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Propositions 

1. Contrary to the statements of Johnson and Young, and Carliell et al. nitroaromatics and 
azo dyes are very toxic and inhibitory to methanogens (Chapters 2 and 6 this dissertation). 

Johnson, L.D., Young, J.C. (1983) Inhibition of anaerobic digestion by organic priority 
pollutants J. Water Pollut. Control Fed. 55:1441-1449. 
Carliell, CM., Barclay, S.J., Naidoo, N., Bucley, C.A., Mulholland, D.A., Senior, E. 
(1995) Microbial decolourisation of a reactive azo dye under anaerobic conditions. Water SA 
21:61-69. 

2. Azo dye breakdown products, aromatic amines, can not be regarded as recalcitrant 
compounds under methanogenic conditions anymore (Chapters 3 and 6 this dissertation). 

Brown, D., Hamburger, B. (1987) The degradation of dyestuffs: Part III -
investigations of their ultimate degradability. Chemosphere 16:1539-1553. 
Haug, W., Schmidt, A., Nortermann, B., Hempel, D.C., Stolz, A., Knackmuss, H.J. (1991) 
Mineralization of the sulfonated azo dye Mordant-Yellow 3 by a 6-aminonaphthalene-2-
sulfonate degrading bacterial consortium. Appl. Environ. Microbiol. 57:3144-3149. 

3. When Lettinga et al. stated that "one of the main drawbacks of anaerobic wastewater 
treatment is that anaerobic systems are more sensitive to toxic compounds than the aerobic 
systems", they never imagined the enormous application potential of the UASB reactor. 

Lettinga, G., HulshofTPol, L.W., Koster, I.W., Wiegant, W.M., de Zeeuw, W.J., Rinzema, 
A., Grin, P.C., Roersma, R.E., Hobma, S.W. (1984). High rate anaerobic wastewater 
treatment using the UASB reactor under a wide range of temperature conditions. Biotechnology 
and genetic Engineering Reviews 2:253-284. 

4. Now it is time not only to clean the environment, but also to design and use "benign" and 
completely biodegradable chemicals. 

5. Dissociated from the human context, development is nothing more than growth without 
soul and this can be applied to both societies and individuals. 

Los hechos son siempre vacios, huecos. Son recipientes que tomaran la forma de los 
sentimientos que quieran llenarlos. Juan Carlos Onetti 

6. It is not possible to discover new things without having more failures than great successes. 

7. Unemployment in Europe is due to problems with the economic model and not the 
presence of foreigners. History repeats itself? 

8. It is surprising that the country which has developed the maximum market economy 
completely ignores the drug problem. 

9. The Wageningen Agricultural University emblem is clearly in descent not in ascent. 

10. Now it is possible in Mexico, after the big upset of the state's party, that in politics the gap 
between the words and the facts can be shortened. 



11. Accepting the existence of a problem is the best way of getting started to solve it. 

12. Transatlantic nocturnal flights cause so much mental disorder that one can end up buying a 
tie with an English flag. 

13. The Frisian obstinacy is not a fault but an attribute. 

14. Mexico City, the feared monster of a thousand heads, is a city with more soul, charm and 
solidarity than many European capitals. 

Propositions belonging to the thesis entitled "Biotransformation and Biodegradation 
of N-substituted aromatics in Methanogenic Granular Sludge". 

Elias Razo Flores 
Wageningen, 19 September 1997. 
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A los Abuelos, 
cuyo grato recuerdo siempre me acompana 



Acknowledgments 

The dream to come to The Netherlands started almost six years ago during a quite, 

pleasant and warm weekend in the Mexican high plateau. Now the adventure is finished and I 

would like to thank those who helped me to accomplish it. 

First at all, it was a great pleasure to work with Jim Field, my supervisor and "the 

boss". Thanks to his excellent and brilliant guidance since the beginning till the end it was 

possible to arrive to the conclusion of this dissertation. From him I received the most important 

and very decisive support and I appreciated it a lot. 

I express my most sincere gratitude to Gatze Lettinga for allowing me to come to 

Wageningen to work in his "anaerobic consortia" and for serving as my "promotor". I will 

never forget his high human warmth and all the endless avondjes we had together drinking 

"very excellent" Belgium beer and trying to solve the world's problems. 

Sometimes life puts in our way very nice people, like Brian Donlon, my great Irish 

friend. I really do not have words to thank his comradeship. We both shared the good and the 

bad moments of our personal and research lives here in Wageningen. With him I learned to be 

very passionate with the work and very cool with the personal life. Go raihh mile maith agat, 

mo chair del. 

I also had the opportunity to work, interact and discuss with several students and 

colleagues, whose hard work and stimulating interest I also would like to acknowledge: 

Maurice Luijten, Tom Tanghe, Erick-Jan Boots, Marco de Bakker, Antonio Matamala, Anna 

Svitelskaya, Patrick Smulders, Francesc Prenafeta Boldu and last but not least Nico Tan. 

Additionally, I would like to express my appreciation to all the members of the Department of 

Environmental Technology with whom I shared very nice and intense moments Some of them 

deserve special thanks like Mario Kato, Lourdinha Florencio, Ching-Shyung Hwu, Miriam van 

Eekert, Lucas Seghezzo, Robert Kleerebezem, and the Dean of the Colleagues, Mr Salih 

Rebac. Of course I should not forget my "guardian angels", Heleen Vos and Use Bennehey, 

who always had a smile and a lot of help for me. 

I Consider myself very lucky because I was always surrounded by nice and helpful 

people; "La Banda del Charro Negro" with Hugo Ramirez, Rebeca Renteria and Armando 



Garcia as leaders; The "Spanish Armada" with Francisco Omil, Fran Morales and Maria 

Fernandez-Polanco as captains of the galleon, and all the other foreigners and Dutch friends 

who created a sort of "Babel tower" because of the many languages that were spoken. I am 

indebted to all of them because without all the fun we had together and their support this thesis 

could have been finished in half of the time!. My special thanks to Reyes Sierra Alvarez for her 

guidance and friendship and for all the superb suppers she offered. I also thank Dora Lettinga 

for her kind hospitality. 

Despite the distance I always had the support of several friends and colleagues. In fact I 

can say that the distance shortened the bonds of friendship between us. Special thanks to 

Mayra, Eugenia, Pilar, Silvia, Luis, Roberto, Victor, Juan and Anne-Marie. 

Familia, mi querida familia. El carino constante y coraje que ustedes me infundieron 

siempre me ha permitido ver hacia adelante y no rendirme nunca. Consideren este logro como 

si fuera suyo, que de hecho lo es. Los quiero mucho a todos. 



Abstract 

Razo Flores. E . (1997) Biotransformation and Bi ode gradation of N-substituted Aromatics in 

Methanogenic Granular Sludge. Ph .D. Thesis. Wageningen Agricultural University. 

Wageningen, The Netherlands. 

N-substituted aromatic compounds are environmental contaminants associated with the production 
and use of dyes, explosives, pesticides and pharmaceuticals among others. Nitro- and azo-substituted 
aromatic compounds with strong electron withdrawing groups are poorly biodegradable in aerobic treatment 
systems. Therefore anaerobic treatment technologies were considered in this research. The toxicity of these 
compounds to methanogenic bacteria was studied. Batch toxicity assays indicated that nitroaromatics and azo 
dyes were highly inhibitory to acetoclastic methanogenic bacteria, with 50% inhibiting concentrations (50% 
IC) as low as 14 to 538 (iM. However, the corresponding aromatic amines were several orders of magnitude 
less toxic. 

The biodegradability of eighteen N-substituted aromatic and six alkylphenol compounds under 
methanogenic conditions was assessed in batch assays with unadaptcd and 2-nitrophenol (2NP) adapted 
granular sludge. Net methane production indicated that all three isomers of aminobenzoate, 2-aminophenol 
(2AP) and 4-cresol were found to be completely mineralized by the unadaptcd sludge. All the other 
compounds tested were not degraded under the experimental conditions employed. The 2NP-adapted granular 
sludge showed a similar degradation spectrum but also cross acclimatized with other compounds as it was 
able to also mineralize 4-aminophenol and 5-aminosalicylic acid (5ASA). 

The facile reduction of the nitro- and azo-elcctron withdrawing groups was used as a detoxification 
strategy in continuous laboratory scale (160 mL) upward-flow anaerobic sludge bed reactors (UASB), 
supplied with either a mixture of volatile fatty acids (VFA) or glucose and selected nitroaromatic compounds. 
The nitroaromatics tested included: 2NP, 4-nitrophenol, 2,4-dinitrophenol, 2,4-dinitrotoluene, 4-nitrobenzoic 
acid (4NBc), 5-nitrosalicylic acid (5NSA) and nitrobenzene. All compounds were efficiently reduced to their 
corresponding aromatic amines and the primary substrate chemical oxygen demand (COD) was efficiently 
converted to methane even at influent nitroaromatic concentrations exceeding the 50% IC values by up to 30-
fold. After long term reactor operation (several months), aromatic amines were no longer observed to 
accumulate as products of 4NBc, 2NP and 5NSA elimination. The granular sludge sampled from these 
reactors were able to fully mineralize 4-aminobcnzoatc, 2AP and 5ASA to methane when these were offered 
as the sole carbon and energy source in anaerobic biodegradability assays. These results suggest that 4NBc, 
2NP and 5NSA were completely biodegraded in the continuous reactors at nitroaromatic loading rates up to 
312, 910 and 553 mg/L-d, respectively. 

Continuous UASB reactors were also run with the azo dye Mordant Orange 1 [MOl, 5-(4-
nitrophenylazo)salicylic acid] with either no primary substrate, glucose or VFA. Except for the first few 
weeks, no elimination of azo dye was evident in the column receiving no primary substrates. On the other 
hand, MOl was readily cleaved in the reactors (>99%) receiving glucose and VFA at MOl loading rates up 
to 295 and 161 mg/L-d, respectively. In these reactors, both 1,4-phenylcnediamine (1,4PDA) and 5ASA 
were detected as products of MOl cleavage. After 180 days, 5ASA arising from MOl cleavage could only 
be detected at trace concentrations in the glucose fed reactor. The sampled sludge was able to rapidly 
mineralize 5ASA to methane in the anaerobic biodegradability assay. The results suggest that MOl was 
cleaved into 1,4PDA and 5ASA; and that 5ASA was fully degraded by the anaerobic consortia; whereas. 
1,4PDA persisted. Azodisalicylate (ADS), a pharmaceutical azo dye constructed from two 5ASA units, was 
completely mineralized in UASB reactors at ADS loading rates up to 225 mg/L-d even in the absence of 
cosubstrate, indicating that the metabolism of 5ASA could provide the reducing equivalents needed for the 
azo reduction. Batch experiments confirmed the ADS mineralization. 

The results of this research demonstrated that anaerobic treatment is a feasible technology for the 
treatment of highly toxic nitroaromatics and azo dyes. It was also shown that some nitroaromatic compounds 
and azo dyes can be completely mineralized and serve serve as a carbon, energy and nitrogen source for 
anaerobic bacteria, in contrast to the common assumption that they arc only biotransformed to mutagenic and 
carcinogenic aromatic amines. 



Resumen 

Razo Flores, E. (1997) Biotransformation y Biodegradacion de Compuestos N-aromdticos 
en Lodo Granular Metanogenico. Ph.D. Tesis. Universidad Agricola de Wageningen, 
Wageningen, Paises Bajos. 

Los compuestos aromaticos nitrogenados (N-aromaticos) contaminan el ambiente y estan asociados a 
la production y uso de colorantes. explosivos, pesticidas y productos farmaceuticos. Los compuestos aromaticos 
substituidos con grupos nitro o azo son altamente electronegativos, causa por la cual no son facilmente 
dcgradados en los sistemas aerobios convencionales. Por esta razon las tecnologias anaerobias de tratamiento 
fueron considcradas en esta investigation. La toxicidad de estos compuestos en bacterias metanogenicas fue 
estudiada en experimentos por lote. Los resultados indicaron que los nitroaromaticos y los colorantes azo 
inhibieron significativamente la actividad metanogenica de las bacterias acetoclasticas, con concentraciones 
que causaron una disminucion del 50% en dicha actividad (50%IC) en el rango de 14 a 538 uM. Sin embargo, 
los correspondientes compuestos aminoaromaticos fueron varios ordenes de magnitud menos toxicos. 

La biodegradabilidad de 18 compuestos N-aromaticos y 6 alquilfenoles fue estudiada en experimentos 
por lote, bajo condiciones metanogenicas y utilizando dos tipos de lodo granular: no adaptado y adaptado a la 
degradation de 2-nitrofenol (2NF). Los resultados indicaron que los tres isomeros de aminobenzoato, 2-
aminofenol (2AF) y 4-cresol fueron completamente mineralizados por el lodo granular no adaptado, mientras 
que los demas compuestos probados no fueron degradados. Los resultados obtenidos con el lodo granular 
adaptado mostraron que este lodo degrado, ademas de los mismos compuestos, el 4-aminofenol y el acido 5-
aminosalicilico (5ASA). Estos resultados indican que es posible adaptar lodo granular para obtener 
mineralization cruzada de compuestos aromaticos estructuralmente similares. 

Es conocido que los grupos nitro o azo son facilmente reducidos bajo condiciones de anaerobiosis, por 
lo cual se utilizo la reduction de estos compuestos como una estrategia de detoxification en reactores 
anaerobios continuos (160 mL) de lecho de lodo con flujo ascendente (UASB). Los reactores UASB fueron 
alimentados con una mezcla de acidos grasos volatiles (AGV) o glucosa como cosubstratos y diferentes 
compuestos nitroaromaticos en cada reactor. Los compuestos probados fueron: 2NF, 4-nitrofenol (4NF), 2,4-
dinitfofenol (2,4-DNF), 2,4-dinitrotoIueno (2,4-DNT), acido 4-nitrobenzoico (4NBc), acido 5-nitrosalicilico 
(5NSA) y nitrobenceno. Todos los nitroaromaticos fueron completamente reducidos a sus correspondientes 
compuestos aminoaromaticos, mientras que la DQO de los cosubstratos fue convertida eficientemente a metano, 
incluso a concentraciones de nitroaromaticos que excedian hasta 30 veces el valor de 50%IC. Dcspues de 
algunos meses de operation se observo que la concentration de los compuestos aminoaromaticos, generados 
como productos de reduction, disminuia en los reactores UASB que trataban 2NF, 4NBc y 5NSA. Las muestras 
de lodo granular de estos reactores mineralizaron el acido 4-aminobenzoico, 2AF y 5ASA en experimentos por 
lote dondc estos compuestos fueron las unicas fuentes de carbono y energia disponibles. Estos resultados 
demostraron que 2NF, 4NBc y 5NSA fueron mineralizados en los reactores UASB con cargas de 
nitroaromaticos de hasta de 312, 910 y 553 mg/L-d, respectivamente. 

Reactores UASB tambien fueron operados para estudiar la transformation de compuestos azo con o sin 
cosubstrato. Excepto en las primeras semanas, la reduction de Mordant Orange 1 (MOl) en el reactor sin 
cosubstrato fue minima. Por otra parte, MOl fue altamente reducido y decolorado (>99%) en los reactores 
recibiendo AGV y glucosa como cosubstratos, con cargas de MOl de hasta 161 y 295 mg/L-d, respectivamente. 
En ambos reactores se detecto 5ASA y 1,4-diaminobenceno (1,4DAB) como productos de ruptura del enlace 
azo. Despues de 180 dias de operation se observo que 5 AS A era detectado a bajas concentraciones en el reactor 
con glucosa. El lodo granular de este reactor mineralizo 5ASA en experimentos por lote, mientras que 1,4DAB 
no fue degradado. De la misma forma, Azodisalicilato (ADS), un compuesto azo formado por dos unidades de 
5ASA, fue completamente mineral izado en reactores UASB a cargas de hasta 225 mg/L-d, incluso en ausencia 
de cosubstrato, indicando que el metabolismo de 5ASA suministro los equivalentes de reduction necesarios 
para el rompimiento del enlace azo. Los experimentos por lote confirmaron la mineralization de ADS. 

Los resultados de esta tesis demuestran que el tratamiento anaerobio es una tecnologia viable para el 
tratamiento de compuestos altamente toxicos como los nitroaromaticos y los colorantes azo. Tambien se 
demuestra que algunos nitroaromaticos y colorantes azo son completamente mineralizados y ademas son 
utilizados como fuente de carbono, energia y nitrogeno por las bacterias anaerobias, en contraste con lo 
aceptado generalmente de que s6lo son transformados a compuestos mutagenicos y cancerigenos. 
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1 

General Introduction 

1.1 Introduction 

Industrialization has resulted in the formation of waste products which are released into 

the environment in the form of wastewater, gaseous emissions and solid residues leading to 

environmental pollution and deterioration. Increasing amounts of fuel, industrial chemicals, 

fertilizers, pesticides, pharmaceuticals, processed food and similar indispensable products will 

be required for improving the quality of life to mankind. However, the resulting pollution may 

have a serious impact to the fauna, flora of the ecosystem as well as public health. 

The chemical and petrochemical industries represent an important potential source of 

toxic and recalcitrant priority pollutants. Chemical manufacturing is a multiproduct and 

multiprocess industry, using a wide range of basic raw materials, it produces several 

heterogeneous products of diverse nature. Currently, about 100 000 chemicals are produced 

commercially (113), and aromatic compounds make up about a third of the 91 billion kg of the 

top 50 chemicals manufactured annually in the United States (6). The environmental impacts of 

aromatic hydrocarbons and chloroaromatics have received the most research attention. Less 

studied are the N-substituted aromatic compounds which play an extremely important role in 

the chemical industry. In fact, some major industries are totally dependent on nitroaromatic 

feedstocks (46). Table 1 shows the production of nitroaromatics in the U.S. market. 

The environmental fate of organic pollutants is known to depend upon a variety of 

physical and biochemical factors, including chemical structure (aromatic vs. aliphatic, nature of 

the functional group, etc.), sorption characteristics, volatility, ionic character, solubility and 

availability of terminal electron acceptors. In anaerobic environments, the predominant electron 

1 



Chapter 1 

acceptor can influence the biological consortium selected, the thermodynamics of a particular 

reaction and the redox potential. Collectively, these factors can affect the biodegradability, 

toxicity and kinetics of metabolism for a chemical compound in an anoxic environment. 

TABLE 1.1 Production of nitroaromatics in United States in 1980." 
Adapted from Hartter (46). 

Product category Market size 
(Mtons) 

Polymersb 571.5 
Rubber chemicals 101.2 
Dyes and pigments 21.3 
Pharmaceuticals 12.7 
Pesticides 68.9 
Mother 31.8 

* Include derivatives of benzene, chlorobenzene and toluene. 
b Mostly polyurethane produced from aniline. 

The majority of nitroaromatic compounds found in the environment are released due to 

anthropogenic activities. However, a few aromatic compounds bearing one nitro group as a 

substituent are produced as secondary metabolites by microorganisms (118, 120). 

Nitroaromatics are used in the production of chemicals, dyes, plasticizers, explosives, 

pharmaceuticals and pesticides among others (40, 44). Consequently, these aromatics appear in 

the wastes generated by these industries. They are also formed by incomplete combustion of 

fossil fuels and synthesized photochemically in the atmosphere (37). Nitroaromatics are highly 

toxic to man and mammals, being easily reduced by enzymes to nitroso and hydroxylamine 

derivatives (4). These derivatives may lead to the formation of either metahemoglobin, which is 

unable to bind oxygen, or of nitrosoamines, which are carcinogenic (66). Some nitroaromatics, 

such as nitropyrene (62), are mutagenic and several nitrophenols have an uncoupling effect on 

oxidative phosporylation (115). Most nitroaromatics and azo dyes are highly toxic to bacteria 

and, consequently, may inhibit microbial growth (56, 123). In fact, the toxicity and the poor 

biodegradability exhibited by these compounds are the main bottlenecks in the application of 

microbial wastewater treatment processes. 
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Azo dyes are synthetic organic colorants that exhibit great structural diversity (5), and 

arc used for various purposes in the textile, cosmetic, paper-making and food and 

pharmaceutical industries (81, 128). The textile and the dyestuff manufacturing industry are the 

two major sources of released azo dyes (71, 85). Among other factors, these dyes are used 

because of their resistance to breakdown when exposed to the environment. Consequently, 

they are often very difficult to biodegrade when present in wastewaters. Azo dyes are regarded 

as toxic compounds because they were shown to affect microbial activities and microbial 

population sizes in the sediments and in the water columns of aquatic habitats (26, 56). These 

colored compounds were also inhibitory to microbial oxidation processes in activated sludge 

plants (56, 93). In the same way, concentrations of Acid Orange 1 as low as 5 mg/L inhibited 

all stages of the nitrification process (48). 

Biological treatment, either aerobic or anaerobic, is generally the most cost-effective 

means for the removal of N-substituted aromatics. Evidence is accumulating indicating that 

microorganisms are able to degrade these compounds (4, 33, 41, 82, 108-110, 122). Under 

aerobic conditions, aromatic compounds are transformed by monooxygenases and 

diooxygenases into a few central intermediates. Three intermediates are common to all of the 

aerobic pathways of metabolism of aromatic compounds: catechol, protocatechuate and 

gentisate (108). These dihydroxylated compounds are broken down by similar pathways to 

simple acids and aldehydes which are readily used for cell synthesis and energy (1, 122). Under 

anaerobic conditions the mechanism of degradation is completely different; the aromatic ring 

structures are reductively attacked as proposed by Evans and Fuchs (29) and Fuchs et al. (35). 

First, the diverse aromatic compounds are transformed to simplified aromatic intermediates like 

benzoyl-CoA, resorcinol, phloroglucinol and possibly others through channeling reactions (35, 

49). Subsequently, the simplified aromatic intermediates are reductively attacked and cleaved 

by hydrolysis, and the resulting non-cyclic compounds are transformed by P-oxidation to 

central metabolites like acetyl-CoA and CO2. Figure 1.1 shows schematically the anaerobic 

degradation pathway of aromatic compounds. 

Due to the strong electron-withdrawing character of the nitro and azo groups, these 

compounds are electron deficient. Besides the xenobiotic character of these groups, it is the 
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electron-withdrawing character and thus the electron deficiency of the aromatic ring (Figure 

1.2), which impedes electrophilic attack by oxygenases of aerobic bacteria and fungi (66, 97), 

being this the reason why polynitroaromatics and azo dyes are not degraded in aerobic 

wastewater systems (45, 83, 95, 105). The most common biological reaction of nitro and azo 

groups is reduction. Because the reduction of aromatic nitro and azo groups is such a facile 

process, reductive transformation of chemicals containing these moieties is often the 

predominant pathway for their transformation in the environment (18, 45). Consequently, 

anaerobic reduction can be applied as a first step in the biodegradation of toxic nitro and azo 

dye compounds. 

Transformation into 
central intermediates 

0n , R ' 
n2R2 

hydratation, 
dehydratation, 
reductive dechlorination 
reductive dehydroxylation, 
reductive deamination 
nitroreduction, 
carboxylation, etc. 

Reduction Hydrolysis 

0 SCoA 0 . SCoA O SCoA 0 . SCoA 

Diverse aromatic 
compounds 

Simplified aromatic 
intermediates 

Alicyclic 
compounds 

3 Acetyl-CoA 
+ C02 

Central 
metabolites 

(HO) ^ ^ OH " (HO) 
H2° (HO)' 

p-oxidation 

Do 
1 

3 Acetyl-CoA 

Figure 1.1 Schematic pathway of anaerobic degradation of aromatic compounds: Ri, R2 = -
CH3, -OH, -COOH, -NH2, -N02, -CI, etc.; n,, n2 = 0-6. Adapted from Holliger and Zehnder 
(51). 
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ON 
EWG EWG = f I °

3 ^ „ 
N = N-R 
NO: 

Figure 1.2 Electron-withdrawing groups (EWG) deactivate compounds for electrophilic attack 
by aerobic microorganisms; R = alkyl or aryl. Adapted from Rieger and Knackmuss (97). 

Anaerobic treatment consist of a series of microbiological processes that convert 

organic compounds to biogas like methane and carbon dioxide. While several types of 

microorganisms are implicated in aerobic processes, anaerobic processes are driven mostly by 

bacteria (13). Furthermore, there are synergistic interactions between the various groups of 

bacteria implicated in anaerobic digestion of wastes. The groups of bacteria catalyzing the 

reactions taking place during the anaerobic digestion are mainly: fermentative bacteria, 

hydrogen-producing acetogenic bacteria, hydrogen-consuming acetogenic bacteria, carbon 

dioxide-reducing methanogens and acetoclastic methanogens (42). The better understanding of 

the anaerobic microbiological processes allowed the expansion on the application of this 

technology not only to the treatment of wastewater sludge but to more complex wastewaters. 

1.2 Anaerobic Technology; the Upflow Anaerobic Sludge Bed (UASB) 
Reactor 

Anaerobic treatment of wastewater was used in the first half of the century but the 

predominance of aerobic methods became overwhelming later. However, since the 

introduction of the "anaerobic high rate systems" in the late 1970's, a breakthrough in the 

environmental technology came about (10, 43, 111). Now, the upflow anaerobic sludge bed 

(UASB) reactor, is by far the most widely applied anaerobic treatment system and is 

extensively used for the treatment of several types of wastewater (55, 72, 73, 76, 101). One of 

the advantages of the UASB reactor is the ability to retain high biomass concentrations despite 

the upflow velocity of the wastewater and the production of biogas. Consequently, the reactor 

can operate at short hydraulic retention time since the sludge retention time is almost 
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independent of the hydraulic retention time. Successful operation under these conditions 

requires a highly active biomass with good settling capacities (114, 121). In the UASB 

reactors, the biomass is retained as aggregates, called granules, formed by self-immobilization 

of the bacteria which naturally occurs due to the upflow conditions (54, 76, 77). The formation 

and stability of the granules are essential for successful operation. Retention of active biomass 

within the system enables good treatment performance at high organic loading rates, and 

natural turbulence caused by the influent and the biogas production provides good wastewater-

biomass contact in the UASB reactor. Higher organic loads can be applied in UASB systems 

than in aerobic processes (59). Therefore, less reactor volume and space is required while, at 

the same time, high grade energy can be produced from the biogas (59). 

Originally, the UASB reactor was applied for the treatment of wastewaters from the 

agro and food industries (55), and lately for the municipal wastewaters (43). More recently the 

UASB reactor has been successfully applied for the treatment of the wastewaters generated by 

the forestry (74) and the chemical and petrochemical industries (80). The delayed application 

for the treatment of these kind of wastewaters was due to the a priori idea stating that "the 

anaerobic systems were more sensitive to toxic compounds than the aerobic systems" (13, 75, 

98). However, a recent study has demonstrated that aerobic heterotrophs and methanogens 

have similar sensitivities to toxicants for most classes of chemicals (14). This rather startling 

conclusion contradicts the standard "wisdom" of the practicing engineer. Experience have 

demonstrated that even extremely toxic compounds, such as pentachlorophenol, can be 

successfully treated in UASB reactors (50, 124), indicating that this system is suitable for the 

treatment of highly toxic compounds. 

1.3 Toxicity of N-substituted Aromatics 

The presence of toxic chemicals during the anaerobic degradation processes can inhibit 

the normal sequence of anaerobic biochemical metabolic reactions, thereby causing inefficient 

treatment and possibly even a complete failure. N-substituted compounds such as 

nitroaromatics and azo dyes are reported to be toxic to microorganisms (7, 26, 45, 56, 57, 89, 



General Introduction 

119, 123). Of all the classes of organisms involved in anaerobic degradation, the methanogens 

are reported to be the slowest growing organisms in the consortium thus a toxic shock can 

have an important impact. Uberoi and Bhattacharya (119) reported that nitrophenols were 

more inhibitory to acetate utilization than propionate utilization, and they also noted that high 

volatile suspended solids concentration produced less severe toxic effects of nitrophenols on 

methanogenesis. In the same way, Kim et al. (60) and Davies-Venn et al. (27) reported that 

chlorophenols and chloroanilines were more toxic to the acetoclastic methanogenesis reactions 

than to an ethanol-degrading acetogenic reactions. However, in some instances the acetogens, 

were found to be more sensitive to toxic chemicals than acetoclastic methanogens (84). In the 

particular case of the methanogens, there are evidences indicating that acetoclastic 

methanogens are more sensitive to toxic aromatic compounds than hydrogenotrophic 

methanogens (11, 39, 61). Apparently the methanogens are also more sensitive to the presence 

of nitroaromatics than the sulphate-reducing bacteria (40). 

