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Methods for computing Nash equilibria of a

location-quantity game∗

M. Elena Sáiz, Eligius M.T. Hendrix

Abstract

A two stage model is described where firms take decisions on where to locate their facility and on how much to

supply to which market. In such models in literature, typically the market price reacts linearly on supply. Often

two competing suppliers are assumed or several that are homogeneous, i.e. their cost structure is assumed to

be identical. The focus of this paper is on developing methods to compute equilibria of the model where more

than two suppliers are competing that each have their own cost structure, i.e. they are heterogeneous. Analytical

results are presented with respect to optimality conditions for the Nash equilibria in the two stages. Based on

these analytical results, algorithms are developed to find equilibria. Numerical cases are used to illustrate the

results and the viability of the algorithms. The method finds an improvement of a result reported in literature.

1 Introduction

Many studies in literature describe a so-called non-cooperative game where competing firms decide on

production locations and supply quantities to markets. To make a game theoretic analysis tractable,

often a limited number of suppliers are considered, or alternatively homogeneous firms and markets are

assumed. We focus on situations where companies can be as well similar as not similar. In supply

chains, farm cooperatives, etc., many decisions appear in which preferences cannot be assumed to be

homogeneous. Also symmetric behaviour, finite strategy set or a two or few actors setting are strong

assumptions in literature. Decisions are influenced by differences on prices or cost (“player” depending)

between actors and between the location of the facilities. Our focus is on constructing solution methods

for games in which players are: asymmetric, heterogeneous and facing multiple decisions in several stages.

Cournot (1838) introduced the idea of a Cournot oligopoly equilibrium, where two firms compete on

the same market. Due to price reaction of the market on the total quantity offered, a price equilibrium

∗This work has been partially supported by the Ministry of Education and Science of Spain through the grant SEJ2005-
06273/ECON
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appears. Hotelling (1929) added the idea of having a freedom in choice of location, where the possible

location area is a simple line in between the markets. A generally applicable concept is that of a Nash

equilibrium (Nash (1951)) which is defined by the situation where none of the firms (players) is better off

by changing its current (equilibrium) strategy. Because choice of location is usually prior to decision on

quantities, in the model under consideration, this concept is applied to a supply chain study where two

nested levels of decisions are at stake: that of supply quantity and location choice. The corresponding

two-stage solution is called a subgame perfect Nash equilibrium.

The basis of the model has been introduced by Bulow et al. (1985) who consider a game with 2

markets and 2 firms. Later, Farrell and Shapiro (1990) studied a game on quantity decisions with one

market and n firms where decisions are simultaneous and products are homogeneous. Labbé and Hakimi

(1991) consider a two-stage location-quantity simultaneous game with m markets and 2 firms with linear

demand. Sarkar et al. (1997) extend these results considering a 2-stage static and simultaneous game with

m markets and n firms in a network. They only consider a case with a fixed number of firms entering in

the market, i.e., the quantities offered by each firm in all markets are strictly positive. Rhim et al. (2003)

extend the work of Sarkar et al. (1997) by considering free entry (simultaneous and sequential) with

symmetric cost (site specific) and capacity limitations. Their setting is a 3-stage game with m markets

and n firms with production capacity and quantity decisions, and final stage is the location choice in a

network. Recently, Dorta-González et al. (2004) apply the Stakelberg equilibrium in a two-stage non-

cooperative Cournot game with location and quantity choice with n markets located at the vertices of a

network and r firms. They use the Nash equilibrium concept in the location stage. In all of these studies,

cases applied are small, most are symmetric, and no computational experience is reported.

This paper extends the studies of Sarkar et al. (1997), Rhim et al. (2003). Free entry is possible as in

Rhim et al. (2003), i.e., the number of firms entering the markets is not known in advance, but in our case

costs are asymmetric (firm-specific). We provide conditions for the supplying decisions (second-stage of

the game). Moreover, as firms will be affected by the timing and level of entry on the market, properties

on how to determine the size of the market are derived. Another difference with the study of Rhim et al.

(2003) is the procedure on how to find the equilibrium of the game. We consider not only the possibility

of leaving a market but also the possibility of that the supplier moves its facility to another location.

Doing so, a firm has to re-think the quantity decision on how much to supply to which markets. By

applying the method in the cases of Sarkar et al. (1997), a mistake is found in the outcome given in their

study. Their reported possible equilibrium appears to be wrong as is shown in Section 4. Moreover, a

sequential analysis is followed in this paper. It appears that starting with the cheapest firm, one can

successively arrive at the size of each of the markets. When market sizes are determined, the optimum

quantities each supplier delivers to each markets they enter can be computed.
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In Section 2, a model is outlined consisting of a non-cooperative game where quantity decisions

and location decisions take place. Furthermore, theoretical results concerning the optimum decisions in

these models are derived. In Section 3, methods for computing the Nash equilibria on quantity-location

decisions and for computing the size of a market are described. Numerical illustrations of model and

methods can be found in Section 4. Finally, Section 5 discusses the conclusions.

2 Location-Quantity game: problem formulation

The model describes a two-stage non-cooperative game. In the first stage of the game, firms take a

simultaneous decision about where to locate a supplying facility in a network, i.e., each firm chooses a

location-strategy without knowledge of the strategy chosen by the other firms. In the second stage of the

game, firms decide about the quantity to be produced at these facilities and how much to supply to each

market.

