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Stellingen 

1. De intrinsieke kwetsbaarheid van organismen voor chemische stoffen wordt bepaald 

door de relatie tussen plasticiteit van levenscyclusvariabelen en fitness en is niet 

afhankelijk van kritische effectconcentraties voor de meest gevoelige 

levenscyclusvariabele (dit proefschrift). 

2. Het vaststellen van concentratie- c.q. dosis-respons relaties voor levenscyclusvariabelen 

is van beperkte waarde voor de ecotoxicologische risico-analyse indien deze variatie voor 

toxische stress niet wordt gerelateerd aan de fitness van het desbetreffende organisme (dit 

proefschrift). 

3. De huidige risico-analysemethoden voor het bepalen van veilige normen van chemische 

stoffen in bodem en water op basis van kritische effectconcentraties houden geen rekening 

met het vermogen van organismen zich door middel van plasticiteit aan een veranderend 

milieu aan te passen (dit proefschrift). 

4. Fenotypische plasticiteit moet gezien worden als een intrinsieke eigenschap met een 

eigen genetische controle zoals alle andere onderdelen van de levenscyclusstrategie. (Via 

et al. 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. 

Evol. 10:212-217). 

5. In de studie van Perrin et al. naar de energie-allocatie en populatiedynamiek van 

watervlooien wordt het begrip fitness niet eenduidig gedefinieerd. (Perrin et al. 1992. 

Resource allocation, population dynamics and fitness: some experiments with Daphnia 

magna Straus. Arch. Hydrobiol. 125:431-449). 

6. De uitkomsten van Wright en Coleman over lokale extinctie en overleving van 

nematoden doet vermoeden dat nematoden in een metapopulatiestructuur voorkomen. 

(Wright D.H. en Coleman D.C. 1993. Patterns of survival and extinction of nematodes in 

isolated soil. OKOS 67:563-572). 

7. Het advies van de voormalige Centrale Raad voor de Milieuhygiene (CRMH) dat in 

beginsel 100% van de soorten in een ecosysteem beschermd moet worden tegen de 

belasting van chemische stoffen is ten onrechte niet opgevolgd. (Anoniem 1992. Advies 

over de nota "Omgaan met Risico's". CRMH, VROM, 's-Gravenhage). 



8. Indien de ecotoxicologic uitsluitend aangestuurd wordt door het milieubeleid is het 

gedoemd om als wetenschappelijke discipline ten onder te gaan. 

9. Ecotoxicology is a non-issue, the scientists involved are just a bunch of people asking 

the same question (P.M. Kareiva). 

10. Moeilijke beslissingen worden vaak niet genomen, niet omdat ze moeilijk zijn maar 

omdat het aan durf ontbreekt. 

Stellingen behorend bij het proefschrift, getiteld 'Phenotypic plasticity and fitness 

consequences in nematodes exposed to toxicants' door Jan Kammenga. 

Wageningen, 12 december 1995. 



Voor Renate en 

mijn ouders 
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CHAPTER 1 

INTRODUCTION 

The early discovery of side-effects of DDT and related compounds on non-target species 

(Hotchkiss and Pough 1946; Hunt and Bischoff 1960) marked the dawn of environmental 

concern in the scientific and public community. The publication of Rachel Carson's book 

Silent Spring (1962) on the alarming effects of pesticides was a landmark and accelerated 

the scientific awareness of the deterimental impact of anthropogenic pollution on the 

environment and sparked the birth of ecotoxicology as a scientific field. Originally 

defined by toxicologists, ecotoxicology is 'the branch of toxicology concerned with the 

study of toxic effects, caused by natural or synthetic pollutants, to the constituents of 

ecosystems, animal (including human), vegetable and microbial in an integral context' 

(Truhaut 1977). Despite the original goals, the field of ecotoxicology has been seriously 

criticized for its lack of ecological relevance since most scientists approached the subjects 

from a toxicological perspective (for a historical review see: Forbes and Forbes 1994). 

Already lamented in the early eighties a plea was made for ecologists to play a major role 

in ecotoxicology (Koeman 1983). It was even stated that 'it would be hard to find two 

groups with less interchange than ecologists and ecotoxicologists' (Cairns 1990). 

Although advocated by Moriarty (1983), very few attempts have been made to identify 

important ecological tenets and to integrate this theory with toxicological concepts. At 

present, research has been focused on the prediction of the potential effect of chemicals 

on ecosystems and the evaluation of their potential ecological risk. Consequently, many 

theoretical and experimental explorations have been conducted to provide an adequate 

basis for the risk assessment of toxicants at the ecosystem level. Much attention has been 

paid to the development of statistical methodologies to extrapolate the results obtained 

from laboratory toxicity tests to the field situation (Suter et al. 1985; Stephan et al. 1985; 

Van Straalen and Denneman 1989; Wagner and Lakke 1991; Aldenberg and Slob 1993). 

Basically these methods estimate safe environmental concentrations of hazardous 

compounds from distribution models of critical effect levels obtained from single species 



Chapter 1 

toxicity tests for different organisms. In general, toxicity tests are used to estimate critical 

effect levels (EC, or LOEC) from concentration-response relationships for single life-

cycle variables such as mortality, growth, reproduction or breeding success. Numerous 

results concerning these tests have been presented for studies using both aquatic and 

terrestrial organisms (Jorgensen et al. 1991), and currently a large part of 

ecotoxicological research is focused on the development of standardised tests for a wide 

range of terrestrial and aquatic species (Maltby and Calow 1989; Van Gestel and Van 

Straalen 1994). 

A prevailing view in many of these studies is that the estimation of critical effect levels 

for sensitive life-cycle traits are highly relevant for the ecological effect assessment of 

toxicants. This premise stems from classic toxicological studies which aim for sensitive 

indicators in test organisms to evaluate the biological hazard of chemical compounds to 

humans. The rationale of applying the most sensitive life stage as a suitable parameter has 

often been adopted (Marchini et al. 1993; McKim 1985; Norberg-King 1989). Indeed, a 

large number of ecotoxicological papers have studied the effect of chemicals on sensitive 

life-cycle variables, such as juvenile mortality, growth and reproduction assuming them to 

be relevant. To mention a few, it was argued that aquatic toxicity tests should be based 

on the most sensitive stages of the life cycle if the results are to be ecologically 

meaningful (Green et al. 1986). Also Call et al. (1987) and Nagel et al. (1991) implicitly 

focus on susceptible life-cycle components in early life-stage experiments. In addition 

Coyle et al. (1993) and DeLonay et al. (1993) have studied the effect on reproductive 

success and early life-stages respectively. However, these papers do not consider life-

history theory and assume that these sensitive factors are higly relevant from an 

ecological point of view. At present standardised toxicity tests, which are implicitly based 

on the sensitivity concept, with earthworms and daphnids have been adopted by the 

Organisation for Economic Cooperation and Development (OECD) and the European 

Union (EU) (Anonymous 1984; 1985). Although these studies and approaches may be 

useful for the ranking of the potential toxicity of chemicals, this thesis will examine 

whether the general premise of sensitive variables being ecologically relevant is supported 

by life-history theory. 

10 
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ADAPTIVE PHENOTYPIC PLASTICITY AND THE FITNESS CONCEPT 

An important tenet in life-history theory is the concept of adaptive phenotypic plasticity 

(Via et al. 1995). Phenotypic plasticity represents the range of phenotypes not originating 

from genetic differentiation that can develop if an organism is exposed to heterogeneous 

or changing environments. Plastic phenotypes offer an important solution in the adaptation 

to a wide spectrum of abiotic and biotic environmental factors (in accordance with current 

literature on adaptive plasticity, no distinction is made between adaptation and 

acclimatisation). Many experimental approaches have shown phenotypic alterations for a 

variety of traits in plants as well as animals to a range of ambient conditions such as 

temperature (Williams and Black 1993), nutrient content (Sultan and Bazzaz 1993a), light 

(Sultan and Bazzaz 1993b) and the presence or absence of a predator (Stibor 1992). It 

appeared that the relative changes in characteristics differed among traits and that the 

degree of change depended on the genotype and the type of environments under 

consideration (see Via et al. 1995). 

Toxicants can be regarded as an additional ambient factor to the aforementioned ones 

which poses stress when organisms are exposed to relatively high concentrations. 

Following this equality assumption the possibility of accumulation of contaminants in 

tissues of the organism is excluded. Consequently the classic concentration-response 

relationship to a toxicant may be conceived as the plastic response of a trait to a range of 

discrete environments i.e. the concentration range of the toxicant. An important aspect of 

plasticity is that organisms subjected to non-homogeneous or adverse conditions may be 

able to maintain fitness by changing phenotypic characteristics. This presumption is the 

heart of the present thesis and provides the basis for the experimental investigations. 

Defining fitness has been subjected to much dispute and controversy in life-history 

theory over the last centuries. In 1958 Fisher published his tractate on the 'Genetical 

Theory of Natural Selection' in which fitness was defined for the first time: 

'The vital statistics (i.e. survival and reproduction, JK) of an organism in relation to its 

environment provide a means of determining a measure of the relative growth rate of the 

11 
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population, which may be termed the Malthusian parameter of population increase, and 

provide also a measure of the reproductive values of individuals at all ages or stages of 

their life-history. The Malthusian parameter will in general be different for each genotype, 

and will measure the fitness to survive each.' 

Based on life-table data, thus including reproduction and mortality statistics, Lotka 

developed the now classic equation relating these statistics to fitness (r) by: 

t=oo 

1 = E ertlt(p)E)nt(p,E) 

t=0 

where t is age, l t(p,E) is survivorship (0 <_ lt(p,E) <. 1) during time t of a genotype 

with its corresponding phenotype p in environment E and n,(p,E) is the number of 

female offspring per time unit (n, >. 0) at age t of phenotype p in environment E (Sibly 

and Calow 1983). For any age-dependent and constant-in-time offspring and survival the 

population will decrease or increase exponentially after reaching a stable age distribution. 

This holds only for density-independent populations, without competition and abundant 

food supply. The genotype with the highest r is the fittest (Kozlowski 1993). A different, 

and also commonly used, definition of fitness is life-time offspring production, or the net 

reproductive rate, which is a proper measure only in stationary populations (Kozlowski 

1993). By using life-table data however it is widely acknowledged that the Malthusian 

parameter is a correct fitness measure, although Stearns (1992) argued that fitness is a 

problem solving tool rather than a well-defined parameter. 

A limited number of papers have evaluated the effect of chemicals based on life-history 

theory by using the Lotka equation. Daniels and Allan (1981) and Allan and Daniels 

(1982) were among the first who used the rate of population increase (r) as a measure of 

toxicity in aquatic invertebrates. Using soil invertebrates, Van Straalen et al. (1989) and 

Crommentuijn (1994) stressed that the relationship between life-cycle variables and 

12 
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population growth are of paramount importance for evaluating the impact on single traits. 

Most of these studies however did not gain insight into the actual cause of the fitness 

decrease and the observed changes were discussed in a qualitative way. Moreover, they 

concentrated on the decrease of trait values at various toxicant concentrations and did not 

address the variation expressed in phenotypic characteristics. 

CHALLENGING TOXICOLOGICAL PERCEPTIONS 

The aim of this thesis was to evaluate underlying premises on current risk assessment 

procedures of toxicants on organisms. By using the concept of phenotypic plasticity and 

fitness maximisation the intention was to challenge present toxicological perceptions from 

a life-history point of view. By regarding concentration-response relationships as plastic 

responses to ambient factors, this thesis questions current methodologies on effect 

assessment of toxicants based on sensitive and single life-cycle traits. 

NEMATODES 

Free-living bacterivorous nematodes provide an excellent organism to investigate the 

relationships between plasticity of life-cycle traits to toxic stress and fitness alterations 

since many species are parthenogenetic. Commonly found in soils and sediments 

nematodes may occur in densities depending on soil structure, texture and vegetation 

(Sohlenius 1980). On the basis of their ecology and morphological structures, nematodes 

can be divided into plant-associated or free-living species (Yeates et al. 1993). 

Identification of the free-living species has become within reach of non-specialists and 

they can be classified into different feeding groups such as bacterial and fungal feeders, 

predators and omnivores (Bongers 1988). After extraction from the soil, many free-living 

bacterivorous nematodes can easily be reared on bacteria in the laboratory in agar thus 

providing a suitable substrate for living and offering the opportunity for complete life-

13 
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cycle analysis. 

A small number of papers have investigated the intricacies of life cycles in free-living 

nematodes, some of which will be mentioned here. Observations on life cycles have been 

reported mainly for Rhabditid nematodes which have fairly short generation times (2-5 

days). Population growth rates from life-table data were determined for Khabditis marina 

(Vranken and Heip 1983) and comparative studies into resource allocation among life-

cycle traits have been performed with Caenorhabditis briggsae and Plectus palustris 

(Plectidae) (Schiemer et al. 1980; Schiemer 1983). Also detailed life-cycle studies have 

been undertaken for some marine nematodes (Vranken 1987). 

At present, only few authors have focused on the use of bacterivorous nematodes in life-

cycle toxicity studies. Some of these have used the same test species, the rhabditid 

nematode Caenorhabditis elegans aiming to develop toxicity tests. Van Kessel et al. 

(1989) reported on the influence of cadmium on life-cycle traits and Williams and 

Dusenbery (1990) focused on the impact of other heavy metals on reproductive output. 

PLASTICITY-TO-FITNESS ANALYSIS 

The present thesis provides a comprehensive analysis of the relationships between 

toxicant-induced phenotypic plasticity and fitness reductions in divergent life-history 

strategies which will be denoted by 'plasticity-to-fitness analysis'. Both theoretical and 

experimental approaches will be presented aiming to unify life-history theory and 

toxicological concepts on deriving critical effect levels for ecological risk assessment 

procedures. The objectives are threefold: 

i) to determine the relationship between plasticity to toxicants in life-cycle traits to 

changes in fitness. 

ii) to evaluate critical effect levels of toxicants by means of the plasticity-to-fitness 

relationships. 

14 
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iii) to explore the susceptibility of divergent life-history strategies to toxic stress using the 

plasticity-to-fitness relationships. 

To gain insight into these relationships a general rationale is presented in Chapter 2 which 

aims to identify the influence of plastic responses in life-cycle traits on fitness for 

different iteroparous strategies. To verify these theoretical explorations, bacterivorous 

nematodes are used in a case study to explore the plasticity-to-fitness relationships for 

various toxicants. Chapter 3 focuses on the selection of Plectus acuminatus (Bastian 

1865). Consequently, Chapter 4 aims to tailor the plasticity-to-fitness relationships for P. 

acuminatus by constructing a mathematical model based on life-cycle data in control and 

cadmium exposed females. This model provides the basis for the evaluation of critical 

effect levels of cadmium and pentachlorophenol in P. acuminatus which is described in 

Chapter 5. To investigate the susceptibility of divergent life-history strategies to toxic 

stress, the impact of copper is studied for P. acuminatus and Heterocephalobus 

pauciannulatus using plasticity-to-fitness relationships in Chapter 6. Finally, the principle 

conclusions are summarised and the ecotoxicological implications are briefly explored by 

focusing on plasticity for age and size at maturity to toxicants using literature data for the 

springtail Folsomia Candida. 
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CHAPTER 2 

GENERAL RATIONALE * 

ABSTRACT - Fisher's postulate on fitness maximisation was used to outline a concept for 

the quantitative evaluation of toxicant induced life-cycle alterations by relating reaction 

norms for different traits to fitness variation. For this purpose the reaction norm was 

defined as the range of effect levels of life-cycle phenotypes which can be developed by 

one genotype. A plasticity-to-fitness analysis illustrated that i) the impact of toxicants on 

fitness was not linearly related with the reaction norms for different traits to these 

toxicants, and ii) the relationship between reaction norms and changes in fitness depended 

on the life-history strategy. These findings denounce current procedures for the risk 

assessment of toxicants which are based on effect levels of single and sensitive life-cycle 

variables. Hence these procedures need to be revisited by life-history theory to ensure a 

proper evaluation of the potential ecological hazards of toxicants. 

Based on: Kammenga I.E., Korthals G.W., Bongers A.M.T. and Bakker J. Reaction norms for life-history 

traits as the basis for the evaluation of critical effect levels of toxicants. In: Ecological principles for risk-

assessment of contaminants in soil (Van Straalen N.M. and Lekke H. eds.). Chapman and Hall, (in press). 
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2.1 INTRODUCTION 

A concept is presented for the quantitative evaluation of toxicant induced life-cycle 

alterations within the context of the life-history strategy of the exposed organism. The 

evaluation is based on the reaction norm for different life-cycle traits which mirrors the 

range of toxicant concentrations to which these traits are exposed. 

The concept asserts from Fisher's postulate on the tendency of natural selection to 

maximize fitness by optimizing different components of the life cycle (Fisher 1958). 

Following this theorem Charlesworth (1980) and Kozlowski (1993) showed that fitness is 

defined by the intrinsic rate of natural increase which is the root 'r' of the following 

Euler-Lotka equation: 

t=oo 

1 = L e-nlt(p,E)n,(p,E) ( 1 ) 

t=0 

where t is age, l t(p,E) is survivorship during time t of phenotype p in environment E and 

n,(p,E) is the number of female offspring per time unit at age t of phenotype p in 

environment E (Sibly and Calow 1983; Smith 1991). 

