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Introduction and outline of the thesis 



Chapter 1 

INTRODUCTION 

An introduction to tomato and Cladosporium fulvum 

Tomato has been cultivated in most European countries including the Netherlands, 

since its introduction in the early 16th century and the fruits soon became a popular ingredient 

in the European kitchen. In the Netherlands, tomato plants grown in approximately six million 

square meters of greenhouses yield around 675 million kilograms of fruits, which is 

approximately 16% of the total vegetable production of 2006 in the Netherlands 

(www.statline.cbs.nl). The wild ancestors of cultivated tomato are thought to originate from 

Peru and Ecuador, and wild tomato species can still be found in diverse habitats in mainly the 

Andes region of South America and on the Galapagos (Paran and Van der Knaap, 2007; 

http://www.sgn.cornell.edu/about/solanum_nomenclature.pl). Cultivated tomato (Solarium 

lycopersicum (syn. Lycopersicon esculenturrij) and its ancestors belong to the family of the 

Solanaceae that also includes species such as potato, tobacco, capsicum, eggplant and petunia. 

One of the closest wild relatives of cultivated tomato is S. pimpinellifolium, which produces 

very small red fruits that are quite different from the tomato fruits as we known them now 

(Paran and Van der Knaap, 2007). However, the various wild relatives contain several 

favourable traits that can be used as a basis for breeding to obtain tomato cultivars of high 

quality that can adapt to different environments and resist various pathogens and pests (Kruijt 

et al, 2005b). 

The fungus Cladosporium fulvum (syn. Passalora fulva) (Braun et al., 2003) is a 

pathogen that can infect tomato plants. Most likely, C. fulvum also originates from South 

America, however, not much is known about its history. A sexual stage of C. fulvum, which 

would allow phylogenetic classification, has never been found; however, molecular data 

suggest that C. fulvum is an asexual hyphomycetous member of the Mycosphaerellaceae 

(Goodwin et al., 2001; Braun et al, 2003). Just recently, analysis of the mating type loci of C. 

fulvum seems to confirm this classification (Stergiopoulos et al., 2007). In Europe, the disease 

caused by C. fulvum, referred to as tomato leaf mould, was first described in England in 1883 

(Cooke, 1883). The cultivation of highly susceptible tomato cultivars in greenhouses under 

high relative humidity provided favourable conditions for C. fulvum to become a persistent 

disease (Thomma et al., 2005). C. fulvum caused severe economic losses before the 1970s, 

however, the introduction of resistance genes in tomato derived from its wild relatives in the 

http://www.statline.cbs.nl
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late 1970s, limited its agronomic threat (Thomma et ah, 2005). At present, C.fulvum is hardly 

a problem in tomato cultivation anymore. 

The interaction between tomato and C. fulvum 

For molecular phytopathologists, the interaction between tomato and C. fulvum serves 

as a convenient model system to study plant-pathogen interactions (Joosten and De Wit, 1999; 

Rivas and Thomas, 2005). C. fulvum is a biotrophic pathogen that has tomato as its only host. 

Conidia produced by C. fulvum on leaflets of a successfully colonized tomato plant are 

normally dispersed by wind and water. When they reach the surface of leaflets of susceptible 

tomato plants, the conidia germinate and form runner hyphae that enter the leaf via stomata 

that are abundantly present on the lower side of the leaflets. Subsequently, the intercellular 

spaces (also referred to as the apoplast) between the leaf mesophyll cells are colonized by the 

rapidly proliferating mycelium, without the formation of feeding structures inside the host 

cells, such as haustoria. When the fungus has developed sufficient biomass, the mycelium 

abandons the apoplast through the stomata and produces conidiophores carrying conidia that 

can again disperse to, and infect other tomato plants. Since the stomata are completely 

blocked by the in- and outgrowing fungus, plant gas exchange through the stomata is affected, 

which eventually results in curling of the leaves, the formation of chlorotic spots, wilting, 

necrosis and abscission of the leaves. Especially in young plants, this can cause severe growth 

reduction. Normally, the C. fulvum infection cycle is completed in approximately two weeks. 

To enhance its virulence, C. fulvum secretes several small proteins, so-called effectors, 

into the apoplast of tomato leaves. These effectors play a role in virulence as they are thought 

to aid in the extraction of nutrients and water from the host tissue and to specifically suppress 

the defence response, resulting in susceptibility (Jones and Dangl, 2006). These proteins can 

be divided into two subgroups. The first subgroup consists of race-specific effectors that are 

recognized by certain resistant tomato genotypes, and are therefore referred to as avirulence 

factors (Avrs). The second group consists of proteins that are produced by all C. fulvum 

strains and are referred to as extracellular proteins (Ecps). A role in virulence has been shown 

for some of the Avrs and Ecps (Lauge et ah, 1997; Rooney et ah, 2005; Van Esse et ah, 2007; 

Bolton et ah, 2008). 

During the evolution of tomato, several resistance proteins against C. fulvum (Cfs) 

have evolved that mediate specific recognition of Avrs but also of Ecps (Yuan et ah, 2002; 
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Kruijt et al., 2005a; Rivas and Thomas, 2005; Soumpourou et al., 2007). Cf proteins that 

recognize Ecps were identified in non-commercial tomato genotypes (Lauge et al, 1998; 

Lauge et al., 2000). Most likely, these resistance traits were not used in breeding programs 

and therefore no selection pressure was imposed on C. fulvum to circumvent recognition by 

these resistance proteins, as is the case for Avr-triggered recognition (Joosten et al., 1994; 

Stergiopoulos et al., 2007). So far, four couples of Cfs and their matching Avrs have been 

cloned, which include Cf-9IAvr9, Cf-4IAvr4, Cf-4EIAvr4E and Cf-2IAvr2 (Thomma et al., 

2005). Resistance induced by these cognate gene couples follows the typical gene-for-gene 

model (Flor, 1942), which implies that the plant is fully resistant to the invading pathogen 

when both members of the Cf/Avr couple are present during the interaction. The resistance 

proteins seem not to interact directly with their cognate Avr protein, but are in most cases 

thought to guard the virulence target of the Avr protein. This model has nicely been illustrated 

by the Cf-2/Avr2 combination, where the Avr2 protein interacts with and inhibits the activity 

of the apoplastic tomato Rcr3 protease, probably because this protease is hampering C. 

fulvum. Rcr3 is guarded by Cf-2 and the Avr2/Rcr3 complex triggers Cf-2 to initiate defence 

signalling that inhibits C. fulvum proliferation (Rooney et al., 2005). 

Rapid downstream responses in tomato upon recognition of C. fulvum 

Recognition of an effector protein of C. fulvum by the cognate Cf protein of resistant 

tomato eventually leads to the execution of a hypersensitive response (HR) that manifests 

itself as a form of programmed cell death (PCD) at the site of pathogen penetration (Lam, 

2004). In addition, many other defence-related responses are triggered. A very early response 

is the Cf/Avr-mediated oxidative burst (May et al., 1996) and activation of ion fluxes (Piedras 

et al., 1998; De Jong et al, 2000). Another early response is the generation of phosphatidic 

acid (PA), which is mediated by phospholipase C enzymes (PLCs) (De Jong et al, 2004). 

Downstream of these fast responses, mitogen-activated protein kinases (MAPKs) and 

calcium-dependent protein kinases (CDPKs) are activated (Romeis et al., 1999; Romeis et al., 

2001). Subsequently, a rapid and massive transcriptional reprogramming takes place (Durrant 

et al., 2000; Gabriels et al., 2006; Hong et al, 2007), which for example leads to the 

accelerated de novo synthesis of proteins required for defence. For instance, resistant tomato 

rapidly produces and secretes several defence proteins such as 1,3-B-glucanases and chitinases 

into the apoplast to resist the invading pathogen (Joosten and De Wit, 1989). As mentioned 
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above, the first defence responses of resistant plants occur extremely fast. In transgenic 

tobacco cell suspensions expressing a Cf resistance protein, defence responses such as the 

oxidative burst, ion fluxes, PA accumulation and MAPK activation occur within 10 minutes 

after elicitation with the cognate Avr (Romeis et al., 1999; De Jong et al, 2000; De Jong et 

al., 2004). Since 10 minutes is too short for transcriptional reprogramming and de novo 

protein synthesis to occur, post-translational modifications (PTMs) of defence-related proteins 

are likely to play a major role in the early HR initiation. PTMs, such as phosphorylation, 

glycosylation or nitrosylation, mediate extremely rapid changes in the activity, localization, 

function and/or conformation of proteins, thereby allowing resistant plants to respond 

immediately to invading pathogens. 

The work described in this thesis focuses on rapid downstream Cf-4-mediated 

signalling events that occur upon Avr4 perception. Since PTMs are likely to play a major role 

in plant defence signalling and, as mentioned above, various MAPKs and CDPKs are indeed 

activated at a very early stage, the role of protein phosphorylation was studied during the 

activation of the Cf-4/Avr4-triggered HR. In addition, the defence response observed in the 

apoplast of Cf-4 tomato plants that trigger a HR upon inoculation with a strain of C. fulvum 

secreting Avr4, was compared to the response of susceptible plants inoculated with the same 

strain of C. fulvum. 

OUTLINE OF THE THESIS 

In nature, many post-translational protein modifications (PTMs) occur during various 

fundamental and adaptive processes that take place in the cell (Jensen, 2004). PTMs are fast, 

reversible modifications of proteins that alter their function, localization, conformation and/or 

activity. Many signalling cascades are regulated by PTMs since they are rapid and versatile 

and provide an additional level to fine-tune cellular processes. Chapter 2 provides an 

overview of PTMs that occur in plant defence responses and which are required for efficient 

host immune responses. Examples of important PTMs in signal perception, but also in signal 

transduction cascades, are provided. The importance of PTMs in defence is further illustrated 

by the observation that modified host proteins are specifically targeted by effectors secreted 

by a pathogen. 

11 
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An important cascade generally activated during downstream defence signal 

transduction in many plant-pathogen interactions is the mitogen-activated protein kinase 

(MAPK) cascade, which is regulated by protein phosphorylation. To study the role of 

phosphorylation-dependent signalling cascades in Cf-4/Avr4-triggered HR in tomato, a model 

system was used that exploits the temperature-sensitivity of the HR initiation. Transgenic 

tomato seedlings co-expressing the Cf-4 resistance gene and the Avr4 gene from C. fulvum, 

execute a HR at 20°C. These seedlings can be rescued at 33°C and 100% relative humidity 

and upon a subsequent shift to 20°C, all Cf-4/Avr4 seedlings execute a synchronized and 

systemic HR. This phenomenon allows the analysis of specific stages of the HR, from its 

early induction to its actual execution (De Jong et al., 2002). In the Cf-4/Avr4 seedlings, three 

MAPKs (LeMPKl, -2 and -3) are rapidly activated after the temperature shift (Chapter 3). 

These LeMPKs were shown to have different phosphorylation specificities and furthermore, 

they were shown to have different roles in HR development and resistance to C. fulvum 

(Chapter 3). 

The results described in chapter 3 point to an important role for protein 

phosphorylation in early HR. To further study the role of protein phosphorylation, a 

quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis was 

performed to study the phosphoproteome of Cf-4/Avr4 seedlings at three early time-points 

after the temperature shift (Chapter 4). Fifty phosphoproteins were identified from total 

protein extracts, of which 13 had a significantly altered abundance in the Cf-4/Avr4 seedlings 

as compared to the controls. From this study and additional experiments, it was concluded 

that the photosynthetic activity in Cf-4/Avr4 seedlings is specifically suppressed at a very 

early stage upon HR initiation and that this suppression is phosphorylation-dependent. In 

addition, the Cf-4/Avr4 seedlings seem to shift from aerobic to anaerobic respiration upon HR 

initiation, which is probably the result of oxygen depletion due to a massive oxidative burst. 

Furthermore, four phosphorylated isoforms of cytoplasmic heat shock protein 90 (Hsp90) 

were identified. Three phosphorylated Hsp90s showed a differentially altered abundance in 

the Cf-4/Avr4 seedlings, suggesting a specific role for the Hsp90 isoforms in defence 

signalling (Chapter 4). 

Tomato plants that express the Cf-4 resistance gene are fully resistant to strains of C. 

fulvum expressing the Avr4 avirulence gene. In addition to programmed cell death, these 

plants mount several associated, active defence responses. One of these responses is the 
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secretion of defence-related proteins into the apoplast, which is the environment where C. 

fulvum operates. Therefore, the dynamics of the apoplastic proteome of resistant, Cf-4-

expressing plants and susceptible plants lacking Cf-4, were studied after inoculation with a 

strain of C. fulvum that secretes Avr4. For this purpose, quantitative DIGE 2-dimensional gel 

electrophoresis and quantitative LC-MS/MSE analysis were used (Chapter 5). These studies 

provided a very detailed overview of the changes in the apoplastic proteome over time in 

resistant versus susceptible plants. In susceptible plants, C. fulvum is able to proliferate 

although general elicitors, also referred to as microbe-associated molecular patters (MAMPs) 

(Jones and Dangl, 2006), released by C. fulvum probably trigger secretion of host defence 

proteins into the apoplast. In resistant plants, there will also be MAMP recognition by the 

host. However, in addition to this, the Cf-4-mediated perception of Avr4 triggers a swift HR, 

which leads to a much faster and stronger secretion of defence proteins into the apoplast than 

was observed for the susceptible plants. Most likely, the combination of these responses 

renders the plants resistant to C. fulvum. Microarray analyses revealed that the increase in 

protein abundance in the apoplast is caused by an increase in transcription of the encoding 

genes and that in resistant plants this increased transcription is stimulated by the HR. In 

addition, this study revealed that a subset of genes encoding (structural) cell wall proteins that 

have been described to play a role in resistance of plants to pathogens is transcriptionally 

downregulated in heavily colonized leaflets of susceptible tomato plants. This downregulation 

is most likely the result of active host gene suppression by C. fulvum and is possibly mediated 

by one or more secreted effectors of this extracellular pathogen (Chapter 5). 

In the summarizing discussion (Chapter 6), the power of the Cf-4/Avr4 seedlings as a 

tool to study HR-related defence responses, is discussed. A hypothesis for the temperature 

sensitivity of the Cf-4/Avr4-triggered HR is proposed and the role of PTMs in Cf-4/Avr4-

initiated defence signalling and the link between the HR and other cellular processes that 

occur in the plant are discussed. Finally, a model is proposed for the signalling cascades 

leading to the Cf-4-induced HR upon recognition of Avr4, and resistance to C. fulvum. 
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Chapter 2 

SUMMARY 

Microbial plant pathogens impose a continuous threat to global food production. 

Similar to animals, an innate immune system allows plants to recognise pathogens and swiftly 

activate defence. To activate a rapid response, receptor-mediated pathogen perception and 

subsequent downstream signalling depends on post-translational modification (PTM) of 

components essential for defence signalling. We discuss different types of PTMs that play a 

role in mounting plant immunity, which include phosphorylation, glycosylation, 

ubiquitination, sumoylation, nitrosylation, myristoylation, palmitoylation and GPI-anchoring. 

PTMs are rapid, reversible, controlled and highly specific, and provide a tool to regulate 

protein stability, activity and localization. Here, we give an overview of PTMs that modify 

components essential for defence signalling at the site of signal perception, during secondary 

messenger production and during signalling in the cytoplasm. In addition, we discuss 

effectors from pathogens that suppress plant defence responses by interfering with host 

PTMs. 

INTRODUCTION 

Plants are continuously challenged by microbes such as viruses, bacteria, fungi, 

oomycetes, nematodes and insects. Microbes that manage to circumvent structural barriers 

like the cell wall and the cuticle are generally not able to invade a plant because of the 

activation of a primary defence response resulting in non-host resistance. Most of the 

microbes that are able to evade or suppress the primary defence response are recognized by 

the plant via the effector proteins that they secrete, which results in the activation of a 

secondary defence response that in most cases involves a hypersensitive response (HR). 

Eventually, only a small subset of microbes has evolved into successful pathogens that are 

able to suppress and/or circumvent both the primary and the secondary defence responses of 

the plant (Niirnberger et al, 2004; Chisholm et ah, 2006; Jones and Dangl, 2006; Bent and 

Mackey, 2007; De Wit, 2007). These pathogens cause disease, resulting in severe crop losses. 

The primary and secondary defence responses of plants leading to resistance rely on 

the swift activation of signal transduction cascades, whereby cellular changes caused by the 
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secondary defence response are generally most pronounced (Jones and Dangl, 2006). 

Research on the molecular aspects of recognition and subsequent defence signalling was 

initiated by the proposition of the gene-for-gene hypothesis by Flor (1942). Since then, many 

sophisticated pathogen recognition mechanisms have been discovered that subsequently 

initiate highly complex signalling cascades, eventually leading to host genotype-specific 

resistance. So far, the main focus of molecular phytopathologists has been the identification 

and functional analysis of resistance (R) proteins and their cognate pathogen effectors, the so-

called race-specific elicitors (Bent and Mackey, 2007; Takken and Tameling, 2007). In 

addition, transcriptional changes that occur upon pathogen recognition have been extensively 

studied by microarray and cDNA-AFLP experiments (Eulgem, 2005; Wise et al, 2007), and 

the role of individual genes in resistance has been studied by transient/stable knockdown and 

knockout studies (Glazebrook et al, 1997; Baulcombe, 1999; Burch-Smith et al, 2004). 

Initial plant defence responses occur extremely fast upon recognition of a pathogen 

(Wojtaszek, 1997; Niirnberger and Scheel, 2001; Laxalt and Munnik, 2002), which implies 

the involvement of post-translational modifications (PTMs) of pre-existing proteins in signal 

transduction cascades. A definite role for PTMs in defence signal transduction became 

apparent with the discovery of protein phosphorylation events in parsley cells upon elicitor 

treatment (Dietrich et al, 1990), and with the observation that activated mitogen-activated 

protein kinases (MAPKs), which require phosphorylation for activation, are involved in the 

primary resistance response of parsley to Phytophthora sojae (Ligterink et al, 1997). 

Furthermore, some receptors contain kinase domains themselves, which enable them to 

phosphorylate downstream substrates (Martin et al, 2003; Van Ooijen et al, 2007). Over the 

past years, the general importance of PTMs in signal transduction cascades has become clear 

(Xing et al, 2002; Thurston et al, 2005) and its relevance for successful plant defence 

signalling was further confirmed by reports describing direct manipulation of PTMs by 

pathogens in order to suppress plant immune responses (Kim et al, 2005b; Mudgett, 2005; 

Shan et al, 2007). In this review we will discuss different types of host protein PTMs that 

play a role in plant defence signalling. In addition, we will shortly discuss effectors from 

pathogens that specifically interfere with host PTMs to suppress plant defence responses, 

thereby underlining the importance of PTMs in defence signalling. 
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Chapter 2 

POST-TRANSLATIONAL MODIFICATIONS, HOW DO THEY OCCUR? 

Single genes can give rise to a diversity of RNA transcripts because of gene splicing 

and each of these transcripts is translated into a protein that can subsequently be 

proteolytically processed and/or post-translationally modified. PTMs are responsible for a 

major increase in complexity from genome to proteome. For example, the human genome, 

containing approximately 30,000 open reading frames, is predicted to give rise to 

approximately 1.8 million different protein species (Jensen, 2004; Kersten et al, 2006). PTMs 

are involved in protein regulation and are therefore often reversible, rapid, controlled and 

highly specific but they usually affect only a small percentage of the total pool of a specific 

protein (Johnson, 2004). Furthermore, PTMs are catalyzed by specific enzymes that in turn 

are often also regulated by PTMs (Peck, 2006). Currently, more than 300 types of PTMs have 

been described (Jensen, 2004), but here we focus on the major PTMs that have been 

implicated in defence signalling. 

Phosphorylation 

Reversible protein phosphorylation is the most predominant covalent modification of 

proteins and implies the reversible attachment of a phosphate group to an amino acid residue. 

Phosphorylation has been described to play a major role in defence signalling cascades (Xing 

et al., 2002; Peck, 2003; Thurston et al., 2005; De la Fuente van Bentem and Hirt, 2007). 

Four types of phosphorylation occur of which N-, S- and acyl-phosphorylation are very 

uncommon. O-phosphorylation is the most common type and here further referred to as 

phosphorylation. Phosphorylation mainly occurs on the hydroxyl group of hydroxyamino 

acids such as serine, threonine and tyrosine but can also occur on unusual residues such as 

hydroxy-proline (Reinders and Sickmann, 2005). Phosphorylation is executed by protein 

kinases that transfer a phosphoryl (PO3) group from ATP to the hydroxyl group in the polar 

rest (R-) group of the amino acid residue, resulting in a phosphoester (R-O-PO3) bond. 

Dephosphorylation occurs by protein phosphatases that hydrolyze the phosphoester bond, 

thereby releasing the phosphoryl group and restoring the hydroxyamino acid into its 

unphosphorylated state (Sickmann and Meyer, 2001). Generally, only a small percentage of 

the total pool of a certain protein in the cell is phosphorylated and a transient change of only a 

few percent can be sufficient to activate signalling. The opposite activity of kinases and 
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phosphatases balances phosphorylation-based signalling cascades, rendering them very 

dynamic (Reinders and Sickmann, 2005). 

Ubiquitination 

Another highly dynamic PTM that is implicated in defence signalling is 

ubiquitination. Ubiquitination refers to a three-step enzymatic cascade to covalently attach a 

small conserved polypeptide, ubiquitin, to a protein. First, the C-terminal glycine of ubiquitin, 

which is maturated by deubiquitination enzymes (DUBs), forms together with the thiol group 

(SH) of a cysteine in the active site of the ubiquitin-activating enzyme (El), a thioester (REI-

S-CO-Rub)- Subsequently, the activated ubiquitin is transferred to a cysteine residue of the 

ubiquitin-conjugating enzyme (E2). Finally, the ubiquitin-ligase protein (E3), which interacts 

with the ubiquitinated E2 enzyme, initiates attachment of the ubiquitin moiety to the target 

protein by an isopeptide bond between the C-terminal glycine of ubiquitin and the E-amino 

group of a lysine residue of the target protein (Vierstra, 2003). The target protein often 

requires phosphorylation prior to binding to the E3 complex. To form a polyubiquitinated 

protein, these three steps are repeated so that each new ubiquitin moiety is attached to a lysine 

residue of the previous ubiquitin moiety. Polyubiquitination can lead to lysine (K) 48- and 

K63-linked chains, depending on which lysine in the ubiquitin moiety is targeted for 

ubiquitination, and on the E2 conjugating enzyme. Proteins modified with a K48-chain are 

normally targeted to the 26S proteasome for degradation, whereas K63-chains are involved in 

endocytosis of the protein, its activation or modification of its activity (Angot et al, 2007). 

Some proteins are only monoubiquitinated and this may also trigger a change in the 

localization and/or activity of the protein (Haglund et al, 2003). Eventually, DUBs are 

capable of removing the covalently bound ubiquitin moieties thereby changing the fate of the 

protein, but they also recycle ubiquitin moieties from ubiquitinated proteins processed by the 

proteasome (Vierstra, 2003; Kerscher etal., 2006). 

Sumoylation 

Similar to ubiquitination, proteins can be decorated with a small ubiquitin-related 

modifier (SUMO) moiety during defence signalling (Novatchkova et al, 2004; Miura et al, 

2007). Sumoylation has been reported in cell cycle activity, DNA repair, nuclear localization, 

enzymatic activity and stability of proteins and in the modulation of transcription factor 
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activity (Miura et al, 2007). Similar to ubiquitin, SUMO is processed to expose its C-terminal 

glycine that is subsequently attached to a lysine residue of a target protein, via conjugation 

machinery similar as for ubiquitination. However, sumoylation differs from ubiquitination 

since it has only one universal E2-conjugating enzyme that does not always require an E3-

ligase to transfer SUMO to the targeted protein. Furthermore, a weak consensus motif for 

sumoylation has been identified in target proteins and normally only mono-sumoylation 

occurs although poly-sumoylation has been reported. Finally, the cysteine proteases required 

for SUMO maturation and desumoylation belong to a distinct family of ubiquitin-like protein 

proteases (ULPs) (Chosed et al, 2006). 

iS-nitrosylation 

5-nitrosylation of proteins is another mechanism to regulate cellular processes and 

although not very well described, this modification is regarded as influential as protein 

phosphorylation (Lindermayr et al, 2006). Protein S-nitrosylation occurs on cysteine 

residues, mainly via two mechanisms. Proteins can either become S-nitrosylated via an 

oxygen-dependent reaction where nitrosonium (NO+) reacts with a thiolate group (R-S") of the 

cysteine in the protein, or nitric oxide (NO) can be transferred from a nitrosothiol (SNO) to 

the thiol group (SH) of the cysteine (transnitrosylation). SNOs consist of small molecules, 

like glutathione with a thiol group (GSH), that react with NO resulting in S'-nitrosoglutathione 

(GSNO), which are suggested to be the NO reservoirs and NO donors in the cell (Lindermayr 

et al, 2006). Although reports on S-nitrosylation during plant-pathogen interactions are rare, 

the production of NO and its signalling function during plant-pathogen interactions are well 

described (Romero-Puertas et al, 2004). The presence of GSNO reductase activity in plants, 

which releases NO from the GSNO, indicates that the formation of SNOs could play an 

important role in NO signalling (Lindermayr et al, 2005). 

Glycosylation 

Covalent linkage of an oligosaccharide side chain to a protein is referred to as protein 

glycosylation. The two most predominant types are JV-glycosylation and O-glycosylation. 

Here, we only consider ./V-glycosylation which can affect the asparagine residue in the 

sequence motif asparagine-X-serine/threonine (X can be any amino acid except proline) and 

which refers to the oligosaccharide side chain attachment to the asparagine residue. N-
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glycosylation starts co-translationally at the endoplasmic reticulum (ER) by the transfer of an 

oligosaccharide precursor, Glc3Man9GlcNAc2, onto the amide nitrogen of the asparagine 

residue. Subsequently, the oligosaccharide matures by the removal of glucose and mannose 

residues or by the attachment of new sugar residues to generate glycans and complex-type 

glycans (Saint-Jore-Dupas et al, 2007). Glycosylation occurs quite frequently and can affect 

the biological activity and the function of proteins, and has been reported to occur also on 

resistance proteins (Van der Hoorn et al, 2005). 

7V-myristoylation and S-palmitoylation 

Next to the attachment of sugars to proteins, proteins can also be modified 

cotranslationally (Af-myristoylation) or posttranslationally (S-palmitoylation) with fatty acids. 

-/V-myristoylation, also referred to as myristoylation, is the modification of a protein with 

myristate, a hydrophobic 14-carbon fatty acid. Catalyzed by Af-myristoyltransferase, myristate 

is in general covalently and irreversibly attached through amide linkage to the N-terminal 

glycine exposed after removal of the initial methionine residue of the target protein by 

aminopeptidases. Myristoylation targets proteins to a membrane and thereby promotes 

interactions between these proteins and membrane-associated protein complexes (Farazi et 

al, 2001). Protein myristoylation plays an important role in defence signalling in tomato 

against Pseudomonas syringae (Andriotis and Rathjen, 2006). S-palmitoylation, also referred 

to as S-acylation, is the thioesterification of palmitate (a 16-carbon fatty acid) to a cysteine 

residue in a protein. S-palmitoylation is catalyzed by palmityl acyltransferases (PAT) or 

occurs via a spontaneous autoacylation in the presence of long-chain acyl-coenzyme As 

(CoAs) and lipid vesicles. S-palmitoylation supports initial plasma-membrane binding of 

proteins (Smotrys and Linder, 2004) including proteins required for the perception of 

pathogen elicitors and might play a role in protein trafficking (Kim et al, 2005a). 

GPI-anchoring 

GPI-anchoring implies the attachment of a glycosylphosphatidylinositol (GPI) to 

anchor cell surface proteins to the plasma membrane, were they can play a role in elicitor 

perception. GPI is synthesized at the ER via the sequential linkage of sugars and other 

components to phosphatidylinositol (PI). GPI transamidases recognize and cleave the C-

terminal GPI attachment signal peptide of the target and mediate attachment to the GPI 
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anchor. The GPI-anchored protein is subsequently secreted via the Golgi apparatus and 

attached to the plasma membrane (Maeda et al, 2006). 

PTMS OF HOST PROTEINS INVOLVED IN SIGNAL PERCEPTION 

Pathogen recognition is mediated by a group of protein receptors which can be divided 

in a few major classes. Two classes account for the receptor-like proteins (RLPs) and the 

receptor-like kinases (RLKs) that are localized in the plasma membrane and contain 

extracellular leucine-rich repeats (LRRs). The RLPs lack a cytoplasmic signalling domain, 

while RLKs have a cytoplasmic kinase domain. Two other classes are formed by receptors 

that are cytoplasmically localized and that contain a nucleotide-binding (NB) site and LRRs. 

One class is referred to as TIR-NB-LRRs since these NB-LRRs contain an N-terminal domain 

similar to the Drosophila Toll receptor and the interleukin 1 receptor (TIR). The other class is 

referred to as CC-NB-LRRs, since N-terminal domain structures in which frequently coiled-

coil (CC) motifs are predicted are found in addition to the NB-LRR domains (Martin et al, 

2003; Van Ooijen et al, 2007). Over the last years, it became clear that the primary (non-

host) defence response elicited by microbe-associated molecular patterns (MAMPs) and the 

secondary (host genotype-specific) defence response induced by race-specific elicitors, are in 

fact mediated by very similar receptors (Gomez-Gomez and Boiler, 2000; Zipfel et al, 2006). 

Nowadays these receptors are referred to as pattern recognition receptors (PRRs) and R 

proteins, respectively (Jones and Dangl, 2006; Bent and Mackey, 2007). 

Signal perception by RLKs 

The best studied model system in Arabidopsis for primary defence signalling is the 

perception of bacterial flagellin, or its 22-amino-acid conserved epitope, flg22, by the 

membrane-bound PRR FLS2. FLS2 is an RLK and autophosphorylation of its kinase domain 

seems to be required for binding of flg22 and might affect the stability of the FLS2-flg22 

complex (Gomez-Gomez et al, 2001). Mutation of four, probably not autophosphorylated, 

phosphorylation sites in the C-terminal region of the protein did not affect flg22 binding but 

abolished or reduced downstream signalling. Mutation of one of these sites also significantly 

reduced FLS2 internalization by endocytosis (Robatzek et al., 2006). FLS2 endocytosis might 

24 



be triggered by ubiquitination since the required conserved (PEST) motif is present in the 

cytoplasmic region of the FLS2 protein, and FLS2 endocytosis is followed by its degradation 

(Figure 1; Robatzek et ah, 2006). It has been found recently that the FLS2 receptor 

specifically binds to one of the somatic embryogenesis receptor kinases, SERK3, also referred 

to as BRI1 -associated receptor kinase 1 (BAK1), in a ligand-dependent manner (Chinchilla et 

ah, 2007; Heese et ah, 2007). Upon perception of brassinosteroids (BRs), which are plant 

steroid hormones, BAK1 forms a heterodimer with the plasma membrane receptor kinase 

BRI1 (BRASSINOSTEROID-INSENSITrVE 1). Both BAK1 and BRI1 display BR-

dependent phosphorylation (Wang et ah, 2005) which enhances the interaction and complex 

formation between the two proteins that are subsequently internalized via endocytosis 

(reviewed by Karlova and De Vries, 2006). Possibly, the ligand-dependent FLS2-BAK1 

complex formed in vivo is internalized in a similar way as the BRI1-BAK1 complex (Figure 

1; Chinchilla et ah, 2007). The kinase-associated protein phosphatase (KAPP) might 

negatively regulate FLS2 signalling since it binds and dephosphorylates FLS2 (Gomez-

Gomez et ah, 2001). Recently, a very homologous receptor that recognizes an 18 amino acid 

fragment of the bacterial elongation factor Tu (EF-Tu) was identified (Zipfel et al., 2006). 

Just like FLS2, this EF-Tu receptor (EFR) requires BAK1 for downstream signalling and 

upon stimulation both PRRs induce the transcription of a similar set of genes, including a 

large amount of additional RLKs. Furthermore, they induce a common set of responses 

including downstream MAPK activation and extracellular alkalization (Zipfel et ah, 2006; 

Chinchilla et ah, 2007). Phosphorylation of the EFR receptor itself has not yet been reported, 

but the homology to the FLS2 signalling cascade suggests a role for EFR-mediated 

phosphorylation upon EF-Tu perception (reviewed by Nurnberger and Kemmerling, 2006). In 

addition, a RLK referred to as RPG1 confers resistance of barley to Puccinia graminis f. sp. 

tritici. RPG1 contains two tandem kinase domains of which only the C-terminal domain is 

functional and displays autophosphorylation required for resistance. In accordance with FLS2 

signalling, RPG1 appears to be degraded in a proteasome-dependent way upon inoculation 

with an avirulent strain, which implies that RPG1 becomes ubiquitinated (Nirmala et ah, 2006 

and 2007). Furthermore, the rice RLK Xa21, that mediates recognition of the effector 

AvrXa21 from Xanthomonas oryzae pv oryzae (Song et ah, 1995), has a kinase domain that 

autophosphorylates on several serine and threonine residues which stabilizes the protein and 

probably protects it from proteolytic cleavage (Liu et ah, 2002; Xu et ah, 2006). Xa21 
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phosphorylates the Xa21-binding protein 3 (XB3) that binds in vivo to the receptor and which 

is required for its accumulation. XB3 is a RING finger-containing protein that can function as 

an E3 ubiquitin ligase and it is hypothesized that XB3 is phosphorylated by Xa21 upon 

pathogen recognition. XB3 subsequently ubiquitinates a downstream component, which could 

be a negative regulator of defence signalling that is targeted for degradation (Figure 1; Wang 

et al, 2006). However, referring back to FLS2, XB3 might also mediate Xa21 ubiquitination 

and degradation. It is tempting to speculate that RLK-mediated signalling is initiated by 

phosphorylation and formation of a ligand-dependent protein complex that internalizes and is 

subsequently degraded in a proteasome-dependent manner. 

Signal perception by RLPs 

RLPs, that lack a kinase domain and thus lack autophosphorylation, are represented by 

for example the so-called Cf proteins of tomato plants that mediate resistance to 

Cladosporium fulvum (Rivas and Thomas, 2005). One of the family members is Cf-9, which 

is highly glycosylated, a feature required for its stability and for a full Cf-9-mediated HR. 

Probably, Cf-9 TV-glycosylation is required for a stable structural conformation and/or 

interactions with the cell wall (Piedras et al, 2000; Van der Hoorn et al, 2005). Cf-9 has no 

signalling domain but the cytoplasmic C-terminus interacts with a thioredoxin (CITRX; for 

Cf-9-interacting thioredoxin) that accelerates the Cf-9/Avr9-induced HR upon transcriptional 

knockdown by virus-induced gene silencing (VIGS) (Rivas et al, 2004). In addition, the 

Avr9/Cf-9-induced kinase 1 (ACIK1), which encodes a cytoplasmic serine/threonine kinase, 

compromises the Cf-9/Avr9- and Cf-4/Avr4-induced HR and resistance upon VIGS (Durrant 

et al, 2000; Rowland et al, 2005). Interestingly, ACIK1 binds and phosphorylates CITRX 

and binds the C-terminus of Cf-9 with CITRX as an adaptor protein, thereby forming a 

complex that can mediate downstream signalling (Nekrasov et al, 2006). However, it remains 

difficult to understand how the downstream signalling from Cf-9 actually takes place since 

ACIK1 is a positive regulator and CITRX a negative regulator of Cf-9/Avr9-induced defence 

signalling, and the catalytic domains are not required for the interaction between the different 

proteins (Nekrasov et al, 2006). We hypothesize that Cf-9, CITRX and ACIK1 form a 

complex under normal conditions in unchallenged plants. Upon elicitation by Avr9, ACIK1 

phosphorylates CITRX which destabilizes the complex and releases CITRX and ACIK1 into 

the cytoplasm where they can activate downstream signalling components resulting in a 
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balanced defence response (Figure 1). In addition to race-specific elicitor recognition, RLPs 

also mediate MAMP-induced defence responses. The MAMP xylanase from Trichoderma 

viride triggers signalling through the ethylene-inducing xylanase (EIX) PRR, which is an RLP 

(Ron and Avni, 2004). Chitin, a major component from fungal cell walls, is a MAMP that 

triggers signalling by the chitin oligosaccharide elicitor-binding protein CEBiP, which is an 

RLP that is highly glycosylated, just like Cf-9 (Kaku et al, 2006). However, for these PRRs it 

remains to be elucidated how the perceived signal is transferred further downstream to the 

cytoplasm. 

Signal perception by NB-LRRs 

Resistance to Pseudomonas species is in most cases conferred by NB-LRRs. The 

interaction between tomato and Pseudomonas syringae pv tomato (Pst) is a well studied 

model system. Resistance to Pst expressing the elicitor genes AvrPto and/or AvrPtoB requires 

the Pto and the Prf gene (Salmeron et al, 1994; Kim et al, 2002). Pto encodes a 

serine/threonine protein kinase (Loh and Martin, 1995) and originally, Pto was reported as the 

AvrPto-matching R protein (Martin et al, 1993). However, further analysis revealed Prf as a 

CC-NB-LRR protein, which is capable of signalling in the absence of Pto, while Pto is 

incapable of signalling in the absence of Prf (Salmeron et al, 1996). It was also shown that 

Prf and Pto interact in vivo and that Prf accumulates to higher amounts in the presence of Pto 

(Mucyn et al, 2006). Therefore, Prf is now classified as the R protein that activates 

downstream signalling (Van Ooijen et al, 2007). Still, Pto plays an important role in AvrPto 

and AvrPtoB perception since Pto specifically binds both elicitors and several other Pto-

interacting (Pti) proteins (Tang et al, 1996; Sessa et al, 2000b; Kim et al, 2002). Ptil 

represents a serine/threonine kinase which is phosphorylated by the Pto kinase, and this 

phosphorylation is required for Pto/Ptil interaction (Sessa et al, 2000a). In vitro, Pto 

autophosphorylates at eight sites of which three are required for HR development and AvrPto 

binding, and one is only required for HR development, indicating that Pto kinase activity is 

required for the AvrPto/Prf-dependent HR elicitation (reviewed by Pedley and Martin, 2003). 

Further research revealed two additional phosphorylation sites in the activation loop of Pto 

required for AvrPto binding. Substitution of these residues by aspartic acid (D), which mimics 

the negative charge introduced by phosphorylation, resulted in a Prf-dependent and AvrPto-

independent HR in tomato (Rathjen et al, 1999). To further complicate Pto-mediated AvrPto 
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perception, Pto was also found to be myristoylated at the N-terminus, which negatively 

regulates its kinase activity (Andriotis and Rathjen, 2006). A model summarizing these results 

has been proposed: Pto is myristoylated to suppress its kinase activity and to be target to a 

cellular membrane, most likely the plasma membrane, where it binds to Prf. AvrPto targets 

the complex and causes displacement of the myristoylated N terminus of Pto which results in 

derepression of the kinase domain, Pto phosphorylation and activation, and subsequent 

signalling via Prf (Andriotis and Rathjen, 2006; Balmuth and Rathjen, 2007). Furthermore, 

AvrPto and phosphorylated Pto form a complex with AvrPto-dependent Pto-interacting 

protein 3 (Adi3). Adi3 is a member of the AGC family of protein kinases (protein kinase A, G 

and C family) and negatively regulates the Pto-AvrPto-induced host cell death when 

phosphorylated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) or Pto. In contrast 

to the AvrPto-dependent Pto/Adi3 interaction, Adi3 phosphorylation by Pto is independent of 

AvrPto and not required for Pto/AvrPto/Adi3 complex formation. Therefore, it is 

hypothesized that Adi3-mediated negative regulation is released when bound to the Pto-

AvrPto complex (Devarenne et al, 2006). Possibly, phosphorylated Adi3 negatively regulates 

elicitor-independent Pto signalling under normal conditions to avoid activation of defence 

responses. Upon elicitation, Adi3 is dephosphorylated and binds to Pto, which leads to Pto-

mediated signalling. As described in other defence signalling cascades, secondary messengers 

such as phosphatidic acid might be produced (see below) that bind and possibly activate 

PDK1 (Testerink et al, 2004). PDK1 might subsequently phosphorylate Adi3 to negatively 

regulate Pto signalling again, thereby forming a negative feed-back loop (Figure 1). 

Interactions between Pseudomonas syringae and Arabidopsis are also intensively 

studied and several intracellular NB-LRRs have been described to mediate recognition of 

elicitors from different P. syringae strains (Nimchuk et al, 2003). The R proteins RPS2 and 

RPS5 provide resistance to P. syringae pathovars expressing AvrRpt2 or AvrPphB, 

respectively, whereas RPM1 provides resistance to P. syringae pathovars expressing 

AvrRpml or AvrB (reviewed by Belkhadir et al, 2004b). In a yeast two-hybrid screen, two 

RPM1-interacting proteins (RINs), RIN2 and RTN3, were identified which represent RING-

finger ubiquitin E3 ligases and which also weakly interact with RPS2. These RINs seem to 

enhance the RPM1- and RPS2-mediated HR; however, they do not restrict bacterial growth in 

the plant. Although RIN2 and RIN3 encode proteins that show E3 ligase activity in vitro, a 

target protein that might serve as a negative regulator of the HR and is degraded still has to be 
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identified (Kawasaki et al, 2005). Another protein that physically interacts with RPM1 and 

RPS2 is RIN4, a protein that negatively regulates RPM1- and RPS2-mediated resistance 

(Belkhadir et al, 2004a). RIN4 is C-terminally palmitoylated which is required for RIN4 

localization to the plasma membrane and its functioning (Belkhadir et al, 2004a; Day et al, 

2005; Kim et al, 2005a). It is hypothesized that RIN4 is bound to RPM1 and RPS2 under 

normal conditions to negatively regulate defence signalling and that RIN4 is released from the 

complex upon R protein triggering (Figure 1). In addition, defence signalling by RPM1 or 

RPS2 requires the non-race-specific disease resistance 1 (NDR1) protein, which is 

glycosylated and C-terminally processed. NDR1 is thought to undergo GPI modification at its 

processed C-terminus and this GPI-anchor places the protein on the outer surface of the 

plasma membrane with a short part of the N-terminus in the cytoplasm, where it binds the C-

terminal half of RIN4 (Coppinger et al, 2004; Day et al, 2006). Upon inoculation with an 

AvrRpt2-producing Pst strain, RIN4 is cleaved by the cysteine protease activity of the 

AvrRpt2 effector after which the negative regulation of RPS2 by RIN4 is released (Figure 1; 

Takemoto and Jones, 2005). A C-terminal membrane-embedded RIN4 fragment is not 

degraded after cleavage and positively regulates RPS2-mediated signalling by its interaction 

with NDR1 (Day et al, 2006). Probably, RIN4-mediated RPM1 activation by 

AvrRpml/AvrB elicitation occurs via a different mechanism, since RIN4 degradation 

abolishes RPM1 signalling, and RPM1 activation depends on RIN4 phosphorylation (Kim et 

al, 2005a; Kim et al, 2005b). In addition to RPM1 and RPS2, also RPS5-mediated resistance 

depends on NDR1 but RPS5 does not require RIN4 (Coppinger et al, 2004). Instead, RPS5-

mediated resistance to P. syringae depends on a serine/threonine protein kinase PBS1 that 

binds to RPS5 in unchallenged plants (Swiderski and Innes, 2001; Ade et al, 2007). Similar 

to AvrRpt2-mediated cleavage of RIN4 and the subsequent activation of RPS2, the cysteine 

protease AvrPphB cleaves PBS1 which activates RPS5. PBS1 requires a functional kinase 

domain that is probably involved in autophosphorylation; however, neither the 

phosphorylation nor the elimination of PBS 1 is sufficient to activate RPS5. Therefore, it is 

hypothesized that a phosphorylated cleavage product of PBS 1 is required for RPS5-activation 

(Shaoe/a/.,2003). 
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PTMS OF PLASMA MEMBRANE-LOCALIZED HOST PROTEINS INVOLVED IN 

DOWNSTREAM SIGNALLING 

In addition to the above described complexes that are at least partially localized and/or 

bound to the plasma membrane, several other post-translationally modified membrane-

localized proteins exist that are not directly involved in signal perception but play a role in 

downstream responses. 

Transport of secondary messengers over the plasma membrane by ATPases 

Secondary messengers are transported over membranes by pumps that are driven by 

the hydrolysis of ATP and are referred to as ATPases. An important subclass of ATPases is 

formed by the H -ATPases that mediate the generation of electrochemical gradients across the 

plasma membrane, which is the energy source for most transport proteins (Palmgren, 2001). 

