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Statements 

1. Polar growth of different types of plant cells involves common mechanisms. 

This thesis. 

2. The studies of Cook et al. do not prove that induction of expression of the 

peroxidase gene ripl upon inoculation of Medicago truncatula with 

Rhizobium meliloti, is restricted to the epidermis. 

Cook et al., 1995, Plant Cell 7,43-55. 

3. The conclusion of Staehelin et al. that Nod factors activate the same signal 

transduction pathway in cultured tomato cells and legumes roots is not correct, 

since the observed alkalinization in the cultured medium is in contrast with the 

proton efflux described in root hairs. 

Staehelin et al., 1994, Proc. Natl. Acad. Sci. USA 91, 2196-2200. 

Allen et al., 1995, Adv. Mol. Genet. Plant-Microb. Inter. 3, 107-113. 

4. The demonstration that cytoplasmic dynein is required for nuclear segregation 

in yeast, does not exclude a role of the same protein in retrograde transport. 

Eshel et al., 1993, Proc. Natl. Acad. Sci. USA 90, 11172-11176. 

Li et al., 1993, Proc. Natl. Acad. Sci. USA 90, 10096-10100. 



5. It cannot be excluded that substoichiometric quantities of polypeptides present 

in the complex of seven proteins promoting posttranslational protein 

translocation across the ER with reconstituted proteoliposomes from yeast 

have a regulatory function in translocation. 

Panzner et al., 1995, Cell 81, 561-570. 

6. Bureaucracy exists in many if not all countries; the only thing that differs is 

the salary of the bureaucrats. 

7. Het verlangen om zo goedkoop mogelijk te sporten en het milieu bewustzijn 

hebben geresulteered in het enorme aantal fietsen in Nederland, waardoor het 

transport in dit land een relatief lage graad van automatisering heeft. 

8. The only thing I know is that I know nothing. 

Sokrates. 

Statements from the thesis entitled: 

"Studies on legume root hair development: correlations with the infection 

process by Rhizobium bacteria" 

Panagiota Mylona, Wageningen, 11 June 1996. 
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SCOPE 

Rhizobia-legume interaction leading to the formation of specific organs, namely root nodules, 

starts at the epidermis of the root. Bacteria interfere with the develomental programme of the 

epidermal cells by inducing a number of responses, as new root hair growth, root hair 

deformation and curling, and formation of special structures, the infection threads, via which 

the bacteria enter the plant. It has been postulated that infection threads grow in a similar 

manner as root hairs, but to the opposite direction. We have initiated a programme aiming 

originally at studies on the development of root epidermis/root hairs. That resulted in the 

isolation of a number of cDNA clones that represent genes involved in different aspects of 

epidermis/root hair development. These clones were used as molecular tools to unravel 

whether infection thread growth employs the same programmes as growing root hairs and 

germinating pollen and play a role in polar growth. To further understand the mechanisms of 

infection thread formation we performed studies on epitope-tagged early nodulins involved in 

the infection process. 

In chapter 3, 4, and 5 we report the characterization of three root hair specific cDNA clones 

and the expression pattern of the corresponding genes. In chapter 2 we describe the 

exploratory studies on the potentialities of using epitope tagging of early nodulins to examine 

the role of early nodulins in the infection process and the formation of infection threads. 

The various steps involved in the infection of legume roots by rhizobia and the formation of 

nitrogen fixing root nodules are described in the review presented in chapter 1, while in the 

concluding chapter 6 is discussed to what extent infection thread formation is compatible to 

growth of root hairs and pollen tubes. 
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Panagiota Mylona, Katharlna Pawlowski, and Ton Blssellng1 

Department of Molecular Biology, Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands 

INTRODUCTION 

Biosphere nitrogen is subjected to rapid turnover, and because 
it is eventually lost as nitrogen into the atmosphere, its main
tenance requires continuous replenishment with reduced 
nitrogen from atmospheric nitrogen. Biological reduction of 
nitrogen to ammonia can be performed only by some prokary-
otes and is a highly oxygen-sensitive process. The most 
efficient nitrogen fixers establish a symbiosis with higher plants 
in which the energy for nitrogen fixation and, in general, the 
oxygen protection system are provided by the plant partner. 
In two groups of symbiotic interactions, the prokaryotic part
ners are soil bacteria (rhizobia in legume symbioses and 
Frankia bacteria in actinorhizal symbioses), whereas in the case 
of symbiosis of Gunnera, nitrogen is fixed by the cyanobac-
terium Nostoc. In Gunnera, the symbionts reside in already 
existing stem glands, whereas in legumes and actinorhizal 
plants, new organs, the root nodules, are formed by the plant 
upon infection with the symbiont. In all three systems, the 
prokaryotes fix nitrogen inside the cells of their host, but they 
are separated from the plant cytoplasm by membranes derived 
from the plant plasmalemma (Figure 1). 

Because research on legume symbiosis is the most ad
vanced of these three symbiotic systems, in this article we 
concentrate mainly on this system. The interaction of rhizobia 
and legumes begins with signal exchange and recognition of 
the symbiotic partners, followed by attachment of the rhizobia 
to the plant root hairs. The root hair deforms, and the bacteria 
invade the plant by a newly formed infection thread growing 
through it. Simultaneously, cortical cells are mitotically acti
vated, giving rise to the nodule primordium. Infection threads 
grow toward the primordium, and the bacteria are then released 
into the cytoplasm of the host cells, surrounded by a plant-
derived peribacteroid membrane (PBM). The nodule primordi
um thereupon develops into a mature nodule, while the bacteria 
differentiate into their endosymbiotic form, which is known as 
the bacteroid (Figure 1A). Bacteroids, together with the sur
rounding PBMs, are called symbiosomes. At this stage, bacteria 
synthesize nitrogenase, which catalyzes the reduction of nitro
gen. The product of nitrogen fixation, ammonia, is then exported 
to the plant. 

All of the steps of nodule development involve the expres
sion of nodule-specific plant genes, the so-called nodulin genes 
(van Kammen, 1984). The early nodulin genes encode products 

1 To whom correspondence should be addressed. 

that are expressed before the onset of nitrogen fixation and 
are involved in infection and nodule development. The prod
ucts of the late nodulin genes are involved in the interaction 
with the endosymbiont and in the metabolic specialization of 
the nodule (Nap and Bisseling, 1990). 

In the first part of this review, we describe the early steps 
of the interaction between rhizobia and legumes that result 
in the formation of a nitrogen-fixing nodule. We focus on the 
role of specific lipooligosaccharides secreted by rhizobia in 
the induction of these early steps. In the second part, we de
scribe nodule functioning and compare actinorhizal and 
legume nodules. 

EARLY EVENTS OF NODULATION 

Nod Factor Structure and Synthesis 

The Rhizobium signal molecules that play a key role in the 
induction of the initial stages of nodulation are lipochito-
oligosaccharides known as Nod factors. The bacterial genes 
involved in Nod factor synthesis are the nod (nodulation) genes. 
These genes are not expressed in free-living bacteria, with 
the exception of nodD, which is expressed constitutively. NodD 
has the ability to bind to specific flavonoids secreted by the 
roots of the host plant (Goethals et al., 1992); upon flavonoid 
binding, it becomes a transcriptional activator of the other nod 
genes (Fisher and Long, 1992), which encode enzymes in
volved in the synthesis of Nod factors. 

The structure of the major Nod factor of Rhizobium meliloti 
was determined in 1990 (Lerouge et al., 1990), and since then 
the structures of the Nod factors of most other rhizobia have 
been determined. (For detailed information on Nod factor struc
ture and biosynthesis, see Fisher and Long, 1992; Spaink, 
1992; Denarie and Cullimore, 1993; Carlson et al., 1995.) In 
general, Nod factors consist of a backbone of three to five 
P-1,4-linked W-acetylglucosamines bearing a fatty acid on the 
nonreducing sugar residue (Figure 2). In addition, the factors 
can have various substitutions on both the reducing and non-
reducing terminal sugar residues. 

Genetic and molecular analyses have shown that the syn
thesis of the Nod factor backbone is catalyzed by the products 
of the nodA, nodB, and nodC loci. NodC has homology with 
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Figure 1. Nitrogen-Fixing Endosymbionts in Three Different Symbioses. 

(A) Intracellular rhizobia in a nodule formed on clover by Rhizobium trifolii. This magnification of the region of the clover indeterminate nodule 
shows the transition of the prefixation zone to the interzone. In the right cell (prefixation zone), intracellular bacteria (ba) have not yet differentiated 
into their nitrogen-fixing form. The left cell (interzone) contains amyloplasts (a) and differentiated nitrogen-fixing bacteroids (b). In both cells, intra
cellular bacteria are surrounded by a plant-derived peribacteroid membrane (pbm). 
(B) Intracellular Fmnkia in a nodule formed on Alnus serrulata. Vegetative hyphae (hy) and nitrogen-fixing septate vesicles (ve) can be seen, 
vesicles are surrounded by a lipid envelope (le) that provides oxygen protection of the nitrogen fixation process. Both hyphae and vesicles are 
surrounded by the invaginated plasma membrane (m) of the host cell. 
(C) Intracellular Nostoc in stem gland cells of Gunnera. Vegetative Nostoc cells (v) and nitrogen-fixing heterocysts (h) are surrounded by the invagi
nated plasma membrane (m) of the host. 
Bars - 1 urn. 

chitin synthases and therefore is the enzyme that most likely 
catalyzes the synthesis of the chitin oligomer (Geremia et al., 
1994). The latter is further modified by the action of NodB, which 
de-N-acetylates the terminal nonreducing end of the mole
cule (John etal., 1993). At this position, NodA finally transfers 
a fatty acid from an acyl carrier protein (ROhrig et al., 1994). 
The backbone is further modified by the action of other Nod 
proteins that synthesize or add various substituents. These 
substitutions determine host specificity as well as the biologi
cal activity of the molecules. For example, in R meliloti, the 
nodH and nodPQ genes are the major host range determinants 
(Roche et al., 1991). NodPQ proteins have been shown to rep
resent enzymes that generate active forms of sulfate, and NodH 
is homologous to sulfotransferases. Therefore, these enzymes 
are probably directly involved in catalyzing the sulfation of 
ft meliloti Nod factors (Roche et al., 1991; Fisher and Long, 
1992). 

In general, rhizobia have the ability to interact with only a 
limited number of host plants. However, some rhizobia, for ex
ample, Rhizobium NGR234, have a more promiscuous nature. 
This Rhizobium, which can nodulate various tropical legumes, 
excretes 18 different Nod factors (Price et al., 1992). The produc
tion of this variety of factors is thought to be the basis for its 

broad host range (Price et al., 1992). In contrast, most rhizo
bia produce only a few different Nod factors. 

Interaction with the Root Epidermis 

When rhizobia colonize legume roots, they induce deforma
tion and curling of root hairs and the expression of several plant 
genes in the epidermis. In several systems, it has been shown 
that purified Nod factors induce the deformation of the root 
hairs at concentrations as low as 10"'2 M (Lerouge et al., 
1990; Spaink et al., 1991; Price et al., 1992; Sanjuan et al., 
1992; Schultze et al., 1992; Mergaert et al., 1993; Heidstra et 
al., 1994), but in general curling is not observed (Relic et al., 
1993). Purified Nod factors can also induce the expression of 
certain plant genes (Horvath et al., 1993; Journet et al., 1994; 
Cook et al., 1995). 

For Vicla saliva (vetch), a fast semiquantitative root hair defor
mation assay has been developed that allows the root hair 
deformation process to be characterized in detail. In this plant, 
root hair deformation is induced only in a small zone of the 
root, encompassing young root hairs that have almost reached 
their mature size (Heidstra etal., 1994). Deformation starts with 
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swelling of the root hair tips, which is already apparent within 
1 hr after Nod factors are added. Subsequently, new tip growth 
is initiated at the swollen tips, resulting in clearly deformed 
hairs within 3 hr. Incubation with Nod factors for ~10 min is 
required to set the deformation process in motion (Heidstra 
et al., 1994); after this, even if the Nod factors are removed, 
the deformation process continues. These morphological 
changes are preceded by a depolarization of the plasma mem
brane (Ehrhardt et al., 1992), changes in the flux of calcium, 
proton efflux, rearrangements of the actin filaments (Allen et 
al., 1994), and increased cytoplasmic streaming (Heidstra et 
al., 1994). These changes occur within 5 to 30 min after Nod 

factors are added and may be part of a series of events that 
leads eventually to root hair deformation. 

Several plant genes whose expression is activated in the 
epidermis during nodulation have been cloned and used to 
study the mode of action of Nod factors. The early nodulins 
ENOD5 (Scheres et al., 1990b) and ENOD12 (Scheres et al., 
1990a), which encode proline-rich proteins, and Mtripl (Cook 
et al., 1995), which encodes a peroxidase, represent such 
genes. The latter gene is expressed in the root pericycle of 
uninoculated roots, and all three genes are induced in the 
epidermis within a few hours after application of Nod factors 
(Horvath et al., 1993; Journet et al., 1994; Cook et al., 1995). 

•J* 
O 

N 
" 3 \ NH NH 

o=c 
% C H , 

/ 
CH2 

o=c 
X H , 

Species Ri R« References 

Rhizobium meliloti -H 

Rhizobium ieguminosarum -H 
bv viciae 

Bradyrhizobium japonicum -H 

Bradyrhizobium elkanii 

-C16:2 (2,9)« or -COCH3 (0-6)» 
-C16:3 (2,4,9) or -H 
-018:4(2,4,6,11) or -COCH3 (0-6) 
-C18:1 (11) 
-C18:1 (9), -COCHa (0-6) 
-C18:1 (9,Me), or-H 
-C16:1 (9), or -C16:0 

-H or Me -C18:1 -C0CH3 (0-6), 
-H, or Co* • 

Rhizobium sp strain 
NGR234 

Me 

Azorhizobium caulinodans Me 
strain ORS571 

Rhizobium fredii -H 

-C18:1 or -C16:0 Cb (0-3 and/or 
0-4)" or -H 

-C18:1 or -C18:0 Cb (0-6) or -H 

-C18:1 -H 

Rhizobium tropici Me -C18:1 -H 

-S03H 

-H or -COCH3
c 

2-O-Methylfucosyl 
group 

2-O-Methylfucosyl 
or fucosyl 
group 

Sulfated or 
acetylated 
2-O-methylfu-
cosyl group 

D-Arabinosyl or -H 

Fucosyl or 
2-O-methylfu-
cosyl group 

-S03H 

-H 

-H 

-H 

-H or Gro' 

-H 

-H 

-H 

-H 

1,2,3 

2,3 

3 

2,3 

3 

2,3 

1,2,3 

3 

Lerouge et al. (1990) 
Schultze et al. (1992) 
Spaink et al. (1991) 
Firmin et al. (1993) 
Sanjuan et al. (1992) 
Carlson et al. (1993) 

Carlson et al. (1993) 

Price et al. (1992) 

Mergaert et al. (1993) 

Bec-Ferte et al. (1994) 

Poupot et al. (1993) 

Figure 2. Structure of Nod Factors of Different Rhizobia. 

The number of the /V-acetylglucosamine residues can vary between three and five. The substitutions at positions Ri, H2, R3, R4, and R5 among 
the different rhizobia are indicated. 
a The numbers in parentheses indicate the positions of the double bonds in the fatty acids. 
b O-n indicates the position of the substitution on the W-acylglucosamine residue. 
c This substitution is present only in Nod factors of R. Ieguminosarum bv viciae strain TOM. 
d Cb indicates carbamyl group. 
8 The position of the carbamyl group could be 0-3, 0-4, or 0-6. 
' Gro indicates glyceryl group. 
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Mtripl Is not expressed during other steps of nodulation, 
whereas ENOD12 and ENOD5 are also expressed during In
fection and nodule development (see later discussion). 

The induction of ENOD12 and Mtripl expression occurs in 
a relatively broad zone of the root, starting just above the root 
tip, where root hairs have not yet emerged, and extending to 
the region containing mature root hairs (Pichon et al., 1992; 
Cook et al., 1995). Cytological studies have shown that Nod 
factors elicit the expression of these genes in all epidermal 
cells (Journet et al., 1994; Cook et al., 1995) and that a direct 
contact between Nod factors and epidermal cells is required 
(Journet et al., 1994). Thus, it is likely that within the suscepti
ble zone, root hair-containing cells as well as the other 
epidermal cells recognize Nod factors. However, the response 
is restricted to the epidermis, because ENOD12 and Mtripl are 
not even induced in the hypodermal cell layer. 

The root hair deformation assay and tests of their ability to 
induce early nodulin genes have been used to analyze the 
structural requirements of Nod factors to elicit epidermal re
sponses. When roots are treated with Nod factors, molecules 
containing three or fewer sugars are found in the growth 
medium and on the root. These molecules are probably gener
ated by chitinases secreted by the plant, and they are at least 
1000-fold less active in a deformation assay than the Nod fac
tors with four to five glucosamine residues (Heidstra et al., 1994; 
Staehelin et al., 1994b). Therefore, the length of the sugar back
bone plays an important role in recognition by the plant. 
Furthermore, the fatty acyl group present at the nonreducing 
end is required for recognition, because chitin molecules nei
ther cause deformation (Heidstra et al., 1994) nor induce 
ENOD12 expression (Journet et al., 1994). However, the struc
ture of the fatty acyl group is not very important, because 
molecules with different fatty acid substitutions have similar 
activities. 

In contrast, substitutions at the reducing terminal sugar can 
have a dramatic effect on recognition. For example, Nod fac
tors of ft meliloti bear a sulfate group on this sugar residue. 
This sulfate moiety is important for induction of root hair defor
mation as well as for the elicitation of ENOD12 expression in 
the ft meliloti host, alfalfa. Desulfation of the ft meliloti fac
tors reduces their activity at least 1000-fold on alfalfa (Journet 
et al., 1994), whereas they attain the ability to deform root hairs 
of the nonhost vetch (Roche et al., 1991). Vetch can form nod
ules with Rhlzobium leguminosarum bv viciae, which produces 
Nod factors that lack a substitution at the reducing terminal 
sugar residue. Hence, the sulfate substitution is a major host 
specificity determinant. 

Thus, very low concentrations of Nod factors induce sev
eral responses in the root epidermis. If a receptor is involved 
in the elicitation of these responses, it must recognize the 
length of the Nod factors as well as the substitutions at the 
reducing end. Because the presence of a fatty acyl moiety is 
essential but its structure is not important, it is likely that this 
part of the molecule is not recognized by a receptor. Instead, 
the fatty acyl group might play a role in "docking" the Nod fac
tors in the membranes and, in that way, facilitate binding to 
a putative receptor. 

Infection 

After attachment of rhizobia to the root hair tips, the tips curl 
tightly and bacteria become entrapped in the curls. A local 
hydrolysis of the plant cell wall takes place in the curled re
gion (Callaham and Torrey, 1981; Van Spronsen et al., 1994), 
and the plasma membrane invaginates and new plant cell wall 
material is deposited (for reviews, see Bauer, 1981; Newcomb, 
1981; Brewin, 1991; Kijne, 1992). This results in the formation 
of a tubular structure, the so-called infection thread, by which 
the bacteria enter the plant. 

The ultrastructure of the wall of the infection thread is very 
similar to that of the normal plant cell wall, but the incorpora
tion of certain nodulins may endow it with unique properties. 
The proline-rich early nodulins ENOD5 and ENOD12 are can
didates for components of the infection thread wall, because 
cortical cells containing an infection thread express the cor
responding genes (Scheres et al., 1990a, 1990b). The bacteria 
in the infection thread are surrounded by a matrix that seems 
to consist of compounds secreted by both the plant and the 
bacteria. For example, a 95-kD glycoprotein normally present 
in the intercellular spaces of the root cortex is localized in the 
infection thread matrix (Rae et al., 1992). 

Concomitant with infection thread formation, cortical cells 
are mitotically reactivated, forming the nodule primordium (see 
later discussion). Infection threads grow toward this primor
dium and, once there, release bacteria into the cytoplasm. In 
those legumes that form indeterminate nodules, such as al
falfa and pea (see Nodule Functioning), nodule primordia arise 
from inner cortical cells. Hence, in the formation of this nod
ule type, the infection threads must traverse the outer cortex 
before they reach these cells. Before infection thread penetra
tion, the outer cortical cells undergo morphological changes. 
The nuclei move to the center of the cells, and the microtu
bules and the cytoplasm rearrange to form a radially oriented 
conical structure, the cytoplasmic bridge, that resembles a 
preprophase band (Kijne, 1992). The infection threads traverse 
the cortical cells through the radially aligned cytoplasmic 
bridges, which are therefore called preinfection threads (Van 
Brussel et al., 1992). 

Although the preinfection thread-forming outer cortical cells 
never divide, the induced morphological changes are reminis
cent of those seen in cells entering the cell cycle. In situ 
hybridization experiments (Yang et al., 1994) showed that nar
row rows of outer cortical cells express the S phase-specific 
histone H4 gene (Figure 3A). However, a mitotic cyclin gene 
specifically expressed during the G2-to-M phase transition is 
not activated. Hence, the cells that form the preinfection thread 
reenter the cell cycle and most likely become arrested in the 
G2 phase, whereas the inner cortical cells progress all the way 
through the cell cycle and form the primordia (Figure 3A). This 
shows that part of the infection process is derived from a 
general process, namely, cell cycling. In some way, rhizobia 
have modified it and now exploit it for a completely different 
purpose, the infection process. 

Purified Nod factors induce preinfection thread formation, 
but infection threads are not formed (Van Brussel et al., 1992). 
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Q Nod Factor 

Figure 3. Events in the Cortex during Induction of an indeterminate Nodule. 

(A) Activation of the cortex after inoculation with rhizobia. The top panel is a dark-field micrograph of a cross-section of a pea root 1 day after 
inoculation with ft. leguminosarum bv viciae that was hybridized with a histone H4 gene probe. HA transcripts are localized in narrow rows of 
cortical cells in front of the infection sites, which are indicated by arrowheads. The silver grains represent the hybridization signal. Note that 
the infection sites are opposite to the protoxylem poles (arrow). Bar = 50 urn. The bottom panel is a schematic drawing showing the reactivation 
of cortical cells in pea roots after inoculation with rhizobia or application of Nod factors. The outer cortical cells, shown in lavender, reenter the 
cell cycle, proceeding from the G0/G1 phase to the S phase, and finally becoming arrested in G2, as indicated in the cell cycle in the yellow 
circle. In contrast, inner cortical cells, shown in purple, progress all the way through the cell cycle, as indicated by the cell cycle in the green 
circle, dividing and forming the nodule primordia. The activated cells are opposite the protoxylem poles of the root, which are shown in green. 

(B) Mode of action of Nod factors shown in a schematic depiction of a longitudinal section of a legume root. Application of Nod factors leads 
to root hair deformation, followed by an activation of the pericycle, due either to the action of Nod factors themselves or to that of second mes
sengers (indicated by ?) generated in the epidermal cells. ENOD40 expression in the pericycle cells may cause a change in the cytokinin/auxin 
ratio that results in cortical cell divisions (top panel). Alternatively (bottom panel), ENOD40 expression in the pericycle may lead to susceptibility 
of the cortical cells, which then divide due to the action of either Nod factors or the second messengers generated in the epidermis. Cells shown 
in red are those that are sensitive to the action, direct or indirect, of Nod factors. In the bottom panel, the right arrow should point to the activated 
cortical cells instead of to the pericycle. 
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Thus, bacteria seem to be required for the formation of infec
tion threads. It has been shown that pretreatment of clover root 
hairs with lipopolysaccharides of R tritolii can improve the ef
ficiency of infection thread induction by this strain, whereas 
pretreatment with lipopolysaccharides from a noninfectious 
Rhizobium strain leads to an increase in aborted infections 
(Dazzo et al., 1991). Furthermore, mutations in rhizobial exo-
polysaccharide biosynthesis can render the bacteria unable 
to induce infection threads (Dylan et al., 1986; Niehaus et al., 
1993). Thus, interaction with bacterial surface compounds 
seems to play an important role in infection thread formation. 

Cortical Cell Divisions 

During mitotic reactivation of root cortical cells by rhizobia, 
genes that control the progression through the cell cycle, such 
as cdc2 and mitotic cyclins, are induced (Yang et al., 1994). 
In addition, several nodulin genes are expressed, allowing a 
distinction to be made between nodule primordia and root or 
shoot meristems. Examples of such nodulin genes are ENOD12 
(Scheres et al., 1990a), Gm93 (Kouchi and Hata, 1993), 
ENOD40 (Kouchi and Hata, 1993; Yang et al., 1993; Asad et 
al., 1994; Matvienko et al., 1994), and MtPRP4 (Wilson et al., 
1994). These genes are activated in all cells of the primordia. 
Furthermore, ENOD40 is also induced in the region of the 
pericycle opposite to the dividing cortical cells (Kouchi and 
Hata, 1993; Yang et al., 1993; Asad et al., 1994; Matvienko 
et al., 1994). Another early nodulin gene, ENOD5 (Scheres et 
al., 1990b), is transcribed only in primordial cells that contain 
rhizobia. 

Nod factors are sufficient for mitotic reactivation of the cor
tical cells (Spainketal., 1991; Truchetetal., 1991; Relic etal, 
1993). The early nodulins ENOD12 and ENOD40 are activated 
in such primordia (Vijn et al., 1993). In some host plants, puri
fied Nod factors even induce nodule formation (Truchet et al., 
1991; Mergaert et al., 1993; Stokkermans and Peters, 1994). 

