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Aim and outline 

Chapter 1 

Aim and outline of the thesis 



Chapter 1 

Hyperthermophilic microbes that grow optimally at or above the boiling temperature of 

water all belong to the archaea, the third domain of life. Archaea have been found to contain unique 

lipids, enzymes and metabolites that are involved in novel processes. The research presented in this 

thesis is focused on novel metabolic processes and aims to unravel the catabolism of glycosides in 

the hyperthermophilic archaeon Pyrococcus furiosus. This is accomplished by an integrated 

multidisciplinary approach involving laboratories with complementary expertise focusing on the 

analysis of the enzymology, kinetics, bioenergetics of key proteins involved in uptake and 

metabolism of glycosides. This research involves three partners, i.e. Molecular Microbiology, 

University of Groningen; Microbial Physiology, Wageningen University; Bacterial Genetics, 

Wageningen University. The research of the latter is presented in this thesis and focuses on the 

molecular and biochemical characterization of notably the non-canonical enzymes of sugar 

utilization pathways in P. furiosus. Using different approaches the genes coding for these enzymes 

have been identified, cloned and characterized at the sequence level in order to reveal their primary 

structure and signature motifs that allowed a further characterization of their molecular properties. 

Selected glycolytic genes have been overexpressed in heterologous systems and their biochemical 

and physical properties have been revealed. Structure-function analysis has been performed by 

means of site-directed mutagenesis and structure prediction, or crystallization of the proteins in 

close collaboration with the group of Prof. David Rice (Sheffield, UK). Finally, promoter elements 

of the selected genes have been analyzed to reveal specific motifs that might be involved in the 

transcription regulation. 

Chapter 2 introduces various aspects of archaeal sugar metabolism. Latest results are 

incorporated and speculations on the evolution of archaeal sugar metabolic pathways are discussed. 

The first identified unusual glycolytic enzyme is the ADP-dependent phosphofructokinase 

(ADP-PFK) that is described in Chapter 3. The biochemical and molecular properties of this novel 

enzyme from P. furiosus are investigated and compared to those of canonical counterparts. The 

orthologous ADP-PFK from Methanococcus jannaschii is studied in Chapter 4. Variations in the 

properties of the ADP-PFKs from organisms with either a chemolithoautotrophic or a heterotrophic 

life-style are compared, and the distribution of these enzymes is investigated by biochemical and 

molecular analyses. 

Chapter 5 describes the biochemical properties of the canonical ATP-dependent 

galactokinase, and the novel ADP-dependent glucokinase from P. furiosus, with special emphasis 

on adaptations of these enzymes to the extreme conditions encountered by P. furiosus. 

A novel phosphoglucose isomerase is purified from P. furiosus cell extracts and its 

characteristics are described in Chapter 6. Molecular analysis indicates that the enzyme is 

unrelated to canonical glycolytic isomerases, but rather related to a broad family of proteins with 

different functions. 



Aim and outline 

In collaboration with Bettina Siebers (Essen University, Germany) the fructose-1,6-

bisphosphate aldolases from the euryachaeon P. furiosus and the crenarchaeaon Thermoproteus 

tenax are studied (Chapter 7). The mechanism of the enzymes is investigated and a catalytic site 

residue has been identified by site-directed mutagenesis. Phylogenetic analysis is performed and 

evolutionary aspects of these enzymes are discussed. 

The novel gluconeogenic enzyme fructose-1,6-bisphosphatase from P. furiosus contains 

sequence motifs that are present in inositol monophosphatases as well, as described in Chapter 8. 

Its biochemical properties and the effects of inhibitory compounds differ from those of the 

orthologous enzyme from M. jannaschii. As a consequence, the classification of fructose-1,6-

bisphophatases is re-evaluated. 

The promoter architecture of genes that encode glycolytic enzymes in P. furiosus is 

investigated and described in Chapter 9. Transcription initiation sites are mapped and consensus 

sequences for the P. furiosus BRE site and TATA box are proposed. An inverted repeat is identified 

in several promoters of glycolytic genes. The presence and location of this inverted repeat is 

investigated in the complete genomic sequence of P. furiosus and its putative function is discussed. 

Chapter 10 summarizes the obtained results and a laymen version is presented in Chapter 

11 in the Dutch language. 
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Chapter 2 

Unraveling glycolytic pathways in archaea-

unique features in central metabolic routes 

Come H. Verhees, Willem M. de Vos and John van der Oost 

A modified version of this chapter will be submitted for publication 



Chapter 2 

Abstract 

An early divergence in evolution has resulted in two prokaryotic domains, the bacteria and 

the archaea. Whereas the central metabolic routes of bacteria and eucarya are generally well 

conserved, variant pathways involving several novel enzymes with unique control have developed 

in archaea. A spectacular example of convergent evolution concerns the glucose-degrading 

pathways of saccharolytic archaea. The identification, characterization and comparison of the 

glycolytic enzymes of a variety of phylogenetic lineages has revealed a mosaic of canonical and 

unique enzymes in the archaeal variants of the Embden-Meyerhof and the Entner-Doudoroff 

pathways. Current structural and functional insights of the archaeal glycolytic routes are reviewed 

and evolutionary scenarios are discussed. 

Introduction 

Carbohydrates are the main carbon source for heterotrophic life-style in the three domains of 

life, bacteria, archaea, and eucarya. Saccharolytic growth involves extracellular hydrolysis of 

polysaccharides, uptake of oligosaccharides by specific transporters, and a range of catabolic 

pathways to generate monosaccharides and degrade them. Extensive research during several 

decades has resulted in detailed information on the composition of sugar metabolic pathways and 

the regulation thereof in bacteria and eucarya (1) (2). Of archaeal sugar metabolism relatively little 

is known. 

The isolation of microbial life from boiling geysers, geothermally heated sediments, acid 

mudholes, hypersaline inland lakes and below Antarctic ice-floors, has vastly expanded our 

conceptions of which environments are able to sustain microbial life. Most of these exotic microbes 

belong to the domain of the archaea. The archaeal isolates from marine and terrestrial environments 

that share the capacity to grow at temperatures around the boiling point of water are called 

hyperthermophiles, and by definition exhibit optimal growth temperatures above 80 °C (3). Since 

the early 1990s, insight is emerging in the sugar metabolism of archaea in general and that of 

hyperthermophiles in particular. Several modified sugar degradation pathways that are operational 

under these extremely high temperatures have been identified in some of these hyperthermophiles. 

The constitution of these pathways has established by combining enzyme activities with 13C-

labeling experiments (4) (5). Comparative genomics and recent discoveries of novel sequences have 

resulted in better understanding of these metabolic networks. In this review, the main features of 

sugar metabolism of archaea is discussed, and by integrating different molecular and biochemical 

approaches potential evolutionary scenarios are discussed. 
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Chapter 2 

Saccharolytic archaea 

A variety of archaea share the capacity to grow on carbohydrates under extreme conditions. 

A growing number of saccharolytic archaeal species has been identified, and efficient growth was 

observed on a variety of substrates ranging from poly- to monosaccharides (Table 2.1). Detailed 

studied hyperthermophilic saccharolytic archaea are representatives of euryarchaeota, e.g. 

Pyrococcus furiosus (6) and crenarchaeota, e.g. Sulfolobus solfataricus (7). Both of these 

hyperthermophilic archaea are able to grow on a variety of a- and P-linked glucose saccharides and 

glucose (6) (8) (9) (10) (11) (12). Polysaccharides are degraded by extracellular glycosyl hydrolases 

to oligosaccharides (13) (14) (15) (16) (9) (10) (17), which are subsequently transported into the 

cell by high-affinity ABC-transporters (18) (12) (19) (20). Active transport of glucose has also been 

described for archaea and involves either ABC or secondary transporters (21) (22) (23). Sugar 

transport via the phosphoewo/pyruvate (PEP)-dependent phosphotransferase system (PTS) is very 

common in bacteria but apparently absent in archaea and eucarya. Interestingly, genomic analyses 

reveal that PTS is also missing in the thermophilic bacteria Thermotoga maritima and Aquifex 

aeolicus. Transported oligosaccharides are further hydrolyzed to glucose by specific intracellular 

glycosyl hydrolases (8) (24) (25) (26) (27) (17). It has been shown that, at least in vitro, intra- and 

extracellular glycosyl hydrolases synergistically degrade polysaccharides to monosaccharides (9) 

(10). 

Archaeal sugar metabolic pathways 

Two major pathways are involved in the degradation of glucose to pyruvate in bacteria, 

eucarya and archaea, the Embden-Meyerhof (EM) and Entner-Doudoroff (ED) pathway. The co­

existence of both EM- and ED-pathways has been observed in several mesophilic bacteria, but also 

in a hyperthermophilic bacterium {Thermotoga maritima) and a hyperthermophilic archaeon 

(Thermoproteus tenax) (28) (4). It has recently been demonstrated that the archaeon Halococcus 

saccharolyticus discriminates between an ED-like pathway and an EM-like pathway for growth on 

glucose and fructose, respectively (29). A third route, the pentose phosphate pathway, is present in 

bacteria and eucarya, and is needed for growth on pentoses, like xylulose and arabinose. Apart from 

pentose degradation, the pentose phosphate pathway is involved in the synthesis of RNA/DNA 

building blocks and the reduction of NADP to NADPH. 

The two main glucose catabolic pathways, i.e. EM-pathway and ED-pathway differ in the 

key enzymes acting on glucose or glucose-6-phosphate and subsequently, in several of the 

following steps that lead to the formation and aldolytic cleavage of the intermediates fructose-1,6-

bisphosphate (EM) and 2-keto-3-deoxy-6-phosphogluconate (ED) (Fig. 2.1). A major energetic 

difference in both canonical pathways is that in the ED-pathway only 1 mol ATP is formed per mol 
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glucose, instead of 2 mol ATP in the EM-pathway. It appears that the less efficient ED-pathway is 

often found in micro-organisms that possess an (an)aerobic respiration coupled to electron-transport 

phosphorylation in order to provide additional ATP (30). Modifications of the canonical ED and 

EM-pathways are mainly found in archaea (5) (4) (31). 
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Figure 2.1 Glucose metabolic pathways in archaea. 

Reconstruction of archaeal sugar metabolism based on genes, enzyme activities and labeling studies. Thick black 

arrows indicated conversions specific for the (modified) ED-pathway. Thick grey arrows indicate conversions specific 

for the (modified) EM-pathway. Thin grey arrows indicate conversions present in both pathways. The conversions in 

which reducing equivalents (H) or ATP is formed are shown. It should be noted that the last step of the EM-pathway, 

i.e. the conversion of phosphoewo/pyruvate to pyruvate is still unclear in archaea (see text). KDG, 2-keto-3-deoxy-

gluconate; KDPG, 2-keto-3-deoxy-phosphogluconate; DHAP, dihydroxy-acetone-phosphate; P, phosphate. Note that 

the phosphorylation-step of gluconate is missing in archaea. 
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EM-pathway in archaea and its modifications 

The best-studied archaeal EM-pathway is the one of P. furiosus. Six of the ten glycolytic 

steps are chemically identical to the classical pathway. Novel enzymes and unique control points in 

the pyrococcal pathway have been elucidated and involve two phosphorylation and an 

oxidoreduction reaction (32) (33) (34) (35) (36) (37). 

Instead of the classical ATP-dependent glucokinase and the ATP- (or PP;)-dependent 

phosphofructokinase (PFKA), this archaeon contains novel ADP-dependent sugar kinases (32) (34). 

The genes that encode these enzymes from P. furiosus have been identified and found to be 

paralogs. After heterologous expression in E. coli the enzymes have been studied in detail (34) (C. 

Verhees, submitted). The ADP-dependent sugar kinases do not share overall sequence similarity 

with classical sugar kinase sequences. Interestingly, uncharacterized homologs were identified in 

several eucaryal, but not in bacterial genomes (38). The recently solved structure of the ADP-

dependent glucokinase from the archaeon Thermococcus litoralis, closely related to Pyrococcus, 

shows a remarkable resemblance to adenosine kinase and ribokinase of the ribokinase family (Fig. 

2.2). The minor phosphofructokinase (PFKB) from E. coli belongs to this family as well. Classical 

hexo-/glucokinases and phosphofructokinases belong to different monophyletic families. Hence, the 

primary sequence and the fold of the ADP-dependent kinases are not related to that of the ATP-

dependent hexo-/glucokinases and ATP/PPj-dependent phosphofructokinases (PFKA) (39). 

Another major modification concerns the single-step conversion of glyceraldehyde-3-

phosphate to 3-phospho-glycerate by the glyceraldehyde-3-phosphate ferredoxin oxidoreductase 

(GAPOR), instead of the two-step catalysis by the enzyme-couple glyceraldehyde-3-phosphate 

dehydrogenase and phosphoglycerate kinase (35). GAPOR is dependent on ferredoxin and appears 

to function solely in glycolytic direction. For its gluconeogenesis P. furiosus uses the conventional 

enzyme-couple phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase (36). 

An additional unique glycolytic enzyme has recently been studied from P. furiosus, i.e. the 

phosphoglucose isomerase. Based on its primary structure this enzyme is unrelated to the canonical 

phosphoglucose isomerases (37) (40). However, it contains a cupin domain, often involved in sugar 

binding, that is absent in the canonical phosphoglucose isomerases (37). 

The existence of novel ADP-dependent sugar kinases, phosphoglucose isomerase and 

GAPOR are examples of non-homologous enzyme displacement in the pyrococcal glycolysis. This 

excessive replacement of enzymes in a metabolic pathway is a compelling example of functional 

convergent evolution. The non-homologous enzyme displacement of GAPOR is a special case, 

because the canonical enzyme-couple glyceraldehyde-3-phosphate dehydrogenase and 

phosphoglycerate kinase is still functionally present in P. furiosus. However, GAPOR has replaced 

the canonical enzyme-couple in glycolytic direction (36). 

10 
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The modified EM-pathway as present in P. furiosus might also be operating in several 

Thermococcus species (4), and in the starch-degrading Archaeoglobus fulgidus strain 7324, in 

which ADP-dependent glucokinase, ADP-dependent phosphofructokinase and GAPOR activities 

have been demonstrated (41). Moreover, ADP-dependent phosphofructokinases appear to be 

present in thermophilic and mesophilic glycogen-degrading methanogenic species belonging to 

Methanococcales and Methanosarcinales (38). Interestingly, the crenarchaeon Desulfurococcus 

amylolyticus was found to contain a partially modified EM-pathway, including GAPOR activity, 

but with classical ATP-dependent phosphofructokinase activity (4). The latter was confirmed after 

purification and characterization of the ATP-dependent phosphofructokinase from D. amylolyticus 

(42). Another type of variation was observed in the EM-pathway of the crenarchaeon 

Thermoproteus tenax. Instead of GAPOR, a distinct NAD+-dependent glyceraldehyde-3-phosphate 

dehydrogenase catalyzes the phosphate-independent, single-step oxidation of glyceradehyde-3-

phosphate to 3-phospho-glycerate in glycolysis (43). Furthermore, the T. tenax EM-pathway 

includes an ATP-dependent glucokinase and a PPi-dependent phosphofructokinase activity (4) (44). 

Figure 2.2 Structural similarity between ribokinase and ADP-dependent glucokinase. 
Ribbon diagram of (A) E. coli ribokinase (1RKA; PDB) and (B) Thermococcus litoralis ADP-dependent glucokinase 
(1GC5; PDB) is shown. Both enzymes are (structural) members of the ATP-dependent ribokinase family (39). 

ED-pathway in archaea and its modifications 

Two main modifications in the archaeal ED-pathway have been described. Halophilic 

archaea (and some eubacteria) use a partially non-phosphorylated ED-pathway in which 2-keto-3-

deoxy-gluconate (KDG) is phosphorylated to 2-keto-3-deoxy-6-phosphogluconate (KDPG) by 

KDG-kinase. Phosphorylation at a different level of the C6-stage in the pathway allows the gain of 

ATP by substrate-level phosphorylation during conversion of glyceraldehyde-3-phosphate via 1,3-

diphosphoglycerate to 3-phosphoglycerate in the canonical EM-pathway (Fig. 2.1) (45). 

Thermoproteus, Thermoplasma and Sulfolobus use an ED-like pathway in which none of the hexose 

11 
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intermediates are phosphorylated. However, at a late C3-stage phosphorylation of glycerate to 2-

phospho-glycerate occurs, which is further metabolized to pyruvate via the EM-enzymes enolase 

and pyruvate kinase (46) (45) (47) (48) (4). Because most (if not all) archaea appear to lack a 

glyceraldehyde-3-phosphate oxidation system that allows substrate-level phosphorylation, it does 

not matter at what level phosphorylation occurs. The modified versions of the ED-pathway in 

archaea have often been referred to as "non-phosphorylating"-ED; however, phosphorylation occurs 

at another level in the pathway: not at the level of gluconate, but at the level of 2-keto-3-deoxy-

gluconate or glycerate (Fig. 2.1). 

The first enzyme of the ED-pathway, i.e. NADP-dependent glucose dehydrogenase activity 

was purified from T. tenax cell extract (49). Two unrelated types of glucose dehydrogenases have 

been described in literature: a pyrroloquinoline-quinone (PQQ)-dependent glucose dehydrogenase, 

which appear to be restricted to gram-negative bacteria, and a NAD(P)-dependent glucose 

dehydrogenase that has been isolated and characterized form all three domains of life (49). Non­

homologous enzyme displacement of NADP-dependent glucose dehydrogenase by the PQQ-

dependent glucose dehydrogenase might have occurred in some gram-negative bacteria. A novel 

non-phosphorylated KDG-aldolase has been purified and characterized from S. solfataricus (50). In 

the genome of Halobacterium a distantly related gene has been identified by similarity search and 

gene context and is predicted to encode the missing phosphorylated KDPG-aldolase (Table 2.2). 

Pentose phosphate pathway in archaea 

Two pathways have been proposed for the pentose biosynthesis in methanogens, i.e. a non-

oxidative branch of the pentose phosphate pathway, or an oxidative decarboxylation of one of the 

hexoses (51) (52) (53). Isotope labeling studies have suggested that the oxidative branch of the 

pentose phosphate pathway is absent in Methanococcus (54). Genes encoding canonical enzymes of 

the oxidative branch of pentose phosphate pathway have not been found in archaea (55) (56) (57). 

Therefore, it would be unlikely that catabolism of glucose proceeds via the complete pentose 

phosphate pathway in archaea, but rather via an EM-like or ED-like pathway. 

Novel pathways in archaea 

A novel glycolytic pathway has recently been demonstrated in Thermococcus zilligii that 

makes use of a glucose-6-P dehydrogenase, a novel lyase and subsequent secretion of formate. Cells 

were grown on tryptone with or without glucose and after harvesting the cells the conversion of 13C-

glucose was recorded by NMR. A relative contribution of 2:1 (novel pathway versus EM-pathway) 

was calculated for cells grown on tryptone. The presence of glucose in the growth medium appears 

to repress the enzymes in this novel pathway, and results in inversion of the relative contributions of 

the two pathways (58). Alternatively, another route appears to be consistent with the labeling 
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pattern (H. Santos, pers. comm.) that would involve hexulose-6-P isomerase, hexulose-6-P synthase 

and formaldehyde ferredoxin oxidoreductase. The intermediate ribulose-5-P may be further 

degraded by the pentose phosphoketolase pathway, commonly found in lactic acid bacteria (59). 

Genome based reconstruction of archaeal sugar metabolism 

With the increasing number of completely sequenced archaeal genome sequences, a 

reconstruction can be made of glycolytic enzyme encoding genes present in archaea (Table 2.2). 

The identification of novel gene products involved in archaeal sugar catabolic and anabolic 

pathways allows for the compilation of a nearly complete set of enzymes involved in archaeal sugar 

metabolism. In the present paper the focus is on the main glycolytic pathways, i.e. EM-pathway and 

ED-pathway, and the non-oxidative branch of pentose phosphate pathway. However, genes that are 

yet to be identified in archaeal genomes concern the oxidative pentose phosphate pathway enzymes, 

and the (partially) non-phosphorylated ED-pathway enzyme gluconate dehydratase. The 

unsuccessful identification of the genes in genomic sequences suggests them to be either not 

present, highly diverged, or unique. 

The identification of the novel paralogous ADP-dependent glucokinase and ADP-dependent 

phosphofructokinase, together with the GAPOR in P.furiosus, allowed us to genetically identify the 

major modifications in the pyrococcal EM-pathway (34) (36). Orthologs of the ADP-dependent 

phosphofructokinase were also identified in M. jannaschii (38). Interestingly, ADP-dependent 

kinase homologs were identified in several higher eukaryotes including man, suggesting these 

homologs to be distributed over at least two domains of life (38). 

Genes encoding canonical phosphoglucose isomerases are present in M. jannaschii and 

Halobacterium NRC-1. However, a unique phosphoglucose isomerase, with a predicted cupin 

domain, was found in P. furiosus, P. horikoshii and P. abyssi. Remarkably, the distribution of this 

gene appears to be restricted to these Pyrococci (37). Phosphoglucose isomerase homologs have not 

been identified in the other available archaeal genomes. These organisms appear to contain a 

gluconeogenic pathway up to the level of fructose-6-phosphate, which probably acts as the 

intermediate to enter the non-oxidative pentose phosphate pathway. 

A homolog of a canonical fructose-1,6-bisphosphatase (FBPase I) could be identified in the 

crenarchaeal genome sequence of Halobacterium NRC-1. No obvious orthologs of this gene are 

present in the other archaeal genomes. However, recent characterization of the bi-functional 

fructose-1,6-bisphosphatase/TMyo-inositol-l-phosphatase from M. jannaschii (MJ0109) (60) resulted 

in the identification of this gene in euryarchaeal genome sequences (FBPase IV) (C. Verhees, 

submitted). Putative homologs, but no orthologs of this fructose-1,6-bisphosphatase gene were 

identified in the crenarchaeal genomes (Table 2.2). 
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Table 2.1 Genome based reconstruction of archaeal and thermophilic sugar metabolism. 

EM-pathway/gluconeogenesis 
Hexokinase (ATP) 
Glucokinase (ADP) 
Phosphoglucose isomerase (PGI/SIS) 
Phosphoglucose isomerase (CUPIN) 
Phosphofructokinase (ATP) 
Phosphofructokinase (PPi) 
Phosphofructokinase (ADP) 
Fructose-1,6-bisphosphatase (I) 
Fructose- 1,6-bisphosphatase (IV) 
Fructose-1,6-bisphosphatase (IV-related) 
Fructose-1,6-bisphosphate aldolase (II) 
Fructose-1,6-bisphosphate aldolase (IA) 

Triose-phosphate isomerase 

Species code.... 
PF PH PAB 

0312 

0196 

1784 

2014 

1956 

1920' 

0589 0967 

1956 1199 

1645 2013 

1897 0189 

0082 0049 

1884 1208 

MJ 

1605 

1604 

0109 

0400 
1585 
1528 

MT 

0871 

0579 

1041 

AF TA 

0825 

2372 

0108 
0230 
1304 0313 

SSO 

2418 

3226 

2592 

APE 

2091 

0012 

1798 

0011 

1538 

VNG 

1992 

0684 

1379 

0683 
0309 
1027 

TM 

1469 

1385 

0209 
0289 

1415 
0273 

0689 

Glyceraldehyde-3-phosphateferredoxin 0464 0457 1315 1185 

oxidoreductase 
Non-phosphorylatingglyceraldehyde-3-

phosphate dehydrogenase (NADH) 
Glyceraldehyde-3-phosphate 

dehydrogenase (NADH) 
Phosphoglycerate kinase 

0755 3194z 1718 

1874 1830 0257 1146 1009 1732 1103 0528 0171 0095 0688 

1057 1218 1679 0641 1042 1146 1075 0527 0173 1216 0689 
Phosphoglycerate mutase (family A) 
Phosphoglycerate mutase 

(2,3-bisphosphoglycerate independent) 
Phosphoglycerate mutase (archaeal) 

1347 2236 

1959 0037 2318 1612 1591 0413 0417 1616 
0010 0418 1751 

1425 

1374 
1887 

Phosphopyruvate hydrolase (enolase) 
Pyruvate kinase 
Phosphoeno/pyruvate synthase 

0215 1942 1126 0232 0043 
1188 0570 1441 0108 
0043 0092 0057 0542 1118 

1132 0882 
0896 

0710 0886 

0913 2458 
0981J 0489 
0883 0650 

1142 
0324 
0330 

0877 
0208 
0272 

ED-pathway 

Glucose dehydrogenase (NADP+) 0897 3204 
3003 
3042 

0446 

Glucose-6-phosphate dehydrogenase 

Gluconate kinase 

1155 

0443 

Gluconate dehydratase 

Phosphogluconate dehydratase 

KDG-kinase 

KDPG-aldolase (hypothetical) 

KDG-aldolase 

Glyceraldehyde dehydrogenase (NADP+) 
(hypothetical) 

Glycerate kinase 

Non-oxidative pentose phosphate pathway 

Ribose-5-phosphate epimerase 

Ribulose-phosphate 3-epimerase 

Transketolase 

Transaldolase 

0024 

1258 

1689 
1688 

0495 

1375 

1021 

0522 

0296 
0295 

1411 

1603 

0680 

0679 
0681 

0960 

0978 

0608 

0619 

0453 

0943 0878 

1315 

0617 
0618 

0616 

3197 

1629 
1842 
0666 

0978 

0299 
0297 

0996 

0665 

0583 
0586 

0158 

0444 

2272 

0066 

1585 

1718 

0953 
0954 
1762 
0295 

Numbering of the genes is according to http://www-archbac.u-psud.fr/projects/sulfolobus/. PF = P. furiosus; PH = P. 
horikoshii; PAB = P. abyssi; MJ = Methanococcus jannaschii; MT = Methanobacterium thermoautotrophicum; AF = A. 
fulgidus; TA = T. acidophilum; SSO = S. solfataricus; APE = Aeropyrum pernix; VNG = Halobacterium NRC-1; TM = 
Thermotoga maritima. Experimentally confirmed gene products are underlined. 'Characterized from P. woesei (97). 
Characterized from Thermoproteus tenax (43). 'Characterized from T. tenax (68). KDPG-aldolase and glyceraldehyde 
dehydrogenase is highly speculative and need to be experimentally confirmed. 
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A distantly diverged archaeal type of fructose-1,6-bisphosphate aldolase was recently 

identified in T. tenax and P. furiosus (61), confirming an earlier function prediction (53). Orthologs 

are present in all sequenced archaeal genomes, except for Thermoplasma acidophilum. Paralogs of 

the aldolase are present in M. jannaschii (MJ1585), A. fulgidus (AF0230), Halobacterium NRC-1 

(VNG0309), and the encoded enzymes were predicted to function as deoxyribose phosphate 

aldolase or transaldolase (53). 

Archaeal phosphoglycerate mutase, distantly related (11% amino acid identity) to its E. coli 

counterpart, has been predicted by comparative analysis of metabolic pathways in different 

genomes (62). The prediction has been confirmed experimentally for P. furiosus and M. jannaschii 

(MJ1612) (C. Verhees, unpublished). Interestingly, a gene duplication event has led to a second 

copy of this gene in M jannaschii (MJ0010), M. thennoautotrophicum (MT0418), and A. fulgidus 

(AF1425), the physiological role of which is unknown (Table 2.2). The same holds true for the 

three copies of the S. solfataricus glucose dehydrogenase, which contrasts with a single copy of this 

gene in T. acidophilum (Table 2.2). Experimental work will have to determine the physiological 

role of these three copies in the former. 

Regulation of archaeal glycolysis 

Regulation of glycolysis is a very complex process. Swift initiation of the glycolytic flux 

relies on the coordinated triggering of multiple events, including allosteric regulation of en2ymatic 

activities, protein modification and modulation of gene expression (2). In bacteria and eucarya 

transcriptional control of glycolysis can be positively or negatively regulated. In gram-positive 

bacteria the catabolite control protein (CcpA) was found to be a transcriptional activator of the las 

operon, consisting of genes encoding phosphofructokinase, pyruvate kinase and lactate 

dehydrogenase (63) (64). In gram-negative bacteria the fructose repressor protein (FruR) negatively 

regulates transcription of genes encoding glycolytic enzymes, and positively regulates transcription 

of genes encoding gluconeogenic enzymes (65). In yeast, a DNA-binding protein (GRC1) was 

found to strongly reduce the transcription levels of most glycolytic enzyme encoding genes (66) 

(67). 

Glycolytic control in archaea is still poorly understood. However, novel insights have 

recently been gained in the control of the modified EM-pathways from P. furiosus and T. tenax (34) 

(37) (61) (44) (68) (36). The activities of P. furiosus glycolytic enzymes appear often to be higher 

in cells grown on sugars compared to cells grown on peptides or pyruvate (69) (32) (37) (70). 

Transcript analysis of P. furiosus glycolytic enzymes encoding genes revealed more abundant 

signals on sugar-grown cells then on peptide- or pyruvate-grown cells (36) (37) (61) (71). The co-
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transcription of the genes coding for the T. tenax reversible PP;-dependent phosphofructokinase and 

fructose- 1,6-bisphosphate aldolase was 6-fold higher in heterotrophically then in autotrophically 

grown cells (61). In bacteria fructose-1,6-bisphosphate aldolase genes are sometimes co-transcribed 

with genes coding for other reversible enzymes of glycolysis, e.g. glyceraldehyde-3-phosphate 

dehydrogenase or phosphoglycerate kinase (72) (73). In the gram-positive bacterium Lactococcus 

lactis genes encoding irreversible phosphofructokinase and pyruvate kinase are organized as an 

operon and co-transcribed (74). Higher transcript levels under catabolic conditions might reflect the 

necessity of higher carbon flux rates through the glycolytic pathway. 

Nothing is known about potential regulators of the transcription of glycolytic enzyme 

encoding genes in archaea. However, an inverted repeat has recently been identified in promoter 

sequences of the genes encoding glycolytic enzymes in P. furiosus (not shown) (C. Verhees, 

unpublished). This repeat was not present in promoter sequences of genes encoding fructose-1,6-

bisphosphatase, glyceraldehyde-3-phosphate and phosphoglycerate kinase, enzymes that solely act 

in gluconeogenesis. Remarkably, it was apparent in the promoter structure of phosphoenolpyruvate 

synthase as well, but not in that of pyruvate kinase. Although it has been suggested before that 

phosphoenolpyruvate synthase rather than pyruvate kinase might be operating in glycolytic 

direction (75), this is still a matter of debate (76) (J. Tuininga, pers. comm.). Since the motif is 

present in promoter sequences of genes encoding glycolytic enzymes, it might represent a specific 

site for regulation the P. furiosus glycolytic pathway by a yet unidentified transcriptional regulator. 

In classical glycolysis, the reactions catalyzed by hexokinase, phosphofructokinase and 

pyruvate kinase are virtually irreversible. Hence, they would be expected to have regulatory as well 

as catalytic roles. In fact, all three enzymes are allosterically regulated control sites. The ADP-

dependent glucokinase from P. furiosus, the ADP-dependent phosphofructokinase and PPj-

dependent phosphofructokinase from P. furiosus and T. tenax, respectively, and the pyruvate kinase 

from T. tenax have been investigated on their regulatory roles (C. Verhees, unpublished) (34) (44) 

(68). Interestingly, none of these enzymes was allosterically regulated by any of the known 

allosteric effectors. Therefore, they presumably do not act as the major allosteric control point of 

the glycolytic pathway. Alternatively, GAPOR could be an important enzyme in control of the 

Pyrococcus glycolysis. GAPOR acts solely in glycolysis and the expression of its gene is induced 

by growth on sugars. In contrast, the expression of the glyceraldehyde-3-phosphate dehydrogenase 

gene is constitutively expressed. This confirms the involvement of GAPOR in the pyrococcal 

glycolysis, and has been proposed to be a novel site for glycolytic control (36). 

It is concluded that regulation of the glycolytic flux in P. furiosus might involve modulation 

of gene expression rather than allosteric regulation of enzyme activities. Complete genome micro-

arrays of P. furiosus are underway and will certainly provide more insight in the actual significance 

of regulation of gene expression in archaeal central metabolism (71) (M. Adams, pers. comm.). 
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Evolutionary aspects of archaeal glycolytic pathways 

In most organisms glucose catabolism is accomplished by an EM-like, an ED-like or 

sometimes a pentose phosphate pathway, that converge at the level of glyceraldehyde-3-phosphate, 

which is subsequently converted by a common core pathway of enzymes to pyruvate (77). The non-

phosphorylated ED-pathways in Sulfolobus, Thermoproteus and Thermoplasma form an exception 

since they converge with the EM-pathway at the level of 2-phospho-glycerate (Fig. 2.1). The 

common reversible core pathway that consist of the enzymes, glyceraldehyde-3-phosphate 

dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, pyruvate kinase, 

and/or phosphoe«o/pyruvate synthase, appears to be present in all organisms. The complete 

conservation of the reversible core pathway, or C3-stage of glycolysis might suggest it to represent 

an ancient pathway, that might have been present in the common ancestor. 

