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VOORWOORD 

Als van een onderzoek gezegd kan worden dat net geen eenmanszaak is, dan 

geldt dat zeker voor datgene waarvan de resultaten in dit proefschrift be-

schreven zijn. Een groot aantal personen wil ik dan ook voor nun bijdrage be-

danken. In de eerste plaats mijn promotor, Prof. J.H. van der Veen. Zijn idee, 

dat niet-kiemende mutanten groeistofmutanten zouden kunnen zijn was de basis 

van net onderzoek. Ook de door Prof, van der Veen in de loop der jaren opge-

bouwde collectie mutanten (waaronder reeds 2 niet-kiemende GA mutanten) en 

trisomen en zijn grote ervaring op net gebied van mutatie-onderzoek zijn van 

essentieel belang geweest bij de start van het onderzoek. Bijzonder dankbaar 

ben ik voor zijn stimulerende interesse en vele suggesties gedurende het ge-

hele onderzoek. Ook zijn hulp bij het leesbaar maken van de verschillende 

artikelen is onmisbaar geweest. 

De vakgroepen Plantenfysiologie en Plantenfysiologisch Onderzoek ben ik 

zeer erkentelijk voor de medewerking die zij hebben verleend zowel bij het 

beschikbaar stellen van accomodatie als bij het meewerken aan- en meedenken 

over de experimenten. Dit ondanks enkele voor fysiologen onaangename eigen-

schappen van het proefplantje. Dr. C.J.P. Spruit, die mij heeft ingewijd in 

enige geheimen van de fotomorfogenese heeft met zijn organisatorische en we-

tenschappelijke kwaliteiten een essentiele bijdrage geleverd aan het karakte-

riseren van de lichtre'ceptormutanten. Van groot belang is ook geweest de 

samenwerking met Dr.C.M.Karssen in het bijzonder met betrekkinq tot de 

ABA mutant. Deze samenwerking, begonnen als burenhulp, maar intensief voort-
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STELLINGEN 

1. Het ongewijzigde verloop van de zaadkieming b i j g ibberel l ine-def ic iente mu-

tanten van gerst en mais en b i j gibberell ine-ongevoelige mutanten van gerst 

en tarwe, w i j s t op een n ie t wezenlijke rol van gibberel l inen b i j de kieming 

van deze soorten. 

2. De fysiologische betekenis van het transport van gibberel l inen en abscisine-

zuur i s tameli jk gering. 

3. Alleen het door het embryo-genotype bepaalde abscisine-zuur induceert kiem-

rust in zaden van Arabidopsis thal-Lana. 

Dit proefschrift. 

4. Naast fytochroom spelen ook andere fotoreceptoren een rol b i j de door l i c h t 

gereguleerde renning van de hypocotylgroei in Arabidopsis thaliana. 

Dit p roefschr i f t . 

5. Hormoon-deficiente mutanten kunnen n ie t geisoleerd worden door te selecteren 

op to lerant ie voor concentraties van het betrokken hormoon die b i j het w i l d -

type remmend werken. 

D i t p roefschr i f t . 

6. Plantenhormoonmutanten verdienen meer aandacht in de plantencelgenetica, ge-

zien de essentiele rol van deze stoffen b i j de ce l d i f f e ren t i a t i e . 

7. Het biochemisch en fysiologisch vergel i jken van rassen, die naast het te 

bestuderen gen-contrast ook andere genotypische verschi l len vertonen.draagt 

r i s i co ' s met zich mee. 

8. De l i nea i re r e la t i e tussen de mutatiefrequentie per locus en de hoeveelheid 

DNA per genoom van een organisme, zoals deze door sonmige auteurs is afge-

l e i d u i t l i teratuurgegevens, l i j k t meer gebaseerd op "wishful th ink ing" 

dan op een theoretisch goed onderbouwd l i teratuuronderzoek. 

Abrahamson et a l . , Nature 245: 460-462 (1973) 

Heddle and Anthanasion, Nature 258: 359-361 (1975. 
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9. Het model van Reeves et a l . om telotrisome u i tsp l i ts ingen te beschrijven 

houdt onvoldoende rekening met het verloop van de meiose b i j telotr isomen. 

Reeves et a l . , Can.J.Genet.Cytol. 10: 937-940 (1968). 

lO.Zaadkiemingsloci z i j n b i j veel planten geschikter voor het uitvoeren van 

genetische f i jnstruktuur-analyses dan loci voor pollenkenmerken. 

Di t p roefschr i f t . 

ll.Eem'nk en Garretsen waarschuwen er terecht voor dat een gefascieerde b loe i -

stengel b i j sla ongewenst is vanwege het negatieve e f fect op de zaadproduktie. 

Fasciatie is echter ook een gunstige eigenschap, omdat hierdoor te snel 

schieten onder lange dag-omstandigheden kan worden voorkomen. 

Eenink en Garretsen, Euphytica 29: 653-660 (1980). 

12.De negatieve karaktertrekken, die Verbraeck t oesch r i j f t aan de bewoners van 

het Westland omstreeks 1930, worden door hem ten onrechte streekgebonden 

genoemd. 

A.A.A. Verbraeck, Het Westland, Dissertat ie Amsterdam, 1933. 

Proefschr i f t van M. Koornneef 

The genetics of some planthormones and photoreceptors 

in Avdbidopsis thaliana (L.) Heynh. 

Wageningen, 5 november 1982. 



gezet omdat Karssen de mogelijkheden van dit soort mutanten voor zaad-

fysiologisch onderzoek duidelijk onderkende, heeft geleid tot een zinvolle 

integratie van de plantenfysiologie en de erfelijkheidsleer. Met Kees Karssen 

bedank ik ook Rob van Beek voor het uitvoeren van de vele ABA bepalin-

gen. 

Dr. G.W.M. Barendse uit Nijmegen ben ik zeer erkentelijk voor zijn onderzoek 

naar de biochemische achtergrond van de ga mutaties. Zeer waardevol heb ik ook 

altijd de contacten gevonden met de Arabidopsisgroep in Groningen onder leiding 

van Prof. W.J. Feenstra. Behalve dat deze geleid hebben tot een gezamenlijke 

publicatie, heb ik ook nun benadering van de biochemische genetica van hogere 

planter) (in het bijzonder van ons gemeenschappelijke object Arabidopsis) als 

zeer inspirerend ervaren. 

Het lijkt misschien alsof alleen buiten de vakgroep hulpvaardige personen 

aanwezig waren. Niets is minder waar, want dankzij de bekwame assistentie van 

Margie Conquet, Sandra de Jongh, Corrie Hanhart en Jannie van Eden was het mo-

gelijk de miljoenen zaden uit te zaaien (vaak zaad voor zaad.soms met duizen-

den tegelijk) en de honderdduizenden planten op te kweken en te beoordelen. 

Daarbij komen nog de talloze diverse proeven en proefjes die zij met veel 

inzet en nauwkeurigheid hebben uitgevoerd. De goede sfeer en samenwerking 

binnen ons Arabidopsisgroepje, waarbij ik ook de stagiaires en doctoraalstu-

denten reken, is voor het belangrijkste deel aan hen te danken. 

Ook aan de plezierige medewerking van de heren G. van IJmeren, J. Beekman, 

A. Arends, W.H. van Blijderveen en B. Weijman, die het "onkruid" in de kassen 

verzorgd hebben, denk ik met veel genoegen terug. 

Dat Lidwine Dellaert de eerste 3| jaar tegelijk met mij op de vakgroep aan 

Arabidopsis werkte, was een waardevolle ervaring. Van haar heb ik geleerd dat 

je mutatieproefjes niet al te kinderachtig moet aanpakken. Piet Stam wil ik 



hartelijk bedanken voor zijn altijd aanwezige bereidheid mij voor te lichten 

en te helpen met de wiskundige problemen in het onderzoek. Sans tijdens de 

koffie met wat formules op een papiertje, maar vaak ook door het schrijven 

van gecompliceerde computerprogramma's, wanneer het rekenen al te lastig werd. 

Een andere belangrijke groep die ik niet gauw zal vergeten is het "losse 

volk", de STOVA stagiaires Hans Denissen, Olga Clei, Frieda van Dreven, Linda Put-

man, Kees van de Ka en Patty van Loenen Martinet en last but not least de 31 

studenten (echt te veel om allemaal te noemen) die 3 en soms 6 maanden lang 

hebben meegewerkt aan het onderzoek als onderdeel van hun doctoraalstudie. 

Een groot deel van hun werk is terug te vinden in de hoofdstukken 6 en 7. 

Het begeleiden van deze bijna altijd enthousiaste studenten is een zeer ple-

zierig deel van mijn onderwijstaak geweest. 

Het vele typewerk voor dit proefschrift is voor een belangrijk deel uitge-

voerd door Trees Makkes, maar ook de bijdragen in dit verband van Henriet 

Boelema en Marjon van Hunnik mogen niet onvermeld blijven. Dhr. Haasdijk van 

plantenfysiologie, Jan Maassen en Jannie van Eden hebben het merendeel van de 

tekeningen verzorgd, terwijl Hans de Vries en dhr. K. Knoop de fotografie voor 

hun rekening namen. Jan Maassen, Theo van Lent en dhr. K. Knoop hielden de 

technische outillage op peil en breidden die soms uit. Voor al deze "tech-

nische" hulp in de ruime zin van het woord, mijn hartelijke dank. De overige 

leden van de vakgroep wil ik bedanken voor de goede sfeer en voor datgene wat 

ik van hen geleerd heb over andere aspecten van het zeer brede gebied van de 

genetica. 
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GENERAL INTRODUCTION 

Growth and differentiation of plants are determined by numerous interactions 

between environmental factors (light, temperature, supply of minerals etc.) 

and the genetically conditioned ontogenic development. 

Different groups of regulatory substances are involved in growth and differ

entiation, such as: 1) the planthormones: auxins, cytokinins, gibberellins, 

abscisic acid and ethylene and 2) photoreceptors like phytochrome. 

The role of individual planthormones and photoreceptors has been analysed 

mainly in correlative studies, in which it was attempted to associate changes 

in the levels and/or in the response of a particular substance with morpho-

genetic or biochemical changes. It is obvious, however, that such correlations 

do not prove that hormones are causally involved in the observed response. 

Therefore, genotypes in which the level of a single regulating compound is dras

tically changed not only provide information about its genetic determination 

but also add an important tool to physiological studies. More specifically, 

with well defined single gene contrasts it is clear that the observed physiolo

gical and biochemical differences are causally related. This genetic approach 

ideally requires the use of spontaneous or induced monogenic mutants in iso

genic lines, i.e. in the absence of obscuring effects of other gene contrasts, 

known or unknown. For this reason comparisons between cultivated varieties are 

of limited use for fundamental physiological research; moreover, well pro

nounced differences are not expected among cultivars, for types with drastic 

changes in the level of an essential substance are usually not maintained, 

12 



because of expected adverse effects on yield etc. 

In plants several genes affecting biochemically more or less well defined 

compounds and processes have been described, e.g. genes for storage proteins 

(Nelson, 1973), secondary plant metabolites like anthocyanins and epicuticular 

wax (Wettstein-Knowles, 1979), photosynthesis and photorespiration (Vose,1981; 

Somerville and Ogren, 1982), mineral uptake (Vose, 1981) and a limited number 

of amino-acid and vitamin auxotrophs (Gebhardt and King, 1981). 

Identified genes controlling hormone metabolism or action have been de

scribed before in literature. Some of the relevant mutants were found in exis

ting general mutant collections. Examples are the gibberellin (GA) responsive 

dwarfs in maize (Phinney, 1960) and some other species (Pelton, 1964); the 

abscisic acid (ABA) deficient mutants (Tal and Nevo, 1973) and an ethylene re

sponsive mutant (Zobel, 1973) in tomato, and the photosystem I mutants found 

among the chlorophyll mutants of barley (HiHer et al, 1980). However, many 

interesting mutants may have escaped detection, because they are (conditional

ly) lethal or because of the inconspicuous change in appearance when a parti

cular blocked metabolic pathway is bypassed. 

A fruitful method aimed at collecting specific classes of mutants is the 

induction of mutations followed by the appropriate detection and selection pro

cedures. Such direct procedures to isolate physiological mutants in plants 

have been used in studies on nitrate metabolism (Braaksma, 1982), photorespi

ration (Somerville and Ogren, 1982) both with Ardbidopsis, hormone sensitivity 

of barley aleurone layers (Ho et al., 1980), and the selection of auxin re

sistant mutants, again in Ardb-Ldopsis (Maher and Martindale, 1980). These 

mutants were selected at the seed and plant level. Recently auxin and abscisic 

acid tolerant lines were isolated in cell cultures (see von Siegemund, 1981). 

The design of these detection and selection procedures requires an under-

13 



standing of the physiological process under study and a plant system suitable 

for both genetical and physiological experimentation. It often involves the 

growth of large numbers of plants under strictly controlled conditions of 

growth medium or even the composition of the atmosphere (Somerville and Ogren, 

1982). In general large scale testing is only feasable with small plants or 

with seedlings or seeds, though their small bulk can be a disadvantage for 

physiological and biochemical analysis. Also efficient mutagenic procedures 

should be available to keep the number of plants to be screened within opera

tional limits. The small fast growing diploid crucifer Arabidopsis thaliana 

(L.) Heynh. fullfills many of the prerequisites for efficient mutant selection 

and mutant characterization (Redei, 1975), for it has a very short life cycle 

(less than two months), takes little space and still produces thousands of 

small seeds per plant. Moreover it is a selffertilizer, which facilitates mu

tant detection and the isolation of genetically homozygous lines, its chromo

some number is low (2n = 10), the plants can be grown aseptically and callus 

and cell suspension cultures are possible (Negrutiu et al., 1978). So far a 

disadvantage compared to e.g. barley, maize, pea and tomato was formed by its 

rather fragmentary genetic map. 

The present thesis describes the isolation and characterization of genes 

regulating the metabolism and action of plant hormones and photoreceptors in 

Arabidopsis thaliana (L.) Heynh. 

The first 4 chapters present the isolation procedures and the genetical and 

physiological characterization of gibberellin responsive mutants (chapter 1 ) , 

abscisic acid deficient mutants (chapters 2 and 3) and photoreceptor mutants 

(chapter 4). The use of such mutants for plant physiological research is de

monstrated especially in chapters 3 and 4. 

The last 4 chapters give a more detailed genetic description of the mutants. 

14 



In chapter 5 the mutation frequencies per locus are calculated for d i f fe rent 

mutagens. To locate the genes on the Arabidopsis genome, the d i f fe rent linkage 

groups were f i r s t assigned to the 5 chromosomes (chapter 6) and subsequently 

a detailed linkage map was constructed comprising 76 loci (chapter 7 ) . F ina l 

ly one locus (ga-l) gave the opportunity to analyse i t s genetic f ine s t ructure, 

which led to the f i r s t i n te rna l ly consistent l inear map for a higher plant 

gene (chapter 8). 
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CHAPTER 1 
1MIORETICAL 
AND 
APPLIED GENETICR 

© by Springer-Verlag 1980 

Induction and Analysis of Gibberellin Sensitive Mutants 
in Arabidopsis thaliana (L.) Heynh. 
M. Koomneef and J.H. van der Veen 
Department of Genetics, Agricultural University, Wageningen (The Netherlands) 

Summary. In Arabidopsis thaliana 37 independent irradia
tion or EMS induced mutants were isolated which have an 
absolute or almost absolute gibberellin (GA) requirement 
for germination and successive elongation growth. These 
are called 'non-germinating GA-dwarfs', since without fur
ther addition of GA they develop into typical GA-dwarfs, 
being dark green, stunted and sterile. However, with re
peated GA-treatment they develop into fertile plants with 
a completely wild type phenotype, or nearly so. In addi
tion, 19 independently induced 'germinating GA-dwarfs' 
were obtained, i.e. mutants which do germinate without 
GA but develop into typical GA-dwarfs. With repeated 
GA-treatment these too grow to become completely wild 
type phenotypes, or nearly so. 'Germinating dwarfs' have 
been found by previous authors in a number of other 
plant species. The 'non-germinating dwarfs' form a new 
class of mutants. The system of non-germinating mutants 
offers a resolving power unique in higher plants, so that 
self-detecting rare events like induced revertants or intra
genic recombinants can be efficiently screened for. 

The 56 GA-sensitive mutants represent mutations at 5 
loci, located on three of five Arabidopsis chromosomes. 
At three of the five loci both mutant classes were repre
sented in similar frequency ratio's, whilst at the other two 
loci only germinating dwarfs were found. 

Key words: Arabidopsis thaliana - Gibberellin - Gibberel
lin sensitive mutants - Dwarf mutants — Non-germinating 
mutants — Gene localization 

Abbreviations 

GA gibberellin 
EMS ethylmethanesulfonate 
NG non-germinating 
G germinating 

Introduction 

Since plant hormones play an important role in the regu
lation of plant life, the isolation of plant hormone defi
cient mutants is of interest for both plant genetics and 
plant physiology. 

Mutants with a reduced level of abscisic acid (ABA) 
were found in tomato (the flacca mutant; Tal and Nevo 
1973) and in Arabidopsis (Koomneef et al. 1980). In cer
tain apple-dwarfs the IAA (indol-acetic acid) levels were 
found to be reduced (Jindall et al. 1974). The gibberellin 
(GA) sensitive dwarf mutants, isolated in several plant 
species (for review see Pelton 1964) form the largest and 
best known group of plant hormone deficient mutants. In 
this group the GA sensitive mutants in maize (Phinney 
1960; 5 different loci) and in rice (Murakami 1970; 2 loci) 
have been characterized into some detail. 

These mutant genes very probably regulate the synthe
sis of endogenous GA's, as could be concluded from the 
pronounced response to exogenous GA's, the absence or 
changed composition of endogenous GA's (Phinney 1960; 
Murakami 1970; Suge 1978), a response to specific pre
cursors and to different GA's depending on the locus 
mutated (Katsumi et al. 1964; Murakami 1970), and in 
one case from feeding experiments with labelled precur
sors (Hedden and Phinney 1976). 

Upon mutagenic treatment, M2 lines segregating non-
germinating, but otherwise well-developed seeds, are not 
uncommon in Arabidopsis. Far more frequent of course 
are non-germinating shrunken underdeveloped seeds 
which are classified as embryonic lethals (Miiller 1963). 
Since endogenous growth regulators play an important 
role in the control of seed germination (Mayer and Shain 
1974), it occurred to us, that at least some of the well 
developed non-germinating seed mutants might represent 
mutations in genes regulating plant hormone synthesis or 
function, e.g. GA synthesis. Therefore, we systematically 
started screening M2 lines for GA responsive non-germi-
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nators. This entirely new class of GA sensitive mutants we 
call 'non-germinating GA dwarfs', since without further 
GA treatment (after germination induction) they were 
found to develop into typical GA dwarfs. The same mate
rial was also screened for GA sensitive mutants among 
dwarfs, which grew from germinating seeds, in order to 
find 'germinating GA dwarfs', in analogy to the dwarfs in 
other species. For preliminary reports see Koornneef et al. 
1977; Koornneef 1978. The mutation frequencies of the 
mutants described are given into detail by Koornneef and 
Dellaert 1981. The gene symbol ga is proposed for all GA 
sensitive mutants in Arabidopsis (Koornneef 1978). These 
have not been described before in this species. We do not 
place the ca mutant (Bose 1971,1974) and the le mutant 
(Napp-Zinn and Bonzi 1970) into this class asaz reacts to 
a high concentration of GA3 by a length increase from 2 
cm to only 5 cm (Bose 1974). The reaction of le is also 
weak as stalks never get more than a few cm of length at 
high concentrations of GA. This differs greatly from the 
wild type length which is over 20 cm (Napp-Zinn pers. 
comm.). Our criterium is that only those mutants which 
by (repeated) GA treatment can be made to develop 
completely into wild type phenotype, or nearly so, should 
be called GA sensitive mutants. 

Material and Methods 

Plant Material and Conditions of Culture 

Arabidopsis thaliana (L.) Heynh. (2n = 10) is a small fast growing, 
self fertilizing crucifer. Seed stocks used in the experiments were 
derived from the pure line 'Landsberg-erecfa* (Redei 1962). The 
seeds were sown in 9 cm petri dishes (25, 30 or 36 per dish), 
equally spaced on perlite saturated with a standard mineral solu
tion, the composition of which was as described by Oostindier-
Braaksma and Feenstra (1973). To break seed dormancy the dishes 
were kept at 2-4°C for 4-6 days. Germination was at ± 24°C under 
continuous illumination by fluorescent light tubes (Philips TL 57) 
at roughly 8 W m - 2 . After 8 days the seedlings were transplanted 
into soil (pots or pans) and cultivated in an air-conditioned green
house, where additional continuous light was given in the winter 
(October to April) by frames of TL 57 tubes. For the purpose of 
testing germination, seeds were sown in plastic petri dishes (tf> 8.5 
cm), with two layers of filter paper (ederol no. 261) saturated 
with two ml of distilled sterile water. To avoid rapid evaporation, 
each dish was wrapped in a small polythene bag. Germination was 
determined 7 days after the end of cold treatment. 

The Induction and Isolation of GA Sensitive Mutants 

To induce mutants, seeds were preimbibed at 2-4°C during 5 days 
on filter paper and redried at 24°C during 24 hours on filter paper. 
The seeds were then treated with ethylmethanesulfonate (EMS, 
10 mM, 24 h, 24°C) or irradiated after 4 hours submersion in tap 
water, with X-rays or fast neutrons (Dellaert 1980; Koornneef and 
Dellaert 1981). 

The resulting M y plants were cultivated in soil and individually 

harvested. In the case of EMS experiments, per Mi plant, a num
ber of siliquae in general from the top of the main stem were har
vested; in the case of the radiation experiments, only one well-filled 
silique from the top of the main stem was harvested (Dellaert 
1980). It should be noted that the top of the main stem is pre
dominantly non-chimeric due to progressive loss of chimerism 
(Balkema 1972; van der Veen unpublished). 

To isolate non-germinating GA sensitive mutants, M2 lines, 
separately sown on standard mineral medium, were screened at 
day 8 after the end of cold treatment. All well developed seeds 
that had not germinated were transferred with a small brush to 
petri dishes containing 10"5 M GA4+7 in the medium. These dishes 
were placed back into the climate room, and after another 8 days 
all seedlings were transplanted into soil. Those that developed into 
dwarfs were sprayed with a solution of 10~4 M GA4+7 to restore 
normal growth and ensure fertility. Seeds from the resulting M3 
lines were tested for germination behaviour and GA sensitivity. 
From most of the M2 lines used for screening, the seedlings that 
were obtained without GA were planted out and scored for dwarf 
and compacta mutants. The GA sensitivity of these dwarfs was 
tested in the M3 and sometimes already in the M2 generation. The 
criterium for GA sensitivity was that by spraying the mutants 
weekly for three weeks with a solution of 10~4 M. GA4+7 the 
wild type phenotype could be restored completely, or nearly so. 

Genetic Characterization 

The different mutants obtained in successive experiments were 
tested with a gradually built up representative set of tester mutants 
for allelism vs. non-allelism on the basis of non-complementation 
vs. complementation to wild type in their Fj's. Mutants that 
showed non-complementation with a particular tester were in 
general retested with a second mutant at the same locus. Gene lo
calization was done by trisomic analysis (Koornneef and van der 
Veen 1978) and by linkage analysis of F2 populations. The rec-
combinant fraction was calculated by the Product Ratio Method, 
using the tables of Stevens (1939). The chromosome denotation 
was as proposed by Koornneef and den Besten (1979). Segregation 
frequencies of the ga-1, ga-2 and ga-3 mutants were determined 
upon crossing with wild type, in most cases already in the M2 
generation. The F2 progenies (size 75-150 plants) were sown in 
petri dishes with 1 0 _ s M GA4+7 in the medium and after trans
planting into soil the fraction of dwarf mutants was determined 
when the plants were about 5 weeks old. 

Results 

The Isolation and Description ofGA Sensitive Mutants 

Up to now 37 independently induced n on-germinating GA 
sensitive mutants have been isolated. In the EMS experi
ments their frequency was about 6 per 1000 M2 lines 
tested. All are very similar in overall morphology. Germi
nation can be restored completely by GA (Fig. 1). All 
GA's tested, viz. GA 3 , G A 4 + 7 , GA7 and GA 9 , have this 
effect, G A 4 + 7 being the most effective. Without further 
G A spray, the initially completely normal looking seedlings, 
upon transfer to soil, develop into dark green dwarfs, 
which later develop a bushy appearance (Fig. 2). Petals 
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Fig. 1. The germination of two typical non-germinating mutants 
at the ga-l locus and wild type at different concentrations of GA4+7 

Fig. 2. Non-germinating mutant (NG5), germinated by GA3. 
Arrow indicates an inflorescence pollinated with pollen from a 
normal plant 

and stamens are very poorly developed; pistils and sepals 
are almost normal (Fig. 3). No selfed seed is formed, but 
seed set can be obtained by pollen from a normal plant. 
Flowering time was not markedly affected. 

By spraying these dwarfs weekly for at least three 
weeks with 1 0 - 4 M GA4 + 7 , starting 2-3 weeks after ger
mination, the phenotype of the wild type, including plant 
length, flower morphology and fertility, can be restored 
completely, or nearly so (Fig. 4). In old dwarfs (over 4 

Fig. 3. Flower morphology of NG5 (ga-l) after germination in
duction by GA4+7 (a) and of wild type (b) 

weeks old) length growth cannot be restored completely 
but flower morphology and fertility can be restored even 
in relatively very old dwarfs. Upon termination of GA 
spraying, symptoms of GA deficiency will develop pro
gressively, mainly at the top of the inflorescences. 

As mentioned above dwarfs were also selected from 
normal germinating lines. Those which responded well to 
spraying with GA4+7 could be divided into two classes: 

1 Mutants with a phenotype similar to that of non-
germinating GA sensitive dwarfs. These dwarfs all appeared 
to be alleles at the loci ga-l, ga-2 •and ga-3 (see next sec
tion). 

2 Dwarf mutants that were in general less extreme 
than the former; flower morphology and fertility in par
ticular were almost completely normal in this group (Fig. 
4). This type of dwarf represented mutants at the ga-4 and 
ga-5 loci. 

It is difficult to say which proportion of dwarf mutants is GA 
sensitive, as dwarf and compact types form a very large and diverse 
group of mutants, many of them having a reduced fertility. Among 
dwarfs that are reasonably fertile, GA sensitive dwarfs (class 2) 
represent only a small minority. Many sterile dwarf plants were 
sprayed with GA4+7 in the M2- A small proportion of these mu
tants, in which fertility could be restored, form the class 1 GA 
sensitive dwarfs. In the EMS experiments about 5 GA sensitive 
dwarfs of both classes could be found per 1000 Mj lines tested. 

To compare the germination behaviour of the different 
mutants isolated at the ga-l, ga-2 and ga-3 loci, homozy-
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Fig. 4. The response of several ga -mutants and wild type Arabidopsis to two sprays with 10"* M GA44.7 about two and three weeks after 
germination. All plants germinated without G A, which is rare for NG5 but normal for the others. Note that in the ga-1 and ga-2 mutants 
symptoms of GA deficiency appeal again in the top of the inflorescence 

gous lines of each independently induced mutant were 
obtained as follows: Plants were selected from F3 lines 
derived from mutant X wild type crosses and in a few 
cases from lines that were obtained after several genera
tions of line selection of the original mutants. Thus, all 
mutants have a genetic background, undisturbed as much 
as possible by other mutations. The selected lines were 
grown together and harvested on the same day. All seed 
parents were given 10~5 M GA4+7 to initiate germination 
and sprayed two times, i.e. two and three weeks after 
germination. The germination of two month-old seeds 
from six individual parent plants per mutant line was tested 
(50-100 seeds/plant). The frequency distribution of the 
average germination percentage per mutant is shown in 

I 1 Isolated as N-G nuitan 

V//A Isolated as G rmjtan 

H T L 
0 0 50 100 

Average germination percentage 

Fig. 5. The distribution of the average germination percentage of 
47 independently induced mutants at the ga-1 (l),ga-2 (2)-andga-3 
(3) loci 

Fig. 5. No clear differences exist between the loci but two 
different allele groups appear within the loci, depending 
on the selection criterium used. Among the non-germina
ting mutants, lines are present which show a certain 
amount of germination; most germinating mutants show 
some reduction of germination. After transfer to soil 
'spontaneous germinators' always develop into typical GA 
dwarfs. Germination of these mutants without GA has 
been found to be a character depending greatly on the 
harvest period and other factors known to affect the ger
mination of dormant seeds: storage, cold treatment after 
sowing, K.NO3, light quality and intensity (to be pub
lished elsewhere). It should be stated that some lines never 
showed any germination without GA. So among the mu
tants at the ga-1, ga-2 and ga-3 loci, a large range from 
absolute to no GA requirement for germination is avail
able. 

Genetical Analysis of the Mutants 

Complementation tests between the mutants revealed that 
the non-germinating GA mutants represent mutations at 
three different loci. Among the 19 germinating GA sensi
tive dwarfs 10 were at the same three loci, the other 9 at a 
fourth and fifth locus (Table 1). Among the morphologi
cally identical ga-1, ga-2 and ga-3 mutants, ga-1 mutants 
predominate among all groups (viz. non-germinating, ger
minating dwarfs, EMS and radiation). This locus specificity 
within these loci is significant \\ = 25.58 (p < 0.01). 

No clear indication was obtained for intragenic partial 
complementation between non-germinating mutants. 
Crosses between non-germinating and germinating alleles 
of the ga-1, ga-2 and ga-3 loci mostly germinated, germi
nation thus behaving as dominant. The resulting dwarfs 
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Table 1. Results of complementation tests with GA sensitive mutants 

Type of dwarf Mutagen Locus Total 

ga-1 ga-2 ga-3 ga-4 ga-5 

Non-germinating EMS 21 4 
Fast neutrons 4 1 
X-rays 1 1 

sub total 

30 
5 
2 

26 37 

Germinating EMS 
Fast neutrons 
X-rays 

sub total 

17 
1 
1 

19 

Total per locus 32 56 

Table 2. Chromosome location and recombinant fractions between 
ga-\od and representative marker genes of the chromosomes involved 

Locus 

ga-4 

ga-2 

ga-1 

ga-5 
ga-3 

Chrom./ 
chrom.arm 

1A 

IB 

4 

4 
5 

Marker 
tested 

an 
dis-1 
ch 
ap-1 
cer-2(=vc-2) 

"g 
ag 
ms 
tz 

Recombinant 
fraction 

0.31 ± 0.05 
0.11 ±0 .05 
0.41 ± 0.05 
0.18 ± 0.02 
0.33 ± 0.04 
0.31 ±0 .02 
0.08 ± 0.01 
0.11 ±0 .02 
0.40 ± 0.02 

References for markers and their location: an, dis-1, ch: Feenstra 
1978; ap-1, cer-2, ag, ms: Koornneef and Den Besten 1979;fz: Lee-
Chen and Steinitz-Sears 1967 

were never taller than the germinating dwarf parent. 
From the gene mapping experiments it appears that 

the ga loci are distributed at random over the Arabidopsis 
genome (Table 2). No close linkage between any pair of 
ga loci was detected. 

All ga mutants behave as monogenic recessives to wild 
type. Estimates of the segregation frequencies for mega- / , 
ga-2 and ga-3 locus have been given in Table 3 . By using a 
X2 test according to Brandt and Snedecor it appeared that 
no significant differences exist between respective loci, 
mutagens and types of mutant when testing within re
maining groups. 

