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expressed by: ,-. ,.· 

,. ' ti· 
. ' 2·• '• '2'• 

kh = V h X + 
P r 

(2) 

Fig. 1. Shape of the groundwater level in case of a mainly horizon

tal steady flow t01•ards two parallel fully penetrating 

drains in an aquifer of homogeneous permeability 

1 ellipse 2 = straight line 3 = hyperbola 

4 = two intersecting straight lines 

In case the vertical axis of either ellipse or hyperbola is 

placed at x= 0, the integration constant a
1 

vanishes. Besides, in 

stead of a , the elevation of the phreatic surface h(O) in the middle 
0 

of the field may be used as a parameter. 

2 
V X 

phr 
k 

(3) 

If there is a fixed level of the water in the open conduits, but 

vphr is gradually increasing, finally h(O) will be located in the 

impermeable base and consequently the hyperbola will be degenerated 

into a pair of intersecting straight lines. The theoretical errors 

in the approximative equations (2) and (3) are very small 

(ERNST, 1963; fig. 1). 
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3. SOLUTION OF EQUATION (I) IN CASE OF A CONSTANT FLUX THROUGH THE 

PHREATIC SURFACE HITHOUT NEGLEGT OF THE RADIAL FLOW 

For those cases in which the radial flow cannot be neglected, 

two methods have been developed in the Netherlands. The first to he 

mentioned is the approach according to Hooghoudt in which the origi

nal shape of the equation (3), already known much earlier, may be 

recognized (HOOGHOUDT, 1940). 

(4) 

or: 

4k(h - h ) 2 + 8kd(h - h ) m o m o -v =----'~-~--..,,..----'"---::... 
phr L2 

(5) 

h = elevation of the phreatic surface m in the middle of the field 

h = level of the water in 
0 

the open condui ts, in the drainage tubes, 

or in the infiltration tubes 

d = thickness of the 'equivalent layer 1 (fig. 2) 

L = spacing of the parallel open conduits 

-
)é':':'::'--- 4-IL":'::::,. ~ 

Do 
:· H. 
-- d 

Fig. 2a. Actual situation with 
minimal thickness D 

Fig. 2b. Imaginary situation with 
fully penetrating drains • 
Inflow, outflow, the poten
tial difference óh and the 
drainspacing L are equal to 
what is supposed in fig. 2a. 
Consequently the ~quivalent 
layer' possesses a thick
ness d tvhich is smaller 
than D in fig. 2a 

. f 0 of the aqu1 er near 
the open conduit and 
with a potential dif
ference óh = h - h 
over the phrea~ic 0 

surface 

0 
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Another formula for groundwater flow between parallel open con

duits has been derived by introducing the conception 'radial resis

tace1, or more precisely: 'the extra resistance within the area with 

radial flow' (see fig. 3 and ERNST, 1956, 1962): 

h 
0 

D (mean) thickness of 

!l radial resistance 

0( 

D 

q 

h - h 
o m 

- h V 2 m = phr(.!:_) 
D Bk D 

aquifer 

(I + 8kD!l) 
L 

horizontal 
phreatic surface 

·----
q =0 ____ .,... 

Fig. 3. Onesided flow towards a long straight drain within an 

aquifer of homogeneons permeability, Near the drain 

the radial component of the flow requires a potential 

difference ilh rad 
ilh = h' - h = rad 0 0 

q!l 

q = flow from lefthand side towards drain = kD tg a 

4 

(6) 

(7) 



If the soil is homogeneously permeable and there are no large 

differences in elevation of the phreatic surface the next formula 

may be applied for a calculation of the radial resistance: 

n l 
= rrk 

D 
0 ln

B 
0 

D = thickness of aquifer near the open conduit 
0 

B = (half-circular) wetted perimeter of the open conduit 
0 

(8) 

From (5) and (6) and again for small (h - h ) so that D' ~ D the 
m o o 

following relation between d and n may be derived: 

d L 
- = 
D L + 8kDQ 

(8) 

D in fomula (6) has not necessarily to be considered as a con

stant, and Q also may be varying in some way, The radial resistance 

has primarily to be considered dependent on 

sents the flow intensity through the bottorn 

q0/kB , where q repre-
. 0 0 

of the open conduit 

(ERNST, 1962, fig. 28c), The variations in D and n may be neglected 

for reasans of simplification, and these quantities in (6) considered 

constant, the fomula represents a linear relation between h - h 
o m 

and vphr' 

Both the 'linear' relation according to formula (6) and the 

parabolaic relation according to formula (5) are shown in fig. 4. It 

is clear, that this parabolaic relation is also not completely cor-

reet; for in case of a very deep watertable 

lol< h
0

, the maximum 

will happen only in 

value of v h cannot be 
P r 

case hm will be located 

with h at a depth d he
m 

obtained yet, since this 

in the impemeable base, 

The correct relation is indicated in fig. 4 by a dotted line. It 

is quite conceivable in principle that this relation may be represen

ted by formulae (6) or (7), provided D (mean value) and nare depen

ding correctly on v h and possibly on other quantities. In case homo-
P r 
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geneously permeable soils are concerned a reasonable approximation 

may be obtained by ~<riting (7) for positive v h as follo~<s: P r 

h - h 
0 m 

D 

D = mean value of the 

Q radial resistance 
0 

V {Lr 8kD Q 
= phr _ (I + 0 0) 

8k - L D 

thickness of the layer D 
0 

in case q + 0 
0 

Do 

parabola 
acc. to eq.(10),(11) 

straight llne 
acc. to eq.(6) 

(I 0) 

.!_(h 
2 0 

- h ) m 

Fig. 4. Graphical representation of the relation bet<~een h and v h m p r 

6 

for steady states ~<ith v h constant for all x 
P r 

h = level of the phreatic surface above the impermeable 
m 

V phr 

base and mid~<ay the drains 

flux through the phreatic surface (> 0 for up~<ard 

direct ion) 

h = level of open ~<ater 
0 



With the aid of (9) and (10), (5) can also be re~Vritten, ~Vhich 

results in: 

8kd (h - h ) 
o m 

d 
-4kÏÏ(h

0 
0 

V =--------;;:-----"'-----
phr L2 

( 11) 

Summarizing, it may be noted that for small positive and negative 

values of v h , the linear relation according to formula (6) will 
P r 

yield a good approximation. The parabolaic relation according to 

formula (S) can be recommended for all negative values 

For all positive values (provided these will not be so 

of v h p r 
s trongly 

positive as to make the phreatic surface reach the impermeable base 

over two parallel lines on both sicles of x = 0) a good result may be 

expected by means of a modified parabola according to formula (11). 

