0.2 0.3 0.4 0.5 

uptake (cm/day) 

Figure 5. Measured and calculated depth-distribution of water uptake and 
root-density of a maize-plant in a soil kept at field capacity. Data from 
Sharp and Davies (1985). For the calculations the hydraulic properties of 
Lovl2c (figure 4) have been used. 

depth (cm) ° 
0 

0.5 

root density (cm/cm3) 
1.5 2 

0.4 0.5 

uptake (cm/day) 

calculated Lov12c 

root density 

' " " • measured 

calculated peat b16 

Figure 6. As figure 5, but in a soil which has not been watered during 15 
days. For the calculations the hydraulic properties of Lovl2c (figure 4) 
and B16 (figure 3) have been used. 
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differ, those for Lovl2c being more or less similar to the measured 

results. The results of the peat B16 differ considerably from the 

measurements. On this soil in the upper two layers negative water uptake 

occurs according to the calculations, i.e. water flows out of the root to 

the soil. This may be an artefact due to the assumption of uniform plant 

water potential, but on the other hand such a phenomenon is often 

established experimentally (e.g. Baker and Van Bavel, 1986). 

5.2. Nutrient uptake 

To illustrate the possibilities of the nutrient uptake model, the water 

uptake pattern and water content distribution as found by Sharp and Davies 

(1985) discussed in 5.1 were used. 

Four situations were considered: the two treatments of water application 

mentioned in section 5.1 with the corresponding root length distributions, 

and two different distributions of mineral nitrogen in the soil. In one of 

the chosen distributions every soil layer contains 1 kg/ha, except the 

upper 10 cm where mineral nitrogen amounts to 20 kg/ha, in the other this 

amount is found in the layer 40-50 cm. The required uptake rate of the 

maize plants was estimated from the transpiration rate assuming a 

transpiration coefficient of 350 kg/kg and an assumed nitrogen content of 

2.5%. For the adequately watered plants the required uptake calculated in 

this fashion amounted to 8.8 kg/(ha.day), for the unwatered plants to 6 

kg/(ha.day). 

The effective diffusion coefficient of ions in soil is strongly 

influenced by the water content. It can be calculated as: 

D - D0f{t 
(21) 

where D0 is the diffusion coefficient of the ion in free water, and f̂  an 

impedance factor. The latter is a function of 9 as well. Figure 7 gives the 

diffusion coeffient as a function of the water content using the relation 

between impedance factor and water content as established by Barraclough 

and Tinker (1981) for sandy and sandy loam soils. This relation has been 

used in the model calculations. 

Figures 8 and 9 show the results. For the adequately watered plants the 

distribution of nitrogen has no effect, whereas in the dry situation 

concentration of nitrogen in deeper moister layers is much more favourable, 

the realized uptake rates being 1.5 and 4.5 kg/(ha.day) respectively. 
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diffusion coeff. (cm2/day) 

0.01 E 

1.000E-03 = 

1.000E-04 

1.000E-05 

water content (ml/cm ) 

Figure 7. Diffusion coefficient of a nutrient, the diffusion constant of 
which in water is 0.5 cm2/day, a s a function of water content for sandy 
soils. After Barraclough and Tinker (1981). 
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Figure 8. Distribution of nitrate-N uptake and root length density with 
depth as calculated with the model UPTA in a soil at field capacity. Water-
uptake distribution as in figure 5 (measurements). Diffusion coefficient 
calculated from watercontent as shown in figure 7. All soil layers contain 
1 kg of nitrate-N per ha, except for the layer 0-10 cm (continuous line) or 
40-50 cm (interrupted line). These layers contain 20 kg nitrate-N per ha. 
Nitrogen demand: 8.8 kg/(ha.day). 
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APPENDIX I. Calculation of the nutrient uptake by a single root in a zero-sink 
situation. 

The relation between the subroutines is given in figure AI-1. 
The subroutine DIMEN calculates dimensionless parameters p, r/, <f>. 

These are used in TIMEC, which calculates the period of unconstrained uptake 
both in dimensionless and absolutes units. 

Relational diagram of subroutines in MDZER 

f MDZER *) ( 

DIMEN 
) 

{^CUMUP^) (̂  TERM ̂  (̂  ZEJY1 ^ ) -

-(^ TIMEC ̂ ) 

GRNU J 
BESFRY 

) 

-Tsumj 
-TBESFRJ ̂  

-/SUM2J) 

The core of the program is formed by the subroutine CUMUP which calculates 
the uptake and cumulative uptake after the period of unconstrained uptake, 
both exact and approximately. When the period of unconstrained uptake is less 
than zero, indicating that the concentration at the root surface drops to zero 
before a steady-rate situation has been developed, the calculations pertain to 
(9) and (10), otherwise to (4) and (5). CUMUP calls TERM, which calculates the 
terms of the summation series of (4), (5), (9), and (10), thereby using 
subroutine ZEJY1 which calculates the zero's an of the crossproduct given in 
the context of (3). 

In the program the uptake rate (UP), the cumulative uptake (TUP), and their 
approximations (UPAP resp. TUPAP) are calculated in non-dimensionless form. In 
case of zero-sink uptake from the beginning the uptake rate in kg/(ha.day) is 
calculated as: 

Wf-

and a similar expression is used to calculate TUP. The factor 100 converts the 
units from mg/cm2 to kg/ha. 
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If the period of unconstrained uptake is larger than zero, UP is calculated 
using: 

UP/UPR - wt/u 

where UPR is the uptake rate (in kg/ha) in the period of unconstrained uptake. 
The cumulative uptake TUP is the sum of the total uptake in the period of 
unconstrained uptake and the integral of UP in time. 



REAL LRV(20),TIME(50),UP(50) 
REAL UPAP(50),TUP(50),TUPAP(50) 
INTEGER NC(20) 
REAL NU 

Input data 
DATA TOL,DO/1.E-5,0.5/ 

OPEN (FILE-'MDZER.OUT'.UNIT-45) 
OPEN (FILE-'MDZER.INP'.UNIT-40) 
OPEN (FILE-'MASZER.LOG'.UNIT-46) 

CALL MOFILP(40) 
READ (40,*) NLRV 
CALL MOFILP(40) 
READ (40,*) (LRV(I),I-1,NLRV) 
CALL MOFILP(40) 
READ (40,*) RO 
CALL MOFILP(40) 
READ(40,*) HSC 
CALL MOFILP(40) 
READ (40,*) AK 
CALL MOFILP(40) 
READ (40,*) TRANSP 
CALL MOFILP(40) 
READ (40,*) PAVAM 
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*___—_—_____ _____ * 
* Program MDZER.FOR * 
* Purpose: Calculation of diffusion and massflow of a nutrient * 
* to a root. Zero-sink solution. Replenishment of water at outer boundary * 
* FORMAL PARAMETERS: (I-input,0-output,C-control,IN-init,T-time) * 
* name type meaning units class * 
* * 
* R0 R4 radius root cm I * 
* DO R4 diffusion coefficient in free water cm2/day I * 
* DIF R4 diffusion coefficient in soil cm2/day 0 * 
* CF1 R4 coefficients for relation between * 
* CF2 R4 impedance and water content * 
* TFAC R4 ratio between real and dimensionless time day 0 * 
* * 
* SUBROUTINES called: * 
* DIMEN: calculates dimensionless variables * 
* TIMEC: calculates time constants * 
* CUMUP: calculates uptake rates * 
* * 
* File usage: * 
* MDZER.INP: contains input-data * 
* MDZER.OUT: detailed output on uptake, cumulative uptake, parameters * 
* * 
•k , •% 
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CALL MOFILP(40) 
READ (40,*) UPR 
CALL M0FILP(40) 
READ (40,*) WC 
CALL M0FILP(40) 
READ(40,*) CF1,CF2,WCL0W 

* 

PI«4.*ATAN(1.) 

* calculation of diffusion coefficient as a function of 
* water content, FIMP - impedance factor 

IF(WC.GE.WCLOW)THEN 
FIMP-CF1*WC+CF2 

ELSE 
FIMP-(CF1*WCL0W+CF2)*WCL0W*WC 
ENDIF 

DIF-D0*WC*FIMP 
TFAC-R0**2/DIF 

WRITE (45,100) 
WRITE(45,101) TRANSP,PAVAM,UPR,AK,WC,DIF 

10 CONTINUE 

* DO 25 over root densities 
DO 25 IL-l.NLRV 

CALL DIMEN(IL,LRV,RO,TRANSP,HSC,DIF,PAVAM,AK,WC,UPR, 
1 R1,RH0,NU,CII,CT,AAA,BUF,PHI,ETA,C0F) 

TNU-2.*NU 

CALL TIMEC(RHO,ETA,PHI,BUF,TNU,TFAC,TAUM,TAUD,TAUNU,FDD,FDNU, 
1 CUD.CUNU) 

CALL CUMUP(20,RHO,TFAC,TAUM,TAUNU,UPR,BUF,TNU, 
1 COF.Rl.HSC.CII.DIF,TIME.UP.UPAP,TUP,TUPAP) 

WRITE(45,102) (TIME(I),UP(I),UPAP(I),TUP(I), 
$ TUPAP(I),1-1,21) 

25 CONTINUE 

100 FORMAT(/1X,'PARAMETERVALUES:') 
101 FORMAT(IX,'TRANSP -'F7.2,IX,'CM/DAY'/ 

1 lX.'PAVAM -'F7.1,IX,'KG/HA'/ 
2 IX,'UPR -'F7.1,1X,'KG/(HA.DAY)'/ 
3 IX,'AK -'F7.1/lX,'WATERCONTENT - 'F8.2/ 
4 lX.'DIF. COEFF - '1PE15.5) 

102 FORMAT( 
1 /12X,'TIME',13X,'UP',11X,'UPAP',12X,'TUP',10X,'TUPAP' 
2 /(1X.1P5E15.5)) 
STOP 
END 
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maximum uptake period and related parameters 

FORMAL PARAMETERS: (I-input,0-output,C»control,IN=init,T-time) 
name type meaning units class 

RHO 
ETA 
PHI 
NU 
BUT 
TAUM 

R4 
R4 
R4 
R4 
R4 
R4 

TAUD R4 

TAUNU 

FDD 

FDNU 

CUD 

R4 

R4 

R4 

R4 

CUNU R4 

Dimensionless radius soil cylinder 
Dimensionless root length 
Dimensionless supply parameter 
Dimensionless flux of water 
Buffer capacity 
Dimensionless maximum period of unconstrained 
uptake 
Dimensionless period of unconstrained uptake 
transport by diffusion only 
Dimensionless period of unconstrained uptake 
transport by diffusion and massflow 
Fractional depletion by unconstrained uptake 
transport by diffusion only 
Fractional depletion by unconstrained uptake 
transport by diffusion and massflow 
Fraction left at end of period of unconstrained 
uptake, transport by diffusion only 
Fraction left at end of period of unconstrained 
uptake, transport by diffusion and massflow 

none Subroutines called 
Functions called : 

GRNU: calculates G-function 

File usage: time constants written to MDZER.OUT 

I 
I 
I 
I 
I 
0 

* Subroutine TIMEC 
* Purpose: Calculation time constants, period of unconstrained uptake, 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*— 

0 
0 

-* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

-* 

*-
*-
*-

SUBROUTINE TIMEC(RHO,ETA,PHI,BUF,TNU,TFAC,TAUM,TAUD,TAUNU,FDD, 
1 FDNU,CUD,CUNU) 

Calculation period of unconstrained 
uptake TAUNU, maximum TAUM 

RH02-RHO**2 
TAUM-(RH02-1.)/RH02*ETA*PHI 
TAUD-TAUM-BUF*GRNU(0.,RHO) 
TAUNU-TAUM-BUF*GRNU(TNU,RHO) 
FDNU-TAUNU/TAUM 
FDD-TAUD/TAUM 
CUNU-l.-FDNU 
CUD-1.-FDD 

TM=TFAC*TAUM 
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TD-TFAOTAUD 
TN-TFAC*TAUNU 
WRITE(45,206) TM,TAUM,TD,TAUD,TN,TAUNU 

206 F0RMAT(/15X,'TIME-CONSTANTS'/3IX,'DAYS',11X,'DIML' 
1 /1X,'MAXIMUM:'12X.1P2E15.5/1X,'DIFFUSION :'9X,1P2E15.5 
2 /1X/DIF. AND MASS FLOW :'1P2E15.5) 

RETURN 
END 
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* 

* PHI 
* ETA 
* 

SUBROUTINE DIMENCIL.LRV.RO.TRANSP.HSCDIF.PAVAM.AK.UC.UPR, 
1 Rl,RHO,NU,CII,CT,AAA,BUF,PHI,ETA,COF) 

DIMENSION LRV(30) 
REAL LRV.NU 

PI-4.*ATAN(1.) 
R1-1./SQRT(PI*LRV(IL)) 
RHO-R1/RO 
RH02-RHO**2 
TNU--Rl**2*TRANSP/(2.*DIF*HSC*(RH02-1.))*(RH02-1.) 
NU-TNU/2. 
BUF-WC+AK 
CII-0.01*PAVAM/(HSC*BUF) 
CT-CII*BUF 
AAA-UPR/100. 
PHI-DIF*CT/(AAA*RO) 
ETA-HSC/RO 
COF-4.*(NU+l.)/(RHO**(TNU+2.)-l.) 