It may be of interest that the average segregation fre
quency for non-germinating mutants (20.7%) is signifi
cantly lower than the expected 25%. However, the fre-

Table 3. Segregation ratio's 
65-150 

Type of dwarf 
mutant 

Non-germinating 

Germinating 

Locus 

ga-1 
ga-1 
ga-2 
ga-2 
ga-3 

ga-1 

ga-1 
ga-2 
ga-3 

in F 2 with 

Mutagen 

EMS 
Radiation 
EMS 
Radiation 
EMS 

F.MS 
Radiation 
EMS 
EMS 

wild type mutants at the ga-1, ga-2 

Segregation 
wild types 

1810 
463 
401 
225 
443 

3342 

430 
31 

119 
211 

791 

Ratio 
mutants 

489 
113 

92 
49 

130 

873 

126 
12 
32 
81 

251 

and ga 

Mutant % 

21.3 ± 
19.6 ± 
18.7 ± 
17.8 ± 
22.7 ± 

20.7 ± 

22.7 ± 
27.9 ± 
21.2 ± 
27.7 ± 

24.1 ± 

0.8 
1.6 
1.7 
2.3 
1.7 

0.6 

1.8 
6.8 
3.3 
2.6 

1.3 

-3 loci. Number of seeds tested per F 2 is approximately 

X2 (3:1) 

17.06a 

8.90 a 

10.56 a 

7.40 a 

1.63 

41 .34 a 

1.62 
0.19 
1.17 
1.17 

0.46 

No. of mutant 
lines tested 

20 b 

5 
4 
2 
5 

36 

5 
1 
2 
2 

10 

No. of mutant lines 
sign, deviating from 
3:1 a t p < 0.05 

2 
2 
2 
1 
0 

7 

0 
0 
0 
0 

0 

a p < 0 . 0 1 
one NG EMS mutant was accidentally not tested 
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quency for germinating alleles of the same loci (24.1%) 
does not differ from this percentage. In itself recessive 
deficits for induced mutants are by no means uncommon. 

Discussion 

Of the GA sensitive dwarfs described in a number of higher 
plant species, only in the case of maize (Phinney 1960; 
Hedden and Phinney 1976) and rice (Murakami 1970) are 
clear indications available that genes regulating GA syn
thesis are mutated in these genotypes. 

Because the biosynthetic pathway of gibberellins is rather complex 
(Barendse 1975; Hedden et al. 1978) it is likely that many loci are 
involved. The later part of the pathway consists of interconver-
sions between the different GA's (up to 50 different GA's have 
been isolated up to now and many of these in higher plants). It 
might be possible that some mutations in genes regulating these 
interconversions escape detection because 'escape routes' are avail
able. 

In maize five loci have been identified (Phinney 1961) and in 
rice at least two (Murakami 1970). It should be pointed out that 
because of their high sterility without GA spray (Cooper 1957), 
GA dwarfs are not easy to maintain in mutant collections. Non-
germinating GA responsive mutants seem to have passed unnoticed. 

As the physiological characterization of the mutants is 
not yet completed, the exact nature of the ga loci in Ara-
bidopsis cannot yet be established. However, the most 
plausible explanation appears to be that they control steps 
in gibberellin biosynthesis. The finding of mutants at a 
same locus that have a different degree of GA requirement 
indicates that leaky' alleles are rather frequent, because, 
apart from the germinating dwarfs, some non-germinating 
mutants that also show partial germination under particu
lar circumstances should be considered as leaky'. The 
apparent discontinuity between mutants selected as dwarfs 
and mutants selected as non-germinators might be caused 
by the selection criterium, although the same material has 
been screened for both types. A probable reason for the 
discontinuity could be the steepness of the GA dose re
sponse curve for germination. 

Since in the dwarfs germination can be perfect while 
length growth is far from normal, the GA requirement for 
germination is probably much lower than for elongation 
growth and normal flower development. 

The nature of the ga-4 and ga-5 loci is still under speculation. For 
ga-4 there are indications from tests with different GA's (Koorn-
neef unpublished), that it controls interconversion between some 
GA's. 

An explanation for the somewhat reduced segregation 
frequencies might be a reduced viability or an incomplete 
'rescue' by 10"5 M GA4+7 . However, it seems that these 
factors are of minor interest, as the viability of the mutant 

seedlings recovered by GA application to the seeds nor
mally is very good; these plants do not differ from wild 
type in the most important period for survival in a green
house. The possibility of incomplete rescue seems to be 
ruled out by Figure 1. Reduced transmission,by the male 
gametophyte especially, might be a more important factor. 

Except for the use of go-mutants in illucidating the 
genetics of the gibberellin synthesis, these mutants, espe
cially the 'non-germinators', are of particular interest as 
thev provide an example of auxotrophic mutants which 
are so rare in higher plants (Redei, 1975). In Arabidopsis 
thiamine deficient mutant (Feenstra, 1964; Redei, 1965) 

are the only clear example. However, as the GA deficiency 
expresses itselt already at the level of germination, they 
can be used much more efficiently than the seedling thia
mine auxotrophics in experiments for the research of e.g. 
intragenic recombination and reverse mutations. The dwarf 
vs. non-dwarf phenotype provides a welcome check of the 
non-germinating vs. wild type phenotype in cases when 
germination occurs due to leakiness. For the use of ga-
mutants for the study of intragenic recombination and of 
reversion see Koornneef( 1979) andKoornneefetal. (1980), 
respectively. 

Another application of ga-mutants might be in plant 
cell genetics, where e.g. complementing auxotrophic mu
tants can be used to select fusion products of lines mutated 
at different ga-\od. Non-germinating GA sensitive mutants 
are not restricted to Arabidopsis but can also be found in 
other plant species (e.g. tomato; van der Veen unpub
lished). 
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Summary. By selecting for germinating seeds in the pro
geny of mutagen-treated non-germinating gibberellin re
sponsive dwarf mutants of the ga-1 locus in Arabidopsis 
thaliana, germinating lines (revertants) could be isolat
ed. About half of the revertants were homozygous re
cessive for a gene (aba), which probably regulates the 
presence of abscisic acid (ABA). Arguments for the 
function of this gene were obtained from lines homozy
gous recessive for this locus only, obtained by selection 
from the F2 progeny of revertant X wild-type crosses. 
These lines are characterized by a reduced seed dor
mancy, symptoms of withering, increased transpiration 
and a lowered ABA content in developing and ripe 
seeds and leaves. 

Key words: Arabidopsis thaliana - Abscisic acid - Gib
berellin - Physiological mutants - Seeds - Dormancy -
Water relations 

Abbreviations 

ABA Abscisic acid 
GA4 + 7 Mixture of gibberellin A4 and A7 
EMS Ethylmethanesulfonate 
NG Non-germinating 
G Germinating 

Introduction 

The role of endogenous regulating compounds in the 
physiology of plants has been studied mainly by cor
relative studies. The use of genotypes in which the level 
of one of these compounds is drastically changed adds 
an important additional tool to plant physiology. This 
genetic approach ideally requires the use of monogenic 
mutants or isogenic lines, for only with such single-gene 
contrasts is it clear that the observed physiological and 
biochemical differences are causally related. 

The hormone abscisic acid (ABA) plays an important 
regulatory role in a number of physiological processes e.g. the 
dormancy and germination of seeds, the regulation of water 
stress, root geotropism and dormancy of buds (Walton 1980). 
Monogenic mutants with a disturbed ABA metabolism have 
been studied in tomato by Tal and coworkers (Tal and Nevo 
1973). These mutants at the loci sit, not and flc, isolated by 
Stubbe (1957, 1958, 1959) are characterized by an excessive 
wilting tendency due to abnormal stomatal behaviour (Tal 
1966), which could be reversed by the application of ABA (Im-
ber and Tal 1970). A relation between disturbed ABA metab
olism and germination was described in maize by McDaniel 
etal. (1977) and Smith etal. (1978). They found that pre
cocious germination of viviparous (vp) mutants (Robertson 
1955) could be attributed to the absence of ABA or to the in
capacity to respond to ABA. 

In Arabidopsis monogenic recessive mutants have been de
scribed by the present authors in which germination was re
duced or absent under conditions that were suitable for germi
nation of wild-type seeds (Koornneef et al. 1977; Koornneef 
1978; Koornneef and van der Veen 1980). 

One group of non-germinating mutants, which 
could be brought to 100% germination by the appli
cation of gibberellins ( G A 4 + 7 , GA 3 and GA9 were ef
fective), subsequently developed into dwarfs. These 
dwarfs could be reverted fully or almost fully, to wild-
type by GA sprays (Koornneef and van der Veen 1980). 
These mutants, found in Arabidopsis at three loci (ga-1, 
ga-2 and ga-3) probably lack the capacity to synthesize 
gibberellins. Strictly comparable mutants have been 
found in tomato, at only two loci so far (Koornneef 
et al. 1981; van der Veen and Bosma pers. comm.). 

Application of gibberellins stimulates the germination 
of seeds of many plant species (Jones and Stoddart 
1977). Seed germination requires in most cases de novo 
synthesis or activation of these substances. Besides such 
promoters, also inhibitors like abscisic acid (ABA) may 
affect the state of dormancy of a seed. 

This concept led to the idea that the germination ca
pacity of non-germinating dwarfs might be restored 
when the level of inhibitors would be reduced by muta
ting the genes responsible for their production. Selection 
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for this type of revertants is easy since they are self-de
tecting: germinating seeds among non-germinating 
seeds. Apart from mutations in genes regulating the 
production of inhibitors, also other types of external 
suppressor mutations may be found as well as 
intragenic reversions. This paper describes the isolation 
of ABA deficient mutants in Arabidopsis by using this 
revertant technique. For preliminary reports on this 
subject see Karssen e ta l . (1980) and Koornneef et al. 
(1980). 
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light as described above. The resulting Mj seedlings developed 
into the usual NG5 and 6.59 dark-green, bushy dwarfs. At 4 
and 5 weeks after EMS treatment the dwarfs were sprayed with 
100 uM GA4+7 to stimulate anther development and to pro
vide sufficient seed set from selfing. M! plants were individu
ally harvested and the M2 progenies were sown separately at 
standard conditions. Screening for germinating seeds (the pre
sumed revertants) was done 8 days after the start of incubation. 
The seedlings obtained were transplanted into soil. The ulti
mate selection for revertants was based on the germination 
behaviour of the M3 lines. 

Genetic Characterization 

Material and Methods 

Plant Material 

Arabidopsis thatiana (L.) Heynh. (2 n= 10) is a small fast grow
ing, self-fertilizing crucifer. Seed stocks used in the present ex
periments were derived from the pure line Landsberg erecta 
(Redei 1962), which will be referred to as the wild-type. For re
vertant induction we used the non-germinating, gibberellin-
sensitive mutant lines NG5 (EMS induced) and 6.59 (fast-neu
tron induced). Both lines are mutants induced in the wild-type 
at the ga-1 locus on chromosome 4 (Koornneef and van der 
Veen 1980). To check for seed admixture and unwanted cross-
fertilization, both lines were also homozygous recessive for gl-1 
(hairless; chrom. 3), except in the first revertant-induction ex
periment (see later). 

Conditions of Culture 

The seeds were sown equally spaced in numbers of 25, 30, or 36 
in 9 cm petri dishes on perlite saturated with a standard mineral 
solution, as described by Oostindier-Braaksma and Feenstra 
(1973). The seeds were incubated at 4-6 °C for 4 -6 days to 
break dormancy, and subsequently allowed to germinate at a 
temperature of approx. 24 °C under continuous light (Philips 
TL 57) at an intensity of 8 W • m2. After 8 days at 24 °C, the 
seedlings were transplanted into soil and cultivated in an air-
conditioned greenhouse, where additional white fluorescent 
light (Philips TL 57) was given during 24 h per day in the win
ter (October to April). 

Germination Tests 

Germination tests were performed in plastic petri dishes 
( 0 8.5 cm) on two layers of filter paper (Ederol no. 261) satu
rated with 2 ml of sterile distilled water. To avoid rapid evapo
ration, each dish was wrapped in a small polythene bag. Tem
perature and light conditions were as described above for seeds 
sown on perlite. Germination was scored 7 days after the start 
of incubation at 24 °C. 

The Induction and Isolation of Revertants 

To induce revertants, seeds of NG5 and 6.59 were first redried 
after dormancy breaking on moist filter paper and then treated 
with 10 mM ethylmethanesulfonate for 24 hrs at 24 °C in dark 
(Koornneef et al. 1982). After rinsing with tap water, the 
seeds were immediately sown in petri dishes containing 10 uM 
GA 4 + 7 in the standard mineral medium and transferred to 

For genetic analysis the revertants were crossed with wild-type 
and the parental ga-1 mutant. Revertant types were scored on 
their capacity to germinate without G A and on the leaf colour 
which is slightly different from the darker green colour of non-
germinating GA responsive ga-1 mutants. Presumed ABA-
types (recombinant, single recessive to wild-type) were scored 
on several morphological features (described in detail later in 
the paper). Allelism versus non-allelism was tested on the 
basis of non-complementation versus complementation to pa
rental ga-1 mutant type in Fj's of revertant X revertant or to 
wild-type in revertant X ABA-type crosses. 

Localization on chromosomes was done by trisomic analy
sis (Koornneef and van der Veen 1978). The position of the aba 
locus on the chromosome was determined by linkage analysis 
of F2 populations. The recombination fractions were estimated 
by the Product Ratio Method using the tables of Stevens 
(1939). 

Measurement of Water Loss in Intact and Cut-off Plants 

To determine water loss plants were grown for 2 weeks in plas
tic pots in the greenhouse and were then transferred to a cli
mate chamber (temperature 22 °C; relative humidity approx. 
85%, 12 h fluorescent light at approx. 13 W • m2, 12 h dark). 
From the day of transfer onwards, half of the plants were 
sprayed with 10 uM ABA every second day, the other half with 
water. After 8 days in the climate chamber the plastic pots, in
cluding the soil surface, were wrapped in aluminium foil to 
prevent evaporation from the soil surface. Water loss during 
the third light and dark period after wrapping the pots, was de
termined by weighing the plants with the pots at the change of 
dark and light. The leaf surface was measured with an area 
meter. To measure water loss in cut-off aerial parts, well-
watered plants were transferred from the climate room to a 
laboratory room and kept at 22 °C in white fluorescent light 
(0.6 W • m2). After an acclimatization period of IVi h the aerial 
parts were cut off from the roots and stored in 400 ml glass 
beakers. Fresh weight was determined every hour. 

Determination of ABA Content 

Quantitative determinations of endogenous ABA were per
formed according to techniques described by Knegt etal. 
(1981) with a few additions. During purification of the extracts 
of seeds and siliquae the extraction into K2HP04 with sub
sequent acidification to a final volume of 10 ml diethyl ether 
was performed three times instead of once. After standard 
purification the extracts of the leaves were purified addition
ally by using high pressure liquid chromatography with a re-
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verse phase RP8 column operated with a linear gradient from 
25% to 75% methanol in water. The solvents were 0.1 M 
towards acetic acid. ABA and trans-ABA are partially separat
ed in this system, but collected in one fraction. The gas 
chromatograph was operated with He as carrier gas and 5% 
CH4 with Ar as make up gas. 

Results 

A) Isolation of Revertants and Genetic Characterization 

The Isolation of Revertants 

From the individual M2 progenies of 2122 EMS-treated 
seeds of ga-1 mutants NG5 and 6.59 (M2 lines), 31 lines 
could be isolated that showed 50% (up to 100%) germi
nation under standard germination conditions 
(Table 1). It appeared that 15 of these lines were ger
minating, GA-responsive extreme dwarfs with a some
what weaker appearance and a slightly yellow-brown 
colour on the leaves compared to the parental ga-1 mu
tants. For reasons that will be described in the next sec
tions, this type will be called ABA revertant. 

Other isolated revertants were mostly slightly taller 
and/or had a paler green colour than NG5 and 6.59. 
The two revertants dominant to the parental lines 
reached a length of respectively 75% and 50% of the 
wild-type. These two groups will not be further con
sidered here. 

The selection of revertants in NG5 was hampered 
by the partial germination of this mutant as has been 
described before (cf. Koomneef 1979; Koornneef and 
van der Veen 1980), probably due to leakiness of this al
lele. This led to the decision to transplant only the most 
conspicuous plants from M2 lines in which germination 
occurred as these could be expected to be revertants. 
Further only the progeny of M2 plants, which showed 
some deviating features compared to the parental line, 
were tested as M3 lines. Only in the first experiment 
were M3 lines from each M2 line with germinating seeds 
tested. However, it appeared that all lines ultimately se
lected as revertants on the basis of a high germination 

percentage in M3 had a somewhat deviating morpho
logy. 

Genetic Characterization of the Revertants 

In crosses between the revertants and the parental ga-1 
mutants, the capacity of the revertant to germinate was 
found to be monogenic recessive to the inability to 
germinate of the ga-1 mutants. 

Complementation tests with 14 ABA-revertants re
vealed that 13 of these independently isolated revertants 
were allelic. The presence of a second looius needs 
further confirmation. 

In F2's from revertant X wild-type crosses one ex
pects on the basis of two unlinked loci for germination 
the ratio 13 germ.: 3 non-germ., and when also taking 
plant phenotype into account, the ratio 9 wild-type: 
3 non-germinating GA dwarf: 3 new (recombinant) 
phenotype: 1 germinating GA dwarf (revertant). In
deed, a deviating non-dwarf phenotype was observed in 
all F2's, which when compared to the wild-type had a 
reduced vitality (smaller, weaker plant), a slightly yel
low-brownish colour, and symptoms of withering, 
mainly in the influorescence (Fig. 1). The withering 
symptoms were more pronounced in winter than in 
summer. These symptoms point to ABA deficiency (see 
also below). Therefore the new recombinant phenotype 
was called ABA-type and the mutant allele aba. By self-
ing ABA-type F2 plants, F3 lines could be established 
not segregating for revertant types (expected one among 
three F3 lines). Lines homozygous for ABA-type were 
crossed with a parental ga-1 mutant to give F2 and F3. 
The segregation of these populations was analysed to
gether with those derived from revertant X wild-type 
crosses. It should be noted that aba1 was induced in 
ga-11 (line NG5) and aba2 in ga-12 (line 6.59) back
ground. In the ga-1 mutant X ABA-type crosses the al
lelic combinations were interchanged, so all combi
nations were represented. Since /'-test of heterogeneity 
between the four crosses did not reveal significant dif-

Table 1. Frequencies of independently induced revertants 

Experi
ment 

I 
II 
II 
III 
III 

Parental mutant 

NG5 (ga-P/ga-P) 
NG5 (ga-P/ga-P) 
6.59 (ga-P/ga-P) 
NG5 (ga-P/ga-P) 
6.59 (ga-P/ga-P) 

Number of M2 

progenies 
tested 

199 
382 
246 
771 
524 

2122 

Number of revertant lines 

ABA-rever
tants 

4 
4 
1 
2 
4 

15 

Dominant 

0 
1 
0 
0 
1 

2 

Others 

0 
3 
1 
8 
2 

14 

Total 

4 
8 
2 

10 
7 

31 
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Fig. 1A and B. A BA-type A26 (A) showing a withered main 
stem and withered siliquae compared with wild-type (B) 

ferences (except one case, see below), the segregation 
data of the four crosses listed below could be pooled 
(Table 2). 
Crosses in association; (revertant X wild-type): 

A) ga-P/ga-l^aba^aba1 X + / + , + / + 
B) ga-121 ga-11, aba21 aba2 X + / + , + / + 

Theor. Appl. Genet. 61 (1982) 

Crosses in dispersion; (ga-1 mutant x ABA-type): 

C) ga-11/ga-11, + / + X + / + ,aba2/aba2 

D) ga-12/ga-12, + / + X +/ + ,aba1/aba1 

These pooled data (Table 2) consistently confirm the 
segregation at two unlinked loci (ga-1 and aba), in par
ticular the fact that germinating GA dwarfs (revertants) 
only segregated in F 3 lines when expected. 

In F , lines from wild-type F2 plants a significant re
cessive deficit at the ga-1 locus was found. With induced 
mutants a recessive deficit of this magnitude is by no 
means uncommon and can be ascribed to certation (cf. 
Koornneef and van der Veen 1980; Koornneef et al. 
1982). Since the degree of certation is variable, the 
single case of significant heterogeneity between crosses 
can be explained in this way. In addition, the recessive 
deficit at the ga-1 locus may also be generated by a re
duced survival of non-germinating genotypes when 
these are induced to germinate by 10 u.M GA,j+7 after 8 
days of incubation at 24 °C. This may be partly due to 
secondary dormancy induced during that period. 

With regard to the phenotypes described in the top 
lines of Table 2 two different aspects have to be con
sidered: 1. Plant phenotype: aba/aba leads with a wild-
type genetic background (with respect to the ga-1 locus) 
to ABA-type plants (slightly yellow-brown colour, 
withering), whereas with a ga-1 background (GA dwarf) 
it leads to GA-responsive dwarfs with a more yellow-
brown colour than normal GA dwarfs. 2. Germination: 
in the presence of ga-11 ga-1, which as such leads to a 
lack of germination, aba/aba restores the germination 

Table 2. Segregation ratio's in F2 and F3 progenies from pooled crosses A, B, C and D (for explanation see text) 

Wild- GA dwarf ABA-type GA dwarf (re- tf(3:l) * i (3 : l ) tf 
type vertant type) 

NG G + NG locus 

+ /. 
+ /. 

ga-1 /ga-1 
+ /. 

+ /. 
aba I aba 

ga-1/ga-1 
aba/aba 

aba l inkage 
locus ("2 X 2 

Table") 

F2 generation 
F 3 generation 

F2 p lant wild-type: 
Segregating-digenic (52)b 

Segregating N G GA dwarf (22) 
Segregating ABA-types (27) 
Non-segregating (13) 

F2 p lant N G G A dwarf: 
Segregating "revertants" (29) 
Non-segregating (10) 

F 2 p lant ABA type: 
Segregating "revertants" (29) 
Non-segregating (9) 

F 2 p lant reverant type (18) 

555 

920 
507 
589 
357 

149 

203 
122 

554' 
253c 

179 

284 

167 

56 

60 

175 = 

3.6 0.1 

509 
213 

_ 

133 

-
240 

33 

59 

39.1* 
10.5* 

0.2 

1.9 

3.4 

0.4 

2.2 

0.1 

" N G GA dwarfs of the revertant type occurred almost exclusively in the progeny of cross B (see text) 
b In brackets: Numbers of F2 p lants selfed. These F2 plants were randomly sampled within each of the four phenotypic classes, but 
not between classes. Note the good fit within classes ( 4 : 2 : 2 : 1 and 2 : 1 ) 
c Tested by germination behaviour only 
** P<0.01 
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capacity. This seems to imply that GA is only required 
for germination if ABA is present. 

In a few cases seeds that did not germinate on water, 
gave, upon addition of GA4 + 7 , dwarfs which showed 
the leaf colour characteristics of the revertant type. 
Therefore it is concluded that in these cases the germi
nation capacity in ga-1/ ga-I, aba/aba was only partly 
restored. Such incomplete restoration occurred almost 
exclusively in cross B (alleles ga-I2 and aba2) and was 
absent in cross C (alleles ga-11 and aba2) and in crosses 
A and D (both aba1 allele). As a check both G and NG 
revertant types from cross B were selfed. The seeds ob
tained gave equal germination percentages, viz. 
32.0±5.4% for the G-parents and 31.113.8% for the 
NG-parents. 

A plausible explanation can be found on the basis of 
the concept of GA-ABA balance in germination. The 
ga-12 mutant never germinates - this is in contrast to 
the ga-11 mutant which sometimes germinates to some 
extent. To make the "deeply GA-deficient" ga-12 mu
tant germinate a "strong" (i.e. deeply ABA-deficient) 
aba mutation is necessary. Here aba2 is not strong 
enough, whilst aba1 is. 

As mentioned before, the mutant alleles aba1 and 
aba2 were initially induced in ga-Plga-P (line NG5) 
and ga-l2/ga-l2 (line 6.59) background respectively. 
From the crosses C (alleles ga-P and aba2)and D (al
leles ga-P and aba1) it follows that a in qualitative sense 
the germination-restoring effect of aba mutants does not 
depend on the allele at the ga-1 locus: no allele spe
cificity. Nor does the effect of aba alleles seem to be lo
cus-specific with respect to the ga loci. This follows from 
a cross, revertant x ga-2 mutant: 
(ga-1 /ga-1, + / + , aba/aba X + / + , ga-2/ga-2, + / + ), 
where germinating dwarfs (aba/aba) could be selected 
which were homozygous recessive at the ga-2 locus (and 
wild-type at the ga-1 locus), as determined by means of 
test crosses. 

In general it appears that aba alleles improve the 
germination of genotypes with a reduced germination. 

The aba gene could be located on chromosome 5 by 
trisomic analysis. As said before, ga-1 was located on 

ms 

27.2 

tt-2 

± 34 

28.8 ± 3.5 

43.8 

47,3 

+ 

+ 

tt-3 

31.1 ± 4.5 

25.9 

2.5 

3.5 Ins) 

tz aba 

14.9 ± 3.3 

± 4,4 

Fig. 2. Provisional linkage map of chromosome 5 and the es
timates of recombination percentage between some markers 
including aba. n.s. no significant linkage 

Fig. 3. Adult plants of wild-type and the independently arisen 
mutants G4 (aba'), A26 (aba') and A73 (aba') 

chromosome 4, which confirms that the two loci are un
linked. Linkage of aba with specific chromosome-5 
markers was studied in F2 populations. The markers in
volved were ms (male-sterile), tt-2 (transparent testa), 
tt-3 (transparent testa, anthocyaninless) and tz 
(thiazole-requiring). The results are summarized in 
Fig. 2 and show that aba is located at the end of chro
mosome 5, as far as this chromosome has been mapped. 

B) Physiological Characterization 

It has been shown in the previous sections that a specific 
gene (aba) with a specific phenotypic expression is able 
to remove the lack of germination in ga-1 mutants. 

Some phenotypic features of a number of lines 
the ABA-type ( + / + , aba/aba) are presented in 
Table 3 and Fig. 3. All the characteristics show an in
creasing tendency to deviate from the wild-type in the 
allelic order abaVaba1 (G4), aba'/aba1 (A26), abaV 
aba" (A73). The perfect rank correlation between all 
five parameters implies multiple pleiotropism with spe
cific degrees of expression of the different alleles. 

The physiological characterization of the ABA-type 
was focussed on: l.The germination behaviour of 
seeds, because the selection of this genotype was based 
on this property. 2. water relations of the plant in view 
of the observation of withering. 3. ABA content, since 
both previous aspects are related to this compound 
(Walton 1980). 

Germination Behaviour 

A comparison of the germination behaviour of seeds 
from ABA-types (aba/aba) with seeds from wild-type 
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Table 3. Some characteristics of lines of ABA-type as compared with wild-type 

+ /+(wild-type) aba' /aba' (G4) aba'/aba1 (A26) aba'/aba'(All) 

Percentage survival after planting 
Percentage plants with withered main stem 
Total plant length (cm) 
Length of largest rosette leaf (cm) 
Number of side shoots 

99 1 1 ' 
0 

20.8 ±0.3" 
2.6 + 0.1' 
4 .910.1 ' 

97 + 2 ' 
11 ±4" 
14.8 ±0.2" 
2.1 + 0.1" 
3.2 + 0.1" 

69 ± 5 " 
56 ±T 
8.210.3' 
1.410.1' 
2.710.2' 

82 ± 5 " 
69 1 6 ' 
6.410.3 
1.2 + 0.1 
2.0±0.1 

A different letter indicates a significant difference (P< 0.05) 

( + / + ), harvested the same day and identically stored, 
showed that seeds of the ABA-type are characterized by 
a strong reduction of seed dormancy, as judged in line 
A26 (aba1/aba1) from a reduced requirement for light 
and cold treatment (Fig. 4). This has been found as well 
for other aba alleles. 

The germination of both ABA and wild-type could 
be completely inhibited by exogenous applied ABA 
(Fig. 5). The response of the ABA-type is only slightly 
less than that of the wild-type. 

Water Relations 

When the plants in the greenhouse were either enclosed 
in plastic bags, which maintained a high humidity, or 
were sprayed twice a week with an ABA solution 
(Table 4), the development of symptoms of withering 
on ABA-type plants was highly reduced. Plants of ABA-
type (aba'/aba3) grown in a climate room showed an 
enhanced water loss, which could be considerably re
duced by ABA sprays (Table 5). 

The enhanced rate of water loss in isolated aerial 
parts of ABA-types (Fig. 6) can be interpretated as a re
duced rate of stomata closure upon water stress caused 

1 3 10 

ABA (juM) 

Fig. 5. Germination in white light of wild-type (+) and A26 
(aba1) at different concentrations ABA, scored 3 days (open 
symbols) and 7 days (closed symbols) after incubation 

by the absence of water supply from the roots. This may 
be caused by a reduced availability of ABA. 

Endogenous ABA Content 

The level of endogenous ABA was determined in dry, 
ripe seeds and in siliquae with seeds during de-

Days at 2 'C 

Fig. 4. Germination percentage of ABA type and wild-type in 
white light (L) and darkness (D) preceeded by different 
periods of dark-incubation at 2°C. The seeds were used 4 
weeks after harvest 

'» 40 

30 

\ aba1 

aba3 \ ° \ 

+^^ i——__ 

0 1 2 3 4 5 6 

Hours after cutting off 

Fig. 6. Water loss by the aerial parts of ABA types and wild-
type expressed per hour as percentage of fresh weight at the 
time of cutting 
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Table 4. The effect of spraying with ABA and of enclosing the plants in plastic on the percentage of plants with symptoms of 
withering 

+ / + (wild-type) 

aba3/aba3 (G4) 

abdLlabdL (A26) 

Treatment 

Sprayed H20 
1 u.M ABA 

10 uM ABA 
Enclosed in plastic 

Sprayed H 20 
1 uM ABA 

10 uM ABA 
Enclosed in plastic 

Sprayed HaO 
1 uM ABA 

10 uM ABA 
Enclosed in plastic 

Normal 

100 (48) 
100 (46) 
100(48) 
100 (25) 

5 (2) 
16 (7) 
83 (38) 
83 (35) 

-
22 (8) 
64 (28) 
65 (20) 

Withered tips 
of siliquae 

-
-
-
-
21(9) 
11(5) 
11(5) 

-
8(3) 

19(7) 
14(6) 
3(1) 

Withered 
siliquae 

-
-
-
-
65 (28) 
71(31) 
7 (3) 

13 (7) 

22 (8) 
17 (6) 
11 (5) 
26 (8) 

Withered 
main stem 

_ 
-
-
-
9 (4) a 
2 (1) a 

b 
b 

70l(26) a 
45(15) b 
11 (5) c 
6 (2) c 

In brackets: the number of plants observed 
Within genotypes: a different letter (a, b, c) indicates a significant difference between treatments when testing (j?) the normals ver
sus non-normals (withered tips of siliquae, siliquae, and main stem) 

TableS. The effect of the aba gene, of ABA sprays and of light 
on water loss (kg/m2/h) of Arabidopsis plants grown in a cli
mate chamber (plants were cultivated in a 12 h photoperiod or 
in darkness and sprayed twice a week with water or 
10 uM ABA) 

Light period 

H20 lOuMABA 

+ / + (wild-type) 2.5 + 0.1 1.9±0.1 
aba3/aba' (G4) 6.0±0.5 2.6±0.2 

Darkness 

HjO 10 uM ABA 

1.2±0.1 1.0±0.1 
3.2 + 0.3 0.9±0.1 

A 2 X 2 X 2 factorial analysis of variance showed that the main 
effects, genotype, light and ABA, were highly significant 
(P<0.01). The three interactions were also significant 

velopment (Table 6) and in rosette leaves (Table 7). The 
ABA content in seeds, in particular during seed de
velopment, was found to be much lower in G4 (aba3/ 
abaz) and reduced below the level of defection in 
ripe seeds of A26 (aba^aba1) and A73 (aba*/aba*). 
Rosette leaves contained very low amounts of ABA 
(Table 7), nevertheless the same rank order wild-
type > G4 > A26 appears. In the same order the pheno-
type of the different alleles was found to deviate from 
wild-type for a number of characteristics (Table 3). 

It appears that ABA-types are deficient in ABA con
tent during various stages of their development, which 
very probably explains the symptoms of ABA de
ficiency observed. 

