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Bamboo flowering is a natural phenomenon and should not be considered as a
threat to the giant panda.
Adopted from Hu, . 1987. Being careful of moving the giant panda eastwards. Wild
Amimal, No,6, 11-12. (in Cliunese)

Human encroachment into and fragmentation of the panda habitat is the most
serious factor which threatens this animal's survival.

Mapping panda habitat with its rough and hardly accessible terrain is improved by
using an integrated expert system and neural network algorithm.
This thesis

Panda habitat “preference” is statistically proved by analysing radio-tracking data
and panda habitat types.
This thesis

It is still not clear what make pandas regularly move from their winter activity
range to the summer activity range and stay only for two months in Foping Nature
Reserve.

This thesis

It is hard for a woman higher educated to put her in a right point between career
and family.

When planning for a year, plant corn. When planning for a decade, plant trees.
When planning for life, train and educate people.
Chinese proverb

Desired changes can be incorporated in future studies, but time spent can never be
regained.
Sanderson, G. C. 1966. The study of manmmal movements - a veview, Journal of
Wildlife Management. Vol. 30, No.1, 215-235.
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CHAPTER 1 General Introduction

1.1 Giant panda population, habitat and survey

Literature and public documents show that there are only about 1000 giant pandas
(Ailuropoda melanoleuca) left and that only some 29,500 km? of panda habitat remains in
the west part of China (see Figure 1.1), making it an urgent issue in the world to save
this endangered animal species and protect its habitat. The actions taken to save the
giant panda started in the 1960s, including construction of panda nature reserves and
breeding centres, ground surveys at various levels for estimating panda population
and distribution as well as collection of basic environmental information. Two national-
level ground surveys were conducted in 1974-1977 and 1985-1988 (MOF and WWF
1989). Most of the information on panda population and distribution came from these
two surveys. Panda habitat was also inventoried in Wolong Nature Reserve (NR) in
1979-1980 (WNR and SNU 1987) and in Qinling Mountains in 1986-1987 (Pan et al.
1988). MacKinnon et al. (1994) reported that the locations of the occupied panda range
were obtained from ground surveys and the existing description of bamboo condition
was also based on ground surveys. The results from these two national-level ground
surveys showed a big loss of panda habitat by 1987. However, after 10 years, further
changes have probably occurred within panda habitat, and the extent and condition of
panda habitat from that time until now is unknown. Current information about panda
habitat needs to be collected. Therefore, the third national level survey on panda
population and habitat started in 2000 and will end in 2002.

Due to the mountainous terrain covered by dense forests, a large amount of money,
labour and time has been invested in panda population and habitat surveys. For
instance, 3000 pecple were involved in the first national-level panda census, and in the
second panda census, over 30 counties were surveyed (MOF and WWF 1989). Both
these censuses took about three years, and now the third on-going one is no exception.
So, the question arises here: Can remote sensing (RS) and geographical information
system (GIS) play an effective role in supporting wide-range panda census to shorten
survey time, save man power, and consequently reduce survey costs through accurate
mapping?

1.2 GIS, RS and wildlife habitat mapping

Geographical information systems are computer-based systems that are used to store
and manipulate geographic information, and ultimately used to produce information
needed by users (Aronoff 1991), Wildlife depends on the presence of an appropriate
mix of resources within a geographically defined area. An important component of
wildlife management is the prediction of the effects of natural events and human
activities on wildlife populations. GIS technigues can be used to analyse such factors as
the availability of food and cover, protection from predators, and the suitability of
areas for nesting and denning sites, and have been used to analyse the habitat of a wide
range of animal species such as the volcano rabbit (Velazquez and Bocco 1994), the
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kangaroo (Skidmore et al. 1996a) and various bird species (Miller et al. 1989, Li et al,
1999).

N
Remaining Panda Habitats and Surrounding Nature Reserves A

Gansy Province

Qinling
Mountans

Minshan
Mountains

Shaanxi Province

Mountans

& —
Aangdlingshen Existing Mature Reserves
Mountans )
¢ TaiBai 12 WangLang 23 LongQiHongKeu
24 Wolong

1
2 LaoXianCheng 13 HuanglLongSi
@ 3 ZhouZhi 14 XiaoHeGau 25 AnZite
4 Foping 15 BaiYang 2% HeiShuiHe
5 ChangQing 16 Sier 27 FengTongZhai
6 JianShan 17 Piankuo 2 LaBaHe
Liangsharn 7 BaiHe 18 XizoZhaiZiGou 29 GoangGaShan
Mountains 8 JiuZhaiGou - 19 BaoDingGou 30 WaWuShan
9 Wuliao 20 QianFoShan 31 Vele

10 BaiShuitiang 21 JiuDingShan 32 MaBian-DaFengDing
11 TangliaHe 22 BeiShuiHe 33 MeiGu-DaFengDing

Figure 1.1 The remaining panda habitats (shown by grey patches) and existing associated
nature reserves (shown by closed line boundary with number} in the west part of China
(modified from Loucks et al. 2001).

Remote sensing is the instrumentation, techniques and methods to observe the Earth's
surface at a distance and to interpret the images or numerical values obtained in order
to acquire meaningful information of particular objects on Earth (Buiten and Clevers
1993, Janssen 200¢). Due to their continuity in both time and space dimensions, RS data
have widely been used and the relevant image processing techniques have been
applied to wildlife habitat research on, for example, caribou (Thompson et al. 1980),
white-tailed deer (Ormsby and Lunetta 1987), snow leopard (Prasad et al. 1991),
migratory bird (Sader et al. 1991), and Nemorhaedus goral (Roy et al. 1995).
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Richards (1993) addressed the real challenge which arises in RS/GIS when data of
mixed types are to be processed together. The issue is complicated further when much
of the non-spectral, spatial data available is not in numerical point form but is in
nominal area or line format. It is pointed out that knowledge-based methods show
good prospects for coping with data complexity in a GIS.

Hollander (1994) mentioned that a new integrated approach joined with an artificial
intelligence system was expected to apply on habitat evaluation due to GIS and RS
weakness. Expert systems (ES) have been used for mapping forests (Goldberg et al.
1985, Skidmore 1989), as well as identifying homogeneous training areas for analysis of
remotely sensed imagery (Goodenough et al. 1987). Neural networks (NN) have been
used for image processing and have shown great potential in the classification of
remotely sensed data {Zhuang et al. 1994). According to Skidmore et al. (1997), the
neural network backpropagation algorithm will not probably become a significant
classification and analysis tool for GIS and remotely sensed data when implemented as
a pure neural network. However, it may be very useful when combined with the rule-
based expert system. Short (1991) has developed a pipeline system of a real-time expert
systern and a neural network for the classification of remotely sensed data.
Nevertheless, examples of integrating the expert system and the neural network system
in wildlife habitat evaluation and management are still rare.

1.3 RS/GIS application in panda habitat research and problems

The underiying issue is to what extent RS/GIS has been applied to panda habitat
mapping and evaluation. As we know, quite a lot of people are interested in the
research fields of panda behaviour, reproduction, nutrition and bamboo regeneration.
Not much attention was paid to panda habitat. Therefore, not much detailed data
analysis has been done with using many factors, including physical environmental
factors, biological factors, and human influence factors. How can we obtain information
of panda habitat in an effective way? From the previous ground surveys, it is clear that
a ground survey in such a complicated terrain area with dense forests is time
consuming and labour intensive. In such circumstances, RS is undoubtedly the most
efficient way to acquire habitat data quickly and at low cost (De Wulf et al. 1988).
Multi-spectral classification of land cover and land use has been the main approach for
mapping and defining the distribution of wildlife, and detecting the change in wildlife
habitat.

However, panda habitat research based on remote sensing is limited. De Wulf et al.
(1988 and 1990) and MacKinnon et al. (1994) mapped panda habitat using LANDSAT
MBSS images and LANDSAT TM images. Some work has been done on the evaluation
of the extent of forest loss for the giant panda in China, the prediction of the corridors
in Min Mountains, and the mapping of panda habitat in Wolong NR. All this work was
based on visual interpretation of multi-temporal images from 1975 and 1983. The
LANDSAT TM images were also visually interpreted and used to make a land cover
map for the Xinglongling panda area in the Qinling Mountains (Pan et al. 1988, Chui
and Zhang 1990). So, before 1998, panda habitat analysis based on RS data was still at a
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level of visual interpretation, not at a level of digital analysis. The main disadvantages
of visual interpretation are its inconsistency and time-consumption. It is also realised
that, at a level of digital analysis, conventional image analysis methods do not yield
satisfactory classification results at the forest type level, and therefore it is difficult to
get an accurate map using conventional classification methods to map the forest types
(Skidmore 1989, Skidmore et al. 1997).

In terms of GIS application to panda habitat, Quyang et al. (1996} published their work
on reserve management and design of the panda database in Wolong NR, which
includes the current physical environment, biodiversity, and social-economic data. Liu
(1997) and Liu et al. (1997) published their work on human factors influencing the
panda habitat in Wolong NR and their spatial distribution. Bouwman (1998) assessed
the impact of human activities on the panda habitat and distribution in Wolong NR
based on the interview data and GIS analysis. Liu et al. (1998) evaluated the suitability
of panda habitat in Wolong NR through evaluating suitable elevation range, slope
range and distribution of bamboo species in GIS. As a useful tool for acquiring, storing,
extracting, processing, and presenting data, exploration on integrating GIS with new
expected algorithm of RS to obtain more information of panda habitat is worthwhile.

Is it possible to develop a new approach, an integrated expert system and neural
network algorithm, based on RS5/GIS in order to achieve a satisfactory level of accuracy
for mapping panda habitat - a forest environment? And how to further use the
mapping results to analyse panda habitat use and selection and help to explain regular
panda movements?

In summary, the research problems are:

e information about the current extent and quality of panda habitat is lacking;

* ground surveys are not only time-consuming and expensive but alse inadequate
for the collection of all kinds of continuous information on panda habitat;

* conventional image classification methods for mapping a forest environment can
not achieve a satisfactory accuracy;

* lack of an integrated approach for mapping panda habitat;

e lack of thorough study on panda movement; and

» lack of statistical analysis of panda habitat use and selection as well as panda-
habitat relationship.

1.4 Objectives of this study

This study only focuses on Foping NR. The general research objective is to evaluate

panda habitat through mapping and modelling. It is achieved by the following sub-

objectives:

¢ To evaluate the existing mapping techniques;

+ To develop an integrated expert system and neural network classifier (ESNNC) for
mapping with a high accuracy;
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* To apply the explored ESNNC approach to map panda habitat patterns and derive
panda habitat information (types, extents and spatial distribution);
To analyse panda movement patterns and their linkage with the environment;
To model the relationships between the panda presence and the biotic (such as
woody plant species richness and spatial structure of tree and bamboo layers) as
well as abiotic environmental factors (elevation, slope gradient and aspect).

1.5 Qutline of thesis

This thesis basically presents several research papers that, as a whole, fulfil the
objectives of the study. Papers have been or are going to be submitted to international
peer-reviewed journals. Each of these papers has been presented as a thesis chapter.
The general link between each other is shown in Figure 1.2. Chapter 2 and Chapter 3
aim at exploring a new approach for mapping, which uses an additional data set from
Lemelerburg, the Netherlands. The explored and optimised algorithm was then
applied to map habitats of the giant panda (Chapter 4) and the mapping results were
further used in later analysis of panda-habitat relationship (Chapter 6). Accurate
habitat maps are required for analysing wildlife and its habitat relationship. Chapter 5
is a relatively independent topic which focuses on panda movement analysis. The
following is an outline of this thesis.

e Chapter 1 provides a brief research background, clarifies the research problems,
shows the research objectives, and finally describes the main study area: Foping
NR. This chapter is to show why, what, where, and how this research was
undertaken.

e Chapter 2 looks at several different mapping techniques and focuses on the
artificial neural network techniques with compariscn to the other two traditional
algorithms (maximum likelihood classification algorithm and parallelepiped
classification algorithm). This chapter aims to check the discrimination capability
of the backpropagation neural network algorithm on the ground cover types, and
to indicate that the neural netwerk algorithin needs to be improved and used for
mapping panda habitat in this study.

*  Chapter 3 explores two new mapping algorithms by combining the advantages of
the different classification algorithms in order to optimise the mapping algorithm
with high mapping accuracy. One is a consensus builder that links three individual
classifiers (maximum likelihood classifier, expert system classifier and neural
network classifier) together. The second is an integrated expert system and neural
network classifier.

¢  Chapter 4 applies the optimised mapping approach, the integrated expert system
and neural network classifier, to map panda habitat in Foping NR. Two categories
of panda habitat types are introduced and mapped, ie. ground-cover-based
potential panda habitat types and suitability-based panda habitat types.
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e  Chapter 5 analyses the movement pattern of pandas in Foping NR by using radio-
tracking data in order to gain an insight into how pandas move in their territory
and the linkage between their movement pattern and the environment.

» Chapter 6 details the habitat use and selection by pandas, as well as habitat
characteristics which may direct panda habitat use and selection, The mapped
ground-cover-based potential panda habitat is used to analyse habitat use and
selection. The survey plot data are used to analyse the panda habitat characteristics
in various suitability-based panda habitat types, and to analyse the differences of
biotic structure between panda-presence and panda-absence habitats.




General Introduction

s Chapter 7 summarises all the research results and conclusions of the previous
chapters and highlights the implications of these results as well as the research
approach to the future conservation of the giant panda and its habitat not only in
Foping NR but also in other panda nature reserves in China.

1.6 Description of Foping Nature Reserve

The east-west Qinling Mountains {see Figure 1.1) play an important role as the natural
geographical defences that stop the cold air flow coming from the north and they form the
most northern refuge of pandas. Foping NR is located on the middle part of the southern
slope of the Qinling Mountains (33%32°-33%45" N, 107040'-107°55" E}, and in the southern
part of Shaanxi province (Figure 1.3). The reserve covers about 293 km? and occupies the
northern part of Foping County. It extends 24 km from west to east and 22 km from
north to south. It was established in 1978 to conserve the endangered giant panda and
its habitat.

2904 m Foping Nature Reserve

Pl China N
T [&) village:
$omglan e
3 DaGuPing wilage

* mmmsewe:

a SanGuanMian
e
© Jle

d XiaHe l%nup

e DeChengHao group

Shaanxi
Province

a1
0 10km 1085 m

Figure 1.3 Location of Foping Nature Reserve in China. It is located in Foping county, Shaanxi
province, and covered by four main drainage systems: XiHe, DongHe, JinShuiHe, and LengTanZi.

Terrain and drainage system

The terrain of Foping NR drops down from the high north-west to the low south-east.
The elevation ranges from 980 to 2904 m. The area below 1500 m is the steep-slope and
narrow valleys of the middle mountains with human activities, between 1500 and 2000
m the gentle-slope and wide valleys and flat mountain ridges of the middle mountains,
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and above 2000 m the steep-slope and wide mountaintops of the middle mountains
{Ren et al. 1998). Four drainage systems cover the whole nature reserve, e.g. XiHe,
DongHe, JinShuiHe and LongTanZi Rivers (Figure 1.3). They all flow from the north to
the south.

Climate

The climatic data from 1976 to 1995 were analysed and the average monthly rainfall,
humidity, temperature and sunshine hours were plotted in Figure 1.4, The high rainfall
{about 200 mm) occurs in July, high temperature (about 23 °C) in July and August, and
high humidity (83%) in July, August and September, The longer sunshine (over 180
hours per month} starts from May and ends in August. The total annual rainfall is
about 920 mm. The average annual temperature is about 13 °C. On average, the extreme
lowest temperature, about -3 °C, occurs in January and the extreme highest
temperature, about 28 %C, occurs mostly in July.
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Figure 1.4 The climatic conditions in Foping Nature Reserve, China: average monthly rainfall
(a), humidity (b), temperature (c), and sunshine hours (d).

Soil

The soil types show obvious vertical distribution: yellow-brown soil (below 1500 m)
developed under deciduous broadleaf forests in the north sub-tropical zone, brown soil
(1500-2300 m) developed under deciduous broadleaf forests or mixed conifer and
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broadleaf forest in the temperate zone, and dark brown soil (above 2300 m) developed
under mixed conifer and broadleaf forest in the temperate zone (Ren et al. 1998).

Vegetation

Natural vegetation grows well in Foping NR. There are differences in the description of
the natural vegetation and its vertical distribution in Foping NR. According to Ren et al.
(1998), the main natural vegetation types are deciduous broadleaf forests (below 2000
m}, birch forests {2000-2500 m), conifer forests (above 2500 m), as well as shrub and
meadow. CVCC (1980) defined that the deciduous broadleaf forest is distributed below
1300 m, mixed conifer and deciduous broadleaf forest between 1300 and 2650 m, and
conifer forest above 2650 m. There are two main barnboo species for pandas to feed on:
Bashania fargesii and Fargesia spathacea (Pan et al. 1988, Tian 1989 and 1990, Yong et al.
1994, Ren et al. 1998). The bamboo of Bashania is distributed in the area below 1900 m,
in general, and the bamboo of Fargesia in the area above 1900 .

O protection station (PS % '

1 LengTanZi P8 HeiLongTan Area
2 YueBa PBE ( no panda 33 s4.km )
3 DaGuPing PS

4 XiHe P8 —4

5 SanGuanMiae PS

€ CunGou PB

¥
A monitoring point [MP) &J C%
1 baChéngHao MP A ¢
2 CaoPing MP 5 5
3 SanXianFeng MP o
4 DaCongPing MP T &
5 LuBanFang MP ¥\
6 HuangTongLiang MFP C2

= — — ] 5

1] 10Km 3 ”

o]

Figure 1.5 The spatial distribution of the giant panda population in Foping Nature Reserve
according to the survey in 1990 (Yong et al. 1993), and locations of six protection stations as
well as six monitoring points.
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Giant panda population

Panda population surveys have been conducted several times in Foping NR since the
1970s. The survey in 1983 estimated that the panda population was between 45 and 65.
According to the survey in 1990 (Yong et al. 1993}, the estimated panda population was
about 65 with an average density of 1 individual per 5 km2. The result of a survey
conducted in 1998 again confirmed about 65 panda individuals in the reserve. Figure
1.5, based on the result from the 1990 survey, illustrates differences of the spatial
distribution of panda population.

Local human population and activities

About 300 local people reside inside the nature reserve in 1998 (Table 1.1). They are
mainly concentrated in five inner-reserve village groups: SanGuanMiao, Xille,
JieShang, XiaHe and DaChenHao (see Figure 1.3). The human activities are mainly
developed in the river valleys and the areas near the southern boundary but
SanGuanMiao in the centre of the nature reserve is an exception. The main human
activity is farming. However, mushroom-production {Figure 7 4-right), which provides
local people with an impressive income (for example in DaGuPing, from 14010 yuan
RMB in 1996 to 74520 yuan RMB in 1998), developed very fast after 1995 and might
have had an influence on panda habitat in Foping NR.

Table 1.1 The local population of three villages inside or around the boundary of Foping NR in 1998

Village Village group Inside or around the boundary  Population Tetal
of the nature reserve (persons)
DaGuPing SanGuanMiao group inside 52
XiHe group inside 59
JieShang group inside 92 282
XiaHe group inside 47
YueBa DaChengHao group inside 32
MaJiaGou group outside 62
JieShang group outside 82
ShangYueBa group outside 127
BeiMaGou group outside 113
XiaoBeiMaGou group outside 81
LongTanZi ZhuanBa group outside 51 389
TangJiaGou group outside 39
LuofiaBa group outside 52
JieShang group outside 142
BaoZi group outside 77
ShiYuan group outside 63

Field management in Foping NR

For conservation purposes, the whole nature reserve is divided into six regions, each of
which has a “protection station (PS)” with permanent staff. They are LongTanZi IS,
YueBa PS, DaGuPing PS5, Xile PS, SanGuanMiao PS and CunGou PS {shown in Figure
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1.5). Some conservation activities are conducted regularly, such as monthly patrols to
record signs of panda and other animals as well as habitat information. Within these six
regions, smaller blocks are further delineated in order to further locate the area for
convenient conservation activities. In the more remote areas, there are six exira
“monitoring points (MP)"” with simple and crude sheds. They are DaChengHao MP,
CaoPing MP, SanXianFeng MP, DaCongPing MP, LuBanFeng MP and
HuangTongLiang MP (shown in Figure 1.5). All these management facilities and
conditions made my research possible,
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CHAPTER 2 Evaluation of Mapping Algorithms and
Exploration of Spectral Discrimination Capability of
a Backpropagation Neural Network Algorithm *

Abstract

Data were generated for two classes in a simulated feature space, with the classes
having a varying amount of spectral overlap. It was hypothesised that the
backpropagation neural network would be able to distinguish the classes in the
situation of no overlap. Our results confirmed that two non-overlapping classes can be
discriminated with 100% overall accuracy by the backpropagation neural network. The
backpropagation neural network classified the simulated data sets with a significantly
higher accuracy than the maximum likelihood or the paralleiepiped classifier. When
the experiment was repeated using remotely sensed imagery with more complicated
spectral overlap among classes (for a land cover classification at Lemeleberg in the
eastern Netherlands), the neural network yielded again a significantly higher
classification accuracy than the maximum likelihood classifier or the parallelepiped
classifier. Differences between the map outputs imply that integrating the different
classification algorithms may improve the overall mapping accuracy.

Key Words: backpropagation neural network, degree of overlap in feature space,
mapping algorithm, maximum likelihood classifier, parallelepiped classifier, spectral
discrimination capability.

1. This chapter is based on Liu, X, A. K. Skidmore, and H. Van Oosten. (in
press). An experimental study on spectral discrimination capability of a
backpropagation neural network classifier. International Journal of Remote
Sensing,.

2. Part of this work was presented at XIX* Congress of the International
Society for Photogrammetry and Remote Sensing (ISPRS), 2000, Amsterdam,
The Netherlands. The presented title: Discrimination Ability of Neural
Network and Maximum Likelihood Classifiers.




Speciral Diseriminarion Capubilite of a Newrof NeoveoAd Alvoriim

2.1 Introduction

Backpropagation neural networks (BPNNs) have successfully classified remotely

sensed data (Hepner et al. 1990, Zhuang et al. 1994, Weeks and Gaston 1997), There are

significant differences between backpropagation neural networks and many

conventional statistical classifiers such as the maximum likelihood classifier (MLC)

(Bischof et al. 1992, Chen et al. 1993, Paola and Schowengerdt 1995, Weeks and Gaston

1997):

(1) BPNNs make no assumptions about the form and distribution of input data;

(2) BPNNs form non-linear decision boundaries in the feature space;

(3) BPNNs are robust when presented with partially incomplete or incorrect input
patterns;

(4) BPNNs can generalise input.

In a comprehensive review, Paola and Schowengerdt (1995) concluded that
backpropagation neural network classifiers yield similar {or slightly higher) accuracy
when compared to conventional statistical methods, such as the maximum likelihood
classifier {see Hepner et al, 1990, Key et al. 1990, Bischof et al. 1992, Kanellopollos et al.
1992, Paola and Schowengerdt 1994). As a result of the marginal improvement in
mapping accuracy by neural network classifiers, Skidmore et al. (1997) recommended
maximum likelihood classifiers, as they are easier to use. Indeed, some authors have
found that maximum likelihood classifiers give a higher mapping accuracy than neural
networks (Benediktsson et al. 1990a, Solaiman and Mouchot 1994).

Fierens et al. (1994) were unable to understand why these classifiers have differences in
accuracy. One of the reasons may be that the experimental set-ups are not comparable.
For instance, texture measures have been used with BPNNs, but the same texture
measures have not been utilised by conventional classifiers (Hepner et al. 1990, Bischof
et al. 1992, Paola and Schowengerdt 1994, Skidmore et al. 1997). Another reason for
differences in classification accuracy is that the assumptions of a classifier may be better
met by a particular image data set. For example, Key et al. (1990) theorised that the
neural network avoids assumptions of statistical normality, and has greater flexibility
to classify non-normal classes. Further evidence comes from Benediktsson et al. (1990a)
who used data from a random number generator with normalised distribution and
found the accuracy of the maximum likelihood classifier was higher than that of a
backpropagation neural network. Thus it may be assumed that normalised distribution
allows the maximum likelihood methed to perform well.

The performance of a backpropagation neural network is affected by many factors. A
number of researchers have focused con exploring the behaviour of the BPNNs by
adjusting factors such as the input data types (raw or normalised data), input data
sequence, number of hidden layers, number of nodes in different layers, as well as
different training parameters such as momentum, learning rate and number of epochs
(Benediktsson et al. 1990a, Heermann and Khazenie 1990, Zhuang et al. 1994, Ardo et
al. 1997, Gong et al. 1997, Skidmore et al. 1997). However, no authers have investigated
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the effect of the degree of overlap between classes in feature space on the performance
of a BPNN or conventional classifiers.

A two-dimensional feature space can be simply visualised by plotting the brightness
values of one band along the horizontal axis, and the brightness values of a second
band along the vertical axis. In this space, each pixel of an image plots as a vector with
co-ordinates given by the brightness value of an image pixel. Feature space may be
“filled” with simulated data sets. The use of simulated data as a complement to real
images is very common in remote sensing research; the main advantage is that it is easy
to control the experiment and to gain insight into the results (Skidmore et al. 1988,
Benediktsson et al. 1990a, Heermann and Khazenie 1990, Chen et al. 1993). In this
study, a feature space comprising three bands was simulated.

In sumnmary, the aims of this paper are, by using different degrees of overlap between
classes, to compare: (1) the accuracy of the backpropagation neural network classifier
(BPNNC) in response to different degrees of overlap in the simulated data sets as well
as remotely sensed imagery; and (2) the performance of the BPNNC, the maximum
likelihood classifier (MLC) and the parallelepiped classifier (PPC) under different levels
of overlap in feature space.

2.2 Background and assumptions of three classifiers

The parallelepiped classifier (PPC) is a very simple supervised classifier, having a
decision boundary defined by the range of brightness in each band. The “box” in
feature space {see Figure 2.1a) may be defined using a measure of central tendency (e.g.
mean or median) as well as a measure of variation (e.g. standard deviation or inter-
quartile distance) of training sample sets (as used in this study), or by using the
minimum and maximum values of training sample sets. The main drawback of the PPC
is that the pixels can not be assigned to a class when they fall in more than one box or
do not belong to any box.

The maximum likelihood classifier (MLC} is the most commonly used supervised
classification method. The decision rule is defined by the multidimensional normal
distribution around a class mean (see Figure 2.1b). Consequently, multi-modal or non-
normally distributed data will lead to an incorrect classification. In addition,
overlapping decision boundaries in feature space will be problematic, especially if the
training data do not physically overlap, but the decision boundaries do overlap
(Skidmore et al. 1988, Fierens et al. 1994).