H -ATPases require phosphorylation on a threonine residue in the N-terminus for their 

activity and are inactivated by dephosphorylation of this site. However, a plasma membrane 

H+-ATPase from Arabidopsis was also inactivated by phosphorylation on a serine residue by 

the PKS5 serine/threonine protein kinase. This phosphorylation event prevents interaction 

with a 14-3-3 protein and therefore inhibits the activity of the H+-ATPase (Figure 1; Fuglsang 

et al., 2007). Furthermore, plasma membrane-bound H+-ATPases are dephosphorylated upon 

recognition of the Avr5 elicitor of C. fulvum by Cf-5 tomato suspension cells (Vera-Estrella et 

al., 1994). In addition to H+-ATPases, also Ca2+-ATPases seem to be regulated via 

phosphorylation. For example, in closing Vicia guard cells, Ca2+-ATPases become 

phosphorylated which enhances Ca2+ import in the cell (Kohler and Blatt, 2002). Furthermore, 

elicitation of the plasma membrane of Cf-5 tomato protoplasts with the Avr5 elicitor activates 

a Ca2+-ATPase by G-protein-dependent phosphorylation (Figure 1; Gelli et al., 1997). Also 

K+ channel activity seems to depend on phosphorylation. The stimulation of the K+ outward 

channels and the suppression of the K+ inward channels upon elicitation of transgenic Cf-9-

expressing TV. tabacum cells with Avr9, is completely blocked by broad-range protein kinase 

inhibitors (Blatt et al, 1999). K+ channels might also be nitrosylated since NO blocks outward 

K+ channels in guard cells (Figure 1; Sokolovski and Blatt, 2004). 
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Syntaxins and other membrane-bound proteins in defence signalling 

To identify plasma membrane-bound proteins in Arabidopsis that are 

(de)phosphorylated upon defence signalling, 32P pulse-labelled suspension-cultured cells were 

elicited with flg22 and plasma membrane proteins were analysed by two-dimensional gel 

electrophoresis (NUhse et al, 2003). This revealed several differentially phosphorylated 

proteins such as the syntaxin AtSypl22. Syntaxins are part of the SNARE complex and play a 

central role in exocytosis as they mediate vesicle fusion to the plasma membrane (Fasshauer, 

2003). Phosphorylation of AtSypl22 is Ca2+-dependent which leads to the hypothesis that a 

Ca + influx stimulates exocytosis of defence proteins and other compounds via syntaxins 

(Figure 1). In agreement with this hypothesis, the same phosphoproteomics screen revealed a 

second syntaxin, AtSypl32, of which the N. benthamiana orthologue, NbSypl32, contributes 

to the exocytosis of pathogenesis-related (PR) proteins into the apoplast upon Pto/AvrPto-

induced defence signalling (Kalde et al., 2007). Furthermore, NbSypl32 contributes to basal-

and salicylate-associated defence against bacterial pathogens in plants (Kalde et al, 2007). 

Another plasma membrane-localized syntaxin, Sypl21 or PEN1, is required for resistance to 

powdery mildew in barley but does not play a role in Pto-mediated resistance to Pst (Figure 1; 

Collins et al, 2003; Kalde et al, 2007). The orthologue NtSypl21 is phosphorylated upon Cf-

9/Avr9-activated signalling, which appeared to be specific as this syntaxin is not 

phosphorylated upon elicitation with flg22 (Heese et al, 2005). 

Recent technical advances in phosphoproteomics now enable phosphopeptide or -

protein purification and their immediate analysis by mass spectrometry. A non-quantitative 

analysis of phosphorylated plasma membrane-bound proteins from flg22-elicited Arabidopsis 

cells revealed over 300 phosphorylation sites although it remains unclear to what extent these 

phosphorylation sites play a role during signalling cascades (Nuhse et al, 2004). Recently, 

quantitative phosphoproteome studies of fig22- or xylanase-treated Arabidopsis cells revealed 

several differentially phosphorylated proteins. Some of these proteins, like calcium-dependent 

protein kinases (CDPKs) and ATPases, have already been described to be regulated by 

phosphorylation, but for other proteins like auxin efflux carriers and respiratory burst oxidase 

protein D, phosphorylation-mediated regulation is novel (Benschop et al, 2007; Nuhse et al, 

2007). Further functional analysis of the identified phosphoproteins will reveal new insights 

in defence-related signalling cascades. 
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Figure 1. Defence-related signal transduction cascades that depend on post-translational modifications. 
Receptors mediate recognition of microbe-associated molecular patterns (MAMPs) and race-specific elicitors 
(elicitor), but they require additional proteins for their function. Proteins with nucleotide-binding and leucine 
rich repeat domains (NB-LRR) recognize their cognate elicitors intracellularly, while receptor-like proteins 
(RLP) and receptor-like kinases (RLK) are probably activated outside the cell. RLPs require additional proteins 
that bind the cytoplasmically localized part of the protein to mediate downstream signalling, while RLKs require 
their kinase domain to autophosphorylate and form complexes with additional proteins. Furthermore, RLKs 
might become ubiquitinated after which they are internalized and targeted for proteasome-mediated degradation. 
Signalling downstream from the receptor eventually leads to the formation of secondary messengers such as 
phosphatidic acid (PA), possibly via phospholipase C (PLC) phosphorylation, and nitric oxide (NO). 
Furthermore, the concentrations of ions such as H+, K+, Ca2+ are controlled by (de)phosphorylation of the 
respective ATPase while the production of ROS is stimulated upon phosphorylation of the NADPH oxidases 
(RBOH). The secondary messengers also mediate phosphorylation of proteins such as calcium-dependent protein 
kinases (CDPK), or syntaxins which might promote the release of pathogenesis-related (PR) proteins into the 
apoplast. The mitogen-activated protein kinase (MAPK) cascades are activated by phosphorylation of the 
individual components which eventually leads to the phosphorylation of WRKY transcription factors and the 
phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and MAP kinase substrate 1 
(MKS1) which influences the production of ethylene (Et) and salicylic acid (SA), respectively. Also E3-ligases 
are activated which might result in the ubiquitination and subsequent degradation of negative regulators of the 
signalling cascades, thereby providing a positive feedback loop. In addition, negative feedback loops are 
required to prevent an uncontrolled hypersensitive response (HR). For example, MAPK (MPK)-mediated 
ethylene production negatively regulates the MAPK activation. The secondary messengers influence each other 
and fine-tune the downstream signal while proteins modified by secondary messengers might inhibit receptor-
mediated signals. Eventually, a balanced signal will lead to increased (basal) resistance and possibly a HR. 
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Phosphorylation states as presented in this figure represent the active state of the protein. Protein names 
indicated in grey might be specific for specific plant-pathogen interaction. ACIK1; Avr9/Cf-9-induced kinase 1, 
CITRX; Cf-9-interacting thioredoxin, RIN4; RPM1-interacting protein 4, BAK1; BRASSINOSTEROID-
INSENSITIVE 1, XB3; Xa21-binding protein 3, Adi3; AvrPto-dependent Pto-interacting protein 3, PDK1; 3-
phosphoinositide-dependent protein kinase-1, AGC-kinase; protein kinase A, G and C family, OXI1; oxidative 
signal-inducible 1. 

PTMS LEADING TO THE FORMATION OF HOST SECONDARY MESSENGERS 

When a microbe is recognized by the plant, defence signalling cascades are activated. 

So far, it is unclear how signals are transferred from the receptor to one or more downstream 

pathways such as the MAPK pathway. Studies using suspension-cultured cells indicate that in 

intact plants, secondary messengers are produced upon elicitation and they are thought to play 

a role in amplifying and transferring the signal downstream into the signalling cascade (Laxalt 

and Munnik, 2002). 

NO signalling 

Elicitation of tomato cells with xylanase results in the production of the secondary 

messenger NO (Figure 1; Laxalt et al, 2007). In Arabidopsis, NO is synthesized by the NO 

synthase enzyme, AtNOSl (Guo et al, 2003), or results from the reduction of nitrate by 

nitrate reductase (NR) (Romero-Puertas et al, 2004). However, other mechanisms to generate 

NO are also likely to exist (Neill et al, 2007). To transfer a signal, the highly reactive NO 

molecules can modify a variety of target proteins by S-nitrosylation. An extensive study in 

Arabidopsis led to the identification of many proteins that can be modified by S-nitrosylation, 

of which some proteins like superoxide dismutases and Hsp90 have been reported in defence 

signalling as well (Lindermayr et al, 2005). 

PA signalling 

Another secondary messenger is the phospholipid-derived molecule phosphatidic acid 

(PA) that is produced upon signal perception via the phospholipase C or D (PLC/PLD) 

pathway (Laxalt and Munnik, 2002; Testerink and Munnik, 2005; Bargmann and Munnik, 

2006). Most elicitors reported to induce PA production stimulate PLC-mediated formation of 

PA via the phosphorylation of the intermediate diacylglycerol (DAG) by DAG kinase (DGK), 

although some elicitors also activate the PLD pathway (Van der Luit et al, 2000; De Jong et 
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al, 2004; Andersson et al, 2006). The PLCs might be activated by upstream kinases that 

have been activated as a result of receptor triggering, since an Arabidopsis PLC was reported 

to be phosphorylated upon flagellin elicitation (Figure 1; Niihse et al, 2007). In soybean, PA 

generated upon wounding has been shown to activate the MAPK cascade since the addition of 

exogenous PA to suspension-cultured cells specifically activates a MAPK (Figure 1). The PA 

formation in wound-induced leaves can be blocked with PLD inhibitors (Lee et al, 2001). 

Furthermore, PA stimulates the oxidative burst upon elicitation (De Jong et al, 2004; 

Andersson et al, 2006). In xylanase-treated tomato suspension cells, PA is produced via the 

PLC/DGK pathway which is activated by a xylanase-triggered NO accumulation. How NO 

exactly activates the PLC/DGK pathway remains unclear, although NO might act directly on 

PLC and/or DGK by protein S-nitrosylation (Figure 1). NO might also affect the PLC/DGK 

pathway indirectly via the MAPK signalling cascade, via altered Ca + levels or via a change 

in redox potential in the cell (Lee et al, 2001; Laxalt et al, 2007). In Arabidopsis, PA targets 

have been identified and include heat shock protein 90, serine/threonine kinases and 

phosphatases (Testerink et al, 2004). Another target is the previously described 

phosphoinositide-dependent kinase PDK1 (Figure 1, see above) (Anthony et al, 2006). PDK1 

interacts with the OXI1 kinase (oxidative signal-inducible 1; also referred to as AGC2-1) and 

subsequently phosphorylates and activates OXI1, which is involved in oxidative burst-

mediated signalling in Arabidopsis (Figure 1; Anthony et al, 2004 and 2006; Rentel et al, 

2004). OXI1 in its turn phosphorylates the serine/threonine kinase PTI1-2, which has high 

sequence homology to the tomato Ptil kinase. The signalling pathway PDK1/OXI1/PTI1-2 

was shown to be specific for lipid signalling, whereas ROS and flagellin signals converge 

further downstream in the OXI1/PTI1-2 pathway, independently of PDK1 (Anthony et al, 

2006). Since the AGC kinase Adi3 is also phosphorylated by PDK1 (see above), we suggest 

that PDK1 functions as a spider in the web for transferring receptor-mediated PA signals to 

downstream signalling cascades via AGC kinases (Figure 1). To balance the signalling 

cascade, PA signals are attenuated by PA kinase (PAK), which converts PA into the lipid 

DAG pyrophosphate (DGPP) (Munnik et al, 1996). However, since DGPP accumulation is 

associated with PA-induced signalling, DGPP itself might also function as a secondary 

messenger. The observation that DGPP is broken down by the DGPP phosphatase (DPP) 

might confirm this hypothesis (reviewed by Van Schooten et al, 2006). 
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ROS signalling 

Reactive oxygen species (ROS) are important secondary messengers responsible for 

the oxidative burst. Upon pathogen recognition, the plant responds with a bi-phasic 

production of ROS (Lamb and Dixon, 1997). ROS can be produced inside the plant cell in 

several organelles, however, a membrane-bound respiratory oxidative burst protein (RBOHD; 

an NADPH oxidase) is considered as the source of ROS upon elicitation by pathogens (Torres 

and Dangl, 2005). The Arabidopsis RBOHD protein is heavily phosphorylated at seven 

different amino acid residues and differentially phosphorylated at three residues upon 

elicitation with flg22 or xylanase (Benschop et al, 2007; Nuhse et al, 2007). In accordance, 

another member from the RBOH family, RBOHB, is phosphorylated by calcium-dependent 

protein kinases (CDPKs) in potato, which causes a subsequent oxidative burst (Figure 1; 

Kobayashi et al, 2007). Upon signal-induced phosphorylation, the activated oxidase converts 

O2 into O2" which subsequently forms the stable component hydrogen peroxide (H2O2) that is 

removed by catalases or peroxidases when the signal is transferred further down. Besides a 

signalling role, H2O2 also has direct antimicrobial effects, cross-links cell walls and activates 

transcription of defence-related genes (Lamb and Dixon, 1997). 

Calcium signalling 

A secondary messenger that links several defence-related processes is the ubiquitous 

messenger calcium (Ca2+) (Lecourieux et al, 2006). Ca2+ is in- and exported to/from the cell 

and the vacuole by Ca2+-ATPases that are regulated via phosphorylation, and stimulates the 

production of NO and ROS upon recognition of an avirulent pathogen (Figure 1; Delledonne, 

2005). Strikingly, H2O2 also stimulates rapid Ca2+ influxes upon elicitation which reveals a 

role for Ca2+-signalling up- and downstream of ROS (Figure 1; Lamb and Dixon, 1997). 

These data imply that secondary messengers produced via pathways that rely on PTMs 

connect several components of the defence signalling cascades, but also influence each other 

to balance the downstream responses. 
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PTMS OF HOST PROTEINS IN THE CYTOPLASM 

The MAPK cascade 

A major conserved signalling cascade which is activated by a large range of biotic and 

abiotic stress stimuli in plants, is the MAPK cascade (Figure 1; Pedley and Martin, 2005; 

Zhang et al, 2006). MAPK cascades consist of three functionally linked protein kinases that 

transfer the stress signals. A stress signal causes phosphorylation and activation of the most 

upstream MAPK kinase kinase (MAPKKK). Subsequently, the MAPKKK phosphorylates 

and activates a MAPK kinase (MAPKK) which in turn does the same with a MAPK (MPK). 

The MAPK then phosphorylates downstream target(s) thereby transferring the signal further 

downstream (Figure 1). The Arabidopsis genome encodes 20 MAPKs, 10 MAPKKs and 60 

putative MAPKKKs and in addition, it contains several protein phosphatases that control the 

cascade by dephosphorylating the MAPK cascade components (Ichimura et al, 2002; Martin 

et al, 2005). For example the AtMPK6 protein, activated upon most stress stimuli, is 

controlled by the phosphatases ABU, AP2C1, MKP1 and MKP2 in Arabidopsis (Ulm et al, 

2002; Leung et al, 2006; Lee and Ellis, 2007; Schweighofer et al, 2007). The AtMPK4 

protein negatively regulates defence responses upon phosphorylation, which implies that also 

the activation of protein phosphatases can mediate the transfer of stress-related signals 

(Ichimura et al, 2006; Suarez-Rodriguez et al, 2007). It is interesting to note that most stress 

stimuli mainly activate AtMPK6, -3 and -4 and their orthologues in other plant species during 

stress-related signalling. Therefore, stress-related signalling cascades are considered to 

converge in the MAPK cascades after which the signal is transferred into different 

downstream pathways (Pedley and Martin, 2005; Zhang et al, 2006). In Cf-4 tomato, three 

highly homologous MAPKs, LeMPKl, -2 and -3, are activated upon Avr4-elicitation. 

LeMPKl and -2 are the orthologues of AtMPK6 and LeMPK3 is the orthologue of AtMPK3. 

These LeMPKs appeared to have different phosphorylation specificities and a different role in 

defence signalling, suggesting that the signal can eventually be transferred to different 

substrates and possibly different downstream signalling cascades (Chapter 3). So far, only a 

few MAPK targets have been described. The AtMPK6 protein phosphorylates 1-

aminocyclopropane-1-carboxylic acid synthase 6 and 2 (ACS6/2), which are key enzymes in 

ethylene biosynthesis, and WRKY transcription factors upon flg22 elicitation (Figure 1) (Asai 

et al, 2002; Liu and Zhang, 2004; Menke et al, 2005). The AtMPK4 protein phosphorylates 
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MAP kinase substrate 1 (MKS1), which negatively regulates salicylic acid-dependent 

resistance upon phosphorylation (Figure 1) (Andreasson et al, 2005). Furthermore, AtMPK3 

was recently found to phosphorylate the transcription factor VIP1, which is involved in 

regulating the expression of the PR1 pathogen-related gene (Djamei etai, 2007). 

CDPK-mediated signalling 

CDPKs contain a calmodulin-like domain with Ca2+ binding sites and represent 

another class of kinases. In the absence of Ca2+, the kinase domain of CDPKs is not 

phosphorylated, which points to a direct regulation by Ca2+ (Figure 1; Ludwig et al., 2004). 

Tobacco NtCDPK2 was the first CDPK reported to be involved in plant defence signalling in 

transgenic Cf-9 tobacco upon elicitation with the Avr9 effector. NtCDPK2 is required for HR 

development and is activated by phosphorylation (Figure 1). Furthermore, NtCDPK2 

enhances ethylene production that subsequently negatively regulates the MAPK signalling 

cascade (Figure 1). In addition, a tomato CDPK phosphorylates the tomato ACS2 (Tatsuki 

and Mori, 2001) of which the orthologue in Arabidopsis was shown to be phosphorylated by 

AtMPK6 (Liu and Zhang, 2004). This observation suggests that two kinase signalling 

cascades both leading to an ethylene-dependent cell death, can cross-talk to fine-tune the final 

outcome (Ludwig et al, 2005). Finally, the potato CDPK, StCDPK5, phosphorylates 

StRBOHB thereby regulating the oxidative burst (Figure 1; Kobayashi et al, 2007). 

Ubkjuitination in defence signalling 

Over the last years, several proteins with E3 ubiquitin ligase activity that play a role in 

defence signalling have been reported, indicating that ubiquitination is important for 

resistance of plants to pathogens (Figure 1). An extensive transcriptional analysis of Cf-9 

transgenic tobacco cells elicited with Avr9 revealed two genes, ACRE189 and ACRE276, of 

which the encoded proteins possess in vitro E3 ligase activity and which are required for Cf-

9- and Cf-4-mediated defence signalling (Durrant et al, 2000; Yang et al, 2006). The closest 

orthologue of ACRE276 in Arabidopsis, PUB 17, is also required for RPM1- and RPS4-

mediated resistance to Pseudomonas syringae pv tomato expressing the elicitors AvrB or 

AvrRPS4, respectively (Yang et al, 2006). ACRE74, which encodes another tobacco E3 

ligase (NtCMPGl), is also required for Cf-9/Avr9-induced signalling in addition to defence 

responses induced by Pto/AvrPto and the Phytophthora infestans elicitor Infl (Gonzalez-
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Lamothe et al, 2006). Furthermore, a functional tomato E3 ligase, ATL6, is transcriptionally 

upregulated upon elicitation with a cell wall protein fraction from Pythium oligandrwn 

(Hondo et al, 2007). In addition to E3 ubiquitin ligase activity, transient-induced gene 

silencing (TIGS) of the ubiquitin encoding gene itself and subsequent complementation 

studies in powdery mildew-inoculated resistant barley, suggest a role for K48-linked 

polyubiquitination in defence signalling. Although K48-linked polyubiquitination normally 

results in proteasome-mediated protein degradation, here the polyubiquitination event but not 

the subsequent degradation is required for the defence response (Dong et al, 2006). Finally, 

the Arabidopsis El ubiquitin-activating enzyme UBA1 is required for defence responses 

induced upon recognition of the AvrRpt2 effector (Goritschnig et al, 2007). 

Sumoylation in defence signalling 

In addition to ubiquitination, also sumoylation plays a role in defence signalling, 

although the evidence remains scarce. So far, there are only two reports that show an increase 

in protein sumoylation upon exposure to abiotic stress conditions such as heat shock, H2O2, 

ethanol and the defensive compound against herbivores, canavanine (Kurepa et al, 2003; 

Saracco et al, 2007). However, overexpression of SUMO in tobacco appears to block HR 

development upon xylanase infiltration (Hanania et al., 1999) and a SUMO E3 ligase, SIZ1, 

was reported to regulate salicylic acid-mediated innate immunity in Arabidopsis (Lee et al, 

2007). SIZ1 also appears to negatively regulate systemic-acquired resistance and the 

expression of PR genes. The best evidence for the importance of sumoylation in defence 

signalling originates from the observation that pathogen effectors interfere with the host 

sumoylation cascade. The Xanthomonas campestris effector XopD is injected into the host 

cell upon infection and encodes an active cysteine protease with plant-specific SUMO 

substrate specificity. XopD specifically desumoylates host proteins, thereby most likely 

interfering with the host defence signalling cascade upon infection (Hotson et al, 2003). 

Another effector from X. campestris, AvrXv4, requires its protease activity to reduce the 

amount of SUMO-conjugated proteins in the host cell, which leads to suppression of localized 

cell death in inoculated plants (Roden et al, 2004). The effector AvrBsT, that also possesses 

protease activity, requires its catalytic domain to induce cell death in N. benthamiana (Orth et 

al, 2000; reviewed by Hotson and Mudgett, 2004). Additionally, some effectors seem to 

interact with proteins from the host sumoylation machinery. Xylanase interacts with SUMO 
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in a yeast-two-hybrid system (Hanania et al, 1999) and the replication protein RepACl from 

geminiviruses interacts with the SUMO E3 ligase SCE1 from N. benthamiana (Castillo et al, 

2004). However, the biological relevance of these observations still remains to be elucidated. 

Still, if sumoylation would not play any role in defence signalling, the various effectors 

mentioned above would not enhance virulence for the pathogen and they would probably 

have been eliminated for the population during evolution to avoid recognition by resistant 

plants. 

EFFECTORS OF PATHOGENS MODIFY PTMS IN DEFENCE SIGNALLING 

It has become apparent from the information given above that plants depend on rapid 

PTMs in signalling cascades to defend themselves against intruding pathogens. An active 

defence response is triggered by the recognition of elicitors that are secreted by the invading 

pathogen. Therefore, the intriguing question remains why pathogens still secrete elicitors that 

induce avirulence. More and more evidence is accumulating that these elicitors act as 

effectors that specifically interfere with the host defence mechanisms to increase the virulence 

of pathogens in the absence of the cognate R protein (Alfano and Collmer, 2004; Mudgett, 

2005; Abramovitch et al, 2006a; He et al, 2007). To reach this goal, effectors regularly 

modify the PTM status of host proteins, thereby targeting primary and/or secondary defence 

responses. Here, we describe the virulence function of some effectors of P. syringae. 

The RIN4 protein is targeted by two effectors from Pst, AvrRpml and AvrB, which 

indirectly induce RIN4 phosphorylation, thereby enhancing the negative regulation of the 

primary defence response by RIN4 which leads to increased host susceptibility and pathogen 

virulence (Mackey et al, 2002; Kim et al, 2005b). The effector HopAIl dephosphorylates 

AtMPK6 and AtMPK3 in the MAPK cascade through phosphothreonine lyase activity, which 

is an alternative cleavage of the phosphate from the threonine residue (Zhang et al, 2007). 

Similarly, the HopPtoD2 effector functions as a protein tyrosine phosphatase downstream of 

the host MAPKKs (Espinosa et al, 2003). Since MAPK cascades are activated in most stress-

related responses, the position of interference is strategic since the effectors might interfere in 

many signalling cascades. Even more intriguing is the abuse of the MAPK cascade by 

Agrobacterium of which the T-DNA hitch-hikes with a phosphorylated AtMPK3 substrate, 
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the transcription factor VIP1, into the nucleus thereby circumventing the defence response 

(Djamei et al, 2007). Finally, it was shown that AvrPto of P. syringae inhibits plant 

immunity triggered by diverse MAMPs. The bacterial effector suppresses early defence gene 

transcription and intercepts MAPK signalling upstream of MAPKKK at the plasma 

membrane (He et al, 2006). Recently, it has been shown that AvrPto binds the MAMP-

triggered receptor-kinases FLS2 and EFR, which inhibits kinase activity of these receptors 

(Xiang et al, 2008). As a result of this, MAPK cascade activation is inhibited and MAMP-

induced immune responses are suppressed. Effectors do not only modify protein 

phosphorylation but can also modify protein ubiquitination. The effector AvrPtoB, of which 

the N-terminal part is recognized by the Fen kinase, has a C-terminal E3 ubiquitin ligase 

domain. AvrPtoB ubiquitinates the Fen kinase and subsequently targets it for degradation, 

thereby abolishing the recognition of its own N-terminal region (Abramovitch et al, 2006b; 

Janjusevic et al, 2006; Rosebrock et al, 2007). Probably, AvrPtoB will not remain the only 

effector that mediates ubiquitination of host proteins, since a screen of the available bacterial 

genomes revealed several new putative effectors that are predicted to mimic subunits of the 

ubiquitination pathway (Angot et al, 2007). 

CONCLUDING REMARKS 

Rapid PTMs of proteins in defence signalling are essential tools for plants to respond 

swiftly to pathogen invasion. In this review, we gave an overview of PTMs that modify 

components essential for defence signalling at the site of signal perception, during secondary 

messenger production and during signalling in the cytoplasm. PTMs regulate protein 

localization and activity and provide complex mechanisms to balance responses in the cell 

without the prerequisite of protein synthesis. Since recent technological developments allow 

high-throughput analysis of modified proteins, we expect that many previously unidentified 

components of defence signalling cascades, that are not transcriptionally regulated, will be 

revealed in the coming years. 
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Chapter 3 

SUMMARY 

Tomato (Solarium lycopersicum, in this chapter further referred to as Lycopersicon 

esculentum) plants with the Cf-4 resistance gene recognize strains of the pathogenic fungus 

Cladosporium fulvum that secrete the avirulence protein Avr4. Transgenic tomato seedlings 

co-expressing Cf-4 and Avr4 mount a hypersensitive response (HR) at 20°C, which is 

suppressed at 33°C. Within 120 minutes after a shift from 33°C to 20°C, L. esculentum MAP 

kinase (LeMPK) activity increases in the Cf-4/Avr4 seedlings. Searching tomato genome 

databases revealed at least 16 LeMPK sequences, including the sequence of LeMPKl, -2 and -

3 that cluster with biotic stress-related MAPK orthologues from Arabidopsis (Arabidopsis 

thaliana) and Nicotiana tabacum. LeMPKl, -2 and -3 are simultaneously activated in the Cf-

4/Avr4 seedlings and to reveal whether they are functionally redundant or not, recombinant 

LeMPKs were incubated on PepChip Kinomics® slides carrying peptides with potential 

phosphorylation sites. Phosphorylated peptides and motifs present in them discriminated 

between the phosphorylation specificities of LeMPKl, -2 and -3. LeMPKl, -2 or -3 activity 

was specifically suppressed in Cf-4-tomato by virus-induced gene silencing and leaflets were 

either injected with Avr4 or challenged with C. fulvum secreting Avr4. The results of these 

experiments suggested that the LeMPKs have different but also overlapping roles with regard 

to HR and full resistance in tomato. 

INTRODUCTION 

Plants are able to prevent or stop colonization by pathogens via highly effective 

defence systems. The constant battle between plants and pathogens can be described by a so-

called zigzag model and consists of several layers of resistance responses of the plant which 

are suppressed by the pathogen (Jones and Dangl, 2006). The primary resistance response is 

based on the recognition of common features of pathogens, also referred to as pathogen-

associated molecular pattern (PAMP)-triggered innate immunity. Successful pathogens 

suppress this primary immune response with specific effectors. In turn, plants have developed 

resistance (R) proteins that mediate recognition of the pathogen via the secreted effector 

proteins, rendering them avirulence (Avr) factors. As a result of this co-evolution R/Avr-
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based host-pathogen interactions have evolved that follow the gene-for-gene model (Flor et 

al., 1942). When an R protein and its cognate Avr protein are present, a swift resistance 

response is initiated which consists of localized cell death, the so-called hypersensitive 

response (HR), and associated defence responses (Jones and Dangl, 2006; Chisholm et al., 

2006). The immediate response of the plant relies on rapid post-translational modifications 

that alter the function of signalling proteins by changing their activity and/or localization. 

Along this line, mitogen-activated protein kinase (MAPK) cascades, one of the major 

signalling modules in eukaryotes, are rapidly activated by post-translational modification 

upon recognition of pathogens by resistant plants (Pedley and Martin, 2005). MAPK cascades 

transfer signals from upstream receptors to downstream cellular effectors and rapid MAPK 

activation allows instantaneous modification of downstream signalling proteins (Krens et al., 

2006; Zhang et al., 2006). In plants, these cascades have been implicated in typical defence 

responses, such as the production of pathogenesis-related (PR) proteins, reactive oxygen 

species (ROS), ethylene and cell death (Pedley and Martin, 2005). The phospho-relay system 

is based on specific activation of three types of kinases; MAPKK kinases (MAPKKKs), 

MAPK kinases (MAPKKs or MKKs) and MAPKs, which are also referred to as MPKs. 

Perception of external stimuli leads to MAPKKK activation, which subsequently 

phosphorylate the [Ser/Thr]-x(3,5)-[Ser/Thr] motif present in the target MAPKKs, thereby 

activating them. In their turn, MAPKKs phosphorylate the Thr (T) and Tyr (Y) residues in the 

TxY motif of the target MAPKs, which then become active and can phosphorylate 

downstream proteins that initiate the cellular response (Pedley and Martin, 2005). Plants 

trigger MAPK cascades upon biotic stress, but also when challenged by abiotic stresses such 

as wounding, drought, ozone and UV light (Mishra et al., 2006; Nakagami et al., 2005)). 

Thus, signals from diverse stresses eventually converge into various overlapping, but also 

distinct MAPK cascades (Zhang et al., 2006) which is reflected by the presence of, for 

example, 20 MAPK-, 10 MAPKK- and 60 putative MAPKKK-encoding genes in Arabidopsis 

(Arabidopsis ihaliand) (Ichimura et al., 2002). 

Upstream signalling components that activate MAPK cascades remain largely 

unknown, although ROS, auxin and abscisic acid (ABA), and phosphatidic acid (PA) have 

been reported to be involved (Lee et al., 2001; Mishra et al., 2006). Signalling events 

downstream of activated MAPK cascades also remain a black box, as hardly any MAPK 

substrates have been identified. So far, 1-aminocyclopropane-l-carboxylic acid synthase 

51 



Chapter 3 

(ACS), the rate-limiting enzyme in ethylene biosynthesis (Liu and Zhang, 2004) and MKS1 

which is required for full salicylic acid-dependent resistance (Andreasson et al., 2005), have 

been reported to be phosphorylated by MAPKs in Arabidopsis. Furthermore, plant-specific 

WRKY transcription factors that contain the WRKYGQK core sequence followed by a zinc-

finger motif are phosphorylated by MAPKs (Menke et al., 2005). Many putative MAPK-

substrates were identified by employing a high-throughput proteomic screen in Arabidopsis 

(Feilner etal., 2005). 

In tomato {Solarium lycopersicum, here further referred to as Lycopersicon esculentum 

(Le)), several components of MAPK signalling cascades have been identified. The tomato 

MAPKs LeMPKl, -2 and -3 are activated upon stress responses caused by the wound 

signalling peptide systemin, oligosaccharide elicitors, ultraviolet-B radiation and the fungal 

toxin fusicoccin (Higgins et al., 2006; Holley et al., 2003). Furthermore, LeMPK2 and -3 are 

activated in a Pto-specific manner upon expression of AvrPto and AvrPtoB, and upon 

expression of LeMAPKKKa (Pedley and Martin, 2004). The authors also identified four 

MAPKKs, of which LeMKK2 and -4 activate LeMPK2 and -3 in vivo. In vitro experiments 

revealed that both LeMKKs are able to phosphorylate LeMPKl, -2 and -3. In addition to its 

activation by phosphorylation, LeMPK3 mRNAs are specifically induced in resistant tomato 

upon inoculation with the bacterial strains Xanthomonas campestris pv vesicatoria and 

Pseudomonas syringae pv tomato, and upon treatment with a fungal ethylene-inducing 

xylanase (Mayrose et al., 2004). Finally, virus-induced gene silencing (VIGS) of both 

LeMPKl and -2, LeMPK3 or LeMKK2 revealed a role for these kinases in Mi-1-mediated 

aphid resistance (Li etal., 2006). 

We study the resistance response of tomato to the fungal pathogen Cladosporium 

fulvum. Several Cf resistance genes of tomato and their cognate avirulence genes (Avrs) from 

C. fulvum have been identified (Thomma et al., 2005), including the gene pairs Cf-4/Avr4 and 

Cf-9/Avr9 (Rivas and Thomas, 2005). To study specific activation of kinases in typical 

defence responses leading to cell death, tobacco (Nicotiana tabacum) cell suspensions 

expressing Cf genes were elicited with its cognate Avr protein. In accordance with these 

studies, Q^-expressing cells were reported to activate calcium-dependent protein kinases 

(CDPKs) and the MAP kinases salicylic acid- and wound-induced protein kinase (SIPK and 

WIPK, respectively) (Romeis et al., 1999 and 2000). The activation of the latter two kinases 

was confirmed in C^P-transgenic tobacco leaves. Furthermore, LeMAPKKKa has been 
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shown to be a positive regulator of the Cf-9-mediated HR and overexpression of the encoding 

gene causes MAPK activation and cell death (Del Pozo et al., 2004). Interestingly, Cf-9-

expressing cells also showed an increase in MAPK activity after treatment with Avr9 (De 

Jong et al., 2000). 

To study HR-related signalling processes in intact tomato plants, transgenic tomato 

lines lacking a functional Cf gene (Money Maker (MM)-CfO) and expressing Avr4 were 

crossed to MM-Cf-4 tomato, resulting in Cf-4/Avr4 offspring that displays lethality at the 

seedling stage (Cai et al., 2001; Thomas et al., 1997). Since specific Avr perception appeared 

to be temperature-sensitive, Cf-4/Avr4 seedlings can be rescued upon incubation at 33°C (De 

Jong et al., 2002). When the seedlings are subsequently transferred to 20°C, a synchronous 

systemic HR-related cell death program is initiated and this biological system has successfully 

been employed to study early transcriptional changes by cDNA-AFLP analysis (Gabriels et 

al., 2006). This study revealed that in these plants the typical defence-related genes are up 

regulated and novel genes were identified that play a role in plant defence. 

Here we report on the specific Cf-4/Avr4-mediated activation of the tomato MAPKs 

LeMPKl, -2 and -3 upon initiation of the HR. Interestingly, analysis of the phosphorylation 

specificity of these LeMPKs using PepChip Kinomics® slides revealed overlapping, but also 

different phosphorylation preferences for each kinase, indicating different downstream roles 

for the LeMPKs. VIGS of the genes encoding the individual kinases suggested that LeMPKl, 

-2 and -3 play different but also overlapping roles in the establishment of the HR and 

resistance of tomato to C. fulvum. 

RESULTS 

Kinase activation upon Cf-4/Avr4-induced defence signalling 

Tomato seedlings expressing both Cf-4 and Avr4 develop systemic necrosis at 20°C 

but can be rescued from lethality at 33°C. When incubated at 33°C and subsequently 

transferred to 20°C, defence signalling leading to systemic HR is induced in the Cf-4/Avr4 

seedlings but not in seedlings from the parental lines (De Jong et al, 2002). A video covering 

a five-day period shows the seedlings from the moment of the temperature shift until the Cf-

4/Avr4 seedlings had become completely necrotic (Supplementary Figure SI). To study the 
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activation of kinases during Cf-4/Avr4-induced defence signalling, the HR was induced in 

one-week-old Cf-4/Avr4 seedlings and seedlings from the parents by a temperature shift to 

20°C. Cotyledons were sampled at intervals of 30 minutes starting from the actual 

temperature shift and were analyzed for kinase activity using myelin basic protein (MBP) as a 

substrate in in-gel kinase assays. MBP-kinase activity in the parents, representing a mixture of 

the Cf-4 and transgenic Avr4-expressing lines, remained at basal levels throughout the 

experiment (Figure 1A). However, in the Cf-4/Avr4 seedlings the MBP-kinase activity had 

significantly increased at 120 minutes after the temperature shift, reached its maximum at 180 

minutes and subsequently stabilized over the next 60 minutes (Figure 1A). The activity was 

quantified and expressed as a percentage of the maximum activity per experiment (Figure 

IB). Statistical analysis revealed that the MBP-kinase activity in Cf-4/Avr4 seedlings is 

significantly increased compared to the parental lines at t=0 and from 120 minutes onwards (P 

< 0.05). MBP-kinase activity was present in a band with a molecular weight of about 50 kDa, 

suggesting that this is a reflection of MAP kinase activity. Samples taken from primary leaves 

of older Cf-4/Avr4 seedlings that were subjected to the same treatment showed a similar 

MBP-kinase activation pattern (results not shown), indicating that the response in cotyledons 

is representative for the response in true leaves. 
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Figure 1. MBP-kinase activity upon initiation of 
Cf-4/Avr4-induced defence signalling. 
Cf-4/Avr4 tomato seedlings were grown at 33CC, 
after which defence signalling was induced by a 
shift to 20°C. Seedlings were subsequently sampled 
at intervals of 30 minutes over a period of 4 hours 
(sample at t=0 represents the harvest just before the 
temperature shift). Cf-4 and transgenic Avr4-
expressing seedlings were combined (parents) and 
treated similarly. A) Protein extracts from the 
seedlings were analyzed using in-gel kinase assays 

with MBP as a substrate. In each lane, similar amounts of protein were loaded as shown by Coomassie-staining 
of the RuBisCo large subunit. B) MBP-kinase activity represented by the 50 kDa band was quantified by 
phospho-imaging and expressed as the percentage of the maximum activity determined per experiment, which 
was set to 100%. For each time-point, the average activity (bars) of five independent experiments is presented 
and standard errors of mean (SEM) are shown by error bars. 
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LeMPK family analysis 

In most cases, MBP-kinase activity reflects MAP kinase activity. For Arabidopsis(/l/), 

20 AtMPKs were described to cluster in group A to D (Ichimura et al., 2002) and MAPKs that 

cluster in group A have been described to be positive regulators of defence signalling (Mishra 

et al., 2006). Some members of group B are negative regulators of defence signalling, 

whereas only in rice two MAPKs of group D were activated by pathogens (Song et al., 2006; 

Zhang et al., 2006). Since information of the tomato MAPK gene family is limited, the size of 

the LeMPK family and the variation between the family members was studied to identify 

potential additional homologues of the already described LeMPKl, -2 and -3 (Holley et al., 

2003) that cluster in group A. The open reading frames (ORFs) of these LeMPKs were used in 

BLAST queries on the TIGR, NCBI and the SOL Genomics Network (SGN) databases and 

additional LeMPKs were identified which, to identify all homologues, were in turn also used 

in BLAST queries on the same databases. Thirteen additional sequences that putatively 

encode a LeMPK were identified (Table I). The LeMPK sequences were translated into 

protein sequences and the ORFs were 
Table I. The tomato MAP kinases. 
The Unigene identifier, type of activation domain (TxY), 
the number of residues of the protein and the clustering 
in the groups presented in Figure 2 are indicated for the 
16 LeMPKs. 

Name 

LeMPKl 

LoMPK2 

LeMPK3 

LeMPK4 

LeMPK5 

LeMPK6 

LeMPK7 

LeMPK8 

LeMPK9 
LeMPKl 0 

LeMPKl 1" 

LeMPKl 2 

LeMPKl 3 

LeMPKl 4 

LeMPKl 5b 

UMPK16 

Unigene identifier 

SGN-U316697 

SGN-U316695 

SGN-U313928 

SGN-U323634 

SGN-U313996 

SGN-U313995 

SGN-U323219 

SGN-U318773 

SGN-U316113 

SGN-U317229 

SGN-U322516& 

TC168576 

SGN-U318438 

SGN-U316366& 

SGN-U316367 
SGN-U318361 

SGN-U332259 
SGN-U318101 

TxY" 

TEY 

TEY 

TEY 

TEY 

TEY 
MEY 

TEY 

TEY 

TEY 

TDY 

-

TDY 

TDY 

TDY 

-
TDY 

Residues 

397 

395 

374 

373 

281 

377 

380 

371 

373 

576 

395 

622 

596 

496 
207 

576 

Group 

A 

A 

A 

B 

B 

B 

B 

C 

C 

D 

D 

D 

D 

D 

D 
D 

a TEY: Thr-Glu-Tyr; TDY: Thr-Asp-Tyr; MEY: Met-
Ghi-Tyr. 

These sequences lack the N-terminal region and do 
therefore not contain the TDY domain. 

aligned with those of LeMPKl, -2 and -3, 

the ORFs from AtMPKl to -20, the 

Nicotiana tabacum (Nt) ORFs from 

NtWIPK, NtSIPK, NtNTF4 and NtNTF6 

and the ORF of Homo sapiens (Hs) 

HsERKl that was assigned as out-group. 

As presented in Figure 2, the 13 

additional LeMPKs cluster over groups B 

to D. LeMPKs present in groups A, B and 

C all have a Thr-Glu-Tyr (TEY) 

activation domain, whereas those of group 

D have a Thr-Asp-Tyr (TDY) activation 

domain, except for two incomplete 

sequences lacking this part of the 

sequence. LeMPK6 might represent a 

non-functional homologue because the 

Met-Glu-Tyr (MEY) sequence that 
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replaces the TEY domain in this MAP kinase probably renders the protein inactive. Since the 

tomato genome has not been fully sequenced yet, additional LeMPKs might be found in the 

near future. However, it is unlikely that large numbers of novel LeMPKs will be identified 

since all groups presented in the cladogram contain LeMPK sequences. Furthermore, other 

higher plant species of which the genome has been fully sequenced, such as Populus 

trichocarpa and Oryza sativa, contain comparable numbers of MAP kinases (21 and 15, 

respectively) (Hamel et al., 2006). The results mentioned above suggest that group A is 

complete and therefore, to identify the MAPKs responsible for the MBP phosphorylation 

shown in Figure 1, we focused on LeMPKl, -2 and -3. 

Figure 2. Relationships among the MAPKs of 
Lycopersicon esculentum (Le), Arabidopsis thaliana 
(At) and Nicotiana tabacum (Nt). 
Thirteen sequences homologous to the ORF of 
LeMPKl, -2 or -3 were obtained from the tomato 
TIGR, NCBI and SGN databases and translated. All 
16 LeMPK protein sequences were aligned with the 
known AtMPK and NtMPK sequences and a 
cladogram showing four distinct groups was 
generated in which LeMPK4 to -16 are numbered 
from top to bottom according to their position in the 
cladogram. LeMPKl 1 and -13 each represent a 
fusion of two database entries with an identical 
overlapping part. LeMPKl 1 and -15 are positioned 
manually next to their closest homologue since their 
sequence is not complete and in this way miss-
clustering in the ClustalX alignment is avoided. 
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Cf-4/Avr4-induced defence signalling causes activation of LeMPKI, -2 and -3 

To identify which LeMPK is activated upon Cf-4/Avr4-induced defence signalling, 

LeMPKI, -2 and -3 were immunoprecipitated from protein extracts of Cf-4/Avr4 and the 

parents, of which the MBP-kinase activity is shown in Figure 1, using antiserum raised 

against either LeMPKI, -2 or -3 (Holley et ah, 2003). Subsequently, the precipitated kinases 

were incubated with MBP to reveal whether they had been activated in the responding plants. 

Interestingly, the activity of all three LeMPKs had increased upon the initiation of Cf-4/Avr4-

induced defence signalling when compared to the LeMPK activity in the parents (Figure 3). 

Although the MAPK protein levels were unaltered (results not shown), in contrast to LeMPKI 

and -2, LeMPK3 transcription was significantly up regulated at 180 minutes after the 

temperature shift in the Cf-4/Avr4 seedlings (Stulemeijer and Joosten, unpublished results). 

This observation matches with the earlier described transcriptional regulation of LeMPK3 

upon recognition of a bacterial avirulence factor (Mayrose et ah, 2004). Furthermore, the 

transcript levels of LeMPKI and -2 were not altered. 
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Figure 3. Initiation of Cf-4/Avr4-induced defence 
signalling causes activation of LeMPKI, -2 and -3. 
Cf-4/Avr4 tomato seedlings were grown at 33°C, after 
which defence signalling was induced by a temperature 
shift to 20°C. Seedlings were subsequently sampled at 
60 and 210 minutes after the temperature shift. MM-Cf-
4 and transgenic Avr4-expressing seedlings were 
combined (parents) and treated similarly. LeMPKI, 
LeMPK2 or LeMPK3 was immunoprecipitated from 
total protein extracts using specific antisera and 
incubated with MBP and radio-labelled ATP and 
protein bands were quantified. Bars represent the 
average activity of two independent experiments and 
standard errors of mean (SEM) are shown by error bars. 
LeMPKI, -2 and -3 activities in the Cf-4/Avr4 
seedlings after 210 minutes were set to 1 and the 
remaining bars were related to these. Note that the bars 
do not represent absolute levels of LeMPK activity. 