The question remains which catabolic pathway, i.e. ED-pathway or EM-pathway represents 

the most ancient complete glycolytic pathway. It has been suggested that the ED-pathway predates 

the EM-pathway because the latter is more efficient from an energetic point of view, and thus less 

primitive (30) (78). However, the presence of an EM-pathway in anaerobic archaea and in deeply 

rooted bacteria would suggest the EM-pathway to represent a more ancient pathway (5). ED-

pathways are commonly found in organisms capable of respiration. It has been proposed that the 

ED-pathway in aerobic organisms co-evolved in conjunction with the complete citric acid cycle and 

aerobic respiration (5). However, the complete citric acid cycle is proposed to have evolved first as 

partial cycle, with reductive biosynthetic capacity in anaerobic organisms (78) (79) and presumably 

predate complete cycles present in aerobic deeply rooted archaea like Sulfolobus (57). The presence 

of an ED-pathway (similar to halophiles) in strictly fermentative organisms such as Zymomonas 

mobiles and in the strictly anaerobic Clostridium aceticum raises questions about the implied 

requirement for ED-metabolism coupled to (an)aerobic respiration (30). Thus, the historical 

question which pathway was first remains to be answered, although it seems likely that both 

pathways have partly (from glucose to glyceraldehyde-3-phosphate) evolved independently, and 

that the energy-poor ED-pathway can be used efficiently in combination with energy-rich 

(an)aerobic respiration (5). 

Modifications in the ED-pathway and EM-pathway appear to be mainly restricted to the C6-

stage of the pathways, i.e. above the level glyceraldehyde-3-phosphate. Modifications in the EM-

pathway include non-homologous enzyme displacements, natural inheritance and lateral gene 

transfer (37) (61). The modified versions of the ED-pathway mainly correspond to phosphorylation 

of the intermediates at a different level in the pathway and non-homologous enzyme displacement 

of at least the glucose dehydrogenase (49). The variations that occur above the level of 
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Abstract 

Pyrococcus furiosus uses a modified Embden-Meyerhof pathway involving two ADP-

dependent kinases. Using the N-terminal amino acid sequence of the previously purified ADP-

dependent glucokinase, the corresponding gene as well as a related open reading frame were 

detected in the genome of P. furiosus. Both genes were successfully cloned and expressed in 

Escherichia coli, yielding highly thermoactive ADP-dependent glucokinase and 

phosphofructokinase. The deduced amino acid sequences of both kinases were 21.1% identical but 

did not reveal significant homology with those of other known sugar kinases. The ADP-dependent 

phosphofructokinase was purified and characterized. The oxygen-stable protein had a native 

molecular mass of approximately 180 kDa and was composed of four identical 52-kDa subunits. It 

had a specific activity of 88 units/mg at 50 °C and a pH optimum of 6.5. As phosphoryl group 

donor, ADP could be replaced by GDP, ATP, and GTP to a limited extent. The Km values for 

fructose 6-phosphate and ADP were 2.3 and 0.11 mM, respectively. The phosphofructokinase did 

not catalyze the reverse reaction, nor was it regulated by any of the known allosteric modulators of 

ATP-dependent phosphofructokinases. ATP and AMP were identified as competitive inhibitors of 

the phosphofructokinase, raising the Km for ADP to 0.34 and 0.41 mM, respectively. 

Introduction 

During growth on poly- or disaccharides, the hyperthermophilic archaeon Pyrococcus 

furiosus uses a novel type of glycolytic pathway that is deviant from the classical Embden-

Meyerhof pathway in several respects (1, 2). First, instead of the classical ATP-dependent 

hexokinase, the pathway involves a novel ADP-dependent glucokinase (3, 4). Second, a novel 

ADP-dependent phosphofructokinase replaces the more common ATP-dependent 

phosphofructokinase (3). Third, the pathway is modified in the degradation of glyceraldehyde 3-

phosphate, which involves glyceraldehyde-3-phosphate ferredoxin oxidoreductase instead of the 

conventional couple glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase (5, 

6). Modifications of the classical Embden-Meyerhof pathway at one or more of these three steps 

have also been observed in members of the hyperthermophilic archaeal genera Thermococcus, 

Desulfurococcus, and Thermoproteus (2, 7). The presence of these modifications in P. furiosus and 

other hyperthermophilic microorganisms suggests that these are adaptations to elevated 

temperatures as a result of an altered biochemistry or a decreased stability of biomolecules. 

Although ATP is regarded as the universal energy carrier and the most common phosphoryl 

group donor for kinases, several gluco- and phosphofructokinases with a different cosubstrate 

specificity have been described. Beside ADP-dependent gluco- and phosphofructokinases that have 

been demonstrated in Pyrococcus and Thermococcus spp. (3, 4, 7), polyphosphate-dependent 
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glucokinases have been found in several other microorganisms. In addition, the glucokinase of 

Propionibacterium can use both ATP and polyphosphate as phosphoryl group donor (8). 

Furthermore, PPi-dependent phosphofructokinases have been described in several eukarya and 

bacteria and the hyperthermophilic archaeon Thermoproteus tenax (9). 

Phylogenetic analyses of phosphofructokinases grouped these enzymes into three clusters. 

In a multiple alignment of representatives of each cluster, functionally important residues were 

identified that were highly conserved between all phosphofructokinases (9). ADP-dependent 

phosphofructokinases were not included in this study, because primary sequences of these enzymes 

were not yet available. 

In this paper, we describe the cloning, expression, purification, and characterization of the 

ADP-dependent phosphofructokinase from P. furiosus. It is the first molecular and biochemical 

characterization of an ADP-dependent phosphofructokinase to date. 

Experimental procedures 

Materials 

Acetyl phosphate (potassium-lithium salt, crystallized), ADP (disodium salt), AMP 

(disodium salt, crystallized), aldolase (D-fructose-l,6-bisphosphate D-glyceraldehyde-3-phosphate-

lyase, EC 4.1.2.13; rabbit muscle), ATP (disodium salt), fructose 1,6-bisphosphate (trisodium salt, 

crystallized), GDP (dilithium salt), glucose 6-phosphate (disodium salt), glucose-6-phosphate 

dehydrogenase (D-glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49; yeast), glycerol-3-

phosphate dehydrogenase (s«-glycerol-3-phosphate:NAD+ 2-oxidoreductase, EC 1.1.1.8; rabbit 

muscle), NADH (disodium salt), phosphoenolpyruvate (tricyclohexylammonium salt), 

phosphoglucose isomerase (D-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9; yeast), and 

triosephosphate isomerase (D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1; rabbit 

muscle) were obtained from Roche Molecular Biochemicals. D-Fructose-1-phosphate (barium salt), 

D-fructose 2,6-bisphosphate (sodium salt), D-fructose 6-phosphate (disodium salt), (3-NADP 

(sodium salt), sea salts, sodium phosphate glass type 35, tetrapotassium pyrophosphate, 

tripolyphosphate pentasodium, and trisodium trimetaphosphate were from Sigma. All other 

chemicals were of analytical grade. Pfu DNA polymerase was obtained from Life Technologies Inc. 

Mono Q HR 5/5, Phenyl-Superose HR 5/5, Q-Sepharose fast flow, and Superdex 200 prep grade 

were obtained from Amersham Pharmacia Biotech, hydroxyapatite Biogel HT was from Bio-Rad. 

P. furiosus (DSM 3638) was obtained from the German Collection of Microorganisms 

(Braunschweig, Germany). Escherichia coli XL-1 Blue and E. coli BL21(DE3) were obtained from 
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Stratagene (La Jolla, CA). The expression vector pET9d was obtained from Novagen Inc. 

(Madison, WI). 

Organisms and growth conditions 

P. furiosus was mass-cultured (200 liters) in an artificial seawater medium supplemented 

with Na2W04 (10 (xM), yeast extract (1 g/liter), and vitamins, as described before (10) but with 

lower concentrations of Na2S (0.25 g/liter) and NaCl (20 g/liter). The fermentor (Bioengineering 

AG, Wald, Switzerland) was sparged with N2 , and potato starch was used as substrate (8 g/liter). 

E. coli XL1 Blue was used as a host for the construction of pET9d derivatives. E. coli 

BL21(DE3) was used as an expression host. Both strains were grown in Luria Bertani medium with 

kanamycin (50 ug/ml) in a rotary shaker at 37 °C. 

Preparation of cell-free extract from P. furiosus 

P. furiosus cells from a 200-liter culture were harvested by continuous centrifugation 

(Sharpies, Rueil, France) and stored at -20 °C until used. Cell-free extract was prepared by 

suspending cells in 2 volumes (w/v) of 50 mM Tris/HCl buffer, pH 7.8, and treatment in a French 

press at 100 megapascals. Cell debris was removed by centrifugation for 1 h atl00,000 x g at 10 °C. 

The supernatant was used for purification of the phosphofructokinase. 

Purification of the phosphofructokinase from P. furiosus cell-free extract 

The phosphofructokinase was partially purified from cell-free extract of P. furiosus. All 

purification steps were done without protection against oxygen. To prevent microbial 

contamination, all buffers contained 0.02% sodium azide. Phosphofructokinase activity was 

recovered from cell-free extract following precipitation between 40 and 60% ammonium sulfate 

saturation. The subsequent purification included chromatography on phenyl-Superose HR 5/5, Q-

Sepharose fast flow, hydroxyapatite Bio-Gel HT, mono Q HR 5/5, and Superdex 200 prep grade gel 

filtration. Alternatively, cell-free extract was applied to a dye affinity chromatography system as 

described before (11). 

Cloning of the phosphofructokinase gene 

The previously obtained N-terminal amino acid sequence of the ADP-dependent 

glucokinase from P. furiosus, partially published as MTAEALYKN(I/A), where X = ambiguous 

residue (4), was used for BLAST search of the P. furiosus data base (http://www.genome.utah.edu). 

After exchanging the ambiguous residues with several possible amino acids, a putative glucokinase 

gene was identified. Using the sequence of this gene, another open reading frame was identified by 

nucleotide sequence similarity in the P. furiosus data base. The following primer set was designed 
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to amplify this open reading frame by polymerase chain reaction: BG447 (59-

GCGCGTCATGATAGATGAAGTCAGAGAGCTCG, sense) and BG448 (59-GCGCGGGAT-

CCTTACTGATGCCTTCTTAGGAGGGA, antisense), with BspHl and BamHl restriction sites in 

bold. 

The 100-ul polymerase chain reaction mixture contained 100 ng of P. furiosus DNA, 

isolated as described before (12), 100 ng each of primer BG447 and BG448, 0.2 mM dNTPs, Pfu 

polymerase buffer, and 5 units of Pfu DNA polymerase and was subjected to 35 cycles of 

amplification (1 min at 94 °C, 45 sec at 60 °C, and 3 min 30 sec at 72 °C) on a DNA Thermal 

Cycler (Perkin-Elmer Cetus). The polymerase chain reaction product was digested (BspHI/BamHl) 

and cloned into an AfcoI/5o/wHI-digested pET9d vector, resulting in pLUW572, which was 

transformed into E. coli XL1 Blue and BL21(DE3). Sequence analysis on pLUW572 was done by 

the dideoxynucleotide chain termination method with a Li-Cor automatic sequencing system (model 

4000L). Sequencing data were analyzed using the computer program DNASTAR. 

Overexpression of the phosphofructokinase gene in E. coli 

An overnight culture of E. coli BL21(DE3) containing pLUW572 was used as a 1% 

inoculum in 1 liter of Luria Bertani medium with 50 |ag/ml kanamycin. After growth for 16 h at 37 

°C, cells were harvested by centrifugation (2200 x g for 20 min) and resuspended in 10 ml of 20 

mM Tris/HCl buffer, pH 8.5. The suspension was passed twice through a French press (100 

megapascals), and cell debris was removed by centrifugation (10,000 x g for 20 min). The resulting 

supernatant was used for purification of the recombinant phosphofructokinase. 

Purification of the recombinant phosphofructokinase 

The E. coli cell-free extract was heated for 30 min at 80 °C, and precipitated proteins were 

removed by centrifugation. The supernatant was filtered through a 0.45-um filter and loaded onto a 

Q-Sepharose column that was equilibrated with 20 mM Tris/HCl buffer, pH 8.5. Bound proteins 

were eluted by a linear gradient of NaCl (0 to 1 M in Tris/HCl buffer). Active fractions were pooled 

and desalted with 20 mM Tris/HCl buffer, pH 8.5, using a Centricon filter with a 30-kDa cutoff. 

Protein concentration and purity 

Protein concentrations were determined with Coomassie Brilliant Blue G250 as described 

before (13) using bovine serum albumin as a standard. The purity of the enzyme was checked by 

SDS-PAGE as described before (10). Protein samples for SDS-PAGE were heated for 5 min at 100 

°C in an equal volume of sample buffer (0.1 M citrate-phosphate buffer, 5% SDS, 0.9% 2-

mercaptoethanol, 20% glycerol, pH 6.8). 
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Determination of enzyme activity 

ADP-dependent phosphofructokinase activity was measured aerobically in stoppered 1-ml 

quartz cuvettes at 50 °C as described before (3). The assay mixture contained 100 mM MES buffer, 

pH 6.5, 10 mM MgCl2, 10 mM fructose 6-phosphate, 0.2 mM NADH, 2.5 mM ADP, 3.9 units of 

glycerol 3-phosphate dehydrogenase, 11 units of triosephosphate isomerase, 0.23 units of aldolase, 

and 5-25 JLII of enzyme preparation. The absorbance of NADH was followed at 340 nm (e = 6.18 

mM"'cm"). Care was taken that the auxiliary enzymes were never limiting. Specific enzyme 

activities were calculated from initial linear rates and expressed in units/mg of protein. 1 unit was 

defined as that amount of enzyme required to convert 1 umol of fructose 6-phosphate/min. The 

activity of the enzyme in the reverse direction was measured in an assay containing 100 mM MES 

buffer, pH 6.5, 12.5 mM fructose 1,6-bisphosphate, 2.5 mM AMP, 0.5 mM NADP, 0.35 units of 

glucose-6-phosphate dehydrogenase, 1.4 units of phosphoglucose isomerase, and 5-25 JJ.1 of 

enzyme preparation. The absorbance of NADPH was followed at 340 nm (e = 6.18 mM'cm"1). 

Molecular mass determination 

The molecular mass of the partially purified phosphofructokinase from P. furiosus cell-free 

extract was determined on a Superdex 200 gel filtration column using 100 mM Tris/HCl buffer, pH 

7.8, with 150 mM NaCl. The column was calibrated using the following standard proteins: 

ribonuclease A (13.7 kDa), chymotrypsinogen A (25 kDa), ovalbumin (43 kDa), bovine serum 

albumin (67 kDa), aldolase (158 kDa), and catalase (232 kDa). 

Molecular mass determination of the purified recombinant phosphofructokinase was done 

by running PAGE gels at various acrylamide percentages (5, 6, 7, 8, 9, 10, 11, and 12%) as 

described before (14). The following molecular mass standards were used: lactalbumin (14.2 kDa), 

carbonic anhydrase (29 kDa), chicken egg albumin (45 kDa), bovine serum albumin monomer and 

dimer (66 and 132 kDa), and urease trimer and hexamer (272 and 545 kDa). 

The subunit molecular mass of the purified recombinant protein was determined by SDS-

PAGE, using a molecular mass standard mix of carbonic anhydrase (31.0 kDa), ovalbumin (45.0 

kDa), serum albumin (66.2 kDa), and phosphorylase b (97.4 kDa). 

pH optimum 

The pH optimum of the phosphofructokinase was determined at 50 °C in 200 mM 

Tris/maleate buffer over the pH range 5.0 -8.0. Buffer pH values were adjusted at this temperature. 

Care was taken that the auxiliary enzymes were not limiting at the various pH values. 
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Substrate specificity 

As possible phosphoryl group donors, ATP, GDP, GTP, pyrophosphate, phospho-

enolpyruvate, acetylphosphate, tripolyphosphate, trimetaphosphate (each 2.5 mM), and 

polyphosphate (sodium phosphate glass type 35, 0.25 mg/ml) were used in the activity assay instead 

of ADP. The divalent cation requirement was tested by adding 10 mM MnCl2 , CaCl2 , C0CI2 or 

ZnCl2 instead of MgCl2. 

Kinetic parameters 

Kinetic parameters were determined at 50 °C by varying the concentration of ADP (0.0125-

5 mM) or fructose 6-phosphate (0.1-10 mM) in the assay mixture in the presence of 10 mM 

fructose 6-phosphate or 2.5 mM ADP, respectively. Data were analyzed by computer-aided direct 

fit to the Michaelis-Menten curve. Furthermore, the data were used to construct Hill plots (log 

{VIV^-V) versus log 5). 

Allosteric effectors 

Regulation of phosphofructokinase activity by possible allosteric modulators was 

investigated by adding adenine nucleotides (ATP, ADP, or AMP; 2, 5, and 10 mM), metabolites 

(glucose, pyruvate, phosphoenolpyruvate, or citrate; 5 mM) or fructose 2,6-bisphosphate (0.1 and 1 

mM) to the assay mixture. Furthermore, the effect of KC1 and NaCl (30, 150 and 500 mM) on the 

enzyme activity was tested. 

Results 

Purification of the phosphofructokinase from P. furiosus cell-free extract 

Cell-free extracts of P. furiosus showed a phosphofructokinase activity of 0.038 units/mg. 

However, despite the use of various chromatographic techniques, we were unable to obtain a highly 

purified enzyme, because it tended to stick to other proteins, resulting in similar band patterns upon 

PAGE after each purification step. When applied to a hydrophobic interaction column, 

phosphofructokinase activity was completely lost. Moreover, the use of dye affinity 

chromatography was not successful; although the phosphofructokinase did bind to a number of the 

tested dye ligands, it could not be eluted specifically with ADP. Aspecific elution with NaCl did not 

result in loss of contaminating proteins. Consequently, following chromatography on five different 

columns, the enzyme was purified 80-fold to a specific activity of 3 units/mg but still contained 

several contaminating proteins (Fig. 3.1). 
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Cloning of the phosphofructokinase gene 

Using the previously obtained N-terminal amino acid sequence of the ADP-dependent 

glucokinase (4), a putative glucokinase gene was identified in the P. furiosus genome sequence. 

Expression of the gene in E. coli resulted in an ADP-dependent glucokinase activity of 20 units/mg 

in cell-free extracts at 50 °C, confirming that the gene indeed encoded the glucokinase (C. Verhees, 

in prep.). When the glucokinase gene, designated glkA, was used to search the P. furiosus genome, 

highest homology (25.7% nucleotide identity) was found with a 1365-base pair open reading frame 

predicted to encode a 455-amino acid protein. It was considered that this open reading frame might 

encode the ADP-dependent phosphofructokinase, and therefore the open reading frame was 

amplified by polymerase chain reaction and cloned into pET9d, resulting in plasmid pLUW572. 

DNA sequence analysis of pLUW572 confirmed the successful and faultless cloning of the open 

reading frame into pET9d (not shown). 

1 2 3 

97:4 - » _ 

66.2 — -

45.0 

Figure 3.1 SDS-polyacrylamide gel electrophoresis of the phosphofructokinase from P. furiosus. 

Lane 1 contained a set of marker proteins with their molecular mass indicated (kDa). Lane 2 contained the partially 

purified phosphofructokinase from P. furiosus cell-free extract, and lane 3 contained purified recombinant 

phosphofructokinase. Proteins were stained with Coomassie Brilliant Blue R250. 

Overexpression of the phosphofructokinase gene in E. coli 

SDS-PAGE analysis of a cell-free extract of E. coli BL21(DE3) harboring pLUW572 

revealed an additional band of approximately 50 kDa, which corresponded with the calculated 

molecular mass (52.3 kDa) of the gene product. This band was absent in extracts of E. coli 

BL21(DE3) carrying the pET9d plasmid without insert. In a cell-free extract of E. coli BL21(DE3) 

harboring pLUW572, an ADP-dependent phosphofructokinase activity of 3.48 units/mg was 

measured at 50 °C, confirming that indeed the P. furiosus phosphofructokinase gene, designated 

pfkA, had been cloned and expressed. The enzyme could be produced for up to 5% of the total E. 

coli cell protein without inducing gene expression by adding isopropyl-1-thio-p-D-

galactopyranoside. Therefore, no attempts were made to optimize the overexpression. 
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Figure 3.2 Multiple alignment of the deduced amino acid sequence of the P. furiosus ADP-dependent glucokinase 

and phosphofructokinase with the sequences of the hypothetical proteins from P. horikoshii and M. jannaschii, 

which were found to have high similarity with the phosphofructokinase. Gaps introduced for optimal alignment are 

marked by hyphens. Conserved regions are indicated as black boxes. PFKAPFUR, ADP-dependent 

phosphofructokinase P. furiosus (accession number AF127909; Swiss-Prot); PHI 645, putative ADP-dependent 

phosphofructokinase P. horikoshii (accession number 3258074; NCBI); MJ1604, putative ADP-dependent 

phosphofructokinase M. jannaschii (accession number 2128964; NCBI); GLKA_PFUR, ADP-dependent glucokinase P. 

furiosus (accession number AF127910; Swiss-Prot); PH0589, putative ADP-dependent glucokinase P. horikoshii 

(accession number 3256995; NCBI). 
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Primary sequence comparison 

On an amino acid level, the identity between the glucokinase and phosphofructokinase from 

P. furiosus was 21.1%. Comparison of the deduced amino acid sequence of the 

phosphofructokinase with those of proteins present in the GenBank data base showed high 

similarity with two hypothetical proteins from Pyrococcus horikoshii (PH1645, 75.2% identity; 

PH0589, 23.1% identity). Cloning and expression of the corresponding genes demonstrated that the 

proteins are an ADP-dependent phosphofructokinase and an ADP-dependent glucokinase, 

respectively (data not shown). Furthermore, 48.6% identity was found with a hypothetical protein 

from Methanococcus jannaschii (MJ1604), which turned out to be an ADP-dependent 

phosphofructokinase (C. Verhees, in prep.). Multiple sequence alignment showed several conserved 

regions throughout the five proteins (Fig. 3.2). Comparison of the conserved regions with sequences 

present in the GenBank data base did not reveal additional similarities. 

Purification and physical characterization of the recombinant phosphofructokinase 

The recombinant phosphofructokinase was easily purified by a heat incubation and anion 

exchange chromatography to at least 95% homogeneity as judged by SDS-PAGE (Fig. 3.1). The 

specific activity of the purified protein was 88 units/mg at 50 °C. On SDS-PAGE, the purified 

recombinant protein did not appear at the same height as the most abundant band in the partially 

purified P. furiosus fraction. 

However, because the phosphofructokinase activity of the partially purified P. furiosus cell-

free extract is 3 units/mg, the enzyme represents only 3% of the total protein in the extract and can 

therefore not be most dominant band in lane 2 of the SDS-PAGE gel. 
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? « " 
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Figure 3.3 Calibration curve of molecular weight determination of the recombinant phosphofructokinase by 

native polyacrylamide gel electrophoresis. For each molecular weight marker protein, independent logarithmical plots 

were made of the relative mobility (/?/) against the acrylamide percentage of the gels. The slopes of these lines were 

plotted against the molecular weight of the marker proteins, depicted as filled circles. The slope of the 

phosphofructokinase was depicted as an open circle. 
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SDS-PAGE of the purified recombinant phosphofructokinase gave a single band at 52 kDa 

(Fig. 3.1). The native molecular mass of the partially purified phosphofructokinase from P. furiosus 

cell-free extract, as determined by gel filtration chromatography, was approximately 180 kDa. This 

is in good agreement with the molecular mass determination of the purified recombinant 

phosphofructokinase. A native molecular mass of the phosphofructokinase of 179 kDa was 

calculated from the calibration curve (Fig. 3.3), suggesting that the phosphofructokinase is a 

homotetramer. The phosphofructokinase showed activity between pH 5.5 and 7.0, with an optimum 

at pH 6.5 (data not shown). 

Substrate specificity of the recombinant phosphofructokinase 

The purified phosphofructokinase only showed activity in the forward direction. The 

enzyme showed highest activity with ADP as a phosphoryl group donor, which could be replaced 

by GDP, ATP, and GTP to a limited extent (Table 3.1). Divalent cations were required for activity 

of the enzyme, as shown by complete lack of activity in the presence of EDTA. 

Phosphofructokinase activity was highest in the presence of MgC^, followed by C0CI2 (Table 3.1). 

The partially purified enzyme from P. furiosus cell-free extract showed the same substrate 

specificity pattern (data not shown). 

Table 3.1 Substrate specificity and cation dependence of the ADP-dependent phosphofructokinase from P. 
furiosus. 

Phosphoryl group donor 

ADP 
GDP 
ATP 
GTP 
Phosphoenolpyruvate 
Pyrophosphate 
Tripolyphosphate 
Acetylphosphate 
Trimetaphosphate 
Polyphosphate 

Relative activity 
% 
100 
28 

<10 
<6 
NDa 

ND 
ND 
ND 
ND 
ND 

Divalent cation 

Mg2+ 

Co2+ 

Mn2+ 

Ca2+ 

Zn2+ 

Relative activity 
% 
100 

81 
43 

8 
ND 

Enzyme assays were done at 50 °C as described under "Experimental Procedures." 100% activity corresponds to a 
specific activity of 88 units/mg. 
aND, not detectable. 

Kinetic parameters of the recombinant phosphofructokinase 

The purified phosphofructokinase showed Michaelis-Menten kinetics at 50 °C, with the 

following constants that were determined according to direct fit: Km values of 2.3 ± 0.3 and 0.11 ± 

0.01 mM for fructose 6-phosphate and ADP, respectively, and Vm2X. values of 194 ± 13 and 150 ± 5 

units/mg for fructose 6-phosphate and ADP, respectively. Km values determined for the partially 

purified enzyme from P. furiosus cell-free extracts were in the same order of magnitude. 
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Furthermore, Hill coefficients of 1.1 (fructose 6-phosphate) and 0.95 (ADP) were determined, 

indicative of noncooperative binding of the substrates to each subunit of the tetrameric enzyme. 

Aliosteric effectors of the recombinant phosphofructokinase 

The addition of glucose, pyruvate, phosphoenolpyruvate, citrate, or fructose 2,6-

bisphosphate did not show any effect on the phosphofructokinase activity. Both NaCl and KC1 had 

a negative effect on the phosphofructokinase activity (42 and 43% activity in 300 mM NaCl and 

KC1, respectively). 

Furthermore, the phosphofructokinase activity was negatively affected by the addition of 

ATP or AMP to the assay mixture. Because subsequent addition of MgCb did not restore activity, 

the negative effect was not because of binding of Mg2+ to the ATP or AMP, resulting in lower 

availability of the ions for the substrate ADP. The addition of 5 mM ATP or AMP resulted in an 

increase in Km values for ADP from 0.11 to 0.34 ± 0.02 or 0.41 ± 0.03 mM, respectively, whereas 

the Fmax did not change (Fig. 3.4). This indicates competitive inhibition of the phosphofructokinase 

by ATP and AMP. Apparently, the phosphofructokinase is not allosterically regulated by ATP, 

AMP, or any of the other tested compounds. 

20 40 60 

1/S (mM-1) 
80 100 

Figure 3.4 Lineweaver-Burk plot of recombinant P. furiosus phosphofructokinase with ADP as variable 

substrate, under normal assay conditions (•), in the presence of 5 mM ATP (o), or in the presence of 5 mM AMP 

(X)-

Discussion 

P. furiosus uses a modified Embden-Meyerhof pathway involving two novel-type kinases, 

i.e. an ADP-dependent glucokinase, which has previously been purified and characterized (4), and 

an ADP-dependent phosphofructokinase. In cell-free extracts of mass-cultured P. furiosus cells 

grown on starch, a phosphofructokinase activity of 0.038 units/mg was measured. Purification of 

the ADP-dependent phosphofructokinase from cell-free extracts of P. furiosus was hampered, 

34 



P. furiosus ADF'-dependentphosphofructokinase 

because the enzyme tended to stick to other proteins, and both dye affinity and hydrophobic 

interaction chromatography could not be used in the purification. However, an alternative approach 

became available following the identification of the P. furiosus pfkA gene encoding the 

phosphofructokinase, which was successfully overexpressed in E. coli. 

The recombinant phosphofructokinase was purified from E. coli to 95% homogeneity in a 

two-step purification. The specific activity of the purified protein was 88 units/mg at 50 °C, which 

is approximately 2300-fold higher than the activity in crude cell-free extract of P. furiosus (0.038 

units/mg). This suggests that the phosphofructokinase represents a very small fraction (0.043%) of 

the total P. furiosus cell protein, which is unexpected for a catalytic enzyme present in an important 

metabolic pathway. However, using the experimentally determined relationship between activity 

and temperature (Qio = 2 (15)), it can be calculated that the specific activity at 100 °C would be 

2816 units/mg. Furthermore, it has been calculated before that the specific activity of 

phosphofructokinase in cell-free extracts of P. furiosus is sufficiently high to sustain the glucose 

flux (3). 

The ADP-dependent phosphofructokinase had a native molecular mass of 180 kDa and a 

subunit size of 52 kDa, in agreement with the deduced molecular mass of 52.3 kDa from the amino 

acid sequence. These data suggest that the phosphofructokinase has a tetrameric structure, which is 

most common for phosphofructokinases. ATP-dependent phosphofructokinases from bacteria and 

mammals are usually homotetramers with a subunit size of 33 and 85 kDa, respectively. Yeast 

phosphofructokinases show 014P4 octameric structures with subunits of 112 and 118 kDa, whereas 

PPi-dependent phospho-fructokinases have been described to be monomers (110 kDa), homodimers 

(subunits of 48-55 kDa), homotetramers (subunits of 45 kDa), or heterotetramers (subunits of 60 

and 65 kDa) (16). 

The reaction catalyzed by the phosphofructokinase was found to be irreversible. Therefore, 

P. furiosus needs a separate fructose- 1,6-bisphosphate phosphatase to catalyze the conversion of 

fructose 1,6-bisphosphate to fructose 6-phosphate during gluconeogenesis. Indeed, this enzyme has 

been detected in cell-free extract with a specific activity of 0.026 units/mg at 75 °C (17). The 

irreversibility of the phosphofructokinase reaction has also been described for ATP-dependent 

phosphofructokinases, although PPi-dependent phosphofructokinases catalyze reversible reactions 

(16). 

Apparent Km values of 2.3 and 0.11 mM were found for fructose 6-phosphate and ADP, 

respectively. These values were determined at 50 °C, which is much lower than the optimal growth 

temperature of P. furiosus. Because temperature can have a dramatic effect on Km values (S. 

Kengen, unpublished), one has to realize that Km values at the optimum growth temperature of 100 

°C could differ considerably from the data obtained in this study. Apparent Km values at 55 °C of 

the ADP-dependent phosphofructokinases from cell-free extracts of Thermococcus celer and T. 
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litoralis were 2.5 and 4 mM, respectively, for fructose 6-phosphate and 0.2 and 0.4 mM, 

respectively, for ADP (7). However, the possible temperature effect makes it difficult to compare 

kinetic values of microorganisms with different optimal growth temperatures (100 °C for P. 

furiosus and 85 °C for both Thermococcus strains). For the purified PP;-dependent 

phosphofructokinase from T. tenax (optimal growth temperature 85 °C), much lower Km values 

were found: 0.053 mM for fructose-6-phosphate and 0.023 mM for PP; (9). 

The ADP-dependent phosphofructokinase also showed activity with ATP, GTP, and GDP as 

phosphoryl group donors. In the case of ATP or GTP, however, the reaction product (ADP or GDP, 

respectively) is again an efficient phosphoryl group donor. Therefore, the relative activities with 

these compounds are probably overestimated. Furthermore, because of this fact, we were not able to 

determine kinetic values for ATP. 

The phosphofructokinase was found to be inhibited by ATP and AMP through a competitive 

mechanism. In the case of ATP, this is not surprising, because ATP itself is a substrate and must 

therefore be able to bind to the catalytic site. In view of the role of phosphofructokinases in 

regulating the glycolytic pathway, it is surprising to see that ATP and AMP have the same 

(negative) effect on the activity of the phosphofructoki-nase. Allosterically regulated 

phosphofructokinases are usually inhibited by ATP but stimulated by AMP. ATP-dependent 

phosphofructokinases from E. coli and Bacillus stearothermophilus are allosterically activated by 

ADP and GDP and inhibited by phosphoenolpyruvate. Both yeast and mammalian 

phosphofructokinases are regulated by a large variety of effectors. Beside allosteric regulation by 

ATP and AMP, the enzymes are inhibited by citrate and activated by phosphate. Only mammalian 

enzymes are allosterically activated by fructose 1,6-bisphosphate. A very potent allosteric 

stimulator of eukaryotic phosphofructokinases is fructose 2,6-bisphosphate, which acts 

synergistically with AMP. This compound has been detected in most eukaryotes but never in 

prokaryotes (16). Apparently, the ADP-dependent phosphofructokinase from P. furiosus is not 

allosterically regulated at all, and therefore it can not act as the major control point of the glycolytic 

pathway. Alternatively, the glyceraldehyde-3-phosphate ferredoxin oxidoreductase could be an 

important enzyme in control of the glycolysis of P. furiosus (6). The PPj-dependent 

phosphofructokinase from T. tenax is not allosterically controlled either, nor does it function as the 

major control point of the glycolytic pathway of this organism (9). 

Hill plot analysis indicated that the phosphofructokinase did not cooperatively bind either of 

the substrates ADP and fructose 6-phosphate, in contrast to the ATP-dependent phospho­

fructokinases from E. coli and B. stearothermophilus, which were found to show cooperative 

binding to fructose 6-phosphate but not to ATP (16). 

The assumption that the open reading frame related to the glkA, found in the P. furiosus 

genome, might encode the ADP-dependent phosphofructokinase was based on the observation that 
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the N-terminal amino acid sequence of the glucokinase did not show any homology to known sugar 

kinases (4). Furthermore, in the P. furiosus genome data base, no sequence could be found that 

showed significant homology to either gluco-, hexo-, or phosphofructokinases. Because both 

enzymes are ADP-dependent kinases, they could have identical ADP and sugar binding sites and 

might therefore be homologous to each other. 

