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Abstract 

This thesis shows how statistics can be used for both analysing data and for 
determining the (optimal) design for collecting data in environmental research. 
An important question is often where to place monitoring stations to meet the 
objective of measuring as good as possible. In this thesis it is shown how existing 
monitoring networks can be adjusted on the basis of quantitative criteria. These 
criteria are based on aspects of spatial(-temporal) interpolation. 

A case study of climate variables in Jalisco State of Mexico is used to investigate 
the use of interpolation techniques. The climate variables monthly maximum 
temperature and monthly mean precipitation are predicted on a regular grid of 
points on the basis of measurements at climate stations. Four forms of kriging 
and three forms of thin plate splines are discussed. From these techniques, 
trivariate regression-kriging and trivariate thin plate splines performed best. 

The optimal adjustment of existing monitoring networks is investigated for three 
case studies with different criteria. In the first place, a monitoring network ad­
justment is investigated for estimation of the semivariance function, whereby the 
criterium is based on the theory of optimal design of experiments. Secondly, 
we develop and apply a methodology to reduce an existing monitoring network 
to find an optimal configuration of a smaller network. In this case a criterion 
based on locally weighted regression with two different weight functions is used. 
The methodology is applied to the Dutch national SO2 network and offers the 
possibility to include different politically relevant options in the model by weight 
criteria. As a third case study, a monitoring network for groundwater level is 
considered. It focusses on a possible reduction of the number of measurements 
at this monitoring network without losing much information about the ground­
water level at the different piezometers. The investigations of a reduction of the 
number of measurements is based on a geostatistical spatial-temporal model. 
The results show that the monitoring effort of the network can be reduced. 

Finding optimal designs involves several optimization problems. In this thesis 
several methods are developed and applied to solve these problems. For small 
problems full enumeration of all possible configurations is possible with a branch-
and-bound algorithm. In this way, it is ensured that the global optimum is 
found. If full enumeration of all possible monitoring networks is impossible, a 
search algorithm is applied to find a (sub)-optimal solution. 
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Chapter 1 

Introduction 

During the last decades much attention is paid to environmental research. As 
an important determinant for the quality of life, the environment is worth to 
be investigated thoroughly. Environmental problems can occur at a small scale, 
such as a pollutant highly concentrated around a source or at a global scale, 
like global warming due to increased carbon dioxide concentration and a pos­
sible reduction of the ozone layer in the stratosphere. Environmental research 
is often related to the influence of human beings on environmental processes. 
Empirical observations are necessary to test theories about possible trends and 
spatial and/or temporal variability. At this stage statistics is brought into play, 
both for analysing the data and for determining the (optimal) sampling de­
sign. The various environmental problems yield a broad range of statistical 
problems and challenges. If only few data are available the proper selection of 
a statistical method becomes more important to avoid misleading results. In 
this thesis, three different statistical subjects are discussed and applied to real-
world problems: spatial-(temporal) interpolation, optimal experimental design 
and optimization of monitoring networks. 

1.1 Spatial-(temporal) interpolation 

Spatial interpolation techniques are often applied to make maps of continuous 
variables for fields like meteorology, agriculture, hydrology and environmental 
engineering. Sparsely distributed point observations in an area are interpolated 
to a regular grid of points. Nowadays, many interpolation techniques are avail­
able (Cressie, 1991). The choice for an appropriate interpolation technique is 
increasingly important when data are scarce. When the variable of interest is 
sampled sparsely, covariables can be helpful to improve prediction accuracy. 

The geostatistical prediction approach (kriging) is a popular method among 
different interpolation techniques. The origins of kriging can be found in Krige 
(1951). Kriging has been further developed by Matheron (1963), who gave it 
a better mathematical foundation. Geostatistical methods are optimal in the 
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sense that it yields unbiased predictions and minimizes the variance of the pre­
diction errors. Additional theoretical background and different forms of kriging 
can be found in Chiles and Delfiner (1999). In this thesis we will mainly concen­
trate on different forms and extensions of kriging for spatial-(temporal) predic­
tion. Besides, two other interpolation techniques are applied: thin plate splines 
and locally weighted regression. Kriging and thin plate splines are formally 
alike, but practically very different (Cressie, 1991). In Chapter 2 of this thesis 
it is shown that the two methods can benefit from each other. It is shown how 
additional information can be included to improve prediction accuracy. Locally 
weighted regression (Chapter 5) estimates the trend surfaces by nonparametric 
regression. It has the advantage that no estimation is needed for trend and 
spatial variability, as in geostatistics. 

Modelling spatial-temporal processes can be done in different ways. It is possible 
to extend time series models to regionalized time series models, e.g. Pfeifer and 
Deutsch (1980) and Knotters (2001). Hutchinson (1995) gives an application 
of the use of splines in stochastic spatial-temporal weather models. Chapter 6 
of this thesis applies a geostatistical approach (e.g. Rouhani and Hall, 1989; 
Heuvelink et al., 1997; Cressie and Huang, 1999). 

1.2 Optimal experimental design 

Parameter estimation provides a link between data and models. A well-designed 
experiment is an efficient method to collect data to estimate the model param­
eters as good as possible. The basic idea of the theory of optimal experimental 
design is that variances of parameter estimates depend upon the experimen­
tal design and can be minimized. The theory of optimal experimental design 
was originally developed by Kiefer (1959), followed by books of Fedorov (1972) 
and Silvey (1980). More recently Atkinson and Donev (1992) showed statisti­
cal aspects and relevance for practical applications. For nonlinear models the 
optimal design depends on values of model parameters and is therefore called 
a locally optimal design, i.e. depending on the parameter values of the model. 
In more simple cases the optimal design can be calculated analytically, but for 
other more restricted optimization problems algorithms have to be developed 
to reach it (Chapter 3). Muller (1998) showed how design criteria for the spa­
tial configuration of sampling points can be derived from the theory of optimal 
experimental design. It is important to note that optimal experimental design 
can only be applied when a priori knowledge of the model exists (model-based). 
If investigations are still in the exploratory phase, designs have to be chosen 
which are robust and allow for model building and model validation. The case 
studies elaborated in this thesis are all after the exploratory phase (Chapters 4, 
5 and 6). 
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1.3 Optimization of monitoring networks 

Monitoring networks are intended to collect empirical observations of environ­
mental processes in water, air and/or soil. Designers of environmental moni­
toring networks face several problems. An important problem is that there are 
usually many objectives rather than just one. Therefore, a formulation of an 
optimization criterion is difficult. Optimization criteria can be based on deter­
ministic properties, like maximizing the minimum distance between observation 
locations (Muller, 1998), on stochastic properties like minimizing the kriging 
variance (e.g. McBratney and Webster, 1981; Van Groenigen, 1999) or mini­
mizing the estimation variance of parameters of a certain model (Muller, 1998). 
Other problems which monitoring network designers have to face are sampling 
constraints. These can be financial restrictions, physical limitations like build­
ings (Van Groenigen and Stein, 1998) or wishes of (local) authorities. This 
thesis focusses on adaptation of existing monitoring networks that are designed 
in the past, and current opinions and constraints may have changed so that 
adaptations of the existing monitoring is desirable. 

Given an optimization criterion, algorithms are needed to find the optimal con­
figuration of sampling points in space. Van Groenigen (1999) developed a gen­
eral optimization algorithm, called Spatial Simulated Annealing and shows how 
this algorithm can solve several sampling problems with different criteria. In 
this thesis a combinatorial approach is applied. If a limited number of candidate 
sampling points is considered, the problem can be solved by full enumeration 
(Chapter 4). If larger problems are considered, search algorithms have to be 
applied (Chapter 5). 

For optimizing environmental monitoring networks not only the question of 
"where" to measure has to be answered, the frequency of sampling is also 
important. In Chapter 6 of this thesis a geostatistical approach for optimizing 
a spatial-temporal monitoring network is applied. 

1.4 Objectives of the thesis 

The objective of this thesis is to develop and apply statistical methods for 
interpolation and for optimizing monitoring networks from a model-based per­
spective. Given models for spatial-(temporal) interpolation of environmental 
phenomena, criteria for optimizing monitoring networks are formulated. The 
arising optimization problem has to be solved by development and application 
of optimization tools. This leads to three research aims of this thesis: 

• Study statistical methods for spatial-(temporal) interpolation. 

• Actual optimization of environmental monitoring networks for different 
criteria. 

• Development and application of algorithms necessary to optimize the mon­
itoring networks. 
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1.5 Outline of the thesis 

This thesis can be considered as a collection of 5 papers which can be read to 
a great extent independently. In this section an outline is given of problems 
addressed in Chapters 2-6. 

Chapter 2. The problem considered in this chapter was raised by the 
International Maize and Wheat Improvement Center (CYMMIT). One likes to 
know, how information from meteorological stations and elevation in the Jalisco 
State in Mexico can be used to generate climate maps. Four forms of kriging 
and three forms of thin plate splines are considered to solve this problem. The 
use of elevation of the area as covariable is important to improve prediction 
accuracy. The geostatistical approach introduced in this chapter is also applied 
in the Chapters 4 and 6. 

Chapter 3. This chapter is an overview of the theory of optimal experi­
mental design from a perspective of global optimization. It shows how various 
applications of optimal design of experiments determine the structure of corre­
sponding (challenging) global optimization problems. Different ways of solving 
the various global optimization problems are shown. Algorithms developed in 
this chapter are used for the optimization of monitoring networks in the next 
chapters. 

Chapter 4. Three new aspects concerning the use of optimal experimental 
design for estimation of the semivariance function are added in this chapter. The 
first aspect is a visualization of a simple adjustment of a monitoring network. 
Secondly, a branch-and-bound algorithm is applied to calculate an exact optimal 
configuration of monitoring sites. Finally, a robustness study of the optimal 
monitoring design against misspecified parameter values and model choice is 
given. 

Chapter 5. In this chapter a methodology is developed to reduce an existing 
SO2 network, part of the National Institute of Public Health and the Environ­
ment in the Netherlands (RIVM). A criterion based on locally weighted regres­
sion is formulated with various weight functions. Several measuring objectives 
are investigated. Because full enumeration of all possible monitoring networks 
is technically impossible, search algorithms are developed to find (sub)-optimal 
solutions. 

Chapter 6. In the previous chapters problems are discussed from a spatial 
perspective. In Chapter 6 we look at a spatial-temporal monitoring network, 
which was found in the measuring of groundwater level in the Veluwe area. We 
focus on the reduction of the number of measurements of groundwater level of 
the monitoring network, both in reducing the measuring frequency at piezome­
ters and removal of piezometers. This reduction is based on a geostatistical 
spatial-temporal model. 

The main conclusions are summarized in Chapter 7. 



Chapter 2 

Kriging and thin plate 
splines for mapping climate 
variables 

E.P.J. Boer, K.M. de Beurs and A.D. Har tkamp 
International Journal of Applied Earth Observation and Geoinformation 

(2001) 3 ( 2 ) : 146-154 

Four forms of kriging and three forms of thin plate splines are discussed 
in this paper to predict monthly maximum temperature and monthly 
mean precipitation in Jalisco State of Mexico. Results show that tech­
niques using elevation as additional information improve the predic­
tion results considerably. From these techniques, trivariate regression-
kriging and trivariate thin plate splines performed best. Results 
of monthly maximum temperature are much clearer than results of 
monthly mean precipitation, because the modelling of precipitation is 
more troublesome due to higher variability in the data and their non-
Gaussian character. 
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2.1 Introduction 

Statistical interpolation techniques are commonly applied in Geographical In­
formation Systems (GIS). Data collected on a sparse network of measurement 
points are interpolated to a regular grid of points. Burrough and McDonnell 
(1998, p.158) show a table with characteristics of ten classes of interpolation 
techniques. In papers published recently (Goodale et al., 1998; Dirks et al., 
1998, Pardo-Iguzquiza, 1998a; Goovaerts, 2000), a comparison is made between 
several of those interpolation techniques. An important question is often how 
additional information can be used to increase the prediction accuracy. In this 
paper, several ways of including additional information classified into two widely 
used classes of interpolation techniques - thin plate splines and kriging - will be 
discussed. 

Climate variables provide an essential input for crop growth simulation models. 
Climate maps (surfaces) can be generated from a network of measurement sta­
tions - with measurements of precipitation, temperature, solar radiation, e tc-
through interpolation. Accuracy of predictions of weather conditions at inter­
polated sites is important for crop growth simulation. Rosenthal et al. (1998), 
for example, state that the greater variability in their crop growth simulation 
results is most likely due to the relatively coarse grid for spatial interpolation 
of precipitation. 
The International Maize and Wheat Improvement Center (CIMMYT) aims to 
improve productivity and sustainability of smallholder maize and wheat systems 
in developing countries. Crop growth simulation models are used to evaluate 
the opportunities and limitations of these production systems (e.g. Hartkamp 
et al., 1998). Climate maps can provide essential input to crop models. The 
long-term monthly mean precipitation and long-term monthly maximum tem­
perature, measured over a sparse network of climate stations in the Jalisco State 
of Mexico, will be used as a case study in this paper. A Digital Elevation Model 
(DEM) can be used as additional information to increase the prediction accuracy 
of the climate maps (De Beurs, 1998). 

The main purpose of this study is to find an optimal way of including elevation 
data of the area into the interpolation techniques to increase the prediction 
accuracy of the climate maps. In total, four forms of kriging and three forms of 
thin plate splines will be presented. 

2.2 Material and Methods 

2.2.1 Data sets 

Two data sets are considered in this paper. The first data set consists of long-
term (> 19 years, from 1940-1990) monthly mean precipitation values at 193 
measurement stations. The second set consists of 136 long-term (> 19 years, 
from 1940-1990) monthly maximum temperature data. These data were ex-
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Figure 2.1: The meteorological stations (IMTA, 1996) and a DEM (USGS, 1997) 
of Jalisco State, situated Northwest of Mexico-City. 

tracted from ERIC (Extractor Rapido de Information Climatologica; IMTA, 
1996) for a square area (600 km x 600 km, called D), covering the state of Jalisco, 
Mexico. In this study, only the months April, May, August and September are 
considered, because for these months the correlation coefficient between eleva­
tion and precipitation is greater than 0.5. Figure 2.1 shows the measurement 
stations and a Digital Elevation Model (DEM) of the area. 

Figure 2.2 shows scatterplots of long-term monthly maximum temperature (Tmax) 
and long-term monthly mean precipitation (Pmean) against elevation for August. 
The correlation between Tmax and elevation is -0.7 for April and May and -0.9 
for August and September. For Pmean these values are 0.6 (April and May), -
0.5 (August) and -0.6 (September). The scatterplot of Pmean shows statistically 
less attractive features. 

2.2.2 Interpolation techniques 
Interpolation techniques can be divided into techniques based on deterministic 
and stochastic models. Kriging technique is based on stochastic models while 
the method of thin plate splines is a deterministic interpolation technique with 
a local stochastic component. It is well known that under certain conditions 
these two interpolation techniques are equivalent to one another (Kent and 
Mardia, 1994). In this paper, however, at least the function for modelling the 
spatial correlation is chosen differently. The modelling of the trend and the 
neighbourhood used for prediction can differ too. 

Let the actual meteorological measurements be denoted as z(si), z(s2), •••, z(sn), 
where Si = (xi, j/j) is a point in £>, xt and yi are the coordinates of point Si and 
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Figure 2.2: Scatterplots for Tmax and Pmean against elevation for August. 

n is equal to the number of measurement points. The elevation at a point s in 
the area D will be denoted as q(s). A measurement considered as realization 
of a stochastic variable will be denoted by a lower case. Therefore, q(s) can be 
considered as a realization of stochastic variable Q(s) (i.e. outcome of a set of 
stochastic variables that have some spatial locations and whose dependence on 
each other is specified by some probabilistic mechanism). 

Bivariate thin plate spline 

Wahba (1990) described the theory of thin plate splines. In the case of bivariate 
thin plate splines, the measurements Z(SJ) are modelled as: 

z{si) = f(si) + e(si), i = 1, ...,n (2.1) 

where / is an unknown deterministic smooth function and e(sj) are random 
errors. Commonly, it is assumed that e(sj) are realizations of zero mean and 
uncorrelated random errors. 

The function / can be estimated by minimizing 

n 

^ [ ^ ) - / ( S l ) ] 2 + AJ2(/) (2.2) 

where J 2 ( / ) is a measure of smoothness of / , calculated by means of the follow­
ing integral: 

w7{(gy+<s)M0)2H- <-> 
— rv-i — i v i *• ' 
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and A is the so-called smoothing parameter which regulates the trade-off between 
the closeness of the function to the data and the smoothness of the function. 
The smoothing parameter A can be estimated by generalized cross validation. 

The minimization problem (2.2) is solved with / as the linear combination 

3 n 

/ ( s )=5>;&(*) + 5>*(ft i) (2.4) 
j=i i = i 

where s = (x,y)\ (f>j are polynomials, <f>i(s) = l,<fo(s) = x and <f>3(s) = y; 
^(h) = h2 ln(h) and /i, = ^/(x — Xi)2 + (y — yi)2 is the Euclidean distance 
between s and Si. The coefficients bi are restricted to satistify the boundary 
conditions given by: 

n 

5 > i & ( * i ) = 0 , J = l , - , 3 (2.5) 

The coefficients <ij and bi in formula (2.4) can be calculated by solving a linear 
system of order n. 

Partial thin plate spline 

The bivariate thin plate spline model can be enlarged to a partial thin plate 
spline model by incorporating additional information (in our case elevation de­
noted as q) into (2.1). The measurements are modelled in the following way, on 
the basis of scatterplots in Figure 2.2: 

z(si) =g{si) + Piq{si)+p2q2(si) + e(si), i = l,...,n (2.6) 

where the function f(s) = g(s)+f3iq(s)+P2q2{s) is the function to be estimated, 
g(s) being an unknown smooth function and /3i and /?2 are parameters with 
unknown value. The function g and the parameters /3i and /?2 can be estimated 
by minimizing: 

J2 [z(si) - g(Si) - (3iq{Si) - fcq2(Sl)]
2 + XJ2(g). (2.7) [z{Si) - g(Si) - (3iq{Si) - p2q-(Sif 

i=l 

giving the same solution structure as for bivariate thin plate splines. 