To maintain maximum fitness in a changing and less favourable or contaminated 

environment many species are able to adapt life-cycle phenotypes within one generation, a 

phenomenon which is called phenotypic plasticity (Stearns 1983). Plasticity refers to 

differences in life-cycle components within populations which do not originate from 

genetic differentiation (Stearns 1992). For example, phenotypic plasticity has been found 

by Dangerfield and Hassal (1992) in breeding phenology for the woodlouse Armadillidium 

vulgare. They observed a range in life-cycle phenotypes due to spatial as well as temporal 

variation and argued that plasticity can be appropriate in the attempt to maximize fitness 

in a changing environment. Another example is a study by Stibor (1992) who reported 

that life-history shifts in cladocerans can be induced by external factors such as chemical 
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stimuli released by a predator. 

The range of potential phenotypes that a single genotype can develop if exposed to a 

specified range of ambient conditions is called the reaction norm (Woltereck 1909). At 

present reaction norms have been found to temperature for eye-size genotypes in 

Drosophila and to altitude for plant height (see Griffiths et al. 1993). The findings of 

Stearns (1983) on developmental plasticity in life-cycle traits in fish have led to the 

definition of the reaction norm for traits such as age and size at maturity (Stearns and 

Koella 1986). However, the classic toxicological concentration-response relationship can 

also be conceived of as a reaction norm. The concentration range of the toxicant 

represents the discrete ambient environment and the variation in phenotypes is represented 

by the range of effect levels of different life-cycle traits. 

A fundamental aspect of plasticity is that life-cycle variables can be flexible over a 

certain range without being disadvantageous to the species in question, i.e. without any 

significant fitness reduction. These findings have serious consequences for the evaluation 

of effect levels of toxicants which will be exemplified by means of a life-cycle analysis 

for two different iteroparous strategies. 

2.2 THEORETICAL FRAMEWORK 

ANNUAL ITEROPAROUS LIFE CYCLE WITH EQUAL JUVENILE AND ADULT 

PERIODS 

Consider a sexual reproducing organism with homozygous alleles and an annual 

iteroparous life cycle. This means that each genotype has the same life cycle and that the 

adults survive after reproduction and live on to next year for the following breeding 

season (e.g. some invertebrates). Following the approach of Sibly (1989) we further 

assume that the period between breeding seasons is equal to the length of the juvenile 

period (Fig. 1). Hence equation (1) becomes (Sibly 1989): 
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%nSje-I,i + Sae-rti = 1 (2) 

where n = the age specific reproduction rate, Sj = survival from birth to the end of the 

juvenile period, r = fitness, tj = the juvenile period and Sa = survival during the 

reproductive period. 

Xi-y n 2 n 3 n x o f f s p r i n g 

J I L . > 

tj 2tj 3tj xtj time 

Sj Sa Sa Sa survival 

Figure 1. Annual iteroparous life cycle with equal juvenile and adult periods. 

The hypothetical reaction norm AX for the genotype is defined as the toxicant-induced 

change in a life-cycle variable x from 0 (no change) to 1 (100% change). The reaction 

norm can be related to changes in fitness (AT) by performing a sensitivity analysis of 

equation (2) using multiple iteration processes. The software package MathCad 5.0 

(Mathsoft Inc. USA) was used for this purpose. Different maps can now be constructed 

illustrating the relative sensitivity of fitness to AX. 

Map of AT versus A5 0 

Assuming Sj=0.63 and tj=30.6, which are realistic values obtained from life-cycle 

experiments with invertebrates, figure 2a shows the relationship between changes in 

fitness (AT) and the reaction norm for Sa (AS3) for n=4, n=6 and n=30. It is illustrated 

that AS 3 influences AT most strongly when n is low. However, when n is high the effect 

is negligible. This implies that species with a high reproduction rate are less vulnerable to 

stress induced reduction in adult survival. On the contrary species with low reproduction 
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Figure 2. Maps relating i r and the reaction norm of S a where n=4, n=6, n=30 (A); S a where S:=0.05, 

Sj=0.1, S; = 1.0 (B) and Sj, n, tj (C) for an annual iteroparous life cycle with equal juvenile and adult periods. 
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rates are most susceptible to impairment of adult survival. The length of the juvenile 

period did not have any effect on the relationship between AS 3 and AT. 

Figure 2b shows the same map, however in this case Sj=0.05, 0.5 and 1.0 for n=4 and 

tj=30.6. It shows that AS 8 has a very strong effect on AT when Sj is low. The influence 

on AT will never be negligible because even at maximum juvenile survival (Sj = 1.0) there 

is a significant decrease in AT. The map illustrates that organisms with low Sj are 

extremely vulnerable to stress induced reductions in Sa. Even when Sj is 1, a change in 

Sa will have detrimental consequences for fitness. 

Map of AT versus AW, A ^ and A?y 

Figure 2c shows the reaction norm for the length of the juvenile period (Atj), juvenile 

survival (ASJ) and reproduction rate (An) in relation to changes in fitness. It is illustrated 

that Atj influences AT differently compared to ASE (Fig. 2c) when n=4, Sj=0.63, 

tj=30.6. However changing n, Sj or Sa does not affect this relationship, indicating that 

the influence of tj on fitness is not determined by these variables. Also the relationship 

between An or ASJ, and fitness appears to be very rigid and non-sensitive to changes in 

the other variables. 

These findings may have far reaching consequences for the evaluation of critical effect 

levels of toxicants. For example, a 50% effect (EC50) in tj or n has less influence on 

fitness (Fig. 2c) than 10% (EC10) reduction in Sa if Sj=0.05 (Fig. 2b). On the other hand 

a 50% reduction in Sa when Sj = l (Fig. 2b) has a smaller effect on fitness than even 20% 

effect on tj (Fig. 2c). Also a 50% reduction of Sa when n=30 (Fig. 2a) has less impact 

on fitness than a 10% increase in tj (Fig. 2c). 
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ANNUAL ITEROPAROUS LIFE CYCLE WITH UNEQUAL JUVENILE AND ADULT 

PERIODS AND TIME DEPENDENT MORTALITY 

Different results are obtained by focusing on the same iteroparous life cycle except that tj 

is unequal to t,, and mortality time dependent following an exponential decrease Sj=e~'"i, 

S a = e n a {e.g. some birds and small vertebrates). Assuming a difference between tj and t^ 

and time dependent mortality (Fig. 3), then equation (1) can be rewritten as (Sibly 1989): 

tene-",rrti+ e"Ttarta= 1 (3) 

where n = age specific reproduction rate, n = juvenile mortality rate from birth to the 

end of the juvenile period, r = fitness, tj = juvenile period, T = adult mortality rate and 

ta = adult period. The reaction norm can be related to AT by performing a sensivity 

analysis equivalent to equation (2). 

n n n n n n offspring 

I I I I I I 
n 1 1 1 1 1 1 * 

tj ta ta . . . . Xta time 

Sj Sa Sa Sa survival 

Figure 3. Iteroparous life cycle where t is not equal to ta and time dependent mortality. 

Map of *r versus A« 

Taking tj = 30, r=0.02 ta=60 and n=100..1 (where 100 is set to 0 and 1 is set to 1), 

values which are commonly found for some small vertebrates, figure 4a shows the 

relationship between i r and the reaction norm An (0 to 1) for /*=0.01, /*=0.05 and 

/i=0.08. Although impairment of reproduction rate is detrimental in all three cases, it 
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appears that the effect of stress induced reductions in n on fitness is most important in 

species with high juvenile mortality rates. 

Map of Ar versus AT 

Figure 4b shows the map of AT and AT for tj=30, T =0 . 02 , ^=60, n=3, n=5 and 

n=100. It is illustrated that AT influences fitness strongly from 0 to 0.1 when n=5 and 

n=3, whereas further impairment does not affect fitness further. Also it appears that at 

low n the effect on AT is very strong compared to high n. At n=100 there is no 

detrimental effect on fitness. This implies that increased adult mortality rate is only 

important in species with low reproductive output. 

Map of AT versus *tj 

Figure 4c illustrates the relationship between Atj (here tj increases from 30 (set to 0) to 

60 (set to 1)) and AT for /x=0.01, T =0 . 02 , n=3, n=5 and n=100. The map for Atj and 

AT is similar as for the other life cycle, however in contrast it depends on n. At low n 

fitness is much more influenced by Atj then at high n, indicating that species with low 

reproduction rates are more vulnerable to impairment of tj. 

It was indicated that a 50% effect (EC50) in T when n=5 (Fig. 4b) has a smaller impact 

on fitness than a 20% effect (EC20) in tj (Fig. 4c). Also a 50% reduction in n (Fig. 4a) 

has a smaller effect on fitness than 15% increase in T (Fig. 4b) when n=3. The 

conclusion may be that the influence of toxic stress on fitness is not determined by the 

effect on sensitive traits but depends on the reaction norm for traits and the life-history 

strategy which comprises the relationship between all variables and fitness. 
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2.3 DISCUSSION 

This theoretical paper illustrates that the impact of a toxicant on fitness is determined by 

i) the reaction norm for various life-cycle traits to chemical stress and ii) the life-history 

strategy. Reaction norms define the variation of life-cycle traits to a range of 

environmental conditions for one genotype. In the field, populations consist of many 

different genotypes, each having a specific reaction norm to certain stress factors. Using 

different genotypes of Daphnia magna, relatively large differences in reaction norms were 

observed for stress tolerance to cadmium (Baird et al. 1990). Also an extensive altitudinal 

distribution of Pennisetum setaceum was noted which could be explained by phenotypic 

plasticity for leaf photosynthesis to temperature stress (Williams and Black 1993). 

Determination of reaction norms requires that different individuals of the same genotype 

have to be reared in different environments. Therefore, experimental research in this field 

requires that numerous eggs or juveniles with identical genotypes are produced. At 

present only for a few organisms, which are mainly parthenogenetic invertebrates, it is 

possible to obtain a large number of identical genotypes and hence to determine reaction 

norms for traits to a range of toxicant concentrations. 

In this paper the reaction norm was hypothesized for various traits from 0 to 100% 

variation. Experimental data confirm this large variation in phenotypic plasticity for a 

range of species. A change of 40% was found in plasticity of age at first reproduction in 

freshwater cladocerans (Stibor 1992) and in size of reproductive females in woodlice 

(Dangerfield and Hassall 1992). 

At present much effort is taken in risk assessment procedures to verify the results 

obtained from laboratory toxicity tests to the field situation. However, the verification of 

the test results requires a fundamental understanding of the underlying mechanisms at the 

individual level. Life-history theory states that in the attempt to maximize fitness, natural 

selection favours traits which have a strong impact on fitness. Hence impairment of these 

traits may give rise to enhanced vulnerability of species to environmental contamination 

which eventually may lead to extinction. Analysis of the relationship between reaction 

norms and fitness provides the key to identify these traits for different strategies. 
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The relationship between the reaction norm and fitness depends on the life-history 

strategy and determines the ultimate effect of a toxicant on fitness. It was shown in this 

paper that for two different life cycles each variable contributes differently to fitness 

which in many cases depended on the value of the other variables. Strong effects on 

certain parameters did not always influence fitness to the same extent because reaction 

norms and fitness were not linearly related. Different maps were drawn relating changes 

in fitness to the reaction norm of life-cycle traits for each life-history strategy. Annual 

iteroparous species with equal juvenile and adult periods appeared to be vulnerable to 

stress induced increase of adult mortality when the juvenile survival or reproduction rate 

was low. Within the range investigated here, the influence of the juvenile period on 

fitness was not affected by the value of the other variables. However, species with an 

iteroparous life cycle and with unequal juvenile and adult periods appeared to be 

susceptible to increased adult mortality rates when reproduction rate was low, and in this 

case the relationship between the juvenile period and fitness depended on reproduction 

rate. 

It was reported by other authors that, in general, the length of the juvenile period has 

the strongest impact on fitness (Lewontin 1965; Sibly and Calow 1986). My results imply 

that for annual iteroparous organisms with equal juvenile and adult periods the adult 

survival may have a stronger impact on fitness depending on the value of the juvenile 

survival. Also in case of the iteroparous life cycle with unequal juvenile and adult periods 

the influence of adult mortality rate can be stronger at low reproductive output compared 

to the length of the juvenile period. 

An important presumption in the aformentioned life-cycle analysis is the independency 

of traits to one another, i.e. to investigate the relative contribution of each trait to fitness, 

a sensitivity analysis is performed ceteris paribus. Although each trait may be traded 

against another trait, this is the only way to gain insight into plasticity-to-fitness 

relationships and therefore the chapters 4, 5 and 6 will also assume independency. 

Moreover, based on this assumption, the present paper clearly outlines the neccessity of 

novel concepts in the ecological risk assessment of toxicants which unify both ecological 

and toxicological methodologies. 
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CHAPTER 3 

SELECTION OF A SUITABLE TEST SPECIES* 

ABSTRACT - To investigate plasticity-to-fitness relationships for toxicants in nematodes, 

selection of a suitable test species was based on the variation of acute toxicity data among 

nematode species belonging to different taxonomic and ecological groups. Twelve different 

nematode species were extracted from the soil and directly exposed to cadmium and 

pentachlorophenol. LC50-values were estimated after 24, 48, 72 and 96 h of exposure in 

aqueous solutions. The species exhibited large differences in sensitivity. LC50-values (72 h) 

for pentachlorophenol ranged from 0.5 to more than 34.5 yM and for cadmium from 29 to 

more than 800 fiM. These toxicity data could be described by a log-logistic distribution 

function. LC50-values for cadmium were not correlated with those for pentachlorophenol. 

Species of the subphylum Secernentia were less sensitive to pentachlorophenol than species 

of the subphylum Penetrantia, while no differences were observed for cadmium. In addition, 

no relationship was found between toxicity data and life-history strategies. Slow colonizers 

(K-strategists, sensu law) were not more sensitive to cadmium and pentachlorophenol than 

opportunistic species (r-strategists, sensu lato). Nematodes appeared to be as sensitive to 

pentachlorophenol as other soil invertebrates but were generally tolerant to cadmium. On the 

basis of these findings, Plectus acuminatus Bastian 1865 (Plectidae) was selected for further 

life-cycle investigations. 

Based on: Kammenga J.E., Van Gestel CAM., Bakker J. (1994) Patterns of sensitivity to cadmium and 

pentachlorophenol among nematode species from different taxonomic and ecological groups. Arch. Environ. Contam. 

Toxicol. 27: 88-94. 
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3.1 INTRODUCTION 

Nematodes, or threadworms, are ubiquitous in aquatic and terrestrial habitats and constitute 

one of the largest animal phyla. Population densities depend on various biotic and abiotic 

factors and may range to 1.107/m2 in soil (Sohlenius 1980). Soil inhabiting nematodes can 

be divided into different feeding groups: plant, bacterial and fungal feeders, predators and 

omnivores (Yeates et al. 1993). Plant feeding nematodes are of agricultural importance 

because of their detrimental effects to crops (Wallace 1977). Bacterivorous and fungivorous 

nematodes are key intermediaries in decomposition processes of organic matter in soil 

(Freckman 1988). These nematodes stimulate N-mineralisation and play an important role 

in the nutrient cycle (Anderson et al. 1981; Yeates and Coleman 1982; Woods et al. 1982). 

Predators and omnivores regulate the density of prey populations by feeding on nematodes, 

algae and other soil organisms. 

Nematodes offer perspectives for ecotoxicological research because of their abundance, 

species diversity and differences in sensitivity to chemicals. They can be extracted from the 

soil efficiently and identification has become within reach of non-specialists (Bongers 1988). 

A large number of species can be reared in the laboratory and are relatively easy to handle. 

Nematodes live in the interstitial water between soil particles, therefore toxicity studies can 

be conducted in water. Since the bioavailability of toxicants for soil organisms depends 

largely on the concentration in the interstitial water (Van Gestel and Ma 1988; Aben et al. 

1992) nematodes are directly exposed to environmental contaminants. 

Various papers have investigated the toxicity of chemicals, e.g. pesticides (Bunt 1980; 

Kampfe and Wischgoll 1984) and heavy metals (Vranken and Heip 1986; Williams and 

Dusenbery 1990; Vranken et al. 1991) to nematodes. However, only a limited number of 

species have been tested, and routes of uptake and test conditions differed too much to allow 

for a proper comparison. Therefore, these studies provide no insight in the patterns of 

sensitivity among species in the phylum Nematoda. 

This chapter proposes to select a suitable species for life-cycle studies by i) obtaining 

insight in the sensitivity of nematode species for two distinct toxicants and ii) determining 

to which extent acute toxicity data are correlated with taxonomic and ecological similarities. 
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Therefore 12 species, representing distinct ecological groups and belonging to different 

subphyla, families and genera, were exposed to cadmium and pentachlorophenol in aqueous 

solutions. Both compounds are ubiquitous in the environment, have different modes of action 

and their properties are well documented (Ros and Slooff 1988; Anonymous 1987). Cadmium 

occurs in zinc and phosphate ores and is mainly emitted into the environment by ore mining 

industries. Cadmium accumulates in the top layer of the soil where it may affect terrestrial 

organisms. Pentachlorophenol is widely used as a wood preservative or fungicide. Once 

emitted into the air, pentachlorophenol is readily deposited on the soil. 

3.2 MATERIALS AND METHODS 

CHEMICALS 

Cadmium chloride (CdCl2) was purchased from Merck, Darmstadt, Federal Republic of 

Germany, and pentachlorophenol from Fluka Chemie A.G., Switzerland. The compounds 

were >99% pure. All other chemicals (Merck) used were of the highest analytical grade. 

CHEMICAL ANALYSIS 

Analysis of cadmium and pentachlorophenol in water was performed with Atomic Absorption 

Spectrophotometry (Perkin Elmer 3030 AAS, flame furnace, detection-limit: 0.1 ^g/L) and 

HPLC (Spectro Flow 757, Lichrosorb RP18 column (7 ;im x 20 cm), UV-detector, 254 nm, 

detection limit: 50 /tg/L, flow rate 0.7 mL/min), respectively. 