Nitroaromatics 

Table 1.2 shows the anaerobic toxicity effects of several nitroaromatics measured under 

batch conditions with different kinds of biomass as reported in the literature. As can be seen 

from Table 1.2, the information about the toxicity exerted by the nitrophenols to the anaerobic 

biomass is well documented, whereas data for other nitroaromatics is rather scarce. In general, 

concentrations of nitroaromatics below 100 mg/L exhibited toxic effects which, depending on 

the compound, ranged from moderate inhibition to complete suppression of microbial activity. 

With respect to the nitrophenols, their toxicity decreases in the following order: 2,4-

dinitrophenol > 4-nitrophenol > 2- or 3-nitrophenol (44, 116). Concentrations of 4-nitrophenol 

as low as 5 mg/L have been reported to produce severe biogas (methane and carbon dioxide) 

production inhibition (117) or biogas production suppression (116). Concentrations of 2,4-

dinitrophenol of 20 mg/L was reported to irreversibly inhibit biogas production (86). Gorontzy 

et al. (40) reported that nitroaromatics hindered cell growth of several methanogens, sulphate-

reducers and Clostridia, and additionally, they showed that nitroaromatics caused cell lysis of 

methanogens. The majority of the toxicity studies reported in Table 1.2 were conducted with 

anaerobic digester sludge, indicating a lack of data for anaerobic granular sludge. Toxicity 
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General Introduction 

studies conducted with anaerobic granular sludge has been reported for few nitroaromatics 

(39), haloaromatics (39, 107) and alkylphenols (39, 107). 

Azo Dyes 

Regarding the toxicity of azo dyes to anaerobic microorganisms, there is little 

information available. Carliell et al. (22) demonstrated that concentrations of Reactive Red 141 

above 100 mg/L inhibited biogas production in batch experiments using anaerobic biomass. 

Similarly, Seshadri et al. (104) reported that dye concentrations of 15 mg/L of Acid Orange 8 

and Acid Orange 10 produced a significant inhibition in dye and chemical oxygen demand 

(COD) removal in an anaerobic fluidized bed reactor. 

Aromatic Amines 

The aromatic amines on the other hand are generally regarded as being less toxic 

compounds for the anaerobic microorganisms compared to nitroaromatic and azo dye 

compounds. Fedorak et al. (30) found no evidence that anilines negatively influenced 

methanogenesis. Boyd et al. (16) and Battersby and Wilson (8) indicated that biogas 

production inhibition in batch experiments using anaerobic sludge ceased after the 

nitroaromatics tested were completely reduced. According to these results, it seems that the 

reductive transformation of nitroaromatics to aromatic amines leads to a detoxification of the 

compounds. 

1.4 Nitroaromatics and Azo Dye Reduction 

Nitroaromatics and azo dyes are reduced under anaerobic conditions by different kinds 

of microorganisms, including the intestinal microflora of several species of mammals (7, 25, 

26, 99, 109). The reduction of these compounds proceeds through six-electron (nitro) and 

four-electron (azo) mechanism as shown in Figure 1.3, resulting in the formation of aromatic 

amines (18, 40). Reductases (nitro- and azo-) from a variety of sources catalyze the reduction 
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of the nitro and azo groups. Nitroreductases convert nitro groups to either nitroso derivatives, 

hydroxylamines or amines by the successive addition of electron pairs donated by cosubstrates. 

The nitroso derivatives are difficult to detect because they are reactive and unstable (4). 

O . O " O HO 
\ + s \ \ 

N N NH NH2 

(§)"£(§) "^ (§)-S-(§) 
Nitroaromatic reduction 

2e,2H+ 

N = N N / \ S N - N N / \ / NH2 H2N 
i i 
H H 

Aromatic azo reduction 

Figure 1.3 Nitroaromatic and azo dye reduction via six- and four-electron mechanism, 
respectively, under anaerobic conditions. 

Specific nitro- and azoreductases have been isolated and characterized (21, 25, 62, 96). 

Azoreductases have generally been found to be oxygen-sensitive and to require flavins with 

both NADH and NADPH as active electron donors for optimal activity (25). Gorontzy et al. 

(40) and Chung etal. (25) concluded that the microbial reduction of nitro- and azo compounds 

is an unspecific detoxification reaction mediated by certain enzymes and/or cofactors. 

Zimmermann et al. (125) have shown that certain specific azoreductases of specialized 

Pseudomonas strains are oxygen-insensitive. Reduction of nitroaromatics and azo dyes has 

also been observed in abiotic systems (70). 

1.5 Biodegradation of N-substituted Aromatics 

Molecules substituted with electron-withdrawing groups such as nitro-, azo- and 

chloro-groups are quite resistant to electrophilic attack by oxygenases (65, 97). Consequently, 
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they generally persist during aerobic wastewater treatment (45, 83, 95, 105). On the other 

hand, a nucleophilic mechanism of attack is common in anaerobic environments being 

favorable for the initial reductive attack of these compounds (65, 97). However, electron-

donating functional groups, like aromatic amines, are troublesome for the nucleophilic attack 

of anaerobes (64, 65, 100). The presence of amino electron donating groups is expected to 

facilitate the electrophilic attack of aromatics. Most of the typical aromatic amine-end products 

from the anaerobic metabolism of nitro- and azo-aromatic pollutants are eliminated in aerobic 

biodegradability tests (19, 20, 28, 33). For these reasons, sequencing anaerobic-aerobic 

biotreatment processes have been proposed for the complete mineralization of electron-

withdrawing aromatic compounds such as nitroaromatics and azo dyes as shown in Figure 1.4 

(9, 28, 33, 47, 67, 79, 127). However, when a nitroaromatic or azo dye-bearing wastewater is 

treated anaerobically, the resulting metabolites might well be an unstable aromatic amines 

which readily are autooxided to colored polymeric products upon exposure to air (63, 69, 83, 

88). These autooxidation products are often complex humic compounds that are non-toxic and 

non-biodegradable (15, 31, 32). Field etal. (31, 33) indicated that the intermediary metabolites 

formed during autooxidation process can increase the methanogenic toxicity when present in 

wastewater. 

Anaerobic Aerobic 
N02 NH2 

® — ® 
Nitrobenzene Aniline 

- • C02.H20, NH3 

H03S 

N = N 

Mordant Yellow 3 

Cj\ • CO2.H2O.NH3 

N H 2 \ / 

/ 5-aminosalicylate 

NH2 

- • C02.H20, NH3.H2S04 

H03S 

6-amino-2-sulfonylnaphthalene 

Figure 1.4 Examples illustrating the sequenced anaerobic-aerobic mineralization of 
nitrobenzene (28) and Mordant Yellow 3 (47). 
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Nevertheless, there are several reports indicating the complete mineralization of some 

N-substituted aromatics under anaerobic conditions. Table 1.3 summarizes the batch 

biodegradability of nitroaromatics and aromatic amines under methanogenic conditions. In 

general, according to Table 1.3, it appears that all the isomers of the nitrophenols and 

aminophenols as well as nitrobenzoates and aminobenzoates are mineralized under 

methanogenic conditions. The mineralization of these monosubstituted aromatics proceeded 

through reduction of the nitrogroup to the corresponding aromatic amine. Figure 1.5 shows 

schematically the fate of aromatic amines under anaerobic and anoxic conditions. One of the 

reactions that has been demonstrated to take place is deamination (Figure 1.5A) from the 

aromatic ring of 2-aminophenol by an anaerobic methanogenic consortium to produce phenol 

(116), that was completely mineralized afterwards. Bisaillon et al. (12) described a 

methanogenic consortium that was able to carboxylate and dehydroxylate 2-aminophenol 

producing 3-aminobenzoate (Figure 1.5B), which accumulated in the culture medium and was 

not further metabolized. 

Other N-substituted aromatics have been reported to be transformed to compounds 

that are susceptible to be mineralized. Stevens et al. ( I l l ) reported that an fermentative 

enrichment culture degrading the herbicide Dinoseb (2-sec-butyl-4,6-dinitrophenol) was able to 

transform Dinoseb to acetate and CO2. The following nitroaromatics were also transformed by 

this enrichment culture to the same end products: 4,6-dinitro-o-cresol, 3,5-dinitrobenzoate, 

2,4-dinitrotoluene and 2,6-dinitrotoluene (111). In the same way, Funk et al. (36) reported that 

under anaerobic conditions 2,4,6-trinitrotoluene was reduced to 2,4,6-triaminotoluene, and a 

deeper transformation resulted in the accumulation of methylphloroglucinol and p-cresol via 

hydroxylation (Figure 1.5C). Brown and Hamburger (20) indicated that 4,4'-diamino-3,3'-

dimethoxybiphenyl was eliminated in anaerobic sludge. 

Reactions leading to the transformation of aromatic amines has been also reported 

under anoxic conditions. Schnell and Schink (102) and de Alexandra (2) have reported the 

mineralization of aniline under sulfate-reducing and denitrifying conditions, respectively. The 

mineralization proceeded via carboxylation of aniline in the /rarar-position (Figure 1.5D) to 4-

aminobenzoate, which was activated to 4-aminobenzoyl-CoA and further metabolized by 
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reductive deamination. This latter step has also been demonstrated with 2- and 3-

aminobenzoate with strictly anaerobic bacteria (78). In the same way, acetylation of aromatic 

amines has been reported under nitrate-reducing conditions (Figure 1.5E). Gilcrease and 

Murphy (38) described the transformation of 2,4-diamino-6-nitrotoluene to 4-acetylamino-2-

amino-6-nitrotoluene, whereas Noguera and Freedman (87) reported the transformation of 

2,4-diaminotoluene to 2,4-diacetamidetoluene. The two acetylated compounds were not 

transformed further. 

A) Reductive deamination 
OH OH 

B) Carboxylation-dehydroxylation 
OH 

NH2 

C) Hydroxylation 

NH2 

D) Carboxylation 
NH2 

® 

COOH 

NH2 

COOH 

C H 3 Q 
NHCCH3 

Figure 1.5 Fate of aromatic amines under anaerobic and anoxic conditions; (A) reductive 
deamination of 2-aminophenol (115), (B) carboxylation-dehydroxylation of 2-aminophenol 
(12), (C) hydroxylation of triaminotoluene (36), (D) carboxylation of aniline (2, 102), 
acetylation of 2,4-diaminotoluene (87). 
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Based on these results, it seems that N-substituted aromatic compounds having 

carboxy-, hydroxy- and methoxy-substituents are potentially biotransformed and even 

mineralized under anaerobic conditions. On the other hand, N-substituted aromatics with 

sulphonic-groups are recalcitrant under methanogenic conditions (68). 

The transformation and degradation of azo dyes has been studied for almost 30 years 

and these compounds have consistently been reported as recalcitrant under aerobic conditions 

(17, 52, 92, 95, 105). However, during anaerobic conditions the azo dyes were reductively 

decolorized to the corresponding aromatic amines (18, 20, 22, 34, 85, 104), which are more 

easily degraded under aerobic conditions (19, 47). 

The application of sequenced and simultaneous systems for the mineralization of azo 

dyes has been very successful, opening a hitherto largely unexploited technology for biological 

treatment of electron deficient xenobiotics. Haug et al. (47) demonstrated the complete 

mineralization of the azo dye Mordant Yellow 3 under sequenced anaerobic-aerobic 

conditions. Kudlich et al. (67) showed the mineralization of the azo dyes Mordant Yellow 3, 

Amaranth and Acid Red 1 under simultaneous anaerobic and aerobic conditions using bacterial 

strains BN6 and 5AS1 immobilized in calcium alginate beads. Other studies have also 

demonstrated the applicability of this technology for the treatment of different kinds of azo 

dyes (3, 34). A recent study demonstrating the reduction of a disperse azo dye, p-

aminoazobenzene, under denitrifying conditions (125) has indicated that it could be possible to 

reduce azo dyes under redox conditions different to those ones reached under methanogenesis. 

1.6 Scope and Structure of the Thesis 

N-substituted aromatics, such as nitroaromatics, azo dyes and aromatics amines, are 

chemical compounds which appear frequently in the wastewaters generated from the chemical 

and petrochemical industries. All these compounds are of special concern because of their toxic 

properties against living organisms. Therefore, N-substituted aromatic-bearing wastewaters 

should be treated before final discharge to receptor aquifers and surface waters. In view of the 
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scarce information about the role of the toxicity and biodegradability potentials of these 

aromatic compounds under anaerobic conditions, the aim of this thesis was to study the toxic 

impact and fate of N-substituted compounds in methanogenic consortia used in anaerobic 

wastewater treatment systems. The results so obtained could be applied towards developing a 

general strategy of treatment based on the elucidation of toxic effects, adaptation potential of 

the microbial ecosystem and process technological aspects. For this purpose, selected N-

substituted aromatics were studied under batch and continuous lab-reactor experiments using 

methanogenic granular sludge consortia as inoculum. 

In Chapter 2, the structure-toxicity relationships of N-substituted aromatic compounds 

to acetoclastic methanogens were examined. In Chapters 3 and 4 the anaerobic 

biodegradability of N-substituted aromatics and alkylphenols by different samples of granular 

sludge was evaluated. 

In Chapters 5 and 6 continuous experiments were conducted in lab-scale anaerobic 

reactors treating selected nitroaromatics and azo dyes. N-substituted aromatic mineralization 

and the role of cosubstrates on the nitro- and azoreduction were also studied. Finally, the 

results obtained in this research are discussed in Chapter 7. 
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Summary 

N-substituted aromatics are important priority pollutants entering the environment primarily 
through anthropogenic activities associated with the industrial production of dyes, explosives, pesticides 
and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could 
potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of 
this study was to examine the structure-toxicity relationships of N-substituted aromatic compounds to 
acetoclastic methanogenic bacteria. The toxicity was assayed in serum flasks by measuring methane 
production rate in granular sludge. Unacclimatcd cultures were used to minimize the biotransformation 
of the toxic organic chemicals during the test. The nature and the degree of the aromatic substitution 
were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds 
were, on the average over 500-fold more toxic than their corresponding aromatic amines. Considering 
the facile reduction of nitro groups by anaerobic microorganisms, a dramatic detoxification of 
nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. 
While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with 
compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a 
toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This 
indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than 
partitioning effects in bacterial membranes. 

Applied and Environmental Microbiology (1995) 61:3889-3893 
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2.1 Introduction 

N-substituted aromatic compounds, such as nitrobenzenes, nitrophenols, aminophenols 

and aromatic amines, are widely used in the manufacturing of azo dyes, explosives, 

pharmaceuticals and pesticides (8, 15). Nitrobenzene is produced annually in the order of 

225,000 metric tons and it has been estimated that as much as 9,000 tons of nitrobenzene is 

discharged annually into natural waters (35). The presence of these aromatic xenobiotics in the 

environment may create serious public health and environmental problems. Some of these 

compounds have mutagenic or carcinogenic activity and may bioaccumulate in the food chain 

(8, 20). Many nitroaromatics have also been shown to be toxic or mutagenic to 

microorganisms (32, 39). The toxicity has been attributed to the fact that nitrophenols act as 

uncoupling agents in oxidative phosphorylation. Cell metabolism is affected at concentrations 

less than 50 mM (32). Aerobic biodegradation of a variety of N-substituted aromatics has been 

well documented (13, 23, 31) whereas the anaerobic biodegradation and toxicity of these 

compounds has only recently been addressed (12, 26, 34). Some researchers have reported on 

their toxicity as part of an overall study surveying the effects of xenobiotic compounds on 

anaerobic sludge (3, 10). However, the protocols employed in the previous experiments were 

not fully adequate for N-substituted aromatics (3, 10, 19, 25, 34). In many of the assay 

procedures, the nitroaromatic test compounds were highly modified by reduction due to 

inappropriate selection of assay substrates (19, 25). Most authors used anaerobic media 

containing chemical reducing agents (sulfides) which have been shown to transform several 

nitroaromatic compounds (11); consequently, the bacteria were exposed only momentarily to 

the toxic compounds. In some of the previous protocols (25, 26, 34), toxicity was based not 

on methanogenic production rate but rather on comparison of the methane production of 

compound-amended cultures with that of controls within a given time period. Such 

comparisons may underestimate the true toxicity if incubation continues after exhaustion of the 

assay substrate in the control cultures. 

The rationale behind the toxicity assay employed in this study was to minimize test 

compound biotransformation and to compare the rate of methane production in highly active 

methanogenic granular sludge. Acetate was used as the assay substrate since it is known to be 
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a poor electron donor (9) and, thus, would result in minimal nitroaromatic modification. This is 

the first comprehensive study evaluating a wide range of N-substituted aromatics in a 

standardized batch toxicity assay. Such knowledge is essential in predicting the impact of these 

xenobiotics on anaerobic wastewater treatment; thereby, preventing potentially costly upsets of 

treatment plant operations. A better understanding of the toxicity has made feasible the 

application of anaerobic treatment technologies to wastewaters containing other aromatic 

compounds (7, 12, 24, 40). 

2.2 Materials and Methods 

Biontass 

Methanogenic granular sludge from a full-scale upward-flow anaerobic sludge blanket 

(UASB) reactor treating chemical industry wastewater of Shell Nederland Chemie at Moerdijk, 

The Netherlands, was used as inoculum. The sludge was elutriated to remove fines and stored 

at 4 °C before use. The sludge had not previously been acclimated to any of the N-substituted 

aromatics. 

Basal Medium 

The basal medium used in the anaerobic toxicity assay contained the following (mg/L): 

NaHC03 (5000), NH4C1 (280), CaCl2 2H20 (10), K2HP04 (250), MgS04.7H20 (100), yeast 

extract (100), H3BO3 (0.05), FeCl2.4H20 (2), ZnCl2 (0.05), MnCl2.4H20 (0.05), CuCI2.2H20 

(0.03), (NH4)2Se03.5H20 (0.05), A1C13.6H20 (2), NiCl2.6H20 (0.05), Na2Se03.5H20 (0.1), 

EDTA (1), resazurin (0.2) and 36% HC1 (0.001 mL/L). 

Analyses 

The methane content in the gas samples was determined by gas chromatography 

(Packard-Becker, Delft, the Netherlands). The gas chromatograph was equipped with a steel 
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column (2 m by 2 mm) packed with Poropak Q (80/100 mesh, Millipore Corp., Bedford, 

Mass.). The temperatures of the column, the injector port and the flame ionization detector 

were 60, 200 and 220 °C, respectively. The carrier gas was nitrogen at a flow rate of 20 

mL/min. Samples for measuring methane content (100 uL) in the headspace were determined 

with a pressure-gas lock syringe (Pressure-Lok series A-2) which was purchased from 

Dynatech Precision Sampling Corp., Baton Rouge, LA. An isobaric precise proportion of the 

known headspace volume could be analyzed. The pH was determined immediately after 

sampling with a model 511 pH-meter (Knick, Berlin, Germany) and a model N61 double 

electrode (Scot Gerade, Hofheim, Germany). The UV absorbance was measured with a 

Spectronic 60 spectrophotometer (Milton Roy/Analytical Products Division, Ostende, 

Belgium) and a model 100-QS (Hellma Benelux, The Hague, The Netherlands) 1-cm quartz 

cuvette. Absorption is reported as the absorption of the media containing aromatic compounds 

minus the absorption of the control medium (which contained no test compounds). All samples 

were diluted to less than 0.8 absorbance units in 0.2M phosphate buffer (pH 7.0). Nitro group 

reduction of 2-nitrophenol and 4-nitrophenol was monitored at 370 and 400 nm, respectively. 

Aromatic ring absorption of 2-nitrophenol/2-aminophenol and 4-nitrophenol/4-aminophenol 

was monitored at 209 and 225 nm, respectively. All the other analytical determinations were 

performed as described in Standard Methods for Examination of Water and Wastewater (1). 

Anaerobic Toxicity Assay 

Specific acetoclastic methanogenic activity measurements were performed with 120-

mL glass assay bottles sealed with 12-mm thick butyl rubber septa (Rubber B.V., Hilversum, 

The Netherlands). Granular sludge (2 g of volatile suspended solids per liter) was transferred 

to vials containing 25 ml of the basal medium and acetate from a neutralized stock solution to 

yield a final concentration of 39.3 mM (2.5 g of chemical oxygen demand per liter). The 

maximum specific acetoclastic methanogenic activity of the control sludge was 890 mg 

methane expressed as chemical oxygen demand per gram of volatile suspend solids per day. 

Assay bottles were then flushed with 70% N2-30% C02 gas for 5 minutes and incubated 

overnight at 30 °C. On the following day, vials which were still pink because of the lack of 

reduction of the redox indicator dye resazurin were discarded. The desired amount of the 
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toxicant was added to duplicate vials using concentrated stock solutions. However, in the case 

of poorly soluble compounds, the compound was weighed out and introduced into the vials in 

solid form. Acidic test compounds were neutralized prior to their addition to the assay 

medium. Some aromatic amines (e.g., aminophenols), which are prone to autoxidation (7), 

were prepared fresh with 250 mg/L ascorbic acid to prevent oxidative coupling. Triplicate 

substrate controls were based on assays where no toxicant was added. Incubations were done 

in a temperature controlled room at 30 ± 2 °C, in an orbital-motion shaker (Gerhardt, Bonn, 

Germany) at 70 strokes min'1. After 3 days exposure to the toxicant the acetate concentration 

was replenished to 15.72 mM (1 g of chemical oxygen demand per liter) to assess the specific 

methanogenic activity. The headspace was reflushed with 70% N2-30% C02 gas and the assay 

bottles were reincubated for 1 hr, prior to the determination of the methane production rate. 

The methane content in the headspace of each assay bottle was determined hourly during the 

subsequent 6 to 8-h incubation period. The maximum specific methanogenic activity was 

calculated from the slope of the methane production versus time curve. To determine the 

degree of inhibition, the methanogenic activities of the control and samples containing 

inhibitory compounds were determined. 

Chemicals 

Chemicals were purchased from either Jannsen Chimica (Tilburg, The Netherlands), 

Merck (Darmstadt, Germany) and Sigma (Bornem, Belgium). All chemicals were of the 

highest purity available and were not purified further. 

2.3 Results 

Biotransformation of Test Compounds During Protocol 

The nitro-group absorbance maxima of nitrophenols were monitored during the 3-day 

exposure period of these test compounds with the anaerobic sludge. A small level of nitro-

group reduction did occur during the exposure period accounting for 16 and 22% losses of the 
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nitro-group absorbance maxima of 2-nitrophenol and 4-nitrophenol, respectively. The use of 

ascorbic acid and the preincubation for the biological removal of dissolved oxygen were found 

to be sufficient measures in preventing the oxidative coupling of aromatic amines. No 

formation of visible light absorbance could be detected. 

Effect of Aromatic Structure on Methanogenic Inhibition 

The inhibitory effects of 29 aromatic compounds on the activity of acetoclastic 

methanogenic bacteria were evaluated in this study. The inhibition caused by each compound 

was tested at various levels, from concentrations that were nontoxic to those that were 

completely inhibitory to acetoclastic methanogenic activity, as seen in a typical experiment with 

3-nitrophenol in Figure 2.1. Table 2.1 summarizes the 20%, 50%, and 80% inhibiting 

concentrations (ICs) of the aromatic compounds evaluated in this study. Those compounds 

which were not inhibitory at concentrations of 70 mM or less were considered to be nontoxic. 
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Figure 2.1 Estimation of 20%, 50%, 80% IC values of 3-nitrophenol to acetoclastic 
methanogens. 

The least toxic compounds were benzene, benzoate, phenol and the aromatic amines. 

Nitrobenzenes, nitrophenols and nitroanilines were among the most toxic compounds The 

most toxic compound tested was 2-nitroaniline, having a 50% IC of 14 \\M. The results 

obtained indicate that some general relationships exist between the aromatic structure and their 

inhibitory effects on methanogenic bacteria. The impact of ring substitution is illustrated in 
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Figure 2.2. The figure indicates that N-substitutions were more toxic than other ring 

substituents or benzene itself. The toxicity of the mono-substituted benzenes was observed to 

increase in the following order: COOH < H < OH < NH2 < NO2. 

TABLE 2.1 The 20%, 50% and 80% IC values observed in this study for various aromatics. 

Compound No. and Name 

1. benzene 
2. aniline 
3. nitrobenzene 
4. 2-nitroaniline 
5. 3-nitroaniline 
6. 2-phenyIenediamine 
7. 3-phenylenediamine 
8. phenol 
9. 2-aminophenol 
10. 3-aminophenol 
11.4-aminophenol 
12. 2,4-diaminophenol 
13. 2-nitrophenol 
14. 3-nitrophenol 
15. 4-nitrophenol 
16. 2,4-dinitrophenol 
17. 2,5-dinitrophenol 
18. benzoic acid 
19. 2-aminobenzoic acid 
20. 3-aminobenzoic acid 
21. 4-aminobenzoic acid 
22. 2-nitrobenzoic acid 
23. 3-nitrobenzoic acid 
24. 4-nitrobenzoic acid 
25. 2,4-dinitrobenzoic acid 
26. 5-aminosalicylic acid 
27. 5-nitrosalicylic acid 
28. 2,4-diaminotoluene 
29. 2,4-dinitrotoluene 

MW 

78 
93 
123 
138 
138 
108 
108 
94 
109 
109 
109 
124 
139 
139 
139 
184 
184 
122 
137 
137 
137 
167 
167 
167 
212 
153 
183 
122 
182 

LogP 1 

1.95 
0.9 
1.85 
1.83 
1.37 
0.15 
0.03 
1.46 
0.57 
0.16 
0.104 
NAd 

1.79 
2.0 
1.91 
1.67 
1.80 
1.87 
1.21e 

0.20e 

0.68c 

1.28c 

1.83e 

1.89e 

NA 
NA 
NA 
NA 
2.0 

20% 

10580 
5000 
41 
7 
7 

9760 
29500 
7140 
1650 
9700 
7330 
146 
46 
40 
31 
22 
6 

34900 
31100 

NT 
NT 
277 
50 
30 

226 
ND 
251 
409 

5 

IC (uM) 
50% 

20500 
9670 

81 
14 
30 

18920 
65700 
13830 
3210 
18810 
14220 
283 
89 
115 
61 
43 
114 
NT 

67100 
NT 
NT 
538 
96 
120 
344 

2800 
322 
1570 
27 

80% 

NDb 

14100 
210 
70 
212 

27500 
NTC 

20510 
4920 
27100 
21100 

510 
200 
295 
180 
130 
270 
NT 
NT 
NT 
NT 
980 
140 
250 
424 
ND 
377 
ND 
59 

8 log P values were obtained from the literature (18, 26, 33). 
b ND; not determined. 
c NT; not toxic: compounds were considered to be non-toxic if this value was greater than 70 mM. 
d NA; not available: log P value was not available. 
e not included in log P correlations because the carboxyl group dissociates at the assay pH of 7. 
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The type of N-substitution had a profound effect on its toxicity. Figure 2.2 clearly 

demonstrates that aromatic amines were much less inhibitory than their corresponding 

nitroaromatic analogues. The nitroaromatics were from 6- to 1350 fold more toxic than their 

amino-substituted counterparts. Structure-toxicity relationships were also evident for aromatic 

compounds with more complex substitution patterns. The addition of an ortho carboxyl group 

to nitrobenzene greatly decreased the toxicity. In strong contrast, the addition of an amino 

group (i.e., 2-nitroaniline) increased the toxicity towards methanogens. 