Interestingly, only certain cortical cells are susceptible to 
Nod factors. In tropical legumes, such as soybean, it is the 
outer cortical cells that are mitotically activated. In temperate 
legumes, such as pea, vetch, and alfalfa, it is the inner corti
cal cells, and especially those located opposite protoxylem 
poles, that divide (Kijne, 1992). The mechanism that controls 
the susceptibility of cortical cells is unknown. It has been postu
lated for decades that the susceptibility of cortical cells is 
conferred by an arrest in the G2 phase (Wipf and Cooper, 1938; 
Verma, 1992). However, use of cell phase-specific genes as 
probes in in situ hybridization experiments shows that this is 
not the case (Yang et al., 1994). Instead, susceptible cortical 
cells are, like other cortical cells, arrested in G0/G1. 

The pattern of responding cortical cells provides some hints 
about a possible mechanism. Figure 3A shows that only nar
row rows of cortical cells are activated to express the histone 
H4 gene by rhizobia. At this time, the infection thread t ips-
trie site where Nod factors are released—are still in the 

epidermis, indicating that Nod factors act at a distance. These 
rows of susceptible cells are located opposite protoxylem poles. 
More than 20 years ago, Libbenga et al. (1973) found that an 
alcohol extract of the stele could induce cell divisions in ex-
plants of the pea root cortex in the presence of auxin and 
cytokinin. A substance responsible for this activity, the so-called 
stele factor, has since been isolated and is thought to be 
released from the protoxylem poles. Such a compound might 
confer susceptibility to the cortical cells located opposite the 
protoxylem poles (Smit et al., 1993). 

Which Nod factors can induce mitotic reactivation of corti
cal cells depends on the host plant. Rhizobia that induce cell 
divisions in the inner cortical layers, such as R. leguminosa-
rum bv viciae and ft mellloti, produce Nod factors with highly 
unsaturated fatty acyl groups (Figure 2), whereas rhizobia that 
mitotically reactivate outer cortical cells, such as Bradyrhizo-
bium japonicum, generally contain a C18:1 acyl group. The 
highly unsaturated fatty acyl group appears to be important 
for inducing cell divisions in the inner cortex. For example, only 
those ft leguminosarum bv viciae factors containing a C18:4 
acyl group cause the formation of nodule primordia in vetch 
(Van Brusseletal., 1992). Whether the highly unsaturated fatty 
acyl moiety is recognized by a specific receptor and whether 
it is required for transport to the inner layers, for example, are 
unknown. 

To unravel the mechanism by which Nod factors elicit corti
cal cell divisions, studies with compounds that can mimic their 
mitogenic activity have been performed. Two lines of evidence 
strongly suggest that Nod factors cause a change in the 
auxin/cytokinin balance. Both cytokinin (Cooper and Long, 
1994) and compounds that block polar auxin transport (Hirsch 
et al., 1989) induce the formation of nodule-like structures in 
which early nodulin genes are expressed. Because some early 
nodulin genes are activated before cortical cells divide, an in
teresting question is whether such nodulins are involved in 
changing the phytohormone balance. The early nodulin gene 
ENOD40, which is induced by Nod factors in root pericycle as 
well as in dividing cortical cells, has a phytohormone effect 
when introduced into the nonlegume tobacco. This effect was 
examined in a protoplast assay in which the correlation be
tween efficiency of cell division and auxin concentration was 
monitored. Tobacco protoplasts expressing a legume ENOD40 
gene under the control of the cauliflower mosaic virus 35S pro
moter divide efficiently at high auxin concentration, whereas 
in control protoplasts, this level of auxin suppresses their abil
ity to divide (T. Bisseling and R. Walden, unpublished data). 

Because ENOD40 is sufficient to cause a phytohormone-
like effect in tobacco and because induction of ENOD40 ex
pression in the pericycle precedes the first cortical cell divisions 
(T. Bisseling, unpublished data), we hypothesize that ENOD40 
expression in the pericycle of legume roots can cause the 
cytokinin/auxin ratio of the cortical cells to change, resulting 
in cell division (Figure 3B). In this model, mitotic reactivation 
would be induced in an indirect manner-that is, cortical cells 
would not themselves interact with the Nod factors. Alterna
tively, ENOD40 expression in the pericycle might cause a 
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change in the cortical cells that renders them susceptible to 
Nod factors (or to second messengers generated in the 
epidermis), resulting in their mitotic reactivation (Figure 3B). 

The role of ENOD40 in altering phytohormone balance is 
not yet clear. ENOD40 cDNA clones have been isolated from 
different legumes, and only in the soybean cDNAs could a long 
open reading frame be found (Kouchi and Hata, 1993; Yang 
etal., 1993; Crespietal., 1994; Matvienkoetal., 1994). There
fore, it has been postulated that this gene is active on the RNA 
level (Crespi et al., 1994; Matvienko et al., 1994). 

Nod Factor Perception and Signal Transduction 

As we have discussed, Nod factors induce responses in three 
different tissues of the root, namely, epidermis, cortex, and 
pericycle. Because Nod factors play a pivotal role in the early 
steps of nodulation, major efforts are being directed toward 
unraveling their mode of action. Nod factors are active at low 
concentrations, and their biological activity on a particular host 
is controlled by the presence of certain substitutions on the 
factor. These data suggest that Nod factors are recognized by 
a receptor in the host plant. However, it is unclear whether Nod 
factors interact directly with all three responding tissues or 
whether their interaction with epidermal cells results in the 
generation of second messengers that, after diffusion or trans
port, trigger responses in the inner tissues (Figure 3B). 

The induction of certain host responses requires Nod fac
tors with a very specific structure, whereas the demands for 
the induction of other responses are less stringent. For in
stance, for the induction of alfalfa root hair deformation, neither 
the structure of the fatty acid nor the presence of the O-acetyl 
group at the nonreducing end is important. On the other hand, 
the induction of infection thread formation in the same alfalfa 
root hairs requires a very specific structure. ft meliloti strains 
producing Nod factors that either are non-O-acetylated at the 
nonreducing end or do not contain the appropriate C16 un
saturated fatty acid initiate markedly fewer infection threads 
(Ardourel et al., 1994). A double mutant secreting Nod factors 
lacking the O-acetyl group and containing an inappropriate 
fatty acid has completely lost the ability to induce infection 
threads. This led Ardourel et al. (1994) to postulate that at least 
two different Nod factor receptors are present in the epidermis: 
a "signaling receptor" involved in the induction of root hair defor
mation, and an "uptake receptor" that is activated only by 
molecules with a very specific structure and that initiates the 
infection process. 

The existence of distinct signaling and uptake receptors is 
supported by studies on the pea gene sym2, which controls 
nodulation. sym2 originates from the wild pea variety Af
ghanistan. Afghanistan peas and cultivated peas carrying an 
introgressed sym2 region nodulate only after inoculation with 
an Ft. leguminosarum bv viciae strain carrying an additional 
nod gene, namely, nodX. NodX catalyses the O-acetylation of 
ft leguminosarum bv viciae Nod factors (see Figure 2) at the 

reducing end (Firmin et al., 1993). ft leguminosarum bv viciae 
lacking nodX induces root hair deformation, but the ability to 
induce infection thread formation is strongly reduced. There
fore, Sym2 is a good candidate for an uptake receptor that 
interacts with NodX-modified Nod factors (T. Bisseling, unpub
lished data). 

A biochemical approach to isolate a Nod factor receptor is 
feasible because large quantities of purified Nod factors, as 
well as chemically synthesized ones (Nicolaou et al., 1992), 
are available. A first report (Bono et al., 1995) on Nod factor 
binding proteins has revealed the occurrence of a binding pro
tein that is present predominantly in the 3000g fraction of root 
extracts from alfalfa. However, the affinity of this binding pro
tein for its ligand is lower than the concentration at which Nod 
factors are active. Furthermore, it binds to sulfated and non-
sulfated factors in a similar way, whereas factors lacking the 
sulfate group are barely active on alfalfa. Therefore, it is un
likely that this protein is the Nod factor receptor. The availability 
of labeled Nod factors also creates the possibility of clarifying 
whether lectins play a role in binding of Nod factors, as has 
been postulated in the past (Long and Ehrhardt, 1989). 

At present, genetic approaches to unravel Nod factor per
ception are restricted to legumes such as pea and soybean. 
Unfortunately, these species are recalcitrant to molecular 
genetic strategies leading to gene cloning. To study the mode 
of action of Nod factors, it might therefore be essential to de
velop new legume model systems (Barker et al., 1990; 
Handberg and Stougaard, 1992) or to explore the potential of 
nonlegume systems such as Arabidopsis. The latter may at 
first seem illogical, but a few observations show that Nod fac
tors are recognized by nonlegumes. For example, expression 
of rhizobial nod genes in tobacco affects the development of 
these plants (Schmidt et al., 1993). Furthermore, a mutated 
carrot cell line that has lost the ability to form somatic embryos 
can be rescued by Nod factors (De Jong et al., 1993), and Nod 
factors trigger the alkalinization of the medium by tomato 
suspension-cultured cells (Staehelin et al., 1994a). Conse
quently, Nod factor receptors may be present in nonlegumes, 
a conclusion supported by the existence of a nonlegume, 
Paiasponla, that can be nodulated by rhizobia (Marvel et al., 
1987). 

The availability of a root hair deformation assay and knowl
edge of some of the plant genes that are activated by the Nod 
factors, together with methods to inject root hairs (Allen et al., 
1994), should make it possible to unravel the signal transduc
tion cascades that are activated after Nod factor perception. 
These tools have been developed only recently, and therefore 
our understanding of Nod factor signal transduction is still in 
its infancy. Additional studies are required to determine the 
relevance of Nod factor-induced changes such as ion fluxes, 
membrane depolarization, and rearrangements of the actin 
filaments in the signal transduction pathways (Allen et al., 1994). 
Furthermore, it has now become possible to study whether, 
in addition to Nod factors, other rhizobial compounds are 
involved in facilitating Nod factor-induced responses. A 
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candidate Is the NodO protein (Sutton et al„ 1994). nodO, which 
Is present In ft leguminosarum bv viciae, encodes a secreted 
protein that Is not involved In Nod factor biosynthesis. When 
added to lipid bilayers, the purified protein can form channels 
that allow the movement of monovalent ions. Therefore, it has 
been suggested that NodO may amplify the Nod factor-
induced responses by integration into the plant plasmamem-
brane (Sutton et al., 1994). 

From Nodule Development to Nodule Functioning 

As described previously, research on early stages of nodula-
tion has emphasized the developmental steps of these 
processes. The achievements of rhizobial genetics allowed the 
dissection of the early stages and facilitated the characteriza
tion of the rhizobial signal molecules, the Nod factors, which 
play a key role in all early nodulation processes. The availabil
ity of purified Nod factors has now made the system accessible 
for biochemical approaches that should yield insight into the 
structure and distribution of Nod factor receptors and their sig
nal transduction pathways. 

Regarding the final steps of nodule formation, however, the 
proteins involved in nodule nitrogen, carbon, and oxygen me
tabolism have been studied on a biochemical level for decades, 
whereas research on the developmental aspects of the final 
steps of nodule formation is still in its infancy. Although sev
eral bacterial genes have been identified that, when mutated, 
cause a block in relatively late steps in nodule development, 
it has not been possible to identify the factors directly affect
ing differentation. Most mutants show pleiotropic effects or 
display host plant-dependent symbiotic phenotypes (see, for 
example, Gray et al., 1991; Hotter and Scott, 1991; Rossbach 
and Hennecke, 1991). The function of potential regulatory 
factors in nodule development, for example, in bacteroid dif
ferentiation, cannot be assessed because the technology for 
targeting these compounds to their sites of activity is not 
available. Thus, questions regarding signal exchange and de
velopmental switches during the later steps of nodule formation 
have been difficult to address. For these reasons, in the fol
lowing sections the major emphasis is on the biochemistry 
of nodule formation; developmental aspects are mentioned only 
briefly. 

Nitrogenase consists of two components, the homodimeric Fe 
protein, encoded by nifH, and the tetrameric molybdenum-iron 
(MoFe) protein, encoded by nilD and nifK, which contains the 
MoFe cofactor. Hydrogen evolution is part of the nitrogenase 
mechanism; in the absence of other reducible substrates, the 
total electron flux through nitrogenase is tunneled into hydro
gen production (Hadfield and Bulen, 1969). Crystallographic 
structure analyses of the Fe protein (Georgiadis et al., 1992) 
and MoFe proteins of free-living nitrogen-fixing bacteria have 
shown structural similarities with other electron transfer sys
tems, including hydrogenases and the photosynthetic reaction 
center (Kim and Rees, 1992; Kim et al., 1993; see von Wettstein 
et al., 1995, this issue). 

In symbiosis, ammonium, the product of nitrogen fixation, 
is exported to and assimilated in the plant, which in turn sup
plies the bacteria with carbon sources to provide the energy 
for the nitrogenase reaction. The structure of a mature nodule 
has developed to meet the requirements set by this nutrient 
exchange between both symbiotic partners. 

Nodule primordia differentiate into nitrogen-fixing nodules 
when bacteria have been released from the infection threads 
into the infected cells. Two types of legume nodules can be 
distinguished by their growth pattern—indeterminate and de
terminate nodules (Newcomb, 1981). Both types of nodule are 
characterized by peripheral vascular bundles and a central 
tissue containing infected and uninfected cells. In indeterminate 
nodules, a developmental gradient from the distal persistent 
meristem to the proximal senescence zone is present in which 
the central tissue is divided into specific zones (Figures 1A 
and 4; Vasse et al., 1990). The meristem is followed by the 
prefixation zone, where infection of the cells takes place. In 
the interzone, bacterial nitrogen fixation is induced, and it pro
ceeds throughout the nitrogen fixation zone. In the senescence 
zone, bacteroids are degraded by the plant. In determinate 
nodules, the nodule meristem ceases to divide at an early stage 
of development. As a result, all of the cells of the central tis
sue are at a similar stage of development at any given time. 
Actinorhizal nodules display an indeterminate growth pattern, 
but in contrast to legume nodules, they represent coralloid 
structures composed of several modified lateral roots without 
root caps (lobes). Actinorhizal nodule lobes contain a central 
vascular bundle as well as infected and uninfected cells in the 
cortex (reviewed by Berry and Sunell, 1990). 

NODULE FUNCTIONING 

Symbiotic nitrogen fixation takes place in specialized bacterial 
cells, in bacteroids in legume nodules, and in Frankla vesi
cles in actinorhiza. The bacterial enzyme nitrogenase catalyzes 
the following reaction: 

N2 8H+ 8e" + 16Mg-ATP - 2NH; 

16Mg-ADP + 16P, 
3 + H2 + 

(1) 

Metabolite Exchange between Plant Cells and 
Intracellular Bacteria: The PBM as Interface 

Root nodules provide the proper environment to allow efficient 
nitrogen fixation by the microsymbiont. Part of this specializa
tion is the occurrence of plant-derived membranes that in all 
cases surround the "intracellular" microsymbiont (Figure 1). 
In legume nodules, these membranes are called peribacteroid 
membranes (PBMs; Figure 1A). They form the interface 
between the symbiotic partners across which signals and me
tabolites are exchanged and prevent a defense response by 
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Figure 4. Oxygen Regulation in Indeterminate Legume Nodules. 

Indeterminate legume nodules consist of five distinct regions: 1, nodule meristem; 2, prefixation zone; 3, interzone; 4, nitrogen fixation zone; 
and 5, senescence zone. An oxygen barrier is present in the nodule parenchyma surrounding the nodule vascular bundle (shown in red) thai 
reduces oxygen access to the central tissue of the nodule. However, because this oxygen barrier is interrupted in the meristem, an oxygen gradient 
forms that extends from the distal to the proximal end of the nodule (shown by blue shading). In the first cell layer of the interzone (shown by 
the dashed green line), the low oxygen concentration leads to the events described in the green box. Low oxygen concentrations activate the 
bacterial transmembrane oxygen sensor protein FixL, which in turn phosphorylates and thereby activates the transcriptional activator FixJ. The 
activated FixJ protein (FixJ*) induces transcription of nifA and fixK, and the protein products of these genes induce the transcription of different 
genes encoding proteins involved in the process of nitrogen fixation. As an additional level of control, the NifA protein itself is oxygen sensitive. 
Leghemoglobln {lb) genes are expressed in the prefixation zone, the interzone, and the fixation zone. Leghemoglobin proteins transport oxygen 
to sites of respiration, thus enabling ATP production in a low-oxygen environment. 

the plant against the "intracellular* bacteria (Nap and Bisseling, 
1990; Verma, 1992; Werner, 1992). 

Upon release from the infection thread, bacteria become 
internalized in legume nodules by a process resembling en-
docytosis (Basset et al., 1977). In actinorhizal nodules, however, 
Frankia hyphae penetrate the cell wall of cortical cells and start 
branching, while the plasma membrane invaginates and cell 
wall material is deposited around the growing hyphae. Thus, 
Frankia is not released into the plant cytoplasm and stays sur
rounded by encapsulating cell wall material throughout the 
symbiosis (Berry and Sunell, 1990). Subsequently, the en-
dosymbionts multiply, enlarge, and eventually occupy most of 
the volume of the infected cell. During this process, growth 
of the microsymbiont and the surrounding membrane is syn
chronized by an unknown mechanism. This process of 
endosymbiont internalization and propagation requires mas
sive membrane synthesis—in the case of legume nodules, 30 
times the amount of plasma membrane synthesis (Verma, 
1992). 

The membrane surrounding the microsymbiont is derived 
from the host plasma membrane. The PBM of legume nodules 
has phospholipid (Perotto et al., 1995) and protein composi
tion that are different from those of the plasma membrane 
(Verma, 1992) and that (presumably) endow it with special
ized functions. The PBM contains several nodulins and may 
also contain a rhizobial protein (Fortin et al., 1985; Miao et al., 
1992). Within the peribacteroid space between the bacteroids 
and the PBM, several proteins are present that are also found 
in vacuoles, for example, n-mannosidase II (Kinnback et al., 
1987; Mellor and Werner, 1987), proteases (Mellor et al., 1984), 
and protease inhibitor (Garbers et al., 1988; Manen et al., 1991). 
Thus, the PBM may have adapted some properties of the 
tonoplast membrane (Mellor and Werner, 1987). Indeed, it has 
been proposed that the symbiosome (the PBM with enclosed 
bacteroids) has properties of a lytic compartment continuously 
being neutralized by ammonia exported by the bacteroids 
(Kannenberg and Brewin, 1989). According to this hypothe
sis, one would expect that the lack of bacterial nitrogen fixation 
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would lead to bacteroid degradation. In fact, there is evidence 
for premature bacteroid degradation of nonfixing Rhizobium 
mutants (for example, see Hirsch and Smith, 1987). 

The extensive membrane biosynthesis in infected cells, to
gether with the possibility to manipulate gene expression in 
root nodules without affecting other parts of the plant, has made 
the PBM an ideal system to study membrane biogenesis in 
plants. By using an antisense strategy in combination with 
nodule-specific promoters, it has been possible to show that 
homologs of the Ypt1 protein (Schmitt et al., 1986), which 
controls membrane biosynthesis in yeast, are involved in PBM 
biosynthesis in soybean nodules (Cheon et al., 1993). In nod
ules expressing antisense RNA of such a homolog, the number 
of bacteroids per cell was reduced and the infected cells did 
not expand. 

Because the PBM constitutes the interface between bac
teroids and host plants, it plays an important role in controlling 
the exchange of metabolites. These include ammonium, the 
product of nitrogen fixation, and heme, the prosthetic group 
of the oxygen transport protein leghemoglobin, which are ex
ported by the bacteroids to the host cytoplasm (O'Gara and 
Shanmugan, 1976; Nadler and Avissar, 1977), as well as car
bon sources and probably also assimilated ammonium, which 
are supplied by the host to the bacteroids (De Bruijn et al., 
1989; Werner, 1992). Which proteins are involved in the trans
port of these compounds is largely unclear. Bacteroids express 
a dicarboxylic acid uptake system, isolated bacteroids take up 
dicarboxylic acids, and mutants in this uptake are symbioti-
cally ineffective (Ronsonetal., 1987; Werner, 1992), all of which 
indicates that dicarboxylic acids are likely to be the carbon 
source supplied by the plant to the intracellular bacteria. It has 
been suggested that nodulin-26 transports the dicarboxylic 
acids to the bacteroids (Ouyang et al., 1991). However, its low 
substrate specificity in vitro indicates that it is more likely to 
form a pore responsible for the uptake of ions or small metab
olites in general (Weaver et al., 1994). 

After division, the intracellular bacteria differentiate into bac
teroids. Because both plant (Haser et al., 1992) and bacterial 
(Glazebrook et al., 1993) mutants have been identified that are 
specifically defective in bacteroid differentiation, this process 
may be independent of internalization of bacteria by the in
fected cells. Bacterial mutants specifically defective in the 
release of bacteria from the infection thread are known as well 
(De Maagd et al., 1989). Bacterial nod genes are expressed 
in the distal part of the prefixation zone (Figure 4; Schlaman 
et al., 1991), indicating that Nod factors may play a role in sig
nal exchange within the nodule. However, because bacterial 
release and bacteroid development can be impaired in bacter
ial strains with functional nod genes, other bacterial and/or plant 
signals must also play a role in these steps of development. 

Metabolite Exchange between Nodule and Plant: 
Nitrogen Transport 

In the context of the whole plant, the root nodule functions as 
a nitrogen source and a carbon sink. In fact, it has been 

suggested that legume nodules evolved from carbon storage 
organs (Joshi et al., 1993). The carbon source transported from 
the leaves to the nodules is sucrose (Hawker, 1985), which is 
introduced into nodule metabolism through degradation by su
crose synthase. This enzyme is present at high levels in both 
legumes and actinorhizal nodules (Thummler and Verma, 1987; 
M. van Ghelue, A. Ribeiro, A. Akkermans, B. Solheim, A. van 
Kammen, T. Bisseling, and K. Pawlowski, unpublished obser
vations). The form in which nitrogen is transported depends 
on the plant: temperate legumes, which generally form indeter
minate nodules, export amides, whereas tropical legumes, 
which form determinate nodules, export ureides. Actinorhizal 
plants export mostly amides, with the exceptions of Alnus sp 
and Casuarina equisetHolia, which are citrulline exporters 
(Schubert, 1986; Sellstedt and Atkins, 1991). In all cases, am
monium is exported by the microsymbiont as the first product 
of nitrogen fixation and is assimilated in the cytoplasm of nod
ule cells via the glutamine synthetase (GSMglutamate synthase 
pathway (Schubert, 1986; see Lam et al., 1995, this issue). Sub
sequently, glutamate is metabolized into nitrogen transport 
forms. The products of several late nodulin genes play a role 
in this metabolism. 

In ureide-producing determinate legume nodules, the as
similation of ammonium by GS and the biosynthesis of ureides 
are spatially separated to some extent: whereas GS is ex
pressed in both infected and uninfected cells of soybean 
nodules (Miao et al., 1991), uricase (nodulin-35), a key enzyme 
in purine oxidation that catalyzes the oxidation of uric acid to 
allantoin, has been found in peroxisomes of uninfected cells 
only (Hanks et al., 1981; Nguyen et al., 1985). Allantoinase, 
which catalyzes the next step in purine oxidation, has also been 
localized to uninfected cells (Hanks et al., 1981). The uninfected 
cells of determinate nodules also seem to be involved in the 
transport of fixed nitrogen. These cells constitute a more or 
less continuous network throughout the whole central tissue 
that facilitates the transport of assimilated ammonium to the 
nodule vascular bundle (Selker, 1988). An elaborate tubular 
endoplasmic reticulum system that is appressed to the perox
isomes, where ureides are produced, and continues through 
plasmodesmata connects all uninfected cells (Newcomb et al., 
1985). In indeterminate nodules, by contrast, no specialized 
function has been assigned to the uninfected cells in the cen
tral tissue. Instead, efficient transport of fixed nitrogen is 
achieved by the presence of transfer cells in the pericycle of 
the nodule vascular bundles (Pate et al., 1969). 

Oxygen Protection of Bacterial Nitrogen Fixation 

Nitrogenase is highly oxygen sensitive because one of its com
ponents, the MoFe cofactor, is irreversibly denatured by oxygen 
(Shaw and Brill, 1977). On the other hand, the large amount 
of energy required for this reaction has to be generated by ox
idative processes; thus, there is a high demand for oxygen 
in nodules. Different strategies are used in different symbiotic 
interactions to cope with this paradox. In legume nodules, a 
low oxygen tension in the central part of the nodule is achieved 
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by a combination of a high metabolic activity of the microsym-
biont and an oxygen diffusion barrier in the periphery of the 
nodule, that is, in the nodule parenchyma (Figure 4; Witty et 
al., 1986). Because oxygen diffuses ~10* times faster through 
air than through water, it is generally assumed that oxygen 
diffusion in nodules occurs via the intercellular spaces. The 
nodule parenchyma contains very few and small intercellular 
spaces, and this morphology is thought to be responsible for 
the block in oxygen diffusion (Witty et al., 1986). In the nodule 
parenchyma, nodulin genes such as ENOD2 are expressed 
whose protein products might contribute to the construction 
of the oxygen barrier (Van de Wiel et al., 1990). In the infected 
cells of the central part of the nodule, high levels of the oxy
gen carrier protein leghemoglobin facilitate oxygen diffusion. 
In this way, the microsymbiont is provided with sufficient oxygen 
to generate energy within a low overall oxygen concentration 
(Figure 4; Appleby, 1984). 