NEMATODES 

Nematodes were extracted from the top mineral layer of arable soil, forest floor and stream 

sediment. Sites were selected where different species predominate. Samples were taken near 

Wageningen, The Netherlands, and recovered from the soil by means of the modified 
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Oostenbrink-method (Oostenbrink 1954; 1960) during late spring. In this way multi-species 

suspensions were obtained, free from debris and soil particles. Before toxicity testing, adult 

nematodes were identified to species level. Representatives of different trophic levels were 

selected: bacterial feeders (Rhabditis sp., Cephalobus persegnis, Plectus acuminatus, 

Acrobeloides buetschlii and Diplogasteritus sp.),a fungal feeder (Aphelenchus avenae), plant 

feeders (Tylenchus elegans), carnivores (Prionchulus punctatus, Tobrilus gracilis) and 

omnivores (Dorylaimus stagnalis, Aporcelaimellus obtusicaudatus). The bacterial feeder 

Caenorhabditis elegans (Bristol, N2 strain), was obtained from a laboratory culture. 

Representatives of the genera Rhabditis and Diplogasteritus could not be identified to species 

level due to inconsistent taxonomical status. Figure 1 shows the taxonomical classification 

of the phylum Nematoda and the species which were used for this study. 

Subphvlum Order Suborder 

rMononchina-

Pene t ran t ia 

Dorylaimida—LDorylaimina-

Enoplida- -T ryp i l i na -

Torquentia—Araeolaimida—Araeolaimina-
rCephalobina— 

Secernent ia 
Rhabdit ida-

•Rhabditina-

Familv 

-Mononchidae- -Prionchulus-
-Dorylaimus-Dorylaimidae-

Aporcelaimidae—Aporcelaimellus—obtusicaudatus 

Species 

-punctatus 
-stagnalis 

r-Tobrilidae-
1-Tripylidae-
-Plectidae— 

-Tobrilus-
-Tripyla 
-Plectus— 

- g r a c i l i s 

-Cephalobidae- T; 
-Rhabditidae-

•Acrobeloides-
-Cephalobus 
•Rhabd i t i s 

•acuminatus 
•buetschl i i 
•persegnis 
• s p . 

legans 

•Tylenchida-

LCaenorhabd i t i s 
LDiplogaster ina Diplogaster idae—Diplogaster i tus—sp 
Tylenchina Tylenchidae Tylenchus e legans _ p y x e 

I-Aphe 
Aphelenchina- -Aphelenchidae Aphelenchus-

Figure 1. Taxonomic classification of the nematode species tested. 

TOXICITY TESTS 

LC50-tests were performed in water containing a defined mixture of minerals with 

concentrations resembling those found in interstitial water of sandy forest soils (K+: 0.1 mM, 
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Na+: 0.2 mM, Ca2+: 0.35 mM, Mg2+: 0.3 mM, NH4
+: 0.3 mM, N03 : 1.7mM, C10.3 mM) 

(Schouten and Van der Bragge 1989). The pH was adjusted to 6.0 ± 0.1 with NaOH and 

checked at the end of each experiment. In the control, all tested nematode species survived 

in this water for at least 3 days. Pentachlorophenol was initially dissolved in ethanol (96%) 

after which stock solutions in water were made. The stock solutions were sonificated for 60 

min. The amount of ethanol did not exceed 0.1 mL/L of the total test volume. The control 

contained 0.1 mL/L ethanol. 

Two replicates of the tests were carried out in multi-dishes (Greiner, 24 compartment plate, 

nr. 662160) with lid and sealed with parafilm to minimize volatilization. Dishes were stored 

at 20 ± 0.1 °C in the dark. Each compartment was filled with 0.9 ml of water containing 

toxicant. Samples of 0.1 mL of the multi-species suspension, containing 10 to 50 adult 

individuals of each species, were taken and suspended in each compartment. The toxicity t-

ests were carried out with 6 - 8 concentration steps, the ratio between successive 

concentrations being 1.8. The concentrations used differed between each species due to 

differences in sensitivity observed in preliminary range-finding tests. Overall, the 

concentrations ranged from 7 /*M to 2 mM for cadmium and 0.1 /ttM to 38 /xM for 

pentachlorophenol. Mortality, which was recognizable by the decayed bodies, of the species 

was recorded after 24, 48, 72 or 96 h. Dead nematodes were not removed. Observations 

were done using an inverted microscope (magnification of 40 - 100). 

DATA ANALYSIS 

LC50-values and their confidence intervals were calculated according to the trimmed 

Spearmann-Karber method (Hamilton et al. 1977; 1978). Differences between LCso-values 

were tested using a Student's t-test. It was assumed that the LC50-values of the different 

nematode species were log-logistic distributed (Kooijman 1987), hence the cumulative 

frequency distribution can be written as: 

Prob(ln LC50 <. x) = {1 + exp[(a - x)/6]}' 
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where a = sample mean LC50 of m species, B = Sm "/3/ir and Sm = sample standard 

deviation (Kooijman 1987). 

3.3 RESULTS 

For most species LC50-tests were conducted for 72 h because longer exposure times resulted 

in increased mortality in the control groups. Table 1 shows the LC50-values of cadmium for 

twelve species after different exposure times. There are large differences in sensitivity, with 

LC^-values ranging from 29 to more than 800 /xM after 72 h. Diplogasteritus sp. was the 

most sensitive followed by D. stagnate, P. acuminatus, A. obtusicaudatus, T. gracilis, C. 

persegnis, Rhabditis sp. and C. elegans as intermediate and A. buetschlii, T. elegans and A. 

avenae as insensitive. For T. elegans and A. avenae no mortality was recorded below 800 

AIM cadmium after 96 h. There was no significant difference in sensitivity between species 

from the Secernentia and the Penetrantia. The LC50-value decreased with time and this 

decrease was most pronounced for D. stagnalis and P. acuminatus. 

The LC50-values for pentachlorophenol at subsequent time periods are given in Table 2. 

LC50-values ranged from 0.5 to more than 34.5 iiM after 72 h exposure. P. punctatus 

appeared to be the most sensitive followed by D. stagnalis, A. obtusicaudatus, T. gracilis 

and T. elegans as intermediate and C. persegnis, Rhabditis sp., P. acuminatus and 

Diplogasteritus sp. as relatively tolerant. C. elegans, A. avenae and 4. buetschlii were rather 

insensitive. The genus Tripyla was found in every sediment sample although densities were 

too low to calculate an LC50-value. It was observed, however, that some specimens were still 

alive at 33 /xM pentachlorophenol after 48 h. The LC50 declined most apparently with time 

for P. punctatus. Species of the subphylum Secernentia were less sensitive to 

pentachlorophenol as compared to the Penetrantia (t-test, p<0.05). 

The obtained toxicity data could be considered as independent trials from a log-logistic 

distribution. Figure 2 shows the calculated (a = 4.83, B = 0.42) and observed cumulative 

frequency data for cadmium, including the LC50-value of 302 /xM cadmium in sea water for 

Monhystera disjuncta (Vranken et al. 1991). Figure 3 shows the calculated (a = 1.75, B = 
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Table 1. Acute toxicity of cadmium to nematodes in aqueous solutions. LCS0-values (jiM) at different exposure times 

(95% confidence intervals in brackets) ( - : not determined). 

Species exposure time (h) 

Prionchulus punctatus 
Dorylaimus stagnalis 
Aporcelaimellus obtusicaudatus 
Tobrilus gracilis 
Plectus acuminatus 
Acrobeloides buetschlii 
Cephalobus persegnis 
Rhabditis sp. 
Caenorhabditis elegans 
Diplogasteri tus sp. 

Tylenchus elegans 
Aphelenchus avenae 

216.0 

336.0 

204.0 

398.0 

885.2 

174.6 

270.2 

262.0 

37.3 

>800 

>800 

(124.1-375.9) 

(170.2-663.2) 

-
(163.9-253.9) 

(322.0-492.4) 

(701.7-1117.0) 

(134.3-227.1) 

(215.4-339.0) 

(224.8-305.4) 

(29.3- 47.7) 

(96h) 

(96h) 

154 

214. 

177 

132 

838 

105 

170 

134 

29 

1 

9 

1 

8 

6 

9 

4 

6 

4 

-
(130.8-181.6) 

(171.4-269.3) 

(129.0-243.1) 

(98.2-179.7) 

(541.7-1298.5) 

(79.1-141.9) 

(132.5-219.1) 

(105.3-172.1) 

(23.5- 36.7) 

91.8 (65.9-127.9) 
131.1 (101.0-170.2) 
120.2 (90.1-160.3) 
107.0 (82.4-138.9) 
527.4 (395.0-704.2) 

82.9 (58.3-117.8) 
125.3 (97.4-161.2) 
130.9 (104.1-164.5) 
29.4 (23.5- 36.7) 

Table 2. Acute toxicity of pentachlorophenol to nematodes in aqueous solutions. LC50-values QiM) at different 

exposure times (95% confidence intervals in brackets). 

Species exposure time (h) 

Prionchulus punctatus 
Dorylaimus stagnalis 
Aporcelaimellus obtusicaudatus 
Tobrilus gracilis 
Plectus acuminatus 
Acrobeloides buetschlii 
Cephalobus persegnis 
Rhabditis sp. 
Caenorhabditis elegans 
Diplogasteritus sp. 
Tylenchus elegans 
Aphelenchus avenae 

6.4 (4.9-9.7) 

5.0 (3.8-7.0) 

7.5 (3.3-17.2) 

2.8 (2.0-3.9) 

19.5 (17.8-21.3) 

>34.5 (96h) 

>34.5 

>34.5 

>34.5 (96h) 

26.6 (22.9-30.5) 

13.9 (11.3-17.1) 

>34.5 (96h) 

1.1 (0.7-1.9) 

3.6 (2.9-4.6) 

3.8 (3.5-4.2) 

2.6 (1.6-4.1) 

19.1 (17.6-20 

>34.5 

>34.5 

26.4 (22.0-32 

6.5 (5.3-8.0) 

7) 

0) 

0.5 (0.2-1.5) 

3.6 (2.9-4.6) 

3.6 (3.2-4.1) 

1.9 (1.1-3.5) 

18.7 (17.4-20.2) 

9.6 (3.5-26.1) 

9.1 (5.8-14.2) 

25.4 (11.7-54.7) 

4.5 (3.8-5.5) 
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Figure 2. Cumulative frequency distribution of ln(LC50-values) for 10 nematode species exposed to cadmium. Log-

logistic curve (- - -) and empirical values ( o ) , * = data obtained from Vranken et al. (1991). 
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Figure 3. Cumulative frequency distribution of ln(LCS0-values) for 10 nematode species exposed to 

pentachlorophenol. Log-logistic curve (- - -) and empirical values (o ), * = data obtained from Vranken et al. 

(1991). 

0.66) and observed cumulative frequencies for pentachlorophenol, including the LC50-value 

(18 /iM) in sea water for M. disjuncta (Vranken et al. 1991). There appears to be no 

42 



Species selection 

correlation between the sensitivity to cadmium and pentachlorophenol for different species. 

D. stagnalis and A. obtusicaudatus were intermediate sensitive to cadmium but relatively 

susceptible to pentachlorophenol. A. avenae was tolerant to both compounds whereas C. 

elegans was insensitive to pentachlorophenol but more sensitive to cadmium. 

Chemical analysis revealed that the concentrations of cadmium and pentachlorophenol in 

the test compartments remained constant in time, so no loss due to adsorption, volatilization 

or biodegradation occurred during the test. The pH measurements did not indicate a change 

throughout the test. 

3.4 DISCUSSION 

Large variations in sensitivity to cadmium and pentachlorophenol were observed among the 

twelve tested nematode species. Acute toxicity levels differed with a factor > 27 (from 29 

to more than 800 pM) between lowest and highest LC50-values for cadmium and a factor > 

69 (from 0.5 to more than 34.5 jtM) for pentachlorophenol. The variation of LC50-values 

among the tested nematode species could be described by a log-logistic distribution. These 

findings agree with the results obtained for aquatic organisms (Kooijman 1987). 

Taxonomic similarities were only partly reflected in patterns of sensitivity. For 

pentachlorophenol all tested species of the subphylum Secernentia were significantly less 

sensitive than species from the subphylum Penetrantia. No consistent pattern was observed 

between the sensitivity to pentachlorophenol and cadmium. For example, the species D. 

stagnalis and A. obtusicaudatus were intermediate in sensitivity to cadmium but relatively 

susceptible to pentachlorophenol. C. elegans was insensitive to pentachlorophenol but more 

sensitive to cadmium. A. avenae was tolerant to both compounds. T. elegans was susceptible 

to pentachlorophenol but insensitive to cadmium. Based on these results, Plectus acuminatus 

Bastian 1865 (Nematoda, Plectidae) was selected as a suitable test species because of its 

moderate sensitivity to cadmium and pentachlorophenol, widespread occurence in soils and 

ease of culturing (Bongers pers. coram.). 

The LC50-values for both cadmium and pentachlorophenol decreased in time for all 

43 



Chapter 3 

nematode species tested. LC50-values were still declining after 72 h exposure indicating that 

equilibrium between uptake and elimination had not been reached yet. The LC^ decline for 

cadmium appears to be slower as compared to pentachlorophenol suggesting that cadmium 

accumulates more slowly into the nematode body than pentachlorophenol. These results 

indicate that uptake and elimination rates of cadmium and pentachlorophenol differed between 

the various species. 

There appears to be a correlation between feeding groups and pentachlorophenol sensitivity. 

Carnivorous, omnivorous and plant feeding nematodes are relatively sensitive, whereas 

bacterial and fungal feeders are tolerant (Table 2). These findings indicate the vulnerability 

of particular feeding groups to pentachlorophenol contamination. Physiological research may 

gain insight into these apparent discrepancies. 

Compared to other soil invertebrates, nematodes are relatively insensitive to cadmium 

(Table 3). Table 4 shows that the sensitivity of nematodes to pentachlorophenol is 

comparable to that of other invertebrate species. 

The observed variations in sensitivity can not be explained by differences in life-history 

strategies. It is often assumed, either explicitly or implicitly, that slow colonising species (K-

strategists, sensu lato) are more sensitive to toxicants than opportunistic species (r-strategists, 

sensu lato) (Warwick 1986; Zullini and Peretti 1986; Wodarz et al. 1992). However, 

colonising abilities are regulated by factors such as reproductive output, population growth 

rate and density. As Boyce (1984) pointed out in a comprehensive review on r and K 

selection, the r/K model does not provide a causal relationship between demographic 

processes and environmental pertubations. Therefore, it is not surprising that no correlation 

was found between colonizing abilities and sensitivity to toxicants. It was shown that a rapid 

colonizer, Diplogasteritus sp., was relatively more sensitive to cadmium than A. 

obtusicaudatus, a slow colonizing species. For pentachlorophenol, T. elegans, a fast 

coloniser, was equally sensitive to D. stagnate, a K-strategist. These results corroborate with 

the findings for terrestrial arthropods (Van Straalen et al. 1989). 

The heterogeneity of the ectodermal tissue among nematode species is assumed to play an 

important role in explaining the variation in acute toxicity data. Chemical compounds enter 

the nematode body mainly through the cuticle and ingestion does not play an important role 
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Table 3. LC,0-values (/iM) for cadmium for different soil invertebrates including the highest compared to the lowest 

value in this study. 

Organism Exposure 

time(h) 

pH LC50 

(MM) 

Author 

T. elegans/A. avenae 96 6.0 >800 

Diplogasteritus sp. 72 6.0 29 

Panagrellus silusiae 24 ? 480 

Monhystera disjuncta 24 7.5 302 

Parastenocaris germanica 96 6.8 20 

Lumbricus rubellus 96 7.2 3 

Tubifex tubifex 48 ? 0.3 

Hydra oligactis 48 7.0 14 

This study 

This study 

Haight et al. (1982) 

Vranken et al. (1991) 

Notenboom et al. (1992) 

Ma (1982) 

Brkovic-Popovic (1977) 

Slooff et al. (1983) 

Table 4. LC50-values (pM) for pentachlorophenol for different soil invertebrates including the highest compared to 

the lowest value in this study. 

Organism Exposure pH LC50 

time(h) (/xM) 

Author 

Caenorhabditis elegans 

Acrobeloides buetschlii Y 96 

Aphelenchus avenae 

Prionchulus punctatus 

Monhystera disjuncta 

Parastenocaris germanica 

Tubificids 

Eisenia fetida 

Lumbricus rubellus 

72 

24 

ica 96 

24 

14 days 

14 days 

6 

7 

6 

7 

5 

5 

0 

5 

8 

5 

6 

6 

6.0 >34.5 This study 

0.5 This study 

18 Vranken et al. (1991) 

0.14 Notenboom et al. (1992) 

1.2 Whitley (1968) 

5 . 6 7 a Van G e s t e l a nd Ma (1990) 

28 . 6a Van G e s t e l a nd Ma (1990) 

values ca lculated from t o t a l s o i l concentrations using adsorption data . 
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(Castro and Thomason 1971). Low molecular weight compounds, like ethylene-dibromide 

and water, reside less than one second in A. avenae and C. elegans. The permeation of these 

compounds through the cuticle and hypodermata is a dynamic process which is actively 

controlled. Each substance enters the body at its own rate independent of the other chemical 

compounds and permeation rates differ strongly among different nematode species (Castro 

and Thomason 1971). In addition, it was observed that the internal concentrations were 

generally higher than the external concentrations (Marks et al. 1968). 

Large differences in heavy metal uptake can be observed in closely related species. 

Accumulation varies between species and they exhibit distinct uptake and elimination rates. 