LeMPKI, -2 and -3 have overlapping and distinct specificities based on PepChip 

Kinomics® slide analysis 

The experiments described above show that LeMPKI, -2 and -3 are specifically 

activated after triggering Cf-4/Avr4-induced defence signalling. To investigate whether the 

different LeMPKs have overlapping and/or distinct phosphorylation specificities, recombinant 

(r) LeMPKs were produced in E. coli and their peptide phosphorylation specificity was tested. 
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We included rAtMPK6 as a control in this assay, as for this MAPK a substrate has been 

identified (Liu and Zhang, 2004), and AtMPK6 clusters with LeMPKl, -2 and -3 in group A 

(Figure 2). The four rMAPKs were expressed as HIS-tagged proteins, purified and visualized 

by Coomassie staining and kinase assays were performed to confirm basal MAPK activity 

(Figure 4, upper and middle panel). MAPKs produced in E. coli autophosphorylate the Tyr 

residue in the TEY motif (Crews at al, 1991; Mayrose et al., 2004), thereby gaining activity 

that is probably controlled by specific MAPK phosphatases in vivo. Monoclonal anti-

phospho-Tyr (a-pY) antiserum recognizes the rMAPKs, indicating that the rMAPKs are 

indeed phosphorylated on a tyrosine residue (Figure 4, lower panel). To show that loss of 

activity is coupled to a loss of phosphorylation, rLeMPK3 was stored in a solution without 

kinase storage buffer which results in an inactive enzyme (rLeMPK3*; Figure 4). Probing 

with the a-pY antiserum revealed that this inactive rMAPK is indeed no longer 

phosphorylated (Figure 4). Thus, MAPKs that are produced in E. coli have basal activity. This 

conclusion is supported by the observations of Feilner et al. (2005), who produced AtMPK3 

and AtMPK6 in E. coli and used the active MAP kinases to perform protein microarray-based 

kinase assays. 
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Figure 4. Recombinant MAPKs of group A have 
basal kinase activity and are phosphorylated on 
a Tyr residue. 
Recombinant MAP kinases stored in kinase storage 
buffer (rLeMPKs and rAtMPK6; see Materials and 
Methods for details) were run on SDS-PAGE gels 
and stained with Coomassie brilliant blue. Basal 
kinase activity was determined by incubation of the 
rMAPKs with MBP and radio-labelled ATP (middle 
panel) and a blot carrying the rMAPK proteins was 
incubated with antiserum specific for phospho-Tyr 
(a-pY). rLeMPK3* represents an inactive form of 
the LeMPK3 enzyme obtained by storage in a 
solution without kinase storage buffer. 

To investigate peptide phosphorylation specificities of the individual MAPKs, 

PepChip Kinomics® slides, further referred to as PepChips, were incubated with the rMAPKs 

showing basal activity. PepChips carry a triplicate set of 976 peptides containing 

experimentally verified phosphorylation sites for different types of human kinases (see 

Materials and Methods for details). Each of the rMAPKs phosphorylated an overlapping but 

also partially different subset of the peptides (Figure 5 A). In the magnified region of the slide 
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Figure 5. PepChips reveal different phosphorylation patterns for LeMPKI, -2 and -3. PepChips were 
incabated with rMAPKs in the presence of radio-labelled ATP. 
A) Peptides phosphorylated on the PepChips were visualized with phospho-imaging. The upper panel shows 
one of the triplicate sets of peptides phosphorylated by rLeMPKl, whereas the lower panels show a subset of 
peptides differentially phosphorylated by rLeMPKl, -2, -3 and rAtMPK6, respectively. Spots marked by a white 
dot are represented in the selected subset of phosphorylated peptides presented in (B). B) The selected 
phosphorylated and non-phosphorylated peptides were compared with Two Sample Logo (TSL) software. 
Putative phosphorylation sites (Ser (S), Thr (T) or Tyr (Y)) are aligned on position 6, and above the double line 
the TSL plots show for positions 1 to 11 whether a particular amino acid residue has an increased frequency in 
the phosphorylated peptides compared to the same position in the non-phosphorylated peptides. For the latter, 
the most frequently occurring residues are depicted below the double line (t-test, P<0.05). The size of the 
symbols is proportional to the relative frequencies of the residues in the phosphorylated and non-phosphorylated 
peptides. The largest (stack of) symbols in the TSL-plots for rLeMPKl, -2, -3 and rAtMPK6 have a frequency 
of 62%, 58%, 34% and 34%, respectively. L: Leu; R: Arg; K: Lys; D: Asp; E: Glu; F: Phe; V: Val. 

(Figure 5A, small panels), only one of the spotted peptides is phosphorylated by all three 

rLeMPKs and rAtMPK6, whereas two peptides are phosphorylated by both rLeMPKl and -3 

as well as by rAtMPK6. Additionally, three peptides spotted in this area were only 

phosphorylated by rLeMPKl or -3. The peptide phosphorylation specificity of rAtMPK6 is 

most similar to that of rLeMPKl, although it has similarities with rLeMPK3 as well. 

The phosphorylation intensity of most of the peptides did not exceed background 

levels and these peptides probably do not contain motifs that could be present in putative in 

vivo substrates. For further analysis, only peptides showing a phosphorylation intensity above 

the average peptide phosphorylation intensity of a complete PepChip and peptides with a 

phosphorylation intensity of zero were selected and will be referred to as phosphorylated and 

non-phosphorylated peptides, respectively (Supplementary Figure S2; see Material and 
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Table II. Phosphorylation motifs present in the 
peptides phosphorylated on the PepChips by 
rLeMPKl, -2 or -3 or rAtMPK6. 
Phosphorylated peptides were divided into subgroups 
based on common characteristics and phosphorylation 
motifs were predicted with TEIRESIAS software 
(Rigoutsos and Floratos, 1998). Motifs present in at 
least 40% of the sequences of a subgroup are presented. 

Phosphorylation motif 

P x S P" 
S P x[KR]' 

[KR] R x S 
[KR] x x x x S 

S x x [KR) 

5 
D. 
S 
<U 

21" 

19 
10 

-
-

2 
Q. 

5 

21 
19 

d 

-
-

CO 

0 . 
5 
<D 

_J 

14 
19 

-
21 
20 

ID 

Q. 

5 
< 
16 
19 

-
18 

-
a P: Pro; S: Ser; x: any residue. The phosphorylation site 
(S) is indicated in bold. 
b The number of phosphorylated peptides containing 
this motif in the subgroup of sequences. 
c [KR] refers to the presence of either a Lys (K.) or an 
Arg (R) at this position of the phosphorylation motif. 
d This motif is not present in the peptides 
phosphorylated by this kinase. 

Methods for details). Comparison of the 

phosphorylated peptides for LeMPKl, -2 

or -3 revealed that 30% of the peptides 

were phosphorylated by LeMPKl, -2 and -

3, 19% by LeMPKl and -2, 5% by 

LeMPKl and -3 and 4% by LeMPK2 and -

3. The remaining phosphorylated peptides 

were specifically phosphorylated by either 

LeMPKl, -2 or -3 (see also Table II). To 

determine the specificity of the rMAPKs, 

the phosphorylated peptides were 

compared to the non-phosphorylated 

peptides with Two Sample Logo software 

(TSL; Crooks et al, 2004). The peptides 

consist of 11 residues of which the central 

residue represents the putative phosphorylation site, which is either a Ser, Thr or Tyr residue. 

The TSL plots show for the 11 positions whether a residue is more represented in the 

phosphorylated peptides as compared to the non-phosphorylated peptides (Figure 5B; t-test, 

P<0.05). As expected for MAPKs, which are Ser/Thr-specific kinases (Nakagami et al., 

2005), the rMAPKs prefer Ser- instead of Tyr-phosphorylation (position 6). In addition, 

rLeMPKl and -2 prefer to phosphorylate sequences containing Pro residues, whereas 

rLeMPK3 and rAtMPK6 have a preference for sequences containing the positively charged 

amino acid residues Arg and Lys, in addition to Pro residues. Sequences containing 

negatively charged residues, such as Asp and Glu, are hardly phosphorylated by any rMAPK 

(Figure 5B) which might be caused by static hindrance of the negatively charged phosphate 

group at the phosphorylation site. These results demonstrate that phosphorylation of the 

peptides on the PepChips by the various rMAPKs is significantly influenced by the sequence 

of the peptides and that each of the rLeMPKs phosphorylates a different subset of peptides, 

since clear differences are observed between the TSL plots. 

The sequences of the phosphorylated peptides were loaded into TEIRESIAS software 

(Rigoutsos and Floratos, 1998) and preferred phosphorylation motifs consisting of 3 or 2 

residues were predicted for each rMAPK (Table II). These motifs are too short to identify 

60 



relevant putative in vivo substrates from databases; however they allow discrimination 

between the phosphorylation specificities of the individual rMAPKs. To verify whether the 

results from the PepChip analysis match reported biological substrates, phosphorylation 

motifs predicted for rAtMPK6 were compared to the phosphorylation sites of its known in 

vivo substrates, ACS6 and -2. The predicted Pro-x-Ser-Pro (PxSP) phosphorylation motif 

matches for the position of two of the three phosphorylated serine residues (Ser483 and 

Ser488) described for ACS6 (Liu and Zhang, 2004). However, the third phosphorylated serine 

residue (Ser480) is only followed by a proline. Such serine residues were frequently 

phosphorylated on the PepChip but motifs matching these Ser-Pro sites did not exceed the 

threshold set to predict motifs. These data reveal phosphorylation motifs for rLeMPKl, -2 and 

-3 that only partially overlap, indicating that the LeMPKs share common substrates but also 

have different substrate specificities (Table II). 

VIGS of LeMPKl, -2 or -3 results in decreased activity of the encoded MAP kinase 

LeMPKl, -2 and -3 are activated upon specific Cf-4-mediated recognition of C. 

fulvum avirulence factor Avr4. To elucidate the role of the individual LeMPKs in HR and 

resistance of tomato to C. fulvum, VIGS of LeMPKl, -2 or -3 was performed. Therefore, MM-

Cf-4-tomato seedlings were inoculated with recombinant tobacco rattle virus (TRV)-silencing 

constructs (Liu et ai, 2002a and 2002b) each containing part of the unique 3' UTR region of 

the LeMPKl, -2 or -3 genes. LeMPKl, -2 and -3 have very low activity in untreated leaf disks 

(results not shown). However, they can be rapidly activated by wounding (Higgins et ai, 

2006). To test MAPK activity in silenced plants, we induced MAPK activity by punching leaf 

disks, which results in a wound stimulus, and floated the disks on water to prevent desiccation 

(Menke et al., 2004; see Materials and Methods). Subsequently, in gel kinase assays were 

performed. Overall LeMPK activity was decreased in TRV:LeMPKl-, -2- and -3-inoculated 

plants when compared to control plants that had been inoculated with TRV containing the 

ORF of green fluorescent protein (TRV:GFP; Figure 6A). To confirm decreased activity of 

only the targeted LeMPK, immunocomplex assays for LeMPKl, -2 and -3 were performed on 

the TRV:LeMPK- and TRV:GFP-inoculated plants. In the TRV:LeMPKl-inoculated plants, 

LeMPKl activity was decreased when compared to the LeMPKl activity in the TRV:GFP-

inoculated plants, whereas the LeMPK2 and -3 activities did not change when compared to 

those in TRV:GFP-inoculated plants (Figure 6B). Also, a clear specific decrease in LeMPK2 
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and -3 activity was observed in TRV:LeMPK2- and -3-inoculated plants, respectively. From 

these observations, we conclude that inoculation of tomato with the different TRV:LeMPK 

constructs results in specific suppression of the respective MAP kinase activities. 

LeMPK activity 
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Figure 6. VIGS of LeMPKl, -2 or -3 decreases the 
activity of the encoded MAP kinase. 
Disks were taken from leaflets of TRV-GFP and TRV-
LeMPK-inoculated plants three weeks after inoculation 
and they were floated on water for 15 minutes, after which 
protein extracts were made. A) An in-gel kinase assay was 
performed for each individual leaf disc and representative 
overall LeMPK activities are shown. Bands represent a 
combination of LeMPKl-, -2- and -3 activities, since the 
slightly smaller LeMPK3 protein was not separated from 
LeMPKl and -2 on these gels. Equal amounts of protein 
were loaded in each lane (not shown). B) LeMPKl, -2 and 
-3 proteins were individually immunoprecipitated from the 
protein extracts shown in (A) and subjected to a kinase 
assay. Representative results from three independent 
experiments are shown. Note that only the activity of the 
targeted LeMPK is decreased when compared to the 
activity levels from TRV:GFP-inoculated plants. 

LeMPKs have different and overlapping roles in Cf-4-mediated HR and resistance to C. 

fulvum 

Three weeks after inoculation of MM-Cf-4 tomato with the various TRV VIGS 

constructs described above, eight leaflets of compound leaves at similar positions on the plant 

were injected with Avr4 protein at ten sites per leaflet. Sites that developed necrosis, 

reflecting Cf-4/Avr4-induced HR, were counted (see Materials and Methods for details). The 

maximum response to Avr4 of 7.6 necrotic spots per leaflet (± 0.2 SEM) was obtained in 

TRV:GFP-inoculated MM-Cf-4 plants, whereas inoculation with TRV:Cf-4 resulted in a 

significant decrease of the response to Avr4 (Figure 7A). Interestingly, inoculation with 

TRV:LeMPK2 or -3 also caused a significant decrease in the responsiveness of the plant, 

whereas inoculation with TRV:LeMPKl did not affect the Cf-4/Avr4-induced HR in this 

experimental setup (P < 0.05; Figure 7A). 

To determine whether, in addition to their requirement for a full HR, the LeMPKs are 

also required for Cf-4-mediated resistance, MM-Cf-4 tomato plants that had been inoculated 
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Figure 7. The role of LeMPKl, -2 and -3 in Cf-4-raediated HR and resistance to C.fulvum. 
Tomato plants were inoculated with TRV:GFP, TRV:Cf-4, TRV:LeMPKl, TRV:LeMPK2 or TRV:LeMPK3 and 
injected with Avr4 or challenged with C. fulvum expressing Avr4. A) After three weeks, a total of 160 leaflets of 
the TRV-inoculated MM-Cf-4 plants were injected with Avr4 protein at ten sites. The average number of sites 
per leaf that developed a specific HR, visible as necrosis, is shown (see Materials and Methods for details). The 
asterisks indicate a significantly decreased response as compared to TRV:GFP-inoculated plants (P < 0.05). B) 
MM-CfO plants that are fully susceptible to C. fulvum and MM-Cf-4 plants that are fully resistant were 
inoculated with the indicated recombinant TRV VIGS constructs. After three weeks, the plants were inoculated 
with a strain of C. fulvum expressing Avr4 and GUS and leaflets were stained for GUS activity after 14 days. 
Leaflets representative for five independent experiments are shown in the upper panel and a magnification of 
GUS-stained areas is shown in the lower panel. In this panel the margins indicate compromised resistance. 

with the various TRV constructs were challenged with a strain of C. fulvum expressing Avr4. 

As a control, fully susceptible MM-CfO plants lacking functional resistance genes to C. 

fulvum were inoculated with TRV:GFP and challenged with the fungus. The C. fulvum strain 

also expresses the pGPD.GUS transgene, thereby allowing detection of the mycelium of the 

fungus in the leaves. Two weeks after inoculation with C. fulvum, leaflets from fully 

developed compound leaves were treated with X-gluc, resulting in staining of leaf sections 
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that are successfully colonized. As shown in Figure 7B (upper panels), leaflets of susceptible 

TRV:GFP-inoculated MM-CfO tomato plants were colonized by C.fulvum, as reflected by the 

staining in the leaflet. Magnification of the stained areas clearly revealed the presence of 

fungal mycelium growth in the leaf (lower panels). MM-Cf-4 tomato plants inoculated with 

TRV:GFP did not show any colonization by C. fulvum, indicating that these TRV-inoculated 

plants are still fully resistant to the fungus. Inoculation of the MM-Cf-4 plants with TRV:Cf-4 

compromised resistance to C. fulvum as mycelium of the fungus is observed in the leaflets. 

Interestingly, loss of full resistance to C. fulvum was also observed in the TRV:LeMPKl- and 

-3-inoculated MM-Cf-4 plants, since the intercellular spaces in certain patches of the leaflets 

were successfully colonized (Figure 7B). Surprisingly, although VIGS of LeMPK2 

significantly affected the Cf-4/Avr4-induced HR (Figure 7A), we did not find compromised 

resistance to C.fulvum in TRV:LeMPK2-inoculated MM-Cf-4 plants (Figure 7B). 

DISCUSSION 

To reveal differences in LeMPKl, -2 and -3 peptide substrate specificity, PepChip 

analysis was performed. We have incubated two different PepChips, each carrying a triplicate 

peptide set, with rLeMPKl in two independent experiments and found that the peptides 

selected as phosphorylated peptides were identical when both experiments were compared 

(results not shown). Therefore, the other rMAPKs were incubated on only one PepChip. The 

PepChip Kinomics® slides that we employed carry peptides containing phosphorylation 

motifs for human kinases and therefore we focused on the overall phosphorylation patterns 

rather than on the phosphorylation of individual peptides. Analysis with TEIRESIAS motif 

prediction software revealed motifs in the sequences of the phosphorylated peptides (Table 

II). To enable comparison of rMAPK-specific phosphorylation motifs obtained from the 

PepChip analysis, different amounts of the rMAPK proteins with similar MBP kinase 

activities were applied to the slides. This implies that the relevance of a certain 

phosphorylation motif identified for a LeMPK could be different in vivo, as LeMPK protein 

concentrations and specific activities differ in the plant tissue. Each rMAPK phosphorylated 

approximately 80 to 100 peptides consisting of 11 amino acid residues, which allowed 

identification of motifs of two or three residues. Table II shows motifs for the individual 
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rLeMPKs present in 40% or more of the sequences in a subgroup, which could match with 

motifs present in in vivo substrates. In contrast to Figure 5B where residues with a higher 

frequency in phosphorylated, as compared to non-phosphorylated peptides are presented, 

these motifs consist of residues that have a high frequency in the phosphorylated peptides. 

Unfortunately, motifs consisting of two or three residues are not discriminative in database 

searches. However, manual annotation revealed that the PxSP motif, which has been 

previously described by Schwartz and Gygi (2005), matches for Ser483 and Ser488 of ACS6, 

which are phosphorylated by AtMPK6 (Liu and Zhang, 2004). The third phosphorylated Ser 

of ACS6 (Ser480) was only followed by a Pro. Peptides with a central Ser residue followed 

by a Pro are frequently phosphorylated on the slides and only a subset of the sequences 

matches the PxSP motif. The remaining Ser-Pro sequences were not part of a pattern 

exceeding the threshold set for motif prediction. Furthermore, many potential AtMPK6 

substrates have been described by Feilner et al. (2005). However, the exact phosphorylation 

sites are not known for these substrates, rendering verification of the motifs not possible. In 

addition to rAtMPK6, rLeMPKl, -2 and -3 also phosphorylate the PxSP motif (Table II) and 

in tomato this motif matches the orthologues LeACS6 and LeACS2, suggesting that these 

enzymes are substrates of LeMPKl, -2 and -3. The identification of motifs phosphorylated by 

only one of the tested rLeMPKs (Table II) implies that, in addition to overlapping 

specificities, these LeMPKs have also different substrate-specificities in vivo. Alternatively, 

the LeMPKs could target different phosphorylation sites of the same protein which implies a 

different regulatory function for each of the LeMPKs. 

Since our PepChip analysis points to different, and also overlapping, regulatory 

functions for the LeMPKs in vivo, the role of these MAP kinases in the initiation of Cf-

4/Avr4-induced HR and disease resistance was studied. The LeMPKs were individually 

targeted in MM-Cf-4 tomato plants by VIGS, which resulted in a decreased LeMPK activity 

compared to the control TRV:GFP-inoculated plants. To avoid off-target silencing, the 

sequences to target the individual LeMPKs were designed on the highly unique 3' UTR-

regions and these sequences have less than 21 base pairs homology to any other tomato gene 

present in the NCBI or SGN databases (results not shown). Furthermore standardized 

immunoprecipitations, with equal amounts of LeMPK antibodies, protein A agarose beads 

and input protein for each sample, did not reveal decreased activity of the homologous, non-
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targeted LeMPKs (Figure 6B). Therefore it is unlikely that the expression of other genes is 

affected in the different TRVrLeMPK-inoculated plants. 

VIGS in tomato is patchy and usually only results in a partial knock-down of gene 

expression. Therefore, we only observed a slight decrease in the Avr4-induced HR even upon 

silencing of the Cf-4 resistance gene itself (Figure 7A). However, the decrease is significant 

and also correlates with a clear loss of full resistance to ^vr4-expressing strains of C. fulvum 

(Figure 7B). In many cases, silencing of a gene encoding a protein that functions downstream 

of Cf-4 in the HR signalling cascade even has a smaller effect on the responsiveness of the 

plant to Avr4, which is probably due to redundancy (Gabriels et al., 2006). Still, significant 

suppression of the Avr4-induced HR was found in MM-Cf-4 plants in which either LeMPK2 

or -3 activity was decreased, whereas decreased LeMPKl activity did not affect the Avr4-

induced HR (Figure 7A). The latter could be caused by the relatively slight decrease in 

LeMPKl activity (Figure 6B). The TRV:LeMPK-inoculated MM-Cf-4 plants were also 

challenged with the ^4v/-4-expressing strain of C. fulvum. Surprisingly, in this assay the 

LeMPKl-silenced plants showed a phenotype, as localized patches of blue-stained 

intercellular mycelium were visible upon treatment of the inoculated leaves with X-gluc 

(Figure 7B). Although the LeMPKl activity is only slightly decreased and the HR is not 

affected (Figure 7A), it does cause suppressed resistance, indicating that the degree of 

LeMPKl silencing is sufficient to observe a phenotype. The lower LeMPK2 activity did not 

affect resistance, whereas for silencing of LeMPK3, in addition to its effect on the HR, 

suppressed resistance was found (Figure 7B). 

The role in disease resistance of various orthologues of the LeMPKs studied here 

appears to match with our results. VIGS of NtSIPK and NtWIPK, the tobacco orthologues of 

LeMPKl and -3 respectively, in N. benthamiana compromised resistance to the bacterial 

pathogen Pseudomonas cichorii and tobacco mosaic virus (TMV) (Jin et al., 2003; Sharma et 

al., 2003). Furthermore, enhanced susceptibility to Peronospora parasitica was found upon 

silencing of the LeMPKl orthologue AtMPK6 in Arabidopsis (Menke et al., 2004). Silencing 

of LeMPKl and -2 or silencing of LeMPK3 only was reported to result in a loss of full Mi-1-

mediated aphid resistance (Li et al., 2006) and inoculation of tomato with TRV:NtWIPK 

compromised resistance to Pseudomonas syringae pv tomato (Ekengren et al., 2003). Finally, 

constitutive overexpression of StMEKl thereby activating the LeMPKl orthologue StMPKl, 

enhanced resistance to Phytophthora infestans and Alternaria solani (Yamamizo et al., 2006). 
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Interestingly, TRV:NtSIPK inoculation, which should cause simultaneous silencing of 

LeMPKl and -2 in tomato, did not affect the resistance response to P. syringae pv tomato 

(Ekengrene/a/., 2003). 

Solanaceous species like tomato and tobacco possess two homologous MAPKs in 

group A, LeMPKl/2 and NtSIPK/NTF4, and it is not clear whether these homologues are 

fully redundant or have different specificities. Here, we show that LeMPKl and the 95.4% 

identical LeMPK2 protein have overlapping but also different peptide phosphorylation 

specificities in vitro and that both MAPKs are clearly involved in the resistance response. The 

VIGS data indicate that LeMPKl and LeMPK2 may have different functions with regard to 

HR and full resistance in tomato. However, a definite result would require complete 

knockouts of LeMPKl and/or LeMPK2, which are not available. VIGS of LeMPK3 affects the 

execution of the HR and in this case also full resistance is lost (Figure 7), suggesting that 

LeMPK3 has a role in both the initiation of the HR and other defence responses. This 

hypothesis is supported by the broader phosphorylation specificity of LeMPK3 (Table II). 

In transgenic tobacco cell suspensions expressing Cf-9, MAPKs are activated within 5 

minutes after elicitation with the Avr9 avirulence factor of C. fulvum (Romeis et al., 1999; De 

Jong et al, 2002). Such cell suspensions are also temperature-sensitive and it was found that 

this sensitivity resides at the level of elicitor perception, as the amount of Avr9 binding sites 

was significantly decreased at 33°C (De Jong et al, 2002). The cell suspensions required at 

least 45 minutes to regain their ability to perceive Avr9 when transferred from 33°C to 15°C, 

indicating that de novo protein synthesis is required for this recovery. The Cf-4/Avr4 

seedlings also need to recover when shifted from 33°C to 20°C, in this case resulting in a lag 

phase of 90 to 120 minutes before MAPK activation is observed (Figure 1). Furthermore, a 

significantly higher basal MAPK activity was observed in Cf-4/Avr4 seedlings at 33°C as 

compared to the parents (t=0 min, Figure IB), although immunocomplex assays did not reveal 

an increased activity for LeMPKl, -2 or -3 at this time point. Possibly, at this stage during 

which HR is suppressed, other MAPKs which act as negative regulators of the HR are active. 

Putative candidates are LeMPK4 and/or -7 from group B (Figure 2), which are orthologues of 

the negative regulator of resistance AtMPK4 (Ichimura et al., 2006). Due to their similar size 

(Table I) these MAPKs are indistinguishable from LeMPKl, -2 and -3 on the gel shown in 

Figure 1. We did not further separate LeMPK3 from the other LeMPKs as this allowed to 

quantify the total MAPK activity present in one band. Correspondingly, LeMPK4 and/or -7 or 
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other LeMPKs might be activated simultaneously with LeMPKl, -2 and -3 from 120 minutes 

onwards since the immunoprecipitation data do not provide absolute qualitative data as this 

depends on the titer and affinity of the antibodies. Recently, for example, the activation of the 

negative regulator AtMPK4 simultaneously with AtMPK3 and -6 has been reported upon 

elicitation of Arabidopsis with the bacterial elicitor flagellin (Meszaros et al., 2006). 

Cotyledons of Cf-4/Avr4 seedlings develop localized necrotic lesions that become 

macroscopically visible at about 12 hours after the temperature shift and eventually spread 

over the complete surface of the cotyledons. Interestingly, Cf-4/Avr4 seedlings that are 

incubated at 20°C for 240 minutes and subsequently shifted back to 33°C, survive and do not 

develop necrosis (results not shown). In addition, Cf-4/Avr4 seedlings incubated at 20°C for 

24 hours develop localized necrotic lesions but when shifted back to 33°C, these lesions do 

not further expand and the remaining tissue survives (results not shown). Alvarez et al. (1998) 

observed the initiation of systemic 'micro-HRs' at certain confined locations in the tissue 

leaving no visible trace, upon inoculation of Arabidopsis with avirulent P. syringae. 

Furthermore, it was found that reactive oxygen intermediates that are generated at defined 

sites by the plant upon perception of an avirulent pathogen are able to suppress the spread of 

cell death (Torres et al., 2005). Our observations indicate that similar phenomena take place 

in the Cf-4/Avr4 seedlings upon the temperature shift. The reversibility of the system and the 

more or less constant total LeMPK activity level after 180 minutes suggest that at least during 

the early stages after the temperature shift, a controlled HR takes place in the Cf-4/Avr4 

seedlings. This control mechanism prevents superfluous cell death in Cf-4/Avr4 seedlings and 

illustrates that the response of the seedlings is a proper reflection of the response of a resistant 

host plant to invasion by an avirulent pathogen. 

MATERIALS AND METHODS 

Plants 

To generate tomato (Lycopersicon esculentum) offspring expressing both the Hcr9-4D 

(= Cf-4) gene and its cognate avirulence (Avr) gene Avr4 from Cladosporium fulvum, 

transgenic Money Maker (MM)-CfO plants expressing Avr4 (MM-CfO:Avr4) were crossed to 

transgenic MM-CfQ:Hcr9-4D (MM-Cf-4) plants, as described earlier (Cai et al, 2001; 
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Thomas et al., 1997). In addition, the MM-Cf-4 and MM-CfO:Avr4 parental lines were selfed. 

The resulting Cf-4/Avr4 and parental seeds were isolated from the fruits and germination was 

stimulated by a treatment with 25% (v/v) Lodik (containing 4% (v/v) sodium hypochlorite), 

for 20 min. After germination under normal daylight conditions at room temperature (RT) for 

approximately seven days, seedlings were incubated at 33°C under 16hr/8hr light/dark regime 

(Elbanton, Kerkdriel, The Netherlands) for at least another seven days. For the activation of 

Cf-4/Avr4-induced defence signalling, the seedlings were shifted to 20°C and at several time 

points after this temperature shift cotyledons were harvested, immediately frozen in liquid 

nitrogen and stored at -80°C. The parental lines were subjected to the same treatment. MM-

Cf-4 and MM-CfO plants used for VIGS assays were grown under standard greenhouse 

conditions. 

Monitoring HR development in Cf-4/Avr4 seedlings 

Cf-4/Avr4 seedlings and seedlings of the parents were rescued at 33°C as described 

above. Seedlings were transferred to 20°C and a webcam, which was placed in the incubator, 

took photographs from the seedlings every 5 min over a period of 5 days. Images were 

cropped by Irfanview software Version 3.98 (http://www.irfanview.com/), batch conversed to 

centralize the seedlings in the photograph and merged to avi-format by VideoMach 2.7.2 

software (http://www.gromada.com/). 

Kinase assays 

Cotyledons of the seedlings were homogenized in immunoprecipitation (IP) buffer [10 

mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM Na3V04, 1 mM NaF, 10 

mM p-glycerophosphate, 1% (w/v) Triton X-100, 0.5% (w/v) Nonidet P-40, 2 mM 

dithiothreitol and one complete protease inhibitor tablet (Roche)] and the homogenate was 

centrifuged at 16,000g for 20 min at 4°C, after which the supernatant was recovered. For in-

gel kinase assays with myelin basic protein (MBP) as an artificial substrate (Shibuya et al., 

1992), a volume containing 25 ug of total protein (Bradford protein assay (Bio-Rad)) was 

loaded per lane. MPK activity was measured by phospho-imaging (Storm, Molecular 

Dynamics) and quantified with ImageQuant software (Amersham). The data obtained from 5 

individual in-gel kinase assays were subjected to a two-way design ANOVA (Genstat release 
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8.1). Furthermore, 25 ug of protein was loaded on SDS-PAGE gels and stained with 

Coomassie Brilliant Blue to verify even loading. 

Immunocomplex kinase assays were performed as described earlier (Holley et al., 

2003) with minor modifications. For IPs, 200 ug of protein was incubated with LeMPKl, -2 

or -3 antiserum in a 100:1 dilution and the antibodies were pulled down with 15 ul of protein 

A beads (3 mg/mL). To determine the activity of recombinant MPKs (see below), dilution 

series of these proteins were incubated with 20 ul kinase reaction buffer [20 mM Hepes, pH 

7.5, 15 mM MgCl2, 2 mM EGTA, 1 mM DTT, 0.25 mg/mL MBP, 25 uM ATP and 1 ul 10 

uCi [gamma-32P]ATP] for 30 min at 30°C. Proteins were subsequently separated on 15% 

SDS-PAGE gels and a phospho-imaging screen was exposed to the dried gel. MPK activity 

was measured by phospho-imaging and quantified with ImageQuant software. 

Analysis of relationships between MAPK protein sequences 

To identify the sequences of all putative LeMPK homologues, BLAST searches with 

the DNA sequence of LeMPK], -2 and -3 open reading frames (ORFs) were performed on the 

TIGR Tomato Gene Index (LeGI), the NCBI database and the SOL Genomics Network 

(SGN). Each newly found homologue was subsequently BLASTed until no new sequences 

were identified and in this way, the ORFs from 13 putative additional LeMPK homologues 

were obtained. The sequences were translated to protein sequences with the Expasy 

Proteomics server translate tool (http://us.expasy.org/tools/dna.html) and protein sequences 

encoded by the ORFs were aligned in ClustalX (Supplementary Figure S3; Thompson et al., 

1997) with the sequences encoded by the ORFs of AtMPKl to -20 from Arabidopsis, 

NtSIPK, NtWIPK, NtNTF4 and NtNTF6 from Nicotiana tabacum, and the Homo sapiens 

HsERKl, which also encodes a MAPK (Ichimura et al, 2002; Zhang and Klessig, 2001). 

Pairwise distances between sequences were calculated with neighbour joining (NJ) in 

ClustalX and a cladogram rooted with HsERKl was made with Treeview software (Page, 

1996). 

Cloning and expression of recombinant MAPKs 

To express LeMPKl, -2 and -3 as soluble HIS-tagged proteins, primers were designed 

to PCR amplify the ORFs of the encoding genes. Respective primers were for LeMPKl: 

forward: 5 '-GATCGGATCCATGGATGGTTCCGTTCCGC-3'; reverse: 5'-
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GATCCTCGAGTCACATGCGCTGGTATTCAGG-3', for LeMPK2: forward: 5'-

GATCGGATCCATGGATGGTTCAGCTCCGC-3'; reverse: 5'-

GATCCTCGAGTCACATGTGCTGGTATTCGGG-3' and for LeMPK3: forward: 5'-

GATCGGATCCATGGTTGATGCTAATATGGG-3' and reverse: 5'-

GATCCTCGAGTTAAGCATATTCAGGATTCAACG-3' (BamHI and Xho\ sites are 

underlined in the forward and reverse primers respectively). The amplification products were 

ligated into 5awHI/A7wI-digested pET28a+ vector (Novagen, Madison, WI). The plasmids 

were transformed to Escherichia coli BL21 (DE3) cells and the integrity of the constructs was 

confirmed by sequencing. The pET28a+-AtMPK6 construct has been described previously 

(Liu and Zhang, 2004; Menke et ah, 2004). Bacteria were cultured in Luria Broth (LB) 

medium at 37°C and protein expression was induced at OD 0.6 by adding IPTG to a final 

concentration of 1 mM. The cells were cultured for another 4 h, washed in cold 20 mM Tris, 

pH 7.5, (in 25% of the original volume) and stored at -80°C as a cell pellet. 

Proteins were recovered from the cell pellet by adding 10 mL/g pellet of CellLytic™ 

B bacterial cell lysis extraction reagent (Sigma) plus complete protease inhibitor cocktail 

(EDTA-free, Roche) and subsequent incubation at RT for 20 min. After centrifuging at 

25,000g (4°C), the soluble HIS-tagged proteins present in the supernatant were bound to 1 mL 

Ni-NTA superflow resin that had been pre-treated with 4 volumes of MilliQ water and 10 

volumes of buffer [20 mM Tris-HCl, pH 7.9, 0.5 M NaCl] containing 5 mM imidazole. The 

resin was washed with 10 volumes of the buffer containing 20 mM imidazole and the protein 

was eluted with 4 volumes of the buffer containing 200 mM imidazole. The eluate was 

dialyzed against kinase storage buffer [25 mM Hepes, pH 7.5, 2 mM DTT, 50 mM KC1, 5% 

(v/v) glycerol] using Vivaspin 4 columns and stored in aliquots at -80°C. Protein 

concentrations were determined using the BCA reducing agent kit (Pierce) and kinase activity 

was determined from dilution series of the MAPK proteins as described above. The intensity 

of MBP phosphorylation quantified by phospho-imaging per ug of the different MAPK 

proteins (the specific activities), show a ratio of 8 : 5 : 40 : 4 for rLeMPKl : rLeMPK2 : 

rLeMPK3 : rAtMPK6, respectively. Non-active control rLeMPK3* was obtained by storage 

of the eluted protein in elution buffer instead of kinase storage buffer. 
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Immunoblot analysis 

Proteins present in extracts obtained as described for the in-gel kinase assays or 

recombinant MAPK proteins were separated on 10% SDS-PAGE gels and transferred to 

polyvinylidene difluoride (PVDF) membranes (Bio-Rad). For detection of phosphorylated 

tyrosine (pY) in recombinant MAPKs, membranes were blocked in 50 mM Tris, pH 7.5, 150 

mM NaCl, 0.1% (w/v) Tween-20 and 3% BSA and incubated with 1:2,000 diluted 

monoclonal Phospho-Tyrosine IgG (CST #9411) in the same solution o/n. After three washes 

with 50 mM Tris, pH 7.5, 150 mM NaCl and 0.1% (w/v) Tween-20, the membranes were 

incubated with HRP-linked anti-mouse IgG, (1:3,000 diluted) (CST #7076) and developed 

using the ECL detection kit (Pierce). 

PepChip Kinomics® slide analysis 

PepChip Kinomics® slides (Pepscan, NL) are spotted with a triplicate set of 976 

peptides (excluding controls) that resemble experimentally verified phosphorylation sites for 

human kinases (PhosphoBase) and their original surrounding residues (sequences available at: 

http://www.pepscan.nl/index5.htm). The peptides mostly consist of 11 amino acids of which 

the central position is the putative phosphorylation site. Six peptides are spotted that consist 

of only 9 or 10 amino acids in which the phosphorylation site is not centralized. 

For the incubation of the PepChips, respectively 11, 3.6, 0.8 and 1.1 ng (representing 

equal kinase activities) of purified rLeMPKl, rLeMPK2, rLeMPK3 or rAtMPK6 protein in 

kinase storage buffer was mixed with 5 \i\ of 33P-y-ATP (3000 Ci/mmol; 50 uGi/PepChip) in 

a final volume of 30 ul and added to 30 ul of 2x PepChip Mastermix [40 mM Hepes, pH 7.5, 

30 mM MgCl2, 4 mM EGTA, 2 mM DTT, 40% (v/v) glycerol, 0.02 mg/mL BSA, 0.02% (v/v) 

Brij-35 and 0.56 mM ATP]. The mix was brought onto a cover slide after which the PepChip 

was posed over the sample and turned around. The PepChip was incubated for 4 h at 30°C in 

a closed box with wet paper to prevent drying of the chip. The cover slides were rinsed off the 

PepChip with TBST [50 mM Tris, pH 7.5, 150 mM NaCL, 0.02 % Tween-20] and the 

PepChips were washed twice with 2 M NaCl, once with 2 M Urea, twice with 10% SDS and 

three times with MilliQ water in a washing tube (provided with the PepChips) by manual 

shaking. Phosphorylation intensity of the various spotted peptides was determined by 

phospho-imaging (50 micron scan resolution) and quantitative values were obtained with 

ImageQuant software by adding the numerical values of each pixel within a prescribed area 
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(=spot), subtracted by the background value. Data were exported and collected in a Microsoft 

Excel worksheet and the average phosphorylation intensity per set was calculated after which 

the sets were normalized. In addition, the data obtained from the different PepChips were 

normalized based on the average PepChip phosphorylation intensity. 

The average phosphorylation intensity from the triplicates was calculated for each 

peptide and peptides with an average phosphorylation intensity equal to, or higher than, 1.5 

times the average PepChip phosphorylation intensity were selected for further 

phosphorylation pattern analysis (referred to as phosphorylated peptides; approximately 10% 

of all peptides). Phosphorylated peptides with a standard deviation exceeding 1.5 times the 

average PepChip phosphorylation intensity were removed from the dataset. The subset of 

non-phosphorylated peptides represents the peptides that had a phosphorylation intensity of 

zero (approximately 10% of all peptides). Significant differences between the sequences of 

the phosphorylated and non-phosphorylated peptides were calculated by Two Sample Logo 

software with a t-test (P < 0.05), and TSL-plots were drawn (Crooks et al, 2004). 

Sequences of the phosphorylated peptides were combined in subsets based on 

common phosphorylation by one or more LeMPKs and TEIRESIAS software (Rigoutsos and 

Floratos, 1998) calculated phosphorylation motifs in these sequences. Peptides 

phosphorylated by AtMPK6 were combined in subsets based on the overlapping 

phosphorylation with LeMPKl. Calculated phosphorylation motifs present in at least 40% of 

the sequences in the respective subset were included in Table II. Motifs indicated in Table II 

as not being phosphorylated were absent in the motif prediction for the respective kinase. 

Virus-induced gene silencing (VIGS) of LeMPKs in tomato 

The tobacco rattle virus-based binary VIGS vectors TRV:RNA1 and TRV:RNA2 

(pYL156) have been described before (Liu et al, 2002a; Liu et al, 2002b). For TRV:LeMPK 

construction, the following primers were used to PCR amplify LeMPK sequences of genomic 

DNA isolated from MM-CfO tomato (BamHl (forward) and Acc65l (reverse) sites are 

underlined): for LeMPKl (forward: 5'-CAGGATCCATAATTGCTGACAGATTGTTGCAG-

3'; reverse: 5'-CAGGTACCGTACTCGCTCGTTTGCTGTTGGAT-3'). for LeMPKl 

(forward: 5'-CAGGATCCCAGTTCTTCTCTTGCTTACCTAGT-3'; reverse: 5'-

CAGGTACCCTCTCCATACATAAGTCAGCTTC-3') and for LeMPK3 (forward: 5'-

CAGGTACCTGAACCACTTTCTTGGAGTACAG-3': reverse: 5'-
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CAGGTACCACACAAGCTAGCCCGAACACCAC-3'). This resulted in fragments of 166, 

199 and 205 base pairs corresponding to the 3' UTR region of LeMPKl, -2 and -3 

respectively. The fragments were ligated into 5twzHIA4cc65I-digested TRV:RNA2 and the 

resulting TRV:LeMPK constructs were transformed to Agrobacterium tumefaciens strain 

GV3101. Construction of TRV:GFP, TRV:Cf-4 and TRV:PDS was described previously 

(Gabriels et al, 2007; Liu et al, 2002b). For VIGS, cultures of A. tumefaciens containing 

TRV:RNA1 were mixed 1:1 with the various TRV:LeMPK cultures to an OD of 1.0 and 

infiltrated in cotyledons often-day-old tomato seedlings. In each experiment, four plants were 

infiltrated per TRV:LeMPK construct. Phytoene desaturase (PDS)-silenced plants, that 

develop white patches on the leaflets upon successful silencing, were used to visually monitor 

the development of the silencing process. 

Assessment of Avr4-induced HR development and statistical analysis 

Three weeks after agroinfiltration of the VIGS constructs, leaflets of comparable 

compound leaves were injected parallel to the midvein with 150 ng/mL Pichia pastoris-

produced His-FLAG-Avr4 protein (Rooney et al, 2005), using a micro-syringe (Ito 

Corporation, Fuji). Per day, two leaflets of four plants were injected at ten sites and each plant 

was injected on four different days (80 sites per plant, resulting in 320 sites per 

pTRV:LeMPK construct per experiment). The experiment was repeated five times. After 4 to 

7 days the number of sites per leaflet showing HR, visible as necrosis, was scored. An 

arcsinVx transformation was performed to obtain a normally distributed dataset. The data 

were analyzed with a split-plot design analysis of variance, after which multiple comparisons 

of all constructs were performed with a Student-Newman-Keuls test in Genstat (Version 

8.1.0.155, VSN International Ltd). 

C. fulvum inoculations and GUS staining 

A strain of C. fulvum race 5, expressing Avr4 and containing apGPDy.GUS transgene, 

which contains the (3-glucuronidase gene under control of the constitutive GPD promoter, was 

sub-cultured on 2% (w/v) potato dextrose agar to which 1.5% (w/v) technical agar was added. 

Conidia were obtained from ten-day-old plates, washed three times in water by centrifuging 

(4,000g) and decanting the supernatant and diluted to 6 x 105 spores/mL water. Plants were 

dip-inoculated three weeks after agroinfiltration with the VIGS constructs described above 
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and were kept in closed cages covered with transparent plastic for 2 days. Two weeks after 

inoculation, two to four leaflets were harvested and vacuum-infiltrated with X-gluc buffer 

[0.1 M NaPi, pH 7.0, 1% (v/v) Triton X100, 1% (v/v) DMSO, 10 mM EDTA and 1 mg/mL 5-

bromo-4-chloro-3-indoxyl-beta-D-glucuronic acid sodium salt (X-gluc)]. Leaves were 

incubated overnight in the dark at 37°C and destained with 70% ethanol at RT after which 

photographs were taken using an Axioskop Zeiss microscope equipped with a Coolsnap 

camera. This experiment was repeated five times. 