4. SUB-IRRIGATION FORMULAE IN CASE v h DEPENDS ON THE DEPTH OF THE 
p r 

PHREATIC LEVEL BELOW SOIL SURFACE OR BELOW BOTTOM OF ROOT ZONE 

With a variable v h dependent on the gr·oundwater level, the 
P r 

differential equation (I) will be particularly manageable in case 

the variation in the thickness of the aquifer will be small. In that 

case a constant value D can betaken and (I) passes into: 

V phr 
( 12) 

In the righthand partof (12) an expression has to be substituted 

indicating in which way vphr is depending on h. Because bere again 

equilibrium states are concerned, the vertical groundwater flow in 

the unsaturated zone from the phreatic surface upward to the lower 

side of the root zone will have a constant intensity independent of 

z. Fr om this i t follo,vs immèdiately that very deep groundwater levels 

will be connected with very small positive values of v h • Very large 
P r 
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values of vphr can be expected in case the phreatic surface will be 

rather close to the bottorn of the root zone and a sufficient degree 

of desiccation is maintained in the root zone. Actually, suchlike 

conditions are not likely to occur,since shallow groundwater levels 

will make the topsoil remain rather moist, so that the generated 

upward flow has to suffice only a bridging of the gap between the 

mean values of precipitation P and potential evaporation E • In the 
p 

first approxirnation the relation between v h and h can be assurned 
P r 

to be as shown schernatically in fig. Sa and b. 

vz (mm/doy) 

2 3 

Ep-P :1 mm/doy ............. 2mm/doy 

- 50 -----zd 

-100 

-150 

-200 

-250 

h-z95 (cm) 

zd=bottom of root zone 

'I' (z) = moisture suction at 
depth z 

-odzd-h) -c<<p(zd) 
v =k e . -e 

z 1-e-o<.(zd-h) 

with <p(zd) = 104 cm 

k0 = 1cm/doy 

c< :0.03cm-1 

see 
RIJTEMA 
1969 

Fig. Sa. Graphical representation of the relation between the upward 

vertical flow v in the unsaturated zone and the depth 
z 

8 

h - z of the phreatic surface. Because of the steady gs 
state an equal value for vertical flow is valid for any 

value of z and consequently v = v h . 
z p r 



---------------zo 

hp -------------------- ( 
I 
I 

0 I 
I 
I 
I 
I 
I 

.... ~ 
...... ~-........ 

V phr 

h- z
95 hp=groundwater level above which is valid: 

0 

I Vphr= Ep -P 

Fig. Sb. Simplification of fig. Sa 

In order to obtain a simple solution of equation (12) fig. Sa 

has to be replaced by fig. Sb. This implies the assumption that in 

case of shallow groundwater levels, the upward flow will be equal 

to the difference between potential evaporation E and precipitation 
p 

P. The potential evaporation E 
p 

is often derived from the evapora-

tion of open water by adding some correction factor 

deepter groundwater 

hyperbolic. 

levels the relation may assumed 

(E = gE ) • 
p 0 

to be about 

In case hx is understood to be the depth of the groundwater 

level with respect to an arbitrary level z and consequently: 
0 

For 

h" = z - h 
0 

( 13) 

a siTI\ple first approximation can be obtained by means of .the next 

formula: 

a 
V =--

phr h" 
(14) 
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The parameters z
0 

and a are not yet determined and this makes 

it possible to obtain agreement in two points of the equation (14) 

and the actual relation between v h and h. P r 
Substitution of (13) and (14) into (12) yields the next equation: 

a -- (I 5) 

The next formula (16) is the salution of the differential equation 

(15), The value hx belengs to x~ 0 and h~ belongs to +x.: m 1 - 1 

hl. ra .. 
h* Villî 

~ r ,- ," ,, ·l- ,. ", ,~, '"' 
m 

0 

By means of differentiation of (16) an expression is found for the 

intensity qi of the horizontal flow at the coordinate xi: 

For fixed 

be found with 

* q ~ kD .i!!_ " dx 

" + 2kDa 
h* 
m ln--

h* 
i 

x . 
values of hm and xi' the eerreponding value 

the aid of (16), Substitution of this value 

(I 7) 

(18) 

x 
of hi can 
in (18) then 

yields aresult for q(xi)' A graphical representation of the formulae 

(16) and (18) is given in fig. 6. 
A second empirical formula accounting for the relation between 

vphr and hx, that offers the possibility of a simple solution, is as 

fellows: 
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( 19) 

Here again the true relation and the approximation by eq. (19) 

may agree in 2 points to be chosen freely because of the two degrees 

of freedom: 

en 

• hm 1 --:-!!' 
h; 

0.1 0.3 1 2 3 5 10 20 30 50 100 

~'o I LIJ lL! ,,, 
0 

1---- Vphr =h* I-- V kDo h(x) h(xi) 0 >O equotion (18) ' 
~ ._{-q(Xj) 

; 

/ 

I ' / 
' ' --

/ 
~x i x:o x, / 

/ 

I I I 
/ 

' 
x 1>o q{x1)<o ' 

' 

3.0 

2.5 

2.0 

/ 

' 
/ 

1.5 
/ 

Xi V?f-' 
-- hrtkD / -- equat!on{16) ' ; 

I I I I 

' I I 1_1_ 
; !---1---

~ 
equot!on (18) ;::. 1-" equotlon(16) 

-" 
.;::::.- ---~ 

"" - ~i-"" 

1.0 

0.5 

0 
0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 

Fig. 6. Graphical representation of formulae (16) and (18), 

h" 
Along the horizontal axis.....!!!.- I has been plotted with 

h~ 
1 

2 dimensionlesss scales for the upper and lower curves 

respectively. 

Along the vertical axis there is only I dimensionless scale 

- q(xi) 
bath for -----'= 1 a "·A and- -

h" kD 
m 

IJ 
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or: 

Substitution of (13) and (19) in (12) <1ill yield: 

- b e 
1 

The salution of differential equation (20): 

I~ ln cos(xi ZkDb
2 

e 

h" 
m 

2b2 
e arccos e 

For the horizontal flow intensity is found: 

q(+ x.) 
- 1 

" = kD(dh ) 
dx ±X· 

1 

or, after (21b) has been substituted in (22a): 

q(+ x.) 
- 1 

= + 

h':" 
- ____!_ 

b2 

tg(arccos e 

h* 
- ____l!l_ 

b2 - e ) 

(20) 

(21a) 

(21b) 

) 

(22b) 

These formulae have been represented graphically in fig. 7, 8a and 8b. 

Finally, it should he remembered that formulae (14), •••• (22) 

are holding only as long as hx > hx , that is as long as, accordingto 
p 
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either (14) or (19), v h < E - P. Generally in the case hx < hx , p r p o p 
it will not be possible to indicate immediately, for instanee by 

using (16) or (21), which value of xp agrees «ith the given h; , 

" . k for h too w1ll be un no~<n yet. 
m 

Additional relations, required for that reason, can be obtained 

from the boundary zones along the open conduits according to the 

following consideration, Symmetry is supposed in the follmving, «hich 

means that there are equal given values for either the level in the 

open conduits or the inflo«. Since no radial flo« is assumed to 

exist, possible variations in the spacing bet«een the parallel 

open conduits or in the wetted perimeters will be of no significance. 

In the boundary zones (see fig. 9) the maximal value for 

v = E - P is valid, and consequently the next equations may be phr p · 
given: 

(E - P) (L - 2x ) 2 
L - 2x 

h*- h* = p p + q(- x ) (23) p 0 8kD 2kD p 

- qo = 2q(- x ) + (E - P) (L - 2x ) (24) p p p 

on the fact x whether h or q «ill be given, it is 
0 0 

Dependent 

equation (23) or eq, (24) which has to be used in order to eliminate 

the unkno~<n q(+ x ) from - p 
This leads to a relation 

Eliminstion of x can be 
p 

or (21b) in the relation 

(18) or (22) after substitution of i = p. 

in which x 
p 

effectuated 

x 
and hm appear as unkno~<ns. 

by substitution of either (16) 

that has been derived before, 

Though no fundamental difficulties are to be expected, rather 

complicated formulae are obtained, in «hich hx being the only unkno«n, 
m 

is implicitly present. 
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Fig. 7. Graphical representation for formula (21) with x. > 0 
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Fig. 8a. Graphical representation of formula (22a) with x. > 0 
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soil surface 

Fig. 9. Division of the area between two long straight fully pene

trating drains according to the depth of the phreatic sur

face below soil surface. 