In contrast to Rhizobium, Frankia bacteria can form special
ized vesicles in which nitrogenase is protected from oxygen 
(Figure 1B; Benson and Silvester, 1993). However, vesicle for
mation during symbiosis does not take place in all Frankia-
root interactions (Benson and Silvester, 1993) and does not 
always seem to provide full oxygen protection of nitrogenase 
(Tjepkema, 1983; Kleemann et al., 1994). In these cases, an 
oxygen diffusion barrier is established around groups of in
fected cells by lignif ication of the walls of adjacent uninfected 
cells (Berg and McDowell, 1988; Zeng et al., 1989). In addi
tion, the oxygen transport protein hemoglobin, the equivalent 
of leghemoglobin, is found in the infected cells (Fleming et 
al., 1987; Tjepkema and Asa, 1987; Jacobsen-Lyon et al., 1995). 

As in actinorhizal symbioses, in the Nostoc-Gunnera sym
biosis, oxygen protection of nitrogen fixation is achieved by 
the formation of a specialized compartment containing nitroge
nase: Nostoc forms heterocysts that are protected from oxygen 
by a glycolipid cell wall (Figure 1C; Bergman et al., 1992). 

Gene Regulation in Nodules 

To obtain nitrogen-fixing root nodules, several genes of both 
symbionts are specifically induced or repressed during nod
ule development. The use of reporter genes as well as in situ 
hybridization studies has provided detailed insights into the 
spatial and temporal regulation of such genes in indeterminate 
nodules. In such nodules, major, sudden developmental 
changes occur at the transition of the prefixation zone to the 
interzone: starch is deposited in the plastids of the infected 
cells, and the bacteroid morphology alters (Figures 1A and 4; 
Vasse et al., 1990). These events are accompanied by changes 
in bacterial gene expression: transcription of bacterial nil genes, 
which encode enzymes involved in the nitrogen fixation pro
cess, is induced, whereas expression of the bacterial outer 
membrane protein gene mpA is dramatically reduced (Yang 
et al., 1991; De Maagd et al., 1994). 

All of these events, together with dramatic changes in plant 
gene expression (see later discussion), take place within a 

single cell layer. What plant factor causes this rapid change 
in bacterial differentiation? To answer this question, rhizobial 
nit gene regulation has been studied extensively and has gener
ally been found to be induced by microaerobic conditions 
(reviewed in Merrick, 1992; Fischer, 1994). The regulation of 
nif gene expression in R. meliloti is described here (see Fig
ure 4) because it can be correlated to morphological changes 
observed in an indeterminate nodule. 

Transcription of R. meliloti nitrogen fixation {nit/fix) genes is 
controlled either by the transcriptional activator NifA together 
with the sigma factor RpoN (Gussin et al., 1986; Morrett and 
Buck, 1989) or, for some genes, by the transcriptional activa
tor FixK. NifA activity is under oxygen control at two levels: 
the NifA protein itself is oxygen sensitive (Krey et al., 1992), 
and its transcription, together with that of fixK, is induced un
der microaerobic conditions by the transcriptional activator FixJ 
(David et al., 1988). FixJ is part of a two-component system 
that includes the oxygen-sensing hemoprotein FixL. FixJ is 
activated by FixL by phosphorylation upon microaerobiosis 
(see Figure 4; David et al., 1988; Gilles-Gonzalez et al., 1991; 
Da Re et al., 1994). It is the activated FixJ protein that in turn 
induces the transcription of nifA and fixK (Batut et al., 1989). 

Although microaerobic conditions are essential for rhizobial 
nif gene transcription in symbiosis, it has long been debated 
whether the reduction of oxygen concentration is the sole 
regulatory factor for the induction of nif gene expression in the 
interzone. Recent results (Soupene et al., 1995) have shown 
that R. meliloti nif gene expression in plants can be modified 
by changing the external oxygen concentration: in nodules im
mersed in agar, nif gene expression is extended to a younger 
part of the nodule and now also occurs in the prefixation zone. 
This effect is controlled by the FixLJ system, because the same 
result is obtained by nodulation with a strain carrying a con-
stitutively active mutant form of FixJ (FixJ*; see Figure 4). Thus, 
oxygen concentration seems to be a major factor in control
ling symbiotic nif gene transcription during symbiosis. In 
contrast, ropA expression is not under oxygen control in free-
living bacteria, and ropA repression can even be uncoupled 
from nif gene induction in the same cell layer. In mutant nod
ules induced by a Rhizobium strain whose host range had been 
manipulated, ropA mRNA distribution was equal to that in wild-
type nodules, whereas bacteroid differentiation and nif gene 
induction did not take place (De Maagd et al., 1994). There
fore, further analyses are required to determine the other 
regulatory factors responsible for the changes in bacterial gene 
expression in the first cell layer of the interzone. 

The expression of several plant genes is also controlled at 
the transition of the prefixation zone to the interzone as well 
as in other zones of the central tissue (Scheres et al., 1990a, 
1990b; Yang et al., 1991; Kardailsky et al., 1993; Matvienko 
et al., 1994). However, the expression of these genes seems 
not to be controlled by the oxygen tension (Govers et al., 1986) 
but rather to be under developmental control. To analyze the 
regulators of plant nodulin gene expression, the expression 
of nodulin promoter-p-glucuronidase fusions has been stud
ied in heterologous legumes (Forde et al., 1990; Szabados et 
al., 1990; Brears et al., 1991). 
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The most extensive studies have been performed on the 
leghemoglobin genes. So far, promoter analysis of these genes 
has led to the identification of a so-called organ-specific ex
acting element (OSE; Ramlov et al., 1993), also called the 
nodule-infected cell-specific element (NICE; Szczyglowski et 
al., 1994), which has also been found in the promoter of the 
nodule-specific hemoglobin gene of the actinorhizal plant 
Casuarina glauca (Jacobsen-Lyon et al., 1995). A C. glauca 
hemoglobin promoter-p-glucuronidase fusion is expressed in 
the infected cells of fl/wzob/um-induced nodules from Lotus 
corniculatus (Jacobsen-Lyon et al., 1995), which implies that 
similar regulatory factors are involved in both legume and ac
tinorhizal systems. However, the corresponding transcription 
factors that bind to these promoter elements have yet to be 
identified. 

recognized by receptors that are also present in nonlegumes; 
preinfection thread formation appears to involve a mechanism 
derived from the cell cycle machinery; and several plant pro
teins that were thought to function exclusively in nodules 
appear to have nonsymbiotic counterparts, as has been de
scribed for soybean nodulin-26 (Miao and Verma, 1993) and 
Casuarina hemoglobin (Jacobsen-Lyon et al., 1995). Further
more, actinorhizal nodules and nodules induced by rhizobia 
on the nonlegume Parasponia closely resemble lateral roots 
(Hirsch, 1992). Thus, the processes modified in the nodule de
velopmental programs are common to all higher plants. Studies 
of how these common processes have been altered might 
therefore provide new means to design strategies by which 
nonlegume plants can be given the ability to establish a sym
biosis with a nitrogen-fixing microbe. 

CONCLUDING REMARKS ACKNOWLEDGMENTS 

Symbioses between higher plants and nitrogen-fixing microor
ganisms provide a niche in which the prokaryote can fix 
nitrogen in a very efficient manner. A comparison of the de
velopment and functioning of the three different nitrogen-fixing 
symbioses has provided and continues to provide insight into 
how both common and unique strategies have evolved to solve 
problems imposed by various requirements of nitrogen fixation. 
For instance, in all systems the plant copes with intracellular 
bacteria by enclosing them in a plasmalemma-derived mem
brane, whereas protection of the enzyme nitrogenase against 
oxygen is achieved in diverse manners. 

An intriguing aspect of the nitrogen-fixing symbioses is their 
host specificity, whose strictness varies in the different sys
tems. In the Gunnera-Nostoc system, only a single plant genus 
can establish the interaction, whereas rhizobia can interact 
with most members of the legume family. Frankia bacteria are 
the most promiscuous microsymbionts, because they can es
tablish a symbiosis with plants belonging to different families; 
however, recent molecular phylpgenetic studies have shown 
that these families are actually rather closely related (Chase 
et al., 1993; Maggia and Bousquet, 1994). 

Host specificity provides a serious restraint in the applica
tion of symbiotic nitrogen fixation in agriculture, because most 
major crops are unable to establish such a symbiosis. There
fore, it is not surprising that since the development of plant 
genetic engineering techniques, an important goal has been 
to transfer the ability to form a nitrogen-fixing symbiosis to im
portant crops, such as rice. However, molecular genetic 
research has shown that a relatively high number of specific 
host functions are involved in forming a nitrogen-fixing organ. 
Therefore, it has seemed impossible to achieve this aim with 
the methodology available. 

The possibility of reaching this goal has become newly in
vigorated as a result of research indicating that mechanisms 
controlling nodule development might be derived from proces
ses common to all plants. For example, Nod factors might be 
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Exploratory studies on epitope-tagged early nodulins 

INTRODUCTION 

During the Rhizobium-legame interaction the expression of a number of nodule specific plant 

genes, called nodulin genes (Van Kammen, 1984) is induced. The genes involved in the early 

steps of the interaction, playing a role in the infection process and nodule development, are 

the so-called, early nodulin genes. Among the best studied early nodulin genes, are ENOD5 

and ENOD12, for which homologues have been isolated from different leguminous plants 

(Scheres et al., 1990a,b; Pichon et al., 1992; Allison et al., 1993; Vijn et al., 1995a). 

PsENOD5 is expressed in both root hairs and root cortical cells containing the tip of an 

infection thread (Scheres et al., 1990a). PsENODH is expressed in the epidermis and cortical 

cells containing infection threads, as well as in cortical cells before they are traversed by them 

(Scheres et al., 1990b). In the nodule primordia, PsENODS transcripts are present only in the 

infected cells, whereas PsENODH mRNA occurs in all cells of the primordia. In a mature 

nodule, PsENODS mRNA occurs only in the infected cells of the prefixation zone, and it 

reaches its maximum level in the interzone. The amount of the transcript in the cells decreases 

suddenly at the transition of interzone into fixation zone where it remains at a constant low 

level. ENOD12 is highly expressed in infected as well as uninfected cells of the prefixation 

zone, while ENOD12 mRNA is absent in the interzone and fixation zone (Vijn et al., 

1995a,b). 

Both ENOD5 and ENOD12 have a proline rich nature and might be cell wall proteins 

involved in infection thread growth. They are probably useful tools to unravel the molecular 

mechanism of infection thread formation. As a first step in resolving the function of these 

proteins, we wanted to immunolocalize the proteins using antisera raised against, either 

purified proteins produced in E.coli, or synthesized peptides conjugated to a carrier protein. 

Despite the fact that the antisera recognized the E. coli expressed protein or the synthetic 

peptide, every trial to detect the ENOD5 and ENOD12 proteins has been unsuccesful so far 

(data not shown). For this reason we decided to initiate an alternative approach, namely 

epitope-tagging. In this method, one can make use of the commercial available antibodies 

against small peptides. A vector containing a gene encoding a protein, consisting of a peptide 

epitope for which antibodies are available, linked to the N-terminus, the C-terminus or 

inserted somewhere in the protein of interest, has to be constructed and introduced into plants. 

A fast transformation system for Vicia, giving rise to transgenic roots that can be inoculated 

by Rhizobium, is at the moment available (Quandt et al., 1993). We used this transformation 

system for an attempt to study epitope-tagged ENOD5 and ENOD12. 

The nonapeptide YPYDVPDYA (HA) is often used as an epitope tag. This peptide was 

originally identified as a major antigenic determinant of the human influenza virus 

hemagglutinin, a glycoprotein required for infectivity of the human influenza virus (Green et 

al., 1982; Wilson et al., 1984). Monoclonal and polyclonal antibodies for this epitope, are 
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available commercially. Therefore, we studied whether HA can be used as a tag in plants. 

Data on these studies will be presented in this chapter. 

RESULTS 

Tissue-specific expression of the duplicated 35S promoter 

For immunolocalization studies of epitope-tagged early nodulins in transgenic plants, a 

promoter is needed that drives the expression of the nodulin transgenes in the cells in which 

the early nodulin genes are normally transcribed, and gives a strong expression. The CaMV 

35S promoter is one of the strong promoters that can be used for studies in roots and nodules 

(Quandt et al., 1993). The duplicated CaMV 35S promoter was shown to have an even 

stronger activity than the single CaMV 35S promoter (Kay et al., 1987; Fang et al., 1989). To 

find out whether this modified promoter can be useful for studies on early nodulins, its 

expression pattern in nodules was studied. The duplicated 35S promoter was fused to /?-

glucuronidase-intrcm (gusA-'mt) gene. 

35S duplicated 
promoter GUS-intron 

35S polyA 
signal 

ESS 

Figure 1. Schematic representation of the construct used to perform promoter analysis of the duplicated CaMV 

35S promoter. 

The densely shaded boxes depict the two copies of the CaMV 35S promoter enhancer (domain B, -343 to -90) 

followed by domain A containing the minimal promoter (-90 to 0) which is depicted with a light shaded box. 

gusA-int is depicted with a black box while the CaMV 35S polyadenylation signal is shown by a densely shaded 

box. 

This construct (Figure 1) was introduced into Vicia hirsuw using an Agrobacterium 

rhizogenes transformation system (Quandt et al., 1993), resulting in a non-transformed shoot 

and transformed hairy roots. The hairy roots were inoculated with Rhizobium leguminosarum 

bv. viciae strain VH5e and pink nodules were formed after nine days. 

As it can be seen from figure 2A, each shoot forms more than one hairy root and not all hairy 

roots of a single plant are showing GUS expression. The hairy roots lacking GUS activity 

might not contain the transgene. However, lack of staining might be also attributed to a low 

expression level or silencing of the transgene, due to positional effects. Furthermore, 

transformed roots form nodules with and without GUS activity (Figure 2B). This indicates 
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r •:m 
Figure 2. Histochemical localization of duplicated 35S-gusA-int activity in transgenic Vicia hirsuta. The activity 

is shown as blue precipitate. 

A. Overview of the hairy roots formed from a single plant after puncturing with Agrobacterium rhi7.0gen.es strain 

ARqual. Note that there are roots that lack GUS activity. 

B. GUS activity was strongly detected in the nodules. Note that not all nodules of a transformed root show the 

activity, indicating that the roots are chimaeric. 

C. D, E. Close-ups of trangenic Vicia hirsuta roots. GUS activity is observed in the root vascular bundle (C, D, 

E), but not in the root cap and the root meristem of main (C) and lateral roots (E). The activity is also detected in 

nodule primordia (E) but not in lateral root primordia (D). 
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that the roots are actually chimaeric. In most experiments, 30%-70% of the roots contain GUS 

activity. 25%-40% of the nodules formed on the roots having GUS activity, expressed GUS at 

a detectable level (Table 1). 

Period after inoculation 
with R. leguminosarum 

7 days 

14 days 

21 days 

29 days 

GUS staining (%) 

Roots 

62 

32 

44 

68 

Nodules 

42 

24 

39 

24 

Table 1. Transformation efficiency of plants transformed with duplicated ~S5S-gusA-uA. Plants were stained for 

GUS activity, 7, 14, 21, and 29 days after inoculation of the hairy roots with Rhizobium leguminosarum bv. 

viciae strain VH5e. The percentages of the transformed roots showing GUS activity were scored. 80 plants were 

used in each time point. The percentages of the GUS expressing nodules, present on the roots having detectable 

levels of GUS activity, were also scored. 

The duplicated 35S promoter is active at a variable level in the vascular bundle of both main 

and lateral roots (Figure 2C), but it is neither active in root meristem and root cap (Figure 2C, 

2E), nor lateral root primordia (Figure 2D). In contrast, the duplicated 35S promoter is active 

at a high level in nodule primordia (Figure 2E, 3A). Furthermore, it is active in nodules of 

different ages (Figure 2B). A typical expression pattern within a nodule, can be seen in figure 

3B. Longitudinal sections of plastic embedded nodules, showed that the promoter is active 

through all the zones of a mature nodule (15-21 days, Figure 3B). In most nodules though 

(Figure 3B), a higher expression level was observed in the prefixation zone and the nodule 

vascular bundle. 

Since ENOD5 and ENOD12 are preferentially expressed in the prefixation zone, the 

duplicated 35S promoter is suitable for studies on the epitope-tagged early nodulins. 

HA epitope-early nodulin constructs 

Constructs encoding an HA-early nodulin fusion protein were made. PsENOD12B carries a 

signal peptide at the N-terminus, therefore the tag was introduced at the C-terminus (Figure 4, 

upper panel). 
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X 

Figure 3. Histochemical localization of duplicated 35S-gusA-int in nodules. 

A, B. Dark field micrographs of cross-sections of plastic embedded nodules. The use of dark field results in 

visualization of GUS activity as purple precipitate (instead of blue when bright field is used). Blue precipitate 

though can be seen with dark field when the activity is too high. 

GUS activity can be detected in nodule primordia (A) and the root vascular bundle (A). In B, the activity in a 

nodule of 15 days upon inoculation with R. leguminosarum bv. viciae strain VH5e, can be viewed. The purple 

precipitate can be observed in all zones. The highest GUS activity is in the nodule vascular bundle and some 

cells of the prefixation zone, where a blue precipitate is visualized. In the nodule meristem and the prefixation 

zone, -where a uniform deep purple colour can be seen, the activity is higher than in interzone and the fixation 

zone, -where the purple precipitate shows a more spotted appearance. 

ENOD5 also contains an N-terminal signal peptide, while the C-terminus is hydrophobic and 

might serve as an anchor to the membrane, which could mask a C-terminal tag. Therefore, 

two constructs were made, one containing the HA tag at the C-terminus and another construct 

with the epitope inserted in the middle (Figure 4, upper and bottom panel). For the second 

construct we selected the area that has the highest hydrophilicity and antigenic index 
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Figure 4. Schematic representation of the HA-early nodulin constructs. 

All constructs were put under the control of the duplicated CaMV 35S promoter. The CaMV 35S 

polyadenylation signal was used. The epitope tag (HA, black box) is fused at the carboxyl-terminus of ENOD5 

and ENOD12B (upper panel), or inserted in the middle of ENOD5 (between the 36th and 37th amino acids, 

bottom panel). 

according to the Wisconsin Sequence Analysis Package^M of the Genetics Computer Group, 

Inc (, 1986), and the tag was inserted between the 36th and the 37th amino acids. 

All constructs were put under the control of the duplicated CaMV 35S promoter (Figure 4), 

and cloned into pBIN19, a vector appropriate for plant transformation with Agrobacterium 

rhizogenes. 

Detection and characterization of epitope-tagged ENOD12 protein 

Plants were transformed with a construct carrying the gene encoding the epitope-tagged 

PsENOD12B under the control of the duplicated 35S promoter (Figure 4, upper panel). As a 

control, plants were transformed with the vector. In order to confirm that, the transgene is 

expressed, and the fusion protein is stable in our plants, proteins were isolated and 

immunoblots were made. Since PsENOD12B might be a cell wall protein, a protein isolation 

protocol for cell wall proteins was used. Two protein fractions were isolated; the low salt 

fraction (LS), containing all the cytosolic proteins, and the high salt fraction (HS), containing 

the non-convalently bound cell wall and membrane proteins. The proteins were separated on a 

20% SDS-PAGE gel and the western blot was incubated with monoclonal or polyclonal 

antibodies against the hemagglutinin nonapeptide (12CAT5). In the right panel of Figure 5, 

the result of an immunoblot with the polyclonal antibodies is presented. No differences were 

observed between the low salt protein fractions from nodules of plants transformed with either 

alone the vector or the construct (Figure 5). However, 2 extra polypeptides (arrow), of 14.4 

kD and 15 kD, are present in the high salt fraction of the nodules expressing the HA-
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ENOD12B gene. In addition, a lot of other bands common between the extracts of plants 

carrying the transgene or the vector are recognized by the polyclonal antiserum, indicating 

that either the antiserum is of bad quality or that proteins exist in plants that can crossreact 

with the particular antiserum. No crossreacting polypeptides could be detected with 

monoclonal antibodies, indicating that this antibody has a lower titer than the polyclonal HA 

antibody. 

conA Ulex agglutinin potyotoiw* At 

TAG TAG TAG 

H3 LS HS t-S HS LS H5 LS 

HBssv- .V ": 

9HBiK»£!.-^ 

BBJBP^. ' . '^SJ 

•R® 

flSHH ̂ HHBaflBf 

HS LB HS LS 

Figure 5. Western blots of protein isolates from transgenic plants transformed with ENOD12B-HA construct 

(TAG). As control, plants were transformed with the vector (V). Two protein extracts were obtained; LS, low 

salt fraction, and HS, high salt fraction. In the right panel, an immunoblot with the polyclonal antibody against 

HA is depicted. The anow indicates the two extra polypeptides of 14.4 kD and 15 kD present in the HS fraction 

of plants transformed with the ENOD12B-HA. In the left panel, identical blots as in the one shown the right 

panel, were stained with Conconavalin A (conA), a mannose and glucose specific lectin and Ulex europaeus 

agglutinin A, a fucose specific lectin. The polypeptides recognized by the antibody are stained also with the 

lectins (arrows). A third polypeptide of 12 kD (arrowheads), present in the HS fraction of plants transformed by 

ENOD12B-HA, is also stained by the lectins but it is not recognized by the antibody. 

The expected molecular weight of the mature PsENOD12B-HA fusion protein is 10,2 kD. In 

the immunoblots the detected extra bands have a larger molecular weight, indicating a shift 

that might be due to glycosylation. To determine whether the crossreacting proteins are 

glycosylated, similar blots as used for the immunodetection were stained with lectins (left 

panel of Figure 5). Conconavalin A, a mannose and glucose specific lectin, and Ulex 
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europaeus agglutinin I, specific for fucose, were used. Both polypeptides co-migrating with 

the 14.4 kD and the 15 kD polypeptides were stained with both lectins, indicating the 

presence of at least two sugar chains. Furthermore, a third polypeptide of approximately 12 

kD was detected with the lectins (arrowhead) in the high salt protein fraction isolated from 

nodules of plants carrying the transgene. This polypeptide is not recognized by the antibodies. 

Nevertheless it seems likely that it is a protein derived from the tagged ENOD12B protein. 

Hence, the recombinant protein is stable in plants and is found in the fraction of the cell wall 

proteins. The sequence characteristics of PsENOD12B has suggested that ENOD12B will be a 

cell wall protein. The occurrence of ENOD12 tagged protein in the high salt buffer fraction, 

appears to confirm this suggestion. In addition, preliminary data indicate that PsENOD12B is 

a glycoprotein. 

Immunocytological studies 

To check whether we are able to immunolocalize the epitope tagged proteins, we decided to 

transiently express the constructs in protoplasts. Cowpea protoplasts were isolated and 

transfected (Van Bokhoven et al., 1993) with the constructs carrying ENOD5-HA and 

ENOD12B-HA under the control of the duplicated 35S promoter, and the vector as a control. 

To localize the proteins that are transiently produced, the polyclonal or the monoclonal 

antibodies against the tag and FITC-conjugated goat-anti-rabbit or anti-mouse IgG 

respectively, were used. The use of the polyclonal antibodies resulted in a very high 

backround (data not shown). When the monoclonal antibodies were used as first antibodies no 

background was observed in the protoplasts transfected with the vector. But no recombinant 

protein was detected with the monoclonal antibodies when the protoplasts were transfected 

with the ENOD5-HA or the ENOD12B-HA constructs (data not shown). Bearing in mind that 

protoplasts lack cell walls, our failure to detect the recombinant proteins might due to the fact 

that they are secreted in the medium. 

Localization studies performed on nodules of transgenic plants transformed with ENOD5-HA 

and ENOD12B-HA constructs, resulted in high backround when the polyclonal anti-HA 

antiserum was used (data not shown). No fusion protein was detected when the monoclonal 

anti-HA antibodies were used. These data confirmed the observations obtained with the 

experiments performed with the cowpea protoplasts. 

CONCLUDING REMARKS 

Epitope tagging has been succesfully used in E. coli, yeast and mammalian cell lines, and 

plant protoplasts. In particular, this approach can be employed to perform immunolocalization 

studies of tagged proteins, (Mieszczak et al., 1992), and to purify functional complexes by co-
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immunoprecipitation of the tagged protein and the proteins associated with it (Field et al., 

1988). Furthermore, structural or functional domains of proteins have been identified with this 

procedure, by insertion of the tag in different positions leading to disruption of the particular 

protein (Wadzinski et al., 1992; Thomas and Maule, 1995). Since this approach opens lots of 

possibilities, we decided to initiate similar studies in plants, focusing on early nodulins, and 

making use of the fast plant transformation system giving rise to transformed roots, that has 

been established for legumes (Quandt et al., 1993). 

