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Stellingen 

Het verschil in hittestabiliteit van de twee belangrijkste groepen trypsineremmers, de 
Kunitz- en de Bowman-Birk-remmer, is niet, zoals soms wordt gesteld, de verklaring 
voor het twee-fasen-inactiveringsgedrag van de trypsineremmers in soja. Thiolen 
lijken een belangrijke invloed te hebben op het inactiveringsgedrag van de 
try p sineremmers. 

Dit proefschrift, Hoofdstuk 3. 

Het verdampen en elders weer condenseren van water tijdens de enkelschroefs-
extrusie van biomaterialen krijgt bij het modelleren van de warmte-overdracht in een 
enkelschroefsextruder te weinig aandacht. 

De productkwaliteit van sojabonen kan bij stomen beter geoptimaliseerd worden door 
verandering van het initiele vochtgehalte van de bonen dan, zoals vaak wordt 
aangenomen, door aanpassing van de stoomtemperatuur. 

Dit proefschrift, Hoofdstuk 5. 

Bij onderzoek naar het efficienter gebruiken van de voedingswaarde van sojabonen 
moet, behalve naar de optimalisatie van individuele processen in de keten sojaboon-
veevoeder-vlees, ook naar alternatieve voedingsketens gekeken worden waarbij 
sojabonen rechtstreeks in levensmiddelen worden verwerkt. 

5. Het milieu-argument bij het stimuleren van het thuiswerken is 's winters zeer dubieus, 
gezien het hogere energieverbruik door de verwarming van de eigen woning. 

De toenemende mobiliteit van de reiziger heeft een groter effect op de totale milieu-
belasting dan de keuze voor een bepaald vervoersmiddel (auto, trein of vliegtuig) die 
de reiziger voor zijn/haar vervoer maakt. 

7. Sommige technieken om levensmiddelen langer houdbaar te maken, zoals het verlagen 
van de zuurgraad en het toevoegen van suikers, zijn helaas slecht voor de 
houdbaarheid van de tanden. 



8. Er zou bij de technische opleidingen meer aandacht besteed moeten worden aan de 
geschiedenis van de techniek en de samenhang hiervan met ontwikkelingen in de 
samenleving. 

9. Talen en cultuurstudies zouden in een dienstverlenend land als Nederland meer 
aandacht moeten krijgen tijdens de opleidingen, juist in een tijd van globalisering. 

10. De complexiteit van de plots van 'filmspotjes' in reclameblokken benadert inmiddels 
die van vele reguliere speelfilms. 

Stellingen behorende bij het proefschrift "Modelling of heat treatment of soy" 

Rob van den Hout 
Wageningen, augustus 1997 



Contents 

1. Introduction. 1 

2. Modelling of the inactivation kinetics of the trypsin inhibitors in soy flour. 11 

3. Inactivation kinetics study of the Kunitz soybean trypsin inhibitor 

and the Bowman-Birk inhibitor. 29 

4. Influence of extrusion shear forces on the inactivation of the trypsin inhibitors 

in soy flour. 45 

5. Modelling of the product quality of soybeans during steaming. 65 

6. General discussion. 87 

Summary 111 

Samenvatting 113 

Nawoord 115 

Curriculum vitae 117 



1. Introduction 

General introduction 

Soybeans are the dominant oilseed in the world market. During a normal production 

year, soybeans make up about one-half of all oilseeds produced world-wide. The total 

world production of soybeans accounts for almost 134 million metric tons (forecast for 

1996/1997), and is expected to continue to increase as long as the world population 

increases and people continue to upgrade their diet to include more fats, oils and live

stock-based proteins. The United States (47%), Brazil (20%), China (10%) and 

Argentina (10%) are the dominant sources for soybeans (Mielke, 1996). Soybeans are 

popular because of their high oil (20%) and protein content (39%). The protein content 

in defatted soybean meal is about 48% compared to 25-30% for other beans (Belitz and 

Grosch, 1985). Soybean oil is used for baking-, frying-, salad- and cooking oil and 

margarine. Soybean meal is used extensively in high-protein commercial feeds for poultry 

and swine, and to a lesser extend for beef cattle. A small amount of soybean meal is used 

for human foods. 

Consumption of raw seeds has negative effects on the growth and health of human 

beings and animals. These negative effects are caused by antinutritional factors (ANFs). 

Several reviews have been published on the ANFs subject (Liener, 1994, Huisman, 1990 and 

Rackis et al, 1986). ANFs in plants and seeds often act as biopesticides, protecting the 

seed against attacks of moulds, bacteria, insects and birds. The main classes of ANFs in 

soybeans are the protease inhibitors, lectines, flatulence factors and allergens. 
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The trypsin inhibitors (TIs) are generally regarded as the main ANFs in soybeans. TIs 

cause an inhibition in the growth of chicks, rats and mice, a depression in the digestibility 

of the proteins in the diet, and an enlargement of the pancreas (Liener, 1994 and Huisman, 

1990). The TIs can be divided in two main groups: the Kunitz soybean trypsin inhibitor 

(KSTI) and the Bowman-Birk inhibitor (BBI). KSTI has a molecular weight of about 

20,000 g mol"1, two disulphide bridges, and inhibits primarily trypsin. BBI has a 

molecular weight of 6000 to 10,000 g mol"1, a high proportion of disulphide bridges, and 

the capability of inhibiting trypsin as well as chymotrypsin at independent sites (Liener, 

1994). It is noteworthy that, when an average TI content in soybeans of 20 mg g"1 is 

assumed, the annual world production of TIs from soybeans is about 2.7 million metric 

tons! 

TIs and some of the other ANFs are heat labile and are generally inactivated by atmospheric 

steaming. Other heat treatments like pressurised steaming, extrusion cooking and expander 

cooking are also used. Over-processing reduces the availablilty of the proteins. When the 

process cost for steaming is about 16 Dutch guilders per ton beans (Melcion and Van der 

Poel, 1993), the annual cost for steaming the world production of soybeans is estimated 

to be 2 billion Dutch guilders. 

The residual feed quality of the beans after a heat treatment can be measured in vivo or in 

vitro (Figure 1). In vivo experiments are costly and time consuming. Therefore, the 

adequacy of a heat treatment on the feed quality is mostly evaluated by in vitro 

measurements. 

process parameters bean quality parameter animal performance 
{in vitro) {in vivo) 

temperature - ^ • TIA - ^ • feed conversion 
moisture content UA faecal digestibility 
residence time NSI ileal digestibility 

bean size PDI 
shear available lysine 

Fig. 1. Connection between process parameters, bean quality parameters, and 

animal performance. 
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The most used in vitro analyses are trypsin inhibitor activity (TIA), urease activity (UA), 

nitrogen solubility index (NSI), protein dispersibility index (PDI), and available lysine. 

TIA and UA are considered to indicate under-processing, NSI and PDI under- and over-

processing (Dale et al, 1990), and available lysine over-processing. In this thesis residual 

TIA levels were followed to evaluate the effect of the heat treatment on ANFs in 

soybean. The reduction of the protein availability was followed by determining residual NSI 

and available lysine levels. 

The heat treatments of soybeans are usually considered as 'black boxes'. Process design 

and control are usually based on experience and 'trial-and-error'. Sometimes a small 

number of plant experiments are performed to get a quick insight in the significance of a 

process parameter (e.g. residence time) on the product quality. The number of 

experiments to be performed, however, increases when the number of process 

parameters increases (e.g. process temperature, initial moisture content, and residence 

time). This involves a substantial number of expensive experimental runs. Moreover, 

optimisation and design of the process are difficult to perform. 

An alternative is the 'white box' approach. In the 'white box' approach, process 

models (e.g. heat and mass transfer during steaming) and reaction kinetics models (e.g. 

decrease of TIA and NSI) using physical properties of the feed (e.g. water and heat 

diffusion coefficient, and heat conductivity) are combined to predict the change of feed 

quality during the heat treatment. In this approach experiments are necessary to 

determine the kinetics and physical parameters and to validate the overall model. 

However, most of these experiments are performed on a less expensive lab-scale. The 

combined kinetics and process model is validated with only a few additional plant 

experiments. Once the model is validated, predictions can be performed with none or 

only very few experiments. 

A brief state of the art of the inactivation kinetics of TIs and the influence of steaming 

and extrusion cooking on the inactivation of TIs will be discussed in the next paragraphs. 

Next, the aim and the outline of this thesis will be presented. 
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Inactivation kinetics of TIs 

Kinetics model 

The inactivation kinetics of TIs in beans was investigated by several authors at different 

temperatures and moisture contents. DiPietro and Liener (1989) observed a first order 

reaction for TIA in defatted soy flour (75<T<95 °C). Buerra et al (1984) found a first order 

reaction for TIA in Phaseolus Vulgaris beans (70<T<100 °C). A two-phase inactivation 

behaviour for TIs in Phaseolus Vulgaris beans (90<T<118 °C) and soybeans (102<T<137 °C) 

was observed by Roa et al (1989) and Van Zuilichem et al (1993), respectively. This two-

phase inactivation behaviour for TIs was also found during steaming of Phaseolus Vulgaris 

(102<T<136 °C; Van der Poel, 1990). 

The inactivation rate constant of TIs in soy flour measured by DiPietro and Liener 

(1989) was strongly dependent on moisture content at 95 °C (5<mc<15%). Buerra et al 

(1984) found that the inactivation rate constant of TIs in Phaseolus Vulgaris was maximal at 

0.30 g (g ds)"1. The inactivation rate contstant of the first inactivation phase of TIs in 

Phaseolus Vulgaris (Roa et al, 1989) showed a maximum at 0.26 g (g ds)'1. The rate constant 

of the second phase increased with increasing moisture content (0.10-0.47 g (g ds)'1). 

Roa et al (1989) modelled the two-phase inactivation behaviour of TIs in Phaseolus 

Vulgaris with a discontinous equation of two successive first order reactions. Since the 

discontinuity of this equation was not defined, this kinetics model can not be combined with 

process models. 

In concluding, no experimental inactivation data of TIs in soy flour within a large 

range of process conditions of temperature and moisture content are available in literature. A 

continous inactivation kinetics model to predict TIA in soy flour as a function of temperature 

and moisture content was not presented. 

Inactivation mechanism 

A two-phase inactivation behaviour for TIs in soybeans and Phaseolus Vulgaris beans was 

found by several authors (Roa et al, 1989, Van der Poel, 1990 and Van Zuilichem et al, 

1993). Different explanations for this phenomenon were presented. One explanation is a 

difference in heat stability of the two major TI groups: KSTI and BBI. BBI generally has 

been considered to be more heat stable than KSTI, because of the heat stability of BBI in 

aqueous solutions (Birk, 1961 and Obara and Watanabe, 1971). Rouhana et al (1996) found 

that BBI in soymilk was more heat stable than KSTI at temperatures below 137 °C. Other 
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literature reported that KSTI is equal (Liener and Tomlinson, 1981) or more heat stable 

(DiPietro and Liener, 1989 and Friedman et al, 1991) than BBI in soy flour. The results in 

literature about the heat stability of KSTI and BBI are clearly conflicting. 

Roa et al (1989) and Van Zuilichem et al (1993) referred to Multon and Guilbot 

(1975) to explain the two-phase inactivation behaviour of TIs in beans. Multon and Guilbot 

(1975) explained the two-phase inactivation behaviour of ribonuclease in wheat grains by the 

catalytic role of water during the inactivation. The role of water in the two-phase inactivation 

behaviour of TIs in soybeans was not investigated and is therefore not known. 

Heat processing 

Steaming 

Steaming (toasting) is mostly applied in the animal feed industry to inactivate the ANFs. 

Rackis (1974) and Smith et al (1964) studied the effect of atmospheric steaming on the 

nutritional value of soya meal. Jansen et al (1985) examined the effect of steaming at 

about 95 °C on the residual TIA, protein solubility and UA in soybeans. With pressurised 

steaming an additional degree of freedom, the steam temperature, is introduced. The use 

of pressurised steaming results in shorter residence times, so called HTST (High 

Temperature Short Time) processes. Additionally, pressurised steaming might result in a 

change in availability of essential amino-acids. The effect of autoclaving on the residual 

TIA and NSI in soya meal and feed-weight gain ratio of chickens was investigated by 

Dale et al (1990). The effect of pressurised steaming on residual TIA, PDI, UA and ileal 

digestibility of soybeans was studied experimentally by Qin et al (1996). 

Although experimental data are available, no model to predict the feed quality 

during steaming is presented in these studies. 

Extrusion cooking 

The effect of extrusion cooking on the extrudate characteristics is widely described in 

literature. Heat is transferred by convection through the barrel and generated by viscous 

dissipation due to shear stresses. Proteins like TIs are denaturated by the high 

temperature of the soy during extrusion cooking. Several authors studied the effect of 

temperature, feed moisture content, and screw speed on extrudate characteristics such as 

TIA and available lysine (Hendrix et al, 1994 and Mustakas et al, 1970). Petres et al 
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(1993) and Aguilera and Kosikowski (1976) used response surface analysis to study the 

effect of these process parameters on TIA. 

Contrary to steaming, shear forces are involved during extrusion cooking. 

Mechanical degradation during plastic polymer extrusion is related to molecular siccion 

induced by the application of stresses. This results in a reduction of the molecular weight of 

the plastic polymers (Rauwendaal, 1994). Little is known about the effect of shear forces on 

the denaturation of proteins during extrusion cooking. Shear can cause physical 

deformation of proteins and therefore possibly has an additional denaturation effect on 

proteins. Marsman et al (1995) studied the influence of shear forces on some chemical, 

physical and physiological factors of toasted soybean meal during extrusion cooking. 

They found no correlation between different shear levels and animal performance. If TIs 

in soy flour are inactivated by the deformation of the TI molecules, this will result in an 

extra process parameter to optimise the heat treatments where shear is involved, such as 

extrusion- and expansion cooking. 

It is unknown if the deformation of proteins during extrusion cooking has any 

effect on the denaturation of proteins or on the inactivation of TIs particularly. 

Aim of this thesis 

The first aim of this thesis is to model the influence of steaming on the product quality of 

soybeans. The 'white-box' approach has been worked out in Figure 2. The inactivation 

kinetics of TIs in soy flour is measured and modelled under a large range of temperatures 

and moisture contents. A process model for steaming is set up and combined with the 

kinetics models for TIA and NSI to predict the residual TIA and NSI levels in the 

steamed soybeans. The combined model is used to optimise the feed quality of soybeans 

using TIA and NSI as quality parameters. 

Second aim is to investigate the mechanism of TI inactivation in soy flour. The 

inactivation kinetics of KSTI and BBI is studied. 

Third aim is to investigate the influence of shear forces on the inactivation of TIs in 

soy flour during extrusion cooking. The influence is examined by performing theoretical 

calculations and extrusion cooking experiments. 
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r \ 
inactivation mechanism (5) 

influence of shear (4) 
physical factors (6) 1 

soy 

< 
reaction kinetics process models 
Tl-inactivation (2) extrusion cooking (4) 
NSI-decrease (J) steaming (5) 

prediction residual TIA and NSI levels 

I 
optimisation 

feed quality (5 and 6) 
process costs (6) 

Fig. 2. Outline of the thesis. Chapter numbers are between brackets. 

Outline of this thesis 

Figure 2 shows an overview of the topics that are covered in this thesis. The inactivation 

kinetics of TIs is measured and modelled in Chapter 2. The inactivation mechanism of TIs 

in soy flour is studied in Chapter 3. In Chapter 4, the influence of extrusion shear forces 

on the inactivation of TIs in soy flour is studied theoretically and experimentally. In 

Chapter 5, the steaming process is modelled. The kinetics of NSI-decrease in soy flour is 

determined in separate experiments. The decrease of TIA and NSI in soybeans during 

steaming is predicted and compared with experimental data. In Chapter 5 and 6, the feed 

quality of soybeans during steaming is optimised using TIA and NSI as quality 

parameters. Furthermore, some additional aspects on the inactivation kinetics of TIs will 

be discussed in Chapter 6. 
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Symbols 

ANF antinutritional factors 
BBI Bowman-Birk inhibitor 

KSTI Kunitz soybean trypsin inhibitor 

NSI nitrogen solubility index 

PDI protein dispersibility index 

TI trypsin inhibitor 

TIA trypsin inhibitor activity 

UA urease activity 
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2. Modelling of the inactivation kinetics of the trypsin 
inhibitors in soy flour 

Abstract 

The inactivation kinetics of tryspin inhibitors (TIs) in soy flour was measured within a large 

range of temperatures (80-134 °C) and moisture contents (0.08-0.52 g (g ds)"1). The 

inactivation of TIs showed a two-phase inactivation behaviour. The influence of the moisture 

content on the inactivation rate of TIs was large at moisture contents <0.30 g (g ds)"1. Six 

different inactivation kinetics models were used to describe the decrease of the trypsin 

inhibitor activity at constant moisture content. The models were compared statistically using a 

corrected Akaike information criterium. The most parsimonious models at moisture contents 

<0.30 g (g ds)"1 were the model with two first order reactions each for a different TI group, 

and the model with an irreversible inactivation of a native TI to a partially active intermediate 

TI, followed by a denaturation step. The n"1 order reaction model was favored at moisture 

contents >0.40 g (g ds)"1. The kinetics parameters of the model with two first order reactions 

were modelled as a function of moisture content. The overall inactivation model described the 

experimental inactivation data of TIs well. 

This chapter has been submitted as: 

Rob van den Hout, Gerrit Meerdink, Klaas van't Riet. Modelling of the inactivation kinetics of the trypsin 

inhibitors in soy flour. 
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Introduction 

Soybeans are a good source of proteins for animals and human beings. However, a number of 

antinutritional factors (ANFs) are present in soybeans, of which the trypsin inhibitors (TIs) are 

generally considered as the most important ANFs. Two major groups of the TIs can be 

distinguished: the Kunitz soybean trypsin inhibitor (KSTI) and the Bowman-Birk inhibitor 

(BBI). The TIs are heat labile and can be inactivated by a heat treatment such as steaming and 

extrusion cooking (Liener, 1994). 

A kinetics model for the trypsin inhibitor activity (TIA) is useful in combination with a 

process model to design or optimise the heat treatment of soybeans. Inactivation kinetics 

of TIs has been investigated by several authors in different kinds of beans at different 

temperatures and moisture contents. DiPietro and Liener (1989) observed a first order 

reaction for TIA in defatted soy flour (75<T<95 °C). Buerra et al (1984) found a first order 

reaction for TIA in Phaseolus Vulgaris beans (70<T<100 °C). A two-phase inactivation for 

TIs in Phaseolus Vulgaris beans (90<T<118 °C) and soybeans (102<T<137 °C) was 

observed by Roa et al (1989) and Van Zuilichem et al (1993), respectively. This two-phase 

inactivation behaviour for TIs was also found during steaming of Phaseolus Vulgaris beans 

(Van der Poel, 1990). A possible explanation of this two-phase inactivation behaviour is a 

difference in heat stability of KSTI and BBI. BBI generally has been considered to be more 

heat stable than KSTI, based on their stability in aqueous solutions (Birk, 1961 and Obara and 

Watanabe, 1971). Rouhana et al (1996) found that both KSTI and BBI followed a first order 

reaction in soymilk and that BBI was more heat stable than KSTI at temperatures below 137 

°C. Other literature reported that KSTI is equally (Liener and Tomlinson, 1981) or more heat 

stable (DiPietro and Liener, 1989 and Friedman et al, 1991) than BBI in soy flour. 

Sanderson et al (1982) suggested that thermal denaturation of KSTI in a potassium 

phosphate buffer is not a simple two-state process and that significant levels of at least one 

intermediate form must accumulate during denaturation. 

The inactivation rate constant of TIs in soy flour as measured by DiPietro and Liener 

(1989) was very dependent on moisture content at 95 °C (5<mc<15%). Buerra et al (1984) 

found that the inactivation rate constant of TIs in Phaseolus Vulgaris beans was maximal at 

0.30 g (g ds)"1. However, the differences in the reaction rate constants were small above 0.30 

g (g ds)"1. The inactivation rate constant of TIs in Phaseolus Vulgaris of the first inactivation 
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phase (Roa et al, 1989) showed a maximum at 0.26 g (g ds)"1. The inactivation rate constant 

of the second phase increased with increasing moisture content (0.10-0.47 g (g ds)'1). 

Roa et al (1989) modelled the two-phase inactivation behaviour of TI in Phaseolus 

Vulgaris with a discontinous equation of two successive first order reactions. Since the 

discontinuity of this equation was not defined, this kinetics model can not be combined with 

process models. 

There is clearly no agreement on the inactivation kinetics of TIs. Different authors 

presented different models and different explanations about the underlying mechanism. A 

predictive model to describe the inactivation of TIs in soy flour at different temperatures and 

moisture contents was not presented yet. 