R OH OH COOH OH NH2 

Q> ® 4 ® ty ft 

Figure 2.2 Comparison of the toxicity of selected nitroaromatic compounds and their aromatic 
amine counterparts towards acetoclastic methanogens. Bars: A = nitrobenzene and aniline, B = 
2-nitrophenol and 2-aminophenol, C = 3-nitrophenol and 3-aminophenol, D = 2-nitrobenzoic 
acid and 2-aminobenzoic acid, E = 2,4-dinitrophenol and 2,4-diaminophenol, F = 2-nitroaniline 
and 2-phenylenediamine. Symbols: • , R = N02 group; • , R = NH2 group. 

Correlation of Toxicity with Compound Hydrophobicity 

To determine if the lipophilic character of the aromatics tested could be correlated with 

their methanogenic toxicity, the logarithm of the 50% IC values of seventeen N-substituted 

aromatics were plotted against the logarithm of the octanol-water partion coefficient (log P) of 

the compounds. A significant correlation was obtained (R2 = 0.91, p < 0.001) indicating that 

the partitioning of apolar N-substituted aromatics into lipophilic membranes in bacteria may 

34 



Toxicity of N-substituted Aromatics 

have a role in the toxicity. However, certain functional groups might be expected to undergo 

chemical interactions with proteins, and consequently, enzymes could become inhibited as well. 

Therefore when comparing compounds that possess different types of substitutions, a perfect 

correlation with the log P of the compound cannot be expected. A higher correlation could 

potentially be obtained by comparing compounds in a homologous series. 
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Figure 2.3 (A) Effect of hydrophobicity on the methanogenic toxicity of homologous series of 
phenols. (B) Effect of hydrophobicity on the methanogenic toxicity of homologous series of 
benzenes. Compounds are referred to by their compound numbers as reported in Table 1. 
Alkylphenols (R2 = 0.989), chlorophenols (R2 =0.99), alkylbenzenes (R2 =0.983) and 
chlorobenzenes (R2 =0.988) are adapted from a previous study (29). 
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Figure 2.3 illustrates the correlations determined with the toxicity data of the N-

substituted phenols and benzenes, respectively. The methanogenic toxicity of the N-substituted 

phenols (aminophenols and nitrophenols) were even more highly correlated to the log P data 

(R2 = 0.95, p < 0.001). However, the correlation with N-substituted benzenes (anilines, 

nitroanilines, nitrobenzene and dinitrotoluene) was not as high (R2 = 0.876, p < 0.01) because 

the nitroanilines exerted a higher toxicity than nitrobenzene did with a comparable log P value. 

In Figure 2.3, regression lines are also plotted from the acetoclastic methanogenic toxicity data 

of alkyl- and chloro-substituted phenols and benzenes reported by Sierra and Lettinga (29). 

The measured 50% IC value of phenol and benzene from our study are plotted in the graphs 

and coincide with their data, indicating that the toxicity results from the two studies are 

compatible. At any given log P, the alkyl- and chloro-substituents of phenols and benzenes 

were approximately 2 orders of magnitude less toxic than the N-substituents analogs. This 

observation clearly indicates a higher chemical reactivity of aromatic nitro- and amino-groups 

compared with that of alkyl and chloro-groups. 

2.4 Discussion 

Preventing Test Compound Modification 

Nitroaromatic compounds are easily reduced by microorganisms (6, 11, 14) and abiotic 

reducing agents (11, 16, 33). Even lysed cells of methanogenic bacteria reduce nitroaromatics 

(11). Consequently, several precautions were taken to minimize nitro-group reduction during 

the toxicity assay. The practice of adding reducing agents (e.g. sulfide) to chemically remove 

dissolved oxygen was replaced with a media preincubation step to biologically remove 

dissolved oxygen. 

Anaerobic media were prepared with acetate as the substrate. Results of previous 

studies concerning with the reductive dehalogenation of chlorinated hydrocarbons indicate that 

acetate is a poor electron donor (9) compared with other substrates commonly used for 

methanogenic activity assays. In this study, we were also able to demonstrate that it was not 
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vvrj effective in reducing nitroaromatics. The reductive biotransformation of nitroaromatics 

was limited to 25% during the 3-day test-chemical exposure period. This can be viewed as a 

major improvement over assay substrates that provide interspecies electrons (e.g., H2), such as 

ethanol, which was shown to completely convert 500 mg/L of nitrobenzene into aniline in less 

than 1 day (19, 41). In experiments where ethanol or other good electron donors (e.g. 

propionate) have been used as an assay substrate, the 50% IC values of nitroaromatics were 

underestimated by approximately a factor of 10 (25, 41) because of the elimination of 

nitroaromatics occurring during the assay. Our nitroaromatic toxicity results are only in 

agreement with literature data in which acetate was used as the sole substrate (3, 5, 38). 

Aromatic amines are more persistent to biotransformations in anaerobic environments 

(7). No losses in aromatic amines could be detected during the 3-day test compound exposure 

period. Nonetheless, after acclimatization of sludge for longer time periods, anaerobic 

mineralization of 2- and 4-aminophenol occurs (25, 26). In one study (3), aminophenols were 

60-fold more toxic than indicated by our data. A possible explanation for this deviance is the 

ease by which aminophenols could become partially auto-oxidized during the preparation of 

the experiment, leading to the formation of more toxic oligomers (7). The auto-oxidation 

reactions were prevented in our study by preparing stock solutions together with ascorbic acid 

and adding the stock solution to the culture only after all dissolved oxygen was removed. 

Toxicity of N-substituted Aromatics 

Nitroaromatics were clearly very toxic compounds to methanogens, with 50% IC 

values generally ranging from 0.014 to 0.12 mM. Aromatic amines, in contrast, were less 

inhibitory; the 50% IC values were for the most part between 3.2 and 67 mM. Nitroaromatic 

compounds were, on the average, 500-fold more toxic than their corresponding aromatic 

amine analogues, indicating that the facile reduction of nitroaromatics known to occur in 

anaerobic environments (11, 26, 27, 41) would be responsible for a dramatic detoxification of 

nitroaromatics towards methanogens. Increasing the number of nitro groups beyond one had 

little effect in altering the toxicity of nitrobenzenes. On the other hand, the addition of an extra 

amino group to aminophenol resulted in a more toxic compound, while the addition of an 
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amino group to aniline resulted in less toxic phenylenediamines. However, the combination of 

nitro and amino groups, e.g. nitroanilines, was found to be the most toxic substituent pattern, 

with 50% IC values ranging from 0.014 to 0.030 mM. 

Log P-Toxicity Correlations 

The hydrophobicity of a compound as indicated by log P is directly related to the 

partitioning of the compound into bacterial membranes (17, 30). Compounds of greater 

hydrophobicity are expected to accumulate more efficiently in membranes, causing a greater 

disturbance to the membrane structure, and consequently, they are responsible for a higher 

toxicity. The accumulation of apolar pollutants in bacterial membranes causes the membrane to 

swell and leak, disrupting ion gradients and eventually causing cell lysis (17, 30). Methanogens 

rely almost entirely on membrane potential (H+ and Na+ gradients) to obtain energy during 

their metabolism (37). When the methanogenic toxicity data of N-aromatics were plotted as a 

function of the log P, a strong linear fit was obtained, indicating that partitioning into 

membranes was an important factor contributing to the toxicity of the most toxic N-substituted 

aromatics. In this study, the compounds ranged from highly polar aromatic amines of low 

toxicity to apolar nitroaromatics of high toxicity. The decrease in compound toxicity due to the 

presence of a carboxy group can also be rationalized in terms of compound polarity, since this 

group (pKa = 2.16 to 6.94) would be highly dissociated at the assay pH of 7. Consequently, in 

accordance with a previous report (29), these compounds were not included in the overall 

correlation. 

Many other types of aromatic and phenolic compounds have been reported to be 

inhibitory to methanogenic bacteria (3, 10, 29). High linear correlations of their methanogenic 

toxicity to the log P of the compounds has also been observed in the case of alkyl- and chloro-

substituted benzenes and phenols (29). However these relatively nonreactive compounds are 

approximately 100-fold less toxic than N-substituted aromatics with the same log P values. 

Thus when present at similar concentrations in bacterial membranes, the N-substituted 

aromatics exert a much higher toxic effect than that which can be accounted for by membrane 

toxicity alone. 
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Chemical Reactivity of N-substituents 

Nitroaromatics have been reported to be reactive toxicants (3, 18, 22). Nonaromatic 

nitrogen oxides were reported to inhibit the activity of some component in the methanogenic 

enzyme complex itself (2). The reactivity of the N-substituents could enable N-aromatics to 

undergo sorptive and chemical interactions with proteins; thereby, inactivating vital enzymes 

(4, 18). The toxicity of these compounds to methanogens has been suggested to involve 

interactions between nitroaromatics or intermediates of the reduction process (nitrosoamines 

or hydroxylamines) and the unique cell membrane of the methanogens (11). N-substituted 

aromatics may also interfere with the outcome of a biochemical conversion, such as the 

uncoupling of phosphorylation reactions (32) or interfering with physiological redox couples. 

The methanogenic toxicity of N-substituted aromatics was found to be the most pronounced 

for nitroanilines. The nitroanilines have the highest dipole moment of the compounds tested, 

making them the most chemically reactive compounds. 

In this study, the aminoaromatics were determined to be considerably less toxic than 

the parent nitroaromatic compound. The ability of anaerobic consortia to remove and detoxify 

the nitro group in nitroaromatics would make anaerobic processes a useful treatment adjunct 

and/or alternative to conventional aerobic systems. In particular, anaerobic nitro group 

reduction may be an important initial step, which when followed by aerobic post-treatment, 

could result in complete mineralization of such highly nitrated compounds as trinitrotoluene 

and picric acid, which are highly resistant to aerobic degradation (7). 
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Biodegradability of N-substituted Aromatics and 
Alkylphenols under Methanogenic Conditions 
using Granular Sludge 

Elias Razo Flores 
Brian A. Donlon 
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Gatze Lettinga 

Summary 

The biodegradability of seventeen N-substituted aromatic and six alkylphenol compounds were 
evaluated under methanogenic conditions. Biodcgradation was assessed in batch assays inoculated with 
unacclimated and predigested anaerobic granular sludge at 30°C under agitated conditions over a 150 
day period. The compounds were supplied at sub-toxic concentrations in the assays in order to prevent 
inhibition to the methanogens. The biodegradability test was performed by the measurement of the 
methane composition in the headspace of the serum flasks. The methanogenic consortia completely 
mineralized 2-, 3-aminobenzoate, 2-aminophenol and 4-cresol; whereas, 4-aminobenzoate was only 
partially degraded. The other N-substitutcd compounds and the alkylphenols tested were not 
biodegradable under the experimental conditions employed. An additional biodegradability assay was 
conducted with sludge from an upward-flow anaerobic sludge bed reactor adapted to the degradation of 
2-nitrophenol. This sludge mineralized 2-aminophenol without any lag phase while the unadapted sludge 
required 110 days of acclimatization. The three aminobenzoate isomers were fully mineralized by the 
adapted sludge after similar lag periods observed in the unadapted sludge. The 2-nitrophenol adapted 
sludge cross-acclimatized to the mineralization of 5-aminosalicylate and 4-aminophenol. This 
constitutes the first report demonstrating the anaerobic mineralization of 5-aminosalicylate, which 
indicates that at least some azo dye cleavage products can be degraded in methanogenic consortia. 

Water Science and Technology (1996) 33(3):47-57 
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3.1 Introduction 

N-substituted aromatics and alkylphenols are usually found in the wastewaters 

generated in the chemical and petrochemical industries such as in the production of dyes, 

explosives, pesticides, pharmaceuticals and petrochemicals (3, 14, 31). These aromatic 

compounds are toxic and highly mutagenic and/or carcinogenic (18) and are generally 

considered to be difficult for anaerobic degradation (4, 10). 

Biological treatment, either aerobic or anaerobic, is generally the most cost-effective 

means of removing the bulk of the pollutants in a high-strength organic wastewater. While 

aerobic treatment has been studied extensively and used to treat aromatic-bearing wastewater 

(6, 22, 26), anaerobic treatment has received comparatively little attention. One of the major 

problems confronting biological treatment of this kind of wastewater is inhibition to 

microorganisms due to the high toxicity of the aromatic compounds. Generally the toxicity of 

the aromatic compounds increases with greater apolarity (7, 27). The N-substituted aromatic 

compounds cause 50% inhibition (50% IC) to methanogenic bacteria at concentrations ranging 

from 2 to 2100 mg/L (7, 11), whereas the 50% IC of the alkylphenolic compounds ranged 

from 250 to 4000 mg/L (4, 11, 27). 

The possibility of aromatic compound mineralization under anaerobic conditions would 

determine the applicability of anaerobic wastewater treatment technology to the effluents of the 

chemical and petrochemical industry. The purpose of this study was to evaluate the anaerobic 

mineralization of 23 common N-substituted aromatic and alkylphenol pollutants in a standard 

bioassay utilizing predigested anaerobic granular sludge. Due to problems of high toxicity in 

previous anaerobic biodegradability assays (2, 19), the compounds were tested at subtoxic 

concentrations. Acclimatization of anaerobic sludge to aromatic compounds has been shown to 

result in a significant enhancement in the mineralization of other structurally similar compounds 

(16, 32). Consequently, selected compounds were also evaluated in granular anaerobic sludge 

that was adapted to the continuous degradation of 2-nitrophenol. 
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3.2 Materials and Methods 

Analyses 

The methane content in the headspace of the serum flasks was determined by gas 

chromatography. A 100 uL gas sample was injected using a pressure-lock gas syringe 

(Dynatech Precision Sampling Corp., LA, USA) to a gas chromatograph, equipped with a 

molecular sieve 5A (mesh 60-80) column. The temperature of the column, the injection port 

and the flame ionization detector were 60, 200 and 220°C respectively. The carrier gas was 

nitrogen at a flow rate of 14.3 mL/min. The pH was determined with a Knick 511 pH-meter 

and a Scot GeradeN61 double electrode. Total suspended solids (TSS) and volatile suspended 

solids (VSS) were determined according to Standard Methods for Examination of Water and 

Wastewater (I). 

Biomass 

The methanogenic granular sludge used was obtained from a full-scale upward-flow 

anaerobic sludge bed reactor (UASB) treating a petrochemical wastewater containing benzoate 

and acetate as primary substrates (Shell Nederland Chemie B.V., Moerdijk, The Netherlands). 

The sludge was elutriated to remove the fines and predigested at 30°C during a 30 days period 

in order to deplete all endogenous substrate in the sludge. The rationale behind using 

predigested granular sludge is to minimize the background methane production. The sludge 

was not previously acclimated to any of the test chemicals, except for benzoate. The sludge 

contained 10.5% TSS and 8.5% VSS. The maximum specific acetoclastic methanogenic 

activity of the sludge, as determined in standard batch activity tests (7) was 0.89 g COD-CH^g 

VSS-d at 30 °C. Adapted sludge was used for the cross acclimatization experiment, this sludge 

was taken from a UASB reactor which was mineralizing 2-nitrophenol (8). The sludge 

contained 11.2% TSS and 10.4% VSS and its maximum specific acetoclastic activity was 0.6 

g COD-CHVgVSS-d. 
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Anaerobic Biodegradability Assay 

The batch anaerobic biodegradability assays were conducted in 120 mL glass serum 

flasks. The basal medium used in the bioassays was as described previously by Sierra and 

Lettinga (27), with the exception of NaHCOj supplied at 5 g/L. Predigested granular sludge (1 

g VSS/L) was transferred to serum flasks containing 24 mL of the basal medium and acetate 

from a neutralized stock to yield a final concentration of 50 mg of chemical oxygen demand 

(COD)/L. The serum flasks were sealed with 12 mm thick butyl rubber stoppers (Rubber B.V., 

Hilversum, The Netherlands) and flushed with 70% N2-30% CO2 gas for 5 minutes and 

incubated overnight at 30°C to allow for biological consumption of residual O2. 

On the following day, serum flasks which were still pink due to the redox indicator dye 

resazurin were discarded. The desired amounts of the target compounds (Table 3.1) were then 

added to triplicate serum flasks using concentrated stock solutions. The compounds were 

supplied at sub-toxic concentrations in the assay medium in order to prevent inhibition to the 

methanogens. The concentrations employed were based on non-inhibitory values of 

alkylphenols and N-substituted aromatics as determined by Blum et al. (4), Golden et al. (11) 

and Donlon et al. (7). When toxicity data was not available a concentration of 100 mg/L was 

used because this is the minimal concentration that should be employed in order to minimize 

interferences of the background methane production. Acidic test compounds were neutralized 

prior to their addition to the assay medium. 

Some aromatic amines (e.g. aminophenols) are prone to autoxidation and were 

prepared fresh with 250 mg/L ascorbic acid to prevent premature coloration. The ascorbic 

acid-COD concentration in the assay bottle was less than 24 mg/L and the sludge blank 

received a dose with the same level of ascorbic acid. The serum flasks were incubated with 

shaking (50 rpm) in a temperature controlled room at 30°C over a 150 day period. Sludge 

blanks, to correct for background gas production from the sludge, were based on assays where 

no test compounds were provided. All biodegradability data are the average of triplicate run 

experiments, except the sludge blanks which utilized six serum flasks to assess the methane 

production. 
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TABLE 3.1 Anaerobic biodegradability of N-substituted aromatic and alkylphenol compounds 
using granular sludge. 

Compound8 Structure Concentration1" Methane S.D.C Lag Phase Degradation 
(mg/L) %TMP (%TMP) (days) potential11 

"CDDFl— 
NH2 

COOH 

2-aminobenzoate 

3-aminobenzoate 

4-aminobenzoate 

2-aminophenol 

4-cresol 

,NH2 

300 

300 

300 

200 

250 

92.0 5.0 

112.5 5.4 

25 

75 

41.9 10.1 35 

91.6 10.3 110 

+/-

78.0 0.4 18 

CH3 

" The following compounds were tested and were not found to be mineralized after 150 days (mg/L): 3-
aminophenol (1000), 4-aminophenol (1000), aniline (200), 1,2-diaminobenzene (200), 1,3-diaminobenzene 
(200), 2-nitroaniline (100), 4-aminosalicylate (120), 5-aminosalicylate (120), 2-amino-4-chlorophenol (100), 4-
aminobenzenesulfonate (200), 2-amino-4-nitrophcnol (100), 4-amino-2-nitrophenol (100), 3,4-
diaminobenzoate (100), 2-cresol (250), 3-ethylphenol (250), 2.5-xylenol (100), 3,4-xylenol (100), 4-
methylcatechol (100). 
b Concentration of the test compound in the bioassay. 
c S.D.= standard deviation (as % TMP) of the methane production from the compound. 
a Biodegradation potential: (+) completely dcgradable. (+/-) partially degradable. 

The methane composition in the headspace of each serum flask was monitored 

periodically during the assays. The serum flasks were shaken vigorously before gas 

measurements were taken. Methane production was calculated from the volume of the 

headspace and the methane composition in the gas. Net methane production was calculated by 

subtracting background methane production in the controls from that in the test vials. The 

corrected methane production (M) was expressed as a percentage of the theoretical methane 

47 



Chapter 3 

production (TMP) expected from the test chemical mineralization based on the Buswell 

equation (30). All Chemicals were purchased from Acros Chimica (Geel, Belgium), Merck 

(Darmstadt, Germany) and Sigma (Bornem, Belgium) and were used without further 

purification. 

3.3 Results 

Evaluation of the Anaerobic Biodegradability Assay 

Benzoate and phenol were used as reference aromatic compounds to assess the 

accuracy of the bioassay method used. The concentrations of benzoate and phenol used were 

250 mg/L. The benzoate was completely degraded in 20 days and the phenol in 45 days 

(Figure 3.1). The ultimate conversion of the substrate COD to methane was equal to 85.5% ± 

1.82 and 82.8% ± 2.32 for benzoate and phenol respectively. Reproducibility of the methane 

production among replicate sludge blank serum flasks was satisfactory, with standard 

deviations accounting for less than 2% of the mean. 

Phenol 

• ^ -» • -»-_^_—•- • • Blank 

20 30 

Time (d) 

Figure 3.1 Biodegradability of the reference aromatic compounds: benzoate and phenol. 
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Anaerobic Biodegradability of N-substituted Aromatics and Alkylphenols 

The biodegradability of seventeen N-substituted aromatic and six alkylphenol 

compounds were evaluated under methanogenic conditions with unadapted sludge. Of the N-

substituted aromatics, only 2-aminobenzoate, 3-aminobenzoate and 2-aminophenol were fully 

mineralized (Table 3.1). The lag phase prior to the onset of mineralization ranged from 25 to 

110 days. Also, 4-aminobenzoate was partially mineralized by 42% (Table 3.1). The other 

isomers of aminophenol, all N-substituted benzenes, salicylates and benzenesulfonate were not 

degraded after 150 days. Two compounds, 2-amino-4-nitrophenol and 4-amino-2-nitrophenol 

tested at 100 mg/L were found to be toxic and consequently their biodegradation could not be 

evaluated. Figure 2.2 illustrates the time course of methane production with 2-aminobenzoate, 

4-aminobenzoate and 4-aminobenzenesulfonate as sole substrates representing biodegradable, 

partially biodegradable and recalcitrant compounds, respectively. Of the alkylphenols tested, 

only 4-cresol was mineralized after an 18 day lag phase (Table 3.1). The other alkylphenols, 2-

cresol, 3-ethylphenol, xylenols and 4-methylcatechol were not even slightly mineralized after 

150 days. 

2-aminobenzoate 

4-aminobenzoate 

4-aminobenzensulfonate 

80 100 

Time (d) 

Figure 3.2 Biodegradability of N-substituted aromatics by the unadapted sludge. 
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TABLE 3.2 Anaerobic biodegradability of N-substituted aromatics and alkylphenols using 2-
nitrophenol adapted granular sludge. 

Compound Structure Concentration" Methane S.D.b Lag Phase Degradation 
(mg/L) %TMP (%TMP) (days) potential0 

~coon— 
NH2 

COOH 

2-aminobenzoate 

3-aminobenzoate 

4-aminobenzoate 

2-aminophenol 

4-aminophenol 

aniline 

5-amino 
salicylate 

2-cresol 

® NH2 

COOH 

NH2 

OH 

NH2 

OH 

NH2 

NH2 

COOH 
.OH 

[OJ 

OH 
CH3 

300 

300 

300 

200 

1000 

200 

120 

250 

95.7 5.2 

75.1 1.9 

76.2 0.4 

83.1 3.8 

45.5" 5.8 

1.0 4.5 

95.6 5.4 

-5.8 1.2 

25 

50 

50 

<5 

70 

>150 

65 

>150 

" Concentration of the test compound in the bioassay 
b S.D.= standard deviation (as % TMP) of the methane production from the compound. 
0 Biodegradation potential:(+) completely degradable, (+/-) partially dcgradable, (-) non degradable. 
d Incubated over a 220 day period. 
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Cross-A cclimatization Studies 

In order to evaluate the cross-acclimation properties of a granular sludge adapted to 2-

nitrophenol, an additional biodegradability experiment was set up. Seven N-substituted 

aromatics and one alkylphenol were tested (Table 3.2). 2-aminophenol was immediately 

mineralized without any obvious lag phase while 110 days were required to initiate degradation 

in the unadapted sludge. The three isomers of aminobenzoate were mineralized by the adapted 

sludge after lag phases similar to those observed in the unadapted sludge. However, 5-

aminosalicylate, which was recalcitrant with the unadapted sludge, was mineralized by the 

adapted sludge after a 65 day lag period suggesting that cross-acclimatization to this 

compound occurred. 4-aminophenol was only partially mineralized whereas 2-cresol and 

aniline were not mineralized by the adapted sludge. Figure 3.3 shows the time course of 

methane production with 2-aminophenol, 4-aminobenzoate and 5-aminosalicylate. 

4-aminobenzoate 

Time (d) 

Figure 3.3 Biodegradability of N-substituted aromatics by the 2-nitrophenol adapted sludge. 
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3.4 Discussion 

Biodegradability Studies with Unadopted Sludge 

The biodegradability method used in this study has some advantages compared to the 

conventional methods (2, 21, 25), namely: interferences due to high background methane 

production is minimized using low concentrations of predigested granular sludge and the 

utilized concentrations of the test chemicals are based on non-toxic values to prevent inhibition 

of the methanogens. According to the degradation results of the reference compounds, 

benzoate and phenol, this method was found to be reliable for assaying the anaerobic 

biodegradation of aromatic compounds. 

In the literature, biodegradability studies of the 3 isomers of mono-aminobenzoate have 

indicated that 2- and 4-aminobenzoate are mineralized by methanogenic consortia (2, 17, 23 

25), but there are conflicting reports on the biodegradability of 3-aminobenzoate (2, 17, 24). In 

our studies, 2-aminobenzoate was completely mineralized, whereas 4-aminobenzoate was 

partially mineralized. In the case of 3-aminobenzoate, we found that this compound is 

completely mineralized, confirming the findings of Schnell & Schink (24). According to 

Schnell & Schink (24), 2- and 4-aminobenzoate are compounds that exist in nature. However, 

3-aminobenzoate is a xenobiotic compound produced mainly for synthesis of azo dyes. 

Of the aminophenols tested only 2-aminophenol was mineralized, 3- and 4-aminophenol 

were left unmetabolized by the unadapted sludge. Previous reports in the literature suggest that 

2-aminophenol can be completely mineralized under methanogenic conditions (2, 20), while 3-

aminophenol is recalcitrant (2, 20) and 4-aminophenol is sometimes mineralized (20) and other 

times is left unmetabolized (2). None of the other N-substituted aromatic compounds tested 

were found to be mineralized and there is also no evidence for the degradation of such 

compounds in methanogenic consortia. Based on the results of the nitroaromatics tested, we 

can conclude that it is not feasible to study the biodegradability of such highly toxic 

compounds in batch assays. 
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Six alkylphenolic compounds were tested and only 4-cresol was found to be degraded. 

The mineralization of 4-cresol has been demonstrated by several authors (4, 9, 32). Fedorak & 

Hrudey (9) reported that none of the isomers of xylenol were degraded nor was 2-cresol, 

which is the most anaerobically recalcitrant alkylphenol. Blum el al. (4) reported a partial 

degradation (based on gas production) of 3-ethylphenol (19%) and 4-methylcatechol (36%), 

using phenol-acclimated culture for the later compound. However, the low mineralization 

levels do not substantiate their biodegradability. Our results confirm the recalcitrance of the 

alkyiphenols assayed. 

Biodegradability Studies with Adapted Sludge 

The results of this study using sludge adapted to the continuous degradation of 2-

nitrophenol in laboratory columns showed that cross-acclimatization of N-substituted 

aromatics did occur: 2-aminophenol, 4-aminobenzoate and 5-aminosalicylate were completely 

mineralized, whereas 4-aminophenol was partially mineralized. Degradation of 2-aminophenol 

was also obtained with unadapted sludge, but in the case of adapted sludge the lag phase of 2-

aminophenol was reduced from 110 days to less than 5 days. It is known that nitroaromatics 

are easily reduced by microorganisms to aminoaromatics (12, 13), and it was shown that 2-

aminophenol is an intermediate of 2-nitrophenol degradation (8). Consequently, it was not 

surprising that the lag phase of the 2-aminophenol was reduced to such a short period. 4-

aminobenzoate was completely degraded using acclimated sludge, whereas the other two 

isomers of aminobenzoate showed the same behavior in both sludges. 