This hypothesis was confirmed when the expressed open reading frame indeed turned out to 

encode the ADP-dependent phosphofructokinase. Primary sequence analysis of the deduced amino 

acid sequence of the glucokinase and the phosphofructokinase showed that the proteins are 

significantly homologous and share several conserved regions. The functionally important residues 

for substrate binding that have been described for ATP- and PPj-dependent phosphofructokinases 

(9) did, however, not seem to be present in any of the sequences of the ADP-dependent kinases, 

suggesting they represent a novel group of kinases. Altogether, these findings suggest that the 

glucokinase and the phosphofructokinase from P. furiosus are phylogenetically related. Further 

research is focused on scientific evidence for this suggestion. 
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Abstract 

Phosphofructokinase (PFK) is a key enzyme of the glycolytic pathway in all domains of life. 

Two related PFKs, ATP- or PPj-dependent, have been distinguished in bacteria, eucarya, as well as 

in some archaea. Hyperthermophilic archaea of the order Thermococcales, including Pyrococcus 

and Thermococcus spp., have recently been demonstrated to possess a unique ADP-dependent PFK 

(ADP-PFK) that appears to be phylogenetically distinct. Here, we report the presence of ADP-PFKs 

in glycogen-producing members of the orders Methanococcales and Methanosarcinales, including 

both mesophilic and thermophilic representatives. To verify the substrate specificities of the 

methanogenic kinases, the gene encoding the ADP-PFK from Methanococcus jannaschii was 

functionally expressed in Escherichia coli, and the produced enzyme was purified and characterized 

in detail. Compared to its counterparts from the two members of the order Thermococcales, the M. 

jannaschii ADP-PFK has an extremely low Km for fructose 6-phosphate (9.6 uM), and it accepts 

both ADP and acetyl-phosphate as phosphoryl donor. Phylogenetic analysis of the ADP-PFK 

reveals it to be a key enzyme of the modified Embden-Meyerhof pathway of heterotrophic and 

chemolithoautotrophic archaea. Interestingly, uncharacterized homologs of this unusual kinase are 

present in several eucarya. 

Introduction 

The Embden-Meyerhof pathway is the most common route for the degradation of glucose. 

While several small variations in this glycolytic pathway are known, major modifications have been 

demonstrated in Pyrococcus furiosus and other hyperthermophilic archaea (4)(23). A combination 

of metabolic, biochemical and genetic approaches have established that the pyrococcal glycolysis 

differs from the Embden-Meyerhof pathway by incorporating new conversions, novel enzymes and 

unique control (9)(11)(27)(15)(28). First, the single-step conversion of glyceraldehyde-3-phosphate 

to 3-phospho-glycerate is catalyzed by a uniquely controlled glyceraldehyde-3-phosphate 

ferredoxin oxidoreductase (GAPOR) instead of the two-step reaction catalyzed by the conventional 

couple glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase (28)(15). Second, 

instead of the classical ATP-dependent hexokinase, the pyrococcal pathway involves a novel ADP-

dependent glucokinase (ADP-GLK) (11)(13). Third, a novel nonallosteric ADP-dependent 

phosphofructokinase (ADP-PFK) replaces the more common ATP-PFK (27). 

The gene encoding an ADP-PFK was identified in the genome of P. furiosus and 

functionally expressed in E. coli, and the encoded protein was thoroughly characterized (27). 

Primary structure comparison revealed the ADP-PFK to be a member of a novel enzyme family that 

did not show homology to known PFKs, which are monophyletic and include both ATP- and 

pyrophosphate (PPi)-dependent enzymes. However, the ADP-PFK appeared to have significant 
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similarity to the ADP-GLK from P. furiosus, suggesting that they belong to the same novel family 

of kinases. Recently, the crystal structure of the ADP-GLK from Thermococcus litoralis was 

solved. Unexpected structurally similarity was recognized with members of the ribokinase family 

(7). 

Initial analysis of the first sequenced archaeal genome, that of the hyperthermophilic 

archaeon Methanococcus (Methanocaldococcus) jannaschii (29), suggested the presence of several 

glycolytic-enzyme-encoding genes, but indicated the absence of a gene encoding a classical PFK 

(2)(24). Hence, it was suggested that the PFK from M. jannaschii could be ADP-dependent and 

therefore undetectable in the sequence data (24). Indeed, an ortholog (MJ1604) with 48 % identity 

(on amino acid level) to the P. furiosus ADP-PFK was found to be encoded by the M. jannaschii 

genome (27). The presence of this hypothetical ADP-PFK in M. jannaschii suggests the presence of 

a modified Embden-Meyerhof pathway in methanogenic archaea as well. Previous studies on the 

genomic and enzyme levels indicated the presence of classical Embden-Meyerhof enzymes in 

bacteria, eucarya and archaea (3). However, no attention was given to enzymes involved in the 

modified Embden-Meyerhof pathway. 

To obtain insight into the presence and function of ADP-PFKs in representatives from 

different phylogenetic lineages, we investigated their distribution on both the genomic and 

functional level. Moreover, the gene encoding the ADP-PFK from M. jannaschii was overexpressed 

in E. coli and the purified enzyme was thoroughly characterized. The results provided evidence for 

the presence of ADP-PFKs in both mesophilic and thermophilic archaea and led us to propose an 

evolutionary model. 

Materials and methods 

Organisms and growth conditions 

All microorganisms were grown under H2/CO2 atmosphere in 50-ml and 250-ml medium, 

except that Methanosaeta concilii and P. furiosus were grown under N2/CO2 atmosphere. P. 

furiosus (100°C) (DSM 3638) Methanococcus igneus (80°C) (DSM 5666), Methanococcus 

jannaschii (80 °C) (DSM 2661), Methanococcus maripaludis (37°C) (DSM 2067), Methanococcus 

thermolithotrophicus (65°C) (DSM 2095), Methanopyrus kandleri (95°C) (DSM 6324), and 

Methanobacterium thermoautotrophicum Z-245 (65°C) (DSM 3720) were grown as described 

previously (10). Methanosarcina mazei (37°C) (DSM 2053) and Methanosaeta concilii (37°C) 

(DSM 3671) were grown as described previously (optimum temperatures given in parentheses) 

(26). M. mazei and M. concilii were supplemented with 50 mM methanol and 30 mM acetate, 

respectively. Nina Brunner (University of Essen, Germany) kindly provided cells of 
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Purification and characterization of the E. coli produced ADP-PFK from M. jannaschii 

An overnight culture of E. coli BL21(DE3) harboring pLUW575 was inoculated (1%) into 1 

liter of Luria-Bertani medium with 50 ug of kanamycin/ml. After growth for 16 h at 37°C, the cells 

were harvested by centrifugation (2,200 x g for 20 min) and resuspended in 10 ml of a 20 mM 

Tris/HCl buffer, pH 7.8. The suspension was passed twice through a French press (100 MPa), and 

cell debris was removed by centrifugation (10,000 x g for 20 min). The resulting supernatant was 

heat-treated for 30 min at 80°C, and precipitated proteins were removed by centrifugation. 

The cell-free extract was filtered through a 0.45-um-pore-size filter and applied to a Q-

sepharose fast-flow column (Amersham Pharmacia Biotech) that was equilibrated with a 20 mM 

Tris/HCl buffer, pH 7.8 containing 1 mM CHAPS. ADP-PFK activity eluted at 0.3 M NaCl in a 

125-ml gradient from 0 to 1 M NaCl. Active fractions were pooled and desalted by ultrafiltration 

using a 10 mM potassium phosphate buffer, pH 7.0. The desalted pool was applied to a 

hydroxyapatite CHT5-1 column (Bio-Rad) that was equilibrated with 10 mM potassium phosphate 

buffer. The enzyme eluted in a 75-ml linear gradient (10 to 500 mM potassium phosphate) at 250 

mM potassium phosphate. Active fractions were pooled, the buffer was changed for a 25 mM 

Tris/HCl buffer, pH 7.8 containing 1 mM CHAPS by ultrafiltration and the pool was loaded onto a 

mono-Q HR 5/5 column (Amersham Pharmacia Biotech) that was equilibrated in the same buffer. 

The enzyme eluted from the column at 0.3 M NaCl in a 20-ml linear gradient from 0 to 1 M NaCl. 

Fractions showing ADP-PFK activity were pooled and concentrated 16-fold to a final volume of 

460 ul. This concentrated pool was applied to a Superdex 200 HR 10/30 gelfiltration column 

(Amersham Pharmacia Biotech) that was equilibrated with a 100 mM Tris/HCl buffer, pH 7.8 

containing 100 mM NaCl, from which the protein eluted after 15 ml. The purity of the ADP-PFK 

was confirmed by SDS-PAGE. 

The purified enzyme was characterized by determining its specific activity, molecular mass, 

pH optimum, substrate specificity, kinetic parameters and allosteric effectors as described before 

(27). 

Results 

Genome analysis 

To investigate the presence of genes that potentially encode enzymes involved in the 

modified Embden-Meyerhof pathway, we screened recent releases of complete and incomplete 

genome sequences of archaea and thermophilic bacteria (Table 4.1). 
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Orthologs of the novel GAPOR were identified in the genomes of all three Pyrococcus 

species (P. furiosus, P. horikoshii and P. abyssi) and in that of M. jannaschii. A classical NAD-

dependent glyceraldehyde-3-phosphate dehydrogenase appeared to be present in all screened 

genomes. In P. furiosus this glyceraldehyde-3-phosphate dehydrogenase is involved in 

gluconeogenesis, whereas GAPOR functions in the glycolytic direction (28). 

Orthologs of the ADP-GLK were identified only in the genomes of all three Pyrococcus 

species. Genes encoding classical ATP-dependent hexokinases were identified in Halobacterium sp. 

strain NRC-1, Thermoplasma acidophilum, Aeropyrum pernix, and the hyperthermophilic bacteria 

Thermotoga maritima, Aquifex aeolicus, and Thermus thermophilus. 

Finally, ADP-PFK orthologs were identified in the three Pyrococcus genomes, the M. 

jannaschii genome, and the genome of Methanosarcina mazei Gol. Remarkably, both an ATP-PFK 

and a PP;-PFK ortholog were identified in the genome of Thermotoga maritima, whereas in the 

closely related Aquifex aeolicus only an ATP-PFK ortholog was identified. 

Table 4.1 Enzymes of the classical and modified Embden-Meyerhof pathway encoded in the different genomes of 

archaea and (hyper)thermophilic bacteria. 

GENOME 

Pfu 
Pho 
Pab 
Mja 
Mma 
Afu 
Mth 
Hal 
Tac 
Sso 
Ape 
Tma 
Aae 
Tth 

ATP-GLK 

AAG20664 
TA0825 

APE2091 
TM1469 
AQ1496 
Present 

ADP-GLK 

AF127910 
PH0589 
PAB0967 

ATP-PFK 

APE0012'' 
TM0209 
AQ1708 
Present 

ADP-PFK 

AF127909 
PHI 645 
PAB0213 
MJ1604 
Present' 

PP, PFK 

TM0289 

GAPDH" 

PF1729232 
PHI 830 
PAB0257 
MJ1146 
Present 
AF1732 
MT1009 
AAG18725 
TA1103 
SSO0528 
APE0171 
TM0688 
AQ1065 
Present 

GAPOR 

AAC70892 
PH0457 
PA1315 
MJ1185 

"Genome analyses were performed on the following organisms euryarchaea, Pfu, Pyrococcus furiosus; Pho, Pyrococcus 

horikoshii; Pab, Pyrococcus abyssi; Mja, Methanococcus jannaschii; Mma, Methanosarcina mazei; Afu, 

Archaeoglobus fulgidus; Mth, Methanobacterium thermoautotrophicum; Hal, Halobacterium NRC-1; Tac, 

Thermoplasma acidophilum. crenarchaea, Sso, Sulfolobus solfataricus; Ape, Aeropyrum pernix. bacteria, Tma, 

Thermotoga maritima; Aae, Aquifex aeolicus; Tth, Thermus thermophilus. 'GAPDH, glyceraldehyde 3-phosphate 

dehydrogenase. 'Present in the genome but not yet annotated. ''APEOOH was detected using the N-terminal amino acid 

sequence of the ATP-PFK from Desulfurococcus amylolyticus (6) and was recently experimentally confirmed (21). 

Interestingly, homologs of ADP-dependent sugar kinases (12 to 17% identity to the archaeal 

kinases) were identified in several eukaryotic genome sequences, i.e. those of Drosophila 

melanogaster (AAF49769), Caenorhabditis elegans (T32780), Mus musculus (BAB27619), and 

Homo sapiens (AAH06112) (query, ADP-GLK [AF 127910]; blastP, E< le-07); no homologous 
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Overexpression of the M. jannaschii pfkC gene in E. coli 

To gain insight into the substrate specificity of the methanogic ADP-PFK orthologs, we 

compared the properties of the enzyme of M. jannaschii to those of P. furiosus ADP-PFK. For this 

purpose, the M. jannaschii pfkC gene (MJ1604) was PCR-amplified and cloned into pET9d, 

resulting in plasmid pLUW575. DNA sequence analysis of pLUW575 confirmed that the cloned 

pjkC gene showed the expected sequence. SDS-PAGE analysis of a cell-free extract of E.coli 

BL21(DE3) harboring pLUW575 revealed an additional band of 51.5 kDa which corresponded to 

the calculated molecular mass (53.4 kDa) of the gene product (not shown). This band was absent in 

cell-free extracts of E.coli BL21(DE3) carrying the pET9d vector that also showed no ADP-PFK 

activity. In a cell-free extract of E.coli BL21(DE3) harboring pLUW575, an ADP-PFK activity of 

0.8 U/mg was measured at 50°C, confirming that the cloned M. jannaschii pfkC gene indeed 

encoded an ADP-PFK. The enzyme could be produced up to 10% of total soluble cell protein after 

16 h of cultivation at 37°C without inducing gene expression by adding isopropyl-1-thio-P-D-

galactopyranoside. 

Characteristics of the M. jannaschii ADP-PFK 

The is.co/j'-produced M. jannaschii ADP-PFK was purified to homogeneity. The native 

molecular mass of the enzyme, as determined by native PAGE at various acrylamide percentages 

was approximately 50.1 kDa, indicating that the M. jannaschii ADP-PFK is a monomer (not 

shown). 

Table 4.3 Phosphoryl group donor and cation dependence of the ADP-PFK from M.jannaschif. 

phosphoryl group donor 

ADP 
GDP 
ATP 
GTP 
Acetyl-phosphate 
Polyphosphate 
Phosphoenolpyruvate 
Pyrophosphate 
ADP 
ADP 
ADP 
ADP 

divalent cation 

Mg2+ 

Mg2+ 

Mg2+ 

Mg2+ 

Mg2+ 

Mg2+ 

Mg2+ 

Mg2+ 

Ca2+ 

Co2+ 

Mn2+ 

Zn2+ 

specific activity 
(mU/mg) 

8200 
115 
24.6 

664 
6806 
ND4 

ND 
ND 

9840 
6396 
4428 
ND 

relative activity 

(%) 
100 

1.4 
0.3 
8.1 

83 
ND 
ND 
ND 
120 
78 
54 

ND 
"Standard enzyme assays were done at 50°C, except that phosphoryl group donors and cations were varied as 

described in the Materials and Methods. 
6ND, not detectable, i.e. the activity was less than 0.3% of the activity under optimal conditions. 

The purified enzyme had a specific activity of 8.2 U/mg at 50°C at the optimum pH of 6.5, 

only in the direction of phosphorylation. Apart from ADP, acetyl-phosphate could serve as an 
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efficient phosphoryl group donor to the enzyme (Table 4.3). Divalent cations were required for 

activity, as indicated by complete lack of activity in the presence of EDTA. ADP-PFK activity was 

highest in the presence of CaCb followed by MgCb (Table 4.3). Both KC1 and NaCl had negative 

effects on the ADP-PFK activity (84 and 88 % activity in 500 mM KC1 and NaCl, respectively). 

Furthermore, the enzyme activity was negatively affected by the addition of ATP or AMP to the 

assay mixture (53 and 24 % activity in 10 mM ATP and AMP, respectively). However, the addition 

of fructose 2,6-bisphosphate, pyruvate, glucose, phosphoenolpyruvate, or citrate to the assay 

mixture had no effect on the activity. The enzyme showed Michaelis-Menten kinetics at 50°C, with 

the following constants, which were determined according to a computer-aided direct fit using the 

Michaelis-Menten equation: apparent Km values of 0.0096 ± 0.0007 mM and 0.49 ±0.13 mM for 

fructose 6-phosphate and ADP, respectively, and apparent Vmax values of 11.2 ± 0.3 and 9.59 ± 0.74 

U/mg for fructose 6-phosphate and ADP, respectively. For acetyl-phosphate as phosphoryl group 

donor, an apparent Km value of 11.9 ± 1.8 mM and an apparent Vmax of 14.4 ±1.0 U/mg at 50°C 

were determined. In a Hill plot, the kinetic data of fructose 6-phosphate, ADP and acetyl-phosphate 

showed noncooperative binding of the substrates (not shown). 

Discussion 

Following the discovery of ADP-PFK activity in P. furiosus (9) and characterization of this 

novel enzyme (27), ADP-PFK activity has been detected in various members of the order 

Thermococcales (18)(23). The presence of a glycolytic pathway in methanogens has recently been 

proposed based on (i) enzyme analyses of M. maripaludis (31), and (ii) analysis of the genome 

sequence of M. jannaschii, which revealed several glycolytic orthologs (2). However, no PFK gene 

was detected (24). Here, we demonstrate the functional presence of ADP-PFKs in methanogenic 

archaea, analyze their distribution and describe the unique catalytic properties of the purified 

enzyme from M. jannaschii. 

The recent characterization of the amino acid sequence of the P. furiosus and Thermococcus 

zilligii ADP-PFK (27)(20), resulted in the identification of orthologs in the genomes of both 

chemolithoautotrophic (M jannaschii and M. mazei) and heterotrophic (P. abyssi, P. horikoshii) 

Archaea (Table 4.1). These data already suggested that a modified Embden-Meyerhof pathway, as 

present in P. furiosus, might also be operational in methanogens. In addition, we determined PFK 

activity in all methanogens inverstigated, i.e., M. jannaschii, M. thermolithotrophicus, M. igneus 

and M. maripaludis, of the order Methanococcales, and M. mazei of the order Methanosarcinales 

(Table 4.2). Although ADP-PFK activity could de detected in M. concilii extracts, this activity was 

probably the result of the concerted action of ATP-PFK activity and high adenylate kinase activity 

(8). The high ADP-PFK activity (18 mU/mg) and relatively low ATP-PFK activity (3.8 mU/mg) 

49 

53 



Chapter 4 

these kinases was lost in these organisms. Only the heterotrophic order Thermococcales, as well as 

the glycogen-degrading orders Methanococcales and Methanosarcinales, are found to contain a 

functional variant of the Embden-Meyerhof pathway, and, as such, benefit from harboring an ADP-

PFK. 

The observed presence of unique ADP-PFK activity and the corresponding genes in the 

phylogenetically closely related Pyrococcus spp. and Methanococcus spp., as well as the deeply 

branched M. mazei, suggests that the specific function of ADP-dependent sugar phosphorylation 

originated at least before the branching of Thermococcales and Methanococcales and that gene 

duplication in the order Thermococcales has led to two specific enzymes, i.e, ADP-PFK and ADP-

GLK. The acquired sugar kinases and the gaining of specific glycosyl hydrolases and sugar 

transporters by Pyrococcus spp. (5) probably enabled these organisms to ferment sugars. The ADP-

PFKs described here most likely function as a key step of a central metabolic pathway. Functional 

analysis of the eukaryal homologs will be the next step to gain more insight in the evolution of this 

enzyme family. 

Addendum 

While this manuscript was being evaluated, Labes et al. described an ADP-GLK and ADP-

PFK activity in starch-degrading Archaeoglobus fulgidus strain 7324 (13). The corresponding genes 

have not yet been identified. In the genome sequence of type strain VC16 no genes encoding ADP-

GLK or ADP-PFK could be identified (12). 
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Abstract 

The hyperthermophilic archaeon Pyrococcus furiosus possesses a modified Embden-

Meyerhof pathway, including an unusual ADP-dependent glucokinase (ADP-GLK) and an ADP-

dependent phosphofructokinase (ADP-PFK). We here report on the characterization of a P. furiosus 

galactokinase (GALK) and its comparison with the P. furiosus ADP-GLK. The pyrococcal genes 

encoding the ADP-GLK and the GALK were functionally expressed in E. coli, and the proteins 

were subsequently purified to homogeneity. Both enzymes are specific kinases with an optimal 

activity at approximately 90 °C. Biochemical characterization of these enzymes confirmed that the 

ADP-GLK is unable to use ATP as phosphoryl group donor but revealed that GALK is ATP-

dependent and has an extremely high affinity for ATP. It is discussed that the unusual features of 

these two classes of kinases might reflect adaptations to a relatively low intracellular ATP 

concentration in the hyperthermophilic archaeon P. furiosus. 

Introduction 

During the catabolic conversion of carbohydrates sugar molecules are activated by specific 

kinases to a phosphorylated form (sugar + ATP -> sugar-P + ADP). The universal energy carrier of 

biological systems and the preferred phosphoryl group donor in most kinase reactions is ATP. 

However, glucose can also be phosphorylated by polyphosphate or by phosphoewo/pyruvate as part 

of phosphotransferase systems (PTS), and fructose 6-phosphate by pyrophosphate (PPi) instead of 

ATP (1,2,3). Sugar kinases of central catabolic pathways can be classified in at least four different 

monophyletic enzyme families (4) (http://www.scop.mrc-lmb.cam.ac.uk/scop/). Gluco/hexokinases 

generally belong to the hexokinase family. Phosphofructokinases belong to the phosphofructokinase 

(PFKA) family, or to the ribokinase (PFKB) family. Galactokinases are classified in the 

galactokinase family. Of the former three families crystal structures are available (5,6,7). 

Two sugar kinases have recently been identified in the hyperthermophilic archaeon 

Pyrococcus furiosus that differ considerably from the canonical glycolytic kinases by being 

dependent on ADP rather than ATP (8). The ADP-dependent glucokinase (ADP-GLK) has been 

purified from P. furiosus cell extracts and the protein was biochemically characterized (9,10). The 

gene encoding the ADP-dependent phosphofructokinase (ADP-PFK) from P. furiosus was 

expressed in E. coli and the protein was studied in detail. Primary structure analyses revealed that 

the ADP-GLK and ADP-PFK belong to the same enzyme family (11). Recently, the crystal 

structure of the ADP-GLK from Thermococcus litoralis revealed a similar fold as the ATP-

dependent ribokinase family (12). 

An intriguing question is why P. furiosus contains ADP-dependent kinases (ADP-GLK, and 

ADP-PFK) in its central metabolic pathway. A plausible reason would be that the ADP-dependent 
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kinases would enable P. furiosus to recover more easily after periods of starvation. As soon as 

glucose becomes available, phosphorylation of glucose can proceed due to the high ADP level 

under these conditions. An alternative explanation would be the fact that ADP is more stable than 

ATP at elevated temperatures, with half-lifes at 90 °C of 750 and 115 min, respectively (13). 

However, several hyperthermophilic species with similar optimum growth temperatures (T-opt. > 

80 °C), such as Thermotoga maritima (T-opt. 80 °C) or Desulfurococcus amylolyticus (T-opt. 90 

°C), are known to use ATP in the phosphorylation of sugars (14). Still, it can not be ruled out that 

the intracellular ATP concentration is relatively low in P. furiosus, either because of a distinct 

physiology, or because of the even more extreme optimum growth temperature (T-opt. 100 °C). 

Recent genome analysis revealed that an ortholog of a galactokinase (GALK) gene is 

present in P. furiosus (http://www.utah.edu). The ATP-dependent GALK is a key enzyme in 

galactose metabolism in bacteria and eucarya (15), and has not been studied in archaea before. Here 

we describe that the P. furiosus GALK is ATP dependent, implying that ADP- and ATP-dependent 

sugar kinases co-exists in this hyperthermophilic archaeon. A comparison of the characteristics of 

the is.co/j'-produced kinases from P. furiosus, the ATP-dependent GALK and the ADP-GLK reveals 

distinct adaptations of sugar kinases to function optimally at extreme temperatures. 

Experimental 

Materials 

ADP (monopotassium salt, less than 0.2% ATP), ATP (disodium salt), GDP (dilithium salt), 

glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP oxidoreductase, EC 1.1.1.49; 

yeast), GTP (dilithium salt), phosphoeno/pyruvate (tricyclohexylammonium salt), lactate 

dehydrogenase (EC 1.1.1.27; pig heart), phosphoglucose isomerase (D-glucose-6-phosphate ketol-

isomerase, EC 5.3.1.9; yeast), phosphomannose isomerase (D-mannose-6-phosphate ketol-

isomerase, EC 5.3.1.8; yeast), and pyruvate kinase (EC 2.7.1.40; rabbit muscle), were obtained from 

Roche Molecular Biochemicals. CDP (sodium salt), D-galactose, 2-deoxy-D-glucose, kanamycin A 

(monosulfate, less than 5% kanamycin B), NADP (sodium salt), and NADH (disodium salt), were 

obtained from Sigma (Bornem, Belgium). D-glucose, D-fructose, D-glucosamine, and D-mannose 

were obtained from Merck (Darmstadt, Germany). These and all other chemicals were of analytical 

grade. 

Organisms and growth conditions 

P. furiosus (DSM 3638) was obtained from the German Collection of Microorganisms 

(DSM Braunschweig, Germany) and was routinely grown at 90 °C, as described before (16). E.coli 
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XL1 Blue (Stratagene) was used as a host for the construction of pET9d (Novagen) derivatives. 

E.coli BL21 (DE3) (Stratagene) was used as an expression host. Both strains were grown in Luria-

Bertani medium with kanamycin (50 ug/ml) in a rotary shaker at 37 °C. 

Cloning of the sugar kinase genes in E. coli 

Based on the N-terminal sequence (9) the putative ADP-GLK gene was identified as 

described before (11). The following primer set was designed to amplify this open reading frame by 

polymerase chain reaction: BG451 (GCGCGCCATGGCACCCACTTGGGAGGAGCTTTA, sense) 

and BG452 (GCGCGGGATCCTTAGAGAGTGAATGAAAACTCACCAA, antisense), with Ncol 

and Bamffl restriction sites in bold. 

An ortholog of a classical GALK was identified in the P. furiosus genome database 

(http://www.genome.utah.edu). The N-terminus was based on the presence and proper spacing of 

the ribosomal binding site and annotation from the genome sequence. The following primer set was 

designed to amplify this open reading frame by polymerase chain reaction: BG376 (5'-

GCGCGCCATGGCAAGTAAAATCACTGTAAAATCT, sense) and BG377 (5'-GCGCGG-

GATCCTCATACTCCCACACCATCGGAG, antisense), with Ncol and BamUl restriction sites in 

bold. 

The procedure for cloning of the GALK and ADP-GLK gene was essentially the same. 

Chromosomal DNA was isolated from P. furiosus as described by Sambrook et al. (17). The PCR 

mixture (100 ul) contained: 100 ng P. furiosus DNA, 100 ng of each primer, 0.2 mM dNTP's, Pfu 

polymerase buffer, 5 U Pfu DNA polymerase. The mixture was subjected to 35 cycles of 

amplification (l'at 94°C, 45"at 60°C and 3'30" at 72°C) on a DNA Thermal Cycler (PerkinElmer 

Life Sciences). The PCR products were digested with Ncol/BamHl, and cloned into a Ncol/BamHl-

digested pET9d vector, resulting in pLUW570 and pLUW574, respectively. Sequence analyses on 

pLUW570 and pLUW574 was done by the dideoxynucleotide chain termination method with a Li-

Cor automatic sequence system (model 4000L). Sequence data were analyzed using the computer 

program DNASTAR. 

Overexpression of the sugar kinase genes in E.coli 

An overnight culture of E. coli BL21(DE3) containing pLUW570 or pLUW574 was used as 

a 1% inoculum in 1 liter of Luria-Bertani medium with 50 ug/ml kanamycin. After growth for 16 h 

at 37 °C, cells were harvested by centrifugation (2200 x g for 20 min) and resuspended in 10 ml of 

50 mM Tris/HCl buffer, pH 7.8. The suspension was passed twice through a French press (100 

megapascals), and cell debris was removed by centrifugation (10,000 x g for 20 min). The resulting 

supernatant was used for purification of the Is.co/j'-produced sugar kinases. 
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Purification of the sugar kinases 

For the purification of the E. co/7-produced GALK and ADP-GLK, the E. coli cell-free 

extracts were heated for 30 min at 70 °C, and precipitated proteins were removed by centrifugation. 

The supernatant containing GALK and ADP-GLK was filtered through a 0.45-um filter and loaded 

onto a Q-Sepharose fast flow column (25 ml, Amersham Pharmacia Biotech) that was equilibrated 

with 50 mM Tris/HCl buffer, pH 8.5, and 50 mM Tris/HCl buffer, pH 7.8, respectively. Bound 

proteins were eluted by a linear gradient of NaCl (0 to 1 M in Tris/HCl buffer). The GALK and 

ADP-GLK eluted at 0.40 M NaCl and 0.27 M NaCl, respectively. Active fractions were pooled and 

desalted with 50 mM Tris/HCl buffer, pH 7.8, using a Centricon filter with a 10-kDa cutoff. The 

concentrated extracts were further purified on a Superdex 200 HR 10/30 gel filtration column (24 

ml, Amersham Pharmacia Biotech), equilibrated with 50 mM Tris-HCl, pH 7.8, 100 mM NaCl. The 

E. co/r'-produced GALK and ADP-GLK eluted at 15.4 ml and 12.8 ml, respectively. The purified 

enzymes were desalted in 50 mM Tris/HCl, pH 7.8 as described above. To prevent microbial 

contamination, all the protein samples contained 0.02% sodium azide, and were stored at 4°C. 

Determination of standard enzyme activity 

GALK activity was determined by measuring the oxidation of NADH in a coupled assay 

with pyruvate kinase from rabbit muscle and lactate dehydrogenase from pig heart. One unit was 

defined as the amount of enzyme required to convert 1 umol of galactose per min. The standard 

assay was performed at 50 °C. At this temperature the rabbit and pig enzymes remained active, and 

the P. furiosus enzyme was sufficiently active to measure its activity. The standard assay mixture 

contained 100 mM Tris/HCl, pH 7.8, 2 mM EDTA, 10 mM MgCl2, 0.2 mM NADH, 15 mM D-

galactose, 5 mM ATP, 2 mM phosphoewo/pyruvate, 2 U pyruvate kinase, 4 U lactate 

dehydrogenase, and 5-50 ul of enzyme preparation. The absorbance of NADH was followed at 340 

nm (e = 6.3 mM''cm"'). The auxiliary enzymes were present in excess, to ensure that the detected 

NADH oxidation corresponded to the GALK activity. 

ADP-GLK activity was determined by measuring the formation of NADPH in a coupled 

assay with yeast glucose-6-phosphate dehydrogenase. One unit was defined as the amount of 

enzyme required to convert 1 umol of glucose per min. The assay was performed at 50 °C. At this 

temperature the yeast enzyme remained active, and the P. furiosus enzyme was sufficiently active to 

measure its activity. The standard assay mixture contained 100 mM Tris/HCl, pH 7.8, 2 mM EDTA, 

10 mM MgCl2, 0.5 mM NADP, 15 mM glucose, 2 mM ADP, 0.35 units of D-glucose-6-phosphate 

dehydrogenase, and 5-50 ul of enzyme preparation. The production of NADPH was measured at 

340 nm (E = 6.3 nM'cm'1). The auxiliary enzyme was present in excess, to ensure that the detected 

NADPH formation corresponded to the ADP-GLK activity. 
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Protein concentrations were determined with Coomassie Brilliant Blue G-250 as previously 

described (18). 

Substrate specificity 

For the determination of the substrate specificity of GALK, the standard enzyme assay was 

used. Instead of D-galactose either D-glucose, D-fructose, D-mannose, 2-deoxy-D-glucose or D-

glucosamine was added as substrate. The divalent cation requirement was tested by adding 10 mM 

of MnCl2, CaCl2, ZnCl2, or CoCl2 instead of MgCl2 to the standard assay mixture. Phosphoryl 

group donor specificity of GALK was determined by high-performance liquid chromatography. The 

assay mixture contained 100 mM Tris/HCl buffer, pH 7.8, 2 mM EDTA, 10 mM MgCl2, 10 mM 

galactose and 10 mM of phosphoryl group donor (either ATP, ADP, GTP, PEP, or PPj). After 

incubation for an appropriate time at 50 °C, the reaction was stopped on ice and analyzed by high-

performance liquid chromatography. To test whether GALK phosphorylates galactose into 

galactose-1-phosphate, 13C-/31P-NMR spectra of the conversion of [l-'3C]-galactose by the purified 

GALK were recorded at 76.47 MHz (13C) and 125.5 MHz (31P) on an AMX300 spectrometer 

(Bruker, Germany) using a 10 mm (outer diameter) probe. The incubation was continued for 12 min 

at 80 °C, whereas 1 min spectra were recorded. The presence of a-galactose-1-phosphate was 

confirmed by spiking with commercial a-galactose-1-phosphate (Sigma) 

The use of 2-deoxy-D-glucose and D-galactose as possible substrates for the ADP-GLK was 

tested using the standard enzyme assay because the auxiliary enzyme from yeast is also able to use 

galactose-6-phosphate. For the determination of D-fructose as a possible substrate, phosphoglucose 

isomerase (1.4 units) was added to the standard assay mixture. D-mannose was tested by adding 

phosphomannose isomerase (0.6 units) and phosphoglucose isomerase (1.4 units) as auxiliary 

enzymes. All sugars were tested at a concentration of 15 mM. As possible phosphoryl group donor, 

ATP, GDP, CDP, PEP, or PPj (each 2 mM) were used instead of ADP. The divalent cation 

requirement was tested by adding 10 mM of MnCl2, CaCl2, ZnCl2, or CoCl2 instead of MgCl2 to the 

standard assay mixture. 