Howell (1983) showed that two taxonomic closely related species, Enoplus brevis and 

Enoplus communis, exhibited distinct differences in heavy metal accumulation through the 

cuticle. A marked uptake of copper by E. communis was found (accumulation factor of 10.6), 

whereas in E. brevis the copper uptake was relatively smaller (accumulation factor of 5.0). 

The observation that the subphylum Secernentia was less susceptible to pentachlorophenol 

than the subphylum Penetrantia might also be the result of differences of cuticle 

characteristics as such. Subphyla of nematodes can be distinguished on basis of their 

ectodermal characteristics (Maggenti 1981). The endo-cuticle, for instance, differs largely 

in thickness and collagen density between the subphyla. Although there appears to be a 

structural pattern in cuticle and hypodermal morphology within the phylum Nematoda, 

further investigation is needed to ascertain these assumptions. 

This chapter illustrates that a large diversity exists within the phylum Nematode with regard 

to sensitivity to toxicants. The response to xenobiotics seems difficult to predict and depends 

on the species tested and the nature of the chemical compound. This should be taken into 

account when assessing the hazard of chemical substances, based on toxicity tests with only 

few organisms (e.g. Van Straalen and Denneman 1989). Also environmental quality criteria 

should be based on the diversity of the physiological spectrum which exists in living 

organisms. 
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CHAPTER 4 

TAILORING THE CONCEPT TO 

FREE-LIVING NEMATODES * 

ABSTRACT - In ecotoxicology it is widely assumed that toxicants affect organisms by 

impairment of those life-cycle variables that are most sensitive to these toxicants. This 

premise was tested by contrasting a fitness assessment, presented in Chapter 2, with the 

most sensitive life-cycle variable approach using cadmium and the free-living nematode 

Plectus acuminatus as a case study. Based on complete life-cycle experiments, a 

deterministic model was constructed relating phenotypic plasticity of juvenile and adult 

variables to fitness, which was defined as the intrinsic rate of population increase. A 

sensitivity analysis of the model indicated that the impact of cadmium on fitness was not 

correlated with the most sensitive life-cycle component. These findings suggest that 

cadmium induced life-cycle changes of P. acuminatus require a robust evaluation within 

the framework of the life-history strategy in order to predict effects on fitness. 

Based on: Kammenga I.E., Busschers M., Van Straalen N.M., Jepson P.C. and Bakker J. Stress induced 

fitness reduction is not determined by the most sensitive life-cycle trait. Fund. Ecol. (in press). 
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4.1 INTRODUCTION 

Declining biodiversity and sustainability of ecosystems due to environmental 

contamination have led to an increased scientific as well as public and political scrutiny of 

anthropogenic pollution. A prevailing view is that toxicants affect organisms by 

impairment of those life-cycle variables that are most sensitive to these toxicants 

(Langston et al. 1990; Calow 1992; DeLonay et al. 1993; Coyle et al. 1993), a concept 

also adopted by international legislative authorities for deriving safe standards for 

contaminants in soil and water (OECD 1984; EEC 1985). For example, to assess the 

impact of contaminants on organisms, a general toxicological approach is to quantify 

juvenile survival, since this is often known to be the most sensitive life-cycle variable 

with respect to chemical stress (Nagel et al. 1991; DeLonay et al. 1993). The theoretical 

problem with this approach is that a chemical could dramatically reduce juvenile survival, 

yet has negligible effect on fitness, or it could cause minor reductions in juvenile survival 

yet drastically reduce fitness. To assess whether these theoretical concerns amount to 

much in the real world we contrasted the fitness assessment with the most sensitive life-

cycle variable approach using cadmium and nematodes in a comprehensive life-cycle 

analysis. 

The present chapter investigates the effect of cadmium stress on fitness of Plectus 

acuminatus (Nematoda, Plectidae) Bastian 1865 a bacterivorous nematode which is 

ubiquitous in terrestrial habitats. P. acuminatus is parthenogenetic, has a relatively short 

life cycle and can be reared easily in the laboratory. It represents the type of organism 

used in international regulatory testing for the determination of chemical hazard and 

critical loads for toxicants (Van Gestel and Van Straalen 1994). 

The fitness concept has received much attention in life-history theory (Fisher 1958; 

Charlesworth 1980; Sibly and Calow 1983; Murray 1985; Nur 1987) and it is widely 

acknowledged that fitness can be defined by the intrinsic rate of population increase (r) in 

the Lotka equation. 
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4.2 LIFE-CYCLE ANALYSIS 

To obtain insight into the relationship between the phenotypic plasticity to cadmium of 

single life-cycle variables and changes in fitness for P. acuminatus we defined three 

different stages: i) a juvenile stage (tj) which includes the egg stage, ii) a reproductive 

stage (tr) and iii) a non-reproductive, senescent stage which continues to death. The Lotka 

equation can then be rewritten as: 

t=tj t=tj+t,-l 1=1* 

1 = E e-'-'.L,.!!, + E ert.Lt.n, + E ert.Lt.n, 

t = 0 t=tj + l t=tj+t r 

Since n, = 0 for 0<t<tj and for t>(tj+tj), only the second term is important, it 

follows that: 

t=tj+t r-l 

1 = E e r t.L t.n, (1) 

t=tj + l 

Adult mortality is time dependent for many nematode species (Vranken 1987; Schiemer 

1982) and the survival curve can be described by a Weibull distribution function: 

Lt = a.e"b(t)° (2) 

where a, b and c are constants. 

In addition it is assumed that: 

L(tj) = Sj and 
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L(tj+t r) = Sj.Sr 

so Lt = Sj.e^'V and 

Sj.sr = s j.e"b( ti+,r ti )C^ sr = e"b(tr)C-* b = - (In sr)/(L)c 0) 

substituting (3) in (2) gives 

C C 

L t = Sj.e(lnsr / tr)(t" tr) which can be rewritten as: 

L t = S j ^K '^ r l 0 (4) 

Now the Lotka equation becomes: 

t = t j+ t r 

1 = E e-r-t.sj.sr
KMi>Arifiit (5) 

t = t j 

Fitness (r) can be estimated by means of iterative procedures from equation 5 when Sj, tj, 

tr, n, are obtained from detailed observations of individual organisms over their life 

cycles. The parameters sr and c can be derived from the Weibull distribution function. To 

determine the relationship between plasticity in each variable to r, a sensitivity analysis of 

equation 5 was performed. 

4.3 MATERIALS AND METHODS 

CHEMICALS USED 
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Cadmium chloride (CdCl2, > 99% pure) was obtained from Merck, Darmstadt, Federal 

Republic of Germany. Yeast extract was purchased from Difco Laboratories, Detroit, 

Michigan, USA, and technical agar was supplied by Oxoid Ltd, Basingstoke, Hampshire, 

England. All other chemicals (Merck) were of the highest analytical grade. The water 

used for culturing and experiments contained a defined mixture of minerals resembling 

those found in interstitial water of sandy forest soils (K+: 0.1 mM, Na+: 0.2 mM, Ca2+: 

0.35 mM, Mg2+: 0.3 mM, NH4
+: 0.3 mM, NO,": 1.7 mM, CI": 0.3 mM) (Schouten and 

Van der Brugge 1989). The pH was adjusted to 6.0 ± 0.1 with NaOH. 

NEMATODE CULTURING 

P. acuminatus was reared in agar with bacteria as food source. The soil bacterium, 

Acinetobacter johnsonion, was obtained from the Department of Microbiology of 

Wageningen Agricultural University and stock cultures were stored in a cryo-protectant in 

glass beads at - 80°C (Jones et al. 1984). Bacteria were cultured in an autoclaved batch 

of aerated yeast extract (4.0 g/L, 28°C, 16 hrs.) after which they were centrifuged 

(13,170 g, 2 min.) and washed with water to obtain a fresh supply for culturing and 

experiments. Bacterial densities were measured with a spectrophotometer (Shimadzu, UV-

160), at a wavelenght of 560 nm. 

Nematodes were cultured in agar in multi compartment plates (Greiner, nr. 662160) 

with 24 wells. Small agar droplets (80 pL, 0.5%) were applied in each well on the inside 

of the lid. Bacteria were mixed through the agar in a water bath of 37CC to obtain a 

density of 2.10' cells/mL. Each compartment of the bottom plate contained 1 mL water to 

prevent evaporation. 

Nematodes were initially extracted from arable land in Wageningen, The Netherlands by 

means of the modified Oostenbrink method (Oostenbrink 1954;1960). The worms were 

identified to genus level and Plectus spp. females were transferred to sterile water for two 

days before culturing to reduce bacteria and debris. One adult female was transferred to 

each agar droplet and allowed to reproduce at 20°C for 2 days after which they were 

removed and identified to species level. After identification all P. acuminatus juveniles 
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were mixed randomly through the plates. The plates were sealed with Parafilm and placed 

on metal grids in plastic boxes with a small amount of water to prevent evaporation. The 

boxes were stored at 15 °C in the dark. Nematodes were transferred to fresh plates every 

week, although populations could be maintained for 3 weeks without increased mortality. 

TOXICITY EXPERIMENTS 

One clone of P. acuminatus was reared in agar with the soil bacterium Acinetobacter 

johnsonion as food source. Life-cycle experiments were conducted in 4 plates (Greiner, 

nr. 662160) each containing 24 agar droplets (80 pL, 0.5% agar) with a bacterial density 

of 2.10' cells/mL. Bacterial densities were measured with a spectrophotometer (Shimadzu, 

UV-160), at a wavelenght of 560 nm. Each compartment of the bottom plate contained 1 

ml water to prevent evaporation. Two plates contained 7.6 /*M in agar. Fourth stage 

juveniles were randomly selected from the stock culture of the clone which had been kept 

in the laboratory for more than one year, and individually transferred to the agar plates. 

Each droplet contained one female which was transferred to fresh plates every 5 days. 

The plates were sealed with Parafilm and stored at 15 °C in the dark. The number of eggs 

produced was recorded for each female during the complete reproductive period. Also 

longevity of adults was registered. The eggs as well as the juveniles were observed for 

mortality during the complete juvenile period. Observations were done with a stereo-

microscope (magnification 40 - 64). 

STATISTICAL ANALYSIS 

The obtained values for the life-cycle variables were used to estimate fitness values for 

the different treatments by means of equation 5. A specific algorithm was constructed in 

SAS-software (SAS 1990) using non-linear regression procedures. Application of the jack-

knife procedure (Meyer et al. 1986) for estimates of fitness resulted in pseudo-values. 

Longevity data were used to construct a Weibull distribution function where survival L, is 

given by: L, = e
('",2<1'LT50)C) where t is age in days, LT50 is the median survival time in days 
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and c determines the shape of the curve. Data were analysed using SAS software. The 

least square method was used in an iterative non-linear regression procedure to estimate 

LT50 and c. A likelihood ratio test was applied to analyse differences in survival curves. 

4.4 RESULTS 

The influence of cadmium on fitness was studied by analysing the effects on single life-

cycle variables (Table 1). Reproduction, the reproductive period and the survival over this 

Table 1. Effect of cadmium on different life-cycle variables and parameters (means ± S.E., number of 

replicates in brackets) of P. acuminatus at 15°C. (Ilt: daily reproduction; t,.: reproductive period in days; Sr: 

survival over t r; t;; juvenile period in days, including the egg stage; S:: survival over t-.; LT^: median survival 

time in days; c: shape parameter of the Weibull survival curve; r: jack-knife estimate for fitness; * = 

significantly different from control, t-test or likelihood ratio test in the case of LT^-values, p<0.05; ** = 

p<0.01). 

l i f e - c y c l e 

v a r i a b l e 

n t 

t r 

S r 

fcJ 
s : 
LT50 

c 

r 

cont ro l 

5 . 5 ± 0 . 4 ( 32 ) 

1 6 . 2 ± 1 . 1 ( 3 2 ) 

0 . 9 6 

3 0 . 6 ± 0 . 3 ( 19 ) 

0 . 6 3 ± 0 . 0 7 ( 38 ) 

3 3 . 4 ± 0 . 2 

3 . 7 ± 0 . 1 

0 . 1 0 ± 0 . 0 1 ( 32 ) 

cadmium 

4 . 3 ± 0 . 3 * ( 31 ) 

8 . 9 ± 0 . 7 * ( 3 1 ) 

0 . 8 7 

3 2 . 9 ± 0 . 4 ** ( 1 6 ) 

0 . 5 7 ± 0 . 0 7 ( 39 ) 

2 4 . 6 ± 0 . 6 * 

1 . 8 ± 0 . 1 

0 . 0 6 ± 0 . 0 2 * ( 3 1 ) 

period decreased at this level of contamination. The juvenile period increased as a result 

of cadmium exposure. The LT50 was significantly reduced and also the slope of the 

mortality curve (c) showed a decrease in cadmium exposed populations (Fig. 1). The 

survival over tr, as estimated from the Weibull curve decreased (Table 1). However, the 
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duration of the egg stage (6.5 days) and the juvenile survival (sp were not affected. It 

was observed that juvenile mortality mainly occurred during the egg stage, afterwards no 

significant mortality was recorded. Overall, fitness was significantly impaired. 

A sensitivity analysis of equation 5 was conducted by using life-cycle values of the 

control group. The relationship between plasticity of Sj, tj, t,., n,, sr and fitness decrease 

was determined using SAS software. The analysis showed that the most sensitive trait to 

cadmium, the reproductive period (tr) which was reduced by 45%, did not have any effect 

on fitness (Fig. 2a). Hence, an effect assessment for cadmium based on nematode 

reproductive period overestimates the effect on fitness dramatically. Also the 9.4% effect 

on the survival over the reproductive period (Sr) did not influence fitness (Fig. 2b). A 

prolongation by cadmium of the juvenile period (tj) by 7.5%, the least sensitive trait, 

resulted in a fitness decrease of 5% (Fig. 2c). Furthermore, inhibition of reproduction 

(n,) by 22% decreased fitness with 5% (Fig. 2d). 
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Figure 1. Effect of cadmium on survival of adults. ( A : data from control group, Weibull curve of 
control group; • : data from cadmium treated group, Weibull curve of cadmium treated group). 
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100 

0 22% 50 100 
change in life cycle variable (%) 

Figure 2. Effect of cadmium on different life-cycle variables and the sensitivity analysis of equation 5 on fitness 

by A): decreasing reproductive period (tr), B): decreasing survival (Sr) over t r, C): increasing juvenile period 

( t ) and D): decreasing reproduction (11,) and juvenile survival (S;). The effect of cadmium (|) on : the 

reproductive period was 45%, reproduction was 22%, survival over the reproductive period 9.4% and on t: 

7.5%. 
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4.5 DISCUSSION 

It was demonstrated that impairment of the most sensitive trait to cadmium in P. 

acuminatus, the reproductive period which was reduced with 45%, did not have any 

effect on fitness. A prolongation by cadmium however of the juvenile period by 7.5%, 

the least sensitive trait, resulted in a fitness decrease of 5 %. Overall, fitness was reduced 

by cadmium with 40% indicating the non-linear relationships among different life-cycle 

traits which do not allow for straightforward adding of the reduction in fitness calculated 

for single trait values. 

The life-cycle analysis did not support the key premise that was under test, i.e. that 

effects on the most toxicant-sensitive life-cycle variables should have the greatest 

implications for fitness. Importantly, fitness was more impaired by small changes in less 

sensitive traits. From these results it can be concluded that the impact on single traits 

needs to be evaluated from a life-cycle perspective to ensure a proper assessment of the 

potential ecological risk of toxicants. Moreover, ecotoxicologists need to rethink current 

risk assessment procedures based on single life-cycle traits by implementing life-history 

theory in a quantitative way. 

A limited number of papers have evaluated the effect of chemicals based on life-history 

theory by using the Lotka equation. Daniels and Allan (1981) were among the first who 

used the rate of population increase (r) as a measure of toxicity, estimated from the age-

specific survival and fecundity schedules for a cladoceran and a copepod. They speculated 

that population growth is an ecologically realistic parameter for sublethal stress in these 

invertebrates. Also Allan and Daniels (1982) assessed the chronic toxicity to a copepod 

and estimated r from complete life-cycle experiments and discussed the relative 

contribution of different life-cycle variables to r. Meyer et al. (1987) focused on the 

sensitivity of r in daphnids compared to life-table data and argued that, although r was not 

the most susceptible, it could be used for comparison with the effect on survival and 

reproduction. Using soil inverebrates, Van Straalen et al. (1989) reported that as a result 

of differing physiological responses, differences in population growth rates were 

observed. In addition Crommentuijn (1994) stressed that the relationship between life-
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cycle variables and population growth are of paramount importance for evaluating the 

impact on single traits. 

It was noted by several authors that delayed reproduction caused by toxicants is a 

significant factor in the estimation of r, but is often underestimated (Van Leeuwen et al. 

1985; Meyer et al. 1987; Bengtsson et al. 1985). Also Baird et al. (1990) mentioned the 

importance of development time on the fitness of a population. However, most of these 

studies did not gain insight into the actual causes of the fitness decrease and the observed 

changes were discussed in a qualitative way. This chapter presents a mathematical 

framework which can be used for the quantitative evaluation of toxicant stress on fitness 

by describing the relationship between fitness and plastic responses in life-cycle traits. 

Application of the approach to other species may provide a versatile tool for the effect 

assessment of toxicants. 

The relationship between different traits and population growth rate or extinction rates 

has quantitatively been analysed by ecologists applying different mathematical techniques. 