Confirmation of MAPK silencing 

Disks with a diameter of 1.5 cm were taken close to the midvein from different leaflets 

at 4 (HR assays) or 6 (C. 7w/vww-inoculation studies) weeks after TRV-inoculation of plants 

of which the other leaflets were used for HR-scoring or GUS-analysis, respectively. Punching 

leaf disks allows for a targeted sampling in regions that probably have the most pronounced 

silencing, based on the PDS results. The leaf disks were floated on water for 15 minutes to 

allow MAPK activation by the wound response from punching the disks and to prevent the 

leaf disks from desiccating (Menke et ah, 2004). Leaf disks were individually analyzed for 

total inducible LeMPK activity by in gel kinase assays. For extracts that showed decreased 

LeMPK activity in the in-gel kinase assays, the activity of LeMPK 1, -2 and -3 was 

determined by immunocomplex kinase assays. This experiment was repeated three times. 
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SUPPLEMENTARY DATA 

Supplementary Figure SI . Monitoring systemic HR development in a Cf-4/Avr4 seedling after a 
temperature shift. 
The video, which can be seen at http://www.planphysiol.org/cgi/content/full/pp.107.101063/DCl, shows the 
development of systemic HR over a five-day period in a Cf-4/Avr4 seedling (left). A control MM-Cf-4 seedling 
is shown on the right. Plants were incubated at 33°C and subsequently transferred to 20°C at t=0 days to initiate 
the Cf-4/Avr4-induced HR. The unaffected MM-Cf-4 seedling is representative for both Cf-4- and Avr4-
containing seedlings. 

Representative images from the video are printed above the odd numbered pages of this thesis. An impression of 
the video can be obtained by flapping this book from start to end. 

9x10* 
8x10' 
7x104 

6x10* 
5x10* • 
4x10" 
3x104 

2x10' 
1x10* 

0 2 
0 200 400 600 800 1000 1200 

Ranking number 

Supplementary Figure S2. Phosphorylation intensities of the rLeMPKl-phosphorylated and non-
phosphorylated peptides. 
Average phosphorylation intensities (from the triplicates on one slide) of each of the 976 peptides were sorted 
from low to high and a corresponding ranking number was assigned. Peptides with an average phosphorylation 
intensity equal to, or higher than, 1.5 times the average overall phosphorylation intensity are represented by the 
black dots (referred to as phosphorylated peptides). Peptides with an average phosphorylation intensity of zero 
are represented by the dark grey dots (referred to as non-phosphorylated peptides). These two subsets of peptides 
were selected for further analysis. Similar graphs were obtained for rLeMPK2, -3 and rAfMPK6 and subsets of 
peptides were selected for further analysis in a similar way. 

Supplementary Figure S3. Alignment of the MAPK protein sequences (See following pages). 
Protein sequences encoded by the ORF of 16 LeMPK homologues identified in databases were aligned using 
ClustalX with the sequences encoded by the ORFs of AfMPICl to -20 from Arabidopsis, NtSIPK, NtWIPK, 
NtNTF4 and NtNTF6 from N. tabacum, and the H. sapiens HsERKl. See Materials and Methods for details. 
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Chapter 4 

SUMMARY 

Plants are continuously exposed to pathogens. An important mechanism by which 

plants defend themselves is the rapid execution of a hypersensitive response (HR) to prevent 

colonization of its tissue by the pathogen. Tomato plants containing the Cf-4 resistance 

protein mount a HR that relies on the activation of phosphorylation cascades, when 

challenged with the Avr4 elicitor that is secreted by the pathogenic fungus Cladosporium 

fulvum. To study the phosphoproteome of leaf tissue undergoing a Cf-4/Avr4-induced HR, 

phosphopeptides were isolated from tomato seedlings expressing both Cf-4 and Avr4 and 

from control seedlings, at one, three and five hours after HR initiation using titanium dioxide 

columns. LC-MS/MS analysis of the phosphopeptides led to the identification of 50 

phosphoproteins, most of which have not been described in tomato before. In addition, 

phosphopeptides were quantified using a relative label-free approach based on the MS peak 

areas, which was validated using a novel approach. Eventually, 13 phosphopeptides were 

identified with an altered abundance upon HR initiation as compared to control seedlings. 

These changes and additional experiments showed that photosynthetic activity is specifically 

suppressed in a phosphorylation-dependent way during the very early stages of HR 

development. In addition, a shift from aerobic to anaerobic respiration appears to occur in the 

Cf-4/Avr4 seedlings, which might be the result of oxygen depletion caused by the HR-

associated oxidative burst. Furthermore, four Hsp90 isoforms are (de)phosphorylated to a 

different extent at one conserved phosphorylation site, suggesting that Hsp90 isoforms have a 

different function in defence signalling. Our data demonstrate that relative label-free 

quantification of the phosphoproteome of complex samples is feasible and extends our 

knowledge on the biochemistry and physiology of tomato plants undergoing HR. 

INTRODUCTION 

Plants are continuously exposed to all types of stress. To resist attacking pathogens, 

plants possess a primary and secondary line of active defence to prevent colonization. The 

primary defence response is triggered upon recognition of microbe-associated molecular 

patterns (MAMPs) by pattern recognition receptors. The secondary response is induced by 



resistance (R) proteins that mediate recognition of specific pathogen-secreted effectors, which 

are required during pathogenesis (Jones and Dangl, 2006; De Wit, 2007). The latter response 

is commonly associated with a fast and highly effective hypersensitive-response (HR), which 

is a localized programmed cell death at the site of pathogen penetration. It is clear that when a 

resistant plant detects a pathogen, rapid defence signalling cascades need to be activated to 

prevent the pathogen from further proliferation and to avoid extensive damage. A rapid and 

reversible process that greatly increases protein dynamics in the cell is post-translational 

modification of proteins (Sun et al, 2006; Chapter 2). Especially protein phosphorylation has 

been shown to play an important role in swift activation of defence signalling in plants (Xing 

et al, 2002; Peck, 2003; Pedley and Martin, 2005). Phosphorylation mainly takes place on 

serine, threonine and tyrosine residues and can modulate the activity, subcellular localization, 

stability and/or three-dimensional structure of proteins. In addition, phosphorylation can 

affect interactions with other proteins and non-proteinaceous molecules (Sun et al, 2006). 

Thus, phosphorylation-dependent signalling is required for an efficient and fast defence 

response that eventually determines the difference between host susceptibility and resistance. 

So far, a few plant-pathogen interactions have been described in which 

phosphorylation events play an essential role during defence signalling. In some cases, 

phosphorylation already takes place at the site of signal perception. For example, the 

serine/threonine kinase domains of the resistance proteins Pto, FLS2 and Xa21, which 

mediate recognition of the bacterial effector AvrPto, the MAMP flagellin and an elicitor of 

the bacterium Xanthomonas campestris respectively, require (auto)phosphorylation to be 

functionally active (Sessa et al, 2000b; Gomez-Gomez et al, 2001; Mucyn et al, 2006; Xu et 

al, 2006). Signalling of most of these receptors leads to the phosphorylation of downstream 

components (Sessa et al., 2000a; Devarenne et al, 2006; Wang et al, 2006) and triggers for 

example the mitogen-activated protein kinase (MAPK) cascade (Romeis et al, 1999; Asai et 

al, 2002; Pedley and Martin, 2005; Suarez-Rodriguez et al., 2007). In addition, several other 

signalling components become (de)phosphorylated, such as calcium-dependent protein 

kinases (CDPKs) (Romeis et al, 2001; Cheng et al, 2002) and the basal defence inhibitor 

RIN4 that interacts with the R proteins RPM1 and RPS2 in Arabidopsis (Kim et al, 2005). 

These reports and the recent observation that effectors of successful pathogens intercept 

MAPK signalling cascades or target receptor kinases to block innate immunity (Shan et al, 
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2007; Xiang et al, 2008), indicate that phosphorylation plays a major role during early 

defence signalling. 

Fortunately, many tools to study the phosphoproteome of a particular organism or a 

specific tissue have been developed over the last years. For example, protein or peptide arrays 

are available that can be used to identify downstream targets of activated kinases. These 

arrays are spotted with full length proteins or peptides that are potential kinase substrates and 

to reveal potential in vivo substrates they are incubated with the pure active kinase of interest, 

in the presence of radio-labelled phosphate (Feilner et al, 2005; Ritsema et al, 2007; Chapter 

3). Although these studies provide new insight in potential downstream targets of kinases, 

they are restricted to only one or a few kinases that can be tested. Alternatively, a large-scale 

analysis of the radio-labelled phosphoproteome by two-dimensional electrophoresis allows to 

reveal changes in the phosphorylation pattern of many proteins upon pathogen recognition 

(Peck et al, 2001; Niihse et al., 2003a). Although this method is very sensitive and has a high 

resolution, protein identification remains difficult in most cases and is often time and resource 

consuming (Peck, 2006). To avoid these problems, analysis of the phosphoproteome by liquid 

chromatography coupled to tandem mass spectrometry (LC-MS/MS) is a rapidly developing 

technique. Several protocols have been developed to specifically separate the 

phosphoproteome from the complete protein pool (Niihse et al., 2003b; Niihse et al., 2004; 

Gruhler et al, 2005; Larsen et al, 2005; Reinders and Sickmann, 2005), allowing detection of 

low abundant phosphopeptides. The technical specifications of the latest mass spectrometers 

allow very accurate identification of sets of phosphopeptides and even of the exact 

phosphorylation site of the protein. Eventually, the dynamics of phospho-regulation upon 

perception of a stimulus are biologically most relevant. To this aim, several tools have been 

developed to quantify the (phospho)proteome upon detection in LC-MS/MS experiments 

(Ong et al., 2003; Thelen and Peck, 2007). So far, only a few large-scale quantitative LC-

MS/MS studies have been performed to study changes in the phosphoproteome of defence-

induced plants (Benschop et al., 2007; Niihse et al, 2007). To enable in vivo protein labelling, 

these studies have been performed in cell suspensions, a system which only partly represents 

intact green plants. Other labelling approaches, such as iTRAQ™ labelling, are performed in 

vitro after protein extraction prior to MS analysis and might introduce technical errors in 

quantification (Jones et al, 2006a; Zieske, 2006). The latest development in quantitative 

proteomics is relative label-free quantification of peptides identified by LC-MS/MS, which is 
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based on the peptide peak area of the mass spectrum (Ong et al, 2003; Steen et al, 2005; 

Beck et al, 2006; Ono et al., 2006). This approach allows quantitative (phospho) proteome 

analysis without the requirement to label samples prior to LC-MS/MS analysis, a method 

particularly suited for the analysis of systems such as intact plants in which incorporation of a 

label is difficult or not feasible. 

We use the interaction between tomato (Solarium lycopersicum) and the fungal leaf 

pathogen Cladosporium fulvum as a model system to study the gene-for-gene interaction 

between plants and pathogens (Flor, 1942; Rivas and Thomas, 2005). C. fulvum secretes 

several effectors that enhance virulence of the fungus in susceptible tomato genotypes 

(Joosten and De Wit, 1999; Thomma et al, 2005; Van Esse et al, 2007). In tomato plants 

carrying the appropriate Cf resistance gene, the effectors are recognized and in such a case 

referred to as avirulence factors (Avrs). Recognition eventually results in a HR and resistance 

to the fungus (Rivas and Thomas, 2005). The involvement of phosphorylation cascades in Cf-

mediated signalling has been reported by several research groups. Studies using tomato cell 

suspensions expressing Cf resistance proteins revealed the specific dephosphorylation of a 

membrane-bound H+-ATPase after treatment with C. fulvum elicitor preparations (Xing et al., 

1996). Furthermore, recognition of an Avr of C. fulvum in Cf-transgenic tobacco cell 

suspensions was found to activate MAPKs and CDPKs (Romeis et al., 1999; De Jong et al., 

2000; Romeis et al, 2000; Romeis et al, 2001). In planta studies using Nicotiana spp. 

revealed that protein phosphatase 2A is involved in Cf/Avr-dependent HR suppression (He et 

al, 2004) and that a tobacco syntaxin is rapidly phosphorylated upon Cf/Avr-triggered 

defence signalling (Heese et al, 2005). In addition, the protein kinase ACIK1 is required for 

full Cf/Avr-induced HR and resistance (Rowland et al, 2005). Finally, we observed fast 

phosphorylation events in intact tomato plants undergoing a synchronized HR. To this aim, 

tomato plants carrying Cf-4 were crossed to transgenic tomato plants expressing Avr4 of C. 

fulvum. The resulting seeds germinate, but the seedlings develop a constitutive HR at 20°C 

that can be suppressed by incubating the plants at 33°C and 100% relative humidity (RH) (De 

Jong et al, 2002; Wang et al, 2005). A subsequent transfer to 20°C induces the HR and 

allows the collection of leaf material at a specific, synchronized stage of HR development, 

while control seedlings (consisting of a mixture of Cf-4- and ^4vr4-expressing parental 

seedlings that are exposed to the same treatment) remain healthy (De Jong et al, 2002). We 

found specific activation of the MAPKs LeMPKl, -2 and -3 in these Cf-4/Avr4 seedlings, 
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within two hours after the temperature shift. By using peptide arrays, we demonstrated that 

these MAPKs have overlapping but also different phosphorylation specificities. This 

observation suggests that a diverse set of downstream target proteins is phosphorylated by the 

activated MAPKs. Furthermore, virus-induced gene silencing (VIGS) of the three individual 

LeMPK-encoding genes revealed a role for these kinases in Avr4-triggered resistance to C. 

fulvum (Chapter 3). 

Here, we present a relative quantitative phosphoproteome analysis of total leaf extracts 

of Cf-4/Avr4 tomato seedlings, without sample prefractionation and without having the 

complete genomic sequence available. We describe LC-MS/MS analysis of the 

phosphoproteome of Cf-4/Avr4 seedlings compared to control tomato seedlings, at 1, 3 and 

5h after the shift from 33°C to 20°C that initiates the HR. Using Ti02 affinity enrichment 

followed by LC-ESI-QTOF tandem mass spectrometry, we identified a total of 50 

phosphoproteins, with novel phosphorylation sites. Relative label-free quantification of the 

phosphopeptides revealed previously unidentified changes in the phosphoproteome upon HR 

induction. Based on these changes we conclude that photosynthetic activity is swiftly 

suppressed upon the initiation of the HR and that anaerobic respiration is promoted in the 

seedlings, probably as a result of low oxygen stress. Furthermore, four Hsp90 isoforms with a 

different phosphorylation status were identified in Cf-4/Avr4 seedlings compared to control 

seedlings. 

RESULTS 

Experimental setup 

Resistant tomato plants protect themselves from Cladosporium fulvum invasion by the 

execution of a hypersensitive response (HR). The HR is induced by the Cf-4 resistance 

protein that mediates recognition of the cognate Avr4 elicitor from C. fulvum. Transgenic 

tomato seedlings expressing both Cf-4 and Avr4 (Cf-4/Avr4 seedlings) do not execute a HR at 

elevated temperature, but a specific synchronized HR is initiated after a shift to a lower 

temperature (De Jong et al, 2002). We have shown that HR signalling in these seedlings 

involves protein phosphorylation and that MAPK activation precedes the appearance of HR 
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Control 

l _ 
Control Cf-4/Avr4 Cf-4/Avr4 

symptoms (Chapter 3). Therefore, HR-related changes in the phosphoproteome of Cf-4/Avr4 

and control seedlings were studied. 

Phosphopeptides were isolated from total protein extracts of cotyledons of Cf-4/Avr4 

and control seedlings using TiCh columns and analyzed by LC-MS/MS. Three independent 

experiments were performed (t=lh, t=3h and t=5h after the temperature shift; time points 

which are based on the time course of MAPK activation in the Cf-4/Avr4 seedlings (Chapter 

3; See below) and each experiment comprised the analysis of six samples representing three 

independent biological replicates from Cf-4/Avr4 and control seedlings. In each experiment, 

the first biological replicate (biological replicate 1) was analyzed in triplicate to determine the 

technical variation in an experiment, while biological replicates 2 and 3 were analyzed once 

by LC-MS/MS, resulting in 10 LC-

MS/MS runs per experiment (Figure 1). 

To study peptide carry-over 

between the individual LC-MS/MS runs, 

identical phosphopeptide samples were 

analyzed by LC-MS/MS in triplicate but 

separated by runs of trypsin-digested 

bovine serum albumin (BSA). No 

(phospho)peptides from tomato were 

identified in the BSA runs, indicating that 

there was no carry-over from one run to 

another (results not shown). Therefore, 

no BSA runs were included between the 

triplicate runs in the LC-MS/MS 

experiments described here, to reduce the 

size of the experiment. A BSA run was 

only included after each biological 

Protein extraction 
4 

Phosphopeptide enrichment by TiO, columns 

, I . 

r .nMmw, 
1 ..uAmiw. 

Biological 
replicate 1 

reDlicate 2 1 .HAAMMW*. 

1 .nAmn.... i f f 
a 

1 tlklWu, 

replicate 2 

reDlicate 3 1 .OAAMMIW*. 

Three LC-MS/MS runs (technical replicates) of biological 
replicate 1 were run in series with the LC-MS/MS runs 

of biological replicates 2 and 3 

SGN tomato database-dependent phosphopeptide 
identification and validation 

I 
Alignment and normalization of MS spectra (VEMS software) 

i 
Phosphopeptide quantification (VEMS software) 

Figure 1. Overview of the experimental approach. 
Setup of the experiments performed at t=lh, t=3h or t=5h 

replicate consisting of a Cf-4/Avr4 and of Cf-4/Avr4 and control seedlings, from HR initiation by 
the temperature shift, to quantification of the 

control seedling sample. phosphopeptides. 
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Phosphopeptide identification 

Three experiments (t=lh, t=3h and t=5h) were performed to analyze phosphopeptides 

purified from the tomato seedlings mounting a HR and the controls, using two different mass 

spectrometers (Table I). One-third of the phosphopeptides purified from 200u.g of trypsin-

digested protein was injected into the mass spectrometer using a 2h elution gradient on the 

reverse phase column. This procedure resulted in good ion currents without column 

saturation. Using VEMS software, LC-MS/MS data from each experiment were searched 

against the translated SGN tomato database containing approximately 34,000 unigenes that 

cover about 40% of the tomato genome. Global analysis of the non-redundant search results 

revealed that 40-60% of the identifications were not phosphopeptides, thereby indicating that 

phosphopeptides were enriched to 50% by TiC>2 columns under the described conditions. 

Since the focus of this study was the identification of phosphoproteins, all identified proteins 

that match only non-phosphorylated peptides were removed from the search result. All 

remaining (phospho)peptides were manually validated in each of the three experiments. This 

resulted in the identification of 50 phosphoproteins that match 75 unique phosphopeptides and 

6 non-phosphorylated peptides with an average accuracy smaller than 4.7 ppm (Tables I and 

II). In the technical replicates of the samples representing biological replicate 1, 91-98% of 

the phosphopeptides were repeatedly identified (Table I). In addition, 56-61% of the 

phosphopeptides were repeatedly identified in the three biological replicates of Cf-4/Avr4 as 

well as control samples, while 81-100% of the peptides were identified in at least two 

biological replicates (Table I). This indicates that identified peptides largely overlap between 

biological replicates. Furthermore, 20% of the identified peptides were found in all three 

experiments (t=lh, t=3h and t=5h) while an additional 30% was found in two experiments 

(Table II). 

Table I. Experimental details-
Experiment t=1h t=3h t=5h 

LC-MS/MS analysisa QTOF-Micro QTOF-Ultima QTOF-Micro 
Average ppmb 4.7 ± 5.3 2.4 ±2.5 3.7 ±6.1 
Label free quantification (mDa - minutes) 79-11.0 21-3.4 75-4.3 
Technical reproducibility c (Control - Cf-4/Avr4) 92 - 95% 91 - 96% 95 - 98%d 

Biological reproducibility (3 or >2 replicates) 61-100% 56 - 99% 56 - 81 %e 

"The type of mass spectrometer used for LC-MS/MS analysis. See Methods for further details. 
b Average ppm represents all reported peptides. 
c Percentage of reported peptides identified in each of the three technical replicates. 

The percentage for the control sample is based on two technical LC-MS/MS replicates. 
e Percentage of reported peptides identified in each of the three biological replicates. 

94 



Table II. Summary of data obtained from three 
independent LC-MS/MS experiments (t=lh, t=3h 
and t=5h). 

Data summary 

# phosphoproteins 
# phosphopeptides 
# serine phosphorylation sites 
# threonine phosphorylation sites 
# tyrosine phosphorylation sites 
% of (phospho)peptides at t=1, 3 and 5h 
% of (phospho)peptides at 2 time points 
% of (phospho)peptides at 1 time point 
# differentially phosphorylated peptides* 

50 
55 
45 
13 
0 

20 
30 
50 
13 

* These phosphorylated peptides are observed in at 
least two biological replicates. 

Of the 50 phosphoproteins, 30 have 

previously been described as phosphoprotein 

in other organisms (Table III), but not in 

tomato whereas the remaining 20 

phosphoproteins have not been described 

before. In addition, several high quality 

MS/MS spectra of potential phospho- and 

non-phosphopeptides were obtained, which 

could not be assigned to a peptide sequence 

since the tomato genomic sequence is not 

complete. The 75 unique phosphopeptides matching the 50 phosphoproteins represent 58 

phosphorylation sites, which are reported in Table III. Phosphopeptides covering the same 

phosphorylation site because of missed tryptic cleavages are reported only by the shortest 

peptide sequence, resulting in a set of 55 phosphopeptides representing the 58 

phosphorylation sites (and 6 non-phosphorylated peptides; Table III). These phosphorylation 

sites include 45 serine and 13 threonine residue phosphorylation sites (Tables II and III). No 

tyrosine phosphorylation sites were observed, which confirms the already described low 

occurrence of tyrosine phosphorylation in plants (Kersten et al., 2006). The MS/MS spectra, 

m/z, z values, mass errors and scores for each peptide are reported in Supplementary Table SI. 

Comparison of the phosphorylation sites to sites described in literature and to the Arabidopsis 

phosphorylation database (PhosAtbase; http://phosphat.mpimp-golm.mpg.de/) revealed that 

22 of the 55 phosphorylation sites are conserved in orthologous proteins in other organisms 

(Table III, indicated with L). These conserved 

phosphoproteins include Hsp90, ATPases, 

aquaporins and several proteins involved in 

photosynthesis and glycolysis. In many cases, 

(de)phosphorylation of these proteins has been 

reported to regulate their activity. Another 8 

proteins were previously identified as 

phosphoprotein, however, the reported site of 

phosphorylation has not been determined before 

(Table III, indicated with P). 

Cytoskeleton(1%) 

Nucleus Cytoplasm 

Chloroplast 

Mitochondrium 

Unknown 

Figure 2. Phosphoproteins originate from 
different subcellular localizations. 
Phosphoprotein localization was predicted by 
WoLF PSORT software, based on the protein 
sequences. 
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a Gene identifier from the Solanaceae Genomics Network (SGN). 
b The phosphorylated residue in the peptide sequence is indicated in bold, or in lower case bold when it is 
unclear from the spectrum which residue is phosphorylated. Methionine (M) oxidation is indicated in lower 
case bold. * indicates phosphopeptides that have also been identified and quantified in xylanase-treated 
Arabidopsis cells (Benschop et al., 2007). 
c The ratio represents the average of the ion intensities of a peptide in the Cf-4/Avr4 seedlings versus the 
control seedlings, determined from three biological replicates. Ratios indicated with an asterisk are determined 
from two biological replicates while ratios without SE originate from one biological replicate. The ratios 
indicated in light or dark grey are significantly different from 1.00 with 95% and 99% confidence, respectively. 
d Phosphopeptides indicated with 'L' contain a phosphorylation site that has been described before. 
Phosphopeptides indicated with 'P ' correspond to proteins that were described as phosphoproteins before, but 
of which the phosphorylation site was not known. 

Since a total leaf protein extract was made for phosphoproteome analysis, the identified 

proteins are expected to originate from different organelles. Prediction of their localization 

using WoLF PSORT (Protein Subcellular Localization Prediction) software 

(http://wolfpsort.seq.cbrc.jp) indeed revealed that the phosphoproteins originate from the 

cytoplasm, chloroplast, mitochondria, plasma membrane, nucleus and the cytoskeleton, thus 

confirming that they represent a cross section of the phosphoproteome of the complete leaf 

(Figure 2). 

Relative quantification of phosphopeptides 

Relative quantification based on peptide ion peak area, also known as label-free 

quantification, was used to identify differentially phosphorylated peptides. Using the VEMS 

software package (Matthiesen et al., 2005), (phospho)peptides were quantified based on the 

peak area of the MS spectrum. Chromatograms of the ten samples of each experiment were 

aligned and calibrated with respect to RT and mass to enable peak area comparison of MS 

spectra between individual samples. To set an accurate window for alignment and calibration, 

mass and RT deviation was determined. The largest mass deviation per experiment was 

determined from the peptide selected for MS/MS analysis that deviated most from the 

theoretical mass. The RT deviation was determined by the drift in RT of a peptide selected for 

MS/MS analysis in all of the ten samples of each experiment. For the experiments t=lh, t=3h 

and t=5h, the mass deviation was 79, 21 and 75 mDa respectively, and the RT deviation was 

11.0, 3.4 and 4.3 minutes, respectively. VEMS-mediated alignment of the MS spectra based 

on these parameters led to proper peak alignment and quantification (Figure 3a and 3b). 

Different intensities of a phosphopeptide are reflected by a difference in peak area (Figure 

3b). 
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Chapter 4 

To validate the quality of the label-free quantification, the technical replicates of 

biological replicate 1 (Figure 1) were analyzed by a new approach. For each peptide, the 

average abundance was plotted against the corresponding SE and a polynomial function 

y=a*x, in which 'a' represents the technical error of the experiment was fitted to the data 

(Figure 3c, upper panels). To verify whether the polynomial function correctly represents the 

data, residual plots were made (Figure 3c, lower panels) and as expected for data that are 

correctly fitted, the residuals scatter around zero. The technical error of the quantified data 

remains below 10% (a < 0.1) for all three experiments and this label-free quantification 

approach was therefore accepted for further analysis. Since ten samples were analyzed in 

series within one experiment, they should all have the same technical error. Therefore, the 

technical errors (0.096, 0.072 and 0.080 for t=lh, t=3h and t=5h, respectively) were used to 

estimate the SE of the peptide intensities in biological replicates 2 and 3. Subsequently, the 

phosphopeptide ratio ± SE of the Cf-4/Avr4 seedlings compared to the control seedlings was 

calculated for each biological replicate in each experiment (Supplementary Table SII). 

Finally, the average abundance ratio ± SE was calculated for each peptide in which the SE 

represents the technical and biological variation (Table III). Average abundance ratios that 

significantly differ from 1.00 are indicated in grey (P < 0.01) or light grey (P < 0.05). In total, 

we identified 13 phosphopeptides, each representing a different phosphoprotein, with a ratio 

that significantly differs from 1.00 in at least one of the three experiments (Table III). These 

results show that label-free quantification is feasible on phosphopeptides isolated from total 

protein extracts of tomato leaves. 
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Figure 3. Validation of the relative label-free quantification procedure. 
The procedure for quantification of the (phospho) peptides was validated to determine the reliability of the 
relative label-free quantification approach. MS spectra of all peptides were aligned and calibrated by VEMS, 
based on the mass and retention time deviation per experiment (see Methods for more details). A and B) 
Quantification based on peptide ion peak area gives similar results for phosphopeptides ALGSFRSNATN and 
TDVGEGSFHAISR in the three technical replicates of biological replicate 1 at t=3h. In all cases, a similar 
peak area was observed for the carbon isotope peaks. Phosphopeptide ALGSFRSNATN shows a similar 
abundance (A), whereas phosphopeptide TDVGEGSFHAISR has a decreased abundance in the Cf-4/Avr4 
seedlings as compared to the control (B). C) To determine the technical error of each experiment, the SE of the 
average abundance of each peptide was plotted against the average abundance (upper panels). A polynomial 
function y=a*x was fitted to the data, in which 'a' represents the technical error. The residual plots of the fitted 
data, shown in the lower panels, indicate that this function fits the data. 
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Transcriptional regulation of genes encoding phosphoproteins 

The commercially available Affymetrix tomato microarray contains the coding 

sequences of 29 of the 50 phosphoproteins that were identified in the phosphoproteome 

analysis. From these 29 genes, only four were significantly transcriptionally regulated at t=5h 

(P < 0.01; Table IV, SGN-U318050, SGN-U317660, SGN-U313242 and SGN-U319866), 

whereas the average abundance ratio of the encoded phosphoproteins was unaltered. For the 

phosphoproteins with an altered abundance in the Cf-4/Avr4 seedlings as compared to the 

controls, four encoding genes were present on the microarray (Table IV, SGN-U312354, 

SGN-U312357, SGN-U313599 and SGN-U315305). None of these genes were differentially 

transcribed with 99% confidence; however, one was transcriptionally regulated with 95% 

confidence (Table IV; SGN-U312354). These results indicate that the genes encoding most of 

the identified phosphoproteins are not transcriptionally regulated within the first five hours of 

the Cf-4/Avr4-induced HR. 

Table IV. Transcriptional regulation of genes encoding phosphoproteins 

SGN-IDa 

SGN-U318050 

SGN-U317660 

SGN-U313242 

SGN-U319866 

Microarray IDb 

Les.1558.1.S1_at 
Les.1558.2A1 at 
Les.3522.1S1 at 
Les.4356.2.S1_at 
Les.4356.3S1 at 
Les.797.1.S1 at 

Annotation 

Calcium-dependent protein kinase 2 

Sucrose phosphate synthase 

Pyruvate phosphate dikinase (PPDK) 

Ammonium transporter 1 (LeAMT1;1) 

Cf-4/Avr4 vs Controlc 

t=1h t=3h t=5h 

1.10 
1.41 
0.75 
0.60 
0.41 
0.96 

1.49 
1.48 
0.69 
0.72 
0.63 
1.25 

d 
2.24 
3.39 
0.40 
0.21 
0.20 
1.76 

SGN-U312354 
SGN-U312357 

SGN-U313599 

SGN-U315305 

Les.321.1S1 at 
Les.1146.1.S1 at 
Les.3180.1.S1_at 
Les.3180.2.S1_at 
Les.3180.3.A1 at 
Les.3167.1.S1_at 

HSD90-1 

HSD90-2 

putative extracellular calcium receptor 

Pyruvate dehydrogenase 

0.95 
1.01 
0.72 
0.75 
0.97 
0.99 

0.91 
0.99 
0.84 
0.89 
0.89 
0.90 

1.82e 

1.07 
0.50 
0.54 
0.77 
1.05 

" Gene identifier from the Solanaceae Genomics Network (SGN). 
b Gene identifier from the Affymetrix tomato microarray. Some SGN-IDs are represented by more than one 
microarray ID. 
c Numbers represent the ratio of transcript levels in the Cf-4/Avr4 seedlings compared to the control seedlings, 
based on three independent biological replicates. 
d Ratios indicated in bold are significantly different from 1.00 with P < 0.01. 
e This ratio is significantly different from 1.00 with P < 0.05. 
Supplementary Table SII. Replicate phosphopeptide quantification at t=lh, t=3h and t=5h. 

Biological validation of the phosphorylation events occurring in Cf-4/Avr4 seedlings 

We have described earlier that the MAPKs LeMPKl, -2 and -3 are activated in the Cf-

4/Avr4 seedlings within 2h after the temperature shift (Chapter 3). MAPK activity observed at 
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t=Oh in the Cf-4/Avr4 seedlings disappeared after the temperature shift, preceding their 

subsequent HR-specific activation at t=2h after the temperature shift (Chapter 3). These 

results provided evidence for HR-related phosphorylation events in the Cf-4/Avr4 seedlings, 

since MAPKs are activated through phosphorylation by upstream MAP(K)KKs and 

phosphorylate downstream targets themselves. Therefore, the time points for 

phosphoproteome analysis were based on the timing of MAPK activation in the seedlings. To 

avoid possible background protein phosphorylation induced by heat stress (33°C, at t=0h), the 

phosphoproteome from the Cf-4/Avr4 and control seedlings was analyzed at t=lh, t=3h and 

t=5h after the temperature shift. At the latter two time points massive MAPK activation has 

occurred in the Cf-4/Avr4 seedlings (Chapter 3). Our analysis did not reveal a higher 

percentage of phosphopeptides with an altered average abundance ratio at t=3h or t=5h as 

compared to t=lh. However, the average abundance ratios seem to deviate more from 1.00 at 

the later time points. 

HR-related regulation of photosynthesis, sugar transport and glycolysis 

Protein phosphorylation plays a major role in basic physiological processes such as 

photosynthesis, glycolysis and sugar transport. Many enzymes that participate in these 

processes are (in)activated by phosphorylation, to eventually stimulate or suppress the 

pathway. This regulation is required to respond rapidly to changing environmental conditions, 

such as light intensity. Several phosphopeptides identified in this study play a role in these 

processes, and some of these phosphoproteins showed significant changes in their abundance 

ratio, suggesting phosphorylation-mediated regulation of these processes during the Cf-

4/Avr4-induced HR (Table III). Three phosphoproteins were identified that function in the 

chloroplast during photosynthesis. The phosphorylation of plastidic phosphoglucomutase 

(SGN-U327750), which controls the flow of photosynthetic carbon to either starch synthesis 

or glycolysis, appeared unaltered at t=5h. However, the pool of two different phosphorylated 

chlorophyll a/b binding proteins (CABs) present in light-harvesting complex II (LHCII type 

I), was found to be smaller in the Cf-4/Avr4 seedlings, at respectively t=lh (SGN-U313218) 

and t=5h (SGN-U313210). LHCII CABs are phosphorylated under light conditions after 

which they migrate to photo system I (PSI) to increase photosynthetic activity, and are 

dephosphorylated in the dark when photosynthesis is suppressed (Vener, 2007). Our data 

indicate that photosynthetic activity is swiftly suppressed in Cf-4/Avr4 seedlings. This 
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hypothesis is supported by the observation that phosphorylated phototropin-2 (SGN-

U320785; Table III) is less abundant in Cf-4/Avr4 seedlings at t=3h. Phototropins are 

serine/threonine kinases that are activated by autophosphorylation and are involved in 

optimizing the efficiency of photosynthesis (Christie, 2007). Phosphorylated phototropin 

stimulates stomatal opening, and a smaller pool of phosphorylated phototropin is expected to 

lead to stomatal closure and a decreased CO2 uptake, leading to inhibition of photosynthesis. 

Interestingly, we also found a phosphopeptide derived from the tomato orthologue of the 

Arabidopsis calcium sensing receptor (CAS; SGN-U313599), which has a significantly lower 

abundance in the Cf-4/Avr4 seedlings at t=3h. CAS is located in chloroplast membranes and 

is an important regulator of stomatal opening (Nomura et al, 2008). Our results indicate that 

CAS activity is regulated by phosphorylation and that CAS dephosphorylation is correlated 

with stomatal closure. 

Two sugar transporters, a hexose transporter and a sucrose transport protein, have a 

significant lower average abundance ratio at t=3h (SGN-U323433) and t=5h (SGN-U333128), 

respectively (Table III). Phosphorylation of hexose and sucrose transporters inhibits their 

activity (Roblin et al, 1998; Norholm et al, 2006), which suggests that sugar transporters are 

activated in the Cf-4/Avr4 seedlings. Although the link between sugar transporters and plant 

defence is unclear, there are several examples of increased transcript levels of sugar 

transporters in plants that have mounted a defence response (Norholm et al, 2006). From our 

results, it appears that in addition to gene induction also dephosphorylation takes place to 

increase sugar transport activity. 

During glycolysis, sugars synthesized by photosynthesis are metabolized to 

phosphoenolpyruvate (PEP) and subsequently to pyruvate, which in its turn is converted by 

the pyruvate dehydrogenase complex (PDC) into acetyl-CoA that enters the citric acid cycle 

eventually leading to ATP generation. At t=3h, a strong increase in the abundance of 

phosphorylated pyruvate dehydrogenase (SGN-U315305) was observed in the Cf-4/Avr4 

seedlings. Pyruvate dehydrogenase is one of the three enzymes in the PDC and is inactivated 

by phosphorylation, resulting in a decreased rate of the conversion of pyruvate to acetyl-CoA 

in the mitochondria (Rubin and Randall, 1977). The subsequent depletion of acetyl-CoA 

interrupts mitochondrial functioning, which by itself might already lead to cell death 

(Newmeyer and Ferguson-Miller, Cell, 2003). 
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Our data on the dynamics of the phosphoproteome indicate that photosynthetic 

activity is swiftly inhibited in the Cf-4/Avr4 seedlings upon HR initiation. Therefore we 

performed chlorophyll fluorescence measurement and imaging on Cf-4/Avr4 and control 

seedlings to determine the actual efficiency of photosynthesis over a time course after 

triggering the HR (De Ruiter et al., 2007). The seedlings were transferred from 33°C to room 

temperature and every 10 minutes, the leaf surface was scanned with a laser over a total 

period of 18 h. When the efficiency of photosynthesis decreases, the laser light is still 

absorbed but less energy is used for photosynthesis and more is emitted as fluorescence by the 

chlorophyll pigments in the leaves. In this way the photosynthetic activity can be determined. 

A significant decrease in photosynthetic activity was observed for the Cf-4/Avr4 seedlings 

compared to the control seedlings within 1.5 h after the temperature shift (P < 0.05; Figure 4), 

an observation which fully supports our conclusion from the phosphoproteome analysis. 
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Figure 4. Photosynthetic activity decreases upon initiation of the Cf-4/Avr4-induced HR. 
Seedlings were transferred from 33°C to room temperature and every 10 minutes, the leaf surface was scanned 
with a laser over a period of 18 h. When photosynthetic activity decreases, the laser light is still absorbed but 
less energy is used for photosynthesis and more is emitted by the chlorophyll pigments in the leaves as 
fluorescence, which is captured by a camera. Therefore, increased fluorescence reflects a decrease in 
photosynthetic activity (De Ruiter et al., 2007). Healthy plants have a photosynthetic activity of approximately 
75-80%. In Cf-4/Avr4 seedlings photosynthetic activity decreases to a level below 50% over the 18 h period 
after the temperature shift (left panel) and a significant decrease was already observed within 1.5 h after HR 
initiation (right panel; P < 0.05, indicated with an asterisk). 

In addition, the transcriptional regulation of genes encoding proteins involved in 

photosynthesis, glycolysis and defence was studied. Genes involved in photosynthesis and 

glycolysis were hardly transcriptionally regulated in the first 5h after the temperature shift in 

Cf-4/Avr4 seedlings, except for the 3.5 to 4.5 times upregulation of the two L-lactate 

dehydrogenases that convert pyruvate to lactate (Figure 5) (Germain and Ricard, 1997). In 

contrast, most of the genes encoding characteristic defence-associated proteins such as the 

pathogenesis-related (PR) genes are upregulated in the Cf-4/Avr4 seedlings at t=5h after the 

temperature shift (Figure 5). PR genes become typically upregulated after recognition of a 
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pathogen by resistant plants and encode proteins that limit pathogen proliferation. Together, 

these data show that transcriptional regulation of defence genes occurs at t=5h, whereas the 

rapid physiological reprogramming of the plant required for mounting the defence response 

mainly occurs via differential phosphorylation. 

Photosynthesis Glycolysis Pathogenesis-related 
genes 

Hours after temperature shift 

Figure 5. HR-associated regulation of the expression of genes involved in photosynthesis, glycolysis and 
pathogenesis-related genes. 
Microarray gene expression analysis was performed using RNA isolated from Cf-4/Avr4 and control seedlings 
at lh, 3h and 5h after the temperature shift. Gene expression is presented as the ratio between the expression in 
Cf-4/Avr4 seedlings and control seedlings. Details about the genes used for this figure are reported in 
Supplementary Table SOI. 

HR-related phosphorylation of Hsp90 isoforms 

Heat-shock protein 90 (Hsp90) is a multifunctional molecular chaperone that 

facilitates the folding of newly synthesized polypeptides into stable, functional, mature 

proteins (Richter et al, 2007). Hsp90 has a role in highly diverse cellular functions and plays 

a critical role in innate immune responses of both animals and plants (Sangster and Queitsch, 

2005; Mayor et al, 2007). In this study, four different Hsp90-derived phosphopeptides were 

identified, each containing the same highly conserved serine-phosphorylation site EISDDE 

(Table III) (Krishna and Gloor, 2001; Ogiso et al, 2004). One of these phosphopeptides 

originates from SGN-U312354 and one from SGN-U312357, which are known as tomato 

Hsp90-1 and Hsp90-2, respectively. Differences in the peptide sequence containing the 

phosphorylation site allowed discrimination between these two Hsp90s and two additional 

phosphorylated Hsp90 isoforms, which are annotated as Hsp90-3 for SGN-U313363 and 

Hsp90-4 for SGN-U313365 (Table III). In Arabidopsis also four cytoplasmic Hsp90 isoforms 

(AtHsp90-l to -4) have been described, in which the orthologous conserved phosphorylation 

site is indicated as a casein kinase II phosphorylation site, a site which is phosphorylated in 

animals (Dougherty et al, 1987; Krishna and Gloor, 2001). Detailed sequence analysis did 

not provide clues on the functional relevance of the different Hsp90s in Arabidopsis (Krishna 
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and Gloor, 2001). However, a mutational analysis of the different Hsp90 isoforms indicated 

that the cytosolic Hsp90s have diverged in function (Sangster and Queitsch, 2005). 

Interestingly, the abundance of phosphorylated Hsp90-1 and Hsp90-2 has increased in the Cf-

4/Avr4 seedlings at t=5h, while the abundance of phosphorylated Hsp90-4 has decreased at 

this stage. In agreement with the observation that only AtHsp90-l is transcriptionally 

upregulated by heat and pathogen infection (Takahashi et ah, 2003; Sangster and Queitsch, 

2005), transcriptional profiling of the Cf-4/Avr4 seedlings revealed an increase in the amount 

of Hsp90-1 transcripts compared to the controls at t=5h, whereas the transcript abundance of 

Hsp90-2 remains unaltered at all time points (P < 0.05; Table IV). Therefore, the increase in 

phosphopeptide abundance of Hsp90-1 could be caused by an increase in protein abundance, 

whereas Hsp90-2 appears to be differentially phosphorylated. The abundance of the non-

phosphorylated Hsp90-derived peptides, EDQLEYLEER and ELISNSSDALDK, was 

unaltered between Cf-4/Avr4 and control seedlings. However, these peptides match all four 

Hsp90 isoforms and might therefore hide changes in average abundance ratio for a specific 

Hsp90 protein (Table III). 

Additional phosphopeptides with an altered abundance in the Cf-4/Avr4 seedlings 

Two additional phosphopeptides matching SGN-U313311 and SGN-U315274, which 

are annotated as a putative DNA/RNA binding protein and a putative SEC 14 protein, 

respectively, were identified with a significantly decreased average abundance ratio at t=lh. 

The phosphopeptide matching SEC 14 also has a decreased abundance at t=3h. Interestingly, 

both proteins seem to have a role in the early Cf-4/Avr4-triggered HR and these proteins are 

interesting candidates for further research. 

DISCUSSION 

Phosphoprotein identification from samples that are complex and that originate from an 

organism without a complete genomic sequence 

The purification of phosphopeptides on TiCh columns is based on the binding of 

phosphate to TiC>2 by a bridging bidentate surface complex (Larsen et al, 2005). However, 

non-phosphorylated peptides can bind aspecifically to TiC>2, thereby contaminating the 
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phosphopeptide fraction. In this study, peptides were loaded on the TiCh column in 5% TFA 

although it has been described that aspecific binding of non-phosphorylated peptides can be 

reduced by loading the peptides in 2,5-dihydroxy-benzoic acid (DHB) in TFA (Larsen et al, 

2005). However, DHB caused contamination of the ESI ion source during LC-MS/MS 

analysis and it was therefore excluded from the phosphopeptide purification protocol, 

allowing some aspecific peptide binding to the TiCh columns (Thingholm et al, 2006). 

Analysis of the LC-MS/MS data revealed that approximately 50% of the peptides are 

phosphorylated. This column performance is similar to the efficiency obtained with Ti02 

purification of phosphopeptides from membrane fractions (Benschop et al, 2007). In 

addition, approximately 60% of the peptides were repeatedly identified in the 3 biological 

replicates present in each experiment (Table I), while Benschop et al (2007) reported 

approximately 30% overlap between two biological replicates. This indicates that 

prefractionation does not increase the overlap in identified peptides between biological 

replicates. Therefore, we conclude that sufficient peptide coverage is obtained with the more 

direct approach that we have followed, especially when a shallow HPLC gradient is used. 

Furthermore, we show that TiC>2 columns are suitable to enrich phosphopeptides from 

complex protein samples that have not been pre-fractionated. 

In this study, 50 phosphoproteins were identified, which is a relatively low number 

when compared to the study of Benschop et al (2007). One reason for this is that only 40% of 

the genomic sequence of tomato is available. Therefore, several MS/MS spectra with good 

ion intensities could not be assigned to a protein since their sequence is not present in the 

database. In addition, several of the sequences that are present in the database are not full 

length, which will also lead to unassigned spectra. Taking these database restrictions into 

account, a re-examination of our results is expected to reveal at least 125 phosphoproteins 

when the complete genomic sequence of tomato has become available. In addition to database 

restrictions, a stringent manual validation was applied to the reported (phospho) peptides. 

