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Een eenduidig model ter verklaring van T1 waarden van eiwitten kan alleen 

worden gebaseerd op frekwentie afhankelijke C en H T1 metingen. 

Dit proefschrift. 
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Het door Butler et al. gegeven model voor de vorming van het initiatiekomplex 

voor TMV assemblage bevat innerlijke tegenstrijdigheden. 

Butler, P.J.G., Bloomer, A.C., Bricogne, G., Champness, J.N., 

Graham, J., Guilley, H., Klug, A. en Zimmern, D. (1976) Proc. of the 

third John Innes Symp. 101—110. 

3 

Het door Lebeurier et al. en Butler et al. voorgestelde elongatiemodel voor TW 

assemblage is,gezien de secundaire en tertiaire RNA struktuur,uit 

thermodynamisch oogpunt niet mogelijk. 

Lebeurier, G., Nicolaieff, A. en Richards, K.E. (1977) Proc. Nat. 

Acad. Sci. U.S.A. 74, 149-153. 

Butler, P.J.G., Finch, J.T. en Zimmern, D. (1977) Nature 262, 

217-219. 

4 

De juistheid van de gangbare opvatting,dat onverzadigde vetzuren in hun 

algemeenheid het cholesterol gehalte verlagen, is twij felachtig en gaat 

ondermeer voorbij aan het feit, dat trans onverzadigde vetzuren cholesterol 

afbraak tegengaan. 

Rivers, J. (1977) Nature 270, 2. 

5 
13 

De door Packer et al., op grond van C shifts van de 2', 6' koolstofatomen 

van tyrosine geschatte exchange snelheid tussen de ijzer-zwavel centra van 

ferredoxine, houdt geen rekening met een ferredoxine-methylviologeen evenwicht. 

Packer, E.L., Sternlicht, H. en Rabinowitz, J.C. (1972) Proc. Nat. 

Acad. Sci. U.S.A. 69, 3278-3282. 
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De berekeningen van Chothia en Janin verschaffen aanwijzingen, dat de eiwit 

eenheden in de door deze auteurs onderzochte eiwitkomplexen beweeglijk zijn. 

Chothia, C. en Janin, J. (1975) Nature 256, 705-708. 

7 

De door Sykes et al. gevonden relaxatietijden van verschillende eiwitten kunnen 

beter verklaard worden door rotatiediffusie om alle koolstof-koolstof 

bindingsassen over kleine hoeken aan te nemen. 

Sykes, B.D., Hull, W.E. en Snyder, G.H. (1978) Biophys. Journal 21, 

137-145. 

Menig schoolboek zou beter tot zijn recht komen, wanneer het in stripvorm zou 

verschijnen. 

Marx? Nooit van gehoord; Rius, Kritakfonds Nederland, Postbus 636, 

3800 AP, Amersfoort. 

9 

Het is betreurenswaardig ,dat Bohandy en Kim pas na een reeks publikaties over 

porfyrines in trifenyleen tot de konklusie komen, dat deze gastheer ongeschikt 

is. 

Bohandy, J. en Kim, B.F. (1976) Spectrochim. Acta 32A, 1083-1088. 

10 

Het in vitro model voor antenne chlorophyll van Katz et al. vertoont meer 

inconsistenties met in vivo gegevens dan het door deze auteurs gepostuleerde 

en speculatief genoemde model voor het reaktiecentrum chlorophyllkomplex. 

Katz, J.J., Norris, J.R. en Shipman, L.L. (1976) Brookhaven Symp. in 

Biol. 28, 16-55. 

11 

Het rapport "Het dilemma van de nationale landschapsparken" van de stichting 

"Natuur en Milieu" rechtvaardigt een gegrond wantrouwen en verzet van agrariers 

tegen plannen voor wijziging van de landinrichting. 

Proefschrift van J.L. de Wit. 

Wageningen, april 1978. 
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VOORWOORD 

Toen ik ongeveer 5 jaar geleden dit onderzoek startte, beperkte het 

gebruik van kernspin resonantie (NMR) in de biologie zich tot kleine 

biomolekulen in oplossing, zoals eiwitten, substraten, oligonucleotiden en 

koolhydraten. De laatste jaren is het aantal toepassingen, door de ontwikkeling 

van geavanceerde 270 en 360 MHz kernspin resonantie apparatuur, echter sterk 

toegenomen. De traditionele school (kleine eiwitten, nucleinezuren e.d.) heeft 

zich verder ontwikkeld, maar daarnaast ontstaan er nieuwe toepassingen aan 

cellen en zelfs komplete organen. NMR biedt vooral in het laatste geval veel 

perspectief omdat dan, door het niet destructieve gebruik, de in vivo situatie 

benaderd wordt. Tot op de dag van vandaag worden vrijwel alle NMR studies echter 

nog steeds gedaan aan de bovengenoemde kleine biomolekulen. Op grond van 

theoretische argumenten neemt men aan, dat NMR aan grote biologische systemen 

niets of slechts ongestructureerde brede "bulten" laat zien. 

Deze dissertatie is een bewijs van het tegendeel. Het is geboren uit 

behoefte naar een bruikbare techniek, waarmee men op moleculaire schaal grote 

biologische systemen in oplossing kan bestuderen. Rontgendiffraktie en elektronen 

mikroskopie hebben in deze hun wel bekende beperkingen; kernspin resonantie, 
15 2 

zou hierin een taak kunnen vervullen. Gebruik van stabiele isotopen ( N, H, 

C) zou deze taak verder kunnen verlichten. NMR en stabiele isotopen vormen de 

sleutelwoorden voor dit onderzoek. Tabaks mozaik virus is als model systeem 

gekozen, omdat het groot, simpel en goed gedefinieerd is. Na bekende moeilijke 

tijden van vallen en opstaan kon een deel van het onderzoek afgerond worden. 

Tabaks mozaiek virus lijkt namelijk minder op een statisch bouwwerk, waarin 

alles zijn plaats heeft, dan op een levend organisme, flexibel en intern 

beweeglijk. 
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I. GENERAL INTRODUCTION 

1.1 TOBACCO MOSAIC VIRUS 

Tobacco Mosaic Virus (TMV) has a long scientific history. Purified and 

studied for the first time by Stanley in 1936 (1), it became a favoured 

model system in the fields of e.g. molecular biology, virology, physics, 

biochemics, biophysics and genetics. Since the preparation and properties of 

Fig. 1. Schematic model of TMV showing the helical arrangement of protein 
subunits and RNA (represented as a chain); reprinted from Caspar, D.L.D. (22), 
by Courtesy of Academic Press. New York. 
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the virus are well-characterized, it provides an attractive object for physical 

studies aimed at the elucidation of mechanisms underlying the 

elementary processes in molecular biology. The book of Kaper (7) gives a survey 

of the scientific history of TMV. TMV is a rod-shaped plant virus (molecular 

weight ̂  42 x 10 ) consisting of 2,200 identical protein subunits (molecular 

weight a- 17,450) and one RNA chain of ̂  6,600 nucleotides (2) (molecular weight 

% 2 x 10 ) . Its structure is schematically shown in Fig. 1. That the rod-like 

shape is based on a property of the protein subunits, became apparent when 

their assembly behaviour without RNA was studied. The protein subunits, 

depending on conditions such as protein concentration, temperature, pH, ionic 

strength, form a number of oligo- or polymers (3). Fig. 2. visualizes (from 

left to right) the rod-like protein oligomer which titrates anomalously, the 

"lock-washer" which is considered to be a hypothetical oligomer, the double disk 

0-8 

0 6 

O-l 

Single helix 

Limited stacks of disks 
27 s, 37 s etc Crystal 

Single helix 

f 8s 

A- protein 4 s 

end fYT, and 

_t_ 

PH 

Fig. 2. Phase diagram containing stable protein oligomers as a function of pH 
and ionic strength. Other conditions: concn: 5 tng/ml; temperature: 20 C; 
reprinted from Durham, A.C.H. (3), by courtesy of Academic Press. 

consisting of 34 protein subunits, stacks of double disks irreversibly formed 

at high ionic strength and smaller protein oligomers, such as pentamers, trimers 

and monomers. Purely monomer is only obtainable under extreme conditions (22). 

14 



The structure of the stacked disk has been analyzed by X-ray diffraction at 0.5 

nm resolution (11). One of these oligomers, the so called double disk, occurs 

Z 

-*-/{ —r -

20 
—r~ 
40 60 80 

Fig. 3. Schematic drawing of the RNA and protein backbone in TMV (side view), 
based on X-ray diffraction data. B are RNA bases; LS, RS, LR, RR and V forms the 
nomenclature for the protein a-helix sections; numbers refer to amino acid 
sequence coding (Appendix 1); Z and R are the axial and radial axis of TMV 
respectively, the latter with a radius of ̂  80 A; reprinted from Stubbs, G. 
et al. (10), by courtesy of Macmillan Journals Ltd. 

at physiological conditions and recognizes a TMV RNA section at about 1000 

nucleotides from the 3' RNA end after which the RNA is encapsidated (4,5). The 

folding of RNA and protein in the virus is schematically shown in Fig. 3. This 

figure is obtained from X-ray diffraction at 0.4 nm resolution (10) on oriented 

gels of TMV, a study which presently can be considered as one of the major 

achievements of X-ray diffraction in molecular biology. The X-ray study also 

reveals a remarkable feature in the protein of TMV, the so-called carboxyl cage 

containing a number of aspartic and glumatic acids and arginines, in close 

contact with each other. These acid amino acids are thought to be reponsible 

for the anomalous titration behaviour (22) of the rod-like oligomers with pK's 

of carboxyl groups shifted to -v, 7. Fig. 4A and B represent 

15 



Fig. 4. This figure is a more detailed presentation of Fig. 3, without RNA. A: 
computer display of two protein subunits in TMV (side view). Numbering is 
according to. Appendix 1. B: computer display of one protein subunit in TMV at 
slightly larger magnification. Unknown regions are indicated by bars. 

computer simulations of TMV protein subunits based on coordinates kindly made 

available by Dr. K.C. Holmes, Heidelberg. These pictures do not represent the 

actual structure in complete and reliable detail since only coordinates of the 
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ct-helix regions have been displayed and, furthermore, since the phase of the 

a-helices is subject to some uncertainty. In general however these figures give 

a good overall impression of the geometry and relative orientation of the 

protein subunits in TMV. These simulations were generated by Ms. T. Trienekens 

in collaboration with the Computer Center and the Department of Mathematics of 

this University according to a modified program obtained from Dr.R.J. Feldman, 

Division of Computer Research and Technology, N.I.H., Bethesda, U.S.A. 

From the point of view of a (molecular) biologist and virologist, a number 

of relevant- and sometimes intriguing- questions about TMV can be put 

forward. 

a) how does TMV penetrate the cell (6)? 

b) how does TMV dissociation occur under physiological conditions (7)? 

c) how does the RNA coding for protein synthesis proceed (8)? 

d) how is a specific section of the RNA. chain recognized by the double-disk 

(4,5)? 

e) how proceeds the RNA encapsidation and elongation (9)? 

In order to answer these questions it is necessary to have a thorough knowledge 

about protein-protein and protein-RNA interactions in TMV in solution. 

Furthermore, from the viewpoint of a molecular physicist, it is fruitful to 

incorporate in any model answering the above mentioned questions that the 

system must obey thermodynamical and statistical principles even at the level, 

where observations suggest a mechanistic model. 

The above mentioned interactions have in the past been studied by a large 

variety of methods such as X-ray diffraction (10,11), electron microscopy (12) 

and analytical ultracentrifuge experiments (13). Although this resulted in a 

rather detailed model of TMV and its protein oligomers, knowledge about protein-

protein and protein-RNA interactions at the molecular level in solution is 

scanty because at the moment no method is suitable for this purpose, 

except Nuclear Magnetic Resonance (NMR). NMR can be considered to be one of the 

most powerful methods for the study of structure and dynamics of biomolecules in 

solution (14). Contrary to what one would expect following standard NMR theory, 

stating that NMR is only valuable for studying small biomolecules (15), this 

Thesis endeavours to demonstrate that it is possible and attractive to apply NMR 

to TMV and other large biosystems. Nature provided TMV with such properties 

that the study of TMV by NMR became feasible, yielding at least a partial answer 

to the questions a through e, mentioned above. 
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1.2 NUCLEAR MAGNETIC RESONANCE 

In this Thesis all NMR experiments were carried out using High Resolution 

Fourier Transform (HR FT) NMR (16,17). The main differences with previous NMR 

studies on biomolecules are: the use of the highest available magnetic field 

stength to obtain the largest possible signal to noise ratio and resolution (17) 

(8.4 Tesla (T), 360 MHz for 1H, 90.5 MHz for 1 3 C ) , the size of the biological 

systems studied (TMV, Cowpea Chlorotic Mottle Virus (CCMV), E. aoli ribosomes). 

C enrichment of the biological systems, and, finally the way the NMR spectra 

are interpreted. These interpretations are based on the spin-lattice (T.) and 

spin-spin relaxation times (T2) (17) and to a lesser extent on chemical shifts 

and spectral intensity measurements. 

A simple introduction to the parameters T1 and T2 can be found in several 

textbooks (13,14,15). In large biological systems T1 and T2 are of crucial 

importance, since they determine the spectral intensity (signal to noise ratio) 

and resolution of NMR spectra. Presently, NMR spectra are mostly recorded in FT 

mode (16,17) and the resulting signal to noise (S/N) ratio of a number of 

accumulated spectra is largely determined by T1. S/N linearly increases with 

tn, where n is the number of accumulations (18); for each spectrum to be 

properly recorded a practical rule says one should wait a few times T1 before 

starting acquisition of the next spectrum (16,17). The T9 parameter for a 
-1 

Lorentzian NMR line shape (16,17) can be calculated from (TTT2) which is the 

line width at half height. The resolution in NMR spectra, consisting of many 

partly resolved resonances, can be improved by increasing the magnetic field 

strength, so that these resonance are being increasingly separated. 

Commercially available superconducting magnets have for NMR purposes an upper 

limit of 8.4 Tesla at the moment. 

T1 and T2 for rigid systems can be calculated using the equations for 

dipolar relaxation (19) (Appendix 3). The correlation time xR in these equations 

describing the rotational reorientation of a rig-id sytem in solution can be 

approached by the Stokes-Einstein equation for spheres (20) (Appendix 3). As a 

rule of thumb, the line width can be obtained by dividing the molecular weight 

of the system by 10 , e.g. ̂  64 Hz for hemoglobine with molecular weight 

<\- 64,000; -v 42,000 Hz for TMV. The values of T1 in both cases would be -v 1 and 
1 

^ 2000 s, respectively. Note that the maximum chemical shift range for H at 

360 MHz is ̂  4000 Hz and that a normal acquisition time is 'vl s. For TMV this 

implies that most of the spectra presented in this Thesis could only be 

obtained because TMV is in fact not at all rigid. In other words, the nuclei in 



TMV are internally mobile (21,23,24). T.. and T2 can now be used to describe 

this internal mobility (Appendix 4) Molecular information of a system as large 

as TMV now also can be obtained in solution because of internal mobility. 
1 13 

This Thesis presents NMR spectra and relaxation data of both H and C 
13 1 

nuclei in TMV. Although C is ̂  6000 times more insensitive than H (13-15), 

the resolution at 8.4 Tesla (90.5 MHz) is so much better than that for protons 

that for enriched TMV and its protein oligomers more molecular information 

could be obtained than from R NMR. 
13 

In Chapter 2 C spectra of TMV and its protein oligomers are presented 

and it shown that TMV and oligomers are internally mobile. In Chapter 3 the 

molecular motion within the double disk-like oligomer is described based on T. 

and T9 data. The short T..'s, observed in a number of other proteins have been 
13 

explained assuming spin diffusion (25,26). The magnetic dilution of C nuclei 
13 

also in 12% C enriched TMV protein warrants the absence of this mechanism. 

Chapter 4 contains the titration behaviour of spectral intensity of rod-like 

polymers of TMV protein which is interpreted in the framework of a model for 

internal mobility. In Chapter 5 internal mobility in sections of the protein 

chain in TMV, resulted in a more quantitive description of molecular dynamics 

in TMV and its protein oligomers. In Chapter 6 the enrichment procedures are 

reported and evidence is presented that TMV protein subunits in solution are 

structured not with standing the fact that there is considerable internal 

motion. A model for assembly of TMV from protein double disk and RNA is put 

forward in Chapter 7, based on internal mobility in the double disk-like 

oligomer, NMR results from Chapter 5, and thermodynamics. In this context the 

dissociation of TMV when penetrating the cell is discussed. Chapter 8 is an 

excursion to other biological systems, such as Cowpea Chlorotic Mottle Virus, 

E. ooli ribosomes, aimed at demonstrating that NMR can be used to study other 

large biological systems. In Appendix 1 the amino acid sequence of TMV protein 

including sections with a-helix configuration is given; Appendix 2 summarizes 

chemical shifts of all carbons of the amino acids; Appendix 3 contains dipolar 

relaxation equations for rigid systems; Appendix 4 gives the dipolar relaxation 

equations describing internal mobility. 

NMR spectra were taken by making use of three different machines: a 
1 

Perkm-Elmer 23B 60 MHz spectrometer equipped for H, made available by the 

Dept. of Organic Chemistry; A Varian XL-100 Fourier Transform (FT) spectrometer 
1 13 

operating at 100 MHz. and equipped for H and C; a Bruker SPX 360 Supercon 
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1 13 
FT NMR spectrometer, equipped for H and C, and made available by the 

Netherlands Organization for the Advancement of Pure Research. 

Using the latter spectrometer the method of Convolution Difference (CD) 

spectroscopy (27) was applied to TMV C spectra. In this method, the free 

induction signal originating from the C nuclei, is multiplied by an 
-at 

exponential (e ) and stored. Then, the process is repeated with a second 

exponential (e ) and the difference between the two resulting signals is 

subsequently fourier transformed, resulting in a Convolution Difference 

spectrum. In this way, broad spectral features are eliminated and the spectral 

resolution is enhanced. 
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2. A l 3C NMR STUDY OF TOBACCO MOSAIC VIRUS 

AND ITS PROTEIN 

J.L. de Wit, N.C.M. Alma, M.A. Hemminga, T.J. Schaafsma 
submitted to Biochemistry. 

2.1 INTRODUCTION 

Tobacco mosaic virus (TMV) is a well-known plant virus (molecular weight 

42 x 10 ) with length and radius of 300 and 9 nm respectively, containing 2,200 

identical protein subunits (molecular weight 17,500) complexed in a helix with 

6,600 RNA nucleotides (1). Both virus and its coat protein oligomers (2) have 

been widely studied by various techniques such as electron microscopy (3), 

circular dichroism (4), sedimentation analysis (5) and X-ray diffraction (6). 

Three dimensional electron density maps for crystals of stacks of protein 

double disks and gels of the oriented virus with 0.5 and 0.4 nm resolution, 

respectively, have recently been obtained (6,7]. Since the virus assembly is 

based upon protein-protein and protein-RNA interaction in solution, a comparison 

of the molecular models of the virus and protein (6,7) obtained from X-ray data 

and the molecular structure of TMV-RNA and protein in solution is necessary. As 

has been previously shown,Fourier Transform Nuclear Magnetic Resonance (FT NMR) 

can be used for this purpose (8). X-ray and NMR results on protein and RNA 

structure in crystal and solution have been compared in a few cases (8,9). 

NMR increasingly focuses attention on molecular dynamics manifesting itself as 

mobility of protein side chain groups modulating protein structure (10). It has 

usually been assumed that this technique can only be successfully applied to 

fairly small protein molecules (molecular weight < 50,000], because one expects 

longer spin-lattice (T..) and shorter spin-spin (T_) relaxation times for larger 

proteins, resulting in a loss of signal to noise ratio (S/N) and spectral resol­

ution, respectively. 
13 We report C NMR spectra for '\2% enriched TMV (11) (strain Vulgare) and 

its coat protein of which pH-induced rod-like and temperature-induced double disk­

like polymerization has been studied. A general discussion of these spectra in 

view of molecular dynamics for TMV and its protein oligomers is also presented. 
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2.2 13C NMR AT 90.5 MHz 

13 
The potential of conventional high resolution C FT NMR at 15.1 MHz on 

small protein molecules (molecular weight < 50,000) has been shown (12). The much 
13 1 

larger spectral resolution for C in comparison with H at the same magnetic 
field strength is an advantage, but the low sensitivity as a result of the 1.11 

13 
natural abundance and low gyromagnetic ratio is a large handicap for C NMR. 

Although for small proteins a number of resonances (carboxyl, carbamide, aro­

matic, arginine and backbone carbons) with large chemical shift anisotropy broaden 

with increasing frequency (up to 90.5 MHz), both spectral resolution and S/N in 

general improve, especially for aliphatic carbons (13). For large rigid protein 

molecules (molecular weight > 50,000) and spectral repetition times (T) of 'v 1 s, 

T1 is found to be > T and the S/N is related to T1 by (14), 

S/N = QT2 ( 1/T^ [1] 

where Q contains such factors as sample volume, concentration, probe quality and 

magnetic field. For these large proteins with rotational correlation times 
-9 

T R > 10 s, T1 increases with increasing frequency in the absence of internal 

mobility and a decrease in S/N is expected (14). In such a case the experiments 

on enriched TMV, at 90.5 MHz described in this paper would be laborious with a 

need for large amounts of material. Since TMV-protein solubility is limited 

(< 70 mg/ml), probes for sample tubes with diameters > 1 cm would be necessary. 