Molecular mass determination 

The molecular mass of GALK and ADP-GLK were determined on a Superdex 200 HR 

10/30 gel filtration column (24 ml, Amersham Pharmacia Biotech) using 50 mM Tris/HCl buffer, 

pH 7.8, with 100 mM NaCl. The column was calibrated using the following standard proteins: 

ribonuclease A (13.7 kDa), chymotrypsinogen A (25 kDa), ovalbumin (43 kDa), bovine serum 

albumin (67 kDa), aldolase (158 kDa), and catalase (232 kDa). 
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pH optimum 

The pH optimum of GALK and ADP-GLK were determined in the standard enzyme assay at 

50 °C in 200 mM Tris/maleate buffer over the pH range 3.9-8.4. Buffer pH values were adjusted at 

the temperature of incubation. 

Temperature optimum 

The effect of temperature on the activity of the sugar kinases was determined by incubating 

an appropriate amount of purified enzyme in 1-ml crimp-sealed vials containing 200 mM 

Tris/maleate buffer, pH 8.5, 20 mM MgCi2, and 20 mM galactose and glucose, respectively. The 

vials were submerged in an oil bath at temperatures from 30 to 110 °C, preheated for 5 min, and the 

enzyme reaction was started by injecting 10 ul of 100 mM ATP and ADP, respectively. After 1, 3, 

5 min, the reaction was stopped by putting the vials on ice, and the amount of product formed was 

determined spectrophotometrically at room temperature, by measuring the oxidation of NADH and 

the reduction of NADP in the standard enzyme assays for GALK and ADP-GLK, respectively. 

Corrections were made for the chemical conversion of ATP in the absence of GALK. 

Kinetic parameters 

Kinetic parameters of GALK were determined at 50 and 90 °C, in 100 mM MOPS, pH 7.0 

(50 °C and 90 °C) by varying the concentration of ATP (0.0005-5 mM) or galactose (0.05-10 mM), 

in the presence of 5 mM galactose or 2 mM ATP, respectively. Kinetic parameters of ADP-GLK 

were determined at 50 and 90 °C in 200 mM Tris/maleate, pH 7.0 (50 °C and 90 °C), by varying the 

concentration of ADP (0.02-2 mM) or glucose (0.1-10 mM) in the presence of 15 mM glucose or 2 

mM ADP, respectively. At 50 °C a continuous assay was used, whereas at 90 °C a discontinuous 

assay was used, as described under "Temperature optimum". Data were analyzed by computer-

aided direct fit to the Michaelis-Menten curve (program Tablecurve). 

Results and discussion 

Overexpression and purification of the GALK and ADP-GLK 

The open reading frames predicted to encode the P. furiosus GALK (1062 bp) and ADP-

GLK (1371 bp), were PCR-amplified and cloned into pET9d, resulting in plasmids pLUW570 and 

pLUW574, respectively. DNA sequence analysis of pLUW570 and pLUW574 confirmed the 

cloning of the correct open reading frames into pET9d. SDS-PAGE analysis (not shown) of a heat-

treated cell-free extract of E.coli BL21(DE3) harboring either pLUW570 or pLUW574 revealed an 

additional band of approximately 38 kDa and 51 kDa, respectively, which was in good agreement 
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with the calculated molecular mass of the gene product (39.4 kDa and 51.3 kDa). A heat-treated 

cell-free extract of E.coli BL21(DE3) harboring pLUW570 was found to contain a thermoactive 

ATP-dependent GALK activity of 0.7 units/mg, confirming the identity of the gene. In a heat-

treated cell-free extract of E.coli BL21(DE3) harboring pLUW574, an ADP-GLK activity of 17.5 

units/mg was measured, confirming that the gene indeed encoded an ADP-GLK. In extracts of 

E.coli BL21(DE3) carrying the pET9d vector without insert, the additional protein bands in SDS-

PAGE analyses were absent and neither GALK nor ADP-GLK activity was detected. 

GALK and ADP-GLK could be produced up to 20% and 10% of total soluble cell protein, 

respectively, after growth for 16 h at 37 °C. Both enzymes were purified to apparent homogeneity 

(>95 %, not shown) by two successive chromatographic steps. The molecular mass of GALK and 

ADP-GLK was determined by gel filtration chromatography to be approximately 32 kDa and 89 

kDa, respectively, suggesting GALK is a monomer and ADP-GLK is a dimer. The dimeric structure 

of the £.co/z"-produced ADP-GLK is in good agreement with that of the native ADP-GLK, which 

has a molecular mass of 93 kDa (9). Classical GALKs in general occur as monomers or dimers 

(19,20,21), which agrees well with the determined monomeric structure of the P.furiosus GALK. 

Primary structure comparison andphylogeny 

Orthologs of the P. furiosus GALK were identified in a wide range of bacteria and eucarya, 

with a high degree of identity {E.coli; 32% identity P06976 and Human; 31% identity NP_000145). 

No orthologs could be identified in any of the archaeal or hyperthermophilic bacterial genomes, 

except for Pyrococcus horikoshii (PH0369 putative GALK, 77% identity), Thermotoga maritima 

(TM1190 putative GALK, 41% identity), and Thermotoga neapolitana (putative GALK, 41% 

identity). Analysis of the primary structure of the P. furiosus GALK revealed the presence of all 

typical GALK motifs (Fig. 5.1). The presence of a GALK ortholog in both P. furiosus and P. 

horikoshii, and the absence of this gene in all other available archaeal genomes, including 

Pyrococcus abyssi, is an example of a gain of genetic information in these Pyrococci, probably the 

result of horizontal gene transfer (22). 

The P. furiosus ADP-GLK is unrelated to classsical gluco/hexokinases and showed high 

similarity with ADP-GLKs and ADP-PFKs from several Pyrococcus species and from 

Methanococcus jannaschii (11). Recently, the functional presence of homologs has been identified 

in several methanogens, and homologs (with unidentified functions) have been identified in higher 

eukaryotes (23). In contrast to GALK, ADP-GLK is phylogenetically unrelated to its canonical 

counterparts, and presumably has evolved independently. The specific function of ADP-GLK (and 

ADP-PFK) might therefore have been invented in the archaea as an adaptation to function optimally 

under extreme conditions. 
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Figure 5.1 Multiple sequence alignment of the deduced amino acid sequence of the P. furiosus GALK with 

sequences of GALKs from bacteria and eucarya. 

Sequences were deduced from the following accession numbers: Pyrococcus furiosus (AAG28454), Pyrococcus 

horikoshii PH0369 (NP142343), Thermotoga neapolitana (085253), Thermotoga maritima TM1190 (P56838), 

Escherichia coli (P06976), Lactococcus lactis (Q9R7D7), Bacillus subtilis (P39574), Homo sapiens (NP000145), Mus 

musculus (AAF78226). Gaps introduced for optimal alignment are marked by hyphens. Completely conserved regions 

are indicated as black boxes. Highly conserved regions are shaded grey. Conserved motifs are indicated in bars above 

the alignment. Motif 1. G-R-x-N-[LIV]-I-G-[DE]-H-x-D-Y; GALK signature (PS00106). Motif 2. [LIVM]-[PK]-x-

[GSTA]-x(0,l)-G-L-[GS]-S-S-[GSA]-[GSTAC]; GHMP kinases putative ATP-binding domain (PS00627). 
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Biochemical characteristics and physiology ofGALK and ADP-GLK 

Two distinct kinases, i.e. ATP-dependent and ADP-dependent, are potentially present in P. 

furiosus for galactose and glucose conversion, respectively. The presence of enzyme activities of 

GALK (0.001 units/mg)(C. Verhees, unpublished), ADP-GLK (0.4 units/mg) (9) and ADP-PFK 

(0.2 units/mg) (9) could be demonstrated in extracts of P. furiosus grown on starch. Moreover, the 

presence of both ADP-GLK and GALK transcripts has been established by RT-PCR and primer 

extension (C. Verhees, unpublished). As expected, ATP-dependent phosphorylation of glucose and 

ADP-dependent phosphorylation of galactose could not be detected in P. furiosus extracts. 

120 

30 40 50 60 70 80 90 100 110 120 

temperature °C 

Figure 5.2 Dependence ofGALK and ADP-GLK activity on temperature. 

Activity was determined as described in Materials and Methods. 100% activity corresponds to 33.5 and 844 units/mg 

for GALK (A) and ADP-GLK (•), respectively. Inset, Arrhenius plot indicating a break point at 60 °C for ADP-GLK. 

The purified GALK was found to have a specific activity of 0.96 units/mg at 50 °C at its 

optimum pH of 5.0 in a Tris/maleate buffer, and retained >50% of its optimal activity between pH 

4.5 and pH 8.5 (not shown). Classical GALKs from bacteria and eucarya generally have a more 

neutral or even alkalic optimum pH, e.g. E. coli pH 7.8 (24), Saccharomyces cerevisiae pH 8.3 (20), 

Vicia faba pH 7.3 (25). The P. furiosus GALK is the first archaeal and thermoactive GALK 

presently known, and showed maximal activity at approximately 90 °C (Fig. 5.2). The second most 

thermoactive GALK studied is the one from Tetrahymena thermophila with an optimum 

temperature of 41 °C (19). For its activity, the P. furiosus GALK required divalent cations, with 

highest activity in the presence of Mn2+ followed by Mg2+ The enzyme was very specific for its 

substrate since the enzyme under the tested conditions could phosphorylate only galactose and ATP 
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was the only suitable phosphoryl group donor for the enzyme (Table 5.1). 13C-NMR showed that 

GALK converted a mixture of a- and P-[l-13C]-galactose (being in anomeric equilibrium) into only 

a-[l-13C]-galactose 1-phosphate. This was confirmed by 31P-NMR upon spiking with a-galactose 

1-phosphate (not shown). It was thus determined that a single phosphate from ATP was transferred 

to the Ci position of galactose producing a-galactose 1-phosphate and ADP. In contrast to the 

ADP-GLK, the P. furiosus GALK shows the same substrate preferences as its classical 

counterparts. GALK showed Michaelis-Menten kinetics at 50 °C, and apparent Km values of 0.21 ± 

0.02 and 0.006 ± 0.001 mM, and apparent Vmax values of 3.66 ± 0.08 and 3.42 ± 0.006 units/mg for 

galactose and ATP, respectively, were determined. Apparent Km values for GALK were not 

significantly different at 90 °C, 0.27 ± 0.03 and 0.008 ± 0.002 mM for galactose and ATP, 

respectively, and apparent Vmax values of 43.2 ± 3.8 and 41.9 ± 3.2 units/mg for galactose and ATP, 

respectively, were determined at 90 °C. 

Table 5.1 Substrate specificity and cation dependency of GALK and ADP-GLK from P. furiosus. 

Sugar 

D-glucose 
D-galactose 
D-fructose 
D-mannose 
2-deoxy-D-glucose 
D-glucosamine 

GALK 

<0.3 
100 

<0.3 
<0.3 
<0.3 
<0.3 

lelative 
activity 

% 
ADP-GLK 

100 
<0.3 
<0.3 

2 
8 

<0.3 

Divalent 
cation 

- j ^ 
Mn2* 
Co2+ 

Ca2+ 

Zn2+ 

GALK 

100 
37 
35 
7 

<0.3 

Relative 
activity 

% 
ADP-GLK 

88 
100 
59 
15 
60 

Phosphoryl 
group 

ATP 
ADP 
GTP 
GDP 
CDP 
PPi 
PEP 

donor 

GALK 

100 
<0.3 

60 
NM" 
NM 
<0.3 
<0.3 

Relative 
activity 

% 
ADP-GLK 

<0.3 
100 
NM 
<0.3 

66 
NM 
<0.3 

Standard enzyme assays were done, except that cations, carbon substrates, and phosphoryl group donors were varied, as 

described under "Experimental". 100% activity of GALK and ADP-GLK corresponds to a specific activity of 2.6 and 

139 units/mg, respectively. 

"NM : not measured 

The successful heterologous production of the P. furiosus ADP-GLK in E. coli, allowed for 

comparing the properties of the E. co/z'-produced ADP-GLK with that of the native ADP-GLK at 

the optimum pH of 7.5. The purified is.co/z'-produced ADP-GLK was found to have a specific 

activity of 189 units/mg, similar to the native ADP-GLK (9). The ADP-GLK exhibited a similar 

optimum temperature as GALK of approximately 90 °C. (Fig. 5.2). Interestingly, the ADP-GLK 

was able to convert D-mannose to some extent, next to D-glucose and 2-deoxy-D-glucose (Table 

5.1). ADP and CDP were potential phosphoryl group donors for ADP-GLK, while it could not use 

ATP. ADP-PFK from P. furious, on the other hand, was able to use ATP to some extent (11). 

Divalent cations were required for activity, with the highest activity in the presence of Mg2+
j similar 

to the native ADP-GLK (9). For the E. co/i-produced ADP-GLK apparent Km values of 1.12 ± 0.10 
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mM and 0.078 ± 0.007 mM, and apparent Vmax values of 300 ± 8 and 213 ± 8 units/mg for glucose 

and ADP, respectively, were determined at 50 °C, similar to the kinetic parameters of the native 

enzyme. In general, the characteristics of the Zs.co//-produced ADP-GLK closely resemble those of 

the native ADP-GLK. The affinity of ADP-GLK for both glucose and ADP was lower at 90 °C, 

resulting in apparent Km values of 2.61 ± 0.28 and 0.45 ± 0.09 mM, and apparent Vmax values of 

1740 ± 210 and 2260 ± 150 units/mg, respectively. Thus, the affinity of the ADP-GLK for glucose 

and ADP decreased 2- and 6-fold, respectively, between 50 °C and 90 °C. This might be explained 

by assuming that ADP-GLK encounters a conformational change upon raising the temperature, 

which affects the affinity for ADP. Indeed, a break was observed in the Arrhenius plot for the ADP-

GLK at approximately 60 °C (Fig. 5.2), which can be interpreted as such a structural change. 

Table 5.2 Comparison of GALK and ADP-GLK from P. furiosus with other GALKs and ATP-dependent hexo-

(HK) and glucokinases (GLK). 

Type 

GALK 
GALK 
GALK 
GALK 

GLK 
GLK 
GLK 
HK 

Species 

Pyrococcus furiosus 
Escherichia coli 
Saccharomyces cerevisiae 
Homo sapiens 

Pyrococcus furiosus 
Escherichia coli 
Saccharomyces cerevisiae 
Homo sapiens 

Assay temp. 
°C 
90 
37 
30 
37 

90 
37 
25 
37 

Sugar 
Km 
mM 
0.27 
0.70 
0.60 
0.12 

2.61 
0.78 
0.03 
0.065 

kca/Km 

mJVr's"1 

105 
13.8 
89.9 

568 

570 
117 
631 
411 

Phosphoryl 

mM 
0.008 
0.10 
0.15 
0.35 

0.45 
3.76 
0.05 
0.49 

group donor 
kcJK„ 
m M V 
3439 

96.7 
360 
195 

4294 
24.3 

378 
54.5 

Ref. 

This study 
24 
20 
21 

This study 
26 
27 
28 

The catalytic efficiencies of both sugar kinases, determined at 90 °C, were compared to 

those from characterized galactokinases and hexo/glucokinases from mesophiles (Table 5.2). These 

data show that the catalytic efficiencies of the pyrococcal sugar kinases for galactose and glucose 

resemble that of respective sugar kinases from mesophilic bacteria and eukaryotes. On the contrary, 

the catalytic efficiency of the pyrococcal sugar kinases for the phosphoryl group donor is 10- to 

150-fold higher compared to their mesophilic counterparts (Table 5.2). This difference is caused by 

the high Vmax of ADP-GLK (2260 units/mg) and the extremely low Km for GALK (0.008 mM) at 90 

°C. The observation of a high catalytic efficiency for adenine nucleotides and a normal catalytic 

efficiency for carbohydrates might suggest that the availability of certain nucleotides in the 

hyperthermophilic P. furiosus cells is lower than in cells of mesophilic organisms. Interestingly, the 

ADP-GLK is strongly inhibited (competitively) by AMP (Kt -0.06 mM) (C. Verhees, unpublished), 

and hence the AMP concentration should be kept low during sugar fermentation in P. furiosus. The 

concentration of both ATP and AMP can be kept low by their conversion into ADP by an adenylate 

kinase (0.045 units/mg) (29). The produced ADP can subsequently serve as energy carrier for 

glycolysis. In this scenario, the high affinity of GALK for ATP as well as the ADP-dependence of 

the glycolytic kinases (Table 5.2) could be interpreted as an adaptation to relatively low 
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concentrations of ATP, possibly as a result of thermal instability of ATP. Interestingly, the recent 

characterization of a glycerol kinase from the closely related Pyrococcus (Thermococcus) 

kodakaraensis KOD1 (T.-opt. 95 °C) revealed that this enzyme also has a relatively high affinity for 

ATP (Km 15.4 nM) compared to a mesophilic counterpart (Km 4 mM) (30). Studies are underway to 

determine the intracellular adenine nucleotide concentrations under different growth conditions in 

P. furiosus, to get more insight in the actually availability of energy carriers under extreme 

conditions. 
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Abstract 

Pyrococcus furiosus uses a variant of the Embden-Meyerhof pathway during growth on 

sugars. All but one of the genes that encode the glycolytic enzymes of P. furiosus have previously 

been identified, either by homology searching of its genome or by reversed genetics. We here report 

the isolation of the missing link of the pyrococcal glycolysis, the phosphoglucose isomerase (PGI), 

which was purified to homogeneity from P. furiosus and biochemically characterized. The P. 

furiosus PGI, a dimer of identical 23.5-kDa subunits, catalyzes the reversible isomerization of 

glucose-6-phosphate to fructose-6-phosphate, with Km values of 1.99 mM and 0.63 mM, 

respectively. An optimum pH of 7.0 has been determined in both directions, and at its optimum 

temperature of 90 °C the enzyme has a half-life of 2.4 h. The N-terminal sequence was used for the 

identification of the pgiA gene in the P. furiosus genome. The pgiA transcription start site has been 

determined, and a monocistronic messenger was detected in P. furiosus during growth on maltose 

and pyruvate. The pgiA gene was functionally expressed in E. coli BL21(DE3). The deduced amino 

acid sequence of this first archaeal PGI revealed that it is not related to its bacterial and eukaryal 

counterparts. In contrast, this archaeal PGI shares similarity with the cupin superfamily that consists 

of a variety of proteins that are generally involved in sugar metabolism in both prokaryotes and 

eukaryotes. As for the P. furiosus PGI, distinct phylogenetic origins have previously been reported 

for other enzymes from the pyrococcal glycolytic pathway. Apparently, convergent evolution by 

recruitment of several unique enzymes has resulted in the unique Pyrococcus glycolysis. 

Introduction 

The hyperthermophilic archaeon Pyrococcus furiosus is capable of metabolizing sugars via 

a modified Embden-Meyerhof pathway (1). Novel enzymes and unique control points in this 

pathway have been elucidated and involve two phosphorylation and an oxidoreduction reaction 

(2,3,4,5). 

A first variation of the pyrococcal glycolysis concerns the unique ADP-dependent sugar 

kinases, i.e. ADP-dependent glucokinase (ADP-GLK) and ADP-dependent phosphofructokinase 

(ADP-PFK) have been characterized biochemically, and the paralogous genes were identified on 

the P. furiosus genome (2,3). The recently determined crystal structure of the ADP-GLK from the 

related archaeon Thermococcus litoralis revealed that the ADP-dependent sugar kinase family 

(ADP-GLK and most likely ADP-PFK) belong to the ribokinase family (6), whereas their bacterial 

and eukaryal counterparts belong to the hexokinase and PFK family, respectively (7,8). 

A second variation concerns the glycolytic conversion of glyceraldehyde 3-phosphate to 3-

phosphoglycerate in P. furiosus that was found to be catalyzed by the unique glyceraldehyde-3-

phosphate ferredoxin oxidoreductase (GAPOR) enzyme (4,5). This ferredoxin-dependent, single-
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step conversion of glyceraldehyde 3-phosphate was shown to represent a novel site of glycolytic 

regulation in P. furiosus (5). 

With the increasing number of available sequence data from different species, including 

bacteria, eucarya and archaea, and functional characterization of the gene products, most of the 

genes encoding the other P. furiosus glycolytic enzymes (fructose-1,6-bisphosphate aldolase, 

triosephosphate isomerase, phosphoglycerate mutase, enolase, and pyruvate kinase) could readily 

be identified in its genome (9). Attempts to identify the gene encoding phosphoglucose isomerase 

(PGI) by a bioinformatics approach have hitherto been unsuccessful. Although significant PGI 

activity has previously been detected (0.2 units/mg) in a P. furiosus cell-free extract (1,2,10,11), no 

ortholog of a bacterial/eukaryal PGI could be identified in the P. furiosus genome. This suggested 

that P. furiosus might possess a distinct type of PGI. To complete the P. furiosus glycolytic 

pathway and to obtain insight in the anticipated novel type of PGI, we here report on the 

purification of the PGI enzyme from P. furiosus, its characterization, and the isolation of the 

corresponding pgiA gene. This is the first molecular and biochemical characterization of an archaeal 

PGI, that indeed represents a novel type of this enzyme. 

Experimental procedures 

Materials 

All chemicals and enzymes were purchased from Sigma, Merck or Roche Molecular 

Diagnostic in analytical grade. Aspergillus nidulans mannitol-1 -phosphate dehydrogenase was 

purified from an overproducing A. nidulans strain as described previously (12). 

Organisms and growth conditions 

P. furiosus was cultivated in artificial seawater medium as described before (3). Escherichia 

coli XL1 Blue was used as a host for the construction of pET24d derivatives. E. coli BL21 (DE3) 

was used as an expression host. Both strains were grown in Luria Bertani medium with kanamycin 

(50 ng/ml) in a rotary shaker at 37 °C. 

Preparation of cell-free extract from P. furiosus 

P. furiosus cells from a 200-liter culture were harvested by continuous centrifugation 

(Sharpies, Rueil, France) and stored at -20 °C until use. Cell-free extract was prepared by 

suspending a cell paste in 2 volumes (w/v) of 50 mM Tris/HCl buffer, pH 7.5, and treatment in a 

French press at 100 megapascals. Cell debris was removed by centrifugation for lh at 100,000 x g 

at 10 °C. 
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Purification of the PGIfrom P. furiosus cell-free extract 

To prevent microbial contamination, all buffers contained 0.02% sodium azide. Cell-free 

extract (27 ml) was filtered (0.45 urn), brought to 1.7 M ammonium sulfate saturation and loaded 

onto a Phenyl-Sepharose fast flow column (69 ml, Amersham Pharmacia Biortech), equilibrated in 

50 mM Tris/HCl buffer, pH 7.8, containing 1.7 M ammonium sulfate. During a 350-ml linear 

gradient (1.7-0.0 M ammonium sulfate) PGI activity eluted at 1.0 M ammonium sulfate. Active 

fractions were pooled and desalted by filtration (Macrosep, 10-kDa cutoff), using a 50 mM 

Tris/HCl buffer, pH 8.5. The desalted PGI pool was applied to a Q-Sepharose fast flow column (25 

ml, Amersham Pharmacia Biotech) that was equilibrated in the same buffer. The PGI eluted in a 

125-ml linear gradient (0.0-0.7 M NaCl) at 0.27 M NaCl. Active fractions were pooled and dialysed 

against 20 mM potassium phosphate buffer, pH 7.0. The desalted PGI pool was applied to a 

hydroxyapatite column (20 ml, Biorad) that was equilibrated in the same buffer. PGI activity eluted 

in a 200-ml linear gradient (20-500 mM potassium phosphate) at 140 mM potassium phosphate. 

Active fractions were pooled, the buffer was changed for a 50 mM Tris/HCl buffer, pH 7.6 by 

dialysis and the pool was loaded onto a mono-Q HR 5/5 column (1 ml, Amersham Pharmacia 

Biotech) that was equilibrated in the same buffer. PGI activity eluted in a 30-ml linear gradient (0.0-

0.7 M NaCl) at 0.18 M NaCl. Fractions showing PGI activity were pooled and concentrated 10-fold 

to a final volume of 100 |il. This concentrated pool was applied to a Superdex 200 HR 10/30 

gelfiltration column (24 ml, Amersham Pharmacia Biotech) that was equilibrated with a 50 mM 

Tris/HCl buffer, pH 7.8 containing 100 mM NaCl, from which the protein eluted after 14.5 ml. The 

purified PGI was desalted in 50 mM Tris/HCl, pH 7.8 using a Microsep filter with a 10-kDa cutoff. 

Cloning of the PGI Gene 

The N-terminal sequence of the purified PGI was determined by the Edman degradation 

method. The sample was subjected to SDS-PAGE and electroblotted on a polyvinylidene difluoride 

membrane prior to analysis. The N-terminal amino acid sequence was used for BLAST search of 

the P. furiosus database (http://www.genome.utah.edu), and identification of the PGI gene (pgiA, 

accession number AF381250, NCBI Genbank™). The following primer set was designed to 

amplify this open reading frame by PCR: BG902 (5'- GCGCGTCATGATGTATAAGGAACCT-

TTTGGAGTG, sense) and BG903 (5'- GCGCGAAGCTTCTACTTTTTCCACCTGGGATTAT, 

antisense), with BspHl and Hindlll restriction sites in bold. 

The 100-ul PCR mixture contained 100 ng of P. furiosus DNA, isolated as described before 

(13), 100 ng each of primer BG902 and BG903, 0.2 mM dNTPs, Pfu polymerase buffer, and 5 units 

of Pfu DNA polymerase and was subjected to 35 cycles of amplification (1 min at 94 °C, 1 min at 

56 °C, and 1 min at 72 °C) on a DNA Thermal Cycler (PerkinElmer Life Sciences). The PCR 

product was digested (BspHVHindlll) and cloned into an AfcoI/7/iwt/III-digested pET24d vector, 
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resulting in pLUW557, which was transformed into E. coli XL1 Blue and BL21(DE3). Sequence 

analysis on pLUW557 was done by the dideoxynucleotide chain termination method with a Li-Cor 

automatic sequencing system (model 4000L). Sequencing data were analyzed using the computer 

program DNASTAR. 

Overexpression of the PGI gene in E. coli 

An overnight culture of E. coli BL21(DE3) containing pLUW557 was used as a 1% 

inoculum in 1 liter of Luria Bertani medium with 50 ug/ml kanamycin. Gene expression was 

induced by adding 0.1 mM isopropyl-1-thio-P-D-galactopyranoside at the Aeoo of 0.5. Growth was 

continued for 10 h at 37 °C, and cells were harvested by centrifugation (2,200 x g for 20 min) and 

resuspended in 10 ml of 50 mM Tris/HCl buffer, pH 7.6. The suspension was passed twice through 

a French press (100 megapascals), and cell debris was removed by centrifugation (10,000 x g for 20 

min). The resulting supernatant was used for purification of the recombinant PGI. 

Purification of recombinant PGI 

The E. coli cell-free extract containing pLUW557 was heat-treated for 30 min at 80 °C, and 

precipitated proteins were removed by centrifugation. The heat-treated cell-free extract was filtered 

through a 0.45 um filter and applied to a mono-Q HR 5/5 column (Amersham Pharmacia Biotech), 

equilibrated with 50 mM Tris/HCl pH 7.6. The PGI activity eluted at 0.18 M NaCl during a linear 

gradient of 0.0 - 1.0 M NaCl. Active fractions were pooled and concentrated 10-fold to a final 

volume of 100 ul using a Microsep filter with a 10-kDa cutoff. The concentrated pool was loaded 

onto a Superdex 200 HR 10/30 gelfiltration column (Amersham Pharmacia Biotech), equilibrated 

with 50 mM Tris/HCl, pH 7.8 containing 100 mM NaCl. The recombinant PGI eluted at 14.5 ml. 

The purified enzyme was desalted in 50 mM Tris/HCl, pH 7.8 using a Microsep filter with a 10-

kDa cutoff. 

Protein concentration and purity 

Protein concentrations were determined with Coomassie Brilliant Blue G250 as described 

before (14) using bovine serum albumin as a standard. The purity of the enzyme was checked by 

SDS-PAGE as described before (15). Protein samples for SDS-PAGE were heated for 5 min at 100 

°C in an equal volume of sample buffer (0.1 M citrate-phosphate buffer, 5% SDS, 0.9% 2-

mercaptoethanol, 20% glycerol, pH 6.8). 
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Determination of enzyme activity 

PGI activity was determined in 100 mM MOPS buffer, pH 7.0 (50 °C). Enzyme 

preparations were added in 5-50 \x\. Enzyme activity on fructose-6-phosphate was determined by 

measuring the formation of NADPH in a coupled assay with yeast glucose-6-phosphate 

dehydrogenase. The assay mixture contained 0.5 mM NADP, 5 mM fructose 6-phosphate and 0.35 

units of D-glucose-6-phosphate dehydrogenase. The activity of the PGI on glucose 6-phosphate was 

determined by measuring the decrease of NADH in a coupled assay with Aspergillus nidulans 

mannitol-1-phosphate dehydrogenase (12). The assay mixture contained 0.2 mM NADH, 5 mM 

glucose 6-phosphate and 1.4 units of mannitol-1-phosphate dehydrogenase. One unit was defined as 

the amount of enzyme required to convert 1 umol of fructose-6-phosphate or glucose-6-phosphate 

per min. All enzyme assays were performed at 50 °C. At this temperature the yeast and A. nidulans 

enzyme remained active, and the P. furiosus enzyme was sufficiently active to measure its activity. 

The auxiliary enzymes were present in excess, to ensure that the detected NADPH and NADH 

absorbance at 340 nm (e = 6.3 mM'cm"1) corresponded to the PGI activity. 

Substrate specificity 

Substrate specificity was investigated using purified PGI. The use of fructose 6-phosphate 

and glucose 6-phosphate as possible substrates for the PGI was tested using the standard enzyme 

assay. For the determination of mannose 6-phosphate as possible substrate the standard enzyme 

assay for glucose 6-phosphate was used. Glucose, fructose, galactose and mannose were tested as 

possible substrates by incubating an appropriate amount of PGI with 5 mM substrate for 30-60 min 

at 50 °C in 100 mM MOPS pH 7.0. The reactions were stopped on ice/ethanol and the products 

were analyzed by high performance liquid chromatography. The effect of cations (MgCl2 and 

MnCb, 10 mM) and cofactors (ATP, NAD+, arsenate and phosphate, 10 mM) on the isomerization 

of non-phosphorylated monosaccharides was investigated by the standard high performance liquid 

chromatography assay. 

Inhibitors of PGI activity 

Possible inhibitors (mannose 6-phosphate, fructose 1-phosphate, fructose 1,6-bisphosphate, 

fructose, glucose, mannose, galactose, pyruvate, phosphoenolpyruvate, AMP, ADP, or ATP) were 

tested on the activity of the P. furiosus PGI both in the direction of glucose-6-phosphate and 

fructose-6-phosphate formation by adding (1.25-10 mM) to the standard enzyme assays at 50 °C. 

Kinetic analysis 

Kinetic parameters were determined at 50 °C, in 100 mM MOPS buffer, pH 7.0, by varying 

the concentration of fructose 6-phosphate (0.05-3.50 mM) or glucose 6-phosphate (0.47-10.0 mM), 
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respectively. 2.0 ug of purified PGI was used for these determinations. Data were analyzed by 

computer-aided (Program Tablecurve) fit to the Michaelis-Menten curve. 

Temperature optimum and thermal inactivation 

The temperature optimum was determined in the direction of glucose 6-phosphate 

formation. Purified PGI (0.0064 mg/ml) was incubated in 1-ml crimp-sealed vials containing 100 

mM sodium phosphate buffer, pH 7.0. The vials were submerged in an oil bath at temperatures 

varying from 30 to 120 °C, pre-heated for 2 min, and the enzyme reaction was started by injecting 

20 mM fructose 6-phosphate. After 1, 2, and 3 min the reaction was stopped by transferring the 

vials on ice/ethanol, and the amount of glucose 6-phosphate formed was determined 

spectrophotometrically at room temperature by measuring the reduction of NADP (340 nm) in an 

assay with glucose-6-phosphate dehydrogenase. Corrections were made for the chemical 

isomerization of fructose 6-phosphate in the absence of PGI 

Thermal inactivation of PGI was determined by incubating the enzyme (1.28 ug) in 200 ul 

of a pre-heated 100 mM sodium phosphate buffer, pH 7.0 at 60, 70, 80, and 90 °C in crimp-sealed 

vials, submerged in an oil bath. At certain time intervals, 200-uI aliquots were withdrawn and 

analyzed for activity in the standard assay. Studies were performed under Vmax conditions, since 

substrate concentrations in the assays are approximately 30-fold higher than the Km. 

pH optimum 

The pH optimum was determined at 50 °C in 200 mM Tris/maleate buffer over the pH range 

6.0-9.5. Buffer pH values were adjusted at this temperature. Except for buffer and temperature, 

assay conditions were identical to analyze the enzyme's temperature optimum. In the case of 

fructose 6-phosphate conversion, glucose-6-phosphate dehydrogenase was used as following 

enzyme. When glucose 6-phosphate was used as substrate, mannitol-1-phosphate dehydrogenase 

was used as following enzyme. 

