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Voorwoord 

De wetenschap heeft het tot haar deugd gemaakt om haar kinderen zo streng 

mogelijk in het pad van de objectiviteit te onderwijzen. In dit voor u liggende 

boekje beschrijf ik de resultaten van mijn betrokkenheid bij de groei van een 

van haar spruiten. Ik kan me zo voorstellen dat een intensieve wandeling 

door dit met formules gelardeerde bos u, ongeacht uw wandelroute, een diep 

gevoel van eenzaamheid kan geven. Of u begrijpt er niets van en hebt het 

gevoel dat zelfs de mossprietjes te hoog zijn om aan te raken, of u begrijpt er 

alles van en vraagt zich vertwijfeld af waarom de bomen nog langer bomen 

worden genoemd. Nu moet u niet denken dat ik de kinderen van de 

wetenschap als ongewenst beschouw. Ik wil u er alleen maar op wijzen dat de 

invloed van hun moeder niet onderschat moet worden. Ze voedt hen met de 

melk van de algemeen geldigheid en verschoont hen met luiers van het 

determinisme. Denk niet dat ik verlang dat zij het anders doet. Zeker niet! Ik 

wil alleen maar zeggen dat haar kinderen noch wereldverbeteraars noch 

criminelen zijn. Ze zijn domweg haar kinderen. 

U moet beseffen dat u bij het lezen van de bladzijden volgend op dit 

voorwoord een bril opzet die een zeker beeld van de werkelijkheid oplevert. 

En zoals veel brildragers weleens overkomt, kan het zijn dat ik of u op een 

zeker moment het besef van het montuur verliezen, zodat we gaan denken 

dat we onze bril kwijt zijn. Dit nu is buitengewoon hinderlijk, want de super-

montuurlijke realiteit kan zo warm en vriendelijk zijn. Want daar zijn de 

mensen. In de brilleglazen zie je slechts een agglomeraat van cellen, een 

complex reactievat, samengebalde sexuele driften, overlevingsstrategieen en 

gedragspatronen. In het supermontuurlijke is daar Hans Lyklema, die ik een 

klein beetje heb leren kennen in de afgelopen tijd, Trudy van wie ik zo ben 

gaan houden dat ik mijn leven met haar wil gaan delen, Frans Leermakers 

met wie ik tot mijn groot genoegen ettelijke witte en zwarte borden heb vol 

gekladderd, Arnout Bosse en al de andere filosoofjes met wie ik de bomen tot 

in de hemel heb doen laten groeien, Arie de Keizer die ijverig mijn 

theoretische excessen heeft gevolgd, Bert Torn met wie ik vele uren heb 

volgepraat en nog vele anderen. 

Namen, namen en nogeens namen en waag het eens om een van deze namen 

te verwisselen. Daar in het buitenbrillige zijn ook liefde en haat, mildheid en 

bitterheid, betrokkenheid en jaloezie, vreugde en pijn en leven en dood. Ik 

bewijs niets en vind dat ook niet nodig. De analyse is als het mes van een 



anatoom, het confronteert de toeschouwer met de structuur van een dode en 

niet van een levende. De echte levende vindt men slechts wanneer men 

vrijwillig kiest om zichzelf kinderlijk afhankelijk te maken van de ander, wat 

zeker niet eenvoudig en allerminst risicoloos is. 

Denk nu niet dat de onderneming van dit boekje ongewenst en minder-

waardig is. Uiteindelijk zijn de inhoud van dit boekje en de fenomenen van 

het buitenmontuurlijke op een en dezelfde realiteit betrokken: de schepping 

van God, die heeft laten zien Wie Hij is in Jezus. Ik weet het, het is een dwaas 

verhaal en het is de ultiemste vorm van dwaasheid om hieraan te refereren in 

het boekje zoals dat voor u ligt. Het is zelfs voor een diep-religieus mens te 

dwaas om los te lopen dat God mens wordt en vervolgens Zich laat kruisigen. 

Maar het is wel diepste verklaring van liefde die de schepping op zich 

afgevuurd kan krijgen. Het is deze schepping waarbinnen de liefde een plek 

heeft naast het molecuul, waar het onnavolgbare complex Henk wetenschap 

bedrijft en ook gelooft. De schepping die zoveel waard is dat elke poging om 

haar te quantificeren in geld waanzin is en elk detail het waard is om naar te 

kijken. 

Wellicht heeft u het benauwd gekregen van dit spervuur van irrationele 

gedachtengangen. Het lijkt me daarom goed dit voorwoord te beeindigen. Ik 

wens u een goede reis door de vijf hoofdstukken. En of u er doorheen komt of 

niet en of u het zinnig vindt of niet, er rest een feestje voor mij en voor u. 
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Chapter 1 

Introduction 

1.1 Surfactants, detergents or amphiphiles 

How do you manage to keep so much water in your body? What is the magic 

of the white powder, you add to ordinary water, that your shirt becomes 

clean? Why is it possible that we can discuss about the need to cover the 

golden liquid with a layer of bubbles? The number of answers will be much 

more than three and each answer will generate new questions, which have to 

be answered. Therefore, it will not be tried to answer any of these questions 

between the page you are reading and the last one. However, you have to 

become aware of the fact that a type of molecules exists, which plays a crucial 

role in all three questions. 

"Detergent", "surfactant" or "amphiphile" are a few names, used to refer to this 

type. The word "detergent" is often used because the molecules can be used 

for cleaning. With the words "surfactant" and "amphiphile" the macro-world 

is left behind and the micro-world is entered. The label "surfactant" refers to 

the tendency of the molecules to accumulate in large amounts at solid-liquid, 

liquid-liquid and liquid-gas interfaces. It describes one aspect of its behavior. 

On the other hand, with the word "amphiphile" we are on the way to discover 

the roots of this behavior. Due to its anisotropic chemical structure, the 

different sides of a surfactant prefer ("phile") to stick in or on different phases 

("amphi"). 

\ 
CH3-(CH2)x-(0-CH2-CH2)y-OH 

Figure 1 Above: schematical picture of a surfactant molecule. Below: the 
chemical formula of a well know class of nonionic surfactants. 



The chemical structure of a surfactant can be divided into two parts: the 

headgroup and the tail(s)1, see figure 1. The most common type of tails, both 

in synthetic and natural surfactants, is the aliphatic one. Although the 

chemical structure of the headgroup varies considerably, surfactants can be 

divided into three classes: anionic, nonionic and cationic surfactants, of which 

the headgroups carry a negative, zero and positive charge, respectively. 

1.2 Surfactants in water 

If surfactants are dissolved in water, the molecules form aggregates above a 

certain concentration, in which the headgroups (hydrophilic parts) are in 

contact with water and the tails (hydrophobic parts) stick together. The 

driving force for aggregation is the repulsion between the hydrophobic tails 

and water. To be more precise, water is a liquid with a strong coherence due 

to the presence of a network of hydrogen-bonds. The hydrophobic part of a 

surfactant molecule locally destroys the favorable coherence of the water2. 

The first aggregates are small, have a more or less spherical shape and are 

called micelles. The concentration at which these micelles appear is known as 

the "critical micelle concentration" (CMC). This concentration can be 

determined rather easily with various techniques1,3, like osmotic pressure 

measurements, light scattering, conductivity measurements in the case of 

charged surfactants and surface tension measurements, because the behavior 

of these physical properties change abruptly at this point. 

The shape and the number of the aggregates are very sensitive to the 

surfactant concentration, the temperature, the ionic strength and the 

molecular architecture4"6. Besides spherical micelles, there may occur linear 

micelles, bilayers (plate-like structures) and sponge phases7, figure 2. With 

advanced techniques, it has become possible to identify the various 

morphologies, which can exist in concentrated surfactant solutions6'8,9. 

Phospholipids, surfactant-like molecules, which are present in every living 

creature, form large plate-like structures, called membranes. These mem­

branes serve as boundaries between the complex and fragile inner world of an 

organism and its rough and hostile environment. Due to the presence of these 

boundaries, we are also able to retain so much water in our bodies. 
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Figure 2 Three different types of structures of surfactant aggregates in 
solution: (a) the spherical micelle, (b) the cylindrical micelle and (c) the bilayer. 

1.3 Surfactants at interfaces 

As already mentioned, surfactants can accumulate in high amounts at 

interfaces between two different phases due to their amphiphilic character. 

Clothes can be cleaned because surfactants adsorb at the surfaces of the textile 

or the soil particle10,11 and keeps dirt particles and textile apart. 

This study is focused on the adsorption behavior of surfactants at solid-water 

interfaces. Irrespective what type of surface or surfactant, the driving force for 

adsorption is the surface-surfactant interaction. The high adsorbed amounts 

are a consequence of the repulsion between the hydrophobic tails and water. 

As in solution, this interaction stimulates the formation of aggregates. The 

morphology of a surface associate can not be studied with the techniques, 



used for aggregates in solution, and has been a topic of discussion for years. 

Atomic force microscopy (AFM) has been used to obtain unambiguous 

information about the structure of surfactant layers. As in solution, spherical, 

linear and bilayer structures are formed12-13. The surface-surfactant interac­

tion has a strong influence on the resulting morphology14. 

The area of surfactant adsorption can be divided into four sub-areas, figure 3. 

The driving force for adsorption at a hydrophilic surface is an attractive inter­

action between the headgroup of the surfactant and the surface. Therefore, the 

adsorbed layer consists of aggregates, in which the hydrophobic tails are 

screened from the solution and the headgroups have contact with both the 

surface and the solution. Adsorption on a hydrophobic surface is driven by 

the poor wetting behavior of the solid, the adsorbed molecules screen the 

unfavorable surface-solution interaction. The surfactant molecules arrange 

themselves in layers or aggregates, such that the headgroups and tails are in 

contact with the solution and the surface, respectively. 

T,c 
hydrophilic 
surface 
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solution 

adsorbed 
layer 

_nonionic 
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y surface/^ 
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Figure 3 The four different sub-areas of surfactant adsorption. The impor­
tant variables are written in the corners: T (temperature), c (surfactant concen­
tration) and I (ionic strength). 



The main difference between the areas of the ionic and nonionic surfactants is 

the influence of the ionic strength. Although even the behavior of the nonionic 

surfactants can be influenced by the salinity of the solution through subtle 

mechanisms15"17, the influence on the behavior of ionic surfactants is much 

more pronounced18. 

1.4 Surfactants and pores 

Although a lot of solid substances seem to be macroscopically inert, they often 

are porous on molecular length scales. The specific surface area of substances, 

like carbon, certain types of silica and cellulose fibers, is very high due to the 

presence of small pores. If surfactants adsorb from an aqueous solution onto a 

porous medium, most of the adsorption may take place at the solid surfaces 

inside the pores. This may alter the adsorption behavior. The physical 

properties of a liquid inside a pore can differ from the properties of the same 

liquid outside the pore. 

If a gas is confined in one or more dimensions, abrupt changes, like conden­

sation, can be promoted19. Energetic or entropic interactions of the gas with 

the solid surface can alter the stability of both the liquid and the gas phase. 

The energetic interaction is related to the balance between the adhesion and 

cohesion of the liquid. The entropic interaction originates from the fact that 

the liquid structure is perturbed by the solid surface. This entropic interaction 

becomes important when the perturbation is not yet quenched at a distance of 

the order of the pore size. The correlation length ^ of a liquid is a measure of 

the decay length of a perturbation in the liquid. Under normal conditions t, is 

of the same order as the molecular diameter. Only in the neighborhood of so-

called critical points E, diverges19. An example is shown in figure 4. In this 

figure, density profiles of a liquid are drawn for different correlation lengths. 

Due to the fact that the liquid molecules have no interaction with the surface, 

depletion layers develop. 

Roughly speaking, the correlation length is a measure of the thickness of an 

adsorption or a depletion layer. To observe significant influences of a pore on 

the adsorbed amount, the pore size has to be of the order of the layer thick­

ness. Away from any critical point, this layer thickness is of the order of one 

or two molecular diameters. Influences on polymer adsorption or depletion 

will be observed when the pore diameter and the radius of gyration have the 

same order of magnitude20,21. If the pore diameter is of the same order as a 

micelle size, surfactant adsorption behavior will also change. 



Figure 4 Density profiles of a liquid inside a pore for different correlation 
lengths £,. In this example, the liquid-surface interaction is repulsive The dashed 
lines are the corresponding densities of the liquid outside the pore and D is the 
diameter of the pore. 

1.5 Theory of surfactant adsorption 

Experiments do not present us facts. The output results from experiments are 

like shadows on a wall, both the position of the light source, the posture of the 

illuminated object and the structure of the wall determine the shape of the 

resulting shadow. Even if we know these three variables, our knowledge will 

be restricted by the fact that a shadow only contains information about the 

shape of the object. It is theory, which tries to reconstruct from the shadow, 

with the help of the available knowledge about the light source and the 

structure of the wall, the shape of the original object. 

For the understanding of adsorption, adsorption isotherms have always been 

the most important pieces of experimental information. Various models have 

been developed to explain these isotherms22"27. However, it is difficult to 

evaluate the performances of these models, because the shapes of adsorption 

isotherms are not unique. However, new criteria and demands can be 

formulated with the help of the recent advances with modern techniques like 

AFM. The ultimate goal is a model which combines molecular detail with a 

realistic description of the morphology of and interactions between the 

aggregates. 



In this study two types of lattice theories will be used to study surfactant 

adsorption: the Scheurjens-Fleer theory28, applied to surfactant adsorption by 

Bohmer et al.26, and the Herzfeld model29 for polydisperse particles. The first 

one, which will be refered to with the abbrevation MFL (Mean Field Lattice), 

predicts the structure of an adsorbed layer or a surface aggregate with the 

help of a detailed molecular model. However, the price of this molecular 

detail is high, the MFL theory is not able to treat the interactions between the 

surface aggregates. On the other hand, the Herzfeld model can be used to 

study the influence of these interactions on the adsorption. But, now every 

molecular detail is lacking. 

1.6 Outline of this study 

This thesis contains three chapters on surfactant adsorption and one dealing 

with the structure of the water phase and its dielectric permittivity. All four 

chapters have in common that the described studies should lead to a better 

understanding of the behavior of adsorbed surfactant layers in porous media. 

In the second chapter we present calculations on the dielectric permittivity of 

water. The lattice model, which is used, has proven to be adequate for the 

description of bulk water30. The study on the dielectrics of bulk water was 

planned to be a first step towards a better description of water in charged 

pores and adsorption of ionic surfactants from aqueous media. However, 

unexpected results for inhomogeneous systems induced us not to pursue 

further investigations with this model. 

The third and fourth chapter deal with the influence of confinement on 

nonionic surfactant adsorption at a hydrophilic surface. An analytical and a 

MFL theory have been used to investigate the relation between the curvature 

and the stability of the adsorbed layer in a cylindrical pore. 

The theories, used in the third and fourth chapter, contain a mean-field 

approximation. Homogeneity parallel to the solid surface is assumed. Density 

gradients are only allowed in the direction perpendicular to the surface. 

However, surfactants often adsorb in discrete aggregates. This means that the 

adsorbed layer is not homogeneous. Therefore, in chapter five the Herzfeld 

model is applied to the case of surfactant adsorption. This model takes the 

discrete nature of the adsorption layer into account. 
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Chapter 2 

Lattice approach to the dielectric 
permittivity of water 

Abstract A lattice theory, based on a quasi-chemical approach, has been 
combined with a semi-macroscopical theory to calculate the permittivity of 
water. At low field strength the magnitude and the temperature dependency of 
the calculated permittivity agree with experimental data. The high-field 
dielectric behavior of water has also been studied. If the field strength increases 
the permittivity goes through a maximum, which has not been found 
experimentally. This maximum is caused by the fact that orientation of dipoles in 
the field is strongly cooperative due to hydrogen-bonding. 

2.1 Introduction 

The dielectric constant of polar liquids is a classical subject in physical 

chemistry. This is not surprising because this property is very sensitive to the 

structure of a liquid1. The quality of many theories, including those dealing 

with electric double layer structure2 and solvation forces3, depends on the 

description of the polarization. In an electric double layer the electric field is 

inhomogeneous and near the charged wall its strength may increase as high 

as values of 108-109 Vnr1. In such a high field the dielectric behavior may no 

longer be linear. Therefore, the quality of a description of a double layer 

depends on the level of the treatment of the dielectric behavior in high and 

low fields. 

One of the first attempts to calculate the permittivity of a polar liquid has 

been made by Onsager4. Due to his neglecting of dipole-dipole interactions 

the calculated values turned out to be too low. A more refined treatment of 

the local order, by Kirkwood5 and later by Frohlich6, resulted in theories 

which could satisfactorily predict the permittivity of water in the absence of 

an applied field. All these theories consider water as consisting of spherical 

molecules with ideal dipoles, treating the surrounding medium as a 

continuum with a certain dielectric constant. Phenomena like electrostriction 

and saturation are beyond the scope of these semi-macroscopic theories. 

However, extending these theories a few semi-macroscopic theories to 

11 



calculate dielectric saturation have been developed7 by Booth89, 

Buckingham10 and Schellman11. 

Over the last two decades much progress in the calculation of dielectric 

constants of multipole liquids has been made using integral theories12. Some 

attempts have been made to perform calculations on electrostriction and 

dielectric saturation phenomena13"15. 

Although the progress made with integral theories in the domain of 

permittivity calculations and the structure of the electric double layer seems 

to leave little room for further use of semi-macroscopic theories, there is at 

least one reason to reconsider the latter type of approaches. Lattice theories 

are namely much easier to use for complex fluids like water and for the 

properties of such liquids adjacent to surfaces. A prerequisite is of course that 

the local order can be satisfactorily described. In fact, the combination of 

lattice calculations and a semi-macroscopic approach could also give 

additional insight into the structure of liquids near charged interfaces and 

into the phenomena of electrosorption. 

In the present study a First Order Self-Consistent Field theory (FOSCF), 

developed by Besseling and Scheutjens16, is combined with the reaction field 

approach of Onsager4. The FOSCF theory has been developed to study 

systems of molecules with orientation-dependent interactions. For water the 

model has shown to work very satisfactorily in explaining hydrogen bonding 

ratios, the density maximum, the surface tension and several other 

properties17 . In the present paper dielectric properties of bulk water are 

calculated for low and high static fields. The local order is treated in the quasi-

chemical approximation, non-local interactions are treated with an Onsager 

reaction-field18. This separate treatment of short-range and long-range 

interactions seems a bit artificial, but for water, where strong hydrogen bonds 

dominate all other interactions, it seems to be a fruitful approach19. Whether 

or not the separate treatment of short-range and long-range interactions, as 

done in our theory, is realistic in all situations, will be studied in section 2.8. 

With the use of a propagator formalism, originally developed for polymer 

adsorption20 '21 and later applied to surfactant systems22, a number of 

phenomena can be addressed, for instance electrosorption. However, in the 

present paper we shall restrict ourselves to the dielectric permittivity in high 

and low fields and its temperature dependence. 
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2.2 The water model 

In the Besseling-Scheutjens model, adopted in this study, the liquid molecules 

are placed on a body-centred cubic(bcc)-lattice. In this model a molecule has 

eight nearest neighbors. In figure 1 a diagram of the water molecule has been 

drawn. In two directions the molecule has proton-donor faces (D), in two 

others proton-acceptor faces (A) and all other faces are indifferent (I). A and D 

faces have a tetrahedral arrangement. A vacancy is considered as an isotropic 

molecule of the same size with identical faces in each direction (V). In table 1 

contact energies fuap} of different combinations of faces are listed. These 

values are identical to those used in earlier studies with the FOSCF-theory; 

they have been obtained by fitting the experimental pressure and density of 

water in coexistence with vapor at 273.16 K17 

To the water molecule an ideal dipole has been assigned of moment 1.84 D23. 