Furthermore, the MS/MS exclusion time during LC-MS/MS analysis has been too small in 

some cases, leading to multiple MS/MS spectra from the same (phospho) peptide, thereby 

decreasing MS/MS sequence coverage. Finally, total leaf protein extracts were analyzed to 

study the feasibility of phosphoproteome analysis of complex samples, without 

prefractionation and/or enrichment for proteins present in specific subcellular compartments. 

We identified phosphopeptides from at least 6 different cellular localizations (Figure 2) 
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providing information on general physiological processes taking place in leaf tissue of plants 

that mount a defence response. Although specific enrichment and/or prefractionation of 

phosphopeptide samples might lead to a higher amount of phosphoprotein identifications 

(Benschop et al, 2007), a faster and more direct approach as described here is still very 

useful. Since more sensitive mass spectrometers with a high resolution become available, this 

approach can be a good alternative for a time and resources intensive large-scale 

phosphoproteome analysis that includes several prefractionation steps. In subsequent studies, 

for instance, the role of suppression of photosynthetic activity immediately upon HR-

initiation in Cf-4/Avr4 seedlings could be further studied by the analysis of phosphopeptide 

samples purified from chloroplasts only. 

Relative label-free quantification of phosphopeptides 

Relative label-free quantification of a phosphopeptide is performed based on the peak 

area of its MS spectrum. To be able to compare the abundance of a given peptide in different 

samples, MS spectra of the peptide have to be aligned based on their RT and mass to allow 

comparison of the correct MS peak areas (Beck et al, 2006; Jensen, 2006; Wang et al, 2007). 

The ART and Amass was determined for each experiment and set in VEMS, allowing the 

program to search for matching MS spectra in the set window (Table I). In experiment t=5h, 

the first LC-MS/MS run deviated in RT from the other nine. By discarding this run from the 

experiment, the ART remained small which is theoretically best for quantification. In 

experiment t=lh, the RTs deviated between all ten runs. Although the label-free quantification 

was approved by the validation method described in Figure 3 and the results are biologically 

relevant (Table III), the quantification in experiment t=lh was further analyzed. MS 

alignment with the presented ART (11 minutes) led to an increased amount of quantified 

peptides compared to MS alignment with a smaller ART (5.25 minutes), although most 

calculated peptide abundances did not differ between the two MS alignments. This shows that 

MS alignment with ART=11 minutes does not decrease data quality. Finally, the experiments 

t=lh, t=3h and t=5h have been performed independently employing different mass 

spectrometers and using different reverse phase columns. Therefore, it is not possible to 

determine the dynamics of the abundance of the phosphopeptides over the 4h period as the 

RT deviates too much between the individual experiments. 
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The reported changes in average abundance ratio of a given phosphopeptide are 

proposed to represent a change in the phosphorylation status of the pool of the corresponding 

protein. However, constitutive phosphorylation in combination with altered amounts of 

protein as a result of transcriptional regulation of the encoding gene cannot be excluded for 

several of the identified peptides, as quantitative data from unphosphorylated peptides was 

not available. 

Biological interpretation of the results 

One of the most abundant proteins in plants is ribulose-l,5-bisphosphate 

carboxylase/oxygenase (RuBisCo) and although the large subunit of RuBisCo has been 

described to be phosphorylated, it was not identified in this analysis (Guitton and Mache, 

1987; Spreitzer and Salvucci, 2002; Jones et al, 2006a). Since RuBisCo is so abundant and 

often interferes in the various analyses, we followed a protein isolation method (Tsunezuka et 

al, 2005) that minimizes RuBisCo extraction, as validated by 2-dimensional protein 

electrophoresis (Stulemeijer et al, unpublished results). Therefore, the samples were depleted 

for RuBisCo and this might explain why this phosphoprotein was not detected in our analysis. 

Tomato cell suspensions expressing the Cf-5 resistance protein revealed the 

dephosphorylation of an H+-ATPase after treatment with C. fulvum elicitor preparations 

containing Avr5 (Xing et al., 1996). We also identified several phosphorylated H+-ATPases 

but these did not show a change in abundance in the Cf-4/Avr4 seedlings (Table III). 

Possibly, the Cf-4/Avr4-induced response is different from the Cf-5 response, as is also 

apparent from the observed Cf-5-mediated medium acidification, in contrast to the reported 

Cf-4-mediated medium alkalization (Xing et al., 1996; De Jong et al., 2002). However, Cf-5-

mediated dephosphorylation might also occur on an H+-ATPase not identified in this study, or 

on another yet unidentified phosphorylation site. In addition, Cf-9- and Cf-4-triggered 

defence signalling in tobacco cell suspensions has been found to result in specific 

phosphorylation of the tobacco calcium-dependent protein kinase NtCDPK2 (Romeis et al., 

2001). Although we identified a phosphopeptide from tomato CDPK2, we did not observe a 

difference in its abundance between the Cf-4/Avr4 and the control seedlings. Also in this 

case, the exact site that becomes phosphorylated in the kinase is not known but mutational 

analysis have shown that the phosphorylated site is located outside the kinase domain 

(Ludwig et al, 2005), which matches with the location of the phosphorylation site identified 
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in our study. Possibly, Cf-4/Avr4-dependent phosphorylation of CDPK2 requires more than 

five hours in intact plants. Finally, three different LeMPKs were shown to become 

specifically activated in the Cf-4/Avr4 seedlings within 2h after initiation of the HR 

(Stulemijer et al, 2007). Activation of these MAPKs is the result of their phosphorylation by 

upstream MAPKKs. However, we did not identify phosphopeptides originating from 

LeMPKs, which is possibly a reflection of their low abundance. 

Changes in the phosphoproteome of the Cf-4/Avr4 seedlings point to a specific 

suppression of the activity of pyruvate dehydrogenase, the enzyme that converts pyruvate (the 

end product of glycolysis) into acetyl-CoA in the mitochondria. Interestingly, microarray 

analysis revealed a specific transcriptional upregulation of both of the genes encoding L-

lactate dehydrogenase in tomato (Table IV) that catalyzes the conversion of pyruvate into 

lactate under anaerobic conditions. Interestingly, these genes are also upregulated under low-

oxygen stress (Germain et al, 1997; Germain and Ricard, 1997) and it has been described that 

the massive oxidative burst induced upon Avr9 recognition in Cf-9 tobacco suspension cells 

leads to an increase in oxygen consumption, creating low-oxygen stress (Piedras et al, 1998). 

Also in cotyledons of tomato plants carrying Cf-2 or Cf-9, a fast production of reactive 

oxygen intermediates takes place upon recognition of Avr2 or Avr9 respectively (May et al, 

1996). We propose that in a similar way, the Cf-4-triggered oxidative burst (De Jong et al, 

2004) in combination with stomatal closure, leads to low-oxygen stress and a switch from 

aerobic to anaerobic respiration in order to maintain energy production. 

Other interesting observations are the changes in average abundance ratio during HR 

development of the phosphorylated form of the different Hsp90 isoforms. The Hsp90 

phosphorylation site is conserved in animal systems and here we show for the first time 

specific in vivo phosphorylation of plant Hsp90 isoforms at this conserved serine-

phosphorylation site (Krishna and Gloor, 2001). Jones et al (2006a) reported Hsp90 

phosphorylation in Arabidopsis during the defence response to Pseudomonas syringae but no 

unequivocal proof of phosphorylation was shown. Hsp90 was already shown to play a role in 

the Cf-4/Avr4-induced HR, as simultaneous VIGS of Hsp90-1 and Hsp90-2 compromises the 

Avr4-induced HR in Nicotiana benthamiana (Gabriels et al, 2006), as well as in tomato 

(Gabriels et al, unpublished results). In addition, Hsp90s are thought to stabilize resistance 

proteins since they have been shown to interact with resistance proteins such as 1-2 and N, 

which confer resistance to the fungus Fusarium oxysporum and the tobacco mosaic virus (Liu 
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et al., 2004; De la Fuente van Bentem et al., 2005). Furthermore, Hsp90 is required for 

accumulation of the resistance protein Rx that confers resistance to potato virus X (Boter et 

al., 2007). Our data suggest that Hsp90 isoforms have a different function in Cf-4/Avr4-

triggered HR development and that Hsp90-2 and Hsp90-4 might be regulated by differential 

protein phosphorylation. Interestingly, NbHsp90c-l from N. benthamiana interacts in a yeast 

two-hybrid screen with the MAP kinase NbSIPK (Kanzaki et al, 2003), which is the 

orthologue of LeMPKl, one of the MAPKs that is activated during Cf-4/Avr4 signalling 

(Chapter 3). Possibly, LeMPKl also interacts with Hsp90, thereby phosphorylating one or 

more of the Hsp90 isoforms. However, further analysis should reveal the function of 

(de)phosphorylation of the various Hsp90 isoforms during HR development and resistance. 

Conclusions 

This analysis shows that TiC^ columns are suitable to enrich for phosphopeptides from 

complex protein extracts. In addition, LC-MS/MS analysis leads to sufficient peptide 

coverage between biological replicates when a shallow HPLC gradient is used, although the 

protein samples have not been pre-fractionated. Therefore, this approach can be a good 

alternative for a time and resources intensive large-scale phosphoproteome analysis that 

includes several prefractionation steps. Furthermore, our data show that relative label-free 

quantification is feasible for phosphopeptides isolated from total protein extracts of tomato 

leaves. 

Our analysis has resulted in the identification and quantification of new 

phosphoproteins of tomato that change in abundance during HR development. As we have 

used intact plants in stead of cell suspensions, we have obtained insight in some general 

physiological changes that occur in plants that mount a defence response. Biological 

interpretation of our data revealed that photosynthetic activity is specifically suppressed 

immediately upon initiation of Cf-4/Avr4-triggered HR. In addition, the Cf-4/Avr4 seedlings 

seem to switch from aerobic to anaerobic respiration by favouring the lactic acid fermentation 

pathway. Furthermore, different levels of phosphorylated Hsp90 isoforms in Cf-4/Avr4 

seedlings compared to controls point to a different role for the specific Hsp90 isoforms in HR 

development. Together, our results show that quantitative phosphoproteome analysis on intact 

plants leads to the identification of highly interesting key proteins, of which further analysis 
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will reveal their role in defence and metabolic reprogramming of plants responding to 

pathogens. 

METHODS 

Chemicals and materials 

Formic acid (FA) was obtained from Merck (Darmstadt, Germany), trifluoroacetic 

acid (TFA) from Applied Biosystems (Warrington, UK), analytical-grade acetonitrile (ACN) 

from Fisher Scientific (Loughborough, UK) and acetic acid (HAc) from AppliChem 

(Darmstadt, Germany). Modified trypsin was obtained from Promega (Madison, WI) and 

modified lysyl endopeptidase from Wako Pure Chemical Industries, Ltd. (Neuss, Germany). 

Tips were from Eppendorff (Eppendorff, Hamburg, Germany). Plugs of 3M Emporetm C8 

disks (3M Bioanalytical Technologies, St. Paul, MN) were made with a 0.5 mm diameter 

HPLC syringe from SGE (Victoria, Australia), whereas plugs of 3M Emporetm CI8 disks 

were made with a 1 mm diameter HPLC syringe from the same manufacturer. Ultrapure water 

was obtained from an Elga system (Glostrup, Denmark). Titanium dioxide (TiCh) beads were 

obtained from a disassembled TiOj cartridge (4.0 mm ID - 5020-08520-5u-TiO2) purchased 

from GL sciences Inc, Japan. All other chemicals and reagents were of the highest grade 

commercially available. 

Induction of a hypersensitive response in tomato seedlings 

Cf-4/Avr4 seeds were obtained from crossings between Cf-4- and ^vr4-expressing 

tomato plants. Seeds from Cf-4- or ^vr4-expressing tomato plants were mixed and taken as 

control as described previously (De Jong et al, 2002; Chapter 3). Germination of the seeds 

was stimulated and synchronized by a 20 min treatment with 25% (v/v) Lodik containing 4% 

(v/v) sodium hypochlorite, followed by extensive washing with tap water. After germination 

in soil under normal daylight conditions at room temperature, seedlings were incubated at 

33°C and 100% RH under 16h/8h light/dark regime in an incubator (Elbanton, Kerkdriel, The 

Netherlands) for at least 7 days. The seedlings were subsequently shifted to 20°C and 

cotyledons were harvested at lh, 3h and 5h after the temperature shift, immediately frozen in 

liquid nitrogen and stored at -80°C. This was done for three independent biological replicates. 
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Protein extraction and digestion 

Cotyledon tissue was thawed in a solution containing 7M urea, 2M thiourea, 60mM 

DTT, 4% CHAPS and 2% IPG buffer pH 3-10 (GE Healthcare) and immediately ground with 

mortar and pestle (Tsunezuka et al, 2005). Samples were vortexed and rotated for maximal 

30 min and subsequently centrifuged at 16,000g for 15 min. The supernatant was transferred 

to a new vial and centrifuged for another 15 min (16,000g) until all solid particles were 

pelleted. Proteins present in the supernatant were precipitated by adding TCA to a final 

concentration of 10% (w/v), incubated at -20°C and centrifuged into a pellet at 4°C (16,000g; 

15 min). Protein pellets were washed and stored at -80°C in 100% acetone until further use. 

Then protein pellets were washed with 70% acetone, dried, and dissolved in 6M urea and 2M 

thiourea by short sonication and shaking. After centrifugation at 16,000 g (15 min), the 

protein concentration of the supernatant was determined with a Bradford protein assay from 

Bio-Rad (Herlev, Denmark). 

200 (ig of each protein sample was treated with 4 ul DTT (lug/|il) for 40 min to 

denature the proteins, after which the proteins were treated with 2 ul iodoacetamide (10(xg/|i.l) 

for 40 min to reduce the cysteine residues. Subsequently, the proteins were digested with 4 ul 

lysyl endopeptidase (lug/ul) for 4h after which the samples were 5 times diluted with 50 mM 

NH4HCO3, pH 8. Then, 4 ul of trypsin (1 ^g/ul) was added and proteins were further digested 

overnight. All treatments were performed at room temperature unless stated otherwise. 

Purification of phosphorylated peptides using TiO? columns 

A small plug of C8 material was taken from a 3M Emporetm C8 extraction disk and 

placed in the end of a PlO-tip to retain the approximately 5 mm long column of TiC"2 beads 

(Thingholm et al, 2006). The volume of the PlO-tip was increased by placing a P200-tip, of 

which about 5 mm of the top was removed, into the PlO-tip. The protein digest was diluted 

five times in 15% H20/ 80% ACN/ 5% TFA (v/v/v) and 50 (xg of the digested proteins was 

loaded onto the TiCh column with gentle air pressure created by a plastic syringe (Gobom et 

al, 1999; Larsen et al, 2005). The column was subsequently washed twice with 15% H2O/ 

80% ACN/ 5% TFA (v/v/v), after which bound peptides were eluted with 50 ul NH4OH (pH 

10.5). Samples were acidified with 10% formic acid (FA) in H2O (v/v). 

To clean the samples before LC-MS/MS analysis, eight plugs of 3M Emporetm C18 

material were placed in the end of a P200-tip, washed with 100%) ACN and equilibrated with 
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5% FA in H20 (v/v). The peptides eluted from four Ti02 column were loaded onto the 

equilibrated CI8 column with gentle air pressure created with a plastic syringe and the 

column was washed with 5% FA in H2O (v/v). Peptides were subsequently eluted with 240 ul 

of 25% H2O/ 70% ACN/ 5% FA. The volume was decreased by vacuum drying and the 

peptides were dissolved in 0.5% HAc in H2O (v/v). Peptides purified from 200 ug of digested 

protein provided material for three LC-MS/MS runs. 

Naao-flow liquid chromatography electrospray ionization tandem mass spectrometry 

analysis (LC-ESI-MS/MS) 

Three LC-ESI-MS/MS experiments were performed each of which experiment 

represents a different time point after the temperature shift (t=lh, t=3h and t=5h). For each 

experiment, three biologically independent samples were obtained from the Cf-4/Avr4 and the 

control seedlings. The samples from the first biological replicate were analyzed in triplicate to 

determine the technical variation per experiment, whereas the other samples were analyzed 

only once. Therefore, one experiment consisted of ten LC-MS/MS runs which were run in 

series. The technical replicates of the first biological replicate were run successively. Standard 

BSA runs were included to separate the biological replicates per experiment, although carry­

over between the runs was not observed. 

Automated nanoflow liquid chromatography/tandem mass spectrometric (nano-LC-

MS and MS/MS) analysis was performed using a QTOF mass spectrometer (Micromass UK 

Ltd., Manchester, UK) employing automated data-dependent acquisition (DDA). For the t=3h 

experiment, a QTOF Ultima mass spectrometer coupled to an Ultimate/Switchos2/Famos 

nanoflow-HPLC system (LC Packings, The Netherlands) was used, whereas we employed a 

QTOF Micro mass spectrometer coupled to an Ultima 3000 nanoflow-HPLC system (Dionex, 

The Netherlands) for the t=lh and t=5h experiments. The HPLC systems delivered a flow rate 

of 100 nl/min over a silica transfer line (75 (xm inner diameter, 360 urn outer diameter) 

connected to a homemade 1 cm fused silica pre-column (75 um inner diameter, 360 urn outer 

diameter; ReproSil-pur AQ-C18 3um (Dr. Maisch, GmbH, Germany). Chromatographic 

separation was accomplished by loading peptide samples onto the pre-column using an auto 

sampler. Peptides were sequentially eluted using a linear gradient from 100% of solution A 

(0% ACN, 0.5% HAc in H20) to 50% of solution A and 50% of solution B (80% ACN in 

0.5% HAc in H2O) in 120 minutes over the pre-column in series with a homemade 8 cm 
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resolving column (50 um inner diameter; 360 urn outer diameter; ReproSil-pur AQ-C18 3 

um, Dr. Maisch GmbH, Germany). The resolving column was connected to a distally coated 

fused silica PicoTiptm emitter (360 um outer diameter, 50 um inner diameter, 8 um tip inner 

diameter, New Objective, Cambridge, MA, USA). The mass spectrometer was operated in the 

positive ion mode with a resolution of 4500-8000 at full-width half-maximum (FWHM) for 

QTOF Micro and 6500-8000 for QTOF Ultima, using a source temperature of 150°C and 

80°C respectively, and a counter current nitrogen flow rate of 60 liter/h. Data-dependent 

analysis was employed (four most abundant ions in each cycle); 1 second MS (m/z 350-1500) 

and a maximum of 2 (QTOF Ultima) or 3 (QTOF Micro) seconds MS/MS (m/z 50-2000), 

with 45 seconds dynamic exclusion. 

Data processing and quantitative analysis using virtual expert mass spectrometrist 

(VEMS) software 

Raw data were processed using ProteinLynx Global Server 2.0.5 (smooth 2/3 Savitzky 

Golay and center 4 channels/80% centroid) and the resulting MS/MS dataset was exported in 

Micromass pkl format for automated peptide identification using the Virtual Expert Mass 

Spectrometrist (VEMS v3_209 update 25-06-2007) software (Matthiesen et ah, 2005). To 

identify peptides, the SGN tomato database (Tomato_200607_build_l) containing -34,000 

expressed sequence tags (ESTs) was translated into protein sequences by ESTScan 

(http://www.sgn.cornell.edu/). The data from one experiment (t=lh, t=3h or t=5h) were 

loaded into VEMS software (Matthiesen et ah, 2004; Matthiesen et ah, 2005) and searched 

against the SGN database. The following constraints were used: only tryptic peptides and up 

to 2 missed cleavages sites, initial tolerance of 0.6 Da for MS ions and for MS/MS fragment 

ions and carbamidomethyl cysteine, methionine oxidation and serine, threonine and tyrosine 

phosphorylation were anticipated to occur. Based on the initial search, high confidence 

peptides were recalibrated in VEMS and the search was repeated with 50 ppm for MS ions 

and 0.6 Da for MS/MS fragment ions. For the experiment at t=3h, asparagine and glutamine 

deamidation was allowed. Since the focus of this study was the identification and 

quantification of phosphopeptides, all non-phosphoproteins were removed from the result file, 

resulting in a set of phosphopeptides and non-phosphopeptides that match a phosphoprotein. 

All phosphopeptide assignments reported by VEMS were manually validated to check the 

sequence and phosphorylation site assignment. No threshold score was applied to the 
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identified peptides before manual validation since phosphopeptides usually have a lower 

score than regular peptides and searches against small databases might lead to inaccurate 

scores. Spectra, VEMS scores, E-values, m/z, z values and mass errors of each peptide are 

reported in Supplementary Table SI. Relative label-free quantification of all peptides 

(threshold intensity = 0) was performed on the peak area using VEMS (version v3_209 update 

25062007) (Matthiesen et al, 2004; Matthiesen et al, 2005) that includes the features to 

align and calibrate the LC-MS/MS data with respect to peptide retention time (RT) and mass, 

as also described by Beck et al (2006). Some peptides were selected for MS/MS in all ten 

samples per experiment and these peptides were used to determine the variation in RT (ART; 

in minutes) per experiment. The mass deviation (Amass; in mDa) was determined for the 

peptide with the largest mass deviation in an experiment. This information was subsequently 

used to set ART and Amass during peptide quantification. For the three experiments (t=lh, 

t=3h and t=5h), the ART was 11.0, 3.4 and 4.3 minutes and the Amass was 79, 21 and 75 

mDa, respectively. The peak area from all identified peptides was extracted from the LC-MS 

part of the datasets and quantitative data were obtained for all identified peptides (Table III). 

Tomato protein database 

To have the most recent annotation of the SGN tomato database, the protein sequences 

as provided by SGN (ftp://ftp.sgn.cornell.edu/proteins/; Tomato_200607_build_l_pep) were 

matched against the UniProt Release 11.0 database by NCBI blastp 2.2.13 using default 

settings (Altschul et al, 1997; Consortium, 2007). GO terms were assigned by IPRscan versie 

4.2 and IPRscan data updates (30-5-2007) for InterPro release 15.1 (Zdobnov and Apweiler, 

2001). The SGN tomato database is redundant, leading to multiple protein identifications for 

one phosphopeptide. When a phosphopeptide matches multiple proteins, all entries are 

reported in Table III. When a phosphopeptide matches multiple proteins originating from the 

same gene product, the entry with the longest sequence is reported. Since the tomato genome 

is not fully sequenced, we cannot exclude that phosphopeptides match proteins encoded by 

genes that have not been sequenced yet. 
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Data analysis and validation 

Quantitative data from different phosphopeptides that cover the same phosphorylation 

site (resulting from missed cleavages) were combined to allow correct quantification of the 

phosphorylated form of a particular peptide. All data were normalized to the total abundance 

of all peptides per sample that were identified in all ten LC-MS/MS runs for one experiment. 

The data analysis described below was performed for each experiment (t=lh, t=3h and t=5h). 

Based on the triplicate analysis of biological replicate 1, the technical error of the 

quantification was determined by calculating the average abundance and the standard error 

(SE) of each peptide. The absolute SEs were plotted against the average peptide abundance 

and the data could be fitted with one parameter (ProFit, Zurich; y=ax). This revealed a linear 

correlation between the peptide abundance and the SEs and thus a constant technical error in 

each experiment (Figure 2; Vetterling et al, 1992). The technical error was used to estimate 

the SE of the peptide abundance detected in the other samples that were analyzed only once 

(biological replicates 2 and 3). The peptide abundance in samples originating from the Cf-

4/Avr4 seedlings (x) was divided by the peptide abundance of the control samples (y) to 

calculate the relative abundance ratio (f; f = x / y) per peptide for each biological replicate. 

The SE of the relative abundance ratio was calculated according to the equation (oVf)2 = 

(ax/x)2 + (ay/y)2, in which a represents the SE. Subsequently, a relative average abundance 

ratio (f = (a + b + c)/3, in which a, b and c represent the relative abundance ratios of biological 

replicates 1, 2 and 3, respectively) was calculated per peptide for each experiment (t=lh, t=3h 

and t=5h). The SE for this ratio was subsequently calculated according to the equation Of2 = 

oa
2 + ob

2 + ac
2 (Vetterling et al, 1992). 

Microarray experiment and analysis 

Total RNA was extracted and purified (NucleoSpin RNA/Protein kit, Machery-Nagel, 

GmbH & Co., Dueren, Germany) from cotyledons of Cf-4/Avr4 and control seedlings at t=lh, 

t=3h and t=5h after the temperature shift. Three independent biological replicates were 

performed. RNA-labeling, hybridization of the microarray (GeneChip® Tomato Genome 

Array, Affymetrix, Santa Clara, CA, USA) and data extraction was performed at ServiceXS 

(Leiden, The Netherlands) according to standard protocols provided by the manufacturer. In 

short, RNA concentrations were determined with the Nanodrop (type ND-1000) and RNA 

quality was assessed with the RNA 6000 Nano Labchip kit (Agilent Technologies, Palo Alto, 
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CA, USA). Biotin-labeled cRNA was synthesized from 2 ug of total RNA using the 

Affymetrix one-cycle target labeling and control agents (Affymetrix, Part nr. 900493). The 

tomato GeneChips were hybridized with 20 (ig of fragmented biotin-labeled cRNA. After 

automated washing and staining, the GeneChips were scanned with an Affymetrix scanner, 

type G7. Raw data were converted to CEL files with Affymetrix GCOS software and data 

analysis was performed by packages from the Bioconductor project (Gentleman et al, 2004) 

implemented in the Management and Analysis Database for Microarray Experiments 

(MADMAX, Gavai, de Groot and Leunissen, unpublished results). MADMAX microarray 

quality control analysis (Jones et al, 2006b) revealed that one array deviated from the others 

(Cf-4/Avr4, t=3h) and this array was excluded from further analysis. Subsequently, the arrays 

were normalized using quartile normalization, and expression estimates were compiled using 

GC-RMA, applying the empirical Bayes approach (Wu et al, 2004). Differentially expressed 

probe sets were identified using linear models, applying moderate t-statistics that implement 

empirical Bayes regularization of standard errors (Smyth, 2004). Sequences present on the 

microarray entries were matched to a SGN-ID based on their sequence, by NCBI stand-alone 

blast (blast-2.2.12-ia32-win32; http://www.ncbi.nlm.nih.gov/BLAST/download.shtml). 

Determination of photosynthetic activity by chlorophyll fluorescence measurement and 

imaging 

Cf-4/Avr4 and control seedlings were subjected to a temperature shift from 33°C to 

room temperature and were analyzed to determine their photosynthetic activity over a period 

of 18 h. Plants were scanned each 10 minutes with a fast (Fo) and a slow (Fm) scanning red 

laser light line and a 16 bit CCD camera was used to record the reflected light from the leaf 

surface, observed as fluorescence. The relative increase in fluorescence is expressed as ((Fm -

Fo)/Fm)*100%, which reflects the quantum efficiency of photosystem II reaction centers and 

thus reflects the photosynthetic activity. In healthy plants, quantum efficiency is generally 75-

80% (De Ruiter et al, 2007). 
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Supplementary Table SH. Replicate phosphopeptide quantification at t = l h , t=3h and t=5h. 

SGN-ID3 

SGN-U312354 
SGN-U312357 
SGN-U313363 
SGN-U313365 

SGN-U312354 
SGN-U312357 
SGN-U313363 
SGN-U313365 
SGN-U313363 
SGN-U313365 
SGN-U312661 
SGN-U312844 

SGN-U312863 

SGN-U313210 
SGN-U313218 

SGN-U313210 

SGN-U313218 

SGN-U313242 

SGN-U313311 

SGN-U313649 
SGN-U313650 
SGN-U313547 
SGN-U315949 
SGN-U313599 
SGN-U313650 
SGN-U313858 
SGN-U314961 
SGN-U315162 
SGN-U315274 
SGN-U315305 
SGN-U315592 
SGN-U315632 
SGN-U315720 
SGN-U315821 

SGN-U315990 

SGN-U316572 

SGN-U317145 
SGN-U317356 
SGN-U317388 
SGN-U317660 
SGN-U317742 
SGN-U317743 
SGN-U317758 
SGN-U317838 
SGN-U318020 
SGN-U318050 

Peptide sequence 

EDQLEYLEER 

ELISNSSDALDK 
EISDDEDEEEK 
EISDDEEEEEK 

EISDDEDDEPK 

EISDDEDDEPKKDEEGAVEEVDEDK 
EISDDEDDEPKKEQEGDIEEVDEDK 
NLAGDIIGtRtEVADVK 
SISTPFmNTASK 
AALAAGADKDEEDSEGR 
KSPESSTVEAPSGEGR 

FGEAVWFK 

SAPSSSPWYGPDR 
SAPSSSPWYGPDR 
PASSGSPWYGPDR 
TAAKPKPASSGSPWYGPDR 
GGmtsHAAWAR 
VETPIDANEIR 
VSTDFDYDGEG SPSGGR 

GLDIETIQQSYTV 

GLDIETIQQHYTV 

RFGTTGTVK 
TLHGLQVPDTK 
KEEPKEESDDDmGFSLFD 
IASESDVSVHSTFASR 
VADSGASPPASSANPQHPASR 
TPVTEsAsFK 
YHGHsmsDPGSTYR 
VSSFEALQPVNR 
LRDGEASDFFEEYEAK 
SHAVDASDDEmDDDENDANIK 
ALGSFRSNATN 
AAATIAKEPEEK 
ANEESDAOVA TVR 
ALGsFRsNQTN 
ALGSFRSNQTN 
QLmLEYAGSER 
NSAEGYVPIHAL sEsPK 
VSTLPSENPOSPSDOPK 
EAVADmSEDLSEGEK 

SWELTSGTSDDGHDK 

KVSPIPESR 
QLSIDQFENEGR 
VDGLLtsssssPR 
GLEHSFSTGFR 

Cf-4/Avr4 compared to control seedlings c 

t=1h 
Ratio 1 

1.11 ±0.16 

1.21 ±0.19 
0.77 ± 0.34 
0.68 ± 0.23 

1.51 ±0.58 

1.33 ±0.22 
1.06 ±0.18 
1.23 ±0.29 

1.44 ±0.09 
0 8 6 ± Q 1 0 

0.53 ±0.02 
0.99 ± 0.51 

1.05 ±0.31 
0.96 ± 0.49 

0.50 ± 0.07 
1.24 ±0.31 

1.10 ±0.18 
1.03 ±0.47 

0.72 ± 0.09 

Ratio 2 

2.09 ± 0.28 

1.95 ±0.26 
0.73 ±0.10 
0.51 ± 0.07 

0.66 ± 0.09 

29.95 ± 4.07 

0.38 ± 0.05 

5.56 ± 0.76 

0.70 ±0.10 
0.36 ± 0.05 

1.05 ±0.14 

Ratio 3 

1.22 ±0.17 

1.06 ±0.14 
0.31 ±0.04 
1.59 ±0.22 

1.49 ± 0.20 

0.83 ±0.11 
1.37 ±0.19 
0.76 ±0.10 

1.40 ±0.19 

0.84 ±0.1 
0.03 ± 0.00 

0.91 ±0.12 
0.37 ± 0.05 

3.66 ± 0.50 
0.72 ±0.10 

2.26 ± 0.31 
1.27 ±0.17 

0.50 ± 0.07 
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Supplementary Table S I I . Continued f rom left page. 

SGN-IDa 

SGN-U312354 
SGN-U312357 
SGN-U313363 
SGN-U313365 

SGN-U312354 
SGN-U312357 
SGN-U313363 
SGN-U313365 
SGN-U313363 
SGN-U313365 
SGN-U312661 
SGN-U312844 

SGN-U312863 

SGN-U313210 
SGN-U313218 

SGN-U313210 

SGN-U313218 

SGN-U313242 

SGN-U313311 

SGN-U313649 
SGN-U313650 
SGN-U313547 
SGN-U315949 

SGN-U313599 
SGfctUai3650 
SGN-U313858 
SGN-U314961 
SGN-U315162 
SGN-U315274 
SGN-U315305 
SGN-U315592 
SGN-U315632 
SGN-U315720 
SGN-U315821 

SGN-U315990 

SGN-U316572 

SGN-U317145 
SGN-U317356 
SGN-U317388 
SGN-U317660 
SGN-U317742 
SGN-U317743 
SGN-U317758 
SGN-U317838 
SGN-U318020 
SGN-U318050 

Cf-4/Avr4 compared to control seedlings c 

t=3h t=5h 
Ratio 1 

0.97 ±0.19 

0.62 ±0.14 
1.73 ±1.46 

0.71 ±0.74 

0.71 ±0.04 
1.06 ±0.08 
2.80 ± 0.50 

0.46 ± 0.04 

1.24 ±0.38 

1.23 ±0.28 

2.13 ±0.26 
0.73 ± 0.04 

1.32 ±0.07 
1.51 ±0.21 
1.04 ±0.28 
0.90 ± 0.09 
2.66 ± 1.94 
0.97 ± 0.08 
1.05 ±0.11 
1.28 ±0.23 
0.36 ± 0.02 
1.02 ±0.30 
0.52 ± 0.05 
0.63 ±0.13 

1.01 ±0.30 

0.77 ±0.20 
0.87 ± 0.08 
0.80 ±0.11 

Ratio 2 

0.28 ± 0.03 

1.56 ±0.16 
0.98 ±0.10 

0.21 ± 0.02 

5.10 ±0.52 
1.27 ±0.13 
0.46 + 0.05 

2.07 ±0.21 

0.23 ± 0.02 

0.67 ± 0.07 

0.70 ± 0.07 

Ratio 3 

1.93 ±0.20 

0.28 ± 0.03 
0.75 ± 0.08 

0.62 ± 0.06 
1.10 ±0.11 
2.78 + 0.28 

1.24 ±0.13 

2.23 ± 0.23 

2.65 ± 0.27 

3.74 ± 0.38 
3.56 ± 0.36 

0.14 ±0.01 
0.35 ± 0.04 
0.60 ± 0.06 

3.45 ± 0.35 
2.45 ± 0.25 
0.23 ± 0.02 

0.37 ± 0.04 
1.09 ±0.11 
1.77±0.18 
1.20 ±0.12 

9.29 ± 0.94 

0.15 ±0.01 

0.40 ± 0.04 

1.76 ±0.18 
0.85 ± 0.09 

0.73 ± 0.07 

0.33 ±0.03 
0.47 ± 0.05 
1.43±0.15 
3.78 ± 0.38 
4.95 ± 0.50 
0.11 ±0.01 

6.47 ± 0.66 
0.79 ± 0.08 
1.53 ±0.15 

Ratio 1 

1.09 ±0.10 

1.14 ±0.24 
1.49*0.37 

12.41±2.22 

1.47 ±0.34 

1.49 ±0.23 
2.56 ± 0.26 

1.36 ±0.20 

1.77 ±0.29 

1.44 ±0.11 

0.91 ± 0.25 
1.98 ±0.17 
0.95 ± 0.08 

0.86 ± 0.09 

0.98 ±0.15 

0.71 ±0.12 
1.29 ± 0.48 
1.71 ±0.40 
1.72 ±0.36 
0.30 ± 0.03 
1.31 ±0.33 
1.37 ±0.14 
0.85 ± 0.09 

1.32 ± 0.40 
0.46 ± 0.06 
1.34 ±0.21 
1.22 ±0.15 

0.84 ±0.15 

1.66 ±0.16 

Ratio 2 

0.63 ± 0.07 
2.17 ±0.17 
5.27 ±0.60 

0.14 ±0.02 

0.84 ±0.10 
0.35 ± 0.04 

0.05 ±0.01 

0.12 ±0.01 

1.36±0.15 
1.50 ±0.17 
0.36 ± 0.04 

0.91 ±0.10 

0.84 ±0.10 

1.43 ±0.16 
0.94 ±0.11 
0.79 ± 0.09 
0.33 ± 0.04 
0.66 ± 0.07 
0.33 ± 0.04 
2.08 ± 0.24 

0.33 ± 0.04 
1.82 ±0.21 

0.25 ± 0.03 

Ratio 3 

1.77 ±0.20 

1.22 ±0.14 

1.12 ±0.09 

0.57 ± 0.06 
1.09 ±0.09 

3.49 ± 0.28 

0.31 ± 0.03 

1.09 ±0.12 

0.57 ± 0.06 

2.66 ± 0.30 

1.71 ±0.19 
1.01 ±0.11 

3.06 ± 0.35 
0.96 ±0.11 
0.89 ±0.10 

0.48 ± 0.05 
0.85 ±0.10 

0.81 ±0.09 

0.61 ±0.07 
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Supplementary Table S I I . Continued. 

SGN-IDa 

SGN-U318935 
SGN-U319866 
SGN-U319978 
SGN-U320093 

SGN-U320785 

SGN-U322822 
SGN-U323143 

SGN-U323433 

SGN-U325962 
SGN-U327750 
SGN-U328413 
SGN-U333128 
SGN-U337595 

Peptide sequenceb 

LHFSNHSSSPAPASSSSD SDDEK 
ISSEDEmAGmDLTR 
mASIDAQLR 
VEEPHNVAEQPISPKDER 
TDVGEGSFHAISR 
SIDVFDPASTHDGANLASSSR 
TSEESNLGAEFPRV SQDLK 
GRSFDDSPVSITDR 
EIEAGSDLEVK 
DDHWDEE SLQR 
lYLHQEAGPssR 
ATSPQTGSQQVGGNLK 
EANGGFImsAsHNPGGPEYDWGIK 
LPEMPSSKGLKR 
GENSSSEINIVRS 
QEEPTKGKLEK 

Cf-4/Avr4 compared to control seedlings c 

t=1h 
Ratio 1 

3.17 ±1.49 

1.19 ±0.48 

1.04 ±0.10 

Ratio 2 

0.29 ± 0.04 

0.45 ± 0.06 

Ratio 3 

0.60 ± 0.08 

1.21 ±0.16 

0.48 ± 0.06 
aGene identifier from the Solanaceae Genomics Network (SGN). 

The phosphorylated residue in the peptide sequence is indicated in bold, or in lower case bold when it is 
unclear from the spectrum which residue is phosphorylated. Methionine (M) oxidation is indicated in lower case 
bold. 
c The ratio represents the ion intensities of a peptide in the Cf-4/Avr4 seedlings versus the control seedlings. 
Average ratios per experiment are presented in Table III. Ratios of which the average ratios is significantly 
different from 1.00 with 95% and 99% confidence, are indicated in light and dark grey, respectively. 
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Supplementary Table S I I . Continued f rom left page. 

SGN-IDa 

SGN-U318935 
SGN-U319866 
SGN-U319978 
SGN-U320093 

SGN-U320785 

SGN-U322822 
SGN-U323143 

SGN-U323433 

SGN-U325962 
SGN-U327750 
SGN-U328413 

SGN-U333128 
SGN-U337595 

Cf-4/Avr4 compared 1 

t=3h 
Ratio 1 

0.98 ± 0.23 
0.99 ±0.19 
0.50 ± 0.07 

1.03 ±0.13 

0.96 ± 0.30 
0.92 ±0.16 

Ratio 2 

0.46 ± 0.05 
0.27 ±0,53 

Ratio 3 

1.15 ±0.12 
1.19±0.12 

2.57 ± 0.26 

0.78 ± 0.08 
0.60 ± 0 0 6 

o control seedlings c 

t=5h 
Ratio 1 

1.77 ±0.24 
2.15±0.13 
1.15 ±0.27 
0.88 ±0.12 
0.81 ± 0.09 

1.26 ±0.19 

1.78 ± 0.26 
0.73 ±0.13 
1.15±0.14 

Ratio 2 

1.46 ±0.17 
0.88 ±0.10 
0.69 ± 0.08 

0.46 ± 0.05 

0.65 ± 0.07 

0.99 ±0.11 
1.11 ±0.13 
0.79 ± 0.06 

Ratio 3 

0.93 ±0.11 
0.72 ± 0.08 

1.71 ±0.19 

0.91 ±0.10 
0.50 ± 0.04 
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Supplementary Table SHI. 

Transcriptional regulation of genes encoding pathogenesis-related proteins, proteins involved in photosynthesis and 

involved in glycolysis 
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Chapter 5 

SUMMARY 

To study the apoplastic defence response of tomato, MM-Cf-4 (resistant) and MM-CfO 

(susceptible) tomato plants were inoculated with an Avr4-producing strain of the 

extracellularly colonizing fungal pathogen Cladosporium fulvum. Apoplastic protein patterns 

from resistant and susceptible plants were first analyzed at four stages after C. fulvum 

inoculation by 2-dimensional fluorescence difference gel electrophoresis. This revealed a 

similar protein pattern in resistant and susceptible plants, although proteins accumulated faster 

and stronger in resistant plants as compared to susceptible plants. In addition, C. fulvum-

specific proteins accumulated at later stages of the colonization process in susceptible plants. 

Next, the apoplastic proteome of these plants was analyzed by a robust comparative LC-

MS/MS analysis, leading to the identification of 66 proteins that were confirmed or predicted 

to be apoplastic. These included pathogenesis-related proteins, cell wall-related proteins and, 

in susceptible plants, effectors from C. fulvum. Quantification of the apoplastic tomato 

proteome revealed a fast and strong, but transient protein accumulation over time in resistant 

plants upon inoculation with C. fulvum. In the susceptible plants, a subset of these proteins 

accumulates slowly upon C. fulvum inoculation, while the remainder does not accumulate. 

The observed protein abundances correlate to a large extent with the levels of transcription of 

their encoding genes. Since transcription of these genes also appeared to be stimulated by the 

Cf-4/Avr4-triggered HR initiation, the difference in gene expression and subsequent protein 

accumulation between resistant and susceptible plants is likely caused by the Cf-4-mediated 

Avr4 recognition. Furthermore, our data indicate that C. fulvum is able to specifically 

suppress a subset of genes encoding cell wall proteins, of which the accumulation hampers 

the proliferation of C. fulvum in resistant plants. Possibly, effectors of C. fulvum successfully 

target a microbe-associated molecular pattern-receptor in susceptible plants, eventually 

leading to suppression of transcription of these genes. 

INTRODUCTION 

Plants, world's suppliers of food and oxygen, are mercilessly exposed to the world's 

abiotic and biotic threats. However, plants have developed two layers of defence to protect 
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themselves against invading pathogens (Jones and Dangl, 2006; De Wit, 2007). First, 

microbe-associated molecular patterns (MAMPs), molecules essential for microbial life, are 

recognized by pattern recognition receptors (PRRs), which induce MAMP-triggered 

immunity (MTI) (Jones and Dangl, 2006). For example, the highly conserved flagellin protein 

from the bacterial flagellum required for bacterial motility, is recognized by the PRR FLS2 

(G6mez-G6mez and Boiler, 2000). In addition to this first line of defence, specific effectors 

produced by the pathogen, which aim at suppression or avoidance of MTI, are recognized by 

the cognate resistance (R) proteins present in resistant plants, thereby inducing effector-

triggered immunity (ETI) (Jones and Dangl, 2006). ETI is generally associated with a 

hypersensitive response (HR), consisting of a type of programmed cell death at the site of 

pathogen penetration, and a vast set of additional defence responses (Joosten and De Wit, 

1989; Lamb and Dixon, 1997; Gabriels et al, 2006; Chapter 3). This generally local and 

lethal process for the plant prevents invading pathogens such as viruses, bacteria, fungi, 

oomycetes and nematodes with a biotrophic lifestyle, from further proliferation. Effectors that 

are recognized by the plant can therefore also be regarded as avirulence factors (Avrs) and are 

also referred to as race-specific elicitors, as they are strain-specific in most cases. In 

susceptible plants, none of the effectors that are produced by the pathogen are recognized, 

allowing the pathogen to successfully counteract MTI with its effectors, thereby provoking 

effector-triggered susceptibility (ETS). 

The interaction between tomato {Solarium lycopersicum) and the biotrophic fungal 

pathogen Cladosporium fulvum is a typical model system to study ETI and ETS, as this 

interaction fully complies with the gene-for-gene hypothesis and both partners in the 

interaction are genetically well-defined (Flor, 1942; De Wit, 1992; Joosten and De Wit, 

1999). Tomato plants that express a Cf resistance gene are resistant to strains of C. fulvum that 

secrete the cognate elicitor encoded by the avirulence (Avr) gene. Upon recognition of an Avr, 

Cf-proteins trigger a HR (Rivas and Thomas, 2005). One of the main advantages of the C. 

fulvum - tomato interaction concerning studies on ETI and ETS is that the fungus remains 

strictly apoplastic in the leaves of both resistant and susceptible plants without the formation 

of specific feeding structures (De Wit, 1992). In fully colonized leaflets of susceptible plants, 

the pathogen grows in close association with the cell walls of its host, with the highest hyphal 

density in the vicinity of the vascular tissue from which the fungus probably obtains most of 

its nutrients (De Wit, 1977; Joosten et al, 1990b; Van den Ackerveken et al, 1994). 
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Therefore, the extracellular communication between fungus and plant can be studied by 

identification of the (proteinaceous) compounds present in apoplastic washing fluids, which 

provides insight into the extracellular response of tomato to invasion by C. fulvum and 

manipulation of this response by C. fulvum (Joosten and De Wit, 1999). 