An important factor determining the success of such approach is the amount of fusion protein 

produced in the transgenic tissues, and therefore the procedure requires strong promoters to 

express the transgenes. The CaMV 35S promoter is one of the strongest promoters shown to 

be active in roots. Quandt et al. (1993) showed that this promoter is active in indeterminate 

type of nodules. Their work shows that the promoter confers high expression levels in the 

vascular bundle and the fixation zone of the mature nodule, whereas it is hardly active in the 

prefixation zone, the zone where infection thread growth occurs. This behaviour makes the 

promoter suitable for studies on late nodulins, but not suitable to overexpress early nodulins 

involved in the infection process. 

The CaMV 35S promoter is comprised of domains that confer different developmental and 

tissue specific expression patterns (Benfey et al., 1989). When domain B (-343 to -90, 

enhancer) of the promoter was used in tobacco, strong expression was observed in the root 

vascular bundle. Domain A (-90 to -43) conferred expression in the root, with highest 

expression levels in root tip, root cap, epidermis and root hairs. Combination of the two 

domains though, showed expression throughout the whole root (Benfey et al., 1989). Our 

experiments with the combination of domains B and A confirmed the data obtained by Benfey 

et al. (1989). Comparison of the expression patterns using various combinations of cis-

elements of the enhancer (domain B, -343 to -90) suggests synergistic interactions among the 

cis- elements that play a role in defining tissue-specific expression (Benfey et al., 1990a,b). 

Our studies revealed that the combination of two copies of the enhancer (position-343 to -90) 

CaMV 35S promoter changes indeed the expression pattern compared to the pattern obtained 

when only one copy of the enhancer is used. It actually behaves in a rather 'nodule specific' 

manner, showing low GUS activity in the vascular bundle of the roots and relatively very high 

GUS activity in nodules. The highest level of GUS activity was often seen in nodule 

primordia and in the prefixation zone of the mature nodules, both areas where infection takes 

place. These observations show that the duplicated 35S promoter is appropriate for studies on 

the epitope-tagged early nodulins ENOD5 and ENOD12. 

The promoters of PsENODS and PsENOD12B would be another choice, since the fusion 

proteins would then not be expressed ectopically. Since the ENOD5 promoter is not 

available, we could not use it. Promoter analysis of the ENOD12B promoter revealed that it is 

active at a rather low level (Vijn et al., 1995b), therefore it was not attractive. 
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One of the major problems that our transformation system creates, is that only a minor part of 

the nodules express the transgene at a detectable level. Only 30%-70% of the hairy roots show 

GUS activity and furthermore only a subset of the nodules on such roots express the transgene 

at a detectable level. That emphasizes the need for a preselection of transformed nodules, 

before immunolocalization studies are performed. For that purpose the luciferase genes 

(Aflalo, 1989; Koncz et al., 1990) might be good candidates as reporter genes, because they 

can be employed in very sensitive non-destructive in vivo assays. In preliminary experiments 

we have shown that the firefly luciferase gene can indeed be used as an easy and fast 

screening marker enabling preselection of transformed nodules. 

A number of experiments were performed with plants lacking the preselection marker, 

focusing mainly on studies on the ENOD12B-tag fusion protein, demonstrating that 

ENOD12B is a cell wall protein as it was predicted by the sequence characteristics. The 

immunolocalization studies, though performed with both polyclonal and monoclonal 

antibodies, gave no answer on the site of localization of either ENOD12B-tagged or ENOD5-

tagged proteins. The major problem encountered with the use of the polyclonal antibodies is 

the high background on both transfected protoplasts and cryosections of nodules (data not 

shown). It seems that there are epitopes in planta that are recognized by the particular 

antiserum. The use of the monoclonal antibodies resulted in no background, neither the 

epitope-tagged proteins were detected so far. These data indicate that HA tag is not usable for 

our purposes. 

The number of tags available is increasing, therefore a search for a combination of a tag and 

an antiserum that does not cause such backround problems in planta would be advisable. 

Alternatively, proteins like GFP (green fluorescence protein), isolated from jelly fish, that 

emits green light after excitation, can be tried as tag. In the latter case though, one should 

keep in mind that such tags might disturb proper sorting of the tagged proteins due to their 

relatively big size (around 250 amino acids). 

MATERIAL AND METHODS 

Plant growth conditions 

V. hirsuta seeds were obtained from John Chambers Ltd., London. Seeds were sterilized and 

germinated according to Vijn et al. (1995b). Germinated seedlings were transfered to Petri 

dishes containing 2% B&D-agar medium (Broughton and Dilworth, 1971) and were grown at 

22°C with a day/night cycle of 16/8 h. 
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Construction of nodulin-tag fusions and duplicated 35S promoter-gwsA-int 

Plasmid pHATO, kindly provided by Dr. W. Filipowicz, was used for the construction of the 

epitope fusion protein vectors (Figure 6). 

35S duplicated 
promoter 

35S polyadenylation 
signal 

ACCCGGGGATCCAACAATGTACCCATATGACGTCCCAGATTACGCTTAA 

M Y P Y D V P D Y A * 

Figure 6. Schematic representation of pHATO. 

This vector contains a duplicated CaMV 35S promoter and a CaMV polyadenylation signal, 

separated by the sequence encoding the influeza hemagglutinin nonapeptide, YPYDVPDYA. 

To obtain the C-terminus fusions the plasmid was cut with BamHI and Ndel. The cDNAs of 

PsENOD12B and PsENOD5 were amplified by PCR. The primers used in the PCR were: 

PsENOD12B forward: 5'-GGGGATCCACAATGGCTTCCCTTTTC-3' 

reverse: 5'-GGGACGTCATATGGGTACATGATATGGATGTTATG-3' 

PsENOD5 forward: 5'-GCGGATCCTCAATATGGCTTCTTCTTCT-3 

reverse: 5'-CGTCATATGGGTATAGCCAAATTAAGAA-3' 

The forward primers contain the BamHI site and the first 12 nucleotides of the coding region 

(from the starting methionine and downstream). The reverse primers cover the last 15 

nucleotides of the coding region of both cDNAs and part of the beginning of the tag, 

including the Ndel site. The PCR products where digested with BamHI and Ndel and cloned 

into pHATO. The cassete (promoter+epitope tagged protein+polyadenylation signal) was 

cloned in pBIN19 (Bevan, 1984), a plant expression vector. 
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To obtain the PsENOD5 fusion protein carrying the tag in the middle (the tag was introduced 

between the 36th and the 37th amino acids of the protein), a based-PCR mutagenesis was 

followed. The primers used for the PCR reaction were: 

PsENOD5 Forward: 5'-GAGAATTCATACCCATATGACGTCCCAGATTACGC 

TTGGAAGGTTAATTT-J 

reverse: S'-GCCTGCAGGCTATAGCCAAATTAAGAACAT-J 

The forward primer contains 9 nucleotides of the coding region of ENOD5 corresponding to 

the 34th, 35th and 36th amino acids of the encoded protein, followed by the sequence 

encoding the tag and ending with 15 nucleotides corresponding to 37th-41th amino acids of 

ENOD5. Between the 34th and 35th amino acids, there is an internal EcoRI site, which was 

used for cloning. The reverse primer contains the last 18 nucleotides of the coding region and 

an appropriate site for cloning (PstI). The PCR fragments were digested with EcoRI and 

PstI, and cloned in frame behind the cDNA of ENOD5 digested also with the same enzymes. 

Afterwards the cDNA of ENOD5 with the inserted tag was cloned in pBIN19, between the 

duplicated CaMV 35S promoter and the 35S polyadenylation signal. 

The fi-glucuronidase-intton (Vancanneyt et al., 1990) including the nopaline synthase 

terminator (NOS-ter) was cloned in pBIN19 behind the duplicated 35S promoter. 

All DNA-constructs were introduced into Agrobacterium rhizogenes (ARqual, Quandt et 

al., 1993) via electroporation (Mattanovich et al., 1989). 

Plant transformation 

Seedlings grown for 2 days were wounded with a 26 G needle containing A. rhizogenes 

(ARqual) harbouring the chimaeric gene construct. The wounded plants were grown at 22°C, 

in the dark for the first 24h, followed by a day/night cycle of 16/8 h. After 10 days the main 

root was cut off, and the plants containing the transgenic hairy roots were transferred to 

another B&D-agar plate and inoculated with R. leguminosarum bv. viciae strainVH5e 

(Quandt et al., 1993). 

Histochemical detection of GUS activity 

GUS activity was detected according to Jefferson et al. (1987). The reaction was stopped with 

70% ethanol. The stained nodules were further dehydrated in 100% ethanol and embedded in 

Technovit 8100, according to the manufactor's protocol (Kulzer GmbH, Germany). 4-6 |im 

thick sections of the embedded material were obtained with a microtome (Reichert-Jung 
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Biocut, 2035 Germany). Photographs were taken on a Nikon microscope equipped with a 

Nikon camera. 

Protein isolation and western blotting 

Nodules were harvested 10-20 days after inoculation of the trangenic plants with R. 

leguminosarum bv. VH5e and placed directly into liquid nitrogen. Nodules were ground in a 

mortar and pestle in a low salt buffer (3 mM EDTA, 10 mM DTT, 0.5 mM PMSF, and 10 

|ig/ml leupeptin, in 10 mM Tris pH 8.0). The extract was spun at 2500 X g for 10 min and the 

supernatant was retained as the low salt extract. The pellet was washed three times by 

resuspension in low salt buffer and centrifugation. Afterwards, the pellet was resuspended in 

high salt buffer (low salt buffer supplemented with 0.2 M CaC^), and allowed to extract for 2 

hours. The extract was centrifuged for 10 min at 25.000 X g. The supernatant represents the 

high salt cell wall extract. All extraction steps were carried out at 4°C. Proteins were 

precipitated overnight at -20°C in 80% ethanol. Precipitated proteins were recovered by 

centrifugation and resuspended in sample buffer (2% SDS, 5% P-mercaptoethanol, 10% 

glycerol, 50 mM Tris pH 6.8, 0.05% bromophenol blue). 

Protein concentrations were determined by a modified Bradford assay (BioRad microassay). 

Proteins were further analysed by SDS-PAGE electrophoresis and transferred to nitrocellulose 

membranes (Schleicher&Schuell). 

Immunological techniques 

Immunological detection of the proteins was carried out according to standard methods. 

Alkaline phosphatase-conjugated anti-rabbit goat IgG with Nitro Blue Tetrazolium (NBT; 

Boehringer Mannheim) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP; Boehringer 

Mannheim) were used for detection. 

Concanavalin A, specific for glucose and mannose, and Ulex europaeus agglutinin I, a 

fucose-specific lectin were used for detection of glycostructures in proteins immobilized on 

nitrocellulose membrane, according to De Jong et al. (1995). 

Immunocytochemistry 

Nodules were fixed in 4% paraformaldehyde and 0.5% glutaraldehyde for 3 hours at RT. 
Afterwards they were washed twice in PBS (0.13 M NaCl, 7 mM Na2HP04 (anhydrous), 3 
mM NaH2P04, 0.27 mM KC1) and transferred in a solution of 5% sucrose (in PBS) for 15 
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min. An incubation in 10% sucrose (in PBS) was followed and finally they were embedded in 

cryoblock frozen tissue medium (Boom/Wilten, Woltil, The Netherlands), and frozen in liquid 

nitrogen. 10 fim thick sections were obtained at -20°C with a cryotome (Bright, Instrument 

Company Ltd., Huntington England). 

For the light microscopic localization studies, immunolabelling was performed as described 

by VandenBosch (1991). Briefly, sections were first incubated in blocking buffer (2% BSA, 

2% normal goat serum, 0.2% Tween 20), followed by an incubation with the primary 

antibody (anti-HA, polyclonal or monoclonal), for 1 hour at RT or overnight at 4°C. The 

secondary antibody used for the cryosections was goat anti-rabbit (or mouse) alkaline 

phosphatase conjugate. Signals were visualized by incubation with Nitro Blue Tetrazolium 

(NBT; Boehringer Mannheim) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP; Boehringer 

Mannheim). 

ACKNOWLEDGEMENTS 

We thank Dr. W. Filipowitz, FMI, Basel, Switzerland for providing us the vector pHATO. 

We also thank M. Toonen, Dept. Molecular Biology, WAU, The Netherlands for the 35S 

promoter-Lwc construct and the members of the CPMV group, Dept. Molecular Biology, 

WAU, The Netherlands, for transfecting cowpea protoplasts with our constructs. 

REFERENCES 

Aflalo, C. (1991). Biologically localized firefly luciferase: a tool to study cellular processes. Int. Rev. Cytol. 

130, 269-323. 

Allison, L.A., Kiss, G.B., Bauer, P., Poiret, M., Pierre, M., Savoure, A., Kondorosi E., and Kondorosi, A. 

(1993). Identification of two alfalfa early nodulin genes with homology to members of the pea ENOD12 

gene family. Plant Mol. Biol. 21, 375-380. 

Benfey, P.N., Ren, L., and Chua, N.-H. (1989). The CaMV 35S enhancer contains at least two domains which 

can confer different developmental and tissue-specific expression patterns. EMBO J. 8, 2195-2202. 

Benfey, P.N., Ren, L., and Chua, N.-H. (1990a). Tissue-specific expression from the CaMV 35S enhancer 

subdomains in early stages of plant development. EMBO J. 9, 1677-1684. 

Benfey, P.N., Ren, L., and Chua, N.-H. (1990b). Combinatorial and synergistic properties of the CaMV 35S 

promoter enhancer subdomains. EMBO J. 9, 1685-1696. 

Bevan, M. (1984). Binary Agrobacterium vectors for plant transformation. Nucl. Acids Res. 12, 8711-8721. 

Broughton, WJ., and Dilworth, M. (1971). Control of leghemoglobin synthesis in snake beans. Biochem. J. 

125, 1075-1080. 

44 



Exploratory studies on epitope-tagged early nodulins 

De Jong, A., Hendriks, T., Meijer, E.A., Penning, M., LoSchiavo, F., Terzi, M., van Kammen, A., and de 

Vries, S.C. (1996). Transient reduction in the secreted 32kD chitinase prevents somatic embryogenesis in 

the carrot varient tsll. Devel. Genet., in press. 

Fang, R.-X., Nagy, F., Sivasubramaniam, S., and Chua, N.-H. (1989). Multiple cis regulatory elements for 

maximal expression of the Cauliflower Mosaic Virus 35S promoter in transgenic plants. Plant Cell 1, 141-

150. 

Field, J., Nikawa, J.-I., Broek D., MacDonald, B., Rodgers, L., Wilson, I.A., Lerner, R.A., and Wigler M. 

(1988). Purification of a i?as-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use 

of an epitope addition method. Mol. Cell. Biol. 8, 2159-2165. 

Green, N., Alexander, H., Olson, A., Alexander, S., Shinnick, T.M., Sutcliffe, J.G., and Lerner, R.A. 

(1982). Immunogenic structure of the influenza virus hemagglutinin. Cell 28, 477-487. 

Gribskov, M., Burgess, R.R., and Devereux, J. (1986). PEPPLOT, a protein secondary structure analysis 

program for UWGCG sequence analysis software package. Nucleic Acids Res. 14, 327-334. 

Jefferson, R.A., Kavanagh, T.A., and Bevan M.V. (1987). GUS-fusions: ^-glucuronidase as a sensitive and 

versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907. 

Kay, R., Chan, A., Daly, M., and MacPherson, J. (1987). Duplication of the CaMV 35S promoter sequences 

creates a strong enhancer for plant genes. Science 236, 1299-1302. 

Koncz, C , Langridge, W.H.R., Olsson, O., Schell, J., and Szalay, A.A. (1990). Bacterial and firefly 

luciferase genes in transgenic plants: advantages and disadvantages of a reporter gene. Devel. Genet. 11, 

224-232. 

Mattanovich, D., Rttker, F., da Camara Machado, A., Laimer, M., Regner, F., Steinkellner, H., Himmler, 

G., and Katinger, H. (1989). Efficient transformation of Agrobacterium spp. by electroporation. Nucl. 

Acids Res. 17, 6747. 

Mieszczak, M., Klahre, U., Levy, J.H., Goodall, G.J., and Filipowitz, W. (1992). Multiple plant RNA 

binding proteins identified by PCR: expression of cDNAs encoding RNA binding proteins targeted to 

chloroplasts in Nicitiana plumbaginifolia. Mol. Gen. Genet. 232, 390-400. 

Pichon, M., Journet, E.-P., Dedieu, A., de Billy, F., Truchet, G., and Barker, D.G. (1992). Rhizobium 

meliloti elicits transient expression of the early nnodulin gene ENOD 12 in the differentiating root epidermis 

of trangenic alfalfa. Plant Cell 4, 1199-1211. 

Quandt, H.-J., Punier, A., and Broer, I. (1993). Trangenic root nodules in Vicia hirsuta. Mol. Plant-Microbe 

Interac. 6, 699-706. 

Scheres, B., van Engelen, F., van der Knaap, E., van de Wiel, C , van Kammen, A., and Bisseling, T. 

(1990a). Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 8, 687-

700. 

Scheres, B., van de Wiel, C , Zalensky, A., Horvath, B., Spaink, H.P., van Eck, H., Zwartkruis, F., 

Wolters, A.-M., Gloudemans, T., van Kammen, A., and Bisseling, T. (1990b). The ENOD12 gene 

product is involved in the infection process during pea-Rhizobium interaction. Cell 60, 281-294. 

Thomas, C , and Maule, A.J. (1995). Identification of structural domains within the cauliflower mosaic virus 

movement protein by scanning deletion mutagenesis and epitope tagging. Plant Cell 7, 561-572. 

45 



Chapter 2 

Van Bokhoven, H., Verver, J., Wellink, J., and van Kammen, A. (1993). Protoplasts transiently expressing 

the 200K coding sequence of cowpea mosaic virus B-RNA support replication of M-RNA. J. Gen. Virol. 

72, 2615-2623. 

Van Kammen, A. (1984). Suggested nomenclature for plant genes involved in nodulation and synbiosis. Plant 

Mol. Biol. Rep. 2, 43-45. 

Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L., and Rocha-Sosa, M. (1990). 

Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in 

monitoring early events in Agrobacterium- mediated plant transformation. Mol. Gen. Genet. 220, 245-250. 

VandenBosch, K.A. (1991). Immunogold labelling. In: Hall J.L., Hawes, C. (eds) Electron microscopy of plant 

cells. Academic Press, London, pp.181-218. 

Vijn, I., Yang, W.-C, Pallisgard, N., 0stergaard, E., van Kammen, A., and Bisseling, T. (1995a). 

VsENODS, VsENOD12 and VsENOD40 expression during Rhizobium -induced nodule formation on Vicia 

sativa roots. Plant Mol. Biol. 28, 1111-1119. 

Vijn, I., Christiansen, H., Lauridsen, P., Kardailsky, I., Quandt, H.-J., Broer, I., Drenth, J., 0stergaard, 

E., van Kammen., A., and Bisseling, T. (1995b). A 200 bp region of the pea PsENOD12 promoter is 

sufficient for nodule-specific and Nod factor induced expression. Plant Mol. Biol. 28, 1103-1110. 

Wadzinski, B.E., Eisfelder, B.J., Peruski, L.F., Jr., Mumby, M.C., and Johnson, G.L. (1992). NH2-terminal 

modification of the phosphatase 2A catalytic subunit allows functional expression in mammalian cells. J. 

Biol. Chem. 267, 16883-16888. 

Wilson, I.A., Niman, H.L., Houghten, R.A., Cherenson, A.R., Connolly, M.L., and Lerner, R.A. (1984). 

The structure of an antigenic determinant in a protein. Cell 37, 767-778. 

46 



CHAPTER 3 

The root epidermis-specific pea gene RH2 is homologous to a pathogenesis-
related gene 

Panagiota Mylona, Marja Moerman, Wei-Cai Yang, Ton Gloudemans, Joel Van De 

Kerckhove, Ab van Kammen, Ton Bisseling, and Henk J. Franssen 

Plant Molecular Biology, Vol 26,39-50,1994 



The root epidermis-specific pea gene RH2 is homologous to a pathogenesis-related gene 

Plant Molecular Biology 26: 39-50, 1994. 
© 1994 Kluwer Academic Publishers. Printed in Belgium. 39 

The root epidermis-specific pea gene RH2 is homologous to a 
pathogenesis-related gene 

Panagiota Mylona', Marja Moerman', Wei-Cai Yang', Ton Gloudemans12, Joel Van De Kerckhove3, 
Ab van Kammen', Ton Bisseling' and Henk J. Franssen ' * 
1 Department of Molecular Biology, Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, 
Netherlands (*author for correspondence); 2 Present address: Laboratorium voor Fysiologische Chemie, 
Rijksuniversiteit, Utrecht, Netherlands;2Laboratorium voor Genetika, Rijksuniversiteit Gent, B-9000 Gent, 
Belgium 

Received 18 November 1993; accepted in revised form 11 April 1994 

Key words: root epidermis, pathogenesis-related gene, embryo 

Abstract 

Two-dimensional gel electrophoresis of pea root and root hair proteins revealed the existence of at least 
10 proteins present at elevated levels in root hairs. One of these, named RH2, was isolated and a par
tial amino acid sequence was determined from two tryptic peptides. Using this sequence information 
oligonucleotides were designed to isolate by PCR an RH2 cDNA clone. In situ hybridization studies with 
this cDNA clone showed that rh.2 is not only expressed in root hairs, but also in root epidermal cells 
lacking these tubular outgrowths. During post-embryonic development the gene is switched on after the 
transition of protoderm into epidermis and since rh2 is already expressed in a globular pea embryo in 
the protoderm at the side attached to the suspensor, we conclude that the expression of rh2 is devel
opmental^ regulated. At the amino acid level RH2 is 95 % homologous to the pea PR protein I49a. These 
gene encoding I49a is induced in pea pods upon inoculation with the pathogen Fusarium solani [ 12]. We 
postulate that rh2 contributes to a constitutive defence barrier in the root epidermis. A similar role has 
been proposed for chalcone synthase (CHS) and chitinase, pathogenesis-related protein that are also 
constitutively present in certain epidermal tissues. 

Introduction 

The root epidermis is the outermost tissue of the 
root and in most plants it is a single cell layer 
[38]. It has a function in the absorbance of water 
and minerals from the soil and it is composed of 
two cell types: epidermal cells that have formed 
root hairs and epidermal cells which lack these 
outgrowths. The cells of the epidermis that form 
root hairs are called trichoblasts and the ones that 
do not, atrichoblasts [9]. 

During post-embryonic development the root 

epidermis is formed from the root meristem. In 
general root meristems of seed plants contain ini
tial cells [5] at the apex of the meristem. From 
these initial cells the root cap and the three pri
mary meristems - protoderm, ground meristem 
and procambium - are formed. The protoderm is 
the primary meristem that develops into epider
mis. During the transition of protoderm into epi
dermis the protoderm cells stop dividing, they 
elongate and a central vacuole is formed and then 
the trichoblasts form root hairs. 

Since the root epidermis is a relatively simple 
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tissue composed of only 2 cell types forming a 
single cell layer, it is an attractive system to study 
the molecular basis of a plant developmental pro
cess. Therefore several groups have initiated ge
netic studies on Arabidopsis root epidermis devel
opment [8, 30, 31]. Furthermore, this tissue plays 
a major role in the interaction between plants and 
microbes living in the soil. A well studied example 
is the Rhizobium-legame symbiosis [11]. At early 
stages of this interaction, Rhizobium interferes 
with root hair development [11, 14]. Lipo-
oligosaccharides (Nod factors) secreted by Rhizo
bium stimulate root hair development, induce de
formation of root hairs and elicit the expression 
of some early nodulin genes [10, 18, 20, 33, 36]. 
To study the molecular basis of root epidermal 
differentiation as well as the interaction of Rhizo
bium with the root epidermis at a molecular level, 
we initiated a programme on the isolation of pea 
cDNA clones of mRNAs involved in different 
steps of pea root epidermis development. 

In this paper we describe the identification and 
characterization of a cDNA clone encoding the 
root epidermis-specific protein RH2. 

Materials and methods 

Plant growth 

Pea seeds (Pisum sativum (L.) cv. Rondo; Ce-
beco, Netherlands) were grown in gravel [2]. In
oculation of plants with Rhizobium leguminosa-
rum bv. viciae strain PRE was done as described 
[2]. Root segments containing root hairs were 
harvested from 5-day-old pea seedlings and im
mediately frozen in liquid nitrogen. Harvested 
plant material was stored at -70 °C until use. 

Root hair isolation 

Root hairs were harvested by the procedure of 
ROhm and Werner [26], with modifications as 
described by Gloudemans etal. [14]. 

RNA isolation, protein isolation and 2D gel electro
phoresis 

Frozen root hairs were ground in liquid nitrogen 
and resuspended in a hot (90 ° C) mixture of RN A 
extraction buffer (0.1 M Tris-HCl pH 9.0, 0.1 M 
LiCl, 10 mM EDTA, 1% SDS) and phenol (1:1) 
[16]. 

After vortexing and centrifugation (30 min, 
6000 x g) the water phase was collected and RNA 
was isolated as described by Govers etal. [16]. 
The interphase and phenol phase were collected 
and 2 volumes of 96% ethanol were added to 
precipitate root hair proteins. After extensive 
washing with 96% ethanol, proteins were dis
solved and separated by 2D gel electrophoresis 
according to de Vries etal. [7]. Proteins were 
visualized by silver staining [24], 

Total RNA was passed through an oligo-dT-
cellulose column (Promega) to obtain poly(A) + 

RNA [28]. 