Trivariate thin plate spline 

Hutchinson (1998) shows that there is another way of incorporating the covari-
able elevation into bivariate thin plate splines. Namely, replacing the bivariate 
function / ( s , ) in (2.1) by a trivariate function f(si,qi): 

z(si,qi) = f{si,qi) + e(si,qi), i = l,...,n (2.8) 
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where Qi is the elevation on the location s,. The function J?(f) is enlarged by 
several terms (see Wahba, 1990) and the minimization problem is solved in the 
same way as for bivariate thin plate splines. The solution can be written as: 

4 n 

f(8,q) = ^2aj4>j(8,q) + ̂ 2bi9{hi) (2.9) 
3=1 i = l 

where <pj are polynomials, <f>i(s, q) = 1, <j>2(s, q) = x, 4>z{s, q) = y and <j>i{s, q) = 
q; and $(h) = h. The Euclidean distance hi between (s,q) and (si,qi) is cal­
culated by hi = \J{x — Xi)2 + (y — Vi)2 + (q — qi)2. Scaling becomes important 
(Hutchinson, 1998), because x, y and q can be expressed in different units and 
the scale of variation can vary in different directions. We followed the sugges­
tion of Hutchinson (1998) to calculate the generalized cross validation (GCV) 
on different scales of elevation and select the scaling with the lowest value of 
the GCV. 

Ordinary kriging 

The principles of ordinary kriging are well explained elsewhere (Isaaks and Sri-
vastava, 1989; Cressie, 1991; Wackernagel, 1995). The measurements are mod­
elled in the following way: 

z(si) = f{si) + e(si), i = l,2,...,n (2.10) 

where, in this case, f(si) are considered as realizations of a random function F in 
point Si, which may contain a deterministic function fj,(s) = E{F(s)} to model 
possible trends; e(sj) are realizations of zero mean and uncorrelated random 
errors. The trend /j(s) is assumed to be equal to an unknown constant /x. 

The spatial correlation between the measurement points can be quantified by 
means of the semivariance function: 

7 ( s , h) = -var[Z(s) - Z(s + hu)\ (2.11) 

where h is the Euclidean distance between two points and u is a vector of unit 
distance (||u|| = 1) and 7 is independent of u (isotropy). Assume that the trend 
is constant and 7 ( s , h) is independent of s. A parametric function is used to 
model the semivariance for different values of h. In this research, the spherical 
model - c Sph(a) - is used 

7(/i) = { 

0, h = Q 
c { f ( S ) - H £ ) 3 } . ° < ^ < a (2-12) 
c, h > a 

where c is the scale parameter of the semivariance function and a is a param­
eter which determines the so-called range of spatial dependence. The random 
errors (and/or the spatial nugget random function) have a variance CQ. For the 
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stochastic variable Z the following semivariance function is used: Co Nug(O) + 
c Sph(a). 

The interpolated value at an arbitrary point so in D is the realization of the 
(locally) best linear unbiased predictor of F(so) and can be written as weighted 
sum of the measurements 

n 

/(so) = 5>*2(s;) (2.13) 
i= i 

where the weights Wi are derived from the kriging equations by means of the 
semivariance function; n is the number of measurement points within a radius 
from point SQ (in this study we have taken a radius with an Euclidean distance 
of 240 km). The parameters of the semivariance function and the nugget effect 
can be estimated by the empirical semivariance function. An unbiased estimator 
for the semivariance function in point h is half the average squared difference 
between paired data values. 

^ ) = ^ 5 > ( a i ) _ * ( s ' ) ] 2 (2J4) 

where the prime in J ] means that it is summed over all (i,j) for which the 
Euclidean distance ||s; — Sj\\ is equal to h; the number of pairs with this property 
is denoted by n(h). 

Ordina'i~y cokriging 

Cokriging makes use of different variables, modelled as realizations of stochastic 
variables. In this study, elevation - Q(s) - of the area D is used as covariable to 
predict values of Tmax and Pmean- The spatial dependence is characterized by 
two semivariance functions jzz(s,h),^fqq(s,h) and the cross-semivariance func­
tion: 

lzq{s, h) = ^E{[Z(s) - Z(s + hu)][Q(s) - Q(s + hu)}} (2.15) 

where u is a vector of unit distance (||u|| = 1) and ^zq is independent of u 
(isotropy). 

To ensure that the variance of any possible linear combination of the two stochas­
tic variables is positive, a so-called linear model of coregionalization is applied. 
This model implies that each semivariance and cross-semivariance function must 
be modelled by the same linear combination of semivariance functions (Isaaks 
and Srivastava, 1989). Furthermore, the matrix of coregionalization should be 
positive semi-definite. A nested semivariance function is used with a nugget 
and two spherical semivariance functions with different ranges. The cross-
semivariance function can be estimated by the empirical cross-semivariance 
function 

%q(h) = ^ y E Ws<) - z(si)Msi) - q(sj)] (2.16) 
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where n(h) is the number of data pairs where both variables are measured at 
an Euclidean distance h. 

The interpolated value at an arbitrary point so in D is the realization of the 
(locally) best linear unbiased predictor of F(so) and can be written as weighted 
sum of the measurements: 

mi m-2 

/(so) = ^2 wuz{si) + ^2w2jq{sj) (2.17) 
»=i j = i 

where mi is the number of measurements of Z(s) taken within a radius (of 240 
km) from so (out of the modelling data set), m2 is the number of meteorological 
stations within a radius of 240 km from so (out of the modelling and validation 
set). The weights wu and w2j can be determined using the two semivariance 
functions and the cross-semivariance function. 

Regression-kriging 

Odeh et al. (1995) compared, among other techniques, three forms of regression-
kriging (comparable with kriging with external drift). The idea of regression-
kriging, in this paper, is that we characterize the trend component fi(s) of 
the model for the random function F(s) as an unknown linear combination of 
known functions (regression model). In ordinary kriging the trend component is 
modelled as constant; in the usual form of universal kriging the trend component 
is modelled as a polynomial of a certain degree. In our application the trend is 
modelled as: 

a + f3iq(s)+p2q\s) (2.18) 

where q(s) is in our case a realization of the elevation now used in a regression 
equation. 

The interpolated value at location so can be calculated by a linear combination 
of the regression model and a weighted sum (ordinary kriging) of regression 
residuals z*(si) = z(si) - a - (3iq{si) - 02q

2(si). 

n 

/(so) = & + 0iq(so) + f32q
2(s0) + J ^ z ' f o ) (2.19) 

i= i 

The difficulty of this form of regression-kriging, and of universal kriging in gen­
eral, is that the parameters of the regression model and the parameters of the 
semivariance function of the spatial correlated regression residuals should be es­
timated simultaneously (Laslett and McBratney, 1990). Under the assumption 
of normality, the parameters can be estimated by restricted maximum likelihood 
(REML), which is one of the techniques to estimate the parameters of the re­
gression model and the parameters of the semivariance function simultaneously 
(Gotway and Hartford, 1996). 
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Trivariate regression-kriging 

Finally, trivariate regression-kriging will be introduced. Trivariate regression-
kriging is a form of regression-kriging, where trivariate ordinary kriging is ap­
plied on the regression residuals. The trend is chosen equally as in trivariate 
thin plate splines. The interpolated value at a location so can be calculated by: 

n 

/(so) = & + Pxx + f32y + /33Q + ^ wiZ*{Si) (2.20) 
t = i 

The weights Wi are determined by the semivariance function, which is a function 
of the Euclidean distance between two points (si,qi) and (s,q). The units are 
of different order and scaling becomes important, the same scaling is used as 
for trivariate thin plate splines. In this case, REML is not applied because 
of limitations of the software used. The residual semivariance function is now 
estimated from the OLS regression residuals. 

2.2.3 Comparison of interpolation techniques 

To compare the interpolation techniques, the original data set is divided into a 
modelling data set and a validation set of 25 measurement points. The 25 points 
are not chosen randomly, but are selected by the authors, so that the area is 
still reasonably covered by measurement points. Five validation sets are chosen 
from each data set. Each validation set contains different measurement points 
from the original data sets. Predictions on the locations of the validation points 
- z(si) - and the measured values at these locations - z(si) - are compared by 
two criteria: the Mean Square Error (MSE) and the Maximal Prediction Error 
(MPE). 

MPE = max | z(si) - z(si) | (2.21) 
i=l,... ,nv 

M S E = — J ] [ z ( s I ) - 2 ( s i ) ] 2 (2.22) 

where nv(= 25) is the number of validation points. 

2.3 Results 

The automatic calculation procedure of thin plate splines allows a straightfor­
ward analysis of these techniques. There is no need for any prior estimation 
of the spatial dependence of measurement points. ANUSPLIN (Hutchinson, 
1997) is used to perform the analyses. For trivariate thin plate splines it is 
useful to optimize the elevation scale (Hutchinson, 1998). Therefore the square 
root generalized cross validation for trivariate thin plate splines is determined 
at different scales of elevation (metre, decameter, hectometre and kilometre). 
Decameter appears to be the optimal scaling for Tmax and kilometre for Pmean-
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This way of scaling is found to be sufficient, because no major differences be­
tween the GCV of two successive scales are found. Trivariate regression-kriging 
is applied with the same scaling as trivariate thin plate splines. 

The semivariance functions for ordinary kriging are estimated by weighted least 
squares with GSTAT (Pebesma and Wesseling, 1998). For cokriging the semi-
variance functions, by means of the linear model of coregionalization, are esti­
mated by COREG (Bogaert et ai, 1995). The residual semivariance function 
for trivariate regression-kriging is estimated in a relatively simple way. First 
the trend is estimated by ordinary least squares (OLS), followed by the estima­
tion of the spatial variability of the regression residuals. For regression-kriging, 
where the semivariance function depends only on x and y, the parameters of 
the regression model and the parameters of the semivariance function are esti­
mated simultaneously by the REML option of PROC MIXED in SAS (Littell 
et at, 1996). Figures 2.3 and 2.4 show some examples of fitted semivariance 
functions (with models and parameter values) for Tmax and Pmean for cokriging 
and trivariate regression-kriging. 

Only the recorded elevations of the meteorological stations are used for inter­
polation with ordinary cokriging. We used a DEM of the area but prediction 
accuracy increased substantially as just the recorded elevation at the point to 
be predicted (validation point) was available, as for all other interpolation tech­
niques. Tables 2.1 and 2.2 show the results of all 7 interpolation techniques for 
5 validation sets for Tmax and Pmean, respectively. 

The results of Table 2.1 and 2.2 demonstrate the benefit of using the covariable 
elevation. Especially for Tmax the differences of interpolation with elevation 
and without elevation are convincing. This is due to the high correlation be­
tween elevation and Tmax. Comparing regression-kriging, cokriging, trivariate 
regression-kriging, trivariate thin plate splines and partial thin plate spline for 
Tmax shows an advantage for the two interpolation techniques which made use 
of three-dimensional coordinates (trivariate). The differences between the re­
sults of the interpolation techniques are less clear for Pmean • Only for validation 
sets 1 and 2 did the trivariate interpolation techniques perform more accurately 
with respect to the MSE. 

The prediction results of Pmean for validation set 1 for August and September 
are very poor for bivariate thin plate splines and partial thin plate splines. 
This is mainly caused by two validation points in the South-East of the area, 
which have a large prediction error. Probably, this is caused by a local trend at 
adjacent measurement stations. 

2.4 Discussion 

In this paper 7 interpolation techniques are discussed, 5 including and 2 exclud­
ing elevation as additional information. The two techniques excluding elevation 
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Table 2.1: Results of the Mean Square Error (MSE) and the Maximum Predic­
tion Error (MPE) for 5 validation sets (Vl-v5,) of long-term monthly maximum 
temperature (Tmax). The values with the lowest MSE and MPE of the 7 inter­
polation techniques are written in italic. 

Interpolation technique 

ordinary kriging v l 
regression-kriging 
cokriging 
trivariate regression-kriging 
bivariate thin plate splines 
trivariate thin plate splines 
partial thin plate splines 
ordinary kriging v2 
regression-kriging 
cokriging 
trivariate regression-kriging 
bivariate thin plate splines 
trivariate thin plate splines 
partial thin plate splines 
ordinary kriging v3 
regression-kriging 
cokriging 
trivariate regression-kriging 
bivariate thin plate splines 
trivariate thin plate splines 
partial thin plate splines 
ordinary kriging v4 
regression-kriging 
cokriging 
trivariate regression-kriging 
bivariate thin plate splines 
trivariate thin plate splines 
partial thin plate splines 
ordinary kriging v5 
regression-kriging 
cokriging 
trivariate regression-kriging 
bivariate thin plate splines 
trivariate thin plate splines 
partial thin plate splines 

apr 
10.3 
5.0 
5.7 
4.1 
10.5 
4.8 
4.8 
7.2 
4.5 
4.3 
3.5 
8.4 
3.8 
4.1 
5.9 
5.0 
6.1 
4-5 
7.5 
5.8 
7.1 
7.4 
3.9 
5.1 
3.4 
7.5 
3.8 
3.9 
6.8 
3.8 
4.6 
2.0 
7.4 
2.6 
2.6 

MSE 
may 
9.8 
4.9 
5.5 
4.0 
9.9 
4.5 
5.2 
5.9 
4.2 
3.7 
3.5 
7.3 
4.0 
3.8 
5.6 
4.3 
5.8 
4.0 
7.3 
5.3 
6.2 
7.2 
4.2 
5.0 
3.7 
7.6 
3.7 
4.1 
6.4 
2.4 
4.3 
2.0 
7.1 
3.6 
2.3 

aug 
8.2 
4.0 
3.9 
2.9 
8.8 
3.1 
3.4 
3.9 
2.0 
1.9 
2.1 
4.9 
1.8 
2.2 
5.0 
1.7 
2.0 
1.8 
5.0 
2.1 
1.7 
5.0 
2.1 
2.3 
1.5 
5.8 
1.6 
2.0 
5.7 
1.2 
2.0 
1.3 
8.3 
1.8 
1.1 

sep 
8.4 
3.4 
4.1 
2.9 
8.3 
3.0 
3.7 
3.9 
2.0 
1.8 
2.0 
5.0 
1.8 
2.1 
5.2 
1.8 
2.1 
1.9 
5.2 
2.3 
2.0 
5.4 
1.9 
2.6 
1.8 
6.1 
1.8 
2.2 
5.4 
1.1 
1.7 
1.2 
7.5 
1.7 
1.0 

apr 
6.1 
5.0 
5.5 
4.6 
6.1 
4.5 
5.1 
6.9 
5.9 
5.5 
4.9 
6.6 
5.4 
5.3 
5.7 
5.3 
5.9 
5.2 
6.6 
5.3 
6.4 
6.4 
3.7 
5.6 
3.9 
6.5 
4.3 
3.7 
6.8 
4.4 
5.5 
3.5 
6.7 
5.3 
3.5 

MPE 
may 
5.8 
4.9 
5.6 
4.9 
5.7 

4-4 
5.2 
6.7 
5.7 
5.4 

4-7 
6.4 
5.5 
5.0 
5.1 
5.2 
6.0 
5.3 
5.9 
6.1 
6.2 
6.6 
4.0 
5.9 
4.0 
6.6 
4.2 
4.1 
7.0 
3.8 
5.0 
3.6 
7.0 
5.6 
3.4 

aug 
5.2 
4.2 
4.3 
3.8 
5.8 
4.3 
3.9 
5.3 
3.3 
3.0 
3.3 
5.6 
3.5 
3.7 
5.4 
3.7 
4.4 
3.8 
5.2 
4.3 
3.5 
6.4 
4.1 
5.1 
2.9 
6.4 
2.7 
3.9 
5.7 
2.8 
3.3 
2.2 
6.8 
2.8 
2.8 

sep 
5.4 
4.2 
4.5 
3.7 
5.2 
4.1 
4.4 
5.6 
3.7 
2.9 
3.2 
6.0 
3.4 
3.7 
5.3 
3.9 
4.5 
4.0 
5.1 
4.4 
4.5 
6.8 
4.2 
5.6 
3.5 
6.8 
3.1 
4.4 
5.5 
2.4 
2.8 
2.1 
6.2 
2.6 
2.7 
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Table 2.2: Results of the Mean Square Error (MSE) and the Maximum Predic­
tion Error (MPE) for 5 validation sets (vl-v5,) for long-term monthly mean 
precipitation (P-mean)- The values with the lowest MSE and MPE of the 7 in­
terpolation techniques are written in italic. 

