
Biochemistry and Physiology of Halorespiration 

by Desulfitobacterium dehalogenans 

..?.^TJ?*LE _ LANDBOUWCATALOGUS 

0000 0807 1728 



Promotor: Dr. W.M. de Vos 
hoogleraar in de microbiologie 

Co-promotoren: Dr. ir. A.J.M. Stams 
universitair hoofddocent bij de leerstoelgroep Microbiologie 
Dr. ir. G. Schraa 
universitair docent bij de leerstoelgroep Microbiologie 



Stellingen 

1. Halorespiratie is een weinig efficiente wijze van ademhalen. 

Dit proefschrift 

2. Halorespiratie moet worden opgevat als verbreding en niet als specialisatie van 

het genus Desulfitobacterium. 

Dit proefschrift 

3. Reductieve dehalogenases zijn geen nieuwe enzymen. 

4. 16S-rRNA probes zijn minder geschikt voor het aantonen van specifieke 

metabole activiteiten in een complex ecosysteem. 

Loffler et al. (2000) AEM 66: 1369; Gottschal & Krooneman (2000) Bodem 3: 102 

5. Het "twin-arginine" transportsysteem wordt niet goed genoeg begrepen om op 

basis van het voorkomen van het "twin-arginine" motief enzymen te lokaliseren. 

Berks et al. (2000) Mol. Microbiol. 35: 260 

6. Asbesthoudende bodem is niet verontreinigd. 

7. Biologische groente is een pleonasme. 

Stellingen behorende bij het proefschrift 'Biochemistry and physiology of 

halorespiration by Desulfitobacterium dehalogenans' van Bram A. van de Pas 

Wageningen, 6 december 2000 
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General Introduction 

Bram. A. van de Pas 



Chapter 1 

Pollution of the environment by halogenated organic compounds is undesirable 

because of their impact on nature and human health. Nevertheless, modern society has 

produced and spilled many tons of these types of compounds, resulting in an 

increasing number of polluted sites. In the past, these compounds were regarded as 

xenobiotics, compounds that are strange (Gk. xenos) to life (Gk. bios), and therefore 

the compounds that were found in the environment had to be man-made. In the last 50 

years, however, it has become clear that halogenated organic compounds are also 

produced in nature (Table 1.1), and the number of known natural organohalogens has 

increased from a dozen in 1954 to nearly 2400 in 1996 (Gribble, 1996). It is suggested 

that naturally produced organohalogens often have a chemical defensive role as 

antifeedant, repellant, or pesticide (Gribble, 1996). Most of these compounds are 

produced in small amounts when compared to the anthropogenic production, but the 

naturally produced organohalogens can be important locally and in some cases on 

global scale. For instance, Basidiomycetes have been found to produced chloro-

aromatic compounds in concentrations that exceed the Dutch and Canadian hazardous 

waste norms for analogous halogenated compounds and would require mandatory 

remedial action (Field et al., 1995). Furthermore, estimations of the amount of 

naturally produced halomethanes exceed the anthropogenic production by a factor 10 

(Gribble, 1996). 

Table 1.1: A selection of chlorinated hydrocarbons, their major applications, and natural sources 

Compound Structure Anthropogenic source' Natural source 
Methylchloride (MC) 

Tetrachloroethene (PCE) 

Chlorobenzenes 

Chlorophenols (CP) 

1>° 
polychlorinatedbiphenyls 9 2 2_3 
(PCB) < /W\ /> 

reagent for methylation 
reactions in chemical 
industry 
solvent and degreasing 
agent used in industry and 
dry cleaning 
Intermediate of dye 
production 
pesticide 
"toilet stones" 
disinfectant, wood 
preservative, herbicide 
fungicide, insecticide 

flame retardant 

marine algae, fungi, 
volcanoes, forest fires 

marine algae, volcanoes 

halogen containing minerals 

fungi, ticks, grasshoppers, 
forest fires, humines, 
microbes 

volcanoes 

a: Data from (Fetzner, 1998) 
b: Data from (Gribble, 1996) 
c: The numbering indicates the carbon atoms that may contain chlorine atoms 
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Because many halogenated organic compounds were found to be toxic and 

recalcitrant, their removal is of utmost importance. Remediation techniques for the 

clean up of soil and groundwater are based on extraction, chemical conversion, or 

biological degradation of the contaminants (Kim & Qi, 1995; Schipper et al., 1996). 

Similar principles apply to natural attenuation of pollutants, a complex of natural 

degradation processes in which microorganisms play a major role. Microorganisms 

are able to degrade a large number of halogenated compounds under different 

conditions because of their abundance, species diversity, catabolic versatility, and 

high metabolic activity (Alexander, 1981). The mechanisms for microbial degradation 

of halogenated organic compounds will be discussed here, with emphasis on 

halorespiration, a novel respiratory pathway in which bacteria profit from the 

reductive dehalogenation of halogenated organic compounds. 

Microbial degradation of halogenated compounds 

Microorganisms have developed different strategies to dehalogenate halogenated 

organic compounds. The cleavage of the carbon-halogen bond is catalyzed by specific 

enzymes (dehalogenases), by spontaneous dehalogenation of unstable intermediates, 

or by enzymes that fortuitously dehalogenate the halogenated analogs of their 

substrates (Fetzner & Lingens, 1994). 

Microbial dehalogenation of halogenated organic compounds occurs via five 

different mechanisms (e.g. oxidative dehalogenation, dehydrohalogenation, 

substitutive dehalogenation, dehalogenation by methyl transfer, and reductive 

dehalogenation) (Fetzner, 1998). Oxidative dehalogenation involves the oxidation of a 

double bond in unsaturated organohalogens by a mono- or di-oxygenase resulting in 

an unstable intermediate, which is dehalogenated (Fig. 1.1, reaction 1). In 

dehydrohalogenation of saturated halogenated compounds, like the insecticide lindane 

(y-hexachlorohexane), HC1 is eliminated from the substrate by dehydrohalogenases 

resulting in the formation of a double bond (Fig. 1.1, reaction 2). Substitutive 

dehalogenation in most cases is a hydrolytic process catalyzed by halihydrolases, but 

the halide can also be substituted by glutathione by glutathione-S-transferases in a 

"thiolytic" mechanism. A third mechanism of substitutive dehalogenation involves an 

intramolecular substitution reaction, which is catalyzed by halohydrin hydrogen-
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halide lyases (Fig. 1.1, reactions 3a, b, and c) Dehalobacterium formicoaeticum and 

Acetobacterium dehalogenans MC are able to dehalogenate chloromethane by methyl 

transfer from chloromethane onto tetrahydrofolate. This reaction is catalyzed by a 

chloromethane dehalogenase (Fig. 1.1, reaction 4) (Magli et al., 1996; MeBmer et al., 

1996). The last mechanism for dehalogenation of organohalogens is reductive 

dehalogenation, which in which a halogen is replaced by a hydrogen atom (Fig. 1.1, 

reaction 5). 

3a 
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Figure 1.1: Mechanism of enzyme-catalyzed dechlorination of chlorinated compounds by 

microorganisms. (1) oxidative dehalogenation, (2) dehydrohalogenation, substitutive dehalogenation 

via (3a) hydrolytic dehalogenation, (3b) glutathione substitution, (3c) intramolecular substitution, (4) 

dehalogenation by methyl transfer, (5) reductive dehalogenation (Adapted from Janssen et al., 1994). 

While oxidative dehalogenation and substitutive dehalogenation are the most 

common mechanisms under aerobic conditions, reductive dehalogenation prevails 

under anaerobic conditions. Many anaerobic microorganisms, like methanogens, 

sulfate-, iron- and nitrate-reducing bacteria, are able to reductively dehalogenate 

haloaromatic and haloaliphatic compounds. This is a co-metabolic process, which is 

not coupled to energy or carbon metabolism and that is catalyzed by co-factors like 

F430, cobalamin, and cytochromes (Holliger & Schraa, 1994). In contrast, halogenated 

organic compounds can be used as terminal electron acceptor for growth in the 

respiratory pathway by a number of anaerobic bacteria (see below and review of 
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Holliger et al., 1999). In the literature, this process has been referred to as 

dehalorespiration and halorespiration (Holliger et al, 1999, El Fantroussi et al., 

1998). The first term indicates the type of reaction involved (dehalogenation). In this 

thesis the term halorespiration is used since it refers to the type of electron acceptors 

which is used in this pathway (halogenated hydrodrocarbons) in analogy with other 

respiratory pathways e.g. fumarate respiration. 

There are many review articles that deal with the different mechanisms, 

enzymes, and bacteria involved in microbial dehalogenation (Doffing & Beurskens, 

1995; El Fantroussi et al, 1998; Fetzner, 1998; Fetzner and Lingens, 1994; Holliger 

and Schraa, 1994; Holliger & Schumacher, 1994; Holliger et al, 1999; Janssen et al, 

1994; Mohn & Tiedje, 1992). For reviews that focus on the microbial degradation of 

haloaliphates see (Bradley, 2000; Lee et al, 1998; Leisinger, 1996; Middeldorp et al., 

1999; Pries et al, 1994; Slater et al., 1997; Vogel et al, 1987) and for haloaromatics 

see (Annachatre & Gheewala, 1996; Commandeur & Parson, 1994; Neilson, 1990; 

Reineke, 1988). In view of the scope of this thesis, we will focus on halorespiration. 

Halorespiring bacteria 

In 1984, Shelton and Tiedje described the enrichment of 3-chlorobenzoate degrading 

strain DCB-1 from a methanogenic consortium growing on 3 chlorobenzoate as sole 

carbon and energy source, which was selected from municipal digester sludge over a 

two-year period. The inability of this isolate to use the endproducts of dehalogenation 

suggested that dehalogenation could supply energy to the organism (Shelton & Tiedje, 

1984). However, little progress was made towards understanding the physiology of 

strain DCB-1 (now designated as Desulfomonile tiedjei) until in 1990 a defined 

culture medium was described (DeWeerd et al, 1990; Linkfield & Tiedje, 1990). 

Dolfing (1990) showed that reductive dehalogenation of 3-CB was coupled to ATP 

production and growth in Desulfomonile tiedjei, which was further substantiated by 

Mohn and Tiedje (1990; 1991). These results provided conclusive evidence for 

halorespiration in Desulfomonile tiedjei. At this time, Desulfomonile tiedjei was the 

only microorganism in pure culture known to perform this novel way of respiration, 

but the number of species able to perform halorespiration gradually increased over the 

years (Table 1.2). Environmental samples in which halogenated compounds could be 
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detected were found to be excellent inocula for enrichment of halorespiring bacteria. 

There is one report of the isolation of a dehalogenating bacterium from sediments 

containing halogenated aromatics from biological origin. This isolate, strain DSL-1, 

has been isolated from sediments from the burrows of the 2,6-dibromophenol-

producing marine hemicordate Balanoglossus aurantiacus (Steward et al., 1995). 

However, the biomass yield did not increase when brominated phenol was present in 

the medium, which suggests that this organism may not couple reductive 

dehalogenation to growth (Steward et al., 1995). Halorespiring bacteria have been 

isolated from different polluted sources and include phylogenetically unrelated 

organisms (Table 1.2). In spite of this diversity, the range of halogenated substrates 

that is known to support growth is limited to three types of compounds, 

chlorobenzoates, halogenated phenols (ortho-, para- or meta-substituted), 

chloroalkenes (tetrachloroethene (PCE), trichloroethene (TCE), and dichloroethene 

(DCE)). Desulfomonile tiedjei is able to dechlorinate 3-chlorobenzoate, 

chlorophenols, and PCE, but it only dechlorinates PCE and chlorophenols co-

metabolically together with 3-chlorobenzoate (Cole et al., 1995; Mohn & Kennedy, 

1992). Dehalobacter restrictus and Dehalospirillum multivorans are able to couple 

PCE-dechlorination to growth (Holliger et al., 1993; Scholz-Muramatsu et al., 1995). 

However, these bacteria remove two chlorines from this substrate, yielding mainly 

CT'S-DCE. Dehalococcoides ethenogenes is the only isolate that is able to convert PCE 

completely to ethene, but the last step in this dehalogenation sequence, vinylchloride 

to ethene, is not coupled to energy conservation (Maymo-Gatell et al., 1997). 

OH 
2e-

2H+ 

COOH COOH 
Figure 1.2: Reductive removal of a chlorine from the ortho-
position of 3-chloro-4-hydroxy-phenylacetate (Cl-OHPA) 
as performed by D. dehalogenans (Utkin et al., 1994) 

A remarkable group is the genus Desulfitobacterium that comprises a large 

number of halorespiring bacteria. All isolates of this genus that have been described 

up to now are able to use halogenated compounds as terminal electron acceptor (El 
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Fantroussi et al, 1998). The first isolate of this genus, Desulfitobacterium 

dehalogenans, was described by Utkin et al. (1994). This bacterium is able to 

reductively remove chlorine from the ort/io-position of chlorinated phenolic 

compounds (Fig. 1.2). It can also use hydroxylated polychlorinated biphenyls (PCB) 

as electron acceptor and is reported to be able to dechlorinate PCE as well (Wiegel et 

al., 1999). Like Desulfomonile tiedjei, D. dehalogenans cannot use PCE as terminal 

electron acceptor, but cells that were pregrown on pyruvate and 3-chloro-4-

hydroxyphenylacetate showed a low PCE dechlorination rate (Gerritse et al. 1999). 

PCE can be used as terminal electron acceptor by the closely related 

Desulfitobacterium sp. PCE1, Desulfitobacterium sp. Viet 1, Desulfitobacterium sp. 

TCE1, and Desulfitobacterium sp. PCE-S which dechlorinate PCE either to TCE or 

cw-DCE (Gerritse et al., 1999, 1996; Loffler et al, 1997, 1999; Miller et al, 1997). 

Apparently there are differences in the specificity of the reductive dehalogenases 

involved in dechlorination of chloroalkenes in these organisms (see Chapter 6 of this 

thesis). Except for strain Vietl and strain TCE1, all Desulfitobacterium strains are 

able to dechlorinate chlorinated phenols (Table 1.2). Most often these bacteria remove 

a chlorine from the ort/io-position, but dechlorination of the meta- and para-position 

is also observed (Table 1.2). 

Next to chlorinated compounds most halorespiring bacteria are able to use 

other electron acceptors and several electron donors (Table 1.2). Dehalococcoides 

ethenogenes and both Dehalobacter species, however, are restricted to hydrogen as 

only known electron donor and chlorinated ethenes as electron acceptor (Table 1.2). 

This indicates that the latter species always have to use the chlorinated compound for 

their energy metabolism independent of the presence of other electron acceptors. 

Species that are able to use more electron acceptors must have a regulation 

mechanism that determines which electron acceptor is used. This mechanism is 

important for in situ remediation applications because other electron acceptors, like 

nitrate, sulfate, iron(III), and oxygen, are often present in the environment. The 

electron donor usually is limiting in anaerobic soils or sediments, which means that 

there is a competition for electrons between the dechlorinating population and other 

microbial populations as well as between the different respiratory pathways within the 

dechlorinating organism. 

The competition between halorespiring bacteria and other microbial 

communities has not been studied with well-defined co-cultures. 
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Chapter 1 

Experiments with soil-column and enrichments indicate a tendency that reductive 

dechlorination rates decrease with increasing redox potential (e.g. methanogenic > 

sulfidogenic > iron reducing > nitrate reducing conditions) (Bradley, 2000; Dolfing 

and Beurskens, 1995; Gerritse et al, 1997; Haggblom et al, 2000; Kuhlmann & 

Schottler, 1996; Lee et al., 1997; Pavlostathis & Zhuang, 1993; Stuart et al, 1999). 

This observation is in agreement with the Gibbs free energy values for reductive 

dechlorination of halogenated compounds and reduction of other electron acceptors 

with e.g. hydrogen as electron donor (El Fantroussi et al., 1998). The importance of 

thermodynamics has recently been demonstrated by comparison of the hydrogen 

thresholds that were obtained for different halorespiring pure cultures and 

enrichments (Loffler et al., 1999). This approach was based on the concept that the 

energetics of the terminal electron accepting process determines the minimum 

hydrogen concentration that can be used (i.e. the threshold). Hydrogen thresholds of 

>0.01-0.4 ppmv were obtained for the different halorespiring incubations which 

indicates that halorespiration competes for electrons with fumarate reduction, iron 

reduction, and nitrate reduction. Furthermore, this indicates that halorespiring bacteria 

should be able to outcompete methanogens and sulfate reducers because they are able 

to use hydrogen at a lower concentration. This also suggests that halorespiring 

bacteria may be good partners in syntrophic association with hydrogen producing 

bacteria (e.g. propionate-oxidizers), which would increase the competitiveness of 

halorespiring bacteria in the environment. 

Although halorespiration is an attractive respiratory pathway from a 

thermodynamic point of view, additional regulatory mechanisms may determine how 

the electron flow is directed by the dechlorinating bacterium. Therefore it is important 

to determine the way other electron acceptors influence dechlorination in pure 

cultures. In batch cultures of D. dehalogenans and electron acceptor-limited 

continuous cultures of Desulfitobacterium frappieri TCE1, fumarate, nitrate and 

sulfite were used concomitantly with the chlorinated substrate (Gerritse et al., 1999; 

Mackiewicz & Wiegel, 1998). In contrast, PCE dechlorination was completely 

inhibited when strain TCE1 was cultivated under lactate-limiting conditions (Gerritse 

et al., 1999). These differences in effect suggest that the ratio of electron donors and 

acceptors is more important that the actual concentrations of these compounds. A 

regulation mechanism in which expression of the dehalogenase is induced by its 

halogenated substrate and repressed by other electron acceptors may be present. A 

10 
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similar mechanism may be present for regulation of PCE dechlorination in batch 

cultures of Dehalospirillum multivorans. PCE dechlorination was found to be 

inhibited by fumarate and elemental sulfur (or polysulfide) when these other electron 

acceptors were added in 10 to 100-fold higher concentration than PCE (Neumann et 

al., 1994). Likewise, a reduction in dehalogenating activity was demonstrated when 

Desulfomonile tiedjei was grown in the presence of both 3-chlorobenzoate (2mM) and 

either sulfate (5mM), sulfite (5mM), or thiosulfate (5mM) (Townsend & Suflita, 

1997). In this case, the authors demonstrated that the presence of the sulfur oxyanions 

in the growth medium reduced the dehalogenase activity of the cell extracts made of 

these cultures and thus influences the regulation of this activity (Townsend and 

Suflita, 1997). Sulfite may well have a similar effect upon induction of dechlorination 

in Desulfitobacterium species. In addition to this indirect effect, there is a direct 

inhibitory effect of sulfur compounds on dechlorination by cell extracts of fully 

induced cells of halorespiring bacteria (DeWeerd & Suflita, 1990; Gerritse et al., 

1999; Loffler et al, 1996; Miller et al., 1997; Townsend and Suflita, 1997). The 

activity of purified PCE and TCE reductive dehalogenases from a co-culture 

containing Dehalococcoid.es ethenogenes was inhibited upon addition of 2mM sulfite, 

indicating that sulfite acts as an inhibitor of the enzyme (Magnuson et al., 1998). 

These examples clearly demonstrate that the choice for an electron acceptor by 

dechlorinating bacteria not only depends on favorable thermodynamics. 

Bioenergetics of 3-chlorobenzoate and tetrachloroethene respiration 

Halorespiration has been studied in detail in Desulfomonile tiedjei, Dehalobacter 

restrictus, and Dehalo spirillum multivorans. In general, a halorespiring chain should 

contain an electron donating enzyme, electron carriers, and a reductive dehalogenase 

as terminal reductase. In the process of electron transport from an electron donor (e.g. 

formate or hydrogen) to the electron acceptor (halogenated compound), a proton 

gradient is established across the cytoplasmic membrane which can be used for ATP 

synthesis by a proton-driven ATPase. 

The first evidence for the formation of a proton gradient was obtained by 

determination of medium acidification by cell suspensions of Desulfomonile tiedjei 

during dechlorination of 3-chlorobenzoate (3-CB) with hydrogen or formate as 

http://Dehalococcoid.es
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electron donor (Mohn and Tiedje, 1991). Under these conditions, a H+/3-CB ratio of 

2.1 was determined. Based on the enzyme localization a model was proposed for 3-

chlorobenzoate respiration by Desulfomonile tiedjei which involves a periplasmic 

orientation of formate dehydrogenase and hydrogenase and a membrane-associated 

reductive dehalogenase which is probably oriented towards the cytoplasm (Louie & 

Mohn, 1999). A quinone and a cytochrome c were suggested to be involved in 

electron transfer from formate to 3-CB although neither the quinone nor the 

cytochrome c were able to function as electron donor for dechlorination in cell 

extracts (Louie and Mohn, 1999; Louie et al, 1997). Quinone-dependent vectorial 

proton translocation may occur in 3-CB respiration, but the evidence is currently 

lacking (Fig. 1.3A). 

The enzymes involved in PCE respiration by Dehalobacter restrictus have a 

similar localization (Holliger and Schumacher, 1994). Hydrogen was found to be able 

to reduce cytochrome b and quinone analogues and the use of quinone inhibitors has 

indicated that menaquinone is indeed involved in electron transfer (Holliger et al, 

1999; Schumacher & Holliger, 1996). However, menaquinone analogues did not act 

as electron donor for the reductive dehalogenase in membrane extracts, which 

indicates that menaquinone is not the direct electron donor for PCE reductive 

dehalogenase (Holliger et al, 1999). Oxidant pulse experiments with cell suspensions 

of Dehalobacter restrictus generated an extrapolated H+/e" ratio of 1.25. This ratio is 

higher could be expected on basis of the suggested localization of the enzymes 

without the involvement of a proton pump (Holliger et al., 1999). It is possible that 

menaquinone functions as a proton pump during electron transfer, but this is unlikely 

since menaquinone was shown to take up and release protons from the cytoplasmic 

side of the membrane (Schumacher and Holliger, 1996; Fig. 1.3 B). 

A similar model has been proposed for Dehalospirillum multivorans although 

the PCE reductive dehalogenase from this bacterium has been found to be 

cytoplasmic (Holliger et al., 1999; Miller et ah, 1996). In addition, a proton gradient 

or a membrane potential may be essential for chloroethene respiration since several 

ionophores have been found to inhibit dechlorination in whole cell suspensions of 

Dehalospirillum multivorans (Miller et al., 1996). Involvement of menaquinone in 

electron transfer is doubtful, although menaquinone is present in the cells (Miller et 

al, 1996; Scholz-Muramatsu et al, 1995). 
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3-CB 
+ 2 H* + HCI + 2 H* + HCI 

Figure 1.3: The electron transport system catalyzing the oxidation of formate or hydrogen coupled to 
reductive dechlorination. The right panel (A) shows a tentative model of 3-chlorobenzoate respiration 
with formate as electron donor in Desulfomonile tiedjei (adapted from Louie and Mohn, 1999). The left 
panel (B) shows a model for PCE respiration with hydrogen as electron donor in Dehalobacter 
restrictus (adapted from Holliger et al, 1999). Fdh: formate dehydrogenase; Cyt: cytochrome; Q; 
quinoid; Rdase: reductive dehalogenase; Hyd. Hydrogenase; MQ: menaquinone; Mem: membrane 

Little is known about chlorophenol respiration. In a yield study, Mackiewicz 

and Wiegel (1998) reported that a growth yield of approximately 24 gram dry weight 

per mol reduced electron acceptor was obtained with cultures of D. dehalogenans 

grown with pyruvate as electron donor and either nitrate, sulfite, fumarate, or 3-

chloro-4-hydroxyphenyl acetate as electron acceptors. The authors assumed that the 

(complete) reduction of each electron acceptor yielded 1 ATP by electron transport 

phosphorylation. However, the growth yield decreased during growth with formate 

and Cl-OHPA. This suggests that the yeast extract, which was added to the medium, 

could be used as additional source of energy (Mackiewicz and Wiegel, 1998; van de 

Pas et al., 2000). In continuous cultures, D. hafniense and Desulfitobacterium sp. 

PCE1 produced approximately 3.5 gram protein per mol Cl-OHPA reduced with 

lactate as electron donor and Desulfitobacterium sp. PCE1 produced 1.8 g protein per 

mol Cl-OHPA with formate as electron donor (Gerritse et al., 1999). When the 

assumption is made that a the protein content of a cell is 50% of its dry weight, these 

biomass yields are 3 to 6 times lower than those reported for D. dehalogenans. The 

growth yield of strain PCE1 grown with formate and Cl-OHPA is similar to those 

which have been reported for cultures of Dehalobacter restrictus and Desulfomonile 

tiedjei grown with hydrogen and PCE or formate and 3-chlorobenzoate, respectively 

(Gerritse et al, 1999; Holliger et al, 1993; Mohn and Tiedje, 1990). Therefore, 

chlorophenol respiration might yield a similar amount of energy as has been reported 

for PCE- and 3-CB-dechlorination, which is less than 1 ATP. 

13 
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Introduction 

Reductive dehalogenases 

Reductive dehalogenases are the terminal reductases, which are unique for 

halorespiration. Reductive dehalogenases from several halorespiring bacteria have 

been characterized (Table 1.3). 3-chlorobenzoate reductive dehalogenase from 

Desulfomonile tiedjei was the first dehalogenase, which was (partially) purified. It is 

the only dehalogenase, which has been isolated as a heterologeous dimer (64 and 37 

kDa). Its activity was a factor 100 lower as has been reported for other dehalogenases. 

Furthermore this enzyme is the only dehalogenase where a heme was suggested to be 

present as cofactor in the active center (Louie and Mohn, 1999; Ni et al., 1995). The 

other dehalogenases have been isolated as monomers and contain cobalamin as 

cofactor (Christiansen et al., 1998; Magnuson et ah, 1998; Miller et al., 1998; 

Neumann et al, 1996; Schumacher et al., 1997). Furthermore, all reductive 

dehalogenases have been found to be membrane-associated, except for PCE reductive 

dehalogenase from Dehalospirillum multivorans, which was found to be located in the 

cytoplasm (Table 1.3). Methyl viologen (E°'= -450mV), but not benzyl viologen 

(E°'= -360mV), can be used as artificial electron donor for dechlorination, indicating 

that the dehalogenases involved have a low redox potential (Miller et al., 1997; 

Neumann et al., 1995; Schumacher and Holliger, 1996). In Chapters 4 and 5 of this 

thesis, four new reductive dehalogenases are identified, which have similar 

characteristics. 

Different models have been postulated to explain the mechanism by which the 

electrons are transferred to the chlorinated substrate via cobalamin (Fig. 1.4). The 

models have been proposed for PCE dechlorination, but it is likely that a similar 

mechanism applies to both haloalkene and haloaromate dechlorination (Chapter 4, this 

thesis). Neumann et al (1996) proposed a model for PCE reductive dehalogenase of 

Dehalospirillum multivorans in which a Co(III)-chloroethene complex is assumed to be 

an intermediate in the dechlorination reaction since cyanide inhibits dechlorination (Fig. 

1.4 A). Schumacher et al. (1997) proposed a mechanism for the reductive dechlorination 

of PCE and TCE by Dehalobacter restrictus, which is different from the one proposed 

by Neumann et al. (1996), and involves the formation of a chloroalkene radical (Fig. 1.4 

B). The role of cobalamin in electron transfer in the catalytic center of a terminal 
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reductase is unique and places reductive dehalogenases as a new group of terminal 

reductases and of cobalt containing enzymes. 

R-H ^ < ^ R " ^ ^ - •R-CI 

^ 
4Fe-4S1—s->4Fe-4S2 

Cc> Co* .. T > 0 * 7 • R - H 

Fe-S < Y > F e - S 

Cell membrane Cell membrane 
OUt /^^ \ OUt jr. . N 

(Hydrogenase) fflydrogenase) 

H. 2H* 

Figure 1.4: Postulated reaction mechanisms for cobalamin containing PCE reductive dehalogenases of 
Dehalobacter restrictus (left panel) and Dehalospirillum multivorans (right panel) (taken from 
Middeldorp et al., 1999). 

Outline of this thesis 

The aim of this research was to elucidate how reductive dechlorination is coupled to 

ATP formation and to characterize reductive dehalogenases from halorespiring bacteria. 

The bioenergetics of halorespiration was studied in Desulfitobacterium dehalogenans, 

a Gram-positive, strict anaerobic bacterium that is able to use chlorophenolic 

compounds as terminal electron acceptor (Utkin et ah, 1994). We studied how this 

organism conserves energy via chlorophenol respiration, which resulted in two theses: 

this thesis which describes the biochemistry of halorespiration and the thesis of H. 

Smidt which will be dealing with the genetics of halorespiration. 

In Chapter 2 of this thesis, the results of enzyme localization studies and a 

yield study are presented that were conducted with different electron donors and 3-

chloro-4-hydroxyphenyl acetate (Cl-OHPA) as electron acceptor. This enabled us to 

determine the amount of energy that is conserved via electron transport 

phosphorylation during halorespiration. To gain insight into composition of this 

electron transport chain, the components that can be reduced by formate and oxidized 

by Cl-OHPA were identified by spectroscopic and HPLC analysis of cell suspensions. 

We compared the electron transport chain involved in halorespiration with that 

involved in fumarate respiration (Chapter 3). Chapter 4 describes the purification and 
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characterization of the chlorophenol reductive dehalogenase, which is responsible for 

reductive dechlorination of the halogenated compounds. The knowledge on 

chlorophenol respiration in D. dehalogenans that was obtained (Chapter 2-4) has been 

used to propose a model for this novel respiratory pathway. Next to chlorinated 

compounds, D. dehalogenans is able to use other compounds as electron acceptor. We 

investigated how other electron acceptors influence dehalogenating activity and how 

dehalogenase activity is induced (Chapter 5). In Chapters 6 and 7 we extended our 

research to other species of Desulfitobacterium. In Chapter 6, reductive dehalogenases 

are isolated and characterized from Desulfitobacterium strain PCE1, which is able to 

use both PCE and Cl-OHPA as electron acceptor, and D. frappieri strain TCE1, which 

utilizes only chloroalkenes. Furthermore, a novel strain of Desulfitobacterium 

frappieri has been isolated from human feces, which is described in Chapter 7. This 

strain is the first Desulfitobacterium species, which does not use chloroethenes or 

chlorophenols as terminal electron acceptor. The thesis is concluded with a summary 

and concluding remarks which are presented in English and in Dutch (Chapters 8 and 

9) 
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Chapter 2 

Abstract 

The amount of energy that can be conserved via halorespiration by 

Desulfitobacterium dehalogenans was determined by the comparison of the growth 

yields of cells grown with 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) and different 

electron donors. Cultures that were grown with lactate, pyruvate, formate, or 

hydrogen as electron donor and Cl-OHPA as electron acceptor yielded 3.1, 6.6, 1.6 

and 1.6 g of dry weight per mole of reduction equivalents, respectively. Fermentative 

growth on pyruvate yielded 14 g of dry weight per mole of pyruvate oxidized. 