VRITE(45,102) LRV(IL) 
WRITE(45,103) R1.RHO.RH02.PHI.ETA.TNU 
RETURN 

* Subroutine DIMEN * 
* Purpose: calculation of dimensionless parameters * 
* FORMAL PARAMETERS: (I-input.O-output.C-control.IN-init.T-time) * 
* name type meaning units class * 

* 
* 

cm I * 
* LRV R4 Root length density cm/cm3 I 
* RO R4 Radius root c m j 
* TRANSP R4 transpiration rate cm/day I * 
* HSC R4 Root length c m I * 
* DIF R4 Diffusion coefficient soil cm2/day I * 
* PAVAM R4 Potential available amount of nutrient kg/ha I * 

AK R4 Adsorption constant nutrient _ I * 
* WC R4 Water content _ I * 
* UPR R4 Uptake rate nutrient kg/(ha.day) I * 
* Rl R4 Radius soil cylinder c m 0 * 
* RHO R4 Dimensionless radius soil cylinder _ 0 * 
* NU R4 Dimensionless flux of water _ 0 * 
* CII R4 Initial concentration nutrient mg/ml 0 * 
* CT R4 Bulk density of nutrient mg/cm3 0 * 
* AAA R4 Uptake rate mg/(cm2.day) 0 * 
* BUF R4 Buffer capacity _ 0 

R4 Dimensionless supply parameter _ 0 
R4 Dimensionless root length _ 0 

0 * 
* 
* 
* 
* 
* 

* Subroutines/Functions called:none 

File usage: dimensionless parameters written to MDZER.OUT * 



30 

102 FORMAT(//'************** LRV - '1PE15.5,2X,'**************'/ 
1 IX,'COMBINED AND DIMENSIONLESS PARAMETERS') 

103 F0RMAT(1X,'R1 -'1PE15.5,IX,'CM'/1X,'RHO -'1PE15.5, 
1 1X,'RH02 -'1PE15.5/1X 
2 'PHI -'1PE15.5/1X/ETA -'1PE15.5.1X/1X 
3 'TNU -'1PE15.5) 

END 
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* __ * 

* Subroutine TERM * 
* Purpose: calculates N terms form the series part of zero-sink solution * 
* concerning uptake of nutrients. The terms TE1 and TE2 pertain * 
* to steady-rate initial condition, TE3 and TE4 to constant * 
* initial condition * 
* FORMAL PARAMETERS: (I-input,0-output,Ocontrol,IN-init,T-time) * 
* name type meaning units class * 
* * 
* RHO R4 dimensionless root density, i.e. the radius - I * 
* of the soil cylinder Rl over the root radius * 
* RO * 
* FL R4 Dimensionless flux of water - I * 
* TE1 R4 Term of solution for integrated uptake - 0 * 
* TE2 R4 Term of solution for uptake rate - 0 * 
* TE3 R4 Term of solution for integrated uptake - 0 * 
* TE4 R4 Term of solution for uptake rate - 0 * 
* N 14 Number of terms - I * 
* AL R4 Zero's from crossproduct of Bessel-functions: - 0 * 
* Y(FL,AL)J(FL+1,AL) - J(FL,AL)Y(FL+1,AL) - 0 * 
* 

* 

*-
SUBROUTINE TERM(RH0,FL,TE1,TE2,TE3,TE4,N,AL) 
REAL TE1(N),TE2(N),TE3(N),TE4(N),AL(N),BJ(2) 
REAL JNA.JN1RA 

DO 5 I-l.N 
* Calculation of AL(I) 

CALL ZEJYl(AL(I),I,RHO,FL,20.,l.E-5,6) 
WRITE(46,*) 'I. AL »,I,AL(I) 

*. 
* . Calculation of Bessel function J, with order FL 
* — and argument AL(I) 

CALL BESFRJ(AL(I),FL,6,BJ) 

JNA-BJ(l) 

* Calculation of Bessel function J, with order FL+1 
* and argument AL(I)*RHO 

RA-RHO*AL(I) 
CALL BESFRJ(RA,FL,6,BJ) 
JN1RA-BJ(2) 

TE1(I)-JN1RA**2/(AL(I)**4*(JNA**2-JN1RA**2)) 
TE2(I)-TE1(I)*AL(I)**2 

* 
* Subroutines called: * 
* ZEJY1 : calculates zero's from crossproduct of Bessel-functions: * 
* Y(FL,AL)J(FL+1,AL) - J(FL,AL)Y(FL+1,AL) - 0 * 
* BESFRJ : Bessel function of first kind and fractional order * 

* 
* Functions called: none ^ 
* 

* File usage: none 
* 
* 

-* 
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TE3(I)-(2*FL*JNA*JN1RA-AL(I)*RHO**(FL+1)*JN1RA**2)/ 
L (AL(I)**3*RH0**(FL+1)*(JNA**2-JN1RA**2)) 

TE4(I)-TE3(I)*AL(I)**2 
CONTINUE 
RETURN 
END 
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* ______ __ _____ * 

* Function SUM1 * 
* Purpose: Calculates summation series of solution of integrated * 
* uptake rate, steady-rate initial condition * 
* FORMAL PARAMETERS: (I-input,0=output,C=control,IN-init,T«time) * 
* name type meaning units class * 
* * 
* T R4 Dimensionless time - I * 
* AL R4 Zero's from crossproduct of Bessel-functions: - I * 
* BUF R4 Dimensionless buffer-capacity - I * 
* TE1 R4 Terms from summation series - I * 
* N R4 Number of terms - I * 
* * 
* Subroutines called: none * 
* Functions called: none * 
* File usage: none * 
* — — * 

FUNCTION SUM1(T,TE1,AL,BUF,N) 
REAL TE1(N),AL(N) 

SUM1-0. 
DO 5 I-l.N 

TERM-TE1(I)*(1.-EXP(-AL(I)**2*T/BUF)) 
SUM1-SUM1+TERM 
IF(ABS(TERM/SUM1).LT.1.E-5)G0 TO 6 

5 CONTINUE 

6 RETURN 
END 
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* * 

* Function SUM2 * 
* Purpose: Calculates summation series of solution of uptake rate, steady-* 
* rate initial condition * 
* FORMAL PARAMETERS: (I-input,0-output,Ocontrol,IN-init,T-time) * 
* name type meaning units class * 
* * 
* T R4 Dimensionless time -
* AL R4 Zero's from crossproduct of Bessel-functions: -
* BUF R4 Dimensionless buffer-capacity -
* TE2 R4 Terras from summation series -
* N R4 Number of terms -
* * 
* Subroutines called: none * 
* Functions called: none * 
* File usage: none * 
* * 

FUNCTION SUM2(T,TE2,AL,BUF,N) 
REAL TE2(N),AL(N) 

SUM2-0. 
DO 5 I-l.N 

TERM-TE2(I)*EXP(-AL(I)**2*T/BUF) 
SUM2-SUM2+TERM 
IF(ABS(TERM/SUM2).LT.l.E-5)GO TO 6 

5 CONTINUE 

6 RETURN 
END 
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* ___ _* 

* Subroutine CUMUP * 
* Purpose: calculates uptake rate and cumulative uptake in zero-sink * 
* situation, and their steady-rate approximations as a function * 
* of time. * 
* * 
* FORMAL PARAMETERS: (I-input,0-output,C-control,IN-init,T-time) * 
* name type meaning units class * 
* * 
* NI 14 Number of time-steps - I * 
* TFAC R4 Ratio between real and dimensionless time day I * 
* NU R4 Dimensionless flux of water - I * 
* BUF R4 Buffer capacity - I * 
* TAUM R4 Dimensionless maximum period of unconstrained - I * 
* uptake * 
* TAUNU R4 Dimension less period of unconstrained uptake - I * 
* UPR R4 Required uptake rate nutrient kg/(ha.day) I * 
* AL R4 Zero's from crossproduct of Bessel-functions * 
* TIME R4 Time days 0 * 
* UP R4 Uptake rate in zero-sink situation kg/(ha.day) 0 * 
* UPAP R4 Uptake rate in zero-sink situation, kg/(ha.day) 0 * 
* steady-rate approximation * 
* TUP R4 Cumulative uptake kg/ha 0 * 
* TUPAP R4 Cumulative uptake steady-rate approximation kg/ha 0 * 
* * 
* Subroutines called: * 
* TERM: calculates terms of summation series * 
* * 
* Functions called: * 
* SUM1.SUM2: produce values of summation series * 
* GRNU : Calculates G-function * 
* * 
* File usage: none * 
* • * 

SUBROUTINE CUMUP(NI,RHO,TFAC,TAUM,TAUNU,UPR,BUF,TNU, 
1 COF.Rl.HSC.CII.DIF,TIME,UP,UPAP,TUP,TUPAP) 
DIMENSION TIME(30),UP(30),UPAP(30),TUP(30),TUPAP(30) 
DIMENSION TE1(50),TE2(50),TE3(50),TE4(50),AL(50) 
REAL NU 

NU-TNU/2 
CALL TERM(RHO,NU,TE1,TE2,TE3,TE4,50,AL) 
WRITE(46,*) 'TERM ',(TE4(I),1-1,20) 

TAU-TAUNU 
IF(TAUNU.LT.0.)TAU-0. 
STEP-(TAUM-TAU)/NI 

* — Do 30 over time 
DO 30 I-l.NI+1 

TIM-FLOAT(I-1)*STEP 
TIME(I)-TFAC*(TAU+TIM) 
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IF(TAUNU.GT.O.)THEN 
UP(I)-UPR*COF*SUM2(TIM,TE2,AL,BUF,50) 
UPAP(I)-UPR*EXP(-TIM/(BUF*GRNU(TNU,RHO))) 

ELSE 
UP(I)—4.*HSC*DIF*CII*SUM2(TIM,TE4)AL,BUF,50)/ 

1 Rl**2*100. 
UPAP(I)-100.*HSC*DIF*CII/R1**2*(RHO**2-1.) 

1 *EXP(-TIM/(BUF*GRNU(TNU,RHO)))/GRNU(TNU,RHO) 
ENDIF 
IF(TIM.LE.O.)THEN 

TUP(I)-UPR*TFAC*TAU 
ELSE 

IF(TAUNU.GT.O.)THEN 
TUP(I)-UPR*TFAC*TAU+COF*BUF*UPR*TFAC 

1 *SUM1(TIM,TE1,AL,BUF,50) 
TUPAP(I)-UPR*TFAC*BUF*GRNU(TNU,RHO)*(1.-EXP(-TIM/ 

1 (BUF*GRNU(TNU,RHO)))) + UPR*TFAC*TAU 
ELSE 
TUP(I)-UPR*TFAC*TAU-4.*100.*TFAC*HSC*DIF*CII 

1 *BUF*SUM1(TIM,TE3,AL,BUF,50)/R1**2 
TUPAP(I)-100.*HSC*DIF*CII/R1**2*(RHO**2-1.)* 

1 TFAC*BUF*(l.-EXP(-TIM/(BUF*GRNU(TNU,RHO)))) 
ENDIF 

ENDIF 

30 CONTINUE 
RETURN 
END 
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* * 

* Function GRNU * 
* Purpose: Calculation of G(nu,rho), (De Willigen & Van Noordwijk, 1987 * 
* page 130) * 
* * 
* FORMAL PARAMETERS: (I-input,0-output.C-control,IN-init,T-time) * 
* name type meaning units class * 
* * 
* TNU R4 2*NU, NU dimensionless flux of water - I * 
* RHO R4 Dimensionless radius soil cylinder - I * 
* * 
* Subroutines called: none * 
* Functions called: none * 
* File usage: none * 
* — . — * 

FUNCTION GRNU(TNU,RHO) 
RH02-RHO*RHO 
IF(TNU.EQ.0.)THEN 

Gl-(l.-3.*RH02)/4. 
G2-RH02**2*AL0G(RH0)/(RH02-1.) 
GRNU=(Gl+G2)/2. 
RETURN 

ELSE 
GNl-(l.-RH02)/2. 
GN2«RH02*(RH0**TNU-1.)/TNU 
GN3-RH02*(RHO**TNU-l.)*(TNU/2.+1.)/(TNU* 

1 (RHO**(TNU+2.)-l.)) 
GN4«(1.-RH0**(TNU+4.))*(TNU/2.+1.)/((TNU+4.)* 

1 (RH0**(TNU+2.)-l.)) 
GRNU-(GNl+GN2+GN3+GN4)/(TNU+2.) 