Caswell (1978) presented a formulation which was applicable to any linear population 

growth model. The model showed that the population growth rate was more sensitive to 

changes in somatic growth and survival than to changes in total fecundity. Lande (1988) 

used classic demographic methods and reported that the adult annual survivorship had a 

strong influence on population growth in the Northern spotted owl compared to annual 

fecundity. Using stochastic models it was estimated that population viability in the badger 

was very much dependent on changes in adult mortality (Lankester et al., 1991). 

Although these papers provide valuable insight into life-cycle changes and population 

reduction, they do not however contribute towards a better understanding of the 

underlying mechanisms of toxicant-induced fitness impairment. 

By analysing juvenile and adult variables in a deterministic model it was demonstrated 

that for P. acuminatus the length of the juvenile period had the strongest influence on 

fitness when impairment was below 80%, and that reproduction, e.g. the number of eggs 

per female, was less important. Hence, the mathematical approach presented in this 

chapter allows for a more refined insight in the contribution of each variable to fitness 

and shows that critical threshold concentrations for the most sensitive variables may not 
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necessarily be correlated with the vulnerability of a species to toxicants. Since organisms 

have developed a variety of life-history strategies, detailed analysis of life-cycle variables 

in relation to toxicant induced fitness reduction is essential to gain insight into the 

population dynamics of stressed organisms and may provide a more rational basis for 

assessing the ecological impact of toxicants and, hence the conservation of biodiversity in 

contaminated environments. If potential hazards and safe environmental concentrations are 

to be estimated from selected life-cycle traits, it is advocated that the biological impact 

must be investigated from a life-history perspective. Using inappropriate criteria for 

selecting test variables introduces the potential for incorrect estimations of the biological 

hazards that toxicants cause. This is especially important with an international regulatory 

system that relies heavily on the use of single species laboratory test methods. 
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CHAPTER 5 

EVALUATION OF CRITICAL EFFECT LEVELS 

ABSTRACT - Using the nematode Plectus acuminatus and the toxicants cadmium and 

pentachlorophenol as a case study, life-cycle experiments were conducted to evaluate 

critical effect levels for various traits by means of a plasticity-to-fitness analysis. For 

cadmium the most sensitive trait was reproduction (EC20=2.0 \>M) followed by the 

juvenile period (EC20=8.9 yM). Using the demographic model presented in Chapter 4, 

plastic responses in life-cycle traits were related to fitness. Plasticity-to-fitness analysis 

indicated that a 20% decrease in daily reproduction resulted in a fitness impairment of 

less than 5% whereas a 20% increase in the juvenile period resulted in a fitness decrease 

of nearly 15%. Fitness however remained constant over all concentrations (0.14 d'), 

indicating that impairment of reproduction was compensated for by various changes in 

other traits. Hence, plasticity allows P. acuminatus to maintain fitness in cadmium 

contaminated environments despite the observed effects in life-cycle traits. For 

pentachlorophenol the juvenile survival was less sensitive compared to the reproductive 

period (EC20=4.3 \>M and 1.3 yM respectively). Analysis of plasticity revealed that 20% 

decrease in the reproductive period did not influence fitness whereas, a 20% reduction in 

juvenile survival resulted in a 5% fitness decrease. Fitness was reduced from 0.12 d1 in 

the control to 0.02 d1 at the highest concentration. In contrast to cadmium exposure, P. 

acuminatus was not able to maintain fitness by means of phenotypic plasticity. This may 

be caused by the specific mode of action of pentachlorophenol i.e. uncoupling of the 

oxidative phosphorylation. These results imply that i) critical effect levels for sensitive life-

cycle traits are not sufficient for assessing the potential impact of toxicants on fitness and 

ii) insight into the relationship between plasticity of life-cycle traits and fitness provides a 

proper basis for the ecological risk assessment of toxicants on populations. 

Based on: Kammenga J.E., Van Koert P.H.G., Koeman J.H. and Bakker J. Fitness consequences of toxic 

stress evaluated within the context of phenotypic plasticity. Ecol. Appl. (submitted). 
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5.1 INTRODUCTION 

Phenotypic plasticity represents the range of phenotypes that can be developed by an 

organism in heterogeneous or changing environments (Via et al. 1995). It may provide a 

mechanism for adaptation to alterations in ambient conditions such as temperature 

(Williams and Black 1993), water stress (Newman 1988) or the presence of a predator 

(Stibor 1992). Toxicant-induced changes in life-cycle traits can be expressed by the 

concentration-response relationship which represents the plasticity to toxic stress. Analysis 

of life-cycle plasticity provides insight into the vulnerability of organisms to chemicals 

and may contribute to evaluating critical effect levels with a view to risk assessment 

(Chapter 2). 

At present, many theoretical and practical explorations have been made to provide 

adequate tools for the ecological risk assessment of toxicants (Wagner and Lekke 1991, 

Van Straalen and Denneman 1989, Stephan et al. 1985, Suter et al. 1985, Blanck 1984, 

Slooff et al. 1986) in soil and water. In general, these methodologies are based on the 

results of toxicological experiments that provide estimates for critical concentrations such 

as the NOEC, LOEC, EC50 or EC20- Over the last decades, effect levels for toxicants 

have been obtained from concentration-response relationships using sensitive life-cycle 

variables such as juvenile mortality, growth, reproduction or breeding success for a wide 

range of species (Jergensen et al. 1991). This traditional concept, which assumes that 

sensitive variables are ecologically relevant, is however not supported by life-history 

theory (Chapter 4). 

Life-history theory emphasizes that the impact of stress on organisms is determined by 

the effect on fitness (Sibly and Calow 1989). More specifically, the concept of 

maximizing fitness is the key to gain insight into the demographic consequences of toxic 

insults on the individual level (Sibly and Calow 1989). This fundamental principle of 

population dynamics is of paramount importance for the evaluation of critical effect levels 

on the dynamics of populations and provides guidance to the understanding of the effect 

that toxicants may have on the viability of species in contaminated environments. 

This chapter presents a unification of life-history theory and toxicology by describing a 
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model which relates toxicant-induced alterations in life-cycle components to changes in 

fitness. The life cycle of the bacterivorous soil inhabiting nematode P. acuminatus was 

used as a case study. Cadmium and pentachlorophenol were used as test compounds since 

their toxicological properties are well known (Anonymous 1987, Ros and Slooff 1988). 

The model consists of two parts and is based on the classical Lotka equation. The first 

part describes the relationship between plasticity of life-cycle variables and fitness by 

dividing the life cycle into a juvenile and adult stage (see Chapter 4). The second part of 

the model is the estimation of effect levels from the concentration-response relationship 

for life-cycle variables to cadmium and pentachlorophenol. As an example this chapter 

focuses on the EC20, but the concept holds for other effect levels e.g. LOEC or EC^ as 

well. Concentration-response relationships were constructed for various traits and survival 

curves for different chemicals to estimate EC20-values. The obtained effect concentrations 

were related to changes in fitness using the first part of the model. 

5.2 MATERIALS AND METHODS 

CHEMICALS USED 

Cadmiumchloride (CdCl2) was obtained from Merck, Darmstadt, Federal Republic of 

Germany and pentachlorophenol was purchased from Fluka Chemie A.G., Switzerland. 

The compounds were >99% pure. All other chemicals used (Merck) were of the highest 

analytical grade available. Pentachlorophenol was initially dissolved in ethanol after which 

stock solutions were made in water. The stock solutions were sonificated for 60 min. The 

water used for culturing and experiments contained a defined mixture of minerals 

resembling those found in interstitial water of sandy forest soils (K+: 0.1 raM, Na+: 0.2 

mM, Ca2+: 0.35 mM, Mg2+: 0.3 mM, NH4
+: 0.3 mM, N03 : 1.7 mM, CI": 0.3 mM) 

(Schouten and Van der Brugge 1989). The pH was adjusted to 6.0 ± 0.1 with NaOH. 
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NEMATODE CULTURING 

Nematodes were reared in agar on the soil bacterium Acinetobacter johnsonion which was 

obtained from the department of Microbiology at Wageningen Agricultural University in 

The Netherlands. Bacterial stock cultures were stored at -80°C in a cryo-protectant on 

glass beads (Jones et al. 1984). Bacteria were cultured in an autoclaved batch of aerated 

yeast extract (4.0 g/L, 28°C, 16 h) after which they were centrifuged (13,170 g, 2 min) 

and washed with water to obtain a fresh supply for culturing and experiments. Bacterial 

densities were measured with a spectrophotometer (Shimadzu, UV-160, 560 nm). 

LIFE-CYCLE EXPERIMENTS 

Life-cycle studies were conducted in agar in multi compartment plates (Greiner, nr. 

662160). Twenty-four agar droplets (70 /xl, 0.5%) were applied on the inside of the lid. 

Bacteria were mixed through the agar at 37°C to obtain a density of 2.10s cells/ml. Each 

compartment of the bottom plate contained 1 ml water and plates were sealed with 

Parafilm to prevent evaporation. 

A concentration range of 0, 0.5, 0.9, 1.6, 2.8 and 5.0 /xM cadmium and a range of 0, 

2.6, 4.6, 8.3, 14.9 and 26.8 pM pentachlorophenol in agar was used. Both compounds 

were added to fluid agar at a temperature of 37 °C. The ranges were based on LC^-values 

in water for 72 h (Chapter 3). Two compartment plates were used for each treatment. 

Nematodes were used from a clone which has been maintained in the laboratory for 

more than two years. Gravid females were individually transferred to the agar droplets in 

the multi-compartment plates. After 24 h the adults were removed and the eggs were each 

placed in fresh agar droplets. The hatching period of the eggs was recorded as well as the 

length of the juvenile period. The duration of the reproductive period was studied and the 

daily reproduction was recorded. Eggs were counted each day and the females were 

placed on fresh plates every 5 days. The observations covered the total life time of the 

nematode and included adult and juvenile mortality. Juvenile mortality was recorded by 

studying the eggs which were produced during the life cycle. Observations were done 
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with a stereo-microscope (magnification 40 - 64). Experiments were conducted at 20°C in 

the dark. 

CHEMICAL ANALYSIS 

To gain insight into adsorption of cadmium and adsorption or breakdown of 

pentachlorophenol by agar and bacteria, chemical analysis was performed on the 

supernatant of centrifuged agar with and without bacteria added. Sealed plastic centrifuge 

tubes with 10 ml agar suspension (0.5% agar) were made with and without added bacteria 

(2.108 cells/mL) and stored at 20°C. Nominal concentrations of 5.0 and 8.3 pM were 

used for cadmium and pentachlorophenol respectively. After 0 and 120 h, the agar was 

centrifuged (13,170 g, 20 min.) and 1.5 mL of supernatant was sampled for analysis. The 

cadmium samples were acidified with 1 N HN03. Cadmium concentrations were 

measured with Atomic Absorption Spectrophotometry (Perkin Elmer 3030 AAS, furnace, 

detection-limit: 0.1 /xg/L). Pentachlorophenol concentrations were determined with HPLC 

(Spectro Flow 757, Lichrosorb RP18 column (7 /im x 20 cm), UV-detector, 254 nm, 

detection limit: 50 pig/L, flow rate 0.7 mL/min). Experiments were conducted with two 

replicates in the dark. 

STATISTICAL ANALYSIS 

Results were analysed with the statistical package of SAS (Anonymous 1990). Differences 

between control and treatments of tJ; sj; n,, tr were tested using Student's t-test. Longevity 

data were used to construct a Weibull distribution function. The least square method was 

used to estimate LT50, c and sr (Chapter 4). A likelihood ratio test was applied to analyse 

differences in survival curves between treatments. 

The obtained values for the life-cycle variables were used to estimate fitness values for 

the different treatments by means of equation 5 (Chapter 4). A specific algorithm was 

constructed in SAS-software using non-linear regression procedures (PROC NLIN). 

Application of the jack-knife procedure (Meyer et al. 1986) for estimates of fitness 
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resulted in pseudo-values which were analysed by analysis of variance. EQo-values were 

estimated using non-linear regression procedures in SAS (Bruce and Versteeg 1992). 

Results of chemical analyses were compared with Student's t-test for comparison between 

means. 

5.3 RESULTS 

LIEFE-CYCLE EXPERIMENTS 

The results are presented for nominal exposure concentrations of cadmium and 

pentachlorophenol. 

Cadmium - Table 1 shows the effect of cadmium on different life-cycle variables. A 

concentration-response relationship was found for the daily reproduction showing a 

decrease from 6.8 eggs/day in the control group to 5.4 eggs/day in the group with the 

highest concentration; EC20 was estimated as 2.0 ± 1 . 3 fiM. 

A less pronounced relationship was observed for the length of the juvenile period. 

Cadmium increased tj from 24.4 days in the control group to 25.3 days at the highest 

concentration. At 0.5 j*M however tj was significantly reduced from 24.4 to 23.6 days, 

which may indicate a stimulation of maturation at low cadmium concentrations. An EC20 

of 8.9 ± 2.1 /xM was estimated, although a less accurate estimation could be made than 

for the daily reproduction. The duration of the egg stage, which is included in tj, was 4.7 

days and was not changed by cadmium. 

The juvenile survival was only significantly affected by cadmium at 1.6 jtM but 

remained constant at nearly 0.8 at other concentrations (Table 1). It was noted that 

mortality mainly occurred during the egg stage, whereas during the rest of the juvenile 

period, mortality was negligible. 

Figure la shows the adult survival curves at different cadmium concentrations. There 

was a good fit of the Weibull curve (p< 0.001) but there appeared to be no concentration-

response relationship, consequently the median survival time, LT^, was not related with 
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Table 1. Effect of cadmium on different life-cycle variables of P. acuminatus in agar. Means ± SE, number of 

replicates in brackets, t; = juvenile period in days, S; = juvenile survival over t:, D, = daily reproduction, t,. 

= reproductive period in days, Sr = survival over t r (* = significantly different from control at p<0.05, t-

test). 

MM t 5 {days) n t ( d a y 1 ) ( d ays ) 

0 . 0 

0 . 5 

0 . 9 

1.6 

2 . 8 

5 . 0 

2 4 . 4 ± 0 . 1 (44) 

2 3 . 6 ± 0 . 1 (42) 

2 4 . 1 ± 0 . 3 (38) 

2 4 . 5 ± 0 . 5 (20) 

2 5 . 1 ± 0 . 4 (35) 

2 5 . 3 ± 0 . 3 (31) 

0 . 8 4 ± 0 . 02 (300) 

0 . 8 3 ± 0 . 02 (252) 

0 . 84 ± 0 . 02 (179) 

0 . 78 ± 0 . 02 (149) 

0 . 82 ± 0 . 02 (219) 

0 . 82 ± 0 .02 (145) 

6 . 8 ± 0 . 3 (43) 

6 . 6 ± 0 . 3 (27) 

5 . 8 ± 0 . 4 (25) 

5 .6 ± 0 . 7 (23) 

4 . 9 ± 0 . 3 (30) 

5 .4 ± 0 . 5 (20) 

6 1 . 7 ± 0 . 8 (43) 

8 3 . 2 ± 7 . 3 (27) 

7 4 . 5 ± 9 .4 (25) 

6 6 . 2 ± 7 . 7 (23) 

7 9 . 4 ± 7 . 3 (30) 

7 1 . 6 ± 9 . 5 (20) 

0 . 6 1 

0 . 7 8 

0 . 5 1 

0 . 72 

0 . 6 7 

0 . 6 1 

Table 2. Influence of cadmium and pentachlorophe-

nol (PCP) on median survival time (LT50 ± SD) 

and the shape of the Weibull curve (c ± SD) 

obtained from survival curves of P.acuminatus in 

agar (*: a = 0.05, **: a = 0.01, ***: a = 0.001, 

likelihood ratio test). 

Table 3. Effect of cadmium and pentachlorophenol 

(PCP) on estimated fitness pseudo-values (r ± SE) 

of P. acuminatus in agar (* = significantly different 

from control at p<0.05, t-test). 

cadmium (/xM) LTS0 (days) 

0 . 0 7 1 . 1 ± 0 . 9 2 . 6 + 0 . 1 

0 . 5 1 0 8 . 2 ± 3 . 4 ** 4 . 0 ± 0 . 8 

0 . 9 7 7 . 1 ± 5 . 5 * 1 . 1 + 0 . 2 

1 . 6 8 4 . 4 ± 1 . 7 3 . 1 ± 0 . 3 

2 . 8 9 7 . 7 ± 3 . 5 * 2 . 6 ± 0 . 4 

5 . 0 8 4 . 9 ± 3 . 3 1 . 9 ± 0 . 3 

PCP (flM) 

0 . 0 

2 . 6 

4 . 6 

8 . 3 

1 4 . 9 

2 6 . 8 

8 9 . 7 ± 0 . 8 4 . 1 ± 0 . 2 

6 7 . 7 ± 1 . 0 ** 2 . 8 ± 0 . 2 

5 4 . 1 ± 0 . 6 *** 3 . 2 ± 0 . 2 

5 2 . 9 ± 0 . 8 *** 3 . 2 ± 0 . 2 

cadmium 

0 . 0 

0 . 5 

0 . 9 

1 . 6 

2 . 8 

5 . 0 

(/JM) r 

0 . 1 3 

0 . 1 4 

0 . 1 5 

0 . 1 3 

0 . 1 4 

0 . 1 4 

± 

± 

± 

± 

± 

± 

(d"1) 

0 . 0 1 

0 . 0 1 

0 . 0 3 

0 . 0 1 

0 . 0 2 

0 . 0 1 

PCP (/iM) 

0 . 0 

2 . 6 

4 . 6 

8 . 3 

1 4 . 9 

2 6 . 8 

0 . 1 2 

0 . 1 2 

0 . 1 1 

0 . 0 2 

-
-

± 

± 

± 

± 

0 . 0 2 

0 . 0 1 

0 . 0 2 

0 . 0 3 » 
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Figure 1. A) Effect of cadmium on survival of adults. A : data from control group, Weibull curve 

of control group; • : 0.5 pM Cd, Weibull curve; • : 0.9 /iM, Weibull curve; • 1.6 

,4M, Weibull curve; B:2.8 ^M, Weibull curve; T:5.0 / JM,—— - Weibull curve. B) Effect of PCP 

on survival of adults. Q: data from control group, Weibull curve of control group; A : 2.6 

fiM Cd, Weibull curve; • : 4.6 pM, Weibull curve; • : 8.3 ^M, Weibull curve. 
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the concentration. Also the slopes of the curves were not clearly influenced (Table 2). 