Interpolation technique 

ordinary kriging v l 
regression-kriging 
cokriging 
trivariate regression-kriging 
bivariate thin plate splines 
trivariate thin plate splines 
partial thin plate splines 
ordinary kriging v2 
regression-kriging 
cokriging 
trivariate regression-kriging 
bivariate thin plate splines 
trivariate thin plate splines 
partial thin plate splines 
ordinary kriging v3 
regression-kriging 
cokriging 
trivariate regression-kriging 
bivariate thin plate splines 
trivariate thin plate splines 
partial thin plate splines 
ordinary kriging v4 
regression-kriging 
cokriging 
trivariate regression-kriging 
bivariate thin plate splines 
trivariate thin plate splines 
partial thin plate splines 
ordinary kriging v5 
regression-kriging 
cokriging 
trivariate regression-kriging 
bivariate thin plate splines 
trivariate thin plate splines 
partial thin plate splines 

apr 
36.7 
36.1 
35.3 
33.2 
44.1 
33.7 
36.9 
17.5 
13.7 
19.3 
17.6 
13.8 
12.0 
13.3 
7.8 
3.5 
5.8 
6.7 
6.4 
3.0 
3.4 
17.4 
9.5 
13.6 
13.7 
15.9 
9.5 
9.1 
8.6 
6.8 
12.2 
8.4 
7.6 
6.8 
6.8 

may 
62.4 
64.4 
58.1 
50.6 
78.5 
50.8 
67.4 

MSE 
aug 
1251.9 
1182.1 
1132.8 
728.4 
3562.6 
753.6 
3456.6 

158.5 4715.1 
168.0 
172.3 
170.7 
170.2 
168.7 
166.8 
55.4 
51.9 
48.3 
49.3 
55.2 
48.5 
52.5 
60.3 
44.9 
59.6 
47.0 
71.6 
45.1 
42.4 
61.5 
68.7 
91.1 
58.5 
84.3 
64.2 
67.7 

4712.9 
4687.3 
4479.5 
4802.2 
4492.2 
5319.8 
1804.2 
1683.5 
1652.7 
1787.4 
1762.8 
1665.3 
1720.1 
2477.1 
2467.8 
2537.4 
3252.8 
3069.9 
3696.9 
2858.4 
2193.9 
1891.4 
2276.2 
2170.4 
1607.1 
2419.2 
1724.2 

sep 
1123.6 
1111.2 
820.0 
520.1 
3418.2 
515.9 
3101.4 
4261.5 
4175.3 
4062.4 
3554.5 
3834.3 
3623.4 
4037.6 
1206.7 
971.0 
1012.4 
1252.6 
1264.2 
1230.0 
1397.2 
3150.5 
3321.0 
3517.8 
4038.0 
4029.3 
4137.1 
3767.8 
2873.6 
2291.8 
2538.7 
2723.6 
1984.9 
2923.4 
2050.3 

apr 
26.2 
26.7 
26.4 
26.4 
26.2 
26.4 
26.9 
14.9 
10.9 
13.6 
14.0 
12.8 
10.5 
10.9 
6.8 
4.2 
5.7 
5.6 
6.2 
4.3 
3.9 
14.3 
11.2 
10.0 
12.2 
14.0 
11.1 
11.4 
8.6 
8.3 
10.0 
8.3 
7.0 
8.7 
7.9 

MPE 
may 
22.4 
22.7 
23.4 
22.6 
22.9 
22.4 
22.9 
44.9 
43.9 
42.5 
44.8 
46.0 
44.7 
43.8 
17.6 
17.5 
19.7 
17.8 
19.6 
17.8 
17.1 
25.4 
18.7 
18.5 
17.3 
25.7 
16.4 
18.4 
17.2 
24.4 
27.7 
23.0 
21.3 
25.5 
24.5 

aug 
84.8 
89.2 
77.3 
62.2 
172.5 
58.9 
183.6 
256.2 
252.4 
249.3 
260.6 
250.3 
255.0 
248.7 
93.4 
74.9 
82.6 
95.2 
88.1 
90.0 
87.9 
165.6 
162.0 
174.9 
200.1 
190.0 
217.3 
182.3 
161.1 
135.2 
153.8 
149.0 
83.3 
136.6 
88.2 

sep 
80.6 
78.7 
59.5 
66.5 
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Figure 2.3: Estimated semivariance functions for cokriging and trivariate 
regression-kriging for Tmax, April, validation set 1. Upper left: Tmax; upper 
right: elevation; lower left: cross semivariance function between Tmax and eleva­
tion; lower right: residual semivariance function Tmax for trivariate regression-
kriging. 

perform, especially for Tmax considerably less accurately than the techniques 
including elevation. The MSE and MPE values are lower when elevation is 
used as additional information for prediction, especially when the correlation 
between the two variables is high. From the techniques which include elevation, 
trivariate thin plate splines and trivariate regression-kriging seem to perform 
best. Cokriging appears to be the most time-consuming interpolation technique 
to implement. Therefore, in this case study, cokriging seems not preferable. 
The main reason for cokriging having relatively poor prediction results is the 
fact that in that case a linear relation is assumed between climate variable and 
elevation. The other techniques (including elevation) used in this paper, do 
not assume such relation because regression models with more regressors and 
trivariate techniques are used. 

The results of Tmax are much clearer to interpret than the results of Pmean-
There is much more variability in the Pmean predictions resulting from a higher 
variability in the data. The correlation between the climate variable and eleva­
tion is lower, which causes smaller differences between including and excluding 
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per right: elevation; lower left: cross semivariance function between Pmean 
and elevation; lower right: residual semivariance function Pmean for trivari­
ate regression-kriging. 

elevation. In general, precipitation data are clearly non-Gaussian. Although a 
transformation can be considered, this has been reported to have disadvantages 
for local estimation (Roth, 1998). 

Beek et al. (1992) stress the importance of interpolation techniques for crop 
growth simulation. In this paper more advanced forms of kriging and thin plate 
splines are applied. Especially, the trivariate forms of kriging and thin plate 
splines performed well. The main advantage of thin plate splines over kriging 
is the operational simplicity of this technique, which can be very important 
from a practical point of view. The kriging procedure requires more effort and 
experience. For Tmax the predictions results of trivariate regression-kriging are 
slightly more accurate compared to the results of trivariate thin plate splines, 
but the differences are small. Within the geostatistical framework trivariate 
regression-kriging, as described in this paper, seems to be an attractive option. 
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Chapter 3 

Global optimization 
problems in optimal design 
of experiments in regression 
models 

E.P.J. Boer and E.M.T. Hendrix 
Journal of Global Optimization (2000) 1 8 : 385-398 

In this paper we show that optimal design of experiments, a specific 
topic in statistics, constitutes a challenging application field for global 
optimization. This paper shows how various structures in optimal de­
sign of experiments problems determine the structure of corresponding 
challenging global optimization problems. Three different kinds of ex­
perimental designs are discussed: discrete designs, exact designs and 
replicationfree designs. Finding optimal designs for these three con­
cepts involves different optimization problems. 
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3.1 Introduction 

In many fields of sciences, experiments are done in order to estimate parameters 
of regression models. Optimal experimental designs can be used to maximize the 
precision of the least squares estimator, given the total number of observations. 
The theory of optimal experimental design has been explained (among others) 
in the monographs of Fedorov (1972), Silvey (1980) and Pukelsheim (1993). 
Atkinson and Donev (1992), Atkinson (1996) and Muller (1998) show the use­
fulness of optimal experimental designs in a more practical setting. Given the 
total number of observations, the optimal design is determined by the design 
space (experimental region), the regression model and the optimality criterion. 
Searching for these optimal designs yields challenging optimization problems 
(Zhigljavsky, 1991), which has resulted in a large number of publications (among 
others: Welch, 1982; Gaffke and Mathar, 1992; Jones and Wang, 1999). In this 
paper it is shown how general and more specific properties of experimental de­
sign problems result in properties of optimization problems for three different 
kinds of experimental designs. Important properties of optimal experimental 
designs are discussed and it is indicated how these properties can be helpful by 
solving the optimization problems for finding the optimal design. 

This paper considers optimal experimental design in the context of regression 
models. Let 

Yi = T](xi, 9) + Ei, xt e X c Rk (3.1) 

be a (statistical) regression model with a regression function r\ and i.i.d. zero-
mean error terms £*. The unknown 6 is a parameter vector with m elements, 
6T = ( # i , . . . , 6m) e i l c IRm. Further we assume that rj is a twice differentiable 
continuous function. 

3.2 Theory of optimal design of experiments 

A concept of an experimental design in regression analysis, frequently used in 
literature, is that of a so-called discrete design. A discrete design e is written 
as: 

xi x2 . . . xr , ,^2-
Pi P2 ••• Pr ' 

where pi indicates measurement weight at support point Xi, i — 1 ,2,. . . ,r, 
r > m. The weights sum to unity: Y2l=iPi = 1, Pi > 0. The support points 
are chosen from the design space X; Xi G X. The design space X may have 
dimension > 1, which means that also spatial problems could be considered 
(Muller, 1998). From an optimization point of view, for a given number of 
support points r, we would like to find the best values for pi and Xi (in a sense 
to be specified). Notice however, that in some situations this number r is not 
known beforehand. 
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A more practical definition of an experimental design is that of a normalized 
exact design. In this design, for all pi holds that ptN is integer, where JV is the 
maximum number of observations allowed in the experiment. An exact design 
(not normalized) e(N) is usually written as follows: 

e(N) =(Xl X2 ••• Xr) (3.3) 

where in is the number of replications at each support point, Y^=i ni = N. 
An exact design becomes discrete by using pi = rii/N. It is worth noticing, 
that searching for an exact design (in practice all designs are exact) results in a 
mixed continuous/integer optimization problem. These problems are in general 
hard to solve. 

In spatial problems, but also in other problems, observing in a point of the design 
space is often restricted to a certain number of replications. If the number of 
replications is restricted to one (replicationfree design), the observations have 
a minimal distance between each other. In this case, the design space X is 
often (see e.g. Fedorov, 1989) considered as (a grid of) Q candidate points 
or possible measurement points (observations). The design problem becomes 
a combinatorial problem of selecting N observations from Q candidate points. 
The solution of the problem will give an exact design with only one replication 
at each support point (A'' = r). 

Optimality of a design depends on the function n(x, 9) with parameter vector 9, 
under consideration. In many cases, research focuses on models which are linear 
in the parameters; then rj(x, 9) can be written as 9T f(x). Moreover performance 
depends on a specific criterion which is a function of the so-called information 
matrix. Experiments which contain a lot of information enlarge the precision of 
the estimation of the parameters of the model. If a linear model with the usual 
regression assumptions of independent errors and constant variance is studied, 
the information matrix for a discrete design is given by: 

r 

M[e]=J2Pif^)fT(xi) (3-4) 
i= l 

The inverse of the information matrix ( M - 1 , for exact designs the variance-
covariance matrix of 9) is helpful to represent the variance of the predictor 
•q(x, 9) on the design space X by means of the standardized variance function. 
The standardized variance function (under the usual statistical assumptions) is 
defined as follows: 

d(x, e) = varfa^, §)] = fT(x)M~1f(x) (3.5) 

This standardized variance function makes the design problem easier to under­
stand from a graphical point of view. Note that for linear models the standard­
ized variance function is independent of 9, because / does not depend on the 
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parameter vector 0. Figure 3.1 shows the standardized variance functions of two 
designs (JV = 3) for a simple linear model, rj(x, Q) =6\+ 62X, x e [—1,1]. The 
designs are chosen as follows: 

ei = 
-1 
1 
3 

0 
1 
3 

1 
1 
3 

£2 
-1 1 
1 2 
3 3 

3.0 

2.5 

Figure 3.1: Standardized variance functions for the two normalized exact designs 
ei and ei for N = 3. 

The two designs are almost the same, only the measurement at x = 0 in design 
e\ is moved to the right end of the interval for design €2- Figure 3.1 shows the 
result of this movement, as the standardized variance at the right end of the 
interval is lowered. The maxima of d(x, e) are found, for any design, at the 
extreme points of the design space. In Section 3.2.2 we will come back to this. 

The theory of optimal experimental designs can be extended to nonlinear models 
by considering the Taylor series expansion (Atkinson and Donev, 1992). In this 
case, for fT{x) the vector of partial derivatives is used 

fT(x) dr){x,6) dy(x,6) dr)(xfi) (3.6) 

Optimal designs for nonlinear models are called locally optimal designs because 
fix) depends on values of 6, so local with respect to parameter values of 9. This 
is confusing given another interpretation of the terminology of locally optimal 
solutions in global optimization. The information matrix in the nonlinear case 
is denoted by M[9, e}. 
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3.2.1 Criteria 

Many criteria for optimal designs are functions of the information matrix, say 
4>(M[e\). The most popular criterion is D-optimality, which minimizes the gen­
eralized variance of the parameter estimates. This corresponds to minimizing 
the value of the determinant of the variance-covariance matrix M_1[e]. When 
interest is focused on estimation of a subset of elements of 9, the criterion is 
written as Ds. A design which minimizes the maximum of the standardized 
variance function over the design region X is called a G-optimal design. The 
criteria are determined by minimizing the following functions: 

D-optimality: det(M_1[e]) (3.7) 

Ds-optimality: det(Mn[e]) (3.8) 

G-optimality: maxd(a;, e) (3-9) 

where Mu[e] is the s x s submatrix of M_1[e] with rows and columns corre­
sponding to the s selected elements of 9. The exact designs (N = 3) obtained 
from ei and £2 presented in Figure 3.1 are G-optimal and D-optimal designs 
respectively. 

3.2.2 Properties of optimal design problems 

The optimization problem for a discrete design can be considered as choosing 
the best Xi and p$. A problem in using general purpose optimization methods is 
that the number of support points is not known beforehand (Jones and Wang, 
1999). The optimal design problem becomes even more difficult when an exact 
design is needed, which results into a mixed continuous/integer optimization 
problem. Boer et al. (2000) show that this problem can not be solved very 
easily, because of local optima. Some important properties (theorems) from 
the optimal experimental design theory can assist in solving the optimization 
problems. We will present them without going very much into detail giving 
the reader a flavour of the existing theory. The properties will be ordered from 
general properties of models and criteria to more specific cases. 

• The criterion function <fi(M[e\) has certain properties that capture the idea 
of whether the information included in matrix M is large or small. If a 
design e* is better than e, the information included in matrix M[e*] is 
considered larger than that in M[e] in a certain ordering. A reasonable 
criterion of the information matrix is that the value of a criterion function 
is non-decreasing (monotonic) when measurements are removed from an 
existing design. An application of this property in a branch-and-bound 
algorithm for optimal replicationfree designs is discussed in Section 3.3.3. 

• Although, the number of support points r of a design is variable in the 
optimization problem considered here, certain bounds can be given. These 
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bounds can be derived by looking at some basic properties of the infor­
mation matrix M (Fedorov, 1972): 

1. For any design e: M[e] is positive-semidefinite. 

2. If r < TO then det(M[e]) = 0, i.e. M - 1 ^ ] does not exist. 

3. For any compact design space X, the set {M[e]; e is discrete } is 
convex. 

From property 2 it is clear that the number of support points should at 
least be equal to the number of parameters (r > m). Property 3 leads 
together with Caratheodory's Theorem (see Silvey, appendix 2, 1980) to 
an upper bound for the minimum number of support points. This upper 
bound is equal to ^m(m+l)+l. For D-optimality this can be strengthened 
to |TO(TO + 1). Thus, for certain criteria <p(M) there exists an optimal 
design with at least TO and at most |m (m + 1) + 1 support points. These 
bounds for the number of support points are especially useful for general 
purpose optimization (Section 3.3.4). 

• The most celebrated theorem in optimal design of experiments is undoubt­
edly the Equivalence Theorem of Kiefer & Wolfowitz (1960). This theorem 
states that the following characterizations of an optimal discrete design e* 
are equivalent. 

(i) design e* is D-optimal (3.10) 

(it) e* minimizes max d(x,e) or e* is G-optimal (3.11) 
X 

(Hi) max d(x, e*) = m (3-12) 
X 

For a discussion and proof, see (among others) Silvey (1980). This theorem 
was first derived by Kiefer and Wolfowitz (1960) for linear models, but 
White (1973) showed that it can be extended to nonlinear models. Note 
that this theorem holds for discrete designs, not for all exact designs. 
Figure 3.1 shows an example of (normalized) exact designs where the D-
and G-optimal designs are different. 

This theorem gives the opportunity to calculate D-optimal discrete designs 
by means of properties of G-optimal (discrete) designs. For G-optimality 
the maximum of the standardized variance matrix is minimized. It is 
known - see (Hi) of the Equivalence theorem - that as long as this maximum 
is larger than m, the design is not G-optimal and thus not D-optimal. By 
putting (additional) weight at point x* where the maximum of d(x, e) is 
reached, the standardized variance at point x* can be lowered (see Figure 
3.1). This concept is used in the development of an algorithm (Fedorov, 
1972), which will be elaborated further in Section 3.3.2. 

• Optimal exact designs are often difficult to calculate because the number 
of replications at each support point should be integer. In the special case 
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of r = m and D-optimality, the number of replications should be chosen 
as equal as possible. Rasch (1990) shows this by rewriting the information 
matrix M[6, e] in the following matrix notation: 

M[6, e] = GT{9, e(N)) N G{9, e{N)) (3.13) 

GT(6,e(N))=[f(x1) f(x2) ... f(xr)] 

where 

and 

N = diag(n1; ri2, ...,nr) 

Minimizing det(M_1[e]) means maximizing det(M[e]). Now 

\GT(6,e(N)) ATG(9,e(N))\ = | G T ( M A 0 ) | \M\ \G(9,c(N))\ (3.14) 

G is independent of rii and \N\ = Yl ni is maximized when the values of 
rii are as equal as possible. 

• Figure 3.1 illustrates the standardized variance functions for two designs 
for the easy case of simple linear regression. The maxima of the standard­
ized variance functions can be found in the extreme points of the design 
space, due to the convexity of these functions. As long as f(x) is linear in 
x, the standardized variance function d(x, e) = fT(x)M~1f(x) is a convex 
quadratic function. If f(x) is nonlinear in x, the resulting standardized 
variance function is not quadratic. Consider the following quasi-linear 
(linear in parameters) model: 

•nix, 6) = 0i + e2xi + e3x2 + eAxix2 (3.15) 

where x\ and x2 can be chosen from X = [—1,1]2 C R2. A D-optimal 
design for this function is equal to: 

- 1 
0.25 

1 
1 

0.25 

- 1 
1 

0.25 
- 1 

0.25 
€3 = - 1 l l " M (3-16) 

where the first row contains the coordinates of x\ and the second row 
the coordinates of x2. It can be shown that this design is D-optimal by 
calculating the standardized variance function for design 63. 

d(x,e3) = l + x1
2+x2

2+x1
2x2

2 (3.17) 

A plot of this standardized variance function on a unit square is given 
in Figure 3.2. Note that this design is indeed D-optimal, because the 
maximum on the unit square is equal to the number of parameters (see 
Equation (3.12); Miiller, 1998). 
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Figure 3.2: Contour map of the standardized variance function of rj(x,8) 
#i + 62X1 + 63X2 + 64X1X2 for design €3 on a unit square. 

3.3 Searching the optimal design 

In this section different ways of finding optimal designs are discussed. The prop­
erties of the design problem for a certain model and criterion can be extended to 
a complete analytical solution for a specific design problem (Section 3.3.1). How­
ever, most problems are too complex to find an analytical solution. Therefore, 
Fedorov introduced an algorithm to find the optimal solution (Section 3.3.2). In 
Section 3.3.3 a combinatorial optimization algorithm is outlined, for the special 
case of a design space consisting of a finite set of candidate points. Finally, it is 
illustrated how general purpose optimization algorithms will perform for these 
kind of problems (Section 3.3.4). 

3.3.1 Analytical results 
Many examples of analytical derivations of optimal designs can be found in 
literature (e.g. Fedorov, 1972; Rasch, 1990; Vila, 1991). An illustrative example 
of an analytical solution of a design problem is given by Boer et al. (2000). An 
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exact D-optimal two-point design for the Michaelis-Menten function (r = m = 
2) can be found by minimizing 

d>(M-l[e})=K(x1,x2,n1,n2)= 2
 ( 1 + 0Xl)* ^ ^ ^ (3.18) 

a2 (xi - x2y x\2 x2
2 ni n2 

It is obvious that ni and n2 should be chosen as equal as possible, as already 
has been shown by the third theoretical property in Section 3.2.2. The choice 
of xi and x2 is more complicated. For x € [0,a;u], xu > 0 it can be derived that 
the following exact design is D-optimal 

2+xu0 -» ] (3_19) 
ni n2 

with n\ + n2 = N. For N = 2n, n\ equals n2 and for N = 2n + 1 choose 
n\ = n,n2 = n+ 1 or n\ = n + 1, n2 = n (Ermakov and Zhigljavsky, 1987). 