Purification of RH2 and determination of partial 
amino acid sequence 

A 50 /ig portion of protein isolated from root hairs 
was separated by 2D gel electrophoresis. Proteins 
were electroblotted onto polyvinylidene difluoride 
membranes (PVDF; Immobilon) as described 
[34], and proteins were stained by amido black. 
The spot representing RH2 was cut from the blot. 
Subsequently, this material was incubated in 
0.2% polyvinylpyrrolidone in 100% methanol for 
30 min and then washed by adding an equal vol
ume of water. The solution was discanted and the 
membrane was washed three times in 0.1 M Tris-
HCl pH 8.5. 

The protein on the membrane was then digested 
by adding 1 /ig (10 Units) of trypsin (Sigma) in 
150 n\ 0.1 M Tris-HCl pH 8.5 and incubated for 
4h at 37 °C. The liquid was collected and the 
membrane was washed with 100 ji\ aliquots of 
80% HCOOH and water (4 times) which were 
added to the original incubation mixture. The final 
volume was separated by HPLC and the various 
peptides formed by trypsin digestion were col
lected [34]. 
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The peptides were then applied to a 470A gas-
phase sequencer equipped with a 120A on-line 
phenylthiohydantion ( >phNCS) amino acid 
analyser (Applied Biosystems). 

Oligonucleotides 

Based on the amino acid sequence of two pep
tides obtained after hydrolysis of purified RH2, 
two oligonucleotides were synthesized on a Bio-
search Cyclone DNA synthesizer. 
1: 5' -TTI AAITT(T/C)G A(G/A)GA(G/A)G A-

(G/A)GCIAC-3' 
corresponding to the peptide FNFEEEA 

II: 5' -GTIACIGA(C/T)GCIGA(C/T)ATI(T/C)-
T-3' 
corresponding to the peptide VTDADI 

III: 5 -CAGTAACCTTCAAGAG-3 ' 
reverse primer corresponding to the region 
from base 428 to 443 in pRH2-l (Fig. 4). 

IV: 5 -AGTTCTTTCTCACAG-3' 
corresponding to the region from base 25 to 
39 derived from the nucleotide sequence of 
cDNA clone pI49a, which is missing in 
drrg49cjrh2 [12] (Fig. 4). 

Amplification of RH2 cDNA 

Two microgram of root hair poly(A)+ RNA was 
heated for 3 min at 80 °C in annealing buffer 
(250 mM KC1, 10 mM Tris-HCl pH 8.3, 1 raM 
EDTA) + 250 ng oligo-dT in a final volume of 
9 p\. After 15 min incubation at 37 °C, 15 p\ RT 
buffer (24 mM Tris-HCl pH 8.3, 16 mM MgCl2, 
8 mM DTT, 0.4 mM dNTPs) was added, 20 units 
of AMV reverse transcriptase (Life Science) and 
incubation was prolonged at 42 °C for 25 min. 
Subsequently 1 p\ 10 mM dNTPs and 75 p\ Taq 
polymerase buffer (50 mM KC1, 1.5 mM MgCl2, 
10 mM Tris-HCl pH 8.3, 0.01 % gelatine, 2 units 
Taq polymerase (Cetus)) and 250 ng of oligo I or 
oligo II was added. 

The polymerase chain reaction (PCR) was per
formed on a PREMTM (LEP Scientific) using 
the following protocol: 5 min 92 °C, 2 min 40 °C, 

2 min 72 ° C followed by 20 cycles of 1 min 92 ° C, 
1 min 50 °C, 2 min 72 °C. 

The PCR reaction mix was subsequently ex
tracted with phenol/chloroform (1:1) and the 
DNA precipitated by addition of 1/10 volume of 
3 M sodium acetate and 2 volumes of 96% etha-
nol. After washing and drying the DNA was dis
solved into 50 p\ Klenow buffer (50 mM Tris-
HCl pH7.2 , 10 mM MgS0 4 , 0.1 mM DTT) 
containing 0.5 mM dNTPs and 2 units of Klenow 
DNA polymerase and incubated for 15 min at 
37 °C. After phenol-chloroform extraction and 
alcohol precipitation the DNA was ligated into 
the Sma I site of pBlueScript II KS/ + (pBs) and 
the ligation mixture was used to transform com
petent Escherichia coli JM109. 

Oligos I and II were labelled with [y-32P]ATP 
and used to identify transformants containing 
RH2 sequences. 

Reverse transcription^polymerase chain reaction 
(RT-PCR) analysis 

An RT-PCR was started by mixing 2 pg total 
RNA and 250 ng oligo III in annealing buffer and 
reverse transcription was performed as described 
above. Subsequently a polymerase chain reaction 
was performed in a LEP-PREM PCR machine 
using 1 unit of Taq polymerase and oligo IV as 
sense primer. The protocol was 30 cycles of de-
naturation at 93 ° C for 2 min, annealing at 42 ° C 
for 2 min and elongation at 72 °C for 2 min. The 
synthesized DNA was separated on 1.5% agar
ose gels and transferred to GeneScreen Plus 
membranes. The membrane was hybridized with 
[32P]-labelled insert of pRH2-l [28]. 

Nucleotide sequencing 

The nucleotide sequence of the insert of RH2-1 
was determined by double-stranded sequencing 
using the dideoxy termination sequence method 
[29]. 
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Fig. I. 2D gel of proteins from roots and root hairs of 5-day-old pea seedlings. Proteins present at elevated levels in protein 
preparations of root hairs are indicated by big arrowheads. Within the rectangle in 'Root hair' the most abundant ones are indi
cated by small arrow-heads and RH2 is indicated by an arrow. 

Northern blots In situ hybridization 

Total RNA was denatured in DMSO/glyoxal, 
separated on 1 % agarose gels and blotted onto 
GeneScreen in 0.025 M NaH2P04 pH 7.0 [28]. 
The blots were hybridized in 50% formamide, 
1 M NaCl, 0.5% SDS, 10 mM Tris-HCl pH 7, 
10 x Denhard's solution at 42 °C. The pRH2-l 
insert was labelled by random priming using 
[<x-32P]dATP (3000 Ci/mmol; Amersham) as ra
dioactive label [28]. 

RH- RH+ 

Fig. 2. Autoradiograph of a northern blot containing 20 n% of 
total RNA isolated from roots (R), root hairs of uninoculated 
plants (RH - ), root hairs from R. leguminosarum bv. viciae-
inoculated plants (RH +), respectively, and hybridized to 
pRH2-l. 

In situ hybridization was performed by a method 
derived from the procedure published by Cox and 
Goldberg [6] as described by van de Wiel etal. 
[35]. 

Results 

Analyses of root hair proteins 

As a first step towards the isolation of root 
epidermis-specific cDNA clones, we compared 
proteins of root hairs and roots of 5-day-old pea 
seedlings. The protein preparations were sepa
rated by 2D gel electrophoresis (Fig. 1), which 
showed that the majority of the proteins occurred 
in similar quantities in both preparations. Only 10 
polypeptides were present in a significantly higher 

Fig. 3. In situ localization of RH2 mRNA in the root tip. 
A. Bright field micrograph showing a longitudinal section of a 
pea root tip. (E, epidermis; Re, root cap). B. Dark-field mi
crograph of A showing RH2 mRNA in the root epidermis (E) 
The arrow head shows the start of rh2 expression in cells still 
covered by the root cap. Bar = 50 fim. 
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amount in protein preparations from root hairs 
than in those from roots (marked by arrowheads 
in Fig. 1). This indicates that these proteins might 
be specifically present in root hairs. The most 
abundantly occurring 'root hair-specific' proteins 
form a group of five polypeptides with an appar
ent molecular mass of about 14 kDa and an iso-
electic point of ca. 4.8 (enclosed within the rect
angle in Fig. 1). Among these five polypeptides 
RH2 is the most abundant one (marked by an 
arrow). 

or II. Oligonucleotide II hybridized to both the 
600 bp and 550 bp DNA molecule, whereas 
oligonucleotide I only hybridized to the 600 bp 
long DNA molecule (results not shown). These 
observations indicated that the region of RH2 
cDNA with the oligonucleotide II sequence is 
located downstream of the region with the oligo
nucleotide I sequence. 

The 600 bp long RH2 cDNA was isolated from 
an agarose gel and cloned into the Sma I site of 
pBs. The cDNA clone that was isolated and stud
ied in detail was designated as pRH2-l. 

RH2 cDNA clone 

A 50 jug portion of root hair proteins was sepa
rated by 2D gel electrophoresis and subsequently 
blotted onto PVDF membranes. After staining 
the blot with amido black, the RH2 spot was cut 
from the membrane. The RH2 protein on the 
membrane was digested with trypsin and two 
peptides were isolated. From these peptides a 
partial amino acid sequence was determined, re
vealing the sequences VFNFEEEATSIVAP-
ATLH and VTDADILTP, respectively. Based 
upon these amino acid sequences the oligonucle
otides I and II (see Materials and methods) were 
designed. 

To obtain an RH2 cDNA clone, cDNA was 
prepared from root hair poly(A)+ RNA. Oligo
nucleotide I or II and oligo-dT (20 b) as a sec
ond primer were used to amplify the RH2 cDNA 
(see Materials and methods). Using oligonucleo
tide I and oligo-dT, a DNA molecule of 600 bp 
was amplified, whereas application of oligo
nucleotide II and oligo-dT resulted in the produc
tion of a 550 bp long DNA molecule. A Southern 
blot of the DNA obtained from these PCRs was 
hybridized with [32P]-labelled oligonucleotide I 

In situ expression of rh2 

A northern blot containing RNA from root and 
root hairs was hybridized with [32P]-labelled in
sert of pRH2-l. Figure 2 shows that the clone 
hybridized to an RNA with a length of 650 bases 
and that the RH2 mRNA is present at the high
est level in root hairs (Fig. 2, lanes RH - and R). 
The amounts of RH2 mRNA in root hairs of 
plants inoculated with Rhizobium leguminosarum 
bv. viciae and uninoculated pea plants are iden
tical (Fig. 2, lanes RH - , RH + ). 

To determine whether the expression of rh2 is 
restricted to root hairs, or whether all root epi
dermal cells express this gene, we hybridized lon
gitudinal sections of pea roots to [35S]-labelled 
antisense RH2 RNA (see sequence of pRH2-l). 
Figure 3A shows a median longitudinal section of 
a segment of the root of a 5-day-old pea seedling 
including the root tip. The expression of rh2 is 
restricted to the epidermis (Fig. 3B) and all cells 
of the epidermis contain RH2 mRNA. Figure 4C 
shows a magnification of a region of the root that 
contains root hairs (Rh) and Rh2 is expressed in 
these hairs (Fig. 4D). Therefore, rh2 is active in 

Fig. 4. In situ localization of RH2 mRNA in roots and globular embryos of pea (panels A-F). A. Magnification of the region of 
a pea root tip containing the first cell showing rh2 expression (just as in Fig. 3 indicated by an arrowhead; C, cortex). B. Dark-
field micrograph of A showing the start of RH2 mRNA accumulation (arrowhead). C. Bright-field micrograph showing part of 
longitudinal section of a pea root including root hairs (Rh) hybridized with [35S]-labelled RH2 antisense RNA. D. Dark-field 
micrograph of C showing hybridization in root hairs. E. Magnification of a pea ovule as shown in Fig. 5 showing the globular embryo 
(E) and suspensor (S). F. Dark-field micrograph of E showing hybridization at the suspensor attachment side. Bar = 10 /im. 
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both cell types that form the root epidermis. So 
rhl is not a root hair-specific but an epidermis-
specific gene. 

Since roots have an indeterminate growth pat
tern, the root tissues are of graded age implying 
that consecutive stages of development can be 
observed in a single longitudinal section. To study 
at which stage of development rhl is expressed, 
the expression of rhl in the vicinety of the root tip 
was carefully examined. Figure 3A and B show 
that rhl is first expressed when the epidermis is 
still covered with root cap cells. A magnification 
of this area of the section (Fig. 4A, B) shows that 
at this stage the rA2-expressing cells are still rela
tively small and root hairs have not yet formed. 

These observations suggest that rhl expression 
is developmental^ regulated. To find further sup
port for this hypothesis, we hybridized zygotic 
pea embryos with antisense RH2 RNA. (Fig. 5A, 
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B). Figure 5A shows a longitudinal section of a 
pea ovule harbouring an embryo (E) which is at 
the late globular stage. At the side where the future 
radicle will form, the cells of the suspensor (S) 
can be seen. RH2 mRNA is present in the cells 
of the embryonic protoderm, but only at the side 
of the suspensor as shown in a magnification 
(Fig. 4E, F). 

Based on the expression pattern of rhl during 
embryonic as well as post-embryonic develop
ment of the root, we conclude that rhl expression 
is developmentally regulated. 

Nucleotide sequence ofpRHl-1 

The nucleotide sequence of the insert of pRH2-l 
was determined (Fig. 6). It contains at the 3' end 
a poly(A) track preceded by an AATAA sequence 

Fig. 5. In situ localization of RH2 mRNA in pea ovules. A. Bright-field micrograph of an ovule showing a globular pea embryo 
(E) and suspensor (S). Analysis of adjacent sections shows that the embryo is attached to the apical suspensor cell (data not shown). 
B. Dark-field micrograph of A showing the presence of RH2 mRNA in the protoderm at the side where the embryo is attached 
to the suspensor. 
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Fig. 6. Nucleotide sequence of the insert of pRH2-l and the 
amino acid sequence in the one-letter code for the encoded 
protein RH2 above the nucleotide sequence. The amino acid 
sequences as determined by partial amino acid sequencing of 
the two tryptic peptides isolated from RH2 are in italics and 
underlined. For comparison the nucleotide sequence of cDNA 
clone pI49a and the amino acid sequence of the encoded 
protein are shown as well. Identical bases between pRH2-l 
and pI49a are indicated by dots. Amino acids in the I49a-
encoded protein that are different are displayed in bold type. 
In the nucleotide sequence of pRH2-l the oligonucleotides 
that have been used in RT-PCR are underlined and numbered. 

that probably is the polyadenylation signal. The 
largest ORF present in the nucleotide sequence 
starts at the beginning of the insert and ends of 

position 466. The polypeptide derived from this 
ORF contains the amino acid sequences obtained 
from the two peptides of the tryptic digest of the 
RH2 protein. This strongly suggests that the 
amino acid sequence derived from the ORF is the 
partial amino acid sequence of RH2. Since the 
amino acid sequence does not start with a me
thionine, pRH2-l is not a full-size clone. How
ever, since the molecular mass of RH2 and the 
amino acid sequence derived from pRH2-l both 
are about 14 kDa we assume that only a small 
part of the coding region of the RH2 mRNA is 
lacking in pRH2-l. Comparison of the sequence 
of RH2 with proteins present in GenBank re
vealed that RH2 is 100% homologous to a pea 
protein encoded by drrg49c [4]. This gene was 
isolated from a genomic library using cDN A clone 
pI49a as a probe. This cDNA clone represents a 
gene that is induced in pea pods upon inoculation 
with the pathogen Fusarium solani or treatment 
with chitosan [12]. The proteins encoded by rh2/ 
drrg49c and I49a exhibit 95% homology [4]. 
Since pI49a and drrg49c were isolated from li
braries of the same pea cultivar these clones re
present different members of a gene family. To
gether with the gene represented by cDNA clone 
pI76 [12] this gene family consists of at least 
three different members [4, 12]. If we assume that 
the N-terminal end of RH2 is fully homologous to 
that of DRRG49C only three triplets of the cod
ing region, namely the start codon ATG and GGT 
and GTT, are missing in the sequence of pRH2-l. 
A hydropathy plot (data not shown) shows that 
RH2 has no typical N-terminal signal peptide and 
it is a hydrophilic protein, indicating that RH2 is 
a cytosolic protein. 

Expression of the RH2 gene family 

Rh2 is a member of a gene family of which the 
members are highly homologous. Therefore, the 
expression of other members might contribute to 
hybridization signals in northern blot analyses 
(Fig. 2) and in situ hybridization experiments 
(Figs. 3,4, 5). One other member belonging to the 
gene family and of which the nucleotide sequence 
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has been elucidated is I49a. Hence, we studied 
whether this gene is expressed in the root epider
mis. We used oligonucleotides specific for I49a 
(oligo IV and oligo III in Fig. 6 and Material and 
methods) in a RT-PCR experiment on RNA of 
roots and root hairs from uninoculated plants or 
from plants inoculated with R. leguminosarum bv. 
viciae. Figure 7 A shows that similar amounts of 
I49a RNA are present in the three RNA prepa
rations. To prove that this result is representative 
of mRNA levels, a RT-PCR experiment on the 
same RNAs was done using rA2-specific oligos I 
and III (Fig. 7B). The expression pattern for rh2 
obtained in the RT-PCR is identical as the result 
of the northern blot (Fig. 2). Both the northern 
blot analysis and the in situ hybridization experi
ments show that rh2 homologous RNA is only 
present in the epidermis. This implies that 149a 
expression was not detected in non-epidermal 
root tissues by in situ hybridization, and can only 
be a minor part of the rh2-like transcripts present 
in roots. 

Furthermore, the RT-PCR experiment shows 
that R. leguminosarum bv. viciae does not inter
fere with the expression of I49a in root hairs. 

mm 
Fig. 7. A. RT-PCR experiment using I49a-specific oligonucle
otides. DNA obtained in the RT-PCR was separated on aga
rose gels and blotted onto GeneScreen Plus filters. Filters were 
hybridized to pRH2-l. RNA from root hairs from uninocu
lated plants ( - ), R. leguminosarum bv. viciae inoculated plants 
( + ) or roots (R) has been used. Lane C is RT-PCR on root 
RNA to which no reverse transcriptase has been added. 
B. Same as in A, using r/i2-specific oligonucleotides. 

Discussion 

In this paper we describe the isolation and char
acterization of a pea cDNA clone pRH2-l. This 
cDNA clone was obtained by RT-PCR on root 
hair RNA using oligonucleotides based on partial 
amino acid sequence data of the most abundant 
protein present in root hairs as identified by 2D 
gel electrophoresis (Fig. 1). Using the latter ap
proach several other proteins which are present at 
elevated levels in pea root hairs have been iden
tified. Root hair-specific proteins have also been 
identified in clover, soybean and cowpea [13, 15, 
19]. However, our results show that a root hair-
specific protein identified in this way does not 
necessarily represent a gene whose expression is 
restricted to root hairs; rh2 is expressed in the two 
cell types that form the root epidermis and also 
in the pea embryo. 

During post-embryonic development rh2 is in
duced in epidermal cells when elongation and 
vacuolization has started, but before root hairs 
have formed. Therefore, the induction of rh2 more 
or less coincides with the transition of protoderm 
into epidermis. Thus rh2 is induced at a specific 
stage of root epidermal development. However, 
since rh2 is highly homologous to a PR gene, it 
can be questioned whether a 'stress' factor, like 
the physical contact with gravel, elicits rh2 ex
pression or whether rh2 expression is develop-
mentally controlled. In situ expression studies on 
pea embryos showed that rh2 is expressed in the 
protoderm of a globular pea embryo, exclusively 
in the part that will form the radicle. This obser
vation strongly supports the conclusion that rh2 
is regulated by a developmental cue. 

During pea embryogenesis the protoderm is 
first formed at a late globular stage [22, 25]. We 
have not studied rh2 expression in embryos at 
earlier stages of development and therefore, we 
do not know whether the start of rh2 expression 
precedes or coincides with the formation of the 
protoderm. When the exact timing of rh2 induc
tion is known, rh2 will be a good molecular marker 
for early embryogenesis and since only a few 
markers of early stages of embryo development 
are available [21], it is worthwile to study the 
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timing of induction in more detail. The different 
stages and genetics of zygotic embryogenesis are 
well studied in Arabidopsis and since rh2 cross-
hybridizes with Arabidopsis genomic DNA (data 
not shown), we plan to study the expression of 
rh2 during Arabidopsis embryogenesis. 

The exclusive expression of rh2 in the proto-
derm of the part of the embryo that develops into 
the radicle, suggests that rh2 expression is re
stricted to the roots. Preliminary RT-PCR experi
ments showed that rh2 is not expressed in leaves 
or stems, but these studies have not been exten
sive enough to exclude that rh2 is never expressed 
in aerial parts of pea plants. 

Database searches revealed that pRH2-l is 
100% homologous to the pea gene drrg49c. Al
though this homology indicates that pRH2-l re
present the cDNA clone of drrg49c, it cannot be 
excluded that this homology might be the result of 
PCR-induced errors and thereby pRH2-l might 
represent a cDNA clone of a drrg49c-re\aied gene. 
pRH2-l also is 95% homologous to the pea clone 
pI49a [4], representing a gene that is expressed in 
pea pods during pathogenic interactions. Further
more, RH2 is 43% homologous to the major pol
len allergen of white birch and 40% to proteins 
identified in potato [23] and bean [37], of which 
the genes are expressed during pathogenic inter
action. Therefore, it is possible that in the root 
epidermis RH2 is also involved in a defence 
mechanism. The expression of rh2 in all epider
mal cells is consistent with such function. It is 
noteworthy that also other PR genes, chitinase 
[27] and chs [32, 39], are expressed in epidermal 
tissue. Therefore, it can be proposed that the for
mation of a constitutive defence mechanism is 
part of the root epidermal developmental pro
gram [17, 27, 32]. 

The observation that rh2 expression pea plants 
is most likely restricted to the root epidermis 
makes the promoter of this gene a good candidate 
for genetic engeneering of this cell layer. Further
more, the gene is induced at a stage preceding 
root hair development. Since the zone formed at 
this stage is susceptible to interaction with Rhizo-
bium signals [ 1, 3], it will be especially suitable to 
study the role of certain plant genes in the 

Rhizobium-p\ant interaction, expressing these 
genes in sense or antisense orientation under the 
control of the rh2 promoter. 
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rh4 expression is regulated by developmental and positional information 

INTRODUCTION 

Growth and development of plants depends on the continuous formation and differentiation of 

cells in meristematic regions at the root and shoot apices. In the root apex the meristem contains 

initial cells that divide to give rise to the three primary meristems -protoderm, ground meristem 

and procambium-, and the root cap (Clowes, 1961). The root epidermis which is the outermost 

tissue of the root derives from the protoderm. During maturation of the epidermis each cell 

adopts one of the two altenative fates, it may develop into a cell capable of producing a root hair 

(trichoblast), or it may differentiate into a hairless cell (atrichoblast). Root hairs are tip-growing 

tubular outgrowths which help to anchor the roots in soil, are involved in the interaction with 

microorganisms, and assist in the uptake of water and nutrients (Clarkson, 1985). 

Two apparently different mechanisms specify the fate of the epidermal cells. In one case, an 

asymmetric division of the epidermal cell gives rise to a small densely cytoplasmic cell, which 

subsequently forms a root hair, and a larger vacuolated cell which remains hairless (Sinnott and 

Bloch, 1936; Avers, 1963). As a result, a pattern of hairless epidermal cells interspersed with 

root hair containing cells throughout the epidermis, is obtained. This mechanism is utilized by a 

diverse group of plants, including pea. 

A different pattern of epidermal cell differentiation has been identified in Brassicaceae, such as 

Ardbidopsis, in which the fate of the epidermal cell is determined by its position relative to the 

neighbouring cortical cells (Dolan et al., 1993). This mechanism results in a distinctive pattern 

of hair-forming and hairless cells in the mature root, consisting of axial files of epidermal cells 

which are composed entirely of hai rless cells or entirely of root-hair containing cells. A number 

of mutants impaired in the specification of the epidermal cell fate have been recently identified in 

Arabidopsis, producing roots that contain an increased or reduced number of root hairs 

(Galway et al., 1994). 

The ectopic root hair formation observed in the mutant Ctrl (constitutive triple response) of 

Arabidopsis, that shows a constitutive ethylene response, implicates a role of ethylene in root 

hair formation. Moreover, root hair formation is reduced in ethylene-insensitive mutants and by 

treatment with inhibitors of ethylene biosynthesis or action (Dolan et al., 1994). In addition, the 

identification of hairless mutants that can be complemented for hair growth by the application of 

exogenous ethylene confirms the essential role of ethylene in root hair ontogenesis (Dolan et al., 

1994). 

Prior to root hair emergence, trichoblasts undergo a number of changes. Their nuclei originally 

decrease in volume and take a place in the parietal cytoplasm. There, they regain a swollen 

appearance. Rearrangements in the cytoskeleton are observed followed by movement of the 

nuclei opposite to the site of the root hair emergence (Bakhuizen, 1988). A localized "bulge" is 

produced, due to a local loosening of the cell wall and reaction to internal pressure (Bakhuizen, 

1988). The next step is the elongation of the root hair. In most root hairs the nucleus follows 

the expending root hair tip at a distance. After the root hair has ceased growing the nucleus 
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takes a random position in the parietal cytoplasm. Mutants in Arabidopsis impaired in different 

steps of root hair emergence have been identified, rhdl appears to regulate the degree of the 

epidermal cell wall loosening at the intial step of emergence, while other mutated genes 

(rhd2,3,4) were shown to play a role in later steps of elongation (Schiefelbein and 

Sommerville, 1990). In addition, the existence of an Arabidopsis root hair mutant impaired 

also in pollen tube tip-growth (dpi), indicates the presence of a common mechanism in all tip-

growing cells (Schiefelbein et al., 1993). The way cell polarity, -required for tip-growth-, is 

established and maintained in root hairs or pollen tubes is not clear. Recently, it has been shown 

that the growth of these cell types, is associated with, and dependent on, a continuous influx of 

Ca2+ at the apex and an internal Ca2+ gradient (Clarkson et al., 1988; Schiefelbein et al., 

1992). Furthermore, normal root hair and pollen tube growth require a functional actin 

cytoskeleton (Heath, 1990). 