Pyruvate was not fermented stoichiometrically to acetate and lactate, but an excess of 

acetate was produced. C-labeled bicarbonate experiments showed that during 

pyruvate fermentation, approximately 9% of the acetate was formed from reduction of 

C02- Comparison of the growth yields suggests that one mole ATP is produced per 

mole acetate produced by substrate-level phosphorylation and that there is no 

contribution of electron transport phosphorylation when D. dehalogenans grows on 

lactate-Cl-OHPA or pyruvate-Cl-OHPA. Furthermore, the growth yields indicate that 

approximately 1/3 mole ATP is conserved per mole Cl-OHPA reduced in formate-Cl-

OHPA and hydrogen-Cl-OHPA grown cultures. Because neither formate nor 

hydrogen or Cl-OHPA supports substrate-level phosphorylation, energy must be 

conserved through the establishment of a proton motive force. Pyruvate ferredoxin 

oxidoreductase, lactate dehydrogenase, formate dehydrogenase, and hydrogenase 

were localized by in-vitro assays with membrane impermeable electron acceptors and 

donors. The orientation of chlorophenol reductive dehalogenase in the cytoplasmic 

membrane, however, could not be determined. A model is proposed, which may 

explain the topology analyses as well as the results obtained in the yield study. 
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Introduction 

Reductive dechlorination of chlorinated compounds can be coupled to growth in a 

process called halorespiration (Fetzner, 1998). Desulfomonile tiedjei is the first 

described organism with this ability. It is also the first organism for which the 

chemiosmotic coupling of reductive dechlorination and ATP synthesis has been 

demonstrated (Mohn & Tiedje, 1991). Presently, several bacterial strains are known to 

have the ability to grow on a combination of a chlorinated compound and reduced 

substrates like formate and hydrogen (El Fantroussi et al, 1998). Since oxidation of 

formate and hydrogen cannot result in ATP formation by substrate-level 

phosphorylation, energy conservation can only occur through formation of an 

electrochemical gradient across the cytoplasmic membrane. Recently, a model has 

been proposed for 3-chlorobenzoate respiration by D. tiedjei. In this organism, 

formate oxidation was suggested to take place at the outside of the cytoplasmic 

membrane whereas 3-chlorobenzoate was found to be reduced inside the cell. 

Coupling these two processes would result in charge separation, which can be used 

for ATP formation. In addition, it has been suggested that during electron transport 

from formate to the chlorobenzoate reductive dehalogenase, protons are actively 

transported across the membrane, resulting in extra energy gain by halorespiration 

(Louie & Mohn, 1999). However, proton translocation could not be demonstrated for 

PCE respiration coupled to hydrogen-oxidation in Dehalobacter restrictus 

(Schumacher et al., 1996). 

Desulfitobacterium dehalogenans is the first described member of the genus 

Desulfitobacterium (Utkin et al, 1994). All Desulfitobacterium isolated since have 

the capacity to reductively dechlorinate chloro-aromatics, chloro-alkenes, or both (El 

Fantroussi et al, 1998). Furthermore, these organisms are able to use sulfite, 

fumarate, and nitrate as electron acceptors. Comparison of batch cultures of D. 

dehalogenans grown with pyruvate and different electron acceptors has indicated that 

comparable growth yields were obtained when 3-chloro-4-hydroxyphenylacetate (Cl-

OHPA), fumarate, sulfite, or nitrate were used as electron acceptor (Mackiewicz & 

Wiegel, 1998). These authors proposed that chloro-aromate respiration yields 1 ATP 

per reduced chloro-aromate by electron transport phosphorylation. 
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In the present study, we have determined the amount of energy conserved 

through halorespiration by comparison of the growth yields obtained from batch 

cultures of Desulfitobacterium dehalogenans grown on different electron donors and 

Cl-OHPA as electron acceptor. The enzymes involved in electron donation and 

acceptation were localized, and l3C-NMR was used to investigate the contribution of 

acetate formation by CO2 reduction during pyruvate fermentation and halorespiration. 

The studies on growth yields and enzyme localization suggest that there is no electron 

transport phosphorylation when D. dehalogenans grows on lactate and Cl-OHPA or 

pyruvate and Cl-OHPA. When formate and hydrogen serve as electron donor for 

halorespiration, however, a proton motive force is established which can be used for 

ATP generation. 

Experimental procedures 

Organism and growth conditions. Desulfitobacterium dehalogenans strain JW/IU-

DC1 (DSM 9161) was cultivated at 37°C under anaerobic conditions (100% N2 gas 

phase) in a medium described previously (Van de Pas et al., 1999). The medium was 

buffered with 40 mM bicarbonate, and amended with 0.1 % peptone. The yield studies 

were performed in 1 1 bottles containing 500 ml medium with 10 mM lactate, 20 mM 

pyruvate, or 20 mM formate as electron donor and 20 mM Cl-OHPA as electron 

acceptor. When hydrogen was used as electron donor, 10 mmol hydrogen gas was 

added to the bottle before autoclaving. Pyruvate fermentation was studied in one set 

of bottles to which only 40 mM pyruvate was added. Bottles were inoculated with 1 % 

of an actively growing substrate-adapted culture. Cells were harvested in late log 

phase, which was reached after about 48 hours for cultures on pyruvate or lactate and 

about 72 hours for cultures that used formate or hydrogen as electron donor. These 

experiments were performed in triplicate. For the NMR experiment, D. dehalogenans 

was cultivated in 120-ml bottles with 25 ml medium as described above, with the 

exception that the bicarbonate was replaced by l3C labeled bicarbonate. The bacteria 

were cultivated at 37°C under Cl-OHPA reducing conditions with 15 mM pyruvate 

and 16 mM Cl-OHPA, or were grown fermentatively on 30 mM pyruvate. The media 

were inoculated with 1-2% of substrate-adapted cultures. 
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Dry weight determination. 400 ml culture of a 500-ml incubation was concentrated 

by 10 minutes centrifugation at 16,000 x g. The cell pellet was resuspended in 50 ml 

100 mM NaCl in MilliQ water and centrifuged. Thereafter, cells were resuspended in 

2 ml MilliQ water and transferred to a dry aluminum cup of known weight. The cell 

suspension was dried in a stove at 95°C. The cups were weighted after 24 and 72 

hours. 

Nuclear Magnetic Resonance (NMR) experiments. After 46 hours, samples (1 ml) 

were taken from the cultures and subsequently centrifuged. Proton-decoupled 13C-

NMR spectra of 450 |0,1 sample and 50 ul D2O in a 5 mm tube (25 °C) were recorded at 

125.7 MHz on an AMX-500 spectrometer (Bruker GMBH, Germany), located at the 

Wageningen NMR-center. Approximately 50,000 transients were accumulated for one 

spectrum. Chemical shifts are expressed in ppm relative to the internal standard of 50 

mM natural abundance succinate. The C-2,3 resonances of succinate were set at 35.1 

ppm. 'H-NMR spectra were recorded at 500 MHz of the same samples on the same 

spectrometer at 25 °C. 

Analytical methods. Organic acids were analyzed with a SpectraSystem high-

performance liquid chromatograph (Thermo Separation Products, Riviera Beach, 

USA) as described previously (Stams et al., 1993). The samples for Cl-OHPA and 

OHPA determination were analyzed on a SpectraSystem high-performance liquid 

chromatograph, with a SpectraSystem P2000 pump, an AS3000 autosampler and a 

UV1000 UV-detector. 20 |i.l of sample was injected into a Chrompack pesticide 

reversed-phase column (Chrompack, Middelburg, The Netherlands). The mobile 

phase was acetonitril-O.OlM H3PO4 with a volume/volume ratio of 10/90. A flow rate 

of 1 ml.min"1 was applied. Cl-OHPA and OHPA were quantified by their absorption 

at 206 nm. 

Preparation of cell extracts. All handlings were performed in an anaerobic glove 

box with a N2/H2 gasphase in a 95%/5% ratio. 500-ml cultures of D. dehalogenans 

were harvested by 10 min centrifugation at 16,000 g and resuspended to a total 

volume of 2 ml buffer A, containing 100 mM potassium phosphate (KPj) pH 7.5 and 1 

mM dithiothreitol (DTT). A portion, set aside on ice, was used as whole cell 

suspension. Cells were permealized by incubation of the whole cell suspension with 

0.1% cetyltrimethylammonium bromide (CTAB) for 10 minutes at 4°C. A few 

crystals of DNase I were added to a fraction of the whole cell suspension and the cells 
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were broken in 6 cycles of 30 sec sonication and 30 sec cooling on ice. Unbroken 

cells were removed by 5 minutes centrifugation at 20,000 x g. 500 (i.1 of this cell 

extract was stored on ice for enzyme assays. The remaining part was centrifuged for 

90 minutes at 140,000 x g to separate membranes and cytoplasmic fraction. The 

supernatant containing the soluble proteins was transferred to a glass vial and stored at 

4°C. The pellet containing the membranes was resuspended in buffer A. The fractions 

were stored at 0°C under a 100% N2 gasphase. 

Enzyme assays. Chlorophenol reductive dehalogenase activity was determined as 

described previously (Van de Pas et al, 1999) by measuring the reduction of methyl 

viologen (£578= 9.8 mM'cm"1) in N2-flushed cuvets at 30°C. The assay mixture was 

100 mM Tris-HCl buffer pH 7.8 and contains 0.3 mM titanium citrate-reduced methyl 

viologen and extract. The reaction was started by addition of 10 mM Cl-OHPA. 

Formate dehydrogenase (FDH), hydrogenase (HYD), carbon monoxide 

dehydrogenase (CODH), and pyruvate ferredoxin oxidoreductase (PFO) activity were 

measured at 30°C in a rubber-stoppered N2-flushed cuvet containing 100 mM Tris-

HCl buffer pH 8.0 and 1 mM methyl viologen. Methyl viologen was slightly reduced 

with titanium citrate to an OD578 of 0.05. 5 to 40 (xl extract was added to the reduced 

buffer and the OD578 was followed. Upon a stable signal 50 |il substrate was added 

and the reduction of methyl viologen was measured. Hydrogenase activity was 

measured by addition of 500 \i\ oxygen-free hydrogen. CO dehydrogenase activity 

was measured by addition of 500 ul carbon monoxide. 0.2 mM HSCoA was added 

prior to addition of pyruvate. Lactate dehydrogenase activity was measured as 

described by Miller et al. (1996). Protein concentrations of the different fractions 

were determined by the micro-biuret method using bovine serum albumin as standard 

(Goa, 1953). 

Chemicals. All chemicals were obtained from commercial sources, and of the highest 

purity available. Yeast extract was obtained from Difco, Detroit, USA. Peptone, made 

from trypsin-digested casein, was obtained from Merck, Darmstadt, Germany. " C-

labeled bicarbonate was purchased from Isotec. Inc., Miamisburg, USA. 
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Results 

Biomass yield study. The amount of cell material that is produced during growth of 

D. dehalogenans on different media has been used in this study to determine the 

amount of energy that is conserved through halorespiration. The culture medium 

contained peptone, instead of yeast extract, to supply for certain growth factors, since 

we had found that approximately 10 mM Cl-OHPA was dechlorinated when medium 

with only yeast extract (0.1%) and Cl-OHPA was inoculated with 1% of a pyruvate-

Cl-OHPA grown culture. Replacing yeast extract by peptone did not result in growth 

and dechlorination. The biomass yield was determined of cells grown fermentatively 

with pyruvate (40 mM) or grown with Cl-OHPA (20 mM) as electron acceptor and 

lactate (10 mM), pyruvate (20 mM), formate (20 mM), and hydrogen (10 mmol) as 

electron donor. We have compared substrate depletion, product formation and 

calculated amount of electrons that was transferred (Table 2.1). Determination of 

substrate and product concentrations showed that all Cl-OHPA converted, was 

recovered as OHPA in the medium. The ratio of electron donor oxidized and Cl-

OHPA reduced is approximately 1 for the incubations with pyruvate, hydrogen, and 

formate as electron donors, indicating that the redox balance was complete. The C-

balance for the oxidation of pyruvate was complete, but not for lactate where only 

80% of the electron donor converted was recovered as acetate. In the latter case, 0.46 

mole acetate was found to be oxidized per mole Cl-OHPA produced (Table 2.1). This 

indicated that there was an extra source of reduction equivalents in these incubations, 

which has not been taken into account. Growth on lactate and Cl-OHPA reduction 

yielded 3.1 g biomass per mole of reduction equivalents, which was approximately 

half of the biomass yield that was obtained when pyruvate oxidation was coupled to 

Cl-OHPA reduction (Table 2.1). The yield per mole of acetate was comparable for 

both growth substrates, which indicated that oxidation of lactate to acetate and the 

conversion of pyruvate to acetate yielded a comparable amount of ATP. Oxidation of 

hydrogen or formate was not coupled to substrate-level phosphorylation. Under these 

growth conditions the biomass yield was approximately 3.2 g biomass per mole of Cl-

OHPA reduced. 
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Table 2.1: Biomass yield and substrate utilization ratio of Desulfitobacterium dehalogenans grown 
under different conditions with Cl-OHPA as electron acceptor. The number between brackets gives the 
deviation from average. Yield is expressed as gram of biomass per mole of product or reduction 
equivalents produced. 

Growth substrate Ratio Ratio Ratio Yield Yield Yield 
Ddnur/acelate Cl-OHPA/OHPA acetatc/CI-OHPA g/mol Cl-OHPA g/mol acetate g/mol [H] 

Lactate-Cl-OHPA 0.82 (±0.09) 1.02 (±0.05) 0.46 (±0.05) 5.54 (±0.53) 11.85 (±0.36) 3.06 (±0.05) 

Pyruvate-Cl-OHPA 1.00 (±0.21) 1.02 (±0.03) 1.02 (±0.06) 13.11(±0.64) 12.75 (±0.60) 6.59 (±0.28) 

Formate-Cl-OHPA 1.08 (±0.01) 1.08*(±0.01) 3.20 (±0.49) 2.97#(±0.49) 1.60 (±0.23) 

H2-Cl-OHPA 0.96 (±0.11) 1.02*(±0.21) 3.30 (±0.85) 3.50#(±1.84) 1.65 (±0.52) 

: Conversion ratio electron donor: Cl-OHPA is given since product formation has not been measured. 
#: Yield is given per gram of electron donor used since the product formation from formate or hydrogen 

oxidation has not been determined. 

The conversion ratio of pyruvate, obtained when D. dehalogenans was grown 

fermentatively on pyruvate, was different from that reported previously (Utkin et ah, 

1994). The latter authors reported that pyruvate was fermented to equal amounts of 

lactate and acetate in a HEPES buffered medium, which had a low bicarbonate 

concentration. However, in our experiments, where D. dehalogenans was cultivated in 

medium containing 30 mM bicarbonate, 28.1 (±0.7) mM pyruvate was converted to 

23.4 (±0.5) mM acetate and 10.9 (±0.6) mM lactate. Growth by pyruvate fermentation 

yielded 14.2 (± 0.1) g biomass per mole of acetate produced. The concentration of 

acetate was about twice as high as the lactate concentration. Furthermore, the total 

concentration of organic acids increased with approximately 5 mM. Fixation of CO2 

into acetate is a possible explanation for the increase in organic acid concentration 

during fermentative growth on pyruvate. 

Table 2.2: Substrate conversion and product formation by Desulfitobacterium dehalogenans grown for 
46 hours at 37°C in medium buffered with 40 mM ,3C-labeled bicarbonate. 

Culture 

Pyruvate-Cl-OHPAa 

Pyruvate* 

Substrate conversion and product formation 
mmol/liter 

Pyruvate 
degraded 

15.3 
29.9 

Lactate 
formed 

8.3 

Acetate Cl-OHPA OHPA 
formed degraded formed 
15.0 11.5 14.5 
23.3 

": The initial concentrations were 15 mM pyruvate and 16 mM Cl-OHPA 
b: The initial pyruvate concentration was 30 mM 

CC>2-fixation. To investigate the possibility of C02-reduction, we carried out a 13C-

NMR experiment with l3C-labeled bicarbonate as source of CO2 and as buffer. HPLC 

analysis of the organic acids in these cultures shows a similar conversion pattern as 
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was obtained in the yield study (Table 2.2). The 13C-NMR spectra of supernatant of 

cultures of D. dehalogenans grown for 46 hours with 13C labeled bicarbonate and 

pyruvate as energy source (Fig. 2.1, Trace A) showed a triplet at a chemical shift of 

24.2 ppm, reflecting the presence of C2 of single- and double-labeled acetate. The C2-

doublet around the single-labeled resonance has a coupling constant of 52 Hz, being 

the scalar coupling constant 13C2-13Ci. The amount of double-labeled acetate was 

estimated to be 40% of the total labeled acetate, which includes natural abundant 13C-

labeled acetate. From the !H-NMR spectrum it was estimated that approximately 4% 

of the acetate was labeled at the C2 position, exceeding the 1% natural abundance of 
13C (data not shown). 96% of the acetate was not enriched and contributed to the 

signal. Also the Q carboxyl group of acetate was manifested in the 13C spectrum as a 

triplet at 182.3 ppm. The doublet again had a splitting of 52 Hz. In addition, CO 

dehydrogenase, a key enzyme of the acetyl-CoA pathway (Ragsdale, 1994), was 

detected at an activity of 1.3 umol.min'.mg protein"1. 

During growth on pyruvate and Cl-OHPA, the double-labeled peaks were 

absent when 13C02 was present (Fig. 2.2, Trace B). 'H proton NMR indicated that 

acetate was not enriched (approximately 1% was found to be labeled) and reflected 

only natural abundance acetate. 

IJUi 
....J. 

25.0 24.0 23.5 23.0 22.5 22.0 21.5 20.5 PPm 

Figure 2.1: C Nuclear magnetic resonance spectra of culture supernatants of 

Desulfitobacterium dehalogenans incubated for 46 hours with 40mM pyruvate (Trace A) or 

20 mM pyruvate and 20 mM Cl-OHPA (Trace B). The spectrum given in trace C showed the 

supernatant of the pyruvate incubation just after inoculation (t=0). 
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These results demonstrate that C02 fixation is only important when D. 

dehalogenans is grown with pyruvate and CO2 only and not when Cl-OHPA is 

present as electron acceptor. The contribution of CO2 fixation to the acetate pool can 

be calculated from the recovery of organic acids. Approximately 9% of the acetate 

was produced by CO2 fixation. 

In addition to double-labeled acetate, double-labeled lactate was found when 

D. dehalogenans was grown fermentatively on pyruvate. The C3 of lactate exhibits a 

resonance at 21.1 ppm (Fig. 2.1, Trace A). Approximately 6% of this signal was split 

into a doublet because of concomitant labeling at the C2 position. The Ci carboxyl 

group was found to be labeled to a higher degree. This is due to carboxylation of 

unlabeled acetate to pyruvate that became reduced to lactate. When these mechanisms 

are taken into account the mass balance on pyruvate is complete (Table 2.2). 

Enzyme localization. Lactate dehydrogenase, pyruvate ferredoxin oxidoreductase, 

formate dehydrogenase, hydrogenase, and chlorophenol reductive dehalogenase were 

localized by in-vitro enzyme assays with methyl viologen as artificial electron donor 

or acceptor (Table 2.3). The pyruvate ferredoxin oxidoreductase was clearly located in 

the cytoplasmic fraction. Lactate dehydrogenase, formate dehydrogenase and 

hydrogenase activities were recovered for approximately 44% in the membrane 

fraction, which suggests that these activities are membrane associated. The 

chlorophenol reductive dehalogenase was for 71 % located in the membrane fraction, 

which indicates that CPRD is a membrane bound enzyme. 

The known inability of methyl viologen to pass through cell membranes was 

used for localization of the active sites of membrane bound enzymes (Kroger et al, 

1980). Enzyme activities were measured in concentrated cell suspensions, CTAB 

permealized cells, and cell extracts (Table 2.3). Pyruvate ferredoxin oxidoreductase 

could hardly be measured in the whole cell suspension, but the activity increased 45 

times when the cells were permealized. The activity in cell extract was a little lower. 

This all points to a cytoplasmic location of PDH. Formate dehydrogenase activity 

measured in whole cells was high, but increased over 7.7 times after incubation with 

CTAB. The total activity of hydrogenase increased little after CTAB treatment, but 

increased 11 times upon sonication. Lactate dehydrogenase did not react with methyl 

viologen and had to be localized with phenazine methosulphate (PMS). Like methyl 

viologen, PMS cannot penetrate the membrane (Kroger et al, 1980). High LDH 

activity was observed in the whole cell suspension. No increase was found when cells 
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were incubated with CTAB, but the specific activity did increase 2-fold upon 

sonication. CPRD could be assayed with whole cells, but could not be detected in 

cells that were permealized with CTAB. Furthermore, the CPRD activity of cell 

extract dropped when CTAB was added to the cuvet, indicating that CTAB has an 

inhibiting effect on CPRD. CPRD activity increased 5.6 times upon sonication of the 

whole cells. 

Discussion 

We have investigated the energy metabolism of Desulfitobacterium dehalogenans 

during halorespiration with different electron donors by analyzing biomass yields and 

enzyme localization. During growth of D. dehalogenans with pyruvate, formate, and 

hydrogen as electron donor and Cl-OHPA as electron acceptor, the oxidation of one 

mole pyruvate, formate, or hydrogen was coupled to the reduction of one mole Cl-

OHPA. When lactate was used as electron donor, the conversion of one mole lactate 

was coupled to the reduction of two moles Cl-OHPA (Table 2.1). These results 

confirm the conversion pattern published previously (Utkin et al, 1994). However, 

the fermentation pattern for growth with pyruvate as sole energy source was different. 

We did not find conversion of pyruvate into equal amounts of lactate and acetate, but 

instead a higher amount of acetate. The presence of double-labeled acetate and 

increased labeling at the C2 position of acetate in the l3C NMR spectrum shows that 

Desulfitobacterium dehalogenans is able to use CO2 as electron acceptor. Although 

this is the first report which provides evidence for reduction of CO2 by a 

Desulfitobacterium sp., other Desulfitobacterium strains are also thought to be able to 

reduce CO2 to acetate, since acetate was the only product of fermentation of pyruvate 

(Bouchard et al, 1996; Christiansen & Ahring, 1996; Gerritse et al, 1999; Sanford et 

al, 1996). Net ATP formation from CO2 to acetate can only be formed via a 

chemiosmotic gradient across the cell membrane. The amount of energy thus 

conserved is not exactly clear, but ranges between 1/3 and 2/3 ATP per acetate formed 

(Diekert & Wohlfarth, 1994). This is less than the 1 ATP, which would be the result 

of substrate-level phosphorylation in pyruvate oxidation. As a result of CO2-

reduction, less energy is conserved per mole of acetate. When this effect is taken into 

account, the growth yield during fermentative growth is 14.6 to 15.0 g biomass per 

34 



Energy Yield 

mole ATP produced, which is comparable to the biomass yield reported for pyruvate 

fermentation by Mackiewicz and Wiegel (1998). 

When D. dehalogenans was cultivated on lactate-Cl-OHPA or pyruvate-Cl-

OHPA, we found in both cases a biomass yield of approximately 12.5 g per mole of 

acetate produced, which suggests that no electron transport phosphorylation occurred 

with lactate and pyruvate as electron donor. This yield is close to the amount of 

biomass that was formed from 1 ATP during fermentative growth, but is much lower 

than the biomass yield that was reported for growth on pyruvate-Cl-OHPA by 

Mackiewicz and Wiegel (1998). They reported a biomass yield of 24.2 g biomass per 

mole acetate produced, which was found to be comparable to the biomass yield for 

growth with pyruvate-fumarate, pyruvate-nitrate or pyruvate-sulfite. The discrepancy 

with our results can be due to the fact that we used a different growth medium, 

replaced yeast extract by peptone to supply for certain growth factors, and used 

smaller inocula (1% instead of approximately 10%) to limit the supply of extra growth 

substrates. For the related bacteria, Desulfitobacterium sp. PCE1 and 

Desulfitobacterium hafniense, grown in continuous culture with lactate and Cl-OHPA, 

growth yields of approximately 3.5 g protein per mole of electrons released have been 

reported (Gerritse et al, 1999). When the protein contents is assumed to be 50% of 

the dry weight, the growth yields for D. hafniense and Desulfitobacterium sp. PCE1 

are twice the growth yield we found for D. dehalogenans. 

Formate and hydrogen were found to be poor electron donors for 

halorespiration, each yielding 1.6 g biomass per mole reduction equivalents. 

Mackiewicz and Wiegel (1998) reported the same growth yield for formate-Cl-OHPA 

grown cultures of D. dehalogenans that were harvested in late-exponential growth 

phase. The growth yields obtained for other halorespiring bacteria grown with formate 

or hydrogen range between 2.1 and 3.6 g biomass per mole chloride released. 

(Gerritse et al., 1999; Holliger & Schumacher, 1994; Mohn & Tiedje, 1990). When 

comparing these biomass yields, it has to be taken into account that the amount of 

energy needed for maintenance of cell integrity is only constant when cells grow at 

the same rate. In our study, the maintenance coefficients for growth with lactate-Cl-

OHPA, pyruvate-Cl-OHPA and pyruvate fermentation may be comparable whereas 

for growth with hydrogen or formate they may be higher since D. dehalogenans 

grows much slower with these two electron donors. A higher maintenance coefficient 

results in a lower biomass yield. Continuous culture studies as performed by Gerritse 
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et al. (1999) have the advantage that the maintenance coefficient is constant because 

the growth rate can be controlled. In batch cultures the growth rate is not constant 

which results in different yields in time. This was demonstrated by Mackiewicz and 

Wiegel (1998) who reported that the growth yield of D. dehalogenans with formate-

Cl-OHPA varied between 1.6 to 5.7 g biomass per mol electrons when cells were 

harvested in different growth phases. Because of this effect the growth yields obtained 

from continuous cultures are likely to be higher than those obtained from cells that are 

grown in batch culture and harvested in late-exponential growth phase. 

Pyruvate ferredoxin oxidoreductase was found to be located in the cytoplasm. 

Lactate dehydrogenase activity did not increase when cells were permealized by 

CTAB, which indicates that the active site of the enzyme is accessible from the 

outside. However, LDH activity increased 2-fold upon sonication of the cells. 

Furthermore LDH activity in Desulfitobacterium strain PCE-S was localized at the 

inside of the cytoplasmic membrane (Miller et ah, 1996). Therefore, we hypothesize 

that the LDH activity in D. dehalogenans is located at the inside of the cell membrane 

but that electrons can be transported over the cell membrane by an unknown 

mechanism and reduce PMS. Hydrogenase activity and formate dehydrogenase 

activity are localized both inside and outside the cell membrane, suggesting multiple 

enzymes to be present. For both enzyme activities, it could not be determined which 

activity corresponds to the respiratory enzyme. When the localization of FDH was 

determined in pyruvate-Cl-OHPA grown cells, little activity was found in whole cell 

suspension, but activity increased 22-times upon permeation (data not shown). This 

suggests the presence of at least two formate dehydrogenases, one facing outwards 

being involved in formate oxidation and one facing the cytoplasm and being involved 

in other processes such as CO2 fixation. A similar situation may exist for 

hydrogenase. Since chlorophenol reductive dehalogenase activity increased 3.4 times 

after sonication of whole cell suspension, it might be argued that CPRD has its active 

site facing inwards. However, the CPRD activity measured in whole cells is relatively 

high, indicating that the active site of CPRD must be at least partly accessible for 

methyl viologen. The whole cell suspension did not contain lyzed cells because 

pyruvate ferredoxin oxidoreductase activity could not be measured in this cell 

suspension. 

Based on the results presented in this study we propose a model for 

halorespiration in Desulfitobacterium dehalogenans in which the respiratory 
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hydrogenase and formate dehydrogenase activities are facing outwards analogous to 

the situation in E. coli (Sawer, 1994). Per formate or hydrogen, a gradient of 2 charges 

(2q+/2e~) can be established when CPRD is located inside the cell without vectorial 

proton translocation across the cytoplasmic membrane coupled to electron transport. 

There may be a loss of energy due to unknown processes (e.g. transport of substrates 

or products, or an activation barrier), which then explains the low growth yield of 3.2 

g biomass per mole of substrate. Similar models have been proposed for 3-

chlorobenzoate respiration in Desulfomonile tiedjei and PCE respiration in 

Dehalobacter restrictus and Dehalospirillum multivorans (Louie & Mohn, 1999; 

Miller et ah, 1996; Schumacher & Holliger, 1996). On the other hand, one may also 

argue that the CPRD is located at the outside of the cytoplasmic membrane, in which 

case electron transport has to be coupled to proton translocation. At present, it is not 

possible to discriminate between these two possibilities. On basis of these models, no 

proton motive force is established and no energy is conserved via electron transport 

phosphorylation during growth on pyruvate-Cl-OHPA and lactate-Cl-OHPA because 

LDH and PDH are located at the inside of the cell membrane. This is in accordance 

with the finding that the ATP yield per acetate is constant under different growth 

conditions. Cells that grow on these substrates conserve one mole ATP per mole 

acetate via substrate level phosphorylation of acetyl-CoA. 

Our study indicates that chlorophenol respiration is not an efficient respiration 

pathway since only a fraction of the energy can be conserved that is theoretically 

possible, which is approximately 2 ATP per chloride removed with hydrogen as 

electron donor (El Fantroussi et al., 1998). Future study of the composition of the 

electron transport chain involved in halorespiration may provide better insight in the 

halorespiration pathway. 
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Abstract 

The respiratory electron transport chain from formate to 3-chloro-4-hydroxyphenyl 

acetate (Cl-OHPA) was investigated in Desulfitobacterium dehalogenans. 