The backpropagation neural network classifier (BPNNC) recognises spectral patterns
by learning from training sets. They contain three or more layers of nodes viz. one
input layer, one or more hidden layer(s) and one output layer. The error between the
network output and the target (i.e. training data) is reduced by adjusting all weights of
the network until the system error falls below a user specified threshold. After training,
the neural network system fixes all weights and maintains the original learning
parameters. The classification process calculates the output of each pixel using the
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parameters learnt from the training phase, and then decides the class of the pixel.
Richards (1993) hypothesised that a hyperplane decision surface between two different
classes may also be created for neural network classifiers that can divide the pattern
space into different regions (see Figure 2.1c). Solaiman and Mouchot (1994) emphasised
that the multi-layer perceptron is also a decision-surface based classifier.

a-PPC b-MLC c - BPNNC
With no overlap /
EEE—
A
With overlap ((
—

Figure 2.1 Decision rules for the three different classifiers in a two-dimensional feature
space (after Skidmore et al. (1988) and Richards (1995)). PPC, MLC and BPNNC represent
the parallelepiped classifier, the maximum likelihood classifier and the backpropagation
neural network classifier respectively.

2.3 Methods
2.3.1 Data sets

We simulated two data sets with only two classes varying from a condition of no
overlap, to a condition of overlap, in order to test the effect of feature separability and
overlap degree on three classifiers (BPNNC, MLC and PPC). The two classes were
randomly generated in three bands {e.g. bandl, band2 and band3) with 5000 pixels per
class. Bandl and band3 have a normal distribution, while band2 has a two-modal
distribution. Table 2.1 details the experimental data. Figure 2.2 shows the feature space
of the simulated data sets, in which the red dots represent classl and the blue dots
represent class2. Areas of visual overlap, but not real overlap in feature space, are
identified by the green dots. Areas of real overlap in feature space are identified by the
white dots.

In addition to the synthetic data sets, the performance of the three classifiers was also
tested using remotely sensed imagery (i.e. Landsat Thematic Mapper and SPOT-
panchromatic imagery acquired in 1995 and 1997 respectively) over the Lemeleberg
region of the Netherlands (see details in Chapter 3). The images were geometrically
rectified and geo-referenced to a common pixel size of 10 m by 10 m. The sub-images
{435 by 348) contain five ground cover classes, which contain probably more
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complicated overlap situations among these five classes in their feature space. The five
ground cover types are forest (F), pasture (P), heath (H), arable land (A), and built-up
area (B). This data set was chosen to provide a situation with more complicated overlap

in feature space compared with the two simulated classes with simple overlap.

Table 2.1 Statistical parameters for the two classes simulated in three bands: bandl to band3. Min,,
Max. and 5td. are minimum, maximum and standard deviation respectively.

With no overlap With overlap
Band1 Band2 Band3 Band1 Band?2 Band3
Min. i7 10 37 16 10 37
Classl Max. 34 30 54 34 30 54
Mean 223 20.0 424 239 20,0 44.7
Std. +3.8 +4.5 13.8 +3.4 +4.5 +31
Min. 25 17 45 22 17 42
Class2 Max. 37 23 57 39 23 59
Mean 31.0 20.0 51.0 303 20,0 53.3
Std. 125 +1.3 +2.4 +3.4 +1.3 +3.4
Band1 29.1 01 24.6 215 0.1 10.8
Variance- Band2 10.8 02 10.8 01
covariance Band3 29.1 18.7
Band1 1.00 0.00 0.84 1.00 0.01 0.54
Correlation Band2 1.00 0.01 1.00 0.01
Band3 1.00 1.00

classl
class2

I isual overlap due to projection

real overlap of feature

Figure 2.2 The feature space of the simulated data sets with two classes. The top three show
the feature spaces under a no overlap situation. The bottom three show the feature spaces

under an overlap situation.
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2.3.2 Defining separability and degree of overlap of the classes

Accuracy of classification depends on the separability of the classes in feature space. As
two classes become further apart, they have less overlap and may be classified with
greater accuracy. Two measures are used in this study: the Jeffries-Matusita (JM)
distance (ERDAS 1991, Richards 1993) and the simplified Skidmore et al. non-
parametric test of overlap (Skidmore et al. 1988).

Mathematical separability is normally used to discard classes with little contribution to
a classification (Richards 1993). The JM Distance is a parametric measure of the average
distance between the density function of two classes. For normally distributed classes,
JM Distance may be defined as:

My =2(1-e") (1)
where i and j are two classes being compared, B is the Bhattacharyya Distance:

B=|/8{prﬂf)‘{a%q}4(“‘“‘”1’21"{@% @)
Jelyiet

where 1 and W, are the mean vectors of the two classes, and C; and C are the
variance-covariance matrices of the two classes. The JM distance ranges from
0 where the two classes completely overlap to 2 where the two classes are
completely separate from each other.

Skidmore et al. (1988) developed a general algorithm to quantify the degree of overlap
of classes. It is a non-parametric test of overlap that does not depend on statistical
parameters such as mean and standard deviation. The Skidmore et al’s Ri(f) value
ranges from 0 to 1, where 0 equates to complete overlap, while 1 means there is no
overlap between the two classes, that is the two classes are completely separate from
each other (Skidmore et al. 1988). In this study, a simplified Skidmore et al. non-
parametric test was used (Equation 3). If Ri = 1, this class has no overlap with other
classes, while if Ri < 1, the class has overlap with other classes. An example of how to
calculate Ri is shown in Table 2.2.

Ri=Fi/Ni 3)

where Fi is defined as the frequency of pixels in the training set purely
belonging to class i, Ni is the total number of pixels in the training set of
class i, and Ri is the proportion of Fi and Ni. It is used to indicate the degree
of overlap between class i and other classes.

In order to find out how the overlap of two classes in the feature space influences

classification, different sizes of training samples were studied for the simulated data
because the fM distance and the simplified Ri depend on sample size. The sample sizes
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used were 200, 400, 800, 1600 and 2500 samples for both classes. For the remotely
sensed imagery, only one sample set was used, which includes five ground cover types
varying in their degree of overlap.

Table 2.2 Non-parametric test of overlap degree under the overlap situation. In the formula of Ri =
Fi/Ni, Ri is the proportion of the number of pixels (Fi) in the training set purely belonging to class i to
the total number of pixels (Vi) of the training set of class i.

Sample Feature pattern Number of pixels with same
size in in training set feature pattern Ri= Fi/Ni
training with overlap but belonging
set to different classes
[Band1 Band2 Band3] Classl Class2
200 [26 71 49] 1 1 R; =(200-1}/200=0.9950
R,=(200-1)/ 200=0.9950
400 (24 21 49] 1 1
(2519 46] 1 1 R, =(400-4)/ 400=0.990
[26 20 43] 1 1 R,=(400-5)/400=0.9875
1 2

[26 21 49]

2.3.3 Configuring the backpropagation neural network in this study

A backpropagation neural network with three layers (1 input layer, 1 hidden layer and
1 output layer) was constructed with a varying number of nodes. The number of input
and ocutput nodes was decided by the number of data layers {input) and the classes
(output) respectively. In order to find a better neural network structure to optimise
training and obtain higher overall mapping accuracy, the parameters, such as total
system error level, number of hidden nodes, learning rate and momentum coefficient
were studied. First of all, we subjectively used 5 hidden nodes and a small momentum
(0.01) as well as a small learning rate {0.001) to test how the total system error
influences the classification accuracy and to select a better and practical system error
level. The number of hidden nodes and the different combinations of momentum
coefficients and learning rates were then explored. The criterion for selecting these
parameters is the “highest test accuracy” (Gong et al. 1997). In summary, a number of
different input conditions for the neural network classifier were tested for both
simulated data sets and remotely sensed imagery, including:
» system error levels (0.1, 0.075, 0.05, 0.03, 0.01 and 0.005),
* number of hidden nodes (1X, 2X, 3X, 6X, 10X) with X=3 which represents the
number of input nodes,
¢ different combinations of momentum coefficients and learning rates (0.7/0.7,
05/0.7,0.1/0.7,0.01/0.7; 0.7/0.5,05/0.5,01/0.5,0.01/0.5;07/0.1,05/0.1,0.1/0.1,
0.01/0.1; 0.7/0.01, 0.5/0.01, 0.1/0.01, 0.01/0.01; 0.7/0.001, 0.5/0.001, 0.1/0.001,
0.01/0.001).
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2.3.4 Comparing three classifiers using both simulated and remotely sensed data

Both simulated data and remotely sensed imagery were classified using the optimised
BPNNC, MLC and PPC in order to test the effect of feature separability and degree of
overlap on classification accuracy. The same training and test data sets were used for
the three classifiers. For the simulated data set, we used the whole data set to test final
classification accuracy. The remotely sensed imagery has an independent test sample
set. The classifiers were tested for statistical differences in their accuracy of
classification using the KHAT statistic (Congalton et al. 1983, Foody 1992) calculated
for each image, and a Z statistic to test whether any two classification results were
significantly different (Cohen 1960).

2.4 Results
2.4.1 Measuring the separability and overlap degree

The M distances and the simplified-Ri values from different sizes of training sample
sets for the simulated data set are detailed in Table 2.3a. The M distance is
approximately 1.52 under the no overlap situation and 1.51 under the overlap situation.
The similarity of these results indicates that the two classes cannot be completely
separated using this measure of separability. In comparison, the simplified-Ri values
are all equal to 1 under the no overlap situation; while the Ri values vary from 0.969 to
0.995 under the overlap situation. Table 2.3a also confirms that in the overlap situation,
Ri stabilises to an asymptotic condition as the size of the training sample set increases.

Table 2.3b shows the JM distances of pairs of classes as well as the simplified-Ri values
based on the sample sets for remotely sensed imagery. The highest separability is
between pasture and forest, followed by forest and arable land, pasture and heath,
pasture and built-up area. The Ri values of the forest (R-=1} and pasture (Rr =1) classes
similarly indicate that these two classes do not overlap with the other classes in feature
space of the training sample set, while the other three classes {e.g. built-up area, arable
land and heath) exhibit more overlap (R;;=0.937, R4 =0.913, and Ry =0.897) than the two
simulated classes.

2.4.2 Performance of the BPNNC under various experimental conditions

The system error has a strong influence on the classification accuracy under all three-
overlap situations (Figure 2.3). For the simulated data set (with or without overlap}, the
large sample size and small system error of the neural network increased the
classification accuracy (Figure 2.3a and 2.3b). For the image data set (with more
overlap), it was confirmed that a small system error increased the classification
accuracy (Figure 2.3¢c). However, the classification of two “no overlap” classes for the
simulated data set did not reach an accuracy of 100%. Therefore, the training set with
2500 samples was selected for further experimentation. The minimal system error levels
for the different experiments (0.005 for the two simulated classes with “no overlap”,
0.03 for the two simulated classes with simple overlap, and 0.12 for the remotely sensed
imagery with more complicated overlap) were selected to ascertain the influence of the
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number of hidden nodes. The reason for selecting 0.03 and 0.12 under situations of
overlap is that the BPNNC tock a very long time for calculation to reach the smaller
system error levels of 0.02% and 0.11 (see iterations in the parentheses in Figure 2.3b
and 2.3¢).

Table 2.3 Jeffries-Matusita (JM) distance between two classes and simplified Ri value of each class. Riis
the proportion of the number of pixels (Fi) in the training set purely belonging to class i to the total
number of pixels {Ni) of the training set of class i.

a: The JM distances and simplified Ri values under different sampling schemes for the simulated data
sets with only two classes.

Class  Sampiles per class With no overlap With gverlap
JM distance  Simplified Ri JM distance Simplified Ri
1 200 samples 1.5188 R;=1.0000 1.5092 Ry=0.9950
2 200 sampies R;=1.0000 R;=0.9950
1 400 sarmples 1.5182 R; =1.0000 1.5087 R;=0.9900
2 400 samples R.=1.0000 R;=0.9875
1 800 samples 15173 R;=1.00G0 1.5087 R, =0.9738
2 800 samples R, =1.000C R.=0.9700
i 1600 samples 15176 R, =1.0000 1.5088 Ry=0.5750
2 1600 samples R;=1.0000 R;=0.9719
1 2500 samples 1.5176 R; =1.0000 1.5087 R;=0.9708
2 2500 samples R; =1.0000 R,=0.9692

b: The JM distances and simplified Ri values for the real image case study. Five ground cover types are
defined: forest (F), pasture (P}, heath (H), arable land (A) and built-up area (B).

Class Training JM distance between any two classes Simplified Ri
Samples F P H A B

Forest (F) 285 0 1.609 1.514 1.595 1.536 Re=1

Pasture (P) 473 0 1.369 1.538 1,551 Re=1

Heath (H) 300 0 1.545 1.506 Ry=0.937

Arable land (A) 480 0 1519  Rs=0913

Built-up area (B) 312 0 R =0.897

The influence of the number of BPNNC’s hidden nodes, based on the conditions
defined above, is shown in Figure 2.4. No pattern in classification accuracy occurred
with a changing the number of hidden nodes (Figure 2.4). The optimised BPNNC
achieved an accuracy of 100% under the “no overlap” situation when the number of
hidden nodes increased to 6 (Figure 2.4a). In other words, that the neural network can
discriminate completely two classes with “no overlap” in their feature space. However,
under the “overlap” situation, the highest overall accuracy of 97.22% for two simulated
classes and of 83.36% for remotely sensed imagery with five classes was achieved when
the number of hidden nodes increased to 9 (Figure 2.4b and 2 .4c). So, we selected 6, 9
and 9 hidden nodes together with the previously selected parameters to search for a
better combination of momentum coefficient and learning rate.
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Figure 2.3 Backpropagation neural network experimentation with different sizes of sample sets as
well as system error levels under three varying overlap conditions: a — two simulated classes with
no overlap; b - two simulated classes with simple overlap; ¢ - five ground cover classes with more
complicated overlap. Numbers in parentheses are iteraticn numbers of neural network training.
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Figure 2.4 Backpropagation neural network experimentation with different numbers of hidden nodes
under three varying overlap conditicns: a — two simulated classes with no overlap; b — two simulated classes
with simple aoverlap; ¢ — five ground cover classes with more complicated overlap. Numbers in parentheses
are iteration numbers of neural network training.

Based on the previous experiments, the influence of the combination of learning rate
and momentum coefficient is shown in Figure 2.5. For the two simulated classes with
no overlap, the various combinations of momentum and learning rate did not produce
any change to the classification accuracy of 100% (Figure 2.5a). For the simulated two
overlap classes as well as the remotely sensed imagery with five classes, the
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combination of different momentum and learning rate does influence the classification
accuracy (Figure 2.5b and 2.5¢). However, no obvious pattern emerged. The highest
classification accuracies, e.g. 97.23% and 82.95%, were produced by the momentum-
learning-rate combination of 0.5/0.7 for two simulated classes and of 0.7/0.1 for the
remotely sensed imagery.
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Figure 2.5 Backpropagation neural network experimentation with different combinations of
momentum coefficients and learning rates under three varying overlap conditions: a - two
simulated classes with no overlap; b - two simulated classes with simple overlap; ¢ - five ground
cover classes with more complicated overlap.

2.4.3 Different responses of the BPNNC, MLC and PPC to sample size

As the size of the training sample set increased, the number of correctly classified pixels
in both classl and class2 changed slightly for all three classifiers under two overlap
situations (Figure 2.6). There are slightly more pixels correctly classified by BPNNC
than MLC, and both much more than PPC. An interesting result is that under an
overlap situation, the MLC can classify classl with a higher classification accuracy
(Figure 2.6-2a), while the BPNNC can classify class2 better (Figure 2.6-2b).

2.4.4 Classification and pairwise comparison of the BPNNC, MLC and PPC

The optimised BPNNC has the highest classification accuracies, the MLC produces
intermediate classification accuracies, while the PPC has the lowest accuracies (Table
2.4). When viewed as classified images, Figure 2.7 highlights the performance of the
three classifiers on classification of the simulated data sets as well as the remotely
sensed imagery (Figures 2.7 (1a, 2a, and 3a for the BPNNC; 1b, 2b, and 3b for the MLC;
1c, 2¢, and 3c for the PPC)). The BPNNC (at the error level of 0.005, with 2500 sample
sizes and 6 hidden nodes) can separate two no-overlap classes with an accuracy of
100%. The BPNNC (at the system error level of 0.027, with 2500 samples and 9 hidden
nodes, and with a combination of momentum and learning rate of 0.5/0.7) produced
the highest classification accuracy of 97.32% for two simulated classes with overlap.
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The highest classification accuracy, 83.47%, for the remotely sensed imagery with 5
ground cover classes was obtained by the BPNNC (at the system error level of 0.1, with
9 hidden nodes, and with momentum of 0.01 and learning rate of 0.001. The PPC
produced many unclassified pixels for both simulated data sets and remotely sensed
imagery.
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Figure 2.6 Response of the backpropagation neural network classifier {(BPNNC), maximum
likelihood classifier (MLC) and parallelepiped classifier (PPC) to the different sizes of training
sample sets for the simulated data sets. Note that BPNNC has a system error level of 0.005 for the
“no overlap” situation and of 0.03 for the “overlap” situation.

In this study, under all three overlap situations (e.g. two simulated classes with no
overlap, two simulated classes with simple overlap, and five classes with more
complicated overlap), Z statistic tests show that both the optimised BPNNC and MLC
produced significantly higher accuracies than the PPC, and the BPNNC was
significantly better than the MLC (Table 2.5).
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Table 24 The classification accuracies of the three classifiers: the optimised backpropagation neural
netwark classifier (BPNNC), the maximum likelihood classifier (MLC) and the parallelepiped classifier
(P

Classifier Simulated data sets* Remotely sensed imagery
Two classes Two classes Five classes
with with with
no gverlap simple overlap more complicated overlap
Optimised BPNNC 100.00 97.32 83.47
MLC 99.47 96.55 81.35
PPC §1.96 77.64 54.13

* all results from the training set with 2500 samples per class.

Table 2.5 TPairwise comparison using Z-statistic between the confusion matrices for the three classifiers:
the optimised backpropagation neural network classifier (BPNNC), the maximum likelihood classifier
(MLC) and the parallelepiped classifier (PI’C).

Z for simulated data sets Z for remotely sensed imagery
Pairwise Two classes Two classes Five classes
comparison with with with
no overlap simple overlap more complicated overlap
BPNNC-MLC 7.3990 * 3.1609 * 2.7685*
BPNNC-PPC 46,9158 * 44.0775* 323173+
MLC-PPC 44.7468 * 41.6100 * 29.0271*

* with significant difference at 95% C.L {if Zt >1.96).

2.5 Discussion

One important result of this study is that the BPNNC can separate the two “no
overlapping” classes in feature space, while the MLC and PPC cannot. Since a decision
hyper plane can be formed by the neural network between two classes (Richards 1993),
just like the MLC and PPC (see Figure 2.1), theoretically, the neural network should be
able to classify two non-overlapping classes with an overall accuracy of 100% if the
neural network is well trained. Qur experimental result confirmed this description of
Richards’ (1993). With an increase of the overlap degree in feature space, the
classification accuracy decreases for all three classifiers (BPNNC, MLC and PPC). But
the BPNNC can be relatively well-trained and optimised to produce a significantly
better classification result than the MLC and PPC.

The simplified Skidmore et al. Ri value can indicate the overlap degree between two
classes in feature space. According to Richards (1993), a JM distance of 2.0 implies that
the classes may be discriminated with an accuracy of 100%. Based on this, the JM
values in table 3a show that the classes may not be discriminated for the “no overlap”
situations, which is not the case according to our result discussed previously. However,
if we look at the simplified Skidmore et al. Ri values, the “no overlap” sifuation has a Ri
value equal to 1.0, correctly indicating there is no overlap between two classes. Thus,
the JM distance informs a user on how well two classes may be classified, but gives no
information about the degree of overlap. When remotely sensed imagery (Landsat TM
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and SPOT-panchromatic), with a more complicated overlap situation among five
classes, was investigated, the highest simplified Skidmore et al.’s Ri values for the
forest and pasture classes indicated that these two classes, based on the sample set, do
not overlap with any other classes in feature space. The “built-up area” class has a high
level of overlap with other classes in feature space due to its lowest Ri-value of 0.897
and [M-value of 1.506. Since both the simplified Skidmore et al’s Ri value and the M
distance are calculated from the sample set, the sample design (i.e. size of sample set,
position of samples, representative of samples) will influence the accuracy of the Ri
value and the JM distance.

a! BPNNC b: MLC ¢: PPC

L
No
Overlap

2:
Simple
overlap

More
overlap

Built-up area

. Forest . Arable land
. Heath

Figure 2.7 The classified images from the backpropagation neural network classifier
(BPNNC}), maximum likelihood classifier {MLC) and parallelepiped classifier (PP’C) for
both simulated data sets and remotely sensed imagery. The left column is the cutputs from
BPNNC, the middle column from MLC, and the right column from PPC.

Pasture Unclassified
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The parameters of the BPNNC do influence the classification accuracy, especially, the
total system error level., The system error level represents a distance between the
network output and the defined target, therefore, a large system error gives a wide
range of variance for similar feature patterns to be trained and classified. Few studies of
neural network applications provide clear criteria for defining the system error level.
Skidmore et al. (1997) found that the total system error is inversely correlated with the
percentage of correct training data, but is not correlated with the test accuracy. The
result of this study shows that low systemn error produces higher classification
accuracy. The proper number of hidden nodes and the combination of momentum
coefficient and learning rate requires more experimentation. Gong et al. (1997)
recommended terminating the neural network training after reaching the best overall
accuracy.

Turning now to the response of individual classifiers to the simulated two classes with
overlap in the feature space, it has been shown that the MLC classifies classl with a
high accuracy, while the BPINNC vyields better accuracy with class2. The MLC is a
parametric method which utilises the mean and standard deviation of each band.
Therefore, as class] covers a large spectral range, the MLC can classify classl better
using the shortest Mahalanobis distance and also decides its lower accuracy in
classifying class2 due to its decision rule (see Figure 2.1b). A similar result was also
obtained by Downey et al. (1992), who found that the neural network classifier
achieved accuracies of 90.59% and 12.49% for woodland and cropland classes
respectively compared to 34.99% and 66.46% for the same two classes using the MLC. It
implies that integrating two classifiers together in a hybrid system may produce higher
classification accuracy because they compensate for each other.

2.6 Conclusion

Overlap of training classes in feature space produces misclassification by the BPNNC,
MLC and PPC for both simulated data and remotely sensed imagery. Experiments
based on the simulated data sets show that the BPNNC and MLC have different
accuracies in mapping two classes. A well-trained neural network classifies the
simulated data sets significantly better than the MLC, and the BPNNC successfully
discriminates between two spectrally discrete classes when using the simulated data
set. Classification of remotely sensed imagery (Landsat TM and SPOT-panchromatic)
shows again that there is a significant difference between the BPNNC and MLC, and
both are significantly better than the PPC.
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CHAPTER 3 Optimising Mapping Algorithms and
Two Integrated Classifiers for Mapping *

Abstract

Classifiers, used to recognise patterns in remotely sensed images, have complementary
capabilities. This study tests whether integrating the individual classifiers or the results
from individual classifiers improves classification accuracy. Two integrated approaches
were undertaken. One approach uses a consensus builder to adjust classification cutput
in the case of a discrepancy in classification between maximum likelihood, expert
system and neural network classifiers. When the output classes differed, the producer
accuracies for each class were compared and the class with the highest producer
accuracy was selected to represent the pixel. The consensus builder approach did not
produce a map with statistically significantly higher accuracy when compared with the
backpropagation neural network classifier, but it did significantly better than the
maximum likelihood and the expert systemn classifiers, A second approach integrates
the output of a rule-based expert system with a neural network classifier (ESNNC); this
is a new technique in the field of image processing. The ESNNC approach produced
maps with the highest accuracy.

Key Words: integrated, neural network, expert system, consensus builder, mapping
accuracy

This chapter is based on Liu, X., A. K. Skidmore, and H. Van Oosten. {in review-a).
Two integrated classifiers improve the accuracy of land cover mapping. ISPRS
Journal: Photogrammetry and Remote Sensing.
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Operationalisation of Remote Sensing. 1999, Enschede, The Netherlands. The
presented title: Integrated Classification Systems.
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3.1 Introduction

Different classification algorithms produce different results even with the same training
sets (Benediktsson et al. 1990b, Benediktsson et al. 1990a, Hepner et al. 1990, Key et al.
1990, Bischof et al. 1992, Kanellopoulos et al. 1992, Civeo 1993, Pacla and Schowengerdt
1994, Solaiman and Mouchot 1994, Skidmore et al. 1997, see also Chapter 2}. For some
application fields, neural network classifiers yield better results, while for other
applications a statistical classifier {such as the maximum likelihood classifier) performs
better (Kanellopoulos et al. 1993). For example, Brown et al. (1998) applied the
backpropagation neural network classifier (BPNINC) and the maximum likelihood
classifier (MLC) to classify glaciated landscapes. The BPNNC mapped rare classes with
a high accuracy, whereas the overall pattern (of all classes} was better reproduced with
the MLC. Brown et al. (1998) analysed the reasons for different results produced by the
MLC and BPNNC and surmised that because of the statistical nature of the MLC, the
spatial auto-correlation patterns that were fairly strong in the original variables were
maintained in the classification. In comparison, the spatial structure of the BPNNC
output reflects its non-linearity, so the BPNNC is sensitive to slight variations in the
inputs, resulting in less spatially coherent output patterns. Such conclusions require
further testing and analysis, as the cause of differences in accuracy between classifiers
is not completely understood (Fierens et al. 1994).

It has been shown that no image processing classifier is perfect (Matsuyama 1987).
However, classifiers may also be assumed to have complementary capabilities
(Matsuyama 1987). Therefore, a useful and practical approach for optimising
classification performance is to combine classifiers in order to increase classification
accuracy (Kanellopoulos et al. 1993, Brown et al, 1998).

Combined methods can take advantage of two or more lines of evidence based on
different algorithms. For instance, a combination of the MLC and BPNNC may use the
ability of the MLC to identify the overall pattern and the ability of the BPNNC to
discern fine details. Lu {1996) integrated classification results derived from individual
classifiers using the Dempster-Shafer theory of evidence. In another integrated
classification method, Kanellopoulos et al. {1993) used a second BPNNC to train only
those pixels where there was a discrepancy between classes produced by the MLC and
the first BPNNC. The combined classifier had an improved performance compared
with the single classifiers. Ho et al. (1994) used class set reduction and reranking
methods to combine different classifiers. Another approach is to sum the class
membership values for each class derived from different methods and to assign the
class to the pixel with the highest combined value (Brown et al. 1998).

In the field of pattern recognition, multiple classifier systems have proven to be a
powerful solution for difficult pattern recognition problems involving large class sets
and noisy input, for example, handwriting recognition (Ho et al. 1994, Brown et al.
1998). Achieving an optimal organisation is a challenging and open problem (Ho et al.
1994). Research on integration of classifiers is still at an early stage and much more
exploration needs to be done (Kanellopoulos et al. 1993). This study tests whether two
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new integrated approaches (viz. 1. a consensus builder system; 2. a combined expert
system and neural network system) can improve classification accuracy.