In this chapter data on the characterization of a root hair cDNA clone, namely pRH4 will be 

given. 

RESULTS 

Isolation of root hair/epidermis specific cDNA clones 

To obtain cDNA clones corresponding to genes specifically expressed in root hairs, a root hair 

cDNA library from Pisum sativum, was differentially screened with root and root hair cDNA, 

respectively. One of the isolated clones, namely pRH4, was selected for further analysis. 

The root hair specific/enhanced nature of rh4 was confirmed by northern blot analysis. Roots 

were collected from 4-day old plants and the root segments containing root hairs were frozen in 

liquid N2. Part of this root material was immediately used for RNA isolation, but the majority 

of the root segments were used to isolate root hairs by stirring the roots in the liquid N2. RNA 

was isolated from the root hair samples. Northern blots were made with root (R), root hair 

(RH), leaf (L), and stem (S) RNA samples. Identical northern blots were probed with the insert 

of pRH4 and a cDNA corresponding to ubiquitin as control for the amount of RNA loaded in 

each slot (Figure 1). 

rh4 is expressed highly in the root hairs (RH, Figure 1). A low amount of transcript was 

detected in the roots (R, Figure 1). A similar level of this transcript is present in the RNA 

samples isolated from stems (S) and leaves (L). Therefore, rh4 is expressed at elevated levels 

in the root hairs. 
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RH4 

ubiq. 

L S RHR 

RHR 

Figure 1. Autoradiograph of northern blots 

containing 20|ig of total RNA isolated from roots 

(R), root hairs (RH), leaves (L), and stems (S), 

respectively, hybridized to pRH4 (upper panel). 

The amount of RNA on the filter was determined 

by a hybridization with a soybean ubiquitin probe 

(Kouchi and Hata, 1993), as it is shown in the 

bottom panel. 

RH4 mRNA has a length of approximately 1.4 kb, whereas pRH4 bears an insert of 1197 bp. 

Thus pRH4 is not a full size clone. 

Sequence characteristics 

The nucleotide sequence of pRH4 was determined. The ORF lacks the starting methionine and 

encodes 322 amino acids of RH4. At the 969th nucleotide of the clone there is a stop codon 

followed by 230 nucleotides long 3'UTR, but the polyA tail is lacking. Since the rh4 mRNA 

is about 200 nucleotides longer, we assume that only a short part of the ORF encoding RH4 is 

missing from pRH4. Figure 2 (upper panel) depicts the partial amino acid sequence of RH4. 

The protein contains several cysteines and leucines positioned in such a way, that a 

conformation of oc-helixes followed by P-sheets might be formed (secondary structure 

predictions of Chou-Fasman and Garnier-Osguthorpe-Robson). Furthermore, RH4 contains 

five putative N-glycosylation sites, at positions 17,67,106,205 and 296. 

The amino acid sequence was used for homology searches in the sequence databases of the 

National Center of Biotechnology Information, and homologues were found among the 

randomly sequenced Arabidopsis cDNA clones (GenBank accession numbers T46201, 

Z46590, R65327, and T46192). No other homologies were found. One of these cDNA clones, 

(the only one available), was obtained from the Arabidopsis Biological Resourse Center. 

The nucleotide sequence of the Arabidopsis cDNA clone, designated pAraRH4, was also 

determined. pAraRH4 encodes a polypeptide of 300 amino acids, lacks the starting methionine 

and has two putative N-glycosylation sites, at positions 37 and 221 (figure 2, bottom panel). 
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RH4 

1 IRHEHHWIFL RYHQPKNVTH NSQSGITFVR NSGFCQENVF GQYFGLGSET 

51 RGTNTYIPDP YGIEVGNPSE IPKGYVEKWM FNIHAIDTRG VEDKLGCIEC 

101 KCDLYNVTKD EDGVALSPNY KGGLQCCPDN SKCKMLKGFL GKKRSIYLKY 

151 TVMWMNWESF ILPAKIYIID ATDVLKISHK SKGKSLEHDC KIEYEVEPCS 

201 KSNVNGSDCV DVKRSSFPMQ KGGYFIYGVG HMHVGSIGTT LYGKDGKVIC 

251 SSIPIYGNRS EAGNEKGYW GMSTCYPQLG SIKIHDGETL TLEAKYNNTI 

301 RHSGVMGLFY FLVAEKLPHH HL 

ARARH4 

1 VDHASDEFKW LLNIHAIDTR GVEDKKGCIE CLCDLYNVTI DEYGRAIRPG 

51 YKGGLYCCYD KTQCRVKSGF DNGEKTRTLY LKYTVRWVDW DSSVLPAKVY 

101 IFDVTDSWER SKGDSQEHIC HVEYEVKPCK TNGDGCVDVK KKSLVMPFDG 

151 YIVYGVAHQH AGGIGGALYR ENGEGICASM PKYGNGDEPG NEAGYIVGMS 

201 SCYPADPVKV SYGETLTLES NYSNAVGHTG VMGLFYILVA QQLPEPDSSL 

251 PNKOHFE&A RSLSFLAIFA VTVWAVWL IAAVIIYRRQK RGDGYQSLST 

Figure 2. Amino acid sequence of the polypeptides encoded by the inserts of pRH4 (upper panel) and pAraRH4 

(bottom panel). Putative N-glycosylation sites are shown by lines. The hydrophobic domain of ARARH4 that 

might span the membrane is enclosed in a rectangular. The arrowhead in the sequence of ARARH4 indicates the 

position where the homology between ARARH4 and RH4 stops. 

Figure 3 depicts the comparison between RH4 and AraRH4. The two polypeptides exhibit 58% 

identity and 73% similarity throughout the whole sequence. Since pAraRH4 is not a full size 

clone, the homology between AraRH4 and RH4 starts at 65 th residue of RH4. The positions of 

all cysteines that are present in both polypeptides are conserved. The first six cysteines 

(indicated by asterisks) are arranged in a motif similar to that of the EGF-like domain present in 

several proteins involved in protein-protein interactions (CXXCXCXjNXisGGXXCCXsC). 

AraRH4 bears a carboxy-terminal domain of 53 amino acids, which is absent from RH4. This 

domain includes a 28 residues long hydrophobic region (enclosed in a rectangular, in Figure 2, 

bottom panel), that may span the membrane, followed by a carboxyl-terminal tail of 15 amino 

acids. Therefore, AraRH4 might be an integral protein, either inserted in the membrane or 

transmembrane with a small cytoplasmic tail at the carboxyl-terminal end, and an extracellular 

domain homologous to RH4. In contrast, RH4 does not have a hydrophobic domain at the 

carboxyl-terminus that is long enough to span the membrane, therefore it is not a 

transmembrane protein. 
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* * * • 
RH4 65 VGNPSEIPKGYVEKWMFNIHAIDTRGVEDKLGCjrEpjCpLYNVTKDEDGV 114 

I : : : I : I I : : I I I I ! I I I I I I I I I I I I I I I I I I I I I I I 
ARARH4 1 VDHASD EFKWLLNIHAIDTRGVEDKKGEjrEyqcpLYNVTIDEYGR 45 

. * * it • 
RH4 115 ALSPNYKGGLQpCtDNSKTkMLKGF..LGKKRSIYLKYTVMWMNWESFIL 162 

I : . I . I I I I I I I I . . . I : : . 1 1 : I . I . : I I I I I I . I : : I : I : | 
ARARH4 46 AIRPGYKGGLYCOYDKTQ^^VKSGFDNGEKTRTLYLKYTVRWVDWDSSVL 95 

RH4 163 PAKIYIIDATDVLKI' 
111:11:1.11 : 

ARARH4 96 PAKVYIFDVTDSW. 

RH4 

SHKSKGKSLEHDPKIEYEVEP |C |SKSNVNGSD|C 

111.1 II 
ERSKGDSQEHIC iVEYEVKP|C 

• :| I I I.I 
:\7DV 2 1 2 

I | . : l I I I 
.KTNGDGCifDV 139 

213 KRSSFPMQKGGYFIYGVGHMHVGSIGTTLYGKDGKVIOSS 
I :. I :. I . : I I :: I I I : I I . I : I I .. I I .: I .. I I . I 

ARARH4 140 KKKSLVMPFDGYIVYGVAHQHAGGIGGALYRENGEGl|cpi.SMPKYGNGDEP 

IPIYGNRSEA 2 62 
: l I I I . 1 : 

189 

RH4 2 63 GNEKGYWGMST 
I I I 1 1 : 1 1 1 1 . 

ARARH4 190 GNEAGYIVGMSS 

RH4 

iTPQLGSIKIHDGETLTLEAKYNNTIRHSGVMGLFYFL 312 
I I . : . : I : I I I I I I I . . I . I • : I . I I I I I I I : I 

Z iTPA.DPVKVSYGETLTLESNYSNAVGHTGVMGLFYIL 238 

313 VAEKLPHHH 321 
I I :. I I ... 

ARARH4 239 VAQQLPEPD 247 

Figure 3. Comparison of the amino acid sequence of pRH4 and pAraRH4 encoded polypeptides. Both cDNA 

clones are incomplete and they lack the starting methionine of the ORFs. Since pAraRH4 lacks a bigger part of 

the ORF than pRH4, homology between RH4 and ARARH4 starts at the 65th amino acid of RH4. Vertical lines 

denote identical amino acids, dots denote chemically similar amino acids. The position of the cysteines in both 

polypeptides is conserved as it is indicated by boxes. The cysteine residues of the EGF-like domain are marked by 

asterisks. 

The position of ararh4 on the Arabidopsis genomic map 

ararh.4 was positioned on the map of Arabidopsis, in order to determine whether the position 

of the gene coincides with a root hair mutation. These studies revealed that ararh4 maps at the 

bottom half arm of chromosome 5 between the RLFP markers UM515 and m211 (C. Lister, 

personal communication; Lister and Dean, 1993). No root hair mutations mapping at this region 

have been reported so far. 
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rk4 expression pattern in pea roots 

To detect rh4 expression during root hair development, we used the in situ hybridization 

procedure. However, when sections of roots are prepared, the majority of the root hairs are 

'decapitated' and hence are lost during the process. For this reason, we used the whole mount 

in situ hybridization approach. Whole mount in situ hybridization is ideal to study expression 

of genes in root hairs, since they are easily accessible to microscopy and hybridization is not 

hampered by uptake of the probes. 

rh.4 sense and antisense RNA was labelled with digoxigenin (DIG) and after hybridization the 

hybrids were detected with the use of anti-DIG antibodies conjugated to alkaline phosphatase, 

of which the activity is visualized as a purple precipitate. The labelled probes were hybridized to 

segments of lateral roots from pea, 1.5 cm long. These segments include the root tip, the zone 

preceding root hair emergence and the zones where root hairs emerge, elongate and have 

reached their mature stage. No hybridization was observed with the sense probe (data not 

shown). 

Hybridizations with the antisense rh4 RNA showed that expression occurs in epidermal cells in 

the zone preceding root hair emergence (Figure 4A, arrow) and in the zones containing 

emerging and elongating root hairs (Figure 4B, arrow). rh4 RNA was not detected in mature 

root hairs. 

Figure 4. Whole mount in situ localization of rh4 in pea roots. 

Segments of 1.5 cm pea lateral roots were hybridized with DIG-labelled antisense rh4 RNA. Signal is visualized 

as a purple precipitate. 

A. Micrograph shows rh4 expression at the elongation zone of the root. The arrowhead indicates a trichoblast 

that expresses rh.4. Note that the mRNA is localized in the transverse median level of the cell and coincides with 

the position of the nucleus. Arrows indicate the borders of the cell. 

B. Micrograph showing rh.4 expression in the zone of root hair emergence and elongation. The arrow points to 

one of the Wi4-expressing root hair-containing epidermal cells. The mRNA is localized in the outgrowth and not 

in the basal part of the cell. No signal is observed in the atrichoblasts, one of which is indicated by an arrowhead. 

Furthermore not all of the root hair-containing cells show expression, but they are arranged in files. At the left 

and the right side of the depicted root, files of cells not showing rh.4 expression can be seen. 

C. Hand-made cross-section of a pea root hybridized with antisense rh.4 RNA. The cells that express rh.4 (black 

arrowheads) are located opposite to protoxylem poles (white arrowheads). 

D&E. Close-up of a trichoblast expressing rh.4 prior to root hair emergence. The mRNA is localized at the site 

of the nucleus (big arrowhead). The small arrowhead points to the nucleus of a neighbouring cell, which contains 

an elongating root hair (arrow). Note that both nuclei have a swollen appearance. D and E depict the same area of 

the root, focused on different planes. 

All micrographs were taken with the use of Nomarski optics. 

Bar in A = 250um; bar in D = 500um. The same magnification was used in A/B/C and D/E respectively. 
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In the zones containing emerging and elongating root hairs, rh.4 transcripts are present in hair-

containing cells, -but not in all of them-, and they are localized in the outgrowth itself and not in 

the basal part of the cell (Figure 4B, arrow). Furthermore, in these zones rh.4 RNA does not 

occur in the cells lacking a hair (atrichoblasts), which are interspersed with the root hair-

containing cells (Figure 4B, arrowhead). Hence, these localization studies suggest that 

expression of rh.4 is induced only in cells bearing root hairs and this transcript is specifically 

located in the hairs. 

In the zone preceding root hair emergence, rh.4 is transcribed as well (Figure 4A). Since at later 

stages of development rh4 RNA is confined to root hair-containing cells, it is probable that the 

cells expressing the gene in an earlier developmental stage, will eventually form a root hair. 

This conclusion is supported by the position of the nucleus in the r/i4-expressing cells (Figure 

4A, 4D&E big arrowheads). Figures 4D&E are a close-up of a cell where rh4 is expressed. No 

root hair is formed yet, but the nucleus has migrated to a position slightly out of the transverse 

median cell plane, close to the outer surface of the root (big arrowhead). It is known that in 

trichoblasts prior to root hair emergence, the nucleus leaves the parietal cytoplasm, regains a 

swollen appearence and migrates to the site of root hair emergence. For comparison, note the 

shape and the site of a nucleus of a neighbouring cell containing an elongating root hair (Figure 

4D&E, small arrowhead). In both cases the nuclei are swollen and they are located to a position 

proximal to the site of root hair formation. 

Furthermore, it is noteworthy that in the cells preceding root hair emergence, the rh.4 mRNA is 

not distributed uniformely in the cytoplasm. On the contrary, it is localized in the transverse 

median cell plane, coinciding with the position of the nuclei (Figures 4A, 4D&E). When the 

nucleus has migrated to the site of root hair emergence, a polarity has to be established in this 

cell, since the movement coincides with rearrangments in the cytoskeleton leading to the 

formation of nuclear envelope-radiating microtubule array. Therefore, it seems likely that the 

subcellular localization of the rh4 mRNA reflects the polarity of the cell. 

rh.4 is expressed in specific rows of epidermal cells. To correlate the position of these rows 

with the vascular bundle, hand-made cross-sections from the hybridized roots were analysed. 

As it can be seen in figure 4C, the root hairs where rh4 is transcribed (black arrowheads) are 

located opposite a protoxylem pole (white arrowheads). Therefore, it seems very probable that 

the developmental stage of the epidermal cells as well as positional information determined by 

the vascular bundle, are factors regulating rh.4 expression. 

DISCUSSION 

In this chapter we characterized a cDNA clone corresponding to a gene, rh4, specifically 

expressed in epidermal cells containing emerging and elongating root hairs, which are located 

opposite a protoxylem pole. 
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RH4 contains an EGF-like domain. A number of secreted or transmembrane proteins that play a 

role in signalling and cell-cell interactions, also contain EGF-like domains (Branden and Tooze, 

1991). In most of these proteins the EGF-like domain is repeated several times. However, in 

the case of the lymph node homing receptor core protein, -a lymphocyte adhesion molecule-, 

the EGF-like domain is present once as in RH4 (Siegelman and Weissman, 1989). Whether a 

role in signalling and cell-cell interactions can be envisioned for RH4 is unclear at the moment. 

The Arabidopsis homologue of RH4, AraRH4, is a putative integral protein, whereas RH4 

lacks such a domain that could act as an anchor in the membrane. Genomic blot analysis has 

shown that probably there is only one rh.4 gene in both Arabidopsis and pea, respectively. 

Therefore, it is possible that the genes have diverged during evolution and that the proteins have 

a slightly different mode of action. Thus, it is not clear whether ararh.4 plays a similar role in 

root hair development, as rh4 does in pea. Since the expression pattern of ararh4 has not been 

established yet, and ararh4 does not map in a position of a known root hair mutation, further 

studies will be needed to elucidate its function. 

rh4 is expressed in epidermal cells containing elongating root hairs. However expression was 

also observed at an earlier stage of development. To determine the identity of the r/i4-expressing 

cells, certain morphological criteria were taken in account. In pea, it has been reported that an 

asymmetric division of an epidermal cell occurring in the elongation zone, gives rise to both a 

trichoblast and an atrichoblast. Trichoblasts prior to root hair emergence, undergo a number of 

changes (Bakhuizen, 1988). The nuclei, for instance, swell and leave their parietal position to 

take a predetermined position coinciding with the site of root hair emergence. In many plants, 

tip-growth initiation and root hair growth occurs in the proximal part of the trichoblasts, 

whereas pea root hairs were found to be positioned slightly out of the transverse median cell 

plane (Bakhuizen, 1988). In the r/i4-expressing cells of the elongation zone, the nuclei are 

translocated to the transverse median plane of the cells. This observation supports the idea that 

rh4 is expressed in trichoblasts prior to root hair emergence. 

The whole mount in situ hybridizations show that the rh4 mRNA is asymmetrically distributed 

within a cell. Prior to root hair emergence, it is located in the cytoplasm in the vicinity of the 

nucleus. When root hairs are formed, it is preferentially found in the hair, and not in the basal 

part of the epidermal cell. Examples of localized mRNAs have been found in several animal 

cells, as oocytes, fibroblasts, myoblasts, neurons, oligodendrocytes and epithelial cells 

(Wilhelm and Vale, 1993; Johnston, 1995). The common feature that these cell types share, is 

the fact that they are polarized. In plants, two cell types, root hair containing epidermal cells and 

germinating pollen, expand by polar growth named tip growth. Differential distribution of three 

mRNAs has been observed recently in germinating pollen tubes (Torres et al., 1995). While the 

mRNA of a hydroxyproline-rich glycoprotein is present in the tube, malic enzyme mRNA is 

only present in the body of the pollen cell, and a-tubulin mRNA is present in both parts of the 

cell (Torres et al., 1995). Thus in both types of plant cells showing polar growth, we find 

localized mRNAs. 
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In most cases studied so far, the site where the localized mRNAs are found, is determined by 

the polarity of the cells and often depends on the organization of the cytoskeleton (Johnston, 

1995). rh4 mRNA localization seems to be determined by the polarity of the trichoblasts. In 

trichoblasts, movement of the nucleus to the root hair emergence point, coincides with 

rearrangement of microtubules leading to the formation of a nuclear envelope radiating 

microtubule array (Bakhuizen, 1988). The cw-acting sequences required for localization of 

messengers reside in their 3'UTRs (Mowry and Melton, 1992; Dalby and Glover, 1993; Kim-

Ha et al., 1993; Macdonald et al., 1993; Kislauskis et al., 1994). It seems that the localization 

often involves two separate steps, translocation to the site of localization and anchoring at that 

site, which might be controlled by different m-acting elements. None of the so-far identified 

3'UTR sequences responsible for localization of particular mRNAs in specific areas of a cell, 

are present in the 3'UTR of rh4 messenger. The use of antisense oligonucleotides introduced 

via microinjection could reveal the sequences necessary for localization of rh4 mRNA. It has 

been postulated that mRNAs are localized in the position where the encoded protein is needed 

(Johnston, 1995; Curtis et al., 1995). Therefore, the site of localization of rh4 mRNA 

indicates that RH4 might be necessary in the position where the outgrowth is initiated 

originally, and later on during tip-growth, in the outgrowth itself. 

The cells expressing rh4 are arranged into files along the root, and are positioned opposite 

protoxylem poles. Similar behaviour has been observed with pea lectin, which has been 

localized in the elongating root hairs positioned also opposite to protoxylem poles (Diaz, 1989). 

Thus despite the fact that root hairs are morphologically identical, clear differences at a 

molecular level exist. Lateral roots arise from the pericycle cells located adjacent to a protoxylem 

pole. In Arabidopsis, cells in these files can be distinguished from cells in other files based on 

their length (Laskowski et al., 1995). Furthermore, it has been shown that an alcohol extract of 

the stele can induce cell divisions in explants of the pea root cortex in the presence of auxin and 

cytokinin (Libbenga et al., 1973). Therefore, it can be postulated that these morphogenes can 

influence gene expression in cells opposite the protoxylem poles. 

In rhizobia-legume interaction, the nodules are preferentially formed opposite to protoxylem 

poles (Kijne, 1992). The interaction between the symbiont and the plant starts in the root hairs 

located in the same position, where the symbiont enters the plant via newly-formed structures, 

the infection threads (Kijne, 1992). It has been shown that lectin plays a role in the interaction 

between rhizobia and legumes (Diaz, 1989). Therefore, lectin might contribute to the 

susceptibility of the particular root hairs to rhizobia. Whether that is the case for the RH4 

protein is not clear. However, one can postulate that rh.4 might play a role either directly, when 

rhizobia regulate its expression, or indirectly, by providing together with other genes, a certain 

'identity' to the root hairs that enables them to interact with rhizobia. 
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METHODS 

Plant material and growth conditions 

Pea seeds (Pisum sativum cv. Finale; Cebeco, Netherlands) were grown in gravel (Bisseling et 

al., 1978). Root segments containing root hairs were harvested from 4-day old pea seedlings 

and immediately frozen in liquid nitrogen. 

For whole mount in situ hybridization experiments, plants were grown on plates containing 

Fahraeus medium (Fahraeus, 1957) in 1% agar. 

Root hair isolation and RNA isolation 

Root hairs were harvested by the method described by Rohn and Werner (1987), modified as 

described by Gloudemans et al. (1989). 

Frozen roots and root hairs were ground in liquid nitrogen and resuspended in a hot (90°C) 

mixture of RNA extraction buffer (0.1 M Tris-HCl pH 9.0, 0.1 M LiCl, 10 mM EDTA, 1% 

SDS) and phenol (1:1). After vortexing and centrifugation (30 min, 6000 X g) the water phase 

was collected and RNA was extracted as described by Pawlowski et al. (1994). 

Differential screening 

A cDNA library was constructed by Stratagene in X.ZAPII vector system, using poly(A)+ RNA 

isolated from root hairs of uninoculated and inoculated with R. leguminosarum bv. viciae pea 

plants (Pisum sativum bv Finale). 

This library was plated at a density of approximately 30000 plaques per 15-cm-diameter plate 

that were transferred onto nitrocellulose filters in duplicates. The filters were screened by 

differential hybridization with root-specific or root hair-specific radioactively labelled first-

strand cDNA. Autoradiograms were screened for hybridization with the root hair specific cDNA 

probe only. The putative positive plaques were purified further with two rounds of differential 

screening. Inserts of the selected plaques were converted into plasmid vectors according to the 

established protocols (Stratagene). 

Northern blot analysis 

Total RNA was denatured in DMSO/glyoxal, separated on 1% agarose gels and blotted onto 

GeneScreen in 0.025 M NaF^PCU pH 7.0. The blots were hybridized in 50% formamide, 1 M 

NaCl, 0.5% SDS, 10 mM Tris-HCl pH 7.0,10 x Denhard's solution at 42°C. The pRH4 insert 

was radiolabeled by random priming using [a-32P]dATP (3000 Ci/mmol; Amersham) as 

radioactive label. 
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Nucleotide sequencing 

The nucleotide sequencing of the insert of pRH4 was determined by double-stranded 

sequencing using the ̂ Sequencing kit from Pharmacia Biotech. The sequence of the insert of 

pAraRH4 was determined with an automatic sequencing apparatus of Applied Biosystems, Inc. 

by using a Tag DyeDeoxyTM Terminator Cycle Sequencing Kit (Applied Biosystems, Inc.). 

Whole mount in situ hybridization 

For the whole mount in situ hybridization, roots of P. sativum were fixed in PBS, 4% 

paraformaldehyde, 0.25% glutaraldehyde, 0.08 M EGTA, 10% DMSO, and 0.1% Tween 20, 

for 3 hrs at room temperature. In situ hybridization was performed essentially as described by 

Tautz and Pfeifle (1989), with modifications. The heptane washes were eliminated. Tissue was 

kept in ethanol, after fixation, at -20°C for 2 days. Before the proteinase K treatment, tissue 

was incubated for 30 min in 1:1 ethanol/xylene solution. This treatment was followed by a 

postfixation step in PBS, 0.1% Tween 20, and 5% formaldehyde. After the proteinase K 

treatment the same postfixation step was applied. Prehybridization and hybridization took place 

at 42°C. For the post-hybridization washes an RNase A treatment for 15 to 30 min, was 

included (40|ig/ml RNase A in 500 mM NaCl, 10 mM Tris-HCl pH 7.5,1 raM EDTA). Before 

use, the anti-digoxygenin antibodies coupled to alkaline phosphatase (Boehringer Mannheim) 

were preabsorbed in an acetone extract of fixed roots (overnight at 4°C). The final concentration 

of the antibodies used, was 1:2000. Incubation with the antibody took place at 4°C overnight. 