3.3.2 Special algorithms for optimal designs 

Because an analytical solution can not be found for every design problem, some 
specific algorithms have been constructed to find the optimal solution. Although 
more algorithms are available, we restrict ourself to the V-(Fedorov, 1972) al­
gorithm, which can be described as follows: 

1. Given start design eo, stopping criteria, s = 0, 
ro the number of support points of eo-

2. Determine: 

Ml€s\ = 'Yl,Pisf{xis)fT{Xis). 
i = l 

3. Calculate D[es] = M_ 1[e s] . 

4. Nowd(x,es) = fT(x)D[es]f(x). 

Determine: 

5S = ma,xd(x, es) — m. 
X 

apointx* € argmaxd(a:, es). 
X 

5. The step-size: as = SS/(5S + (m — l))m. 
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6. es+i is calculated by: 

a) 
Recalculate all the weights (i = 1,2,.. . , rs) of es in the following way: 

Pi(s+i) =Pis(l -as). 

b) 
Add x* to design es with weight as, update r s + 1 . If x* G es, 
update e s + i . 

7. check stopping criteria, s := s + 1 and go to 2. 

This algorithm is mainly based on the properties of the Equivalence Theorem. 
It is known that a D-optimal (discrete) design minimizes the maximum of the 
standardized variance function. This algorithm puts (additional) weight on the 
value of a point x* (step 6) where the standardized variance function reaches 
its maximum (step 4), as long as that maximum is larger than the number of 
parameters considered. Note that step 4 implies a global optimization problem. 
Jones and Wang (1999) mention some pros and cons of this algorithm. The 
main advantage of this algorithm is that the number of support points does not 
have to be fixed beforehand. Further, it is important that the algorithm ensures 
convergence to the optimal design under some conditions. The main disadvan­
tage is that the algorithm may be very slow for some problems (Atkinson and 
Donev, 1992). This is mainly caused by the fact that after introduction, a (pos­
sibly non-optimal) support point does not disappear, probably only its weight 
decreases. The following example is given as an illustration of the V-algorithm. 

Consider the following model 

rj{x, 6) = e1 + e2x + e3x
2 (3.20) 

with X = [0,1]. Figure 3.3 shows the standardized variance function of the fol­
lowing (not optimal) design, which is used as a start design for the V-algorithm. 

_ / 0 0.2 1 
£° ~ V0.3333 0.3333 0.3333y 

After one iteration of the V-algorithm the design becomes as follows: 

_ / 0 0.2 1 0.5378\ 
61 ~ \^0.2492 0.2492 0.2492 0.2523/ 

The standardized variance function of design t\ is graphically represented in Fig­
ure 3.3. We restrict ourselves to one iteration. The final result of the algorithm 
converges to the D-optimal design, which is: 

0 0.5 1 
0.3333 0.3333 0.3333 
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Figure 3.3: Illustration of the V-algorithm for model (3.20) with start design £Q 

3.3.3 Combinatorial optimization of the optimal design 

The optimal design problem becomes a combinatorial optimization problem, 
when the design space is restricted to a finite discrete set of Q candidate (de­
sign) points, BQ = {x\,X2, • • • ,XQ}. Rasch et al. (1997) show some algorithms 
for selecting N design points out of BQ. The calculation time of full enumera­
tion of this problem was reduced considerably by applying a branch-and-bound 
algorithm (for a description, see appendix of this thesis). This fast branch-
and-bound algorithm is based on the fact that the criterion function 0(M[e]) 
is monotonic (see Section 3.2.2). The drawback of this procedure is that the 
number of candidate points is restricted to about 30. Figure 3.4 gives an impres­
sion of this combinatorial optimization problem for one of the examples used by 
Rasch et al. (1997). 

Miiller and Pazman (1998) constructed an algorithm to find optimal designs 
with more candidate points. The algorithm makes use of a corresponding infor­
mation matrix, which approximates the information matrix for exact designs. 
Promising results are shown for a spatial example of Fedorov (Fedorov, 1989) 
of a 20 x 20 point grid. 

3.3.4 General purpose optimization 

The difficulty in finding optimal designs with general purpose optimization pro­
cedures is that the number of support points is not known beforehand. We 
saw already that there can be given certain bounds for the number of support 
points in Section 3.2.2. However, it would be preferable when a general purpose 
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-0.1 

25 

Figure 3.4: A plot of the function 1 — 1.4e °-2x with the corresponding 9-point 
replicationfree D-optimal design selected from 26 candidate points. 

optimization procedure does not depend on the number of support points. Boer 
et al. (2000) illustrate with the Michaelis-Menten function, that the mixed con­
tinuous/integer programming problem can be rewritten into a fully continuous 
nonlinear programming problem, formulated as follows: 

mm{K(x[,x'2,... ,x'N)} 

under the condition : (3.21) 

where K is equal to a certain criterion, xi is the lower bound and xu the up­
per bound of the one dimensional design space. In this case, x\ are (single) 
measurement points in the design space. 

In the paper of Boer et al. (2000) it is shown that a (sub)-D-optimal design with 
6 and 4 replications at the two support points is a local minimum of the contin­
uous optimization problem. Figure 3.5 illustrates this by changing the value of 
variable x'6 of the D-optimal design {x\,..., x'5 = 28.32, and x'e,..., x[0 = 1440) 
from the lower to the upper bound of the design space. In this way many local 
minima may appear. 
Jones and Wang (1999) argue that general optimization procedures are more 
efficient than special algorithms like the V-algorithm. They use global opti­
mization methods, because the criterion considered has several local optima. 
They discuss two well-known stochastic global optimization methods: multi-
start local search and simulated annealing. For the last it is suggested to stop 
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Figure 3.5: Non-convexity of the continuous NLP formulation of the D-optimal 
design problem. 

the annealing procedure at a certain point and then continue the search by an 
effective local search procedure. 

3.4 Conclusions 

This paper shows how the structure of the design space, model and criterion 
in optimal design of experiments problems determines the structure of corre­
sponding challenging global optimization problems. Three different kinds of 
experimental designs are discussed: discrete designs, exact designs and replica-
tionfree designs. Finding the optimal designs for these three concepts involves 
different optimization problems. 

Discrete design problems are most easy to solve. There are many examples of 
a complete analytical derivation of the optimal design, without using optimiza­
tion methods. However, if an analytical solution is not available optimization 
methods are needed. Fedorov (1972) proposes a specific algorithm which en­
sures convergence to the optimal discrete design, but may be very slow for some 
problems. General purpose optimization does often not work adequately, be­
cause the number of support points is often not known beforehand and local 
minima may occur (Jones and Wang, 1999). 

Exact design problems are hard to solve, because finding the optimal design 
implies solving a mixed continuous/integer optimization problem. Boer et al. 
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(2000) show that a fully continuous formulation of the problem results in many 
local minima. An other interesting approach to find exact designs is to construct 
an exact design from the optimal discrete design with a certain rounding method 
(Pukelsheim and Rieder, 1992; Gaffke and Heiligers, 1995). It can be shown 
that the criterion values of these exact designs have a limited loss of efficiency 
compared to the criterion values of optimal exact designs. 

If the design space is restricted to a set of candidate points, combinatorial opti­
mization can be applied to find the optimal solution. Rasch et al. (1997) show a 
branch-and-bound algorithm (full enumeration) for this, based on the fact that 
every reasonable design criterion is monotonic. A same kind of algorithm, in 
this case for maximum entropy sampling, can be found in Ko et al. (1995). For 
both articles, full enumeration is only applicable when the number of candidate 
points is restricted. Larger problems have to be solved with search algorithms 
(Fedorov, 1989; Miiller, 1998). 

Up to now no specific global optimization algorithms have been developed in 
the field of optimal experimental designs. In our opinion, optimal design of 
experiments constitutes a challenging application field for global optimization. 
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Chapter 4 

Optimization of monitoring 
networks for the estimation 
of the semivariance function 

E.P.J. Boer, E .M.T. Hendrix and D.A.M.K. Rasch 
MOD A 6 - Advances in Model-Oriented Design and Analysis (2001), 21-28 

The optimal adjustment of an existing monitoring network for estima­
tion of the semivariance function by means of optimal design of exper­
iments is discussed. The difference between neglecting and including 
correlation between point pairs, from which the semivariance function 
is estimated, is visualized for a simple adjustment of a monitoring net­
work. A branch-and-bound algorithm is applied to calculate an exact 
optimal configuration of monitoring sites (design). For a case study it is 
shown that the optimal design is robust against misspecified parameter 
values and model choice. 
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4.1 Introduction 

A problem frequently encountered in practice is the adjustment of an exist­
ing monitoring network. Monitoring networks have to be enlarged or reduced, 
mostly depending on the budgets of the research. One of the biggest problems in 
designing or adjusting a monitoring network is that the objective of measuring 
is often ambiguous. A clear example of this can be found in geostatistical anal­
yses. In general, the semivariance function (characterizing spatial continuity) is 
estimated for kriging (spatial prediction), but the optimal monitoring network 
for the estimation of the semivariance function is not the same as the optimal 
network for kriging (Zimmerman and Homer, 1991). In this paper the focus is 
on the objective of designing an optimal monitoring network for the estimation 
of the semivariance function. The criterion for optimality, used in this paper, 
is based on the classical theory of optimal design of experiments (Kiefer, 1959; 
Fedorov, 1972). 

Early discussion of optimal design for estimation of the semivariance function 
can be found in Russo (1984), followed by a paper of Warrick and Myers (1987). 
They suggest a criterion which attempts to modify the spatial configuration of 
points in such a way that distances between point pairs (lags) are as much as 
possible equally distributed among the several distance classes. The results of 
this approach hardly depend on the model of the semivariance function. 

Zimmerman and Homer (1991) applied the classical theory of optimal exper­
imental design for the estimation of the semivariance function. The design 
problem consists of adding q new sites, to an existing monitoring network 
Bf = {si,..., sn}, from a set Bp = {sn+i, •••, SU+Q} of potential sites. This ap­
proach is strongly model-based, which means that caution is needed for model 
errors (De Gruijter and Ter Braak, 1990). Therefore, investigating the robust­
ness of optimal designs against misspecified parameter values and model choice 
is important. 

In this paper we would like to add three new aspects to the use of optimal designs 
for the estimation of the semivariance function. In the first place, a visualization 
of a simple adjustment of a monitoring network is given. Secondly, a branch-
and-bound algorithm is applied to calculate an exact optimal configuration of 
monitoring sites, given a certain criterion and a set of possible monitoring sites. 
Finally, a robustness study of the optimal design against misspecified parameter 
values and model choice is done. All is elaborated for a case study introduced 
by Cressie et al. (1990). 
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4.2 Theory 

4.2.1 The semivariance function 

A number of papers have been written about design aspects when a certain 
semivariance function is assumed (e.g. Cressie et al., 1990). However, usually 
the semivariance function needs to be estimated; which can be considered as a 
first step in geostatistical analyses. 

In geostatistical analyses the random variable Z at a site s in a domain D e l 2 

can be described as (Cressie, 1991) 

Z(s) = »(s)+5(s) (4.1) 

where fi(s) is the deterministic part of Z(s), S(s) is a spatially dependent zero-
mean stochastic process. This paper focuses on the optimal estimation of the 
unknown spatial correlation of S(s). The spatial correlation between points can 
be quantified by means of the semivariance function: 

1(h) = \yaI[S{81)-S(82)] (4.2) 

where it is assumed that the variance of the differences depends only on the 
(Euclidean) distance h = || s\ — s2 || between sites S\ and s2. The most com­
mon applied parametric semivariance function, *y(h, 6) with unknown parameter 
vector 0 = (8i,62,0^)T, is the spherical semivariance function: 

7s(M) 

' o, 

. 01+02, 

h = 0 

- i ( £ ) 3 } , o<h<e3 

h>63 

(4.3) 

Figure 4.1 shows a spherical function with corresponding interpretation of pa­
rameters of semivariance functions. We refer to Isaaks and Srivastava (1989) 
for the exponential and Gaussian semivariance function. 

The semivariance can be estimated from pairs {fofc,7fc}, derived by measuring 
for every point pair (si, Sj) 

hk = | | st - Sj ||, k = 1,..., -n(n - 1) = N. 

and 

ik = -j[Ksi) - ksi)\2, i < i; M = i, •••>«• (4-4) 

6(s) can be estimated by detrending the data by means of median polish (Cressie, 
1991). All the pairs {/ifc, %} can be displayed as a scatter plot (variogram cloud). 
Muller (1999) showed that a direct fit of a parametric semivariance function is 
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Figure 4.1: Three frequently used semivariance functions with interpretation of 
the parameters of the semivariance functions. 

often preferable. The observations of the semivariance function (Equation 4.4) 
are often correlated, as from n monitoring sites come N observations of the 
semivariance function. Therefore, generalized least-squares estimation (GLS) is 
used to estimate (iteratively) 6 = (61,62, •••,6m), i.e. 

6(j) = Argmin[7 - l{6(j))]
T E ^ y - i ) ) ft ~ 7(0O))]. 3 = L 2 , . . . (4.5) 

where 7 = (7i,..-,7w)T , l{6) — [y(hi,6), ...,j(hN,6)]T and T,(6) is the covari-
ance matrix of 7. If a Gaussian random field is assumed, Cressie (1985) describes 
how the entries of E(#) can be calculated (see also: Muller, 1998; Section 2.4). 

4.2.2 Optimal experimental design for estimation of t he 
semivariance function 

Optimal experimental design can be used to maximize the precision of the esti­
mation of parameters of regression models, given the number of allowed obser­
vations. The most important references can be found in Fedorov (1972), Silvey 
(1980) and Atkinson and Donev (1992). Zimmerman and Homer (1991), Muller 
and Zimmerman (1999) and Bogaert and Russo (1999) showed how the theory 
of optimal experimental design can be applied to the estimation of the semivari­
ance function. Muller and Zimmerman (1999) clarify the two major differences 
with the standard optimal design methods for nonlinear regression. The first 
difference is that the observations of the semivariance function are a result of the 
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spatial configuration of monitoring sites. This means that adding one monitor­
ing site yields n additional pairs of points from which the semivariance function 
is estimated. Secondly, in optimal design for nonlinear regression models it is 
usually assumed that the observations are uncorrelated. This is hardly the case 
for empirical observations of the semivariance function. 

Many criteria for optimal designs are functions of the so-called information ma­
trix. Let the monitoring network (design) be denoted as £n = (si,..., s„), which 
define hi,..., /ijv- The information matrix corresponding to #GLS (Equation 4.5) 
and a monitoring network £„ is equal to 

M[6,Zn] = JJZ-1{0,Zn)Jo (4.6) 

where 

Je 

dj(hu6)/d6i ••• dj(hi,e)/de„ 

dj(hN,e)/d6i ••• d1(hN,9)/de7, 

(4.7) 

Two ways of calculating the information matrix can be found in literature. One 
where E - 1 (#,£„) is approximated by ignoring the off-diagonal elements (Zim­
merman and Homer, 1991), mainly in view of the computational advantages. In 
this way, the correlation between point pairs is neglected. The other way can be 
found in Miiller and Zimmerman (1999) and Bogaert and Russo (1999), where 
the whole N x N matrix E _ 1 (#,£„) is included in the calculations. 

The so-called D-optimality is equal to the minimization of the determinant of 
the inverse of the information matrix: 

D-optimality: Arg min de t (M _ 1 [9, £„]) (4.8) 

Optimizing according to (4.8) results in an optimal design for a certain pa­
rameter vector 6. Because of this dependence on the parameter values of the 
semivariance function, the optimal design is a so-called 'locally' optimal design. 
Note that the word 'locally' is used in another context as in (global) optimiza­
tion. 

4.3 Case study 

In this paper we make use of a case study introduced by Cressie et al. (1990). 
This case study considers the Utility Acid Precipitation Study Program (UAPSP) 
monitoring network located in the eastern and midwestern U.S.A. Annual acid-
deposition levels were measured in 1982 and 1983 in a network of 19 U.S. sites 
(Bp = {si,...,sig}). There are 11 potential sites (Bp = {S20, ...,S3o}) available 
for enlarging the monitoring network with one or more sites. The optimal se­
lection of q out of Q = 11 sites results in a combinatorial optimization problem, 
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Figure 4.2: T/ie i# s^es o/ the UAPSP monitoring network (u) and the 11 
potential sites (a). Units are in 100 miles. 

which can be solved by full enumeration with a branch-and-bound algorithm 
(see Rasch et al., 1997 and appendix of this thesis). Figure 4.2 shows the 19 
sites of the existing network and the 11 potential sites. 

Zimmerman and Homer (1991) calculate the semivariance function by means of 
median polish, for the data set considered. The estimated parameter values of 
a spherical semivariance function were: nugget = 0, range = 236.2 miles and sill 
= 1.875 (see Figure 4.1 for a plot of this function). We will use this estimated 
semivariance function as a (basic) semivariance function. 

7s 0 ) ^ { l y y - H l J e s ) 3 } ' 0</i< 2.362 
1.875 h > 2.362 

(4.9) 

4.4 Results 

This section of results is split up in three subsections. In the first place, some 
visualizations will be presented of the problem considered in Zimmerman and 
Homer (1991). The figures show the difference between neglecting and including 
correlation between point pairs. Secondly, some results of the branch-and-bound 
algorithm are discussed. Finally, we will consider the robustness of optimal 
designs against misspecified parameter values and choice of the model. 
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4.4.1 Visualization of t he problem 

The problem of where to add one additional monitoring site to the 19 existing 
monitoring sites can be visualized by a contourplot of criterion values on a fine 
regular grid of points. The criterion value at a certain grid point is calculated 
by supposing that the additional monitoring site was located on that grid point. 
The contourplot shows where interesting locations are to add one additional 
monitoring site, given the existing monitoring network and a certain network. 
This plot shows where interesting locations are to add one additional monitoring 
site, given the existing monitoring network and a certain criterion. In Figure 4.3 
such contourplots are presented for the estimation of the semivariance function 
written in Equation 4.9 in a D-optimal way, neglecting and including correlation 
between point pairs respectively. 