Table 6. Endogenous ABA content of ripe seeds and of developing siliquae with seeds. The ripe seeds were extracted within 1 
month of harvest, the developing seeds were extracted 10 days after pollination 

+ / + (wild-type) 
aba'/aba' (G4) 
aba'/aba* (A26) 
abet/aba* (A73) 

Ripe seeds harvested in: 

April 1979 

ng/g frcsli 
weight 

71 
8 

nt 
nt 

pg/seed" 

1.42 
0.16 
nt 
nt 

October 1979 

ng/g fresh 
weight 

27 
7 

<1 
<1 

pg/seed' 

0.54 
0.14 

<0.02 
<0.02 

Siliquae with devel
oping seeds harvested in: 

January 1980 

ng/g fresh 
weight 

117 
12 

nt 
nt 

pg/seed" 

10.5 
1.0 

nt 
nt 

nt=not tested 
" seed weight 20 ug/seed 
6 93% or more of total ABA in siliquae is present in the seeds (Karssen et al., in preparation) 
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Table 7. Endogenous ABA content of greenhouse grown ro
sette leaves of four-week-old wild-type and ABA-type 

ABA content (ng/g) 

+ / + (wild-type) 
aba'/aba' (G4) 
aba1 /aba1 (A26) 

6 (8; 3) 
2 (2; 2) 
1 (2; 0) 

In brackets: values of the two replications 

Discussion 

By means of selection for revertants of non-germinating 
mutants, interesting physiological mutants with a dis
turbed ABA metabolism could be isolated. The iso
lation procedure for ABA-deficient mutants via re
vertants has the disadvantage of indirectness and inef
ficiency as it may take three extra generations. How
ever, the short life cycle ofArabidopsis, enabled us to re
move the parental ga-I allele relatively quickly. An 
alternative would be direct selection for the ABA-type 
in segregating M2 populations derived from mutagen-
treated wild-type. Here the rather inconspicuous 
phenotype will be a problem, especially in summer, 
when the symptoms of withering are almost absent in 
the greenhouse. Moreover, plants with a slightly deviat
ing colour and a weaker growth occur frequently in M2 

populations of Arabidopsis. Selection for non-dormant 
seeds by sowing these M2 seeds immediately after har
vest may be a more attractive direct selection method. 
However, the rapid loss of dormancy when the seeds are 
stored after harvest, also occurring in wild-type, and the 
large environmental and maternal effects on dormancy 
may complicate this procedure. 

Selection of ABA resistance, which is an attractive pro
cedure especially in cell cultures (Wong and Sussex 1980). 
probably will not be very efficient either, as the differences be
tween the dose-response curves of mutants and wild-type are 
relatively small. 

The rather unaffected sensitivity of the ABA-type to 
exogenously applied ABA (Fig. 5) seems to exclude that 
the ABA-receptor sites are affected in the mutant. Very 
probably the aba gene regulates the biosynthesis of en
dogenous ABA at all stages of the development of the 
Arabidopsis plant. It cannot be entirely excluded however 
that the aba gene, when homozygous recessive, enhances 
ABA degradation. 

The aba mutant may have a similar biochemical 
background as the flc, not and sil mutants in tomato 
(Tal and Nevo 1973; Nevo and Tal 1973). and as the 
background of some of the vp loci in maize (Smith et al. 
1978). The ABA mutants in Arabidopsis seem unique as 
they combine the characteristics of ABA-deficient mu
tants in both the tomato (enhanced transpiration) and 

the maize (reduced seed dormancy). However, it may 
very well be possible that no attention has been paid to 
seed germination in tomato nor to the water relations in 
maize. An indication for a reduced seed dormancy of 
the tomato mutants comes from the observation of pre
cocious germination in ripe fruits of the sit mutant 
(Koornneef unpublished). 

Compared to maize, where probably five loci (Smith et al. 
1978), and tomato where three loci, are known to affect the 
level of endogenous ABA, in Arabidopsis only one and perhaps 
two loci have been identified so far among 14 independently 
induced mutants. A simple explanation might, apart from the 
limited scale of the present mutation-induction experiments, 
be the fact that our aba locus has a relatively high mutation 
frequency (cf. Koornneef et al. 1981a). Finally, it has to be real
ized that many ABA-deficient mutants may be lethal because 
they might as well be deficient in carotenoids as has been 
found in maize (Robertson 1955; Smith et al. 1978). All these 
substances have mevalonic acid as a common precursor. It may 
be significant that a viviparous mutant of sunflower was also 
characterized by a reduced pigment content (Wallace and 
Habermann 1958). It is quite possible that this mutant and 
other viviparous mutants described in other plant species, e.g. 
barley (Gustafsson etal. 1969), prove to be deficient in or 
in sensitive to ABA. 

In addition to studies with mutants as cited above, dif
ferences in ABA content have also be observed between vari
eties of cultivated species. Largue-Saavedra and Wain (1974, 
1976) found that ABA content was higher in both wilted and 
non-wilted leaves of drought-resistant cultivars of maize and 
sorghum as compared to less resistant ones. A correlation be
tween reduced ABA content and short dormancy and low 
sprouting resistance was found for two barley varieties (Gold-
bach and Michael 1976). Compared to the drastic effects ob
served in deficient mutants, the minor and more specific 
physiological differences between varieties may reflect rather a 
specific genetic regulation of ABA metabolism than an effect 
on biosynthesis as is probably the case in mutants. Likewise it 
is not clear whether relatively small differences in ABA content 
between different genotypes, as found by Lee and Looney 
(1977) and Yadava and Lockard (1977) between compact and 
normal apple types, are a primary effect of mutations in genes 
directly involved in the regulation of ABA biosynthesis. 

The fact that the absence of seed dormancy of ABA-
deficient mutants segregates as a single recessive gene in 
the progeny of heterozygous plants (Table 2), shows 
that dormancy in ripe seeds related to ABA metabolism 
is mainly determined by the genotype of the embryo 
and not by the genotype of the mother plant including 
the seed coat. The genetic control and the role of ABA 
in relation to seed dormancy will be described in detail 
in a later paper. 
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SUMMARY 

Mutant l ines of Avdbidopsis thaliana (L.) Heynh. which are characterized by 

symptoms of withering and the absence of seed dormancy showed much lower levels 

of endogenous ABA in developing seeds and f r u i t s (s i l iquae) than the wi ld- type. 

Reciprocal crosses of wi ld-type and ABA-deficient mutants showed a dual o r i 

gin of ABA in developing seeds. The genotype of the mother plant regulated a 

sharp r ise in ABA content half-way seed development (maternal ABA). The geno

type of the embryo and endosperm was responsible for a second ABA f rac t ion 

(embryonic ABA), which reached much lower leve ls , but persisted fo r some time 

after the maximum in maternal ABA. The onset of dormancy showed a good corre

la t ion with the presence of the embryonic ABA f rac t ion and not wi th the mater

nal ABA. Dormancy developed in absence and presence of maternal ABA in the seeds. 

In th is respect maternal ABA resembled exogenously applied ABA which did not 

induce dormancy in ABA-deficient seeds. However, maternal and applied ABA both 

stimulated the formation of a mucilage layer around the tes ta , which could be 

observed during imbibi t ion of the mature seeds. 

ABA-deficient seeds germinated in the mature state in the s i l iquae on the 

p lant , but only when the atmosphere surrounding the plant was kept at high re 

la t i ve humidity. In younger stages germination in s i l iquae occurred af ter i so

la t ion from the plants and incubation on wet f i l t e r paper. Therefore, i t seems 

that l imi ted access to water is the primary t r igger for developmental arrest 

in these seeds. 

KEYWORDS: 

Abscisic acid - Abscisic acid de f ic ient mutants - Avabidopsis thaliana -

Dormancy - Seed development. 

ABBREVIATIONS 

ABA = abscisic acid. 
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INTRODUCTION 

The developmental program which proceeds in plants from zygote formation via 

seed development and germination to seedling growth is in nearly all species 

interrupted by a period of developmental arrest, characterized by dehydration 

and termination of growth and resulting in either quiescent or dormant seeds. 

Quiescent seeds only require rehydration for germination, whereas in dormant 

seeds the range of suitable conditions for germination is further restricted. 

It has been suggested that endogenous ABA plays a major role in both the 

arrest of development and the induction of dormancy (Walbot 1978; Walton 1980; 

Wareing 1978). Indeed, it has been shown in embryo cultures of several species 

that addition of ABA is a prerequisite for normal embryogeny.In these cultures 

ABA inhibited precocious germination but enhanced the synthesis of certain 

mRNA and protein fractions, the accumulation of reserve food and the activity 

of certain enzymes (Crouch and Sussex 1981; Choinski and Trelease 1978; Dure 

et al. 1981). 

Evidence for a comparable dual role of endogenous ABA during seed develop

ment in vivo is mainly restricted to the occurrence of the maximum rise in 

ABA content and the most active phase of fresh and dry weight increase and 

cell enlargement (Hsu 1979; Quebedeaux et al. 1976; King 1976; Goldbach and 

Michael 1976) and/or the inability for precocious germination of isolated em

bryos (Quebedeaux et al. 1976; King et al. 1979; Van Onckelen et al. 1980). 

Application of ABA to developing grains of wheat promoted cessation of grain 

growth and drying of the seeds (King 1976). In barley a similar treatment 

stimulated both the transport of C-glucose from leaves to grains and the 

dry weight of mature grains (Tietz et al. 1981). A role of ABA in develop

mental arrest is also suggested by its last position in the sequence of rising 

and falling hormone levels during seed development (Eeuwens and Schwabe 1975). 
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Convincing evidence for a ro le of endogenous ABA in the induction of seed dor

mancy is s t i l l missing. 

The use of mutants with an ABA deficiency adds an important tool to the i n 

vestigation of the possible ro le of ABA in seed physiology. A f i r s t indicat ion 

of the i r value is found in a study with seeds of viviparous corn mutants which 

e i ther contained less ABA or were less sensit ive to applied ABA than the w i l d -

type seeds (McDaniel et a l . 1977; Smith et a l . 1978; Robichaud et a l . 19180). 

In the present experiments the ro le of ABA in the onset of dormancy i s 

studied using ABA-deficient mutants of Arabidopsis thaliana. The induction 

and i so la t ion of these monogenic mutant l ines and the i r genetic and physiolo

gical characterization has been described in a previous report (Koornneef 

et a l . 1982). The l ines are characterized by symptoms of w i ther ing, increased 

t ranspirat ion and a lowered ABA content in r ipe seeds and leaves. Therefore, 

the phenotype was called ABA-type and the recessive mutant a l l e le aba. Dor

mancy of seeds of the ABA-type is strongly reduced, as judged from a reduced 

requirement for l i gh t and cold treatment. The sens i t i v i t y of the ABA-type 

seeds to applied ABA is only s l i gh t l y less than that of the w i ld- type. Reci

procal crosses between wi ld-type and ABA-type are used to study the o r ig in 

of ABA in the seeds and the location of the dormancy mechanisms, 

MATERIAL AND METHODS 

Seed material. The o r ig in of the wi ld-type and ABA-type seed stocks used in 

the present experiments and the conditions of culture during seed formation 

were described in our previous report (Koornneef et a l . 1982). 
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Seed development and performance of crosses. Flowers were tagged at the moment 

of anthesis or a r t i f i c i a l po l l i na t ion . For the l a t t e r treatment a dissection 

microscope was used. Reciprocal crosses were performed with male s t e r i l e (ms) 

mother plants. The ms-al lele with perfect expression had been crossed in to the 

present l ines for the purpose of large scale crossing. I t implies that the pre

sent material had the cytoplasma of the female wi ld-type ms-donor. The l ines 

were maintained by crossing ms ms x Ms ms, instead of by se l f ing . 

Germination tests. To co l lec t unripe seeds the s i l iquae were cut open with 

scalpels using a dissection microscope. The immature seeds were carefu l ly co l 

lected by means of needles and d i rec t l y sown in p last ic petr i dishes(0 8.5 cm) 

on f i l t e r paper (Ederol no. 261) saturated with 2 ml of s t e r i l e d i s t i l l e d water. 

To avoid rapid evaporation, each dish was wrapped in a small polythene bag. 

Conditions during the tests were a temperature of 25 C and continuous l i g h t 

(Phi l ips TL 57) at an in tens i ty of 8 W-m . Germination was scored 7 and 14 

days a f te r the s ta r t of incubation. After 7 days one extra ml of water was 

added to compensate evaporation. 

Germination tests were performed in duplo. Mature seeds were stored after 

harvest in dry conditions at room temperature. Germination tests were per

formed as described above. 

ABA determinations. Weighed badges of s i l iquae containing seeds were stored 

in l i qu id nitrogen wi th in hal f an hour a f ter harvest un t i l the s ta r t of ex

t ract ion procedures. High re la t ive humidity prevented dehydration in the 

period before storage. 

Extraction procedures and quant i tat ive determination by gas chromatography 

using an electron capture detector were performed according to techniques 
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described by Knegt et al. (1981) with a few additions as in Koornneef et al. 

(1982). Determinations occurred in duplo. 

Measurement of mucilage layer. In order to colour the mucilage layer seeds were 

incubated in a solution of Ruthenium Red in water (Witzum et al. 1969). The 

thickness of the mucilage layer was measured under the microscope. 

RESULTS 

ABA levels and precocious germination in wild- and ABA-type. In a first experi

ment ABA content, fruit growth and the capacity for precocious germination of 

isolated seeds were compared during seed development after self pollination 

of the genotypes Aba/Aba (wild type) and aba /aba (ABA-type, line G4) (Fig.l). 

The very tiny proportions of seeds and siliquae of A . thaliana strongly re

stricted the workable experimental approaches. A dry mature seed weighs about 

20 pg and measures 0.4 x 0.2 nm. Siliquae contain a mean number of 60 seeds 

and have an average weight of 6 nig. One ABA determination asked for approxi

mately 800 siliquae. It turned out to be infeasable to separate the seeds of 

the siliquae for all ABA determinations at the different phases of development. 

Therefore, ABA was generally determined in the siliquae containing the seeds, 

except for one experiment where ABA was determined separately in seeds and si

liquae at an age of 10 days after pollination. Seeds contained 94% of total 

ABA in siliquae plus seeds. 

In seeds of wild-type the ABA level reached a maximum half-way development 

(Fig. 1A). During its decline the curve showed a shoulder between 14 and 16 

days after pollination. The siliquae and seeds of ABA-type contained a much 

lower level of ABA throughout development. It should be realized that the 

mutation of the aba allele represents a rather mild inactivation of the 
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aba gen. The ABA levels in mature seeds of two other ABA-type mutant lines 

(A26 and A73) were found to be reduced below the level of detection (Table 1). 

The G4 line was chosen for the present experiments because the withering of 

the siliquae was less severe than in the other two lines and therefore enabled 

a workable number of siliquae and seeds to develop into ripeness (Koornneef 

et al. 1982). Nevertheless, the development of siliquae in the G4 line was 

still reduced to such an extent that ABA determinations could not be performed 

on the same narrow age ranges as with the wild-type. Therefore, siliquae and 

seeds differing in age for several days were combined for one determination, 
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and consequently the dates in Fig. 1A for ABA content in ABA-type represent the 

mean values of the indicated periods of development. 

The dif ference in genotype also strongly influenced the capacity fo r preco

cious germination of the developing seeds (Fig. IB). Seeds of ABA-type gradual

ly developed f u l l germination capaci ty, whereas in the wi ld-type seeds dormancy 

developed to f u l l extent a f ter a temporary period of germinabi l i ty in a f rac

t ion of the seeds. In most young seeds of both genotypes precocious germination 

took more than 1 week. Germination rate increased to the end of maturation in 

the ABA-type seeds, however. 

These results indicate that the induction of dormancy during seed develop

ment in A. thaliana is correlated with the presence of ABA in the seeds. I t 

is noteworthy that the pattern of f r u i t growth was hardly influenced by the 

mutation in the aba gene (Fig. 1A). Also the weight of mature seeds of the 

d i f fe ren t genotypes did not d i f f e r strongly (Table 1). The mutation c lear ly 

inf luenced, however, the thickness of the mucilage layer upon imbibi t ion of 

mature seeds in water. 

Table 1. Some character is t ics of mature seeds of d i f fe rent l ines of ABA-type 

compared with the wi ld-type 

__ , _ _ _ _ _ .__ 
Aha/Aba aba /aba aba /aba aba /aba 

(wild-type) (G4) (A26) (A73) 

Seed weight, mg/100 seed 1.9 1.8 1.7 2.1 

Thickness mucilage layer, ym 67+0.1 52+0.1 27+0.1 25+0.2 

ABA content, pg/seed 0.54 0.14 <0.02 <0.02 

Germination in light, % 0 100 100 100 
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Site of -induction of dormancy and origin of ABA, germination studies. The pre

vious experiment raised questions about the regulatory s i te of the dormancy 

induction and about the o r ig in of endogenous ABA in seeds. Genetic experimenta

t ion provides excellent tools to answer these questions. In the F, seeds of 

ABA-type x wi ld-type crosses the genotype of the maternal and embryonic tissues 

w i l l be d i f f e ren t . I f these crosses are made reciprocal ly the development of 

seeds with the Aba/aba genotype in embryo can be studied on both a wi ld-type 

and an ABA-type mother p lant. We compared the development of such seeds with 

F, seeds of aba/aba x aba/aba and Aba/aba x aba/aba crosses. In the l a t te r case 

the embryos w i l l have genotypes Aba/aba and aba/aba in equal proportions. 

Precocious germination was tested during development of these d i f f e ren t 

F-, seeds (Fig. 2 ) . Dormancy again was absent when both parents were ABA-type, 

but i t f u l l y developed in the heterozygous F, seeds, i r respect ive of the geno

type of the mother p lant. The capacity for precocious germination in F, seeds 

of the Aba/aba x aba/aba crosses followed acourse which happened to match per

fec t ly with the curve constructed from the addition of halved values of the 

curves fo r Aba/Aba x aba/aba crosses. Therefore, i t is concluded that the de

velopment of dormancy with regard to the aba gene is regulated by the geno

type of the embryo and is not a maternal e f fec t . 

The genotype of the mother plant was not completely without an e f fect in 

the present experiments, however. F i r s t l y , i t is shown in Fig. 2 that the 

timing of dormancy induction was s l i gh t l y influenced. On an ABA-type mother 

plant the induction started two days la ter than on a wi ld-type p lant. The r e 

tardation of induction was part of an overal l increase in length of the period 

of seed development in ABA-type seeds with 2 to 4 days (data not shown). The 

retardation is most obviously re lated to the weak condition of ABA-deficient 

mother plants (Koornneef et a l . 1982).Secondly, germination tests with ma-
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F i g . 2 . Germinat ion o f i s o l a t e d 

developing F, seeds f rom d i f f e r 

en t c rosses. Germinat ion was 

counted a f t e r 14 days . 
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ture seeds showed that heterozygous F, seeds generated on an ABA-type plant 

required a shorter a f ter-r ipening period at dry storage to increase germina

t ion in the l i gh t than did seeds from a wi ld-type plant (F ig. 3 ) . 

ABA determination. I t was attempted to af f i rm these conclusions with ABA de

terminations in developing s i l iquae containing the F, seeds of the d i f fe rent 

crosses. Sampling had to be restr ic ted fo r pract ical reasons to two stages 

of development. Extractions were performed 10 and 16 days af ter po l l i na t i on , 

representing the peak and the shoulder in the ABA curve (F ig. 1A), respective

ly . The data on precocious germination obtained in th is experiment showed a 

reasonable agreement with comparable tests in the previous experiments (Table 2; 

Figs. IB , 2). 

The ABA content in s i l iquae and F, seeds of the aba/aba xaba/aba crosses 

was very low at both sampling dates, as could be expected from the data in 

F ig. 1A. The results obtained with the progeny from the Aba/Abax aba/aba 

crosses agreed with data obtained with se l f pol l inated wi ld-type material in 

the f i r s t experiment: high ABA levels at 10 days af ter po l l inat ion and a lower 

level at 16 days. The difference in the value at 10 days between the two experi

ments can not be explained ye t . We presume that season dependent differences 

in cu l t i va t ion conditions are involved. I f the dominant Aba a l l e le was only 

present in the embryo (aba/aba x Aba/Aba) the ABA level at both sampling dates 

stayed a t a level of about 40 ng/g. This value was character ist ic fo r the 

shoulder in the ABA curve in the f i r s t experiment (Fig. 1A). This level was 

also present in F, seeds from the Aba/aba x aba/aba crosses at 16 days a f ter 

po l l i na t ion . Af ter 10 days the ABA level in these seeds from heterozygous 

mothers was roughly hal f of that in seeds descending from homozygous mothers. 

In judging th is resu l t i t should be real ized that the steepness of the ABA 
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curve may cause big differences in ABA content at small differences in seeds 

ages or rate of development. 

I t is concluded that endogenous ABA in developing f r u i t s and seeds of 

A.thaliana has two d i f fe rent o r ig ins. The f i r s t f ract ion is regulated by the 

genome of the mother plant (maternal ABA). I t is responsible for the peak in 

ABA content half-way seed development. The second f ract ion is regulated by 

the genome of the embryo (embryonic ABA). This f ract ion is present during 

maturation, but also at ea r l ie r stages of development. The exact course of 

embryonic ABA has to be determined yet . 

Dormancy was only induced in seeds of A.thaliana i f the genome of embryo 

contained the dominant Aba a l l e le and, thus, the embryonic ABA f r ac t i on . 

Maternal ABA was not related to dormancy induction. Dormancy developed in spi te 

of i t s absence {aba/aba x Aba/Aba) (Table 2 ) . I f , on the contrary, maternal 

ABA was present the pattern of dormancy induction s t i l l perfect ly correlated 

with the genotypes of embryo and endosperm (Fig. 2, Table 2 ) . 

The weight of the d i f fe rent F, seeds did not d i f f e r s i gn i f i can t l y , whereas 

a maternal e f fect was observed on the thickness of the mucilage layer (Table 2 ) . 

Effects of ABA sprays. Dormancy was not induced i f the ABA level in the seeds 

was raised a r t i f i c i a l l y . A spray with 100 urn ABA solut ion 10 days af ter p o l l i 

nation raised the ABA level in seeds and s i l iquae of ABA-type plants from the 

\iery low level shown in F ig. 1 and Table 2, to a value of 220 ng/g fresh weight 

(data not shown). The amount was determined 3 days after the spray. Sprays with 

100 urn ABA solutions did not induce dormancy in ABA-type seeds, however, even 

i f they were repeated at regular in tervals (Fig. 4) . On the contrary, the 

seeds developed the capacity for precocious germination at an ear l ie r moment. 
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The sprays stimulated the development of the mucilage layer in both genotypes 

(Table 3) . 

F ig. 4. Change with time af ter po l l ina

t ion i n germination of isolated seeds 

from wi ld-type (open symbols)or ABA-

type (closed symbols). During seed de

velopment plants were sprayed ait i n 

tervals of 4 days with d i s t i l l e d water 

(c i rc les) or 100 wn ABA (squares). 

Germination was counted a f ter 14 days. 

10 12 14 16 18 
Time after pollination, days 

100 

80 

ss 
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(0 
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o . 100 AIM ABA 
o» water / 
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/ 
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i i D 

Table 3. Thickness of mucilage layer ( i n ym) of mature seeds of wi ld-type and 

ABA-type. During seed development plants were sprayed with in tervals of 4 days 

with d i s t i l l e d water or 100 urn ABA. 

Spray Wild-type ABA-type 

100 ym ABA 

water 

85+0.2 

77+0.1 

97+0.1 

60+0.2 

Preaocious germination in vivo. In contrast to the precocious germination ob

tained with isolated immature seeds (Fig. 1 , 2 , 4) we never observed any ger

minated seeds in the f r u i t s of any of the genotypes during cu l t i va t ion of the 

plants in the greenhouse. Seeds of the ABA-type only germinated in the f r u i t s 

when during seed development the plants were enclosed in p last ic bags to main

ta in a high re la t ive humidity in the atmosphere surrounding the plants (data 
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not shown). Germination did occur at f i r s t at about 28 days after po l l i na t ion , 

when the s i l iquae were very mature and had coloured yellow. I f we consider that 

in the precocious germination tests a seed which was isolated a f ter 14 days 

took more than one week to germinate (Fig. IB ) , i t seems possible that the la te 

moment of v i s ib le germination in the s i l iquae is caused by the slow rate of the 

germination process. 

Wild-type seeds d id not germinate in the s i l iquae on the plant under humid 

condit ions. Germination was s t i l l prevented when wi ld-type s i l iquae were taken 

from the plants at d i f f e ren t stages of development and were incubated on wet 

f i l t e r paper in petr i dishes (Fig. 5) . After i so la t ion of the seeds from the 

s i l iquae the same germination pattern occurred as was shown before (F igs.1,2,4) . 

On the contrary, ABA-type seeds germinated better when they were l e f t in the 

s i l iquae (Fig. 5) . 

100P ~ 

80 

3*60 
c o 
13 
| 40 
k_ 
a> 

O 

20 

• • ABA-type 
o D wild - type 

8 10 12 14 16 
Time after pollination, days 

18 20 

Fig. 5. Change with time a f te r po l l ina t ion in germination of seeds in isolated 

s i l iquae (squares) or of isolated seeds (c i rc les) of wi ld-type (open symbols) 

or ABA-type (closed symbols). Germination was counted a f ter 14 days. 
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DISCUSSION 

Dormancy induction by embryonic ABA. Increased transpiration and symptoms of 

withering and within have been described so far as the main characteristics of 

ABA-deficient mutants in tomato (Imber and Tal 1970), potato (Quarrie 1982) 

and A.thaliam (Koornneef et al. 1982). The present results clearly show that 

in A.thaliana absence of dormancy induction in developing seeds is another of 

the pleiotropic effects of the same recessive mutation. A similar situation 

seems to exist in potato (Quarrie 1982) and tomato (Koornneef unpublished). 

The probability that £BA and dormancy induction are not causally related is 

very low since genetic analysis has shown beyond doubt that a single gene is 

involved in the mutation (Koornneef et al. 1982). The failure of ABA sprays 

to induce dormancy in ABA-type seeds, in spite of its penetration, seems at 

first sight an argument against such a causal relationship (Fig. 4). The ar

gument weakens considerably, however, when it is realized that applied ABA 

resembled maternal ABA in this respect. This ABA fraction is also present in 

the seeds but fails to induce dormancy (Fig. 1). Dormancy in A.thaliana seeds 

is only induced if the genome of the embryo contains a dominant Aba allele 

(Fig. 2) and therefore the embryonic ABA fraction is present (Table 2). 

Embryonic inheritance of dormancy was also described for lettuce and tobacco 

(Globerson et al. 1974; Honing 1930). 

The localization of the different ABA fractions could not be studied in 

detail due to the tiny proportions of the seeds. Maternal ABA might be res

tricted to the testa as the only maternal tissue in the seeds. It can not be 

excluded, however, that the maternal ABA fraction also penetrates into the 

endosperm and embryo, but then it should be located in another cell compart

ment than the embryonic ABA since it has a different physiological effect. 

Thus, it is concluded that dormancy induction is located in the embryo. 
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In order to induce dormancy ABA has to be synthesized close to its site of ac

tion or has to be localized in a specific subcellular way, which can not be 

reached after transport from the maternal tissues. 

The mechanism of action of embryonal ABA is unknown. The several specific 

biochemical changes which are enhanced by ABA in developing seeds (Choinski 

and Trelease 1978; Crouch and Sussex 1981; Dure et al. 1981) indicate that 

the induction of dormancy does not need to be restricted to the inhibition 

of growth. 

The present experiments indicate that after the onset of dormancy endoge

nous ABA was not required for its maintenance. During maturation ABA levels 

were reduced to very low levels (Fig. 1A) which seems to be insufficient to 

inhibit germination. During incubation in a C labelled ABA solution at the 

minimal inhibitory concentration of 10 \>m, about 7 pg ABA entered per seed 

(Brinkhorst-van der Swan unpublished results). Based on the presence of ap

proximately 95% of all ABA in the seeds it can be calculated that such an 

ABA content was only present in the seeds at the time of the peak value in 

the ABA curve (Fig. 1A). 

Functions of maternal ABA. The present results show that the role of the 

maternal genotype and of maternal ABA on dormancy induction in A.thaliana 

is restricted to small, modifying effects on the general pattern determined 

by the genotype of the embryo, i.e. by embryonic ABA. In general, maternal 

ABA, and in a similar way applied ABA, tended to shorten the period of seed 

development and dormancy induction (Figs. 2, 5 ) . This is most obvious due to 

the absence of withering phenomena which inhibit plant and seed development. 

In other species the maternal genotype is sometimes engaged in dormancy 

induction. In tobacco crosses the female parent had a slightly greater in-

49 



fluence on dormancy induction than the pollen parent (Honing 1930; Kasperbauer 

1968). In tomato the reduction of germination due to the presence of the la te

ra l suppressor gen {Is) was also shown to be an e f fect of the maternal geno

type rather than of the embryo (Taylor 1979). 

In A. thaliana maternal and applied ABA both stimulated the development of 

a mucilage layer around the seeds (Tables 1 , 2 , 3) . Mucilage layers have been 

described as barr iers to germination in certain species (Witzum et a l . 1969). 

In A.thaliana the embryonic o r ig in of dormancy makes such a function un l ike ly . 

Plasma inheritance was not involved in the maternal e f fec t . To construct 

male s t e r i l i t y segregating ABA-type l i nes , a ms-donor l ine which was other

wise wi ld-type was taken as female parent. So a l l subsequent progeny contained 

wi ld-type cytoplasma. 

Inhibition of precocious germination in the siliquae. Addition of ABA to cu l 

tures of isolated embryos of several species favoured the conclusion that ABA 

is a prerequisite for the arrest of development during maturation of seeds. 

I t has been hypothesized that during embryo development, endogenous ABA on 

the one s ide, helps to stimulate the uptake of solutes and the development of 

a large negative water po ten t ia l , which favours rapid hydrat ion, but on the 

other s ide, prevents such hydration by the i nh ib i t i on of ce l l expansion (Wal-

bot 1978). 

In the ABA type dehydration and termination of growth also occurred, how

ever, in the absence of ABA. Restricted access to water seems to be the most 

important l im i t i ng factor for the prevention of precocious germination in vivo, 

thus t r iggering developmental arrest . Such water deficiency might develop na

tu ra l l y when the open xylem connection between seeds and mother plant becomes 

obstructed. 
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The germination experiments with seeds inside the isolated siliquae had a 

confusing result (Fig. 5). Whereas the siliquae inhibited germination in wild-

type, they stimulated in ABA-type. It is assumed that isolation of seeds from 

the siliquae has a negative effect on the germination capacity of the seeds, 

due to wounding of tissues, increased leakage of solutes or other reasons. 

Therefore, ABA-type seeds germinate better in the intact seed. In wild-type 

this advantage turns into its opposite, because in the intact fruits endoge

nous ABA may leack to a much smaller extent from the seeds. Moreover the sili

quae slightly add to the total ABA content. 

Origin of the ABA fractions. A dual origin of ABA in seeds, regulated either 

by the embryonic or by the maternal genotype, has to our knowledge not been 

demonstrated clearly in seeds of other species. It might be implicated in the 

results obtained in developing bean seeds, where two distinct peaks in the ABA 

content occur during development (Hsu 1979). The first one was found in both 

testa and embryo, whereas the second one appeared in the embryo only. If such 

a dual origin of ABA also exists in other species, it will certainly have es

caped attention because the peaks in both fractions most often will coincide. 

Moreover, the small amount of embryonal ABA might have been hidden under the 

large amount of maternal ABA. 

It is to be expected that the ABA fraction regulated by the genotype of the 

embryo is also formed in those tissues. Endosperm and embryo of wheat incor-

14 
porated C-mevalonic acid into ABA (Milborrow and Robinson 1973). Wheat grains 

from detached ears grown in culture accumulated ABA to the same extent as in 

the intact plant (King 1979). Therefore, maternal ABA in A.thaliana might also 

originate from the siliquae and testa itself. Transport of ABA from other parts 

of the mother plant also has to be considered, however. Particularly after a 
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condit ion of water stress ABA transport to the seeds has been demonstrated from 

leaves (Goldbach and Goldbach 1977; Dewdney and McWha 1979). 