END IF 
RETURN 
END 



SUBROUTINE ZEJYl(X,N,RHO,ORD,TLIM,EPS,ISIG) 
DIMENSION BJ(2),BY(2),BRJ(2),BRY(2) 

DOUBLE PRECISION JNA,JNRA,JN1A,JNIRA.YNA.YNRA.YNIA, 
$ YN1RA.FA.FAA 

PRINT *,'TLIM ',TLIM 
IP-0 
ORD1-ORD+1 
PI-3.141592654 
S-N 
X-(S-0.5)*PI/(RHO-1.) 
TEL-0. 
SOL-X 
TEL-TEL+1 
IF(TEL.GT.TLIM)GO TO 5 
IF(SOL.LE.0.)GO TO 10 
RSOL-RHO*SOL 
CALL BESFRJ(SOL,ORD,ISIG,BJ) 
CALL BESFRY(SOL,ORD,ISIG,BY) 
CALL BESFRJ(RSOL,ORD,ISIG,BRJ) 
CALL BESFRY(RSOL,ORD,ISIG,BRY) 
JNA-BJ(l) 
JN1A-BJ(2) 
YNA-BY(l) 
YN1A-BY(2) 
JNRA-BRJ(l) 
JN1RA«BRJ(2) 
YNRA-BRY(l) 
YN1RA-BRY(2) 
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* * 

* Subroutine ZEJY1 * 
* Purpose: calculates the n-th root of: * 
* Y(0RD+1,RH0*X)*J(0RD,X)-Y(0RD,X)*J(0RD+1,RH0*X) * 
* J,Y Bessel-functions of first kind, order ORD * 
* Solution by Newton-raphson iteration, first estimate as given * 
* in Abramowitz & Stegun , page 374, 9.5.33. * 
* FORMAL PARAMETERS: (I-input,0=-output,C-control, IN«init,T«time) * 
* name type meaning units class * 
* * 
* N 14 rootnumber * 
* TLIM R4 maximum number of iterations - I * 
* EPS R4 required accuracy - I * 
* X R4 the value of the root 0 * 
* IP 14 Error indicator 0 * 
* * 
* Subroutines called: * 
* BESFRJ: calculates Bessel function J of fractional order * 
* BESFRY: calculates Bessel function Y of fractional order * 
* Functions called: none * 
* File usage: none * 
* * 
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DJN—JN1A+0RD/S0L*JNA 
DYN—YNlA+ORD/SOL*YNlA 
DJN1R-RHO*(JNRA-ORD1/RSOIAJN1RA) 
DYN1R-RHO*(YNRA-0RD1/RS0L*YN1RA) 
FA-JNA*YN1RA-JN1RA*YNA 

* PRINT *,'TEL,SOL,FA ',TEL,SOL,FA 
FAA-YN1RA*DJN+JNA*DYN1R-JN1RA*DYN-YNA*DJN1R 
X-SOL-FA/FAA 
IF(ABS((SOL-X)/X).GT.EPS)GO TO 1 
RETURN 

5 CONTINUE 
PRINT 100 
IP-2 
RETURN 

10 PRINT 101,TEL,SOL 
IP-3 
RETURN 

100 FORMAT(1H0,'TOO MANY ITERATIONS IN ZEJYl') 
101 FORMAT(1HO,'AFTER',F5.0,IX,'ITERATION, NEGATIVE ARG: 

11PD15.5) 

END 
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* * 

* Subroutine: BESFRJ * 
* Purpose: calculates bessel-functions first kind * 
* for argument x and (fractional) orders alph and alph+1 * 
* * 

* FORMAL PARAMETERS: (I-input,0-output,C-control,IN-init,T-time) * 
* name type meaning units class * 
* * 
* X R4 argument of Besselfunction - I * 
* ALPH R4 order of Besselfunction - I * 
* ISIG R4 required significant digits - I * 
* BJ R4 contains the values of J(ALPH,X), J(ALPH+1,X) 0 * 
* * 
* Subroutines called: * 
* BESJN from CERNLIB * 
* Functions called: none * 
* File usage: none * 
* * 

SUBROUTINE BESFRJ(X,ALPH,ISIG,BJ) 
DIMENSION BBJ(2),BJ(1) 

C 
IF(ALPH.LT.0.)GO TO 5 
NNN-ALPH 
ALP-ALPH-NNN 
CALL BESJN(X,ALP,NNN,ISIG,BBJ) 
BJ(1)-BBJ(1) 
BJ(2)-BBJ(2) 
RETURN 

5 CONTINUE 
NNN-ALPH-1. 
ALP-ALPH-NNN 
CALL BESJN(X,ALP,NNN,ISIG,BBJ) 
BJ(1)-BBJ(2) 
BJ(2)-BBJ(1) 
RETURN 
END 
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* Subroutine BESFRY 
* Purpose: calculates modified bessel-functions first kind 
* for argument x and (fractional) orders alph and alph+1 

* X R4 argument of Besselfunction - I 
* ALPH R4 order of Besselfunction - I 
* ISIG R4 required significant digits - 1 
* BY R4 contains the values of Y(ALPH,X), Y(ALPH+1,X) 0 
* 

* Subroutines called: 
* BESFRJ 
* Functions called: none 
* File usage: none 
* _ — — — — 

SUBROUTINE BESFRY(X,ALPH,ISIG,BY) 
DIMENSION BY(1),BBJ(2),BBMJ(2) 
PI-3.1415926535 
CO-COS(ALPH*PI) 
SI-SIN(ALPH*PI) 
ALP—ALPH 
CALL BESFRJ(X,ALP,ISIG,BBMJ) 
CALL BESFRJ(X,ALPH,ISIG,BBJ) 
BY(1)-(BBJ(1)*C0-BBMJ(1))/SI 
BY(2)—(2./(PI*X)-BBJ(2)*BY(l))/BBJ(l) 

1 CONTINUE 
RETURN 
END 
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APPENDIX II. Numerical solution of radial flow of water to a plant root. 

Background 

The program solves the following partial differential equation, 

£ - hl^r <AII-1) 

with boundary conditions: 

r - P , -^ " ° (AII-2) 
Br 

and e i t he r : 

r - 1 , L | £ J - constant - q (AII-3a) 

or: 

r - 1 , B - constant - 8rs (AII-3b) 

The initial condition is simply : 

t - 0, 6 - constant - 8\ (AII-4) 

The meaning of the symbols can be found in table 1 in the main text. Equation 
(AII-1) is Richard's equation in cylindrical coordinates. 

Before discretisizing the partial differential equation 
(AII-1), the hollow cylinder with inner radius 1 and outer radius p, is 
transformed to a rectangle by the transformation: 

x - lnr (AII-5) 

This transforms (AII-l)-(AII-3) into resp.: 

«2,£ - &•£ <AII-6> 

x - lnp , 1*1-0, (AII-7) 
dx 

x - 0, 11 - q (AII-8a) 
dx 

and 
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o, e - ers 

(AII-8b) 

Equation (AII-6) is discretized by dividing the region 0 < x < lnp into a 
number of control-volumes and integrating of (AII-6) over the control-colume 
and a finite time-step At (Patankar, 1980) following a complete implicit 
scheme. This leads to a set of n equations in the n unknown 9, where n is the 
number of control volumes. These equations have the form: 

ai6i - bi6Ul + <:,•*,•_! + d,- (AII-9) 

where 

1 Ax* ' "AF 

e2(i-l)AX „2(i-l)AX „ 

a,- - bj + Cj + sinh(Ax) _ , a,- - sinh(Ax)_ 0" 

Ax is the thickness of the control-volumes, At the time-step, D,- and D,.! the 
average diffusivities at the boundaries of control-volume i and i+1, resp i-1 
and i. It is to be understood that all values of 6 are the new unknown values 
at time t+At except where the superscript ° is used. The coefficients a.b.c 
and have special values at the boundaries, where i-1 resp i-=n. For i=l (x-0), 
if condition of constant flux (AII-8a) is used: 

. . (e*»-l) +~PT b _~E± 1 IKE~ Ax ' x Ax 

Ci-0, d^-q* SfJ^lol , 

whereas when for constant watercontent (AII-8b) 

ax - 1, bx- 0, cx - 0, dx - 8rs. 

For i-n (x-lnp) 

( 2 . e2(n-l)AX - AX) 

*" IKE b" ° 

'n -ST' n IKE °n 
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The solution of the discretization eqations (AII-9) is found by the TDMA 
algorithm (Patankar, 1980). 

Program 

The relation between the subroutines is given in the diagram in Figure AII-1. 
The core of the program is formed by the subroutine SOLVE wherein the 
discretization equations are solved. Due to the nonlinear relation between the 
diffusivity and the water content the solution is found by iteration. If 
necessary underrelaxation can be used to avoid divergence (Patankar, 1980, Ch 
4. page 67). 