For - x < x < x it holds that h < h and v h < E - P 
P P P pr P 

For x~ ± x it holds that h > h and v h ~ E - P 
P P P r p 

Some remarks concerning the notation: 

1. Flow to the right and upward flow are reckoned positive 

2. In case of drainage the outflow is indicated by a positive 

q • 
0 

In case of sub-irrigatien the inflow is indicated by a 

neg a ti ve q • 
0 

3. The arrows point into the actual direction of the flow. 

The symbol placed near an arrow sometimes bears a nega-

tive sign in order to make the 

a {posit~ve value in case the 
negat1ve 

quantity concerned to have 

{
upwards 

or downwards 

. { right arrow po1nts to the left 

For practical application the next approach might be preferable, 

especially since here the condition of symmetry is not necessary, 

At a given hx for one of the open conduits, either an estimated 
0 

value q
0 

can be. introduced for this conduit or, at a gi ven q
0 

, h~ 

may be esti.mated, 
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Substitution in (23) and (24) of the given and estimated values 

allows for the salution of q(+ x ) and L - 2x • Hhen L - 2x is 
. - p p p 

eliminated by substituting (24) into (23), a second degree equation 

remains with q(+ x ) as only unknown, yielding the following solu
- ,p 

ti on:· 

=' +" '_I · I q2 - 8kD.(E - P) (h* _: h*) 'q <t'xp)' - 2 V o . p P o (25) 

A solution of· L-2~··. is now ünmediately àbtainable by substitution 
p 

of (25) into (24). The result for q(+ x) has to be substituted in 
- p 

( 18) or in; (22b), and so .. a va1ue for. hl' ,is obtained, Fig.· 6 or fig.· . . . m 
Sb 11)aY als,o, )Je, used Jor<t\l~s ·purpose ,,. By' way• ofi formula' ( 16) or (21b) 

a value for x fellows and together 1~ith• the value ·for L~2x' already 
p p 

obtained before ,,, a.n··approximati.ve va,lue for L will be. found\ 
'· 

It is not to be expected. that at. the first try this value for the 

drainspa~ingi ~Ül b'e 's,;ffic'l~ntly similar to the actual value of L. 

In case of asynunetry, a check u pon the deviation bett~een calculated 

and given level in the sgcondJopen•<Oonduit•at.a given·spacing L will 

be .requi.r~d;,.,A. reÜeJ;a.tipn: may be, necessaty to obtain a re sult of 

, S\'ff.i.c~ent ')Cf:lJ+aCY:•., In Çase the value found for L proves to be toa 

high for instance, a lower value for either h" or q should be intro-
a o 

duced, for the neW estimation;:should. the first obtained value for L 

be too lmv, a reverse correction has to be appl;ied\ 

5. SUB-IRRIGATION FORMULAE WHEN THE FUNCTIONS FOR v FROH CHAPTER 
, •. 1 • •• ,) , _, :· .~·;: ·~'-·.u·. ··.!, , ; . .~ 1 !_ 1 !· • J'. phr 

4 ARE AGAIN VALID, HOHEVER HITHOUT NEGLEGT OF .THE RADIAL FLOH 
;•_ . ' 

•' } 11 ; 

J l ·' J 

Hhen areas with radial flow are concerned, ,the :a.pplication of 

formulae repreaenting some relation between v h and h" will give 
P r 

much more trouble. Fundamentally it is possible to solve this pro-

bl'em with 'thé aid' 'of A' diHe'ten't:i'àl 'e'q'uàti~A sfmilar to '(is)' or (20) 

by adding 'soine function 'of x to 'the dedominator in the right hand 

term of ( 15) or to the· el<ponent in the right hand term of (20). I t 

is possible, howéver to pr'everit 'complications éonnected with this 
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approach and to obtain a solution quite acceptable for practice and 

of a very good accuracy in case the areas '"ith radial flow wi11 

possess a relatively small width with regard to the total spacing. 

The principle that has already been discussed in the previous chapter 

(division of the field into a number of strips and consiclering each 

strip separately) may be applied here again. 

complete symmetry I Vphr >OI lqo <0 q,>o Qe>oj 

ho I 

h, 
I h, 

hp I hp 
I qo hm hj I 

' ' I I 
I I ' I I I I 
I I I I I I I 
I I I I I I I 

-q 1 q, qp I -qp -q, q, - I - - -I ' I I I ' I I I I I I 

' B, ' I I I B, I 

' I I I I 

--~ -~p~X:Û~Xj 
I I ;--x 1 Xp x, 

Fig. IOa. Division of the area between two partially penetrating 

drains for a case of complete symmetry \Vith V h > Q, P r 
the open Lines of symmetry are the verticals through 

I conduits (x = ! 2 L) as well as midway between these 

open conduits (x = 0) 

The "'idth of the area, "'here the flow is ·mainly radial, "'i11 be 

indicated by B
1 

(fig. IOa and b), In case the soil is homogeneously 

permeable a good approximation is obtained by taking B
1 

equal to 

t\Vice the thickness of the aquifer close to the open conduite, In 

stratified soils \Vith a much less permeable upper layer, B1 "'i11 

be approximately equal to t\Vice the thickness of this upper layer. 

In a fi rst approximation, the follo\Ving re lation (eq, 26-31) can be 

derived for strip B1 by assuming the extraction intensity vphr to be 
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constant (independent of x) and equal to the average of the actual 

extraction, 

Frovided there exists equality in flow towards bath sicles of an 

open conduit and there is no flow through the phreatic surface so 

that q = 2q 
o I 

there remains 

and v h = 0 (upper curve in centre of fig. lOb), 
P r 

only I degree of freedom (variable infl01~ q ) with a 
0 

similarity in all possible shapes of the phreatic surface. Under 

these conditions the expression given by formula (26) can be used for 

the mean height of the phreatic level in the area with mainly radial 

flow. 

The coefficient a 
1 

in this formula may be taken~ 2/3 

skew symmetry 

~ 
I -' I 

1 ..... Vphr:O ;q0 L>O;%H <O 
2 ..... >0; <O; <O 
2! 2 11,2 11!. approxlmatlons o1 2 

x:o 

x~:QI 
I 
I 

(26) 

Fig. lOb. Shape of the phreatic surface in case of ske1~ symmetry 
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In case vphr > 0, which implies that lq
0
l > 2q 1, it can also he 

sho<1n that similari ty exists as far as a constant ratio bet<1een q 
0 

and q
1 

is maintained. In such cases the value for a
1 

should he a 

little higher. Under arbitrary conditions the constancy of a 2 cannot 

he sustained any longer. In vie<1 of the small variations that <1ill 

be found inpractice, fairly good results may he obtained by a general 

use of formula (26) with a 1 = 2/3. 