Comparison between different curves indicated a significant increase compared to the 

control group for 0.5, 0.9, and 2.8 xiM. The survival over the reproductive period, sr, 

was also not related to the concentration and ranged from 0.51 to 0.78 (Table 1). 

The reproductive period showed large variations between different treatments, but was 

not dose related. A minimum was observed in the control group of 61.7 days whereas a 

maximum of 83.2 days was recorded at 0.5 /xM. 

Table 3 shows the jack-knife estimates for fitness at different cadmium concentrations. 

There appeared to be no concentration-response relationship for fitness, nearly all values 

were 0.14 d"1 or close to this value. 

The results presented here for control situations differed from Chapter 4, where the 

ambient temperature was 15°C. Also food levels were very high in Chapter 4 indicating 

that these levels may not be favorable for P. acuminatus since total life-time and 

reproduction was much lower. 

Pentachlorophenol - Table 4 shows the effect of pentachlorophenol on different life-

cycle variables. The juvenile survival showed a steep concentration-response relationship 

with a survival of 0.64 for the control and 0.04 at 8.3 /xM with EC20=4.3 ± 0.03 /xM. 

At higher concentrations the juvenile survival was 0.0. 

It was observed that the length of the reproductive period was also related to the 

concentration (EC20=1.3 ± 0.3 /tM). In the control tr was 69 days decreasing to 29.4 

days at 8.3 /xM. 

The daily reproduction and the length of the juvenile period were not affected by 

pentachlorophenol. Nearly 5 eggs/day were produced at all concentrations. The juvenile 

period remained constant at an average of 22.5 days for all treatments. 

Figure lb shows the adult survival curves of the different groups (Weibull fit: p<0.0-

01). A concentration-response relationship was found for LT50 ranging from 89.7 days in 

the control to 52.9 days at 8.3 /xM. However sr and the slope of the curve c were not 

affected (Table 2 and 4). Clearly, concentration-related mortality occurred only after the 

reproductive period. Table 3 shows the estimated pseudo-values for fitness at different 

pentachlorophenol 
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Table 4. Effect of pentachlorophenol on different life-cycle variables of P. acuminatus in agar. Means ± SE, 

number of replicates in brackets, tj = juvenile period in days, S; = juvenile survival over fc, fl, = daily 

reproduction, t,. = reproductive period in days, S r = survival over t r (* = significantly different from control 

atp<0.05, t-test). 

^M t j (days) Sj n t (day"1) t r ( d ays ) s r 

0 .0 2 2 . 9 ± 1.0 (27) 0 . 6 7 ± 0 . 0 4 (93) 4 . 1 ± 0 . 4 (18) 6 9 . 0 ± 9 . 1 (18) 0 . 7 8 

2 . 6 2 2 . 1 ± 0 . 9 (27) 0 . 5 8 ± 0 . 06 (49) 4 . 9 ± 0 . 5 (25) 4 3 . 4 ± 4 . 6 (25) * 0 . 82 

4 . 6 2 2 . 6 ± 1 . 1 (23) 0 . 4 6 ± 0 . 06 (38) * 4 . 6 ± 0 . 4 (23) 3 9 . 9 ± 6 . 3 (23) * 0 . 7 5 

8 . 3 2 2 . 2 ± 1 .1 (17) 0 . 02 ± 0 . 02 (18) * 5 . 4 ± 0 . 5 (15) 2 9 . 4 ± 4 . 8 (15) * 0 . 8 9 

1 4 . 9 - 0 . 0 

2 6 . 8 - 0 . 0 

Table 5. Nominal and actual concentrations of cadmium and pentachlorophenol (PCP) in the supernatant of 

centrifuged agar, with or without added bacteria, after 24 and 120 h incubation at 20°C (means ± SD, n -2) (* 

= significantly different from treatment with added bacteria at p<0.05, t-test). 

nominal (\M) intrinsic (t=24 h) intrinsic (t=120 h) 

+ bact. - bact. + bact. - bact. 

Cadmium: 5.0 3.6+0.03 4 . 5 + 0 . 1 * 3 . 9 ± 0 . 5 4.3 ± 0.1 

PCP: 8.3 6.5 ± 1.1 7 . 9 ± 0 . 6 4.1 ± 0.1 7 . 2 ± 0 . 3 * 
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Figure 2. Relationship between critical effect levels (EC20) for cadmium (A) and PCP (B) and changes in 

fitness. The left-hand side of the figure represents the sensitivity analysis of equation 5, Chapter 4, which relates 

plasticity in life-cycle traits to changes in fitness. The right-hand side of the figure shows the EC20 (jM) and the 

change in life-cycle traits, n = daily reproduction, t = length of the juvenile period (days), Sj = juvenile 

survival, t, = length of the reproductive period (days). 
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concentrations. In the control group, fitness was 0.12 d"1 which decreased with increasing 

concentrations to 0.02 d1 at 8.3 fiM. At higher concentrations fitness could not be 

estimated because juvenile survival was zero. 

RELATIONSHIP BETWEEN PLASTICITY OF LIFE-CYCLE TRAITS TO FITNESS 

The values of the life-cycle variables from the two control groups were averaged and used 

to estimate fitness values. A sensitivity analysis was conducted for each life-cycle variable 

using these average data. Simulations were run using equation 5 in Chapter 4 to obtain a 

fitness value for each 5% step of reduction in sj; t,, nt and sr and each 5% step increase in 

tj. Grahps were constructed consisting of three axes relating plasticity in life-cycle 

variables to i) a decrease in fitness and ii) EC20-values of cadmium (Fig. 2a) and 

pentachlorophenol (Fig. 2b). 

From a toxicological point of view the daily reproduction appeared to be nearly four 

times more sensitive (EC20=2.0 pM) than the juvenile period (EC20=8.9 /iM). However, 

figure 2a illustrates that a 20% decrease of the daily reproduction, has less impact on 

fitness than a 20% effect on the juvenile period. 

Figure 2b shows that although the reproductive period was more sensitive to 

pentachlorophenol than the juvenile survival, their impact on fitness differs strongly. A 

decrease of 20% in the reproductive period has no influence on fitness whereas a 20% 

decrease in the juvenile survival almost decreases fitness with 5%. The toxicant induced 

changes in fitness may seem negligible, however fitness represents the rate of population 

increase. Hence small changes may ultimately lead to large differences in population size 

in the long term. 

CHEMICAL ANALYSIS 

Table 5 shows the nominal and actual concentrations of cadmium and pentachlorophenol 

in the supernatant of centrifuged agar after 24 and 120 h. It appeared that actual 

concentrations of pentachlorophenol were 20% lower than nominal. Furthermore, adding 
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of bacteria significantly decreased pentachlorophenol concentrations after 120 h. Also 

actual concentrations of cadmium were lower than nominal. After 24 h, bacteria 

significantly decreased the concentration in the supernatant, whereas after 120 h this 

difference was not significant anymore. 

5.4 DISCUSSION 

This chapter demonstrates the need to evaluate critical effect levels of toxicants for life-

cycle traits within the context of phenotypic plasticity in order to predict the impact on 

fitness. Daily reproduction was the most sensitive trait to cadmium (EC20=2.0 pM) 

followed by the length of the juvenile period (EC20=8.9 pM). However, the analysis of 

plasticity in life-cycle traits indicated that a 20% decrease in daily reproduction resulted 

in a fitness impairment of less than 5% whereas a 20% increase in the juvenile period 

resulted in a fitness decrease of nearly 15%. Also a 20% reduction in juvenile survival 

and the reproductive period by pentachlorophenol (EC20=4.3 and 1.3 /xM respectively) 

leads to nearly 5% fitness decrease for the juvenile survival compared to zero impairment 

in the case of a 20% reduction in the reproductive period. These results imply that critical 

effect levels for sensitive life-cycle traits are not sufficient for assessing the potential 

impact of toxicants on population growth rates. Moreover, derivation of environmental 

quality criteria of toxicants based on these effect levels may lead to false estimates of the 

ecological hazards. For instance, a risk assessment for cadmium based on daily 

reproduction will lead to the underestimation of fitness effects. Insight into the 

relationship between plasticity of life-cycle traits and fitness will provide guidance for a 

proper ecological risk assessment. 

Phenotypic plasticity comprises environmentally based changes in the phenotype and is 

an important feature of adaptation to heterogeneous or unfavorable environments (Via et 

al. 1995). For instance, discrete phenotypes were encountered in amphibians where one 

of the morphs was able to accelerate its metamorphosis in submerging waters (Newman 

1988) and in some insects with seasonal polyphenism (Moran 1992). Continuous 
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phenotypes for example were present in the grass Pennisetum setaceum which occurs 

widely among various altitudes resulting from a strong plasticity for leaf photosynthesis in 

response to differences in temperature (Willams and Black 1993). Toxicants are an 

additional stress factor to natural occurring (unfavorable conditions thus adding new 

physiological constraints which, apart from accumulation of compounds in tissues, are 

comparable to ambient stressors. At present little is known about phenotypic plasticity to 

toxicants per se. Steep concentration-response relationships reflect a strong plasticity over 

a short concentration range whereas relatively insensitive traits are less plastic to that 

particular toxicant. The present chapter shows that daily reproduction in P. acuminates 

was plastic to cadmium compared to other traits. Fitness however was not affected 

implying that either changes in reproduction are compensated for by various changes in 

other traits or that the combined alterations of traits eventually do not lead to expected 

fitness changes due to the intricacy of the model used. It can be concluded that plasticity 

allows P. acuminatus to maintain fitness in cadmium contaminated environments in which 

reproduction is signifinantly affected, although from a toxicological point of view 

impairment of reproduction is often appreciated as an important impact of toxicants. 

Exposure to pentachlorophenol resulted in fitness impairment from 0.12 d1 in the 

control to 0.02 d"1 at the highest concentration. In contrast to cadmium exposure, P. 

acuminatus was not able to maintain fitness by means of phenotypic plasticity which 

might be caused by the specific mode of action of pentachlorophenol compared to 

cadmium i.e. uncoupling of the oxidative phosphorylation vs. aspecific binding of 

cadmium to proteins and blocking of calcium channels (Neathery 1981, Verbost 1989). 

These findings are supported by toxicity results obtained for the springtail Folsomia 

Candida (Crommentuijn et al. in press). Here, life span increase was compensated by 

slower somatic growth for springtails exposed to cadmium or triphenyltin hydroxide. No 

such trade-off was found for springtails exposed to chlorpyrifos. The mode of action of 

triphenyltin hydroxide is unsure but appears to be non-selective (Hassall 1982) whereas 

chlorpyrifos specifically inhibits functioning of the nervous system. 

Long-term environmental contamination by toxicants with a non-specific mode of action, 

may thus lead to adaptation by changing life-cycle phenotypes. It was shown that these 
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changes influence fitness in various degrees depending on their mutual relationship 

(Chapter 2). Based on Fisher's postulate of fitness maximisation (Fisher 1958), it can be 

argued that risk assessment cannot be based on critical effect levels of single traits as 

such, since each trait has its own plasticity and a different relationship with fitness 

depending on the life-history strategy of the organism. 

Recent literature suggests that plasticity is genetically controlled by either allelic 

sensitivity, where the expression of single genes is changed by external conditions, or 

regulatory plasticity, where gene receptors detect changes in external conditions and alter 

other gene expressions (Schlichting and Pigliucci 1995). Gene regulation by toxicants, 

such as the induction of heat-shock proteins, metal-binding proteins and esterases, 

produces discrete phenotypes, offers the potential to anticipate to adverse environmental 

conditions and allow organisms to change allometric relationships (Falconer 1990). On the 

other hand toxicant induced plasticity may be controlled by allelic sensitivity thus leading 

to phenotypic modulation as observed in many sublethal toxicity experiments. Both types 

of genetic control are extremely important for the evolutionary trajectories of plasticity 

(Via et al. 1995) and hence for the adaptibility of organisms in contaminated 

environments. 

Because of the attribution of plasticity to the genotype, it is subjected to natural 

selection which appears to be similar to the responses of trait means. For instance it was 

reported that the plasticity of body weight in Drosophila melanogaster across two food 

environments responded relatively rapidly within approx. 10 generations (Hillesheim and 

Stearns 1991). Also it was clearly demonstrated that thermal tolerance in the same fly 

species was subjected to swift natural selection in changes in the thermal environment 

(Huey et al. 1991). From an ecotoxicological perspective this may imply that plasticity to 

toxicants is also subjected to selective forces thus modifying relationships between life-

cycle traits and fitness. Although it is already known that toxicant-induced genetic 

adaptation changes life-history patterns in soil organisms (Donker 1992 ; Posthuma 1992) 

more research is required on the evolution of the shape of reaction norms in contaminated 

environments and its relation to optimal fitness. 

Phenotypic adaptation to toxic stress indicates that the genotype is able to survive in 
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different environments by having reduced fitness plasticity. This was shown for P. 

acuminatus where fitness was not influenced over a range of cadmium concentrations. 

Hence, P. acuminatus can be regarded as a generalist to these cadmium environments 

since plasticity in fitness characters assures rigid fitness reaction norms, assuming 

maintenance of fitness in widely different habitats. Contrasting, genotypes which are not 

able to perform in different environments by means of plasticity indicate a plastic fitness 

reaction norm, with plasticity generally leading to fitness impairment. 

The results have been discussed on the basis of nominal toxicant concentrations. Table 5 

however shows that agar and bacteria adsorb cadmium to a level of approx. 25%. PCP 

concentrations also decreased due to breakdown or adsorbtion by bacteria and agar. 

Hence, care must be taken when deriving critical effect levels on a nominal or actual 

base. 
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CHAPTER 6 

COMPARISON OF LIFE-HISTORY STRATEGIES: 

DEFINING TOXIC ELASTICITY CONCENTRATIONS* 

ABSTRACT - Using theoretical life-cycle models in Chapter 2 it was illustrated that the 

impact of toxicants on fitness was determined by i) the plasticity of traits to toxic stress, 

ii) the relationship between plasticity and fitness and Hi) the life-history strategy. To 

compare these theoretically obtained results with experimental observations, the present 

chapter explores the susceptibility of fitness in the nematodes Plectus acuminatus and 

Heterocephalobus pauciannulatus, each having distinct life-history strategies, to copper-

induced life-cycle alterations. For both species, a strong response was found for the 

length of the reproductive period tr. From a toxicological point of view tr in P. acuminatus 

was more sensitive to copper than in H. pauciannulatus. However, a plasticity-to-fitness 

analysis revealed that although copper affected tr stronger in P. acuminatus (60% 

reduction at 35 \iM) than in H. pauciannulatus (10% reduction at 35 ixM) both reductions 

resulted in approx. 2% fitness reduction. Hence small effects on tr in H. pauciannulatus 

had the same impact on fitness as a large effect in P. acuminatus. 

To quantify these relationships, a '0% toxic elasticity concentration' (TEC) was defined 

denoting the maximum concentration of a toxicant leading to a significant effect on a 

particular trait but which does not influence fitness i.e. 0% fitness impairment. TECtr = 

25 \iM was found for the reproductive period for P. acuminatus and TECtr = 0 for H. 

pauciannulatus. These findings imply that fitness in P. acuminatus was less susceptible to 

toxicant-induced changes in tr than H. pauciannulatus. The use of toxic elasticity 

concentrations facilitates the identification of ecotoxicologically important traits from a 

life-history perspective, since it quantifies the relationship of the classic concentration-

response curve for various traits to fitness. 

' Based on: Kammenga I.E., Riksen, J.A.G., Bakker J. Challenging classic toxicological perceptions: phenotypic 

plasticity vs. concentration-response relationships (Submitted). 
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6.1 INTRODUCTION 

Adaptation of organisms to heterogeneous or unfavourable environments requires the 

ability to respond to ambient stimuli by either genetic alterations or phenotypic plasticity 

(Sibly and Calow 1989; Via et al. 1995). Genetic adaptation may involve the re-allocation 

of resources among various phenotypic characteristics following environmentally induced 

changes in the genotype (Sibly and Calow 1986). Trophic conditions in freshwater 

sediments, for instance, may have substantial impact on the intraspecific variation in 

trade-off between survival of the parents and reproductive investment in the leech 

Erpobdella octoculata (Maltby and Calow 1986). In addition to these environmental 

factors, toxicants can also act as selective agents thus altering life-history strategies. In 

contaminated habitats, organisms are subjected to selection for toxicant resistance which 

may result in life-history shifts aiming to maximise fitness, i.e. intrinsic rate of population 

increase of a particular phenotype (Sibly and Calow 1989). Metal-adapted populations of 

the terrestrial isopod Porcellio scaber showed a strong allocation for early maturation and 

increased reproduction (Donker et al. 1993). Also for the springtail Orchesella cincta life-

history patterns appeared to differ genetically among populations which have experienced 

various toxicant exposure levels (Posthuma et al. 1993). 