Molybdenum, cobalt, menaquinone, cytochrome c, different iron-sulfur clusters, and a 

high-spin heme could be identified in concentrated cell suspensions by EPR, visible 

spectroscopy, and HPLC analysis of extracts from membranes. In cell suspensions, 

these components were reduced upon addition of formate and oxidized after addition 

of Cl-OHPA indicating that they are involved in halorespiration. Molybdenum is a 

common component of formate dehydrogenases, cobalamin is characteristic for the 

chlorophenol reductive dehalogenase and cytochrome c and menaquinone could be 

part of a connecting electron transport chain. The heme detected by EPR, may be the 

high-spin form of a low-spin cytochrome. Cytochrome b was detected at a low 

concentration in formate-Cl-OHPA grown cultures and may be involved in 

halorespiration. It could be demonstrated that the same menaquinone and cytochrome 

c are active with halorespiration and with fumarate respiration. Cytochrome b was 

present in a higher concentration, relative to cytochrome c, in formate-fumarate 

grown cultures than in formate-Cl-OHPA grown cultures and it was found to be 

active in fumarate respiration. This suggests that cytochrome b is involved in electron 

transport from menaquinone to fumarate reductase, but not in transport of electrons 

from MQHi to the reductive dehalogenase in halorespiration. 
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Introduction 

Microorganisms in anaerobic environments can reductively dechlorinate highly 

chlorinated compounds like tetrachloroethene (PCE), pentachlorophenol (PCP), and 

polychlorinated biphenyls (PCB's). Strictly anaerobic bacteria, e.g. Desulfomonile 

tiedjei, Dehalobacter restrictus, Dehalospirillum multivorans, Dehalococcoid.es 

ethenogenes, and several Desulfitobacterium spp., are able to couple reductive 

dechlorination of chlorinated alkenes or aromatics to energy conservation in a 

respiratory process, often referred to as halorespiration (Holliger et al., 1999). 

Formate and hydrogen can be used as electron donors in this process and since these 

compounds do not allow substrate-level phosphorylation, energy is most likely 

conserved by the formation of an electrochemical gradient across the cytoplasmic 

membrane (Holliger et al., 1999). 

In 1992, a model has been postulated for 3-chlorobenzoate respiration with 

formate in Desulfomonile tiedjei in which a formate dehydrogenase and a reductive 

dehalogenase are located at opposite sides of the cell membrane. Energy conservation 

was proposed to take place by establishment of a proton gradient without vectorial 

proton translocation (Mohn & Tiedje, 1992). Evidence for this model has recently 

been reported (Louie & Mohn, 1999). A similar model was proposed for hydrogen-

PCE metabolism in Dehalobacter restrictus (Schumacher & Holliger, 1996). In 

Desulfitobacterium dehalogenans, the growth yield with 3-chloro-4-hydroxy-

phenylacetate (Cl-OHPA) as electron acceptor and formate or hydrogen as electron 

donor could be explained without a mechanism of proton translocation across the cell 

membrane in a model analogous to that postulated for halorespiration in D. tiedjei 

(van de Pas et al., 2000). In this model, the active sites of the uptake formate 

dehydrogenase and hydrogenase are located at the outside of the cytoplasmic 

membrane whereas the chlorophenol reductive dehalogenase (CPRD) faces the 

cytoplasm (van de Pas et al., 2000). However, the orientation of the CPRD in the 

cytoplasmic membrane is not clear and analysis of the CPRD gene suggested 

localization at the outside of the cytoplasmic membrane (van de Pas et al, 1999). If 

so, vectorial proton translocation may take place, but cannot be used for generation of 

ATP (van de Pas et al, 2000). 
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In addition to ort/io-chlorophenols, D. dehalogenans is able to use sulfite, 

thiosulfate, sulfur, nitrate, and fumarate as terminal electron acceptor (Utkin et al., 

1995; Utkin et al., 1994). In this study, the involvement of redox active components 

for the transfer of electrons from formate to Cl-OHPA or fumarate was investigated. 

The redox state of these components was analyzed during their reduction by formate 

and subsequent oxidation by Cl-OHPA. The results suggest the involvement of 

molybdenum, cytochrome c, iron-sulfur clusters, menaquinone, cobalamin, and a 

high-spin heme in the chlorophenol respiration in D. dehalogenans. 

Materials and methods 

Organism and growth conditions. D. dehalogenans strain JW/IU-DC1 (DSM 9161) 

was cultivated at 37°C anaerobically under a 100% N2 gas phase. The cultures were 

grown in 3-1 bottles containing 2 1 medium as described previously (van de Pas et al., 

1999). Cells were grown with 20 mM formate and 20 mM 3-chloro-4-

hydroxyphenylacetate (Cl-OHPA) or with 20 mM formate and 20 mM fumarate. 

Cell fractionation and enzyme assays. Late-exponential phase cultures were 

harvested by centrifugation and fractionated as described previously (van de Pas et 

al., 2000). The protein concentration of the extracts was determined with the micro 

biuret method with bovine serum albumin as standard (Goa, 1953). Formate 

dehydrogenase, chlorophenol reductive dehalogenase, and fumarate reductase 

activities in cell extracts were determined by spectroscopic recording of changes in 

the reduced methyl viologen concentration at 578 nm as was described previously 

(van de Pas et al, 2000) 

Quinone-extraction. Quinones were extracted in methanol-petroleum ether and 

separated by HPLC as described previously (Bergen et al., 1994). The wavelength 

was changed to 245 nm for the detection of menaquinone and quinol. The absorption 

spectrum of Vitamin K was used as control. Instability of (chemically prepared) 

menaquinol prevented reliable quantification of the quinol extinction coefficient. 

Therefore, the ratio between the peak areas in the HPLC chromatogram was used as 

indicator of the degree of quinone reduction. 

UV-visible spectroscopic analysis of cell suspensions. Cultures (2 1) of D. 

dehalogenans grown on formate and fumarate or formate and Cl-OHPA were 
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harvested and washed anaerobically with 8 ml buffer containing 50 mM Tris-HCl pH 

8.0 and 0.5 mM dithiothreitol (DTT) and resuspended in 50 mM Tris-HCl pH 8.0 to a 

concentration of 0.36 g wet cell weight.ml1 in nitrogen-flushed vials. 90 ul of this 

concentrated cell suspension was resuspended in 0.9 ml 50 mM Tris-HCl pH 8.0. 

After incubation with reducing or oxidizing substance(s), the suspension was frozen 

in liquid N2 and the spectrum (320-700 nm) was recorded at 77 K, on a DW-2a™ 

spectrophotometer (American Instrument Co.) as described previously (vanWielink et 

al., 1982). After recording, the base lines were corrected for light scattering by 

subtracting a straight line between 540 and 580 nm. The corrected spectra were 

deconvoluted into two gaussian peaks of variable width, one signal (at 552 nm) 

representing cytochrome c and another signal (at 561 nm) representing cytochrome b. 

The spectra were analyzed as described previously (Krab et al., 2000). The area of the 

peaks was taken to be proportional to the reduction level of the cytochromes. The 

involvement of cytochromes in electron transfer from formate to fumarate or Cl-

OHPA was investigated by recording of the changes in their redox state after 

reduction of the cells with 1 mM formate and reoxidation by addition of 10 mM Cl-

OHPA or fumarate. 

Analysis of cell suspensions by EPR spectroscopy. Cells were harvested 

anaerobically by centrifugation, washed with nitrogen-flushed buffer containing 100 

mM potassium phosphate buffer pH 7.5 and 1 mM DTT, and centrifuged again for 10 

minutes at 16,000 x g. After centrifugation the cell pellet was resuspended in buffer to 

a total volume of 5 ml in nitrogen-flushed 20-ml vials. This concentrated cell 

suspension was incubated with 5 mM formate for 30 minutes at 37°C. Subsequently, 

Cl-OHPA was added to give a concentration of 20 mM and after 30 minutes 

incubation at 37°C Cl-OHPA was added to increase the concentration with 20 mM. 

Before each addition and 60 minutes after the last addition a sample (1 ml) was taken 

and concentrated in an EPR tube to approximately 150 ul by centrifugation. EPR 

spectroscopy was performed as described earlier (Pierik et al., 1993). The supernatant 

was removed and stored at - 2CC for Cl-OHPA and formate analysis by HPLC (van 

de Pas et al., 2000). The pellet was removed from the anaerobic glove box and 

quickly frozen by dipping the tube in liquid nitrogen. 
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Results 

Comparison of growth with formate and either Cl-OHPA or fumarate. The 

electron transport chain involved in halorespiration was investigated with formate as 

electron donor since formate-oxidation is well understood and formate alone does not 

support growth of D. dehalogenans. The addition of a suitable electron acceptor like 

fumarate or Cl-OHPA led to exponential growth with doubling times of 8 to 10 h. In 

the late-exponential phase, the formate-Cl-OHPA (FC) and formate-fumarate (FF) 

grown cultures reached an OD600 of 0.17 and 0.25, respectively, in medium with 

20mM formate and 20 mM electron acceptor. This demonstrates that D. dehalogenans 

is able to use fumarate and Cl-OHPA as terminal electron acceptor for growth. 

Topology of formate dehydrogenase, fumarate reductase and chlorophenol 

reductive dehalogenase. Formate dehydrogenase (FDH), chlorophenol reductive 

dehalogenase (CPRD), and fumarate reductase (FRD) were localized in FC and FF 

cells by determination of the activity of the enzymes in different fractions with in-

vitro enzyme assays using the membrane impermeable artificial electron donor methyl 

viologen (Table 3.1). Enzyme activities were determined in concentrated cell 

suspensions, cells that were permealized with cetyltrimethylammonium bromide 

(CTAB), and cell extracts were obtained by sonication of concentrated cell 

suspensions. The membrane and cytoplasmic fractions were separated by 

ultracentrifugation of the cell extract. The protein content of the concentrated cell 

suspension and cell free extract was comparable in both preparations. Therefore the 

specific activities that are measured in concentrated cells, permealized cells and cell 

extracts can be compared. The membrane and cytoplasmic fractions contained 90 to 

100% of the activity that was measured in the cell extracts except for CPRD where 

only 48% of the activity could be recovered. Furthermore, only 20% and 64% of the 

total protein from the cell extract was recovered from the membrane and cytoplasmic 

fraction of FC and FF cells, respectively. The activities that were measured in the 

membrane and cytoplasm fractions were used to determine in which fraction the 

enzyme was localized. 

In a concentrated cell suspension of FC cells, an FDH activity of 14 nmol 

formate, min'.mg protein"1 was measured, which increased 7.7 times after 

permeabilization of the cells. In FF cells, the specific FDH activity in concentrated 
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cells was 42% of the activity that was present in cell extract and increased 2.8 times 

upon permeabilization of the cells with CTAB. We found for both growth conditions 

that the specific activity of FDH is higher in the cytoplasmic fraction than in the 

membrane fraction, but over 90% of the activity was recovered from the membrane 

fraction. FRD was found to be strongly membrane bound and its activity increased 4-

fold when cells were permealized with CTAB. The CPRD activity increased 1.7-fold 

upon permeation with toluene, which was used because CPRD was found to be 

inhibited by CTAB. However, FRD and FDH activities determined in toluene-

permeabilized cells were 4 to 5 times lower than those determined in CTAB-treated 

cells, indicating that permeabilization with toluene was less efficient (not shown). The 

CPRD activity was mainly found in the membrane fraction. 

Table 3.1: Specific activity of formate dehydrogenase (FDH), chlorophenol reductive dehalogenase (CPRD) and 
fumarate reductase (FRD) in different fractions of Desulfitobacterium dehalogenans cells, grown with formate as 
electron donor and Cl-OHPA or fumarate as electron acceptor. The total protein contents of the concentrated cells, 
permeable cells, cell extract, membrane fraction, and cytoplasm fraction was 174, 174, 180, 32, and 4 mg, 
respectively, for FC cells and 94, 94, 96, 56, and 5 mg, respectively, for FF cells. The ratio of the total activity of 
the cell extract that is recovered from the membrane and cytoplasm fraction is given between brackets. 

Enzyme 

FDH 

CPRD 
FRD 

e-acceptor 

Cl-OHPA 
Fumarate 
Cl-OHPA 
Fumarate 

Concentrated 
cells 

Spec act1 

14 
47 
51 
37 

Permeable 
cells2 

Spec act' 
108 
133 
873 

151 

CFE 

Spec act' 
59 

110 
89 

294 

Membrane 
fraction 

Spec act' (%) 
189(60) 
167 (90) 
234 (48) 
457 (92) 

Cytoplasm 
fraction 

Spec act' (%) 
973 (39) 
654 (32) 

7(0) 
0(0) 

Specific activity is expressed as nmol of substrate converted per minute per milligram of protein 
Permeabilization with 0.1% CTAB 
Cells were permealized with 0.04% toluene to avoid inactivation of CPRD by CTAB. 

These results suggest that formate dehydrogenase is loosely membrane 

associated and present at both sides of the cytoplasmic membrane. Chlorophenol 

reductive dehalogenase activity is membrane bound and so is fumarate reductase. The 

latter enzyme was determined to be orientated at the cytoplasmic side of the cell 

membrane. 

Menaquinone extraction of formate-Cl-OHPA and formate-fumarate grown 

cells. Quinones were extracted from formate-Cl-OHPA and formate-fumarate grown 

cells and their involvement in fumarate and halorespiration was investigated. The 

quinone, which could be extracted, exhibited an UV absorbance spectrum 

characteristic for menaquinones (not shown). The oxidized form of the isolated 

quinones showed two peaks at 245 and 270 nm and a broad absorption centered round 
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325 nm. The dithionite-reduced form exhibited a single peak at 245 nm and a broad 

absorption at 330 nm. The hydrophobic side chain of the menaquinone isolated from 

D. dehalogenans is likely to be shorter than 8 isoprenyl units because its retention 

time on a HPLC reversed phase column was shorter than that of MQ8 of Escherichia 

coli. 

To investigate the possible involvement of this menaquinone in the fumarate 

and Cl-OHPA respiration, concentrated cell suspensions (FT7 and FC) were incubated 

in the presence of formate, and Cl-OHPA or fumarate (Table 3.2). After 10 minutes of 

incubation, the quinones were extracted from these cells. In both FF and FC grown 

cells the menaquinone pool was reduced with 10 mM formate. The quinone pool was 

also reduced upon addition of the reducing agent dithionite. The reduced quinone 

became oxidized when 10 mM Cl-OHPA was added to formate-reduced FC grown 

cells, or when 10 mM fumarate was added to formate-reduced FF grown cells. This 

indicates that menaquinone is involved in electron transport from formate to Cl-

OHPA and fumarate. 

Table 3.2: The ratio of peak areas of reduced and oxidized menaquinone 
extracted under different conditions from cells ofD. dehalogenans grown with 
formate as electron donor and fumarate or Cl-OHPA as electron acceptor. Cells 
were incubated for 10 minutes with lOmM formate, Cl-OHPA or fumarate 
prior to quinone extraction, nd: not determined. 

Conditions Ratio MQH2/MQ 
Formate-fumarate Formate-Cl-OHPA 

grown cells grown cells 
formate 
Cl-OHPA 
fumarate 
No addition 

UV-visible spectroscopic studies of concentrated cell suspensions of formate-Cl-

OHPA and formate-fumarate grown cultures. The absorption spectra were 

recorded from concentrated cell suspensions of FF and FC cultures to determine the 

involvement of cytochromes in fumarate respiration and halorespiration. 

Cytochrome c was detected in both formate-Cl-OHPA and formate-fumarate 

grown cells. The dithionite-reduced minus oxygen-oxidized spectrum (at 77 K) of this 

cytochrome c showed optima at 419 and 552 nm (not shown). This cytochrome c 

could not be reduced by ascorbate, suggesting that the redox potential of this 

cytochrome is below +60 mV. In addition, another type of cytochrome was found to 
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be present in FC and FF cells. The reduced minus oxidized spectrum showed optima 

around 430 and 561 nm, suggesting the presence of a b-type cytochrome (not shown). 

This cytochrome was detected under both growth conditions, but the ratio of 

cytochrome b/cytochrome c was highest in the FF cells suggesting that cytochrome b 

is more important during growth on fumarate than during growth on Cl-OHPA. 

Spectral analysis of the membrane fractions of the cells indicated that both 

cytochromes are membrane associated. Spectra of the cytoplasmic fraction did not 

show any signal typical for cytochromes (not shown). 

520 540 560 580 

wavelength (nm) 

Figure 3.1: Low temperature cytochrome b, c a-
band spectra of a concentrated cell suspension 
of Desulfitobacterium dehalogenans grown with 
formate as electron donor and Cl-OHPA as 
electron acceptor. Spectra were shifted upwards 
in steps of 0.02 absorbance units to clarify the 
Figure. Trace A shows the absorption spectrum 
from cells without additions. Trace B was 
recorded after incubation with 10 mM formate. 
Trace C was recorded after reduction of the 
sample with dithionite for 8 minutes. Trace D 
was recorded after incubation of the cells with 1 
mM formate and 10 mM Cl-OHPA. Trace E 
was recorded after incubation of the cells with 
10 mM Cl-OHPA. 

i ' ' ' i • ' ' i • ' • i 

^ / \ . 
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520 540 560 580 

wavelength (nm) 

Figure 3.2: Low temperature cytochrome b, c a-
band spectra of a concentrated cell suspension 
of Desulfitobacterium dehalogenans grown with 
formate as electron donor and fumarate as 
electron acceptor. For details see legend to Fig. 
3.1. Trace A shows the absorption spectrum 
from cells without addition. Trace B was 
recorded after incubation with 10 mM formate. 
Trace C was recorded after reduction of the 
sample with dithionite. Trace D was recorded 
after incubation of the cells with 1 mM formate 
and 10 mM fumarate. Trace E was recorded afar 
incubation of the cells with 10 mM fumarate. 
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Figure 3.3: EPR of [2Fe-2S],+ and Mo5* in whole cells 
of D. dehalogenans grown on formate-Cl-OHPA. 
Cells were reduced by incubation for 10 min. with 
formate (trace A-C) and maximally re-oxidized by 
incubation for 40 min. with Cl-OHPA (trace D-E). 
Trace A was taken at high microwave power to 
emphasize Fe/S signals over Mo and radical signals. 
Trace B is a simulation on the basis of two different 
[2Fe-2S] signals ( g ^ 1.926, gz=2.01 and gH= 1.902, 
gz=2.04) in a 1:1 ratio plus a small amount of Mo 
signal (4%) and radical signal (2%). Trace C was 
taken at low microwave power to de-emphasize Fe/S 
signals. Trace C changes into trace D upon prolonged 
oxidation with Cl-OHPA. Trace E is a simulation of 
the Mo(V) signal in trace D with gxyz = 1.952, 1.961, 
1.972. The signal is split by hyperfine interaction with 
one proton: Asyz = 0.9, 1.0, 1.8 mT. EPR conditions: 
microwave frequency, 9410 ± 5 MHz; microwave 
power, 80 mW (trace A) or 0.2 mW; modulation 
amplitude, 0.4 mT; temperature, 40 K. 

Figure 3.4: EPR of Co(II)balamin in Cl-OHPA re-
oxidized cells of D. dehalogenans grown on formate-
Cl-OHPA. The experimental spectrum (exp) is 
dominated by the base-off form of Co(II)balamin 
with simulation (sim) parameters essentially identical 
to those determined for the purified dehalogenase: 
ga,=2.355, gz= 1.990; linewidth in mT is WH=7, 
Wz=l; cobalt hyperfine splitting in mT is AJJ=7.6, 
Az=14.0. EPR conditions: microwave frequency, 
9411 MHz, microwave power, 2 mW; modulation 
amplitude, 0.4 mT; temperature, 27 K. 

The involvement of these cytochromes in the electron transfer from formate to 

fumarate or Cl-OHPA was investigated. Changes in the redox state of the 

cytochromes were followed by visible spectrometry at 552 and 561 nm. The 

concentration of cytochrome b in FC cells was too low to allow determination of 

changes in its redox state, but in FF cells the concentration of both cytochrome pools 

was sufficiently high to study their involvement in respiration during growth on 

formate and fumarate. Figure 3.1 shows the changes in the redox state of the 

cytochromes upon addition of formate or Cl-OHPA to cells grown with formate and 
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Cl-OHPA. Figure 3.2 shows the results of a similar experiment with cells grown with 

formate and fumarate. The maxima between 550 and 560 nm that were seen in the 

absorption spectrum of concentrated cell suspensions of FF and FC grown cultures 

indicated that the cytochrome pool was partly reduced (Figs. 3.1 & 3.2, trace A). 

Upon addition of formate to concentrated cell suspensions a rapid reduction of the 

cytochrome pools could be seen (Figs. 3.1 & 3.2, trace B), which is similar to the 

level of reduction that was obtained upon addition of dithionite (Figs, 3.1 & 3.2 Trace 

C). Incubation of concentrated FC cells with Cl-OHPA or concentrated FF cells with 

fumarate resulted in a decrease of the absorption peaks, indicating that the cytochrome 

pools became oxidized (Figs. 3.1 & 3.2, trace E). In other experiments, cells were first 

incubated in the presence of 1 mM formate and then analyzed for the effect of the 

electron acceptors on the redox state of the cytochromes. Upon addition of 10 mM Cl-

OHPA to formate-reduced FC cells the cytochrome c became oxidized (Fig 3.1. trace 

D). A complete reoxidation of cytochrome c was observed neither at low nor at high 

Cl-OHPA concentrations. A complete re-oxidation of both cytochrome pools was 

observed when 10 mM fumarate was added to formate-reduced FF cells (Fig 3.2, trace 

D). The results obtained for FC and FF cells are similar, indicating that cytochrome c 

is involved in both fumarate and halorespiration. Furthermore, cytochrome b is 

involved in fumarate respiration. 

Electron paramagnetic resonance (EPR) spectroscopy on concentrated cell 

suspension of formate-Cl-OHPA grown cells. Spectra were recorded of 

concentrated FC cells, as harvested, after addition of formate, and after addition of 

formate and Cl-OHPA. To obtain information on the involvement of iron sulfur-

clusters and molybdenum, the samples were first analyzed at 40 K by EPR (Fig 3.3). 

The formate-reduced sample shows spectra resembling two [2Fe-2S] clusters and 

molybdo-enzymes. The molybdenum appeared to occur in multiple species, which is 

common for molybdenum. Upon oxidation with Cl-OHPA, the molybdenum signal 

apparently became a single spectral species. Furthermore a radical signal was 

observed in the cells. This signal was similar under formate-reduced and Cl-OHPA-

oxidized conditions, suggesting that a quinone was the main source for this radical 

signal and not FAD (not shown). 

Thereafter, the temperature was lowered to 27 K to analyze cobalt, which, in 

the form of cobalamin, is a cofactor of the ort/io-chlorophenol reductive dehalogenase 

(van de Pas et al., 1999). After 30 minutes of incubation of formate-reduced cells with 
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Cl-OHPA (20 mM) at 37°C, 10 mM OHPA was formed but a Co2+-signal was not 

observed. When the cells were incubated with Cl-OHPA (40 mM) for 90 minutes at 

37°C, 16 mM OHPA was formed and a base-off Co2+ signal was detected, which had 

similar characteristics as the cobalamin of the purified CPRD (Fig. 3.4). 

300 400 

B(mT) 

Figure 3.5: EPR of [4Fe-4S]l+ clusters in 
whole cells of D. dehalogenans, grown on 
formate-Cl-OHPA, reduced with formate. 
The complex spectral shape is characteristic 
for two [4Fe-4S] cubanes in mutual dipolar 
interaction at a distance of approximately 1 
nm. Upon increasing the temperature to 40 K 
the signal broadens beyond detection. EPR 
conditions: microwave frequency, 9410 MHz; 
microwave power, 5 mW; modulation 
amplitude, 0.63 mT; temperature, 16 K. 

Y* 
150 120 130 140 
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Figure 3.6: High-spin EPR signals from whole cells 
of D. dehalogenans grown on formate-Cl-OHPA. 
The left-hand panel is from Cl-OHPA oxidized 
cells and shows an S=5/2 high-spin Fe(III) heme 
signal with effective g-value, geff=5.89; the right-
hand panel is from formate reduced cells and shows 
a signal of unknown origin, presumably an unusual 
Fe/S cluster. The effective g-value is gef'=5.2. EPR 
conditions; microwave frequency, 9410 MHz; 
microwave power, 200 mW; modulation amplitude, 
0.62 mT; temperature, 16 and 20 K, respectively. 

To identify [4Fe-4S] and [3Fe-4S] clusters, which were previously found to be 

present in the purified chlorophenol reductive dehalogenase, the temperature was 

further decreased to 16 K (van de Pas etai, 1999). Under formate-reduced conditions, 

a [4Fe-4S] cluster could be identified with characteristics similar to those present in 

the dehalogenase (Fig 3.5). Similar conditions were used in an attempt to identify 

low-spin hemes present in the cytochromes that were identified by optical 

spectroscopy. However, a broad signal was found in the low-spin heme region, 

possibly due to an "inorganic" precipitant. Under these conditions no low-spin 

cytochromes could be detected. 

When the samples were analyzed at high power (200 mW) and a temperature 

of 16 K, a signal was found in the oxidized sample, characteristic for a high-spin 

heme (Fig. 3.6). This signal had a slightly asymmetrical shape and a low intensity. It 

could be the high-spin form of a (low-spin) heme that was optically detected. 
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Another signal was detected with a g-value of 5.2, which is very unusual. It is 

not clear if this signal is an isotropic line or part of an anisotropic spectrum. The line 

is reminiscent of (part of) the spectrum of the P-cluster in nitrogenase in the 

intermediate, P+, redox state (Tittsworth and Hales, 1993, Spee et al., 1998). 

Discussion 

The redox active components involved in electron transfer from formate to Cl-OHPA 

or fumarate were investigated by HPLC analysis and spectroscopic investigation of 

concentrated cell suspensions of the halorespiring anaerobic bacterium 

Desulfitobacterium dehalogenans. Since neither of these substrates support substrate-

level phosphorylation, energy conservation has to be coupled to respiratory electron 

transport during growth on formate-Cl-OHPA or formate-fumarate. Cells that are 

grown with formate-fumarate reach a higher density than cells that are grown with 

formate-Cl-OHPA. This suggests that during halorespiration less ATP is conserved 

per mole of formate or hydrogen oxidized than during fumarate respiration, which is 

in agreement with the results reported previously (van de Pas et al., 2000) and the 

model for fumarate respiration postulated previously (Kroger et al., 1992). These 

models postulate that halorespiration yields 1/3 mole ATP per mole formate oxidized 

whereas formate oxidation coupled to fumarate reduction would yield 2/3 mole ATP. 

The localization study indicates that there may be two formate dehydrogenase 

activities in both formate-Cl-OHPA and formate-fumarate grown cultures. This was 

observed in E. coli, where FDH-N and FDH-0 are located at the outside, and FDH-H 

is located at the inside of the cytoplasmic membrane (Sawers, 1994). In D. 

dehalogenans, high formate dehydrogenase activity was located at the inside of the 

membrane. The other FDH may face the outside of the cell membrane. Fumarate 

reductase activity was localized at the inside of the cell membrane. Chlorophenol 

reductive dehalogenase activity was present in whole cells but increased upon 

permeabilization of the cells by toluene. The CPRD activity that was detected in 

permealized cells was similar to the activity that was detected in cell extracts which 

suggests that the dehalogenase is made accessible for methyl viologen in permealized 

cells. However, the increase in activity in permealized cells as well as in cell extracts 
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was less pronounced than for fumarate reductase activity. Therefore, a clear 

identification of the localization of the CPRD was not possible. 

For the transport of electrons from formate to Cl-OHPA and fumarate in D. 

dehalogenans, we identified cytochrome c, cytochrome b, and menaquinone as 

possible components of the electron transport chain to both electron acceptors. The b-

type cytochrome was present in a higher concentration in formate-fumarate grown 

cells than in formate-Cl-OHPA grown cells. This may indicate that this cytochrome is 

not involved in electron transfer from formate to Cl-OHPA. The cytochrome b could 

be reduced by formate and oxidized by addition of fumarate, which confirms that it is 

part of the electron transport chain from formate to fumarate. Previously, the 

involvement of cytochrome b in electron transfer from menaquinone to fumarate 

reductase has been reported for sulfate-reducing bacteria (Kroger et al., 1992). 

Furthermore, cytochrome b is involved in electron transfer from formate 

dehydrogenase to menaquinone (Kroger et al., 1992; Sawers, 1994). However, 

cytochrome b is not the only type of cytochrome that can accept electrons from 

formate dehydrogenase. Sebban-Kreuzer et al. (1998) found that cytochrome c553 

accepts electrons directly from formate dehydrogenase in the sulfate-reducing 

Desulfovibrio vulgaris strain Hildenborough. This cytochrome has a low redox 

potential of +40 mV and is located at the periplasmic side of the cytoplasmic 

membrane. A similar type of cytochrome was copurified with formate 

dehydrogenases from other Desulfovibrio species (Riederer-Henderson & Peck, 1986; 

Costa et al., 1997). The cytochrome c pool in cells from D. dehalogenans could be 

reduced by formate and oxidized by addition of either fumarate or Cl-OHPA. The two 

respiratory pathways apparently share this part of the electron transport chain. It also 

has a low redox potential (< + 60mV) and may have a similar function. 

Menaquinone is the other component present in electron transport to fumarate 

and Cl-OHPA. The involvement of menaquinone in the halorespiratory pathway has 

also been found in cells of Dehalobacter restrictus that use PCE as electron acceptor 

and hydrogen as electron donor (Schumacher and Holliger, 1996). Furthermore, Louie 

and Mohn (1999) extracted an unknown quinone from formate-3-chlorobenzoate 

grown cells of Desulfomonile tiedjei, but its involvement in halorespiration has not 

been reported. 