These are commercially not available at high magnetic fields (8.5 Tesla). There­

fore, it was an unexpected result, that the S/N increased with about a factor 8 

for protonated carbons of oligomers of TMV coat protein (molecular weight > 

50,000) when comparing C spectra at 90.5 and 25.4 MHz. All C NMR experiments 

described in this paper are performed on a SPX Bruker supercon spectrometer in 

FT mode employing ̂  5 W continuous wave H decoupling power with 5 kHz bandwidth, 
13 

an observe frequency for C of 90.5 MHz and quadrature detection. A D20 lock 

proved to be unnecessary for our measurements so that isotope effects of D70 
13 

are avoided by using FLO solutions. This is an additional advantage for C NMR 
1 z 17 

with respect fo H NMR. The use of C enriched TMV is necessary for sufficient 
13 

S/N. The enrichment is easy and inexpensive with CCU as the carbon source (11). 

The optimum enrichment (15) at which no appreciable carbon-carbon J coupling is 

present is 10-151. 
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2.3 90.5 MHz 13C SPECTRA OF TMV 

13 The C spectrum of 124 enriched TMV purified according to Leberman (16) 

is given in figure 1A. A sedimentation coefficient of 130 S is found and 

electron micrographs show rod-like particles with length of 300 nm for the 
13 virus. No significant saturation of the observed protonated C resonances 

is observed with T = 1 s, since a control experiment with T = 2 s showed that 

the intensity increase upon changing T from 1 to 2 s was less then the noise 

level (which was about 304 of the spectral intensity in this particular 

experiment). With the resonance intensity (I) given by (17), 

I = ̂  [1-exp (-T/T^J PI 

this results in T, < 1 s. 

20 ppm 100 200 

Fig. 1. Broadband *H decoupled 90.5 MHz 1 3 C NMR spectra of TMV and its RNA and 
protein constituents taken both at % 30 C with a concentration of 60 mg/ml 
(1 ml total volume) and 50,000 accumulations with spectral repetition time of 
1 s and sensitivity enhancement of 30 Hz. The ppm scale is referenced to CS2 

assuming 125.8 ppm for the (3-Thr carbon position. The vertical scales of A 
and B are different. Further conditions for: A, 1 mM sodiumphosphate pH 11; 
B, 1 mM sodiumphosphate pH 7.2. 

24 



13 In figure 1B the C NMR spectrum of a clear solution of TMV dissociated 

in its RNA and native protein oligomers (average molecular weight < 50,000] is 

presented. The intensity of the native TMV spectrum (fig. 1A) compared to that 

of the spectrum of its free RNA and protein constituents for the backbone 

region between 120 and 150 ppm and the aliphatic region between 150 and 200 ppm 

is 6 and 171 respectively. The RNA resonances have low intensity and are mainly 

found in the region 40 to 125 ppm. The spectrum in figure 1B contains resonances 

of all carbons of the protein in the sample tube resulting from the molecular 

weight (< 50,000) of the protein oligomers under these conditions and a 
13 

comparison with a C spectrum of a known amount of lysozyme (12). On the average 

about 901 of the protein carbon resonances are not observed in the TMV spectrum 

(fig. 1A). 
13 The line width parameter (1/TTT9) for C-H dipole-dipole relaxation in large 

2 2 rigid proteins for Up x R » 1, is given by (18), 

1/T2 = 0.2(yo/4Tr)2NYc
2YH

2n2xR/rCH ' C 3 ] 

where y c and Y H are the gyromagnetic ratios in rad/s for C and H respectively, 

xR is the rotational correlation time, r™, is the C-H distance and u„ is the 

Larmor frequency in rad.s , N is the number of protons interacting with a C 

nucleus, (u /4IT) y„ Yu ^TCH = 2.147 x 10 s" with r™, = 0.109 nm. For 

spherical proteins xR can be calculated from the Stokes-Einstein equation (19), 

x R = M v n/RT, [ 4] 

where n is the viscosity, M is the molecular weight and v the partial specific 

volume. From equations [ 3] and [, 4j, it can be calculated that the lines in 
13 the C spectrum of the virus should be broadened with a factor of 800 compared 

to the lines in the spectrum of native protein oligomers (molecular weight 

< 50,000) and free RNA. 

The factor 800 is a lower limit for the increase in line width. Taking into 

account the rod-like shape of the virus particle, (the known rotational 
-3 correlation time of rod rotation about the lateral axis of 1.1 x 10 s(21) 

yields ̂  1 x 10" s for rod rotation about the axial axis from the moments of 

inertia) and the deviations from the Stokes-Einstein equation (20) still higher 

numbers are calculated. 
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In the absence of internal rotation and taking T C ̂  1 x 10 s, T.. is 
13 > 2000 s for the C virus resonances as can be calculated from dipole-dipole 

spin-lattice relaxation for a C-H fragment (18), which is in contrast with the 

observed L < 1 s. 

These calculations demonstrate that then under our NMR conditions with a 

receiver dead time of ̂  50 ysec and short spectral repetition times, virus 

resonances should be broadened and saturated beyond detection (22). The 
13 13 

observable resonances of the C virus spectrum must therefore arise from C 

nuclei of the TMV coat protein with rotational degrees of freedom within the 

virus with correlation times « 10" s. 

From the spectral regions indicated in figure 1 it can be seen that side 

chain resonances (g-Ser, f3-Thr and aliphatic carbons) and a number of backbone 

resonances (C and carbonyl) have internal rotational degrees of freedom. 
It is impossible to determine the increase in line width for the non-

13 
resolved resonances in the C virus spectrum in comparison with the spectrum 
of its free constituents, because there is a large resonance overlap in the 

aliphatic region. From the H virus spectrum at 100 MHz however, it can be 
13 13 

concluded that the observable aliphatic C resonances in the C virus spectrum 
in any case have C line widths < 300 Hz (23). 

2.4 pH INDUCED ROD-LIKE PROTEIN POLYMERIZATION 

13 The C FT NMR spectrum of small oligomers of TMV protein purified 

according to Durham (2) with slight modifications (23) is shown in figure 2A. 

These protein oligomers have a E982/2S2 v ^-5 and a single sedimentation 

coefficient of 3.8 S in a Spinco analytical ultracentrifuge in 0.12 M Tris HC1 

pH 8.6 at 5 °C. This spectrum (Fig. 2A) is comparable with that given in 

Figure 1B, the only difference being the absence of RNA resonances. In 

figure 2B the C NMR spectrum of TMV protein at pH 5.3 is shown. At this pH 

the protein polymer has a rod-like configuration with the protein subunits 

arranged in a helix, similar to the structure of the complete virus (24). An 

average intensity decrease of 901 is found with respect to figure 2A. Although 

this number is comparable to the intensity decrease observed for the virus, it 

is remarkable that now no significant line broadening is observed in comparing 

the high field flanks (180 ppm) of figure 2A and 2B. In analytical ultracen­

trifuge experiments no components with sedimentation coefficients < 40 S have 

been found at conditions given in the caption of figure 2B, in agreement with 
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literature data (25). 

20 ppm 100 200 

Fig. 2. Broadband JH decoupled 90.5 MHz 1 3C NMR spectra of TMV protein oligomers 
with a concentration of 60 mg/ml (1 ml total volume) in 0.1 M NaCl taken at 7 °C 
with a spectral repetition rate of 0.5 s, a sensitivity enhancement of 45 Hz and 
17,000 as the number of accumulations. The ppm scale is referenced to CS2, 
assuming 125.8 ppm for the g-Thr carbon position. The vertical scales of A and 
B are different. Further conditions for A, pH 10.0; B, pH 5.3. 

From the sedimentation coefficient an increase in molecular weight of at 

least 40 is calculated when going from 3.8 to > 40 S polymers. T.. and T 2 should 

increase and decrease with this factor, respectively, if the coat protein 

oligomer is considered to be rigid, resulting in saturation and strong broadening 
1 3 of the C resonances. Consequently, here again the residual intensity of about 

101 must also arise from rotational degrees of freedom within the protein 

polymers. 

2.5 TEMPERATURE-INDUCED DOUBLE DISK-LIKE PROTEIN POLYMERIZATION 

Under "physiological" conditions, polymerization of IMV-protein results 

in a double disk-like configuration which has been shown to be important for 

virus assembly (25). In figure 3B and 3A C spectra at 5 and 30 °C of oligomers 

with sedimentation coefficients 4 and 18 S are shown. From this figure and 

100 MHz H NMR experiments (23) it is concluded that no disappearance of 

spectral intensity and no line broadening is observed upon double disk-like 

polymerization. Consequently, the conclusion of rotational degrees of freedom 
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can be extended to all nuclei of both backbone and side chains within the double 

disk-like protein oligomer. 

20ppm 100 200 

Fig. 3. Broadband 'H decoupled 90.5 MHz 1 3C NMR spectra of TMV protein oligomers 
in 0.1 M NaCl at pH 7.3 with 1 ml total volume. The ppm scale is referenced to 
CS2 > assuming 125.8 ppm for the g-Thr carbon resonance position. The aromatic 
regions are omitted because of large humps in the spectra. The vertical scales 
of A and B are different. Further conditions for A, 30 C, 40 mg/ml, A000 accumu­
lations with T = 1 s and a sensitivity enhancement of 40 Hz; B, 7 C, 60 mg/ml, 
17,000 accumulations with T = 0.5 s and a sensitivity enhancement of 45 Hz. 

In contrast figure 3 clearly shows a decrease in line width with increasing 

temperature for a number of resolved carbon resonances both in the spectral 

region for backbone and side chain carbons. At certain spectral positions a 

sharpening of the resonances is recognized for carbonyl-, 5-Arg-, g-Thr-, 

g-Ser- and other aliphatic carbons. A comparison of the total integrated alipha­

tic spectral region of figure 3A and the regions under the resolved resonances 

with exception of the methyl resonances, yields ̂  101 for aliphatic resonances 

of which the line width decrease with an increase in temperature (fig. 3A and 

3B); if methyl groups are included this number increases to ̂  201. NOE has been 

ignored in this calculation, although an effect is observed for methyl resonances 

in this case (unpublished results). 
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2.6 INTERNAL ROTATIONAL MOTIONS 

In the presence of internal rotations the relaxation times T^ and T 2 differ 

in their molecular weight dependence. 

l/rrtyHzl 

100-

10-

1 • 

0.1-

^ — V 

1 1 

B 

1 

-LogTR(S) 

T, IS) 

0.1-

-LogTg (S) 

Fig. 4. A, the spin lattice relaxation time Ti plotted against the internal 
rotational correlation time T on a double logarithmic_scale for overall 
rotational correlation times T_ of 10" a s ( ] ) and 10 8 s ( 2 ); B, the line 
width parameter (1/irT.) plotted against the overall rotational correlation 
time T on a double logarithmic scale for internal rotational correlation 
times T of 10 

g 
s ( 1 ) and 10 s ( 2 ). 
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According to Doddrell et al (26), taking a correlation time for one degree of 

freedom of internal rotation (x ) for a tetrahedral C-H fragment about its C-C 

axis over 360 and xR for the isotropic reorientation of the oligomer, the T.. 

and T2 dependence on x and xR is graphically represented in figure 4 at an 

observe frequency of 90.5 MHz. According to Van Putte (28) a similar behaviour 

of T1 with x (fig. 4A) is found, when x describes restricted rotations over 

angles « 360°. Furthermore, it can be shown that in proteins with a secondary 

and tertiary structure restricted rotations are possible (27). 
„7 

From figure 4B it can be seen that T2 depends on xR only when xR > 10 . 

According to Doddrell (26) (with x « xR) this xR-dependency of T2 is given by 

equation [ 3] with a reduction factor of 1/9. 

2.7 ROTATIONAL DEGREES OF FREEDOM WITHIN TMV AND ITS PROTEIN OLIGOMERS 

From X-ray data it can be shown that TMV-protein double disks and virus 

possess distinct secondary, tertiary and quaternary structure (6, 7). This 

structure must also be present in solution in view of the following observations: 

1) a large number of backbone-nitrogen bound protons is found to be non-

exchangeable (29); 2) there are amino acid side chains which are non-reactive 

towards chemical agents because they are buried in the protein subunit (30) or 

protein-oligomer; 3) the presence of an RNA combining site; 4) a substantial 

amount of a-helix detected by ORD/CD (31); 5) a protein subunit structure and 

intersubunit interactions necessary for the rigidity of the protein oligomers; 
13 

6) C NMR spectra indicate chemical shift inequivalence for at least a number 

of resolved resonances caused by the folding of the protein (unpublished 

results). Therefore, conclusions from our NMR data showing internal motion to 

a large extent in virus, rod-like protein oligomers and double disk-like 

protein oligomer must be interpreted keeping this in mind. 

The experimental value of T1 (< 1 s) for the virus can easily be accounted 

for by small angle rotations (27, 28) in contrast with an explanation for the 

behaviour of T2. A xR of 1.1 x 10" s can be calculated based on Doddrell's 

model (26), if internal rotation is included using the reduction factor of 1/9 

and a C line width of 300 Hz (23) for virus carbons in equation [ 3]. Even 
"9 

under these conditions with a small x value (< 10 s) this number is still 

100 times smaller than the lower limit for the time constant of virus rotation 

of 1 x 10" s. Therefore, T2 shows that the observable resonances represent 

regions in protein subunits within the virus with more than one degree of 

freedom of rotation. 
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An impression of what type of carbons are involved in these rotational 

motions can be acquired by comparing the weighted surfaces of different regions 

in the spectra (Fig. 1A and 1B). The observable 17$ of the amino acid side 

chain groups with spectral positions between 148 and 200 ppm corresponds to a 

total number of 47 aliphatic carbons and consists of about 18 CH, carbons 

between 172 and 200 ppm and about 29 CH? and CH carbons between 148 and 172 ppm. 

The peak at 125 ppm corresponds to ̂  2 B-Thr carbons. Depending on the number of 

g-Ser carbons at 132 ppm, a number of % 10 a-carbons is calculated to be obser­

vable in the region 120 to 150 ppm. This number is comparable with the number of 

observable carbonyl resonances. No 6-Arg carbons are found and the resonance in 

the aromatic region at 65 ppm could correspond to 1 Phe side chain group. The 

number of side chain carbons showing rotational motions exceeds the number of 

mobile a-carbons with a factor of about 5. The accuracy of the calculations is 

estimated to be within + 20$, the largest inaccuracy contribution arising from 

the determination of the relative spectral intensities (Fig. 1A and 1B). The 

observed a-carbons in the virus must belong to very mobile regions of the protein 

subunits, because backbone carbon rotations with more than one degree of freedom 

also force connected carbons into rotational motion. Another possibility is that 

the observed a-carbons among themselves are connected and belong to the same 

backbone section. 

Although rod-like protein oligomers and virus yield comparable residual 

spectral intensity, the shape of their spectra differ considerably. For rod-like 
13 

protein polymerization a reduction in intensity for the C spectra is observed 

with only minor changes in spectral position and linewidth. Since RNA is now 

absent, the protein subunits can only interact with adjacent subunits. Rotational 

and translational motions of the protein subunit within the oligomer, motions of 

parts of amino acids within the protein subunit, and exchange of subunits between 

protein oligomers must be considered. 
13 The C spectra of the temperature-induced double disk-like oligomers differ 

from those of the pH-induced rod-like oligomers in that in the former case no 

loss in intensity and line broadening is observed upon polymerization leading 

to the conclusion that all nuclei of both backbone and side chains possess 

rotanional motions within the double disk-like oligomer. For about 20$ of the 

protein resonances including a number of a-carbons, a molecular weight indepen­

dent behaviour for the line width is found. This can not be explained using 

figure 4B, and these carbons therefore must have more than one degree of freedom 

for rotation. Since the remaining resonances are unresolved and I/TT^ is calcu­

lated to be « <5, where 6 is the chemical shift range for a number of unresolved 
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13 
C resonances, the overall line shape of these resonances is less sensitive to 

an increase in molecular weight (y 10x) upon protein polymerization from trimer 

to double disk. From an analysis of H NMR spectra, however, it can be concluded 

that all nuclei within the double disk-like oligomer show a molecular weight 

independent line width behaviour, indicating also the presence of more than one 
-8 

degree of freedom of internal rotation (23) on a time scale ̂  4 x 10 s. 
-8 

Internal rotational motions with correlation times < 4 x 10 may arise 

from one or more of the following causes: mobility within the protein subunit, 

mobility of the protein subunit within the oligomers and fast exchange 
7 -1 

(> 2.5 x 10 s ) of protein subunits between oligomers. Exchange does not 

occur at this time scale, however, because of the large free energy decrease 

for protein subunits binding in an oligomer (25,23) and the absence of small 

molecular weight oligomers in analytical ultracentrifuge runs. 

2.8 IMPLICATIONS FOR X-RAY DIFFRACTION 

The 0.4 nm resolution electron density map for the virus allows for 

internal mobility of amino acids primarily on the exterior of the virus (6). 

In a paper by Caspar et al. (32) very small coordinated motions are suggested 

within the Dahlemense strain of TMV. It must be noted that there are large 

differences in extension and time scale between our NMR measurements and their 

suggestion. 

Because only low resolution X-ray and NMR data are available, a correct compa­

rison is as yet impossible, so that at the moment the number of nuclei showing 

x„-independent internal rotational motions is not inconsistent with X-ray 

analysis. For the rod-like protein oligomer no X-ray data have been published. 

A comparison of the 0.5 nm resolution electron density map for crystals 

of stacks of double disks with NMR data for double disk-like oligomers in solution 

reveals large differences in molecular dynamical behaviour. Our data indicate 

that all nuclei within the double disk are mobile and even if these nuclei 

possess only one degree of freedom of internal rotation the electron density 

of the protein subunit should be completely smeared out. It is interesting to 

note that the number of nuclei showing line width decrease upon double disk-like 

polymerization (Fig. 3) roughly corresponds to the number of amino acids with 

a smeared-out electron density in the crystal (6). X-ray data have been obtained 

for stacks of double disks crystallized from 0.8 ionic strength solutions while 

NMR experiments were performed on oligomers in 0.1 to 0.2 ionic strength 
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solutions containing double disks. It is likely that the protein in the crystal 

is "frozen" by the constraints of crystal packing and periodicity. It must be 

realized that the widely different dynamical behaviour of protein subunits in 

the crystal and in solution must also imply conformational differences (10): 

a number of conformations must be present in solution to account for the observed 

internal mobility. Preliminary experiments show that at high ionic strength the 

spectral intensity starts to disappear for the double disk-like oligomer with 

a spectral behaviour similar as observed for the rod-like oligomer. It must be 

realized, however, that amino acids with smeared out electron density in an 

X-ray diffraction pattern may arise from spatial or time-dependent disorder 

while NMR measures only time-dependent disorder on a short time scale. 

2.9 IMPLICATIONS FOR NMR 

Because of large internal rotational motions TMV, and its oligomers with 

different types of assembly (rod-like and disk-like oligomers) can be studied 

in solution by NMR. The molecular weight does not appear to be the limiting 
1 13 

factor for application of H and C NMR. From preliminary experiments it is 

also concluded that TMV is no special case, since high internal mobility is 

found in a number of viruses, phages and ribosomes. Conventional FT NMR is 

therefore not restricted to low molecular weight biomolecules and opens possi­

bilities to approach the in vivo situation, by obtaining information on mole­

cular level of high molecular weight biosysterns in solution. 
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3. A l 3C AND'H NMR STUDY OF THE DYNAMIC 

BEHAVIOUR OF TOBACCO MOSAIC VIRUS PROTEIN 
J.L. de Wit, M.A. Hemminga and T.J. Schaafsma 
J. Magn. Resonance, in press. 

3.1 INTRODUCTION 

Tobacco Mosaic Virus (TMV) is a rod-shaped plant virus consisting of RNA 

and 2,130 identical protein subunits with a molecular weight of 17,500. The 

total molecular weight of the virus is 42 x 10 (1). A protein/RNA model of 

the virus has recently been published based on a 4° X-ray diffraction map (2). 

The coat protein of TMV has been well-characterized by various techniques such 

as sedimentation analysis (3), electron microscopy (4) and X-ray diffraction 

(5), 

There is an increasing amount of NMR literature on proteins. Because one 

expects long-spin lattice relaxation times (T1) and severe line broadening 

O/TTT,} for large rigid biomolecules, conventional H and C FT NMR have been 

restricted to fairly small systems with molecular weight < 50,000 (6). 
13 

Recently we introduced C FT NMR as a promising technique for the study 

of the dynamic behaviour of TMV and its coat protein (7). Although one normally 

assumes a rigid structure for TMV and its protein oligomers, as indicated by 

electron microscopy (4] and X-ray diffraction (5), about 10% of the carbon 

atoms of the protein in the virus shows a dynamic behaviour on a time scale 

upon which conventional FT NMR is sensitive (7). In addition we found increased 

mobility in the oligomers of TMV coat protein without RNA (7). 
1 13 

In this paper we present H and C frequency dependent T.. and T2 data for 

different types of protein oligomers, without discussing single resonance 

behaviour. The results are interpreted in terms of a high degree of internal 

motion within the protein oligomers and thermodynamic parameters defining their 

stability. 

3.2 EXPERIMENTAL 

2,2.1 TMV-protein preparation 

For 13C NMR experiments 10-151 randomly C-enriched TMV was used. The 

36 



preparation of the enriched virus will be described elsewhere (Chapter 6]. 
13 Normal and C-enriched TMV strain Vulgare was purified according to Lebermann 

(8). TMV-protein was prepared according to Durham (3). This method was slightly 

modified in that 0.1 mg/ml Macaloid was added to all solutions and the virus 

was dissociated in protein and RNA in 0.01 M-NaOH until the solution became 

clear. The time for clarifying the solution was always less than 30 minutes. 