The model on quantity decisions and location choice is described by the following notation. Firms are

denoted by an index i ∈ N = {1, . . . , n} and markets are denoted by an index h ∈M = {1, . . . ,m} each

demanding a quantity of a good, depending on its price. In game theory, usually a linear price reaction

model is assumed. We will follow this tradition. The demand is fulfilled by the supply of a quantity Qih

from the facility of firm i to market h. The location xi of the facility of firm i determines its marginal

production cost ci(xi). The regional dispersion effect comes in when every market appears to be situated

at one location and, an important assumption, each supply firm can open a facility at only one of the

locations. The relations are formalised as follows.

Let G = (V,E) be an undirected graph with V and E as its sets of nodes and edges respectively,

|V | = m. Given two nodes vi, vj ∈ V , d(vi, vj) is the length of a shortest (with respect to the sum of edge

lengths) path on G connecting vi and vj . There are m markets located each at one node on the network

; there are n firms that open a facility each at one node with n ≤ m. Let xi ∈ V = {v1, . . . , vm} be the

location decision by firm i on the network. The cost of establishing a facility by firm i at xi is w(xi) ≥ 0.

The quantity decision matrix Q for all firms and all markets is given by:

Q =

























Q11 . . . Q1h . . . Q1m

. . . . . . . . . . . .

Qi1 . . . Qih . . . Qim

. . . . . . . . . . . .

Qn1 . . . Qnh . . . Qnm

























where the sum of a row indicates the quantity supply by firm i over all markets h ∈ {1, . . . , n}, si =
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∑m
h=1 Qih and the sum of a column indicates the quantity supplied by all firms i ∈ {1, . . . , n} to market

h, qh =
∑n

i=1 Qih. The price ph(qh) at market h is assumed to depend on the quantity according to the

relation:

ph(qh) = max{0, αh − βhqh}, qh ≥ 0 (1)

with price parameters αh, βh ≥ 0. The price at market h depends on the quantity decision of all firms

that supply to market h.

The n firms interact over two stages. In the first stage, firms simultaneously choose the locations of

their facilities, xi, i = 1, . . . , n. In the second stage, depending on the location decisions xi, firms choose

quantities Qih to be supplied to markets, which results in the quantity decision matrix Q. The profit

firm i wants to maximise is denoted by πi(xi, Q). A strategy for firm i at market h, [xi, Qih], comprises

a choice of xi for stage 1 and a choice of Qih for stage 2; [xi, Qi·] for all markets, where Qi· denotes the

row vector (Qi1, . . . , Qim).

The game is solved by backward induction. First the second stage is solved. Firm i chooses optimally

the vector of quantities Qi· = (Qi1, . . . , Qim), based on what the others deliver and depending on the

chosen location xi:

Q∗
i· = arg max

Qi·

πi(xi, Q
∗(x)) (2)

By induction it becomes a one stage problem where matrix Q∗ is defined for each location vector

x1, . . . , xn. Now firm i chooses a location strategy x∗
i such that:

x∗
i = arg max

xi

πi(xi, Q
∗(x))

quantity. We model price and quantity decisions as a Cournot quantity game. The unit transportation

cost between the location xi of the facility of firm i and location vh of market h, is represented by

tih = T (d(xi, vh)), where T is concave and increasing in the distance 1. The total cost of the location

and supply decision of firm i is given by:

TCi(xi, Qi·) =

m
∑

h=1

tihQih + ci(xi)si + w(xi)

=
m
∑

h=1

tihQih + ci(xi)
m
∑

h=1

Qih + w(xi)

=
m
∑

h=1

(tih + ci(xi))Qih + w(xi)

1 This assumption also appears on the studies of Lederer and Thisse (1990), Labbé and Hakimi (1991), Sarkar et al.
(1997) among others
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For the convenience of notation we represent the total unit cost of firm i at market h by

TCuih = tih + ci(xi).

Profit is denoted by πi and defined as:

πi(xi, Q) =
m
∑

h=1

ph(qh)Qih − TCi(xi, Qi·)

Price at market h is given by equation (1). Firms determine quantities for the markets to maximize

profit. Substituting the price reaction of the markets into (3) gives

πi(xi, Q) =

m
∑

h=1

(αh − βh

n
∑

j=1

Qjh)Qih − TCi(xi, Qi·) (3)

Table 1 summarises the notation used.

Tab. 1: Notation
N,M Set of firms and markets, respectively
xi Location of firm i
vh Location of market h
Qih Quantity supply by firm i at market h
Qi· = (Qi1, . . . , Qim) Quantity decision vector for firm i
si =

∑

h∈M Qih Total quantity supplied by firm i
qh =

∑

i∈N Qih Total quantity supply at market h
αh, βh Price parameters
ph(qh) = αh − βhqh Price at market h
tih = T (d(xi, vh)) Unit transportation cost
w(xi) Cost of establishing a centre at xi

ci(xi) Marginal production cost
TCuih = tih + ci(xi) Total unit cost
TCi(xi, Qi·) Total cost of location and supply
πi(xi, Q) Profit for firm i depending on location and quantities

In Section 2.1, properties are given of the equilibrium prices and quantities depending on the location

decision of the firms. Section 2.2 describes the criterion for selecting optimal location decisions, x∗, based

on the optimal quantity decisions, Q∗(x).