EPR analyses of formate-Cl-OHPA grown cells showed that molybdenum 

could be reduced by formate and oxidized upon addition of Cl-OHPA. It is likely that 
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a molybdenum-containing formate dehydrogenase is present in formate-Cl-OHPA 

grown cells. Furthermore, a high-spin heme was detected by EPR spectroscopy that 

can be reduced by formate and oxidized by Cl-OHPA. This high-spin heme may be 

the high-spin form of the (low-spin) cytochrome c, but can also be part of a nitrite 

reductase complex, because nitrite reductases contain high-spin hemes and nitrite 

reductase activity was detected in these cells (unpublished data). It is therefore 

possible that this high-spin heme is not directly involved in electron transfer to Cl-

OHPA, but that it is part of an alternative pathway, which functions as an electron 

sink in the absence of its terminal electron acceptor. This sink is reduced upon 

oxidation of formate and may donate its electrons via the electron transport chain to 

Cl-OHPA. Nevertheless, the involvement of the high-spin heme in electron transport 

to Cl-OHPA cannot be excluded. A high-spin cytochrome c is very likely to be 

involved in 3-chlorobenzoate respiration in Desulfomonile tiedjei, because a unique 

high-spin cytochrome c has been reported to be co-induced with 3-chlorobenzoate 

dechlorination (Louie et ah, 1997). The EPR analyses clearly showed that cobalamin 

is involved in halorespiration in-vivo. This confirms earlier observations, such as 

inhibition of the enzyme activity by N2O and 1-iodopropane in in-vitro assays, and the 

oxidation of reduced cobalamin in a purified chlorophenol reductive dehalogenase 

sample, upon addition of Cl-OHPA (van de Pas et ah, 1999). 

Halorespiration in D. dehalogenans shares part of its electron transport chain 

with the fumarate respiratory pathway and possibly also with nitrate respiration 

(Smidt et ai, 1999). A unique feature of the halorespiratory pathway is the 

chlorophenol reductive dehalogenase. Based on the results presented in this study, the 

model postulated previously (van de Pas et al., 2000) for the halorespiratory chain in 

D. dehalogenans with formate as electron donor can be refined. Analogous to other 

bacteria (e.g. Desulfovibrio spp., E. coli), formate is oxidized at the outside of the cell 

membrane by a molybdenum-containing formate dehydrogenase. Electrons are 

donated to the electron transport chain, which may consist of cytochrome c, 

cytochrome b, menaquinone, a high-spin heme, and an unknown iron-sulfur cluster. In 

what order the components of the electron transport chain should be placed and which 

components are essential for halorespiration is currently unknown. Comparison of the 

electron transport chain of halorespiration with the one that is used during fumarate 

respiration indicates that the first reactions are identical. This suggests that electrons 

are transported from formate dehydrogenase via cytochrome c or cytochrome b to 
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menaquinone. Finally, the electrons are used to reduce the cobalamin of the 

chlorophenol reductive dehalogenase and transferred onto the Cl-OHPA, which is 

reductively dechlorinated. The high-spin heme or the unknown iron-sulfur cluster may 

be involved in electron transfer from menaquinone to the dehalogenase. When 

formate dehydrogenase and chlorophenol reductive dehalogenase are located at 

different sides of the cell membrane, a proton gradient will established without proton 

translocation during electron transport analogous to the models postulated for 3-CB 

respiration in D. tiedjei and PCE respiration in D. restrictus (Mohn & Tiedje, 1992; 

Schumacher & Holliger, 1996). When the active side of chlorophenol reductive 

dehalogenase is located at the outside of the cytoplasmic membrane, the quinone pool 

has to be involved in proton translocation. Both models that are postulated are based 

on the assumption that all components that we have identified are essential for 

halorespiration. Future investigations such as characterization of knockout mutants 

and the study of halorespiration in membrane vesicles should give a conclusive 

answer to the position of these components in the chain. 
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Abstract 

ortho-Chlorophenol reductive dehalogena.se of the halorespiring Gram-positive 

Desulfitobacterium dehalogenans was purified 90-fold to apparent homogeneity. The 

purified dehalogenase catalyzed the reductive removal of a halogen atom from the 

ortho position of 3-chloro-4-hydroxyphenylacetate, 2-chlorophenol, 2,3-

dichlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, pentachlorophenol, and 2-

bromo-4-chlorophenol with reduced methyl viologen as electron donor. The 

dechlorination of 3-chloro-4-hydroxyphenylacetate was catalyzed by the enzyme at a 

Vmax of 28 units/mg protein and a Km of 20 mM. The pH and temperature optimum 

were 8.2 and 52 °C, respectively. EPR analysis indicated one [4Fe-4S] cluster 

(midpoint redox potential (Em ) = -440 mV), one [3Fe-4S] cluster (Em = +170 mV), 

and one cobalamin per 48-kDa monomer. The Co(I)/Co(II) transition had an Em of -

370 mV. Via a reversed genetic approach based on the N-terminal sequence, the 

corresponding gene was isolated from a D. dehalogenans genomic library, cloned, 

and sequenced. This revealed the presence of two closely linked genes: (i) cprA, 

encoding the o-chlorophenol reductive dehalogenase, which contains a twin-arginine 

type signal sequence that is processed in the purified enzyme; (ii) cprB, coding for an 

integral membrane protein that could act as a membrane anchor of the 

dehalogenase. This first biochemical and molecular characterization of a 

chlorophenol reductive dehalogenase has revealed structural resemblance with 

haloalkene reductive dehalogenases. 
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Introduction 

Anaerobic bacteria that are able to conserve metabolic energy from the dechlorination 

of chlorinated compounds have gained a lot of attention because of their role in 

bioremediation of contaminated sites and the novel respiration pathways they possess 

(El Fantroussi et al., 1998). Halorespiring bacteria have been found within the groups 

of low G+C Gram-positives, green nonsulfur bacteria, and 6- and e- proteobacteria. 

These bacteria can use chloroalkenes, e.g. tetrachloroethene (PCE) and 

trichloroethene (TCE) or chloroaromatic compounds such as chlorophenols or 3-

chlorobenzoate as the terminal electron acceptor. 

The halorespiratory pathway of anaerobic PCE degradation has been studied 

in some detail. A key enzyme in this respiratory pathway is the PCE reductive 

dehalogenase, which catalyzes the reductive removal of a chlorine atom from PCE 

and TCE. A 58-kDa PCE reductive dehalogenase was purified from Dehalospirillum 

multivorans, which contains cobalamin and probably two iron-sulfur clusters 

(Neumann et al, 1996). Cloning and sequencing of the corresponding pceA gene 

revealed the presence of an additional open reading frame, pceB, being cotranscribed 

with pee A and coding for an 8-kDa membrane-spanning protein (Neumann et al., 

1998). The PCE reductive dehalogenases isolated from Dehalobacter restrictus (60 

kDa) and Desulfitobacterium frappieri strain PCE-S (65 kDa) resemble the enzyme 

from Dehalospirillum multivorans with respect to cofactor content and catalytic 

properties (Schumacher et al, 1997, Miller et al, 1998). EPR analysis of the D. 

restrictus enzyme confirmed the presence of cobalamin and two [4Fe-4S] clusters. 

All chloroalkene reductive dehalogenases characterized up to now are monomelic 

and either membrane-bound or membrane-associated. 

Enzymes involved in chloroaryl respiration have been studied in 

Desulfomonile tiedjei and Desulfitobacterium species (Ni et al., 1995; Loffler et al., 

1996; Christiansen et al., 1998). However, no further molecular characterization of 

these enzymes was reported. 

We investigated ort/zo-chlorophenol dechlorination in Desulfitobacterium 

dehalogenans. This organism is able to couple the reductive dechlorination of 

different ort/io-chlorinated phenolic compounds to growth with lactate, pyruvate, 

formate, or hydrogen as electron donor (Utkin et al., 1994; 1995). Comparison of 
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biomass yields on pyruvate and different electron acceptors indicated that 

chlorophenol dechlorination in D. dehalogenans is an energy-yielding process 

(Mackiewicz and Wiegel, 1998). This study for the first time describes the 

purification and characterization of the catalytic subunit of the ort/io-chlorophenol 

reductive dehalogenase fo-CP dehaloge-nase) from Desulfitobacterium 

dehalogenans. Its redox properties were studied by EPR spectroscopy, and the 

corresponding cprA gene was cloned and characterized, revealing structural 

resemblance with haloalkene reductive dehalogenases. 

Materials and methods 

Bacterial Strains, Plasmids, and Growth Conditions. D. dehalogenans strain 

JW/IU-DC1 (DSM 9161) was cultivated under anaerobic conditions (100% N2 gas 

phase) in 25-liter vessels containing 20 liters of basal medium as described by 

Neumann et al. (Neumann et al., 1994), supplemented with 0.2% yeast extract, 20 

mM lactate sodium salt, 20 mM 3-chloro-4-hydroxyphenyl acetate, 50 mM NaHCCh , 

and trace elements and vitamins solution as recommended by the German Collection 

of Microorganisms. The 20-liter cultures were incubated at 37 CC for 2 days. After 1 

day of incubation, 250 ml of 2 M NaOH was added to the culture to avoid 

acidification of the medium. 

Escherichia coli XLl-Blue (Stratagene) was used as a host for cloning vectors. The 

strain was grown in Luria Bertani medium at 37 °C, and ampicillin was added at 100 

mg/ml when appropriate. The cloning vectors pUC18 and pUC19 were purchased 

from Amersham Pharmacia Biotech, and pMON38201 was obtained from Monsanto. 

Preparation of Cell Extracts. Late exponential phase cultures of D. dehalogenans 

were harvested by continuous flow centrifugation at 16,000 x g (Biofuge 28RS, 

Heraeus Sepatech), which yielded 1.6 g of concentrated cells/liter of culture. The 

concentrated cells were stored at 220°C8 g of cells was resuspended in 8 ml of buffer 

1, consisting of 100 mM potassium phosphate (KPi), pH 7.5, and 2.5 mM 

dithiothreitol. A few crystals of DNase I were added to the cell suspension. Cells 

were broken by sonication (Vibra, Sonic Materials Inc.) under anaerobic conditions. 

The cell debris was removed by centrifugation for 5 min at 20,000 x g. The 

supernatant was incubated for 10 min in the presence of 0.5 M KC1 and 0.02% Triton 
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X-100 and then separated into a membrane fraction and a soluble fraction by 

centrifugation for 90 min at 140,000 3 g and 4 °C. The membrane fraction was 

resuspended in 8 ml of buffer 1 supplemented with 1% Triton X-100 and 20% 

glycerol and incubated for 60 min under anaerobic conditions at 4 °C. The insoluble 

fraction was removed from this preparation by centrifugation for 60 min at 140,000 x 

g and 4 °C. The solubilized enzyme fraction was stored under a N2 gas phase at 4 °C. 

Column Chromatography. All chromatographic steps were performed by fast 

protein liquid chromatography (Amersham Pharmacia Biotech) in an anaerobic 

chamber with N2 /H2 (95%/5%) gas phase. The Triton X-100 concentration of the 

sample was raised to 3% before it was applied to a column to prevent protein 

aggregation. The solubilized enzyme preparation was loaded on a Q-Sepharose 

column (2.2 x 8.9 cm) (Amersham Pharmacia Biotech) equilibrated with buffer A (50 

mM KPi, pH 6.0, 0.1% (w/v) Triton X-100, 20% glycerol, and 1 mM dithiothreitol). 

The column was eluted with a 75-ml linear gradient from 0 to 300 mM NaCl in buffer 

A at a flow of 2.5 ml/min. The o-CP dehalogenase activity was eluted at a NaCl 

concentration of approximately 180 mM. Fractions containing the highest 

dechlorinating activity were pooled and diluted with an equal volume of buffer A. 

The sample was applied on a Mono Q column (Amersham Pharmacia Biotech) 

equilibrated with buffer A. The enzyme was eluted with a 40-ml linear gradient from 

0 to 400 mM NaCl in buffer A and a flow rate of 1.0 ml/min at a NaCl concentration 

of 180 mM. 

Combined fractions containing dechlorinating activity were mixed with an equal 

volume of buffer B (50 mM Tris-HCl, pH 7.8, 0.1% w/v Triton X-100, 20% glycerol, 

and 1 mM dithiothreitol) and applied on a Mono Q column equilibrated with the same 

buffer. The enzyme activity was eluted with a 40-ml linear gradient from 0 to 400 

mM NaCl in buffer B and a flow rate of 1.0 ml/min at a NaCl concentration of 280 

mM. 

Enzyme Assay. Chlorophenol reductive dehalogenase activity was assayed in 

stoppered 1-cm cuvettes at 30 °C and pH 7.8 by photometric recording of the 

oxidation of titanium(III) citrate reduced methyl viologen at 578 nm ( e578 = 9.7 mM" 

'.cm"1) as described by Schumacher and Holliger (1996). The assay mixture 

contained 0.3 mM methyl viologen and had an initial absorption at 578 nm of 2.6. 

The assay was started by the addition of 20 ml of 50mM Cl-OHPA to give a final 

concentration of 1 mM Cl-OHPA. One unit is defined as the amount of enzyme that 
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catalyzed the reduction of 1 mmol of chlorinated substrate or the oxidation of 2 mmol 

of reduced methyl viologen per minute. The same specific activity was obtained 

whether methyl viologen oxidation, Cl-OHPA disappearance, or 4-hydroxyphenyl 

acetate appearance was followed. The protein content of the samples was determined 

according to Bradford (1976) with bovine serum albumin as a standard. 

Kinetic Parameters. The pH optimum was determined in a 200 mM Tris-maleate 

buffer ranging from pH 5.5 to 9.0. Michaelis-Menten constants were determined from 

Lineweaver-Burk representations of data obtained by determining the initial rate of 

Cl-OHPA reduction under the assay conditions described above and using 5 mM to 

10 mM substrate in the cuvette. 

Composition of o-CP dehalogenase. The molecular mass of the de-natured protein 

was determined by SDS-polyacrylamide gel electrophoresis according to Laemmli 

(1970). A low molecular weight marker (Bio-Rad) was used as reference. The gels 

were stained with Coomassie Brilliant Blue R-250. The concentration of acid labile 

sulfur of three individual samples was determined according to Rabinowitz (1978). 

The iron and cobalt content of three independent enzyme preparations was measured 

by inductively coupled plasma mass spectrometry (Elan 6000, Perkin-Elmer). The 

protein concentration of the inductively coupled plasma mass spectrometry samples 

was determined by measuring the absorbance changes in the Rose Bengal binding 

assay as described by Elliot and Brewer (1978) with bovine serum albumin as a 

standard. A correction factor was determined with purified o-CP dehalogenase to 

compare the Rose Bengal protein determination and the Bradford protein 

determination. A correction factor of 1.10 was applied for the Rose Bengal 

determinations. 

Cobalamin and Iron-Sulfur Cluster Analysis by EPR. EPR spectra were recorded 

on a Bruker 200 D spectrometer with cryogenics, peripheral equipment, and data 

acquisition as described previously (Pierik et ah, 1991). The protein concentration of 

the EPR samples was 0.4 mg/ml in buffer B. The enzyme was completely reduced in 

45 min by deazaflavin/EDTA-mediated light reduction as described by Massey and 

Hemmerich (1977). Deazaflavin was synthesized according to Janda and Hemmerich 

(1978). 

N-terminal Amino Acid Sequence. Purified enzyme was transferred from a 12% 

SDS-polyacrylamide gel onto a polyvinylidene difluoride membrane (Immobilon 

polyvinylidene difluoride, Millipore Corp.) by blotting with a Trans-Blot SD semidry 
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transferring cell (Bio-Rad). Blotting was carried out at 14 V for 2 h using a transfer 

buffer containing 48 mM Tris, 39 mM glycine, and 20% methanol, pH 9.1. The 

transferred protein was stained with Coomassie Brilliant Blue R-250. The N-terminal 

amino acid sequence of the blotted protein was determined as described by Schiltz et 

al. (1991). 

DNA Isolation, Manipulation, and Oligonucleotides. Chromosomal DNA from D. 

dehalogenans was isolated as follows. Protoplasts were prepared from 12 ml of 

culture f A600 5 0.4) as described by van Asseldonk et al. (1993), recovered at 13,000 

3 g for 2 min, and resuspended in 100 ml of THMS buffer (30 mM Tris-HCl, pH 8.0, 

and 3 mM MgCl2 in 25% sucrose). After the addition of 400 ml of 50 mM Tris-HCl 

(pH 8.0), containing 5 mM EDTA, 50 mM NaCl, and 0.5% SDS, chromosomal DNA 

was purified through successive steps of phenol/chloroform extraction and recovered 

by ethanol precipitation. 

Plasmid DNA was isolated from E. coli by using the alkaline lysis method, and 

standard DNA manipulations were performed according to established procedures 

(Sambrook et al., 1989) and the manufacturers' instructions. Enzymes were 

purchased from Life Technologies, Inc., Roche Molecular Biochemicals, or New 

England Biolabs. Oligonucleotides and [a-32 P]dATP were obtained from Life 

Technologies and Amersham Pharmacia Biotech, respectively. Prehybridization and 

hybridization were performed at 65 and 50 °C, respectively. Posthybridization 

washeswere conducted at 40 °C. 

Oligonucleotides used in this study were BG 444 (59-GCI GA(A/G) ACI 

ATG AA(C/T) TA(C/T) GTI CCI GGI CCI ACI AA(C/T) GCI GCI (A/T)(C/G)I 

AA(A/G) (C/T)TI GGI CCI GT-39, nucleotides 644-703), BG 458 (59-GCC GGA 

GCC TTG ATC GC-39, nucleotides 427-411), and BG 475 (59-GGC AGG TCT 

GGG AGA ATT G-39, nucleotides 1366-1384). In order to restrict the extent of 

degeneration for BG 444, inosine (I) was used at 3- or 4-fold degenerated positions. 

DNA Amplification by Inverse PCR. Inverse PCR (Triglia et al, 1988) was per­

formed as follows. Chromosomal DNA was digested with Hindi and ligated at a 

concentration of 0.5 ng/ ml. 5 ng of self-ligated DNA was used as the template in a 

25- ml PCR reaction containing the following: 2 ng/ ml each primer; 2.25 mM 

MgCl2; 200 mM dATP, dCTP, dGTP, and dTTP; and 1 unit of Expand™ Long 

Template enzyme mixture (Roche Molecular Biochemicals). The DNA was amplified 

using the GeneAmp ® PCR System 2400 (Perkin-Elmer). After preheating to 94 °C 
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for 2 min, 35 cycles were performed, consisting of denaturation at 94 °C for 20 s, 

primer annealing at 50 CC for 30 s, and elongation at 68 °C for 3 min. After 10 cycles, 

the elongation time was extended with 20 s/cycle. A final extension of 7 min at 68 °C 

was included. PCR products were purified from agarose gel by Gene Clean (Bio 101) 

and cloned into pMON38201 cut with Xcml. 

DNA Sequencing and Sequence Analysis. DNA sequencing was per-formed using a 

Li-Cor DNA sequencer 4000L. Plasmid DNA used for sequencing reactions was 

purified with the QIAprep Spin Miniprep kit (Qiagen GmbH). Reactions were 

performed using the Thermo Seque-nase fluorescent labeled primer cycle sequencing 

kit (Amersham Phar-macia Biotech). Infrared labeled oligonucleotides were 

purchased from MWG Biotech. Sequence similarity searches and alignments were 

per-formed using the BLAST 2.0 program (Altschul et al., 1997) (NCBI) and the 

programs Clustal X and GeneDoc (Thompson et al., 1997; K. B. Nicholas and H. B. 

J. Nicholas, unpublished communication), respectively. 

Results 

Table 4.1: Purification scheme for ortho-chlorophenol reductive dehalogenase of D. dehalogenans. 
O-CP dehalogenase activity was monitored throughout the fractionations of the cell extract of D. 
dehalogenans. 

Sample 

Cell free extract 
Membrane fraction 
Solubilized fraction 
Q-sepharose fraction 
MonoQ pH 6.0 fraction 
MonoQ pH 7.8 fraction 

Protein 
mg 

419.0 
240.0 
91.0 
21.1 
4.4 
2.1 

Activity 
u* 
129 
101 
109 
101 
64 
59 

Yield 
% 

100 
78 
84 
78 
50 
46 

Specific activity 
mU/mg 

308 
423 

1210 
4786 

14612 
27872 

Purification 
factor 

1.0 
1.4 
4.0 

15.0 
47.0 
90.0 

One unit (U) of activity is defined as the oxidation of 2 Umol of reduced methyl viologen. 

Purification and Characterization of o-CP Dehalogenase. o-Chlorophenol 

reductive dehalogenase was purified under strict anaerobic conditions from the 

membrane fraction of D. dehalogenans grown on lactate and 3-chloro-4-

hydroxyphenylacetate (Table 4.1). The specific activity increased 90-fold upon 

purification and amounted to 28 units/mg protein with reduced methyl viologen as an 

artificial electron donor. The purified enzyme had a pH and temperature optimum of 

8.1 and 52 °C, respectively. At 30 °C, the enzyme showed Michaelis-Menten kinetics 

for Cl-OHPA. The Km for this chlorinated substrate was determined to be 20 mM at a 
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methyl viologen concentration of 0.3 mM. Cl-OHPA showed no inhibitory effect up 

to 10 mM, which was the highest concentration used. Several halogenated 

compounds were tested as possible alternative substrates for o-CP dehalogenase. 

Activity of o-CP dehalogenase was observed with 2-CP, 2,3-dichlorophenol (2,3-

DCP), 2,4-DCP, 2,6-DCP, and pentachlorophenol as substrate (Table 4.2). 3-CP, 4-

CP, and 2,5-DCP were not dechlorinated. Additionally, 2-bromo-4-chlorophenol, but 

not 2-fluoro-4-chlorophenol, could be dehalogenated. This confirms that reductive 

dehalogenation is the reaction mechanism of o-CP dehalogenase, since bromide and 

chloride are more readily reductively removed than fluoride. No activity was 

measured with PCE or TCE, indicating that chlorinated aliphatics do not serve as a 

substrate for the o-CP dehalogenase. 

Table 4.2: Substrate specificity profile of purified o-CP dehalogenase. The rate of 
methyl viologen oxidation catalyzed by o-CP dehalogenase in the presence of 
different possible electron acceptors was spectrophotometrically followed at 30°C. 
The reaction mixture contained 0.3 mM methyl viologen, 7 u.g dehalogenase, 1 mM 
electron acceptor, and 50 mM Tris-HCl at pH 7.8. One unit is defined as the amount 
of enzyme which catalyzed the oxidation of 2 umol of reduced methyl viologen per min. 
3-CP, 4-CP, 2,5-DCP, 4C1-2FP, PCE, and TCE were dechlorinated at a rate below 
the detection limit (0.12 U/mg). 

Substrate 

Cl-OHPA 
2-Br-4-CP 

2,3-DCP 
2,4-DCP 
2,6-DCP 

PCP 
2-CP 

Specific activity 
(U/mg) 
12.0 
24.3 
15.5 
4.2 
0.8 
0.2 
0.2 

Ratio % 
compared to Cl-OHPA 

100 
202 
129 
35 
7 
2 
2 

SDS-polyacrylamide gel electrophoresis analysis of the purified enzyme 

preparation revealed one band of approximately 48 kDa (Fig. 4.1). An accurate 

determination of the native size of the enzyme was not possible due to the high 

concentration of detergent needed to prevent protein aggregation (data not shown). 

The analysis of metals revealed the presence of 0.7 ±0.1 mol of cobalt and 7 

± 1.4 mol of iron atoms per mol of monomer. Acid-labile sulfur analysis showed 9.9 

±1.2 mol of sulfur atoms/mol of monomer. We conclude from these results and the 

EPR data (see below) that 1 cobalamin and 2 iron-sulfur clusters are present per mol 

of enzyme. 
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- 97.4 (phosphorylase b) 

- 66.2 (serum albumin) 

- 45.0 (ovalbumin) 

- 31.0 (carbonic anhydrase) 

-21.5 (trypsin inhibitor) 

Figure 4.1: 12% SDS PAGE with the purified 
ort/jo-chlorophenol reductive dehalogenase of 
Desulfitobacterium dehalogenans (5ug) in lane 1. 
Molecular size markers are shown in lane 2. The 
arrow indicates the purified protein band. The gel 
was stained with Coomassie Brilliant Blue G-250. 

N-terminal Sequence, Cloning, and Sequencing of the cprA Locus. The N-

terminal amino acid sequence of the o-CP dehalogenase purified from D. 

dehalogenans was determined and revealed the sequence NH2-

AETMNYVPGPTNARSKLRPVH-DFA. A 59-bp 256-fold degenerated 

oligonucleotide (BG 444) was designed based on the sequence of the first 20 N-

terminal amino acids. Southern blot analysis of £coRI-//mdIII-digested 

chromosomal DNA of D. dehalogenans revealed a 2.7-kilobase fragment that 

hybridized strongly to radiolabeled BG 444. This fragment was cloned in E. coli 

using £coRI-//mdHI-digested pUC18, resulting in pLUW910. Sequence analysis of 

the Hmdlll-Hincll 1.8-kilobase fragment of pLUW910 revealed the determined N-

terminal amino acids immediately down-stream of the 7/mdIII site, indicating that 

pLUW 910 lacks the translation start of the gene of interest. Therefore, the divergent 

primer pair BG 458/BG 475 was used to specifically amplify the pLUW910 upstream 

flanking fragment in an inverse PCR from ffincll-digested chromosomal DNA. To 

ensure determination of the correct nucleotide sequence, three independently obtained 

PCR products were cloned yielding pLUW912a-c. From these, Hindi deletion clones 

were prepared, giving the corresponding pLUW913a-c. Figure 4.2 shows a restriction 

map of the DNA region cloned and sequenced. 
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Figure 4.2: Restriction map of the D. dehalogenans genomic cpr-region. Vertical arrows mark 
DNA restriction sites. Horizontal bars indicate fragments, cloned either in pUC 18 or 
pMON38201. Horizontal arrows indicate open reading frames. Oligonucleotides used in this 
study are shown. The 32 C-terminal amino acids of ORF X show some similarity with the C-
terminal part of GroEL-type chaperonines. ORF1 exhibits no significant similarities with known 
proteins. 

Organization of the cprA Locus. Sequence analysis revealed the presence of two 

closely linked open reading frames, namely cprB (nucleotides 194-505) and cprA 

(nucleotides 518-1861). A third open reading frame, ORF1, starts at nucleotide 1958. 

Preceding each of the three open reading frames, potential Shine Dalgarno sequences 

were found (data not shown). The predicted gene product of cprA is a polypeptide of 

447 amino acids with a molecular mass of 49,720 Da. The first 42 N-terminal 

residues of CprA comprise a leader sequence that is cleaved off upon maturation of 

the protein, leaving a mature 405-amino acid polypeptide with a calculated molecular 

mass of 45,305 Da. The leader sequence contains an RR motif characteristic for a 

large number of mainly periplasmic proteins binding different redox cofactors (Berks, 

1996). These twin arginine signal sequences (consensus (S/T)R/?XFLK) are thought 

to play a major role in the maturation and translocation of such proteins. As all twin 

arginine signal sequences, the CprA leader sequence shows the structural 

characteristics of standard Sec signal sequences. Furthermore, the established 

cleavage site -VANAiAETM- follows the "-1/-3 rule" of von Heijne (1984). The D. 

dehalogenans CprA sequence reveals the presence of an extended cluster of cysteine 
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residues (Cys330 -Cys387, Fig. 4.3). The first group of four cysteines Cys330 -Cys340 is 

identical to the consensus sequence of bacterial ferredoxin type clusters 

(CXXCXXCXXXCP; Bruschi and Guerlesquin, 1988), including the conserved 

proline at position 341. The second cluster shows the same conserved residues 

(Cys380 -Pro388) but lacks the first cysteine. The B12 binding motif DXHXXG-(41)-

SxL-(26-28)-GG, as it was determined for a subset of B12 -dependent enzymes 

(Ludwig and Matthews, 1997), is not present in CprA. 

CprA : MBNNEQRQQTGMN«aiJV GAAATTM— GVIGAIKAPAKVANAAETMN : 47 
PceA : MEKKKKPE LsHdkaLIIGGGAftATIAPFGVPGftNA&EKE-KliiaAEIRQQFAMTAG : 56 

CprA : YfPGPTNARSKLRPVHDFAGAKVRFVENNKBWLGTTKIIS KV : 89 
PceA : SPIIWDKLERYAElRTAFTHPTSFFKPNYKGEVKPWfLSAYDSKVRQIENGENGPKMKA : 116 

CprA : KKTSSADASFMQAVRG LYS-PDPQRGFFQFIAKHPFGGTISWARNLIAA-EDVV : 141 
PceA : KNVGBARMRALEAAGWTLDimrfiNIYPNH-FyMLWSGETMTNTOLWAPVGLDRRPPDTT : 175 

CprA : DGDAEPTKTPIPDPEQMSQHI RDCCYFLRADE?GIGKMPEK3YYTB-HVSDTVGLMS : 197 
PceA : DPVELTNYVKFAARMAGADLVGVARLNRNWWSEAVTXPADVPXEQSISKEIEKPIVFKD ! 235 

CprA : KPVEECVTPVTKIYWTVIWMIDQGIETMWASTGYDGISGAMSMQSY-FTSGCI-AVIMA : 255 
PceA : VPLPIE-TDDELIIPHTCENVIVASIAMNREMMQTAPNBtaCATTAFCYSRMCMFDMWLC : 294 

CprA : KYIRTLGYNARXHHAKMYEAIMPVCIMAI«6GELSRTSDCAIHPRLGYRHKVAAVTfDIJP : 315 
PceA : QFIRYMGY— YAIPSCBGVGQSVAFAVEi^fitGQASBMGAC-ITPEFGPNVRLTKVFINMS : 351 

CprA : lAPDKPIDreLLDHfflRvHKlfflRDNfflNDAIT FDEDPIE-YNGYLRWNSBFKKCTE : 369 
PceA : LVFnKPIDf6VTEI^TpllgRREHsKAlTEGPRTPEGRSIHNQSGKI,QWQNDYNIKILG : 4 11 

CprA : FRTTNSESSSBSTHLK«ffiWNSKEDSWFBKAGVWVGSKGEAASTFLKSIM3IFGYGTETI : 429 
PceA : YWP—ISSGYgGVaVAvSFT-KGNIWIBDGVEWLIDNTRFLDPLMLGMDDALGYGAKRN : 468 

CprA : EKYKWKLEWPEKYPLKPM : 447 
PceA : -ITEVBDGKINTTGliDADHFRDTVSFRKDRVKKS : 5 01 

F i g u r e 4 . 3 : P r i m a r y s e q u e n c e a l i g n m e n t for t h e o r f f t o - ch lo ropheno l r e d u c t i v e d e h a l o g e n a s e f r o m D. 

dehalogenans ( C P R ) a n d t he P C E d e h a l o g e n a s e f r o m Dehalospirillum multivorans. T h e a l i g n m e n t 

w a s p e r f o r m e d u s i n g t h e p r o g r a m s C l u s t a l X a n d G e n e D o c ( T h o m p s o n et al., 1 9 97 ; N i c h o l a s a n d 

N i c h o l a s , 1 997 ) . L i g h t g r e y b o x e s m a r k i d en t i c a l r e s i d u e s . D a r k g r e y b o x e s s h o w r e s i d u e s f r o m t h e 

tw i n - a r g i n i n e c o n s e n s u s mot i f . R e s i d u e s h i g h l i g h t e d i n b l a c k i n d i c a t e t h e c o n s e r v e d i r on - su l fu r c l u s t e r 

b i n d i n g mo t i f s . CprA: o r t / i o - c h l o r o p h e n o l r e d u c t a s e f r o m D. dehalogenans ( G e n e B a n k ™ a c c e s s i on 

N u m b e r A F 1 1 5 5 4 2 ) , PceA: P C E d e h a l o g e n a s e f r o m Dehalospirillum multivorans ( G e n e B a n k ™ 

a c c e s s i o n N u m b e r A F 0 2 2 8 1 2 ) . 