Transcript analysis 

RNA was isolated from maltose (10 mM) and pyruvate (40 mM) grown P. furiosus cells as 

described previously (16). For Northern blot analysis 15 ug of total RNA was separated on a 1.5% 

formaldehyde agarose gel and transferred to a Hybond N+ membrane. Probes were generated by 

PCR with the primers BG902 and BG903. The PCR product was purified by Qiaquick (Qiagen) and 

labeled by nick translation with [a-32P] dATP. The transcription start was determined with a 

fluorescence (IRD800)-labeled antisense oligonucleotide (5'- CTTTCCATGCCCTTTCATCAAC -

3', position 103-124 of the pgiA gene). Primer extension reactions were performed using the 

Reverse Transcription System (Promega) according to the instructions of the manufacturer with 

77 



Chapter 6 

following modifications. Hybridization of total RNA (15 ug) and oligonucleotide (5 pmol) was 

performed for 10 min at 68 °C before allowing to cool to room temperature. The reaction (20 ul 

final volume) was started by addition of dNTPs (1 mM), MgC12 (5 mM), RNAsin (20 U), and avian 

myeloblastosis virus-reverse transcriptase (22.5 U). After incubation for 30 min at 45 °C the 

reaction volume was diluted to 50 ul with 10 mM Tris/HCl, pH 8.5, 1 ul of RNaseA (5 mg/ml) was 

added and the sample was incubated for 10 min at 37 °C. cDNA was precipitated with ethanol, 

dissolved in 3 ul loading buffer and 1 ul was applied to a sequencing gel in parallel with the 

sequencing reactions obtained with the same oligonucleotide. 

Multiple sequence alignment and tree construction 

The sequence alignment of homologs of the P. furious PGI was generated with T-coffee 

(17) followed by small, manual refinements. A neighbor joining (18) tree of the aligned sequences 

was generated with clustalX (19). Bootstrap values above 60 out of 100 are indicated. A secondary 

structure prediction was generated with Profile-based neural network system from HeiDelberg (20). 

Results and discussion 

Purification of the PGI from P.furiosus 

Table 6.1. Purification of PGI from P.furiosus. 

Purification step 

Cell-free extract 

Phenyl-Sepharose 

Q-Sepharose 

Hydroxyapatite 

Mono-Q 

Superdex200 

Total 
activity 
units 

295.8 

93.6 

90.2 

38.1 

25.8 

10.1 

Protein 

mgrnf1 

39.7 

3.54 

0.670 

0.426 

9.92 

0.196 

Specific 
activity" 

units trig' 

0.276 

0.588 

2.99 

3.58 

3.86 

14.5 

Purification 
factor 
-fold 

1.0 

2.1 

10.8 

13.0 

14.0 

52.5 

Recovery 

% 

100 

31.6 

30.5 

12.9 

8.7 

3.4 

" Specific activities were determined at 50 °C, with fructose-6-phosphate as substrate. 

Purification of the P. furiosus PGI was performed aerobically at ambient temperature. PGI 

was purified from a P. furiosus cell-free extract using a number of conventional chromatographic 

steps (Table 6.1). Anion exchange chromatography (Q-sepharose Fast Flow) and gelfiltration 

(Superdex 200 HR 10/30) resulted in PGI purification to apparent homogeneity as judged from 

SDS-PAGE analysis (Fig. 6.1). Additional native PAGE analysis resulted in a single protein band 

(not shown). The enzyme was purified 52.5-fold from the cell-free extract, suggesting that the PGI 
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accounts for approximately 2% of the soluble cellular protein in P. furiosus. The amino-terminal 

sequence has been identified by Edman degradation: MYKEPFGVKVNFETGIIEGA. This 

sequence had a perfect match with the N-terminal part of a 21 kDa hypothetical protein from P. 

furiosus as identified from the genome sequence (http://www.genome.utah.edu). 

Heterologous production and purification ofPGI 

The putative 570-base pair PGI-encoding gene (pgiA) was PCR amplified and cloned into 

pET24d, resulting in plasmid pLUW557. DNA sequence analysis of pLUW557 confirmed that the 

cloned pgiA gene showed the expected sequence. SDS-PAGE analysis of a heat-treated cell-free 

extract of E.coli BL21(DE3) harboring pLUW557 revealed an additional band of 23 kDa which was 

in good agreement with the calculated molecular mass (21.6 kDa) of the gene product. This band 

was absent in a heat-treated cell-free extract of E.coli BL21(DE3) carrying the pET24d vector 

without insert, in which no PGI activity was detected (not shown). In a heat-treated cell-free extract 

of E.coli BL21(DE3) harboring pLUW557, a PGI activity of 8.3 units/mg was measured at 50 °C, 

confirming that the cloned P. furiosus pgiA gene indeed encoded a PGI. The recombinant PGI was 

easily purified by two successive chromatographic steps, i.e. anion exchange chromatography and 

gelfiltration. The recombinant enzyme eluted as the native enzyme, and was purified to apparent 

homogeneity as judged by SDS-PAGE analysis (Fig. 6.1). 

Figure 6.1 SDS-polyacrylamide gel electrophoresis of the purified PGI from P. furiosus. Lane 1 contained a set of 

marker proteins with their molecular mass indicated (kDa). Lane 2 contained the purified PGI from P. furiosus cell-free 

extract. Lane 3 contained purified recombinant PGI. Proteins were stained with Coomassie Brilliant Blue R250. 
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Physical and biochemical characterization ofPGI 

The molecular mass of both the native and recombinant PGI as determined by gelfiltration 

was 49.6 ± 0.3 kDa. SDS-PAGE analysis of the two enzymes resulted in identical bands of 23.5 ± 

0.2 kDa, suggesting that the PGI is a homodimer. This homodimeric composition has been observed 

also for bacterial and eukaryal PGIs, although homotetrameric compositions occur as well. 

Furthermore, the P. furiosus PGI differs from all known PGIs by its subunit molecular mass, which 

is about half of its canonical counterparts (Table 6.2). Moreover, the P. furiosus PGI -the first 

archaeal PGI described to date- exhibits the lowest pH optimum and highest temperature optimum 

of all known PGIs (Table 6.2). 

Table 6.2 Comparison of PGI from P. furiosus with other PGIs. 

Domain 

Archaea 

Bacteria 

Eucarya 

Species 

P. furiosus 

B. caldotenax 
E. coli (I) 
E. coli (II) 

A. niger 
T. brucei 
Yeast 
Rabbit 

T-opt." 
°C 

90 

77 
ND6 

ND 

ND 
ND 
ND 
ND 

pH-opt. 

7.0 

8-9 
8.0 
8.0 

7.5-10 
7.5-9.5 
7.5-9.5 
7.5-9.5 

Molecular 
native 

kDa 

49.3 (a2)
c 

202 (a4) 
125 (a2) 
230 (a4) 

118 (a2) 
ND 

119(a2) 
125 (a2) 

mass 
subunit 

23.5 

50.6 
59 
59 

60 
64 
61 
64 

F6P 

0.71 

ND 
0.2 
0.2 

0.32 
0.12 
0.17 
0.12 

Km 

tmV 
G6P 

1.57 

2.46 
ND 
ND 

0.48 
ND 
ND 
ND 

Reference(s) 

this work 

21 
22 
22 

12 
23 
23,24 
23,25 

.T optimum determined for purified PGI. 
^ D , not determined. 
c The proposed subunit composition of the native enzyme is shown in parentheses. 

The specific activities of the native and the recombinant PGI exhibited similar temperature 

or pH optima. The P. furiosus PGI showed reversible isomerization activity with fructose 6-

phosphate and glucose 6-phosphate between pH 6.0 to 8.5, with an optimum at pH 7.0 (not shown). 

PGI showed maximal activity around 90 °C (Fig. 6.2). From the Arrhenius plot between 30 and 90 

°C, an inactivation energy of 41 kJ/mol was calculated. Thermal inactivation was determined at 60, 

70, 80, and 90 °C and followed first-order kinetics (Fig. 6.3). With a half-life of approximately 2.4 

h at 90 °C it is the most thermostable PGI presently known. The second most thermostable PGI is 

the one from B. caldotenax, that exhibits a half-life of approximately 2 h at 65 °C (21). 

The purified enzyme only showed activity in the isomerization of fructose 6-phosphate and 

glucose 6-phosphate (5mM), with specific activities at 50 °C of 14.5 and 29.1 units/mg, 

respectively (pH 7.0). The PGI activity was not affected by addition of cations (Mg2+ or Mn2+), nor 

by addition of 10 mM EDTA to the assay mixture. Under the tested conditions the enzyme did not 

convert mannose 6-phosphate to fructose 6-phosphate. The PGI from Escherichia intermedia has 

been reported to catalyze the isomerization of non-phosphorylated sugars, like fructose and glucose, 
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but only in the presence of arsenate (26). The purified enzyme from P. furiosus was unable to 

isomerize non-phosphorylated sugars like glucose, fructose, mannose and galactose both in the 

absence or presence of cofactors like arsenate and phosphate. This suggests that the phosphoryl 

group at the C6 position of fructose 6-phosphate and glucose 6-phosphate plays an important role in 

substrate recognition of the P. furiosus PGI. 

Figure 6.2 Dependence of PGI activity on temperature. 

Activity of native PGI was determined by measuring the amount of glucose 6-phosphate formed after incubation for 1, 

2, and 3 min at the desired temperature. Inset, Arrhenius plot of the data from 30 to 90 °C. Both native and recombinant 

PGI showed similar behaviors to temperatures (not shown). 
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Figure 6.3. Thermal stability of PGI. 

The native enzyme (0.0064 mg/ml) was preincubated at 90 °C in 100 mM sodium phosphate buffer (pH 7.0) Residual 

activity was measured at 50 °C using fructose 6-phosphate as substrate. The 100% activity corresponds to 18.6 units/mg 

for the native PGI. Thermal inactivation is plotted on logarithmic scale to demonstrate first-order kinetics. The 

recombinant PGI showed similar inactivation profiles at the respective temperatures as the native PGI (not shown). 

Half-lifes of 1500, 300, 230, and 143 min were calculated at 60 ( • ) , 70 ( • ) , 80 (A), and 90 °C ( • ) , respectively. 
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The native P.furiosus PGI showed Michaelis-Menten kinetics at 50 °C, Km values of 0.63 ± 

0.07 and 1.99 ± 0.11 mM for fructose 6-phosphate and glucose 6-phosphate, respectively, and Vmax 

values of 20.1 ± 0.73 and 34.3 ± 0.71 units/mg for fructose 6-phosphate and glucose 6-phosphate, 

respectively. Km values and Vmax values determined for the recombinant PGI were in the same order 

of magnitude, with Km values of 0.42 ± 0.03 and 2.00 ± 0.17 mM for fructose 6-phosphate and 

glucose 6-phosphate, respectively, and Vmax values of 19.2 ± 0.37 and 47.7 ± 1.40 units/mg for 

fructose 6-phosphate and glucose 6-phosphate, respectively. The kcJKm values for fructose 6-

phosphate and glucose 6-phosphate conversion of the native PGI were 11.5 and 6.2 sec^mM"1, and 

of the recombinant PGI 16.5 and 8.6 sec^mM"1. 

The effect of potential inhibitors was tested on the activity of the recombinant PGI (5 mM 

substrate). The addition of fructose, glucose, mannose, galactose (10 mM), pyruvate, 

phosphoenolpyruvate (10 mM), AMP, ADP or ATP (3.5 mM), did not show any effect on the PGI 

activity neither in the fructose 6-phosphate formation, nor in the glucose 6-phosphate formation. 

Typical PGI inhibitors like mannose 6-phosphate, fructose 1-phosphate, and fructose 1,6-

bisphosphate negatively effected the PGI activity in both directions. Residual activities of 18 % and 

38 % were monitored in the presence of 1.25 mM mannose 6-phosphate, in the direction of fructose 

6-phosphate and glucose 6-phosphate formation, respectively. In the presence of 2 mM fructose 1-

phosphate residual activities of 50 % and 69 % were measured, respectively. Finally, the addition of 

10 mM fructose 1,6-bisphosphate to the assay mixture resulted in residual activities of 41 % and 53 

%, respectively. Hence, the activity of the P. furiosus PGI is inhibited by classical PGI inhibitors 

(27), and the affinity of the P. furiosus enzyme for fructose 6-phosphate and glucose 6-phosphate 

(determined at 50 °C) was in the same order of magnitude as that of the classical PGIs (Table 6.2). 

Hence, catalytic properties of the P. furiosus PGI resemble that of the classical PGIs in most 

respects. When this paper was being evaluated, Hansen et al. (28) independently described a 

biochemical characterization of the phosphoglucose isomerase from P. furiosus, in general 

revealing features as reported in this study. 

Transcript analysis 

For an accurate assignment of the promoter region in P.furiosus the transcription start of the 

pgiA mRNA was determined by primer extension. The transcription is initiated at the thymine (T) 

11 bp upstream of the ATG start codon (Fig. 6.4A). A putative ribosomal binding site (RBS) was 

identified at position +2 - +6. A putative TATA box is positioned around -24/-25 of the 

transcription start, and a clear transcription factor B Recognition Element (BRE site, consensus 

sequence A/GNA/TAAA/T) (29) is positioned around -33/-34 (Fig. 6.4B). 

Northern blot analysis revealed a strong hybridization signal at 0.7 kilobase pairs with the 

pgiA probe, indicating the presence of a monocystronic transcript (Fig. 6.4C). As shown by primer 
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extension (4-fold) and Northern blot analysis (1.5-fold), pgiA transcription is slightly higher under 

catabolic (maltose) than under anabolic (pyruvate) conditions. Moreover, a 1.7-fold increase of PGI 

activity was detected when grown on maltose (0.32 units/mg) compared to pyruvate (0.19 

units/mg). Similar observations were made for the reversible fructose-1,6-bisphosphate aldolase and 

phosphoenolpyruvate synthetase from P. furiosus (30,31). This might suggest a different flux 

through the pathway when used in the anabolic or in the catabolic direction. 

A C G T P M 

B 

PfpgU 

PhpgiA 

Pa pgiA 

AT AGAAAA « TCAAAAA jGAGAAAAAGAAAGACACCAC! GGTGG rGACGATG 

-3Q -2Q 

0.7 kb 

AT GGAAAA 3< TCAAAAA GAAGAGGCGCAAAGAAAGATT* GGTGC 

AC GGAAAA D TCAAAAA GAAAAAGGCAAAAGAGGAAAC 

TGAACATG 

GGTG/! rACAGATG 

BREsite TATA Bos RBS 

Figure 6.4 Transcript analyses of the P. furiosus pgiA. 

(A) Mapping of the transcription start. The transcript begins at position +1 (arrow), an asterisk marks the start codon 

(ATG) and the sequence ladder (lanes A, C, G and T) is shown. (B) Upstream nucleotide sequence of the P. furiosus 

pgiA gene. The transcription factor B recognition element (BRE site), putative TATA box element and the ribosome-

binding site (RBS) is marked. The mapped start site of transcription is marked by an arrow and the ATG start codon is 

underlined. Promoter regions of Ph pgiA (PHI956) and Pa pgiA (PAB1199) are included. (C) Northern blot analysis. 

For both primer extension and northern blot analysis 15 ug of total RNA was used from maltose (M) and pyruvate (P) 

grown cells. 
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Structural analysis 

The amino acid sequence of PGI has mil-length homologs with high levels of sequence 

identity (90% and 91% for P.abyssi and P.horikoshii, respectively) in the other two Pyrococci, 

suggesting that these genes most likely also function as PGIs. Homology with other sequences is 

limited to the positions 66 to 152 of the P. furiosus PGI (Fig. 6.5). Using profile based sequence 

comparisons (PSI-Blast, 9 iterations, EO.002) this area can be shown to be homologous to a wide 

range of proteins belonging to the cupin superfamily, that consists of a variety of proteins that are 

generally involved in sugar metabolism in both prokaryotes and eukaryotes (33). 

PGI P.furiosus 
P.horikoshii 1956 
P.abyssi 1199 
P.horikoahii 47 
P.abyssi 2310 
P.furiosus 62346 
S.glaucescens TCMJ 
T.maritime 1287 
M. tuberculosis 3471 
M, jannaschii 1618 
M.thermoauto. 352 
oxal. oxidase T.aest 
Synachoc. alll35B 
oxal. decarb. F. vel. 
B.subtilis yoaN 
B.subtilis yvrK 
P.abyssi 1369 
P.horikoshii 537 
P.furiosus 396648 
M. jannaschii 764 
W. tuberculosis 2619 
A.fulgidus 1494 
A.fulgidus 1097 
phos.inan.isom S.typ. 
canavalin jack bean 

EEE 
66 LNFATTVZ,^ 
69 LNTATTV& 
72 LNFATTIL: 
37 fAMRY! 
73 FAMRYrVIl 
37 FAHRYFVIJ 
49 GFfcGHlE] 
47 RLlTARMKl,] 

EEE 
;GGMX&QTP—EEDAKW—-IESMEP! 
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Figure 6.5 Alignment of the PGI of P. furiosus with 1) its most similar homologs (PSI-Blast 5 iterations E < 0.002) 

from completely sequenced genomes, 2) sequences with experimentally determined function, and 3) canavalin of 

which a three-dimensional structure is available (32). A secondary structure (above the alignment, E denotes beta-

strand) is consistent with the secondary structure of canavalin (below the alignment). With each sequence is given the 

number of its gene in the genome. The species abbreviations with the genbank identifiers of the sequences: .R/wriosus -

P. furiosus (AF381250); P.horikoshii = P. horikoshii (g3258400 g3256432 g3256943); P.abyssi = P. abyssi (g5459164 

g5457489 g5458926); A.fulgidus = Archaeoglobus fulgidus (g2649077 g2649495); M.jannaschii = Methanococcus 

jannaschii (gl499583 gl592216); M. tuberculosis = Mycobacterium tuberculosis (g2104394 g2113903), T.aest. = 

Triticum aestivum (gl21129); B.subtilis - Bacillus subtilis (g2635821 g2634260); Synechoc. ~ Synechocystis 

(gl652630); F.vel. = Flammulina velutipes (g6468006); S.typ. = Salmonella typhimurium (gl 17277); T.maritima = 

Thermotoga maritima (g4981845); S.glaucescens ~ Streptomyces glaucescens (g!53495); M.thermo = 

Methanobacterium thermoautotrophicum (g2621410); oxal. decarb. = oxalate decarboxylase; phos.man.isom. = 

phosphomannose isomerase; jack bean = Canavalia ensimorfis. The P.furiosus sequences are available from 

http://www.genome.utah.edu/sequence.html. Conserved amino acids are shaded black, conserved hydrophobic positions 

are shaded grey. The alignment was generated with T-Coffee (17) followed by small, manual refinements. 
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P. furiosus phosphoglucose isomerase 

The molecular function of this cupin domain (consensus, PG(X)sHXH(X)4E(X)7G and 

G(X)5PXG(X)2H(X)3N) is generally the binding of carbohydrates, and in some cases apparently to 

establish an interaction with other proteins (33,34). Among the homologs are two additional 

hypothetical proteins from Pyrococcus itself (PF396648 and PF62346), as well as several type-2 

mannose-6-phosphate isomerases, oxalate decarboxylases, oxalate oxidases (germin), seed storage 

protein, canavalin (Fig. 5/6), as well as sugar-binding transcriptional regulators of the AraC family 

(33). No proteins with PGI activity have been reported to belong to this family before. 

•phosphoglucose isomerase P.furiosus 
P.horikoshii 1956 
Pabyssi 1199 

P.horikoshii 47 
Pabyssi 2310 
P.furiosus 62346 

'aucescens TCMJ 
T.maritima 1287 

M. tuberculosis 3471 
Mjannaschii 1618 

>M.thermoautotrophicum 0352 
oxalate oxidase T.aeslivum 

•Symchocystis SI11358 
oxalate decarboxylase F.velutipes 

•B.sublilis yoaN 
•B.subtilis yvrK 

P. abyssi 1369 
•P.horikoshii 0537 
.P.furiosus 396648 

'Mjannaschii 0764 
'M.tuberculosis 2619 

•A.julgidus 1494 
ihosphoraannose isomerase S.typhimurium 

.A.fulgidus 1097 
canavalin jack bean 

Figure 6.6 Neighbor joining tree of the aligned sequences. 

The tree was generated with clustalX. Bootstrap values above 60 out of 100 are indicated. The genes PHI956 from 

Pyrococcus horikoshii and PAB1199 from Pyrococcus abyssi are clearly orthologous to the PGI from P.furiosus. No 

other orthologous are present in currently available genomes. 

Recruitment of enzymes in unique "top " glycolysis 

The identification of PGI allows a comparison of the nine-enzyme glycolysis in Pyrococcus 

with the classical ten-enzyme glycolysis in bacteria and eucarya. Notably four of the nine 

pyrococcal enzymes, that were identified experimentally, are non-homologous to their classical 

counterparts. Here we have shown, based on sequence comparison and on structural data, that the P. 

furiosus PGI (the second step in glycolysis) is not homologous to the bacterial and eukaryal PGI. 

The other five enzymes (fructose-1,6-bisphosphate aldolase, triosephosphate isomerase, 

phosphoglycerate mutase, enolase, and pyruvate kinase) have been predicted on the basis of 
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orthology with bacterial proteins (9). Four of these five are orthologous to their bacterial 

counterparts in the glycolysis. The fifth, fructose-1,6-bisphosphate aldolase, is not orthologous to 

the standard bacterial class II aldolase (35). This aldolase has recently been proposed to constitute a 

new family of aldolases, archaeal type ClassI aldolase (ClassIA), that is rare in bacteria and 

abundant in archaea, and only distantly related to ClassI fructose-1,6-bisphosphate aldolases (31). 

The question remains whether or not a complete glycolytic pathway existed at the time that 

the non-homologous enzymes evolved in Pyrococcus; in other words, was (part of) the glycolytic 

pathway introduced by these newly evolving enzyme activities, or was it rather a substitution of 

their classical counterparts. Two patterns in these non-homologous replacements argue for an 

independent invention of the glycolysis that, made use of enzymes of an incomplete glyconeogenic 

pathway (from pyruvate to fructose-1,6-bisphosphate) that was already present: (i) three of the 

unique glycolytic steps in Pyrococcus are specifically catabolic (ADP-GLK, ADP-PFK and 

GAPOR); (ii) the first three unique steps (catalyzed by ADP-GLK, PGI, and ADP-PFK) form the 

part of the pathway that is rather specific for glucose degradation, whereas the more conserved part 

of the pathway (the interconversion of glyceraldehyde-3-phosphate and pyruvate) is made up by a 

more general set of enzymes that are potentially involved in numerous metabolic routes. This 

would argue for an independent invention of the glycolytic pathway in the lineage leading to 

Pyrococcus. Although non-homologous displacement of enzymes in Pyrococcus central 

carbohydrate metabolism has been observed before (36), this would be, to our knowledge, the first 

example of such excessive replacement of enzymes in a pathway, and is a compelling example of 

convergent evolution. 
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Abstract 

Fructose- 1,6-bisphosphate (FBP) aldolase activity has previously been detected in several 

Archaea. However, no obvious orthologs of the bacterial and eucaryal Class I and II FBP aldolases 

have yet been identified in sequenced archaeal genomes. Based on a recently described novel type 

of bacterial aldolase, we report on the identification and molecular characterization of the first 

archaeal FBP aldolases. We have analyzed the FBP aldolases of two hyperthermophilic Archaea, 

the facultatively heterotrophic Crenarchaeon Thermoproteus tenax and the obligately heterotrophic 

Euryarchaeon Pyrococcus furiosus. For enzymatic studies the fba genes of T. tenax and P.furiosus 

were expressed in E. coli. The recombinant FBP aldolases show preferred substrate specificity for 

FBP in the catabolic direction and exhibit metal-independent Class I FBP aldolase activity, via a 

Schiff-base mechanism. Transcript analyses reveal that the expression of both archaeal genes is 

induced during sugar fermentation. Remarkably, the fbp gene of T. tenax is co-transcribed with the 

pfp gene which codes for the reversible PPj-dependent phosphofructokinase. As revealed by 

phylogenetic analyses, orthologs of the T. tenax and P. furiosus enzyme appear to be present in 

almost all sequenced archaeal genomes, as well as in some bacterial genomes, strongly suggesting 

that this new enzyme family represents the typical archaeal FBP aldolase. Because this new family 

shows no significant sequence similarity to classical Class I and II enzymes, a new name is 

proposed, archaeal type Class I FBP aldolases (FBP aldolase Class IA). 

Introduction 

Fructose-1,6-bisphosphate (FBP) aldolase (EC 4.1.2.13) catalyzes the reversible aldol 

condensation of glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) 

yielding FBP. The enzyme fulfills an amphibolic function being involved in catabolic (glycolysis) 

as well as anabolic pathways (gluconeogenesis, Calvin cycle). In spite of this central function in 

carbohydrate metabolism, up to now no archaeal genes coding for the respective enzyme activities 

have been analyzed. 

Two distinct classes of FBP aldolases occur in nature, which differ in their enzymatic 

mechanisms (1, 2, 3, 4). Class I FBP aldolases form a Schiff-base intermediate between the 

carbonyl substrate (FBP, DHAP) and the e-amino group of the active-site lysine residue, and are 

inactivated by borohydride (NaBFLt), whereas Class II FBP aldolases depend on divalent metal ions 

to stabilize the carbanion intermediate and are, therefore, inhibited by EDTA. Class II enzymes of 

bacterial and eucaryal origin generally form dimers with a subunit molecular mass of approx. 40 

kDa, whereas the Class I pendants are heterogeneous: Eucaryal aldolases are homomeric tetramers 

with a subunit molecular mass of approx. 40 kDa and for bacterial enzymes oligomeric 
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arrangements from monomer to decamer and subunit molecular masses of 27 - 40 kDa have been 

described (5, 6). 

Sequence comparisons of Class I and II FBP aldolases revealed no detectable sequence 

homology, suggesting convergent evolution (4, 5, 7, 8, 9, 10, 11). The latter is supported by 

comparisons of available crystal structures of rabbit muscle Class I and E. coli Class II FBP 

aldolases indicating that even though both classes adopt a common folding topology ((Pa)s triose-

phosphate isomerase (TIM)-barrel fold) and catalyze identical reactions, they share no conserved 

catalytic residues and the location of their active sites is distinct (12). However, more recent 

analysis combining sequence, structure and functional information indicate that many of the (Pct)s 

(TIM) barrel superfamilies, such as aldolases, TIMs, enolases, share a common evolutionary origin 

(ancestral p/a barrel), although they adopt a wide range of enzymatic functions (13,14). 

The distribution of FBP aldolases during evolution is complex and still puzzling. Class II 

aldolases seem to be confined to more simple organisms such as bacteria and a few unicellular 

eukaryotes (fungi, including yeast), whereas Class I FBP aldolases are present in higher forms of 

life (animals, higher plants, ferns, mosses), and only a few bacteria possess a Class I enzyme, 

sometimes in addition to a Class II enzyme. Earlier-branching protists studied so far show a marked 

diversity of harboring Class I and/or Class II enzymes (for review see 5,10). 

Recently, Thomson et al. (6) described a new type of FBP aldolase in E. coli, which belongs 

to Class I aldolases according to its Schiff-base mechanism, but differs significantly from the other 

members of this class by its low sequence similarity. The E. coli Class I FBP aldolase was 

originally mis-annotated in the E. coli genome as dehydrin (DhnA, dhnA gene) due to its overall 

identity (13-20 %) to dehydrins in plants, which are stress proteins that are induced in response to 

dehydration (6). 

Although Class I and Class II FBP aldolase activities have been demonstrated in Archaea 

(15, 16, 17, 18, 19, 20, 21), no genes encoding classical Class I or II enzymes have been identified 

in any of the sequenced archaeal genomes suggesting that Archaea possess novel types of aldolases 

that are either absent or not yet recognized as such in Bacteria and Eucarya. The latter is supported 

by initial database searches of Galperin et al. (22) who identified gene homologs of the unusual 

Class I FBP aldolase gene (dhnA) ofE. coli in the sequenced archaeal genomes. However, none of 

this archaeal gene products was examined with respect to its enzymatic function. In order to prove 

that DhnA homologs in the two major archaeal kingdoms code for FBP aldolases, we expressed the 

dhnA gene homologs of the crenarchaeote Thermoproteus tenax and the euryarchaeote Pyrococcus 

fitriosus in E. coli and we analyzed the function of their gene products. The two hyperthermophiles 

differ from each other not only with respect to phylogeny but also with respect to physiology: T. 

tenax is a facultative chemoorganotroph (23, 24) and P. furiosus is an obligate chemoorganotroph 

(25). T. tenax uses two different pathways for carbohydrate catabolism, i.e. a modified, non-
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phosphorylative Entner-Doudoroff pathway and a variant of the reversible Embden-Meyerhof-

Parnas pathway (19, 26). The latter is characterized by a PPj-dependent phosphofructokinase (PPi-

PFK) (27), two different glyceraldehyde-3-phosphate dehydrogenase (28, 29) and a pyruvate kinase 

with reduced allosteric potential (30). P. furiosus possesses one catabolic pathway, a variant of the 

Embden-Meyerhof-Parnas pathway which differs significantly from the T. tenax variant (21) and 

involves an ADP-dependent glucokinase (31), an ADP-dependent PFK (32), a canonical 

glyceraldehyde-3-phosphate dehydrogenase and a ferredoxin-dependent glyceraldehyde-3-

phosphate oxidoreductase (33, 34). 

Experimental procedures 

Chemicals andplasmids 

DL-GAP was prepared from monobarium salts of the diethyl acetal, according to the 

manufacturer's instructions (Sigma). All other chemicals and enzymes were purchased from Sigma, 

Merck or Roche Diagnostic GmbH in analytical grade. For heterologuous expression the vector 

pET-15b and pET-24d (Novagen) and for generating antisense mRNA the vector pSPT 19 (Roche 

Diagnostics GmbH) were used. 

Strains and Growth Conditions 

Mass cultures of T. tenax Krai (DSM 2078) were grown as described previously (19). P. 

furiosus (DSM 3638) was grown in CDM medium as described previously (35) with the only 

exception that yeast extract was omitted and substituted by the individual amino acids (0.25 mM 

final concentration). Maltose (10 mM) or pyruvate (40 mM) was added as primary carbon source. 

Escherichia coli strains DH5cc (Life Technologies, Inc.), XLlBlue (Stratagene), BL21(DE3) and 

BL21(DE3)pLysS (Novagen) for cloning and expression studies were grown under standard 

conditions (36) following the instructions of the manufacturer. 

Enzyme Assay 

The FBP aldolase activity was determined in catabolic direction (FBP cleavage) at 50 °C in 

a coupled assay with glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) and (EC 5.3.1.1) of rabbit 

muscle as auxiliary enzymes. For the T. tenax enzyme the assay (total volume 1 ml) was performed 

in 100 mM Tris/HCl (pH 7.0, 50 °C) in the presence of 0.4 mM NADH, 5 mM FBP and 4 units of 

glycerol-3-phosphate dehydrogenase and 20 units of triose-phosphate isomerase. Enzymatic 

activities were measured by monitoring the increase in absorption at 366 nm (s 50 °c = 3.36 mM"'cm" 

'). The assay mixture (1-ml volume) for the P. furiosus FBP aldolase contained 50 mM Tris/HCl 
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(pH 7.0, 50 °C), 0.2 mM NADH, 2.5 mM FBP, 4 units of glycerol-3-phosphate dehydrogenase and 

11 11 units of triose-phosphate isomerase. The absorbance was followed at 340 nm (e = 6.3 mM'cm" 

Reactions were started by addition of the substrate FBP and the enzyme concentrations 

ranged from 2 - 40 ug of protein/ml test volume. To determine the substrate specificity of the FBP 

aldolases, the standard enzyme assay was used substituting FBP by other substrates, such as 

fructose 1-phosphate (Fru-l-P). For effector studies citrate was added to an end concentration of 10 

mM in the presence of half-saturating concentrations of FBP. To test the metal ion requirement up 

to 10 mM EDTA or different metal ions (0.1 and 1 mM) were added to the mixture. Protein 

concentration was measured according to the method of Bradford (37) using the Bio Rad Protein-

Assay (Bio-Rad) with BSA as standard. 

Active Site Labeling 

To investigate the involvement of a Schiff-base mechanism the FBP aldolase of T. tenax 

(0.09 mg protein) was incubated at room temperature in 50 mM HEPES/KOH (pH 7.5), 100 mM 

NaBFLt (1 M stock solution in 10 mM NaOH) in the presence or absence of saturating 

concentrations (10 mM) of D,L-GAP, DHAP or FBP (total volume: 250 ul). After 10 min the 

samples were dialyzed twice against 2 liters of 20 mM Tris/HCl (pH 8.5, 4 °C; overnight) and 

assayed for FBP aldolase activity. The assay was perfomed at 70 °C using the non-phosphorylating 

NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9) (28) of T. tenax as 

auxiliary enzyme. The assay (total volume 1 ml) was performed in 100 mM Tris/HCl (pH 7.0, 70 

°C) in the presence of 5 mM NAD+, 5 mM FBP and 5 units of NAD+-dependent glyceraldehyde-3-

phosphate dehydrogenase. The increase in absorption was measured at 366 nm. (e 70 °c = 3.15 mM" 

'cm"1). 