Figure 4.3 shows on comparing with Figure 4.2 that site 26 is the optimal choice 
to add, when correlation between point pairs is neglected. This corresponds with 
the result of Zimmerman and Homer (1991). Note that there are relatively few 
observations in the interval h = (0,2.362), which is the most interesting part of 
the semivariance function. Clusters of points result in more observations of the 
semivariance function at short distances. This principle comes clearly back in 
Figure 4.3. The optimal site to add, changes to site 25 for calculations including 
the correlation between point pairs, see Figure 4.3. The surface of the criterion 
value is less smooth than in the case of neglecting correlation and it tends less 
to clustering of monitoring sites. 

4.4.2 Results of t he branch-and-bound algorithm 

Adding only one site to the existing network, can be solved by selection of the 
site which lowers the criterion value the most. The branch-and-bound algorithm, 
described in the appendix of this thesis, becomes useful when more than one 
site has to be added to the existing network. To test the branch-and-bound 
algorithm, 25 sites will be selected from the combined set of 30 monitoring sites: 
Bp U Bp. The number of combinations for this problem is equal to 142506. 

For both -neglecting and including correlation between point pairs, sites with 
the numbers {7, 10, 11, 14, 23} have to be removed out of BFUBP to obtain an 
optimal monitoring network of 25 sites. Surprisingly, the computation time for 
including correlation is less than for neglecting correlation between point pairs, 
1054 and 4934 seconds (Pentium II, 266 MHz) respectively. This is due to the 
fact that including correlation needs less calls (bounding more efficient) of the 
recursive branch-and-bound algorithm (2885 and 15710 calls). A simple drop 
algorithm, sequential removal of one site, finds the optimal solution too. How­
ever, these kinds of heuristic algorithms can never guarantee that the solution 
is optimal. 
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Figure 4.3: Contourplots of the criterion value (D-optimality) for the estimation 
of the semivariance function (Equation 4-9) on a fine grid of points, supposing 
that an additional monitoring site was located on a grid point. Neglecting corre­
lation between point pairs in the upper graph, including correlation in the lower 
graph. 



4.4. RESULTS 43 

Table 4.1: Optimal combination of 5 sites and robustness ratio for different 
parameter values of the spherical semivariance function; including correlation 
between point pairs. The upper table (A) for Equation (4-9). Lower table (B) 
for including nugget effect in Equation 4-9, 61+62 = 1.875 and 63 = 2.362. 

A 
2# 2 

62 
262 

o#3 63 26; 
.2. 

B 

{2,3,7,9,10}, 1.00 {6,7,8,9,10}, 1.00 {3,4,6,8,11}, 0.83 
{2,3,7,9,10}, 1.00 {6,7,8,9,10}, 1.00 {3,4,6,8,11}, 0.83 
{2,3,7,9,10}, 1.00 {6,7,8,9,10}, 1.00 {3,4,6,8,11}, 0.83 

#3 2#3 3#3 

6>i = 0 
61 = 0.75 
6>i = 1.5 

{6,7,8,9,10}, 1.00 {3,6,7,8,11}, 0.95 {3,4,6,7,11}, 0.92 
{6,7,8,9,10}, 1.00 {3,6,7,8,11}, 1.00 {3,4,8,9,10}, 0.90 
{6,7,8,9,10}, 1.00 {3,6,7,8,11}, 1.00 {3,4,7,9,10}, 0.91 

4.4.3 Robustness analyses of t he optimal design 

An optimal monitoring network depends on preliminary estimates of the pa­
rameter values of the semivariance function. If these preliminary estimates are 
too different from the true parameter values 6, the optimized monitoring net­
work will not be optimal for the parameter values which have to be estimated 
(true parameter values). Robustness analysis is applied to see how the optimal 
designs will change at deviating values of the parameters. The optimal design 
of the preliminary estimated parameters can be compared with optimal designs 
which correspond to parameter values deviating from these values. Let £„+ and 
£„* be optimal designs with corresponding preliminary parameter values 6+ and 
deviating parameter values 6*. A robustness ratio shows how much the criterion 
values of these designs differ from each other. The robustness ratio is denned 
as follows: 

K(6* P *\ 
robustness ratio = " (4.10) 

K{6*^n+) 

where K is criterion function (4.8), which has to be minimized. 

The robustness analysis is applied to the situation of adding 5 from the 11 
potential sites to the existing monitoring network of 19 sites. In Table 4.1 some 
results are presented for calculations including correlation between point pairs. 
In the upper table (A) are shown optimal designs with corresponding robustness 
ratios for values deviating from 62 = 1.875 and 63 = 2.362 of Equation 4.9. The 
lower table (B) shows the result of a robustness analysis including a nugget 
effect (an additional parameter 6\), where the value of the sill is kept equal 
(61 + 62 = 1.875 and 63 = 2.362). For the case of neglecting correlation, the 
optimal designs were all equal to {6,7,8,9,10} for all different combinations of 
parameter values presented in Table 4.1. 

Although the parameter values of the preliminary estimate (by Zimmerman 
and Homer, 1991) were changed considerably, the optimal combination of sites 
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remains constant for many different parameter values. Furthermore, if another 
combination of sites was preferred the criterion values did not differ much. 

So far, only the parameter values of the spherical semi variance function were 
changed in our robustness analyses. The question raises how robust is the opti­
mal design against another model choice. Therefore, we calculated the optimal 
designs for all three functions plotted in Figure 4.1, where the nugget effect was 
left out of the models. It turned out that the optimal choice of 5 points was 
equal for all three semi variance functions. 

4.5 Discussion and Conclusions 

Adding only one site to a monitoring network can be easily solved by a simple 
algorithm. Visualizations of this problem show the difference between neglecting 
and including correlation between point pairs. Figure 4.3 shows that extreme 
clustering of sampling points occurs only when correlation between point pairs 
is neglected (Van Groenigen and Stein, 1998). 

Applying a branch-and-bound algorithm (Rasch et al, 1997) works well for small 
cases, as considered in this paper. However, when the size of the combinatorial 
problem increases it will be soon too large to solve within a reasonable compu­
tation time. Heuristic search algorithms are needed to solve larger problems. 
For this specific case study, we found that a simple drop algorithm delivers the 
optimal design for many cases. Only in a few cases the drop algorithm was 
trapped in a local minimum. For this case study, the branch-and-bound al­
gorithm is efficient for calculating the optimal design including the correlation 
between point pairs. 

Optimal experimental design for the estimation of the semivariance function 
is based on preliminary estimates of parameters of the semivariance function 
and model choice. Therefore, a robustness study against misspecified parame­
ter values and model choice is advisable. Although, the parameter values and 
the shape of the semivariance function are changed considerably the optimal 
monitoring designs and the criterion values do not differ much from each other. 
The dependence of optimal designs on 9 seems not to be a major problem. In 
our opinion, the application of a more complex criterion such as an averaged 
D-optimality, is not necessary. 
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Optimization of a 
monitoring network for SO2 
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In this study, we develop and apply a methodology to reduce an existing 
monitoring network to find an optimal configuration of a smaller net­
work. We use a criterion based on locally weighted regression with two 
different weight functions. The methodology is applied to the Dutch 
national SO2 network and offers the possibility to include different po­
litically relevant options in the model by weight criteria. Because full 
enumeration of all monitoring networks is impossible, a combinatorial 
search algorithm is applied to find a (sub)-optimal solution. 

45 



46 CHAPTER 5. OPTIMIZATION OF A MONITORING NETWORK 

5.1 Introduction 

In environmental monitoring programs, optimization of the monitoring network 
is often an important issue. Most networks for air pollution were designed in 
the past, the underlying physical processes and emissions may have changed 
so that collected data somehow do not answer the necessary questions. Several 
papers deal with optimization of monitoring networks (e.g., Caselton and Zidek, 
1984; Warrick and Myers, 1987; Cressie et ai, 1990; Pardo-Iguzquiza, 1998b; 
Van Groenigen and Stein, 1998; Fedorov et ai, 1999). The goal of optimizing 
an environmental monitoring network is, in many cases, related to the accuracy 
of maps and/or reduction in costs. 

Adaptation of an existing monitoring network is often done under constraints of 
authorities and sometimes based on expert judgment without any formal math­
ematical criteria. An example of a scientific criterion is the maximization of 
the minimum distance between monitoring stations, so that the stations are as 
evenly spread as possible over the area of interest (Miiller, 1998). Other criteria 
are based on geostatistics such as minimization of the kriging variance (Cressie 
et al., 1990). If little is known about the structure of the stochastic process that 
underlies the monitoring data, locally weighted regression (Cleveland, 1979) is 
an appropriate interpolation technique. This flexible method allows the char­
acterization of trends by using simple local models. The variance of estimates 
resulting from this method can be used to formulate a criterion for optimization. 

The aim of this study is to further explore the possibilities of locally weighted 
regression for the optimization of a monitoring network (Miiller, 1995; Fedorov 
et al., 1999). We show that it leads to a flexible criterion for adaptation of 
an existing monitoring network. This flexibility is expressed in the application 
of this interpolation technique and by incorporating different design criteria, 
which can easily include external (policy) constraints. The criterion is applied 
to a case study in the Netherlands, where the number of SO2 monitoring stations 
has to be decreased by about 60%. The combinatorial optimization problem of 
selecting the optimal monitoring network is solved by search algorithms. 

5.2 Locally weighted regression 

5.2.1 Model formulation 

Let {siJS2,---,sn} be locations, Si = (xi,yi), of n monitoring stations in a region 
D of the monitoring network £„, with corresponding observations {z(s\), z{s2), 
..., z(sn)} on a certain point of time. The observations are modelled by 

z(Si) = T](Si) + €i (5.1) 

where rj(s) for s € D is a smooth function and ej are independent, identically dis­
tributed, zero-mean observation errors. A flexible collection of functions consists 
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of those functions that can be approximated locally by a polynomial expression. 
Consider a location s* € D, and let TJL(S,(3(S*)) be the local approximation of 
r](s), where f3(s*) is a vector with parameters of a locally spatial trend around 
s* = (x*, y*). The smaller the distance between s and s* the better the approx­
imation. 

For local approximation, we consider the following polynomial expression of 
order p, 

r,L(Si,f3(s*))= Y, Pjkixi-xyiyi-y^+n (5.2) 

which can be considered as a two-dimensional Taylor expansion, where r» is the 
remainder term of the approximation. 
For an isotropic field Equation (5.2) can be simplified to 

VL(ai,l3(s*)) = Yil3j(8*)V +n (5.3) 
3=0 

where h =\\ s — s* ||. For every estimation location s*, the vector /3(s*) has to 
be estimated. Weighted least squares is applied with decreasing weights as the 
distance between Si from s* increases. Let an estimator $(s*) be defined as 

/3(s*) = argminVA(S s ,s*)[z(S i)-77L(S l , /3(s*))]2 (5.4) 

where A is a weight function depending on observation locations Sj and esti­
mation location s*. The use of a weight function corresponding to the model 
assumption that points close to s* plays a larger role in the determination of 
fJL(si, (3(s*)) than points further away. 

In principle, many weight functions can be considered. In this study, the choice 
is restricted to two weight functions mentioned by Miiller (1998). The first is 
the so-called tricube weight function, defined as 

Xt(s,s*) = < i - ( £ ) 3 ) ,0<h<hf (5.5) 
0 , otherwise 

where hj is a smoothing parameter, which determines the neighbourhood of an 
estimation location s* and h =\\ s — s* \\. The McLain function is the second 
choice 



48 CHAPTER 5. OPTIMIZATION OF A MONITORING NETWORK 

A™ (S 'S* ) = WTM (5'6) 

where weights are only determined within a fixed neighbourhood with range hf. 
Outside this neighbourhood, Am(s, s*) = 0. 

Given the polynomial expression, the weight function and the smoothing pa­
rameter hf the estimation of z(s*) is equal to: 

z(s*) = f,(s*) = p0(s*) (5.7) 

as can be seen from Equations (5.2) and (5.3). 
The smoothing parameter hf is estimated by calculating cross validation values 
for a range of smoothing parameter values. The optimal smoothing parameter 
is chosen as that value for hf which minimizes the following expression: 

n 

CV(hf) = J2{z&)-^i)(-i)}2, (5-8) 

where £(s»)(_j) is the local fit at s», without using z{si) for the estimation, the 
" leaving-out-one method". The influence of the choice of the weight function 
will be shown in Section 5.3. 

5.2.2 Optimal design for locally weighted regression 

Estimation variances of locally weighted regression parameters are used as a 
basis for a criterion for optimizing a monitoring network. These estimation 
variances are estimated on a set of locations where estimations are required: 
{sj, sijj, •••, s*q}- Given a weight function and a value of the smoothing parameter 
/ i / , the classical theory of optimal design of experiments is applicable to every 
single estimation location. This allows formulation of a criterion for optimizing 
the monitoring network £„ = {si, S2, . . . , sn}. 

Let F' be the design matrix in the case of an isotropic field and let p = 1 for 
the order of Equation (5.3). Then 

3 ~ \hij h2j • • • hnjJ 

so-called information matrix is M (£„) = F^AFj, which depends on the design 
where hij = \\si — s*\\. If A is diag(A), A = [X(hij), A(/i2j), • • • > A(ft„j)] and the 

: is MJl(^n) = FjAFj, which depends on the design 

0(s*) = M-1(Zn)F'Az. (5.10) 

[ iiiiuimauion uiaunx is ivl 
£,n, then 
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Since 

z(s*) = /30(S*) (5.11) 

only the first element of the parameter vector is required for estimation of z(s*). 

The estimated variance of (3o(s*) then equals 

Var(/3o(s*))=<72(M-1(en))11 (5.12) 

where (M~ (£„)) is the upper left element of the matrix M - 1 (£ n ) and a2 is 
the residual variance. 

A criterion for assessing the performance of a network design £n can be derived 
from (5.12) by calculating a weighted sum over a set of q estimation locations 
K,. . . , s*> : 

J = l 

The value of </>(£„) is used as criterion for obtaining an optimal monitoring net­
work £„. The inclusion of the weights Wj allows some locations to be considered 
more important than others, because of external or political reasons (see Section 
5.2.4). An optimal design £n is the design that minimizes the value of </>(£„) in 
Equation (5.13). 

5.2.3 Case s tudy 

In 1993, the RIVM (National Institute of Public Health and the Environment in 
the Netherlands) measured SO2 at 74 measuring stations of the Dutch National 
Air Quality Monitoring Network (Doesburg, et al, 1994). Figure 5.1 shows the 
original monitoring stations with their annual average concentrations (fig m - 3 ) . 
To reduce the expense of data collection this network was reduced to 29 sta­
tions, a reduction of 60%. This reduction is feasible because SO2 concentrations 
are decreasing and the political pressure to maintain an expensive monitoring 
network is decreasing. In addition, deterministic models are available that allow 
the reliable calculation of SO2 concentrations (Bleeker and Den Hartog, 1995). 
However a total abandoning of the entire network is not possible because of 
national and European regulations. 

Figure 5.1 shows that both the annual average SO2 concentrations and spatial 
variability of these values (i.e. relatively large differences in concentrations on 
short distance) are higher in the South-West of the Netherlands compared with 
the North of the Netherlands. Annual mean concentrations at 74 stations have 
an average of 10.2 fig m - 3 , whereas the minimum and maximum values are 
4.2 fig m - 3 and 28.1 /xg m - 3 , respectively, and the variance is 26.6 fig2 m~~6. 
A geostatistical approach toward optimization (Van Groenigen, 1999) was not 
an attractive option, because of difficulties in modelling the trend and because 
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Figure 5.1: Monitoring network of 74 stations in the Netherlands in 1993 coded 
with the annual average SO2 concentration (fig/m3). 

of the high spatial variability in the South-West compared with the North of 
the Netherlands. Therefore, the trend surface is estimated by a nonparametric 
regression technique: locally weighted regression, which was described in Section 
5.2.1. 

5.2.4 Specification of different design criteria 

The formulated criterion for the optimization of a monitoring network (5.13) is 
used for both weight functions in (5.5) and (5.6), to reduce the number of mon­
itoring stations from 74 to 29. Given a particular choice for a weight function, 
the smoothing parameter hf has to be determined. By a reduction, however, the 
optimal smoothing parameter increases since the number of monitoring stations 
decreases. A small monitoring network leads to high variability of estimated val­
ues of the smoothing parameter. It is possible, however, to determine optimal 
smoothing parameters for several monitoring designs given the desired number 
of stations n. The average of the smoothing parameters thus obtained can be 
considered as an optimal smoothing parameter for a monitoring network of 29 
stations. 

Also, the number and coordinates of estimation locations have to be determined 
with corresponding weights (WJ). Three sets of weights are used in this paper in 
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Figure 5.2: Estimation locations with corresponding weights based on population 
density at each location in number of inhabitants per km2 (criterion II, left). Es­
timation locations with weights based on residuals of locally weighted regression 
(criterion III, right). 

order to accommodate external information or political regulations into criterion 
(5.13). The following criteria are considered: 

• Criterion I puts equal weights at every estimation location. 

• Criterion II puts weights according to the population density in the dif­
ferent provinces. It is an example of including political regulations into 
the optimization of a monitoring network. 

• Criterion III puts weights in such a manner that it reflects the differences 
in spatial variability, that is, the greater variability in SO2 values in the 
South-West compared with the North of the Netherlands on short dis­
tances. The idea behind these weights is that in the North fewer monitor­
ing stations are required than in the South-West because of the relatively 
constant values of the annual average SO2 concentrations. The weights 
are based on mean residual values of locally weighted regression at the 
measurement locations in a neighbourhood with range hf for every grid 
location. In this case, for p = 1, isotropic, tricube weight function with 
hf = 93. 

Figure 5.2 shows estimation locations with corresponding weights for Criteria 
II and III. 
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5.2.5 Optimal reduction of a monitoring network 

The reduction of an existing monitoring network is a combinatorial optimization 
problem (Ko et al, 1995). For the case study we have to select 29 stations from 
a full set of 74 possible monitoring stations. This combinatorial optimization 
problem yields a large number of possible combinations (3 x 1020). It is impos­
sible to enumerate these in full to find the best solution in terms of criterion 
(5.13) and the different design criteria. Therefore, we developed a sequential 
search algorithm to find (sub)-optimal solutions (Section 5.2.5). In Section 5.2.5 
this algorithm is improved by using combinatorial solutions of sub-problems. 