Protein stock solutions were stored in water at 5 °C at pH ̂  5 and were charac­

terized by sedimentation analysis, gel electrophoresis and optical density 

measurements. For sedimentation analysis a Spinco analytical ultracentrifuge 

was used, equipped with an automatic speed control. The protein always showed 

a single boundary with 3-4 S in 0.12 M-Tris HC1, pH 8.6 at 10 °C and a concen­

tration of 30 mg/ml. Also a single protein band was found on 5% gel electro­

phoresis in 0.12 M-Tris HC1, pH 8.6 at 5 °C, using recrystallized acrylamide 

(9). In all cases the optical density ratio E?82/252 w a s > 2-^* ̂ e residual 

nucleotide content of the protein samples was < 10 yg/g protein as determined 

by phosphate analysis (10]. Protein concentrations were determined spectrophoto-
0 19 1 

metrically with E 2 Q Q ° = 1.27. For all H NMR measurements the protein was 

extensively dialyzed against 99.81 D.O (Biorad) at pD ̂  6. NaOH and NaOD were 

used to adjust the pH and pD. For the pD measurements, the pH meter reading was 

used (11). 

3.2.2 NMR measurements 

1 13 

100 MHz H and 25.2 MHz C NMR measurements were carried out on a Varian 

XL-100 spectrometer in FT mode, using 10 Watt H noise decoupling with 1.5 kHz 

bandwidth for 1 3 C. 360 MHz 1 H and 90.5 MHz 1 3C NMR were performed on a Bruker 
SPX-360 supercon spectrometer in FT mode with quadrature detection using 4 Watt 
1 13 
H noise decoupling with 5 kHz bandwidth for C. A Hitachi Perkin-Elmer R 24B 

was used for the 60 MHz H NMR measurements. Spin lattice relaxation times T.. 

were determined both by progressive saturation and inversion recovery (12]. On 

the Bruker SPX-360 and Varian XL-100 spectrometers temperature was kept constant 

within 5 °C over a period of 8 hours by flowing cold evaporated nitrogen from a 

liquid nitrogen container directly through the probe, permitting long time 

averaging experiments. 
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3.3 RESULTS 

3.3.1 r data for 1H at 100 MHz and 360 MHz 

As shown in Fig. 1, the resonance overlap in protein oligomers is very 
severe. Relaxation can only be measured for various spectral positions, each 
consisting of a number of overlapping resonances, as indicated in Fig. 1. It is 
found that this relaxation is approximately exponential with T.. given in Table 1. 
It is clear that such a T.. parameter is a measure of the time decay of the expo­
nentials of different overlapping resonances. Therefore the real differences 
between the T.. values of resolved resonances can be much larger as indicated in 
Table 1. 

The molecular weight of the protein oligomers ranges from O.S to 1 x 10 , 
as calculated from sedimentation analysis. This is in agreement with results 
obtained by Paglini and Lauffer (13) and molecular weights predicted from the 
linear condensation theory (14). 

The oligomers are mainly in the double disk configuration, consisting of 34 
protein subunits (15). 

For dipole-dipole interaction between protons, T.. is given by (16) 

1/T, = 0.6 (yo/47T)2 N Y J *2 rj£ <^2 x / 1 , [ 1] 

2 2 assuming u£ x » 1. N is the number of protons interacting with the observed 

proton, Yo is the H gyromagnetic ratio, r„, is the proton-proton distance, 
oVr is the Larmor frequency in rad. sec" and x is the dipolar correlation time. 

The term (y /4TT)2 yt n 2 r ^ = 1.791 x 10 1 0 sec-2 with r ^ = 0.178 nm for the 
0 n tin Hn 

H-H distance in a CFL-group. 
Because of the overlap in the H NMR spectrum, it is not possible to study 

the relaxation behaviour of single resonances. Therefore Eq. [ 1] will be used 
to determine 
values of T., 

to determine upper limits for x in accordance with the largest experimental 

'r 
The dipolar correlation time x can be written as 

-1 -1 
T c = X r 

where xD is the rotational correlation time of rigid protein oligomers and x K m 
the i 
(17) 

the residence lifetime of protein subunits in an oligomer, x is given by 
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aliphatic 

10 ppm -10 

Fig. 1. 360 MHz *H NMR spectrum of oligomers of TMV coat protein in D2O, The 
molecular weight is between 0.5 and 1 x 106. Conditions: cone. 40 mg/ml, 
temp. 31 °C, pD 7.6, 0.1 M-NaCl. No reference for the ppm scale was used. 
Arrows indicate positions where Ti is determined. The regions in the spectrum 
at about 4.0 ppm and 2.5 ppm are omitted because of the strong resonance of 
HD0 and a strong spike arising from the quadrature detection, respectively. 
Acquisition time plus pulse delay: 1 sec, number of accumulations: 447, 
sensitivity enhancement: 1.25 Hz. 

Table 1. Spin lattice relaxation times T. for H at 100 and 360 MHz for various 
spectral positions 

Position 

T (s) at 100 MHzC 

T (s) at 360 MHza 0.36 

2 

0 

0 

32 

70 

3 

0.32 

0.97 

4 

0.32 

0.97 

5 

0.32 

0.73 1.1 1.1 

See caption of Fig. 1 for experimental conditions. T values are uncorrected 
for the number of protons interacting with the observed protons. The accuracy 
of the T values is + 10%. 

Numbers correspond to arrows in Fig.l. 

T. determined by inversion recovery. 

Tj determined by progressive saturation. 
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Tm"' = (kT/h) exp C- ACf/RTl, [3] 

where k is the Boltzmann constant, T the absolute temperature and AG3, is the 

free energy of activation. The free energy of binding (AG) of protein subunits 

in the smallest oligomer, the trimer, is -50 kJ mole (18). Because AGa > AG, 

a lower limit for x of 8.7 x 10" sec is calculated. 
m 

The rotational correlation times for protein oligomers, in the absence of 

motions within the oligomers, can be calculated from their molecular weights 

using the Stokes-Einstein equation (17) 

T R = M v n / RT, [4] 

assuming a spherical geometry and neglecting hydration effects. M is the mole-
-3 3 - 1 

cular weight, v the partial specific volume (0.71 x 10 m kg ) and n is the 

viscosity of the solvent. Hallenga and Kbenig (19) have shown that Eq. [_ 4] can 

be used for a large range of molecular weights including non-spherical macro-

molecules, to calculate approximate values for T „ . The range of molecular 

weights of 0.5 to 1 x 10 for the protein oligomers corresponds to T D values 
-7 varying between 1.4 and 2.8 x 10" sec, respectively. Since x » xR, Eq. £ 2\ 

shows that x = xR. Therefore the contribution of protein exchange is ignored 

in this paper. 

Inserting in Eq. [ 1] the smallest value 1.4 x 10" sec for xR, it is found 

that T1 = 67 sec at 360 MHz and T., =5.1 sec at 100 MHz for N = 1. There is a 

large deviation between the calculated and experimental T. values given in 

Table 1. Part of this deviation can be attributed to paramagnetic effects of 

oxygen (20). The effect of dissolved oxygen could be important for the region 

T1 > 2 sec (20). The longest relaxation time in Table 1 is about 1 sec for 

aromatic protons and a maximum oxygen effect of 301 may be expected for these 

protons, which is too small to explain the discrepancy between theoretical and 

experimental T.. values. Rather, we are led to conclude that there must be inter­

nal motions within the protein oligomers. These internal motions may arise from 

mobile protein subunits within the oligomers and/or mobile protons within the 

subunit. 

If we now calculate T.. again, assuming the extreme case that the protein 

subunits with molecular weight of 17,500 are isotropically reorienting in the 

oligomers with a xR of 5 x 10"9 sec, Eq. [ 1} yields T^ = 2.4 sec at 360 MHz. 

n is assumed to be the viscosity of water. This T.. value is still larger than 
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that given in Table 1, demonstrating that the existence of subunit motion alone 

is not sufficient to explain the T.. data. Therefore it is concluded that there 

are motions of protons within the subunit as well, their correlation times being 
-9 

smaller than 5 x 10 sec. At 100 MHz a value of 0.18 sec is calculated for T,. 

Although this value is lower than the T1 values in Table 1, it does not affect 

the above mentioned conclusion, but only indicates that the assumption of iso-
-9 tropic rotational motion of the subunit with x_ of 5 x 10 sec is not correct. 

From Table 1 it can be seen that at higher frequency the T1 values start to 

deviate from each other. In the theory of spin diffusion (21), where the diffu­

sion process tends to equalize the T.. values, smaller T.. differences are predic­

ted at higher frequency. This contradicts with the data in Table 1 and therefore 

spin diffusion is excluded. 

3.3.2 T data for 13C at 25.2 and 90.5 MHz 
1 

Fig. 2 gives the 90.5 MHz 13C NMR spectrum of about 121 13Oenriched protein 

oligomers with molecular weights 0.5 to 1 x 10 . The spectral resolution is much 

better than the resolution of the 360 MHz spectrum of Fig. 1, because of the 
13 13 13 

larger chemical shift range for C and the absence of O C J-coupling. This 

allows a determination of T.. for groups of carbons in the protein, such as QL,, 

CBL, C , C„ of serine, CR of threonine, C„ of arginine and carbonyls. T.. data of 

the various spectral positions of Fig. 2 obtained at 25.2 and 90.5 MHz are col­

lected in Table 2. In all cases the relaxation of the spectral regions turned 

out to be approximately exponential. 
13 The C dipolar spin lattice relaxation time T.. of aliphatic carbons is 

given by (22) 

9 NYr Y H ft 

,UrCH 

T R +
 5 T R +

 6 T R 

1 + ((0H-U)C) T R 1 + W 2 T R 1 + 0 ^ ) T R 

[5] 

13 
where y c is the C gyromagnetic ratio, r^j, the proton-carbon distance and 

"\% 9 9 9 9 A 1 fl — 9 

u)„ the C Larmor frequency. The term (y /4ir) YcY^i r ^ = 2.147 x 10 sec" 

with r C H = 0.109 nm for a CH, C H ^ or CH3 group. Taking the smaller value of T R , 

(1.4 x 10"7 sec), for the double disks, Eq. [ S[ yields T1 = 7.0 sec at 90.5 MHz 

and T1 =0.55 sec at 25.4 MHz for N = 1. The values of T1 obtained at 90.5 and 

25.2 MHz are larger than those found experimentally, showing again the presence 

of motions within the protein oligomers, in accordance with the H results 

presented before. 
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20 ppm 100 200 

Fig. 2. Broad-band noise decouples 1 3C NMR spectrum of oligomers of TMV protein 
at 90.5 MHz. The protein is enriched for about 12% with 1 3 C . The molecular 
weight is between 0.5 and 1 x 106. Conditions; cone. 40 rag/ml, temp. 30 C, 
pH 7.3, Q.l M-NaCl. The ppm scale was calculated refering to CS2 as a standard. 
Arrows indicate positions where Tj is determined. Because of a large background 
hump in the spectrum, the region between 50 and 100 ppm is omitted and the 
phases of the aliphatic, backbone and carbonyl/arg region have been adjusted 
separately. 
Acquisition time plus pulse delay: 1 sec, number of accumulations: 4000, 
sensitivity enhancement: 40 Hz. 

Table 2. Spin lattice relaxation times T for 
various spectral positions 

13 
C at 25.2 and 90,5 MHz for 

Position 

T (s) at 25.2 MHz 

Tj(s) at 90.5 MHz 

1 2 3 4 5 6 7 8 9 

0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

0.22 0.26 0.27 0.42 0.37 0.34 0.27 0.35 3.0 

See caption of Fig. 2 for experimental conditions. 
Ti values are determined by progressive saturation and are uncorrected for 
the number of protons interacting with the observed 
The accuracy of the Ti values is HH 10%. 

Numbers correspond to arrows in Fig. 2. 

C nuclei. 
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3.3.3 H line shape analysis at 360, 100 and 60 MHz 

The line shape of an NMR spectrum is determined by the chemical shift a and 

intrinsic line width 1/TTT2 of the resonances. The spin-spin relaxation time T2 

for 13C or 1H is given by (16, 22) 

1/T2 = N D TR, [6] 

2 2 13 2 2 1 
assuming that uc T R » 1 for C and w|j T R » 1 for H. The term D is given by 

0.2(yo/4TT)2Y^Hli2 ^ for 13C and 0.45CyQ/4^2
TJ Ti2 r̂ jj for 1H. 

In order to obtain additional information about the dynamic behaviour of the 

TMV coat protein it is of interest to know the line widths of all individual reso-
13 1 13 

nances in a C and H NMR spectrum. For the best resolved C NMR spectrum, shown 

in Fig. 2, there is strong resonance overlap, preventing an accurate determination 

of line widths of all resonances. It is possible, to find an upper limit for the 

line width 1/TTT2 of all components in a group of overlapping resonances, however, 

by considering their line shape. When ACT is the chemical shift range of a group 

of overlapping resonances, the line shape will generally be insensitive to T2 if 

ACT » 1 /TTT- - On the other hand, the line shape will be sensitive to T2 and inde­

pendent of Aa if ACT « 1/TTT2. 

TO approach this situation in practice the chemical shift range must be made 

as small as possible. Since T2 is frequency independent (see Eq. [6]}, this can 

be realized experimentally by varying the measuring frequency and determining the 
13 point where the line shape is insensitive to ACT. Compared to C, the chemical 

shift range for H is much smaller. Therefore the line shape of the aliphatic 

protons is measured at three different frequencies. In Table 3, the line width 

parameters A..„, A,Q and A ™ of the aliphatic line shape are presented at 360, 

100 and 60 MHz. The definition of A1Q, A,„ and A ™ is given in Fig. 3. 

From Table 3 it can be seen that there is almost no change in the line 

width parameters when going from 100 to 60 MHz, indicating that the aliphatic 

line shape at 100 MHz is independent of ACT and thus has the largest sensitivity 
1 13 

to variations of T2, as compared to 360 MHz H and 90.5 and 25.4 MHz C line 

shapes. An upper limit for the line width 1/irT2 of a resonance in the aliphatic 

line shape is approximately equal to A ™ , yielding 240 Hz for oligomers of TMV-

protein at pD 7.7 with molecular weight 0.5 to 1 x 10 . The line width parameters 

at pD 7.7 can be compared with those for oligomers with molecular weight 52,500 

at pD 11.4 and oligomers at pD 8.2 (see Table 3). From these results it is clear 
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10 ppm 

Fig. 3. 100 MHz H NMR spectrum of oligomers of TMV coat protein in D20, with 
molecular weight between 0.5 and 1 x 101*, Conditions: cone. 30 mg/'ml, 
0.2 M NaCl, temp. 5 C, pD 1J.4. No reference was used for the ppm scale. The 
spectral region at about 4.5 ppm is omitted because of the strong resonance of 
HD0. A m , A30 and A50 are the line widths at 10%, 30% and 50% of the maximum 
height of the line shape of the aliphatic protons. 
Acquisition time; Q.5 sec, number of accumulations: I0.0Q0, sensitivity 
enhancement; 20 Hz. 

Table 3. Variation of line width parameters with measuring frequency and 
molecular weight 

a)u/27r(MHz) 

360 

100 

60 

100 

100 

pD 

7.6 

7.7 

7.7 

8.2 

11.4 

T(°C) 

34 

22 

34 

5 

5 

Mol.wt.(xl06) 

0.5-J 

0.5-1 

0.5-1 

0.05-0.5 

<0.1 

A ] 0 (Hz) S 

1460 

1180 

980 

1070 

930 

A 3 0 (Hz) & 

640 

460 

440 

430 

360 

A 5 0 ( H z ) & 

350 

240 

280 

220 

220 

The accuracy of the line width parameters is within +_ 10%. 

The line width parameters A m , A30 and A50 are defined in Fig. 3. 
Spectra were run under equilibrium conditions for the protein oligomers. 
All protein concentrations are in the range 30 to 40 mg/ml in 0.2 M NaCl 
except for the sample recorded at 360 MHz which is in 0.1 M NaCl. 
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that the line width parameters are almost independent of a change in molecular 

weight. A similar behaviour of the line shape of the a-CH backbone resonances is 

found with variation of molecular weight, no accurate line width data are avail­

able however, because of partial overlap with the HDO and side chain resonances 

(see Fig. 3}. 

In the absence of internal motions and taking N = 1, Bq. [6] yields 1/irT~ = 
-ft 

40 Hz for a trimer with T R = 1.5 x 10" sec, as calculated from Eq. [ 4]. For 

aliphatic protons an average value of N = 2 is assumed, resulting in V ^ T , ̂  80 Hz. 

Taking into account the before mentioned assumptions in the calculation of x R 

and the uncertainty in the molecular weight of the protein oligomers at pD 11.4 

(see Table 3 ) , the agreement between the theoretical value of the line width 

1/TTT2 and the experimental value A ™ (see Table 3} for the trimers is satisfac­

tory. From the experimental results it can be concluded that each proton reso­

nance of the backbone and side chain protons in oligomers of TMV protein has an 

upper limit of about 120 Hz for the line width I/TTT- (with N = 1 ) , independent 

of the molecular weight of the oligomers. 
1 x 1 

From the ratio of the D terms for C and H in Bq. £ 6j it can be calculated 
13 1 that the ratio of the line width 1/TTT9 for C and H is approximately 0.5. This 

13 yields a calculated upper limit for the line width of a C resonance of about 

65 Hz (with N = 1]. The chemical shift range of the overlapping resonances of the 

aliphatic carbons in the backbone and side chains is about 1.5 and 3.0 kHz, 

respectively (see Fig. 2). Thus ACT » 1/TTT2 and the line shape of the aliphatic 

carbons is mainly determined by chemical shift differences. 
13 1 All C and H NMR measurements are performed in the pH range 7 to 10.8, 

where the integrated spectral intensity corresponds to the total number of obser­

vable nuclei (7]. Line shapes can be determined with sufficient accuracy, since 

measurements are carried out by comparing the NMR spectra of disk- and trimer 

preparations of one and the same sample, the integrated intensity remaining the 

same. Therefore the possible effect of receiver dead time does not interfere with 

our measurements. 

In the low pH range, where helical oligomers are formed (13), about 90% of 
13 1 

the spectral intensity finally disappears, while the remaining C or H NMR 

spectrum seems to be unchanged. The implications of this effect are presently 

investigated. 
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3.4 DISCUSSION 

3.4.1 Motion within the protein subunit 

From H T.. measurements at 360 MHz presented above it is concluded that 

motions are present within the subunits of TMV-protein with correlation times 

smaller than 5 x 10 sec, calculated on the basis of Eq. [ 1] and assuming iso­

tropic motions. It is impossible, however, that the rotational motion of the 

backbone and side chains within the subunit is isotropic, because of the definite 

secondary and tertiary structure of the protein (7). Therefore a model will be 

considered based on anisotropic internal motions in the presence of isotropic 
-7 overall motion with a correlation time of 1.4 x 10 sec for the double-disk. 

Some models describing anisotropic internal rotational motions have been published 

(23-25). From the work of Woessner (23), T.. is given by 

1/^ = 0.6(yo/4TT)2
 N Y J * 2 r ^ <^2 [I xR"1 + I x ^ 1 ] , I 7] 

with 

l R g u -1 

2 2 2 2 assuming us„ xR and uf, x » 1. In Woessner's model the term x is the rotational 

correlation time of a reorienting CH,-group with random jumps about its symmetry 

axis. As is seen from Eqs. [_ 7] and [ 8] , for xR » x the expression between 

brackets is given by | x , so that T1 is determined only by anisotropic internal 
—1 motions. In the absence of internal motions the term between brackets is xR and 

Eq. [7] is identical to Eq. [ 1]. Thus it can be seen that going from a model 

for isotropic motions to a model of anisotropic motions only, results in multi-

plying x R in Eq. [ 1] by 1 ana taking x R = x . For the double-disk with x R = 

1.4 x 10" sec and x describing motions within the subunit which are faster than 

the calculated maximum correlation time of the protein subunit itself, correspon-
-9 ding to 5 x 10 sec, the approximation x R » x is valid. This yields the result 

that in the case of anisotropic internal motion agreement can be obtained between 

the experimental value of T.. at 360 MHz (see Table 1) and the T- given by 

Eq. [ 7] with x £ 1.6 x 10~9 sec. 
o In a protein, random jumps over 3 x 120 are possible only for protons on a 

limited number of O-L-groups (24). For most protons of backbone and side chains 

these motions are likely to be restricted. Van Putte (261 has considered the 
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effect of restricted rotations in a model for rotational oscillations of methylene 

groups in a hydrocarbon chain. From this work it follows that T-. is almost inde­

pendent of the maximum angle of oscillation B for values larger than 40 , whereas 

values of 8 smaller than 40° strongly affect T.,. The value for 8 of 40° is an 

upper limit, since smaller values of 8 , which increase T1, can be compensated 
2 2 

by smaller values of x , which reduce T.., provided <JJ„ T » 1. To see whether 

oscillation angles < 40° are reasonable for protons in a protein without irrever­

sible distortion of the structure, an a-helix, constituting the most rigid part 

of the protein, is considered. Go and Go (271 have found that the dihedral angles 

in a-helices are fluctuating with an average amplitude of about 8 . For an amino 

acid chain the total fluctuation angle will be larger, so that these kinds of 

motions may provide a mechanism, explaining the experimental values of T... Since 

the T1 values of all protons in the TMV-protein are similar (see Table 1] this 

discussion applies to protons of backbone as well as side chains. It must be 
i 

noted, however, that the resonances in the 360 MHz H NMR spectrum overlap, so 
that the motional parameters derived from the experimental T1 values will be an 

average. 

In general it is found that by using the motional models of Woessner (23] 

and Van Putte (26) for 1 H, and Doddrell et al. (24) and Van Putte (26) for 1 3C all 

other relaxation data in Table 2 and 3 can be explained semi-quantitatively in 
i 

the same way as the 360 MHz H relaxation data. Thus we conclude that the T.. 

values of all nuclei in oligomers of TMV-protein are determined by fast restric­

ted rotations with small amplitude within the subunits. 