Cloning and Sequencing of the Coding Genes 

The identification of both genes encoding FBP aldolase (fba) was based on significant 

sequence similarity to the recently described E. coli Class I FBP aldolase (DhnA, GenBank™ 

accession number P71295). The fba gene of T. tenax (EMBL accession number AJ310483) was 

identified by sequencing the genomic clone (5.2 kb Hin&Wl fragment) harboring the pfp gene (27). 

The P. furiosus gene (GenBank™ accession number AF368256, NCBI) was identified in the P. 

furiosus database (http://www.genome.utah.edu). 

Expression of the FBP aldolases in E. coli 

For expression of the T. tenax FBP aldolase the coding region was cloned into pET-15b via 

two new restriction sites (Ncol, BamHY) introduced by PCR mutagenesis with the primers FBPA-f 
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(GCTCAAGCATCCATGGCAAA. sense) and FBPA-rev (CCCCCGTCAGGGATCCTATC, 

antisense). The following primer set was designed to amplify the P. furiosus open reading frame in 

pET-24d (Ncol, BamUT) and to delete an internal Ncol restriction site using the PCR-based overlap 

extension method (38): BG749 (CGCGCGCGCCATGGAGGCCCCTCAAAATGTTGG, sense), 

BG750 (CCGTGGTCCATCGCGAAGATTAA, antisense), BG751 (TTAATCTTCGCGATGG-

ACCACGG, sense) and BG688 (GCGCGGATCCTCAAATGAGACCTTCTGCCTTAGC, 

antisense). The introduced mutations are shown in boldface and introduced Ncol and BamHl 

restriction sites are underlined. The sequence of both expression clones was confirmed by 

sequencing both strands. Expression of the T. tenax enzyme in E. coli BL21(DE3)pLysS and of the 

P. furiosus enzyme in BL21(DE3) was performed following the instructions of the manufacturer 

(Novagen). 

Site-directed mutagenesis of the P. furiosus FBP aldolase 

The active site mutation was introduced in the P. furiosus fba gene using Pfu polymerase in 

the PCR-based overlap extension method (38). The following primer set was designed to introduce 

mutation K191A: BG827 (AGCAGATATGATAGCGACCTATTGGAC, sense) and BG828 

(GTCCAATAGGTCGCTATCATATCTGCT, antisense), the introduced mutations are shown in 

boldface. 

Purification of recombinant FBP aldolases ofT. tenax and P. furiosus 

For purification of the recombinant T. tenax enzyme 10 g of E. coli cells were resuspended 

in 20 ml of 100 mM HEPES/KOH (pH 7.5) containing 300 mM 2-mercaptoethanol and passed 

three times through a French press cell at 150 megapascals. After centrifugation (20,000 x g, 45 

min, 4 °C) the crude extract was heat-precipitated (90 °C, 30 min), centrifuged again and dialyzed 

over night against 50 mM HEPES/KOH (pH 7.5) containing 5 mM dithiothreitol (2-liters volume, 4 

°C). The dialyzed fraction was applied to Q-Sepharose fast-flow (Amersham Pharmacia Biotech) 

equilibrated in the same buffer and eluted with a linear salt gradient of 0 - 500 mM KC1. Fractions 

containing the homogeneous enzyme solution were pooled. 

For the purification of the recombinant FBP aldolase from P. furiosus, 3 g of E. coli cells 

were resuspended in 10 ml of 50 mM Tris/HCl (pH 7.8). The suspension was passed twice through 

a French press cell (100 megapascals), and cell debris was removed by centrifugation (10,000 x g, 

20 min, 4 °C). After heat precipitation (70 °C, 30 min) and centrifugation the supernatant was 

filtered through a 0.45-um filter and loaded onto a mono Q HR 5/5 column (Amersham Pharmacia 

Biotech) equilibrated in 50 mM Tris/HCl (pH 7.8). Proteins were eluted by a linear salt gradient of 

0 - 1000 mM NaCl. Active fractions were pooled, concentrated by microfiltration (Centricon 30, 

Amicon) and applied to a Superdex 200 prep grade column (Amersham Pharmacia Biotech), 
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equilibrated in 50 mM Tris/HCl (pH 7.8), 100 mM NaCl. Fractions containing the homogeneous 

enzyme were pooled. 

Analytical ultracentrifugation of the T. tenax FBP aldolase 

Sedimentation velocity and equilibrium analyses were conducted using an analytical 

ultracentrifuge Optima X-LA (Beckman Instruments, Palo Alto, CA) equipped with double sector 

cells and an AnTi 50 rotor. The protein was dissolved in 50 mM HEPES/KOH (pH 7.5) containing 

100 mM KC1 and 2 mM dithiothreitol at a concentration of 0.48 mg protein/ml. Sedimentation 

velocity experiments were performed at 30,000 rpm (20 °C) and the data were analyzed according 

to the sedimentation time derivative method (39). Sedimentation equilibrium was analyzed at 6,000 

rpm (20 °C) using the software provided by Beckman Instruments. Gel filtration experiments were 

performed as described previous (27). 

Northern blot analyses of the T. tenax fba transcript 

Preparation of total RNA from auto- and heterotrophically grown T. tenax cells and 

Northern blot analyses were performed as described before (30). Digoxigenin-labeled antisense 

mRNA of FBP aldolase and PPj-PFK were obtained by in vitro transcription from the T7 promoter 

of vector pSPT 19 (Roche Diagnostics GmbH). A part of the coding region of FBP aldolase (502 

bp) and the coding region of PPj-PFK (1011 bp) was cloned into the EcoRl and BamHl restriction 

sites of the vector by PCR mutagenesis using the primer sets CGAGGAGGGGGAATTCCATA 

(sense) and GAAGGTCTTGGGATCCCCCG (antisense) for FBP aldolase and GCTGGCCG-

AGCCTCTGAATTCATGAAGATAG (sense) and CTAGGCAAAGAGGGATCCGGGGCCT-

AGC (antisense) for PP;-PFK. The introduced mutations are shown in boldface and the £coRl and 

BamHl restriction sites are underlined. 

Primer extension analyses 

Primer extension analyses for T. tenax were performed as described previously (30). To map 

the transcription start site of the fba-pfp transcript the 5'-32P-labeled antisense oligonucleotide (5'-

CCGTGCTCAATGCCGTGG-3', position 72 - 89 of the/ba gene) was used as primer for cDNA 

synthesis. For P. furiosus total RNA was isolated from maltose and pyruvate grown cells as 

described previously (40), and the transcription start was determined with a fluorescence (IRD800)-

labeled antisense oligonucleotide (5'-CAAAGTCCGTAGGGCCGTGC-3' (MWG), position 99 -

118 of the fba gene). The primer extension reaction was performed using the Reverse transcription 

System (Promega) according to the instructions of the manufacturer with following modifications. 

Hybridization of total RNA (15 ug) and oligonucleotide (5 pmol) was performed for 10 min at 68 

°C before allowing to cool to room temperature. The reaction (20-ul final volume) was started by 
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addition of dNTPs (1 mM), MgCl2 (5 mM), RNAsin (20 units) and Avian Myeloblastosis Virus 

reverse transcriptase (22.5 units). After incubation for 30 min at 45 °C, the reaction volume was 

diluted to 50 ul with 10 mM Tris/HCl (pH 8.5), 1 ul of RNaseA (5 mg/ml) was added and the 

sample was incubated for 10 min at 37 °C. cDNA was precipitated with ethanol, dissolved in 3 ul 

loading buffer and 1 ul was applied to a sequencing gel in parallel with the sequencing reactions 

obtained with the same oligonucleotide. 

Sequence retrieval andphylogenetic analyses 

Protein sequences were extracted from GenBank™ and the TIGR microbial data base using 

BLAST and first aligned with CLUSTALW (41), this alignment was manually refined using the 

MUST program package (42). Regions of uncertain alignment and partial sequences were omitted 

from the analyses leaving a total of 27 sequences and 172 amino acid positions. The topology of the 

phylogenetic tree was inferred using the PROTML program of the MOLPHY V. 2.3 package (43), 

starting with the NJDIST tree using the local rearrangement and the JTT-F options. A gamma 

parameter based maximum likelihood estimate of the branch length of the tree as well as of the 

statistical support for internal nodes (quartet puzzling support values) was performed using the 

program puzzle v.5 (44). Distance analyses including 1000 bootstrap replicates were performed 

with the MUST package using the Kimura correction and the neighbour joining method (45). 

Parsimony bootstrap analysis was performed using PAUP* with 2000 bootstrap replicates and 10 

times random addition (46). Secondary structure prediction was performed using the predictprotein 

program (http://www.embl-heidelberg/predictprotein/) (47, 48). 

Results 

Nucleotide sequence ofthefba genes ofT. tenax and P. furiosus 

Both fba genes were identified due to their sequence similarity with the recently 

characterized Class I FBP aldolase from E. coli (DhnA, dhnA gene) (6). The T. tenax enzyme was 

identified by sequence analysis of the genomic clone comprising the pfp gene (5.2 kb Hindlll 

fragment), which revealed an additional open reading frame of 792 bp (Fig. 7.1) preceding the pfp 

gene (1014 bp) (27). This open reading frame codes for a polypeptide of 263 amino acid residues 

with a calculated molecular mass of 28.7 kDa and showed high overall similarity (26 % identity, 

blast database search) to the Class I FBP aldolase (DhnA) of E. coli (6). Strikingly, the coding 

regions of both T. tenax genes Jba and pfp overlap by 1 bp with the A of the start codon (ATG) of 

the pfp gene being the last nucleotide of the triplet encoding the C-terminal valine (GTA) of the fba 

gene (Fig. 7.1). The fba gene of P. furiosus (846 bp) was identified in the P. furiosus database by 
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similarity of the translated 31.1 kDa polypeptide (282 amino acid residues) to E. coli DhnA (26 % 

identity, blast database search). Contrary to T. tenax, the P. furiosus fba gene is separated from the 

next neighbored downstream open reading frame with similarity to agmatinase (speB gene) by 61 

nucleotides and therefore is presumably not organized in an operon structure (Fig. 7.1). 

>rf fba speB 

^ 

fl"> ^ j - , PfP 

T. tenax 1 - j ^ j j ^ " 

255 
fba 

K K 
AAGAAGi" 

L 
TG 

A 
GCC 

E P L N 
;AGCCTCTGAAC 

V * 
GTATGAAGATAGGAGTTCTGACG 

K K I 
pfp c=^ 

G V L T 

Figure 7.1 Genomic organization and flanking regions ofthe P. furiosus fba gene and the T. tenax fba-pfp operon. 

Arrows represent the open reading frames and their orientation. The enlargement shows the overlapping regions of the 

fba and pfp gene in T. tenax, the respective protein sequence is shown in bold letters. The fba stop codon is marked by 

asterisk and the ATG start codon of the pfp gene is underlined. 

Expression of the fba genes from T. tenax and P. furiosus in E. coli and purification of recombinant 

FBP aldolases 

The fba gene products of T. tenax and P. furiosus were expressed in E. coli and their FBP 

aldolase activity was confirmed for both enzymes using a coupled enzyme assay. For further 

biochemical studies both recombinant enzymes were purified. From 10 g wet cells of recombinant 

E. coli, 14 mg of homogeneous T. tenax FBP aldolase with a specific activity of 0.23 units/mg 

protein (50 °C) and from 3 g wet cells of recombinant E. coli 5 mg of homogeneous P. furiosus 

protein with a specific activity of 0.58 units/mg (50 °C) were recovered, respectively. 

Enzymatic properties of the recombinant FBP aldolase ofT. tenax and P. furiosus 

The purified, recombinant FBP aldolases of T. tenax and P. furiosus exhibit Michaelis-

Menten kinetics for FBP in the catabolic (aldol cleavage) direction. The Km and Vmax values for FBP 

were 9 uM and 0.23 units/mg for T. tenax and 3.6 uM and 0.61 units/mg for P. furiosus and as such 

comparable to the E, coli Class I FBP aldolase (DhnA) (Table 7.1) (6). Like the E. coli enzyme both 

archaeal FBP aldolases showed additional activity with Fru-l-P, although the much higher Km for 

Fru-l-P (T. tenax 498-fold, P. furiosus 197-fold, E. coli 1650-fold) of all three enzymes strongly 
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suggests that FBP is the physiological substrate (Table 7.1). As shown for the FBP aldolase of T. 

tenax other sugar phosphates such as fructose 6-phosphate, glucose 6-phosphate, fructose 2,6-

bisphosphate, and 6-phosphogluconate (concentration range of 5 - 10 mM) do not serve as 

substrates in the catabolic direction. Both archaeal FBP aldolases, however, like the E. coli enzyme, 

were activated in presence of saturating concentrations of citrate (10 mM) by factor 2.2 and 2.4, 

respectively (Table 7.1). 

Table 7.1. Comparative analysis of archaeal type Class I FBP aldolases. 

Crenarchaea Euryarchaea Bacteria 
T. tenax P. furiosus £\_co/£_(6} 

Molecular mass of native enzyme (kDa) 
Molecular mass of subunit size (kDa) 
Oligomeric structure 

241 (small form) 
28.7 
8 (small form) 

272 
31.1 
8 

340 
38.0 
8-10 

0.009 
0.23 
734.4 

4.48 
0.3 
1.89 

0.0036 
0.61 
5278 

0.71 
0.75 
32.8 

0.02 
0.34 
646 

33 
0.18 
0.21 

Active site Lys-177 Lys-191 Lys-237 

Activation by citrate (10 mM) 2.2x 2.4x 14.6x 

AT„,FBP(mM) 
Vmax FBP (units/mg) 
KJKm (mM'min1) 

K„ Fru-l-P (mM) 
Vmax Fru-l-P (units/mg) 
KJK„ (mM'min'1) 

Enzyme assays for T. tenax and P. furiosus were performed at 50 °C. 

The involvement of a Schiff-base mechanism in the FBP aldolase reaction was examined for 

the T. tenax enzyme by treating the enzyme with sodium borohydride in the presence and absence 

of the substrates GAP, DHAP and FBP. The significant reduction of the specific activity in the 

presence of the carbonyl substrates DHAP (38 % residual activity) and FBP (29 % residual activity) 

as compared to the presence of GAP (80 % residual activity) and the control, after NaBFLt treatment 

(100 % activity, 0.8 U/mg protein, 70 °C), accounts for the formation of a Schiff-base in the 

enzyme reaction. In accordance with these results, a lysine residue is conserved at position 177 in 

the T. tenax sequence (Fig. 7.4) which corresponds to the active site Lys-237 (falsely marked as 

Lys-236) in the E. coli Class I FBP aldolase (DhnA) (6). Finally, the observation that neither metal 

ions such as Mn2+, Mg2+, Zn2+, Ca2+ and Fe2+ (concentrations tested: 0.1 and 1 mM) nor EDTA 

(concentrations tested: 0.1 mM, 1 mM, 10 mM) affect the enzyme activity supports the biochemical 

classification of the T. tenax enzyme as Class I aldolase. As shown in Fig. 7.4 also the P. furiosus 

FBP aldolase exhibits the active site lysine residue (position 191) and the assumed involvement of a 

Schiff-base mechanism was supported by site-directed mutagenesis of the active site lysine to 

alanine (K191 A) resulting in a virtually inactive mutant enzyme (not shown). 
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Molecular mass 

The homogenous FBP aldolases from T. tenax and P. furiosus revealed similar subunit sizes 

in SDS-PAGE of approx. 30 kDa and 33 kDa, respectively, thus being in good agreement with the 

calculated molecular mass of 28.7 kDa and 31.1 kDa. However, differences between the two 

enzymes are obvious concerning their oligomeric state under native conditions (Table 7.1). Gel 

filtration experiments revealed for the recombinant P. furiosus enzyme an apparently uniform 

oligomer with a molecular mass of 272 kDa (representing presumably octamers), whereas for the T. 

tenax FBP aldolase two different oligomeric forms were identified. As shown by repeated 

chromatography of the separated oligomers, both forms are convertible to one another. 

Sedimentation velocity experiments revealed two distinct oligomers with apparent sedimentation 

coefficients of 9.34 S and 14.5 S indicating a slow equilibration reaction between the two forms of 

the T. tenax FBP aldolase. For the smaller association form an apparent molecular mass of 237'-245 

kDa was determined by sedimentation equilibrium centrifugation suggesting a stoichiometry of 

eight monomers per oligomer. 

Transcript analyses 

To determine if the expression of FBP aldolase of T. tenax and P. furiosus are controlled at 

transcriptional level, we examined the effect of the carbon source on ftp transcription. Since the 

juxtaposition of fba and pfp gene in T. tenax suggests an operon organization specific antisense 

mRNA probes for the pfp and fba gene were used to test for the formation of co-transcripts (Fig. .2). 

1.9 — 
1.6 — 

• 

I 
\.90> I/ba-pfp 

1.2 O)/pfp 

O.H\sb/ft>a 

fba pfp 

Figure 7.2 Transcript analysis of the T. tenax fba-pfp operon. 

Northern blot analysis with digoxigenin-labeled, fba- and /^-specific antisense mRNAs and total RNA (5 \x%) from 

autotrophically (A) as well as heterotrophically (H) grown cells. The RNA molecular size standard (left) and the derived 

transcript size (arrows, right) are shown. 
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Northern blot experiments were performed with total RNA from autotrophically (in the presence of 

CO2 and H2) and heterotrophically (in the presence of glucose) grown T. tenax cells.They revealed a 

strong hybridization signal for both probes at 1.9 kb and two additional, weaker, probe-specific 

signals at 1.2 kb for the pfp probe and 0.8 kb for the fba probe, thus indicating the presence of 

bicistronic as well as monocistronic messages. The signals of both probes were much stronger with 

mRNA from heterotrophically compared to autotrophically grown cells (Fig. 7.2). Densitometric 

quantification of slot blot analysis using the pfp probe and different concentrations of total RNA (10 

- 0.625 ug) from auto- or heterotrophically grown cells, revealed a six-fold higher transcript 

abundance in the latter (data not shown). Also in P. furiosus cells grown on maltose or pyruvate the 

transcript level of the fba gene varied similarly (dot blot analysis, data not shown). Like in T. tenax 

conditions favoring the catabolic direction (growth on maltose) induce a higher transcript amount 

(2-3 fold increase) as compared to anabolic conditions (growth on pyruvate). 
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Tt f b a ATACTTTAGJACAAA?JAG|ATATTAA^TGGATAATTGCTCAAGGATCAATGGCAAAC 

BREsite TATA Box 
T t pfp GCAGAGTTGGTGTACGGCGGAAAGAAGCTGGCCGAGCCTCTGAACGTATGAAGATA 

+1 
-20 + 10 

Pf fba Tp.AJiAApC^TTTAAGTfrATAGAGCTCAATCAGGGTAjGGTGA|TACGTATGGAGGCC 

BREsite TATA Box RBS 

Figure 7.3 Determination of transcript start sites and identification of putative promoter elements. 

(A) Mapping of the transcription start of the T. tenax fba-pfp operon and (B) the P. furiosus fba gene by primer 

extension. The transcripts begin at position +1 (arrow), the start codon (ATG) is marked by an asterisk, and the 

sequence ladder (lanes A, C, G and 7) is shown. cDNA synthesis for T. tenax was performed with total RNA from 

autotrophically (C02, lane 1) and heterotrophically (glucose, lane 2) grown cells and for P. furiosus with total RNA 

from pyruvate- (lane 3) and maltose (lane 4)-grown cells. (C) Upstream nucleotide sequences of the T. tenax (Tt) fba 

and pfp gene and the P. furiosus (Vf)fba gene. The putative transcription factor B recognition elements (BRE site), the 

TATA box promoter elements and the ribosome-binding sites (RBS) are marked. The mapped starting points of 

transcription are marked by an arrow and the ATG start codons are underlined. 
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For a more accurate assignment of the promoter region in T. tenax and P. furiosus the 

transcription starts of the fba-pfp mRNA and the fba mRNA, respectively, were determined by 

primer extension analyses. For the T. tenax fbp-pfp operon an antisense oligonucleotide binding at 

position 72 - 89 of the Jba gene was used. As shown in Fig. 7.3A transcription is initiated at the 

adenosine (A) immediately in front of the start codon (ATG) of the fba gene (position +1). A 

similar proximity of transcription and translation start site was already observed for the pyk gene, 

coding for the pyruvate kinase of T. tenax (30) and corresponds with the observation that some 

Archaea contain a high portion of mRNAs lacking Shine-Dalgano sequences in front of their coding 

genes (49, 50). In accordance with the Northern analyses the amount of copy DNA in the primer 

extension studies was by factor 4.5 - 7.1 higher in hetero- than in autotrophically grown T. tenax 

cells. The transcription start of the P. furiosus fba mRNA (Fig. 7.3B) was initiated at the guanosine 

10 bp upstream of the ATG start codon (position +1) and in contrast to T. tenax a putative RBS was 

identified. 

Inspection of the 5' flanking regions (Fig. 7.3C) revealed for the fba genes of T. tenax and 

P. furiosus AT-rich regions 20-30 nucleotides upstream of their transcription start sites, which 

correspond well with the archaeal promoter consensus sequences (51, 52, 53). In T. tenax the TATA 

box (crenarchaeal consensus sequence C/TTTTTAAA) is centered around position 

-25/-26 and 2 bp (-30 GA -31) upstream of the TATA box is the putative transcription factor B 

(TFB) recognition element (BRE site, consensus sequence A/GNA/TAAA/T). A putative ribosome-

binding site (RBS, GGAGG) seems to be absent. In P. furiosus a putative RBS (GGTGA) is 

identified at position +1 - +5, the TATA box is positioned around -24/-25 and 2 bp upstream is the 

putative purine-rich BRE site (54). 

Phylogenetic analyses 

Databank searches with the fba genes of T. tenax and P. furiosus revealed sequences with 

apparent similarity to the Class IFBP aldolases of E. coli (DhnA) in some bacterial and all archaeal 

genomes, with the only exception being Thermoplasma acidophilum. Whereas most of the genomes 

analyzed contain only a single dhnA like gene, Archaeoglobus fulgidus, Methanococcus jannaschii, 

Halobacterium sp. NRC-1, and E. coli possess two paralogous genes (22). This new FBP aldolase 

family represents a divergent group with sequence similarities as low as about 20 % identity (based 

on the 172-amino acid core region used for the phylogenetic analyses) between the different groups. 

Nevertheless, despite this substantial divergence, the universal conservation of the active site lysine 

(Lys-177, T. tenax; Lys-191, P. furiosus; and Lys-237, E. coli DhnA) and an additional conserved 

sequence motif preceding the active site lysine (position 171-176 T. tenax) as well as three further 

conserved regions ranging from position 20-27, 98-109, 199-204 (numbering of T. tenax fba gene), 

characterize them unequivocally as homologs of E. coli Class I FBP aldolase (DhnA) (Fig. 7.4). 
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Figure 7.4 Multiple sequence alignment of archaeal type Class IFBP aldolases. 

Boldface letters indicate amino acid residues used in the phylogenetic analyses. The predicted secondary structure of the 

T. tenax enzyme is shown above the sequences (47, 48). Conserved sequence motifs are shaded. The predicted 

phosphate-binding motif of many TIM barrel proteins is indicated by (P) and the catalytic lysine residue (Lys-237) 

determined for the E. coli Class I FBP aldolase (DhnA) (6) and the P. furiosus enzyme (this study) by an asterisk. The 

abbreviations used are as follows (accession numbers are in parentheses; for bigger nucleotide sequences with multiple 

open reading frames, first the protein and then the nucleotide accession numbers are given): Aa, Aquifex aeolicus 

(067506, AE000745); Dv, Desulfovibrio vulgaris (TIGR); Mt, Methanobacterium thermoautotrophicum (026679, 

AE000745); Af, Archaeoglobus fulgidus ((1) NP068949, AE001090, (2)NP069068, AE001099); Mj, Methanococcus 

jannaschii ((1) Q57843, U67492, (2) Q58980, U67598); Hs Halobacterium spec. NRC-1((1) AAG18889, AE004991, 

(2) AAG19176, AE005014); Ec, E. coli (DhnA P71295, U73760 and YneB AAC74590, AE000249); Pm, Pasteurella 

multicoda (AAK03362, AE006166); Re, Rhodobacter capsulatus (U57682); Ct, Chlorobium tepidum (TIGR); Ba, 

Bacillus anthracis (TIGR); Ss, Sulfolobus solfataricus (AAK43321, Sso3326); Td Treponema denticola (TIGR); Pf, 

Pyrococcus furiosus (AF368256); Pa, P. abyssi (NP125781, AL096836); Ph, P. horikoshii (057840, AP000001); Ap, 

Aeropyrum pernix (Q9YG90, AP000058); Tt, T. tenax (AJ310483); Tf, Thiobacillus ferrooxidans (TIGR); Cht, 

Chlamydia trachomatis (084217, AE001273); Chm, Ch. muridarum (AAF39333, AE002317); Chp, Ch. pneumoniae 

(AAD18430, AE001613); A,Anabaena PCC7120 (AF047044). 

Strikingly, DhnA homologs do not display significant overall similarity with the members of 

the classical Class I and Class II FBP aldolases as deduced from automated sequence comparison 

programs (e.g. Blast search). However, by closer inspection, sequence signatures could be identified 

resembling the active site region (position 177, T. tenax) and the phosphate binding motif (position 

203 - 204, T. tenax) of some members of the (Pa)s TIM barrel superfamilies (13) strongly 

suggesting that this new family of Class I FBP aldolases is at least distantly related to classical 

Class I FBP aldolases. Moreover, secondary structure predictions (47, 48) performed with the 

aldolase sequences of T. tenax, P. furiosus and Sulfolobus solfataricus not only identified these 

enzymes as ((3a)s barrel proteins but also locate the functional important residues at equivalent 

positions to the ones found in classical Class I FBP aldolases as well as in other enzymes of the 

((3a)s TIM barrel superfamilies (active site lysine in (36, phosphate binding region at the end of P7; 

Fig. 7.4) (13). From the high conservation of these key residues we further conclude that the new 

type of Class I FBP aldolase generally functions as a Schiff-base aldolase acting on phosphorylated 

substrates. 

To analyze the phylogenetic relationships between the various DhnA homologs of Bacteria 

and Archaea we aligned 27 sequences of 23 different species and selected a sequence fragment of 

172 amino acid residues (Fig. 7.4) for construction of phylogenetic trees (Fig. 7.5). The 

phylogenetic analyses include the three mostly used methods (maximum likelihood, maximum 

parsimony, and distance-based neighbor joining) and resulted in a complex tree topology with at 

least 7 deeply rooting branches. Two of them bear exclusively bacterial (branch IB and 4B) or 
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archaeal sequences (branch 2 and 3) and three comprise both archaeal and bacterial sequences 

(branch 1A, 1C, and4A). 

Discussion 

Aldolases ofT. tenax andP.furiosus, members of a new type of class I FBP aldolase 

The FBP aldolases of T. tenax and P. furiosus resemble specifically the Class I FBP aldolase 

of E. coli (DhnA) not only on sequence level but also in regard to biochemical properties. In 

common with E. coli Class I FBP aldolase (DhnA), catalysis of both archaeal enzymes proceeds via 

a Schiff-base mechanism. The archaeal enzymes, like the E. coli enzyme exhibit (i) additional 

enzyme activity with Fru-l-P, albeit at a much higher Km than for FBP and (ii) maximal turnover 

rates that are stimulated by citrate (Table 7.1). Finally, also with respect to quarternary structure 

both archaeal aldolases show specific resemblance to the Class I enzyme of E. coli (DhnA). All 

three enzymes tend to form higher oligomerization states representing octa- / decamers or even 

higher oligomers, whereas the members of the classical Class I and II FBP aldolases form mostly 

tetramers or dimers, respectively. Thus, structural features and mode of enzyme mechanism classify 

the FBP aldolases of T. tenax and P. furiosus as members of a new type of Class I FBP aldolase, 

distinct from classical Class I enzymes, which consists of homologs in almost all Archaea and some 

Bacteria. 

Transcription ofthefba genes ofT. tenax and P. furiosus, integration of the FBP aldolases in the 

physiological framework 

The PPj-PFK (27) and the FBP aldolase catalyze reversible reactions of successive steps in 

the variant of the Embden-Meyerhof-Parnas pathway of T. tenax, and as such both enzymes fulfill 

equivalent function in anabolic as well as catabolic direction of the pathway. Therefore the co-

transcription of the fba and pfp gene gives rise to the coordinated expression of both enzymes in T. 

tenax. On the contrary, in most organisms using pathways characterized by an unidirectional 

working PFK, either dependent of ATP or like in P. furiosus of ADP (21, 32), a linkage of FBP 

aldolase and PFK coding genes does not seem to be meaningful. Sometimes FBP aldolase genes are 

co-transcribed with genes coding for other reversible enzymes of glycolysis (e.g. glyceraldehyde-3-

phosphate dehydrogenase and phosphoglycerate kinase) or of the calvin cycle (e.g. ribulose 

bisphosphate carboxylase/oxygenase, phosphoribulokinase) as shown for classical Class II FBP 

aldolases (5, 55, 56). Because FBP aldolase is an essential constituent of glycolysis as well as 

gluconeogenesis, it is remarkable that the fba expression in both organisms T. tenax and P. furiosus 

is significantly higher under catabolic than under anabolic growth conditions (T. tenax, 
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glucose/CCh; P. furiosus, maltose/pyruvate). An explanation might be that the higher transcript 

level under catabolic conditions is caused by the necessity of higher carbon flux rates through the 

pathway for energy conservation than required for biosynthesis. 

A new family of aldolases -the archaeal type class IFBP aldolases 

Despite functional similarity with the classical Class I FBP aldolases, the new family of 

Class I aldolases differs significantly at sequence level. These non-significant average sequence 

similarities as well as the absence of certain DhnA-typical motifs in classical Class I enzymes 

characterize this new family of Class I FBP aldolases as a very divergent, new type in addition to 

classical Class I aldolases. However, both types of Class I FBP aldolases like other (Pa)g (TIM) 

barrel proteins share, beside the predicted similar secondary structure arrangement, basic common 

sequence features in regions flanking the active site lysine or engaged in phosphate binding (13, 

57). 

Strikingly, all completed archaeal genomes contain at least one homolog of this new type of 

Class I FBP aldolases, with the only exception of T. acidophilum, which is supposed to use only the 

non-phosphorylative Entner-Doudoroff pathway for carbohydrate metabolism (58, 59). In contrast 

to Archaea, only in about 50 % of completely sequenced bacterial genomes DhnA related open 

reading frames have been identified and no eucaryal homolog has been assigned yet. At the moment 

we do not know whether this new type of Class I FBP aldolases is the only enzyme responsible for 

aldolase activity in Archaea. Reports of metal-dependent Class II aldolase enzyme activity in 

Haloarchaea {e.g. Halobacterium halobium) (16) suggest that additional enzymes might be present, 

which have not been identified yet in the sequenced genomes, due to their low sequence similarity 

to known Class I and II aldolases. Because of this so far obviously exclusive occurrence of this new 

type of aldolase, together with the absence of classical Class I and II aldolases, in Archaea and the 

non-significant amino acid sequence homology to classical Class I enzymes, we propose to classify 

this new family as archaeal type Class I FBP aldolases (Class IA) to oppose them to classical Class 

I aldolases only found in Eucarya and Bacteria. 

Phylogenetic implications 

The phylogenetic tree (Fig. 7.5) is composed of seven deeply branching lineages each 

bearing members of one or both prokaryotic domains, whose relationships among each other are 

rather poorly resolved. The presence of Class IA FBP aldolases from Bacteria and Archaea, from 

Euryarchaeota and Crenarchaeota (e.g. aldolases of Euryarchaeota in branch IA, 2, 3, 4A; enzymes 

of Crenarchaeota in branch 2, 3), or even from one organism (e.g. enzymes of E. coli in branch IB 

and 4B) in at least two different deeply rooting main branches suggests that early gene duplication 

events confer largely to the characteristic topology of the tree. Probably an early, first gene 
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Chapter 8 

Abstract 

The Pyrococcus furiosus fbpA gene was cloned and expressed in Escherichia coli and the 

produced fructose-1,6-bisphosphatase was subsequently purified and characterized. The dimeric 

enzyme showed a preference for fructose-1,6-bisphosphate with a Km of 0.32 mM and a Vmax of 

12.2 U/mg. The P. furiosus fructose-1,6-bisphosphatase was strongly inhibited by Li+ (IC50 = 1 

mM). Based on the presence of conserved sequence motifs and the specific substrate specificity of 

the P. furiosus fructose-1,6-bisphosphatase, we propose that this enzyme belongs to a new family, 

the class IV fructose-1,6-bisphosphatase. 

The hyperthermophilic archaeon Pyrococcus furiosus is capable of metabolizing sugar via 

an Embden-Meyerhof-like pathway. A combination of physiological, biochemical and genetic 

studies have revealed that the pyrococcal glycolysis differs from the regular Embden-Meyerhof 

pathway by incorporating new conversions, novel enzymes and unique control (25) (13). 

Compelling examples of deviation of the canonical glycolysis are the recruitment of two unique 

ADP-dependent sugar kinases (23) (24) (44), a structurally distinct phosphoglucose isomerase (46), 

and the presence of a glyceraldehyde-3-phosphate ferredoxin oxidoreductase (30) (45). In addition, 

the genes encoding the homologous and distantly related fructose-1,6-bisphosphate aldolase and 

phospho-glycerate mutase were recently predicted, and their function was subsequently confirmed 

experimentally (C. Verhees, unpublished) (40). The remaining glycolytic and gluconeogenic 

enzymes could rather easily be identified in the genome sequence. However, no gene coding for a 

homolog of the gluconeogenic fructose-1,6-bisphosphatase (EC 3.1.3.11) (FBPase) could be 

identified in the genome sequence of P. furiosus. This also holds for other archaea, except for 

Halobacterium sp. NRC1, which contains a classical FBPase (31). 