3.2 Description of classifiers

3.2.1 Three individual classifiers

The maximum likelihood classifier (MLC) is a well-known parametric method. It is
based on the assumption that the data may be modelled by a set of multivariate normal
distributions (Gaussian). With statistical parameters, a changed “Mahalanobis
Distances” can be calculated. Details of the MLC can be found in Tou and Gonzalez
(1974) and Richards (1993). The decision rule of the MLC is that the shortest modified
“Mahalanobis Distance” to a class mean for a pixel will define the pixel to that class.
This distance can represent the probability of a given pixel value being a member of a
particular class. This algorithm looks at the shape, size and orientation of the training
sample locations. If the assumption of a normal distribution (in feature space} for each
class training area is correct, then the classification has a minimum overall probability
of error and the MLC is the optimal choice {Swain 1978, Paola and Schowengerdt 1994).
However, the distribution of each training set is sometimes not normal.

The second individual classifier considered in this study is the standard
backpropagation neural network classifier (BPNNC). The advantages of the BPNNC
include (Paola and Schowengerdt 1995, Skidmore et al. 1997, Openshaw and Openshaw
1997): (1) non-parametric nature, (2) arbitrary decision boundary capabilities to manage
nonlinear modelling tasks, (3) easy adaptation to different types of data and input
structures, (4) capability of identifying subtle patterns in training data, (3) fuzzy output
values, (6) good generalisation of the input data, (7) capability to process noisy data.

There are two stages involved in the BPNNC: the training stage and the classification
stage. The network system is trained until the targeted system error is achieved
between the desired and actual outputs of the network, Once training is complete, the
trained system is used for classification. This algorithm is a popular learning method
capable of handling very large data sets. The backpropagation algorithm minimises the
error function in weight space using the method of gradient descent or convergence
(Rojas 1996). Details of the BPNNC may be found in Richards (1993), Demuth and Beale
(1994) and Skidmore et al. (1997). Problems with the BPNNC include difficulties that
the user faces in deciding the input parameters, as well as the output from a BPNNC
being stochastic, due to the starting network weights being chosen randomly
(Skidmore et al. 1997).

The third individual classification system used in this study is the expert system
classifier (ESC), also known as a knowledge-based system. Both the ESC and BPNNC
have been used to integrate information from geographical information systems (GIS)
during the image understanding process (Wilkinson et al. 1992). Expert or knowledge-
based methods differ quite considerably from neural networks although they are often
grouped together as “artificial intelligence” (Al) techniques {Wilkinson et al. 1992). The

34




buegrated Classiiication Meoriduns e Improve Mapping Accuraey

expert system structures vary widely. However, they have been characterised by two
components (Forsyth 1989, Skidmore 1989, Skidmore et al. 1996b): the "knowledge
base" to store expert knowledge and rules, and the "inference engine” which processes
the system. Two other components are also important, "a knowledge-acquisition
module” and "an explanatory interface'. The inference engine may be based on the
Dempster-Shafer mode] of evidence integration to combine the individual pieces of
“evidence” (Wilkinson et al. 1992), or a rule-based model through Bayesian probability
reasoning {Skidmore 1989, Skidmore et al. 1996b).

The Bayesian method is based on a well-understood technique from probability theory
and is the most widely used approach in dealing with uncertainty (Lu 1996). The basis
of the Bayes’ algorithm is that the likelihood of a hypothesis occurring given a piece of
evidence, may be thought of as a conditional probability (Skidmore et al. 1996b).
Attributes of the raster cell of the data layers are input to the system and matched with
the information in the knowledge base. An expert system then infers the most likely
class at a given cell, using Bayes” Theory. It is commonly applied in remote sensing
where topographic information provides a priori probabilities of a pixel containing a
given vegetation type, and then spectral information is used to revise these
probabilities, resulting in improved vegetation cover classification accuracy (Strahler et
al. 1978, Richards et al. 1982, Pereira and Itami 1991). Details of how the Bayesian
expert system works may be found in Forsyth (1989} and Skidmore (1989).

However, the Bayesian approach has been criticised for requiring a user to assign a
priori probability to every event subjectively (Lu 1996), thereby taking a long time to
develop the rule base. However, this method of data base creation appears to be best
for user comprehension and transparency. It is also possible that an expert system
could be used in combination with a neural network. Such a concept of an integrated
neural network and expert system has already been suggested outside of the remote
sensing field (Caudii 1990, Wilkinson et al. 1992).

3.2.2 Two new integrated classifiers

The consensus builder (CSB) uses classification results (specifically the producer
accuracies of classifiers) to improve map accuracy (Figure 3.1a}. The producer accuracy
is the proportion of the correctly classified pixels in a class to the total pixels of that
class in the reference data (Congalton 1991). The outputs of the three individual
classifiers (MLC, ESC and BPNNC) are input into the CSB. The first phase of the
algorithm checks whether the same class is predicted for a given grid cell {conditionI). If
conditionl is satisfied, the CSB accepts the class for the pixel (decisionI). If the result does
not satisfy condition1, then the CSB uses condition2 to check whether there is an
agreement among any two of three classifiers. If the CSB finds such an agreement,
decisionl is used to accept the class for that pixel. If three classifiers have completely
different results for a certain pixel {condition3), the producer accuracies are used to
make a judgement. The class with the highest producer accuracy is taken as the output
of the CSB for that pixel (decision2).
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The integrated expert systern and neural network classifier (ESNNC) includes two
parts (Figure 3.1b). The first part of the ESNNC is a cascaded classification system
(ESNNCI). The output of the rule-based expert system is used as an extra information
layer for the neural network. Then, the producer accuracies of ESC and ESNNCI, as
well as some additional expert rules, are used to re-judge the output at the second part
(ESNNC2).
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Conditionl - when three classifiers all agree. and neural network classifier (ESNNC). It

Condition2 - when any two of three agree. includes two parts: ESNNCl and
Decision] - assign the class with agreement. ESNNC2.
DecisionZ - assign the class with the highest
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Figure 3.1 Two integrated classifiers: a - a consensus builder, and b - an integrated expert
system and neural network classifier.

3.3 Study area

The study area is situated in the Overijssel Province of the eastern Netherlands (see
Figure 3.2). Singh et al. (1996) have described the area in detail. [t lies between 52026'3("
and 52%30' north latitude and 6°21'30" and 627'30" east longitude. Temperature ranges
from 10 °C to 33 °C during summer and from -11 °C to 10 °C during winter. The mean
annual rainfall varies from 700 to 725 mm in the arca. The area has an undulating hilly
terrain with an altitude of 5 to 80 m above mean sea level. The study area consists of
two hills mostly covered with forest and heath, which are surrounded by alluvial
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plains used mainly for intensive agricultural production. Agricultural fields are also
found along the gently sloping hillsides. Soils in the area are mainly sandy with the
hills having coarser sands than the plains. Agricultural soils are reclaimed from
marshland in the lower plains where the water table is high.

Eleven land cover classes were obtained based on visual interpretation of the aerial
photographs and field survey: pine forest (PF), mixed forest with other conifer and
deciduous broadleaf trees (MF}, open woodland (OW), heath (H), grass (G), bare soil
(BS), pasture (P), arable land (A), built-up area (B), road (R), and water (W).

Archemerberg

Z Lemelerberg

N~

Figure 3.2 The study area consists of two hills called Lemelerberg and Archemerberg in the
Netherlands.

3.4 Methods

3.4.1 Data preparation

Remote sensing data including Landsat TM images {(1995) and a SPOT panchromatic
image (1997) were used as input to the classifiers. Ancillary GIS data include elevation,
slope gradient and aspect, soil type and terrain type, which were georeferenced to the
same coordinate system (UTM) as the remotely sensed imagery. Both the remotely
sensed and ancillary data were resampled to a pixel size of 10 m by 10 m. From aerial
photographs, obtained in 1995 and 1997, sample areas, including training and testing
sets, were selected and checked in the field with recording the land cover types.

Highly correlated data lavers were excluded from the analysis in order to reduce the
data, and ease the expert knowledge extraction bottleneck discussed above. Table 3.1
shows the correlation coefficients between pairs of data layers. The threshold vatue for
excluding correlated data layers was subjectively set at 1?=0.75 for RS data layers (Table
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3.1a) and 1?=0.65 for GIS data layers (Table 3.1b), resulting in six data layers being
selected for the study (i.e. SPOT-panchromatic, Landsat TM2 and TM4, elevation, slope
aspect and soil type).

Table 3.1 Correlation analysis of data layers.
a: correlation analysis of remotely sensed data layers

SPOT-PAN TM1 ™2 ™3 ™4 TM5 ™7
SPOT-PAN 1.00 0.68 071 072 0.31 0.69 0.74
TM1 1.00 0.88 0.90 037 0.68 0.84
ThM2 1.00 0.94 0.56 0.77 0.84
™3 1.00 042 0.77 0.89
TM4 1.00 0.55 0.36
™5 1.00 0.85
TM7 1.00

b: correlation analysis of other GIS data layers

Slope aspect  Elevation  Slope gradient  Soil type Terrain type
Slope aspect 1.00 -0.29 -0.34 -0.04 0.26
Elevation 1.00 0.65 -0.17 -0.78
Slope gradient 1.00 -0.09 -0.67
Scil type 1.00 019
Terrain type 1.00

Expert knowledge is central to the operation of the ESC {Skidmore 1989). The
estimation of the a priori probabilities for the expected classes and the initial conditional
probabilities for all the evidence (j.e. the selected data layers) need to be estimated
before running the ESC. They were extracted from the expertise and knowledge from
ground survey (Table 3.2).

3.4.2 Classification and testing

Following data preparation, classification by the three individual classifiers and two
new integrated classifiers were executed using the same input data layers and training
sample sets. The ESC did not depend on the training sample sets since it is based on the
expert knowledge and Bayesian probability reasoning. All the experiments of the
BPNNC are based on the experience obtained from work in Chapter 2.

The three-layer BPNNC was implemented by using a neural network package in PCL
software (PCI 1998). It was configured with 6 input nodes, 8 hidden nodes and 11
output nodes. The parameters of learning rate, momentum and total system error were
set at 0.001, 0.01 and 0.5 respectively, based on the experimental results suggested by
Skidmore et al. (1997}). The MLC was executed in IMAGINE {(ERDAS 1991). The ESC
and CSB were developed for this study in IDL (Interactive Data Language) (RSI 1997).

The accuracies of the output maps produced by the different classifiers were estimated
using the overall accuracy and Kappa or KHAT statistic (Cohen 1960, Congalton 1991).
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Cohen (1960) described a Z test, based on the Kappa value, to check whether there is a
statistically significant difference between two error matrices.

Table 3.2 Expert knowledge exiraction from data layers for the expert system classifier.

a: ¢ priori probabilities estimation for the expected classes
Classes PE__MF ow H G BS P A E R w
Probability 018 014 0.08 0.06 0.03 0.01 0.21 0.16 0.08 Q.02 0.03

b: Initial conditional prebabilities estimation for the selected data layers

Evidences PF MF ow H G BS r A B R w
4-7 001 001 0.01 0.01 0.01 0.01 09 0.2 0.01 0.01 09
711 02 04 001 o0 0.1 08 046 06 0.9 09 0.01
Ele. 11-17 02 0.5 0.7 g1 0.05 0.0 0.2 0.8 0.01 0.5 0.
(m) 17-51 08 0.6 0.7 0.3 0.1 a.0n 0.01 0.7 0.01 0.01 001
3141 09 0.6 0.7 0.5 2.5 0.01 001 0.01 0.01 0.01 0.01
41-56 08 0.8 a6 09 a7 08 on 0.01 201 0.0 0.01
50-82 0.3 0.6 06 0.5 03 0.05 0.01 0.01 0.01 0.01 0.01
NE 08 07 08 0.8 0.7 01 0.1 0.1 om 04 0m
ES 0.8 0.7 0.01 0.9 06 01 0.3 0.2 0.7 09 001
Asp, 5w 08 0.7 0.01 6 D8 0.8 05 09 04 0.8 0.01
WN 0.8 0.7 0.8 01 0.8 0.8 01 01 0.01 0.0 0.01
NO 03 0.2 0.01 05 0.5 0.1 e 0.5 09 0.5 09
1 001 0.0 0.01 0.01 09 0.m 0.01 0.01 0.01 0.01 0.01
2 001 001 a01 0.01 0.01 0.01 08 0.7 0.01 0.01 0.9
3 0 00 of 0.01 0.0 om 07 001 0.01 0.01 om
Soil 4 0.4 0.01 0.01 0.01 0.01 0.m 0.7 0.01 0.01 0.01 0.01
type 5 05 0.01 03 0.01 0.01 0.01 0.01 0.01 0.0 001 0401
6 001 oo 0.01 0.01 0.01 a0 08 om 0.1 0.01 0.01
7 09 0.8 0.8 0.9 2.9 08 0.01 0.5 0.01 0.01 001
8 a8 08 0.7 09 001 08 a7 0.5 09 09 .01
9 0.4 0.3 0.01 0.01 0.01 0.01 0.5 0.9 a9 0.9 02.01
32-40 09 08 0.05 01 01 0.01 001 0.01 0.01 0.0 0.01
41-50 03 0.2 0.8 0.9 09 0.01 09 0.05 0.01 0.01 09
SPP 51-60 001 001 0.1 21 0.2 0.01 03 0.9 0% 09 0.9
61-80 001 001 0.01 0.01 o001 am 001 09 04 0.0 on
81-122 0.01 001 0.01 0.01 0.01 0.9 0.01 0.01 0.01 0.01 0.01
13-17 09 0.8 03 0.4 a.01 001 0.05 0.05 om 0.8 005
18-23 005 0.05 09 0.9 0.9 0.01 0.9 0.9 09 0.7 09
™2 24-35 oM 001 001 0o 0.6 03 .05 0.3 0.01 0.c1 .01
36-39 001 0.01 0.01 0.01 0.05 0.9 0.01 0.01 .01 0.01 301
14-25 0 om 0.03 02 00 0.01 001 09 0.2 0.05 07
26-35 01 0.9 08 08 00 0.05 0.0 08 a8 09 0.5
™4 3645 001 01 0.03 0.01 0.8 0.05 03 0.4 0.05 0.0t 0.01
46-55 o0 041 0.01 om 05 0.3 08 0.m 001 om 0.0
5667 .01 0.01 0.01 0.01 0.05 0.9 0.5 0.01 0.01 0.01 0.01

Ele-elevation, Asp.-aspect, SPP-SPOT-panchromatic, TM-Landsat Thematic Mapper. PE-pine forest,
MF-mixed forest {other coniferous and deciduous broadleaf species), OW-open woodland, H-heath, G-
grass on hill, BS-bare soil en hill, PL-pasture in the plain area, A-arable land in the plain area, B-built-
up area, R-road, W-water.

3.5 Results

Table 3.3 includes all error matrices from the two integrated algorithms (labelled “a”
and “b" respectively for the error matrices of the ESNNC and CSB) and the three
individual classifiers (labelled “c”, “d” and “e” respectively for the error matrices of the
BPNNC, ESC, MLC). The classified images are shown in Figure 3.3 with the same label

"

sequence from “a” to “e”.
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Table 3.3 Error matrices of the integrated expert system and neural network classifier (ESNNC), the consensus
builder {CSB), the backpropagation neural network classifier (BPNNC), the expert system classifier (ESC) and the
maximum likelihoed classifier (MLC). Note: PF-pine forest, MF-mixed forest with deciduous broadleaf and other
conifer tree species, H-heath, G-grass, BS-bare soil, P-pasture, A-arable land, B-built-up area, R-road, W-water, OW-
open woodland, PRA-producer accuracy, and OVA-overall accuracy,

a From Image Classification
ESNNC PE MF H [ BS P A B R w OW __ DPRA
PF 84 3 0 0 0 0 0 i} 0 [} 3 0.93
ME [ 57 Q 0 0 0 Q 3 0 0 3 .83 Average PRA
o H 0 0 85 0 ¥ 0 o 0 Q 0 25 0.72 =80%
g2 G 0 1 0 89 0 9 0 0 0 0 0 0.99
Y Bs ] 0 2 0 # 0 0 0 o 0 7 090
I 0 i 0 0 0 63 il o i 0 0 100
E A 0 0 Q 0 ] 4 78 1 1 0 0 0.97
£ B 0 0 0 0 0 7 0 66 17 ] 0 Q.73 OV A=8%
R a 0 0 [\ o 6 7 19 34 3 5 .46
W 0 2 ] 0 0 0 18 0 2 53 0 071
OW 4 4 7 7 0 0 Q 8 1 0 32 0.51
B From Image Classification
5B IF MF___H G 85 P A B [ W Ow__ PRA
FF 82 8 [ 0 0 0 [ [§ 0 )] [ 091 Average FRA
MF 2 67 0 0 0 0 2 4] 0 0 0 087 =71%
g H 1 2 74 1 7 [\ o 0 0 0 7 082
¢ G 0 0 0 80 0 10 ] 0 ] bl 0 089
s BS 0 0 1 ) 87 0 2 0 0 0 o 097
zr 0 ] 0 i 0 63 0 0 0 0 0 1.00
E A 0 0 0 0 0 i} 78 i} 2 0 0 0.97
E B 0 4 Q 1} 0 10 18 26 34 2 0 0.2 OVA=72%
R 0 0 Q ¢ a 6 15 6 24 3 10 6.32
w 0 0 0 o 0 4 15 0 10 46 o 061
ow 5 5 21 13 1 0 9 5 3 0 1 0.02
< From Image Classification
BPNNC PF MF___H G BS P A B R W oW PRA
PF 77 & 0 0 0 0 0 [{] 0 4 3 (.86 Average PRA
MF El 64 0 0 0 0 0 0 0 0 0 0.93 =73%
s H 1 ] 72 1 0 [ 9 ] 0 [} 16 080
g G i 3 [\ 80 0 8 0 0 0 0 1 0.8g
5 B 0 0 0 0 90 0 0 o 0 0 0 1.00
s P 0 ] 0 0 0 63 Q 0 0 o 0 100
£ A 0 0 0 0 0 0 60 2 7 11 0 0.75
g B i 0 0 0 0 7 2 39 40 2 g 043 OVA=F4%
R 0 0 0 0 0 3 8 7 k1 11 1 042
w o 0 0 a 0 0 0 0 10 65 o 0.87
[ 2 17 12 H 0 ) 17 3 0 3 0,05
D: From Image Classification
EsC TF ME H G BS. P A B R w oW PRA
TF o6 15 H 0 0 [ 0 o 0 3 073 Average PRA
MF 0 56 7 0 ¢ ] 0 6 o ] a 081 =0%
H - 2 40 0 0 0 I 0 ] [ 2 044
£ c o ¢ 12 & o0 8 3 0 0 0 0 07
£ B o 12 14 H 15 0 M H 1 0 4 017
3 P Q 0 b 0 0 63 b ] o 0 a 1.00
g A 0 0 g 0 0 o 7 1 o 0 ¢ 0%
g B 0 0 0 0 o 4 kxS 53 a 0 [ 039 OVA=59%
R 3 1 o 0 o 10 H 15 [ 3 1 0.00
w i [ 0 i a 4 18 0 ] 53 o 071
ow 4 5 4 3 0 0 11 7 0 0 25 0.40
Er From Image Classification
MLC FFE MF H G BS [d A B R W oW PRA
PE 83 7 0 [ Q [} ] 0 [ 0 0 0.52 Average PRA
MF 9 5 0 L] 9 0 ] o 0 o 0 0.78 =61%
H t 0 67 1 7 0 0 o 1 0 13 074
¢ @ ] 0 ] 83 o 5 0 0 0 o 1 032
E Bs 0 0 1 o 82 i 7 0 0 [ 0 [
T 0 o 0 o ] 53 0 0 0 0 0 100
E A o o 0 o o o ] 0 11 0 0 0.86
2 u 0 o 0 1 3 13 & 0 &7 0 o 000 OVA=62%
3 0 o 0 2 i 1% 1 0 a2 0 12 657
w o 6 0 0 0 2 o 9 ] [} 4 000
ow 1 1 35 16 0 ¢ 0 [} El [ 1 0.02
e

40




Infegrated Classificasion Algorithus o Inprove Mapping Acouraey

The integrated ESNNC produces the highest overall accuracy of 80 percent as well as
the highest producer accuracies (Table 3.3a and Figure 3.3a) when compared to the CSB
and three individual classifiers. The CSB yielded an overall accuracy of 72 percent
{Table 3.3b and Figure 3.3b); slightly lower than the BPNNC (Table 3.3¢ and Figure
3.3c) but higher than the ESC (Table 3.3d and Figure 3.3d) and the MLC (Table 3.3e and
Figure 3.3e). The BPNNC incorrectly mapped the “water” class in the south-western
corner of the study area, but was corrected by the CSB approach. The “built-up area”
class output from the CSB exhibits an obviously different pattern compared with the
three individual classifiers.

Among the individual classifiers, the BPNNC produced the highest overall accuracy of
74 percent, followed by the MLC with an overall accuracy of 62 percent and the ESC of
59 percent. The BPNNC classification appears similar to the output of the ESNNC.
Table 3.4 summarises the overall accuracy, Kappa value and Kappa variance for the
different classifiers, The ESNNC has the highest Kappa value and the smallest Kappa
variance,

Using the values in Table 3.4, pairwise comparisens (using the Z statistic test) of the
three individual and the two combined classifiers show that there are significant
differences between the integrated ESNNC and the other four classifiers (Table 3.5).
There are also significant differences between the CSB, MLC as well as the ESC.

In sunmary, the backpropagation neural network classifier (BPNNC) has a higher
accuracy than both the traditional maximum likelihood classifier (MLC) and the rule-
based expert system classifier (ESC), whilst the combined ESNNC produces the highest
mapping accuracy.

Table 34 Overall mapping accuracies, Kappa values and Kappa variances from different
classifications.

Overall accuracy  Kappa value  Kappa variance

Integrated expert system and neural 0.80 078 0.00024
network classifier (ESNNC)

Backpropagation neural network classifier 0.74 0.71 0.00025
{BPNNC)

Consensus builder (CSB) 0.72 0.69 0.00026
Maximum likelihood classifier (MLC) 0.62 0.58 0.00031
Expert systern classifier (ESC) 0.5%9 0.55 0.00031

Table 3.5 Z statistics for pairwise comparison between any two of five classifiers: integrated expert
system and neural network classifier (ESNNC), consensus builder (CSB), backpropagation neural
network classifier (BPNNC), expert system classifier (ESC) and maximum likelihood classifier (MLC).

ESNNC BPNNC CSB MLC ESC
ESNNC -
BPNNC 3.33* -
CSB 427* 0.94 -
MLC 8.80* 545* 4.49* -
ESC 10.17 * 6.77 * 5.80* 1.26 -

* Significant difference at 95% C.1.
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a from ESNNC

b: from CSB

- Pine forest
- Mixed forest
- Heath

SRR (Grass

- Bare Soil
m Pasture

Arable land

- Built-up area
“ Road
- Water

- Open woodland

¢; from BPNNC

d: from ESC

e; from MLC

Figure 33 Classifier images from the integrated expert system and neural network classifier
(ESNINC), consensus builder (CSB), backpropagation neural network classifier (BPNNC), expert
system classifier (ESC) and maximum likelihood classifier (MLC).
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3.6 Discussion

In this study, two new methods for integrating individual classifiers were developed to
improve mapping accuracy. For the CSB, the innovation is to take the producer
accuracy of each classified pattern into account. In the ESNNC approach, the novel
approach is to use the ESC output as an input layer to the BPNNC (e.g. represented by
ESNNC1 in Figure 3.1b). Then, the producer accuracies of the classes produced by the
ESC and ESNINC, as well as the expert rules, were used to classify the ESNNCI output
in order to obtain the final map.

The integrated ESNNC yielded the highest classification accuracy. The improvement in
accuracy is attributed to the explicit knowledge of experts. The knowledge assists the
neural network classifier in recognising “common-sense” relationships between output
class and environmental variables (such as bare soil, open weodland etc) and these
relationships form patterns in the final output map. The study also hints that more
accurate and reasonable expert knowledge may allow the combined ESC and BPNNC
to achieve an even higher mapping accuracy. This might be applied to mapping at
Anderson-level-IIl (e.g. forest types) (Skidmore et al. 1997) and detecting vegetation-
based habitat types. Interestingly, the individual ESC classifier has the lowest overall
accuracy of 59 percent, perhaps because knowledge remains poor in this study area.

The information from different layers may be “diluted” in the process of classification
by multiple classification methods. The classified image with the highest overall
accuracy from the initial stage (ESNNCT) was improved by a final-stage correction,
based on the output map of the expert system and some additional expert rules,
thereby allowing the output patterns and expert rules to be re-emphasised in the final
classification. Hutchinson {1982) proposed a similar post-classification technique te that
implemented in this case.

The combined CSB obtained an intermediate level mapping accuracy, between the
BPNNC and the MLC. The CSB increases the chance for a certain pixel to belong to a
certain class when there is an agreement on it between at least two classifiers. Where
the three classifiers (BPNNC, MLC, ESC) assign different classes to a pixel, the decision
taken based on the preducer accuracy is a crisp decision, which may increase the
possibility for assigning the correct class to a pixel, but may also cause an error when
the overall accuracies of different classifiers have a large difference. This is, probably, a
reason for the CSB obtaining an intermediate accuracy compared with the three
individual classifiers, indicating that an integrated algorithm may not out-perform an
individual classifier (Lu 1996).

The classifiers overestimated the area of the “water” class - for example, it should not
appear in the south-western corner of Figure 3.3¢ as well as in many places in the
eastern side of the classified images (Figure 3.3-a, b, d}. One possible explanation could
be that there is a high water table in the flood plain, reducing the DN values of the
remotely sensed images.
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Both the ESC and BPNNC are more “expensive” algorithms than for example the
classical MLC. The ESC requires time to extract and tune the knowledge in order to
create rule bases, while the BPNNC requires hefty computer resources to train the
system with the different configurations, Although both techniques have been criticised
on this aspect, we explored the advantages of combining these techniques.

3.7 Conclusions

The classifiers tested in this study perform differently, and produce different
classifications. The integrated approach, ESNNC, achieved the highest mapping
accuracy and is significantly better than the integrated consensus builder classifier and
the other three individual classifiers. It may be concluded that incorporating expert
knowledge improves the classification accuracy of the neural network,
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CHAPTER 4 Mapping the Giant Panda Habitat
Using an Integrated Expert System and
Backpropagation Neural Network Classifier *

Abstract:

For effective panda conservation, it is important to be aware of the extent and change
over time of the spatial pattern of panda habitats. Mapping is an effective approach for
wildlife habitat evaluation and monitoring. Little work has been done to map panda
habitat with remote sensing and geographic information system (GIS). The application
of recently developed artificial intelligence tools, including the expert system approach
and the neural network approach, may have an impact on panda habitat mapping.
Both allow the integration of qualitative and quantitative information for medelling
complex systems and can be built into a GIS. This research builds, for the first time, a
mapping approach for panda habitat assessment which integrates expert system and
neural network classifiers and uses multi-type data within a GIS environment. Results
show that both the ground-cover-based potential panda habitat and the suitability-
based panda habitat in Foping Nature Reserve are mapped with higher accuracy
(above 80%) compared with non-integrated classifiers: expert system, neural network
as well as maximum likelihood algorithms. Z-statistic test shows that the integrated
expert system and neural network classifier (ESNNC) is significantly better than those
non-integrated classifiers.

Key words: expert system, neural network, rernote sensing, GIS, integrated mapping
algorithm, spatial analysis, panda habitat, Foping Nature Reserve, China.