2.1 Quantity decision

The Nash equilibrium is the solution concept used in the quantity-stage of the game. From (2), the Nash

column of the Q matrix can be determined by an iterative process. Nash equilibrium quantities shipped

by firm i to market h follow from the first order condition optimising (3) over Qih:
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Q∗
ih = max

{

0,
αh − βh

∑n
j=1,j 6=i Q∗

jh − tih − ci(xi)

2βh

}

(4)

At equilibrium, one can distinguish for each market h a group of active firms, Ah, that deliver to h;

Q∗
ih > 0 for i ∈ Ah and Q∗

ih = 0 for i ∈ Ah = N\Ah.

Proposition 1 provides the equilibrium quantity for each firm i ∈ Ah.

Proposition 1: Let Ah be the set of firms which supply market h, |Ah| = kh. The positive equilibrium

quantities are given by

Q∗
ih =

αh − kh(ci(xi) + tih) +
∑

j∈Ah\{i}(cj(xj) + tj)

(kh + 1)βh

(5)

Q∗
ih > 0 ∀i ∈ Ah

Q∗
ih depends on production and transportation cost of the active suppliers.

Proof.

From equation (4) follows for i ∈ Ah

Qih =
αh − tih − ci(xi)

2βh

−
1

2

∑

j∈Ah\{i}

Qjh (6)

Let aih = αh−tih−ci(xi)
2βh

, then (6) can be written as

Qih = aih −
1

2

∑

j∈Ah\{i}

Qjh

In vector notation

























Q1h

. . .

Qih

. . .

Qkhh

























=

























a1h

. . .

aih

. . .

akhh

























−
1

2

[

1kh
1
′

kh
− I
]

























Q1h

. . .

Qih

. . .

Qkhh

























Q
h

= ah −
1

2

[

1kh
1
′

kh
− I
]

Q
h

where 1kh
is the all ones vector and I is the kh × kh unit matrix. By linear algebra,
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IQ
h

= ah −
1

2

(

1kh
1kh

′ − I
)

Q
h

ah =
1

2

[

1kh
1
′

kh
+ I
]

Q
h

Q
h

= B−1ah (7)

where B is the kh × kh matrix

B =
1

2

[

1kh
1
′

kh
+ I
]

having the following form,

B =







































1 . . . 1/2 . . . 1/2

. . . . . . . . . . . . . . .

. . . . . . . . . 1/2 . . .

1/2 . . . 1 . . . 1/2

. . . 1/2 . . . . . . . . .

. . . . . . . . . . . . . . .

1/2 . . . 1/2 . . . 1







































The inverse matrix can be derived to be,

B−1 = 2

(

I −
1

kh + 1
1kh

1
′

kh

)

B−1 = 2







































kh/kh + 1 . . . −1/kh + 1 . . . −1/kh + 1

. . . . . . . . . . . . . . .

. . . . . . . . . −1/kh + 1 . . .

−1/kh + 1 . . . kh/kh + 1 . . . −1/kh + 1

. . . −1/kh + 1 . . . . . . . . .

. . . . . . . . . . . . . . .

−1/kh + 1 . . . −1/kh + 1 . . . kh/kh + 1







































The equivalence of equations (4) and (5) for each market h now follows from (7):
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Q
h

= B−1ah = 2

[

I −
1

kh + 1
1kh

1
′

kh

]

ah

= 2







































kh/kh + 1 . . . −1/kh + 1 . . . −1/kh + 1

. . . . . . . . . . . . . . .

. . . . . . . . . −1/kh + 1 . . .

−1/kh + 1 . . . kh/kh + 1 . . . −1/kh + 1

. . . −1/kh + 1 . . . . . . . . .

. . . . . . . . . . . . . . .

−1/kh + 1 . . . −1/kh + 1 . . . kh/kh + 1































































a1h

. . .

aih

. . .

akhh

























and for each firm i we obtain:

Qih =
2kh

kh + 1
aih −

2

kh + 1

∑

j∈Ah\{i}

ajh

=
2kh

kh + 1

αh − tih − ci(xi)

2βh

−
2

kh + 1

∑

j∈Ah\{i}

αh − (tjh + cj(xj))

2βh

=
2khαh − 2kh(tih + ci(xi))

2(kh + 1)βh

−
(kh − 1)αh

(kh + 1)βh

+
∑

j∈Ah\{i}

tjh + cj(xj)

(kh + 1)βh

=
αh − kh(tih + ci(xi)) +

∑

j∈Ah\{i}(tjh + cj(xj))

(kh + 1)βh

which corresponds to equation (5).

Consequently, the total quantity supplied to market h is:

q∗h =
∑

j∈Ah

Q∗
jh =

1

(kh + 1)βh



khαh −
∑

j∈Ah

(cj(xj) + tjh)



 (8)

which means that higher average marginal cost and transportation costs decrease the total quantity

supplied. The optimal price at each market can now be derived by substituting (8) into (1):

p∗h =
1

kh + 1



αh +
∑

j∈Ah

(cj(xj) + tjh)



 (9)

Optimal prices at each market proportionally rise with average marginal cost and transportation cost

over the firms supplying the market. Higher costs leads to a higher equilibrium price and lower costs

leads to higher quantity supplied.
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In order to have any delivery at market h in (8) a necessary condition is that ∃j ∈ N such that

TCujh < αh.

From Proposition 2 also follows the result for the symmetric case.

Theorem 1: Let unitary costs be symmetric (the same) for all the suppliers at market h. If unitary costs

are lower than αh, all the suppliers will enter the market.