3.4.2 Motion of •protein subunits in the oligomers 

From H 100 MHz experiments it is found that the line widths are independent 

of the molecular weight of the protein oligomers (Table 3), With the assumption 

-8 

of an isotropic motion, a rotational correlation time of 4 x 10 sec is calcu­

lated from the experimental line widths. The T1 results discussed in the previous 

section, have led us to conclude to the presence of anisotropic motions of the 

nuclei within the subunits and for a correct description of the line widths these 

motions must be taken into account. It can be shown from the work of Woessner 

(23) that for w„ x R » 1 and x « T R , T2 is given by Eq. [ 6] with D reduced by 

a factor of 4. This reduction increases the discrepancy between the experimental 

value of A ™ and the theoretical value of the line width by the same amount. 
This line width is based on a lower limit of the rotational correlation time 
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x R of a trimer, while A ™ is an estimated upper limit. Apart from experimental 

errors this suggests that the values of x R given by* the Stokes-Einstein relation 

Eq. [4] are too small. This is in agreement with results obtained by Hallenga 

and Koenig (19}, who have found that in the case that deviations from the Stokes-

Einstein relation appear the experimental values for the correlation times are 

higher than calculated from this relation. There probably is another reason for 

the discrepancy noted before. So far, we have assumed the rotational model of 

Woessner (23) to be valid. In the case of restricted rotations (26) with 6 < 40° 

an increase of the theoretical line width is predicted also, reducing the dis­

crepancy. 
2 2 In the presence of anisotropic internal motions with w„ x R » 1 and x « xR, 

the line widths depend on xR only. Since the line widths are independent of the 

molecular weight, x R is constant for all types of oligomers. This means that x R 

is not the correlation time for the overall rotational reorientation of these 

oligomers, such as a double disk. The independence of molecular weight of CrTo)" 

may be explained by assuming that motion simultaneously occurs within the subunit 

and of the subunit itself. This results in motions of C-H and H-H dipole-dipole 

vectors which are no longer sensitive to the oligomer reorientation in the solvent. 

This idea appears to be plausible because there are strong arguments favouring 

stability of protein subunit 3-D structure in solution ( 7), which is difficult 

to reconcile with large intra-subunit motions alone. More refined calculations 
-8 are required to settle this problem. With the value of xR of 4 x 10 sec the 

assumption x « x„ is valid, so that the discussion about T- still holds. 

3.4.3 Intersubunit -interactions 

We must ask the question now, whether this can be understood from the thermo-

dynamical point of view. Assemblage of TMV protein is an entropy-driven process 

(18). The free energy of association AG from trimers to double disks at 5 C is 

-19.3 kJ.(mole trimer)-1 with AH = + 126 kJ.mole"1 and AS = + 519 J.mole"1.K"1 (18). 

For the association from monomer to trimer AG = 52.3 kJ.(mole trimer)" (18), 

while AH and AS also are positive (1). The high positive value of AS arises from 

the release of water from the protein surface upon association (18). From the high 

positive values of AH and AS, it can be concluded that no specific intersubunit 

interactions through hydrogen bonds and/or salt bridges are required for the asso­

ciation process. The driving force for association is the large entropy increase, 

which is counteracted by the positive AH. 
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The previous conclusion that our NMR. data allow TMV subunits to have rotati­

onal freedom within the oligomers does not contradict the thermodynamic para­

meters. It merely indicates the absence of specific intersubunit interactions. In 

this paper we have not indicated in detail in which way subunit rotations may 

arise. We believe that in oligomers also translational degrees of freedom giving 

rise to effective subunit rotations may be present. Rotational and translational 

motions will increase the entropy and favour association. 
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4. A l 3C AND !H NMR STUDY ON ROD-LIKE 

POLYMERIZATION OF TOBACCO MOSAIC VIRUS PROTEIN 
J.L. de Wit, T.J. Schaafsma 
submitted to FEBS Lett. 

4.1 INTRODUCTION 

NMR studies in biochemistry have mainly been restricted to proteins with 

molecular weights <^ 50.000 C Q . Due to limited resolution, the amount of 

structural information which can be obtained from such studies, even at 360 MHz, 

is rather restricted (2). 

NMR can also be used for the study of molecular dynamical properties of 

biological systems with molecular weights > 10 . The observation of spectral 

features itself, for example of Tobacco Mosaic Virus (TMV1 and TMV-protein (3,4), 

then contains information about the dynamical behaviour of nuclei within a 

protein subunit in such a biological system expressed in translational and 

rotational degrees of freedom. 

Even in TMV, with a molecular weight of 42 x 10 , small numbers of C 

nuclei of different types of amino acids are detectable with conventional Fourier 

Transform C at 90.5 MHz because of their high degree of mobility (3], For 

large biological systems H NMR is inferior to C NMR because of the much lower 

spectral resolution and the presence of a residual HOD resonance, even in 99,99% 
13 D90 solutions. The sensitivity of natural abundance C NMR is much lower than 

1 
that for H NMR, however. Therefore we have used 121 enriched TMV (3,5) in order 

13 to obtain C spectra with sufficient signal to noise ratio. 

This report is an extension of our earlier work, presenting the pH- and 

temperature-dependence of the rod-like polymerization in more detail. 

4.2 MATERIALS AND METHODS 

4.2.1 Tobaaoo Mosaic Virus 

TMV was purified according to Leberman (6). TMV-protein was prepared 

following Durham (7) with slight modifications (4). All protein solutions used 

in our experiments had an ^-j&G/lSl r a t ^° > 2,s in ° - 1 2 M-Tris HC1, pH 8.6 and 

showed a single boundary (3.8 S) in the analytical ultracentrifuge and a single 

band with polyacrylamide gel electrophoresis. 
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Analytical ultracentrifuge experiments were carried out using a Spinco 

model E ultracentrifuge equipped with Schlierenoptics, automatic speed and 

variable temperature control. S values are uncorrected for concentration, 

viscosity and temperature and have been determined with sedimentation velocity 

experiments at 22,000 or 40,000 rev./min. 
13 TMV (strain Vulgare) was enriched up to 124, using C02 as carbon source 

for photosynthesis in leaves of Nicotiana tabacum L. (Samsun NN'l, inoculated 

with TMV. The enrichment procedure will be described elsewhere (81, Enrichment 

up to 124 represents an optimum at which no noticeable carbon carbon coupling 

is present (91. CCL (904 enrichedl and D20 (99,94 enrichedl, were purchased 

from Bio Rad, NaOD (994 enrichedl and DC1 (> 994 enrichedl were obtained from 

Merck. In UJ3 solutions the normal pH meter readings have been taken (11). 

4.2.2 Nuclear Magnetic Resonance 

13 For C measurements a Bruker SPX 360 supercon spectrometer in FT mode 

with quadrature detection was used, employing "» 5 W continuous wave H decoupling 

power with ̂  5 kHz bandwidth, an observe frequency of 90.5 MHz, and 10 mm sample 
1 1 

tubes. A H lock turned out to be unnecessary for our experiments. H measurements 

were carried out on a Varian XL 100 NMR spectrometer in FT mode with an external 
19 F lock, an observe frequency of 100 MHz and 5 mm tubes. On both NMR systems 

constant temperature was maintained with a modified temperature control system 

allowing long time averaging experiments (4). The receiver dead times of both 

spectrometers was ^ 50 ysec. 

4.3 RESULTS 

4.3.1 pE-induced rod-like polymerization 

The sedimentation coefficient of the protein polymers and oligomers at 7 C, 

pH 5.3 and 10.0 are > 40 S and 2,9 S respectively. In the sedimentation velocity 

experiments at pH 5.3 a distribution of polymers with sedimentation coefficients 

40, 70, 80 and 90 S is found at 22,000 rev./min. Sedimentation coefficients < 40 S 

are absent at 40,000 rev./min. At pH 6.3 and 7°C, oligomers with sedimentation 

coefficients 15-18 S are present; below this pH and above this temperature oligo­

mers with S < 15 have not been observed. 

Fig. 1 represents a C spectrum of TMV-protein at 7°C and pH 10.0 in 0.1 M 
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NaCl. The change in relative spectral intensities (measured by weighing the 

CARBONYL ALIPHATIC 

20 ppm 100 200 

Fig. 1. Broadband JH decoupled 90.5 MHz 13C NMR spectrum of TMV-protein taken at 
7 C with a concentration of 30 mg/ml (1 ml total volume) and 17,0.0.0. accumulations; 
acquisition time: 0.5 s; sensitivity enhancement; 30 Hz. The ppm scale is 
referenced to CS2 assuming 125.8 ppm for the g-Thr carbon position, further 
conditions: 0.1 M NaCl, pH 10.00. The aromatic region is omitted because of an 
interfering instrumental effect. 

carbonyl, a-C and aliphatic regions) as a function of pH is shown in Fig. 2. The 

spectral regions of which intensities have been compared are indicated. Within 

measuring error this change is identical for the different spectral regions. 

Fig. 3 represents the drop in intensity for the aliphatic region of TMV-

protein in D90 solution, upon rod-like protein polymerization as detected with 
1 L 

H NMR. Although in D^O the polymerization behaviour of TMV-protein is consider­

ably different from that in tLO (10} the rod-like polymerization may also be 

expected to be a linear condensation polymerization process. As has previously 

been shown (4) the H line shape at 100 MHz is much more sensitive to line 
13 

broadening effects than the C line-shape. Upon rod-like polymerization again 
no broadening of H line shapes is observed within experimental error. The 

1 13 
absence of line broadening in the H and C spectra can not result from the 

receiver dead time of the NMR spectrometers, because the decrease in spectral 
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Fig. 2. The 13C intensity of TMV-protein £or different spectral regions as a 
function of pH. The alphanumerically labeled regions are indicated with arrows 
in fig. 1. Conditions: 7°C, 0.1 M NaCl, 15 mM sodiumphosphate and a protein 
concentration of 30 mg/ml. The NMR. parameters are identical to those given in 
the caption of fig. 1. IL is the detectable NMR intensity. The error in n D 

arises from the presence of spectral noise. 

intensity is identical for all spectral regions, independent of the line width 

close to the base line of a group of overlapping resonances. Absence of poly­

merization-induced line broadening therefore, cannot be due to a disappearance 

of spectral intensity through gradual line broadening beyond the limits set by 

the spectrometer. 

The spectral intensity decrease upon lowering pH from 10 to 5.9 cannot be 

explained by a combination of limited acquisition time and increasing T^ value, 

since spectra recorded with acquisition times 0.5 and 1 sec exhibit identical 

decrease of intensity with decreasing pH for the aliphatic region. Moreover, the 
13 

intensity drop for non-protonated carbonyl carbons in C NMR is comparable to 

that of the protonated carbons in the aliphatic region, despite the fact that 

the former have much longer I V s than the acquisition times employed in these 

experiments (41. 
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Fig. 3. The 2H spectral intensity of TMV-protein of the aliphatic region as a 
function of pD. Conditions are; 5 C, 0.2 M NaCl and a concentration of "\< 4Q mg/ml 
in D2O. The NMR parameters are: spectral width; 50QQ Hz; accumulations; 1Q,Q00; 
sensitivity enhancement: 0.05 Hz and acquisition time: 0.5 s. Each graphical 
point represents the intensity of the largest group of resonances in the 
aliphatic region, n is the detectable NMR intensity. Experimental errors arise 
from the use of noise levels in the calculation of spectral intensities and 
from the fact that the pH values were measured outside the 5 mm NMR tube. 

Figs. 2, 3 and the analytical ultracentrifuge data therefore provide 

evidence that the pH-dependent intensity of the observable part of the H and 
13 C spectra is due to those nuclei within the rod-like polymers which are mobile 

enough to eliminate important line broadening (3,41. 

4.3.2 Temperature-induced rod-like polymerization 

At pH values close to 6 rod-like polymerization can also be induced by 
13 increasing temperature (121. The C spectral intensity change observed in the 

presence of such a polymerization process at different pH values and temperatures 

is presented in Table 1 for carbonyl carbons only; identical results are found 
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for the a-C and aliphatic regions. Since at high temperature all sedimentation 

coefficients (Table 11 are > 30 S (corresponding to a molecular weight of > 1Q 

(15]) spectra should be rigorously broadened (3} in the absence of internal 

motion. 

Table 1. C spectral intensity for the carbonyl region at different values for 
pH and temperature . 

pH 7.2 6.3 6.1 6.0 5.9 5.6 5.3 

0°C 

7°C 

15°C 

20°C 

25°C 

30°C 

0.7° 

0.7° 

0.7C 

1 

0.8 

0.6C 

0.8 

0 .5 C 

0.6 

0 .3 C 

0 .3 C 

0.5 

0.3° 

0.3 

the carbonyl region is shown in fig. 1. 
other conditions: cone. 30 mg/ml, 15 mM sodiumphosphate, 0.1 M NaCl. 

the accuracy of the measured spectral intensity is j^ 0.05 relative units 
as determined from the spectral noise level. 

only components present with sedimentation coefficients > 30 S. 

A comparison of the effect of temperature on the spectral intensity (Table 1) 

of large molecular weight polymers (> 30 S) in the range 20 - 30°C below pH 6.3 

with the temperature effect on titration curves obtained by Butler et. al. (15) 

demonstrates that the absence of proton uptake observed by these authors upon 
13 

increasing temperature in this range, is also reflected by the constant C 

spectral intensity. The behaviour at pH 7.2 originates from polymerization to 

double disks and has been previously discussed (41. Similar results are obtained 
1 13 1 

for H NMR of TMV-protein in D20 solutions. Both for C and H spectra no line 

broadening upon temperature-induced polymerization is observed. Thus, the 

observed resonances again must arise from internally mobile polymers, such that 

no important line broadening is observed upon increasing molecular weight. 

4.4 DISCUSSION 

Similar to what has been found for double-disk like polymerization (4), the 
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exchange rate x" of protein subunits between rod-like polymers is too small to 

account for the molecular-weight-independent NMR spectra (3], For the present 

case, the Gihbs free energy of protein subunit binding within a polymer is 
-1 -1 AG = -76 kj (13], resulting in x < .35 sec (4,141, where x is the residence 

time of a protein subunit within the oligomer. 

We may assume that the secondary and tertiary structure of the protein sub-
units within the polymer in solution must be largely maintained. Therefore, it 
has previously been suggested (3,4] that within protein oligomers motional degrees 
of freedom of amino acid side chains and backbone (within each protein subunit] 
and of protein subunits (within each protein oligomer] must be considered. 

Up to pH 5.3 (Fig. 1], spectra only differ from the high pH spectrum by a 
scaling factor within experimental error. Therefore, we propose that the main 
cause for the disappearance of spectral intensity upon pH-induced rod-like poly­
merization must reside in the loss of motional degrees of freedom of all nuclei 
in a protein subunit within the rod-like polymer. In this respect, our results do 
not allow to distinguish between motion within or of the protein subunits. Since 
no line broadening is observed upon lowering the pH, this loss of mobility must 
be abrupt, so that all carbon resonances of a protein subunit are either observed 
or have been broadened beyond detection. Similar to what has been found for double 
disk-like polymerization (4], the absence of line broadening upon rod-like polyme­
rization in the pH range between 5.3 and 6.3 at temperatures > 20°C shows that 
the dynamics of the observable nuclei is independent of polymer molecular weight. 
Fig. 2 and Table 1 indicate that the change in spectral intensity is pH-controlled. 

A two state model can describe this behaviour where in state N the nuclei 
in the protein subunits are "locked" and non-detectable and in state D the nuclei 
in the subunits have sufficient motional degrees of freedom to be detectable. 
The number of protein subunits in state D (n,) depends on pH and is in equilibrium 
with the number of protein subunits in state N (n,,] according to the equation 

n D + x H + ? ± n N [1] 

where x is the number of protons which must bind to induce a subunit transition 
from state D to N. 

By plotting log In^O-i^ll against pH, the pK and x of eqn. [ 1] can be 
determined. From the resulting straight line, x = 1.25 + 0.05 and a pK of 7.0 
^ 0.1 can be derived. Note that because x = 1.25 this pK does not simply represent 
the pK of the titratable groups within the protein subunits. 
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In agreement with other authors (16,17) Butler et.al. have shown (15) that 

there is an uptake of ̂  3 protons/suhunit, in particular by two titratable groups 

with raised pK's between 5.6 and 7.1 when TMV-protein is titrated from pH 8.5 to 

5 over a wide temperature range and 0.1 ionic strength. An uptake of ̂  1.3 protons/ 

subunit is observed when temperature is increased from 5 to 20°C (151 at pH 6.3, 

0.1 ionic strength. No further proton uptake is observed upon temperature increase 

to 30 C. Using a pK <v 6.6 (15) the fractions of protein subunits with zero, one 

and two protons added can be calculated to be .10, .26, and .64 resulting in an 

average uptake of 1.5 protons/subunit. Table 1 shows that the observable spectral 

intensity of 0.7 remains constant when temperature is further increased from 20 

to 30 C. In view of the foregoing experimental results, the intensity of 0.7 

shows that the addition of one proton has no effect on NMR intensity, in agree­

ment with the calculated value of x > 1; the n„ -* n N transition, therefore, cannot 

be induced by the addition of the first of the ̂  3 protons which is taken up when 

titrating from pH 8.5 to 5.0. 

The pK's of the titratable groups cannot be deduced directly from our NMR 

results although it is clear that they must be between 5.6 and 7.0. 

The two state model presented above, does not give a complete description of 

the titration behaviour of titratable nuclei in TMV subunits. At pH = 4.8 still 
13 ^ 10% of the C nuclei is observable which is about 10 times more than predicted 

from the model presented above. This remaining intensity may well originate from 

internal mobility, similar to that found for TMV (3). In both cases the a-C 

resonances have strongly diminished intensity. 
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5. MOLECULAR DYNAMICS OF TMV AND ITS PROTEIN 

OLIGOMERS STUDIED BY l 3C NMR 
J.L. de Wit, T.J. Schaafsma 
submitted to Eur. J. Biochem. 

5.1 INTRODUCTION 

1 3C NMR spectra of 121 1 3C enriched Tobacco Mosaic Virus (TMVX and its 

protein oligomers have been reported previously (1,31. This rod-like plant virus 

belongs to the group of very large biomolecules and has a molecular weight of 

^ 42 x 10 , 2200 identical protein subunits (molecular weight 17,500) and one 

RNA chain of 6600 nucleotides, so that using conventional high resolution Fourier 

Transform NMR, no signals are expected (2). 

From spin-lattice relaxation times (T..) and line shape analysis of the double 

disk- and rod-like oligomers and polymers, qualitative information has been 

obtained about the molecular dynamics of protein subunits and amino acid backbone 

and side chains within the protein subunits in the protein oligomers and 

polymers (1,3,4). 

In the rod-like polymer molecular dynamics is sensitive to protonation of 

presumably carboxyl groups with anomalous pK values (4,5). 

In this paper a more quantitative description of the molecular dynamics of 

protein subunits and amino acid chain (158 residues) is presented, based on 

Convolution Difference (CD) spectra (6) of virus and CD spectra and T^ data of 

the rod-like polymer (4). 

5.2 RESULTS 

5.2.1 CD spectrum of TMV 

In the virus 6% of the a-carbons and 17% of the aliphatic carbons are 

observable by normal FT NMR, because of short T.. (<: 1 s) and long T2 (1). 

In Fig. 1 the CD spectrum of 12?, enriched TMV (7) is given. The TMV CD spectrum 

contains ̂  801 of the observable a-carbons and ̂  20% of the observable aliphatic 

carbons. These numbers have been obtained by elijninating all spectral components 

with line width > 2000 Hz (the line width at which in our case the CD intensity 
13 is reduced to 11) from the normal C virus spectrum (1) and comparing the 

integrated spectral intensity for the various regions of the resulting spectrum 
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Table 1. Assignments in obsiervable and unobservable resonances in a CD spectrum 
of TMV 

amino acid a-C e-c Y-C 6-C e-C 

Phe 

Thr 

Ser 

Ala 

Arg 

Lys 

Gin 

Val 

H e 

Leu 

Pro 

Glu 

Asp 

Asn 

Observable resonances are indicated with +; non-observable resonances with -; 
the total number of observed a-carbons is between 8 and 12. Trp and Tyr are 
unobservable. A number of carbons are omitted because of uncertainty in the 
assignments. The titration behaviour of the carbons of the amino acids in the 
pH range 5-10 was taken into account (9,10,111 in the assignments. 

Assignments have been made adopting spectral positions from James (8). 

The resonances at 137.7 ppm (Fig. 11, can be assigned to the sum of a-carbon 
resonances of Ser and Phe. 

Region 138.9 to 142.4 ppm, containing unresolved a-carbon resonances. 



20 ppm 100 200 

Fig. 1. 1 3C convolution difference spectrum of a 60 mg/ml TMV solution in 
1 mM sodiumphosphate pH 7.2, obtained from a 1 3C spectrum (11 taken at 30 C 
under broadband l H decoupling with a 1 s acquisition time, and 50,000 accumu­
lations . 
The time constants used in obtaining the CD spectrum (61 are 0.005 and 0.011 s 
with K = 1, so that the two spectra are weighted equally. The ppm scale refers 
to CS2 assuming 125.8 for the g-Thr carbon position. 

with that of the normal spectrum. The assignment of the resolved peaks to 

individual amino acid resonances in this CD spectrum is summarized in Table 1. 

The spectral positions used to obtain the data shown in Table 1, were based 
13 on computer simulations of C spectra of urea-denatured TMV protein (7) and are 

similar to those published (8]. Errors in the assignments because of resonance 

shifts may arise from pH effects and folding of the protein (9-12). Note that 

the original line widths of all observable resonances of the virus spectrum are 

< 300 Hz (1,3). 
13 In the C spectrum of TMV only resonances originating from nuclei with 

internal mobility are present. If the a-carbon of a particular amino acid is 

observable, the (5-carbons and carbons further down the side chain also are 

observable. Cn the other hand if a CFL or CJL carbon is observable the a-carbon 

can still be absent from the spectrum. 