I f maternal ABA is transported to the f r u i t s and seeds i t is obvious that 

the t r igger for th is transport must be located in the receiving organs. At one 

moment an Arabidopais plant contains s i l iquae of many d i f fe ren t ages. Neverthe

less, at one time ABA rises only in a few of these developing s i l iquae. The 

mechanism of such a t iming device is unknown. Other hormonal factors might be 

involved in the regulation of the sink a c t i v i t y of the seeds and f r u i t s deter

mining the point of time that the organs become active sinks for phloem-trans

ported ABA. 
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Summary 

Reduced sensitivity to the inhibitory action of white light on hypocotyl elongation was 
observed in 41 mutants induced in Arabidopsis thaliana at 5 different loci. Compared to 
wild type, these mutants show a locus-specific altered inhibition spectrum when grown in 
light of restricted spectral regions. Spectrophotometrically detectable phytochrome in 
dark-grown tissue of those mutants (loci hy-1 and hy-2) in which the inhibitory effect of 
far red light is almost or completely absent, is either greatly reduced or below the level of 
detectability. The spectra of the different mutants and their recombinants provide evidence 
for the presence of more than one photoreceptor pigment for the High Irradiance Reaction 
and demonstrate the genetic control of light-induced inhibition of hypocotyl growth. 

Key words: Activity spectra, Arabidopsis, High Irradiance Reaction, hypocotyl elonga
tion, physiological mutants, phytochrome. 

Introduction 

Light regulates many morphogenetic processes in plants. Among the pigments 

mediating these reactions, phytochrome is the most intensively studied. Its main 

absorption bands are in the red and far red. The nature of photoreceptor pigments 

responsible for specific blue and violet l ight effects is still a mat ter of dispute. In 

addit ion to a possible involvement of several distinct pigments, another complicating 

factor in the s tudy of photomorphogenetic processes is the increasing amount of 

evidence for multiple phytochrome reactions (e .g . JOSE and V I N C E - P R U E , 1 977b ; 

SMALL et al., 1979; SPRUIT et al., 1979). 

Abbreviations: UV: near ultraviolet light; B: blue light; G: green light; R: red light; 
FR: far red light; HIR: High Irradiance Reaction; P r : phytochrome, red-absorbing form; 
P t r : phytochrome, far red-absorbing form. 
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Several effects of light in plants, such as floral induction, seed germination, 
phototropism, chlorophyll synthesis, and regulation of growth processes, are under 
genetic control. Many examples exist of genetic variation within species for 
daylength requirement in floral induction (reviews: SKRIPCHINSKY, 1971 and 
MURFET, 1977). In such cases, the genes involved may control either the synthesis of 
morphogenetic pigments or subsequent reactions in which the electronically excited 
or photochemically transformed pigment molecules normally enter. If a given 
photomorphogenetic process is controlled by more than one pigment, or if a 
photomorphogenetically active pigment has multiple points of attack within the cell 
or plant, we may expect that mutation of the genes affecting synthesis of these 
pigments may alter the morphogenetic behaviour of the mutants towards light. 
Obviously, mutants of this type can be very useful for photophysiological research. 
This approach, that has been so fruitful in studying metabolic pathways, has been 
neglected in photobiology so far. The search for mutants of Phycomyces with a 
deviating phototropic sensitivity (a blue light reaction) is a recent example of this 
approach (LIPSON et al., 1980). 

The inhibition by light of hypocotyl elongation in dark grown seedlings is the 
classical example of the High Irradiance Reaction (HIR) (review: MANCINELLI and 
RABINO, 1978). Action spectra for this reaction have been determined (e. g. EVANS et 
al., 1965; HARTMANN, 1967) a. o. for lettuce and some varieties of Petunia. It is 
generally held that phytochrome is the pigment responsible for the HIR (SCHAFER, 

1976). The question whether the usually very considerable activity of the blue-violet 
region of the spectrum is also due to absorption by this pigment still forms a subject 
of controversy. There are also reports suggesting that in some plants red-absorbing 
pigments other than phytochrome may be involved (JOSE and VINCE-PRUE, 1977 b ; 
VANDERHOEF et al., 1979). An induced mutant of Arabidopsis with a hypocotyl (in 
white light), more than twice as long as that of the wild type ( = normal type) has 
been described by REDEI and HIRONO (1964) who proposed the gene symbol hy. This 
gene was mapped on chromosome 2 (REDEI, 1965) between the marker loci py and er. 
STUBBE (1966) described a mutant of Antirrhinum majus, elongata, which is very 
similar to the hy mutants of Arabidopsis. No attempts have been made so far to 
characterize these mutants physiologically. KRANZ (1977 b) and SCHEIDEMANN (1978) 
reported on the hypocotyl lengths in red, far red, and blue light of mutants of 
Arabidopsis which did not show elongated hypocotyls under white light. 

The determination of complete action spectra from fluence-response curves for a 
large number of wavelengths is a laborious and time-consuming enterprise. As a first 
approach and as a method for screening our mutants for possible spectroscopically 
interesting types, we have determined activity spectra at constant quantum 
irradiances for the inhibition of hypocotyl elongation in a number of restricted 
wavelength regions. Phytochrome was determined spectrophotometrically in tissue of 
the mutants, grown in darkness. 
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Hypocotyl inhibition in Arabidopsis mutants 

Materials and Methods 
Plant material 

Arabidopsis thaliana (L.) HEYNH. (2n = 10) is a small, fast-growing self-fertilizing cruci-
fer. Seed stocks used in the experiments derive from the pure line «Landsberg-erect<«» (RE-
DEI, 1962). 

Culture medium, culture conditions and light sources 

Seeds were sown in 9 cm petri dishes (25 or 30 per dish), equally spaced on perlite statured 
with a standard mineral solution. The composition of this solution was as described by 
OOSTINDIER-BRAAKSMA and FEENSTRA (1973). To break dormancy the petri dishes were first 
kept at 2-4 °C for 5 days after sowing. They were subsequently placed into a climate 
room at 24 °C under continuous illumination by fluorescent light (Philips TL 57) at rough
ly 8 W m"2. 

After 8 days the seedlings were transplanted into soil (7 cm pots) and cultivated in an 
air-conditioned greenhouse, where additional continuous light was given by frames of TL 
57 tubes from October until April. This implies long-day conditions throughout the year. 

For the growth tests under monochromatic light the seeds were also sown on filter paper 
moistened with distilled water in 4 cm high glass dishes. Under these conditions light inhi
bition was more pronounced than on the perlite medium, especially in continuous TL 57 
light. However, the correlation between the results on perlite and on filter paper is high 
for each light colour. 

The light sources were similar to those described earlier (JOUSTRA, 1970) with the addi
tion of a separate cabinet for the near ultraviolet. Spectral energy distributions were meas
ured spectroradiometrically, with a calibrated tungsten ribbon lamp as a reference. Equiva
lent spectrometer slit widths were 3 nm, throughout. The relative energy distributions are 
shown in fig. 1. Some additional data are: 

Near ultraviolet (UV): fluorescent tubes type Philips TL 40/08 with a clear glass plate 
as a filter. Spectral half width (HW) 38 nm. Contributions from individual mercury lines 
to the total emitted energy: 365 nm 0.8 %>; 404.7 + 407.7 nm 2.2 % ; 435.8 nm 0.35 % . 

Blue (B): Philips TL40/18 with 3 mm Plexiglas blue 0248 (Rohm u. Haas). 
HW 75 nm. Mercury lines: 365 nm 0 .07%; 404.7 + 407.7 nm 3.8 % ; 435.8 nm 17 .7%; 

546.1 nm 0.34 %. 
Green (G): Philips TL 40/17 with a sheet of yellow glass. HW 42 nm. Mercury lines 

435.8 nm 0.09 % ; 546.1 nm 4.9 % ; 577 + 579 nm 1.02 %. 
Red (R): Philips TL 40/103339 with 3 mm Plexiglas red 501. HW (envelope) ± 18 nm, 

main peak 13 nm. 
Far red (FR). Bank of 60 watt 240 volt incandescent lamps operated at 220 volts with 

10 cm running tap water and 3 mm Plexiglas red 501 plus 3 mm blue 627. The energy in 
this light regime was calculated by subtracting from the total energy the fraction transmit
ted by 3 mm RG 780 (Schott u. Gen.). The resulting effective energy distribution is the 
one shown in fig. 1 as a broken line. Since the maxima of the action spectra in the far red 
are not known but are probably at a wavelength, lower than the 750 nm maximum, the ef
fective quantum fluency in the far red may have been 10-35 % lower than follows from 
the measurement. Light intensities at the level of the plants were measured with an Opto
meter 80X (United Detector Technology, Inc.). They were adjusted to give equal quantum 
irradiances of 3.06 X 10~6 E m~2 s"1 ± 5 % in each of the cabinets. The effective wave
lengths assumed were: UV 359 nm, B 442 nm, G 527 nm, R 658 nm, FR 730 nm. 

Measurements of hypocotyl elongation 

After the standard cold treatment the seeds were given 15 minutes of red light (658 nm, 
0.64 W m~2) to induce germination. The seeds were kept in the dark for 24 hours and sub-
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700 

Fig. 1: Relative spectral energy distributions per nanometer of the light sources. Mercury 
lines not shown. 

sequently placed in the cabinets with monochromatic light. The temperature was + 22 °C. 
In wild type Arabidopsis as well as in all mutants tested, the period of exponential growth 
occurred between the 2nd and 4th day after the end of cold treatment. Although the final 
hypocotyl lengths were measured on the 7th day after this treatment, almost all growth oc
curred, therefore, in a 2-day period around the 3rd day after the end of the cold treat
ment. We have no indication that the action of the various wavelengths is different during 
the remainder of the 7-day period. 

In the experiments described, the hypocotyl lengths of 10 plants per treatment per geno
type were measured by putting the seedlings between glass plates, which were placed in the 
negative stage of a photographic enlarger. Prints were made with an enlargement of 5-6 
times linear. From these prints the length was measured and the true length was calculated. 

Phytochrome measurements 

Phytochrome was determined spectrophotometrically as described earlier (SPRUIT, 1970). 
Since it would have been an extremely laborious task to collect a sufficient amount of ma
terial by dissecting apart various plant organs, the dark-grown plants were packed as such 
into the absorption cells (path lengths 2.5 mm). The bulk of the volume consisted of hypo
cotyl tissue. All measurements were made at 0 °C. 

Isolation of Mutants 

Arabidopsis seeds were either treated with ethylmethanesulfonate (EMS; 10 mM, 24 h, 
24 °C) or irradiated with X-rays or fast-neutrons submersed in water (preimbibed) (for de
tails of mutagenic treatment see KOORNNEEF and DELLAERT, 1980 and DELLAERT, 1980). 
The resulting plants (the Mx generation) were individually harvested and the seeds were 
stored for at least 3 weeks at 30 °C. The M2 lines grown from the individual seed lots 
were scored in the climate room for segregation of seedlings with elongated hypocotyls at 
day 8 after the end of cold treatment. Wild-type seedlings then have a hypocotyl length of 
1.5-2.5 mm. Selected mutants were grown to maturity in the greenhouse and progeny tested 
(M3 lines) to verify the phenotype and to test for recessivity. To obtain hy mutants in 
an otherwise undisturbed genetic background, line selection (within M t plant descents) was 
practized for a number of generations. In several cases the mutants were first backcrossed 
to the original parent line (wild type). 
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Genetic analysis 

The different mutants were tested for allelism vs. non-allelism on the basis of non-com
plementation vs. complementation to normal hypocotyl type in their Fj's. In case of pheno-
typically less pronounced hy mutants and in case of incomplete dominance (mutants at the 
hy-3 and by-4 locus; see later), an additional criterium was provided by the corresponding 
F2's (non-segregation vs. segregation of normals). In addition several F2's between mutants 
at different loci were grown for the selection of double-recessive recombinants. The loca
tion of the hy loci on the 5 Arabidopsis chromosomes (see Table 1) was by trisomic analy
sis (KOORNNEEF and VAN DER VEEN, 1978). 

Table 1: The distribution of 41 independently induced hy mutants over the 5 loci involved, and the chro
mosomes on which these loci are located. 

Mutagen 

EMS 
Fast neutrons 
X-rays 

Locus: 
Chromosome: 

hy-1 
2 

4 
3 

7 

hy-2 
3 

4 
-
-
4 

hy-3 
2 

11 
3 

J 
17 

hy-4 
•> 

9 
1 

_1 

11 

hy-5 
5 

2 
-

z. 
2 

Total 

30 
7 

J 
41 

Results 

Genetic characterization 

All 41 independently induced mutants with an elongated hypocotyl isolated so far 

(under continuous TL 57 light and on perlite) were found to be alleles at one of five 

loci, numbered hy-1 to hy-5. Their distribution over loci (EMS vs. ionizing 

radiations) gives no indication of mutagen specificity (5^= 4.15; 0.5 <C P < 0.7). 

All mutants were monogenic recessives, almost completely recessive at loci hy-1, 

hy-2 and hy-5, and incompletely recessive at loci hy-3 and hy-4 (Table 2). 

Table 2: The hypocotyl length of parents and F, in a number of representative wild type x mutant cros
ses. The three genotypes were grown together in one petridish in three replications. 

Mutant 

21.84 
T076 
Bo64 
2.23N 
Ci88 

Locus 

hy-1 
hy-2 
hy-3 
hy-4 
hy-5 

wild type 

1.6±0.1 
2.0±0.1 
1.7±0.1 
1.6±0.1 
1.5±0.1 

Fl -MP 

Length in 
wild type 
mutant 

1.9 + 0.2 
2.3±0.1 
3.0 + 0.1 
3.8 + 0.2 
1.8 ± 0.1 

mm 
X mutant 

6.1 ±0.2 
8.3 ±0.3 
7.810.2 
6.0±0.2 
5.6±0.2 

Degree of 
dominance") 
of wild type 
allele 

0.9 
0.9 
0.6 
0.0 
0.9 

Where F, = the length of the F|, MP = the mean length of wild type and mutant, W = the length of the 
wild type. 

60 2 . Pflanzenphysiol. Bd. 100. S. 147-160. 1980. 



M. KOORNNEEF, E. ROLFF and C. J. P. SPRUIT 

From linkage analysis, including the chromosome 2 markers er and py, the 
sequence hy-3, er, hy-1, py can be inferred with intervals of 15, 3, and 1 centimorgan, 
respectively. On the basis of comparable linkage relationships (REDEI, 1965) and a 
similar phenotypic description (REDEI and HIRONO, 1964) we tentatively equate our 
hy-1 locus to REDEI'S by locus. 

The 5 loci (with their sets of allelic mutants) can be roughly classified into two 
groups on the basis of hypocotyl length (3-5 times vs. < 3 times wild type) and the 
degree of pleiotropic effects on other characters (pronounced vs. less pronounced). 

Pleiotropism is inferred from non-recombination between these effects with the 
elongated hypocotyl and from the fact that all mutants were locus specific in the 
phenotypic spectrum. For details see Table 3. It appeared that all less extreme 
mutants were allelic to the hy-4 and hy-5 locus, except one (mutant d412) that 
proved to be an allele at hy-1. The more extreme mutants were alleles at either hy-1, 
hy-2 or hy-3. 

Table 3: Pleiotropic effects of representative mutants at hy loci in one experiment in two replications. 
Per replication the measurements were based on 5 plants for hypocotyl length (white light, on perlite) 
and for 8-12 plants for other parameters. 

Property wild hy-1 hy-2 hy-3 hy-4 hy-5 

type d412 others 

Number of mutants tested 1 1 4 4 5 6 2 
hypocotyl length (in mm)') 2.1 4.1 6 . 9 - 8 . 2 7 . 2 - 9 . 8 6 . 4 - 8 . 3 4 . 1 - 6 . 4 5 . 2 -6 .1 
colour (gr = green) gr gr yellow-gr light gr light gr gr 

i;r-gr 
lenght of largest rosette 
leaf (in mm)1 '2) 41 32 1 2 - 19 1 4 - 25 3 1 - 4 3 3 5 - 4 5 2 6 - 3 7 
final plant length (in cm)1) 27 25 2 3 - 2 6 2 6 - 2 8 3 2 - 4 0 2 6 - 3 3 2 5 - 2 8 
apical dominance1-3) 3.5 2.6 1 .5-2.0 0 . 3 - 2 . 0 1 .5-2.0 2 . 7 - 3 . 0 3 . 4 - 3 . 7 

') Values indicate the range of the means of individual mutants. 
2) Leaves of hy-1, hy-2 a nd hy-3 mu t an t s were also n a r r o w e r c ompa r ed to wild t ype leaves especially at 

the leaf base . 
3) Indicated by the number of grown-out side shoots in the rosette. 

The wavelength dependence of hypocotyl inhibition 

In wild type, all wavelength regions tested display inhibiting effects (Fig. 2), the 
most effective being far red, near UV and blue. It appeared that mutations in the hy 
genes may change the hypocotyl-inhibition spectrum very drastically. The spectra 
shown were found to be locus specific as they were qualitatively similar for all alleles 
at a particular locus tested (viz. four hy-1, three hy-2, five hy-3, four hy-4 and two 
hy-5 mutants). 

The most remarkable effects are the almost complete absence of inhibition by far 
red in hy-1 and hy-2 mutants, and the reduced inhibition in hy-5. Compared with 
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Fig. 2: Hypocotyl lengths of wild type Arabidopsis and a number of mutants in the vari
ous spectral regimes. Shaded bars: dark controls. Isolation numbers of the mutants used: 
hy-1 = d400; hy-1' = d412; hy-2 = dll27; hy-3 = Bo64; hy-4 = 2.23N; hy-5 = Ci88., 

wild type, inhibition by red is nearly absent in hy-1, hy-2 and hy-3 mutants. Blue 
light is less effective in hy-4 and to some extent also in hy-5 mutants. 

Double-recessive genotypes 

Fs's were derived from all possible crosses between representative mutants at the 
five loci (except the cross hy-2 X hy-5). In all F2's involving hy-4 or hy-5 mutants, 
recombinants occurred with a more extreme hypocotyl phenotype than that of both 
mutant parents (Table 4). These phenotypes combine homozygous alleles of both 
genes (hy-x hy-x, hy-y hy-y: denoted in Fig. 3 as hy-x hy-y). In crosses between 
hy-1, hy-2 and hy-3 recombinant genotypes could only be identified by crossing F2 
plants with both parents. These were about as long as the parents (Table 4). 

The inhibition spectra of some of these double-recessive genotypes with an 
«extreme» phenotype are presented in Fig. 3. They can be interpreted as 

hy-1 hy-4 

1 n 

1 n 
z 

hy-5 hy-3 

1 n 

hy-5 hy-4 hy-3 hy-4 

I 

I 

Fig. 3: Hypocotyl lengths of a number of recominants in the various spectral regimes. 
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Table 4: Hypocotyl length (in mm) of by mutants and some of their recombinants when grown for seven 
days on perlite in continuous white light. 

Mutant V197 
Locus hy-3 
Hyp. length 8.4+0.1 

2.23N Ci88 e751 
hy-4 hy-S hy-5 
5.8±0.4 5.7±0.3 5.3±0.2 

Mutant 
21.84 
T075 
T076 
Bo64 
V197 
2.23N 

locus 
hy-1 
hy-1 
hy-2 
hy-3 
hy-3 
hy-4 

Hyp. length 
9.5±0.4 
9.2±0.2 
9.0±0.2 
7.7±0.2 
8.4±0.1 
5.8±0.4 

8.0±0.2 
9.110.2 

17.1±0.3 
16.2±0.2 
15.3+0.4 12.9±0.3 

12.3±0.4 

12.110.3 

demonstrating the effects of both parental mutants in a cumulative way. It is 
interesting to note that the genotype in which light inhibition is most strongly 
reduced {hy-1 h-1, hy-4 hy-4), still shows some inhibition in the UV and blue region 
although less so than in both parents. 

Phytochrome content 

The quantity of spectrophotometrically detectable phytochrome varied greatly 
between the various genotypes (Table 5). Hy-1 and hy-2 had no photometric 
phytochrome or only traces of it, with the exception of the d4T2 mutant, which had a 
reduced phytochrome content compared to wild type. The limit of detectability in 
these measurements was such that concentrations lower than 5 - 10% of those in 
wild-type tissue could not be detected. We cannot, therefore, exclude the possibility 
that our «phytochrome-less» mutants still contain some pigment at concentrations 
below this level. Mutants at the other loci, hy-3, hy-4 and hy-5, show about the same 
quantity as wild type, taking into account the varation between repeated 

Table 5: Phytochrome content of dark-grown, one week old seedlings of a number of induced mutants 
of Arabidopsis and their length when grown under FR. 

Mutant 

wild type 
21.84 
d412 
dll27 
T076 
Bo64 
d504 
2.23N 
Ci88 

Locus 

+ 
hy-1 
hy-1' 
hy-2 
hy-2 
hy-3 
hy-3 
hy-4 
hy-5 

Phytochrome content 
x A A A x l O ' 

1.15 
0.00 
0.26 
0.00 
0.05 
1.35 
1.21 
0.97 
1.03 

Length in FR in mm 
exp. on exp. on filter 
perlite paper 

2.8 1.8 
11.4 n.t. 
n.t. 8.8 
n.t. 12.6 

10.6 n.t. 
3.5 3.0 
2.7 n.t. 
3.1 1.9 
7.3 7.7 
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measurements. Additional experiments with the same genotypes and another hy-2 
and hy-5 mutant (not shown) confirmed the results of Table 5. 

Discussion 

Photomorphogenic effects as shown in Fig. 2, are not easily explained as resulting 
from the action of a single light receptor pigment. Attempts have been made to 
explain the HIR's, notably those of the inhibition of hypocotyl elongation in lettuce 
(HARTMANN, 1966; SCHAFER, 1976) and in Sinapis (e. g. WILDERMANN et al., 1978) on 
the basis of phytochrome as the sole pigment involved. The model of SCHAFER 

provides a plausible explanation for the far-red part of the HIR action spectrum for 
lettuce. Our results, presented above, demonstrating that there is no inhibiting action 
of red and far red on the Arabidopsis mutants that lack spectrophotometrically 
detectable phytochrome (hy-1 and hy-2), add weight to the conclusion that this 
pigment mediates effects of the long-wavelength part of the visible spectrum. 

In wild type Arabidopsis, like in lettuce, near-UV, blue, and far red are the most 
effective wavelength regions (see also KRANZ, 1977 b; SCHEIDEMANN, 1978). 
However, compared with lettuce, green and red have appreciable activity in wild 
type Arabidopsis. Whereas the effect of green might possibly be ascribed to the 
contribution of wavelengths < 500 nm (Fig. 1), green possibly acting as weak «blue», 
our red source is rather narrow-banded and contains particularly little radiation 
> 700 nm. No definite conclusions can be drawn until we will have determined 
detailed action spectra for the most important mutants. However, our results suggest 
that there may be considerable differences between the long-wavelength action 
spectra of lettuce, wild type Arabidopsis and its mutants, e. g. hy-1, hy-2, hy-3 and 
hy-5. 

We conclude, that the hy-1 and hy-2 genes regulate the synthesis of phytochrome, 
at least in the hypocotyl. Mutants of these genes provide the first known examples of 
phytochrome-deficient genotypes. Mutant d412 (hy-1'), in which the hy-1 gene 
apparently is still functioning partially, provides an example of a so-called «leaky» 
mutant. 

KRANZ (1976, 1977 a) compared the absorption spectra of wild type Arabidopsis 
and several mutants mainly characterized by chlorophyll defects without hypocotyl 
elongation under white light (a. o. ch and im mutants). He concluded that some 
genotypes including wild type were abnormal in both biogenesis and/or 
phototransformations of phytochrome. However, apart from the chlorophyll content, 
other phytochrome-induced effects in the genotypes studied such as seed germination, 
hypocotyl inhibition (KRANZ, 1977 b) and daylength sensitivity (KRANZ, 1979), 
appear rather normal. The conclusion that wild type is the most abnormal genotype 
with respect to the phytochrome system (KRANZ, 1976) is surprising in so far as most 
mutations result in either loss or change of function. It is difficult to comment on the 
remarkable phototransformation spectra reported by KRANZ except to suggest that, in 
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view of the fact that this author has been working with chlorophyll mutants, 
reactions of the photosynthetic pigments may have interfered. Somewhat similar 
results published by JACQUES (1968) for oats may well have the same explanation. In 
view of the complicated pigment transformations following the inital 
phototransformation of protochlorophyllide in dark-grown plants, a more thorough 
analysis would be required before such findings could be accepted and ascribed to 
phytochrome. One possible approach to this problem would be to remove the 
cotyledons before phytochrome measurement. In view of these reported abnormal 
phytochrome types in Arabidopsis we have paid special attention to the occurrence of 
possible long-lived phytochrome intermediates in our material but nothing deviating 
from the normal was observed. We can say with some confidence that intermediates 
with half lives at 0 °C greatly in excess of those observed in other plants, were not 
formed. We also determined a difference spectrum for phototransformation of 
phytochrome in vivo in wild type Arabidopsis. The peaks at 664 and 732 nm were in 
the expected range. 

Since the activities of UV and B, in contrast of those of FR, are hardly diminished 
in the hy-1 and hy-2 mutants, it seems to follow that the short-wavelength part of 
the HIR in these mutants is mainly due to non-phytochrome pigments. Since both P,. 
and Pfr have weak absorption maxima in the blue and near-UV region (e. g. 
GARDNER and BRIGGS, 1974) phytochrome should, according to the model of 
SCHAFER (1976), contribute some HIR activity somewhere near the UV and violet 
asbestic points. A comparison between the wild type Arabidopsis on the one hand, 
and our hy-1 and hy-2 spectra on the other, suggests that this phytochrome activity is 
minimal, however. This leads to the conclusion that, at least for the inhibition of 
hypocotyl elongation in dark-grown Arabidopsis, high activity of the 
short-wavelength regions in the HIR is not related to phytochrome. 

This conclusion gets additional support from our results with mutant hy-4. This 
mutant is strongly inhibited by FR, somewhat less by UV. Blue, on the contrary is the 
spectral region with about the weakest activity. This suggests two additional 
conclusions. First, that this mutant is normal with regards to phytochrome, but 
deficient in the specific «blue» light receptor. Second, it appears likely, that there are 
separate pigments for the UV and B effects as well. It should be recalled here that 
MEYER (1968) and GABA and BLACK (1979) previously obtained evidence, along 
entirely different lines, for different mechanisms operative in the blue and 
long-wavelength effects on hypocotyl elongation in Cucumis. Our results indicate 
that the long- and short-wavelength parts of the spectrum act independently. This 
appears to exclude the possibility of UV- and blue-absorbing pigments acting by 
transferring their excitation energy to phytochrome as there is strong action of these 
wavelength regions in those mutants that are weakly or not at all sensitive to red and 
far red. The latter situation is reminiscent of the action spectra for polarotropism in 
Dryopteris and Sphaerocarpos (STEINER, 1969) where in the former blue proved about 
100 times more effective than red, whereas in the latter wavelengths above 550 nm 
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were entirely inactive notwithstanding a nearly complete identity of the action 
spectra for these two organisms in the blue region. If in all these cases an energy 
transfer mechanism were operative it would be hard to understand why blue is so 
infinitely more effective than red. 

There are reports to the effect that such pretreatment of plants as deetiolation by 
white, red, or blue light can alter the subsequent sensitivity of the HIR to various 
wavelengths, notably red and far red (GRILL and VINCE, 1966; GRILL and VINCE, 

1970; TURNER and VINCE, 1969; JOSE and VINCE, 1977 a). It is conceivable that the 
effect of such treatments consists of coupling or uncoupling the actions of one or 
another of several pigment systems. Our experiments do not address the question of a 
possible interaction between the various pigments during simultaneous irradiation 
with more than one wavelength. 

A comparison of the spectra of Fig. 2 shows some more remarkable differences 
between the various mutants. Mutant hy-3, which has normal phytochrome content 
and is about as sensitive to far red as the wild type, deviates from the latter in its 
greatly reduced sensitivity to red. Although a definite conclusion must be postponed 
until we will have determined the intensity dependence of the HIR in these mutants 
and made detailed action spectra, we suspect that there may be interesting differences 
in the shapes of the action spectra in the red and the far red. In view of the findings 
of JOSE and VINCE-PRUE (1977 b) and VANDERHOEF et al. (1979) it appears possible 

that also in wild type Arabidopsis as well as in mutants hy-4 and hy-5, a 
red-absorbing pigment other than phytochrome contributes markedly to the HIR. 

Mutant hy-5 is a separate case. Whereas its spectroscopic phytochrome content is 
fairly high, it is only moderately sensitive to far-red light. Apparently the reactivity 
to light in this genotype is blocked by some other factor than its capacity for 
phytochrome synthesis. 

The extreme absence of inhibition in double-recessive genotypes shows that the 
photoreceptors behave independently from each other. The absence of such 
recombinants with «extreme» phenotype in crosses among hy-1, hy-2, and hy-3, 
indicates that these genes regulate biosynthetic pathways or regulating steps in 
physiological pathways that are not independent. It is significant that genotypes 
combining phytochrome-deficient mutants (hy-1 hy-1) with those of reduced 
sensitivity to blue (hy-4 hy-4), still show some inhibition by UV and blue light. This 
fortifies our conclusion that most of the remaining sensitivity to blue and UV in hy-4 
mutants is not due to absorption by phytochrome. The remaining effect in the 
recombinant might be caused by another system still functioning. 

The general view that emerges from this study is that the light-induced hypocotyl 
inhibition may depend upon a complex system of photoreceptor pigments. It appears 
likely that the same may turn out to hold for other HIR effects also. Our results 
suggest that these systems are able to operate independently of one another. Since 
experiments of this type usually are of extended duration, during which 
developmental processes operate, the possibility has to be kept in mind that the 
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hypocotyl inhibition is the composite of several reactions tha t occur either 

simultaneously or in succession. The use of the genotypes described might be very 

useful to at tr ibute specific effects to specific systems. 

The determination of detailed action spectra for the different genotypes might 

elucidate some of the complexity of the overall action spectra constructed for wild 

type plants. These spectra should be made for other reactions that are known to be 

under light control in Arabidopsis, such as seed germination (SHROPSHIRE et al., 

1961), photoperiodism ( N A P P - Z I N N , 1969), phototropism, etc. 

Finally, it should not be left unmentioned that plants of the genotypes described 

above, will develop into phenotypically almost or completely normal plants when 

cultivated under appropr ia te conditions in white light. Since it is likely tha t 

phytochrome has one or more functions during several stages of normal p lant 

development, the mutants hy-1 and hy-2 p robably should not be designated 

«phytochromeless». So far, we have only observed that the hypocotyls of these types, 

if g rown in the dark, do not contain detectable phytochrome. O ther parts of the 

plants, formed in light, may do. This is at present under investigation. We know 

already tha t the seeds of these mutants also differ greatly in their phytochrome 

content. 
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Summary 

Average mutation frequencies per locus per dose of mutagen — EMS, X-rays and 
fast neutrons — were estimated from 15 different loci of Arabidopsis thaliana. These 
loci relate to clearly distinguishable phenotypic mutant groups, each affected by a 
limited number of loci. There were significant differences in mutation rate between 
individual loci. The proposition of a linear relationship between DNA content and 
mutation frequency per locus is rejected. 

The probability of inducing mutations with respect to a specified character, i.e. 
obtaining mutants belonging to a specific phenotypic group, depends both on the 
number of loci involved and on the mutation frequencies at these loci. For making 
comparisons between mutagens or between biological species, mutation frequencies 
should be expressed per locus per cell (or per haploid genome) and per dose of 
mutagen. 

In plants, mutation frequencies are usually presented on the basis of phenotypic 
groups, without further identification of the loci involved. With phenotypic groups 
such as erectoides and eceriferum mutants and especially chlorophyll mutants where 
a large number of loci are involved, such analyses are of course laborious. 

To single out one or a few loci and generalizing their mutation frequency to the 
whole of the genome seems a doubtful procedure, because not only may different 
loci within the same phenotypic group vary considerably in mutation frequency (e.g. 
Lundqvist, 1978), but also different phenotypic groups might differ in the average 
mutation frequency of their loci. The issue of comparing mutation frequencies based 
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on limited-scale experiments and incorrect calculations has been critically examined 
by Schalet and Sankaranarayanan (1976) and by Schalet (1978), who reanalysed the 
claim of some authors (Abrahamson et al., 1973; Heddle and Athanasiou, 1975) that 
there exists a linear relationship between mutation frequency per locus and DNA 
content per haploid genome throughout the spectrum of biological species. 