Proof.

Let the n firms entering the market have the same cost, TCu1h = TCu2h = . . . = TCunh = Cuh and

Cuh < αh, the optimal quantity and price can be derived from equation (5) and (9),

Q∗
ih =

αh − nTCuih +
∑n

j=1,j 6=i TCujh

(n + 1)βh

=
αh − Cuh

(n + 1)βh

and

p∗h = αh − βhqh = αh − βhn
αh − Cuh

(n + 1)βh

=
αh + nCuh

n + 1

The necessary condition for a firm to serve to market h is:

Cuh < ph =
αh + nCuh

n + 1

⇔ (n + 1)Cuh < αh + nCuh

⇔ Cuh < αh (10)

⇒ Qih > 0 ∀i ∈ N

which means that the n firms will enter and supply to market h.

Corolary 2: Let unitary costs be symmetric (the same) for all the suppliers at market h. If unitary costs

are higher than αh, no suppliers will enter the market.

From Proposition 1 can also be derived when a firm would be interested to enter market h, given that

a set of firms Ah is already delivering.

Proposition 2: Let Ah be a set of firms supplying market h. A firm i is interested in supplying market h

if TCuih < ph.

Proof.

Follows from the partial derivative of πi with respect to Qih for Qih = 0.

Proposition 3: In the optimum Q∗, ∀i ∈ Ah, TCuih < ph.

9



Proof.

From equation (9) the equilibrium price is

p∗h =
1

kh + 1



αh +
∑

j∈Ah

(cj(xj) + tjh)





=
1

kh + 1



αh +
∑

j∈Ah

TCujh





From equation (5) equilibrium quantities are given by

Q∗
ih =

αh − kh(ci(xi) + tih) +
∑

j∈Ah\{i}(cj(xj) + tj)

(kh + 1)βh

=
αh − khTCuih +

∑

j∈Ah\{i} TCujh + TCuih − TCuih

(kh + 1)βh

=
αh − (kh + 1)TCuih +

∑

j∈Ah\{i} TCujh + TCuih

(kh + 1)βh

=
αh − (kh + 1)TCuih +

∑

j∈Ah
TCujh

(kh + 1)βh

=
αh +

∑

j∈Ah
TCujh

(kh + 1)βh

−
(kh + 1)TCuih

(kh + 1)βh

=
ph

βh

−
TCuih

βh

=
ph − TCuih

βh

From equation (5), at equilibrium Q∗
ih > 0 ∀i ∈ Ah, ph−TCuih

βh
> 0 such that ph > TCuih.

Consequently, for i ∈ Ah

ci(xi) + tih <
1

|Ah|+ 1



αh +
∑

j∈Ah

[cj(xj) + tjh]



 (11)

For all j /∈ Ah, Q∗
jh = 0 and

cj(xj) + tjh ≥
1

|Ah|+ 1

(

αh +
∑

i∈Ah

[ci(xi) + tih]

)

(12)

Proposition 4: The relation between the firm with the highest total unit costs in the active set, i ∈ Ah,

with any firm j ∈ Ah which is not entering the market is

TCuih <
αh +

∑

r∈Ah
TCurh

|Ah|+ 1
≤ TCujh

Proof.
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The first inequality follows from TCuih < ph and is satisfied by any firm in the active set Ah. The

last inequality is satisfied by any firm j ∈ Ah following from TCujh ≥ ph.

Proposition 4 shows that

max
i∈Ah

TCuih < ph ≤ min
j∈Ah

TCujh

This is used in the algorithm in Section 3 to determine the number of active firms |Ah|. Firms are

ordered on the basis of total unit costs, such that TCu(1)h ≤ TCu(2)h ≤ . . . ≤ TCu(n)h. The rule that is

used is the following

1. Initialise p = α, |A| = 0.

2. while TCu(k) ≤ p, (k) enters the market and the price is updated.

More details of the algorithm are given in Section 3.

Let Mi be the set of markets in which firm i is active, Mi = {h ∈ M |i ∈ Ah}. The total quantity

supplied by each firm is

si =
∑

h∈Mi

Q∗
ih =

∑

h∈Mi

αh − kh(ci(xi) + tih) +
∑

j∈Ah\{i}(cj(xj) + tjh)

(kh + 1)βh

(13)

Total cost for each firm is

TCi =
∑

h∈Mi

(ci(xi) + tih)
αh +

∑

j∈Ah\{i}(cj(xj) + tjh)− kh(ci(xi) + tih)

(kh + 1)βh

+ w(xi) (14)

Using (5) and (8), the final payoff for each firm given location vector x is:

πi(x) =
∑

h∈Mi

(ph − (ci(xi) + tih)Qih − w(xi)

=
∑

h∈Mi

[

αh +
∑

j∈Ah
(cj(xj) + tjh)− (kh + 1)(ci(xi) + tih)

]2

(kh + 1)2βh

− w(xi)

=
∑

h∈Mi

[

αh +
∑

j∈Ah\{i}(cj(xj) + tjh)− n(ci(xi) + tih)
]2

(kh + 1)2βh

− w(xi) (15)

=
∑

h∈Mi

βh(Q∗
ih)2 − w(xi)

11



Proposition 5: The optimum Q∗
ih, q∗h and p∗h in equation (5), (8) and (9), respectively, is a Nash Equilib-

rium for the competitive second stage of the game given location vector x.