First aim of this study was to set up an overall kinetics model to describe the inactivation of 

TIs in soy flour as a function of temperature and moisture content. Second aim was to 

compare mechanistically different kinetics models in their ability to describe the experimental 

data. Experimental inactivation data were measured within a large range of temperatures, 

moisture contents and residence times. When an inactivation experiment is started, the 

temperature of the sample increases until the equilibrium temperature has been reached. The 

temperature of the samples during the experiments must be known to estimate the kinetics 

parameters. A heat transfer model to predict the mean temperature of the sample during an 

inactivation experiment is incorperated within the estimation procedure of the kinetics 

parameters. Six kinetics models were fitted to the experimental data at constant moisture 

content and were compared statistically. The kinetics parameters of the most parsimonious 

kinetics model were modelled as a function of moisture content. 

Theory 

Inactivation kinetics models 
Different kinetics models are used in literature to describe the denaturation of proteins. In 

Table 1 six different inactivation kinetics models for TIs are presented. Model 1 describes a 

^single first order reaction. Model 2 describes the inactivation of two TI groups, e.g. KSTI and 

BBI. These two groups inactivate each with a different first order reaction rate constant. 

Parameter A is the fraction of one of the two groups of TIs in the unprocessed sample. 
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Table 1. Inactivation kinetics models and their parameters 

model integrated equation (constant T and mc) kinetics parameters (constant mc) 
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Co 

3" d ct,Ti _ , r , r E,i, Ea.i, Ea2, k,!, k,.,, k.2, a 
• - ~ K i ^-t/n + K - i ' w / n a 

4 

5 " 

6 

dt ' ' ' " v ' ^ M 

Ct =C t)TI + a -C t T ] a 

^1 = p . e-krt + (i.p).e-k2t • 
Co 

l P _ 1 + k 2 - k J 
same as model 3, except a=0 

l n ( ( « - l ) k t + C0~") 
ln(Ct) = - ^ '-

\-n 

a 

E a ] , Ea2, kri, kr2, 01 

E a l , Ea-1, Ea2, k , ] , kr-1, k,2 

Ea, kri, n 

model 1: first order reaction; model 2: model with two TI groups; model 3: reversible reaction to 

a partially active intermediate TIa followed by a denaturation step; model 4: irreversible reaction 

to a partially active intermediate TIa followed by a denaturation step; model 5: reversible reaction 

to a inactive intermediate TIa=0 followed by a denaturation step and model 6: n"1 order reaction. 
v>: integration of these equations is not possible. 

Henley and Sadana (1984) have presented a model for a series-type of enzyme deactivation. 

The initial enzyme alters by a first order reversible reaction to a partially active form which 

changes again by a first order reaction to a complete inactive state. Assuming that only three 

forms of TIs exists: native TI, a partially active form TIa and a complete denaturated form 

TIj, the inactivation of TIs is as follows (model 3): 

ki k2 

TI «, »» TIa • TId 

k-, 
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Parameter a is the activity fraction of TIa. It is not a priori known if a is dependent on 

temperature or moisture content. Two simplified alternative readings of this model are also 

used to describe the inactivation of TIs. One reading describes a first order irreversible 

reaction to a partially active intermediate TIa followed by a first order denaturation (k -i=0, 

model 4). This model was used by Henley and Sadana (1984) to fit deactivation data of 

several enzymes. The other reading describes the inactivation of TIs by a first order reversible 

reaction to an inactive intermediate TI„=o followed again by a denaturation step (a=0, model 

5). The n"1 order reaction model is used as model 6. Such a model was used to describe the 

aggregation of (3-lactoglobulin (Roefs, 1994). Since no inactivation mechanism is given here, 

the n* order reaction model for TIA is used for its predictive value only. 

Different TI groups are assumed to inactivate with equal reaction rate constants for all 

models, except the model with two TI groups. Notice that the model with two TI groups 

(model 2) and the model with irreversible reaction to a partially active TIa (model 4) are 

mathematical identical at constant temperature and moisture content (Table 1). 

Reaction rate constants are assumed to be dependent on temperature following the 

Arrhenius equation. In order to diminish the correlation between the activation energy and the 

pre-exponential factor, the pre-exponential factors (kr) were estimated at a reference 

temperature (Tr): 

ln(k) = l n ( k r ) - | i d - ^ ) (1) 
K 1 Tr 

A reference temperature of 383 K was chosen. The kinetics parameters of Table 1 were 

estimated using the experimental data at different temperatures and at constant moisture 

content. 

Comparison of the kinetics models 

When models with different numbers of parameters are compared, the residual sum of 

squares (RSS) does not give enough information to discriminate between these models. The 

minimum corrected Akaike information criterion (AICC) produces a ranking of parsimonious 

models when the number of experimental data is small, or when the number of fitted 

parameters is a moderate to large fraction of the number of data (Hurvich and Tsai, 1989): 
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,2 . m ( m + p) 
AICc=m.ln(St) + —^ ^ (2) 

(m-p-2) 

in which: 

m 

RSS=sf ^ - ^ I ' (4) 
i=iUc(i) + C(i))/2j 

Material and methods 

Materials 
Defatted, untoasted soy flakes (protein dispersibility index = 80) from Cargill (Amsterdam, 

The Netherlands) were used. The initial moisture content of the flour was 0.08 g (g ds)'1. The 

TIA of the untreated flour was 23.3 mg (g ds)"1. KSTI was obtained from Merck (art. no. 

24020). 

Conditioning of the soy flakes 

The soy flakes were milled on a Retsch mill with a 0.2 mm sieve. The flour was moisterised 

by adding water dropwise to the flour in a cooled blender. The flour was stored for 5 till 7 

days at 4 °C to equilibriate. The moisture content was measured according to AOAC (1990). 

Inactivation experiments 

A steel cell (1 mm steel thickness) was used for the inactivation experiments. The inner 

chamber of the cell (2 mm height and 7 cm diameter) was filled with 5 g soy flour and placed 

in a stirred oil or water bath. In a number of experiments the temperature in the middle of the 

cell was measured with a thermocouple. Experiments were performed at moisture contents of 

0.08, 0.13, 0.23, 0.30 and 0.40 g (g ds)"1, each at temperatures of 90, 104, 119 and 134 °C, 

and at 0.52 g (g ds)"1 at 80, 85, 90 and 104 °C. After the heat treatment, the cell was imme

diately transferred to an ice-water bath. The flour was dried at 35 °C for 24 hours before the 

determination of TIA. 
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Trypsin inhibitor activity assay 
TIA in soy flour was measured with trypsin-agarose chromatography as described by Roozen 

and De Groot (1991) with minor modifications. This assay was chosen because only the 

activity of the protein-like TIs is determined by this method. The samples were extracted with 

a 25 ml 0.015 M NaOH solution containing 0.5 M NaCl. The extraction solution was applied 

to the column. The column was subsequently washed with a 0.02 M Tris-HCl buffer (pH 8.0, 

0.5 M NaCl) and a NaOAc buffer (pH 5.2, 0.5 M NaCl). TIs were eluted with a glycine-HCl 

buffer (pH 3.0, 0.5 M NaCl). The protein concentration in the effluent was measured using a 

modified Lowry method (Roozen and De Groot, 1991), using KSTI as a standard. The error 

(the difference between measured and mean value, devided by the mean value) of the analysis 

was 5%. 

Physical properties of the soy flour 
Heat conductivity of the flour was measured according to Pantaloni et al (1977) with a needle 

probe at 60 °C and at different moisture contents. Measured values were 0.135, 0.160 and 

0.226 Wm"loC'' at 0.25, 0.32 and 0.41 g (g ds)"1, respectively. The specific heat of soy flour 

was taken from Wallapapan et al (1984). 

Estimation of the kinetics parameters 
The characteristic inactivation time x, (defined as the time to attain 37% residual TIA) was in 

the same order of magnitude as the time needed for 99% temperature equilibration within the 

inactivation cell for several inactivation experiments. Therefore, a heat transfer model was 

incorporated within the estimation procedure of the kinetics parameters. The soy flour in the 

cell was considered to be an infinite plate placed into a medium with a constant temperature 

assuming internal and external heat transfer resistance (Luikov, 1968). External heat transfer 

coefficients were estimated by fitting the heat transfer model to the measured temperatures in 

the cell. The coefficients were used to predict the mean temperature of the flour in the cell as 

a function of time during the inactivation experiments. The differential equations of the 

kinetics models were combined with the heat transfer model. Parameter a (models 3 and 4) 

was assumed to be independent on temperature. The total data set of TIA values was used to 

estimate the kinetics parameters of the overall kinetics model (Table 4). Estimation of the 

parameters was performed using the NLIN-procedure of SAS (SAS Institute Inc., 1988). 
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Results and discussion 

Figure 1 shows that the inactivation of TIs in soy flour does not follow first order kinetics. A 

two-phase inactivation behaviour of TIs is observed. This two-phase inactivation behaviour is 

more pronounced at temperatures >104 °C. This observation agrees with the findings of Roa 

et al (1989) for TIs in Phaseolus Vulgaris. If the inactivation kinetics of TIs consists of 

different reaction steps, differences in activation energies can result in a pseudo single first 

order reaction at temperatures lower than ~100 °C and a two-phase inactivation at 

temperatures higher than ~100 °C. 

ln(Ct/C0) 
o 

20 80 100 40 60 

t (min) 

Fig 1. Measured and estimated (—) inactivation of TIs in soy flour (mc=0.23 g (g ds)1). 

Temperatures are: 90 (+), 104 (0), 119 (D) and 134 °C (*). Estimations were performed 

with the overall kinetics model (Table 4). 

Figure 2 shows a large increase of the inactivation rate of TIs with increasing moisture 

content at low moisture contents (<0.3 g (g ds)"1). The influence of the moisture content on 

the inactivation rate is smaller at high moisture contents (>0.3 g (g ds)"1): no difference in 

inactivation rate is observed between 0.40 and 0.52 g (g ds)"1 at 104 °C. The observation of 
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the moisture content dependency of the inactivation rate is in general agreement with the 

findings of Buerra et al (1984) and Roa et al (1989). 
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Fig 2. Influence of the moisture content on the inactivation of TIs in soy flour (T=104 

°C). Moisture contents are: 0.08 (D), 0.13 (+), 0.23 (0), 0.30 (•), 0.40 (x) and 0.52 g (g 

ds)-' (*). 

The estimated time for 99% temperature equilibration is about 110 s. Figure 2 shows that the 

inactivation of TIs has already started in this heating-up period in several experiments. For 

example, the characteristic inactivation time xr at 0.40 g (g ds)"1 and 104 °C is lower than the 

time needed for 99% temperature equilibration. This makes the need of a heat transfer model 

applied obvious. Yet, this involves that the accuracy of the heat transfer model plays an 

important role in the estimation of the kinetics parameters at very low xr values. 
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Table 2. Kinetics parameters ( E,'s, A, a 

models at different moisture contents. 

model 1 

Ea-10"3 

Sw 

model 2 

Eai-10"3 

Ea2-10-3 

A 

Sw 

model 3 

Eai-10"3 

Ea-,-10-3 

Ea2-10-3 

a 
Sw 

model 4 

Eai-10"3 

Ea210"3 

a 
Sw 

model 5 

Eai-10-3 

Ea.i-10'3 

Ea210"3 

Sw 

model 6 

EalO"3 

n 

Sw 

0.08 

195 

29 

200 

208 

0.832 

9 

204 

241 

314 

0.000 

9 

200 

253 

0.073 

9 

204 

246 

334 

9 

209 

1.48 

11 

and n) and deviation sw of the inactivation kinetic 

moisture content 

0.13 

165 

37 

221 

148 

0.672 

14 

209 

226 

143 

0.000 

13 

215 

146 

0.311 

15 

209 

227 

143 

13 

184 

1.79 

17 

0.23 

110 

62 

204 

134 

0.833 

8 

196 

182 

124 

0.113 

8 

199 

129 

0.166 

8 

195 

194 

126 

8 

157 

2.04 

13 

(g(gds)"1) 

0.30 

122 

53 

222 

130 

0.764 

11 

216 

207 

103 

0.000 

11 

221 

124 

0.229 

11 

218 

210 

104 

11 

157 

2.53 

13 

0.40 

103 

70 

247 

117 

0.840 

21 

164 

39 

51 

0.105 

15 

249 

113 

0.154 

21 

230 

185 

67 

17 

199 

2.80 

17 

0.52 

153 

49 

221 

180 

0.785 

12 

222 

667 

207 

0.171 

11 

210 

178 

0.203 

12 

211 

214 

176 

12 

184 

2.20 

11 
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The results of the estimation of the kinetics parameters of the six inactivation kinetics models 

and the corresponding AICC values (Equation 2) are given in Table 2 and 3, respectively. As 

expected from the experimental data in Figure 1, the deviation Sw of the first order reaction 

model (model 1) is much higher than the deviation of the other models for all moisture 

contents. Also the estimated AICC values for the first order reaction model are higher than the 

values for the other models. The first order reaction model is clearly unfavourable compared 

to the other five models. 

Table 3. AICC values of the inactivation kinetics models at different moisture contents. 

moisture content (g (g ds)'1) 

0.13 0.23 0.30 model 0.08 0.40 0.52 

1 

2 

3 

4 

5 

6 

m 

2 

5 

7 

5 

6 

3 

-41 

-93 

-83 

-90 

-87 

-84 

32 

-16 

-43 

-39 

-42 

-44 

-37 

23 

8 

-77 

-69 

-77 

-72 

-56 

25 

1 

-52 

-45 

-52 

-50 

-51 

23 

16 

-45 

-52 

-46 

-48 

-58 

31 

-9 

-84 

-87 

-84 

-79 

-91 

35 

the lowest AICC values are bold. 

At moisture contents <0.30 g (g ds)"1 the model with the two TI groups (model 2) is the most 

parsimonious model compared to the other five models. The differences between the AICC 

values of the model with the two TI groups and the values of the irreversible model to a 

partially active TI<, (model 4) are small. The estimated kinetics parameters are almost equal 

for both models and A almost equals (1-a). These two models are almost mathematically 

identical (Table 1) because k i»k2 and A = (1-a). Consequently, the AICC values of these 

two models will be almost equal. Since these models can not be distinguished by comparing 

the AICC values, the estimated values of the parameters A and a are examined. Parameters A 

and a have a different physical meaning. Figure 3 shows that the estimated 95%-confidential 

intervals of parameter A overlap each other and that no trend in the values of A with moisture 
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content is to be seen. The same can be concluded for a. The conclusion that the estimated 

parameter A is independent on moisture content agrees with its physical meaning. Parameter 

a should not be independent on moisture content per se from a mechanistic point of view. 

Both models can be correct with respect to these results. 

0.2 0.3 0.4 0.5 0.6 

mc (g/g ds) 

Fig 3. Influence of moisture content on the estimated parameter A (•, model 2) and its 

95% confidence intervals. 

The n"1 order reaction model (model 6) has the lowest AICC values of the six models at 0.40 

and 0.52 g (g ds)"1. However, the values of this model at moisure contents <0.30 g (g ds)"1 are 

higher than the values of the model with two TI groups and the irreversible model with a 

partially active TIa. The estimated reaction order n is dependent on moisture content (Table 

2) and the estimated 95% confidental intervals of n do not overlap each other. Considering 

that the model with two TI groups and the irreversible model with a partially active TI„ are 

most parsimonious at mc<0.30 g (g ds)"1, and that the n* order reaction model is most 

parsimonious at mc>0.40 g (g ds)"1, the mechanism of TI inactivation might be dependent on 

moisture content. 
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The model with two TI groups (model 2) and the irreversible model to a partially active TL 

(model 4) can be considered more parsimonious than the reversible model with inactive TIa=o 

(model 5). Yet, the difference between these models is small. 

The AICC values of the reversible model with partially active TI„ (model 3) are in 4 of 6 cases 

higher than the values of its two readings (model 4 and 5). The lower AICC value for the 

reversible model with partially active TIa at 0.40 g (g ds)"1 can possibly be explained by the 

experimental conditions. It was mentioned previously that the accuracy of the heat transfer 

model plays an important role in the estimation of the kinetics parameters at very low t r (e.g. 

at mc=0.40 g (g ds)'1 and T=134 °C). This might also explain the low activation energy Ea.j 

for this model at 0.40 g (g ds)'1 (Table 2). 

The estimated activity fraction a of the intermediate TI„ of this model (3) was zero at 

moisture contents of 0.08, 0.13 and 0.30 g (g ds)"1. The estimated 95% confidential intervals 

of a at the other moisture contents overlapped zero. These results indicate that model 3 is 

equal to the reversible model with inactive TIa=o (model 5). 

Both the introduction of a partially active intermediate TIa in model 4 and the 

introduction of the reversibility of the reaction in model 5 are sufficient to describe the two-

phase inactivation behaviour of TIs. This might explain that the combination of the partially 

active intermediate TIa and the reversibilty in one model does not statistically give better fits. 

It is therefore concluded that this model is worse than its two readings. 

The model with two TI groups and the irreversible model with partially active TIa are 

parsimonious models that decribe the inactivation of TIs well. For engineering purposes both 

models are suitable to describe the inactivation of TIs. The model with two TI groups was 

chosen to develop an overall inactivation kinetics model of TIs. 

It was previously concluded that parameter A is independent on moisture content. 

Figures 4 and 5 show the estimated pre-exponential factors and activation energies with their 

estimated 95%-confidential intervals at different moisture contents. The logaritm of the pre-

exponential factors kri and k^ were assumed to be dependent on moisture content following a 

logistic-like equation. The 95%-confidential intervals of the activation energy Eai overlap 

each other and the estimated values of E3i do not show a trend with moisture content. Eai is 

therefore assumed to be independent on moisture content. Also the 95%-confidential intervals 

of Ea2 overlap each other. However, the estimated values of Ea2 show a hyperbolic-like trend 

with moisture content. 



24 Chapter 2 

k r l (1/s) 
1E+0 

1E-1 

1E-2 

1E-3 

1E-4 

1E-5 

kr2(l/s) 
! 
: a 
-

_ 

r t 
* 

m 

i 

f 

o 

n " 

i 

0.6 0.2 0.4 0.6 0 0.2 0.4 

mc (g/g ds) mc (g/g ds) 

Fig 4. Influence of the moisture content on the estimated pre-exponential factors k,i (a) and k^ (b) and 

their 95% confidence intervals. In some cases only the upper 95% confidence interval is shown (o) 

because the estimated lower interval was negative. 
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Fig 5. Influence of the moisture content on the estimated activation energies Eal (a) and E^ (b) and 

their 95% confidence intervals. 
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Therefore, different overall kinetics models with Ea2 dependent and independent on moisture 

content were investigated. The overall model that gave the best fit is shown in Table 4. This 

overall model results in a deviation Sw of 14.5%. This deviation is low compared to the 

average deviation of the sum of fits of the inactivation data at constant moisture content 

(12.5%, Table 2). Figure 1 shows the estimated inactivation of TIs by the overall kinetics 

model at a moisture content of 0.23 g (g ds)"1. 

Table 4. Kinetics parameters of the overall inactivation kinetics model (model 2 from Table 2 is used). 

a 

b 

c 

d 

k " a + l + 

b 
_d-mc+c 

k,i 

-11.0 

9.61 

2.31 

-15.2 

k,2 = 

independent on moisture content. 

a + b 

EarlO"3 

205 

c 
men ; 

mc 

Ea2 

k,2 

-5.95 

3.62 

-0.382 

= a + b mc + 

Ea210"3 

49.2 

253 

0.893 

C E 
mc 

A 

0.827 

and A are 

Conclusions 

The inactivation of TIs in soy flour showed a two-phase inactivation behaviour. The 

inactivation rate of TIs increased with increasing moisture content. The rate was less 

dependent on moisture content towards higher moisture contents (>0.30 g (g ds)"1). 

Consequently, an increase in moisture content above 0.30 g (g ds)"1 during processing is 

useless from a kinetics point of view. The most parsimonious kinetics models at moisture 

contents <0.30 g (g ds)"1 were a model assuming two first order reactions for two TI groups, 

and a model with a irreversible inactivation of a native TI to a partially active intermediate TI, 

followed by a denaturation step. The n"1 order reaction model showed the best results at high 

moisture contents (>0.40 g (g ds)"1). An overall kinetics model was developped that described 

the inactivation of TIs within a large range of temperatures and moisture contents. This model 

can be used in combination with models for processes such as steaming and extrusion 

cooking to design and optimise the heat treatment. 
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3. Inactivation kinetics study of the Kunitz soybean 
trypsin inhibitor and the Bowman-Birk inhibitor 

Abstract 

The inactivation of trypsin inhibitors (TIs) in soy flour exhibits a two-phase inactivation 

behaviour. It is sometimes assumed that a difference in heat stability of the Kunitz 

soybean trypsin inhibitor (KSTI) and the Bowman-Birk inhibitor (BBI) is the reason for 

this inactivation behaviour. Kinetics studies were performed with KSTI and BBI in soy 

flour. These studies showed that this two-phase inactivation behaviour of TIs could not 

be explained by the difference in heat stability of KSTI and BBI. KSTI and BBI in 

commercial soy flour inactivated simultaneously during the first inactivation phase. BBI 

probably inactivates with a first order reaction with a rate constant comparable to the 

rate constant of the first phase of TIs in soy flour. The residual activity of TIs in the 

second phase was caused by KSTI. 