Phenotypic plasticity comprises the ambient induced change in phenotypic traits without 

genotype alterations and is a specific type of genotype-environment interaction that 

reduces the need to match genotypes to the environment (Sultan and Bazzaz 1993a). For 

instance the extent of the light regime was found to induce changes in the allocation of 

metabolic energy in perch thus enabling the fish to respond sensitive to changes in 

external conditions (Wieser and Medgyesy 1991). Also variation in nutrient concentrations 

gave rise to plastic responses in either the size or the tissue nitrogen concentration of 

propagules in the plant Polygonum persicaria reflecting the adaptive capacities to a 

heterogeneous environment (Sultan and Bazzaz 1993b). In addition to these more general 

ambient factors, toxicants have been known to alter phenotypic characteristics thus 

leading to physiological trade-offs without genetic alterations in invertebrates (Chapter 5; 

Crommentuijn et al. in press). Toxicants can therefore be regarded as just an additional 
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environmental factor such as temperature, light regime or nutrient concentration 

modulating various phenotypic characteristics by re-allocation of recources. 

In Chapter 2 it was illustrated that the impact of toxicants on fitness was determined by 

i) the plasticity of traits to toxic stress, ii) the relationship between plasticity and fitness 

and iii) the life-history strategy. This provided valuable information on the vulnerability 

of distinct strategies to toxic stress, indicating that the final impact is unique for each 

strategy and depends on a range of different relationships between fitness and plasticity of 

traits. 

This chapter aims to explore the value of the results presented in Chapter 2 by 

investigating the impact of copper on the plastic responses and fitness in the nematodes P. 

acuminatus and Heterocephalobus pauciannulatus each having different life-history 

strategies. Complete life-cycle experiments were conducted at various copper 

concentrations to estimate fitness and to relate phenotypic variation in life-cycle traits to 

changes in fitness. Fitness in the two nematode species was estimated using a model as 

described in Chapter 4. 

6.2 MATERIALS AND METHODS 

CHEMICALS USED 

Copperchloride (CuCl2.2H20, 100% pure) was obtained from Sigma. All other chemicals 

used (Merck) were of the highest analytical grade available. The water used for culturing 

and experiments contained a defined mixture of minerals resembling those found in 

interstitial water of sandy forest soils (K+: 0.1 mM, Na+: 0.2 mM, Ca2+: 0.35 mM, 

Mg2+: 0.3 mM, NH4
+: 0.3 mM, N03": 1.7 mM, CI: 0.3 mM) (Schouten and Van der 

Brugge 1989). The pH was adjusted to 6.0 ± 0.1 with NaOH. 

NEMATODE CULTURING 
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Laboratory stock cultures of the bacterivorous, parthenogenetic soil inhabiting nematodes 

P. acuminatus and H. pauciannulatus were used. Both nematode species were reared in 

agar on the soil bacterium Acinetobacter johnsonion which was obtained from the 

department of Microbiology at Wageningen Agricultural University in The Netherlands. 

Bacterial stock cultures were stored at -80°C in a cryo-protectant on glass beads (Jones et 

al. 1984). Bacteria and nematodes were cultured as described in Chapter 4. 

LIFE-CYCLE EXPERIMENTS 

Life-cycle studies were conducted in agar in multi compartment plates (Greiner, nr. 

662160). Agar droplets (70 jiL, 0.5%) with a bacterial density of 2.108 cells/mL were 

applied on the inside of the lid. Each compartment of the bottom plate contained 1 mL 

water and plates were sealed with Parafilm to prevent evaporation. 

Following the outcomes of pilot experiments, the following concentration ranges were 

used: 0, 9.7, 17.5, 31.4, 56.6, 101 fM and 0, 12.4, 22.4, 40.4, 72.8 and 131 /M 

copper in agar for P. acuminatus and H. pauciannulatus respectively. Copper was added 

to fluid agar at a temperature of 37°C. Fourty-eight replicates were used for each 

treatment. Experiments were conducted at the same temperature in the dark as described 

in Chapter 4. 

DATA ANALYSIS 

Results were analysed using SAS software (Anonymous 1990). Differences between 

control and treatments of tj; sj( n,, t, were tested using Student's t-test. Longevity data 

were used to construct a Weibull distribution function. The least square method was used 

in an iterative non-linear regression procedure to estimate LT50 and c which were used to 

estimate sr. A likelihood ratio test was applied to analyze differences in survival curves 

between treatments (see Chapter 4). The obtained values for the life-cycle variables were 

used to estimate fitness values for the different treatments by means of equation 5 in 

Chapter 4. A specific algorithm was constructed in SAS-software using non-linear 
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regression procedures (PROC NLIN). Application of the jack-knife procedure (Meyer et 

al. 1986) for estimates of fitness resulted in pseudo-values which were analysed by 

analysis of variance. 

6.3 RESULTS 

Figure 1 and 2 show the phenotypic variation in four different life-cycle traits of P. 

acuminatus and H. pauciannulatus to various copper levels. For P. acuminatus the 

highest copper concentration resulted in 100% mortality among juveniles and was 

120 140 
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B 

Copper ( I JM) 

Figure 1. A) The effect of copper on the juvenile survival for P. acuminatus ( • ) and H. pauciannulatus in agar 

( o ) , B) the effect of copper on the juvenile period for P. acuminatus ( • ) and H. pauciannulatus ( o ) in agar 

(*: significantly different from control, Student's t-test, p<0.05, bars are standard errors). 
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Figure 2. A) The effect of copper on the daily reproduction for P. acuminatus ( • ) and H. pauciannulatus ( o ) 

in agar, B) the effect of copper on the reproductive period for P. acuminatus ( • ) and H. pauciannulatus ( o ) in 

agar (*: significantly different from control, Student's t-test, p<0.05, bars are standard errors). 

therefore discarded from further analysis. Variation in P. acuminatus was observed for 

the survival over the juvenile period Sj, ranging from 0.33 to 0.79 (Fig. la). A significant 

stimulation was found by copper at 9.7 pM. The length of the juvenile period t, decreased 

at the three lowest concentrations and ranged from 16.3 to 21.8 days (Fig. lb) whereas 

daily reproduction n, decreased from 8.7 to 2.5 eggs/day (Fig. 2a). The reproductive 

period varied between 17.8 and 51.8 days with the highest value at 9.7 pM (Fig. 2b). In 

general, high copper concentrations resulted in impairment of most life-cycle traits except 

for the survival over the reproductive period sr which increased during increased copper 

levels from 0.57 in the control to 0.99 at 56.6 /*M copper. The shape of the survival 

curve varied between 2.1 and 5.9 (Table 1). Figure 3 shows that the median lethal time 
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LT50 in P. acuminatus ranged from 46.2 to 78.8 days at 9.7 /*M. Figure 4 shows a 

variation in fitness in P. acuminatus, fluctuating between 0.09 d"1 and 0.18 day1 with the 

highest value at 9.7 /iM. 

Life-cycle traits in H. pauciannulatus appeared to be less plastic to copper compared to 

P. acuminatus. Also contrasting to P. acuminatus, no significant juvenile mortality due to 

copper exposure was recorded (Fig. la). The juvenile period t, significantly varied from 

the control only at the highest concentration (Fig. lb). Reproduction ranged from 9.2 to 

11.7 eggs/day (Fig. 2a). Only the reproductive period tr appeared to be related to 

increased copper concentrations, decreasing from 40.9 days in the control to 24.2 days at 

the highest concentration (Fig. 2b). Figure 3 shows that the LT^ fluctuated between 47.3 

and 28 days. Fitness ranged from 0.41 d1 in the control to 0.29 d"1 at the highest 

concentration (Fig. 4). The survival over the reproductive period sr varied from 0.5 to 

0.73 and c fluctuated between 1.7 and 5.3 (Table 1). 

o 
in 

Copper (uM) 

Figure 3. Impact of copper on the LTS0 in P. acuminatus ( • ) and H. pauciannulatus ( o ) in agar. (*: 

significantly different from control, bars fall within the markers). 
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Figure 4. Impact of copper on the fitness in P. acuminatus ( • ) and H. pauciannulatus ( o ) in agar. (* 

significantly different from control, Student's t-test, p<0.05, bars are SD). 

Table 1. Effect of copper on estimated survival over the reproductive period (Sr) and the shape of the Weibull 

survival curve (c ± SD) for P. acuminatus and H. pauciannulatus in agar. 

P . 

HM 

0 . 0 

9 . 7 

1 7 . 5 

3 1 . 4 

5 6 . 6 

1 0 1 . 0 

acuminatus 

s r 

0 . 5 7 

0 . 8 0 

0 . 7 8 

0 . 8 9 

0 . 9 9 

-

2 . 1 

3 . 3 

2 . 7 

3 . 7 

5 . 9 

c 

+ 

± 

± 

± 

+ 

-
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0 

0 

0 

0 

1 

2 

2 

3 

3 

H. 

/xM 

0 . 0 

1 4 . 4 

2 2 . 4 

4 0 . 4 

7 2 . 8 

1 3 1 . 0 

pauciannulatus 

s r 

0 . 5 0 

0 . 6 5 

0 . 7 3 

0 . 5 5 

0 . 5 6 

0 . 6 5 

2 . 2 

3 . 5 

5 . 3 

2 . 6 

1 . 7 

3 . 3 

c 

± 0 

± 0 

+ 0 

± 0 

± 0 

± o 

2 

3 

3 

1 

4 

5 
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CHANGE IN tr 

CHANGE IN FITNESS 
100 130 

uJvlCu 

Figure 5. Plasticity-to-fitness relationship for copper and the length of the reproductive period (L) for P. 

acuminatus (PI) and H. pauciannulatus (He). The left-hand side of the graph shows the relationship between a 

proportional decrease in L and impairment of fitness. The right-hand side of the graph shows the plasticity of L 

to copper for P. acuminatus (PI) and H. pauciannulatus (He). 

RELATING PLASTICITY OF t, TO FITNESS 

To compare the distinct plastic responses between the different nematode species in the 

most sensitive trait for both species, figure 5 shows the plasticity-to-fitness relationships 

for the length of the reproductive period t,.. Fitness in H. pauciannulatus was stronger 

related to changes in t, than in P. acuminatus. A 45% reduction in t, did not influence 

fitness in P. acuminatus whereas fitness was impaired with 13% in H. pauciannulatus. 

From a toxicological point of view P. acuminatus was more sensitive to copper-induced 

changes in t, than H. pauciannulatus, since a steep concentration-response relationship 

was found at relatively low concentration levels (right-hand side of Fig. 5). However, 

although copper affected t, stronger in P. acuminatus (60% reduction at 35 jtM) than in 
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H. pauciannulatus (10% reduction at 35 /*M) both reductions resulted in approx. 2% 

fitness reduction. Hence small effects on t, in H. pauciannulatus had the same impact on 

fitness than a large effect in P. acuminatus. 

6.4 DISCUSSION 

This chapter underlines the importance of a plasticity-to-fitness analysis for assessing the 

impact of toxicants on fitness in species with divergent life-histories. These findings are 

in agreement with the theoretical explorations in Chapter 2, where it was illustrated that 

the impact of toxicants on fitness was not linearly related with the reaction norms for 

different traits and that the relationship between reaction norms and changes in fitness 

depended on the life-history strategy. By conceiving the concentration-respons relationship 

as a plastic response to stress it was shown in this chapter that for P. acuminatus the most 

sensitive trait t, did not influence fitness below 45% reduction. The most sensitive trait in 

H. pauciannulatus was also t, but, in contrast to P. acuminatus, fitness was influenced 

stronger. To quantify these discrepancies in the relationships between plasticity to 

toxicants and fitness impairment, the term '0% toxic elasticity concentration (TEC)' is 

introduced, denoting the maximum concentration of a toxicant leading to a significant 

effect on a particular trait but which does not influence fitness i.e. 0% fitness impairment. 

Thus, a TECtr = 25 /nM was found for i, for P. acuminatus and TECtr = 0 for H. 

pauciannulatus. TEC facilitates the identification of ecotoxicologically important traits 

from a life-history perspective, since it quantifies the relationship of the classic 

concentration-response curve for various traits to fitness. The proposed toxic elasticity 

concept follows the rationale of the projection matrix approach for conducting 

perturbation analysis of population growth rates (Van Groenendael et al. 1989). The 

analysis involved the estimation of proportional elasticities directly from the projection 

matrix entries which represent coefficients of life-cycle traits. The proportional elasticities 

have often been estimated using mathematical perturbation models, however, to my 

knowledge the application to assess 0% toxic elasticity concentrations is unique. 

96 



Comparing life-history strategies 

It appeared that life-cycle traits were more plastic to copper in P. acuminatus than H. 

pauciannulatus. In addition, the juvenile survival and period, daily reproduction and the 

reproductive period were all more sensitive in P. acuminatus than in H. pauciannulatus. 

However, at low copper levels P. acuminatus was able to increase fitness due to hormesis 

i.e. increase in juvenile survival, reproductive period and LT50, and a decrease in juvenile 

period. Although the survival over the reproductive period sr in P. acuminatus increased 

from 0.57 in the control to almost 1 at the highest concentration, fitness was still 

impaired at this level. Hence, P. acuminatus was not able to maintain fitness by having a 

plasticity in various traits as was found for cadmium (Chapter 5). 

The decrease of 28% fitness reduction in H. pauciannulatus (0.41 day"1 to 0.29 day"1 at 

the highest concentration of 131 /*M) can be largely explained by the 41% reduction in t, 

(from 40.9 in the control to 24.2 at 131 /*M, see Fig. 2b) which resulted in a fitness 

impairment of 10% (Fig. 5). The other 18% fitness reduction can be attributed to 

impairment in the other life-cycle traits. Clearly there appeared to be no adaptive 

plasticity in traits at these concentration levels as was found for cadmium in P. 

acuminatus (Chapter 5), where plasticity resulted in constant fitness. 

The interspecific discrepancies in life-cycle responses may be explained by means of 

new insights into the theory on the evolution of generalists and specialists (Van Tienderen 

1991). This theory states that in a defined environment with two distinct habitat qualities, 

rigid reaction norms found for traits in generalists will favour selection for stasis, i.e. 

homeostatic reactions. This may occur in organisms which regulate their body 

temperature at a constant level in response to fluctuating ambient temperatures or, for 

instance, in organisms which regulate copper metabolism during exposure to a range of 

copper environments. P. acuminatus showed a large phenotypic variation in response to 

copper in contrast to H. pauciannulatus, where traits were relatively slightly impaired. 

These results may be explained by assuming H. pauciannulatus to be less susceptible to 

copper stress due to physiological mechanisms involved in copper regulation. In this 

view, H. pauciannulatus is a generalist to copper environments with aplastic traits 

whereas P. acuminatus is a specialist with a plastic response to copper. The assumption 

that heavy metals may not have entered the body of H. pauciannulatus and consequently 
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may not exert any effects can be refuted on the basis of previous work on the 

accumulation of metals in various nematode species (Howell 1983; Popham and Webster 

1979). 

Large differences were demonstrated in the response of traits to copper in two nematode 

species with divergent life-history strategies. Quantitative evaluation of the life-cycles 

provided insight into the subtle interchanges among the reproductive period and fitness 

and it was illustrated by figure 5 that outcomes can be non-intuitive thus underlining the 

theoretical considerations presented in Chapter 2. In contrast to the results on toxicity of 

copper to single traits it was found that fitness in H. pauciannulatus was more susceptible 

to changes in t, than in P. acuminatus. These findings indicate that the impact of copper 

on fitness depends on the interchange and connections between various life-cycle traits. 

Only few papers have compared differences in susceptibility of fitness to toxic stress 

from a life-history perspective. In a comparative study of sensitivity of soil organisms to 

toxicants it was argued that the ratio between LC50 and the No-Observed-Effect-

Concentration for reproduction was important for population response to toxic stress 

(Crommentuijn et al. in press). These results point out that the distance between reaction 

norms for survival and reproduction may offer potential for the evaluation of toxic insults 

on organisms. Survival over the reproductive period increased when most other traits, 

including reproduction, decreased in P. acuminatus leading to low fitness values. Hence 

there may be a cost of reproduction favoring survival over the reproductive period. Both 

these traits and fitness were less sensitive in H. pauciannulatus. These outcomes agree 

with Van Straalen et al. (1989) who reported that as a result of differing physiological 

responses in soil arthropods, differences in population growth rates were observed. 

The present chapter exemplifies that the effect of toxicants on fitness in species with 

divergent life-history strategies depends on the plasticity-to-fitness relationships. By 

regarding the concentration-response relationship as a plastic response to stress, we 

obtained insight into the underlying mechanisms of fitness impairment. 
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SUMMARY AND ECOTOXICOLOGICAL 

IMPLICATIONS 

SUMMARY 

A prevailing view in ecotoxicology is that toxicants affect organisms by impairing life-

cycle traits that are most sensitive to these toxicants, a concept also adopted by national 

and international legislative authorities for deriving safe standards for contaminants in soil 

and water. For example, a classic approach in toxicity testing is to quantify juvenile 

survival or reproduction, since these are often known to be the most sensitive traits with 

respect to toxicants. However, organisms can tolerate stressors such as toxicants by 

having plastic life-cycle traits thus enabling them to maintain population growth rate or 

fitness. 

The main objective was to test the classic premise on the most sensitive life-cycle trait 

by investigating toxicant-induced plasticity in life-cycle traits and fitness alterations. 