Upstream of cprA, a second potential gene, cprB, was found, that could 

encode a 103-amino acid polypeptide with a calculated molecular mass of 11,517 Da. 

The predicted cprB gene product does not exhibit significant similarities with any 

known proteins present in the data bases. A hydrophilicity plot indicates the presence 

of three membrane-spanning helices (Fig. 4.4). Following the positive-inside rule for 

integral membrane proteins (von Heijne and Gavel, 1988), the N terminus of this 

polypeptide is predicted to point outward, whereas the C-terminal part is located at 

the cytoplasmic face of the membrane. CprB and cprA are separated by only 12 
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nucleotides. Neither transcription termination nor initiation signals are present 

between the two genes. Preliminary experiments suggest co-transcription of both 

genes (data not shown). 

Amino acid No. 

-4.5 
+ 

JVi/1 

Figure 4.4: Hydrophilicity plot and charge 
distribution for CprB. The hydrophilicity plot was 
determined according to the method of Kyte and 
Doolittle (1982). The analysis was performed using 
the program Protean from the DNAstar software 
package. 

Cobalamin Involved in Electron Transfer in o-CP Dehalogenase. Cobalt in 

biological systems occurs in oxidation states 3+, 2+, and 1+. Only the Co2+ 3d7-

system is half-integer spin and, therefore, readily detectable in EPR spectroscopy. In 

cobalamin, the Co2+ is low spin S = 1/2. The EPR of D. dehalogenans o-CP 

dehalogenase, as isolated, exhibits a signal characteristic for Cob(II)alamin in the 

base-off form and a weak, near isotropic, S - 111 signal around g = 2 indicative of 

[3Fe-4S] (see below). 

Previously, it was found that full chemical reduction of another reductive 

dehalogenase, the PCE reductase from D. restrictus, could not be achieved with 

dithionite (Schumacher et al., 1997). Therefore, we used the light-induced strongly 

reducing system of deazaflavin plus EDTA. Prolonged illumination resulted in a clear 

EPR spectrum that is dominated by a signal with g values of 2.05, 1.93, and 1.87, 

typical for reduced [2Fe-2S] or [4Fe-4S] clusters (Fig. 4.5, trace A). The signal 

rapidly broadens above 20 K, which indicates that its origin is a [4Fe-4S]1+ cluster. 

Cob(II)alamin in the base-on form is present as a minor component in trace A, while 

the base-off form of Cob(II)alamin is fully reduced. 
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Figure 4.5: EPR spectra of D. dehalogenans o-CP 
dehalogenase. Trace A, the [4Fe-4S] signal from enzyme 
fully reduced by illumination with visible light for 50 min 
in the presence of 20 uM deazaflavin and 2 mM EDTA. 
Base-on Cob(II)alamin can be detected as a minor 
component in trace A. Trace B, the base-off Cob(II)alamin 
signal from enzyme re-oxidized by 0.5 min anaerobic 
incubation with 2 mM Cl-OHPA. Trace C, the [3Fe-4S] 
signal from enzyme fully oxidized by anaerobic incubation 
with 2 mM potassium ferricyanide for 5 min. EPR 
conditions: microwave frequency, 9.41 GHz; microwave 
power 5 mW (trace A: 0.8 mW); modulation frequency, 
100 kHz; modulation amplitude, 0.63 mT; temperature, 9.5 
K (trace A), 30 K (trace B), 15 K (trace C). 

When the enzyme is anaerobically hand-mixed with the substrate Cl-OHPA 

and immediately frozen in liquid nitrogen (i.e. a reaction time of -0.5 min), another 

spectrum is obtained (Fig. 4.5, trace B). This is the signal of the base-off form of 

Cob(II) alamin (Schumacher et al., 1997). The signal is essentially identical to that 

obtained from enzyme as isolated. In a control experiment where water, flushed with 

nitrogen gas, was added to a reduced o-CP dehalogenase sample, no base-off 

cobalamin signal developed. The addition of an excess of ferricyanide did not affect 

the signal, and this indicated an unusually high oxidation potential for the Co(nyill) 

couple, as previously found for the D. restrictus dehalogenase (Schumacher et al., 
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1997). Estimation of the spin-Hamiltonian parameters by simulation gives g values of 

1.99, 2.35, and 2.35 and cobalt hyperfine (7 = 7/2) values of 14, 7.5, and 7.5 

millitesla. These values are close to those found for the dehalogenase from D. 

restrictus (Schumacher et al., 1997). The simulation indicates furthermore that the 

spectrum contains a minor second component, namely a base-on form of 

Cob(II)alamin; this form is also detectable as a minor component in trace A. 

Upon incubation with excess potassium ferricyanide, the Co2+ signal is still 

present at maximal amplitude, but it is now hardly discernible, since the gain has 

been reduced for the observation of a near isotropic signal around g = 2 typical for a 

[3Fe-4S]1+ cluster (Fig. 4.5, trace C). The broad peak at low field is the gz from 

excess [Fe(CN)e]3+. All three signals, the [4Fe-4S]1+ signal, the Cob(II)alamin signal, 

and the [3Fe-4S]1+ signal, integrate to approximately the same value, corresponding 

to a spin count close to 1 spin per 48-kDa monomer. 

-500 -300 -100 100 300 

E(mV) 

Figure 4.6: EPR-monitored redox titration of the metal centers in 
D. dehalogenans o-CP dehalogenase. (+) [3Fe-4S]1+; ( • ) 
Cob(II)alamin; (A) [4Fe-4S]1+. Starting from a redox potential of 
-130mV, the sample was reduced by substoichiometric additions 
of dithionite, and oxidized by substoichiometric additions of 
ferricyanide, both in the presence of a cocktail of redox mediators 
covering the full potential axis. Amplitudes are given as a 
percentage of maximal signal intensities. The latter correspond to 
enzyme fully oxidized by excess ferricyanide or enzyme fully 
reduced by light/deazaflavin/EDTA. These extreme forms have 
undefined potentials and are presented in the figure as points on 
the vertical borders. EPR conditions were as in Fig. 4.5. The solid 
traces are fits to the Nernst equation assuming single-electron 
transfer. 
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The signals behave as expected in reductive (dithionite) and oxidative 

(ferricyanide) bulk redox titrations in the presence of a mixture of redox mediators 

(Fig. 4.6); in an oxidative titration, the signal ascribed to a [3Fe-4S] cluster appears 

with an oxidation potential of £m,7.8 = +170 mV; in a reductive titration the Co2+ 

signal disappears with a reduction potential of Eml$ = -370 mV; and the signal from 

the [4Fe-4S] cluster appears with Emj.?, = -440 mV. The Em values for Co(II) and 

[4Fe-4S] are similar to those found for the D. restrictus dehalogenase. However, that 

enzyme contains two [4Fe-4S] clusters (Schumacher et al., 1997). The EPR of the 

present D. dehalogenans enzyme strongly suggests the presence of one [4Fe-4S] and 

one [3Fe-4S] cluster, consistent with sequence analysis (see above). 

Discussion 

ortto-Chlorophenol reductive dehalogenase is the terminal reductase involved in the 

halorespiratory chain of D. dehalogenans. Here we describe the purification and 

molecular characterization of this key enzyme and its gene cprA. This membrane-

associated enzyme mediates the electron transfer from a yet unidentified electron 

donor to the halogenated substrate. The substrate spectrum of the purified enzyme 

was similar to that reported for resting cells, indicating that a single enzyme is 

involved in dehalogenation of ortto-halogenated phenols (Utkin et al., 1994; Table 

4.2). 

The purified o-CP dehalogenase contains one [4Fe-4S] cluster, one [3Fe-4S] 

cluster, and one cobalamin per monomer. The presence of two iron-sulfur clusters 

was confirmed by the identification of one ferredoxin-like and one truncated iron-

sulfur cluster binding motif (Fig. 4.3) in the sequence of CprA. These iron-sulfur 

clusters might be involved in the electron transfer to the active site that contains the 

cobalamin. The primary sequence alignment of CprA with PceA, the PCE reductive 

dehalogenase of D. multivorans (Neumann et al., 1998), revealed a rather high degree 

of similarity on the amino acid level in the C-terminal part of both enzymes (Fig. 

4.3). In PceA, the same two iron-sulfur cluster binding motifs are present, indicating 

a conserved mode of intramolecular transport of electrons. Both reductive 

dehalogenases probably differ in iron-sulfur cluster contents from the PCE reductase 

isolated from D. restrictus, where two [4Fe-4S] clusters were identified (Schumacher 

74 



• orftoo-Chlorophenol Reductive Dehalogenase 

et al., 1997). In the case of the 47-kDa Cl-OHPA reductive dehalogenase of the 

closely related Desulfitobacterium hafnienst, the presence of three iron-sulfur 

clusters has been reported (Christiansen et al., 1998). However, more sequence 

information on both the enzymes from D. restrictus and D. hafniense is not yet 

available. 

The formation of Co(II) in base-off conformation upon the addition of Cl-

OHPA to light-reduced o-CP dehalogenase confirms the involvement of the 

cobalamin in the dechlorination reaction. PCE reductase from D. restrictus, which 

converts PCE via TCE to 1,2-ris-dichloroethene, also contains cobalamin (Em = -350 

mV) in its base-off conformation (Schumacher et al., 1997). A similar mechanism 

could account for both chlorophenol and PCE dechlorination, although PCE is not a 

substrate for o-CP dehalogenase and D. restrictus is not capable of dechlorinating 

chlorophenols. 

The cprA gene encodes a proprotein, in which the mature polypeptide is 

proceeded by a twin arginine-type signal sequence characteristic for periplasmic 

enzymes containing complex redox cofactors. A similar leader sequence is present in 

the pceA gene product. For both dehalogenases, it has been proposed by dye-

mediated activity measurements in intact and broken cells that the dehalogenating 

activities are located at the inner face of the cytoplasmic membrane (data not shown; 

Neumann et al., 1998). The only other twin arginine enzyme with similar 

contradictory results concerns the E. coli Me2SO reductase (Berks, 1996; Weiner et 

al., 1998). Additional experiments will be required to solve the topology of these 

enzymes. 

Elucidation of the nucleotide sequences upstream and down-stream of cprA 

revealed the presence of a second potential gene, cprB. The hydrophobic gene 

product, CprB, might have a role in anchoring the catalytic subunit of the o-CP 

reductive dehalogenase to the cytoplasmic membrane. A similar function has been 

proposed for PceB in D. multivorans (Neumann et al., 1998). Although CprA and 

PceA exhibit highly conserved boxes, both primary sequences lack the consensus 

sequence for the binding of the corrinoid cofactor conserved among several 

methylcobalamin-dependent methyltransferases and mutases (Ludwig and Matthews, 

1997). 

The role of cobalamin in the reductive dehalogenases from chlorophenol and 

PCE-degrading organisms is of special interest, since it does not mediate the "usual 
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rearrangement" or alkyl transfer but an elimination reaction (Ludwig and Matthews, 

1997). Two models have been proposed for the reaction mechanism of PCE reductive 

dehalogenation. One model involves the formation of a Co(III)-chloroethene carbon-

metal bond (Neumann et ah, 1996), whereas the second model postulates the 

formation of a chloroethene radical (Schumacher et al., 1997). However, neither of 

these intermediates has been demonstrated unequivocally for PCE reductive 

dehalogenases. Based on our data, it is not possible to determine which model applies 

for ortfo-chlorophenol reductive dehalogenase from D. dehalogenans. On one hand, 

an essential intermediate in the first model, Cob(in)alamin, was not formed upon 

oxidation of the enzyme. On the other hand, there was no radical formation upon the 

addition of substrate to the reduced enzyme. The latter could be due to the slow 

reaction time, which makes it difficult to detect a reactive compound such as a phenol 

radical. Additional experiments are required in which the supposed radical would be 

stabilized. 

The similarities between the o-chlorophenol reductive dehalogenase of D. 

dehalogenans and the PCE reductive dehalogenases of Dehalospirillum multivorans 

and Dehalobacter restrictus on both mechanistic and structural properties as well as 

their primary sequences suggest that these enzymes constitute a novel class of 

corrinoid-containing reductases. 

The nucleotide sequence reported in this paper has been submitted to the GenBank 

/EBI Data Bank with accession number AF115542. 
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Abstract 

Desulfitobacterium dehalogenans is able to use ortho-chlorinated phenolic compounds as 

terminal acceptor for growth, next to more conventional electron acceptors like fumarate, 

sulfite, thiosulfate and nitrate. We have investigated the effects of these electron acceptors 

on the induction of dechlorination and on dechlorinating activity in growing cultures and 

cell extracts. The terminal reductases associated with these electron acceptors were found 

to be induced by their specific substrate. A low fumarate reductase activity was induced 

by yeast extract and a low dehalogenase activity was detected in fumarate grown cells. 

Furthermore, the induction of dechlorination was found to be delayed in cells that were 

adapted to another electron acceptor. Dechlorination was observed 7 to 12 hours after 

addition of Cl-OHPA to cultures that were growing with fumarate, sulfite, thiosulfate, or 

nitrate as electron acceptor, when the alternative electron acceptor was still present. In 

contrast, dechlorination started 2 hours after addition of Cl-OHPA to a culture that grew 

on pyruvate in absence of an additional electron acceptor. This is not an effect of the 

direct inhibition of dechlorination by these compounds, because addition of sulfite, 

thiosulfate, or nitrate had no effect on the dechlorination rate of cells that were adapted 

to growth on lactate and Cl-OHPA. However, nitrate (1 mM), sulfite (1 mM), and 

thiosulfate inhibited the dehalogenase activity in cell extracts 1.2, 2.5, and 1.03-fold, 

respectively. This suggests that the enzyme is protected against these compounds in intact 

cells. In contrast, the dechlorination rate of a growing culture decreased 1.2 times upon 

addition of fumarate, while no inhibition of dehalogenase activity by this compound was 

detected in cell extracts. This suggests that there is a competition for reducing equivalents 

between fumarate reductase and Cl-OHPA reductive dehalogenase that are both present 

under these growth conditions. 
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Introduction 

Biological degradation of chlorinated compounds in anaerobic environments is stimulated 

by addition of electron donors (Lee et al., 1998). Reductive dechlorination will then 

become the dominant reaction mechanism for bacterial dechlorination. This 

dechlorination can be a cometabolic or a metabolic reaction. The latter is called 

halorespiration, a process in which halogenated compounds are used as terminal electron 

acceptor for growth (El Fantroussi et ah, 1998). Most bacterial strains that are able to use 

chlorinated compounds as terminal electron acceptor are also able to use other electron 

acceptors (El Fantroussi et al., 1998). This may result in a competition for reducing 

equivalents between the different respiratory pathways within a single organism. 

Townsend and Suflita (1997) demonstrated that the 3-chlorobenzoate-dechlorinating 

activity in cells of Desulfomonile tiedjei is lower when sulfate, sulfite, or thiosulfate are 

present in the growth medium. Moreover, PCE dechlorination in lactate-limited 

continuous cultures of Desulfitobacterium frappieri strain TCE1 was found to be 

completely inhibited when other electron acceptors were present (Gerritse et al., 1999). In 

addition, sulfite inhibited reductive dechlorination in PCE-limited growing cells of D. 

frappieri strain TCE1 (Gerritse et al., 1999) and in cell extracts of Desulfomonile tiedjei 

(DeWeerd & Suflita, 1990; Townsend and Suflita, 1997), Desulfitobacterium strain PCE-

S (Miller et al., 1997), and D. chlororespirans (Loffler et al., 1996). However, nitrate, 

fumarate, sulfite, and PCE were used concomitantly when D. frappieri strain TCE1 was 

cultivated under electron acceptor-limitation (Gerritse et al., 1999). The closely related D. 

dehalogenans used nitrate, sulfite, and 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) 

simultaneously in batch experiments, whereas fumarate utilization increased substantially 

after Cl-OHPA was depleted (Mackiewicz & Wiegel, 1998). In other experiments, 

simultaneous sulfite reduction and Cl-OHPA dechlorination took place (Mackiewicz and 

Wiegel, 1998). However, the influence of these electron acceptors on the rate of 

dechlorination and the induction of dechlorination activity in D. dehalogenans is not 

clear. We have investigated the influence of nitrate, thiosulfate, sulfite and fumarate on 

dechlorination rate and induction of dechlorinating activity in growing cultures and cell 

extracts of Desulfitobacterium dehalogenans. Our results indicate that sulfite, and to a 

lesser extent thiosulfate and nitrate, have a direct inhibiting effect on dechlorination in cell 

extracts but not in cell suspensions. Furthermore, nitrate, sulfite, thiosulfate and fumarate 



Chapter 5 

do not induce dehalogenase activity. These compounds inhibited induction of 

dechlorinating activity. 

Materials and Methods 

Organism and growth conditions. Desulfitobacterium dehalogenans strain JW/IU-DC1 

(DSM 9161) was routinely cultivated anaerobically (1.2 bar N2 gas phase) at 37°C in 

medium containing lactate and an electron acceptor. The basal medium contained (in 

grams per liter of demineralized water): Na2S04 0.07, KH2P04 0.20; NH4CI 0.25; NaCl 

1.0; MgCl2.6H20 0.40; KC1 0.50; CaCl2.2H20 0.15; NaHC03, 4.2, and 0.1% peptone or 

yeast extract. Prior to inoculations the basal medium was supplemented with trace 

elements and vitamins from a stock solution to a final concentration (in milligrams per 

liter of liter of basal medium): EDTA 2.5; FeCl3.6H20 6.75; MnCl2.4H20, 0.50; 

CoCl2.6H20, 0.12; CaCl2.2H20, 0.50; ZnCl2, 0.50; CuCl2.2H20, 0.12; H3BO3, 0.05; 

Na2Mo04.2H20, 0.12; NaCl, 5.0; NiCl2.6H20, 0.60; Na2Se03.5H20, 0.13, biotin, 0.04; 

folic acid, 0.04; pyridoxine-HCl, 0.20; thiamin-HCl 0.10; riboflavin, 0.10, nicotinic acid, 

0.10; Ca-pantotheate, 0.10; vitamin Bi2, 0.10; p-aminobenzoic acid, 0.10; lipoic acid, 

0.10. 

Cell fractionation and enzyme assays. Late-exponential phase cultures were harvested 

by centrifugation and fractionated as described previously (van de Pas et al., 2000). 

Chlorophenol reductive dehalogenase, nitrate reductase, nitrite reductase, thiosulfate 

reductase, and sulfite reductase activities were determined by measuring the reduction of 

methyl viologen (£573= 9.8 iriM'cm"1) in N2-flushed cuvets at 30°C. The assay mixture 

was 100 mM Tris-HCl buffer pH 7.8 and contained 0.3 mM titanium citrate-reduced 

methyl viologen and cell extract (van de Pas et al., 1999). The reaction was started by 

addition of 10 (xl from a 1 M stock solution of the electron acceptor. Fumarate reductase 

activity was determined as described previously (Odom & Peck, 1981). Protein 

concentrations of the different fractions were determined according the method described 

by Bradford (1976) with bovine serum albumin as standard. 

Analytical methods. Organic acids were analyzed with a SpectraSystem high-

performance liquid chromatograph (Thermo Separation Products, Riviera Beach, USA) as 

described previously (Stams et al., 1993). The samples for Cl-OHPA and OHPA 

determination were analyzed on a SpectraSystem high-performance liquid 
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chromatograph, with a SpectraSystem P2000 pump, an AS3000 autosampler and a 

UV1000 UV-detector. 20 ju.1 of sample was injected into a Chrompack pesticide reversed-

phase column (Chrompack, Middelburg, The Netherlands). The mobile phase was 

acetonitril-O.OlM H3PO4 with a volume / volume ratio of 10:90. A flow rate of 1 ml.min-1 

was applied. Cl-OHPA and OHPA were quantified by their absorption at 206 nm. 

Anions were analyzed by HPLC as described previously (Scholten & Stams, 

1995). Ions were separated on an IonPack AS9-SC column (Dionex, Breda, The 

Netherlands) with an eluent consisting of 1.8 mM Na2C03 and 1.7 mM NaHC03 at a flow 

rate of 1 ml.min"1 at 25 °C and they were detected by suppressed conductivity. 

Results 

Table 5.1. The effect of the growth substrates on the activity of terminal reductases in D. dehalogenans 
cultivated with 0.1% yeast extract, 10 mM lactate, and 20 mM Cl-OHPA, 20 mM fumarate, 5 mM nitrate, 
20 mM thiosulfate, or 7 mM sulfite as electron acceptor. Enzyme activity is expressed in units per 
milligram of protein. One unit is defined as the amount of enzyme that oxidizes 2 nmol reduced methyl 
viologen per minute. 

Enzyme Lactate Lactate Lactate Lactate Lactate 
+ + + + + 

Cl-OHPA Fumarate NO3" S203
2" S03

2" 
Chlorophenol reductive dehalogenase 
Fumarate reductase 
Nitrate reductase 
Thiosulfate reductase 
Sulfite reductase 

420 
65 
nd 
nd 
nd 

23 
2610 
nd 
nd 
nd 

nd 
92 
105 
nd 
nd 

nd 
85 
nd 
672 
nd 

nd 
254 
nd 

2900 
22 

nd: not detected 

Expression of terminal reductase activities under different growth conditions. A 

viologen-based enzyme assay was used to determine the activity of chlorophenol 

reductive dehalogenase, fumarate- nitrate-, sulfite-, and thiosulfate reductase in cell 

extracts of D. dehalogenans grown with lactate and Cl-OHPA, fumarate, sulfite, 

thiosulfate, and nitrate. For each growth condition, the activity of the reductase required 

for growth was determined (Table 5.1). 

In addition, fumarate reductase activity was found to be present in cultures that 

had been adapted to Cl-OHPA, sulfite, or thiosulfate, and was determined to be 3 to 10% 

of that detected in the fumarate-induced culture. This activity was probably induced by 

yeast extract, which was added to the medium as supply for certain growth factors, since 

its replacement by peptone resulted in a complete loss of the fumarate reductase activity 

(data not shown). 
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Thiosulfate reductase activity in cells grown on sulfite was higher than the sulfite 

reductase activity in the same extract or thiosulfate reductase activity in thiosulfate-grown 

cells. In other experiments, we found that the sulfite reductase activity was higher and the 

thiosulfate reductase activity was constant when cells were harvested in the early 

exponential phase (data not shown). It is possible that sulfite was enzymatically reduced 

to sulfide via thiosulfate or that sulfide chemically reacted with sulfite to form thiosulfate 

in this culture. The thiosulfate, which was thus formed in the culture medium, could then 

induce the thiosulfate reductase activity. 

Remarkably, a low chlorophenol reductive dehalogenase activity was detected in 

fumarate-grown cells. When cells were grown fermentatively on 40 mM pyruvate, 

chlorophenol reductive dehalogenase could not be detected. 

1,2 

1 
1A 

^ * i 

10 20 30 

Time (hours) 

40 

Figure 5.1A. Accumulation of OHPA after 
addition of 5 mM lactate and 10 mM Cl-OHPA to 
cultures of D. dehalogenans, that had been adapted 
to growth on pyruvate ( • ) and lactate-Cl-OHPA 
( # ) . The arrow indicates the moment of addition 
of the extra substrates, 21 hours after inoculation of 
the media. 

20 30 

Time (hours) 

Figure 5.IB. Accumulation of OHPA after 
addition of 5 mM lactate and 10 mM Cl-OHPA 
to cultures of D. dehalogenans, that had been 
adapted to growth on lactate-thiosulfate (%), 
lactate-sulfite (A), lactate-nitrate fl) and 
lactate-fumarate ( • ) . The arrow indicates the 
moment of addition of the extra substrates, 21 
hours after inoculation of the media. 

Induction of dechlorination in cell suspensions. The effect of the culture conditions on 

induction of dechlorination was investigated in cell suspensions that were adapted to a 

non-chlorinated electron acceptor or adapted to fermentative growth on pyruvate. Medium 

containing 0.1% peptone, lactate (40 mM), and Cl-OHPA (20 mM), N03" (lOmM), S03
2 

(15 mM), S2O32" (20 mM), or fumarate (20 mM) as electron acceptor were inoculated with 

1% of substrate-adapted culture. Additionally, a culture was cultivated with pyruvate (40 

mM) as source of carbon and energy. 21 hours after inoculation, 5mM lactate and 10 mM 

Cl-OHPA were added to each culture and the concentration of OHPA was followed by 
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HPLC (Figs 5.1A & B; Table 5.2). A control experiment where lactate and Cl-OHPA had 

been added from the beginning showed a non-linear dechlorination rate (Fig 5.1 A). The 

increase of OD600 showed that the cells of this culture were in the early exponential 

growth phase after 21 hours, which explains the exponential increase of the dechlorination 

rate (Fig 5.1 A; Table 5.2). In the culture that was adapted to fermentative growth on 

pyruvate, dechlorination started 2 hours after addition of Cl-OHPA. 

Table 5.2. Induction of Cl-OHPA dechlorination in cultures of D. dehalogenans that had been 
adapted to fermentative growth with pyruvate or growth on lactate and different electron 
acceptors. 5mM lactate and 10 mM Cl-OHPA were added 21 hours after inoculation of the 
media. 

Electron acceptor 

Cl-OHPA 

Nitrate 

Sulfite 

Thiosulfate2 

Fumarate 

Pyruvate 

ODfioo1 

t = 21 

0.06 

0.09 

0.46 

0.23 

0.30 

0.45 

t = 46 

0.26 

0.15 

0.58 

0.36 

0.32 

0.61 

electron acceptor 

present (mM) 

t = 21 

0.5 

3.6 

20.8 

20.0 3 

22.5 

t = 46 

0.1 

0.7 

1.0 

7.7 3 

3.0 

OHPA 

produced(mM) 

t = 21 

2 

0 

0 

0 

0 

0 

t = 46 

10.8 

0.1 

0.1 

0.7 

0.3 

5.2 

: At t=0 all incubations had an OD 600 of approximately 0.05. A black precipitate of metal-
sulfides that formed in the cultures with sulfite and thiosulfate prevented accurate 
determination of the OD ôo-

2: The culture with thiosulfate was inoculated 40 hours prior to the other cultures 
3: The fumarate concentration has been calculated from the amount of succinate in the medium. 

In cultures that had been adapted to a non-chlorinated electron acceptor, OHPA 

was first observed 7-12 hours after addition of Cl-OHPA (Fig 5.IB, note the difference in 

scale with Fig 5.1 A). After 25 hours, the dechlorination rates were still lower than those 

observed in the control and pyruvate-grown culture. It has to be noted that the first 

electron acceptor was still present in the incubation when Cl-OHPA was added. The 

majority (90%) of the initial amount of nitrate and most (73%) of the sulfite had been 

consumed after 21 hours of incubation. To compensate for the long lag phase with this 

substrate, the culture with thiosulfate was inoculated 40 hours prior to the other cultures. 

Nevertheless thiosulfate was not used when lactate and Cl-OHPA were added. However 

the thiosulfate reduction rate increased exponentially within the time of the experiment. 

Succinate could not be detected in the medium of the culture containing fumarate as 
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electron acceptor 21 hours after inoculation, although growth was observed. It is possible 

that succinate accumulated in the cells since fumarate reductase is located at the 

cytoplasmic side of the cell membrane (van de Pas et al., 2000). 

Table 5.3. Dechlorination rate of Cl-OHPA in growing cultures of 
D. dehalogenans before and after addition of nitrate, sulfite, 
thiosulfate, fumarate, or oxygen to the medium. 

Additive 

N03" (2.5 mM) 

S03
2" (1.7 mM) 

S203
2" (2.5 mM) 

Fumarate (10 mM) 

0 2 (20%) 

Dechlorination rate 

Before 

addition 

0.48 

0.47 

0.46 

0.35 

0.22 

(uM.min1) 

After 

addition 

0.51 

0.47 

0.45 

0.30 

0.002 

The influence of other electron acceptors on the dechlorination rate by cell 

suspensions. The effect of fumarate, nitrate, sulfite, thiosulfate and oxygen on the 

dechlorination rate of Cl-OHPA was studied by addition of an electron acceptor and 10 

mM lactate to cultures of D. dehalogenans that had been incubated for 21.5 hours with 10 

mM Cl-OHPA and 25 mM lactate. The production of OHPA from Cl-OHPA was 

followed by HPLC (Table 5.3) and growth was followed by determination of the OD6oo 

(data not shown). The cultures to which nitrate, sulfite and thiosulfate had been added had 

a similar growth and dechlorination rate before and after addition of the alternative 

electron acceptor. After addition of fumarate to a dechlorinating culture, the 

dechlorination rate decreased. Two hours after addition of fumarate, the culture showed 

an increased growth rate, without an increase in the dechlorination rate. Fumarate 

reductase activity could have been present in these cultures and fumarate may have been 

used simultaneously with Cl-OHPA. Growth and dechlorination of an active culture 

stopped immediately after addition of oxygen (20%), which is in agreement with previous 

observations (Utkin et al, 1994). 