Previously it was shown that cells of Klebsiella pneumoniae were able to 

decarboxylate 5-aminosalicylate to 4-aminophenol when incubated under anaerobic conditions 

(28). However, this study constitutes the first report of 5-aminosalicylate mineralization in the 

absence of molecular oxygen by anaerobic bacteria. The degradation of 5-aminosalicylate 

under aerobic conditions, on the other hand, is well documented (15, 29) 

The anaerobic biodegradability of 5-aminosalicylate has important implications for the 

environment since this compound is an important industrial precursor of many of the 
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commonly used azo dyes. Likewise 5-aminosalicylate is a degradation product of anaerobic 

reductive azo dye cleavage (15). Previously it was assumed that azo cleavage products would 

be recalcitrant to anaerobic degradation (5, 15) and subsequent aerobic mineralization would 

be required. However this study shows that certain azo cleavage products such as 3-

aminobenzoate and 5-aminosalicylate are in fact fully biodegradable in methanogenic consortia. 
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Summary 

The ability of bacterial consortia of five different granular sludge sources to anaerobically 
biodegrade aromatic compounds was evaluated. The biodegradability of phenol, 4-cresol, 2-
aminobenzoate (2ABc) and 5-aminosalicylate (5ASA) was determined by measuring compound 
conversion to methane in batch serum bottles at 30 °C under agitated conditions over a period of at least 
100 days. Phenol and 4-cresol were completely mineralized by all the granular sludges tested. This 
observation indicates a universal capacity of granular sludge to degrade phenol and 4-cresol; which 
would be expected since these compounds are intermediates during the anaerobic degradation of the 
commonly occurring amino acid tyrosine. On the other hand, 5ASA and 2ABc were degraded only by 
one or two granular sludges. Previous acclimation to an N-substitutcd aromatic was a prerequisite for 
5ASA degradation. 

Bioresource Technology (1996) 56:215-220 
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4.1 Introduction 

Over the past 20 years anaerobic treatment has gained a solid position in the biological 

wastewater treatment field. Anaerobic treatment has been successfully applied to the treatment 

of municipal (15) and food industry wastewater (14, 21, 23). More recently, anaerobic 

treatment has been utilized for the treatment of aromatic-bearing wastewaters from the 

chemical and petrochemical industries (4, 24) and from the forestry industry (22). The 

successful application can be attributed to the high retention of active bacterial aggregates 

inside the high-rate reactors, such as granular sludge in the upflow anaerobic sludge bed 

(UASB), and fixed films in the attached-film processes. Granular sludge forms naturally from 

the tendency of the anaerobic bacteria to attach to one another under the upflow conditions 

prevailing in the UASB reactors (20). It is well known that the structural characteristics of 

bacterial aggregates and the high biomass retention protect and improve the tolerance of 

anaerobic bacteria to toxic compounds, and also allow the bacteria to adapt to inhibitory 

compounds (3, 19, 11). 

Lately, the tremendous degradation potential of anaerobic granular sludge with respect 

to aromatic compounds has been shown (6, 7, 9, 25). However, there are some reports in the 

literature which show significant differences in the response of different seed cultures with 

respect to their ability to degrade compounds and their acclimation rates as well (3, 16, 18). 

These observations emphasize the importance of the seed sludge source used during the start­

up of UASB reactors treating aromatic compounds. Consequently, granular sludges from 

different sources were assayed to evaluate their biodegradative capacities with respect to the 

onset of the degradation, the degradation rate and the degradation potential. Four compounds 

previously reported to be anaerobically biodegraded and that are frequently present in the 

wastewaters of the chemical and petrochemical industries were selected for this study, namely, 

2-aminobenzoate (2), phenol (16), 4-cresol (5) and 5-aminosalicylate (25). 
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4.2 Materials and Methods 

Biomass 

The methanogenic granular sludges used in this study were obtained from 5 different 

UASB reactors treating effluents from: Aviko (potato industry), Borculo (whey industry), 

Gist-Brocades (yeast/antibiotics industry), 2-nitrophenol (2NP) adapted sludge (2-

nitrophenol/VFA) and from Shell Nederland Chemie (wet oxidized petrochemical industry 

effluent); fresh sample (SNC) or a 2 year old sample stored at 4 °C (SNC-2). It should be 

pointed out that 2NP sludge was originally cultivated from SNC after 200 days of adaptation 

to 2-nitrophenol in a laboratory-scale UASB reactor. The sludges were elutriated to remove 

the fines and predigested at 30°C during 30 days period in order to deplete most of the 

endogenous substrates in the sludge. 

Analyses 

The methane content in the gas samples was determined by gas chromatography 

(Packard-Becker, Delft, the Netherlands). The gas chromatograph was equipped with a steel 

column (2 m by 2 mm) packed with Poropak Q (80/100 mesh, Millipore Corp., Bedford, 

Mass.). The temperatures of the column, the injector port and the flame ionization detector 

was 60, 200 and 220 °C, respectively. The carrier gas was nitrogen at a flow rate of 20 

mL/min. Samples for measuring methane content (lOOuL) in the headspace were 

determined using a pressure-lock gas syringe (Pressure-Lok series A-2, Dynatech Precision 

Sampling Corp., LA, USA). An isobaric precise proportion of the known headspace 

volume could be analyzed. The pH was determined immediately after sampling with a 

Knick 511 pH-meter (Berlin, Germany) and a Scot Gerade N61 double electrode (Hofheim, 

Germany). Total suspended solids (TSS) and volatile suspended solids (VSS) were 

determined according to Standard Methods for Examination of Water and Wastewater (1). 
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Basal Medium 

The basal medium used contained (mg/L): NaHC03 (5000), NH4CI (280), CaCl2.2H20 

(10), K2HPO4 (250), MgS04.7H20 (100), yeast extract (100), H3BO3 (0.05), FeCl2.4H20 (2), 

ZnCl2 (0.05), MnCl2.4H20 (0.05), CuCl2.2H20 (0.03), (NTL.)2Se03.5H20 (0.05), A1C13.6H20 

(2), NiCl2.6H20 (0.05), Na2Se03.5H20 (0.1), EDTA (1), rezazurin (0.2) and 36% HC1 (0.001 

mL/L). 

Anaerobic Activity Assay 

Maximum specific acetoclastic methanogenic activity measurements were performed 

according to the method described by Donlon et. al. (8) in 120 mL glass serum flasks sealed 

with 12 mm thick butyl rubber septa. Predigested granular sludge (2 g VSS/L) was transferred 

to serum flasks containing 25 mL of basal medium and acetate from a neutralized stock 

solution to yield a final concentration of 2.5 g of chemical oxygen demand (COD)/L. Assay 

serum flasks were then flushed with 70% N2-30% C02 for 5 minutes and incubated at 30°C. 

On the following day bottles which were still pink due to the redox indicator dye resazurin 

were discarded. After 3 days incubation, the acetate concentration was replenished to 1 g 

COD/L in order to assay the specific methanogenic activity. The headspace was reflushed with 

70% N2-30% C02 gas and the assay bottles were reincubated for 1 hr, prior to the 

determination of the methane production rate. The methane content in the headspace of each 

assay bottle was determined hourly during the subsequent 6-8 hour incubation period. The 

maximum specific methanogenic activity was calculated from the slope of the cumulative 

methane production (mL) versus time curve (d). 

Anaerobic Biodegradability Assay 

The batch anaerobic biodegradability assays were conducted according to the method 

described by Razo-Flores et. al. (25) in 120 mL glass serum flasks. Predigested granular sludge 
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(1 g VSS/L) was transferred to serum flasks containing 24 mL of the basal medium and acetate 

from a neutralized stock to yield a final concentration of 50 mg COD/L. The serum flasks were 

sealed with 12 mm thick butyl rubber stoppers and flushed with 70% N2-30% C02 gas for 5 

minutes and incubated overnight at 30°C to allow for biological consumption of residual 02. 

On the following day, the desired amounts of the target compounds were then added to 

triplicate serum flasks using concentrated stock solutions. The compounds were supplied at 

sub-toxic concentrations in the assay medium in order to prevent inhibition to the 

methanogens, with the following concentrations in the serum flasks (mg/L): 2-aminobenzoate 

(2ABc), 300; phenol, 250; 4-cresol, 250 and 5-aminosalicylate (5ASA), 120. The serum flasks 

were incubated with shaking (50 rpm) in a temperature controlled room at 30°C over at least a 

100 day period. Sludge blanks, to correct for background gas production from the sludge, 

were based on assays where no test compounds were provided. All biodegradability data are 

the average of triplicate run experiments. The methane composition in the headspace of each 

serum flask was monitored periodically during the assays. The serum flasks were shaken 

vigorously before gas measurements were taken. Methane production was calculated from the 

volume of the headspace and the methane composition in the gas. Net cumulative methane 

production was calculated by subtracting background methane production in the controls from 

that in the test vials. The net cumulative methane production was expressed as a percentage of 

the theoretical methane production (TMP) expected from the test chemical mineralization 

based on the Buswell equation (26). The degradation rate of the compounds was calculated 

from the slope of the net cumulative methane production (mL) versus time curve (d) by 

converting the measured mg COD-CH4 to mg of compound of the corresponding aromatic 

amine. A conversion factor of 0.388 mL CH^mg COD (1 atm and 30°C) was also used for 

these calculations. 

Chemicals 

Chemicals were purchased from Acros Chimica (Geel, Belgium). All chemicals were of 

the highest purity and were used without further purification. 
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4.3 Results 

Five different sources of granular sludge were assayed. In the case of the Shell sludge, 

we tested a fresh sample (SNC) and 2-year old sample stored at 4 °C (SNC-2) in order to 

measure the effect of cold storage on the activity and biodegradability potential of the granular 

sludge. Table 1 shows the sources and characteristics of the granular sludges used. The sludges 

contained a TSS and VSS percentage in the range of 9.6-12.8% and 7.5-10.2% respectively. 

The specific acetoclastic methanogenic activity of the sludges was relatively high and was in 

the range of 0.5 - 1.14 g CHi-COD/g VSS-d. The acetoclastic activity of the SNC-2 sludge 

was 54% lower than that of the SNC sludge after 2 years of cold storage. Nonetheless the 

remaining activity was quite high. 

The four compounds selected for this study: 2ABc, phenol, 4-cresol and 5ASA, were 

tested for anaerobic biodegradability by the different sludges (Table 2). The background 

methane production of the sludge blanks accounted for 2.7 - 8.1 mg CH4-COD. Phenol and 4-

cresol were completely mineralized by all sludges. The lag phase was minor for the Aviko and 

Borculo sludges. SNC and 2NP sludges were capable of degrading 2ABc after 3 weeks. In the 

case of 5 AS A, only 2NP sludge was able to mineralize the compound after a 65 day adaptation 

period. The TMP of the compounds that were mineralized was generally >70%. SNC-2 lost 

the ability to degrade 2ABc; whereas, 2NP sludge kept this ability despite the fact that it had 

been adapted to another N-substituted aromatic (2-nitrophenol). The degradation rates of the 

compounds that were mineralized were fairly similar with all the sludges. However, the lag 

phase before the onset of the degradation were quite different from compound to compound 

and from sludge to sludge. Figure 1 shows the net cumulative methane production of the 4-

cresol degradation with Aviko and Gist-brocades sludges. 

The effect of biomass concentration on the phenol (250 mg/L) degradation was also 

studied. Three concentrations of SNC granular sludge were assayed: 1, 3 and 10 g VSS/L. 

Figure 2 shows the time course of the net cumulative methane production. Figure 2 clearly 

illustrates that methane production rate is quite similar for all sludge concentrations tested. On 

the other hand, while the standard deviation (SD) of the TMP was rather good for 1 and 
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TABLE 4.2 Anaerobic biodegradability of aromatic compounds using different sources of 
granular sludge. 

Compound Phenol 4-Cresol 2ABc 5ASA 

Sludge Aviko 

Lag phase (d) 
Degradation rate (mg/g VSS-d) 
Methane (% TMP) 

13 
10 

86 ± 4 

11 
11.3 

93 ± 3 

>100 
0 

-3± 1 

>100 
0 

-16 ± 2 

Sludge Borculo 

Lag phase (d) 
Degradation rate (mg/g VSS-d) 
Methane (% TMP) 

Sludge 

Lag phase (d) 
Degradation rate (mg/g VSS-d) 
Methane (% TMP) 

11 
7.5 

92 ± 2 

47 
9 

70 ±20 

14 >100 
14.1 0 

102 ± 1 -5 ±0.5 

Gist Brocades 

27 >100 
11.3 0 
100' 4 ± 8 

>100 
0 

-1 ± 13 

>100 
0 

5 ± 2 

Sludge SNC 

Lag phase (d) 
Degradation rate (mg/g VSS-d) 
Methane (% TMP) 

26 
11.5 

93 ± 0.4 

18 
12.1 

78 ± 0.4 

23 
8.1 

101 ±14 

>100 
0 

6 ± 3 

Sludge SNC-2 

Lag phase (d) 
Degradation rate (mg/g VSS-d) 
Methane (% TMP) 

32 
8.2 

77 ± 5 

19 
9.8 

102 ± 3 

>100 
0 

9 ± 2 

>100 
0 
0a 

Sludge 2NP 

Lag phase (d) 
Degradation rate (mg/g VSS-d) 
Methane (% TMP) 

' no standard deviation data, n = 2 
ND: not determined 

40 
9.1 

98 ± 2 

ND" 
ND 
ND 

25 
11.7 

96 ± 5 

65 
1.43 

96 ± 5 
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3 g VSS/L, this was not the case for the 10 g VSS/L where the SD accounted for 50% of the 

TMP. The background methane production corresponded to 37.9, 84.2 and 212.8% of TMP 

expected from phenol for 1, 3 and 10 g VSS/L respectively. The relatively high background 

methane production from 10 g VSS/L would explain the high standard deviation. 
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40 
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Figure 4.1 Time course of the net cumulative methane production of the 250 mg/L 4-cresol 
biodegradation; (•) Aviko sludge, (0) Gist-Brocades sludge. The vertical line shows the 
theoretical methane production (TMP) that should be achieve if the 4-cresol were completely 
mineralized to methane (6.01 mL). The horizontal lines indicates the time period used to 
calculate the slope of the net cumulative methane production: (A) Aviko sludge, (B) Gist-
Brocades sludge. 

4.5 Discussion 

The 5 different granular sludge sources tested in this study varied with respect to their 

ability to anaerobically degrade compounds and the time period required for the onset of 

degradation. The compounds were selected based on their proven anaerobic degradability in 

methanogenic consortia (2, 5, 16, 25) and were tested at sub-toxic concentrations to avoid 
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methanogenic inhibition. The inhibitory concentration of the compounds tested that causes a 

50% decrease in the methanogenic activity is (g/L): 1.3, 1, 9.18 and 0.43 for phenol, 4-cresol, 

2ABc and 5ASA respectively (3, 8, 9, 25). Phenol and 4-cresol were mineralized by all sludges 

at similar degradation rates, with an average of 9.2 and 11.7 mg/g VSS-d, respectively. The 

ubiquitous capacity for anaerobic phenol and 4-cresol degradation is not surprising since these 

compounds are intermediates during the anaerobic degradation of flavonoids and tyrosine (12, 

13). The common occurring amino acid tyrosine would be expected in many different types of 

wastewater from the food industry or to result from the degradation of proteins in bacterial 

biomass. The fact that phenol and 4-cresol were readily degraded by the Aviko sludge after 

very short lag phases corresponds to the occurrence of tyrosine in potato starch wastewater 

(12). 
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Figure 4.2 Net cumulative methane production of the 250 mg/L phenol biodegradation using 3 
different concentrations of SNC granular sludge under stirred conditions (50 rpm). The vertical 
line shows the theoretical methane production (TMP) that should be achieve if the phenol were 
completely mineralized to methane (5.77 mL). (D) 1 g VSS/L; %TMP = 92.7 ± 0.4, (•) 3 
gVSS/L, %TMP = 71.9 ± 4.7, (A) 10 g VSS/L; %TMP = 83.1 ± 44. 
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2ABc was degraded by SNC and 2NP sludges, but not by SNC-2 and the other 

sludges. Based on these results it is clear that the 2 years of cold storage of the SNC sludge 

had a detrimental effect on its ability to degrade 2ABc. Probably, the microorganisms 

responsible for 2ABc degradation have special maintenance energy requirements and they are 

apparently not involved in the phenol and 4-cresol breakdown. 2NP adapted sludge, kept the 

ability to degrade 2ABc after 200 days exposure to 2-nitrophenol and VFA. 2NP sludge was 

also able to degrade 5 AS A. This finding confirms the results of Healy & Young (17) and 

Young & Rivera (27), that is possible to cross-acclimate sludge for the mineralization of other 

structurally similar compounds using aromatic-acclimated sludge. Our study indicates that 

previous adaptation to an N-substituted aromatic is a prerequisite for 5ASA mineralization. 

Based on these results, it is clear that one of the bottlenecks of aromatic degradation is 

the adaptation. Once the microorganisms are adapted, the degradation proceeds at similar 

rates, independently of the origin of the sludge. According also to the results of this study, it 

seems that the granular sludge, independently of the source, has a universal capacity to degrade 

phenol and 4-cresol. In contrast, only some granular sludge sources are able to degrade N-

substituted aromatics like 2ABc and 5ASA. 
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of Selected Nitroaromatics in Upflow Anaerobic Sludge 
Blanket (UASB) Reactors 
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Gatze Lettinga 
Jim A. Field 

Summary 

The anaerobic transformation and degradation of selected nitroaromatic compounds by granular 
sludge was investigated in laboratory-scale upflow anaerobic sludge blanket (UASB) reactors 
continuously fed with either a volatile fatty acid (VFA) mixture or glucose as a cosubstrate. During the 
start-up, subtoxic concentrations of 2-nitrophenol (2NP), 4-nitrophenol (4NP), 2,4-dinitrophenol 
(2.4DNP), 5-nitrosalicylate (5NSA), 4-nitrobenzoate (4NBc), 2,4-dinitrotoluene (2.4DNT), or 
nitrobenzene (NB) were utilized. The nitroaromatic concentrations were gradually increased during 
reactor operation and the efficiency of nitro-group reduction was higher than 98%. Reactors treating 
4NP, 2,4DNP, and NB readily converted the nitroaromatics to their corresponding aromatic amine; 
whereas 2NP, 5NSA and 4NBc were mineralized via intermediate formation of their corresponding 
aromatic amines. 2,4DNT was completely reduced, and the corresponding aromatic amine was partially 
transformed to an unidentified metabolite. These conversions led to a dramatic detoxification of the 
nitroaromatics since the reactors were able to treat these compounds at concentrations which were over 
30 times higher than the 50% inhibitory concentration to methanogenic activity. Cosubstrate-COD 
removal efficiencies greater than 87% were achieved, except for 2,4DNP (75%), at loading rates up to 
13.3 g COD/L-d even at volumetric loading of nitroaromatics up to 910 mg/L-d. 

The sludges sampled from selected reactors at the end of the continuous experiments were 
assayed for their specific nitroaromatic reducing activity in the presence of different primary substrates. 
Reduction rates of 44.6, 26.0 and 11.3 mg/g VSS-d were observed for 2NP, 4NP and 5NSA, 
respectively when utilizing the VFA mixture as primary substrate. Hydrogen, an interspecies reduced 
compound, and substrates that provide interspecies reducing equivalents; such as butyrate, propionate 
and ethanol stimulated nitroaromatic reduction; while direct substrates of methanogens, acetate and 
methanol did not. Anaerobic batch biodegradability assays with the 2NP, 5NSA and 4NBc adapted 
sludges could readily mineralize the corresponding aromatic amines, (2-aminophenol, 5-aminosalicylate 
or 4-aminobenzoate) to methane at rates of 14.5, 13.2 and 6.8 mg/g VSS-d, respectively. These 
activities were sufficient to account for the complete mineralization of aromatic amines formed from the 
reduction of 2NP, 5NSA and 4NBc in the UASB reactors. The results of this study indicate that UASB 
reactors can be applied to rapidly detoxify nitroaromatics and certain nitroaromatic compounds are even 
mineralized. 

Biotechnology and Bioengineering (1996) 51:439-449 
Biotechnology Progress (1997) submitted for publication 
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absorbance was detected at 230 nm. Determination of the anaerobic intermediates of aromatic 

amines degradation were also performed by gas chromatography as has been previously 

described (15). Authentic standards tested included benzoic acid, carboxycyclohexane, 

cyclohexanone and phenol. Aromatic amines were also determined colorimetrically after 

reacting with 4-dimethylaminobenzaldehyde-HCl (Ehrlich Reagent) according to the method 

described by Oren et al. (42). The pH was determined immediately after sampling with a model 

511 pH-meter (Knick, Berlin, Germany) and a model N61 double electrode (Scot Gerade, 

Hofheim, Germany). All the other analytical determinations were performed as described in 

Standard Methods for Examination of Water and Wastewater (2). 

Laboratory UASB Reactor Experiments 

The continuous reactor experiments were performed in seven separate glass UASB 

reactors (0.145 m of length and 0.039 m of internal diameter) with liquid volumes of 160 mL 

placed in a temperature controlled room at 30 ± 2°C (Figure 5.1). Reactor 1 (Rl), Reactor 2 

(R2), and Reactor 3 (R3) were inoculated with 20 g of volatile suspended solids (VSS) per 

liter of Shell Nederland Chemie anaerobic granular sludge. Reactor 4 (R4), Reactor 5 (R5), 

and Reactor 6 (R6) were inoculated with 20 g VSS/L of an sludge mixture: Shell Nederland 

Chemie and 2NP-adapted anaerobic granular sludge in a 2:1 ratio. Reactor 7 (R7) was started 

immediately after the experiment in R4 was finished by shifting the nitroaromatic compound. 

The reactors were started-up (except R7) with partially neutralized (pH=6.0) VFA mixture 

(acetate:propionate:butyrate, 23:34:41 on a COD basis) at a concentration of 4 g COD/L for 

15 days. Thereafter, the reactors received sub-toxic concentrations of the nitroaromatic 

compounds in addition to the VFA substrate: Rl, 8 mg/L 2NP; R2, 12 mg/L 4NP; R3, 5 mg/L 

2,4DNP; R4, 60 mg/L 5NSA; R5, 20 mg/L 4NBc; and R6, 5 mg/L 2,4DNT. Sub-toxic 

concentrations were defined as those causing a 50% inhibition of acetoclastic methanogens 

(IC50 values) and were determined previously (11). R7 received 50 mg/L NB in addition to 1 

g COD/L of glucose as cosubstrate. The methane production was measured with 10 liter 

Mariotte flasks filled with a 3% (w/v) NaOH solution to scrub out the carbon dioxide from the 

biogas 
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Anaerobic Activity Assays 

The specific acetoclastic methanogenic activity test was performed in 120 mL serum 

vials sealed with butyl rubber septa and aluminum caps. Measurements were performed at 30°C 

± 2°C as outlined previously (11). All results are reported in g CFLt-COD/g VSS-d, as the 

mean value of triplicate values. 

Determination of Nitroaromatic Reduction Rate 

The nitroaromatic-reducing activity of the sludge sampled from the UASB reactors was 

also determined. The vials were set-up similarly to the biodegradation technique outlined 

previously (47) and were incubated overnight at 30°C with shaking. Then the nitroaromatic 

test compounds (2NP, 4NP or 5NSA) were introduced into the vials at concentrations of 100 

mj^L. Reduction of the nitroaromatics to their corresponding aromatic amines was monitored 

by measuring the loss in the nitro-group absorbance. The effect of electron donors on the 

nitroaromatic reducing activity was determined by adding the VFA mixture used as in the 

column experiments (500 mg COD/L), acetate (500 mg COD/L), methanol (432 mg COD/L), 

and ethanol (432 mg COD/L). The use of hydrogen as primary substrate was tested by 

pressurizing the vials with a gas mixture of H2:C02 (80:20, vol:vol) to 0.5 bar. The 

approximate headspace:liquid volume ratio in these vials was 4:1. Sludge that was autoclaved 

for one hour served as the control. All results are reported as the mean value of triplicate 

incubated experiments. 

Biodegradation of Aromatic Amines 

The biodegradation assay was conducted for the granular sludge sampled from all the 

columns except R3 and R7 as outlined previously (47). The aromatic amines, 2AP, 4AP, 

5NSA, 4NBc and 2,4DAT were tested at a concentration of 200, 200, 300, 300, and 130 mg/L 

in the vials containing sludge samples withdrawn from the reactors treating 2NP, 4NP, 5NSA, 

4NBc, and 2,4DNT, respectively. The methane produced was monitored by periodic 

measurement of the headspace gas content using gas chromatography. Methane production 
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due to the mineralization of aromatic amines was calculated by subtracting background 

methane production in the sludge blank controls from that in the vials with test compound. The 

corrected methane production was expressed as a percentage of the theoretical methane 

production (TMP) expected from the test chemical mineralization according to the Buswell 

equation (51). The specific mineralization rate of the aromatic amines was calculated by 

converting the measured mg COD-CH4 to mg of compound of the corresponding aromatic 

amine. Parallel experiments where the sludge received the specific methanogenic inhibitor 2-

bromoethanesulfonate (BESA, 50mM) were also established in order to identify intermediates 

of 2AP and 5ASA degradation. All results are reported as the mean value of triplicate 

incubated experiments. 

Chemicals 

Chemicals were purchased from either Jannsen Chimica (Tilburg, The Netherlands), 

Merck (Darmstadt, Germany) and Sigma (Bornem, Belgium). All chemicals were of the 

highest purity available and were not purified further. The purity of all standards was 95% or 

greater. 

5.3 Results 

Anaerobic Treatment of Nitroaromatics in UASB Reactors 

Seven laboratory scale UASB reactors were operated in order to investigate the 

continuous anaerobic treatment of nitroaromatics. All the reactors (except R7) were initially 

started up after a 15 day adaptation period to VFA. After this adaptation time period the 

reactors were initially fed with sub-toxic concentrations of the nitroaromatics. Either VFA or 

glucose were used as a cosubstrate to provide the electrons for the reduction of nitroaromatics. 

The concentration of nitroaromatic in the influent was increased periodically after at least 10 

hydraulic retention times (HRT, equal to 8 h, unless otherwise indicated) and when greater 

than 75% removal of nitroaromatics and cosubstrates was obtained. The rationale behind this 
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approach is that the sludge is expected to withstand higher concentrations of the incoming 

nitroaromatics by reducing the nitro-group to the less toxic amino-group. The operational 

parameters and treatment efficiencies obtained during the continuous operation of the seven 

UASB reactors treating 2NP (Rl), 4NP (R2), 2,4DNP (R3), 5NSA (R4), 4NBc (R5), 2,4DNT 

(R6), and NB (R7) in the final period of the reactor operation are summarized in Table 5.1. 

The time course of the treatment performance of Rl treating 2NP is shown in Figure 

5.2. The reduction of 2NP was highly efficient throughout the entire operation of the reactor, 

even after increasing the 2NP concentration up to 300 mg/L period (Days 180-194). 2NP 

concentrations higher than 350 mg/L exhibited toxicity for the biomass (downward dotted 

arrow in Figure 5.2A). However, the reactor quickly recovered when the influent 

concentration was lowered to 200 mg/L. By the end of the experiment up to 300 mg/L 2NP in 

the influent could be tolerated. From day 15 to day 60, 2NP was converted to 2AP in 

stoichiometric quantities. After day 60, less than 20% of the nitrophenol removed was 

recovered as the corresponding aromatic amine (Figure 5.2C). This indicates that the 2AP 

formed was being further transformed as was evident from the decrease in UV209 which is 

indicative of aromatic compounds. The reduction of the nitro group to the less toxic amino 

substituent ensured that a detoxification of the influent was obtained and there was greater 

than 90% removal of VFA. In this reactor, the measured methane production accounted for 

101% of the VFA consumed (Table 5.1). 

The time course of the treatment performance of R2 treating 4NP is shown in Figure 

5.3. In this reactor a highly efficient reduction of 4NP to the corresponding aromatic amine 

(>99%), 4AP, was also observed (Figure 5.3C). This reduction was responsible for the 

detoxification of the influent even after increasing the 4NP concentration up to 260 mg/L. 