Several defence-related responses are initiated during the induction of MTI and ETI 

(Jones and Dangl, 2006; Bittel and Robatzek, 2007; De Wit, 2007; Ferreira et al, 2007; He et 

al, 2007). These responses include cell wall modifications (Asselbergh et al, 2007; Van 

Baarlen et al., 2007), synthesis of secondary metabolites with antimicrobial activities (Dixon, 

2001), an oxidative burst and pathogenesis-related (PR) protein accumulation (Van Loon et 

al., 2006). PR proteins are mainly secreted into the apoplast of the plant, were they are 

anticipated to act against invading pathogens such as viruses, bacteria, fungi or oomycetes. 

Different types of PR proteins are induced in several plant species and these proteins have 

been classified into 17 families, of which subsets are induced either through salicylic acid 

(SA), jasmonic acid (JA) and/or ethylene (Van Loon et al, 2006). Since some PR proteins 

have direct antifungal activity, such as 1,3- 6-glucanases (PR-2) and several types of 

chitinases (PR-3, -4, -8, and -11) that target 1,3- B-glucan and chitin in the fungal hyphae, 

respectively, PR proteins have been suggested to inhibit pathogen proliferation within the 

plant (Van Loon and Van Strien, 1999). However, PR proteins were shown not to provide the 

first line of defence against invading pathogens. Since PR protein expression is a hallmark for 

pathogen-induced systemic acquired resistance (SAR), PR proteins are thought to enhance 

defence against a second invasion (Van Loon et al, 2006). 

PR protein accumulation has been extensively studied in the interaction between 

tomato and C. fulvum. Many years ago, it has already been found that swift accumulation of 

the apoplastic protein "PI4" (a 14 kDa protein) is a typical marker for incompatibility (De 

Wit and Van der Meer, 1986). Later, it was found that in fact three 14 kDa proteins strongly 

accumulate, of which one (P2) is related to PR-4, while the other two proteins are both 

serologically related to the tobacco PR-1 protein (P4 and P6) (Joosten et al., 1990a). 

However, a clear biological role for these proteins was never found (Van Loon and Van 

Strien, 1999; Van Loon et al., 2006). The function of some other PR proteins appears to be 

more clear. As mentioned above 1,3-13-glucanases and chitinases, which are strongly 

expressed in resistant plants upon C. fulvum inoculation, directly target the fungal hyphae 

(Joosten and De Wit, 1989; Wubben et al, 1992). Although C. fulvum itself appears to be 
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insensitive to these hydrolytic enzymes (Joosten et al., 1995), they have deleterious effects on 

other fungi (Van den Burg et al., 2006; Van Esse et al., 2007). The Avr4 effector enhances 

virulence of the pathogen by binding and subsequently protecting the chitin of the penetrating 

hyphae against plant chitinases (Van den Burg et al., 2006; Van Esse et al, 2007). In 

addition, the Avr2 effector, which matches the Cf-2 resistance protein, allows C. fulvum to 

resist a particular aspect of the host defence response since this effector specifically inhibits 

the activity of the Rcr3 protease that is secreted by tomato (Rooney et al., 2005). Non-race 

specific effectors produced by all strains of C. fulvum are the extracellular proteins (Ecps), 

which also contribute to virulence. Ecpl and Ecp2 are both required for full virulence (Lauge 

et al., 1997) and the recently identified Ecp6 protein has also been shown to significantly 

contribute to C. fulvum virulence on tomato (Bolton et al., 2008). Ecp6 contains lysine motifs 

(LysM domains) that are carbohydrate-binding modules, and homology-based modelling 

suggests that this effector binds to chitin. Possibly Ecp6 also shields and protects chitin as was 

suggested for Avr4. Alternatively, it could act as a 'stealth' factor implying that Ecp6 captures 

chitin oligomers that are released from the hyphae during colonization of the apoplast and 

which might function as MAMPs (Whiteford and Spanu, 2002). 

Since C. fulvum induces a differential apoplastic response in resistant plants compared 

to susceptible plants (Joosten and De Wit, 1989), an extensive study of the apoplastic 

proteome of tomato leaves was performed to study the apoplastic defence response in tomato. 

Furthermore, we anticipated to obtain additional information on the manipulation of this 

response by C. fulvum. Therefore, Q^-containing (resistant) and C/^-lacking (susceptible) 

tomato plants were inoculated with an Avr4-producing strain of C. fulvum and apoplastic fluid 

(AF) was isolated from the leaflets at several stages after inoculation. We subsequently 

analyzed the apoplastic proteins present in the AF by quantitative 2-dimensional fluorescence 

difference gel electrophoresis (DIGE-2DE) and by comparative LC-MS/MSE analysis. 

Eventually, we identified 66 apoplastic proteins and results from both studies revealed that 

protein accumulation occurred much faster in the resistant plants than in the susceptible ones. 

In addition, various effectors secreted by C. fulvum were found to accumulate in susceptible 

plants. Our comparative LC-MS/MSE analysis provides a highly detailed overview of the 

apoplastic proteome and its changes upon C. fulvum inoculation. Furthermore, quantification 

of a subset of the apoplastic proteins from tomato and comparison to gene expression data of 

the C. fulvum-inoculated plants and Cf-4/Avr4 seedlings, which specifically mount a HR, 
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reveals new insights into the dynamics of the apoplastic leaf proteome during the interaction 

between tomato and C. fulvum. Furthermore, these combined data provide indications that, to 

exert ETS, C. fulvum specifically triggers the downregulation of host genes encoding cell wall 

proteins of tomato. Since C. fulvum grows in close association with the cell wall, this would 

lead to an increase in nutrient and water supply. 

RESULTS 

Analysis of the tomato apoplastic proteome by quantitative DIGE-2DE gels 

Earlier analysis revealed that the apoplastic proteome of tomato plants inoculated with 

C. fulvum changes rapidly (De Wit and Van der Meer, 1986; Joosten and De Wit, 1989). 

Here, we describe an extensive analysis of the changes in the apoplastic proteome of resistant 

(R; MM-Cf-4) and susceptible (S; MM-CfO) tomato plants inoculated with a strain of C. 

fulvum expressing Avr4. We analyzed four stages of symptom development (A-D), in which 

stage A represents the day of inoculation, stage B approximately 6 days after inoculation, 

stage C approximately 10 days after inoculation and stage D approximately two weeks after 

inoculation (Table I) (Bolton et ah, 2008). At each of these four stages, apoplastic fluid (AF) 

was isolated from leaflets collected from multiple inoculated plants. Approximately 0.5 ml of 

AF was obtained per gram of fresh leaf weight from MM-Cf- Table II. Average protein 

4 as well as MM-CfO plants (Figure 1). The Coomassie- n°"jen
 "YAFI ° dP°P th* 

stained protein profile of equal volumes of AF was corresponding amount of 
protein loaded on the DIGE-

determined by one dimensional SDS-PAGE and the 2DE gels. 
Code ug/ul in AF" ug/2DF 

Table I. Symptoms of resistant and susceptible tomato plants at 
four stages after inoculation with C. fulvum expressing Avr4. 

Stage Resistant plants Code Susceptible plants Code 

No symptoms (day of R NO symptoms (day of 
inoculation) * Inoculation) 

Bending of leaves 
(epinasty) 

Bending of leaves 
(epinasty) 

Bending of leaves 
(epinasty) and 
chlorosis 

Re 

Re 

Ro 

Just before manifestation of 
the first visual symptoms 

Mycelium is visible 

Extensive mycelium growth 
and sporulation on lower side 
of the leaves 

S. 

S. 

Sc 

R« 
RB 

Re 

R„ 
s. 
s. 
So 

So 

7.7 ±2.3 
5.6 ±2.1 

9.2 ± 3.6 
7.6 ±2.6 
5.5 ±2.3 

4.7 ±2.1 
7.3 ±1.2 
12.0 ±3.3 

30.5 
22.0 
36.4 
29.9 
21.7 
18.2 
29.2 
47.5 

a Average protein concentration of 
10 times concentrated apoplastic 
fluid. 
b Average protein amounts present 
in 40 p.1 of apoplastic fluid that 
was loaded on a DIGE-2DE gel. 
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Figure 1. Equal volumes of apoplastic fluid (AF) 
are obtained from leaflets of resistant (R) and 
susceptible (S) tomato plants. 
Apoplastic fluid was isolated at the day of inoculation 
(RA and SA) and at stage D (RD and SD), when C. 
futvum has completed its life cycle on the susceptible 
plants. At the latter stage, the susceptible leaflets are 
fully colonized by the fungus. 

results proved to be similar to earlier 

observations (Figure 2A) (De Wit and Van 

der Meer, 1986; Joosten and De Wit, 

1989). The amount of 35 kDa 1,3-13-

glucanase, 26 kDa chitinase and 14 kDa 

PR protein increases fast in the resistant 

compared to susceptible plants. However, 

the increase of these proteins in resistant 

plants is transient, and at later stages these 

proteins accumulate to higher amounts in 

the susceptible plants than in the resistant 

plants (compare lanes RD and SD)-

kD 

7 5 - ^ 

50 . _ 

37 -

25 ... 
20 «• 

15 . 

-35 

-26 

— 14 
R. S» 

Figure 2. Proteome changes in apoplastic 
flaids isolated at stages A, B, C and D of 
resistant (R) and susceptible (S) tomato 
plants after C.fulvum inoculation. 
A) Proteins originating from 200 ul of 
apoplastic fluid were separated on 12% SDS-
PAGE gels. The numbers 35,26 and 14 indicate 
the pathogenesis-related proteins 35 kDa 1,3-B-
ghicanase, 26 kDa chitinase and 14 kDa P2, P4 
and P6 proteins, respectively. B) Protein 
amounts as reported in Table II were labelled 
with the fluorescent DIGE label and separated 
on D1GE-2DE gels. Gels were run as described 
in Methods and proteins were visualized by 
scanning. 
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To study the apoplastic proteome changes in more detail, proteins present in 40 ul of 

AF obtained at the four different stages, in three replicate inoculation experiments of resistant 

and susceptible plants, were separated on quantitative DIGE-2DE gels (Figure 2B, Table II). 

In both resistant and susceptible tomato plants, the abundance of many proteins increased 

significantly in time over the various stages after inoculation. However, the pattern of the 

proteins changes the most between stages A and B in both resistant and susceptible plants, 

and from stage C to D in susceptible plants. Principle component analysis (PCA) of the 

DIGE-2DE images also reveals a change in proteome between stages A and B in both 

resistant and susceptible plants, and a clear deviation of stage SD from the other stages (Figure 

3A). In addition, this analysis revealed that the apoplastic response in the three replicate 

inoculations of resistant and susceptible plants is similar, since the biological replicates of 

each sample cluster in the same quadrant of the plot (Figure 3A). Although the stages RB, RC, 

RD, SB and Sc are hard to separate in this plot, some deviation between these stages seems to 

exist. 

A DIGE-2DE PCA plot B LC-MS/MS5 PCA plot 

-300 

-200 

• 
-100 

0 

100 

200 

-300 

R„ 

o 

-200 

• » . 
° „ o 

Sc t 
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o O 

So 

-100 

> & A 

• 

) 100 200 : 

50 

o 

-50 

* S 0 

100 -50 

m RD 

*Rc 

°sc 

• 

* R . 

• s . 

• 

) 50 

Figure 3. Principle component analysis (PCA) of DIGE-2DE images and LC-MS/MS data. 
A and B) Closed circles represent samples from resistant plants while open circles represent samples from 
susceptible plants.The lightest grey represents stage A (only in panel A), while «o , *o and»o represent stages 
B, C and D, respectively. 

For the identification of proteins present in AF obtained at several stages, samples 

were separated on preparative 2D gels. Proteins were excised from the gels, trypsin-digested, 

and peptides were analyzed by mass spectrometry. In Figure 4, 18 spots are indicated on a 2D 

SDS-PAGE gel representing proteins in AF isolated from stage SD. The identity of most of 

them is given in Table III. Many previously described pathogenesis-related (PR) proteins, 
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Table I I I . Protein identification from 
Spot 
number 

1 
2 
3 
4 
5 
6 
7 
S 
9 
10 
11 

12 
13 
14 
15 
13 

17 
18 

Protein name 

P69B 

1,3-beta-glucanase' 

Basic 30 kDa endochitinase 
Ecp6' 
PIP1 
Acidic 26 kDa endochitinase' 

PRP23 
PR-5x 
CfPhiA' 
Ecp2 

PRP2 
PRP4 
Plastocyanin 
Ecpt 

Protein ID 

SGN-U313775 

sp|Q01412.1 

SGN-U312562 

gb|ABG23376 1 
dbj|BAC76900.1 

emb|CAA50059.1 
emb|AAM23272 1 

emb|CAA78401.1 

SGN-U316008 
emb|CAA09671.1 
SGN-U312690 
emb]CAA78400 1 

preparative 
Exp. 
PI 

6.2 
4.9 
60 
6.5 
65 
50 
4.9 
57 
5.7 
6.2 
8.2 
8.2 
5.0 
5.1 
5.7 
47 
82 
82 
48 
5.8 

Theor. 
Pi 

63 

6.6 

6.2 
4.6 
49 
5.9 

6.1 
8.6 
50 
4.7 

8.5 
7.6 
51 
5.6 

2DE 
Exp 

mass 
(kDa) 

76 
48 
35 
33 
31 
32 
30 
27 
23 
22 
21 
21 
19 
17 
17 
15 
14 
14 
13 
12 

gels. 
Theor 
mass 
(kDa) 

79 

38 

34 
21 
38 
28 

24 
25 
19 
18 

16 
17 
17 
10 

# peptides 
identified in 
2DE spot 

15 

13 

7 
8 
2 

12 

8 
8 
6 
11 

20 
5 
2 
2 

VEMS 
score 

2397 

187 

766 
977 
153 
179 

1117 
1O09 
78 

1114 

2039 
566 
219 
472 

E-value 

0.0E+00 

00E+00 

O.OE+00 
0.0E+00 
52E-50 
O.OE+00 

0.0E+00 
00E+OO 
O.OE+00 
O.OE+00 

O.OE+00 
O.OE+00 
6.0E-82 
0.0E+00 

Sequence 
coverage 

(%) 
23 

51 

25 
38 
7 

57 

22 
18 
39 
70 

64 
32 
11 
31 

a These proteins were identified with peptide mass fingerprinting instead of LC-MS/MS analysis. 
b The sequence of this protein has not yet been submitted to publicly available databases. 

including subtilisin-like protease P69B, 

1,3-13-glucanase, and chitinase were 

identified (Joosten and De Wit, 1989; Van 

Kan et al, 1992; Jorda and Vera, 2000). 

Furthermore, the extracellular proteins 

Ecpl, -2 and -6, which are secreted by C. 

fulvum and accumulate in the apoplast of 

susceptible plants, and a phialide-related 

protein from C. fulvum, CfPhiA, were 

identified (Table III and Figure 4) (Van 

den Ackerveken et al., 1993; Bolton et al, 

2008). 

Labelling with the fluorescent 

DIGE labels allowed relative protein 

quantification from the gel images. The 

changes in protein abundance are presented 

relative to RA, in which the abundance of 

-75 

-50 

-37 

-25 

-20 

-15 

2 • 

< P * **W 

9 . 

12 

13 " 

^ _ _ 1 

- 4 . 
4 
5 

10 

^ . 

11 

16 

So 

-pl- 10 

Figure 4. Preparative 2DE gel for identification of 
protein spots. 
One milligram of total apoplastic protein obtained at 
stage D from susceptible plants inoculated with C. 
fulvum was separated by 2D-SDS-PAGE. The spots 
indicated with 1-18 were excised from the gel, proteins 
were trypsin-digested and the peptides were 
characterized by mass spectrometry. Protein 
identifications are reported in Table III. each protein was set to 1 (Figure 5). As 

expected, the C. fulvum effectors and CfPhiA accumulate in the apoplast at late stages of 

colonization of the susceptible plants (Sc and So; spots 6, 12 and 13; Figure 5). The Ecpl 

protein (spot 18; Figure 4) could not be quantified since this protein was not present on all 
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gels. Furthermore, the typical PR proteins (spots 1, 3, 5, 7, 8, 11 and 16) increase in 

abundance in both the resistant and the susceptible plants, and decrease after stage C in the 

resistant plants compared to the susceptible plants, as was described previously for some of 

these proteins (Figure 5) (De Wit and Van der Meer, 1986; Joosten and De Wit, 1989). 

Finally, spot 17 was identified as a plastocyanin protein. This is an abundant small thylakoid 

lumen protein that functions as an electron transfer agent between photosystem (PS) II and PS 

I. It is most likely that this abundant protein is a contaminant in the AF, which is present as a 

result of damage to the cells during AF isolation. 

LC-MS/MSE analysis of the tomato apoplastic proteome and comparison to the results 

obtained by DIGE-2DE analysis 

The analysis by DIGE-2DE gels clearly visualized the general proteome dynamics in 

the apoplast of resistant and susceptible tomato plants after C. fulvum inoculation and 

confirmed earlier findings. However, it was difficult to identify and quantify low abundant 

proteins from the gels and in addition the dynamic range of this system appeared to be limited 

(see below). This implies that by using this approach, only abundant proteins that have 

already been described extensively in the past could be identified. To obtain a more detailed 

and possibly exhaustive overview of the changes in the apoplastic proteome, proteins in AFs 

from leaflets at stages B to D of resistant and susceptible plants from one of the three 

inoculation series used for DIGE-2DE were digested with trypsin and analyzed in triplicate by 

a Q-TOF Premier mass spectrometer. This type of mass spectrometers allows collection of 

very accurate masses and retention times of peptides in combination with precise 

quantification. To reveal overall differences between the samples, a PCA plot was made of 

the quantified data. This plot revealed a very low technical variation since the triplicate LC-

MS/MS runs of each sample cluster very close together (Figure 3B). In addition, this large 

dataset allowed distinction between the different stages (B-D) and between stage B and even 

more between stage C and D of resistant and susceptible plants. The proteome does not seem 

to change from Re to RD, while a major change in the proteome occurs between Sc and SD, 

probably because of the accumulation of C. fulvum-secreted proteins at So (Figure 3B). 

Figure S. Average abundance of the proteins indicated in Figure 4 and Table III, as determined by 2DE 
DIGE and LC-MS/MSE (left and right panels, respectively, for each spot). The changes in protein abundance 
are presented relative to RA (DIGE-2DE) or RB (LC-MS/MSE), in which the abundance of each protein was set 
to 1. From spots indicated with an asterisk, either no or more than one protein was identified. 
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Quantitative LC-MS/MSE and DIGE-2DE analysis of the same samples should lead to similar 

results concerning protein quantification. MS analysis of tryptic peptides obtained from 9 of 

the 17 quantified spots shown in Figure 4 led to an unambiguous identification (Table III) and 

this set of proteins was used to compare DIGE-2DE and LC-MS/MSE quantification (Figure 

5; right panels). LC-MS/MSE protein quantifications are based on non-redundant peptides that 

were quantified in at least 17 of the 18 LC-MS/MSE runs. The changes in protein abundance 

are presented relative to RB, in which the abundance of each protein was set to 1 (Figure 5). 

Proteins secreted by C. fulvum (spots 6, 12 and 13; Figure 5) are quantified based on non-

redundant peptides identified in at least the triplicate runs of Sc and SD- Since the peptides 

were not identified in RB, the abundance of these proteins at Sc was set to the abundance of 

Sc in the DIGE-2DE gels. The relative changes in apoplastic protein abundance at the 

different stages after inoculation revealed by both methods revealed similar protein patterns 

although the C. fulvum-secreted effectors and CfPhiA (spots 6, 12 and 13) seem to be present 

in substantial amounts in AFs of resistant plants and early stages of susceptible plants when 

analyzed on DIGE-2DE gels. However, this is caused by some minor background detection in 

the gel in combination with the way the data are presented (for DIGE-2DE the protein 

abundance at RA = 1). Furthermore, it is clear that the dynamic range (the ratio between 

proteins with the lowest and the highest abundance) of the LC-MS/MSE analysis is much 

larger and therefore, the actual changes in protein abundance are often much more 

pronounced than determined by DIGE-2DE analysis. This is also clear from the more 

discriminating PCA plot of the LC-MS/MSE analysis compared to the PCA plot of the DIGE-

2DE analysis (Figure 3). In addition, the DIGE-2DE quantification is based on three 

biological replicates while the LC-MS/MSE quantification is based on triplicate analysis of 

one of these replicates. This is also reflected by the PCA plots since the technical replicates 

cluster much better than the biological replicates (Figure 3). Since quantification profiles as 

determined by LC-MS/MSE prove to be comparable to the results obtained with DIGE-2DE 

gels, we concluded that the samples used for LC-MS/MSE analysis are representative for the 

apoplastic proteome of resistant and susceptible plants at the various stages after C. fulvum 

inoculation. Therefore, the LC-MS/MSE data were used for further analysis and subsequent 

biological interpretation of the events that take place in the apoplast of leaflets of resistant and 

susceptible tomato plants upon inoculation with C. fulvum. 
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LC-MS/MSE analysis reveals massive changes in the apoplastic proteome after 

inoculation of resistant and susceptible tomato plants with C.fulvum 

LC-MS/MSE analysis in triplicate of AFs obtained from stages B, C and D of resistant 

and susceptible plants from one inoculation series led to the identification of 66 proteins, 

based on two or more peptides, which are predicted by MultiLoc (Hoglund et al., 2006) to 

localize to the apoplast or to the plasma membrane (PM). This set of proteins includes 

members of almost all PR protein families that were described by Van Loon et al (2006) 

(Table IV). It also contains the low abundant papain-like cysteine protease Rcr3 (Table IV, 

#31), which is guarded by Cf-2 and is targeted by Avr2 (Rooney et al., 2005). Also the Rcr3-

related proteases, referred to as Phytophthora-inhibited protease 1 (PIP1) (Table IV, #15) 

(Tian et al., 2007) and cysteine protease TDI-65 (CYP1) (Table IV, #33) (Hao et al., 2006) 

were identified. Furthermore, the CfPhiA protein (Table IV, #66) (Bolton et al., 2008) and 

several effectors of C. fulvum were identified in Sc and SD, of which some were to a (very) 

low extent also present in SB and RB, RC and/or RD. The effectors include the highly abundant 

extracellular protein Ecp6 from C. fulvum (Table IV, #64), but also the less abundant 

extracellular proteins Ecp2, -4, -5 and -7 (Table IV, #61, #62, #63 and #65, respectively) (Van 

den Ackerveken et al., 1993; Lauge et al., 2000; Bolton et ah, 2008). Ecpl and the race-

specific elicitor Avr9 were identified based on only one peptide (results not shown) and 

therefore not included in Table IV. In addition, several PM-localized proteins were identified 

including two Cf-like LRR proteins (Table IV, #17 and #26), the tomato brassinosteroid LRR 

receptor kinase (BRI1) (Table IV, #25) and three fasciclin-like arabinogalactan proteins 

(Table IV, #21, #22 and #24). The latter proteins can be (transiently) anchored into the PM 

and are probably involved in cell adhesion (Johnson et ah, 2003). 

A subset of 47 of the identified apoplastic proteins was quantified based on the 

constraints described in the Methods. This analysis provided a detailed overview of protein 

accumulation in the apoplast through the various stages after inoculation with C. fulvum of 

resistant MM-Cf-4 and susceptible MM-CfO tomato plants. The changes in protein abundance 

are relative to RB, in which protein abundance was set to 1 or -1. Based on the accumulation 

patterns, the quantified proteins were divided over three types of accumulation profiles (Table 

IV; Figure 6, left graphs). Profile 1 matches proteins of which the abundance increases rapidly 

between RB and Rc, after which there is a rapid decline between Rc and RD- At the same time, 
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Table IV. LC-MS/MS -based apoplastic protein identification and quantification in resistant and 
susceptible tomato plants inoculated with C. fulvum, and transcriptional regulation of the encoding genes 
upon C. fulvum inoculation and in Cf-4/Avr4 seedlings mounting the HR. 

# peptides 
for ID 

4 
5 
4 

42 
4 
18 
4 
2 

14 
67 
27 
9 
8 
7 
12 
6 
6 
19 
4 
5 
3 
4 
10 
7 
2 
5 
5 
11 
10 
14 
7 
6 
4 
4 
8 
15 
5 
2 
2 
6 
10 
3 
5 
5 
2 
3 
7 
14 
11 
8 
4 
5 
2 
4 
3 
2 
2 

12 
2 
3 
7 
4 
4 

Protein identification 

Highest 
peptide 
score 

343 
352 
155 
440 
117 
465 
184 
126 

325 
492 
382 
385 
242 
161 
388 
188 
86 
177 
186 
165 
149 
79 
236 
216 
55 
147 
161 
142 
123 
236 
135 
155 
119 
111 
450 
430 
119 
146 
380 
175 
380 
55 
165 
120 
83 
267 
127 
492 
127 
172 
143 
100 
90 
163 
197 
106 
65 

340 
102 
148 
309 
297 
326 

Protein 
score 

781 
1125 
244 

3086 
283 
1563 
295 
185 

1139 
5965 
3559 
1084 
634 
325 
1242 
512 
294 
955 
188 
434 
231 
233 
681 
471 
319 
483 
276 
434 
369 
1133 
201 
441 
272 
360 
874 
1809 
258 
182 
386 
214 
1401 
247 
463 
339 
251 
447 
505 

2177 
476 
482 
216 
288 
124 
296 
407 
214 
164 

1678 
126 
349 
719 
430 
377 

Sequence 
coverage 

% 
43 
57 
37 
76 
44 
67 
33 
31 

65 
69 
56 
49 
52 
19 
46 
37 
27 
46 
11 
42 
22 
24 
36 
30 
4 

39 
28 
30 
44 
33 
24 
51 
24 
13 
49 
56 
32 
46 
26 
46 
56 
28 
43 
47 
22 
41 
23 
32 
24 
30 
26 
28 
24 
46 
63 
33 
22 
65 
11 
27 
65 
75 
34 

Protein quantification 

Ace. 

1 

2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 

2 
2 

2 

2 
3 
3 
3 
3 

# peptides for 

1 

9 
1 
4 
1 
1 

2 
20 
4 
2 
1 
4 
6 
3 
2 
5 
2 
1 
1 
1 
1 

3 
3 
1 
2 
3 
1 
1 
1 
1 
1 
3 

1 
1 
3 
2 
1 
1 
2 

1 
1 

1 

1 
1 
1 
1 
1 

Highest 
peptide 
score 

104 

117 
55 

465 
52 
126 

325 
438 
275 
385 
212 
132 
367 
188 
74 
177 
186 
165 
149 
79 
61 

145 
161 
60 
89 
191 
92 
150 
77 
111 
450 
119 

146 
87 
175 
89 
52 
50 
111 

267 
52 

64 

90 
147 
197 
106 
65 

1 PR-1; Pathogenesis-related protein P4 
2 PR-1; Pathogenesis-related protein P6 
3 PR-1-tike 
4 PR-2; Acidic beta-1,3-glucanase 
5 Beta-1,3-glucanase-like protein 
6 PR-3; Acidic 26 kDa endochitinase 
7 PR-3; Acidic 27 kDa endochitinase 
8 PR-3; Class IV chitinase-like 

9 PR-4; Pathogenesis-related protein P2 
10 PR-7; Subtilisin-like protease (P69B protein) 
11 PR-7; Subtilisin-like protease (P69C protein) 
12 PR-8; Acidic endochitinase III (CHIB1) 
13 PR-11;Chitinase, class V 
14 Cysteine proteinase 3 
15 Phytophthora-inhibited protease 1 (PIP1) 
16 Plastocyanin-like (CT099) 
17 Putative disease resistance protein 
18 Subtilisin-like protease precursor (ARA12-like) 
19 Praline-rich protein 
20 Hypothetical protein 
21 Fasdclin-like arabinogalactan protein 
22 Fasdclin-like arabinogalactan protein 
23 Putative beta-galactosidase 
24 Fasdclin-like arabinogalactan protein 
25 Brassinosteroid LRR receptor kinase (BRI1) 
26 Leudne-rich repeat protein 
27 Serine carboxypeptidase 
28 Alpha-L-arabinofuranosidase 
29 Alpha-man nosidase 
30 Putative beta-galactosidase 
31 Cysteine protease 1 (Rcr3) 
32 Basic PR-1-like 
33 Cysteine protease TDI-65 (CYP1) 
34 G-D-xylosidase(LEXYU) 
35 PR-3; Basic 30 kDa endochitinase 
36 PR-9; Peroxidase 
37 Low-temperature-tnduced cysteine proteinase 
38 Hypothetical protein 
39 PR-15; 24K germin like protein 
40 Germin-like protein 
41 PR-15; 24K germin like protein 
42 Pectinesterase 
43 Alpha-galactosidase 
44 Xyloglucan endotransglycosyiase LeXET2 
45 Pectinacetylesterase-like 
46 PR-6; Ethylene-responsive proteinase inhibitor 1 
47 PR-7; Subtilisin-like protease {P69F protein) 
48 PR-7; Subtilisin-ltke protease {P69A protein) 
49 PR-7; Subtilisin-like protease (P69D protein) 
50 ArabinosidaseARA-1 
51 PR-9; Peroxidase 
52 Cationic peroxidase 
53 PR-14; Lipid transfer protein LTP1-like 
54 Non-specific lipid transfer protein 
55 PR b1 -like precursor 
56 Haem peroxidase 
57 PR-5; Thaumatin-like protein 
58 Glucan endo-1,3-beta-D-glucosidase 
59 Hypothetical protein 
60 Pathogenesis-related protein PR P23 
61 Ecp2 (Cladosporium fulvum) 
62 Ecp4 (Cladosporium fulvum) 
63 Ecp5 (Cladosporium fulvum) 
64 Ecp6 (Cladosporium fulvum) 
65 Ecp7 (Cladosporium fulvum) 
66 PhiC (Cladosporium fulvum) 

a Ratios refer to gene expression in Cf-4/Avr4 seedlings compared to the control seedlings. 
Values indicated in bold are significantly different from the values shown for the previous stage. 

c Ratios indicated in bold represent significantly different transcription in Cf-4/Avr4 seedlings as compared to 
the controls. 
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Table IV. Continued. 

# 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
18 
17 
18 
19 
20 
21 
22 
23 
24 
25 
23 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
46 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
SO 
81 
82 
S3 
84 
85 
86 

RA 

1.0 

1.0 
1.0 
1.0 
1.0 
1.0 

1 0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
10 
10 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 

1.0 
1.0 

1.0 

1.0 
-1.0 
-1.0 
-1.0 
-1.0 

Relativ 

RB 

5.6 

7.8 
7.1 
6.5 
1.1 
3.9 

14.1 
4.1 
4.6 
4.5 
6.2 
2.4 
4.2 
2.7 
5.5 
2.5 
3.0 
2.5 
1.8 
2.3 
7.7 

4.3 
2.9 
2.1 
2.5 
2.5 
4.3 
5.9 
2.7 
1.5 
3.6 
3.8 

2.6 
1.7 
1.6 
1.8 
3.5 
4.1 
2.2 

22 
2.0 

4.4 

7.1 
-0.5 
-0.4 
-0.9 
-0.3 

e protein abundance 

Re 

1.9 

3.6 
2.0 
3.5 
1.0 
1.5 

8.9 
2 4 
2 4 
2.0 
3.5 
1.6 
2 9 
1.6 
1.2 
1.4 
1.5 
1.4 
0.9 
1.0 
2.3 

3.2 
1.5 
1.5 
1.5 
1.5 
3.1 
3.6 
1.5 
1.3 
1.5 
2.2 

1.2 
1.2 
1.3 
1.2 
1.9 
1.8 
0.8 

1.0 
0.8 

1.4 

2.5 
-0.9 
-0.7 
-1.9 
-0.5 

SA 

0.1 

0.5 
0.8 
0.6 
0.5 
1.0 

0.9 
0.7 
0.5 
0.6 
0.6 
0.7 
0.7 
0.7 
0.7 
0.8 
0.8 
0.7 
0.7 
0.8 
0.5 

0.6 
1.2 
0.8 
1.0 
1.1 
0.7 
1.0 
0.7 
0.8 
1.1 
0.9 

0.6 
0.7 
0.7 
0.8 
0.6 
0.7 
0.7 

0.8 
0.9 

0.3 

1.3 
-12 
-12 
-1.2 
-0.9 

SB 

4.4 

3.2 
1.5 
4.3 
1.7 
1.5 

8.1 
1.6 
0.9 
1.6 
1.5 
1.4 
2.9 
1.5 
1.0 
1.3 
1.0 
1.9 
1.2 
1.2 
4.6 

2.1 
1.7 
1.1 
1.4 
1.3 
2.0 
0.0 
0.9 
0.9 
1.2 
1.5 

0.8 
0.7 
0.9 
0.7 
1.1 
0.8 
0.8 

1.1 
0.9 

0.6 

1.2 
-1.7 
-24 
-1.7 
-1.0 

Sc 

10.1 

4.5 
3.7 
12.6 
5.8 
2.6 

13.2 
1.7 
1.6 
2.2 
3.0 
2.3 
5.3 
2.0 
2.6 
1.4 
1.6 
4.1 
1.6 
22 

10.5 

3.8 
1.7 
1.3 
1.5 
1.2 
1.8 
0.4 
1.2 
0.8 
1.4 
1.8 

1.2 
1.1 
0.9 
1.1 
1.4 
0.8 
0.7 

0.9 
1.1 

0.7 

1.9 
-2.1 
-2.5 
-5.7 
-2.4 

Exp. 
Profile 

1A 

1A 
1A 
1A 
1A 

1A 
1A 
1A 
1A 

1A 
1A 
1A 
1A 
1B 
16 
1B 
IB 
1B 
1B 

2A 
2A 
2A 
2A 
2A 

2B 
2B 
2B 
2B 
2B 

3 
3 
3 

RA 

1.0 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

-1.0 
-1.0 
-1.0 
-1.0 
-1.0 
-1.0 

1.0 
1.0 
1.0 
1.0 
1.0 

-1.0 
-1.0 
-1.0 
-1.0 
-1.0 

-1.0 
-1.0 
-1.0 

R B " 

4.9 

2.4 
9.6 
1.1 

13.1 

16.8 
4.0 
8.7 
5.1 

1.3 
12.1 
1.0 
2.2 
-1.5 
-7.3 
-3.0 
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-1.6 
-1.3 

-1.2 
-1.3 
-0.9 

SB 

2.5 

1.8 
6.6 
1.0 
6.8 

8.2 
2,5 
4,4 
4,1 

1.2 
7.5 
0,8 
1.2 

-1.3 
-2.4 
-1.5 
-2.6 
-2.0 
-1.1 

9.0 
1.0 
1.1 
1.7 
3.1 

-1.5 
-1.4 
-1.2 
-1.4 
-1.1 

-1.2 
-1.2 
-0.7 

Sc 

6.0 

2.2 
13.0 
5.3 
37.3 

22.1 
4.0 
2.6 
5.5 

2.3 
17.7 
1.6 
1.2 
-1.7 

-101.7 
-5.7 

-80.9 
-62.5 
-2.4 

5.6 
2.5 
1.1 
1.8 
3.5 

-5.3 
-15.4 
•4.0 

-27.7 
-1.5 

-1.6 
-3.5 
-1.0 

HR1h c 

5.1 

0.5 
1.8 
1.1 
2.8 

1.9 
1.4 
0.9 
1.4 

1.1 
1.2 
1.0 
1.0 
-1.3 
-1.2 
-1.3 
-1.0 
-1.2 
-1.2 

0.9 
0.7 
1.1 
1.3 
1.7 

-1.2 
-1.1 
-1.1 
-1.5 
-1.4 

1.0 
1.5 
2.1 

HR3h 

5.3 

1.6 
1.9 
1.1 
3.5 

3.1 
1.6 
1.0 
1.3 

0.8 
1.3 
0.9 
2.9 
-1.5 
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the abundance of these proteins continuously increases in the susceptible plants. Profile 2 is 

similar to Profile 1 in the resistant plants, whereas the abundance of the same proteins in the 

apoplast of the susceptible plants remains more or less unaltered. The accumulation of 

proteins of the resistant plants matching Profile 3 is similar to Profiles 1 and 2, albeit less 

pronounced, whereas their abundance decreases in the susceptible plants. 

Most PR proteins that were quantified match Profile 1, which is a behaviour that is 

typical for PR proteins. Proteins that match this profile include members of the PR-1, -2, -3, -

4, -7, -8 and -11 families, and several plasma membrane-localized proteins (Table IV). The 

PR-7 subtilisin-like protease P69 family consists of 7 members, of which five (P69A to -D 

and P69F; Table IV, #10, #11, #47, #48 and #49) were identified in the LC-MS/MSE analysis. 

P69B and P69C have been described to be transcriptionally upregulated upon inoculation with 

an avirulent or virulent pathogen (Jorda and Vera, 2000), thereby matching our data and 

protein abundance Profile 1. The P69 family members A, D and F are not transcriptionally 

upregulated in a compatible interaction, while upregulation in an incompatible interaction was 

not studied (Jorda et al., 1999; Jorda and Vera, 2000). Here, P69F was found not to 

accumulate in susceptible plants and to accumulate in resistant plants (Profile 2), thereby 

suggesting that the encoding gene is transcriptionally upregulated in incompatible 

interactions. Furthermore, the P69 family members E and G were not identified in this 

analysis, which confirms the observation that these family members are only expressed in 

roots (Jorda and Vera, 2000; Kavroulakis et al., 2006). Since our results, and results presented 

by other groups, show that individual members of the P69 family have increased gene 

expression and increasing protein accumulation (Jorda et al., 1999), and one of them (P69B) 

is targeted by two independent protease inhibitors secreted by Phytophthora infestans (Tian et 

al., 2004; Tian et al., 2005), these apoplastic subtilisin-like proteases seem to play an 

important role in plant defence. 

In addition to apoplastic proteins, contaminating proteins not predicted to localize to 

the apoplast were identified in all AF samples. In other studies on the leaf apoplastic 

proteome, the activity of cellular malate dehydrogenase (MDH) has been used as a marker for 

intracellular protein contamination of AFs (Boudart et al., 2005; Dani et al., 2005). Two 

different MDHs were identified in the tomato apoplast (Supplementary Table SI) and 

quantification of these MDHs revealed that they match Profile 2. Also most additional 

contaminating non-apoplastic proteins match Profile 2 (Supplementary Table SI and Figure 
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SI). This expression pattern might be explained by the HR-associated cell death that takes 

place at RB and Re due to Cf-4-mediated recognition of Avr4, which locally causes release of 

the cellular content into the apoplast. Since the abundance of most of these contaminating 

proteins does not change during C. fulvum proliferation in the leaves of susceptible plants, 

these data also show that C. fulvum remains restricted to the apoplast without damaging the 

tomato cells. 

Changes in the apoplastic proteome related to transcriptional regulation due to a 

challenge with C. fulvum, and comparison to HR-associated transcriptional regulation 

To study transcriptional regulation of genes encoding apoplastic proteins in response 

to C. fulvum inoculation, Affymetrix tomato microarrays were hybridized with RNA isolated 

at stages A, B and C of new inoculation series of resistant and susceptible plants. To be able 

to compare expression patterns, the expression level of the various genes at RA was set to 1 or 

-1 (Table IV; Figure 6, middle graphs). In addition to studying gene expression upon C. 

fulvum inoculation, HR-associated expression of the same subset of genes was studied using 

transgenic tomato seedlings expressing both the Cf-4 and Avr4 gene (see Methods for details; 

Table IV; Figure 6, right graphs). For this, the Affymetrix arrays were hybridized with RNA 

isolated from Cf-4/Avr4 and control seedlings at 1, 3 and 5 hours after the temperature shift 

that initiates a synchronized HR. Genes present on the microarray that encode the proteins 

listed in Table IV were selected for further analysis. 

Microarrays that were hybridized with RNA isolated from the C. ̂ //vwm-inoculated 

plants revealed that the increased apoplastic abundance of most of the proteins that match 

Profile 1 is the result of an increased transcription of the encoding gene in both resistant and 

susceptible plants, although some genes were not transcriptionally regulated (Profile 1A, 

Figure 6; middle graphs). Analysis of the expression of the same subset of genes present on 

the microarrays hybridized with RNA from Cf-4/Avr4 seedlings mounting a HR revealed that 

for most of the genes that match Profile 1A, transcription also increases during the HR (Table 

IV; Figure 6, right graphs). The proteins matching Profile 1A are mainly PR proteins that 

accumulate as a result of increased gene expression (Table IV), such as 1,3-B-glucanases, 

chitinases and the PR-1-related proteins P4 and P6 (De Wit and Van der Meer, 1986; Joosten 

and De Wit, 1989; Joosten et ah, 1990a; Wubben et ah, 1992). 
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Apoplastic protein C. fu/vum-triggered transcrip-
abundance tional regulation of genes 

encoding apoplastic proteins 

HR-associated transcriptional 
regulation of genes encoding 

apoplastic proteins 

1A;n=13 

R» R, Rc S, 

2A; n=5 

R« R. Rc S, 

n=4 3; n=3 

Ra Rc RD SB Sc SD 

Figure 6. The relation between protein accumulation in the apoplast and transcriptional regulation of the 
encoding genes in C. /u/vuni-inocu lated resistant and susceptible tomato plants and Cf-4/Avr4 seedlings. 
Abundance profiles of apoplastic proteins identified and quantified by LC-MS/MSE at stages B, C and D in 
resistant and susceptible plants are classified into Profiles 1, 2 and 3 (see text for details). Protein abundances are 
shown relative to RB, of which protein abundance was set to 1 or -1 (left graphs). The encoding genes of 
approximately 70% of the identified proteins are present on the Affymetrix tomato microarray. Transcriptional 
regulation of these genes was determined for stages A, B and C of resistant and susceptible plants inoculated 
with C. falvum. Gene expression is shown relative to RA, of which gene expression was set to 1 or -1 (middle 
graphs). In addition, microarrays were hybridized with RNA isolated from Cf-4/Avr4 tomato seedlings that 
execute a synchronized hypersensitive response (HR). In this case, transcriptional regulation of the genes 
encoding the quantified apoplastic proteins was determined at 1, 3 and 5 hours after HR initiation and presented 
as the expression in Cf-4/Avr4 versus control seedlings (right graphs; see Table IV for details). 
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Surprisingly, genes encoding a subset of proteins matching Profile 1 are transiently 

downregulated in the resistant plants and strongly downregulated in the susceptible ones upon 

challenge with C. fulvum. In the resistant plants there was a slight and transient increase in the 

abundance of the encoded proteins, whereas in the susceptible plants there was some increase 

at later stages of colonization of the leaflets (Profile IB; Table IV; Figure 6, left and middle 

graphs). These genes also appear slightly downregulated in the Cf-4/Avr4 seedlings mounting 

the HR (Table IV; Figure 6, right graphs). However, the strong downregulation, particularly 

in the heavily colonized leaflets of susceptible plants of stage So suggests that this is the 

result of C. fulvum-mediated suppression of host gene expression. Interestingly, four out of 

the six proteins of which the expression of the encoding gene is downregulated are localized 

at the plasma membrane and/or cell wall. These proteins include two fasciclin-like 

arabinogalactan proteins (Table IV, #21 and #22), that might be involved in cell adhesion 

(Seifert and Roberts, 2007), a proline-rich protein (Table IV, #19), and a beta-galactosidase 

(Table IV, #23). 

About 50% of the genes encoding proteins matching Profile 2 are transcriptionally 

upregulated in the resistant plants, which causes accumulation of the encoding proteins in the 

apoplast (Profile 2A; Table IV; Figure 6, left and middle graphs). In addition, transcription of 

some of these genes is also stimulated in susceptible plants and by the HR (Table IV; Figure 

6, middle and right graphs). These genes encode proteins such as a basic PR-1-like protein 

(Table IV, #32) and the PR-9 peroxidase (Table IV, #36), which have both been described to 

be transcriptionally upregulated upon inoculation with various pathogens (Vera et al., 1993; 

Tornero et al., 1994; Tornero et al, 1997). We find that the increase in mRNA in susceptible 

plants does not lead to an increase in protein in the apoplast. Possibly, the sustained presence 

of C. fulvum in the apoplast results in a high turn-over of these enzymes, while in the resistant 

plants C. fulvum has been defeated, leading to transient protein accumulation. Similar to 

Profile 1, approximately half of the genes encoding proteins matching Profile 2 appear to be 

downregulated by C. fulvum (Profile 2B; Table IV; Figure 6), mainly in the susceptible plants 

but also more or less transiently in the resistant plants. This profile again mostly accounts for 

cell wall-localized proteins, such as two germin-like proteins (Table IV, #40 and #41), a 

pectinesterase (Table IV, #42), an alpha-galactosidase (Table IV, #43) and a xyloglucan 

endotransglycosylase (Table IV, #44). Finally, the genes encoding apoplastic proteins that 

match Profile 3 are neither transcriptionally regulated in C. /w/vw/w-inoculated plants, nor in 
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plants mounting the Cf-4/Avr4-initiated HR (Table IV; Figure 6). Most likely, these proteins 

gradually decrease in abundance because of protein turn-over and a lack of transcriptional 

regulation. 