The effect of alternative electron acceptors on chlorophenol-reductive 

dehalogenase activity in cell extracts was investigated by addition of 1 mM nitrate, sulfite, 

thiosulfate, or fumarate to chlorophenol reductive dehalogenase assay. The cell extract 

had a dehalogenase activity of 92 nmol Cl-OHPA.min'.mg protein"1 (mU.mg1). Other 
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reductase activities could not be detected. Upon addition of sulfite, the dehalogenase 

activity became 36 mU.mg"1. Addition of thiosulfate and nitrate to the assay also led to a 

decrease in the dehalogenase activity and resulted in an activity of 60 and 72 mU.mg"1, 

respectively. Addition of fumarate had no effect on the rate of dechlorination. 

Discussion 

We have investigated the expression of chlorophenol reductive dehalogenase activity in 

cell suspensions and extracts of cells of Desulfitobacterium dehalogenans grown with Cl-

OHPA, sulfite, thiosulfate, or fumarate as electron acceptor. Our results indicate that 

sulfite, thiosulfate, and nitrate inhibit dehalogenase activity in cell extracts and inhibit 

induction of dehalogenase activity in cell suspensions. Dehalogenase activity was not co-

induced with the activity of other terminal reductases (Table 5.1). Moreover, we could 

demonstrate that induction of dechlorination was inhibited in cells that were grown with 

another electron acceptor (including fumarate), compared to cells that were grown 

fermentatively (Fig 5.1A&B). These results suggest that dehalogenase activity is induced 

in D. dehalogenans when extra energy can be gained by utilization of chlorinated 

compounds, because we demonstrated in a previous study that this bacterium is able to 

conserve more energy per mol pyruvate consumed when pyruvate oxidation is coupled to 

Cl-OHPA reduction than when pyruvate is fermented (van de Pas et al., 2000). No extra 

energy gain could be achieved when D. dehalogenans shifted from fumarate-, sulfite-, 

thiosulfate- or nitrate reduction to Cl-OHPA reduction (Mackiewicz and Wiegel, 1998). 

In addition, the experiments demonstrate that the induction of dechlorination was not 

completely blocked by the presence of other electron acceptors, since dechlorination 

started before the alternative electron acceptor was depleted from the medium (Table 5.2). 

This result extend those reported previously indicates by Mackiewicz and Wiegel (1998), 

who demonstrated that Cl-OHPA and other electron acceptors could be used 

simultaneously. 

The effect of other electron acceptors on dechlorination itself was investigated as 

well. In actively dechlorinating cultures with Cl-OHPA present, no inhibition of 

dechlorination was found upon the addition of nitrate, thiosulfate or sulfite, but the 

dechlorination rate decreased a little upon addition of fumarate (Table 5.3). Since 

fumarate reductase activity was found in cells of D. dehalogenans grown under different 
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conditions (Table 5.1) and fumarate did not inhibit dehalogenase activity in the enzyme 

assay, we suggest that fumarate and Cl-OHPA compete for reducing equivalents, which 

results in a lower dechlorination rate. A similar model of competition for reducing 

equivalents has previously been proposed to explain the inhibition of PCE dechlorination 

by fumarate in cell suspensions of Dehalospirillum multivorans (Neumann et al., 1994). 

In cell suspensions, nitrate, sulfite, and thiosulfate did not inhibit dechlorination. 

However, we did find that these compounds inhibited dehalogenase activity in cell 

extracts. The dehalogenase is more accessible to the other electron acceptors in cell 

extracts than in cell suspensions. The mechanism by which these compounds inhibit the 

dehalogenase activity is unknown, but sulfite and thiosulfate have been suggested to be 

able to oxidize iron-sulfur clusters or to bind to the cobalamin (Magnuson et al., 1998; 

Miller et al, 1997). Cobalamin has been identified as a cofactor of reductive 

dehalogenases in most halorespiring bacteria (Holliger et al., 1999). Sulfite also inhibited 

reductive dehalogenases in cell extracts of Desulfitobacterium sp. strain PCE-S (Miller et 

al, 1997), Desulfitobacterium chlororespirans (Loffler et al, 1996), Dehalospirillum 

multivorans (Neumann et al., 1995), and Desulfomonile tiedjei (DeWeerd and Suflita, 

1990; Townsend and Suflita, 1997). Moreover, addition of sulfite to a PCE-limited 

growing culture of D. frappieri TCE1 resulted in a complete suppression of 

dechlorination and actual washout of the culture (Gerritse et al., 1999). 

This study is the first report that describes the inhibition dehalogenase activity by 

nitrate. Addition of 1 mM nitrate to cell extracts resulted in 5-fold inhibition of the 

reductive dehalogenase activity. However, nitrite inhibited of PCE dechlorination in cell 

extracts of Dehalospirillum multivorans (Neumann et al., 1995). Addition of 1 mM nitrite 

resulted in complete inhibition of PCE reductive dehalogenase activity. Complex 

formation of the inhibitor with a transition metal in the enzyme was suggested as a 

possible inhibition mechanism for both compounds. 

Gerritse et al. (1999) demonstrated that PCE dechlorination by a continuous 

culture of D. frappieri TCE1 was not affected upon addition of a mixture of nitrate, sulfite 

and fumarate to a PCE-limited culture. However, dechlorination was completely blocked 

when a similar experiment was performed with a lactate-limited culture of D. frappieri 

TCE1. The authors suggested that the ratio of electron donors and acceptors may be more 

important than their actual concentrations (Gerritse et al., 1999). Our finding that the 

addition of alternative electron acceptors had no effect on the dechlorination rate in 
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batches where neither the electron donor (lactate) nor the chlorinated electron acceptor 

(Cl-OHPA) was limiting supports with this explanation. 
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Abstract 

Desulfitobacterium strain PCE1 is able to use chloroalkenes as well as 

chloroaromatics as terminal electron acceptor for growth. Cell extracts of 

Desulfitobacterium strain PCE1 grown with tetrachloroethene (PCE) as electron 

acceptor showed dehalogenase activity of 0.28 \imol PCE.miri .mg protein in an in 

vitro assay with methyl viologen as artificial electron donor. Trichloroethene (TCE) 

was dechlorinated at a rate of 0.01 \imol TCE. miri'.mg protein . 3-Chloro-4-

hydroxyphenylacetate (Cl-OHPA) and other ortho-chlorophenolic compounds were 

not dechlorinated by cell extract of PCE grown cultures. Cell extract of cells that 

were grown with Cl-OHPA as electron acceptor showed a dehalogenase activity of 

0.22 jjmol Cl-OHPA.min1 .mg protein . This cell extract dechlorinated PCE at 10% 

of the dechlorination rate of Cl-OHPA. In both cell extracts dechlorination was 

inhibited by addition of the cobalamin inhibitors 1-iodopropane and dinitrogen oxide. 

Dechlorination was completely inhibited by addition of 1 mM sulfite to the assay 

mixture. The enzymes responsible for PCE and Cl-OHPA dechlorination were 

partially purified. A 100-fold enriched fraction of chlorophenol reductive 

dehalogenase was obtained from Cl-OHPA-grown cells that mainly contained a 

protein with a subunit size of 48 kDa. The subunit size, substrate spectrum, and N-

terminal amino acid sequence of this protein are similar to that of the chlorophenol 

reductive dehalogenase of D. dehalogenans. The specific activity of PCE reductive 

dehalogenase was increased 340-fold after purification. This fraction contained 

another protein with a subunit size of 48 kDa. The N-terminal sequence of this protein 

showed no homology with the chlorophenol reductive dehalogenase sequence or with 

the N-terminal amino acid sequence that was determined from the 59 kDa subunit of 

PCE/TCE reductive dehalogenase of Desulfitobacterium frappieri strain TCE1. These 

results provide strong evidence that two different enzymes are responsible for PCE 

and chlorophenol dechlorination in Desulfitobacterium sp. strain PCE1. 
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Introduction 

In recent years several bacteria have been isolated that are able to use chlorinated 

substrates as terminal electron acceptor (El Fantroussi et al., 1998). This group of 

bacteria is able to use two types of compounds: chloroaromatics and chloroalkenes. 

Few organisms are able to dechlorinate both. One of these bacteria, Desulfomonile 

tiedjei, is able to dechlorinate tetrachloroethene (PCE) to dichloroethene (DCE) co-

metabolically when 3-chlorobenzoate is used as terminal electron acceptor (Cole et 

al., 1995). The authors provided evidence that PCE dechlorinating activity was co-

induced with 3-chlorobenzoate dechlorinating activity. Whether the same enzyme is 

responsible for both conversions is unknown, since PCE dechlorination by the 

partially purified 3-chlorobenzoate reductive dehalogenase has not yet been 

investigated (Ni et al., 1995). A number of Desulfitobacteria has been reported to be 

able to reductively dechlorinate both PCE and 3-chloro-4-hydroxyphenyl acetate (Cl-

OHPA) (Holliger et al, 1999). The use of chloroalkenes and chloroaromatics in 

halorespiration by a single organism was first shown for Desulfitobacterium strain 

PCE1, which converts PCE mainly to TCE and produces only traces of cis-DCE 

(Gerritse et al., 1996). When strain PCE1 uses chlorophenols as electron acceptor, the 

chlorine is removed from the oriho position. 

The aim of the present study was to determine whether the activities in 

Desulfitobacterium strain PCE1 are co-regulated and which enzymes are involved in 

PCE and Cl-OHPA conversion. Dechlorinating activity of strain PCE1 grown with 

either of these compounds as electron acceptor was characterized in in vitro assays. 

The reductive dehalogenases were partially purified and compared with dehalogenases 

purified from Desulfitobacterium frappieri strain TCE1 and Desulfitobacterium 

dehalogenans. Strain TCE1 is able to dechlorinate PCE via TCE to cis-DCE, but does 

not use chlorophenols as electron acceptor (Gerritse et al., 1999). D. dehalogenans is 

able to dechlorinate both chlorophenols and PCE (Holliger et al., 1999), but the 

purified orffto-chlorophenol reductive dehalogenase does not dechlorinate PCE (van 

de Pas et al., 1999). We were able to demonstrate that chloroalkene and 

chloroaromate reductive dehalogenation activities are not coupled in strain PCE. 

Characterization of partially purified PCE reductive dehalogenase indicated that this 

enzyme is a novel type of reductive dehalogenase. 
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Materials and Methods 

Organisms and cultivation. Desulfitobacterium dehalogenans strain JW/IU-DC1 

(DSM 9161) was obtained from the Deutsche Sammlung von Mikroorganismen und 

Zellculturen. Desulfitobacterium strain PCE1 and Desulfitobacterium frappieri strain 

TCE1 were described before (Gerritse et al., 1999; Gerritse et al., 1996). 

Desulfitobacterium dehalogenans was cultivated in batch culture as was described 

previously with 10 mM lactate as electron donor and 20mM Cl-OHPA as electron 

acceptor (van de Pas et al., 1999). Desulfitobacterium strain PCE1 and strain TCE1 

were cultivated in continuous culture as described by Gerritse et al. (1999). Strain 

PCE1 was grown with 40 mM lactate as electron donor and 15 mM PCE as electron 

acceptor and with 50 mM formate and 20 mM Cl-OHPA. Strain TCE1 was grown 

with formate (50 mM) and PCE (15 mM). 

Cell fractionation. Cells were harvested in the late exponential growth phase by 

centrifugation and washed with P-buffer consisting of 100 mM potassium phosphate, 

pH 7.5, and 2.5 mM dithiothreitol (DTT). The concentrated cells were stored at -20°C. 

To prepare cell extracts, cells (1 g) were resuspended in 1 ml of P- buffer and a few 

crystals of DNase I were added. Cells were broken by sonication (VC 40, Sonic 

Materials Inc., USA) under anaerobic conditions. The cell debris was removed by 

centrifugation for 1 min at 20,000 x g. The supernatant was separated into a 

membrane fraction and a soluble fraction by centrifugation for 90 min at 140,000 x g 

and 4 °C. The membrane fraction was resuspended in 2 ml 10 mM MOPS pH 6.5 

supplemented with 1% Triton X-100 and 20% glycerol and incubated for 30 min 

under anaerobic conditions at 4 °C. The insoluble fraction was removed from this 

preparation by centrifugation for 60 min at 140,000 x g and 4 CC. The solubilized 

enzyme fraction was stored under a N2 gas phase at 4 °C. 

Column Chromatography. Ort/io-chlorophenol reductive dehalogenase from D. 

dehalogenans was purified as described previously (van de Pas et al., 1999). PCE 

reductive dehalogenase activity of strain PCE1 did bind to Q-Sepharose (0.5 x 5 cm) 

(Amersham Pharmacia Biotech, Uppsala, Sweden) when this column was equilibrated 

with buffer A (lOmM MOPS pH 6.5, 0.1% (w/v) Triton X-100, 20% glycerol, and 1 

mM DTT). The column was eluted with a 40-ml linear gradient from 0 to 400 mM 
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NaCl in buffer A at a flow rate of 1.0 ml/min. Fractions containing the highest 

dechlorinating activity were pooled and diluted with an equal volume of buffer A. The 

sample was applied on a MonoQ column (Amersham Pharmacia Biotech, Uppsala, 

Sweden) equilibrated with buffer A. The dehalogenase activity eluted from the 

column with a 40-ml linear gradient from 0 to 400 mM NaCl in buffer A and a flow 

rate of 1.0 ml/min. Combined fractions containing dechlorinating activity were mixed 

with an equal volume of buffer B (50 mM Tris-HCl, pH 7.8, 0.1% w/v Triton X-100, 

20% glycerol, and 1 mM DTT) and applied onto a Mono Q column equilibrated with 

the same buffer. The enzyme activity was eluted with a 40-ml linear gradient from 0 

to 400 mM NaCl in buffer B and a flow rate of 1.0 ml/min. All chromatographic steps 

were performed by fast protein liquid chromatography (Amersham Pharmacia 

Biotech, Uppsala, Sweden) in an anaerobic chamber with N2 /H2 (95%/5%) gas phase. 

The same procedure was used for purification of ort/io-chlorophenol reductive 

dehalogenase from strain PCE1, and PCE/TCE reductive dehalogenase from strain 

TCE1. For purification of PCE/TCE reductive dehalogenase, the Q-Sepharose column 

was omitted since the enzyme did not bind well to this material. The purity of the 

protein was determined by SDS-polyacrylamide gel electrophoresis according to 

Laemli (1970). 

Enzyme assays. Reductive dehalogenase activities were determined 

spectrophotometrically at 30°C in rubber-stoppered nitrogen-flushed cuvets by 

following the oxidation of methyl viologen as described previously (van de Pas et al., 

1999). Cell extract was added to 1 ml of buffer containing 50 mM Tris-HCl pH 7.8 

and 0.3 mM titanium citrate-reduced methyl viologen. The assay was started by 

addition of 20 ul substrate from a 50 mM stock solution, which was made in ethanol. 

The pH optimum was determined in a 200 mM Tris-maleate buffer ranging from pH 

5.5 to 9.0. Other electron donors were tested in a similar assay as described previously 

(Neumann et al., 1995). Protein was determined according to the method of Bradford, 

with bovine serum albumin as standard (Bradford, 1976). 

N-terminal Amino Acid Sequence. Purified enzyme was transferred from a 12% 

SDS-polyacrylamide gel onto a polyvinylidene difluoride membrane (Immobilon 

polyvinylidene difluoride, Millipore Corp., Etten-Leur, The Netherlands) by blotting 

with a Trans-Blot SD semidry transferring cell (BioRad, Utrecht, The Netherlands) as 
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described previously (van de Pas et al., 1999). The N-terminal amino acid sequence of 

the blotted protein was determined as described previously (Schiltz et al., 1991). 

Results 

Table 6.1. Substrate specificity profiles of cell extracts of Desulfitobacterium 
dehalogenans, and strain PCE1 grown with Cl-OHPA as electron acceptor and strain 
PCEl and TCE1 grown with PCE as electron acceptor. 

Substrate 

Cl-OHPA 

2-CP 
3-CP 
4-CP 

2,3-DCP 
2,4-DCP 
2,5-DCP 
2,6-DCP 

PCE 
TCE 
DCE 

D. dehalogenans 
Cl-OHPA 
spec, act1 

218 

<5 
<5 
<5 

286 
54 
9 

31 

<5 
<5 
nd 

strain PCEl 
Cl-OHPA 
spec, act1 

100 

8 
<5 
<5 

141 
41 
<5 
11 

10 
<5 
<5 

strain PCEl 
PCE 

spec, act1 

_ ^ ^ 

<5 
<5 
<5 

<5 
<5 
<5 
<5 

281 
10 
<5 

strain TCE1 
PCE 

spec, act1 

<5 

nd 
nd 
nd 

<5 
nd 
nd 
nd 

115 
95 
<5 

specific activity is expressed in nmol.min" .mg protein" 
2 a specific activity of 5 nmol/min.mg protein is the detection limit 
Abbreviations: Cl-OHPA: 3-chloro-4-hydroxyphenyl acetate; CP: chlorophenol, DCP: 
dichlorophenol; PCE: tetrachloroethene; TCE: trichloroethene; DCE: cis-
dichloroethene; nd: not determined 

Substrate specificity of extracts of Desulfitobacterium cells grown with different 

electron acceptors. The substrate specificity of cell extracts of Desulfitobacterium 

strain PCEl grown with either PCE or Cl-OHPA as electron acceptor was compared 

with that of cell extracts of D. dehalogenans and D.frappieri strain TCE1 (Table 6.1). 

The chloro-aromate dehalogenating capacity of cell extracts was tested with Cl-OHPA 

and all congeners of ortfco-chlorinated dichlorophenol because strain PCEl is able to 

dechlorinate chlorophenols at the ortho position (Gerritse et al. 1996). Additionally, 

all four isomers of monochlorophenol, the products from the dechlorination of these 

dichlorophenols, were tested. In a similar approach, chloro-alkene dehalogenation by 
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cell extracts was investigated by testing PCE and its products TCE and cis-DCE as 

possible substrates. 

When strain PCE1 was grown on Cl-OHPA, the substrate specificity profile of 

the cell extract resembled that of cell extracts of D. dehalogenans grown with the 

same electron acceptor. Besides Cl-OHPA, 2,3-dichlorophenol was dechlorinated at 

high rates by these cell extracts. Cell extracts of Cl-OHPA-grown cells of strain PCE1 

showed little activity when PCE was tested as a possible substrate and no activity was 

detected with TCE. 

Cell extracts of strain PCE1 grown with PCE as electron acceptor used a 

different set of chlorinated substrates. The dechlorination rate of PCE was 100 nmol 

PCE.min'.mg protein"1, but none of the chlorophenols was dechlorinated. TCE was 

also dechlorinated, but only at 10% of the PCE dechlorination rate. In strain PCE1 

reductive dechlorination of PCE and Cl-OHPA was not co-induced, which indicates 

that strain PCE1 contains two separate enzyme systems for chloro-alkene and chloro-

aromate dehalogenation. 

Cell extracts of strain TCE1 dechlorinated PCE and TCE at a rate of 115 and 

95 nmol.min^.mg protein"1, respectively. The cell extracts of strain TCE1 showed a 

higher activity with TCE as cell extracts of PCE-grown cells of strain PCE1. No 

activity was observed with chlorophenols in cell extracts from strain TCE1. 

Table 6.2. Effect of inhibitors on PCE and Cl-OHPA dechlorinating activity 
in cell extracts of Desulfitobacterium strain PCE1 grown with PCE or Cl-
OHPA, respectively. The percentage of inhibition is given between brackets 

Inhibitor 

None 
N20 (23 mM) 
1-iodopropane (50 uM) 
SO32" (10 mM) 

PCE 
spec. act1. (%) 

62 
1 (98) 

39 (37) 
0(100) 

Cl-OHPA 
spec. act'.(%) 

252 
10 (96) 

152 (37) 
0(100) 

: specific activity is expressed in nmol.min .mg protein" 

Characterization of PCE and Cl-OHPA dechlorinating activity in cell extracts of 

strain PCE1. Methyl viologen, benzyl viologen, FADH2, FMNH2, NADPH, and 

NADH were tested as electron donors for PCE and Cl-OHPA dechlorination in cell 

extracts of strain PCE1. The only artificial electron donor used for reductive 

dechlorination was methyl viologen, which has the lowest redox potential of the 
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electron donors tested (^46 mV). The inhibitors of cobalamin-containing enzymes, 

dinitrogen oxide and 1-iodopropane inhibited both PCE and chlorophenol 

dechlorinating activities in cell extracts (Table 6.2). Moreover, sulfite was found to be 

a strong inhibitor of both dechlorinating activities in cell extracts of strain PCE1. 

Purification of chlorophenol, PCE, and PCE/TCE reductive dehalogenase. Two 

reductive dehalogenases with either PCE or Cl-OHPA dechlorinating activity were 

purified by FPLC from cell extracts of strain PCE1. 

Table 6.3. Purification scheme for partial purification of PCE and Cl-OHPA reductive 
dehalogenase of Desulfitobacterium strain PCE1 and PCE/TCE reductive dehalogenase of 
Desulfitobacterium frappieri strain TCE1. 

PCE1 CPRD 
Total act Spec act 

(U1) (U/mg) 

PCE1PCERD 
Total act Spec act 

(U) (U/mg) 

TCE1 PCE/TCERD 
Total act Spec act 

(U) (U/mg) 
Cell extract 
Membrane fraction 
Cytoplasm fraction 
Solubilized fraction 
Q-Sepharose 
Mono-Q pH 6.5 
Mono-Q pH 7.8 

6.7 
7.5 
0.9 
5.6 
0.7 
0.1 
0.02 

0.03 
0.03 
0.05 
0.16 
0.33 
2.17 
4.09 

10.0 
3.5 
2.0 
3.9 
1.7 
0.4 
0.1 

0.02 
0.01 
0.02 
0.01 
0.75 
6.27 
5.51 

3.4 
2.5 

0 
15.9 

-
16.2 
2.0 

0.10 
0.07 

0 
0.77 

-
11.41 
10.01 

: One unit (U) of activity is defined as the oxidation of 2 mmol of reduced methyl viologen. 

Cl-OHPA reductive dehalogenase was purified 132-fold from cell extract of 

strain PCE1 (Table 6.3). This activity was eluted from the Q-Sepharose and MonoQ 

(pH 6.5) columns at a salt concentration of 0.2 M NaCl. Cl-OHPA reductive 

dehalogenase was eluted from the MonoQ column (pH 7.8) at a salt concentration of 

0.22 M NaCl. The fraction containing the Cl-OHPA reductive dehalogenase activity 

showed a band of approximately 48 kDa (Fig. 6.1: lane 3), which has a similar size as 

the Cl-OHPA reductive dehalogenase of D. dehalogenans (Fig. 6.1: lane 2). 

The same procedure was used to purify PCE reductive dehalogenase from strain PCE1. 

PCE reductive dehalogenase activity was eluted from the Q-Sepharose and MonoQ 

columns (pH 6.5) at a salt concentration of 0.15 M NaCl. It was eluted from the 

MonoQ column (pH 7.8) at a salt concentration of 0.13 M NaCl. PCE reductive 

dehalogenase was purified 340-fold. The PCE reductive dehalogenase activity eluted at 

a lower salt concentration than the Cl-OHPA reductive dehalogenase activity. On 

SDS-PAGE, there are bands visible of 48 kDa, a similar size as the Cl-OHPA 

reductive dehalogenase, and 44 kDa (Fig 6.1: lane 4). This lower band was not visible 

in all fractions where enzyme activity was detected (data not shown). The final yield of 
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PCE and Cl-OHPA reductive dehalogenase was 13 and 5 |0.g, respectively. The small 

scale of the experimental set-up resulted in a low yield, also because not all the active 

fractions were pooled during purification. 

The Q-Sepharose column was omitted in the procedure for purification of PCE/TCE 

reductive dehalogenase from strain TCE1 because the enzyme did not bind to the 

material under the conditions used. The activity was eluted from the MonoQ column 

run at pH 6.5 at a salt concentration of 70 mM NaCl and when the pH was shifted to 

7.8 the activity was eluted at 40 mM NaCl. The fraction that was obtained was 100-

fold enriched in PCE/TCE reductive dehalogenase activity (Table 6.3). SDS PAGE 

revealed that this fraction contained one protein of approximately 59 kDa (Fig 6.1: 

lane 5). Compared to the dehalogenases from strain PCE1, the PCE/TCE reductive 

dehalogenase activity of strain TCE1 eluted from the column at a low salt 

concentration, which indicates that, under the conditions tested, this dehalogenase was 

less negatively charged than the other dehalogenases. 

Figure 6.1: SDS page gel of purified reductive dehalogenases. 
Lane 2: 2 ug Chlorophenol reductive dehalogenase from 
Desulfitobacterium dehalogenans; lane 3: 0.3 ug of Cl-OHPA 
reductive dehalogenase from strain PCE1; Lane 4: 0.5 ug of PCE 
reductive dehalogenase from strain PCE1; Lane 5: 2 ug of 
PCE/TCE reductive dehalogenase from strain TCE1; lane 1 & 6 
contain marker proteins of 97.4, 66.2, 45.0, 31.0, and 21.5 kDa. 
The gel was stained with Coomassie Brilliant Blue R-250. 
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The N-terminal amino acid sequences of the 48 kDa protein of PCE reductive 

dehalogenase, the 48 kDa Cl-OHPA reductive dehalogenase of strain PCE1, and the 

59 kDa PCE/TCE reductive dehalogenase of strain TCE1 were determined an found 

to be GQESESAIVXFAVQXV, AETM, and ADIVAPITEXTEFPYPV, respectively 

(X is unknown). 

Discussion 

Desulfitobacterium strain PCE1 is the only known Desulfitobacterium species that 

uses both PCE and chlorophenols as terminal electron acceptor for growth (Gerritse et 

al., 1996). Determination of the dehalogenase substrate specificity profiles from cell 

extracts of strain PCE1 grown under different conditions showed that different 

profiles were obtained when cells were grown with PCE or Cl-OHPA as electron 

acceptor. Similar results were obtained with whole-cell incubations of strain PCE1, 

pre-grown on PCE or Cl-OHPA, respectively (Gerritse et al., 1999). This indicates 

that PCE and chlorophenol dechlorination is not co-induced and that different 

enzymes are involved in these processes. The PCE and Cl-OHPA dechlorinating 

activities of strain PCE1 were both inhibited by N20 and 1-iodopropane, which are 

known inhibitors of cobalamin containing enzymes. The inhibiting effect of sulfite on 

dehalogenase activity has also been found for 3-chloro-4-hydroxybenzoate 

dechlorination by Desulfitobacterium chlororespirans (Loffler et al., 1996), 3-

chlorobenzoate dechlorination in Desulfomonile tiedjei (Townsend & Suflita, 1997) 

and PCE/TCE dechlorination in Desulfitobacterium strain PCE-S, Desulfitobacterium 

frappieri strain TCE1, Dehalospirillum multivorans, and Dehalococcoid.es 

ethenogenes (Gerritse et al., 1999; Magnuson etal., 1998; Miller et al, 1997). 

The enzymes responsible for PCE and chlorophenol dechlorination by strain 

PCE1 and the PCE/TCE reductive dehalogenase of strain TCE1 have been isolated. 

The Cl-OHPA reductive dehalogenase that was isolated from cell extract of a Cl-

OHPA-grown culture of strain PCE1 has a size of 48 kDa, which is similar as has 

been reported for the chlorophenol reductive dehalogenases from D. dehalogenans 

and D. hafniense (Christiansen et ah, 1998; van de Pas et al., 1999). The substrate 

spectrum of Cl-OHPA grown cells of strain PCE1 was similar to the substrate 
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spectrum of Cl-OHPA-grown cultures of D. dehalogenans. Only four amino acids 

could be determined of the N-terminal amino acid sequence of this enzyme, but their 

sequence was completely identical to that of the chlorophenol reductive dehalogenase 

of D. dehalogenans (van de Pas et al., 1999). Furthermore, a gene was recently 

detected in strain PCE1, which is identical to the chlorophenol reductive dehalogenase 

gene from D. dehalogenans (H. Smidt, unpublished results). These results suggest that 

Cl-OHPA reductive dehalogenase from strain PCE1 is a member of the chlorophenol 

reductive dehalogenase family, which also includes the dehalogenases of D. hafniense 

and D. dehalogenans (Christiansen et al., 1998; van de Pas et al., 1999). 

The PCE reductive dehalogenase of strain PCE1 has a similar size as the 

chlorophenol reductive dehalogenases, but its substrate spectrum, behavior on the 

anion exchange columns, and N-terminal amino acid sequence are completely 

different. The first amino acid of the N-terminal amino acid sequence of PCE 

reductive dehalogenase was glutamine, instead of alanine that was found for other 

reductive dehalogenases (Table 6.4; Holliger et al., 1998). The absence of methionine 

at this position indicates post-translational processing. Sequencing of the structural 

genes for chlorophenol reductive dehalogenase of D. dehalogenans and PCE reductive 

dehalogenase of Dehalospirillum multivorans revealed the presence of a leader 

sequence which precedes the N-terminal amino acid sequence (Neumann et al., 1998; 

van de Pas et al, 1999). This would also be expected for PCE reductive dehalogenase 

of strain PCE1. The PCE reductive dehalogenase activity of cell extracts of strain 

PCE1 was 30-fold higher when PCE instead of TCE as added as substrate. This is in 

agreement with the finding that strain PCE1 produces mainly TCE from PCE and not 

cis-DCE, as has been reported for all other PCE-respiring strains (Gerritse et al., 

1996). The PCE reductive dehalogenase of 51 kDa, which has been isolated from an 

enrichment containing Dehalococcoides ethenogenes, also shows activity only with 

PCE and not with TCE (Magnuson et al., 1998). There may be a relation between the 

reduced substrate spectrum and the reduced size of these PCE reductive 

dehalogenases, when compared to PCE/TCE reductive dehalogenases that have 

similar activities with PCE and TCE as substrate. 

The PCE/TCE reductive dehalogenase of strain TCE1 has similar properties as 

the PCE reductive dehalogenase of Desulfitobacterium strain PCE-S, including the N-

terminal sequence (Miller et al., 1998). The PCE reductive dehalogenase of strain 
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PCE-S has a size of 65 kDa and contains a cobalamin. Based on the similarities that 

have been found between the dehalogenases from strain PCE-S and TCE1, we expect 

that the PCE/TCE reductive dehalogenase of strain TCE1 also contains a cobalamin. 