Nitroaromatic concentrations higher than 260 mg/L were toxic as indicated by the downward 

dotted arrow in Figure 5.3A. As soon as the concentration was lowered again, the reactor 

recovered. Unlike Rl, the aminophenol was always recovered in near stoichiometric yields; 

there was 94% 4AP recovery as determined by HPLC in this reactor. This indicates that no 

further conversion of the aminophenol was observed although the reactor was in operation for 
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Figure 5.2 Operational efficiency during the continuous anaerobic treatment of 2-nitrophenol: 
(A) 2-nitrophenol concentration in the influent; (B) %VFA removal; (c) % 2-nitrophenol 
removal as determined by loss in UV at 370nm (•), recovery as a percentage (molar terms) of 
2-nhrophenol eliminated (o). The concentration of 2-aminophenol was determined 
colorimetrically after reacting with 4-dimethyIaminobenzaldehyde-HCI (Ehrlich Reagent) 
according to the method described by Oren et al. (42). Solid arrow indicates the introduction 
of 2-nitrophenol in the influent. Dotted arrow indicates nitroaromatic toxicity. 
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approximately 200 days. High VFA removal efficiencies were obtained over the entire period 

and the measured methane accounted for 89% of the VFA consumed (Table 5.1). 

Figure 5.4 shows UV-VIS scans of influent and effluent samples from the reactors 

treating 2NP and 4NP. When comparing these scans to similar scans made for nitrophenol and 

aminophenol standards it can be concluded that 4NP was converted to 4AP. This was 

confirmed with the HPLC (Table 5.1). On the other hand, it appears that 2NP was not only 

reduced to 2 AP but it was degraded further since only a trace of the 2 AP spectrum could be 

detected in the effluent. The effluent UV-VIS absorbance (Figure 5.4B) was similar to that 

obtained in the effluent of a reactor treating VFA only. Analysis of the reactor performance by 

UV-VIS determination demonstrated that greater than 94% nitro-group removal and 87% 

removal of the aromatic structure of 2AP was obtained in Rl. There was greater than 99% 

nitro-group removal in R2; whereas, there was 84% recovery of the aromatic structure of 4NP. 
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Figure 5.4 UV-VIS scans of (a) authentic 2-nitrophenol (•) and 2-aminophenol (•) standards, 
(b) influent (•) and effluent (•) samples from reactor treating 2-nitrophenol, (c) authentic 4-
nitrophenol (•) and 4-aminophenol (•) standards, (d) influent (•) and effluent (•) samples 
from reactor treating 4-nitrophenol. All samples were diluted to give a concentration of 72uM 
in 0.2M phosphate buffer pH 7. 

83 

file:///r~~~~


Chapter 5 ^ ^ 

R3 treating 2,4DNP gave high nitro-group reduction efficiencies up to concentrations 

of 25 mg/L 2.4DNP in the influent for the first 116 days of operation. Highly reliable VFA 

(84%) removal was also obtained in this period. In order to study the effects of nitroaromatic 

feed interruptions upon reactor performance, on day 117 to 124, the dinitrophenol was omitted 

from the influent. After one week operation, 2,4DNP was reintroduced into the reactor influent 

(25 mg/L). This caused a major perturbance in the reactor performance and resulted in lower 

VFA removal rates (approx. 43%). The influent nitrophenol and VFA concentrations were 

then reduced to 5 mg/L and 0.5 g COD/L, respectively, and the reactor became more stable. 

Afterwards, nitrophenolic and organic loading rates were gradually increased. At the end of the 

reactor operation, an apparent steady-state was reached with nitro-group and VFA removal 

rates of 68 and 75%, respectively. Stoichiometric production of 2.4DAP from the elimination 

of the parent nitroaromatic compound in this reactor was confirmed by HPLC analysis (Table 

5.1). The methane production accounted for 69% of the VFA consumed. 

5NSA was reduced at high efficiencies during the whole experimental period in R4 

(Figure 5.5 and Table 5.1). 5ASA was recovered in stoichiometric amounts during the first 90 

days of operation. However after day 100, less than 20% of the 5NSA removed was recovered 

as the corresponding aromatic amine (Figure 5.5C), indicating that 5ASA was transformed 

further. The system demonstrated to be sensitive to pH changes; on day 70 and 116 the pH 

dropped from 7.3 to 6.7 and 6.1, respectively, producing a sharp decrease in both the VFA 

removal and nitro reduction (upward dotted arrows in Figure 5.5A). Consequently, the 5NSA 

concentration in the influent was lowered to protect the biomass against toxic effects. After the 

VFA removal and the nitro-reduction stabilized, the 5NSA concentration in the influent was 

again increased to a maximum of 150 mg/L. A further increase of 5NSA in the influent to 200 

mg/L produced a temporary accumulation of 5 AS A in the effluent between days 170 and 220. 

The VFA removal was quite high over the course of the experimental period, and the methane 

production accounted for 94% of the VFA consumed during the final period of reactor 

operation. 

The time course of the treatment performance of R5 treating 4NBc is shown in Figure 

5.6. R5 was operated for 356 day period. VFA mixture (4 g COD/L) was used as cosubstrate 
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Figure 5.5 Operational efficiency during the continuous anaerobic treatment of 5-
nitrosalicylate. (A) 5-nitrosalicylate concentration in the influent; (B) %VFA-COD removal; 
(c) % 5-nitrosalicylate removal as determined by loss in UV at 280nm (•), 5-aminosalicylate 
recovery as a percentage (molar terms) of 5-nitrosalicylate eliminated (o). Solid arrow 
indicates the introduction of 5-nitrosalicylate in the influent. Up dotted arrow indicates pH 
drop. Down dotted arrow indicates nitroaromatic toxicity. 
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Figure 5.6 Operational efficiency during the continuous anaerobic treatment of 4-
nitrobenzoate. (A) 4-nitrobenzoate concentration in the influent; (B) %COD removal (glucose-
COD); (c) % 4-nitrobenzoate removal as determined by loss in UV at 320nm (•), 4-
aminobenzoate recovery as a percentage (molar terms) of 4-nitrobenzoate removed (o). For 
the other symbols see legend of Figure 5.5. 
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from day 0 to day 200, whereas glucose (4 g COD/L) was used from day 201 and onwards. 

During the VFA period, 4NBc was reduced at high efficiencies (> 85% as measured by UV-

VIS), and 4ABc was recovered in stoichiometric amounts, indicating that the aromatic amine 

produced was not degraded. On day 80 there was a pH drop (upward dotted arrow in Figure 

5.6A) and 4NBc concentration in the influent was lowered to protect the biomass against toxic 

effects. Afterwards the 4NBc concentration was again increased gradually up to 120 mg/L. 

After the cosubstrate was shifted to glucose, the 4NBc reduction was still highly efficient. On 

day 225, the recovery of 4ABc steadily started to decrease to less than 15% (molar yield) by 

the end of reactor operation (Table 5.1), indicating that a population of 4ABc degraders had 

developed. The COD removal (VFA or glucose) was greater than 95% during almost the 

entire period operation. In this reactor the measured methane production accounted for 101% 

of the glucose-COD consumed. 

R6 treating 2,4DNT gave high nitro-group reduction efficiencies over the course of the 

experimental period (>90% as measured by UV-VIS), even at 2.4DNT concentrations of 120 

mg/L. It was not possible to apply higher 2,4DNT concentrations due to its limited aqueous 

solubility. 2,4DAT was recovered in stoichiometric amounts until day 125. Thereafter, the 

aromatic amine accounted for only 52% molar yield of the 2,4DNT removed, indicating its 

further transformation. VFA removal efficiency was quite high over the course of the 

experiment (98.5%). Methane production accounted for 97% of the VFA consumed in this 

reactor. 

R7 treating NB was started in R4 immediately after the corresponding experiment was 

finished by shifting the nitroaromatic compound from 4NBc to NB. The concentration of both 

NB and glucose was kept constant for the entire period of reactor operation (100 days). The 

reduction of NB was highly efficient (>99.9%) with the concomitant production of AN. There 

was 92% AN recovery (molar yield) as determined by FIPLC in this reactor, indicating no 

further conversion of the aromatic amine produced. Glucose-COD removal efficiency was 

greater than 87% and the methane production accounted for 89% of the glucose-COD 

removed. 
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At the end of the continuous experiments in Rl, R2 and R3, the biomass concentrations 

and the maximal methanogenic activity of the sludge was measured (Table 5.2). The specific 

methanogenic activity of the sludge from the column fed 4NP was the highest. There was only 

a slight decrease in maximal methanogenic activity in all reactors compared to the initial 

methanogenic activity. The quantity of sludge in the reactors treating 4NP and 2,4DNP were 

similar to the starting inoculum concentration (20 g VSS/L). However, there was a doubling of 

biomass in the reactor treating 2NP (Rl) after 200 days of continuous operation which is 

indicative of growth and retention of granular sludge. 

TABLE 5.2 The methanogenic activity and biomass concentrations in reactors Rl, R2, and R3 
before and after 200 day operation. 

Granular sludge 

Inoculated in all three reactors 

Rl (2NP) reactor 

R2 (4NP) reactor 

R3 (2,4DNT) reactor 

(g CH4 

Activity 

-COD/g VSS-d) 

0.891 

0.633 

0.877 

0.513 

Sludge concentration 

(g VSS/L) 

20.0 

48.7 

16.7 

21.5 

Effects of Primary Substrate on Nitroaromatic Reduction 

At the end of the reactor operation, sludge was withdrawn from the lab-scale reactors 

(Rl, R2 and R4) to study the extent of chemical and biological nitro-group reduction (Table 

5.3). A small amount of chemical nitroaromatic reduction to aromatic amine was obtained 

using autoclaved granular sludge. However, the rate was doubled when living sludge was used 

without any primary substrate, indicating a biological enhancement of the nitroaromatic 

reduction rate with endogenous substrate. The VFA mixture, acetate, ethanol, methanol, and 

hydrogen were tested as a source of additional reducing equivalents for enhancing reductive 

transformation of nitroaromatics. Acetate and methanol did not improve either the yield of 
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aromatic amines or the rate of nitroaromatic reduction beyond that obtained with endogenous 

substrate (sludge control) sample. However, the rate of nitro- group reduction and the 

percentage aromatic amines recovery was enhanced when hydrogen and other primary 

substrates such as ethanol and VFA mixture were used. 

TABLE 5.3 Rates of nitro-group reduction and molar yield of aromatic amines by granular 
sludge sampled from the continuous experiments at the final period of reactor operation (Rl, 
R2, and R4) in the presence of various primary substrates. 

Substrate 

2-nitrophenol 

None and sludge 

None 

Acetate 

VFA mixture11 

4-nitrophenol 

None 

Acetate 

VFA mixture 

Ethanol 

Hydrogen 

Methanol 

5-nitrosalicylic acid 

autoclaved 

None and sludge autoclaved 

VFA mixture 

Nitroaromatic reduction rate 

(mg/gVSS-d) 

9.92 

18.8 

20.0 

44.6 

10.6 

10.5 

26.0 

16.8 

36.2 

11.0 

3.06 

11.32 

Molar yield 

aromatic amines* (%) 

12.8 

54 

55 

102.8 

19.9 

29.5 

96.6 

NM° 

NM 

NM 

NM 

99.8 

a Molar yields determined for 2-aminophcnol, 4-aminophenol, and 5-aminosalycilic acid after 69, 102, 
and 147 h, respectively. 

b VFA mixture, which was partially neutralized (pH = 6), contained acetate:propionatc;butyrate in a 
ratio of 23:34:41 on a COD basis. 

c NM; not measured. 
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As shown in Figure 5.7, 2NP was degraded in the presence of VFA mixture (500 mg 

COD/L) substrate without a lag period together with a concomitant release of 2AP as the 

biotransformation product. This in turn was further degraded as can be seen from the decreases 

in the UV209 absorbance indicating aromatic structure and by a loss in the colorimetrically 

determined aromatic amine concentration. 

01 
60 — 

<z 
< 

150 200 
Time (h) 

o 
3S0 

Figure 5.7 Profile of 2-nitrophenol biodegradation (•) and temporal 2-aminophenol 
accumulation (•) using sludge recovered from Reactor 1 (treating 2-NP) at the end of the 
continuous experiments. Nitrophenol concentration was determined by measuring the 
absorbance at 370nm by spectroscopy. Aromatic ring cleavage was determined by measuring 
the absorbance at 209nm (•) as the extinction coefficients of 2-nitrophenol/2-aminophenol 
prepared in phosphate buffer (0.2M, pH 7) overlap at this wavelength. Confirmation of 2-
aminophenol concentrations was also determined colorimetrically. 

Mineralization of N-substituted Aromatics by Sludge from the UASB Reactors 

Background methane production can interfere in the determination of the 

biodegradability of highly toxic compounds tested at low concentrations in anaerobic bioassays 

based on methane production potential (47, 49). Consequently, aromatic amines instead of 

nitroaromatics were used to study the mineralization potential of the sludges sampled from the 

continuous reactors (except R3 and R7). The rationale behind our approach is that it was 

easier and more accurate to examine the mineralization of the daughter aromatic amines which 
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could be tested at higher concentrations than their toxic parent nitroaromatic compounds. 

Table 5.4 indicates that the methane obtained from sludges receiving 2AP, 5ASA or 4ABc as a 

sole substrate was higher than 75% of the TMP, suggesting their complete anaerobic 

mineralization. 4AP and 2,4DAT amended sludges produced low %TMP after long incubation 

periods, indicating the recalcitrance of these compounds. 

TABLE 5.4 Anaerobic mineralization of aromatic amines to methane by sludge sampled from 
the reactors treating the corresponding nitroaromatic compounds. 

Aromatic amine tested 

Sampling day 

Concentration assayed (mg/L) 

Methane* (%TMP) 

Lag phase (day) 

Max. mineralization rate 

(mg/g VSS-d) 

Rl 

2AP 

194 

500 

98.7 ±6.1 

<3 

14.5 

R2 

4AP 

194 

500 

22.8 ±3.4 

60 

0.76 

R4 

5ASA 

175 

300 

74.9 ±0.8 

<5 

13.2 

R5 

4ABc 

175 

300 

82 ±2.9 

60 

6.8 

R6 

2,4DAT 

175 

130 

4.9 ±5.1 

>170 

~0 

a Methane production was corrected for the values in the sludge blank controls, which were used for 
comparison to the theoretical methane production (TMP) of the test compound. 

Parallel experiments where conducted with the specific methanogenic inhibitor, BESA, 

with the sludges that were mineralizing 2AP and 5ASA in order to determine intermediate 

product formation. BESA effectively blocked the methane production from the aromatic 

amines. The aromatic amines instead were converted to mainly acetate in both cases, which 

equaled approximately 75% of the COD of the aromatic amines added after correcting for the 

acetate levels in the sludge blank controls (results not shown). However, we did not detect 

phenol, benzoic acid, carboxycyclohexane, cyclohexanone nor any other aromatic 

intermediates in uninhibited or BESA inhibited cultures. 
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5.4 Discussion 

Anaerobic Treatment of Nitroaromatics in UASB Reactors 

Previously, we reported that nitroaromatic compounds were several orders of 

magnitude more toxic than their reduced aromatic amine products (11). Since it was previously 

reported that anaerobic bacteria readily reduce nitroaromatics (7, 23, 41), considerable 

detoxification would be expected to result from the treatment of the highly toxic nitroaromatic 

compounds in anaerobic continuous reactors. 

The results of this study confirm that extensive detoxification can be obtained. 

Laboratory scale UASB reactors treating the nitroaromatics were able to convert cosubstrate-

COD (either VFA or glucose) to methane at organic loading rates up to 13.3 g COD/L-d, with 

greater than 87% cosubstrate-COD removal efficiency (except R3), even though the influent 

concentration of the nitroaromatics was 30-fold higher than the 50% inhibiting concentration 

to acetoclastic methanogenesis. The specific methanogenic activity of the sludges from the 

reactors treating the nitrophenols indicated no significant decrease in the performance of the 

VFA-degrading methanogenic consortia. Stoichiometric reduction of 4NP, 2,4DNP and NB to 

4AP, 2,4DAP, and AN were obtained in R2, R3, and R7; whereas, degradation of 2NP, 5NSA 

and 4NBc to nonaromatic products was observed in Rl, R4, and R5 via intermediate 

formation of the corresponding aromatic amines respectively. In the case of R6, 2,4DNT was 

completely reduced, but only 52% of the compound was recovered as 2.4DAT, suggesting 

partial transformation to an unidentified aromatic compound. 

In this study, very high volumetric loading rates of 2NP and 4NP (910 and 790 mg/L-d, 

respectively) were treated in laboratory scale UASB reactors. The maximum 2NP sludge 

loading rate applied in the continuous reactor experiment (18.7 mg/gVSS-d) was 

approximately the half of the specific rate obtained in batch assays with the VFA mixture (44.6 

mg/g VSS-d) as primary substrate. This indicates that the reactor was underloaded with 

respect to its nitrophenol removal potential. Greater than 98% removal of nitrophenol were 

obtained in both reactors. These removal rates are much higher than that obtained in a lab-scale 
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digestor (0.36 mg/L-d with 82% removal of 4NP) reported by Haghighi Podeh et al. (26). 

After more than 600 days of acclimatization to a mixture of hydroxylated aromatics, Giot et al. 

(21) reported that the maximum loading rate tolerated by the adapted biomass was 30 mg 

2NP/L-d in a fixed-film digester. However, Tseng and Lin (54) reported COD and nitrophenol 

removal efficiencies of greater than 90% in the treatment of a synthetic wastewater (glucose, 

and beef extract) being loaded with 900 mg mononitrophenols/L-d in an anaerobic biological 

fluidized bed reactor system. Continuous reactor studies for the treatment of 2,4DNP, 5NSA, 

and 4NBc are not reported in the literature. 2.4DNT removal of more than 99.9% has been 

reported by Berchtold et al. (4), using an fluidized-bed anaerobic granular activated carbon 

(GAC) reactor operated for almost 600 days with ethanol as cosubstrate. However, the 

contribution of adsorption onto the GAC in the overall removal of 2,4DNT is not described. 

The 2.4DNT loading rate applied in R6 of our study was the double of that applied in the GAC 

reactor (183.3 mg/L-d) of the cited study. 

Detoxification based on the facile reduction of highly toxic polychlorinated aromatic 

compounds to less chlorinated products of lower toxicity was suggested by Sierra and Lettinga 

(50). The successful operation of continuous anaerobic reactors fed with the highly toxic 

compound, pentachlorophenol, reliant upon this reductive detoxification have been cited in the 

literature (39, 60). Wu et al. (60) reported high removal efficiencies of pentachlorophenol at 

loading rates of up to 96 mg/L-d in laboratory-scale UASB reactor fed with a mixture of VFA 

and methanol as cosubstrate. The dechlorination of pentachlorophenol was compared in two 

reactor systems (UASB and fixed-film) and a better performance and higher process stability 

was observed in the UASB system (39). 

The effective treatment regimens cited here for nitro and polychlorinated aromatics rely 

on the easy reduction of these compounds to products of lower toxicity (11, 22, 50). 

Furthermore, immobilizing anaerobic bacteria and maintaining high concentrations of biomass 

in the reactor are factors which are known to improve the tolerance to toxic substances by 

anaerobic treatment systems (13, 43); methanogens inside granules are protected from 

exposure to toxic compound. Biogas production together with an efficient influent distribution 

system ensured a completely mixed hydraulic regime in our UASB reactors thereby preventing 
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localized high concentrations of the toxic parent compounds. Previous studies have 

demonstrated that adequate hydraulic mixing is brought about through high biogas production 

in anaerobic reactors (24, 38). 

Effects of Primary Substrate on Nitroaromatics Reduction 

Methanol and acetate did not support significant nitroaromatic reducing activity during 

the time course of the batch experiments performed on the sludge sampled from the reactors. 

The rate of nitro group reduction was similar to that determined for the unamended sludge 

control. Neither would be expected to produce large amounts of interspecies hydrogen in 

mesophilic granular sludge consortia (18, 20, 45). When granular sludge was incubated with 

methanol in the presence or absence of the specific eubacterial inhibitor, vancomycin, it was 

shown that this substrate is almost exclusively utilized directly by methanogens (18). There are 

some reports, however, that these compounds can produce some hydrogen under thermophilic 

conditions or if methanogens are inhibited (9, 61). However, our experimental results did show 

that the addition of H2 or organic compounds which more readily provide interspecies 

hydrogen (propionate, butyrate, ethanol) under mesophilic conditions significantly enhanced 

the rate of nitroaromatic reduction and yield of amino aromatics. These findings are in 

agreement with previous studies that investigated the role of various electron donors on the 

reduction of chlorinated aromatics (20) and aromatic aldehydes (53) by methanogenic 

consortia. 

When comparing the reduction rate of nitroaromatics using the VFA mixture, it was 

observed that the nitro-group reduction in the orf/»o-position proceeded two and four times 

faster with respect to the meta- and para-position, respectively. This results indicates that the 

position of the nitro-group in relation to the other susbstituents in the aromatic ring plays a key 

role in the rate of nitro-group reduction. Preuss and Rieger (46) indicated that the reduction 

rate of nitro compounds in general is determined by the chemical properties of the whole 

molecule and is therefore influenced by other ring substituents. Hudlicky (30) reported a 

preferential reduction of nitro group in the o/7//o-position with resonance electron-donating 

groups (e.g., -NH2 or -OH) in the 1-position for both chemical and enzymatic reduction. 
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McCormick et al. (37) stated that the rate of reduction of nitro compounds by enzyme 

preparations from Veillonella alkalescens increases with increasing electron withdrawing 

power of the groups at the /rara-position in the following order: -NH2<-OH<-H<-CH3<-

COOIK-NO2. The same authors stated that biologically mediated reduction mainly occurred at 

the ortho- rather than at the/rara-position in the case of nitroanilines and nitrophenols. On the 

other hand, the rates of nitroreduction increases as more nitro groups are placed on the 

aromatic ring (37). 

Mineralization of Aminoaromatics by Sludge from Reactors 

The anaerobic sludges sampled from the reactors were incubated with the non toxic 

concentrations of aromatic amines corresponding to the parent nitroaromatic compound in the 

reactor feed. It was observed that 2AP, 5ASA, and 4ABc were completely mineralized to 

methane, while 4AP was only partially (22%) mineralized, and 2,4DAT was not mineralized at 

all. The original sludge inoculum was also able to mineralize 2AP albeit after a lag phase of 

120-day (47). The long lag phase prior to 4ABc mineralization was due to the time of 

sampling; the sludge was sampled from the reactor on day 175 when it was not yet fully 

adapted. 4ABc degradation was first evident in R5 after day 225. In the batch experiments 

assaying the conversion of 2AP to methane, a specific mineralization rate of 14.5 mg/g VSS-d 

was observed. This rate was similar to the 2NP sludge loading rate used in the continuous 

column experiment, which when expressed in terms of 2AP equivalents amounted to 14.4 mg/g 

VSS-d. Any further increase in the nitrophenol loading rate would have resulted in incomplete 

2AP removal in this reactor. 

Previous reports in the literature suggest that 2AP can be completely mineralized, by 

municipal digested sludge and sediment samples, under methanogenic conditions (3, 40, 41); 

whereas, 4AP is sometimes mineralized (40, 41) and other times is left unmetabolized (3). 

4ABc is also reported to be degraded in methanogenic consortia (3, 47). The mineralization of 

5 ASA was reported previously using 2NP-adapted granular sludge after a lag phase of 65 days 

(47). 2,4DAT was not mineralized in batch assays but the compound was removed in part, 
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indicating that 2,4DAT was partially transformed to a non-identified and non-degradable 

metabolite in R6. 

Although few studies have addressed the biodegradability pathways of 2AP under 

methanogenic conditions, some have shown that transformation reactions occur via 

deamination to phenol (54) or by carboxylation-dehydrogenation to 3-aminobenzoate (5). 

However, these compounds were not detected as intermediates in our consortia even in 

experiments where the sludge received the specific methanogenic inhibitor BESA in order to 

block methanogenesis. Neither was it possible to detect aromatic intermediates during 5ASA 

degradation. The only compound detected in these experiments was acetate in relatively high 

yields. Consequently, the results of our study indicate that the degradation of 2NP, 5 ASA and 

4NBc proceed via nitrogroup reduction to aromatic amines, which are subsequently 

mineralized to methane and carbon dioxide via homoacetogenic fermentation. In a similar 

fashion, Funk et al. (19) reported that during the anaerobic degradation of 2,4,6-trinitrotoluene 

acetate accumulated as the end product by strictly anaerobic soil microflora, which was formed 

via the intermediates methylphloroglucinol and/7-cresol. 

The results of this study indicate that UASB reactors can be applied to rapidly detoxify 

nitroaromatics and that certain nitroaromatics are even mineralized in the methanogenic 

consortia. However, several aromatic amines accumulated in the continuous reactors. These 

can be mineralized by a subsequent aerobic treatment step. Sequenced anaerobic-aerobic 

systems have been successfully applied for the treatment of aromatic compounds (16, 62). NB 

and 2,4DNT were completely mineralized using this approach (4, 10). Alternatively, anaerobic 

degradation can be obtained using electron acceptors aside from CO2. Mineralization of AN 

under denitrifying and sulfate reducing conditions is reported in the literature (1, 48). In both 

cases carboxylation of AN in the para-position producing 4ABc was the initial step for further 

degradation. The 4ABc-adapted granular sludge from R7 was unable to carboxylate AN, 

confirming the methanogenic recalcitrance of AN (1). 
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Summary 

Biological treatment of wastewaters discharged by the textile industry could potentially be 
problematical due to the high toxicity of the commonly-used azo dye compounds. In batch toxicity 
assays, azo dye compounds were found to be many fold more toxic than their cleavage products 
aromatic amines towards methanogenic activity in anaerobic granular sludge. Considering the ability of 
anaerobic microorganisms to reduce and decolorise azo compounds, detoxification of azo dyes towards 
mcthanogens can be expected to occur during anaerobic wastewater treatment. In order to test this 
hypothesis, continuous upflow anaerobic sludge blanket reactors were run with the azo dye Mordant 
Orange 1 (MOl) with either no cosubstrate, glucose or a VFA mixture. Except for the first few weeks, 
no elimination of MOl was evident in the reactor receiving no cosubstrate. On the other hand, MOl 
was readily cleaved in the reactors receiving glucose and VFA at MOl loading rates up to 295 and 161 
mg/L-d, respectively. The azo dye was decolorised and reductively cleaved (>99%) to less toxic 
aromatic amines (1,4-phenylenediamine (1,4PDA) and 5-aminosalicylic acid (5ASA)). In the reactor 
receiving glucose as cosubstrate, 5ASA could only be detected at trace levels in the effluent after day 
189 of operation. Batch biodegradability assays with the sludge sampled from this reactor confirmed the 
mineralization of 5 AS A to methane, whereas 1,4PDA persisted. 

A pharmaceutical azo dye, azodisalicylate (ADS), constructed from two 5ASA molecules was 
also evaluated in the glucose fed reactor after the MOl experiment was finished. The reactor was 
operated for an additional 340 days period with and without cosubstrate. During this period, ADS was 
completely decolorised and mineralized to CHj at dye loading rates up to 225 mg/L-d. The anaerobic 
metabolism of 5ASA was shown to provide the electrons required for the initial reductive cleavage of 
the azo group under continuous experiments. Batch biodegradability assays with ADS as the only 
carbon and energy source confirmed the dye mineralization to CFL, and NH3, indicating that ADS can be 
anaerobically degraded as a sole substrate. These results indicate that some azo dyes are in fact 
biodegradable in anaerobic environments in contrast to the common assumption that they are only 
biotransformed to mutagenic and carcinogenic aromatic amines. 

Applied Microbiology and Biotechnology (1997) 47:83-90 
Environmental Science and Technology (1997) 31:2098-2103 
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6.1 Introduction 

Azo dyes are one of the oldest industrially synthesized organic compounds. The azo 

dye production in the United States alone in 1985 amounted to over 100 million kg which was 

used as colouring agents, by textile, printing, drug and pharmaceutical industries (34). 