Our experiments with Arabidopsis thaliana enable us to identify the individual loci 
per mutant group as well as to estimate their mutation frequency per cell per 
mutagen dose unit. Our set of mutant groups fulfills 2 basic requirements: (1) 
unambiguous phenotypic classification even when scoring is done by different 
observers and /o r in different environments, and (2) a limited number of loci per 
phenotypic group as judged from a comparatively large number of independently 
induced mutants per group. 

For plant species there are only few data in the literature on mutation frequencies 
induced per locus. In Arabidopsis, data are available for thiamine auxotrophy 
(Feenstra, 1964; Redei and Li, 1969) and for chlorate resistance (Oostindier-
Braaksma and Feenstra, 1973; Braaksma and Feenstra, 1975). In the present report 
the eceriferum group (many loci, incompletely identified) has been added to compare 
this group of Arabidopsis with the intensively analysed eceriferum group of barley 
(Lundqvist and von Wettstein, 1962; Lundqvist, 1978; von Wettstein-Knowles, 
1979). 

For mutation induction, EMS, X-rays and fast neutrons were used in experiments 
performed in the same period and the same environment (greenhouses). From this 
material a comparison between the 2 irradiation sources on the basis of overall 
frequencies per phenotypic group in a more extended set of distinct groups has been 
published recently by one of us (Dellaert, 1981). 

Material and Methods 

Plant material 
Seed stocks used in the experiments were of the pure line "erecta" from ecotype 

"Landsberg" (Redei, 1962). Arabidopsis thaliana (2« = 10) is a strict self-fertilizer 
under our greenhouse conditions. 

Mutants 
The mutants were induced by us, except those listed under "Mutants from other 

sources" in Table 1, and belong to mutant groups chosen on the basis of the stated 
prerequisites (unambiguous scoring, limited number of loci; see Introduction). 

(a) Gibberellin-sensitive mutants (ga). For detailed description see Koornneef 
and van der Veen (1980). This group comprises mutants that require gibberellin 
(GA) both for germination and elongation growth (non-germinating GA dwarfs) 
and mutants that have this requirement only for elongation (germinating GA 
dwarfs). 

(b) Hypocotyl mutants (hy). Hypocotyl elongation 3-6 times of the wild-type, 
when grown for a week under continuous TL light. Some of the loci involved 
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TABLE 1 

RESULTS OF COMPLEMENTATION TESTS WITH ARABIDOPSIS MUTANTS 

Mutant group/locus 

Non-germinating dwarfs 
ga-l 
ga-2 
ga-i 

Germinating dwarfs 
ga-l 
ga-2 

ga-3 
ga-4 

ga-5 

Hypocotyl mutants 
hy-1 
hy-2 
hy-5 

Glabra mutants 
gl-1 
gl-2 

gl-3 

"8 

Other mutants 
an 

"g 
ap-I 

Chromosome 
location 

4 
1 
5 

4 
1 
5 
1 
4 

2 
3 
2 

3 
1 
5 
5 

1 
4 
1 

Number of mutants 

EMS 

!9( + 2) 
4 
5 

28( + 2) 

5 
2 
1(+1) 
7 
1 

16(+l) 

K + 2) 

3 ( + D 
9( + 2) 

13( + 5) 

1 

-
2 
3( + 2) 

6( + 2) 

1 
2 ( + l ) 

3 ( + l ) 

6( + 2) 

X-Rays 

1 
1 

-
2 

-
-
-
1 

1 

-
-
2 ( + l ) 

2 ( + l ) 

1 

-
1 

-
2 

-
-
-
-

induced by 

Fast 
neutrons 

4 
1 

-
5 

1 

-
-
-

1 

2 ( + l ) 
-
3 

5 ( + l ) 

2 
1 
1 
1 

5 

2 
1 
2 

5 

Mutants from 
other sources 
(mutagens 
unknown) 

2a 

-
-
2 

lb 

-
-
lc 

2 

ld 

-
-
I 

Total 

26 
6 
5 

37 

6 
2 
2 
8 
1 

19 

8 
4 

17 

29 

5 
1 
4 
7 

17 

4 
4 
6 

14 

Mutants not from the M 2 lines used for the calculation of mutation frequencies are given between 
parentheses. 
a hy described by Redei and Hirono (1964) and V317 from the AIS gene bank (Burger, 1971). 
b gl described by Redei and Hirono (1964). 
c F31 from the AIS gene bank (Burger, 1971). 
d an from Redei (Lee-Chen and Steinitz-Sears, 1967). 

regulate the presence of phytochrome in hypocotyls (Koornneef et al., 1980b) and 
seeds (Spruit et al., 1980). Less pronounced hy mutants were excluded from the 
present study. 

(c) Agamous (ag). "Double flowering", resembling the multipetala mutant de-
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scribed by Conrad (1971). Sterile (no pistils or stamens). 
(d) Angustifolia (an). Narrow leaves and slightly crinkled siliquae (Lee-Chen and 

Steinitz-Sears, 1967; Demchenko et al., 1976). 
(e) Apetala (ap-1). Fertile without petals or with rare rudimentary petals. The 

ap-1 mutants represent a clearly distinguishable type within a large group of mutants 
with a deviating flower morphology (cf. McKelvie, 1962). 

(f) Glabra (gl, ttg). Mutants without trichomes or with reduced trichomes on the 
leaves (Redei and Hirono, 1964; Lee-Chen and Steinitz-Sears, 1967; Burger, 1971; 
Demchenko et al., 1976). 

(g) Ecehferum (cer). Bright green siliquae and /o r stems due to a deviating 
structure of the wax layer (Dellaert et al., 1979). 

Except for 1 single cer-1 mutant, none of the mutant types described in this report 
was found in non-mutagen-treated wild-type progenies grown in the course of years 
at our laboratory. This indicates a low spontaneous mutation frequency for the loci 
described. 

Culture conditions 
Seeds were sown (equally spaced) in 9-cm petri dishes on perlite with a standard 

mineral solution as described by Oostindier-Braaksma and Feenstra (1973). After a 
cold treatment (4-6 days at 2-4°C) to break seed dormancy, the seeds were put to 
germinate in a climate room at about 24°C under continuous illumination by 
fluorescent light tubes (Philips TL 57, about 8W/m 2 ) , except for the mutagenic 
treatment. 8 days after the end of cold treatment the seedlings were transplanted 
into soil in an air-conditioned greenhouse. 

Ethyl methanesulphonate (EMS)-treatment 
Before the EMS treatment, seeds were kept on moist filter paper for 5 days at 4°C 

to break seed dormancy, then redried (in the dark, 24°C, 24 h). Subsequently the 
seeds were submerged in a freshly prepared unbuffered 10 mM EMS solution and 
left for 24 h in the dark at 24°C. After being rinsed off with tap water, the seeds 
were sown in petri dishes and put to germinate in the climate room as described 
above. 

Radiation treatment 
Dormancy breaking and redrying was as before EMS treatment. Before irradia

tion the seeds were submerged in water at 22 °C for 3 h. Details on the X-ray 
machine, the source of fast neutrons and the use of the radioprotector dithiothreitol 
(DTT) as applied in some treatments, have been given by Dellaert (1980c). X-Ray 
doses were 140, 233, 327 and 420 Gy (10 Gy = 1 krad) for seeds submerged in tap 
water; and 280, 467, 653 and 840 Gy for seeds submerged in a 1.2% DTT solution. 
Fast neutron doses were 20, 33, 47 and 60 Gy for seeds submerged in tap water; and 
40, 67, 93 and 120 Gy for seeds submerged in a 1.2% DTT solution. The temperature 
of the solutions was 22°C. The doses chosen were not so high as greatly to reduce 
M, fertility. 
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Corrections for recessive deficits 
In M 3 lines the average segregation frequency of recessive mutants is usually less 

than 0.25 (Moh and Nilan, 1956; Doll, 1968; Jacobs, 1969; Delleart, 1980d). For our 
mutant groups, zygotic selection can be neglected (cf. Dellaert, 1980d). The most 
likely explanation for the deficit then is male gametic selection (certation). In M 2 

lines an additional cause for a recessive deficit is M, chimerism. 
The irradiation and EMS experiments were initially started by the first 2 authors 

(Dellaert and Koornneef, respectively) independently from each other. This involved 
a somewhat different procedure in harvesting M, plants. For irradiation, only one 
well-filled siliqua from the top region of the main inflorescence was taken. Within-
flower chimerism can be neglected here (Ivanov, 1973; Dellaert, 1980d). However, 
with the EMS material, a number of siliquae from the top region were harvested. 
(M, plants with clearly reduced fertility were discarded.) Though chimerism is 
progressively lost in the direction of the top (Balkema, 1972; van der Veen, 
unpublished), it is not completely absent. So an M 2 line derives in part from selfed 
heterozygous siliquae (fraction aB) and in part from selfed non-mutant siliquae 
(fraction l-aB). 

The joint effect of chimerism and certation gives rise to a mixed M 2 population as 
follows: 

AA Aa aa 

+ (1 - « „ ) [ ! 0 0] 

where aB < 1 in the presence of chimerism a n d / < 0.25 in the presence of certation. 
The following parameters can be extracted from the experimental data (cf. 

Dellaert, 1980d): 

p | , the average frequency of recessives in segregating M 2 lines. 
p2, the average frequency of heterozygotes among normals in segregating M 2 lines. For this purpose, 

large-scale progeny testing (M3) is necessary. 
p3, the average frequency of recessives in segregating M 3 lines. 

The estimates pu p2 and /53 and their standard deviations were obtained by the 
method of Li and Mantel (1968), which corrects for small line sizes. For further 
details on the estimation procedure, see Dellaert (1980d). 

Now, p, = aB • / and p2 = aB / 2 ( 1 —/?,), so one can estimate dB = 2( 1 — p, )p2 and 
f=P\/6tB. If the estimate p2 is not available, one can use the estimate f=p3 and 
dB —px/py as a correction for recessive deficit in M 2 . A check on the reliability of 
using p3 for M 2 data will be presented later. 

Mutation frequencies 
For the estimation of mutation frequencies in self-fertilizing diploid plants a 

number of methods is available. (For a critical review see Yonezawa and Yamagata, 
1975.) For our experiments, Gaul's M 2 plant method was used as this estimate of 
mutant frequency (m') is independent of M 2 progeny size and the degree of M, 
chimerism (Gaul, 1957; Frydenberg, 1963). m' is expressed as the total number of 
mutants among the total number of viable M 2 plants. The standard error 5 of m' is 
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' J ~ ^ ~ {2af-2m'2a,n, + (m')22nj} , where 

calculated by a formula given by Snedecor (1966) (Cf. Dellaert, 1980b): 

_ {N 

N = number of M 2 lines scored, 
«i = number of viable plants in M 2-line ;. 
c/j = number of mutants in (segregating) M2-line /', 
m' = total number of mutants among the total number of viable M 2 plants. 

The mutation frequency per locus per cell is m = m'/f. By dividing m by the dose of 
mutagen (D; in Gy's for radiation and mMh for EMS) one obtains the mutation rate 
per dose of mutagen per locus per diploid cell (m"). For correction to haploid 
genomes m" should be divided by 2. 

When only the number of segregating M 2 lines among the total number of scored 
M 2 lines is recorded one cannot apply Gaul's M 2 plant method, but one has to 
resort to the method of Li and Redei (1969). This method has the disadvantage that 
it leads to an underestimation of mutation frequencies when the M 2 lines are 
relatively small, especially when the degree of M, chimerism is high. Moreover, the 
estimate of aB which must be used is mostly rather inaccurate (Yonezawa and 
Yamagata, 1975). Li and Redei (1969) introduced the parameter "genetically effec
tive cell number" (GECN = l / a B ) of the germ line. Their formula for mutation 
frequency per cell (m) reads m = M/(S X GECN), where M is the number of M 2 

lines segregating recessives and S the total number of M 2 lines tested. Note that 
m = MaB/S equals m=pxM/fS (see previous section) and that p^M/S = m', so 
that m = m'/f as before (Gaul's method). 

Results 

Genetic analysis of the mutants 
Allelism versus non-allelism was assessed on the basis of non-complementation 

versus complementation within mutant groups. Complementation tests were not 
done simultaneously (in a diallele) but sequentially, by crossing mutants still to be 
tested with a gradually built-up locus representative tester set. 

All mutants proved to be monogenic recessive to wild type. 
Table 1 presents the results of complementation analyses along with location of 

the loci on the chromosomes (2« = 10) by means of trisomic analysis (Koornneef 
and van der Veen, 1978). To all loci listed in Table 1 distinct positions on the linkage 
map could be assigned (Koornneef et al., 1980a; Koornneef, in preparation), which 
confirms the results of the complementation analysis. Within mutant groups no close 
linkage was found. 

A non-random distribution of mutants among the loci was found for the ga loci 1, 
2 and 3 (x* = 25.6; P<0 . 01 ) and for the 3 hy loci ( x 2 = 9 . 1 ; P<0.05), the 
frequency being highest for ga-1 and hy-3, respectively, both among EMS- and 
radiation-induced mutants. At most loci, mutants were found with both EMS and 
irradiation. The number of mutants per locus was too small for mutagen specificity 
per locus to be analysed. 
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Locus-specific phenotypic expression within the groups of Table 1 was found for 
germinating dwarfs at ga-4 and ga-5, these being clearly distinct from the dwarfs at 
ga-1, ga-2 and ga-3 (Koornneef and van der Veen, 1980). Locus-specific phenotypic 
expression was also conspicuous in the glabra group: 

gl-1 is trichomeless or has a reduced number of normal trichomes; gl-2 has 
rudimentary trichomes on the first leaf pair, and a reduced number of normal 
trichomes at higher leaves; gl-3 has a reduced number of trichomes, which are 
unbranched or single branched; ttg is trichomeless. The ttg mutants also have 
transparent seed coat (seeds yellow, reflecting the embryo colour in ripe seeds). 
Conversely, transparent seed coat mutants were found with normal trichomes (not in 
Table 1), which were not allelic to ttg. 

The eceriferum group, consisting of over 150 mutants induced by both EMS and 
radiation, was subdivided into 7 sub-groups by Dellaert et al. (1979) on the basis of 
differences in the pattern of wax deposition on siliquae and stem, visual impression 
of waxlessness and (locus-) specific pleiotropic effects. On the basis of incomplete 
dialleles within sub-groups including 38 of the mutants, a minimum of 14 loci was 
estimated. The complementation tests were extended and some sub-groups were 
pooled. Assuming no allelism between the 2 remaining sub-groups the complementa
tion tests among 57 of the mutants revealed mutations at minimally 20 and 
maximally 25 different loci. The highest frequencies were found at locus cer-3 
(chrom. 5; 16 mutants) and at locus cer-1 (chrom. 1; 8 mutants). 

Mutants were isolated at a number of loci that have a less extreme phenotype 
than others, namely germinating dwarfs versus non-germinating dwarfs for ga-1, 
ga-2 and ga-3, and a reduced number of trichomes versus absence of trichomes for 
gl-1. These mutants probably represent "leaky mutants", which implies a partial 
functioning of the gene product. 2 such mutants (one ga-1 and gl-1 mutant) were 
induced by fast neutrons. Some fast-neutron-induced non-germinating dwarfs were 
included in an intragenic recombination analysis of the ga-1 locus. These behaved 
like overlapping intragenic deletions, except one which behaved like a "point 
mutation" (Koornneef, 1979). 
Segregation frequencies (EMS-experiments) 

The segregation frequencies p, and p3 for different mutant groups are given in 
Table2. No significant differences between mutant groups were found f o r / , or for 
p3. Though p3 for the small group of germinating dwarfs (at ga-1, 2, 3) is not 
significantly lower than 0.25, one may say that there is also an average recessive 
deficit in M3 . The average EMS value p3 =0.219 ±0.005 compares well with the 
average X-ray values 0.211 ± 0.010 (X-rays) and 0.208 ± 0.010 (X-rays + 1.2% DTT) 
and the average fast-neutron values 0.203 ± 0.010 (FN) and 0.221 ± 0.011 (FN + 1.2% 
DTT) found by Dellaert (1980d) for a larger and more diverse set of mutant groups. 
The value is also close to the 0.198 given by Jacobs (1969) for EMS-induced 
chlorophyll mutants in Arabidopsis. 

To check whether p3 values obtained from EMS-induced mutants, like those 
obtained with radiation-induced mutants (Dellaert, 1980d), can also be used as an 
estimate for the correction factor/ (see Material and Methods) a sample of 35 
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TABLE 2 

M 2 AND M 3 SEGREGATION FREQUENCIES OF EMS-INDUCED MUTANTS 

Loci 

ga-1, ga-2, ga-3 (NG) 
ga-1, ga-2, ga-3 (G) 
ga-4, ga-5 

hv-1, hy-2, hv-3 
gl-l, gl-2, gl-3, ttg 
an, ag, ap-1 
eceriferum 

Averages and totals 

M 2 segregation 
frequency ( p,) 

0.137±O.OI3 
0.073 ±0.030 
0.111 ±0.032 
0.111 ±0.032 
0.103 ±0.049 
0.125 ±0.039 
O.I48±0.010 

0.142 ±0.007 

Number 
of mutants 
tested 

28 
8 
8 

13 
6 
6 

97 

166 

" M 3 " segregation 
frequency (p3 )

a 

0.211 ±0.007 
0.239±0.013 

0.221 ±0.010 

0.219 ±0.005 

Number 
of mutants 
tested 

29b 

9 b 

35 
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NG, non-germinating GA dwarf; G, germinating dwarf. 
a For ga-1, 2 and 3 loci, />3 was obtained from F2 's following the cross mutant X wild-type (Koornneef 

and van der Veen, 1980) which is taken to be equivalent to M3 segregation frequency. 
b Including some mutants from previous EMS experiments and a mutant first found in M3 . 

EMS-induced eceriferum mutants was used, M3 progenies being grown from 6 non-
mutant plants per M 2 line. The corresponding/ , value is 0.156 ±0.013. Further, 
p3 = 0.221 ±0.010 (Table 2) and p2 = 0.430 ± 0.038. This leads to aB = 2(1 - 0.156) 
X 0.430 = 0.726 (a non-negligible degree of chimerism between siliquae) and / = 
0.156/0.726 = 0.215, which is close to p3 = 0.221. It follows from the eceriferum data 
that p3 can be safely used as an estimate for / . 

Analysis and discussion 

Mutation frequencies 
Table 3 gives, for each mutant group, the 'calculation' of the average EMS-induced 

mutant frequency per locus. The weighted mean for the 15 identified loci is 
0.20 X 10 ~3. Taking the maximal estimate of 25 for the number of eceriferum loci as 
deduced from complementation tests with 57 of these mutants, one obtains for the 
eceriferum group an average mutant frequency per locus as 5.11 X 10 " 3 / 25 = 0.20 X 
10 ~3, which happens to be the same as the weighted average for the other loci. 
Dividing mutant frequencies by p3 ( = 0.219 for EMS) one obtains mutation frequen
cies per locus per cell (Gaul's method). These can be converted to mutation 
frequencies per locus per dose of mutagen (in mMh), in our case by dividing by 10 
(mM) X 24 (h). This is realistic, because in earlier unpublished experiments (van der 
Veen) performed under strictly comparable conditions (i.e. redried seeds after cold 
treatment; 24°C), the mutagenic effect (embryonic lethality, chlorophyll mutant 
frequency) was a linear function of time, since (a) at fixed dose (mM) X duration (h) 
it happened to be approximately constant, except for very short duration (Fig. 1), 
and (b) under the same conditions these genetic effects were linear with dose in the 
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1X240 2X120 3 x 8 0 6 X 4 0 8 x 3 0 1 2 x 2 0 2 4 x 1 0 

T ime (h) x c o n c e n t r a t i o n ( m M EMS) 

Fig. 1. Mutant percentage as a function of timeXconcentration. A , embryonic lethals; • , chlorophyll 
mutants scored by Miiller's embryo test (Miiller, 1963). Each point represents about 2500 scored embryos. 

range of 3.0-17.5 mM (24°C, 24 h) (van der Veen, 1968). 
Tables 4 (X-rays) and 5 (fast neutrons) give the average mutant frequencies of the 

same mutant groups for experiments in which different doses (cf. Material and 
Methods) were used with and without the radio-protector DTT (Dellaert, 1980c, 
1981). The doses applied with DTT were corrected for the protective effect of DTT 
as follows. Dellaert (1980c; Table 1) gives the mutant frequencies for viable mutants 
for the dose range applied both for X-ray and fast-neutron treatment with and 
without DTT. In all 4 cases the dose-response curve can be represented fairly well 
by a straight line through the origin (y = ax). For X-rays we find y = a0x and 
y = axx for without and with DTT respectively. The ratio a0/ai - 0.00110/0.00074 
= 1.49 is called the dose-reduction factor (DRF) of DTT for X-rays. For fast 
neutrons the DRF is a0 /ax - 0.00669/0.00543 = 1.23. By correcting with (i.e. 
dividing by) the DRF, the "DTT doses" can be converted into corresponding " H 2 0 
doses". When calculating the mean over doses, we weighted the values by the 
number of M 2 plants per dose. 

With all 3 mutagens, the group of ga-1, ga-2 and ga-3, shows the highest average 
frequency per locus (Tables 3, 4 and 5), which is specifically due to ga-1 (Table 1). 
Also hy-3 consistently had a high frequency (Table 1). This might be an intrinsic 
property of the genes, e.g. related to the length of transcription unit. It can be 
concluded that this locus specificity not only generates significant differences in 
mutation frequencies per locus within mutant groups, but also between groups. (Cf. 
the ga-group and g/-group; Tables 3, 4 and 5.) 

For the loci tested, no data are available from the literature. However, data on 
3 other well-defined phenotypic groups (Table 6) can be used for comparison. As in 
these cases only the fraction of M 2 lines segregating recessives (M/S) is given, i.e. 
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TABLE 6 

MUTATION FREQUENCIES PER LOCUS PER CELL PER DOSEa OF MUTAGEN x 10 
CALCULATED BY 2 METHODS FOR DIFFERENT MUTANT GROUPS 

Mutant group 

Groups of Table 1 

Thiamine deficiencyb 

Thiamine deficiency1 

Nitrate reductase 
deficiency11 

chl-1d (chlorate 
resistance) 

Number 
of loci 

15 

4 

4 

6 

1 

Mutagen 

EMS 
X-rays 
EMS 
X-rays 
EMS 

EMS 

EMS 

Number of 
independent 
mutants 

69 
7 

51 
11 
6 

8 

37 

Gaul's 
method0 

3.7 
0.7 

Li and Redei's 
method 

3.2 
0.7 
0.6 
0.2 
0.9 

0.2 

6.8 

" mMh for EMS and Gy irradiation. 
b Redei and Li (1969). 
c Feenstra (1964); assuming GECN = 2. 
d Braaksma and Feenstra (1975); Braaksma, personal communication: assuming GECN = 2. 
c Values from Tables 3 and 4 

no number of M2-mutant plants nor M2-line sizes, one has to resort to the method 
of Li and Redei (1969). Though for our 15 loci a good correspondence is found with 
Gaul's method (Table 6), small M2-line sizes lead to an under-estimate as a result of 
proband escape. The mutation frequencies in Table 6 were obtained by using a 
G E C N = l / a B =f/p] =P3/Pi =21.9/14.2 (Table 2 ) = 1.54 for our experiments and 
GECN = 2 for the literature references (Li and Redei, 1969). For the groups 
thiamine and nitrate reductase deficiency, the frequencies were relatively low (below 
1.0 X 10" 6 ) , but for the chl-1 locus a high frequency (6.8 X 10 ~6) was found, though 
not as high as for our cer-3, ga-1 and cer-1 loci (footnote b in Table 3). 

It can be argued that, owing to the still relatively small size of the experiments, 
the mutation frequencies per locus must be regarded as maximal estimates in 
Arabidopsis, because mutants at loci with low and very low frequencies may have 
escaped detection. So the number of loci per mutant group may be underestimated. 

A comparison of eceriferum mutants in Arabidopsis with those in barley is of 
interest. As said earlier, complementation tests with 57 independently induced 
mutants indicated that these mutants represented mutations at 20-25 different loci. 
Lundqvist and von Wettstein (1962) found comparable values for barley, namely 23 
loci for 67 mutants. In a later publication the number of loci had increased to 65 
when 1123 mutants had been tested (von Wettstein-Knowles, 1979). 

On the basis of proportionality, one may infer the number of cer loci in 
Arabidopsis, which might ultimately also be found to be about 65. With 65 loci, and 
referring to a haploid genome, one obtains a mutation frequency per locus per 
haploid genome of 5.11/(65 X 2 X 0.22 X 240) = 0.74 X 10 ~6 per mMh. Schalet 
(1978) derived, from the barley results of Lundqvist and von Wettstein (1962), the 
value of 6.3 X \Qb per mM which is 6.3 X 10~6 /24 = 0.26 X 10 ~6 per mMh. A 



second correction can be made for the treatment temperature (20°C). As indicated 
by Konzak et al. (1963), a rise from 20 to 24°C would give in barley a correction 
factor of 1.5. One then obtains 0.39 X 10 6 per mMh for eceriferum loci in barley, 
which compares reasonably well with our values for Arabidopsis (0.74 X 10 ~ 6 ) , 
especially as the barley values may still be underestimates (Schalet, 1978). 

When comparing the mutation frequencies per cer locus for radiation of barley 
and Arabidopsis, one again finds a comparable order of magnitude. (X-rays: barley, 
0.20 X 10" 6 /Gy ; Arabidopsis, 0.11 X 10~ 6 /Gy. Fast neutrons: barley, 4.56 X 
10" 6 /Gy; Arabidopsis, 2.58 X 10~6/Cry.) The barley values were calculated from 
the results of Lundqvist and von Wettstein (1962) in the way described by Schalet 
and Sankaranarayanan (1976). For both species, the values are per haploid genome 
and assuming 65 loci. 

The 2 species are known to differ by a factor of 25 in DNA content (Bennet, 
1972), Arabidopsis being one of the plant species with the lowest DNA content per 
haploid genome. Therefore, the Arabidopsis-barley comparison is clearly at variance 
with a linear relation between DNA content and induced mutation frequency as 
suggested by Abrahamson et al. (1973) and by Heddle and Athanasiou (1975) on the 
basis of a literature survey. This claim had already been opposed on good grounds 
by Schalet and Sankaranarayanan (1976) and Schalet (1978). 

Comparison between EMS and radiation 
A second generalization made by Heddle and Athanasiou (1975) is that of a 

constant "equivalent" between 1 M EMS and 1 rad X-rays for all organisms. This 
could highly simplify the estimation of genetic risks, but as Schalet (1978) pointed 
out, this equivalent may differ by a factor of 10 for the same genetic parameter 
depending on the phase of development in which the mutagen is applied, and the 
effect of EMS is greatly affected by temperature and duration of treatment. 
Secondly, the existence of pronounced mutagen specificity is not consistent with this 
concept. Some rather extreme examples of mutagen specificity are described for the 
eceriferum mutants in barley (Lundqvist, 1978), where mutants at particular loci 
were isolated exclusively after radiation (e.g. cer-i mutants) and mutants at cer-j 
almost exclusively when chemical mutagens were used. 

Mutagen specificity has been reported for Arabidopsis by Mesken and van der 
Veen (1968), who found that, compared with X-rays, EMS induced 4 times as many 
embryonic chlorophyll mutants at a given level of M, sterility (percentage of 
non-fertilized ovules on M, plants among all ovules). Hussein (1968) found the same 
ratio for flowering-time mutants. Mutagen specificity for phenotypic groups has 
been reported elsewhere in Arabidopsis (Robbelen, 1962; McKelvie, 1963; Jacobs, 
1969; Dellaert, 1981) and in other plant species. (For review see Dellaert, 1980a.) 

This implies that the spectra of genetic damage caused by the mutagens compared 
are different and that mutational events leading to the particular types of genetic 
damage are different. 

As has been argued by Dellaert (1980c), a possible explanation is that, with 
irradiation, the ratio "strand breaks"/"base damage" decreases in going from M, 
sterility via embryonic lethality to M2 viable mutants. Since EMS is known to induce 
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relatively few "strand breaks" as compared with irradiation, the lower ratio EMS/ 
X-rays for M, sterility than for chlorophyll mutants can be explained on this basis. 
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CHAPTER 6 

THE TRISOMICS OF ARABIDOPSIS THALIANA (L.) 
HEYNH. AND THE LOCATION OF LINKAGE GROUPS 

M. Koornneef and J.H. van der Veen 

Submitted for publication 

SUMMARY 

The 5 primary trisomies and 4 out of the 10 possible telotr isomics were 

isolated in Ar-abidopsis thaliana (L.) Heynh. (2n = 10) var. Landsberg 

"ereata". I den t i f i ca t ion was on the basis of meiotic chromosome counts 

and the character ist ic segregation r a t i o ' s of speci f ic linkage group 

markers with the corresponding tr isomies. By means of tr isomic analysis 

and addit ional linkage data, Redei's 6 linkage groups and McKelvie's 

4 linkage groups could be assigned to the 5 d i f ferent chromosomes. 

These results are summarized in Table 4. 

Female transmission of the d i f fe rent trisomies ranged from 16% to 

30% and male transmission from 0 % to 32%. The higher male transmission 

rates were found among the te lotr isomics. 

The er/ev genotype is found to have a pronounced adverse e f fect on 

female f e r t i l i t y of the tr isomies. 
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INTRODUCTION 

The s e l f f e r t i l i z i ng cruciferous plant Arabidopsis thaliana (L.) 

Heynh. (2n = 10) has been widely used for genetical and physiological 

studies, favourable properties for experimentation being i t s small 

s ize, i t s very short generation interval and i t s high reproductive 

rate. Yet, i t s gene map is rather fragmentary so f a r , and the assign

ment of linkage groups to chromosomes is subject of contradictory 

conclusions. 

Redei (1965) presented six linkage groups (1 to 6) - each with 

one or two representative markers - , which by means of tr isomic ana

lysis were assigned to the f i ve chromosomes as fo l lows: 1 , 2, 3, 

4 + 6 and 5 (Lee-Chen & Steini tz-Sears, 1967; Sears & Lee-Chen,1970). 

Independently, McKelvie (1965) had found four linkage groups 

(1 to 4 ) , of which group 1 contained 15 markers, the other groups 

2 to 4 markers each. By tr isomic analysis Lee-Chen & Burger (1967) 

found McKelvie's groups 2 and 3 to be on the same chromosomes as 

Redei'sgroups 3 and 5Respectively. 

FischerovS (1975) inferred Redei's group 5 and 6 to be on the 

same chromosome, for the representative markers lu (group 5) and 

vc-2 (group 6) were both l inked to her chlorophyll markers M 4-6-18 

(alb-2) and oh-42, which linkage data were in part erroneous (see 

l a t e r ) . 

Feenstra (1978) showed by linkage analysis with intercalated markers 

that Redei's group 1 and 4 should be assigned to the same chromosome. 

So far tr isomic sets of Arabidopsis thaliana have been developed at 

Columbia, Missouri (Steini tz-Sears, 1963; Lee-Chen & Steini tz-Sears, 

1967; Sears & Lee-Chen, 1970), at Gbttingen (Rbbbelen & Kribben,1966) 

and la ter by the present authors at Wageningen (Koornneef & van der 
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Veen, 1978). The latter set is in the background of Landsberg "ereata" 

and also includes a number of telotrisomics. In the present paper 

the 5 primary trisomies and 4 telotrisomics are described with re

spect to morphology, male and female transmission, fertility and asso

ciation with representative markers. 

In the meantime localization studies with the help of these tri

somies served as a starting point of an extensive linkage mapping 

program (Koornneef et al. , 1980; Koornneef et al., submitted). 

Some preliminary results of the trisomic analysis were published by 

Koornneef & van der Veen (1978); Koornneef & den Besten (1979) and 

Koornneef & van der Beek (1979). Also segregation data for both telo

trisomics of chromosome 1 were published in relation to centromere 

localization (Koornneef, submitted). 