1. This chapter is based on Liu, X, M. C. Bronsveld, A. K. Skidmore, T. Wang, G.
Dang, and Y. Yong. (in review-b). Mapping the giant panda habitat using an
integrated expert system and neural network algorithm. International Journal of
Geographical Information Science.

2. Part of this work was presented at Panda 2000 Conservation Priorities for the New

Millennium - An International Conference in San Diego, US, October 15-18, 2000.
The presented title: Mapping panda habitat suitability.
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4.1 Introduction

Habitat is any spatial unit that can be occupied by an individual animal, no matter how
briefly (Baker 1978). The condition of wildlife habitat types influences the species’
distribution and performance, therefore, wildlife habitat evaluation has become a part
of world biodiversity research as reflected by Miller's book (1994). Wildlife habitat
evaluation requires recognising the environmental factors which relate to the organism
under consideration, and generally includes four main research fields: habitat
availability (Scepan et al. 1987, Sader et al. 1991) and utilisation {Johnson 1980,
Augustine et al. 1995), habitat spatial pattern (Gustafson et al. 1994) and fragmentation
(Tabarelli et al. 1999), habitat suitability rating (Prasad et al. 1991, Roy et al. 1995,
Amuyunzu and Bijl 1996), and habitat change detection (Sader et al. 1991, Prasad et al.
1994).

Wildlife habitat mapping is an important aspect in these research fields. Mapping
various wildlife habitat types provides data for inventory and analysis, and so provides
the habitat manager with information for monitoring (Kerr 1986). There are several
purposes to map wildlife habitat in wildlife habitat management (Cooperrider et al.
1986): to show geographic locations and relationships of wildlife habitat types; to show
community (types of habitat) interspersion; to quantify wildlife habitat types; to
overlay wildlife habitat types with other resource inventories; and to provide
geographic locations to record site-specific animal occurrence and use. Wildlife habitat
mapping is similar to any type of land cover mapping (De Wulf et al. 1988). For
instance, Thompson et al. (1980) mapped the caribou’s habitat through delineating
broad vegetation cover types, and Ferguson (1991) mapped the most important
summer foraging habitat for muskoxen including the wet sedge meadow, graminoid
tundra and graminoid/dwarf shrub tundra cover types.

The giant panda (Ailuropoda melonolenca) is an endangered animal species and
surviving now in only six mountain regions in China. Over timne, its forest-environment
habitat has been reduced and fragmented. Although the shrinking of the panda’s range
is partially the result of climatic changes during the Pleistocene epoch, it has mostly
been caused by people (Schaller 1993, Schaller et al. 1985, WNR and SNU 1987). The
economic development and population explosion in China has increased the loss of
panda habitat. Mapping of forest cover, by MacKinnon and De Wulf (1994), showed
that the area of potential panda habitat in Sichuan has shrunk from 20,000 km? in 1974
to only 10,000 km? in 1988. The situations in Gansu and Shanxi are similar {(MOF and
WWF 1989). For effective panda conservation, it is important to know the current
panda habitat and its changes. Restoration of lost panda habitat may be impossible, but
the remaining panda habitat can be maintained and protected. De Wulf et al. (1988)
emphasised that, in the long term, the creation of a digital panda habitat database and a
panda habitat monitoring system would provide useful tools for efficient conservation
management.

Remote sensing (RS) and geographical information systems (GIS) are two suitable
techniques for analysing, monitoring and managing the earth resources (Al-Garni
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1996). The need for relatively quick and potentially less expensive ways to compile
habitat information has led to the use of satellite data (Ormsby and Lunetta 1987), and,
with the aid of a GIS, to reproduce or update surveys and to manipulate the data to
illustrate relatively complex spatial habitat relationships (Wheeler and Ridd 1984). GIS
has been applied in panda habitat research (Ren et al. 1993, Ouyang et al. 1996, Liu et
al. 1997 and 1998, and Chen et al. 1999). The importance of integrating RS and GIS has
been realised by many scientists who explored and applied this approach to wildlife
habitat evaluation (Scepan et al. 1987, Tappan et al. 1991, Roy et al. 1995, Amuyunzu
and Bijl 1996). However, application of remote sensing techniques to wildlife habitat
mapping is still a developing field (Li 1990). Panda habitat research based on RS is even
more limited.

Obtaining information relating to panda habitat in an effective way is a key area of
research at present. In most cases, the panda habitat information has been acquired
from ground surveys. During the past two national panda censuses in 1974-1977 and
1985-1988, mapping panda habitat (such as cover types, extent, panda locations) was
done mainly based on topographic maps and ground surveys. It is clear that such
ground surveys in a mountainous terrain covered by dense forests are time consuming
and labour intensive. In such circumstances, RS is undoubtedly the most efficient way
to acquire habitat information quickly and at low cost, and the repetitive coverage by
satellite systems adds a temporal dimension to habitat mapping (De Wulf et al. 1988).
The multispectral and multitemporal imagery can provide much information about
land cover and be used for mapping wildlife habitat {Roy et al. 1986, Ferguson 1991,
Prasad et al. 1991). Although RS data have been applied to panda habitat assessment in
a few panda nature reserves, the assessments were implemented mostly based on
visual interpretation (Morain 1986, De Wulf et al. 1988 and 1990, Ren 1989, Chui and
Zhang 1990, Li 1990, Ren et al. 1993, MacKinnon and De Wulf 1994). The disadvantage
is that visual interpretation of the remotely sensed images brings subjectivity into
defining the boundaries between different land cover types, therefore, a different
interpreter may produce a different land cover classification.

However, in digital image analysis, conventional methods do not yield satisfactory
classification results at the forest type level, and it is difficult to get an accurate map
using conventional classification methods for mapping the forest types (Skidmore 1989,
Skidmore et al. 1997). Hollander et al. {1994) mentioned that a new integrated approach
joined with an artificial intelligence (Al) system was expected to be applied to wildlife
habitat evaluation. The application of Al tools and techniques may have an impact on
mapping the forest types, since learning procedures could be built into a GIS to help it
adapt to the imprecise and voluminous nature of geographically-based data as the
system acquires knowledge about the phenomenon (Peuquet et al. 1993). Such an
integrated RS/ GIS/ Al can deal with a large amount of data input, like image data, field
survey data, and radio-collar data used in this study. In general, Al includes both
expert systems and neural networks. Expert systems allow integration of qualitative
and quantitative information for modelling and handling complex systems {Davis
1993), which have been used for mapping forest types (Skidmore 1989) as well as
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identifying homogeneous training areas for analysis of remotely sensed imagery
(Goodenough et al. 1987). Neural networks have been successfully used in image
processing and classification (Zhuang et al. 1994). According to Skidmore et al. (1997),
the neural network backpropagation algorithm will probably not become a significant
classification and analysis tool for GIS and remotely sensed data when implemented as
a pure neural network. However, it may be very useful when combined with the rule-
based expert system.

This study maps and assesses the complicated panda habitat by using an integrated
expert system and neural network classifier (ESNNC). The aim of ESNNC is to
integrate effectively the remote sensing data (Landsat TM images), the environmental
data (digital elevation, slope gradient and aspect), the ground data (survey plot data
and radio-tracking data) and the expert knowledge in order to map panda habitat and
extract habitat information with a high accuracy. The approach used for mapping
panda habitat in this study is an empirical method. Two categories of panda habitat
types will be mapped, namely ground-cover-based panda habitat types and suitability-
based panda habitat types which are described in the Method section.

4.2 Study area

Figure 4.1 shows study area: Foping Nature Reserve. It covers about 290 km?. Its
detail is described in Chapter 1, such as its location in China and terrain (Figure 1.3)
and its climatic conditions {Figure 1.4). The typical vegetation types are conifer forests,
mixed conifer and broadieaf forests, deciduous broadleaf forests, shrub and meadow
{Ren et al. 1998, CVCC 1980). There are two main bamboo species that are important for
panda forage: Bashania fargesii and Fargesia spathacea (Pan et al. 1988, Tian 1989 and
1990, Yong et al. 1994, Ren et al. 1998). The Bashania bamboo generally grows in the area
below 1900 m, and the Fargesin bamboo in the area above 1900 m. The panda
population is between 60 and 70 with an average density of one panda per 5 km?
according to the survey in 1990 (Yong et al. 1993}, and the spatial distribution of panda
populations is shown in Figure 1.5. About 300 local people reside inside the nature
reserve (from data of 1998) and are mainly living in five village groups: SanGuanMiao,
XiHe, JieShang, Xialle and DaChenHao (Table 1.1}. Some other village groups are
located just outside the southern boundary of the nature reserve.

4.3 Methods

In the study, two categories of panda habitat types were produced: ground-cover-based
potential panda habitat types and suitability-based panda habitat types. The former is
defined by the ground cover types including: {1) conifer forest, (2} mixed conifer and
broadleaf forest, (3) deciduous broadleaf forest, (4) bamboo groves (or mixed with the
shrub-meadow), (5} shrub-grass-herb land, (6} farm-lands and settlements, (7) rock and
bare-land, and (8) water area. The suitability-based panda habitat types include: (1)
very suitable summer habitat, (2) suitable summer habitat, (3) very suitable winter
habitat, {4) suitable winter habitat, (5) transiticn habitat, (6) marginal habitat, (7)
unsuitable habitat, and (8) water area.
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In the next section, the mapping algorithms, including the ESNNC and several other
classifiers, are firstly explained. Secondly, it is explained how the ESNNC was applied
to map the ground-cover-based potential panda habitat types by using Landsat TM
images and field survey plot data. Lastly, how the same algorithm was used to map the
suitability-based panda habitat types through combining Landsat TM images, field
survey plot data, radio-tracking data and social data is described.

Foping Nalure Reserve

N
T O village:

1 LongTanZi village
3 YueBa villa
3 DaGuFing vgl.llage

. village group within
e nature reserve;

a SanGuanIUﬁan group
b XiHe gro
|: JieSha.ng group

e DaCherglrgHgn group

[ — e | aQ1
0 10km 1085 m

Figure 4.1 Study area: Foping Nature Reserve, China. The box in the map shows the area
of radio tracking applied to six pandas.

4.3.1 Algorithm of the integrated expert system and neural network classifier

The two types of panda habitat mentioned above were produced by the ESNNC
described in Chapter 3 and Liu et al. {1999). Different input data layers and training
sample points were used in two different mapping. For comparison purposes, three
individual classifiers were applied, which are the expert system classifier (ESC), the
backpropagation neural network classifier (BPNNC), and the traditional maximum
likelihood classitier (MLC). The whole mapping approach is shown in Figure 4.2. The
BPNNC learns from the training sample data and so depends on the accuracy of the
information the sample data set provides. However, expert knowledge in the ESC was
extracted from the sample data sets based on the impression of data distributions in
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different classes and on the field survey experience, but no training sample data were
used for image processing. Therefore, the ESC is a sample-free method.

Training sample
ints

pol
panda habital map
from MLC

Training sample
points

=

panda habitat map
from indtial stage

pands habial map
from BPNNC

Figure 42 An integrated expert system and neural network classifier (ESNNC) for mapping both
the ground-cover-based potential panda habitat types and the suitability-based real panda habitat
types. “TM1-5 and 7" represents Landsat TM image bands 1-5 and 7. “Distance” represents the
distance map to the human activity area which is used only in mapping the suitability-based panda
habitat types. MLC, ESC, BPNNC and ESNNC are four classifiers: maximum likelihood classifier,
expett system classifier, neural network classifier and integrated expert system and neural network
classifier.

The ESNNC approach integrates the ESC and the BPNNC, and trains the whole system
to reach the targets through learning from known samples. The ESC result contains
very useful information and is used in the BPNNC before and after running the system.
The initial stage of the ESNNC (namely inputting the output of the ESC into the
BPNNC as an additional information layer) is based on the principle that the neural
network system is very sensitive to subtle changes in the input data. The system was
then trained by different sample sets (described in the later parts) and resulted in
several output maps. A frequency-checking program was used to compare all output
maps in order to obtain the majority class for one certain pixel and assign that pixel
with the majority class. Thus, the combined habitat map was formed. The second stage
is to use the output of the ESC through producer accuracy and some new built-in rules
based on the expert knowledge to correct the output of the initial stage of the ESNNC.
For example, the winter panda habitat should not occur in the high elevation area and
the slope steepness of suitable panda habitat should not be greater than 35 degrees
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based on the definitions of the classes. For three individual classifiers {e.g. BPNNC,
ESC and MLC), only one-time classification using one of the training sample sets was
carried out.

4.3.2 Mapping the ground-cover-based potential panda habitat types

The mapping approach is shown in Figure 4.2. The assumptions are that the images can
reflect the ground cover conditions, and that field sample plots with measured habitat
parameters or observed information, according to Doering Il and Armijo (1986), are
capable of reflecting habitat conditions.

In this approach the sample point data
consists of 160 points (Figure 4.3) with
records of the ground cover types from
field survey. The field survey was
carried out in July and August of 1999
being concurrent with the Landsat TM
images acquired in July 1997. The line
transect sampling method was adopted
in the field survey in order to get as
many habitat types within the shortest
route as possible. The eight ground
cover types were defined based on
literature information (Ren et al. 1998,
CVCC 1980), and pre-classification of
the images. They are conifer forest (cf),  Figure 43 Distribution of 160 sample points in
mixed conifer and broadleaf forest Foping Nature Reserve, China.

(dbfef), deciduous breoadleaf forest

(dbf), mixed bamboo and meadow (bam), shrub-grass-herb land (shgr), farm-lands and
settlements (fas), rock and bare-land (rab), and water area (war).

For image classification, the stratified random sampling strategy was applied to 160
sample points in order to get random training and testing samples for each class.
Therefore, 50 samples were randomly selected from 160 points first as a separate testing
set and 80 training samples were again randomly selected from the remaining 110
points (shown in Table 4.1a). The classification of ground-cover-based habitat types
was carried out 15 times with the 15 different randomly-selected training sets by the
ESNNC. All the classified outputs were tested by the same 50 testing points to assess
mapping accuracy.

The nine initial data layers, including remote sensing data (Landsat TM band 1 to 5 and
7, acquired in July 1997) and terrain data (elevation, slope steepness, slope aspect),
were used in mapping by ESC, BPNNC, ESNNC as well as the traditional MLC. Figure
4.da gives examples of how the expert knowledge about the eight ground cover types
was extracted from survey data.
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Figure 4.4a Boxplots show data distributions in 8 ground-cover-based potential panda habitat
types in Foping Nature Reserve: conifer forests (cf), mixed conifer and broadleaf forests (dbfcf),
deciduous broadleaf forests (dbf), bamboo grove {or mixed shrub-meadow) (bam), man-made
shrub-grass-herb land (shgr), farm-lands and settlements {fas), rock and bare-land (rab), water

area (war). “N” represents the number of samples.
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Figure 4.4b Boxplots show data distributions in 8 suitability-based real panda habitat types in
Foping Nature Reserve: very suitable summer habitat (vss), suitable summer habitat (ss), very
suitable winter habitat (vsw), suitable winter habitat (sw), transitional habitat (tr), marginal habitat
(ms), not suitable habitat {(us) and water area (war). “N” represents the number of samples.
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Table 4.1 Siratified random sampling for mapping ground-cover-based (a) and suitability-based (b)
panda habitat types in Foping Nature Reserve, China.
a: for mapping ground-cover-based potential panda habitat types through 160 sample points

Total Testing Selected Remaining
Class name collected samples training samples
samples samples
conifer forest 10 4 4 2
mixed conifer and broadleaf forest 35 9 20 6
deciduous broadleaf forest 63 17 34 12
bamboo (or mixed with meadow) 10 4 4 2
shrub-grass-herb land 10 4 4 2
farm-lands and settlements 11 4 5 2
rock and bare-land 10 4 4 2
water area 11 4 5 2
Total 160 50 80 30

b: for mapping suitability-based panda habitat types through 1585 sample points

Total Testing Selected Remaining
Class name collected samples training samples
samples sarnples

very suitable summer habitat 328 150 130 28
suitable summer habitat 73 30 30 13

very suitable winter habitat 853 376 377 100
suitable winter habitat 183 80 80 2
transitional habitat 30 14 14 2
marginal habitat 60 25 25 10
unsuitable habitat 47 20 20 7

water arca 1 3 4 2

Total 1585 700 700 185

4.3.3 Mapping suitability-based panda habitat types

The same approach was used (Figure
4.2) for mapping the suitability-based
panda habitat types. Suitability of
panda habitat was assessed and
mapped based on both the field survey
data and radio tracking data. The
assumptions are that the sites with a lot
of feeding signs and droppings are
suitable habitats with satisfactory
environmental requirements to pandas,
and radio tracking data are capable of
reflecting habitat selection of the giant
pandas.

. . . u.:.:l:_:-wkm
Therefore, mapping the suitability-

based panda habitat types involved a Figure 4.5 Distribution of radio tracking data
total of 1585 sample points including in Foping Nature Reserve, China.
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160 field survey points and 1425 non-overlapping radio tracking points (Figure 4.5).
When panda signs {feeding, dropping, and nesting) were evident, these were recorded
for all 160 field-survey points. There were six pandas cellared in the SanGguanMiao
area {illustrated by the box in Figure 4.1) during a five-year period from 1991 to 1995
(for details see Chapter 5). The triangulation method by using two bearings was used to
calculate the collected radio-tracking data to establish the panda locations (White and
Garrott 1990).

Table 4.2 The criteria to define suitability-based panda habitat types to the sample points for mapping
in Foping Nature Reserve, China.

Criteria for 8 suitability vswa sw tr VS5 s ms us war
classes
Elevation (m) =2158 1949- <1949
2158

Panda signs many  pre- many  pre-

sent sent
Slope () <35 =35 <35 <35 > 35
Ground cover-based fask war
habitat types rab

shgr

Distance? to the
centre of summer <1000 >1000
activity ranges (m)

005 & <1500 =1500
Distancer to 043 ¢
the centre of 127 & | 1300 >1300
winter activity 065

ranges {m) M5& | <1000 >1000
083

Distance to the

centre of 043 <500 >500

mating

activity ranges (45 <1000 >1000

{m)

a vss, 85, Vsw, sw, tr, ms, us and w represent 8 suitability-based panda habitat types: very suitable
summer habkitat, suitable summer habitat, very suitable winter habitat, suitable winter habitat,
transitional habitat, marginal habitat, unsuitable habitat and water area.

b fas, rab, shgr and war represent four ground-cover-based panda habitat types: farm-lands and
settlement, rock and bare-land, shrub-herb-grass land and water area.

¢ “Distance to the centres of panda activity ranges” is described in Chapter 5.

d 005 to 127 refer to identity codes of individual pandas (see Chapter 5).

There are no standard methods for defining or quantifying habitat quality because this
depends very much on species as well as study population and study area. The
suitability types were defined by several criteria (Table 4.2): the panda signs found at
field survey points, distance to the centres of the winter, sumnmer and mating activity
ranges of each panda (see Chapter 5), terrain factors (i.e. elevation and slope}, as well as
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ground cover types. Eight types of suitability-based panda habitat were subjectively
defined: very suitable summer habitat (vss), suitable summer habitat (ss), very suitable
winter habitat (vsw), suitable winter habitat (sw), transitional habitat (tr), marginal
habitat {ms), unsuitable habitat {us), and water area (war). Therefore, all 1585 sample
points were subjectively assigned to one of the suitability classes based on the criteria.

Similar to mapping the ground-cover-based panda habitat types, the stratified random
sampling strategy was applied for a total of 1585 points in order to obtain random
training and testing samples for each class. Therefore, 700 samples were initially taken
out as an independent testing set and the remaining 885 points were used to select 700
training samples randomly (Table 4.1b). The classification was carried out 15 times here
using 15 different randomly-selected training sets. All outputs were tested by the same
700 independent testing points to assess mapping accuracy.

There are ten digital data layers used as the initial information source of the whole
classification system: remote sensing data (Landsat TM band 1 to 5 and 7), terrain data
{elevation, slope steepness, slope aspect) and social data {distance to human activity
area). Figure 4.4b shows examples of how the expert knowledge about these eight
suitability-based habitat types was extracted from the sample point data.

4.4 Results

The map of ground-cover-based potential panda habitat types obtained from the
ESNNC is shown in Figure 4.6. Foping NR is mainly covered by deciduous broadleaf
forests and mixed conifer and broadleaf forests. Conifer forests and F. spathacea bamboo
groves or mixed with meadow occur along the mountain ridges around the boundary
area in the northern and north-western parts. The rock and bare-lands appear mostly in
two areas, at the mountaintops or in the river valleys. The shrub-grass-herb land was
mapped mainly in the lower elevation area along the valleys, which is mainly caused
by human activity. However, it was also found scattered in the high elevation area,
especially along the mountain ridges, which is naturally developed. The farm-lands
mostly appear in YueBa and LongTanZi villages, which are generally located outside
the southern boundary of the nature reserve. Areas with water are located in the
valleys.

Table 4.3a gives the areas of 8 different ground-cover-based potential panda habitat
types from GIS caleulation. The total area of rock and bare-land, shrub-grass-herb land,
farm-lands and settlements, and water area occcupy only a very small part of the whole
nature reserve (about 3%). The area of F. spathacea bamboo groves mixed with meadow
located at or near the mountaintops is less than 1% of the size of Foping NR. However,
the other areas are covered by deciduous broadleaf forests, mixed conifer and broadleaf
forests, and conifer forests.

The map of suitability-based panda habitat types obtained from the ESNNC is shown
in Figure 4.7. The suitable and very suitable summer habitats are found in the area
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surrounding Foping NR, and they occur mainly in the northern, northwestern and
northeastern boundaries. The very suitable summer habitat occupies only a small part
of the total summer habitat in GuangTouShan. The suitable and very suitable winter
habitats are mainly mapped in the centre and southern areas together with the human
activity areas. There is a transition zone between the pandas’ two seasonal habitats,
which is very wide in the northeastern area, The marginal habitats with a slope
gradient steeper than 35 degrees are scattered in the regions of XiHe River,
DaChengHao and the southern slope of GuangTouShan. Only a small part of the
nature reserve is not suitable for pandas, including rock and bare-lands (rab), farm-
lands and settlements (fas), shrub-herb-grass land (shgr). Unsuitable areas {(namely
“rab”, “fas” and “shgr”) are located at the mountaintops or in the river valleys.

M onifer forests Shrub-erass-herb

I Mixed conifer and broadleai Ml Farm-lands. settlements
M Deciduous broadieaf forests £ Rock and bare-lands
Ml Bamboo (or mixed with meadow} EEWater area

[ o= e —e—— s

0 1ka

Figure 4.6 Ground-cover-based potential panda habitat map from the integrated expert system
and neural network classifier {ESNNC) in Foping Nature Reserve, China. The white line gives
the boundary of the Foping Nature Reserve. The area outside the boundary shows the
surrounding environment.
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Table 4.3 Availability of different panda habitat types mapped from the integrated expert system and
neural network classifier (ESNNC) in Foping Nature Reserve, China.
a: Availability of ground-cover-based potential panda habitat types

Area (km?) % of the nature reserve
conifer forest 16.5 5.6
mixed conifer and broadleaf forest 174.2 59.4
deciduous broadleaf forest 920 314
bambco (or mixed with meadow) 1.7 0.6
shrub-grass-herb land 6.0 20
farm-lands and settlernents 0.4 0.1
rock and bare-land 1.6 05
waler area 1.0 0.3
Foping Nature Reserve 293 100

b: Availability of suitability-based panda habitat types

Area (km?) % of the nature reserve

very suitable summer habitat 16.6 5.7

suitable summer habitat 29.3 10.0
very suitable winter habitat 64.9 221
suitable winter habitat 88.4 301
transitional habitat 57.4 19.6
marginal habitat 314 10.7
unsuitable habitat 4.6 1.7

water area 0.7 02

Foping Nature Reserve 293 100

Table 4.3b details the suitability-based habitat types. More than 50% of the Foping NR
consists of panda winter habitat, in which almost half of the area is very suitable for
pandas to stay in the winter season, The panda summer habitat is less than 20% of the
reserve, The transitional habitat occupies almost one fifth of the nature reserve, and the
marginal habitat together with the unsuitable habitat is less than 13% of Foping NR.
The identified “water area” is almost the same as the “war” identified in mapping the
ground-cover-based panda habitat. '

To assess the four classifiers and their classification results in mapping the two
different defined panda habitat systems, the number of identified classes, the overall
mapping accuracy (OVA}, the Kappa value and the Kappa variance are shown in Table
44, The traditiona]l maximum likelihood classifier did not yield satisfactory
classification results for panda habitat mapping. The MLC recognises only three classes
in mapping the ground-cover-based potential panda habitat types and seven classes in
mapping the suitability-based panda habitat types. Only the classes with enough
samples can be identified by the MLC because insufficient samples cannot form the
statistical parameters for the MLC to run the classification.

The integrated expert system and neural network classifier (ESNNC) produced panda
habitat maps with the highest mapping accuracy (viz. 84% in mapping the ground-
cover-based potential panda habitat types and 83% in mapping the suitability-based
real panda habitat types), and its classification error matrices are shown in Table 4.5. In
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mapping the ground-cover-based panda habitat types, the ESC created an overall
accuracy of 76%, higher than that of the BPNNC (7(%). In mapping the suitability-
based panda habitat types, the ESC created an overall accuracy of only 48%, lower than
that of the BPNNC (76%).

Il Very suitable summer habitat [ Transitional habitat
I Suitable summer habitat Il Marginal habitat
M Very suitable winter habitat #ll Unsuitable habitat
Il Suitabls winter habitat M Water area

[ = o mme— mee—

0 ‘1ka

Figure 4.7 Suitability-based panda habitat maps from the integrated expert system and
neural network classifier (ESNNC) in Foping Nature Reserve, China. The white line gives
the boundary of the Foping Nature Reserve, The area outside the boundary shows the
surrounding environment. The black arrow line shows the path used by local pecple and
tourists move between the SanGuanMiao village group and outside of Foping NR.

Pairwise comparison between the ESNNC and the BPNNC as well as the ESC, which
have identified all 8 classes, is also shown in Table 4.4. The values from Z-statistic in the
table show that the ESNNC does not produce the ground-cover-based habitat map with
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significantly better accuracy than the ESC but significantly better than the BPNNC at
90%C.1.. However, in mapping the suitability-based habitat types, the ESNNC created a
significantly higher accuracy than the ESC and the BPNNC at 95%C.1.

Table 44 Accuracy assessment and pairwise comparison through Z statistic between the integrated
expert system and neural network classifier (ESNNC) and the ather four classifiers respectively (i.e. the
neural network classifier (BPNNC), the expert system classifier (ESC) and the maximum likelihood
classifier (MLC)} in mapping panda habitat types in Foping Nature Reserve, China.