In the region 50 to 100 ppm only two e- and ̂ -carbons of phenylalanine are 

observed; 6-carbons of leucine (171 ppml and proline (145.5 ppm) and ycarbons 

of glutamic acid (159 ppml are absent in the aliphatic region, indicating that 

no other carbons of these amino acids will be observable as shown in Table 1. 

Absence of these resonances can be interpreted to mean that the corresponding 

carbons are less mobile than those carbons of which resonances are present in the 
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CD spectrum. This is nicely illustrated when the virus CD spectrum at 30 C is 

compared with the CD spectrum of the double disk-like oligomer at 30 C in which 

for example 6-leucine carbons do occur. Previously, it was concluded that the 

^ 10 observed a-carbons in the normal virus spectrum (1) represent two a-threonine 

and ̂  8 other amino acids. Because the observable CH,, CH, and CH side chain carbons 

exceed the connected a-carbons with a factor of about 4, more than ten amino acids 

have mobile side chains (1). 

5.2.1 Rod-like polymerization of TMV-protein 

Rod-like polymerization of TMV-protein can be induced by lowering pH and/or 
13 increasing temperature at pH values below 7 (14,17). C spectra taken at various 

stages of this polymerization process have been presented before (1,4). The CD 

spectra as a function of pH are given in Fig. 2. The spectral regions at which 

relatively large changes as a function of pH are observed have been indicated 

with arrows. At 7 C, pH 10.0 and 7.0 protein oligomers with sedimentation co­

efficients 2.9 and 4 S are found, respectively, with molecular weights < 52,000 
13 (1,15). The predicted upper limit for the C line width in these oligomers with 

one proton attached to it, is 65 Hz (3). At 7°C, pH 5.3, sedimentation coefficients 
7 

> 30 S are observed reflecting protein polymers with molecular weights > 10 (4). 

The CD spectra (Fig. 21 have been analyzed by assuming that the most obvious 

shifts in a spectral region resulting from a change in pH can be attributed to 

carbons which titrate in that pH range. Peak 1 in Fig. 2A (pH 10.0) at 151.7 ppm 

shifts upfield to ̂  152.5 ppm (Fig. 2B) and downfield upon a further decrease in 

pH to 151.7 ppm (Fig. 2C). The upfield shift of peak 1 from 151.7 to 152.5 ppm 

upon decreasing pH from 10.0 to 7.0 can be attributed to at least one 6-arginine 

carbon, due to the titration of an arginine amino side chain group in this pH 

range (9,10,11). In this respect the resonance position at pH 5.3 is unexpected. 

A comparison of the position of peak 1 in Fig. 2A and C (pH 10.0 and 5.3) 

shows that the ionization state of the amino group of an arginine must be iden­

tical at these pH values, because of equal resonance positions and peak envelope, 

which differ from those observed in the CD spectrum at pH 7.0 (Fig. 2B). The 

arginine shift is upfield with pH decreasing from 10.0 to 7.0, implying that at 

high pH the ionization state must be -NH2, whereas at pH 7.0 this must be 

-NH* (9,10,11). Peak 2, at 153.7 ppm (Fig. 2A) may be hidden under peak 1 in 

Fig. 2B because no titratable carbons at this spectral position in this pH range 

are present (81. Upon titrating to pH 5.3 peak 2 shifts upfield from 153.7 to 
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155 ppm (8). It is generally accepted that TMV-protein contains two carboxyl 

groups with anomalous pK values (5). Because the g-carbon of aspartic acid 

titrates in this region at ̂  154 ppm, the upfield shift of peak 2 in the pH range 

7.0 to 5.3 can be assigned to this amino acid. The origin of peak 3 at ̂  165 ppm 

20 ppm 100 200 

Fig. 2. 1 3C convolution difference spectra of a 4Q mg/ml TMV~protein solution 
in 0.1 M NaCl obtained from 1 3 C spectra taken at 7°C under broadband *H 
decoupling with a 0.5 s acquisition time and 17,000 accumulations. Other condi­
tions are: A, pH 10.0; B, pH 7.0; C, pH 5.3. 
The arrows indicate spectral regions with largest changes. The time constants 
used in obtaining the CD spectra (61 are 0.005 and 0.011 s with K = 1 so that 
the two spectra are weighted equally. The ppm scale refers to CS2 assuming 
125.8 for the g-Thr carbon position. 
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(Fig. 2C) is more difficult to assign, but since spectral positions of (3-carbons 

of arginine and glutamic acid are in this region and an arginine is known to 

titrate at this pH, the presence and position of peak 3 may result from an inter­

play between pH-induced shifts of g-arginine and B-glutamic acid carbons. Other 

smaller spectral changes (Fig. 2) are within noise level and for this reason will 

not be discussed. Finally we note that the spectrum at pH 5.3 represents the 

detectable part of the carbons within the rod-like protein polymer (1,4]. 

In contrast with the result for double-disk like oligomers, at least two 

Tys can be found for rod-like oligomers at pH 6, 7 and 30°C for 13C at 90.5 MHz, 

the largest fraction having T.. ̂  0.4 s, whereas the smaller fraction has T.. in 

the order of 1 s. The T- values are similar for all spectral regions and are 

ascribed to the presence of motional degrees of freedom of carbons within the 

protein subunits as described before (1,3,4). 

5.3 DISCUSSION 

5. 3.1 Interpretation of T7 data of double disk- and rod-like oligomers 

T.. data of approximately all aliphatic protons and carbons in TMV protein 

oligomers cannot satisfactory be interpreted using a correlation time xR (3,16) 

for oligomer reorientation in the T.. equation for dipole-dipole relaxation. 

Therefore it has been proposed that the nuclei within the protein subunits are 

mobile (1,3). A relation between T1 and one correlation time x describing one 
13 ° 

motional degree of freedom about a carbon-carbon bond for C, or about a 

proton-proton axis for H has been given by Doddrell et al. (16) and Woessner (3) 

respectively (19). 

In Table 2, T.. normalized to interaction of an observable nucleus with one 

proton (N = 1) for the double disk-like oligomer, is presented at 100 and 360 MHz 
1 13 

for H and 25.2 and 90.5 MHz for C. Table 2 also includes ranges of values of 

T calculated for dipolar relaxation of 13C (1,161 and % (1,3,191. At each 

frequency two ranges of T can be calculated for each T1 (Table 2). The x range 
-11 & -10 

between 2 x 10 and 1 x 10 s is assumed to be relevant. The choice of this 
range is supported by the following arguments: CH, groups have been found to 

rotate on this time scale in proteins (21); NOE effect on CH, groups at e.g. 
-10 

90.5 MHz can only be explained using x < 10 s (16); if at 360 MHz the slower 

x range would apply, T.. at MHz should be ̂  4 times smaller than actually 

observed. It is not necessary that x describes full 2ir rotation about a carbon-

carbon axis (3); small angle (g ) oscillations (3,18) yield similar T..'s without 
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Table 2. Spin-lattice relaxation times of the CH3, and CH2 groups in the double 
disk-like oligomer for : 3C at 25.2 and 90.5 MHz, and *H at 1Q0 and 360 MHz3, 

Frequency (MHz) 

T, d (s) 

T (X 10"1 0 S) 

T (x 10 U s) 
g 

25.2C 

0.3-0.4 

<0.1 

0.4-0.6 

90.5b 

0.5-0.8 

0.8-1.8 

0.2-0.4 

100° 

0.5-0.7 

1.2-1.8 

0.6-1.0 

360b 

0.7-1.4 

0.1-0.2 

0.4-0.8 

For Tj data and measuring conditions, see ref. 1,4. T for 2H data has been 
obtained from Woessner (19) and for : 3 C data from Dodcfrell et al. (16) with 
T R = 1 0 " 7 s . 

Tj determined by progressive saturation (27). 

Ti determined by inversion recovery (27). 

Ti scaled to one attached proton (1,3). The accuracy of the Ti measurements 
is + 10%, mainly due to the presence of oxygen (8) and scaling procedure (1,3). 

changing T as long as the rotation angle 6 > 40 . The similarity in T. for 

backbone protons, a-carbons and amino acid side chain protons and carbons (3] at 

frequencies presented in Table 2 indicates that in the cases that 8 is identical 

for each nucleus, T.. results in similar x values for all observable nuclei. 

A calculation of T.., based on rotation about a single carbon-carbon bond 

according to the model of Doddrell et al. (1,3,16) does not reflect the real 

situation. The fact that all observable nuclei have a short T.. implies that the 

motion, and thus the relaxation behaviour of each of these observable nuclei 

within the protein subunit is controlled by more than one x parameter. The 

analysis of our measurements using such a model does not yield more relevant 

information, however, because the number of variables then exceeds the number of 

measurements. The calculated range for x can be considered as a frequency-

dependent weighted average (20) over several different x 's and rotation angles 

61 (with i indicating rotation about a carbon-carbon bond), similar for all carbons 

and protons. Besides, from the work of Levine et al. (20), it can be shown that in 

the case of several x^s and assuming w„ xR > 1, T.. is frequency independent if 
2 i 2 ^ 

WO(T ) < 1 where wH is the measuring frequency. 
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With co„ = 360 MHz, xĵ  < 5 x 10 s is calculated. This value can now be used as 

an upper limit because T.. dependence on frequency is small (Table 2). Note that 

this upper limit is independent from the rotation angle g when g > 40° (18). 

In view of the arguments published before (3,4) and presented above for the 

double disk-like oligomer it can be assumed that the behaviour of T., found for 

rod-like oligomers is also controlled by motions within a protein subunit. The 

suggested similarity of T.. behaviour for the different spectral regions can be 

interpreted as indicated above. The spread in time constants could arise from 

different sections within a protein subunit or from differences in conformation 

of protein subunits. The first possibility cannot be ruled out, but other data, 

to be discussed below, favour the second suggestion. 

5.3.2 Protein subunit mobility within the double-disk- and rod-like oligomers 

NMR on double-disk and rod-like polymerization revealed within measuring 

error a molecular weight-(and thus xRl independent line shape behaviour. From the 

line width a phenomenological correlation time x of ̂  4 x 10 s, describing 

this molecular weight independent line shape behaviour is calculated (1,3,4). 

Because the amino acid chain in the protein subunits within the oligomers in 

solution (1)" is folded into a three dimensional structure (1,71, rotational 

motions of all nuclei within the protein subunits over large angles (^2TT) must 

be excluded (3). As shown before, motions within the protein subunit can be 

characterized by x < 5 x 10" s and rotation angles 6 ^ 40°. Evidently, x 

differs from this x and xR, previously defined to describe motion of the 

oligomer. Can we give a physical meaning to the type of motion characterized by 

v 
There are good reasons to believe that protein subunit motions within a 

protein oligomers of TMV exist and contribute to -r • Levine et al. (20) have 

found that for a carbon chain with full 2-n rotation about carbon-carbon bonds 

and provided T < TR, the relaxation of a particular carbon is x--independent if 

there are at least five bonds between this carbon and a carbon fixed to the 

molecular frame (in our case: the oligomer). For the double disk-like oligomers 

xR is calculated to be > 10 s (31. Even if we assume rotation about one carbon-

carbon bond of the protein backbone, an unfolding of the a-helical regions, con­

stituting > 301 of the protein backbone, would result, which is in disagreement 

with ORD data (25). This implies that large angle rotation about carbon-carbon 

bonds in the a-helix backbones cannot occur, so that mobility of the protein 

subunit itself must contribute to x . 
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A TR-independent line shape implies a decoupling of the motion of a 

particular C-H dipolar vector within a protein subunit from the motion of the 

oligomer. This can be realized if the protein subunit motion is described by 

rotation diffusion around three mutually perpendicular axes (22,19] on a time 
-8 scale given by the calculated value (4) T ^ 4 x 10 . This model may be somewhat 

exaggerated, however. From the work of Levine et al. (20) it follows, that the 

presence of two degrees of freedom for rotation of the subunit weakens the T -

dependence of the line width with respect to the case where only one rotational 

degree of freedom is present. Noting that small angle (y 40 ) rotations are 

assumed to be present in the backbone, it is conceivable that the process charac­

terized by T is the result of the combined action of backbone mobility due to 

rotation about carbon-carbon bonds and subunit motion involving rotational 

motions about less than three (and probably two) mutually perpendicular axes; 

one of these rotational motions may be the result of a displacement of the subunit 

about the oligomer symmetry axis. 

5.3.S Mobility within TMV 

Table 1 can be used to assign mobility to certain sections of the amino acid 

chain in protein subunits in TMV, if certain assumptions about the presence of 

rotational motions about carbon-carbon bonds within these protein subunits and 

about protein structure stability are made: according to Levine et al. (20) full 

2-rr rotational motions about at least two carbon-carbon bonds can be assumed to 

interpret the linewidth of 300 Hz (1); all CH, groups exhibit fast rotation 
-10 (< 5 x 10 s) because steric hindrance is weak or absent (21); the published 

molecular model showing distinct secondary and tertiary structure (23) in TMV 

is applicable to locate the a-helical sections; these sections are most stable 

and are assumed to have least internal mobility; if the a- or 6-carbon of a 

residue is observed the remaining carbons of this amino acid are also observed; 

due to RNA binding, mobility can be excluded for amino acid residues ̂  90 to 120 

because they constitute the RNA binding site; the chemical shift inequivalence 

of amino acid side chain carbons, attached to observable a-carbons, is conside­

rably reduced; motions of protein subunits within the virus can be excluded due 

to RNA binding (14) and in view of the distribution of carbon resonances in this 

virus spectra, deviating from the intensity-distribution of carbon resonances in 

the spectra of double disk- and rod-like oligomers, in particular w.r.t. the 

lack of C resonances in the virus spectrum. Furthermore, we note that the 
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number of mobile carbons within the protein subunit is at a minimum if all 

observable a-carbons (y 101 belong to one section of the amino acid chain. The 

analysis presented below is based on this minimum mobility approach. Turning 

now to Table 1, we observe that proline, tryptophane and tyrosine are absent in 

the CD spectrum (Fig. 1) so that the observed a-carbon can only be partly located 

in the last five amino acids of the C- and N-terminal (24) sections. Phenyl­

alanines in non a-helix sections are Phe 10, 12, 35, 62, 67, or 144. Because the 

a-carbon of one phenylalanine is also observed, this amino acid must belong to 

a mobile section of the amino acid chain. Side chain carbons of leucine, lysine 

and glutamic acid which are connected to phenylalanines are not observed so that 

the observed phenylalanine is unlikely to be Phe 10, 12, 67 and 144. The observed 

phenylalanine is tentatively assigned as Phe 62 in the amino acid chain section 

57-62 because Phe 35 is located in a small amino acid chain section 32-39 between 

the LS and RS helix (261. This is not in contradiction with the fact that Pro 63 

is not observed, since this residue and Phe 62 need not have rotation about two 

carbon-carbon axes in common; the section 57-62 may be observed with Pro 63 

still absent. The remaining observable side chain carbons may be those of Asp 64, 

Ser 65 and Asp 66. 

Rotational motions within the virus cannot be restricted to the assigned 

amino acid residues since the number of observed CtL carbons (11 exceeds the 

maximum number which is calculated from Table 1. To be sure, the number of 

residues exhibiting rotational motions exceeds the number of observed residues. 

In order to obtain a somewhat clearer view on the extent of mobility in the 

backbone, we note that the number of a-carbons forced into rotational motion by 

adjacent observable carbons can be estimated by adding to the number of amino 

acids of each of the observable sections, a number of four (from connected amino 

acids which are also forced into motion and are non-observed with NMR], which 

results in > 20 mobile residues. From the upper limit for the linewidth (300 Hz) 

(11 for the observed carbons it can be calculated that the observed carbons must 

possess mobility which can be described by full rotations about two carbon-carbon 
_7 

bonds on a time scale smaller then 10 

5.3.4 Rod-like polymerization 

The interpretation of CD spectra of rod-like polymers cannot be based on the 

assumption given for the interpretation of the virus CD spectrum because in the 

former case the protein subunits themselves can have motional degrees of freedom. 
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A number of carbons may have rotational mobility in common with the virus 

although phenylalanine is absent in the CD spectra of rod-like polymers (Fig. 2). 

The observable number of protein subunits within the rod-like oligomer, 

which has been demonstrated to remain constant upon addition of one proton (4), 

titrates anomalously (4,5) below pH 6.3. This proton uptake results in an upfield 

shift for at least one aspartic acid (Fig. 2). Furthermore, the upfield shift of 

peak 1 upon changing pH from 7.0 (Fig. 2B) to 5.3 (Fig. 2C) corresponds to a 
+ + 

deprotonation reaction of at least one amino group (NH, •+ NH2 + H ) of an 

arginine side chain which has been suggested to occur if such a charged group is 

forced into a hydrophobic environment (14,26]. It can be conceived that the proton 

released from the arginine amino group is taken up by an acid amino acid residue 

which is adjacent to this arginine (23). The involvement of a lysine has been 

shown for another plant virus, Cowpea Chlorotic Mosaic Virus (25). In view of the 

results presented before, at least one aspartic acid, one arginine and possibly 

one glutamic acid are involved in the uptake of the first proton. 

At pH values below 6.3 three types of subunits are present (4), two of which 

are observed with NMR. It is proposed that one type contains two protonated 

carboxyl groups with at least one aspartic acid and one arginine, all probably in 

a hydrophobic environment, whereas the other type has both carboxyl groups un-

protonated, an arginine amino group being protonated in a hydrophilic environment. 

The presence of two types of protein subunits with different conformations may 

be an explanation for the fact that spin-lattice relaxation cannot be described 

by a single exponential. These conformational differences may be also reflected 

in line shape changes of e.g. 8-Thr at 125.8 ppm. 

It is reasonable to assume that the aspartic acid, arginine and the other 

acid amino acid residue belong to the so called carboxyl cage (23). The position 

of peak 3 at about 165 ppm in Fig. 2 suggests that this other residue may be a 

glutamic acid. Ascribing the observation of protein subunit resonances to mobility 

of the protein subunit itself implies that the complete carboxyl cage involving 

two protein subunits cannot be present in rod-like polymers. 
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6. I 3 CNMRAND , 3C ENRICHMENT OF TOBACCO 

MOSAIC VIRUS 
J.L. de Wit, N.C.M. Alma, T.J. Schaafsma 
submitted to Biochim. Biophys. Acta. 

6.1 INTRODUCTION 

6.1.1 Tobaaao Mosaic Virus (TMV) 

Tobacco Mosaic Virus (TMV) is a rod-shaped plant virus with one RNA chain 

of ̂  6600 nucleotides protected by 2200 identical protein subunits (molecular 

weight 17,500) in a helical array. The total molecular weight is 42 x 10 (1). 

X-ray diffraction resulted in an incomplete molecular model for the protein 

structure (6). Even at 0.4 nm resolution, such a model could be constructed due 

to the large a-helix content and the approximately parallel course of the a-helix 

sections of the backbone. 

6.1.2 Tobacco Mosaic Virus protein 

Tobacco Mosaic Virus protein has the past decades been studied by a variety 

of techniques such as e.g. circular dichroism (2), fluorescence (5), sedimenta­

tion analysis (3), electron microscopy (4) and X-ray diffraction (9). A good 

understanding of TMV-protein polymerization behaviour has evolved from these 

studies (7,8). X-ray diffraction (9) indicates a similar folding of the amino 

acid chain within the protein subunit in the virus and double disk (6,9). 

1 IS 
6.1.3 H and C Nuclear Magnetic Resonance 

1 13 

Recently it has been shown that both H and C NMR yield valuable infor­

mation about the virus (10,13) and double disk- and rod-like protein oligomers 

(11,12,13). Usually NMR is assumed to be applicable only to small biological 

systems (e.g. proteins, nucleotides, lipids), with a molecular weight of 

^ 50,000 as an upper limit. Severe line broadening and lengthening of the spin-

lattice relaxation time (T..) is predicted for rigid systems having larger 

molecular weight (14). However, NMR spectra of TMV, double disk-like oligomers 

(molecular weight 0.6 x 10 ) and rod-like oligomers (molecular weight > 2 x 10 ) 

could be observed, thanks to rotational motion of protein subunits and/or 
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mobility in the protein subunit within the virus (10., 131 and protein oligomers 

(10-13). 

It has been shown that rotational motions within the protein subunits are 

present at NMR time scale (131- Following an analysis of T.. data of virus, 

double disk- and rod-like oligomers (1Q-131, these motions are defined by 

correlation times T describing rotations about all carbon-carbon bonds within 
6 "10 

a protein subunit of £ 5 x 10 s with an upper limit of the average angle of 

rotation gQ ^ 40° for all observable carbons (28,13}, For about 101 of all 

carbons within a protein subunit of the virus 6 must be 360° for rotation 

about at least two carbon-carbon bonds, attached to the observable carbon nuclei 

(10,131. 

Protein subunit mobility (translational, rotationall is observed in the 

double disk-like oligomer and is also present in the rod-like oligomer, depen­

ding on pH (12). This pH-dependence has been shown to involve protonation of 

two carboxyl groups of at least one aspartic acid, followed by a deprotonation 

reaction of the protonated amino group of an arginine side chain, both with 

anomalous pK's. The detectable part of the protein subunits within the rod-like 

oligomer, has been suggested to consist of two conformers which depend on the 

protonation state (12,13,161. 