The chromogenic reaction with 5-bromo-4-chloro-3-indolyl phosphate (X-phosphate, 

Boehringer Mannheim) and nitroblue tetrazolium (NBT, Boehringer Mannheim) was carried out 

for 30 min to several hours. A sense probe was used as control. 
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Chapters 

INTRODUCTION 

Rhizobia form root nodules in a symbiotic interaction with legumes. The formation of nodules 

starts with the mitotic reactivation of root cortical cells leading to the formation of a nodule 

primordium that upon infection by rhizobia develops into a root nodule. The bacteria infect the 

plant by so-called infection threads. After bacteria attach to the root hair tip, the tips curl and 

bacteria become entrapped. There, a local hydrolysis of the plant cell wall takes place, and the 

plasmamembrane invaginates (Kijne, 1992; van Spronsen et al., 1994). New cell wall like 

material is deposited, resulting in the formation of an infection thread. The infection thread 

grows by incorporation of vesicles at the tip (van Brussel et al., 1992). 

Plant cells can grow in two ways. Most cells have an intercallary growth in which case, vesicles 

are incorporated along the side walls and cells mostly elongate. A few plant cell types show tip 

growth; root hairs and pollen tubes. In these cells, vesicle incorporation only occurs at the tip of 

the cell. The involvement of polar growth mechanisms in infection thread formation is indicated 

by the cytoplasmic rearrangements that occur in the cells of the outer cortex. The nuclei swell 

and move to the center of the cell. The cytoplasm reorganizes to form a radially oriented conical 

structure, -the cytoplasmic bridge-, that resembles a preprophase band (Kijne, 1992). 

Furthermore, the cytoplasmic bridges are polarized, with the bulk of the cytoplasm and 

endomembranes located in the outer side, and all amyloplasts at the inner side of the bridge (van 

Brussel et al., 1992). The infection thread appears to grow via these cytoplasmic bridges, 

which therefore are called preinfection threads. 

So, the infection threads grow at their tip by incorporation of vesicles and involve a polar 

organized cytoplasm. Hence, it is reminiscent of polar growth of e.g. root hairs, but the 

direction of growth is reversed. Based on the above mentioned observations, it has been 

postulated that infection thread formation uses mechanisms shared with polar growth of plant 

cells, in particular root hairs. We were interested to investigate this hypothesis, by testing 

whether genes specifically expressed in polar growing plant cells, are induced in root cortical 

cells forming infection threads. 

Root hair growth and germination of pollen are processes that share certain common features. 

The growth of both cell types for instance, is dependent upon a continous influx of Ca2+ at the 

apex and an internal Ca2+ gradient (Schiefelbein et al., 1992; Pierson et al., 1994; Gilroy and 

Wymer, 1995). Furthermore, a functional actin cytoskeleton is required (Heath, 1990). 

However, the best support for common mechanisms in polar growth in plant cells comes from 

studies on the Arabidopsis mutant tipl. tipl plants (Schiefelbein et al., 1993) have branched 

root hairs that are also shorter than those of wild type plants. Furthermore, studies on pollen 

tube growth in vivo showed that the tipl pollen grow slower through the transmitting tissue of 

wild type flowers than the wild type pollen. 
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In this paper, we describe the isolation of two cDNA clones corresponding to genes expressed 

in both root hairs and germinating pollen. These cDNA clones have been used to test whether 

the formation of preinfection threads involves similar genes as other polar growing plant cells. 

RESULTS 

Isolation of cDNAs corresponding to root hair specific genes 

To isolate cDNA clones corresponding to genes expressed in root hairs, a root hair cDNA 

library from Pisum sativum, was differentially screened with root and root hair cDNA, 

respectively. Two of the isolated clones, namely pRH6 and pRH6-l were selected for further 

analysis. 

To confirm that rh6 and rh6-l are expressed at elevated levels in root hairs, we compared the 

amounts of the corresponding messengers in RNA preparations of roots and isolated root hairs. 

Roots were collected from 6-day old plants. The root tips were removed and root hairs were 

obtained by brushing roots frozen in liquid N2. RNA was isolated from the root hair samples 

and from roots of 6-day old plants of which the root tips were removed. Identical northern blots 

were probed with the inserts of pRH6 and pRH6-l. The same northerns blots were 

subsequendy hybridized with ubiquitin, to standardise the amount of RNA loaded in each slot 

(Figure 1). 

rh6 mRNA was present in markedly higher levels in the root hair (RH) samples (Figure 1), 

than in RNA preparations of whole root (R). The low amount of rh6 mRNA seen in the RNA 

sample of the root (R) could be due to the presence of root hairs or to a low level of expression 

in other cell types of the root, rh.6 mRNA was not detected in stems (S) and leaves (L), even 

after prolonged exposure times. pRH6 hybridized with a transcript of approximately 1,4 kb and 

carries an insert of 1359 bp. 

rh6-l mRNA occurs also at a higher level in the root hair RNA sample than in RNA 

preparations of total roots (Figure 1). rh6-l transcript was not detected in stems and leaves, 

even after prolonged exposure times. pRH6-l hybridizes with a transcript of 1.1 kb and since it 

bears an isert of 974 bp, it is not a full size clone, rh.6-1 transcript is less abundant than rh6, 

since the northern blot of Figure 1, middle panel, had to be exposed 12 times longer to obtain 

the signal of the blot shown in Figure 1, upper panel. 

So, both genes are expressed at elevated levels in root hairs when compared to the average 

expression level in root cells. 
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L S RHR 

RH6 

L S RHR 

RH6-1 

L S RH R 

Figure 1. Autoradiograph of northern blots 

containing 20 u.g of total RNA isolated from 

roots (R), root hairs (RH), leaves (L), and stems 

(S), respectively, hybridized to pRH6 (upper 

panel) and pRH6-l (middle panel). The amount 

of RNA on the filter was determined by a 

hybridization with a soybean ubiquitin probe 

(Kouchi and Hata, 1993), as it is shown in the 

bottom panel. 

ubiq. 

Sequence characteristics 

The RH6 cDNA contains an ORF encoding a polypeptide of 325 amino acids. The first 29 N-

terminal amino acids constitute a putative membrane translocation signal sequence, with a 

hydrophobic core and a putative cleavage site at proline 29 (arrowhead, Figure 2; von Heijne, 

1983). The putative mature polypeptide has an isoelectric point of 9.55 and a molecular weight 

of 32,8 kD. RH6 has a high homology with peroxidases available in databases. The most 

related to RH6 are, a cationic peroxidase from Medicago truncatula accumulating in the 

epidermis upon inoculation with R. meliloti (72% identity; Cook et al., 1995), a cationic 

peroxidase from peanut cells (59% identity; Buffard et al., 1990), and two cationic peroxidase 

isozymes formed in the stems of Stylosanthes humilis upon infection with Colletotrichum 

gloeosporioides (57% and 54% identity; Curtis et al., 1995; Harrison et al., 1995). Figure 2 

shows an alignment of the protein sequence of RH6 with those peroxidases. The consensus 

sequences that are widely conserved among different peroxidases are present also in RH6. 

These include the context of the distal histidine at position 58 (GASLLRLHFHDCFV), that 

serves as an acid-base catalyst, and that of the proximal histidine at position 193 

(DLVVLSGGHTTG) that is involved in the binding to heme (Tyson, 1991; 1992). The position 

of eight of the nine cysteines present in RH6, is also conserved in the different peroxidases. 

Furthermore, RH6 has three putative N-glycosylation sites (indicated by lines in Figure 2). 

RH6-1 cDNA contains an ORF encoding a polypeptide of 281 amino acids and it lacks the N-

terminal part including the starting methionine. The encoded polypeptide has an isoelectric point 

of 5.8. RH6-1 has also high homology with the plant peroxidases present in the 
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RDWSCADIL 
GPWSCADIL 
PGWSCADIL 
PGWSCADIL 
PGWSCADIL 

PPFFNFSQLI 
SPTFNFSQLI 
APFFNLSGLI 
GPSFNLSGLI 
APTLDLSGLI 

DTTFAANLQK 
DPIFAASLRK 
DPTYAKSLQA 
DPSYAKSLQG 
DPNFAKSLQG 

SDQELFKGDG 
SDQQLFKGQG 
SDQQLFNGV. 
ADQQLFNGGG 
SDQQLFNG.G 

TPNYYDRICP 
TPHFYDNVCP 
SSNFYATKCP 
SSNFYATKCP 
SSNFYATTCP 

VLLDDTPTFR 
VLLDDTPNFT 
VLLDDTSNFT 
VLLDDTSTFT 
VLLDDTSNFT 

AIAARDSVAI 
ATAARDSVAI 
AVAARDSWA 
ALAARDSWA 
AVAARDSWA 

TNFNSHGLNL 
SNFKSQGLNV 
SAFSNKGFTT 
SAFSKKGFTA 
SAFSKKGLST 

* 
TCPRI..GGD 
TCPRN..GGD 
NCPSV. .GGD 
NCPSV..GGD 
NCPNTTGNGD 

SQSDNLVLKY 
SESDKLVQLY 
S. TDSQVTAY 
S. TDSQVTAY 
S. TDSQVNGY 

* 331 
IRCNCRKVNS 
IRLNCRRVR. 
IRTNCRKTN. 
IRTNCRKTN. 
IRTNCRKTN. 

Y 

KALPIIKSW 
QALPTIKSW 
NALSTIKSAV 
NALSTIKSAV 
NALSTIRSGV 

100 
GEKTAFPNIN 
GEKTALPNIN 
GEKTAGPNAN 
GEKTAFPNVN 
GEKTARPNAN 

150 
LGGNQYWYQV 
LGGPQFFYNV 
LGGA..SWNV 
LGGP. . SWNV 
LGGP. . SWTV 

200 
K >LWLSGGH 
K 3LVALSGGH 
K 
K 
S 

SLVTLSGAH 
JLVTLSGAH 
CMVALSGGH 

250 
NNLAPFD. ST 
NNLTPLDF.T 
TNLSPFDVTT 
SNLSPFDVTT 
NNLAPIDTTS 

300 
SKDSYAFAKD 
SKNTFAFASD 
SNNAATFNTD 
SNNAATFNTD 
ASNPSSFCSD 

Figure 2. Alignment of RH6 with Medicago truncatula (Mtu 16727), peanut (Arcpncl) and Stylonsanthes 

humilis (Ssncape, Ssnperoxia) peroxidases.The conserved cysteines are shown with asterisk. The context of the 

distal and proximal histidines are enclosed within a rectangular, while the distal and proximal histidines are 

indicated by bold letters. The arrowhead indicates the putative cleavage site of the signal peptide of RH6 at 

proline (P) 29. The putative W-glycosylation sites of RH6 are marked with lines. 
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databases. The most related peroxidases, as it is shown in Figure 3, are the anionic peroxidase 

from Populus kitakamiensis (46,2% identity; Osakabe et al., 1995), two cationic isozymes of 

38 kD and 40 kD found in the medium of cultured tobacco cells (44,3% and 43.6% identity 

respectively; Narita et al., 1995) and an acidic peroxidase associated with systemic acquired 

resistance in cucumber (44,6% identity, Rasmussen et al., unpublished). 

The consensus sequences containing the context of the distal histidine (AASLLRLHFHDC, 

position 18) and the proximal histidine (DLVVLSGAHTIG, position 141) are also present in 

RH6-1. Furthermore, the position of the seven cysteines of RH6-1 is conserved among the 

different peroxidases. RH6-1 has one putative N-glycosylation site. 

RH6 and RH6-1 show 43,2% homology and they belong to different classes of peroxidases 

since most likely rh6 encodes a cationic peroxidase and rh6-l an anionic one. So, RH6 and 

RH6-1 are two putative peroxidases present in pea root hairs. 

Expression of rh6 and rh6-l in pea root hairs 

Northern blot analysis indicated that rh6 mRNA accumulates in root hairs. To check this, and 

to study in which epidermal cells rh6 is expressed, whole mount in situ hybridizations were 

done. 

Whole mount in situ hybridization experiments performed on pea roots confirmed that rh6 

mRNA is present in root hairs (Figure 4A). Expression of the gene was observed in young 

elongating root hairs as well as mature root hairs (Figure 4A) that have reached their maximum 

length. The rh6 mRNA accumulates in the outgrowth but not in the basal part of the cell. Note 

that rh6 transcripts are uniformely distributed along the hair (Figure 4A, arrowhead). No signal 

could be detected in the atrichoblasts, -epidermal cells that do not have a root hair-, which are 

interspersed between the root hair-containing cells. Furthermore, rh6 mRNA was not detected 

in the root tip. 

Figure 3. Alignment of RH6-1 with Popolus kitakamiensis (Poppa), tobacco (Tobcpi38ka and Tobcpi40kb) 

and cucumber (Cusprcpcra) peroxidases. 

The conserved cysteines are indicated by bold letters. The context of the distal and proximal histidines are 

enclosed within a rectangular, while the distal and proximal histidines are shown with asterisk. The putative N-

glycosylation site of RH6-1 is marked with a line. 

A concensus sequence of the peroxidases (PERCON) is given in the bottom line of the aligned sequences. 
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1 50 
RH6-1 ARVE 
Poppa FYDQTCPNVS 

T o b c p i 3 8 k a MRTAQLLLLS . .FLVFLSIV VCGVSGAGNN VPRKNFYKNT RCPNAEQFVR 
T o b c p l 4 0 k b MGTAQLLLLS NIFLVFLSIV VCGVSGAGNN VPRKNFYKST RCPNAEQFVR 
C u s p r e p e r a MTVE 

PERCON q f V . 

51 ^ _ 
RH6-1 SKVKEWIKED YT L \AS LLRLHFHDC 
Poppa TIIRDVITET LASDPRI ;AS LIRLHFHDC 

Tobcpi38ka DITWSKAKND AT L3AK LLRLHYHDC 
Tobcpi40kb DITWSKAKND ST L3AK LLRLHYHDC 
Cusprepera FGVKRAIETD IR A 5AK LIRFHFHDC 

PERCON di..skik.d.t 1 ;Ak LIRlHfHDC 

100 
IRGCDGSILL KHEG...S.. 
VNGCDGSLLL DNSDTIVS.. 
VRGCDASILL DKVGTDQS.. 
VRGCDASILL DKVGTDQF.. 
VQGCDGSVLL EDPP . . .GFE 
vrGCDgSiLL dkvgt..s.. 

101 150 
RH6-1 .ERTAEA.SK TLRGYEVIDD IKAEVEKQCP KTVSCADILT TVARDA.TVE 
Poppa .EKEAGGNNN SARGFEVVDR MKALLESACP ATVSCADILT 1AAEES.EVL 

T o b c p i 3 8 k a .EKEARP.NL SLGGFDVIDD IKRQVEEKCP EIVSCAD1LA LAARDAVSFP 
T o b c p i 4 0 k b .EKEARP.NL SLGGFDVIDD IKRQVEEKCP GIVSCADILA LATRDAVSFR 
C u s p r e p e r a TELNGLG.NL GIQGIEIIDA IKAAVEIECP GWSCADILA QASKDS.VDV 

PERCON . E k e a r . . n l s l . G f e v i D d IKaqvEekCP g.VSCADILa l a a r d a . s . . 

151 200 
RH6-1 LGGLYWTVPY GRKDGTI.SI DSE.TEIIPK GHENVTSLIE FFQSKGL.NV 
Poppa AGGPNWTVPL GRRDSTTASR DAA.NAFLPA PNITLDQLRE SFTNVGLNNN 

T o b c p i 3 8 k a FKKSLWDVAT GRKDGNV.SF GSEVNGNLPS PFSDFATLQQ LFAKKGL.NV 
T o b c p i 4 0 k b FKKSLWDVAT GRKDGNV.SL ASEVNGNLPS PFSDFATLQQ LFAKKGL.NV 
C u s p r e p e r a QGGPSWRVLY GRRDSRT.AN KTG.ADNLPS PFENLDPLVK KFADVGL.NE 

PERCON f g g . l W . V . . G R k D g . . . s . d s e . n g n l P s p f t L q . lFakkGL.Nv 

201 
RH6-1 
Poppa 

Tobcpi38ka 
Tobcpl40kb 
Cusprepera 

PERCON 

RH6-1 
Poppa 

Tobcpi38ka 
Tobcpi40kb 
Cusprepera 

PERCON 

lliLWLsGAH TlGhTSCGSi 
J 5LVALSGAH 
^ 3LVALSGAH 
^ JLVALSGAH 
1 3LVALSGAH 
r DLVaLSGAH 

TFG 
TIG 
TI 

*AKCSTF 
/AHCGAF 

G /AHCGAF 
TFG <SRCVFF 
TIGrahCgaf 

251 
...WASE... YVDLDARTPK 
QGGNGSV... LTDLDLTTPD 
...NPANPAT TVEMDPQSST 
...NPANPAT TVEMDPQSST 
...SQDT... RVNFDPTTPD 
...np.n... tv..Dp.tp. 

QYRLYNYKDT 
DFRLYDFNST 
SRRLFNFTGK 
SRRLFNFTGK 
SGRLSNFSGS 
srRL.nftg. 

TFDEKYYINL 
AFDSNYYSNL 
SFDSNYFNIL 
SFDSNYFNIL 
KFDKNYFTNL 
sFDsnYfnnL 

GKPDPTIDPQ 
GAPDQSLDPT 
GDMDPSLNPT 
GDVDPSLSST 
GQPDPTLDPT 
GdpDpsldpt 

250 
YLNFLKRKCR 
LLAALQELCP 
YVESLKQLCP 
YAESLKQLCP 
YRQELLSACT 
ylesLkqlCp 

300 
EKKMGLLSTD QLLYS...DQ 
QGNQGLLQTD QVLFSTPGAD 
TQNKGLFQSD AVLLT...DK 
TQNKGLFQSD AALLT...DK 
RANKGLLQSD QVLHS...TQ 
tqnkGLlqsD qvLls...d. 

RH6-1 
Poppa 

Tobcpi38ka 
Tobcpi40kb 
Cusprepera 

PERCON 

301 
..RTSPLVSA 
..DVIALVNA 
..KSAKVVKQ 
..KSAKVVKQ 
GAKTVEIVRL 
. . k . a k . V k . 

MALESSVFKR 
FSANQTAFFE 
LQKTNTFFS. 
LQKTNAFFS. 
MALKQETFFR 
. . . t . t f F . . 

QFAFSMSKFG 
SFAESMIRMG 
EFAKSMQKMG 
EFAKSMQKMG 
QFRLSHIKMG 
.FakSM.kmG 

AIDVLTGDDE 
NLRPLTG.TE 
AIEVLTG.NA 
AIEVLTG.NA 
NIKPLTG.SQ 
a i e v L T G . n . 

350 
GEIRTNCNFV 
GEIRLNCRVV 
GEIRKSCRVR 
GEIRKNCRVR 
GEIRRNCRRV 
GE IRknCrw 

351 365 
RH6-1 NAY 
Poppa NANLAGPDSK LVSSI 

T o b c p l 3 8 k a N 
T o b c p i 4 0 k b N 
C u s p r e p e r a NDLGSETGHD V M . . . 

PERCON N 
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Figure 4. In situ localizations of rh6 and rh6-l. 

A,B,C. Whole mount in situ hybridization performed on segments of 1.5 cm pea lateral roots (A) or pea 

germinating pollen (B&C) hybridized with DIG-labelled antisense rh6 RNA. Signal is visualized as a purple 

precipitate. 

A) rh6 expression is observed in mature root hairs, rb.6 mRNA is distributed uniformly along the outgrowth as 

it is indicated by the arrowhead. 

B&C) rh6 is expressed in pollen tubes as soon as the tube emerges (arrow, Figure B). Furthermore, the gene is 

expressed throughout in germination process as it is shown in Figure C. Note that the messengers are distributed 

along the outgrowths (arrowheads), as in the case of root hairs. 

D,E,F,G. Whole mount in situ hybridization performed on segments of 1.5 cm pea lateral roots (D&F) or pea 

germinating pollen (E&G) hybridized with DIG-labelled antisense rh6-l RNA. Signal is visualized as a purple 

precipitate. 

D&F) rh6-l is expressed in emerging root hairs (D) and young elongating root hairs (F). rh6-l mRNA 

accumulates at the tip of the root hair (arrowhead). 

E&G) rh6-l is expressed in emerging (arrow, Figure E) and elongating (Figure G) pollen tubes. The messengers 

are distributed preferentially at the tip of the tube (arrowhead). 

All micrographs were taken with the use of Nomarski optics. 

H) Bright field micrograph of a cross section of pea roots spot-inoculated with Rhizobium leguminosarium bv. 

viciae (after 7 days), hybridized with " s -UTP labelled rh6 RNA. 

Morphological changes in the root cortical cells can be observed. The nucleus moves to the middle of the cell 

(arrowhead) and preinfection threads are formed (arrow). 

I) Epipolarization of the same micrograph as in H. The signal is visualized as green dots. rh6 mRNA is present 

in preinfection forming root cortical cells (arrowhead, arrow) 

Bar in A = 250 \im; bar in E = 125 urn; bar in F = 500 urn. The same magnification was used in A/B/C/D/H/G, 

and E/G respectively. 

rh.6-1 mRNA is also present in the root hairs (Figure 4D&F). Expression of rh.6-1 was 

detected in all emerging (Figure 4D) and actively growing root hairs (Figure 4F). The mRNA 

as in the case of rh6, is present in the outgrowth and not in the basal part of the cell. Though, 

rh6-l mRNA is located at the tip of the root hair (Figure 4F, arrowhead), whereas rh.6 

mRNA is equally distributed over the hair (Figure 4A, arrowhead). In addition, rh.6-1 is 

expressed in the epidermis, in the zone preceding root hair emergence (data not shown). 

Thus, the two peroxidase genes show a different expression pattern. rh6 expression is 

restricted to the root hairs, while rh6-l is already expressed at an earlier developmental stage 

preceding the emergence of the hair. Furthermore, the distribution of the messengers is 

different. rh6 mRNA is equally distributed along the outgrowth while most of the rh.6-1 

mRNA is at the tip of the hair. 
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rh6 and rh6-l expression correlates with polar growth 

While most plant cells have an intercallary growth, root hairs and pollen tubes elongate by 

polar tip growth. To clarify whether RH6 and RH6-1 play a more general role in the 

mechanism of tip growth, pollen from pea flowers were isolated and germinated in vitro. 

Expression of rh6 and rh6-l was studied using whole mount in situ hybridization. Figure 

4B&C depict rh.6 expression in pollen. Expression is detected as soon as the tube emerges 

(Figure 4B, arrow) and it is sustained throughout pollen tube growth (Figure 4B&C, 

arrowheads). rh6 mRNA is observed in the germinating pollen tube (Figure 4B&C, 

arrowheads) and not in the pollen grain. rh6-l has a similar expression pattern; rh6-l mRNA 

was detected in emerging (Figure 4E, arrow) and elongating pollen tubes (Figure 4G, 

arrowhead). No rh6-l messenger was localized in the pollen grain. 

There is a striking difference in the location of the two peroxidase mRNAs in pollen tubes; 

rh.6 mRNA is located along the pollen tube (Figure 4B&C), while rh6-l mRNA appears to 

be located mostly at the tip of the growing tube (Figure 4E&G). This distribution of the 

mRNAs is strikingly similar to the distribution observed in root hairs (Figure 4A versus 

Figure 4B&C, Figure 4D versus Figure 4E, and Figure 4F versus Figure 4G). 

Since both root hairs and germinating pollen have a corresponding pattern of rh6 and rh6-l 

expression, it is likely that polar growth has common features. Furthermore, it is noteworthy 

that the rh6 and rh6-l messengers have a similar cellular localization in both root hairs and 

pollen tubes. 

rh.6 is induced in preinfection thread containing cortical cells 

Pea roots were spot-inoculated with Rhizobium leguminosarum bv. viciae. The bacteria enter 

the root hairs and the cortical cells via tubular structures called infection threads. Prior to 

infection thread penetration, a number of changes are observed in the cortical cells. The 

nucleus swells and moves to the middle of the cell (Figure 4H, arrowhead) and the cytoplasm 

obtains a polar organization to sustain the growth of the tip growing infection thread by 

forming a radially oriented conical structure designated as preinfection thread (Figure 4H, 

arrow; van Brussel et al., 1992). In situ hybridization with rh.6 35S-UTP labelled antisense 

RNA was performed on cross sections of root segments containing preinfection structures. 

Expression of the gene was observed in front of infection threads, in cells that contain 

preinfection threads (Figure 4H&I). Hybridizations with rh.6-] have not been done yet. 