Table 6.4: Comparison of reductive dehalogenases from Desulfitobacterium species based on their 
substrate specificity and N-terminal sequence. 

Ort/io-chlorophenol 
reductive dehalogenase 

PCE reductive 
dehalogenase 

PCE/TCE reductive 
dehalogenase 

Organisms 

Substrate 
Localization 
Size (kDa) 
Cofactors 

Activity 4 

N-terminal 
sequence5 

Desulfitobacterium 
dehalogenans 

Desulfitobacterium 
strain PCE1 

Desulfitobacterium 
hafniense 
Cl-OHPA 
membrane 

48 
cobalamin 

Fe-S 
5-28 

AETMNYVPGP 

Desulfitobacterium 
strain PCE1 

PCE 
membrane 

48 
cobalamin 

5 
GQESESAIV 

Desulfitobacterium 
frappieri strain 

TCE1 
Desulfitobacterium 

strain PCE-S3 

PCE/TCE 
membrane 

60-65 
cobalamin 

Fe-S 
14-39 

ADrVAPITESF 

: from van de Pas et al, 1999 
2: from Christiansen et al., 1998 
3: from Miller et al. (1998) 
4: Activity is expressed in urnol substrate.min"1 

5: The N-terminal amino acid sequences of the 
.mg protein 
strains listed together are identical 

The reductive dehalogenases that have been investigated in this study are 

compared with reductive dehalogenases that have been isolated from other 

Desulfitobacterium species (Table 6.4). All enzymes are membrane-bound and (likely 

all) contain cobalamin in their catalytic center. Nevertheless, three groups of 

dehalogenases can be distinguished based on their substrate spectrum and N-terminal 

amino acid sequence. The N-terminal amino acid sequence of the Desulfitobacterium 

PCE/TCE reductive dehalogenases is completely different from the PCE/TCE 

reductive dehalogenase of Dehalospirillum multivorans, which has been reported 

previously (Neumann et al., 1996). In addition, this enzyme was reported to be 

localized in the cytoplasm. The factor(s) that determine the substrate specificity of 

reductive dehalogenases are not yet known. No dehalogenases have yet been described 

that can reduce both chloroalkenes and chloroaromatics at similar rates. The binding 

of the substrate in the active site may determine the substrate specificity of the 
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enzymes, because the redox potentials for the reduction of chlorophenols and 

chlorinated ethenes are comparable and both reactions are catalyzed by cobalamin 

containing enzymes. Elucidating the reaction mechanism and determination of the 3D-

structure of reductive dehalogenases may provide novel insight in this. 
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Abstract 

An anaerobic bacterium, strain DP7, was isolated from human feces in mineral 

medium with formate and 0.02% yeast extract as energy and carbon source. This rod-

shaped motile bacterium can use pyruvate, lactate, formate, hydrogen, butyrate, and 

ethanol as electron donor for sulfite reduction. Other electron acceptors such as 

thiosulfate, nitrate, fumarate stimulate growth in the presence of 0.02% yeast extract 

and formate. Acetate is the only product during fermentative growth on pyruvate. Six 

moles of pyruvate are fermented to seven moles of acetate. ,3C NMR labeling 

experiments showed homoacetogenic C-CO2 incorporation into acetate. The pH and 

temperature optimum for fermentative growth on pyruvate is 7.4 and 37°C, 

respectively. The growth rate under these conditions was approximately 0.10 h~ . 

Strain DP7 was identified as a new strain of Desulfitobacterium frappieri on basis of 

16S rRNA sequence analysis (99% similarity) and DNA-DNA hybridization (83% 

homology) with Desulfitobacterium frappieri TCE1. Strain DP7 is the first 

Desulfitobacterium, which has not been isolated from a polluted environment and does 

not use chloroethenes or chlorophenols as electron acceptor. 
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Introduction 

Desulfitobacterium is a genus of low G+C Gram-positive bacteria. All strains within 

this genus have been isolated from soils, compost soil or sewage sludges polluted with 

chlorinated organic compounds (El Fantroussi et al., 1998). Desulfitobacterium 

species are able to couple reductive dechlorination of chlorinated organic compounds 

to growth. Other electron acceptors that Desulfitobacterium species can use include 

nitrate, fumarate, sulfur, thiosulfate, and sulfite. Sulfate is not an electron acceptor for 

any known strain of Desulfitobacterium. Hydrogen, formate, pyruvate, and lactate 

have been found to serve as electron donors for respiration, while some strains are 

also able to use butyrate, crotonate, serine, and ethanol (Gerritse et al., 1999; Sanford 

et al., 1996). Pyruvate can be fermented to lactate and acetate by D. dehalogenans and 

to acetate only by D. chlororespirans, D. hafniense, and all known strains of D. 

frappieri (Utkin et al, 1994; Sanford et al, 1996; Christiansen & Anting, 1996; 

Bouchard et al., 1996; Gerritse et al, 1999). 

We obtained a pure culture of a strain of Desulfitobacterium (strain DP7) from 

a human fecal sample, which is an environment that is thought not to contain high 

levels of chlorinated compounds. The physiological characteristics of strain DP7 are 

presented and its taxonomic position within the genus Desulfitobacterium is 

discussed. 

Materials and Methods 

Bacterial strains, cultivation and isolation procedures. Desulfitobacterium 

dehalogenans strain JW/IU-DC1 (DSM 9161) and Desulfitobacterium 

chlororespirans Co23 (DSM 11544) were obtained from the Deutsche Sammlung von 

Mikroorganismen und Zellculturen (DSMZ, Braunschweig, Germany). 

Desulfitobacterium frappieri TCE1 was a kind gift from J. Gerritse (TNO Institute of 

Environmental Sciences, The Netherlands). 

Strain DP7 originates from a culture that was enriched from a fresh fecal 

sample of a healthy 28-year-old female person. A fecal sample of 0.5 g was 

resuspended in 125 ml of anaerobic mineral medium (Stams et al., 1993). One ml of 

this suspension was used to inoculate a 10-fold dilution series of 10 Hungate tubes 
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with 9 ml mineral medium containing 40 mM formate, 0.01% yeast extract and 1% 

rumen fluid. The highest dilution, where growth was observed after one week of 

incubation at 37° C, was the 104 dilution. No methane was detected in this tube. One 

ml of this culture was transferred to 10 ml basal salt medium containing 40 mM 

formate and 0.01% yeast extract. This was repeated 5 times before a new 10-fold 

dilution series was inoculated in the same medium. After 3 weeks at 37°C, growth 

was observed until the 107 dilution. One ml from this culture was used to inoculate a 

10-fold dilution series in 9 ml Hungate tubes with anaerobic mineral medium 

containing 40 mM formate, 10 mM NaS03, 0.01% yeast extract and 50 (ig.1"1 

aztreonam (Bristol-Myers Squibb B.V., Woerden, The Netherlands). After 4 days of 

incubation at 37°C growth was observed till the 107 dilution. The presence of 

contaminating bacteria was examined by microscopic investigation and by inoculation 

of 10 ml Peptone Yeast Glucose (PYG) medium (Holdeman et al., 1977). Little 

growth was observed and only the motile rod could be detected, which was designated 

strain DP7. A pure culture of strain DP7 was obtained from a single colony on 

solidified medium. This culture, designated Desulfitobacterium frappieri DP74, has 

been deposited in the Deutsche Sammlung von Mikroorganismen und Zellculturen 

(DSMZ, Braunschweig, Germany) as strain DSM 13498. 

Gram staining of strain DP7 was performed in a one step fluorescence assay 

with the LIVE BacLight™ Bacterial Gram stain Kit (Molecular Probes Inc., Eugene, 

USA) according to the manufacturer's manual. 

Growth rate and growth optima. The growth rate was calculated from the increase 

of the optical density at 600 nm in time in duplicate cultures of strain DP7 grown at 

37 °C with 40 mM pyruvate as sole energy and carbon source. The optimum 

temperature for growth of strain DP7 was determined by following the increase in 

optical density at 600 nm of cultures, which were incubated at different temperatures 

with 40 mM pyruvate as sole source of energy and carbon. The incubations were 

inoculated with 1% of a full-grown culture of DP7. The optimal pH for growth of 

strain DP7 was determined by following the increase in optical density at 600 nm in 

incubations of strain DP7 at 37°C in media with different pH values. The pH of the 

bicarbonate buffered medium was adjusted after autoclaving by addition of sterile 

NaOH or HC1. Pyruvate was added as sole source of carbon and energy. 
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Substrate utilization. Growth with different substrates was determined in 

bicarbonate buffered medium without addition of yeast extract. All carbon sources 

were added from sterile stock solutions to a final concentration of 10 mM or 20 mM. 

Sulfite (10 mM) was added as electron acceptor. The increase in turbidity and the 

disappearance of the substrate were used to determine whether the carbon source was 

used for growth. Utilization of different electron acceptors was tested with 20 mM 

formate as electron donor and 10 mM electron acceptor. The increase in turbidity and 

the disappearance of formate were taken as measure of growth. 

Utilization of chlorinated compounds. The use of chlorinated compounds as 

possible terminal electron acceptors was tested with both 10 mM lactate and 10 mM 

formate as electron donor. Chlorinated compounds were added from a sterile stock 

solution to a final concentration of 1 mM. Growth with 3-chloro-4-hydroxy phenyl 

acetate (Cl-OHPA) (10 mM) as electron acceptor was tested with 20 mM formate, 

lactate, and pyruvate as electron donor. Product formation from the halogenated 

aromatic compounds was followed by HPLC as described previously (van de Pas et 

al., 2000). For determination of chlorophenols the mobile phase was acetonitril-0.01 

M H3PO4 with a vol. / vol. ratio of 20:80 and a flow rate of 1 ml.min"1. Cl-OHPA and 

OHPA concentrations were determined as described previously (van de Pas et ah, 

2000). All chlorophenolic compounds were quantified by their absorption at 206 nm. 

The tetrachloroethene (PCE) concentration was followed by GC analysis as described 

previously (Kengen et al., 1999). 

Nuclear Magnetic Resonance (NMR) experiments. For the NMR experiment strain 

DP7 was cultivated in medium as described with 13C labeled bicarbonate as buffer. 

The bacteria were grown fermentatively on 30 mM pyruvate. At t= 0 and t= 75 h., 

samples were prepared for proton-broad-band-decoupled 13C-NMR spectra and 

spectra were recorded at 25 °C in a Bruker AMX-500 Fourier transform 

spectrophotometer (Brtiker GMBH, Germany) as described previously (van de Pas et 

al., 2000). 'H-NMR spectra were recorded of the same samples at 500 MHz on the 

same spectrometer at 25 °C. 

Phylogenetic analysis and genome characteristics. For phylogenetic analysis, DNA 

of the strain DP7 was isolated as described (Harmsen et al. 1995), and the 16S rRNA-

gene was amplified using universal 16S rRNA specific primers (Aim et al. 1996). The 

amplification products were cloned in pGEM -T Easy (Promega, Leiden, The 
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Netherlands) according to the manufacturer's manual. One clone was sequenced using 

standard vector sequencing primers and universal 16s rRNA specific primers (Aim et 

al. 1996). The 16S rRNA sequences were aligned to reference sequences present in 

the EMBL database using the ARB software (Ludwig et al, 1998). A distance matrix 

was calculated with Jukes Cantor correction based on E. coli positions 116 to 1488, 

excluding a hypervariable region in the first part of the 16S rRNA. Similarities were 

calculated from this distance matrix and from the distance matrix including all 

sequence information. A phylogenetic tree was constructed using a neighbor joining 

method based on the distance matrix based on E. coli positions 116 to 1488 and 

parsimony, implemented in the ARB software. 

For determination of the G+C contents and DNA-DNA hybridization, DNA was 

isolated and purified according to standard protocol (Marmur, 1961). The G+C 

content of the genomic DNA was determined by the thermal denaturation method 

(Owen et al., 1969). DNA-DNA hybridization was performed by the optical 

reassociation method according to De Ley et al. (1970). 

Chemicals. All chemicals were obtained from commercial sources, and the highest 

purity available (more than 98%) was used in each case. ' C-labeled bicarbonate was 

purchased from Isotec. Inc., Miamisburg, USA. 

Nucleotide sequence accession number. The 16S rRNA gene sequence of D. 

frappieri strain DP7 has been deposited in the EMBL database under accession 

number AJ276701 

Results 

Enrichment and cell morphology of strain DP7. Strain DP7 is a rod-shaped motile 

organism, which has been isolated from human feces. Strain DP7 is a motile rod of 4 

to 6 urn long and 0.6 urn wide (Figure 7.1). Spores were not detected and no growth 

was observed after pasteurization of a full-grown culture. The cells positively reacted 

with the fluorescent probe for Gram-positive bacteria. 

Fermentative growth conditions. Cultivation of strain DP7 in mineral medium with 

0.01% yeast extract and 40 mM formate resulted in the formation of acetate. During 

fermentative growth on pyruvate, 30 mM pyruvate was degraded and about 35 mM 

acetate was formed. Under these growth conditions the bacterium has a specific 
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growth rate of 0.10 h"1. The optimal temperature for growth was between 34-40°C; no 

growth occurred at 50°C. Strain DP7 grew optimal between pH 7.2-7.4. No growth 

was observed below pH 5.5 and above pH 8.5. 

) < ' 

," 

\ 
\. 

•% 

I 

S 

Figure 7.1. Phase-contrast light micrograph of a culture 
of strain DP7. A bar with a size 10 |im is included in the 
lower right corner. 

The observation that acetate was the only product from pyruvate fermentation 

and the increase in the amount of organic acids suggested that strain DP7 is able to 

incorporate carbon dioxide into acetate. This was investigated by analyzing medium 

of a culture of DP7 that was cultivated in 13C labeled bicarbonate buffered medium 

and 30 mM pyruvate as substrate. 13C NMR spectra of supernatant of strain DP7, 

grown under these conditions, showed a triplet at a chemical shift of 24.2 ppm, 

reflecting the presence of C2 of single- and double-labeled acetate (Figure 7.2, Trace 

A), indicating that 13C-labeled CO2 is incorporated. The coupling constant of the C2-

doublet around the single-labeled resonance was determined to be 52 Hz, which is the 

scalar coupling constant 13C2-13Ci. The amount of double-labeled acetate was 

estimated to be 45% of the total labeled acetate. Based on the 'H-NMR spectrum, it 

was estimated that approximately 7% of the acetate was labeled at the C2 position, 

exceeding the 1% natural abundance of 13C (data not shown), confirming that Re­

labeled bicarbonate is incorporated. At the beginning of the experiment (t=0), no 

labeled acetate was detected (Fig. 7.2, Trace B). 
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Figure 7.2: l3C Nuclear magnetic resonance spectra of culture supernatants of strain DP7 
incubated for 75 hours with 40mM pyruvate (Trace A). The spectrum given in trace B shows 
the supernatant of the pyruvate incubation just after inoculation (t=0). 

Utilization of electron donors and acceptors by strain DP7. Strain DP7 uses 

hydrogen, formate, pyruvate, lactate, butyrate, and ethanol as electron donor in 

combination with sulfite (20 mM) as electron acceptor. Acetate, malate, propionate, 

crotonate, and glucose did not support growth in medium with 0.02% yeast extract 

and 20 mM sulfite as electron acceptor. Besides sulfite, thiosulfate, nitrate and 

fumarate, but not sulfate, were used as electron acceptors for growth of strain DP7 in 

medium containing 20 mM formate and 0.02% yeast extract. The dechlorinating 

capability of strain DP7 was tested in media containing 10 mM lactate or formate as 

electron donor and 1 mM chlorinated compound. After 4 months of incubation at 

37°C, no growth or product formation (dechlorinated phenol or ethene) was detected 

with 2-chlorophenol (2-CP), 3-CP, 4-CP, 2,3-dichlorophenol (2,3-DCP), 2,4-DCP, 

2,5-DCP, 2,6-DCP, pentachlorophenol, tetrachloroethene, and 3-chloro-4-

hydroxyphenylacetate (Cl-OHPA). Under the conditions tested, none of the 

chlorinated compounds was dechlorinated by strain DP7. Moreover, dechlorination of 

2,6-DCP and Cl-OHPA was also not observed in incubations where pyruvate was 

used as electron donor. In these cultures growth was observed, which is due to 

fermentation of pyruvate. 

Phylogeny. The main part of the 16S ribosomal gene of strain DP7 was amplified by 

PCR, cloned and sequenced, resulting in a nearly complete sequence of 1644 

nucleotides. A phylogenetic analysis was performed with related species (Fig 7.3). 

Comparison of strain DP7 with Desulfitobacterium dehalogenans JW/IU-DC1 

(nucleotide sequence accession no. L28946), Desulfitobacterium sp. strain PCE1 
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(X81032), D. chlororespirans Co23 (L68528), D. hafniense DCB-2 (X94975), D. 

frappieri strain PCP-1 (U40078), and D. frappieri strain TCE1 (X95972) revealed 

that strain DP7 is more related to Desulfitobacterium frappieri strain TCE1 (99,4% 

similarity and only 9 mismatches, both based on the total sequences) than to the other 

Desulfitobacterium species. The sequence similarity of the 16S rRNA of strain DP7 

with the other Desulfitobacterium strains and Desulfosporosinus orientis was 

determined (Table 7.1). This shows that the phylogenetic analysis of this group can be 

biased by the inclusion of a hypervariable region between E. coli positions 75 to 97. 

When this region is included in the analysis DP7 has only 95% similarity with D. 

frappieri PCP1, while it has 99% similarity with PCP1 when this region is excluded. 

However, DP7 and the two D. frappieri strains all have a long insert, unlike the other 

Desulfitobacterium strains, indicates the relationship between the D. frappieri strains. 

Desulfitobacterium frappieri DP7 
Desulfitobacterium frappieri TCE1 
Desulfitobacterium hafniense 
Desulfitobacterium frappieri PC PI 
Desulfitobacterium chlororespirans 

Desulfitobacterium dehalogenans 
Desulfitobacterium sp. PC El 

Desulfosporosinus orientis 
Syntrophobotulus glycolicus 
Dehalobacter restrictus 

Heliobacterium chlorum 
Desulfotomaculum australicum 

Desulfotomaculum thermobenzoicum 
Moorella thermoautotrophica 

Desulfotomaculum acetoxidans 
Desulfotomaculum ruminis 

Succiniclasticum ruminis 
gacHlus subtMs 

Figure 7.3: Neighbor Joining with Jukes Cantor correction of E.coli position 116 to 1488. 
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Table 7.1: Similarities (%) and comparison of insert size (nucleotides) of between 16S rRNA 
sequences of Desulfitobacterium sp. DP7 with other Desulfitobacterium species and Desulfosporosinus 
orientis. 

Strain 

Similarities 
including 
E. coli 

positions 116 
to 1488 
100.0 
99.93 
99.79 
99.78 
97.28 
96.54 
91.24 
94.12 

Similarities 
including all 

positions of the 
shortest 
sequence 
100.0 
99.38 
94.97 
98.05 
96.04 
96.44 
96.73 
92.61 

Size of insert 
between E. coli 
positions 75 to 

97 

141 
141 
122 
24 
28 
ns1 

24 
28 

Desulfitobacterium sp. DP7 
Desulfitobacterium frappieri TCE1 
Desulfitobacterium frappieri PCP1 
Desulfitobacterium hafniense 
Desulfitobacterium dehalogenans 
Desulfitobacterium sp. PCE1 
Desulfitobacterium chlororespirans 
Desulfosporosinus orientis 
ns is no sequence information available. 

The G+C contents of the genomic DNA of strain DP7, Desulfitobacterium 

dehalogenans JW/IU-DC1, D. frappieri TCE1, D. chlororespirans Co23 were 

determined to be 48.3, 45.8, 47.5, and 48.8 (±0.3) mol%, respectively. DNA-DNA 

hybridization was performed with the same strains. The DNA-DNA homology 

between these strains and the type strain of D. dehalogenans (100 %) was found to be 

37 % for strain Co23, 45% for strain TCE1, and 35% for strain DP7. DNA-DNA 

hybridization of strain Co23 and TCE1 with DP7 showed 71 and 83 % homology. 

This indicates that all these strains belong to the same species. 

Discussion 

We isolated strain DP7, a new member of the genus Desulfitobacterium. Strain DP7 is 

the first isolate of this genus that has not been isolated for its ability to use chlorinated 

compounds as terminal electron acceptor. The source from which strain DP7 has been 

isolated, a human fecal sample, is thought not to contain chlorinated compounds. 

Strain DP7 has the same morphology as other Desulfitobacterium species and utilizes 

similar electron donors (Bouchard et al, 1996; Christiansen and Ahring, 1996; 

Gerritse et al, 1999; Gerritse & Renard, 1996; Miller et al., 1997; Sanford et al., 

1996; Utkin et al, 1994). The formation of double-labeled acetate in 13C-labeled 

bicarbonate buffered medium shows that 2 CO2 molecules are reduced to produce 

acetate via the acetyl-CoA pathway. This has been described previously for 
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Desulfitobacterium dehalogenans (van de Pas et al, 2000). How strain DP7 is able to 

grow in mineral medium with 0.01% of yeast extract and 40 mM formate is yet 

unclear. The oxidation of formate could be coupled to CC>2-fixation via the acetyl-

CoA pathway since acetate was detected in formate grown cultures. Most strains of 

Desulfitobacterium can use nitrate, sulfite, thiosulfate, fumarate, and chlorophenols or 

tetrachloroethene as electron acceptor (Bouchard et al, 1996; Christiansen and 

Ahring, 1996; Gerritse et al, 1999; Gerritse and Renard, 1996; Miller et al, 1997; 

Sanford et al, 1996; Utkin et al, 1994). Strain DP7 is able to reduce nitrate, sulfite, 

thiosulfate, and fumarate, but does not dechlorinate chloroethenes or -phenols. 

Strain DP7 is very closely related to the PCE-dechlorinating strain 

Desulfitobacterium frappieri TCE1 and the chlorophenol-respiring 

Desulfitobacterium frappieri PCP-1, D. chlororespirans Co23, and D. hafniense 

DCB-2. The G+C values of strains DP7, TCE1, and Co23 were similar, whereas D. 

dehalogenans has a slightly lower G+C content. The highest homology of 16 rRNA 

sequence level was found with D. frappieri TCE1, which agrees with the results 

obtained by DNA-DNA hybridization. Strain DP7 is most similar to 

Desulfitobacterium frappieri TCE1 in morphological, physiological, and genetic 

characteristics, except for its inability to dechlorinate chloroethenes. We propose this 

new isolate to be designated as a new strain of Desulfitobacterium frappieri. 

Members of the genus Desulfitobacterium have been isolated from different 

polluted environments (Sanford et al, 1996; Christiansen et al, 1996; Bouchard et al, 

1996; Gerritse et al, 1996 & 1999; Miller et al, 1997; Utkin et al, 1994). The 

isolation of strain DP7 from a human fecal sample shows that the presence of 

Desulfitobacterium species is not restricted to polluted ecosystems. This strain cannot 

use chloroethenes or chlorophenols, the usual chlorinated electron acceptors for 

Desulfitobacterium species. This finding indicates that the presence of members of the 

genus Desulfitobacterium, which can be determined with phylogenetic probes, cannot 

be used as an indication for the dechlorinating potential of an ecosystem. 
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Halorespiration is a novel respiratory pathway, which has been discovered as a 

result of the search for microorganisms that can be used in bioremediation of 

chlorinated compounds. Halorespiring bacteria are able to use these compounds as 

terminal electron acceptor for growth in anaerobic environments. These bacteria have 

developed enzyme systems with high dechlorination rates and low threshold values. 

These characteristics are important for the application of dechlorinating bacteria in 

bioremediation. 

Low G+C gram positives 

Desulfitobacterium frappieri* 
Desulfitobacterium TCE V 

Dehatobacter restricts PER-K23* 
Dehalobacter TEA* 

Desulfitobacterium hafniense* 
Desulfitobacterium chlororespirans' 

Desulfitobacterium dehalogenans" e . j % j k . i . i « » o „ . „ - k . „ . t . , . ; . . 
DesulMobacterium KE1" s Subdivision Proteobactena 

Selenomonas 
Campylobacter 

'Geospirillum bamesii" 

Dehalospirillum multivorans' 

Thiovulum species 
Wolinella succinogenes 

Syntrophobacter wolinii 
Desulfomonile tiedjei* 

Desulfuromonas chloroethenica' 
'Desulfuromonas acetexigens" 

8 Subdivision Proteobacteria 0.10 

Figure 8.1. A 16S rRNA based phylogenetic tree reflecting the relationships of halorespiring bacteria 
(marked *) with other bacteria. 

Ten years ago, a defined medium was developed for cultivation of 

Desulfomonile tiedjei, which was the only halorespiring bacterium that was grown in 

pure culture at the time (DeWeerd et al., 1990). This discovery made it possible to 

study 3-chlorobenzoate respiration in more detail. In the following years, the isolation 

of other halorespiring bacteria indicated that halorespiration is widespread throughout 

the bacterial domain (Fig 8.1). Moreover, these halorespiring bacteria have been 

found to be present in all sorts of polluted environments (Table 1.1) Insight in the 

physiology and biochemistry of these bacteria is currently lacking. This study aimed 

to get a better comprehension of the biochemistry of halorespiration. The research has 

120 



Summary and Concluding Remarks 

focused on three topics: (i) elucidation of the coupling of reductive dechlorination to 

ATP formation in Desulfitobacterium dehalogenans, (ii) isolation and characterization 

of dehalogenases from different Desulfitobacterium species, and (iii) isolation and 

characterization of a novel Desulfitobacterium strain from human feces. In Chapter 

1, an overview is given of microbial dehalogenation mechanisms with emphasis on 

halorespiration. The halorespiring bacteria that have been obtained in pure culture, the 

current models for 3-chlorobenzoate and tetrachloroethene (PCE) respiration, and the 

characteristics of reductive dehalogenases, are also reviewed. 

Desulfitobacterium dehalogenans is an anaerobic Gram-positive bacterium 

that uses ortfto-chlorinated phenolic compounds as terminal electron acceptor for 

growth (Utkin et ai, 1994). Comparison of growth yields of D. dehalogenans grown 

with pyruvate as electron donor and 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA), 

sulfite, nitrate, or fumarate as electron acceptor has indicated that regardless of which 

electron acceptor was used, D. dehalogenans is able to conserve the same amount of 

energy (Mackiewicz & Wiegel, 1998). In Chapter 2, the growth yields of D. 

dehalogenans grown with hydrogen, formate, pyruvate, or lactate as electron donor 

and Cl-OHPA as electron acceptor have been compared. In addition, the activities of 

the different electron donating and electron accepting enzymes were localized. These 

results indicate that the oxidation of lactate and pyruvate coupled to the reduction of 

Cl-OHPA yields 1 ATP per mole of acetate produced by substrate level 

phosphorylation. When formate or hydrogen is used as electron donor for reductive 

dechlorination, the growth yield is approximately 1/3 of the growth yield with 

pyruvate as electron donor. Under these growth conditions, energy cannot be 

conserved via substrate-level phosphorylation. However, a proton motive force (PMF) 

may be established, which can be used by a proton-driven ATPase for ATP-

formation. A model has been postulated in which the localization of the electron-

donating enzyme (e.g. hydrogenase, formate dehydrogenase, lactase dehydrogenase, 

or pyruvate ferredoxin oxidoreductase) determines whether a PMF is established. In 

contrast to the electron transport by the electron transport chain (ETC) and the 

reduction of the chlorinated compound by the reductive dehalogenase, which do not 

contribute to the PMF (see also Fig. 8.2). We have investigated the composition of the 

ETC, which is involved in electron transport from formate to Cl-OHPA in cell 

suspensions and have compared it with the ETC involved in fumarate respiration with 

formate as electron donor (Chapter 3). Menaquinone, cytochrome c, and b were 
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components that were found to be present in cells grown with formate and either Cl-

OHPA or fumarate. We have demonstrated that these components could be reduced 

by formate and oxidized upon addition of the induced electron acceptor. This suggests 

that (a part of) the halorespiratory chain is shared with fumarate respiration. 

Previously, it has been shown that halorespiration shares elements with nitrate 

respiration on basis of the analysis of halorespiration-deficient mutants of D. 

dehalogenans (Smidt et al., 1999). That different respiratory pathways share common 

elements is not unusual and it has been reported for bacteria such as Paracoccus 

denitrificans and E. coli (Richardson, 2000; Unden & Bongaerts, 1997). However, the 

ETCs involved in halorespiration and fumarate respiration are not identical. The 

involvement of cytochrome b in fumarate respiration could be demonstrated while this 

was not possible for halorespiration. The results suggest that cytochrome b is the 

direct electron donor for fumarate reductase, analogous with findings for W. 

succinogenes and E. coli (Kroger et al., 1992). 

The electron transport chain from formate to Cl-OHPA has been investigated 

in more detail by electron paramagnetic resonance spectroscopy. In these 

experiments, we have shown that molybdenum, iron-sulfur clusters, cobalamin, a high 

spin heme and an unknown iron-sulfur cluster are components that were reduced by 

formate and oxidized by Cl-OHPA. This may indicate that the formate dehydrogenase 

which is active in halorespiration is a molybdenum and iron-sulfur containing formate 

dehydrogenase. This enzyme donates its electrons either to cytochrome c (analogous 

to Desulfovibrio sp.), or the electrons are transferred to cytochrome b (analogous to E. 

coli and other bacteria). Since cytochrome c is usually membrane-associated but not 

membrane-bound, an additional component, possibly cytochrome b, is needed to 

transport the electrons from the outside of the cell membrane to the cytoplasmic side 

of the cell membrane. The electrons may then be transferred to menaquinone which 

takes 2 protons from the cytoplasm and, depending on the localization of the reductive 

dehalogenase, the protons are released at the outside or inside of the cell, as is shown 

in figure 8.2 model A and B, respectively. In addition, oxidation of cobalamin, a 

cofactor of chlorophenol reductive dehalogenase, was observed in cell suspensions 

upon addition of Cl-OHPA. This observation strongly suggests that the dehalogenase, 

which we have characterized, is involved in in vivo halorespiration. The exact 

orientation of the dehalogenase in the cytoplasmic membrane could not be 

determined, but dehalogenases of other halorespiring bacteria have been localized at 
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the cytoplasmic side of the cytoplasmic membrane (Holliger et ah, 1999). In case the 

reductive dehalogenase of D. dehalogenans has a similar topology, the results 

(chapter 2 and 3) could be explained by model B presented in figure 8.2. This model 

is analogous to those postulated for 3-chlorobenzoate and PCE respiration in D. tiedjei 

andD. restrictus, respectively (Fig. 1.3). 