MATERIAL AND METHODS 

Upon colchicine treatment of the diploid pure line Landsberg "evecta" 

a homogenous and very stable tetraploid line was obtained (Balkema, 

1971; van der Veen & Blankestijn-de Vries, 1973). The triploid (from 

4n x 2n) was pollinated by the diploid, and in the progeny a consider

able number of suspected aneuploids were both selfed and pollinated 

by the diploid. In several of the progeny pairs, only one typical 

deviant type (on the basis of overall-morphology) was observed to se

gregate along with the normal diploids. By continued comparisons in 

subsequent generations, 6 morphologically distinct presumed trisomies 

were isolated. Later on, two of these (to be called TrlA and TrlB; 

see later) were found to segregate in low frequency the same very weak 

deviant type (to be called Trl; see later), which type had already 

been observed in the 3n x 2n progeny but could not be maintained then 
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due to its high sterility. Finally,two other presumed trisomies,viz. Tr3 

and Tr5 were found to segregate a very, rare deviant type, each with inter

mediate habitus between its trisomic parent and the diploid. These types 

will be called Tr3A and Tr5A. 

All 9 types to be designated as trisomies in the following can be 

distinguished on the basis of their typical morphology, the most 

conspicuous aspects of which are listed in Table 1. 

Table 1. Characteristic morphological traits of Ardbidopsis trisomies 

compared with the diploid line of origin (Landsberg "ereota"). 

Trl Small rosette, which soon becomes necrotic, fragile plant 
with irregular flowers, highly sterile. 

TrlA Dark green leaves, slightly lozenge shaped, semi-dwarf, 
irregular petals. 

TrlB Small rosette leaves, which especially in winter soon 
become necrotic, slender plant type. 

Tr2 Rosette leaves more round and often slightly bent, 
flowers a few days later. 

Tr3 Narrow and greyish green rosette leaves, irregular 
petals, highly reduced fertility. 

Tr3A Like Tr3, but less extreme and much more fertile. 

Tr4 Slightly smaller flatter rosette, flower buds thickened 
which makes the top of the influorescence seem flatter. 

Tr5 Narrower leaves, semi-dwarf, stigmata remain pronounced 
on siliquae after flowering, rather sterile. 

Tr5A Like Tr5, but less extreme, leaf margins more serrated 
and fertility much better than Tr5. 
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To study marker association, the usual procedure was followed: 

in the F, from tr isomic (AAA) x d ip lo id (aa), the tr isomic progeny 

(AAa) was selected and sel fed. In F„ , marker segregation was scored 

in trisomies and diploids separately, or j o i n t l y when the contrast 

tr isomic versus d ip lo id can not be scored (e.g. with lethal chloro

phyll markers, and with some seedling markers). For primary t r isomies, 

association gives a 1:0 segregation among trisomies and an 8:1 se

gregation for d iploids in F„. With 25% trisomies a t o ta l segregation 

of 11:1 is expected. For telotr isomics the c r i t i c a l F~ ra t io ' s are 

1:0 among t r isomies, and among diploids 3:1 to approximately 7:1 

depending on the locus involved being close to or far from the centro

mere (Koornneef, submitted). 

The o r ig in and description of the markers used is given in Table 2. 

A l l are monogenic recessives. 

Recombination f ract ions between markers were obtained from F„ data 

(when necessary combined with F, progeny test ing) by means of the 

appropriate maximum l ikel ihood procedures. 

Meiotic chromosomes were counted according to Sree-Ramulu & Sybenga 

(1980): I t should be noted that in general the very small chromosomes 

do not allow individual d i s t i nc t i on . 

Pollen was stained with Alexander's s tain (Alexander,1969).Female 

f e r t i l i t y was expressed as percentage of f e r t l i zed ovules among a l l 

ovules as determined with Mul ler 's embryo test (Mul Ier, 1963 ). 

RESULTS AND DISCUSSION 

Identification of trisomies 

The presumed trisomies were selected on the basis of t he i r typical 

habitus (see MATERIAL AND METHODS). Their segregation into trisomies 
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and normals upon selfing and pollination with diploids and the segre

gation r a t io ' s of associated markers (see la ter) provides strong evi

dence for the trisomic nature of the types selected. Confirmation 

came from meiotic observations. In metaphase I 4 bivalents and a t r i -

valent or 5 bivalents and an univalent were found, while in meta

phase II and anaphase II groups of 5 and 6 chromosomes were observed 

in s i s t e r ce l l s . The small size of Arabidopsis chromosomes does not 

permit individual distinction of the chromosomes at the meiotic 

stages studied and only rarely can telocentric chromosomes be dist in

guished from the normal metacentric chromosomes (Koornneef.submitted). 

So far , no satisfactory meiotic preparations could be made for the 

types Trl and Tr5A. 

Marker association 

Table 3 gives the segregation in F„'s derived from crosses of t r i 

somies x diploid marker l ines. It is seen that for each trisomic 

type association with at least one specific marker has been found 

and conversely that each of the specific markers (except alb-2) is 

associated with at least one trisomic type. Markers associated with 

two trisomic types are dis-2 (Trl and TrlA), ah-1 (Trl and TrlB), 

ah-6 (Tr3 and Tr3A), tt-3 and tz (Tr5 and Tr5A). Other markers were 

carried only by the f i r s t of these pairs of trisomies. This can be 

explained only by assuming that the trisomic types TrlA, TrlB, Tr3A 

and Tr5A have only part of the corresponding chromosome (as indi

cated by the notation) additional to the diploid complement. In 

these cases the extra chromosome most probably is a telocentric 

chromosome. Such telocentrics are known to arise from centric sp l i t 

of univalents, which frequently occur in aneuploids. Evidence for 

the telotrisomic nature of TrlA and TrlB is obtained from the close-
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ly l inked (4.3 cM; Koornneef et a l . , submitted) markers tt-1 

(transparent testa ; not in Table 3) and ah-1, which are spec i f i ca l 

ly associated with respectively TrlA and TrlB (Koornneef, submitted). 

These markers show the typical te lotr isomic r a t i o ' s (1:0 among t r i 

somies and 3:1 for disomic offspring) for loci close to the centro

mere (see ah-1 on TrlB in Table 3 ) . S imi lar ly , tt-3 (Tr5A) shows 

th is segregation pattern. Also dis-2 (TrlA) is not far from the 

centromere, although the ra t io among disomies s ign i f i can t l y de

viates from 3 :1 . This, however, may at least be par t ly due to a 

more general recessive d e f i c i t for dis-2 (see dis-2 with Tr lB) . 

Such a d e f i c i t is by no means uncommon among induced mutants. 

The speci f ic re lat ion between the telotr isomics and the i r corre

sponding primary trisomies is confirmed by the occurrence ( in low 

frequency) of these trisomies in the progeny of the te lo t r isomics, 

both upon se l f ing and crossing. 

Sears & Lee-Chen (1970) found the i r te lotr isomic Nc to be asso

ciated with tz and not with lu. Therefore Nc can probably be equated 

with our Tr5A (Table 3). 

Location of linkage groups 

I t can be concluded that Redei's 6 linkage groups correspond to the 

5 Arabidopsis chromosomes, group 1 (marker an) and 4 (marker ah-1) 

being on the same chromosome, though on d i f fe rent arms. By themselves 

an and ch-l are found to segregate independently, i . e . are fa r apart, 

but on the basis of linkage analyses with several intercalated markers 

(Feenstra, 1978; Koornneef et a l . , submitted), they were found to 

belong to a j o i n t l inkage group. This is in accordance with the tr isomic 

analysis. Redei's groups 2, 3 and 5 are associated with our Tr2, Tr3 

and Tr5 respectively. F ina l l y , his linkage group 6 is also on a separate 
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chromosome ( T r 4 ) . 

Sears & Lee-Chen (1970) assoc ia ted an w i t h t h e i r " F r a g i l i s " t r i -

somic, whereas they found ah-l r e l a t e d t o "Concave",the t r i s o m i c 

c a r r y i n g l i nkage group 6 (marker va-2 = aer-2) on i t s e x t ra chromo

some. The l a t t e r conc lus ion now turns out t o be erroneous. I t should 

be added t h a t the authors ( I . e . ) s t a t s t h a t the F2 segregat ion r a t i o ' s o f 

oh-l w i t h "Concave" gave v a r i a b l e r e s u l t s . Moreover no d i r e c t t e s t s 

o f ah-l w i t h " F r a g i l i s " have been r e p o r t e d . 

On the basis o f our own t r i s o m i c a n a l y s i s , the Missour i t r i s o m i c 

a n a l y s i s , and the morphological resemblance i n f e r r e d f rom the de

s c r i p t i o n s , our 5 pr imary t r i somies can now be unambiguously equated, 

to the 5 M issour i pr imary t r i somies (see Table 4 ) . 

F ischerova (1975) concluded t h a t Redei 's l i nkage groups 5(marker 

lu) and 6 (marker aer-2) were on the same chromosome as she found 

lu and aer-2 both t o be l i n k e d to the c h l o r o p h y l l markers alb-2 

(M 4-6-18) and oh-42. However, on ly l i nkage o f lu w i t h alb-2 and 

o f aer-2 w i t h oh-42 could be conf i rmed (Koornneef & den Bes t e n , 1979), 

which i s i n accordance w i t h our t r i s o m i c ana lys is (Table 3 ) . 

F i n a l l y McKe lv ie 's (1965) 4 l i nkage groups can be unambiguously 

l oca ted . Lee-Chen & Burger (1967) a l ready equated by t r i 

somic ana lys is McKe lv ie ' s groups 2 and 3 w i t h Redei 's groups 3 and 

5 r e s p e c t i v e l y . The present authors found McKelv ie 's markers ap-1 

(h is group 1) and le ( h i s group 4) to be s i g n i f i c a n t l y l i n k e d 

( r = 0.29 + 0 . 0 5 ) , and both t o be l i n ked to Redei 's group 4 marker 

ah-l, v i z . r = 0.34 + 0.01 f o r ap-1 w i t h ah-l, and r = 0.07 + 0.03 

f o r le w i t h ah-l. 
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The transmission of trisomies 

Data on female (2n+l x 2n), male (2n x 2n+l) and combined 

(selfing) transmission were pooled from a number of experiments 

(Table 5). As found before in Arabidopsis (Sears & Lee-Chen,1970) 

and many other plant species (Khush, 1973),female transmission is 

well below 50%. One explanation for reduced transmission was given 

by Robbelen & Kribben (1966) who found trisomies to be more frequent 

among the smaller seeds and the slow germinators. Probably trisomies 

are also more frequent among aborted embryo's. In this connection 

it is interesting to note that only with Tr3 and Tr5 which both 

have highly reduced fertility (Table 6 ) , female transmission is sig

nificantly higher than combined transmission. Here all seeds ob

tained from crossing usually will be used, whilst the non-crossed sili-

quae jointly still procedure more (selfed) seeds than used for sowing. 

So in the latter group selection may unconsciously be against less well 

developed seeds, i.e. against trisomies. A second cause of reduced fe

male transmission probably is univalent loss, especially with telotri-

somics where the telocentric chromosome often is unpaired. 

An important cause of reduced male transmission is certation: 

a slower pollen tube growth for unbalanced haploid genotypes. It is sig

nificant that the highest male transmission is found with Tr3A and Tr5Awhere , 

judging from their overall phenotypes, genomic unbalance is not very 

pronounced. 

As expected, tetrasomics were only observed in progenies from selfing 

of trisomies with relatively high male transmission, i.e. in Tr3A, Tr4 

and Tr5A. They were probably also observed in the progeny of TrlA. All 

these tetrasomics were highly sterile and show the typical characteristics 

of the corresponding trisomies in a much more pronounced way. 
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Table 5. Transmission percentage of trisomies 

Trisomic o Transmission <f Transmission o + rf Transmission 

2n+l x 2n 2n x 2n+l (selfing) 

Trl 

TrlA 

TrlB 

Tr2 

Tr3 

Tr3A 

Tr4 

Tr5 

Tr5A 

22.4 

28.2 

27.0 

15.7 

21.3 

26.3 

28.9 

30.1 

18.3 

+ 4.5 

+ 1.1 

+ 1.0 

+ 0 .8 

+ 1.4 

+ 2.3 

+ 1.1 

+ 2.0 

+ 2.4 

0.0 

6.3 

6.9 

3.9 

2.3 

32.0 

15.5 

0.0 

27.7 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

1.3 

1.3 

1.1 

0.6 

3.8 

2.3 

2.7 

25.0 + 2.4 

26.5 + 0 .8 

31.1 + 0 .8 

22.5 + 0.7 

15.5 + 0 .8 

43.2 + 1.5 

36.7 + 0 .8 

21.7 + 1.1 

32.5 + 1.3 

"I'-'rio effect of the genetic background on the fertility of trisomies 

The trisomies described were isolated in the genetic background of the 

ereata (er/er) mutant obtained by Redei (1962) in a line selected from 

the ecotype Landsberg. The differences in morphology between trisomies 

possessing different Er alleles as observed in populations segregating 

for trisomies and this gene was sometimes large and unexpected. This 

was especially the case with Tr4, where with er/er the thickened flower 

buds are very pronounced, compared to Er/.. Although the er-mutation 

does not markedly affect fertility of the diploids, it clearly reduces 

ovule fertility of the more sterile trisomies (Table 6).This makes tri

somies like Trl and Tr3 difficult to handle in er/er background. 
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Table 6. Pollen stainability and ovule fertility of Arabidopsis tri

somies as influenced by the ereata gene 

Trisomic 

d ip lo id 

Trl 

TrlA 

Tr2 

Tr3 

Tr3A 

Tr4 

Tr5 

Tr5A 

Pollen 

EP/. 

99.4 

74.4 

92.4 

91.4 

95.9 

97.3 

95.8 

86.4 

94.5 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

s ta inabi l i 

0.2 

2.2 

1.2 

1.3 

1.1 

0.7 

0.9 

1.5 

1.0 

ty 

er/er 

98.7 

79.2 

91.4 

93.4 

94.1 

94.9 

97.9 

77.7 

94.4 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0.3 

2.3 

1.3 

1.1 

0.9 

1.0 

0.6 

1.9 

1.0 

Ovule f e r t i 

Er/. 

97.2 

23.8 

16.9 

51.7 

43.9 

79.3 

92.8 

81.3 

83.1 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

0.5 

2.6 

2.1 

2.9 

2.9 

2.2 

1.4 

2.3 

2.0 

i t y 

ev/ev 

95.1 

3.8 

13.2 

42.7 

20.9 

63.4 

79.0 

43.6 

72.9 

+ 0.7 

+ 1.8 

+ 2.2 

+ 3.0 

+ 2.6 

+ 2.9 

+ 2.3 

+ 3.3 

+ 2.7 
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CHAPTER 7 

THE LINKAGE MAP OF ARABIDOPSIS THALIANA 
(L.) HEYNH. 

M. Koornneef1, J.van Eden1, C.J. Hanhart1, P. Stam1, F.J. Braaksma2 

2 
and W.J. Feenstra 
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^Department of Genetics, University of Groningen, Haren, The Netherlands 

Submitted for publication 

ABSTRACT: For Arabidopsis thaliana (L.) Heynh. (2n = 10), 76 loci 

have now been assigned to 5 linkage groups, corresponding to the 

5 chromosomes. From a large number of estimated recombination per

centages in terna l ly consistent linkage maps were constructed, 

ranging in genetic length from 51 cM (chromosome 2) to 123 cM 

(chromosome 1). Map lengths and centromere positions agree well with 

cytological observations of previous authors. 
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INTRODUCTION 

Although the selffertilizing cruciferous plant Arahidapsis thaliana 

(L.) Heynh. (2n = 10) has been widely used in genetical and physiolo-

37 
gical studies , its gene map is rather fragmentary so far. Most of 

the information on linkage published till 1977 has been reviewed by 

24 Kranz and Scheidemann . In the early studies, linkage analysis by 

33 38 35 26 44 
Redei ' led to 6 linkage groups , which by trisomic analyses ' 

29 
could be assigned to the 5 chromosomes. Independently McKelvie had 

9 34 38 
published 4 linkage groups. So far only for the chromosomes 1 ,2 ' , 

90 29 

4 and McKelvie's linkage group 1 , a limited number of loci could 

be arranged into linear maps. With regard to the location of linkage 

groups, the sometimes conflicting conclusions in literature could be 

resolved on the basis of trisomic analysis by Koornneef and van der 

Veen19. 

The present paper compiles all linkage data published in literature 

and adds a considerable amount of new information. This leads to the 

construction of internally consistent linkage maps for all 5 chromo

somes, comprising in total 76 loci. 

Previously, centromeres have been localized on the basis of double 
44 

reduction in primary trisomies (chrom. 2) and by means of telotri-
TE 44 

somics (chrom. 1 and 5) ' . Here we give additional data from telo-

trisomic analyses for chromosome 3 and 5. 
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MATERIAL AND METHODS 

Mutants 

The mutants used in th is study are l i s ted and described in Table 1. 

Almost a l l have been induced in the genetic background of the erecta 

33 mutant of the ecotype "Landsberg" . A l l markers were incorporated 

into our experiments, except Gf and sul (data from l i t e ra tu re only) . 

Where Table 1 l i s t s two sources, the mutants have proved a l l e l i c , 

for the thiamine auxotrophic th-1 isolated by Feenstra^, however, 

27 
a l le l ism to s imi lar mutants described by Li and Redei is 

assumed on the basis of ident ical nu t r i t iona l requirements 

and comparable linkage posit ions. Gene symbols refer to the main 

character ist ic of the mutant a l l e l e . D is t inc t numbers indicate 

d i f ferent loci as shown by complementation tests . Mutants at loci 

with a s imi lar symbol but d i s t i nc t numbers do not necessarily re

semble each other in a l l character ist ics (see e.g. cer-l, aer-2 

and tt-1, tt-3). 

The conditions of culture were as published previously f o r the 
OO 1 Q 0 1 0 0 

laboratories at Groningen and Wageningen ' ' . The specific 

requirements (e.g. gibberellin, thiamine) are described in the re

ferences of Table 1. 

Estimation of recombination fractions and map distances 

Most crosses involved three or more markers and two given markers 

often segregated in different crosses. In the latter case recombina

tion percentages were estimated from pooled F? frequencies separate

ly for coupling and repulsion phase. Because of this the size of 

the populations varied considerably (from a few hundred upto a few 

thousand plants) depending on the marker combination. 
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Table I . Genet ic markers of Arabidopsis thaliana 

Symbol Mu tan t Name 
code 

Phenotype Source /Re fe rence 

Abscisic acid def ic ient 

<v 
alb-1 

alb-lv 

alb-2 

an 

ap-1 

ccp-2 

as 

bp 

oer-1 

oer-2 

oer-3 

oer-4 

oer-5 

oer-6 

aer-7 

oer-8 

ch-1 

ah-5 

oh-6 

oh-4 2 

ahl-1 

chl-2 

chl-3 

alv-1 

civ-2 

onx 

op-1 

ap-2 

op-Z 

dis-1 

dis-2 

dw-1 

er 

4 

V157 

M 4 -6-18 

F4 

Gg=uc-2 

F5 
G7 
D3 

h 
G3 

M33 

B-l 

B2-1 

B29 

B7 3 

Agamous 

Albina 

Albina 

Angust i fol ia 

Apetala 

Apetala 

Asymnetric leaves 

Brevipedicellus 

Eceriferum 

Eceriferum 

Eceriferum 

Eceriferum 

Eceriferum 

Eceriferum 

Eceriferum 

Eceriferum 

Chlorina 

Chlorina 

Chlorina 

Chlorina 

Chlorate resistance 

Chlorate resistance 

Chlorate resistance 

Clavata 

Clavata 

Cofactor of NR and XDH 

Compacta 

Compacta 

Compacta 

Distorted trichomes 

Distorted trichomes 

Dwarf 

Erecta 

Late f lowering 

f 
J oa 
fe 
f9 

Late f lowering 

Late f lowering 

Late f lowering 

Late f lowering 

Late f lowering 

Symptoms of ABA deficiency and l i t t l e or no endo
genous ABA 

Double f lowering 

White embryo's, resp. white seedlings, lethal 

Light green-yellow, v iab le , a l l e l i c to alb-1 

Like alb-1 

Narrow leaves and s l i g h t l y cr inkled s i l iquae 

No petals or rudimentary petals 

Reduced petals, large sepals 

Asymmetric and lobed leaves 

Very short pedicels, s i l iquae bend downwards 

Bright green s i l iquae and stem due to a deviat ing 
wax layer, semi-ster i le 

Like oer-1, but with normal f e r t i l i t y 

Like aer-I 

Like oer-2 

Like oer-2 

Like oer-1 

Like oer-2 

Like oer-l, but s l i g h t l y less br ight green 

Green yellow 

Green yellow 

Paler green embryo's and green-yellow plants 

Paler green embryo's and pale yellow-green seed
l i ngs , lethal 

Chlorate resistance due to a reduced uptake of 
chlorate 

Chlorate resistance due to a decreased n i t ra te 
reductase ac t i v i t y 

Like ohl-2 

Club l i ke pods 

Like olv-ly but less pronounced 

Involved in the molybdenum-containing cofactor 
of ni trate-reductase and xanthine dehydrogenase 

Compact semi-dwarf 

Compact semi-dwarf 

Compact semi-dwarf with round dark green leaves 

Trichomes (hairs) on stem and leaves are short,bent 
and more or less c lub- l i ke 

Like dis-1 

Vzry short dwarf, heterozygote intermediate 

Compact inflorescence, more blunt fruits 

Flowers later than wild type and has prooortional-
ly more rosette leaves 

Like fb 

Like fb 

Like / , with heterozygote intermediate 

Like fb 

Like f, 
b 

23 

u 
w 
Go 

B 

C 

Ca,W 

U 

c 
u 
w 

c,w 
H 

W 

W 

W 

w 
w 
c 
w 
B 

B 

G 

G 

G 

W 

W 

G 

W 

W 

',! 
r; 

G 

W 

C 

W 

W 

W 

W 

U 

U 

4 

46 

42 

10,40 

26 

2 1 , 28 

JO 

34 

6 

6 

6 

6 

6 

6 

6 

11 

10,40 

10,40 

32 

3 , 32 

3 

3 

20 

9 

9 

33 

12 
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Table I . continued 

Symbol Mutant 
code 

Phenotype Source/Reference 

VB2 

ga-1 

ga-2 

ga-S 

ga^t 

ga-5 

Gf 

gl-1 

gl-2 

gl-l 

hy-1 

hy-2 

hy-2 

hy-4 

hy-S 

im 

le 

lu 

min 

ms-1 

pi 

py 

sul 

Su/su 

th-1 

tk-2 1018/6 

th-3 V345 

tt-1 

tt-2 

tt-2 

tt-4 

tt-S All 

tt-6 

ttg 

tz 

Gibberel l in requir ing 

Gibberel l in requir ing 

Gibberel l in requir ing 

Gibberel l in requir ing 

Gibberel l in requir ing 

Female gametophyt factor 

Glabra 

Glabra 

Glabra 

Long hypocotyl 

Long hypocotyl 

Long hypocotyl 

Long hypocotyl 

Long hypocotyl 

Immutans 

Lepida 

Lutescens 

Miniature 

Male sterile 

Pistillata 

Pyrimidine requiring 

Regulating nitrate reductase 

Sulfurata 

Suppressor rgn 

Thiamine requiring 

Thiamine requiring 

Thiamine requiring 

Transparent testa 

Transparent testa 

Transparent testa 

Transparent testa 

Transparent testa 

Transparent testa 

Transparent testa, glabra 

Thiazole requiring 

Yellow inflorescence 

Gibberellin responsive dwarfs (many alleles also 
require GA for germination) 

Li ke ga-1 

Like ga-1 

Gibberellin responsive dwarf 

Like ga-i 

No female transmission, r e la t i ve ly f a i r male 
transmission 

Trichomes absent on leaf surface and stems 

Trichomes rudimentary on f i r s t two leaves and re
duced in number on higher leaves 

Trichomes unbranched and reduced in number 

Elongated hypocotyl, yellow green, altered l i gh t 
i nh ib i t i on spectrum 

Like hy~l but more normal green 

Like hy-2 

Only slightly elongated hypocotyl also with altered 
light inhibition spectrum 

Like hy-4 

White, green variegation 

Dwarf with round leaves and small pods 

Yellow green 

Small plant with greyish green leaves 

MaTe s t e r i l e because pollen delays and anthers 
f a i l to open 

Anthers and petals absent 

Leaves except cotyledons whi te, l e t h a l , 2 ,5 -d i -
methyl-4-aminopyrimidine and thiamine restores 
to normal 

Decreased nitrate-reductase a c t i v i t y , chlorate-
resistant 

Bright yellow green 

Suppresses the e f fect of ran 

Leaves except cotyledons white-yellow, l e t h a l , 
thiamine restores 

Variegated, thiamine restores to normal 

S l igh t ly pale green/green variegated, thiamine 
restores to normal 

Yellow seeds, due to a transparent testa 

Like tt-1 

Like tt-i and with anthocyaninless leaves and stems 

Like tt-'i 

Like tt-3 and br ighter green 

Brownish yellow seeds and reduced anthocyanin 
content in leaves 

Like tt-3, hair less and deviating seedcoatstructure 

Leaves, except cotyledons, whi te, 4-methyl-5-thia-
zole ethanol and thiamine restores to normal 

Yellowish flower buds and yellow greyish sharper 
leaves 

w 
w 
w 
w 
c 

c,w 
w 

w 
c,w 

u 
u 
w 

w 
C,Go 

Ca 

c 
w 
w 

w 
c,w 

18 

18 

18 

18 

34 

21> 
21 

21 

22, 

22 

22 

22 

22 

36, 

28 

26 

45 

27 

26 

34,38 

41 

C 

G 

C,W 

Can 

W 

W 

W 

W 

U 

W 

U 

W 

CM 

33, 36 

2 

27 

27, 37 

17 

14 

14 

14 

14 

6, 14 

14 

27,8 

Br B rno .Chzechos lowak ia (Re l i chovS) 
Ca Cambr idge, U.K. ( M c K e l v i e ) ; v i a Got6h 
Can Canberra, A u s t r a l i a ( L a n g r i d g e ) ; v i a Ledoux 
C Columbia, M i s s o u r i , U .S.A. ( R e d e i ) ; ky-l3 as3 lu and va-2 (=aer-2} v i a Re l ichovS 
G Groningen, The Ne the r l ands (Braaksma and Feens t ra ) 
Go G b t t i n g e n , F ede ra l Rep. o f Germany ( R o b b e l e n ) ; v i a Kranz 
W Wageningen, The Ne the r l ands ( D e l l a e r t , Koornneef and van der V e e n ) ; py, th-1 and tz induced by Feens t ra 
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Where F„ scoring was not unambiguous (e.g. for hy-4, hy-5, anx, rgn) 

large scale F, progeny test ing was done as a check. F, progeny 

test ing was also applied for additional assessment of F„ genotypes, 

when this was easy or desirable. For chlorophyll markers with embryo

nic expression (e.g. alb-1, alb-2, ah-6, ah-42), F„ genotypes A/A 

vs. A/a can be i den t i f ied by opening the i r s i l iquae jus t before 

30 seed ripening (Muller's embryo test ). E.g. when double recessive 

recombinants {a/a, b/b) are absent ( in repulsion phase F„ 's with 

close l inkage), F, progeny test ing of a/a, B/. and/or A/., b/b 

phenotypes becomes desirable. From a random sample of such pheno-

types the i r ra t io b (frequency segregating l ines (a/a, B/b) among 

a l l l ines {a/a, B/.) (n) tested) is used to estimate 

b . _ 2s/b[l-bY 
Q—r- and s - , 1 . o—^ 2-b r (2-fe)2^T 

Recombination f ract ions were estimated by the appropriate maximum 

l ikel ihood procedures, that were not based on the expected frequen

cies (e.g 3:1 for F^'s) but in a l l cases on the observed frequencies. 

This procedure was applied assuming certat ion (mutant pollen a t t r i 

butes less to f e r t i l i z a t i o n than non-mutant pollen) as the only cause 
5 

of the regularly observed recessive de f i c i t s . On the d ip lo id level 

a l l mutants studied have a rather normal v i a b i l i t y or are lethals 

under our condit ions. Not correcting for disturbed segregation would 

lead to underestimation of r and s . The Product Ratio Method is 
r 

more robust, but here also close linkage gives considerable bias when 

certation is involved. With 3 F? classes (no double recessives and 

no additional assessment of F„ genotypes by progeny testing) the esti

mate of r becomes 0.0 with variance l/n (n = total number of F„ plants). 
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A method to estimate simultaneously the map distances from a l l 

available recombination percentages has been developed by Jensen 

13 and Jorgensen . The estimates of recombination percentages are 

f i r s t corrected for double cross-overs by the Kosambi mapping func

t i o n , converting them to map distances (D) in centimorgans (cM): 

D = 25 In (IQQ_o ) with standard deviat ion: 

2500 s 
sn = — r? , where s is the standard deviation of the 

D 2500-r2 

estimated recombination percentage (r). 

When large discrepancies occur between the available map distance (D) 

and the f i na l estimate (£') obtained from a l l available data, very 

deviantdistances should be omitted. This was done with the data with 

the highest value of x? = ? • The map was then recalculated with 

a l l data, except the one omitted e t c . , un t i l no x' values - 6.6 

(P < 0.01) remained. 

To apply the map estimation procedure, the order of the loci should 

be known. This order was determined from the estimated recombination 

percentages and from the presence or absence of j o i n t recombination 

in mult ip le heterozygotes. 