Inactivation of KSTI and BBI in an aqueous solution (T=104 °C) and in a starch 

matrix (mc=0.25 g (g ds)"1 and T=104 °C) followed a first order reaction. KSTI and BBI 

in a starch matrix with added cysteine (mc=0.25 g (g ds)"1 and T=104 °C) showed a two-

phase inactivation behaviour. The existence of thiols in soy flour seems to be responsible 

for the two-phase inactivation of TIs in soy flour. We suggest that TIs in soy flour are 

inactivated by sulphydryl-disulfide interchange during the first inactivation phase, and by heat 

during the second phase. 

This chapter has been submitted as: 

Rob van den Hout, Marieke Pouw, Harry Grappen, Klaas van't Riet. Inactivation kinetics study of the 

Kunitz soybean trypsin inhibitor and the Bowman-Birk inhibitor. 
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Introduction 

Soybeans are generally heat processed to inactivate the antinutritional factors (ANFs). 

Trypsin inhibitors (TIs) are generally considered to be the main ANFs in soybeans. TIs can be 

divided in two main groups: the Kunitz soybean trypsin inhibitor (KSTI) and the Bowman-

Birk inhibitor (BBI). In kinetics studies a two-phase inactivation behaviour for TIs was 

observed in soy flour (Van den Hout et al, 1997). Such a two-phase inactivation behaviour 

has also been found in Phaseolus Vulgaris beans (Roa et al, 1989 and Van der Poel, 1990). 

A possible explanation of this two-phase inactivation behaviour is that the two TI 

groups inactivate with a different first order reaction rate constant each. BBI generally has 

been considered to be more heat stable than KSTI, based on their stability in aqueous 

solutions (Birk, 1961 and Obara and Watanabe, 1971). Rouhana et al (1996) found that both 

KSTI and BBI followed a first order reaction in soymilk and that BBI was more heat stable 

than KSTI at temperatures below 137 °C. Liener and Tomlinson (1981) concluded that KSTI 

is equally heat stable to BBI by comparing the inactivation rate of TIs in a commercial and a 

KSTI-free soy flour. DiPietro and Liener (1989a) found that KSTI in soy flour was more heat 

stable than BBI. However, they did not observe the expected two-phase inactivation 

behaviour upon TIs. This might be explained by the fact that the authors did not measure at 

low residual TIA levels, and, therefore, performed their kinetics study in the first inactivation 

phase of TIs. Moreover, the inactivation rate constant of BBI was only 1.4 times higher 

than the rate constant of KSTI (T=95 °C and mc=15%). Friedman et al (1991) determined 

the residual activities of KSTI and BBI in a commercial and a KSTI-free soy flour after 

autoclaving. They concluded that KSTI was more heat stable than BBI. However, they did 

not study the inactivation kinetics of KSTI and BBI, and did not relate their experiments 

with a two-phase inactivation behaviour of TIs. 

Van Zuilichem et al (1993) and Roa et al (1989) referred to Multon and Guilbot 

(1975) to explain the two-phase inactivation behaviour of TIs in soybeans and Phaseolus 

Vulgaris beans, respectively. Multon and Guilbot (1975) explained the two-phase inactivation 

behaviour of ribonuclease in wheat grains by the catalytic role of water during inactivation. 

The results from literature concerning the difference in heat stability of KSTI and BBI in 

soy flour are conflicting. In this study it was investigated if the two-phase inactivation 

behaviour of TIs in soy flour can be explained by a difference in heat stability of KSTI and 

BBI. Additional experiments were performed to examine the inactivation kinetics of BBI (and 
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KSTI) in a KSTI-free soy flour, an aqueous solution and a starch matrix. As Friedman et al 

(1982 and 1984) showed that the addition of thiols increases the inactivation rate of TIs in an 

aqueous medium, it was investigated how thiols influence the inactivation behaviour of TIs in 

this study. 

Material and methods 

Materials 

Defatted, untoasted soy flakes from Cargill (Amsterdam, The Netherlands) were used. These 

flakes are from the same batch as used for the inactivation kinetics experiments in previous 

research (Van den Hout et al, 1997). The trypsin inhibitor activity (TLA) of the untreated 

flour was 23.3 mg (g ds)"1. Anhydrotrypsin-agarose was obtained by Pan Vera (TAK 7302, 

Madison, WI, USA). The KSTI-free isoline (L81-4590) was grown by Illinois 

Foundation Seeds Inc. (Champaign, IL, USA) and obtained via TNO Nutrition and Food 

Research (Zeist, The Netherlands). The initial TIA of the isoline was 10.9 mg (g ds)"1. 

Potato starch was supplied by AVEBE (Perfectamyl D-6, Veendam, The Netherlands), 

KSTI by Merck (art. no. 24020), BBI by Sigma (art. no. T-9777) and L-cysteine by 

BDH Chemicals (art. no. 37218). 

Conditioning of the samples 

TIs in soy flour. The KSTI-free soybeans were milled using a Retsch mill with a 1 mm sieve. 

The obtained full fat soy grits were extracted with hexane at room temperature. The defatted 

soy grits and the soy flakes (Cargill) were milled using a 0.2 mm sieve. The flour was 

moisterised by adding water dropwise to the flour in a cooled (15 °C) blender to the desired 

moisture content. The soy flour was stored for 5 till 7 days at 4 °C to equilibriate. 

KSTI/BBI in buffer. A solution of 1 mg ml"1 KSTI or BBI in 0.1 M Tris buffer (pH 8.0) 

was prepared. 

KSTI/BBI in starch. A 0.75 ml Tl-solution (6.7 mg KSTI or BBI/ml water) was added 

dropwise to 5 gram starch with optionally added 100 mg cysteine. The starch was stored 

for 5 till 7 days at 4 °C to equilibriate. 

Determination of the moisture content 

The moisture content was measured according to AOAC (1990). 
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Inactivation experiments 

Inactivation experiments were performed with steel cells in a stirred oil bath according to 

Van den Hout et al (1997). The experimental conditions of the heat treatments of the soy 

flour, the KSTI-free soy flour, the buffer and the starch matrix (with and without 

cysteine added) are listed in Table 2. 

TIA in soy flour 

Combined KSTI/BBI activity. TIA in soy flour was measured with trypsin-agarose 

chromatography as described by Roozen and De Groot (1991) with minor modifications 

(Van den Hout et al, 1997). The samples were extracted with a 25 ml 0.015 M NaOH 

solution containing 0.5 M NaCl. The extraction solution was applied to the column. The 

column was subsequently washed with a 0.02 M Tris-HCl buffer (pH 8.0, 0.5 M NaCl) and a 

NaOAc buffer (pH 5.2, 0.5 M NaCl). TIs were eluted with a glycine-HCl buffer (pH 3.0, 0.5 

M NaCl). The protein concentration in the effluent was measured using a modified Lowry 

method (Roozen and De Groot, 1991), using KSTI as standard. In case of the KSTI-free soy 

flour, BBI was used as standard. 

Individual KSTI/BBI activity. The individual activity of KSTI and BBI in soy flour was 

measured by combining affinity chromatography with gel permeation chromatography 

(GPC). Anhydrotrypsin-agarose was used for affinity chromatography because 

anhydrotrypsin also binds TI but is, in contrast to trypsin, catalytic inert (Ishii, 1983). 

Samples of the untreated and heat treated soy flour were eluted on an anhydrotrypsin-

agarose column using the same procedure as described for the trypsin-agarose column. 

The eluate from the column was dialysed against distilled water and freeze dried. 200 u,l 

of a ~1 mg TIs ml"1 solution was applied to a FPLC system with a Superdex 30 column 

(HiLoad 16/60 Pharmacia) using a 0.1 M sodiumphosphate buffer (pH 6.9) containing 

0.1 M sodiumsulphate as eluens. The absorbance of the effluent was measured at 280 

nm. The error of the measured peak area (the difference between measured and mean value, 

devided by the mean value) was 18%. Absorbances at 280 nm (A280) of KSTIi, KSTI2 and 

BBI were fitted using the peak areas of the GPC analyses of the commercial available 

KSTI and BBI, assuming the A280 of KSTI, and KSTI2 to be equal (Table 1). 



Inactivation mechanism 33 

TIA in buffer and starch 
KSTI/BBI in buffer. The sample was diluted with a 0.02 M Tris-HCl-buffer (pH 8.0, 0.5 

M NaCl) and applied to a trypsin-agarose column. The further procedure of the analysis 

was similar to the analysis of combined KSTI/BBI activity in soy flour. 

KSTI/BBI in starch. TIs in starch were extracted with a 0.02 M Tris-HCl buffer (pH 8.0, 

0.5 M NaCl) instead of a 0.015 M NaOH 0.5 M NaCl solution. No glycine was added 

after centrifugation of the extraction solution. The supernatant was applied to a trypsin-

agarose column. The further procedure of the analysis was similar to the analysis of 

combined KSTI/BBI activity in soy flour. 

Electrophoresis 
SDS-PAGE was performed using a Phastsystem seperation unit (Pharmacia) essentially 

according to Laemmli (1970). Phastgels (8-25%, Pharmacia) were used. The gels were 

stained with Coomassie Brilliant Blue according to the instructions of the manufacturer. 

Estimation of the kinetics parameters 
The two-phase inactivation behaviour of TIs is described with the following equation (Van 

denHoutefa/, 1997): 

I ^ iL = A e " ^ t + ( l - A ) e ^ t (1) 
TIA0 

If the two-phase inactivation behaviour of TIs in soy flour can be explained by a difference in 

heat stability of the two TI groups (KSTI and BBI), each of them inactivating with a first 

order reaction, then X\ and X2 in Equation (1) are the inactivation rate constants of the two TI 

groups, and parameter A is the fraction of one of the two TI groups in the unprocessed 

sample. The kinetics parameters Xi, X2 and A were estimated by fitting Equation (1) to the 

experimental data using the NLIN-procedure of SAS (SAS Institute Inc., 1988). For a first 

order reaction kinetics, only parameter X\ was estimated (A=l in Equation (1)). When the 

inactivation experiment is started, the temperature of the samples increases untill the 

equilibrium temperature has been reached. These heating-up effects play a role in the 

estimation of the kinetics parameters. Therefore, the measured time of the experiments was 

corrected by substracting the time needed for 95% temperature equilibration (69 s). 
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Results and discussion 

Figure 1 shows the typical two-phase inactivation behaviour of TIs in soy flour. The 

average deviation between the residual TIA levels measured by anhydrotrypsin-agarose 

chromatography and the levels measured by trypsin-agarose chromatography was 12 % 

(Table 1). In concluding, the results of this work measured by anhydrotrypsin-agarose 

chromatography can be related to the results of our previous work measured by trypsin-

agarose chromatography (Van den Hout et al, 1997). 

ln(Ct/C0) 
o 

2 4 6 8 10 

t (min) 

Fig. 1. Inactivation of TIs in soy flour at 119 °C and 0.23 g (g ds)"1 as measured by 

anhydrotrypsin-agarose chromatography (•). Equation (1) is used to fit the 

experimental data from Table 1: TIA (—), KSTI,+KSTI2 (— -) and BBI (- - -). 

A typical example of a GPC elution profile of a soy sample is shown in Figure 2a. 

Commercially available KSTI and BBI were analysed with GPC to identify the peaks. 

Figure 2b and Table 1 show that commercially available KSTI contains residual levels of 

BBI and vice versa. Three peaks in commercially available KSTI and BBI, and in the soy 

samples have the same elution times (Figure 2a and b, and Table 1). The first peak at 45 
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min is probably an aggregate of KSTI (encoded KSTIi) as SDS-PAGE analysis showed 

that this peak consists of molecules with a molecular weight of approximately 20,000 (no 

further results shown). The peaks at 51 min and 62 min had molecular weights of 

approximately 20,000 and 8,000, and were identified by SDS-PAGE analysis as KSTI 

(encoded KSTI2) and BBI, respectively (Table 1). A fourth small peak in the soy sample 

at 103 min contains molecules with a low molecular weight, and could not be identified. 

The fifth peak was eluted at the included volume and represents residual buffer 

components. 

L280 

J L 
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 

t (min) t (min) 

Fig. 2. GPC analyses of heat treated soy flour (a, t =1.5 min) and commercially available KSTI 

(b). 

BBI contributes for 21% of the total activity of TIs in native soy flour (Table 1). This 

initial percentage of BBI agrees with the values of 22% and 30% given by DiPietro and 

Liener (1989b), and Friedman et al (1991), respectively. The activity percentages of 

KSTIi, KSTI2 and BBI after a heat treatment of the flour of 1.5 min are almost equal to 

the activity percentages in the native sample (Table 1). The inactivation rate of BBI 

during the first inactivation phase seems to be approximately equal to the rate of KSTI. 

This result agrees with the observation by DiPietro and Liener (1989a) that the 

inactivation rate constant of BBI in soy flour is only 1.4 times higher than the rate 
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constant of KSTI (T=95 °C and mc=15%). The activity percentage of BBI of total TIA 

in the heat treated flour has (almost) decreased to zero in the second inactivation phase 

(3, 7 and 10 min, Table 1). The residual activity of TIs in the second inactivation phase is 

caused by the residual activity of KSTI. The inactivation of KSTI shows a two-phase 

inactivation behaviour and is responsible for the two-phase inactivation behaviour of TIs 

in soy flour. The results show that the two-phase inactivation behaviour of TIs can not 

be explained by the difference in heat stability of KSTI and BBI. The conclusion that 

BBI in soy flour is overall more heat labile than KSTI is in line with the results of 

Friedman et al (1991). 

Figure 1 shows the estimated inactivation of KSTI and BBI in soy flour. The 

inactivation of KSTI was described with Equation (1), and the inactivation of BBI with a first 

order reaction kinetics (A=l in Equation 1). It is noted that the reaction rate constants of 

KSTI and BBI used in Figure 1 could not be estimated accurately because of the small 

number of data (Table 1). 

Table 1. TIA values and activity percentages of KSTIi, KSTI2 and BBI of total TIA in 

commercial KSTI and BBI, and in (heat treated) soy samples (T=l 19 °C and mc=0.23 g (g ds)"'). 

sample, 

time0 

com. KSTI 

com. BBI 

soy flour, 0 

soy flour, 1.5 

soy flour, 3 

soy flour, 7 

soy flour, 10 

TIA 

trypsin-agarose 

mg (g ds)"' 

23.3 

15.5 

5.72 

1.69 

1.15 

TIA 

anhydrotrypsin-

agarose 

mg (g ds)"' 

22.6 

12.7 

5.85 

1.20 

1.13 

KSTIi 

(%)2) 

21 

4 

6 

9 

6 

11 

2 

KSTI2 

(%)2> 

49 

14 

73 

73 

90 

89 

98 

BBI 

(%)2) 

30 

82 

21 

18 

3 

0 

0 

'': commercial KSTI and BBI, and heat treated soy flour samples; time in minutes, activity 

percentages of KSTI,, KSTI2 and BBI of total TIA. 
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Fig. 3. Measured and estimated inactivation of BBI in KSTI-free soy flour at 119 

°C and 0.09 g (g ds)'1 (D), and at 104 °C and 0.17 g (g ds)'1 (*). 

The results of the kinetics study of KSTI and BBI in commercial soy flour were 

compared with a kinetics study of BBI in a KSTI-free soy flour. Figure 3 shows that the 

inactivation of BBI in a KSTI-free soy flour follows a single first order reaction at 104 

°C (0.17 g (g ds)'1), and at 119 °C (0.09 g (g ds)"1). Table 2 shows that the inactivation 

rate constant of BBI in a KSTI-free soy flour is almost equal to the rate constant Xi of 

TIs in soy flour at the same temperature and moisture content. It was shown previously 

that the inactivation rate of BBI in soy flour was almost equal to the inactivation rate of 

TIs in soy flour in the first inactivation phase. As a result, the inactivation rate of BBI in 

a KSTI-free soy flour is probably equal to the rate of BBI in commercial soy flour. This 

corresponds with the experimental results of Friedman et al (1991). Consequently, BBI 

in commercial soy flour probably inactivates with a first order reaction with a rate 

constant equal to the rate constant A-i of TIs in soy flour. 
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Table 2. Inactivation rate constants of TIs, KSTI and BBI in different matrices and at different 

conditions. 

component matrix T mc Xi %2 

(°C) (g(gds)-1 ( l O V ) (-10* s-1) 

TI1' soy flour 104 0.09 0.9 0.2 

Tl" soy flour 104 0.17 14 2.8 

TI1' soy flour 104 0.25 155 7.6 

TI^ ?oyflouL J19 0.09 1_1 2.0 

BBI2)'3) KSTI-free soy flour 104 0.09 2.1 

BBI2) KSTI-free soy flour 104 0.17 17(4.6) 

__BBI^ JiSTJ-jree^o^_flour J19 0.09 i^^JLS) -

KSTI2' buffer 104 - 2.5(0.2) 

___??I2 i buffer_ J04 - 2.5J0.3) -

KSTI2' starch 104 0.26 12(2.2) 

BBI2^ starch _104 0.24 6.9^1_.3) -

KSTI starch+cysteine 104 0.26 180(127) 7.3(15) 

BBI starch+cysteine 104 0.24 260(95) 4.9(10) 
:): rate constants are predicted by the inactivation kinetics model of TIs in soy flour presented by 

Van den Hout et al (1997). 2): fitted with first order reaction kinetics (A=l in Equation (1)). 
3): inactivation rate constant was estimated with only two datum-points. The estimated 95% 

confidence intervals of the rate constants Xi and X2 are given between brackets. 

Since the two-phase inactivation behaviour of TIs in soy flour can not be explained by 

the difference in heat stability of KSTI and BBI, the inactivation kinetics of isolated 

KSTI and BBI was studied. It was examined if the typical two-phase inactivation 

behaviour is also observed for KSTI or BBI in an aqueous solution. 

Both KSTI and BBI in a buffer inactivated with a first order reaction (Table 2). 

Consequently, the two-phase inactivation behaviour of TIs in soy flour can not be 

explained by a similar two-phase inactivation behaviour of isolated KSTI or BBI. The 

inactivation rate constant of KSTI in buffer is equal to the rate constant of BBI (Table 

2). DiPietro and Liener (1989a) found that BBI was more heat stable than KSTI in buffer 

at 100 °C and pH 7. The rate constants of KSTI and BBI in the buffer are lower than the 
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rate constants X,i and X2 of TIs in soy flour with a high moisture content of 0.25 

g (g ds)"1 (T=104 °C, Table 2). A higher heat stability of KSTI and BBI in a buffer 

compared to soy flour was also found by DiPietro and Liener (1989a). 
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Fig. 4. Measured and estimated inactivation of KSTI (D, mc=0.26 g (g ds)"1) and 

BBI (*, mc=0.24 g (g ds)"1) in starch at 104 °C. 

The moisture content and the matrix during the inactivation of TIs in the buffer and in 

the soy flour are different. It was examined if the inactivation of isolated KSTI or BBI at 

low moisture condition, exemplified with a starch matrix, exhibits a two-pase inactivation 

behaviour like TIs in soy flour, or a first order reaction like KSTI and BBI in an aqueous 

solution. The experiments were performed at the same moisture content and temperature 

as during the kinetics experiments with soy flour in our previous study (Van den Hout, 

1997). 

Commercial available KSTI in starch follows a single first order reaction (Figure 

4). Also BBI in starch follows a single first order reaction, although no experimental data 

at low residual activities of BBI were measured. The inactivation rate constant of KSTI 

in starch is higher than the rate constant of BBI (Table 2). The difference can be 

explained by the difference in moisture content (0.02 mg (g ds)"1) using the inactivation 
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kinetics model of TIs in soy flour (Van den Hout et al, 1997). The rate constants of 

KSTI and BBI in starch are lower than the predicted rate constant \\ of TIs in soy flour 

at 0.25 g (g ds)"1 and 104 °C, but are in the same order as the predicted rate constant Aa 

of TIs in soy flour (Table 2). DiPietro and Liener (1989a) found that the rate constants 

of purified KSTI and BBI added to autoclaved soy flour were lower than the rate 

constants of KSTI and BBI in situ. 

ln(Ct/C0) 
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Fig. 5. Measured and estimated inactivation of KSTI (•, 0.26 g (g ds)'1) and BBI (*, 

0.24 g (g ds)"1) in starch with added cysteine at 104 °C. 

The inactivation of commercial available KSTI and BBI in a different matrix than soy 

flour but at the same temperature and moisture content follow first order reactions. 