Relational diagram of subroutines in FLROOT 

-Q INIT ) (WATERC) 

(VLROOTJ 1 

MOFILP 0 

GEOMR 0 
-/TIMEST') AVDIF X FDIF 

TDMA 

-Q SOLVE)—(^COEFF) 

< 

k 
OUTP 

UPDAT 
-C™£> 

; > 

The relation between diffusivity and water content is as proposed by Van 
Genuchten (1980): 

D-K*<6"\sJw'l-J M1-**)" " (0Sat-0r)<*n-

where 

8 - 9r 
W - m -

"sat ~ "r 
1 - 1 

n 

(AII-10) 
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This is calculated in the function FDIF, and is used in the function FLPL 
which calculates the integral give in (11). The numerical integration is 
performed by the function GAUSS (not shown) which is taken from CERNLIB 
Lindelof, 1981). 
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* * 

* Program FLROOT * 
* Purpose : Calculation of flow of water towards a root. * 
* The geometry is a hollow cylinder representing the soil around* 
* the root. Boundary conditions are: constant flux, or constant * 
* water-content at the root surface (the inner cylinder) and * 
* zero-flux at the outer cylinder. The partial differential * 
* equation is solved by completely implicit finite difference * 
* scheme, as described in S.V. Patankar, 1980, Numerical heat * 
* transfer and fluid flow. * 
* The flow is also calculated with an analytical function, * 
* based on the steady-rate approximation (De Willigen and * 
* Van Noordwijk, 1987, Roots, plant production and nutrient use * 
* efficiency page 149, (9.73)). * 
* * 
* The mutual relations between matric potential, water content, * 
* and hydraulic conductivity are given by Van Genuchten functions. * 
* * 
* SUBROUTINES called: * 
* MOFILP: organizes input * 
* INIT: initializes watercontent * 
* GEOMR: calculates geometry, thickness control-volumes etc. * 
* SOLVE: solves the discretization equations * 
* UPDAT: updates watercontent, calculate totals, averages, etc. * 
* OUTP: organizes the output * 
* * 
* FILE usage: * 
* 1. input from screen (format: soilname.DAT),unit 40, * 
* contains soil and root data (I) * 
* 2. C0NTR.DAT, unit 40, contains data that control boundary * 
* conditions, iteration, relaxation (I) * 
* 3. soilname.PET, unit 41, main outputfile (0) * 
* 4. soilname.PLO, unit 48, plotfile with data (0) * 
* * 
* * 

DIMENSION G(30),C(30),WCN(30),DIFDN(30) 
DIMENSION A(30),X(30),B(30),D(30),WCOL(30) 
DIMENSION USTR(30),WCSTR(30),DW(30) 

REAL KS,M,N,L 
REAL U(30),R(30),LRV 
REAL WC(30),DWCDT(30),DIFD(30) 
CHARACTER*20 NAME,INP,0UTF 
LOGICAL MODE 

COMMON /FDIF1 / WCSAT,WCR,M,N,L,ALPH,KS 

DATA FLB/1./ 

* INITIAL * 
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PI-ATAN(1.)*4. 
TW0PI-2.*PI 

input 
PRINT *,'SOILNAME?* 
READ(*,100) NAME 

OPEN (UNIT-40,FILE-NAME) 
File with soil and root-data is opened 

Outputfile is opened 
I - INDEX (NAME,'.') 
IF (I.EQ.O) I - INDEX (NAME,' ') 
NAME(I:I+3) - '.PET' 
OPEN (UNIT-41,FILE-NAME) 

NAME(I:I+3)-'.PLC 
0PEN(UNIT-48,FILE=NAME) 

Plotfile is opened 

Reading of soil and root data 
CALL MOFILP(40) 
READ(40,100) NAME 
CALL M0FILP(40) 
READ(40,*) WCSAT.WCR.WCMIN.WCREF.PLIM.PMIN 
PRINT *,'WCSAT,WCR,WCMIN,WCREF,PLIM '.WCSAT.WCR.WCMIN.WCREF PLIM 
CALL MOFILP(40) 
READ(40,*) KS.N.L.ALPH 
M-l.-l./N 
CALL MOFILP(40) 
READ(40,*) LRV.RO.HSC 
CALL MOFILP(40) 
READ(40,*) EVAP 
CALL MOFILP(40) 
READ(40,*) WCI 
CALL MOFILP(40) 
READ(40,*) IR 
CLOSE(40) 

SOILNAME.DAT is closed 

C0NTR.DAT is opened 
OPEN(FILE-'CONTR.DAT'.UNIT-40) 

reading control data 
CALL M0FILP(40) 
READ (40,*) TFAC 

* maximum change watercontent 
* over time-step 

CALL MOFILP(40) 
READ (40,*) CHMAX 

* iteration tolerance 
CALL MOFILP(40) 
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READ (40,*) EPS 
* relaxation factor 

CALL MOFILP(40) 
READ (40,*) RELF 

* CURS < 0 , water content at root surface 
* constant 

CALL MOFILP(40) 
READ (40,*) CWRS 

* read waterpotential root 
* surface 

IF(CWRS.LT.O.)THEN 
CALL MOFILP(40) 
READ (40,*) PRS 
FLB—1. 

ELSE 
ENDIF 

* Close C0NTR.DAT 
CLOSE(40) 

* — — End input 
* Initialisation 

CALL 1NIT(IR, LRV,HSC,R0,UCI,PLIM,EVAP,FLB,PRS , 
1 Rl,SUMWI,RHO,ETA,WCLIM,QT,RAT,WC,WCAPP) 

Reading time data from screen 
TMAX-SUMWI/(PI*R1**2*EVAP) 
PRINT *,'MAXIMUM EXTRACTION TIME IN DAYS ',TMAX 
PRINT *,'GIVE FINTIM IN DAYS' 
READ *,FINTIM 
PRINT *,'PRINT-INTERVAL IN DAYS' 
READ +.PRDEL 

Geometry 
CALL GEOMR(IR,RHO,X,R,DX,DX2) 

PRDELT-PRDEL*RAT 
IP-0 
T-0 
WRITE(41,*) 'FINTIM,DELT.DT '.FINTIM,DELT.DT 

DELT-.l 
FIT-0 
TRPAR-1. 
WCAPP-WCI 

DYNAMIC 

10 CONTINUE 

IF(WC(1).LE.WCLIM.AND.FLB.GT.0.)THEN 
FLB—1. 
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WRITE(41,*) 'TIME- '.TIME,' WC(1).LE.WCLIM' 
PRINT 101,TIME,DELT 
PRINT 102,(WC(K),K»1,IR) 
CALL OUTP(IR,R,R0,HSC,Rl,T,TIME,DELT,WCN,WC,DWCDT,DIFD, 

1 BAL,RUPW,RUPWSR,CUPW,CUPWSR,WCAV,WCAPP) 
ENDIF 

Check if time exceeds fintim 
IF(TIME.GE.FINTIM)GO TO 20 

Check if output should be written 
IF(TIME.GE.(IP*PRDEL))THEN 

IP-IP+1 
CALL OUTP(IR,R,R0,HSC,Rl,T,TIME,DELT,WCN,WC,DWCDT,DIFD, 

1 BAL,RUPW,RUPWSR,CUPW,CUPWSR,WCAV,WCAPP) 
ENDIF 

CALL SOLVE(IR,WC,WCN,DELT,DX,RHO,QT,FLB,RELF,EPS,WCLIM, 
1 DIFD) 

CALL UPDAT(IR.WC,WCN,WCLIM,R,R0,R1,HSC,DELT,T, 
1 DWCDT,RUPW,RUPWSR,CUPWSR,CUPW,BAL,WCAV,WCAPP) 

TIME-T*(R0*R0) 

CALL TIMEST(DELT,FLB,TFAC,CHMAX,WC,DWCDT,PRDELT) 

GO TO 10 

20 CONTINUE 
WRITE(41,*) ' TIME .GE. FINTIM ' 
CALL OUTP(IR,R,R0,HSC,R1,T,TIME,DELT,WCN,WC,DWCDT,DIFD, 

1 BAL,RUPW,RUPWSR,CUPW,CUPWSR,WCAV,WCAPP) 
STOP 

100 FORMAT (A20) 
101 FORMAT(1H0,'TIME -'1PE15.5,1X,'DELT -'1PE15.5) 
102 FORMAT(1HO,/13X,'WC'/(1PE15.5)) 

END 
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*_ 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*-

Subroutine INIT 
Purpose: Initialisation of watercontent, calculation of parameters 
FORMAL PARAMETERS: (I-input,0-output,C-control,IN-init,T-time) 
name type meaning units class 

LRV 
HSC 
R0 
WCI 
PLIM 
EVAP 
FLB 

PRS 
Rl 
RHO 
SUMWI 
ETA 
WCLIM 
QT 
WC 
WCAPP 

R4 
R4 
R4 
R4 
R4 
R4 
R4 

R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 

Root length density 
Root lenght 
Root radius 
Initial water content 
Limiting value matric potential 
Required transpiration 
Parameter that controls boundary condition 
at root surface. FLB>0 constant flux, 
FLB<0 constant watercontent 
Matric potential at root surface 
Radius soil cylinder 
Dimensionless radius soil cylinder 
Initial total amount of water in soil 
Dimensionless root lenght 
limiting value water content 
Required uptake rate of water by root 
Water content 
Water content calculated by steady-rate 
approximation 

cm/cm3 
cm 
cm 

cm 
cm/day 

cm 
cm 

cm3 

cm2/day 

I 
0 
0 
0 
0 
0 
0 
0 
0 

Subroutines called: none 

Functions called: 
WATERC: calculates water content as a function of matric potential 

File usage: soilname.PET 

-* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

SUBROUTINE INIT(IR,LRV,HSC,R0,WCI,PLIM,EVAP,FLB,PRS, 
Rl,SUMWI,RHO,ETA,WCLIM,QT,RAT,WC,WCAPP) 

DIMENSION WC(30) 
REAL M,N,L,KS,LRV 
COMMON /FDIF1 / WCSAT,WCR,M,N,L,ALPH,KS 

PI-4.*ATAN(1.) 
R1-1./SQRT(PI*LRV) 
SUMWI-PI*(R1*R1-R0*R0)*HSC*WCI 
RHO-R1/R0 
ETA-HSC/RO 
WCLIM-WATERC(PLIM,WCSAT,WCR,N,ALPH) 
QT-RH0**2/(2.*ETA)*EVAP*R0 
RAT«l./(Ru*R0) 

initialisation OF WATER CONTENT 
DO 30 K-2.IR+1 

WC(K)-WCI 
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30 CONTINUE 
IF(FLB.GT.O.)THEN 

WC(1)-WCI 
ELSE 

WC(1)-WATERC(PRS,WCSAT,WCR,N,ALPH) 
ENDIF 
WCAPP-WCI 

* initial output 
WRITE(41,100) LRV.EVAP.RHO,ALPH,QT,RAT 
PRINT 100,LRV.EVAP.RHO,ALPH,QT,RAT 
PRINT 101.SUMWI 
WRITE(41,101) SUMWI 
RETURN 

100 FORMAT(IX,//,IX,'ROOT-DENSITY CM-2:'F5.1/ 
1 IX,'EVAPOTRANSPIRATION CM/DAY :'F6.2/ 
2 lX.'RHO ;'1PE15.5/ 
3 IX,'ALPH :'1PE15.5/1X, 
4 lX.'DIMENSIONLESS UPTAKE QT:'1PE15.5/ 
5 IX,'RATIO DIMENSIONLESS TIME AND REAL TIME:'1PE15.5) 

101 FORMAT(IX,'SUMWI-'1PE15.5) 

END 
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* * 

* Subroutine: SOLVE * 
* Purpose: construction of coefficient-matrix of discretisized equations * 
* and solving the equations by TDMA * 
* FORMAL PARAMETERS: (I-input.O-output.C-control,IN-init,T-time) * 
* name type meaning units class * 
* * 
* WC R4 Water content - I * 
* WCN R4 New values of water content - 1,0 * 
* DELT R4 Time step in scaled units day/cm2 I * 
* DX R4 Thickness control-volume - I * 
* RHO R4 Dimensionless radius soil cylinder - I * 
* QT R4 Uptake rate of water by root cm2/day I * 
* FLB R4 Parameter that controls boundary condition I * 
* at root surface. FLB>0 constant flux, * 
* FLB<0 constant watercontent * 
* RELF R4 Relaxation factor - I * 
* EPS R4 Convergence criterion for iteration - I * 
* DIFD R4 Average diffusivity at face control volume - 0 * 
* WCLIM R4 limiting value water content 0 * 
* * 
* Subroutines called: * 
* COEFF: calculates coefficients discretization equations * 
* TDMA : solves discrtization equations * 
* * 
* Functions called: * 
* AVDIF: calculates average diffusivity at interface * 
* two control-volumes * 
* File usage: none * 
* * 
* * 

SUBROUTINE SOLVE(IR,WC,WCN,DELT,DX,RHO,QT,FLB,RELF,EPS,WCLIM, 
1 DIFD) 

DIMENSION WC(30),WCN(30) 
DIMENSION WCOL(30),DIFD(30),A(30),B(30),C(30),D(30),DIFDN(30) 

10 CONTINUE 
* average diffusivities are calculated 
* old values of WC stored in WCOL 

DO 20 K-l.IR-1 
DIFD(K)-AVDIF(WC(K),WC(K+1),.FALSE.) 
WC0L(K)-WC(K) 

20 CONTINUE 
WCOL(IR)-WC(IR) 

* tentative new values of WC (WCN) calculated 
* no relaxation 

CALL C0EFF(IR,A,B,C,D,WC,DIFD)1.,DX,RH0,DELT,QT,FLB,WC(1), 
1 WCOL,RELF,0) 

CALL TDMA(IR,A,B,C,D,WCN) 
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iterative search for better new values of WC 
DO 50 IT-1,10 

IF(WCN(l).LT.0.)GO TO 60 
DO 30 K-l.IR-1 

TRPAR-1. 
IF(WCN(K).LT.WCLIM)THEN 

TRPAR—1. 
ENDIF 
DIFDN(K)-AVDIF(WCN(K),WCN(K+1),.FALSE.) 