FBPase is an essential regulatory enzyme in the gluconeogenic pathway. It converts D-

fructose-1,6-bisphosphate to D-fructose-6-phosphate, an important precursor in biosynthetic 

pathways. Generally, a divalent metal ion such as Mg2+, Mn2+, Co2+ or Zn2+ is required for catalytic 

activity (7) (12) (3) (43). Three-dimensional structures of several FBPases have been elucidated 

(49) (47) (22) (19), all containing a typical sugar phosphatase fold (http://scop.mrc-

lmb.cam.ac.uk/scop) (26). 

It has recently been reported that the inositol monophosphatase (I-l-Pase) (EC 3.1.3.25) 

from Methanococcus jannaschii (MJ0109) exhibits FBPase activity, and it has been suggested that 

this enzyme might be the missing FBPase in archaea (41). In addition MJ0109 orthologs from 

Archaeoglobus fulgidus and in Thermotoga maritima showed FBPase activity (41) (8). In an 

attempt to complete the set of glycolytic and gluconeogenic enzymes in P. furiosus we cloned and 
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expressed the MJ0109 ortholog from P. furiosus in Escherichia coli, and investigated its ability to 

function as a thermo-active FBPase. 
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Figure 8.1 Multiple sequence alignment of the deduced amino acid sequence of the P. furiosus FBPase with its 

FBPase IV homologs, and sequences of I-1-Pases and FBPases from eucarya and bacteria. 

H.s. IMP - Homo sapiens I-l-Pase 1 (P29218), Ex. IMP = Escherichia coli SuhB I-l-Pase (P22783), T.m. FBPIV = 

Thermotoga maritima TM1415 FBPase (033832), A.f. FBPIV = Archaeoglobus fulgidus AF2372 FBPase 

(NPJJ71195), M.j- FBPIV = Methanococcus jannaschii MJ0109 FBPase (Q57573), P.f. FBPIV = Pyrococcus furiosus 

FBPase (GenBank™ accession number AF453319), Ex. FBP1 = Escherichia coli FBPase (P09200), S.s. FBP - Sus 

scrofa FBPase (P00636). Gaps introduced by the alignment are indicated by hyphens. Completely conserved regions are 

indicated as black boxes. Highly conserved regions are shaded gray. The IMP motifs are indicated with black bars 

above the alignment. The FBPase motif is indicated with a gray bar under the alignment. IMP 1 motif; [FWV]-x(0,l)-

[LIVM]-D-P-[LIVM]-D-[SG]-[ST]-x(2)-[FY]-x-[HKRNSTY]; Inositol monophosphatase family signature 1 

(PS00629). IMP 2 motif; [WV]-D-x-[AC]-[GSA]-[GSAPV]-x-[LIVACP]-[LIV]-[LIVAC]-x(3)-[GH]-[GA]; Inositol 

monophosphatase family signature 2 (PS00630). FBPase motif; [AG]-[RK]-[LI]-x(l,2)-[LIV]-[FY]-E-x(2)-P-[LIVM]-

[GSA] (PS00124) (http://www.expasy.ch/ prosite). The stars (*) denote residues involved in the Li+ binding site (47). 

The determined N-terminal amino acid sequence from the purified P. furiosus FBPase described here is underlined. 
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Transcript analysis and cloning oifbpA 

An ortholog (JbpA) of MJ0109 (6) was identified in the P. furiosus genome database 

(http://www.genome.utah.edu/). This ortholog was originally annotated as an extragenic suppressor, 

suhB. The start of the JbpA gene was predicted based on the presence and proper spacing of a 

potential Shine-Dalgarno sequence and multiple alignment of the deduced amino acid sequence 

with those of related enzymes (Fig. 8.1). To test whether the fbpA gene was transcribed in P. 

furiosus, total RNA was isolated from a pyruvate-grown P. furiosus culture (40 mM) as described 

previously (48). The presence of the fbpA transcript was confirmed (data not shown) by using the 

RT-PCR System according to the instructions of the manufacture (Promega) with 1 ug of P. 

furiosus RNA, and the primers BG977 and BG978 (see below). Moreover, recent genome based 

microarray analysis of P. furiosus also revealed the expression offbpA (annotated as suhB) (39). 

The fbpA gene (765 bp) was PCR amplified from chromosomal DNA of P. furiosus as 

described before (44) using the primers BG977 (5'- GCGCGTCATGAAGCTTAAGTTCTGGAG-

GG, sense) and BG978 (5'- GCGCGGATCCCTACTCCAGTAAGCTTAAAATTGTTTT, anti-

sense), with BspHl and BarriHl restriction sites in bold. The PCR product was digested with 

BspHl/BamHl, and cloned into E. coli XL 1-Blue using a NcoI/BamHl digested pET24d vector 

using established procedures and 50 ug/ml kanamycin for selection. Subsequently, the resulting 

plasmid pLUW558 was transformed with E. coli BL21(DE3). 

Overexpression and purification of FBPase 

An overnight culture of E. coli BL21(DE3) harboring pLUW558 was used as a 1% 

inoculum in 0.5 liter of Luria-Bertani medium with 50 ug/ml kanamycin. Gene expression was 

induced by adding 0.1 mM isopropyl-1-thio-a-D-galactopyranoside (IPTG) at an optical density at 

600 nm of 0.5. Growth was continued for 10 h at 37 °C, and cells were harvested by centrifugation 

(2,200 x g for 20 min at 4 °C) and resuspended in 10 ml of 50 mM Tris/HCl buffer, pH 8.0. Cells 

were disrupted by French Press treatment (100 megapascals), and cell debris was removed by 

centrifugation (10,000 x g for 20 min at 4 °C). The resulting cell-free extract was heat-treated for 30 

min at 80 °C, and precipitated proteins were removed by centrifugation (10,000 x g for 30 min at 4 

°C). The heat-stable cell-free extract was filtered through a 0.45-um filter and applied to a Mono-Q 

HR 5/5 column (1 ml, Amersham Pharmacia Biotech), equilibrated with 50 mM Tris/HCl buffer, 

pH 8.0. The FBPase activity eluted at 0.37 M NaCl during a linear gradient of 0.0 - 1.0 M NaCl. 

Active fractions were pooled and concentrated 20-fold to a final volume of 100 ul using a filter with 

a 10-kDa cutoff (Microsep, Pall Filtron). The concentrated pool was loaded on a Superdex 200 HR 

10/30 gel filtration column (24 ml, Amersham Pharmacia Biotech), equilibrated with 50 mM 

Tris/HCl buffer, pH 7.8 containing 100 mM NaCl. The elution pattern (not shown) suggested the 
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active configuration to be a dimer (66.8 kDa) of two identical subunits of 33 kDa, in good 

agreement with SDS-PAGE analysis (not shown). The calculated subunit size was slightly lower, 

namely 27.9 kDa. The purified enzyme was desalted in 50 mM Tris/HCl buffer, pH 8.0 using a 

filter with a 10-kDa cutoff (Microsep, Pall Filtron). From 2.7 g cell-paste of E. coli BL21(DE3) 

containing pLUW558, a total of 27.7 mg of FBPase was purified to 95% as judged by SDS-PAGE 

(not shown). To ensure that the detected activity corresponds to the P. furiosus FBPase, the N-

terminal sequence of the purified enzyme has been determined by the Edman degradation method 

(Met-Lys-Leu-Lys-Phe-Trp-Arg-Glu-Val-Ala-Ile-Asp-Ile-Ile-Ser-Asp-Phe-Glu-Thr-Thr-Ile-Met-

Pro-Phe), revealing that the obtained amino acid sequence exactly matched the N-terminal sequence 

of the translated fbpA from P. furiosus (Fig. 8.1). This indicates that the P. furiosus FBPase had 

been produced and purified successfully. 

Temperature dependence of the FBPase 

For the determination of the temperature optimum, an appropriate amount of purified 

FBPase (6-30 ng) was incubated in 1-ml crimp-sealed vials containing 100 mM MOPS buffer, pH 

7.4 and 10 mM MgCl2. The vials were submerged in an oil bath at temperatures varying from 20 to 

120 °C, preheated for 2 min, after which the enzyme reaction was initiated by injecting 15 mM 

fructose-1,6-bisphosphate. At different time intervals up to 15 min the reaction was stopped by 

transferring the vials to ice/ethanol. Aliquots were taken and the amount of fructose-6-phosphate 

formed was determined spectrophotometrically by measuring the reduction of NADP+ (340 nm) at 

room temperature, in an assay with glucose-6-phosphate isomerase (EC 5.3.1.9) and glucoses-

phosphate dehydrogenase (EC 1.1.1.49), both from yeast. A linear fructose-6-phosphate production 

in time was observed, indicating that no P. furiosus FBPase was inactivated during incubation. The 

P. furiosus FBPase showed maximal activity at approximately 100 °C (data not shown). 

The enzyme (18 ug/ml) lost 50% of its activity after incubating for 2 h at 100 °C in 50 mM 

Tris-HCl buffer, pH 8.0, according to first-order inactivation kinetics (not shown). For the 

determination of the melting temperature, the P. furiosus FBPase was dialyzed extensively against a 

100 mM sodium phosphate buffer, pH 8.0, and diluted to 0.3 mg/ml in dialysis buffer. After 10 

minutes of degassing, samples were analyzed in a differential scanning micro-calorimeter (VP-

DSC, MicroCal) between 50-125 °C at 0.5 °C/min against the dialysis buffer. Enzyme scans were 

corrected using a buffer-buffer baseline. Data were analyzed with the Microcal Origin 5.0 SR2 

software package. For the FBPase an apparent melting temperature of 107.5 °C was determined 

(not shown), which is in good agreement with the inactivation kinetics. 
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Catalytic properties 

Kinetic parameters of the P. furiosus FBPase were determined discontinuously at 85 °C by 

varying the concentration fructose-1,6-bisphosphate (0.005-5 mM), and by the measurement of 

inorganic phosphate at room temperature as described before (16). The 0.2-ml assay mixture 

contained a 50 mM Tris/HCl buffer, pH 8.0 (room temperature), 10 mM MgCl2, and 0.4 ug of 

purified FBPase. At this temperature the Km and Vmax of the P. furiosus FBPase with fructose-1,6-

bisphosphate was 0.32 ± 0.03 mM and 12.2 ± 0.1 U/mg respectively, resulting in a catalytic 

efficiency {kcat/Km) of 17.7 s"1 mM"1. The determined affinity of the purified FBPase for fructose-

1,6-bisphosphate is in good agreement with the determined Km of 0.5 mM (75 °C) in a P. furiosus 

extract (37). Kinetic parameters of the purified FBPase determined at 50 °C were as follows, a Km 

of 0.31 ± 0.06 mM, a Vmax of 0.72 ± 0.04 U/mg, and a catalytic efficiency of 1.12 s"1 mM"1. Thus, 

the P. furiosus FBPase clearly is a thermo-active enzyme with a similar affinity for fructose-1,6-

bisphosphate at 50 and 85 °C. 

Table 8 1. Substrate specificity of P. furiosus FBPase compared to M.jannaschii MJ0109. 

Substrate 

Fructose-1,6-bisphosphate 
Inositol-1 -phosphate 
Glycerol-phosphate 
Glucose-1 -phosphate 

Relative activity (%)a 

P. /wn'osus FBPase M. jannaschii MJ0109b 

100 100 
7.5 61 
1.7 49 
2.8 42 

100% activity corresponds to 12.2 and 15.2 U/mg for P. furiosus FBPase and MJ0109, respectively. Fructose-1-

phosphate, fructose-6-phosphate, glucose-6-phosphate, phosphoenolpyruvate, 5'-AMP, 5'-ADP, and 5'-ATP could not 

be used as substrates by the P. furiosus FBPase. 

* Enzyme assays were performed at 85 °C as described in the text. 
b Data obtained from Stec et al. 2000 (41). 

Specific activities of the P. furiosus FBPase for fructose-1,6-bisphosphate and related 

substrates were determined at 85 °C in the standard assay that measures release of inorganic 

phosphate. The 1-ml assay mixture contained 50 mM Tris/HCl buffer, pH 8.0 (room temperature), 

10 mM substrate, 10 mM MgCl2, and 0.02 mg of purified FBPase. Highest activity was obtained 

with fructose-1,6-bisphosphate (12.2 U/mg). In addition, myoinositol-1 -phosphate, glucose-1-

phosphate, and (3-glycerol phosphate could also be phosphorylated by the enzyme, although activity 

towards one of these substrates is relatively low (1.7-7.5%) (Table 8.1). The recently described 1-1-

Pase/FBPase from M. jannaschii (MJ0109) also phosphorylates these substrates, but with a higher 

relative activity (42-61%) (41) (Table 8.1). The P. furiosus FBPase appeared to be a rather specific 

phosphatase since fructose-1-phosphate, fructose-6-phosphate, glucose-6-phosphate, 
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phosphoenolpyruvate (PEP), 5'-AMP, 5'-ADP, and 5'-ATP could not be used as a substrate under 

the tested conditions. 

The explanation for the low I-l-Pase activity of the P. furiosus FBPase might be as follows. 

In thermophilic archaea and bacteria several intracellular solutes are accumulated in response to 

osmotic and temperature stress (36) (35) (20). One of these compatible solutes is di-myo-inositol 

phosphate (DIP), a solute that accumulates at supra-optimal growth temperatures in some 

thermophilic species. (36) (38) (9) (34). In P. furiosus, temperatures above the growth optimum also 

lead to a significant increase of this compound (28) (33). Two different routes for DIP synthesis are 

known: (i) in Methanococcos igneus (closely related to M. jannaschii) I-l-Pase activity is required 

to form myo-inositol, which acts as a precursor in DIP biosynthesis (11), and (ii) in Pyrococcus 

woesei DIP is synthesized in a different way, without the wjo-inositol forming step (38). This latter 

alternative pathway includes the coupling of two wyo-inositol-1 -phosphates, without a preceding I-

1-Pase-mediated dephosphorylation of one of the /wyo-inositol-1-phosphate moieties. Since P. 

furiosus is closely related to P. woesei, it is most likely that in P. furiosus I-l-Pase activity is not 

required for DIP synthesis either, which would be in good agreement with the low activity of the P. 

furiosus FBPase on myo-inositol-l -phosphate. 

Effectors of FBPase 

The effect of inhibitors on the activity of the P. furiosus FBPase was investigated by adding 

cations and metabolites (0-100 mM) to the standard enzyme assay (85 °C) (Table 8.2). The enzyme 

has an absolute requirement for Mg2+ (data not shown). The inhibition characteristics of the P. 

furiosus FBPase clearly differ from that of characterized eukaryal and bacterial FBPases, as well as 

from the other presently characterized archaeal I-1-Pase/FBPase homologs. FBPase I from E. coli is 

very sensitive to AMP and PEP (1). FBPase II from E. coli is strongly inhibited by ATP and ADP, 

whereas AMP has no effect on the enzyme activity. Furthermore, FBPase II activity is enhanced in 

the presence of PEP (14). PEP also affects FBPase III activity, i.e. inhibition by AMP is reduced 

when PEP is present (15). The P. furiosus FBPase was inhibited by ADP and ATP (and to some 

extent AMP), but PEP did not influence the activity at all (up to 100 mM PEP). Therefore, PEP 

presumably is not an important metabolite in the regulation of FBPase in P. furiosus. In addition, 

glucose-6-phosphate significantly reduced P. furiosus FBPase activity in vitro (Table 8.2). 

Li+ generally is a strong inhibitor of FBPase activity (Kt -0.3 mM) (47) (27) (42). Under the 

tested conditions Li+ significantly reduced the P. furiosus FBPase activity (IC50 = 1 mM) (Table 

8.2), where addition of Na+ and K+ showed no effect. Previously, it was shown that I-1-Pases are 

also strongly inhibited by Li+ (IC50 -0.3 mM) (17) (29) (18). These enzymes have a similar fold as 

FBPases (50), both members of the sugar phosphatase superfamily (http://scop.mrc-
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lmb.cam.ac.uk/scop) (26). Inhibition of mammalian I-l-Pase by Li+ is of particular interest, since 

this enzyme is being expressed in brain tissue and forms the main target in manic depression 

medical treatment (2) (32) (4). The mechanism of Li+ inhibition of FBPases and IMPases is 

believed to be essentially the same, Li+ binds at one of the metal binding sites, thereby retarding 

turnover or phosphate release (47) (9). The residues that constitute this metal binding site are 

conserved in lithium-sensitive I-l-Pase and in FBPase (Fig. 8.1). Remarkably, Li+ had not such a 

strong effect on the M. jannaschii (MJ0109) and Thermotoga maritima (TM1415) enzymes 

(TM1415, IC50 = 100 mM, and MJ0109, IC50 > 250 mM), although residues constituting the Li+ 

binding site are conserved (Fig. 8.1) (8) (9). Minor variations will probably distinguish in the 

inhibitory effect of Li+ on the I-l-Pase and FBPase (9). 

Table 8.2 Inhibitors of P. furiosus FBPase activity. 

"Effector ~ ~~ ~ ~ ~ ~ IC50 (mM)~~ 
Li+ 1 
Ca2+ 5 
AMP 30 
ADP 3 
ATP 4 
Glucose-6-phosphate 4 
Fructose-6-phosphate 25 
Pyruvate _ _ _ ^ 2 _ 

Enzyme assays were performed at 85 °C as described in the text (10 mM fructose- 1,6-bisphosphate). IC50: 

concentration of effector when activity of the P. furiosus FBPase was reduced to 50%. The addition of Na+, K+, glucose 

or PEP to the assay mixture (up to 100 mM) had no effect on FBPase activity. 

Classification of FBPases 

Recently, a new classification of bacterial FBPases into three groups (FBPase I, II and III) 

has been proposed (14). Eukaryal FBPases are orthologous to the bacterial FBPase I, both 

containing a typical FBPase domain (http://www.expasy.ch), and display no I-l-Pase activity (41). 

The typical FBPase domain is absent in the bacterial FBPase II and III (Table 8.3), suggesting that 

these enzymes are phylogenetically unrelated to FBPase I. Remarkably, a typical I-l-Pase domain 

(IMP 1) is also present in the eukaryal FBPase and the bacterial FBPase I (http://www.expasy.ch). 

Bacterial and eukaryal I-1-Pases contain two specific domains (IMP 1 and IMP 2), and together 

with the eukaryal FBPase and bacterial FBPase I, belong to the sugar phosphatase superfamily 

(http://scop.mrc-lmb.cam.ac.uk/scop). Comparison of the primary structure of the P. furiosus 

FBPase with the FBPase and IMP family signatures revealed that this enzyme contains both I-l-

Pase domains (IMP 1 and IMP 2). No obvious FBPase domain could be detected in the P. furiosus 

sequence (Table 8.3) (Fig. 8.1). The P. furiosus FBPase is homologous to Mjannaschii MJ0109, A. 

fulgidus AF2372 and T. maritima TM1415, all three enzymes having an IMP 1 and IMP 2 domain 

present in their primary structure (Fig. 8.1) and possessing dual activity (i.e. FBPase and I-l-Pase 
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activity) (41). Since these FBPases display limited sequence identity towards both eukaryal and 

mesophilic bacterial FBPases (FBPase I 12-16%, FBPase II and III, 11-15%), but rather seem to be 

significantly related to the I-1-Pases (16-35 %), we propose the P. furiosus FBPase and its 

homologs to constitute a new FBPase family based on sequence identity and substrate specificity: 

the type IV FBPase (FBPase IV), present in euryarchaeal and hyperthermophilic bacterial species, 

and potentially involved in gluconeogenesis. The presence of a conserved domain (IMP 1) in 

FBPase I, IV and the I-1-Pases, as well as the similar fold of these enzymes (41) (21) (5) (50) 

suggests that these enzymes share the same phylogenetic origin, as suggested previously (41) (50). 

It is tempting to speculate that the FBPase IV originally belonged to the I-l-Pase family, and 

subsequently evolved to convert fructose-1,6-bisphosphate efficiently to function in 

gluconeogenesis. 

Table 8.3 Classification of Phosphatases. 

Taxonomic range 

Subunit size 
(kDa) 
Oligomerization 
Fold 

Sequence motifs 

FBPase I 
Eucarya, 
Bacteria 

-38 

Tetramer 
Sugar 

phosphatase 
FBPase, 
IMP1 

Classes 

FBPase II 
Bacteria 

-36 

Dimer 
unknown 

none 

if Phosphatases 

FBPase III 
Bacteria 

-76 

Tetramer 
unknown 

none 

FBPase IV 
Archaea, 

HT-Bacteria 
-28 

Dimera 

Sugar 
phosphatase 

IMP1, 
IMP 2 

I-l-Pase 
Eucarya, 
Bacteria 

-30 

Dimer 
Sugar 

phosphatase 
IMP 1, 
IMP 2 

aThe T. maritima enzyme is an exception having a tetrameric structure. 

FBPase IV is present in the euryarchaea: P. furiosus (GenBank™ accession number AF453319); P. horikoshii 

(PH1897); P. abyssi (PAB0189); M. jannaschii (MJ0109); Archaeoglobus fulgidus (AF2372); Methanosarcina barkeri 

(MB1918); Methanobacterium thermoautotrophicum (MTH871), and the hyperthermophilic bacteria Thermotoga 

maritima (TM1415) and Aquifex aeolicus (AQ1983). Bacterial extragenic supressor proteins (SuhB) are classified 

within the I-l-Pase family (10), and show I-l-Pase activity but no FBPase activity (41). HT-Bacteria: 

Hyperthermophilic Bacteria. 

We thank L. Kluskens (Wageningen University) for assistance during the DSC 

measurements, and Stefan Wolff (Essen University, Germany) for providing myoinositol-1-

phosphate. This work was supported by the Earth and Life Sciences foundation (ALW), which is 

subsidized by the Netherlands Organization for Scientific Research (NWO). 
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Abstract 

The glycolytic pathway of the hyperthermophilic archaeon Pyrococcus furiosus differs 

significantly from the canonical Embden-Meyerhof pathway because it consists of novel enzymes 

and is subjected to a unique control. Recently, the complete set of genes encoding glycolytic 

enzymes from P. furiosus has been identified, and the enzymes have been studied in detail. 

However, little is known about transcriptional regulation and promoter structure of the archaeal 

glycolytic genes. In this study the transcription initiation sites of pyrococcal genes encoding 

glycolytic enzymes have been identified. Their promoter sequences have been compared with other 

promoter sequences from P. furiosus, and consensus sequences for the TATA box 

(NTTWWWWA) and the BRE element (RAAAAN) are proposed for this hyperthermophilic 

archaeon. Remarkably, an inverted repeat (ATCACN5GTGAT) was identified in P. furiosus 

promoter sequences of genes encoding glycolytic and other sugar metabolic proteins. It is discussed 

that this inverted repeat may be involved in the common regulation of these genes. 

Introduction 

Pyrococcus furiosus uses a modified Embden-Meyerhof pathway during growth on sugars 

(1). All of the genes that encode the glycolytic enzymes have been identified, either by homology 

searching of its genome or by reversed genetics. A combination of metabolic, biochemical and 

genetic approaches has established that the pyrococcal glycolysis differs from the Embden-

Meyerhof pathway because of new conversions, novel enzymes and unique control (1) (2) (3) (4) 

(5) (6) (7). 

In the classical Embden-Meyerhof pathway the irreversible phosphorylation reactions 

catalyzed by hexokinase, phosphofructokinase and pyruvate kinase are allosterically regulated 

control sites. However, the ADP-dependent glucokinase and ADP-dependent phosphofructokinase 

of the euryarchaeon P. furiosus are not allosterically controlled by any of the usual effector 

compounds (C. Verhees, unpublished) (5). Furthermore, the pyruvate kinase of the crenarchaeon 

Thermoproteus tenax is not allosterically regulated neither (8). Thus these enzymes do not act as the 

major control points similar to that in the classical glycolysis. Alternatively, the novel 

glyceraldehyde-3-phosphate ferredoxin oxidoreductase could be an important enzyme in control of 

the Pyrococcus glycolysis. The enzyme catalyzes the irreversible oxidation of glyeralde-3-

phosphate and the expression of its gene is strongly induced by growth on sugars (4). Recent studies 

have shown that a number of pyrococcal glycolytic enzymes are regulated at transcription level as 

well (6) (7) (9). Therefore, regulation of the glycolytic flux in P. furiosus might involve modulation 

of gene expression rather than allosteric regulation of enzyme activities. 
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In bacteria and eucarya transcriptional control of glycolysis can be positively or negatively 

regulated. In gram-positive bacteria, the catabolite control protein (CcpA) was found to be a 

transcriptional activator of glycolytic operons including genes encoding phosphofructokinase, 

pyruvate kinase and lactate dehydrogenase (10) (11). In gram-negative bacteria, the fructose 

repressor protein (FruR) negatively regulates transcription of genes encoding glycolytic enzymes, 

and positively regulates transcription of genes encoding gluconeogenic enzymes (12). In yeast, a 

DNA-binding protein (GRC1) was found to strongly reduce the transcription levels of most 

glycolytic enzyme encoding genes (13) (14). No homologs of these regulators could however be 

identified to be encoded by the genome of P. furiosus or other archaea. 

A small number of archaeal transcriptional regulators have identified and studied 

experimentally (15) (16) (17) (18) (19). A homolog of the leucine-responsive regulatory protein 

(LRP) from P. furiosus has been studied in detail and was found to autoregulate its own promoter 

(16). LRPs from bacteria are either global or specific regulators involved in control of amino acid 

metabolism. However, no target genes have thus far been identified for the P. furiosus LRP. In 

addition, no regulators are yet known that are responsible for the modulated gene expression of the 

pyrococcal glycolytic enzymes. 

In this study, transcription initiation sites of some of the glycolytic genes are determined, 

promoter structures are compared, and functionally important elements are identified. The results 

reveal details of the promoter architecture in P. furiosus and allowed for the identification of a 

conserved inverted repeat in the promoter sequences of genes encoding glycolytic enzymes. 

Analysis of the complete P. furiosus genome reveals that this inverted repeat, termed PSR -for 

Pyrococcus Specific Repeat- is present in the promoter sequences of glycolytic genes and those 

encoding proteins involved in ot-linked sugar degradation. A putative function of PSR in 

transcription regulation is discussed. 

Experimental procedures 

Organism and growth condition 

P. furiosus (DSM 3638) was grown in chemically defined medium as described previously 

(20) with the only exception that yeast extract was omitted and substituted by the individual amino 

acids (0.25 mM final concentration). Maltose (10 mM) or pyruvate (40 mM) was added as the 

primary carbon source. 
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Transcript analyses 

RNA was isolated from maltose and pyruvate grown P. furiosus cells as described 

previously (21). The transcription starts were determined with fluorescence (IRD800)-labeled 

antisense oligonucleotides (Table 9.1). Primer extension reactions were performed using the 

Reverse Transcription System (Promega) according to the instructions of the manufacturer with 

following modifications. Hybridization of total RNA (15 ug) and oligonucleotide (5 pmol) was 

performed for 10 min at 68 °C before allowing to cool to room temperature. The reaction (20 ul 

final volume) was started by addition of dNTPs (1 mM), MgCb (5 mM), RNAsin (20 U), and avian 

myeloblastosis virus-reverse transcriptase (22.5 U). After incubation for 30 min at 45 °C the 

reaction volume was diluted to 50 ul with 10 mM Tris/HCl (pH 8.5), 1 ul of RNase A (5 mg/ml) 

was added and the sample was incubated for 10 min at 37 °C. cDNA was precipitated with ethanol, 

dissolved in 3 ul loading buffer and 1 ul was applied to a sequencing gel in parallel with the 

sequencing reactions obtained with the same oligonucleotide. 

Table 9.1 5'-(IRD800)-labeled antisense oligonucleotides. 

Gene Nucleotide sequence Target residues' 
glk 5'-TGTCCAAGTATTTTATAGCGTCG-3' 102-124 
pgi 5'-CTTTCCATGCCCTTTCATCAAC-3' 103-124 
pflc 5'-ATTTTATCGGGACCAAATTCC-3' 102-122 
fba 5'-CAAAGTCCGTAGGGCCGTGC-3' 99-118 
tpi 5'-AATTGTTACACCTGTTTCTTTGTAC-3' 102-126 
gor 5'-ATGTCCTTAGTTCATTGTGTCTC-3' 102-124 
pyk 5'-ATTCTTGCAACATTCATCCCCG-3' 89-110 
pps 5 '-TGGTGGAACTGGAATTCCAGC-3' 97-117 
The numbers indicate the position of the nucleotides downstream the translation start site. 

Results and discussion 

Genomic organization 

The genes encoding the enzymes of the modified Embden-Meyerhof pathway in Pyrococcus 

have been identified directly by homology or by determination of the N-termini of the purified 

enzymes (5) (7) (6) (C. Verhees, in prep.) (22) (3) (4). Their location on the genomes of the three 

sequenced pyrococcal strains (P. furiosus, P. horikoshii and P. abyssi) indicates that the genes are 

scattered over the complete genome and not located in operon structures with any of the other 

glycolytic genes (Fig. 9.1). In bacteria, glycolytic genes are often distributed over the complete 

genome as well. However, sometimes genes are clustered, e.g. glyceraldehyde-3-phosphate 

dehydrogenase is often clustered with 3-phosphoglycerate kinase and sometimes with triose-

phosphate isomerase or fructose-1,6-bisphosphate aldolase. The latter can also be co-transcribed 

with phosphoglycerate kinase (23) (24) (25). Moreover, in the hyperthermophilic archaeon 
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Thermoproteus tenax the fructose-1,6-bisphosphate aldolase gene is co-transcribed with the 

phosphofructokinase gene, both encoding reversible enzymes (6). The different location and 

direction of the genes on the three Pyrococcus genomes reflects the highly flexibility of these 

genomes as noted before (26) (27). 

»/*™z*jr 

Figure 9.1 Genomic organization of genes encoding glycolytic and gluconeogenic enzymes in P. furiosus, P. 

horikoshii and P. abyssi. 

glk = ADP-dependent glucokinase (AF127910); pgi = phosphoglucose isomerase (AF381250); pfk = ADP-dependent 

phosphofructokinase (AF127909); jbp = fructose-1,6-bisphosphatase (pfl862791); fba = fructose-1,6-bisphosphate 

aldolase (AF368256); tpi = triose-phosphate isomerase (pfl771224), gor = glyceraldehyde-3-phosphate ferredoxin 

oxidoreductase (AAC70892); gap = glyceraldehyde-3-phosphate dehydrogenase (pfl729229); pgk = 3-

phosphoglycerate kinase (pfl012695); pgm = phosphoglycerate mutase (pfl810133); eno = enolase (pf232621); pyk = 

pyruvate kinase (pfl 135494); pps = phosphoeno/pyruvate synthase (P42850). Filled circles denote origin of replication 

(27). Direction of the genes is indicated by arrows. 

Mapping transcription start sites and promoter elements 

Transcription initiation sites of P. furiosus glycolytic genes were determined by primer 

extension analyses (Fig. 9.2). Remarkably, the transcription start sites of the glk, fba and tpi genes 

were identified at the guanosine residue of a putative ribosomal binding site (GGTGAT), located 

10-11 nucleotides upstream of the ATG start codon. All investigated transcription start sites of the 

euryarchaeon P. furiosus genes were found to be located at the first position of or immediately 

upstream of a putative ribosomal binding sites. This contrasts to a considerable number of identified 

transcription initiation sites in the crenarchaeon Sulfolobus solfataricus, that are all located 

downstream of the initiation codon (28). 
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A comparison of pyrococcal promoter sequences (Fig. 9.2) reveals two conserved sequence 

elements positioned around -26/-27 and -33/-34, that most likely correspond to the TATA box and 

transcription factor B recognition element (BRE), respectively (29) (30). The archaeal TATA 

binding protein TBP is known to bind to the TATA box, which is generally centered at position -

26/-27. However, some flexibility exist in the spacing between the TATA box and the transcription 

start site, i.e. a divergence from the ideal distance by 1 or 2 nucleotides appears to be compatible 

with faithful start site selection (31) (29). A consensus for TATA box sequences has been proposed 

for several archaeal groups (Table 9.2). Based on the comparison of investigated P. furiosus 

promoter regions, the following TATA box consensus is proposed -30NTTWWWWA-23 (Table 

9.2) This consensus resembles strongly that reported recently for halophiles (29). It is likely that 

this sequence is recognized by the known Pyrococcus TBP, since another dedicated protein can be 

excluded, based on the absence of homologs in the genome of P. furiosus and the faithful in vitro 

transcription of the glutamate dehydrogenase (32) and glyceraldehyde ferredoxin oxidoreductase 

genes (4). A consensus sequence has been proposed for the 6-nucleotide BRE immediately 

upstream of the TATA box for Sulfolobus (Table 9.2) (30). The key role for the archaeal BRE is to 

direct the oriented assembly of the archaeal pre-initiation complex upon binding of transcription 

factor B (30). Two nucleotides, positioned 3 and 6 upstream of the TATA box, are the strongest 

specificity determinants of the archaeal BRE (30). These nucleotides are apparently conserved in 

the P. furiosus promoter sequences and a BRE consensus for P. furiosus is proposed, -

36RAAAAN-31 (Table 9.2), which is highly similar to that of the Sulfolobus consensus. 