Centromere loca l izat ion with telotr isomics and the character ist ics 

of A.rabidopsis te lotr isomics have been described elsewere^,19 

RESULTS AND DISCUSSION 

Tables I I t i l l VI give the complete sets of recombination percen

tages for the 5 chromosomes. The genes are arranged in the f ina l 

map order (Fig. 1). 
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Table II. Estimates of recombination percentages between 23 markers of chromosome 1 

Recombination 1 Method Recombination % Recombination % 

an !'gn 

an, 'ae r—1 

an :.;!,-! 

an/alb-1 

an/alb-l" 

an/alb-lr 

an/all-lu 

an/all-} 

an, rhl-1 

an/aia-1 

an/dis-1 

an/dis-1 

an/ga-4 

an/ga-4 

an/du-J 

an/th-1 

an/th-1 

an/f-

an/fb 

an/dis-2 

an/dis-2 

an/ti-1 

-pgn/ckL-1 

aer-l/dis-1 

-er-::dis-: 

aer-l/dis-l 

xr-l.ga-4 

atb-l.dis-l 

a.i-i'/du-; 
a(.i-:'. d-is-i 

ali-:- -die-: 

a(b-(v. ja-~ 

2.D-V. T.Z-1 

_•;•:-; die-: 

~"Vdi"1 

R3 

R2 

R3 

R2,3 

C2 

R2 

R2 

RT 

R2 

CT 

C2 

RT 

C2 

R2 

R2,3 

R2 

C2 

R2 

RT 

C2 

R2 

R3 

C2 

R2 

R3 

R2 

R2.3 

C2 

R2 

R3 

R2 

R2 

RT 

R2 

0 .6 

0 .0 

0 . 8 

6 . 8 

11.6 

12.6 

0 .0 

11.0 

13.2 

12.5 

18.9 

10.0 

19.5 

30 .4 

19.3 

21 .5 

27 .4 

28 .4 

27 .3 

3 1 . 8 

44 .7 

3 8 . 2 

18.3 

19.7 

17.4 

10.7 

2 7 . 8 

10 .6 

10 .7 

0 .0 

9 .1 

0 .0 

48 .1 

2 . 7 

0 .0 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

t 

0.3 

3 .1 

0 .6 

1.4 

2 .9 

0 . 6 " 4 2 

5.1 

1.6 

3.1 

1 .3** 

0.6 

2 . 2** 

1.4 

4 .6 

2 . 8 

4 .0 3 9 

2 .4 

2 .6 

5 .0 

3 .3 

2 .7 

2 . 5 

2 .9 

2 .8 

3 .2 

2 . 2** 

5 .1 

1.6 

1.4 

5.1 

4 .1 

5 .4** 

4 .4 

0 . 8 

4 .2 

nhl.-1/th-l 

c-hl-l/Lh-1 

ckl-l/dia-2 

dis-l/ga-4 

dis-l/ga-4 

dis-l/du-1 

dis-l/th-1 

di3-l/f, 

dis-i/*-

di3-l /dis-2 

die-l/f.-: 

dis-l/ch-1 

ga-4/th-l 

s*-4/:\ 
ca-4/f. 

ga-4/dis-2 

ga-4/dis-2 

ga-A/tt-1 

ga-4/ti-l 

gci-4/ah-l 

-h~j/fb 

'-'•-" 1\ 
lh-l/dis-2 

lh-l/U-1 

in-l/tl-1 

f./tl-l 

dis-2/akl-K 

dis-2/t.l-l 

dis-2/tt-l 

dis-2/ah-l 

dis-2/ah-l 

dis-2/oh-l 

dis-s/ch-1 

Z-2ZI2 

RT 

R2 

R2 

C2 

R2 

R2,3 

R2 

C2 

R2 

RT 

R2 

RT 

R2 

C2 

R2 

C2 

R2 

C2 

R2 

R2 

R2 

R2 

R3 

R2 

C2 

R2 

R2 

RT 

C2 

C2,3 

CT 

RT 

C2 

R2 

R2 

R2 

18.9 

25 .5 

3 4 . 4 

4 . 1 

8 .3 

5 .5 

15 .8 

14.9 

21.9 

22 .4 

33 .5 

38 .9 

10 .7 

10.9 

13.7 

21 .0 

26 .2 

31 .4 

26 .5 

29 .3 

42 .5 

0 . 0 

0 .3 

0 .0 

20.6 

19.9 

23 .3 

15.6 

7.9 

7.2 

16.9 

16 .5 

12.1 

1 2 . 8 

24 .4 

29 .0 

i 1-5 

+ 6 .4 

t 4-2 

+ 0 .6 

+ 3.4 

t 1-7 

t 2-8 

i 1-8 

+ 5 .2 

t 3-7 

i 2 - 3 

t 2-9 

+ 3.2 

+ 1.6 

t 5-5 

i 1-5 

+ 4 . 5 

+ 1.9 

t 2-3 

i 4 - 3 

i 3 - 9 

+ 4 . 3 

+ 0 . 3 

+ 4 . 3 1 

t !-4 

+ 6 .4 

i 4 - 2 

+ 2 . 3 J 

t 3'5 

+ 3 .3 

t 2-4 

; 2 - 5 

; 1.0 

; 4-2 

; 4 - 7 

i 5 - 4 

dis-2/ap-l 

dis-2/ap-l 

ohl-Z/ck-1 

tt-l/ch-1 

tt-l/ch-1 

ch-l/le 

ah-l/olo-2 

ch-l/f 

ah-l/ap-1 

ah-l/ap-1 

ah-l/alo-1 

ah-l/ga-2 

ch-l/gl-2 

ch-l/gl-2 

ch-l/rp 

lc./ap-1 

le/gl-2 

clv-2/ap-l 

c-lv-2/gl-2 

ft/ap-l 

f/gl-2 

aar-d/ap-1 

aer-S/cU-1 

ap-l/cla-1 

ap-l/clv-1 

ar,-l / j a - 2 

ap-l/ga-2 

ap-l/gl-2 

ap-l/gl-2 

ap-l/f 

alv-1/ga-2 

alv-l/ga-2 

clv-l/gl-2 

ga-2/gl~2 

('.1-2/r 

C2 

R2 

RT 

R2 

R2,3 

R2,3 

R2 

R2 

C2 

R2 

R2 

R2 

C2 

R2 

R2,3 

R2,3 

R2,3 

R2 

R2 

R2 

R2 

R2,3 

R2,3 

C2 

R2 

C2 

R2 

C2 

R2 

R2,3 

C2 

R2 

R2 

R2 

R2.3 

3 7 . 8 

4 6 . 5 

6 . 2 

0 .0 

5 .9 

7.Z 

25 .7 

29 .5 

3 4 . 2 

36 .1 

40 .7 

44 .6 

45 .2 

46 .3 

38 .7 

2 8 . 8 

4 0 . 5 

13 .7 

2 5 . 8 

13 .2 

29 .0 

2 . 3 

14 .8 

10 .8 

11.0 

18 .3 

19.1 

18 .7 

17 .3 

2 3 . 8 

9 .0 

10 .0 

6 . 2 

0 .0 

0 .0 

+ 3 .4 

+ 4 . 0 

+ 1.5 

+ 6 . 1 

+ 3 .4 

+ 3 .3 

+ 3.6 

+ 4 . 7 

+ 1.0 

+ 3 .4 

t 2A 

i 2 - 3 

+ 1.4 

+ 4 . 4 

+ 5 .9 

i 5 - 4 

+ 5 .5 

+ 3 .4 

+ 4 . 4 

+ 5 .1 

t 4 . 5 

+ 3 . 8 

+ 5 . 6 

+ 0 .7 

+ 2 . 8 

+ 2 .4 

; 2 - 6 

+ 0 .9 

+ 5 .4 

+ 6 .0 

+ 0 . 9 

+ 5.2 

+ 3 . 5 

i 3 - 2 

+ 6 .1 

CT, RT; Results of test crosses in coupling resp repulsion phase; C2, R2: Results of F2's in coupling resp. repulsion phase; 
C2,3, R2,3: Results of F2's combined with partial F3 progeny testing or with recognizable heterozygoses; R3: F3 line progeny 
testing of specific F£ phenotypes. 

'"Data omitted frem the final analysis 
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Table VI. Estimates of recombination percentages between 22 markers of chromosome 5 

Markers 

fy/tt-4 

f Ms-1 

f Ms-1 

fyZtt-2 

f/tz 

fy/eer~3 

f /aba 
¥ hy-5/ms-l 

hy-5/ms-l 

hy-5/ms-l 

hy-S/ttg 

hy-S/ttg 

hy-S/ga-3 

hy-b/th-2 

hy-S/th-2 

hy-S/tt-3 

hy-5/yi 

lu/tt-4 

lu/fg 

Wf 
lu/alb-2 

lu/alb-2 

tu/ms-1 

lu/ms-1 

lu/ttg 

lu/ttg 

lu/ga-3 

lu/tt-3 

lu/tz 

tt-4/alb-2 

tt-4/ga-S 

tt-4/ga-3 

tt-4/tz 

f/Pi 

fgMs-l 
fgMs-l 

fgMe-l 

f/ttg 

f/t*9 

x and XX s e e 

Method* 

R2 

C2 

R2 

R2 

C2 

R2 

R2 

C2 

C2,3 

R2 

C2 

R2 

C2 

C2.3 

R2 

R2.3 

R2 

R2,3 

C2 

R2 

C2,3 

R2,3 

C2 

R2 

C2 

R2 

R2,3 

R2 

R2 

R2.3 

C2.3 

R2 

R2 

R2.3 

C2 

C2,3 

R2 

C2 

C2,3 

Table I I . 

Recombinat ion % 

25 .9 + 4 . 8 

25 .7 + 3 .2 

13.6 + 5 .1 

34 .9 + 4 . 5 

53 .1 + 1.7 

45 .0 + 3 . 8 

48 .2 + 4 . 1 

14.3 + 1.8 

8.7 + 2 . 8 

11.1 + 5 . 1 

18.7 + 3 .2 

11 .7 + 5 .1 

20 .7 + 3 .4 

30 .4 + 3 .5 

31 .2 + 4 .9 

37 .3 t 5 .5 

51 .0 + 3 . 8 

1.5 + 1.7 

5 .1 + 1.0 

3 .6 + 1.3 

4 . 4 + 1.1 

2 .6 + 0 . 8 

13 .4 + 1.5 

13 .1 + 3 .0 

18 .1 + 2 .2 

16.0 + 3 . 5 

17.4 + 2 .2 

3 6 . 4 + 5 .7 

49 .3 + 3 . 8 

3 . 1 + 1.0 

18 .8 + 2 .2 

17.2 + 5 .1 

5 6 . 1 + 3 .5 

11 .5 J 2 .2 

8 .6 + 2 .9 

9 .9 + 0 . 7 

8 . 8 • 3 .7 

12.5 + 1.5 

15.2 + 0 . 8 

Markers 

rq/tt-s 

VtB 

facers 

fg/yi 
alb-2/ms-l 

alb-2/ttg 

alb-2/ga-3 

pi/ttg 

pi/ttg 

pi/ttg 

pi/ga-3 

pi/ga-Z 

anx/ttg 

ms-1/ttg 

ms~l/ttg 

ms-l/ttg 

ms-1/ttg 

ms-l/ga-3 

ms-l/ga-3 

ms-l/ga-3 

ms-l/su 

ms-1/ah-b 

ms-l/tt-2 

ms-l/th-2 

ms-l/th-2 

ms-1/g1-3 

ms-l/tt-3 

ms-l/tt-3 

ms-l/tz 

ms-l/tz 

ms-l/aer-3 

ms-l/yi 

ms-l/yi 

ms-l/aba 

ttg/ga-S 

ttg/ga-3 

ttg/eu 

Method* 

R2,3 

R2 

R2,3 

C2 

R2 

R2,3 

R2,3 

R2,3 

C2 

R2 

R2,3 

C2 

R2,3 

RT 

CT 

C2 

R2 

R3 

C2 

R2 

R3 

R3 

R2 

C2 

C2,3 

R2 

R2 

C2 

R2 

C2 

R2 

R2 

C2 

R2 

C2 

C2 

R2 

R3 

Recombinat ion % 

31.6 t 5 . 8 

46 .5 + 3 .5 

51 .6 + 3.0 

43 .5 + 4 .0 

59 .7 • 4 . 1 

6 .9 + 1.6 

11.6 + 2 .1 

17 .1 + 2 .3 

10.4 + 2 .1 

0 .0 + 6 .2 

9 .6 + 3 . 8 

15.0 + 2 .7 

12.0 + 3 .7 

6 . 1 + 1.9 

6 .0 + 0 . 8 

5 .8 + 0 . 4 

5 .7 + 2 . 8 

6 . 8 + 2 .4 

9 .7 + 1.1 

12.9 + 4 . 1 

7 .7 + 3 .4 

10.6 + 2 . 1 

20.2 + 8 .3 

17 .3 + 3 .5 

18.4 + 3 .4 

24 .4 + 5 .0 

28 .5 + 6 .4 

17.2 + 4 . 3 * * 

31 .3 + 3 . 3 

46 .1 + 3 .9 

4 2 . 8 + 3 .4 

45 .3 + 3 .1 

4 7 . 8 • 3 .6 

47 .6 + 3 . 8 

49 .3 + 3 .0 

3 .0 + 0 . 6 

0 .0 + 2 . 8 

7.2 + 1.2 

Markers 

ttg/oh-5 

tkg/ch-5 

ttg/tz 

ttg/cev-'S 

ttg/yi 

ttg/yi 

ttg/aba 

ga~3/oh-5 

ga-S/ch-H 

ga-Z/tt-2 

ga-3/gi-3 

ga-Z/g1-3 

ga-3/tt-3 

ga-3/tz 

ga-3/tz 

tt-2/gl-3 

tt~2/ts 

tt-2/tz 

th-2/tt-3 

th-2/cer-3 

th-2/aba 

gl-3/tt-3 

gl-3/tz 

gl-3/tz 

gl-3/cev-3 

gl-3/aba 

tt-i/aba 

tz/aer-3 

tz/cer-3 

tz/aer-3 

tz/yi 

tz/yi 

tz/min 

tz/min 

tz/aba 

cer-3/yi 

cer-3/min 

cev-3/aba 

yi/dba 

min/aha 

Method* 

R2 

R3 

R2 

R2 

C2 

R2 

R2 

R2 

R3 

R2 

C2 

R2 

R2 

C2 

R2 

R2 

C2 

R2 

R2,3 

R2 

R2 

R2 

C2 

R2,3 

R2.3 

R2 

R2 

C2,3 

R2 

R3 

R2 

R3 

C2 

R2 

R2 

R2 

R2,3 

C2 

R2 

R2,3 

Recombinat ion * 

0 .0 

14 .3 

45 .0 

42 .9 

42 .5 

4 6 . 5 

46 .4 

0 . 0 

11.1 

0 .0 

17 .8 

25 .0 

16 .5 

29 .9 

3 1 . 4 

0 .0 

29 .5 

32 .2 

17 .1 

40 .2 

4 4 . 8 

0 .0 

20 .5 

20 .0 

22 .9 

38 .5 

28 .5 

4 . 5 

0 .0 

1.6 

0 .0 

7 .7 

8 .1 

27.9 

19 .3 

12.9 

8 .3 

13.9 

15.0 

6 . 8 

+ 5 .1 

+ 6 . 3 

+ 2 .1 

+ 2 .4 

+ 1.7 

+ 3 . 8 

+ 4 .6 

t 5-! 
+ 5 .5 

+ 5 .2 

+ 1.9 

+ 5 .0 

+ 7.1 

i 2 - z 

+ 4 .7 

+ 5 .2 

+ 3 .1 

+ 4 . 7 

t 4 . 0 

+ 5 .6 

+ 5 .4 

+ 6 . 5 

+ 3 .6 

+ 5 .2 

+ 5 .4 

+ 5 .9 

+ 5 .0 

+ 1.1 

+ 3 . 7 

t 1.6 

+ 6 .0 

+ 3 . 1 

+ 1.8 

+ 6 .0 

+ 3 .7 

+ 5 .7 

+ 2 .6 

+ 1.6 

+ 5 .9 

+ 3 .0 
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Chromosome 1 

I t i s seen that Redei's linkage groups 1 (an) and 4 (ch-l) as 

well as McKelvie's groups 1 (ay-l) and 4 (le) are located on chromo

some 1. Although McKelvie's group 1 contains 15 markers comprising 

145 map un i t s , these data could not be combined with ours as only 

1 marker [ap-1) was studied in re la t ion with our markers. Moreover 

the accuracy of McKelvie's data is very l imi ted as they were based 

on re la t ive small populations of repulsion phase F„ 's only. Hirono 

11 2 

and Redei found the gene order gi - 24.8 - oh-l - 7.9 - pa, 

which has not be used in the present study for the fol lowing reasons. 

An X-ray treated heterozygote yielded a pale green sector (oh-l/oh-l) 

and from the progeny of th is sector Hirono and Redei ( I . e . ) concluded 
2 

that m i to t ic crossing-over had occurred between gi and oh-l and also that 
2 

the centromere was to the l e f t of gi . This is c lear ly at variance 

with the short distance between oh-l and the centromere or rather 

15 between oh-l and tt-l as found by us.Telotrisomic analyses had shown 

oh-l and tt-l to be on d i f fe rent arms. 

Close linkage of gl-2 and ga-2 was fur ther confirmed by absence of 

segregation fo r respectively ga-2 and gl-2 among the selfed progeny 

of 141 gl-2/gl-2, Ga-2/. and 147 Gl-2/., ga-2/ga-2 plants from a re

pulsion phase F„ of both markers. This gives an estimate of 0.0°/ with 

95% confidence l im i ts 0% and 0.5%. 

Chromosome 2 

Here Redei's data ( ref . 34, Table 1) were incorporated af ter con

vert ing his coupling phase standard deviations in to repulsion phase 

45 standard deviations by means of Stevens' tables . 

that these data were from repulsion phase crosses. 

45 standard deviations by means of Stevens' tables . Redei himself states 
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The centromere location (Fig. 1) was based on the results of 

44 Sears and Lee-Chen . 

Chromosome 3 

Relatively few loci were mapped on th is chromosome, which has 

two gene distances much larger than found on the other chromosomes 

(Fig. 1). Redei and Hirono , however, state that 7 unspecified genes 

were found to be in th is linkage group 3. 

Telotrisomic analysis (Table V I I ) shows that tt-5 i s on Tr3A, 

wh i ls t gl-l i s not. This means that the centromere is located be

tween these two l o c i . 

Table V I I . Segregation frequencies in F£ populations derived from duplex 

plants (A e ° A a) obtained by crossing telotr isomics with 

recessive mutants 

Cross 

Tr3A x 

Tr3A x 

Tr5A x 

Tr5A x 

Tr5A x 

Tr5A x 

Tr5A x 

Tr5A x 

gl-l 

tt-5 

ttg 

tt-2 

th-2 

gl-3 

tt-2 

yi 

Trisomic 

Dominant 

80 

68 

63 

56 

83 

71 

63 

75 

progeny 

Recessive 

33 

0 

12 

0 

0 

0 

0 

0 

2 
X 

3: 1 

1.1 

22.7* 

3.2 

18.7* 

27.7* 

27.7* 

21.0* 

25.0* 

Disomic 

Dominant 

98 

46 

184 

100 

72 

96 

97 

212 

progeny 

Recessive 

40 

19 

54 

25 

28 

32 

23 

26 

2 
X 

3:1 

1.2 

0.6 

0.7 

1.7 

0.5 

0.0 

2.2 

25.1* 

P < 0.01 Y < U .U1 
2 

Tr5A x ga-3 gave among total progeny 169:49 (x = 0.7; n.s.) 
3: 1 
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Chromosome 4 

20 
In a preliminary report , cp-l was only crossed with ag and f . 

Later it turned out that cp-l could not be reliably scored in 

/ Jf background, so the recombination estimate (/ /cp-l) was 

omitted from the present calculations (Table V ) . As a result cp-l 

is now located on the other side of ag. 
or 

The close linkage of cer-2 (= vc-2) with im found by Redei is 

confirmed. As discussed before ' Fischerova's conclusion that 

ch-42 (chrom. 4) is l inked with lu (chrom. 5) and alb-2 (chrom. 5) 

must be rejected. 

Chromosome 5 

Telotrisomic analysis (Table VI I ) shows that tt-2, th-2, gl-3, 

tt-3 and yi are on Tr5A, whi ls t ttg and ga-3 are not. Sears and 

44 39 
Lee-Chen and Redei et a l . found th-2 and tz to be on the i r 

19 te lotr isomic Nc ( ident ical with Tr5A ) , wh i ls t lu was not. So 

the i r centromere local izat ion agrees with our more precise posit ion 

between ga-3 and tt-2. 

Genetic length 

The to ta l genetic length of the Arabidopsis genome now amounts 

to 430 cM.On the basis of individual chromosomes Arabidopsis matches 

31 well in map length with other well analysed plant species l i ke maize 

43 
and tomato .although i t s chromosomes are much smaller at metaphase. 

I t is interest ing to see that there is a good aqreement of the linkage 

44 
map with the cytological observations given by Sears and Lee-Chen 

for the individual Arabidopsis chromosomes. The short chromosome 2 

has the shortest map, the medium sized chromosomes 1 , 3 and 5 have 

the longest maps. The longest (nucleolar) chromosome 4 has only a 
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medium map length, but here a large heterochromatic block probably 

comprising an entire arm is present, so when correcting for the 

heterochromatic region (presumed to be genetically empty) also 

chromosome 4 fits the picture. The heterochromatic arm may also 

render the search for its telotrisomics futile. Finally, chromoso

mes 1, 3 and 5 have both genetically and cytologically median or 

submedian centromeres. 

Loans distribution 

There is no indication that loci belonging to specific pheno-

typic groups are preferentially located on specific chromosomes 

(Table VIII). 
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CHAPTER 8 

GENETIC FINE—STRUCTURE OF THE GA—1 LOCUS IN 
THE HIGHER PLANT ARABIDOPSIS THALIANA 
(L.) HEYNH. 

M. Koornneef, J. van Eden, C.J. Hanhart and J.A.M. de Jongh, 

Genetical Research, in press 

SUMMARY 

Non-germinating g ibbere l l in (GA) responsive mutants are a powerful 

tool to study genetic f ine structure in higher p lants. Nine a l le les 

(EMS- and fast neutron induced) of the ga-l locus of Arabidopsis 

uhaliana were tested in a complete h a l f - d i a l l e l . No w i ld type " re 

combinants" were found in the selfed progeny of 9 homoallelic combi-
5 

nations ( in to ta l 3 x 10 p lants) ; in the progenies from the 36 selfed 

hetero a l l e l i c s the wi ld type frequency ranged from zero to 6.6 x 10" . 

These frequencies allowed the construction of an i n te rna l ly consistent 

map fo r 5 d i f fe rent s i tes representing 8 a l l e les . The 9th a l l e le cover

ed 3 s i tes and thus behaved l i ke an intragenic de let ion. The estimate 

of the to ta l genetic length of the ga-l locus was 0.07 cM. The order 

of the si tes was also c lear ly ref lected by the association with prox i 

mal outside markers. On the assumption that wi ld type gametes pre

dominantly arise from reciprocal events, i t was shown that a cross-over 

w i th in the ga-l locus leads to posi t ive interference in the adjacent region 

The results are discussed with respect to the mutagen used, the 

frequencies foundin other p lant- and Drosophila genes, and the 

possible occurrence of gene conversion. 
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1. INTRODUCTION 

Studies on the genetic f ine structure of genes have given useful i n 

formation about t he i r physical s t ructure, the nature of crossing-over 

and the nature of par t icu lar mutations. 

Among eukaryotes, fungi with the i r high "resolving power" (high 

numbers of spores and the a va i l ab i l i t y of "se l f -detect ion" systems) have 

proved ideal tools for th is type of study by means of complementation, 

recombination and gene conversion analysis ( for reviews see Catcheside, 

1977,and Fincham et al., 1979). 

Studies in Drosoohila led to qua l i ta t i ve ly comparable resu l ts , which 

suggests a common molecular mechanism of meiotic recombination (Hi 1 l iker 

& Chovnick, 1981). Fine structure analyses in higher plants are rare due 

to the d i f f i c u l t i e s in handling the enormous numbers of plants required. 

For th is reason the most extensive studies are with pol len-grain markers 

where very large numbers can be easi ly scored: waxy (wx) in maize(Nelson, 

1958, 1962, 1968, 1975; Amano, 1968), glx in barley (Rosichanet aZ.,1979; 

N i l a n s t a l . , 1981) and Adhl in maize (Freel ing, 1976, 1978). Seedling 

characters have been studied in maize (gl-l) by Salamini & Lorenzoni, 

1970 and in barley {cev-equ region) by Wettstein-Knowles and S0gaard, 

1980- These genes control wax biosynthesis and deposit ion. Jorgensen 

& Jensen (1979) studied the mildew resistance gene ml-o in seedlings of 

barley. 

For the analysis of intragenic recombination the recessive non-ger

minating g ibbere l l in (GA) responsive mutants(gene symbol ga) isolated in 

Avabidopsis thaliana (Koornneef & van der Veen, 1980) and tomato (Koorn-

neef et al, 1981) seem par t i cu la r ly su i table. For germination 

these mutants require g ibbere l l in and without fur ther addit ion of GA 

they develop into typical dwarfs, but with GA sprays at weekly i n te rva ls , 

they develop into the w i ld type phenotype or nearly so. 
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Depending on the a l l e l e , the environmental circumstances during seed de

velopment and the germination condit ions, varying degrees of germination 

occur without GA ("leakiness" of some mutant a l l e l es ) . However, subse

quently such germinators invariably develop into dwarfs. 

The s u i t a b i l i t y of the ga -system for intragenic analysis, among other 

things i t s high resolving power derives fron the fol lowinq asnects: 

1. Recombinants can be i den t i f ied with certainty as these are "se l f -

detecting" as germinating seedlings, which are much more vigorous than 

the mostly rare spontaneous germinators of the ga-mutants. In cases of 

doubt, the dwarf versus non-dwarf contrast is a de f in i te cr i ter ium for 

mutant versus wi ld type. 

2. Several types of outside markers are available to study j o i n t segre

gation. 

3. As only few seedlings emerge, sowing can be done closely spaced in 

petr i dishes and on a r t i f i c i a l media ( l i ke f i l t e r paper, agar, p e r l i t e , 

e t c . ) . 

Special advantages of Arabidopsis for th is type of research are: 

1. I t is s e l f - f e r t i l i z i n g under greenhouse conditions. 

2. 1 000 upto 5 000 of the small seeds go into a 9 cm petr i d ish. 

3. Also mutants may produce as many as 5 000 seeds per p lant. 

4. The short generation in terval (2 months for the early ecotypes used) 

and the small plant size allow the rapid production of large quanti

t ies of seeds in climate chambers. 

5. A high number of independently induced non-germinating mutant a l le les ob

tained with ethylmethanesulphonate (EMS), X-rays and fast neutrons (FM) 

are available at 3 d i f f e ren t loci (Koornneef & van der Veen, 1980). A l l 

mutants are induced in the same genetic background (ecotype: Landsberg 

"ereota"). 
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Two preliminary experiments, included in th is report as the 1st and 2nd 

experiment, had indicated the substantial occurrence of w i ld type plants 

in the progeny of he teroa l le l ic ga-l plants (Koornneef, 1979), such in 

contrast to experiments with ga-3 mutants (Koornneef & Janssen, unpublish

ed), which yielded only very few recombinants. Therefore in the present study 

9 independently induced mutants at the ga-l locus were analysed in a com

plete h a l f - d i a l l e l crossing-scheme. They included both EMS and FN induced 

mutants and one germinating ga-1 dwarf (a c lear ly leaky a l l e l e ) ; other

wise they were chosen at random. 

2. MATERIAL AND METHODS 

( i ) Mutant alleles 

The go--1 mutants used are l i s ted in Table 1 with respect to mutagen 

and "spontaneous germination" ( i . e . without addit ion of GA). 

Table 1 . Ga-l mutants used for f ine structure analysis, mutagen used 

and germination % (without adding GA) 

Mutant 
a l l e le 

NG4 

NG5 

A428 

Bo27 

d69 

d352 

6.59 

29.9 

31.89 

* Ethylmethanesulphonate (EMS): 10 mM, 24 hrs, 24 °C, in the dark 

Fast neutrons (FN): in Gy (Gray) dose as indicated. 1 Gy = 100 rad. 

Mutagen 

EMS 

EMS 

EMS 

EMS 

EMS 

EMS 

FN (69 Gy) 

FN (47 Gy) 

FN (67 Gy) 

Germination % 

0 

1 

15 

1 

0 

59 

0 

0 

0 
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( i i ) Conditions of culture 

The seeds were sown in 9 cm petr i dishes, e i ther equally spaced 

(25 seeds/dish) or scattered (250-5 000 seeds/dish), on pe r l i t e saturated 

with a standard mineral so lu t ion , composed as described by Oostindier-

Braaksma & Feenstra (1973). To break seed dormancy the dishes were kept 

at 2-4 C for 4-6 days. Germination was at approx. 24 °C under continu

ous i l luminat ion by f luorescent l i gh t tubes (Phi l ips TL 57) at approx. 

8 W.m" .8 days a f ter incubation at 24 °C the seedlings were scored and 

when necessary transplanted in to s o i l . To obtain F^ seeds parental mutant 

l ines were grown and crossed in an air-condit ioned greenhouse. 

For the emasculation technique see Feenstra (1965). To exclude as much 

as possible unwanted se l f i ng , in the 3rd large experiment, parental l ines 

were used, which carried an extra recessive marker. Available for th is 

were l ines 6.59 with ms (male s t e r i l i t y ) and NG5 w i t h / ( la te f lowering) 

and ap-2 (apetala-without pe ta ls ) , and the recessivi ty of non-germination 

to the germination of d352. F, seeds were sown as described. After a week 

at 24 C, checking for wi ld type contaminants and scoring of "spontaneous 

germination" was done, af ter which they received GA. , (mixture of g ibberel-

l i n GA« and GA7) up to a f i na l concentration of 10 \M in the medium to i n 

duce complete germination. A week later the F, seedlings were transplanted 

into so i l in an isolated cHmate chamber (standardized condit ions; un

wanted c ross - fe r t i l i za t i on excluded). Here temperature was 23 C, re la t ive 

humidity approx. 80% and continuous l i gh t was by TL 33 f luorescent tubes 

-2 -2 

(12-17 W.m )supplemented with incandescent bulbs (4-5 W.m ). Two weeks 

af ter transplanting (dwarf phenotypes c lear ly v i s i b le ) GA. 7 (100 \1A) 

was sprayed at weekly i n te rva ls , in to ta l 2 or 3 times. Harvested F? seeds 

were stored at room temperature for at least two months. 
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(iii) Testing for wild type recombinants 

Seeds of selfed parental lines and F„ populations derived from hetero 

allelic crosses were sown under the conditions described above. These 

conditions permit also 100% germination of wild type and of ga-l mutants 

(the latter only when 10 \M GA» , is included in the medium). The seeds 

were scattered into petri dishes at numbers ranging from approx . 250 

(F„'s involving the "germinating allele" d352) up to approx. 5 000 

(F^'s without "spontaneous germination"). Counting of the seeds was on 

the basis of seed weight, determined separately in each experiment for 

each parental line and each F„ population. The weight of 1 000 seeds is 

mostly 20-25 mg. Wild type seedlings are easily recognized because, upon 

germination, they are much more vigorous than the ga-l mutants of which 

in case of some "leaky" alleles a certain proportion of the seeds will 

germinate (Fig. 1 ) . All presumed wild type seedlings (including cases 

of doubt) were transplanted into soil to check their non-dwarf phenotype. 

Fig. 1. Petri dishes with F„ progenies of 6.59 x NG4 (A), 

6.59 x NG5 (B) and d352 selfed. Arrows indicate wild 

type seedlings. 
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In experiment 3 all wild type recombinants were also progeny tested to 

check for the expected segregation of ga-l mutants: wild type contami

nants are not expected to be heterozygous for the ga-l locus. 

Since the intragenic recombinant gametes are rare and only one half of 

these are (dominant) wild types, the proportion of wild types found in 

F9 populations is a direct estimate of the recombinant fraction (r). 

2 

See: j (maternal) + j (paternal) - -C- - r. For calculating the 95% con

fidence limits a Poisson distribution is assumed. 

(iv) The association of outside markers with intragenic recombinants 

To distinguish between cross-overs and gene conversions, closely linked 

outside markers are required at both sides of the locus studied. For 

ga-l the situation is not ideal, as this locus is at the end of the 

chromosome 4 map and the nearest markers are rather distant. 

i i 

Line NG5 (ga-l /ga-l ) was provided with the proximal outside markers 

f„ (late flowering) and ap-2 (apetala, reduced petals),/ and apfor 

short. The map positions (in cM) are: ga-l - 27.2 - /- 30.0 - ap 

(Koornneef st al•, 1980). NG5 was then crossed with the other 8 lines 
1 X 

carrying ga-l alleles. This yielded F,'s ga-l .f.ap/ga-1 .F.AV. 

In F ? the wild type recombinants (with respect to the ga-l locus) 

arise from one recombinant gamete (Ga-l) and one non-recombinant gamete 

(ga-l) . Both gametes can further carry F.Ap, F.ap,f.Ap or f.ap. So re

combinants of 4 x 4 = 16 different genotypes(always combinations of 

Ga-l and ga-l gametes) may occur. Of these types only Ga-l.f.ap/ga-1.f.ap 

can be directly identified. To determine the other genotypes F, 

progeny testing is required. To distinguish the coupling and repulsion 

diheterozygotes 40 plants were raised per F, line, and when necessary 

another 40 plants. 
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With the hcmozygotes gamete assessment is straightforward: e.g. 

F.ap/F.ap necessarily has originated from one Ga-l.F.ap and one ga-1. 

F.ap. gamete. With the 4 monoheterozygotes and the 2 diheterozygotes, 

the linkage phase must be taken into account: e.g. F.Ap/f.aparose from 

ga-l.F.Ap and Ga-1.f.ap , when the ap-l and / locus are in repulsion with 

ga-1. This can be applied to F/f heterozygotes but not to genotypes which 

are only heterozygous Ap/ap, since ap segregates almost independently 

from ga-1. In other words, complete gamete assessment cannot be done 

for F.Ap/F.ap and f.Ap/f.ap . To save work, none of the f/f phenotypes 

were progeny-tested which implies that f.Ap/f.ap also could not be dis

tinguished from f.Ap/f.Ap. So in total 4 x 4 - 5 = 11 gamete combinations 

were completely assessed, the other 5 being assessed only for the loci 

ga-1 and /. From these data (Table 5) the frequencies of the different 

types of recombinant Ga-igametes with respect to f and ap are then es

timated by a maximum likelihood procedure (in view of the incomplete 

assessment). The figures also allow an estimate of the recombination 

fraction between /and ap in gametes that did not originate from intra

genic recombination at the ga-1 locus. Estimates of "ordinary" recombi

nation fractions were calculated by the method of maximum likelihood 

1 l 
from ?2 segregation data derived from the cross ga-1 .f.ap/ga-1 .f.ap 
x wild type. 