30 CONTINUE 
* criterion of convergence is relative 
* — — difference between consecutive values of 
* — — diffusivity at first or second gridpoint 

DIFCRT-(DIFDN(1)-DIFD(1))/DIFD(1) 
IF(FLB.LT.0.)DIFCRT-(DIFDN(2)-DIFD(2))/DIFD(2) 
IF(ABS(DIFCRT).LT.EPS)THEN 
GO TO 70 

ELSE 
CALL C0EFF(IR,A,B,C,D,WC,DIFDN,1.,DX,RHO,DELT,QT,FLB, 

1 WC(1),WC0L,RELF,IT) 
CALL TDMA(IR,A,B,C,D,WCN) 
DO 40 K-l.IR 

TRPAR-1. 
IF(WCN(K).LT.WCLIM)THEN 

TRPAR—1. 
ENDIF 
DIFD(K)-DIFDN(K) 
WCOL(K)-WCN(K) 

40 

50 

60 

.L. 

70 

CONTINUE 
ENDIF 

CONTINUE 

DELT-DELT/2. 
GO TO 10 

CONTINUE 

RETURN 
END 

— end of iteration 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*-

Function FLPL * 
Purpose: Calculation of matric flux potential as integral of diffusivity* 

over watercontent 

FORMAL PARAMETERS: (I-input,0-output,C-control,IN=init,T-time) 
name type meaning units class 

ALPH 
WCR 
KS 

R4 
R4 
R4 

water content 
Watercontent at saturation 
parameter from conductivity-watercontent 
relation 
parameter 
residual water content 
saturated conductivity 

ml/cm3 
ml/cm3 

cm-1 
ml/cra3 
cm/day 

I 
I 
I 

I 
I 
I 

Subroutines called: none 

Functions called : 
GAUSS: a function from CERNLIB which performs numerical 

integration according to Gauss' method. 
FDIF: calculates diffusivity as a function of water content. 

File usage: none 

REAL FUNCTION FLPL(WC) 
REAL KS.M.N.L 
COMMON /FDIF1/ WCSAT,WCR,M.N.L,ALPH,KS 
EXTERNAL FDIF 

FLPL-GAUSS(FDIF,WC,0.99*WCSAT,.001) 

RETURN 
END 
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* * 

* FUNCTION WATERC * 
* Purpose : Calculation of watercontent by hydraulic head Van Genuchten * 
* function. * 
* FORMAL PARAMETERS: (I-input,0-output,C-control,IN-init,T-time) * 
* name type meaning units class * 
* * 
* PRES R4 hydraulic head cm I * 
* WCSAT R4 Watercontent at saturation ml/cm3 I * 
* N R4 parameter from conductivity-watercontent - I * 
* relation * 
* ALPH R4 parameter cm-1 I * 
* WCR R4 residual water content ml/cm3 I * 
* WATERC R4 watercontent ml/cm3 0 * 
* * 
* Subroutines/functions called: none. * 
* * 
* File usage: none * 
* * 
* — — — * 

FUNCTION WATERC(PRES,WCSAT,WCR,N,ALPH) 
REAL M,N 
M-l.-l./N 
IF(PRES.LE.O.)THEN 

TRPAR—1 
END IF 
HELP-(1.+(ALPH*PRES)**N) 
IF(HELP.LE.O.)THEN 

TRPAR—1 
ELSE 
ENDIF 
WATERC-(WCSAT-WCR)*(1.+(ALPH*PRES)**N)**(-M)+WCR 
RETURN 
END 
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* * 

* Function FDIF * 
* Purpose: Calculation of diffusivity from watercontent * 
* FORMAL PARAMETERS: (I-input,0-output,C-control,IN=-init,T-time) * 
* name type meaning units class * 
* —: * 
* WCSAT R4 Watercontent at saturation ml/cm3 I * 
* N R4 parameter from conductivity-watercontent - I * 
* relation * 
* ALPH R4 parameter cm-1 I * 
* WCR R4 residual water content ml/cm3 I * 
* FDIF R4 Diffusivity cm2/day * 
* * 
* SUBROUTINES called: none * 
* FUNCTIONS called: none * 
* FILE usage:none * 
* * 

FUNCTION FDIF(WC) 
REAL KS.M.N.L 
COMMON /FDIF1/ WCSAT,WCR,M,N,L,ALPH,KS 

W-(WC-WCR)/(WCSAT-WCR) 
M-l.-l./N 
TRPAR-1. 
IF(W.LT.O.)THEN 

TRPAR—1. 
ENDIF 
WL-W**(-1./M) 
TRPAR-1 
IF(WL.LE.1.)THEN 

TRPAR—1 
ENDIF 
FDIF-KS*W**L/((WCSAT-WCR)*ALPH*N)*(WL-1.)**(-M)* 

1 (l.-(l.-W**(l./M))**M)**2 
RETURN 
END 
FUNCTION FG(R) 
FG-0.5*((l-3.*R**2)/4.+R**4*ALOG(R)/(R**2-l)) 
RETURN 
END 
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* — _____ _ _ _ _ * 

* Subroutine TIMEST * 
* Purpose: calculation of time step DELT * 
* * 
* FORMAL PARAMETERS: (I-input,0-output,C-control,IN=-init,T-time) * 
* name type meaning units class * 
* 

* DWCDT R4 rate of change of WC cm2/day I 
* PRDELT R4 print-interval in scaled units day/cm2 I 
* 

* FILE usage: none 
* — 

* DELT R4 timestep in scaled units day/cm2 1,0 * 
* TFAC R4 multiplying factor, if possible DELT is I * 
* increased by TFAC * 
* CHMAX R4 permitted maximum relative change in - I * 
* watercontent * 
* WC R4 watercontent I * 

* 
* 
* 

* Subroutines/Functions called: none * 

SUBROUTINE TIMEST(DELT,FLB,TFAC,CHMAX,WC,DWCDT,PRDELT) 
DIMENSION WC(30),DWCDT(30) 

IF(FLB.GT.O.)THEN 
DCH-CHMAX*WC(1)/ABS(DWCDT(1)) 

ELSE 
DCH-CHMAX*WC(2)/ABS(DWCDT(2)) 

ENDIF 
DELT2-DELT*TFAC 
DELT-AMIN1(DCH,PRDELT,DELT2) 

RETURN 
END 

-* 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*-

Subroutine: UPDAT 
Purpose: Updating of watercontent, time, total amount of water in soil, 

decrease of total water, transpiration by steady-rate 
approximation 

FORMAL PARAMETERS: (I-input,0-output,C-control,IN-init.T-time) 
name type meaning units class 

R 
RO 
HSC 
Rl 
wc 
WCN 
DWCDT 
DELT 
RHO 
WCLIM 
RUPW 
CUPW 
R 
CUPWSR R4 
BAL R4 
WCAPP R4 

WCAV R4 

R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 

Dimensionless radial coordinate 
Radius root 
Root length 
Radius soil cylinder 
Water content 
New values of water content 
Rate of change of water content 
timestep in scaled units 
Dimensionless radius soil cylinder 
water content at root surface 
Rate of uptake of water 
Cumulative water uptake 
As RUPW and CUPW but calculated with 
steady-rate approximation 
Balance of water in soil 
Average water content calculated by steady-
rate approximation 
Average water content 

cm 
cm 
cm 

cm2/day 
day/cm2 

cm/day 
cm 

cm/day 
cm 
cm 

Subroutines called: none. 

Functions called: 
FLPL: calculates matric flux potential as a 

water content 
function of 

,0 

-* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

-* 

SUBROUTINE UPDAT(IR.WC,WCN,WCLIM,R,R0,R1,HSC,DELT,T, 
1 DWCDT,RUPW,RUPWSR,CUPWSR,CUPW,BAL,WCAV,WCAPP) 

DIMENSION WC(30),WCN(30),DWCDT(30),R(30),USTR(30) 
LOGICAL INIT 
DATA INIT/.FALSE./ 

IF(.NOT.INIT) THEN 
RHO-R1/R0 
ETA-HSC/RO 
PI-4.*ATAN(1.) 
INIT-.TRUE. 
SUMWI-(R1*R1-R0*R0)*HSC*WC(2)/Rl**2 

ENDIF 
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calculation of DWC/DT 
DO 10 K-l.IR 

DWCDT(K)-(WCN(K)-WC(K))/DELT 
10 CONTINUE 

* SUMW total water in soil cylinder cm 
* RUPW rate of decrease of water cm/day 

SUMW-0. 
RUPW-0. 
DO 20 K-l.IR-1 

SUMW-SUMW+ 
1 (R(K+l)-R(K))*(R(K+l)*WC(K+l)+R(K)*WC(K))/2. 

RUPW-RUPW+ 
1 (R(K+l)-R(K))*(R(K+l)*DWCDT(K+l)+R(K)*DWCDT(K))/2 

20 CONTINUE 
SUMW-2.*HSC*R0**2*SUMW/R1**2 
RUPW—2. *HSC*RUPW/R1**2 
BAL-SUMW+CUPW-SUMWI 

WCAV average water content 
WCAV-SUMW*R1**2/(HSC*(Rl**2-R0**2)) 
USTR(1)-FLPL(WC(1)) 
UAVAPP-FLPL(WCAPP) 

* — RUPWSR water uptake according to steady-rate 
* approximation cm/day 

RUPWSR-2.*HSC/Rl**2*(USTR(l)-UAVAPP)*(RHO**2-l.)/(2.*FG(RHO)) 

IF(WCN(1).LE.WCLIM.AND. WC(1).GT.WCLIM)THEN 
DELT-AMIN1(DELT,(WCLIM-WC(1))/DWCDT(1)) 
TRPAR—1. 