2.2 Location decision

Given the optima of the second stage, focus is on the first stage of the game. Considering the equilibrium

supply quantity choice in the second stage, Q∗(x), each firm i maximizes the profit function πi by selecting

a location on the network. We assume that several firms can be located at the same site. At equilibrium,

no other location decision is better off for each firm.

The strategy x∗ = (x∗
1, . . . , x

∗
n) is a Nash Equilibrium if for each firm i, x∗

i is the best response to the

strategies specified by the n− 1 other firms:

πi(x
∗
i , Q

∗(x∗)) ≥ πi(xi, Q
∗(x̂))

with x̂ = (x∗
1, . . . , xi, . . . , x

∗
n) ∀xi

for every feasible strategy xi. That is, x∗
i solves

max
xi

πi(xi, Q
∗(x̂))

The method and algorithms used to select optimal locations and quantities for the firms are described

in Section 3.

3 Methods for selecting Nash quantities and Nash locations

This section describes an algorithm derived from the theoretical results in Section 2. It systematically

enumerates all location possibilities for which equilibrium quantities are computed. After that it tries

to detect which location vectors correspond to a Nash equilibrium by checking whether it is better for a

firm to relocate its facility.

3.1 Main Algorithm

The main algorithm is sketched in “Algorithm for searching equilibria” (Algorithm 1) which calls iter-

atively to a subroutine called Quantity described in Section 3.2. This procedure computes the Nash

equilibrium quantities for each location vector based on the size of the market and equilibrium price.

Once the optimal quantities have been determined, the subroutine called Profit computes the profit for

the firms at all the possible location vectors based on Nash quantities. The output is the profit (payoff)

matrix Π. Finally, a subroutine determining the Nash equilibria on location decisions, called Equilibria,

12



is described in Section 3.3.

Algorithm 1: Algorithm for searching Nash equilibria

input : Number of firms n; number of markets m; parameters α and β ; distance matrix
d(xi, vh); marginal costs ci(xi), opening costs w(xi), transportation costs function T

output: Nash equilibria of the non-cooperative game

L←− mn ; /* all possible locations */

/* Generate location matrix Xl,i iteratively */

x1,i = 1 ∀i to xL,1 = 1, xL,2 = 2, . . . , xL,n = m;

for each location l do
Q∗ ←− Quantity(xl) ; /* computation of the Nash equilibrium quantities for

each location vector based on the size of the market and equilibrium price

*/

Π∗(l)←− Profit(xl, Q
∗) ; /* computation of the profit matrix for each location

vector based on Nash quantities */

end

E∗ ←− Equilibria(Π∗) ; /* computation of all (if many) Nash equilibria on

location decisions */

3.2 Procedure Quantity for computing Nash equilibrium on Quantities

Procedure Quantity(x) : Procedure to compute Nash equilibrium quantities, Q∗
l

input : location vector xl and global variables
output: Nash equilibrium Quantity decisions: Q∗

l

for h ∈M do
TCu·h ←− t·h + c(xl); /* Total unit cost */

STCu·h ←− Sort(TCu·h) ; /* Procedure to order the firms on total unit

costs, TCu(1)h, . . . , TCu(n)h */

[kh, ph]←− SizeMarket(STCu·h, αh, βh, kh, ph, Ah) ; /* Procedure to determine

the size of market h */

Q∗
·h ←− OptQ(STCu·h, ph, αh, βh, kh, Ah) ; /* Procedure to compute optimal

quantities for firms entering the market h */

end

Procedure Quantity is called by the main algorithm for each of the possible location vectors for

the suppliers. Every time the procedure is called, total unit costs are computed for each firm at each

market. Results derived in Section 2.1 (Proposition 1, Proposition 4 and equation (5)) are applied to

derive optimal quantities depending on the size of the market, that is, the number of firms entering. The

computation generates this results by the following two procedures:

1. Procedure SizeMarket: this procedure determines the size of the active set Ah and the equilibrium

price ph;

2. Procedure OptQ: this procedure computes optimal quantities for firms entering the market h. From

13



equation (5) and depending on the asymmetry of the firms, the method finds the optimal quantities

for the active firms.

Procedure SizeMarket(TC, α, β, k, p,A): Procedure to determine the size of market k
and equilibrium price p

input : Total unitary costs TC, parameters α, β
output: Size and price of market h: k, p; and active set, A

p←− αh ; /* Initial price at the market */

k ←− 0 ; /* Initial size of the market */

while k ≤ n and TCk+1 < p do
k ←− k + 1;

p←−
α+
Pk

j=1
TCj

(k+1) ;

end

Procedure OptQ(TC, p, α, β, k,A): Procedure to compute the optimal quantities for
firms at market h

input : Total unitary costs TC,price at market, p, parameters α, β and size of the
market, k, active set, A

output: Optimal quantities: Q∗
·h

if k == 0 then
Q←− 0 ∀i;

else
for i ∈ A do

Qi ←−
α−(k+1)TCi+

Pk
j=1

TCj

(k+1)β ;

end

for i ∈ A = N\A do
Qi ←− 0;

end

3.3 Algorithm Location Stage

In the location-stage, the problem is to maximize profit by selecting a node where to locate the facility

in the network. Given n supplier firms and m markets, the feasible set X has L = mn elements. A Nash

equilibrium can be identified for the first stage game by testing each element of X in the following way.