The model describing protein subunit mobility and the discussion about the 

presence of different protein subunit conformers is based on the generally 

accepted existence of a secondary and tertiary structure within the TMV protein 

subunit (101. In this paper the presence of this three dimensional structure 
13 in solution is supported using C NMR and urea denaturation of protein subunits. 13 In addition a comparison of C NMR spectra of protein subunits of TMV strains 

Vulgare and U2, computer simulation of the spectra of urea-denatured TMV protein 

and the difference between spectra of Vulgare and U- will be shown to favour the 

presence of secondary and tertiary subunit structure. 

6.1.4 Enrichment with stable isotopes 

2 13 15 
Enrichment with stable isotopes, e.g. H, C and N in combination with 

NMR has found wide application (17). Enrichment with these nuclei in algea, 

yeast and bacteria (15) can be carried out without much trouble. In plants, 
13 15 only C and N can be incorporated to a sufficiently high degree (y 90I) 

without starvation (18,19), although isotope dilution causes increasing 

difficulty. H enrichment without plant starvation can only be used up to ̂  50% 
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isotope content, but growth is severely inhibited (De Wit, unpublished obsex" 

vationsl, similar to what is observed for animals (20., 211. Some strains of 
2 

algae and yeast must first be adapted to increasing FLO concentrations Before 

a sufficient growth rate is reached in 991 FLO (22). Selective enrichments with 
2 13 15 H, C and N are suitable for tracer studies, and for various NMR applications 

13 15 (23,24,17,15); non-selective enrichments with C and N are often benificiary 

if one wants to obtain NMR spectra with a reasonable signal to noise ratio. 

It is for this reason that TMV has been non-selectively enriched to about 

121. Tobacco plants infected with TMV represent a very efficient system to 
13 incorporate C with minor isotope dilution. The enrichment procedure and a 

13 
simple method for the C02 ratio determination are also described in this paper. 

6.2 MATERIALS AND METHODS 

6.2.1 TMV purification and protein preparation 

The purification of TMV strains Vulgare and IU was carried out according to 

Leberman (251. The protein preparation procedure used is similar to that des­

cribed by Durham et al. (71, with minor changes described elsewhere (11). 

Protein preparations in 0.12 M Tris-HCl, pH 8.6, 5 C were checked and charac­

terized with polyacrylamide gelelectrophoresis showing a single band (261, 

sedimentation analysis (71 with a single sedimentation coefficient <v< 3.8 S and 

spectrometrically for Vulgare yielding E^go/E^rn > 2.5. Compared to Vulgare, 

\]? has a different aromatic amino acid composition, preventing a spectroscopic 

purity-check; purity of u*2 protein preparations has been determined with sedi­

mentation analysis, showing a sedimentation coefficient of ̂  3.8 S at pH 8.6 in 

0.12 M Tris-HCl, 5°C. 

8.2. 2 13C NMR spectra at 90. S MHz 

13 
C NMR spectra at 90.5 MHz have been obtained with a Bruker SPX 360 super-

con spectrometer equipped with quadrature detection using 10 mm sample tubes 
and ̂  5 W continuous wave broadband H decoupling power. Sample pH was directly 
measured in the tube with a long 5 mm diameter pH electrode (Radiometer1. Sample 
temperature was maintained with a modified version of the Bruker temperature 
accessory (11) and was measured with a thermometer in the tube, being positioned 
inside the probe. After equilibration of sample temperature, the tube with the 
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thermometer was quickly removed from the probe with the air lift for talcing 

thermometer readings. The error expected for measuring sample temperature in this 

manner is estimated to be + 2 C. 

6.2.3 Computer simulations 

13 
Computer simulations of C spectra of TMV-protein were performed using the 

known amino acid composition of TMV strains Vulgare and IL. The starting positions 

for the chemical shifts were basically those of James (291 and were shifted 

within + or - 0.4 ppm from these positions for maximum overlap with the denatured 

TMV-protein spectrum. A DEC 10 computer program allows convolution of each 

individual carbon with a line shape function. 

6.2.4 The preparation of 10-15% enriehed TMV 

13 
The enrichment of TMV proceeds through assimilation of 901 C enriched 

carbon dioxide by green leaves of the Samsun NN' variety of Nicotiana tabacum, 
13 

infected with TMV. The amount of 90% C enriched barium carbonate (Bio Rad) 
13 

used for generating C02, was carefully chosen in relation to the wet weight of 

the total number of leaves, so that the final enrichment of TMV always ends up 

between 10-151. This enrichment percentage does not lead to appreciable carbon-

carbon spin-spin coupling which would decrease the resolution and signal to 

noise ratio without improving the spectral information (171. Tobacco plants of 

about six weeks age were given a dark period of one night in a temperature con­

trolled room (25°C) in order to reduce the sugar content. The middle leaves of 

the plant are inoculated with TMV about two hours after starting the experiments, 

and are transferred in the dark to sterilized 100 ml beakers containing steri­

lized nutrient solution which were placed in a closed system of desiccators 

interconnected with butyl tubing which were also connected to a Kipp apparatus. 

The composition of the nutrient solution is equivalent to that of the Hoagland 

mineral salt solution and is completed with aureomycine (Serval and fungizone 

(Squibbl to a concentration of 1 and 2 ug/ml, respectively, for the prevention 

of bacterial and mould growth; ferricitrate (0-5 yg/mll is used as the iron 

source. In the desiccators high humidity is maintained through a water film on 

the bottom. After a second dark period of twelve hours, necessary for prolonged 

carbohydrate exhaustion, kinetine (Sigmal to a concentration of 1 yg/ml, is 

added to the nutrient solution to inhibit ageing of leaves. Immediately after 
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installing the leaves in the growth system, the desiccators are covered so that 

in the shortest possible time a maximum humidity is reached. During about 15 

minutes the system is then flushed with a carbon dioxide-free mixture of 801 

13 

nitrogen and 201 oxygen. After closing the system from air, CO, O 901 en­

riched] is released from barium carbonate, using a cylindrical funnel with 

pressure equalizing tube, by dropwise addition of hydrochloric acid (5 ml 2.5 N 

hydrochloric acid per gram barium carbonate) and admitted to the system (Kipp 

apparatus]. After approximately 30 min., the time needed for diffusion of 

carbon dioxide into the system, the plants are illuminated by two 400 W sodium 

lamps (Philips SON 400 W, BSN 400 L02, S 50), at approximately 50 cm distance 

from the bottom of the desiccators. To prevent ageing it is crucial to keep 

temperature constant at ̂  25°C, especially during the change from the dark to 

the light period. Growth of TMV is then continued as long as leaf degeneration 

is absent (large brown spots). After growth is stopped, leaves are frozen for 

storage. The average growth period is about four days whereas the average yield 

is 1-1.5 mg/g wet leaf under these conditions. 

Approximately 10 g barium carbonate (y 901 enriched) is used for *> 100 mg 

enriched TMV. The relative low TMV yield compared to that for growth under 

normal conditions is caused by the short TMV multiplication period. A one day 

extension would probably double the amount of TMV, because TMV multiplication 

normally shows sigmoid behaviour with maximal multiplication at about 5 days. 

Furthermore, it has been found that TMV yield depends on light intensity and 

-spectrum, both of which were optimized by using 400 W sodiumlamps producing 

continuous illumination during the TMV multiplication period. Both assimilation 
2 

and dissimilation rates (20 mg CO,/hr/dm leaf surface (34) and 4 mg C09/hr/g 
13 dry leaf weight (35) are high, so that after the addition of CO,, a 

13 12 12 
CO,/ CO, equilibrium is reached very quickly, the C07 originating from 

13 12 
residual endogenous starch. The atmospheric CO,/ CO, ratio at any moment 
during the enrichment process can easily be determined. This is of importance, 

because this ratio directly controls the final TMV enrichment percentage. 

A glas system is favourable since it is gas-impermeable, in contrast with most 

plastic chambers. 

13 12 
6.2.5 Infrared determination of the CO„/ C0~ ratio 

About 6 mg of TMV is completely burned in an oven at 1100°C under a con­

tinuous oxygen flow. The resulting mixture of gases is then led through a tube 
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Fig. 1. Infrared absorption spectra of different mixtures of a3COz and i2C02 
taken against a reference gascell filled with a COz^free mixture of 80% N2 
and 20% 02. A, standard mixture of 11.7% " C O z ; B, 16% 1 3 C0 2 obtained from 
enriched XMV-protein; C, atmospheric CO2. 

filled with potassium chlorate. For analysis, carbon dioxyde is precipitated as 

barium carbonate by flowing it through a carbon dioxide-free barium hydroxide 

solution. Hydrochloric acid is added dropwise so that the released carbon dioxide 
13 12 

flows into an infrared gascel. The C02/ C02 ratio is determined from the infra­
red carbon dioxide spectrum taken on a Hitachi double beam I.R. spectrometer 
(EPI-G3) against a gascel filled with the carbon dioxide free nitrogen/oxygen 

mixture. 
12 -1 13 

CCL strongly absorbs at 2349 cm while the C02 absorption is shifted 
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to 2284.5 cm" . Both absorption peaks are split as shown in Fig. 1. A relation 

between the 1 3C02/1 2C02 ratio and the ratio of the I.R. 1 3 C 0 2 and C02 peaks 

has been determined using the reference mixtures of known amounts of enriched 

and normal barium carbonate for which the same procedure is followed for the 
u 12 

release of the CCU and C02 mixture from the enrichment experiment. 

From a number of those experiments we have derived the following empirical 

equation 

12 C09 :
 13C0 = 2.25 x \S + JJ| 2 % V [1] 

where h., hR, h~, h n are the peak heights presented in the spectrum of Fig. 1. 

The estimated error of the experimental isotope ratio is + 54. 

6.3 RESULTS AND DISCUSSION 

6.3.1 TMV 13C NMR 

Fig. 2 represents the 1 3C NMR spectrum of TMV-protein at pH 11.7, 7°C and 

/Uy^W-

20 ppm 100 200 

Fig. 2. Broadband *H decoupled 90.5 MHz 1 3 C spectrum of TMV^protein using 
quadrature detection with an acquisition plus delay time of Q.,4 s; 
17,000 accumulations; a sensitivity enhancement of 17 Hz. Further conditions 
are, concentration; 30 mg/ml; pH 11.7; temperature 7°C; Q.l M NaCl, The ppm 
scale is referenced to CS2 taking g-Thr at 125.8 ppm. The baseline is dis­
torted due to spectral humps. 
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30 mg/ml. Under these conditions the sedimentation coefficient is < 2.9 S, 

corresponding to a protein oligomer with a size between monomer and trimer. The 

peaks superimposed on the broad spectral hump have an average line width of 

30 to 90 Hz. In the absence of internal motions the line width parameter T7" 
2 2 

under the condition that to ~ „ T R > 1 can be given for aliphatic carbons by the 

dipole-dipole relaxation equation (301, 

0.2 (yo/4fflVcY^2T
RrCH [ 2] T '1 - n •, e /,_^2XU2 2«.2_ _-6 

X2 

where T~ is the spin-spin relaxation time, Y H and Y C
 a r e the gyromagnetic ratios 

of protons and carbons, respectively, r is the length of a O H bond (0.109 nm), 

N is the number of protons interacting with an observable carbon and T R is the 

correlation time of the rotational motion of the TMV-protein oligomer and u c „ 

is the measuring frequency. For a sphere T R is given by (31}. 

T R Mvn/RT [ 3] 

where v is the partial specific volume, M is the molecular weight and n is the 

viscosity. Assuming an average molecular weight of 35,000 under these conditions, 
_ Q 

T R is calculated to be 10 s for the dimer using Eqn. [ 3]. Eqn. [ 2] then yields 

a line width (TTT2) of 14 H Z for N = 1. Although the dimer geometry approaches 

that of a sphere, deviations from spherical symmetry may cause T „ to be slightly 

larger than 10 s. Both experimentally observed line widths of the resolved C 

resonances (Fig. 1\ and upper limits for the H line width presented elsewhere 

(11), exceed the calculated value of 14 Hz. This demonstrates that the variation 
13 in line width of all resolved resonances in the C spectrum shown in Fig. 2 is 

13 determined by chemical shift inequivalence. A comparison of the C spectrum 
13 shown in Fig. 2 with previously presented C spectra of the trimer at pH 10.0, 

7 C (12) shows a large decrease in line width of the resolved groups of resonances 

upon increasing pH from 10.0 to 11.7 which can now be interpreted to result from 

partial unfolding of the protein subunit as has also been shown from a spin label 

EPR study (331. 

6,3.2 Urea denaturation of TMV-prote-in 

The difference between the spectrum of TMV protein at pH 11.7 (Fig. 3A) 

with that of the same protein under denaturing conditions (Fig. 3B) can be ex­

plained by the presence of chemical shift inequivalence (32) due to secondary 
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20 ppm 100 200 

Fig. 3. Broadband ^decoupled 90.5 MHz 13C spectra of TMV-protein using 
quadrature detection with an acquisition plus delay time of 0.4 s; 
concentration: 30 mg/ml; 0.1 M NaCl; pH 11.7; temperature 7 C. Further 
conditions are, for A: 17,000 accumulations; sensitivity enhancement 
of 17 Hz; for B: 4700 accumulations; sensitivity enhancement of 17 Hz; 
6 M urea. The ppm scale is referenced to CS2 taking £-Thr at 125.8 ppm. 
The baselines are distorted due to spectral humps. 

and tertiary structure in native TMV protein. In Fig. 4A the 6 M urea denatured 

spectrum is shown; Fig. 4B represents the best fit of a computer simulation based 

on the known amino acid composition. The line widths used for this simulation 

are given in Table 1 and the resonance positions of the amino acids are essen­

tially similar to those published (29), with slight deviations necessary for an 

optimum fit. Such deviations (< + 0.4 ppm) are attributed to residual chemical 

shift inequivalence and the effect of pH. A comparison of the 6 M urea-denaturated 

TMV-protein subunit spectrum (Fig. 4A) with the computer-simulated spectrum 

(Fig. 4B] shows that the former indeed arises from the fully denatured TMV-protein 

subunit. The observed differences between both spectra may arise from a number of 
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20 ppm 100 200 

Fig. 4. A: broadband : H decoupled 90.5 MHz 1 3C spectrum of TMV-protein using 
quadrature detection with an acquisition plus delay time of 0.4 s; 
concentration: 30 mg/ml; 0.1 M NaCl; pH 11.7; temperature 7 C; 6 M urea; 
accumulations, 4700; sensitivity enhancement, 17 Hz. B; computer simulation 
of the spectrum shown in A using the known amino acid composition of TMV 
strain Vulgare, line widths presented in Table I and spectral positions 
of James (29). The ppm scale is referenced to CS2 taking (3-Thr at 125.8 ppm. 
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1 ̂  
causes such as: NOE effects, deviations from random C distribution, residual 

Table 1. Line widths used in the computer simulations shown in Fig. 4B. 

type of carbon Line width (Hzl 

primary (CH-) 45 

secondary (CH-) 50 

tertiary (CH side chain) 60 

tertiary (C ) 7Q 

quaternary 60 

quaternary, carbamyl 50 

quaternary, carbonyl 60 

The distinction in these type of carbons is based on the line widths which 
must be chosen for a best fit. 

In this simulation it is assumed that lines are lorentzian, the relaxation 
mechanism is dipolar and that each peak surface is proportional to the 
number of carbons at a certain spectral position. 

chemical shift inequivalence in the spectrum of denatured protein, deviations 

from a uniform radio frequency field distribution and differences in internal 

mobility. The satisfactory agreement between the spectra of Figs. 4A and 4B 

indicates, however, that none of these causes makes a large contribution to the 

observed differences. 

An estimation of the range of chemical shift inequivalence present in TMV-

protein can be deduced from the experiments shown above to amount to at least 

+_ 1 ppm. 

13 6,3. 3 Comparison of C spectra of strains Vulgare and l/„ 

Additional evidence for the presence of secondary and tertiary structure in 
1 ̂  

TMV-protem oligomers can be obtained by comparing C NMR spectra of the protein 

oligomers of TMV strain Vulgare with those of U, as shown in Fig. 5A and B. A 

comparison of the computer simulated difference spectrum based on their amino 

acid compositions (Fig. 5C) with the spectral differences between the spectra 

in Fig. 5A and B reveals large deviations. The main cause for these deviations 
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I Vi^-VH^*-

20 ppm 100 200 

Fig. 5. Broadband 'H decoupled 90.5 MHz 1 3C spectra of IMV-protein; strains 
Vulgare and U2 using quadrature detection with an acquisition plus delay 
time of 0.4 s; 0.1 M NaCl; pH 11.7; temperature 7 C; sensitivity enhancement, 
17 Hz; accumulations 17,000. Further condiditons, for A; strain Vulgare; 
concentration 30 mg/ml. B: strain U2; concentration 15 mg/ml; C: computer 
simulated difference spectrum hetween Vulgare (up) and U2 based on their 
amino acid composition. The ppm scale is referenced to CS2, taking g-Thr 
at 125.8 ppm. 

must arise from variations in secondary and tertiary structure between Vulgare 

and U9 because of their large differences in amino acid composition. This is 
13 

an interesting demonstration of the sensitivity of C NMR for small differences 

in protein structure in solution. 
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7. A THERMODYNAMIC APPROACH TO THE MECHANISM 

OF ASSEMBLY AND DISSOCIATION OF TOBACCO 

MOSAIC VIRUS 

7.1 INTRODUCTION 

The assembly mechanism of Tobacco Mosaic Virus (TMVl, a rod-shaped plant 

virus with a molecular weight of 42 x 10 , consisting of RNA and protein, has 

long been an intriguing problem. In vitro, the assembly process can be distin­

guished in an initiation and elongation step (11. It is now agreed upon that the 

so-called double-disk constitutes the protein oligomer forming the initiation 

complex with a specific part of TMV RNA under nearly physiological conditions 

(21. The initiation site has been located at about 100Q nucleotides from the 3 

RNA end (3,41. Many recognition mechanisms in biology (51 involve proteins inter­

acting with specific regions of a RNA or DNA molecule, so that the study of the 

initiation process of TMV is of general interest. Electron microscopy observations 

have also resulted in a better understanding of the elongation process (31; the 

resolution of X-ray data (331 on TMV is sufficient to reveal the folding of RNA, 

relevant for this process. Models for the dissociation mechanism of TMV under 

physiological conditions have not grown beyond the level of suggestions. 

Full understanding of the initiation and elongation step requires a descrip­

tion of the double disk-like oligomer and RNA in solution on molecular level. 
13 Recently it has been shown that in particular C Nuclear Magnetic Resonance (NMR1 

yields valuable information on these processes. Large sections of the amino acid 

chain within the protein subunits (molecular weight 17,5001 in TMV and its protein 

oligomers are mobile reflecting a thermodynamically unstable protein structure (71. 

From such NMR experiments, it can also be concluded that protein subunits in rod­

like and double disk-like oligomers have rotational and/or translational degrees 

of freedom (7,81. Due its rigidity, the structure of native TMV, RNA cannot be 

elucidated by NMR. 

With the aid of Convolution Difference (91 (CD1 spectra, a more detailed 

location of the unstable regions within the protein subunit is presented. Taking 

into consideration TMV RNA structure in solution, we have constructed a model for 

the mechanism of assembly and dissociation of TMV based on NMR results and 

thermodynamics. 
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7.2 THERMODYNAMICS AND THE ROLE OF WATER 

Polymerization in solution of TMV protein is a spontaneous endothermic process 

and thereby entropy-driven (10,11]. The energy contribution of the entropy increase 

upon polymerization of TMV protein to double disk-like oligomers exceeds the posi­

tive enthalpy so that the Gibbs free energy change upon polymerization is negative 

(10]. This is summarized by the equation, 

AG = AH - TAS, [ 1] 

where AG is the Gibbs free energy change in J.mole , AH the enthalpy change in 

J.mole" , T the absolute temperature in degrees Kelvin and AS the entropy change 
-1 -1 

in J.mole .K . Many biological polymerization processes are entropy-driven and 

in this respect it has long been realized that water must play an important role 

(12]. 

In biological polymerization processes, which are controlled by the shielding 

of hydrophobic groups from water, the entropy contribution from water can be con­

sidered determinant (17]. Water surrounding a hydrophobic boundary is structured 

and has decreased entropy compared to that of normal liquid water (14,13]. There­

fore, endothermic protein polymerization processes can be driven by an increase 

in water entropy through decreased contact between water and hydrophobic side 

chains of amino acid residues. For TMV protein polymerization, water release has 

been demonstrated (15]. 

An interesting implication of water being the determinant for entropy-driven 

protein polymerization is that the number of hydrophobic amino acid residues in a 

protein in contact with water upon polymerization must be made as small as 

possible. This can result in interactions between hydrophobic side chains of poly­

merizing protein subunits (16] without the formation of formal bonds. Such a poly­

merization process thus can occur in the absence of specific interactions such as 

salt bridges and hydrogen bonds between the proteins subunits. In this respect 

the entropy-driven protein polymerization has some resemblance with the associa­

tion of lipids into micelles (17]. 

7.3 TMV-RNA 

For the discussion of the structure of TMV RNA in solution it is useful to 

make a comparison with tRNA, which has been studied extensively (18,19], An 
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analysis of RNA crystal structure reveals maximal base stacking (20}. Such stacking 

of nucleotide bases is considered to be the main driving force for the development 

of the RNA conformation in solution because the heat of formation of hydrogen-bonds 

between nucleotides in an RNA chain with intramolecular double-helix structure is 

comparable to that for binding between nucleotides and water (21,22). 

Kinetic measurements show that the tertiary structure of tRNA, u from 

Escherichia Coli is less stable than its secondary structure (23). It can further 

be shown that the experimental and theoretical AG (24) values for the formation of 

secondary structure in tRNA reasonably agree. 