Mapping Types  Classifiers Number of QVA Kappa Kappa Z
identified classes (%) value variance statistic
Mapping ESNNC 8 84 0.801 0.0041
ground-cover- BPNNC> 8 70 0.622 0.0066 1.73*
based panda ESC 8 76 0.703 0.0055 1.00
habitat types MLC 3 NM NM NM NM
Mapping ESNNC 8 83 (.742 0.0004
suitability-based ~ BPNNC: 8 76 0.640 0.0005 3.25%*
panda habitat ESC 8 48 0.358 0.0005 12,72+
types MLC 7 NM NM NM NM

a - a single running of BPNNC; * - significant difference at 90%C.5, ** - significant difference at
95%C.1. “NM"” means “not mentioned” because the MLC did not identified all 8 classes in both

mapping.

Table 4.5 Classification error matrices for mapping ground-cover-based (a) and suitability-based (b)
panda habitat types by the integrated expert system and neural network classifier (ESNNC) in Foping
Nature Reserve, China.

a: mapping ground-cover-based potential panda habitat types

Froin classification

of dbfcf  dbf bam shgr  fas  rab war
conifer forest (cf} 3 1
mixed conifer and breadleaf forest (dbfcf) 7 2
deciduous broadleaf forest (dbf) 1 16
bamboo (or mixed with meadow) {(bam) 4
shrub-grass-herb land (shgr) 1 2 1
farm-lands and settlements (fas) 2 2
rock and bare-land (ralb) 4

water area (war) 4
Overall accuracy=84.00%

From testing
samples

b: mapping suitability-based panda habitat types

From classification

V5§ 55 tr sW VSW ms _ us _ war
very suitable summer habitat {vss) 132 18
suitable surnmer habitat (ss) 19 10 1
transitional habitat (tr) 14
suitable winter habitat (sw) 45 35
very suitable winter habitat (vsw) 36 333 2
marginal habitat (ms) 25
unsuitable habitat (us) 1 1 1 3 14
water area (war) 5

Overall accuracy=83.17%

From testing
samples
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4.5 Discussion

This study mapped and assessed panda habitat in Foping NR using remote sensing
data combined with radio-tracking data, ground survey data and human influence data
by GIS. Mapping results objectively show the reserve maintains a good quality habitat
for pandas. Ground-cover-based mapping shows that 97% of the nature reserve area is
covered with forest which forms pandas’ potential habitat. Suitability-based mapping
shows that 68% of the reserve area is suitable habitat for pandas in winter or summer
season and 20% of the reserve area forms the transition habitat for pandas to move
between two seasonal habitats. It is also shown that the XiHe and Donglle River
regions are ideal panda habitat with easy landscape connection between the winter and
summer habitats, in which the transition zone exists but is not as wide as the large
transition area in the northeastern part. In reality, the 1990’s survey showed that the
panda population in the DongHe and XiHe Rivers consisted of 26 and 23 individuals
respectively (Yong et al. 1993), which were two larger panda sub-populations in Foping
NR. The wider transition zone represents the comparatively flat area which takes
pandas more time to pass through under adverse environmental conditions. Since the
transition zone lacks well-growing bamboo, the pandas were assumed to select a
transition zone with a less steep slope and suitable width in order to move between
their winter and summer habitats, Pandas in the LongTanZi and YueBa areas probably
need more time to move between two seasonal habitats.

The total suitable summer habitat within the reserve boundary is limited, about 46 km?
(16% of the reserve area), which is not sufficient for the requirement of a total of about
60 to 70 pandas from the panda survey in 1990 (Yong et al. 1993). The neighbouring
area of Foping summer habitat outside the boundary forms another important part of
the panda summer habitat. The 6 radio-collared pandas moved along the ridge of the
GuangTouShan in the summer season and used the summer habitats both inside and
outside of the reserve boundary, which is shown in Figure 5.2, The average summer
activity range of each panda was calculated in that paper and is about 2.5 km?.

Therefore, maintaining the limited summer habitat and keeping its continuity is
important for pandas. There is a path in the northeastern corner, where the transition
area crosses the boundary (as shown by arrow in Figure 4.7), for local people and also
tourists to move between the SanGuanMiac village group and outside of Foping NR.
The local government plans to construct a tourist site in LianFengYa (near CunGou PS
as shown in Figure 1.5) in the northeastern corner for tourists to visit SanGuanMiao.
The path goes through the very suitable winter habitat patch before reaching
SanGuanMiao. This is highly detrimental for pandas living in this area. Moreover, the
summer habitat in the northeastern corner appears as a narrow strip along the
mountain ridge and is used as the limited summer habitat or necessary corridor for
pandas in LongTanZi and YueBa to move to the larger summer habitat in
GuangTouShan.

The explored mapping approach in this study may be applied to detect and monitor
the change of pandas’ forest environment, There has been a natural resource conflict
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between the local people and the giant pandas in terms of forest environment,
especially in the low elevation areas. As shown in Figure 4.7, the suitable and very
suitable winter habitats are mainly mapped in the centre and southern areas which are
also the human activity areas. For example, pandas use the understory bamboo as their
staple food and the canopy forest as shelter. However, the local people cut the
deciducus broadleaf trees in order to produce mushrooms to increase their income, and
clear away the understory bamboo groves. This may rapidly change forest
environment to other land cover types and causes panda habitat fragmentation or loss.
Due te SanGGuanMiao’s central location surrounded by the suitable and very suitable
winter habitats, it would be ideal to relocate the local people in SanGuanMiao to other
parts so as to provide pandas with a large un-fragmented habitat. Mushroom
production which cuts the understory bamboo and canopy trees in panda winter
habitat should be forbidden.

The use of radio tracking data for mapping and assessing panda habitat is a new aspect
in the field of panda habitat research. Radio tracking data have been used only for
analysing the pandas’ behaviour, such as movement (Hu et al. 1985, Schaller et al. 1985,
Hu 1990, Yong et al. 1994, Liu et al. in review-c) and daily activity pattern (Hu et al.
1985). Smith (1986) stated that the classification of habitat must consider both the level
of habitat resolution and the spatial scale at which habitat patches are considered to be
homogeneous units. In the past, the habitat requirements of species were based on
qualitative descriptions relating the presence or absence of species to the general forest
type or structure of the vegetation. In recent years, however, there has been a growing
interesting in the use of more quantitative techniques to describe the habitat-selection
patterns of animals (Capen 1981). Schamberger and O'Neil (1986) emphasised two
assumptions: (1} a species will select and use areas that are best able to satisfy its life
requirements; and (2) as a result, greater use will occur in higher quality habitat. These
views form the basis of using the radio tracking data for mapping the suitability-based
panda habitat types in this study. Nortan and Poslinghan (1993) stated that the
reliability of predictions generated by popular habitat simulation models is very
uncertain and remains to be adequately tested. With a need for greater accuracy in
mapping wildlife habitat, an increase in the development and use of forest simulation
models (Shugart and West 198(0) has accompanied the development of statistical
approaches to habitat classification. The mapping approach involving radio tracking
data and some advanced technologies could produce more accurate results, which have
been confirmed by this study.

4,6 Conclusions and recommendations

This study provides the ESNNC approach for mapping panda habitat based on the
multi-data layers. We, through applying the ESNNC, cbtained the highest accuracies
on mapping both the ground-cover-based potential panda habitat and the suitability-
based panda habitat, and produced more and clearer information of panda habitat in a
direct and obvicous way for panda conservation and natural management. It is a
practical mapping approach using limited samples in a very difficult area. Mapping
results show that Foping NR maintains a good quality habitat for pandas: 97% of the
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reserve area covered with forests being pandas’ potential habitat and 68% of the
reserve area being pandas’ suitable winter and summer habitats. However, it is
suggested that the SanGuanMiao area should be returned to the giant pandas, and that
constructing a tourist site in the northeastern corner along the boundary should not
proceed.
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CHAPTER 5 Giant Panda Movement Analysis *

Abstract:

Spotting the giant panda in the remote mountains of Foping Nature Reserve (NR) is
difficult due to the dense vegetation and steep terrain. Radio tracking is an effective
way to study this animal and understand its behaviour and habitat use. In this study,
radio-tracking data for 6 pandas (3 males and 3 females) were used to study the
movement pattern of pandas between 1991 and 1995 in Foping NR. The use of a
geographical information system (GIS) combined with statistical toels in the study to
analyse radio-tracking data is a new aspect in the panda ecological research. Our
results show that the giant pandas in Foping NR occupied two distinct seasonal ranges
(specifically winter and summer activity ranges) and had a regular seasonal movement
between winter range below 1950 m and summer range above 2160 m. The pandas
climbed from the winter to the summer habitats within a period of 8 days from June 7
to 15, and descended to the winter habitat between September 1 and October 6.
Therefore, the pandas spent three quarters of the year (average 243 days) in their
winter activity range, and an average of 78 days in the summer activity range. This is
the first therough quantitative study to show panda movement pattern in Foping NR.

Key words: China, Foping Nature Reserve, giant panda, GIS, movement pattern,
quantitative study, radio-tracking.

1. This chapter is based on Liu, X., A. K. Skidmore, T. Wang, Y. Yong, and H. H. T.
Prins. (in review-c). Giant panda movement pattern in Foping Nature Reserve,
China. Journal of Wildlife Management.

2. Part of this work was presented at Panda 2000 Conservation Priorities for the New
Millennium - An International Conference in San Diego, US, October 15-18, 2000.
The presented title: Panda Movement Pattern and Habitat Selection in Foping
Nature Reserve, China.
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5.1 Introduction

It was emphasised by White and Garrott (1990) that a gradual shift has taken place
from descriptive movement studies to quantitative investigations aimed at studying
animal activity patterns, habitat use, and survival rate. Radio tracking is one of the
approaches to achieve this. It has been applied to many animal species, including
locating mule deer (Lee et al. 1995), long distance movements of elephants (Thouless
1995), seasonal movement of moose {Baker 1978}, the home range and activity of brown
lemming (Banks et al. 1975), as well as survival rates of wild turkey hens (Kurzejeski et
al. 1987). The track of an individual animal migrating or moving from one place to
another place has a certain pattern that results partially from the orientation and
navigation mechanism(s} employed by the individual and partially from
environmental forces (Baker 1978, Geist 1971).

The giant panda (Ailuropoda melanolenca) is an endangered species. It is a solitary
. animal, which makes spotting difficult in remote mountain areas covered with dense
vegetation. In the forested mountains of China, radio tracking should be an effective
way to study the giant panda, and understand this animal's behaviour and its
utilisation of the habitat.

Some work on the movement of the giant panda has been undertaken in Wolong NR in
Qionglai Mountains and Changqing NR in Qinling Mountains, Analysis of the radio
tracking data showed that the pandas in Wolong NR remain at a high elevation for
most of the year and feed on the arrow bamboo (Bashania fangiana). They move down to
the lower elevation during May and June to forage on umbrella bamboo (Fargesia
robusta) shoots (Hu et al. 1985). The pandas in Changging NR exhibit a different
movement pattern compared to the pandas in Wolong NR according to Pan et al.
(1988). The pandas stay for most of the year at the low elevations feeding on Bashania
Jargesii bamboo, and occupy the high elevation areas to utilise Fargesia spathace bamboo
from June to August,

Movement patterns of panda populations in different mountains may not be the same
and remain unclear (Pan et al. 1988). The pandas in Foping NR remain an enigma even
though they have been the subject of numerous studies. The first panda population and
distribution survey was carried out in Foping NR in 1973 (SBRS 1976). Preliminary
ecological observations were conducted in Foping NR in the 1970s and 1980s {Wu 1981
and 1986, Yong 1981 and 1989, Ruan 1983). More advanced ecological research has also
been carried out in Foping NR. Yong et al. (1993 and 1994) analysed the panda
population and distribution as well as movement habit. Li et al. (1997) reported their
work on panda population viability analysis in Foping NR. Research on panda habitat
has just started recently (Yang et al. 1997 and 1998, Yang and Yong 1998, and Ren et al.
1998). It has been reported that there are two main seasonal habitats in Foping NR
occupied by pandas as their winter and summer habitats respectively, and the pandas
move between these two seasonal habitats (Pan et al. 1988 and 1989, Yong et al. 1994).
However, it is not so clear when, where and how the animals move. In order to study
the giant panda and its habitat, radio telemetry was introduced to track the giant

67




Chapter 5

pandas in Foping NR during a 5-year period from 1991 to 1995. The achievements of
the radio-tracking program have not been published internationally, with only
descriptive results in two Chinese reports by Yong et al. (1994) and Pan et al. (1958).

Geographical information system (GIS) represents a flexible tool for managing
resources and understanding and predicting complex and changing systems {Peuquet
et al. 1993). This study aims to use GIS combined with statistics to analyse radio-
tracking data of six pandas, as well as to visualise their movement patterns. In order to
understand the characteristics of panda movement, aspects such as activity patterns,
period of moving, areas of activity range, duration of seasonal activities, as well as the
distance of movement are analysed.

5.2 Study area

Foping Nature Reserve (33932°-33°45'N, 107°4(F -107%55'E) is located in the middle part
of the Qinling Mountains (Figure 1.1} and is the most northern panda refuge (Figure
5.1). The reserve covers an area of approximately 290 km?, and the elevation ranges
from about 980 to 2900 m. There are four drainage systems in the reserve, viz. XiHe,
DongHe, JinShuiHe and LongTanZi Rivers. The detailed description of Foping NR is
shown in Chapterl, such as its climatic conditions (Figure 1.4), human population and
activities, and panda conservation and management (Figure 1.5) etc..

Foping Naisre Reserve
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Figure 5.1 Study area: Foping Nature Reserve, and its location in China. The left map shows the
change of the panda range, in which the small black patches are the six mountain blocks with the
remaining pandas and the middle density shading area plots the historical panda distribution range.
The right map shows Foping Nature Reserve, in which the box illustrates the range of radio tracking
in the SanGuanMiao-GuangTouShan region.

The broad vegetation types include conifer forests, mixed conifer and broadleaf forests,
deciduous broadleaf forests, shrub and meadow (Ren et al. 1998, CVCC 1980). There
are two main bamboo species which compose the pandas’ staple food, namely Bashania
fargesii and Fargesia spathacea (Pan et al. 1988, Tian 1989 and 1990, Yong et al. 1994, Ren
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et al. 1998). They are mostly the understorey species, and only F. spathacea appears as
pure bamboo groves at the top of the mountain. The distribution of the two species
varies with the elevation. B. fargesii occurs mostly below 1900 m, while F. spathacea is
located in higher altitudes of more than 1900 m.

There were about 60 to 70 giant pandas within Foping NR, with an average density of
one panda per 5 km? according to the survey conducted in 1990 (Table 5.1) (Yong et al.
1993). DongHe and XiHe Rivers are two areas with more pandas (about 75% of the
whole panda populaticn in Foping NR) (see Figure 1.5). The results of a survey in 1998
again confirmed a similar number {about 65) of panda individuals in the reserve. The
radio tracking was catried out in the SanGuanMiao-GuangTouShan region illustrated
by the box in Figure 5.1.

Table 5.1 The sub-populations (individual) as well as density (individual/km?) of the giant panda in
different watersheds in Foping Nature Reserve, China in 1990 (Yong et al. 1993)

Watershed Area Number of pandas Density
(km?) (individual) (individual/km?)

DongHe 54 26 05
XiHe 71 23 03
LongTanZi 15 3 02
YueBa 59 7 0.1
HuangTonglLiang 38 5 0.1
HeilongTan 33 0 ¢
XiaHe 23 0 g

In total about 290 between 60 and 70 Onaverage 0.2

5.3 Methods

The study deals with the seasonal movement and activity range of the giant panda. The
terms movement and migration are used inter-changeably. Baker (1978) standardised
the terminology and described migration as an activity of moving from one spatial unit
to another, while movement is just a change in position. Thus movement is defined
relative to the Earth's surface and includes a vertical component. In this paper, the term
“movement” is used to describe the giant panda’s changing position. Regarding the
activity range of animals, the concept of “home range” is frequently used. Burt (1943)
defined home range as “that area traversed by the individual in its normal activities of
food gathering, mating and caring for young”. Baker (1978) described home range as
the area physically visited by an animal in a given time interval. However, biologists
have differed widely in their approaches to the determination of home range
{Sanderson 1966). Due to the existence of two obvious seasonal activity ranges of the
pandas in Foping NR, the terms of “winter activity range” and “summer activity
range” have been adopted for this study.

The radio-tracking equipment (Telonics Company, US) was wsed only in the
SanGuanMiao-GuangTouShang region (illustrated by the box in Figure 3.1) and
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consisted of a MOD-500 telemetry collar, a TR-2 receiver and a RA-2AK hand-held H-
style antenna. A total of 59 receiving towers were used across the radio-tracking region.
They were distributed along the ridge of the GuangTouShan Mountain {approximately
an east-west direction) for tracking pandas in the summer and autumn seasons, and
through the DongHe River valley (approximately a south-north direction} for tracking
pandas in winter and spring seasons. Six pandas {3 males and 3 females) were fitted
with telemetry collars and tracked for different periods, the longest lasting from 1991 to
1995 (detailed in Table 5.2). Tracking started in May 1991, and stopped in December
1995. The data were collected daily. However, many factors caused missing data.

Table 5.2 Detailed information of six radio collared pandas in Foping Nature Reserve, China, in which

<”, “s” and “a” represent panda cub (<1.5 years), sub-adult (1.5 - <5 years), and adult (>=5 years)
respectively based on the definition of Hu et al. {1985) and Schaller et al. (1985).

Name with Sex Age in different year (year) Tracking Tracking

tracking Nr 1991 1992 1993 1994 1995 duration days/months
pandai2? M 10a 1la 12a 13a 14a  May 91 - May 95 465/34
panda043 F 12a 13a July 91 - Aug. 92 106/9
panda065 M <lec 2s 3s 4s Feb. 92 - Dec. 95 463/34
panda045 F 6a 7a 8a 9a  May 92- Dec. 95 400/29
panda005 M 15a lba Apr. 9% - Dec, 95 213/20
panda033 F <2s  Jan. 95- Aug. 95 113/9

There are 1760 raw records in total from the radio-collar latitude-longitude telemetry
transformed to UTM co-ordinates. The location of the panda was estimated from the
cross point of two bearings received at two towers by triangulation (White and Garrott
1990). After careful checking based on expertise, suspicious data were eliminated, and
the final data set comprises 1639 records. All samples were plotted on a background
map. The centres of each panda’s winter, summer and mating activity ranges were
obtained by calculating the average of the UTM-x and UTM-y co-ordinates
respectively. The centres of the activity ranges were displayed to discern their spatial
separation. The distance between all tracking locations and the centres of each panda’s
winter, summer and mating activity ranges was calculated and plotted to obtain an
impression of the spread of each individual and its activity centre.

According to the literature and local expertise, it is known that there are two seasonal
activity ranges in Foping NR. The time for the giant pandas to move from the winter to
the surmmer activity ranges is in May and June, generally, and to descend from the
summer to the winter activity ranges is in August and September. In order to
determine the exact period for pandas to move up and down between two seasonal
activity ranges, the average elevations of six pandas from May to June and August to
October were calculated for each year and plotted. The periods for pandas to change

* their seasonal activity ranges were subjectively defined. The length of the periods that
pandas remain in two seasonal activity ranges was then calculated.
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Figure 5.2  Activity patterns of 6 pandas from radio tracking in the SanGuanMiao-
GuangTouShan regien in Foping Nature Reserve, China from 1991 to 1995, All six maps show
two cbvious areas with very dense tracking points {as shown in the bottom-left panel). The lower
cloud of tracking points represents the pandas’ winter activity range, while the upper one is the
summer activity range. The area inbetween can be defined as the transition range.

These movement periods defined three elevation ranges, viz. winter, summer and
transition ranges. Because the elevation data were non-normally distributed, the non-
parametric boxplot method (Moore and McCabe 1998, 44-49) was used, and the upper
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and lower whiskers (SPSS 1997, 40-41) of the boxplots defined the elevation ranges of
the pandas” winter and summer activity. A hypothesis here is that there is a significant
difference between the elevations of the pandas” winter and summer activity ranges.

The area of both the winter activity range and the summer activity range in different
years for each adult panda (panda005, pandal2?, panda043 and panda045) was
calculated by the minimum convex polygon method (White and Garrott 1990). The
transition range was excluded from these two seasonal activity ranges because it is
used only as a temporary. movement corridor. Two hypotheses were formulated:
firstly, the male pandas had larger winter and summer activity ranges respectively
than female pandas; secondly, the pandas used a larger area for winter activity than for

summer activity.

The average monthly distance
travelled over two consecutive days
was calculated to overview the
monthly pattern in a year, and to test
the hypothesis that adult male
pandas move farther within two
consecutive days than adult female
pandas. All hypotheses in the study
were tested using the Mann-Whitney
U test at 95%C.1. significant level.

5.4 Results

5.4.1 Panda activity patterns

Each panda had two well-delineated
winter and summer activity ranges
(Figure 5.2). The Ilower cluster
represents the panda’s winter activity
range, while the upper one the
summer activity range. Some
individuals overlapped in space.
Pandal?7 and panda(43 overlapped
to some degree in the summer
activity range, while panda045 and
panda065 overlapped in both the
summer and winter activity ranges.
The summer range of pandad83 was
on the mnorthern side of the
GuangTouShan ridge, far from other
individuals. In the winter range,
panda045, panda063 and panda005
stayed on the west side of the
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DongHe River, while panda043, panda083 and pandal2? occupied the east side of the
DongHe River.

Figure 5.3 shows the centres of six pandas’ winter and summer activity ranges as well
as mating sites for female panda(43 and panda043. The figure shows that, in the
summer range, panda083 and panda(005 stayed away from the other four pandas which
were living very near each other. These four pandas (i.e. panda043, panda045,
panda065 and pandal2?) overlapped in their summer activity ranges in varying
degrees, The distances between the centres in the winter range are slightly larger than
the distances of the centres in the summer range. We found that the mating sites of
two females (e.g. panda(45 and panda(43) were situated in the ShuiJingGou Valley,
located at the southern part of the tracking area. Female panda083 was only 1.5 years
old in 1995 and had no mating activity.

Figure 5.4 shows the distances of all panda tracking locations to the centres of the
individual panda’s winter (Figure 5.4a) and summer (Figure 5.4b) activity ranges. The
different pandas have various distances spreading from their winter and summer
activity centres. The male panda005 had the largest spread distance and the male
pandal27 the smallest spread distance in both winter and summer activity ranges. The
outliers in the figure indicate that the pandas sometimes spread very far from their
activity centres.
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Figure 54 Boxplots show distribution of distances between tracking locations and activity
centres of panda individuals in their winter (a) and sumnmer (b) activity ranges in Foping Nature
Reserve, China. Symbols “o” and “*” represent those extreme values, or outliers. “N” is the
number of tracking points.

5.4.2 Periods of movement between and duration in winter and summer ranges

The giant pandas in Foping NR remained in their winter activity ranges at about 1700
m from October to May in the following year and occupied the summer activity ranges
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at an elevation of approximately 2500m in July and August (Figure 5.5a). They
transferred between the winter and the summer activity ranges in June and September
(Figure 5.5a). The pandas’ transfer between two seasonal activity ranges is associated
with a large change in elevation {shown by the standard deviations in Figure 5.5a).
However, once the pandas were in the winter or the summer activity ranges, they
maintained activities at a relatively constant elevation with a standard deviation of
about 150-300 m,
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The pandas’ moving period was subjectively defined according to the curves of
average elevation in Figure 5.5b-c. It is revealed that the pandas moved up quickly
from the winter to the summer activity ranges within a range of 8 days from June 7 to
15 (Figure 5.5b), but took about 36 days from September 1 to October 6 to descend from
the summer to the winter activity ranges (Figure 5.5c). S0, in total, the pandas spent 44
days transferring between two seasonal activity ranges. Consequently, the giant
pandas stayed in the winter range for approximately 243 days from October 7 to June 6
in the second year (e.g. autumn-winter-spring period) and in the summer range for
only 78 days from June 16 to August 31 (e.g. summer period).
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5.4.3 Elevation ranges for three activity ranges

The elevation of the pandas’ tracking records in three activity perieds (e.g. autumn-
winter-spring period, transfer petiod, and summer period) defined by Figure 5.5b-¢
was plotted in Figure 5.6. It shows that the elevations of the tracking points in both the
autumn-winter-spring period and the summer period have smaller ranges than the
elevation of the tracking points in the transfer period. The upper and lower whiskers of
the  boxplots  subjectively

defined the elevation ranges of 3000 -
the pandas’ winter and summer summer elcvation range
activity ranges. The winter T

activity range is thus found
from about 1410 to 1950 m and
the summer activity range from
about 2160 to 2800 m. Therefore,
the pandas remained below
1950 m in the autumn-winter-
spring period and above 2160 m
in the summer period. There is a
significant difference between o - -
the medians of elevation of 1 2 3
these two activity ranges (df = 1, Strata defined by moving time

P < 0.01, Mann-Whitney U). The
elevation gap between the
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Figure 5.6 Boxplots show the elevation distributions
defined by the pandas’ activity periods: 1: autumn-

upper whisker of the winter winter-spring period (before June 7 and after Qctober
elevation range and the lower 6); 2: transfer period (between June 7 and June 15, as
whisker of the summer well as between September 1 and October &); 3:

clevation range from 1950 to summer period (between June 16 and August 31).

2160 m is defined as the
transition range.

5.4.4 Areas of two seasonal activity ranges

The areas of each adult panda’s winter and summer activity ranges based on the results
obtained above are detailed in Table 5.3. It can be noted that each panda has a varied
area of winter and summer activity ranges in different years. However, in general, the
average winter activity range is larger than the average summer activity range. The
male pandas, on average, use larger summer activity ranges than the female pandas,
while male and female pandas use similar areas in the winter activity range.

The result of the Mann-Whitney U test confirms that there is no significant difference
between adult male and female pandas’ winter activity ranges (df = I, P > 0.05, Mann-
Whitney U) as well as their summer activity ranges (df = 1, P > (.05, Mann-Whitney U).
Adult male pandas use a similar area for their winter range as they do for their
summer range {df = 1, P > 0.05, Mann-Whitney U). However, for adult female pandas,
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the area of the winter activity range used is significantly larger than the area of the
summer activity range {df = 1, P < 0.05, Mann-Whitney U).

Table 5.3 Area (km?) of the winter (“w”) and the summer (“s”) activity ranges from four adult pandas
(male panda005 and pandal2?, female panda043 and panda045) in different years in Foping Nature
Reserve, China. The comparison was tested using the Mann-Whitney U test. Note: “ns” indicate a not
significant difference { p > 0.05 ), and “s” means a significant difference (p < ¢.05).