An reasonably accurate derivation of the 

the radial flo<1 area is much more difficult. 

mean value of v h for 
P r 

Analogous to (26) the 

follo<1ing expression might be used, in <1hich case thc value of the 

coefficient a
2 

should be a little higher than a
1

, but < I (a2 ~ 4/5): 

V phr,rad = (I - a2) V h 0 + a2 V h p r, p r, 

In some cases extreme simplification of the procedure may he 

expedient. To this end the main flux may he replaced by the flux at 

mean ground<1ater level, lvhich may be expressed as follo<1s: 

V = phr, rad vphr(h~ad) (28) 

Using (26) and (14) or (19) the follo<1ing approximative relation 

can he given immediately: 

V phr, rad (29a) 

or v = b e phr, rad I (29b) 

Another expression for vphr, rad is also available (for plus and 

minus signs, see fig. 9 and 10): 

- q - 2q 
o I 

V = ----,_---phr, rad B1 
(30) 

Using again a constant extraction v d independent of x, the phr, ra 
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following formula can he derived for the horizontal flow within strip 

B 1: 

11* = - q n -
0 0 

V B2 
phr, rad I 

vphr, rad BI = 
SkD 

BkD 

In this way a sufficient description of the situation in the 

area with radial flow has been obtained. The number of operations 

still to he done depends on the level of hp with respect to the 

unknown levels h 1 and hm' In many cases it will not he possible to 

determine immediately which of the following three possibilities must 

he accepted: 
.. 

a, hx > h , Under these condi ti ons a constant· flux v 1 . p1r = E - P i.s 
p P m 

valid for all .x. The procedure from chapters 2 and 3 can be main-

tained. 

b. hxl < h" < h"· This level of h 1~ith respect to h1 and hm has been 
p m . p 

indicated in fig. IOa. For this case, some of the preceding for-

mulae viz, (23), (24) and (29) requi.re minor changes: 

(x! 
2 

(E - P) - x ) x - x 
h*- h .. = p p I p (32) + qp I p 2kD kD 

q - qp = (E - P)(x
1 

- x ) (33) 
I p p 

- q - 2q = (E - P) B1 
(34) 

o I p 

First and third memher of formula (31 may he repeated unchanged: 

(35) 
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The problem can now he described as fellows. All conditions have 

to be knm•n except for the 6 

in case hx will he given, or 
0 

will he given. 

quantities q
0

, q1, 

x " " ql,q,h,hl,h p o m 

x x 
qp' h1, hm and xp 

and xp in case q
0 

For the calculation of these unknmms, sufficient re lation have 

already been derived, viz. the formulae (16), (18), (32), (33), 

(34) and (35); formulae (16) and (18) may he replaced by (21) and 

(22). Because of the complexity of the formulae (16), (18), (21) 

and (22), like in the previous chapter no direct salution can he 

expected here and consequently a similar iterative method can he 

recommended. 

IVith a given and an estimated value 
x h
1 

and q
1 

can he found with the aid 

for h" and q a salution for 
0 0 

of (34) and (35). These values, 

when substituted in (32) and (33) will yield results for q and . p 

either (18) or (22b) and substitution of - x • IVith the aid of 
~ 

XI 

h~ 
1 

h , a corresponding 
p 

value for hx will follow. 
m 

It is very unlikely that the deepest point of the phreatic surface 

will he found above h since such possibility would already have 
p 

shmm whilst checking up according to (a), Of course it may not 

be excluded, that the condition hx
1 

< hx <· h" cannot he satisfied, 
P m 

and an calculation as described underneath under c has to follow. 

In case for h"
1

, h" and hx a position in the correct sequence has p m 
actually been found, it is obvious that the calculation should 

he continued with the aid of formula (16), c,q, (21b). 

In case of complete symmetry, it is possible to check immediately, 

by means of the x -value obtained from· these formulae, how far the sum 
p 

B + 2(x 1 - xp) + 2 xp will he still deviating from the given value 

of L, 

In cases of skew symmeüy, a more elaborate calculation will he 

necessary. Starting at one side aor instanee where the conduit 

with the higher level is located as shown in centre of fig.IOb) a 

first approximation of the phreatic surface can he obtained for a 

given and an estimated value of hOH and q
0

H, according to the 

method previously indicated. This initial approximation contains 

a minimum h 1 at which a ne1v horizontal coordinate x can he put 
m 

equal to zero, By such a transformation the formulae for the 
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symmetrie case can he used again without any change, 

Irrespective of the place of this minimum, the value of h' at the 

(left hand) border of the B1L-strip (2 x = L - BIL) can now he 

calculated and also q;L. Whether the continuatien within the BIL

strip belengs to case (b) or case (c) depends on the position of 

h;L. For the calculation of h~L and q~L the formulae (35) and (29a) 

or (29b) or (34) rnay be used. Hhatever may be the case, some rei te

radons will nearly always be required for obtaining an approxima

tion of sufficient accuracy. 

x hx • h' . c. h < 
1

, 1n t 1s case only 4 unknmms have to be solved, v1z. q
0

, 

~ x . " . . " h h" . . 11
1

, q
1

, h 111 case h 1s g1ven, or h , 
1

, q
1

, 1n case q g1ven, 
m o o m o 

It is possible to produce imrnediately the salution of q
0 

and h~ 

or h: and h~ with the aid of (19a) and (35) (second degree equa

tion). In case (29b) and (35) have to be used, the salution will 

be a little more difficult. Immedia te reading in a graphical re

presentation may be recornmended, as far as the limited accuracy 

of such graphs is not considered as an objection. Substitution of 

these results in (16) and (18) or in (21) and (22), however, pro

duces once more such complicated equations that here again a simi-

lar iterative method, as recommended in 

,áth a given and an estimated value for 

" h
011 

and q
011

), seems to he most sui table 

p·revious cases, start ing 

" h and q (eventuallv for 
0 0 . 

for practical application. 

6. NON STEADY STATES HITII SPECIAL FUNCTIONS FOR THE FLOH IN TIIE 

UNSATURATED ZONE 

In the rather complicated cases that will be discussed here,it is 

reasonable to divide the considered area,havïng two dimensions 

for the vertical cross-sectien and one dimension for the time, into 

a number of sub-areas, preferably equal parts if possible, in order 

to obtain a system of differences equations and to derive from these 

an (approximative) salution of the potentials and fluxes in question. 

A suitable subdivision is shmm in fig. 11. In the horizontal 

direction a division into parts of constant !Vidth öx is taken, except 

near the open condui ts '~he re a radial flow component obliges to 
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follm• another procedure, Similar to the previous chapter, assumption 

of separate blocks of width B
1 

would do here, For the sake of simpli

city complete symmetry has been assumed to exist with respect to the 

open conduits so that at every open conduit two equal blocks of 

width B
1
/2 may be distinguished. 

In the vertical direction a division into a very large number of 

layers should he introduced when very accurate results should be re

quired.This would imply moreover the necessity of working with very 

short time intervals. In order to simplify things, however, three 

layers only will be distinguished here, viz.: 

1. A saturated zone from the impermeable basis up toa (horizontal) 

level z located at such a depth that z is always below the 
0 0 

phreatic surface, 

2. A partly unsaturated zone from z up to the bottom of the root 
0 

zone zd. In this layer the moisture suction ~ increases from 0 

up to ~sd from the bottorn to the top. 

3. The rooted zone, with a moisturn content l.oJ and a moisture suc
u 

tion ~ , both considered independent of the vertical ordinate z, 
u 

though dependent of the time t (RIJTEHA, 1969), 

In case a difference in soil type is assumed for the fi rst and 

secend laye·t, the mois ture content va lues 'l.ol and tol d 
u s 

be different, though ever and anywhere ~ 
u = ~sd \.Ïll 

will generally 

be va lid, 

In order to be able to calculate the development of the situa-

tien with increasing time,some initial situation fora eertsin time 

t 0 has to be completely knmm, This should be understood in such a 

way that for all h. and all~ . (see fig. 11) certain values have 
J u, .] 

to be known. From these the situation for time t
1 

should be calcula-

ted, and from this a next situation for t 2 etc. 

t. has been 
l 

As soon as the calculation for an arbitrary time 

finished, this situation is considered as an initial situation with 

known va lues of h. . and ~ 
J, 1 u, 

substituted in some system of 

. . , for all 
J' l 

formulae in a 

x., which values are 
.1 

s imi lar way as wi th 

previous values of t, in order to derive from this system the neH 

h. . 1 and ~ . 
1
.+ 1 for ·t

1
.+l' 