Let us now turn to the structural properties of viral RNA. A region of the 

RNA of TMV shows a tRNA-like structure since histidine is attached at the 3 end 

(25) by its amino acyl-tRNA synthetase. The regions of TMV RNA forming initiation 

complexes with the double-disk indicate that these regions are capable of forming 

hairpin-like secondary structures (26,27). The AG values of association into hair­

pins of TMV-RNA regions are expected to be in the range -23.4 to -133.1 kJ (26, 

27), based on theoretical values for base-pairing (19). 

The TMV RNA regions, discussed above, are known to have a high binding affi­

nity to double disk-like protein oligomers (26,27), These regions are found at 

700-1300 nucleotides from the 3 end of the RNA and constitute the site for 

initial RNA binding (4,26,27). 

7.4 CONVOLUTION DIFFERENCE SPECTRA OF THE DOUBLE DISK-LIKE POLYMERIZATION 

Following the same approach as for virus and rod-like polymers (7), we have 
13 

also obtained convolution difference (CD) C NMR spectra of the double disk-like 

oligomer, as shown in Fig. 1. 
13 1 

It has been found that the line width of all C and H resonances is inde­
pendent of the increase in molecular weight upon double disk-like polymerization, 

13 
and has an upper limit of 65 Hz (6,8) for C. Furthermore, ̂  2Q°s of the carbons 

within the double disk-like oligomer show a decrease in line width upon increasing 

temperature (6). In Fig. 1A we present the CD spectrum of these carbons at 30 C 

and in Fig. 1B the CD spectrum of TMV protein trimers at 7 C. For comparison, in 

Fig. 1C the TMV CD spectrum (30°C) is shown. The line width of groups of resonan­

ces in the CD spectra of Fig. 1A and B decreases upon increasing temperature due 

to increased internal mobility affecting both chemical shift inequivalence and 

dipolar interaction. 

In the disk CD spectrum at 30°C (Fig. 1A) more resonances are present then 



20 ppm 100 200 

Fig. 1. 13C convolution difference spectra of THV and its protein oligomers 
obtained from 1 3C spectra at 90.5 MHz take under broadband decoupling. 
A, acquisition time: 1 s; concentration: 40 mg/ml; temperature: 30 C; 
pH: 7.3 in 0.1 M NaCl; 4000 accumulations; CD time constants: 0.005 and 
0.011 s with K = 1. B, acquisition time: 0.5 s; concentration; 40 mg/ml; 
temperature: 7°C; pH: 7.0 in 0.1 M NaCl; 17,000 accumulations; CD time 
constants; 0.005 and 0.011 s with K = 1. C, acquisition time: 1 s; 
concentration: 60 mg/ml; temperature: 30 C; pH: 7.2 in 1 mM sodiumphos-
phate; 50,000 accumulations; CD time constants: 0.005 and 0.011 s with 
K = 1. K is defined as a weighting factor for the substracting of the 
spectra. The ppm scale refers to CS2 assuming 125.8 for the g-Thr carbon 
position. 

observed in the virus CD spectrum (7) (Fig. 1C), i.e. those of 6-leucine, 

y-glutamic acid, e-arginine carbons. Phenylalanine ring carbons are observed in 

the region 50 to 100 ppm. This aromatic amino acid is absent in the CD spectrum 

at 7°C but was also observed at 30°C in the CD spectrum of the virus (7), sugges­

ting temperature induced motion of a protein section; independent of the molecu­

lar weight (7) of virus or protein oligomers. In addition, the mobility of the 

phenylalanine side chain is independent of protein subunit mobility because in 

the virus, protein subunit mobility is absent due to protein/RNA interactions, 

whereas its resonances are still observed. Another difference between the CD 
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spectrum of the double disk-like oligomer (Fig. 1A1 with both other spectra is 

the presence of the e-arginine peak at 30°C. 

7.5 DOUBLE DISK-LIKE OLIGOMER 

The CD spectrum of the double disk-like oligomer (Fig. 1A) also includes 

resonances from phenylalanine. Noting that this amino acid is absent in the 

section 90-120, the carbons showing a decrease in line width upon increasing 

temperature (and molecular weight) cannot solely originate from amino acid 

residues in this section, which happens to have blurred electron density (28) in 

the X-ray micrograph. In agreement with assignments in the virus CD spectrum, the 

observed phenylalanine may be Phe 62 (7). We expect that the amino acids adjacent 

to Phe 62 are also present in the double disk CD spectrum at 30°C. The location 

of other mobile protein sections cannot be determined. An increased number of 

resonances in the double disk CD spectrum at 30 C (Fig. 1A1 in comparison with 

the CD spectrum of the virus indicates the presence of more mobile sections, 

however. A difference between protein subunits in the virus (7) and in the 

double disk-like oligomer is the binding of RNA so that the arginine, glutamic 

acid and leucine carbons (Fig. 1A), only observed in the double disk CD spectrum 

may be located in the protein section which is capable of RNA binding (residues 

'v 90 to ^ 120). 

Previously, mobility within the double disk-like oligomer has been analyzed 

considering motion of the protein subunits in addition to motion of nuclei within 

the subunit (7]. Then, salt bridges and hydrogen-bonds between protein subunits 

are absent on the NMR time scale (71. From this result we may conclude that the 

stability of the double disk-like oligomer is due to the positive AS (upon poly­

merization to double disk) arising from changes in the amount of water surroun­

ding the oligomer (14). The positive AH may reflect mainly repulsion between 

protein subunits (one protein subunit has a negative charge of 2 units (30,31) 

at these neutral pH values), and is opposed by terms largely dominated by the 

entropy increase of water. Attractive v.d. Waals forces (29.) between protein 

subunits need not be considered since AH increases even with a decrease of 

repulsion and distance between protein subunits upon lowering pH (1). This is 

shown through comparing rod-like and double disk-like polymerization (13). 

In Fig. 2 hypothetical curves for the repulsion and attraction as a function 

of an arbitrarily intersubunit distance are presented. In this figure, curve I 

represents the sum of all (repulsive and attractive) energy terms arising from 
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k J. mole"1 

Fig. 2. I: Plot of AH, containing attractive and repulsive energy terms vs r, 
defining an arbitrary distance between protein subunits in the double disk-like 
oligomer. II: Plot of - TAS vs r, in which AS contains the entropy terms arising 
from water shielding changes. Ill: A plot of the difference between I and II 
(AG = AH - TAS) vs r. The curves I and II are hypothetical except for the 
inserted values for AH (+ 126 kJ.(mole trimer)"1) and TAS (156 kj.(mole trimer)"1) 
at r = 2.1 nm which represent the AH and AS for double disk-like polymerization 
(10). Curve II is also based on the assumption that water entropy contributions 
do not extend beyond a few water layers on the protein double disk surface. 

v.d. Waals, coulomb, and short-range repulsive interactions. Curve II represents 

the water entropy contribution and is based on the assumption that only a few 

layers of water molecules are affected by the hydrophobic surface of the double 

disk. Curve III is the difference between I and II and is obtained by inserting 

the measured values for AH and AS (10) for the double disk-like polymerization, 

yielding the minimum value of AG. In this way, Fig. 2 visualizes, that the double 

disk stability arises from water entropy. In view of Fig. 2, we note that changes 

in the number of contacts between water and double-disk immediately affect the 

double-disk stability (Fig. 2): in particular, an upward shift of curve II in 

Fig. 2, according to Boltzmann's law, results in a wider distribution of 

equilibrium distances between protein subunits. Assuming AG > 0 for double-disks, 
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resulting in their complete destabilization, requires removal of watermolecules 
from ̂  501 of the disk-surface. This can be estimated from the fact that removal 
of one of the protein subunit-surfaces from water yields an entropy change (10, 
32} of -v 100 J.K"1. 

7.6 THE DOUBLE-DISK RNA INITIATION COMPLEX 

X-ray data on TMV indicate that the bases are in contact with hydrophobic 
amino acid side chains of the protein subunits in a rather non-specific way (33). 
Three bases lie flat on the hydrophobic faces of the LR ochelix of one protein 
subunit which contains no aromatic amino acid, and/or they may be hydrogen bonded 
to adjacent amino acid side chains. The phosphate groups bind to three arginines 
of the RR helix of a second, adjacent protein subunit. Although a certain amino 
acid code involving the backbone hydrogen bonds has been suggested (34) for base 
recognition, this is not applicable here as follows from published X-ray data (33) 
showing that hydrogen bonding with the backbone is impossible. Base recognition 
also is unlikely to arise from hydrogen bonding between bases and side chains 
(35,33). Finally note that two out of three bases per protein subunit in the 
protein stack with adjacent bases, again indicating the non-specific nature of 
base-protein interaction. 

There are also a number of arguments against the possibility that identical 
protein subunits, each capable of binding three nucleotides, can specifically 
accomodate a much longer sequence of nucleotides (26). It can safely be assumed, 
that binding based on sequence recognition can most efficiently occur with single 
strand (ss) sections of TMV-RNA. By comparing double disk binding to one of the 
polynucleotides (36) (e.g. poly A) with binding to TMV RNA, it can now be shown, 
that binding cannot occur with ss TMV RNA sections. The concentration of a TMV 
RNA region |ssRNA| capable of binding specifically to the double disk with 
binding energy AG, can be calculated from [RNA] and from the Gibbs free energy 
for association (AG ) for the equilibrium ssRNA;=± ds RNA (double strand RNA1. 

3-SS 

Poly A (pA) under these conditions (pH ̂  7, 20 C) is incapable of forming ds 

regions (45) so that the binding concentration of the pA region is given by ]j>A] 

with AG? defining the energy for binding pA to the double disk. Because pA has 

a considerably lower reaction velocity (36) for binding to TMV than TMV RNA, 

AGPA » A G ^ - AGa s s, [21 

can now be obtained. 
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_1 
For the binding region of TMV RNA an average AG of ^ 3 KJ. (mole base pair) 

3.SS 

can be calculated (24). The difference in binding energy between sections of pA 

and RNA to double disk is represented by AG? - AG, and probably arises mainly 

from differences in hydrogen bonding between bases from pA and TMV RNA regions 

and protein. Since AG is nearly optimal for TMV RNA, and the base-stacking 
3.SS 

energy to aliphatic chains in the protein presumably is lower than in ds TMV RNA 

and -finally-, since no particular triplet is repeated in the RNA sequence, it 

follows that 

A G f - A G ™ * « -AGa s s, L 3 ] 

in contradiction with | 2 |. Consequently, the specificity of the protein double 

disk towards the RNA binding region cannot be assigned to a sequence of nucleo­

tides recognized by a binding site on the double disk. Another interesting argu­

ment can be added; if a protein subunit preferentially binds to a particular 

triplet e.g. AAG it would bind much more effectively to a section of pA than to 

a chain containing less than two adenines on the first two positions of each 

triplet, in contrast with observation. For different homo polynucleotides this 

argument can be used for all triplets containing two bases in any position. From 

published data (26,27) it can be found that a number of TMV RNA regions (probably 

depending on experimental conditions) preferentially are encapsidated by the 

double disk; this indicates that the formation of the initiation complex may well 

be less specific than is usually assumed. 

Summarizing, we now conclude, that the base-protein recognition in the TMV 

assembly process must be based on the presence of a secondary and/or tertiary 

structure in the RNA region capable of binding. A similar behaviour has also been 

suggested for RNA/coat protein interaction of the MS 2 phage (37). 

The correlation times for rotational diffusion of water and double disk/RNA 
-10 -7 

presumably are < 10 s, and < 10 s, respectively. This difference in time 

scale also reflects the difference in rate of translational diffusion for water 

and double disk/RNA, indicating that the rearrangement of water occurs at a much 

faster rate than the association (or dissociation! process. This is important to 

note, when considering the formation of the initiation complex. The interaction 

between RNA and double disk eventually leads to the formation of an intermediate 

(cage complex), in which the secondary and perhaps tertiary structure of the RNA 

region which must be specifically encapsidated is still intact. In the event of 

the cage complex formation, a number of water molecules are removed from that 
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protein surface which is approached by RNA. Destabilization of the double disk 

now occurs which results in its depolymerization mainly at the RNA boundary. Due 

to their hydrophobic surfaces the depolymerized protein subunits remain part of 

the cage complex, which retains its limited dimensions by forces causing the 

surface contact area between the cage-boundary and water to remain as small as 

possible. 

Before the initiation complex can be formed a certain amount of activation 

energy is necessary for the formation of the cage complex (both RNA and double 

disk are negatively charged) as well as for the disruption of the tertiary and 

secondary RNA structure (/v 50 kJ) (2,19). During double-disk depolymerization, 

heat is released because of the positive AH (> 42 kJ.(mole subunit)" ) (TO) for 

protein subunit polymerization to trimer and double-disk oligomers. This energy 

can now be used for the formation of the cage complex and, more importantly, also 

for the disruption of the TMV RNA hairpin. It can now be understood that the 

specificity of RNA binding must be based on the proper geometry of the hairpin, 

such that enough water can be removed from the double-disk surface to destabilize 

it, and on the stability of the TMV RNA hairpin; it must be stable enough to 

have a long lifetime but not so stable that it cannot be molten. The molten RNA 

region now has lost its specific geometry so that the increase in water entropy 

upon shielding becomes the driving force for protein subunit binding in adjacent 

position with their arginines (33) to RNA phosphates. This assembly process is 

endothermic (10). The known proton uptake (38) upon assembly of TMV is necessary 

for neutralizing TMV RNA phosphates. It is conceivable that the flexible protein 

backbone regions further facilitate the RNA binding. 

A similar mechanism as described above may be expected for the elongation 

process; then, it can be shown straightforwardly, that elongation employing 

double disks, proceeds more effectively, than with trimeric units (39,40). In 

view of E/M observations (3), the elongation step is thought to proceed from the 
i 

RNA binding site to the 5 end after which the RNA segment between the binding 
t 

site and the 3 end is incorporated. The latest proposed elongation mechanism 
! 

implies that the unencapsidated 5 end must be pulled through the completed part 

of TMV before it is encapsidated (3,41). In our model, melting of RNA at its 

protein binding sites is energetically favoured. After the double disk falls 

apart and melts an RNA hairpin, we assume that the molten RNA hairpin adapts to 

a helix during the encapsidation by protein subunits. If this model is correct 
t ! 

this results in both 3 and 5 ends protruding from different ends of the protein/ 
i t 

RNA initiation complex. Electron micrographs showing the denatured 3 and 5 RNA 
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I 
ends at one rod end (3,411 may be interpreted by assuming that the 5 end is 

i 

folded back towards the 3 end while it is adsorbed into the protein coat of the 

partially completed virus rod. 

7.7 DISSOCIATION OF TMV 

The known procedures (42-44) which are used to dissociate TMV into protein 

and RNA in vitro involve rather rigorous steps (pH ̂  11-12, detergents such as 

urea, sodium dodecylsulphate (SDS)). If it is assumed that pH values in plant 

cells under physiological conditions are approximately neutral, dissociation of 

TMV requires a detergent-like agent to be present in the plant cell. 

TMV RNA can only enter the cytoplasm by passing through the cytoplasmic 

membrane containing lipids so that a better look at the influence of the lipid-

like detergent, SDS, on TMV stability is interesting. The stripping of protein 

subunits from TMV by using 1 % SDS has been known for quite some time (43]. This 

can now easily be understood since TMV is not so stable as one would naively 

assume, due to the positive value of AH of > +42 kJ.(mole subunit]" for inter­

action between the protein subunits so that the binding of each protein subunit 

in TMV is stabilized through interaction with three phosphate of RNA (y 21 kJ. 

(mole protein subunit)" ) (10) and through the positive entropy term arising 

from water being shielded from the protein subunit surface. Because AH of 

protein-protein interaction exceeds AH for protein-RNA interaction, a change in 

AS, resulting in AG > 0 for placing a protein subunit within the rod, induces 

a dissociation of the protein subunit. With this in mind it can be conceived 

that TMV falls apart just because of the hydrophobic environment when passing 

through the cytoplasmic membrane so that the released RNA can enter the cyto­

plasm. 
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8. NMR ON LARGE BIOLOGICAL SYSTEMS: E. COLL 
RIBOSOMES, TOBACCO MOSAIC VIRUS AND COWPEA 

CHLOROTIC MOTTLE VIRUS 

J.L. de Wit, L.C.J. Dorssers, T.J. Schaafsma. 

8.1 INTRODUCTION 

Within the framework of this Thesis, it is interesting to define the scope 

of the application of NMR to large biological systems in relation to other non­

destructive spectroscopic methods. There is a growing interest in such methods 

which can be used in solution to obtain information at molecular resolution 

about structure and dynamics of these systems, e.g. chloroplasts, ribosomes, 

viruses, phages, membranes, mitochondria and cells. The interest for these 

methods comes from the fact that one can approach the in vivo situation. Methods 

which are primarily suitable to obtain structural information such as X-ray 

diffraction (1) and electron microscopy (2), have limited possibilities in 

solution, however (3). For studies in solution more adequate methods may come 

from optical spectroscopy e.g. circular dichroism (4), fluorescence (5), 

phosphorescence (6) and laser Raman spectroscopy (7). They are dependent on the 

presence of chromophores, however, and measurements are often difficult due to 

interfering light scattering because of solution turbidity. Since the 

development of a completely different detection method (8), the latter problem 

has essentially been solved. Optical Detection of Magnetic Resonance (ODMR), 

as a combination of optical spectroscopy and magnetic resonance, has been 

applied to the study of the photosynthetic unit and its components (9). The 

scope of Electron Spin Resonance (ESR) has recently been extended to large 

biological systems through the introduction of Saturation Transfer (ST) ESR 

using nitroxide spin labels (11,10). Introducing a nitroxide spin label always 

can complicate interpretations because the spin label may disturb its 

environment, however. 
19 15 2 1 13 31 

Nuclear Magnetic Resonance (on nuclei such as F, N, H, H, C, P) 

covers a large range of possible non-destructive applications in solution which 

- except for their low sensitivity as compared to the methods mentioned above 

and limited resolution which can be overcome by selective stable isotope 

enrichment - have almost infinite possibilities in small biological systems 

(12,13). It is not necessary to assume that only solid state NMR methods such as 
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13 
C induction spectroscopy are suitable for large biological systems (14,15,16). 

Using this method in apparently rigid systems like ivory, Schaefer et al. (17) 

found internal mobility on a time scale of ̂  10 s which is close to that 

necessary for conventional FT NMR in solution. 

The possibility for using conventional FT NMR in large biological systems 

critically depends on the presence of internal mobility. According to the 

Stokes-Einstein equation (18) a large biomolecule such a Tobacco Mosaic Virus 

(TMV) reorients slowly and from the use of dipolar relaxation equations (19) 

it follows that the spin-lattice relaxation time (T..) becomes excessively long 

(y 2000 s (28)) and the spin-spin relaxation time (T2) so short that NMR 

resonances should be broadened beyond detection (20). 

We have investigated if internal mobility is a property of other large 

biological systems than TMV. We will discuss ribosomes and Cowpea Chlorotic 

Mottle Virus (CCMV) to some extent, representing a class of biomolecules of 

large molecular weight. 

8.2 RESULTS AND DISCUSSION 

Because TMV has a large molecular weight, the NMR spectral intensity is a 

direct measure of the number of internally mobile nuclei (18,21), all rigid 

nuclei being unobservable. The number of mobile nuclei in other biological 

systems can also be determined in this way, the results being summarized in 

Table 1. Although molecular weights of these systems are smaller than that for 

TMV (2-5 x 10 instead of 42 x 10 ) , this procedure is justified since T1 of 

the observable resonances is < 1 s and line widths are < 300 Hz. 

Cowpea Chlorotic Mottle Virus (CCMV) is a spherical plant virus (nolecular 

weight 4.6 x 10 and ̂  14 nm diameter) consisting of 180 identical protein 

subunits (molecular weight 19,400) and four different RNA chains distributed 

over three particles (25). 100 MHz H spectra of the CCMV virus are similar to 

those of large TMV protein oligomers. The spectral intensity of side chain 

resonances of CCMV, presented in Table 1, originates from internally mobile 

nuclei. 

This internal mobility again may arise from mobility of the nuclei within 

the CCMV protein subunits and/or protein subunit mobility within CCMV particles. 

T..'s of the observable resonances are < 1 s, suggesting the presence of small 

angle rotational motions of the nuclei within the protein about carbon-carbon 

and/or carbon-proton bonds, similar to that observed for TMV (18). 
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TABLE 1. 

Spectral intensities of backbone and side chains nuclei in protein in 
biological systems. 

system 

TMVa 

TMV-protein rod (pH=5.3 7°C)a 

TMV-protein rod (pH=6.2 20°C) 

CCMVb 

a 

a 

E.Coli ribososmes' 

other systems (pi 
viruses and proteins) 
other systems (phages and 

backbone 

0.07 

0.1 

0.65 

+ e 

0.27 

d 

s ide chain 

0.17 

0.1 

0.65 

0.3 

0.3 

0 .05-0.3 

, Measured as integrated spectral intensity both for 1 3 C and 'H; 
Measured as integrated spectral intensity with H NMR and corrected for the 
residual HOD; 

Q 1 

j Measured by H NMR at 100 MHz for side chain protons; 
Hidden under the HOD peak; 
Backbone is present but hard to quantify. 