Consider location vector Xl = (xl1, . . . , xli, . . . , xln). Note that it is possible that xli = xlj for i 6= j ∈ N .

For each firm, one should test whether firm i located at xli is better off leaving its current location

choosing another, xki ∈ V with k 6= l and k ≤ L. This step generates a set of possible configurations

for firm i where only firm i has a different location with respect to Xl. The firm knows that its decision

could generate changes in the quantity choice by the other supplier firms. If none of the other locations

is profitable for firm i, this firm is so-called “at equilibrium” with respect to its current location decision,

xli. As values of n and m are given in the input of the algorithm, the set of feasible locations is finite

and the search process stops with an optimum, equilibrium, if it exists.
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If firm i finds a location xki ∈ V, xki 6= xli, in which it is better off than at xli, then location vector

Xl = (xl1, . . . , xli−1, xli, . . . , xln) is not at equilibrium. Firm i will prefer to move and to locate its facility

at xki. The procedure follows with another possible location vector with all the possible deviations. If no

firm j improves by moving to another site from xlj (∀j ∈ N), then Xl is at equilibrium. The procedure

proceeds checking all possible location vectors one by one whether or not it is Nash equilibrium.

For solving this stage of the game, an exact enumeration algorithm is used in which all feasible

locations are enumerated knowing that an optimal solution will be at one of the nodes of the network

(Labbé and Hakimi (1991) and Sarkar et al. (1997)).

Procedure Equilibria(Π∗) : Procedure to compute all the equilibria in the game

input : Profit Matrix, Π(1 . . . L, 1 . . . n), for all location configurations in
X(1 . . . L, 1 . . . n) and all firms

output: Set of Equilibria

for each location l do
NE ←− TRUE ; /* boolean variable, it indicates whether location

vector xl is at equilibrium */

while i ≤ n and NE == TRUE do
ǫ←− set of configurations where only firm i has a different location with
respect to X(l, i);
s←− 1;

while s <= |ǫ| and NE == TRUE do
xa←− ǫ(s) ; /* xa is the alternative location vector for firm i
*/

if π(X(l, i), Q∗) ≥ π(xa(i), Q∗) then

s←− s + 1;

else

NE ←− FALSE;
end

end

end

4 Numerical illustration

Two cases are elaborated to illustrate the procedure and the analytical results. The first case is taken

from Sarkar et al. (1997) with n = 3 firms and m = 6 markets. A mistake in the output of Sarkar

et al. (1997) is found when the algorithm outlined in the last section is applied. In their study an extra

location vector is obtained as equilibrium. In Section 4.1 we show why this location vector can not be an

equilibrium. The second numerical example consists of 4 different cases. It is used to show the viability

of the algorithm when bigger and more sophisticated cases are applied. This is illustrated in Section 4.2.
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4.1 Network with 6 markets and 3 firms

The location decisions are represented by the node of the market in which firms are located (for example,

(1, 2, 1) means firms one and three are located at the same node that of market 1 and firm two at market

2, see Figure 1). Market locations are denoted by vh, h = {1, . . . , 6}.

In this example, T (d(xi, vh)) = d(xi, vh) for all xi, vh ∈ V . At each of the vertices h, marginal cost

are ci(xi) = 10 and βh = 1. Sarkar et al. (1997) describe four different configurations for parameter

α = (α1, . . . , α6). The algorithm described in Section 3 has been implemented in Matlab and applied to

each of the different cases.

Fig. 1: Example 1. Network

Tab. 2: Location equilibria for example 1
Configuration α Corresponding Nash location x∗

(50, 50, 400, 400, 50, 250) (3, 4, 6),(3, 6, 4),(4, 3, 6),(4, 6, 3),(6, 3, 4),(6, 4, 3)
(50, 50, 500, 500, 40, 50) (3, 3, 4),(3, 4, 3),(4, 3, 3)
(50, 500, 50, 50, 500, 50) (6, 6, 6)
(1000, 1000, 1000, 1000, 1000, 0) (6, 6, 6)

At equilibrium, for each configuration α a location vector and all its permutations are Nash equilibria

because all ci have the same value.

Tab. 3: Size of markets and profits of firms for the equilibria
Configuration Location equilibria No. of entrants |Ah| Profit

α x∗
l v1 v2 v3 v4 v5 v6 f1 f2 f3

1 (3, 4, 6) 3 3 3 3 3 3 22392 22392 22388
2 (3, 3, 4) 3 3 3 3 3 3 29895 29895 29901
3 (6, 6, 6) 3 3 3 3 3 3 29733 29733 29733
4 (6, 6, 6) 3 3 3 3 3 0 303200 303200 303200

Table 2 shows the location vectors at equilibrium for each configuration of α and Table 3 shows the

number of entrants at each of the markets (size of the markets) and the corresponding payoffs. Only in the

case of the last configuration for α there is no firm supplying market number 6. In all other cases, all firms

supply all markets. This shows that Sarkar et al. (1997) choose relatively easy configurations; they did not

have to determine the number of active firms. For the first configuration, α = (50, 50, 400, 400, 50, 250),
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and all the equilibria, the maximum total unit costs for a firm is maxi∈N TCuih = maxi∈N [ci(xi)+ tih] =