J,J+ U,J, 

In order tö keep the system of formulae as simple as possible, 
q 

time intervals 1\t = t. 
1 

- t. Hill he kept constant as much as 
1+ 1 

possible, 
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In case periods I<Î th rapid changes and slow changes can he dis

tinguished, it may he advantageous to take 6t a total number of times 

bigger for periods with slow motion. In many cases for ót Hil1 be 

chosen ót ~ 21, hours or ót ~ 7 days, in which cases there may he 

spoken of the situation for the previous day (week) and that for the 

next day (week) respectively, 

a. Calculation of values for fluxes (q, v) and starage (w, H) from a 

complete set of given potentlal values (h, '!'): equations (36) ,,, 

(/15) • 

For all blocks with horizontal flow in the saturated zone (t<idth 

of block óx) the next two fortnulae tnay be used (for j only even in

tegers, see fig. I I): 

h. 2 i 
- h. i 

qj- I ' 
~ kD - J- ' j ' 

i óx (36) 

h. - h.+2 i kD. J ' i J ' 
qj+ I' 

~ 

i x (37) 

A simple expression can also be used for the vertical flm• through 

the phreatic surface v11 , j, i: 

(38) 

Determination of the vertical flux through the bottorn of the root 

zone will be less simple, An approximating relation has been i.ntro

dnced to this end using a wellknown expression for the steady verti

cal flm• in the unsaturated zone with moderate desiccation (RIJTEHA, 

1965, 1969), Since here a flow in the lower part of the unsaturated 

layer is concerned, a subscript s (sublayer) is added to the quanti

ties k and a: 
0 

"t··+"h'' ( ,],1 ,.];1 = ·------2---·-
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- a (zd - h. , ) 
e s j,1 - e 

as (_z_d.......:_:.....,.,h-j-,-i-) --

- 0: lf' • • 
s u,J,l 

(39) 
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Fig. 11. Symbols, used for the calculation of the flow in the unsaturated zone. 

w 
u, 4 

layer 

and W 4 indicate the starage 
s' 

near x4 respectively. On day i 

by w 4 i 
and W 

4, i u' ' s, 
vh ; abbreviated notatien for vphr 

W in the upper layer and in the sub 

these quantities are indicated 

r = subscript for area with radial flow 

h ; subscript for phreatic surface 



With the aid of (36) ,,, ,, (39) it is possible to find the four 

quantities q. 
1 

• , q. 
1 

• , vh . . and vd . . • For calcula-
J- ' 1 J+ , 1 ' J' ~ , J, 1 

tion of the storage (water content) at the beginning of the period 

concerned and the change in storage over that period the latter two 

quantities only are required. l-lhen determining the storage it will 

he necessary, besides having some knowledge of the quantities k os 
and a in formula (39), to indicate more precisely the relation be-

s 
t1veen mois ture content w and mois ture suction 'I'. Heasurements special-

ly clone to this end may be used, or some data which can be found in 

literature for a great number of soil types (RIJTEHA, 1965, 1969). 

Neglecting hysteresis effects two different relations 'I'= f(w) 

may be applied for the upper layer and the middle layer. This may be 
-I expressed as follows, where f represents the inverse function: 

lv u, j, i 
-I (40) 

= f ('I' • • ) 
u u,J,t 

-I 
(41) IV d • • = f ('I' d . . ) 

s 'J '1 s s ,J,l 

IV i th 'I' d •. = 'I' 
u, j 'i (42) s ,j '1 

For the moisture storage in the upper layer the following equation 

is va lid: 

W .. = IV •• (z 
u,J,l u,J,l gs 

- z ) 
d 

(43) 

z = level gs of the soil surface 

zd = level of the bottorn of the root zone 
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moisture content w 
zgs~--------.----

Fig. 12. Distribution of the moisture content in the zone between an 

arbitrary level z and the bottorn of the root zone. 
0 

a. Complete saturation: W = maximal moisture. starage ma x 
between z and z = w (z - z ) o d phr d o 

b. No flow in the unsaturated zone: W (h) = moisture starage 
0 

for the case that v 0 and the groundwater level h is 
z 

located between z 
0 

and zd 

c. Hoisture distribution in case of capillary rise, V being 
z 

constant for all z. The mois ture s torage may no'v be in-

dicated by \V (h), where the subscript v possesses the 
V 

value of v for instanee in mm day-l 
z 

Deriviation of an exact formula for the storage in the inter

mediate layer (subscript s) will be difficult. Because in most soil 

types the moisture distribution curves for the vertical direction 

possess a certain similarity if there is no flow in the unsaturated 

zone (v = 0), the fo11owing equation (fig. 12b) may be written: 
z 

H (h) 
0 

(44) 
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a 0.7 for clay and clay loam 

0.6 for sandy soils and basin clay 

0.4 for loam and fine sandy loam 
} 

derived from 
soils RIJTEMA, I 969 

In case of a constant upward flow, a term can he added to (44) 

in order to take into account the changes in the moisture distribu

tion curve (fig. 12c), Though this term is not very accurate, the 

equation (45a, b) wilt give a fairly better accuracy at variable 

v h than can he achieved with (44): P r 

b { -1 } -- f (z - h) - w (4Sa) 
V z d d 

b ~ 500 to 1000 mm2 /daY (derived from RIJTEMA, 1969) 

By using the notation introeed in fig. 11 the equation (4Sa) turns 

over into an identical equation (45b): 

b 
- s {f-l(z 

vd , . s d 
,J '~ 

- h .. ) - w d . i}(45b) J,1 s ,J, 

b. Calculation of values for ti+! from data for ti 

Fora calculation of the storage in both layers at ti+!' the 

following equations can he used: 

w •. 1 = 1-1 .. + 6w .. = w .. + vh .. - vd . . (47) S,J,1+ s,J,l s,J,l s,j,l ,J,l ,J,l 

In the equation (46) and (47) some values for the precipitation 

P. and the actual evaporation E. . on the day concerned, have to be 
1 J' 1 

introduced, the actual evaporation can be put equal to the potential 

evaporation E = gE (where E is the evaporation of open water, 
p 0 0 
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gis a coefficient dependent on the degree of density of the canopy, 

erop development and season) or i t possesses a lm•er value. Accurate 

definition of the evaporation reduction proved to be rather difficult 

(RIJTE~lA, 196S), fora first approximation, however, a dependency on 

the moisture stress ~ . . might be assumed (VISSER, 1963, 1968; 
u' J ' 1 

BLOEM, 1966), 

After certain values for P, E, \Vu' Ws' vd and vh 

have been substituted in the formulae (46) and (47), 

for the time t. 
1 

the storage 

values W . . . 1 and 
u, J' 1+ 

W . . 
1 

for the 
s, J, 1+ 

time t. 1 can be calculated. 
1+ 

After substitution of these results into the next expressions, mois-

ture content values (w , w d) and moisture suction values (~) can be 
u s 

found for ti+ 1. 