E. ooli 70 S ribosomes (molecular weight t 2.7 x 10 ) consist of a so 

so called 50 and 30 S particle with molecular weight 1.7 x 10 and 1 x 10 

respectively. The SO S particle contains 65% RNA divided over two chains 

(5 and 23 S) with molecular weight 0.04 x 10 and 1.1 x 10 respectively and 

34 different protein subunits with molecular weights in the range 7,000 to 

31,000. The 30 S particle contains 651 RNA in one chain (16 S) with molecular 

weight 0.6 x 10 and 21 different protein subunits with molecular weights in 

the range 11,000 to 31,000. The exact number of protein subunits interacting 

with RNA in both particles is unknown. Present knowledge about the organization 

and way of functioning of this intensively studied organelle is rather limited 

(22). 
13 

Table 1 summarizes intensities of a spectrum of 121 C enriched E. ooli 

ribosomes (see Figure 1). These spectral intensities have been determined by 

comparison with those of spectra of solutions with known concentrations of 

hemoglobine, TMV-protein, and denatured ribosomes. 
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20 ppm 100 200 

Fig. 1. Broadband noise decoupled 1 3 C NMR spectrum of E. Coti ribosomes at 
90.5 MHz. The ribosomes are ̂  12% C enriched. Conditions: concn. 38 mg/ml, 
temp 5°C, pH = 7, lOmM MgCl , 60 mM NH CL, 3mM g- Mercaptoethanol. The ppm 
scale was referenced to CS assuming 12S.8 ppm for g-Thr. Acquisition time 
plus pulse delay: 1 sec; number of accumulation 18,700; sensitivity enhancement: 
33 Hz. 

From H NMR at 100 MHz it is found that the observable protons in the H NMR 

spectra have line widths < 300 Hz and L < 1 s. From this figure, a line width 
13 

of < 150 Hz can be deduced for C using the equations for dipolar relaxation 
1 13 —8 

(21) for H and C. From the line width T < 5.10 s can be calculated using 

the equations for dipolar relaxation (19). Using the molecular weight of the 

ribosome in the absence of internal mobility, a line width of > 4 kHz is 

predicted from the Stokes-Einstein and dipolar relaxation equations, which leads 

us to conclude that the observable nuclei must be internally mobile. 

The considerations used in previous Chapters when discussing internal 

mobility in TMV and its protein oligomers cannot be used because of lack of data 

on protein-RNA and protein-protein interactions and tertiary structure of the 

protein subunits in the ribosomes. The spectrum of Fig. 1. reveals a carbonyl 

region (10-40 ppm), nucleotide resonances (40-100 ppm), ribose resonances 

(100-130 ppm), C resonances (130-150 ppm), and aliphatic resonances (150-200 

ppm). Although the ribosomes purified according to Fahnestock et al. (23) retain 

their normal activity, these RNA resonances could be a result of RNA breakdown 

during ribosomal preparation. 
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Finally, we have carried out 100 MHz H measurements on Brome Mosaic Virus 

(BMV), Broad Bean Mottle Virus (BBMV), Alfalfa Mosaic Virus (AMV), Cowpea Mosaic 

Virus (CpMV), a number of T- viruses, MS2 virus, f 2 virus, 0. virus, <(>X174 

virus and Adenovirus. The results are summarized in Table 1, indicating that 

in all cases an appreciable of H nuclei are observed and therefore are 

internally mobile. 

Along the same lines as found for TMV, the observation of H resonances 

is a clear indication that C NMR can also be fruitfully applied to a large 

host of biosystems, since they all have internal mobility as a common property. 

We have not not carried out C measurements on the collection of viruses 

mentioned above, however. 

Morrison et al. (24) studied ribosomal proteins subunits obtained from 
1 13 

E. aoli ribosomes with H NMR. Our results indicate that when selective C 
13 enrichment is used (e.g. a single C protein subunit in non-enriched 

ribosomes) a variety of these protein subunits can be studied in their natural 

environment. 
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LIST OF ABBREVIATIONS 

AMV 

BMV 

BBMV 

CCMV 

CD 

CpMV 

YH 

YC 
D 

ds 

A 

E 

ESR 

FT NMR 

G 

AG. 
E 

AG 

pA 

RNA AG, 
b 

AG 
a 

n 

H 

h 

HR 

J 

J(to) 

K 

k 

kJ 

Alfalfa Mosaic Virus 

Brome Mosaic Virus 

Broad bean Mottle Virus 

oscillation angle 

Cowpea Chlorotic Mottle Virus 

convolution difference 

Cowpea Mosaic Virus 

gyromagnetic ratio of a proton 

gyromagnetic ratio of a carbon 

dipolar interaction parameter 

double strand 

change 

extinction coefficient 

electron spin resonance 

fourier transform nuclear magnetic resonance 

Gibbs free energy 

Gibbs free energy for binding pA to double disk 

Gibbs free energy for association from single to 

double strand RNA 

Gibbs free energy for binding RNA to double disk 

Gibbs free energy for activation 

viscosity 

enthalpy 

Planck's constant/2rr 

high resolution 

Joule;scalar coupling constant 

spectral density function 

constant 

Boltzmann's constant 

kiloJoule 

magnetic permeability 
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M 

N 

"D 

\ 
ORD 

pA 

polyA 

ppm 

R 

RNA 

rCH 
rHH 
a 

Aa 

S 

s 

SDS 

S/N 

ss 

ST 

T 
C 

T 
g 

T 

Tl 
T2 
1/TTT2 

TMV 

Tris 

tRNA 

tRNA* 

v 

W 

Glu 

molecular weight 

number of nuclei 

number of detectable protein subunits 

number of non-detectable protein subunits 

optical rotation dispersion 

poly A 

polyadenylic acid 

parts per million 

gas constant 

ribonucleic acid 

carbon-proton distance 

proton-proton distance 

chemical shift 

chemical shift range 

sedimentationcoefficient in Svedberg units 

second 

sodium dodecyl sulfate 

signal to noise ratio 

double strand 

saturation transfer 

correlation time 

correlation time describing rotation of a 

tetrahedral group about its carbon-carbon bond 

x with i specifying the carbon-carbon bond 

correlation time for internal mobility of a protein 

correlation time for rotational motion of a sphere 

residence life time 

correlation time 

absolute temperature;Tesla 

spin-lattice relaxation time 

spin-spin relaxation time 

lorentzian line width at half height 

Tobacco Mosaic Virus 

Tris(hydroxymethyl)aminomethane 

transfer RNA 

glutamic acid transfer RNA 

partial specific volume 

Watt 

larmor frequency of a proton 

larmor frequency of a carbon 
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APPENDIX I 

TABLE 1 

Amino acid sequence for the protein of TMV Vulgare 

Number 

-

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

Residue 

Acetyl 

Ser 

Tyr 

Ser 

lie 

Thr 

Thr 

Pro 

Ser 

Gin 

Phe 

Val 

Phe 

Leu 

Ser 

Ser 

Ala 

Trp 

Ala 

Asp 

Pro 

lie 

Glu 

Leu 

H e 

Asn 

Leu 

Number 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

Residue 

Cys 

Thr 

Asn 

Ala 

Leu 

Gly 

Asn 

Gin 

Phe 

Gin 

Thr 

Gin 

Gin 

Ala 

Arg 

Thr 

Val 

Val 

Gin 

Arg 

Gin 

Phe 

Ser 

Glu 

Val 

Trp 

Lys 

Number 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

Residue 

Pro 

Ser 

Pro 

Gin 

Val 

Thr 

Val 

Arg 

Phe 

Pro 

Asp 

Ser 

Asp 

Phe 

Lys 

Val 

Tyr 

Arg 

Tyr 

Asn 

Ala 

Val 

Leu 

Asp 

Pro 

Leu 

Val 
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Number 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

Residue 

Thr 

Ala 

Leu 

Leu 

Gly 

Ala 

Phe 

Asp 

Thr 

Arg 

Asn 

Arg 

H e 

H e 

Glu 

Val 

Glu 

Asn 

Gin 

Ala 

Asn 

Pro 

Thr 

Thr 

Ala 

Glu 

Number 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

Residue 

Thr 

Leu 

Asp 

Ala 

Thr 

Arg 

Arg 

Val 

Asp 

Asp 

Ala 

Thr 

Val 

Ala 

H e 

Arg 

Ser 

Ala 

H e 

Asn 

Asn 

Leu 

H e 

Val 

Glu 

Leu 

Number 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

Residue 

H e 

Arg 

Gly 

Thr 

Gly 

Ser 

Tyr 

Asn 

Arg 

Ser 

Ser 

Phe 

Glu 

Ser 

Ser 

Ser 

Gly 

Leu 

Val 

Trp 

Thr 

Ser 

Gly 

Pro 

Ala 

Thr 

The sections 21 to 31, 40 to 53, 79 to 96, 103 to 112 and 114 to 134 are in the 

a-helix configuration ( Stubbs, G., Warren, S. and Holmes, K.(1977) Nature, 267, 

216 - 221. ) . 

This listing is obtained from the Centre du Documentation de C.N.R.S. 
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APPENDIX 2 

TABLE 2 

Chemical shifts of carbon nuclei in ppm relative to CS2> 

carbon nucleus chemical shift carbon nucleus chemical shift 

lie C5 181,3 Cys C 155,6 

lie C 177,7 Asp C. 155,2 
Y2 p 

Ala C. 176,3 Lys C 153,4 
p e 

Val C 176,0 Leu C„ 153,1 
Y2 P 

Val C 175,0 Arg C. 152,1 
Yi 6 

Thr C 174,1 Gly C 150,3 
Y a 

Leu C. 171,7 Pro C. 146,9 
02 0 

Lys C 170,9 Ala C 143,5 

Leu C. 170,6 Cys C 142,0 

Arg C 168,7 Asn C 141,9 
° Y a 

Pro C 168,5 Asp C 141.4 
Y a ' 

Leu C 168,5 Leu C 140,0 
Y a ' 

H e C 167,7 Arg C 139,6 
Yi a 

Lys C. 166,6 Gin C 139,3 
6 a 

Trp CD 166,6 Lys C 138,9 
p OL 

Gin C. 166,0 Glu C 138,9 

Arg C 165,0 Trp C^ 139,6 

Glu CD 164,8 Phe C 137,6 
P Ct 

Pro CD 163,6 Tyr C 137,4 
& a 

Lys C0 162,7 Ser C 137,3 

Val CD 162,6 H e C 134,5 

Gin C 161,6 Val C 134,1 
Y a 

Glu C 159,1 Pro C 131,9 
Y a 

Asn C„ 157,6 Thr C 133,7 
p ot 

Tyr Ca 156,8 Ser C. 131,6 
p p 

Phe C„ 156,0 Thr CD 125,8 p p H e C. 155,8 Trp C 84,0 
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carbon nucleus chemical shift carbon nucleus chemical shift 

Trp C 

Tyr C 

Trp C 

Trp C 

Trp C 

Trp C 

Trp C 

Phe C 

?2 

E1+E2 

S3 /Tl2 

£3 lr\7 

63 / 6 , 

63/61 

62 

80,9 

77,4 

74,4 

73,4 

70,8 

67,7 

66,2 

65,6 

Tyr C 
•Y 

Phe C 

Phe C 
61+62 

El +£2 
Tyr C. 

02 

Tyr Cfii 

Phe C Y 
Trp C 

Tyr C? 

Arg C 

£2 

64,9 

64,0 

63,5 

62,4 

62,4 

56,4 

56,4 

38,2 

36,1 

, Names of carbon nuc l e i a re according to the IUPAC IUB r u l e s . 
I d en t i c a l to those of James, T . J . (1975) Nuclear Magnetic Resonance in 
Biochemistry 246-247, Academic P r e s s , New York. 
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APPENDIX 4 

The treatment of internal mobility in this Thesis has mainly been based on 

equations derived for internal rotation of a methyl group superimposed on 

isotropic overall motion. 

The spin-lattice (l/TV; and spin-spin (l/T^j dipolar relaxation rates 
1 1 

for a H - H pair are given by (1), 

4,2 
1 ? YHn' 

HH 

J((oH) + 4J(2wH) [1] , 

-^-=0.15^/411) 
x2 

2 ^ 

rHH 

3J(0) + 5J(uH) + 2JC2uH) [2] , 

J(o)u), J(2wu) and J(0) can be given by 

J(io) =0.25 
3 T i 

1 + 22 ( i 22 
1 + W T 1 + U T . 

C 1 

[3] 

with -1 -1 ^ -1 
T. = T + T 

i c g [4] 

in this case T is the internal rotational correlation time describing 
g 1 1 

random jumps of the H - H vector about the symmetry axis of the methyl group. 
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1/T™ and 1/T™ for d i po l a r r e l a x a t i on of a 13C - 1H p a i r i s given by ( 2 ) , 

2 2,2 
2 YHYCh 

• = o . K u 0 / 4 n ) ^ 
lCH 

9 ' 27 Z 27 3 [ 5 ] , 

„CH 
0.0S(yo /4n) 

2 2, 2 
2 Wc*1 

lCH 

^ 8*.7 16$, 
— + 
9 27 27 

[ 6 ] , 

where 

x4 = 
T i 

T 7 

5 T i 
+ n + 

6T , 

1 + (Ut-Ujj) T i 1 + 0 t T i 1 + C V f c ^ T i 
TI 

i 

[ 7 ] , 

b. = X. + 4 T . + 
" l l l 

6 T . 
I 

, . 2 2 
1 + 0 )HT i 

[ 8 ] , 

and 

i = 1,2 and 3 w i th T 1 = T 
' 1 c 

1 1 1 

2 C £ 

[ 9 ] , 

[ 1 0 ] , 

1 1 2 

T3 Tc 3 T f 

[ 1 1 ] , 

13 -| 
T in this case is the correlation time describing reorientation of the C- H 

pair about its symmetry axis. 
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SUMMARY 

13 1 
This Thesis describes the application of conventional C and H high 

resolution Fourier Transform Nuclear Magnetic resonance (HR FT NMR) to Tobacco 

Mosaic Virus (TMV) and its protein oligo- and polymers and some other large 

biological systems. The rod-like TMV consists of 2200 identical protein 

subunits protecting one RNA chain (molecular weight 42 x 10 ). The most 

important protein oligo- and polymers are the trimer (molecular weight 

% 50,000), rod-like polymer (molecular weight > 10 ) and the double disk-like 

oligomer (molecular weight ̂  0.6 x 10 ). This study could be carried out 

because these large biomolecules exhibit internal mobility. Apart from rotation 

of TMV and protein oligo- and polymers themselves several types of such 

internal mobility can be distinguished: rotational motions about carbon-carbon 

bonds in the polypeptide chain (backbone and side chains) within the protein 

subunits characterized by a rotational diffusion correlation time 
-10 

T < 5 x 10 s, assumed to correspond to small-amplitude rotation extending 
o 

over ̂  40 ; translational and rotational motions of protein subunits within 

the protein oligomers about one or (more probably) two mutually perpendicular 
-8 

axes with a correlation time T < 4 x 10 s; temperature dependent rotational 

motions over a full 2ir angle of both backbone and side chain about at least two 

carbon-carbon bonds of the section 57 to 62 of the polypeptide chain in the 

virus and of the section 57 to 62 and in the section 90 to 120 in the double 
_7 

disk-like oligomer on a time scale < 10 s. The section 90-120 is known to 

constitute the RNA binding site. From the effect of proton binding to the rod­

like polymers on internal mobility, it turns out that at least one aspartic. 

one arginine and probably a glumatic acid are:involved in the anomalous 

titration behaviour of TMV protein rod-like polymers. These amino acids 

probably belong to the so called carboxyl cage which, based in our results, is 

expected to be hydrophobic. After the addition of the first proton the carboxyl 

cage is still incomplete, a result which follows from the fact that protein 

subunits with one bound proton, are still detectable. 

Based on the finding that protein subunits are mobile, it is shown that 

the stability of the double disk-like oligomer solely arises from entropy 
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increase upon shielding of hydrophobic protein surfaces from water during the 

protein polymerization process to double disks, no specific protein-protein 

interactions being present. The positive AH and AS for this polymerization 

process led us to conclude that, if enough water is removed from the double 

disk protein surface, the double disk destabilizes and dissociates. From this 

conclusion a model for the assembly of TMV from double disk and TMV RNA has 

evolved. 

The first step in the assembly process, the formation of the initiation 

complex, is based on the double disk which specifically recognizes an RNA 

region. Summarizing, the model implies, that recognition takes place with an 

intact RNA hairpin; that the double disk dissociates at least at that surface 

which is approached by the RNA hairpin because of diminished water contact; 

that the heat released during double disk dissociation, because of the positive 

AH, is available for melting the RNA hairpin; that the initiation complex then 

can be completed and, finally, that the specificity arises from size and 

stability of the RNA hairpin, i.e. its secondary structure. It is reasonable 

to suppose that initiation is completed with both 3' and 5' end of RNA 

protruding from different sides of the initiation complex. The elongation 

process can be described similar as the formation of the initiation complex. 

Also a simple model for TMV dissociation, under physiological conditions 

in protein and RNA upon entering the plant cell, is presented. It is suggested 

that TMV dissociates when passing the cytoplasmic menbrane. 

In a small excursion to other large biological systems (plant viruses, 

phages, ribosomes) we show that the type of expirements described in this 

Thesis can be extended to many large biological systems. In this way proteins 

can be studied in their natural environment, close to the in vivo situation. 

Finally this Thesis shows that it is relatively simple to enrich these systems 
13 

with stable isotopes against low material costs. For C NMR measurements TMV 
13 

was enriched with C up to 12-151. 
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SAMENVATTING 

13 1 
Dit proefschrift beschrijft de toepassing van C en H kernspin 

resonantie (NMR) aan Tabaksmozaiek virus (TMV) en zijn eiwit oligo- en 

polymeren. Het staafvormige TMV bestaat uit 2200 identieke eiwit eenheden die 

het RNA beschermen. Het totale molekuulgewicht van het virus is 42 x 10 . De 

belangrijkste eiwit oligo- en polymeren zijn de trimeer (molekuulgewicht 

^ 50,000), staafvormige polymeer (molekuulgewicht > 10 ) en het "double disk" 

vormige oligomeer (molekuulgewicht ̂  0.6 x 10 ). Dit onderzoek was mogelijk 

omdat zowel virus als eiwit oligo- en polymeren intern beweeglijk zijn. 

Behalve de rotatie van TMV en eiwit oligo- en polymeren om hun eigen assen, 

kan men meerdere typen interne beweeglijkheid onderscheiden in deze systemen: 

rotaties om de koolstof-koolstof bindingen van de polypeptide keten 
-10 

correlatietijd voor rotatiediffusie T < 5 x 10 s corresponderend met rotatie 
o 

over hoeken van ̂  40 ; translatie en rotatie diffusie van eiwit eenheden in de 

eiwit oligomeren om een of- wat meer waarschijnlijk is twee onderling 
-8 

loodrechte assen met eencorrelatietijd T < 4 x 10 s; temperatuur-afhankelijke 

rotaties over een hoek van 360° om tenminste twee koolstof-koolstof 

bindingen in sekties van de polypeptide keten (skelet en zijketens) van 

aminozuur 57 tot 62 in het virus en van 57 tot 62 en in de sektie 90 tot 120 
_7 

in de "double disk" vormige oligomeer op een tijdschaal < 10 s. De sektie 90 

tot 120 is bekend als de RNA bindingsplaats. 

Uit het effect van proton-binding aan het staafvormige polymeer op de 

interne beweeglijkheid kunnen we laten zien dat tenminste een aspargine zuur, 

een arginine en waarschijnlijk een glutamine zuur betrokken zijn bij het 

afwijkende titratiegedrag van staafvormige eiwit polymeren. Deze aminozuren 

bevinden zich waarschijnlijk in de "carboxyl cage" die naar de resultaten doen 

vermoeden onvolledig en hydrophoob is. 

De eiwiteenheden in de "double disk" oligomeer blijken beweeglijk te zijn 

zodat de stabiliteit van dit oligomeer berust op de entropie toename 

gedurende het eiwit polymerisatie proces tot "double disks" waarbij hydrofoob 

eiwit oppervlak uit water verdwijnt. Specifieke eiwit-eiwit interakties zijn 

zijn dan ook afwezig. De positieve AH en AS, voor dit polymerisatie proces 
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geven aan dat als voldoende water het kontakt verliest met het "double disk" 

eiwit opppervlak, de double disk instabiel wordt en dissocieert. Deze konklusie 

vormt de basis voor een model voor assemblage van eiwit en TMV RNA. 

De eerste stap in het assemblage proces, het ontstaan van het initiatie 

complex, berust naar reeds bekend was, op het herkennen van een specifiek stuk 

RNA door de "double disk". De assemblage houdt dan, kort samengevat, in dat 

deze herkenning plaatsvindt aan een intacte RNA hairpin; dat de double disk 

in ieder geval dissocieert aan de kant waar de RNA hairpin nadert; dat de 

warmte die bij double disk dissociatie vanwege de positieve AH vrijkomt, 

beschikbaar is om de RNA hairpin te smelten; dat dan het initiatie komplex 

gevormd kan worden en tenslotte dat de specificiteit berust op de grootte en 

stabiliteit van de RNA hairpin. Men kan redelijkerwijs veronderstellen dat het 

initiatie komplex ontstaat met het 3' en 5' RNA uiteinde aan verschillende 

kanten van dit komplex. De elongatie kan op dezelfde manier beschreven worden 

als het ontstaan van het initiatie komplex. 

Gebruik makend van de in dit proefschrift beschreven ideeen over eiwit-

eiwit interaktie wordt een simpel model voor TMV dissociatie onder fysiologische 

omstandigheden voorgesteld, berustend op het feit dat het mantel-eiwit 

dissocieert wanneer TMV het cytoplasmatisch membraan passeert. Een klein 

uitstapje naar andere biologische systemen (planten-virussen, fagen, ribosomen) 

laat verder zien dat de in dit proefschrift beschreven toepassingen ook voor 

andere grote systemen van nut kunnen zijn met als belangrijk voordeel, dat 

eiwitten dan in hun natuurlijke omgeving die de in vivo situatie benaderd 

bestudeerd kunnen worden. Dit proefschrift beschrijft verder, dat verrijking 

met stabiele isotopen gemakkelijk is en wat betreft de isotoopkosten niet duur 
13 13 

hoeft te zijn. De C NMR experimenten zijn uitgevoerd met 12-151 C verrijkt 
TMV. 
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