Sequential search algorithm 

A combination of a drop- and an add algorithm is applied as search algorithm. 
The drop algorithm sequentially removes stations from a set of monitoring sta­
tions £k until n monitoring stations are left. Mostly the algorithm will be started 
at k = N, where N is the number of stations in the original monitoring net­
work. The set of removed points is defined as £^_fc, which is used later on in 
the drop-add algorithm. The drop algorithm is described as follows (Rasch et 
al., 1997): 

drop algorithm 

1. Let £k = {si,s2,...,sk} and £^_fe = {sk+i,sk+2, • • •, SN}-

2. Determine <f>* = mm<f>(£k\{st G £AJ) over t = 1 , . . . , k. 

3. Drop the point st corresponding to <j>* from the design £&; 
Add the point to £^_fc;fc := k — 1; Renumber set £fc. 

4. If k = n, STOP 
Otherwise go to 2. 

The add algorithm can be formulated in a manner analogous to the drop algo­
rithm (Rasch et al, 1997). The idea of the drop-add algorithm is that some 
points can be exchanged after running the drop algorithm. The number of ad­
ditional points added to, or dropped from, a design is called m. The drop-add 
algorithm consists of three steps. First an (n-m)-point design is obtained with 
the drop algorithm, followed by an addition of 2 x m points and finally deletion 
of m points, so that an n-point monitoring design is obtained. This is repeated 
until no improvements are found. 

Search algorithm with combinatorial analysis 

Although a full enumeration of all combinations is impossible, smaller combi­
natorial sub-problems can be solved. Sequential search algorithms add or drop 
one point at each iteration. It may be worthwhile to consider dropping combi­
nations of points. Rasch et al. (1997) describe a branch-and-bound algorithm 
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that solves combinatorial problems for optimal designs in regression analysis. 
With some adaptations, the branch-and-bound algorithm can be applied to the 
optimization problem discussed in this paper. The branch-and-bound algorithm 
is part of the last step of the drop-add algorithm, which is the final dropping of 
m points. 

5.3 Results and discussion 

5.3.1 Maps of interpolated S 0 2 values with locally weighted 
regression 

As pointed out in Section 5.2.1, three choices have to be made in order to apply 
locally weighted regression. For the order p of the polynomial expression, p = 1, 
both isotropic and anisotropic are decided upon first, being a compromise be­
tween computational ease and flexibility (Miiller, 1998). A higher order of the 
polynomial expression did not improve the prediction accuracy. The McLain 
and the tricube weight function - Equations (5.5) and (5.6) - were used as a 
weight function. Given a weight function, the unknown smoothing parameter 
hf is estimated by cross validation. Figure 5.3 shows the cross validation results 
for p = 1, both isotropic and anisotropic for both weight functions and these 
weight functions under the optimal smoothing parameter. A simplification of 
the problem to an isotropic approach results in higher values of the cross valida­
tion. In the anisotropic case, a small range of a neighbourhood hf is preferred 
for both weight functions. However, hf can not be chosen too small because 
at least three measurement points have to be available in the neighbourhood. 
Therefore, a range of a neighbourhood of 70 km (hf = 70) is chosen for both 
weight functions. Furthermore, Figure 5.3 shows that cross validation values for 
the McLain weight function are smaller for every hf (separately for isotropic and 
anisotropic). This indicates that locally weighted regression with the McLain 
weight function produces estimations with a higher prediction accuracy. How­
ever, caution is required because the results are only based on observations made 
at 74 monitoring stations. Maps of interpolated SO2 values are shown in Figure 
5.4. 

The maps of interpolated SO2 values in Figure 5.4 show a clear difference. The 
surface of interpolated SO2 values using the tricube weight function is smoother 
than the map obtained by using the McLain weight function, as a result of 
different shapes of the weight functions (Figure 5.3, under). The McLain weight 
is almost an exact interpolator, because the point closest to s* gets a large weight 
compared with the weights of points further away. 
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Figure 5.3: Plots of cross validation values (N = 74) for a range of smooth­
ing parameters for the tricube and the McLain weight function both isotropic as 
anisotropic (upper). The weight functions with the optimized smoothing param­
eters (under). 

5.3.2 Comparison of search algorithms 

In Section 5.2.5 three sequentially search algorithms are introduced: the drop 
algorithm, the drop-add algorithm and the drop-add algorithm with combi­
natorial analysis. In this paragraph algorithms will be compared, because of 
computational reasons the calculations are restricted to the isotropic case. A 
smoothing parameter of 175 (km) for the tricube weight function and 183 (km) 
for the McLain weight function is chosen as a test case. 

Figure 5.5 shows how the values of 4>{$,n) increase when monitoring stations 
are dropped sequentially from an existing monitoring network. The values of 
</>(£„) are calculated for the tricube weight function with a smoothing parameter 
of 175 km with equal weights at the q estimation locations. The smaller the 
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Figure 5.4: Maps of interpolated SO2 values (N = 74) of the annual average 
concentration of SO2 by locally weighted regression, hf = 70. Tricube weight 
function (left) and McLain weight function (right). 

monitoring network becomes, the larger the influence on the value of </>(£n) of 
dropping one station from the monitoring design. 

The drop algorithm is further refined to the drop-add algorithm and the drop-
add algorithm with combinatorial analysis. The question that we would like to 
discuss in this paragraph is how far designs found by the sequential drop-add 
algorithm (A) differ from those found by the drop-add algorithm with combi­
natorial analysis (B). Therefore we introduce efficiency of a monitoring design 
by dividing the value of 4>{£,n) of the result of algorithm B by 4>(£,n) of the de­
sign found by algorithm A. These results are compared with values of <f>(£,n) of 
designs found by maximizing the minimum distance (maxmin distance design). 
This is a very simple way of calculating an optimal design, which is comparable 
with common practice. Table 5.1 presents these efficiencies. Note that only val­
ues of </>(£«) of designs calculated with the same weight function and criterion 
(I, II or III) can be mutually compared. 

Table 5.1 shows that there is only a small difference between the drop-add 
algorithm with combinatorial analysis and the sequential drop-add algorithm. 
For the McLain weight function with criterion III, the value of 4>(£,n) was even 
slightly higher with algorithm B (0.01% ). The maxmin distance designs have 
considerably higher values of <j>(£n)- The computation time for algorithm B is 
approximately 80 minutes (Pentium II, 266 MHz), about 200 times as much as 
for algorithm A. 
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Figure 5.5: Values of 4>{t,n) of a monitoring network where sequentially moni­
toring stations are dropped from the original network of 74-

5.3.3 Optimized monitoring networks 

As already pointed out in Section 5.2.4, a smoothing parameter for a given 
weight function has to be chosen before starting the optimization. The optimal 
values for the smoothing parameters found in Section 5.3.1 were obtained using 
the full network of 74 stations. The values of the smoothing parameters will 
be larger for reduced monitoring networks. To obtain an optimal smoothing 
parameter for a monitoring network of 29 stations, the 74 stations are divided 
into three clusters and a random selection of 29 stations (in total) is chosen from 
these clusters. This is followed by the determination of the optimal smoothing 
parameter, (i.e. hf with the lowest value of the cross validation). This is done 
500 times, the average of the optimal smoothing parameters is considered as 
the optimal hf for a monitoring network of 29 stations for all three criteria. A 

Table 5.1: Efficiency of monitoring designs of different algorithms of the sequen­
tial drop-add algorithm (A) and maxmin algorithm compared with the drop-add 
algorithm with combinatorial analysis (B). Values of 4>((,n) of designs found by 
algorithm B are divided by values of <f)(£n) found by other algorithms, presented 
as percentage. 

criterion 
I 
II 
III 

Tricube 
algorithm A 

99.95 
99.77 
99.68 

maxmin 
91.56 
86.49 
83.89 

McLain 
algorithm A 

100.00 
100.00 
100.01 

maxmin 
84.67 
77.77 
77.89 
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smoothing parameter of 120 (km) for the tricube weight function and 136 (km) 
for the McLain weight function is obtained by this procedure. 

Results of the drop-add algorithm (Section 5.2.5) when n = 29 and m = 6 for 
the three different design criteria are presented in Figure 5.6. A comparison of 
results for two weight functions shows that the McLain weight function tends 
to spread the monitoring stations more over the Netherlands than the tricube 
weight functions. Further, a clear influence of the different criteria (weights at 
estimation locations) can be seen in the configuration of monitoring stations, 
especially for the McLain weight function. Monitoring stations are moved from 
parts of the Netherlands with low weights to parts with high weights at estima­
tion locations. 

Choice of a weight function for locally weighted regression has a considerable 
influence on the final optimal monitoring network. The two weight functions 
considered in this paper have a different shape. The difference between weights 
put at points close to s* and points further away is small for the tricube weight 
function compared with the McLain weight function. The McLain weight func­
tion puts relatively high weights at points close to s* and weights diminish 
rapidly as the distance to s* gets larger. Therefore the McLain weight function 
will tend to spread the monitoring stations as evenly as possible over the region. 

The choice of the weight function is, in principle, arbitrary. An investigation 
with cross validation can help to choose the best concerning to the estimation 
accuracy. The smoothness of the surface of SO2 values is also controlled by 
the weight function. If there is interest in the mean SO2 concentration over the 
Netherlands a more smooth results will be desirable (tricube weight function). If 
the maximum SO2 concentration is of interest, a weight function as the McLain 
weight function will be preferred. 

In this study we used locally weighted regression for interpolation and optimiza­
tion of an existing monitoring network. Other interpolation techniques such as 
stratified kriging could be used, wherein the South-West of the Netherlands can 
be considered as a separable stratum. However, optimizing a monitoring net­
work for the entire country can be a problem, because there are not enough 
monitoring stations in a stratum to fit a semivariance function to use for krig­
ing. Furthermore, it would be difficult to optimize a monitoring network near 
the boundary between two strata. 

5.4 Conclusions 

The reduction of a monitoring network is investigated in this study. Design 
of experiments for locally weighted regression is used to reduce the number 
of stations in an optimal way. Different criteria are formulated on the basis 
of different objectives for monitoring SO2, these are reflected in the weights 
assigned at estimation locations. We make the assumption throughout this 
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Figure 5.6: Monitoring networks (black squares) obtained from the network of 
74 monitoring stations by the drop-add algorithm (n = 29, m = 6 / Tricube 
weight function, p = 1, anisotropic and hf = 120 (km), for the three design 
criteria in Section 5.2-4, (A-C). Same for McLain weight function, hf = 136 
(km) (D-F). 



study that a is constant over the whole country. Possibly, if more data are 
available, then a locally estimated a - a(s) - could be included into criterion 
(5.13). 

Two search algorithms are used: a sequential drop-add algorithm (A) and a 
drop-add algorithm with combinatorial analysis (B). Algorithm B requires more 
computation time than algorithm A, with a slight improvement of efficiency 
(Table 5.1). 

Different design criteria, distinguished by the choice of the weights at estimation 
locations, result in different optimal monitoring networks. A precise formula­
tion of the monitoring objective is necessary to make sure that the optimized 
monitoring network is indeed adequate. Table 5.1 shows that the values of 4>(£.n) 
of maxmin distance designs can be considerably greater than those of optimized 
designs. Although the objective of a monitoring network is difficult to formulate 
in practice, it should receive more attention. 
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Chapter 6 

Optimization of a 
monitoring network for 
groundwater level 

Many spatial-temporal environmental processes are followed by moni­
toring networks. One example is a monitoring network for groundwater 
level. At a number of piezometers the groundwater level is measured in 
a certain frequency in time. Such a monitoring network in the Veluwe 
area of the Netherlands is taken as a case study. This paper will focus 
on a possible reduction of the number of measurements at this monitor­
ing network without losing much information about the groundwater 
level at the different piezometers. The investigations of a reduction 
of the number of measurements is based on a spatial-temporal model. 
This model consists of three components: the average groundwater 
level at a piezometer, the seasonal component at a piezometer and a 
spatial-temporal error-term. By means of a simulation study different 
frequencies of measuring are tested at two different piezometers. Fur­
thermore, investigations are done to see how different spatial-temporal 
monitoring strategies are performing on the basis of a nonseparable 
spatial-temporal semivariance function. For this study, results show 
that a reduction of the number of measurements is possible. 
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6.1 Introduction 

Monitoring of environmental processes often results in large data sets which are 
characterized by temporal and spatial heterogeneity. In practice, the question 
arises whether the sampling effort is proportional to the need of information of 
the environmental processes. To answer that question it is necessary to precisely 
formulate the goal of monitoring. Goals include the risk of crossing a threshold 
in a lead-pollution study (Van Groenigen et al., 1997), a time trend estimation 
involving a surface temperature field (S0lna and Switzer, 1996) and prediction 
in space and time for environmental and agricultural related phenomena (Stein 
et al., 1998). Monitoring networks often have a plural goal of measuring. Differ­
ent goals of monitoring require the formulation of different criteria. These may 
include minimization of the average prediction error variance, minimizing the 
maximum prediction error variance or minimization of the variance of regres­
sion parameter estimates. Evaluating these criteria for the existing monitoring 
network can result into the conclusion that the monitoring network has to be 
enlarged or reduced. 

In recent years, many papers have been published on either spatial-temporal 
modelling (e.g. Heuvelink et al., 1997; Wikle et al., 1998; De Cesare et al., 2001) 
or optimal spatial designs (e.g. Muller, 1998; Fedorov et al., 1999; Van Groeni­
gen, 1999; Prakash and Singh, 2000). However, only few publications concern 
(model-based) spatial-temporal design of environmental monitoring networks. 
Stein et al. (1998) design an optimal monitoring network for estimation of 
the spatial-temporal semivariance function by simulated annealing. Wikle and 
Royle (1999) study the benefit of mobile monitors. They show that sampling 
plans can be improved if allowed to change with time. Unfortunately, not in ev­
ery situation the monitor can be moved. In this study we consider a monitoring 
network where spatial locations of monitors are fixed and only the frequency of 
measuring can be changed. In particular we will look at the consequences of 
reducing a monitoring network for groundwater level data. 

Groundwater is an important source for drinking-water in many areas of the 
world. Research investigates both its quantitative and qualitative properties. 
Rouhani and Hall (1989) and Stein (1999) extended the spatial geostatistical 
analysis of groundwater data in spatial-temporal geostatistical analysis. Use 
of temporal information results into more accurate maps. Another example of 
spatial-temporal modelling of groundwater can be found in D'Agostino et al. 
(1998). These papers focus on modelling characteristics of groundwater, but do 
not pay attention to sampling design. 

The purpose of this study is to address the problem of a reduction of a moni­
toring network, based on a spatial-temporal model. In the Veluwe area in the 
Netherlands, groundwater is extracted to serve as drinking-water. We will use a 
part of its monitoring network as a case study. We focus on groundwater level, 
which a Dutch public utility is monitoring using piezometers. The utility sus­
pects that the number of measurements of groundwater level is too high, because 
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Figure 6.1: Locations of piezometers and indication of clustering -I, II and two 
separate piezometers - (A) and groundwater level fluctuations from January 
1983 to December 1993 for the six coded piezometers (B). 

they find approximately the same time series at different piezometers. In this 
paper we look at consequences, in terms of mean squared and absolute errors 
and kriging variances, of a reduction of this monitoring network for groundwater 
level. The paper is organized as follows. Section 6.2 shows some characteristics 
and details of the available data set. Section 6.3 deals with spatial-temporal 
modelling of groundwater. Given this model, the consequences of a reduction 
of the monitoring network (both frequency of measuring and the number of 
piezometers) are described in Section 6.4. Finally, the results will be discussed 
in Section 6.5. 

6.2 The data set 

The data set consists of biweekly (approximately) measurements of groundwater 
levels on 25 locations in the Veluwe area in the middle of the Netherlands from 1 
January 1983 to 31 december 1993. Figure 6.1 (A) shows these locations whereas 
Figure 6.1 (B) shows the time series at 6 of these locations. Time series at a 
location can be incomplete, as Figure 6.1 (B) indicates. Table 6.1 shows some 
summary statistics of the six coded piezometers. 

The variability of groundwater level fluctuations can be very different at mea­
suring locations, mainly as a consequence of differences in thickness of the un-
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Table 6.1: Summary statistics of six piezometers. Number of measurements 
(N), the average groundwater level (Mean), the minimum (Min) and maximum 
(Max) groundwater level and the standard deviation (Stddev.) of time series. 

Piezometer 
CP0003 
AP0113 
BL0047 
CP0061 
BP0016 
BP0073 

N 
247 
232 
178 
255 
198 
211 

Mean 
39.61 
27.61 
26.30 
25.31 
19.45 
17.30 

Min 
38.53 
26.78 
25.74 
24.14 
18.71 
16.29 

Max 
40.56 
28.47 
26.99 
26.56 
20.24 
18.45 

Stddev. 
0.52 
0.40 
0.25 
0.51 
0.31 
0.45 

saturated zone in the Veluwe area. A thick zone corresponds to a low influence 
of short-term fluctuations like wet and dry seasons and rainfall. Short-term 
rainfall events are buffered in the thick unsaturated zone and do not show up 
in the groundwater level (Gehrels, 1999). 

The difference in variability is also shown in Figure 6.1 (B). Small scale vari­
ability on piezometers corresponds with a relatively thin unsatured zone and 
large scale variability on piezometers with a thick unsatured zone. Piezometer 
BL0047 seems to be an exception, possibly as a consequence of a different struc­
ture of the unsaturated zone (Dufour, 1998). This heterogeneity hampers the 
modelling of groundwater level. To reduce heterogeneity we propose clustering 
of piezometers based on the correlation between time series at piezometers. In 
this way two spatial clusters of piezometers are formed. Cluster I consists of 
points which are highly correlated (> 0.88) with piezometer CP0003. Cluster 
II consists of piezometers which are correlated (> 0.53) to piezometer BP0073. 
Two piezometers called BP0023 and BL0047, did not fit into both clusters and 
are considered separately. Clusters I and II are indicated in Figure 6.1 (A) 
and will be used for spatial-temporal modelling and investigation of a possible 
reduction of the measuring frequency and/ or piezometers. A reduction within 
clusters is a conservative reduction, because no information of other clusters is 
used. 