20 (ci(xi) = 10 ∀i ∈ N , maxi∈N tih = 10) and minh∈M [(αh +
∑

i∈N TCuih)/(n + 1)] = 22.5, then from

Proposition 4 all firms will supply all markets:

max
h∈M

max
i∈N

TCuih = 20 < 22.5 = min
h∈M

αh +
∑

i∈N TCuih

n + 1

The same applies for the second and third configurations,

max
h∈M

max
i∈N

TCuih = 20 < 23.75 = min
h∈M

αh +
∑

i∈N TCuih

n + 1

max
h∈M

max
i∈N

TCuih = 15 < 20 = min
h∈M

αh +
∑

i∈N TCuih

n + 1

For the last configuration of α and markets from 1 to 5,

max
h∈M

max
i∈N

TCuih = 15 < 261.25 = min
h∈{1...,5}

αh +
∑

i∈N TCuih

n + 1

In case of market 6, no firm will supply since from Proposition 2, firm i (∀i) is not interested in

supplying market 6 since TCui6 = 10 ∀i, and the initial price at market 6 is p6 = α6 = 0, such that

TCui6 > p6.

For configuration 2, Sarkar et al. (1997) describe an additional stable location for the firms, namely

(3, 4, 4) and its corresponding permutations. Our algorithm does not find that location structure as

equilibrium. To show that consider the profits for the firms locating at (3, 4, 4):

Firm 1 7−→ 29926

Firm 2 7−→ 29880

Firm 3 7−→ 29880

A firm is in Nash equilibrium if it does not have an incentive to move to another location. Consider

firm 2 and suppose the others do not change of location. Five possible strategies should be evaluated to

determine a possible improvement of the profit. Evaluation π2 where x2 ∈ {v1, . . . , v6} results in Table

4.

Tab. 4: Firm 2 profits for each location while firm 1 and 3 are fixed
Equilibrium in Sarkar et al. (1997) Alternatives for firm 2

Location (3, 4, 4) (3, 1, 4) (3, 2, 4) (3, 3, 4) (3, 5, 4) (3, 6, 4)
Profit firm 2 29880 27585 28251 29895 28214 29368

One can observe that firm 2 is better off changing strategy by moving to market 3. This means that

(3, 4, 4) is not an equilibrium as wrongly included by Sarkar et al. (1997).
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4.2 Network with 15 markets and 5 firms

For the illustration of the viability of the algorithms, four cases have been generated with 15 markets

and 5, 4, 3 and 2 firms, respectively, where data were randomly generated. Figure 2 shows the network

and table 5 shows the location points of the markets.
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Fig. 2: Network Example 2

Tab. 5: Location of 15 markets randomly generated
v1 v2 v3 v4 v5 v6 v7 v8�

4.1537

4.1195

� �
3.0500

7.4457

� �
8.7437

2.6795

� �
0.1501

4.3992

� �
7.6795

9.3338

� �
9.7084

6.8333

� �
9.9008

2.1256

� �
7.8886

8.3924

�
v9 v10 v11 v12 v13 v14 v15�

4.3866

6.2878

� �
4.9831

1.3377

� �
2.1396

2.0713

� �
6.4349

6.0720

� �
3.2004

6.2989

� �
9.6010

3.7048

� �
7.2663

5.7515

�
Tab. 6: Parameters α, β, w

Parameter Values for each of the 15 markets
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

α 976 615 804 743 946 881 728 509 911 722 808 896 961 869 588
β 3 5 5 3 5 1 2 5 1 1 2 1 4 2 1
w 145 216 252 206 228 142 176 257 236 192 214 259 111 221 110

The input parameters α, β, w at each market are given in Table 6. Table 10 (appendix) shows the

distance matrix which defines T (d(xi, vh)). Marginal costs, ci(vj), are detailed in Table 11 (appendix).

When the case with 5 firms is considered, the algorithm found one equilibrium in location: (1, 10, 9, 10, 2).

Table 4.2 shows the total unit costs when firms are located at equilibrium, the Nash quantity matrix, the

number of entrants at each market and corresponding payoffs.
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Tab. 7: Case 15 markets, 5 firms - Nash location (1, 10, 9, 10, 2)

Total Unit Costs for the firms at each market (TCuih)

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

x∗

1
113 116.50 117.81 117.01 119.29 119.18 119.08 118.67 115.18 115.90 115.87 116.01 115.38 118.46 116.51

x∗

2
237.90 241.41 238.99 240.72 243.44 242.25 239.98 242.63 239.99 235 237.94 239.95 240.27 240.19 239.97

x∗

3
309.18 308.77 312.66 311.64 311.49 312.35 313.91 311.09 307 311.99 311.78 309.06 308.19 312.82 309.93

x∗

4
257.90 261.41 258.99 260.72 263.44 262.25 259.98 262.63 259.99 255 257.94 259.95 260.27 260.19 259.97

x∗

5
113.50 110 117.43 114.21 115 116.69 118.67 114.93 111.77 116.41 115.45 113.65 111.16 117.54 114.54

Quantity Matrix - Supply from each firm to each market

Firms Markets

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

f1 73.86 30.47 37.93 59.37 42.76 203.10 87.03 25.53 208.97 172.96 95.58 206.43 54.33 100.62 147.28

f2 32.26 5.49 13.69 18.14 17.93 80.04 26.58 0.74 84.17 53.86 34.55 82.48 23.11 39.76 23.83

f3 8.47 0 0 0 4.32 9.94 0 0 17.15 0 0 13.38 6.13 3.44 0

f4 25.56 1.49 9.69 11.47 13.93 60.04 16.58 0 64.17 33.86 25.55 62.48 18.11 29.76 3.83

f5 73.69 31.77 38.01 60.31 43.62 205.60 87.23 26.28 212.39 172.46 95.79 208.78 55.39 101.08 149.26