Winter activity range Sumimer activity range
Sex Male Female Sex Male Female
31 23 43 14
Area 5.2 2.7 Area 21 0.7
11 4.2 1.6 1.2
22 2.6 23 24
6.0 4.3
42
N ] 5 N 4 4
Average 3.6 3.3 Average 3.3 1.4

(ns p > 0.05) (ns p>0.05)

(ns p =>0.05) (s p<0.05)

5.4.5 Distance moved over two consecutive days

Figure 5.7 shows the pattern of the
average monthly distance travelled
over two consecutive days for both
adult male and female pandas
(means with 95% Cl). It can be
observed that the giant pandas in
Foping NR travelled shorter
distances (< 300 m) with small
distance variation in January and
February, and travelled a slightly
larger distance (< 400 m) with also
small distance variation in two 200
summer months (July and August) N= 2915 35 1112 1926 107 6 6 67 4138 716 2620 81 850

as well as two winter months TEs e s T8 s
{October and December). In the MONTH SEX (1-mele, 2-Tamaie)

other months, pandas travelled  Figure 5.7 The pattern of average monthly distances
further than 400 m within two  travelled over two consecutive days for 2 adult male and

consecutive days with Slightly 2 adult female pandas in Foping Nature Reserve, China.
The means with 95% C.I, are shown in the figure.
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larger distance variation.
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Apparently, the pandas increased their moving distance in March and April, which
may be related to the fact that this is the mating season. In May, the bamboo in the low
elevation area started shooting and the pandas moved in a wider range and traversed
greater distances per day to search for new bamboo shoots. In June and September, the
pandas ascended to and descended from the summer activity ranges and covered
larger distances. The average monthly moving distances in these 5 months (March,
April, May, June and September) have very large variations. There is no statistically
significant difference in two consecutive days’ movement distance between adult male
and female pandas (df = 1, P > 0.05, Mann-Whitney U). Even in April, June and
September, there is no statistically significant difference in the distance travelled within
two consecutive days {df = 1, P > 0.05, Mann-Whitney U) although Figure 5.7 shows a
difference between adult male and female pandas in these three months.

5.5 Discussion

Spatial and quantitative analysis of the pandas’ activity pattern from 5-year radio-
tracking data from Foping NR has been undertaken for the first time. The 6 pandas’
activity patterns all show two spatially distinct (e.g. winter and summer) seasonal
activity ranges. Spatial distribution patterns of these 5-year radio-tracking data for 6
pandas show some overlap in varying degrees. However, it only shows the overlap of
activity ranges in a relatively long period, not an individual panda’s daily activity
range.

The elevation change of the pandas” activity in June (from June 7 to 15) and September
{from September 1 to October 6} gives the appearance of a regular annual movement
between the winter and summer activity ranges. This has confirmed Pan et al.’s work
(1988) in the neighbouring Changqing NR, but with a small difference: the seasonal
movement in Changging NR occurs between May and June, and September to October.
The six pandas in Foping NR take in reality only two or three days for moving
upwards over one year, The average value of 8 days (from June 7 to 15) represents the
range for all six pandas for the whole period of five years. Yong et al. (1994) analysed
12-months’ radio tracking data (from April 1991 to April 1992) of only two pandas. Due
to the limited data used in Yong et al.’s work (1994), their result about the period for
pandas to move up shows a difference with the result obtained in this study. The
correctly defined transfer periods of the giant panda can be used not only to determine
the elevation boundaries of the winter and the summer activity ranges, but also to help
to estimate the area of the winter and the summer activity ranges separately.

The existence of separate winter and sumnmer ranges is an important component of the
concept of migration (Baker 1978). An example of using subjective judgements in order
to formulate some definitions for a mule deer population was presented by Garrott et
al. (1987). Our study took a statistical approach to define the vertical seasonal activity
ranges of the giant panda. The results show that the area above approximately 2160 m
is the pandas’ summer range and the area below about 1950 m is the pandas’ winter
range. These elevation boundaries for the two ranges are different from the ones
reported by Pan et al. (1988). They found that the winter range in their study area of
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Changging NR, neighbouring to Foping NR, was below 1900 m and the summer range
above 2300 m.

The aim to estimate the area of the pandas’ winter and summer activity ranges is to
provide us with an image of how pandas use their territory. In panda research, the
terms “winter activity range” and “summer activity range” have not often been used.
The total of winter and summer activity ranges can be used to compare with the
situation in Wolong NR. The average total activity range of males is 6.2 km? and of
females 4.7 km? in Foping NR. In Wolong NR, a male usually has an activity range of
about 6-7 km? and a female has a smaller activity range of about 4-5 km? (Hu 1990),
which are markedly similar. However, the measure of home ranges of the pandas in
Woleng NR included the areas for seasonal movement, i.e. the transition area.

Limited summer habitat, only about 15% of the nature reserve (see Chapter 4), might
be a reason for pandas in Foping NR to move into close proximity at the top of the
GuangTouShan Mountain. The food (e.g. F. spathacen bamboo) in the panda summer
habitat grows in dense groves, and pandas stay in the summer habitat for just two and
half months (about 78 days). This may explain why pandas can stay near each other.
Hu (1990} also concluded that the giant panda is able to survive in a small activity
range if plenty of bamboo is available. According to the local staff in Foping NR, the
summer range of female panda083 in 1995 on the northern slope of GuangTouShan
was assumed to be the dispersion behaviour because she was only two years old in that
summer and utilised an area far away from other individuals.

One of the advantages of calculating the sizes of the pandas’ winter and summer
activity ranges is to estimate the panda population in Foping NR. According to the
mapping work which we are carrying out (see Chapter 4), the available winter habitat
in Foping NR can be deduced. Based on the average area of pandas’ winter activity
range, the panda population may be estimated by two parameters (e.g. available winter
habitat and average area of panda winter activity range) with considering degree of
overlap, which may provide a useful guide for a panda population survey.

Based on the work in Wolong NR, Hu (1990) concluded that the giant pandas are
rather inactive for most days of a year and have a movement distance of 500 m or less.
The result of this study shows the giant pandas have varied distances of movement in
different time periods. Within two consecutive days, distance of movement can be less
than 300 m on average in January and February, and between 300 m and 400 m in July,
August, October and December, or further than 400 m in March, April, May, June,
September and November. The male and female.pandas have different movement
distances in different months. On average, male pandas move larger distances than
females, which is in agreement with the research finding in Woleng NR that “the male
usually walks farther than the female” (Hu 1990).

The period for pandas to transfer between two seasonal activity ranges in Foping NR
generally coincides with that of the giant panda group in the neighbouring nature
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reserve in the Qinling Mountains: moving up the mountain from middle April to early
June and moving down from early September to October like in Changging NR (Pan et
al. 1988). The pandas in Wolong NR, however, while living in a different mountain
range, namely the Qionglai Mountains, live in the arrow bamboo (B. fangiana) area
above 2700 m for most of the year. They move down to the umbrella bamboo (F.
robusta) area below 2700 m only in late April or early May until the middle of June
when the umbrella bamboo shoots come out. Some of the pandas even stay in the
arrow bamboo area all year (Pan et al. 1988). Panda ecology in these two mountain
ranges is thus not the same, which may have important repercussions for the
evaluation of terrain characteristics for suitability for panda re-introduction.

5.6 Management implications

The results obtained in this research will provide not only the managers, working staff
and local people in the nature reserve but also the scientific researchers with more
accurate information about the pandas’ movement quantitatively and visually, which
can contribute to panda conservation on the following aspects: (1} The pandas’ moving
periods found in the study will guide local staff and managers in panda tracking and
reduce the chance of missing tracking data; (2) The winter and the summer activity
ranges defined by elevation ranges can be applied in panda habitat management, for
instance, to calculate how large these two panda activity ranges are respectively and to
estimate indirectly the panda population; (3) The difference of the panda movement
pattern found between Foping NR and its neighbouring Changging NR, as well as far-
away Wolong NR, shows the wildlife managers, wildlife ecologists, etc. that various
strategies need to be taken into account in scientific research and panda population
surveys in different geographical regions,

Acknowledgement

Without financial support and facilities, this study could not be successfully completed.
We would like to thank American Zoo and Aquarium Association (AZA}), China State
Forest Administration (SFA) and Foping Nature Reserve. Without them, tracking
pandas could not have been carried out. We would also like to thank Mr M. C.
Bronsveld, Dr Lalit Kumar and Dr A. G. Toxopeus, Mr Mohamed Said for reviewing
and commenting critically on the draft version of this paper.

79



CHAPTER 6

Panda Habitat Selection and
Habitat Characteristics
in Foping Nature Reserve, China

Panda feeding signs
Photo: Xuehua Liu

Panda droppings
Photo; Xuehua Lin



Chapter 6

CHAPTER 6 Panda Habitat Selection and
Habitat Characteristics in Foping Nature Reserve *

Abstract

Analysis of habitat selection has been a common and important aspect of wildlife
science. However, little is known about habitat selection of the giant panda, especially
about the relationship between panda presence, and bamboo and tree layers. This
study presents data on panda habitat use and selection as well as habitat characteristics
which may direct panda habitat selection in Foping Nature Reserve (NR). A total of
1066 from 1639 effective radio-tracking records were used for analysing panda habitat
selection, and 110 quadrates for extracting characteristics of different habitat types and
their relationships with panda presence. We found that: (i} Pandas in Foping NR select
mostly three habitat types: conifer forest, deciduous broadleaf forest, and Fargesia
bamboo groves. (ii) In the winter range, pandas spend more time in deciduous
broadleaf forest with an elevation range of 1600 to 1800 m, a slope range of 10 to 20
degrees, and south-facing slopes. In the summer range, pandas use more conifer forest
with an elevation range of 2400 to 2600 m and a slope range of 20 to 30 degrees. (iii)
Pandas select the Bashania fargesii bamboo area with short and dense culms from
different ages in the winter activity range, while they select the Fargesia spathacea
bamboo area with a high coverage of tall and thick culms from one to two year-old in
the summer activity range.

Key Words: giant panda, habitat selection, habitat use, habitat characteristics, radio
tracking, Foping Nature Reserve, China
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6.1 Introduction

Habitat is any spatial unit that can be occupied by an individual animal, no matter how
briefly (Baker 1978). Habitat requirements of species were generally based on
qualitative descriptions relating the presence or absence of species to the general forest
type or structure of the vegetation. In recent years, however, there has been a growing
interest in the use of more quantitative techniques to gain an insight into the habitat-
selection patterns of animals (Capen 1981), Schamberger and O’'Neil (1986) emphasised
that habitat-use data were capable of documenting the species’ use of particular areas
within its range based on two assumptions: (1) a species will select and use areas that
are best able to satisfy its life requirernents; and (2) as a result, greater use will occur in
higher quality habitat. Johnson (1980) stated that ecological research often invoives
comparison of the usage of habitat types or food items to the availability of those
resources to the animal. Analysis of habitat selection has been a common and important
aspect of wildlife science (Alldredge and Ratti 1986).

Habitat preference, habitat use and habitat selection are described and used differently.
White and Garrott (1990) stated that habitat preference means that the animal
population selects some habitat types more than others and thus spends more time in
these habitats than would be expected based on the availability of each habitat type.
Habitat use means that locations taken for each animal are classified as to the habitat
types in which they occur, thus the percentage of time each animal spends in a
particular habitat type can be estimated. If one habitat type is preferred, than more time
will be spent in this habitat type than expected by chance alone (White and Garrott
1990). The definition of “habitat selection” is not found in the publications. However,
the term “habitat selection” has been widely used {Babaasa 2000, Alldredge and Ratti
1986, Augustine et al. 1995, Reid and Hu 1991, Wei et al. 1996 and 1999). We consider
that habitat selection mainly emphasises the action of choosing the habitats, and can be
reflected by analysing habitat use and habitat preference. Svardson (1949) and Hilden
(1965) peinted out that habitat selection includes two processes: primary selection of
general environmental features under the different habitats, and then further selection
of specific habitat based on detailed features. According to Johnson (1980), animals
follow an order in habitat selection: firstly, selection of geographical region, secondly,
selection of home range in the geographical region, and lastly, selection of different
type of habitat components. Wiens (1981} described that habitat selection may occur at
a number of spatial scales and need not be based on the same criteria at each.

Schaller et al. (1985) had pointed out that little is known of habitat selection of the giant
pandas (Ailuropoda melanoleuca), except that they seem to concentrate their activities in
mountainous areas, live in a bamboo environment and feed almost exclusively on
bamboo species. However, there is a substantial variation in the growth pattern {e.g.
culm density, annual shoot production) and morphology (e.g. culm height and basal
diameter) of bamboo culms when growing under different conditions, and these may
direct panda habitat selection {Reid and Hu 1991). Wei et al. (1996) again commented
that some work had been done on panda habitat selection by Reid and Hu (1991) in
Wolong NR. Based on that, Wei et al. {1996 and 1999) applied the same method to
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analyse panda habitat selection in Mabian Dafengdin NR and compared the habitat
selection between the giant panda and the red panda in Yele NR.

It has been reported that there are two main habitats occupied by pandas in Foping NR:
the winter habitat with bamboo species B. fargesii and the summer habitat with bamboo
species F. spathacea (Pan et al. 1988 and 1989, Yong et al. 1994). Tian {1986, 1989, 1990,
and 1991) published his research work on characteristics of bamboo species and
flowering within the whole range of the Qingling Mountains. However, no details have
been reported on analysing the bamboo layer and its relationship with panda presence
and canopy tree layer. Tian (1990) described, based on the field observation, that
pandas do not feed in the areas where bamboo stems are very dense or very sparse,
bamboo closure very high or very low, the understorey environment very dark, as well
as the slopes very steep. The survey conducted in Foping NR in 1984 showed that 20%
of the bamboo area has never been used or used very little by pandas. Tian (1990) also
mentioned that pandas select only the bamboo stems with an age of one or two years
old to feed. Tian described his findings based eonly on his field observation and no
statistical method has been used to test whether there was a significant difference in
terms of the aspects mentioned above between panda-presence or panda-absence
habitats.

Panda research using more advanced metheds to analyse panda habitat has just started
recently in Foping NR. Yang et al. (1997 and 1998) as well as Yang and Yong (1998)
showed their research results on panda summer and winter habitats. They mainly
focused on analysing environmental factors, both biophysical and abiotic, in panda
regions, looking at their impact, and clustering the survey plots based on these factors.
Ren et al. (1998) focused their research on flora and vegetation, as well as the
relationship between plant species richness and elevation. Quantitative analysis of
panda habitat selection and linking panda presence with bamboc as well as tree
structures has not been done in Foping NR.

This study reports the relationship between the presence of pandas and their habitat
factors such as vegetation type, elevation, slope gradient and slope aspect by using
radic tracking data, survey plot data and mapping results from Chapter 4.
Furthermore, the study aims to gain an insight into habitat selection of pandas, to look
at the difference between various panda habitat types, and, therefore, to find the
specific characteristics of panda-presence habitat.

6.2 Study area

Foping NR is located in the south of Shaanxi province (Figure 1.3), on the middle part
of the southern slope of the Qinling Mountains (Figure 1.1). The reserve covers about
290 km?, and the elevation ranges from approximately 980 to 2900 m. The description of
Foping NR is detailed in Chapter 1. The main vegetation types are conifer forests,
mixed conifer and broadleaf forests, deciduous broadleaf forests, shrub and meadow
{Ren et al. 1998, CVCC 1980). There are two main bamboo species for pandas to feed
on: B, fargesii and F. spathacen (Pan et al. 1988, Tian 1989 and 1990, Yong et al. 1994, Ren
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et al. 1998). B. fargesii is generally distributed in the area below 1900 m, while F.
spathacea occurs mainly in the area above 1900 m. The estimated panda population is
about 64 with an average density of one individual per 5 km? according to the survey
conducted in 1990 (Yong et al. 1993).

4 110 field survey plots

O radio ﬁacking locations I NN N
4] 10km

Figure 6.1 Distribution of radio-tracking locations (the grey circles) and 110 field survey plots
(the black deltas) in Foping Nature Reserve, China.

6.3 Methods
6.3.1 Data

Radio-tracking data: Radio tracking data were assumed to be able to reflect the
principles of panda habitat selection. Six pandas (3 female and 3 male) with telemetry
collars were tracked in different periods {see Table 5.2). The longest period lasted about
5 years from 1991 to 1995, The earliest tracking started in May 1991 and the latest one
was in December 1995. A total of 59 receiving towers were used in the nature reserve
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and mainly distributed along the top ridge of GuangTouShan Mountain with west-east
direction for tracking in summer and autumn seasons, and the DongHe River Valley
with south-north direction for tracking in winter and spring seasons, All 1760 raw
tracking records were carefully checked and finally a total of 1639 effective tracking
records were kept (see detail in Chapter 5); their distribution is shown in Figure 6.1,
One tracking record is used as one day for calculating panda habitat use and selection.

Habitat survey data: A habitat survey was conducted in summer 1999 (July and

August). Global Position System (GPS) has been used to record the geo-locations of all

survey plots. In total, 110 quadrats (10 m by 10 m) have been surveyed (shown in

Figure 6.1) and each of them contains four bamboo plots (1 m by 1 m) for calculating

average bamboo parameters for the whole plot. Detailed habitat information has been

collected through measuring and recording of:

e free layer (25 m): species, number or stems, diameter at breast height (DBH) per
stem, height per stem, and canopy coverage per species, total canopy coverage in
10 m by 10 m plot;

¢ shrub layer (= 1 m and < 5 m) except bamboo species: species, individual height,
and coverage per species in 10 m by 10 m plot;

e bamboo layer: species, number of culms, basal diameter (BD) per culm, average
bamboo height in 1 m by 1 m bamboo plot, and total bamboo coveragein 1 mby 1
m bamboo plot;

¢ main terrain factors: elevation, slope gradient and direction;

e signs of panda presence: feedings, droppings and nesting sites;

e ground-cover-based panda habitat types: (1) conifer forest, (2} mixed conifer and
broadleaf forest, (3) deciduous broadleaf forest, (4) bamboo {or mixed with
meadow), (5) shrub-grass-herb land, (6} rock and bare-lands, (7) farm-land and
settlements, (8) water area.

6.3.2 Categories of panda habitat types

Two categories of panda habitat types were used in this study. Both categories were
described and their spatial patterns were mapped by an integrated neural network and
expert system with a high mapping accuracy in Chapter 4. The first category of habitat
types is defined based on ground cover types as listed above, and used to analyse
panda habitat use and selection. The second category of habitat types is defined based
on habitat suitability for pandas decided by several criteria (thus suitability-based
panda habitat types). It consists of (1) very suitable summer habitat, (2) suitable
summer habitat, (3) very suitable winter habitat, (4) suitable winter habitat, (5)
transition habitat, (6) marginal habitat, (7} unsuitable habitat, and (8) water area. This is
used to compare the woody species composition.

6.3.3 Data Analysis

Parts of the radio-tracking data (1066 tracking records) from several pandas that cover
more or less one complete year (see Table 5.2 and Table 6.1) were used to estimate the
percentage of time an animal spends in a particular habitat type so as to ascertain
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panda habitat use. The habitat type of a radio-tracking location can be obtained
through recording in the field, plotting the location on an existing hardcopy of a habitat
map, or extracting direcily from a georeferenced digital habitat map. In this study, the
ground-cover-based panda habitat types for all tracking records were extracted from a
georeferenced digital habitat map produced in Chapter 4 because between 1991 and
1995 tracking was carried out without recording the habitat types. To analyse panda
habitat use, the percentage of time over one year that pandas spend in different habitat
types was calculated. The study assumes that all pandas have the same choice of
different ground-cover-based habitat types.

In order to understand how pandas utilise the habitat types in the winter and summer
activity ranges, the same data were also used to illustrate the frequency of panda
occurring in the different habitat types in two seasonal activity ranges. Furthermore,
other physical environmental factors (namely elevation, slope gradient and aspect)
were used to overview panda habitat selection determined by different terrain factors.

A x? test is performed to test for the goodness-of-fit of utilised habitats to available
ground-cover-based habitat types in order to gain an insight into panda habitat
selection (see detail in Neu et al. 1974, Byers et al. 1984, White and Garrot 1990). The
two null hypotheses are tested by the x? test. The first null hypothesis is that habitat
usage occurs in proportion to habitat "availability considering all habitats
simultaneously using Equation (1); and the second null hypothesis is that habitat usage
oceurs in proportion to habitat availability considering each habitat separately using
Equation (2).

(observed —expected )

ey

x =2 expected

(l-p )3 p (1= !
P Z(n'lt[wlz SE<p,+Z L(HL')P (2)

uf2k

in which P; is the calculated confidence interval for habitat type i, p, is the
proportion of panda observations in habitat type i, n is the number of total
observations, Zyz is the upper standard normal table value corresponding
to a probability tail area of a/2k, and k is the number of habitat types tested.

Equation (1) is used to test whether there is a significant difference between
observation and expectation. If there is a significant difference, the first null hypothesis
is rejected which means that panda has “habitat selection”. After “habitat selection” in
general has been confirmed, the expected panda locations are calculated from the
availability proportion multiplied by total observed panda locations. Equation (2) is
used to calculate a confidence interval and then to test which habitat type pandas select
more. To determine whether the animal selects a habitat type “frequently”, “in
propoertion to”, “less frequently”, or “not at all”, the confidence interval is checked for
overlap with the availability proportion of the corresponding habitat type. If the
confidence interval includes the availability proportion, the hypothesis, ie. “in
proportion to” this habitat type, cannot be rejected. However, if the lower boundary of
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the interval exceeds the availability proportion, the panda has shown its frequent
selection of this habitat type. If the upper boundary of the interval is less than the
availability proportion, the panda has shown less frequent selection or aveidance of
this habitat type. The availability (i.e. area) of each ground-cover-based habitat type
comes from our habitat mapping results (see Chapter 4).

The woody species composition of suitability-based panda habitat types were analysed
based on our 110 field survey plots. The importance value (IV) for each species was
calculated using a formula modified from Mueller-Dombois and Ellenberg (1974) and
Acharya (1999), which considers the canopy coverage per species in the plot, the
individual density per species in the plot, and the chance of occurrence among 110
plots. All these three parameters range from 0 to 100. Species importance value was
then calculated using the following equation:

IV, =(C, + D, + 0)/300 (3)

in which 1V, is the importance value of species i, C; is the canopy coverage of
species i in a 10 m by 10 m plot, D; is the density of species / in a 10 m by 10
m plot, and O is the chance of species i for occurring among 110 plots .

Species in tree layer (= 5 m} and shrub layer (= 1 m and < 5 m} were (reated
respectively. Then all species were sorted according to the suitability-based habitat
types as well as the importance value. The top 10 species for different suitability-based
panda habitat types were selected and used to compare difference of species
composition. Only 6 suitability-based habitat types which have tree cover and bamboo
cover were used: very suitable summer habitat, suitable summer habitat, very suitable
winter habitat, suitable winter habitat, transition habitat, and marginal habitat.

The structure of habitat components (tree layer and bamboo layer) was analysed in
detail for two situations: panda presence and panda absence, in order to find whether
and how the structure of habitat components influences the presence of pandas.
Checking for any significant difference of the structure parameters of tree and bamboo
layers has been executed between panda-presence habitat and panda-absence habitat.
These parameters are total tree canopy coverage, total bamboo coverage, number of
tree stems, number of bamboo culms, height for both tree and bamboo species, DBH of
tree stems, and BD of bamboo culms. The Mann-Whitney U test was used to test all the
hypotheses in the study. The hypotheses were set up based on Tian's (1990) field
observation and our field survey. In general:
¢ There is a significant difference between panda-presence and panda-absence
habitats on tree canopy coverage, number of tree stems, tree DBH and tree height;
® There is a significant difference between panda-presence and panda-absence
habitats on bamboo coverage, number of bamboo culms, bamboo basal diameter
and bambog height; number of bamboo culms with different ages (suchas <1,1 -
2, and 2 2 year-old) as well as number of dead culms.
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6.4 Results

6.4.1 Habitat use and selection by pandas

Table 6.1 shows panda habitat use based on 6 one-year periods for 4 pandas.
Consequently the percentage of time, on average, in a year for pandas staying in each
different habitat type is about 13% in conifer forests, 40% in mixed conifer and
broadleaf forests, 45% in deciduous broadleaf forests, 2% in bamboo (or mixed with
meadow), and appearing by chance in shrub-grass-herb land (< 1%) as well as rock and
bare-lands (< 1%). Pandas have not been located in farm-land and water area by radio
tracking. It shows that pandas stay in deciduous broadleaf forest and mixed conifer
and broadleaf forest most of the year.

Figure 6.2 illustrates panda habitat use of ground-cover-based habitat types as well as
three physical environmental factors (e.g. elevation, slope gradient and direction) in
two seasonal activity ranges. In the winter range, pandas stay mostly in deciduous
broadleaf forests as well as mixed conifer and broadleaf forests with an elevation range
of 1600 to 1800 m, a slope range of 11 to 20 degrees, and south-facing slopes. In the
summer range, pandas often use conifer forests and also mixed conifer and broadleaf
forests with an elevation range of 2400 to 2600 m, a slope range of 21 to 30 degrees, and
north and west exposed slopes. 9% of the tracking records in the winter activity range
fall in the “no aspect” class and only 1% in the summer range, which means pandas
more frequently use flat areas in their winter activity range than in their summer
activity range.

Table 6.1 Analysis of panda habitat use by using radio tracking data in Foping Nature Reserve, China -
the percentage of time spent in each different habitat type (cf: conifer forest, dbfef: mixed conifer and
broadleaf forest, dbf: deciduous broadleaf forest, bam: bamboo (or mixed with meadow), shgr: shrub-
grass-herb land, fas: farm-land and settlements, rab: rock and bare-land, war: water area).

panda Tracking period Tracking days in different habitats
cf dbfcf dbf bam shgr fas rab war Total
days
045 (F) June 92 - May 93 15 57 77 0 1 1] 0 0 150
065 (M) June 92 - May 93 23 62 78 1 0 0 0 0 164
127 (M) June 92 - May 93 45 61 76 12 0 0 4 0 194
045 (F) Jan. 95 - Dec. 95 19 91 94 3 0 0 0 0 207
065 (M)  Jan. 95-Dec. 95 15 102 67 1 0 0 0 ] 185
005 (M) Jan. 95-Dec. 95 17 57 82 2 5 0 3 0 166
Total days 134 430 474 19 6 0 3 0 1066
% of time in a year 12.6* 40.3 44.5 1.8 0.6 0.0 0.3 0.0 100

*12.6=134/1066*100

Calculation of habitat selection is shown in Table 6.2. The x? goodness-of-fit (Table 6.2a)
shows significant difference between overall habitat availability and usage {p < 0.001, df
= 7,x? = 259). It means that pandas show “habitat selection” when considering all
habitat types together. Checking availability proportion of each habitat type with the
95% confidence interval reveals that three habitat types are frequently selected by
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pandas: conifer forest, decicduous broadleaf forest as well as bamboo groves (Table
6.2b). Pandas use the “rock and bare-land” areas by chance but in proportion to the
availability of this habitat type. However, the remaining four habitat types (e.g. mixed
conifer and broadleaf forest, shrub-grass-herb land, farm-land and settlements, as well
as water area) are less frequently selected or not selected by pandas (see discussion).
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Figure 6.2 Analysis of panda habitat use in two seasonal activity ranges in Foping Nature Reserve,
China. a - use of eight ground-cover-based habitat types: conifer forest (cf), mixed conifer and
broadleaf forest (dbfcf), deciduous broadleaf forest (dbf), bamboo (or mixed with meadow) (bam),
shrub-grass-herb land (shgr), rock and bare-land (rab), farm-land and settlements (fas), as well as
water area (war). b - use of elevation ranges. ¢ - use of slope gradient ranges. d - use of 5 classes of
slope aspect: east {E: 46-135 degrees), south (5: 136-225 degrees), west (W: 226-315 degrees), north (N:
316-360 and 045 degrees}, and no aspect (No}.
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Table 6.2 Analysis of panda habitat selection in Foping Nature Reserve, China by comparing the
expected with observed panda occurrence numbers, and calculating x2 and confidence interval.

a: caleulating ¥? in order to see panda habitat selection when considering all habitat types together. The
area of each habitat type comes from our habitat mapping result in Chapter 4, and the observed radio-
tracking locations are from Table 6.1.