ENDIF 

* Updating of WC 
DO 30 K-l.IR 

WC(K)-WC(K)+DWCDT(K)*DELT 
TPAR-1. 
IF(WC(K).LT.WCLIM)THEN 

TRPAR—1. 
ENDIF 

30 CONTINUE 

T-T+DELT 

CUPW-CUPW+RUPW*DELT*R0**2 
CUPWSR-CUPWSR+RUPWSR*DELT*R0**2 
WCAPP-WCAPP-RUPWSR*DELT*R0**2*R1**2/(HSC*(R1**2-R0**2)) 
RETURN 
END 



WRITE(41,100) IR.DR 
PRINT 100.IR.DR 

WRITE(41,101) (R(K),K-1,IR) 
PRINT 101,(R(K),K-1,IR) 

RETURN 

100 FORMAT(1H0,I3,IX,'POINTS IN R-DIRECTION'/ 
3/lX,'DR-'lPE15.5) 

101 FORMAT(1HO,'R-'1P5E15.5) 

END 
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* * 
* Subroutine GEOMR * 
* Purpose: calculation of position of gridpoints both in transformed and * 
* untransformed coordinates * 
* Note: Gridpoints equidistant in transformed region, distances between * 
* gridpoints geometrically increasing in untransformed cylindrical region.* 
* * 
* FORMAL PARAMETERS: (I-input,0-output,C-control.IN-init,T-time) * 
* name type meaning units class * 
* * 
* IR 14 Number of gridpoints - I * 
* RHO R4 Dimensionless radius soil cylinder - I * 
* R R4 Radial coordinate gridpoint - 0 * 
* X R4 Coordinate of gridpoint in transformed region: - 0 * 
* X - Ln(R) * 
* DX R4 Distance between gridpoints in transformed region * 
* * 
* Subroutine/Finstions called: none * 
* * 
* File usage: Coordinates gridpoints wriiten to file soilname.PET * 
* * 
* * 

SUBROUTINE GEOMR(IR,RHO,X.R.DX.DX2) 
DIMENSION X(30),R(30) 

DX-AL0G(RH0)/(IR-1) 
DX2-DX*DX 
R(l)-1. 
X(l)-0. 
DO 10 K-2.IR 

X(K)-X(K-1)+DX 
R(K)-EXP(X(K)) 

10 CONTINUE 
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* _ — _ _ * 

* Function: AVDIF * 
* Purpose: calculates harmonic or arithmetic average of diffusivities, * 
* with equal weights * 
* FORMAL PARAMETERS: (I-input,0-output,C-control,IN-init,T-time) * 
* name type meaning units class * 
* * 
* XI,X2 RA dummies, representing watercontent - I * 
* MODE L If .true, harmonic average, else arithmetic * 
* * 
* Subroutines ca l led : none * 
* 

* 
* -

FUNCTION AVDIF(X1,X2,M0DE) 
LOGICAL MODE 
Dl-FDIF(Xl) 
D2-FDIF(X2) 
IF(MODE) THEN 

AVDIF-2*D1*D2/(D1+D2) 
ELSE 

AVDIF-(Dl+D2)/2. 
ENDIF 
RETURN 
END 

* 
* Functions called: * 
* FDIF: calculates diffusivity as a function of water content * 
* ' * 
* File usage: none * 
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* * 

* Subroutine COEFF * 
* Purpose: calculation of coefficients of the discretization equations. * 
* These are of the form: * 
* A(I)*T(I)-B(I)*T(I-H) + C(I)*T(I-1) + D(I), where T(I) is the * 
* value of the dependent variable at gridpoint I. * 
* * 
* FORMAL PARAMETERS: (I-input,0-output,C-control,IN«init,T-time) * 
* name type meaning units class * 
* — * 
* N 14 Number of gridpoints - I * 
* A.B.C.D R4 Coefficients 0 * 
* T R4 Dummy denoting the dependent variable * 
* FM R4 If FM-1 scheme completely implicit, FM=0 I * 
* scheme completely explicit 
* DX R4 distance between gridpoints - I 
* RHO R4 dimensionless radius soil cylinder - I 
* DT R4 timestep I 
* Q R4 uptake rate 
* FLB R4 Parameter that controls boundary condition I * 
* at root surface. FLB>0 constant flux, * 
* FLB<0 constant watercontent * 
* WCLIM R4 water content at root surface - I * 
* TO R4 Values of T at preceding time-step I * 
* RELF R4 Relaxation factor I * 
* IT R4 Controls relaxation, if IT >1 relaxation - I * 
* * 
* Subroutines/functions called: none * 
* * 
* File usage: none * 
* * 
* * 

SUBROUTINE COEFF(N,A,B,C,D,T,DIF,FM,DX,RHO,DT,Q,FLB,WCLIM, 
1 TO,RELF,IT) 
DIMENSION A(30),B(30),C(30),D(30),T(30),TO(30),DIF(30) 
EMFM-l.-FM 
BETA«(EXP(DX)-EXP(-DX))/2. 

DO 5 1-2,N-l 
AE-DIF(I)/DX 
AW-DIF(I-1)/DX 
AOP-BETA*EXP(2.*(FLOAT(I)-1.)*DX)/DT 
AI-(FM*AE+FM*AW+AOP) 

B(I)-FM*AE 
C(I)-FM*AW 
DI-AE*EMFM*T(I+1) + AW*EMFM*T(I-1) + 

1 (AOP-EMFM*AE-EMFM*AW)*T(I) 
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IF(IT.LE.1)THEN 
A(I)-AI 
D(I)-DI 

ELSE 
A(I)-AI/RELF 
D(I)-DI+(1.-RELF)*A(I)*T0(I) 

END IF 

CONTINUE 

IF(FLB.GT.O.)THEN 
Al«((EXP(DX)-l.)/(2.*DT)+DIF(l)*FM/DX) 
B(1)-DIF(1)*FM/DX 
C(l)-0. 
D1-DIF(1)*EMFM*(T(2)-T(1))/DX - Q + 

1 (EXP(DX)-1.)/(2.*DT)*T(1) 

IF(IT.LE.1)THEN 
A(1)-A1 
D(1)-D1 

ELSE 
A(1)-A1/RELF 
D(1)-D1+(1.-RELF)*A(1)*T0(1) 

END IF 

ELSE 
A(l)-1. 
B(l)-0. 
C(l)-0. 
D(1)-WCLIM 

ENDIF 

AN-((RHO**2-EXP(2.*FLOAT(N-l)*DX-DX))/(2.*DT)+ 
1 DIF(N-1)*FM/DX) 
B(N)-0. 
C(N)-DIF(N-1)*FM/DX 
DN—DIF(N-1)*EMFM*(T(N)-T(N-1))/DX + 

1 (RHO**2-EXP(2.*FLOAT(N-l)*DX-DX))/(2.*DT)*T(N) 

IF(IT.LE.1)THEN 
A(N)-AN 
D(N)-DN 

ELSE 
A(N)-AN/RELF 
D(N)-DN+(l.-RELF)*A(N)*TO(N) 

ENDIF 

RETURN 
END 
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* * 

* Subroutine TDMA * 
* Purpose: solves the discretization equations * 
* * 
* FORMAL PARAMETERS: (I=input,0-output,C=control,IN=-init,T-time) * 
* name type meaning units class * 
* * 
* N 14 Number of gridpoints - I * 
* A,B,C,D R4 Coefficients I * 
* TE R4 Dummy denoting the dependent variable 0 * 
* * 
* Subroutines/Functions called: none * 
* * 
* File usage: none * 
* * 
* * 

SUBROUTINE TDMA(N,A,B,C,D,TE) 
DIMENSION A(30),B(30),C(30),D(30),TE(30) 
REAL P(50),Q(50) 
P(l)-B(l)/A(l) 
Q(l)-D(l)/A(l) 
DO 5 1-2,N 

DEN0M-A(I)-C(I)*P(I-1) 
P(I)-B(I)/DEN0M 
Q(I)-(D(I)+C(I)*Q(I-1))/DEN0M 

5 CONTINUE 
TE(N)-Q(N) 
DO 10 I-N-1,1,-1 

TE(I)-P(I)*TE(I+1)+Q(I) 
10 CONTINUE 

RETURN 
END 
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* 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*-

Subroutine OUTP 
Purpose: organizes output 

FORMAL PARAMETERS: (I-input,0-output,C-controlfIN-init,T-time) 
name type meaning units class 

IR 14 
R R4 
RO R4 
HSC R4 
Rl R4 
T R4 
TIME R4 
DELT R4 
WC R4 
WCN R4 
DWCDT R4 
BAL R4 
RUPW R4 
CUPW R4 
RUPWSR R4 
CUPWSR R4 
WCAV R4 
WCAPP R4 

Number of gridpoints 
Dimensionless radial coordinate 
Radius root 
Root length 
Radius soil cylinder 
Time in scaled units 
Time in absolute units 
Time step in scaled units 
Water content 
New values of water content 
Rate of change of water content 
Balance of water in soil 
Rate of uptake of water 
Cumulative water uptake 
As RUPW and CUPW but calculated with 
steady-rate approximation 
Average water content 
Average water content calculated by steady-
rate approximation 

I 
I 

cm I 
cm I 
cm I 

day/cm2 I 
day I 
day/cm2 I 

I 
I 

cm2/day I 
cm I 
cm/day I 
cm I 
cm/day I 
cm I 

I 
I 

Subroutines called: none 

Functions called: 
FLPL: calculates matric flux potential as a function of 

water content 

File usage: 
detailed output written to unit 41, soilname.PET 

Plot-output written to soilname.PLO 

SUBROUTINE OUTP(IR,R.RO,HSC,Rl.T,TIME,DELT.WCN.WC,DWCDT,DIFD, 
L BAL,RUPW,RUPWSR,CUPW,CUPWSR,WCAV,WCAPP) 

DIMENSION WCN(30),WC(30),DWCDT(30),DIFD(30) 
DIMENSION USTR(30),WCSTR(30),U(30),R(30) 
REAL KS.M.N.L 

RHO=R1/R0 
ETA-HSC/RO 

-* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

-* 

DO 5 I-l.IR 
U(I)-FLPL(WC(I)) 

U(I) matric flux potential 
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USUM-0. 
DO 10 K-l.IR-1 

USUM-USUM+ 
1 (R(K+l)-R(K))*(R(K+l)*U(K+l)+R(K)*U(K))/2. 

10 CONTINUE 
QT-RHO**2/(2.*ETA)*RUPW*RO 

UAVAPP-FLPL(WCAPP) 
USUM-2.*HSC*R0**2*USUM/R1**2 
UAV-USUM*R1**2/(HSC*(R1**2-R0**2)) 
USTR(1)-FLPL(WC(1)) 

* USTR(I) matric flux potential calculated with 
* steady-rate approximation 

DO 20 K-2.IR 
USTR(K)-USTR(1)+QT* 

1 ((R(K)**2-l.)/(2.*(RHO**2-l.))-
2 RHO**2*ALOG(R(K))/(RHO**2-l.)) 

20 CONTINUE 

IF(TIME.EQ.O.)THEN 
WRITE(48,100) 

END IF 

WRITE(41,101) T,TIME,DELT,BAL,WCAV,WCAPP 
PRINT 101,T,TIME,DELT,SUMW,BAL,WCAV,WCAPP 
WRITE(41,102) (R(K),WC(K),DWCDT(K),WCN(K), 

1 DIFD(K),K-1,IR) 
WRITE(41,103) (R(K),U(K),USTR(K),K-1,IR) 
WRITE(41,*) 
WRITE(41,*) 'UAV - ',UAV,' UAVAPP - '.UAVAPP 
WRITE (41,*) 'CUPW - '.CUPW,' CUPWSR - '.CUPWSR 
WRITE(48,104) TIME,RUPW.RUPWSR,CUPW,CUPWSR 
RETURN 

100 FORMAT(IX,1IX,'TIME',10X,'RUPW',10X,'RUPWSR',5X,'CUPW', 
1 4X,'CUPWSR') 

101 FORMAT(//10X,'T-'1PE15.5,2X,'REAL TIME-'1PE15.5, 
1 1X,'DELT-'1PE15.5/ 
2 1X,'BAL-'1PE15.5, 
3 /lX.'WCAV -'1PE15.5,1X,'WCAPP -'1PE15.5) 

102 F0RMAT(/ 
1 1X,14X,'R',13X,'WC,10X,'DWCDT',12X,*WCN' 
2 .HX.'DIFD'/ 
3 (1X.1P5E15.5)) 

103 F0RMAT(/1X,14X,'R',14X,'U',11X,'USTR'/ 
1 (1X.1P3E15.5)) 

104 FORMAT(1X,1P3E15.5,2F10.2) 
END 
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Appendix III. Calculation of uptake of a nutrient by a root system. 

This calculation is performed by the subroutine UPTA. As input it needs the 
average root radius, the nitrogen demand of the crop, and the distribution with 
depth of root length density, water content, water uptake, concentration of the 
nutrient. 

In the DO-loop 10 the potential uptake PUPT in mg/(cm3 soil, day), i.e. uptake 
in the zero-sink situation, is calculated. 
It is calculated from (7) as: 

wL n(P2-l>77 

where Lrv is the root length density in cm/cmJ. 
Prior to the actual iteration FLAG(I), a marker which indicates if uptake from 

a layer can proceed as required, is in DO-loop 15 set equal to 0, for all I. The 
uptake from each soil layer, as described in the main text section 3.1, is 
performed in the DO-loop 30. The DO 30 starts with calculation of the required 
uptake per cm root. 