These first order reactions can not explain the two-phase inactivation behaviour of TIs in 

soy flour. Possibly the composition of the soy flour matrix is important for the 

inactivation behaviour of both TI groups. Friedman et al (1982 and 1984) showed that the 

addition of thiols increases the inactivation rate of TIs in an aqueous medium. It was 

investigated how thiols have an effect on the inactivation behaviour of KSTI and BBI. 

The inactivation rate of both KSTI and BBI increases when cysteine was added 

to the starch matrix (Figure 5 and Table 2). Both KSTI and BBI exhibit a two-phase 
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inactivation behaviour. These experiments show that the existence of thiols in soy flour is 

most probably the cause of the two-phase inactivation behaviour of TIs in soy flour. The 

observed two-phase inactivation behaviour of BBI in starch with added cysteine is in 

contradiction with the observed first order reaction of BBI in the KSTI-free isoline. The 

inactivation behaviour of BBI in starch with added cysteine can probably be explained by 

the two-phase inactivation behaviour of the KSTI fraction that is present in the 

commercially available BBI used for these experiments (Table 1). 

The reaction rate constants Xi and X2 of BBI in starch with added cysteine are 

equal to the rate constants X\ and X2 of KSTI, respectively, considering the estimated 

confidence intervals of the kinetics parameters (Table 2). The reaction rate constants Xi of 

KSTI and BBI in starch with cysteine added are almost equal to the rate constant X\ of TIs 

in soy flour under the same conditions. The rate constants of the second phase X2 of KSTI 

and BBI in starch with added cysteine are equal to the first order rate constants Xi of KSTI 

and BBI in starch without cysteine, and to X2 of TIs in soy flour under the same conditions 

(Table 2). 

Based on the results of the inactivation kinetics study of KSTI and BBI, the following 

hypothesis was postulated. The inactivation of KSTI and BBI in soy flour follows a pseudo 

first order reaction rate by sulphydryl-disulfide interchange during the first inactivation phase. 

In the second phase no SH-groups are available any more for a sulphydryl-disulfide reaction 

with KSTI. Friedman et al (1984) showed that the cysteine sulfhydryl (SH) content in soy 

flour after a heat treatment (T=45, 65 or 75 °C, mcs3.6 g (g ds)"1 and t=l h) was less than the 

content in native soy flour. This implies that the number of SH-groups is indeed reduced 

during the heat tratment. In the second phase KSTI is solely inactivated by heat. This is in line 

with the observation that the rate constant of the second phase X2 of KSTI in soy flour is 

equal to the first order rate constant Xi of KSTI in starch without cysteine. 

The observation of DiPietro and Liener (1989a) that the rate constants of purified 

KSTI and BBI added to autoclaved soy flour were lower than the rate constants of KSTI 

and BBI in situ is not in contradiction with this hypothesis. The available SH-groups in 

the flour have reacted during the autoclaving. When the purified TIs are added to the 

autoclaved soy flour, no SH-groups are availabile any more for the reaction with TIs, 

and the TIs will inactivate by heat only and with a lower inactivation rate. 
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Conclusions 

The two-phase inactivation behaviour of TIs in soy flour could not be explained by the 

difference in heat stability of KSTI and BBI. KSTI and BBI in commercial soy flour 

inactivated simultaniously during the first inactivation phase. The residual activity of TIs 

in the second phase was caused by KSTI. BBI in commercial soy flour probably 

inactivates with a first order reaction with a rate constant comparable to the rate constant 

of the first phase of TIs in soy flour. The two-phase inactivation behaviour of TIs in soy 

flour could not be explained by the inactivation behaviour of isolated KSTI or BBI in a 

buffer or a starch matrix. Inactivation experiments with KSTI and BBI in a starch matrix 

with added cysteine showed a two-phase inactivation behaviour for both TI groups. The 

existence of thiols seems to be responsible for the two-phase inactivation behaviour of 

TIs in soy flour. We suggest that TIs are inactivated by sulphydryl-disulfide interchange 

during the first inactivation phase, and by heat during the second phase. 
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Symbols 

A 

A280 

C 

mc 

t 

T 

TIA 

fitting parameter 

absorbance at 280 nm 

trypsin inhibitor activity 

moisture content 

time 

temperature 

trypsin inhibitor activity 

of TI, KSTI or BBI 

(-) 

(-) 
(mg (g ds)"1) 

(g(gds)"1) 

(s) 

(°C) 
(mg (g ds)"1) 
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Greek 

X time constant (s"1) 

Subscripts 

0 at t=0 

1,2 number of inactivation phase 

t att=t 
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4. Influence of extrusion shear forces on the inactivation 
of trypsin inhibitors in soy flour 

Abstract 

The effect of deformation of the trypsin inhibitor (TI) molecules due to shear forces on 

the inactivation of TIs in soy flour during extrusion cooking was studied. The strain of 

the TI molecules and the reduction of the activation energy for TI inactivation due to 

shear stresses were calculated at different positions in the melt section in an extruder. 

The strains are probably maximal in the order of 10-20%. The strain calculations indicate 

that it can not be excluded that shear is a factor in the inactivation of TIs. A maximal 

decrease of the activation energy of 7102 J mol"1 was calculated, which is more than two 

orders of magnitude lower than the activation energies for TI inactivation. Single screw 

extrusion experiments were performed to examine the effect of shear forces 

experimentally. Different die configurations were used to impose different shear rates to 

soy flour The decrease of the trypsin inhibitor activity (TIA) due to heat inactivation 

during extrusion cooking was calculated by combining the axial temperature profile and 

the residence time distribution of soy with the inactivation kinetics model of TIs. The 

measured residual TIA values of the extrudates could be predicted properly by heat 

inactivation. There was no indication that shear forces were involved in the inactivation 

of TIs. 

This chapter has been submitted as: 

Rob van den Hout, Jan Jonkers, Ton van Vliet, Dick J. van Zuilichem, Klaas van 't Riet. Influence of 

extrusion shear forces on the inactivation of trypsin inhibitors in soy flour. 
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Introduction 

Soybeans are used as a resource of proteins and energy for animals and humans beings. 

However, a number of antinutritional factors (ANFs) are present in soybeans. The trypsin 

inhibitors (TIs) are generally considered to be the main ANFs in soybeans. In order to benefit 

the nutritional value of soybeans, heat treatments such as steaming and extrusion cooking 

are generally used. During extrusion cooking, heat is generated by viscous dissipation 

due to shear forces, and is transferred by convection through the barrel. The effects of 

temperature, feed moisture content, and screw speed on the trypsin inhibitor activity 

(TIA) in soy during extrusion cooking have been investigated by several authors 

(Hendrix et al, 1994, Petres et al, 1993 and Mustakas et al, 1970). 

Shear forces also cause physical deformation of proteins and therefore possibly have an 

additional denaturation effect on TIs. Denaturation of proteins due to shear forces can be 

caused by changes in the secondary or tertiary structure, or by fracture of the backbone. 

Breaking of the non-covalent interactions between groups in the protein molecule is 

probably sufficient to denaturate the protein. Fracture of plastic polymers on molecular 

scale has been treated by Zhurkov (1966) using the kinetics theory of fracture. In this 

approach, the activation energy to cause bond rupture is believed to be reduced by the 

application of stress. Marsman et al (1995) investigated the influence of shear forces on 

some chemical, physical and physiological parameters of toasted soybean meal during 

extrusion cooking. They mainly examined the correlation between different shear levels 

and animal performance on the one hand, and the correlation between in vitro 

measurements (TIA, protein dispersibility index and nitrogen solubility index) and in vivo 

measurements on the other hand. 

The aim of this study was to investigate the influence of extrusion shear forces on the 

inactivation of TIs in soy flour. The influence was investigated theoretically by 

calculating (i) the strains of the TI molecules, and (ii) the reduction of the activation 

energy of TI inactivation, due to the application of stress at different positions in the melt 

section in an extruder. In order to investigate the influence of shear forces on TIA 

experimentally, extrusion cooking experiments were performed. The residence time 

distribution (RTD) of soy in the extruder was measured and modelled. The inactivation 

kinetics of TIs in soy flour was measured and modelled separately. The decrease of TIA 



Shear forces 47 

due to heat inactivation during extrusion cooking was calculated by combining the axial 

temperature profile and the RTD of soy with the inactivation kinetics model of TIs. The 

predicted TIA levels were compared with the measured values of the extrudates. 

Theory 

Calculation of the strain 
Assuming that the deformation is uniform, the strain (relative deformation) e of a 

molecule due to the exerted stress can be calculated using Hooke's law: 

e = - 0) 
E 

in which a is the tensile stress exerted and E is the Young's modulus. 

A shear flow will exert tensile and compression stresses on a particle dispersed in it. The 

tensile stress is approximately equal to: 

o = \i-y (2) 

The shear rate y at different positions in the extruder can be calculated by the next 

equations (Rauwendaal, 1994). The shear rate at the wall of the die can be calculated 

with: 

4m Vj t -d •> 

The shear rate in the screw channel and in the flight clearance is calculated with: 

• TC-N-D . . . 

y=^r~ ( ) 

where Y is height of the screw channel (H) or flight clearance (8). 
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The soy melt is assumed to behave like a power-law fluid (Morgan, 1979 and Remsen 

and Clark, 1978). It is not known which strain is needed to inactivate the TIs. However, 

a rough estimation can be made. Thermal movement of a protein will already result in 

some deformation of the molecule. Therefore, a strain of a few per cents will not cause 

any inactivation of a TI molecule. On the other hand, if the molecule is deformed in such 

way that it has obtained the dimensions of a freely rotating protein chain, it has most 

likely lost its activity. To achieve these dimensions from its native state, a strain of 

roughly 200% is needed (see appendix). Rather arbitrarily we assumed that a strain of a 

TI molecule of 10 to 40% is needed to inactivate the protein. 

Reduction of the activation energy 
The activation energy for the inactivation of a TI molecule is reduced by an amount 

equal to the work done in moving a segment of a molecule with a cross-sectional area A 

over a distance x with respect to the other parts of the molecule: 

AE a=N,aAx (5) 

It is difficult to calculate x. If it is assumed that x can be approximated by ed0 (= 
od„ . . . 71 

— i 
E 4 

= —^-) and A = — dg, Equations (5) becomes: 

. 2 J* 

AEa= - * — (6) 

It is assumed that the pre-exponential factor will not change by the application of stress. 

Inactivation kinetics of TIs 
The inactivation kinetics of TIs in soy flour was described by the following equation 

(Van den Hout et al, 1997): 

^ a - e - ^ . O - o O - e - 1 ^ (7) 
TIAn 
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The inactivation constants ki and k2 are assumed to be dependent on temperature 

following the Arrhenius equation. 

Estimation of the length of the melt section 
The extruder length is built up by a solid conveying section and a melt section. The 

length of the melt section L™, in the screw channel is calculated with Equations 8 and 9 

(Rauwendaal, 1994): 

p 
L = — (8) 

ms v ' 

gz 

The pressure gradient gz is calculated from the equation for the volumetric throughput of 

a power law fluid: 

(l±H).pWHvte-Qv 

- - — ~ 7— (9) 
( _ • _ ) . P W H 

l + 2m 4\x 

Melted soy flows both in the screw channel and in the die head. Therefore, the volume of 

the die head that contains melted soy was determined and recalculated in an equivalent 

axial screw length. This length was added to I™, resulting in a corrected length for the 

melt section (L'™). 

Residence time distribution 
The RTD of soy in the extruder is described by a model consisting of a plug flow with a 

residence time tp for the solid conveying section, and a cascade of n perfect mixers with a 

mean residence time tms for the melt section (Van Zuilichem et al, 1973). When L™, is 

known, the length of the solid conveying section Lscs can be calculated. tp is calculated 

from the measured degree of fill of the soy in the channel of the solid conveying section, 

the mass flow rate Qm, and Lscs. The parameters n and tms are calculated using the 

experimental data. 
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Material and methods 

Conditioning of the soy flour 

Untoasted and defatted soy flour (protein dispersibility index=80) was provided by 

Cargill (Amsterdam, The Netherlands). TIA of the initial flour was 30.0 mg (g ds)"1. The 

flour was mixed with water to a moisture content of 0.40 g (g ds)"1 in a 20 1 Gunther 

Papenmeier mixer. The flour was stored for 1 night at 4 °C to equilibrate. The moisture 

content was measured according to AOAC (1990). 

Physical properties of soy 

The TIs can be divided in two main groups: the Kunitz soybean trypsin inhibitor (KSTI) 

and the Bowman-Birk inhibitor (BBI). The Young's moduli of KSTI and BBI were 

assumed to be comparable with the moduli of other soy proteins. Data of Young's 

moduli of soy proteins at low moisture contents (0.40 g (g ds)"1) and high temperatures 

(70-120 °C) are absent in literature. Baird (1981) found a dependency for the storage 

shear modulus G' on protein concentration of soy isolate C. Interpretation of his results 

gives a power-law relation: G'~C2 8. Combining this result with measurements of the 

shear moduli of soybean protein gels (Kleef, 1986) results in an estimation of the 

Young's modulus E of 106 N m"2. This value of 106 N m"2 is probably at the lower side. 

Moduli of several other solid foods (apples, bananas, peaches, pears and potatoes) are 

higher (106 up to 3107 N m"2, Rao and Skinner, 1986). KSTI has 181 amino acid 

residues. A number of bonds nb of 543 was calculated from this value. The diameter of 

KSTI is assumed to be 3.510"9 m (Wolf, 1977). A value for the length of the bonds lb of 

1.310"10 m was used. The length of chain elements l'b for KSTI is not presented in 

literature. As a first approximation, the length l'b of 2.510"9 m as observed for P-casein 

was used for completely denaturated KSTI. An average viscosity of soy in the screw 

channel, clearance and die was calculated for each extrusion experiment by using the 

mean residence time of the flour in the melt section, the axial temperature profile, and the 

relation for the viscosity given by Morgan (1979). The flow index m was assumed to be 

0.26 (Morgan, 1979). The density of the soy melt was calculated by dividing the 

weighted amount of an extrudate sample by the volume of this sample for every 

experiment. The average density was 1167 kg m"3. No expansion of the extrudates was 

observed. 
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Determination of the kinetics parameters 

Inactivation of TIs in the soy flour was measured and modelled at a moisture content of 

0.40 g (g ds)"1 according to Van den Hout et al (1997). The kinetics parameters (Eai, 

Ea2, kri, kr2 and a) were estimated using the experimental inactivation data. The pre-

exponential factors kri and kr2 were estimated at a reference temperature Tr (Van den 

Hout et al, 1997). 

Trypsin inhibitor activity assay 

Samples were milled on a Retsch mill with a 0.2 mm sieve. TIA was measured with an affinity 

chromatography method as described by Roozen and De Groot (1991) with a few modi

fications (Van den Hout et al, 1997). Extrudate samples were analysed in duplo. The error of 

the analysis (the difference between measured and mean value, devided by the mean value) 

was 5%. 

Extrusion cooking experiments 

Extrusion cooking experiments were performed with an Almex Battenfeld single screw 

extruder (Figure 1). The barrel length to inner diameter ratio (L/D) was 12. The 

compression ratio of the screw was 1.15. Different die diameters were used to impose 

different shear rates on soy. The heating elements at the barrel of the extruder were 

turned off to avoid excessive heating of the soy. One extrusion cooking experiment was 

performed with a compression ratio of 4 to impose a higher shear rate on soy in the melt 

section. This experiment was performed without a die head to avoid excessive high 

temperatures. The axial temperature profile was measured at the barrel wall, and inside 

the screw by inserting a lance with thermocouples into the (hollow) screw. The measured 

temperature profile of the lance was fitted with a polynomial-like equation. The 

temperature of the product in the die was measured with a thermocouple. A slow cooling 

of the extrudate samples possibly results in an additional decrease of TIA. The decrease 

of temperature in the centre of the extrudates was measured as a function of time with a 

thermocouple. The pressure before the die was measured with a Kistler piezo-quartz 

crystal pressure probe (type 601H). Experiments were performed at a screw speed of 

150 rpm. The mass flow was measured at the die and corrected for the loss of 

evaporated water. Extrudate samples were collected and dried at 35 °C. The degree of 

fill of the screw channel was measured after a sudden stop by collecting and weighing 

soy samples from several screw pockets after pulling out the screw. 
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lance with thermocouples 
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Fig. 1. Configuration of the extruder (D=4.88102 m, W=2.70102 m, H=4.1810"3 

m, s=4.19103m, 5=8.5-10^ and (p=13.2°). 

RTD measurements 
RTD measurements were performed according to Peng et al (1994). A weighted amount 

of Congo red (about 100 mg) was added into the feed port of the extruder. Samples 

were collected, dried at 35 °C and milled with a 1 mm sieve. A standard curve was 

prepared by mixing solutions with different amounts of Congo red with grounded 

extrudates using a blender. These samples were dried again at 35 °C and milled with a 1 

mm sieve. The colour values of the samples and the standard curve were measured with 

a colorimeter (Tricolor LFM3 Colorimeter). The colour value 'a' devided by 'L' (DIM 

6174, CIE-LAB) was used to estimate the concentration of Congo red. 
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TIAn 

solid conveying section: 1 

At = 
Ax t r 

T = f(x) 

k = f(T,mc) 

T I A s c s = f ( k 1 > k 2 , a > A t ) 

melt section: 

E(t') = f(t', ri) 

Axt' 
At'= 

T = f(x) 

k = f(T,mc) 

TIAm s=f(k 1 ;k 2 ja,At ' ) 

oo 
TIAC=TIA -SE(t ')TIA r a sAt' 

.l ° J 

TIA„ 

Fig. 2. Calculation procedure of TIA during extrusion cooking. 

Calculation procedure of TIA in the extrudates 

The decrease of TIA due to heat inactivation was estimated by combining the axial 

temperature profile inside the screw and the RTD of the flour during extrusion cooking 

with the inactivation kinetics model of TIs. Figure 2 presents a scheme of the calculation 

procedure of the inactivation of TIs during extrusion cooking. 
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Results and discussion 

Strains of the TI molecules were calculated using Equations 1, 2, 3 and 4. The calculated 

shear rates in the clearance and at the die wall are higher than the rate in the screw 

channel, as expected (Table 1). Yet, the calculated strains in the screw channel, clearance 

and at the die wall are comparable due to the dependency of the viscosity on the shear 

rate. The calculated strains are around 15% at the three locations in the extruder. It 

should be noted that these calculations only intend to estimate orders of magnitude of the 

strain in the TI molecules. Considering that the Young's modulus used in this study is 

probably at the lower side, the calculated strains will be at the higher side. Although the 

calculated strains are not very high, breaking of non-covalent interactions between 

groups in the protein molecule and therefore inactivation of TIs due to shear can not be 

excluded. 

A maximal decrease of the activation energy of 0.7 kJ mol"1 was calculated (see Table 1). 

This value is more than two orders of magnitude lower than the activation energies for 

TI inactivation (Eai=200 kJ mol'1 and Ea2=158 kJ mol"1). According to this theory, shear 

will not be an important factor in the inactivation of TIs. 

Table 1. Calculated shear rate, viscosity, strain and decrease in activation energy at different 

positions in the extruder (d=6 mm). 

position Y n e AEa 

£ j ) (Pas) fc) (kJ mof') 

channel 

channel1' 

clearance 

die wall 

92 

368 

451 

330 

864 

417 

277 

550 

0.08 
0.15 

0.13 

0.18 

0.1 

0.5 

0.3 

0.7 

':extrusion experiment with a compression ratio of 4 and no die head. Qm is listed in Table 2. 

The inactivation kinetics of TIs in soy flour was determined. Equation (7) describes the 

measured data well (Sw =13%, Figure 3). 
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ln(TIA tmA0) 
o 

t(min) 

Fig. 3. Measured and estimated (—) inactivation of TIs at 0.40 g (g ds)"1. 

Temperatures are: 80 °C (Q), 90 °C (+), 99 °C (0) and 109 °C (*). Estimated 

kinetics parameters are: Eal=2.00105 J mol"1, kri=l .42-10"1 s"1, Ea2=1.58105 J mol1, 

kr2=1.4810-2 s'1 and a=0.583 (Tr=110 °C). 

Table 2. Measured pressure P and mass flow Qm, and calculated parameters 

d/1 

(mm/mm) 

7/3.5 

7/7 

6.5/6.5 

6/6 

5/5 

(10 

P 
5 N in 2 ) 

22 

22 

24 

24 

27 

Qm 

(8S-1) 

4.92 

4.48 

4.70 

4.77 

4.72 

•Lms 

CIO-2 m) 

1.8 

1.7 

1.9 

2.0 

2.2 

tp 

(s) 

9.4 

10.2 

9.7 

9.6 

9.6 

ttot 

(s) 

24.1 

30.1 

29.1 

27.9" 

25.6 

n 

(-) 

7 

5 

8 

6" 

3 

: parameters are linear interpolated from experiments with a d/1 of 6.5/6.5 and 5/5 

The measured die pressure P increases little with decreasing die diameter (Table 2). This 

is explained by the high entrance pressure drop of the die. Calculations showed that the 

pressure drop in the die itself ranges from 1.5-103 (1=3.5 mm) to 7.9-105 N m'2 (1=5 mm). 
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This shows that the entrance pressure drop of the die was probably around 20-105 N m'2. 