H •• I 
w = u,],l.+ (48) 

u,j ,i+1 z zd gs 

~ d ' ' I = ~ s ,-1 ,]+ u,j,i+l f (w . . 1) 
u u,],t+ 

(49) 

-I (SO) w d ' ' I = fs (~sd i j+l) s ,] '1 + ' ' 

In the end formula (4Sb) is used once more to find also the 

groundwater level hj, i+l for the next day: 

- h. '+I) - w d ' '+I} J,l s ,],1 
(SI) 

However, it can beseen immediately, that.equation (SI) contains 

two yet unknown variables: h .. 1 and vd . , 
1

• Provisionally an 
J,l.+ ,],1.+ 

unchanged value vf . . can be used and if afterwords by means of 
' J ' 1 

the equations (36), (37), (3S) it is found that there is not quite 

negligible difference between vd, . . and 
J ' 1 

(SI) may be used again wi th the new vd . 

vd . . 1 , the equation 
' J' 1 + 

' J ' obtain a better approximation 

. 
1
-value in order to 

1+ 
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c. Calculation for areas with symmetrie radial flow 

Formulae (36) .•.•.• (51) are not simply transferable for the 

area with radial flow in the saturated zone, especially the formulae 

(36) .•••. (39) require further consideration. Apart from the sub

scripts the formule (39) can be maintained. Since the width B1 of 

this hlock may he relatively large and the values of vd . , , r, 1 

vh . and h may vary rather much, introduetion of mean values in , r, 1 

the left hand and right hand part of (39) will decrease the accuracy 

of this formula. In case of practical applications, however, this 

will not he of much importance, 

vd • ,r,1 + V • 
h,r,l = k 

2 os 
e 
- a (z 

s d 

I -

··h .) -a'l' i r,1 s u,r, 
- e 

e 
- a (zd - h 

1
.) s r, 

Formule (38) changes only little in case of symmetry: 

.,, ,_,' I '· 

vh,r,i BI=- qo,i- 2ql,i 

(52) 

(53) 

Equation (54) in shape similar to (36) and (37) can he added to 

the preceding equations(in case tJ x> B1, ~ may he located at the 

opposite side of the open conduit without any ohjection, since hb is 

only an imaginary quantity): 

h - h 
m kD b, i 2, I 

ql ,i llx (54) 

Now only one relation is still lacking. In case of symmetry with 

respect to the open conduit this can he met with the aid of (35), 

which is one of the formulae derived at the end of the previous 

chapter: 

h • - hl . o,1 ,1 = 

BI 
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It may be noticed additionally that still two more values for 

h
1 

and hb have to be added to the given values for hr' h2 , h4 , ..•.• 

To meet this, the next t1•o formulae may be used: 

hb . + h2 . 
hl . 

'1 ,1 

,1 2 
(56) 

h 
0' i 

+ 2hl . 
h ,1 
r,i 3 

(57) 

Hhereas formula (56) 1Yill be very accurate in case x is suffi

ciently small, the accuracy of the latter formula is dependent on 

the choice of the coefficients I/3 and 2/3. This has been indicated 

already in the previous chapter when deriving formula (26). 

d. Asymmetrie radial floH 

In case of asyn~etry with respect to an open conduit, the number 

of unknown quantities in strip B
1 

Hill be twice as large, except for 

h or q • This implies that, where in the symmetrie case the six 
0 0 

formulae (52), ,,,,,, (57) are used, consequently, in an asymmetrie 

case, 11, partly new formulae have to be introduced. 

It Hill be clear that near an open conduit, ~Yhere the flo~Y at 

the left hand and the right hand side is nat equal, formula (52), 

(54), (56) and (57) for the left hand and the right hand side may 

be redoubled by introducing positive and negative subscripts 

(:!. I, :!:. r, :!:. b, :!:. j, etc.) for right hand and left hand side of the 

open conduit respectively. 

In the practical elaboration of such cases, where several open 

conduits are concerned and consequently a rather large number of 

equations is involved, it ~Yill probably be better to use a consecu

tive numbering to start at zero and continuing tolYards some positive 

integer. In such cases the meaning of the numbers should be explained 

by adding a complete schematic figure in ~Yhich all numbers occur. 

The ne\Y formula (58) can be used as a substitute for the old formula 

(53): 
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BI 
(v .+v .)--= h,-r,1 h,r,1 2 

Formula (SS) will now be replaced by formulae (59) and (60): 

2h . - h 1 . - h 1 . -q . 
_ _:_o_,_, _:_1_"'-n'--'-' 1=----'-'''-=-1 = ~ ( 1 

2B l 8kD 

= 2kD 
h 1 • - hl . 

- ,1. ,1. 

BI 

(SS) 

(S9) 

(60) 

So, together with the redoubling of (S2), (54), (56) and (57), 11 

formulae are inde•ed available near each open conduit with asymmetrie 

flow, 

The formulae derived in this chapter make it possible, when there 

is a completely known situation at time ti' to calculate the situa

tion at the next time t. 
1 

with similar completeness. In practice 1+ 
the large number of equations might present some difficulties especi-

ally the reiterations in conneetion with equation (SJ), 

In general a rather small constant valne is taken for the size 

of the step 8t = ti+l- ti. In cases where the starage coefficient ~ 

is constant, instability is known to occnr beyond a certain limit 

viz. 8t ~~ ~(8x) 2 (kD)-l (MILNE, 1953). 

The resnlting valnes fonnd for hr' ~r' h2, ~2 • h4, ~4 , •• ••• at 

time t. 
1 

may be considered as an initial sitnation for the next time 1+ 
interval 8t. After snbstitution in the previons formnlae, the calen-

lation can be repeated completely. This may be continned at will as 

far as a closed range of 

also) will be available. 

data for P. and E
0 

(e.ventnally for h . 
1 0' 1 

Finally it may be noticed that a system of formnlae, as bas been 

derived previously, may also be used in case of steady states, In 

this case two suppositions have to be made: 

a, h or h i will be given 
0 o, 

qo ai: qo, i will be unkn01vn 

b. qo or qo, i will be given 

h or h i will be unknown 
0 o, 
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A simple way to find a salution for a steady state groundwater 

flow problems is possible in case of symmetry, whether all open 

condui ts are similar and the inflmv of water is equal anywhere 

(complete symmetry) or higher and lmver conduits will he alternating, 

all higher conduits then having an equal level and equal inflow, and 

all lower condui ts an equal level and equal outflow (skew symmetry), 

In such cases it is possible to start 1vith a given value for 

h (or q ) at one of the open conduits, adding an estimated value 
0 0 

for q (or h ) . All the sub-areas can nmv he elaborated succesively, 
0 0 

By means of several reiterations a sufficient approximation of the 

correct result is pursued, 

In case of complete symmetry such result will he obtained as 

soon as either q = 0 or the changing of the sign for q. will be found 
J 

to happen sufficiently near to the middle of the area involved. 

In case of ske1v symmetry (see fig. 11 for instance) calculation 

may be started at the higher conduit. In the end it has to be checked 

whether the value that is found for h as q at the lower conduit is 
0 0 

a sufficient approach to the actual value, 

7. FO~IULAE FOR SUB-IRRIGATION IN STRATIFIED AQUIFERS 

In case of heterogeneaus aquifers consisting of several horizontal 

layers with alternately large and small permeabilitie-s, usually the 

assumption is made that there will be a horizontal flow in the layers 

with a large permeability and a vertical flow in the layers with a 

small permeability.Consequently in the case depicted in fig. 13a 

(a so called three layer problem because of the three layers in the 

saturated zone) the t1vo following differential equations 1vith two 

independent variables h and ~ can be applied, except in areas near 

the open conduits where a radial flmv may be dominating. 

V -
h c 

(61) 
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(62) 

with (63) 

When there are four layers in the saturated zone (fig. 13b) the 

next three formulae with three independent variables h, ~~ and ~ 2 
are valid: 

(64) 

(65) 

(66) 

with (67) 

Equations of this shape may also be used close to the open con

duits where a more or less strong radial component in the groundwater 

flow exists, provided the continuation of the potential dis tribution 

in the top aquifer (h(x) or ~ 1 (x)) according to the previous formu

lae, is considered as an incorrect extrapolstion '~hich has to be in

dicated differently(e.g, h 1 (x)or ~ l (x))and that the influence of the 

radial component will be accounted for by means of one of the two 

formulae hereaftar (compare fig. 3), respectively valid for the 

three layer and the four layer problem: 

(68a) 

(68b) 
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In case symmetrie steady statas are concerned with a constant 

value for v h (independent of x and t), the derivation of a formula 
P r 

analegons to (6) and valid bath for drainage and sub-irrigadon will 

yield no fundamental trouble (ERNST, 19S6, 1962). In order to take 

into account the radial flow component by means of a resistance 

value R, bath for three- and four layer problems, aquatien (8) or 

similar equations for· the radial resistance Q may he used all the 

same (ERNST, 1963). 