DISCUSSION 

Apoplastic fluid isolation as a tool to study the apoplastic proteome 

The volumes of apoplastic fluid isolated per gram of fresh weight of healthy and 

diseased leaves are very similar (Figure 1), illustrating that the volume of the mycelium that 

grows in the apoplast of susceptible leaves is negligible compared to the volume of the 

intercellular spaces of the leaf mesophyll. In addition, HR-related cell collapse that leads to 

the release of the cellular content into the apoplast also does not seem to add much to the 

volume of apoplastic fluid obtained. Since a similar volume of AF was obtained from leaflets 

of resistant and susceptible plants before and after inoculation with C. fulvum (Figure 1), the 

dynamics of the apoplastic proteome could be studied by comparing the protein contents of 

identical volumes of AF. The observation that similar volumes of AF are isolated from 

leaflets at different stages suggests that the apoplastic volume is very large. Indeed, the 

volume of the apoplastic space represents about 30% of the total leaf volume since we 

isolated about 5 ml of apoplastic fluid from 10 grams (fresh weight) of leaves, which have a 

volume of about 16 ml themselves. The apoplast consists of intercellular spaces filled with air 

and a water layer in and on the cell walls surrounding the cells (the apoplastic water volume), 

in which the apoplastic proteins are localized. During AF isolation, the intercellular spaces, 

which are in particular large in the spongy parenchyma, are filled with water that is 

subsequently removed by centrifugation, thereby washing out and diluting the apoplastic 

proteins. This implies that the actual local protein concentrations in the apoplast are higher 

than in the AF. Indeed, Rico and Preston (2008) calculated that the apoplastic water volume 

from tomato is about 2-3 fold diluted upon AF isolation. Since the apoplastic response in 

resistant plants is accelerated by the HR that is mounted at the various, strictly localized sites 

of C. fulvum penetration into the leaf, the local concentration of apoplastic proteins at these 

sites in the resistant plants mounting HR (stages RB and Re) is anticipated to be very high. 
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Apoplastic proteome analysis by DIGE-2DE gels 

AFs originating from three independent biological replicates of C. /H/vw«-inoculated 

resistant and susceptible plants, isolated at stages A, B, C and D were analyzed by DIGE-2DE 

gels. To avoid incorrect protein quantification caused by more intense fluorescence or more 

efficient labelling of a particular sample with the Cy3 or Cy5 label, labelling of the replicates 

with either Cy3 or Cy5 was alternated. In addition, one biological replicate was analyzed 

twice, in which the samples were alternately labelled with Cy3 and Cy5. No significant 

differences in protein abundance were found between these two experiments and therefore, it 

was assumed that protein quantification was not influenced by DIGE labelling. 

The number of the various (abundant) proteins making up the apoplastic proteome 

appears to be relatively low, which makes 2DE analysis a useful method for proteome 

analysis. However, the dynamic range of the apoplastic proteome proved to be extremely 

large since proteins such as the subtilisin-like protease P69B show a huge increase in 

abundance, which made identification of low abundant proteins from preparative 2D gels 

difficult. Although the DIGE-2DE gels were suitable to identify the previously described 

apoplastic proteins, DIGE-2DE gels were not suitable to identify new proteins involved in 

apoplastic defence responses of C. Ttt/vwm-inoculated tomato plants. 

In one of the inoculation experiments, non-inoculated MM-Cf-4 and MM-CfO plants 

were included. These plants were incubated in the same compartment as the inoculated ones 

and AF was isolated at stage C. Based on DIGE-2DE gels, the apoplastic proteome of these 

plants was similar to the proteome pattern of RB and SB (results not shown), suggesting that 

the induced responses in the inoculated plants also lead to signalling from plant to plant, 

resulting in an elevated state of defence also in untreated plants. Genes encoding PR proteins 

have been reported to be induced by plant hormones such as salicylic acid and ethylene (Van 

Loon et ah, 2006). Indeed, inoculated leaflets of resistant plants show severe epinasty at 

stages B to D (Table I), which is a hallmark for ethylene production (Ursin and Bradford, 

1989). The released ethylene possibly triggers defence in the neighbouring non-inoculated 

plants. 

Apoplastic proteome analysis by LC-MS/MSE 

LC-MS/MSE analysis of the apoplastic proteome at stages B-D of one representative 

biological replicate of both resistant and susceptible plants inoculated with C. fulvum, was 
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performed in triplicate to eliminate technical variation. To obtain a robust dataset of peptides 

for apoplastic protein quantification, only peptides quantified in 18 LC-MS/MSE runs (6 

samples, each with 3 replicates), or a minimum of 17 runs, were used for further analysis 

(Table IV). Protein quantification is based on the total intensity of the quantified non-

redundant peptide(s). 

As mentioned above, AF was isolated at the various stages and SDS-PAGE gels 

revealed protein patterns conform to earlier observations (Figure 2A) (De Wit and Van der 

Meer, 1986; Joosten and De Wit, 1989; Joosten et al., 1990a). However, in addition to a large 

set of apoplastic proteins, LC-MS/MSE analysis of these AFs revealed a substantial number of 

non-apoplastic proteins (Supplementary Table SI), which is caused by the sensitivity and 

robustness of the method of analysis, in combination with the relatively small apoplastic 

proteome. Since also the relatively insensitive approach of spot identification from the 2DE 

gels revealed a non-apoplastic protein (spot 17, Figures 4 and 5), indeed a large number of 

contaminating non-apoplastic proteins identified through LC-MS/MSE analysis was expected. 

Most non-apoplastic proteins do not increase in abundance at any of the stages, 

except for stage Re. At this stage the HR has occurred in the resistant plants, which probably 

leads to leakage of cellular proteins into the apoplast (Profiles 1 and 2; Supplementary Figure 

SI). Non-apoplastic proteins matching Profile 1 have been described to increase in abundance 

in the cells of leaflets of susceptible plants. This set of proteins includes the basic 1,3-13-

glucanase (PR-2) and PR-10 protein that accumulate in the vacuole and the cytoplasm, 

respectively (Van Kan et al., 1992; Liu and Ekramoddoullah, 2006), and the expression of the 

encoding genes increases in susceptible plants upon inoculation with various pathogens (Van 

Kan et al., 1992; McGee et al., 2001; Liu and Ekramoddoullah, 2006). Indeed, several of the 

genes encoding proteins in Profile 1 are transcriptionally upregulated in susceptible plants 

(Supplementary Figure SI). Therefore, we assume that the increased amounts of these 

contaminating proteins in the AFs of susceptible plants, is caused by their increased 

abundance inside the cells. Finally, a set of non-apoplastic proteins decreases in abundance in 

the AFs from susceptible and also resistant plants (Profile 4; Supplementary Figure SI). Many 

proteins in this subset are involved in photosynthesis and glycolysis and the decrease in 

protein abundance suggests that these pathways are inactivated. Indeed, initiation of the HR 

was shown to specifically inactivate the photosynthesis pathway in a phosphorylation-

dependent manner (Chapter 4) which might lead to a decrease in protein abundance at a later 
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stage. Susceptible plants do not execute a HR but the metabolism and gas exchange of such 

plants are disturbed since the stomata are clogged with mycelium at the later stages of 

infection (Thomma et al., 2005). Microarray analysis revealed that the genes encoding non-

apoplastic proteins matching Profiles 2 or 4 are either transcriptionally unaltered or 

downregulated. Since protein accumulation differs between Profile 2 and 4, the observed 

protein patterns seem to depend on the stability of the protein (Supplementary Figure SI). 

The LC-MS/MSE analysis provides a robust overview of the apoplastic tomato 

proteome. However, the low abundant effectors Avr2, Avr4 and Avr4E were not identified in 

this analysis, which indicates that also this technique has its limitations. In addition, this 

analysis did not reveal any new effectors secreted by C. fulvum, since the full genomic 

sequence of C. fulvum is not available. When available, a database search of the LC-MS/MSE 

data is anticipated to reveal novel effectors of the pathogen that are secreted into the apoplast. 

This is the first time that a subset of C. fulvum-secreted effector proteins has been identified in 

AFs originating from resistant plants (results not shown). Particularly Ecp2 has been 

identified in some of the replicates of RA, RB and Re- Previously, Avr4-promoter-GUS 

fusions revealed that the Avr4 gene is highly expressed by C. fulvum upon inoculation of 

resistant plants. However, the Avr4 protein was never detected in AF isolated from an 

incompatible interaction (Joosten et al., 1997). This suggests that also in resistant plants, 

effectors of C. fulvum are initially able to manipulate plant defence responses (see below) 

before Avr perception and subsequent HR initiation stops proliferation of the pathogen. 

The differences between the dynamics of the apoplastic proteome of resistant and 

susceptible plants 

Almost all apoplastic proteins match Profiles 1 and 2 (Table IV; Figure 6). The clear 

transient protein accumulation in resistant plants, in contrast to a sustained increase or 

unaltered protein abundance in the susceptible plants, illustrates that tomato has defeated C. 

fulvum around stage Re, as after this stage protein abundances decrease again. From these 

expression patterns, it is clear that the resistant MM-Cf-4 plants, which mount a fast HR upon 

Avr4 recognition, are substantially faster with their response to C. fulvum than the susceptible 

plants. 

The observation that the susceptible plants also differentially accumulate substantial 

amounts of apoplastic proteins upon inoculation, despite the lack of HR-associated resistance 
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to C. fulvum, is probably the result of massive colonization of the leaflets by C. fulvum. The 

increase in fungal biomass at the later stages of colonization probably leads to the release of 

large amounts of MAMPs, leading to MAMP-triggered immunity (MTI) in a relatively large 

area of the leaf (Jones and Dangl, 2006). However, C. fulvum is able to colonize the leaflets of 

these plants and must therefore, at least at the earlier stages of infection, be able to avoid 

and/or suppress MTI, most likely through its secreted effectors that might interfere in the 

activation and/or effectiveness of the various components of the host defence response 

(effector-triggered susceptibility, ETS) (Jones and Dangl, 2006) (see below). Since a slow 

apoplastic defence response of susceptible tomato plants is observed, the effectors probably 

do not induce complete ETS during colonization. However, MTI appears to be repressed 

sufficiently or is successfully circumvented by C. fulvum, and therefore the fungus is able to 

colonize the tomato leaves. Upon recognition of Avr4 by C^4-expressing tomato plants, HR-

associated effector-triggered immunity (ETI) occurs (Jones and Dangl, 2006), which renders 

the plant fully resistant to C. fulvum. These data typically show that the resistance of Cf-4 

plants is an accumulation of basal (MTI) and specific resistance (ETI), as was proposed by 

Jones and Dangl (2006). Furthermore, these data show that proteins matching Profile 1 are 

induced as a result of MTI and ETI, while proteins matching Profile 2 are mainly ETI-induced 

as the latter do not increase in abundance in the susceptible plants. 

For a subset of proteins, transcriptional regulation of the encoding genes does not 

correlate with their abundance profile in the AF (Profiles IB and 2B; Table IV; Figure 6). It 

has been reported previously that mRNA expression levels do not always correlate with the 

actual protein abundance (Greenbaum et ai, 2003). In eukaryotic cells, proteins destined to 

the extracellular space are synthesized on the endoplasmic reticulum (ER) and subsequently 

translocated to the ER lumen where they obtain their native conformation. After these 

processing steps they are transported to the Golgi and secreted. However, proteins can also be 

stored in protein storage vacuoles that are destined for regulated secretion, a sorting process 

which is mediated by quality control in the early secretory pathway (Neuhaus and Rogers, 

1998). Furthermore, a decrease in protein abundance caused by transcriptional down 

regulation of the encoding gene strongly depends on the stability of the encoded protein. 

Interestingly, the genes encoding the proteins that match profiles IB and 2B are 

slightly, and more or less transiently, transcriptionally downregulated in resistant plants and 

very strongly in susceptible plants, after inoculation with C. fulvum (Profiles IB and 2B; 
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Table IV; Figure 6). These proteins significantly accumulate in resistant plants at stage C, 

which implies that these proteins are required for defence against C. fulvum (Table IV; Figure 

6). Since this subset mainly consists of proteins involved in cell wall modifications, and a 

clear difference between protein abundance and gene expression is observed, these proteins 

are likely to be stable. For instance, two germin-like proteins (Table IV, #40 and #41) belong 

to this subset, and these proteins are involved in cell wall stiffening and cross-linking, 

possibly via their oxalate-oxidase or superoxide dismutase activity, which leads to hydrogen 

peroxide production (Lamb and Dixon, 1997). In addition, pectinesterase (Table IV, #42), a 

protein that also accumulates at stage Re, catalyses de-esterification of pectin, a process 

which precedes cell wall stiffening to mount resistance (Ficke et al., 2004; Pelloux et al., 

2007). Another protein in this subset, alpha-galactosidase (Table IV, #43), hydrolyses a-D-

galactose from cell wall polymers (Chrost et al., 2007) to modify the cell wall. Possibly, this 

enzyme releases oligogalacturonide fragments from the cell wall that stimulate plant defence 

or accelerates senescence, since a gene encoding a barley alpha-galactosidase is upregulated 

during senescence. Finally, two fasciclin-like arabinogalactans (FLAs; Table IV, #21 and 

#22), which are proteins that function as cell adhesion molecules, reside in this subset. FLAs 

belong to the family of arabinogalactan proteins (AGPs) that form a subgroup within the 

hydroxyproline-rich glycoproteins (HRGPs) (Seifert and Roberts, 2007). Most FLAs are 

anchored in the plasma membrane with a GPI-anchor (Johnson et al., 2003) that can be 

cleaved to release the protein from the membrane into the cell wall (Schultz et al., 1998; Sun 

et al., 2004). Induced GPI-anchor cleavage would allow identification of these FLAs in the 

AFs, and might also explain why for these proteins the abundance does not correlate with 

gene transcription. In addition, this subset contains a proline-rich protein with clear homology 

to extensin-like HRGPs based on conserved domains (Table IV, #19). 

We find that all of the genes encoding the proteins in Profile IB and 2B described 

above, and which appear to be important for resistance to C. fulvum, are strongly 

downregulated in heavily colonized leaflets of susceptible plants. Genes encoding FLAs have 

been reported to be downregulated as a result of the accumulation of abscisic acid (Johnson et 

al., 2003), suggesting a stress-induced transcriptional downregulation in the host. However, 

transcription of these genes hardly changes in the Cf-4/Avr4 seedlings (Table IV; #21 and 

#22), which renders aspecific stress-induced down regulation of these genes highly unlikely. 

Furthermore, there is an example of downregulation of an extensin-like protein by several 
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isolates of endophytic Trichoderma (Bailey et al., 2006). On the contrary, HRGPs are 

important for defence responses to pathogen attack and an increase in HRGP transcripts was 

observed in an incompatible interaction between pearl millet and the oomycete Sclerospora 

graminicola (Deepak et al., 2007). Furthermore, overexpression of an extensin in Arabidopsis 

causes these plants to be resistant to Pseudomonas syringae (Wei and Shirsat, 2006). 

Conformably, genes encoding germin-like proteins were shown to be transcriptionally 

upregulated upon pathogen attack suggesting a role for these proteins in basal defence (Park 

et al., 2004; Zimmermann et al., 2006). Since C. fulvum colonizes the apoplast in close 

association with the cell walls of its host from where it obtains water and nutrients (De Wit, 

1977; Joosten et al., 1990b), accumulation of host cell wall proteins that stiffen the cell wall 

and cause impermeability, thereby blocking water and nutrient uptake, is a potential threat for 

the fungus. Furthermore, cell wall proteins such as FLAs might stimulate a tight adhesion 

between the individual host cells, thereby preventing growth of C. fulvum in between these 

cells. Since most of the genes encoding these proteins are (strongly) transcriptionally 

downregulated in susceptible plants, we propose that C. fulvum is able to mediate active 

suppression of these genes, as also proposed for Pseudomonas syringae inoculated on 

Arabidopsis thaliana (Truman et al., 2006). This allows the fungus to loosen the host cell-to-

cell contacts in order to grow in between the cells and to prevent an increase of the stiffness 

and impermeability of the host cell walls. In this way, the outer surface of the fungal hyphae 

can remain in close contact with the plant cells, allowing uptake of water and nutrients. 

Therefore, we suggest that an effector of C. fulvum targets an extracellular MAMP-receptor in 

susceptible plants, thereby suppressing MAMP-induced transcription of the genes encoding 

the above-mentioned cell wall proteins. In this way, an essential part of the plant defence 

response aimed at restricting proliferation of the fungus is counteracted. 

Accumulation of proteins matching the Profiles 1A and 2A is stimulated by increased 

gene expression of their encoding genes (Table IV, #Figure 6). Furthermore, their accelerated 

accumulation in resistant plants originates from enhanced gene expression, stimulated by the 

Cf-4/Avr4-triggered HR. Therefore, we conclude that Cf-4-mediated resistance to C. fulvum 

is the outcome of a combination of the HR and enhanced apoplastic defence responses. The 

observation that Cf-4-mediated resistance does not rely on the HR only, was also reported in 

Chapter 3. 
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METHODS 

Inoculation of tomato plants with Cladosporiumfulvum and isolation of apoplastic fluid 

Tomato plants were grown under standard greenhouse conditions: 21°C during the 16 

hour day period, 19°C at night, 70% relative humidity (RH) and 100 Watt/m2 Supplementary 

light when the sunlight influx was below 150 Watt/m2. Tomato cultivar MoneyMaker that 

does not contain resistance genes against C. fulvum (MM-CfO), and a near isogenic line 

containing the Cf-4 locus (MM-Cf-4) were used for all inoculations. A race 5 strain of C. 

fulvum, avirulent on MM-Cf-4 plants due to secretion of Avr4, was grown on PDA plates 

containing additional agar (30g/l in total) and after 8-10 days conidia were harvested by 

covering the plate with distilled water and rubbing the surface to release the conidia. Conidial 

suspensions were washed with water twice by centrifugation (4,000g) and the supernatant was 

discarded. Five-week-old plants were spray-inoculated with approximately 1 x 106 spores per 

ml on the lower side of the leaves and plants were kept at 100% relative humidity under a 

plastic transparent cover for 48 hours. Leaflets were subsequently collected from multiple 

resistant and susceptible plants at several stages after C. fulvum inoculation (see also Table I) 

and apoplastic fluids were obtained via vacuum infiltration as described by De Wit and 

Spikman (1982). Briefly, entire leaflets were infiltrated with distilled water in vacuo and 

carefully dried at the outside, after which the apoplastic fluid was isolated via centrifugation 

(10 minutes at 3,000g). Aliquots of 10 ml of apoplastic fluid were freeze-dried and the residue 

was dissolved in 1 ml of MilliQ water and centrifuged at 16,000g for 10 minutes. The 

supernatant was applied to a PD-10 desalting column (GE Healthcare) and proteins were 

eluted with 3.5 ml of MilliQ water, freeze-dried and again dissolved in 1 ml of MilliQ water. 

Protein concentrations were determined by a Bradford protein assay (Bio-Rad) with BSA as a 

standard. This procedure was followed for the apoplastic fluids of three replicate inoculations, 

obtained at stages A, B, C and D after inoculation of resistant (R) and susceptible (S) plants, 

resulting in samples RA to RD and SA to SD (Table I). 

Protein DIGE-Iabelling 

An aliquot of the desalted apoplastic protein preparations was freeze-dried and 

dissolved in TUC (7M Urea, 2M Thiourea, 4% (w/v) CHAPS, 50 mM Tris (pH 8.5)) to a final 

protein concentration of 5 u-g/u-l. The samples were labelled with 0.4 nmol Cy3 or Cy5 DIGE 
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label per 50ug of protein in a volume of 10 JLII according to the instructions of the 

manufacturer (GE Healthcare). In addition, a reference sample consisting of an aliquot of each 

sample was labelled with 0.4 nmol Cy2 DIGE label. The labelling reaction was stopped by 

adding 10 mM lysine and TUCCDT (5M Urea, 2M Thiourea, 2% (w/v) CHAPS, 2% (w/v) 3-

(4-Heptyl)phenyl-3-hydroxypropyl)dimethylammoniopropanesulfonate (C7BzO), 20 mM 

DTT and 5 mM (2-Carboxyethyl) phosphine (TCEP)). The amount of protein that was loaded 

onto the gels originated from equal volumes of apoplastic fluid (Table II). 

Two-dimensional polyacrylamide gel electrophoresis (2DE-PAGE) 

Apoplastic protein samples obtained from the same stage of resistant and susceptible 

plants that were differentially labelled with Cy3 or Cy5 were mixed with the Cy2-labelled 

reference. The volume was adjusted to 450 |xl and IPG buffer (pH 3-10) was added to a final 

concentration of 0.5% (v/v). A 7 cm IPG strip (pi 3-10, non-linear; GE Healthcare) covered 

with mineral oil was rehydrated with the protein mixture in a ceramic strip holder. 

Subsequently, proteins loaded in the strips were focussed on an Ettan IPGphor IIIEF System 

using the Manifold tray (GE Healthcare) at 20°C to a maximum of 9,000 Volt hours, 

according to the instructions of the manufacturer. Subsequently, the strips were incubated in 

equilibration buffer (50 mM Tris (pH 8.8), 6 M Urea, 30% (v/v) glycerol and 2% (w/v) SDS) 

enriched with 1% (w/v) dithiothreitol (DTT) and subsequently in equilibration buffer enriched 

with 2,5% (w/v) iodoacetamide (IAA), both for 15 minutes. The strips were laid onto 12.5% 

SDS-PAGE gels, covered with 0.5% agarose including bromophenol blue and run for 30 

minutes at 5 mA per gel followed by 15 mA per gel, until the bromophenol blue front had 

reached the end of the gel. Gels were immediately scanned on a FX scanner (Bio-Rad) or an 

Ettan DIGE Imager (GE Healthcare). Images were exported as tiff files with Quantity One 

software (Bio-Rad). For protein identifications, preparative 2D gels were run from strips 

loaded with approximately 1 mg of total protein. For this, 18 cm IPG strips with varying pi 

ranges (GE Healthcare) were rehydrated with a protein sample, focused with a Multiphor II 

(GE Healthcare), further separated on SDS-PAGE gels (Protean, Bio-Rad) and subsequently 

stained with Coomassie Brilliant Blue. 

162 



Protein identification from 2DE gels 

Protein spots that were clearly visible after Coomassie staining were excised from the 

gel and digested with trypsin (Promega), following the in-gel method according to 

(Shevchenko et al., 1996). The collected extracts of the resulting tryptic peptides were dried 

overnight in a vacuum centrifuge (v/v), and stored at -20°C. The peptides were re-dissolved in 

8 ul of 50% acetonitrile (ACN) and 5% formic acid (FA) in H20 (v/v/v). MS and MS/MS 

information was acquired with a Q-TOF I (Waters, Manchester, UK) coupled to a nano-LC 

Ultimate system (LC Packings Dionex, Sunnyvale, CA). One or two ul of sample was 12 

times diluted with H2O and peptides were separated on a nano-analytical column (75 urn 

internal diameter x 15 cm, CI8 PepMap, LC Packings, Dionex) using a gradient of 2-50% 

ACN and 0.1% FA in H2O (v/v/v) in 20 minutes. The flow of 300 nl/min was directly infused 

into the Q-TOF I, operating in data-dependent MS and MS/MS modes. The resulting MS/MS 

spectra were processed with Masslynx software (Waters, Manchester, UK). For MALDI-TOF 

analysis, a 1 ul volume of the dissolved peptide sample was spotted onto a target plate after 

mixing the sample 1:1 (v/v) with a solution of 10 mg/ml a-cyano-4-hydroxycinnamic acid in 

50% ethanol/50% ACN/0.1% TFA (v/v/v). Reflectron MALDI-TOF spectra were acquired on 

a TofSpec 2E (Waters, Manchester, UK). Both the MS/MS spectra from the Q-TOF I as well 

as the peptide mass lists from the MALDI-TOF were used to search in the Virtual Expert 

Mass Spectrometrist (VEMS) software using the non-redundant database LycoperClado3 (see 

below for details). The following constraints were used for LC-MS/MS spectra: tryptic 

peptides only, up to 2 missed cleavages sites allowed, initial tolerance of 0.3 Da for MS ions 

and 0.6 Da for MS/MS fragment ions, carbamidomethyl cysteine as fixed modification and 

methionine oxidation and asparagines and glutamine deamidation as variable modification. 

For MALDI peptide lists, similar constraints were used with a tolerance of 0.3 Da and a 

charge state of 1+. Proteins reported in Table III are identified by at least two peptides and 

have a protein score higher than 100. 

Quantification of 2DE protein spots 

Apoplastic protein samples originated from three independent biological replicates. 

The samples from the first biological replicate were analyzed in duplo, whereas the samples 

from the 2nd and 3rd biological replicates were analyzed once by DIGE-2DE analysis. The gel 

images were loaded into Decyder software (version v6.0) and the reference samples were 
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matched between all gels. Samples were compared with t-statistics in the Biological Variation 

Analysis (BVA) package (Decyder, GE Healthcare). No significant differences were observed 

between the proteins quantified in the two technical replicates of biological replicate 1 (P < 

0.05; results not shown). Protein quantifications as presented in Figure 5 originate from 

quantification of one of the two technical replicates of biological replicate 1, and biological 

replicates 2 and 3. XML data from all detected spots were exported from Decyder and 

Principle Component Analysis plot of all data was made in GeneMaths (Applied Maths). 

Database compilation 

To compile the LycoperClado3 database, several databases with tomato or C. fulvum 

sequences were combined, since each database contains information that is lacking from 

another database. The tomato sequences came from NCBI 

(ftp://ftp.ncbi.nih.gov/repository/UniGene/, 17012007) and SGN (Tomato_200607_build_l; 

http://www.sgn.cornell.edu/) databases. The C. fulvum sequences came from COGEM 

(http://cogeme.ex.ac.uk/sequence.html; 17012007) and NCBI 

(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=5499) databases, which 

were enriched with in-house sequenced proteins. To these sequences were added the 

Mycosphaerella graminicola sequences from NCBI 

(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=54734) and the sequences 

from trypsin, keratin and the yeast enolase that was spiked into the samples. This resulted in a 

highly redundant database for tomato and C. fulvum and therefore, the total database was 

analyzed with BLAST (Altschul et al., 1990) to align similar sequences. From sequences with 

100% homology, only the longest sequence was retained in the database. Eventually, the 

LycoperCladoV3 database consisted of 40,183 sequences. 

LC-MS/MSE analysis and protein identification 

An aliquot of 100 ug of the apoplastic protein samples from stages RB, Re, RD, SB, SC 

and SD (Table I) from one of the inoculation series was digested with trypsin (Promega), 

desalted, freeze-dried and dissolved in 100 ul of 0.1% TFA, 5% ACN in H20 (v/v/v). The 

samples were analyzed in triplicate, resulting in 6 x 3 LC-MS/MSE runs, according to the 

following protocol. An aliquot of 0.5 \ig of trypsin-digested apoplastic protein, spiked with 

100 fmol of digested yeast enolase as internal quantification standard, was used for LC-
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MS/MS analysis. Tryptic peptides were separated on a NanoAcquity LC system (Waters 

Corporation, Milford USA) with a Symmetry CI8 precolumn (5 um particle size, 5 mm x 300 

|xm internal diameter) and an Atlantis CI8 analytical reversed phase column (3 um particle 

size, 15 cm x 75 urn internal diameter (Waters Corporation)). Peptides were transferred to the 

precolumn in solution A (0.1% FA (v/v) in H2O) with a flow rate of 4 ul/min. Sequential 

elution of peptides was accomplished in 90 minutes using a linear gradient of 3% (v/v) of 

solution B (0.1% FA (v/v) in ACN) to 40% (v/v) of solution B in solution A, with a flow rate 

of 300 nl/minute. Subsequently, the columns were rinsed for ten minutes with 90% (v/v) of 

solution B in solution A and equilibrated with solution A for 20 minutes, after which the next 

sample was loaded. During analysis, the column temperature was maintained at 35°C. Upon 

elution, peptides were injected into a Q-TOF Premier mass spectrometer (Waters, 

Manchester, UK) that operated in the V-mode with a resolving power of at least 10,000 full-

width half maximum (FWHM) and in the positive electronspray ionisation (ESI) mode. The 

TOF analyzer was externally calibrated with a Nal mixture from m/z 50 to 1990. The data 

were post-acquisition lock mass corrected using the monoisotopic mass of the doubly charged 

precursor of [Glu']-Fibrinopeptide B, which was delivered with a constant flow rate of 200 

nL/min through the reference sprayer of the NanoLockSpray source of the mass spectrometer 

and sampled with 30 sec intervals. LC-MS/MS data were collected during alternating low 

energy modes with a constant collision energy of 4 eV and high collision energy modes with a 

ramping collision energy from 15 eV to 40 eV. The spectral acquisition time was 1.5 seconds 

with an interscan delay of 0.1 seconds which resulted in a data collection cycle of 3.2 seconds 

(Bateman et ah, 2002). The radio frequency (RF) allowed only ions with m/z 300 to 2,000 to 

enter the quadrupole mass analyzer, which ensured that ions with m/z smaller than 300 

originated from dissociations in the source of the collision cell. 

Accurate masses and retention times (RT) were obtained in the low energy mode, 

whereas sequence information from the eluting peptides was obtained in the high energy 

mode. To increase the number of sequenced peptides, additional data-dependent acquisition 

(DDA) experiments were performed with include lists of peptides that had an altered 

abundance between the samples in the above described analysis. A maximum of 5 parent ions 

was selected per MS scan with a dynamic exclusion of 120 sec. Eventually, all datasets were 

processed against the LycoperCladoV3 database using the ion accounting algorithm (IAA) in 

ProteinLynx Global Server (V2.3, Waters, Millford USA). The following constraints were 
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used: low energy threshold 250 counts, elevated energy threshold 100 counts, lock mass 

window of 0.5 Da, intensity threshold of 1,000 and an automatic TOF resolution. Peptides 

that were quantified in all 18 runs and have a peptide score > 50 were taken along for further 

analysis. Apoplastic proteins identified based on at least two peptides with a score > 50, of 

which at least one is non-redundant, are reported (Table IV). The number of peptides that 

identified the protein, the highest peptide score, the protein score and the sequence coverage 

(%) are reported in Table IV. Subcellular protein localization was predicted by MultiLoc 

(Hoglund et al, 2006) and manually validated. 

Protein quantification and data analysis 

For quantitative analysis, the data were processed in ProteinLynx Global Server (V2.3, 

Waters, Millford USA) using the peak clustering algorithm that results in an experimental 

mass retention time (RT) pair (EMRT) table in which all quantitative data are collected. 

EMRT data were processed with the post alignment clustering procedure (PACP) to correct 

peak repeats within 10 mDa in multiple alignments (De Groot et al., 2008). Quantitative data 

from the EMRT table were matched to peptide identifications from the IAA based on peptide 

mass (Amass < 0.01) and RT (ART < 2 min). Peptides with a RT of more than 57 min were 

not used for quantification since a high intensity peak caused by the detergent CHAPS eluting 

from the column after this RT. Peptide identifications from the DDA experiments were not 

matched to the EMRT data since these experiments were not performed in series and 

therefore, the RT deviated too much. Data were normalized based on the intensities of the 

yeast enolase internal standard peptides that were quantified in all 18 LC-MS/MS runs. Non-

redundant peptides quantified in 17 or 18 of the LC-MS/MS runs were used for protein 

quantification. Peptides that match a protein from C. fulvum had to be quantified in at least the 

triplicate runs of Sc and SD. The number of peptides used for quantification, including the 

highest peptide score, is reported in Table IV. The average peptide intensity was obtained 

from the triplicate runs and the total intensity of one or more non-redundant peptides per 

protein was used for quantification. Total intensities of the technical replicates were very 

similar, indicating that the replicates were very reproducible (America et al, data not shown). 

The PCA plot was made in GeneMaths (Applied Maths). 
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Microarray experiments and further analysis 

Total RNA was extracted and purified (NucleoSpin RNA/Protein kit, Machery-Nagel, 

GmbH & Co., Dueren, Germany) from leaflets of transgenic MM-CfO:Hcr9-4D (Cf-4; 

resistant) and MM-CfO:^vr4 (susceptible) tomato plants, inoculated with a race 5 strain of C. 

fulvum producing Avr4, which were harvested at stages RA, RB, RC, SA, SB and Sc (Table I). 

Three biological replicates were performed. Hybridization of the microarrays (Affymetrix 

GeneChip® Tomato Gene Array) and subsequent data analysis was similar to the procedure 

described for the microarray analysis of the Cf-4/Avr4 seedlings (Chapter 4). For the latter, 

RNA was obtained from Cf-4/Avr4 and control (a mixture of the parental lines) seedlings. 

These Cf-4/Avr4 seedlings result from a cross between the above mentioned MM-CfO:Hcr9-

4D and MM-CfO:Avr4 tomato plants. At 20°C, they develop a constitutive HR soon after 

germination, which can be suppressed at 33°C and 100% relative humidity. After a 

subsequent shift from 33°C to 20°C, a synchronized HR is induced which allows the 

collection of leaf material at several stages after HR initiation (De Jong et ah, 2002; Gabriels 

et al, 2006; Chapter 3). 
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Supplementary Figure SI. The relation between apoplastic contamination by cellular proteins and 
transcriptional regulation of the encoding genes. 
Abundance patterns of cytoplasmic proteins identified and quantified by LC-MS/MSE in AF obtained at stages B 
to D from resistant and susceptible plants inoculated with C. fulvum, are classified into Profiles 1, 2 and 4 (left 
graphs). Patterns of Profiles 1 and 2 are similar to the patterns of Profiles 1 and 2 of the genuine apoplastic 
proteins while Profile 4 was not found for apoplastic proteins (Figure 6). Approximately 60% of the encoding 
genes are present on the Affymetrix tomato microarray and transcriptional regulation of these genes was studied 
at stages A, B and C in resistant and susceptible plants inoculated with C. fulvum (middle graphs). In addition, 
microarrays were hybridized with RNA isolated from Cf-4/Avr4 tomato seedlings that execute a synchronized 
hypersensitive response (HR). In this case, transcriptional regulation of the genes encoding the quantified 
cellular proteins was determined at 1, 3 and 5 hours after the HR initiation (right graphs; see Supplementary 
Table I for protein identifications). 
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Supplementary Table SI. Cellular proteins identified as contaminants in the apoplastic 

proteins samples. 
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Chapter 6 

SUMMARIZING DISCUSSION 

Temperature-sensitivity of the HR in Cf-4/Avr4 seedlings 

Most work described in this thesis has been performed employing Cf-4/Avr4 

seedlings. These seedlings originating from seeds obtained from a cross between transgenic 

tomato line expressing the Cf-4 resistance gene and a transgenic tomato line expressing Avr4, 

a gene which originates from Cladosporiumfulvum. Upon incubation of the seedlings at 33°C 

and 100% relative humidity, the hypersensitive response (HR) is suppressed and a 

synchronized HR can be induced by a temperature shift of the plants from 33°C to 20°C (De 

Jong et al., 2002). Temperature sensitivity is not unique for the Cf-4 response, since also Cf-9 

(De Jong et al, 2002) and Cf-2 (unpublished data) mediated defence responses are suppressed 

at elevated temperatures. Furthermore, the NB-LRR resistance protein N of tobacco providing 

resistance to Tobacco Mosaic Virus (TMV), is also temperature-sensitive (Whitham et al, 

1994). However, the molecular basis of this temperature sensitivity remains unclear. 

Heat-shock proteins are temperature-sensitive molecular chaperones that, amongst 

others, assist in protein folding to prevent the accumulation of miss-folded proteins in the cell 

(Sangster and Queitsch, 2005). An intriguing genetic study in Drosophila showed that Hsp90 

buffers the genetic variation of proteins and that this buffering capacity was released by 

elevated temperatures. In addition, heat stress enhances the phenotypes of heterozygous 

Hsp90 mutants that display multiple phenotypes caused by the expression of genetically 

altered proteins, which are normally covered by the buffering capacity of Hsp90 (Rutherford 

and Lindquist, 1998). A similar observation has been done in Arabidopsis, in which reduced 

Hsp90 levels and elevated growth temperatures synergistically affect several phenotypes 

(Sangster et al., 2007). In plants, it has become apparent that Hsp90 plays a crucial role in R 

protein-mediated defence signalling and Hsp90 has been related to N, RPM1, Rx, 1-2 and Cf-

4 function, which are resistance proteins that confer resistance to TMV, Pseudomonas 

syringae, potato virus X, Fusarium oxysporum and C. fulvum, respectively (Sangster and 

Queitsch, 2005; Gabriels et al, 2006). Also R proteins harbour a high degree of sequence 

polymorphism, probably as a result of selection pressure imposed by new variants of a 

pathogen, and these polymorphisms may lead to unstable proteins under normal conditions 

(Rose et al, 2004; Kruijt et al., 2005b). Therefore, Hsp90 is hypothesized to stabilize 

polymorphic R proteins to retain these altered proteins and allow positive selection during 
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evolutionary adaptation in the battle between plants and their pathogens (Sangster and 

Queitsch, 2005). Indeed, Hsp90 interacts with the LRR domain of both the N and 1-2 protein 

(Liu et al, 2004; De la Fuente van Bentem et al, 2005). Furthermore it was found that loss of 

Hsp90 from the R protein complex leads to instability and subsequent degradation of Rx and 

RPM1 (Sangster and Queitsch, 2005; Boter et al., 2007). Upon heat stress, Hsp90 binds to 

many cellular proteins to prevent their unfolding and to maintain cellular functioning, which 

causes a massive demand on Hsp90. This probably induces diversion of Hsp90 from the R 

proteins, resulting in R protein degradation and inhibition of R protein-mediated signalling 

(Rutherford and Lindquist, 1998). This hypothesis is confirmed by studies with the Hsp90-

binding inhibitors geldanamycin and radicicol that both induce similar phenotypes as 

observed when exposed to heat stress (Rutherford and Lindquist, 1998; Yamada et al., 2007). 

The increased requirement for Hsp90 proteins to maintain cellular functions would also 

explain heat-shock-related transcriptional activation of Hsp90-1 (Krishna and Gloor, 2001). 

The above described hypothesis for malfunctioning of R proteins at elevated 

temperatures is valid for intracellularly localized R proteins. However, Cfs are plasma 

membrane proteins that for the greater part are located extracellularly and lack a clear 

cytoplasmic signalling domain (Kruijt et al, 2005a). Still, Hsp90 is required for the Cf-

4/Avr4-mediated HR (Gabriels et al., 2006), and different isoforms of phosphorylated Hsp90 

specifically change in abundance upon initiation of the Cf-4/Avr4-triggered HR (Chapter 4). 

The Cf-like receptor CLAVATA2 (CLV2) from Arabidopsis, which mediates cell 

proliferation and cell differentiation in the apical shoot meristem (Clark, 2001), forms a 

complex with the receptor-like kinase (RLK) CLV1 that harbours a cytoplasmic kinase 

domain and mediates downstream signalling upon direct binding of the CLV3 ligand (Ogawa 

et al., 2008). Similarly, Cf proteins might form a complex with another plasma membrane-

localized protein which is possibly an RLK that might also directly bind the Avr, since the Cf 

proteins do not seem to interact directly with their cognate avirulence factors (Avrs) (Joosten 

and De Wit, 1999). This putative Avr binding subsequently trigger downstream signalling 

into the cytoplasm. The Cf complex might be stabilized by Hsp90 through interaction with the 

cytoplasmic kinase domain of the RLK, thereby rendering it temperature-sensitive. The 

observation that Cf-4 tobacco cells need about 20 hours to completely loose their 

responsiveness to Avr4 after incubation at 33°C (De Jong et al., 2002), suggests that a gradual 

release of Hsp90 from the R protein complex upon elevated temperatures is possible. Upon 
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relief of the heat stress, protein synthesis is required to restore defence. This is supported by 

the observation that the lost response to Avr4 is recovered in Cf-4 tobacco cells within 45 

minutes, which is sufficient time for de novo protein synthesis of Cf-4 (De Jong et al, 2002). 

Furthermore, this could imply that at elevated temperature Cf-mediated signalling is inhibited 

upstream, at the level of Avr perception. This is supported by the inhibition of Cf-4-mediated 

medium alkalization, which is one of the first responses of transgenic Cf-4 tobacco cell 

suspensions treated with Avr4, at elevated temperatures (De Jong et al., 2002). In addition, 

the amount of the Avr9 high-affinity binding site (HABS) at the plasma membrane, which is 

hypothesized to be the (co-)receptor for Avr9, is reduced by 80% at elevated temperatures (De 

Jong et al., 2002), which also confirms the temperature-sensitivity at the level of Avr 

perception. On the other hand, the hypothesis is contradicted by the already significantly 

different gene expression between the Cf-4/Avr4 and control seedlings at t=0h (33°C) 

(Gabriels et al, 2006; unpublished results). However, this might suggest that residual Hsp90 

activity leads to a low level of signalling that does not reach the threshold to develop a HR. 

Another reason why Hsp90 is thought to stabilize the receptor complex is based on the 

observation that the short cytoplasmic tail of Cf-9 binds to vesicle-associated protein (VAP) 

27, which is a VAP33-like protein (Laurent et al, 2000). VAP33 is required for transport of 

proteins through the Golgi and has been shown to interact with Hsp90, which also plays an 

essential role in the secretory pathway (McClellan et al, 2007; Richter et al, 2007). In 

addition, it was shown that Cf-9 is functional in the plasma membrane, probably in 

association with one or more proteins that mask its ER retention signal (Van der Hoorn et al, 

2001). Therefore, the Cf-9 complex is delivered at the plasma membrane through the Golgi 

and possibly this complex consists of the Cf protein, an RLK, Hsp90 and VAP27. 

Another possibility is that Hsp90 does not stabilize the receptor complex itself but a 

complex required for defence signalling further downstream in the pathway. Previously, a 

NB-LRR protein required for resistance to C.fulvum (NRC1) was found to be required for Cf-

mediated signalling (Gabriels et al, 2006). NRC1 might, for example, interact with Hsp90 as 

described for 1-2 and N, thereby rendering this complex temperature-sensitive, resulting in 

hampered Cf-mediated signalling when exposed to elevated temperatures. This hypothesis is 

supported by the observation that the Hsp90-interacting co-chaperones RAR1 and SGT1 

(Takahashi et al, 2003; Liu et al, 2004) are required for the NRCl-induced HR, which places 

these proteins at the same level as NRC1 in a defence signalling cascade (Gabriels et al, 
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2007). Finally, it might also be possible that NRC1 is, together with Hsp90, part of a Cf/RLK-

complex that stabilizes Cf-4, or that different isoforms of Hsp90 bind different complexes. 

Cf-4/Avr4 seedlings as a model system for Cf-4-mediated HR and resistance 

The Cf-4/Avr4 seedlings provide a very clean synchronized model system in which 

the HR can be induced without the interference of wound responses or artificial microbes 

such as Agrobacterium tumefaciens. Still, heat-shock-related stress signals might interfere 

with HR signalling in the Cf-4/Avr4 seedlings. However, the results of several experiments 

make this hypothesis unlikely. The mitogen-activated protein kinase (MAPK) activity assays 

described in Chapter 3 show that activation of LeMPKl, -2 and -3 at two hours after the 

temperature shift only occurs in the Cf-4/Avr4 seedlings and not in the control seedlings. In 

addition, elevated MAPK activity at t=0h in the Cf-4/Avr4 seedlings disappeared within 30 

minutes after the temperature shift, indicating that the heat stress-related signals disappear 

during recovery at 20°C (Chapter 3). Furthermore, microarray analysis to study gene 

expression in the Cf-4/Avr4 and control seedlings revealed a slight decrease in the number of 

differentially expressed genes at t=lh (n=72) compared to t=0h (n=95), suggesting there is a 

recovery of the plants from possible heat stress within one hour. After this recovery, a 

massive transcriptional reprogramming occurrs upon HR-induction, since 408 differentially 

regulated genes were found at t=3h and 1616 at t=5h (P < 0.01; unpublished results). These 

results suggest that the Cf-4/Avr4 seedlings recover from the heat stress before the HR is 

initiated. 

Protein phosphorylation is a very rapid and transient post-translational modification 

(PTM). Therefore, a very reproducible and synchronized biological system is required to 

study changes in the phosphoproteome. In Chapter 3, LeMPKs were described to be 

reproducibly activated after the temperature shift of the Cf-4/Avr4 seedlings and the activated 

kinases were subsequently shown to play a role in HR-development and resistance to C. 

fulvum in Cf-4 plants. In addition, several phosphopeptides were reproducibly identified with 

altered abundance in the Cf-4/Avr4 seedlings, which implies differential phosphorylation and 

subsequently altered activity of these proteins. These results pointed for example to a swift 

decrease in photo synthetic activity upon HR-initiation, an observation that was confirmed by 

chlorophyll fluorescence measurement in the Cf-4/Avr4 seedlings (Chapter 4). In addition, 

photosynthetic activity seemed to be decreased in resistant tomato plants inoculated with C. 
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fulvum, as was shown by the decreased abundance of cellular proteins involved in 

photosynthesis that contaminated the apoplastic protein samples. (Supplemental data Chapter 

5). These data show that the temperature-sensitive Cf-4/Avr4 seedlings are a very clean and 

reproducible tool to study the Cf-4/Avr4-initiated HR, without the presence of the fungus to 

produce the Avr. In addition, the Cf-4/Avr4 seedlings disclose processes that occur in Cf-4 

tomato plants inoculated with an Avr4 producing strain of C. fulvum. 