3. RESULTS 

(i) Intragenic complementation 

The germination percentages of both F,'s and F„'s of all 36 hetero-

allelic combinations did not exceed the percentages of the higher pa

rent. So there is no indication of even partial intragenic complemen

tation. The same holds for 23 other independently induced ga-1 alleles 

as fas as mutually tested. 
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( i i ) Frequencies of wild type recombinants 

Table 2 presents the frequencies of w i ld type ga-1 a l le les found 

in F„ 's of a l l 36 he teroa l le l ic combinations of the 9 ga-1 mutants. 

In Table 2 the results of the 2 preliminary experiments (Koornneef,1979) 

and of the large 3rd experiment have been pooled. Only the results from 

NG4 x 29.9 in experiment 2 were omitted as they were s t r i k i ng l y at variance 

with a l l other resu l ts , probably as a resul t of se l f ing admixture. In 

a l l other cases no s ign i f i cant differences were found between the d i f fe rent 

experiments. 

Not a single recombinant was detected among the homoallelic combi-
5 

nations (3 x 10 seeds tested in t o ta l , ind ica t ing a spontaneous reversion 

-5 frequency < 10 (P < 0.05)). In the majority of the heteroal le l ic com-

-5 bi nations the frequencies of w i ld type recombinants range from 1 x 10 

-4 upto 6.6 x 10 . I n analogy to s imi lar results obtained by previous 

authors in other organisms, i t is concluded that these elevated frequen

cies r e f l ec t intragenic recombination which may include gene conversion. 

Table 3 gives the results upon pooling a l le les that did not show 

recombination among each other. These are a) NG4 and d69 and b) A428, 

d352 and 6.59. The results with 31.89 are not included as they c lear ly 

stand apart (see below). I t appears possible to construct an i n te rna l ly 

consistent map (Fig. 2) from the data of Table 3. The distances in Fig.2 

were calculated from the d i rect estimate of a par t icu lar segment and the 

estimates of i t s bordering segments, e.g. with an a l l e le order A 

U - c -2- D, rx - ( rAB
 + r

AC - rB C) /2 and r2 = (rBC
 + r

AC - rAB
 + r

BD -

CD r ) /3. When using th is procedure the sum of the in tervals becomes 

-4 
7.1 x 10 = 0.071 cM. From the results obtained a l l e le 31.89 can be 

interpretated as an intragenic delet ion which covers hal f of the present 

ga-1 map (Fig. 2) . The data give no indicat ion for the occurrence of 

map expansion. 
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(iii) Distribution of outside markers 

As ga-1 is located close to the end of chromosome 4 no distal markers 

are yet available. The linkage relations of ga-1 with the two proximal 

l 1 

markers / and ap have been derived from the F« (ga-1 .f.ap/ga-1 .f.ap) 

x wild type as shown in Table 4. The estimates of recombination frac

tions agree with previously published results (Koornneef si al. , 1980). 

The frequencies of Ga-1 recombinants with respect to both / and ap , 

isolated from Fp's of NG5 x other ga-1 mutants are presented in Table 5. 

No significant differences were found for the distribution of the 
2 

d i f fe ren t gametes between the d i f fe ren t F , 's . Heterogeneity x =82.6 

(0.4 < P < 0 .6) . Therefore the crosses were pooled (see to ta ls in 

Table 5) to estimate the marker d i s t r ibu t ion over the Ga-1 recombinants 

(Table 6 ) . However, the data obtained with 29.9 were not included as 

th is a l l e le is located at the other side of NG5 (see Fig. 3). From the 

predominance of the recessive / a l le le with the Ga-1 recombinant and 

on the basis of the intragenic map, the order of the a l le les with re 

spect to f and ap i s to be most l i k e l y 29.9 - NG5 - other ga-1 a l le les -

f - ap. 

Assuming that only reciprocal cross-overs give r ise tc Ga-1 a l le les 

( i . e . no conversions), i t appears that a cross-over w i th in the 3a-1 

locus leads to a s ign i f i cant decrease of cross-overs in the adjacent 

ga-1 to / region (posi t ive in ter ference), but does not a f fect recom

bination between / and ap (see Table 6; and and 4th column). In addi

t ion the recombination f ract ion between / and ap which can be estimated 

from the non-recombinant gametes (r = 0.201 + 0.032) is in good agree

ment with that from the recombinant gametes ( r = 0.215 + 0.017 in 

Table 6 ) . 

Conversely, the posit ion of 29.9, d i s ta l to NG5, is expected to 

lead to a proportional excess of Fas outside marker. However, the 
number of plants (12) is too small to confirm t h i s . ..,., 
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4. DISCUSSION 

An internally consistent map could be constructed from the frequencies 

of wild types (intragenic recombinants) occurring in the selfed progenies 

of plants heteroallelic for mutations at the ga-1 locus. The deviating 

results from crosses with allele 31.89 can be readily explained by the 

hypothesis that 31.89 is an intragenic deletion.It may be significant 

in this respect that 31.89 hardly shows any germination (Table 1 ) , which 

indicates non-leakiness. It is in no way a general rule that intragenic 

recombinant frequencies are additive like we found for the ga-1 locus(see e.g. 

Carlson, 1959; Fincham et al., 1979). In higher plants this lack of 

additivity was conspicuous for the Adhl locus in maize (Freeling, 1976, 

1978) and was also noted by Nelson (1968) forwa; in maize, which made 

it impossible to construct a map on the basis of intragenic recombinant 

frequencies. 

The frequencies of wild type recombinants among gametes found for 
r -4 the ga-1 locus in Arobidopsis (upto j = 3.3 x 10 ) are comparable to 

Y -4 
those found for other well studied plant genes (over •=• = 10 x 10 for 

-4 wx in maize (Nelson, 1968), upto 20 x 10 for glx in barley (Nilanet 

al., 1981) upto 6.6 x 10"4 for Adhl (Freeling, 1978) and upto 5.8 x 10"4 

for g l - 1 (Salamini & Lorenzoni, 1970)). The size of the plant genes in

cluding ga-1 corresponds to the large Drosophila loci like lz (Green 

& Green, 1956), r (Carlson, 1971), dp (Grace, 1980). This suggests that 

plant genes in general are "large". However, it should not be over

looked that one of the reasons for studying these particular loci was the 

availability of a number of different alleles, which implies that pre

ferentially loci were chosen with relatively high mutation frequencies. 
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In th is connection i t is in terest ing that the ga-3 locus has a s i g n i f i 

cantly lower mutation frequency than ga-l and also shows lower frequen

cies of intragenic recombinants (Koornneef & Janssen, unpublished). 

A re la t ion between the genetic size of a gene and i t s induced mutation 

frequencies has also suggested by Chovnick et al. (1971) who compared the 

ma-l and ry locus of Drosophila. 

Amano (1968) found for his 3 fast neutron induced wx mutants in maize 

no wi ld type pollen grains from the heteroa l le l ic plants and moreover a 

reduced transmission of the affected chromosome, such in contrast 

to his 9 EMS-induced wx mutants, 7 of which were able to recombine with 

the same wx tester a l l e l e . This suggests that FN may p re ferent ia l ly i n 

duce gross chromosomal damage l i ke large delet ions. There i s an apparent 

discrepancy with our resu l ts , where 2 FN-induced and a l l 6 EMS-induced 

a l le les show recombination, wh i ls t a th i rd FN-induced a l l e le shows only 

reduced recombination. This discrepancy may be explained by a dif ference 

in mutant selection procedure. Our mutants were selected in Mo l ines 

(the progenies from selfed mutagen treated M, p lants) , so that gross 

chromosomal aberrations have been sieved out due to t he i r low transmissi-

b i l i t y through the pollen (cer ta t ion) . In contrast, Amano's wx mutants 

were a l l i den t i f i ed upon po l l ina t ion of M, plants with pollen from (non-

treated) homozygous recessive tes ters . Therefore, the conclusion seems 

warranted that FN induces more gross genetic damage than EMS does, but 

that mutations that pass the certat ion sieve ( i . e . those selected in M„) 

are in general not of that type. 

The iso la t ion of leaky a l le les induced by both EMS and FN at the ga-l 

locus (germinating dwarfs) (Koornneef & van der Veen, 1980; Koornneef 

et al., 1982a) also points to the recovery of FN-induced a l le les with 

minor genetic damage. 
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As oucside markers were not available at both sides of the ga-1 

locus ( / and apare both proximal), i t was a priori impossible to ex

clude conversion (not followed by a reciprocal event) as a source of 

w i ld type gametes. Let x and y be ga-1 mutants and f the outside marker 

x f 
in the order x-y-f. Then the heterozygote — may produce Ga-l.f 

y F 
gametes by 1) reciprocal crossing-over between x and y, 2) conversion 

of x , and 3) conversion of y fol lowerd by crossing-over between ga-i 

and f. I t may produce Ga-l.F gametes by 1) conversion of , 2) conver

sion of a; followed by crossing-over between ga-1 and f. For the order 

y-x-f t h is re lat ionship is interchanged. I t follows that an excess o f / 

a l le les (or F a l le les) among Ga-l recombinants only allows a conclusion 

about the order of x and y when reciprocal events are more frequent than 

conversion events. When the conversion events are in excess and when in 

addit ion conversion of the proximal s i te is far more frequent than at 

the d i s ta l s i t e , the order inferred on the assumption of only reciprocal 

events may be erroneous. 

On the other hand, no indicat ion was obtained for the occurrence of 

map expansion. This phenomenon is explained by the re la t ive ly frequent 

occurrence of co-conversion of c losely " l inked" s i tes (Hol l iday, 1964). 

I ts absence is an indicat ion that recombinants with parental f lanking 

markers (conversions) are r e la t i ve ly rare among the randomly sampled 

(wi ld type) recombinant gametes. Moreover the ga-1 gene is r e l a t i ve l y 

large and so are the intervals between the s i tes . With larger intervals 

these conversions are expected to be r e la t i ve ly infrequent as the r e 

combination event has a greater probabi l i ty of being detected as a 

cross over than as a pure conversion event (Chovnick et al., 1971; 

H i l l i k e r & Chovnick, 1981). However, with some large loci both in 

Drosophila ( r locus, Carlson, 1971) and in maize (wx, Nelson, 1968, 

1975; gl-l, Sal amini & Lorenzoni, 1970) there seem to be exceptions 

to th is ru le . 
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GENERAL DISCUSSION AND SUMMARY 

This thesis describes the isolation and characterization in Arabidopsis 

thaliana (L.) Heynh. of induced mutants, deficient for gibberellins (GA's), 

abscisic acid (ABA) and photoreceptors. 

These compounds are known to regulate various facets of plant growth and 

differentiation, so mutants lacking one of these substances are expected to 

be affected in several aspects of their physiology. It is shown in this thesis 

that the earliest expression of these mutants occurs during seed development and 

seed germination. Therefore these processes form an excellent phase to screen 

for these mutants. 

Planthormone and photoreceptor mutants in relation to seed physiology. 

In general three major periods may be distinguished in the history of a 

seed: 1) Seed development and maturation, 2) developmental arrest of the ma

ture seed, characterized either by a dormant state in which seeds even do not 

germinate under favourable environmental conditions, or by a quiescent state 

in which seeds only require rehydration, and 3) germination, starting with 

water uptake and often requiring breaking of dormancy, which is triggered by 

specific environmental factors such as light and temperature. Planthormones 

may play a regulatory role in all three phases. 

Non-germinating GA-responsive mutants as described in Chapter 1 have a 

strongly reduced gibberellin biosynthesis (Barendse, pers.comm.) which may lead 

to an increased level of dormancy and/or to the inability of the seeds to 
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break dormancy after imbibition of mature seeds. Clearly the presence of GA's, 

either by de novo-QA synthesis, or by hydrolysis of bound forms, is not always 

a prerequisite for seed germination: genotypes that combine GA- and ABA defi

ciency like the revertants of non-germinating ga-1 mutants described in Chap

ter 2 do readily germinate. 

Apart from the absence of endogenous factors such as gibberellins, also the 

lack of receptors for environmental factors that normally break dormancy might 

prevent germination. An example are the hy-l and hy-2 mutants (Chapter 4 ) , 

which are characterized by an increased hypocotyl length in white light and 

the absence of detectable phytochrome in dark grown hypocotyls. It was shown 

by Spruit et al. (1980), that these mutants hardly show any germination and 

correspondingly, have strongly reduced levels of phytochrome in their seeds. 

Their reduced germination capacity is restored by (relatively high) concentra

tions of exogeneously applied GA« -, (Koornneef et al., 1981). Consequently one 

might expect such phytochrome deficient mutants to occur among the GA respon

sive non-germination mutants in Arabidopsis, like van der Veen and Bosma actu

ally found for a tomato mutant (see Koornneef et al., 1981). Remarkably this 

was not the case in Arabidopsis. The reason for this seems to be the absence 

of a light requirement in the hy mutants from the M? populations screened 

for non-germinating mutants of Avabidopsis. It happened that these M„ seeds in 

all cases were harvested from M, plants grown in winter, in contrast to the 

seeds studied by Spruit et al. (1980) which were harvested in sunmer. We have 

observed during a number of years that seeds (including wild-type seeds), 

which developed in winter (natural daylight with additional continuous light 

by Philips TL 57) were less dormant than seeds from sunmer grown mother plants 

(long days, high light intensity, no additional light). Relevant environmental 
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factors in th is respect may be l i g h t i n tens i t y , l i gh t qual i ty (McCullough and 

Shropshire, 1970) and daylength (Karssen, 1970; Lui ten, 1982). The ef fect of 

l i gh t qual i ty (McCullough and Shropshire, 1970) indicates that phytochrome may 

be involved in the determination of the level of dormancy. 

To select mutants with a reduced or absent seed dormancy, one may choose 

those condit ions, where the wi ld-type is c lear ly dormant. However, the high 

and probably complex environmental v a r i a b i l i t y of th is character and the re la 

t i ve l y rapid change in the level of dormancy during dry storage of the seeds 

makes th is selection system less a t t rac t i ve . 

Selection for revertants in the progeny of mutagen treated non-germinating 

ga-1 mutants proved to be an e f fect ive procedure to iso late mutants with a r e 

duced dormancy (Chapter 2). As the reverting e f fect (restored germination) was 

caused by a mutation at a d i f f e ren t locus, the ga-1 a l l e le could be replaced 

by i t s wi ld-type a l l e l e by crossing the revertant with the wi ld-type parent 

followed by selection in Fp. These newly selected monogenic recessive mutants 

had a reduced level of ABA in the leaves and in both the developing and r ipe 

seeds. Correspondingly the mutant a l le le was called aba (ABA-types are aba/aba 

plants) . 

The germination of seeds col lected at d i f fe ren t stages of the i r development 

on both ABA-and wi ld-type plants showed that dormancy developed during the 

las t part of seed maturation in w i ld- type, but not in the a&a-mutant. This 

shows that the function of ABA is dormancy induct ion. ABA determinations in 

unripe s i l iquae showed a peak level of ABA at about 10-12 days after anthesis, 

followed subsequently by a decrease, a short period at a constant level and a 

fu r ther decrease (Chapter 3) . In addition to ABA-type mothers with ABA-type 

embryo's and wi ld-type mothers with wi ld-type embryo's, one can also obtain 
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by means of the appropriate reciprocal crosses ABA-type mothers with wi ld-type 

embryo's and wi ld-type mothers with (50%) ABA type embryo's. So the effects of 

maternal and embryonic genotype can be separated. I t was found (Chapter 3) that 

the genotype of the mother plant regulated the sharp r i se in ABA content ha l f 

way seed development (maternal ABA). The genotype of the embryo and endosperm 

was responsible for a second ABA f ract ion (embryonic ABA), which reached lower 

levels ; but persisted for some time a f ter the maximum in maternal ABA. The on

set of dormancy showed a good correlat ion with the presence of the embryonic 

ABA f rac t ion and not wi th the maternal ABA. 

Another category of mutants which also may give some understanding of the 

role of ABA in seed germination are the ABA to lerant mutants recently isolated 

by us in Arabidopsis. Compared to wi ld-type these mutants require an upto 20 

fo ld higher concentration of exogeneously applied ABA to i n h i b i t seed germina

t i on . These mutants too are characterized by a reduced seed dormancy. 

Other genetical ly determined factors than those mentioned above are cer

ta in l y also involved in seed development and seed germination. Thus i n Arabi

dopsis mutations leading to the absence of seed coat pigments (transparent 

testa) and simultaneously to the absence of a mucilage layer around the seed 

have a reduced dormancy (Koornneef, 1981). The l a t t e r seedcoat characters are 

determined purely by the maternal genotype. 

Planthormone and photoreceptor mutants in relation to other physiological 

effects. 

Non-germinating mutants at the loc i ga-l, ga-2 and ga-3, when made to ger

minate by adding g i bbe re l l i n , i n i t i a l l y develop in to normal looking seedlings. 

Later on they become dark green bushy dwarfs with reduced petals and stamens. 
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Regular GA-spraying from the seedling stage onwards maintains the wi ld-type 

phenotype completely or nearly so (Chapter 1). The strong and quick response 

of the dwarfs to GA sprays (the elongation of the petals of older dwarfs be

comes v i s ib le w i th in two days) c lear ly demonstrates the essential ro le of 

g ibbere l l in in elongation growth. 

Recently the non-germinating ga a l le les were shown to have a strongly re

duced kaurene synthetase a c t i v i t y in young s i l iquae compared to wi ld type. 

These analyses were performed by Dr. G.W.M. Barendse (pers.comm.). This i nd i 

cates that these genes control some early step(s) in GA biosynthesis. 

Apart from mutants that do not germinate without GA.also more or less nor

mally germinating GA responsive dwarfs were iso lated. Half of these were found 

to be a l l e l i c to the non-germinating ga-l,ga-2 and ga-3 mutants. These mutant 

a l le les behave l i ke so called "leaky a l l e l e s " , i . e . the a l le les are only par t ly 

defective and produce su f f i c ien t GA for seed germination, but not enough to 

give normal elongation growth. 

GA sensit ive dwarfs were also found at two other loci (ga-4Jga-5)of which no 

non-germinating a l le les have been isolated so far (Chapter 1).These mutants have 

normal or s l i gh t l y reduced kaurene synthetase ac t i v i t y (Barendse, pers.cormi.), 

which indicates that these genes regulate steps beyond kaurene, or a f fect GA 

metabolism in another way. I t is also possible that in the mutants ce l l elonga

t ion factors are blocked for which the r e la t i ve l y high concentration of exoge-

neously applied GA may subst i tute. Locus ga-4 seems to control interconversions 

between GA's, which is suggested by the i nsens i t i v i t y of ga-4 dwarfs to GAg, 

which g ibbere l l in is e f fect ive with mutants at the other 4 l o c i . 

Abscisic acid (ABA) def ic ient mutants are characterized not only by reduced 

seed dormancy but also by disturbed water relat ions (w i l t iness , w i ther ing) , 
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probably as a resu l t of f a i l u re to close the stomata upon conditions of water 

stress (Chapter 2) . This is character ist ic for ABA def ic ient mutants in tomato 

(Tal and Nevo, 1973) and potato (Quarrie, 1982). ABA def ic ient mutants in maize 

are in addit ion to a reduced seed dormancy (viviparous mutants, gene symbol vp) 

characterized by the f a i l u re to synthesize carotenoids and they accumulate pre

cursors of these pigments (Robichaud et a l . , 1980). As ABA def ic ient mutants 

in Arabidopsis, tomato and potato have normal pigments, i t is suggested that 

in the l a t te r species the ABA biosynthesis may beblocked in the last part of the 

pathway, wh i ls t in the maize mutants i t is blocked at an ear l ie r stage, i . e . 

where ABA and carotenoids s t i l l have a conmon pathway. 

Some of the photoreceptor mutants are affected in t he i r germination be

haviour as discussed above. However, the most conspicuous e f fect observed is 

the par t ia l lack of l i gh t induced i nh ib i t i on of hypocotyl elongation(Chapter 4) . 

Mutants in Arabidopsis, and also in tomato and cucumber (Koornneef et a l . , 

1981; Koornneef et a l . , unpublished), that have an elongated hypocotyl when 

grown in white l i g h t , were shown to have locus-specif ic a l terat ions in the 

spectra of l i g h t i nh ib i t i on when grown in l i g h t of rest r ic ted spectral regions. 

In these "colour b l ind" mutants at two loci [hy-1 and hy-2) l i t t l e or no spec-

trophotometrically detectable phytochrome was present in dark grown hypocotyls, 

nor was i t in the seeds. In these mutants the i nh ib i to ry e f fect of red and fa r -

red was almost absent. Mutants of other genes were characterized by the absence 

only of red i nh ib i t i on {hy-3) or by a decreased sens i t i v i t y to the shorter wave

lengths of the spectrum {hy-4, hy-5). Hy-5 also showed a reduced inh ib i to ry 

e f fect of fa r - red l i g h t . The d i f f e ren t i a l sens i t i v i t y of the genotypes to 

speci f ic spectral regions strongly suggests the involvement of more than one 

pignent in the i nh ib i t i on by l i g h t of hypocotyl elongation and probably also 
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in other photomorphogenetic processes. Some authors ascribed th is ro le solely 

to phytochrome (Schafer, 1976). 

Since under speci f ic conditions phytochrome could nevertheless be detected 

in so cal led phytochrome def ic ient mutants (Koornneef and Spru i t , unpublished) 

the genes hy-1 and hy-2 probably do not represent the s t ructural genes of the 

phytochrome protein or the phytochrome chromophore, but instead may play a 

r o le in the regulation of phytochrome metabolism. 

Further genetic aspects of plant hormone and light receptor mutants. 

Mutation frequencies for the d i f fe rent groups of loc i were estimated for 

ethylmethanesulphonate (EMS), fast neutrons and X-rays (Chapter 5 ) . Average 

mutation frequencies calculated per d ip lo id c e l l , per locus and per nfl EMS 

during 1 hr at 24 °C, were for ga-1, ga-2, ga-3 8.0 + 1.8 x 10" , for hy-1, 

— ft —ft 

hy-2, hy-3 4.2 + 1.4 x 10" and for the aba locus about 27 x 10" . These mu

tation frequencies are relatively high compared to other loci studied by us 

and others. It is not excluded that in these categories loci escaped detec

tion simply because of a low mutation frequency. 

It is a good custum to locate newly induced mutations on the organisms 

gene map, especially when they are the basis of extensive research like our 

ga, aba and hy mutants. Unfortunately, the gene map of Arabidopsis was rather 

fragmentary, and contradictory or wrong conclusions about linkage relations 

could be found in literature. Since we had gradually built up the complete set 

of 5 primary trisomies supplemented with a number of telotrisomics (one chro

mosome arm extra) and also made a collection of mutations at many loci, in

duced in the course of various experiments at our department and supplemented 

with mutants described in literature, we had a good starting point to construct 
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a more representative gene map for Arabidopsis. The required scale of opera

tions was only feasable thanks to the accurate assistance of many students who 

performed trisomic analysis and qene mappinq as part of their university 

training program. Important further additional data were obtained from the 

department of Genetics of Groningen University and from literature. 

The trisomic analysis aimed at assigning linkage groups (via representative 

markers) to the different chromosomes is described in Chapter 6. The gene maps 

in centimorgans for the five Arabidopsis chromosomes is presented in Chapter 7. 

On the basis of 76 loci mapped the genetic length of the Arabidopsis chromo

somes now compares well with that of individual chromosomes in e.g. tomato and 

maize. This notwithstanding the small size of the Arabidopsis chromosomes. 

Genes with a similar mutant phenotype (and probably comparable functions) 

seem to be distributed at random over the Arabidopsis genome. 

Our set of mutants at the ga-1 locus of Arabidopsis provides an excellent 

opportunity for fine structure analysis of the gene. The system has a very 

high resolving power,for the intragenic recombinants are found as the rare 

wild-type seedlings among thousands of non-germinating seeds per petri dish. 

The results show (Chapter 8) that 8 different alleles could be arranged into 

an internally consistent map on the basis of the frequencies of intragenic 

recombinants. One fast neutron induced allele behaved as an intragenic dele

tion. The order of the sites with respect to other genes on chromosome 4 

could be established. 
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SAMENVATTING 

De groei en ontwikkeling van planten wordt mede gereguleerd door plantenhor-

monen zoals gibberellinen (GA), abscisine-zuur (ABA) en fotoreceptoren zoals 

bv. fytochroom. Mutanten, waarbij een van deze factoren in verminderde mate of 

niet aanwezig is of niet functioneert, kunnen een belangrijke bijdrage leveren 

tot de studie van de genetica van deze factoren en vormen ook een belangrijk 

hulpmiddel voor plantenfysiologisch onderzoek. De selectie en karakterisering 

van een aantal mutanten gestoord in de gibberelline (GA), abscisine-zuur (ABA) 

en fotoreceptor huishouding bij de crucifeer Arabidopsis thaliana (de zandraket) 

wordt in dit proefschrift beschreven. Deze plantensoort is als proefobject ge-

kozen vanwege zijn geschikte eigenschappen voor genetisch onderzoek zoals de 

zeer korte generatieduur (+ 2maanden), het zelfbevruchtende karakter, de hoge 

zaadproduktie en de geringe afmetingen van de plant. Dit laatste kon soms pro-

blemen opleveren bij fysiologisch- en biochemisch onderzoek. 

In hoofdstuk 1 wordt beschreven hoe mutanten zijn geisoleerd, die zonder het 

van buiten toevoegen van gibberelline niet kunnen kiemen. Worden deze genotypen 

in een gibberelline-oplossing tot kieming gebracht, dan ontwikkelen de aanvanke-

lijk normaal lijkende zaailingen zich tot donkergroene dwergplanten. Door echter 

deze planten regelmatig met gibberelline te bespuiten kunnen ze uitgroeien tot 

planten, die bijna niet van het wildtype (het standaard ras Landsberg "erecta") 

zijn te onderscheiden. 37 van deze recessieve mutanten bleken allelen te zijn 

van 3 verschillende genen {ga-1, ga-2 en ga-3 genoemd). Deze genen zijn zeer 

waarschijnlijk verantwoordelijk voor de synthese van enzymen uit het begin van 
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de biosynthese weg van de gibberellinen. Behalve deze zogenaamde niet-kiemende 

GA dwergen werden ook 19 wel-kiemende voor gibberelline gevoelige dwergen ge-

isoleerd. 10 hiervan bleken mutaties van dezelfde 3 ga genen die eerder genoemd 

zijn, alleen functioneert hier het gen blijkbaar nog juist voldoende om kieming 

in gang te zetten en te houden, maar niet voldoende voor een normale lengte-

groei. De 9 andere dwergen zijn mutanten van 2 andere genen (ga-4 en ga-5), 

die een andere functie lijken te hebben. 

Na een mutatiebehandeling van niet-kiemende ga-1 mutanten konden in de na-

komelingschap van de behandelde planten (de z.g. M„ generatie), wel-kiemende 

dwergen (revertanten) geselekteerd worden, waarbij het herstel van de kieming 

een gevolg bleek van een mutatie in een gen verantwoordelijk voor de aanmaak 

van de remstof abscisine-zuur (hoofdstuk 2 ) . Na kruising van de revertanten 

met het wildtype werden in de F 3 lijnen gevonden, die homozygoot recessief 

waren voor alleen dit aba gen. Van dit gen zijn tot nu toe 14 verschillende 

allelen geisoleerd. Deze genotypen worden gekenmerkt door de afwezigheid van 

kiemrust in de zaden en door verwelkings- en verdorringsverschijnselen van de 

plant. Dit laatste lijkt een gevolg te zijn van het permanent openstaan van 

de huidmondjes, waardoor de plant te veel verdampt. Beide verschijnselen blij-

ken het gevolg van abscisine-zuurgebrek te zijn, waaruit de belangrijke rol 

van dit hormoon voor de regulatie van zowel de waterhuishouding als de kiem

rust blijkt. 

Dit laatste aspect is meer gedetailleerd onderzocht in hoofdstuk 3 waarbij 

gevonden werd dat het abscisine-zuur, dat door het embryo zelf aan het eind van 

de zaadontwikkeling geproduceerd wordt, kiemrust in zaden induceert, waarna 

het hormoongehalte afneemt. Halverwege de zaadontwikkeling blijkt er een hoog 

gehalte van dit hormoon voor te komen in zaden, dat echter van moederlijke 

oorsprong is. Dit laatste werd aangetoond met behulp van planten met zaden 
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waarbij het genotype van de moeder en het embryo verschilden (verkregen via 

reciproke kruisingen). De rol van dit moederlijke abscisine-zuur is minder 

duidelijk. 

Bij Ardbidopsis en ook bij andere plantensoorten zijn mutanten gevonden,die 

gekenmerkt worden door een extra lang hypocotyl. Bij Ardbidopsis betrof het 

41 mutanten van 5 verschillende genen. Wanneer deze mutanten opgekweekt werden 

onder licht van een beperkt golflengtegebied (een bepaalde kleur), bleek dat 

bepaalde kleuren, die bij het wildtype renmend werken, dit effect niet meer of 

in mindere mate vertonen bij mutanten van specifieke genen. De afwezigheid van 

remning door rood en ver-rood licht (de genen hy-1 en hy-2) bleek samen te gaan 

met de afwezigheid van het pigment fytochroom, dat geheel of gedeeltelijk ver-

antwoordelijk gesteld moet worden voor de remming door rood en ver-rood. Mu

tanten van bv. hy-4 bleken veel minder gevoelig voor blauw licht dan het wild-

type. Deze genspecifieke hypocotylremmingsspectra geven sterke aanwijzingen 

voor de betrokkenheid van verschillende min of meer onafhankelijk werkende pig-

menten bij deze reactie. Naast fytochroom komen dus zeer waarschijnlijk nog 

andere fotoreceptoren voor. 

De laatste 4 hoofdstukken geven een aantal genetische details van bovenge-

noemde en enige andere genen. Mutatiefrequenties voor ethylmethaansulfonaat 

(EMS) en 2 soorten straling (snelle-neutronen en r'ontgen) worden beschreven 

in hoofdstuk 5. Deze werden vergeleken met frequenties van andere genen en met 

frequenties van genen bij gerst. Verschillende genen kunnen een significant 

verschillende mutatiefrequentie hebben. 

Het is een goed gebruik dat nieuwe mutanten, vooral als ze onderwerp zijn 

van diepgaand onderzoek, op de genenkaart van het organisme gelocaliseerd wor

den. De genenkaart van Ardbidopsis was echter vrij fragmentarisch. Teneinde 

onze genen te localiseren op een van de 5 Arabidopsis chromosomen is gebruik 
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gemaakt van trisomen (genotypen met een extra compleet chromosoom; hoofdstuk 

6 ) . Dit is echter eerst vooral gedaan voor genen die karakteristiek zijn voor 

reeds eerder in de literatuur beschreven koppelingsgroepen. Dit vanwege tegen-

strijdige gegevens in de literatuur die een goede genetische beschrijving van 

verschillende Arabidopsis chromosomen tot nu toe moeilijk maakten.Tevens wer-

den een aantal telotrisomen (genotypen met een extra half chromosoom) gevionden, 

die gebruikt zijn om centromeren van 3 van de 5 chromosomen te localiseren 

Door middel van koppelingsanalyses zijn een groot aantal van de relatieve 

(genetische) afstanden van een 76-tal genen bepaald (hoofdstuk 7 ) . Op grond 

van deze gegevens kon een gedetailleerde genenkaart geconstrueerd worden. Bij 

planten zijn alleen de kaarten van mais, gerst, de erwt en de tomaat gedetail-

leerder. 

Niet-kiemende gibberelline gevoelige mutanten van Arabidopsis blijken zeer 

geschikt om verschillende mutaties van een dergelijk gen in kaart te brengen. 

De hiervoor benodigde zeldzame recombinanten zijn namelijk eenvoudig te her-

kennen als wildtype kiemplanten tussen duizenden niet-kiemende zaden per petri-

schaal. Het bleek mogelijk voor het eerst bij een plantengen een intern klop-

pende kaart te construeren, waarbij ook de volgorde van de mutaties t.o.v. 

andere genen van chromosoom 4 vastgesteld kon worden. Een mutant bleek 

zich te gedragen als een intragene deletie. 
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