In case vh is dependent on 

much more complicated and this 

z - h, however, the problem bacomes gs 
to such a dagree that it is advisable 

to apply the same approach as discussed in chapter 6. It will he 

shown that this approach offers an opportunity to obtain a goed 

approximation also for these cases where no symmetry exists. 

Asymmetry exists wherever irregular differences in level of the 

ground surface are a natural cause of influent groundwater flow in 

the higher parts and effluent groundwater flow in the lower parts of 

the area. A suchlike situation is aften expanding over large areas 

with a diameter of saveral kilometers. In a cross-section of such size 

the number of (parallel) open conduits may be rather large and in 

such cases complete execution of a calculation scheme similar to 

that discussed in the previous chapter would consequently lead to a 

much more extensive elaboration. 

This is the reasen that nat only in cases with complete and skew 

symmetry, but a lso in case of asymmetry the a laboration will be limi

ted preferably to one single strip between two parallel open conduits. 

This implies that the distribution of influent and effluent see

page within the area should either be known or roughly estimated and 

that for the strip to he investigated, consequently 4 values have to 

supplied for inflow and outflow of groundwater by each of the two 

aquifers. 

The formulae of chapter 6 remain applicable for the greater part. 

This is the case for formulae (39), • . . • • . (S2), (S6) and (S7), 

though nat completely for (36), • • • (38), (S3), . . • • . • (SS) and (S8), 

. . . . . . (60) • 

The aquadons have to he adjusted in such way that in case h .. 
J,l. 

values are kno1m for all x. at the time t., from these data all ether 
J 1. 
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unknown quantities for the same time may he calculated, 

This will he discussed for the three layer problem and for the 

four layer problem successively. As done in the previous chapter it 

will he assumed that the potantials and vertical fluxes have to he 

calculated at even values of j, the horizontal flow intensities q1 
and q2 at odd values of j. A discussion of the calculation of the 

conditions at ti+l' when a complete set of dataforti is known, can 

he ommitted, as the equations (46) ,,, (51) eventually with some 

reiterations may he used again (see chapter 6c). 

a. The three layer problem with given values for h. . and h or q , 
.J' 1 0 0 

In this case (see fig. 13a) the formula (35) may he replaced by: 

vh , . öx = q, , . - q , I i + v , i Ax (69) ,],1 1,J-1,1 1,J+, C,j, 

In stead of formule (36) two similar relationsmay now he intro

duced viz. for the horizontal flow in the first and in the second 

aquifer respectively. For (37) no substitute will he given here, the 

difference between (36) and (37) being extant in the j-subscript 

only, 

h. 2 . ·- h .. J- ,L J,L 
6x (70) 

(71) 

For the vertical flow in the second layer having a small permea

bility, there can he written: 

(72) 

(73) 

In all columns of width öx, with nearly horizontal flow in the 

well- permeable layers, the 5 equations mentioned above are valid, 
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soil surface 
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I I 
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k1 D1 : q1,j·1--;-- V . --;-Q1,jt1 I 
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k3 D3 I I q : I.P 
I q2,j·f") T 2,j•1 I 

~ : I I 

~-. ' ' .!mil ... ~ut. . ..... ~ 
j·3""'""f-2 j-1' jt1 J~2 j•3 

Fig. J3a. Schematization of the ground~<ater flo~< in an aquifer ~<ith 

three layers of different permeability belo~< the phreatic 

surfaée. For the layers ~<ith a rather large transmissivity 

(kJ DJ and k
3

D
3

) i t is ass1uned that there is a mainly 

horizontal ground~<ater flo~< (qJ and q 2), ~<hile for the 

intermediale layer a verti.cal flo~< is assumed (flux v and 
c 

resistance c = D2/k
2
), Changes in the thickness DJ ~<ith 

time ~<ill be neglected, but a dependency on x. can be 
J 

easily admitted 

soi I surface 

Vç 1,j :: Vhj exc~pt in area 
' with radial flow 

,, ,, ,, 
/' 
'' 

i 

Fig. J3b. Representation similar to fig. J3a, but insteadof three 

layers helm• the ph reatic surface, four l11yers of alterna

tely small and large permeability ~<ill be assumed in this 

case 
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In the columns with radial flow (width B1) equation (S3) has to 

be replaced by the next one (74), Provisionally the open conduit 

will be indicated by adding the subscript o (see left hand side of 

of fig, 14): 

BI 
V ,-• h,r,1 2 

I 
-- q 2 o,o,i 

BI 
+q -q .+v -I,L,i 1,1,1 c,r,i 2 

In this case the given value q
1 

L . is considered to be 
' ' 1 

(74) 

that inflow at the left hand side of the area concerned, that addi-

tion to the symmetrie outflow of 

zontal flow intensity in the top 

conduit 0, 

q will produce the actual hori-
o' 0 

layer at the right hand side of 

In stead of (S4) the next two formulae may be used for the hori-

zontal flow intensity in the two aquifers: 

hb . - h2 . 
q • = k1D1 

,1 ,1 (7S) I , I , 1 A x 

$b . - $2 . 
k3D3 

,l ,l (76) 
q . = llx 2, I , 1 

Formule (SS) needs only to be provided with an extra term in the 

right hand side to remsin valid: 

h o,o,i - hl . -q Sk 1D1o ql I ' - ql L ' ql ,L, i ,l • o,o,i(l ' ,1 , ,1 
Sk1D1 

+ B ) + 4k1D1 
+ 2k1D1 

• 
I 

(77) 

For the flow in the second aquifer in case q2, i • 0, which means 

in case of symmetry, the next equation can be considered as a good 

first approximation: 

Because of the given inflow q2, L = 0 from outside the area, here 

also a term has to be added, so that the flow in the second layer 
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Ot:: 81 I 1 I I I I I 81 82 

7 7 75 70 70 70 70 70 75 77 

' 
.. 

72 ' 12 72 ' 72 72 ' 79 ' 79 12 ' ' ' ' ' ' ' 80 ' 73 ' 73 ' 73 73 ' 13 73 ' 80 ' 
rr 

78 7~ 11 71 71 71 71 75 7,8 

' ' ' ' I ' 84 83 ' ' ' ' ' ' 83 84 ' 2 3 4 5 n : 6 

Fig. 14. Example of the dividing int:o rectangular elements of the 

area between two successive conduits with three different 

layers helm• the pilreatic surface 

I. Quantities underlined are given, quantities not under

lined have to be calculated. One of the two quantities 

h and q must he given, the other must be calcu-o, 0 o, 0 

lated. The main of the region with a predominally hori-

zontal direction for q 1 and q2 is divided into 6 columns 

(n = 6) of 5 rectangular elements each. Number of 

unknowns = number of equations = Sn + 20 = 50. 