Habitat type Habitat availability — Location of radio-tracking Expected x?

Area  Proportion  Observed  Proportion observations? fest
(km2) P Puid

1 conifer forest 165 0.056 134 0.126 60 91.47

2 mixed conifer and 174.2 0.594 430 0.403 633 65.06

broadleaf forest

3 deciduous broadleaf — 92.0 0.314 474 0.445 334 58.42

forest

4 bamboo {or mixed 1.7 0.006 19 0.018 6 26.62

with meadow)

5 shrub-grass-herb 6.0 0.020 6 0.006 2 1145

land

6 farm-land and 0.4 0.001 0 0.000 1 145

settlements

7 rock and bare-land 1.6 0.005 3 0.003 6 1.36

8 water area 1.0 0.003 0 0.000 4 3.63

Total 293.4 1 1066 1 1066 259.47

b: calculating 95% C.1. and checking with availability proportion of each habitat type.

Habitat type Proportion of Proportionof  95% C.I. on proportion Habitat
availability ;p,  observations p, of occurrence: Py selection
1 conifer forest 0.056 0.126 0.098<= Py <= 0.155 Frequent
2 mixed conifer and 0.594 0.403 03624~ Prpy<=0446  Less
broadleaf forest frequent
3 deciduous 0.314 0,445 0.403<= Py <= 0.488 Frequent
broadleaf forest
4 bamboo {or mixed 0.006 0.018 0.007<= Ppas <= 0.029 Frequent
with meadow)
5 shrub-grass-herb 0.02¢ 0.006 -0001<= Py <= 0.012  Less
land frequent
6 farm-land and 0.001 0.000 0 Not selected
settlements
7 rock and bare-land 0.005 0.003 -0.002<¢= Py <= 0007 In
proportion
8 water arca 0.003 ¢.000 0 Not selected
1. p,isa proportion of the area of each habitat type to the total area, for example, 16.5/293.4=0.056.

2, pais a proportion of observed locations in each habitat type to the total abserved locations, for
example, 134/1066=0.126.
3. Expected locations of animals are calculated by multiplying the availability proportion (p.) and the

total observed locations, for exarnple, 0.056*1066=60.
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6.4.2 Comparison of characteristics of panda habitat types

Woody plant species composition

The woody plant species composition shows differences among six suitability-based
panda habitat types. The top ten species with the highest importance values (IV) for
both tree layer and shrub layer were selected and are shown in Table 6.3 and Table 6.4
respectively. There is less repetition of species with high IV between “very suitable
summer habitat” {vss) and “suitable (ss) summer habitat” than between “very suitable
winter habitat” (vsw) and “suitable (sw) winter habitat”.

Table 6.3 The woody plant species with their importance value {IV} in the tree layer (= 5 m) in six
different suitability-based panda habitat types in Foping Nature Reserve, China.

Woody species in tree layer Suitable summer habitat Suitable winter habitat

(25 m) vss 55 vsw sW tr ms

1 Abnes fargesit 0.29

2 Crataegus wilsonii 0.08

3 Meliosma cuneifolia 0.07

4 Cornus macrophylla 0.07

5 Sorbus koehneaina * 006

6 Corylus tibetica 021 029

7 Cerasus lomenlosa * 0.20 012

8 Populus purdomii 0.10 017

9 Betula albo-sinensis var. septentrioniis 040 0.23 027 0.30 0.30

10 Pinus armandi * 010 0.13 0.0

11 Sorbus tapashana 0.07

12 Acer mone 0.06

13 Sorbus hemsleyi 0.04

14 Betula platyphyily 0.12

15 Tilia anturensis 0.21

16 Carpinus turczaninowii var. skipulata 021 011

17 Populus davidiana 0.30 0.30 0.10

18 Castanea mollissima 0.21 018

19 Quercus aliena var, acuteserratn 0.3% 0.32 .15

20 Dendrobenthamia japorica * 0.33 0.30 0.15

21 Quercus glandulifera var. brevipetiolata 0.26 0.33 0.10

22 Juglans cathayensis © 0.20 0.21

23 Pinus tabulaeformis 0.28

24 Eupielea pleiosperntin 0.26

25 Tsuga chinensis 0.24 0.31

26 Quercus spinosa * 0.22 .09

27 Carpinus turczaninowit 0.26 015

28 Picea wilsenii 0.24

29 Litsea pungens * 0.11

30 Acer ginnala * 0.10

31 Platycarya strobilacen 0.10
Note: “vss”, “ss”, “vsw”, “sw”, “tr” and “ms” represent six suitability -based panda habitat types: very suitable
summer habitat, sujtable summer habitat, very suitable winter habitat, suitable winter habitat, transition habitat and
marginal habitat, Symbel “*” indicates the species occurring in both the tree and shrub layers.

The typical tree species (Table 6.3) in “vss” and “ss” are Abies fargesii, Crataegus wilsonii,
Meliosma cuneifolia, Cornus macrophylla, Sorbus koehmeana, Sorbus tapashana, Acer mono,
Sorbus hemsleyi. However, the specific tree species in “vsw” and “sw” are different and
consist of Betula platyphylla, Tilia amurensis, Juglans cathayensis, Pinus tabulacformis,
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Euptelea pleiospermum. Only Betula albo-sinensis var. septentrionlis occurs in the whole
elevation range with high I'V in the tree layer. The tree species in both transition and
marginal habitats can appear in both winter and summer habitats. In the transition
habitat, three tree species are typical: Picea wilsonii, Litsea pungens and Acer ginnala.

Table 6.4 The woody plant species except bamboo species with high importance value (I'V) in the shrub
layer (2 1 m and < 5 m) in six different suitability-based habitat types in Foping Nature Reserve, China.

Woody species in shrub layer Suitable summer Suitable winter

(z1mand <5m) habitat habitat r ms
vss 88 VsW sW

1 Sorbus koehneana * 0.08

2 Ribes fasciculatum var, chinense 0.08

3 Rosa tsiniglingensis 0.07

4 Rosa omeiensis 011 0.30

5 Philadelphus incanus 0.11 0.13 0.08

6 Acer cappadocicum 0.20 0.14

7 Viburnum betulifolivem 0.38 024 0.26 0.25 0.23

8 Cuomynius phellomanus 0.32 023 0.35 0.29

5 Litsen puntgens ™ 0.16 0.20 0.16 0.21

10 Cerasus tomentosa ™ 0.08 0.07

11 Spiraea alpina 0.16

12 Lonicera taipeicnsis 0.10

13 Maddenia wilsonii 0.08

14 Rhododendron capitatum 007

15 Berberis pseudothunbergii 0.06

16 Daphue giraldii 004

17 Syringa oblata 003

18 Carpinus cordata 019

19 Chamaecergus sylvestri 014

20 Dendrobentiantia japonica * 0.25 0.25

21 Lespedeza dahiurica 0.19 0.26

22 Swnilax scobinicaulis 021 . a1z

23 Smilax stans .20 022 0.51 .27

24 Viburnum niangolicum 0.22

25 Juglans cathayensis * 0.27

26 Rubus corchrovifolius 0.24 0.17

27 Srnilax galbra 0.24 013

28 Abclia engleriana 0.20 011

23 Acer ginnala * 0.23

30 Syringa villosa 0.12

31 Abelia biflora 012

32 Cotoneaster acietifolivs taycz. var. villosittus 0.11

33 Quercus spinosa * 0.07

34 Pinus armandi * 0.07

35 Lonicera hispida Q.06

36 Padus racemosa 0.04

Note: “vss”, "ss”, “vsw”, “sw”, “"tr" and “ms” represent six suitability-based panda habitat types: very suitable
summer habitat, suitable summer habitat, very suitable winter habitat, suitable winter habitat, transition habitat and
marginal habitat. Symbol “*” indicates the species occurring in both the tree and shrub layers.

The woody species in the shrub layer shows an obviously different composition {Table
6.4), but some species in the tree layer occur in the shrub layer as well: Sorbus kochneana,
Litsea pungens, Cerasus fomentosa, Dendrobenthamia japonica, Juglans cathayensis, Acer
ginnala, Quercus spinosa, and Pinus armandi. Tt indicates that these woody species
regenerate well in Foping NR. Euonymus phellomanus, Viburnum betulifolium and Litsea
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pungens occur at all elevation ranges. There are more species with high IV in the shrub
layer than in the tree layer in the suitable summer habitat (ss). More species with high
IV only occur in the transition habitat (such as Acer ginnala, Syringa villosa, Abelia biflora,
and Cotoneaster acutifolius taycz. var. villosulusy and the marginal habitat (like Quercus
spiniosa, Pinus armandi, Lonicera hispida, and Padus racemosa).

Structure analysis of tree layer

Several parameters reflecting the structure of the tree layer (ie. total tree canopy
coverage, average height of tree stems, number of iree stems, and average DBH of tree
stems) were compared between panda-presence and panda-absence habitats. Figure 6.3
shows that there were no panda signs found in the area where no bamboo grows under
the tree canopy. Figure 6.3 also shows that the habitats without understorey bamboo
groves have significantly more tree stems than the habitats with bamboo groves (p =
0.007 and 0.009), while there is no significant difference for the other three tree
parameters. Figure 6.4 shows that, when bamboo species (either B. fargesii or F,
spathacea) exist under the tree canepy, no significant differences of these tree
parameters were found between panda-presence and panda-absence habitats (p > 0.05).
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Figure 6.3 Comparison of tree parameters with or without understorey bamboo between panda-
presence and panda-absence habitats. “N” represents the number of plots. “N5” means no significant
difference and “S” means significant difference at 95%C.I level. “z"” represents the probability at a
certain significant level. “0” and “*” represent the statistical outliers and extreme cutliers. The grey
boxplots show analysis under no panda and the white boxplots show analysis under panda presence.
“DBH" represents the tree diameter at breast height.
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Figure 6.4 Comparison of tree parameters with understorey bamboo between panda-presence and
panda-absence habitats. “N” represents the number of plots. “NS” means no significant difference and
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“5" means significant difference at 95%C.1. level. “p” represents the probability at a certain significant
level. “0” and “*” represent the statistical outliers and extreme outliers. The grey boxplots show
analysis under no panda and the white boxplots show analysis under panda presence. “DBH”
represents the tree diameter at breast height. “1” and “2” mean Bashania fargesii and Fargesia spathacea.

Structure analysis of bamboo layer

Figure 6.5 shows comparison of four bamboo structure parameters between panda-
presence and panda-absence habitats. In B. fargesii groves, no significant difference was
found for the total bambeo coverage and the average basal diameter of bamboo culms
between panda-presence and panda-absence habitats {p = 0.798 and 0.186). However,
pandas do select short and dense groves at a significant level of 95% C.1. (p = 0.004 and
0.001). In F. spathacen groves, only the density of bamboo culms is similar between
panda-presence and panda-absence habitats (p = 0.221), but the panda-presence habitat
has significantly higher bamboo coverage, taller and thicker bamboo culms (p = 0.037,
0.004 and 0.000).

Figure 6.6 shows the relationship between bamboo-culm ages and habitats with panda
presence or absence. Pandas significantly select the areas with more one to two year-
old culms as well as dead culms (p = 0.002, 0.004, 0.031 and (.015) for both bamboo
species. In the B. fargesti area, pandas also significantly select the habitat with more two
or over two year-old bamboo culms (p = 0.001). However, in the F. spathacea area,
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pandas do not show significant difference in selecting the habitat with more two or
over two year-cld bamboo culms (p = 0.438). For the density of less than one year-old
culms in both bamboo areas, no significant difference was found between the panda-
presence and panda-absence habitats (p = 0.913 and 0.408).
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Figure 6.5 Comparison of four bamboo structure parameters between panda-presence and panda-
absence habitats. “N” represents the number of plots. “NS” means no significant difference and 8"
means significant difference at 95%C.1 level. “p" represents the probability at a certain significant
level, “o” and “*” represent the statistical outliers and extreme outliers. The grey boxplots show
analysis under no panda and the white boxplots show analysis under panda presence (see legend at
the right side). "BD” represents the bamboo basal diameter. “1” and “2” mean Bashania fargesii and
Fargesia spathacea.

6.5 Discussions

Babaasa (2000) stated that animal habitat selection appears to coincide with seasonal
changes and correspond to food availability. In Foping NR, the vegetation types have a
vertical distribution along the elevation. Radio tracking data analysis showed that the
area below about 1950 m in Foping NR is the panda winter habitat and the area above
about 2160 m the panda summer habitat (see Chapter 5). In the winter habitat,
deciduous broadleaf forest and mixed conifer and deciduous broadleaf forest occupy a
large area with well-growing understorey bamboo B. fargesii, which provides pandas
with a large food supply in the winter season. The summer habitat is covered by
conifer forest and mixed conifer and deciduous broadleaf forest as well, which
provides F. spathacea bamboo as the pandas’ summer food. The results in Table 6.1, i.e.
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pandas spend 45%, 40% and 13% of the year respectively in deciduous broadleaf forest,
mixed conifer and deciduous broadleaf forest, and conifer forest, reveal that panda
habitat selection coincides with seasonal changes as the pandas occupy specific
vegetation types in specific seasons (see Chapter 4 and Chapter 5).
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Figure 6.6 Comparison of bamboo age between panda-presence and panda-absence habitats. “N”
represents the number of plots. “NS” means no significant difference and “5” means significant
difference at 95%C.1. level. “p" represents the probability at a certain significant level. “o” and “*”
represent the statistical outliers and extreme outliers. The grey boxplots show analysis under no
panda and the white boxplots show analysis under panda presence. “1” and “2” mean Bashaniq
fargesii and Fargesia spathacen.

Pandas do not use the whole elevation range evenly in Foping NR. They mainly stay in
the areas between 1600 and 1800 m in winter and use mostly the areas between 2400
and 2600 m in summer, The area from 1950 to 2160 m is only covered by scattered
bamboo groves, and hardly any signs of long-time residence of pandas have been
recorded (see Figure 6.2b). This has been proven by our field survey conducted in
summer 1999 as well as by analysis of five-year radio-tracking data in Chapter 5. It has
been termed by the local staff and defined in our mapping work in Chapter 4 as a
transition habitat, which is used by pandas to move between two seasonal activity
ranges only in June and September.

It has been reported that pandas occupy the areas with a gentle slope gradient, This has

been confirmed in this study. In winter, pandas select the areas with a slope range of 10
to 20 degrees. The swunmer habitat in Foping NR has mostly steeper slopes than the

97



Chapter ¢

winter habitat, and consequently pandas use the areas with slopes between 20 to 30
degrees. The frequency for pandas to appear in the areas with slopes over 30 degrees is
much higher in summer than in winter activity ranges, occupying 27% of the summer
tracking-records, while no panda tracking record was found to appear in the areas with
slopes over 30 degrees in the winter range. This result agrees with Yang and Yong
(1998). When comparing the situation in Wolong NR, pandas select the flat areas or
gentle-slope areas between 10 to 20 degrees the whole year {OQuyang et al. 1996). One of
the reasons could be that the summer habitat in Foping NR is limited and mostly has a
slope of 20 to 30 degrees.

Analysis of habitat selection through calculatingx” and confidence interval shows that
pandas do not frequently select the habitat type “shrub-grass-herb land”. This seems
reasonable because it has no tree and bamboo cover based on the definition of this
habitat type in Chapter 4, and therefore it is concluded that this habitat type is avoided
by pandas. However, this is not the case for the habitat type “mixed conifer and
broadleaf forest” selected less frequently by pandas, as shown in Table 6.2b. The result
of less frequently selecting “mixed conifer and broadleaf forest” does not mean that
pandas avoid this habitat type, but might be due to that fact that it covers a large area
in Foping NR (60% of the nature reserve). Figure 6.2a also shows that pandas often
occupy this habitat type both in summer and winter seasons. Therefore, it might be
concluded that mixed conifer and broadleaf forest is less frequently selected but not
avoided by pandas. Clearly, pandas seem to avoid areas influenced by humans, like
“farm-lands and settlements”.

Figure 6.7 Photos show the “ZhuYangZi” B. fargesii habitat {a) with short {about 2 m) and
dense culms with more branches caused by multiple feeding events by pandas, and the
high mature B. fargesii habitat (b) with tall (about 4 m) and sparse culms with no branches in
Foping Nature Reserve, China. (Phefo : Xuehua Liu)
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During the winter season, pandas stay in the areas with B. fargesii and frequently select
the so-called “ZhuYangZi” bamboo groves (called by local people), which means that
the bamboo culms are short (about 2 m high) and dense with more culms as well as
branches caused by multiple feeding events by pandas (Figure 6.7a). The statistical
results in Figure 6.5 confirmed that the structure parameters of “ZhuYangZi” bambeo
groves are significantly different from those of the normal B. fargesii groves with tall
{about 4 m) and sparse culms with no branches (Figure 6.7b). It might be necessary to
separate these two quite different B. fargesii habitats from a conservation point of view.
These two different habitats can be texmed as the “ZhuYangZi” B. fargesii habitat and
the high mature B. fargesii habitat based on our field observation. Mostly, the high
mature B. fargesii habitat is thought not to be used by pandas. However, this is not true.
During our survey in summer 1999, evidence was found of the remains of a few
droppings and piles of the remaining parts of bamboo shoots. Therefore, that pandas
still use the high mature B. fargesii habitats in the spring season for foraging thick
bamboo shoots was confirmed. The shoots consumed by pandas consequently
disappear from the groves and panda droppings from eating these shoots cannot exist
for a long time due to easy decomposition. This means that no signs are left in the high
mature B. fargesii groves, which, in turn, gives people the wrong impression that
pandas do not use the high mature B. fargesii groves.

E. spathacea bamboo in summer habitat has shorter and thinner culms, and grows more
densely. It was found that pandas select L. spathacea bamboo groves with higher
coverage, taller and thicker culms in the summer activity range. Two reasons may
explain this phenomenon: (1) the bicmass of individual F. spathaces culm is small; and
{2) the summer habitat is steep. These make pandas select suitable bamboo groves with
higher bamboo biomass (taller culins, thicker basal diameter, and higher coverage due
to more culms and leaves} without often climbing the steep slope. Ne significant
difference on bamboeo density was found between panda-presence and panda-absence
habitats in the high elevation area, which is similar with pandas in Wolong NR which
select B. fangiana in high elevations (Reid and Hu 1991). One of the reasons could be
that, in general, most of the bamboo groves in the high elevation areas grow densely.
For example, F, spathacea grows densely in the high elevation area in Foping NR and B.
fangiana grows densely in the high elevation area in Wolong NR.

There are more one and two-year-old as well as dead culms in panda-presence habitat
than in panda-absence habitat for both bamboo species. This implies that the barmboo
groves regenerate well, and so, are frequently used by pandas. However, no significant
difference was found for culms with age of less than on-year-old between panda-
presence and panda-absence habitats, which agrees with Reid and Hu {1991) that the
proportion of current-year-old culms alone does not seem to be an important factor to
explain bamboo patch selection of pandas in Wolong NR.

6.6 Conclusion

The radio tracking data and habitat plot data were thoroughly analysed to gain insights
into panda habitats and usage of these habitats. The results of analysis show that
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pandas in Foping NR do select their habitat types. In the winter season, pandas
frequently select the areas with deciduous broadleaf forest and mixed conifer and
broadleaf forest with an elevation range of 1600 to 1800 m, a slope range of 10 to 20
degrees and south-facing slopes. In the summer season, pandas mostly select conifer
forest, mixed conifer and broadleaf forest, and bamboc groves with an elevation range
of 2400 to 2600 m and a slope range of 20 to 30 degrees. The results aiso show that the
characteristics of tree and bamboo layers may direct panda habitat selection. Pandas
often use the B. fargesii areas with shorter and denser culms from different ages and less
tree stems in winter, while they select the F. spathaces areas with higher coverage, taller
and thicker culms from one-two year-old ages in summer.
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Giant Panda Habitat and Conservation

Recovered panda habitat with bambeo and trees
after relocation of human being
in Foping Nature Reserve
(Photo : Xuehua Liu)
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CHAPTER 7 Synthesis:
Giant Panda Habitat and Conservation

7.1 Introduction

The main objective of this thesis is to evaluate the giant panda habitat in Foping NR
through effective and accurate mapping and modelling. The whole of the thesis reflects
this. The thesis was presented by compiling a number of papers with relevant topics
which link to each other and ultimately relate to the main aim of this study. In this final
chapter, I firstly want to emphasise the most important results from and the coherence
between the previously presented chapters, and to see whether the research questions
addressed before starting this research have been answered adequately. I then discuss
the applicability of the approach used in this study to other panda nature reserves in
the Qinling Mountains. Thirdly, the work which has not been included in this PhD
research due to time limitation are discussed in this chapter in order to have a wider
field of vision of this study, and highlight the possible topics for future research. Lastly,
I address the management relevance of this study to pandas and their habitat
conservation.

7.2 Panda habitat mapping and modelling

Nature-reserve-based panda habitat evaluation is important for panda conservation.
Mapping is no doubt an effective method for panda habitat evaluation. However,
accurate mapping is required to produce panda habitat maps, which can be further
used in panda habitat modelling and monitoring and consequently provide the proper
information for panda habitat conservation and management.

In digital image processing, different classification algorithms produce different
classifications. Fierens et al. (1994) mentioned that they did not understand why the
classifiers have differences in mapping accuracy. Chapter 2 evaluated three different
mapping techniques: the parallelepiped classifier (PPC), the maximum likelihood
classifier (MLC} and the backpropagation neural network classifier (BPNNC). The
spectral discrimination capability of the BPNNC was also explored in Chapter 2. The
research question for Chapter 2 is to what extent the neural network algorithm can
separate two classes with no spectral overlap in their feature space. The result shows
that the BPNNC can separate two non-overlap classes with an overall accuracy of
100%. However, the traditional MLC cannot do this when using the same data set. This
provides the BPNNC a potential in land cover and land use mapping as well as wildlife
habitat mapping. The result also shows that the BPNNC produced the highest mapping
accuracy compared to the MLC and the PPC.

Richards {1993) pointed out that knowledge-based methods show good prospects for

coping with data complexity in a GIS, Skidmore (1997) recommended that the neural
network backpropagation algorithm might be very useful when combined with the
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rule-based expert system. Therefore, the research question is: Can the neural network
system and expert system be combined together as an integrated classification
algorithm to get higher mapping accuracy than the conventional MLC and other
techniques? Chapter 3 developed two integrated mapping algorithms: the consensus
builder classifier (CSB), and the integrated expert system and the neural network
classifier (ESNNC). Mapping results show that the ESNNC achieved a significantly
higher overall accuracy (80%) than the consensus builder classifier (72%), the
backpropagation neural network classifier (74%), the expert system classifier (59%), and
the maximum likelihood classifier (62%). We found that the classification information
from different classifiers may be “diluted” by the consensus builder approach which
made this mapping algorithm produce only a middle-level overall accuracy, i.e. higher
than the MLC and the ESC but lower than the BPNNC. We also found that the expert
system classifier (ESC) requires a high level of expertise to construct the rule base and
has difficulty in achieving high mapping accuracy.

Chapter 4 applied the developed ESNNC to map panda habitat. There are three
research questions in chapter 4: {i) How to define panda habitat types for mapping? (ii)
Can the ESNNC identify the habitat type with a limited number of training samples?
(iii) Can the developed ESNNC map the giant panda habitat with a high accuracy?

There are different interpretations of the concept of “habitat” (Moen 1973, Baker 1978,
Morrison et al. 1992). So, how to define different habitat types of a species or
population is a common problem in wildlife conservation. In this research, we defined
habitat types of the giant panda based on the ground cover types and the suitability
classes, and termed in the thesis the ground-cover-based potential panda habitat types
and the suitability-based panda habitat types. The former was mapped using a total of
160 field survey points with records of the ground cover types, while the latter was
mapped using not only 160 survey points (with recordings of panda “presence” or
“absence”) but also 1425 non-overlapping radio-tracking points. We assume that the
areas with many panda signs in survey plots or with dense panda tracking records are
suitable for pandas. The criterion to define the elevation ranges of the panda winter
and summer habitats was based on the results of Chapter 5.

The classification results show that the ESNNC mapped both the ground-cover-based
and suitability-based panda habitat types with the highest accuracy (both over 80%)
and is significantly better than the BPNNC, ESC as well as MLC. The mapping results
also show that the ESNNC could discriminate the habitat type with few training

»ooa

samples, such as “conifer forest”, “bamboo (or mixed with meadow)”, “shrub-grass-
berb land”, “farm-land and settlements”, “rock and bare-land”, as well as “water area”,
However, the traditional MLC failed to identify these classes with few training samples
due to its parametric mechanism. It was confirmed by the mapping results that panda
habitat in Foping NR is good, and over 95% of the nature reserve is covered by forest.
The giant pandas can use 16% of the reserve area as their summer habitat, 52% as their
winter habitat, and 20% as their transition habitat to move between the winter and

summer habitats.
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Chapter 5 thoroughly analysed the radio-tracking data, which have been used in
Chapter 4 for mapping the suitability-based panda habitat types, in order to gain
insight into panda movement patterns in Foping NR. Spotting pandas in the forest-
covered mountains is very difficult. Therefore, radio-tracking is an effective way to
study the giant panda and understand its behaviour and habitat use. Through analyses,
we should answer (i} when, where and how the giant pandas move? and (ii} whether
there is a significant difference in panda activity range between male and female, and
between winter and summer? Analysis of a total of 1639 effective radio-tracking data
recorded in a five-year period (from 1991 to 1995) showed us that pandas climbed from
the winter to the summer activity ranges within a period of 8 days from June 7 to 15,
and descended over several weeks between September 1 and October 6 from the
summer to the winter ranges. So, pandas spent 243 days in the winter range below 1950
m and 78 days in the summer range above 2160 m. The average distance moved over
two consecutive days varied in different months. Pandas move longer distances with
also larger variation in March, April, May, June and September. However, in
December, January, February, July and August, pandas move a short distance in their
winter or summer range, It was found that there is no significant difference on distance
travelled within two consecutive days between male and female pandas. The result of
the Mann-Whitmey U test showed there is no significant difference between adult male
and female pandas using the winter activity range as well as using the summer activity
range. Adult male pandas use a similar area for the winter range as for the summer
range, while adult female pandas use a significantly larger area for the winter range
than for the summer range.

As mentioned previously, the panda radioc-tracking data can also be used to analyse
panda habitat use and selection. Chapter 6 tackled this issue. However, the radio-
tracking data were recorded without any habitat information, such as cover types,
during the tracking period from 1991 to 1995, So, the mapping result from ESNNC in
Chapter 4 was used to extract the ground-cover-based panda habitat types for radio-
tracking records. The question that needs to be answered is whether the giant pandas
use/select some habitat types significantly more than other types. We found that
pandas in Foping NR do exhibit habitat selection behaviour, They select mostly four
habitat types: deciduous broadleaf forest, mixed conifer and broadleaf forest,
coniferous forest, and Fargesia bamboo groves. In the winter range, pandas spend more
time in deciduous broadleaf forest with an elevation range of 1600 to 1800 m, a slope
range of 10 to 20 degrees, and south-facing slopes. In the summer range, pandas use
more conifer forest with an elevation range of 2400 to 2600 m and a slope range of 20 to
30 degrees.