The water molecule has an isotropic polarizability of 1.6510"40 Cm2V_124. 

Figure 1 The water model. Arrows to the corners correspond with the direc­
tions of the nearest neighbor contacts in the b.c.c. lattice. A is an acceptor face, D 
is a donor face and I is an indifferent face. The bold vector marked with (l shows 
the direction of the permanent dipole moment. 
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contact type 

D-A 

D-D 

D-I 

A-A 

A-I 

I-I 

contact energy (K) 

-2414.23 

210.2 

210.2 

210.2 

210.2 

210.2 

Table 1 A listing of the different types of water-water interactions. 
Interactions with vacancy faces have not been listed because they are obviously 
equal to zero. 

2.3 The lattice 

As already mentioned, a bcc lattice has been used. It consists of two 

intertwined diamond lattices. The dimensions of the unit cells are chosen in 

such a way that the distance between two nearest neighbors is 0.276 run. This 

value is equal to the O-O distance in ice at 273 K, measured with X-ray 

diffraction25. 

The lattice is divided in layers perpendicular to the electric field and chosen in 

such a way that the dipole of water can have three orientations: parallel, 

perpendicular or anti-parallel to the field. Within each lattice layer a molecule 

has no nearest neighbors, but both adjacent layers contain four nearest 

neighbors. Therefore, in this configuration a molecule has only two directions 

to form contacts, forward and backward, as counted in the direction of the 

electric field. 

Only one layer, bound by two identical layers, has to be considered because in 

this paper we are only interested in the response of a liquid to a homogeneous 

electric field. The layer has a volume V and contains L lattice sites. 

2.4 Configuration statistics in the quasi-chemical approximation 

For a detailed description of the FOSCF model the literature must be 

consulted16 In this section only a short flight over the theory will be made. 

In the FOSCF model the quasi-chemical approximation is used. In this 

approximation pairs of molecules can have different probabilities. In the 

FOSCF extension of this approximation, probabilities are assigned, not to 

pairs of molecules, but to pairs of contact faces. The probability of finding a 

contact between certain faces is independent of the other contacts which can 
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be formed. As mentioned earlier, water is treated as a molecule with eight 

contact faces. 

The grand partition function is maximized with respect to the distribution of 

the molecules (n^) and the contacts |n a„}, n ^ is the number of molecules A 

with a certain orientation o and nao is the number of contacts in direction d 

between the faces a and p. We note that the set {n^ ( also includes vacancies. 

Therefore, each sum over A also contains these vacancies. 

For the degeneracy Q of a system the following formula was derived: 

l n a ( {nU l< p } ) = - I ^ p l n g ^ - 5 > ° m < ^ ( 1 ) 

oc,p,d A,o 

where $% is defined as n ^ /L , the volume fraction of molecules A with an 

orientation o. The quantity gagis the correlation fu 

in a direction d. This function is defined as follows. 

orientation o. The quantity gagis the correlation function of the faces a and P 

gd -Jk.. ( 2) 
&ap Ad.-d w 

In (2) ((̂ n = n^o /L , ^ = n„ / L and <j>o = n^ / L , where n a is the number of 

faces a in direction d. 

In equation (1) the second term on the right hand side corresponds with ideal 

mixing. After multiplication with k this leads to the mixing entropy of a 

system. With the first term local order, due to the contact interactions, is taken 

into account. 

The potential energy is given by 

U(!n^},{n^p}) = I X n ^ c f l + X " > A 0 ) 
Z a,(3,d A, o 

Where v% is the energy of the ideal dipole of a molecule A with orientation o 

in an electric field E. Given the choice of the lattice layers with respect to E, 

there are three of such orientations. The exchange energy of an aP-contact, 

a)ap, is related to the contact energy uap through: 

Uap = u a p - ( u a a + u p p ) / 2 (4) 
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In earlier studies with the FOSCF model the potential energy of the system 

was independent of the distribution | n A } . However, because now the 

interaction of a molecule with an electric field is studied this energy becomes 

dependent on the number of molecules and their orientations. This is covered 

by the last term on the right-hand side of (3). In the following section an 

expression for \>A will be derived. 

Since the degeneracy (1) and the potential energy (3) are now known, the 

partition function can be written. If the liquid is in open contact with a 

homogeneous bulk the grand canonical partition function has to be used. 

2({/A},L,T)= XQ«n A lL ,T)exp £ ^ A ^ 

fnA) U 
(5) 

Where L is the number of lattice sites, T he temperature, nA the number of 

molecules of type A in the system and / A is the partial Helmholtz energy. The 

set {nA} must satisfy the condition of a complete filling of the lattice, 

^ n A = L. For the canonical partition function, Q, we have 

Q({nA),L,T)= X a({nA},fn£p))exp 
U«"AMn2p}) 

kT 
(6) 

To find the distributions I n A \ and j n - | for which (5) and (6) are at their 

maximum, the Lagrangian multiplier method has been used. To that end the 

following unconstrained function has been chosen. 

+ 1 4 
a,d 

x*Vn« 
P J 

SnA"L 

VA 

kT 
, n „ o , , „ d , , i„rvr„Q) r„d n _ ̂ "A^"^}) v n A / A mnA)'inaQl) = lnQ({nA},(nap})- rpz + L 

K 1 A 

+ X 

(7) 

With the last two terms on the right-hand side of (7) all auxiliary conditions 

are considered. The Lagrangian multipliers \Xa) and X can be obtained by 

solving the following set of equations 

3L 

3n -M: 
«p 

ap - 1 + Xn +Xn —— 
a P kT 

(8) 
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for all a, P , d and 

3L 

dn A a d / k l k l 
(9) 

for all A and o. Here, q is the total number of nearest neighbors of a molecule, 

which equals the co-ordination number of the lattice. The parameter q ^ is 

the number of faces a in direction d of a molecule A with an orientation o. 

Now the following quantities are defined. 

C = exp(A.-l + q /2) (10) 

C A = e x p - ^ (11) 

G ^ ^ e x p ( l / 2 - 4 ) (12) 

A A " e X P k T ( 1 3 ) 

The distribution of the molecules over the different orientations can be calcu­

lated with help of 

<>A=AAGA (14) 

where GA is the statistical weight of a molecule A in orientation o. This factor 

is given by 

od 

G A = C C A n ( G ^ ) q A a (15) 
a,d 

In (15) it is shown that the weight factor has three contributions. First there is 

a contribution which is independent of the molecule type, accounted for by 

the quantity C, where -kTlnC can be regarded as the extra work needed to 

create space for a molecule in an inhomogeneous system with reference to a 

homogeneous bulk16. The other two contributions are related to the different 

types of interactions. 

Besides equation (13) another relation for AA can be also derived. 
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AA=Ar (16) 
IG& 

In this expression is 9 A = ^ <t>A. 

Equation (16) it possible to normalize the amount of a component by fixing 

9A- The system is then closed for molecules of type A. 

The volume fractions are found by solving the equations (8) and (9) for all a, 

P, d, A, o. This can be done with numerical methods. More details can be 

found in the appendix. 

2.5 Interaction with the electric field 

In the previous section no explicit expression of v% has been given. This 

parameter should contain the interaction of a molecule A with orientation o 

with the external electric field. This part of the interaction will now be 

described by a semi-macroscopic approach. 

Each molecule A in the system has an ideal dipole with a permanent moment 

HA a n d isotropic polarizability OCA- These quantities are here considered as 

scalars. The ideal dipole is assigned to a sphere with a radius a and a 

permittivity of 1. The sphere is surrounded by a continuum with a dielectric 

constant e. This radius of the sphere is determined by the overall density of 

the liquid. 

a 3=-A- (17) 
4?tp 

In this expression is p = ^^A . <|> A / v / where v is the volume of a lattice site. 

This expression for a has been used by Onsager4. 

If a homogeneous electric field is present in a liquid then the molecules will 

tend to orient themselves in the direction of the field. The field interacting 

with the dipole of a molecule differs form the Maxwell-field because the 

dipole will polarize its surroundings. The part of the field which is 

responsible for orienting a molecule (E^). is given by 

( E d ) A = i i fep (i8) 

3e0 
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where g = 3e/(2e + l) and / = ( e - l ) / (2e + l). Although the electric field is a 

vectorial quantity, for the present purpose it suffices to represent it as a scalar. 

Choices with respect to the orientation of the lattice in the field (in section 2.3) 

and the ensuing reduction of the number of dipole orientations make it 

possible to express all quantities as scalars, that will result in equations which 

are rather simple to understand. 

The other part of the field is generated by the permanent moment of the 

dipole, which polarizes its surrounding. This part is called the reaction field18 

RA-

2 / _ P _ 

* A = ^ ° A (19) 

3e0 

Here |J.A = uAcos9 0 , with 8C the angle between the directions of the dipole 

moment and the field. It is easy to see that | i A equals |J.A, 0 o r "MA in the 

parallel, perpendicular or anti-parallel situation, respectively. The induced 

part of the dipole moment is caused by polarization of the central molecule by 

the mean total internal field, (Ei)A
18, which equals 

2/-P_ 5>AHA 

(E i ) A =(E d ) A +(R A ) = (E d )A+ ^ 2= (20) 
v DA y d>A \ A / v d;A 2 OAP £4,0 

3eo O 

With the help of the different components of the internal electric field an 

expression for \ )A can be derived. This parameter is the electrical energy of a 

molecule A in an external electric field and can be expressed as follows18. 

< = - M A - ( E d ) A - M A - R A / 2 - a A ( E i ) A / 2 (21) 

Only the first of the three terms on the right-hand side of (21) is really 

orientation dependent, as follows from (19) and (20). The other two terms 

contain a factor of 1/2 caused by certain en tropic contributions due to 

changes in the surroundings and in the charge distribution of a molecule18. 
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2.6 The dielectric constant 

If a dielectric medium is placed in an electric field the following expression 

can be given 

D = e0E + P (22) 

where D is the dielectric displacement, E is the Maxwell field and P the 

polarization26. By using the relation D=eoeE the polarization can be related to 

the relative dielectric constant. 

P = eo(e-l)E (23) 

In order to give a microscopic picture of e, the relation between P and the 

various volume fractions of the liquid constituents are needed. P is given by18 

P = I > A ( l u ) + I>APA(Ei)A (24) 

where PA is the density of a molecule A and ( | !A) m e m ean value of the 

permanent moment in the direction of the electric field. Within the formalism 

of the FOSCF model the dielectric constant can be expressed as: 

£ = 1 + y i M + y a A * ° A ( E i ) A 

A " O V £ 0 E KI0
 V£0E 

The right-hand side of (25) consists of three terms. The first term is the relative 

dielectric constant of vacuum. The second term is the permanent part and the 

third is the induced part of e. It is easy to see that for E —» °° the permanent 

part goes to zero. If the density increases the dielectric constant has to 

increase. 

2.7 Temperature dependence of the dielectric constant 

The permittivity has been calculated as a function of the temperature, at a 

fixed pressure (~105 Nm~2) and in a small electric field (105 Vm -1). By 

applying such a small field strength we can "measure" the dielectric constant 

without perturbing the liquid structure to much. 
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In figure 2 the predicted permittivity has been plotted and compared with 

experimental data27 and results of MD simulations for a variety of water 

models28"31. 

The absolute value of the predicted permittivity is of the right order and at 

low temperatures (-273 K) also close to the experimental one. Most of the 

water models, used in MD calculations, are unable to predict the permittivity 

satisfactorily. Only the flexible SPC model28 and the SPC/E model30,31 come 

close to the experimental data. The advantage of the FOSCF calculations is 

that they have been made without tuning the interaction parameters on the 

dielectric behavior, see section 2.2. Therefore, the present results confirm the 

earlier experiences17 that the theory treats bulk liquid water in a correct 

manner. 

At high temperatures the dielectric constant is somewhat overestimated by 

the theory (-10% at 353 K). This is not very amazing. The calculations have 

been performed at a fixed pressure. Besseling and Lyklema17 have already 

shown that at elevated temperatures the FOSCF theory overestimates the 

density. The permittivity increases with an increasing density, which follows 

from equation (25). 

i r 
260 280 300 320 340 

T(K) 
360 380 

Figure 2 The temperature dependence of the permittivity at fixed pressure 
(~1 Atm.) and a low field strength (1(P Vm"1). Experimental results ( ), 
FOSCF calculations ( ) and MD simulations with flexible SPC28 (•), MCY29 

0 '), TIP4P42 (•), SPC/E30 ( i), SPC31 (A) and SPC/E31( \ ) . 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Figure 3 The density (volume fraction) dependence of the permittivity at 
two fixed temperatures (300 K and 370 K). 

In figure 3 the dependence of the theoretical permittivity on the density has 

been plotted. It is clear from this figure that the permittivity is very sensitive 

to the density and the overestimation of the permittivity can be attributed to 

overestimation of the density. 

From the dielectric constant we can extract some structural information by 

calculating the dipolar correlation parameter, gK, with the help of the 

Kirkwood-Frohlich equation6. 

( e -n 2 ) (2 £ + n
2) _ ^ 2 

E(n2
+2f 9£0kT gK (26) 

Here n is the refractive index, which can be calculated with the Clausius-

Mossoti equation18. 

n 2 - l 

n 2 + 2 
pa 
3eo" 

(27) 

The correlation factor, gK, gives information about the co-ordination of a 

central dipole by neighboring dipoles and the relative orientations of these 
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dipoles with respect the central dipole. An approximate geometrical formula 

is given by the following equation32. 

g K = l + z(cos6ij) (28) 

In this expression Z is the average co-ordination number of a dipole i and 

(cos0;;) the average of all orientations of the neighboring dipoles j . 

In figure 4 the predicted correlation factor has been plotted and again 

compared with the experimental results33 and MD predictions28"31 The 

predictions of the FOSCF theory come close to the experimental values. The 

temperature dependence is not as strong as found experimentally but the sign 

and the order of magnitude are right. The slight underestimation of the slope 

can again be attributed to the overestimation of the density at higher 

temperatures. Of all the water models used in MD simulations only the 

SPC/E30,31 model is able to predict the right temperature dependence. 

The predictions of the permittivity and the Kirkwood correlation factor make 

clear that in small electric fields electrical interactions and hydrogen bonds 

can be treated independent of each other. The results also indicate that the 
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260 280 300 320 
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340 360 380 

Figure 4 The temperature dependence of the Kirkwood correlation factor at 

fixed pressure (~1 Atm.) and a low field strength (1(P Vm"1). Experimental 
results ( ), FOSCF calculations ( ) and MD simulations with flexible 
SPC28 ( • ) , MCY29 (i >), TTP4P42 ( • ) , SPC/E3 0 (H), SPC31 (A) and SPC/E31(..\). 

23 



associative behavior of water, which is a consequence of the hydrogen bond 

network, strongly enhances the permittivity19. 

2.8 Dielectric saturation 

Increasing the field strength in a liquid will have two effects. All dipoles will 

orient in the field, but after all dipoles have oriented, the polarization no 

longer follows the field and the dielectric constant decreases (dielectric 

saturation). Dielectric saturation and electrostriction are not additive 

phenomena. Nevertheless, treating them separately has some value in 

understanding the underlying physical principles. In this study, we only pay 

attention to the saturation phenomenon. 

In this section the influence of the local structure of water on the saturation 

behavior is studied. This is done by fixing the density of water in the system. 

Calculations have been done at 300 K and a volume fraction of 0.555. In figure 

5 the permittivity is computed as a function of the field strength. The 

predicted saturation curve has an unexpected feature. Before the permittivity 

decreases it passes through a maximum. 

108 109 

E (V/m) 

Figure 5 The field strength dependence of the dielectric constant at a fixed 
temperature (300 K) and density (<|>=0.555). 
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For different liquids and liquid mixtures it is known that such a behavior is 

caused by strong co-operative orientation of the dipoles18. Although water is 

a strongly associated liquid a behavior as shown in figure 5 has so far not 

been reported. Scarce measurements, up to a field strength of 107 Vnr1 , 

indicate that the permittivity decreases monotoneously33. MD simulations, 

which go to 1010 Vnr1 , point in the same direction34'35. Other older semi-

macroscopic theories8'9,11 have also predicted the more accepted dielectric 

saturation behavior without a maximum. However this is not caused by a 

better description of water. In these simple theories the local tetrahedral 

structure around a water dipole is supposed not to change if a field is 

applied8. This results in an increase of the dipole moment. However the 

orientation of the dipoles is assumed not to be affected by its local 

surrounding. 

On the other hand recent MD simulations of water in an applied field indicate 

that in some situations water does exhibit idiosyncracies. For instance, super 

cooled liquid water seems to crystallize (cubic ice, Ic) due to the presence of a 

strong electric field36. Normal liquid water, confined between two charged 

planes, also restructures in a high electric field37-38. 

As in our theory low-field permittivity is predicted well, the probably 

unphysical saturation behavior of the model may be a consequence of a poor 

description of the intermolecular interactions in a highly oriented system. 

The structure of oriented water deviates from bulk water. Watts39 has 

theoretically studied the influence of the electric field on the dipolar and O-H 

correlation functions of BNS (Ben Nairn Stillinger) water. He calculated these 

functions in the absence and in the presence of a very high field (±1010 Vnr1) 

and found that the O-H correlation disappeared and the dipole correlation 

appeared when the field was applied. This implies that the number of 

hydrogen bonds per unit volume decreases when the field strength increases. 

This phenomena could be caused by a weakening of this bond because the 

tendency to orient in the field could force the acceptor-donor pair out of 

favorable linear configuration. It could also be caused by the existence of 

additional local intermoleculair forces due to alignment of the dipoles. 

There are two ways to tackle this problem. Either the model can be given 

more freedom in choosing its liquid structure or the interactions can be made 

field dependent. Within the framework of a lattice approach the former way is 

nearly impossible so we shall consider the latter. This means that we have to 

introduce a suitable field dependence of the hydrogen bond strength. We 

have one well known boundary condition, the zero field situation. To keep 

25 



the number of parameters as small as possible, only the hydrogen bond 

energy has been made field dependent. The following equation describes the 

chosen field strength dependence of the hydrogen (Acceptor-Donor) energy 

uAD=UADexp- |E/^ | (29) 

where U ^ D is the hydrogen bond energy in the absence of the electric field 

and ^ (Vnr1) is a decay parameter. 

In figure 6 again the field strength dependence of the dielectric constant has 

been plotted. The different curves corresponds to different values of \. The 

curve for £=0 represents the situation of no hydrogen bonding. In the linear 

region the permittivity drops to about 30, which is the Onsager value of the 

low-field permittivity4. The curve for ^=oo represents the situation of constant 

hydrogen bond energy. This curve is the same as that in figure 4. 

The parameter t, represents the field strength where the hydrogen bond 

network breaks down. If one would choose i;=107 Vnr1 , much lower than the 

saturation point (where all dipoles have been oriented), a transition takes 

place from a linear region of high permittivity to one of low permittivity, 

representing a transition from a hydrogen bonded dipole system to a system 

of independent dipoles. Alternatively, for £=1010 Vm-1, much higher than the 

saturation point, the calculated curve is nearly the same as in figure 5. This is 

logical. Up to the saturation point the hydrogen bond network plays a role in 

the field strength behavior. After this point all dipoles have oriented, the 

permanent moment has reached its maximum value, which is exactly the 

same for a hydrogen-bonded network of dipoles and an independent set of 

dipoles, equation (25). 