No. of entrants for each market

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

5 4 4 4 5 5 4 3 5 4 4 5 5 5 4

Profit for each firm

f1 f2 f3 f4 f5

295653.69 39470.23 818.54 21239.80 301487.76
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Following Proposition 4, in the equilibrium, markets v1, v5, v6, v9, v12, v13 and v14 satisfy

max
i∈N

TCuih <
αh +

∑

i∈N TCuih

n + 1
(h = 1, 3, 5, 6, 9, 12, 13, 14)

For markets v2, v3, v4, v7, v10, v11 and v15:

max
i∈N

TCuih <
αh +

∑

i∈N TCuih −max(TCuih)

n
(h = 2, 3, 4, 7, 10, 11, 15)

And for market v8:

max
i∈N

TCuih <
αh +

∑

i∈N TCuih −Max1 −Max2

n− 1
(h = 8)

where Max1 and Max2 are given by

Max1 = max
i∈N

(TCuih)

Max2 = max
i∈N\{Max1}

(TCuih)

Table 8 shows the Nash location for each of the cases with 4, 3 and 2 firms. Finally, table 9 shows

the computational CPU times for the four cases and the complexity when the number of firms goes from

2 to 5. The algorithm has been implemented in Fortran and run on a core-duo Pentium IV processor.
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Tab. 8: Equilibrium. Case 15 markets and 4, 3, 2 (respectively) supplier firms
Firm f1 f2 f4 f5 No. of entrants for each market

Chosen Location 1 3 7 8 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

Resulting Profit 311846.92 319044 12580.02 45953.31 4 3 4 4 4 4 4 3 4 4 4 4 4 4 3
Firm f1 f2 f4 No. of entrants for each market

Chosen Location 4 14 9 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

Resulting Profit 379668.31 362520.9 30005.05 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2
Firm f3 f5 No. of entrants for each market

Chosen Location 8 4 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

Resulting Profit 663895.26 62272.21 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
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Tab. 9: Complexity
Number of markets Number of firms No. of location vectors CPU Time (seconds)

15 5 759375 58.10938
15 4 50625 2.703125
15 3 3375 0.1718750
15 2 225 1.5625000E-02

5 Conclusions

A competitive location and quantity “a la Cournot” game has been described in this paper to study the

oligopolistic competition between n > 2 heterogeneous firms. Firms have to decide where to locate a

facility and then decide on how much to supply to all or some of m > 2 spatially separated markets from

these facilities. The following results were derived with respect to the optimal supply decisions where we

are dealing with possibly heterogeneous firms:

• A necessary condition to have any delivery to a market

• Analytic expression of the equilibrium quantities of the firms that supply to a market

• Necessary condition for a firm to supply to a market

• Based on the former, a new procedure has been developed to identify those firms that are supplying

to a market, the active set, which determines the size of the market

Based on these results an algorithm is designed to find Nash equilibria of the game. The results and

algorithm are illustrated numerically. By using the algorithm as a systematic computation instrument

to cases reported in literature, a mistake was detected in (Sarkar et al. 1997). In that paper a solution

is given that appears not to be an equilibrium of the model. Furthermore, tests on larger generated

instances show the viability of the approach.
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A Appendix

A.1 Input data for example two

Distance matrix d(xi, vh) and marginal costs ci(vj) are given in Table 10 and Table 11, respectively.

Tab. 10: Marginal Production Costs for each firm (depending on location) ci(vj)
Possible locations for firms

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15
f1 113 772 501 939 519 477 862 573 282 705 855 117 713 441 849
f2 553 739 486 374 270 274 714 372 488 235 728 440 874 869 634
f3 547 910 840 681 836 694 408 361 307 581 755 378 855 611 433
f4 733 592 500 725 659 816 462 570 693 255 982 344 327 889 764
f5 223 110 905 279 369 695 356 522 158 990 625 481 564 400 490

Tab. 11: Distance Matrix





















































v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

v1 0
v2 3.50 0
v3 4.81 7.43 0
v4 4.01 4.21 8.76 0
v5 6.29 5.00 6.74 9.00 0
v6 6.18 6.69 4.26 9.86 3.22 0
v7 6.08 8.67 1.28 10.01 7.54 4.71 0
v8 5.68 4.93 5.78 8.71 0.96 2.40 6.58 0
v9 2.18 1.77 5.66 4.64 4.49 5.35 6.91 4.09 0
v10 2.90 6.41 3.99 5.72 8.44 7.25 4.98 7.63 4.99 0
v11 2.87 5.45 6.63 3.06 9.13 8.94 7.76 8.54 4.78 2.94 0
v12 3.00 3.65 4.10 6.50 3.49 3.36 5.25 2.74 2.06 4.95 5.87 0
v13 2.38 1.16 6.62 3.59 5.41 6.53 7.89 5.13 1.19 5.27 4.36 3.24 0
v14 5.46 7.54 1.34 9.48 5.95 3.13 1.61 4.99 5.82 5.19 7.64 3.95 6.91 0
v15 3.51 4.54 3.41 7.24 3.61 2.67 4.48 2.71 2.93 4.97 6.31 0.89 4.10 3.11 0
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