Chapter 6 also looked at panda habitat characteristics {woody plant species
composition, structure parameters of tree layer and bamboo layer) by analysing 110
surveyed plots with detailed measurements in order to find differences in habitat
characteristics between panda-presence habitat and panda-absence habitat. Analysis
results showed us that pandas stay in the area where bamboo grows, and they select
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the B. fargesii bamboo area with short and dense culms from different ages in the winter
activity range, while they select the F. spathacea bamboo area with a high coverage of
tall and thick culms from one to two years old in the summer activity range.

7.3 Applicability in Qinling panda refuges

Figure 7.1 is a Landsat TM image which shows the landscape of the main part of the
Qinling Mountains. Four neighbouring nature reserves with the main aim of protecting
the giant pandas and their habitat are illustrated by their boundaries. They are Foping,
ChangQing, LaoXianCheng and ZhouZhi NRs. The remaining one, TaiBai NR is on the
northern side of LaoXianCheng NR (see Figure 1.1). As we see, Foping NR is located
almost at the centre of the neighbouring three nature reserves. 1 consider it to be a very
important pilot nature reserve together with LaoXianCheng NR in the Qinling
Mountains. It plays a role as a “bridge” which links the neighbouring three nature
reserves, and further through LaoXianCheng NR links with TaiBai NR. Pandas in
Foping NR share the summer habitat, where the mountaintops are located, with
pandas from the neighbouring three nature reserves (see Figure 4.5). I think it is
necessary and also important to apply the same work done in this research to other
nature reserves in the Qinling Mountains. Detailed panda habitat evaluation by
mapping and modelling is worth undertaking in each individual panda nature reserve.
Consequently, in the long-term, modelling panda-habitat relationship and monitoring
panda habitat condition will be improved by nature-reserve-based panda habitat
mapping. Due to the adjacency of these nature reserves in the Qinling Mountains, the
characteristics of panda behaviour and habitat should share more similarities than
differences, which may make the application of this research approach in the other
reserves easier. However, slight adjustment in panda habitat evaluation and panda-
habitat relationship modelling in this northern panda refuge needs to be considered.

Landsat TM images show clearly that the habitat conditions of the giant pandas in
these four panda nature reserves are different. Some areas were used for commercial
logging before, such as LongCaol’ing (the area below ZhouZhi NR) and TaiBai Forest
Bureau (the area above ChangQing NR). Detailed habitat evaluation should be carried
out as well in the surrounding areas outside the existing panda nature reserves. Loucks
et al. (2001) evaluated the panda habitat in the Qinling Mountains at a geographically
large scale, which may guide future work from a broad view. Panda habitat mapping
and evaluation at both levels {i.e. the nature-reserve-based and the Qinling-mountain-
based) are required and need to be integrated.

Pan et al. (1988} pointed out that movement patterns of panda populations in different
mountains might not be the same and they remain unclear. I assume that there are also
differences in panda movement patterns and panda habitat use and selection among
the panda nature reserves in the Qinling Mountains. More research on panda
movement is expected to be done in the future using the same methods to analyse the
available radio-tracking data for comparison purposes,
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" LaoXian- :
: ‘__Cheng NR ? ZhouZhi NR

Figure 7.1 Panda nature reserves in the Qinling Mountains as shown on Landsat TM images
(acquired on September 8 1997, RGB-TMS, TM3, TM2). Note: The unit of scale is meters. NR
represents nature reserve.

7.4 Additional research topics

Two sub-topics in the initial design of this PhD research were omitted because of the
time limitation and also data unavailability. They are (i} mapping panda habitat in
Wolong NR using the same approach and modelling panda habitat use and selection,
and (ii) habitat change detection in both Foping and Wolong NRs.

As addressed in Chapter 5, pandas in Foping NR show different movement behaviour
compared to pandas in Woleng NR. We should ask “why?”. There are certainly many
factors that influence panda movement behaviour, such as climatic conditions, terrain
characteristics, and vegetation distribution. And all these consequently influence panda
habitat conditions that are related to panda activities. Figure 7.2 shows similarities as
well as differences in climatic conditions between Foping and Wolong NRs. The two
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panda homes have similar total annual rainfall and yearly highest temperature, while
they differ obviously on yearly mean humidity, total annual sunshine, yearly mean
temperature, and yearly lowest temperature. Compared with Wolong NR, Foping NR
has more sun shine hours, higher temperature and therefore lower humidity.
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Figure 7.2 Differences in climatic conditions between Foping and Wolong Nature Reserves: total
annual rainfall, yearly mean humidity, total annual sunshine, yearly mean temperature, yearly
highest temperature, and yearly lowest temperature.

Figure 7.3 illustrates the different terrain factors (i.e. elevation, slope gradient and
aspect) in these two nature reserves concerning panda winter and summer activity
ranges. The whole elevation range can be used by pandas in Foping NR (293 km?),
while only the area below 3600 m can be used by pandas in Wolong NR (1110 km?). The
boundaries for winter and summer ranges was defined based on panda movement
analysis for Foping NR (see Chapter 5}, and based on expertise and literature
information for Wolong NR (Hu et al 1985, Liu 1997). They are 1950 and 2160 m in
Foping NR, and 2500 and 2600 m in Wolong NR. However, pandas in Wolong NR do
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not use the area below 2200 m because of serious human encroachment. So, Figure 7.3
shows us that the winter range is larger than the summer range in Foping NR, while
the sumimer range is larger than the winter range in Wolong NR. Both in panda winter
and summer ranges, Foping NR has more flat areas or areas with slope less than 20
degrees than Wolong NR. The slope aspect is similar in both nature reserves, however,
Foping NR has more flat area with no slope in the summer range. There are more
south-facing slopes in Foping NR, while there are more north-facing slopes in Wolong
NR. The general vegetation types in the two nature reserves are similar, however the
species composition is different.
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Figure 7.3 Different terrain factors (i.e. elevation, slope gradient, and slope aspect) in Foping
and Wolong Nature Reserves (NR). FW - winter habitat in Foping NR, F5 - summer habitat in
Foping NR, WW - winter habitat in Wolong NR, and WS - summer habitat in Wolong NR.
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Therefore, both the similarities and differences between these two panda homes,
located in the Qinling and Qjonglai Mountains respectively, tell us that it is worth
mapping panda habitat and model panda movement and panda habitat use and
selection using the same approach for whatever the comparison purpose or
conservation purpose.

The aim of detecting panda habitat change is to monitor panda habitat within a certain
period. Wolong NR was established in 1963 and Foping NR in 1978 respectively. We
may ask: (i} Does the creation of the nature reserves protect panda habitat? (ii} How do
the increased human population and human activities influence panda habitat? Based
on our survey conducted in Foping NR in summer 1999 and several surveys in Wolong
NR in 1996, 1997 and 1999, I found that mushroom production in Foping NR and
firewood collection in Wolong NR are the threatening human activities to panda
habitat (Figure 7.4). Both may have already produced a serious impact on panda
habitat in these two nature reserves because of tree cutting. Liu (1997) analysed the
spatial distribution of the identified human activities in Wolong NR and their influence
on panda habitat. The ecological degradation in Woleng NR was further confirmed by
Liu et al. (2001). However, the key issue is that the same methods for detection should
be applied, including similar data, image processing methods, etc. Such proposed
research tasks have never been carried out in the field of panda habitat research. The
change detection of panda habitat in Foping NR has never been done before.

Figure 74 Photos show firewcod collection in Wolong Nature Reserve (left) and mushroom
production in Foping Nature Reserve (right). (Photo : Xuehua Liu)

7.5 Management relevance

The findings cbtained in this research are closely related to the panda and its habitat
conservation and may be used in conservation management. For inskince, mapping
results showed that the path (as shown in Figure 4.5) used by the local people and
tourists passes through the suitable and even the very suitable winter habitats where
panda radio-tracking records are dense (Figure 6.1). This should be brought te public
attention. The fragmented panda suitable summer habitat in the north-east corner,
which this path goes through, should be protected carefully in order to link the panda
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summer habitat as a whole. Otherwise, pandas in LongTanZhi and YueBa will not have
enough suitable summer habitats. Intense human activities, such as mushroom
production, should be strongly controlled or even forbidden in SanGuanMiao area, the
centre of panda suitable habitat.

The identified movement pattern may guide the panda population survey and radio
tracking in Foping NR. The tracking data showed that only a few records were
obtained in June over a 5-year period. That was because pandas climbed up from their
winter range to the summer range within a range of 8 days from June 7 to 15 (Chapter
5) and resulted in their disappearance from the range of radio tracking. Now, this has
been identified and it can be rectified to provide more accurate information in future
research. The fact that pandas stayed in the areas below 1700 m with the shortest
movement distance (Figure 5.7) and smallest activity ranges in January and February
tells us that these two months may be the best time for conducting a panda population
survey in Foping NR. The movement distances are also short in July and August.
However, plotting tracking data (Figure 5.2) showed pandas also use the summer
habitat outside the nature reserve. This can easily give an erroneously low estimation
when a survey is conducted in the summer season. In addition, surveying pandas
when they are in the high elevation area may also cost more manpower, more money
and more time.

To conserve panda habitat effectively, ecologists, managers and local staff etc, need to
know how panda habitat types are distributed spatially, their extents, how pandas
move in these different habitat types and how they make their habitat selection. I think
that our approach may be applied in various degrees to other panda nature reserves
with some modification, and eventually provide the managers or policy makers with
more useful and accurate information.
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Summary

The fact that only about 1000 giant pandas and 29500 km? of panda habitat are left in
the west part of China makes it an urgent issue to save this endangered animal species
and protect its habitat, For effective conservation of the giant panda and its habitat, a
thorough evaluation of panda habitat and panda-habitat relationship based on each
individual panda nature reserve is necessary and important. Mapping has been an
effective approach for wildlife habitat evaluation and menitoring. Therefore, mapping
is also an important step in evaluating panda habitat and further being used to analyse
panda-habitat relationship. Only Foping Nature Reserve is focused in this study. The
objectives of this research are: (1) to develop a highly accurate mapping methed which
can map panda habitat using multi-type data (remote sensing data, digital terrain data,
radio tracking data, and plot data from field survey) in GIS; (2) to study panda
movermnent patterns; and (3) to analyse panda habitat use and selection.

A general introduction to the thesis is given in Chapter 1. It describes the research
background and problems, and formulates the objectives and outlines of the research.

In order to find a potentially better mapping algorithm, three algorithms (i.e.,
parallelepiped algorithm, maximum likelihood algorithm, and backpropagation neural
network algorithm) were evaluated using simulated data sets as well as the remotely
sensed imagery in Chapter 2. The discrimination capability of the backpropagation
neural network algorithm was also explored in this chapter. The results show that the
backpropagation neural network classifier has completely discriminated two spectrally
discrete classes, and obtained a significantly higher mapping accuracy than the other
two algorithms using both simulated data sets and remotely sensed imagery.

Since different mapping techniques have complementary capabilities, two integrated
mapping approaches were developed in Chapter 3 so as to combine the advantages
from different mapping algorithms. The expert system algorithin based on Bayesian
probability theory was firstly discussed in this chapter. One integrated mapping
approach is the consensus builder, which is used to adjust classification outputs in the
case of a discrepancy in classification between maximum likelihood, expert system and
neural network classifiers. The second approach is termed the integrated expert system
and neural network classifier (ESNNC), which integrates the output of the rule-based
expert systemn classifier with the backpropagation neural network classifier (BPNNC)
before and after running the neural network system. The ESNNC produced maps with
the highest accuracy compared to not only the individual backpropagation neural
network classifier, expert system classifier and maximum likelihood classifier, but also
the combined classifier - consensus builder.

The giant panda habitat in Foping Nature Reserve was mapped using the ESNNC in
Chapter 4. Two categories of panda habitat types were defined and mapped: ground-
cover-based potential panda habitat types and suitability-based panda habitat types.
Mapping the ground-cover-based potential panda habitat types used only field survey
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plot data with records of ground cover types, while mapping the suitability-based
panda habitat types used not only the field survey plot data but also radio tracking
data - meaning actual panda occurrence. Results show that both the ground-cover-
based and the suitability-based panda habitat types were mapped with significantly
higher accuracy compared with non-integrated classifiers: expert system, neural
network and maximum likelihood classifiers. The classified maps show us that 97% of
the nature reserve is covered by forest and about 68% of the nature reserve is a suitable
habitat for pandas.

With radio tracking data, panda movement patterns were stuclied in Chapter 5. The
use of GIS combined with statistical tools to thoroughly analyse radio-tracking data to
reveal panda movement patterns is a new aspect in panda ecological research. Results
show that pandas in Foping NR occupied two distinct seasonal activity ranges (i.e.,
winter and summer activity ranges) and had a regular seasonal movement between the
winter range below 1950 m, and the summer range above 2160 m. Pandas spent about 8
days (from June 7 to 15) to climb up to the summer habitats, while they took about 36
days (from September 1 to October 6) to descend to the winter habitats. Consequently,
they spent about 243 days in their winter activity range and about 78 days in the
summer activity range. Research also shows that pandas travelled shorter distances
with small variation in October, December, January, February, July and August, and
longer distances with larger variation in March, April, May, June and September.

Analysis of wildlife habitat use and selection has been a common and important aspect
of wildlife science. Little is known about panda habitat use and selection, especially
about the relationship between panda presence and structures of the bamboo layer as
well as the tree layer. In Chapter 6, tracking data were used to analyse panda habitat
use and selection, and 110 field survey plots with reasured information were analysed
to identify differences of characteristics between panda-presence and panda-absence
habitats. In the winter range, pandas spend more time in deciduous broadleaf forest
with an elevation range of 1600 to 1800 m, a slope range of 1{ to 20 degrees, and south-
facing slopes. In the summer range, they use more conifer forest with an elevation
range of 2400 to 2600 m, a slope range of 20 to 30 degrees. In Bashania fargesii bamboo
areas with panda presence, bamboo groves have shorter and denser bamboo culms
from different ages. In Fargesia Spathacea bamboo areas with panda presence, bamboo
groves have higher coverage, taller and thicker bamboo culms which are mainly one to
two years old.

Conclusions from the whole study are summarised in Chapter 7. It is recommended
that the whole appreach used in this study may or should be applied to the
neighbouring panda nature reserves in the Qinling Mountains. The uncompleted
research tasks are discussed in this chapter. Therefore, this chapter has shown some
possible research topics for future panda conservation studies.

In summiary, the following are the main findings of this research:

e  Backpropagation neural network classifier can discriminate two classes with no
overlap in their feature space,
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The integrated expert system and neural network classifier was developed and
applied in mapping panda habitats, and obtained significantly higher overall
mapping accuracy than non-integrated classifiers: expert system classifier,
backpropagation neural network classifier, and maximum likelihood classifier.

The integrated expert system and neural network classifier can identify a class
which has only few samples, while the traditional maximum likelihood classifier
fails because insufficient samples cannot form the statistical parameters to run the
classificatior.

The integrated expert system and neural network classifier successfully classified
panda habitat types using multi-type input data: remote sensing data (TM1-5 and
7), terrain data (elevation, slope gradient and slope direction), social data
(settlement distance), radio-tracking data, as well as field survey plot data.
Radjo-tracking data were involved in mapping panda habitat for the first time.
They can be a good indicator of suitable habitats for pandas.

The movement pattern of pandas in Foping Nature Reserve was thoroughly
studied and revealed using GIS combined with statistical tools. Pandas spent a
very short period of 8 days in June to move from winter to summer habitats, while
they used more than one month in September to descend from summer to winter
habitats.

The finding that pandas in Foping Nature Reserve have a shorter movement
distance and a small activity range in January and February indicates these two
months may be a good time for conducting a panda population survey.

Panda habitat maps produced by the integrated expert systemn and neural network
classifier with higher accuracy have been used for analysing panda habitat use and
selection. Pandas in Foping Nature Reserve mainly select deciduous broadleaf
forest in the winter activity range, and select conifer forest and Fargesiz bamboo
groves in the summer activity range.

The structure parameters of the bamboo layer in panda-presence habitals are
significantly different from those in panda-absence habitats.
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Samenvatting (Summary in Dutch)

Gezien het feit, dat slechts ongeveer 1000 panda’s en 29500 km? panda habitat
overgebleven zijn in het westelijke deel van China, is van het grootste belang deze
bedreigde diersocrt te redden en zijn habitat te beschermen. Om de panda en zijn
leefgebied effectief te kunnen beschermen, is een gedegen evaluatie van de panda
habitat en de relatie tussen de panda en zijn habitat in elk panda reservaat nodig.
Kartering is een effectieve benadering voor de evaluatie van wild en zijn habitat.
Daarom is kartering dan ook een belangrijke stap in de evaluatie van de panda habitat
en voor de analyse van de relatie tussen de panda en zijn habitat. In deze studie is
alleen onderzoek gedaan in Foping Nationaal Park. De doelstellingen van deze studie
zijn: 1) het ontwikkelen van een karteringsmethode, die de panda habitat zeer
nauwkeurig in kaart kan brengen, met gebruik van verschillende typen gegevens
{afkomstig van: remote sensing, digitale terrein modellen, radio tracking en
veldmetingen en -observaties) in een GIS; 2) het bestuderen van de bewegingspatronen
van de panda; en 3) het analyseren van de panda habitat gebruik en habitat keuze.

In hoofdstuk 1 is een algemene inleiding gegeven van dit proefschrift. Het beschrijft de
achtergrond en problemen van het onderzoek en formuleert de doelstellingen en
structuur van het onderzoek.

Om een potentieel betere karteringsmethode te vinden, zijn er drie algoritmen
getvalueerd (‘parallelepiped’ algoritme, ‘maximum likelihood” algoritme, en
‘backpropagation neural network” algoritme), waarbij zowel gesimuleerde gegevens als
‘remote sensing’ gegevens zijn gebruikt. Het onderscheidingsvermogen van de
‘backpropagation neural network’ algoritme is onderzocht in hoofdstuk 2. De
resultaten geven aan, dat het ‘backpropagation neural network’ algoritme twee
spectraal verschillende klassen goed kan onderscheiden en daarbij een significant
hogere classificatie nauwkeurigheid heeft dan de twee andere algoritmes, wanneer
zowel gesimuleerde gegevens als gegevens van ‘remote sensing’ gebruikt worden.

Aangezien verschillende karteringsalgoritmes complementaire capaciteiten hebben,
ziin in hoofdstuk 3 twee peintegreerde karteringsbenaderingen ontwikkeld, om
zodoende de voordelen van de verschillende karteringsalgoritmes te combineren.
‘Expert system’ algoritmes, gebaseerd op de ‘Bayesian probability” theorie, worden in
dit hoofdstuk ock bediscussieerd. Een geintegreerde karteringsbenadering is de
‘consensus builder’, welke gebruikt wordt om pgeclassificeerde uitkomsten aan te
passen in het geval van tegenstrijdigheden in de classificaties tussen ‘maximum
likelihood’, ‘expert system’ en “neural network’ classificeerders. De andere benadering
is genaamnd de geintegreerde ‘expert system’ en ‘neural network’ classificeerder
{ESNNC), die de uitkomst van het op regels gebaseerde ‘expert system” integreert voor
en na het uitvoeren van de ‘backpropagation neural network’ classificeerder. De door
de ESNNC geproduceerde kaarten hebben de hoogste nauwkeurigheid.
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De habitat van de panda in het Foping Nationaal Park is in kaart gebracht
gebruikmakend van de ESNNC en beschreven in hoofdstuk 4. Twee verschillende
panda habitattypen zijn in kaart gebracht: de potentiéle pandahabitat gebaseerd op
grond-bedekking en de pandahabitat gebaseerd op geschiktheid. Voor het in kaart
brengen van op grond-bedekking gebaseerde habitat zijn alleen veld waarnemingen
gebruikt, waarbij de grond-bedekking werd geregistreerd. Voor het in kaart brengen
van de op geschiktheid gebaseerde panda habitat zijn zowel veldwaarnemingen als
‘radio tracking gegevens gebruikt. De resultaten laten zien, dat het in kaart brengen
van de beide panda habitat typen significant hogere nauwkeurigheid geeft vergeleken
met resultaten van niet-geintegreerde classificeerders: ‘expert systems’, ‘neural
network’ en ‘maximum likelihood’ classificeerders. De geclassificeerde kaarten laten
zien, dat 97 % van het Nationaal Park bestaat uit bos en ongeveer 68 % van het
Nationaal Park geschikt is als panda habitat.

In hoofdstuk 5 is, met gebruik van de reeds eerder gencemde ‘radic tracking’
gegevens, het migratie patroon bestudeerd. Het is een nieuw aspect in ecologisch
onderzoek aan de panda dat een gedegen analyse van ‘radio tracking’ gegevens met
behulp van GIS wordt gecombineerd met statistiek. Resultaten geven aan, dat panda’s
in Foping Nationaal Park twee duidelijk verschillende seizoensgebonden leefgebieden
hebben (nl. winter en zomer leefgebied) en dat ze een regelmatige seizoensgebonden
migratie vertonen tussen hun winter leefgebied, beneden de 1950 meter, en hun zomer
leefgebied, boven de 2160 meter. Panda’s doen er ongeveer 8 dagen over (van 7 tot 15
juni) om naar hun zomer leefgebied te klimmen, terwijl ze er ongeveer 36 dagen (van 1
september tot 6 oktober) over doen om af te dalen naar hun winter leefgebied.
Daardoor verblijven ze ongeveer 243 dagen in hun winter leefgebied en ongeveer 78
dagen in hun zomer leefgebied. Onderzoek gaf ook aan, dat panda’s in oktober,
december, januari, februari, juli en augustus (met relatief kleine variaties) over kortere
afstanden verplaatsen, en in maart, april, mei, juni en september (met relatief grote
variaties) over langere afstanden.

Het onderzoeken van selectie en gebruik van hun habitat door wild is al lang een
belangrijk aspect in wild studies. Er is slechts weinig bekend over de selectie en het
habitat gebruik van panda’s, met name over de relatie tussen de aanwezigheid van
panda’s en de structuur van bamboe en of bomen. In hoofdstuk 6 zijn ‘radio tracking
gegevens gebruikt om dit te onderzoeken. Daarnaast zijn 110 locaties met veldopnames
geanalyseerd om het verschil te zien in de karakteristieken tussen de habitats met en
zonder de aanwezigheid van panda’s. Gedurende de winter verblijven de panda’s
vooral in loofverliezend bos op een hoogte tussen de 1600 en 1800 meter, met hellingen
van 10 tot 20 graden, die naar het zuiden gericht zijn. Gedurende de zomer verblijven
ze meer in naald bos op een hoogte tussen de 2400 en 2600 meter, met hellingen van 20
tot 30 graden. In de Bashania fargesii bamboe gebieden, waar panda’s voorkomen, heeft
het bamboe dicht opeen staande kortere stengels in diverse groei stadia. In Fargesia
spathacen bamboe gebieden, waar ook panda’s voorkomen, het bamboe heeft een hogere
bedekking en langere en dikkere stengels, en zijn ze doorgaans een tot twee jaar oud.

De conclusies van de hele studie zijn samengevat in hoofdstuk 7. Het is
aanbevelenswaardig dat de gehele methodologie zoals gebruikt in deze studie zal
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worden toegepast in the aangrenzende panda Nationale Parken in de Qinling
Gebergte, De nog uit te voeren onderzoekstaken zijn besproken in dit hoofdstuk.
Daarom geeft dit hoofdstuk een indicatie voor toekomstig onderzoek ten behoeve van
de bescherming van de panda.

De belangrijkste bevindingen van dit onderzoek zijn als volgt samengevat:

‘Backpropagation neural network’ classificeerder kan twee klassen onderscheiden,
zonder overlap in hun ‘feature space’.

Het geintegreerd ‘expert system’ en ‘neural network * classificeerders zijn
ontwikkeld en toegepast in het karteren van panda leefgebieden, en hebben een
significant hogere nauwkeurigheid in het karteren van panda leefgebieden, dan de
niet-getntegreerde classificeerders; ‘expert system’ classificeerders,
‘backpropagation neural network’ classificeerders en ‘maximum likelihood”
classificeerders.

Het geintegreerde ‘expert system’ en ‘neural network’ classificeerders kan een
klasse identificeren, die slechts enkele waarnemingspunten heeft, terwijl de
traditionele ‘maximum likelihood’ classificeerder faalt, omdat door te weinig
waarnemingen, de statistische parameters niet voldoen zijn om de classificatie uit
te kunnen voeren.

Het geintegreerde ‘expert system’ en ‘meural network’ classificeerder heeft de
panda leefgebieden met succes geclassificeerd, met gebruik van meerdere vormen
van gegevens: ‘remote sensing’ gegevens (TM1-5 en 7), terrein gegevens (hoogte,
hellingshoek en hellingsrichting), sociale gegevens (afstand tot nederzettingen),
‘radio tracking’ gegevens, en veld waarnemingen.

Radio tracking’ gegevens zijn voor het eerst gebruikt om het panda leefgebied te
karteren. Deze gegevens kunnen goede indicatoren zijn voor locaties van
geschikte panda leefgebieden.

Migratie patronen van de panda’s in Foping Natuur Reservaat zijn in detail
bestudeerd, gebruikmakend van GIS in combinatie met statistische methodes.
Panda’s migreren in een zeer korte periode van 8 dagen in juni van hun winter
verblijf gebied naar hun zomer verblijf gebied. Daarentegen gebruiken ze meer dan
een maand in September om van hun zomer verblijf gebied af te dalen naar hun
winter verblijf gebied.

Gezien de uitkomst van dit onderzoek, dat panda’s in het Foping Natuur Reservaat
in januari en februari zich over kortere afstanden bewegen en een geringe
leefgebied hebben, is dit een aanwijzing, dat deze twee maanden met name
geschikt zijn voor het uitvoeren van een panda populatieonderzoek.

De panda habitatkaarten, die gemaakt zijn met behulp van het geintegreerde
‘expert system’ en ‘meural network’ classificeerder, zijn gebruikt voor het
onderzoeken van de panda’s gebruik en keuze van habitat. Panda’s in Foping
Natuur Reservaat selecteren hoofdzakelijk loofverliezend bos gedurende de winter
en selecteren naaldbos en Fargesia bamboe gebieden gedurende de zomer.

De parameters met betrekking tot het groeistructuur van bamboe zijn significant
verschillend in gebieden, waar de panda wel voorkomt, dan wel waar de panda
niet voorkomt.
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Basic GIS Map Layers
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Digital Elevation Model Digital Slope Gradient Model
of Foping Nature Reserve of Foping Nature Reserve

Digital Slope Aspect Model Digital Distance Model to
of Foping Nature Reserve Human Settlements in
(Value 400 inside the boundary Foping Nature Reserve
represents no aspect.)

False colour composition of Landsat TM image (see Figure 7.1).
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