Generally, azo dyes contain between one and three azo linkages (-N=N-) linking phenyl and/or 

naphthyl rings that are usually substituted with some combination of functional groups 

including: amino, chloro, hydroxy, methyl, nitro and sulphonate groups. Approximately 10,000 

dyes are currently manufactured (41) and it is estimated that at least 15% of these are released 

into the environment (35). They occur in industrial effluent, groundwater, contaminated soils 

and sediments. The presence of very small amounts of dyes in water (less than 1 mg/L) is 

highly visible and aesthetically unacceptable. These compounds are of concern because some 

of the dyes, dye precursors or their biotransformation products, such as the aromatic amines, 

have been shown to be carcinogenic (17, 20). Azo dyes are intentionally designed to be 

recalcitrant under typical product service conditions and, it is this property allied with their 

toxicity to microorganisms that makes biological treatment difficult (16, 24). 

Azo dyes are resistant to aerobic degradation by bacteria. The strong electron 

withdrawing character of the azo group stabilizes these aromatic pollutants against conversions 

by oxygenases (15, 18, 26). Pagga and Brown (26) and Shaul et al. (31) tested the degradation 

of more than 100 dyes in aerobic activated sludge systems and found that only a few of them 

were actually biodegraded. On the other hand, anaerobic treatment systems may have 

promising applications for the removal of azo dye compounds since it is widely reported that 

the azo dyes are gratuitously reduced and decolorised by anaerobic sludges, anaerobic 

sediments and anaerobic bacterial enrichment cultures (4, 5, 9, 15, 37). 

The anaerobic cleavage products of azo dye compounds (aromatic amines) are more 

easily degraded under aerobic conditions (6, 15). The aromatic amines are generally not 

metabolized further under anaerobic conditions, particularly those ones used to construct azo 

dyes (5, 9). Nonetheless, some aromatic amines such as the three isomers of aminobenzoate, 2-

aminophenol and 4-aminophenol were shown to be mineralized in methanogenic consortia (22, 

102 



Biotransformation and Biodegradation ofAzo Dyes 

23, 28). Recently, biodegradation of 5-aminosalicylic acid (5 AS A) has been demonstrated after 

long adaptation periods (28). 

Toxic compounds can be tolerated by methanogens in continuous upflow anaerobic 

sludge bed (UASB) reactors if they are degraded or undergo biotransformations to less toxic 

products. Toxic chloro-, nitro- and azo-substitutions of aromatics are subject to reductive 

biotransformations in anaerobic environments (12). Previously, we reported that nitroaromatic 

compounds were on the average 500-fold more toxic than their corresponding aromatic amine 

analogues (10). The reduction of the nitro-substituents during treatment in UASB reactors 

was shown to be responsible for a dramatic detoxification of several nitrophenols towards 

methanogens (11). 

A similar strategy towards detoxification was tested in this study for azo dyes. Firstly, 

batch toxicity studies were conducted in order to compare the methanogenic toxicity of 

selected model azo dye compounds with that of the corresponding aromatic amines. Secondly, 

the detoxification and degradation of the azo dyes, Mordant Orange 1 (MOl) and 

Azodisalicylate (ADS), in continuous laboratory-scale UASB reactors were evaluated, as well 

as the final fate of aromatic amines. 

6.2 Materials and Methods 

Anaerobic Granular Sludge and Basal Medium 

Methanogenic granular sludge from a full-scale UASB reactor treating wet oxidized 

petrochemical industry effluent of Shell Nederland Chemie (Moerdijk, The Netherlands) was 

used as inoculum (except when indicated otherwise). The sludge was washed to remove fines 

and stored at 4°C before use. The sludge has not previously been exposed to any of the 

compounds being tested. The basal medium used in the experiments was as described 

previously (11). The micro-nutrients were supplemented to the media for the continuous 

column experiments at a 10-fold lower concentration. 
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Anaerobic Toxicity Assay 

Methanogenic toxicity assays were performed in 120 ml glass serum vials, containing 

25 ml of basal medium as described previously (10). The maximum specific acetoclastic 

methanogenic activity of the control sludge was 420 mg of methane expressed as chemical 

oxygen demand (COD) per gram of volatile suspended solids (VSS) per day. The exact toxic 

concentrations of the azo dyes were calculated taking into account the purity of the compound 

tested. Figure 6.1 shows the aromatic structure of the azo dyes used in the toxicity study. 

NO2 

N = N 

Mordant Yellow 1 

COOH 

Mordant Orange 1 

COOH 
H2N / \ A . OH 

N = N 

Mordant Yellow 12 

Figure 6.1 Azo dye compounds used in the toxicity study. 

Anaerobic Continuous Reactors 

Mordant Orange 1 (MOl) Reactors. The continuous experiments were performed in three 

separate glass UASB reactors with liquid volumes of 160 ml placed in a temperature controlled 

room at 30 ± 2°C. All reactors were inoculated with 20 g of VSS/L of anaerobic granular 
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sludge. To start the experiment the granular sludge was initially fed with the medium 

containing partially neutralized (pH=6.0) volatile fatty acids (VFA) mixture 

(acetate:propionate:butyrate, 23:34:41 on COD basis) at a concentration of 4 g COD/L during 

the start-up. After 1 month of operation, the three reactors received a sub-toxic concentration 

of the azo dye (3 mg/L of MOl). This is referred to as the first day of the experiment, Day 0 in 

the figures. Reactor 1 (Rl) received no cosubstrate (the control), the VFA feed was no longer 

supplied. Reactor 2 (R2) received glucose (1.3 g COD/L) and Reactor 3 (R3) was fed the 

VFA mixture (1.5 g COD/L), in addition to the azo dye in both reactors. The methane 

production was measured with 10 liter Mariotte flasks filled with a 3% (w/v) NaOH solution to 

scrub out the carbon dioxide from the biogas. 

Azodisalicylate (ADS) Reactor. The 160 ml glass UASB reactor 4 (R4) was operated at 30 ± 

2°C, and was inoculated with 20 g VSS/L of MOl-adapted granular sludge (withdrawn from 

R2 immediately after the corresponding experiment was finished on day 217). The reactor was 

started-up with glucose (1.5 g COD/L) and ADS. The concentration of ADS was increased 

periodically after at least 10 hydraulic retention times (HRT). Methane production was 

measured in the same way as MOl-reactors. 

Biodegradability Studies 

Aromatic Amine Biodegradability Assay. The biodegradation assay of the aromatic amines 

from MOl-breakdown was conducted for the granular sludge sampled from the reactors (R2, 

R3) using a protocol outlined previously (28). The sludges were sampled from the reactors at 

days 0, 166 and 203. The sludges (1 g VSS/L) were incubated at 30°C under N2/C02 

(70%/30%) atmosphere in serum bottles (120 ml) containing 28 ml of basal medium. Serum 

bottles were incubated overnight and only those bottles in which anaerobic conditions 

prevailed as indicated by the redox indicator resazurin were used for the assay. The 

concentration of the target aromatic amines tested was 250 mg/L for the 5 AS A and 1,4-

phenylenediamine (1,4PDA). Sludge blank controls received equal additions of basal medium 

without the aromatic amines. The serum bottles were incubated for a 150 day period under on 

an orbital shaker (Gerhardt, Bonn, Germany) at 50 strokes/min. Methane was measured by 
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sampling the head space of the serum bottles using a pressure-lock (Dynatech Precision 

Sampling Corp., Baton Rouge, USA) gas-tight syringe (injection volume = 0.1 mL). Methane 

values reported were corrected by subtracting the values from those in the sludge blanks. The 

corrected methane production was expressed as a percentage of the theoretical methane 

production expected from the test aromatic amines mineralization based on the Buswell 

equation (33). All results are reported as the mean value of triplicate serum vials. 

ADS Biodegradability Assay. The same biodegradation assay protocol outlined above was 

used here as well. ADS-adapted sludge (0.7 g VSS/L) withdrawn from R4 on day 130 of 

operation was incubated at 30°C under N2/CO2 atmosphere in serum bottles (120 mL) 

containing 28 ml of basal medium. In this particular case, NH4
+-N nutrient concentration was 

reduced to 22 mg/L and the yeast extract was omitted from the basal medium. ADS was added 

as a sole source of substrate from a concentrated stock solution to give a final concentration of 

200 mg ADS/L. The serum bottles were incubated for a 50 day period under on an orbital 

shaker at 50 strokes/min. Sludge blanks, to correct for background NH4
+-N and methane 

production from the sludge, were based on assays where no ADS was provided. Sludge that 

was autoclaved at 121°C for 1 h received ADS, and was used to measure abiotic reduction 

and/or adsorption of the azo dye. The ADS reduction, the temporal accumulation of 5 AS A and 

the NH/-N released were measured periodically by sampling the liquid phase. Methane was 

sampled in the head space of the serum bottles using a pressure-lock gas-tight syringe 

(injection volume = 0.1 mL). The net values of NH4-N released and methane produced were 

obtained by subtracting the values in the compound amended sludge with those in the sludge 

blank controls. The corrections for methane production were the same as described in the 

previous section. All the values reported are the means of triplicate or quadruplicate 

incubations. 

To elucidate intermediates during the metabolism of ADS, a parallel experiment was 

done. Incubations were made as described before, with the difference that 300 mg/L of the 

ADS breakdown product, 5 AS A, was added to the serum bottles instead of ADS. The 

methanogenesis was blocked using 50 mM of the methanogenic inhibitor 2-

bromoethanesulfonate (BESA), allowing the accumulation of intermediates, which were 
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determined by gas chromatography (GC), and high-performance liquid chromatography 

(HPLC). Sludge blank controls were also used in these determinations. 

Analyses 

Methane and volatile fatty acids (VFA) were determined by gas chromatography as 

described previously (32). The pH was determined immediately after sampling to avoid any 

change due to the CO2 evolution, using a pH-meter 511 (Knick, Berlin, Germany) and a model 

N61 double electrode (Scot Gerade, Hofheim, Germany). All the other analytical 

determinations were performed as described in Standard Methods for Examination of Water 

and Wastewater (2). 

The MOl, 4-nitroaniline (4NA), ADS and 5 AS A concentrations were determined with 

an HPLC. The HPLC determinations were conducted on an Spectra-Physics SP8810 HPLC 

(Thermo Separation Products, Breda, The Netherlands). MOl and 4NA were detected with 

the following method: a CI8 (125 X 3 mm, particle size 5um) reverse-phase column 

(Chromosphere 18, Chrompack, Bergen op Zoom, The Netherlands) was used to separate 

individual compounds which were detected using a Kratos Superflow 773 UV detector 

(Separations, H. I. Ambacht, The Netherlands). Absorbance was detected at 280 nm. The 

solvent phase was methanol and 1% acetic acid (40:60, vol:vol). The solvent flow rate was 0.5 

mL/min, and the column temperature was 20°C. ADS and 5ASA were detected using a Cig 

(250 X 3mm, particle size 5 urn) reverse-phase column to separate individual compounds 

which were detected using a Kratos Superflow 773 UV-VIS detector The solvent phases were 

98% methanol and 0.5% acetic acid in demineralized water (adjusted to pH 4.5 with NaOH). 

The column was run with methanol/acetic acid solution in a ratio 2/98 for 5 min, then the ratio 

was changed to 80/20 over the next 2.5 min and sustained for 7.5 min. The solvent flow rate 

was 0.3 mL/min, and the column temperature was 20°C. The retention times of 5ASA and 

ADS were 5 and 15.5 min, and were detected at 330 and 300 nm, respectively. 

The aromatic amine mixture of 1,4PDA and 5 AS A arising from the effluent of MOl-

reactors could not be determined by the HPLC method (similar retention times). Consequently, 
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these compounds were analyzed by GC-MS as follows: After centrifugation of the samples the 

supernatant was removed and the pH was adjusted to 2 with 4 M sulfuric acid followed by 

extraction three times with freshly distilled ethyl acetate. The combined organic layers were 

washed with demineralized water and evaporated till dryness under reduced pressure at 

ambient temperature. In order to make 5ASA amenable to GC-MS analysis, a derivatization 

step was performed using the method described by Brook and Chan (3). For this purpose, the 

residue was redissolved in 5 ml of dry methanol and 0.5 ml of thechlorotrimethylsilane was 

added to give the methyl ester to 5ASA (5ASA-ME). The reaction mixture was left overnight 

under a nitrogen atmosphere. The internal standard, 4-Bromoanisole, was used at a 

concentration of 0.55 mM. All the samples were analyzed on an HP5970B quadrupole mass 

spectrometer coupled to an HP5890 gas chromatograph (Hewlett Packard, Palo Alto, USA) 

equipped with a fused silica capillary column (DB17, 30 m X 0.25 mm id., film thickness 0.25 

urn, J&W Scientific, USA). Helium was used as the carrier gas at a flow rate of 1.1 ml/min. 

Injector temperature was 220 °C. Temperature programme: 70-250 °C at 7 °C per min and, 

thereafter, held for 20 min. The injection volume was 10 |il; split ratio 1:100. EI-MS were 

obtained at 70eV, and the quantification was based on the total ion current which gave an 

indication of the relative concentration of the compound in the extract. The identification of 

the aromatic amines was achieved by comparison of retention times and mass spectra to data 

of respective standard compounds. 

MOl and ADS were also measured spectrophotometrically by UV-VIS absorbance 

with a Spectronic 60 spectrophotometer (Milton Roy/Analytical Products Division, Ostende, 

Belgium) using a model 100-QS (Hellma Benelux, The Hague, The Netherlands) 1 cm quartz 

cuvette. Absorption is reported as the absorption of the medium containing N-aromatic 

compounds minus the absorption of the control media (which contained no test compounds). 

All samples were diluted to less than 1 absorbance unit in 0.2 M phosphate buffer (pH 7.0). 

Azo dye reduction was monitored at absorbance maxima of 373 and 380 nm for MOl and 

ADS, respectively. There was less than 5% interference from the azo dye cleavage products 

(5 AS A and 1.4PDA) at these wavelengths. The aromatic amines were also determined 

colorimetrically at 440nm after reacting with 4-dimethylaminobenzaldehyde-HCl (Ehrlich 

Reagent) according to the method described by Oren et al. (25). The expected absorbance 
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units per mmol of MOl removed (total aromatic amines, TAA) was determined to be 3.055 by 

using an equimolar mixture of 5 AS A and 1,4PDA as a standard. The % of TAA recovery was 

expressed as: 100 X (absorbance/3.055). 

NH/-N was measured spectrophotometrically based on the modified Berthelot reaction 

with an Skalar autoanalyzer (Skalar Analytical B.V., Breda, The Netherlands) according to 

Dutch standards (21). 

Chemicals 

Chemicals were purchased from either Jansen Chimica (Tilburg, The Netherlands), 

Merck (Darmstadt, Germany) or Sigma (Bornem, Belgium). All the chemicals were of the 

highest purity commercially available. None of the chemicals were purified further. ADS 

(under the commercial name "Olsalazine") was kindly supplied by Pharmacia AB (Uppsala, 

Sweden). ADS was 99.5% pure. 

6.3 Results 

Effect of N-substituted Aromatic Structure on Methanogenic Inhibition 

The inhibitory effects of 8 N-substituted aromatic compounds on the activity of 

acetoclastic methanogenic bacteria were evaluated in this study. The inhibition caused by each 

compound was tested at varying levels covering non-toxic to completely inhibitory 

concentrations of the compounds. Table 6.1 summarizes the 50% inhibitory concentrations 

(IC) of the aromatic compounds tested and outlines the relationship between the azo dye and 

the reduced cleavage products. The type of N-substitution had a profound effect on their 

toxicity. The least toxic compounds were the aromatic amines: 1,3-phenylenediamine 

(1.3PDA), 1,4PDA and 5 AS A. The azo compounds and the nitroanilines arising from 

incomplete reduction of azo dyes were more toxic. The most toxic compound tested was MOl 

having a 50% IC of 0.014 mM. 
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TABLE 6.1 Toxicity of selected azo dye compounds and their suspected cleavage products to 
acetoclastic methanogens. 

Compound name 

Mordant Orange 1 (MOl) 

Mordant Yellow 1 (MY1) 

Mordant Yellow 12 (MY12) 

3-Nitroaniline (3NA) 

4-Nitroaniline (4NA) 

1,3-Phenylenediamine (1,3PDA) 

1,4-Phenylenediamine (1,4PDA) 

5-Aminosalicylic acid (5 ASA) 

mW 

287 

287 

279 

138 

138 

108 

108 

153 

50% ICb 

(mM) 

0.04 

0.063 

0.25 

0.03 

0.017 

65.7 

30 

2.9 

Theoretical Reductive 
Biotransformation Products 

5 AS A, 4NA, 1.4PDA 

5 AS A, 3NA, 1,3PDA 

5 AS A, 1,4PDA 

1,3PDA 

1,4PDA 

N.A.C 

N.A. 

N.A. 

* mW: molecular weight. 
b 50% IC: compound concentration that caused 50% inhibition of the methanogenic activity. 
c N.A.: not applicable. 

Continuous Anaerobic Treatment of Azo Dyes 

MOl Reactors. Three laboratory scale UASB reactors were operated in order to investigate 

the continuous anaerobic treatment of MOl. The reactors (Rl, R2, and R3) were initially 

started up after one month adaptation period to VFA. After this adaptation time period the 

reactors were initially fed with sub-toxic concentrations of MOl (3 mg/L). The concentration 

of MOl in the influent was increased periodically after at least 10 HRT (the HRT was 

approximately 0.32 d) and when greater than 75% removal of MOl and the cosubstrate COD 

had been obtained. The rationale behind this approach is that the sludge can withstand higher 

concentrations of the incoming dye by cleaving the azo bond to form less toxic aromatic 

amines. The reactors differed from each other in the selection of the cosubstrate; Rl (the 

control) received no cosubstrate, whereas R2 and R3 received glucose and VFA mixture, 

respectively. Glucose and the VFA mixture were chosen as model wastewater substrates 

deemed necessary for providing the electrons for the reduction of the azo compounds. 
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Rl was able to decolorise and remove the azo dye for 20 days with the production of 

aromatic amines. The yield of aromatic amines was based on TAA. The %TAA recovered 

were fairly constant at 98.2% of MOl removal. Azo dye removal exceeded 60% at 

concentrations up to 12 mg/L for 20 days. The concentration of MOl was increased stepwise 

to 75 mg/L for an additional 30 days. During this time period there was a major decrease in the 

azo dye removal to less than 10% with a parallel decrease in TAA production (results not 

shown). In addition, 4NA which previously had not been detected in the reactor effluent was 

observed in the HPLC analyses (data not shown). Due to the fact that MOl was not being 

reduced completely, the concentration of both MOl and 4NA increased. Finally, complete 

failure of the reactor occurred as evidenced by the lack of azo dye reduction. It is likely that 

the endogenous substrate present in the sludge was initially contributing the reducing 

equivalents to reduce the azo bond. The endogenous substrate was probably exhausted after 50 

days. 

The operational parameters and treatment efficiency during the continuous operation of 

R2 and R3 at the end of the reactor operation are listed in Table 6.2. The operational 

conditions and treatment performance of R2 and R3 are shown in Figure 6.2 and 6.3, 

respectively. From day 75 up to day 166, MOl was greatly decolorised and reduced (at least 

by 90%) in R2. The %TAA recovered were fairly constant yielding approximately 98% of the 

TAA expected, indicating a stoichiometric yield of the aromatic amines (Figure 6.2A). The 

reduction of the parent azo compound to the less toxic daughter aromatic amines ensured that 

a detoxification of the influent occurred as was evidenced by the glucose degradation (86.6% 

COD removal) and methane production (79.8% of the incoming cosubstrate COD). By use of 

HPLC and GC-MS, 4NA was not detected as a cleavage product that accumulated. From day 

189 onwards, the %TAA recovered decreased, indicating that part of the amines produced by 

the reduction were converted further (Figure 6.2A). The maximum MOl loading rate applied 

in this period was 295 mg/L-d with a MOl dye removal efficiency of >99%. Effluent samples 

collected in this period were subjected to derivatization conditions and were analyzed with a 

GC-MS. The GC-MS spectra confirmed the presence of 1,4PDA while only trace levels of 

5ASA-ME were detected (Figure 6.4A). These results indicated biological removal of the 

5ASA. 
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TABLE 6.2 The operational parameters and treatment efficiency during the continuous 
operation of the UASB reactors treating Mordant Orange 1 at the final period of reactor 
operation (Days 174-217). 

Operational parameters Reactor 2 Reactor 3 

Influent cosubstrate (g COD/L)1 

Cosubstrate loading rate (g COD/L-d) 

Cone, influent Mordant Orange 1 (mg/L) 

MOl loading rate (mg/L-d) 

HRT(d) 

1.42 

4.16 

100 

295 

0.34 

0.91 

2.88 

50 

161 

0.31 

Efficiency 

COD removal (%)b 

Methane (% CODin)c 

VFA effluent as % of CODin 

Azo dye removal (%) 

Absorbanced 

HPLC 

86.6 ±3.9 

79.8 ±11.1 

1.2 ±0.5 

95.1 ±1.6 

>99 

81.8 ± 5.5 

58.3 ±20 

2.6±2.1 

91.8 ± 1.3 

>99 

* g COD of cosubstrate: reactor 2, glucose; reactor 3, VFA mixture. 
b removal of cosubstrate in terms of COD elimination. 
c % conversion of influent cosubstrate COD to methane. 
d Azo dye absorbance removal indicates loss in azo group absorbance at 373nm. 
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Figure 6.2 Operational parameters and removal efficiencies during the continuous anaerobic 
treatment of MOl when glucose was employed as cosubstrate (R2): (A) MOl (—) 
concentration in the influent, (o) TAA produced; (B) % removal of glucose in terms of COD; 
(C) % MOl removal as determined by loss in UV absorbance at 373nm. 
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50 100 150 
Time (d) 

200 250 

Figure 6.3 Operational parameters and removal efficiencies during the continuous anaerobic 
treatment of MOl when VFA was employed as cosubstrate (R3): (A) MOl (—) concentration 
in the influent, (o) TAA produced; (B) % VFA removal in terms of COD; (C) % MOl removal 
as determined by loss in UV absorbance at 373nm. 
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R3 gave high VFA removal efficiencies (81.8% on a COD basis) and methane 

production (58.3% of the incoming cosubstrate COD) over the course of the experimental 

period (Table 6.2). The decolorisation and reduction of MOl to 5ASA and 1,4PDA was 

attributed to the high MOl removal efficiencies (91%), even after increasing MOl 

concentrations up to 50 mg/L (Figure 6.3). Again it was observed that 4NA could not be 

detected as a cleavage product by use of the HPLC and GC-MS methods. The %TAA 

recovered was approximately equivalent to that expected from a stoichiometric recovery of 

aromatic amines during the whole period (Figure 6.3A). The GC-MS spectra data confirmed 

the presence of 1,4PDA and 5ASA-ME (Figure 6.4B). 5ASA-ME was present at much higher 

concentration than in R2. Consequently, no further conversion of the aromatic amines was 

observed in R3 although the reactor was in operation for 217 days. The maximum MOl 

loading rate applied was 16] mg/L-d with an MOl efficiency removal of >99%. 
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Figure 6.4 Gas chromatogram of metabolites detected during continuous anaerobic treatment 
of MOl in (A) the reactor containing the glucose-degrading granular sludge, (B) the reactor 
containing the VFA-degrading granular sludge. 1,4-phenylenediamine (1.4PDA), 5-
aminosalicylic acid-methylester (5ASA-ME). The peak observed at 9.5 minutes is 4-
bromoanisole which was used as the internal standard ( IS). 
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ADS Reactor. The 160 ml UASB reactor was operated under several operational conditions 

for a 340 days period to study the anaerobic transformation and mineralization of ADS. This 

reactor (R4) was started up with granular sludge from R2 after 200 days of operation and was 

fed with ADS and glucose. Glucose was used initially as a cosubstrate to provide the reducing 

equivalents for the reduction and cleavage of the azo chromophore, later the reactor was 

operated without glucose (from day 206 onwards). The applied influent values of ADS 

(ADSi,,), ADS loading rate (ADS-LR), cosubstrate concentration (CoSin), cosubstrate organic 

loading rate (CoS-LR) and HRT, as well as the assessed treatment efficiencies in the various 

periods of the experiment are listed in Table 6.3 for R4. The daily azo dye treatment 

performance is also shown in Figure 6.5. 

In periods 1 and 2, the ADS was partially removed to an extent of more than 60%; 

whereas, the ADS breakdown product, 5ASA, was recovered at low concentrations in the 

effluent (Figure 6.5). During periods 3 and 4, the ADS was greatly decolorised and removed 

(at least by 95%) and the corresponding aromatic amine was recovered by less than 2% (molar 

yield of influent ADS). This indicates that the 5ASA released from azo dye cleavage was being 

metabolized. The cosubstrate removal was also quite high during all these periods accounting 

for more than 86% of the influent COD (Table 6.3). After the cosubstrate was excluded 

(period 5), ADS continued to be decolorised and reduced by more than 60%. On day 236 the 

upflow velocity was increased in the reactor from 0.02 to 0.2 m/h by recirculating the effluent. 

Nonetheless, the increase in upflow velocity did not produce any improvement in the ADS 

reduction as can be observed in Figure 6.5. 5ASA was still detected at very low concentration 

levels in the effluent (<1% molar yield of the influent ADS). In period 6, the HRT was doubled 

from 8 to 16 h and there was a slight increase in the ADS reduction to 70%. In this period, the 

sulfates and nitrogen nutrient sources were removed from the basal medium to avoid any 

possible competition for electron acceptors and forcing the consortia to utilize ADS as an N-

source. A further increase of the HRT to 26 h in period 7 resulted in a great increase in the 

ADS reduction to 89%. These results indicated the dye could be anaerobically degraded as a 

sole substrate in the continuous bioreactor for an extended period of time 
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Figure 6.5 Treatment efficiency of ADS degradation with glucose (periods 1 to 4) or no 
cosubstrate (periods 5 to 7) in UASB reactor (R4); %ADS removal (O), %5ASA recovered 
(as a molar yield of ADS in influent) (•). Numbers in the top of the figure indicates the 
experimental periods (see Table 3). 

Biodegradability Studies 

MO 1 Cleavage Products. In order to confirm the mineralization of the aromatic amines 

arising from MO 1-breakdown, the sludges sampled from R2 and R3 at various time intervals 

of the continuous experiments were assayed for the conversion of 5 AS A and 1,4PDA to 

methane in batch assay experiments. There was no conversion of 1,4PDA to methane in any of 

these samples. On the other hand, complete mineralization of 5ASA to methane in batch assays 

from sludge sampled from R2 on days 166 and 203 was observed, with a maximum 

degradation rate of 35.2 mg/g VSS-d (Table 6.4). The conversion of the 5ASA-COD to 

methane-COD was more than 90% of the theoretical methane production expected for both 

sludges. In contrast, the lag phase of 5 AS A degradation was reduced from 21 to <5 days for 

the sludges sampled on days 166 and 203, respectively. This fact indicated that sludge 

adaptation due to an increase in 5ASA degrading microorganisms had occurred. The seed 

sludge and the sludge sampled from R3 were unable to convert 5ASA to methane. 
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TABLE 6.4 Anaerobic biodegradability of 5-aminosalicylic acid (250 mg/L) by sludges 
sampled from the reactors at various time intervals. 

Parameter 

Lag period (d) 

Degradation rate 
(mg/g VSS-d)c 

Methane 
(%TMP)d 

Seed sludge 

dayO' 

>150 

0.15 

6±3 

Reactor 2 

day 166 

21 

27.5 

93 ± 2.7 

day 203 

<5 

35.2 

119±6 

Reactor 3 

day 166 

>150 

0.15 

4.7 ±0.8 

day 203 

>150 

0 

0 

Reactor 4 

day 130b 

<5 

41.9 

76 ±1 

a Day 0 refers to the initial inoculum sludge. 
b This reactor was started up with granular sludge from R2 at the end of the respective experiment 
on day 217. 

c The degradation rate was calculated by converting the measured mg CFL-COD to mg of the 
compound. 

d Conversion of the test compound COD to CFL-COD. %TMP refers to the theoretical methane 
production. 