The calculated I™ is almost constant at 210'2 m because the die pressures and mass flow 

(Table 2) are almost constant for different experiments. The equivalent axial screw 

length, that was calculated from the volume of the soy melt in the die head, is 8.1 • 10"2 m. 

This means that the volume of the soy melt in the channel is relatively small compared to 

the volume of the melt in the die head. An average L', 

calculations. 

j of 1010" m was used for further 

F (kg/m3) 
2,000 

1,500 

1,000 

500 

0.2 0.4 0.6 

distance from feed port (m) 
-^ »--*—»«-

L L' 
•-scs ms 

Fig. 4. Axial temperature profile in the screw (*) and barrel (0), and the degree of 

fill (D) of soy in the channel along the extruder (1=6.5 mm and d=6.5 mm). 

Figure 4 gives an example of the axial temperature profiles and the degree of fill F of the 

soy in the screw channel. In the solid conveying section, the temperature increased due 

to condensation of evaporated water from the melt section. At the end of this section, the 

temperature of the soy was about 70 °C that is considered to be the melting temperature 

of soy (Morgan, 1979 and Remsen and Clark, 1978). The temperature profiles of the 

barrel were in agreement with the profiles of the lance. The calculated values for Lscs and 
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L'n, are in line with the sharp rise of the degree of fill in the screw channel (Figure 4). 

The temperature increased rapidly from about 70 °C to about 110 °C in the melt section 

due to viscous dissipation only. The decrease of temperature in the die is due to 

evaporation of water from the soy. 

0 20 40 60 80 100 120 

t(s) 

Fig. 5. Measured (*) and estimated (—) RTD of the tracer in soy (1=6.5 mm and 

d=6.5 mm). 

The breakthrough of Congo red was observed between 8 and 15 s in different 

experiments (Figure 5). This observation is in line with the calculated plug flow residence 

time tp of 10 s (Table 2). This calculated value was used in the modelling of the RTD of 

soy in the extruder. The estimated number of perfect mixers n ranged from 3 to 8. The 

total residence time ttot (^p+t™) ranged from 24 to 30 seconds (Table 2). The estimated 

residence times in the melt section t™ are in the same order as the tms values that were 

calculated by dividing the volume of the melt in the extruder by the volumetric flow rate. 

The calculated total amount of Congo red in the extrudate samples (average value is 70 

mg) is not in agreement with the added amount of Congo red (-100 mg). The reason for 

this difference is probably that the samples of the standard curve were prepared with a 

blender and not with the extruder. Perhaps, this results in a different inclusion of the 
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Congo red particles in the soy flour. It was assumed that the relative decrease in the 

calculated amount of Congo red was the same for all collected extrudate samples. 

Table 3 shows that the measured TIA values of the extrudates are almost equal to the 

calculated values. An increase in shear rate did not change these results (Table 3). The 

results indicate that the inactivation of TIs during extrusion cooking can be explained by 

heat inactivation only. 

The reliability of the calculated TIA values is dependent on the accuracy of the 

estimated process parameters. The effect of a deviation in the measured temperature 

profile and RTD on the calculated residual TIA level was studied. A decrease in the axial 

temperature profile with 5 °C results in an average increase of the predicted TIA values 

of 4 mg (g ds)"1. A decrease in tms with 5 s results in an average increase of the predicted 

TIA values of 2 mg (g ds)'1. If the RTD of the soy in the melt section is considered to 

consist out of 2 perfect mixers for all experiments, an average increase of the predicted 

TIA values of 0.4 mg (g ds)"1 was calculated. If cooling down of the extrudates is taken 

into account, an additional decrease of 0.6 mg (g ds)"1 was calculated. This sensitivity 

analysis shows that, considering the possible deviations in the measured temperature 

profile and RTD, the inactivation of TIs can be explained properly by heat inactivation. 

This involves that TIs in soy flour are not inactivated by the deformation of the TI 

molecules during extrusion cooking. 

Table 3. Calculated and measured TIA values in the extrudates. 

die d/1 

(mm) 

7/7 

7/3.5 

6.5/6.5 

6/6 

no1 ' 

Yw 

( S - ) 

189 

189 

236 

304 

-

Thigh 

CO 
106 

107 

107 

112 

83 

TIA, 

(mg (g ds)"1) 

22 

23 

21 

17 

30 

TIAn 

(mg (g ds)"1) 

20 

22 

20 

17 

28 

^extrusion experiment with a compression ratio of 4 and no die head, Thlgh: highest measured 

temperature. TIAo=30.0 mg (g ds)"1. 
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The feed quality of the extruded product is dependent on the residual levels of ANFs in 

the feed. The feed quality is also dependent on the bio-availability of the amino-acids. 

Possibly the shear forces have some influence on the denaturation of other soy proteins 

than TIs. This can have consequences for the feed quality of the extruded product. 

Equation (6) shows that the decrease of the activation energy is strongly dependent on 

the molecule diameter. The molecular weight of KSTI is 20,000 g mol"1. The 7S and 1 IS 

storage proteins have an average molecular weight of approximately 156,000 and 

348,000 g mol"1, respectively. The denaturation of a fraction of the storage proteins by 

shear forces may therefore be a factor of importance. 

Conclusions 

Calculated strains of TI molecules due to exerted shear force at different positions in the 

extruder are at most in the order of 10-20%. A maximal decrease of the activation 

energy for TI inactivation of 710 2 J mol"1 was calculated. This value is more than two 

orders of magnitude lower than the activation energies for TI inactivation. These 

calculations suggest that some effect of shear forces on the inactivation of TIs can not be 

excluded, although this is not very likely. Results from extrusion experiments showed 

that the residual TIA levels predicted by heat inactivation was approximately equal to the 

measured residual TIA in the extrudates. The inactivation of TIs during extrusion 

cooking is caused by heat inactivation. The deformation of the TI molecules is not a 

relevant factor in the inactivation of TI during extrusion cooking. 
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Appendix 

The average radius of gyration S for a freely rotating polymer chain is (Young, 1983): 

s-£-J?v^ (A,) 

where lb and nb are the length and number of bonds, respectively. Since the angle of the 

bonds is limited and a protein is more rigid than a plastic polymer due to side-chains, S is 

larger in practice: 

^Irir1'^ (A2> 
where lVn'b = lb-nb. l'b and n'b are the length of a statistical chain length and the number 

of statistical chain elements for proteins, respectively (Flory, 1953). The calculated 

radius of gyration for a freely rotating chain of TI is about 5.4-10"9 m. The strain to 

achieve this radius is 210%. 

Symbols 

(m2) 

(gdsCgtot)"1) 

(m) 

(m) 

(m) 

(Nm"2) 

(-) 
(J mol'1) 

(J mol"') 

(kgm"3) 

(Nm'3) 

(Nm-2) 

A 

C 

d 

do 
D 

E 

E(t) 

Ea 

AEa 

F 

g 
G' 

cross-sectional area 
protein concentration 

die diameter 

molecule diameter 

extruder diameter 

Young's modulus 

exit age distribution 

activation energy 

decrease of activation energy 

degree of fill in screw channel 

pressure gradient 

storage shear modulus 



Shear forces 61 

H 

k 

k, 
1 

lb 
rfc 

L 

L' 

m 

mc 

n 

rib 

n'b 

tu 

N 

Na 

P 
P 

Qm 

Qv 

R 

s 

Sw 

channel height 

inactivation rate constant 

pre-exponential factor at reference temperature 

die length 

bond length 

length of chain elements that can be considered 

as effectively freely rotating with respect to each 

other 

extruder length 

corrected axial extruder length 

flow index of power law fluid 

moisture content 

number of perfect mixers 

number of bonds 

number of chain elements that can be considered 

as effectively freely rotating with respect to each 

other 

sample size 

screw speed 

Avogadro constant 

number of channels 

die pressure 

mass flow rate 

volumetric flow rate 

root mean square displacement length 

flight width 
j T I A m - T I A e | 
Z TIAm 

n s 

(m) 

(*-') 

(s-1) 

(m) 

(m) 

(m) 

(m) 

(m) 

(-) 
(g(gds)"1) 

(-) 

(-) 

(-) 

(-) 
(s-1) 

(mof1) 

(-) 
(N nf2) 

(kgs"1) 

(m3 s"1) 

(m) 

(m) 

(-) 

S root mean square radius of gyration (m) 

t time (s) 

t' residence time in melt section (s) 

tms mean residence time in melt section (s) 

tp mean residence time in solid conveying section (s) 
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ttot 

T 

Tr 

TIA 

Vb 

W 

X 

Y 

Greek 

a 

8 

e 

Y 

(P 
a 

H 

Subscripts 

0 

1,2 
c 

e 

m 

ms 

scs 

t 

w 

z 

mean residence time in extruder 

temperature 

reference temperature 

trypsin inhibitor activity 

barrel velocity 

channel width 

distance 

Ho r5 

fitting parameter 

clearance height 

strain 
shear rate 

angle screw channel 

shear stress 

viscosity 

att=0 

number of inactivation phase 
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5. Modelling of the product quality of soybeans during 
steaming 

Abstract 

The decrease of the trypsin inhibitor activity (TIA) and the nitrogen solubility index 

(NSI) in soybeans during (pressurised) steaming was determined. A process model for 

steaming was set-up. Separate experiments were performed to estimate the thermal 

diffusivity and water diffusion coefficients in soybeans. The kinetics of NSI decrease was 

determined in separate experiments and modelled with a n* order reaction. The process 

model for steaming was combined with the kinetics models of TIA and NSI to predict 

the influence of steaming on the residual TIA and NSI levels in the soybeans. The 

combined models were validated with the presented experimental data and data from 

literature. The possibility for optimisation of the product quality of the soybeans during 

steaming was investigated by performing model simulations. The simulations indicate 

that the steaming process can be optimised using TIA and NSI as quality parameters. 

Initial moisture content rather than steam temperature can be used to optimise the 

process. 

This chapter has been submitted as: 

Rob van den Hout, Gerrit Meerdink, Willem Stolp, Klaas van't Riet. Modelling of the product quality of 

soybeans during steaming. 
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Introduction 

The nutritional value of raw soybeans is reduced by the presence of antinutritional 

factors (ANFs). Trypsin inhibitors (TIs) are generally considered to be the most 

important ANFs in soybeans. Atmospheric steaming (toasting) of soybeans is commonly 

used in the animal feed industry to reduce the ANFs. The heat treatment also decreases 

the bio-availability of essential amino acids. Therefore over-processing should be 

avoided. The effect of atmospheric steaming on the nutritional value of soybean meal has 

been investigated by several authors (Rackis, 1974 and Smith et al, 1964). Jansen et al 

(1985) studied the effect of steaming at circa 95 °C on the residual trypsin inhibitor 

activity (TLA), protein solubility and urease activity (UA) in soybeans. 

The only degree of freedom in adjusting the process conditions during 

atmospheric steaming is the residence time. With pressurised steaming an additional 

degree of freedom, the steam temperature, is introduced. The use of pressurised 

steaming results in a shorter residence time, so called HTST (High Temperature Short 

Time) processing. Additionally pressurised steaming might result in a change in the 

availability of the essential amino-acids. Qin (1996) studied the effect of steam 

temperature and residence time on residual TIA, protein dispersibility index (PDI) and 

available lysine of soybeans. Yin et al (1993) studied the influence of autoclaving (T=125 

°C) on residual TIA, UA and available lysine in soybeans. 

Although experimental data are presented in literature, a model to predict the 

quality of the soybeans during steaming is not available. Such a model can be used to 

optimise and design the heat treatment. 

The aim of this study was to model the influence of steaming on the feed quality of 

soybeans. Residual levels of TIA and nitrogen solubility index (NSI) were used as quality 

parameters. NSI was used to monitor the protein availability. A process model for 

(pressurised) steaming was developed and combined with the kinetics models for TIA 

and NSI. Physical and kinetics parameters were measured in separate experiments. The 

possibility for optimisation on feed quality during steaming was investigated by 

performing model simulations. 
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Theory 

The heat and mass transfer equations were used (i) to determine the physical parameters 

(thermal difrusivity of and water diffusion coefficients in soybeans), and (ii) to describe 

the steaming process. The boundary conditions are dependent on the actual process. 

Determination of the physical parameters 

The thermal difrusivity coefficients were determined by measuring the change in 

temperature of a bean in saturated steam. The heat transfer is internal limited because of 

the high Biot number due to the high heat transfer coefficient of the condensing steam. 

The water diffusion coefficients were determined by soaking beans in water. The mass 

transfer during soaking is internal limited. 

Steaming process 

A horizontal vessel is pressurised by steam and (un)loaded with beans by two rotary 

valves (Figure 2). When a bean enters the toaster the (pressurised) steam condenses on 

the bean. The temperature of the bean increases and the condensate is absorbed by the 

bean. The heat transfer in the bean during the condensation process is internal limited 

because of the high Biot number due to the high heat transfer coefficient of the 

condensing steam. The mass transfer in the beans during the condensation process is 

assumed to be internal and external limited. When the temperature of the beans has 

reached the steam temperature, the condensation of steam on the beans stops. The mass 

transfer in the beans remains internal and external limited due to absorption of condense 

droplets. 

In order to model the heat and mass transfer in a soybean the following assumptions 

were made: (i) the thermal difrusivity coefficient and the water diffusion coefficient are 

independent on moisture content, (ii) the heat and water diffusion only takes place in 

radial direction, (iii) the soybeans are spherical, (iv) the effect of volume change of the 

soybeans due to absorption of water is neglected, (v) the influence of (bio)chemical 

reactions like protein denaturation and Maillard reactions on the physical properties of 

soybeans are neglected, and (vi) the water diffusion coefficient is constant in the soaking 

and steaming experiments, because the characteristic time for heat transfer is much lower 

than the characteristic time for water transfer. 
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Mass transfer 
The diffusion equation for a sphere is: 

dC 1 df 2„dC — = — r D — 
ft r! & l dr 

2 ^ r 2 D ^ J 0) 

The following initial and boundary conditions were applied: 

t=0: 0<r<R C=C0; (1A) 

t>0: r=0 — = 0 (IB) 

dr 

Boundary conditions at t>0 and r=R are: 

for soaking: Cs=Ce (1C) 

x VpCp ^ 
for steaming (see appendix): -D = — + k m ( C e - C s ) (ID) 

dr A H V T 

Heat transfer 
An analytical solution of the heat diffusion equation (Luikov, 1968) was used. 

Reaction kinetics of TIs and NSI 
The inactivation kinetics of TIs in soybeans was described by the following equation (Van 

denHout et al, 1997). 

I^ = a . e - k r t + ( 1 _ a ) . e - k 2 t 
TIA0 ' W 
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The temperature dependency of the inactivation rate constants was described by the 

Arrhenius equation. The activation energies and pre-exponential factors were assumed to 

be dependent on moisture content according to Van den Hout et al (1997). 

A n"1 order reaction kinetics model was used to describe the decrease of NSI. The 

temperature dependency of the reaction rate constant was described by the Arrhenius 

equation. The pre-exponential factor was assumed to be dependent on moisture content. 

The activation energy and the reaction order were assumed to be independent on 

moisture content. 

Both kinetics models have no mechanistic background. The reaction order n has 

no mechanistic meaning. 

Material and methods 

Properties of the soybeans 

Soybeans from Mervo Products (Hengelo, The Netherlands) were used. The beans that 

were used for the determination of the thermal diffusivity coefficient and the water 

diffusion coefficient, were sieved. Beans that remained on a 5.6 mm pore sieve and went 

through a 6.2 mm sieve were selected. The volume of the beans was calculated from the 

measured dimensions of the beans, assuming the beans to be an ellipsoid. This procedure 

was checked by pyknometer measurements. The volume was used to calculate an 

equivalent radius. 

Analyses 

Moisture content of soybeans and grits. The steamed soybeans were carefully dried with a 

tissue to remove the water layer between the cotyledon and seed coat. The moisture 

content of the beans was determined by drying the beans at 130 °C for 15 h. The average 

error of the analysis (the difference between measured and mean value, devided by the mean 

value) was 2%. The moisture content of the soy grits was measured according to AOAC 

(1990). 

Trypsin inhibitor activity. The oil in the (processed) soy grits was extracted with hexane at 

room temperature. The defatted soy grits were milled on a Retsch mill with a 0.2 mm sieve. 

TIA was measured with an affinity chromatography method as described by Roozen and De 

Groot (1991) with minor modifications (Van den Hout et al, 1997). 
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Nitrogen solubility index. NSI was determined by the method described by Dale et al 

(1987). NSI was calculated as the percentage between the nitrogen content in the 

supernatant after extraction, and the total nitrogen content of the material. The determination 

of total nitrogen content and the nitrogen content in the supernatant were performed by a 

semi-automated micro-Kjeldahl method (Roozen and Van Boxtel, 1979). The average error 

of the analysis was 4%. 

Determination of the thermal diffusivity coefficient 

The thermal diffusivity coefficient of soybeans was determined by following the heating-

up of a bean in a tube under steaming conditions (Figure la). A stainless steel tube with a 

lid with an insulated thermocouple, and two valves was used. The steam was supplied by 

an autoclave. The temperature in the centre of the bean was recorded. The experiment 

was started by opening valve 1 between the tube and the autoclave. The steam velocity 

was adjusted by valve 2. The steam velocity had no influence on the rate of the heat 

transfer process as checked in separate experiments. Experiments were performed at 

different steam temperatures (104, 105, 110, 118, 123 and 130 °C). The deviation of the 

steam temperature during the experiments was 1.3 °C. 

valve 2 —— thermocouple 

insulation 

steel pin 

rubber ring 

copper tube 

distilled water 

beans 

autoclave 

Fig. 1. Experimental set-up used for the determination of the thermal diffusivity 

coefficients (a) and the water diffusion coefficients at temperatures higher than 100 

°C (b). 
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Determination of the water diffusion coefficient 
The water diffusion coefficient of soybeans was determined by following the water 

absorption during soaking of the beans in water. Water absorption experiments at 

temperatures <100 °C were performed in beakers with distilled water, placed in a water 

bath. Water adsorption experiments at temperatures >100 °C were performed in pre

heated copper cylindrical tubes, placed in a stirred oil bath (Figure lb). The temperature 

of the water was registered with a thermocouple in the centre in one of the tubes. The 

time for 95% temperature equilibrium of the water in the tubes was about 1.5 minutes. 

The moisture absorption was not influenced by the rate of heating-up of the water in the 

tubes as determined in separate experiments. 

Determination of the inactivation kinetics of TIs 
Soybeans were milled on a Retsch mill with a 1 mm sieve. Inactivation experiments with the 

full fatt soy grits were performed at 109 and 119 °C (mc=0.12 g (g ds)"1) as described by Van 

denHoute?a/(1997). 

Determination of the kinetics of NSI decrease 
Experiments were performed with untoasted defatted soy flour. Residual NSI levels were 

determined in the samples used in earlier research (Van den Hout et al, 1997). The influence 

of temperature was studied at 0.30 g (g ds)"1 (T=89, 104, 119 and 134 °C). The influence of 

moisture content was examined at 104 °C (mc=0.08, 0.13, 0.23 and 0.30 g (g ds)"1). To 

obtain more experimental data, NSI levels in additional samples with a heat treatment at 0.13 

(119 °C), at 0.23 g (g ds)"1 (134 °C), and at 0.40 g (g ds)"1 (80, 90, 100 and 110 °C), and 

different residence times were determined. The experiments at 0.40 g (g ds)'1 were performed 

with a different batch of untoasted defatted soy flour (Cargill, The Netherlands). The NSI of 

the unheated soy flour was 92% and 90% for the two batches, respectively. 

Steaming experiments 
Steaming experiments were performed with a pilot plant-scale pressurised toaster with a 

maximum capacity of 225 kg h"1 (Van der Poel, 1990, Figure 2). The steam in the toaster 

was saturated. The toaster was loaded every experiment with 1 kg soybeans. It was 

assumed that the beans flash water when they leave the toaster. The measured moisture 

content of the beans after steaming was therefore corrected by adding the calculated 
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amount of vaporised water needed to cool the beans from steam temperature to 100 °C 

(Amc=2.0410"3, 1.0210"2 and 2.0410'2g (g ds)"1 at 102, HOand 120 °C, respectively). 

steam injection 
inlet sluice 

drain 

Fig. 2. Pressurised toaster. 

outlet sluice 

Estimation of the physical and kinetics parameters 
The thermal diffusivity coefficient was fitted to the experimental data using the analytical 

solution of the heat diffusion equation. The mass transfer problem was solved 

numerically using a finite difference method (Crank, 1975). In order to estimate the 

water diffusion coefficient and equilibrium moisture content, Equation (1) with boundary 

conditions (1A), (IB) and (1C) was fitted to the experimental soaking data. In order to 

estimate the external mass transfer coefficients, Equation (1) with boundary conditions 

(1A), (IB) and (ID) was fitted to the experimental steaming data. The kinetics 

parameters were fitted to the experimental data using the kinetics equations. The physical 

and kinetics parameters were estimated using the NLIN procedure of SAS (SAS, 1988). 