Using ^=4-108 Vm'1 results in a curve of which the initial saturation, up to 107 

Vnv1 , differs not much from the experimental results of Kolodziej33, the 

permittivity is reduced by less than about 0.25%. At higher values of £, the 

maximum appears. So it is concluded that the maximum is a feature that is 

not at variance with physical reality. However, detecting its presence or 

absence experimentally is not an easy problem. 

In figure 7 again saturation curves are shown, but now the influence of Z, on 

the maximum is shown in more detail. Although it is impossible to conclude 

from figure 5, 6 and 7 something about the real behavior of the hydrogen 

bond network, it is clear that the results are very sensitive to the way of 

modelling. 
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E (V/m) 

Figure 6 The field strength dependence of the dielectric constant at a fixed 
temperature (300 K) and density (<|>=0.555). The different curves correspond with 
different values of the decay parameter \, which controls the field strength 
dependence of the hydrogen bond energy (^=105,106, 107,108,109,1010 and °° 
Vm"1). 
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Figure 7 As figure 6, but for a narrow range of H, (1-108,2-108, ,1-109 Vm"1). 
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The point at which the maximum has been predicted coincides with the point 

where the dipole-field interaction becomes of order kT and of the same order 

as the local interactions (hydrogen bonds). This means that in this point the 

model is particulary sensitive to the way of modelling the interactions. 

Decoupling of the local interactions and the dipole-field interactions, the 

consequence of equation (3), fails around this point. It also means that the 

structure of water in a strong electric field is not simply the same as in the 

absence of a field. 

2.9 Conclusions 

With the help of the FOSCF theory the low field permittivity of water and its 

temperature dependence have been calculated. The results agree with experi­

mental data of the temperature dependence of the dielectric constant and the 

Kirkwood-correlation factor. The hydrogen bonds substantially contribute to 

the high dielectric constant of water and a decoupling of hydogen bonds and 

dipole-field interactions appears to be justified. 

The slight overestimation of the permittivity and the correlation factor at 

higher temperatures can be explained with the overestimation of the density 

at these temperatures. 

The predicted field strength dependence does not in all respects agree with 

experiments and MD simulations. Under certain conditions a maximum in the 

permittivity is predicted, which may or may not be real. This maximum could 

be a consequence of the use of field-independent parameters for the local 

interactions (H bonds) and the lattice, which fixes the liquid structure. 

By making the hydrogen bond energy field dependent it was possible to 

modify the saturation curve. The maximum is very sensitive to the value 

selected for this energy, which is rather logical because near this maximum 

the energy of a field-dipole interaction is close to the energy of a hydrogen 

bond. It is not yet possible to make definitive statements about the coupling of 

local and non-local interactions, although it is certain that, to agree with 

experiments the hydrogen bond structure has to break down. For this reason 

the properties of water at extremely high field strength deserve further 

theoretical and experimental study. 
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Appendix Numerical method 

The set of equations (8) and (9) can be solved with a Newton-type iteration 

method, developed by Powell40 and made more powerful by Scheutjens41. 

The iteration method needed for the FOSCF theory has already been 

described by Besseling and Scheutjens16. In this appendix only new features 

will be regarded. 

The calculations are performed with a two-step iteration method. The inner 

loop is the same as used by Besseling. If the equations (18)-(20) are 

considered, it is easy to see that for start values for the permittivity e, the 

density p and the mean orientation of the permanent dipole moment (M-A) a r e 

also needed. In the outer loop of the iteration these quantities will be iterated 

to their real values.The iteration variables are now defined as follows 

x£ = Ve (A.l) 

X<»A 
XU A = " 2 - ^ (A-2) 

With (A.l) and (A.2) values can be calculated for e and (\ij^), with these 

values the equations (18)-(20) become useful. After an iteration step these 

quantities are compared with the values calculated for these quantities from 

(14) and (24). This means that the following functions are iterated to zero. 

/ e - 1 

f^A 3 

_4 

V 
5»A 

^A2>A 

(A.3) 

(A.4) 
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Chapter 3 

The adsorption of nonionic surfactants 
in hydrophilic cylindrical pores I: 

a thermodynamic analysis 

Abstract The adsorption of a nonionic surfactant on a hydrophilic surface 
has been treated as a phase transition between a dilute, gas-like, (I) and a bilayer 
(II) phase. A Kelvin-like expression for the influence of the pore curvature on the 
adsorption behavior could be derived. According to this expression the shift in 
the chemical potential due to the curvature is proportional to the curvature 
energy of the bilayer. 
Using a molecular model, which contains a mean-field approximation, the 
curvature energy has been related to the affinity for the surface of the bilayer. 
The curvature energy at the point of phase transition increases with the affinity 
of the surfactants for the surface. As a consequence, the effect of curvature on the 
phase transition increases with affinity. The higher the affinity the more 
formation of a bilayer in the pore is promoted over the same at a flat surface . 
The chosen phase transition model will hold as long as the adsorption changes 
rapidly at a given concentration, which is at least the case for surfactants with 
short headgroups. 

3.1 Introduction 

The behavior of fluids in pores of mesoscopic size has been studied 

extensively from experimental1"6 and theoretical points7"10 of view. The 

partitioning of macromolecules between a bulk solution and a pore also has 

some history11"14. However the influence of pores on the adsorption of small 

molecules from solution, far away from a two-phase region, has never been 

studied systematically. This is not very surprising. Usually molecules, which 

are soluble, adsorb in layers with a thickness corresponding to their molecular 

size. The correlations of the molecules in such a layer extend over length 

scales of their own size. Therefore, the adsorption will only be influenced by a 

pore if its radius is of the same order as the thickness of the adsorbed layer or, 

for that matter, if the pore wall is curved on molecular length scales. In the 

case of relatively small molecules like surfactants it is very difficult to observe 

this phenomenon experimentally. In order to be able to couple changes in the 

adsorbed amount to the pore size, the standard deviation of the mean pore 
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size of a adsorbent has to be smaller than the difference in the mean pore size 

between different adsorbents, which is very difficult on that length scale. 

Nevertheless, a few studies are known, which deal with the adsorption of 

nonionic15,16 and cationic surfactants17 on porous silica and glass. Although 

these experiments do not allow quantitative conclusions to be drawn, at least 

two qualitative trends have been established. First, the adsorption plateau 

value decreases if the pore size decreases. Second, the step in the adsorption 

isotherm shifts to lower concentration, particulary so if the pores become very 

narrow. Recently, we have published calculations with a Mean Field Lattice 

(MFL) theory, which reproduce these phenomena18. In the present study we 

intend to explain these phenomena from a more rigorously theoretical point 

of view. The behavior of liquid-liquid, liquid-gas19"22 and membrane-like23"25 

surfaces have been studied extensively by theoreticians. They relate the 

curving behavior to properties of the flat surface. In the present study we will 

extend the ideas developed in that area and apply them to the case of 

adsorption of nonionic surfactants from solution on a porous hydrophilic 

solid surface. 

To simplify the problem we will treat the pore as an infinitely long cylinder 

with a curvature J=-l/R. In the MFL theory the adsorption is regarded as a 

phase transition from a dilute to a bilayer-like surface phase. The 

appropriateness of this approach depends on the type of surfactant used. 

3.2 The adsorption isotherm 

As we want to study the influence of the pore on the adsorption of nonionic 

surfactant, we will spend a few words on the adsorption behavior of this type 

of surfactant. 

Figure 1 is a schematic picture of an adsorption isotherm of a nonionic 

surfactant on a hydrophilic adsorbent. In this picture three regimes have been 

drawn. The first regime (I) corresponds to the situation of low surface 

coverage. Here, the driving force of adsorption is the interaction between the 

surface and the headgroup of the surfactant. Lateral interactions play a minor 

role. It seems reasonable to assume a flat conformation of the surfactant at the 

surface because this conformation reduces the number of unfavorable 

contacts between water and the hydrophobic tail segments. This mode of 

adsorption has been drawn in figure 2a. The last regime (II) is related to the 

situation of high surface coverage. 
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Figure 1 A schematical plot of the amount of a nonionic surfactant adsorbed 
at a hydrophilic surface against its chemical potential. The isotherm can be 
divided in three stages: (I) isolated molecules on the surface, (t) small aggregates 
on the surface, which grow with the chemical potential and (II) bilayer or 
micellar like structures, which cover the whole surface. 

Figure 2 Possible structure of the adsorbed layer in phase I (a) and II (b). In 
phase I, the molecules adsorb isolated on the surface and have a flat 
conformation. In phase II, the molecules adsorb in bilayer or micellar-like 
structures on the surface. 
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Micellar or bilayer-like structures have been formed on the surface, for 

instance as in figure 2b. Regime t is the transition region between I and II. For 

surfactants usually a steep increase in adsorption is observed over a short 

concentration interval. The shape of the aggregates is not well defined 

because large form fluctuations play an important role. If the concentration 

range of t becomes very narrow, the adsorption step can be regarded as a 

pseudo first order phase transition from a dilute phase I to a condensed phase 

II, as shown in figure 3. 

Until now, the exact structure of phase II was a subject of discussion, because 

methods used to elucidate this structure require much interpretation. 

However, it is clear that the aggregates on the surface are micelle- or bilayer-

like structures. Experiments have shown that the step in the adsorption 

isotherm becomes steeper if the length of the headgroup decreases26 '27. 

Neutron reflection28-29 and AFM studies30 appear to indicate that the bilayer-

like associates in the adsorbed layer become larger if the headgroup is 

smaller. For example the adsorption isotherm of a Q2E5 surfactant shows a 

very steep step31. From all these observations we conclude that the adsorption 

step approaches to a first order phase transition if the headgroup becomes 

smaller. This is the case that will be considered in this paper. 

Figure 3 As in figure 1, but now stage t has disappeared. 
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3.3 Thermodynamics 

3.3.1 Gibbs'law 

If one studies adsorption from solution on a flat surface, the interfacial tension 

y and the surface pressure n are the important properties. They contain 

information about the state of the surface and n can be determined by 

experiments. 

n = y*-y (1) 

Here, y and y* are the surface tensions of the surface with and without an 

adsorbed layer. The quantities y and n can be related to the excess amounts of 

the different components with Gibbs' law, 

v 
Ady = - Adit = -S adT - £ N? dn4 (2) 

i=l 

where uj is the chemical potential of component i, A is the surface area, T the 

temperature and Sa the excess entropy. 

Equation (2) is not sufficient to describe the state of a cylindrical pore. The 

state of the pore is not only determined by the surface tension but also by the 

pressure difference Ap with the bulk, 

Ap = p a - p P (3) 

where p a and pP are the pressure in the centre of the pore and in the bulk, 

respectively. If the bulk phase is in equilibrium with the pore phase, a 

pressure difference can have different origines. First, there may be an 

interface between the bulk and pore phase, which is curved, leading to a 

laplace pressure. Alternatively, a concentration difference between the bulk 

and the center of the pore may exist, because the decay length of the excess 

density profile is of the order of the pore radius, which gives rise to an 

osmotic pressure, which is commonly called the Donnan osmotic pressure. 

This is what happens in charged pores as the Debye screening length is of the 

same order of magnitude as the pore radius or less than that. In our case we 

have no interface and a pressure difference will be of the last type. 
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In a cylindrical pore, the object of this study, the influence of the curving on 

the adsorbed layer must also be made explicit. First, we have to define the 

system. It consists of a cylindrical pore in a solid, at equilibrium with a bulk 

solution with a constant composition. The length of the pore is so large, that 

end-effects can be neglected. The volume of the system, V, is the sum of the 

pore volume and the volume of the bulk solution. The solid is inert and not 

considered. 

To come to an expression, equivalent to (2), we describe the state of our 

system at given V, T and |i.'s. The characteristic function of the system is 

therefore the grand potential Q. A reversible change of the state of the system 

can be described as: 

dQ = -SdT - ppdV + xdA - £ N ^ ; + KdJ (4) 
i=l 

where S is the total entropy, Nj the total number of molecules of component i 

and J the mean curvature of the surface, which is negative for a concave (pore) 

and positive for a convex surface. The intensive properties % and K are related 

to yand Ap and phenomenologically defined through: 

'-ft?) (5) 

V °! Jv,A,T>'s 

The surface area A is an extensive, variable and its variation at constant J, 

called for in (5), implies increasing the length of the pore at fixed radius. The 

curvature J is an intensive property. Integration of (4) results in: 

Q = -pPv + xA (7) 

The system can be divided in a liquid phase (5 (the bulk), with pP and VP, a 

liquid phase a (the pore), with p01 and Va, and a surface region, with y and A, 

to which all interfacial excesses are assigned. Therefore, the grand potential of 

the total system can also be written as, 

n = -p l fy-ApV a+YA (8) 
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With equation (8) we are able to identify x and K in terms of y and Ap. In 

equation (4),(7) and (8) Va , A and J are related through, 

7tL 
V = — 

A = -

A 

2TEL 

J 

(9) 

(10) 

we obtain, using (7)-(9), 

Ap 

^ 2J 
(11) 

and, using (6) and (8)-(10), 

_K 

A 
dy 

3J. V,A,T,n's 2J 

f3Ap 

3 J . 

AP = c
 AP 

V,A,T,M.'S 2J 2J 
(12) 

Where C is the curvature Helmholtz energy of the surface layer. Henceforth 

we shall call C the curvature constant. With the help of (11) and (12) we can 

rewrite (4) to obtain, 

dO = - S dT -p p dV+ y + ̂  d A - ^ N j d ^ + A 
V 2J J i=l 2J2 

dj (13) 

It is noted that (4) and (13) describe the state of the liquid part of the system, 

including the interfacial excesses but excluding the solid phase. Due to the 

inert character of this solid phase, the curvature is externally imposed; it is not 

an equilibrium property. As the pore forces the liquid into a certain geometry, 

Q is not a minimum as a function of A, J and V a , 5Q *• 0. Therefore there is no 

unique relation between the Ap, y and C, like 

Ap = -yJ + CJJ (14) 

which would have been obtained from (13) by differentiating with respect to 

J, keeping the length of the cylinder constant and using the equilibrium 

criterion that 8Q=0. As a consequence, there is not necessarily a pressure 

difference between the pore and the bulk, even as the surface tension is non-
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zero. This means that the Laplace equation, (14), may not be applied to this 

case. 
In (7) and (8) the -pPV suffices to describe the state of the system if the pore is 

absent. Therefore the excess grand potential is defined as follows, 

D.a = Q + pPV = -ApV a + yA (15) 

and its differential is given by, 

dQ° =-SdT + Vdpp + [ Y + ̂  JdA - ^Nid^i + A 
V 2J2 

dj (16) 

If we define the following excess quantities, 

s"-s-s>(£ 
(17) 

(18) 

and recognize that we can write down the following Gibbs-Duhem equation 

for the solution with which the pore is at equilibrium, 

Vdp13 

' - ' * ) 
SpdT + XNfdUi 

i=l 

= 0 (19) 

equation (16) can be rewritten in terms of excess quantities: 

d Q a = - S a d T + 'y + l^dA-XNfd^+A ' ^ 

i=l 
c- 2J2j 

dj (20) 

With (19), equation (20) can be rewritten as 

dQ a = - S a « d T + (Y + f- )dA - ^Nf ( 1 )dUi + A 
i=2 

c 
Ap 

2J2 
dj (21) 

where Sa^ ' and N t ^ ' are the relative excess entropy and amount of 

component i, respectively. These quantities are defined as: 
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sa(l) = g o SP 

Nf 

N^^Nf-PLNf I 
Pf 

(22) 

(23) 

Here, p^ and p![ are the bulk densities of component i and 1, the solvent, 

respectively. Note that we have eliminated the chemical potential of the 

solvent. For dilute solutions this is the usual procedure to obtain surface 

excesses in the Gibbs convention. 

We can obtain a relation for the curvature constant C by cross-differentiating 

between the dA and dj terms of equation (21): 

C = 
3jJ A,T,Hi's 

1 
+ — 

2J 
(24) 

A,T,Hi's 

The curvature dependence of the excess amount adsorbed in the pore is 

another important quantity. It also follows from (21) by cross-differentiation: 

3N o(l) 

3J 
Hi 's^T 

2J dm, jij's(j*i),A,J,T 

dC 
(25) 

Hi 's(j*i),AJ,T 

Differentiation of (15) and equating the result with (21) results in Gibbs'law 

for a cylindrical pore. 

dy +—dAp = -S°WdT - X N"(1 W i + ACdJ 
2J / 

(26) 
i=2 

If (26) is compared with its equivalent for a flat surface (2), the two differences 

are the addition of the ACdJ term, which accounts for the curvature 

Helmholtz energy of the adsorbed layer, and the dAp term, caused by the 

pressure difference between the interior of the cylinder and the bulk of the 

solution. For flat surfaces these two terms are absent. As the solution of our 

interest contains only two components, water (w) and a nonionic surfactant 

(s), and is rather dilute (x s « xw) , we will henceforth drop the subscript i and 

make use of absolute excess amounts in the next section, Nj ' = Nf and 

g<J(l) _. go yy a t e r takes the role of component 1. 
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3.3.2 Phase transitions and curvature 

In adsorbates on a pore8 '32 and also at a flat surface33 phase transitions can 

occur. The curvature influences the bulk condition (n's) where these phase 

transitions take place. Two stable phases will coexist if the excess grand 

potentials equal each other. 

Q ' ^ ^ and YI + V: n + V l 
' 2J ' 2J K ' 

In our case, the phases I and II correspond with a surface of low coverage 

(isolated surfactant molecules) and high coverage (bilayer-like structure), 

respectively, see section 3.2. 

To establish the coexistence conditions we consider the coupling between 

infinitesimal changes in (\i, T, J) have to be brought about in such a way that I 

and II remain at its equilibrium. From (26) it follows, 

(S<U_so,II)dT + (Na,I_Na,IIjd^ 

(28) 
- A(C! - Cn)dJ + AjAp1 - Apn)dJ = 0 

Where u is the chemical potential of the surfactant. This equation shows how 

changes in T, \i and J have to be related to maintain equilibrium. In the centre 

of the pore the two coexisting phases are not separated by an interface. 

Therefore, in equilibrium Ap - Ap vanishes. 

Then from (28), a Clapeyron-like expression for the curvature influence on the 

chemical potential, where the phase transition occurs, can be obtained, 

3u. fci_cii\ 
(29) 

, H-r11, 
V 1 l J 

where r ^ N ^ t y A and r I I=N a ' I I /A. In principle it is possible to calculate the 

chemical potential of the phase transition, \i , at given J as the dependencies 

on \i and J of C and T are known. To obtain an idea about what could happen, 

we expand y in Taylor series with respect to Au16 =\i- | i r e and J, 
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Sr^ 
n,m>0 n!m! 

I ^-1an mJm(An r e f)n 

^„n!m! \ / 

\ref 

Jm(Anref)n 

(30) 

n,m>0 

.ref • where |a. is a reference chemical potential. With (30) the following 

expressions for C and r can be obtained. 

^ ( n - l ) !m! a n m 

n>l,m>0 

Jm(A^ref) 
n - 1 

c ^ £„s^»r>-r 
n>0,m>l 

(m-1)! 