Biodegradability Assay of ADS. In order to confirm that ADS could be mineralized into 

methane and NH3, ADS-adapted granular sludge withdrawn from R4 was incubated in 

anaerobic serum bottles with and without 200 mg/L of ADS as a sole source of substrate. 

During the course of the 50 day incubation period, ADS concentration steadily decreased at an 

average rate of 8.3 mg/g VSS-d (Figure 6.6A). No significant decrease in the ADS 

concentration was observed in the autoclaved sludge after more than 50 days, indicating that 

the dye removal in the living sludge was biologically mediated. The elimination of ADS was 

associated with a net increase in methane production and ammonium concentration beyond 

that observed in the sludge blanks (Figure 6.6B). The net methane production and ammonium 

released at the end of the 50-day incubation period accounted for 78% COD and 75% of the 

nitrogen contained in the ADS, respectively. These results indicate that ADS was extensively 

mineralized by the adapted methanogenic consortium. During ADS mineralization, 5ASA was 

detected as a transient degradation intermediate (Figure 6.6A), demonstrating that reductive 

cleavage of the azo dye was the first step in the degradation. By day 20, this intermediate was 
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no longer detectable suggesting that it was metabolized as was confirmed in a separate 

experiment by the conversion of exogenously added 5 AS A to methane in the same sludge, with 

a maximum degradation of 41.9 mg/g VSS-d (Table 6.4). 

20 30 

Time (d) 
40 

Figure 6.6 The time course of ADS mineralization in anaerobic batch assays using ADS-
adapted granular sludge withdrawn from bioreactor R2. (A) Reduction of ADS (A), and 
transient accumulation of the intermediate 5ASA (D); (B) Net methane production (•), and 
net NH/-N released (O) due to the ADS mineralization. 
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During the degradation of 5ASA, it is possible that electrons are used to reduce the azo 

dye. This hypothesis was confirmed by adding exogenous 5ASA (300 mg/L) to the sludge 

incubated with ADS (200 mg/L). The rate of azo dye reduction was enhanced by 65% with the 

addition of exogenous 5ASA (results not shown). To elucidate intermediates during the 

metabolism of 5ASA, a specific methanogenic inhibitor, BESA was added to sludge incubated 

with 5ASA. BESA effectively blocked the methane production from 5ASA. Several VFA were 

identified in the BESA amended cultures after 50 days of incubation accounting for up to 60% 

of the COD contained in ADS. Acetate was the major VFA formed, responsible for 79% of the 

VFA pool. 

6.4 Discussion 

Toxicity of N-substituted Aromatic Compounds 

In our study, the azo dyes and incomplete reduction products of azo dyes, the 

nitroanilines, were clearly very toxic compounds to methanogens, with 50% IC values ranging 

from 0.014 to 0.25 mM. Of the three azo dyes tested, Mordant Yellow 12 (MY12) was the 

least toxic probably because this dye does not contain a nitro-functional group in its structure. 

However, since MY12 did cause inhibition at 0.25mM, it can be concluded that the azo group 

itself has a toxic effect on the methanogens. The toxic concentrations found here were in the 

same range of those reported by Seshadri et al. (30), who studied the inhibitory effects of some 

azo dyes on COD and dye removals in anaerobic fluidized bed reactors. They found that Acid 

Orange 10 and Acid Orange 8 dye concentrations of 0.037 and 0.051 mM, caused a significant 

inhibition in dye and COD removal, respectively. 

Previously, we have shown that aromatic nitro-substituents are responsible for severe 

methanogenic toxicity. Aromatic amines in contrast were less inhibitory compounds with 50% 

IC values between 2.9 to 65.7 mM (10). In a similar fashion, here we observe that the toxicity 

of azo compounds was very much greater than their aromatic amine cleavage products. MOl 

is over 200-fold and 2140-fold more toxic than 5ASA and 1,4PDA, respectively. These results 
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indicate that the reduction of azo dyes known to occur in anaerobic environments (4, 5, 37) 

would be responsible for their dramatic detoxification towards methanogens. 

Azo Dye Reduction in Continuous UASB Reactors 

The application of high-rate reactors, such as the UASB reactors, have proven to be 

capable of treating various wastewaters bearing toxic aromatic compounds with a high degree 

of efficiency and stability (11, 19, 39). It is well known that azo dyes are easily decolorised and 

reduced under anaerobic conditions. The stoichiometric reduction of an azo bond yielding 

aromatic amines requires four reducing equivalents, which are typically supplied by an electron 

donor. Consequently, it was of interest to examine the cosubstrate requirement for the azo 

group reduction. Both glucose and the VFA mixture supported azo dye reduction for the entire 

duration of the continuous experiments. In the reactor to which no cosubstrate was fed (Rl), 

some azo dye reduction occurred in the initial period of operation when low MOl loading 

rates were applied. The reducing equivalents for this conversion were presumably due to 

endogenous substrates in the anaerobic sludge. Eventually the endogenous substrate would be 

expected to become exhausted which might explain why Rl performance slowly dropped in 

time, failing completely by day 50. The presence of 4NA as an incomplete reduction end 

product in Rl, prior to its failure, is analogous to the recent paper by Cheng et al. (8), where 

they reported an incomplete reduction of 2,4-dinitrotoluene to nitro-aminotoluenes by an 

anaerobic culture in the absence of cosubstrate. 

Highly toxic concentrations of MOl up to 100 mg/L could be tolerated in the 

continuous UASB reactors fed with cosubstrate, exceeding the 50%IC of MOl to 

methanogenic bacteria by 25-fold in R2. Nonetheless, the methanogenic consortia appeared to 

be healthy since the cosubstrate was degraded at moderate organic loading rates with a high 

conversion efficiency to methane. Decolorisation and detoxification of MOl was clearly taking 

place in the UASB reactors. The reducing equivalents produced during cosubstrate 

degradation were used to support the complete reduction of MOl to less toxic breakdown 

products. In the case of R4, this reactor could also handle high ADS loading rates with a high 

reduction efficiency (up to 99%). 
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Many reports indicate that electron donating cosubstrates are required for azo 

reduction by bacteria (7, 15, 38). It has been postulated that the presence of cosubstrates 

enhances the reduction rate of the azo compounds by increasing the rate of formation of 

reduced enzyme cofactors which are able to fortuitously and nonspecifically reduce the azo 

dyes. Gingell and Walker (14) found that soluble flavins play an important role in azo dye 

reduction in Streptococcus faecalis. Reduced flavins, acting as two electron donors, rapidly 

reduced Red 2G nonenzymatically, and the reduced flavins can act as electron shuttles from 

NADPH-dependent flavoproteins to the acceptor azo compound. Methanogenic and 

acetogenic bacteria in the granular sludge contain unique reduced enzyme cofactors; such as 

F430 and vitamin B12, that could also potentially chemically reduce azo bonds, similar to what 

has been found for the reductive dechlorination of the chlorinated aliphatics (36). It is, 

therefore, not surprising that azo reduction rates are sensitive to the amount of available 

fermentation substrate in an anaerobic system, since catabolism of these substrates is ultimately 

responsible for the production of reduced enzyme cofactors. 

It is also likely that cosubstrates could act as donors of reducing equivalents (e.g., via 

NAD(P)H) to specific azoreductases. Roxon et al. (29) reported that both NADH and 

NAD(P)H are active electron donors for the reduction of tartrazine in whole-cell suspensions 

of Proteus vulgaris. In the same way, Zimmermann et al. (40) have also shown that certain 

specific oxygen-insensitive azoreductases of Pseudomonas sp. have NAD(P)H dependency to 

catalyze the reductive cleavage of the azo group of carboxy-Orange I and carboxy-Orange II 

under aerobic conditions. 

The results from this study showed that UASB reactors could handle high azo dye 

loading rates up to 295 mg/L-d for MOl and 225 mg/L-d for ADS. These loading rates are a 

big improvement over those obtained in previous studies with anaerobic reactors. Seshadri et 

al. (30) used an anaerobic fluidized bed reactor for the treatment of selected azo dyes. The 

authors applied azo dye loading rates of 36.4 mg Acid Orange 8/L-d. Fitzgerald and Bishop 

(13) applied azo dye loading rates of 7.7 mg Acid Orange 10/L-d to an anaerobic fixed 

fluidized bed reactor. 
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Mineralization of Aromatic Amines in Continuous UASB Reactors 

The GC-MS results combined with the chemical assay for TAA and the anaerobic batch 

biodegradability assays indicated that 5ASA was being mineralized in R2. In the batch 

experiments assaying the conversion of 5ASA to methane by sludge sampled from R2, a 

specific mineralization rate of 35 mg/g VSS-d was observed. This rate was much greater than 

the maximum MOl sludge loading rate used in the continuous column experiment, which when 

expressed in terms of 5ASA equivalents amounted to 5 mg/g VSS-d. Consequently we 

concluded that the removal of 5 AS A cleaved from MOl in R2 was due to its anaerobic 

degradation. In the case of the other MOl breakdown product, there was no or very minor 

conversion of 1,4PDA to methane in all of these sludge samples. The proposed pathway for 

the partial mineralization of MOl in R2 can be depicted schematically as shown in Figure 6.7. 

The elimination of 1,4PDA in aerobic sludge has been previously documented (1, 27). 

Consequently, an aerobic post treatment step would be required for the complete 

mineralization of the azo dye MOl. Coupled anaerobic-aerobic systems have proven to be 

successful in achieving the complete biodegradation of azo dyes. In such systems, azo dyes are 

reduced anaerobically, followed by subsequent aerobic degradation of the aromatic amines 

produced (12, 15). 

The extent of ADS reduction was rather high in R4. Based on this fact, a high recovery 

of the ADS breakdown product, 5ASA, was expected. However, the recovery of 5ASA was 

very low by the end of period 4 and onwards (Table 6.3), when accounted for less than 1% 

(molar yield of the influent ADS) of the expected value, indicating that this aromatic amine was 

being mineralized or being degraded to another product. On day 206 (period 5) the cosubstrate 

was no longer added to R4. If 5 AS A was being mineralized, we hypothesized that the reducing 

equivalents needed for the azo bond reduction could be generated. The hypothesis was 

confirmed since 60% to 89% ADS removal was obtained without any cosubstrate. ADS was 

used as a sole substrate for more than 100 days. According to this results, it is likely that the 

cosubstrate was only necessary to establish an active methanogenic consortium during the 
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adaptation to the azo dye, and that cosubstrate supplementation was no longer essential once 

5ASA-degrading bacteria developed in the consortium. 

O2N 

NO2 

NH2 

4-nitroaniline 

N = N 

Mordant Orange 1 

H2N 

5-aminosalicylic acid 

O U + CO2+ NH< 

NH2 

1,4-phenylenediamine 

Figure 6.7 Proposed scheme detailing the anaerobic breakdown of the azo dye MOl by 
granular sludge present in the reactor receiving glucose as cosubstrate. 

Anaerobic Biodegradation of ADS in Batch Experiments 

In order to confirm that ADS was being mineralized, the anaerobic sludge withdrawn 

for R4 was incubated with ADS as a sole source of substrate. ADS was largely mineralized to 

methane and ammonium with transient accumulation of 5ASA as a degradation intermediate. 

The concentration of ADS in the dye-amended autoclaved sludge remained constant for more 
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than 50 days, indicating that the degradation of ADS was biologically mediated. The specific 

ADS degradation rate under batch conditions (8.3 mg/g VSS-d) was high enough to account 

for ADS mineralization in continuos reactors; the ADS removal rate at the end of period 7 in 

R4 (VSS concentration was 21.83 g/1) was 3.15 mg/g VSS-d. 

COOH 

acetate 

I 
CH 4 , CO2 NH4 

Figure 6.8 Biodegradation pathway proposed for the complete mineralization of ADS under 
anaerobic conditions. 

The electrons required for the reductive cleavage of azo dyes by anaerobic 

microorganisms is known to be derived from cosubstrates. While no exogenous cosubstrates 

were added in the batch biodegradation assays described here, background levels of 

endogenous substrates in the sludge inoculum were most likely used to prime azo dye 
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reduction. Thereafter, the metabolism of 5ASA released from the azo dye cleavage could 

provide cosubstrates supporting continued reduction of the dye. This hypothesis was 

confirmed by adding exogenous 5ASA to the sludge incubated with ADS, resulting in an 

enhancement of the azo dye reduction rate. 

5ASA was incubated with the methanogenic consortia in the presence of the specific 

methanogenic inhibitor BESA. Acetate was identified as the major intermediate formed, 

indicating that the degradation of 5ASA occurs via acetogenic fermentation. The results taken 

as a whole indicate a biodegradation pathway going from ADS, 5ASA, acetate to methane as 

shown in Figure 6.8. 

This constitutes the first report indicating that an azo dye compound is completely 

decolorised and biodegraded in the absence of oxygen. Previously, it was assumed that azo 

cleavage products would be recalcitrant to anaerobic degradation, and that subsequent aerobic 

mineralization would be required (4, 12, 15, 30). However, here we demonstrate that an azo 

dye constructed from anaerobically metabolizable aromatic amines is completely biodegraded 

supplying itself with electrons to support reductive azo bond cleavage. 
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Summary 

N-substituted aromatic compounds are environmental contaminants associated with the 
production and use of dyes, explosives, pesticides and pharmaceuticals. In this chapter the results of this 
dissertation on the potential of anaerobic granular sludge from anaerobic treatment systems towards the 
detoxification, transformation, and mineralization of nitroaromatic and azo compounds is reviewed and 
discussed. Nitroaromatics and azo dyes with strong electron withdrawing groups are highly inhibitory to 
acetoclastic methanogenic bacteria. However, nitro and azo substituted aromatics are readily reductively 
detoxified in methanogenic consortia to their respective aromatic amines which are several orders of 
magnitude less toxic. This reductive detoxification has allowed the successful operation of anaerobic 
reactors for the treatment of highly toxic nitroaromatic and azo dye compounds. In the course of the 
experiments it was discovered that some aromatic amines were mineralized in the absence of oxygen in 
methanogenic consortia. These results indicate that hydroxy and carboxy substituted aromatic amines 
can be completely mineralized and serve as a carbon and energy source for anaerobic bacteria. 

Adapted from FFMS Microbiology Reviews (1997) 20(3-4):525-538 
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7.1 Introduction 

N-substituted aromatics, such as nitroaromatics, azo dyes and aromatic amines, are 

important priority pollutants entering the environment primarily through anthropogenic 

activities associated with the industrial production of dyes, explosives, pesticides and 

pharmaceuticals (15, 32). The presence of these aromatic xenobiotics in the environment may 

create serious public health and environmental problems. Some of these compounds have 

mutagenic or carcinogenic activity and may bioaccumulate in the food chain (10, 22). 

Many nitroaromatics have been shown to be toxic or mutagenic to microorganisms (26, 

28). The toxicity of these compounds to microorganism together with their recalcitrant nature 

can prove to be problematic for their effective biological treatment. It has been suggested that 

aromatics with multiple nitro substituents and azo dyes are resistant to electrophilic attack by 

oxygenases (14, 16). However, these compounds are readily reduced by anaerobic consortia to 

aromatic amines (4, 11). In many cases, the aromatic amines are not metabolized further under 

anaerobic conditions (4, 9). However, the reduction of nitro- and azo-groups increases the 

susceptibility of the aromatic molecule for aerobic degradation (5, 8). Consequently, sequenced 

degradation of nitroaromatics and azo dyes has been proposed (8, 9, 16). 

Here we summarize the results of studies conducted in this dissertation, evaluating the 

toxicity and biodegradability of a wide range of N-substituted aromatics in standardized 

anaerobic batch assays using granular sludge. Biodegradability studies of N-substituted 

aromatics were also conducted in continuous UASB reactors. 

7.2 Toxicity of N-substituted Aromatics 

Nitroaromatics 

The knowledge of the toxicity of N-aromatic compounds is essential in predicting the 

impact of these priority pollutants on anaerobic wastewater treatment systems. Of all the 
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classes of organisms involved in anaerobic degradation reactions, the methanogens are 

reported to be the most sensitive to inhibition (30). Consequently, acetoclastic methanogenic 

toxicity for selected N-substituted aromatics was studied. The results of Chapter 2 indicate that 

nitroaromatics were on the average over 500-fold more toxic than their aromatic amine 

analogous, highlighting the detoxification process that occurs by the anaerobic reduction of 

nitroaromatics. Some general relationships between the aromatic structure and their inhibitory 

effects on methanogenic bacteria were also observed. N-substitutions were more toxic than 

other ring substituents or benzene itself. The toxicity of the mono-substituted benzenes was 

observed to increase in the following order: COOH < H < OH < NH2 < N02. Nitrosubstituted 

phenols and benzenes were at least 2 orders of magnitude more toxic than their alkyl- and 

chloro-substituted analogous of equivalent hydrophobicity. This observation clearly indicates a 

higher chemical reactivity of the nitro-groups compared with that of alkyl and chloro groups. 

Thus, when present at similar concentrations in bacterial membranes, the nitrosubstituted 

aromatics exert a much higher toxic effect than that which can be accounted for by membrane 

toxicity alone. Nitroaromatics have been reported to be reactive toxicants (2). The reactivity of 

the nitrosubstituents could enable these compounds to undergo chemical interactions with 

proteins; thereby inactivating vital enzymes (19). The toxicity of these compounds to 

methanogens has been suggested to involve interactions between nitroaromatics or 

intermediates of the reduction process (nitrosoamines or hydroxylamines) and the unique cell 

membrane of the methanogens (12). N-substituted aromatics may also interfere with the 

outcome of a biochemical conversion, such as the uncoupling of phosphorylation reactions or 

interfering with physiological redox couples (28). 

Azo Dyes 

Azo dyes are synthetic chemicals used for dyeing. Consequently, colour is the first 

contaminant to be recognized in the wastewaters of the industries using these compounds. Azo 

dyes are intentionally designed to be recalcitrant under typical product service conditions and, 

it is this property allied with their toxicity to microorganisms that makes biological treatment 

difficult (18). The results of Chapter 6 indicate that azo dyes were highly toxic against the 
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acetoclastic methanogens. The azo dyes tested and the nitroanilines were much more toxic 

than their respective aromatic amine biotransformation products, including Mordant Yellow 12 

(MY12) that does not have any nitro substituent in its structure, indicating that the azo group 

itself has a toxic effect on the methanogens. The 50% inhibitory concentration (IC) value of 

0.25 mM for MY12, is comparable to the toxicity of some nitroaromatic compounds. 

7.3 Reduction of Nitroaromatics and Azo Dyes 

Nitroaromatics and azo dyes are easily reduced under anaerobic conditions to aromatic 

amines (6, 7, 27). However, cosubstrates are required as an electron source for the reduction. 

Enhancement of nitro- and azo-reduction through addition of cosubstrates was demonstrated 

in Chapters 5 and 6. As shown in Table 7.1, it was observed that hydrogen, an interspecies-

reduced compound, and substrates that provide interspecies-reducing equivalents such as 

butyrate, propionate, and ethanol stimulated nitro-reduction; whereas, acetate and methanol 

which are directly used by the methanogens as substrates did not. Similarly, it was found that 

glucose and volatile fatty acid (VFA) mixture enhanced the reduction of the azo dyes Mordant 

Orange 1 (MOl) and Azodisalicylate (ADS). Results in Chapter 6 show that 5-aminosalicylic 

acid (5 AS A), which is an ADS-breakdown product, enhanced the reduction of the parent dye, 

indicating that even aromatic amines could be a good electron donors once an aromatic amine 

degrading population of bacteria had developed in the consortium. 

7.4 Continuous Detoxification of Nitro and Azo Compounds in UASB 
Reactors 

The application of high-rate reactors, such as the UASB reactor, have proven to be 

capable of treating various wastewaters bearing toxic aromatic compounds with a high degree 

of efficiency and stability (3, 29). The facile reduction of nitro- and azo- electron withdrawing 

groups was used as a detoxification strategy in continuous laboratory scale UASB reactors, 

treating selected nitroaromatic and azo dye compounds fed with either glucose or VFA 

134 



Discussion and Conclusions 

mixture as cosubstrates. All the nitroaromatics tested in Chapter 5 were converted to aromatic 

amines in stoichiometric quantities. The reduction of the nitro groups to less toxic amino 

substituents ensured that a detoxification of the influent was obtained. The reactors treating the 

mononitroaromatics were able to convert the cosubstrate to methane at organic loading rates 

in excess of 13.2 g COD/L-d, with greater than 96% cosubstrate removal efficiency, even 

though, the influent concentration of the mononitroaromatics was up to 30-fold higher than the 

50% IC to acetoclastic methanogenesis. In the case of the dinitroaromatics, the cosubstrate 

removal efficiency was high for 2,4-dinitrotoluene (2.4DNT), but lower for the 2,4-

dinitrophenol (2,4DNP), possibly due to an acute toxicity of the latter compound. Results in 

Chapter 5 indicated that very high mononitroaromatic loading rates (up to 910 mg/L-d) were 

treated in the UASB reactors, with greater than 98% removal of the nitroaromatics. 

TABLE 7.1 Effect type of cosubstrate on rate nitroaromatic reduction. 

Endogenous substrates in sludge support limited 
reduction of nitroaromatics. 

Rate reduction is not stimulated by using acetate 
nor methanol. 

acetate methanogens CO2 

methanol ChU 

Rate reduction is stimulated by using propionate, 
butyrate, ethanol or hydrogen. 

fermentors 
propionate a c e t 0 

butyrate ^— > acetate 
ethanol V 

nitroaromatic ^ 
(reductase) 

methanogens 
CO2 
OH* 

aminoaromatic 

In a similar way, the anaerobic transformation of the azo dye MOl in continuous 

UASB reactors using granular sludge was studied in Chapter 6. MOl was readily cleaved in 
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the reactors receiving glucose and VFA at MOl loading rates up to 295 and 161 mg/L-d, 

respectively. These concentrations exceeded the 50%IC of the MOl to methanogenic bacteria 

by 25 and 13 fold in the glucose and VFA reactors, respectively. In these reactors, both 1,4-

phenylenediamine (1.4PDA) and 5 AS A were detected as products of MOl cleavage. 

The effective regimes applied for the treatment of highly toxic nitro and azo aromatics 

rely mainly on three key factors as shown in Figure 7.1: reductive anaerobic detoxification to 

products of lower toxicity as demonstrated in Chapters 2 and 6; good hydraulic and gas mixing 

conditions minimizing biological dead-space and preventing localized high concentrations of 

the toxic nitroaromatic or azo dye compounds (13, 24); and protection of the methanogens 

inside the granules (presence of less toxic aromatic amines due to the reducing conditions) 

from toxic compounds of the bulk of the reactor (nitroaromatic or azo dye compounds). 

1) Reductive detoxification 

OH 
N02 

OH 
NH2 

2) Hydraulic mixing 

R.NO2 

i-NH!::::::R-NHA 

3) Protection inside biofilm R N a | : § i l i ^ i | f N O ! 

K - N C ^ ; ; = p / R - N O a 

R-NOi 

sludge granule 

Figure 7.1 The three factors contributing to detoxification of nitroaromatics in upflow 
anaerobic sludge bed reactors. 
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7.5 Anaerobic Biodegradation of Aromatic Amines 

The electron donating amino groups formed from the reduction of nitro and azo groups 

are expected to pose a serious problem for further reductive biotransformations by anaerobes 

(9). In fact, aniline, the simplest aromatic amine has been found to be recalcitrant in 

methanogenic consortia (1, 25). However, there is growing evidence that anaerobic 

microorganisms and consortia can mineralize many aromatic amines. Aromatic amines with 

carboxy, hydroxy and methoxy substitutions are potentially mineralizable in methanogenic 

consortia. Results in Chapter 3 show that four out of seventeen aromatic amines were 

mineralized using unadapted granular sludge, namely: the three isomers of aminobenzoate and 

2-aminophenol (2AP). However, 5ASA and 4-aminophenol (4AP), which were recalcitrant 

with the unadapted sludge, were mineralized by the 2-nitrophenol (2NP) adapted granular 

sludge after a 65 and 70 day lag period. Additionally, the anaerobic mineralization of 5ASA 

was observed for the first time. 

The results of the study using 2NP-adapted granular sludge, and the parallel ones in 

Chapter 4 evaluating the ability of bacterial consortia from five different granular sludge 

sources to anaerobically biodegrade aromatic compounds, showed that cross-acclimatization of 

N-substituted aromatics occur. This finding confirms the possibility to cross-acclimatize sludge 

for the mineralization of other structurally similar compounds using aromatic-adapted sludge 

(17, 31). Based on these results, it is clear that one of the bottlenecks of aromatic degradation 

is the adaptation process. Once the sludge is adapted, the degradation proceeds at similar rates, 

independent of the origin of the sludge. 

Microbial communities in sediments could use alternative electron acceptors such as 

NO3', S0 4 , Mn(IV) and Fe(III) (20, 21, 23). Aniline, the simplest aromatic amine, was not 

degraded under methanogenic conditions but was under denitrifying and sulfate reducing 

conditions (1, 25), highlighting the enormous potential of microbial communities in anaerobic 

environments to degrade aromatic amines when these alternative electron acceptors are 

available. 
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A) Complete mineralization: 2-nitrophenol, 5-nitrosalicylate and 4-nitrobenzoate 

?H OH 
,N02 / v NH2 

01 - 0 
reduction homoacetogenic acetoclastic 

COOH COOH fermentation methanogenesis 

OH y\..m CHaCOOH CH4 

O . N V H 2 N - - N H « + C ° 2 

COOH COOH 

N02 NH2 

B) Biotransformation: 4-nitrophenol, 2,4-dinitrophenol, 2,4-dinitrotoluene and nitrobenzene 

OH OH 

reduction 

NO 2 NH2 

OH OH 
N02 > V . N H 2 

• - • 
unidentified 

product 

N02 NH2 

CH3 CH3 
,N02 A NH2 

NO 2 NH2 

NO 2 NH2 

Figure 7.2 Final fate of nitroaromatics in the UASB reactors. 
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7.6 Complete Biodegradation of Nitro and Azo Aromatics 

Results from the continuous UASB reactors experiments in Chapters 5 and 6 suggest 

that some nitroaromatics and azo dyes are fully biodegradable in anaerobic environments. After 

long term reactor operation, aromatic amines were no longer observed to accumulate as 

products of 2NP, 4-nitrobenzoic acid (4NBc) and 5-nitrosalicylic acid (5NSA) elimination, 

suggesting that they were completely biodegraded in the continuous reactors. The granular 

sludge sampled from these reactors were able to fully mineralize 2AP, 4-aminobenzoate 

(4ABc) and 5ASA via homoacetogenic fermentation when these were offered as the sole 

carbon and energy source in anaerobic biodegradability assays. On the other hand, 4AP and 

2,4-diaminophenol accumulated as biotransformation products from 4-nitrophenol (4NP) and 

2,4DNP, and were not eliminated further in the continuous reactors nor were they mineralized 

by the sampled sludge in batch assays. However, in the case of 2,4DNT, only 52% of the 

compound was recovered as 2,4-diaminotoluene (2,4DAT), indicating that the other 48% was 

biotransformed. Lack of mineralization indicated that 2.4DAT was transformed to a non-

identified and non-degradable dead-end metabolite. These results are in agreement with those 

obtained in the batch biodegradability assays in Chapter 3. The final fate of nitroaromatics in 

the UASB reactors is depicted in Figure 7.2. 

In the case of azo dyes in Chapter 6, it was found that MOl was partially mineralized. 