II. Numbe~s . of the equations which have to he used for the 

calculation of the 50 unknmm quantities 

41 



under the open conduit may be represented by: 

(78) 

For the vertical flow in the c-layer underneath the open conduit 

formulae (72) and (73) may be replaced by: 

V ' c,r,t 

... - h • "r i r,1 = ' c 
(79) 

= (q - q ) ..3.. 2,L,i 2,1,i BI 
(80) 

Finally the 'irregular' limits " and x, should be considered, 

where the potantials have to be derived wi th the aid of formulae 

analegeus to (56) and (57): 

hl . 
'1 

hb . + h2 . = , 1 , 1 
2 

(81) 

h . + 2hl . o,o,t ,1 
h . = 3 r,1 

(82) 

~I , = 
'1 

~b . + ~2 . 
, 1 'l 

2 
(83) 

2~ . + ~I . 
~ , = 0,1 ,1 
r, 1 3 

(84) 

The number of equations that has been obtained in this way is 

rather large. This is shown in the example given in fig. 14, where 

the area between two successive conduits has been divided into 66x

blocks (n = 6), From this figure the number of equations is immedia

tely found to be equal to Sn + 20. In case n = 6 consequently 

50 equations are obtained, all being of the first degree, 

Because so many of these equations are similar andevery equation 

has only a small number of unknowns, the solution will not be too 

difficult. 
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It can be seen immediately that the 8 unknowns vh do occur only 

in the 8 equations (69) and (74), ~<hich therefore may be leftout of 

consideration for the time being. 

Next, the 7 unknowns q
1 

may be calculated directly from (70) and 

(75). Similarly a direct calculation of 

q
0

, 14 , hb' h 1, h 13 and h_b is possible 

and (82). 

h or 
o' o 

tvi th the 
o' ho, 14' or 
of (77), (81) 

In this t•ay both the number of equations and the number of unknmms 

have been reduced to 29. For in the remaining equations viz. (71), 

(72), (73), (76), (78), (79), (80), (83) and (84) all v c' all q 2 and 

all~ are still acting as unknowns. 

Next all v c and all q 2 may be eliminated by combining (72) wi th 

(73) and (79) with (80). 1'he equations (71) and (76) can be substitu

ted in theether equations. Similarly cpb' ~I, ~ 13 and ~-b may be 

eliminated wi th the aid of (83) and (84). 

By this treatment finally 10 equations remain in which 10 unknown 

potendals occur viz. ~0 , ~r' ~2 , 1>4 , cp6 , ~8 • ~JO' ~ 12 , ~-r' ~111 
(number = n + 4). 

As soon as all quant i ties in the saturated zone have been calcu

lated in this way, it will be possible to preeeed with the situation 

in the unsaturated zone and calculate the change towards the next 

day. For that purpose formulae can be used which are similar to those 

given in chapter 6. For each x. 
J 

are needed. The latter quantity 

given values for o/ 
u, 

has been obtained as 

, h. and vh 
3
. 

J J ' 
a final re sult 

of the elaboration of the 50 linear equation mentioned above. 

b, The four layer problem 

In case of the four-layer problem (fig. 13b) the number of equa

tions is increasing only little. The equation·s of the three layer 

problem may be used once more, though mostly other subscripts have 

to be introäuced in this case, Moreover two new equations are requi

red for the vertical flm• in the upper layer with small permeability. 

In order to shol'l this clearly all the equations wi11 be written here 

in full shape and with the correct subscripts: 
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ql,j-l,i- ql,j+l,i 
= + V 3 ' ' x c ,],1 

ql,j-l,i = 

q2,j-l,i = 

V ' ' = c3 .J, 1 

V 3 ' ' = c 'J '1 

V I . = c ,r,1. 

4>1 ,j-2,i - 4> I , , 
k2D2 

,J '1 
x 

4>z,j-2,i - 4>z . . 
k4D4 

, J 'l 
t,x 

q2 ' I ' - q2 ' I ' ,J- ,1 tJ+ ,1 

t,x 

4> - h • 1 ,r,i r,1 
cl 

4>z b • - 4>z 2 · kD ,,1 ,,1 
- - · · .!lz, 1 , i- = 4 4 · · -- - -- t,x- · · · -- · --- - - · " -

h . - 4> o,o,1 I,J,i 
= 

BI 

<l>z • - 4>z 1 · 
BI 

- zr:,x<<~>z,l,i- 4>z,2,i) = 
Blq2 L ' , > 1. 

,o,1 , ,1. 

vc3,r,i = 
<l>z · - 4> 1 • ,r,1 ,r,1 

c3 

2 = (q - q )-2,L,i 2, l,i B1 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 



<P1 b i + <P1 ,2,i 
<I> 1 . = - , ' 

2 
(99) 

1 , '1 

h + o,o,i 2 '~ 1 1 . 
.p 1 . = • • 1 

3 
(100) 

,r,1 

<P2,b,i + <P2 2 · 
<P2,1,i = • • 1 

2 
( 101) 

+ 2<1>2 . ·~2 1 . 
.p 2 . = 

,o,t • • 1 ( 1 02) 
,r,1 

Fig. 15 shows as an example the division of a four layer aquifer. 

The number of th-strips is taken equal so that in fig. 14 (n = 6). 

The number of unknowns and the number of equations amounts to 

6n + 22 = 58. In this case no difference has to be made between 

vel and v
11

, for verdeal flow through the layer with resistance c 1 
and the phreatic surface respectively. 

The eliminadon of v c 
1

, v c
3

, q 1 and q2 makes clear how much 

unknowns and equations will remain. For n = 6 it will be found that 

18 equations (2n + 6) will remain, every equation with 3 or 4 un

knowns and totally 10 unknown .p 2 and 8 unknown <P 1. 

It is not very difficult to solve these linear equations even 

when they are in a rather large number. The matrix of coefficients 

shows a regular distribution, which makes it possible to apply the 

following artifice. One equation is selected, in l<hich no more than 

three unkno1.us occur. By taking for two of these unknowns, arbitrary, 

though not too improbable values, the third unknown may be solved, 

This result may be substitured in a next equation in which, besides 

the unknowns already used, only one more unknown occurs. This latter 

unknown may now easily be calculated, next be substituted in a fourth 

equation etc. In this way a range of values is obtained, which range 

will not be correct however,because these values do satisfy only 

(2n + 4) equations. 

A suchlike calculation has to be done three times over 1á th a 

set of trial va lues for ever the same two unknmms. By making a linear 
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combination of these threa astimations a correct salution can be ob

tained, For it is possible to multiply the 3 sets of trial values 

1~ith a, a and I - a - a respeccively and demand that the linear com

bination containing 2 unknown coefficients a and B must satisfy also 

the 2 renmining equations, 

The coefficients a and B can ba solved easily from two equations 

of the first degree. 

I 

n~~~--~~~~~~~~~--nr~grl--

102 
916 

' 2 3 4 5 n:6 

Fig. 15. Representation similar to fig. 14, but with a four layer 

aquifer in stead of a three layer aquifer, 
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FREQUENTLY USED STilBOLS 

B = wetted perimeter of open conduit 
0 

B
1 

= width of area with radial flow 

c = resistance to vertical flow = D/k 

D = thickness of (homogeneous) layer 

d = thickness of equivalent layer 

E = evaporation 

h = elevation of-phreatic surfase (hydraulic head) 

h = h midway betwee ti drains 
m 

h = level of open water 
0 

k = permeability 

L = drainspacing 

P = precipitation 

q = intensity of horizontal flow = - kD dh/dx 

q
1 

= q in upper aquifer 

q
2 

= q in lower aquifer 

q
0 

= discharge or recharge through wet perimeter of open conduit 

t = time 

v = velocity, flux 

vphr = flux through phreatic surface (chapters J-5) 

vh = flux through phreatic surface (chapters 6-7) 

W = moisture storage in unsaturated zone 

w = moisture content in unsaturated zone 

x = horizontal coordinate 

z = vertical coordinate 
zd = depth of bottorn of root zone 

~ = hydraulic head in deep aquifer 

o/ = moisture suction (matric potential) 

n = resistance to radial flow 

llh = h - h 
m o 
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