(31) 

(32) 

With these equations (29) can in principle be solved. To obtain some feeling 

about the physics we now consider the leading (linear) terms, 

r = - a 1 0 - a n J 
C = ctoi + auAji ref 

(33) 

(34) 

where aio=-ro, the surface concentration at a flat surface, and aoi=Cref, the 

curvature constant at \iie . Using (33) and (34), equation (29) can be rewritten 

to 

3n_AC r e f +Aa n An r e f 

5J Ar0 - AauJ 
(35) 

where AX=XII-XI. If we solve (35) and take \i = \iQ, the chemical potential at 

the phase transition of the flat surface, the shift in the chemical potential at the 

phase transition, caused by the curvature, is calculated as, 

Au# = 
ACJ 

A r 0 - A a n J 
(36) 

where A(A = JLIJ - u0 . Equation (36) is a Kelvin type of equation. Knowledge 

about the relation between AC and all molecular properties will be very 

interesting. The next step is therefore to provide such a molecular 

interpretation. 
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Generally the integration should cover the entire adsorbate. If we assume 

cylindrical geometry and homogeneity parallel to the surface, we can rewrite 

(42), 

R 

Nf =27tLjpf(r)rdr (43) 

where the integral is independent of the choice of the lower boundary because 

the excess density vanishes in the center of the pore; we assume Ap=0. By 

introducing a new coordinate, x=R-r, the distance from the surface, and using 

(10), the adsorbed amount, H, can be expressed in terms of the density profile: 

R 

ri = jpf(x)(l + xj)dx (44) 

An explicit expression for the curvature dependence of the adsorbed amount 

is obtained by writing the following curvature expansion, 

r i = B i / 0 + B u J + B i / 2J 2+o(j 3 ) (45) 

where Bj;o equals I^o, the amount adsorbed on the flat surface. In section 3.3.2 

already an expansion of T has been given. Here, we only look at the curvature 

dependence. Combination of (40), (44) and (45) gives the following 

expressions for T^o and Bj,i in terms of the density profile of the flat surface. 

ri/0 = Ko(x)dx (46) 

dx (47) BU=(ffj =Ko(x)xdx + f 
'aP?(x)A 

aj >0 

In the case that the density profile of a surface layer is not very sensitive to its 

curvature, it follows from (46) and (47) that the adsorbed amount varies 

linearly with J: 

r^ r - J i+^V) (48) 
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The quantity 8- gives useful information. First, if an adsorbed layer of 

thickness H is more or less symmetrical then 8-p' equals H/2 . In fact, 8>p' is 

the centre of mass of the layer of i. Deviation of 8- from H / 2 indicates 

asymmetry of the profile. In the case of a bilayer of surfactants on the surface, 

which is more or less symmetrical, 8- ' is of the order of H/2. As the surface 

distorts the symmetry of the layer and this distortion will increase with 

increasing affinity of the molecules for the surface, 8- ' will decrease with 

increasing affinity. In figure 4 four possible density profiles are shown, with 

their corresponding 8^p' values. 

Second, in the case of a binary mixture of solvent (w) and a nonionic 

surfactant (s), our interest, it is important to note that of ~o$i• > which 

follows from the simple notion that a water molecule cannot occupy the same 

site as a segment of a surfactant molecule. 

3.4.4 The excess grand potential 

The excess grand potential, another important quantity of interest, is found by 

integrating the excess grand potential density profile, coa(r). 

Q°=Ja>°(r)dr (49) 

For a cylindrical geometry, assuming a constant grand potential density 

parallel to the pore surface, equation (49) can be rewritten as, 

R 
Qa=27tLjco°(r)rdr (50) 

In the transformation of (48) into (49) the mean field approximation becomes 

again manifest. Using, as before, x=R-r and (6), y = Q a /A can be obtained 

from (50) 

R 

y = Jcoa(x)(l + xJ)dx (51) 

The integration in (51) has R as the upper boundary. However, the outcome 

does not depend on the choice of the boundary for pores that are sufficiently 

wide. 
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Figure 4 Different types of excess density profiles with their corresponding 

length scales 8(P's . At a distance larger than H the excess density becomes zero. 
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Till now the curvature dependence of the interfacial tension y has not been 

made explicit. We will follow a procedure which is equivalent to Helfrich's 

treatment of a curved membrane23 and Tolman's approach of a liquid-gas 

interface20. The surface tension can be expanded in powers of J, 

J = A0 + A1] + A2]
2+O(f) (52) 

It is obvious that Ao equals the interfacial tension of the flat surface, yo 

Tolman expanded the surface tension y and neglected all terms of order 2 and 

higher. Helfrich has neglected all terms of order 3 and higher by treating the 

bending of a membrane as being harmonic. He identified A2 as half the 

rigidity constant kc and Ai as -kcJo, where Jo is the spontaneous curvature of 

the surface. 

To interpret yo and Ai we have to combine (39), (51) and (52). 

y0 = Jcog(x)dx (53) 

^ toq(x)" 

aj 
Al = l f ) =J(°o(x)xdx+J dx (54) 

If the grand potential density profile coG(x) is independent of J, the last term 

on the right hand side of equation (54) and all terms of order 2 and higher in 

equation (52) can be neglected. Under that condition the surface tension of a 

curved adsorbed layer is fully determined by the profile of the corresponding 

flat layer and becomes linearly dependent on the curvature, 

Y = Yo+CJ = Yo(l + § H j ) (55) 

In our discussion of 8>p' we have remarked that this parameter is a measure 

of the symmetry of the adsorbed layer. The physical meaning of a^' is not as 

clear as that of 8> . However, we will see that with a suitable model of the 

adsorbed layer it is sometimes possible to make certain statements about ft®'. 

3.4.5 Curvature influence on the phase transition 

The main goal of this section is to offer a microscopic interpretation of 

equation (36), in order to describe the influence of the curvature on the phase 

transition of an adsorbed layer. As in section 3.3.2 we will restrict ourselves to 
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the case of a binary mixture of surfactant (s) and water (w). To interpret (36) 

additional assumptions have to be made. In section 3.2 it has already been 

discussed that in phase I, a low coverage phase, the surfactants adsorb flat at 

the surface. As a consequence, not much curvature influence is expected on 

the surface tension, C^O, and the adsorbed amount, ro8'p^ = 0. Therefore (36) 

becomes: 

Au* 
CnJ 

tffn^j)-^ 
(56) 

M-o 

At H-o the two surface phases coexist at the flat surface. In order to obtain 

insight into C11 at \IQ, we use (32) and consider only the leading linear terms, 

C n = a 0 1 + a n A u r e f (57) 

where, 

aoi = C r e f = Y ? 5 H n
 ref (58) 

|i 

and 

a ^ - r ^ P ) " (59) 

which implies that the adsorbed amount is assumed to be constant after the 

phase transition and the structure of the adsorbed layer is insensitive to the 

curvature. In the appendix we will investigate a quadratic Au-dependency of 

C11, which is more realistic but does not provide additional physical insight. 

The only remaining parameter to be determined is Cre^. An easy point to 

choose as reference is the chemical potential where stable bilayers are formed 

in solution, | ib i . Two important properties of such layers deserve attention. 

First, they are symmetrical. Therefore, the grand potential density profile has 

to be symmetric. Second, they have no surface tension38. Due to the symmetry 

of the grand potential density profile and the demand of a vanishing surface 

tension, [XOOQ (x)dx has to be zero. An adsorbed bilayer at nbi can be regarded 

as a perturbed free bilayer. The grand potential density profile can be written 

as follows, 
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e>o(x) = < f ( x ) + ¥ o (x ) (60) 

where (OQ' (X) is the profile of the free bilayer and V|/0(x) is the perturbation 

due to the surface. With the notions made above and (54) Cb i can be 

calculated: 

Cbi = JxVo(x)dx = Y^5W (61) 

In (60) S'^' is the distance to the solid surface weighted with yo- This 

parameter is a measure for the range of the influence of the surface in the 

adsorbed layer. The adsorbed layer is a bilayer of surfactants and only the 

head-on adsorbed layer is in direct contact with the surface. Therefore, we 

expect that only within this layer does \\>o deviate significantly from zero. As 

\|/0 changes from a non-zero value at x=0 to zero at x=H/2, 8 ^ has to be 

equal or smaller than H/4. In figure 5 three possible profiles are shown. 

Using Gibbs'law the following expression for C n at \IQ can be obtained, 

C n ( ^ ) = r0
nAnb i(5W-8(P) I I) + y (62) 

where y = 5^'yol # and A H ' ^ H Q - H . Equation (62) contains two 
M'O 

important features. First, if y is small, which will be assumed, the curvature 

constant of the adsorbed surfactant layer will be positive. In the case that 

surfactants have an affinity for the surface, the case of our interest, aggregates 

are formed on the surface before they are formed in the bulk solution. 

Therefore, A\i 1 will have a negative sign. The quantity 8 ' v ' - 8 'p ' also has a 

negative sign. As reasoned before, 8 ^ will be of the order H /2 and 8 ' v ' is 

expected to be smaller than H/4. Second, the value of the curvature constant 

increases with increasing adsorption energy. In (62) A|i is a measure of the 

adsorption Gibbs energy. If this energy increases, the phase transition, the 

step, shifts to lower chemical potential and therefore A(i 1 becomes more 

negative. 
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Figure 5 Different types of perturbation profiles, \|/n(x), with their 

corresponding length scales 5M's . The quantity V|»o varies from a finite value at 

x=0 to zero at the half of the bilayer, H /2 . 
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The curvature influence on the phase transition is found by combining (56) 

and (62). 

The two important features in the behavior of the curvature constant, 

discussed above, reappear in (63). First, as long as y has a small value, A|i 

will be negative for pores (J<0) and positive for rod-like particles (J>0). In a 

pore the phase transition occurs at lower chemical potential than on a flat 

surface, which has been found experimentally15. Second, if the adsorption 

Gibbs energy increases, the position of the phase transition, u#, becomes more 

sensitive to the curvature. 

The quantities 8^' and 8^p' nicely reflect the two competing effects, which 

determine the stability of the curved layer. The concave curved layer (pore) 

has lost stability due to the loss of regions which profit from the interaction of 

the layer with the surface (accounted for by the yo profile and reflected in 

tift'). On the other hand, the layer has gained stability due to the loss of 

regions which destabilize the layer (reflected in 8^p' ). Figure 6 shows what is 

happening with the volumes of the different parts of the layer if this layer is 

curved from flat to concave (pore). It is obvious that the volume of the 

destabilizing region at the solution side (A) decreases more than that of the 

stabilizing region at the surface side (B). As a consequence the layer has an 

increased stability 

The impact of the presented analysis depends on application range of the 

linear approach, reflected in the equations (39), (40), (48) and (55). Significant 

influence of the curvature is only expected when the pore radius becomes of 

the order of the length scales 8*-p' and 8 ^ , i.e. a few times the thickness of 

an adsorbed layer. In a second paper, the curvature dependency of the surface 

tension has been studied with MFL calculations39, which are not published at 

the moment. Anticipating the results of that study, we can state that the 

curvature constant at the point of phase transition can be predicted with an 

error of about 25%, which is high but enough to capture the qualitative 

physical features. The linear approximation becomes better with decreasing 

chemical potential of the surfactant. 
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Figure 6 A schematical representation of the effect of a pore on the stability 
of a layer. The region adjacent to the surface, light gray, loose less volume as the 
one at the solution side, dark gray. If the surface and outer region stabilize and 
destabilize the layer, respectively, the overall stability increases due to the 
concave curvature. 

3.5 Conclusions 

The adsorption isotherm of a nonionic surfactant on a hydrophilic surface 

shows a step at a certain chemical potential. At this step the adsorbed amount 

changes from a small to a large value. This step can be regarded as a phase 

transition from a thin monolayer to a thick bilayer. 

With classical thermodynamics it has been shown that the influence of the 

curvature on the phase transition in the adsorbed layer is related to the 

curvature constants of both phases at the chemical potential where the flat 

layer undergoes the phase transition, Quo)- We have derived a Kelvin-type 
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of equation which shows that the shift of the chemical potential of phase 

transition is proportional to C{\IQ I. 

By making a few assumptions we were able to relate Cmg I with the affinity 

of the surface for the bilayer phase. In the absence of any affinity this constant 

goes to zero and curvature does not influence the position of the phase 

transition. The curvature constant increases with the affinity and therefore the 

curvature influence on the phase transition also increases. An adsorbed 

bilayer is stable at lower chemical potential in a pore as on flat surface. Given 

a certain surface area, the destabilizing influence of the unstable regions (at 

the solution side) decreases more than the stabilizing influence of the stable 

regions (at the surface side). This could be the explanation for Gu's 

observations15. He indeed observed that the step in the isotherm shifts to 

lower surfactant concentration with decreasing pore radius. 

The most important assumption, which has been made, deals with the 

curvature dependency of the surface tension and the grand potential density 

profile. We have assumed a purely linear curvature dependency of the surface 

tension, which means that the grand potential density profile is assumed to be 

curvature insensitive. A first test of this assumption can be done with the help 

of MFL calculations, which will be published in part II39. 

Appendix 

In section 3.4.5 we assumed a constant adsorbed amount of the bilayer phase 

(II). In this approximation, C was found to be linearly dependent on the 

chemical potential. In this appendix we show that a higher-order treatment 

does not affect the conclusion. To that end, we now also take into account the 

quadratic term in (32). 

C = C b i +a 1 1 Au b i +-a 2 i (An b i ) (A.l) 

where, 

a^-tfaM" ( " ) 

and 

55 



«21 -^- r 0
ns (p) n (A3) 

H 

The curvature constant at ubi is given by the following equation, 

Cbi = sMyg1 = 8«Y o | # -L 0Au b i
 +Ia20(Anb i)2y^) (A.4) 

where 

«10 
.ILbi (A.5) 

and 

a20 
3t f 
3u 

(A.6) 

Combination of (A.l) and (A.4) results in the following expression for the 

curvature constant at HQ , 

:n(ng) = r»'bi(8(^-8(p))Aubi 

iarA 
2 an 

fl-(8W+8(p)) ( A u b i ) \ y 
(A.7) 

The difference between (62) and (A.7) is the quadratic term. In (A.7) 

y = S^Yo1. The first term on the right-hand side is the same as in the linear 

approach. The linear term dominates the behavior of (A.7) as long as the 

change in the adsorbed amount at the interval A\Lb* is much smaller than the 

adsorbed amount at ubi. This will generally be the case for surfactant systems 

and therefore the linear approximation is generally valid. The curvature 

constant will have a positive value and its value increases with increasing 

affinity of the headgroup for the surface. 
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List of symbols 

A area of the pore surface 

C curvature constant (curvature Helmholtz energy) 

C1 curvature constant of phase I 

C r e f curvature constant at \iiei 

Cb i curvature constant at |i.bl 

AC difference in curvature constant between phase II and I 

f° excess Helmholtz energy density 

H thickness of a bilayer 

J mean curvature of the pore surface 

L length of the pore 

Ni amount of component i 

N[ amount in the bulk 

Nf excess amount 

Nj ' excess amount, relative to the solvent 

p pressure 

p a pressure in the pore 

pP pressure in the bulk 

Ap pressure difference between the bulk and the pore 

R radius of the pore 

S entropy 

SP entropy of the bulk 

S° excess entropy 

S0'1 excess entropy of phase I 

S°^ ' excess entropy, relative to the solvent 

T temperature 

V volume 

V a volume of the pore 

VP volume of the bulk solution 

Y surface tension 

7* surface tension of a surface in contact with pure solvent 

YO surface tension of a flat surface 

Y surface tension of phase I 

\|/ surface contribution to the stress profile 

Tj adsorbed amount of component i 

r 0 adsorbed amount at the flat surface 

Ar difference in adsorbed amount between phase II and I 

5W q-weighted averaged distance to the surface 
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?yw> co-weighted averaged distance to the surface 

8-p ' p f -weighted averaged distance to the surface 

|Xj chemical potential of component i 

(J. chemical potential at phase t ransition 

H-0 chemical potential at phase t ransition on a flat surface 

JJ-J chemical potential at phase transition on surface with 

curvature J 

u r e chemical potential at a certain reference 

ubi chemical potential at the point where stable bilayers are 

formed in solution 

v total number of components 

n surface pressure 

p density 

p° excess density 

Po excess density in a flat layer 

p[ bulk density of component i 

co g rand potential density 

coa excess g rand potential density 

COQ excess g rand potential densi ty in a flat adsorbed layer 

C0Q ' excess g rand potential densi ty in a non-adsorbed flat layer 

Q g rand potential 

OP excess g rand potential 

Q C T ' excess g rand potential of phase I 
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Chapter 4 

The adsorption of nonionic surfactants 
in hydrophilic cylindrical pores II; 

mean field lattice calculations 

Abstract The adsorption behavior of nonionic surfactants in hydrophilic 
cylindrical pores has been studied with a Mean Field Lattice (MFL) theory. The 
pore radius has two important influences on the adsorption isotherm. With 
decreasing radius (i) the adsorbed amount decreases and (ii) the step in the 
isotherm shifts to lower concentration. This behavior is rather generic. Neither 
the molecular architecture nor the adsorption energy influences these qualitative 
features. However, the position of the step in the isotherm becomes more 
sensitive to the curvature as the adsorption energy increases, just as has been 
predicted with the Semi Thermodynamic (ST) theory. 
We have been partly successful in predicting the curvature behavior from the 
excess grand potential density profile of the flat adsorbed layer. All trends found 
with the full MFL calculations could be reproduced with the help of the 
curvature constants, calculated from the profile of the flat layer. However, the 
curvature constant was underestimated. At the step in the isotherm the error 
was about 25%. 

4.1 Introduction 

Although several studies have been dedicated to the subject of surfactant 

adsorption1"5 and a variety of influences has been investigated, little is known 

about the surfactant behavior in porous substances. This is not very 

surprising from an experimental point of view. Not the irrelevance for society 

and industry but practical experimental difficulties cause this lack of 

knowledge. Significant influences of pores on the adsorption behavior are 

expected if the pore radii become of the order of the layer thickness. The 

maximum layer thickness in the case of surfactant adsorption is of the order 

of the total length of one surfactant molecule, i.e. about 2-4 ran3,6,7. It is very 

difficult to find a material with a homodisperse pore size distribution in this 

range. 

Nevertheless, a few articles deal with the adsorption of nonionics in hydro­

philic pores8-9. Although, none of these contain a systematic analysis of the 

influence of the pore radius, for reasons mentioned above, they demonstrate 
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two important features. First, the amount adsorbed at the plateau decreases 

with decreasing pore radius, which can be explained in terms of simple 

geometrical considerations. Second, the step in the isotherm, which is the 

most important feature of this type of systems, shifts to lower surfactant 

concentration with decreasing pore radius. 

We have reproduced both features with a Mean Field Lattice (MFL) theory for 

a cylindrical pore10. Because of technical difficulties, this type of theories is the 

only viable approach to obtain insight beyond the general knowledge already 

available: "pores do something". In a preceding article a detailed 

thermodynamic analysis, combined with a first interpretation in terms of 

density profiles, has been made in order to get an idea what could happen11. 

Below, we will refer to this approach as the Semi Thermodynamic (ST) theory. 

With the help of this analysis we were able to explain both the experimental 

knowledge and the numerical outcomes of MFL theory in a qualitative way. 

However, our first MFL calculations10 dealt with only one particular 

surfactant and only one set of interaction parameters and the ST part11 

involved several approximations. Therefore, we will now present an extensive 

MFL analysis to obtain more generic knowledge about the adsorption 

behavipr. After a short overview of the ST and MFL theories, MFL results for 

different surfactant types and adsorption energies will be discussed. This 

study deals with nonionic surfactants and cylindrical hydrophilic pores. 