Finally, comparison of the responses occurring in Cf-4/Avr4 seedlings to the response 

of tomato plants either lacking or expressing the Cf-4 resistance gene, upon inoculation with 

an Avr4-producing strain of C. fulvum, allows to separately study the Cf-4/Avr4-triggered 

plant responses and additional responses of the host occurring during challenge by C. fulvum. 

The data in Chapter 5 revealed that MAMP-triggered immunity (MTI) in susceptible tomato 

plants is probably actively suppressed by effectors secreted by C. fulvum, leading to effector-

triggered susceptibility (ETS) of tomato. In resistant plants, in addition to the induction of cell 

death, the Cf-4/Avr4-induced HR accelerates the already apparent MTI response in the 

apoplast, which renders this response much faster and stronger, thereby resulting in 

resistance. 

The role of post-translational modifications in Cf-4-mediated defence signalling 

In Chapter 3, the MAP kinases LeMPKl, -2 and -3 are shown to be rapidly activated 

in Cf-4/Avr4 seedlings that mount a HR. MAP kinases are activated by upstream MAPK 

kinases that phosphorylate a conserved motif of the MAP kinase, containing a threonine and 

tyrosine phosphorylation site (Pedley and Martin, 2005). In addition to LeMPK activation, 50 

phosphoproteins were identified of which 13 showed an altered abundance upon initiation of 

the HR (Chapter 4). These data illustrate that protein phosphorylation plays a major role in the 

Cf-4/Avr4-mediated HR and subsequent resistance. 

The phosphoproteins identified in Chapter 4 do not include the activated LeMPKs 

themselves, most likely because these proteins are very low abundant and therefore they are 

rarely detected in large phosphoproteome analyses. However, based on the substrate 

phosphorylation motifs that were determined for LeMPKl, -2 and -3 (Chapter 3), a few 

potential substrates of these LeMPKs might have been identified. For example, UDP-glucose 

glycosyltransferase and the YT521-B-like protein contain the well-known MAPK 

phosphorylation motif PxSP. However, both proteins were not differentially phosphorylated 
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during the HR. In addition, the hexose transporter that was identified as a target for LeMPK3 

contains the Sxx[KR] motif. However, the phosphopeptide matching this protein has a 

significantly decreased abundance in the Cf-4/Avr4 seedlings as compared to the controls. 

Therefore, it is unlikely that any of these three proteins are substrates of LeMPKl, -2 or -3 

under the described conditions. 

In addition to phosphorylation, preliminary data suggest that sumoylation plays a role 

in Cf-4/Avr4-mediated defence signalling. We found that virus-induced gene silencing 

(VIGS) of the gene encoding tomato SUMO(s) significantly decreased the Cf-4/Avr4-

triggered HR (unpublished results). In addition, western blot analysis of total soluble protein 

extracts of Cf-4/Avr4 and control seedlings at 0, 6, 8 and 24 hours after the temperature shift 

appeared to show an increase in the abundance of sumoylated proteins. However, these results 

were difficult to reproduce, which might be a consequence of the relatively insensitive 

antibody-based approach in combination with SDS-PAGE gels and/or the instability of the 

SUMO modification. Similarly, a phospho-specific antibody-based approach was not 

successful to identify changes in the phosphoproteome of Cf-4/Avr4 seedlings, although we 

have been able to show that significant changes are present in the Cf-4/Avr4 seedlings 

(Chapters 3 and 4), which indicates that this antibody approach is not suitable for high-

throughput screening for post-translational modifications. Further analysis should reveal the 

importance of protein sumoylation in the Cf-4/Avr4-induced HR. 

An indirect indication that PTMs play a role in the early stages after HR-initiation was 

obtained from microarray expression profiling and quantitative D1GE-2DE analysis of Cf-

4/Avr4 and control seedlings. Major transcriptional changes were only found at t=3h after the 

temperature shift, when MAPK activity is already apparent, whereas 2DE analysis of the total 

proteome of these seedlings hardly revealed any differences in the first hours after HR-

initiation and only a few after 24 hours (results not shown). Although changes in the amount 

of less abundant proteins might be overshadowed by more abundant ones, major proteome 

changes did not seem to occur within 24 hours. Therefore, transcriptional profiling as well as 

proteome analysis suggests that the initial HR-induced responses, such as an oxidative burst 

and ion channel activation, eventually leading to cell death and protein accumulation in the 

apoplast, occur through PTMs. 
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The relation between HR and other processes occurring in plants 

The HR is a form of programmed cell death (PCD) that typically occurs in plants as 

the result of effector-triggered immunity (ETI). Senescence, which is the aging-related 

yellowing and subsequent dying of the leaves of plants, is also a form of PCD (Quirino et al, 

2000). Although opinions differ on whether senescence, HR and PCD refer to the same 

process (Heath, 2000; Thomas et al, 2003; Van Doom and Woltering, 2004; Delia Mea et al, 

2007), striking similarities between the three processes have been observed. Upon initiation of 

senescence, but also of the HR, a decrease in photosynthetic activity is observed that 

subsequently leads to chloroplast degradation, visible as yellowing of the leaves (Quirino et 

al, 2000; Yoshida, 2003; Chapters 3 and 4). Furthermore, a process referred to as autophagy 

seems to play an important role in both leaf senescence and HR. Autophagy is required for the 

recovery of nutrients during leaf senescence but recently it has also been shown to be 

involved in degradation of oxidized proteins that accumulate as a result of oxidative stress. 

Furthermore, it is involved in the removal of protein aggregates and possibly damaged 

cellular components, to maintain normal cell function. Interestingly, senescence accelerates in 

the absence of autophagy. This shows that autophagy promotes cell survival under abiotic 

stress conditions (Bassham, 2007). In agreement with this observation, autophagy has recently 

been reported to restrict HR-induced cell death and thus to play a pro-survival role in the cells 

that surround HR lesions (Patel et al, 2006). As mentioned above, autophagy can be 

responsible for the removal of oxidized proteins under oxidative stress conditions (Hanaoka et 

al, 2002; Xiong et al, 2007) and it is intriguing that the production of reactive oxygen 

species (ROS), which is one of the first responses upon pathogen recognition, stimulates 

autophagy (Xiong et al, 2007) and inhibits the spread of cell death (Torres et al, 2005). 

These data suggest that the production and subsequent spread of ROS stimulate autophagy in 

the surrounding tissue, in which superfluous cell death is subsequently inhibited. Indeed, 

plants that are unable to perform autophagy display an uncontrolled HR (Patel et al, 2006). 

The HR initiated in the Cf-4/Avr4 seedlings was also found to be under strict control (Chapter 

3). The spread of necrotic lesions that have started to develop and eventually will result in 

complete leaf necrosis upon a shift from 33°C to 20°C, can be stopped by incubating the Cf-

4/Avr4 seedlings again at 33°C. This suggests that the HR is initiated in a limited amount of 

cells and that the surrounding tissue survives, possibly in an autophagy-dependent way. The 

mechanism that limits superfluous spread of the HR might also cause the formation of 
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localized necrotic lesions at 20°C, instead of systemic necrosis throughout the cotyledons. 

Finally, both the HR and senescence induce the expression of pathogenesis-related (PR) 

proteins, salicylic acid and ROS, thereby showing the overlap between these two forms of 

PCD (Yoshida, 2003). 

Recently, a link between brassinosteriod-induced developmental growth signalling 

and defence signalling has been revealed. The BRASSINOSTEROID-INSENSITIVE 1 

(BRI1) receptor kinase forms a heterodimer with the BRI1-associated receptor-like kinase 1 

(BAK1) upon perception of brassinosteroids, to mediate endocytosis (Karlova and De Vries, 

2006). Just recently, the FLS2 receptor, mediating recognition of bacterial flagellin, has also 

been found to interact with BAK1 (Chinchilla et al, 2007; Heese et al, 2007). This implies 

that plasma membrane receptor proteins are involved in several processes and these data 

suggest a link between plant growth and development pathways on the one hand and defence 

signalling on the other. 

The specific recognition of a pathogen by a plant leads to the rapid activation of 

several defence processes. ROS are produced, phosphorylation-dependent pathways are 

activated, cells are transcriptionally reprogrammed and PR proteins are synthesized and 

secreted (Joosten and De Wit, 1989; Lamb and Dixon, 1997; Gabriels et al, 2006; Benschop 

et al, 2007; Chapters 2-5). As mentioned above, these processes are not only required for 

defence signalling, but also for many additional processes in the plant such as development, 

senescence and abiotic stress responses (Quirino et al, 2000; Dani et al, 2005; Niittyla et al, 

2007). It would be energetically and evolutionary highly unfavourable to have these tools 

only available for defence against invading pathogens. This conclusion, and the above 

described connections of defence with photosynthesis, autophagy, senescence and 

brassinosteroid signalling, indicates that resistance and HR cannot be seen as an independent 

process executed in plants that have recognized a pathogen. On the contrary, signalling 

cascades seem to depend on similar components and on cascades that possibly converge, 

eventually leading to a similar response. For example, the MAPK cascade is activated by a 

very large range of biotic and abiotic stress stimuli but also by plant hormones and during cell 

division (Zhang et al, 2006). Furthermore, in Chapter 3 the LeMPKs were shown to have a 

different role in defence signalling, which shows that these kinases are involved in different 

processes. Upon perception of an external stimulus, which in this case is the Avr4 elicitor of 
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C. fulvum, many processes will be affected and possibly inhibited or stimulated, to eventually 

trigger HR development in the cell. 

The Cf-4/Avr4-mediated hypersensitive response that leads to resistance of tomato 

plants to C. fulvum 

Based on the results described in this thesis, in combination with previously described 

results, the following hypothesis for Cf-4/Avr4-mediated signalling is proposed and 

summarized in Figure 1. 

Conidia from C. fulvum reaching the abaxial side of a tomato leaflet germinate, after 

which the emerging runner hyphae enter the leaf mesophyll through open stomata. In 

susceptible plants, C. fulvum is able to actively suppress and/or circumvent MTI, which is 

triggered via the recognition of MAMPs such as chitin and 1,3-13-glucan fragments. 

Eventually, in densely colonized leaflets the MAMP concentrations have become so high that 

the effectors of C. fulvum are not capable anymore to fully suppress MTI, leading to the 

transcriptional upregulation of a subset of genes encoding PR proteins and other (apoplastic) 

proteins. However, this response is too late to resist full invasion of the apoplast by C. fulvum 

(Chapter 5). In resistant tomato plants harbouring the Cf-4 resistance protein, C. fulvum also 

secretes its effectors. However, in addition to the MAMP-triggered response, a specific and 

fast defence response is triggered upon perception of Avr4 (Chapter 5). As one of the first 

responses, Cf-4 triggers the production of phosphatidic acid (PA) in a PLC-dependent 

manner. PA subsequently stimulates the production of ROS, which plays a role in direct 

pathogen inhibition, signalling and cell wall reinforcement through cross-linking of cell wall 

components, such as arabinogalactans (Lamb and Dixon, 1997; De Jong et al, 2004). 

Subsequently, LeMPKl, -2 and -3 are activated (Chapter 3), possibly via PA as was described 

for a MAP kinase in soybean (Lee et al., 2001). This activation leads to phosphorylation of 

downstream targets, most likely related to the MAPK targets described in Arabidopsis and 

tobacco. LeMPKl is involved in resistance to C. fulvum (Chapter 3) and its closest orthologue 

in Arabidopsis, AtMPK6, phosphorylates the rate-limiting enzyme 1-aminocyclopropane-l-

carboxylate synthase (ACS) in the ethylene biosynthesis pathway, thereby elevating ethylene 

production (Liu and Zhang, 2004). Indeed, Cf-4 plants inoculated with an Avr4-producing 

strain of C. fulvum, display clear epinasty, appearing approximately 6 days after inoculation 

and which is a phenotype correlated with ethylene production (Chapter 5). In addition, 
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LeMPKl might phosphorylate WRKY-transcription factors that subsequently induce 

transcription of defence genes such as PR proteins and proteins involved in cell wall 

modifications (Kim et al., 2003; Kim and Zhang, 2004; Menke et al, 2005). Since VIGS of 

LeMPKl leads to a decreased resistance to C. fulvum but not to a decreased HR upon Avr4 

elicitation, LeMPKl might have a role in MTI since the Cf-4-mediated resistance is proposed 

to be the sum of MTI and ETI-related Cf-4-triggered HR. LeMPK2 plays a role in HR 

development but not in resistance to C. fulvum, which might imply that LeMPK2 functions in 

a pathway parallel to LeMPKl and/or MTI. Possibly, LeMPK3 stimulates other pathways 

since the phosphorylation motifs of its substrate proteins appear to differ from the motifs 

described for LeMPKl and -2 (Chapter 3). Similarly to the tobacco orthologue WIPK, 

LeMPK3 might induce an increase in SA levels in Cf-4/Avr4 seedlings (Waller et al, 2006). 
PR proteins 

T Apopiast 

Autophagy in 
, neighbouring 

cells 

Nucleus 

' Cell wall fortification 

Figure 1. Tomato Cf-4-induced signal transduction cascades triggered after perception of Avr4 of the 
extracellular fungal pathogen Cladosporium fulvum. 
Activation of the signalling cascades leads to the initiation of host defence responses, eventually resulting in host 
resistance. See text for details. 
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Concomitantly, phosphorylation-dependent signalling cascades decrease photosynthetic 

activity in the cell through the de-activation of essential components of this process (Chapter 

4). Since the abundance of some phosphoproteins was already significantly altered before 

LeMPK activation was apparent, and no clear indications were found that the identified 

phosphoproteins involved in photosynthesis are targets of the LeMPKs, the pathway resulting 

in (de)phosphorylation of these proteins might be induced parallel to the MAPK cascade. 

Massive ROS production, probably leads to oxygen depletion. Therefore, the pyruvate 

decarboxylase-dependent aerobic respiration switches to anaerobic respiration in which 

pyruvate is converted to lactate instead of entering the citric acid cycle, to facilitate energy 

production for the Cf-4/Avr4-induced response at low oxygen levels. Furthermore, ROS 

might signal to other cells where it induces autophagy that restricts the HR to the site of 

fungal penetration, leaving no visible trace of the HR on the Cf-4 tomato plants challenged 

with C. fulvum expressing Avr4. In addition, ROS production possibly stimulates a calcium 

burst in the cell that is required for the activation of other signalling components. For 

example, a calcium-dependent protein kinase (CDPK) is activated in a phosphorylation- and 

calcium-dependent manner upon Avr4-perception (Romeis et al., 2001). However, no 

significantly altered abundance of a phosphorylated CDPK was observed during the 

development of the HR in the Cf-4/Avr4 seedlings (Chapter 5). Either another CDPK is 

differentially activated or this kinase is activated at a later stage of HR development since it 

compromises MAP kinase signalling in an ethylene-dependent way, thereby providing a 

feedback loop (Ludwig et al, 2004). The calcium burst might also be required for the 

phosphorylation of a syntaxin, leading to the subsequent release of, for example, PR proteins 

into the apoplast (Heese et al, 2005; Kalde et al, 2007). Possibly, LeMPKl plays a role in 

this process since this kinase has been shown to play a role in resistance to C. fiilvum but not 

in the HR. 

Finally, cytoplasmic Hsp90 plays a role in the Cf-4/Avr4-triggered defence response 

(Gabriels et al., 2006). Possibly, the individual isoforms of Hsp90 that were found to be 

differentially phosphorylated stabilize a Cf-4 receptor complex, a NRC1 complex, or both, 

and allow downstream signalling upon their (de)phosphorylation. However with the present 

data, it is not possible to conclude at which position(s) the different Hsp90s localize in the 

defence signalling cascade. 

186 



REFERENCES 

Bassham DC (2007) Plant autophagy - more than a starvation response. Curr Opin Plant Biol 10: 587-593. 
Benschop JJ, Mohammed S, O'Flaherty M, Heck AJR, Slijper M, Menke FLH (2007) Quantitative phospho-

proteomics of early elicitor signalling in Arabidopsis. Mol Cell Proteomics 6: 1198-1214. 
Boter M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, Moore G, Kleanthous C, Ochsenbein F, Shirasu K, 

Guerois R (2007) Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is 
required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19: 3791-3804. 

Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Niirnberger T, Jones JDG, Felix G, Boiler T (2007) A 
flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497-500. 

Clark SE (2001) Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2: 276-284. 
Dani V, Simon WJ, Duranti M, Croy RRD (2005) Changes in the tobacco leaf apoplast proteome in response to 

salt stress. Proteomics 5: 737-745. 
De Jong CF, Laxalt AM, Bargmann BOR, De Wit PJGM, Joosten MHAJ, Munnik T (2004) Phosphatidic acid 

accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39: 1-12. 
De Jong CF, Takken FLW, Cai X, De Wit PJGM, Joosten MHAJ (2002) Attenuation of Cf-mediated defense 

responses at elevated temperatures correlates with a decrease in elicitor-binding sites. Mol Plant-
Microbe Interact 15: 1040-1049. 

De la Fuente van Bentem S, Vossen JH, De Vries KJ, Van Wees S, Tameling WIL, Dekker HL, Koster CG, 
Haring MA, Takken FLW, Cornelissen BJC (2005) Heat shock protein 90 and its co-chaperone protein 
phosphatase 5 interact with distinct regions of the tomato 1-2 disease resistance protein. Plant J 43: 284-
298. 

Delia Mea M, Serafini-Fracassini D, Del Duca S (2007) Programmed cell death: similarities and differences in 
animals and plants. A flower paradigm. Amino Acids 33: 395-404. 

Gabriels SHEJ, Takken FLW, Vossen JH, De Jong CF, Liu Q, Turk SCHJ, Wachowski LK, Peters J, Witsenboer 
HMA, De Wit PJGM, Joosten MHAJ (2006) cDNA-AFLP combined with functional analysis reveals 
novel genes involved in the hypersensitive response. Mol Plant-Microbe Interact 19: 567-576. 

Gabriels SHEJ, Vossen JH, Ekengren SK, Ooijen GV, Abd-El-Haliem AM, Van den Berg GCM, Rainey DY, 
Martin GB, Takken FLW, De Wit PJGM, Joosten MHAJ (2007) An NB-LRR protein required for HR 
signalling mediated by both extra- and intracellular resistance proteins. Plant J 50: 14-28. 

Hammond-Kosack KE, Silverman P, Raskin I, Jones JDG (1996) Race-specific elicitors of Cladosporium fulvum 
induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants 
carrying the corresponding Cf disease resistance gene. Plant Physiol 110: 1381-1394. 

Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and 
starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant 
Physiol 129: 1181-1193. 

Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44: 321-334. 
Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The 

receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. PNAS 104: 
12217-12222. 

Heese A, Ludwig AA, Jones JDG (2005) Rapid phosphorylation of a syntaxin during the Avr9/Cf-9-race-
specific signaling pathway. Plant Physiol 138: 2406-2416. 

Joosten MHAJ, De Wit PJGM (1989) Identification of several pathogenesis-related proteins in tomato leaves 
inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-B-glucanases and chitinases. Plant 
Physiol 89: 945-951. 

Joosten MHAJ, De Wit PJGM (1999) The tomato-Cladospohum fulvum interaction: A versatile experimental 
system to study plant-pathogen interactions. Annu Rev Phytopathol 37: 335-367. 

Kalde M, Niihse TS, Findlay K, Peck SC (2007) The syntaxin SYP132 contributes to plant resistance against 
bacteria and secretion of pathogenesis-related protein 1. Proc Natl Acad Sci USA 104: 11850-11855. 

Karlova R, De Vries SC (2006) Advances in understanding brassinosteroid signaling. Sci. STKE 2006: pe36. 
Kim CY, Liu Y, Thome ET, Yang H, Fukushige H, Gassmann W, Hildebrand D, Sharp RE, Zhang S (2003) 

Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of 
ethylene in plants. Plant Cell 15: 2707-2718. 

Kim CY, Zhang S (2004) Activation of a mitogen-activated protein kinase cascade induces WRKY family of 
transcription factors and defense genes in tobacco. Plant J 38: 142-151. 

Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperon 6: 238-
246. 

187 



Chapter 6 

Kruijt M, De Kock MJD, De Wit PJGM (2005a) Receptor-like proteins involved in plant disease resistance. Mol 
Plant Pathol 6: 85-97. 

Kruijt M, Kip DJ, Joosten MHAJ, Brandwagt BF, De Wit PJGM (2005b) The Cf-4 and Cf-9 resistance genes 
against Cladosporium fiilvum are conserved in wild tomato species. Mol Plant-Microbe Interact 18: 
1011-1021. 

Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48: 251-275. 
Laurent F, Labesse G, De Wit PJGM (2000) Molecular cloning and partial characterization of a plant VAP33 

homologue with a major sperm protein domain. Biochem Biophys Res Commun 270: 286-292. 
Lee S, Hirt H, Lee Y (2001) Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant J 26: 

479-486. 
Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with 

resistance protein N and its signaling proteins SGT1 and RAR1 to modulate an innate immune response 
in plants. J Biol Chem 279: 2101-2108. 

Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-
responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 
16:3386-3399. 

Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J 
ExpBot55: 181-188. 

McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions 
of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131: 121-135. 

Menke FLH, Kang HG, Chen Z, Jeong MP, Kumar D, Klessig DF (2005) Tobacco transcription factor WRKY1 
is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant-
Microbe Interact 18: 1027-1034. 

Niittyla T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX (2007) Temporal analysis of sucrose-
induced phosphorylation changes in plasma membrane proteins of arabidopsis. Mol Cell Proteomics 6: 
1711-1726. 

Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008) Arabidopsis CLV3 peptide directly binds CLV1 
ectodomain. Science 319: 294. 

Patel S, Caplan J, Dinesh-Kumar S (2006) Autophagy in the control of programmed cell death. Curr Opin Plant 
Biol 9: 391-396. 

Pedley KF, Martin GB (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol 
8: 541-547. 

Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 
5: 278-282. 

Richter K, Hendershot LM, Freeman BC (2007) The cellular world according to Hsp90. Nat Struct Mol Biol 14: 
90-94. 

Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium-dependent protein kinases play an essential role in 
a plant defence response. EMBO J 20: 5556-5567. 

Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Beynon JL (2004) The maintenance of 
extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 
166: 1517-1527. 

Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396: 336-342. 
Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K, McLellan C, Kelley A, Kong SW, Queitsch 

C, Lindquist S (2007) Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana 
with reduced Hsp90 levels. PLoS One 2: e648. 

Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and 
phenotypic plasticity. Curr Opin Plant Biol 8: 86-92. 

Takahashi A, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for 
RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci USA 100: 11777-11782. 

Thomas H, Ougham HJ, Wagstaff C, Stead AD (2003) Defining senescence and death. J Exp Bot 54: 1127-1132. 
Torres MA, Jones JDG, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen 

intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37: 1130-1134. 
Van der Hoora RA, Van der Ploeg A, De Wit PJGM, Joosten MHAJ (2001) The C-terminal dilysine motif for 

targeting to the endoplasmic reticulum is not required for Cf-9 function. Mol Plant-Microbe Interact 14: 
412-415. 

Van Doom WG, Woltering EJ (2004) Senescence and programmed cell death: substance or semantics? J Exp 
Bot 55: 2147-2153. 

188 



Waller F, Muller A, Chung KM, Yap YK, Nakamura K, Weiler E, Sano H (2006) Expression of a WIPK-
activated transcription factor results in increase of endogenous salicylic acid and pathogen resistance in 
tobacco plants. Plant Cell Physiol 47: 1169-1174. 

Whitham S, Dinesh-Kumar SP, Choi D, Hehi R, Corr C, Baker B (1994) The product of the tobacco mosaic 
virus resistance gene N: similarity to Toll and the Interleukin-1 receptor. Cell 78: 1101-1115. 

Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during 
oxidative stress in Arabidopsis. Plant Physiol 143: 291-299. 

Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the 
heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282: 
37794-37804. 

Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6: 79-84. 
Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, An L (2006) Diverse signals converge at MAPK cascades in 

plant. Plant Physiol Biochem 44: 274-283. 



Summary 

Microbial plant pathogens impose a continuous threat on global food production. 

Similar to disease resistance in mammals, an innate immune system allows plants to recognise 

pathogens and swiftly activate defence. For the work described in this thesis, the interaction 

between tomato and the extracellular fungal pathogen Cladosporium fulvum serves as a model 

system to study host resistance and susceptibility in plant-pathogen interactions. Resistance to 

C. fulvum in tomato plants follows the gene-for-gene hypothesis, which requires the presence 

of a Cf resistance gene in tomato and presence of the cognate avirulence gene {Avr) in C. 

fulvum. Upon perception of the Avr by a tomato plant, a typical hypersensitive response (HR) 

is induced that renders the plant resistant to C. fulvum. In the years preceding this thesis work, 

most research was focussed on understanding which Avrs are produced by C. fulvum and how 

these Avrs are actually perceived by resistant plants (Chapter 1). The goal of the work 

described in this thesis is to reveal downstream signalling cascades triggered upon Avr 

perception. Therefore, the HR was studied by using a model system in which the Cf-4 protein 

of tomato and the Avr4 protein from C. fulvum were simultaneously expressed in tomato 

seedlings. Since the Cf-4/Avr-induced responses are inhibited at 33°C and high humidity, 

these Cf-4/Avr4 seedlings initiate a synchronized and reproducible HR after incubation at 

33°C and a subsequent shift to 20°C, which allows studying downstream responses. 

To prevent pathogen proliferation in the resistant plant, defence signalling 

cascades need to be activated extremely fast upon pathogen recognition. Therefore, many 

downstream signalling cascades depend on post-translational modifications (PTMs) that allow 

a rapid, reversible, controlled and highly specific transduction of perceived signals. An 

overview of the various types of PTMs and their role in the resistance response of plants to 

pathogens is provided in Chapter 2. In addition, examples are provided of successful 

pathogens that manipulate PTMs. 

Protein phosphorylation seems to play an important role in the Cf-4/Avr4-triggered 

HR, since Avr4 perception leads to the specific activation of at least three mitogen-activated 

protein kinases, LeMPKl, -2 and -3, which requires phosphorylation by an upstream kinase 

(Chapter 3). Each of these three kinases seems to have a different role in downstream 

defence signalling, since the kinases were shown to have different phosphorylation 

specificities and therefore most likely have different downstream target substrates. 

Furthermore, these kinases appear to play a different role with regard to HR and full 

resistance to C. fulvum in tomato (Chapter 3). 
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Since protein phosphorylation was shown to play an important role in Cf-4/Avr4-

induced defence signalling, the phosphoproteome of Cf-4/Avr4 and control seedlings after 

HR initiation was studied using a new approach (Chapter 4). This approach led to the 

identification of 50 phosphoproteins, most of which have not been described in tomato before. 

Quantification revealed 13 phosphoproteins with an altered abundance in the Cf-4/Avr4 

seedlings as compared to the control, which implies HR-induced differential phosphorylation 

of these proteins. Phosphorylation-mediated regulation of the activity of these proteins 

pointed to a swift decrease in photosynthetic activity upon HR-initiation, which was 

confirmed by experiments in which the actual efficiency of the photosynthesis in the Cf-

4/Avr4 seedlings was determined upon induction of the HR. Furthermore, a shift from aerobic 

to anaerobic respiration, which possibly results from oxygen depletion caused by a massive 

oxidative burst consuming large amounts of oxygen, seems to take place upon initiation of the 

HR. Finally, differential phosphorylation of the four cytoplasmic isoforms of the Hsp90 

chaperone protein was observed, suggesting that they play distinct roles during defence 

signalling (Chapter 4). 

In addition to the HR, other associated defence responses are initiated upon 

recognition of C. fulvum. One of these responses is the secretion of defence-related proteins 

into the apoplast, which is the environment where C. fulvum operates. Therefore, the 

dynamics of the apoplastic proteome of resistant, (^'/-expressing plants and susceptible 

tomato plants lacking Cf-4, were studied after inoculation with a strain of C. fulvum that 

secretes Avr4 (Chapter 5). Analysis of the apoplastic proteome revealed a slow accumulation 

of defence proteins in the apoplast of susceptible plants, which is most likely the result of 

perception of general elicitors of C. fulvum by tomato. In resistant plants, the same set of 

proteins accumulates in the apoplast, but this occurs much faster and to higher levels. The 

accelerated response is caused by the Cf-4/Avr4-initiated HR that also leads to cell death. The 

HR, in combination with the accelerated protein secretion, renders the plants resistant to C. 

fulvum. In addition, in susceptible plants C. fulvum seems to specifically downregulate genes 

encoding cell wall proteins of which the accumulation possibly hampers nutrient and water 

uptake and thereby proliferation of the pathogen in the tomato apoplast. Possibly, an effector 

of C. fulvum targets a receptor for general elicitors, thereby suppressing transcription of these 

genes (Chapter 5). 
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Summary 

Most data described in this thesis have been obtained from Cf-4/Avr4 

seedlings in which the HR can be inhibited by incubating the plants at 33°C. The present data 

suggest that this temperature-sensitivity occurs at the site of signal perception. Possibly, 

cytoplasmic Hsp90 stabilizes R protein complexes localized at the plasma membrane. Upon 

high temperature stress, an increased demand for Hsp90 occurs in the cells to stabilize 

unfolding proteins that play a role in basal cellular processes, which could lead to the release 

and subsequent degradation of R protein complexes, rendering defence signalling 

temperature-sensitive (Chapter 6). The temperature-sensitivity of the Cf-4/Avr4-initiated HR 

provides a very clean and reproducible tool to study the HR, in the absence of the fungus that 

produces the Avr. Furthermore, the data described in this thesis provide evidence that the Cf-

4/Avr4 seedlings recover from the temperature stress before the specific Cf-4/Avr4-triggered 

HR is initiated. The possibility to separate the events directly associated with the HR from the 

full resistance response of the plant to the invading fungus, provides new insight into the 

complexity of plant defence responses and their specific suppression upon successful 

colonization by C. fulvum (Chapter 6). Comparison of the defence response to other 

processes that occur in the cell underlines that resistance and HR execution cannot be seen as 

an independent and separate process in resistant plants that have recognized a pathogen. On 

the contrary, signalling cascades seem to depend on similar components and on cascades that 

possibly converge, eventually leading to a similar response (Chapter 6). Finally, an up to 

date model for the Cf-4/Avr4-triggered HR and resistance is proposed, based on data that 

have been published before and the results obtained with the research described in this thesis 

(Chapter 6). 
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Pathogene micro-organismen kunnen plantenziekten veroorzaken en vormen een 

constante bedreiging voor de wereld voedselproductie. Net als bij zoogdieren en mensen 

hebben planten een afweersysteem dat micro-organismen als 'lichaamsvreemd' herkent 

waardoor een afweerreactie wordt geactiveerd. In dit proefschrift wordt de afweerreactie van 

tomaat tegen de pathogene schimmel Cladosporium fulvum bestudeerd. De interactie tussen 

deze extracellulaire ziekteverwekker en tomaat volgt de gen-om-gen hypothese en wordt 

gebruikt als een modelsysteem om resistentie en vatbaarheid van planten tegen pathogenen te 

bestuderen. Wanneer C. fulvum bladeren van de tomatenplant binnendringt door openstaande 

huidmondjes, worden diverse kleine eiwitten uitgescheiden door de schimmel die een rol 

spelen bij het infectieproces. Tussen deze eiwitten bevinden zich ook de zogenaamde 

avirulentie eiwitten (Avrs), welke gecodeerd worden door Avr genen. Een tomatenplant met 

een Cf resistentiegen kan een specifieke Avr herkennen, wat vervolgens leidt tot een 

overgevoeligheidsreactie. Deze reactie heeft lokale celdood tot gevolg wat de plant resistent 

maakt tegen C. fulvum. In de jaren voorafgaand aan het beschreven onderzoek is vooral 

bestudeerd welke Avrs C. fulvum maakt en hoe deze Avrs herkend worden door de plant 

(Hoofdstuk 1). Het doel van het hier beschreven onderzoek is het ontrafelen van de 

signalering die plaatsvindt in de tomatenplant na herkenning van een Avr, en hoe dit 

uiteindelijk leidt tot resistentie. Daarvoor is gebruik gemaakt van transgene tomatenzaailingen 

die zowel Cf-4 van tomaat als Avr4 van C. fulvum tot expressie brengen, wat leidt tot een 

overgevoeligheidsreactie in de plant. Deze reactie kan echter onderdrukt worden door de 

planten bij 33°C en hoge luchtvochtigheid te plaatsen, waarna een gesynchroniseerde en 

gecontroleerde overgevoeligheidsreactie kan worden gei'nduceerd door de zaailingen naar 

20°C terug te brengen. Deze Cf-4/Avr4 zaailingen vormen een zeer geschikt systeem om de 

signalering van planten in relatie tot ziekteresistentie te ontrafelen. 

Signalering die leidt tot het activeren van een afweerreactie na herkenning van een 

pathogeen moet snel zijn om de ziekteverwekker geen kans te geven. De (de)activering van 

eiwitten betrokken bij signalering is vaak gebaseerd op post-translationele modificaties 

(PTMs) die zorgen voor een snelle, gecontroleerde, omkeerbare en zeer specifieke 

verandering van de activiteit van het eiwit. Daarom wordt in Hoofdstuk 2 een 

literatuuroverzicht gegeven van allerlei typen PTMs en de rol die deze PTMs spelen in de 

resistentiereactie van planten. Bovendien worden voorbeelden gegeven van de manipulatie 

van deze PTMs door succesvolle ziekteverwekkers. 
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Eiwitfosforylatie lijkt een belangrijke rol te spelen bij de signalering geinduceerd door 

Avr4 herkenning in resistente Cf-4 tomatenplanten, aangezien tijdens de afweerrespons in Cf-

4/Avr4 zaailingen minstens drie mitogen-geactiveerde kinases, LeMPKl, -2 en -3, worden 

geactiveerd door fosforylatie (Hoofdstuk 3). Deze geactiveerde kinases fosforyleren 

vervolgens zelf ook eiwitten, waarmee de signalering wordt voorgezet. LeMPKl, -2 en -3 

blijken een verschillende fosforylatiespecificiteit te hebben en spelen een verschillende rol in 

de overgevoeligheidsreactie en resistentie tegen C. fulvum. Daarom is het waarschijnlijk dat 

deze kinases elk een verschillende rol hebben in de afweersignalering (Hoofdstuk 3). 

Aangezien fosforylatie een belangrijke rol speelt in de afweersignalering die 

geactiveerd wordt in de Cf-4/Avr4 zaailingen, wordt er in Hoofdstuk 4 een nieuwe analyse 

beschreven waarin gefosforyleerde peptiden van Cf-4/Avr4 en controle zaailingen werden 

gelsoleerd. Deze analyse heeft geleid tot de identificatie van 50 gefosforyleerde eiwitten 

waarvan de meerderheid niet eerder werd beschreven voor tomatenplanten. Vergeleken met 

de controles waren 13 gefosforyleerde eiwitten in significant hogere of juist lagere 

hoeveelheden aanwezig in de Cf-4/Avr4 zaailingen, wat differentiele fosforylatie van deze 

eiwitten suggereert. Regulatie van de activiteit van deze eiwitten door fosforylatie 

suggereerde bijvoorbeeld dat er een snelle afname van de fotosyntheseactiviteit plaatsvindt als 

gevolg van het initieren van de overgevoeligheidsreactie. Deze waarneming is bevestigd door 

metingen die laten zien dat de fotosyntheseactiviteit inderdaad zeer snel en specifiek afneemt 

in de Cf-4/Avr4 zaailingen. Daarnaast wijzen de data er ook op dat de plant overgaat van 

aerobe naar anaerobe respiratie wanneer de overgevoeligheidsreactie wordt gei'nitieerd. Dit 

komt waarschijnlijk door de sterke oxidatieve readies die tijdens deze respons plaatsvinden, 

welke leiden tot een gebrek aan zuurstof. Ten slotte wijzen de bevindingen ook op een 

differentiele rol voor de vier verschillende isovormen van cytoplasmatisch Hsp90 in de 

overgevoeligheidsreactie, aangezien de isovormen verschillend worden gefosforyleerd op 

hetzelfde geconserveerde fosforylatiemotief tijdens het activeren van de afweerrespons 

(Hoofdstuk 4). 

Naast de overgevoeligheidsreactie worden er ook andere reacties gei'nduceerd in 

tomatenplanten die C. fulvum herkennen, zoals het uitscheiden van afweergerelateerde 

eiwitten in de extracellulaire ruimtes van het tomatenblad; de omgeving waar C. fulvum zich 

ophoudt. Om de dynamiek van deze uitscheiding van extracellulaire eiwitten te bestuderen, 

zijn tomatenplanten met en zonder het Cf-4 resistentiegen gei'noculeerd met een fysio van C. 
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fulvum dat Avr4 produceert (Hoofdstuk 5). In vatbare planten, die Avr4 niet herkennen, 

accumuleren diverse extracellulaire eiwitten langzaam als gevolg van herkenning van 

algemene iichaamsvreemde' componenten afkomstig van C. fulvum. In resistente planten 

accumuleert dezelfde set eiwitten veel sneller en in veel grotere hoeveelheden, wat 

veroorzaakt wordt door de Cf-4/Avr4-gei'nduceerde overgevoeligheidsreactie. De combinatie 

van de overgevoeligheidsreactie en het snelle uitscheiden van deze extracellulaire eiwitten 

leidt tot resistentie tegen C. fulvum. Verder lijkt C. fulvum actief de expressie van een set van 

genen te onderdrukken die coderen voor eiwitten die ophopen in de celwand. Accumulatie 

van deze eiwitten bemoeilijkt mogelijk de opname van water en voedingsstoffen uit de eel en 

daarmee de kolonisatie en sporulatie van C. fulvum (Hoofdstuk 5). 

De resultaten beschreven in dit proefschrift zijn verkregen door Cf-4/Avr4 zaailingen 

te gebruiken waarin de overgevoeligheidsreactie kan worden onderdrukt bij 33°C. Eerdere 

resultaten suggereren dat de Cf-4/Avr4-geactiveerde afweerrespons temperatuurgevoelig is 

doordat de herkenning van Avr4 wordt geblokkeerd. Hsp90 is een eiwit dat andere eiwitten 

stabiliseert en dat mogelijk ook Cf-4 stabilised! Bij hoge temperaturen stabiliseert Hsp90 

eiwitten die door de hoge temperatuur dreigen te ontvouwen en die nodig zijn voor basale 

celfuncties, waardoor de vraag naar Hsp90 toeneemt. Dit zou kunnen leiden tot destabilisatie 

en afbraak van Cf-4, waardoor de Avr4 herkenning temperatuurgevoelig wordt (Hoofdstuk 

6). Doordat de overgevoeligheidsreactie in de Cf-4/Avr4 zaailingen temperatuurgevoelig is, 

zijn deze planten geschikt om synchroon en reproduceerbaar de overgevoeligheidsreactie te 

induceren zonder dat de aanwezigheid van de schimmel nodig is. De mogelijkheid om de Cf-

4/Avr4-geTnduceerde overgevoeligheidsreactie te bestuderen, onafhankelijk van de totale set 

aan afweerresponsen van Cf-4 tomaat gei'noculeerd met een Avr-producerend fysio van C. 

fulvum, geeft nieuwe inzichten in de complexiteit van de plant afweerreacties en de 

onderdrukking van deze response door de schimmel in vatbare planten (Hoofdstuk 6). Een 

vergelijking van afweerreacties en andere processen die plaatsvinden in plantencellen laat 

zien dat de aan resistentie gerelateerde responsen niet als onafhankelijke processen in de eel 

gezien kunnen worden. Veel eiwitten die een rol spelen in afweerreacties zijn namelijk ook 

betrokken bij processen als ontwikkeling, veroudering en onderhoud van de eel (Hoofdstuk 

6). Ten slotte wordt er in dit hoofdstuk een geintegreerd overzicht gegeven van de Cf-4/Avr4-

gei'nduceerde overgevoeligheidsreactie en resistentie, gebaseerd op eerder verkregen 

resultaten en de resultaten beschreven in dit proefschrift. 
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Nawoord 

Met gemengde gevoelens heb ik mijn leesversie ingeleverd bij het secretariaat voor 

promoties. Het is een mijlpaal waar ik erg trots op ben, maar daarentegen is het ook het einde 

van een leuke en leerzame tijd. In dit nawoord wil ik graag de mensen bedanken die me 
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kamer deelden. Nana, I was very lucky to supervise a hard working student like you. You did 

a lot of nice but difficult work that, unfortunately, did not make it into this thesis. Never-the-

less, thank you for your work and the nice collaboration. Jack, bedankt voor je samenwerking 

binnen het VIDI project. Grardy, bedankt voor je hulp aan hoofdstuk 3 en de gezelligheid op 

het lab. Ahmed, bedankt voor je gezelschap op onze kamer en succes met je promotie. 

Wladimir en Bart, bedankt voor alle ideeen en de manuscripten die jullie gelezen en van 

commentaar voorzien hebben. Renier, bedankt voor je begeleiding in mijn eerste jaar. Nienke, 

zonder jouw enthousiaste begeleiding tijdens mijn afstudeervak had ik niet eens overwogen 

om aan een promotie te beginnen. Ik heb er geen spijt van gekregen. John, Peter, Emilie en 

Ursula bedankt voor de samenwerking en succes met het afronden van jullie promoties. Irene, 

Judith, Marco en Jos, bedankt voor de steun en de vaste theepauzes. Verder wil ik iedereen 

van het Laboratorium voor Fytopathologie bedanken voor de fijne samenwerking en succes 

wensen in zijn/haar verdere toekomst. 

De experimenten beschreven in Hoofdstuk 5 zijn uitgevoerd in samenwerking met 

Twan, Jan, Hetty en Froukje van Plant Research International. Het heeft lang geduurd voor de 
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resultaten zichtbaar werden maar uiteindelijk heeft deze samenwerking tot een mooi resultaat 

geleid. 

The experiments described in Chapter 4 have been performed in Odense, in the 

Department of Biochemistry and Molecular Biology of the University of Southern Denmark. I 

would like to thank Ole Jensen for the opportunity to work in his lab. It has been an incredible 

docile period that led to a very nice chapter in this thesis. I would like to thank Nadia, Kate, 

Pia, David, Martin, Tine, Christian and Andreas for their assistance and support in this 

project. Furthermore, I would like to thank the complete PR group for their warm welcome. I 

experienced Denmark as a very friendly country. 

Verder wil ik een aantal mensen bedanken die niet direct bij het werk van dit 

proefschrift betrokken waren maar die wel belangrijk voor mij zijn geweest. Ik betwijfel 

namelijk of ik door de afgelopen jaren heen was gekomen zonder mijn muzikale vrienden. 

Daarom wil ik allereerst Lex, Peter, Martin, Ester, Martijn en Rozemarijn van de Freaky Fish 

bedanken. De wekelijkse repetities zorgden voor ontspanning en een vrolijk stemming voor 

de rest van de week. Martin, ik ben blij dat je na bijna elf jaar samen toeteren tijdens mijn 

verdediging mijn paranimf wilt zijn. Ook heb ik met veel plezier bij studentenorkest "De 

Ontzetting" gespeeld waarmee we vele mooie concerten hebben gegeven, gezellige 

weekenden en concertreizen hebben gehad, en elke week weer een enerverende repetitie. 

Petra, Marjan, Marleen en Yvette, bedankt voor de gezellige middagen en weekenden die we 

samen hebben doorgebracht. Femke, bedankt voor je vriendschap en steun, en de gezellige 

carnavals die weer energie voor een jaar opleverden. 

Pap en mam, bedankt voor de eindeloze steun die ik van jullie krijg. Zonder jullie 

stimulans was ik nooit zo ver gekomen. Casper, bedankt voor je hulp als ik erom vroeg en ik 

hoop dat je Franse dromen uit zullen komen. Lauret, bedankt voor je gezelligheid en ik ben 

heel blij dat je mijn andere paranimf wilt zijn. Theo en Margot, Raoul en Rigel, bedankt voor 

alle gezellige weekenden en de leuke vakanties in Venezuela. Ten slotte, Yves, jij bent voor 

mij in de afgelopen jaren heel belangrijk geweest. Ik wil je bedanken voor je steun, 

vertrouwen en alle jaren dat je heen en weer hebt gereisd tussen Wageningen en Amsterdam, 

zodat ik vlak naast mijn werk kon wonen. Zelfs toen ik voor 6 maanden naar Denemarken 
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