Using theoretical life-cycle models, Chapter 2 showed that the impact of toxicants on 

fitness was determined by its relationship with plastic responses in life-cycle traits and the 

life-history strategy. These results were compared with experimental observations using 

nematodes as a case study. The nematode Plectus acuminatus was selected for chronic 

life-cycle investigations in Chapter 3 on the basis of its moderate sensitivity to cadmium 

and pentachlorophenol. Chapter 4 presented a mathematical life-cycle model for P. 

acuminatus to estimate fitness reductions from plastic responses in life-cycle traits to 

cadmium. This model was used in Chapter 5 to evaluate the impact of critical effect 

concentrations (EC20) for cadmium and pentachlorophenol on fitness. It was demonstrated 

that fitness in P. acuminatus was not determined by the most sensitive life-cycle trait. 

Moreover, less sensitive traits appeared to have a stronger impact on fitness. In addition it 

was found that P. acuminatus was able to maintain fitness due to plasticity in life-cyle 

traits when exposed to cadmium. Finally Chapter 6 explored the effect of copper on 

fitness in two nematode species with divergent life-history strategies (P. acuminatus and 

Heterocephalobus pauciannulatus). From a toxicological point of view the reproductive 
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period in P. acuminatus was 6 times more sensitive to copper than in H. pauciannulatus. 

However, the relationship between plasticity in the reproductive period and fitness showed 

that fitness was equally reduced in both species. 

The present findings agree with the theoretical results obtained in Chapter 2 and it can 

be concluded that the impact of toxicants on fitness depends on: 1) the plasticity of life-

cycle traits to toxicants, 2) the relationship between the plastic responses in life-cycle 

traits to fitness and 3) the life-history strategy of the organism. These conclusions do not 

support the general premise in ecotoxicology that the impact of toxicants on organisms is 

determined by the most sensitive life-cycle trait. It is therefore advocated that future 

ecotoxicological research with other organisms should put more emphasis on the ability of 

species to adapt to toxic stress by having plastic life-cycle traits in order to enhance the 

predictive value of toxicity tests which provide the basis for ecological risk assessment 

procedures. 

ECOTOXICOLOGICAL IMPLICATIONS 

The present thesis outlines the importance of investigating the plasticity in life-cycle traits 

to toxic stress for the effect assessment of toxicants on organisms. It appeared that fitness 

reductions were determined by the relationship with plastic responses in life-cycle traits 

rather than by critical effect concentrations of toxicants. This section briefly describes the 

implications for ecotoxicological research by using plastic responses as a tool for 

predictive ecological effect assessment of toxicants. 

The impact of toxicants on organisms can be predicted from the relationship between 

two plastic responses which is defined as the plastic trajectory. Plastic trajectories mirror 

the i) plasticity in life-cycle traits and ii) a strategy traject under toxic stress conditions 

(after Stearns 1983). To illustrate this, life-cycle options under toxic stress will be 

explored by constructing plastic trajectories for age and size at maturity in the springtail 

Folsomia Candida exposed to triphenyltin-hydroxide (TPT) and chloropyrifos (CPF) based 

on complete life-cycle data from Crommentuijn et al. (in press) (Fig. 1). 
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Figure 1. Plastic trajectories for age and weight at maturity to TPT ( + ) and CPF ( O ) in F. Candida (The 

increasing concentrations are denoted by nr. 1-6). 

The trajectory to TPT is L-shaped and shows that in F. Candida age at maturity was only 

slightly changed when TPT concentrations were low, (concentrations 1-4). Contrasting 

however, at high TPT concentrations, (concentrations 5-6), maturation tended to start at a 

fixed size, changing only age at maturity. In the case of CPF, the trajectory for age and 

size at maturity is keel-shaped. On the left-hand side of the trajectory, (concentration 1 

and 2), weight at maturity decreased and age at maturity increased. On the right-hand side 

of the trajectory, (concentrations 3-6), F. Candida delayed maturity to such an extent that 

size at maturity was increased. 

These findings agree with the general models of Stearns and Koella (1986) on the 

prediction of optimal reaction norms to food quality and temperature (results not shown). 

It may be concluded that trajectories to toxicants follow the same rules as dictated by life-

history theory indicating that organisms respond to these stressors in the same way as 

they respond to other ambient factors. If we are able to construct graphs of trajectories 

relating plasticity in life-cycle traits for different organisms under different toxic stress 

regimes we are in a position to predict the impact of toxicants on life-cycle attributes and 

patterns of susceptibility of strategies to these stressors. 
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SAMENVATTING EN ECOTOXICOLOGISCHE 

IMPLICATIES 

SAMENVATTING 

Binnen de ecotoxicologie wordt algemeen aangenomen dat de invloed van toxische stoffen 

op organismen bepaald wordt door de meest gevoelige levenscyclusonderdelen. Deze 

aanname vormt ook de basis voor de ecotoxicologische risico-analysemethoden van 

stoffen in bodem en water zoals die nationaal en internationaal geaccepteerd zijn. Een 

klassieke benadering in toxiciteitstoetsen is bijvoorbeeld het vaststellen van effecten op 

juveniele overleving en reproductie omdat die vaak het meest gevoelig zijn. Organismen 

zijn evenwel in staat om stressfactoren, zoals toxische stoffen, te weerstaan d.m.v. 

plasticiteit in levenscyclusonderdelen teneinde de populatiegroei of fitness constant te 

houden. 

Het doel van dit onderzoek was om de klassieke aanname van de gevoeligste variabele 

te toetsen door het bestuderen van plasticiteit in levenscyclusonderdelen en fitnessreductie 

o.i.v. toxische stress. 

Analyse van theoretische levenscycli toonde aan dat het effect op fitness niet bepaald 

wordt door de gevoeligheid van levenscyclusonderdelen, maar door de relatie met de 

plasticiteit van de verschillende levenscyclusonderdelen voor toxische stress en de 

levenscyclusstrategie. Om deze theoretische bevindingen te kunnen staven met empirische 

gegevens, werd de relatie tussen plasticiteit voor toxische stoffen en fitness in vrijlevende 

nematoden onderzocht. Hiertoe is een demografisch model ontwikkeld waarmee de 

invloed van veranderingen door cadmium in de levenscyclusonderdelen op fitness 

vastgesteld kan worden. Het model werd geparametriseerd door data in te voeren 

verkregen uit complete levenscyclus-experimenten en gebruikt om kritische effect 

concentraties voor cadmium en pentachloorfenol op fitness te evalueren. Hieruit bleek dat 

het effect op fitness niet wordt bepaald door het meest gevoelige levenscyclusonderdeel 

maar door minder gevoelige onderdelen. Dit was sterk afhankelijk van de relatie tussen 

plasticiteit en fitness. Vervolgens werd het belang van plasticiteit voor het effect van 
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koper op fitness onderzocht in twee nematodensoorten (Plectus acuminatus en 

Heterocephalobus pauciannulatus) met een verschillende levenscyclusstrategie. De 

reproductieve periode bleek 6 keer gevoeliger voor koper in P. acuminatus dan in H. 

pauciannulatus. Fitness werd evenwel voor beide soorten in gelijke mate gereduceerd. 

Geconcludeerd kan worden dat de invloed van toxische stoffen op fitness afhankelijk is 

van: 1) de plasticiteit van levenscyclusonderdelen voor toxische stress, 2) de relatie tussen 

de plastische respons en fitness en 3) de levenscyclusstrategie. 

Deze conclusies geven aan dat de huidige manier van denken binnen de ecotoxicologie, 

namelijk dat gevoelige levenscyclusonderdelen ecologisch relevant zijn, niet gesteund 

wordt door empirisch onderzoek en de levensgeschiedenistheorie. Tevens bleek dat 

organismen in staat kunnen zijn fitness te handhaven d.m.v. plasticiteit ongeacht de 

afname van bepaalde levenscyclusonderdelen. Inzicht in deze plasticiteit draagt bij tot een 

realistische evaluatie van de effectbeoordeling vanuit de levensgeschiedenistheorie. 

Aanbevolen wordt om in toekomstig onderzoek met andere organismen de nadruk te 

leggen op de plasticiteit van levenscyclusonderdelen voor chemische stress. Dit verhoogt 

de voorspellende waarde van toxiciteitstoetsen die de basis vormen voor de huidige 

ecologische risico-analyse modellen. 

ECOTOXICOLOGISCHE IMPLICATIES 

Dit proefschrift toont het belang aan van plasticiteit voor de effectbeoordeling van stoffen 

op organismen. De afname van fitness bleek meer af te hangen van de relatie met 

plasticiteit in de verschillende levenscyclusonderdelen dan van kritische effect niveau's. 

Deze laatste sectie is gebaseerd op vervolgonderzoek en beschrijft in het kort de 

implicaties voor ecotoxicologisch onderzoek door gebruik te maken van de plastische 

respons op toxische stress als instrument voor de ecologische effectbeoordeling van 

stoffen. 

De invloed van stoffen op organismen kan voorspeld worden m.b.v. de relatie tussen de 

plastische respons van twee verschillende levenscyclusonderdelen, ook wel plastic traject 
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genoemd. Plastische trajecten weerspiegelen i) de plasticiteit en ii) een strategisch traject 

onder invloed van toxische stress (naar Steams 1983). Dit wordt gei'llustreerd aan de hand 

van plastische trajecten voor leeftijd en gewicht bij volwassenheid in de springstaart 

Folsomia Candida blootgesteld aan tri-fenyltinhydroxide (TPT) en chloorpyrifos (CPF) 

(Fig. 1). De data hiervoor zijn verkregen uit de literatuur van Crommentuijn et al. (in 

press). Het L-vormig traject voor TPT laat zien dat de leeftijd bij volwassenheid enigszins 

hoger wordt in F. Candida bij een lager gewicht, dus bij lage TPT concentraties (1-4). Bij 

hoge TPT concentraties (5-6) wordt de volwassenheid later bereikt bij een vast gewicht. 

< 
s 
i-

< 
X 
u 
Ul 

210 

190 

170 

150 

130 

110 

90 

70 

+ 1 

" \ 

\ 

4+, b ' 

" \ 
5 + s 

4 
0 - " " 

-°3 

i 

-~~~ 

\ 6 
+ 

5 ,--'''' 

' 

6 „ 

i 

15 25 

AGE AT MATURITY 

30 

Figuur 1. Plastische trajecten voor leeftijd en gewicht bij volwassenheid voor F. Candida blootgesteld aan TPT 

( "f" ) en CPF ( O ). De nrs. 1-6 geven toenemende concentraties weer. 

Bij blootstelling aan CPF blijkt het traject een kiel-vorm te hebben. Aan de linkerkant van 

het traject, (concentratie 1 en 2), neemt het gewicht bij volwassenheid af terwijl de 

leeftijd bij volwassenheid toeneemt. Aan de rechterkant van het traject, (concentratie 3-6), 

vertraagt F. Candida het volwassen worden zodanig dat het gewicht bij volwassenheid 

toeneemt. 

Deze resultaten komen goed overeen met de theoretische voorspellingen van Stearns en 

Koella (1986) omtrent trajecten voor voedselkwaliteit en temperatuur. Het blijkt dus dat 
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plastische trajecten voor toxische stoffen sterk overeenkomen met trajecten die voorspelt 

worden door de levensgeschiedenistheorie. Dit impliceert dat organismen op gelijke wijze 

op toxische stress reageren als op algemene stressfactoren. Het opstellen van plastische 

trajecten voor verschillende organismen en stoffen biedt de mogelijkheid om 

voorspellingen te doen omtrent de gevoeligheid van strategieen voor toxische stress. Dit 

kan leiden tot het formuleren van algemeen geldende regels voor gevoeligheid waarbij 

rekening wordt gehouden met de plasticiteit. 

LlTERATUUR 

Crommentuijn, G.H., Doodeman, C.J.A.M., Doornekamp, A., and Van Gestel, C.A.M. Life-table study with 

the springtail Folsomia Candida (Willem) exposed to cadmium, chloropyrifos and triphenyl tin hydroxide. In: 

Ecological principles for risk assessment of contaminants in soil. (Eds N.M. Van Straalen and H. Lekke), 

Chapman & Hall, London, England. In press. 

Stearns, S.C. (1983) The evolution of life-history traits in mosquitofish since their introduction to Hawaii in 

1905: rates of evolution, heritabilities, and developmental plasticity. Amer. Zool. 23, 65-75. 

Stearns, S.C. and Koella, J. (1986) The evolution of phenotypic plasticity in life-history traits: predictions of 

reaction norms for age and size at maturity. Evolution 40, 893-913. 

108 



Woord van Dank 

De voltooiing van dit proefschrift biedt mij de gelegenheid om een aantal personen voor 

het voetlicht te brengen die mijn levenspad kruisten en positief bei'nvloedden. Zonder de 

gemotiveerde inzet en het doorzettingsvermogen van Paul van Koert, Joost Riksen en 

Marloes Busschers had ik het karwei nog lang niet geklaard. Veel dank ben ik ook 

verschuldigd aan Jaap Bakker. De ontspannen en geduldige wijze waarop jij me in het 

begin van mijn tijd bij Nematologie begeleidde heeft z'n doel volgens mij niet gemist en 

al de nodige vruchten afgeworpen. Later, als intellectuele coach, stuurde je op afstand 

maar gaf mij toch de ruimte om ideeen te genereren en uit te werken. 

Nico van Straalen neemt een speciale plaats in binnen de groep van mensen die met me 

mee hebben gedacht. Je was altijd bereid om weer eens naar me te luisteren op die 

momenten dat ik een vakkundig klankbord nodig had. Jan Koeman wil ik bedanken voor 

zijn bereidheid om pro Deo als promotor op te treden, wat ertoe heeft bijgedragen dat ik 

mijn proefschrift binnen afzienbare tijd heb kunnen afronden. De besprekingen die we 

hadden heb ik als bijzonder plezierig en zinvol ervaren. 

Fred Gommers was zijdelings betrokken bij mijn onderzoek. Toch wil ik je speciaal 

bedanken voor de scherm- en ontmaskeringslessen betreffende de politieke arena van de 

Landbouwuniversiteit. Daar kan geen officiele cursus tegenop. Voorts wil ik Gerard 

Korthals noemen. Met nimmer afnemend enthousiasme heb je meegedacht om altijd weer 

gerichte en opbouwende kritiek te leveren. Tom Bongers was altijd bereid om suggesties 

en tips te leveren over de praktische toepassingen van nematoden in het milieuonderzoek. 

Tevens dank ik Kees van Gestel en Jos Notenboom voor de bereidheid om mijn monsters 

te analyseren op zware metalen bij het RIVM. Verder dank ik iedereen van de vakgroep 

Nematologie voor de zeer plezierige en ontspannen werksfeer van de afgelopen jaren. 

Tot slot wil ik me richten tot Renate. Jouw bijdrage was niet altijd zichtbaar maar wel 

van cruciaal belang voor het welslagen van dit proefschrift. 

Jan Kammenga 

7 augustus 1995, Wageningen. 

110 



Publications 

Everts J.W., Willemsen I., Stulp M., Simons L., Aukema B., Kammenga J.E. (1991) 

The toxic effect of deltamethrin on Linyphiid and Erigonid spiders in connection with 

ambient temperature, humidity and predation. Arch. Environ. Contain. Toxicol. 20:20-

24. 

Kammenga J.E., Van Gestel C.A.M., Bakker J. (1994) Patterns of sensitivity to cadmium 

and pentachlorophenol among nematode species from different taxonomic and ecological 

groups. Arch. Environ. Contain. Toxicol. 27:88-94. 

Kammenga J.E., Schobben H.P.M. (1995) Ecologische concepten gebaseerd op soort-

interacties en biologische variatie bieden perspectief voor de ecotoxicologie. Milieu 2:49-

55. 

Kammenga J.E., Korthals G.W., Bongers A.M.T., Bakker J. (1995) Reaction norms for 

life-history traits as the basis for the evaluation of critical effect levels of toxicants. In: 

Ecological principles for risk assessment of contaminants in soil. (Van Straalen N.M., 

Lakke H. eds.) (in press). 

Kammenga J.E., Busschers M., Van Straalen N.M., Jepson P.C., Bakker J. Stress 

induced fitness reduction is not determined by the most sensitive life-cycle trait. Funct. 

Ecol. (in press). 

Kammenga J.E., Van Koert P.H.G., Riksen J.A.G., Korthals G.W. A toxicity test in 

artificial soil based on the life-history strategy of the nematode Plectus acuminatus. 

Environ. Toxicol. Chem. (in press). 

Korthals G.W., Kammenga J.E., Lexmond T., Bongers T. Effects of copper and pH on 

the nematode community in an agroecosystem. Environ. Toxicol. Chem. (in press). 

Kammenga J.E., Berger R., Dallinger R., Donker M.H., Gibb J.O.G., Kohler H.-R., 

Simonsen V., Van Gestel C.A.M., Weeks J.M. Development of biochemical fingerprint 

techniques as tools for the risk assessment of toxicants in terrestrial invertebrates (in 

press). 

I l l 



Curriculum vitae 

Jan Edward Kammenga werd geboren op 3 november 1961 te Deventer. In 1982 behaalde 

hij het VWO diploma te Deventer. Na het voldoen van de militaire dienst bij de 

Koninklijke Marine begon hij in 1984 aan de studie Milieuhygiene die hij in 1989 

voltooide met de specialisaties Toxicologie en Biochemie. Eveneens in 1989 begon hij als 

assistent-in-opleiding bij de vakgroep Nematologie aan de Landbouwuniversiteit in 

Wageningen. In 1991 werd hij toegevoegd onderzoeker om in 1992 als universitair docent 

in vaste dienst te treden bij dezelfde vakgroep. De resultaten verkregen tijdens deze 

periode zijn deels vastgelegd in dit proefschrift. 

Momenteel geeft hij leiding aan het ecotoxicologisch onderzoek en onderwijs van de 

vakgroep Nematologie en coordineert hij een aantal internationale EG-projecten in 

samenwerking met verschillende onderzoeksgroepen. 

112 