With the help of our ST analysis we were able to formulate two important 

statements. First, the chemical potential where the adsorption increases 

rapidly, u#, is related to the curvature constant (a measure of the curvature 

dependency of the surface tension) of the flat layer at that chemical potential. 

Second, this curvature constant increases with increasing affinity of the 

surface for the surfactant layer. Therefore, the curvature dependency of u* 

increases with increasing adsorption energy. Both statements will now be 

tested with the help of the MFL calculations. 

4.2 Surfactant adsorption 

4.2.1 Nonionic surfactant adsorption and phase transitions 

Adsorption isotherms of nonionic surfactants on hydrophilic surfaces have a 

very characteristic shape. At low concentration few or no molecules adsorb 

(I), at a certain concentration the adsorbed amount increases very rapidly (t) 

and beyond a certain concentration the adsorbed amount levels off to a more 
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or less constant value (II). In regime I the molecules adsorb isolated at the 

surface, in regime t the adsorption increases dramatically due to aggregation 

phenomena and in regime II large bilayer- or micellar-like patches are formed 

at the surface. The thickness of region t depends strongly on the architecture 

of the surfactant molecule. The transition from I to II becomes sharper with 

decreasing headgroup size1'2'5. In addition, the sizes of the bilayer-like 

patches in region II increase with decreasing headgroup size3,6. From both 

observations we can conclude that a phase transition model, in which region t 

is neglected, makes sense as long as the headgroup is not too big. This 

consideration has been used in our MFL calculations10, which anyhow cannot 

reproduce the transition region due to the mean-field approximation, and in 

the thermodynamic analysis11. As we do not now consider the width of the 

transition, we can also invoke the MF approximation in the present study. 

4.2.2 Adsorption, thermodynamics and microscopic backgrounds 

In our preceding study11 we have shown that the surface tension, y, and the 

curvature constant, C, both thermodynamic quantities, are important for the 

understanding of the curvature behavior of adsorbed layers. Both quantities 

are related to the excess grand potential, Q a , which describes the 

thermodynamic state of the system. 

Y = 
dnc 

V Af,T,n'sJ 
(1) 

-i r-,^r:\ 
(2) 

V,T,n's,A 

Where A is the surface area and J is the curvature, defined as 1/R (R is 

negative for a concave surface, a pore, and positive for a convex surface, a 

rod). The quantity Q,a can be related to microscopic properties with the help 

of the following equation: 

Q° = J(0°(r)dr (3) 

where coa(r) is the excess grand potential density at a certain point f. With 

the help of (3) y and C can be related to the excess grand potential density 

profile. If the mean field approximation, homogeneity parallel to the surface, 
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is used, and it is assumed that curvature behavior of y is dominated by the 

linear term in J, then the following expressions can be obtained from (l)-(3): 

Y = Yo+ cJ 

Yo=J«o(x)dx 

C = Ja$(x)xdx + J 3coc(x) dx 

(4) 

(5) 

(6) 
Jo 

Where yo is the surface tension of a flat layer at the same |X, cog (x) the excess 

grand potential density profile in that flat layer and x the distance to the 

surface. If the profile does not depend on curvature, y is a strictly linear 

function of J and C is fully determined by the profile of the flat layer, because 

the second term on the right hand side of (6) will vanish. 

4.2.3 Curvature influence on the adsorption, the ST theory 

In this section a brief overview is given of the ST theory. For a detailed 

derivation and discussion the original paper11 has to be consulted. The 

chemical potential at which a monolayer coexist with a bilayer, u#, depends 

on the radius of the pore. With the help of the approximations, r <* J and 

y « | i , a Kelvin-type of equation can be derived: 

A | / = 
CnJ 

r^(i+5(p)n j )- r 1 (7) 

'Vo 

•U it it a n 

where A|X = (Xj — |X0 - The quantities u^ and Uj are the chemical potentials 

at phase transition for a flat and curved surface, respectively. The curvature 

constant of the bilayer-like phase (II), C n , is given by the following equation: 

cn(nS) = y+[ron(8W-s(p)n)' . A(i. bi (8) 

where Aubi = u* \i , n1" is the chemical potential beyond which a free 

bilayer of the surfactant is stable in solution and y = S^'yoL* • 

The length scales 8 ^ ' and 8^p' are the y- and pa-weighted average 

distances to the surface, calculated from a bilayer at a flat surface for u=|^bi. 

The profile \|/(x) is the difference between the excess grand potential density 
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profile, co°(x), of the adsorbed and free bilayer. It has been shown that for 

H=ubi the C n is fully determined by i|/(x)n. 

Equations (7) and (8) have two important features. First, the absolute value of 

C (H-o) increases with increasing adsorption affinity, captured in A|J. \ 

Therefore, the curvature influence on the phase transition becomes larger 

with increasing adsorption energy. Second, if y is small, two competing 

effects, reflected in the various length scales, determine the sign of C (Ho). 

The surface-bilayer interaction, represented by 8^>, which stabilizes the layer 

makes the layer in a pore less stable than in the corresponding flat layer. The 

accumulation of surfactants at the surface, represented by 8^> , which 

destabilizes the layer, works the other way around. Due to the fact that the p°-

profile is more extended than the \|/-profile and to the negative sign of An , 

C m * ) is expected to be positive. Therefore, at given n's, a bilayer in a pore 

will be more stable than a bilayer on a flat surface and A|i will be negative. 

4.3 The MFL theory 

4.3.1 Introduction 

In order to use the equations (5) and (6), the stress profile, coa(r), has to be 

related to the density profile. This will be done within the framework of a 

Mean Field Lattice theory (MFL), which has originally been developed by 

Scheutjens en Fleer to study polymer adsorption12 and has successfully been 

applied to association colloids by Leermakers and Scheutjens13 and to 

surfactant adsorption by Bohmer and Koopal2. We shall briefly review some 

main elements of the MFL theory in section 4.3; in section 4.4 the application 

to our system will be discussed. For a detailed description of the theory we 

refer to the literature12'14. 

4.3.2 Lattice 

In the MFL theory space is divided into M lattice layers, each lattice layer has 

a thickness 1. The lattice has a co-ordination number Z. Every lattice layer is 

characterized by its total volume AV and its total contact area with the 

preceding layer, A_i, and the following layer, A+ i . Every lattice site has a 

volume v and an area a. If the lattice planes are flat a lattice site has Zo 

neigbors within the layer and Zi in the neigboring layers. In the case of a flat 

lattice the following transition probabilities can be defined for a step within a 
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where cc(z) is a Lagrange parameter to ensure complete filling of the lattice. 

When UA(Z) is known, a free segment weighting factor GA(Z) can be defined. 

G A ( z )^e - u A( z ) / k T (20) 

The statistical weight of a part of a chain molecule i, ending at segment 

number s in layer z, is given by the end segment distribution function (edf), 

Gi(z,s 11) or Gi(z,s I r;), depending on the choice of the start segment (the first 

or the last). 

Equation (20) is related to the edf with the following recurrent relation. 

G;(z,s 11) = G i(z /s)G i(z,s -111) (21) 

Here Gi(z,s) is the free segment weight factor, given by equation (20). The 

volume fraction profile of a component i is obtained from the edf's. 

<t>i(z) = ^ r " 1 ^G i ( z , s -11 l)Gi(z,s)Gi(z,s +11 r) (22) 
s=l 

The volume fraction profile of a monomer type A can also be calculated. 

/ 
4>A(Z) = r 5 > i I > ( s ,A)Gi (z , s -11 l)G i(z /s)G i(z /s +11 r) 

V s 

(23) 

Where 8i(s,A) is a dirac-delta function which equals one if the monomer type 

of the s t h segment is A and zero in all other cases. The total amount and the 

excess total amount of a component i are defined as 6; = ]T (|>i(z) and 

8f = ^ (<)>i(z) ~ <l>i I respectively. By using first order Markov statistics, intro­

duced by (21), and equation (18) a mean-field approximation is adopted. 

Within each layer the monomer, energy and free energy density are assumed 

to be homogeneous. 

The following expression for the excess grand potential can be derived for our 

specific surfactant-solvent mixture, 

M 
D° = 5>°(z)AV(z) (24) 

z=l 
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where, 

co°(z) = -
kT 
v 

-In ' l -4»(z) ' 
1 - / 

- 1 .i)^(z)-^) 

+ 2%(fe(z)-0B(z)) 

+ X UB^HBW-M 

(25) 

Here c|)(z), (|)P, (|>B(Z) and <|)g are the volume fractions of all surfactant 

monomers in layer x and the bulk and of the tail monomer (B) in layer z and 

the bulk, respectively. It is assumed that X=XBW=3CAB a n d that XAW=0- This 

profile is often called the stress profile. The surface tension can be found from, 

M 
Y = f X [ l + 4z- l /2) j ]co a (z) 

z=l 

(26) 

The surface tension of the flat layer is therefore: 

M 
Yo = ' 5 > o ( z ) 

z=l 

(27) 

The curvature constant of the flat layer can be found by differentiation of (26) 

with respect to J and developing at J=0. 

M M 

c = f2X(z-V2KM+<I 
Z=l Z=1V 

3(oa(z)' 

3J 
(28) 

J=0 

Note that the last term of (28) vanishes if ooa(z) does not depend on the 

curvature. Equation (28) is the discrete equivalent of (6). 
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Figure 2 shows the stress profiles (solid lines) and the volume fraction profiles 

of the headgroups (dashed lines) of phase II at two different surfactant 

concentrations, (|>=4.2-10~3, where the phase transition occurs, (|>#, and <f>=9.5-10~ 
3, where bilayers become stable in solution, <)>bi. 

The thickness of the adsorbed layer is at (|># 10 layers and at (|>bi 11 layers, 

which is the length of a completely stretched A3B8 chain. Because we use 

equation (21) for the chain statistics, we overestimate the flexibility of the 

molecules and therefore we underestimate the thickness of the adsorbed 

layer. The stabilizing contribution comes from the headgroup region next to 

the surface, z<2. This contribution has an energetic orgine: the attractive 

interaction between the headgroups and the surface. The region z>2 

destabilizes the layer. This contribution has an entropic origine, because the 

adsorbed layer is a much more ordered than the bulk solution. If the 

concentration of surfactants increases then everywhere in the bilayer the 

stress decreases. The unstable region becomes less unstable and as a result the 

layer gains stability. 
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Figure 2 The excess grand potential density profile (solid lines) and the 
volume fraction profile of the headgroup segments (dashed lines) of an adsorbed 
bilayer of A3B8 surfactants. The curves marked with # and "bi" are the profiles of 
the bilayer which is just stable and one at incipient free bilayers stability 
respectively. 
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4.4.1.2 Influence of molecular architecture and adsorption energy 

In the preceding section we have focused on one particular surfactant. Neither 

the influence of the molecular structure nor the adsorption energy has been 

discussed. Because these properties do not change the driving forces or the 

symmetry, the mechanism of adsorption and therefore the shape of the 

isotherm will not change very much. This does not mean that the adsorbed 

amounts are insensitive to changes in the interaction energy or molecular 

structure. In figure 3, the volume fraction, (|>#, at which the phase transition 

occurs, has been plotted as a function of the adsorption energy for different 

types of surfactants. 

The phase transition shifts to a lower surfactant concentration upon 

increasing adsorption energy. The adsorbed layer as such will be less stable at 

low surfactant concentration, but the increased adsorption energy counteracts 

this. Additional calculations have shown that A4B8 surfactants seem to have a 

critical point at %AS=-8; below which phase transitions no longer occur. Also, 

all other surfactants show a tendency towards a critical point. 

The chain length has a larger effect on the adsorption than the length of the 

headgroup. It is known from calculations for micelles in solution that the 

chain length has a large influence on the aggregation behavior21, CMC values 

are very sensitive to the length of the surfactant tails, but not to the length of 

the hydrophobic headgroup. 

Figure 3 The surfactant bulk volume fraction of phase transition for a flat 

layer, <|>*, as a function of the adsorption energy, XAS-
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4.4.2 Adsorption in pores 

4.4.2.1 The adsorption isotherm 

From earlier MFL calculations10 it is known that the adsorption isotherm is 

influenced by the pore in two ways. First, the adsorbed amount decreases 

with decreasing pore radius. Second, the phase transition shifts to lower 

chemical potential of the surfactants. These effects have been explained by 

assuming that respectively the density (volume fraction) and grand potential 

density profile are insensitive to the curvature11. Both effects have been 

observed in experiments8. Figure 4 compares the adsorption isotherms of an 

A3B8 surfactant at a flat surface and in a pore (R=12). As before, the step in the 

adsorption isotherm, the phase transition, occurs at lower surfactant 

concentration in the case of the pore, and the adsorbed amount in the pore is 

smaller than that at the flat surface. 

Let us now consider the curvature influence on the phase transition in more 

detail. The shift in the phase transition due to curvature is a rather general 

feature in MFL calculations. In figure 5 we have plotted the volume fraction of 

phase transition at a curved surface, (|>#, divided by the corresponding value 
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Figure 4 Adsorption isotherms of an A3B8 surfactant on: a flat surface (R=°°) 
and a cylindrical pore (R=12). The adsorbed amount, expressed as 8 ° , has been 
p lot ted against the volume fraction in the bulk, y°. The vertical solid lines 
represent the phase transitions. 
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Figure 5 The bulk volume fraction of phase transition, normalized with 
respect to the flat layer, as a function of the curvature, for different different 
headgroup sizes. 

for a flat surface, as a function of J (=-l/R) for surfactants with different 

headgroup lengths. If the pore radius decreases, J becomes more negative and 

the phase transitions of all surfactants shift toward lower concentrations. The 

shift becomes larger with increasing headgroup length. In figure 6, the same 

shift is plotted as a function of the tail length at fixed pore radius (R=15). 

One of the most important conclusions of the ST theory was that the shift of 

the phase transition increases with increasing affinity. We have calculated the 

<|>#'s of the flat and curved layer (R=15) of an A^Bio surfactant. In figure 7, the 

shift has been plotted as a function of the energy of interaction of a headgroup 

segment with the surface. The shift increases with a decreasing value of %AS, 

just as has been predicted from the ST theory. 

4.4.2.2 The surface tension, its linear curvature dependency 

As long as the surface tension and the adsorbed amount are strictly linear 

functions of J, we will be able to predict the behavior in pores from the 

behavior at the flat surface, equation (6). This observation has been used in 

the derivation of equation (8). We demonstrated that both the reduction of the 

adsorbed amount and the shift of the phase transition could be explained, 

under the condition that the structure of the adsorbed layer is independent of 

the curvature10,11. 
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We have calculated C of an A4B8 surfactant from cog (x) as a function of the 

bulk volume fraction, figure 11. The vertical solid line refers to the phase 

transition. Although the surfactants, in particular those with large 

headgroups adsorb in significant amounts on the surface before the phase 

transition, C1 is negligible over this range. Curvature dependency of T1 is also 

virtually absent. These two trends are consequences of the fact that the 

important contributions to C1 and r 1 stem from the layer adjacent to the 

surface. In region I the corresponding length scales S^) and 8(P) are of the 

order of atomic radii and therefore already negligible on the scale of a few 

nanometers. It can be concluded that the stability of the bilayer-like phase (II) 

is indeed the important factor for the curvature behavior. 

4.4.2.4 Free and adsorbed bilayers compared 

In the ST model we have used the point where free-floating bilayers become 

stable as a reference. It was reasoned that co°(x) at that point could be split in 

a contribution, which equals the profile of a free bilayer GO0, (x) and a 

contribution due to the surface v|/(x). The latter contribution would determine 

the behavior of C and yo at u=|xbi. 

0.1 

0.0 

•0.1 

-0.2 

-0.3 

-2kT 

- I & 

H 
- / i_ 

n<— 

/^^V^^szA 

JX 

— -5 
- -6 

i I 

10 15 

Figure 12 Excess grand potential density profiles of A4B8 bilayers at H=|i . 
The solid lines are curves of adsorbed layers with different adsorption energy 
and the dotted curve is the profile the free bilayer in solution. 
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In figure 12 the profiles of flat layers of A4B8 surfactants are shown. All 

profiles are calculated at ubi, and correspond to different adsorption energies, 

XAS- The black circles represent the profile of the free bilayer, coa' (z). In the 

surfactant layer adjacent to the surface co°(z) and coa' (z) differ, but the 

structure near the solution side is the same as that in a free bilayer. The 

differences between co°(z) and co°' (z) increase with increasing adsorption 

energy, which is expected because the perturbation due to the surface 

becomes stronger. Therefore, the idea that the influence of the surface can be 

regarded as a perturbation of the free bilayer profile has been justified. 

4.4.3 The curvature constant as an indicator 

If the curvature is small, the following expression for the shift in the chemical 

potential for the phase transition with curvature holds, 

Au# C11 

r l l r 

r0 - r o V o 

(29) 

where the ratio C /\T0 - T0 J is a measure of the curvature sensitivity of the 

phase transition. From now on we will refer to this quantity as X: the 

curvature sensitivity. In the ST theory we calculated this quantity with the 

help of the profiles coG(x) and p°(x) of the flat layer. MFL calculations have 

shown that the curvature constant is not fully determined by the excess grand 

potential density profile of the flat layer, co°(x). In section 4.4.2.1 the 

influences of the tail length, headgroup length and adsorption energy on the 

curvature dependency of the phase transition have been discussed with the 

help of MFL calculations. We now try to predict these trends on the basis of 

the cog (X) and Po (x) profiles, calculated with the MFL theory. 

In figure 13 we have plotted X as a function of the headgroup length n for 

different AnBio surfactants (XAS=-4)- The curvature sensitivity increases with 

increasing headgroup length. This is in agreement with the full MFL 

calculations, which predict an increase of the shift with increasing headgroup 

length, figure 5. Figure 14 shows the curvature sensitivity X as a function of 

the tail length n of different AsBn surfactants. The curvature sensitivity 

increases with increasing tail length. However, the tail length influence is not 

as strong as that of the length of the headgroup. Both observations agree with 

the results of the full MFL calculations, shown in figure 9. 
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Figure 13 The curvature sensitivity, X = C / ( r 0 - T0 J, as a function of the 

number (n) of headgroup segments of an AnBio surfactant. 
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Figure 14 The curvature sensitivity as a function of the number (n) of tail 
segments of an AsBn surfactant. 
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X 

Figure 15 The curvature sensitivity as a function of the adsorption energy of 
an A^Bio surfactant. 

The influence of the adsorption affinity is shown in figure 15. In this figure X 

of an A6B10 surfactant is plotted as a function of the adsorption energy %AS-

The curvature sensitivity is strongly dependent on the adsorption energy, just 

as has been found in the full MFL calculations, figures 5 and 6. 

We may conclude that the properties of layers in pores can be predicted from 

information about the flat layer, provided the curvature is not too strong. The 

influence of the molecular architecture and the adsorption energy can be 

semi-quantitatively predicted. 

4.5 Conclusions 

We have studied the adsorption of nonionic surfactants in hydrophilic pores 

with a Mean Field Lattice (MFL) theory. In the pore the adsorbed amount is 

smaller and the step in the isotherm occurs at a lower chemical potential than 

at the flat surface under otherwise identical conditions. 

The influence of the radius of a cylindrical pore on the bulk volume fraction at 

which the phase transition occurs, (|>#, has been calculated for molecules with 

different molecular architectures and adsorption energies. The influence of 

the curvature on the phase transition increases with increasing headgroup 

length. If the tail length increases, the curvature sensitivity of the phase 

transition also increases. The adsorption energy has a rather strong influence. 
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The shift of the phase transition increases with increasing affinity of the 

surface for the headgroups. This confirms our previous statement of the Semi 

Thermodynamic (ST) analysis, that the curvature constant increases with 

increasing adsorption affinity. 