Thus, the symbiont induces the expression of a gene in the cortex, that is normally expressed 

in growing root hairs and pollen tubes. It seems that expression of rh6 is correlated with polar 

growth since the cells containing preinfection threads, root hairs and pollen tubes support tip 

growth. 
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DISCUSSION 

We isolated two cDNA clones with differential screening of a pea root hair cDNA library that 

represent genes expressed specifically in root hairs, pRH6 and pRH6-l. Expression of both 

genes occurs also during germination of pollen tubes, indicating the proteins play a more 

common role during tip growth. In addition, it has been shown that rh6 is involved in 

preinfection thread formation. 

rh.6 as well as rh6-l encode a putative peroxidase. Peroxidases are grouped in three classes 

depending on their isoelectric point; cationic (pi 8.1-11), moderate anionic (pi 4.5-6.5) and 

anionic (pi 3.5-4). RH6 belongs to the class of the cationic peroxidases and RH6-1 to the 

moderate anionic ones. Both cationic and moderate anionic peroxidases have been isolated from 

cell walls of different plants (Kerby and Somerville, 1992; Reimens et al., 1992). Cationic 

peroxidase isozymes though are often vacuolar (Madern, 1986). Whether RH6 is localized in 

the vacuole or the cell walls is not clear at present. Each plant species has a number of 

peroxidase isozymes which show differences in substrate specificity. Some isozymes are 

implicated in polysaccharide cross-linking, others in cross-linking of extensin monomers, while 

others in indole-3-acetic acid oxidation, or ethylene biosynthesis (Greppin et al., 1986). Cross-

linking of cell wall proteins and polysaccharides has been attributed to cationic, anionic and 

moderate anionic isozymes present in the cell walls. The existence of different isozymes in the 

cell walls might be due to differences in substrate specificity. Vacuolar cationic isozymes have 

been implicated in hormone biosynthesis. 

The expression of different peroxidase genes is tissue specific, developmentally regulated or 

modulated by environmental stress factors, and pathogen attack. In situ hybridization studies 

showed that both rh6 and rh6-l are expressed in root hairs and germinating pollen, indicating 

that the genes are developmentally regulated. During root hair growth and germination of 

pollen, new cell wall biosynthesis takes place. Therefore, it is tempting to speculate that RH6 

and RH6-1 play a role in this process, either by crosslinking extensins or by crosslinking 

polysaccharides. Our observation that rh6 and rh6-l are expressed in both pollen tubes and 

root hairs, shows that common genes are used in tip growing plant cells. This is complementary 

to the analysis of the tipl mutant of Arabidopsis, where it has been demonstrated with a genetic 

approach that there is a common basis for tip growth of plant cells. 

The availability of cloned sequences of genes expressed in tip growing cells, provided the 

means to check on a molecular level, whether infection thread formation involves mechanisms 

used by other tip growing cells. The observation that rh6 is expressed in preinfection thread 

forming cells strongly supports this hypothesis that was originally based on cytological studies 

(van Brussel et al., 1992). 

RH6 shows the highest homology to the Rhizobium meliloti induced peroxidase of alfalfa 

(ripl). ripl is induced in the epidermis by rhizobial Nod factors and like rh6 is not induced in 

the nodule. In addition, no expression of ripl was reported in the cortical cells upon 
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in the nodule. In addition, no expression of ripl was reported in the cortical cells upon 

inoculation. However, induction of ripl in the cortex was studied by means of northern blot 

analysis. Therefore, it is still possible that the level of ripl induction is below the detection 

limits of this method, since in our experiments it was shown that rh6 is expressed only in the 

cortical cells forming the preinfection threads and not in the cortical cells containing infection 

threads. Thus, even though the expression patterns of ripl and rh6 are not identical, it is still 

possible that both peroxidase genes play a similar role in the interaction. 

It is noteworthy, that in both root hairs and pollen tubes the messengers of rh6 and rh6-l are 

localized in a similar manner. rh6 mRNA is located uniformely along the outgrowths and 

rh6-l mRNA is located mainly at the tip. Localized messengers have been observed in other 

polar cell types (Johnston, 1995). It has been postulated that the messengers are localized in 

the position where the encoded protein is needed (Johnston, 1995). rh6-l is expressed in 

young root hairs and not in mature root hairs. Since the messenger is located at the tip of the 

outgrowth, -in root hairs and pollen-, one can speculate that RH6-1 plays a role in new cell 

wall biosynthesis. In contrast, rh6 is expressed in both young and mature root hairs and the 

messenger is located along the outgrowth of both root hairs and pollen. Therefore, a role of 

the protein in secondary cell wall modifications of the outgrowths can be envisioned. 

METHODS 

Plant material and growth conditions 

Pea seeds (Pisum sativum cv. Finale; Cebeco, Netherlands) were grown in gravel (Bisseling et 

al., 1978). Root segments containing root hairs were harvested from 6-day old pea seedling 

and immediately frozen in liquid nitrogen. 

For whole mount in situ hybridization experiments, plants were grown on plates containing 

Fahraeus medium (Fahraeus, 1957) in 1% agar. Some of the plants were spot-inoculated with 

Rhizobium leguminosarum bv. viciae. Root segments of the spot-inoculated area were 

collected after 7 days. 

Pollen tube germination 

Pollen grains were collected from freshly opened flowers and spread into a liquid culture 

medium, containing 15%-20% sucrose, 0.03% CaCl2, and 0.01% H2B03. The isolation was 

followed by a centrifugation step at 800 rpm that was repeated twice. Pollen grains were 

incubated for lh at 25°C in the dark. 
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Root hair isolation and RNA isolation 

Root hairs were harvested by the method described by Rohn and Werner (1987), modified as 

described by Gloudemans et al. (1989). 

Frozen roots and root hairs were ground in liquid nitrogen and resuspended in a hot (90°C) 

mixture of RNA extraction buffer (0.1 M Tris-HCl pH 9.0, 0.1 M LiCl, 10 mM EDTA, 1% 

SDS) and phenol (1:1). After vortexing and centrifugation (30 min, 6000 X g ) the water 

phase was collected and RNA was extracted as described by Pawlowski et al. (1994). 

Differential screening 

A cDNA library was constructed by Stratagene in A.ZAPII vector system, using poly(A)+ 

RNA isolated from root hairs of uninoculated and inoculated with R. leguminosarum bv. 

viciae pea plants (Pisum sativum bv Finale). 

This library was plated at a density of approximately 30000 plaques per 15-cm-diameter plate 

that were transferred onto nitrocellulose filters in duplicates. The filters were screened by 

differential hybridization with root-specific or root hair-specific radioactively labelled first-

strand cDNA. Autoradiograms were screened for hybridization with the root hair specific 

cDNA probe only. The putative positive plaques were purified further with two rounds of 

differential screening. Inserts of the selected plaques were converted into plasmid vectors 

according to the established protocols (Stratagene). 

Northern blot analysis 

Total RNA was denatured in DMSO/glyoxal, separated on 1% agarose gels and blotted onto 

GeneScreen in 0.025 M NaH2P04 pH 7.0. The blots were hybridized in 50% formamide, 1 M 

NaCl, 0.5% SDS, 10 mM Tris-HCl pH 7.0, 10 X Denhard's solution at 42°C. The pRH6 and 

pRH6-l inserts were radiolabeled by random priming using [a-32P]dATP (3000 Ci/mmol; 

Amersham) as radioactive label. 

Nucleotide sequencing 

The nucleotide sequencing of the inserts of pRH6 and pRH6-l was determined by double-

stranded sequencing using the "^Sequencing kit from Pharmacia Biotech. 
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In situ hybridization 

In situ hybridization experiments with 35S-UTP labelled antisense and sense RNA probes 

were performed according to van de Wiel et al. (1990). 

For the whole mount in situ hybridization, roots of P. sativum were fixed in PBS, 4% 

paraformaldehyde, 0.25% glutaraldehyde, 0.08 M EGTA, 10% DMSO, and 0.1% Tween 20, 

for 3 hrs at room temperature. In situ hybridization was performed essentially as described by 

Tautz and Pfeifle (1989), with modifications. The heptane washes were eliminated. Tissue 

was kept in ethanol, after fixation, at -20°C for 2 days. Before the proteinase K treatment, 

tissue was incubated for 30 min in 1:1 ethanol/xylene solution. This treatment was followed 

by a postfixation step in PBS, 0.1% Tween 20, and 5% formaldehyde. After the proteinase K 

treatment the same postfixation step was applied. Prehybridization and hybridization took 

place at 42°C. For the post-hybridization washes an RNase A treatment for 15 to 30 min, was 

included (40^g/ml RNase A in 500 mM NaCl, 10 mM Tris-HCl pH 7.5, 1 mM EDTA). 

Before use, the anti-digoxygenin antibodies coupled to alkaline phosphatase (Boehringer 

Mannheim) were preabsorbed in an acetone extract of fixed roots (overnight at 4°C). The final 

concentration of the antibodies used, was 1:2000. Incubation with the antibody took place at 

4°C overnight. The chromogenic reaction with 5-bromo-4-chloro-3-indolyl phosphate (X-

phosphate, Boehringer Mannheim) and nitroblue tetrazolium (NBT, Boehringer Mannheim) 

was carried out for 30 min to several hours. A sense probe was used as control. 
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Concluding remarks 

The aim of this thesis was to obtain more insight in the Rhizobium infection process by testing 

the hypothesis that infection thread formation and root hair development share common 

mechanisms. We initiated studies on root hair development by the isolation and characterisation 

of cDNA clones of genes specifically expressed in the root epidermis. One of the root hair 

specific clones was used to check the working hypothesis. An evaluation of the obtained results 

is provided in this section. 

Expression and function of the epidermis/root hair specific genes 

Our studies resulted in the isolation of four cDNA clones which represent genes that play 

different roles in the development of the root epidermis. rh2 is expressed in all epidermal cells 

in a region starting at the protoderm and extending into the zone with mature hairs. 

Furthermore, it is expressed in the protoderm of pea embryos in the part that will form the 

radicle. Thus, rb.2 is an excellent marker for the root epidermis and its promoter can be an 

attractive tool for manipulation of gene expression in the root epidermis. 

rh4, rh6, and rh6-l are expressed in trichoblasts and appear to be active during three successive 

but overlapping stages of development. rh4 is induced already in trichoblasts prior to the 

emergence of the hair and its expression is sustained during root hair growth. rh6-l expression 

takes place in emerging and growing root hairs, whereas rh6 is expressed in growing and 

mature root hairs. Remarkably, expression of rh4 is restricted to epidermal cells positioned 

opposite a protoxylem pole, whereas rh6 and rh6-l are expressed in all hairs of their respective 

developmental zone. Thus, the developmental stage of the epidermal cell as well as positional 

information provided by the stele appear to control rh4 expression, whereas expression of rh6 

and rh6-l is only regulated by the developmental stage of the root hair. 

The sequence characteristics of the proteins encoded by the studied cDNA clones leaves some 

space for speculations on their putative function. rh2 belongs to a gene family of which one 

member has been shown to be involved in a pathogen induced defense response. Since there are 

other pathogen induced genes that are expressed in the root epidermis like chalcone synthase 

(Schmidt et al., 1990; Yang et al., 1992) and chitinase (Samac and Shah, 1991), it is possible 

that a defence barrier is present constitutively in the root epidermis. rh6 and rh6-l encode 

putative peroxidases. Thus we can speculate about a role of these peroxidases in cell wall 

biosynthesis in crosslinking of either cell wall proteins or polysaccharides. RH4 has no 

homology to any protein with a known function, except in that it contains an EGF-like repeat. 

EGF-like repeats are implicated in signalling and cell-cell communication. At present it is not 

clear whether RH4 is involved in such a process. 
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Localized mRNAs in root hairs and pollen tubes 

In polar growing cells mRNAs can be located in a specific part of the cell. To determine the 

intracellular location of the rh mRNAs, we used whole mount in situ hybridisation with 

digoxigenin labelled probes. These studies showed that the rh mRNAs are located in the hair 

itself and not in the basal part of the cell, rh.4 and rh6-l mRNAs are found preferentially at the 

tip of the hair, whereas rh6 mRNA is present in the complete outgrowth. The intracellular 

distribution of rh6 and rh6-l mRNA was also studied in germinating pollen, revealing a 

strikingly similar distribution of both mRNAs in pollen tubes and root hairs. Whether rh2 and 

rh.4 are also expressed in pollen is unknown. In trichoblasts that have not yet formed a hair, 

rh4 mRNA is targeted to the future site of root hair emergence, whereas in similar epidermal 

cells rh2 mRNA is found in all parts of the cytoplasm. Taken together these studies show that 

the rh mRNAs do not have an identical cellular localization in trichoblasts, but that some 

mRNAs must be targeted to a specific part of the cell. 

The occurrence of a differential distribution of mRNAs in germinating pollen tubes has been 

reported recently (Torres et al., 1995). It was shown that the mRNA of a hydroxyproline-rich 

glycoprotein is present in the tube, and a-tubulin mRNA is present in both parts of the cell 

(Torres et al., 1995). 

It has been speculated that the mRNAs are localized at the site where the proteins are needed 

(Johnston, 1995). Thus, we can presume that RH4, RH6 and RH6-1 function in the root hair, 

RH4 and RH6-1 specifically at the tip and RH6 along the outgrowth. mRNA localization can 

play a direct role in the establishment of polarity either within a single cell, as it has been 

reported for p-actin (Kislauskis et al, 1994), or in the polarity of embryos as it has been shown 

for the localization of certain messengers in Drosophila and Xenopus oocytes (Johnston, 1995). 

For instance, a small region of 53 bases called BLE1 element is sufficient for direct localization 

of the messenger to the interior site of the Drosophila oocytes (Macdonald et al., 1993). 

The only RNA-binding protein that has been proven to play a role in mRNA localization is the 

product of the Drosophila maternal gene staufen (Johnston, 1995). Whether similar 

mechanisms are involved in the localization of the root hair specific mRNAs is not clear yet. 

None of the identified 3'UTRs involved in targeting mechanisms analysed to date, are present 

in our messengers. Therefore, it will be very interesting to map these regions in the rh mRNAs 

in order to define the localization sequences and afterwards to disrupt them in order to find out 

whether they play a role in the establishment of polarity, or whether their localization is a result 

of the existing polarity. Furthermore, it would be interesting to find out which cytoskeletal 

elements are involved in rh mRNA localization. 
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Correlation between root hair growth and infection thread formation 

Genetic studies resulted in the isolation of a number of Arabidopsis root hair mutants. One of 

these mutants is affected in development of both root hairs and pollen tubes, by which it can be 

hypothesised that polar growth of different types of plant cells involve common mechanisms 

(Schiefelbein et al., 1993). Our observation that rh6 and rh6-l are expressed in both root hairs 

and pollen tubes strengthens this hypothesis. 

Cytological studies on the formation of infection and preinfection threads have indicated a 

relation between these processes and root hair development (Van Brussel et al., 1992). The 

observed expression of rh.6 , in cells forming preinfection threads supports the hypothesis that 

the infection process involves genes that are recruited from common plant development; in this 

case the mechanism controlling tip growth. Along the same line it has been reported that the root 

cortical cells involved in the infection process enter the cell cycle, but become arrested in G2 

and therefore do not divide but form a track for the growing infection thread. Thus a common 

process is modified and used for a step in the symbiotic interaction (Yang et al., 1994). This 

notion holds also true for other steps of nodule development. For example, it has been shown 

that rhizobial Nod factors induce a response in the non-legume tobacco (Rbhrig et al., 1995). 

Nod factors are able to induce cell division in tobacco protoplasts in the absence of 

phytohormones. This shows that a Nod factor perception mechanism is present in the non-

legume tobacco and suggests that Nod factor like molecules are endogenous plant signal 

molecules. Taken together, these studies strongly indicate that the developmental program 

controlling root nodule formation uses elements that are recruited from common plant 

developmental processes. 
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SUMMARY 

The symbiotic interaction between rhizobia and legumes leads to the formation of a special 

organ, the root nodule. Bacteria enter the plant via the root hairs, inducing the formation of 

special structures growing inwards, called infection threads. Infection threads elongate by 

growth at the tip, a process that requires a polarized cytoplasmic organization. The aim of my 

work was to initiate a study on the development of legume root hairs and to use the molecular 

tools obtained in such study, to examine correlations between root hair formation and infection 

thread formation. For that purpose, we decided to isolate cDNA clones corresponding to genes 

expressed specifically in the root hairs/root epidermis. A dual approach was followed, namely 

PCR-based cloning and differential screenings of a pea root hair cDNA library. 

The most abundant protein occurring in pea root hairs was purified and microsequensed. 

Specific oligos were designed as primers for a PCR-based cloning of the cDNA clone pRH2. 

In situ hybridization experiments showed that rh2 is expressed in all cells of the epidermis, 

cells that contain root hairs and cells lacking these tubular outgrowths. Expression of the gene 

starts at a developmental stage preceding hair emergence, in the protoderm. rh.2 belongs to a 

gene family, members of which were shown to be induced in leaves, by the pathogen Fusarium 

oxysporum. Therefore, it is possible that RH2 is part of a constitutive defense barrier present 

in the root. The expression pattern makes the rh2 promoter a good candidate for genetic 

engineering of the root epidermis (Chapter 3). 

By differential screening of a pea root hair cDNA library, putative root hair specific cDNA 

clones were isolated. rh4 a gene corresponding to one of these clones, encodes a protein that 

has one EGF-like repeat, rh.4 is expressed in trichoblasts prior to root hair emergence, and also 

during emergence and elongation of the root hairs. rh4 mRNA shows a polar distribution being 

localized in the site of root hair emergence. Expression of the gene is restricted to the epidermal 

cells positioned opposite to protoxylem poles of the root vascular bundle. It was shown that 

lectins have a similar position. This indicates that epidermal cells around the root do not have a 

uniform character. It is noteworthy that nodules produced following infection by Rhizobium 

bacteria are also formed opposite protoxylem poles. Therefore, it is possible that RH4 plays a 

role in the interaction either directly, when the gene is regulated by the symbiont, or indirectly 

by providing to the root hairs, together with other proteins, the required identity for this 

interaction (Chapter 4). 

rh6 and rh6-l are two putative peroxidase genes that are expressed in root hairs and 

germinating pollen, indicating that they may play a more general role in polar growth, since 

both root hairs and pollen exhibit tip growth. This expression pattern makes these clones good 

candidates to check whether infection thread formation shares common features with other polar 

growth processes. It was shown that rh6 is indeed induced upon inoculation with rhizobia, in 

the cortical cells prior to infection thread penetration. The gene is expressed in polarized cells 

that have formed cytoplasmic bridges, called preinfection threads (pit). Infection threads grow 
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through the cytoplasmic bridges in a manner resembling tip growth. The expression of rh6 in 

the pit containing cells indicates the existence of similarities on a molecular level between root 

hair formation, pollen tube germination and infection thread formation (Chapter 5) 

In an attempt, to bypass the production of specific antibodies epitope tagging was initiated, in 

order to perform immunolocalization studies on the early nodulins ENOD5 and ENOD12. 

These genes encode putative cell wall proteins which have been speculated to be localized in the 

infection threads. Fusion proteins were made with an oligopeptide for which there are 

antibodies commercially available. The constructs encoding the fusion proteins were used to 

transform vetch. Western blot analysis showed that the trangenes are transcribed and translated 

in our trangenic plants. The epitope-tagged proteins were detected in the cell wall fraction of the 

protein isolates from transgenic nodules. Immunolocalization studies though, performed on 

sections of transgenic nodules and transfected with the constructs cowpea protoplasts, gave no 

clear answer on their precise location. The major problem encountered is the high background 

caused by the used antiserum, indicating that the selected tag is inappropriate for studies on 

nodules (Chapter 2). 
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SAMENVATTING 

De symbiotische interaktie tussen rhizobia en vlinderbloemigen lijdt tot de formatie van een 

speciaal orgaan, de wortelknol. Bacterien komen de plant binnen via de wortelharen en 

induceren de vorming van speciale strukturen die naar binnen groeien, de zogenaamde 

infectiedraden. Infectiedraden worden langer door middel van groei van de top, een proces 

waarvoor het cytoplasma gepolarizeerd moet zijn. Het doel van mijn werk was het beginnen 

van een studie naar de ontwikkeling van de wortels van vlinderbloemigen en het gebruik van 

moleculaire technieken, ontwikkeld tijdens deze studie, om de correlatie tussen 

wortelhaarvorming en de vorming van infectiedraden te onderzoeken. Voor dat doel hebben we 

besloten tot het isoleren van cDNA kloons, die corresponderen voor genen die specifiek tot 

expressie komen in de wortelhaar/wortel epidermis. Een tweezijdige benadering werd gevolgd, 

namelijk een op de polymerase kettingreaktie gebaseeerde klonering en er werd gezocht naar 

verschillen in erwtewortel cDNA banken. 

Het meest voorkomende eiwit in erwtewortels is gezuiverd en er is een microsequentiebepaling 

op uitgevoerd. Specifieke oligo's werden ontworpen om te gebruiken als 'primers' voor een 

polymerase kettingreaktie gebaseerde klonering van de cDNA kloon pRH2. In situ hybridisatie 

experimenten tonen aan dat rh.2 tot expressie komt in alle cellen van de epidermis, cellen die 

wortelharen bevatten en cellen die deze uitgroeiingen missen. Expressie van het gen begint in 

het ontwikkelingsstadium dat vooraf gaat aan het uitgroeien van de wortelharen, in de 

protoderm. rh2 behoort tot een genfamilie. Er is aangetoond dat de pathogeen Fusarium 

oxysporum leden van deze genfamilie kan induceren in bladeren. Het is dus mogelijk dat RH2 

een onderdeel is van een constitutieve defensie barriere, die aanwezig is in de wortel. Het 

expressiepatroon maakt van de rh2 promoter een goede kandidaat voor genetische verandering 

van de wortelepidermis (Hoofdstuk 3). 

cDNA kloons die vermoedelijk specifiek zijn voor wortelharen zijn gei'soleerd met behulp van 

een erwte-cDNA bank. rh4, een gen dat correspondeert met een van deze kloons, codeert voor 

een eiwit met een 'EGF achtige' herhaalde sequentie. rh4 komt tot expressie in trichoblasten, 

voordat de wortelhaar uitgroeit en ook tijdens het uitgroeien en langer worden van de 

wortelhaar. rh4 boodschapper RNA vertoont een polaire verdeling, aangezien het gelocalizeerd 

is daar waar de wortelhaar uitgroeit. Expressie van het gen is beperkt tot epidermiscellen die 

zich bevinden tegenover de protoxyleempolen van de vaatbundel in de wortel. Er is aangetoond 

dat ook lectines zich daar bevinden. Dit wijst er op dat de epidermiscellen rond de wortel 

onderling verschillen. Het is opmerkelijk dat ook wortelknollen, die ontstaan na infectie met 

Rhizobium bacterien, tegenover de protoxyleempolen gevormd worden. Dus het is mogelijk dat 

RH4 een rol speelt bij de interaktie, hetzij direkt indien het gen gereguleert wordt door de 

symbiont, hetzij indirekt door de wortelharen de juiste identiteit te verschaffen, samen met 

andere eiwitten, die nodig is voor deze interaktie (Hoofdstuk 4). 
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rh6 en rh6-l zijn twee vermeende peroxidase genen die tot expressie komen in wortelharen en 

kiemend pollen, hetgeen er op wijst dat ze een meer algemene rol zouden kunnen spelen bij 

polaire groei, aangezien zowel wortelharen als kiemend pollen 'top groei' vertonen. Dit 

expressiepatroon maakt van deze kloons goede kandidaten om te controleren of de vorming van 

infectiedraden dezelfde kenmerken vertoont als andere polaire groeiprocessen. Het is 

aangetoond dat rh6 inderdaad gei'nduceerd wordt na inoculatie met rhizobia en wel in 

cortexcellen, voordat de infectiedraad binnendringt. Het gen komt tot expressie in 

gepolarizeerde cellen die cytoplasmatische bruggen vormen, de zogenaamde prei'nfectiedraden. 

Infectiedraden groeien door deze cytoplasmatische bruggen op een manier die lijkt op 'top 

groei'. De expressie van rh6 in de cellen die prei'nfectiedraden bevatten duidt op het bestaan van 

overeenkomsten op moleculair niveau tussen wortelhaar vorming, pollenbuis kieming en 

infectiedraad vorming (Hoofdstuk 5). 

In een poging om de produktie van specifieke antilichamen te omzeilen werd er begonnen met 

epitoop 'tagging' om immunolocalizatie studies uit te voeren met de vroege nodulines ENOD5 

en ENOD12. Deze genen coderen voor vermeende celwandeiwitten en er wordt gespeculeert dat 

ze gelocalizeerd zijn in infectiedraden. Er werden fusie-eiwitten gemaakt met een 'tag' waarvoor 

commerciele antilichamen verkrijgbaar zijn. De constructen die coderen voor de fusie-eiwitten 

werden getransformeerd naar wikke. Eiwitblot analyses hebben aangetoond dat de transgenen 

getranscribeerd en getransleerd worden in onze getransformeerde planten. De eiwitten met 

epitoop 'tags' werden aangetoond in de celwandfractie van eiwitten gei'soleerd uit transgene 

wortelknollen. Echter, immunolocalizatie studies, uitgevoerd op secties van transgene 

wortelknollen en protoplasten die getransformeerd waren met de constructen, geven geen 

duidelijkheid over de exacte localizatie. Het belangrijkste probleem is de hoge achtergrond, 

veroorzaakt door het gebruikte antiserum, hetgeen aantoont dat de gekozen 'tag' niet bruikbaar 

is voor studies met wortelknollen (Hoofdstuk 2). 
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