Table 9.2 Consensus sequences of archaeal promoter elements. 

Archaeal groups TATA box1 BRE site1 Reference 

Halophilei ^9(f^f^W-W-W)-24 7 (29) 

Methanogens -30(Y-T-T-A-T-A-T-A)-23 - (29) 

Sulfolobus -30(Y-T-T-T-T-A-A-A)-23 -36(R-N-W-A-A-W)-31 (29) (30) 

Pyrococcus -30(N-T-T-W-W-W-W-A)-23 -36(R-A-A-A-A-N)-31 This study 

'The numbers indicate the position of the nucleotides upstream the transcription start site. No consensus described. 

Remarkably, considerable nucleotide symmetry was observed in a variety of promoter 

sequences (Fig 9.2). A specific repeated sequence appears to be conserved in the promoter 

sequences of all but one (pyk; see below) genes encoding glycolytic enzymes. It consists of a 

conserved pentanucleotide inverted repeat spaced by 5 nucleotides with the consensus 

ATCACN5GTGAT. However, this 15-nucleotide sequence is extended by 2-8 nucleotides in several 

of these promoter sequences, that further contribute to the perfect inverted repeat. 
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Sugar metabolism 

|BRE[TATA|—[o]— 

|BRE[TATA|—(i<j— 

iBREtTATA)—frj— 

|BRE|TATA|—(if— 

|BREfTATA|—pi)— 

JBREfTATAl—4fj— 

|BRE[rATA|—(l(j— 

|BRE[TATA|—fij— 

-|BRE[TATA|jg(4 

- |BRE[TATA|— \ \ j— 

-iBREfTATAl—(ij— 

-|BRE[rATA|—(7]— 

-iBREfTATAl—[ll}— 

-|BRE[rATA|—(if-

-|BREtTATA|—(1^— 

-|BREfTATA| [13 )— 

atgtATCATN5GTGATacat -fl^ATGf 

tATCACN5GTGACa -feHATCil-

ATCACU5ATGAT "(2 l )gf§-

tATCACN5GTGATa -fcl}|AT(jh 

tATCACN5GTGAT£ -fOr|ATG|-

ATCACN5GTGAT -fcUATCil-

tATCTCN5GTGATa -[3'HATOh 

GACACN5GTGGT - ( ' 'HATGI -

aatAACACN5GTGGTatt _{lr[ATG|-
• l 

ATCACN5GTGAT -fcHATGl-
• I 

ttTTCACN5GTGATaa -fejJATGl-
I 

GTCACN5GTGGT -(|9HATG|-

aCTCACN5GTGATt -^(JftTGr 

ATCATN5GTGAT -fcrlATGl-
+ 1 

ATCACN5GTTAT -^2||ATG|-

CTCACN5GTGGT -f4}]AT(jh 

Pf_492863: a-amylase (extracellular) 

Pf_1058861: putative amylopullulanase (extracellular) 

Pf 1788984: maltodextrin binding protein 

Pf_492863: a-amylase (intracellular) 

Pf_283928: a-araylase (intracellular) 

Pf_606805 phospho-sugar mutase 

Pf_327695 ADP-dependent glucokinase 

Pf_212635 phosphoglucose isomerase 

Pf__1658725 ADP-dependent phosphofructokinase 

P f J 807457 fructose-1,6-bisphosphate aldolase 

Pf_1771224 triose-phosphate isomerase 

Pf_478142 glyceraldehyde ferredoxin oxidoreductase 

Pf_1810133 phosphoglycerate mutase 

Pf_232621 enolase 

Pf_49183 phosphoeno/pyruvate synthase 

Pf_927581 pyruvate ferredoxin oxidoreductase (por8) 

Peptide metabolism 
ATCACN5GTGAT -fej-|BRE[rATA|-f23HHl-f27]-|ATCif Pf_301754pyrolysin 

Transcription regulation 
|BREtTATA|—(1^— ATAACN5GTGAG -(2f|ATGf PfJ490333 transcription regulator MarR/EmrR 

Hypothetical 

-|BRE[TATA|—p"(j— TTCACN5GTTGT - f ' I S M Pf_396645 hypothetical 

-|BRE[rATA|—(1^— ATAACN5GTGAA -f3H\TGF Pf_1390650 hypothetical 

-|BRE[TATA| £^— aGTCATN5GTGATt -f3r|ATGr Pf_251719 hypothetical 

Figure 9.3 Occurrence of PSR-elements in the P. furiosus genome. 

BRE, TATA box and translation start sites are indicated in transparent boxes. PSR-elements are indicated in grey 

boxes. Transcription initiation sites are indicated as +1 The nucleotide distance between the boxes are indicated between 

brackets. The complete P. furiosus genomic sequence is available at http://www.utah.edu. 
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Based on imperfect variants in the promoter sequences, the complete genome of P. furiosus 

was screened. Motifs identified downstream and more than 100 bp upstream of predicted translation 

start sites were omitted. In total, this inverted repeat was identified 21 times in putative and 

characterized promoter sequences in the 2.0 Mb genome of P. furiosus (http://www.utah.edu). The 

majority [a total of 16] of these, are in front of genes that encode proteins involved in starch and 

glucose metabolism. In addition, this inverted repeat appears to be present in promoter sequences of 

5 other genes encoding pyrolysin, a putative transcription regulator, and three hypothetical proteins 

(Fig 9.3). This inverted repeat has been termed Pyrococcus-Specific Repeat (PSR). The PSR-

element is exclusively found in promoter sequences encoding proteins involved in oc-linked sugar 

degradation and uptake. All these genes appear to be transcribed as monocistronic messengers 

based on experimental data (4) (33) (7) (6) and/or the architecture of the sequences located 

upstream the translation start and downstream the translation termination site. MalE is the first gene 

of a gene cluster including malF, malG and an a-amylase, but these genes are suggested to be 

transcribed separately (S. Koning, pers. comm). 

Interestingly, PSR is absent in promoter sequences of ftp, gap and pgk genes, encoding 

enzymes that solely act in gluconeogenesis, and also in promoter sequences of genes involved in the 

catabolism of p-linked glucose poly-/oligo-saccharides, like (3-glucosidase and the cellobiose 

transporter. Remarkably, it is also absent in the sequences upstream the pyk gene, but present in the 

pps gene. Although it has been suggested before that phosphoewo/pyruvate synthase rather than 

pyruvate kinase might be operating in glycolytic direction in this archaeon (34), this is still a matter 

of debate (22) (J. Tuininga, pers. comm.). 

The position of PSR, located downstream the TATA box suggests that it may be involved in 

the negative control of gene expression, by binding a transcriptional regulator or trans-acting 

protein. Similarly, the location, 25 nucleotides upstream the BRE site of the mapped pyrolysin (pis) 

promoter (33) indicates that it may be involved in transcription activation of this gene. A specific 

form of catabolite repression could be the anticipated mechanism involved. In the presence of 

peptides, a-sugar utilization would then thus be repressed in P. furiosus. It has indeed been shown 

that growth on tryptone inhibits glycolysis in the closely related Thermococcus zilligii, even after 

addition of glucose (35). However, experimental data are obviously required to confirm this 

hypothesis. The presence of PRS in promoter regions of genes encoding many sugar-converting 

enzymes, including the complete glycolysis, would indicate that it might represent a specific site for 

regulation of the P. furiosus glycolytic pathway. Unexpectedly, this site is not present in promoter 

sequences of homologous genes in P. horikoshii and P. abyssi. This might reflect the evolution of a 

more sophisticated regulatory system after divergence of the Pyrococcus species. This would be in 

agreement with the recent gain of some saccharolytic enzymes by P. furiosus, such as the ones 

involved in p-glucan degradation (26). 
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Chapter 10 

In the last few decades microorganisms have been isolated from rather unknown and hostile 

locations, such as those with high salt concentrations, an extreme pH, or low or high temperatures. 

Microorganisms isolated from these environments are referred to as extremophiles (1). The most 

extensively studied group of these extremophiles are the hyperthermophiles, microorganisms that 

have an optimum temperature for growth above 80 °C (2). Except for two bacterial genera, the 

Thermotageles and Aquifex, all hyperthermophiles isolated to date belong to the domain of the 

archaea. The archaea compose together with the bacteria and eucarya the three domains of life (3). 

Pyrococcus furiosus is a hyperthermophilic archaeon, with an optimal growth temperature 

of 100 °C that grows heterotrophically on a variety of substrates including peptides and saccharides. 

For its growth on saccharides it uses a modified version of the Embden-Meyerhof pathway, that 

involves novel enzymes and unique control mechanisms. The research described in this thesis has 

mainly focussed on the molecular and biochemical characterization of enzymes involved in the 

upper part of glycolysis mP. furiosus and related organisms (Fig. 10.1). 

A brief outline of this study is giving in Chapter 1. In Chapter 2 sugar metabolism in 

archaea is reviewed. Recent studies on various modifications in the Entner-Doudoroff and Embden-

Meyerhof pathways are discussed, and potential scenarios on the evolution of sugar metabolism are 

proposed. 
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Figure 10.1 Classical Embden-Meyerhof (EM) pathway vs modified EM-pathway. 

Classical EM-pathway is operative in bacteria and eucarya. Modifications (*) in the EM-pathway are found in archaea. 

Enzymes that were under investigation in this thesis are indicated in blocks. 
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Chapter 3 describes the first characterization of an ADP-dependent phosphofractokinase 

(ADP-PFK). Attempts to purify the ADP-PFK from P. furiosus cell extracts were not successful, 

because of the difficult purification procedure of this enzyme, which tends to stick to other proteins. 

Alternative approaches based on anticipated homology with the ADP-dependent glucokinase (ADP-

GLK) have resulted in the identification of the gene encoding the ADP-PFK on the P. furiosus 

genome. The gene encoding the ADP-PFK was functionally expressed in Escherichia coli using a 

well-established expression system. The production of the ADP-PFK in the mesophilic E. coli 

allowed for a simple purification procedure consisting of a heat-treatment of the cell extract 

followed by a single chromatographic step. The purified enzyme was able to phosphorylate 

fructose-6-phosphate into fructose-1,6-bisphosphate with ADP as phosphoryl group donor. 

Classical PFKs use ATP or PP; as potential phosphoryl group donor, indicating that the P. furiosus 

enzyme differs from its canonical counterparts. The enzyme was not regulated by any of the known 

allosteric modulators of ATP-PFKs, implying that the P. furiosus glycolysis does not possess a 

typical site of regulation. 

Sequence analysis on the primary structure of the ADP-PFKs showed no significant 

sequence similarity with the classical monophyletic PFKs (PFKA). However, high similarity (21% 

identity) was observed with the ADP-dependent glucokinase (ADP-GLK) from P. furiosus, 

suggesting that both ADP-dependent sugar kinases are phylogenetically related, and belong to the 

same enzyme family. Orthologs of the ADP-PFK were identified in genome databases of the 

closely related P. horikoshii and P. abyssi. Also the paralogous ADP-GLK was present in these 

Pyrococci. Furthermore, orthologs of the ADP-PFK were identified in the hyperthermophilic 

methanogen Methanococcus jannaschii and the mesophilic methanogen Methanosarcina mazei 

(Chapter 4). Based on a combination of genomic comparison and activity measurements it is 

concluded that ADP-PFKs are not restricted to the Thermococcales, but are present in mesophilic 

methanogens as well. Interestingly, uncharacterized homologs (presumably ADP-dependent) of this 

unusual kinase are present in several higher eucarya, including human, mouse and fly. The gene 

encoding the ADP-PFK from M. jannaschii was expressed in E. coli, and the enzyme was 

subsequently purified. The biochemical characteristics of the first ADP-PFK from a 

chemolithoautotrophic archaeon were compared to those of the ADP-PFK from the heterotrophic 

archaea P. furiosus and Thermococcus zilligii (Chapter 4). 

In Chapter 5 an ATP-dependent galactokinase (catalyzing the first step of the Leloir 

pathway) from P. furiosus is described. Therefore, both ADP-dependent sugar kinases and an ATP-

dependent sugar kinase appear co-exist in this hyperthermophile. The three dimensional structure of 

the P. furiosus galactokinase has recently been solved in close collaboration with the group of Prof. 

David Rice (Sheffield, England). Despite the ADP-dependent sugar kinases, the ATP-dependent 

galactokinase shares two conserved motifs and a high degree of overall similarity (± 32 % identity) 
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to the canonical galactokinases. The galactokinase and the ADP-GLK from P. furiosus were 

produced in E. coli, and their characteristics were compared to each other and to their canonical 

counterparts. The kinetic and physical parameters of the heterologously produced ADP-GLK were 

in good agreement with those of the native ADP-GLK, indicating that the enzyme was successfully 

produced and folded in E. coli. The affinity for ATP of the galactokinase was extremely high at 90 

°C {Km for ATP of 0.008 mM) compared to the classical galactokinase from mesophiles. However, 

the affinity for galactose was comparable to that of the canonical enzymes. It was suggested that the 

extremely high affinity of the galactokinase for ATP might reflect an adaptation to a relative low 

intracellular ATP concentration in P. furiosus. This might also explain the presence of the ADP-

dependent sugar kinases in P. furiosus. Both the ATP-dependent galactokinase and the ADP-GLK 

showed a high catalytic efficiency for their phosphoryl group donor at 90 °C, compared to their 

mesophilic counterparts. 

Chapter 6 describes the purification of a unique phosphoglucose isomerase from P. 

furiosus, its characterization, isolation of the corresponding gene, and prediction of the structure of 

the enzyme. The phosphoglucose isomerase was purified from a P. furiosus extract. The N-terminal 

sequence of the purified enzyme was determined, and the gene, named pgiA, could be identified on 

the P. furiosus genome. Subsequent expression in E. coli revealed that the gene indeed encoded a 

phosphoglucose isomerase. The pgiA gene was transcribed as a mono-cistronic messenger, and the 

transcription start site was mapped. Despite similar substrate specificity and kinetic parameters, no 

significant sequence similarity was obtained with classical phosphoglucose isomerases. In contrast, 

the enzyme shares similarity with the CUPIN superfamily (double-stranded beta-helices) that 

consists of a variety of proteins that are generally involved in sugar binding or protein interaction. 

This is the first example of a phosphoglucose isomerase that belongs to the CUPIN superfamily, 

and it is the first characterization of an archaeal phosphoglucose isomerase to date. The novel 

phosphoglucose isomerase and the two ADP-dependent sugar kinases are examples of an excessive 

replacement of enzymes in glycolysis, and are a compelling example of convergent evolution. 

Chapter 7 focuses on two archaeal fructose-1,6-bisphosphate aldolases, i.e fructose-1,6-

bisphosphate aldolase from the crenarchaeon Thermoproteus tenax and from the euryarchaeon P. 

furiosus. The genes encoding these enzymes were identified in the genomes based on sequence 

similarity with a novel fructose-1,6-bisphosphate aldolase from E. coli. Transcript analyses reveal 

that the in vivo expression of both genes is induced during sugar fermentation. Subsequently, the 

genes were expressed in E. coli, and the encoded proteins were purified to homogeneity. Both the 

archaeal enzymes use a Schiff base mechanism for catalysis similar to the Class I aldolases, in 

contrast to the Class II aldolases that use metal ions for catalyses. As revealed by phylogenetic 

analyses, orthologs of the T. tenax and P. furiosus enzyme appear to be present in almost all 

sequenced archaeal genomes, as well as in some bacterial genomes, strongly suggesting that this 
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new enzyme family represents the typical archaeal fructose-1,6-bisphosphate aldolase. Because this 

family shows no overall sequence similarity to classical Class I and II enzymes, a new name is 

proposed, archaeal type Class I fructose-1,6-bisphosphate aldolase (Class IA). Despite to low 

sequence similarity between the archaeal type Class I fructose-1,6-bisphosphate aldolases and the 

classical Class I and Class II aldolases, sequence signatures could be identified resembling the 

active site region (Lys-191) and the phosphate-binding motif of classical Class I fructose-1,6-

bisphosphate aldolases and other members of the (Pa)s barrel superfamilies. This suggests that the 

archaeal type Class I enzymes are distantly related to the classical Class I fructose-1,6-bisphosphate 

aldolases, and that they share the same ancestral origin. 

In Chapter 8 the P. furiosus gluconeogenic fructose- 1,6-bisphosphatase is described. The 

gene was identified in the genome based on the sequence similarity with the recently described 

Methanococcus jannaschii bi-functional inositol-monophosphatase/fructose-l,6-bisphosphatse. The 

gene was functionally expressed in E. coli, and the enzyme was subsequently purified to 

homogeneity. Biochemical characteristics were compared with the homologous gene product from 

M. jannaschii (MJ0109), revealing distinct characteristics in substrate specificity and inhibitors. 

The M. jannaschii enzyme is a bi-functional enzyme with high activity on inositol-1-phosphosphate 

and fructose-1,6-bisphosphate. The P. furiosus enzyme has a more specific substrate specificity 

with a clear preference for fructose-1,6-bisphosphate. Therefore, the enzyme can be regarded as a 

true fructose-1,6-bisphosphatase. Sequence analysis of the P. furiosus fructose-1,6-bisphosphatase 

reveals the enzyme to be more similar to inositol monophosphatases than to fructose-1,6-

bisphosphatases (type I), both belonging to the sugar phosphatase superfamily, with similar folding 

and sequence motifs. Because of the higher similarity of the P. furiosus enzyme to the inositol 

monophosphatases, and because of its specific preference for fructose-1,6-bisphosphate, the enzyme 

was proposed to belong to a new sub-family: the euryarchaeal fructose-1,6-bisphosphatase (type 

IV). This new sub-family shows limited sequence similarity to classical fructose-1,6-bisphosphatase 

from bacteria and eucarya (type I), and no significant sequence similarity to the bacterial fructose-

1,6-bisphosphatases (type II and III). 

Preliminary results in promoter architecture of genes encoding glycolytic enzymes are 

described in Chapter 9. Promoter elements were identified, and a putative glycolytic regulator 

binding site (ATCACNNNNNGTGAT, where N are random nucleotides) is observed specifically in 

P. furiosus promoter sequences of glycolytic-enzyme encoding genes. Complete analysis of the P. 

furiosus genome revealed that this motif is present in 21 promoter sequences. The majority of the 

genes encode enzymes involved in sugar metabolism. Further research is needed to reveal the 

function of this putative binding site. 

In conclusion, this project has resulted in the identification of unique genes encoding novel 

enzymes of modified glycolytic pathways in archaea. Key enzymes of the pyrococcal glycolytic 
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pathway were shown to be modified in enzyme catalysis, evolution and regulation. In close 

collaboration with the group of Prof. David Rice (Sheffield, England) significant progress has been 

made in crystallization of the ADP-PFK and galactokinase from Pyrococcus. Finally, it is 

postulated that regulation of the glycolytic flux in P.furiosus might involve modulation of gene 

expression rather than allosteric regulation of enzyme activities. High throughput screening by 

transcriptomic and proteomic approaches like DNA micro-arrays and 2D-gelelectrophoresis, and 

generation of knock-out mutants in Pyrococcus will provide more insight in the actual significance 

of regulation of gene expression in archaeal central metabolism in the near future. 
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Gedurende de afgelopen vier jaar is me vaak door niet-onderzoekers gevraagd waar ik nu eigenlijk 

mee bezig was. Het even uitleggen was er vaak niet bij, mede door de vele vaktermen die doorgaans 

in het lab gebruikt worden. Deze samenvatting is juist bedoeld voor die mensen die interesse 

hebben getoond in mijn onderzoek, maar geen idee hadden wat ik nu precies aan het doen was. 

Met het onderzoek dat in dit proefschrift is beschreven hebben we getracht suikeromzettingen in 

ons model-organisme beter te begrijpen. Het onderzoek is uitgevoerd binnen het Laboratorium voor 

Microbiologie en is gefinancierd door ALW-NWO. 

Het organisme (oftewel het beestje) 

Overal om ons heen is leven. Mensen, dieren en planten zijn hier het zichtbare bewijs van. 

Maar er is nog meer leven, hoewel niet zichtbaar voor het blote oog. Dit zijn de bacterien. Deze 

minuscuul kleine organismen (vaak kleiner dan 0,003 mm) kom je overal tegen. Op je huid zitten al 

miljarden van deze bacterien. Van sommige bacterien kun je ziek worden, maar andere heb je juist 

nodig om te overleven. Archaea hebben uiterlijke kenmerken van bacterien, maar onderscheiden 

zich door te kunnen overleven onder vaak extreme condities. Archaea die onder zeer extreme 

condities leven, zoals bijvoorbeeld bij temperaturen rond het kookpunt van water worden 

hyperthermofielen genoemd. Je vindt deze hyperthermofiele archaea onder vulkanische 

omstandigheden zowel op het land als in de zee. Het organisme dat in dit boekje beschreven is heet 

Pyrococcus furiosus alias "de ziedende vuurbal" en is dus zo'n archaeon dat leeft bij extreem hoge 

temperatuur. Pyrococcus is ontdekt in 1986 nabij het strand van het eiland Vulcano in Italie 

(Fig. 11.1). Hij voelt zich het prettigst in een zoute omgeving en bij een temperatuur van 100°C. 

Mede door zijn leefomstandigheid en grote verscheidenheid aan eetgewoonten is dit een interessant 

organisme om te bestuderen. In dit boekje is de vertering van suikers onder de loep genomen (Fig. 

11.2). 

£: 

Figure 11.1 Pyrococcus furiosus. 
Bron: http://www.uniregensburg.de/Mikrobio/Stetter/Bilderhtml/pyrococcus.html 

142 

http://www.uniregensburg.de/Mikrobio/Stetter/Bilderhtml/pyrococcus.html


Samenvatting 

De route 

Zoals een mens onder normale omstandigheden moet eten om in leven te blijven, zo moet 

Pyrococcus dit ook. Een belangrijke voedselbron voor zowel de mens als Pyrococcus is suiker, 

waaruit energie wordt gehaald en vele bouwstoffen worden gemaakt. Er zijn veel stappen nodig om 

van suiker de gewenste eindproducten te maken. De route waarvan wij, maar ook Pyrococcus 

gebruik maakt om suiker af te breken heet de glycolyse. Het woord glycolyse komt van het griekse 

woord glycos, wat suiker betekent en lysis, wat oplossen betekent. Dus glycolyse betekent eigenlijk 

het oplossen van suiker. 
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Fig. 11.2 De glycolyse onder de loep genomen. 

De normale glycolyse bestaat uit 10 stappen die door 10 verschillende enzymen worden uitgevoerd. De glycolyse van 

Pyrococcus bestaat echter maar uit 9 stappen, die door 9 verschillende enzymen worden uitgevoerd. Pyrococcus heeft 

dus een enzym dat 2 stappen in slechts 1 stap kan doen. Een ander groot verschil tussen de beide routes is het gebruik 

van het hulpcomponent ADP i.p.v. ATP. De belangrijkste verschillende stappen in de Pyrococcus glycolyse zijn 

aangeven met dikke zwarte pijlen. 

De enzymen 

Je zou de glycolyse kunnen zien als een zwarte doos waarin suiker (glucose) wordt omgezet 

in een eindproduct (pyruvaat) (Fig. 11.3). Maar wij gaan hierin verder! Verschillende stappen zijn 

nodig om glucose in pyruvaat om te zetten via deze glycolyse (Fig 11.2). In iedere stap wordt een 

kleine verandering aangebracht wat uiteindelijk ertoe leidt dat glucose volledig is omgezet in 

pyruvaat. Het gereedschap dat nodig is om deze kleine verandering te doen worden enzymen 

genoemd. Dit zijn eiwitten die je kunt vergelijken met kleine fabriekjes die component X in 

component Y omzetten. Voor elke verandering is een ander enzym nodig. Dus deze enzymen zijn 

ook nog eens heel specifiek. De naamgeving van de enzymen heeft te maken met de verandering 

die ze aanbrengen. Zo zetten enzymen met de naam kinasen een energierijke verbinding (P) aan een 
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component (A) (A -> A-P). Verschillende enzymen uit de Pyrococcus-glycolyse zijn in dit 

proefschrift beschreven en er is gekeken naar welke verandering ze teweegbrengen en hoe goed ze 

dit doen. Hieruit is naar voren gekomen dat Pyrococcus enzymen heeft die unieke omzettingen 

kunnen doen, welke nog niet eerder in detail bestudeerd waren. Vervolgens is gekeken of de 

betreffende enzymen uit Pyrococcus verwant zijn aan enzymen in andere organismen. Dit is 

uitgezet in een stamboom, waarbij de onderlinge verwantschap bekeken is. Het is nu gebleken dat 

Pyrococcus gebruik maakt van een variant van de glycolyse waarbij een aantal stappen tussen het 

beginpunt glucose en eindpunt pyruvaat afwijken van de bestaande glycolyse in bacterien en de 

mens. Pyrococcus maakt hier gebruik van andere, niet verwante enzymen, die soms net een andere 

omzetting doen waardoor ze uniek te noemen zijn. 

o o 
II II 

H,CX 0" 

Glucose Pyruvaat 
C6H12°6 C3H3O3 

Figure 11.3 Structuurformules van glucose en pyruvaat. 

Het zoeken naar enzymen 

Allemaal leuk en aardig zul je denken, maar hoe krijg je nu deze enzymen in handen om ze 

vervolgens te kunnen bestuderen. Hiervoor hebben we een tweetal strategieen gebruikt. In de eerste 

strategie hebben we het voor ons interessante enzym uit Pyrococcus gevist, dit heet het zuiveren 

van een enzym. Dit zou je kunnen vergelijken met het zoeken naar een speld in een hooiberg. Maar 

door slim te werk te gaan kun je heel gericht zoeken. In Pyrococcus zitten wel honderden 

verschillende enzymen. Al deze enzymen hebben specifieke eigenschappen. Door nu gebruik te 

maken van deze verschillende specifieke eigenschappen, zoals bijvoorbeeld grootte en lading, kun 

je de enzymen van elkaar scheiden. Zo kun je een scheiding op basis van grootte vergelijken met de 

werking van een zeef. Afhankelijk van de grootte van de mazen kan iets door de zeef gaan of er 

juist in achter blijven. Waar je enzym zich bevindt na elke stap kun je controleren door de 

omzetting te meten die specifiek is voor dat enzym (bijvoorbeeld A -> A-P). Na 5 tot 6 

verschillende van dit soort technieken toegepast te hebben houd je meestal je gezuiverd enzym waar 

naar je op zoek was over en kun je beginnen met dit enzym eens grondig te gaan bestuderen. 
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In een tweede strategie maken we in eerste instantie gebruik van de computer. Van heel veel 

enzymen is al bekend wat ze doen en hoe ze emit zien. Van deze enzymeigenschappen zijn 

profielen gemaakt en deze zijn systematisch geordend. Door geavanceerde computerprogramma's 

te gebruiken kunnen we als het ware zoeken in Pyrococcus naar overeenkomsten met die bestaande 

enzymprofielen (de tak van sport die hierin gespecialiseerd is wordt ook wel bioinformatica 

genoemd). Om dit te kunnen doen moeten natuurlijk gegevens van Pyrococcus ook beschikbaar zijn 

in het computerbestand (zie erfelijk materiaal). Hierna kunnen we met onze trucjesdoos, waar heel 

wat gepipetteer bij komt kijken het enzym laten maken door een bacterie die we daarvoor getraind 

hebben. Vervolgens kunnen we op een relatief makkelijke manier via 1 a 2 stappen (strategie 1) het 

enzym zuiveren. 

Het erfelijk materiaal 

Erfelijke eigenschappen bevinden zich bij bacterien en archaea op een enkel groot molecuul, 

het chromosoom. Echter bij de mens zijn er 46 van deze chromosomen. Een chromosoom is 

gemaakt van DNA (de veel gebruikte afkorting voor de chemische naam van het erfelijk materiaal). 

De samenstelling van het complete DNA van verschillende bacterien, archaea en ook de mens is nu 

bekend. Zo kunnen we nu dus ook alle DNA van Pyrococcus in kaart brengen. Alleen dit DNA zegt 

natuurlijk nog niets. Wat we willen weten is wat het DNA betekent, we willen het als het ware 

kunnen lezen. Een gen is nu een bepaalde volgorde van het DNA en bevat de informatie die nodig 

is om een eiwit, of de enzymen die in dit proefschrift zijn besproken, te produceren. Deze genen 

worden van generatie op generatie doorgegeven middels overerving (of celdeling bij bacterien en 

archaea), maar kunnen ook direct tussen (niet) verwante organismen worden overgebracht 

(horizontale overdracht). Op deze manier ontstaat er evolutie van het gen. Door het vergelijken van 

de samenstelling van een gen met dat van soortgenoten en andere organismen hebben we ontdekt 

dat genen (die coderen voor de glycolyse-enzymen) zich ook op verschillende manieren 

geevolueerd hebben, zowel door celdeling als horizontale genoverdracht. 

In de startblokken 

Hoe wordt nu de met informatie die op een gen ligt een enzym gemaakt? Een gen bevat alle 

informatie (DNA) welke nodig is om een enzym te maken. De speciale code die op het gen ligt 

geeft heel precies de bouwstenen en hun volgorde aan zoals ze in het enzym komen te zitten. Het 

gen is dus een soort blauwdruk voor het enzym. Maar hoe gaat die vertaling van DNA naar enzym 

nu eigenlijk in zijn werk? Allereerst wordt het DNA via een speciale machinerie vertaald in 

boodschapper RNA (mRNA). Dit wordt wel eens vergeleken met een racebaan (Fig. 11.4). De 
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machinerie is de raceauto en het gen is het parcours. De pitstop van waaruit de raceauto vertrekt is 

erg belangrijk, dit is een stukje DNA dat voor het gen ligt (dit wordt de promoter genoemd). De 

raceauto wordt hier klaargemaakt en alle onderdelen worden bevestigd. Op het moment dat het 

stoplicht op groen springt scheurt de raceauto het parcours (gen) op. Na een rondje over het 

parcours is het DNA vertaald in mRNA. De raceauto krijgt alleen het groene licht als er op dat 

moment behoefte is aan de specifieke eigenschappen die het gen bezit, dus als er behoefte is aan het 

enzym. Zo zal voor de glycolyse gelden: als er suiker aanwezig is dan wordt er druk gereden om 

alle benodigde enzymen aan te maken. Maar met het mRNA zijn we er nog niet. Dit mRNA is de 

boodschapper die vertrekt naar de ribosomen (de eiwitsynthese-fabrieken) waar het enzym gemaakt 

wordt. Dus om een enzym te maken dient het DNA eerst vertaald te worden in mRNA, dat 

vervolgens weer als boodschapper dient voor de ribosomen waar het enzym dan daadwerkelijk 

gemaakt wordt (Fig. 11.4). 

orgamsme 

Fig. 11.4 Van gen tot enzym. 

Schematische weergave hoe een enzym aangemaakt wordt in een organisme. 1. Het coderende gen wordt vertaald in 

boodschapper RNA (transcriptie). 2. Dit boodschapper RNA wordt gelezen door de ribosomen en het enzym wordt 

primair aangemaakt (translatie). 3. Het enzym vouwt zich in een actieve vorm. 4. Uiteindelijk doet het enzym de 

specifieke omzetting waar het voor gemaakt is, bijvoorbeeld de eerste stap in de glycolyse. 
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Samenvatting 

Wat weten we nu? 

De aangegeven strategieen hebben ertoe geleid dat we alle genen die coderen voor enzymen 

uit de glycolyse van Pyrococcus hebben kunnen lokaliseren op het chromosoom. Je kunt dit 

vergelijken met een puzzel, de zogenaamde glycolyse-puzzel. Omdat we de complete DNA-

volgorde van Pyrococcus al wisten hadden we eigenlijk al veel informatie in handen 

(puzzelstukjes). Maar omdat de genen zoveel afwijken van bekende genen waren we nog niet in 

staat om van ieder mogelijk glycolyse-gen de functie te voorspellen (waar moeten de puzzelstukjes 

komen te liggen in de glycolyse-puzzel?). Daarom hebben we de coderende enzymen gezuiverd uit 

Pyrococcus en hebben we de enzymen laten maken door getrainde bacterien op basis van het 

Pyrococcus erfelijk materiaal. Dit heeft ertoe geleid dat we tot dusver onbekende glycolyse-

enzymen hebben kunnen bestuderen welke geen of geringe verwantschap vertonen met enzymen uit 

andere organismen die een vergelijkbare omzetting kunnen doen. Vervolgens hebben we alle 

puzzelstukjes van glycolyse-enzymen op de juiste plaats in de glycolyse kunnen neerleggen. Hieruit 

kwam naar voren dat de grootste variatie, d.w.z. de aanwezigheid van unieke enzymen, zich bevindt 

in het bovenste deel van de glycolyse. Het onderste gedeelte van de glycolyse bleek weinig te 

varieren tussen Pyrococcus en andere organismen. Het idee is dat het onderste deel van de route 

origineel een functie had in de synthese van celcomponenten (anabool) en dat vervolgens met het 

verkrijgen van het bovenste gedeelte er in Pyrococcus een volledige glycolyse is ontstaan die het 

mogelijk maakte suikers om te zetten en erop te groeien (katabool). 

Tot slot is een eerste aanzet gegeven in de regulatie van de glycolyse, d.w.z. wanneer mag 

de raceauto gaan rijden en wanneer niet. Het blijkt namelijk dat er in de promoters van deze genen 

(pitstop) een signaal aanwezig is dat het stoplicht aan of uit zou kunnen zetten en zodoende de race 

kan laten verlopen of juist stil zetten. 
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