In the DO 40, nested within DO 30, the actual uptake is set equal to the 
required uptake, if the latter is less than the potential uptake, if not actual 
uptake is set equal to potential uptake and FLAG for this layer is set equal to 
1. Next it is investigated if the uptake does not exceed a maximum value imposed 
upon it by on the one hand the amount present in the layer, on the other hand the 
maximum flux over the root. Finally the N-requirement is updated by subtracting 
from it the calculated uptake if FLAG - 1, because in that case the roots take 
up at maximum rate. Also the total root length is updated by subtracting the root 
length in the layer if FLAG -1. 

In the last part of DO 30 it is investigated if the iteration can be ended, 
either because total uptake rate equals N-demand, or all roots take up at maximum 
rate. 
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* 
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Subroutine UPTA 
Purpose: calculation uptake of linearly adsorbed nutrient by a root 

system. Roots are uniformly distributed within a layer, but 
vertically root distribution is non-uniform. 

PARAMETERS: (I-input,O-output,C-control,IN-init,T-time) FORMAL 
name type meaning units class 

RO 
LRV 
DIF 
WCACT 
THCKN 
IN 
CONC 
TRR 
NDEM 
NUPTR 
FMAX 
DELT 
NUPTR 
UP 

PUP 

R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 

radius of the root 
Root density 
diffusion coefficient 
water content 
thickness layers 
number of rooted layers 
concentration of nutrient 
water uptake by the roots 
nitrogen demand 
realized total uptake rate 
maximum flux through root surface 
timestep 
realized total uptake rate 
Uptake from soil layer 

cm 
cm/cm3 
cm2/day 
ml/cm3 
cm 

in soil solution 
from a layer 

mg/ml 
cm/day 

kg/(ha.day) 
kg/(ha.day) 

R4 potential uptake from soil layer 

day T 
kg/(ha.day) 0 
mg/(cm3.day) 0 

or kg/(ha.day) 
kg/(ha.day) 0 

Functions called: 
GRNU: calculates G-function 

-* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

-* 

SUBROUTINE UPTA(RO,LRV,DIF, 
1 WCACT,THCKN,IN,CONC, 
2 TRR,NDEM,FMAX,DELT,NUPTR,UP,PUP) 

IMPLICIT REAL (A-H.J-Z) 
IMPLICIT INTEGER (I) 
DIMENSION WCACT(IO),THCKN(10),TRR(10),NCON(10) 
DIMENSION NU(10),LRV(10),DIF(10), SAMPD(IO) 
DIMENSION BUF(IO),CONC(10),FLAG(10) ,UP(10) 
DIMENSION MXUPT(IO),G(10),RHO(10),PUP(10),PUPT(10) 

— Specific surface root (root surface per unit root length) 
PI-4.*ATAN(1.) 
SPSUR-2.*PI*R0 

— Calculation of total root length in cm/(cm2 soil surface) 
TOTRL-0. 
DO 5 I-l.IN 

TOTRL-TOTRL+LRV(I)*THCKN(I) 
CONTINUE 
TOTRU-TOTRL 
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* Calculation dimenslonless raassflow (NU), radius soil cylinder (RHO), 
* potential uptake PUPT 

DO 10 I-l.IN 
NU(I)—TRR(I)*0.5/(2.*PI*THCKN(I)*DIF(I)*LRV(I)) 
RDE-LRV(I) 
RHO(I)-l./(R0*SQRT(PI*RDE)) 
TNU-2.*NU(I) 
G(I)-GRNU(TNU,RHO(I)) 
PUPT(I)-LRV(I)*PI*(RH0(I)**2-1.)*C0NC(I)/G(I)*DIF(I) 

10 CONTINUE 

* Putting iteration flag to zero 
DO 15 I-l.IN 

FLAG(I)-0. 
15 CONTINUE 

IF(T0TRU.EQ.0.)GO TO 20 
* NREQ required uptake in mg/(cm2.day) 

NREQ-NDEM/100. 
TUP-0. 
DO 30 IJK-1,100 

RUPTM required uptake per cm root mg/(cm.day) 
RUPTM-NREQ/TOTRU 

DO 40 I-l.IN 
IF(FLAG(I).GT.0.)GO TO 40 
IF(PUPT(I).GT.(LRV(I)*RUPTM))THEN 

UP(I)-RUPTM*LRV(I) 
ELSE 

UP(I)-PUPT(I) 
FLAG(I)-1. 

ENDIF 

*_____ — MXUPT is least upper bound on uptake , maximum uptake 
*_______ . is bounded by the amount of nutrient present, and the 
*_____ — maximum flux through the root surface. 

MXUPT(I)-AMIN1(WCACT(I)*CONC(I)/DELT,FMAX*LRV(I) 
I *SPSUR) 

IF(UP(I).GT.MXUPT(I))THEN 
UP(I)-MXUPT(I) 
FLAG(I)-1. 

ENDIF 

IF(CONC(I).LE.0.)THEN 
UP(I)-0. 
FLAG(I)-1. 

ENDIF 

Remaining part of N-demand and total root length 
* are calculated 

NREQ-NREQ-THCKN(I)*UP(I)*FLAG(I) 
T0TRU-T0TRU-LRV(I)*THCKN(I)*FLAG(I) 

40 CONTINUE 
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TUP-0. 
DO 45 I-l.IN 

TUP-TUP+THCKN(I)*UP(I) 
45 CONTINUE 

CRIT-ABS <(NDEM-100.*TUP)/NDEM) 
IF(CRIT.LE.l.E-5.0R.TOTRU.LE.l.E-4)GO TO 20 

30 CONTINUE 
20 CONTINUE 

conversion of mg/(cm3.day) to kg/(ha.day) 
NUPTR-0. 
DO 50 I-l.IN 

UP(I)-100.*THCKN(I)*UP(I) 
PUP(I)-100.*THCKN(I)*PUPT(I) 
NUPTR-NUPTR+UP(I) 

50 CONTINUE 
RETURN 
END 
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APPENDIX IV. Calculation of water uptake by a root system. 

The relation between the subroutines is shown in figure AIV-1. The calculation 
is performed by the routine TRANSP. As input it needs information about the 
number of (rooted) layers, their thickness and water content, the distribution 
with depth of root length density, the potential transpiration, the root 
conductivity, and the hydraulic properties of the layers. The latter include a 
pair of parametervalues for the calculation of the matric flux potential $. This 
calculation is based on a empirical relation between $ and watercontent as found 
by Ten Berge (1986): 

$ _ _£?_ (AIV-1) 
x+B 

where x - 1 - ©/9sat-
Instead of (AIV-1) of course other approximations to (8) can be used, or 
eventually interpolation in a table. 

In TRANSP equation (15) from section 3.2 is solved for plant water potential 
P This is done by iteration by the method of bisection during the course of 
which (15) written in the form: 

# ( V " Fl ~ ̂ act (AIV-2) 

where Fi, which stands for the left hand side of (15), has to be evaluated for 
different values of Pp. To do this however one must also solve the equations 
(14). This is achieved, again by iteration, in the subroutine FLOW, in doing so 
FLOW calls the function ZEROIN which finds the zero of a function in an interval. 
ZEROIN is given in Forsythe et al. (1977). The function EPRED calculates the 
actual transpiration as a function of plant water potential and potential 
transpiration. 

Relational diagram of subroutines in TRANSP 

j - C PRES ^) p C EPRED ^) 

(^^^y^j^yM^^^)—c FPHI ) 
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*-
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
*-

Subroutine: TRANSP 
Purpose : calculation of transpiration rate, water-uptake rate, and 

plant water-potential, as function of soil water potential 
FORMAL PARAMETERS: (I-input,0-output,C-control,lN-init,T-time) 
name type meaning units class 

DAY 
INLAY 
WC 
DX 
EPOT 
WCR 
WCSAT 
ALPH 
Kl 
N 
A 
B 
NRT 
RD 
RO 
REDPOT 

EACT 
UPW 

R4 
14 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 

R4 
R4 

daynumber 
number of soil layers 
watercontent 
thickness layers 
Potential transpiration 
residual watercontent 
saturated watercontent 
parameter from Van Genuchten equation 
root conductivity for watertransport 

tt it tt it 

parameter from Ten Berge equation 
n tt n tt 

number of rooted layers 
root-density in layer 
root radius 
indicates if reduction on potential 

transpiration due to plant water potential 
should be taken into account. 
actual transpiration 
uptake rate of water 

ml/cm3 
cm 
cm/day 
ml/cm3 
ml/cm3 
cm-1 
cm/day 

cm2/day 

cm/cm3 
cm 

cm/day 
cm/day 

0 
0 

Local 
name 
K2 
DPO 

RSS 

RSR 
PP 

variables: 
type meaning units 

cm2/day 
cm 

R4 -K1*DP0 
R4 Intercept of waterflow-pressure curve for 

a root (value is 0.5MPa- 500 cm) 
R4 Resistance in soil, driving force is difference day-1 

in hydraulic head 
R4 Resistance in root day-1 
R4 Plant water potential cm 

Subroutines called: 
FLOW: solves the steady-rate equation for the matric flux 
potential at the root surface 

Functions called: 
PRES: Calculates the matric potential as a 

content 

File usage: Unit 89 

function of water 

-* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

-* 

SUBROUTINE TRANSP(DAY,INLAY,WC.DX,EPOT,WCR,WCSAT,ALPH,N,A, 
B,REDPOT,NRT,RD,RO,Kl,EACT,UPW) 
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REAL WC(INLAY),DX(INLAY) 
REAL WCSAT(INLAY).WCR(INLAY).ALPH(INLAY),N(INLAY) 
REAL A(INLAY),B(INLAY) 

REAL RSS(10),RSR(10),RUPW(10),PHIMAX(10) 
REAL P(10),S(10),UPW(10),R1(10),RHO(10) 
REAL PHI(IO),PHIRZ(10),UPRL(10),RD(10) 
REAL V(10),PRZ(10),WCRZ(10),Q(10).K1.K2.LP 

LOGICAL INITIAL 

DATA INITIAL/.TRUE./ 
DATA PLIM/1.6E4/ 
DATA DPO/500./ 

initialisation 
IF(.NOT.INITIAL)GO TO 8 
PI-4.*ATAN(1.) 

DO 5 1-1,INLAY 
PHIMAX(I)-A(I)/(1.+B(I)) 
CONTINUE 

INITIAL-.FALSE. 
8 CONTINUE 
* 

calculation of root (Q(I),V(I).SV.SQ) - and soil (S(l) SS) 
resistance parameters, radius (R1(I)) Q f soil cylinder' and 

* matric potential P(I) y ' na 

K2—K1*DP0 
SV-0. 
SQ-0. 
SS-0. 
DO 10 I-l.NRT 

R1(I)-1./SQRT(PI*RD(I)) 
RHO(I)-Rl(I)/R0 
S(I)-DX(I)/Rl(I)**2*(RHO(I)**2-l.)/G(RHO(I)) 
SS«SS+S(I) 
Q(I)-RD(I)*K1*DX(I) 
V(I)-RD(I)*K2*DX(I) 
P(I)-PRES(WC(I),WCSAT(I),WCR(I),N(I),ALPH(I)) 
SV-SV+V(I) 
SQ-SQ+Q(I) 

10 CONTINUE 

first estimate of plant water potential (PP) in cm 
PP-500. 
DO 15 I-l.NRT 

IF(PP.GT.P(I))PP-P(I) 
15 CONTINUE 
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* — — two values of plant potential (PP1 resp. PP2) are 
*———— sought, for which (Fl-EACT) has opposite sign 

PP1-1. 
PP2-1. 
DO 20 ITEL-1,20 

CALL FLOW(INLAY,EPOT,WC,P,A,B(Q,V,S,PP,N, 
$ PHIMAX.WCSAT.WCR.ALPH, 
$ PHIRZ,EACT,F1,F2,REDP0T) 

IF(EACT.EQ.0.0.AND.ABS(Fl-EACT).LE.0.001)GO TO 40 
IF((Fl-EACT).LT.0.)THEN 

PPl-PP 
PP-3.*PP 

ELSE 
PP2-PP 
GO TO 25 

ENDIF 
20 CONTINUE 
25 CONTINUE 
* done 

Now (Fl-EACT)-O is solved for PP, by method of bisection 
DO 30 IK -1,30 

PP-(PPl+PP2)/2. 
CALL FLOW(INLAY,EPOT,WC,P,A,B,Q,V,S,PP,N, 

$ PHIMAX.WCSAT.WCR.ALPH, 
$ PHIRZ,EACT,Fl,F2,REDPOT) 