After 180 days of operation, 5ASA arising from MOl cleavage could only be detected at trace 

concentrations in the glucose fed reactor. 5ASA was completely mineralized in the batch 

anaerobic biodegradability assay with the sampled reactor sludge, but the other cleavage 

product, 1,4PDA was not mineralized. These findings indicate that 5 AS A was fully degraded 

by the anaerobic consortia; whereas, 1,4PDA persisted. 

The degradation of a pharmaceutical azo dye, ADS, constructed from two 5ASA 

molecules, was also studied in Chapter 6 under batch and continuous conditions using 5ASA-

adapted sludge. ADS was highly mineralized in continuous reactors even when cosubstrate 

was not present in the basal medium. Batch experiments with ADS as the sole carbon an 

energy source confirmed the dye mineralization to methane and ammonium, and it was also 
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shown that the metabolism of 5ASA released from ADS cleavage could provide electrons 

supporting continued reduction of the dye. According to this result, it is likely that the 

cosubstrate was only necessary to establish an active methanogenic consortium during the 

adaptation to the azo dye, and that cosubstrate supplementation was no longer essential once 

5ASA-degrading bacteria developed in the consortium. According to the results obtained in 

Chapter 6, complete mineralization of azo dyes under methanogenic and/or anoxic conditions 

could be obtained as proposed in Figure 7.3. 

Electron donor 
(cosubstrate) 

NHa 

Anoxic 

N03" 
S04= 

Mn(IV) 
Fe(lll) 

Mineralized 
products 

[H] 

hhN 

Methanogenesis 

• 
t — 
t 

Mineralized 
products 

Figure 7.3 Biodegradation of azo dyes under methanogenic and/or anoxic conditions. Ri 
and/or R2 = -COOH, -S03H, -N02, -NH2, -OH, -CH3, -OCH3, -H and/or any other substituent. 
If Ri and/or R2 = -COOH, -OH, -OCH3 the azo dyes can be completely mineralized under 
methanogenic conditions; with all the other substituents the aromatic amines could potentially 
be degraded by the anoxic pathways with the alternative electron acceptors. 
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7.7 Conclusions and Recommendations 

The anaerobic biodegradation of N-aromatic compounds was still doubted twenty years 

ago when very little knowledge was known about its microbiological potential. However, 

nowadays anaerobic biodegradation of N-aromatic compounds is a promising alternative to 

aerobic degradation processes. The results shown here indicate that the anaerobic reductive 

transformation of nitroaromatic and azo compounds leads to a detoxification of these 

substances. We have also shown that some nitroaromatic compounds and azo dyes can be 

completely mineralized and serve as a carbon and energy source for anaerobic bacteria, in 

contrast to the common assumption that they are only biotransformed to mutagenic and 

carcinogenic aromatic amines. Therefore, we conclude that it should be possible for industry to 

design nitro and azo aromatic compounds that are fully biodegradable in anaerobic 

environments. 

More research should be conducted in order to gain insight in both microbiological (the 

know) and technological aspects (the how) of N-aromatic biodegradation. Below are a few 

suggestions for the continuation of this research: 

• fate of aromatic amines and reduction of nitroaromatics and azo dyes under alternative 

electron acceptors environments such as N03\ S04
=, Mn(IV), Fe(III) and/or microaerobic 

conditions. 

• studies to identify the microbial degradation pathway(s) and the microorganism(s) 

responsible for the degradation. The role of the microbial adaptation should be clarified. 

• toxicity and biodegradability studies with more complex azo dyes (e.g., sulphonated and/or 

naphtholic) and their breakdown products. 

• comparison studies evaluating the performance of different kind of high rate anaerobic 

reactors treating nitroaromatics and azo dyes. The use of "real" wastewater instead 

synthetic wastewater is strongly advised. 
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Samenvatting 

N-gesubstitueerde aromatische verbindingen zijn milieuverontreinigende stoffen, waarvan de 
aanwezigheid in het milieu voortkomt uit de productie en het gebruik van kleurstoffen, explosieven, 
pcsticidcn en farmaceutische verbindingen. In dit hoofdstuk wordt een overzicht gegeven van de 
resultaten in dit proefschrift aangaande de toepassing van anaeroob korrelslib bij de detoxificatie, 
transformatie en mineralisatie van nitroaromaten en azoverbindingen. Tevens worden de resultaten 
bediscussieerd. Nitroaromaten en azokleurstoffcn hebben sterk elektronegatieve groepen, die zeer 
rcmmend werken op acetoclastische methanogene bacterien. Nitro- en azogesubstitueerde aromaten 
worden echter gemakkelijk reductief gedetoxificeerd in methanogene consortia, hetgeen leidt tot de 
vorming van hun aromatische aminc-analogen, die aanzienlijk minder toxisch zijn. Deze reductieve 
detoxificatie maakt een succesvolle behandcling van zeer toxische nitroaromaten en azokleurstoffen in 
anaerobe reactoren mogelijk. In de loop van het onderzoek werd duidelijk dat sommige aromatische 
amines in afwezigheid van zuurstof worden gemineraliseerd in methanogene consortia. Dit geeft aan dat 
hydroxy- en carboxygesubstitueerde aromatische amines bij volledige mineralisatie kunnen dienen als 
koolstof- en energiebron voor anaerobe bacterien. 

Bewerkt naar FFMSMicrobiology Reviews (1997) 20(3-4)-.525-538 
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7.1 Inleiding 

N-gesubstitueerde aromaten, zoals nitroaromaten, azokleurstoffen en aromatische 

amines, zijn belangrijke verontreinigende verbindingen, die vooral in het milieu terecht komen 

door antropogene activiteiten zoals de industriele productie van kleurstoffen, explosieven, 

pesticiden en farmaceutische verbindingen (15, 32). Hun aanwezigheid in het milieu zou 

ernstige problemen kunnen veroorzaken voor de volksgezondheid en het milieu. Sommige van 

deze verbindingen hebben mutagene of carcinogene activiteit en kunnen bioaccumuleren in de 

voedselketen (10, 22). 

Veel nitroaromaten zijn toxisch of mutageen voor micro-organismen (26, 28). Dit, 

tezamen met het feit dat ze moeilijk worden afgebroken, zou problematisch kunnen zijn voor 

een effectieve biologische behandeling van afvalstromen, die nitroaromaten bevatten. Er is 

gesuggereerd dat aromaten met meerdere nitro-substituenten en azokleurstoffen niet kunnen 

worden afgebroken via een electrofiele aanval door oxygenases (14, 16). Echter, dit soort 

verbindingen wordt door anaerobe consortia wel gemakkelijk gereduceerd tot aromatische 

amines (4, 11). Deze aromatische amines worden vaak niet verder gemetaboliseerd onder 

anaerobe omstandigheden (4, 9), maar ze kunnen door de reductie van de nitro- en azogroepen 

in veel gevallen wel gemakkelijker worden omgezet via aerobe afbraak (5, 8). Daarom wordt 

een sequentiele anaerobe-aerobe afbraak van nitroaromaten en azokleurstoffen voorgesteld (8, 

9, 16). 

In dit hoofdstuk vatten wij de resultaten van de verschillende studies die zijn uitgevoerd 

in het kader van dit proefschrift samen. In het beschreven onderzoek is de toxiciteit en 

biologische afbreekbaarheid van een breed scala aan N-gesubstitueerde aromaten in 

gestandaardiseerde anaerobe batchtesten met anaeroob korrelslib geevalueerd. Tevens zijn 

biodegradatie-studies uitgevoerd in continu bedreven UASB-reactoren. 
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7.2 Toxiciteit van N-gesubstitueerde Aromaten 

Nitroaromaten 

Kennis van de toxiciteit van N-aromatische verbindingen is van grote waarde bij het 

voorspellen van hun invloed op anaerobe waterzuiveringssystemen. Van alle verschillende 

klassen van micro-organismen die betrokken zijn bij anaerobe afbraak, zijn methanogene 

bacterien het meest gevoelig voor remming door toxische stoffen (30). Daarom is de toxiciteit 

van enkele N-gesubstitueerde aromaten onderzocht. De resultaten in Hoofdstuk 2 laten zien 

dat nitroaromaten gemiddeld 500 maal meer toxisch zijn dan hun respectievelijke aromatische 

amine-analogen. Dit geeft duidelijk het belang aan van de detoxificering die plaatsvindt bij de 

anaerobe reductie van nitroaromaten. Er zijn enkele algemene verbanden waargenomen tussen 

de aromatische structuur en de remmende effecten op methanogene bacterien. N-substituties 

zijn toxischer dan andere ringsubstituenten of benzeen zelf. De toxiciteit van 

monogesubstitueerde benzenen werd groter in de volgorde: COOH < H < OH < NH2 < N02. 

Nitrogesubstitueerde fenolen en benzenen waren minstens twee maal zo toxisch als de alkyl- en 

chloorgesubstitueerde analogen met vergelijkbare hydrofobiciteit. Deze observatie wijst 

duidelijk op een hogere chemische reactiviteit van de nitrogroepen vergeleken met alkyl- of 

chloorgroepen. Ergo, bij aanwezigheid in vergelijkbare concentraties in bacteriele membranen 

oefenen nitrogesubstitueerde aromaten een veel groter toxisch effect uit dan dat wat kan 

worden toegekend aan de membraantoxiciteit alleen. Uit literatuurgegevens blijkt dat 

nitroaromaten reactieve toxicanten zijn (2). Door de reactiviteit van de nitrosubstituenten 

zouden chemische interacties met eiwitten mogelijk zijn, die inactivatie van vitale enzymen tot 

gevolg hebben (19). Daarnaast wordt verondersteld dat de toxiciteit van deze verbindingen 

voor methanogene bacterien wordt veroorzaakt door interacties tussen nitroaromaten of 

intermediairen in het reductieproces (nitrosamines of hydroxylamines) met het unieke 

celmembraan van deze bacterien (12). N-gesubstitueerde aromaten zouden ook het resultaat 

van biochemische omzettingen kunnen bei'nvloeden, bijvoorbeeld via het ontkoppelen van 

fosforyleringsreacties of beinvloeding van fysiologische redoxkoppels (28). 
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Azokleurstoffen 

Azokleurstoffen zijn synthetische chemicalien, die worden gebruikt in verfstoffen. Als 

gevolg daarvan is "kleur" de eerste vervuilende eigenschap in het afvalwater van de industrieen 

die dit soort stoffen gebruiken. De chemische structuur van azokleurstoffen maakt dat ze 

onafbreekbaar zijn onder de typische omstandigheden waarbij ze worden toegepast. Het is 

deze eigenschap, samen met de toxiciteit voor micro-organismen, die de biologische 

behandeling van afValstromen met azokleurstoffen moeilijk maakt (18). De resultaten in 

Hoofdstuk 6 geven aan dat azokleurstoffen zeer toxisch zijn voor acetoclastische methanogene 

bacterien. De onderzochte azokleurstoffen en nitroanilines waren veel toxischer dan hun 

respectievelijke aromatische amine-analogen, die ontstaan bij biotransformatie. Dit was ook het 

geval voor Mordant Yellow 12 (MY12), dat geen nitrogroepen aan de aromatische structuur 

gesubstitueerd heeft. Dit laatste wijst erop dat de azogroep zelf de methanogene bacterien 

remt. De concentratie van 0.25 mM MY12, waarbij 50% remming van de methanogenese 

(50% IC) optreedt is vergelijkbaar met de toxiciteit van sommige nitroaromaten. 

7.3 Reductie van Nitroaromaten en Azokleurstoffen 

Onder anaerobe condities worden nitroaromaten en azokleurstoffen gemakkelijk tot 

aromatische amines gereduceerd (6, 7, 27). De toevoeging van een cosubstraat als 

elektronendonor is echter een vereiste. Verbetering van de nitro- en azoreductie door de 

toevoeging van cosubstraten is beschreven in de Hoofdstukken 5 en 6. Er is, zoals 

weergegeven in Tabel 7.1, waargenomen dat waterstof, waarmee elektronen tussen de 

bacterien kunnen worden "doorgegeven" (via "interspecies hydrogen transfer") en 

(co)substraten, zoals butyraat, propionaat en ethanol, die reductie-equivalenten zoals waterstof 

opleveren, nitroreductie stimuleren. Substraten zoals methanol en acetaat, die direct door 

methanogenen kunnen worden gebruikt, bevorderen de omzetting niet. Analoog aan deze 

resultaten werd gevonden dat glucose en een mengsel van vluchtige vetzuren (VFA) de 

reductie van de azokleurstoffen Mordant Orange 1 (MOl) en Azodisalicylaat (ADS) 

stimuleren. De resultaten uit Hoofdstuk 6 laten tevens zien dat 5-aminosalicylzuur (5ASA), een 
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afbraakprodukt van ADS, de reductie van ADS bevordert. Dit geeft aan dat, na ontwikkeling 

van een aromatische amine-afbrekende populatie in het consortium, zelfs aminoaromaten als 

elektronendonor kunnen dienen. 

TABEL 7.1 Het effect van het type cosubstraat op de snelheid van 
nitroaromatische reductie. 

Endogene substraten in het slib leiden tot len 
beperkte reductie van de nitroaromaten. 

De reductiesnelheid wordt niet hoger bij 
gebruik van acetaat of methanol. 

acetaat methanogenen CQ2 

methanol CHU 

- De reductiesnelheid wordt hoger bij gebruik van 
propionaat, butyraat of waterstof. 

, fermenteerders 
propionaat acetogenen 
butyraat ^ >• 
ethanol \ 

methanogenen 

acetaat COz 

CH4 

nitroaromaat 

H2 

(reductase) 
aminoaromaat 

7.4 Continue Detoxificatie van Nitro- en Azoverbindingen in UASB 
reactoren. 

AfValwater dat toxische aromatische verbindingen bevat, kan efficient en stabiet 

behandeld worden in hoog-belaste reactoren, zoals de UASB-reactor (3, 29). De eenvoudige 

reductie van elektronenzuigende nitro- en azogroepen, is gebruikt als detoxificeringsstrategie 

in continu bedreven UASB-reactoren op laboratoriumschaal. Hierin werden geselecteerde 

nitroaromaten en azokleurstoffen afgebroken met glucose of een VFA-mengsel als cosubstraat. 
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Al de nitroaromaten, die werden onderzocht in de experimenten in Hoofdstuk 5, werden in 

stoichiometrische hoeveelheden omgezet naar aromatische amines. De reductie van de 

nitrogroepen naar minder toxische aminosubstituenten zorgde voor een detoxificering van het 

influent. De reactoren met mononitroaromaten in het influent waren in staat het cosubstraat 

volledig om te zetten in methaan bij organische belastingen hoger dan 13.2 g COD/L-d en met 

een verwijderingsefficientie voor het cosubstraat van meer dan 96%. Dit ondanks een 

nitroaromaatconcentratie in het influent die 30 maal hoger was dan de 50% IC voor 

acetoclastische methanogenen. Bij de behandeling van dinitroaromaten was de 

verwijderingsefficientie van het cosubstraat hoog in aanwezigheid van 2,4-dinitrotolueen 

(2.4DNT) maar, waarschijnlijk door acute toxiciteit, lager voor 2,4-dinitrofenol (2,4-DNP). De 

resultaten in Hoofdstuk 5 laten eveneens zien dat zeer hoge mononitroaromaat-belastingen (tot 

910 mg/L-d) in UASB-reactoren kunnen worden behandeld met meer dan 98% verwijdering 

van de nitroaromaten. 

Op vergelijkbare wijze is de anaerobe omzetting van de azokleurstof MO 1 onderzocht 

in continu bedreven UASB-reactoren met korrelslib (Hoofdstuk 6). MOl werd in 

aanwezigheid van glucose of VFA als cosubstraat gemakkelijk gesplitst in 1,4-

diphenyleendiamine (1,4PDA) en 5ASA bij MOl-belastingen van respectievelijk 295 en 161 

mg/L-d. De MOl-concentraties in het influent van de met glucose of VFA gevoede reactoren 

waren respectievelijk 25 en 13 maal groter dan de 50% IC van MOl voor methanogene 

bacterien. 

De strategic die succesvol is toegepast bij de behandeling van de zeer toxische nitro- en 

azoaromaten berust voornamelijk op de drie sleutelfactoren die zijn weergegeven in Figuur 7.1: 

reductieve omzetting naar minder toxische producten (Hoofdstuk 2 en 6); goede hydraulische 

omstandigheden en gasmenging, zodat de hoeveelheid biologische "dode ruimte" wordt 

geminimaliseerd en wordt voorkomen dat er lokaal hoge concentraties van de toxische 

nitroaromaten en azokleurstoffen ontstaan (13, 24); en bescherming van de methanogenen in 

de korrels tegen de toxische verbindingen in de bulkvloeistof van de reactor (nitroaromatische 

of azokleurstof-verbindingen) door de aanwezigheid van minder toxische aromatische amines, 

die zijn ontstaan door de reducerende omstandigheden. 
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OH 

1) Reductieve detoxificering [Q 
NO 2 

OH 
NH2 

2) Hydraulische menging 

R-NOi 

3) Bescherming in de biofilm R N & | ^ | : l i i i f ^ 
R - « ^ = | ! # R . N O , 

R-NOi 

slib korrel 

Figuur 7.1 De drie factoren die bijdragen aan detoxificatie van nitroaromaten in 
UASB-reactoren. 

7.5 Anaerobe Biodegradatie van Aromatische Amines 

Er wordt verwacht dat de elektronenstuwende aminogroepen die worden gevormd bij 

de reductie van nitro- en azogroepen moeilijk verder kunnen worden omgezet via reductieve 

biotransformatie door anaerobe bacterien (9). Er is inderdaad voor aniline, het meest simpele 

aromatische amine, gevonden dat het niet kan worden afgebroken door methanogene consortia 

(1, 25). Echter, de hoeveelheid bewijs dat de omzetting van veel aromatische amines door 

anaerobe micro-organismen en consortia wel degelijk mogelijk is neemt toe. Aromatische 

amines met carboxy-, hydroxy- en methoxy-substituties zijn in aanleg mineraliseerbaar door 

methanogene consortia. De resultaten in Hoofdstuk 3 laten zien dat vier van de zeventien 

onderzochte aromatische amines werden gemineraliseerd door ongeadapteerd korrelslib, 
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namelijk: de drie isomeren van aminobenzoaat en 2-aminofenol (2AP). 5ASA en 4-aminofenol 

(4AP), die beiden niet werden afgebroken in aanwezigheid van ongeadapteerd slib, werden 

door aan 2-nitrofenol (2NP) geadapteerd slib na een lagfase van 65 en 70 dagen wel 

gemineraliseerd. Bovendien werd voor de eerste maal de anaerobe mineralisatie van 5ASA 

waargenomen. 

"Cross-acclimatisering" van N-gesubstitueerde aromaten is mogelijk. Dit werd 

aangetoond in het onderzoek met aan 2-NP geadapteerd korrelslib en in de studie waarin het 

vermogen van korrelslib om aromatische verbindingen af te breken is onderzocht met slib 

afkomstig van vijf verschillende bronnen (Hoofdstuk 4). Deze bevindingen ondersteunen de 

mogelijkheid om slib te "cross-acclimatiseren" zodat het verbindingen af kan breken die 

structureel analoog zijn aan de aromatische verbindingen waaraan het slib is geadapteerd (17, 

31). Op grond van deze resultaten, is het duidelijk geworden dat het adaptatieproces een van 

de knelpunten in de afbraak van aromatische verbindingen is. Zodra het slib is geadapteerd, 

vindt het afbraakproces met vergelijkbare snelheden plaats, onafhankelijk van de oorsprong 

van het slib. 

Microbiele gemeenschappen in sedimenten kunnen alternatieve elektronen-acceptoren 

zoals N03", S04
=, Mn(IV) en Fe(III) gebruiken (20, 21, 23). Aniline, het meest simpele 

aromatische amine, werd niet afgebroken onder methanogene omstandigheden, maar wel onder 

denitrificerende en sulfaatreducerende omstandigheden (1, 25). Dit geeft het enorme potentieel 

aan voor de afbraak van aromatische amines door microbiele consortia in anaerobe milieus 

waar alternatieve elektronenacceptoren aanwezig zijn. 

7.6 Complete Biodegradatie van Nitro- en Azoaromaten 

Uit de resultaten met de continu bedreven UASB-reactoren (Hoofdstukken 5 en 6) kan 

worden afgeleid dat sommige nitroaromaten en azokleurstoffen volledig biodegradeerbaar zijn 

in anaerobe milieus. Na langdurig bedrijven van de reactoren werd bij de afbraak van 2NP, 4-

nitrobenzoezuur (4NBc) en 5-nitrosalicylzuur (5NSA) niet langer accumulatie van aromatische 
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A) Complete mineralisatie: 2-nitrofenol, 5-nitrosalicylaat en 4-nitrobenzoaat 

OH OH 

reductie homoacetogene acetoclastische 
9 O O H COOH fermentatie methanogenese 

fnT°H rnT°H
 CHSCOOH CH4 

COOH COOH 

NO 2 NH2 

B) Biotransformatie: 4-nitrofenol, 2,4-dinitrofenol, 2,4-dinitrotolueen en nitrobenzeen 

OH OH 
/ \ reductie / \ 

N02 NH2 

OH OH 
N02 / V . N H 2 

ongeldentrif iceerd 
product 

NO 2 NH2 

CH3 CH3 

N02 NH2 

NO2 NH2 

Figuur 7.2 Lot en gedrag van nitroaromaten in UASB-reactoren. 
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amines waargenomen. Dit wijst op een complete biologische afbraak. Korrelslib afkomstig uit 

deze reactoren was in staat in anaerobe biodegradatiestesten 2AP, 4-aminobenzoaat (4ABc) en 

5 ASA via homoacetogene fermentatie volledig te mineraliseren, wanneer deze stoffen werden 

aangeboden als enige C- en energiebron. Anderzijds vond er wel accumulatie van 4AP en 2,4-

diaminofenol plaats bij de afbraak van respectievelijk 4-nitrofenol (4NP) en 2.4DNP. Ook in 

batchtesten met slib uit deze reactoren werden 4AP en 2,4-diaminofenol niet verder 

gemineraliseerd. Van 2,4DNT werd slechts 52% van de verbinding "teruggevonden" als 2,4-

diamino-tolueen (2.4DAT). Dit duidt erop dat de resterende 48% biologisch is omgezet. Het 

uitblijven van mineralisatie wijst op de omzetting van 2,4DAT naar een ongei'dentificeerd en 

niet afbreekbaar metaboliet ("dead-end-metabolite"). Deze resultaten zijn in overeenstemming 

met die verkregen in de batch afbreekbaarheidstesten in Hoofdstuk 3. Het lot en gedrag van 

nitroaromaten in UASB-reactoren is weergegeven in Figuur 7.2. 

In het geval van azokleurstoffen (Hoofdstuk 6) werd gevonden dat MOl gedeeltelijk 

werd gemineraliseerd. Na 180 dagen werd 5 ASA, afkomstig van MOl-splitsing, slechts in zeer 

lage concentraties waargenomen in de met glucose gevoede reactor. 5ASA werd volledig 

gemineraliseerd in de anaerobe biodegradatietesten met slib afkomstig uit deze reactor. Het 

andere splitsingsproduct, 1,4PDA, werd echter niet gemineraliseerd. Deze resultaten wijzen op 

de volledige afbraak van 5 AS A door anaerobe consortia, terwijl 1.4PDA niet wordt 

afgebroken. 

De afbraak van de farmaceutische azokleurstof ADS die is opgebouwd uit twee 5ASA-

moleculen werd onderzocht in batch- en continutesten met aan 5ASA-geadapteerd slib 

(Hoofdstuk 6). ADS werd in hoge mate gemineraliseerd in continu bedreven reactoren, zelfs 

wanneer er geen cosubstraat in het basale medium aanwezig was. Batchexperimenten met ADS 

als enige koolstof- en energiebron bevestigden de mineralisatie naar methaan en ammonium en 

er werd eveneens aangetoond dat het metabolisme van 5ASA (product van de ADS-splitsing) 

voldoende elektronen produceert om continue reductie van de kleurstof te bewerkstelligen. Uit 

deze resultaten volgt dat de toevoeging van cosubstraat waarschijnlijk alleen noodzakelijk is 

om een actief methanogeen consortium te creeren tijdens de adaptatie van het slib in de reactor 

aan de azokleurstof. Supplementatie met het cosubstraat was niet langer essentieel nadat een 
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5ASA-afbrekende bacteriepopulatie zich had ontwikkeld. Volgens de resultaten verkregen met 

de experimenten beschreven in Hoofdstuk 6, is complete mineralisatie van azokleurstoffen in 

methanogene en/of anoxische omstandigheden mogelijk bij de condities zoals voorgesteld in 

Figuur7.3. 

Methanogenese 

Elektron(en) donor 
(cosubstraat) 

NH2 

[H] 

H2N 0' 
Anoxisch 

NO3" 
SO/ 

Mn(IV) 
Fe(lll) 

Methanogenese 

Mineralisatie 
producten 

t 
i — 
i 

Mineralisatie 
producten 

Figuur 7.3 Biodegradatie van azokleurstoffen in methanogene en/of anoxische 
omstandigheden. Ri en/of R2 = -COOH, -S03H, -N02, -OH, -CH3, -OCH3, -H en/of een 
andere substituent. Als Ri en/of R2 = -COOH, -OH, -OCH3 kunnen de azokleurstoffen volledig 
worden gemineraliseerd in methanogene omstandigheden; met alle andere substituenten kunnen 
de aromatische amines mogelijk worden afgebroken via anoxische routes met alternatieve 
elektronacceptoren. 

7.7 Conclusies en Aanbevelingen 

Aan de anaerobe biodegradeerbaarheid van N-aromatische verbindingen werd twintig 

jaar geleden nog getwijfeld, toen zeer weinig bekend was omtrent de mogelijkheden van 

microbiele afbraak in afwezigheid van zuurstof. Tegenwoordig is anaerobe biodegradatie van 
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N-gesubstitueerde aromaten echter een veelbelovend alternatief voor aerobe processen. De 

resultaten die hier worden beschreven wijzen op detoxificatie van nitroaromaten en 

azokleurstoffen via anaerobe reductieve transformatie. Wij hebben eveneens aangetoond dat 

sommige nitroaromatische verbindingen en azokleurstoffen volledig kunnen worden 

gemineraliseerd en kunnen dienen als koolstof- en energiebron voor anaerobe bacterien, dit in 

tegenstelling tot de algemene aanname dat ze biologisch worden omgezet naar mutagene en 

carcinogene aromatische amines. Daarom concluderen wij dat het voor "de Industrie" mogelijk 

moet zijn om nitro- en azoverbindingen te ontwerpen die volledig biologisch afbreekbaar zijn in 

anaerobe milieus. 

Verder onderzoek zou moeten worden uitgevoerd om meer inzicht te verkrijgen in 

zowel microbiologische ("the know") als technologische aspecten ("the how") van de 

biologische afbreekbaarheid van N-gesubstitueerde aromaten. Hierna volgen enige suggesties 

voor de continuering van dit onderzoek. 

• het lot van aromatische amines en de reductie van nitroaromaten en azokleurstoffen in 

milieus met alternatieve electronacceptoren, zoals N03\ S04
=, Mn(IV), Fe(III) en/of in 

microaerobe omstandigheden. 

• studies om de microbiele afbraakroute(s) en de micro-organismen die verantwoordelijk zijn 

voor de afbraak te identificeren. De rol van de microbiele adaptatie zou moeten worden 

opgehelderd. 

• onderzoek naar de toxiciteit en biologische afbreekbaarheid van meer complexe 

azokleurstoffen (bijv. gesulfoneerde en/of naftaleenachtige) en hun afbraakproducten. 

• vergelijkend onderzoek waarin de zuiveringsresultaten van verschillende hoog-belaste 

anaerobe reactoren met nitroaromaten en azokleurstoffen worden geevalueerd. Het gebruik 

van "edit" afvalwater in plaats van synthetisch afvalwater wordt sterk aanbevolen. 
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