The surface tension is almost linearly dependent on J. The deviations from 

linearity are caused by the fact that the excess grand potential density profile 

varies with the curvature. Therefore, the curvature constant calculated by 

using COQ (X), Cflat, deviate from the real curvature constant, found by fitting 

the y-J curve, Cfn. Whether or not Cfiat is a useful quantity depends strongly 

on [i. At the point where bilayers become stable in solution, ubi, Cflat seems to 

be wrong. However, at the point of phase transition, n#, the essential physics 

are not lost although the error in the predicted curvature constant is still high, 

+25%. Therefore, we may conclude that the ST theory is semi-quantitatively 

correct. 

We have tried to predict the influence of the molecular architecture and the 

adsorption energy on the curvature sensitivity of the phase transition from 

the excess grand potential density profile of the flat layer. All trends found in 

the full MFL calculations have been reproduced, which confirms the idea that 

the ST analysis captures the important physics. 
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Chapter 5 

Micellization at surfaces; 
theory of polydisperse rod-like micelles 

Abstract A lattice model for polydisperse rectangles on a square lattice has 
been used to study the behavior of rod-like surfactant aggregates at the solid-
liquid interface. In principle it is possible to obtain the three parameters of the 
model from 2D MFL (mean field lattice) calculations. 
The aggregates grow with increasing chemical potential. If the caps become 
more unfavorable, the average length of the rod increases. If the average length 
exceeds a certain value, a second order transition from an isotropic to a nematic 
phase takes place. The growth of the aggregates is promoted by the nematic 
ordering. 
A nearly exact relation between the number of aggregates at the surface at the 
isotropic-nematic transition line and the average aspect ratio has been found by 
a fit of the numerical data. If the number of aggregates decrease, the average 
aspect ratio to obtain nematic ordering has to increase. 

5.1 Introduction 

In the last years a variety of models, describing surfactant adsorption, have 

been developed1"7. However, most of these models have their limitations, due 

to the incorporated assumptions. Some models start with a detailed molecular 

picture, but neglect the finite sizes of the aggregates at the surface. Other 

models take into account the size of and the interaction between these surface 

micelles, but neglect molecular detail. 

Bohmer et al.5 have used a mean field lattice (MFL) theory to describe the 

surfactant adsorption of nonionic and ionic surfactants. The major advantage 

of their MFL model is its detailed description of the molecular properties of 

the surfactants. However, a price has to be paid. As a result of the mean field 

approximation density gradients are allowed in only one dimension, normal 

to the surface. Otherwise stated, homogeneous adsorption layers are predic­

ted. We will refer to this theory as the ID MFL model. However, recent 

experiments have shown that at sufficiently high chemical potential discrete 

aggregates, micelle-like, exist on the surface8"11. 

Recently Latjar et al.6 have developed a model, based on the Scaled Particle 

Theory (SPT), to account for the inhomogeneity of the adsorbed layer. 
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Although their treatment of the inter-micellar interactions is rather 

sophisticated, they had to adopt a very simple model for the structure of, and 

the interactions within the micelle. Therefore, neither the ID MFL model nor 

the SPT approach is able to combine a description on a molecular level with 

the possible discrete nature of aggregates at the interface. 

Wijmans and Linse12 have reported lattice Monte Carlo (MC) calculations 

dealing with the same problem. In principle all problems, mentioned above, 

could be solved by MC calculations. Despite their rigorous approach, the 

simulation time limits their box-size and number of molecules. The number of 

micelles, formed within the simulation box, was too low to sample the whole 

configurational space. Most of all, the involved simulation time restricts the 

number calculations which can be done, preventing a systematic study of the 

influences of all molecular parameters on the adsorption isotherm. 

Bohmer et al.5 have tried to overcome the limitations of their ID MFL model 

by using a 2D model, which allows density gradients in two dimensions. With 

this model they were able to describe the equilibrium state of one single disk­

like surface micelle pinned at a fixed position at the surface. However, they 

did not take care of the inter-micellar interactions and the configurational 

entropy of a collection of these micelles. It is questionable how general their 

results are, because inter-micellar interactions influence the size and the shape 

of aggregates. 

In this study, we investigate a lattice model, developed by Herzfeld13, which 

can describe a system of polydisperse rectangular particles. Herzfeld's theory 

belongs to the same category as the SPT approach: much attention is paid to 

the aggregate-aggregate interactions and little to the molecular structure of 

the aggregate. However, we will try to make clear how the parameters of the 

model can be extracted from a molecular model (f.e. the 2D MFL theory). 

With the Herzfeld-model the ordering behavior and the growth of 

polydipserse rods at a surface will be studied. 

5.2 Polydisperse rod-like micelles on a surface 

5.2.1 Equilibrium conditions 

Consider a solid-liquid interface, with an area A, at temperature T, in 

equilibrium with a bulk solution of surfactants in water. The state of this 

system can be described with the grand potential, Q°. In a density functional 

approach, the equilibrium state would be obtained by minimizing D.a with 
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monolayer aggregate 

surface 

Figure 1 A schematical picture of two surfactant aggregates (dark grey) at a 
surface, embedded in a layer monolayer of surfactant molecules (light grey). 

respect to the density profiles of the components at constant chemical 

potentials, (i's. We shall use Q° to indicate non-equilibrium values of £2°. 

Considering the complexity of the system, we shall describe the interfacial 

layer as a collection of polydisperse rods of uniform cross-section but variable 

length {Nj}, embedded in a homogeneous monolayer, as in figure 1. Let Q° 

consist of two contributions 

Q.°=Q.' + Q." (1) 

where Q' and Q." represent the monolayer and the set of rods, respectively. 

In equation (1) it is assumed that the contributions of the monolayer and the 

micelles are additive. If a rod of type i occupies an area A;, Q' is given by 

Q' = Q' = A-XNjAi (2) 

where y' is the surface tension of the monolayer. In equation (2), we have 

replaced Q.' by its equilibrium value Q', assuming that the equilibrium 

structure of the monolayer is not affected by changing the distribution of the 

rods. The contribution of the rods is 

a" = XNi if-SXnj + Fhr (3) 
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where F® is the excess Helmholtz energy of a fixed micelle of type i, n? is the 

excess amount of molecules of type j in a micelle of type i, Uj is the chemical 

potential of a molecule j and l \ r is the Helmholtz energy of a collection of 

polydisperse hard rods in two dimensions. Equation (3) contains two 

important assumptions. First, the intra-micellar contributions, the sum term 

on the right hand side of (3), and the inter-micellar contributions, ¥^r, are 

additive. Second, energetic interactions between the micelles are neglected, 

F^r only contains excluded area interactions. Therefore, if the model predicts 

an ordered structure of the adsorbed layer, this must be caused by hard rod 

interactions. In formula, 

^ r =-kT lnQ h r ( {N | c } ) (4) 

where the superscript k refers to the orientation of a rod and Qhr the canonical 

partition function of a system of polydisperse hard rods, that we have to 

establish. To obtain the equilibrium state, we have to minimize the excess 

grand potential with respect to the distribution JN; \. 

dNf 
(5) 

NH''S 

Combination of (1) and (5) results in 

3 

dN]' 
(Q' + Q") = 0 (6) 

With (2) the first term on the left hand side becomes 

The left hand side of equation (7) can be obtained by differentiation of 

equation (3) with respect to Nj 

f | = F i a - In^ + ^ (8) 
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for any combination of i and k. The last term on the right hand side may be 

interpreted as the chemical potential of a hard rod of type i pointing in 

direction k, m ^ =di\XI/dNi . The difference in excess grand potential 

between a rod i fixed at arbitrary position and orientation and a monolayer 

patch with the same area is defined as follows 

nf^Ff-Xnjfo-AiY' (9) 
i 

Combination of (7)-(9) results in the following equilibrium condition 

nf + ̂ hr = o (io) 

5.2.2 Configurational Helmholtz energy of polydisperse rectangles 

In this section, we derive the configurational Helmholtz energy for a 

polydisperse set of rectangles on a lattice, according to the procedure 

developed and successfully applied to associating systems by Herzfeld and 

co-workers13"17. For a detailed explanation, these papers have to be consulted. 

The surface is treated as a square lattice with lattice constant X. The number of 

directions k is two: x and y. The number of lattice sites is L=A/A.2. A rectangle 

of type i pointing in direction k covers x4 y, lattice sites, where Xj and yf are 

the lengths of the sides in the x and y direction, respectively, expressed in 

number of lattice sites. The canonical partition function of a collection of 

rectangles \ Nj [ is given by 

Q k-=?TTShw (n) 

i,k 

where N = ]£\ , N; is the total number of particles. The permutational factor 

on the right hand side of (11) is the partition function of a collection of non-

interacting ideal particles. The function W corrects for the excluded area 

interactions. To obtain W, the particles will be sequentially inserted in four 

stages, illustrated in figure 2. These stages have been chosen in such a way 

that the number of obstructions during the insertion of new, additional 

segments remains constant at each stage. Let us call the probability of stage x 

P t , then 
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w=npx (12) 

The probability Pi of the first stage is 

L! 
P l=-

(L-N)!LJ N 
(13) 

where L!/(L-N)! is the number of ways to place N distinguishable segments 

on a lattice with L distinguisable sites and LN is the number of ways to place 

N arealess segments. 

# • x 

-^ftftfstfstftftffftfwatftftfaastftfHtftfua 
WWSW riMftft 

| . V . V . y . j . j . j . j . V . j . . r . ^ . ^ . j . ^ . . 

Figure 2 The four different stages of insertion: (1) one corner segment, (2) all 
other segments of the x-side, (3) all other segments of the y-side and (4) the 
segments within the L. 
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A general formula for the probabilities of the other stages is13, 

p =
 V* ! / (VT- nx) ' ( M ) 

X ( v t +o T ) ! / (v T +o T -n T ) ! 

where vT is the number of vacancies before any segment of stage x has been 

inserted, nT the number of segments belonging to stage x and oT the number of 

obstructions during the insertion of segments of stage x. Assuming random 

disposition of the segments, 

v2 = L - N, o2 = N, n2 = YA[*\ ~ !) (15) 
i,k 

and 

v3=L-N-XNr(xr-i), oa^iN^r, ^ = 1 ^ - 1 ) m 
i,k i,k i,k 

The x- and y-sides of the rectangles are build in stage 2 and 3, respectively. 

After the insertion of the segments of the stages 2, we have rods of a thickness 

of one lattice site pointing in the positive x-direction. If all segments of stage 3 

have been inserted, the surface is covered with L-shaped particles, with the 

sides pointing in the positive x- and y-direction. 

An expression for P4 is more difficult to obtain. Before the insertion is started, 

L-shaped particles are present. The segments are now added in such a way 

that only the corner segments of the other rectangles can obstruct the 

addition. 

v4 = L-N-XN!t[(^-l) + (^-lJ, 
i,k 

04 = N, (17) 

n 4 = l N ^ ( x ^ - l ) ( y ^ - l ) 
i/k 

One of our aims is to couple this rod-model with 2D MFL calculations. To 

match both lattice models, we have to take the same lattice spacing, compared 

to the sizes of the aggregates in both models. In the MFL calculations, an 

aggregate covers several lattice sites. Therefore, we can use the continuum 
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limit of the Herzfeld-model. The probabilities Px for the second, third and 

fourth stage follow from equation (14). 

lim PT = 
X-»0 

• \ °T v T - n T (18) 

The probabilities of the first two stages approach unity. 

lim Pi = lim P2 = 1 (19) 
\->0 \->0 

It the mesh size of a lattice goes to zero, one single segment becomes a point 

(stage 1) and a rod, which has the thickness of segment, becomes a line (stage 

2). Neither the point nor the line have an excluded area. The limit X -> 0 of P3 

results in an expression, which is related with the ordering of the rods, 

lim P3 = e"K"Ky/L (20) 

where 

Kx-lNNf (21) 

i,k 

Finally, P4 converts into an excluded area term 

l imP4=(l-<t))N (22) 

where 

*-XNJScfrrSc/L (23) 
i,k 

In (22) (1-<|>)N is an isotropic excluded area term. Now we can formulate the 

canonical partition function of the collection of polydisperse rigid rectangles. 

Q h r = ^ 4 r ^ ( 1 _ * ) N e " K x K y / L (24) 
i,k 
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In equation (24), exp(-KxKy/L) is the only factor which can induce anisotropy, 

for instance nematic ordering. Without this term, equation (24) goes over in a 

partition function, which would predict a Volmer-type isotherm . By inserting 

equation (24) in (4) and using the Stirling approximation lnY!=Yln(Y/e), we 

obtain the Helmholtz energy. 

i,k 
In 

NfA2 

Ae 
-ln(l-4>) + kT 

K x K y 
(25) 

The chemical potential of a rectangle of type i with orientation k can be found 

by differentiation of (25) with respect to Nf. 

'N /L 
m,hr = k T 1 n 

^ N ^ 

kT 
Kv 

A 

dK 

•kTln(l-<|)) + kT 
1- f 

xj'yj' 

•3Nf 
L + V^A. 

(26) 

3Nf 

From now on, we only allow polydispersity in the length of the rectangles, we 

restrict ourselves to polydisperse rods. The diameter and length corresponds 

with 8 and ri lattice sites, respectively, figure 3. The minimum length is 8. We 

introduce two additional parameters: the fraction of surface covered by caps, 

belonging to rods of type i with orientation k, which is proportional to the 

number of aggregates, v^ = Nj 8 /L,and the fraction of surface covered by 

rods of type i with orientation k, <$ = N ^ J S / L = N ^ A J / A . 

rr 
i i 

ri-8 

body 

—n 

i i 

It; 
cap 

Figure 3 Our representation of a rod-like surface micelle of type i. The total 
length and the thickness are r, and 8 lattice sites respectively. The aggregate 
consists of two parts: the caps and the body. The smallest aggregate covers 82 

lattice sites. 
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Figure 4 has been drawn to clarify the transfer from the more general 

formalism of equations (25) and (26) to expressions for polydisperse rods. The 

chemical potential of a rod of type i oriented in the x or y direction follows 

from (26) as illustrated by figure 4, 

|xf/hr = kTln 
( x\ 

- kTln(l-<)>) + k T 
1 — c> J S 

tf,hr 

+ k T ^ x + v ) / y ) + k T ^ y + v
x ) | 

= kTln ^±- -kTln(l-(|)) + kT 

I 5 ) 
+kT(^y+\|/x)+kT((t>x+\|/y)! 

v 

(27) 

(28) 

If we compare (27) and (28), it becomes clear that the last two terms of both 

equations, which have the product KxKy /L as their common origin, may 

differ between the x and y direction and hence can give rise to ordering 

phenomena. 

\ t 

y 

^ <k=rr L 

^^^^^^^K=n7k=^^^^^^^H 

x^=S • 

H ii •yk=1 

i ' 

J 

i k 

_„k_s 
j 

1 
? 

Figure 4 Schematical picture of two rod-like aggregates, placed on a lattice: 
one of type n, pointing in the x-direction, and one of type j , pointing in the y-
direction. 
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Consider a system of monodisperse rods of length r and thickness 8. In 

equilibrium |J.X equals |j.y. It is obvious that the isotropic solution of the model 

always obeys this condition. For the anisotropic (nematic) solution, we derive 

with (27) and (28), 

In = ( i | / x - i | / y ) ( r /8- l ) 2 (29) 

If the anisotropy is weak lnl\|/x/i|/y) = \ | /x / i | /y - l = (i|/x -v|/y)/i|fy and 

equation (29) reduces to: 

V - 2 V y = (30) 
( r /8-1)2 

This equation provides us with a critical value of i|/ above which the model 

has, besides an isotropic solution, also an anistropic one. Because the 

maximum surface coverage (|>=1 and ty = \\tr/8, a system of rods with 

r < r* = (2 + ̂ 3)8 will not have an anisotropic solution. 

5.2.3 Linear micelles 

In the preceding paragraph we have focused on the inter-micellar inter­

actions. If we want to calculate the equilibrium state of the aggregates at the 

surface, we have to combine (10) with (27) and (28). In this section we will 

calculate the coverage of the surface and the average rod length in both 

directions. To do this, we need an interpretation of Qf in (10). We 

approximate the Helmholtz energy part of £2f with 

F i a = W 8 r i + Afcap8
2 (31) 

where fmid is the Helmholtz energy per lattice site in the body of the rod and 

Afcap is the excess in the caps. So, we have assumed that the rod has only two 

different chemical environments: the cap and the body. With the help of 

p S r i ^ r t ^ j (32) 
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and 

A i Y ' = ^2Y'5ri (33) 

we arrive at an expression for Qf: 

" f = ( W - P - ^-2Y')8ri + Af^pS2 = Onudf^] + AQ, 'cap (34) 

where we have used A£2cap = A f ^S 2 and Qmid = (fmki - p - A,2Y']52. Below, 

we will try to interpret these two parameters within the framework of the 

MFL theory. First, for reasons of simplicity, we define the quantities C, Bx and 

By. 

C = (l-(|))exp 11/ , ^mid + A ^ c ap A 

kT 

B x 8 2 = - ^ + ^ +v | / x +^ s i i d 
1-6 kT 

B„8^ v +^+xVy + 
1-0 kT 

(35) 

(36) 

(37) 

Combination of (35)-(37) with (27), (28) and (10) results in expression for the 

amount of rods of type i in the directions x and y 

¥ i = 8zCe_D* Bvi 

Vi f=5 2Ce-By Bvi 

(38) 

(39) 

The variable i is defined such that rj8 = 8 +i , which means that i is the 

number of lattice sites covered by the body of the rod. The area fraction of 

rods of type i in direction x is 

<)>? = ( l + i 8 - 2 )y f (40) 

From now on, we will only give the results for the rods laying in the x 

direction. The treatment of the rods in the y direction is the same. The total 

number of rods pointing in the x direction can be obtained by summation 

over i from zero to infinity. 
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Bvi Vx=82XCe-B«1 

i=0 
(41) 

This summation can be approximated by an integral, which is definite for the 

chosen interval 

v|/x=52 JCe -^d i : 
C8^ 

(42) 

i=0 

Another property of interest is the average rod length in both directions (rx) 

and ( ry) , which can be obtained as, 

gl(l + i5-2)Ce-^ Bx - .. 
"xdi = 8 1 + 

Bx8 ; 
(43) 

Here, l+i8"2 is the length of a rod of type i normalized by minimum length 8, 

the aspect ratio. The average length diverges as Bx goes to zero. That Bx is 

coupled to (rx), follows from equation (38), where 1/BX plays a similar role as 

the Debye-screening length for electrolytes. If Bx decreases, the importance of 

the contribution of the longer rod lengths increases and (rx) increases. 

We obtain the area fraction of rods, aligned in direction x, by multiplying (42) 

with (rx/8). 

</%* 
C8^ 

1 + -
Bx8 j 

(44) 

To have a measure of the fluctuations in the rod-length, we calculate the 

standard deviation of rx, 

°TX=TI(£)-{*X)2=Y Bx8 
(45) 

which equals the second term on the right-hand side of (43). We can conclude 

that size fluctuations become more important with increasing average rod 

length. Therefore, polydispersity has to be taken into account in a model, 

meant to describe the behavior of rod-like aggregates. 
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To calculate (42)-(45) a numerical procedure has to be used, which is 

described in the appendix. To find the absolute minimum, we have to 

compare the Q°'s of all minima. If we have two solutions, an isotropic and a 

nematic phase, the equilibrium phase is found by comparing the £2°~'s of both 

phases. If we combine (1) with the solutions (38) and (39), the following 

expression for Q° can be obtained 

n a = A y , _ k T L v+^+(* x+vi/y)(^+v x) (46) 

5.2.4 Molecular interpretation of the parameters 

The model, described in the preceding section, has three input parameters: (i) 

£Wd/ (ii) A £2cap and (iii) 8. These parameters have a molecular origin. 