Prediction of the residual TIA and NSI levels 
The temperature and moisture profiles in the bean during steaming were predicted using 

the analytical solution for heat transfer and Equation (1) with boundary conditions (1A), 

(IB) and (ID), respectively. This process model was combined with the kinetics models 

of TIA and NSI to predict the residual TIA and NSI levels of the steamed beans. It was 
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assumed that moisture only existed in the fat free phase of the beans. The moisture 

content used in the kinetics model of TIA and NSI was therefore based on fat free 

samples (g (g ds ff)"1). The fat phase fraction in the soybeans was taken from the Soya 

Bluebook (1994). Experimental data showed that the inactivation rate of TIs was almost 

independent on moisture content at moisture contents higher than 0.3 g (g ds)"1 (Van den 

Hout et al, 1997). Experimental data indicated that the reaction rate of NSI at 0.30 g (g ds)'1 

was almost equal to the rate at 0.40 g (g ds)"1. In order to avoid computation errors due to 

extrapolation of the kinetics parameters, the inactivation rate constants for TIA and NSI 

above 0.52 g (g ds)'1 were assumed to be equal to the inactivation constants at 0.52 g (g ds)"1. 

The data used for the steaming simulations are listed in Table 1. 

Prediction of data from literature 
Qin (1996) studied the effect of steaming on TIA in soybeans at different steam 

temperatures (102-136 °C). The author used three different soybean batches. These 

batches were different in origin, initial TIA level and initial moisture content: (i) 

Argentina, TIAo=23.4 mg (g ds)"1 and mc0=0.119 g (g ds)"1, (ii) Argentina, TIAo=17.0 

mg (g ds)"1 and mc0=0.116 g (g ds)"1, and (iii) China, TIAo=22.3 mg (g ds)'1 and 

mco=0.083 g (g ds)"1. The residual TIA levels in the steamed beans were predicted using 

the combined kinetics and process models. The data listed in Table 1 were used, except 

for the initial TIA levels and initial moisture contents. Because of the inaccuracy of the 

TIA analysis below TIA levels of 1.0 mg (g ds)"1, experimental TIA data from Qin 

(1996) below 1.0 mg (g ds)"1 were not used. 

Results and discussion 

Determination of the physical and kinetics parameters 

Thermal diffusivitv coefficient 

Figure 3 shows typical heating-up curves of soybeans. The temperature measurements in 

the centre of the bean show some deviation between experiments with different beans. 

This is probably due to the different shapes of the beans. Figure 3 shows that the steam 

temperature does not influence the heat diffusion process. The estimated thermal 

diffusivity coefficients showed no trend with temperature and the estimated 95% 
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confidence intervals partially overlapped each other (data not shown). The coefficient 

was therefore assumed to be independent on steam temperature. When the equation for 

heat transfer was fitted to all experimental data, an average thermal diffusivity coefficient 

of 1.2610'7 m2 s'1 was estimated (Figure 3). The deviation s„ between measured and 

estimated temperatures was reasonable low (6.1% and 2.8% for 9C>0.63). 

It is not possible to compare the estimated coefficient with values from literature 

because no data for beans are available at these high temperatures. Wallapapan et al 

(1984) reported a value of about 810'8 m2 s"1 for defatted soy meal under extrusion 

conditions (p=1200 kg m"3, T=130 °C and mc=0.15 g (g ds)"1). 

OE+6 1E+6 2E+6 3E+6 4E+6 5E+6 

t/R2 (s/m2) 

Fig. 3. Measured and estimated (—) increase of temperature in the centre of the 

bean at 104 °C (+) and 130 °C (0). Data: see Table 1. 

Water diffusion coefficient 

The experimental data of the soaking experiments are shown in Figure 4. A bend in the 

moisture absorption curves at 15-25 min at temperatures >100 °C was observed. These 

bends are probably due to protein denaturation. Model simulations showed that the NSI 

level of beans in water under the same conditions decreases rapidly as a result of protein 
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denaturation. The temperature dependency of the water diffusion coefficients was 

described with the Arrhenius equation. An activation energy of 3.48104 J mol'1 was 

estimated. 

The water diffusion coefficient of 1.2-10"10 m V (40 °C and 0.14 g (g ds)"1) given by Hsu 

(1983a) corresponds well with our estimated value of 9.2-10"11 mV1 at 40 °C. The 

apparent diffusivity of approximately 5.510'12 mV1 (30 °C and 0.16 g (g ds)'1) found by 

Saravacos (1969) is lower than our predicted value of 4.410'11 mV1 at 30 °C. 

The activation energy of 5.1104 J mol"1 of Hsu (1983a) at 0.14 g (g ds)"1 is 

higher than the value found in this study, 3.48104 J mol'1, but is overlapped by our 

estimated 95% confidence interval (± 2.2-104 J mol"1). 

The average value for the equilibrium moisture contents that is overlapped by all 

estimated 95% confidence intervals, was 1.66 g (g ds)"1. This value is in agreement with 

the value of 1.43 g (g ds)"1 presented by Hsu (1983b). The estimated equilibrium 

moisture content was assumed to be independent on temperature. 

mc (g/g ds) 
2 

200 300 400 500 

t (min) 

Fig. 4. Measured and estimated (—) moisture absorption during soaking at different 

temperatures ( D :40, +:70, 0:100, MIO and x:120 °C). 
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Kinetics parameters of TIs 

The inactivation of TIs in full fat soy grits was predicted with the inactivation kinetics 

model of TIs in defatted soy flour as developed by Van den Hout et al (1997). The 

predicted values agreed with the measured TIA values in the full fat soy grits (s„=120/o). 

These results show that the inactivation kinetics model for TIs in defatted soy flour can 

be used to describe the inactivation kinetics of TIs in full fat soybeans. 

NSI (%) 
100 

300 50 75 100 125 0 100 200 

t (min) t (min) 

Fig. 5. Measured and estimated (—) decrease of NSI in defatted soy flour at 0.30 g (g ds)"1 and 

90 (+), 104 (0), 119 (D) and 134 °C (*) (a), and at 104 °C and 0.08 (+), 0.13 (0), 0.23 (•) and 

0.30 (x) g (g ds)"1 (b). Data: see Table 1. 

Kinetics parameters of NSI 

The estimated 95% confidence intervals of the parameters n and Ea were large and 

partially overlapped each other. An overall kinetics model to predict the NSI decrease as 

a function of temperature and moisture content was set up assuming n and Ea to be 

independent on moisture content. The estimated reaction order n was 10.6. Pilosof et al 

(1981) found a first order reaction kinetics for nitrogen solubility loss in Phaseolus 

Vulgaris beans at lower temperatures (60-90 °C). The n"1 order reaction model described 
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the experimental NSI data with a deviation sw of 4% (Figure 5a and b). This value is 

equal to the error of the NSI analysis. 

Steaming model 

The moisture content of the beans increased rapidly during the first minute of steaming 

due to condensation of steam on the beans (Figure 6). After the condensation has 

stopped, a constant increase of the moisture content takes place. This increase is 

probably due to the absorption of condense droplets present in the saturated steam, or 

condense droplets dripping from the colder wall of the toaster. This explanation is in line 

with the observed increase of the rate of water absorption when the valve to drain the 

condensed water was opened, or when the layer thickness of beans on the conveyor belt 

was decreased. 

mc (g/g ds) 
0.4 

10 15 

t (min) 

Fig. 6. Measured and estimated (—) moisture absorption of soybeans during 

steaming at 102 (D), 110 (+) and 120 °C (0). Data: see Table 1 (Km=0.262, 0.199 

and 0.224 at 102, 110 and 120 °C, respectively). 
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The moisture content at the inflexion point at 110 and 120 °C is higher than is expected 

on basis of the predicted condensation. The steam in the sluices is more saturated at 

higher steam temperature. This results in an extra absorption of condensed steam 

droplets by the beans in the sluices. This extra amount of absorbed droplets was included 

in the diffusion model (Figure 6). The dimensionless external mass transfer coefficient Km 

could be assumed constant. 

TIA (mg/g ds rf) 
25 

10 15 20 25 

t (min) 

Fig. 7. Measured and predicted (—) TIA values of soybeans steamed at 102 (+), 

110 (0) and 120 °C (D). Data: see Table 1 (Km=0.224). 

Figure 7 shows that the combined kinetics model of TIA and the process model for 

steaming described the measured TIA values in the steamed beans well. The deviation s„ 

between measured and predicted TIA values was 16%. For a soybean meal used in feeds, 

a maximal TIA level between 2 and 5 mg g"1 is often recommended (Huisman, 1990). 

The experimental results show that the residence time required to attain a residual TIA 

level of 3.5 mg (g ds ft)"1 is approximately 10 and 1.5 minutes at 102 and 120 °C, 

respectively (Figure 7). 
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The scattered experimental steaming data of residual NSI levels (Figure 8) indicate some 

difficulties with the method of NSI analysis of the steamed beans. The trend of the 

measured NSI decrease can nevertheless be described by the combined process model 

and kinetics model of NSI. The combined model is suitable to perform steaming 

simulations to predict trends in residual NSI levels. 

NSI (%) 
90 

t (min) 

Fig. 8. Measured and predicted (—) NSI values of soybeans steamed at 102 (+), 

110 (0) and 120 °C (•). Data: see Table 1 (Km=0.224). 

The combined process and kinetics model was used to predict the experimental TIA data 

of Qin (1996). The predicted TIA values were in agreement with the measured TIA 

values in the steamed beans: the average deviation s„ for the different soybean batches 

was 31%. In concluding, the combined kinetics and process model is able to predict 

experimental data from literature as well. 

The time needed for drying of the beans to an appropriate moisture content for storage is 

dependent on the residual moisture content and the residual moisture profile of the 

steamed beans. Predicted residual moisture profiles in a bean after steaming at different 
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steam temperatures were compared. The moisture and TIA profiles in a steamed soybean 

with an average residual TIA level of 3.5 mg (g ds ff)"1 are shown in figure 9. The difference 

in steam temperature results in different residual profiles. The moisture profile in the bean 

steamed at 100 °C is more flat than the profile at 120 °C. The TIA profile at 100 °C is almost 

equal to the profile at 120 °C. These two beans probably need a different drying step. 

TIA (mg/g ds ff) 
25 

mc (g/g ds) 
0.25 

20 -

0.15 

0.05 

r/R 

Fig. 9. Predicted residual TIA and moisture profiles of soybeans with residual TIA 

levels of 3.5 mg (g ds)"1 steamed at 100 (—) and at 120 °C (- - -). Data: see Table 1 

(Km=0,mc0=0.08g(gds)1). 

Optimisation of the product quality 

The nutritional value of soybeans depends on both the ANF level and the availability of 

essential amino-acids. Model simulations were performed to investigate if it is possible to 

optimise the product quality. TIA and NSI were used as quality parameters. The effect of 

steam temperature and initial moisture content of the beans on product quality was examined. 

It was investigated if it is possible to attain different NSI levels in soybeans with the same 

residual TIA level (3.5 mg (g ds ff)'1). Increasing the initial moisture content increased the 
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residual NSI levels in the steamed soybeans (Figure 10a). Increasing the steam temperature 

resulted in almost simular residual NSI levels in the steamed beans (Figure 10b). These 

simulations indicate that the steaming process can be optimised better by changing the initial 

moisture content than the steam temperature. 

NSI (%) NSI (%) 

a 

-

-

- - -

, - ' ' 

i i 

100 
: 120 

^ ^ 

°C 
°c , - ->^ 

s ^ 

I . I . 

: 0.08 g/g ds 
:0.14g/gds 

0.08 130 0.1 0.12 0.14 0.16 0.18 0.2 100 110 120 

mc0(g/gds) T(°C) 

Fig. 10. Predicted influence of initial moisture content (a) and steam temperature (b) on the 

residual NSI level of steamed soybeans. The predicted residual TIA level in the beans is 3.5 mg 

(g ds)"1). Data: see Table 1 (Km=0). 

Conclusions 

The TIA levels predicted with the combined process model for steaming and kinetics 

model of TIA were in good agreement with the measured TIA values in steamed 

soybeans. The model was able to predict experimental TIA data from literature. The 

combined model was able to describe the trend of the measured decrease of NSI. Model 

simulations indicate that the steaming process can be optimised better on initial moisture 
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content of the soybeans than on steam temperature using TIA and NSI as quality 

parameters. 

Table 1. Data used for steaming predictions 

initial moisture content 

initial TIA level 

initial NSI level 

equivalent bean radius 

density 

thermal diffusivity coefficient 

water diffusion coefficient 

equilibrium moisture content 

O.MgCgds)"1 

21.8mg(gdsff)"1 

87% 

3.1510"3m 

1230 kg m'3 

l ^ l O ^ m V 

Ea=34.8103 J mol"1, D„=4.4410"5 m2 s"1 

1.66 g feds)'1 

kinetics model of TIA 

kinetics model of NSI 

ln(kao) = a + — 
mc 

see Van den Hout et al (1997) 

«=10.61,Ea=1.56105 Jmol"1, 

a=1.10 and b=-4.0710_1 g (g ds ff)"1 

dimensionless mass transfer coefficient 0.224 (model validation) 

0 (simulations) 
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Appendix 

Determination of the boundary condition at r=R and t>0 during steaming. 
The moisture absorption of the beans during steaming is caused by two external fluxes: 

(i) a flux of condensing steam, and (ii) a flux of condensed steam droplets. 

The flux of condensing steam on the bean is assumed to be proportional to the rate of the 

increase of the mean bean temperature. The flux of the condensed steam droplets is 

described by introducing an external mass transfer coefficient km. 

flux of water diffusion at the surface in the bean: 

flux of condensing steam: 

flux of condensed steam droplets: 

3r 

VpCp 
dT 
dt 

A H v , T e 

km (C e -C s ) 

Symbols 

a 
A 

b 

C 

cP 
D 
D„ 
Ea 

Hv,Te 

k 

Itoo 

Km 

Kra 

mc 

n 

fitting parameter 

bean surface area 

fitting parameter 

water concentration in bean 

specific heat 

water diffusion coefficient 

pre-exponential factor 

activation energy 

condensation enthalpie at T=Te 

reaction rate 

pre-exponential factor 

external mass transfer coefficient 

dimensionless mass transfer coefficient: kmR/D 

moisture content 

reaction order 

(-) 
(m2) 

(g(gdsff)-1) 

(kgm-3) 

(Jkg'K-1) 

(m2 s"1) 

(m2 s"1) 

(J mol"1) 

(J kg1) 

(s-1) 
(%'V) 
(ms-1) 

(-) 
(g (g ds)-1) or 
(g(gdsff)-1) 

(-) 
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n. 

NSI 

P 

r 

R 

Sw 

t 

T 

T: 

TIA 

V 

X(i) 

X 

Greek 

a 

e 
P 

Subscripts 

0 

1,2 
c 

e 

s 

t 

sample size 

nitrogen solubility index 

pressure 

distance 

sphere radius 
|x(i)-x(i)| 

X(i) 
n s 

time 

temperature 

mean bean temperature 

trypsin inhibitor activity 

bean volume 

measured value of T, mc, TIA or 

estimated or predicted value of T 

fitting parameter 

dimensionless temperature: (T-T0 

density 

at time t=0 

number of inactivation phase 

centre 

equilibrium 

surface 

at time t 

NSI 

mc, 

ycr. 

TIA or NSI 

-T„) 

(-) 

(%) 
(Nm"2) 

(m) 

(m) 

(-) 

(s) 
(°C) 

(°C) 
(mg(gdsff)-1) 

(m3) 

(-) 

(-) 
(kgm-3) 
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6. General discussion 

Introduction 

Kinetics models of the trypsin inhibitor activity (TIA) and the nitrogen solubility index 

(NSI) in soy flour and a process model for steaming have been developed. These models 

have been combined to predict the influence of steaming on the residual TIA and NSI 

levels in soybeans. Kinetics studies of the two main TI groups, the Kunitz soybean trypsin 

inhibitor (KSTI) and the Bowman-Birk inhibitor (BBI), have been performed to study the 

inactivation mechanism of trypsin inhibitors (TIs). The influence of extrusion shear forces 

on the inactivation of TIs in soy flour has been investigated. 

In this chapter most aspects that have been discussed in the previous chapters will 

be reviewed. Furthermore, additional results will be considered. The usefulness of the 

parameter values of the inactivation kinetics model of TIs (Chapter 2) for different soy 

batches will be studied. The correlation between the water activity and glass transition 

temperature of soy flour, respectively, and the inactivation rate constants of TIs will be 

examined. The influence of the deformation of the storage protein molecules on protein 

denaturation during extrusion cooking will be reported. Simulations will be performed to 

study the influence of bean size and initial TIA level in the soybeans on the feed quality 

during steaming (toasting). The influence of the most important process conditions on 

the costs for steaming will be investigated. 

A. Kinetics studies 

The inactivation kinetics of TIs in defatted soy flour was measured and modelled in 

Chapter 2. The inactivation of TIs in soy flour exhibited a two-phase inactivation 

behaviour. A statistical criterion was used for ranking six different kinetics models. Two 
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kinetics models proved to be parsimonious models: (i) two first order reactions of two 

different TI groups, e.g. KSTI and BBI, and (ii) the irreversible inactivation of a native TI to a 

partially active intermediate TI, followed by an irreversibel denaturation step. The first 

kinetics model was used to set-up an overall inactivation kinetics model for TI. The 

mechanistic explanation of the two-phase inactivation behaviour of TIs was further examined 

in Chapter 3. It was shown that this inactivation behaviour cannot be explained by the 

difference in heat stability of the two main TI groups: KSTI and BBI. The existence of thiols 

seems to be responsible for the two-phase inactivation behaviour of TIs. The mechanistic 

explanation of the second parsimonious model of Chapter 2 was not validated. 

The kinetics model of TIs in combination with a process model is a powerful tool to 

optimise a heat process. The kinetics model was combined with a process model for 

extrusion cooking in order to investigate the influence of extrusion shear forces on the 

inactivation of TIs in soy flour (Chapter 4). A combined kinetics model and process 

model for steaming was able to predict the residual TIA levels in steamed soybeans 

(Chapter 5). 

A.l Kinetics parameters 

The inactivation kinetics model of TIs (model 2 in Table 1 of Chapter 2) was applicable for 

other soy batches (Chapters 4 and 5). In Chapter 4 the parameter values of the kinetics model 

were fitted again to the experimental TIA data. The parameter values of the kinetics model 

may be different for different soy batches. In this chapter it will be investigated if the 

kinetics parameter values from Chapter 2 can be used to describe the experimental 

inactivation data of different soy batches. 

The difference in heat stability of the two TI groups, KSTI and BBI, could not 

explain the inactivation behaviour of TIs (Chapter 3). Therefore, parameter A of the 

inactivation kinetics model does not reflect the fraction of the activity of the heat labile 

TI group of total TIA in the native soy flour. The mechanistic background of parameter 

A is not known. In Chapter 2 it was shown that the parameter A was independent on 

moisture content. In this chapter the dependency of parameter A on the initial TIA level 

in beans of different origin will be investigated. 
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A. 2 Interruption of the heat treatment 

From a process engineering point of view it is important to know (i) if the inactivation of 

TIs in soy is a reversible process, and (ii) if an interruption of the heat treatment has any 

effect on the inactivation behaviour of TIs when the heat treatment is continued. The 

reversibility of TIs and the effect of an interruption of the heat treatment will be investigated. 

A3 Water activity and glass transition temperature 

Rates of deterioration and microbial growth are often related to water activity. The 

moisture content has a large influence on the inactivation rate of TIs (Chapter 2). In this 

chapter the degree of correlation between the pre-exponential factors kri and kr2 (model 

2, Chapter 2) and the water activity of soy flour will be investigated. 

Molecular mobility is an important temperature-dependent factor that may 

influence the rates of deterioration in food (Roos, 1995). The existence of a correlation 

between the inactivation rate constants of TIs and the glass transition temperatures of 

soy flour will be investigated. 

B. Influence of shear forces on NSI 

In Chapter 4 it was shown that the deformation of TI molecules in soy flour during 

extrusion cooking does not inactivate TIs. Little is known about the effect of extrusion 

shear forces on the denaturation of storage proteins in soy flour. Soy proteins contain 

approximately 34% 7S proteins (|3- and y-conglycinin) and 42% 1 IS proteins (glycinin). 