6.3 Spatial-temporal modelling of groundwater 
level 

To model groundwater levels we consider a spatial-temporal random field Z(s, t) 
where s = (x, y) is a location within the geographical area of interest and t is 
the time index. Let Z(s, t) have the following decomposition: 

Z(s, t) = /x(s) + seas(s, t) + e(s, t) (6.1) 
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where /z(s) is the average groundwater level at location s, seas(s,t) is the sea­
sonal component and e(s, t) is an error-term, with zero expectation and spatial-
temporal correlated variance. In the next section it is shown how the seasonal 
component is estimated, followed by Section 6.3.2 where the spatial-temporal 
variability of the error-term is estimated. 

6.3.1 Elimination of seasonality 

The raw data are preprocessed in the following way. To eliminate the seasonal­
ity in the different time series we applied moving average estimation (Brockwell 
and Davis, 1991). For this procedure measurements have to be equally spaced 
in time. The time series in this study are not equally spaced in time, because 
measuring has not been done exactly every two weeks and because of missing val­
ues. To obtain equally spaced series we applied linear interpolation to biweekly 
spaced time series. The seasonal component is modelled by periodic regression 
(Batschelet, 1981). Batschelet also shows how to deal with moderately skew 
seasonal oscillations, as occur in this study. 

The following technique is used to estimate the seasonal component with period 
d = 2q = 26 on each measurement location: 

1. Apply a moving average estimation on every time point t at the different 
measurement locations s: 

mt = (0.5z(s,t-q) + z{s,t-q + l) + \- z(s,t + q - 1) + 

0.5z(s,t + q))/d, q<t<Q-q. (6.2) 

where Q is the number of time index t of the last measurement. 

2. If data are available, calculate for each k = 1 , . . . ,d and for each year 
j = 0 , 1 , . . . , 10 

z*kj = z(s,k + jd)-mk+jd, q<k+jd<n-q. (6.3) 

3. Estimate the parameters of the following nonlinear periodic regression 
function (Batschelet, 1981) through zf •: 

z£j = Acos(uik — (j> + vcos(ujk — <f>)), k = l,...,d. (6.4) 

with A the amplitude of the oscillation, ui = 2w/d, </> determines the peak 
phase of the function and the parameter of skewness v is limited to the 
interval: -0.50 < v < 0.50. 

The seasonal component is characterized by the estimated nonlinear function 
at each measurement location. Estimated seasonal components are shown for 
piezometers CP0003 and BP0016 in Figure 6.2. The parameters of the non­
linear periodic regression function (6.4) are estimated by PROC NLIN in SAS 
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Figure 6.2: The estimated seasonal component of piezometers BP0016 and 
CP0003 

(SAS/STAT, 1989). The corresponding estimates of the parameters are: A = 
0.0392, (j> = 3.9415 with the skewness parameter v set to 0, for piezometer 
CP0003; A = 0.2436, (̂  = 1.8098 and v = 0.3806 for piezometer BP0016. 
After removal of the seasonal component the average groundwater level from 
each time series at each piezometer is estimated. 

6.3.2 Spatial-temporal variability 

Spatial-temporal variability is modelled by the error-term of Equation (6.1). 
The estimated errors can be calculated as residuals of observations minus the 
average groundwater level /x(s) and the seasonal component seas(s,t). The 
error-term in Equation (6.1) can be correlated in both a spatial and a temporal 
direction. Estimation of the spatial-temporal variability can be done by an 
empirical estimation of the spatial-temporal semivariance function. For one 
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single point pair z(s\,ti) and z(s2,t2) this can be written as: 

7 ( M ) = ^E{e(si,t i) - e(s2,t2)}
2 (6.5) 

where h is the Euclidean distance h = \\s\ — s21| a n d u the time interval u = 
\\t\ — *21| - Because the spatial-temporal data sets have many observations and 
consequently many point pairs, the semivariance is estimated for an average 
distance in space and time. In this way, it is possible to fit a function through 
these points. 

Cressie and Huang (1999) derive classes of nonseparable, spatial-temporal sta­
tionary covariance functions, which can be used to model spatial-temporal vari­
ability. In this study we apply one of these spatial-temporal covariance func­
tions, formulated as a semivariance function: 

(h \a\- f ° if|u| = | / i | = 0 , f i f i . 
7^/i, u\0) - | CQ + C(i_ e X p( - a | u | - j32\h\2)) otherwise. K ' 

where 9 is a vector of parameters 9 = (a, f3, c, CQ). In Cressie and Huang (1999) 
the equation contains an interaction term between spatial and temporal vari­
ability. We exclude this as it does not improve the fit of the function for the 
data in the case study. 

For modelling temporal variability within a piezometer we use the spherical 
semivariance function, c\ Sph(ai): 

' 0 , u = 0 

7 ( « ) = | C ! { l ( ^ ) - i ( ^ ) 3 } , 0 < u < a i (6.7) 

ci, u > ai 

and the Gaussian semivariance function, C2 Gau(a2): 

7(M) = c 2 | l - e " ( ^ ) 2 | , M > 0 (6.8) 

A combination of these two semivariance functions gives a better fit for mod­
elling the temporal semivariance. 

Spatial-temporal variability cluster I 

The result of an empirical spatial-temporal semivariance estimation in the case 
of cluster I can be found in Figure 6.3. It shows that the spatial variability 
is negligible compared to the temporal variability. An estimation, by PROC 
NLIN in SAS (SAS/STAT, 1989), of parameters of Equation (6.6) to model the 
spatial-temporal variability is equal to 9 = (a, $, c, CQ) = (0.0003,0.0000,1.0087, 
0.0000). This numerical result confirms that spatial variability can be neglected, 
as $ = 0.0000. Therefore, we assume that spatial-temporal variability can be 
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Figure 6.3: The empirical spatial-temporal semivariance function (top) and the 
empirical and fitted temporal semivariance function (bottom) for cluster I. 
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modelled by the temporal variability only. It turned out that the empirical semi-
variance could be modelled by a sum of a spherical and a Gaussian semivariance 
function. The empirical and fitted semivariance function - 0.0123 Sph(377.6) + 
0.4199 Gau(968.8) - are shown in Figure 6.3. 

Spatial-temporal variability cluster II 

The analysis is repeated for cluster II. Figure 6.4 shows the empirical spatial-
temporal semivariance function. Spatial variability is not negligible in this case 
as the empirical spatial-temporal semivariance increases along the /i-axis. Equa­
tion (6.6) is used to model the spatial-temporal variability. The nugget (co) is 
difficult to estimate because of lack of spatial distance information. Therefore 
we estimated the nugget from the temporal variability. A fit of this function 
through the empirical semivariance function results into the following estima­
tions of parameters: 0 = (d,/3,c,c0) = (0.00195,0.00018,0.1431, 0.0000). A 
plot of this function can be found in Figure 6.4. 

6.4 Reduction of the number of measurements 
In this section two different ways of reducing the number of measurements of 
the monitoring network are discussed. In the first place, we concentrate on 
temporal variability and the consequences for the monitoring frequency within 
a piezometer. Therefore, information at other piezometers is not taken into 
account for the predictions. Secondly, the problem is discussed in a spatial-
temporal perspective. 

6.4.1 Reduction of frequency within a piezometer 

For this investigation we selected two piezometers: CP0003 from cluster I and 
BP0073 from cluster II (see Figure 6.1). For each piezometer an unconditional 
simulation is done. The simulated time series are used to quantify consequences 
of a reduction of frequency of measuring. Weekly measures are simulated on 
the basis of estimated temporal semivariance functions. Prediction results of 
three monitoring frequencies (every two, four and eight weeks) are compared by 
means of a validation set out of the simulated data set. The whole procedure 
for one piezometer of estimating the Mean Squared (prediction) Error (MSE) 
and the Maximum Absolute prediction Error (MAE) at different frequencies is 
described as follows: 

1. Estimate the temporal semivariance function of the error-term at the 
piezometer on the basis of the original data. 

2. Simulate weekly errors with unconditional Gaussian simulation on the ba­
sis of the estimated semivariance function. Simulate groundwater levels 
by adding the estimated seasonal component and average value of ground­
water level of the piezometer (from the original data). 



70 CHAPTER 6. OPTIMIZATION NETWORK GROUNDWATER LEVEL 

Figure 6.4: The empirical spatial-temporal semivariance function (top) and the 
fitted function (bottom) for cluster II. 
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Figure 6.5: The Mean Square Error (MSE) and Maximum Absolute Prediction 
Error (MAE) of prediction of 50 validation points at three different measuring 
frequencies for simulated time series of the piezometers BP0073 and CP0003. 

3. Make three sample data sets of three different monitoring frequencies (ev­
ery two, four and eight weeks). 

4. Sample a validation set of approximately 10% of the total simulated values. 

5. Estimate for the three sample data sets the seasonal component and the 
average of the simulated values. Followed by the estimation of the semi-
variance function of the error-term. 

6. Perform ordinary kriging of the errors at the validation locations by means 
of the three sample data sets and the estimated semivariance functions. 

7. Predict for every frequency the groundwater level at the validation loca­
tions; predicted error + seasonal component + average value. 

8. Compare simulated values with predicted values and calculate for every 
frequency the MSE and MAE. 

Figure 6.5 shows MSE and MAE values of 50 validation points at three measur­
ing frequencies by means of simulated time series at piezometers BP0073 and 
CP0003. The results are intuitive clear; the MSE and MAE will increase as 
the measuring frequency decrease. For CP0003 this increase in prediction error 
is low. A reduction of measuring frequency at piezometer CP0003 has little 
consequences for the prediction accuracy. On the principle that the spatial vari­
ability in cluster I is negligible, we conclude that the measuring frequencies of 
all piezometers in cluster I can be reduced. 
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Consequences of reducing the measuring frequency at BP0073 are more severe. 
MSE and MAE values are considerably higher at lower measuring frequencies. 
Short distance fluctuations will be lost at lower measuring frequencies. How­
ever, the spatial information (i.e. measurements at other piezometers in the 
neighbourhood) is neglected in this analysis. Therefore, we look at the spatial-
temporal monitoring with the help of a spatial-temporal semivariance function. 

6.4.2 Reducing the monitoring network from a spatial-
temporal perspective 

We first consider cluster I. The spatial variability is not modelled because it is 
negligible compared to the temporal variability. Strictly speaking, one piezome­
ter suffices to characterize the time series of the nine piezometers, because of 
the high correlation between time series. However, a reasonable cover of the 
area of interest might still be desirable to monitor possible temporal changes in 
cluster I. 

The correlation between the time series of the different piezometers in cluster 
II is much less than in cluster I. Therefore, the spatial variability can not be 
neglected as in cluster I. The spatial-temporal variability also shows that. To 
see if a reduction of the number of measurements in this cluster is possible we 
compare 9 different spatial-temporal monitoring strategies. The comparison of 
these 9 different strategies is based on the kriging variance, like many papers 
already did in the spatial setting (e.g. McBratney and Webster (1981), Van 
Groenigen (1999), Prakash and Singh (2000)). 

Kriging variance is calculated on a grid of points. The points are at the 14 loca­
tions of cluster II every week for 10 years, in total 7294 points. The monitoring 
strategies are denoted as: S1,S2,...,S9. The monitoring strategies SI, S2 and 
S3 measure on every 14 locations every two, four and eight weeks respectively. 
Figure 6.1 shows that the locations in cluster II can easily be divided in pairs 
of two locations. For the strategies S4, S5 and S6, one of the locations of each 
pair is treated as in the SI, S2 and S3 strategy. At the other 7 locations, 6 
measurements are done each year. The last three strategies (S7, S8 and S9) 
are equal to S4, S5 and S6 respectively, accept that the 6 yearly measures are 
reduced to none measures at these 7 piezometers. In Table 6.2 the total number 
of measurements, the average and the maximum kriging variance are presented 
for all 9 monitoring strategies. 

Table 6.2 shows a number of comparisons between the 9 monitoring strategies. 
Strategies SI, S2 and S3 differ only in measuring frequency at the 14 locations. 
It shows that the average and maximal kriging variance approximately double 
if the measuring frequency is halved. Secondly, a reduction of the number of 
measurements at only 7 locations (comparison of SI, S4 and S7) is compared, 
whereby at the other 7 locations the frequency of measuring is every two weeks. 
We see that a reduction of the number of measurements at the 7 locations, 
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Table 6.2: The number of measurements (N), the average kriging variance and 
the maximum kriging variance at a grid of points for 9 different spatial-temporal 
monitoring strategies. 

Monitoring strategy 
SI 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

N 
3654 
1834 
924 

2254 
1344 
889 
1827 
917 
462 

Av. krig. var. 
0.0010 
0.0024 
0.0051 
0.0010 
0.0021 
0.0036 
0.0010 
0.0025 
0.0051 

Max. krig. var. 
0.0020 
0.0039 
0.0078 
0.0020 
0.0039 
0.0078 
0.0021 
0.0041 
0.0078 

to even none measurements by S7, hardly influence the average and maximal 
kriging variance. Furthermore, Table 6.2 shows that an alternating design, i.e. 
measuring at different times at the two groups of 7 piezometers, can result into 
lower average kriging variances. This can be seen from S3 and S6. However, 
such an alternating design might not be desirable because of practical reasons. 
On the basis of the results summarized in Table 6.2 we can conclude that the 
number of piezometers in cluster II can be reduced to 7, without losing much 
information of groundwater level in the area. This means a reduction of 50% of 
the number of measurements of SI. 

6.5 Discussion and conclusion 

This paper discusses the possible reduction of a monitoring network for mea­
suring groundwater level. The temporal variability at the piezometers differs 
mainly as a consequence of the thickness of the unsatured zone. For a thick 
unsatured zone the temporal variability will be characterized by long term vari­
ability. At piezometers in an area with a relatively thin zone, the time series 
are characterized by short range temporal variability. This heterogeneity has 
to be taken into account. In this study, heterogeneity is reduced by cluster­
ing piezometers. These clusters are piezometers with correlated time series of 
groundwater level. This study shows that within a cluster, a reduction of the 
number of measurements is possible. 

The spatial-temporal empirical semivariance function quantifies the spatial and 
temporal variability within a cluster. For cluster I, the temporal variability 
is the main source of spatial-temporal variability. This means that the time 
series at the different locations show a comparable behaviour in time. The 
amount of information of groundwater level will not decrease much if piezome-
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ters are removed. However, it can be politically desirable to cover the area with 
piezometers to see possible local changes in time of groundwater level. The 
measuring frequency at a piezometer can decrease, because the time series are 
fairly smooth. A same analysis for cluster II results into the conclusion that 
half of the piezometers can be removed, without losing much information of 
groundwater level in cluster II. 
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Chapter 7 

General discussion and 
conclusions 

This work shows development and application of various statistical techniques to 
real-world case studies. The main subjects are spatial(-temporal) interpolation 
and optimization of monitoring networks. Optimal design of experiments is 
discussed and applied to a spatial setting. The objective formulated in Section 
1.4 results into three aims of research. In this final chapter the results and 
conclusions of Chapters 2-6 are compared with the three formulated aims. Each 
of these aims will be repeated, followed by the main results and conclusions 
related to these aims: 

Study statistical methods for spatial(-temporal) interpolation. 

In this thesis three categories of spatial interpolation techniques are discussed: 
geostatistical techniques (kriging), thin plate splines and locally weighted regres­
sion. In Chapter 2 both several forms of kriging and of thin plate splines are 
discussed. Additional information (the introduction of a covariable) improves 
the prediction accuracy. Different ways of including additional information are 
compared on prediction accuracy. Three-dimensional approaches, i.e. addi­
tional information considered as a third dimension, appeared to have the best 
prediction accuracy for our case study. This approach is well-known in the 
application of thin plate splines, but less in a geostatistical framework. How­
ever, three-dimensional kriging outperformed (frequently applied) geostatistical 
methods as cokriging and regression-kriging. A nonparametric interpolation 
technique is used in Chapter 5. By applying locally weighted regression, the 
modelling of trend and spatial variability is avoided. This method is especially 
useful if stationarity is hard to assume. 

Spatial modelling is still in development, spatial-temporal modelling is even 
more developing. An example in the recent past is the development of a class 
of nonseparable spatial-temporal semivariance functions. Chapter 6 shows an 
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application of such a function. Note that these nonseparable spatial-temporal 
semivariance functions can also be used in Chapter 2 by the three-dimensional 
form of kriging. It is assumed that the semivariance function is stationary in 
space and time. To meet this assumption as much as possible, we proposed 
analyses for clusters of measuring points. Furthermore, the seasonality in time 
and levels at a location of measuring are removed for the estimation of the 
spatial-temporal variability. 

Actual optimization of environmental monitoring networks for dif­
ferent criteria 

Chapters 4, 5 and 6 are dealing with optimization of existing monitoring net­
works for several criteria. This means that data from the past can be used to 
model trend and spatial(-temporal) variability. 

Chapter 4 shows that the theory of optimal design of experiments can be helpful 
to formulate a criterion for optimizing a monitoring network for estimation of 
the semivariance function. The practical use of this criterion is doubted because 
of extreme clustering of points. However, Chapter 4 shows that this problem can 
be solved, if correlation between empirical semivariances is taken into account. 

In Chapter 5 a reduction of a monitoring network is investigated. A criterion 
based on prediction variances of locally weighted regression is used to reduce an 
existing monitoring network. The method described can easily be adapted for 
enlarging monitoring networks. Furthermore, Chapter 5 shows that statistical 
criteria can be combined with political wishes for monitoring. 

In Chapters 4 and 5 the spatial configuration of measuring locations in a moni­
toring network is investigated for annual averages. Both frequency of measuring 
at a location and spatial configuration of locations are investigated in Chapter 
6. The empirical spatial-temporal semivariance function shows the variability in 
space and time and is modelled by a nonseparable spatial-temporal semivariance 
function. This function is a useful tool for optimizing monitoring networks. 

Development and application of algorithms necessary to optimize the 
monitoring networks 

Chapter 3 focuses on global optimization in optimal design of experiments. Sev­
eral ways of reaching the global optimum are discussed for various situations. 
An algorithm is developed which is useful if a limited number of candidate points 
for the design is considered. This branch-and-bound algorithm is described in 
the appendix of this thesis. It can be applied for optimal design of experiments 
in regression models, but is also applicable in other situations. Chapter 4 gives 
some results with this algorithm for optimizing a monitoring network for estima­
tion of the semivariance function. In this case, full enumeration of all possible 
combinations of monitoring sites is possible. However, in many circumstances 
the number of combinations is too large to enumerate completely. Therefore, 



77 

search algorithms are needed. Two examples are given in Chapter 5, one is a 
simple algorithm and the other is a more advanced algorithm. The computation 
time of the simple algorithm is much less than the more advanced algorithm. 
The additional effort in both developing the algorithm and computation time 
gives only a very small improvement of the value of the criterion. 