Knowledge of the relation between molecular properties, like adsorption 

energy, surfactant architecture and solubility of the surfactant headgroup, and 

these parameters is important to determine which outcomes of the model 

have physical significance. 

Although there are several molecular models of surfactant aggregation18"20, 

none of these have a direct link with molecular properties. Only the MFL 

theory, originally developed to study polymer adsorption21 and later applied 

to surfactant aggregation22, links aggregate structures and properties with 

single surfactant properties. In this section, we briefly discuss how £2mid, 

AQcap and 8 can be extracted from MFL calculations. 

With 2D MFL calculations the equilibrium structure of a single aggregate at a 

fixed position at the surface can be calculated5. This can be done in two 

different lattice geometries: cylindrical and flat. The cylindrical geometry 

results in disk-like aggregates. Infinite rods are calculated with the flat 

geometry. The parameters £2mid/ A£2cap and 8 have to be obtained at the same 

surfactant chemical potential. Therefore, both the equilibrium structure of the 

disk and the infinite cylinder (rod) have to be calculated at the same 

surfactant chemical potential. A ID calculation gives us the surface tension of 

the corresponding monolayer y'. 

The diameter of the disk provides us with a value for 8. The parameters Qm;d 

and AQcap are obtained by, 

"mid=7("2D,flat-AflatY') (47) 
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A£2cap = na
2Dcyl - A c y ly ' -£2m i d (48) 

where Afiat and Acyi are the surface areas of the calculation boxes for the two 

different geometries and £ is the length of the box with the flat geometry. 

5.3 Results 

5.3.1 Growth of randomly oriented aggregates 

In the model, polydispersity is allowed and the average length of a surface 

micelle depends on the parameters £2mid, A n c a p and 8. If the aggregates 

become sufficiently long, nematic ordering will take place. Therefore, know­

ledge of the growth behavior of the aggregates is important. This knowledge 

will be obtained by studying a system of randomly oriented aggregates: the 

isotropic phase (I). 

In figure 5 the surface coverage <|) is plotted as a function of Qmid for different 

values of AQ c a p (82=50). Because £2mid linearly depends on the chemical 

potential of the surfactant Uj (34), the curves in figure 5 can be regarded as 

adsorption isotherms. This figure has three main features: (i) there is 

significant adsorption for £2mid>0, (ii) for £2mid>0 the adsorption decreases 

with increasing A£2cap and (iii) the co-operativity of the adsorption increases 

with increasing AQcap. 

(i) The adsorption in the region Qmid>0 is not favored by the intra-micellar 

contribution (37) to OP, which is positive and therefore destabilizes a surface 

aggregate. Nevertheless, the surfactants adsorb in large amounts. This is 

caused by the fact that the aggregates have translational entropy, which 

compensates the unfavorable intra-micellar contribution, 

(ii) In systems with unfavorable caps, surfactant adsorption is low in the 

region £2mid>0 and increases rapidly when Qmid becomes negative. In the 

region timid>0 aggregates are stabilized by their translational entropy (i). To 

be more precise, they are stabilized by their partial translational entropy (10). 

As the caps become more unfavorable, the partial entropy has to increase to 

stabilize the aggregates and therefore the number of aggregates per surface 

area have to decrease. 

(iii) The shape of the isotherms make clear that the co-operativity of the 

adsorption increases when the caps become more unfavorable. If the caps 

become more unfavorable, then the surfactants adsorb in larger rods. Figure 6 
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shows that this indeed happens . The aggregate-size increases with increasing 

A£2, cap-

10 

Figure 5 The fraction of the surface covered by aggregates, <(>, as a function of 
the am id/kT for AT2cap/kT=0/ 2,...., 12,14 (82=50). 

A 

100 

£2 VkT 
mid 

Figure 6 The average aspect ratio as a function of iimid for for A£2cap/kT=0/ 

2,...., 12,14 (A£2cap increases in the direction of the arrow). 
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5.3.2 The adsorption isotherm and the isotropic-nematic transition 

In section 5.3.1 the system has been forced to be isotropic. Now we allow the 

aggregates to order at the surface. In figure 7 the total surface coverage (|) 

(solid lines) and the excess grand potential, Q.a (dashed lines), have been 

plotted as a function of Qm id/kT with 82=50 and A£2cap/kT=12. Above 

Qmid/kT=-0.02, the model has only one solution: the isotropic phase. Below 

this point a nematic phase (N) also is a solution of the model. The £2a-curve 

makes clear that the nematic phase is the real equilibrium phase, Q^j < Qf. 

The I-N transition is a second order phase transition, because QP splits up in 

the N and I branches, which never cross each other again. 

In section 5.3.1 we have already seen that the adsorption becomes more co­

operative with increasing A£2cap. Figure 7 shows that ordering increases the 

co-operativity too. Therefore, we can conclude nematic ordering promotes the 

growth of the surface aggregates23. 

In figure 8, (r/8) has been plotted as a function of Qmid/kT . In the isotropic 

region, the average length slowly increases with decreasing £2mid. After the I-

N transition, the length rapidly increases in the direction of alignment and 

decreases in the other direction. 

H 

to 
D 

a 

-0.05 

-o.io 

-0.15 

-0.20 

Figure 7 The excess grand potential (dashed lines) and the surface fraction 
covered by rods (solid lines) as a function of Omid for Aiicap/kT=12. The 
branches labelled with N and I correspond with the nematic and the isotropic 
solution of the model, respectively. 
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Figure 8 The average aspect ratios as a function of £2mid in the two lattice 
directions. After the I-N transition (r/8) becomes dependent on the mode of 
orientation: parallel or perpendicular 
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Figure 9 The isotropic-nematic transition lines for different cap sizes 52. The 
isotropic (I) and nematic (II) regions are on the left and right side of the curves, 
respectively. 
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Figure 10 The relation between \\i and (r/8) at the I-N transition line. 

5.3.3 The isotropic-nematic transition line 

The I-N transition is the most interesting feature of the model. In this section 

we investigate this transition in more detail. For three different cap-areas 82, 

we have calculated £2mid at the phase transition as a function of AQcap, figure 

9. For every AQ c a p , the I-N transition has a second order character. The 

absence of a region of first order transitions must be a consequence of the 

dimensionality of the model. Herzfeld and co-workers15 predicted with the 

same model first order transitions in solutions of polydisperse rods. If the 

caps are more favorable than the body of the rod, AQcap<0, then the 

contribution of the body, Qmid, has to become very negative to induce a I-N 

transition. 

The two important quantities with respect to the I-N transition are the total 

cap fraction v|/ and the average aspect ratio (r/8) at the transition. In figure 10 

we have plotted (r/8) against the i|/ for 82=50. The cap fraction is proportional 

to the total number of aggregates per unit area. Calculations for different cap 

sizes have shown that the relation between (r/8) and vy is independent of the 

cap size. The following equation fits the curve very well: 
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\|/: 
«r /5 ) - l ) 2 

(49) 

At the end of section 5.2.2, we have derived an analogous expression for 

monodisperse rods (30). Although we cannot give a mathematical derivation 

of (49), we think that this formula is an exact outcome of the model. The only 

difference between (49) and (30) is a factor of 2. If the average rod length is 

small, nematic ordering can only occur at very high coverages. According to 

equation (49), no I-N transition will occur when (r) cannot reach a critical 

value, (r *) = — (3 + V5J8, which corresponds to i|/* = 4(1 + 45} . Combination 

of (36), (43) and (49) shows that y equals y* for £2mid -> -°o and AD.cap -> -«>. 

Due to the presence of size fluctuations ordering can take place at (r *) < r *, 

compare (30) with (49). 

With the help of equation (49) it is possible to relate v|/ at the transition with 

AQcap. In figure 11 we have plotted ln\|/ as a function of AQcap/kT. For high 

values of AQ c a p the curves becomes linear and the slope seems to be 

independent of S1. This indicates that at low coverages \|/ is an exponential 

function of A£2Cap- If AQcap decreases, V|/ becomes in the independent of the 

cap size and tends to a constant value of about 0.38, which is in agreement 

with V|/*, obtained from (49). 
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Figure 11 The logarithm of y as a function of Ai^-ap for different cap sizes. 

106 



With equation (49) it is possible to obtain a relation between \|/ and AQCap for 

every value of \|/, which will be done below. By combination of (43) and (49) 

we obtain 

B8 2 = V V 2 (50) 

The subscribt of B has been dropped, because at the I-N transition an isotropic 

system is present. With the help of (49) and (50) equation (35) can be written 

as 

C = ( l - \ | /V 2 - V ) exp 
A£2r 1 1/2 ' " ' cap 

v 2 V kT 
(51) 

The relation between vp and AQcap is now found by insertion of (50) and (51) 

in (42). 

¥ 
3/2 

1-V|/ 1/2. V|/ 
exp \|/ + - \ p 2 = 284 exp 

AU cap 
kT 

(52) 

For diluted systems, \|/ is small, \\i becomes and exponential function of AQcap. 

H284) 
2/3 

exp 3 kT 
(53) 

From (53) we learn that the slopes for high values of A£2cap in the curves in 

figure 11 equal 2 /3. 

5.4 Conclusions 

To study the aggregation behavior of surfactants at the solid-liquid interface, 

a lattice model13 has been used. In the model a collection of rectangles, with a 

constant thickness 8 and a variable length r, is placed on a square lattice. Due 

to the anisotropy of the aggregates, nematic ordering can occur. The model 

has an isotropic (I) and a nematic (N) solution. The real equilibrium situation 

can be found by comparison of the excess grand potential of both phases. 

The input parameters Qmid, A£2cap and 8 can be obtained from a molecular 

model, which can calculate the equilibrium structure of disk-like aggregate 
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and an infinite rod at the same chemical potential. In principle the MFL theory 

is a good candidate for this procedure. 

Growth of the aggregates in the isotropic phase ultimately leads to an 

isotropic-nematic transition. Although the positive intra-micellar contribu­

tions (iimid/ A£2cap) do not favor association, adsorption takes place because 

the aggregates are stabilized by their translational entropy. The co-operativity 

of the adsorption increases with increasing AQ c a p (the caps become 

increasingly unfavorable), which means that the surfactants adsorb in longer 

rods. 

The growth of the rods with decreasing £2mid (increasing chemical potential) 

leads to a second-order I-N transition. Beyond this transition, the average 

length of the rod increases rapidly. The co-operativity of the adsorption is 

enhanced. At the I-N transition line, the cap fraction \|/ scales nicely with 

( r / 8 ) - l to the power minus two. Although, this equation could not be 

derived analytically, it has to be an exact result of the model because an 

analogous expression could be derived for a monodisperse hard rod system. 

With the help of this equation, we were able to derive relations between 

AQcap and y at the transition for every value of v|/. In the limit of low surface 

densities \\i becomes a exponential function of AQcap. 

Appendix Numerical scheme 

We have solved the equations (35)-(37), (42) and (44) with the help of a 

Newton-type iteration method, developed by Powell24 and made more 

powerful by Scheutjens25. A given combination of Qmid/kT and AQcap/kT 

can have two solutions: an isotropic (I) and a nematic (II) phase, which can be 

characterized by Y|/x, \|/y, (|>x and (|)y. 

Four variables xn have been defined. These will be iterated to values, which 

are consistent with (35)-(37), (42) and (44). The variables xn's are related with 

\|/, V|/x, <|> and Qmid/kT by 

Px l px2 px3 Q • . 

v=- L iT ' vx = -^-r> 4> = ̂ ir and n^- = x4 (A- 1) 
l + eXl 1 + e"2 l + e"3 kT 

The quantities AQ c a p /kT and <)>x are used as input parameters and fixed 

during the iteration process. With (A.l) and(35)-(37), (42) and (44) we can 

calculate the set: \j>, vj/x, <j>andlj)x. Every iteration variable xn corresponds 

with a function gn, which has to be iterated to zero. 
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List of symbols 

A surface area 

Ai area covered by a micelle of type i 

Acyi surface area in a 2D MFL calculation in a cylindrical geometry 

Aflat surface area in a 2D MFL calculation in a flat geometry 

F Helmholtz energy 

F° the excess Helmholtz energy of an aggregate of type i 

F^r Helmholtz energy of a collection of polydisperse hard rods 

fmid excess Helmholtz energy per covered lattice site of the body 

of the micelle 

Afcap difference between the Helmholtz energy of the cap and the 

body per covered lattice site. 

N total number of aggregates 

Ni number of aggregates of type i 

Nj number of aggregates of type i, pointing in direction k 

nH excess number of molecules of type j in an aggregate of type i 

nx number of segments in stage x 

oT number of obstructions of stage x 

Px insertion probability of stage x 

Q canonical partition function 

r rod length, expressed in lattice sites 

ri rod length of a micelle of type i 

r* minimum rod length needed for ordering 

(rx) average rod length of the aggregates lying in the direction x 

(ry ) average rod length of the aggregates lying in the direction y 

vT number of vacancies of stage x 

W function which corrects for excluded area interactions 

length in x-direction of an aggregate of type i pointing in .k 
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direction k, expressed in lattice sites, 

y, length in y-direction of an aggregate of type i pointing in 

direction k, expressed in lattice sites. 

y' surface tension of the monolayer 

8 thickness of a rod, expressed in lattice sites 

<|> fraction of the surface, covered by rods 

<)) fraction of the surface, covered by rods, pointing in direction 

k 

(|)j fraction of the surface, covered by rods of type i, pointing in 

direction k 

X lattice constant 

(J. chemical potent ia l 

Hj chemical potent ia l of a molecule of t ype j 

m,hr chemical potential of a hard rod of type i, pointing in 

direction k 

\|/ fraction of the surface, covered by caps (cap fraction) 

\|/* critical cap fraction 

y cap fraction of rods, pointing in direction k 

\|/j cap fraction of rods of type i, pointing in direction k 

Q grand potential 

£la excess grand potential 

Q° non-equilibrium excess grand potential 

£2' monolayer part of Q° 

Q" micellar part of fia 

Qf excess grand potential of a rod of type i at a fixed position 
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Summary 

The aim of this study was to investigate the behavior of surfactants in porous 

media by theoretical means. The influence of curvature of a surface on the 

adsorption has been studied with a mean field lattice (MFL) model, as 

developed by Scheutjens and Fleer. An analytical theory has been developed 

to interpret the MFL results. The chapters three and four, which form the core 

of this thesis, have been devoted to the background and the outcomes of both 

theories. These theories contain various approximations and therefore 

limitations. In the flanking chapters two and five attempts to overcome two of 

these approximations have been described. First, the MFL theory considers 

water as built up from isotropic monomers. As a consequence, the theory 

cannot predict the characteristic behavior of water. An alternative model 

could be the Besseling theory, which is based on the quasi-chemical approach. 

Some elaborations of this water model have been reported in chapter two. 

Second, the MFL theory, as used in the chapters three and four, always 

assumes homogeneous surfactant layers, which is inherent to its mean field 

approximation. However, it is well known that adsorption layers of 

surfactants often consist of discrete aggregates. The Herzfeld model has been 

chosen to study the discrete nature of the adsorbed layer. The theory and its 

outcomes, dealing with aggregation and ordering behavior of surfactant 

aggregates at interfaces, have been described in the last chapter. 

In chapter two a lattice model for water, developed by Besseling, has been 

extended by incorporation of the electrostatic interactions of the water 

molecules with each other and with an external electrostatic field. This could 

have been the first step towards a better description of water near charged 

interfaces or in charged pores and electrosorption phenomena. The water-

water and water-field interactions have been treated with the reaction field 

approach of Onsager. Expressions have been obtained for the dielectric 

constant of the water in an external field. 

At low field strengths, the predicted permittivity is close to the experimental 

one. The temperature dependence has also been reproduced. The dipolar 

correlation factor has been obtained by using the Clausius-Mossoti equation 

for the refractive index and the Kirkwood-Frohlich expression for the 

dielectric constant. The predicted correlation factor and its temperature 
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dependence agree well with experimental data. However, the field strength 

behavior of the model is unexpected. Before saturation the predicted 

permittivity passes through a maximum. By modifying the hydrogen-bond 

interaction the saturation could be manipulated. However, this latter 

procedure does not have a sound physical origin. Somehow, if water 

molecules orient in large amounts, their interactions change. Therefore, 

investigations with this theory were not continued and much more simple 

models for water had to be chosen to study surfactant adsorption. 

An analytical theory for nonionic surfactants in hydrophilic cylindrical pores 

has been developed in chapter three. The adsorption has been approximated 

with a phase transition model. Above a certain surfactant concentration a 

monolayer of isolated molecules converts into a bilayer. With the help the 

thermodynamics of phase transitions, the surfactant chemical potential at 

phase transition could be related to the curvature of the pore. The shift in this 

chemical potential due to the curvature is in first approximation proportional 

to the curvature constant of the bilayer. A molecular model, mean field type, 

has been used to interpret this curvature energy. Both the curvature energy 

and the surface tension can be calculated from the excess grand potential 

density profile. The curvature constant has been calculated from the profile of 

a flat layer, which is allowed as long as this profile is not very sensitive to the 

curvature. An equation, which relates the chemical potential at phase 

transition, the curvature, the structure of the layer and the affinity, has been 

derived. 

Our model predicts that the chemical potential of phase transition decreases 

with decreasing pore radius. The adsorbed bilayer becomes more stable when 

the pore radius decreases. Experiments confirmed these trends. If the affinity 

of the adsorbed layer for the surface increases, the curvature influence on the 

chemical potential of phase transition increases. 

To test the analytical theory and to obtain generic knowledge about the 

influence of curvature on surfactant adsorption, MFL calculations have been 

performed, which have been described in chapter four. Contrary to the 

analytical model, the MFL theory allows changes in the structure of the 

adsorbed layer with curvature. 

The position of the phase transition in a curved system has been calculated as 

a function of the adsorption energy and the size of the tails and the 

headgroups. No matter what parameters were used, the MFL calculations 
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always predicted that the surfactant chemical potential of phase transition 

decreases with decreasing pore radius, which confirmed the outcome of the 

analytical model. Especially the adsorption energy turned out to have a strong 

influence on the sensitivity of phase transition for the curvature. The shift in 

the chemical potential of the phase transition becomes stronger with increa­

sing adsorption energy, as has also been predicted with the analytical theory. 

The most important approximation of the analytical theory, which has been 

tested with MFL calculations, is the curvature independency of the structure 

of the adsorbed layer. The surface tension of an adsorbed bilayer has been 

calculated as a function of the curvature for different chemical potentials. The 

curvature constant has been obtained as a function of the chemical potential 

by fitting these curves and calculating it from the excess grand potential 

density profile of a flat layer. It turned out that the last procedure, which is 

also used in the analytical theory, underestimates the value of the curvature 

constant. As long as this constant has a considerable value, the error made by 

this procedure does not effect the essential physics. Therefore it may be 

concluded that the analytical theory still captures the important physics 

despite its severe assumptions. 