These groups have an average molecular weight of 156,000 and 348,000 g mol"1, 

respectively. These molecular weights are an order of magnitude larger than the values of 

the TI molecules (8,000 and 20,000 g mol'1 for BBI and KSTI, respectively). The 

reduction of the activation energy is proportional to the molecular diameter, d0, to the 

third power (Equation 6 in Chapter 4). Perhaps the storage proteins are denaturated by 

deformation of proteins during extrusion cooking. 

In this chapter the influence of extrusion shear forces on the denaturation of soy 

proteins was determined. NSI is assumed to be a good indicator to follow the 

denaturation of the soy proteins during a heat treatment. The reduction of the activation 

energy for NSI by the application of stress will be calculated. The effect of shear forces 

on the decrease of NSI will be determined experimentally using the same procedure as in 

Chapter 4. 
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C. Steaming 

A process model for (pressurised) steaming was set up in Chapter 5. Residual TIA and 

NSI levels in the steamed soybeans were predicted by combining the kinetics models for 

TIA and NSI with the process model. These predictions were compared with presented 

experimental data and data from literature (Chapter 5). Process conditions (e.g. steam 

temperature and residence time) and product properties of soybeans (e.g. initial moisture 

content, initial TIA level and particle size) can be used to optimise the steaming process. 

Simulations were performed to study the possibilities for optimisation of the product 

quality (Chapter 5). These simulations indicated that the product quality can be 

optimised using TIA and NSI as quality parameters. Initial moisture content rather than 

steam temperature should be used to optimise the process. 

C.l Prediction of residual TIA in Phaseolus Vulgaris beans 

In this chapter it will be investigated if the inactivation of TIs in Phaseolus Vulgaris 

beans during steaming can be predicted using the kinetics model of TIA in soy flour and 

the process model for steaming. 

C.2 Influence of process parameters on the product quality 

Besides TIA and NSI, the available lysine level is often used in the animal feed industry 

to determine the quality of heat treated beans. Available lysine is considered to indicate 

over-processing of the beans. The influence of the residence time and the steam 

temperature on the residual FDNB reactive lysine in steamed soybeans will be reported 

in this chapter. 

Batches of soy vary in kernel size (whole beans, cracked beans, flakes, etc.). 

Initial TIA levels in soybeans of different origin may vary between approximately 10 and 

30 mg g'1 (Qin, 1996). In this chapter the influence of bean size and initial TIA level on 

the residual NSI levels in steamed soybeans will be investigated by performing model 

simulations. 

C.3 Influence of process parameters on the process costs 

Process costs play an important role in the optimisation of the steaming process. The 

influence of the process conditions and product properties on the costs of steaming and 

the subsequent drying of soybeans will be estimated qualitatively in this chapter. 
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Material and methods 

A. Kinetics studies 

Kinetics parameters. Parameter value A was estimated using our experimental data 

(Chapter 2, 4 and 5), and data from literature of steaming experiments of soybeans (Qin, 

1996) and Phaseolus Vulgaris beans (Van der Poel, 1990). The parameter value was 

fitted by the NLIN-procedure of SAS (SAS Institute Inc., 1988) using the kinetics equation 

of model 2 (Table 1 in Chapter 2). 

Reversibility. Untoasted defatted soy flour was moisturised and heated in steel cells as 

described in Chapter 2. The heat treatment was performed during 3 min at 0.23 g (g ds)"1 

and 119 °C. The samples were transferred to petri dishes. The petri dishes were closed 

with parafilm and stored at 25 °C. Residual TIA levels were measured after 0, 1, 2, 3, 5 

and 7 days. The method for TIA determination was described in Chapter 2. 

Interruption of the heat treatment. Untoasted defatted soy flour was heated at 119 °C 

and 0.21 g (g ds)"1. The heat treatment was stopped at the inflexion point of the 

inactivation curve of TIs (t= 110 s). The samples were cooled in ice-water and kept at 

room temperature for 30 min, or at 4 °C for 24 h. After the interruption period, the 

samples were heated again at 119 °C and different residence times. The method for TIA 

determination was described in Chapter 2. The heat transfer model is incorporated in the 

simulation procedure of TI inactivation after the interruption. 

Sorption isotherms. Adsorption isotherms of untoasted defatted soy flour, defatted 

KSTI-free soy flour and full fat soy grits were measured with the gravimetric method at 

25 °C. In order to examine the influence of a heat treatment on the isotherm of soy flour, 

an adsorption isotherm of heat treated soy flour (T=134 °C, mc=0.23 g (g ds)"1, t=8.5 h) 

was measured. The initial moisture content of the flours was approximately 0.08 g (g 

ds)"1. The following salt solutions were used: LiCl (aw=0.11), MgCl2 (0.33), Mg(N03)2 

(0.53), NaCl (0.75), KC1 (0.84) and BaCl2 (0.90). The sorption isotherm of the 

untoasted defatted soy flour was described with the Gugenheim Andersen and De Boer 

(GAB) equation (Equation 4.23 in Van den Berg, 1981). 

Glass transition temperature. The thermal analyses of the untoasted defatted soy flour 

were performed with a Modulated DSC at TNO Nutrition and Food Research (Zeist, 

The Netherlands). 
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B. Influence of shear forces on NSI 

Reduction of the activation energy of NSI. The decrease of the activation energy AEa of 

NSI was calculated using equations 1 to 6 from Chapter 4. (3-Conglycinin appears as a 

flat disk with a diameter of ca. 8.4 run and a thickness of ca. 3.3 nm (Yamauchi et al, 

1991). The native glycinin molecule appears as a disk with a diameter of 11 nm and a 

thickness of 7.5 nm (Badley et al, 1975). An equivalent sphere radius of 7 and 11 nm 

was calculated for p-conglycinin and glycinin, respectively. 

Kinetics model of NSI decrease. Residual NSI levels were determined in the same 

samples as used for the inactivation kinetics model for TIs (Chapter 4). The method for 

NSI determination was described in Chapter 5. The decrease of NSI was described with 

a n* order reaction kinetics. The rate constant was assumed to be dependent on 

temperature following the Arrhenius equation. The heat transfer model is incorporated in 

the estimation procedure of the kinetics parameters. The kinetics parameters were estimated 

using the NLIN-procedure of SAS (SAS Institute Inc., 1988). 

Extrusion cooking experiments. Residual NSI levels in the extruded samples (Chapter 4) 

were calculated and measured as described in Chapter 5. The data of Table 2 in Chapter 

4 were used to calculate residual NSI levels in the extruded samples. 

C. Steaming 

Prediction of residual TIA in Phaseolus Vulgaris beans. TIA data of steaming 

experiments were taken from Van der Poel (1990). A similar batch of Phaseolus Vulgaris 

beans as used by Van der Poel (1990) was prepared. This batch consisted of about 60% 

white and 40% red beans. About 30% of the beans were broken. The average volume of 

the beans was calculated from the measured dimensions of the white and red beans 

assuming the beans to be ellipsoid. The average volume was used to calculate an 

equivalent sphere radius. It was assumed that the moisture was only present in the fat 

free phase of the beans. The moisture content used in the kinetics model of TIs was 

therefore based on fat free samples (g (g ds ff)"1). The oil phase content of Phaseolus 

Vulgaris beans was taken from Van der Poel (1990). Because of the inaccuracy of the 

TIA analysis below TIA levels of 0.75 mg (g ds ff)'1, experimental data <0.75 mg (g ds 

ff)'1 were not used. 

Product quality. Total and available lysine levels were determined in the steamed 

soybeans from Chapter 5. The determination of total lysine and available lysine was 

performed by S/G Nutrilab b.v. (Giessen, The Netherlands), and was based on the 
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method described by Mason and Bench-Anderson (1980) and ISO 5510 (1985), 

respectively. Total lysine content was measured in 4 samples. The average value was 

28.1 mg (g ds ff)"1. The available lysine in the untreated soybeans was 22.9 mg (g ds ff)'1. 

The error (the difference between measured and mean value, devided by the mean value) of 

the total and available lysine analysis was 4 and 2%, respectively. 

The physical data used for steaming simulations are listed in Table 1 of Chapter 5. The 

external mass transfer coefficient km was assumed to be zero during the simulations. The 

influence of initial TIA levels on the feed quality was examined assuming parameter A to 

be constant. 

Process costs. Relevant data from Chapter 5 and this chapter were used. 

Results and discussion 

A. Kinetics studies 

A.l Kinetics parameters 

The residual TIA levels in the heat treated samples of the different soy batches from 

Chapter 4 and 5 can be predicted reasonable well with the parameter values of the 

inactivation kinetics model of TIs of Chapter 2 (Table 1). The deviation Sy, between the 

measured and predicted TIA levels (26 and 12%, respectively) is in the same order of 

magnitude as the deviation s«. of the kinetics model of Chapter 2 (14%). The inactivation 

rate constants of TIs in soy flour presented by DiPietro and Liener (1989) can be 

predicted well with our inactivation kinetics model (Table 1). The combined kinetics and 

process model was able to predict experimental data of TIs in steamed soybeans of 

different origin (Chapter 5). These results strongly indicate that the parameter values of 

the inactivation kinetics model of TIs of Chapter 2 can be used for soybeans of different 

origin. 
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Table 1. Deviation sw (%) of TIA levels and rate constants when the kinetics parameters (A, Ea's 

and kr's) were fitted to the experimental data, and when the parameter values of Chapter 2 were 

used to describe the data. 

experimental data used s„ (parameters were fitted) s«, (parameters from Chapter 2) 

TIA in Chapter 2 141* 

TIA in Chapter 4 12 26 

TIA in Chapter 5 - 12 

kinDiPietro(1989)2) - 25 
15: deviation s„ of overall kinetics model. 2): the experimental conditions used by DiPietro and 

Liener (1989) were 5.3% (95 °C), 7.7% (95 °C) and 14.7% (75, 85 and 95 °C). The moisture 

content used by DiPietro and Liener (1989) was assumed to be based on total basis. 

parameter A 

0.8 

0.6 

0.4 

0.2 

: * 1 
i 

• 

i . i . i i 

X X 

1 

1 

1 

1 

30 35 0 5 10 15 20 25 

TIA0(mg/gdsff) 

Fig. 1. Estimated parameter A with 95% confidential intervals as a function of 

initial TIA level in Phaseolus Vulgaris beans (• , Van der Poel, 1990), and in 

different soy batches: Argentinian soybeans (+, Qin, 1996), Chinese soybeans (•, 

Qin, 1996), full fat soy grits (x, kinetics model of Chapter 2 was used to describe 

experimental data of Chapter 5), Argentinian soybeans (*, Qin, 1996), defatted soy 

flour (D, Chapter 2) and defatted soy flour (o, Chapter 4). 
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The dependency of the estimated parameter A on the initial TIA level in different soy 

batches is shown in Figure 1. The figure suggests that parameter A is independent on 

initial TIA level, and also on the origin of the soy batch. 

The estimated parameter A for Phaseolus Vulgaris beans is equal to the values for soy, 

considering the 95% confidence intervals. In Chapter 3 it was shown that the inactivation 

rate constants of KSTI and BBI in a starch matrix containing cysteine were almost equal 

to the rate constants of TIs in soy flour. The inactivation of TIs in Phaseolus Vulgaris 

beans during steaming can be predicted reasonable well with the combined kinetics 

model for TIs in soy flour and the process model for steaming (Section C in this 

chapter). These results indicate that the inactivation kinetics model for TIs in soy flour 

can be used to describe the inactivation of TIs in different matrices containing thiols. 

A. 2 Interruption of the heat treatment 

Figure 2 shows that the inactivation of TIs in the heat treated soy flour is not reversible 

during at least 7 days. 

The experimental data in Figure 2 indicate that the interruption of the heat 

treatment does not influence the inactivation behaviour of TIs. Two simulations with the 

inactivation kinetics model of TIs of Chapter 2 were performed: (i) the inactivation is 

continued after the interruption and (ii) the inactivation starts a two-phase inactivation 

again. The predicted inactivation is small when the heat treatment was started again, because 

the calculated temperature has not reached 95% temperature equilibration yet. The 

simulations show that the inactivation of TIs is continued in the same way as it would 

without interruption, and does not start a two-phase inactivation again. 

These conclusions concerning the reversibility and interruption are important in 

case the soybeans are subjected to a series of heat treatments. 
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ln(TIAt/TIA0) 
o i-e 

4 6 8 10 
t (min or days) 

Fig. 2. Residual TIA level in soy flour (•) during 7 days at 0.23 g (g ds)'1 and 25 

°C after a heat treatment. Residual TIA level in soy flour (in min) after a heat 

treatment without an interruption (D), with an interruption after 110 s during 30 min 

at room temperature (+), and with an interruption after 110 s during 24 h at 4 °C 

(0). The inactivation of TIs after the interruption is predicted assuming the 

inactivation (i) to continue (—), and (ii) to start a two-phase inactivation again (- -). 

A.3 Water activity and glass transition temperature 

The isotherm of the native soy flour is described with the GAB equation (Figure 3). The 

sorption isotherm of the full fat soy grits and the KSTI-free soy flour resembles, as 

expected, the isotherm of native soy flour when the moisture content is based on fat free 

basis (g (g ds ff)"1). Figure 3 shows that the effect of protein denaturation on the 

adsorption isotherm of soy flour is small. 

The correlation between the logarithm of the pre-exponential factors kri and ka of the 

kinetics model of TIs (Tr=l 10 °C), and the water activity of soy flour at 25 °C is shown 

in Figure 4. The water activity was predicted with the GAB equation. The figure 

suggests a linear relation between the logarithm of kr[ and kr2, and the water activity of 

soy flour. 
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mc (g/g ds) 

Fig. 3. Sorption isotherms of native defatted soy flour (+), severe heat treated 

defatted soy flour (0), full fat soy grits (•, mc in g (g ds ff)"1), and defatted KSTI-

free soy flour (x) at 25 °C. Estimated parameters of the GAB equation: Wi=5.110"2 

g (g ds)1, C6=1.4109 and K=1.02. 
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Fig. 4. Correlation between the estimated pre-exponential factors kr] (D) and k^ (*) 

of TIs in soy flour (Tr=l 10 °C), and the water activity of native soy flour at 25 °C. 
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Figure 5 shows that the glass transition temperature Tg of soy flour is very dependent on 

moisture content. This observation agrees with the studies of other food systems by 

Roos and Karel (1991). The measured glass transition temperatures of the flour are at 

least 30 °C lower than the temperatures at which the inactivation experiments of Chapter 

2 were performed. In concluding, the glass transition in soy flour will probably not 

influence the inactivation kinetics of TIs. 

Tg(°C) 

o.i 

125 

100 

75 

50 

25 

c\ D 

\ o 

i " 

inactivation experiments 

X l . I . I 

-—-^«w 

i i 
0.4 0.5 0.2 0.3 

mc (g/g ds) 

Fig. 5. Measured glass transition temperatures (•) of defatted soy flour at different 

moisture contents. The shaded area reproduces the conditions of the inactivation 

experiments (Chapter 2). An empirical equation from Roos and Karel (1991, 

equation 1) was used to fit the experimental data (—, estimated parameters: k=5.4 

and T&soy=l 18 °C). 

B. Influence of shear forces on NSI 

Reduction of the activation energy of NSI 

The calculated decrease of the activation energy AEa for the 7S and 1 IS proteins due to 

deformation of the proteins in the screw channel, the flight clearance, and at the die wall 

are listed in Table 2. These values only intend to present orders of magnitude of the 
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reduction of activation energy of NSI. The calculated AEa's for the storage proteins are 

high enough to result in an additional decrease of NSI due to extrusion shear forces. 

Table 2. Calculated decrease of the activation energy AEa for the 7S and US proteins at different 

positions in the extruder. 

position AEa (kJ mol'1) 

7S US 

channel 

clearance 

die wall" 

4 

10 

21 
,)-. die configuration used for calculation: d=6 mm and 1=6 mm. 

Extrusion cooking experiments 

The n"1 order reaction kinetics model describes the decrease of NSI in soy flour with a 

deviation sw of 1% (Figure 6). 

NSI (%) 
92 

10 25 30 35 15 20 

t (min) 

Fig. 6. Measured and predicted (—) decrease of NSI in soy flour at 0.40 g (g ds)"1. 

The temperatures are: 80 (D), 90 (+), 99 (0) and 109 °C (*). The estimated 

parameters are: Ea=1.45105 J mol1, kr=2.8010^ %h"-sA and «=23.07. 
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Table 3 shows that the predicted decrease of NSI due to heat is very small. The 

measured NSI values in the extrudates are systematically lower than the calculated NSI 

values, except for the extrusion experiment performed with no die head. The differences 

between the calculated and measured NSI values are only little larger than the relative 

deviation of the NSI analyses (4%). It was studied if these differences could be explained 

by a deviation in the measured temperature profile of the soy during extrusion cooking. 

Calculations showed that an increase of the axial temperature profile of 25 to 35 °C is 

necessary to predict the measured NSI values in Table 3. This increase of temperature is 

higher than the expected experimental error. The results indicate that the measured 

decrease of NSI can not be predicted by heat inactivation only. 

The calculated NSI value for the extrusion experiment performed without a die 

head was equal to the measured value. One explanation is that the decrease of NSI is 

caused by the shear forces in the die. A synergetic effect of shear and temperature can be 

another explanation, since the measured temperature profile in the screw channel for the 

experiment without a die head is lower than the profile for the other extrusion 

experiments. This synergetic effect was also predicted when the decrease of the 

activation energies AEa for the 7S and 11S proteins from Table 2 were subtracted from 

the activation energy of NSI decrease to calculate NSI value in the extrudates. 

Table 3. Calculated and measured NSI values in the extrudates. 

died/1 

(mm/mm) 

7/7 

7/3.5 

6.5/6.5 

6/6 

no" 

fw 

(s-1) 

189 

189 

236 

304 

-

Thigh 

(°C) 

106 

107 

107 

112 

83 

NSIC 

(%) 

89 

89 

88 

88 

90 

NSIm 

(%) 

83 

83 

82 

77 

90 

'': extrusion cooking experiment with compression ration of 4 and no die head. NSI0=90%. Thigh: 

highest measured temperature. 
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In concluding, theoretical calculations indicate that shear can cause an additional 

denaturation of the storage proteins during extrusion cooking. Extrusion cooking 

experiments showed that the decrease of NSI can not be explained by heat inactivation 

only. The observed difference might be due to the deviation in the NSI analysis. 

However, it is also quite possible that the difference is caused by additional denaturation 

as a result of the deformation of proteins during extrusion cooking. 

C. Steaming 

C.l Prediction of residual TIA in Phaseolus Vulgaris beans 

The combined steaming model and kinetics model of TIs in soy flour were used to 

predict the inactivation of TIs of Phaseolus Vulgaris beans during steaming. Figure 7 

shows that the inactivation can be predicted reasonable well (s„=28%). This is 

remarkable, since the composition of Phaseolus Vulgaris beans is different from the 

composition of soybeans (Belitz and Grosch, 1995). 

TIA (mg/g ds) 
12 

20 30 40 50 

t (min) 

Fig. 7. Measured and predicted (—) residual TIA levels of steamed Phaseolus 

Vulgaris beans at 102 (+), 119 (0) and 136 °C (D). Experimental data were taken 

from Van der Poel (1990). 
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C.2 Influence of process parameters on the product quality 

The FDNB reactive lysine levels in the steamed soybeans showed no decrease with the 

prolongation of the residence time, except perhaps at 120 °C and 4 min (Table 4). 

Soybeans with a residual TIA level of 1.5-3.5 mg (g ds ff)'1 after steaming at different 

steam temperatures have almost equal FDNB reactive lysine levels. This result agrees 

with the findings that the predicted residual NSI value in steamed soybeans with a 

residual TIA level of 3.5 mg (g ds ff)"1 is almost independent on steam temperature 

(Chapter 5). Yin et al (1993) autoclaved two different batches of soybeans at 125 °C. 

One batch showed a significant decrease of FDNB reactive lysine after 5 minutes, the 

other batch did not (residual TIA = 2.2 mg g"1). Qin (1996) measured the FDNB reactive 

lysine in soybeans of different origin (mco=0.083 and 0.116 g (g ds)"1, respectively) after 

steaming at different steam temperatures (100, 118 and 136 °C) and residence times. 

Although their measured data are not very regular, they found no decrease in residual 

FDNB reactive lysine in steamed soybeans with a residual TIA level of 1-2 mg (g ds ff)"1. 