Appendix: 
Branch-and-bound 
algorithm 

In this thesis several combinatorial problems are solved by a branch-and-bound 
algorithm. The basic problem consists of the selection of n points out of N 
possible (or candidate) points optimizing a certain criterion. Optimality criteria 
in this thesis are all based on variances or prediction errors and optimization 
always means minimization. This appendix is based on Rasch et al (1997). 

We consider the set 

B = BN = {x1,x2,-.-,xN}, 

where Xi are candidate points. Let X be a subset of B. The criterion value 
for design X is denoted by $(X). We will assume that leaving points out of a 
design will not decrease the criterion value $ , i.e. 

X C Y C B -» $ p o > $(K) > *(B) (1) 

To find an optimal n-point design in JBJV we only have to calculate the value of 
the criterion for all ( n ) possible subsets with size n of BJV and select a subset 
which minimizes the outcome of the criterion $. If there are several subsets 
giving the same minimal outcome of the criterion, one of them can be selected 
from a practical point of view. This sounds easy but if N becomes large, even a 
high speed computer needs much time. Quick algorithms or theoretical results 
are needed to solve these problems. Here an example of a quick algorithm will 
be presented. 

Fast enumeration 

The problem described in the last paragraph implies in the crudest form the 
generation and evaluation of all possible ( n ) designs. A straightforward im­
plementation, which was used by Miiller (1994) and Kraan (1995), typically 
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required hours to generate and evaluate all designs for a specific test case in 
regression analysis. Focus in this appendix is on the acceleration of the enumer­
ation of all n point designs. The first improvement was found by formulating 
a recursive procedure which leads to savings on the calculation time for the 
determination of the criterion value. The procedure is given as follows. 

PR0C(min, max, I, Q, X;_i) 
for i = min to max do 

add Xi to design X(_i resulting in a design Xi 
Q* = updated Q 
If I = n then 

Calculate $>(X{) 
If Xi is the best design found, save it. 

Else 

PR0C(i+l, max+1, Z+l, Q*, X{). 

In procedure PROC, the variable Xi represents an Z-point design (not complete if 
I < n), the variable Q represents all information which is needed to calculate the 
criterion function. In general this consists of a summation of operations on the 
points Xi of the design. Actually the sequentially updating of this information 
generates the savings in calculation time. Due to its recursive structure, it is 
hard to understand directly the consequences in terms of time and memory of 
calling the procedure PROC. 

The procedure implicitly generates (part of) a tree of which the end nodes 
represent the n-point designs. Level I defines the levels of the tree. Therefore 
we apply the name tree-algorithm for generating the designs with the aid of 
procedure PROC. 

Tree algorithm 
0. Given N,n and BN = {%i, • • •, XN} 

Initiate XQ = 0 , Q contains zeros only. 
1. PROC{l,N-n + l,l,Q,X0) 

On the first level, 1 = 1, the first point of the design is selected. In the example 
of Figure A these are the points 1,2 or 3. On the second level the next point 
is added to the design. After adding a point, its contribution is calculated and 
added to the information Q. Note that that the tree is asymmetric and its end 
nodes will represent all ( ) designs. 

The gain in calculation time is considerable. One of the causes is that the 
elements of Q are not calculated only at the end nodes of the tree. At first sight 
the difference between the tree algorithm and a straightforward enumeration 
looks like a tradeoff between calculation time and computer memory. 
Namely, at every call of the procedure, computer memory is occupied to store 
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level 

Figure A: Tree algorithm for N = 5, n = 3 with BN = {1, 2,3,4,5} 

Q and Xj. The tree has 

(=0 

7 V _ n + Z AT + 1 
n 

nodes corresponding to calls of the procedure. When the tree is generated 
according to a level by level strategy (see Reingold et al, 1977), this leads to an 
explosion of required memory with increasing N. However, procedure PROC 
implies a depth first search strategy so that the number of nodes stored grows 
linear in n. 

Adaptations of the algorithms can be found to decrease the calculation time. It 
is easier to enumerate the combinations which are left out of the design when 

N+l\ (N + l\ N 
> A, ,i-e- n > —. 

n \N-nr 2 
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Because we will use this concept further in the development, a specific algorithm 
is formulated which is called the complement tree algorithm. The corresponding 
recursive procedure is formulated as follows: 

CPROCGnin, max, I, Q, XN-i+i) 
for i = min t o max do 

drop Xi from design XN-I+I r e s u l t i n g in a design X^-i 
Q* = updated Q 
If 1 = N -n then 

Calculate $(XN-I) 
If XM-I i s t he bes t design found, save i t . 

Else 
CPR0C(i+l, max+1, l+l, Q*, XN_i). 

The complement tree algorithm starts with all candidate points XJV = .Bjv, and 
proceeds calculating with overcomplete designs until an n-points-design has been 
generated. 

Complement tree algorithm 
0. Given N,n and BN = {x\, • • • ,XN} 

Initiate Xjv = BN , Q containing the information of the 
full design with all candidate points. 

1. CPROC(l, n + 1, 1, Q, XN) 

The points in Figure B correspond to the candidate points which are left out 
of the design. Notice that every node in the tree corresponds to an overcom­
plete design. By dropping a point from the design, the criterion value will not 
decrease. Leaving points out of a design never makes it better. 

This monotonicity and the complement tree algorithm will be used to derive 
an even faster algorithm, the branch-and-bound algorithm. The concept of this 
algorithm is known in literature on combinatorial optimization (see Lawler et 
al, 1985). The idea of branching may be clear from the tree algorithm. The 
concept of bounding is based on the assumption that $ is monotically non-
decreasing (see equation (1)) when points are left out and is now explained with 
the example of Figure B. 

Assume that a very good 3-point design { 1,3,5 } has been found for the example 
of Figure A or B. It has a criterion value of say 0.3. Now the complement tree 
algorithm is started to validate the optimality of the design found. At the first 
step of the iteration the point x\ = 1 is left out of the design. If the criterion 
value of the overcomplete design { 2,3,4,5 } is larger than the best criterion 
value for a 3-point design which has already been found (0.3 in this case), then 
searching further from this node does not make any sense. In this case it is not 
necessary to call the procedure CPROC and start dropping other points, as the 
criterion value is not going to decrease and reach a value below 0.3. The cutoff 
of a branch of the tree in this way is called bounding. The best value found so 
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Figure B: Complement tree algorithm for N = 5, n = 3 with BN = {1,2,3,4,5} 

far is called the (upper) bound. The Branch-and-Bound procedure is formulated 
as follows: 

BPR0C(min, max, I, Q, X JV- J+ I ) 

for i = min t o max do 
drop Xi from design Xjv-;+i r e s u l t i n g in design XN-I 
Q* = updated Q 
ca lcu la t e <fr(X/v_i) 
If 1 = N -n then 

If $(XN-I) < bound then 
bound := $(XN_i) 
save XJV-Z 

Else 
If $ ( X J V - I ) < bound then 

BPR0C(i + l , max+1, Z+l, Q*, XN^t) 

The branching is only continued, when the criterion value of the overcomplete 
design is smaller than the bound. The bound can either be initialized on infinity 
or be based on a n-point design which is found by another (search) algorithm. 
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The branch-and-bound algorithm is now formalized as follows: 

Branch-and-Bound algorithm 
0. Given N,n and B^ = {xi,..., XN} 

Initiate the bound: bound = oo 
XN = Bpj , Q contains the information of the 
full design with all candidate points. 

1. BPROC(l, n + 1, 1, Q, XN) 

Implementation of this algorithm reduces the calculation time of an optimal de­
sign considerably. Within this branch-and-bound framework various strategies 
are possible, which may improve the performance. Due to the asymmetry of 
the tree, the larger parts can be found earlier in the tree. If bounding takes 
place there, larger parts of the tree are cut off. The bounding is more likely to 
take place when points which actually should be in the design, have a positive 
contribution to the criterion value, are dropped. This means that ordering the 
points in B^ according to their contribution to the criterion value, influences 
the performance of the algorithm. This sorting procedure can be performed at 
the root, but may also be repeated at other nodes. The sorting is only effective 
if a good bound (from a search algorithm) is available. 

The computation time for finding an optimal design by full enumeration has 
been reduced considerably. However, the computation time for fixed n remains 
polynomial in N. For larger problems, e.g. when the candidate points are 
taken from a higher dimensional space, the search for the optimum may be 
very time consuming. Therefore algorithms have been developed for which the 
calculation time grows much less and which generate good but not necessarily 
optimal designs. 
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Samenvatting 

Het milieu staat sinds enige decennia nadrukkelijk in de belangstelling. Dat is 
niet verwonderlijk omdat onze leefomgeving een van de belangrijkste determi-
nanten is voor de kwaliteit van het leven. Om processen in het milieu alsmede 
de invloed van de mensheid daarop te bestuderen, moeten gegevens verzameld 
worden. Statistiek is niet alleen een belangrijk hulpmiddel om deze gegevens te 
analyseren, maar is ook belangrijk om te bepalen op welke manier deze gegevens 
verzameld moeten worden. Gegevens worden meestal gedurende een bepaalde 
periode verzameld door middel van een netwerk van meetstations, kortweg aan-
geduid met de term meetnet. Deze gegevens kunnen worden gebruikt om pro­
cessen in het milieu met een wiskundig model te beschrijven. 

Het voornaamste doel van dit proefschrift is om onderzoek te doen naar het opti-
maliseren van dergelijke meetnetten, met behulp van wiskundige modellen. Aan 
de hand van problemen uit de praktijk wordt getoond hoe meetnetten kunnen 
worden uitgedund of uitgebreid. Deze beslissingen zijn gebaseerd op het minima-
liseren van kwantitatieve criteria. In dit proefschrift worden drie verschillende 
onderwerpen uit de statistiek besproken en toegepast: ruimtelijke(-temporele) 
interpolatie (hoofdstukken 2,5 en 6), optimale proefopzetten (hoofdstukken 3 
en 4) en het optimaliseren van meetnetten (hoofdstukken 4,5 en 6). 

In het tweede hoofdstuk van dit proefschrift wordt een zevental interpolatie-
technieken besproken: drie vormen van flexibele regressie (splines) en vier geo-
statistische benaderingen. Deze technieken worden toegepast voor het interpole-
ren van de maandelijkse maximale temperatuur en de maandelijkse gemiddelde 
neerslag in de provincie Jalisco in Mexico. De resultaten laten zien dat het 
de moeite waard is om gebruik te maken van de correlatie tussen meteorolo-
gische variabelen en de hoogte van het gebied. Interpolatie-resultaten kunnen 
aanzienlijk verbeteren als de correlatie tussen de hoogte en de meteorologische 
variabele groot is, zoals die tussen temperatuur en hoogte. Deze extra informa-
tie kan op verschillende manieren verwerkt worden in de bestaande interpolatie-
technieken. Zo kan (gewone) kriging worden uitgebreid tot cokriging of regressie-
kriging. Uitbreiding van de flexibele regressie met een derde dimensie, namelijk 
de hoogte van het gebied, blijkt een verbetering van de interpolatie-resultaten 
te geven. Analoog hieraan is een vorm van drie-dimensionale kriging getest. 
Voor maandelijkse maximale temperatuur wordt geconcludeerd dat deze drie-
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dimensionale vormen van de interpolatie-technieken de voorkeur verdienen. In 
de geostatistische literatuur wordt veel aandacht besteed aan het gebruik van 
extra informatie voor het verbeteren van de predictie-resultaten. Er is echter 
relatief weinig aandacht voor de behandelde drie-dimensionale vorm van kri-
ging. Hoofdstuk 2 laat zien dat deze vorm meer aandacht verdient. Conclusies 
voor maandelijkse gemiddelde neerslag zijn moeilijker te trekken, omdat er een 
grotere variabiliteit in de data is. 

Hoofdstuk 3 geeft een overzicht van verschillende methoden voor het bepalen 
van optimale proefopzetten voor regressiemodellen. Afhankelijk van het pro-
bleem resulteert de vraag naar een optimale proefopzet in het oplossen van een 
(soms uitdagend) globaal optimaliseringsprobleem. Er worden vier verschillende 
oplossingsmethoden besproken. Ten eerste de analytische werkwijze, waarbij de 
optimale proefopzet op exacte wijze afgeleid kan worden. Vervolgens, een spe-
cifiek algoritme dat (onder bepaalde condities) convergeert naar de optimale 
proefopzet. In de derde plaats wordt de situatie bestudeerd waarin de keuze 
van punten in de proefopzet beperkt is tot een verzameling van mogelijke pun-
ten. Dit probleem wordt opgelost met een algoritme uit de theorie van de 
combinatoriek, een zogenaamd branch-and-bound algoritme (zie de Appendix 
van dit proefschrift). Tenslotte wordt aangetoond dat algemene optimalisatie-
algoritmen vaak niet voldoen vanwege het feit dat meer dan een optima aanwezig 
is. Echter, een combinatie van algemene optimalisatie-methoden kan tot goede 
resultaten leiden. 

Het onderwerp in hoofdstuk 4 is het optimaliseren van een meetnet voor het 
schatten van de semivariantiefunctie. Het criterium is gebaseerd op het mini-
maliseren van de schattings-variantie van de parameters (D-optimaliteit) van 
de semivariantiefunctie, analoog aan optimale proefopzetten voor niet-lineaire 
regressie (zie hoofdstuk 3). Aan de hand van een meetnet voor onderzoek naar 
zure regen in de Verenigde Staten worden drie aspecten aan de bestaande lite­
ratuur toegevoegd. 
(a) Met behulp van een aantal figuren wordt het probleem gevisualiseerd. Dit 
richt zich in eerste instantie tot het berekenen van gebieden waar het (in de 
zin van minimale-uitkomst-criterium) gunstig is om een extra meetstation te 
plaatsen. Daarnaast wordt getoond wat de invloed is van het modelleren van 
de correlatie tussen de waarnemingen voor het schatten van de semivariantie­
functie. 
(b) Een combinatorisch optimalisatie-algoritme (branch-and-bound) is toegepast 
voor het vinden van het optimale meetnet bij een beperkt aantal mogelijke 
meetstations. Dit algoritme werkt met volledige aftelling, dat wil zeggen dat de 
optimale combinatie van meetstations met zekerheid gevonden wordt. 
(c) De gevonden oplossing is alleen optimaal gegeven de a priori parameterwaar-
den van de semivariantiefunctie. Dergelijke a priori parameterwaarden komen 
vaak uit een eerdere studie. Met vervolgonderzoek wordt geprobeerd deze pa­
rameterwaarden beter te schatten. Het is dus niet denkbeeldig dat de schatting 
van de parameters afwijken van de a priori parameterwaarden. Door middel van 
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een robuustheid-studie wordt de vraag beantwoord of de optimale combinatie 
van meetstations veel verschilt bij afwijkende parameterwaarden. In deze studie 
blijken de verschillen, ook bij aanzienlijke afwijkingen, zeer beperkt te zijn. 

Terwijl verschillende interpolatie-technieken reeds in hoofdstuk 2 aan de orde 
komen, wordt in hoofdstuk 5 een andere mogelijke interpolatie-techniek toege-
past: lokale gewogen regressie. Het idee achter deze laatste techniek is om het 
trendoppervlak door een lokale benadering te bepalen. Op deze manier is het 
niet nodig globale modellen te gebruiken voor de trend en de ruimtelijke varia-
biliteit. Deze interpolatie-techniek wordt toegepast op het Nederlandse meetnet 
voor SO2 van het Landelijke Meetnet Luchtkwaliteit van het RIVM (Rijksinsti-
tuut voor Volksgezondheid en Milieu). Aan de hand van criteria gebaseerd op 
lokale gewogen regressie wordt een suggestie gedaan hoe het meetnet uitgedund 
kan worden. In deze criteria kunnen politieke wensen worden meegewogen, 
zoals bijvoorbeeld de wens tot meer meetstations bij een hogere bevolkings-
dichtheid. Dit hoofdstuk laat zien dat een statistisch criterium eenvoudig kan 
worden gecombineerd met wensen van beleidsmakers. Een zoekalgoritme wordt 
gepresenteerd waarmee een (sub)-optimale oplossing kan worden gegenereerd. 
Oplossingen van drie verschillende criteria worden met elkaar vergeleken. 

In de hoofdstukken 4 en 5 zijn meetnetten geoptimaliseerd op basis van een 
criterium zonder dat daarbij een temporele component in beschouwing wordt 
genomen. In hoofdstuk 6 wordt een meetnet bekeken waarin zowel de ruim­
telijke als de temporele component een rol spelen. Het betreft een meetnet 
voor grondwaterstijghoogten op de Veluwe, zoals dat door een zeker nutsbe-
drijf wordt gebruikt. Men verricht daartoe op vaste lokaties (peilbuizen) twee-
wekelijkse metingen. Het nutsbedrijf stelde de vraag of het aantal metingen 
gereduceerd zou kunnen worden zonder dat veel informatie over grondwater­
stijghoogten verloren zou gaan. Dit wordt onderzocht aan de hand van een sto-
chastische ruimte-tijd model met drie componenten: een gemiddelde stijghoogte 
per peilbuis, een seizoenseffect per peilbuis en een stochastisch ruimte-tijd ge-
correleerde fout. De verschillende tijdreeksen kunnen per lokatie aanzienlijk 
verschillen. Om de heterogeniteit van de waarnemingen te beperken worden de 
waarnemingen opgedeeld in clusters. Empirische ruimte-tijd semivariantie geeft 
inzicht in de ruimtelijke en temporele variabiliteit van de metingen binnen elk 
van de clusters. Voor de reductie van het meetnet wordt in eerste instantie geke-
ken naar de frequentie van meten binnen een peilbuis. Een Gaussische simulatie 
is uitgevoerd om verschillende frequenties te kunnen vergelijken ten aanzien van 
de maximale predictie-fout en de gemiddelde predictie-fout. Daarnaast wor­
den verschillende meetstrategieen met elkaar vergeleken door berekening van de 
predictie-variantie op basis van een ruimte-tijd semivariantiefunctie. 
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