Both the analytical theory and the MFL model neglect the existence of discrete 

surfactant aggregates at the surface. To remedy this shortcoming, in chapter 5 

the Herzfeld model has been applied to the adsorption of rod-like aggregates 

at a solid-water interface. The adsorbed layer was represented as a collection 

of rod-like polydisperse particles embedded in a monolayer of surfactants. An 

equilibrium condition has been derived, stating that the intrinsic excess grand 

potential of a rod of a given length plus its hard rod chemical potential has to 

be zero. The intrinsic excess grand potential has been divided into cap and 

body contributions, which are in principle the only two input parameters of 

the model. To calculate the hard rod chemical potential, the Herzfeld lattice 

model has been used. Rods are represented as rectangles. These rectangles 

have been placed on a square lattice. As a consequence the number of possible 

orientations of a rod is two. 

By combining the Herzfeld model and the equilibrium condition, expressions 

for the length distributions in both directions have been obtained. With these 

distributions expressions were derived for the total number of rods, the 

average aspect ratio and the standard deviation of this aspect ratio, all in both 

directions. The distributions have exponential forms, with decay parameters 

equal to the average aspect ratio minus one and the standard deviation of the 
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aspect ratio. The close relationship between the average aspect ratio and its 

standard deviation has made clear that size fluctuations are very important in 

systems with large rods. 

Calculations have been performed on isotropic systems. Adsorption iso­

therms have been calculated for different cap Helmholtz energies. These 

isotherms show that the surfactants already adsorb in large amounts when 

the aggregates as such are not stable. However the collection of aggregates is 

stabilized by the translational entropy. If the caps become more unfavorable 

the co-operativity of the adsorption increases, because the length of the 

adsorbed aggregates increases. Adsorption isotherms have also been obtained 

for systems, which are allowed to order. It has been shown that at a certain 

surfactant chemical potential a second order isotropic-nematic phase 

transition occurs. After this transition the growth of the aggregates is 

promoted in the direction of alignment and inhibited in the direction 

perpendicular to that. 

The isotropic-nematic transition line has been calculated. It turned out that 

ordering can take place at much lower surface densities of rods when the 

average aspect ratio increases. The cap fraction is inversely proportional to the 

average aspect ratio minus one to the power two at the transition line. 

Although this expression could not be derived, the close resemblance with an 

equation, derived for monodisperse rods, confirmed that it is an exact 

outcome of the model. With the formula found, a relation between surface 

density at the transition line and the Helmholtz energy of the end caps has 

been derived, which showed that the nematic ordering takes place at lower 

rod densities when the caps become more unfavorable. 

In the end of my study it has become more and more evident that the phase 

behavior of surfactants at interfaces should be at least as rich as in solution. 

As experimental techniques to investigate the structure of micelles at a surface 

are becoming available (e.g. AFM), we expect that the possible morphologies 

will become known to us in increasing detail in the near future. This thesis 

may assist the explorations, directed to fill the gaps in our knowledge of the 

behavior of surfactants at the solid-water interface, and thus allows us to use 

surfactants more effective in its applications. 
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Samenvatting 

Het kleinste onderdeel waaruit de natuur is opgebouwd wordt molecuul 

genoemd. Dat dit zeker geen onbeduidend deeltje is, blijkt wel uit het feit dat 

bijvoorbeeld een liter water ongeveer 33.000.000.000.000.000.000.000.000 

watermoleculen bevat. Een uitermate gelukkige bijkomstigheid van bijna alle 

moleculen is dat ze niet ongevoelig zijn voor de nabijheid van andere 

moleculen. Hun wisselwerking is een subtiel spel van aantrekking en 

afstoting. Wanneer de aantrekking maar sterk genoeg is gaan ze klonteren. 

Zijn de klontjes vloeibaar, dan spreken we over druppels. Zijn ze vast, dan 

noemen we ze kristallen of glazen. In veel gevallen hebben moleculen een 

sterke voorkeur voor hun eigen soortgenoten. Vanwege deze sterke voorkeur 

kiezen ze er vaak voor om samen te klonteren met soortgenoten, ondanks het 

feit dat het echt niet onplezierig voor hun is om met andere aanwezige 

moleculen in contact te treden. Lekkere jus bewijst dit elke dag weer. Omdat 

watermoleculen vrij narcistisch van aard zijn, worden de oliedeeltjes wel 

gedwongen om de bovenkant van de braadpan op te zoeken. Geheel 

onterecht krijgen de oliemoleculen het stempel hydrofoob (=watervrezend). 

Nu zijn er wel soorten stoffen die door het water worden geaccepteerd. Deze 

moleculen worden hydrofiel (=waterminnend) genoemd. Zij hebben met de 

watermoleculen gemeen dat ze er weinig voor voelen om in de olie te gaan 

zitten. 

De schepping bevat echter ook een type molecuul dat zich weinig aantrekt 

van deze conventies. Dit type gaat onder de namen detergent, surfactant 

en/of amfifiel door het leven. De naam detergent verwijst naar het feit dat 

met deze moleculen iets schoongemaakt kan worden. Met de namen 

surfactant en amfifiel dalen we af naar de microwereld. Deze categorie 

moleculen heeft de neiging om op te hopen bij allerlei grensvlakken, zoals het 

water-lucht-, water-olie- en water-bodemdeeltjesgrensvlak, en wordt daarom 

surfactant genoemd (surface is het engelse woord voor oppervlak). Een veel 

gebruikt woord voor ophoping aan een grensvlak is adsorptie. Amfifiel is 

onmiskenbaar de naam die het beste de aard van het molecuul beschrijft, 

omdat ze ons wijst op het dubbelzinnig gedrag van het molecuul; enerzijds is 

het molecuul hydrofiel en anderzijds hydrofoob. Het molecuul bestaat 

daadwerkelijk uit een hydrofiele kop en hydrofobe staart(en). Het is dit 

schizofrene karakter van het molecuul dat aanleiding geeft tot het adsorberen 
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aan grensvlakken. En dit ophopen is weer de oorzaak achter de schoonmaak-

kracht van het molecuul. 

Wanneer water te veel van deze surfactantmoleculen bevat, dan worden deze 

gedwongen om te aggregeren, d.w.z. in groepjes bij elkaar te gaan zitten. In 

eerste instantie kiezen ze voor kleine bolvormige aggregaten, die micellen 

worden genoemd. Deze klontjes groeien wanneer de hoeveelheid surfactant 

in water toeneemt. Zo kunnen onder andere lange staafvormige micellen en 

grote platen (bilagen) ontstaan. Al deze aggregaten hebben gemeenschap-

pelijk dat de staarten en de koppen respectievelijk aan de binnen- en 

buitenkant van de aggregaten zitten. 

Een groot vast deeltje bevordert dit aggregeren. Nog voordat de moleculen in 

het water micellen vormen, gaan ze al groepsgewijs op het oppervlak van het 

vaste deeltje zitten. Dit gebeurt omdat het surfactantmolecuul zich aange-

trokken voelt tot het vaste deeltje. Worden de koppen aangetrokken dan 

spreekt men van een hydrofiel deeltje. De staarten worden aangetrokken door 

zogenaamde hydrofobe deeltjes. Als er maar genoeg surfactantmoleculen in 

het water aanwezig zijn, dan kan het hele oppervlak van het vaste deeltje 

omgeven worden door een laag van surfactantmoleculen. Hydrofobe deeltjes 

worden dan omgeven door een enkele laag moleculen, die met de koppen 

naar het water zijn georienteerd. Hydrofiele deeltjes worden omgeven door 

een dubbele laag moleculen. De eerste laag bestaat uit moleculen die met hun 

kop grenzen aan het vaste deeltje en in de tweede laag zitten de moleculen 

met hun kop naar het water. Met deze beschrijving suggereren we dat deze 

lagen perfect zijn. In veel gevallen bestaat de laag echter uit een verzameling 

dicht op elkaar gepakte micellen of halve micellen. Deze micellen kunnen net 

als in water bol- of staafvormig zijn. 

Het hierboven geschetste adsorptiegedrag is nu het onderwerp van dit 

proefschrift. Uit het voorgaande is wel duidelijk dat al veel bekend is over 

surfactantadsorptie. Ons grote vaste deeltje kan voor het oog, lees sterke 

lichtmicroscoop of electronenmicroscoop, een egaal deeltje lijken, soms kan 

zo'n deeltje echter een heel stelsel van buizen, porien, herbergen. Deze porien 

kunnen allerlei diameters hebben. Het mengsel van water- en surfactantmole­

culen kan soms doordringen in dit gangenstelsel. Wanneer de diameter van 

een porie hoogstens een paar maal groter is dan de totale lengte van het 

molecuul, dan is het waarschijnlijk dat de wijze van ophoping aan het 

porieoppervlak zal verschillen van die aan het buitenoppervlak van het vaste 

deeltje. Dit proefschrift beschrijft onderzoek dat tot doel had om iets meer te 

weten te komen over het adsorptiegedrag aan het porieoppervlak. 
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Wetenschappelijk werk bestaat uit kijken wat er gebeurt, meten, en bedenken 

wat er zou kunnen gebeuren, theorievormen. Beide activiteiten vragen 

dusdanig veel ervaring, dat je jezelf wel moet richten op een van beiden als je 

anderzoekstijd beperkt is. Het onderzoek, beschreven in dit proefschrift was 

gericht op theorievorming. Het hart van dit proefschrift wordt gevormd door 

de hoofdstukken drie en vier. In deze hoofdstukken zijn met behulp van een 

tweetal theorieen ideeen gevormd over de mogelijke invloed van de porie op 

het adsorptiegedrag van surfactantmoleculen. De gebruikte theorieen 

bevatten echter een aantal haken en ogen. Twee van deze haken en ogen zijn 

het primitieve beeld van een watermolecuul en het feit dat aangenomen 

wordt dat de surfactantmoleculen altijd in nette lagen op het oppervlak van 

een vast deeltje gaan zitten. De hoofdstukken twee en vijf zijn gewijd aan 

deze twee beperkingen. 

Zoals al duidelijk is gemaakt, speelt water een belangrijke rol in het 

adsorptieproces van surfactantmoleculen. In hoofdstuk twee is een aspect van 

water besproken, dat in technische termen dielectrisch gedrag wordt 

genoemd. Een watermolecuul bestaat uit twee waterstofatomen en een 

zuurstofatoom. Het molecuul heeft een V-vorm en het zuurstofatoom zit in de 

punt van de V. Door deze specifieke ruimtelijke combinatie van atomen heeft 

het molecuul twee belangerijke eigenschappen. Ten eerste is het molecuul aan 

de puntkant van de V een klein beetje negatief en aan de pootjeskant van de V 

een klein beetje positief geladen. We zeggen dan dat het molecuul een dipool-

moment heeft. Wanneer je echter alle ladingen bijelkaar optelt, blijft er niets 

van over. Ten tweede trekt het waterstofatoom erg sterk aan het zuur­

stofatoom van een naburig watermolecuul, wat waterstofbrugvorming wordt 

genoemd. In water is een heel netwerk van deze bruggen aanwezig. 

Wanneer je een beker water tussen twee tegengesteld geladen platen zet, dan 

gaan de watermoleculen zich een beetje orienteren. Ze gaan met de punt van 

de V in de richting van de positief geladen plaat staan. Dit noemen we 

polarisatie en het leidt tot het dielectrisch effect. Omdat watermoleculen door 

hun waterstofbruggen erg sterk aan elkaar trekken, sleuren ze elkaar ook mee 

wanneer ze zich orienteren. In verhouding tot andere vloeistoffen heeft water 

daarom een erg hoge dielectrische constante. Deze constante is zo 

gedefinieerd dat hij veel lager is voor vloeistoffen die niet zo sterk op 

electrisch velden reageren. 

Met behulp van de Besseling theorie hebben we voorspeld dat de dielec­

trische constant van water verandert van ongeveer 90 naar 75 wanneer de 
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temperatuur stijgt van 0° naar 100°C. Dit bleek heel goed te kloppen met wat 

ooit al gemeten is. Wanneer je de lading op de al eerder geschetste platen 

vergroot, de sterkte van het electrische veld neemt dan toe, dan gaan steeds 

meer watermoleculen zich orienteren. Boven een zekere veldsterkte zijn bijna 

alle moleculen georienteerd en valt er dus weinig meer te orienteren. Dit 

wordt dielectrische verzadiging genoemd. Wij hebben berekend hoe de 

dielectrische constante verandert met toenemende sterkte van het electrische 

veld. Boven een zekere veldsterkte treed de verzadiging inderdaad op, de 

dielectrische constante daalt dan sterk. Volgens onze voorspelling vindt er 

voor deze daling eerst een stijging plaats. Dit is in tegenstelling met alles wat 

tot nu toe gedacht en gemeten is. Omdat we de oorzaak van deze afwijkende 

voorspelling niet kenden en ook andere onbevredigende resultaten hadden 

geboekt met de Besseling theorie, zijn we gestopt met dit model. Aan surfac-

tantmoleculen, waar het om begonnen was, is door ons dus nooit gerekend 

met dit watermodel. Voor het eigenlijke doel van het onderzoek, surfac-

tantadsorptie aan porie-oppervlakken, hebben we daarom gebruik gemaakt 

van een tweetal andere theorieen. 

In hoofdstuk drie is beschreven hoe een eenvoudige model, die de afkorting 

ST heeft meegekregen, is ontwikkeld, dat ondanks zijn beperkingen toch 

voorspellingen deed die in overeenstemming waren met metingen. In 

hoofdstuk vier zijn berekeningen besproken, die uitgevoerd zijn met een 

bestaande theorie, die ooit ontwikkeld is door Scheutjens en Fleer, die wij 

aanduiden met de afkorting MFL. 

In beide onderzoekingen hebben we ons gericht op de adsorptie van 

ongeladen surfactantmoleculen in buisvormige porien met een hydrofiel 

oppervlak. De hoeveelheid moleculen die op een oppervlak zit hangt sterk 

samen met het aantal (concentratie) dat in water aanwezig is. Een grafiekje 

waarin we de geadsorbeerde hoeveelheid uitzetten tegen de concentratie 

wordt een adsorptieisotherm genoemd. Voor ongeladen surfactantmoleculen 

en hydrofiele oppervlakken heeft de isotherm een tamelijk karakteristieke 

vorm. Bij hele lage concentraties zitten er nauwelijks moleculen op het 

oppervlak. De geadsorbeerde hoeveelheid stijgt licht met de concentratie. De 

surfactantmoleculen adsorberen onafhankelijk van elkaar op het oppervlak. 

Vanaf een zekere concentratie vertoont de adsorptieisotherm een sterke 

stijging, om bij nog hogere concentraties weer af te vlakken. De sterke stijging 

valt samen met ontstaan van aggregaten op het oppervlak. Hoe groter deze 
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aggregaten zijn, des te sterker de stijging van de adsorptie. De afvlakking 

heeft te maken met het feit dat het oppervlak op een zeker moment vol is. 

Zowel de ST- als de MFL-theorie maken zich niet druk om de tussenregio. Ze 

nemen aan dat de moleculen altijd in nette lagen of laagjes op het oppervlak 

zitten. Dit is nu net niet het geval in de regio waar de sterke stijging 

plaatsvindt, want daar zitten ze in klontjes bij elkaar. Door deze aanname 

laten de resultaten een sprong in de geadsorbeerde hoeveelheid zien. Een 

dergelijke sprong wordt in de natuurkunde een faseovergang genoemd. 

Hoewel een dergelijke sprong dus in de werkelijkheid nauwelijks voorkomt, 

kan de regio waarin de sterke stijging plaatsvindt beschouwd worden als een 

overblijfsel van de faseovergang. We hebben de invloed van de porie op deze 

faseovergang met behulp van onze theorieen voorspeld, want dat zegt ons 

iets over de invloed van de porie in de werkelijkheid. Het type surfactant-

molecuul en de surfactant-oppervlak wisselwerking bleken de invloed van de 

porie niet belangrijk te veranderen. Voorspeld werd dat de faseovergang 

altijd naar lagere concentraties verschuift wanneer de straal van de porie 

kleiner wordt. 

Hoewel de hoofdstukken drie en vier er ingewikkeld uitzien, bleek het met de 

gebruikte theorieen ontwikkelde idee betrekkelijk eenvoudig te zijn. Ruwweg 

zijn er twee tegenwerkende factoren: de wisselwerking tussen de surfactant-

kop en het oppervlak en de ophoping van surfactantmoleculen. De wissel­

werking tussen de kop en het oppervlak begunstigt de aanwezigheid van 

moleculen aan het oppervlak. De ophoping van materiaal is echter niet 

gunstig. Dat dit zo is blijkt uit het feit dat de surfactantmoleculen die los in 

het water zijn nog niet de neiging hebben om te aggregeren. Wanneer de 

straal van een porie nu verkleind wordt kunnen er per oppervlakte eenheid 

gewoon minder moleculen ophopen wegens ruimtegebrek. Door de straal van 

de porie te verkleinen kunnen de moleculen een laag vormen die minder 

ongunstig is. Technisch gesproken: de laag wordt stabieler doordat de straal 

verkleind wordt. En een adsorptielaag kan bij lagere concentratie ontstaan 

wanneer hij stabieler is. 

Het meest onbevredigende aspect van de ST- en MFL theorie is het feit dat 

van te voren opgelegd wordt dat de surfactantmoleculen nette lagen vormen 

op het oppervlak, terwijl nu juist bekend is dat de geadsorbeerde lagen in veel 

gevallen bestaan uit een verzameling losse aggregaten. In hoofdstuk vijf is een 

theorie, ontwikkeld door Herzfeld, geschiktgemaakt voor surfactantadsorptie. 

In deze theorie worden de surfactantaggregaten beschouwd als rechthoeken, 
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die kunnen varieren in de lengte en in de breedte en in twee richtingen 

kunnen liggen. We hebben de theorie uitgewerkt voor staafvormige micellen 

met een constante dikte en een variabele lengte. Ook is er rekening gehouden 

met het feit dat een surfactantmolecuul zich niet even prettig in de kop voelt 

als in het midden van de staaf. 

Uit berekeningen bleek dat het aantal surfactants op het oppervlak en de 

gemiddelde lengte van de staven toenemen wanneer de surfactant-

concentratie toeneemt. Tevens bleek dat de staven gemiddeld groter waren 

als de surfactantmoleculen zich onprettiger voelden in de uiteinden van deze 

staven. De berekeningen lieten zien dat bij een bepaald gemiddelde 

staaflengte en een bepaalde hoeveelheid staven op het oppervlak de staven 

zich in een richting gaan orienteren. Deze overgang wordt de isotroop-

nematische overgang genoemd en vindt plaats omdat de willekeurig liggende 

staven elkaar te veel gaan hinderen en het daarom gunstiger is voor de 

staven om in een richting te gaan liggen. Het bleek dat na deze overgang de 

gemiddelde lengte van de staven die netjes opgelijnd lagen sterk groeide met 

toenemende concentratie. De gemiddelde lengte van de loodrecht 

georienteerde staven blijkt echter af te nemen met de concentratie. 

Aan het eind van mijn onderzoek is het me in toenemende mate duidelijk 

geworden dat er enorm veel kan gebeuren met surfactantmoleculen aan het 

oppervlak van een vast deeltje. Omdat er steeds meer technieken beschikbaar 

komen om te kijken naar de vorm van de surfactantaggregaten op opper-

vlakken, verwachten we dat onze kennis op dit gebied sterk zal toenemen. De 

inhoud van dit proefschrift draagt bij aan pogingen om iets meer te begrijpen 

van surfactantadsorptie en de aggregaten die daarbij een rol spelen. 
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