Table 4. Residual FDNB reactive lysine and TIA levels in soybeans steamed at different 

temperatures and residence times. 

time1' 

1 

1.5 

2 

2.5 

3 

4 

5 

7.5 

10 

15 

20 

102 °C 

lysine2' 

25.0 

25.0 

24.9 

25.4 

25.8 

25.7 

25.9 

25.4 

TIA3' 

15.2 

13.3 

8.5 

7.0 

4.1 

3.4 

2.0 

2.0 

110°C 

lysine 

25.9 

25.0 

25.9 

25.5 

25.9 

TIA 

11.4 

7.1 

2.9 

1.7 

1.6 

120 °C 

lysine 

25.4 

25.8 

25.8 

24.7 

TIA 

5.1 

3.6 

2.4 

1.4 

]): residence time of the beans in the toaster in min; 2): FDNB reactive lysine in mg (g ds ff)"1; 
3): TIA in mg (g ds ff)"1. The FDNB reactive lysine in the untreated beans was 22.9 mg (g ds ff)'1 r\-l 
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In concluding, changing the steam temperature results in approximate similar NSI and 

FDNB reactive lysine levels in steamed soybeans with the same residual TIA level of 3.5 

mg (g ds ff)"1. The High Temperature Short Time (HTST) property of pressurised 

steaming does not provide a tool in optimising the soybean feed quality using in vitro 

measurements as feed quality parameters. An increase in initial moisture content results 

in higher predicted NSI levels in steamed beans with the constant residual TIA levels 

(Chapter 5). Considering our results and results from Qin (1996), no change in FDNB 

reactive lysine level is predicted in soybeans steamed at different initial moisture 

contents. 
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Fig. 8. Predicted influence of the bean size on the residence time needed to achieve a residual TIA 

level of 3.5 mg (g ds ff)"1 (a), and on the residual NSI level in the soybeans (b). Conditions are 

100 °C and 0.08 g (g ds)"1 (—, t,=2456 s), 100 °C and 0.14 g (g ds)"1 ( , ̂ =842 s), and 120 

°C and 0.08 g (g ds)"1 (- - -, tr=342 s). l): value was calculated from the average thickness of 

flakes.2): value was taken from Chapter 5. tr= t at R=3.5 mm. Data: see Table 1 in Chapter 5. 

Model simulations were performed to study the influence of bean size and initial TIA 

level on the residual NSI level in steamed soybeans. Figure 8a shows that the particle 

size has a large influence on the residence time needed to reach a residual TIA level of 
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3.5 mg (g ds ff)'1 in the steamed soybeans. An increase in particle size results in a 

decrease of the Fourier number for moisture transport and in a less flat moisture profile 

in the bean. The moisture content near the centre of the bean will be lower in larger 

beans. The influence of a change in moisture content on the reaction rate of TIA will be 

higher in the centre of the bean than in the outside of the bean (Chapter 2). The overall 

inactivation rate of TIs will therefore be smaller in the beans with larger bean size. 

Consequently, beans larger in size need a longer residence time to achieve a residual TIA 

level of 3.5 mg (g ds ft)1. 

The predicted residual NSI decreases with increasing bean size (Figure 8b). As 

was explained previously, the residual moisture content near the centre of the bean 

decreases with increasing bean size at constant residence time. The ratio of inactivation 

rate constants of TIs and the constant of NSI increases with increasing moisture content. 

Consequently, the residual NSI will decrease with increasing bean size. The influence of 

kernel size on the predicted residual NSI value, however, is small (Figure 8b). 
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0.25 
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Fig. 9. Predicted influence of the initial TIA value on the residence time needed to achieve a 

residual TIA level of 3.5 mg (g ds fif)"1 (a), and on the residual NSI value in the soybeans (b). 

Conditions are 100 °C and 0.08 g (g ds)"1 (—, t,=2780 s), 100 °C and 0.14 g (g ds)"1 ( , 

tr=1022 s), and 120 °C and 0.08 g (g ds)"1 (- - -, tr=383 s). tr= t at TIAo=30 mg (g ds ff)"1. Data: 

see Table 1 in Chapter 5. 
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Figure 9a shows that the predicted residence time increases, as expected, with increasing 

initial TIA value in the soybeans. Consequently, the predicted residual NSI value will 

decrease with increasing initial TIA value (Figure 9b). However, the predicted influence 

of initial TIA value in soybeans on the residual NSI is small. 

Summarising, the steaming simulations indicate that the product quality of the soybeans 

could be optimised using initial moisture content, bean size or initial TIA. Changing the 

bean size and the initial TIA, however, have their practical limitations, and the predicted 

influence of these parameters on the product quality is small. The predicted product 

quality of the soybeans is almost independent on the steam temperature (Table 5). 

Table 5. Influence of important process parameters on the soybean product quality 

and the process costs. TIA and NSI are used as feed quality parameters. 

product quality 

steaming costs 

drying costs 

b 
k 
b 

T 

b 
t\ 
b 
mc0 

b 
[/ 

h 
R 

b 
1/ 
h 
TIA0 

C.3 Influence of process parameters on the process costs 

The average costs for steaming and drying of soybeans were estimated to be around Dfl 

13 per ton beans (T=102 °C and mc0=0.08 g (g ds)'1). The total process costs are divided 

over 60% for steaming and 40% for drying. The steaming costs are equally divided over 

steam requirement and toasting equipment. 
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Table 5 gives an overview of the qualitative influence of the most important process 

conditions and product properties on the costs for steaming and drying. 

Firstly, the influences of these process parameters on the costs for steaming are 

discussed. The steaming costs can be divided in the cost for steam requirement and cost 

for toasting equipment. Increasing the steam temperature will, of course, increase the 

costs for the amount of steam needed. The costs for the toasting equipment are 

dependent on the dimensions of the equipment, and, consequently, the residence time of 

the beans in the toaster. The residence time is decreased by increasing the initial moisture 

content or steam temperature, and decreasing the bean size or initial TIA level. 

Consequently, these changes will decrease the costs of the toasting equipment. 

Preliminary calculations showed that the decrease of toasting equipment costs with 

increasing steam temperature is larger that the increase of steam requirement costs. 

Secondly, the influences of the process parameters on the drying costs are discussed. A 

drying step is needed after steaming. Generally a moisture content of 0.15 g (g ds)"1 is 

accepted for storing and handling of soybeans. Storage of up to one year is feasible at 

this level. 

The costs for drying are dependent on the residual moisture content and moisture 

profile in the beans after steaming. The residual moisture content of the beans after 

steaming is, of course, dependent on the initial moisture content of the beans before 

steaming. The beans flash water when they leave the pressurised toaster. Consequently, 

the residual moisture content is independent on the steam temperature. The residual 

moisture content is independent on bean size and initial TIA level. 

The residual moisture profile of the beans after steaming is dependent on the 

residence time of the beans in the toaster. When the residence time increases the 

moisture will penetrate more deeply in the bean and the moisture content near the centre 

of the bean will increase. Consequently, a longer residence time of the beans in the dryer 

is needed to dry the beans to the desired moisture content. An increase in drying costs is 

expected when bean size and initial TIA level are increased, and the steam temperature is 

decreased. The influence of different residual moisture profiles in the beans on the drying 

costs is difficult to quantify. However, its contribution to the total process costs will 

probably be small and is therefore not listed in Table 5. 

It is difficult to predict quantitatively the influence of the process parameters on the 

process costs. Preliminary calculations showed that the influence of the process 
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conditions and product properties discussed above on the net process costs seems to be 

relatively small. The steam temperature and to a lesser extend the initial moisture content 

seem to have the largest influence on the total process costs compared to initial TIA and 

bean size. 

Concluding remarks 

The inactivation kinetics of TIs in defatted soy flour was measured and modelled under a 

large range of temperatures and moisture contents. The inactivation of TIs showed a 

two-phase inactivation behaviour. The parameter values of the kinetics model can be 

used for different soybean batches. 

The two-phase inactivation behaviour can not be explained by the difference in heat 

stability of the two main TI groups: KSTI and BBI. The existence of thiols seems to be 

responsible for the two-phase inactivation behaviour of TIs. The role of thiols on the 

inactivation mechanism of TIs is an interesting subject for more in depth biochemical 

research. 

Theoretical calculations showed that it can not be excluded that shear forces are a 

factor in the inactivation of TIs during extrusion cooking. The inactivation of TIs in soy 

flour during extrusion cooking can be explained properly by heat. There is no indication 

that TIs were inactivated by the deformation of the TI molecules due to extrusion shear 

forces. Theoretical calculations and experimental results indicated that the decrease of 

NSI is influenced by deformation of proteins during extrusion cooking. If shear has an 

influence on the denaturation of soy proteins, but not on the inactivation of the most 

important ANFs, the TIs, this can have consequences for the feed quality of the extruded 

product. More precise experimental data are needed to study the effect of shear on NSI 

more comprehensively. 

A process model for steaming was set up and combined with the kinetics models 

of TIs and NSI in soy flour. The combined kinetics and process models were used to 

predict residual TIA and NSI levels in the steamed soybeans. Simulations using these 

models indicate that the steaming process can be optimised using TIA and NSI as quality 

parameters. Initial moisture content and bean size rather than steam temperature should 

be used to optimise the process. Soybeans with a residual TIA level of 1.5-3.5 mg (g ds 

ff)"1 do not show a decrease in FDNB reactive lysine at different steam temperatures. 
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More research is needed to verify the conclusions concerning the influence of initial 

moisture content, bean size and steam temperature on the feed quality by performing in 

vivo experiments. 
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Summary 

Soybeans are used as raw material for human nutrition and animal feed because of their 
high nutritional value. Consumption of raw beans has negative effects on the growth and 
health of human beings and animals. These effects are caused by antinutritional factors 
(ANFs). Trypsin inhibitors (TIs) are generally considered as the most important ANFs in 
soybeans. TIs can be divided in two main groups: the Kunitz soybean trypsin inhibitor 
(KSTI) and the Bowman-Birk inhibitor (BBI). TIs and some of the other ANFs are heat 
labile and are inactivated by heat treatments such as steaming (toasting) and extrusion 
cooking. Optimal design and optimisation of the heat treatment are necessary because 
over-processing reduces the protein availability to the animals. In practice, design and 
optimisation are based on experience and 'trial-and-error'. In some studies 'black-box' 
models are presented. No explicit models were developed in previous studies to predict 
the influence of a heat treatment on the feed quality of soybeans. 

The aim of this research is to develop 'white-box' models to predict the influence of a 
heat treatment on the product quality of soybeans. Kinetics and process models are 
developed to predict the change of the product quality during the process. Particular 
attention is paid to the mechanistic background of the inactivation of TIs in soy flour, 
and to the influence of shear forces on the inactivation of TIs during extrusion cooking. 

In order to develop an inactivation kinetics model, the inactivation of TIs in soy flour is 
measured within a large range of temperatures and moisture contents. The inactivation of 
TIs exhibits a two-phase inactivation behaviour. Six different mechanistic kinetics models 
are used to describe the experimental data. These models are compared statistically. Two 
parsimonious models are able to describe the two-phase inactivation behaviour of TIs 
well with a minimal number of kinetics parameters. One model describes the difference in 
heat stability of two TI groups, e.g. KSTI and BBI. The second model describes the 
irreversible inactivation of a native TI to a partially active intermediate TI, followed by 
the denaturation to a complete inactive form of TI. 

The hypothesis that the two-phase inactivation behaviour of TIs is caused by a difference 
in heat stability of two TI groups is further examined. The activity of KSTI and BBI is 
determined in different heat treated soy samples. The results show that the two-phase 
inactivation behaviour of TIs cannot be explained by the difference in heat stability of 
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KSTI and BBI. Additional experiments show that the addition of a thiol (cysteine) 
resulted in a two-phase inactivation behaviour of KSTI and BBI, respectively, in starch. 
We suggest that TIs in soy flour inactivate by sulphydryl-disulfide interchange during the first 
inactivation phase, and by heat during the second phase. 

During extrusion cooking, TIs in soy flour are inactivated by heat and possibly also by the 
deformation of the Tl-molecules due to the shear forces. First, the theoretical influence of 
these shear forces on the inactivation of TIs is examined. The calculations show that some 
influence of shear forces on the inactivation of TIs can not be excluded. Furthermore, single 
screw extrusion experiments are performed to examine to effect of shear experimentally. 
The decrease of TIA due to heat inactivation during extrusion cooking is calculated by 
combining the extrusion conditions (temperature profile and residence time distribution) 
with the inactivation kinetics model of TIs. The results show that the measured residual 
trypsin inhibitor activity (TIA) values of the extrudates can be predicted properly by only 
heat inactivation. There is no indication that shear forces are involved in the inactivation 
of TIs during extrusion cooking. 

Atmospheric steaming (toasting) is the most used heat treatment of soybeans and flakes. 
A process model is developed to describe the temperature and moisture profiles in the 
beans during steaming. In order to evaluate the effect of steaming on the protein 
availability, the kinetics of nitrogen solubility index (NSI) change is measured and 
modelled. The kinetics models of TIA and NSI are combined with the process model for 
steaming to predict TIA and NSI levels in the steamed soybeans. The model predictions 
are validated with experimental data. The possibility for the optimisation of the product 
quality of soybeans during steaming is investigated by performing simulations. These 
simulations indicate that the steaming process can be optimised using TIA and NSI as 
quality parameters. Initial moisture content rather than steam temperature should be used 
to optimise the process. 
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Samenvatting 

Sojabonen worden vanwege hun hoge nutritionele waarde veel gebruikt als grondstof in 
de humane voeding en veevoer. De consumptie van rauwe sojabonen heeft een negatief 
effect op de groei en de gezondheid van mens en dier. Dit effect wordt veroorzaakt door 
antinutritionele factoren (ANF's). De trypsine remmers (TFs) worden over het algemeen 
als de belangrijkste ANF's in sojabonen gezien. TI's kunnen worden onderverdeeld in 
twee belangrijke groepen: de Kunitz sojaboon trypsine remmer (KSTI) en de Bowman-
Birk remmer (BBI). De TI's en sommige andere ANF's zijn hittelabiel en kunnen bij de 
bereiding van veevoer met behulp van een hittebehandeling, zoals stomen of extrusie, 
geinactiveerd worden. Optimaal ontwerp en optimalisatie van de hittebehandeling zijn 
nodig omdat de beschikbaarheid van eiwitten door oververhitting afheemt. In de praktijk 
zijn procesontwerp en -optimalisatie gebaseerd op ervaring en 'trial-and-error'. In 
sommige studies worden 'black-box' modellen gepresenteerd, maar er zijn geen 
expliciete modellen ontwikkeld om de invloed van een hittebehandeling op de 
voederkwaliteit van sojabonen te voorspellen. 

Het doel van dit onderzoek is om 'white-box' modellen te ontwikkelen om de invloed 
van een hittebehandeling op de produktkwaliteit van sojabonen te beschrijven. Er zijn 
kinetiek- en procesmodellen ontwikkeld om de verandering van de produktkwaliteit 
tijdens de procesbehandeling te voorspellen. Er is speciale aandacht besteed aan de 
mechanistische achtergrond van de inactivering van de TI's in sojabloem en de invloed 
van afschuifkrachten op de inactivering van de TFs tijdens extrusie. 

Om een inactiveringskinetiek model voor de TI's te ontwikkelen, is de inactivering van 
de TI's in sojabloem gemeten binnen een groot traject van temperaturen en 
vochtgehalten. De inactivering van de TI's vertoont een twee-fasen inactiveringsgedrag. 
Er zijn zes mechanistisch verschillende kinetiekmodellen gebruikt om de experimentele 
data te beschrijven. De modellen zijn met behulp van de statistiek met elkaar vergeleken. 
Twee spaarzame modellen zijn in staat het twee-fasen inactiveringsgedrag van de TFs 
met weinig kinetiekparameters te beschrijven. Een model beschrijft het verschil in 
hittestabiliteit van twee Tl-groepen, bijvoorbeeld KSTI en BBI. Het tweede model 
beschrijft de inactivering van een natieve TI naar een gedeeltelijk actieve intermediare TI, 
die vervolgens inactiveert naar een compleet inactieve vorm. 
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De hypothese dat het twee-fasen inactiveringsgedrag van de TI's wordt veroorzaakt 
door een verschil in hittestabiliteit van twee Tl-groepen is verder onderzocht. De 
activiteit van KSTI en BBI is in verschillende hittebehandelde sojamonsters gemeten. De 
resulaten laten zien dat het inactiveringsgedrag van de TI's niet verklaard kan worden 
door het verschil in hittestabiliteit van KSTI en BBI. Aanvullende experimenten laten 
zien dat de toevoeging van thiolen (cysteine) in een twee-fasen inactivering van KSTI en 
BBI in zetmeel resulteert. Een hypothese is voorgedragen dat de TI's in sojabloem 
inactiveren door middel van waterstof-disulfide interactie tijdens de eerste 
inactiveringsfase en door middel van hitte tijdens de tweede fase. 

Tijdens extrusie worden de TI's in sojabloem geinactiveerd door hitte, maar mogelijk 
ook door de vervorming van de Tl-molekulen door afschuifkrachten. De theoretische 
invloed van deze afschuifkrachten op de inactivering van de TI's is berekend. De 
berekeningen laten zien dat enige inactivering van de TI's door de vervorming niet 
uitgesloten kan worden. Enkelschroefsextrusie experimenten zijn uitgevoerd om het 
effect van de afschuiving experimenteel te bepalen. De afhame van de TI's ten gevolge 
van hitte-inactivering werd berekend door de procesomstandigheden tijdens extrusie 
(temperatuurprofiel en verblijftijdsspreiding) te combineren met het 
inactiveringskinetiekmodel van de TI's. De resultaten laten zien dat de gemeten afhame 
van de trypsine remmende activiteit (TIA) in de extrudaten goed voorspeld kan worden 
door hitte-inactivering. Er is geen indicatie dat afschuiving een belangrijke rol speelt bij 
de inactivering van de TI's tijdens extrusie. 

Atmosferisch stomen is de meest gebruikte hittebehandeling van sojabonen en -flakes. Er 
is een procesmodel opgesteld om de temperatuur- en vochtprofielen in de bonen tijdens 
het stomen te beschrijven. Om het effect van stomen op de eiwitbeschikbaarheid te 
evalueren, is de kinetiek van stikstofoplosbaarheidsindex (NSI) gemeten en 
gemodelleerd. De kinetiekmodellen van TIA en NSI zijn gecombineerd met het 
procesmodel voor stomen om de TIA- en NSI-gehalten in gestoomde sojabonen te 
voorspellen. De modelvoorspellingen zijn gevalideerd met experimentele waarden. De 
mogelijkheid voor optimalisatie van de produktkwaliteit van de sojabonen is met behulp 
van simulaties bestudeerd. Deze simulaties geven aan dat het stoomproces kan worden 
optimaliseerd bij het gebruik van TIA en NSI als kwaliteitsparameters. Het proces kan 
beter geoptimaliseerd worden door het beginvochtgehalte van de sojabonen te 
veranderen dan door de stoomtemperatuur te veranderen. 
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Nawoord 

Dit proefschrift is tot stand gekomen dankzij het enthousiasme, de kennis en de expertise 

van een groot aantal mensen. 

De discussies met Gerrit Meerdink en Klaas van 't Riet waren altijd weer verhelderend 

en stimulerend Gerrit is altijd wel te vinden voor iollige' experimenten of berekeningen. 

Klaas heeft me veel vrijheid gegeven bij de invulling en uitvoering van het onderzoek. 

Een groot aantal studenten en stagaires hebben een belangrijke bijdrage aan dit werk 

geleverd: Mari Pennanen, Zsolt Szanto-Bocsi, John de Groot, Marie-Jose de Koning, 

Lianne Knol, Ann Kelly, Vit Vacenovsky, Jan Jonkers, Marieke Pouw, Jolanda Maagd, 

Agnes Bozan, Pat O'Riordan, Gerhard Knol en Marjo Houben. 

De enthousiaste verhalen van Dick van Zuilichem hebben mij inzicht gegeven in de 

werking van toosters, extruders en andere 'grote jongens'. De praktische ervaring van 

Willem Stolp en Ido Wolters heb ik goed kunnen gebruiken bij het maken of aanpassen 

van verschillende apparaten. 

Jolan de Groot, Gerard Marsman en Harry Gruppen wil ik bedanken voor hun bijdrage 

op analytisch en chemisch gebied. Met Ton van Vliet heb ik interessante theoretische 

discussies gehad over de invloed van afschuiving op de inactivatie van trypsineremmers. 

Het begon allemaal met een simpele berekening 'op de achterkant van een enveloppe' 

om enig gevoel te krijgen voor de orde grootte. 

Ik wil Henk Beumer, Martin Hessing, Joop Huisman, Thomas van der Poel, Paul Verlaan 

en Bertus Vooijs bedanken voor de nuttige inbreng via de begeleidingcommissie. 

Verder wil ik de werkplaats, fotolocatie, tekenkamer, I&D, bibliotheek en het magazijn 

bedanken voor hun bijdrage. 

Mijn kamergenoten zorgden voor gezelligheid en afwisseling door de gesprekken over 

koetjes, kalfjes, kinderen, huizen, wetenschap en andere onderwerpen: Ida Giinter, Taco 

Wijtzes, Leonie Linders, Dirk Martens, Imke Leenen, Marian Vermue en Frans Weber. 

Daamaast wil ik iedereen van Proceskunde bedanken voor de uitstekende werksfeer, de 

samenwerking, de fiets- en wandeltochten. 
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