DENOM-EACT 
IF(EACT.EQ.0.)DENOM-1. 
IF(ABS(Fl-EACT)/DENOM.LT..001)GO TO 40 

IF((Fl-EACT).LT.0.)THEN 
PPl-PP 

ELSE 
PP2-PP 

ENDIF 

30 CONTINUE 
40 CONTINUE 
* done 

SQP-0. 
DO 60 IX-l.NRT 

X-l.-WC(IX)/WCSAT(IX) 
PHI(IX)-A(IX)*X/(B(IX)+X) 
WCRZ(IX)-WCSAT(IX)+PHIRZ(IX)*B(IX)*WCSAT(IX)/(PHIRZ(IX) 

1 -A(IX)) 
PRZ(IX)-PRES(WCRZ(IX),WCSAT(IX),WCR(IX),N(IX).ALPH(IX)) 
SQP-SQP+Q(IX)*PRZ(IX) 
UPW(IX)-(Q(IX)*(PP-PRZ(IX))+V(IX)) 
UPRL(IX)-UPW(IX)/(RD(IX)*DX(IX)) 
RSS(IX)-ABS(P(IX)-PRZ(IX))/(UPW(IX)) 
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RSR(IX)«ABS(PP-PRZ(IX))/(UPW(IX)) 

IF(EACT.NE.O.)THEN 

RUPW(IX)-UPW(IX)/(EACT) 
ELSE 

RUPW(IX)~0. 
ENDIF 

60 CONTINUE 

WRITE (89,*) 
WRITE (89,*) 
WRITE (89,*) 'TIME - '.DAY 
WRITE(89,100) PP,EACT,EP0T,F1 

100 FORMAT(1H0,'PP - '1PE15.5,/1X,'EACT -'1PE15.5/1X, 
$ 'EPOT -'1PE15.5/1X/F1 -'1PE15.5) 

WRITE(89,101) (I,WC(I),P(I),PHIRZ(I),PHI(I),UPW(I),I-1,NRT) 
101 FORMAT(/1X,4X,'I'.IOX,'WC,11X,*P',8X,'PHIRZ',9X,'PHI', 

$ 9X,*UPW'/ 
$ (1X.I5.5E12.5)) 

WRITE(89,102) (I,UPRL(I),RUPW(I),RSS(I),RSR(I),I»1,NRT) 
102 FORMAT(/1X.4X,'I',11X,'UPRL'.llX,'RUPW',12X,'RSS',12X,'RSR'/ 

$ (1X.I5.4E15.5)) 

END 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
Subroutine FLOW * 
Purpose: finds the value of the raatric flux potential at the root wall,* 

for which the flow through the rhizosphere equals the flow over 
the root wall, i. e. for each soil layer it solves: 

Q(I)*(PP-PRZ(i))+V(I)-S(I)*(PHIRZ(I)-PHI(I)), or 
FPHI- Q(I)*(PP-PRZ(i))+V(I)-S(I)*(PHIRZ(I)-PHI(I))-0 

FORMAL PARAMETERS: (I-input,0-output,C-control,IN-init,T-time) 
name type meaning units class 

Q 
PP 
WCR 
WCSAT 
ALPH 
REDPOT 

PHIRZ 
EACT 
Fl 
F2 

R4 
R4 
R4 
R4 
R4 
R4 

R4 
R4 
R4 
R4 

number of soil layers 
watercontent in bulk soil 
thickness layers 
Potential transpiration 
parameter from Ten Berge equation 

ti n n n 

matric potential 
parameter expressing the local resistance to 
waterflow in the soil, based on steady-rate 
profile in matric flux potential 
Resistance to waterflow in the root 
Plant water potential 
residual watercontent 
saturated watercontent 
parameter from Van Genuchten equation 
indicates if reduction on potential 
transpiration due to plant water potential 
should be taken into account. 
matric flux potential at root surface 
actual transpiration 
total water flow over surface root system 
total water flow vrom bulk soil to roots 

ml/cm3 
cm 
cm/day 
cm2/day 

cm 
cm-1 

cm/day 
cm 
ml/cm3 
ml/cm3 
cm-1 

cm2/day 0 
cm/day 0 
cm/day 0 
cm/day 0 

Subroutines called: none 
Functions called: 

EPRED: calculates reduction potential transpiration 
FPHI: evaluates the function: 

Q(I)*(PP-PRZ(i))+V(I)-S(I)*(PHIRZ(I)-PHI(I)) 
ZEROIN : finds zero of a function in a given interval 

File usage: none 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

SUBROUTINE FLOW(INLAY,EPOT,WC,P,A,B,Q,V,S,PP,N, 
$ PHIMAX,WCSAT,WCR,ALPH, 
$ PHIRZ,EACT,F1.F2,REDPOT) 

REAL Q(INLAY),V(INLAY),S(INLAY),ALPH(INLAY) 
REAL WC(INLAY),P(INLAY),PHIRZ(INLAY) 
REAL N(INLAY),PHIMAX(INLAY) 
REAL WCSAT(INLAY).WCR(INLAY),A(INLAY),B(INLAY) 
REAL PHI(10) 
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COMMON /PH/ AA,BB,QQ,W,PPHI,PPP.SS,WCS,WR,FN,ALP 
EXTERNAL FPHI 

SQP-0. 
Fl-O. 
F2-0. 

* potential transpiration EPOT is corrected for plant 
* potential effects if REDPOT>0 

EACT-EPOT 
IF(REDPOT.GT.0.)EACT=EPRED(PP,EPOT) 

* for each layer the function FPHI is solved by 
* — ZEROIN to find, for given value of plant waterpotential, 
* — — the matric flux potential in the rhizosphere (PHIRZ) 
* for which FPHI - 0. 
* — — FPHI - 0 implies that watertransport through the 
* — rhizosphere equals water transport over the root wall. 

DO 10 IX-1,INLAY 
X-l.-WC(IX)/WCSAT(IX) 
PHI(IX)-A(IX)*X/(B(IX)+X) 
P(IX)-PRES(WC(IX),WCSAT(IX),WCR(IX),N(IX),ALPH(IX)) 

*. First two values of PHIRZ are sought for 
* . which FPHI>0, resp. <0 

PHIRZl-PHI(IX)-0.5 
IF(PHIRZ1.LE.0.)THEN 

PHIRZ1-.01 
ELSE 
ENDIF 
WCRZ-WCSAT(IX)+PHIRZ1*B(IX)*WCSAT(IX)/(PHIRZ1-A(IX)) 
PRZ=PRES(WCRZ,WCSAT(IX),WCR(IX),N(IX).ALPH(IX)) 
AA-A(IX) 
BB-B(IX) 
QQ=Q(IX) 
W-V(IX) 
PPHI-PHI(IX) 
PPP=PP 
SS-S(IX) 
WCS-WCSAT(IX) 
WR-WCR(IX) 
FN-N(IX) 
ALP-ALPH(IX) 
FPHIl-FPHI(PHIRZl) 

PHIRZ2-PHI(IX)+0.2 
IF(PHIRZ2.GE.PHIMAX(IX))THEN 

PHIRZ2-PHIMAX(IX) 
ENDIF 
WCRZ-WCSAT(IX)+PHIRZ2*B(IX)*WCSAT(IX)/(PHIRZ2-A(IX)) 
PRZ-PRES(WCRZ,WCSAT(IX),WCR(IX),N(IX),ALPH(IX)) 
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FPHI2-FPHI(PHIRZ2) 
IF(FPHI2.GT.0.)THEN 

PHIRZ2-PHIMAX(IX) 
END IF 
FPHI2-FPHI(PHIRZ2) 
IF((FPHI1*FPHI2).GT.0.)THEN 

PRINT *,'FPHI1.2 SAME SIGN' 
PRINT *,'PHIRZ1,PHIRZ2 ',PHIRZl,PHIRZ2 
PRINT *,'PHI(IX) \PHI(IX) 
PRINT *,'FPHI1,FPHI2 '.FPHI1.FPHI2 
PRINT *,'PHIMAX '.PHIMAX(IX) 

9 PRINT *,'GIVE PHIRZS' 
READ *,PHIRZS 
WCRZ-WCSAT(IX)+PHIRZS*B(IX)*WCSAT(IX)/(PHIRZS-A(IX)) 
PRZ-PRES(WCRZ,WCSAT(IX),WCR(IX),N(IX),ALPH(IX)) 
FPHIRS-FPHI(PHIRZS) 
PRINT *,'FPHIRZS '.FPHIRS 
PRINT *,'ANOTHER GO? >0' 
READ *,ANGO 
IF(ANGO.GT.0.)GO TO 9 
PRINT *,'GIVE PHIRZl,PHIRZ2 ' 
READ *,PHIRZl.PHIRZ2 

ELSE 
ENDIF 

* Done, two values for which FPHI has 
* opposite sign are PHIRZl, and PHIRZ2 

Now FPHI-0 is solved for PHIRZ 
PHIRZ(IX)-ZEROIN(PHIRZl,PHIRZ2,FPHI,.00001) 
FPHIRZ-FPHI(PHIRZ(IX)) 
WCRZ-WCSAT(IX)+PHIRZ(IX)*B(IX)*WCSAT(IX)/(PHIRZ(IX)-A(IX)) 
PRZ-PRES(WCRZ,WCSAT(IX),WCR(IX),N(IX),ALPH(IX)) 

Fl - Total flow over root wall 
F1-F1+Q(IX)*(PP-PRZ)+V(IX) 

F2 - Total flow through rhizosphere 
F2»F2+S(IX)*(PHIRZ(IX)-PHI(IX)) 

10 CONTINUE 
RETURN 
END 
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* , ___ _* 

* Function EPRED * 
* Purpose: calculation of actual transpiration by reduction of potential * 
* transpiration due to plant water potential PP * 
* For PP < 5000 cm, no reduction, * 
* for 5000<PP<16000 reduction linearly interpolated between * 
* (5000,1) and (16000,0.1) * 
* FORMAL PARAMETERS: (I=input,0=output,C-control,IN-init,T-time) * 
* name type meaning units class * 
* * 
* PP R4 Plant water potential cm I * 
* EPOT R4 Potential transpiration cm/day I * 
* EPRED R4 Reduced transpiration cm/day 0 * 
* — — — — _ * 

FUNCTION EPRED(PP,EPOT) 
DATA Pl/5000./ 
DATA P2/16000./ 

RED-1. 
IF(PP.GT.P1)THEN 

RED=(0.1-1.)/(P2-P1)*(PP-P1)+1. 
ELSE 
END IF 
IF(RED.LT.0.)RED-1.E-4 
EPRED-RED*EPOT 
RETURN 
END 

* - — — — — _ _ * 
* Function FPHI * 
* Purpose : FPHI evaluates the function: * 
* FPHI- Q(I)*(PP-PRZ(i))+V(I)-S(I)*(PHIRZ(I)-PHI(I)) * 
* the zero of which is sought. * 
* Only input the matric flux potential at the root surface PHIRZ, * 
* other variables and parameters input via COMMON, as required by * 
* calling function ZEROIN. * 
* — • — — — _ _ * 

FUNCTION FPHI(PHIRZ) 
COMMON /PH/ AA,BB,QQ,W,PPHI,PPP,SS,WCS,WR,FN,ALP 
WCP-WCS+PHIRZ*BB*WCS/(PHIRZ-AA) 
PRZ-PRES(WCP,WCS,WR,FN,ALP) 
FPHI-QQ*PPP-QQ*PRZ+W-SS*(PHIRZ-PPHI) 
RETURN 
END 

FUNCTION G(R) 
G-0.5*((l.-3.*R**2)/4. + R**4*ALOG(R)/(R**2-l.)) 
RETURN 
END 