CQ. + 2I+ 

CI-OHPA OHPA 
+ 2 1+ + HCI 

Figure 8.2: The electron transport system of D. dehalogenans catalyzing the oxidation of formate 
coupled to reductive dechlorination of 3-chloro-4-hydroxyphenyl acetate. It shows two tentative 
models for the generation of a proton gradient based on the localization of the ort/io-chlorophenol 
reductive dehalogenase at the outer (model A) or the inner aspect (model B) of the cytoplasmic 
membrane. 

The isolation and characterization of a chlorophenol reductive dehalogenase is 

described in Chapter 4. This enzyme was purified anaerobically from a Triton X-100 

extract of the membrane fraction. The purified enzyme catalyzed the dechlorination of 

Cl-OHPA with a Vraax of 28 units/mg protein and a Km of 20 mM. In addition, the 

purified dehalogenase catalyzed the reductive dehalogenation of several ortho-

chlorinated phenols and 2-bromo-4-chlorophenol with reduced methyl viologen as 

electron donor. The EPR analysis indicated one [4Fe-4S] cluster (midpoint redox 

potential (Em = -440 mV), one [3Fe-4S] cluster (Em =170 mV), and one cobalamin 

per 48-kDa monomer. The Co+/Co2+ transition had an Em of -370 mV. The 

corresponding gene has been isolated, cloned, and sequenced, and revealed the 

presence of two closely linked genes: (i) cprA, encoding the o-chlorophenol reductive 

dehalogenase, (ii) cprB, coding for an integral membrane protein that could act as a 

membrane anchor of the dehalogenase. Moreover, cprA contains a twin-arginine type 

signal sequence that is processed in the purified enzyme. This is an indication for 

localization of the enzyme at the outside of the cytoplasmic membrane, because 
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almost all genes that contain a twin-arginine leader sequence code for proteins are 

located at the outside of the cytoplasmic membrane (Berks et al, 2000). However, 

pceA, the gene coding for the cytoplasmic PCE reductive dehalogenase of 

Dehalospirillum multivorans, also contains a twin arginine leader sequence (Neumann 

et al, 1998). From this it can be argued that the TAT (twin arginine transport) system 

is only involved in maturation of dehalogenases and not in transport of these enzymes 

across the cytoplasmic membrane. 

Besides ort/io-chlorinated phenols, D. dehalogenans is able to use other 

electron acceptors. Mackiewicz and Wiegel (1998) showed that several electron 

acceptors, including Cl-OHPA, can be used simultaneously. In Chapter 5, the 

influence of other electron acceptors on the induction of dechlorinating activity and 

on the dechlorinating activity in cell suspensions and cell extracts is described. 

Dechlorinating activity was found to be induced by its substrate (Cl-OHPA) and to a 

lesser extent by fumarate. However, when cells had been adapted to another electron 

acceptor (including fumarate), induction of dechlorination was found to be inhibited 

when compared to cells that were grown fermentatively on pyruvate. However, when 

an additional electron acceptor was added to a dechlorinating culture, the 

dechlorination rate decreased by 14 % when fumarate was added, but no effect was 

detected with nitrate, sulfite or thiosulfate. In cell extracts, the addition of fumarate 

had no effect and the other electron acceptors inhibited the dechlorinating activity. 

These results indicate that D. dehalogenans does not have a preferred electron 

acceptor in batch cultures, but it utilizes several electron acceptors simultaneously. 

This could be relevant for in situ bioremediation techniques because the presence of 

multiple electron acceptors in polluted sediments is not unusual. 

While D. dehalogenans is able use ort/io-chlorinated phenols as terminal 

electron acceptors for growth, Desulfitobacterium sp. strain PCE1 is able to use both 

chlorophenols and PCE and Desulfitobacterium frappieri strain TCE1 can use PCE 

and TCE (Gerritse et al, 1999; 1996; Utkin et al, 1994). We compared the substrate 

spectrum of the enzymes in cell extracts of these strains grown with Cl-OHPA or PCE 

as electron acceptors (Chapter 6). The results indicate that strain PCE1 contains 

separate enzymes for PCE and chlorophenol dechlorination. This was studied in more 

detail by the isolation of the chlorophenol reductive dehalogenase and the PCE 

reductive dehalogenase of strain PCE1 and the PCE/TCE reductive dehalogenase 

from strain TCE1. Based on the N-terminal sequence, size and substrate spectrum, the 
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chlorophenol reductive dehalogenase of strain PCE1 was found to be very similar to 

the dehalogenase of D. dehalogenans. The PCE/TCE reductive dehalogenase of strain 

TCE1 has similar characteristics as have been described for PCE reductive 

dehalogenase of strain PCE-S (Miller et al., 1998). The PCE reductive dehalogenase 

from strain PCE1 was found to be a novel type of reductive dehalogenase. The 

enzyme catalyzed the reduction of PCE, and had a low activity with TCE. The 

purified enzyme had a subunit size of 45 kDa on SDS-PAGE. The activity of this 

enzyme as well as of the chlorophenol reductive dehalogenase of strain PCE1 was 

found to be inhibited upon addition of the cobalamin inhibitors 1-iodopropane and 

NO to cell extracts. 

In Chapter 7, the isolation and characterization of a new strain of 

Desulfitobacterium frappieri is described. This isolate is the first Desulfitobacterium 

strain described that is not able to use chlorinated ethenes or phenols as terminal 

electron acceptor. 

In summary, the research presented in this thesis aimed to give an answer to 

the question how halorespiring bacteria couple reductive dechlorination to energy 

conservation. The results obtained in chapters 2, 3 and 4 provide evidence for the 

mechanism, which is summarized in figure 8.2. The difference between models A and 

B is caused by the localization of the dehalogenase, which is an interesting topic for 

future investigations. Upon growth in the presence of multiple electron acceptors, D. 

dehalogenans was found to react as an "opportunist". It does not switch rapidly from 

using one electron acceptor to using another, but will use more electron acceptors 

simultaneously when neither the electron donor nor the acceptor is limiting. We have 

not investigated the influence of electron acceptors on dechlorination under electron 

donor or acceptor limited conditions. In a study of PCE dechlorination by D. frappieri 

TCE1, Gerritse et al. (1999) found that dechlorination was completely inhibited by 

other electron acceptors in cells grown under electron donor limitation, but not in cells 

grown under electron acceptor limitation. Since the enzymes that catalyze PCE 

dechlorination and chlorophenol dechlorination in different strains of 

Desulfitobacterium contain the same cofactors, the reaction and regulation 

mechanisms may be similar. Investigation of PCE and chlorophenol dechlorination in 

Desulfitobacterium strain PCE1 has demonstrated that the dehalogenases, which are 

associated with these activities, have completely different substrate specificity 

profiles. Dechlorination of different chlorinated compounds requires a combination of 
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specialized dehalogenases, which are probably not all present in a single halorespiring 

species. Additionally, we have isolated a strain of Desulfitobacterium frappieri that 

does not dechlorinate the usual chlorinated substrates for Desulfitobacterium. This 

demonstrates that one should be cautious in extrapolation of the presence of certain 

bacterial groups or species to the dechlorinating potential of a polluted environment 

(Loffler et al., 2000). 

Acknowledgements. I like to thank Hauke Smidt for kindly providing a phylogenetic tree of 

halorespiring bacteria. 
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Halorespiratie is een nieuwe ademhalingsroute, die ontdekt is bij micro-

organismen die gebruikt kunnen worden voor de biologische afbraak van 

gechloreerde verbindingen. Halorespirerende bacterien kunnen deze componenten 

onder anaerobe condities gebruiken als terminale elektronenacceptor voor groei. Deze 

bacterien hebben hiervoor een enzymsysteem ontwikkeld met een hoge 

dechloreringssnelheid en een lage drempelwaarde. Deze eigenschappen zijn van 

belang voor de toepassing van dechlorerende bacterien in bioremediatie. 

Tien jaar geleden is er een gedefinieerd medium beschreven voor de kweek 

van Desulfomonile tiedjei, de enige halorespirerende bacterie die destijds in 

reincultuur werd gekweekt (DeWeerd et al, 1990). Deze ontdekking maakte het 

mogelijk om de ademhaling op 3-chloorbenzoaat in detail te bestuderen. In de 

daaropvolgende jaren zijn er meer halorespirerende bacterien geisoleerd en kwam 

men tot de conclusie dat halorespiratie wijdverbreid is door het bacteriele rijk 

(Hoofdstuk 8, figuur 8.1). Daarbij zijn halorespirerende bacterien teruggevonden in 

allerlei verontreinigde milieus (Hoofdstuk 1, tabel 1.1). 

Dit proefschrift heeft de fysiologie en biochemie van deze bacterien als 

onderwerp. Het onderzoek is gericht op drie onderwerpen: (i) het bestuderen van de 

koppeling tussen reductieve dechlorering en ATP vorming in Desulfitobacterium 

dehalogenans, (ii) de isolatie en karakterisatie van dehalogenases uit verschillende 

Desulfitobacterium soorten en (iii) de isolatie en karakterisatie van een 

Desulfitobacterium stam uit menselijke feces. In Hoofdstuk 1 is een overzicht 

gegeven van de verschillende microbiele dehalogeneringsmechanismen, waarbij het 

accent op halorespiratie is gelegd. Daarnaast wordt een overzicht gegeven van de 

halorespirerende bacterien welke in reincultuur zijn beschreven, de huidige modellen 

voor 3-chloorbenzoaat- en tetrachlooretheen(PCE)-ademhaling, en de karakteristieken 

van reductieve dehalogenases. 

Desulfitobacterium dehalogenans is een anaerobe Gram-positieve bacterie, die 

in staat is om ortfto-gechloreerde fenolachtige verbindingen te gebruiken als terminale 

elektronenacceptor (Utkin et al., 1994). Een vergelijking van de opbrengsten van D. 

dehalogenans gegroeid met pyruvaat (pyrodruivenzuur) als elektronendonor en 3-

chloro-4-hydroxyfenyl-acetaat (Cl-OHPA), sulfiet, nitraat, of fumaraat als 

elektronenacceptor geeft aan dat D. dehalogenans altijd dezelfde hoeveelheid energie 

vastlegt, onafhankelijk van de gebruikte elektronenacceptor (Mackiewicz & Wiegel, 

1998). In Hoofdstuk 2 zijn de opbrengsten van D. dehalogenans, gegroeid met 
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waterstof, formiaat (mierenzuur), pyruvaat, of lactaat (melkzuur) als elektronendonor 

en Cl-OHPA als elektronenacceptor, vergeleken. Daarnaast zijn de activiteiten van de 

verschillende elektronendonerende en -accepterende enzymen gelokaliseerd. Deze 

resultaten wijzen erop dat de koppeling van de oxidatie van lactaat en pyruvaat aan de 

reductie van Cl-OHPA een ATP per mol geproduceerde acetaat (azijnzuur) opbrengt 

via fosforylering op substraatniveau. Als formiaat of waterstof wordt gebruikt als 

elektronendonor voor reductieve dechlorering is de groeiopbrengst ongeveer 1/3 van 

de opbrengst met pyruvaat als elektronendonor. Onder deze groeicondities kan de 

energie niet via fosforylering op substraatniveau vastgelegd worden. 

Formiaatdehydrogenase en hydrogenase zijn aan beide zijden van het 

celmembraan gelokaliseerd. Dit in tegenstelling tot pyruvaatdehydrogenase dat in het 

cytoplasma gelokaliseerd is en lactaatdehydrogenase dat gelokaliseerd is aan de 

cytoplasmatische kant van het celmembraan. Op basis van deze gegevens wordt er een 

model voorgesteld waarin de lokalisatie van de elektronendonerende enzymen bepaalt 

of er een protondrijvende kracht (PMF) is verkregen. Het elektronentransport via de 

elektronentransportketen (ETC) en de reductie van de gechloreerde verbinding door 

het reductief dehalogenase dragen niet bij aan de PMF (Hoofdstuk 8, Figuur 8.2). We 

hebben de samenstelling van de ETC, die betrokken is bij het elektronentransport van 

de elektronendonor formiaat naar Cl-OHPA, onderzocht in celsuspensies en hebben 

deze vergeleken met de ETC betrokken bij de fumaraatademhaling met formiaat als 

elektronendonor (Hoofdstuk 3). Menaquinon, cytochroom c en cytochroom b zijn de 

componenten die gevonden zijn in alle cellen die gegroeid zijn met formiaat en Cl-

OHPA of fumaraat. We hebben aangetoond dat deze componenten gereduceerd 

kunnen worden door formiaat en geoxideerd worden na toevoeging van de 

geinduceerde elektronenacceptor. De resultaten suggereren dat (een deel van) de 

halorespiratieketen gedeeld wordt met fumaraatademhaling. In een eerder onderzoek 

is geconcludeerd op basis van de analyse van mutanten van D. dehalogenans die 

deficient zijn in halorespiratie, dat halorespiratie waarschijnlijk componenten deelt 

met nitraatademhaling (Smidt et al, 1999). Dat verschillende ademhalingsroutes 

gemeenschappelijke elementen delen is niet ongewoon en is eerder gerapporteerd 

voor o.a. Paracoccus denitrificans en E. coli (Richardson, 2000; Unden & Bongaerts, 

1997). In het huidige onderzoek kon de betrokkenheid van cytochroom b alleen 

worden aangetoond voor fumaraatademhaling en niet voor halorespiratie. In cellen 

gegroeid met fumaraat als elektronenacceptor is de concentratie cytochroom b ook 
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hoger in verhouding tot het gehalte aan cytochroom c. Dit zou erop kunnen duiden dat 

cytochroom b de directe elektronendonor is voor fumaraatreductase. Een 

vergelijkbare situatie is gevonden in W. succinogenes en E. coli (Kroger et al., 1992). 

Fumaraatreductase is gelokaliseerd aan de cytoplasmatische kant van het 

celmembraan. 

De elektronentransportketen van formiaat naar Cl-OHPA is in meer detail 

onderzocht met behulp van elektron paramagnetische resonantie spectroscopic (EPR). 

In deze experimenten hebben we aangetoond dat molybdeen, ijzer-zwavel clusters, 

cobalamine, een "high-spin heme" en een onbekend ijzer-zwavel cluster, onderdelen 

zijn die onder invloed van formiaat worden gereduceerd en o.i.v. Cl-OHPA worden 

geoxideerd. Dit suggereert dat het formiaatdehydrogenase dat actief is gedurende de 

halorespiratie een molybdeen en ijzer-zwavel bevattend formiaatdehydrogenase is. Dit 

enzym doneert zijn elektronen aan cytochroom c (analoog aan Desulfovibrio sp.), of 

de elektronen worden overgedragen aan cytochroom b (analoog aan E. coli en andere 

bacterien). Omdat cytochroom c meestal membraangeassocieerd is en niet 

membraangebonden, is er een extra component, waarschijnlijk cytochroom b, nodig 

om de elektronen van de buitenkant van het membraan naar de cytoplasmatische kant 

van het celmembraan te transporteren. De elektronen worden dan overgedragen aan 

menaquinon dat 2 protonen uit het cytoplasma opneemt en deze, afhankelijk van de 

lokalisatie van het reductief dehalogenase, afgeeft aan de buiten- of de binnenkant van 

de eel (respectievelijk figuur 8.2 A en B (hoofdstuk 8)). Daarnaast is de oxidatie van 

cobalamine, een co-factor van chloorfenol reductief dehalogenase, aangetoond in 

celsuspensies na de toevoeging van Cl-OHPA. Deze waarneming laat zien dat het 

dehalogenase dat we hebben gekarakteriseerd, betrokken is bij in-vivo halorespiratie. 

De orientatie van het dehalogenase in het cytoplasmisch membraan kon niet 

aangetoond worden, maar dehalogenases van andere halorespirerende bacterien zijn 

gelokaliseerd aan de cytoplasmatische zijde van het cytoplasmatisch membraan 

(Holliger et al., 1999). Als het reductief dehalogenase van D. dehalogenans een 

vergelijkbare topologie zou hebben, dan zouden de groeiopbrengsten (Hoofdstuk 2) 

verklaard kunnen worden met model B dat te zien is in figuur 8.2. Dit model is 

analoog aan de modellen die zijn voorgesteld voor 3-chloorbenzoaat in D. tiedjei en 

PCE respiratie in D. rest rictus. (Hoofdstuk 1, figuur 1.3). 

De isolatie en karakterisatie van het chloorfenol reductief dehalogenase wordt 

beschreven in Hoofdstuk 4. Dit enzym werd anaeroob gezuiverd uit een Triton X-100 
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extract van de membraanfractie. Het gezuiverde enzym katalyseert de dechlorering 

van Cl-OHPA met een Vmax van 28 units/mg eiwit en een Km van 20 mM. Verder 

katalyseert het gezuiverde dehalogenase de reductieve dehalogenering van 

verschillende ortftogechloreerde fenolen en 2-bromo-4-chlorofenol met gereduceerd 

methylviologeen als kunstmatige elektronendonor. De EPR analyse wijst op de 

aanwezigheid van een [4Fe-4S]-cluster (Em = -440 mV), een [3Fe-4S]-cluster (Em = 

170 mV), and een cobalamine per 48-kDa monomeer. De Co+/Co2+-overgang had een 

Em van -370 mV. Het corresponderende gen is gei'soleerd, gekloneerd en de DNA-

sequentie ervan is bepaald. Hierbij werd de aanwezigheid van twee nauw gerelateerde 

genen aangetoond: (i) cprA, coderend voor het o-chloorfenol reductief dehalogenase, 

en (ii) cprB, coderend voor een integraal membraaneiwit dat als membraananker van 

het dehalogenase kan functioneren. Verder bevat cprA een "twin-arginine" 

signaalsequentie die niet aanwezig is in het gezuiverde enzym. Dit is een aanwijzing 

dat het enzym gelokaliseerd kan zijn aan de buitenkant van het cytoplasmatisch 

membraan. Praktisch alle genen die een "twin-arginine" signaalsequentie bevatten 

coderen voor eiwitten die aan de buitenzijde zijn gelokaliseerd (Berks et al., 2000). 

Echter, pceA, het gen coderend voor het cytoplasmatisch PCE reductief dehalogenase 

van Dehalospirillum multivorans, bevat ook een "twin-arginine" signaalsequentie 

(Neumann et ah, 1998). Het is daarom mogelijk dat het TAT ("twin-arginine" 

transport) systeem enkel betrokken is bij de ontwikkeling van dehalogenases en niet 

bij het transport van deze enzymen over het cytoplasmatisch membraan. 

Naast orffcogechloreerde fenolen kan D. dehalogenans ook andere 

elektronenacceptoren gebruiken. Mackiewicz en Wiegel (1998) hebben aangetoond 

dat verschillende elektronenacceptoren, inclusief Cl-OHPA, tegelijkertijd kunnen 

worden gebruikt. In Hoofdstuk 5 is de invloed van andere elektronenacceptoren op de 

inductie van de dechlorerende activiteit in celsuspensies en celextracten beschreven. 

Er is gevonden dat de dechlorerende activiteit wordt gei'nduceerd door zijn substraat 

(Cl-OHPA) en mogelijk door fumaraat. Echter, als cellen waren geadapteerd aan het 

gebruik van een andere elektronenacceptor (inclusief fumaraat), dan was de inductie 

van dechlorering geremd in vergelijking tot de inductie van dechlorering in cellen die 

fermentatief gegroeid waren op pyruvaat, d.w.z. in afwezigheid van een extra 

elektronenacceptor. De dechloreringssnelheid van een dechlorerende cultuur daalde 

met 14 % als fumaraat werd toegevoegd, maar er was geen effect te zien na 

toevoeging van nitraat, sulfiet of thiosulfaat. In contrast daarmee had de toevoeging 
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van fumaraat in celextracten geen effect, maar remden de andere 

elektronenacceptoren de dechlorerende activiteit. In batchcultures blijkt D. 

dehalogenans geen voorkeur te hebben voor een type elektronenacceptor, maar 

gebruikt hij verschillende elektronenacceptoren tegelijkertijd. Dit zou relevant kunnen 

zijn voor (in-situ) bioremediatietechnieken, omdat de aanwezigheid van meerdere 

elektronenacceptoren in verontreinigde sedimenten niet ongewoon is. 

Terwijl D. dehalogenans orf/jo-gechloreerde fenolen als terminale 

elektronenacceptor voor groei kan gebruiken, kan Desulfitobacterium sp. stam PCE1 

zowel chloorfenolen en PCE tegelijkertijd gebruiken en kan Desulfitobacterium 

frappieri stam TCE1 zowel PCE als trichlooretheen (TCE) gebruiken (Gerritse et al., 

1999; Gerritse et al, 1996; Utkin et al, 1994). We hebben de substraatspectra van 

celextracten van deze stammen, gegroeid met Cl-OPHA of PCE als 

elektronenacceptor, vergeleken in Hoofdstuk 6. De resultaten geven aan dat stam 

PCE1 verschillende enzymen voor PCE en chloorfenol dechlorering bevat. Dit werd 

in meer detail bekeken door de isolatie van het chloorfenol reductief dehalogenase en 

het PCE reductief dehalogenase van stam PCE1 en het PCE/TCE reductief 

dehalogenase van stam TCE1. Gebaseerd op de N-terminale sequentie, grootte en 

substraat spectrum van de celextracten is gevonden dat het chloorfenol reductief 

dehalogenase van stam PCE1 identiek is aan het dehalogenase van D. dehalogenans. 

Het PCE/TCE reductief dehalogenase van stam TCE1 heeft vergelijkbare 

eigenschappen als zijn beschreven voor het PCE reductief dehalogenase van 

Desulfitobacterium stam PCE-S (Miller et al., 1998). Het PCE reductief dehalogenase 

van stam PCE1 is een nieuw type reductief dehalogenase. Het enzym katalyseert de 

reductie van PCE en heeft een lage activiteit met TCE. Het gezuiverde enzym had een 

subunit-grootte van 45 kDa op SDS-PAGE. Zowel de activiteit van dit enzym, als die 

van het chloorfenol reductief dehalogenase van stam PCE1 werden geremd door de 

toevoeging van de cobalamine remmers 1-iodopropaan en NO aan celextracten. Het is 

zeer waarschijnlijk dat deze enzymen, evenals de andere dehalogenases uit 

Desulfitobacterium stammen, cobalamine bevatten. 

In Hoofdstuk 7 is de isolatie en karakterisatie van een nieuwe 

Desulfitobacterium frappieri stam beschreven. Dit is de eerste isolaat van een 

Desulfitobacterium stam, dat geen chloorethenen of chloorfenolen kan gebruiken als 

terminale elektronenacceptor. 
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Het onderzoek dat is gepresenteerd in dit proefschrift had als doel een 

antwoord te geven op de vraag hoe halorespirerende bacterien reductieve dechlorering 

koppelen aan energieconservering. De resultaten die zijn beschreven in hoofdstuk 2, 3 

en 4 geven aanwijzingen voor het mechanisme dat is samengevat in figuur 8.2. Het 

verschil tussen model A en B wordt veroorzaakt door de lokalisatie van het 

dehalogenase. Deze lokalisatie en de rol van het TAT systeem bij de rijping van het 

reductief dehalogenase zijn interessante onderwerpen voor verder onderzoek. Tijdens 

groei in de aanwezigheid van meerdere elektronenacceptoren is gevonden dat D. 

dehalogenans reageert als een "opportunist". Het organisme schakelt niet snel over 

van het gebruik van de ene elektronenacceptor naar de ander. Daarnaast kan het 

meerdere elektronenacceptoren simultaan gebruiken als noch de elektronendonor 

noch de elektronenacceptor(en) limiterend zijn. In dit onderzoek is niet gekeken naar 

de invloed van elektronenacceptoren op dechlorering onder elektronendonor of -

acceptor limiterende omstandigheden. In eerder onderzoek naar PCE dechlorering 

door D. frappieri TCE1 is echter gevonden, dat de dechlorering in dit organisme 

compleet geremd werd door de aanwezigheid van andere elektronenacceptoren in 

cellen gegroeid onder elektronendonor gelimiteerde condities, maar niet in cellen 

gegroeid onder elektronenacceptor gelimiteerde condities (Gerritse et ah, 1999). De 

reactie- en regulatiemechanismen zouden vergelijkbaar kunnen zijn, omdat de 

enzymen die de dechlorering van PCE en chloorfenol katalyseren in verschillende 

stammen van Desulfitobacterium dezelfde co-factoren bevatten. Ondanks deze 

overeenkomsten in de co-factoren, heeft onderzoek van PCE en chloorfenol 

dechlorering in Desulfitobacterium stam PCE1 laten zien dat de dehalogenases die 

met deze activiteiten geassocieerd worden, totaal verschillende substraatspecificiteiten 

hebben. Voor de dechlorering van verschillende gechloreerde verbindingen is 

zodoende een combinatie van gespecialiseerde dehalogenases nodig, die 

waarschijnlijk niet aanwezig zijn in een halorespirerende soort. Door de isolatie van 

een stam van Desulfitobacterium frappieri, die geen chloorethenen of chloorfenolen 

dechloreert, ziet men dat men voorzichtig moet zijn met het extrapoleren van de 

aanwezigheid van bepaalde bacteriele groepen of soorten naar de 

dechloreringscapaciteit van een verontreinigde omgeving (Loffler et al., 2000). 

Referenties: zie hoofdstuk 8 
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Banhwoord 

Mijn promotietijd is voor mij goed bestede tijd geweest. Dit is niet in de laatste plaats 

te danken aan al die mensen die mij op een of andere wijze, ergens tijdens het 

onderzoek, hebben bijgestaan. Dit proefschrift is misschien wel mijn boekje, maar het 

is tot stand gekomen dankzij de hulp van een grote groep mensen, waarvan ik er een 

aantal met name wil noemen. 

Als eerste denk ik hierbij aan Hauke, die net als ik zijn promotietijd aan 

halorespiratie heeft besteed. Bedankt voor de samenwerking en discussie on-the-job. 

Zonder jouw had dit proefschrift er heel anders uitgezien. 

Natuurlijk hebben ook Fons en Gosse, als co-promotoren, een zeer grote 

invloed gehad op de invulling en uitvoering van het werk. Met plezier denk ik terug 

aan de keren dat wij met zijn drieen rond de tafel zaten om de voortgang te bespreken. 

Willem, ik wil jou bedanken voor de begeleiding 'vanaf de zijlijn' en vruchtbare 

discussies. Vaak fungeerde je als 'advocaat van de duivel', waardoor er altijd weer 

verbeteringen konden worden aangebracht in de proefopzet of het manuscript. 

Voor de prettige samenwerking wil ik Ariane, Cor, Fred, Hermie, Jan G. en 

Klaas bedanken. Fred, ik wil jou ook bedanken voor de introductie in de geheimen 

van de EPR. Klaas, jou ben ik dankbaar voor het opduikelen van twee jaar oude 

spectra. 

Daarnaast wil ik alle collegae op het Laboratorium voor Microbiologie 

bedanken voor de gezellige tijd. Volgens mij is een goede sfeer een vereiste voor het 

afleveren van een goed proefschrift. Hierbij denk ik o.a. aan Nees, Jannie, Frits, 

Renee, Francis en natuurlijk alle Xeno's en Anaeroben: Alette, Anna, Arthur, 

Caroline B., Caroline P., Ed, Fons, Francis, Frank, Gosse, Hans, Ine, Jan W., Judith, 

Karin, Marguerita, Maurice, Miriam, Peter v. B., Peter M., Serve, Sonja, Stephanie, 

Wim v. D. en Wim R. Mijn kamergenoten, Peter M. en Maurice, wil ik bedanken 

voor alle ongein en hulp. Natuurlijk wil ik ook de studenten bedanken die hun 

afstudeervak wilden richten op fysiologisch onderzoek aan halorespiratie. Conny, 

Joop, Stefan en Bart, bedankt voor de samenwerking en jullie enthousiasme. 

Op dit punt wil ik mijn carpoolers, Jair en Lennard, bedanken. Steeds waren 

jullie de eersten om te delen in mijn frustraties en enthousiasme, terwijl jullie een uur 
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niet weg konden. In circa drie jaar kregen we meer over elkaar te horen dan onze 

vriendinnen. Een unieke ervaring, waar ik met plezier aan terugdenk. 

Als laatste wil ik Katinka bedanken, voor alle geduld en uitgestelde vakanties. 

Het is nu achter de rug. 

Voor de bovengenoemden en voor alle anderen: 

"da' ge bedankt zijt, da' witte". 

Bram 

140 



Curriculum vitae 

Bram Anton van de Pas werd geboren op 8 april 1971 te Oss. Hij groeide op in 

Schaijk en behaalde in 1989 zijn VWO-diploma aan het Titus Brandsma Lyceum te 

Oss. In September 1989 begon hij met de studie Moleculaire Wetenschappen aan de 

Landbouwuniversiteit Wageningen. In deze periode deed hij een zes maands 

afstudeervak Microbiologic betreffende zuivering van het fumaraatreductase van de 

mesofiele propionaat oxiderende bacterie MPOB. Na dit vak Hep hij 5 maanden stage 

in de groep van Prof. Mirja Salkinoja-Salonen aan de Universiteit van Helsinki, waar 

hij participeerde in het onderzoek naar contaminerende sporenvormende bacterien in 

het productieproces van kartonnen drankverpakkingen. Zijn studie sloot hij af met een 

afstudeervak bij de vakgroep Erfelijkheidsleer, waar hij de overdracht van 

dubbelstrengs RNA-virussen tussen incompatibele schimmels onderzocht. In 1995 

studeerde hij af en begon met zijn promotieonderzoek waarin hij gekeken heeft naar 

de biochemie en fysiologie van halorespiratie door Desulfitobacterium dehalogenans. 

Dit onderzoek heeft geresulteerd in het voorliggende proefschrift. Sinds mei 2000 is 

hij werkzaam als projectleider bodem bij Het Milieuburo in Maasbree. 

141 


